{ "cells": [ { "cell_type": "markdown", "id": "f10c8f26", "metadata": {}, "source": [ "# 8-channel mode and polarization (de)multiplexer" ] }, { "cell_type": "markdown", "id": "106c2164", "metadata": {}, "source": [ "Note: the cost of running the entire notebook is larger than 1 FlexCredit.\n", "\n", "Mode-division multiplexing and polarization-division multiplexing on integrated photonic circuits are critical for large-bandwidth and high-speed optical communication networks. Here we introduce an 8-channel mode and polarization (de)multiplexer that is based on asymmetric directional couplers that operate on TE0 to TE3 as well as TM0 to TM3 modes. The design is based on [Wang, J., He, S. and Dai, D. (2014), On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing. Laser & Photonics Reviews, 8: L18-L22](https://onlinelibrary.wiley.com/doi/full/10.1002/lpor.201300157).\n", "\n", "The notebook is organized as the following: \n", "\n", "First, we use Tidy3D's [ModeSolver](../_autosummary/tidy3d.plugins.ModeSolver.html?highlight=modesolver) to simulate the effective indices of the eight modes as a function of waveguide width. From the result, we can obtain the width of the bus waveguide in each directional coupler section to satisfy the phase match condition. \n", "\n", "Then, we model each directional coupler section individually to ensure good mode conversion efficiency. \n", "\n", "Lastly, once we confirm that good performance is achieved on each section, we build the whole 8-channel (de)multiplexer and simulate the whole device, which is about 200 $\\mu m$ in length. Thanks to the fast speed of Tidy3D solver, large simulations like these can be handled easily. \n", "\n", "The models in this notebook contain many waveguide bends. These bends can be defined natively in Tidy3D as demonstrated in the [Euler waveguide bend](../notebooks/EulerWaveguideBend.html) example or the [waveguide Y junction](../notebooks/YJunction.html) example. Alternatively, it is often easier to make use of `gdstk` as shown in the [GDSII import tutorial](../notebooks/GDS_import.html). Here we will also demonstrate how to use `gdstk` to define the structures used in the simulation.\n", "\n", "" ] }, { "cell_type": "code", "execution_count": 1, "id": "f1046476", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:00:28.625535Z", "iopub.status.busy": "2023-03-28T00:00:28.625347Z", "iopub.status.idle": "2023-03-28T00:00:30.219752Z", "shell.execute_reply": "2023-03-28T00:00:30.219054Z" }, "tags": [] }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from matplotlib.gridspec import GridSpec\n", "import gdstk\n", "\n", "import tidy3d as td\n", "import tidy3d.web as web\n", "from tidy3d.plugins.mode import ModeSolver\n" ] }, { "cell_type": "markdown", "id": "7bb676ae", "metadata": {}, "source": [ "The [ModeSolver](../_autosummary/tidy3d.plugins.ModeSolver.html?highlight=modesolver) will check if the solved mode fields decay at the boundaries. When the field does not decay, a warning will be thrown. When we solve for more modes than the waveguide can support, spurious modes will appear and their fields most likely won't decay at the boundaries. We set the logging level to `\"ERROR\"` mainly to avoid these warnings. \n", "\n", "In general, we do not recommend setting the logging level to `\"ERROR\"` since most warnings are informative and can help troubleshoot your simulations." ] }, { "cell_type": "code", "execution_count": 2, "id": "c5c1d71d", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:00:30.223412Z", "iopub.status.busy": "2023-03-28T00:00:30.222946Z", "iopub.status.idle": "2023-03-28T00:00:30.245883Z", "shell.execute_reply": "2023-03-28T00:00:30.245313Z" }, "tags": [] }, "outputs": [], "source": [ "td.config.logging_level = \"ERROR\"\n" ] }, { "cell_type": "markdown", "id": "a7d335b5", "metadata": {}, "source": [ "## Mode Indices Calculation" ] }, { "cell_type": "markdown", "id": "5e4cae7f", "metadata": {}, "source": [ "To obtain the width of the bus waveguide in each asymmetric directional coupler, we need to first calculate the relationship between the effective indices of each mode and the waveguide width. This can be achieved by using the [ModeSolver](../_autosummary/tidy3d.plugins.ModeSolver.html?highlight=modesolver) from Tidy3D's plugins. This computation will be done on a local computer so it won't cost any FlexCredits.\n", "\n", "For the entire notebook, we will focus on the central wavelength of 1550 nm and a wavelength range from 1500 nm to 1600 nm.\n", "\n", "" ] }, { "cell_type": "code", "execution_count": 3, "id": "d91ebe00", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:00:30.248053Z", "iopub.status.busy": "2023-03-28T00:00:30.247888Z", "iopub.status.idle": "2023-03-28T00:00:30.271833Z", "shell.execute_reply": "2023-03-28T00:00:30.271198Z" }, "tags": [] }, "outputs": [], "source": [ "lda0 = 1.55 # central wavelength\n", "ldas = np.linspace(1.5, 1.6, 101) # wavelength range of interest\n", "\n", "freq0 = td.C_0 / lda0 # corresponding central frequency\n", "freqs = td.C_0 / ldas # corresponding frequency range\n", "\n", "fwidth = 0.5 * (np.max(freqs) - np.min(freqs)) # width of the excitation spectrum\n" ] }, { "cell_type": "markdown", "id": "2b036b2a", "metadata": {}, "source": [ "The structure is Si waveguide on silica substrate and top cladding. Therefore, we only need to define two materials. Within the wavelength range of interest, they can be considered lossless and dispersionless." ] }, { "cell_type": "code", "execution_count": 4, "id": "5b23e8e9", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:00:30.274385Z", "iopub.status.busy": "2023-03-28T00:00:30.274170Z", "iopub.status.idle": "2023-03-28T00:00:30.295995Z", "shell.execute_reply": "2023-03-28T00:00:30.295415Z" }, "tags": [] }, "outputs": [], "source": [ "n_si = 3.48 # silicon refractive index\n", "si = td.Medium(permittivity=n_si**2)\n", "\n", "n_sio2 = 1.44 # silicon oxide refractive index\n", "sio2 = td.Medium(permittivity=n_sio2**2)\n" ] }, { "cell_type": "markdown", "id": "31f7f875", "metadata": {}, "source": [ "The thickness of the waveguide is the standard 220 nm, which we will use throughout the notebook.\n", "\n", "Here we calculate the effective indices for the four TE modes (TE0-TE3) and the four TM modes (TM0-TM3) for waveguide width from 300 nm to 2500 nm." ] }, { "cell_type": "code", "execution_count": 5, "id": "472af715", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:00:30.298236Z", "iopub.status.busy": "2023-03-28T00:00:30.298076Z", "iopub.status.idle": "2023-03-28T00:00:30.319809Z", "shell.execute_reply": "2023-03-28T00:00:30.319162Z" }, "tags": [] }, "outputs": [], "source": [ "h = 0.22 # waveguide thickness\n", "ws = np.linspace(0.3, 2.5, 30) # range of waveguide width\n" ] }, { "cell_type": "markdown", "id": "55b3bd07", "metadata": {}, "source": [ "Define [ModeSpec](../_autosummary/tidy3d.ModeSpec.html?highlight=modespec), [GridSpec](../_autosummary/tidy3d.GridSpec.html), and [BoudnarySpec](../_autosummary/tidy3d.BoundarySpec.html?highlight=boundaryspec) for the simulations. The number of modes is set to 4 to make sure TE0-TE3 (TM0-TM3) modes are always included, even though when the waveguide width is small, not all modes are supported. " ] }, { "cell_type": "code", "execution_count": 6, "id": "3fbb79f9", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:00:30.323489Z", "iopub.status.busy": "2023-03-28T00:00:30.322929Z", "iopub.status.idle": "2023-03-28T00:00:30.345336Z", "shell.execute_reply": "2023-03-28T00:00:30.344804Z" }, "tags": [] }, "outputs": [], "source": [ "N_mode = 4 # number of modes\n", "\n", "# define mode spec\n", "mode_spec = td.ModeSpec(num_modes=N_mode, target_neff=n_si)\n", "\n", "# define grid spec\n", "grid_spec = td.GridSpec.auto(min_steps_per_wvl=30, wavelength=lda0)\n", "\n", "# define boundary spec\n", "bound_spec = td.BoundarySpec.all_sides(boundary=td.PML())\n" ] }, { "cell_type": "markdown", "id": "faee33d5", "metadata": {}, "source": [ "The waveguide structure has a mirror symmetry with respect to the $xy$ plane. In this case, the TE and TM modes share different symmetries. Therefore, we can solve for the TE and TM separately by imposing the corresponding symmetry in the simulation. This way, the result looks cleaner.\n", "\n", "First, we use the `(0,0,1)` symmetry to get the effective indices of the TE modes. A for loop will be used to iterate over different waveguide widths. At each iteration, the effective indices of the first four TE modes will be calculated." ] }, { "cell_type": "code", "execution_count": 7, "id": "a8765bc5", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:00:30.347765Z", "iopub.status.busy": "2023-03-28T00:00:30.347607Z", "iopub.status.idle": "2023-03-28T00:01:10.644023Z", "shell.execute_reply": "2023-03-28T00:01:10.643388Z" }, "tags": [] }, "outputs": [], "source": [ "n_eff = np.zeros((len(ws), N_mode)) # placeholder for the effective indices\n", "\n", "# loop over the waveguide width and compute the effective indices at each iteration\n", "for i, w in enumerate(ws):\n", "\n", " # define the waveguide structure\n", " waveguide = td.Structure(\n", " geometry=td.Box(center=(0, 0, 0), size=(w, td.inf, h)), medium=si\n", " )\n", "\n", " sim_size = (6 * w, 0, 8 * h) # simulation domain size\n", "\n", " # define simulation\n", " sim = td.Simulation(\n", " size=sim_size,\n", " grid_spec=grid_spec,\n", " structures=[waveguide],\n", " sources=[],\n", " monitors=[],\n", " run_time=1e-11,\n", " boundary_spec=bound_spec,\n", " medium=sio2,\n", " symmetry=(0, 0, 1),\n", " )\n", "\n", " # define mode solver\n", " mode_solver = ModeSolver(\n", " simulation=sim,\n", " plane=td.Box(center=(0, 0, 0), size=sim_size),\n", " mode_spec=mode_spec,\n", " freqs=[freq0],\n", " )\n", "\n", " # solve for the modes\n", " mode_data = mode_solver.solve()\n", "\n", " # obtain the effective indices\n", " n_eff[i] = mode_data.n_eff.values\n" ] }, { "cell_type": "markdown", "id": "1a2ffc2d", "metadata": {}, "source": [ "After the indices are solved, we can plot them for visualization." ] }, { "cell_type": "code", "execution_count": 8, "id": "87edbe05", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:01:10.646700Z", "iopub.status.busy": "2023-03-28T00:01:10.646466Z", "iopub.status.idle": "2023-03-28T00:01:10.910560Z", "shell.execute_reply": "2023-03-28T00:01:10.909939Z" }, "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAG6CAYAAAD07mc1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRHUlEQVR4nOzdd3hUZdrH8e9MJpn03kOAkNA7gvSmCAqiWFAUBVZsu6AiuioWsBKx6+rCqqu8FgTpLCCKdJDeewk9JJBCepty3j9OMhAIkECSM+X+XNdcc+bMmZlfMknmznOeolMURUEIIYQQwknotQ4ghBBCCFGdpLgRQgghhFOR4kYIIYQQTkWKGyGEEEI4FSluhBBCCOFUpLgRQgghhFOR4kYIIYQQTkWKGyGEEEI4FSluhBBCCOFUpLgRQgghhFPRtLiZPHkyrVq1wt/fH39/fzp37sxvv/121cfMnDmTJk2a4OnpScuWLVm8eHEtpRVCCCGEI9C0uKlTpw7vv/8+W7duZcuWLdxyyy3cfffd7N27t8Lj//rrLx566CFGjhzJ9u3bGTRoEIMGDWLPnj21nFwIIYQQ9kpnbwtnBgcH8+GHHzJy5MjL7nvwwQfJz89n4cKFtn2dOnWiTZs2TJkypTZjCiGEEMJOGbQOUMZisTBz5kzy8/Pp3LlzhcesX7+esWPHltvXr18/5s2bd8XnLS4upri42HbbarWSmZlJSEgIOp2uWrILIYQQomYpikJubi7R0dHo9Vc/8aR5cbN79246d+5MUVERvr6+zJ07l2bNmlV4bGpqKhEREeX2RUREkJqaesXnT0xM5K233qrWzEIIIYTQxqlTp6hTp85Vj9G8uGncuDE7duwgOzubWbNmMXz4cFatWnXFAqeqxo0bV661Jzs7m7p163Lq1Cn8/f2r5TWEEEIIUbNycnKIjY3Fz8/vmsdqXtx4eHiQkJAAwE033cTmzZv5/PPP+c9//nPZsZGRkZw9e7bcvrNnzxIZGXnF5zcajRiNxsv2l43QEkIIIYTjqEyXErub58ZqtZbrI3Oxzp07s2zZsnL7li5desU+OkIIIYRwPZq23IwbN4477riDunXrkpuby7Rp01i5ciW///47AMOGDSMmJobExEQAnnvuOXr27MnHH3/MgAEDmD59Olu2bOHrr7/W8ssQQgghhB3RtLg5d+4cw4YNIyUlhYCAAFq1asXvv//ObbfdBsDJkyfL9Yju0qUL06ZN4/XXX+fVV1+lYcOGzJs3jxYtWmj1JQghhBDCztjdPDc1LScnh4CAALKzs6/a58ZisWAymWoxmePx8PC45nA8IYQQojpU9vMb7KBDsb1RFIXU1FSysrK0jmL39Ho9cXFxeHh4aB1FCCGEsJHi5hJlhU14eDje3t4y0d8VWK1Wzpw5Q0pKCnXr1pXvkxBCCLshxc1FLBaLrbAJCQnROo7dCwsL48yZM5jNZtzd3bWOI4QQQgB2OBRcS2V9bLy9vTVO4hjKTkdZLBaNkwghhBAXSHFTATnFUjnyfRJCCGGPpLgRQgghhFOR4kYIIYQQTkWKGyeg0+muennzzTc5fvz4Fe/fsGGD7blWrlxJu3btMBqNJCQkMHXqVO2+MCGEEOI6yGgpJ5CSkmLbnjFjBuPHj+fgwYO2fb6+vqSnpwPw559/0rx583KPLxsZduzYMQYMGMDTTz/Nzz//zLJly3j88ceJioqiX79+tfCVCCGEEDdOihsncPGq6AEBAeh0ustWSi8rbkJCQq64ivqUKVOIi4vj448/BqBp06asXbuWTz/9VIobIYQQDkOKm2tQFIVCkzZDnb3c3Wp1RNL69evp06dPuX39+vVjzJgxtZZBCCGEuFFS3FxDoclCs/G/a/La+97uh7dH9b5FXbp0uWw9qLy8PECdnTkiIqLcfREREeTk5FBYWIiXl1e1ZhFCCCFqghQ3LmbGjBk0bdpU6xhCCCFEjZHi5hq83N3Y97Y2/U283N2q/TljY2NJSEio8L7IyEjOnj1bbt/Zs2fx9/eXVhshhBAOQ4qba9DpdNV+ashede7cmcWLF5fbt3TpUjp37qxRIiGEEKLqXONTW9hkZGSQmppabl9gYCCenp48/fTTfPnll7z00ks89thjLF++nF9//ZVFixZplFYIIYSoOpnEz8X06dOHqKiocpd58+YBEBcXx6JFi1i6dCmtW7fm448/5ttvv5Vh4EIIIRyKTlEUResQtSknJ4eAgACys7Px9/cvd19RURHHjh0jLi4OT09PjRI6Dvl+CSGEqC1X+/y+lLTcCCGEEMKpSHEjhBBCCKcixY0QQgghnIoUN0IIIYRwKlLcCCGEEMKpyDw3QgghhIOyWBVMFismixWzRcFkLb22WLFYFfWiKJgtF7Zt+y+5mK0KVkW9tlitmEqfp+z5zFYFk9mKyapgLn1Nk0XBbLViMpd/bX9Pdybd30qz74sUN0IIIcQVKKUf9rYPcstFH/qXFhYXf9iXbhebrRSbLBSbrRSVXl+8r9hsodhkpaj0+uLjSsylz2O95PktaoFhslix18lcwvyMmr6+FDdCCCHsltly4QO/qLQoKLqoGFCvLxQPRSa1YCgyXVxMWCgpLRZKLOp1WZFx6f6y7WKThZLSYsKR6HTgrtdjcNNh0Otw0+tw0+tx04NBry+9XXrR6crfvmh/2ePd3fS4u6nPp27rMJQ+v4db2evo8TDoMeh1GNz0eLjp8DFqW15IcSOEEOKqLFaFQpOltHi4uHBQtwtLLBRdVFAUlSs2LhQcFwqHC9fFtmLDYis6yoqMYrMFqx3WFuqHuA53vR730g912we/m3q77MPeaHDD6K7Hs/TaaNDj6e6G0aBX7yu7XcF9HoaLCgu9HneDWkiUvY576f4LhYdavAgpboQQwukoikKJxUpBsYX8EjMFJRbyi83kFZvJLzaTW2S23c4rtpBXbCK/2FJuf36xmdzS64ISi9ZfEgAebnq1UHC/UBR4XlQ4eBrcLhQHpfeVFRAeBr3t2sOt9PqiIqJsX0XHXFpY6HRSQNg7KW6cwLV+0SZMmMCIESOIi4ur8P7169fTqVMnUlJSeOGFF9iyZQtHjhzh2Wef5bPPPquBxEKIKykyWThfUEJWgYmsAhPZhSWcL93OLzarxcolRUtBiXq78KLb5hpq8vAw6PE06PHyUAsJtaAoKybc8CwtOrzKCo+Lio1Liwyjwe2yoqKs2DBess9o0KOXVglRSVLcOIGUlBTb9owZMxg/fjwHDx607fP19SU9PR2AP//8k+bNm5d7fEhICADFxcWEhYXx+uuv8+mnn9ZCciGck8WqkFNoIqfIRE6hmezS7exCU2nRUlq8FF4oYsq2i83Was1iNOjxMRrwcnfDz9OAj9GA70UXH6MBX08DvkY3fI3u+BhLj/Mo268e4+NhkAJDOAwpbpxAZGSkbTsgIACdTlduH2ArbkJCQi67r0z9+vX5/PPPAfjuu+9qKK0QjsFiVUqLEbXlJLuwhPP5JluhcmnRklNoIrdI3ZdXbL6h1zbodQR6uxPo7UGglzuB3u4EeHmUFidueHsY8PZww8fDgLex9NqjdL/xwn5vdzcMbjKdmXA9Utxci6KAqUCb13b3Vru+CyFuWG6RidPnC0nNKSK7wHTRqZ8SsgpNagFTtp1fQk7RjRUoAN4ebgR4uePv6Y6/l4EAL7VICfIuLVi8S7e9PEoLGHeCfDzw8XCTfh1C3AApbq7FVAATo7V57VfPgIdPtT5lly5d0OvL/yeXl5dXra8hhBbKihf1UnDJdSHZhabrel4/o4FAn/IFiL+X+2VFi7/nhfv8PQ34e7njLq0mQmhCihsXM2PGDJo2bap1DCGqpMhkIT2vmPS8Es7lFJGcdWkRU7niJdjHgwh/T4IvKlYCvd0J8vZQW028PS6cDiotZKRAEcLxSHFzLe7eaguKVq9dzWJjY0lISKj25xWiqswWK5n5JZzLLSYtr5j00uu03AuX9NLblT1FFOzjQZ0gr9KLd7ntmEAvzScWE0LUDvlNvxadrtpPDQnhCkrMVpKzCjmVWcDJzAJOZRZw6ry6nZpdREZ+SZWmjvdw0xPmZyTU14MYKV6EEFchfwlcTEZGBqmpqeX2BQYG4unpCcCOHTsAtR9OWloaO3bswMPDg2bNmtV2VGHnFEUhPa/kQuFSWsSczFRPFaVkF15zdlm9DkJ8jYT5GgnzM5YWLxe21f0ehPl64u9lkE62QtgDqxWKs6EgU70UVnBt8ILbJ2oWUYobF9OnT5/L9v3yyy8MGTIEgLZt29r2b926lWnTplGvXj2OHz9eWxGFnSkyWUhKy+PIuTySzuVx+FweR9PyOZlZQKHp6jPXerrrqRvsTd1gb+oEedu2owO9CPc3EuTtIdPFC6EVczEUZV90yYLCrAvbBZlQeP7ywqXwPCjXmI/JJ1yKG1F9RowYwYgRIy7bX79+fZRKnAOozDHCOWUXmmwFzJHSYubwuVxOny+84ukjnQ6i/D2JDb5QuMSWXuoGexPq6yGtLULUNEVRC468s5CbCnnn1O3C85cULxcVMUXZYC66sdf18AWvYPAOKr0OvnDtE1YtX9r1kuJGCBdTZLKwOzmbAyk5HD6nFjFHzuVxLrf4io8J9HYnIcyXhHD1Eh/uS/0QH6IDPTEa3GoxvRAuxFQE+efUYiU3VS1Y8s5BXupF+0oLGev1TXUAOvD0B8+A0kvghW2voIsKlpDyxYtXEBiM1fnVVispboRwcqnZRWw7eZ6tJ9TL3jPZmCwVN8VE+BtpGO5nK2ASwnxpGOFLiI+0wAhRraxWtSjJPg05p9Vr2+WUel2QUbXn9AoC34jSS7hakFRUtFx8MfqD3vmmO5DiRggnYrJYOZCSy9YTmWw9mcW2E+dJziq87LhQXyOt6wSQEOFra5GJD/fF39Ndg9RCOBmrVe2bkncOcpJLi5Xk8sVLzpnKtba4eVxUsJQWLX6R6rVv5IV9vuF23ZJS2zQtbhITE5kzZw4HDhzAy8uLLl26MGnSJBo3bnzVx3322WdMnjyZkydPEhoayv33309iYqJtxI8QruJ8fgnbT11oldl5KvuyTr56HTSN8qdd3SBuqqde6gR5SUuMEFVhMUF+mlqw5KddeTvvHBSkX7vDLYDODfyjIaCOevGPKd2OLb0drbbGyO9qlWla3KxatYpRo0bRoUMHzGYzr776Kn379mXfvn34+FQ8t8y0adN45ZVX+O677+jSpQuHDh1ixIgR6HQ6Pvnkk1r+CoSoPcVmC/tTctl5Koudp7PYeSqLpLT8y47z9zTQrl4QN5UWM61iA/GV+V+EuLKSgotaWMpaV0pv56aoBUtRVtWf1yv4ooKlgotvJLjJ72ZN0PS7umTJknK3p06dSnh4OFu3bqVHjx4VPuavv/6ia9euPPzww4A6Cuihhx5i48aNNZ5XiNpisSocOZdnK2J2nc7mQGpOhX1lGoT52AqZm+oFER/mi16GVwuhqs6+LTo3dRSQb5g61Pnibd9w8Am9sO0dAm5ymlcrdlUyZmdnAxAcHHzFY7p06cJPP/3Epk2buPnmmzl69CiLFy/m0UcfrfD44uJiiosvjALJycmp3tBC3CBFUTiVWcjO01nsOp3FztPZ7EnOpqDk8jlkgn08aFUngNZ1AmkdG0Cb2CCCfTw0SC2EHVEUyE+HjCOQcVi9Tj+iXp8/BpaSaz+Hh18FrSux4B91oWDxDHTKzrfOyG6KG6vVypgxY+jatSstWrS44nEPP/ww6enpdOvWDUVRMJvNPP3007z66qsVHp+YmMhbb71VU7GFuC6nMgtYsPMMm45lsut0FucLLu9Y6O3hRsuYAFrHBtoKGukrI1xaSQFkJpUvXsqKmaLsKz/u0r4tFxcvZdueAbX3dYgaZzfFzahRo9izZw9r16696nErV65k4sSJ/Pvf/6Zjx44cOXKE5557jnfeeYc33njjsuPHjRvH2LFjbbdzcnKIjY2t9vxCXEtWQQmLdqcwd1syW06cL3efu5uOplH+F7XKBBIf5iuz9wrXUTYRXW4K5KRA7pkL1+ePq8VMzumrPIEOAmMhJAFCGqrXoQkQHK/2e5G+LS7FLt7t0aNHs3DhQlavXk2dOnWueuwbb7zBo48+yuOPPw5Ay5Ytyc/P58knn+S1115Df0mTodFoxGiU4XFCG8VmCysOpDF3+2lWHEijxKKOoNDpoGt8KLc1i6B1bCBNo/xkMjzhvCwmdcK53BR1CHS56xS1M29uKpgvn7bgMl5B5YuXsmImOA7cvWr+axEOQdPiRlEUnnnmGebOncvKlSuJi4u75mMKCgouK2Dc3Nxsz+eKrnWaYsKECYwYMeKK39/169fTqVMn5syZw+TJk9mxYwfFxcU0b96cN998k379+tVEbKelKApbTpxn7vZkFu1KIbvwwimnJpF+3NsuhrtaxxAZIFMXCCdTmAXphyH9IKQdhPRD6nXWicoNjYbSEUbR4Bel9nfxiy5tkWkIoQ3V2XGFuAZNi5tRo0Yxbdo05s+fj5+fn2216oCAALy81Ap82LBhxMTEkJiYCMDAgQP55JNPaNu2re201BtvvMHAgQNtRY6rSUlJsW3PmDGD8ePHc/DgQds+X19f0tPTAfjzzz9p3rx5uceHhIQAsHr1am677TYmTpxIYGAg33//PQMHDmTjxo3lFtQUFTualse87cnM3ZHMqcwL/4FG+BsZ1CaGQW1jaBrlr2FCIaqBoqitLOkHIe1Q+UIm7+yVH6c3qIWKf1Rp4RJd8bW7FP3ixmla3EyePBmAXr16ldv//fff2xZ/PHnyZLmWmtdffx2dTsfrr79OcnIyYWFhDBw4kPfee6+2YtudyMhI23ZAQAA6na7cPsBW3ISEhFx2X5nPPvus3O2JEycyf/58/ve//0lxcwUZecX8b+cZ5u44w85TWbb9Ph5u3N4iinvbxdCpQYj0nRGOyVQIKTvh9GY4u08tZNIPQ/FVRp36RastLGGNIbSReh3SUJ1JV0YaiVqi+Wmpa1m5cmW52waDgQkTJjBhwoQaSlWeoigUVuY8cA3wMmg7MsZqtZKbm3vVofmuyGpVWJeUzk8bTrBs/znMVvXn2E2vo3vDUO5pG0PfZpF4ebhmS6JwUIoCmUfh9Ba1mDm9Gc7uAav58mN1egiKK1/AhDZWixpPaZ0U2rOLDsX2rNBcSMdpHTV57Y0Pb8Tb3btan7NLly6X9VnKy8ur8NiPPvqIvLw8HnjggWrN4KjO55cwa+tpft54guMZBbb9LWMCuKdtDANbRxPmJ53XhYMozILkrWoxk7xFvS7MvPw43wio0wGiWl8oZIIbyDpGwq5JceNiZsyYQdOmTa953LRp03jrrbeYP38+4eHhtZDMPimKwvZTWfy04QQLd6VQYlY7RfoaDdzbLoahHevRONJP45RCXIPFBGkHSltkSguZ9IOXH+dmhOg2ENMe6rRXi5qAOrK2kXA4Utxcg5fBi40Pa7O0g5eh+oc1xsbGkpCQcNVjpk+fzuOPP87MmTPp06dPtWdwBPnFZubtSObnDSfZl3Khf0GzKH8e6VSPu9tE4yPrNQl7VJCpnk5K3Q2pe+DsbrXDb0Wz9AbFqQVMndJiJqIlGGTGa+H45K/zNeh0umo/NWTPfvnlFx577DGmT5/OgAEDtI5T6w6m5vLThhPM3Z5MXrHa18Bo0HNnq2ge6VSXNrGBMkOwsA9Wi9pHJnV3aTGzR73OSa74eKM/xLRTi5mylhmf0NrNLEQtkeLGxWRkZNiG3JcJDAzE09OTadOmMXz4cD7//HM6duxoO87Ly4uAAOedmrzYbGHJnlR+2nCCzccvzBzcINSHhzvW5f6b6hDoLf/NCg1ZLXBmu3opK2bO7QdTQcXHB9aDyJYQ0QIiW6jXgfVktJJwGVLcuJiKTjP98ssvDBkyhK+//hqz2cyoUaMYNWqU7f7hw4czderUWkxZO5KzCvlpwwl+3XyKjHy1yd5Nr6Nvswge6VSPLvEh0kojtJOfDkeWweE/IGmZujTBpQxeENGstIgpLWYimsuIJaEJi9VCcl4yR7KOUGwp5o64OzTLIsWNkxkxYoRtjqCL1a9f/5pD7y8ddu+MFEVh8/HzfL/uGL/vTaV0FDeR/p48dHNdhtwcS4S/TCImNGC1qi0zR5aqBU3yNuCi31nPAIjteFGLTEt11JJephwQtcuqWEnOSyYpK4kjWUdIykoiKSuJo9lHKbYUAxDlEyXFjRA1rchkYcHOM0xdd7xcB+GuCSEM61yfW5uEY3CTJntRywoyIWk5HF4KR/6EgvTy90e2hIZ9IeE2ta+MLP4oapFVsZKSn1KuiDmSdYRj2ceuOP+bh96DBoENSAhMwGK14KZR8S2/KcKppWYX8dOGE0zbdJLM0lNPnu567m1XhxFd6tMoQoZxi1pktULqrtJiZqk6NPviNZc8/CC+d2lB00ddqkCIGlZgKuBU7imO5xznePZxTuSc4Fj2MZKyk65YxLjr3YkLiCM+MJ6EwATbdR3fOpoVNBeT4kY4HUVR2HbyPN+vO86SPam2GYRjAr0Y1rkeD3aIlQ7CovYUZMLRFWr/mSN/Xr7+UngzaHibWtDEdgQ3d21yCqdmtppJyUvhWM4xTuSc4ETOCVsxc7bgymuCGfQG6vvXL1fAxAfGE+sXi0FvvyWE/SYTooqKzRYW7Uph6l/H2XU627a/Y1wwf+tanz5NI+TUk6h5ViukbIfDf6rFTPKW8q0z7j5q60xCH7WoCaijXVbhdKyKlePZx9mZtpNj2cdsxcyp3FOYK1pKo1SgMZB6/vWo51+P+v71qedfj4TABGL9Y3HXO17BLcWNcHjncov4ecNJft54kvQ8tTObh0HPoDbRjOgSR7NoGTkialjZyKYjf6ojmwoyyt8f1hQa9lELmrqdZekCUW0KTAXsTt/NjnM72Jm2k51pO8kpqXhhU6Obkbr+danvX99WwJQVM4GegbUbvIZJcSMcltli5YPfD/L9umOYLOqpp0h/Tx7tXI+Hbq5LsI+cehI1xGpRlzA48qfad+bMDsqNbPLwg/heajGT0EdaZ0S1UBSF5LxkdqTtYOc5tZA5eP4g1otbBgFPN0+ahzanSXATWxFT378+ET4R6HWu0XotxY1wSDlFJkZP287qQ2kA3FQviL91rU+/5pG4y6knURNyz14oZpJWQFFW+fsjW5YWM7dB7M3Sd0bcsBJLCfsy9rEzbSc7zu1gR9oO0gvTLzsuyieKNmFtaB3emjbhbWgU1MghTyVVJyluhMM5kZHPyP/bwpFzeXi66/nkgTb0bymjSkQ1s5jV0UxHlqqjm1J3lb/fMwDib1GLmYRbwS9Sm5zCaZisJvam72V9yno2pmxkV9ouTFZTuWMMegPNgpvROrw1rcPUS6SP/OxdSoob4VA2HM3g6Z+2klVgItLfk2+Ht6dFjPMuDSFqWW6q2jpzeKk6wqkou/z90W0vtM7E3CTzzogboigKSVlJbEjZwIaUDWw5u4V8U365Y4I9g2kdprbItAlrQ7OQZngaZKLRa5HfTOEwZmw+yWtz92C2KrSuE8A3w9oTLrMJixtxrdYZryC1daZhX4i/FXzDtMkpnEZqfqqtmNmYsvGy00wBxgA6RnakY5R6qetXV5aBuQ5S3DiBa/3gT5gwgREjRhAXF1fh/evXr6dTp06sXbuWl19+mQMHDlBQUEC9evV46qmneP7552sidqVZrAqJi/fz7dpjANzZKoqPBrfG0137iaKEA6pU68xt6jDtmJtkeQNxQ7KLs9mcutlWzBzPOV7ufk83T9pFtKNTVCc6RnWkSXATl+n0W5OkuHECKSkptu0ZM2Ywfvx4Dh48aNvn6+tLerr638Gff/5J8+bNyz0+JCQEAB8fH0aPHk2rVq3w8fFh7dq1PPXUU/j4+PDkk0/WwldyudwiE8/+sp0VB9WOw2P6NOS5WxvKfzKi6k5thhXvwtGV5fd7BamtMg1vk9YZcUPK5pjZk7GH3Wm72Z2+m/2Z+8uNZtLr9LQIaUHHqI50ju5M67DWeLjJyM7qJsWNE4iMvNCZLCAgAJ1OV24fYCtuQkJCLruvTNu2bWnbtq3tdv369ZkzZw5r1qzRpLg5lVnAyP/bzKGzeRgNej5+oDV3toqu9RzCwaXuhuXvwaHfLuyztc70hZh20jojqkxRFFLzU9mTsYc96eplX8Y+8kx5lx3bIKABHaM60imqE+0j2+PvIXNv1TQpbq5BURSUworX1qhpOi8vTVsotm/fzl9//cW7775b66+9+XgmT/24lcz8EsL9jHwzrD2tYwNrPYdwYOlHYMV7sHeOelunhzYPQ4+XIKiettmEw8kqyipXyOxJ30NGUcZlx3m6edIspBnNQ5vTIqQFN0XcRIRPhAaJXZsUN9egFBZysN1Nmrx2421b0Xl7V+tzdunSBb2+/PncvLzy/2nUqVOHtLQ0zGYzb775Jo8//ni1ZriWmVtO8erc3ZgsCi1i/Pl2WAciA6TjsKikrJOwahLs+AUUi7qvxX3Q61UITdA2m3AIiqJwMvckf535i+1nt7M7fTen805fdpybzo1GQY1shUyL0BbEB8bb9ZpLrkLeARczY8YMmjZtetVj1qxZQ15eHhs2bOCVV14hISGBhx56qMazWawKHyw5wH9WHwWgf8tIPh7cBi8POWUgKiH3LKz5GLZ+DxZ1BXga3QG3vKZOsCfEVeSU5LApZRPrzqxj/Zn1JOclX3ZMPf96tAhtYStkmgQ3kWHZdkqKm2vQeXnReNtWzV67usXGxpKQcPX/XstGVbVs2ZKzZ8/y5ptv1nhxk1dsZsz0Hfy5X12d9tlbEhjTpxF6vXQcFtdQkAnrPodNX4OpQN0X1wNuGQ+xHbTNJuyW2WpmT/oe1p9Zz7oz69idvrtcx1+D3kC78HbcHHkzLcNa0jykOQFGmVPLUUhxcw06na7aTw05EqvVSnFxcY2+xunzBTz+f1s4kJqLh0HPh/e34u42MTX6msIJFOfChsnw17+guHShwDod4JY3oEFPbbMJu3Qm74ytZWZDygZyS3LL3R8XEEeX6C50ie5C+4j2eLu77t9+RyfFjYvJyMggNTW13L7AwEA8PT356quvqFu3Lk2aNAFg9erVfPTRRzz77LM1lmf5gbO8NGsX6XklhPkZ+frRm2hbN6jGXk84AVMhbP4vrP3kwurbES3glteh0e0g0wSIUiWWEjakbGBd8jr+OvPXZXPM+Hv40ymqE12iu9A5ujPRvjIa01lIceNi+vTpc9m+X375hSFDhmC1Whk3bhzHjh3DYDAQHx/PpEmTeOqpp6o9R1ZBCW//bx9ztqvntZtF+fPt8PZEB1b/qTjhJHLOwPafYMt3kFs6t1NwvNqnptk9oJeJz4Q618zWs1tZdHQRf5z4o1zrjJvOjVZhrWytM81DmuMm0wA4JZ2iKIrWIWpTTk4OAQEBZGdn4+9ffq6BoqIijh07RlxcHJ6e0knsWq73+/XH3lRem7eHtNxi9Dp4vHsDxt7WSGYcFpezWuDIMtg6FQ4tuTD6KSAWer4MrR+S9Z0EAIfPH2bh0YUsPraY1PwLrdPh3uH0qtOLLtFduDnqZvw8/DRMKW7E1T6/LyV/FUStOZ9fwpv/28v8HWcAiA/z4cPBrWknp6HEpbKT1VaabT9AzkVDcOt1hZtGQLO7wWDULJ6wD6n5qfx27DcWHl3IofOHbPt93X3pW78vA+IGcFPETdI644KkuBG1YsmeFF6ft4f0vBL0OniyRzxj+jSU1hpxgdWirvm05Xs4/DuUjVzxCoLWD8NNwyGssbYZheZySnL488SfLDq6iM2pm1FQTz4Y9AZ6xPTgzvg76VGnB0Y3KX5dmRQ3okZl5BUzfsFeFu1S+0g0DPflw8GtaSOzDYsy2cmw/UfY9mMFrTR/g6YDwV1OE7uyEksJa5LXsOjoIladWkWJtcR2X7vwdtwZfyd96/WVodrCRoobUWMW7Urhjfl7yMwvwU2v4+8943nm1gSMBmmtcXlWi7oq99apl7fStBkK7YZDWCNNIwrtKIrC6bzTbD27lc2pm1l5aiU5JTm2++MD4rkz/k76x/WXEU6iQlLcVMDF+lhftyt9n9Jyixk/fw+/7VE79TWJ9OPD+1vTso78V+XyTIWwcQps+gZyLpoBtl43aP83aHKntNK4IEVROJ5znC1nt7D17Fa2pG7hbMHZcseEe4XTv0F/BjQYQOOgxpquuyfsnxQ3F3F3dwegoKAArxqYHdjZlJSoTcNubmpLjKIoLNh5hjcX7OV8gQmDXsc/eicwuncCHgYZpuvSrFbYMwv+fOvCqSevYHUhy5tGQGhDTeOJ2mVVrCRlJdmKma1nt5JemF7uGIPOQPPQ5rSPaE+X6C7SMVhUiRQ3F3FzcyMwMJBz584B4O3tLf8dXIHVaiUtLQ1vb28MBgPncop4bd4elu5T/9tqGuXPR4Nb0TxaWmtc3on18PurcGabetu/jjo3TfN7pZXGRVisFg6dP8SWs1vYkrqFbee2kVWcVe4YD70HrcJacVPETbSPbE/rsNZ4GeSfTHF9pLi5RGRkJICtwBFXptfrqVu3Lr/vPcvLs3eRXWjC3U3H6N4N+UfveNzdpLXGpWUegz8nwL756m0PX+j2PHQeBe7yoeXsFEVhZ9pO5h6Zy9ITSy9b6sDL4EXrsNa0j2jPTRE30TKspYxwEtVGiptL6HQ6oqKiCA8Px2QyaR3Hrnl4eHA8o4Bnp2+nxGylRYw/H97fmqZRV59cSTi5wixY8xFs/I+6OrdOD20fhd6vgV+E1ulEDUsvTGdB0gLmHp5bbrkDH3cf2oa3pX1Ee9pHtqdZcDPc3dy1CyqcmhQ3V+Dm5mbrSyIqpigKr83dQ4nZSveGoXw3ooO01rgyi0kd/bRiIhRmqvsa9IZ+70FEc02jiZplsppYc3oNcw/PZU3yGiylM0l7GbzoW68vdyfcTdvwthj08pHjCiy5uZhTUzE21K4vnfykies2a+tp1h/NwNNdz3uDWkph46oUBQ7/AX+8Dumls8SGNlaLmoQ+spClEzuadZS5R+ayIGkBmUWZtv1twtpwT8N76Fe/Hz7uPhomFLXFlJJC7vLl5C1bTv7mzRjj42kwb65meaS4EdclI6+Y9xbvB+C5WxtRN8Rb40RCE6l74I/X4OhK9bZ3CPR+FdqNkDWfnFReSR5Lji9h7pG57ErbZdsf4hnCXfF3MajhIBoENNAwoagNiqJQfPAgucuWkbdsOUX79pW/32zCmp+P3keb4lb++ojr8t6i/WQVmGgS6cfj3eO0jiNqW+5ZWPGuuv6TYgU3D+j0d+j+AnjKCDlnoygKW89utXUOLjQXAuoq2z3q9OCehHvoVqcb7nrpQ+PMFJOJgq1byV22nLxlyzCdOXPhTp0Or3bt8LvlFvxuvQWP+vU1ywlS3IjrsOZwGnO2J6PTwfv3tZLTUa7EaoXN38Kyt6AkT93X/B7o8yYE1dcymagBVsXK78d/Z/LOyRzLPmbbHxcQx70J93Jn/J2EeoVqmFDUNEteHvlr16oFzapVWHMuzBSt8/TEp2tX/G65Bd/evTAEB2sX9BKaFjeJiYnMmTOHAwcO4OXlRZcuXZg0aRKNG199cbysrCxee+015syZQ2ZmJvXq1eOzzz6jf//+tZTcdRWZLLw+bw8AwzrVkzWiXEn2aZj3Dzi2Sr0dcxP0S4S6HbXNJaqdoigsP7WcL7d/yZGsI4A62un2+rdzT8N7aBXaSuYAc2KmlBTyVq0id9lyCjZsQLlo5LBbcDC+vXvhd+ut+HTujN5OJ7zVtLhZtWoVo0aNokOHDpjNZl599VX69u3Lvn378LnCebqSkhJuu+02wsPDmTVrFjExMZw4cYLAwMDaDe+ivlh2mBMZBUT6e/JiP1mh2SUoCuycDr+9BMU5YPCC296GDo+DXlrtnImiKKw7s44vt3/J3oy9APi5+zGixQiGNh0qnYOdlLW4mILNW8hfs4a8dWspOZJU7n6PevXwvfVW/G69Ba82bdA5wEhiTYubJUuWlLs9depUwsPD2bp1Kz169KjwMd999x2ZmZn89ddftuUS6mt8bs9VHEjN4evVRwF46+7m+HnK+XWnl5cGC8fAgYXq7TodYNAUCE3QNJaofptTN/Pl9i/Zdk6dSdrL4MUjTR9hePPhstq2k1EUhZJjx8lfu4a8NWsp2LwZpajowgF6PV6tWuFb1n+mQQOHa6mzqz432dnZAARf5bzdggUL6Ny5M6NGjWL+/PmEhYXx8MMP8/LLL1c4L01xcTHFxcW22zkXnS8UlWe1KoybsxuzVaFvswj6NY/UOpKoafsXwv+eg4J00LtDr1eg6xgZBeVkdqbt5MvtX7IhZQMARjcjQxoP4bGWjxHsaT99KMSNseTlUbBhA3lr1pK/Zk35zsCAISICn25d8e3eHZ/OnXELcOyC1m7+SlmtVsaMGUPXrl1p0aLFFY87evQoy5cvZ+jQoSxevJgjR47wj3/8A5PJxIQJEy47PjExkbfeeqsmo7uEnzeeYPvJLHyNBt66WyZkc2pF2fDbK7Bzmno7vBnc8x+IaqVtLlGtDmQe4MvtX7LqtNqHyqA3cF/D+3ii5RNE+MhM0o5OsVop2r+f/DVryV+7loIdO8Bstt2vc3fHu0N7fLp2w6d7N4wNGzpc68zV6BRFUbQOAfD3v/+d3377jbVr11KnTp0rHteoUSOKioo4duyYraXmk08+4cMPPyQlJeWy4ytquYmNjSU7Oxt/f1kmoDJSs4u47ZNV5Babeeuu5gzvUl/rSKKmHF0J80aVrtytg67PqfPWGGTNH2dxNOsoX+34ij9O/AGAXqfnrvi7eLr108T4xmicTtwo09lzZM2YQdbMmZjT0srd51GvHj7du+PbvRveHTqg93as+clycnIICAio1Oe3XbTcjB49moULF7J69eqrFjYAUVFRuLu7lzsF1bRpU1JTUykpKcHDw6Pc8UajEaNR/jDfiDcX7CW32Eyb2EAe6VRP6ziiJpQUwJ9vwqb/qLeD4uCeKVC3k6axRPU5lXOKyTsns+jYIqyKFR06bo+7nb+3/jtxATJXlSNTFIXCbds4//PP5Pyx1NZCo/f2xrtTJ3y7d8OnWzc8YmM1Tlp7NC1uFEXhmWeeYe7cuaxcuZK4uGv/gnXt2pVp06ZhtVrRl47UOHToEFFRUZcVNuLGLd13liV7U3HT60i8tyVueudpthSlTm+BuU9Bhjrkl/aPwW3vgNFX21yiWuzN2MvP+37mt2O/YVbUD71bYm9hVNtRNApqpHE6cSOsRUXkLFxI5s/TKN6/37bf66abCH5kKH633orORT8XNS1uRo0axbRp05g/fz5+fn6kpqYCEBAQgFfp2Plhw4YRExNDYmIioJ6++vLLL3nuued45plnOHz4MBMnTuTZZ5/V7OtwVnnFZsbPV+e0eaJ7A1nt29mYS2DVJFj7iTrLsF8U3PUlNOyjdTJxg8xWMytOreCnfT/ZRj8BdI3pyug2o2kReuV+jcL+lZxO5vwv08ieNRtL6UAcndGI/8A7CR46FM+mTTVOqD1Ni5vJkycD0KtXr3L7v//+e0aMGAHAyZMnbS00ALGxsfz+++88//zztGrVipiYGJ577jlefvnl2ortMj76/SAp2UXEBnvx3K3are4qasDZfTD3SUjdrd5uORj6fwheQdrmEjckpySHOYfm8MuBXziTr46GMegM9K3fl0eaPkLLsJYaJxTXS1EUCtavJ/Onn8lbsUKdfwpwj4kh6OGHCLzvPtxkvjcbu+lQXFuq0iHJle08lcWgf69DUeCHx26mR6MwrSOJ6nJsNUx7EEwF4BUMd36iLqEgHNax7GP8vP9nFiQtsK37FGQM4v5G9zOkyRDCvcM1TiiulyUvn+z58zj/8zRKjh617ffp0pmgRx7Bt2dPh5hUrzo4XIdiYV9MFiuvzNmNosDdbaKlsHEmSSvgl4fAXAhxPeDeb8BP5ixyRIqisP7Men7a/xNrktfY9icEJvBos0fpH9cfT4OnhgnFjSg5cYLMH38ie+5crPn5gNpBOGDQIIKGPowxPl7jhPZNihtxme/WHmN/Sg4BXu68cWczreOI6nLkT5g+FMxF0LAvPPAjuMuHn6MpNBey8OhCft73M0nZ6jT5OnT0rNOTR5o9ws2RNzvVfCWupjgpifQp/yFn0SJ1oVrAo359goYOJeCeQbj5Skf/ypDiRpRzKrOAT/88BMBr/ZsS6ivD6J3CoT9gxiNgKYZGd8AD/ydz1ziY1PxUph+YzqzDs8guVjuRehu8uafhPTzc5GHq+tfVOKG4EUUHD5E+ZTK5S3639afx6dGd4GHD8enSGZ2s41YlUtwIG0VReH3eHopMVjrGBTO4/dXnHBIO4uBv8OswsJRAkzvh/u/B4JrDQx2RxWrhx30/8q/t/6LEWgJAjG8MQ5sOZVDCIPw8/DROKG5E0b59pE+eTO7SP237fG+9ldC//x2vFjIb/PWS4kbY/G9XCqsOpeHhpmfivS2ladsZ7F8IM0eA1QRN74L7vwM3WfDUUZzKPcXra1+3DeduF96O4c2H07NOT9z0rtGJ1FkV7tpF+r8nk7dypbpDp8OvXz9C//40no0ba5rNGUhxIwDIKijh7f/tBWBU7wTiw+S8rsPbNx9mPQZWMzS/F+79WgobB6EoCrMOz+LDzR9SaC7E2+DNyze/zD0J98g/HQ6uYNs20v89mfy1a9Udej3+/fsT+vRTGBMStA3nRKS4EQC8/9sB0vNKiA/z4eleDbSOI27Unjkw+3FQLOocNoOmyGreDiKtII3xf41nbbL64XdTxE282/Vd6vjJaWJHlr9pE+n/nkzBBnX1ddzcCBg4kJCnnsRYidn5RdXIXzvBluOZTN98CoDEe1thNEhzt0PbNVOdoE+xQqshMOjfIKcwHMKS40t4d8O7ZBdn46H34Nl2z/Jos0fR66QzqSNSFIX8v/4iffJkCrdsVXcaDATeM4iQJ590qbWeapsUN4IvlqtrCj3Qvg43xwVrnEbckJ3TYd7f1cKmzSNw1xdS2DiA7OJs3tvwHr8d/w2ApsFNmdhtIglBcprCEVmLisj94w8yf/6Zop27ANC5uxNw/32EPv447jGy+npNk+LGxe1PyWH1oTT0OhjdW5ZYcGjbf4b5owAF2g2DOz8HGT5q99Ymr2X8uvGkFabhpnPjiVZP8GSrJ3HXS/8oR1N08CBZv84k+3//w5qTA6hrPgU+8AAhj4/EPSJC44SuQ4obF/f1anU67/4to6gb4q1xGnHdtv0AC54FFHVV7/4fS2Fj5wpMBXy05SNmHpoJQH3/+iR2T5RFLR2MNT+f7MWLyZo5i6Jdu2z7DdFRBN53H0EPPIAhTGZ5r21S3Liw0+cLWLBTXVzvqR4ylbfD2vI9LByjbt/8JNzxAciIGru27ew2Xlv7GqfzTgPwSNNHeK7dc7JcgoNQFIWiPXvI+nUmOYsWYS0oUO8wGPC75RYCBw9WJ95zkTWf7JEUNy7su7XHsVgVuiaE0LJOgNZxxPXY9A0sflHd7vh3uD1RChs7VmIp4csdXzJ1z1QUFKJ8onin6zt0jOqodTRRCZacHLIX/I+sWbMoPnDAtt+jXj0CHxhMwKBBGEJCNEwoykhx46KyCkqYvvkkIK02DmvDFFjysrrdeTT0fVcKGzt2IPMA49aM40iW2oF/UMIgXurwkswwbOcURaFw61ayZs4kZ8nvKMXFAOg8PPDr14/Awffj3aGDzD9kZ6S4cVE/bThBQYmFplH+dG8YqnUcUVVrP4M/J6jbXcdAnzelsLFTFquF7/d+z1c7vsJsNRPsGcyEzhO4pe4tWkcTV2EtKSFr5kzO/zyNkqNHbfuNjRoROHgwAQPvxC0wULuA4qqkuHFBRSYLU/86DsBTPRrIfxyOxGqFpW/A+i/V291fhFtel8LGTp3KOcWra19lR9oOAG6teyvjO48n2FOmXLBXitlM1ty5pP97MuaUFAB03t7497+DoMGD8WzVSv5mOgApblzQ7G2nSc8rISbQiwGtorSOIyrLXKIO9d79q3r7tneg67PaZhIVunT5BB93H8bdPI674u+SD0Y7pVit5Cz+jbR/fYHphHrK3hARQciTTxBw9yDcfH00TiiqQoobF2OxKnxTOvx7ZLc43N1kuLBDKM5TV/ZOWgZ6A9z9FbQeonUqUYH0wnQm/DWB1adXA9AhsgPvdn2XaN9ojZOJiiiKQt7y5aR9/gXFhw4B4BYcTMiTTxA0ZAh6TxnB5oikuHExS/elcjyjgAAvdx7sIFN/O4T8DJg2GJK3grs3PPADNLxN61SiAktPLOXt9W+TVZwlyyfYOUVRyF/3F2mff07R7t0A6P38CBn5GMGPPoreR1pqHJkUNy5EURQmr1JbbYZ1roePUd5+u5d1En68FzIOg1cQPDwTYjtonUpcIrckl/c3vc+CpAUANAluwsRuE2kYJLN+26OCbdtI+/QzCjZvBtQ+NcGPPkrIY3/DLUCmxXAG8unmQjYdy2TnqSw8DHqGd6mvdRxxLWf3wU/3Qm4K+NeBR+dAWGOtU4lLbErZxOvrXiclPwW9Ts/IFiP5e+u/4+4myyfYm8K9e0n7/HPyV68B1OHcQQ8NIeTJJ2V+GicjxY0L+U9pX5vBN9Uh1NeocRpxVSfWwy8PQlE2hDWBR+ZAgCy2Z0+KzEV8sf0Lftz3IwB1fOuQ2D2RNuFttA0mLlN85AhpX/yL3D/+UHe4uRF4332E/v1p3KNkUIUzqvKJ4KlTp1a432w2M27cuBvNI2rIwdRclh84h04HT3RvoHUccTUHFsOPg9TCJrYj/O03KWzszL6MfQxZOMRW2Nzf6H5m3zVbChs7Yzp7jjMvv8zRgXephY1Oh//AgcQvXkTU229JYePEqlzcPPvsswwePJjz58/b9h08eJCOHTvyyy+/VGs4UX3KFsi8vXkk9UOlo5zd2vYDzBgK5iJodDs8Og+8ZU4Ue2G2mvl619cMXTSUpOwkQjxD+OrWr5jQeQLe7rLwrL1QFIXshYs4etddZM9fAIqC3219iJs/j5gPP8CjXj2tI4oaVuXiZvv27Zw+fZqWLVuydOlSvvrqK9q1a0eTJk3YuXNnTWQUNyglu5D5O5IBeLKHtNrYJUWBNR/DgmdAsUKbofDgz+AhH5j24kTOCUYsGcG/tv8Ls2Lmtnq3MffuufSo00PraOIi5sxMksc8z5kXX8SanY1n8+bUn/krdf71LzwbNdI6nqglVe5zEx8fz7p16xgzZgy33347bm5u/N///R8PPfRQTeQT1eC7tccwWxU6xgXTtm6Q1nHEpaxW+H0cbJyi3pblFOyKoij8evBXPt76MYXmQnzdfXm146vc2eBOmZDPzuQuW0bK+AlYMjLAYCD0708T+uST6Nylc7erua4OxYsWLWL69Ol07tyZQ4cO8d///peePXsSHS2TVNmb7EIT0zaqs20+3VMWyLQ75hKY9zTsma3e7jcROo/SNpOwOVdwjvHrxrPuzDoAOkZ25J2u7xDlK3017IklJ4ez700ke/58AIwNE4h6/328mjfXOJnQSpVPSz311FMMHjyYl19+mTVr1rBr1y48PDxo2bIlv/76a01kFDdg2saT5JdYaBzhR6/GYVrHERcrzlUn59szW511+N5vpLCxI0uOLeGe+few7sw6jG5GXu7wMl/3/VoKGzuTt3YdRwfepRY2ej0hTzxO/dmzpbBxcVVuuVm3bh0bN26kdevWAERGRrJ48WK++uorHnvsMR544IFqDymuT7HZwnfrjgFqXxtpQrcjpkL4v7vgzDZw94EHf4CEPlqnEkB2cTbvbXyP3479BkCzkGYkdkukQaD0V7Mn1vx8zn74IVnTZwDgXq8u0Ynv492urcbJhD2ocnGzdetWjMbL50gZNWoUffrIH2d7Mm97Mmm5xUQFeDKwtZwytCurJqmFjVcQDJ0NdW7SOpEA/kr+izfWvcG5wnO46dx4otUTPNnqSdz10mfDnhRs2cKZca9iOnUKgKBHHiF87PPovaUDvlBVubgxGo0kJSXx/fffk5SUxOeff054eDi//fYbdevWrYmM4jpYrYpt0r6R3eLwMMjaNnYjdQ+s+0LdvvsrKWzsQIGpgE+2fsKMg2orQH3/+kzsNpGWYS01TiYuZi0uJu2zz8mcOhUUBUN0FNETJ+LTqZPW0YSdqfIn3qpVq2jZsiUbN25kzpw55OXlAbBz504mTJhQ7QHF9flz/1mOpuXj52lgyM1SdNoNqwX+9ywoFmg6EJoM0DqRy9uZtpMHFj5gK2webvIwvw78VQobO1O4ezfH7r2PzO+/B0Uh4P77aLBggRQ2okJVbrl55ZVXePfddxk7dix+fn62/bfccgtffvlltYYT16+s1eaRTvXwlQUy7cfmb9XVvY3+cMcHWqdxaSaLiSm7pvDt7m+xKlbCvcN5p+s7dInuonU0cRGlpIT0KVNI/8/XYLHgFhZK1Ntv49e7t9bRhB2r8qfe7t27mTZt2mX7w8PDSU9Pr5ZQ4sZsOZ7J1hPn8XDT8zdZINN+ZJ+GZW+r230mgL/0g9JKUlYS49aMY3/mfgAGNBjAuJvHEWCUFaHthWIykbN4MenffEPJkSQA/Pv3J+KN1zEEyXxd4uqqXNwEBgaSkpJCXFxcuf3bt28nJkbWv7EHU1aprTb3tosh3N9T4zQCUGcgXvQilOSp60Xd9JjWiVySVbHy076f+Hzb55RYSwgwBvBGpzfoV7+f1tFEKWtBAVmzZpMx9XvMZ1IAcAsMJPLNCfjffrvG6YSjqHJxM2TIEF5++WVmzpyJTqfDarWybt06XnzxRYYNG1YTGUUVHDmXy5/7z6oLZMpSC/Zj/wI49Bvo3WHg56CXDt61zWK1MHblWJafWg5At5huvN3lbcK8Zf4ne2A+f57zP0/j/E8/YcnKAsAtJITgYcMIemgIbv7+2gYUDqXKxc3EiRMZNWoUsbGxWCwWmjVrhsVi4eGHH+b111+viYyiCr5Zrc5rc1vTCOLDfDVOIwAozILFL6nb3Z6H8KaaxnFVk3dOZvmp5RjdjLzU4SUGNxoscz/ZAdOZM2RMnUrWzFkohYUAuMfGEjLyMQIGDULvKa3PouqqXNx4eHjwzTff8MYbb7Bnzx7y8vJo27YtDRs2rIl8ogrO5hQxd7u6QOZTstSC/Vj2FuSlQkgCdH9B6zQuacXJFfxn138AmNB5AgPjB2qcSBQdOkTmf/9L9qLFYDYDYGzWlNDHH8evb190BhkIIa7fdf/01K1bV+a1sTPfrztOicVKh/pB3FRPOtzZhRPrYct36vbAz8Fd/gutbSdyTvDq2lcBdZi3FDbaKti6lYxvviVv5UrbPu9OnQh54nF8unSR1jRRLSpV3IwdO7bST/jJJ59cdxhx/XKLTPy84QQAT/aQVhu7YC6G/z2nbrd9FOp30zaPCyowFTBmxRjyTHm0DW/Li+1f1DqSS1KsVvJWriLj228p3LZN3anT4de3LyGPj8SrpcwpJKpXpYqb7du3l7u9bds2zGYzjRs3BuDQoUO4ublx000y06pWftl0ktxiM/FhPtzaJFzrOAJg3eeQfhB8wuC2t7VO43IURWHCXxM4knWEUK9QPu75Me5usoxCbcvfsJGz771L8eEjAOjc3QkYNIjgx/6G8ZJRt0JUl0oN2VixYoXtMnDgQHr27Mnp06fZtm0b27Zt49SpU/Tu3ZsBA6o222piYiIdOnTAz8+P8PBwBg0axMGDByv9+OnTp6PT6Rg0aFCVXtfZWKwK3609DsBTPeLR66VZV3Nph2D1h+r27e+Dd7C2eVzQD/t+YMnxJRh0Bj7p9YmMiqplitnMuc8/5+Tf/kbx4SPofXwIeXwk8cv+JOqdt6WwETWqyuNRP/74YxITEwm6aBKloKAg3n33XT7++OMqPdeqVasYNWoUGzZsYOnSpZhMJvr27Ut+fv41H3v8+HFefPFFunfvXtUvwemsT8ogNaeIQG937m4rE8NpzmpVT0dZSiDhNmhxn9aJXM7m1M18uvVTAP7Z4Z+0DZeVomuTKTWVEyNGkDF5CigKgYPvJ2HFcsJffBH3cGlZFjWvyh2Kc3JySEtLu2x/Wloaubm5VXquJUuWlLs9depUwsPD2bp1Kz169Lji4ywWC0OHDuWtt95izZo1ZJXOieCqFuxUR0j1bxmF0eCmcRrB9h/h5F/g7g0DPgbpIFmrUvNTeXHVi1gUCwMbDOShJg9pHcml5K5YQcq4V7FkZaH38SHy7bcIqGKrvhA3qsotN/fccw9/+9vfmDNnDqdPn+b06dPMnj2bkSNHcu+9995QmOzsbACCg6/ehP/2228THh7OyJEjb+j1nEGx2cJve1IBuKu1tNpoLvcsLH1D3e79GgTV0zaPiymxlDB25VgyizJpHNSYNzq/IaNvaolSUsLZxPc5/fd/YMnKwrN5c+LmzJbCRmiiyi03U6ZM4cUXX+Thhx/GZDKpT2IwMHLkSD788MPrDmK1WhkzZgxdu3alRYsWVzxu7dq1/Pe//2XHjh2Vet7i4mKKi4ttt3Nycq47oz1aeTCN3CIzkf6e3Fxf+nVobskrUJQNUW2g49Nap3E5iZsS2Z2+G38Pfz7t/SleBi+tI7mEkpMnSR77AkV79gAQPHwYYS+8gN7DQ+NkwlVVubjx9vbm3//+Nx9++CFJSepiZvHx8fj4+NxQkFGjRrFnzx7Wrl17xWNyc3N59NFH+eabbwgNDa3U8yYmJvLWW2/dUDZ7tmDnGQAGto6SjsRaO/Q77J0DOje46wtwk0nIatOcw3OYdWgWOnRM6jGJWL9YrSO5hJzFi0l5YzzW/HzcAgKISpyI3y23aB1LuDidoiiK1iFGjx7N/PnzWb169WULcl5sx44dtG3bFje3C/1KrFYrAHq9noMHDxIfX36Ol4pabmJjY8nOzsbfwdcqySs20/7dpRSZrPxvdDda1pEVjTVTnAf/7gTZp6DLM9D3Xa0TuZS96XsZ9tswSqwljG4zmqdaP6V1JKdnLSzk7MREsmbOBMCrXTtiPv4I96gojZMJZ5WTk0NAQEClPr+r/K9lfn4+77//PsuWLePcuXO24qLM0aNHK/1ciqLwzDPPMHfuXFauXHnVwgagSZMm7N69u9y+119/ndzcXD7//HNiYy//T81oNGI0GiudyZEs3ZdKkclKXKgPLWIcu1BzeCsmqoVNYF3oNU7rNC4lsyiTMSvHUGItoVdsL55o9YTWkZxe8ZEjJD//vDp3jU5HyFNPEjZ6tCyZIOxGlX8SH3/8cVatWsWjjz5KVFTUDXXWGzVqFNOmTWP+/Pn4+fmRmqp2jA0ICMDLSz1XPmzYMGJiYkhMTMTT0/Oy/jiBgYEAV+2n46wW7FBPSd3VOlo6TWopeRtsnKxuD/gUPG7sFK2oPLPVzEurXyI1P5V6/vWY2G0iep2suF5TFEUhe84cUt95F6WoCLfQUGI+mIRPly5aRxOinCoXN7/99huLFi2ia9euN/zikyerHwi9evUqt//7779nxIgRAJw8eRK9Xv5YXSozv4Q1h9MBuKuNjJLSjMUM/3sWFCu0HAwN+2idyKV8sf0LNqZsxMvgxWe9PsPPw0/rSE7LkpdP6ptvkrNwIQA+XboQ/cEkDJXs/yhEbapycRMUFHTNodqVVZnuPisvWlytIlOnTq2WLI5m8e4UzFaFFjH+xIf5ah3HdW34N6TuBs9A6JeodRqXsvTEUr7f8z0Ab3d9m4SgBI0TOa/CvXtJHjsW04mT4OZG2HPPEfL4SHTyj6ewU1X+yXznnXcYP348BQUFNZFHVFLZKCmZ20ZD54+rfW0A+r0HvjK9f21Jykri9bWvAzC82XBur3+7xomcV97adZx4eCimEycxREVR78cfCH3yCSlshF2rcsvNxx9/TFJSEhEREdSvXx939/IL0W0rW/FV1JgzWYVsOpYJwJ2tpLjRzG+vgLkQ6neHNkO1TuMy8kryGLNiDAXmAjpEdmDMTWO0juS08tas5fSoUSglJfh0707Mhx/gVtrPUQh7VuXixtUXqbQHC3eprTY3xwUTHSiTlGni2Bo49BvoDXDnp7LEQi2xKlZeW/sax3OOE+EdwYc9PsSglxE6NSFvzRpOjxqNUlKC7623UufTT9DJpHzCQVT5r8KECRNqIoeogvk75JSUpqxW+EM9JcJNf4PQhtrmcRGKovDh5g9Zfmo57np3Pu31KSFeIVrHckp5q1erhY3JhN9tfYj5+GMpbIRDkZOmDiYpLY+9Z3Iw6HX0bymTZWliz2xI2QEeftDrFa3TuARFUfhg8wf8tP8nAMZ3Hk/LsJYap3JOeatWXVTY3EbMJ9JiIxxPpVpugoODOXToEKGhoQQFBV11TpXMzMxqCycuVza3TfeGoQT7yB+cWmcqgmVvq9vdxoCPDIOtaYqiMGnzJH7e/zOgFjaDEgZpG8pJ5a5YQfKzz6mFTd++xHz8EbpL+lUK4QgqVdx8+umn+Pmp80d89tlnNZlHXIWiKBdGScncNtrY9DVknwS/aOj0D63TOD1FUXh/0/tMOzANgDc7v8l9je7TOJVzyl2+gtPPPQcmE379+hHz0YdS2AiHVaniZvjw4RVui9q1JzmHY+n5GA16bmsWqXUc11OQCWs+UrdveR08vLXN4+QURWHixolMPzgdHTre7PIm9za8V+tYTil3+XJOPzdGLWxuv52YDz+QwkY4NBlm4EAW7EwGoE+zCHyN8tbVutUfQVE2RLSA1kO0TuPUFEXhvY3vMePgDHToeKvLW9zT8B6tYzml3GXLOD3meTCZ8O9/B9EffCBrRAmHJz/BDsJqVfjfzhRARklpIvOoekoK4La3Qe929ePFdbMqViZunCiFTS3I/fNPtbAxm/Hv35/oDyZJYSOcgvwUO4hNxzNJzSnCz9NAr8YyE26tW/Y2WE0Qfwsk3Kp1GqdlVay8t+E9fj30Kzp0vN31bek8XENyli4l+fmxamEzYADRk96XwkY4DRkK7iDK5ra5o0UkRoO0GtSq01tg71xAB7e9o3Uap2VVrLy74V1bYfNO13eksKkhOb//caGwufNOKWyE07nu4ubIkSP8/vvvFBYWApVbBFNcnxKzld/2lJ2SitE4jYtRlAsT9rV5GCJbaJvHSVkVK+9seIeZh2aiQ8e73d7l7oS7tY7llHKW/E7y2NLCZuBAKWyEU6pycZORkUGfPn1o1KgR/fv3JyVF/dAdOXIkL7zwQrUHFLD2SBpZBSZCfY10jpcZWWvVgUVwcj0YvKD3a1qncUpWxcrb699m1qFZ6NDxXrf3uCv+Lq1jOaWcJUtIfuEFsFgIuPsuot9PROcmLcHC+VS5uHn++ecxGAycPHkSb+8LQ2EffPBBlixZUq3hhKrslNSdraJw08saRrXGYoI/S5cb6fwPCJBWs+pWVtjMPjwbvU7Pe93eY2D8QK1jOaWc334j+YUXSwubu4maOFEKG+G0qtwW+ccff/D7779Tp06dcvsbNmzIiRMnqi2YUBWWWFi67ywgE/fVuq1TIeMIeIdC1zFap3E6VsXKW+vfYs7hObbC5s4Gd2odyyllL1jAmXGvqoXNoEFEvfeuFDbCqVW5uMnPzy/XYlMmMzMTo9FYLaHEBX/uP0tBiYXYYC/axgZqHcd1FOXAyvfV7V6vgKe/tnmcjFWxMuGvCcw7Mg+9Ts/EbhMZ0GCA1rGcjqIopP/rS9L//W8AAu69l6h33pbCRji9Kp+W6t69Oz/88IPttk6nw2q18sEHH9C7d+9qDSfKrwB+tTW9RDVb9zkUpENIAtw0Qus0TsVitTB+3XhbYZPYLVEKmxpgLS7mzIv/tBU2IY+PJOrdd6SwES6hyi03H3zwAbfeeitbtmyhpKSEl156ib1795KZmcm6detqIqPLyi4wserQOUBGSdWqnDOw/it1u8+b4CbT0FcXRVF4Z8M7zE+aj16n5/3u73NH3B1ax3I65owMTo8aTeGOHWAwEPXmBALvv1/rWELUmiq33LRo0YJDhw7RrVs37r77bvLz87n33nvZvn078fHxNZHRZf22JwWTRaFJpB+NI/20juM6lr8H5kKI7QRNpA9IdVqQtIDZh2fjpnNjUvdJUtjUgOLDhzn+wIMU7tiB3t+fut9+K4WNcDnXNblBQEAAr70mw2JrWtkK4ANluYXak7oHdvysbvd9F+RUYLU5lXOKiRsnAvCPNv/g9rjbNU7kfPLWrCX5+eex5uXhXrcusVOmYGwQp3UsIWpdlVtuEhISePPNNzl8+HBN5BGlzuUUsf5oBiBrSdWqpeMBBZoNgtgOWqdxGiariVfWvEKBuYB24e0Y2WKk1pGczvlffuHU009jzcvDu3176s+YLoWNcFlVLm5GjRrFokWLaNy4MR06dODzzz8nNTW1JrK5tP/tSkFRoF3dQGKDLx+dJmpA0nJIWgZ6d+gzQes0TuU/O//DrvRd+Ln7kdg9ETdZeLTaKBYLqRMnkvrW27ah3rHf/RdDUJDW0YTQzHVN4rd582YOHDhA//79+eqrr4iNjaVv377lRlGJG1N2SkpabWqJ1QJ/jFe3OzwOwQ20zeNEtp3dxje7vwHgjc5vEO0rP9PVxZKXz+l/jOL8Dz8CEDZmDFGJE9F7eGicTAhtXffaUo0aNeKtt97i0KFDrFmzhrS0NP72t79VZzaXdTw9n52nstDrYEAr+SCoFbtmwNndYAyAni9pncZp5JbkMm7NOKyKlYENBkoH4mpkOnOGE0OHkrdqFTqjkZjPPiX06adkygghuM4OxWU2bdrEtGnTmDFjBjk5OQwePLi6crm0/5W22nRNCCXMTyZGrHGmQlj+rrrdfSx4B2ubx4m8t/E9zuSfIcY3hlc7vqp1HKdRuHs3p/7xDyxp6biFhhL71Zd4tW6tdSwh7EaVW24OHTrEhAkTaNSoEV27dmX//v1MmjSJs2fPMn369JrI6FIURWG+jJKqXRv+DTnJEBALHZ/WOo3TWHh0IYuOLsJN58b73d/H18NX60hOIWfJ75x4dBiWtHSMjRoRN2O6FDZCXKLKLTdNmjShQ4cOjBo1iiFDhhAREVETuVzW/pRcjpzLw8Og5/YWkVrHcX756bDmU3X7ljfA3VPbPE7idO5p3tvwHgBPtXqKNuFttA3kBBRFIePrb0j7VP159enRnZhPPsHNV4pGIS5V5eLm4MGDNGzYsCayCC50JO7dOAx/T5kZt8atmgQluRDVGlrKadXqYLaaeXXtq+SZ8mgT1oYnWj2hdSSHp1gspLwxnuw5cwAIeuQRIl55GZ3hhnoWCOG0qvybIYVNzbFaFVt/m7vbyHILNS4jCbZ8p27f9g7or7t/vbjIt7u/Zfu57fi4+5DYPRGDXj6Ab1T6vyerhY1eT8RrrxI8dKjWkYSwa5X6qxMcHMyhQ4cIDQ0lKCjoqr3xMzMzqy2cq9l28jzJWYX4Gg3c0iRc6zjOb9UHYDVDQh9o0FPrNE5hx7kdTNk5BYDXOr5GHb86GidyfPnr19sWv4ya+B6BgwZpG0gIB1Cp4ubTTz/Fz8/Pti1DDWtG2Smpvs0i8HSXSc5qVPph2P2rut1blhKpDnklebyy5hUsioX+cf0ZGD9Q60gOz5yWRvI/XwJFIeD++6SwEaKSKlXcDB8+3LY9YsSImsri0swWK4t2pQBwVxsZJVXjVk0CxQqN+0NMO63TOIXETYkk5yUT7RPNa52kYLxRisVC8j9fwpKejrFhQyJlPT8hKq3KnQzc3Nw4d+7cZfszMjJwc5PWhuu1LimDjPwSgn086JoQqnUc53buAOyepW73ekXbLE5iybElLEhagF6nJ7F7Iv4e/lpHcnjpk6dQsGEDOm9vYj7/DL2Xl9aRhHAYVS5uFEWpcH9xcTEeMuX3dVt5UC0Yb28RibubdGytUasmAQo0uVMdJSVuSEpeCm+vfxuAJ1o+QbsIaQm7UfkbNpD+1VcARL05AWMDWQ5EiKqo9DCGL774AgCdTse3336L70VzK1gsFlavXk2TJk2qP6GLOHIuD4DWdQI0TuLkzu6FvXPV7V7jtM3iBCxWC+PWjiPXlEur0FY81foprSM5PHNaGskv/lPtZ3PfvQTcdZfWkYRwOJUubj4tnThKURSmTJlS7hSUh4cH9evXZ8qUKdWf0EUklRY3CeEyIVeNWvk+oECzuyGyhdZpHN73e79n69mteBu8eb/7+7jrZW6mG6FYLCS/VNbPJoHI11/XOpIQDqnSxc2xY8cA6N27N3PmzCEoKKjGQrma/GIzZ7KLAIgPk+KmxqTuhv0LAB30lL42N2pP+h6+2q6eOhnXcRyx/rEaJ3J86VOmULB+AzovL2I+k342QlyvKs+utWLFiprI4dKS0tRWm1BfDwK9pd9SjVn5vnrd/B6IaKZtFgdXYCrg5dUvY1bM9Kvfj7vj79Y6ksPL37CR9K/U+WwiJ4zHGB+vcSIhHFeVe67ed999TJo06bL9H3zwgawKfp3KihtptalBZ3bAgYWATkZIVYNJmydxMvckEd4RvNHpDZn76gaZ09NJ/ueLYLUScO+9Mp+NEDeoysXN6tWr6d+//2X777jjDlavXl0toVxNWWfieOlvU3PKWm1a3g9hjbXN4uCWn1zOnMNz0KEjsXsiAUbpBH8jFIuFMy+9pK7y3TCByDekn40QN6rKxU1eXl6FQ77d3d3JycmpllCuJulcPgAJ0nJTM5K3wqHfQKeHni9rncahFZmLmLRJbbkd0WIEHSI7aJzI8WV8/TX5f61X+9l8+qn0sxGiGlS5uGnZsiUzZsy4bP/06dNp1qxq/RgSExPp0KEDfn5+hIeHM2jQIA4ePHjVx3zzzTd0796doKAggoKC6NOnD5s2barS69qbI2nSclOjylptWj0IobLw6434fu/3nMk/Q6RPJH9v/Xet4zi8/I2bSPvXlwBEjh+PMSFB40RCOIcqdyh+4403uPfee0lKSuKWW24BYNmyZfzyyy/MnDmzSs+1atUqRo0aRYcOHTCbzbz66qv07duXffv24ePjU+FjVq5cyUMPPUSXLl3w9PRk0qRJ9O3bl7179xIT43graZssVo6nl7bcSHFT/U5thsN/gM4NevxT6zQOLSUvhe92q6uov3DTC3gZpIXhRpjT00l+8QW1n8099xB4zyCtIwnhNKpc3AwcOJB58+YxceJEZs2ahZeXF61ateLPP/+kZ8+qray8ZMmScrenTp1KeHg4W7dupUePHhU+5ueffy53+9tvv2X27NksW7aMYcOGVe2LsQMnMwswWxW8PdyI8vfUOo7zWTlRvW79EITI6JMb8cnWTyiyFHFTxE30q99P6zgOTbFaOfPSy1jS0vFIiJd+NkJUsyoXNwADBgxgwIAB1Z2F7OxsAIKDgyv9mIKCAkwm0xUfU1xcTHFxse22vfULKutM3CDMB71eRpxUq5MbIGk56A3Q40Wt0zi0LalbWHJ8CTp0vHLzKzI66gap/Wz+QuflRZ3PPkPv7a11JCGcynUtYpSVlcW3337Lq6++SmZmJgDbtm0jOTn5uoNYrVbGjBlD165dadGi8jPHvvzyy0RHR9OnT58K709MTCQgIMB2iY21r4nGyoaBS2fiGrCitNWmzcMQHKdtFgdmsVqYtFntRHxfo/toEizLrNyI/E2bSPviXwBEvvGG9LMRogZUueVm165d9OnTh4CAAI4fP87jjz9OcHAwc+bM4eTJk/zwww/XFWTUqFHs2bOHtWvXVvox77//PtOnT2flypV4elZ8SmfcuHGMHTvWdjsnJ8euChzbMHApbqrX8XVwbBXo3aG7tNrciDlH5nAg8wB+7n480/YZreM4NHNGBmdeKJ3PZtAgAu+9R+tIQjilKrfcjB07lhEjRnD48OFyBUX//v2ve56b0aNHs3DhQlasWEGdOnUq9ZiPPvqI999/nz/++INWrVpd8Tij0Yi/v3+5iz2RNaVqyMpE9brtIxBUT9ssDiy7OJt/bVNbGf7R5h8Ee1b+lLEor6yfjTktDY/4eCLHv6F1JCGcVpVbbjZv3sx//vOfy/bHxMSQmppapedSFIVnnnmGuXPnsnLlSuLiKnfq4IMPPuC9997j999/p3379lV6TXuiKApJaTJSqtodWw3H14CbB3R/Qes0Dm3KzimcLz5PfEA8DzZ5UOs4Di3j62/IX7cOnacndT77VPrZCFGDqlzcGI3GCjvlHjp0iLCwsCo916hRo5g2bRrz58/Hz8/PVhwFBATgVTqR1bBhw4iJiSExUf1PfNKkSYwfP55p06ZRv35922N8fX3x9XWsAuFsTjF5xWbc9DrqhVQ89F1UkaLAitJWm3bDIdB+TkE6mqSsJH458AsAL938kqz4fQMKtm0j7V9l/Wxex9hQ5lsSoiZV+bTUXXfdxdtvv43JZAJAp9Nx8uRJXn75Ze67774qPdfkyZPJzs6mV69eREVF2S4XTxJ48uRJUlJSyj2mpKSE+++/v9xjPvroo6p+KZor60xcL9gbD8N19e0Wlzq6Ek7+BW5G6D72moeLiimKwqRNk7AoFnrH9qZLdBetIzksS3Y2yS++CBYL/gMHEnDvvVpHEsLpVbnl5uOPP+b+++8nPDycwsJCevbsSWpqKp07d+a9996r0nMpinLNY1auXFnu9vHjx6v0GvbswjBwx2pxsluKcmGEVPu/gX+0tnkc2MpTK1mfsh53vTv/bC+TH14vRVFIef0NzGdScK9bl8gJE2QYvRC1oMrFTUBAAEuXLmXdunXs3LmTvLw82rVrd8Wh2OLKbMPApb9N9UhaBqc3gcETuj2vdRqHVWIp4cMtHwIwvPlwYv3l1N71ypo+ndylS8HdnZiPP8bNV04/C1EbKlXcBAcHc+jQIUJDQ3nsscf4/PPP6dq1K127dq3pfE7tiIyUqj7lWm1Ggl+ktnkc2A/7fuBU7inCvMJ4vOXjWsdxWEUHD3E2UV3XLHzsWLxaVn7+LiHEjalUR4+SkhJbJ+L/+7//o6ioqEZDuYoLc9zIf3M37PBSdfVvgxd0G6N1God1ruAcX+/6GoDnb3oeH3f52bwe1oICkseORSkpwadnD4KHO97SMEI4skq13HTu3JlBgwZx0003oSgKzz77rG0006W+++67ag3orHKKTJzLVZeFkNXAb5CiwIrS/l43Pw6+4drmcWCfbf2MQnMhrcJaMaBB9S+x4irOJiZSkpSEISyM6MREdHoZMCBEbapUcfPTTz/x6aefkpSUBKhrQEnrzY0pm7wv3M+Iv6cMsb0hB3+DlB3g7gNdx2idxmHtTNvJ/47+D4BxN49Dr5MP5OuRs3gxWTNngU5H9IcfYKjCWnlCiOpRqeImIiKC999Xzx3HxcXx448/EhISUqPBnJ1M3ldNFOXCyt8dnwSfUG3zOCirYuX9jerv+KCEQbQIlf4h16Pk9GlSxk8AIOSpJ/Hp1EnjREK4pkr9axYcHEx6ejoAvXv3xsPDo0ZDuQLpTFxNDiyE1N3g4QtdntU6jcNakLSAPRl78HH34bl2z2kdxyEpJhPJL7yANS8Pr7ZtCRs9WutIQrgs6VCsEVkws5r8pc76SsenwVua/69HXkken239DICnWz1NqJe0fl2PtC++oGjnLvT+/sR89CE6Q5Vn2hBCVBPpUKyRozLHzY3Lz4BTm9TtDiO1zeLAvt71NRlFGdTzr8fQpkO1juOQ8tauI+ObbwGIevcd3GNiNE4khGurcodinU4nHYpvUInZyonMAkBabm7I0RWAAhEtZDbi63Q8+zg/7v8RgJc6vIS7m3RurypzWhpnXn4ZgMAhD+Lft6/GiYQQ0qFYAycy8rFYFXyNBiL8jVrHcVxH/lSvE27VNocD+3DLh5itZrrFdKNHnR5ax3E4itXKmZdfwZKRgbFhQyJeeUXrSEIIrmP5hWPHjtVEDpdi628T7ivrzFwvqxWOLFO3E2Tpj+ux5vQaVp9ejUFn4KUOL2kdxyFlfvcd+X/9hc7Tk5hPP0Hv6al1JCEEVVgVvH///mRnZ9tuv//++2RlZdluZ2Rk0KxZs2oN56xkZuJqkLoL8s+po6RiZbhtVZksJj7Y/AEAQ5sOJS4gTuNEjqdw507OffY5ABGvvYoxIUHjREKIMpUubn7//XeKi4tttydOnEhmZqbtttls5uDBg9WbzknJgpnVoOyUVFxPMMjUBFU17cA0juccJ9gzmKdaP6V1HIdjyc0leewLYDbjd8ftBN5/v9aRhBAXqXRxoyjKVW+LyjuSJsPAb5jtlJT0t6mqvJI8puycAsCYdmPw8/DTOJFjURSFlPHjMSUn4x4TQ9Tbb8vpZSHsjMyvXsusVoWkczI78Q0pyoZTG9VtKW6qbOHRheSZ8mgQ0IC7E+7WOo7DyZo1i9zfloDBQMzHH+HmJ8WhEPam0sWNTqe77L8T+W+l6lJyiig0WXB301E32FvrOI7p6EpQLBDSEILqa53GoSiKwoyDMwB4oPEDsn5UFRUfOcLZ99TlPsKeexavNm20DSSEqFClR0spisKIESMwGtWhy0VFRTz99NP4+KidYi/ujyOurKwzcb0QH9zd5IPlupT1t2l4m7Y5HND2c9s5knUEL4MXA+MHah3HoViLikh+fixKURE+XboQMlImjhTCXlW6uBk+fHi524888shlxwwbNuzGEzm5stXAE6S/zfVRFOlvcwN+PfQrAHfE3YG/h7/GaRzL2UmTKD58GLeQEKInvY9OL/+cCGGvKl3cfP/99zWZw2XYOhOHyzDw65J2AHKSweAJ9bpqncahZBZl8sfxPwD1lJSovJw//iDrl+kARL//PoawMI0TCSGuRv71qGVJshr4jSk7JVW/G7hXvL6ZqNi8I/MwWU20CGlB85DmWsdxGKYzZ0h5/Q0Agkc+hm/3bhonEkJcixQ3tcw2x02YjLC4LoeXqtcyK3GVWBUrMw/OBKTVpioUs5nkf76ENScHz5YtCX/uOa0jCSEqQYqbWpRVUEJ6XgkADWR24qorzoOT69XtBOlMXBXrz6zndN5p/Dz8uD3udq3jOIz0f0+mcOtW9D4+xHz8EToPmTBSCEcgxU0tKmu1iQ7wxMdY5WW9xPG1YCmBwHoQEq91GodSNvz77vi78TLI6bzKyN+0ifQp6mSHkW++iUfduhonEkJUlhQ3tejiBTPFdbCtAt4HZI6lSkvNT2XV6VUADG40WOM0jsF8/jxn/vkSWK0E3HMPAQPv1DqSEKIKpLipRUlp6szEsuzCdVAUOCL9ba7H7MOzsSpWOkR2oEFgA63j2D1FUUh57XXMZ8/iUb8+ka+/pnUkIUQVSXFTi47ISKnrl3kUzh8HvTvE9dA6jcMwWU3MPjQbkI7ElXX+52nkLV+Ozt2dmE8+Ru8j/eOEcDRS3NQi22kpabmpurJTUvU6g1G+f5W18tRK0grTCPEM4dZYmfTwWooOHODcBx8AEP7PF/Fs1kzjREKI6yHFTS0pMlk4db4AkJab63JxfxtRaWUdie9teC/ubu4ap7Fv1oICkse+gFJSgm+vXgQ9+qjWkYQQ10mKm1pyLD0fRQF/TwOhvjKctEpMRXBsjbotxU2lHc8+zsaUjejQcX+j+7WOY/dSJ06k5OhRDOHhRCVOlIWBhXBgUtzUEtvkfeG+8kezqk6sA3Mh+EVDuJwmqKyZh9RJ+3rU6UG0b7TGaexbzuLFZM+aDTod0R98gCEoSOtIQogbIMVNLZHOxDfg4oUypTCslCJzEfOOzAOkI/G1lJw+Tcr4CQCEPPUkPp06apxICHGjpLipJdKZ+AZIf5sq++PEH+SU5BDtE03XaFlg9EoUk4nkF17AmpeHV9u2hI0erXUkIUQ1kOKmlpTNcSMtN1WUdRLSD4LODRr00jqNwyjrSDy48WDc9G4ap7FfaV/8i6Kdu9D7+xPz0YfoDDJzuBDOQIqbWmCxKhxNk5ab61LWalOnA3gFahrFURzIPMCutF0Y9AYGJQzSOo7dyv/rLzK+/RaAqLffxj0mRuNEQojqIsVNLTiTVUix2YqHQU9ssLfWcRxLWX+bhnJKqrLKWm361O1DqFeoxmnskzkjg+SXXwZFIfCBB/C/vZ/WkYQQ1UiKm1pQ1t+mQagPbnrpEFtp5hI4qq6JJP1tKievJI9FRxcB0pH4ShSrlTPjxmFJS8fYMIGIca9oHUkIUc2kuKkFSXJK6vqc3gQlueAdCpGttU7jEBYeXUihuZAGAQ1oH9Fe6zh2KfP/fiB/9Rp0RiPRH3+M3ktWSRfC2UhxUwtkNfDrdLhsocxbQS8/qteiKIrtlNQDjR+Q+ZQqULhnL+c++QSAiHGv4NmokcaJhBA1QT4xasGFYeCyAF+V2Oa3uU3bHA5iR9oOjmQdwcvgxcD4gVrHsTvqat+vgcmE3223Efjgg1pHEkLUECluasHFsxOLSspJgbO7AR3E99Y6jUMoa7W5I+4O/D38NU5jfwq3bKH44EF0Xl5Evv2WtGwJ4cSkuKlhGXnFnC8wodNBg1Apbiotabl6Hd0WfGTEz7VkFmXyx/E/AHigkXQkrsj5X6YDEHDnnbK8ghBOTtPiJjExkQ4dOuDn50d4eDiDBg3i4MGD13zczJkzadKkCZ6enrRs2ZLFixfXQtrrUzZ5X0ygF14eMplapR0p628jo6QqY/6R+ZisJpqHNKd5aHOt49gdc3o6OUvVn6mgh4ZonEYIUdM0LW5WrVrFqFGj2LBhA0uXLsVkMtG3b1/y8/Ov+Ji//vqLhx56iJEjR7J9+3YGDRrEoEGD2LNnTy0mrzxZU+o6WMyQtELdluLmmqyK1bZI5oONpR9JRbLmzAWTCc/WrfBsJouvCuHsNJ1rfMmSJeVuT506lfDwcLZu3UqPHj0qfMznn3/O7bffzj//+U8A3nnnHZYuXcqXX37JlClTajxzVcmaUtfhzDYoygLPQIi5Ses0dm/9mfWcyj2Fn7sf/erLZHSXUiwWsmao/ZGCHpRWGyFcgV31ucnOzgYgODj4isesX7+ePn3K/zffr18/1q9fX+HxxcXF5OTklLvUJulMfB3KllyI7w1ustbPtZR1JL4r4S683WUG7Evlr12LKTkZfUAA/v3v0DqOEKIW2E1xY7VaGTNmDF27dqVFixZXPC41NZWIiIhy+yIiIkhNTa3w+MTERAICAmyX2NjYas19LXJa6joclv42lZWan8qq0+osztKRuGJlHYkDBw1C7+mpcRohRG2wm+Jm1KhR7Nmzh+nTp1fr844bN47s7Gzb5dSpU9X6/FdTWGIhOasQkNNSlZafDme2q9vxt2qbxQHMPjwbq2KlfUR7GgQ20DqO3TElJ5O3Si3+AodIfyQhXIVdtPmPHj2ahQsXsnr1aurUqXPVYyMjIzl79my5fWfPniUyMrLC441GI0ajsdqyVkXZKalgHw+CfTw0yeBwklYACkS0BP8ordPYNZPVxOxDswHpSHwl53+dCYqCd+dOGOPitI4jhKglmrbcKIrC6NGjmTt3LsuXLyeuEn98OnfuzLJly8rtW7p0KZ07d66pmNftwppSMjNxpZX1t0mQVptrWXVqFWmFaYR4hnBrXfl+XUopKSFr1iwAgoY8pHEaIURt0rTlZtSoUUybNo358+fj5+dn6zcTEBCAV+lidsOGDSMmJobExEQAnnvuOXr27MnHH3/MgAEDmD59Olu2bOHrr7/W7Ou4kiTpb1M1VutFxY30t7mWso7E9za8F3c3d43T2J/cP//EkpGBISwMv1tklmshXImmLTeTJ08mOzubXr16ERUVZbvMKB22CXDy5ElSUlJst7t06cK0adP4+uuvad26NbNmzWLevHlX7YSslSOyGnjVpO6EgnTw8IXYjlqnsWsnck6wIWUDOnTc1+g+rePYpfPT1b8jgYPvR+cuxZ8QrkTTlhtFUa55zMqVKy/bN3jwYAYPHlwDiapX0jl1MkJZDbySylptGvQCg/RRupqyVpvudboT4xujcRr7U5yURMGmTaDXE+gAfyuEENXLbkZLORuzxcqxdLW4SZCWm8qxrQIu/UeuJrcklzmH5wAwpLFMSleRslYb3969cY+SjulCuBopbmrIqfOFlFiseLrriQn00jqO/SvMglOb1G0ZAn5Vcw7PId+UT3xAPN1iumkdx+5YCwrInjcPgKAhUvwJ4YqkuKkhZZ2JG4T6otfrNE7jAI6uBMUCoY0gqJ7WaeyW2Wrmp/0/ATCs+TB0OvnZulTO4sVYc3Nxr1sXn65dtI4jhNCAFDc15Igsu1A1MkqqUpaeWEpqfirBnsEMaDBA6zh2qWxG4qAHH0Cnlz9xQrgi+c2vIUmyYGblKcpF/W2kuLkSRVH4v73/B8CQJkMwumkzOaU9K9y9m6K9e9G5uxNwzz1axxFCaESKmxoiLTdVcG4/5J4BgxfU66p1Gru19exW9mbsxehmlBmJr6Cs1cbv9tsxXGUBXiGEc5PipgYoimJbMDM+XGYnvqYjpQtl1u8G7rKw4ZX83z611eau+LsI9pQP7ktZsrPJWbwYgKCHpCOxEK5MipsakJZXTG6RGb0O4kKluLkm6W9zTcezj7PqlLoA5CPNHtE4jX3Knj8fpagIY6NGeLVtq3UcIYSGpLipAWWtNnWDvTEa3DROY+eK8+DEenW74W3aZrFjP+3/CQWFnnV60iBAVv++lKIotrltgh4aIqPIhHBxUtzUgKS00pmJpTPxtR1dCVYTBNWHYPnQrkhWURbzj8wHYHjz4RqnsU8FGzdRcvQoem9v/AfepXUcIYTGpLipAbJgZhXs/lW9bjwA5L/tCs04OIMiSxFNg5vSPqK91nHs0vnpakdi/7sG4uYrp4KFcHVS3NSAIzIMvHIKMuHgb+p2m4e0zWKnSiwl/HLgF0Am7bsS07lz5P6p9tuSGYmFECDFTY1IKlsNXFpurm7vXLCUQEQLiGypdRq7tOjoIjKKMojwjqBf/X5ax7FL2bNng9mMV5s2eDZponUcIYQdkOKmmuUVm0nJLgJkwcxr2qmeSqC1tNpURFEUftj3AwBDmw7FXe+ucSL7o1gsnP91JiDDv4UQF0hxU82OlrbahPoaCfCWD6MrykiC05tAp4eWg7VOY5f+OvMXR7KO4G3w5r5G92kdxy7lrVqNOSUFt8BA/G6/Xes4Qgg7IcVNNTti60wsnRqvqqzVJv5W8IvQNoudKltq4d6G9+Lv4a9xGvt0frraHyng3nvRG2U5CiGESoqbapYkyy5cm9V60SkpOZVQkUPnD7E+ZT16nZ6hTYdqHcculZw+Tf6atYC6SKYQQpSR4qaayUipSjj5F2SfBKM/NJGVrSvyw161r02fun2o41dH4zT2KWvGDFAUfLp2xaNePa3jCCHsiBQ31eyIzHFzbTvVUwk0HwTuXppGsUdpBWksOrYIkEn7rsRaUkLWrNkABA6RRUSFEOVJcVONTBYrJzIKAGm5uaKSAtirzrYro6Qq9suBXzBbzbQJa0OrsFZax7FLub//geX8eQwREfj17q11HCGEnZHiphqdyCjAbFXw8XAjKkBWt67QgUVQkguB9SC2k9Zp7E6BqYBfD6mzNkurzZWVzUgcOHgwOoNB4zRCCHsjxU01unjyPplJ9grKTkm1HgJ6+fG71IKkBWQXZxPrF0vvWGmRqEjRoUMUbt0Kbm4EDr5f6zhCCDskny7VSDoTX0NOChxdoW63kn4Sl7JYLfy470cAHmn6CG56WVG+Ilmlq3/73XIL7hEyjYAQ4nJS3FQjWTDzGnbPBMWqno4Kidc6jd1ZeXolJ3NP4ufhx6CEQVrHsUvW/Hyy56t9tmRGYiHElUhxU41sp6XCZAK/yyhK+VNS4jJlw78faPQA3u7eGqexT1lz5mLNz8e9Xl28O0mfLSFExaS4qSaKopCUlg9Iy02FUnfBuX3gZlSHgItydqftZtu5bRj0Bh5u+rDWceyStaCA9P/8B4CQESPQSZ8tIcQVyF+HanI2p5i8YjMGvY56IdJyc5myGYkb3wFeQdpmsUNlC2T2j+tPuHe4xmnsU+aPP2FJT8c9NpbA+2StLSHElckYympicNMx9rZGZBeacHeTmrEci0ntbwMyt00FzuSdYemJpQAMazZM4zT2yZKdTcZ//wtA2DOj0Xl4aJxICGHPpLipJqG+Rp69taHWMexT0nLITwOfMEi4Ves0duen/T9hUSx0jOpI4+DGWsexSxn//Q5rTg7Ghg3xHyBLdgghrk6aGETNK+tI3HIwuLlrm8XO5JbkMufwHACGN5NJ+ypiTksj80d1iHzYmOfQuckQeSHE1UlxI2pW4Xk4sFjdllFSl5lzeA75pnziA+LpFtNN6zh2KX3yFJTCQrxat8b3llu0jiOEcABS3IiatXceWIohvBlEyjpJFzNZTfy0/ycAHm32qMxqXYGS06c5P1PtrxX2/PPyPRJCVIoUN6JmlY2Sav0QyAdTOUuPLyU1P5Vgz2DujL9T6zh2Kf1fX4LJhE+Xzvh06qh1HCGEg5DiRtSczKNwagPo9Gp/G2GjKIpt+PeQJkMwuhk1TmR/ig8fJnvBAkBttRFCiMqS4kbUnJ3qGkA06A3+UdpmsTMHMg+wN2MvRjcjDzaWdbYqkvbFF6Ao+N12G14tW2odRwjhQKS4ETXDar1ouQWZ2+ZSK06pC4h2i+lGsGewxmnsT+GuXeQu/RP0esKee1brOEIIByPFjagZpzZA1gnw8IMmMi/JpVaeWglAr9heWsawW+c+/RSAgLvuwpiQoHEaIYSjkeJG1IyyVpvmd4OHLAJ5sdT8VPZn7kev09OjTg+t49id/PXrKVi/AdzdCR09Wus4QggHJMWNqH6mQnUIOMgpqQqUnZJqE9ZGTkldQlEUzn36GQBBDzyAR50YbQMJIRySFDei+h1cDMU5EFAX6nbROo3dkVNSV5a3bBlFu3ah8/Ii9O9Pax1HCOGgpLgR1W9HWUfiB0EvP2IXyyvJY1PqJkCKm0spFgtpn38OQPCwYRhCQzVOJIRwVPLJI6pX7llIWqZut5LlFi617sw6zFYz9f3rExcQp3Ucu5KzcCHFh4+g9/cn5LG/aR1HCOHANC1uVq9ezcCBA4mOjkan0zFv3rxrPubnn3+mdevWeHt7ExUVxWOPPUZGRkbNhxWVs3smKFaoczOEyiiXS5X1t+kd21vjJPZFKSkh7V9fAhDy+OO4BQRonEgI4cg0LW7y8/Np3bo1X331VaWOX7duHcOGDWPkyJHs3buXmTNnsmnTJp544okaTioqzbbcgrTaXMpkNbH69GpATkld6vysWZhOn8YtNJTgR4ZqHUcI4eAMWr74HXfcwR133FHp49evX0/9+vV59ll1Uq+4uDieeuopJk2aVFMRRVWk7oazu8HNA5rfo3Uau7Pj3A5yS3IJMgbROqy11nHshrWggPTJkwEI/fvT6L1l6gAhxI1xqD43nTt35tSpUyxevBhFUTh79iyzZs2if//+V3xMcXExOTk55S6ihpS12jS6HbxliPOllp9cDkCPOj1w07tpnMZ+ZP70M5a0dNxjYggaLGuQCSFunEMVN127duXnn3/mwQcfxMPDg8jISAICAq56WisxMZGAgADbJTY2thYTuxCLGXb9qm7L3DaXURRF+ttUwJKTQ8a33wIQ+sxodB4eGicSQjgDhypu9u3bx3PPPcf48ePZunUrS5Ys4fjx4zz99JXnwxg3bhzZ2dm2y6lTp2oxsQs5ugLyz4F3CDS8Tes0dicpK4nkvGQ89B50ju6sdRy7kfHf77Dm5GBsmEDAwIFaxxFCOAlN+9xUVWJiIl27duWf//wnAK1atcLHx4fu3bvz7rvvEhV1+crTRqMRo9FY21FdT9lyCy0Hg5u7tlns0MrTKwHoFN0Jb3fpUwJgTksj84cfAAh77jl0bnKqTghRPRyq5aagoAD9JZPCuZX+QVQURYtIAqAoGw4sUrdllFSFVpxUT0nJKKkL0v/zNUphIZ6tWuF7661axxFCOBFNi5u8vDx27NjBjh07ADh27Bg7duzg5MmTgHpKadiwYbbjBw4cyJw5c5g8eTJHjx5l3bp1PPvss9x8881ER0dr8SUIUNeRMhdBWBOIaqN1GruTXpjOrvRdAPSs01PjNPah5HQy52fMACD8+THodDqNEwkhnImmp6W2bNlC794XOleOHTsWgOHDhzN16lRSUlJshQ7AiBEjyM3N5csvv+SFF14gMDCQW265RYaCa22X+iFF6yEgH1KXWXVqFQAtQloQ7h2ucRr7kP7ll2Ay4d25Ez6dpQ+SEKJ6aVrc9OrV66qnk6ZOnXrZvmeeeYZnnnmmBlOJKinMgpPr1e0W92saxV6VLZTZu66MkgIoPnKE7AULAAgfM0bbMEIIp+RQfW6EHTq+Vl1uIaQhBMow+0sVmApYn6IWf9LfRpX2xb/AasW3z614tZbJDIUQ1U+KG3Fjjq5Urxv00jKF3dqQsoFiSzExvjE0DGyodRzNlRw/Tu4ff4BOR1jpTONCCFHdpLgRN+aY2p9EipuK2U5JxfaWTrNA5rRpAPj06I5no0YapxFCOCspbsT1y06G9EOg00P9blqnsTsWq4VVp9XiT05JgTU/n+w5cwEIfuQRjdMIIZyZFDfi+pW12kS3Ba9ATaPYo93pu8ksysTP3Y92Ee20jqO5rPnzsebl4VGvHj5du2odRwjhxKS4EdfvqJySupqytaS61emGu961Z21WFIXzP6unpIKGPoxOL396hBA1R/7CiOujKBc6E8fJxHQVKetvc0vsLZrmsAcFGzZQkpSEztubgHvu0TqOEMLJSXEjrk/aQchLBYMnxHbUOo3dOZFzgqPZRzHoDHSNkVMwmT/9DEDgoLtx8/PTOI0QwtlJcSOuT1l/m7qdwd1T2yx2qKzVpn1ke/w8XPvDvOR0Mnkr1FN0QUOHapxGCOEKpLgR18c2v42ckqpIWX8bGSUF53+ZBlYrPl06Y4yP1zqOEMIFSHEjqs5iVmcmBulMXIHzRefZfm47oM5v48qshYVkzZoNQJAM/xZC1BIpbkTVndkOxTngFQSRrbROY3fWJK/BqlhpHNSYaF/XXq0+Z9EirNnZuMfE4NtTWvmEELVDihtRdWWnpOp3B72bplHsUVl/G1c/JaUoiq0jcdDDD6Fzk58VIUTtkOJGVJ2sJ3VFxZZi1iarp+xcfRXwwq1bKT5wAJ2nJ4H33ad1HCGEC5HiRlRNST6c3qRuS3FzmU0pmyg0FxLuFU6z4GZax9FUWatNwMA7cQsM1DaMEMKlSHEjqubkerCUQEAsBDfQOo3dufiUlCsvlGlKTSV36VJAOhILIWqfFDeiai4eAu7CH94VURRF+tuUOj9jBlgseLdvj2fjxlrHEUK4GCluRNXY1pNy7f4kFdmXsY9zhefwNnjTMcp1Z222lpSQ9etMQFpthBDakOJGVF5+BqTuUrfjemibxQ6VTdzXNaYrHm4eGqfRTu5vv2HJyMAQGYlfn1u1jiOEcEFS3IjKK1tyIbw5+IZrm8UOySkplW3495AH0RkMGqcRQrgiKW5E5ZUVNzJK6jJn8s5w8PxB9Do9PWJct1WrcOdOinbvRufuTuDgwVrHEUK4KCluROXJelJXVHZKqm14WwI9A7UNo6HMn9VWG//+/TGEhGicRgjhqqS4EZVz/rh60RugXhet09idslNSrryWlDk9nZzflgDSkVgIoS0pbkTllI2SqtMBjH7aZrEzuSW5bEndArh2f5vzv/4KJhNerVvj1bKF1nGEEC5MihtROWWnpOLklNSl1iWvw6yYaRDQgHr+9bSOownFZCJr+gxAWm2EENqT4kZcm9UqnYmvYvmp5YBrt9rkLl2K+dw53EJD8e/XV+s4QggXJ8WNuLZze6EgAzx8oU57rdPYFZPVxNrTpQtlunB/m8yfpwEQ9MAD6Dxcd44fIYR9kOJGXFvZKal6XcDNXdMo9mbb2W3kmnIJ9gymZWhLreNoomj/fgq3bgWDgcAHH9Q6jhBCSHEjKsE2BLyXlinsUtkQ8J51euKmd9M4jTYyf/oJAP++fXGPkMkdhRDak+JGXJ25BE78pW5LcVOOLJQJ5vPnyVm4CJCOxEII+yHFjbi605vBVAA+YRDeTOs0duVw1mGS85IxuhnpFNVJ6ziayJo1C6W4GM9mzfBq20brOEIIAUhxI67l4iHgOp2mUexNWatN56jOeLt7a5pFC4rZzPlffgHUVhud/HwIIeyEFDfi6mQIeIUURWHx0cWA656Sylu5EvOZFNwCA/Ef0F/rOEIIYSPFjbiyohw4rc68K+tJlbf93HaSspPwMnjRt75rzutStvp34ODB6I1GjdMIIcQFUtyIKzuxDhQLBDeAwLpap7ErMw/NBOCOuDvw83C95SiKDx+mYMMG0OsJemiI1nGEEKIcKW7ElR2VU1IVySrK4o/jfwAwuNFgjdNoo2z1b79bb8U9OlrjNEIIUZ4UN+LKZD2pCi1IWkCJtYSmwU1pHtJc6zi1zpKTQ/b8BYAM/xZC2CcpbkTFclMhbT+gg7geWqexG4qi2E5J3d/ofpccIZQ1azZKYSHGhg3xvrmD1nGEEOIyUtyIih1brV5HtQbvYG2z2JGtZ7dyPOc4XgYv+se53ggha1ERGd9/B0DwiOEuWdwJIeyfFDeiYrYlF+SU1MXKWm36x/XH18NX4zS1L+vXX7GkpeMeHU3AXXdpHUcIISokxY24nKLIelIVOF90nqUnlgIwuLHrdSS2FheT8c23AIQ89RQ6d1lEVQhhn6S4EZfLSIKcZHAzQt3OWqexGwuSFmCymmgW0swlOxJnzZyFOS0NQ1QUgfcM0jqOEEJckabFzerVqxk4cCDR0dHodDrmzZt3zccUFxfz2muvUa9ePYxGI/Xr1+e7776r+bCu5Ki60jWxN4O7l7ZZ7ISiKMw6NAtwzeHf1pISMr75BoDQJ59A5+GhcSIhhLgyg5Yvnp+fT+vWrXnssce49957K/WYBx54gLNnz/Lf//6XhIQEUlJSsFqtNZzUxcgpqctsTt3M8Zzj+Lj7uGRH4uzZszGfPYshIoKA++7TOo4QQlyVpsXNHXfcwR133FHp45csWcKqVas4evQowcHqCJ769evXUDoXZbXA8TXqdoPe2maxI2UdiQfEDXC5RTKtJSWkf6222oQ88QR6abURQtg5TYubqlqwYAHt27fngw8+4Mcff8THx4e77rqLd955By+vik+fFBcXU1xcbLudnZ0NQE5OTq1kdjhntkN2Fnj4g28DkO8TmUWZ/H7wdyxWC3dE3eFyPzvnZ88h6/RpDKGh6Pv1dbmvXwhhH8r+9iiKcs1jHaq4OXr0KGvXrsXT05O5c+eSnp7OP/7xDzIyMvj+++8rfExiYiJvvfXWZftjY2NrOq6Dy4W3ZX6bS3XAhSetO3IYwsO1TiGEcHG5ubkEBARc9RidUpkSqBbodDrmzp3LoEGDrnhM3759WbNmDampqbYvbM6cOdx///3k5+dX2HpzacuN1WolMzOTkJAQl5yALCcnh9jYWE6dOoW/v7/WcUQpeV/sl7w39kneF/tVU++Noijk5uYSHR2NXn/18VAO1XITFRVFTExMuYqtadOmKIrC6dOnadiw4WWPMRqNGI3GcvsCAwNrOqrd8/f3lz8IdkjeF/sl7419kvfFftXEe3OtFpsyDjXPTdeuXTlz5gx5eXm2fYcOHUKv11OnTh0NkwkhhBDCXmha3OTl5bFjxw527NgBwLFjx9ixYwcnT54EYNy4cQwbNsx2/MMPP0xISAh/+9vf2LdvH6tXr+af//wnjz322BU7FAshhBDCtWha3GzZsoW2bdvStm1bAMaOHUvbtm0ZP348ACkpKbZCB8DX15elS5eSlZVF+/btGTp0KAMHDuSLL77QJL8jMhqNTJgw4bJTdUJb8r7YL3lv7JO8L/bLHt4bu+lQLIQQQghRHRyqz40QQgghxLVIcSOEEEIIpyLFjRBCCCGcihQ3QgghhHAqUtw4oa+++or69evj6elJx44d2bRp0xWPnTp1KjqdrtzF09OzFtO6htWrVzNw4ECio6PR6XTMmzfvmo9ZuXIl7dq1w2g0kpCQwNSpU2s8p6up6vuycuXKy35fdDodqamptRPYRSQmJtKhQwf8/PwIDw9n0KBBHDx48JqPmzlzJk2aNMHT05OWLVuyePHiWkjrWq7nvdHic0aKGyczY8YMxo4dy4QJE9i2bRutW7emX79+nDt37oqP8ff3JyUlxXY5ceJELSZ2Dfn5+bRu3ZqvvvqqUscfO3aMAQMG0Lt3b3bs2MGYMWN4/PHH+f3332s4qWup6vtS5uDBg+V+Z8Jlza1qtWrVKkaNGsWGDRtYunQpJpOJvn37kp+ff8XH/PXXXzz00EOMHDmS7du3M2jQIAYNGsSePXtqMbnzu573BjT4nFGEU7n55puVUaNG2W5bLBYlOjpaSUxMrPD477//XgkICKildEJRFAVQ5s6de9VjXnrpJaV58+bl9j344INKv379ajCZa6vM+7JixQoFUM6fP18rmYTq3LlzCqCsWrXqisc88MADyoABA8rt69ixo/LUU0/VdDyXVpn3RovPGWm5cSIlJSVs3bqVPn362Pbp9Xr69OnD+vXrr/i4vLw86tWrR2xsLHfffTd79+6tjbjiKtavX1/ufQTo16/fVd9HUXvatGlDVFQUt912G+vWrdM6jtPLzs4GIDg4+IrHyO+MNirz3kDtf85IceNE0tPTsVgsRERElNsfERFxxT4BjRs35rvvvmP+/Pn89NNPWK1WunTpwunTp2sjsriC1NTUCt/HnJwcCgsLNUoloqKimDJlCrNnz2b27NnExsbSq1cvtm3bpnU0p2W1WhkzZgxdu3alRYsWVzzuSr8z0h+q5lT2vdHic8ahVgUX1a9z58507tzZdrtLly40bdqU//znP7zzzjsaJhPC/jRu3JjGjRvbbnfp0oWkpCQ+/fRTfvzxRw2TOa9Ro0axZ88e1q5dq3UUcYnKvjdafM5Iy40TCQ0Nxc3NjbNnz5bbf/bsWSIjIyv1HO7u7rRt25YjR47URERRSZGRkRW+j/7+/rJIrJ25+eab5felhowePZqFCxeyYsUK6tSpc9Vjr/Q7U9m/faJqqvLeXKo2PmekuHEiHh4e3HTTTSxbtsy2z2q1smzZsnJV89VYLBZ2795NVFRUTcUUldC5c+dy7yPA0qVLK/0+itqzY8cO+X2pZoqiMHr0aObOncvy5cuJi4u75mPkd6Z2XM97c6la+Zyp1e7LosZNnz5dMRqNytSpU5V9+/YpTz75pBIYGKikpqYqiqIojz76qPLKK6/Yjn/rrbeU33//XUlKSlK2bt2qDBkyRPH09FT27t2r1ZfglHJzc5Xt27cr27dvVwDlk08+UbZv366cOHFCURRFeeWVV5RHH33UdvzRo0cVb29v5Z///Keyf/9+5auvvlLc3NyUJUuWaPUlOKWqvi+ffvqpMm/ePOXw4cPK7t27leeee07R6/XKn3/+qdWX4JT+/ve/KwEBAcrKlSuVlJQU26WgoMB2zKV/y9atW6cYDAblo48+Uvbv369MmDBBcXd3V3bv3q3Fl+C0rue90eJzRoobJ/Svf/1LqVu3ruLh4aHcfPPNyoYNG2z39ezZUxk+fLjt9pgxY2zHRkREKP3791e2bdumQWrnVjaE+NJL2XsxfPhwpWfPnpc9pk2bNoqHh4fSoEED5fvvv6/13M6uqu/LpEmTlPj4eMXT01MJDg5WevXqpSxfvlyb8E6sovcEKPc7cOnfMkVRlF9//VVp1KiR4uHhoTRv3lxZtGhR7QZ3Adfz3mjxOaMrDSuEEEII4RSkz40QQgghnIoUN0IIIYRwKlLcCCGEEMKpSHEjhBBCCKcixY0QQgghnIoUN0IIIYRwKlLcCCGEEMKpSHEjhBBCCKcixY0QQgghnIoUN0IIzfTq1YsxY8bc8DHVqboyXW/ujIwMwsPDOX78eJUfW1VDhgzh448/rvHXEaK2SXEjhJ2aMmUKfn5+mM1m2768vDzc3d3p1atXuWNXrlyJTqcjKSmpllPemDlz5vDOO+9oHaOc68lUnQXYe++9x9133039+vWr5fmu5vXXX+e9994jOzu7xl9LiNokxY0Qdqp3797k5eWxZcsW2741a9YQGRnJxo0bKSoqsu1fsWIFdevWJT4+Xouo1y04OBg/Pz+tY5SjZaaCggL++9//MnLkyFp5vRYtWhAfH89PP/1UK68nRG2R4kYIO9W4cWOioqJYuXKlbd/KlSu5++67iYuLY8OGDeX29+7dG4AlS5bQrVs3AgMDCQkJ4c477yzXovP1118THR2N1Wot93p33303jz32GABWq5XExETi4uLw8vKidevWzJo1y3Zsbm4uQ4cOxcfHh6ioKD799NPLWi/q16/PZ599Vu412rRpw5tvvmm7felj8vPzGTZsGL6+vkRFRVV4yuRa2S61cOFCAgMDsVgsAOzYsQOdTscrr7xiO+bxxx/nkUceua5MI0aMYNWqVXz++efodDp0Op3tlJLVauWll14iODiYyMjIcl97RRYvXozRaKRTp07l9q9duxZ3d/dyBe3x48fR6XScOHGi3O3Zs2fTo0cPvLy86NChAydPnmTNmjV06tQJb29vbr31VrKysmzPM3DgQKZPn37VXEI4GiluhLBjvXv3ZsWKFbbbK1asoFevXvTs2dO2v7CwkI0bN9qKm/z8fMaOHcuWLVtYtmwZer2ee+65x1bMDB48mIyMjHLPm5mZyZIlSxg6dCgAiYmJ/PDDD0yZMoW9e/fy/PPP88j/t3O3MU2dbQDH/9QVkSHYQnUgzIgo0ADyMlhMnKUYJcvgwzDxZZrwYRo1GjIUTHDLCLi4Zcs0Kokvy3TMsblly14SotEttCkvQRLaE4FYRVAWA5ooqYC8bevzgXgezxDR4fPImuuX9MO56Ll73Xc/cPU69zmbNmG32wHYtWsXdXV1/PLLL1y4cAGHw0Fzc/OU51tcXIzdbufnn3/m/Pnz2Gy2ceNOltvfvfbaa/T19eF0OgGw2+2EhYVpika73T7uUt+T5nTo0CGWLVvGli1b6O7upru7m6ioKAAqKyt58cUXaWxs5OOPP6a8vJwLFy5MOH+Hw0FaWtq4uMvlIj4+noCAADXmdDoxGAwsWLAAAEVRADh69Cj79++nvr6eW7dusWnTJj766CMqKiqoqalBURROnTqljpORkcHFixcZHh6eMC8h/m1eeN4JCCEmZrVaeeedd/jjjz8YHBzE6XRisVgYHR3l2LFjADQ0NDA8PKwWN2vWrNGMcfLkSUwmE21tbSQkJGAwGHj99df5+uuvWblyJQDff/89YWFhWK1WhoeH2b9/P7/++ivLli0DIDo6mtraWo4fP05qaiqVlZWa80+dOkVERMSU5trf38/nn3/OV199pY5bWVlJZGSk+p7JcrNYLOPGDQkJITk5GZvNxiuvvILNZqOwsJCysjL6+/vxeDy0t7c/8twnySkkJAR/f38CAwN56aWXNOcnJSVRWloKwOLFi6moqOC3335j1apVj1yDGzduPHIdFUUhJSVFE3O5XCxdulRzbDQa+fbbbwkNDQXAYrFQW1tLa2srgYGBAKSnp9PT06OeFxERwcjICD09PWqhJMS/nXRuhJjGMjMzGRgYoKmpCYfDwZIlSzCZTFgsFnXfjc1mIzo6mpdffhmAq1evsmHDBqKjowkODlY3pnZ1danjbty4kR9++EH9tV5VVcX69evR6XS0t7dz//59Vq1aRVBQkPr68ssvuXbtGh0dHYyOjpKRkaGOFxISQmxs7JTmeu3aNUZGRnj11VfVmNFo1Iw7WW4TsVgs2Gw2vF4vDoeDvLw84uPjqa2txW63ExERweLFi/9RTo+TlJSkOQ4PD+f27dsTvn9wcFDTnXnA5XKRnJysiTmdTk1MURTefPNNtbCBse983bp1amHzILZw4UL1eNasWcDYfh8hfIV0boSYxmJiYoiMjKSmpobe3l61uxAREUFUVBT19fXU1NSQlZWlnpObm8uCBQv47LPP1L01CQkJjIyMaN7j9Xqprq4mPT0dh8PBwYMHgbFuBUB1dTXz58/X5DNz5kzu3r37RLnrdDq8Xq8mNjo6+vSL8JDJcptIZmYmJ0+eRFEU9Ho9cXFxZGZmYrPZNOv6rOn1es2xn5/fuL1ODwsLC6O3t1cT+/PPP2lpaRnXuWlubtZ06VwuFyUlJZr3KIpCYWGhejw0NITb7dZ0fB58nyaT6QlnJcT0J50bIaY5q9WKzWbDZrNp9oWsWLGCs2fPcvHiRfWS1J07d3C73bz33nusXLmS+Pj4cf8sAQICAsjLy6OqqopvvvmG2NhYUlNTATCbzcycOZOuri5iYmI0r6ioKKKjo9Hr9TQ1NanjeTwerly5ovkMk8lEd3e3enzv3j06OzsnnOeiRYvQ6/U0Njaqsd7eXs24k+U2kQf7bg4ePKgWMg+Km7+v69PmBODv769uWJ6KlJQU2traNDG3283Q0JDmclVDQwM3b95UOzf37t3j+vXrmgKos7MTj8ejiV26dAmv10tiYqIaa2lpITIykrCwsCnnL8R0IZ0bIaY5q9XKjh07GB0d1XQYLBYLO3fuZGRkRC1uDAYDoaGhnDhxgvDwcLq6ujR3BT1s48aN5OTk0Nraqt4pBDB79myKioooLCzkr7/+Yvny5Xg8Hurq6ggODiY/P5/8/HyKi4sxGo3MnTuX0tJSdDodfn5+6jhZWVl88cUX5ObmMmfOHN5//31mzJgx4TyDgoJ4++23KS4uJjQ0lLlz5/Luu++i0/33N9iT5PYoBoOBpKQkqqqqqKioAMaKw7Vr145b16fNCcbuDGtsbOT69esEBQVhNBonnOfjZGdnU1JSQm9vLwaDARjryAAcOXKEgoIC2tvbKSgoAFC7cYqiMGPGDBISEtSxHuzBeXgfjcvlYtGiRQQFBakxh8PB6tWr/1G+QkxXUtwIMc1ZrVYGBweJi4tj3rx5atxisdDX16feMg5jl4LOnDlDQUEBCQkJxMbGcvjw4Ud2JrKysjAajbjdbt566y3N3/bt24fJZOLDDz+ko6ODOXPmkJqayt69ewE4cOAA27ZtIycnh+DgYPbs2cPvv/+u2S9SUlJCZ2cnOTk5hISEsG/fvsd2bgA++eQT+vv7yc3NZfbs2ezevXvcA+Ymy20iFosFl8ulroXRaMRsNnPr1q3H7qF5kpyKiorIz8/HbDYzODg46TwnkpiYSGpqKt999x1bt24FxgqS7OxsOjo6SExMxGw2U1ZWxvbt2zl8+DCnT59GURRiY2M16/+oTciKomguSQ0NDfHTTz9x7ty5f5SvENOVn/fvF8WFEOIpDQwMMH/+fD799NP/2wPofFV1dTXFxcW0tLSg0+nIzs4mPT2dDz744Jl/1tGjR/nxxx85f/78Mx9biOdJOjdCiKfmdDq5fPkyGRkZeDweysvLgbEHAYqpeeONN7h69So3b94kKioKRVHUhys+a3q9niNHjvxPxhbieZLOjRDiqTmdTjZv3ozb7cbf35+0tDQOHDig2agqpq6np4fw8HBaW1sxm83POx0h/jWkuBFCCCGET5FbwYUQQgjhU6S4EUIIIYRPkeJGCCGEED5FihshhBBC+BQpboQQQgjhU6S4EUIIIYRPkeJGCCGEED5FihshhBBC+BQpboQQQgjhU6S4EUIIIYRPkeJGCCGEED7lPwrg/hmT5WBvAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plot the effective indices for each TE mode\n", "for i in range(N_mode):\n", " plt.plot(ws, n_eff[:, i])\n", "\n", "plt.ylim(1.6, 3)\n", "plt.legend((\"TE0\", \"TE1\", \"TE2\", \"TE3\"))\n", "plt.xlabel(\"Waveguide width ($\\mu m$)\")\n", "plt.ylabel(\"Effective index\")\n", "plt.show()\n" ] }, { "cell_type": "markdown", "id": "0afcedf6", "metadata": {}, "source": [ "A similar calculation and visualization will be performed for the first TM modes. We simply change the symmetry to `(0,0,-1)` in this case." ] }, { "cell_type": "code", "execution_count": 9, "id": "6d0d4c36", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:01:10.912897Z", "iopub.status.busy": "2023-03-28T00:01:10.912679Z", "iopub.status.idle": "2023-03-28T00:01:55.208726Z", "shell.execute_reply": "2023-03-28T00:01:55.208187Z" }, "tags": [] }, "outputs": [], "source": [ "for i, w in enumerate(ws):\n", "\n", " waveguide = td.Structure(\n", " geometry=td.Box(center=(0, 0, 0), size=(w, td.inf, h)), medium=si\n", " )\n", "\n", " sim_size = (6 * w, 0, 8 * h)\n", "\n", " sim = td.Simulation(\n", " size=sim_size,\n", " grid_spec=grid_spec,\n", " structures=[waveguide],\n", " sources=[],\n", " monitors=[],\n", " run_time=1e-11,\n", " boundary_spec=bound_spec,\n", " medium=sio2,\n", " symmetry=(0, 0, -1),\n", " )\n", "\n", " mode_solver = ModeSolver(\n", " simulation=sim,\n", " plane=td.Box(center=(0, 0, 0), size=sim_size),\n", " mode_spec=mode_spec,\n", " freqs=[freq0],\n", " )\n", "\n", " mode_data = mode_solver.solve()\n", "\n", " n_eff[i] = mode_data.n_eff.values\n" ] }, { "cell_type": "code", "execution_count": 10, "id": "47be99c5", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:01:55.211008Z", "iopub.status.busy": "2023-03-28T00:01:55.210827Z", "iopub.status.idle": "2023-03-28T00:01:55.373319Z", "shell.execute_reply": "2023-03-28T00:01:55.372758Z" }, "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAG6CAYAAAD07mc1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACFw0lEQVR4nO3dd3hT9dvH8XfapnsD3S1lyZANBdkgCg8ogigyBUQQBUVEUREEBQQciKAI/pQpIooIKKgIyN6rZW9KSwctdO+M8/wRCFZmIe1J0/t1XbmanJyknzZtc/c7NYqiKAghhBBC2Ag7tQMIIYQQQliSFDdCCCGEsClS3AghhBDCpkhxI4QQQgibIsWNEEIIIWyKFDdCCCGEsClS3AghhBDCpkhxI4QQQgibIsWNEEIIIWyKFDdCCCGEsCmqFjdTp04lIiICDw8P/Pz86NatG6dOnbrjY7799ltatWqFj48PPj4+PPbYY+zdu7eEEgshhBDC2qla3GzZsoXhw4eze/du1q9fj06no0OHDmRnZ9/2MZs3b6Z3795s2rSJXbt2ERoaSocOHYiLiyvB5EIIIYSwVhpr2jgzOTkZPz8/tmzZQuvWre/pMQaDAR8fH7766iv69+9fzAmFEEIIYe0c1A7wb+np6QD4+vre82NycnLQ6XS3fUx+fj75+fnm20ajkZSUFMqVK4dGo3mwwEIIIYQoEYqikJmZSVBQEHZ2d+l4UqyEwWBQnnjiCaVFixZFetwrr7yiVK5cWcnNzb3l/RMmTFAAuchFLnKRi1zkYgOX2NjYu9YGVtMt9corr/Dnn3+yfft2QkJC7ukx06ZN45NPPmHz5s3UrVv3luf8t+UmPT2dsLAwYmNj8fT0tEh2IYQQQhSvjIwMQkNDSUtLw8vL647nWkW31KuvvsqaNWvYunXrPRc2n332GdOmTWPDhg23LWwAnJyccHJyuum4p6enFDdCCCFEKXMvQ0pULW4UReG1115j5cqVbN68mUqVKt3T4z755BM++ugj1q1bR+PGjYs5pRBCCCFKE1WLm+HDh7N06VJWr16Nh4cHiYmJAHh5eeHi4gJA//79CQ4OZurUqQB8/PHHjB8/nqVLlxIeHm5+jLu7O+7u7up8IUIIIYSwGqquczNnzhzS09Np27YtgYGB5stPP/1kPicmJoaEhIRCjykoKODZZ58t9JjPPvtMjS9BCCGEEFZG9W6pu9m8eXOh29HR0cUT5j8MBgM6na5EPpct0Gq12Nvbqx1DCCGEsI4BxdZEURQSExNJS0tTO0qp4+3tTUBAgKwfJIQQQlVS3PzH9cLGz88PV1dXeaO+B4qikJOTQ1JSEgCBgYEqJxJCCFGWSXHzLwaDwVzYlCtXTu04pcr1AeBJSUn4+flJF5UQQgjVqDqg2NpcH2Pj6uqqcpLS6fr3TcYqCSGEUJMUN7cgXVH3R75vQgghrIEUN0IIIYSwKVLcCCGEEMKmSHFjAzQazR0vH3zwAdHR0Wg0Guzt7YmLiyv0+ISEBBwcHNBoNIXWEYqJieGJJ57A1dUVPz8/Ro8ejV6vL+GvTgghhCgaKW5sQEJCgvnyxRdf4OnpWejYW2+9ZT43ODiYxYsXF3r8okWLCA4OLnTMYDDwxBNPUFBQwM6dO1m0aBELFy5k/PjxJfI1CSGEEPdLihsbEBAQYL54eXmh0WgKHfv3nlsDBgxgwYIFhR6/YMECBgwYUOjY33//zfHjx1myZAn169enU6dOTJo0idmzZ1NQUFAiX5cQQghxP6S4uQtFUcgp0KtyuZftKYrqqaeeIjU1le3btwOwfft2UlNT6dKlS6Hzdu3aRZ06dfD39zcf69ixIxkZGRw7dsziuYQQQghLkUX87iJXZ6DW+HWqfO7jEzvi6mjZl0ir1dKvXz/mz59Py5YtmT9/Pv369UOr1RY6LzExsVBhA5hvX9+JXQghhLBG0nJTBg0aNIjly5eTmJjI8uXLGTRokNqRhBBCCIuRlpu7cNHac3xiR9U+d3GoU6cONWrUoHfv3tSsWZPatWsTGRlZ6JyAgAD27t1b6Njly5fN9wkhhBDWSoqbu9BoNBbvGrIGgwYNYtiwYcyZM+eW9zdr1oyPPvrIvFcUwPr16/H09KRWrVolGVUIIYQoEumWKqOGDBlCcnIygwcPvuX9HTp0oFatWjz//PNERUWxbt06xo0bx/Dhw3FycirhtEIIIcS9k+KmjHJwcKB8+fI4ONy6Vcre3p41a9Zgb29Ps2bN6NevH/3792fixIklnFQIIYQoGo1SHPONrVhGRgZeXl6kp6fj6elZ6L68vDwuXLhApUqVcHZ2Vilh6SXfPyGEEMXlTu/f/yUtN0IIIYSwKVLcCCGEEMKmSHEjhBBCCJsixY0QQgghbIoUN0IIIYSwKVLcCCGEEMKmSHEjhBBCCJsixY0QQgghbIoUN0IIIYSwKVLcCCGEEMKmSHFjAzQazR0vH3zwAdHR0Wg0Guzt7YmLiyv0+ISEBBwcHNBoNERHR5uPjxgxgkaNGuHk5ET9+vVL9osSQggh7pMUNzYgISHBfPniiy/w9PQsdOytt94ynxscHMzixYsLPX7RokUEBwff8rkHDRpEz549izW/EEIIYUlS3NiAgIAA88XLywuNRlPomLu7u/ncAQMGsGDBgkKPX7BgAQMGDLjpeWfNmsXw4cOpXLlysX8NQgghhKVIcXM3igIF2epcimHD9qeeeorU1FS2b98OwPbt20lNTaVLly4W/1xCCCGEGhzUDmD1dDkwJUidz/1ePDi6WfQptVot/fr1Y/78+bRs2ZL58+fTr18/tFqtRT+PEEIIoRZpuSmDBg0axPLly0lMTGT58uUMGjRI7UhCCCGExUjLzd1oXU0tKGp97mJQp04datSoQe/evalZsya1a9cmMjKyWD6XEEIIUdKkuLkbjcbiXUPWYNCgQQwbNow5c+aoHUUIIYQVMhoVsgv05BQYyMrXk5N/7WOB/tpHA9n5erLzDWQX6MnOv3Guh5MDn/esr1p2KW7KqCFDhtCjRw+8vb1ve87Zs2fJysoiMTGR3Nxcc+tOrVq1cHR0LJmgQgghikxvMJKVryczT09Gno6MXD2ZeToy8/71MV9PRq7OfE6h+/L05OoM9/35y7s7WfCrKTopbsooBwcHypcvf8dzBg8ezJYtW8y3GzRoAMCFCxcIDw8vznhCCFFm6Q1Gc4Fxc9FxozDJzNORce28/96fU3D/hcl/2WnAzckBdycHXB3tr310wM3JATcne9NHR/t/neOAl4u6k1Q0ilIM842tWEZGBl5eXqSnp+Pp6Vnovry8PC5cuEClSpVwdnZWKWHpJd8/IURZpygKuTqDudBIz/13EWJqQTEVLDdaU/57nyULExetPR7ODtcuWjycHfC89vH6Mc9/3efxr/uuFytODnZoNBqLZbpfd3r//i9puRFCCCH+JV9vICW7gCuZBaTmFBRqEcnIu3U3Tsa/unMMRsu0GThr7W4qPv5bmPy3IPH8zzGtfdmcFC3FjRBCCJumKArpuTquZBVwNSufq9kFXMnKv3E7q4Cr2abbV7LyyczTP/DntNNgKkxcbhQcpo+mY9eLFs9Ct6+d51K2CxNLkOJGCCFEqWE0KmTm6UnJMbWqpOUUkJqtI/Xa7dQcHWk5BaRkF5CWYzp+NasAfRFbUxzsNJRzd8TH1bFQa8n1wuPfrSaet+jecXW0t4qunLJKihshhBAlJl9vICtPb57Jc71rJyu/8LGsfFM3T1aenvRcHSk5pmIlLaeA++318XR2oLy7E+XcHSnn5kR5j2sf3R0p5+5EOTdHyns4Ud7NCU8XBylOSjEpboQQQjwwRVG4klVAbGoOsSk5XErNJeZqDrGpOSSk55mmHOfrKdAbLfL53J0c8HbV4uPqiLerFl83R/N1H1dHfNwc8bl2vZy7I75ujjg52FvkcwvrJ8WNEEKIe5KVryc2xVS8xFwrYGJTcq4VNLlFWhfFzdEed2fTbJx/D4i9ftv08cYgWW9Xx2sFjBYvV60UKuKOpLgRQggBQIHeSHxarrlYiblWuFy6Vsyk5uju+HiNBgI8nQn1cSXE14UwX1dCfVwJ9nHB21VbqHCxt5MuH1F8pLgRQogyQlEUkjPziU01FSuxKbmFWmES0nPvOp7F21VrLlpCfF0I9XEl1NeVMF9XgrydpUVFWAUpboQQwgYYjQpXswtITM8jMcN0uXzt+uWMPBLS84hNySH/LmNenBzszMVKqI8Lob6m4sVUxLjg4azuyrNC3AspboQQwsoZjQpxabnEpeVyOSPPXMBcv345I5+kzDx0hrtPI7LTQKCXC6HXWl3CrhcvvqZCpoK7k8wSEqWeFDc24G5/iCZMmMDAgQOpVKkSdnZ2xMTEEBwcbL4/ISGB0NBQDAaDed+oqKgopk2bxvbt27ly5Qrh4eG8/PLLvP7668X95QhRZhmMCpdSczhzOYvTSZmcvZzFmaQsziZl3dNgXY3GtGFhgKcz/p7OBHjduH69oAn0csHRQRaHE7ZNihsbkJCQYL7+008/MX78eE6dOmU+5u7uzpUrVwAIDg5m8eLFjBkzxnz/okWLCA4OJiYmxnzswIED+Pn5sWTJEkJDQ9m5cycvvfQS9vb2vPrqqyXwVQlhuwxGhZiUHM5czuRMUpb547nkLPJ0t+42crS3I8TH5VrRYipY/D2vFS9ezgR4OlPBw0lWtRUClYubqVOn8uuvv3Ly5ElcXFxo3rw5H3/8MdWrV7/tY44dO8b48eM5cOAAFy9eZMaMGYwcObLkQluhgIAA83UvLy80Gk2hY4C5uBkwYAALFiwoVNwsWLCAAQMGMGnSJPOxQYMGFXp85cqV2bVrF7/++qsUN0IUQXJmPsfi0zmekMHJhBtFzO3We3FysKNKBXeq+bvzkL8HVf3cqebnTpivKw5SuAhxT1QtbrZs2cLw4cOJiIhAr9fz3nvv0aFDB44fP46bm9stH5OTk0PlypXp0aMHb7zxRrFnVBSFXH1usX+eW3FxcLF43/dTTz3F3Llz2b59Oy1btmT79u2kpqbSpUuXQsXNraSnp+Pr62vRPELYCqNR4WJKjqmQic/geEIGx+IzSM7Mv+X5zlq7a4WLB9X8r330cyfU11WmSQvxgFQtbv76669CtxcuXIifnx8HDhygdevWt3xMREQEERERALz77rvFnjFXn0vTpU2L/fPcyp4+e3DVulr0ObVaLf369WP+/Pm0bNmS+fPn069fP7TaO8+A2LlzJz/99BNr1661aB4hSqM8nYEzl7PMLTLH4zM4kZBBdsHN42I0Gqhc3o1aQV7UDPSgur8H1fw8CPZxkSJGiGJiVWNu0tPTASzaOpCfn09+/o3/nDIyMiz23KXVoEGDaN68OVOmTGH58uXs2rULvf72u+AePXqUrl27MmHCBDp06FCCSYVQj6IopGQXcDElh4tXs7l4NYfoK9mcTMzkbFLWLTdidHKwo0aAB7WCvKgV5MnDQZ7UCPDA1dGq/tQKYfOs5jfOaDQycuRIWrRoQe3atS32vFOnTuXDDz+878e7OLiwp88ei+Up6ucuDnXq1KFGjRr07t2bmjVrUrt2bSIjI2957vHjx2nfvj0vvfQS48aNK5Y8QqjFaFRIzMjj4tVrBcy/CpmLV3PIyr990e/tquXhIE9qBXry8LVipnJ5NxkXI4QVsJriZvjw4Rw9epTt27db9HnHjBnDqFGjzLczMjIIDQ2958drNBqLdw1Zg0GDBjFs2DDmzJlz23OOHTvGo48+yoABA/joo49KMJ0Qlnc1K59tZ65w+FK6uZCJScm560aOgV7OVCznSkVfN8LKuVLd34NaQZ4EejnLejBCWCmrKG5effVV1qxZw9atWwkJCbHoczs5OeHk5GTR57QFQ4YMoUePHnh7e9/y/qNHj/Loo4/SsWNHRo0aRWJiIgD29vZUqFChBJMKcX/0BiNRl9LYfCqZLaeTORKXjnKLNe4c7DTmFXnDy7kSVs6Nir6uhJd3JcTHFWetbCcgRGmjanGjKAqvvfYaK1euZPPmzVSqVEnNOGWKg4MD5cuXv+39v/zyC8nJySxZsoQlS5aYj1esWJHo6OgSSChE0SWm57H1tKmY2XYmmYy8wt1KtQI9aValHJXKuxFezo2K5VwJ9HKWriQhbIxGUW71v0zJGDZsGEuXLmX16tWF1rbx8vLCxcU03qR///4EBwczdepUAAoKCjh+/DgAnTt3pm/fvvTt2xd3d3eqVq1618+ZkZGBl5cX6enpeHp6FrovLy+PCxcuUKlSJZydnS31ZZYZ8v0TJa1Ab2T/xRS2nE5my6lkTiZmFrrf21VLq2oVaPNQBVpXK4+fp/xcClFa3en9+79Ubbm5Pt6jbdu2hY4vWLCAgQMHAhATE4Od3Y3/quLj42nQoIH59meffcZnn31GmzZt2Lx5c3FHFkKoLDYlhy2nk9l8Kpld564Umn6t0UC9EG/aPFSBNtUrUC/EW6ZbC1EGqd4tdTf/LVjCw8Pv6XFCiNLPaFQ4nZTJvuhU9l1IYX90CvHpeYXOKe/uROuHytO2uh+tqpbHx81RpbRCCGthFQOKhRACIF9v4MildPZGp7A/OpX90Sk3jZtxsNPQMMyHNtVN3U21Aj2xk9YZIcS/SHEjhFBNRp6OAxevt8qkEnkp7aap2a6O9jQM8yEi3JeIcB/qh3nLonhCiDuSvxBCiBKTna9n25lkdp67yr7oVE4mZtw0PbucmyMR4b40DvehSSVfagV6ymwmIUSRSHEjhChWcWm5/HPiMutPJLH73FUKDIVbZiqWczW3ykSE+1KpvJssjieEeCBS3AghLMpoVDgSl86GE5fZcCKJEwmF93ML83WlXfUKNKlUjsbhPvjL9GwhhIVJcSOEeGC5BQa2n73CxhOX2XgyieTMG5vV2mmgYZgP7Wv681hNP6r6uUvLjBCiWElxI4S4L5cz8th4IomNJy6z/ewV8v81ENjN0Z7WD1WgfU1/2lWvQDl32QJFCFFypLgRQtyz2JQc1hxO4M+jCRy+lF7ovmBvFx6r6Uf7mv40reyLk4PsySSEUIcUNzbgbk38EyZMYODAgVSqVAk7OztiYmIIDg4235+QkEBoaCgGg4ELFy4QHh7O1atX6du3L4cPH+bq1av4+fnRtWtXpkyZctdlr4VtSUjPZe3hBH4/nEBUbFqh++qHepsLmhoBHtLdJISwClLc2ICEhATz9Z9++onx48dz6tQp8zF3d3euXLkCQHBwMIsXL2bMmDHm+xctWkRwcDAxMTHmY3Z2dnTt2pXJkydToUIFzp49y/Dhw0lJSWHp0qUl8FUJNSVl5vHnkUTWHI5nX3Sq+bidBppWKseT9QJ5vJY/fh4yGFgIYX2kuLEBAQEB5uteXl5oNJpCxwBzcTNgwAAWLFhQqLhZsGABAwYMYNKkSeZjPj4+vPLKK+bbFStWZNiwYXz66afF9WUIlaVkF/DX0UR+j4pnz4WrGP+1/kxEuA9P1g2iU50AKWiEEIUZdJB8EhKPQMJhSDwMWhfot0K1SFLc3IWiKCi5uap8bo2Li8Wb+Z966inmzp3L9u3badmyJdu3byc1NZUuXboUKm7+Kz4+nl9//ZU2bdpYNI9QV3qujnXHEllzOIEdZ69g+FdFUz/UmyfrBvJE3UACvVxUTCmEsBr5WXD5mKmASYgyfUw6AYaCwudpXcFoADt1xt5JcXMXSm4upxo2UuVzVz94AI2rq0WfU6vV0q9fP+bPn0/Lli2ZP38+/fr1Q6vV3vL83r17s3r1anJzc+nSpQvfffedRfOIkmcwKqw7lsivBy+x9fSVQovqPRzkyZN1g3iybiChvpb92RNClDLZV24UMNdbZa6eBW6xebWTFwTUgcC6EFDX9BH1xuBJcVMGDRo0iObNmzNlyhSWL1/Orl270Ov1tzx3xowZTJgwgdOnTzNmzBhGjRrF119/XcKJhSUYjQp/HE1g5oYznEnKMh9/yN/dXNBUruCuYkIhhCoUBdIuXutSOnKtVeYwZMbf+nyPQFMB8+9ixiccrGhCgRQ3d6FxcaH6wQOqfe7iUKdOHWrUqEHv3r2pWbMmtWvXJjIy8pbnBgQEEBAQQI0aNfD19aVVq1a8//77BAYGFks2YXlGo8KfRxOZufE0py+bihpPZweeb1aRrvWDecjfQ+WEQogSY9BB8qnCrTGJRyA//dbn+1Yp3BoTUBfc/Uo2832Q4uYuNBqNxbuGrMGgQYMYNmwYc+bMuefHGI2m7ov8/Py7nCmsgfFa99PMjWc4mZgJgIezAy+2rMQLLSrh5XLrrkghhI3Iz4LLR68VMXcYHwNgpwW/mjcKmIC6EFAbnErnPz9S3JRRQ4YMoUePHnh7e9/y/j/++IPLly8TERGBu7s7x44dY/To0bRo0YLw8PASzSqKxmhU+Pv4Zb7YcPpGUePkwKCWlRjUUooaIWxWVhJEb4ML2+DiDrhyhluPj/E0dSn9u2upfHVwcCzxyMVFipsyysHBgfLly9/2fhcXF7799lveeOMN8vPzCQ0NpXv37rz77rslmFIUhaKYipqZG85w/Npmle5ODgxqEc6LLSvj5SpFjRA2JSflRjETvc00Hfu/bjU+xrsi2NmVfN4SpFEU5RZlne3KyMjAy8uL9PT0m1bazcvL48KFC1SqVAlnZ1nLo6jk+6cORVHYcCKJLzac5li8qahxc7TnhRaVGNyqEt6utvPfmBBlWm4aXNx5o6C5fOTmc/xrQ6XWEN4KQiLAvUKJxywud3r//i9puRGilFIUhX9OJvHFhjMciTMNBnRztGdgi3AGt6yMj5sUNUKUavmZcHEXRG81FTOJh0ExFj6nQg1TIVOpFVRsCW7l1MlqZaS4EaKUKdAb+ft4Iv/bet68eaWroz0DmoczpFVlfKWoEaJ0Mhog/hCc3QjnNsKl/aAYCp9TruqNYia8VamYuaQGKW6EKCUupebw494Yftp3iStZphlrro729G8WzkutpagRolTKSDAVMmc3wvlNkJta+H6f8GvFTGsIbwmeQarELG2kuBHCihmMCltPJ7Nk90U2nUoy7/fk5+FEryZhDGhWkXLuTuqGFELcO32+adzMuY1w9h9IOlb4fidPqNwGqrSHKo+CT0V1cpZyUtzcQhkbY20x8n2znCtZ+fy0L5Yf98ZwKfXG3mYtqpajX9OKPFbLH629bc92EMImKApcPQdnN5gKmujtoMv51wkaCGoAVdtD1ccguDHYy1vzg5Lv4L9c318pJycHl2JaHdiW5eSYfmFvt0+VuDNFUdh7IYUle2L462gCOoOpWPRy0dKjUQh9mobJ9ghClAZpsRCzGy5uh3P/QFpM4fvd/U0tM1XbQ+V2Mgi4GEhx8y/29vZ4e3uTlJQEgKurq8V35bZFiqKQk5NDUlIS3t7e2NurswtsaZWRp+PXA5f4YU9MoT2f6od60++RijxZNxBnrXxPhbBKRoNp1d+YXaaCJmY3ZFwqfI69I4Q9cq2geQz8H7aqfZhskRQ3/xEQEABgLnDEvfP29jZ//8TdnUjIYNHOaFZHxpOrM82IcNHa061BEH2bVqR2sJfKCYUQN9HlQtzBG8VM7N6b92XS2ENgPVNBU6mNaSCwk7S6liQpbv5Do9EQGBiIn58fOp1O7TilhlarlRabe6Q3GJm18QxfbjrL9WFKD/m70++RinRrEIyns3TrCWE1clIgdo+pmLm4yzRV2/if9wZHd9OCeWHNTAVNSGNwdFMnrwCkuLkte3t7ebMWFhebksPInyI5cNE03bNT7QBeaFGJiHAf6QIVwhooCiQdhxNr4OQa08J5/+UeYCpirhcz/rVlELCVkVdDiBLye1Q87608QmaeHg8nB6Z0r0OXerJmhRCqMxpM3UsnrxU0qdGF7y9fvXAx4xMuY2asnBQ3QhSznAI9H/x2jJ/3mwYZNgzzZmavBoT6uqqcTIgyTJcHF7bCyd/h1J+QnXzjPgdn0xozNZ6Ah/4P3G6/ybCwTlLcCFGMjsalM+LHQ5y/ko1GA6+2q8rr7avhIGvUCFHy8tLhzHpT68yZ9VBwY3Yizl6mQqbGk6Yp2jJmplST4kaIYmA0KszfcYGP/zqJzqAQ4OnMjJ71aVZF1rMQokRlJsKpP0xjaC5sLTwY2CPI1DpT4wnTjCZ7GcxvK6S4EcLCkjPzeWt5FFtOm5q5O9Ty5+Nn6sou3UKUlPwsU+tM5FJTQcO/Vk8v/5CpdabGk6aVge2kFdUWSXEjhAVtPZ3MqJ+juJKVj5ODHe8/WYu+TcNkJpQQxc1ohOitELUMjv8Guuwb9wU3ulHQVHhIvYyixEhxI4QFFOiNfLruJN9uuwBAdX8PZvVuQPUAD5WTCWHjkk9D1I9w+OfCKwP7VoZ6vaHuc6bZTaJMkeJGiAd04Uo2I348xJE40yqlzz9SkbFP1JQtE4QoLjkpcHSFqaiJO3DjuLMXPNzdVNSENpHp2mWYFDdC3CdFUfjlwCUm/HaMnAID3q5aPnmmLh0eli0ohLA4fQGc+dtU0Jxed2NgsMYeqj0O9XrBQ51A66xuTmEVpLgR4j7kFOgZu/IoKw/FAfBIZV9m9KxPoJfsJi+ExegLIG4/HFsJR36B3JQb9wXUNbXQ1OkB7hXUyyiskhQ3QhTR+eQsXllykFOXM7G30zDq8Yd4uU0V7O2kCVyIB6LPN3UzRW83XWL3gj73xv3u/qYxNPV6m3bWFuI2pLgRogj+OprAW8sPk5Wvp7y7E1/1acAjlWXtGiHuiy7P1DITvQOit8GlfaDPK3yOa3mo0g7q9oLKbWUPJ3FP5KdEiHugNxj5dN0pvtl6HoAm4b581acBfp7Svy/EPdPlmgqY6B2mlplL+8CQX/gctwqmBfUqtoDwVlChugwMFkUmxY0Qd5GUmcerSw+x94Kpv39Iq0q8/X810MoWCkLc3ZWzcOTnfxUzBYXvd/e/Vsi0NBUz5atJMSMemBQ3QtzB3gspDF96kOTMfNydHPjk2bp0rhOodiwhrJuiwPnNsHsOnFlX+D6PwH8VMy2hXFUpZoTFSXEjxC0oisK87ReY+udJDEaFh/zdmdOvEVUquKsdTQjrpcuFI8tNRU3S8RvHq3W8sX+Tb2UpZkSxk+JGiP/IzNPxzorD/HEkEYCu9YOY2r0Oro7y6yLELWUmwr7vYP98yLlqOqZ1gwZ9oenLUK6KuvlEmSN/rYX4l9OXM3l5yQHOJ2ejtdfw/pO1eP6RirI3lBC3En/I1Epz9Ncbi+p5hULTodDgeXDxVjWeKLukuBHimtWRcby74gi5OgOBXs7M7tuQhmE+ascSwroYDXByramoidl543joI/DIK6bNKWW6tlCZ/ASKMq9Ab+SjtcdZtOsiAC2rlmdmr/qUc3dSOZkQViQvHQ5+D3u/gbQY0zE7B9NeTo+8bNp5WwgrIcWNKNPi03IZvvQgh2LSAHi1XVXeePwhWW1YiOuykmD7DDi4GAqyTMdcfKHxCxAxGDyD1M0nxC2oulDH1KlTiYiIwMPDAz8/P7p168apU6fu+rjly5dTo0YNnJ2dqVOnDn/88UcJpBW2ZufZKzz55XYOxaTh6ezAvAGNeatjdSlshABTS80/H8HM+rD7a1NhU6EGdJkJbxyD9uOlsBFWS9XiZsuWLQwfPpzdu3ezfv16dDodHTp0IDs7+7aP2blzJ7179+bFF1/k0KFDdOvWjW7dunH06NESTC5KM0VR+GbLOfrN20NKdgG1Aj1Z81or2tf0VzuaEOrT5cHOr0xFzdZPQJcNQQ2h7woYthsaDQRHV7VTCnFHGkVRFLVDXJecnIyfnx9btmyhdevWtzynZ8+eZGdns2bNGvOxRx55hPr16zN37ty7fo6MjAy8vLxIT0/H09PTYtlF6ZCVr+ftX6LM07yfaRjCR0/Xxllrr3IyIVRm0MPhZbBpKmRcMh0rV83UQlOzi6xNI1RXlPdvqxpzk56eDoCvr+9tz9m1axejRo0qdKxjx46sWrXqlufn5+eTn39j75KMjIwHDypKpXPJWQz9/gBnk7LQ2msY3+Vh+jUNk2neomxTFDi5BjZOgivXhgV4BkPbd6FeH5n5JEolq/mpNRqNjBw5khYtWlC7du3bnpeYmIi/f+HuA39/fxITE295/tSpU/nwww8tmlWUPuuOJfLmz1Fk5evx83BiTr+GNKp4+yJaiDLhwlbY8AHEHTDddvGBVm+aBgprXVSNJsSDsJriZvjw4Rw9epTt27db9HnHjBlTqKUnIyOD0NBQi34OYb0MRoXP159i9qZzwLXdvPs2wM9DdvMWZVh8JGz8EM79Y7qtdYVmw6H5a+DspWo0ISzBKoqbV199lTVr1rB161ZCQkLueG5AQACXL18udOzy5csEBATc8nwnJyecnGS9krIoNbuAEcsOse3MFQBeaBHOe51rym7eouy6eg7+mQzHfjXdttOapnS3Hg3ufupmE8KCVC1uFEXhtddeY+XKlWzevJlKlSrd9THNmjVj48aNjBw50nxs/fr1NGvWrBiTitLmaFw6Ly85wKXUXJy1dnz8TF261g9WO5YQ6kiLhW3TTWvVKAZAA3Wfg7ZjwPfuf3eFKG1ULW6GDx/O0qVLWb16NR4eHuZxM15eXri4mPp7+/fvT3BwMFOnTgXg9ddfp02bNkyfPp0nnniCZcuWsX//fv73v/+p9nUI6/LLgUuMXXmEfL2RiuVcmduvETUDZWacKGMUBWJ2mbZJOLkGFKPp+EP/B4++DwG3H9soRGmnanEzZ84cANq2bVvo+IIFCxg4cCAAMTEx2Nnd6EZo3rw5S5cuZdy4cbz33ntUq1aNVatW3XEQsigbCvRGJq45xpLdpqXh21WvwBc9G+DlqlU5mRAlSJ8PR1eYiprEwzeOV2pjaqmpKK3cwvZZ1To3JUHWubFNiel5DPvhAAevbaMw8rFqjHi0Gnay2rAoKzIvw/55sH8+ZCebjjk4Q92e0PRl8K+lbj4hHlCpXedGiPux5/xVhi89xJWsfDycHfiiZ31ZbViUHfGHYPdcU2uNUWc65hlsms7daCC4ypIHouyR4kaUaj/vi2XMyiMYjAo1AjyY268R4eXd1I4lRPEy6OHk76aiJnb3jeOhTU2tNDW7gL10x4qyS4obUWpFxabx3rXC5ql6QUx7pg6ujvIjLWxYTgocXAR7v7uxRYKdFmp3NxU1wQ3VzSeElZB3AlEqZeXrGbHsEHqjQuc6AczsVV+2URC2KyfFtD5N5FLQ55qOuVWAxoNMF49br/MlRFklxY0olcavPsrFqzkEe7sw9em6UtgI23V6Hfw2ArKubTETUBceeQVqPwMOskCpELdS5KVaFy5ceMvjer2eMWPGPGgeIe5q1aE4fj0Yh50GvuhVX6Z6C9uUlw6rhsPS50yFTblqMOB3GLoV6veRwkaIOyhycTNixAh69OhBamqq+dipU6do2rQpP/74o0XDCfFfMVdzGLfqKAAj2lcjIlxmgggbdO4f+Lo5RC4BNNDsVXh5G1RqDdJKKcRdFbm4OXToEJcuXaJOnTqsX7+e2bNn07BhQ2rUqEFUVFRxZBQCAJ3ByGvLDpGVryci3IdX21VVO5IQlpWfBWvegO+fNg0Y9qkEL/wJHT+SXbqFKIIij7mpUqUKO3bsYOTIkfzf//0f9vb2LFq0iN69exdHPiHMZqw/TVRsGp7ODnzRqwEOsgGmsCXR22HVMEi7aLrd5CV47ANwlKUNhCiq+3p3WLt2LcuWLaNZs2Z4e3szb9484uPjLZ1NCLOdZ68wZ8s5AKY9U5dgb/kvVtiIghz4awwsfNJU2HiFQv/V0PlTKWyEuE9FLm6GDh1Kjx49eOedd9i2bRuHDx/G0dGROnXq8PPPPxdHRlHGpWQXMPKnSBQFejcJpXOdQLUjCWEZsXvhm1aw+2tAgYb94ZWdULmt2smEKNWK3C21Y8cO9uzZQ7169QAICAjgjz/+YPbs2QwaNIjnnnvO4iFF2aUoCm//EkVSZj5VKrjx/pOyP46wAfp82DQFds4y7dbtEQhPfQnVHlc7mRAPLKMggys5V6jsXVm1DEUubg4cOICT081TEIcPH85jjz1mkVBCXLd410U2nEjC0d6OL3s3lBWIRekXfwhWvgLJJ0y36/aCTtPAxUfdXEI8oOj0aJaeXMqqs6uo6l2VpU8sVS1Lkd8pnJycOHfuHAsWLODcuXPMnDkTPz8//vzzT8LCwoojoyijTiRk8NEfpjeAMZ1rUCtIdnEXpZi+ALZ9Bls/A8VgWmG4y0yo8YTayYS4b4qisCthF0uOL2Fb3Dbz8Vx9Lun56Xg5eamSq8jFzZYtW+jUqRMtWrRg69atfPTRR/j5+REVFcW8efP45ZdfiiOnKGNyCwyM+PEQBXojj9bwY2DzcLUjCXH/kk7Cypcg4dpyGbW6wROfg1s5VWMJcb9y9bmsOb+GH47/wLn0c+bjbULa0LdmXx4JfETVleOLXNy8++67TJ48mVGjRuHh4WE+/uijj/LVV19ZNJwouyavPc6ZpCwqeDjx6bOyvYIopYxG2DMXNnwAhnxT19MT001bJwhRCiVmJ/LjyR9ZcWYF6fnpALg6uNKtajf61OxDRc+KKic0KXJxc+TIEZYuvbkfzc/PjytXrlgklCjb/jqawA97YtBoYMZz9SnnLsvMi1IoLRZWD4MLW023qz4OXb+STS5FqaMoClHJUSw5sYQNFzdgUAwABLsH06dGH56u9jQejh53eZaSVeTixtvbm4SEBCpVqlTo+KFDhwgODrZYMFE2xafl8s6KIwC81LoyLauVVzmREEWkKHD4Z/hjNOSng9YVOkw27d4tLZCiFNEZdPx98W+WHF/C0atHzccjAiLoV7MfbULaYG9nr2LC2ytycdOrVy/eeecdli9fjkajwWg0smPHDt566y369+9fHBlFGWEwKoz8KZL0XB31Qrx48/HqakcSomhyUmDNSDi+2nQ7JAKe/gbKVVE1lhBFkZKXwi+nf2HZyWUk5yYD4GjnSOfKnelXsx/Vfa3/b3ORi5spU6YwfPhwQkNDMRgM1KpVC4PBQJ8+fRg3blxxZBRlxOxNZ9l7IQU3R3tm9W6Ao4NsryBKkTMbYPVw0w7edg7Q5l1o+QbYy/IFwvopikJkciTLTi5j/cX16Iw6AMq7lKdX9V70qN4DX+fSs1GxRlEU5X4eGBMTw9GjR8nKyqJBgwZUq1bN0tmKRUZGBl5eXqSnp+PpKVOLrcWBiyk8981uDEaFz5+rR/eGIWpHEuLeFGTD3+/D/nmm2+WrQ/dvIKiBurmEuAfZumzWnl/LslPLOJN6xny8drna9K3Vl44VO6K116qY8IaivH/f978UYWFhsq6NsIj0XB0jfozEYFR4ukGwFDai9Li0H359CVKuTYVt+go8NkF28BZW70zqGX469RNrzq8hW5cNgLO9M50rd+a56s/xcLmHVU74YO6puBk1atQ9P+Hnn39+32FE2aMoCu+tPEJcWi5hvq5M7Fq6f6FEGWHQwZZPYNt004J8nsHQ7WvZE0pYNZ1Bx4aYDSw7uYyDSQfNx8M9w3mu+nM8VeUp1Rbds7R7Km4OHTpU6PbBgwfR6/VUr24aVHT69Gns7e1p1KiR5RMKmzZr41nWHk7AwU7DrN4N8HC2juZPIW4r+ZSptSYh0nS7znOmHbxdvNVMJcRtJWQlsPz0clacWUFKXgoA9hp72oW2o2eNnjQNaGpza4ndU3GzadMm8/XPP/8cDw8PFi1ahI+PaS+U1NRUXnjhBVq1alU8KYVNmrH+NDM3mvp4xz5Rk/qh3uoGEuJOjEbY+z/YMAH0eeDsDU/OgNrd1U4mxE2MipGd8Tv56eRPbI3bilExAuDn4sczDz3DM9Wewd/NX+WUxafIA4qDg4P5+++/efjhwt0HR48epUOHDsTHx1s0oKXJgGLr8O/CZkynGgxtI1NlhRVLiII1oyBuv+l2lfbQdTZ4BqqbS4j/UBSFf2L+YcbBGVzMuGg+3jSgKT1r9KRtaFu0dqWzhbxYBxRnZGSQnJx80/Hk5GQyMzOL+nSijFEUhRkbzjDrWmHzXucavNRaChthpfIyYNMU2PsNKEZw9IDHP4DGL8qCfMLqnE8/z7Q909iVsAsAD60HXat2pUf1HlT2qqxyupJV5OLm6aef5oUXXmD69Ok0adIEgD179jB69Gi6d5fmWXF7iqLw+frTfPnPWQDGPVGTwa3K1i+cKCUUBY6thHXvQWaC6djD3aHjFGmtEVYnqyCLuVFz+eHED+gVPVo7LQMfHsjgOoNx1bqqHU8VRS5u5s6dy1tvvUWfPn3Q6UyL/Dg4OPDiiy/y6aefWjygsA2KojD979N8tUkKG2Hlrp6DP96Cc/+YbvtWhs6fQdX26uYS4j+MipE159cw48AMruSa9nZsG9KWtyPeJtQzVOV06rrvRfyys7M5d860tkOVKlVwc3OzaLDiImNuSp6iKHz29ylmbzL9vLz/ZC1ebFnpLo8SooTp8mDHF7Dtc9MO3vZO0GoUtBgJWme10wlRyLGrx5i6ZypRyVEAVPSsyDsR79AqxHYn9pTIIn5ubm7UrVv3fh8uyghFUfh03Sm+3mwqbMY/WYtBUtgIa3PuH1j71o3F+Ko8amqtkT2hhJVJzUtl5sGZ/HrmVxQUXBxcGFp3KM/Xeh5He0e141mNIhc32dnZTJs2jY0bN5KUlITRaCx0//nz5y0WTpRuiqLw8V+nmLvF9IYxoUstXmghhY2wIhkJ8PdYOLrCdNs9AP5vKjz8tAwYFlZFb9Tz86mf+SryKzILTJN3OlfqzKhGo2x6Svf9KnJxM3jwYLZs2cLzzz9PYGCgzS38IyxDURSm/XWSb7aYit0Pn3qYAc3D1Q0lxHVGA+z9Fv6ZDAWZoLGDJi9Bu7HgLN3VwrrsS9zH1L1TzXs/VfepzpimY2jkLwvn3k6Ri5s///yTtWvX0qJFi+LII2yAoihM+/Mk32w1FTYTuz5M/2bh6oYS4rq4A7DmDdPaNQDBjeCJzyGovqqxhPivxOxEPt//OX9G/wmAp6MnrzV4jR4P9cDezl7ldNatyMWNj48Pvr6lZ9tzUbIURWHKHyf4dtsFACZ1fZjnpbAR1kBRTC0126YDCjh7QfsJ0GggyBuFsCJ6o57FxxczN2ouufpcNGh49qFnea3Ba/g4+6gdr1QocnEzadIkxo8fz6JFi3B1LZvz58WtKYrCR2tP8N32a4VNt9o8/0hFlVMJcc2ur2DbZ6brdXtCh8ng7qduJiH+41TKKcbvHM/xq8cBaODXgDFNxlCzXE2Vk5UuRS5upk+fzrlz5/D39yc8PByttvAyzgcPHrzNI4UtUxSFyWtPMO9aYTO5W236SWEjrMWxlfD3ONP1DpOh+Wvq5hHiPwoMBXxz+BvmH5mPXtHj4ejB6Maj6Va1m4xtvQ9FLm66detWDDFEaaYoChPXHGfBjmgApjxdhz5Nw9QNJcR1Mbvh16Gm601egmavqptHiP+ISo5iwo4JnEs3zSxtH9aesU3HUsG1gsrJSq/7XsSvtJJF/Czv479OMufaOjZS2AircuUszHsMclOhemfouUTG1wirkaPL4avIr1hyfAkKCr7OvoxtOpbHKz4urTW3UCKL+AkBEJuSwzfX1rGZ2r0OvZtIYSOsRPYV+OEZU2ET1BCemSeFjbAaexL28MHOD7iUdQmAp6o8xejGo/F29lY3mI24p+LG19eX06dPU758eXx8fO5YUaakpFgsnLB+3247j1GB1g9VkMJGWI+CHFjaE1Kjwbsi9PkJHGUChFBfZkEm0/dPZ8UZ08KRAW4BjH9kvE1vm6CGeypuZsyYgYeHBwBffPFFceYRpcjVrHx+3h8LwMttZBNMYSWMBvh1CMTtB2dv6PuLzIoSVmFL7BYm7p5IUk4SAD2r92Rkw5G4O7qrnMz23FNxM2DAgFteF2Xbol0XydMZqRviRbPK5dSOI4TJ3+Pg5Bqwd4TeP0KFh9ROJMq4lLwUpu2dxp8XTIvxhXmE8WHzD2kc0FjlZLZLxtyI+5JToGfxrmgAXm5TRQa/Ceuwew7s/tp0vdscqNhc3TyiTFMUhb+i/2Lqnqmk5qdip7FjQK0BDKs/DGcH2Wm+OElxI+7LT/tiScvREV7OlY4PB6gdRwg48Tv8NcZ0/bEPoM6zqsYRZVtsRiyf7P+EzbGbAajmU42JzSdSu3xtVXOVFVLciCLTGYx8d217hSGtK2NvJ602QmWX9sOKwYACjV6AFiPVTiTKqOScZL45/A0rTq9Ar+hxsHPgpbovMbj2YLT22rs/gbAIKW5Eka09nEBcWi7l3R15pmGI2nFEWZdy3jQzSp8H1TpA589AuklFCcsoyGDh0YUsObGEXH0uAC2DW/Jmozep6lNV5XRlz30XN2fPnuXcuXO0bt0aFxcXFEWRcRdlgKIozL22rs0LLSrhrJV1Q4SKclJgybOQcwUC68GzC8Be/mcTJSdPn8ePJ3/kuyPfkVGQAUC9CvV4veHrRAREqJyu7CryX4GrV6/Ss2dP/vnnHzQaDWfOnKFy5cq8+OKL+Pj4MH369OLIKazEltPJnEzMxM3Rnn5NZe8ooSJdHvzYG1LOgVco9PkZnGRKrSgZeqOeVWdXMSdqjnlqd1XvqoxoMIK2oW3ln32V2RX1AW+88QYODg7ExMQU2hW8Z8+e/PXXXxYNJ6zP9Vab3k3C8HKV/mOhEqMRVr0MsbvByQv6LgcPGdguip+iKKyLXsfTq5/mw10fkpSTRKBbIJNbTOaXLr/QLqydFDZWoMgtN3///Tfr1q0jJKTwWItq1apx8eJFiwUT1icyNo3d51NwsNPwYqtKascRZdmGCaadvu200GsJ+NVUO5EoA3bF7+KLg19w/OpxAHycfHip7ks8V/05HO0dVU4n/q3ILTfZ2dmFWmyuS0lJwcnJqUjPtXXrVrp06UJQUBAajYZVq1bd9TGzZ8+mZs2auLi4UL16dRYvXlykzynu3/U9pLrWDybQy0XlNKLM2vcd7Jxlut51NlRqrW4eYfOOXjnK4L8H89L6lzh+9TiuDq4MqzeMP5/5k361+klhY4WK3HLTqlUrFi9ezKRJkwDQaDQYjUY++eQT2rVrV6Tnys7Opl69egwaNIju3bvf9fw5c+YwZswYvv32WyIiIti7dy9DhgzBx8eHLl26FPVLEUVwPjmLv44lAjBUtloQaolaBn+MNl1vNw7q9VQ3j7Bp0enRzDo0i/UX1wOgtdPSs3pPhtQdgq+zr8rpxJ0Uubj55JNPaN++Pfv376egoIC3336bY8eOkZKSwo4dO4r0XJ06daJTp073fP7333/P0KFD6dnT9AetcuXK7Nu3j48//liKm2L27bYLKAq0r+HHQ/4eascRZY2iwNZPYdNHptsN+0Prt9TNJGyWUTHy48kfmXFgBvmGfDRo6FKlC8PqDyPYPVjteOIeFLm4qV27NqdPn+arr77Cw8ODrKwsunfvzvDhwwkMDCyOjGb5+fk4OxdestrFxYW9e/ei0+nQam8e4Jqfn09+fr75dkZGRrFmtEVJmXmsOHgJgJfbVlE5jShzDDpYMxIOLTHdbvE6tP9A1rIRxSIpJ4lx28exK2EXAM0CmzE6YjTVfKqpnEwUxX0tCOHl5cXYsWMtneWuOnbsyHfffUe3bt1o2LAhBw4c4LvvvkOn03HlypVbFldTp07lww8/LPGstmThjmgK9EYaVfQhIlyaYkUJysuA5QPg3D+gsYPOn0LEYLVTCRv1d/TfTNw9kfT8dJzsnXir8Vv0rN5TZj+VQkUeUFy1alU++OADzpw5Uxx57uj999+nU6dOPPLII2i1Wrp27WrepdzO7tZfypgxY0hPTzdfYmNjSzJyqZeZp+P73aZZcENby1gbUYLS42BBJ1Nho3WFXj9KYSOKRVZBFmO3j+XNLW+Snp9OTd+a/NzlZ3rV6CWFTSlV5OJm+PDhrF27lurVqxMREcHMmTNJTEwsjmw3cXFxYf78+eTk5BAdHU1MTAzh4eF4eHhQoUKFWz7GyckJT0/PQhdx75btjSUzT0+VCm48VtNf7TiirEg8Ct89BpePgrs/vPAHVP8/tVMJG3Tw8kGe/f1Zfjv3G3YaO4bUGcIPnX+gspf8M1ea3dcifvv27ePkyZN07tyZ2bNnExoaSocOHUpsWrZWqyUkJAR7e3uWLVvGk08+eduWG3H/CvRG5m03bZA5tHUV7GSDTFESzm6E+f8HmfFQvjoM3gBBDdROJWyMzqBj5sGZvLDuBeKy4gh2D2ZBxwWMaDhCNri0AfddETz00EN8+OGHnD59mm3btpGcnMwLL7xQpOfIysoiMjKSyMhIAC5cuEBkZCQxMTGAqUupf//+5vNPnz7NkiVLOHPmDHv37qVXr14cPXqUKVOm3O+XIe5gVWQciRl5+Hs60bVBkNpxRFlw8HtY+hwUZEJ4K3hxHXiHqZ1K2Jjzaefp+0dfvjvyHUbFSNcqXfmlyy809G+odjRhIQ+0w9zevXtZunQpP/30ExkZGfTo0aNIj9+/f3+htXFGjRoFwIABA1i4cCEJCQnmQgfAYDAwffp0Tp06hVarpV27duzcuZPw8PAH+TLELRiNCv/beh6AQS0q4eQgG2SKYqQosGkKbP3EdLvOc9D1K3Ao2sKgQtyJoigsO7WM6funk2/Ix8vJiwnNJvB4xcfVjiYsTKMoilKUB5w+fZoffviBH3/8kQsXLvDoo4/St29funfvjru79W9al5GRgZeXF+np6TL+5g7WH7/MkMX78XByYOeYR/FwlmZaUUz0BfDba3B4mel2q7fg0XEy1VtYVHJOMu/vfJ8dcab12JoHNWdSi0n4ufqpnEzcq6K8fxe55aZGjRpEREQwfPhwevXqhb+/DDK1Rde3Wuj7SEUpbETxyU2Dn5+HC1tBYw9PzoBGA9ROJWzMxosb+WDXB6Tlp+Fk78Qbjd6gd43e2GlkrKatKnJxc+rUKapVk8WMbNn+6BT2X0zF0d6OQS3C1Y4jbFVaLPzQA5JPgKM7PLcIqj6mdiphQ3J0OUzbO42VZ1cCUMO3BtNaTaOKtyxGauuKXNxIYWP75m4xjbXp3jAYP0/nu5wtxH2IjzQNHM66DB6B0OdnCKyrdiphQ5Jzkhm+cTgnUk6gQcOg2oMYXn+4zIQqI+6puPH19eX06dOUL18eHx+fOy5qlJKSYrFwouSduZzJhhOX0WjgJVm0TxSHM+vh5wGgywa/h6Hvz+AVonYqYUPOpJ5h2MZhJGYn4uvsy2dtPiMiIELtWKIE3VNxM2PGDDw8PMzXZcVG2/XNtRlSHWsFULmC9Q8QF6XMxZ2wrA8YCqByW3huMTh7qZ1K2JBd8bsYtXkUWboswj3D+br914R6hqodS5Sweypurm9xADBw4MDiyiJUlpCey+rIOACGtpFWG2FhV87eKGxqPAk9FoJ0EQgLWnlmJRN3TUSv6Gno15BZj87Cy0mK57KoyEPF7e3tSUpKuun41atXsbeXtVBKs/nbL6AzKDSt5EuDMB+14whbkn0VlvaA3FQIbgTdv5XCRliMoih8eehLxu8cj17R07lSZ77t8K0UNmVYkQcU325ZnPz8fBwdHR84kFBHeq6OpXtMCya+3EZmEggL0uWZWmxSzoNXGPReBo6uaqcSNqLAUMD4neNZe34tAC/VfYlX678qwyfKuHsubmbNmgWARqPhu+++K7Rgn8FgYOvWrdSoUcPyCUWJWLL7ItkFBqr7e9C2+q03IRWiyIxGWD0MYneDkxf0XQ7usmiasIz0/HRe3/Q6By4fwEHjwPhm43m62tNqxxJW4J6LmxkzZgCmlpu5c+cW6oJydHQkPDycuXPnWj6hKHZ5OgMLdkQDprE28h+PsJjNU+DoCrBzgJ6LwU/+ARKWEZsZy7ANw4jOiMZd6870ttNpHtRc7VjCStxzcXPhgml36Hbt2vHrr7/i4yNjMmzFqkNxXMnKJ8jLmS71ZINMYSGHlsDWT03Xn/zCNDtKCAs4nHyY1/55jZS8FALcApjdfjYP+TykdixhRYo85mbTpk3FkUOoRFEUvt99EYCBLcLR2sty5MICzm+B3183XW/1JjR8Xt08wmZsuLiBd7e9S74hn5q+Nfmq/VeyP5S4SZHfyZ555hk+/vjjm45/8sknRd4VXKgv6lI6x+IzcHSwo0cjWQtCWEDSSfjpeTDqofYz0G6c2omEDVAUhcXHFjNq8yjyDfm0DmnNwv9bKIWNuKUiFzdbt26lc+fONx3v1KkTW7dutUgoUXKWXGu1ebJOID5uMttNPKCsJNOU7/x0CH0Eun4NdtIaKB6M3qhnyp4pfLr/UxQUelbvycx2M3HVyqw7cWtF7pbKysq65ZRvrVZLRkaGRUKJkpGeo+P3qHjAtPu3EA+kIAd+7AVpMeBTCXotBa3sTSYeTI4uh7e3vs2WS1vQoOHNxm/Sv1Z/mfgg7qjI/1LVqVOHn3766abjy5Yto1atWhYJJUrGLwcvka83UiPAg4Zh3mrHEaWZ0QgrX4K4A+DiA31/AbdyaqcSpdzehL30/aMvWy5twcneic/bfs6AhwdIYSPuqsgtN++//z7du3fn3LlzPProowBs3LiRH3/8keXLl1s8oCgeiqLwwx5Tl1S/RyrKHwvxYDaMhxO/g72jqcWmfFW1E4lS7GLGRabvn86mWNMEFl9nX2Y9Oot6FeqpnEyUFkUubrp06cKqVauYMmUKv/zyCy4uLtStW5cNGzbQpk2b4sgoisGu81c5n5yNm6M93RoEqx1HlGb75sHOL03Xu86GirLWiLg/6fnpzI2ay7KTy9Areuw19vR4qAfD6g/Dx1mWHxH3rsjFDcATTzzBE088YeksogT9sNu01UK3BsG4O93Xj4EQcGYD/DHadL3dWKj7nLp5RKmkM+r4+dTPzImaQ3p+OgCtglvxZuM3qeIt28GIoruvd7W0tDR++eUXzp8/z1tvvYWvry8HDx7E39+f4GBpBbB2SRl5rDuWCJi6pIS4L4lHYflAUAxQrze0Hq12IlHKKIrC1ktb+Wz/Z0RnRANQ1bsqoxuPpnmwtACK+1fk4ubw4cM89thjeHl5ER0dzeDBg/H19eXXX38lJiaGxYsXF0dOYUE/749Fb1RoVNGHmoGeascRpVFGAix9DgoyIbwVdJkFMm5LFMHp1NN8uu9TdifsBkzjaobXH073at1xsJPWZPFgivwTNGrUKAYOHMgnn3yCh4eH+Xjnzp3p06ePRcMJyzMYFX7cGwtA36ZhKqcRpVJ+lqmwyYiDctWg5/fgIGskiXtzJfcKsyNn8+uZXzEqRrR2WvrV6seQOkPwcPS4+xMIcQ+KXNzs27ePb7755qbjwcHBJCYmWiSUKD6bTiYRl5aLt6uWznUC1Y4jShtFgd9eg8TD4FretMu3iwz0FHeXb8jn++Pf892R78jWZQPQoWIH3mj0BiEeISqnE7amyMWNk5PTLRfrO336NBUqVLBIKFF8rk//7tEoBGet/V3OFuI/9s+HY7+advnu9QP4VlI7kbByiqKwLnodMw7MID7btGjow+Ue5u2It2no31DldMJWFbm4eeqpp5g4cSI///wzABqNhpiYGN555x2eeeYZiwcUlhObksPm08kA9GkqA4lFESVEwV9jTNfbT4CwR9TNI6ye3qhn/I7x/H7+dwD8XP0Y2XAkT1R+AjuNbMshik+Rf7qmT59OVlYWfn5+5Obm0qZNG6pWrYqHhwcfffRRcWQUFvLj3hgUBVpVK0+l8m5qxxGlSV46/DwADPnwUCdo/praiYSVKzAU8NaWt/j9/O/Ya+wZVm8Ya55eQ5cqXaSwEcWuyC03Xl5erF+/nh07dhAVFUVWVhYNGzbkscceK458wkIK9EZ+3i8DicV9UBT4bQSkXgCvUOj2tcyMEneUq89l5KaR7IzfidZOy/Q202kX1k7tWKIMuafixtfXl9OnT1O+fHkGDRrEzJkzadGiBS1atCjufMJC/jqWyJWsAvw9nXispr/acURpsu87OL7KNM7m2QXg6qt2ImHFsgqyGL5xOAeTDuLi4MLMdjNpFtRM7ViijLmntsGCggLzIOJFixaRl5dXrKGE5f2w2zSQuFdEGA720iQs7lH8IVj3nun64xMhNELdPMKqpeWlMfjvwRxMOoi71p1vHv9GChuhintquWnWrBndunWjUaNGKIrCiBEjcHFxueW58+fPt2hA8eDOXM5kz4UU7O009GoSqnYcUVrkpl0bZ1MANZ6ER4apnUhYsSu5Vxjy9xDOpp3F28mbbx7/hlrlaqkdS5RR91TcLFmyhBkzZnDu3DkA0tPTpfWmFPlhj2kfqfY1/Aj0unVRKkQhigK/vQppF8E7DLp+JeNsxG3FZ8Uz5O8hxGTGUMGlAt92+Fb2hBKquqfixt/fn2nTpgFQqVIlvv/+e8qVK1eswYRl5BToWXHwEiD7SIki2PMNnPgd7LTQY6Es1Cdu62LGRQb/PZjE7ESC3IL4rsN3hHpKC7FQ1z0NvvD19eXKlSsAtGvXDkdHWWq9tPg9Kp7MPD0Vy7nSsmp5teOI0iDuAPw9znS9w2QIbqRuHmG1TqeeZsCfA0jMTiTcM5xFnRZJYSOsggwotnHXu6T6NAnDzk66FcRd5Kaadvo26qDmU9B0qNqJhJU6duUYg9YN4mreVar7VGfh/y0kwC1A7VhCADKg2KYdvpTG4UvpONrb8Wwj2btF3IWiwKrhkBYDPuEyzkbc1oHLBxi+cTjZumzqlq/L1499jZeTl9qxhDAr8oBijUYjA4pLiSXXpn93rhNAOXcnldMIq7d7DpxaC/aOpnE2zvJmJW62I24HIzeNJM+QR0RABF8++iVuWlnxXFgXGVBso9JzdfwWZdqkTgYSi7u6tB/Wv2+63nEKBDVQN4+wShsvbmT01tHojDpaBbfi87af4+zgrHYsIW5S5O0XLly4UBw5hIX9evASeToj1f09aFRRZrqIO8hJuTbORg+1ukHEYLUTCSv0+7nfeX/H+xgUAx0qdmBaq2lo7bVqxxLilu55qdrOnTuTnp5uvj1t2jTS0tLMt69evUqtWrJgkzVQFMU8kLjfI2FoZNyEuB1FgVXDID0WfCrBU1/KOBtxk+WnlzN2+1gMioGuVbryceuPpbARVu2ei5t169aRn59vvj1lyhRSUlLMt/V6PadOnbJsOnFf9lxI4WxSFq6O9nRrEKx2HGHNdn0Fp/8Eeyd4bhE4e6qdSFiZddHrmLhrIgoKvWv0ZmKLiTjYFbnRX5Qh+qtX0aemqprhnosbRVHueFtYj+sDibvWD8bDWf67ErcRuxc2fGC6/n9TIbCeqnGE9Tl25RjjtpvWPOpTow9jmozBTiN704nby42M5EL3Z4h/azSKwaBaDvkptTHJmfmsO5YIQN+mYSqnEVYrJwWWv2AaZ1P7GWg8SO1Ewspczr7MiH9GkGfIo1VwK96OeFu6uMVtKYpC6o8/Ev18f/SXL6NLSEB/9apqee65bVGj0dz0gy0/6Nbn5/2x6AwK9UO9qR0sU3nFLSgKrHoFMi6BbxXoMlPG2YhCcvW5jNg0gqTcJKp4VeGT1p9gb2evdixhpYx5eSR+8CHpq1YB4NGhA4FTpmDvrt4SAfdc3CiKwsCBA3FyMq2XkpeXx8svv4ybmyn8v8fjCHUYjApLzQOJZfq3uI1Tf8Dpv26Ms3HyUDuRsCJGxcjY7WM5fvU4Pk4+fNn+S9wd3dWOJaxUQWwsl0a8Tv6JE2Bnh9+bb+I76AXVGz/uubgZMGBAodv9+vW76Zz+/fs/eCJx37aeTiYuLRcvFy1P1g1UO46wRgb9jXE2zYZDQB1V4wjr83Xk16y/uB4HOwdmtJtBqIfsFSVuLWvrVuJGv40xPR17X1+CP/8ct0eaqh0LKEJxs2DBguLMISzg+kDiZxuF4KyVJmRxC5FL4MppcPGFliPVTiOszNrza/nm8DcATGg2gUb+smmquJliNHLl6zlcmT0bFAXnenUJmTkTbYD17C0m8/lsxKXUHP45lQTIQGJxGwXZsGmq6Xqbt2V7BVHI4eTDjN8xHoAXar9At6rd1A0krJIhPZ24t98me8tWALx798J/zBjsHB1VTlaYFDc2YtneWBQFWlQtR+UK0j8ubmH315CVCN4VZXaUKCQhK4ER/4ygwFhA29C2vN7gdbUjCSuUd+IEl0a8ji42Fo2TEwEffID3093UjnVLUtzYAJ3ByLJ9sQD0bSoDicUtZF+B7TNN19uPBwfZSFWY5OhyeO2f17iad5WHfB5iWqtpMjNK3CR99WoSxk9Ayc9HGxJCyKyZOFvxrgRS3NiAf04mcSUrn/LuTjxey1/tOMIabfkECjIhsD483F3tNMJKGBUj7257l1Opp/B19pUdvsVNlIICLk+bRurSHwFwa92K4E8+wd7bW91gd6HqIn5bt26lS5cuBAUFodFoWHVtjvyd/PDDD9SrVw9XV1cCAwMZNGgQV1VcKMga/HSt1eaZRsFo7WVdRvEfKedh/3zT9cc/BDv5GREmsw7OYlPsJhztHJnZbiZB7kFqRxJWRHf5Mhef728ubMoPH07o3LlWX9iAysVNdnY29erVY/bs2fd0/o4dO+jfvz8vvvgix44dY/ny5ezdu5chQ4YUc1LrlZiex+ZrA4l7NpYpm+IWNk4Cow6qPgaV26qdRliJ3879xryj8wD4sMWH1Perr24gYVWy9+zlQvdnyI2Kws7Tk5C5c6jw2qtoSsk/R6p2S3Xq1IlOnTrd8/m7du0iPDycESNGAFCpUiWGDh3Kxx9/XFwRrd6Kg5cwKtAk3FcGEoubxR2AY78CGnjsQ7XTCCtx8PJBPtj5AQBD6gzhycpPqhtIWA3FaOTqvHkkfzETDAacatQgZNZMHMNK1yzc0lGCXdOsWTNiY2P5448/UBSFy5cv88svv9C5c2e1o6nCaFTMXVLPRUirjfgPRYH1E0zX6/WCgNrq5hFWIS4rjpGbRqIz6ni84uO82uBVtSMJK6FLSiJ28GCSp38OBgNeXZ8i/Melpa6wgVI2oLhFixb88MMP9OzZk7y8PPR6PV26dLljt1Z+fn6hrSEyMjJKImqJ2H3hKjEpOXg4OdC5jvUsniSsxJn1EL3NtM1Cu7FqpxFWIKsgi1c3vkpqfio1fWsyucVk2eVbAJC1ZQvx747BkJqKxtkZ/7Hv4f3ss6pvo3C/StVP9fHjx3n99dcZP348Bw4c4K+//iI6OpqXX375to+ZOnUqXl5e5ktoqO20cFxvtelSPwhXx1JVp4riZjTAhmutNk2Hgrft/NyL+2MwGnhn2zucTTtLBZcKzHp0Fq5aV7VjCZUZCwpInDKF2KEvY0hNxalGDSqt+AWfHj1KbWEDoFEURVE7BJh2GF+5ciXdunW77TnPP/88eXl5LF++3Hxs+/bttGrVivj4eAIDb95P6VYtN6GhoaSnp+Pp6WnRr6EkpefoiJiygQK9kd9ebUHdEG+1IwlrcugHWD0MnL3h9Uhw8VE7kVDZp/s+ZfHxxTjZO7Hw/xZSu7x0U5Z1+efPE/fmW6ZNLwGf55/H7603sXOyznWwMjIy8PLyuqf371L1735OTg4ODoUj29ubFpu6XY3m5ORk3snclqyKjKNAb6RGgAd1gmUZffEvulzY9JHpeqs3pbARLDu5jMXHFwMwueVkKWzKOEVRSF+xgsSPpqDk5mLv40Pg1Cl4tG2rdjSLUbW4ycrK4uzZs+bbFy5cIDIyEl9fX8LCwhgzZgxxcXEsXmz6pezSpQtDhgxhzpw5dOzYkYSEBEaOHEmTJk0ICipb6zNc75LqFRFaqpsORTHYMxcy4sArFJq8pHYaobIlx5fw8T7TjNJh9Ybxf+H/p3IioSZDRgYJ4yeQ+ddfALg2e4Sgjz9G6+encjLLUrW42b9/P+3atTPfHjVqFAADBgxg4cKFJCQkEBMTY75/4MCBZGZm8tVXX/Hmm2/i7e3No48+Wuamgh+NS+d4QgaODnZ0axCsdhxhTXJSYNsM0/VHx4HWWd08QlXfHv6WWYdmAfDCwy/wcr3bj08Uti/n4CHi33oLXXw8ODhQ4fURlHvxxVKzdk1RWM2Ym5JSlD47azVu1RGW7I6hS70gvuzdQO04wpqsGwu7vgL/OjB0q6xGXEYpisKXh77k2yPfAqYWm5frvSytvGWUYjBw5ZtvuDL7azAY0IaGEjz9M1zq1lU7WpHY7JgbAbkFBlZHxgOmLikhzFIvwt7/ma4//oEUNmWUoih8su8TlpxYAsCoRqN4ofYLKqcSatElJhI/+m1y9u0DwLNLFwImjMfe3bYXfZXippT582gCmXl6Qn1daFa5nNpxhDXZ9BEYCqBSG6jSXu00QgUGo4FJuyex4swKAMY2HUuvGr1UTiXUkrlhAwljx2FIT8fO1ZWACePx6tpV7VglQoqbUsa8InGjUOzspIlZXJMQBYd/Ml1/fCJI90OZozfqGbdjHGvPr8VOY8eHzT+kW9VuascSKlB0OhKnTCHtx2UAOD/8MMHTP8MxPFzdYCVIiptS5MKVbPZcSMFOA882DlE7jrAm17dZqNMDguqrGkWUPJ1Bxzvb3mH9xfU4aByY2moq/1dJZkWVRYrBQPw775Lxxx8A+L44CL/XX0fj6KhyspIlxU0p8vN+U6tNm4cqEOjlonIaYTXO/QPnN4G9o2mGlChT8vR5jNo8im1x29DaaZneZjrtwtrd/YHC5iiKQuIHH5oKGwcHQmZ+gUf7stlFLcVNKaE3GPnlwCUAespAYnGd0Qjrx5uuRwwGn3BV44iSlaPL4bV/XmNv4l6c7Z2Z2W4mzYObqx1LqEBRFJI+/Yy05cvBzo7gTz8ps4UNSHFTamw6lUxyZj7l3Bx5tIa/2nGEtTiyHBKPgJMXtB6tdhpRgjILMhm2YRiRyZG4Orgyu/1sGgc0VjuWUMnVuXNJmT8fgMCJH+LZqZPKidQlxU0pcX0g8TONQnB0kCm+AtDlwT+TTddbjgRXX1XjiJKTlpfG0A1DOX71OB6OHnzz2DfUqVBH7VhCJSnfLyF5pmmxRr9338H72WdVTqQ+KW5KgaSMPDadSgLgucbSJSWu2fcdpMeARxA88oraaUQJuZJ7hSF/D+Fs2ll8nX353+P/o7pvdbVjCZWkrVzF5Y9Me8mVHzaMcgMHqhvISkhxUwr8cvASBqNC44o+VPWz7YWXxD3KTYNtn5mut3sPtDLAvCxIzE5k8N+DuZhxET8XP77t8C2VvSurHUuoJOPvv0kYOxYAn/7PU/61V1VOZD2kuLFyiqLw8/W1bWQgsbhuy8eQmwoVakL9PmqnESUgNjOWwesGE58dT5BbEN91+I5QT/mbUFZlbd9B3JtvgdGIV/fu+L/7rmyv8S9S3Fi5PRdSiL6ag7uTA0/UCVQ7jrAGMbth9xzT9Q6Twc5e3Tyi2CXnJDPwr4Ek5SRR0bMi3z7+LYHu8vegrMo5eJBLr74KOh0eHTsSOGmiTW5++SCkuLFy11ttutQLxM1JXq4yryAHVg0DFKjfF6o9pnYiUcwURWHirokk5SRR2asy8zrOo7xLebVjCZXkHT9O7NCXUfLycGvViuBPP0FjL//g/JeUelYsPVfH2iMJgAwkFtf8MxlSzpkGEXeconYaUQJ+P/87my9tRmun5bM2n0lhU4blnz9PzOAhGDMzcWnciJBZM8vcysP3SoobK/ZbVDz5eiPV/T2oH+qtdhyhtou7YPfXputPzQIXb1XjiOJ3Ofsy0/ZMA2BY/WFU86mmciKhFl1cHDGDXsSQkoJzrVqEzpmDnYtMJLgdKW6s2E/7YgDTQGIZKFbGFeTA6uvdUf2g2uNqJxLFTFEUJuyaQKYukzrl6zDw4YFqRxIq0Scnc3HQIPSJiThWrkzod99i7+GhdiyrJsWNlToal87RuAwc7e14ukGw2nGE2v6ZBCnnr3VHfaR2GlECVp5dyY64HTjaOTK5xWQc7GTMXVlkSEsj5sXB6C7GoA0OJmzBfBx8ZcHOu5Hixkpd3yTz8Yf98XWTPtUy7eLOG7OjpDuqTEjISuCTfZ8A8FqD12QtmzLKkJVNzNCh5J8+jUOFCoQtmI/WX7bfuRdS3FihPJ2BVYfiAOgla9uUbQXZsHo4oEAD6Y4qCxRFYfzO8WTrsqlXoR7P13pe7UhCBcb8fC69+ip5UYex9/IibP48HMPC1I5VakhxY4XWHUskI09PsLcLLarIzIgybeNEU3eUZ7DMjiojlp9ezu6E3TjZOzG5xWTsZR2jMkcxGIh7801ydu/Gzs2N0O++xamaDCYvCilurNCyvaYuqR6NQ7Czk4HEZVb0Dtgz13T9qVng7KVuHlHsLmVe4rP9pm01Xm/4OuFe4eoGEqpI+vQzsjZsROPoSMicr3GpI5uiFpUUN1bm4tVsdp2/ikYDPWRtm7KrIPva7CigYX+oKov12TqjYmTCzgnk6nNp6NeQvjX7qh1JqCB12TJSFi4EIGjaVNyaNFE3UCklxY2VuT6QuFW1CgR7yxoGZdaGDyE1GjxDoIPMjioLfjr1E3sT9+Li4MLkFpOx08if57Ima9t2EidNBqDC6yPw7NxZ5USll/z2WBG9wcgvBy4BMpC4TIveDnu/MV1/ahY4e6qbRxS72IxYZhyYAcAbjd6QDTHLoLzTp4l74w0wGPDq2pVyL7+sdqRSTYobK7LldDKXM/LxdXPksZoy3a9MMs+OAhoOgKrt1c0jip1RMTJuxzhy9bk0CWhCz+o91Y4kSpj+yhUuvfwKxqwsXBs3JmDSRFm49QFJcWNFfrq2SWb3BsE4OshLUyZt+MDUHeUVatrxW9i8pSeWcjDpIK4OrkxsMVG6o8oYY14escOGo4uPx7FiRYK/nIWd7Bf1wOS3yEokZebxz8kkAHpKl1TZdGEb7P2f6bp0R5UJ0enRzDw4E4A3G79JsLusRl6WKEYj8e+8S95h01o2od/MxcHHR+1YNkGKGyux+lA8eqNCgzBvqvnLniFlTn7Wje6oRgOhyqOqxhHFz2A0MG7HOPIMeTwS+Ag9HuqhdiRRwpJnfEHmunWg1RLy1Zc4hoerHclmSHFjJbafvQLAk3WDVE4iVLHhA0i7aOqOenyS2mlECfj++PdEJUfhrnVnYnMZY1HWpK1YwdVvvwUgcNJEXCMiVE5kW6S4sQJGo8LBmFQAmoTLhmhlzvktsM/0R46nvpTuqDLgfNp5vjz0JQBvR7xNoHugyolEScrevZuECR8AUH7YK3h366ZqHlskxY0VOJ2USWaeHldHe2oGSpdUmZKfBb+9arreeBBUaaduHlHs9EY943aMo8BYQMvglnSr2k3tSKIE5Z8/z6URr4Nej2fnzpR/7TW1I9kkKW6swL5oU6tNgzBvHOzlJSlT1o+HtBjwCoPHJ6qdRpSAhccWcuTKETy0HnzQ7APpjipD9CkpxA59GWNGBi716xM4dYq8/sVE3kmtwIHoFAAaVZQuqTLl/BbYP890vetX4CStdrbuTOoZvo78GoB3m76Lv5usZ1VWmHb5fg1dbCzakBBCvp6NnZOT2rFslhQ3VmD/RVPLTUS4TAEsM3S5/+qOehEqt1E3jyh2OqOOcTvGoTPqaBvSli6Vu6gdSZQQRVFIGDuO3IMHsfPwME359pV/ZouTFDcqS0zP41JqLnYaaBAmxU2ZcXSFqTvKM1i6o8qIeUfmcfzqcTwdPRnfbLx0R5QhV76aTcaaNeDgQMismThVqaJ2JJsnxY3K9l80dUnVCPDE3clB5TSixOy71h3VZAg4uaubRRS741eP802Uab+w95q+RwXXCionEiUl/bffuDJ7NgABE8bj1qyZyonKBiluVLY/Wrqkypy4gxB/EOwdocHzaqcRxSzfkM/Y7WPRK3oer/g4nSvJTs9lRc7+/SSMHQdAucEv4tNDFmosKVLcqOx6y00jWd+m7Lg+iLhWN3Arr2oUUfy+OvQVZ9POUs65HO8/8r50R5UR+WfPcmn4qyg6HR6PP06FUaPUjlSmSHGjoqx8PcfjMwBpuSkzclPhyArT9YgX1c0iit2BywdYdGwRAB80/wAfZ/k9LwtyDx/mYt9+GNLTca5Th6BPPkZjJ2+3JUm+2yqKjEnDqECwtwuBXi5qxxElIfJH0OeCf20Ibap2GlGMsnXZjN0+FgWFp6s+TdvQtmpHEiUge/duYga+YCps6tYl9H/fYOcif99LmhQ3KjJ3SVWU/+bKBEWB/fNN1xsPAumesGmf7vuUuKw4gtyCeDvibbXjiBKQuWEDsUNewpiTg2uzRwibP192+VaJFDcqOiDr25QtF7bC1TPg6A51n1M7jShGWy9tZcWZFWjQMLnlZNwdZUacrUv7dSWXRrx+bYzNY4R+8w327m5qxyqzpLhRid5g5OC14kZWJi4j9n1n+livl6xGbMPS8tKYsHMCAP1q9SMiQHZ7tnUpixaR8N57YDTi9fTTBM+YgZ2jo9qxyjRZWEUlJxMzyS4w4OHkQPUAeaOzeRkJcHKt6XpjGUhsyz7a8xFXcq9Q2asyIxqMUDuOKEaKonDlyy+58vUcAHwHDsTv7dEyeNgKSHGjkv3X9pNqUNEHezsZe2HzDi4GxQBhzcC/ltppRDH588Kf/BX9F/Yae6a0nIKzg7PakUQxUYxGLn80hdQffgCgwsjXKTd0qEz1txJS3Kjk+n5SjWUwse0z6OHAQtP1iMGqRhHFJyknicm7JwMwtO5QHi7/sMqJRHFRdDri3xtLxu+/g0aD//vj8O3TR+1Y4l+kuFGBoijmlYkby2Bi23f6T8iMB9fyUFM2S7RFiqIwfud4MgoyeLjcwwyuK0WsrTLm5RH3+kiytmwBBweCpk7Fq8uTascS/yHFjQri0nJJzMjD3k5D/VBvteOI4nZ9IHHD/uDgpG4WUSyWn17OjrgdONo5MqXlFLR2WrUjiWJgyMzk0ivDyNm/H42TE8Ezv8CjbVu1Y4lbkOJGBdengNcO8sTVUV4Cm3b1HJzfDGig0UCVw4jiEJsRy2f7PwNgZKORVPaurHIiURz0V68SM2QI+cdPYOfuTujcObg2bqx2LHEb8s6qgutdUjIFvAy4vmhftQ7gU1HdLMLiDEYDY3eMJVefS0RABH1r9lU7kigGuvh4Yga9SEF0NPa+voR99y3OtWRigDWT4kYF+67NlJLxNjZOlwuHlpiuy0Bim7To+CIOJR3CTevGpBaTsNPIFGBbk3/+AjEvvog+IQGHoEDC5s3DqVIltWOJu1D1N3Hr1q106dKFoKAgNBoNq1atuuP5AwcORKPR3HR5+OHSMyshI0/HqcuZgMyUsnlHf4W8NPAOg6rt1U4jLOx06mm+OvQVAO9EvEOwe7DKiYSl5R47xsW+fdEnJOBYuTLhP/wghU0poWpxk52dTb169Zg9e/Y9nT9z5kwSEhLMl9jYWHx9fenRo0cxJ7WcgxdTURQI83XFz1PWwLBp++eZPjZ6Aezs1c0iLEpn0PHetvfQGXW0DWlLt6rd1I4kLKwgJobYQS9iSE3F+eGHqbjke7SBgWrHEvdI1W6pTp060alTp3s+38vLCy8vL/PtVatWkZqaygsvvFAc8YrF9cHE0iVl4+IPQdwBsHeEBs+rnUZY2JyoOZxKPYWPkw8Tmk+QhdtsjCEri9hhw0w7e9euTdjCBdi7y/5gpUmpHnMzb948HnvsMSpWvP1Azfz8fPLz8823MzIySiLabZnXt5HBxLZt37VWm1pdwb2CulmERUUlRzHvqOn1fb/Z+5R3Ka9yImFJisFA/FujKTh7Dgc/P0Jmz5bCphQqtaPf4uPj+fPPPxk8+M4DNadOnWpu8fHy8iI0NLSEEt5MZzByKFZabmxebhoc+cV0XfaRsik5uhzGbh+LUTHyZOUnebzi42pHEhaW/MUXZG3ejMbJiZDZX6H191M7krgPpba4WbRoEd7e3nTr1u2O540ZM4b09HTzJTY2tmQC3sLx+AzydEa8XLRUrSD/CdisqB9Bnwt+D0PYI2qnERb0xcEvuJhxET9XP8Y0HaN2HGFh6b/9xtVvTYtuBk6ejEudOionEverVHZLKYrC/Pnzef7553G8y7byTk5OODlZx6qw1/eTalTRBzvZLNM2KcqNtW0iBoGMxbAZWy9t5ceTPwIwqcUkPB09VU4kLCk3KoqEce8DUG7oUNlSoZQrlS03W7Zs4ezZs7z4Yulq8t8v69vYvuhtcOU0OLpD3Z5qpxEWEpcVx5htppaaPjX60DyoucqJhCXpEhOJffVVlIIC3Nu3p8LrI9SOJB6Qqi03WVlZnD171nz7woULREZG4uvrS1hYGGPGjCEuLo7FixcXety8efNo2rQptWvXLunI901RlH/tBC6DiW3W9X2k6vYEJw91swiLyDfkM2rzKDIKMqhTvg5vNn5T7UjCgoy5uVwa/iqG5Cs4VatG0Mcfo7Erlf/3i39RtbjZv38/7dq1M98eNWoUAAMGDGDhwoUkJCQQExNT6DHp6emsWLGCmTNnlmjWBxWTkkNyZj5aew11Q7zu/gBR+mQkwMm1pusRpatVUdzex3s/5vjV43g7eTO9zXQc7e/cFS5KD0VRSBg7jrxjx7D38SFkztfYu7upHUtYgKrFTdu2bVEU5bb3L1y48KZjXl5e5OTkFGOq4nF9CnidYC+ctbKgm006uBiMegh9BPxLz6rZ4vZWn13N8tPL0aDh41YfE+gui7jZkqvffEPGH3+AgwPBM7/AMSRE7UjCQqTtrYSYu6TCpUvKJhn0cGCh6brsI2UTTqWcYtLuSQC8Uv8VmgfLOBtbkrlhA8lfmHoAAt5/H7cmTVROJCxJipsScn0wcSPZT8o2nf4LMuPBtTzUekrtNOIBZRZkMmrzKPIN+bQIbsHQukPVjiQsKO/UKeLefgcAn7598en5nMqJhKVJcVMC0nIKOJOUBchmmTbr+kDihs+Dg3UsPSDuj6IojNs+jpjMGALdApnWcprs9m1D9FevcumVYSg5Obg2ewT/Me+qHUkUA/mNLQEHY0xdUpXLu1HOXd74bM7Vc3B+E6AxbZIpSrVFxxbxT+w/aO20fN72c7ydvdWOJCxEKSjg0uuvo4uPR1sxjJAZM9A4lMrl3sRdSHFTAvZFy5YLNu36on3VHgef2+9zJqzfvsR9fHHwCwDebfIutcuXnuUmxJ0pikLipEnk7j+Anbs7oXPmYO/trXYsUUykuCkBB2SzTNuly4VDS0zXZSBxqZack8zoLaMxKAa6VO5Cj4d6qB1JWFDq90tIW/4L2NkR/Pl0nCpXVjuSKEZS3BSzfL2ByEtpADSSlhvbc2wl5KWBVxhUfUztNOI+6Yw63tryFlfzrlLVuyrvN3sfjWydYTOyduzg8rRpAPi99RburVurnEgUNyluitnRuAwK9EZ83RypXF4Wh7I5++aZPjYeCHayflFpNevgLA4mHcRN68aMtjNwcXBRO5KwkPwLF4h7YxQYjXg9/TS+LwxUO5IoAVLcFLMDF29MAZf/BG1MfCTE7Qc7LTTor3YacZ82XNzAwmMLAZjcYjLhXuGq5hGWY8jI4NKw4RgzMnCpX5+ADz+Qv8NlhBQ3xez6YOII6ZKyPfuvtdrU6gruFdTNIu5LdHo043aMA2BArQE8VlG6Fm3J5Y8+ouDCBRwCAgj5chZ2jrJ1RlkhxU0xUhSFA9dWJm4kg4ltS24qHF5uui77SJVKufpcRm0ZRbYum4Z+DXm90etqRxIWlPnPJtJX/wZ2doR8MQOHCvIPSFkixU0xOn8lm5TsAhwd7Kgd7Kl2HGFJh34AfS7414GwZmqnEUWkKAqTdk3iTOoZyjmX47M2n6G106odS1iIIT2dxAkTAPB9YSAu9eurG0iUOCluitH1KeD1Q7xxcpDBpjbDaIR935quNxkC0odf6iw/vZzfz/+OvcaeT9t8SgVX+a/ellye9jH65GQcK1WiwmuvqR1HqECKm2K0//pgYhlvY1vOboDUaHD2gjqyFkppc+zKMabtNU0LHtFwBBEBESonEpaUtXUr6StXgkZD4EcfYefsrHYkoQIpborRfhlMbJv2/s/0scHz4OiqbhZRJGl5aYzaPAqdUcejoY/ywsOyXYYtMWRmkvD+eAB8BwzAtWEDlRMJtUhxU0yuZuVz/ko2AA3DpLixGVfPwdn1gAYaD1I7jSiiD3d9SHx2PGEeYUxuOVmmBduYyx9/jP7yZbQVw6jw+gi14wgVSXFTTK7Pkqrm5463q0w/tBnXF+2r9jiUq6JuFlEk59PPsyFmAxo0TG87HQ9HD7UjCQvK2rad9F9WgEZD0EcfYeciCzGWZVLcFJP9F69vlilTwG1GQfaNfaSavKRuFlFkP574EYC2oW2p4VtD5TTCkgxZWSSMN3VH+fTrh2vjxionEmqT4qaY7I82DSZuXFG6pGzGkeWQnw4+laBKe7XTiCLILMhk9bnVAPSt2VflNMLSkj75FH1CAtrQUPzeGKl2HGEFpLgpBnk6A0fi0gGIkJYb26AosPdf07/t5FenNFl1dhW5+lyqelelSUATteMIC8reuZO0n38GIHDyZOxcZZC/kOKmWBy+lI7OoFDBw4lQX+n3tQkxu+DyUXBwgfp91E4jisCoGPnxpKlLqneN3jKI2IYYsrJJGPc+AD59+uDWVApXYSLFTTG4vr5NY9ks03Zcn/5d9zlwka7G0mR73HZiM2PxcPTgycpPqh1HWFDy59PRxcejDQ7G781RascRVkSKm2JwfX0bGUxsIzLi4cTvputNhqibRRTZDyd+AKB71e64aqXLwlZk795D6lJTi1zgR5Oxc3NTOZGwJlLcWJjReGOzTBlMbCMOLASjHsKaQ0AdtdOIIjiffp6d8TvRoKFXjV5qxxEWYszOJmGcaTd37549cXvkEZUTCWsjxY2FnUvOIj1Xh4vWnlpBsllmqacvgP0LTNel1abUuT79u01oG0I8QlROIywlacYX6C5dwiEoEL/Rb6kdR1ghKW4sbN/1zTJDvdHay7e31DvxG2QngXsA1OyidhpRBJkFmfx27jdApn/bkpx9+0hdYlpvKnDiJOzd3VVOJKyRvPtamHkwsewnZRuuT/9u/ALYa9XNIopk9dnV5OhzqOJVhaYBTdWOIyzAmJtL/Nhr3VE9nsW9ZQuVEwlrJcWNhclgYhuSEAWxu8HOARoNVDuNKIJ/T//uU7OPzFq0EclffIEuJgaHgAD83n5b7TjCiklxY0FJmXnEpOSg0UCDMG+144gHdb3VplZX8AhQN4soku1x24nJjMFDK9O/bUXOwYOkLP4egMCJH2LvIXuDiduT4saCDlxrtakR4Imns3RhlGo5KabtFkD2kSqFlp5YCsDT1Z6W6d82wJiXR8KY90BR8Hr6adxbt1Y7krByUtxY0PXBxDIF3AYcWgL6PNPU71AZr1GaXEi/wI74HTL924Ykz5xFwcWLOPj54f/uO2rHEaWAFDcWdEAGE9sGowH2zzNdb/ISyHiNUuX6WJs2IW0I9QhVOY14UDmHDpGyaBEAAR9+gL2Xl8qJRGkgxY2F5BToORafAchg4lLv7AZIjQZnb6j9rNppRBFkFWSx+qxp9+8+NWUPsNJOl5RE/LvvgtGIV9en8GjXTu1IopRwUDuArbiUmou3qyNaew3B3rJZZql2fR+pBv3AUcZrlCarz5mmf1f2qswjgbJqbWlWEBtLzKAX0cXG4hAQgP+YMWpHEqWIFDcW8pC/B/vGticlu0DtKOJBXD1narlBAxEvqp1GFIFRMZoHEvepIdO/S7O806eJfXEw+uRktKGhhC2Yj723t9qxRCki3VIWpNFoKOfupHYM8SD2fWf6WK0D+FZWN4sokh1xO8zTv7tUkdWkS6vcqCguPt8ffXIyTg89RMUfluAYIltniKKR4kaI6/Kz4JBpB2mZ/l36/HDS9NrJ9O/SK3vnTi6+MAhjejou9epRcfEitH5+ascSpZAUN0Jcd+RnyE83tdhUeVTtNKIILqRfYEecTP8uzTLWryd26MsoOTm4NW8uXVHigUhxIwSAosDea11SEUPATn41SpNlJ5cBMv27tEr7dSVxr49E0enw6NCBkLlzsHOV1jdx/+QvuBAAF3dC0jHQukJ9mUJcmmQVZLHq7CoAetfsrW4YUWQpixaR8N57punez3Qn+PPp2Dk6qh1LlHIyW0oIuDH9u+5z4OKtahRRNP+e/t0ssJnaccQ9UhSFK19+xZWvvwbAd+BA/N55W2a5CYuQ4kaIjHg48bvpesQQdbOIIim0+7dM/y41FKORy1OmkrpkCQAVRr5OuaFD5fUTFiPFjRD7F4BigIotIKC22mlEEeyI28HFjIsy/bsUUXQ64seOJeM30z8U/u+Pw7dvX5VTCVsjxY0o2/T5cGCB6XoTabUpbZaeNC3a161aN5n+XQoY8/OJe2MUWf/8A/b2BE2bilcXKUqF5UlxI8q2479BdjJ4BEKNJ9VOI4ogOj2a7XHb0aChd3UZSGztDFnZXBo2jJy9e9E4ORE8YwYej8peUaJ4SHEjyrZ935o+NnoB7LXqZhFFcn2sTeuQ1oR6yvRva6ZPTSV2yEvkHT2KnZsbIXO+xq1JE7VjCRsmxY0ou+IOQuwesNNCo4FqpxFFkFWQxepzsvt3aaC7nETMoEEUnDuHvbc3od9+i0sdGdsmipcUN6Ls2j7D9LF2d/DwVzeLKJLV51aTrcumklclmf5txRSjkfjRoyk4dw4Hf3/C5s/DqUoVtWOJMkCKG1E2JZ++Mf275RvqZhFFYlSM5hWJZfq3dUv7+WfTGBsXFyouWohjeLjakUQZISsUi7JpxxeAAtWfAL+aaqcRRbAzfifRGdG4a915qspTascRt6GLjyfpk08B8HvjDSlsRImS4kaUPWmxcPgn0/VWo9TNIorshxOm3b+7VZXp39ZKURQSxk/AmJODS8OG+PSTdWxEyVK1uNm6dStdunQhKCgIjUbDqlWr7vqY/Px8xo4dS8WKFXFyciI8PJz58+cXf1hhO3Z+CUY9VGoNIY3VTiOK4GLGxRvTv2vI9G9rlb5yFdnbt6NxdCRw8mQ0shGtKGGqjrnJzs6mXr16DBo0iO7du9/TY5577jkuX77MvHnzqFq1KgkJCRiNxmJOKmxGVjIcXGy63lJabUqb6funA6bp32GeYSqnEbeiu5zE5WnTAKgw4jWcKldSOZEoi1Qtbjp16kSnTp3u+fy//vqLLVu2cP78eXx9fQEIl35cURR75oA+F4IaQuW2aqcRRbAxZiObYjfhoHFgZMORascRt6AoCokffogxIwPn2rXxHThQ7UiijCpVs6V+++03GjduzCeffML333+Pm5sbTz31FJMmTcLFxeWWj8nPzyc/P998Oz09HYCMjIwSySysSF4GbP0fFCjQ4GXIzFQ7kbhH2bpsJm6aiCHXwPO1nsfP3k9+h61Q+rp1JK5fD1ot5caMITMnR+1IwoZc/51XFOXuJytWAlBWrlx5x3M6duyoODk5KU888YSyZ88eZe3atUrFihWVgQMH3vYxEyZMUAC5yEUucpGLXORiA5fY2Ni71hSaa4WF6jQaDStXrqRbt263PadDhw5s27aNxMREvLy8APj111959tlnyc7OvmXrzX9bboxGIykpKZQrV65Mro+RkZFBaGgosbGxeHp6qh1HXCOvi/WS18Y6yetivYrrtVEUhczMTIKCgrC7yyD1UtUtFRgYSHBwsLmwAahZsyaKonDp0iWqVat202OcnJxwcnIqdMzb27u4o1o9T09P+YNgheR1sV7y2lgneV2sV3G8Nv9+/7+TUjU/r0WLFsTHx5OVlWU+dvr0aezs7AgJCVExmRBCCCGsharFTVZWFpGRkURGRgJw4cIFIiMjiYmJAWDMmDH079/ffH6fPn0oV64cL7zwAsePH2fr1q2MHj2aQYMG3XZAsRBCCCHKFlWLm/3799OgQQMaNGgAwKhRo2jQoAHjx48HICEhwVzoALi7u7N+/XrS0tJo3Lgxffv2pUuXLsyaNUuV/KWRk5MTEyZMuKmrTqhLXhfrJa+NdZLXxXpZw2tjNQOKhRBCCCEsoVSNuRFCCCGEuBspboQQQghhU6S4EUIIIYRNkeJGCCGEEDZFihsbNHv2bMLDw3F2dqZp06bs3bv3tucuXLgQjUZT6OLs7FyCacuGrVu30qVLF4KCgtBoNKxatequj9m8eTMNGzbEycmJqlWrsnDhwmLPWdYU9XXZvHnzTb8vGo2GxMTEkglcRkydOpWIiAg8PDzw8/OjW7dunDp16q6PW758OTVq1MDZ2Zk6derwxx9/lEDasuV+Xhs13mekuLExP/30E6NGjWLChAkcPHiQevXq0bFjR5KSkm77GE9PTxISEsyXixcvlmDisiE7O5t69eoxe/bsezr/woULPPHEE7Rr147IyEhGjhzJ4MGDWbduXTEnLVuK+rpcd+rUqUK/M35+fsWUsGzasmULw4cPZ/fu3axfvx6dTkeHDh3Izs6+7WN27txJ7969efHFFzl06BDdunWjW7duHD16tAST2777eW1AhfeZe9/aUpQGTZo0UYYPH26+bTAYlKCgIGXq1Km3PH/BggWKl5dXCaUTinJvm8S+/fbbysMPP1zoWM+ePZWOHTsWY7Ky7V5el02bNimAkpqaWiKZhElSUpICKFu2bLntOc8995zyxBNPFDrWtGlTZejQocUdr0y7l9dGjfcZabmxIQUFBRw4cIDHHnvMfMzOzo7HHnuMXbt23fZxWVlZVKxYkdDQULp27cqxY8dKIq64g127dhV6HQE6dux4x9dRlJz69esTGBjI448/zo4dO9SOY/PS09MB8PX1ve058jujjnt5baDk32ekuLEhV65cwWAw4O/vX+i4v7//bccEVK9enfnz57N69WqWLFmC0WikefPmXLp0qSQii9tITEy85euYkZFBbm6uSqlEYGAgc+fOZcWKFaxYsYLQ0FDatm3LwYMH1Y5ms4xGIyNHjqRFixbUrl37tufd7ndGxkMVn3t9bdR4nylVu4ILy2vWrBnNmjUz327evDk1a9bkm2++YdKkSSomE8L6VK9enerVq5tvN2/enHPnzjFjxgy+//57FZPZruHDh3P06FG2b9+udhTxH/f62qjxPiMtNzakfPny2Nvbc/ny5ULHL1++TEBAwD09h1arpUGDBpw9e7Y4Iop7FBAQcMvX0dPTUzaJtTJNmjSR35di8uqrr7JmzRo2bdpESEjIHc+93e/Mvf7tE0VTlNfmv0rifUaKGxvi6OhIo0aN2Lhxo/mY0Whk48aNharmOzEYDBw5coTAwMDiiinuQbNmzQq9jgDr16+/59dRlJzIyEj5fbEwRVF49dVXWblyJf/88w+VKlW662Pkd6Zk3M9r818l8j5TosOXRbFbtmyZ4uTkpCxcuFA5fvy48tJLLyne3t5KYmKioiiK8vzzzyvvvvuu+fwPP/xQWbdunXLu3DnlwIEDSq9evRRnZ2fl2LFjan0JNikzM1M5dOiQcujQIQVQPv/8c+XQoUPKxYsXFUVRlHfffVd5/vnnzeefP39ecXV1VUaPHq2cOHFCmT17tmJvb6/89ddfan0JNqmor8uMGTOUVatWKWfOnFGOHDmivP7664qdnZ2yYcMGtb4Em/TKK68oXl5eyubNm5WEhATzJScnx3zOf/+W7dixQ3FwcFA+++wz5cSJE8qECRMUrVarHDlyRI0vwWbdz2ujxvuMFDc26Msvv1TCwsIUR0dHpUmTJsru3bvN97Vp00YZMGCA+fbIkSPN5/r7+yudO3dWDh48qEJq23Z9CvF/L9dfiwEDBiht2rS56TH169dXHB0dlcqVKysLFiwo8dy2rqivy8cff6xUqVJFcXZ2Vnx9fZW2bdsq//zzjzrhbditXhOg0O/Af/+WKYqi/Pzzz8pDDz2kODo6Kg8//LCydu3akg1eBtzPa6PG+4zmWlghhBBCCJsgY26EEEIIYVOkuBFCCCGETZHiRgghhBA2RYobIYQQQtgUKW6EEEIIYVOkuBFCCCGETZHiRgghhBA2RYobIYQQQtgUKW6EEEIIYVOkuBFCqKZt27aMHDnygc+xJEtlut/cV69exc/Pj+jo6CI/tqh69erF9OnTi/3zCFHSpLgRwkrNnTsXDw8P9Hq9+VhWVhZarZa2bdsWOnfz5s1oNBrOnTtXwikfzK+//sqkSZPUjlHI/WSyZAH20Ucf0bVrV8LDwy3yfHcybtw4PvroI9LT04v9cwlRkqS4EcJKtWvXjqysLPbv328+tm3bNgICAtizZw95eXnm45s2bSIsLIwqVaqoEfW++fr64uHhoXaMQtTMlJOTw7x583jxxRdL5PPVrl2bKlWqsGTJkhL5fEKUFCluhLBS1atXJzAwkM2bN5uPbd68ma5du1KpUiV2795d6Hi7du0A+Ouvv2jZsiXe3t6UK1eOJ598slCLzv/+9z+CgoIwGo2FPl/Xrl0ZNGgQAEajkalTp1KpUiVcXFyoV68ev/zyi/nczMxM+vbti5ubG4GBgcyYMeOm1ovw8HC++OKLQp+jfv36fPDBB+bb/31MdnY2/fv3x93dncDAwFt2mdwt23+tWbMGb29vDAYDAJGRkWg0Gt59913zOYMHD6Zfv373lWngwIFs2bKFmTNnotFo0Gg05i4lo9HI22+/ja+vLwEBAYW+9lv5448/cHJy4pFHHil0fPv27Wi12kIFbXR0NBqNhosXLxa6vWLFClq3bo2LiwsRERHExMSwbds2HnnkEVxdXWnfvj1paWnm5+nSpQvLli27Yy4hShspboSwYu3atWPTpk3m25s2baJt27a0adPGfDw3N5c9e/aYi5vs7GxGjRrF/v372bhxI3Z2djz99NPmYqZHjx5cvXq10POmpKTw119/0bdvXwCmTp3K4sWLmTt3LseOHeONN96gX79+bNmyBYBRo0axY8cOfvvtN9avX8+2bds4ePDgA3+9o0ePZsuWLaxevZq///6bzZs33/S8d8v2X61atSIzM5NDhw4BsGXLFsqXL1+oaNyyZctNXX33mmnmzJk0a9aMIUOGkJCQQEJCAqGhoQAsWrQINzc39uzZwyeffMLEiRNZv379bb/+bdu20ahRo5uOR0ZGUrNmTZydnc3HDh06hI+PDxUrVgQgKioKgDlz5jBlyhR27tzJ5cuX6devH9OmTeOrr75i06ZNREVFsWDBAvPzNGnShL1795Kfn3/bXEKUNg5qBxBC3F67du0YOXIker2e3NxcDh06RJs2bdDpdMydOxeAXbt2kZ+fby5unnnmmULPMX/+fCpUqMDx48epXbs2Pj4+dOrUiaVLl9K+fXsAfvnlF8qXL0+7du3Iz89nypQpbNiwgWbNmgFQuXJltm/fzjfffEPDhg1ZtGhRoccvWLCAoKCgB/pas7KymDdvHkuWLDE/76JFiwgJCTGfc7dsbdq0uel5vby8qF+/Pps3b6Zx48Zs3ryZN954gw8//JCsrCzS09M5e/bsLR97L5m8vLxwdHTE1dWVgICAQo+vW7cuEyZMAKBatWp89dVXbNy4kccff/yW34OLFy/e8vsYFRVFgwYNCh2LjIykXr16hW77+vry008/Ua5cOQDatGnD9u3bOXbsGK6urgBERESQmJhoflxQUBAFBQUkJiaaCyUhSjtpuRHCirVt25bs7Gz27dvHtm3beOihh6hQoQJt2rQxj7vZvHkzlStXJiwsDIAzZ87Qu3dvKleujKenp3lgakxMjPl5+/bty4oVK8z/rf/www/06tULOzs7zp49S05ODo8//jju7u7my+LFizl37hznz59Hp9PRpEkT8/N5eXlRvXr1B/paz507R0FBAU2bNjUf8/X1LfS8d8t2O23atGHz5s0oisK2bdvo3r07NWvWZPv27WzZsoWgoCCqVat2X5nupG7duoVuBwYGkpSUdNvzc3NzC7XOXBcZGUn9+vULHTt06FChY1FRUTz99NPmwgZMr3nPnj3Nhc31Y5UqVTLfdnFxAUzjfYSwFdJyI4QVq1q1KiEhIWzatInU1FRz60JQUBChoaHs3LmTTZs28eijj5of06VLFypWrMi3335rHltTu3ZtCgoKCp2jKApr164lIiKCbdu2MWPGDMDUWgGwdu1agoODC+VxcnIiJSXlnrLb2dmhKEqhYzqdrujfhH+5W7bbadu2LfPnzycqKgqtVkuNGjVo27YtmzdvLvR9tTStVlvotkajuWms07+VL1+e1NTUQscMBgNHjx69qeXm4MGDhVrpIiMjGTNmTKFzoqKieOONN8y38/LyOHXqVKEWn+uvZ4UKFe7xqxLC+knLjRBWrl27dmzevJnNmzcXGhfSunVr/vzzT/bu3Wvukrp69SqnTp1i3LhxtG/fnpo1a970Zgng7OxM9+7d+eGHH/jxxx+pXr06DRs2BKBWrVo4OTkRExND1apVC11CQ0OpXLkyWq2Wffv2mZ8vPT2d06dPF/ocFSpUICEhwXw7IyODCxcu3PbrrFKlClqtlj179piPpaamFnreu2W7nevjbmbMmGEuZK4XN//9vhY1E4Cjo6N5wPKDaNCgAcePHy907NSpU+Tl5RXqrtq1axdxcXHmlpuMjAyio6MLFUAXLlwgPT290LEjR46gKAp16tQxHzt69CghISGUL1/+gfMLYS2k5UYIK9euXTuGDx+OTqcr1MLQpk0bXn31VQoKCszFjY+PD+XKleN///sfgYGBxMTEFJoV9G99+/blySef5NixY+aZQgAeHh689dZbvPHGGxiNRlq2bEl6ejo7duzA09OTAQMGMGDAAEaPHo2vry9+fn5MmDABOzs7NBqN+XkeffRRFi5cSJcuXfD29mb8+PHY29vf9ut0d3fnxRdfZPTo0ZQrVw4/Pz/Gjh2Lnd2N/8HuJdut+Pj4ULduXX744Qe++uorwFQcPvfcczd9X4uaCUwzw/bs2UN0dDTu7u74+vre9uu8k44dOzJmzBhSU1Px8fEBTC0yAF9++SUjRozg7NmzjBgxAsDcGhcVFYW9vT21a9c2P9f1MTj/HkcTGRlJlSpVcHd3Nx/btm0bHTp0uK+8QlgrKW6EsHLt2rUjNzeXGjVq4O/vbz7epk0bMjMzzVPGwdQVtGzZMkaMGEHt2rWpXr06s2bNumXLxKOPPoqvry+nTp2iT58+he6bNGkSFSpUYOrUqZw/fx5vb28aNmzIe++9B8Dnn3/Oyy+/zJNPPomnpydvv/02sbGxhcaLjBkzhgsXLvDkk0/i5eXFpEmT7thyA/Dpp5+SlZVFly5d8PDw4M0337xpgbm7ZbudNm3aEBkZaf5e+Pr6UqtWLS5fvnzHMTT3kumtt95iwIAB1KpVi9zc3Lt+nbdTp04dGjZsyM8//8zQoUMBU0HSsWNHzp8/T506dahVqxYffvghr7zyCrNmzeL7778nKiqK6tWrF/r+32oQclRUVKEuqby8PFatWsVff/11X3mFsFYa5b+d4kIIUUTZ2dkEBwczffr0EluAzlatXbuW0aNHc/ToUezs7OjYsSMRERFMnjzZ4p9rzpw5rFy5kr///tvizy2EmqTlRghRZIcOHeLkyZM0adKE9PR0Jk6cCJgWAhQP5oknnuDMmTPExcURGhpKVFSUeXFFS9NqtXz55ZfF8txCqElaboQQRXbo0CEGDx7MqVOncHR0pFGjRnz++eeFBqqKB5eYmEhgYCDHjh2jVq1aascRotSQ4kYIIYQQNkWmggshhBDCpkhxI4QQQgibIsWNEEIIIWyKFDdCCCGEsClS3AghhBDCpkhxI4QQQgibIsWNEEIIIWyKFDdCCCGEsClS3AghhBDCpkhxI4QQQgibIsWNEEIIIWzK/wMUu8i3/BMe7QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for i in range(N_mode):\n", " plt.plot(ws, n_eff[:, i])\n", "\n", "plt.ylim(1.6, 2.2)\n", "plt.legend((\"TM0\", \"TM1\", \"TM2\", \"TM3\"))\n", "plt.xlabel(\"Waveguide width ($\\mu m$)\")\n", "plt.ylabel(\"Effective index\")\n", "plt.show()\n" ] }, { "cell_type": "markdown", "id": "1d8730c7", "metadata": {}, "source": [ "The input waveguides are designed to be around 400 nm in width. From the plots above, we can determine the bus waveguide width for each asymmetric directional coupler by looking for the width with the same effective index as the 400 nm waveguide. " ] }, { "cell_type": "markdown", "id": "ef50c9a1", "metadata": {}, "source": [ "## Individual Directional Coupler" ] }, { "cell_type": "markdown", "id": "2fbc13fa", "metadata": {}, "source": [ "In this section, we model six asymmetric directional couplers. The first three couplers convert the TE0 mode to the TE1, TE2, TE3 modes. The last three convert the TM0 to the TM1, TM2, and TM3 modes. \n", "\n", "The coupling length of each coupler needs to be optimized for the best efficiency coupling. This can be done by performing a parameter scan over the coupling length. Parameter scans have been demonstrated in various examples such as the [MMI power splitter](../notebooks/MMI_1x4.html) and the [parameter scan tutorial](../notebooks/ParameterScan.html). For the sake of simplicity, we only perform simulations on the optimized parameter values reported in the referenced literature.\n", "\n", "" ] }, { "cell_type": "markdown", "id": "bf5f2c81", "metadata": {}, "source": [ "Switching the logging level back to `\"WARNING\"` so we can catch any helpful warnings." ] }, { "cell_type": "code", "execution_count": 11, "id": "a104fec9", "metadata": {}, "outputs": [], "source": [ "td.config.logging_level = \"WARNING\"\n" ] }, { "cell_type": "markdown", "id": "89c9ae3f", "metadata": {}, "source": [ "### Infrastructure Setup" ] }, { "cell_type": "markdown", "id": "d8690ac1", "metadata": {}, "source": [ "The asymmetric directional coupler consists of an access waveguide and a bus waveguide. The bending part is given by a cosine function. The horizontal and vertical lengths of the waveguide bend are fixed to be $B_x = 10 \\mu m$ $B_y = 1 \\mu m$. This ensures the loss at the bend is small." ] }, { "cell_type": "code", "execution_count": 12, "id": "f9db0f4e", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:01:55.375513Z", "iopub.status.busy": "2023-03-28T00:01:55.375361Z", "iopub.status.idle": "2023-03-28T00:01:55.394895Z", "shell.execute_reply": "2023-03-28T00:01:55.393324Z" }, "tags": [] }, "outputs": [], "source": [ "Bx = 10 # horizontal length of the waveguide bend\n", "By = 1 # verticel length of the waveguide bend\n" ] }, { "cell_type": "markdown", "id": "f6de46e8", "metadata": {}, "source": [ "We define a function to construct the entire directional coupler simulation. This function will be used repeatedly to simulate six directional couplers. Within this function, we use `gdstk` to construct the structures." ] }, { "cell_type": "code", "execution_count": 13, "id": "fd3a2d41", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:01:55.400221Z", "iopub.status.busy": "2023-03-28T00:01:55.399870Z", "iopub.status.idle": "2023-03-28T00:01:55.433569Z", "shell.execute_reply": "2023-03-28T00:01:55.432987Z" }, "tags": [] }, "outputs": [], "source": [ "def make_sim(pol, w_access, w_bus, gap, l_couple):\n", "\n", " # construct the access waveguide including the bends\n", " y = By + (w_access + w_bus) / 2 + gap\n", " access_wg = gdstk.RobustPath(\n", " (-3 * l_couple, y), w_access, simple_path=True, layer=1, datatype=0\n", " )\n", " access_wg.segment((-l_couple / 2 - Bx, y))\n", " access_wg.segment(\n", " (-l_couple / 2, y), offset=lambda u: (np.cos(u * np.pi) - 1) * By / 2\n", " )\n", " access_wg.segment((l_couple / 2, y))\n", " access_wg.segment(\n", " (l_couple / 2 + Bx, y), offset=lambda u: (np.cos((1 - u) * np.pi) - 1) * By / 2\n", " )\n", " access_wg.segment((3 * l_couple, y))\n", "\n", " # construct the bus waveguide\n", " bus_wg = gdstk.FlexPath(\n", " [(-3 * l_couple, 0), (3 * l_couple, 0)], w_bus, layer=1, datatype=1\n", " )\n", "\n", " # define a cell\n", " cell = gdstk.Cell(\"directional_coupler\")\n", " cell.add(access_wg)\n", " cell.add(bus_wg)\n", "\n", " # construct a list of polyslab from the cell\n", " DC = td.PolySlab.from_gds(\n", " cell,\n", " gds_layer=1,\n", " axis=2,\n", " slab_bounds=(-h / 2, h / 2),\n", " )\n", " # define access waveguide and bus waveguide structures\n", " access_wg = td.Structure(geometry=DC[0], medium=si)\n", " bus_wg = td.Structure(geometry=DC[1], medium=si)\n", "\n", " # y coordinate of the access waveguide input\n", " y_in = (w_access + w_bus) / 2 + gap + By\n", "\n", " # simulation domain size\n", " Lx = l_couple + 2 * Bx + lda0\n", " Ly = 2 * (y_in + lda0)\n", " Lz = 10 * h\n", " sim_size = (Lx, Ly, Lz)\n", "\n", " # symmetry for each polarization\n", " if pol == \"TE\":\n", " symmetry = symmetry = (0, 0, 1)\n", " elif pol == \"TM\":\n", " symmetry = symmetry = (0, 0, -1)\n", " else:\n", " symmetry = symmetry = (0, 0, 0)\n", "\n", " # define a mode source to lauch either te0 or tm0 mode to the access waveguide\n", " mode_source = td.ModeSource(\n", " center=(-Lx / 2 + lda0 / 2, y_in, 0),\n", " size=(0, 6 * w_access, 8 * h),\n", " source_time=td.GaussianPulse(freq0=freq0, fwidth=fwidth),\n", " direction=\"+\",\n", " mode_spec=td.ModeSpec(num_modes=1, target_neff=n_si),\n", " mode_index=0,\n", " )\n", "\n", " # define a flux monitor to measure the transmission to the bus waveguide\n", " bus_flux_monitor = td.FluxMonitor(\n", " center=(Lx / 2 - lda0 / 2, 0, 0),\n", " size=(0, 2 * w_bus, 6 * h),\n", " freqs=freqs,\n", " name=\"bus_flux\",\n", " )\n", "\n", " # define a field monitor to visualize the field distribution in the xy plane\n", " field_monitor = td.FieldMonitor(\n", " center=(0, 0, 0), size=(td.inf, td.inf, 0), freqs=[freq0], name=\"field\"\n", " )\n", "\n", " # define a mode monitor to check the mode composition at the bus waveguide\n", " bus_mode_monitor = td.ModeMonitor(\n", " center=(Lx / 2 - lda0 / 2, 0, 0),\n", " size=(0, 2 * w_bus, 6 * h),\n", " freqs=freqs,\n", " mode_spec=td.ModeSpec(num_modes=4, target_neff=n_si),\n", " name=\"bus_mode\",\n", " )\n", "\n", " run_time = 2e-12 # simulation run time\n", "\n", " # define simulation\n", " sim = td.Simulation(\n", " size=sim_size,\n", " grid_spec=td.GridSpec.auto(min_steps_per_wvl=15, wavelength=lda0),\n", " structures=[access_wg, bus_wg],\n", " sources=[mode_source],\n", " monitors=[bus_flux_monitor, field_monitor, bus_mode_monitor],\n", " run_time=run_time,\n", " boundary_spec=td.BoundarySpec.all_sides(\n", " boundary=td.PML()\n", " ), # pml is applied to all boundaries\n", " medium=sio2, # the background medium is set to sio2 to model the substrate and top cladding\n", " symmetry=symmetry,\n", " )\n", "\n", " return sim\n" ] }, { "cell_type": "markdown", "id": "03f64040", "metadata": {}, "source": [ "Lastly, we create a dictionary to store the optimized design parameters. The values are taken from the [reference](https://onlinelibrary.wiley.com/doi/full/10.1002/lpor.201300157)." ] }, { "cell_type": "code", "execution_count": 14, "id": "d74e527a", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:01:55.435617Z", "iopub.status.busy": "2023-03-28T00:01:55.435481Z", "iopub.status.idle": "2023-03-28T00:01:55.454849Z", "shell.execute_reply": "2023-03-28T00:01:55.453449Z" }, "tags": [] }, "outputs": [], "source": [ "design_params = {\n", " \"TM1\": {\"w_access\": 0.4, \"w_bus\": 1.035, \"gap\": 0.3, \"l_couple\": 4.6},\n", " \"TM2\": {\"w_access\": 0.4, \"w_bus\": 1.695, \"gap\": 0.3, \"l_couple\": 6.8},\n", " \"TM3\": {\"w_access\": 0.4, \"w_bus\": 2.363, \"gap\": 0.3, \"l_couple\": 9},\n", " \"TE1\": {\"w_access\": 0.4, \"w_bus\": 0.835, \"gap\": 0.2, \"l_couple\": 15.5},\n", " \"TE2\": {\"w_access\": 0.406, \"w_bus\": 1.29, \"gap\": 0.2, \"l_couple\": 21.3},\n", " \"TE3\": {\"w_access\": 0.379, \"w_bus\": 1.631, \"gap\": 0.2, \"l_couple\": 17.6},\n", "}\n" ] }, { "cell_type": "markdown", "id": "7342b080", "metadata": {}, "source": [ "### TE0 to TE3 Convertion " ] }, { "cell_type": "markdown", "id": "b2a93abe", "metadata": {}, "source": [ "With the infrastructure setup above, we are ready to perform simulations for the six directional couplers. First, we model the TE0 to TE3 coupler." ] }, { "cell_type": "markdown", "id": "ae49da09", "metadata": {}, "source": [ "#### Simulation Setup " ] }, { "cell_type": "markdown", "id": "9ac89966", "metadata": {}, "source": [ "We use the `make_sim` function to define the simulation given the access waveguide width, the bus waveguide width, the coupling regime length, and the polarization. Using the `plot` function, we can visualize the simulation setup. " ] }, { "cell_type": "code", "execution_count": 15, "id": "2cb1520e", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:01:55.460246Z", "iopub.status.busy": "2023-03-28T00:01:55.459921Z", "iopub.status.idle": "2023-03-28T00:01:55.708564Z", "shell.execute_reply": "2023-03-28T00:01:55.708059Z" }, "scrolled": false, "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVKElEQVR4nO3deZwcZZ0/8E9V9X3OPZNJQk5IAiEEcrkoBiRLYCPIeiGLbIJsUAiyEJUlikRQiQIC6wGsuz/BFypyvFZQUAS5L5HT5QokIYFkkplkJjPdMz191PH8/qjprpnM1T1HH1Wf9+s1r2R6qnqeqe/zJJ+pqqceSQghQEREREQVTy51A4iIiIhoYjDYEREREdkEgx0RERGRTTDYEREREdkEgx0RERGRTTDYEREREdkEgx0RERGRTTDYEREREdkEgx0RERGRTTDYEREd4sknn4QkSXjyySdL3RQiooIw2BGRY91yyy244447St2MMfnNb36Dm2++udTNAAAYhoHrrrsOs2bNgs/nw6JFi3DXXXflvX9XVxcuuOAC1NfXIxgM4qSTTsKrr7465La///3vcdxxx8Hn8+Gwww7D5s2boWnaRP0oRBVP4lqxRORUCxcuRF1d3aAzc4ZhIJPJwOPxQJbL8/ffT37yk3jzzTexa9euUjcFmzZtwg9+8AOsX78ey5YtwwMPPICHHnoId911F77whS+MuK9hGDjhhBPw97//Hd/4xjdQV1eHW265Bbt378Yrr7yCww8/PLftn/70J6xZswYnnngizj77bLzxxhv42c9+hgsuuAC33nrrZP+YRBWBwY7I4RKJBILBYKmbURLDBbtKUC7BrqWlBbNmzcIFF1yAn/70pwAAIQRWrlyJnTt3YteuXVAUZdj977nnHpx11lm499578dnPfhYAcODAARxxxBE47bTT8Jvf/Ca37VFHHQW3242XX34ZLpcLAHDllVfi2muvxdtvv4358+dP4k9KVBnK81dRIhqTlpYWnH/++WhubobX68WsWbNw4YUXIpPJAADuuOMOSJKEp556ChdddBEaGhowbdq03P633HILjjrqKHi9XjQ3N2PDhg3o6uoa8D22bduGz3zmM2hqaoLP58O0adPwhS98AbFYLLfNo48+io997GOoqqpCKBTCvHnz8M1vfnPU9uezXzqdxubNmzF37lx4vV5Mnz4dl19+OdLp9KD3+9WvfoXly5cjEAiguroaH//4x/HII48AAGbOnIm33noLTz31FCRJgiRJOPHEEwEMf4/dvffeiyVLlsDv96Ourg5f/OIX0dLSMmCbdevWIRQKoaWlBWeeeSZCoRDq6+vx9a9/Hbquj3oMHnjgAaxZsyZXwzlz5uC73/3ugH1PPPFEPPTQQ/jggw9ybZ85c+aw77lu3brcdod+fOc73xm1TaO1V1VVXHTRRbnXJEnChRdeiD179uCFF14Ycf/77rsPjY2N+PSnP517rb6+Hp///OfxwAMP5Or69ttv4+2338YFF1yQC3UAcNFFF0EIgfvuu29cPweRXbhG34SIKsHevXuxfPny3P1K8+fPR0tLC+677z709vbC4/Hktr3oootQX1+Pq666ColEAgDwne98B1dffTVWrVqFCy+8EO+++y5uvfVWvPTSS3juuefgdruRyWSwevVqpNNpfPWrX0VTUxNaWlrw4IMPoqurC9FoFG+99RY++clPYtGiRbjmmmvg9Xqxfft2PPfccyO2P5/9DMPAGWecgWeffRYXXHABFixYgDfeeAM33XQT3nvvPdx///25ba+++mp85zvfwfHHH49rrrkGHo8HL774Ih5//HGccsopuPnmm/HVr34VoVAI3/rWtwAAjY2Nw7bvjjvuwHnnnYdly5Zhy5YtaGtrw3/+53/iueeew2uvvYaqqqrctrquY/Xq1VixYgVuuOEG/OUvf8GPfvQjzJkzBxdeeOGIx+GOO+5AKBTCxo0bEQqF8Pjjj+Oqq65CPB7H9ddfDwD41re+hVgshj179uCmm24CAIRCoWHf88tf/jJWrVo14LWHH34Yv/71r9HQ0JB7rb29fcS2ZYXDYXi9XgDAa6+9hmAwiAULFgzYZvny5bmvf+xjHxv2vV577TUcd9xxgy55L1++HD//+c/x3nvv4eijj8Zrr70GAFi6dOmA7ZqbmzFt2rTc14kcTxCRLfzrv/6rkGVZvPTSS4O+ZhiGEEKI22+/XQAQH/vYx4Smabmv79+/X3g8HnHKKacIXddzr//0pz8VAMQvfvELIYQQr732mgAg7r333mHbcdNNNwkA4sCBAwW1P5/97rzzTiHLsnjmmWcGvH7bbbcJAOK5554TQgixbds2Icuy+Od//ucBP48Q1rEQQoijjjpKrFy5ctD3eeKJJwQA8cQTTwghhMhkMqKhoUEsXLhQJJPJ3HYPPvigACCuuuqq3Gtr164VAMQ111wz4D2PPfZYsWTJkpEPghCit7d30Gtf/vKXRSAQEKlUKvfamjVrxIwZM0Z9v6Fs27ZNRKNR8Y//+I8D+gGAvD5uv/32Ae2YPXv2oO+RSCQEAHHFFVeM2JZgMCi+9KUvDXr9oYceEgDEww8/LIQQ4vrrrxcAxIcffjho22XLlomPfOQj+f74RLbGS7FENmAYBu6//36cfvrpg85oAOalsf7Wr18/4L6nv/zlL8hkMrj00ksHnDlZv349IpEIHnroIQBANBoFAPz5z39Gb2/vkG3Jnrl64IEHYBhG3j9DPvvde++9WLBgAebPn4/29vbcxyc+8QkAwBNPPAEAuP/++2EYBq666qpBZ4IOPRb5ePnll7F//35cdNFF8Pl8udfXrFmD+fPn545Pf1/5ylcGfH7CCSfg/fffH/V7+f3+3N+7u7vR3t6OE044Ab29vdi6dWvBbT9UIpHAP//zP6O6uhp33XXXgH7w6KOP5vWxevXq3D7JZDJ39q6/7HFKJpMjtiff/bN/DrftaN+HyCl4KZbIBg4cOIB4PI6FCxfmtf2sWbMGfP7BBx8AAObNmzfgdY/Hg9mzZ+e+PmvWLGzcuBE33ngjfv3rX+OEE07AGWecgS9+8Yu50HfWWWfhf/7nf/Bv//ZvuOKKK3DyySfj05/+ND772c+OOMM0n/22bduGd955B/X19UO+x/79+wEAO3bsgCzLOPLII/M6HqMZ7vgAwPz58/Hss88OeM3n8w1qY3V1NTo7O0f9Xm+99RauvPJKPP7444jH4wO+1v8+xrFav349duzYgeeffx61tbUDvnbo5dp8+P3+Ie9vTKVSua9PxP7ZP4fbdrTvQ+QUDHZEDjSe/wR/9KMfYd26dXjggQfwyCOP4JJLLsGWLVvw17/+FdOmTYPf78fTTz+NJ554Ag899BAefvhh3H333fjEJz6BRx55ZNgZkvnsZxgGjj76aNx4441Dvsf06dPH/HNNpJFmgY6kq6sLK1euRCQSwTXXXIM5c+bA5/Ph1VdfxX/8x38UdAZ0KP/5n/+Ju+66C7/61a+wePHiQV9vbW3N632i0WiuD02ZMgVPPPEEhBADzobu27cPgHkP3EimTJmS27a/Q/efMmVK7vVD67xv377cPX1ETsdLsUQ2UF9fj0gkgjfffHNM+8+YMQMA8O677w54PZPJYOfOnbmvZx199NG48sor8fTTT+OZZ55BS0sLbrvtttzXZVnGySefjBtvvBFvv/02vv/97+Pxxx/PXSodzmj7zZkzBwcPHsTJJ5+MVatWDfrInlGbM2cODMPA22+/PeL3y/ey7HDHJ/vaocdnrJ588kl0dHTgjjvuwL//+7/jk5/8JFatWoXq6upB2xZ6SfmZZ57B17/+dVx66aU455xzhtxmypQpeX3cfffduX0WL16M3t5evPPOOwPe68UXX8x9fSSLFy/Gq6++Oii0vvjiiwgEAjjiiCMGvM/LL788YLu9e/diz549o34fIqdgsCOyAVmWceaZZ+IPf/jDoP/4APO5YiNZtWoVPB4PfvzjHw/Y9v/9v/+HWCyGNWvWAADi8figp/wfffTRkGU5d4ns4MGDg94/+5/uUJfRsvLZ7/Of/zxaWlrw3//934O2TSaTuRm+Z555JmRZxjXXXDMoMPT/+YLB4KDHuQxl6dKlaGhowG233TbgZ/jTn/6Ed955J3d8xit7pq9/GzOZDG655ZZB2waDwbwvze7btw+f//zn8bGPfSw3s3YoY7nH7lOf+hTcbveANgohcNttt2Hq1Kk4/vjjB7Rj69atUFU199pnP/tZtLW14X//939zr7W3t+Pee+/F6aefnrun7qijjsL8+fPx85//fMCjX2699VZIkpR7Bh6R0/FSLJFNXHvttXjkkUewcuXK3KNA9u3bh3vvvRfPPvvsgMdxHKq+vh6bNm3C1VdfjVNPPRVnnHEG3n33Xdxyyy1YtmwZvvjFLwIAHn/8cVx88cX43Oc+hyOOOAKapuHOO++Eoij4zGc+AwC45ppr8PTTT2PNmjWYMWMG9u/fj1tuuQXTpk0b8bEX+ex37rnn4p577sFXvvIVPPHEE/joRz8KXdexdetW3HPPPfjzn/+MpUuXYu7cufjWt76F7373uzjhhBPw6U9/Gl6vFy+99BKam5uxZcsWAMCSJUtw66234nvf+x7mzp2LhoaG3ESM/txuN374wx/ivPPOw8qVK3H22WfnHncyc+ZMXHbZZWMt2wDHH388qqursXbtWlxyySWQJAl33nnnkMF8yZIluPvuu7Fx40YsW7YMoVAIp59++pDve8kll+DAgQO4/PLL8dvf/nbA1xYtWoRFixYBGNs9dtOmTcOll16K66+/HqqqYtmyZbj//vvxzDPP4Ne//vWAy9KbNm3CL3/5S+zcuTP33L3Pfvaz+MhHPoLzzjsPb7/9dm7lCV3XcfXVVw/4Xtdffz3OOOMMnHLKKfjCF76AN998Ez/96U/xb//2b4Met0LkWCWckUtEE+yDDz4Q//qv/yrq6+uF1+sVs2fPFhs2bBDpdFoIYT3uZKhHoghhPt5k/vz5wu12i8bGRnHhhReKzs7O3Nfff/998aUvfUnMmTNH+Hw+UVNTI0466STxl7/8JbfNY489Jj71qU+J5uZm4fF4RHNzszj77LPFe++9N2Lb890vk8mIH/7wh+Koo44SXq9XVFdXiyVLloirr75axGKxAdv+4he/EMcee2xuu5UrV4pHH3009/XW1laxZs0aEQ6HBYDco08OfdxJ1t133517v5qaGnHOOeeIPXv2DNhm7dq1IhgMDvr5Nm/eLPL5J/e5554TH/nIR4Tf7xfNzc3i8ssvF3/+858Htaenp0f8y7/8i6iqqhIARnz0ycqVK4d9dMnmzZtHbdNodF0X1157rZgxY4bweDziqKOOEr/61a8GbZd9FMzOnTsHvH7w4EFx/vnni9raWhEIBMTKlSuH7aO/+93vxOLFi4XX6xXTpk0TV155pchkMuP+GYjsgkuKEREREdkE77EjIiIisgkGOyIiIiKbYLAjIiIisgkGOyIiIiKbYLAjIiIisgkGOyIiIiKbcNQDig3DwN69exEOhwtejoeIiIioFIQQ6O7uRnNzM2R55HNyjgp2e/fuLZtFwomIiIgKsXv3bkybNm3EbRwV7MLhMADg8q9fBr/fXH9QCEDVAI8bkCUJ9VFXSc7mZVQDXQlz/cOqoAKPu/hXyYUQOBAz1wH1uiVEg6XpHrGEhrRqPjeb9WA9ANajP9bDxHpYWA+LHeqhagLtcXM95Wzzk8k0rrvhplyOGYmjgl22wH6/F6FgAACQyhhQXEA0qEAzBFQhoTasQC5iZ8ioBhKqjmhfvVQDiPqKOzgNIdAR1xEMuuF1SUipArIiIxxQRt95AnX36lDcLtQEJKQ11oP1YD36Yz1MrIeF9bDYpR4ZTSChuiBLgCwPbHs+QdXRkyfSqgHdAGQZqAopqAsrUHWzgxpFWmktoxpo79bhViTURV2oi7rgViS0d+vIqEZR2pAdlKouUBdWUBtxIeKXEU8a6O7Vi9IGwByU8aSBiF9GbcTFerAerEc/rIeJ9bCwHhbWw+LYYJdWDWg6oMiASzETsMctF7Uz9O8EtRHztwpZMv9erM5w6KDM/lYRDihFHZz9B2X2tzzWg/VgPUysh4n1sLAeFtZjIEcGO1UDNB1wKYDHNfC0ZrE6w1CdIKtYnWG4QZlVrME51KDMYj0srIeJ9bCwHhbWw8R6WJxUj/4cGewMYYY67zDXvCe7M4zUCbImuzOMNiizJntwjjQos1gPC+thYj0srIeF9TCxHhYn1GPQ95vUdy9TsjR8qMuarM6QTyew2jk5nSHfQZk1WYMzn0GZxXpYWA8T62FhPSysh4n1sNi5HkN+r0l75zLmznMu8ER3hkI6QdZEd4ZCB2XWRA/OQgZlFuthYT1MrIeF9bCwHibWw2LHegz7fSblXW1kojrDWDpB1kR1hrEOyqyJGpxjGZRZrIeF9TCxHhbWw8J6mFgPi53qMeL3mPB3tKHxdobxdIKs8XaG8Q7KrPEOzvEMyizWw8J6mFgPC+thYT1MrIfFDvUY9f0n9N1sbKydYSI6QdZYO8NEDcqssQ7OiRiUWayHhfUwsR4W1sPCephYD0sl1yOv956wd3KAQjvDRHaCrEI7w0QPyqxCB+dEDsos1sPCephYDwvrYWE9TKyHpRLrkff7Tsi7OEi+nWEyOkFWvp1hsgZlVr6DczIGZRbrYWE9TKyHhfWwsB4m1sNSSfUo5Ioxg90YjNYZJrMTZI3WGSZ7UGaNNjgnc1BmsR4W1sPEelhYDwvrYWI9LOVYD1Ub2AbDMJDRCni/CW6fYwzXGYrRCbKGG5zFGpRZww3OYgzKLNbDwnqYWA8L62FhPUysh6Xc6tHZo8MwzDYYhoG0WuB7TUL7HOPQzpAuYifIOnRwplWjqIMy69DBWcxBmcV6WFgPE+thYT0srIeJ9bCUUz1cCqAZgGYIpFXzMqy7gMPAYDdO2c6Q0QTa4zpcMorWCbJynUEG2uM6MlpxB2VW/8FZ7EGZxXpYWA8T62FhPSysh4n1sJRLPapCCiSY69obAvC4AbmAcjDYEREREdkEg904Za/Be1wS6iIKNAOTstDwSLL3RGgGUBdR4HEVZ6HhQ/U/fT6ZCz+PhPWwsB4m1sPCelhYDxPrYSmXenT16BAwlz+VJSCjAkYB5WCwG4dDb6z0TtJCwyM59EZXr1su2kLD/R16T8RkLfw8EtbDwnqYWA8L62FhPUysh6Wc6qHpgEsGXLIErxuQJEAt4DBUbLD7wQ9+AEmScOmll5bk+w83W2aiFxoeyXCzl4q10HDWcDe6FnNwsh4W1sPEelhYDwvrYWI9LOVWj+qQAlk22yDLMrzuwt6rIoPdSy+9hP/6r//CokWLSvL9R5sCXYzOMNqU9GINztFmLxVjcLIeFtbDxHpYWA8L62FiPSzlWA+3a2AbZFmGx5X/+1VcsOvp6cE555yD//7v/0Z1dXXRv3++z7WZzM6Q73OGJntw5jslfTIHJ+thYT1MrIeF9bCwHibWw1JJ9ShkYm7FBbsNGzZgzZo1WLVqVdG/d6EPK5yMzlDowyMna3AW+pyhyRicrIeF9TCxHhbWw8J6mFgPSyXWI18VFex++9vf4tVXX8WWLVvy2j6dTiMejw/4GKuxPoF6IjvDWDvBRA/OsT48ciIHJ+thYT1MrIeF9bCwHibWw1LJ9chHxQS73bt349///d/x61//Gj6fL699tmzZgmg0mvuYPn36mL73eJcVmYjOMN5OMFGDc7xPBJ+Iwcl6WFgPE+thYT0srIeJ9bDYoR6jqZhg98orr2D//v047rjj4HK54HK58NRTT+HHP/4xXC4XdH1wkTdt2oRYLJb72L17d8Hfd6LWihtPZ5ioTjDewTlRy7yMZ3CyHhbWw8R6WFgPC+thYj0sdqrHSCom2J188sl444038Prrr+c+li5dinPOOQevv/46FGVwR/F6vYhEIgM+AHOZjnxM9ALAY+kME90Jxjo4J3rtvrEMTtbDwnqYWA8L62FhPUysh8WO9RhOxQS7cDiMhQsXDvgIBoOora3FwoULC3ovQwDpUTrkRHeCrEI6w6TdWFng4JysBZkLGZysh4X1MLEeFtbDwnqYWA+LnesxlIoJdhNJlgBNHz7cTVYnyMqnM0z6Nfg8B+dkDcqsfAYn62FhPUysh4X1sLAeJtbD4oR6HKqig92TTz6Jm2++ueD93C7ApZjhLqMNLMJkd4KskTpD0U7XjjI4J3tQZo00OFkPC+thYj0srIeF9TCxHhYn1aO/ig524+F1y3ApgG4Amm4WoVidIGuozlD0ZD/M4CzWoMwaanCyHqwH62FiPUysh4X1sLAeAxWwSIX9eN0yhDBgGEBXjw7NEEXrBFlmZwDau3W0x8xZHZqBonaC7ODsiOto79bhdRlIqaJogzIr+73iSQMZTSCtsR6sB+uRxXqYWA8L62FhPSyOPWOX5XFJkCTzfjshUNROkGuDW0ZtWIGqA6oO1Ba5EwDW4BQCSKkCPrdU1EGZFQ4o8LklpFTBerAeAFiP/lgPE+thYT0srIfJkWfshAAMw7z8qukChjCvg8MAYj06gv7idkghBDp79FybOnt0VIcAqcgdMpG02pDMCCSSOtxF7pCqaiCZMUM2wHqwHqxHf6yHhfUwsR4Wu9RD1QSEEDAAwMi+b/5tcGawg/nIE8MQ0HRzlmy4r/gZXUAkdbiU4gwKIcwJHAPaoBmI9xq5s4nFoOkCqi4Q9MlQZAkZTSCRNuDRAblIY9MwzJ/d65bhcUnQDcF6sB6sRx/Ww8J6mFgPi53qkT3h1H/zQta3cGSwq4+44fcp6Ezo8LrNe+3+aVkU0WDxTx0TERERZcUSOv74Ugxetwy3y4x38e48V1aAQ4MdhEAsaSb7SEBGWhWIBhXUhJ15OIiIiKh8uBQJbpcET1+wywa8fDhy8kRXrzUFutj3IRARERFNFkcGO1eRp0ATERERFYMjg11VkKGOiIiI7MeRwY6XX4mIiMiOHBnsiIiIiOyIwY6IiIjIJhjsiIiIiGyCwY6IiIjIJhjsiIiIiMpYIqXnvS2DHREREVEZEf0Wh+3u1ZFIGXnvy2BHREREVEYymoAQAt29OuJJA0Ff/nGNi6MSERERlREhBPZ3aZBlCRG/DENX8t6XZ+yIiIiIykj/1bGC/sKiGoMdERERURnRhYDXLUGSgI64DtH/prtR8FJsHpJ6Eu8k3xnw2gL/AvgVf4laRERERHblViSE/AogBNq7dSTSnBVLREREVJFcinkp1uOWURdWoOn5n7FjsCMiIiIqUx63jKoAJ08QERER2YLbnX9cY7AjIiIisgkGOyIiIiKbYLAjIiIisgkGOyIiIiKbcGSwU9X8F9MlIiIiqhSODHZdvToyDHdERERkM44Mdi5FQns3wx0RERHZiyODXVVQgbsv3PGyLBEREdmFI4OdJEmojZjhrjOhw2C2IyIiIhtwZLADALkv3LkUCRmNyY6IiIgqn2ODHWCGu+qQAkmSSt0UIiIionFzdLAjIiIishNHBztDCHT26BBClLopREREROPm2GBnCIGOuA5NF/C4HHsYiIiIyEYcmWhEX6hTdYHqoALZkUeBiIiI7MaRkaYrYYa6urACt9uRh4CIiIhsyJGpRusLdR6GOiIiIrIRRyabqgBDHREREdmPI9MNL78SERGRHTHhEBEREdkEgx0RERGRTTDYEREREdkEgx0RERGRTTDYEREREZUxVTXy3pbBjoiIiKhMZVQDXb163tsz2BERERGVEU0XAMxQ196tw6VIee/rmqxGEREREVHhVF2gq0eDZgBuRUIgqOS9L8/YEREREZURRZKQVgWEAGojCiQp/zN2DHZEREREZcQQIvf3RDL/iRMAL8USERERlRVJktBQpSCjCsSTBiQj/8kTDHZEREREZcTjkiBJEsIB88Jqawcfd0JERERUkfrfUhcOKAj68o9rDHZEREREZSzo46xYIiIiIsdhsCMiIiKyCUdOnuhJZyC5zNOami6gasB7+zoR6hr6OTEZkcZe9AAA3IoMl0tBh55ClVeBz+2CS2E+JiIiIlNa1ZFSNfMjoyOpatD0/CZA9CQFkhnz4cTZFSd60pm8v7cjg10ipUHI5kEyDMAwJGzdG4fbPfRB16UMegM9A15r6f0QivAAMMOez+2Cz2MGvYN6N3am9+Pj9YejIRDOfc3PEEhERFRxhBDIaAaSGRUpTUcqoyGl6khmNKRVDclskMuYf/Z/Dl2hVFVGMhNAWhOQ+yJDb0rLe39HBrtxHO8hqboBVc+gO2V+/mDsZfw5/hr8271Y7J+J4wKzcbi3GYokwyXLCPk8aIz60RgNoiESgNed/02RRERENLniyQzaYgm0xnrREU8iOc6wVkyODHaaLkOIgdOJJ5KAgCEEVEPDcz1b8dfEe6h1hbE8cDiODcxGk1GFrt4U3t3XCQCoCfrQWBVAUzSI+kgAbp7VIyIiKppESkVrrBdtsQTaYr3ozailbtKYOTLYCSFB1WS4XYUt09FfxtAgi6GToS4MSJKEkOIDAKhCQ4fWjQdjL+OR7tcxy9OI5cG5ONo3A0HFh4OJFA4mUnin5SBkSUJtyIfGqiAaowHUhf1wyQx6REREEyWZ0XIhrjXWi55U/vewlTtHBjuXS8+FO0UuPNzt6u3EnXufhi6G31f0O2XrllyIKi4IIZASKt5NteDdVAuCim/QpVpDCBzoTuJAdxJv7gYUSUZdxI+maACN0SBqQ17IDHpERER5S6s69sd70RpLoK2rF7FkutRNmjSODHayBLhdOlRNgabLUOTCrpv36Bn0GCn4Jc+w24QV/6DXJEmCX/LAL3ugCwNJIzP0pVp3VW4fXRh9v1UkAByAW5FRHwmgKRrAtJowwv7h20BEROREQgi0xXux92AP2mK9OJhIlbpJRePIYAcAsmyGu4yqwBjj/ZB+yQNpjDfqKZI86qXaJYE5cEsDS6TqBvZ29mBvZw9e3bUfjdEgZjdEcVhtmDNuiYjI0RIpFTv2d+H9/TEk0pV7n9x4ODbYAWa4c7l0GHppA1H2Uq0mdHTqCbyR/AAtagd8kgeLA7NG3Dd7Nu/l9xXMqI9gbmMUtaHBZwuJiIjsSDcM7Onowfb9XWjtSpS6OSXn6GAHmJdlh5kDURRCCCRFBilDhSRJqFaCODYwB0sCszHL05j3+6i6ju2tndje2omqgA9zGqOYWR+Fj49SISIiG+rsSWH7/i7sOhBHRtNL3Zyy4fhgp+vSmJ9r120kAQydCj2SCz7ZPeTXhBBQhY5ekYYhBLyyGwv9h2FZYC4W+g+DTx7ffXNdvSm8sjOF13btx7SaMOY0RtFUFYQ8Wc93ISIiKoK0quOD9ji2t3Wh00H3zRXC0cFO0yRougyXUliyq3X7Mc1dC22YWbEZoaJTSwwKdrow0GukoQodLklGk7u6b8LELNS5ImP+OYZjCIEPO+L4sCOOgMeN2Y1RzG6IIuzjhAsiIqoMQgi0xnrxflsXdnf0jPhECqqgYLdlyxb87//+L7Zu3Qq/34/jjz8eP/zhDzFv3rwxvZ8V6oyCH1Q8xRfBf0w5I7ek2KH+EHsJf46/DqDfpVahQoKEsOzD8YE5OC4wC7M9TUU7i9abUfHm7na8ubsdjdEg5jRGMb2GEy6IiKg8JVIq3j8Qw462LsdOhBiLigl2Tz31FDZs2IBly5ZB0zR885vfxCmnnIK3334bwWCwoPfSdSvUybKAYUx8uNKFgS49AQMCXsmNhb6Ju9Q6XtkJF25Fwaz6COY11yDCx6YQEVGJCSHQ0tmD9/Z1Yh8nQoxJxQS7hx9+eMDnd9xxBxoaGvDKK6/g4x//eEHvpeky/IoBl0vAmIQzugoU+GQ36l0RLA8cjsWTdKl1vFRdx3utnXivtRPTakJYMLUWDZFAqZtFREQOoxkGdu6PYeveg4gn7bMKRClUTLA7VCwWAwDU1NQUvK+rL9RNlo+HjsRRvmmY7qmvmAkLew72YM/BHtSF/ZjfXIPpteGKaTsREVWmtNp3gmFfJ1KqVurm2EJFBjvDMHDppZfiox/9KBYuXDjsdul0Gum0tWxIPB4HANSE3QiHzIcDa7pARgWWzA4jEhj6frOMSOEDPQEIQDUMaLqBmnAV9IyCpKohpepIZTRofaf/Qoov9/DhStPencSz77Yg5PNgQXMNZjdEeR8eERFNqO5UBltbDmLH/hj0ybh0ViJetwKfywWfxwWfW4HP44LfZf6Z7/+l8V4DT8bT8LgBl2KeYHEj/5NRFRnsNmzYgDfffBPPPvvsiNtt2bIFV1999aDXfW4XAh7zR89oAhAGplaHUBMe+nAkdTe6kwOD2gJ/A/yHLBum6gZSmb6gp2pIqRqSh3yeyujoSakQBRSpFHpSGbz0fiv+b/cBHN5UjSOaquH3VGR3ISKiMtHencQ7LQexu6O77P8fzHIrMoJeTy6o+dwKfG4XfG4X/J6+v3sU+FzKhKzlfrBbg8elwueW4XGZwU515///b8X9T33xxRfjwQcfxNNPP41p06aNuO2mTZuwcePG3OfxeBzTp0+ftLa5FRluvwfhURZ+UHUdbbFk3ySG3rJ+Fk9a1fHm7na8s+cgZjVEsGBqLSdaEBFR3oQQ2NPZg3daDuJAvLfUzRmVSzbXZG+sMtdlrw76KurWpIoJdkIIfPWrX8Xvfvc7PPnkk5g1a+SltgDA6/XC6/UWoXWFcSsKptWEMK0mBMAMT9mQ1xpLlOWNo7owsL2tC9vbujC1JoQjm2vREOVECyIiGlqlTIiQJRn1YR8aq4JojAZQF/JNyJm3UqmYYLdhwwb85je/wQMPPIBwOIzW1lYAQDQahd9f2Wujet0KDquL4LA6c+Zsb0ZFW6zXDHpdibJ7fk/LwR60HOxBXciP+VM50YKIiCwpVce2Mp4QIUFCbciHxmgQjVUB1If9trqXvGKC3a233goAOPHEEwe8fvvtt2PdunXFb9AkCnjcmFUfxaz6KADzfjfzbJ4Z9pKZ8gh67T3WRIv5U6oxp7HKVoODiIjy153MYOve8pwQUR30oSkaQGM0iIaoH26lstZRFwWsfVoxwa6QH8puQj4PQj4P5jRWAQBiyTT2dSbw/v5YWdyf15PK4OWdbfi/3e04oqkaR0zhRAsiIqdojyfx9t4O7O7oLnVTcmRJwtSaEGbURdAUDcLrrqwg158hBLoSet7b83/fChT1exH1ezG/uQYHe1LY0daFXQfiyOj5F34yZDQdb+5pxzst5kSL+VNrEPWX3z2OREQ0PkII7DnYg3f2duBAPFnq5uRE/V7MaazCrPoIfBV8giF7wtMQAh1xHZpuwzN2NLSakA81oSYcO7MBew52Y3tbDG2x0i7DcuhEiwXNNWiMFrbsGxERlR9NN7DzQHlNiHArMmbURTCnsQp1oz2WokJkNAMuFYglBFRdoCqQ/xlHBjubcCkyZtZHMbM+ip5UBjv2x7CzLYZEie/Hy060qA35sYATLYiIKpI1IeIgUmpprw5lNUQCmNNQhcPqwra7v1uSJHT26JBlCfURBclU/j8fg50NhXweHHNYPY6eXofWrgR27I9hT0cPDFG6m1k7ONGCiKjidCczeGfvQbxfJhMi/B43ZtWbZ+f4TNWhMdjZmCxJaK4Oobk6hLSqY+eBGHa0xdDVW7oJF5xoQURU/sppQoQsSZhaHcLsxio0VwUhy/a/6iOEQHVIQTIj0N6tw4P8QzX/R3UIr1vB/OYazG+uQUdPEjvaYth1IA61RBMu+k+0mNkQwYLmGkQDnGhBRFQquQkRLR040F36CRERvwdzG6swsz7quBMAHpcMj1tGwAd0xHV0dXNWLI2gNuRHbciP42Y2lPwmWF0Y2NHWhR1tXZhaHcLcpmrH/EZGRFQOsld03tvXie5U6SdETK0OYcFUZ0+6yy58IUsSaiMKEr35/5/IYOdgLkXG4U3VmNtY1beOX2mnrbd09qClswd+jxuz66OY0xhFmPdQEBFNOCEEWrsS2F4G92ADgCLJfEzWMGRJQlWQs2KpAJIkYXpNGNNrwmiPJ/HO3oP4sCNesvYkMyreamnHWy3ttp71RERUbD2pDN7fH8P7+2NlsVylx6Xwfus8SAU8TYJHkQaoi/hxQmQqupP1ZbE0zP54L/bHe/HyTvs9p4iIqBg0w8Cejm7saIuhtcTPOc1yzBMSUgeAlt8PfG3qGYCvftK+JYMdDSns92DZnCYsOqwe75XBs4tU3XrocTTgxZyGKsxqiMDnZhcmIhpKOa1MlMVnmk4+/q9II/K6FRw9vQ4LmmtKPtEiK9abxqu72vD6B/sxtSaEOQ1VmFId5D8SROR4aVXHrgMx7CiTtcSzptaEcGRzLRqigVI3xfYY7Cgv/SdatHT24O2WgzgQ7y1pmwwhsLujG7s7uhHwuDGrIYo5DZxwQUTOYk6E6MWO/V3Y09EDvcQTIbI4IaI0HBnsEikd0XCpW1GZJEnCtJowptWE0d6dxDstB7G7oxsC+S9QPBl6Myre2tOOt/a0oy7kR2M0iMaqAOrDfnvfv0FEjtSbUdEW60VbrBetnYmSLx/Zn8el4Igp1TiiiRMiSsGRRzyRMtDdqyNcwKK6NFhd2I8T5k9FdzKDrX1LzmhlsORMe08S7T1JvNUCyJKM+rAPjVVBNEYDqAv5IMsMekRUWdKqjrZYwgxysUTJb4kZSsjnwYLmGsxuiPIX6hJyZLAL+mTEk2YA8XrY+car/0SLba2deHdfJ1KqVupmAQAMYaAt3ou2vsvGLllGfSSAxqoAmqIBVAd9vDePiMqOqutoiyVzYa6c7pc7VF3Ij/mcEFE2HBrsFMiKGe4CuoCisCNOBK9bwcLpdZg/tQY795fHRItDaYaBfV092NfVAwBwKwoao32XbvuCHhFRsWm6gQPdSbR19aItlkBHT6rkt7iMZlpNCAum1qIhwgkR5cSRwQ5A7jJsV0JH0MezdhPJJQ+caPFOy0HsL/FEi+Gouo49B3uw56AZ9HxuFxqi5tm8oNcNv9sFr0eBz+XiMmdENG6abiClakhldCQ1DV2JNNq6EjjQnSr56g/5MCdERLFgag0inKhWlhwb7AAz3Gm6QEYv79+KKtWgiRZ7D2J3e+knWowkpWr4sD2OD9sHr7zhcyvwud3mnx5X7k+/ywWfR4HP3fenS+F9fEQOoukGkn1hLaVqSKkakhkNKdX6PPs1VS//8DYUr7tvhYimavg4IaKsOb46Qb8CPVEeD260s7qwHyfMm4ruGX0TLdrKY6JFIcx/pPPrK163eZbP7WLAI7IlAaQ0HamMVnH/lhWCEyIqj+ODnaoaMET5nkGym7DPg2Wzm7BoevlNtJhIaVVHuoQrdRARjUdd2I8FzTWYxgkRFcfRwS6jGuhM6PC6+VtIsfWfaLHrQBzvtHSU3UQLIiKnmV4TxvypNZwQUcEcG+wyqoH2bh0uRYLHxd9GSsUly5jbWIU5DVG0xnrxflsXdpfRk9OJiOwu4HFjdkMUs7lyjy04MtipqoGEqsOtSIgEZKRVXootNUmSMKUqiClVwbJd65CIyC7kvsltcxqjaKriWtt24shg19WrIxqWUBtRoOkAyniWphN53QrmNddgXnMNDvaksGN/F3YdiCOj8Z41IqLxqAr4MLsxiln1EfjcjowAtufIqroUM9SZv6Ew1JWzmpAPNaEmHDuzAXs6urGjLYbWWKLUzSIiqhhuRcGMugjmNEZRF/aXujk0yRwZ7KqCCk87VxiXLGNmfRQz66PoSWXw/v4Y3t8fQyJdPgtfExGVk8ZIALMbq3BYbZiPKnEQRwY7iaGuooV8Hiw6rB4Lp9ehrSuBHftj2N3RUxFPbScimkz+vokQczgRwrEcGezIHmRJwpTqEKZUhzjhgogcS5ZkTK0JYk5DFaZUBbn8ocMx2JEt9J9w0ZtRsT/Wi9ZYL9pivehJ8fl4RGQfEiTUhn1ojAbRGA2gPuznpVbKYbAj2wl43Ln78QCgJ5VBW1/Ia431IpnhfXlEVFmqgz40RQNojAbREPXDrSilbhKVKQY7sr2Qz4OQz4M5jVUAgHgyg9ZYoi/sJbj0FxGVnajfi8aqAJqiQTREAvC6GeQoPwx25DgRvwcRvwdHNFVDCIGu3nTf2bwE9seSUHUGPSIqrpDP03dGzvzwe9ylbhKVkUQq//+XGOzy4Ff8OC50XKmbQZNAkiRUB32oDvowv7kGhiFwMJFCe3cSyYyGZEZDStWRUvv+zGgQfPYhERXIJcvweVzwuRX43C7zw6Mg7PWgMRpA0McgRxbR77+Z7l4diVT+T31gsCPqR5Yl1IX9wz7EUwiBtGYglVGRVHWkVQ3JvsDXP/xlv2YIhkAiu8qGNX82rGWDm8cFv0uB1+OCv+91Nyc3UAEymoDPI9DdayCeNBD05d9/GOyICiBJUt9v3AqqRtlWCAHdYLAjsiXJDHZEk0EIgf1dGmRZQsQvw9Dzv8eSwY5okkiSBJfC50kREVFh+i95GvTL6O4pYN/JaRIRERERjYUuBLxuCZIEdMR1iAJu6+EZOyIiIqIy4lYkhPwKIATau3Uk0vnPiuUZOyIiIqIykr2Nx+OWURdWoOn5n7FjsCMiIiIqUx63jKpA/pMnGOyIiIiIypjbnX9cY7AjIiIisglHTp5oi/Wiu299UMMADEPC71/ZAbc7/yc7ExEREY0kiDgWyfEBr/1f6/tIoH3YfVRVxsGeAGRZIPuoxN7edN7fk2fsiIiIiGyCwY6IiIjIJhwZ7LjKExEREdmRI4OdpikweDsdERER2Ywjg50kCagMd0RERGQzjgx2LsWwwh0vyxIREZFNODLYSRLgdpnhTtPyf5ozERERUTlzZLADBoY7w5BK3RwiIiKicXNssAPMcOdSDIC5joiIiGzA0cGOiIiIyE4cHeyEADRdBjiBgoiIiGzAscFOCEDVZAghQZaZ7IiIiKjyOTLY9Q91Lpde6uYQERERTQhHBjtNN0Od26VD5sQJIiIisglHBrtcqHPkT09ERER25cho42KoIyIiIhtyZLzh5VciIiKyI0cGOyIiIiI7YrAjIiIisgkGOyIiIiKbYLAjIiIisgkGOyIiIqIyZhSwQBaDHREREVGZMgxA05S8t2ewIyIiIiojQpjPZTMMQNUUSFL+p+xck9UoIiIiIiqcEICmyRCQIEkCLsXIe1+esSMiIiIqI5IE6IYEIQC3y4BUwMIKDHZEREREBRGIoAOzpLchQ5/Qdz5M2YZmz24A5uVXXS9suSxeiiUiIiLKgxdJNEs7MV3ejmqpHQISOrV6dKF+Qt5fho7j3M9iSaOOmFaFrYkF2NozD0ndm/d7MNgRERERDUOGjgapBdOkHWiSP4QbaQASdKFAlnRIKOBZJKMS5vsJoMp1EMdXPYtlkRexK9GM7+bd3grzs5/9DDNnzoTP58OKFSvwt7/9rdRNIiIiIlsxL7UeKb+Ef1TuwT8of8Z0eRtkoSMpAkiKIDS4AQAuSYUb6SE/pCEu00owht3ejQwAQBcKEnoIPXoIAhLmBnfl3fKKOmN39913Y+PGjbjtttuwYsUK3HzzzVi9ejXeffddNDQ0lLp5REREVMEOvdSqQIMhZKSFDwYGPktOwDyb9w/KI8O+X1r4EBdVAKz75BbJL6BObh12H1lo0JC99CohI7xIGR4AvXn9DAWfsVu7di2efvrpQnebEDfeeCPWr1+P8847D0ceeSRuu+02BAIB/OIXvyhJe4iIiKiyydDRJH2IpfIT+EfXPVisPItaqRW6UNArgkghMCjUAYCAYgY+IQ35IQsNXik5aD+vlIQLmWH3U4UHGeEZ889T8Bm7WCyGVatWYcaMGTjvvPOwdu1aTJ06dcwNyFcmk8Err7yCTZs25V6TZRmrVq3CCy+8MOQ+6XQa6XQ693k8Hp/0dhIREVH5CyKGGfJ7mC5tR0DqASCgCxeSCCDf81563+XYoUjZ++WGYAgZGoYObwISzDN8Y7t3r+Azdvfffz9aWlpw4YUX4u6778bMmTNx2mmn4b777oOqqmNqRD7a29uh6zoaGxsHvN7Y2IjW1qFPaW7ZsgXRaDT3MX369ElrHxEREVWO+fJrOFz+P0SlgzCEhKQIIgMfKnD6wQBjan19fT02btyIv//973jxxRcxd+5cnHvuuWhubsZll12Gbdu2TXQ7x2TTpk2IxWK5j927d5e6SURERFQGXjc+ipf1k/CBcTiEpCAgJeBHAgpUjPVsWTkY1+SJffv24dFHH8Wjjz4KRVHwT//0T3jjjTdw5JFH4rrrrsNll102Ue1EXV0dFEVBW1vbgNfb2trQ1NQ05D5erxde7+Bnv4jKrRcRERFNAB1utIjZaBGz4Td6MFXaicPkbYhInfAiDV0oyMADMcT9dSYBD1LDXm5VJD03c/ZQLkmDVww9GUJIEjQE+i7JFq7gYKeqKn7/+9/j9ttvxyOPPIJFixbh0ksvxb/8y78gEokAAH73u9/hS1/60oQGO4/HgyVLluCxxx7DmWeeCQAwDAOPPfYYLr744oLeS9NlCIGCluggIiIie0oihO3iaGzXF6IaBzBN3oFp8g74kIQEAVW4ocKD/rNbZRhQJAM9Igp9qPAngLTwD3q5UzQMGwYlCAQRh1tSD5lAkf8ZqYKD3ZQpU2AYBs4++2z87W9/w+LFiwdtc9JJJ6GqqqrQtx7Vxo0bsXbtWixduhTLly/HzTffjEQigfPOO6+g9xFCgqrJcLvyX1SXiIiI7E5CJxrQaTTgbWMpmqTdmCZtR6PcggASEEJCBh7offFJQMLL+onoxNCPXAsijkXy8wNe22YsQgKRIbeXoeGflF/lgp8CDV45DVnOf9mygoPdTTfdhM997nPw+XzDblNVVYWdO3cW+tajOuuss3DgwAFcddVVaG1txeLFi/Hwww8PmlAxGpdLz4U7RWa4IyIiooFGu1RriOzs1YnnkTPwSBkIIaNbD+Ot+BwAz+S1b8HB7txzzy10lwl18cUXF3zp9VCyBLhdOlRNgabLUGTedEdERERDG+5SrQJ96MuwYyZBhwuaoWBnajZ2pI/AnvR09PRqmLRgZxeybIa7jKrAYK4jIiKiUQ28VBtBJ+KombB3N6DgqfQa7DpQhwx8kHPPLtHyfo/KfljLOMmyeVm2gmc1ExERUQnocPfdWzexl2NjohYpY/Cki3w5OtgB5mVZzo4lIiIiO3B8sNN1ic+1IyIiIltwdLDTNAmaLvOMHREREdmCYydPZEOdSzEY7IiIiMgWHHnGTtetUKcovA5LRERE9uDIYJcNdS4XQx0RERHZhyODHUMdERER2ZEjgx0vvxIREZEdOTLYEREREdkRgx0RERGRTTDYEREREdkEgx0RERGRTTDYEREREZWxQpY+ZbAjIiIiKlNCmM/fzReDHREREVEZEgJQNRlC5L/2qWPXiiUiIiIqR4YhAZKAoZuhzuXS896XZ+yIiIiIyokEqKoCw5DgdumQ8z9hx2BHREREZBcMdkRERETlRAButw5ZFlA1BQZnxRIRERFVJlkWkCXA7TIgSQKapuS/7yS2i4iIiIjGSOoX7vLFYEdERERUpiQJcClG3tsz2BERERGVMYmzYomIiIich8GOiIiIyCYcufJEYzSAaNgPAMhoAqmMgTOWTEFN2JGHg4iIiCZD6gDQ8uaAl2ZPnQ346ofd5WC3hnuf6YTPI8PjMq/BxtycFUtERETkOI4MdolU/muuEREREVUKhwY7A929DHdERERkL468qSzokxFPms+E8XocmW2JiIjIhhwa7BTIihnuArqAohTwgBgiIiKiMuXIYAcA4YA5w6QroSPo41k7IiIiqnyODXaAGe40XSCj578GGxEREVG5cvypqqBfgVLIWh1EREREZcrxwU5VDRiCZ+yIiIio8jk62GVUA50JHRLP2BEREZENODbYZVQD7d06XIqUW7KDiIiIqJI5cvKEqhpIqDrcioRIQEZa5aVYIiIiqnyOPGPX1WuGutqIwsuwREREZBuODHauvlAnM9QRERGRjTgy2FUFGeqIiIjIfhwZ7Hj5lYiIiOzIkcGOiIiIyI4Y7IiIiIhsgsGOiIiIyCYY7IiIiIhsgsGOiIiIqIwlUnre2zLYEREREZUR0W9BrO5eHYmUkfe+DHZEREREZSSjCQgh0N2rI540EPTlH9ccuVYsERERUbkSQmB/lwZZlhDxyzB0Je99ecaOiIiIqIz0Xx0r6C8sqjHYEREREZURXQh43RIkCeiI6xD9b7obBS/FEhEREZURtyIh5FcAIdDerSOR5qxYIiIioorkUsxLsR63jLqwAk3P/4wdgx0RERFRmfK4ZVQFOHmCiIiIyBbc7vzjGoMdERERkU0w2BERERHZBIMdERERkU3wcSdEREREk8FXD8w5v6jf0pFn7FQ1/8V0iYiIiCqFI4NdV6+ODMMdERER2Ywjg51LkdDezXBHRERE9uLIYFcVVODuC3e8LEtERER24chgJ0kSaiNmuOtM6DCY7YiIiMgGHBnsAEDuC3cuRUJGY7IjIiKiyufYYAeY4a46pECSpFI3hYiIiGjcHB3siIiIiOzE0cHOEAKdPTqEEKVuChEREdG4OTbYGUKgI65D0wU8LsceBiIiIrKRikg0u3btwvnnn49Zs2bB7/djzpw52Lx5MzKZzJjeT/SFOlUXqA4qkCviKBARERGNrCLWit26dSsMw8B//dd/Ye7cuXjzzTexfv16JBIJ3HDDDQW/X1dCh8crUBdWAEmCnuGsWCIiIqp8FRHsTj31VJx66qm5z2fPno13330Xt95665iCnaYLNIcVeNwyMhrvryMiIiJ7qNiLkLFYDDU1NWPatypghjoiIiIiO6mIM3aH2r59O37yk5+MerYunU4jnU7nPo/H4wAAN0MdERER2VBJE84VV1wBSZJG/Ni6deuAfVpaWnDqqafic5/7HNavXz/i+2/ZsgXRaDT3MX369Mn8cYiIiIhKqqRn7L72ta9h3bp1I24ze/bs3N/37t2Lk046Cccffzx+/vOfj/r+mzZtwsaNG3Ofx+NxhjsiIiKyrZIGu/r6etTX1+e1bUtLC0466SQsWbIEt99+O+Q8nlHi9Xrh9XrH20wiIiKiilAR99i1tLTgxBNPxIwZM3DDDTfgwIEDua81NTWVsGVERERE5aMigt2jjz6K7du3Y/v27Zg2bdqAr3E5MCIiIrIzVc3/ebsVMT103bp1EEIM+UFERERkVxnVQFevnvf2FRHsiIiIiJxC080TVxnVQHu3Dpci5b1vRVyKJSIiInIKVRfo6tGgGYBbkRAIKnnvyzN2RERERGVEkSSkVQEhgNqIAknK/4wdgx0RERFRGTH6zSFIJPOfOAHwUiwRERFRWZEkCQ1VCjKqQDxpQDLynzzBYEdERERURjwuc1nVcMC8sNraYbPHnRARERE5Rf9b6sIBBUFf/nGNwY6IiIiojAV9nBVLRERE5DgMdkREREQ2wWBHREREZBMMdkREREQ24chgJ/o9+I+IiIjILhwZ7LoS+oCnOhMRERHZgSODnaYLdMQZ7oiIiMheHBnsqgIK1L5wx8uyREREZBeODHZut4y6sBnuOnt0MNsRERGRHTgy2AGApy/cabpARmOyIyIiosrn2GAHmOGuOqjwciwRERHZgqODHWBelpX7r7ZLREREVKEcH+wSSR06z9gRERGRDTg62HX36uhJGXArPGNHRERElc9V6gaUSnevjnjSQMgnQ2GwIyIiIhtwZLBLpHQI2UDEL8PrkZHKGKVuEhEREdG4OfJSbCJlhrpwQCl1U4iIiIgmjCODXdDHUEdERET249Bgx1BHRERE9uPIYEdERERkRwx2RERERDbBYEdERERkEwx2RERERDbBYEdERERUxkQBS58y2BERERGVKUMIdCX0vLdnsCMiIiIqI0bfgliGEOiI69D0/M/YOXJJMSIiIqJyldEMuFQglhBQdYGqAhZV4Bk7IiIiojIiSRI6e3RkNIG6sAK3O/+4xmBHREREZBMMdkRERERlRAiB6pACj0tCe7cOVTXy3pfBjoiIiKiMeFwyPG4ZtREFbkVCVy9nxRIRERFVJLkvncmShNqIApci5b/vJLWJiIiIiMZJliRUBTkrloiIiMgWJIln7IiIiIgch8GOiIiIyCYY7IiIiIhsgsGOiIiIyCYcGewSqfyfB0NERERUKRwa7Ax0F/CwPyIiIqJK4Cp1A0oh6JMRT5rLc3g9jsy2REREZEMODXYKZMUMdwFdQCngic5ERERE5cqRwQ4AwgHzKc5dCR1BH8/aERERUeVzbLADzHCn6QIZXZS6KURERETj5vhTVUG/AqWApTqIiIiIypXjg52qGjAEz9gRERFR5XN0sMuoBjoTekGL6xIRERGVK8cGu4xqoL1bh0uR4HEx2BEREVHlc+TkCVU1kFB1uBUJkYCMtMpLsURERFT5HHnGrqvXDHW1EYWXYYmIiMg2HBnsXH2hTmaoIyIiIhtxZLCrCjLUERERkf04Mtjx8isRERHZkSODHREREZEdMdgRERER2QSDHREREZFNMNgRERER2QSDHREREVEZS6T0vLd15soTmkBGE7m/a7pALJH/QSMiIiKaDLGEDlUTUGQzpySSOrqTDHYjOhBXkVDNH90QAkIAf3wpBpdS+GNQNF1A1QXcigRFlpDRBIQQ8LhkyEU6H2oYQEYzIEnmure6YbVpLD/TWAiBAT87MLBNxXrCDOthYj0srIeF9TCxHhbWw1Iu9UhmDCRSBhRZhyHM19QCzj05MthJAOR+HUUA8LpluF1j6z2JpI6elGG+twRUBxW43cW9yu1Wgc6EjlTG/DzkkxH0K0Vtg88j0Nlj/WbhdkmoDspFf24g62FiPSysh4X1MLEeFtbDUg71kCSgO2nA6Atzigy4CmiCM4OdBMjZZGcABsxO5BljsHOFFPRmzFOmPrdU9AEBAB6XgpQqkFLNdkRDpVhdQ0J1CGiPm72xOqTAW+QBAbAeFtYji/WwsB5ZrEcW62Eph3oAMmQJMMxmwOMCNLWQvWlcDCHQEdchSWYnSKkC3b3Fv1+vu1dHShXwuc3T1h1xHYYQRW1DRjXQ0a3DrQBuBejo1pFRjaK2gfWwsB4W1sPEelhYDwvrYSqXeiRSOoQwryxKANKqebk6Xwx245DtBKouUBdWUBtxIeKXEU8aRe0M3b064kkDEb+M2ogLdWEFqi6KOjgzqoH2bh1uRUJd1IW6qAtuRUJ7EQcn62FhPSysh4n1sLAeFtbDVE716EkakGXA65bgcWfvQcz/PRjsxujQTuDpO2UcDihF7Qz9B2U4YJ4y9rjlog7O/oOyNmKewpcl8+/FGpysh4X1sLAeJtbDwnpYWA9TudUj5JdzE1dcigyPu7D3qbhgl06nsXjxYkiShNdff70kbRiuE2QVqzMMNSizijU4hxqUWcUanKyHhfWwsB4m1sPCelhYD1M51iPoG1gPlyLDXcCtfhUX7C6//HI0NzeX7PuP1gmyJrszjDQosyZ7cI40KLMme3CyHhbWw8J6mFgPC+thYT1MlVSPQh63UlHB7k9/+hMeeeQR3HDDDSX5/vl2gqzJ6gz5dIKsyRqc+QzKrMkanKyHhfWwsB4m1sPCelhYD1Ml1iNfFRPs2trasH79etx5550IBAJ57ZNOpxGPxwd8jFWhnSBrojvDWDrBRA/OQgZl1kQPTtbDwnpYWA8T62FhPSysh6mS65GPigh2QgisW7cOX/nKV7B06dK899uyZQui0WjuY/r06WP6/mPtBFkT1RnG0wkmanCOZVBmTdTgZD0srIeF9TCxHhbWw8J6mOxQj9GUNNhdccUVkCRpxI+tW7fiJz/5Cbq7u7Fp06aC3n/Tpk2IxWK5j927dxfcxvF2gqzxdoaJ6ATjHZzjGZRZ4x2crIeF9bCwHibWw8J6WFgPk53qMZKSrjzxta99DevWrRtxm9mzZ+Pxxx/HCy+8AK/XO+BrS5cuxTnnnINf/vKXQ+7r9XoH7QOY667lY6I6QVa2gPGkMeDz0UxkJzAHJ9DeraMjruc9wCZiUGZlB2dHXEd7t466MPI6tqyHhfWwsB4m1sPCelhYD5Md6zGckga7+vp61NfXj7rdj3/8Y3zve9/Lfb53716sXr0ad999N1asWFHw91V1QNMNuJThCzvRnSCr0M4wGZ2g0ME5kYMyq9DByXpYWA8L62FiPSysh4X1MNm5HkOpiLViDzvssAGfh0IhAMCcOXMwbdq0Mb1nRgUAY8hONlmdICvfzjCZnSDfwTkZgzIr38HJelhYDwvrYWI9LKyHhfUwOaEeh6qIyRMTzeMCJMkMd7ox8D6Bye4EWaNdoy9GJxjtnonJHJRZo90zwXpYWA8L62FiPSysh4X1MDmpHv1VZLCbOXMmhBBYvHjxmPaXJMDr7gt3GmD0hbtidYKs4TpDMTvBcIOzGIMya7jByXqwHqwH69Ef62FhPUysx2AVcSl2MsiyDK/bQCoDaIbZEWMJUbROkHXoadzs34vZCQ49rR4JyOgo0qDMOvS0em0YiPcarAfrAYD1YD0srIeF9TCxHgM5NtgBVrjLaEBnjw5ZllAfKV4nyDq0MxS7EwDW4DwQ19Ee1+FWULRBmZUdnO0xDe1x8zce1oP1YD1MrIeF9bCwHibWw1KRl2KJiIiIaDBHBzvDMJBWAQGgOqTA45qchYZH0/8a/GQuNDyS7D0RHpeEuogCzcCkLPw8kuw9EZoB1EVYD9bDxHqYWA8L62FhPUysh8Wxwa5/qHPJ5qnkyVhoeDSH3lg5UcuVFOLQG129k7Tw80gOvdHVy3qwHmA9slgPC+thYT1MrMdAjgx2QsAMdcJ89Iksm/cBTPRCw6MZbrZMMTvDcLOXJnrh55EMN3uJ9WA9WA/Woz/Ww8J6mFiPwRwZ7DJaX6hzA4o88ObOYnWG0aZAF6MzjDYlvRiDc7Qp6ayHhfWwsB4m1sPCelhYD5OT6tGfI4MdYIa64ZYUm+zOkO9zbSazM+T7nKHJHJz5PmeI9bCwHhbWw8R6WFgPC+thckI9DuXIYOdWhg91WZPVGQp9WOFkdIZCHx45GYOz0IdHsh4W1sPCephYDwvrYWE9THaux1AcGezkPH/qie4MY30C9UR2hrE+EXwiB+dYnwjOelhYDwvrYWI9LKyHhfUw2bEew3FksCvERHWG8S4rMhGdYbzLvEzE4BzvMi+sh4X1sLAeJtbDwnpYWA+TneoxEga7PIy3M0zUWnHj6QwTtXbfeAbnRK3dx3pYWA8L62FiPSysh4X1MNmhHqNhsMvTWDvDRC8APJbOMNELMo9lcE70gsysh4X1sLAeJtbDwnpYWA9TJdcjHwx2BSi0M0x0J8gqpDNM9KDMKmRwTvSgzGI9LKyHhfUwsR4W1sPCepgqsR75YrArUL6dYbI6QVY+nWGyBmVWPoNzsgZlFuthYT0srIeJ9bCwHhbWw1RJ9TAKuGLMYDcGo3WGye4EWSN1hskelFkjDc7JHpRZrIeF9bCwHibWw8J6WFgPUznWI5EaWA9NN6AWcDKPwW6MhusMxeoEWUMNzmINyqyhBmexBmUW62FhPSysh4n1sLAeFtbDVG716Eka0HQz5Gq6gYxa2Pu4JqFtjpHtDB1xHe3dOrwuAylVFK0TZGW/VzxpIKMJpDVRtEGZZQ5OoL1bR3tMAwBoBooyKLNYDwvrYWE9TKyHhfWwsB6mcqqHZgi0x3SkVQEhAEky17XPl6OCneg7zZtMpvu9Zv4Z79bgdo2tE7slga6EhgQAr1uC4XEh1j3e1hZOVzUc7DV/oPqoC909xRmU/blhoKvb/M2vKqggmZKRTBW5DaxHDuthYT362sB65LAeFtajrw1lUA9dE0ilVGQvTHtcQCpl5hYxxL2Ih5JEPlvZxJ49ezB9+vRSN4OIiIioYLt378a0adNG3MZRwc4wDOzduxfhcBhSkU4xl7t4PI7p06dj9+7diEQipW5O2eBxGR6PzdB4XIbG4zI0Hpfh8dgMJoRAd3c3mpubIY+yLqqjLsXKsjxq0nWqSCTCATQEHpfh8dgMjcdlaDwuQ+NxGR6PzUDRaDSv7TgrloiIiMgmGOyIiIiIbILBzuG8Xi82b94Mr9db6qaUFR6X4fHYDI3HZWg8LkPjcRkej834OGryBBEREZGd8YwdERERkU0w2BERERHZBIMdERERkU0w2DnY97//fRx//PEIBAKoqqoachtJkgZ9/Pa3vy1uQ4ssn+Py4YcfYs2aNQgEAmhoaMA3vvENaJpW3IaWgZkzZw7qHz/4wQ9K3ayi+9nPfoaZM2fC5/NhxYoV+Nvf/lbqJpXcd77znUF9Y/78+aVuVtE9/fTTOP3009Hc3AxJknD//fcP+LoQAldddRWmTJkCv9+PVatWYdu2baVpbBGNdlzWrVs3qP+ceuqppWlshWGwc7BMJoPPfe5zuPDCC0fc7vbbb8e+fftyH2eeeWZxGlgiox0XXdexZs0aZDIZPP/88/jlL3+JO+64A1dddVWRW1oerrnmmgH946tf/Wqpm1RUd999NzZu3IjNmzfj1VdfxTHHHIPVq1dj//79pW5ayR111FED+sazzz5b6iYVXSKRwDHHHIOf/exnQ379uuuuw49//GPcdtttePHFFxEMBrF69WqkUkVeJLXIRjsuAHDqqacO6D933XVXEVtYwQQ53u233y6i0eiQXwMgfve73xW1PeViuOPyxz/+UciyLFpbW3Ov3XrrrSISiYh0Ol3EFpbejBkzxE033VTqZpTU8uXLxYYNG3Kf67oumpubxZYtW0rYqtLbvHmzOOaYY0rdjLJy6L+nhmGIpqYmcf311+de6+rqEl6vV9x1110laGFpDPX/zNq1a8WnPvWpkrSn0vGMHY1qw4YNqKurw/Lly/GLX/wCwuFPyHnhhRdw9NFHo7GxMffa6tWrEY/H8dZbb5WwZaXxgx/8ALW1tTj22GNx/fXXO+qSdCaTwSuvvIJVq1blXpNlGatWrcILL7xQwpaVh23btqG5uRmzZ8/GOeecgw8//LDUTSorO3fuRGtr64D+E41GsWLFCvYfAE8++SQaGhowb948XHjhhejo6Ch1kyqCo9aKpcJdc801+MQnPoFAIIBHHnkEF110EXp6enDJJZeUumkl09raOiDUAch93traWoomlcwll1yC4447DjU1NXj++eexadMm7Nu3DzfeeGOpm1YU7e3t0HV9yP6wdevWErWqPKxYsQJ33HEH5s2bh3379uHqq6/GCSecgDfffBPhcLjUzSsL2X8vhuo/Tvu35FCnnnoqPv3pT2PWrFnYsWMHvvnNb+K0007DCy+8AEVRSt28ssZgZzNXXHEFfvjDH464zTvvvJP3Tczf/va3c38/9thjkUgkcP3111dcsJvo42JnhRyrjRs35l5btGgRPB4PvvzlL2PLli18arzDnXbaabm/L1q0CCtWrMCMGTNwzz334Pzzzy9hy6gSfOELX8j9/eijj8aiRYswZ84cPPnkkzj55JNL2LLyx2BnM1/72tewbt26EbeZPXv2mN9/xYoV+O53v4t0Ol1R/3FP5HFpamoaNOuxra0t97VKN55jtWLFCmiahl27dmHevHmT0LryUldXB0VRcvXPamtrs0VfmEhVVVU44ogjsH379lI3pWxk+0hbWxumTJmSe72trQ2LFy8uUavK0+zZs1FXV4ft27cz2I2Cwc5m6uvrUV9fP2nv//rrr6O6urqiQh0wscflH/7hH/D9738f+/fvR0NDAwDg0UcfRSQSwZFHHjkh36OUxnOsXn/9dciynDsudufxeLBkyRI89thjudnihmHgsccew8UXX1zaxpWZnp4e7NixA+eee26pm1I2Zs2ahaamJjz22GO5IBePx/Hiiy+O+rQCp9mzZw86OjoGBGAaGoOdg3344Yc4ePAgPvzwQ+i6jtdffx0AMHfuXIRCIfzhD39AW1sbPvKRj8Dn8+HRRx/Ftddei69//eulbfgkG+24nHLKKTjyyCNx7rnn4rrrrkNrayuuvPJKbNiwoeIC73i88MILePHFF3HSSSchHA7jhRdewGWXXYYvfvGLqK6uLnXzimbjxo1Yu3Ytli5diuXLl+Pmm29GIpHAeeedV+qmldTXv/51nH766ZgxYwb27t2LzZs3Q1EUnH322aVuWlH19PQMOEu5c+dOvP7666ipqcFhhx2GSy+9FN/73vdw+OGHY9asWfj2t7+N5uZm2z9WaqTjUlNTg6uvvhqf+cxn0NTUhB07duDyyy/H3LlzsXr16hK2ukKUeloulc7atWsFgEEfTzzxhBBCiD/96U9i8eLFIhQKiWAwKI455hhx2223CV3XS9vwSTbacRFCiF27donTTjtN+P1+UVdXJ772ta8JVVVL1+gSeOWVV8SKFStENBoVPp9PLFiwQFx77bUilUqVumlF95Of/EQcdthhwuPxiOXLl4u//vWvpW5SyZ111lliypQpwuPxiKlTp4qzzjpLbN++vdTNKronnnhiyH9P1q5dK4QwH3ny7W9/WzQ2Ngqv1ytOPvlk8e6775a20UUw0nHp7e0Vp5xyiqivrxdut1vMmDFDrF+/fsAjpmh4khAOf3YFERERkU3wOXZERERENsFgR0RERGQTDHZERERENsFgR0RERGQTDHZERERENsFgR0RERGQTDHZERERENsFgR0RERGQTDHZERERENsFgR0RERGQTDHZERERENsFgR0Q0RgcOHEBTUxOuvfba3GvPP/88PB4PHnvssRK2jIicShJCiFI3goioUv3xj3/EmWeeieeffx7z5s3D4sWL8alPfQo33nhjqZtGRA7EYEdENE4bNmzAX/7yFyxduhRvvPEGXnrpJXi93lI3i4gciMGOiGickskkFi5ciN27d+OVV17B0UcfXeomEZFD8R47IqJx2rFjB/bu3QvDMLBr165SN4eIHIxn7IiIxiGTyWD58uVYvHgx5s2bh5tvvhlvvPEGGhoaSt00InIgBjsionH4xje+gfvuuw9///vfEQqFsHLlSkSjUTz44IOlbhoRORAvxRIRjdGTTz6Jm2++GXfeeScikQhkWcadd96JZ555Brfeemupm0dEDsQzdkREREQ2wTN2RERERDbBYEdERERkEwx2RERERDbBYEdERERkEwx2RERERDbBYEdERERkEwx2RERERDbBYEdERERkEwx2RERERDbBYEdERERkEwx2RERERDbBYEdERERkE/8fURJiTNr/FpgAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim = make_sim(\"TE\", **design_params[\"TE3\"])\n", "\n", "ax = sim.plot(z=0)\n", "ax.set_aspect(\"auto\")\n" ] }, { "cell_type": "markdown", "id": "7066812b", "metadata": {}, "source": [ "Before submitting the simulation job to the server, we can use the `ModeSolver` again to visualize the first four TE modes supported in the bus waveguide." ] }, { "cell_type": "code", "execution_count": 16, "id": "9bdf420f", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:01:55.710590Z", "iopub.status.busy": "2023-03-28T00:01:55.710422Z", "iopub.status.idle": "2023-03-28T00:01:56.182082Z", "shell.execute_reply": "2023-03-28T00:01:56.181488Z" }, "tags": [] }, "outputs": [], "source": [ "# define mode solver\n", "mode_solver = ModeSolver(\n", " simulation=sim,\n", " plane=td.Box(\n", " center=sim.monitors[0].center,\n", " size=sim.monitors[0].size,\n", " ),\n", " mode_spec=td.ModeSpec(num_modes=4, target_neff=n_si),\n", " freqs=[freq0],\n", ")\n", "\n", "mode_data = mode_solver.solve()\n" ] }, { "cell_type": "markdown", "id": "18409320", "metadata": {}, "source": [ "For the TE modes, the dominant electric field is in the $y$ direction. Here we visualize $E_y$ for the four modes." ] }, { "cell_type": "code", "execution_count": 17, "id": "45f0446a", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:01:56.184255Z", "iopub.status.busy": "2023-03-28T00:01:56.184106Z", "iopub.status.idle": "2023-03-28T00:01:57.089069Z", "shell.execute_reply": "2023-03-28T00:01:57.088561Z" }, "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAMVCAYAAABA1kwoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeVxU1fvHP3cGZtgXFQEVwS1wxyUVLME0t36laZmWimZabrmUW6mIWm5lmplL39QsaNFcWjRTEktDSsRcUkvDHVzZZJ2Ze35/AHPPZWZgZhgW4Xn7ui/PPffcc5575g7PPOc85zkCY4yBIAiCIIhKR1HVAhAEQRBEbYWUMEEQBEFUEaSECYIgCKKKICVMEARBEFUEKWGCIAiCqCJICRMEQRBEFUFKmCAIgiCqCFLCBEEQBFFFkBImCIIgiCqClDCBgIAALFy4sFLamjhxIp588slKaassunXrhlmzZhm9Fh4ejtGjR9u0vX///Rd9+vSBu7s7BEHA7t27La4jPDwcbdq0salchHkIglBp3xOi9kBKmDBKeHg4BEEwegQFBVlVZ3JyMv73v//hrbfesrG01jF79mysW7cOqampldJeREQETp8+jXfeeQeff/45OnfubLTczZs3sXDhQpw8ebJS5OKJi4sz+bmXPABg69atpZY5duyYrP7vvvsOHTt2hIODAxo3bozIyEhotdpKf06CqC7YVbUARPWlUaNGWLp0qUG+u7u7VfWtWbMGTZo0Qc+ePcsrmk0YOHAg3Nzc8PHHH2PRokUV2lZubi7i4+Px9ttvY/LkyaWWvXnzJqKiohAQEIDg4OAKlaskLVu2xOeffy7Lmzt3LlxcXPD222+bvG/RokVo0qSJQX7z5s316X379mHQoEEIDw/H2rVrcfr0aSxZsgS3b9/G+vXrbfcQBPEQQUqYMIm7uztGjBhhk7o0Gg2io6Px2muv2aQ+W6BQKPDcc89h27ZtiIqK0lt3FcGdO3cAAB4eHhXWhi3w9vY2+MyXLVuGevXqlfou9O/f36RlX8ybb76Jdu3a4eeff4adXeGfHjc3N7z77ruYOnWq1SMsBPEwQ8PRhNUcOnQIgiBg165dBtdiYmIgCALi4+MBAEeOHMHdu3fRu3dvWbmIiAg4ODjg3Llzsvy+ffvC09MTN2/etEimyMhI2Nvb65Uez/jx4+Hh4YG8vDx93pNPPokrV66Ua+g3KSkJ/fv3h5ubG1xcXNCrVy/ZMOzChQvh7+8PAJg5cyYEQUBAQIDRuuLi4vDoo48CAMaMGaMf1t26daus3N9//42ePXvCyckJDRs2xIoVKwzqys/PR2RkJJo3bw61Wg0/Pz/MmjUL+fn5Vj+rtfz999/4+++/MX78eL0CBgp9BBhj2LFjR6n3Fw97HzlyBK+//jq8vLzg4eGBV199FQUFBUhPT8eoUaPg6ekJT09PzJo1CyU3iMvOzsYbb7wBPz8/qNVqBAYG4r333jMol5+fj+nTp8PLywuurq545plncP36daNy3bhxAy+//DK8vb2hVqvRunVrbN682cpeImojZAkTJtHpdLh7965BvqOjI5ydnREeHg4/Pz9ER0fj2WeflZWJjo5Gs2bNEBISAgD4/fffIQgCOnToICu3Zs0a/PLLL4iIiEB8fDyUSiU2btyIn3/+GZ9//jkaNGhgkcwjR47EokWL8PXXX8uGfQsKCrBjxw4MGTIEDg4O+vxOnToBAI4ePWogmzmcPXsWjz/+ONzc3DBr1izY29tj48aNCA8Px+HDh9G1a1cMHjwYHh4emD59OoYPH44BAwbAxcXFaH0tW7bEokWLsGDBAowfPx6PP/44ACA0NFRfJi0tDf369cPgwYMxdOhQ7NixA7Nnz0bbtm3Rv39/AIAoinjmmWdw5MgRjB8/Hi1btsTp06fxwQcf4J9//rHKKaw0MjIyDN4VQRBQt25dAIU/VAAYWMsNGjRAo0aN9NfLYsqUKfDx8UFUVBSOHTuGTZs2wcPDA7///jsaN26Md999F3v37sXKlSvRpk0bjBo1CgDAGMMzzzyDQ4cOYezYsQgODsb+/fsxc+ZM3LhxAx988IG+jVdeeQVffPEFXnzxRYSGhuKXX37BU089ZSDLrVu30K1bNwiCgMmTJ8PLywv79u3D2LFjkZmZiWnTppndf0QthhG1Hn9/fxYZGSnLCwsLYwCMHq+++qq+3Ny5c5larWbp6en6vNu3bzM7OztZnSNGjGB169Y12v7+/fsZALZkyRL233//MRcXFzZo0CCrnyckJIR17dpVlrdz504GgB06dMigvEqlYhMmTJDlhYWFsYiIiDLbGjRoEFOpVOzSpUv6vJs3bzJXV1fWo0cPfV5ycjIDwFauXFlmnX/++ScDwLZs2WJwrfhz2bZtmz4vPz+f+fj4sCFDhujzPv/8c6ZQKNhvv/0mu3/Dhg0MADt69GiZchTTunVrFhYWZvTali1bTL4narVaX27lypUMALt69apBHY8++ijr1q1bqTIUt9O3b18miqI+PyQkhAmCwF577TV9nlarZY0aNZLJvHv3bv07xvPcc88xQRDYxYsXGWOMnTx5kgFgEydOlJV78cUXGQDZOz127Fjm6+vL7t69Kys7bNgw5u7uznJyckp9JoJgjDEajiZMEhAQgAMHDhgc/C/8UaNGIT8/Xzac+PXXX0Or1crmEO/duwdPT0+j7fTp0wevvvoqFi1ahMGDB8PBwQEbN260Wu5Ro0YhISEBly5d0udFR0fDz88PYWFhBuU9PT2NWvxlodPp8PPPP2PQoEFo2rSpPt/X1xcvvvgijhw5gszMTOseohRcXFxkfatSqdClSxf8999/+rzt27ejZcuWCAoKwt27d/XHE088AaBwKsGWrFu3zuA92bdvn/56bm4uAECtVhvc6+DgoL9eFmPHjpXN3Xft2hWMMYwdO1afp1Qq0blzZ1l/7N27F0qlEq+//rqsvjfeeAOMMb2se/fuBQCDciWtWsYYvv32Wzz99NNgjMn6uG/fvsjIyMCJEyfMeiaidkPD0YRJnJ2dDeZwSxIUFIRHH30U0dHR+j+E0dHR6Natm8wzFoDB3BvPe++9hz179uDkyZOIiYlB/fr1rZb7hRdewLRp0xAdHY0FCxYgIyMDP/zwA6ZPn27U+YoxZpVT1p07d5CTk4PAwECDay1btoQoirh27Rpat25t1XOYolGjRgbyenp64tSpU/rzf//9F+fOnYOXl5fROm7fvm1Tmbp06VKqY5ajoyMAGJ2PzsvL018vi8aNG8vOiz31/fz8DPLT0tL051euXEGDBg3g6uoqK9eyZUv99eL/FQoFmjVrJitX8jO+c+cO0tPTsWnTJmzatMmorLbuY6JmQkqYKDejRo3C1KlTcf36deTn5+PYsWP46KOPZGXq1q0r+6NYkqSkJP0frdOnT2P48OFWy+Pp6Yn/+7//0yvhHTt2ID8/36R3b3p6OurVq2d1e5WNUqk0ms//yBFFEW3btsWqVauMli2ptCoaX19fAEBKSopB2ykpKejSpYtZ9Zh6dmP5pf3oKy+iKAIARowYgYiICKNl2rVrV2HtEzUHUsJEuRk2bBhmzJiBL7/8Erm5ubC3t8cLL7wgKxMUFITo6GhkZGQYrDPOzs7GmDFj0KpVK4SGhmLFihV49tln9V7C1jBq1CgMHDgQf/75J6Kjo9GhQwejFumNGzdQUFCgt4gswcvLC05OTrhw4YLBtfPnz0OhUFil7GyxVKpZs2b466+/0KtXrwpdemUuxeudjx8/LlO4N2/exPXr1zF+/PgKbd/f3x8HDx5EVlaWzBo+f/68/nrx/6Io4tKlSzLrt+RnXOw5rdPpyhwtIojSoDlhotzUq1cP/fv3xxdffIHo6Gj069fPwLIMCQkBYwyJiYkG98+ePRtXr17FZ599hlWrViEgIAARERHlWkrTv39/1KtXD8uXL8fhw4dNWsHF8vDex+aiVCrRp08f7NmzB5cvX9bn37p1CzExMXjsscfg5uZmcb3Ozs4ACi10axk6dChu3LiBTz75xOBabm4usrOzra7bGlq3bo2goCBs2rQJOp1On79+/XoIgoDnnnuuQtsfMGAAdDqdwQjNBx98AEEQ9F7lxf9/+OGHsnKrV6+WnSuVSgwZMgTffvstzpw5Y9CesSVyBGEMsoQJk2RkZOCLL74weq2kUhs1apT+D+nixYsNyj/22GOoW7cuDh48qHcOAoBffvkFH3/8MSIjI9GxY0cAwJYtWxAeHo758+fL1r8Wr63lFZ4p7O3tMWzYMHz00UdQKpUmh7cPHDiAxo0bW7U8CQCWLFmCAwcO4LHHHsPEiRNhZ2eHjRs3Ij8/3+jaXXNo1qwZPDw8sGHDBri6usLZ2Rldu3Y1GpHKFCNHjsQ333yD1157DYcOHUL37t2h0+lw/vx5fPPNN9i/f3+ZwTUsYd++fXqrkic0NFTvtLZy5Uo888wz6NOnD4YNG4YzZ87go48+wiuvvGLVSIQlPP300+jZsyfefvttXL58Ge3bt8fPP/+MPXv2YNq0afo54ODgYAwfPhwff/wxMjIyEBoaitjYWFy8eNGgzmXLluHQoUPo2rUrxo0bh1atWuH+/fs4ceIEDh48iPv371foMxE1hCrzyyaqDZYuUTL22uTn5zNPT0/m7u7OcnNzjbbz+uuvs+bNm+vPMzMzmb+/P+vYsSPTaDSystOnT2cKhYLFx8fr8+rVq1fmUhaeP/74gwFgffr0MXpdp9MxX19fNm/ePINr5i5RYoyxEydOsL59+zIXFxfm5OTEevbsyX7//XdZGUuWKDHG2J49e1irVq2YnZ2dbLlSWFgYa926tUH5iIgI5u/vL8srKChgy5cvZ61bt2ZqtZp5enqyTp06saioKJaRkWGWHIxZv0SJl7uYXbt2seDgYKZWq1mjRo3YvHnzWEFBQZkyFLfz559/yvIjIyMZAHbnzh1ZfkREBHN2dpblZWVlsenTp7MGDRowe3t71qJFC7Zy5UrZkifGGMvNzWWvv/46q1u3LnN2dmZPP/00u3btmsESJcYYu3XrFps0aRLz8/Nj9vb2zMfHh/Xq1Ytt2rSpzGciCMYYIyVMGFXClqLRaJiXlxd7+eWXTZa5dOkSs7e3ZwcPHrS4/rNnzzIA7IcffjD7nuI1n/yaWp5du3YxR0dHdvPmTYNrlihhgiAIa6E5YcIm7N69G3fu3NFHKDJG06ZNMXbsWCxbtszi+g8dOoSQkBCjkYtM8cknn8DFxQWDBw82en358uWYPHmy3nOXIAiisqE5YaJcJCQk4NSpU1i8eDE6dOhgNBgGj7W75UyaNAmTJk0yq+z333+Pv//+G5s2bcLkyZP1jk4lKY5rTRAEUVWQEibKxfr16/HFF18gODjYYJOBqmLKlCm4desWBgwYgKioqKoWhyAIwiQCYxW4op0gCIIgCJPQnDBBEARBVBE0HF0Goiji5s2bcHV1rRaRhwiCIKoaxhiysrLQoEEDKBS2seXy8vJQUFBgkK9SqWTbj9Y0SAmXwc2bNys9zi5BEMTDwLVr19CoUaNy15OXl4cmTRoiNdUwwImPjw+Sk5NrrCImJVwGUpxZBQCyhAmCIApjsYgGu1JZS0FBAVJT7+PypRi4uTnp8zMzcxDQ7EUUFBSQEq6tSEPQAkgJEwRBSNh6is7NWQ03Z07ZcnHGayqkhAmCIIjqQYEG4OeFCzRVJ0slQUqYIAiCqB7otIBWKz+v4ZASJgiCIKoFgk4LgVO8AilhgiCsRXjIfAgYKG4PUcVodYUHf17DISVMEARBVA90OvkQNDlmFXLq1CmLK27VqhXs7EjHEwRBEGZSoAEK7OTnNRyztGRwcDAEQYC5YaYVCgX++ecfNG3atFzCEQRBELUHQaeFoKU5YaMkJCTAy8urzHKMMbRp06ZcQhEEQRC1EJ1OPgRNw9GFhIWFoXnz5vDw8DCr0h49esDR0bE8chEEQRC1DXLMMs6hQ4csqnTv3r1WCUMQllDl3sc1bEOPMvuzinc9Je/tWoBWJ18nXAuU8EO3leG6desQEBAABwcHdO3aFX/88YfJslu3boUgCLKjpsYfJQiCeOjRagENd2hpTtgAxhh27NiBQ4cO4fbt2xBFUXZ9586dNhOuJF9//TVmzJiBDRs2oGvXrli9ejX69u2LCxcuoH79+kbvcXNzw4ULF/TntB0hQRBENUVbQvHWAiVssSU8bdo0jBw5EsnJyXBxcYG7u7vsqEhWrVqFcePGYcyYMWjVqhU2bNgAJycnbN682eQ9giDAx8dHf3h7e5faRn5+PjIzM2UHQRAEUQkUO2bxRw3HYkv4888/x86dOzFgwICKkMckBQUFSExMxNy5c/V5CoUCvXv3Rnx8vMn7Hjx4AH9/f4iiiI4dO+Ldd99F69atTZZfunQpoqKibCo7QRAEYQbkmFU27u7uVbL+9+7du9DpdAaWrLe3N86fP2/0nsDAQGzevBnt2rVDRkYG3nvvPYSGhuLs2bMmN6KeO3cuZsyYoT/PzMyEn5+f7R6EAGAjpyqrpxasd4WoUmcwgZObiabLVVj7XPPlcpKyTnbBBn5Z5NxVzSnQAfZa+XkNx+K/RgsXLkRUVBRyc3MrQh6bEhISglGjRiE4OBhhYWHYuXMnvLy8sHHjRpP3qNVquLm5yQ6CIAiiEhBLDEWLNV8JW2wJDx06FF9++SXq16+PgIAA2Nvby66fOHHCZsLx1KtXD0qlErdu3ZLl37p1Cz4+PmbVYW9vjw4dOuDixYsVISJBEARRHmrhcLTFlnBERAQSExMxYsQIDBkyBAMHDpQdFYVKpUKnTp0QGxurzxNFEbGxsQgJCTGrDp1Oh9OnT8PX17eixCQIgiCsRSsaHmayfv16tGvXTj+CGRISgn379umv5+XlYdKkSahbty5cXFwwZMgQA6OuKrDYEv7xxx+xf/9+PPbYYxUhT6nMmDEDERER6Ny5M7p06YLVq1cjOzsbY8aMAQCMGjUKDRs2xNKlSwEAixYtQrdu3dC8eXOkp6dj5cqVuHLlCl555ZVKl50gCIIog3KErWzUqBGWLVuGFi1agDGGzz77DAMHDkRSUhJat26N6dOn48cff8T27dvh7u6OyZMnY/DgwTh69GgFPIj5WKyE/fz8qmye9IUXXsCdO3ewYMECpKamIjg4GD/99JPeWevq1atQKCTjPi0tDePGjUNqaio8PT3RqVMn/P7772jVqlWVyE8QBEGUgkYLFCjl54DBUlG1Wg21Wi3Le/rpp2Xn77zzDtavX49jx46hUaNG+PTTTxETE4MnnngCALBlyxa0bNkSx44dQ7du3SrgYcxDYOZujVTEjz/+iLVr12LDhg0ICAioILGqD5mZmUXrn5VAVYdJrOZY5Tls0sO57JkSk+0Jxu41Xp9gtGxJlGWWMK+eorJVHKiOWeCdzMzywi7bWjFej4m6TbRpnmezkXstDLdJHtTmwADokJGRYROjrPjvbPrHr8LNUSXl5xbAY6KhI21kZCQWLlxosj6dToft27cjIiICSUlJSE1NRa9evZCWlibbA8Hf3x/Tpk3D9OnTy/0M1mKxJTxixAjk5OSgWbNmcHJyMnDMun//vs2EIwiCIGoPTCuCcfPAxelr167JlH1JK7iY06dPIyQkBHl5eXBxccGuXbvQqlUrnDx5EiqVymATIm9vb6Smplok42+//YaNGzfi0qVL2LFjBxo2bIjPP/8cTZo0sWqa1mIlvHr1aosbIQiCIIgy0YmFB38OmL1cNDAwECdPnkRGRgZ27NiBiIgIHD582Gbiffvttxg5ciReeuklJCUlIT8/HwCQkZGBd99916rNiyxWwhERERY3QhAEQRBlUtIj2gLvaKBwFU3z5s0BAJ06dcKff/6JNWvW4IUXXkBBQQHS09Nl1rAlS1wBYMmSJdiwYQNGjRqFr776Sp/fvXt3LFmyxCJZi7FYCV+9erXU640bN7ZKEIIgCKJ2wzQ6MKVOdl4eRFFEfn4+OnXqBHt7e8TGxmLIkCEAgAsXLuDq1atmL3EtvqdHjx4G+e7u7khPT7dKRouVcEBAQKk7EelqQcBtwoRTVJlhJA0dkmT1yJybzHGkUhrN5x2fpHxjeebcZ9rpypiDlSAYl8kUikpy0hJNOEEZc5hizPh3mHfoMuWwxeebKi+lTVw3kS9wDmCmHca4/KIyzGS8S+N1lBUekxy3KpByWMJz585F//790bhxY2RlZSEmJgZxcXHYv38/3N3dMXbsWMyYMQN16tSBm5sbpkyZgpCQEIs8o318fHDx4kUDp+QjR45YHc7ZYiWclJQkO9doNEhKSsKqVavwzjvvWCUEQRAEQTAdA9Mx2bm53L59G6NGjUJKSgrc3d3Rrl077N+/H08++SQA4IMPPoBCocCQIUOQn5+Pvn374uOPP7ZIvnHjxmHq1KnYvHkzBEHAzZs3ER8fjzfffBPz58+3qK5iLF6iZIoff/wRK1euRFxcnC2qqzbQEiXjkCVMlnBZ9dnaEoa1lrBJy9XUEqnS/ySSJQxU1BKle28Ph5sDt0QprwB13/nSZu2UF8YY3n33XSxduhQ5OTkACj2133zzTSxevNiqOi22hE0RGBiIP//801bVEQRBELUMpmNgWuss4cpAEAS8/fbbmDlzJi5evIgHDx6gVatWcHFxsbpOi5VwycgljDGkpKRg4cKFaNGihdWCEARBELUbVsBkc/isoHop4WJUKpXNIi9arIQ9PDwMHLMYY/Dz85O5bBMEQRCEJZRnTrgy6NmzZ6mOyb/88ovFdVqshA8dOiQ7VygU8PLyQvPmzWFnZ7PRbaIaUGoYSiMvomAsvKOJeV5pvlS6RyHYGbkOCFw+X0ahkNJKhRRBRykrb29wn1KwN7heKJ3CaL4SUlqQlVEalFEw43PMChOhL+Vlyj8/bHLu10S+yM+zFpURBamsDhqpLDMsa1iGS3Nl+HxdUVpkWhPXpXydmC+VEfnyUprJ0qJBGdNe1Ybzx4Axb2p535nynqa54vLDtABTys+rE8HBwbJzjUaDkydP4syZM1bH0LBYa4aFhVnVEEEQBEGURnVXwh988IHR/IULF+LBgwdW1WnWT+/vvvsOGo2m7IJF7N27F7m5uVYJRBAEQdRORC0garijmilhU4wYMQKbN2+26l6zlPCzzz5rUTSQYcOGISUlxSqBCIIgiNoJ0xoeDwPx8fFwcHCw6l6zhqMZYxg9erTJnStKkpeXZ5UwBEEQRO2F6QQwnSA7r04MHjxYdl68Ouj48eNWB+swSwlbOuH80ksvVYuF1UTZWOp8Jd1nzAnL8HUSZE5Qho5XvNOVnVL6Jck7WtkrHE2knaQ0pHw1pHxVUb49kwIAqBlXN5PaV3Oy2HODRPack5iS6xN7hWCQr+TGlviySq4rFXx8Eq4MPyxVZtwTE/BxJkRZvnRB5MroZOnCE9kmNtx9Gu5GWT7n1KThWs3nzBgNpHS+otDZSiMU6PMKIE1f5SOHu0/K14hcvphrNK3VSWmdWFh/WY5bAMA45zKhhPnFSg4YCrxDl9QPxr5L5KxlGaJOgMgpXrGaKeHCwE0SCoUCgYGBWLRoEfr06WNVnWYp4S1btlhVOUEQBEGYi6iTzwOL1WwrgorQhbSmiCAIgqgWiFoFdNzIk6itnLCuVQkpYYIgCKJaIOoUEBUK2XlV4+npWWqADp779+9bXD8pYcI6jGxOoFAYOu4pFfw8rzQvWzw3Z6eU5nJVSmd9Wq2UfAqcFJ76tCOT8p2ZVN6FOXHlpXloR7vCuWtHbrLWwU76QjlxU9tqbuJWzeU7KKR5PRWXr+Ly7YtuVXN5Sm7u0F6WbzzNzxXL54fL2FCAcXNoXL587lcwmtaIhvn5XJ6GK1vA5Rdww4R5XH4eN8mcx5fh00WxgXO5yedcrVQgR5TmZx8I0jxwtiKbS6dJ9TEplG6+gktrC9PFc8OAPAgMn68TJWdSsURck1LniE3MDxPWIYoCRO594tNVxerVqyu0flLCBEEQRLVApxOg436N6qqBY5a1kbDMhZQwQRAEUS0QRQVEUSE7r67k5eWhoKBAlmfNqiCrlHBsbCxiY2Nx+/ZtiCXGbqyNGkJUR0r7AhgZjjayRMleyQ0Tq7z06YzcKwAAO26I2lHpoU+7CT76tLuujj7tIUj1udlL97raK7h86dezS1Ha1V4aKnRWSmlXO+n9dbaThkSdlFK+k53WaFrNlXcoyre3l/Lsuev2Kimt5NpUcLLwaXnI7TKGObkhOz40sqmlHjrO2UVTII2va7SFaY1GysvTSp9pvlbKz+Hy+XS2ji8jtZPFpbOLZMnSSPc94NrM1EjTCZkF0hRHllbaLi4N0lREhiDNw2Vx0w7F8ag1OmlI29OhidRmwS19WrafsSCPDmiwRMnEfstE+dFqFdByL7+2mjlmZWdnY/bs2fjmm29w7949g+s6neXvhsVPGBUVhT59+iA2NhZ3795FWlqa7CAIgiAIa9AxBXQid7DqpYRnzZqFX375BevXr4darcb//vc/REVFoUGDBti2bZtVdVpsCW/YsAFbt27FyJEjrWqQqBkIRhyzBCOWsIJzkuJ3Nyp20rJXStaNI+eA5SZ66NOegmT11FFJ1q+nWpLBXSVZeh4qyXL0KLJMPTlL1N1esmZd7CWrx00t7djj4iANMzk4SmXUTtK9ds6cg1WRiApHblckmdcXF6jEgesnznITeK8vmZdWGX+I+NEozhuL8d5TGp3x/HxuZ6KcwmcWc7kdkiRfKGizJZnyczhLOEf6THLyOSs2X7JiH3DWbVpB4b0ZnPWbrpGe0alASvPOcqp8rq8KuP7hBgq0CumzKlAWBu5QCBnSfdx7a8c5EmoVkmOWTiwZiMbM2InFHrQmAnhQ4I6yEYuUL39enfj++++xbds2hIeHY8yYMXj88cfRvHlz+Pv7Izo6Gi+99JLFdVr8hAUFBQgNDbW4IYIgCIIoDR0TDI7qxP3799G0aVMAhfO/xUuSHnvsMfz6669W1WmxJfzKK68gJibG6jiZRE3BMGylMetYZv3CMISlnSBZIw5MsoqdmLR0yVUl3eemMm791lNLVgZv9dZRaYv+lyxbDwfJ4nVzkiwgZ1cpX+XGLS/y4EJLunF7FbtLsgvORdagMxfE3UmyEOHI5au5fO7ZYM+ljVnCvEUss365NLfUR+Dnpwq4sIz5nDNJrvT8iiJLGNlSHsvi9vPN4kYHMrl58nSp7vwM6b1wfSDdm5kjPb+jsrDfHJRSP9hze0PbCfy7xVmS3NCkhkl9lVcgvSvZ3DuUXfRuyfad5veG5vesNrrXtWG7hWW5+WOZHWN8z2bCfDQ6ARqu/zXVwDuap2nTpkhOTkbjxo0RFBSEb775Bl26dMH3338PDw8Pq+q0WAnn5eVh06ZNOHjwINq1awd7/g8HgFWrVlklCEEQBFG70TH5PLAlc8JLly7Fzp07cf78eTg6OiI0NBTLly9HYGCgvkxeXh7eeOMNfPXVV8jPz0ffvn3x8ccfw9vb26w2xowZg7/++gthYWGYM2cOnn76aXz00UfQaDRW6z6LlfCpU6cQHBwMADhz5ozsmrlRRcrDunXrsHLlSqSmpqJ9+/ZYu3YtunTpYrL89u3bMX/+fFy+fBktWrTA8uXLMWDAgAqXszYiGJndkFkbnIVTnFZyGzyo+E0WuLIO3LygI/fGuthxHs+cx7GrHT//W2il8davu7MU5N/ZTbLu1J5SHXZ1pfaVnpzF685ZtK6OXLrIa9tVmr/mrV/GW8IOXFATbmcyxnl7y6xeuzK+plo+2K70DIKGs3jzpedHnpQWOEtYbxVnSRPBQpbkWazMkvpNcOTSKqk+BecdrlBybXKIRUOMpoKG8EFBcriISTncY6q4kQL+XeHfoeJ3i38vFYJxS5jH2HtMVA46UYCODyBjQbCOw4cPY9KkSXj00Ueh1Wrx1ltvoU+fPvj777/h7Fz4vZw+fTp+/PFHbN++He7u7pg8eTIGDx6Mo0ePmtXG9OnT9enevXvj/PnzSExMRPPmzdGuXTuzZeWxWAkfOnTIqoZswddff40ZM2Zgw4YN6Nq1K1avXo2+ffviwoULqF+/vkH533//HcOHD8fSpUvxf//3f4iJicGgQYNw4sQJtGnTpgqegCAIgjCFWGIeuPgHW2ZmpqycWq022Fr3p59+kp1v3boV9evXR2JiInr06IGMjAx8+umniImJwRNPPAGgcEOGli1b4tixY+jWrVuZ8l27dg1+fn76c39/f/j7+1v2kCUoV7CO69evAwAaNWpULiHMZdWqVRg3bhzGjBkDoNBT+8cff8TmzZsxZ84cg/Jr1qxBv379MHPmTADA4sWLceDAAXz00UfYsGGD0Tby8/ORz1kNJT98wnqMWsowPi+nlM3XGd8SkN82kFsaLAsRaa8oCo+p4KxczmpWqrk1u5yxqnDgKue9mR246RdHtWHalPXr6MjlcxY05+0tmxPmrV9LvKM5q5jxdSgNt5EEZI7FUi/zlrWW97CW8gXOS1zBeVgrco33Lb9+WqUsTNtzn4k8rCeMp01sE8m/H8beJ0Ewsu0m5NtxmrKKicrF1HA0r/gAIDIyEgsXLiy1royMQq/4OnUK4wwkJiZCo9Ggd+/e+jJBQUFo3Lgx4uPjzVLCAQEBeOyxxzBixAg899xz8PT0LPOesrD4zRNFEYsWLYK7u7v+V4CHhwcWL15sELjDlhQUFCAxMVHWgQqFAr1790Z8fLzRe+Lj42XlAaBv374mywOF8wru7u76o+SHTxAEQVQMGlFhcACFFmhGRob+mDt3bqn1iKKIadOmoXv37vpRz9TUVKhUKgMHKm9vb6Smppol3/Hjx9GlSxcsWrQIvr6+GDRoEHbs2CEz3CzFYkv47bffxqeffoply5ahe/fuAIAjR45g4cKFyMvLwzvvvGO1MKVx9+5d6HQ6gwl0b29vnD9/3ug9qampRsuX1uFz587FjBkz9OeZmZmkiG0EM+I9ymSeptz6VD6CEWevyTYi4KrTcCYdP79Y/CXWcusN+Sg8Om7tqZgnGk0r8zjLUM1FU7LnvnhFG0XwFiw/myWzOPmwVjrOctVWkznhXK4sn86Tnp3lSGkxR7JyuX0QZH3LR+EqKIqqpeE+E/lGEjCe5ruNW4vLvx/G3idmIsIVA7d2mpFnc3Wg5LKk4rSbm5tFISEnTZqEM2fO4MiRIzaVr0OHDujQoQNWrFiBuLg4xMTEYPz48RBFEYMHD7YqYqTFlvBnn32G//3vf5gwYQLatWuHdu3aYeLEifjkk0+wdetWiwWobqjVav0HbukHTxAEQViPVhQMDkuZPHkyfvjhBxw6dEg2Verj44OCggKkp6fLyt+6dQs+Pj6wBEEQ0LNnT3zyySc4ePAgmjRpgs8++8xiWQErlPD9+/cRFBRkkB8UFGTVXormUq9ePSiVSty6dUuWX1oH+vj4WFSeIAiCqDpEyAN1iDBfCTPGMHnyZOzatQu//PILmjRpIrveqVMn2NvbIzY2Vp934cIFXL16FSEhIRbJef36daxYsQLBwcHo0qULXFxcsG7dOovqKMbi4ej27dvjo48+wocffijL/+ijj9C+fXurhDAHlUqFTp06ITY2FoMGDQJQOO4fGxuLyZMnG70nJCQEsbGxmDZtmj7vwIEDFnc4YR5Gh5v5YWWmM0jrGBdmUJCGT/NFqSy/R20uN/L6gPPaceC8dlQKaejTvihsptLEnrz8XrxM5IJ1cGEe7fOk5TiKbElehTu3T23x8h1nLs4jF6xDMCNYh2DjYB0wEawDJoJ1wIJgHSIXrEOTLvUtH6wj54H0nHywjsz8wvwMLpRlFrc5RDY3XZCjNb5XcQEXnjOfe68KFNwewUXvFv9eitz7ZmoI2th7TFQOpoajzWHSpEmIiYnBnj174Orqqp92dHd3h6OjI9zd3TF27FjMmDEDderUgZubG6ZMmYKQkBCznLIAYOPGjYiJicHRo0cRFBSEl156CXv27CmXh7TFSnjFihV46qmncPDgQb0yi4+Px7Vr17B3716rBTGHGTNmICIiAp07d0aXLl2wevVqZGdn672lR40ahYYNG2Lp0qUAgKlTpyIsLAzvv/8+nnrqKXz11Vc4fvw4Nm3aVKFyEgRBEJajYQI0/PpxC5Tw+vXrAQDh4eGy/C1btmD06NEAgA8++AAKhQJDhgyRBeswlyVLlmD48OH48MMPbWZ0WqyEw8LC8M8//2DdunV6h6jBgwdj4sSJaNCggU2EMsULL7yAO3fuYMGCBUhNTUVwcDB++uknvfPV1atXoeCshdDQUMTExGDevHl466230KJFC+zevZvWCNsEQ2cXY5aFjkkWkw6cM09RvpZJllae4oE+ncNt2sBveWcv8MuV+NkUKV/LuO35iuaUCjgnoFydVF9WgWStuXFOSC6ZXIjGe6Y2cJDya8YGDoX5Vb2BQzq3OUNagfQ8mQWSXFkaqe9zBGmkIk+Q3iFt0ciGKBp/B2WjNLxDl8F7LD+Xb8RAVrMtKY8lzFjZG2Q4ODhg3bp1Vg8dX7161eZBqaxaJ9ygQYMK84Iui8mTJ5scfo6LizPIe/755/H8889XsFQEQRBEedGKADcDAW01+41TEVEhzVLCp06dQps2baBQKHDq1KlSy1obuot4uDBm9TJmuOWbKEqWh8wqFgstTY1OslxyBWk/6kxuYweBs2IZZxlpuBCFuTrj84iZ9oXWVhpnaTlzgStc7aQ6nO2keUsnpfR8TnZao2k1Fx7ToSifD0phz123V0n3Ke0kK1uhZEbTMiNfUcYvfJGf1+ayueD3fFrHzblqCrhRg6IlUvxyojyt1Ff53LxtDpfPp7N1fBmpnSwunV0kS5ZGkukBt8YsUyM9RCZntWdppXcpDdJ7kyFIDqG5ovQOFb9bIvfe8e+tlvMB4K1lY6M8ZmHEEqPtCy3DVMSsmoxZSjg4OBipqamoX78+goODIQiCUdNfEATodFa+wARBEEStRsME2Fk5J/ywYpYSTk5OhpeXlz5N1BZKGwsyvCYasYQ1OmkDgAf5Kfp08VaGWlGyCnN16VJdnCVavDk7ADxg0rptZ400b+xS4KRPOymk+UfHoiAajtzcq4Od9MV2UkqWm5qzkNXc9KwDZ4ny07YqPjxmUZVqWfhFPnym8Xw+LZsGlpIQTHh2F8N7ePOfCjc9bHKeTR4kozCdzwc74ergN1bgp5XzuHzegzmPL8OntYVlcrkf7LmcV3cON3ryQJDen2xBmqDOhmTx5jEptGy+TkprdIXvjYLbTjMz/4Y+rePePZFJaYNRHgrkUWnomOlgLTUVs5Qw73595coVhIaGwq5EFB+tVovff/+93MGsCYIgiNpJoRI2Hj2tpmKxY1bPnj2RkpJisGtRRkYGevbsScPRBEEQhFVoWeHBn1c1HTp0MNsh68SJExbXb7ESZowZFejevXv6PRuJWoCRITpRNAxizg/tidzwX/GuNfwQNh9IQSNKQ9D5CmmI8YFC2oEoXSENQdsLUr4aUr5KW5hvr+H2KmaS05c99xVQC/xSKIXRNL97jz03flycL9/ph79PyueHnfnvknwIGlbBu2qIsnzpgmhiuK84HrOOK8DHaNaYyuc+Yz6dz322GkjpfKHwPdFwwVkKwH/eOdx9Ur5G5PLFXKNprU5KFw83MxOOWXKHLS6YSYlpFUPnKq5nzVgWQ5hPdXTMKg4OBQB5eXn4+OOP0apVK32cjGPHjuHs2bOYOHGiVfWbrYQHDx4MoPCPxujRo2V7Oep0Opw6dQqhoaFWCUEQBEEQGlH+g1VTDabjIyMj9elXXnkFr7/+OhYvXmxQ5tq1a1bVb7YSdnd3B1D4i9rV1RWO3J6oKpUK3bp1w7hx46wSgiAIgiCqu2PW9u3bcfz4cYP8ESNGoHPnzlbtomS2Et6yZQuAwk2N33zzTRp6JgiCIGxKdVfCjo6OOHr0KFq0aCHLP3r0KBwcHEzcVToWzwnzpjnx8FNaMIHSVsYwwdABz1h5+R7B0ryboJ8vldb8GJszBoB8bq6WX26iUEhppUKaHlHKytsb3KcU7A2uA4CCm5VVQMpXMm6TBcaV4cJjKovKK7jrgqw+bm0Th7yMxZuaGSCaWFZmalMCkd9Tt6iMKHCfmSzUqGFZgzJ8WuDnX7mgLUVLkEz5A8iDuhgPqCGfzy1rztfUvsH83K7x/asNyhVWAmNQYI7yU92V8LRp0zBhwgScOHECXbp0AQAkJCRg8+bNmD9/vlV1mqWEO3bsiNjYWHh6epbpKWaNdxhBEARBlCd2dGUwZ84cNG3aFGvWrMEXX3wBAGjZsiW2bNmCoUOHWlWnWUp44MCBekcs3lOMIAiCIGyFlsmdsarDEqWSDB061GqFawyzlDA/BE3D0QRBEERFoGNMtvxNVwuWgFk8J3zt2jUIgoBGjRoBAP744w/ExMSgVatWGD9+vM0FJAiCIGoH1XFO2NPT0+xgHffv3y+7UAksVsIvvvgixo8fj5EjRyI1NRW9e/dGmzZtEB0djdTUVCxYsMBiIYjqiaVOW8actcD4PG43pKL7BW4fYJ186yDj7crKKI3m885OUr6xPHPuK9kmJ4sRGQXBuEymsIUzljmYdNgyuhuW8ah3pe+5a5hvqryUNnHdZDumHKx4DJ2tTL/HJuoow/oiB6yKQyfK97DSVYN1wqtXr67Q+i1WwmfOnNF7hX3zzTdo27Ytjh49ip9//hmvvfYaKWGCIAjCKrSi/Od3ddhPOCIiokLrt/hnuEaj0TtpHTx4EM888wwAICgoCCkpKaXdShAEQRAmKR6O5o/qxqVLlzBv3jwMHz4ct2/fBgDs27cPZ8+etao+i5Vw69atsWHDBvz22284cOAA+vXrBwC4efMm6tata5UQBEEQBFHsmMUf1YnDhw+jbdu2SEhIwM6dO/HgwQMAwF9//WW107LFSnj58uXYuHEjwsPDMXz4cLRv3x4A8N133+mHqQmCIAjCUqq7JTxnzhwsWbIEBw4cgEolbQrzxBNP4NixY1bVafGccHh4OO7evYvMzEx4enrq88ePHw8nJ6dS7iRqEsacU8rYex5yl4uienivQxNOXLLyXBu8U5esaaMOUeY4epnCeLQry+spKltJzlimMBU9y2hZsza0L3v7UuP1mHKMMhX1y5y/yEbutdCaIserqqO8c8K//vorVq5cicTERKSkpGDXrl2y2BaMMURGRuKTTz5Beno6unfvjvXr1xuEoTTF6dOnERMTY5Bfv3593L171zJhi7Dqr4FSqYRWq8WRI0dw5MgR3LlzBwEBAQZ7DBMEQRCEuWhFQCsy7rDs/uzsbLRv3x7r1q0zen3FihX48MMPsWHDBiQkJMDZ2Rl9+/ZFXl6eWfV7eHgY9X1KSkpCw4YNLRO2CIst4ezsbEyZMgXbtm2DKBb2kFKpxKhRo7B27VqyhgmCIAirEEvMA4tF6czMTFk5tVot2063mP79+6N///5G62aMYfXq1Zg3bx4GDhwIANi2bRu8vb2xe/duDBs2rEz5hg0bhtmzZ2P79u0QBAGiKOLo0aN48803MWrUKLOfk8diS3jGjBk4fPgwvv/+e6SnpyM9PR179uzB4cOH8cYbb1glBEEQBEGYcszy8/ODu7u7/li6dKnFdScnJ+tjWxTj7u6Orl27Ij4+3qw63n33XQQFBcHPzw8PHjxAq1at0KNHD4SGhmLevHkWywRYYQl/++232LFjB8LDw/V5AwYMgKOjI4YOHYr169dbJQhBEARRu9EyBoGzhLVF6WvXrsHNzU2fb8wKLovU1FQAgLe3tyzf29tbf60sVCoVPvnkE8yfPx9nzpzBgwcP0KFDB7PnlI1hsRLOyckxeAigcGI6JyfHakEIgiCI2o0ODAo+dnSRk5ybm5tMCVc1jRs3RuPGjW1Sl8VKOCQkBJGRkdi2bZt+E+Pc3FxERUUhJCTEJkIRDyeWeJXqPZtNeq6a4XFrKp6ribCLEobhM82F98iWNWlZNdbBe2Cb5bVccZTPg9hK2W2wZpQ8n6s3GlEEuH2oNTZ8z318fAAAt27dgq+vrz7/1q1bCA4ONnnfjBkzsHjxYjg7O2PGjBmltrFq1SqL5bJYCa9ZswZ9+/ZFo0aN9GuE//rrLzg4OGD//v0WC0AQBEEQACCC6a3f4nNb0aRJE/j4+CA2NlavdDMzM5GQkIAJEyaYvC8pKQkajQYAcOLECZObOZi7yUNJLFbCbdq0wb///ovo6GicP38eADB8+HC89NJLcHR0tEoIgiAIgtAxEQI3UqKz0BJ+8OABLl68qD9PTk7GyZMnUadOHTRu3BjTpk3DkiVL0KJFCzRp0gTz589HgwYNZGuJS7JmzRr9UHhcXJxF8piDxUoYAJycnDBu3Dhby1Iq9+/fx5QpU/D9999DoVBgyJAhWLNmDVxcXEzeEx4ejsOHD8vyXn31VWzYsKGixSUIgiAsRAsR/HSF1sKpi+PHj6Nnz5768+Lh44iICGzduhWzZs1CdnY2xo8fj/T0dDz22GP46aef9FOrxujQoQNSUlJQv359NG3aFH/++adNQzQLjFk+0XLhwgWsXbsW586dAwC0bNkSkydPRlBQkM0EK0n//v2RkpKCjRs3QqPRYMyYMXj00UeNRi8pJjw8HI888ggWLVqkz3NycrJogj8zMxPu7u4ojJpk3XADYYipuVXLKrG2DusjVtlEbqsbpznh8kJzwraCAdAhIyPDJg5TxX9nu7pNgJ0geT5rWT4SMtfbrB1rqFu3Lvbu3YuuXbtCoVDg1q1b8PLysln9Vi1RGjZsGDp37qx3xDp27Bjatm2Lr776CkOGDLGZcMWcO3cOP/30E/7880907twZALB27VoMGDAA7733Hho0aGDyXicnJ/2EvDnk5+cjPz9ff15ykThBEARRMegEHQRBK52b4aBZ0QwZMgRhYWHw9fWFIAjo3LkzlErjoWz/++8/i+u3WAnPmjULc+fOlVmXABAZGYlZs2ZViBKOj4+Hh4eHXgEDQO/evaFQKJCQkIBnn33W5L3R0dH44osv4OPjg6effhrz588vNarX0qVLERUVZVP5CUNsYZGUHavaFNZ/seUxqivZKi7T67ui269aK5Ks2JpPodLVlTivWjZt2oTBgwfj4sWLeP311zFu3Di4urrarH6LlXBKSorR8FwjRozAypUrbSJUSVJTUw3iUtvZ2aFOnTqlLrJ+8cUX4e/vjwYNGuDUqVOYPXs2Lly4gJ07d5q8Z+7cuTI39MzMTPj5+ZX/IQiCIIhS0Qla2bSLDtpSSlcexVv2JiYmYurUqVWrhMPDw/Hbb7+hefPmsvwjR47g8ccft6iuOXPmYPny5aWWKZ53tobx48fr023btoWvry969eqFS5cuoVmzZkbvMRWTlCAIgqhYtNCCofop4WK2bNli8zotVsLPPPMMZs+ejcTERHTr1g1A4Zzw9u3bERUVhe+++05WtjTeeOMNjB49utQyTZs2hY+PD27fvi3L12q1uH//vkXzvV27dgUAXLx40aQSJgiCIKoGLQpk0w46aKpQmsrBYu9ohcI8z1JBEKDT2WY8/9y5c2jVqhWOHz+OTp06AQB+/vln9OvXD9evXy/VMYvn6NGjeOyxx/DXX3+hXbt2Zt1D3tHVlyr1VAYqf064qqE5YUJPxXhHN/UcBKVgr8/XMQ3+S9tdpd7RFY3FlnDx9oWVScuWLdGvXz+MGzcOGzZsgEajweTJkzFs2DC9Ar5x4wZ69eqFbdu2oUuXLrh06RJiYmIwYMAA1K1bF6dOncL06dPRo0cPsxUwUb2p8j/KZSilKv+RYCFV3p9ErUdkmlLPayJWBeuoCqKjozF58mT06tVLH6zjww8/1F/XaDS4cOGCfhMJlUqFgwcPYvXq1cjOzoafnx+GDBli9XZTBEEQRMUilhh+LnleE7EqWEdtgoajCWshS5iouVTMcHRDj15QCJJtKDItbqTH0nA0QRAEQVQ0WpYHBeRKuKZDSpggCIKoFuiYVjYeQ0qYIAiCICqJQqXLbWVY1VHiKgGLI9k/8cQTRsM6pqWl4YknnrCJUARRE2AP2T+CqGoY00DkDkbe0YbExcXh9OnTSEpKQnR0NJydnQEABQUFBtsGEgRBEIS5aMUCCIK0OQIjS9g4Bw8eRGpqKrp164bLly/bWCSCIAiiNiKKGoOjpmOVEvb19cXhw4fRtm1bPProo4iLi7OxWARBEERtQ2Q6iEzLHWQJGyAUhepTq9WIiYnB1KlT0a9fP3z88cc2F44gCIKoPcgVsJa8o41RMrbHvHnz0LJlS0RERNhMKIIgCKL2IYpaCNxWhoxVfpjkysZiJZycnAwvLy9Z3pAhQxAUFITjx4/bTDCCIAiidiGyAgggJVwq/v7+RvNbt26N1q1bl1sggiAIonbCmBZ8eODaEFWZgnUQBEEQ1QJSwgRBEARRRRSuCyYlTHBIL0HNfxkIgiDMo/Dvoe2VpK6sbbprHKSEyyArK6soVfMdBAiCICwhKyuraKvX8qFSqeDj44PU1FSDaz4+PlCpVOVuo7pC+wmXgSiKuHnzJlxdXfVrpK0hMzMTfn5+uHbt2kO7L+bD/gwPu/wAPUN14GGXHyj/MzDGkJWVhQYNGkChsCrmkwF5eXkoKCgwyFepVHBwcLBJG9URsoTLQKFQoFGjRjarz83N7aH94hbzsD/Dwy4/QM9QHXjY5QfK9wy2sIB5HBwcarSyNYVtfsIQBEEQBGExpIQJgiAIooogJVxJqNVqREZGQq1WV7UoVvOwP8PDLj9Az1AdeNjlB2rGM9QUyDGLIAiCIKoIsoQJgiAIooogJUwQBEEQVQQpYYIgCIKoIkgJEwRBEEQVQUqYIAiCIKoIUsIVyDvvvIPQ0FA4OTnBw8PDrHtGjx4NQRBkR79+/SpWUBNYIz9jDAsWLICvry8cHR3Ru3dv/PvvvxUraCncv38fL730Etzc3ODh4YGxY8fiwYMHpd4THh5u8Bm89tprlSQxsG7dOgQEBMDBwQFdu3bFH3/8UWr57du3IygoCA4ODmjbti327t1bSZKaxpJn2Lp1q0F/V2XkpF9//RVPP/00GjRoAEEQsHv37jLviYuLQ8eOHaFWq9G8eXNs3bq1wuU0haXyx8XFGfS/IAhG4zgTtoeUcAVSUFCA559/HhMmTLDovn79+iElJUV/fPnllxUkYelYI/+KFSvw4YcfYsOGDUhISICzszP69u2LvLy8CpTUNC+99BLOnj2LAwcO4IcffsCvv/6K8ePHl3nfuHHjZJ/BihUrKkFa4Ouvv8aMGTMQGRmJEydOoH379ujbty9u375ttPzvv/+O4cOHY+zYsUhKSsKgQYMwaNAgnDlzplLkNYalzwAUhk/k+/vKlSuVKLGc7OxstG/fHuvWrTOrfHJyMp566in07NkTJ0+exLRp0/DKK69g//79FSypcSyVv5gLFy7IPoP69etXkISEDEZUOFu2bGHu7u5mlY2IiGADBw6sUHksxVz5RVFkPj4+bOXKlfq89PR0plar2ZdfflmBEhrn77//ZgDYn3/+qc/bt28fEwSB3bhxw+R9YWFhbOrUqZUgoSFdunRhkyZN0p/rdDrWoEEDtnTpUqPlhw4dyp566ilZXteuXdmrr75aoXKWhqXPYMn3o7IBwHbt2lVqmVmzZrHWrVvL8l544QXWt2/fCpTMPMyR/9ChQwwAS0tLqxSZCDlkCVdD4uLiUL9+fQQGBmLChAm4d+9eVYtkFsnJyUhNTUXv3r31ee7u7ujatSvi4+MrXZ74+Hh4eHigc+fO+rzevXtDoVAgISGh1Hujo6NRr149tGnTBnPnzkVOTk5Fi4uCggIkJibK+k+hUKB3794m+y8+Pl5WHgD69u1bJf0NWPcMAPDgwQP4+/vDz88PAwcOxNmzZytDXJtQ3T4DawkODoavry+efPJJHD16tKrFqTXQLkrVjH79+mHw4MFo0qQJLl26hLfeegv9+/dHfHw8lEplVYtXKsVzSN7e3rJ8b2/vKplfSk1NNRhSs7OzQ506dUqV58UXX4S/vz8aNGiAU6dOYfbs2bhw4QJ27txZofLevXsXOp3OaP+dP3/e6D2pqanVpr8B654hMDAQmzdvRrt27ZCRkYH33nsPoaGhOHv2rE13MKsoTH0GmZmZyM3NhaOjYxVJZh6+vr7YsGEDOnfujPz8fPzvf/9DeHg4EhIS0LFjx6oWr8ZDSthC5syZg+XLl5da5ty5cwgKCrKq/mHDhunTbdu2Rbt27dCsWTPExcWhV69eVtXJU9HyVwbmPoO18HPGbdu2ha+vL3r16oVLly6hWbNmVtdLGCckJAQhISH689DQULRs2RIbN27E4sWLq1Cy2kFgYCACAwP156Ghobh06RI++OADfP7551UoWe2AlLCFvPHGGxg9enSpZZo2bWqz9po2bYp69erh4sWLNlHCFSm/j48PAODWrVvw9fXV59+6dQvBwcFW1WkMc5/Bx8fHwBlIq9Xi/v37elnNoWvXrgCAixcvVqgSrlevHpRKJW7duiXLv3Xrlkl5fXx8LCpf0VjzDCWxt7dHhw4dcPHixYoQ0eaY+gzc3NyqvRVsii5duuDIkSNVLUatgJSwhXh5ecHLy6vS2rt+/Tru3bsnU2rloSLlb9KkCXx8fBAbG6tXupmZmUhISLDYQ7w0zH2GkJAQpKenIzExEZ06dQIA/PLLLxBFUa9YzeHkyZMAYLPPwBQqlQqdOnVCbGwsBg0aBAAQRRGxsbGYPHmy0XtCQkIQGxuLadOm6fMOHDggsywrE2ueoSQ6nQ6nT5/GgAEDKlBS2xESEmKwLKwqPwNbcPLkyQp/34kiqtozrCZz5coVlpSUxKKiopiLiwtLSkpiSUlJLCsrS18mMDCQ7dy5kzHGWFZWFnvzzTdZfHw8S05OZgcPHmQdO3ZkLVq0YHl5edVefsYYW7ZsGfPw8GB79uxhp06dYgMHDmRNmjRhubm5lS4/Y4z169ePdejQgSUkJLAjR46wFi1asOHDh+uvX79+nQUGBrKEhATGGGMXL15kixYtYsePH2fJyclsz549rGnTpqxHjx6VIu9XX33F1Go127p1K/v777/Z+PHjmYeHB0tNTWWMMTZy5Eg2Z84cffmjR48yOzs79t5777Fz586xyMhIZm9vz06fPl0p8hrD0meIiopi+/fvZ5cuXWKJiYls2LBhzMHBgZ09e7ZK5M/KytK/6wDYqlWrWFJSErty5QpjjLE5c+awkSNH6sv/999/zMnJic2cOZOdO3eOrVu3jimVSvbTTz89FPJ/8MEHbPfu3ezff/9lp0+fZlOnTmUKhYIdPHiwSuSvbZASrkAiIiIYAIPj0KFD+jIA2JYtWxhjjOXk5LA+ffowLy8vZm9vz/z9/dm4ceP0f7yqu/yMFS5Tmj9/PvP29mZqtZr16tWLXbhwofKFL+LevXts+PDhzMXFhbm5ubExY8bIfkQkJyfLnunq1ausR48erE6dOkytVrPmzZuzmTNnsoyMjEqTee3ataxx48ZMpVKxLl26sGPHjumvhYWFsYiICFn5b775hj3yyCNMpVKx1q1bsx9//LHSZDWFJc8wbdo0fVlvb282YMAAduLEiSqQupDiJTslj2KZIyIiWFhYmME9wcHBTKVSsaZNm8q+E5WNpfIvX76cNWvWjDk4OLA6deqw8PBw9ssvv1SN8LUQ2k+YIAiCIKoIWidMEARBEFUEKWGCIAiCqCJICRMEQRBEFUFKmCAIgiCqCFLCBEEQBFFFkBImCIIgiCqClDBBEARBVBGkhAmikhk9erQ+pKMp4uLiIAgC0tPTK1SW8PBwCIIAQRD04TkrkoCAAH17Ff1sBPEwQME6CKKSycjIAGMMHh4eAAoVYXBwMFavXq0vU1BQgPv378Pb2xuCIFSYLOHh4XjkkUewaNEi1KtXD3Z2FRtO/s6dO/jtt98wZMgQpKWl6fuAIGortIEDQVQy7u7uZZZRqVSVthOSk5NTpbXl5eWFOnXqVEpbBPEwQMPRRI1l27ZtqFu3LvLz82X5gwYNwsiRI43ec/nyZQiCgK+++gqhoaFwcHBAmzZtcPjwYVm5w4cPo0uXLlCr1fD19cWcOXOg1Wr113fs2IG2bdvC0dERdevWRe/evZGdnQ1APhw9evRoHD58GGvWrNEP016+fNnocPS3336L1q1bQ61WIyAgAO+//75MpoCAALz77rt4+eWX4erqisaNG2PTpk0W99vWrVsNLNTdu3fLLPKFCxciODgYmzdvRuPGjeHi4oKJEydCp9NhxYoV8PHxQf369fHOO+9Y3D5B1CZICRM1lueffx46nQ7fffedPu/27dv48ccf8fLLL5d678yZM/HGG28gKSkJISEhePrpp3Hv3j0AwI0bNzBgwAA8+uij+Ouvv7B+/Xp8+umnWLJkCQAgJSUFw4cPx8svv4xz584hLi4OgwcPhrGZnzVr1iAkJATjxo1DSkoKUlJS4OfnZ1AuMTERQ4cOxbBhw3D69GksXLgQ8+fPx9atW2Xl3n//fXTu3BlJSUmYOHEiJkyYgAsXLljadWZx6dIl7Nu3Dz/99BO+/PJLfPrpp3jqqadw/fp1HD58GMuXL8e8efOQkJBQIe0TRI2gKnePIIiKZsKECax///768/fff581bdqUiaJotHzxrkrLli3T52k0GtaoUSO2fPlyxhhjb731FgsMDJTVsW7dOubi4sJ0Oh1LTExkANjly5eNthEREcEGDhyoPw8LC2NTp06VlSneCSctLY0xxtiLL77InnzySVmZmTNnslatWunP/f392YgRI/Tnoiiy+vXrs/Xr1xuVw1TbW7ZsYe7u7rK8Xbt2Mf7PRWRkJHNycmKZmZn6vL59+7KAgACm0+n0eYGBgWzp0qWlPhtB1GbIEiZqNOPGjcPPP/+MGzduACgcah09enSZzk78hux2dnbo3Lkzzp07BwA4d+4cQkJCZHV0794dDx48wPXr19G+fXv06tULbdu2xfPPP49PPvkEaWlp5XqOc+fOoXv37rK87t27499//4VOp9PntWvXTp8WBAE+Pj64fft2udo2RUBAAFxdXfXn3t7eaNWqFRQKhSyvotoniJoAKWGiRtOhQwe0b98e27ZtQ2JiIs6ePYvRo0dXaJtKpRIHDhzAvn370KpVK6xduxaBgYFITk6u0HYBwN7eXnYuCAJEUbSoDoVCYTB0rtFozGrLFu0TRG2ClDBR43nllVewdetWbNmyBb179zY651qSY8eO6dNarRaJiYlo2bIlAKBly5aIj4+XKaqjR4/C1dUVjRo1AlCofLp3746oqCgkJSVBpVJh165dRttSqVQya9YYLVu2xNGjR2V5R48exSOPPAKlUlnm81iCl5cXsrKy9I5kACplDTFB1EZICRM1nhdffBHXr1/HJ598UqZDVjHr1q3Drl27cP78eUyaNAlpaWn6eydOnIhr165hypQpOH/+PPbs2YPIyEjMmDEDCoUCCQkJePfdd3H8+HFcvXoVO3fuxJ07d/RKvCQBAQFISEjA5cuXcffuXaOW4xtvvIHY2FgsXrwY//zzDz777DN89NFHePPNN63vGBN07doVTk5OeOutt3Dp0iXExMQYOIARBGEbSAkTNR53d3cMGTIELi4uZUaqKmbZsmVYtmwZ2rdvjyNHjuC7775DvXr1AAANGzbE3r178ccff6B9+/Z47bXXMHbsWMybNw8A4Obmhl9//RUDBgzAI488gnnz5uH9999H//79jbb15ptvQqlUolWrVvDy8sLVq1cNynTs2BHffPMNvvrqK7Rp0wYLFizAokWLKmRovU6dOvjiiy+wd+9etG3bFl9++SUWLlxo83YIgqCIWUQtoVevXmjdujU+/PDDUstdvnwZTZo0QVJSEoKDgytHuCrEWLSuiiYuLg49e/akiFkEAbKEiRpOWloadu3ahbi4OEyaNKmqxamWfPzxx3BxccHp06crvK3WrVubHBEgiNoIha0kajQdOnRAWloali9fjsDAwKoWp9oRHR2N3NxcAEDjxo0rvL29e/fqPa3d3NwqvD2CqO7QcDRBEARBVBE0HE0QBEEQVQQpYYIgCIKoIkgJEwRBEEQVQUqYIAiCIKoIUsIEQRAEUUWQEiYIgiCIKoKUMEEQBEFUEaSECYIgCKKKICVMEARBEFUEKWGCIAiCqCJICRMEQRBEFUFKmCAIgiCqCFLCBEEQBFFFkBImCIIgiCqClDCBgIAALFy4sFLamjhxIp588slKaassunXrhlmzZhm9Fh4ejtGjR9u0vX///Rd9+vSBu7s7BEHA7t27La4jPDwcbdq0salchHkEBATY/J0gCFLChFHCw8MhCILRIygoyKo6k5OT8b///Q9vvfWWjaW1jtmzZ2PdunVITU2tlPYiIiJw+vRpvPPOO/j888/RuXNno+Vu3ryJhQsX4uTJk5UiF09cXJzJz73kAQBbt24ttcyxY8f0dX/99dcYMWIEWrRoAUEQEB4eXunPRxDVDbuqFoCovjRq1AhLly41yHd3d7eqvjVr1qBJkybo2bNneUWzCQMHDoSbmxs+/vhjLFq0qELbys3NRXx8PN5++21Mnjy51LI3b95EVFQUAgICEBwcXKFylaRly5b4/PPPZXlz586Fi4sL3n77bZP3LVq0CE2aNDHIb968uT69fv16JCYm4tFHH8W9e/dsJzRBPMSQEiZM4u7ujhEjRtikLo1Gg+joaLz22ms2qc8WKBQKPPfcc9i2bRuioqL01l1FcOfOHQCAh4dHhbVhC7y9vQ0+82XLlqFevXqlvgv9+/c3adkX8/nnn6Nhw4ZQKBQ0pE4QRdBwNGE1hw4dgiAI2LVrl8G1mJgYCIKA+Ph4AMCRI0dw9+5d9O7dW1YuIiICDg4OOHfunCy/b9++8PT0xM2bNy2SKTIyEvb29nqlxzN+/Hh4eHggLy9Pn/fkk0/iypUr5Rr6TUpKQv/+/eHm5gYXFxf06tVLNgy7cOFC+Pv7AwBmzpwJQRAQEBBgtK64uDg8+uijAIAxY8boh3W3bt0qK/f333+jZ8+ecHJyQsOGDbFixQqDuvLz8xEZGYnmzZtDrVbDz88Ps2bNQn5+vtXPWh78/PygUFj3J6d4mPybb75BVFQUGjZsCFdXVzz33HPIyMhAfn4+pk2bhvr168PFxQVjxowxeE6tVovFixejWbNmUKvVCAgIwFtvvWVQjjGGJUuWoFGjRnByckLPnj1x9uxZo3Klp6dj2rRp8PPzg1qtRvPmzbF8+XKIomjVcxK1D7KECZPodDrcvXvXIN/R0RHOzs4IDw+Hn58foqOj8eyzz8rKREdHo1mzZggJCQEA/P777xAEAR06dJCVW7NmDX755RdEREQgPj4eSqUSGzduxM8//4zPP/8cDRo0sEjmkSNHYtGiRfj6669lw74FBQXYsWMHhgwZAgcHB31+p06dAABHjx41kM0czp49i8cffxxubm6YNWsW7O3tsXHjRoSHh+Pw4cPo2rUrBg8eDA8PD0yfPh3Dhw/HgAED4OLiYrS+li1bYtGiRViwYAHGjx+Pxx9/HAAQGhqqL5OWloZ+/fph8ODBGDp0KHbs2IHZs2ejbdu26N+/PwBAFEU888wzOHLkCMaPH4+WLVvi9OnT+OCDD/DPP/9Y5RRWGhkZGQbviiAIqFu3rk3bWbp0KRwdHTFnzhxcvHgRa9euhb29PRQKBdLS0rBw4UIcO3YMW7duRZMmTbBgwQL9va+88go+++wzPPfcc3jjjTeQkJCApUuX4ty5c7IfkgsWLMCSJUswYMAADBgwACdOnECfPn1QUFAgkyUnJwdhYWG4ceMGXn31VTRu3Bi///475s6di5SUFKxevdqmz07UUBhR6/H392eRkZGyvLCwMAbA6PHqq6/qy82dO5ep1WqWnp6uz7t9+zazs7OT1TlixAhWt25do+3v37+fAWBLlixh//33H3NxcWGDBg2y+nlCQkJY165dZXk7d+5kANihQ4cMyqtUKjZhwgRZXlhYGIuIiCizrUGDBjGVSsUuXbqkz7t58yZzdXVlPXr00OclJyczAGzlypVl1vnnn38yAGzLli0G14o/l23btunz8vPzmY+PDxsyZIg+7/PPP2cKhYL99ttvsvs3bNjAALCjR4+WKUcxrVu3ZmFhYUavbdmyxeR7olarrarTGIcOHWIAWJs2bVhBQYE+f/jw4UwQBNa/f39Z+ZCQEObv768/P3nyJAPAXnnlFVm5N998kwFgv/zyC2Os8N1VqVTsqaeeYqIo6su99dZbDIDsnVi8eDFzdnZm//zzj6zOOXPmMKVSya5evWr28xG1FxqOJkwSEBCAAwcOGBzTpk3Tlxk1ahTy8/OxY8cOfd7XX38NrVYrm0O8d+8ePD09jbbTp08fvPrqq1i0aBEGDx4MBwcHbNy40Wq5R40ahYSEBFy6dEmfFx0dDT8/P4SFhRmU9/T0NGrxl4VOp8PPP/+MQYMGoWnTpvp8X19fvPjiizhy5AgyMzOte4hScHFxkfWtSqVCly5d8N9//+nztm/fjpYtWyIoKAh3797VH0888QSAwqkEW7Ju3TqD92Tfvn02bQMo/Gzt7e315127dgVjDC+//LKsXNeuXXHt2jVotVoAwN69ewEAM2bMkJV74403AAA//vgjAODgwYMoKCjAlClTZD4C/DtfzPbt2/H444/r35/io3fv3tDpdPj111/L/8BEjYeGowmTODs7G8zhliQoKAiPPvoooqOjMXbsWACFCq9bt24yz1igcK7NFO+99x727NmDkydPIiYmBvXr17da7hdeeAHTpk1DdHQ0FixYgIyMDPzwww+YPn26UecrxphVTll37txBTk4OAgMDDa61bNkSoiji2rVraN26tVXPYYpGjRoZyOvp6YlTp07pz//991+cO3cOXl5eRuu4ffu2TWXq0qVLmY5ZtqBx48ay82JPfT8/P4N8URSRkZGBunXr4sqVK1AoFAbvpI+PDzw8PHDlyhUA0P/fokULWTkvLy+DH5H//vsvTp06VWl9TNRMSAkT5WbUqFGYOnUqrl+/jvz8fBw7dgwfffSRrEzdunWRlpZmso6kpCT9H63Tp09j+PDhVsvj6emJ//u//9Mr4R07diA/P9+kd296ejrq1atndXuVjVKpNJrP/8gRRRFt27bFqlWrjJYtqbQeFkw9uzl9AsCmHvCiKOLJJ580GfDlkUcesVlbRM2FlDBRboYNG4YZM2bgyy+/RG5uLuzt7fHCCy/IygQFBSE6OhoZGRkG64yzs7MxZswYtGrVCqGhoVixYgWeffZZvZewNYwaNQoDBw7En3/+iejoaHTo0MGoRXrjxg0UFBSgZcuWFrfh5eUFJycnXLhwweDa+fPnoVAorFJ2tlAUzZo1w19//YVevXpV6NKrhwV/f3+Iooh///1X9lnfunUL6enpeu/14v///fdf2RTDnTt3DH5ENmvWDA8ePChztIggSoPmhIlyU69ePfTv3x9ffPEFoqOj0a9fPwPLMiQkBIwxJCYmGtw/e/ZsXL16FZ999hlWrVqFgIAARERElGspTf/+/VGvXj0sX74chw8fNmkFF8vDex+bi1KpRJ8+fbBnzx5cvnxZn3/r1i3ExMTgscceg5ubm8X1Ojs7Ayi00K1l6NChuHHjBj755BODa7m5ucjOzra67oeRAQMGAICBx3LxSMFTTz0FAOjduzfs7e2xdu1amRVtzNN56NChiI+Px/79+w2upaen6+ejCaI0yBImTJKRkYEvvvjC6LWSSm3UqFF47rnnAACLFy82KP/YY4+hbt26OHjwoN45CAB++eUXfPzxx4iMjETHjh0BAFu2bEF4eDjmz58vW/9avLaWV3imsLe3x7Bhw/DRRx9BqVSaHN4+cOAAGjdubNXyJABYsmQJDhw4gMceewwTJ06EnZ0dNm7ciPz8fKNrd82hWbNm8PDwwIYNG+Dq6gpnZ2d07drVaEQqU4wcORLffPMNXnvtNRw6dAjdu3eHTqfD+fPn8c0332D//v02ncPdt28fzp8/b5AfGhqqtyh//fVXvbPSnTt3kJ2djSVLlgAAevTogR49ethMnpK0b98eERER2LRpE9LT0xEWFoY//vgDn332GQYNGqSP4ubl5YU333wTS5cuxf/93/9hwIABSEpKwr59+wx+WM6cORPfffcd/u///g+jR49Gp06dkJ2djdOnT2PHjh24fPnyQzXNQVQRVeiZTVQTLF2iZOy1yc/PZ56enszd3Z3l5uYabef1119nzZs3159nZmYyf39/1rFjR6bRaGRlp0+fzhQKBYuPj9fn1atXj3Xr1s3s5/rjjz8YANanTx+j13U6HfP19WXz5s0zuGbuEiXGGDtx4gTr27cvc3FxYU5OTqxnz57s999/l5WxZIkSY4zt2bOHtWrVitnZ2cmWK4WFhbHWrVsblI+IiJAtyWGMsYKCArZ8+XLWunVrplarmaenJ+vUqROLiopiGRkZZsnBmPVLlHi5GWMsMjLSZLmS719Jipcobd++3Wj7f/75pyy/uK07d+7o8zQaDYuKimJNmjRh9vb2zM/Pj82dO5fl5eXJ7tXpdCwqKor5+voyR0dHFh4ezs6cOcP8/f0N3omsrCw2d+5c1rx5c6ZSqVi9evVYaGgoe++992RLqQjCFKSECaNK2FI0Gg3z8vJiL7/8sskyly5dYvb29uzgwYMW13/27FkGgP3www9m31O8NpRfU8uza9cu5ujoyG7evGlwzRIlTBAEYS00J0zYhN27d+POnTsYNWqUyTJNmzbF2LFjsWzZMovrP3ToEEJCQvRzd+bwySefwMXFBYMHDzZ6ffny5Zg8eTJ8fX0tlocgCMIW0JwwUS4SEhJw6tQpLF68GB06dDAaDINn/fr1VrUzadIkTJo0yayy33//Pf7++29s2rQJkydP1js6laQ4rjVBEERVQUqYKBfr16/HF198geDgYINNBqqKKVOm4NatWxgwYACioqKqWhyCIAiTCIyVEsaIIAiCIIgKg+aECYIgCKKKICVMEARBEFUEzQmXgSiKuHnzJlxdXSn8H0EQBApjcmdlZaFBgwZQKGxjy+Xl5Rns2QwU7hLG7wFe0yAlXAY3b958aIPdEwRBVCTXrl1Do0aNyl1PXl4emjRpiNTU+wbXfHx8kJycXGMVMSnhMnB1dS1KKQCQJUwQBFEY6Ezk/j6Wj4KCAqSm3sflfz6Hm5uTPj8zMwcBj4xEQUEBKeHaijQELYCUMEEQhIStp+jcnNRwc1JLGVqdTeuvjpASJgiCIKoHWm3hwZ/XcEgJEwRBENUCQdRC0Gll5zUdUsJEjUOopGkDhtoV54b6lahwCjSFB39ewyElTBAEQVQPdDqAs4ShozlhgiAIgqgctDq5MxY5ZhVy6tQpiytu1aoV7OxIxxMEQRBmoivhmKWjOWEAQHBwMARBgLl7PSgUCvzzzz9o2rRpuYQjCIIgag+CTgeBG4IWaDhaIiEhAV5eXmWWY4yhTZs25RKKIAiCqIUUaIACO/l5DccsJRwWFobmzZvDw8PDrEp79OgBR0fH8shF1HBs7mlbBXG9jT5DOXYGtbVXsNV9XMUx0mVy23inVfK8ruZodSXWCdd8S9isyNuHDh0yWwEDwN69e+Hr62utTKWybt06BAQEwMHBAV27dsUff/xhsuzWrVshCILsqKmhzwiCIB56dDrDo4bzUG1l+PXXX2PGjBmIjIzEiRMn0L59e/Tt2xe3b982eY+bmxtSUlL0x5UrVypRYoIgCMJsdDrJQ1pbO5Swxe7LjDHs2LEDhw4dwu3btyGKouz6zp07bSZcSVatWoVx48ZhzJgxAIANGzbgxx9/xObNmzFnzhyj9wiCAB8fnwqTiSAIgrARGg2gUcrPazgWW8LTpk3DyJEjkZycDBcXF7i7u8uOiqKgoACJiYno3bu3Pk+hUKB3796Ij483ed+DBw/g7+8PPz8/DBw4EGfPni21nfz8fGRmZsoOgiAIohLQ6gyPGo7FlvDnn3+OnTt3YsCAARUhj0nu3r0LnU4Hb29vWb63tzfOnz9v9J7AwEBs3rwZ7dq1Q0ZGBt577z2Ehobi7NmzJvfAXLp0KaKiomwuf02j3I5VZTr/lP370CbOXYIZv0OZWHaZ4qKCOY4/xuszdWtZzkQm+8FkH5f+zBb3q437sIQwUhVmOVWV3o5ZH08JyJmrEtGKJYJ1WPnePERYbAm7u7s/NOt/Q0JCMGrUKAQHByMsLAw7d+6El5cXNm7caPKeuXPnIiMjQ39cu3atEiUmCIKoxYglnLJE8y3h9evXo127dnBzc4ObmxtCQkKwb98+/fW8vDxMmjQJdevWhYuLC4YMGYJbt25VxFNYhMVKeOHChYiKikJubm5FyGOSevXqQalUGnTarVu3zJ7ztbe3R4cOHXDx4kWTZdRqtf5DLD4IgiCISkArGh5m0qhRIyxbtgyJiYk4fvw4nnjiCdkU5PTp0/H9999j+/btOHz4MG7evInBgwdX1JOYjcVKeOjQoUhLS0P9+vXRtm1bdOzYUXZUFCqVCp06dUJsbKw+TxRFxMbGIiQkxKw6dDodTp8+XWHLpwiCIIhyUKA1PMzk6aefxoABA9CiRQs88sgjeOedd+Di4oJjx44hIyMDn376KVatWoUnnngCnTp1wpYtW/D777/j2LFjFfhAZWPxnHBERAQSExMxYsQIeHt7Q6jEhf0zZsxAREQEOnfujC5dumD16tXIzs7We0uPGjUKDRs2xNKlSwEAixYtQrdu3dC8eXOkp6dj5cqVuHLlCl555ZVKk5kgCIIwk5Jrg4vSJR1k1Wo11Gp1KdXosH37dmRnZyMkJASJiYnQaDQyx96goCA0btwY8fHx6Natm22fwwIsVsI//vgj9u/fj8cee6wi5CmVF154AXfu3MGCBQuQmpqK4OBg/PTTT3pnratXr0KhkIz7tLQ0jBs3DqmpqfD09ESnTp3w+++/o1WrVpUuO0EQBFEGJYegi9J+fn6yYpGRkVi4cKHB7adPn0ZISAjy8vLg4uKCXbt2oVWrVjh58iRUKpVB0Clvb2+kpqba+ikswmIl7OfnV6XzpJMnT8bkyZONXouLi5Odf/DBB/jggw8qQaqaieVessbKG5/xMFq3zMvWxH2yMkozyhS3Z5u4NMyE9y0r8v6VP5XO4HohXJrLl3tWS/nF2byXrqz/ZP2uMFHGeN+W1Z/G+rKw7vL3Z1l9adimqf7kMd63+iyT7tGm5x7N9agmL2oboCuxLKnIEr527ZpM75iyggMDA3Hy5ElkZGRgx44diIiIwOHDhytU5PJi8Tfp/fffx6xZs3D58uUKEIcgCIKotWhZCceswh82JZ1lTSlhlUqF5s2bo1OnTli6dCnat2+PNWvWwMfHBwUFBUhPT5eVt8Sxt6KwWAmPGDEChw4dQrNmzeDq6oo6derIDoIgCIKwBqbRGRzlQRRF5Ofno1OnTrC3t5c59l64cAFXr14127G3mN9++w0jRoxASEgIbty4AaAwfsaRI0esktHi4ejVq1db1RBBEARBlIqJOWFzmDt3Lvr374/GjRsjKysLMTExiIuLw/79++Hu7o6xY8dixowZqFOnDtzc3DBlyhSEhIRY5JT17bffYuTIkXjppZeQlJSE/Px8AEBGRgbeffdd7N271+y6irHKO5ogCIIgbA3TiWCc4mU685Xw7du3MWrUKKSkpMDd3R3t2rXD/v378eSTTwIo9BFSKBQYMmQI8vPz0bdvX3z88ccWybdkyRJs2LABo0aNwldffaXP7969O5YsWWJRXcVYrISvXr1a6vXGjRtbJQhBEARRyymHJfzpp5+Wet3BwQHr1q3DunXrrJUOFy5cQI8ePQzy3d3dDeabzcViJRwQEFDq2mBdLdh6qiZRqgd0qWvAjXkgm+/xLAj2Rf/z3rz8dTsuLeUrTOSbrkdpWEc5PHtFzouW99BlrPC9F5nW6HV5vtZEvrRjDBMLpLSgKy4gCcJ9NgLn1SwoVFwRe31a3m92JvIVRvKUBtcB2/Shsf4D5F7T8jKm+pMvw+UbaQfMxK48svtKeDkLpSgCZsJj3VRdRKkwjQimFGXn1QkfHx9cvHgRAQEBsvwjR45YHc7ZYiWclJQkO9doNEhKSsKqVavwzjvvWCUEQRAEQZTHEq4Mxo0bh6lTp2Lz5s0QBAE3b95EfHw83nzzTcyfP9+qOi1Wwu3btzfI69y5Mxo0aICVK1dWi1icBEEQxMMH0zEwLZOdVyfmzJkDURTRq1cv5OTkoEePHlCr1XjzzTcxZcoUq+q0WAmbIjAwEH/++aetqiMIgiBqGUzLwJRMdl6dEAQBb7/9NmbOnImLFy/iwYMHaNWqFVxcXKyu02IlXDKGJ2MMKSkpWLhwIVq0aGG1IARBEEQtRwc+0Jw8XY1QqVQ2C39ssRL28PAwcMxijMHPz0/msk1UHywOP6nHtPMN7/RTWp5S5ihk6BCkUNhxZaUoOHbcfUpByrdXOElluHw7qLnykhx2rDCthJTHO26Z42DEO2PpIDn26AStQb6W5enztCxfny5g0tafWjFHn9bo8rh0tlRGJ5URi/J5hyWZ05XCUZ+2U0r9Y6905tIOUhmuD1UCd29Rf9oJUlm+35TMzmi+pX1Y/Bx8X2oFrl855yktpD7k+1PD9aGOy9dyDm06Mb/ofylPFPldeYw7eoliPuTI5yV5JzL5V0ssLsBdNv7dI4ct44gFDCIXJ1QsqF791LNnz1Idk3/55ReL67RYCR86dEh2rlAo4OXlhebNm8POzmaj2wRBEEQtg2kBppSfVyeCg4Nl5xqNBidPnsSZM2esjqFhsdYMCwuzqiGCIAiCKA0mAvxAg8l9OqoIUxsCLVy4EA8ePLCqTrMW+3333XfQaEysrzPC3r17kZubW3ZBgiAIgiiCaQ2Ph4ERI0Zg8+bNVt1rlhJ+9tlnLYoGMmzYMKSkpFglEEEQBFE7EXWGx8NAfHw8HBwcyi5oBLOGoxljGD16tMnto0qSl5dXdiGielCKkwEfLakkCoXhu8A7BenzFNKLaa+UnIAURY5F9pxTkYNC2i/UEe76tDPj01J5J0jOW45K6VV2UEq/LVUKRVE7kkxKhfTMShOPzwen4kfEtKJ0QcOl84rWM+ZxEeNyuJ/xDyCNDGXZZUj5dnf16WzdPelejZSfVzwmp5NGo3hnLAd7afcyRy7toqwvpVFXSouuXD7Xn0XOcg5K6XN34DrInus3Oy7N/5I39Trxyz11Rf3GB0MqEKWTPC5ecK5O6sMcJjlYZSuk/swWpP7MhZTOEzOL2pHK6kTeiSufy5fq1pawTURW0lGLg4/WVXwfH2GLGXcs4h22yElLQtQoIHKR2USNbfYBtxUl42AUrw46fvx4xQbrsHTC+aWXXpJtwEwQBEEQZSHqAN6BvbpZwu7u7rJzhUKBwMBALFq0CH369LGqTrOU8JYtW6yqnCAIgiDMhekUEBUK2Xl1oiJ0Ia0pIgiCIKoFoihAFAXZeU2HlHCtp7RfmqavKQSVQZ7KztUgz8lOmqPk53yLAy84Kjz1eZ6iNIdZD1LZOiqpLU+1JJO7SuDS0ryaMxf2ztmucH7Okcuz4+bs7LjvuMAFCWBMuqDh0vk6KZ0nSrJkawvTGRppPjVTI8mdlu/IpaUhrbtaL336tjJVyufm47VFAT10OilaHT//7qSS6qinaKJP1xd9pHw7qf26TlLdfB96FInrasf3n5R2UEhjg2quP+25fjPVh3z0QS0r7KscrdR/OZzFk6U13ofpBdIzZORL79q9Aqk/7yFLn05T3gYA5App+jw7O8mXIZ9JS0pyNfcluUsG5yhlT1sGLV/QsAA/SW5ifpiQ0GkV0HFzwjpt1VvCnp6epQbo4Ll//37ZhUpASpggCIKoFuh0AnSc059OV/WW8OrVqyu0flLCBEEQRLVAFBUQuREmPl1VWBsJy1xICRMm4TdxLwkf87kYFReruBh3ZUN9OkAM0KeT2G8AAC8mDZ/6Kjz06YZO0jCkL7fyycdBGhr0VktDgXXV0jIST0dpiZyrY2G+g6O0vMeeq0PBDatCwa9L4oZS87mh6XzpuXNyJBmz8gqHOe/lSUuy7uRL12/lSUOsN3OluMvOOVIf2+U20KcLlNKymhzlHQAAv1CGjwvtrpTua6CT0o0cpY5r6Cy1w/ehj4PUL17qwmU6dRyklly5tJOTtIzHnut7O3XZfajTcP1ZUChLHtcPWbnSMHFartSH9/Kl/Ftc36fmSc9zI0caprbPlvpZU7SkKYPd1Oe1RWd9+rJwVZJJycellgcaErnlSwCgk4Vx4uJ5F6WZbBqnmoV8qubodAroOMcsXTVzzOLJy8tDQYH83bBmVZBVSjg2NhaxsbG4ffs2RFH+klkbNYQgCIKo3eiYAB3/441V/XA0T3Z2NmbPno1vvvkG9+7dM7iu01m+pspiJRwVFYVFixahc+fO8PX1NXvCmngYKSVYh2D46vCBN4pxYJLFpuacjdRC4f6b7qLkVOPlLFlGvPUb4CS92H5OkpXb0FVyrKlTV9qByLGeVN7eq7BNhbtkUQnOnFOZg+HOTwAA7scly5WsRfZA+uXrmSbt5FNwu1CW+neluuumSc5Drnbc7kZcoBPeasrVSvn3dJJD2z2lYb/yuyK5iVLZuiop38dJ+m76OUnP4+8kWX0NnaVnqO9Z6NTkUk96RlV9bscpT25HLFfp2QQH7l3grBi+D1EgfSYsu7B+MUOSo+4dyfqsf1uq79596f1xeyClVQo+OpH0XhXopM8zM6fw3bqrkPZ6tefKOoDbZYrbWUphsBtYxVpjFLhDQqdTQsv9ndDpTP8NqgpmzZqFQ4cOYf369Rg5ciTWrVuHGzduYOPGjVi2bJlVdVqshDds2ICtW7di5MiRVjVIEARBEMbQMUFm/VY3S/j777/Htm3bEB4ejjFjxuDxxx9H8+bN4e/vj+joaLz00ksW12mxEi4oKEBoaKjFDRHVE2v3GjY2X8zvMVuMPZOsJxUXTtJeLLTuXLh9g/nlMl7cPKOvo2SZ8dZvfV9pOYqjPxeKsqE0LyPUL0p7csunXLi5awcu/CZvxWmlOU8hV7K+hQypfcV9acmQIqUwbXddsugUSuk6F+ESudw8Vwa3BMdNJf3qd8qWZFQaCRHK77HswIXydOXic3KGK+qrJWve10myfn29pDCPrn6Fz2zfWLIKBW+u3+px0YJcuT505KxSfjtT3hLOk6xe4UHhqIUyTfr8FLe55VfXpD62v8b3sdSJBbLlYVL7adw75JJX2AH2XGhOFfcZ2+v4Pau5fZNLjPKUfNfl51xgieK0saVKhFnoRAE67rPVWbBOeOnSpdi5cyfOnz8PR0dHhIaGYvny5QgMDNSXycvLwxtvvIGvvvoK+fn56Nu3Lz7++GN4e3ub1cb9+/fRtGlTAIXzv8VLkh577DFMmDDBbFl5LB5neeWVVxATE2NVYwRBEARhikIlLD/M5fDhw5g0aRKOHTuGAwcOQKPRoE+fPsjOlqaqpk+fju+//x7bt2/H4cOHcfPmTYN40KXRtGlTJCcnAwCCgoLwzTffACi0kD08PMyuh8diSzgvLw+bNm3CwYMH0a5dO9jby62fVatWWSWIuaxbtw4rV65Eamoq2rdvj7Vr16JLly4my2/fvh3z58/H5cuX0aJFCyxfvhwDBgyoUBlrCqV5RwtGfr8Z2/DBjtuhm98AwJ4VWi8O3D2O3GYBrnaSNeFmL1nCbq6SVaquL1lGSl9p3k9oIAUAgU89AACrw+W5SmWZmrPiTFrCknUruEmWIxwla1RR5Bthp5WsP6dsyfpzfyCl3fIky4wPhqHmN0vgvpqGc5Ryy03NjUDwfcjX7W4vPY+Hs9SHjnU4L2efwucRfDgPzwb1pHQ9ae6ZcTF0mSM3Z23CEhbyuU1dsgotXcFZCqIh2EnvgZLrQ3WuZBW7Zkl1eHAe1K523EYeXPvFVq+SSf3Dv4NKLigIb/2WbvmWAwrcUSamhqMzMzNl5dRqtcGGQj/99JPsfOvWrahfvz4SExPRo0cPZGRk4NNPP0VMTAyeeOIJAIVhKFu2bIljx46hW7duZco3ZswY/PXXXwgLC8OcOXPw9NNP46OPPoJGo7Fa91mshE+dOoXg4GAAwJkzZ2TXKtpJ6+uvv8aMGTOwYcMGdO3aFatXr0bfvn1x4cIF1K9f36D877//juHDh2Pp0qX4v//7P8TExGDQoEE4ceIE2rRpU6GyEgRBEJahFRXQcMPR2qK0n5+frFxkZCQWLlxYal0ZGYU/mOvUKfzxmJiYCI1Gg969e+vLBAUFoXHjxoiPjzdLCU+fPl2f7t27N86fP4/ExEQ0b94c7dq1K/N+Y1ishA8dOmRVQ7Zg1apVGDduHMaMGQOg0Ensxx9/xObNmzFnzhyD8mvWrEG/fv0wc+ZMAMDixYtx4MABfPTRR9iwYUOlyk4QBEGUjo4poGMK2TkAXLt2TbYGt6xtdUVRxLRp09C9e3e9wZWamgqVSmUwbOzt7Y3U1FQjtRhy7do12Q8Cf39/+Pv7m3WvKcoVrOP69esAgEaNGpVLCHMoKChAYmIi5s6dq89TKBTo3bs34uPjjd4THx+PGTNmyPL69u2L3bt3m2wnPz8f+fnS0GHJYRDCNEaHqLkvFD9QoijK50eA7fg9f7kYxPYKLtazShqmVnBxpAU19ypzw8R6pyFuyJRxQSygLtsxSzZwqJGGxgXeIcmpaCiXW66j5AKI2HHD66ZiV/N7GysscJjjy3K+b7DnqpD1oVKSRck9vl52JyP9B4A58X3IDUGbMRzNuL4VtEXtO3JBMbjPTHCUho8VjlwwE3upPv55+HfFWB8quGVJsnfQyqVHgswZi7AlWlGAlg+UU5R2c3OzKBDGpEmTcObMGRw5csSm8gUEBOCxxx7DiBEj8Nxzz8HT07Psm8rA4rdQFEUsWrQI7u7u+l8BHh4eWLx4sUHgDlty9+5d6HQ6Ay+20n7FpKamWlQeKPSwc3d31x8lh0EIgiCIiqF4Tpg/LGXy5Mn44YcfcOjQIZmB6OPjg4KCAqSnp8vK37p1Cz4+PjCH48ePo0uXLli0aBF8fX0xaNAg7NixQ2a4WYrFlvDbb7+NTz/9FMuWLUP37t0BAEeOHMHChQuRl5eHd955x2phqgNz586VWc+ZmZmkiM2k5O4zAMA4q4/JIhoW5vNLdzh/HNmXTzZHVCBZNWK+ZJWyfN6RivtCFC8v4p2rOCcgxv9wNMcxK4ez3rilS8gpbJPlSffpODG0nBOQlhsd4HcX0vH9Y4GNxZflN/zRcFXI+pALgMDLWCy7kGOk/1Di2e0lZyiZpOY4ZhX3J99/3GfGB0cRc6U6tBqpbv555I48XPNFkongAoXIrltnNBh7zwnboCkxJ6yxIHY0YwxTpkzBrl27EBcXhyZNmsiud+rUCfb29oiNjcWQIUMAABcuXMDVq1cREhJiVhsdOnRAhw4dsGLFCsTFxSEmJgbjx4+HKIoYPHiwVREjLVbCn332Gf73v//hmWee0ee1a9cODRs2xMSJEytMCderVw9KpRK3bt2S5Zf2K8bHx8ei8oBxrzuCIAii4hEht35FC6ZlJk2ahJiYGOzZsweurq76EU93d3c4OjrC3d0dY8eOxYwZM1CnTh24ublhypQpCAkJMcspi0cQBPTs2RM9e/bEhAkTMHbsWHz22WeVo4Tv37+PoKAgg/ygoCCr9lI0F5VKhU6dOiE2NhaDBg0CUDg0Hhsbi8mTJxu9JyQkBLGxsZg2bZo+78CBA2b/6qntMGb6F79Rq9dIkAItZ4VoOLNXwwqtoDzunlyd9DpmcfuI8nvKZmZJc5QOtyWLSeEorQVUcstQiucfhWwpQAUfrEMwI1iHzGLjgnWAC9YhFgXr0KZKFl3OPWluM4PboCCT23M4W8vvVcz1D7dPrcik5yxGx+XlC1I6l6uDrzuDsyLTs6U+dL7PzVs7F6btVdJzCbzpyI08CJlSoA3BwmAdKArWAS5YB+OCdehSpM8q/670DFkPpHbSC7jNM7h3JVfLB/QobF8HqX/4d1AnSO+ejuvvku99ad8Di6BlSWVSnohZ69evBwCEh4fL8rds2YLRo0cDAD744AMoFAoMGTJEFqzDUq5fv46YmBjExMTgzJkzCAkJwbp16yyuB7BCCbdv3x4fffQRPvzwQ1n+Rx99hPbt21slhLnMmDEDERER6Ny5M7p06YLVq1cjOztb7y09atQoNGzYEEuXLgUATJ06FWFhYXj//ffx1FNP4auvvsLx48exadOmCpWTIAiCsBwtk0/RaC343cLM+JHj4OCAdevWWa0wN27ciJiYGBw9ehRBQUF46aWXsGfPnnJ5SFushFesWIGnnnoKBw8e1FuU8fHxuHbtGvbu3Wu1IObwwgsv4M6dO1iwYAFSU1MRHByMn376Se98dfXqVSg4ayY0NBQxMTGYN28e3nrrLbRo0QK7d++mNcIcpQWML+03qDHrgLc4itEIkvVUwFlGGhTOCz7gtonL4KybO9z2gc5KKd9OkAJt8NQp4DZwSJOsKnuvwnyFuzRKY6sNHMQ07tluF5Z/wG3gcJvbwCElR/LIvp0vtclVgUxuk4MchfQ8Oo2h04eOSXl5CmmuNksjeZCmcfPnfJuOSm6zgjtcndqiDRyyJEtUdUcaBVB4SoFKBFfOm9kGGzho7nDPbmIDhxRuA4eUPKmf7xVI70p6gfQ+F79bGq5/ZO8g927yIws6xo2CoHTLWHbNVhZzLaa6x45esmQJhg8fjg8//NBmRqfFSjgsLAz//PMP1q1bh/PnzwMABg8ejIkTJ6JBgwZl3F1+Jk+ebHL4OS4uziDv+eefx/PPP1/BUhEEQRDlRSMK0AiC7Lw6cfXqVZsHpbJqnXCDBg0eei9owhxMB6IXS1gLgOFm6ACQZydZdPmiVF8+K5xbzVBI1tWdPMm6UnEbO/Bb1eWJ0prUTI1k3dXNlqw7T856c71caG05cJtA2Dtw1p2y7A3ptZxVruE2ls/hrNusItnv5UnzlnfypWe4lSc9w81cyVpMyZH65D5n8WYpJctdozPsV41OeoZMe6nsvQIpnKQjJ59S4D1OpX5+wHlt3y96hjppkhyu16S0kxPXh2ppPtdOXXYf6jRcfxYUypKXy83rcnPmaVxIynv5Uv4tru9T86TnucFN99/Nkyza4ncrX5Tm8TXcPHCeIL2bGlGqxHAOvmIt3Nq+fSGPWMISFquZJVwRUSHNUsKnTp1CmzZtoFAocOrUqVLLWhu6iyAIgqjdVPfh6IrALCUcHByM1NRU1K9fH8HBwRAEwegkuCAI0OloG6+aQmleoaJoaAkX6LIN8jKEG/r0BYVkPamKtpd7IKTr81JEyTLSPJDmNjO5ueLbXJQsd5WaS0tlnJXSvLGzXeEzOHIWr6mIVQIXeYnx65QZ78EspfNk2+kV5mdwFl8mZ1Cl5TMuLV24q5Ws3NsKKYhMpk5Ka3ScqafPk/o6Q3dTn77JbXuozZWW4j3QSCMIdx0k6/eaShpN8ChKu9pJFjS/CYQDF6VKzfWnPddvpvpQ7mxT2G85nFdzDtevWVq+D43P92bkS7LcK5Cs9XuQ3rEHinQAgEqQnv2ccFqfLh6NAeT9qeP8FABjoz783zhuflhv0dLcsLWUxzHrYcUsJZycnAwvLy99miAIgiBsjY6ZDr5SUzFLCfPu11euXEFoaCjs7OS3arVa/P777+UOZk0QBEHUTjQM4AZfZFHfaioWO2b17NkTKSkpBlsHZmRkoGfPnjQc/dBR2tBZKcPRrMAgr0CbZVhO5IJKKKWlQ8V75Gq5pTYahTTsmgXJweg252zknC8NLToJ3D6ySulVduB2MSjeU9ae3xxCwW2yYGLKSR7eUELLBxzh0nlF8SLzuPc/hxuyf8C4ZUScM9oDxV19Olt3T7pXI+VrjQxH83k5BdI6ozv2XPATrr/viXX1aZcH0tIpF26o1qmoXxyU0nC1A7/HsULKt+MCovCBBU35rfAWja6o3zT8CiZu6VAeF3szVyf1YQ73zmULuVxa6s9cSOk8XWZRO1JZnSi9b1ouzQ9B6zinNwBgJRy1GD88XdayJArQYRHV0TGrQ4cOZjtknThxwuL6LVbCjDGjAt27dw/Ozs5G7iAIgiCIsikcjpafVzXFERoBIC8vDx9//DFatWqlj5Nx7NgxnD17FhMnTrSqfrOV8ODBgwEUOl+NHj1aFl9Zp9Ph1KlTCA0NtUoIgiAIgqiOSjgyMlKffuWVV/D6669j8eLFBmWuXbtmVf1mK2F398IhQcYYXF1d4cjtIapSqdCtWzeMGzfOKiEIgiAIQicCnKO8bFew6sD27dtx/Phxg/wRI0agc+fOFbuBw5YtWwAUbmr85ptv0tBzTaGUOStWWrAO0TCUosbI/JiokOba+KU2CqHw1VNw87M5CinohB0XrEMpSKMu9gpp+Ywdl2/HBaBQMmnZjV1RWgkpj9+U3ZyN3fkt7/jQnDpBa5CvZdJ8ohZSHxVAmpfUaqV+4INu8Mtk+DlfZiQIisjl5WmkftOKUn15Sml+NEMp/Uq34/qweKkYANixwj6000nBMpQ6qd+UjJtL5/rT0j4s3vyD70utwIeN5PO5OVyuP/ngGnwITy0/t1v0jvLzvfKldZJM/DIkw3e7ZNhKU98LsbiAietcHRSgwygaBiirsWOWo6Mjjh49ihYtWsjyjx49CgcHBxN3lY7Fc8K8aU4QBEEQtqK6B+uYNm0aJkyYgBMnTqBLly4AgISEBGzevBnz58+3qk6zlHDHjh0RGxsLT0/PMj3FrPEOIwiCIAgdA7Si/Lw6MWfOHDRt2hRr1qzBF198AQBo2bIltmzZgqFDh1pVp1lKeODAgXpHLN5TjCAIgiBsRXV0zCrJ0KFDrVa4xjBLCfND0DQcTRAEQVQEWsag5ObUtbVgnbXFc8LXrl2DIAho1KgRAOCPP/5ATEwMWrVqhfHjx9tcQKL8lL5ncGlzLqZdE0sGMCjMNIwnzQfj4MM6CEXBOgRudx9Bdt2OS3OOVCbyTdejNKzDDEciU8gcjGT7yhY66/AOPvx1eb7WRD63bzHnTGTMQY4vK3IupBreqYlz7sqX9ZuUNtaf8jylwXXANn1orP8AyXHLsIyp/uTLcPlG2zHy3gKyd9fw+1KKi24ZSoIcsCxDJ8ojc1cH72hPT0+zg3Xcv3+/7EIlsFgJv/jiixg/fjxGjhyJ1NRU9O7dG23atEF0dDRSU1OxYMECi4UgCIIgCG0J7+jqsIHD6tWrK7R+i5XwmTNn9F5h33zzDdq2bYujR4/i559/xmuvvUZKmCAIgrAKscScsFgNlHBERESF1m/xmJJGo9E7aR08eBDPPPMMACAoKAgpKSm2lY4gCIKoNRQ7ZvFHdePSpUuYN28ehg8fjtu3bwMA9u3bh7Nnz1pVn8VKuHXr1tiwYQN+++03HDhwAP369QMA3Lx5E3Xr1i3jboIgCIIwjlZkBocl/Prrr3j66afRoEEDCIKA3bt3y64zxrBgwQL4+vrC0dERvXv3xr///mt2/YcPH0bbtm2RkJCAnTt34sGDwj2p//rrL6udli1WwsuXL8fGjRsRHh6O4cOHo3379gCA7777Tj9MTRAEQRCWohUND0vIzs5G+/btsW7dOqPXV6xYgQ8//BAbNmxAQkICnJ2d0bdvX+Tl5RktX5I5c+ZgyZIlOHDgAFQqKarfE088gWPHjlkmbBEWzwmHh4fj7t27yMzMhKenpz5//PjxcHJyKuVOojpSqud0qT9CjXjsGvMglHmPcvcUeaPKmhD434TGfx8KsjJKM8oU5ZXDm5eHmfCUZUa3tNOZuM6lec9dWW/wZYx8EFweE7h2uJCLArhwjSb6tqz+NNaXhXWXvz8t60vAdH/yGO9bqU1TL7X1HtBl102YS+EQNJOdW0L//v3Rv39/o9cYY1i9ejXmzZuHgQMHAgC2bdsGb29v7N69G8OGDSuz/tOnTyMmJsYgv379+rh7966RO8rGqm+SUqmEVqvFkSNHcOTIEdy5cwcBAQEGewwTBEEQhLmIjEHHHWKRQs7MzJQd+fmGsevLIjk5Wb+ipxh3d3d07doV8fHxZtXh4eFh1PcpKSkJDRs2tFgmwAolnJ2djZdffhm+vr7o0aMHevTogQYNGmDs2LHIyTHcfJwgCIIgzMGUY5afnx/c3d31x9KlSy2uOzU1FQDg7e0ty/f29tZfK4thw4Zh9uzZSE1NhSAIEEURR48exZtvvolRo0ZZLBNghRKeMWMGDh8+jO+//x7p6elIT0/Hnj17cPjwYbzxxhtWCUEQBEEQGlE0OIDCIFEZGRn6Y+7cuVUi37vvvougoCD4+fnhwYMHaNWqFXr06IHQ0FDMmzfPqjotnhP+9ttvsWPHDoSHh+vzBgwYAEdHRwwdOhTr16+3ShCCIAiidqMDg4KfEy6aZ3dzc4Obm1u56vbx8QEA3Lp1C76+vvr8W7duITg42Kw6VCoVPvnkE8yfPx9nzpzBgwcP0KFDB4OtDS3BYiWck5NjYM4DhRPTNBxds7A43KVRBxbje68ad+LiyxofpOGbMBVy0yJfDhOOR/IKzXfRNM85x0R9JhyAjNXJ58kd6DjnJb6PTfStsSb5fjWrL23chyarKE/f6iux3HmKHK4qDx1jUIDJzm1FkyZN4OPjg9jYWL3SzczMREJCAiZMmGBRXY0bN0bjxo1tIpfFSjgkJASRkZHYtm2bfhPj3NxcREVFISQkxCZCEQRBELUPHROh4H5I6Sz88fbgwQNcvHhRf56cnIyTJ0+iTp06aNy4MaZNm4YlS5agRYsWaNKkCebPn48GDRqUujvgjBkzsHjxYjg7O2PGjBmltr9q1SqL5AWsUMJr1qxB37590ahRI/0a4b/++gsODg7Yv3+/xQIQBEEQBABomQh+NENroRI+fvw4evbsqT8vVpoRERHYunUrZs2ahezsbIwfPx7p6el47LHH8NNPP+kNSmMkJSVBoync+OPEiRMmN3Mwd5MHg/sYs9zez8nJQXR0NM6fPw+gcFPjl156CY6OjlYJYQ7379/HlClT8P3330OhUGDIkCFYs2YNXFxcTN4THh6Ow4cPy/JeffVVbNiwwex2MzMz4e7ujsI1lNZ1ck2k9N2XzKmgrPvLHuIstwzAQzsczWOyH0z2cenPbHG/0nB0LYQB0CEjI6Pcc7WA9Hf2MbcpsBPU+nwty8eRzLU2a8caTp06hTZt2kChsE2sgZJYbAkDgJOTE8aNG2drWUrlpZdeQkpKCg4cOACNRoMxY8Zg/PjxRhdO84wbNw6LFi3Sn1NAEYIgiOqJDjoInF+DzoRPSWXSoUMHpKSkoH79+mjatCn+/PNPm4ZotkoJX7hwAWvXrsW5c+cAFFrCkydPRlBQkM0E4zl37hx++ukn/Pnnn+jcuTMAYO3atRgwYADee+89NGjQwOS9Tk5Oeq84giAIovqihQ68c6G2GihhDw8PJCcno379+rh8+TJE0babHFu1RGnYsGHo3Lmz3hHr2LFjaNu2Lb766isMGTLEpgICQHx8PDw8PPQKGAB69+4NhUKBhIQEPPvssybvjY6OxhdffAEfHx88/fTTmD9/fqnWcH5+viwaS2Zmpm0eooZR3iG60kNiAqa8quUy8BVaOTTNbPwlL4c3p7V9auo+031c+jMb9Vwv9YYK/ENpQ+9YgIaWqzuiIELHhWEVy5peqASGDBmCsLAw+Pr6QhAEdO7cGUql8ZC5//33n8X1W6yEZ82ahblz58qGeAEgMjISs2bNqhAlnJqaahAS087ODnXq1Ck10smLL74If39/NGjQAKdOncLs2bNx4cIF7Ny50+Q9S5cuRVRUlM1kJwiCIMxDIxRA5H4D6rj451XFpk2bMHjwYFy8eBGvv/46xo0bB1dXV5vVb7ESTklJMRqea8SIEVi5cqVFdc2ZMwfLly8vtUzxkLc1jB8/Xp9u27YtfH190atXL1y6dAnNmjUzes/cuXNlbuiZmZnw8/OzWgaCIAjCPLTQgnGOgzpoq1AaieItexMTEzF16tSqVcLh4eH47bff0Lx5c1n+kSNH8Pjjj1tU1xtvvIHRo0eXWqZp06bw8fHRb55cjFarxf379y2a7+3atSsA4OLFiyaVsFqthlqtNnqNIAiCqDh00IBfhVJ4Xn3YsmWLzeu0WAk/88wzmD17NhITE9GtWzcAhXPC27dvR1RUFL777jtZ2dLw8vKCl5dXmW2GhIQgPT0diYmJ6NSpEwDgl19+gSiKesVqDidPngQAWcgygiAIonqgE3SAIFm/1cE7uqKxeJ2wuWulBEGATme7Duzfvz9u3bqFDRs26Jcode7cWb9E6caNG+jVqxe2bduGLl264NKlS4iJicGAAQNQt25dnDp1CtOnT0ejRo0M1g6XBq0TfviwyfphM6htTj7Ur4RExawTbur5DBSCvT5fZBr8l/Zdla4TrmgstoRt7Z5tLtHR0Zg8eTJ69eqlD9bx4Ycf6q9rNBpcuHBBH79apVLh4MGDWL16NbKzs+Hn54chQ4ZYvdMFQRAEUbFoWR4UnPUrsuo1HF0RWBUxqzZBlvDDB1lsFQP1KyFRMZZwQ49eUAiSbSgyLW6kx5IlTBAEQRAVjY5pZD/CRFY9vKMrElLCBEEQRLWgcPiZlDBBEARBVDpaVlBiTrjme0eTEiZqHDSnWDFQvxIVDWMaWahKVguUsMV7Mz3xxBNGwzqmpaXhiSeesIlQBEEQRO1DFLUGR03HYks4Li4Op0+fRlJSEqKjo+Hs7AwAKCgosGj9LUEQBEHw6JgWAjfiQpawCQ4ePIjU1FR069YNly9ftrFIBEEQRG1EZFqITMMdNd8StkoJ+/r64vDhw2jbti0effRRxMXF2VgsgiAIorahEwsMjpqOxUpYKNprVK1WIyYmBlOnTkW/fv3w8ccf21w4giAIovZAc8JmUDLA1rx589CyZUtERETYTCiCIAii9sGYFrxtyFjVhEmuTCxWwsnJyQY7Hw0ZMgRBQUE4fvy4zQQjCIIgahci00GQLVGq+cviLFbC/v7+RvNbt26N1q1bl1sggiAIonbCmHw/YVLCBEEQBFFJkBImDJBegpr/MhAEQZhH4d9D2ytJHWqB3pVBSrgMsrKyilI130GAIAjCErKysoq2ei0fKpUKPj4+SE1NNbjm4+MDlUpV7jaqK7SfcBmIooibN2/C1dVVvzzLGjIzM+Hn54dr1649tPtiPuzP8LDLD9AzVAcedvmB8j8DYwxZWVlo0KABFAqrwk0YkJeXh4ICw3XBKpUKDg4ONmmjOkKWcBkoFAo0atTIZvW5ubk9tF/cYh72Z3jY5QfoGaoDD7v8QPmewRYWMI+Dg0ONVramsM1PGIIgCIIgLIaUMEEQBEFUEaSEKwm1Wo3IyEio1eqqFsVqHvZneNjlB+gZqgMPu/xAzXiGmgI5ZhEEQRBEFUGWMEEQBEFUEaSECYIgCKKKICVMEARBEFUEKWGCIAiCqCJICRMEQRBEFUFKuAJ55513EBoaCicnJ3h4eJh1z+jRoyEIguzo169fxQpqAmvkZ4xhwYIF8PX1haOjI3r37o1///23YgUthfv37+Oll16Cm5sbPDw8MHbsWDx48KDUe8LDww0+g9dee62SJAbWrVuHgIAAODg4oGvXrvjjjz9KLb99+3YEBQXBwcEBbdu2xd69eytJUtNY8gxbt2416O+qjJz066+/4umnn0aDBg0gCAJ2795d5j1xcXHo2LEj1Go1mjdvjq1bt1a4nKawVP64uDiD/hcEwWgcZ8L2kBKuQAoKCvD8889jwoQJFt3Xr18/pKSk6I8vv/yygiQsHWvkX7FiBT788ENs2LABCQkJcHZ2Rt++fZGXl1eBkprmpZdewtmzZ3HgwAH88MMP+PXXXzF+/Pgy7xs3bpzsM1ixYkUlSAt8/fXXmDFjBiIjI3HixAm0b98effv2xe3bt42W//333zF8+HCMHTsWSUlJGDRoEAYNGoQzZ85UirzGsPQZgMLwiXx/X7lypRIllpOdnY327dtj3bp1ZpVPTk7GU089hZ49e+LkyZOYNm0aXnnlFezfv7+CJTWOpfIXc+HCBdlnUL9+/QqSkJDBiApny5YtzN3d3ayyERERbODAgRUqj6WYK78oiszHx4etXLlSn5eens7UajX78ssvK1BC4/z9998MAPvzzz/1efv27WOCILAbN26YvC8sLIxNnTq1EiQ0pEuXLmzSpEn6c51Oxxo0aMCWLl1qtPzQoUPZU089Jcvr2rUre/XVVytUztKw9Bks+X5UNgDYrl27Si0za9Ys1rp1a1neCy+8wPr27VuBkpmHOfIfOnSIAWBpaWmVIhMhhyzhakhcXBzq16+PwMBATJgwAffu3atqkcwiOTkZqamp6N27tz7P3d0dXbt2RXx8fKXLEx8fDw8PD3Tu3Fmf17t3bygUCiQkJJR6b3R0NOrVq4c2bdpg7ty5yMnJqWhxUVBQgMTERFn/KRQK9O7d22T/xcfHy8oDQN++faukvwHrngEAHjx4AH9/f/j5+WHgwIE4e/ZsZYhrE6rbZ2AtwcHB8PX1xZNPPomjR49WtTi1BtpFqZrRr18/DB48GE2aNMGlS5fw1ltvoX///oiPj4dSqaxq8UqleA7J29tblu/t7V0l80upqakGQ2p2dnaoU6dOqfK8+OKL8Pf3R4MGDXDq1CnMnj0bFy5cwM6dOytU3rt370Kn0xntv/Pnzxu9JzU1tdr0N2DdMwQGBmLz5s1o164dMjIy8N577yE0NBRnz5616Q5mFYWpzyAzMxO5ublwdHSsIsnMw9fXFxs2bEDnzp2Rn5+P//3vfwgPD0dCQgI6duxY1eLVeEgJW8icOXOwfPnyUsucO3cOQUFBVtU/bNgwfbpt27Zo164dmjVrhri4OPTq1cuqOnkqWv7KwNxnsBZ+zrht27bw9fVFr169cOnSJTRr1szqegnjhISEICQkRH8eGhqKli1bYuPGjVi8eHEVSlY7CAwMRGBgoP48NDQUly5dwgcffIDPP/+8CiWrHZAStpA33ngDo0ePLrVM06ZNbdZe06ZNUa9ePVy8eNEmSrgi5ffx8QEA3Lp1C76+vvr8W7duITg42Ko6jWHuM/j4+Bg4A2m1Wty/f18vqzl07doVAHDx4sUKVcL16tWDUqnErVu3ZPm3bt0yKa+Pj49F5Ssaa56hJPb29ujQoQMuXrxYESLaHFOfgZubW7W3gk3RpUsXHDlypKrFqBWQErYQLy8veHl5VVp7169fx71792RKrTxUpPxNmjSBj48PYmNj9Uo3MzMTCQkJFnuIl4a5zxASEoL09HQkJiaiU6dOAIBffvkFoijqFas5nDx5EgBs9hmYQqVSoVOnToiNjcWgQYMAAKIoIjY2FpMnTzZ6T0hICGJjYzFt2jR93oEDB2SWZWVizTOURKfT4fTp0xgwYEAFSmo7QkJCDJaFVeVnYAtOnjxZ4e87UURVe4bVZK5cucKSkpJYVFQUc3FxYUlJSSwpKYllZWXpywQGBrKdO3cyxhjLyspib775JouPj2fJycns4MGDrGPHjqxFixYsLy+v2svPGGPLli1jHh4ebM+ePezUqVNs4MCBrEmTJiw3N7fS5WeMsX79+rEOHTqwhIQEduTIEdaiRQs2fPhw/fXr16+zwMBAlpCQwBhj7OLFi2zRokXs+PHjLDk5me3Zs4c1bdqU9ejRo1Lk/eqrr5harWZbt25lf//9Nxs/fjzz8PBgqampjDHGRo4cyebMmaMvf/ToUWZnZ8fee+89du7cORYZGcns7e3Z6dOnK0VeY1j6DFFRUWz//v3s0qVLLDExkQ0bNow5ODiws2fPVon8WVlZ+ncdAFu1ahVLSkpiV65cYYwxNmfOHDZy5Eh9+f/++485OTmxmTNnsnPnzrF169YxpVLJfvrpp4dC/g8++IDt3r2b/fvvv+z06dNs6tSpTKFQsIMHD1aJ/LUNUsIVSEREBANgcBw6dEhfBgDbsmULY4yxnJwc1qdPH+bl5cXs7e2Zv78/GzdunP6PV3WXn7HCZUrz589n3t7eTK1Ws169erELFy5UvvBF3Lt3jw0fPpy5uLgwNzc3NmbMGNmPiOTkZNkzXb16lfXo0YPVqVOHqdVq1rx5czZz5kyWkZFRaTKvXbuWNW7cmKlUKtalSxd27Ngx/bWwsDAWEREhK//NN9+wRx55hKlUKta6dWv2448/VpqsprDkGaZNm6Yv6+3tzQYMGMBOnDhRBVIXUrxkp+RRLHNERAQLCwszuCc4OJipVCrWtGlT2XeisrFU/uXLl7NmzZoxBwcHVqdOHRYeHs5++eWXqhG+FkL7CRMEQRBEFUHrhAmCIAiiiiAlTBAEQRBVBClhgiAIgqgiSAkTBEEQRBVBSpggCIIgqghSwgRBEARRRZASJgiCIIgqgpQwQVQyo0eP1od0NEVcXBwEQUB6enqFyhIeHg5BECAIgj48Z0USEBCgb6+in40gHgYoWAdBVDIZGRlgjMHDwwNAoSIMDg7G6tWr9WUKCgpw//59eHt7QxCECpMlPDwcjzzyCBYtWoR69erBzq5iw8nfuXMHv/32G4YMGYK0tDR9HxBEbYU2cCCISsbd3b3MMiqVqtJ2QnJycqq0try8vFCnTp1KaYsgHgZoOJqosWzbtg1169ZFfn6+LH/QoEEYOXKk0XsuX74MQRDw1VdfITQ0FA4ODmjTpg0OHz4sK3f48GF06dIFarUavr6+mDNnDrRarf76jh070LZtWzg6OqJu3bro3bs3srOzAciHo0ePHo3Dhw9jzZo1+mHay5cvGx2O/vbbb9G6dWuo1WoEBATg/fffl8kUEBCAd999Fy+//DJcXV3RuHFjbNq0yeJ+27p1q4GFunv3bplFvnDhQgQHB2Pz5s1o3LgxXFxcMHHiROh0OqxYsQI+Pj6oX78+3nnnHYvbJ4jaBClhosby/PPPQ6fT4bvvvtPn3b59Gz/++CNefvnlUu+dOXMm3njjDSQlJSEkJARPP/007t27BwC4ceMGBgwYgEcffRR//fUX1q9fj08//RRLliwBAKSkpGD48OF4+eWXce7cOcTFxWHw4MEwNvOzZs0ahISEYNy4cUhJSUFKSgr8/PwMyiUmJmLo0KEYNmwYTp8+jYULF2L+/PnYunWrrNz777+Pzp07IykpCRMnTsSECRNw4cIFS7vOLC5duoR9+/bhp59+wpdffolPP/0UTz31FK5fv47Dhw9j+fLlmDdvHhISEiqkfYKoEVTl7hEEUdFMmDCB9e/fX3/+/vvvs6ZNmzJRFI2WL95VadmyZfo8jUbDGjVqxJYvX84YY+ytt95igYGBsjrWrVvHXFxcmE6nY4mJiQwAu3z5stE2IiIi2MCBA/XnYWFhbOrUqbIyxTvhpKWlMcYYe/HFF9mTTz4pKzNz5kzWqlUr/bm/vz8bMWKE/lwURVa/fn22fv16o3KYanvLli3M3d1dlrdr1y7G/7mIjIxkTk5OLDMzU5/Xt29fFhAQwHQ6nT4vMDCQLV26tNRnI4jaDFnCRI1m3Lhx+Pnnn3Hjxg0AhUOto0ePLtPZid+Q3c7ODp07d8a5c+cAAOfOnUNISIisju7du+PBgwe4fv062rdvj169eqFt27Z4/vnn8cknnyAtLa1cz3Hu3Dl0795dlte9e3f8+++/0Ol0+rx27drp04IgwMfHB7dv3y5X26YICAiAq6ur/tzb2xutWrWCQqGQ5VVU+wRREyAlTNRoOnTogPbt22Pbtm1ITEzE2bNnMXr06AptU6lU4sCBA9i3bx9atWqFtWvXIjAwEMnJyRXaLgDY29vLzgVBgCiKFtWhUCgMhs41Go1ZbdmifYKoTZASJmo8r7zyCrZu3YotW7agd+/eRudcS3Ls2DF9WqvVIjExES1btgQAtGzZEvHx8TJFdfToUbi6uqJRo0YACpVP9+7dERUVhaSkJKhUKuzatctoWyqVSmbNGqNly5Y4evSoLO/o0aN45JFHoFQqy3weS/Dy8kJWVpbekQxApawhJojaCClhosbz4osv4vr16/jkk0/KdMgqZt26ddi1axfOnz+PSZMmIS0tTX/vxIkTce3aNUyZMgXnz5/Hnj17EBkZiRkzZkChUCAhIQHvvvsujh8/jqtXr2Lnzp24c+eOXomXJCAgAAkJCbh8+TLu3v1/9s47Pqqi6+O/u0k2vUE6hIQmoVeBRCVBohT1gQcsIJCACEpREJEmAgF8ALGACoI+AoKJCrxgRXkACQoGlBCkCAhIh4SWXrbO+8eSnbnZkt1lUyDny2c/3Dt37txz7r3Zs2fmzJkbZj3HV199FTt37sT8+fPx999/47PPPsOHH36IKVOmOH5jLNCtWzd4eXlh5syZOHPmDNLS0kwCwAiCcA5khIl7Hn9/fwwaNAg+Pj6VZqoqZ9GiRVi0aBHat2+PPXv24Ntvv0VQUBAAoEGDBti6dSt+//13tG/fHi+++CJGjRqFWbNmAQD8/Pzwyy+/oF+/frjvvvswa9YsvPPOO+jbt6/Za02ZMgUuLi5o1aoVgoODceHCBZM6nTp1woYNG/Dll1+iTZs2mD17NubNm1clXev16tXD559/jq1bt6Jt27b44osvMHfuXKdfhyAIyphF1BF69eqF1q1b4/3337da79y5c2jcuDGysrLQoUOH6hGuBjGXrauqSU9PR8+ePSljFkGAPGHiHic3NxdbtmxBeno6xo8fX9Pi1EpWrFgBHx8fHDlypMqv1bp1a4s9AgRRF6G0lcQ9TceOHZGbm4vFixejRYsWNS1OrSM1NRWlpaUAgEaNGlX59bZu3WqMtPbz86vy6xFEbYe6owmCIAiihqDuaIIgCIKoIcgIEwRBEEQNQUaYIAiCIGoIMsIEQRAEUUOQESYIgiCIGoKMMEEQBEHUEGSECYIgCKKGICNMEARBEDUEGWGCIAiCqCHICBMEQRBEDUFGmCAIgiBqCDLCBEEQBFFDkBEmCIIgiBqCjDBBEARB1BBkhAlER0dj7ty51XKtcePG4ZFHHqmWa1VG9+7dMXXqVLPHEhISMGLECKde79SpU3j00Ufh7+8PSZLw9ddf291GQkIC2rRp41S5CNuIjo52+jtBEGSECbMkJCRAkiSzn5iYGIfaPHv2LP773/9i5syZTpbWMaZNm4bly5cjOzu7Wq6XnJyMI0eO4M0338T69evRpUsXs/WuXLmCuXPn4tChQ9Uil0h6errF517xAwBr1661Wmffvn0AgJs3b2LJkiXo0aMHgoODERAQgO7du+Orr76qdh0JojbhWtMCELWXhg0bYuHChSbl/v7+DrW3bNkyNG7cGD179rxT0ZxC//794efnhxUrVmDevHlVeq3S0lJkZGTg9ddfx4QJE6zWvXLlClJSUhAdHY0OHTpUqVwVadmyJdavXy8rmzFjBnx8fPD6669bPG/evHlo3LixSXmzZs0AwKh7v379MGvWLLi6uuL//u//MHjwYPz1119ISUlxriIEcZdARpiwiL+/P4YNG+aUtjQaDVJTU/Hiiy86pT1noFAo8OSTT2LdunVISUkxendVwfXr1wEAAQEBVXYNZxAaGmryzBctWoSgoCCr70Lfvn0tevYA0Lp1a5w6dQpRUVHGsnHjxiExMRGLFy/G1KlT4e3tfecKEMRdBnVHEw6za9cuSJKELVu2mBxLS0uDJEnIyMgAAOzZswc3btxAYmKirF5ycjI8PDxw/PhxWXnv3r0RGBiIK1eu2CXTnDlz4ObmZjR6ImPGjEFAQADKysqMZY888gjOnz9/R12/WVlZ6Nu3L/z8/ODj44NevXoZu2EBYO7cuUbj89prr0GSJERHR5ttKz09Hffffz8AYOTIkcZu3bVr18rq/fXXX+jZsye8vLzQoEEDvPXWWyZtqVQqzJkzB82aNYO7uzsiIyMxdepUqFQqh3V1lMaNG8sMMABIkoQBAwZApVLhn3/+sXp+eTf5hg0bkJKSggYNGsDX1xdPPvkk8vPzoVKpMGnSJISEhMDHxwcjR4400VOr1WL+/Plo2rQp3N3dER0djZkzZ5rUY4xhwYIFaNiwIby8vNCzZ08cO3bMrFx5eXmYNGkSIiMj4e7ujmbNmmHx4sXQ6/UO3CWiLkKeMGERnU6HGzdumJR7enrC29sbCQkJiIyMRGpqKv7973/L6qSmpqJp06aIjY0FAPz222+QJAkdO3aU1Vu2bBl+/vlnJCcnIyMjAy4uLli1ahX+97//Yf369YiIiLBL5uHDh2PevHn46quvZN2+arUamzZtwqBBg+Dh4WEs79y5MwBg7969JrLZwrFjx/DQQw/Bz88PU6dOhZubG1atWoWEhATs3r0b3bp1w8CBAxEQEIBXXnkFQ4YMQb9+/eDj42O2vZYtW2LevHmYPXs2xowZg4ceeggAEBcXZ6yTm5uLPn36YODAgXj66aexadMmTJs2DW3btkXfvn0BAHq9Hv/617+wZ88ejBkzBi1btsSRI0fw3nvv4e+//3YoKMwa+fn5Ju+KJEmoX7++1fPKx+ODgoJsus7ChQvh6emJ6dOn4/Tp0/jggw/g5uYGhUKB3NxczJ07F/v27cPatWvRuHFjzJ4923ju888/j88++wxPPvkkXn31Vezfvx8LFy7E8ePHZT8kZ8+ejQULFqBfv37o168fDh48iEcffRRqtVomS0lJCeLj43H58mW88MILaNSoEX777TfMmDEDV69exdKlS23SiajjMKLOExUVxebMmSMri4+PZwDMfl544QVjvRkzZjB3d3eWl5dnLLt27RpzdXWVtTls2DBWv359s9fftm0bA8AWLFjA/vnnH+bj48MGDBjgsD6xsbGsW7dusrLNmzczAGzXrl0m9ZVKJRs7dqysLD4+niUnJ1d6rQEDBjClUsnOnDljLLty5Qrz9fVlPXr0MJadPXuWAWBLliyptM0//viDAWBr1qwxOVb+XNatW2csU6lULCwsjA0aNMhYtn79eqZQKNivv/4qO3/lypUMANu7d2+lcpTTunVrFh8fb/bYmjVrLL4n7u7uVtu9efMmCwkJYQ899FClMuzatYsBYG3atGFqtdpYPmTIECZJEuvbt6+sfmxsLIuKijLuHzp0iAFgzz//vKzelClTGAD2888/M8YM765SqWSPPfYY0+v1xnozZ85kAGTvxPz585m3tzf7+++/ZW1Onz6dubi4sAsXLlSqF0FQdzRhkejoaGzfvt3kM2nSJGOdpKQkqFQqbNq0yVj21VdfQavVysYQb968icDAQLPXefTRR/HCCy9g3rx5GDhwIDw8PLBq1SqH5U5KSsL+/ftx5swZY1lqaioiIyMRHx9vUj8wMNCsx18ZOp0O//vf/zBgwAA0adLEWB4eHo5nn30We/bsQUFBgWNKWMHHx0d2b5VKJbp27Srr0t24cSNatmyJmJgY3Lhxw/h5+OGHARiGEpzJ8uXLTd6TH3/80WJ9vV6PoUOHIi8vDx988IHN10lKSoKbm5txv1u3bmCM4bnnnpPV69atGy5evAitVgsA2Lp1KwBg8uTJsnqvvvoqAOCHH34AAOzYsQNqtRovvfSSLEZAfOfL2bhxIx566CHj+1P+SUxMhE6nwy+//GKzXkTdhbqjCYt4e3ubjOFWJCYmBvfffz9SU1MxatQoAAaD1717d2NkbDmMMYvtvP322/jmm29w6NAhpKWlISQkxGG5n3nmGUyaNAmpqamYPXs28vPz8f333+OVV14xG3zFGHMoKOv69esoKSlBixYtTI61bNkSer0eFy9eROvWrR3SwxINGzY0kTcwMBCHDx827p86dQrHjx9HcHCw2TauXbvmVJm6du1qNTCrIi+99BJ++uknrFu3Du3bt7f5vEaNGsn2yyP1IyMjTcr1ej3y8/NRv359nD9/HgqFwuSdDAsLQ0BAAM6fPw8Axv+bN28uqxccHGzyI/LUqVM4fPhwtd1j4t6EjDBxxyQlJWHixIm4dOkSVCoV9u3bhw8//FBWp379+sjNzbXYRlZWlvFL68iRIxgyZIjD8gQGBuLxxx83GuFNmzZBpVJZjO7Ny8uzeUyyNuDi4mK2XPyRo9fr0bZtW7z77rtm61Y0WtVJSkoKVqxYgUWLFmH48OF2nWtJd1vuCQCnRsDr9Xo88sgjFhO+3HfffU67FnHvQkaYuGMGDx6MyZMn44svvkBpaSnc3NzwzDPPyOrExMQgNTUV+fn5JvOMi4uLMXLkSLRq1QpxcXF466238O9//9sYJewISUlJ6N+/P/744w+kpqaiY8eOZj3Sy5cvQ61Wo2XLlnZfIzg4GF5eXjh58qTJsRMnTkChUDhk7JxhKJo2bYo///wTvXr1qtKpV/ayfPlyzJ07F5MmTcK0adOq7bpRUVHQ6/U4deqU7Fnn5OQgLy/PGLld/v+pU6dkQwzXr183+RHZtGlTFBUVVdpbRBDWoDFh4o4JCgpC37598fnnnyM1NRV9+vQx8SxjY2PBGENmZqbJ+dOmTcOFCxfw2Wef4d1330V0dDSSk5PvaCpN3759ERQUhMWLF2P37t0WveByecToY1txcXHBo48+im+++Qbnzp0zlufk5CAtLQ0PPvgg/Pz87G63fL5sXl6e3eeW8/TTT+Py5cv45JNPTI6VlpaiuLjY4bYd5auvvsLLL7+MoUOHWvTQq4p+/foBgEnEcrkcjz32GAAgMTERbm5u+OCDD2RetLlI56effhoZGRnYtm2bybG8vDzjeDRBWIM8YcIi+fn5+Pzzz80eq2jUkpKS8OSTTwIA5s+fb1L/wQcfRP369bFjxw5jcBAA/Pzzz1ixYgXmzJmDTp06AQDWrFmDhIQEvPHGG7L5r+Vza0WDZwk3NzcMHjwYH374IVxcXCx2b2/fvh2NGjVyaHoSACxYsADbt2/Hgw8+iHHjxsHV1RWrVq2CSqUyO3fXFpo2bYqAgACsXLkSvr6+8Pb2Rrdu3cxmpLLE8OHDsWHDBrz44ovYtWsXHnjgAeh0Opw4cQIbNmzAtm3b7BrDrYwff/wRJ06cMCmPi4tDkyZN8PvvvyMpKQn169dHr169kJqaarZeVdG+fXskJyfj448/Rl5eHuLj4/H777/js88+w4ABA4xZ3IKDgzFlyhQsXLgQjz/+OPr164esrCz8+OOPJj8sX3vtNXz77bd4/PHHMWLECHTu3BnFxcU4cuQINm3ahHPnzt1VwxxEDVGDkdlELcHeKUrmXhuVSsUCAwOZv78/Ky0tNXudl19+mTVr1sy4X1BQwKKiolinTp2YRqOR1X3llVeYQqFgGRkZxrKgoCDWvXt3m/X6/fffGQD26KOPmj2u0+lYeHg4mzVrlskxW6coMcbYwYMHWe/evZmPjw/z8vJiPXv2ZL/99pusjj1TlBhj7JtvvmGtWrVirq6usulK8fHxrHXr1ib1k5OTZVNyGGNMrVazxYsXs9atWzN3d3cWGBjIOnfuzFJSUlh+fr5NcjDm+BQlUW5b61mifIrSxo0bzV7/jz/+kJXPmTOHAWDXr183lmk0GpaSksIaN27M3NzcWGRkJJsxYwYrKyuTnavT6VhKSgoLDw9nnp6eLCEhgR09epRFRUWZvBOFhYVsxowZrFmzZkypVLKgoCAWFxfH3n77bdlUKoKwBBlhwqwRtheNRsOCg4PZc889Z7HOmTNnmJubG9uxY4fd7R87dowBYN9//73N55TPDRXn1Ips2bKFeXp6sitXrpgcs8cIEwRBOAqNCRNO4euvv8b169eRlJRksU6TJk0watQoLFq0yO72d+3ahdjYWOPYnS188skn8PHxwcCBA80eX7x4MSZMmIDw8HC75SEIgnAGNCZM3BH79+/H4cOHMX/+fHTs2NFsMgyRjz76yKHrjB8/HuPHj7ep7nfffYe//voLH3/8MSZMmGBxYYDyvNYEQRA1BRlh4o746KOP8Pnnn6NDhw4miwzUFC+99BJycnLQr18/WiKPIIhajcSYlTRGBEEQBEFUGTQmTBAEQRA1BBlhgiAIgqghaEy4EvR6Pa5cuQJfX99alf6PIAiipmCMobCwEBEREVAonOPLlZWVmazZDBhWCRPXAL/XICNcCVeuXKnRZPcEQRC1lYsXL6Jhw4Z33E5ZWRkaN26A7OxbJsfCwsJw9uzZe9YQkxGuBF9f39tbCgDkCRMEQRgSnemF78c7Q61WIzv7Fs6d+hx+fl7G8oKCEkQ3Hwa1Wk1GuK7Cu6AlkBEmCILgOHuIzs/bA37egrHV6Z3afm2EjDBBEARRO1CrAbWrfP8eh4wwQRAEUSuQ9FpIOq1s/16HjDBRI0i1pGufoXbmqnH0/txr+jib2np/iNtodYaPuH+PQ0aYIAiCqB1otYaPuH+PQ0aYIAiCqB3odIDQHQ0decIAgMOHD9vdcKtWreDqSjaeIAiCsBGNRh6YpdHUnCzVhE1WskOHDpAkCbau9aBQKPD333+jSZMmdyQcQRAEUXeQdDpIgvcrkSfM2b9/P4KDgyutxxhDmzZt7kgogiAIog5CY8LmiY+PR7NmzRAQEGBToz169ICnp+edyEXUcu442rWW5OGW6WFDT4+j0bU23S8n3JN7TR9nIzkhOJoirKuQOhgdbVPm7V27dtlsgAFg69atCA8Pd1QmqyxfvhzR0dHw8PBAt27d8Pvvv1usu3btWkiSJPvcq6nPCIIg7no0WsM4sPFz73vCd9VShl999RUmT56MOXPm4ODBg2jfvj169+6Na9euWTzHz88PV69eNX7Onz9fjRITBEEQNqPTcW9Yq6sT0dF2G2HGGDZu3Ihx48bhySefxMCBA2WfquTdd9/F6NGjMXLkSLRq1QorV66El5cXVq9ebfEcSZIQFhZm/ISGhlapjARBEISDaHWmHxv56KOP0K5dO/j5+cHPzw+xsbH48ccfjcfLysowfvx41K9fHz4+Phg0aBBycnKqQgu7sNsIT5o0CcOHD8fZs2fh4+MDf39/2aeqUKvVyMzMRGJiorFMoVAgMTERGRkZFs8rKipCVFQUIiMj0b9/fxw7dszqdVQqFQoKCmQfgiAIohrQ6Uw/NtKwYUMsWrQImZmZOHDgAB5++GHZd/4rr7yC7777Dhs3bsTu3btx5cqVKnccbcHuibzr16/H5s2b0a9fv6qQxyI3btyATqcz8WRDQ0Nx4sQJs+e0aNECq1evRrt27ZCfn4+3334bcXFxOHbsmMU1MBcuXIiUlBSny08QBEFUgoXArIrOkLu7O9zd3WVlTzzxhGz/zTffxEcffYR9+/ahYcOG+PTTT5GWloaHH34YALBmzRq0bNkS+/btQ/fu3atAGduw2wj7+/vfNfN/Y2NjERsba9yPi4tDy5YtsWrVKsyfP9/sOTNmzMDkyZON+wUFBYiMjKxyWWsKh6OcbY58td7ZYluUrZNDF5j55dGYLHTWfB2xirkoWYv6yO6XeX2cnV+ZWQwF5rqZq2Ip+lcmn8Xnz3WzfC+q53kaD4v6WLzFVtqoEGVe2XOi6Ok7QKuVJ+i4PUWp4nfwnDlzMHfuXIvN6HQ6bNy4EcXFxYiNjUVmZiY0Go2sJzUmJgaNGjVCRkbG3WWE586di5SUFKxevbpapyEFBQXBxcXFpA8/JycHYWFhNrXh5uaGjh074vTp0xbrmPuFRRAEQVQDWr3hI+4DuHjxIvz8/IzFlr6jjxw5gtjYWJSVlcHHxwdbtmxBq1atcOjQISiVSpNZPqGhocjOzna6GvZg90/Sp59+Grm5uQgJCUHbtm3RqVMn2aeqUCqV6Ny5M3bu3Gks0+v12Llzp8zbtYZOp8ORI0eqbPoUQRAEcQdYCMwqD7Yq/1gywi1atMChQ4ewf/9+jB07FsnJyfjrr7+qUwO7sdsTTk5ORmZmJoYNG4bQ0FBI1Tghf/LkyUhOTkaXLl3QtWtXLF26FMXFxRg5ciQAICkpCQ0aNMDChQsBAPPmzUP37t3RrFkz5OXlYcmSJTh//jyef/75apOZIAiCsJE7TNahVCrRrFkzAEDnzp3xxx9/YNmyZXjmmWegVquRl5cn84bt6UmtKuw2wj/88AO2bduGBx98sCrkscozzzyD69evY/bs2cjOzkaHDh3w008/GYO1Lly4AIWCO/e5ubkYPXo0srOzERgYiM6dO+O3335Dq1atql12giAIohJ0esNH3L8D9Ho9VCoVOnfuDDc3N+zcuRODBg0CAJw8eRIXLlywuSe1qpCYrasy3CYmJgYbNmxAu3btqkqmWkVBQcHtqVcusBLVUaupmuAr05EMSXKppEEhaMcYnGP+HEkSA3wqHzWRLAT7MDNBO0wIwpEf1wnlQqYeoQ6T1TFtWy63oJtMPvE+uJk9V9ZmJfozC0FFonyMiavRCPXN6CaeZykYy5JukiT+rncRyq0/T3uen0kdi8+zHEvPzELbFdowDbSydJ7tX6V3f/AWA6BDfn6+bKzWUcq/Z/NWvgA/T97VXFCqQsCLq2y6zowZM9C3b180atQIhYWFSEtLw+LFi7Ft2zY88sgjGDt2LLZu3Yq1a9fCz88PL730EgDgt99+u2P57wS7PeF33nkHU6dOxcqVKxEdHV0FIhEEQRB1Ei2rEJhl+4+Va9euISkpCVevXoW/vz/atWtnNMAA8N5770GhUGDQoEFQqVTo3bs3VqxY4WwN7MZuTzgwMBAlJSXQarXw8vKCm5ub7PitW7ecKmBNQ56wJcgTJk+4fIc84duNWxayYlXyhGWUf8/mLnsefp5KXl6qRuDE/zrtOs7g119/xapVq3DmzBls2rQJDRo0wPr169G4cWOHhmnt9oSXLl1q90UIgiAIolIsTFGqLfzf//0fhg8fjqFDhyIrKwsqlQoAkJ+fj//85z/YunWr3W06FB1NEARBEM6GaXRgLjrZfm1iwYIFWLlyJZKSkvDll18ayx944AEsWLDAoTbtNsIXLlywerxRo0YOCUIQBEHUcWq5J3zy5En06NHDpNzf3x95eXkOtWm3EY6OjrY6N1hXB5aeuqew8iwlC+O1hoOmr45CYTqBXoL58cLyMUCFmTLTci6Hi5nrVjxXpHwMUG9h3FAvjJXq9GpertcK5WVCgyphm9fncohjvPx+uCj4OJdC3Bb0kW0reDuKSsaERd30eq6PXhjXlm0Leoo6G3UT9RLHgS3qxtfoVihchXJRT9Oxb4XZGAE5smdl4Rkyxr9zRD2Nz95MmWFbKIel8XMArMKatozfE/MpMSsfM7YUp3H3jxXfIU6eouRswsLCcPr0aZOg5D179jicztluI5yVlSXb12g0yMrKwrvvvos333zTISEIgiAIgmkZmBARzeyIjq4ORo8ejYkTJ2L16tWQJAlXrlxBRkYGpkyZgjfeeMOhNu02wu3btzcp69KlCyIiIrBkyZJasTQUQRAEcfdR243w9OnTodfr0atXL5SUlKBHjx5wd3fHlClTjPOO7cVuI2yJFi1a4I8//nBWcwRBEEQdg2n0YAq9bL82IUkSXn/9dbz22ms4ffo0ioqK0KpVK/j4+Djcpt1GuOK6jowxXL16FXPnzkXz5s0dFoQgCIKo4+ggTuuWb9cilEql09If222EAwICTAKzGGOIjIyUhWwT1YvVhBwOBl9JQmBNRVwUpstYurp4manHA3hczQTqiMeVEm/TVQj8cZN4u25MCAgCD/ZxtfAqlwfz6MCDazQSD65SsxLjtooV8W0d/7Gp0vJttbCtYXkm13NReBu3lW48uYCHa4Bx291FWJJN4r+glRb0LA9uEwOZZEFKwraom4oVCttcN7Wu2LhdpuU6qDUG3bRCoJP4Xrm6+HJZXQUdxG07dHMRnpml4DOt8Nx04AFTop4a4RlqmfhsSw3n6XmZGIinlQWo8TpanRCIB0BfIQBPFrglJva4HcDFLAXSSWLdytdsrotBWkzLwFxqb3d0z549rQYm//zzz3a3abcR3rVrl2xfoVAgODgYzZo1g6ur03q3CYIgiDoG0wLMRb5fm+jQoYNsX6PR4NChQzh69KjDOTTstprx8fEOXYggCIIgrMF0csPLall39HvvvWe2fO7cuSgqKjJ7rDIqT8oL4Ntvv4VGo6m84m22bt2K0tJShwQiCIIg6iZ6jennbmDYsGFYvXq1Q+faZIT//e9/25UNZPDgwbh69apDAhEEQRB1E73O9HM3kJGRAQ8Pj8ormsGm7mjGGEaMGAF3d9OMSOYoKyurvBJRO7CQqQgAFJLl5+3mahqS7+UWZFLm4eJv3BYDdcqDqjwYD2Ty0fPAHz/wF9pbyB7lreTyergIQUMKvi1qpLsd16HR8wCPMh3fLhJy0+YLwTm5rnnG7Zuul4zbeWqetlWn57095ZmYPJT1jWUB7jyFaz00NG4H6gP5tpBtytuVD4Z5uHJ9lLd1E+NBxLgetaibEMhSqOX9eqJuN11vcn1cr/BtyaBbcRkP3BKznMl0U3Ld6gu61Rd083PhgXgy3W4/NzfhmQmPEsLjkT03Uc9iYepKseAuFTD+3VOkMASmlblwfTTCcQ348yvT5Ru3VToe0AYAaq1831LGsXLpJIurVAlvph1BWnUpQItpJTDhvWDa2rVyXcU8GOWzgw4cOFC1yTrsHXAeOnRorVl2iiAIgrg70Osk6HWSbL82YVjWlqNQKNCiRQvMmzcPjz76qENt2mSE16xZ41DjBEEQBGEreq0COqF3Tq+1acS02qgKW0hzigiCIIhagV4vQa+XZPv3OmSE6wTWfk1aPiZZWLEIANxdfU3KfF3CTMpCGB8v9Gd8TLjgdoKFACGJQ5AHH4MO8+JyBQlD0/WUfCzN15WP53q48HIXiY+h6W6veFOm4+0VCr+ub6n5ePO1Mr59pZgnDrmg5uPWejc+/lim5mOr5Sv1+CrDjWUN9S2M242UAcbtBl58fDREiOUIVHK5/d1MdROflJjMr0Qr6sbbvqnmY7LXyvj21RJ+z89ruG5apWG8tFR93Vgmruzkr+TPMkofY9yOdOfvQrgF3cw9t8qeGSB/bvka3naumst1XcW3r5Xyl+WayiBAgV6IOxASwhSCjxXfcOWBpPm4DBF9hRBdjTDOqxDGdsu35Ksw2ZB20dJgfx1Er5OgV9Su7ujAwECrCTpEbt26ZXf7ZIQJgiCIWoFOp4BOoZDt1zRLly6t0vbJCBMEQRC1gtrYHe1oJixbISNcx7G0mDogX6C9Iq4K0zzR/gg2KWvowqesdAri7aVdM3T/NRJyKkf58O7G5r58ek2UF59WEu7DuxAD/PgUE3dvXl/hJkwLuT3FQVXCr11QwPtJs4t4F/l5oQvaz43LIuXzSP8CTaRx+6biNK9zuzs6QIowljVy47q18OfXb+4j6ObNdRB18/PlOpfrJuql1/DnpioWdCvkul0t4t2wZ2W68fosjz+ffF0Dg17SKWOZqwtvT5xmFeXO70mLAC5LU2/zuoWKuvkZdHP34nUlV94NK+pWVsRlzS/kOoi6nRN0O+3Cn5tKZxheuCxMP+ofwqdZZd3iXddiMqIyBa8PABpFsWxfNi1JEtM7wRTx76u2pX+qhWi1LtBKLrL92kpZWRnUanlecUdmBTlkhHfu3ImdO3fi2rVr0OvlYx6OZg0hCIIg6jY6JkEneL9ifEBtoLi4GNOmTcOGDRtw8+ZNk+M6nf0/tOw2wikpKZg3bx66dOmC8PBwmwesiTvH0ZWSHL+eZS/Z1UwiDw+96cpKPu78l6yQZwO+esN8uxAPfjzam7/ALfy499E4JNe47R/Nf3m6RnAvTREozN9TCq+11tCmTz73LP2v8ByvAee4t+ZxlXuFGj3/RZur5jIGqAKM2y7iKlO3f4v6MX5c1K2Rl6gbv350GNfNL5p7Y64R/F4q/L1N9VJzD0yfy3Xwv8JXefI7x3VWXhN1497/TSGoyb+wnole4ipXAXp+j0M8+cOU6ebPdYsSdPNtzOu4hht0k/yF4D4hmYeom4+gW8AV7qGKz809R9BNCP4rD97yLeByK4XL+LpxHbzUwipPFXp5KvYIifs6PW+D9yrxMiYEcclXSLIUZmdKXVpZSa9XyO6pXm/7mPDChQuxefNmnDhxAp6enoiLi8PixYvRogUPkCwrK8Orr76KL7/8EiqVCr1798aKFSsQGhpq0zWmTp2KXbt24aOPPsLw4cOxfPlyXL58GatWrcKiRYtsV1TAbiO8cuVKrF27FsOHD3foggRBEARhDh2TZN6vPZ7w7t27MX78eNx///3QarWYOXMmHn30Ufz111/w9jb8kH3llVfwww8/YOPGjfD398eECRMwcOBA7N2716ZrfPfdd1i3bh0SEhIwcuRIPPTQQ2jWrBmioqKQmpqKoUOH2qcwHDDCarUacXFxdl+IqDmsetDW1hO2Ml7sIrmZlLkz0/WHvYT0i17COqHet9NSBrrz46Ee3BNsEMA9uoBmvNytBfd60EgYg64XwLeFqU5QG86V8rgX5RZ4zbjt68KnFISX8fSEN8q4lx2o5NteQg+AQkinWb6mrw/jXpS/kusWLugWHsCv49+Ue31uMfW43A2FFKDluimFe67m7Slu5Rm3lYF8elGAkHqzgZrfz+tlXAeZbuy2hyo8dxdhipKXxJ9voHCLwz1470REPcETb849PNcYQZ9y3QLE3gtBtzKeYtOSbv4K7mU3UAnPTWWqmyd4mfgOugu5Mt2FtakrvtuKCvtiD5F4ryRm2L63fdWqRaeXZJ5wedd0QUGBrJ67u7tJGuWffvpJtr927VqEhIQgMzMTPXr0QH5+Pj799FOkpaXh4YcfBmBIvtGyZUvs27cP3bt3r1S+W7duoUmTJgAM47/lU5IefPBBjB071k5tDdgd//38888jLS3NoYsRBEEQhCW0OoXJBwAiIyPh7+9v/CxcuLDStvLzDT+869Uz/LjNzMyERqNBYmKisU5MTAwaNWqEjIwMm+Rr0qQJzp49azx3w4YNAAweckBAgM16itjtCZeVleHjjz/Gjh070K5dO7i5yX8lvvvuuw4JYivLly/HkiVLkJ2djfbt2+ODDz5A165dLdbfuHEj3njjDZw7dw7NmzfH4sWL0a9fvyqVkSAIgrAfS93RFy9elEUeV7aYkF6vx6RJk/DAAw+gTZs2AIDs7GwolUoTYxkaGors7Gyb5Bs5ciT+/PNPxMfHY/r06XjiiSfw4YcfQqPROGz77DbChw8fRocOHQAAR48elR2r6iCtr776CpMnT8bKlSvRrVs3LF26FL1798bJkycREhJiUv+3337DkCFDsHDhQjz++ONIS0vDgAEDcPDgQeODISxjrTvaXNCWm2Tate0qVPMQugKVt+uK3YP+QjYqH3/eJekSJqReErppWSSfDsTqCV254pJit6cQSN68m1gSVuNxFQK2fK+WcFlu8i5Wb1fenoeC6yh21bLbmZOUwj3wEabd+FrSLVSQNYJPnzGrm1Lo7hemRig8hTYE3VwE3bwv8mv63+SyeLnyLzP327KLWbLEICQPYdtb+ObwU/L2vAO4XC7hfBqRTLcG4XK9ALluwipsMt20QnCXELDlc1l4hjd5977X7fvvLonBgUJ3tJCZyU3sgofl7ueKWPsbIexHxxTQMoVsHzB0/doz/Wf8+PE4evQo9uzZ41T5XnnlFeN2YmIiTpw4gczMTDRr1gzt2rVzqE27jfCuXbscupAzePfddzF69GiMHDkSgCFI7IcffsDq1asxffp0k/rLli1Dnz598NprrwEA5s+fj+3bt+PDDz/EypUrq1V2giAIwjqGMWFJtm8vEyZMwPfff49ffvkFDRvyue1hYWFQq9XIy8uTecM5OTkICzNNuWuOixcvIjKS5wqIiopCVFSU3TKK3FGyjkuXDOusiopWFWq1GpmZmZgxY4axTKFQIDEx0WJ/fkZGBiZPniwr6927N77++muL11GpVFCpuNdQMSCAMKCwMZxAcDZkZyhu95q4CIVuCiGXsLswtcNDeE09hW4oT2FKlLfgdYleVXnyBrGu4F1JntzrUbhxL0mUxVWmg/UvBYXQG2STbl6C12VJN6/bXrzYBecqeOGC7pI71128b67u3FuUySKoYz2ATz4LTjxPbE/hzu+h5C4+N8GjLZdXfGaCPhDSFsp0E5+bcN9c3fnfqzndRL3EHNWSBd0VzPq7LZnp8SGcg0avgEYIzNLYMUWJMYaXXnoJW7ZsQXp6Oho3biw73rlzZ7i5uWHnzp0YNGgQAODkyZO4cOECYmNjbbpGdHQ0HnzwQQwbNgxPPvkkAgMDKz+pEuzuS9Hr9Zg3bx78/f2NvwICAgIwf/58k8QdzuTGjRvQ6XQm87ms9ednZ2fbVR8wzDUTAwDEXz0EQRBE1VE+Jix+bGX8+PH4/PPPkZaWBl9fX2RnZyM7OxulpYahC39/f4waNQqTJ0/Grl27kJmZiZEjRyI2NtamyGgAOHDgALp27Yp58+YhPDwcAwYMwKZNm2SOm73Y7Qm//vrr+PTTT7Fo0SI88MADAIA9e/Zg7ty5KCsrw5tvvumwMLWBGTNmyLzngoICMsRm0NuyOgxkQ5SyM/S3V4vRCYXir16dSvCGyoT0hqXCy17KxwVRLKQWFLPWlI+dinVLuVfISvl4pl7D/+BFWbQyHaxPQNELq+DYpFsJv75F3Upuj1VrhRSJwpiwJOquElIqCvdNqzKvm05Qp7JEEOICP+J5Ynt64TpMJT43fs+Nz0r07C2MCct0E5+bcN8q003US/xSZxZ010vW321G6SerjDuZJ/zRRx8BABISEmTla9aswYgRIwAA7733HhQKBQYNGiRL1mErHTt2RMeOHfHWW28hPT0daWlpGDNmDPR6PQYOHOhQxki7jfBnn32G//73v/jXv/5lLGvXrh0aNGiAcePGVZkRDgoKgouLC3JycmTl1vrzw8LC7KoPmJ9/RhAEQVQ9d2KEmQ3LQHp4eGD58uVYvny5Q/KVI0kSevbsiZ49e2Ls2LEYNWoUPvvss+oxwrdu3UJMTIxJeUxMjENrKdqKUqlE586dsXPnTgwYMACAoWt8586dmDBhgtlzYmNjsXPnTkyaNMlYtn37dpv7/+s6Yso9k2NmPGGNGQ9BK1QrE9YGVd+uWyKU5Wv4OF9RvpBgIVuIlvW/YdyWhAFnqZhHNptL1gEhWQcu8aQPWiEiulBI6J8vrMVbLDigZXquo44JqSNvryGrFu5BkZbLV2hJtxxBt0Cei9asbhaSdUBIaIFL/P7ohPtWLCzsIN7nEkFG1W3Z9aJeer5dJmwXa3kbBcKazMV5/L55CPfW1d9UN9kzs5CsQ6bbFf79ohV0Kyrgke+FWv6VVq6bSngmaiHQRyX2VAjvug7y9YPNvevGY1b+Rgj70UGCVjTClcQp1BSXLl1CWloa0tLScPToUcTGxjps2O02wu3bt8eHH36I999/X1b+4Ycfon379g4JYSuTJ09GcnIyunTpgq5du2Lp0qUoLi42RksnJSWhQYMGxoncEydORHx8PN555x089thj+PLLL3HgwAF8/PHHVSonQRAEYT8avQSNJMn2axOrVq1CWloa9u7di5iYGAwdOhTffPPNHUVI222E33rrLTz22GPYsWOH0aPMyMjAxYsXsXXrVocFsYVnnnkG169fx+zZs5GdnY0OHTrgp59+MgZfXbhwAQohsjIuLg5paWmYNWsWZs6ciebNm+Prr7+uc3OErY31SbA8vmXtV76OaUzKVFCblJUIA6qi11sMgyeTq+LRrzll3Bu6nMfnBCpPcxn9tTxdoThXVCGkNDS3gAMT5sxqr/DzCs/xSNeruXxBgewy7tHlCmqVMO6l6fXCePJtL7FI4t5dvprrdlXQLTiPX8f9DPcu/XTc05Pp5n/dVC8LCzhor3A9889xHcT7Kd7nXLXwfCRDO+JzF739EsZvRK5KWFZQuFf1b/HruJ0SFnDQcg/d9aZhnFfyFyKmLSzgYJtu4nMz1a0U/JmV6PgCDyphYFsleL8V3209s+wZi/fKmsdM2MaddEdXBwsWLMCQIUPw/vvvO83ptNsIx8fH4++//8by5ctx4sQJAMDAgQMxbtw4REREVHL2nTNhwgSL3c/p6ekmZU899RSeeuqpKpaKIAiCuFNquxG+cOGC05NSOTRPOCIi4q6Pgr4bserRWotJcPCdsfbLXstMQ/LLFKUmZUUacTyOv26FtxdOv1YWYCw7JyxO76bgXmSZsLB3eAGPlpUtZ+fNx3wVboJ3Uj4uWCIsfF/AvaHsIr59Xlgc/nwJ71G5Vsp1yFPkGbfFxd3Lx1ELJH78WhnPCHVBuL67gl+zTCfoli8sfP8P9/rKdRP1Ehe+Vwn3raCQe6LiwvdnBd0ulPBrXheiw/OlWyZ6iRmh8oTF7q+Vcu/zgrBcpZsk6CY8t9A8QbczBt3cvfjzk4TsYqJuZUVct/xCvuCDqNs58bkVm+pWKMit1vHMXYUafj9LhB4MDRPGqiEfFzfdN/WKLfUgyf9+bfea7/XlC0VquxGuiqyQNhnhw4cPo02bNlAoFDh8+LDVuo6m7iIIgiDqNjomnxKoqwO/P2wywh06dEB2djZCQkLQoUMHSJJkNhxckiTodDSHjiAIgrAfjV6Cay0OzKoKbDLCZ8+eRXBwsHGbuHewFnxVsRtORKsvMSnLV1w3Kbuk49NxCnN4V6UvM3QtFmh41+f5InH6CO9WzC7jXY/1injXo+8NLruHi5iu0DQ5Q5mOd3EWavn2LbXQ7Szkk7hSzH9MXhDW4s2VLvK29fyE8u7oPHZFOE9YoCA/wLhZpOG6XS7l9ySwgOvp78avX66bmN5OfGolWlE33vZNNb+fom5XS/hzvSAEuuXh8m1d+DPRChlHbuGScfu8ind764XAqDw1/0q5KHRZ1xN0872ml+kFmH9mgPy55Qv3LVfQ7bowMiIOHeRrDd3R5e8aAOzMEaakgXeR5yt44JhKWwQRrV4+9CJO4ap0ihJNYbILHUOF7ugaFKaasMkIi+HX58+fR1xcHFxd5adqtVr89ttvd5zMmiAIgqibGIywfP9ex+7ArJ49e+Lq1asmSwfm5+ejZ8+e1B1dK7H2a9xaIgLLnrBKW2hSViiZ5uTWuPDgmxtC0E75cnEljHtIBWXcc7qh4tNXvF34tBNvN+4Zebhwz8hVWGZP9BjL/4g1Qv7MMuEvu0gjBCbpuMeTKwRg3VRwD7BAfZW3ree6lXtEhcLxS+5iUgy+yElOHk/6Hugi6ClM0/FwFZffM+gmxoSIo0FqUTdhQK1Qa163mwqeOCNP4p57keoaAEAv6iUsa5ivFjxhJb/LRRqu27VcrpufK59GJNPt9nNzE56ZuCCEPCUm3xH1LBYC/op1XM8CJiTxUBje0TIF93hzhOMacD3LtDx4S6WTv9taoccDkP9dyL3icjns9H5tyPRUV6iNRrhjx442B2QdPHjQ7vbtNsKMMbMC3bx5E97iqigEQRAEYQdaJkEjdEdra0F0dHmGRgAoKyvDihUr0KpVK2OejH379uHYsWMYN26cQ+3bbIQHDhwIwBB8NWLECFl+ZZ1Oh8OHDyMuLs4hIQiCIAiiNnrCc+bMMW4///zzePnllzF//nyTOhcvXqx4qk3YbIT9/Q3BDYwx+Pr6wlNY71SpVKJ79+4YPXq0Q0IQBEEQhE4P6CT5fm1i48aNOHDggEn5sGHD0KVLl6pdwGHNmjUADIsaT5kyhbqe7xWsRUebSchRjqZCBCkAFJtpq0xIlOCq4GOECskwXuqi4D0qSon/sHOVeLkb4wn63VS8vHxcGQBcLbzK5Usu6sDH7jQS10stJGZQSVwnlbbA7LZa2NbrzSQsUfPx1ltCusMSV15+3YVHFrszPk6u1Ap6arie0u1RboUw2i0uJSkmVRF1UzE+tinqptbyMdIybR4v1xh0ky3VJzxTmW5Cys5iVx4VnyPqphd00wi6qQ26uUAcxze/tLlWeG7iwgqinhoh0YZWSFGpvj22rROek5iCUiskJRHraHXyMWAxWhwQx34rREffHh+2nFxDrFu5i1eXknSUo60wT1hby26Bp6cn9u7di+bNm8vK9+7dCw8PDwtnWcfuMWHRNScIgiAIZ1Ebu6NFJk2ahLFjx+LgwYPo2rUrAGD//v1YvXo13njjDYfatMkId+rUCTt37kRgYGClkWKORIcRBEEQhJZJsgQdtSEwS2T69Olo0qQJli1bhs8//xwA0LJlS6xZswZPP/20Q23aZIT79+9vDMQSI8UIgiAIwlnUdk8YAJ5++mmHDa45bDLCYhc0dUcTBEEQVYGOMeiE8XJdHZhDbfeY8MWLFyFJEho2NEzQ//3335GWloZWrVphzJgxTheQsA1HV1hikpXkKnrT9YHL0ZoJwtKbSe4hCQE3kpD4oXx1HoWZMtNynujBRTL/yornipQHzugtrAErBurIVkUSUnaK6SmZGKzGTO+dTi8EPQnr4oqBbMWyADVX89sKHnRmKWjJKKugm2yNYwtJJfSygCS+bdRN0IsJQ09aIYmFeJ5apts147aLmUA8QHj2snfD+vMDLD9DMZDMXEpJS2kmxaQb8jWCK6wfXPG9lq0hbO6Py0KwIwVjVUpt9IQDAwNtTtZx69atyitVwG4j/Oyzz2LMmDEYPnw4srOzkZiYiDZt2iA1NRXZ2dmYPXu23UIQBEEQRG00wkuXLq3S9u02wkePHjVGhW3YsAFt27bF3r178b///Q8vvvgiGWGCIAjCIbR6edpZbS2YJ5ycnFyl7Vvv5zKDRqMxBmnt2LED//rXvwAAMTExuHr1qrVTCYIgCMIi5Z6w+LGHX375BU888QQiIiIgSRK+/vpr2XHGGGbPno3w8HB4enoiMTERp06dsusaZ86cwaxZszBkyBBcu2YYfvnxxx9x7Ngx+4S9jd1GuHXr1li5ciV+/fVXbN++HX369AEAXLlyBfXr13dICIIgCILQ6ZnJxx6Ki4vRvn17LF++3Ozxt956C++//z5WrlyJ/fv3w9vbG71790ZZWZnZ+hXZvXs32rZti/3792Pz5s0oKjLEQ/z5558OBy3bbYQXL16MVatWISEhAUOGDEH79u0BAN9++62xm5ogCIIg7OVOPeG+fftiwYIF+Pe//21yjDGGpUuXYtasWejfvz/atWuHdevW4cqVKyYesyWmT5+OBQsWYPv27VAqeeDhww8/jH379tkn7G3sHhNOSEjAjRs3UFBQgMBAvmzZmDFj4OXlZeVMolZiJWLTauS0mfP0+soGcMxFw7qYrSlGy0o2/Fa0JbrWWGYhyhYQooLFiFhZNKxQx1wkqxhZK5ynFaOqdeJ9MI0arkhl+jML0bjySGAx4ldMn2iqm6iXGFnPULlukp5/pWiEZ1vZ87Tn+ZnUsfg8y9FZOG4pillebvqcHY9+ttwmAQAaPSAJ90Zz+1YXFBTI6rm7u8sWEbKFs2fPGoOJy/H390e3bt2QkZGBwYMHV9rGkSNHkJaWZlIeEhKCGzdu2CVPOXZ7wgDg4uICrVaLPXv2YM+ePbh+/Tqio6NN1hgmCIIgCFvR354nXP7R3/5hExkZCX9/f+Nn4cKFdrednW1Y7zw0NFRWHhoaajxWGQEBAWZjn7KystCgQQO7ZQIc8ISLi4vx0ksvYd26dUbPx8XFBUlJSfjggw/IGyYIgiAcQscAhZkpShcvXoSfn7A4iJ1esLMYPHgwpk2bho0bN0KSJOj1euzduxdTpkxBUlKSQ23a7QlPnjwZu3fvxnfffYe8vDzk5eXhm2++we7du/Hqq686JARBEARBWArM8vPzk30cMcJhYWEAgJycHFl5Tk6O8Vhl/Oc//0FMTAwiIyNRVFSEVq1aoUePHoiLi8OsWbPslglwwBP+v//7P2zatAkJCQnGsn79+sHT0xNPP/00PvroI4cEIQiCIOo2OjAoxLSVThw7b9y4McLCwrBz50506NABgGGsef/+/Rg7dqxNbSiVSnzyySd44403cPToURQVFaFjx44mSxvag91GuKSkxKRPHTAMTJeUlJg5g6hprKa0hJV0bNYCTSQzAU9mg2LEzhYxQMb69WVXthC04zAWgn3k98nB4BvhOIOY7lDUUyFU1wg1nLtijDPWtbUYpCUG7YlpLoVtUZ+aeJ782rZ8kVtpw878xRR05Tgapof4LDQ2BOaJFBUV4fTp08b9s2fP4tChQ6hXrx4aNWqESZMmYcGCBWjevDkaN26MN954AxEREXYvTNSoUSM0atTIrnMsYbcRjo2NxZw5c7Bu3TrjIsalpaVISUlBbGysU4QiCIIg6h46podCMMI6O43wgQMH0LNnT+P+5MmTARiyXq1duxZTp05FcXExxowZg7y8PDz44IP46aefjLbMHJMnT8b8+fPh7e1tbM8S7777rl3yAg4Y4WXLlqF3795o2LChcY7wn3/+CQ8PD2zbts1uAQiCIAgCMHQ/i1OU7O2OTkhIALPScyFJEubNm4d58+bZ3GZWVhY0GkOP1cGDBy0u5mDrIg8VsdsIt2nTBqdOnUJqaipOnDgBABgyZAiGDh0KT09Ph4SwhVu3buGll17Cd999B4VCgUGDBmHZsmXw8fGxeE5CQgJ2794tK3vhhRewcuXKKpOTIAiCcAwd00O6A0+4Kli2bJkxMjs9Pd3p7dtthAHAy8sLo0ePdrYsVhk6dCiuXr2K7du3Q6PRYOTIkRgzZozZidMio0ePlv3qoSlUBEEQtRMddJCE2BEdrCQMqiY6duyIq1evIiQkBE2aNMEff/zh1BTNDhnhkydP4oMPPsDx48cBAC1btsSECRMQExPjNMFEjh8/jp9++gl//PEHunTpAgD44IMP0K9fP7z99tuIiIiweK6Xl5fN4ecEQRBEzaGGFnoh05oWpmuUVzcBAQE4e/YsQkJCcO7cORsyA9qHQ1OUBg8ejC5duhgDsfbt24e2bdviyy+/xKBBg5wqIABkZGQgICDAaIABIDExEQqFAvv37zebJ7Sc1NRUfP755wgLC8MTTzyBN954w6o3rFKpoFLxNHwV06XdazgaySnZfJqFX7K3x09saoZV069hJyy6bum4/H6Z14c5OKZkWRjnLiJvKVJajhApbUmf6nqeZq9955HLFP1cdeglPXRC5L3eWtR6NTFo0CDEx8cjPDwckiShS5cucHExn273n3/+sbt9u43w1KlTMWPGDJOB7Tlz5mDq1KlVYoSzs7NNUmK6urqiXr16VtONPfvss4iKikJERAQOHz6MadOm4eTJk9i8ebPFcxYuXIiUlBSnyU4QBEHYhg5aiFP4dLXAE/74448xcOBAnD59Gi+//DJGjx4NX19fp7VvtxG+evWq2fRcw4YNw5IlS+xqa/r06Vi8eLHVOuVd3o4wZswY43bbtm0RHh6OXr164cyZM2jatKnZc2bMmCELQy8oKEBkZKTDMhAEQRC2oZW0YFLtMsIAjEv2ZmZmYuLEiTVrhBMSEvDrr7+iWbNmsvI9e/bgoYcesqutV199FSNGjLBap0mTJggLCzMunlyOVqvFrVu37Brv7datGwDg9OnTFo2wI6tzEARBEHdObfSERdasWeP0Nu02wv/6178wbdo0ZGZmonv37gAMY8IbN25ESkoKvv32W1ldawQHByM4OLjSa8bGxiIvLw+ZmZno3LkzAODnn3+GXq83GlZbOHToEAAgPDzc5nMIgiCI6kEjqaGXxHnCGiu17w0kZm1msxkUCttSzkmSBJ3OeQEYffv2RU5ODlauXGmcotSlSxfjFKXLly+jV69eWLduHbp27YozZ84gLS0N/fr1Q/369XH48GG88soraNiwocncYWsUFBTA398fhnVvnRw4cxdzxykWnR2E5AycHMgkYtP9quWBWSI1oo8zoMAsJ8EA6JCfny9b3chRyr9nmwT+CwphjW090+Cf3G+ddp3aiN2esLPDs20lNTUVEyZMQK9evYzJOt5//33jcY1Gg5MnTxrzVyuVSuzYsQNLly5FcXExIiMjMWjQIIdXuiDk3OkXke3R1VVLdX2h2nQdwUA4+iPnXtPH2ZABrd3omEaewZ2RJ1znIU+4aqAvZevUdiNsL/S87zWqxhNuGJBo4glfyttBnjBBEARBVDVappYt4KBntSswqyogI0wQBEHUCgzdz0zYJyNMEARBENWCYUyYjDBBVDk0Nmede+3+3Gv6EFWDvkJK04r79yK2zTcSePjhh82mdczNzcXDDz/sFKEIgiCIugdjGuiFD6sD0dF2e8Lp6ek4cuQIsrKykJqaCm9vbwCAWq22a/4tQRAEQYho9WpIEl8cgZEnbJ4dO3YgOzsb3bt3x7lz55wsEkEQBFEX0TOtzBOuC2PCDhnh8PBw7N69G23btsX999+P9PR0J4tFEARB1DX0eq3J517HbiMs3U5F5+7ujrS0NEycOBF9+vTBihUrnC4cQRAEUXcweMLyz72O3WPCFRNszZo1Cy1btkRycrLThCIIgiDqHozJV1FirGbSJFcndhvhs2fPmqx8NGjQIMTExODAgQNOE4wgCIKoW+j0GmNvK2Dq9N2L2G2Eo6KizJa3bt0arVu3vmOBCIIgiLqJYUoSGWGCIAiCqH6YFrKFcsgIE/yX2L3/MhAEQdiG4fvQ2Z4qg64u2F0ZZIQrobCw8PbWvR8gQBAEYQ+FhYW3l3q9M5RKJcLCwpCdnW1yLCwsDEql8o6vUVuh9YQrQa/X48qVK/D19ZUFDNhLQUEBIiMjcfHixbt2Xcy7XYe7XX6AdKgN3O3yA3euA2MMhYWFiIiIgELhULoJE8rKyqBWq03KlUolPDw8nHKN2gh5wpWgUCjQsGFDp7Xn5+d31/7hlnO363C3yw+QDrWBu11+4M50cIYHLOLh4XFPG1tLOOcnDEEQBEEQdkNGmCAIgiBqCDLC1YS7uzvmzJkDd3f3mhbFYe52He52+QHSoTZwt8sP3Bs63CtQYBZBEARB1BDkCRMEQRBEDUFGmCAIgiBqCDLCBEEQBFFDkBEmCIIgiBqCjDBBEARB1BBkhKuQN998E3FxcfDy8kJAQIBN54wYMQKSJMk+ffr0qVpBLeCI/IwxzJ49G+Hh4fD09ERiYiJOnTpVtYJa4datWxg6dCj8/PwQEBCAUaNGoaioyOo5CQkJJs/gxRdfrCaJgeXLlyM6OhoeHh7o1q0bfv/9d6v1N27ciJiYGHh4eKBt27bYunVrNUlqGXt0WLt2rcn9rsnMSb/88gueeOIJREREQJIkfP3115Wek56ejk6dOsHd3R3NmjXD2rVrq1xOS9grf3p6usn9lyTJbB5nwvmQEa5C1Go1nnrqKYwdO9au8/r06YOrV68aP1988UUVSWgdR+R/66238P7772PlypXYv38/vL290bt3b5SVlVWhpJYZOnQojh07hu3bt+P777/HL7/8gjFjxlR63ujRo2XP4K233qoGaYGvvvoKkydPxpw5c3Dw4EG0b98evXv3xrVr18zW/+233zBkyBCMGjUKWVlZGDBgAAYMGICjR49Wi7zmsFcHwJA+Ubzf58+fr0aJ5RQXF6N9+/ZYvny5TfXPnj2Lxx57DD179sShQ4cwadIkPP/889i2bVsVS2oee+Uv5+TJk7JnEBISUkUSEjIYUeWsWbOG+fv721Q3OTmZ9e/fv0rlsRdb5dfr9SwsLIwtWbLEWJaXl8fc3d3ZF198UYUSmuevv/5iANgff/xhLPvxxx+ZJEns8uXLFs+Lj49nEydOrAYJTenatSsbP368cV+n07GIiAi2cOFCs/Wffvpp9thjj8nKunXrxl544YUqldMa9upgz99HdQOAbdmyxWqdqVOnstatW8vKnnnmGda7d+8qlMw2bJF/165dDADLzc2tFpkIOeQJ10LS09MREhKCFi1aYOzYsbh582ZNi2QTZ8+eRXZ2NhITE41l/v7+6NatGzIyMqpdnoyMDAQEBKBLly7GssTERCgUCuzfv9/quampqQgKCkKbNm0wY8YMlJSUVLW4UKvVyMzMlN0/hUKBxMREi/cvIyNDVh8AevfuXSP3G3BMBwAoKipCVFQUIiMj0b9/fxw7dqw6xHUKte0ZOEqHDh0QHh6ORx55BHv37q1pceoMtIpSLaNPnz4YOHAgGjdujDNnzmDmzJno27cvMjIy4OLiUtPiWaV8DCk0NFRWHhoaWiPjS9nZ2SZdaq6urqhXr55VeZ599llERUUhIiIChw8fxrRp03Dy5Els3ry5SuW9ceMGdDqd2ft34sQJs+dkZ2fXmvsNOKZDixYtsHr1arRr1w75+fl4++23ERcXh2PHjjl1BbOqwtIzKCgoQGlpKTw9PWtIMtsIDw/HypUr0aVLF6hUKvz3v/9FQkIC9u/fj06dOtW0ePc8ZITtZPr06Vi8eLHVOsePH0dMTIxD7Q8ePNi43bZtW7Rr1w5NmzZFeno6evXq5VCbIlUtf3Vgqw6OIo4Zt23bFuHh4ejVqxfOnDmDpk2bOtwuYZ7Y2FjExsYa9+Pi4tCyZUusWrUK8+fPr0HJ6gYtWrRAixYtjPtxcXE4c+YM3nvvPaxfv74GJasbkBG2k1dffRUjRoywWqdJkyZOu16TJk0QFBSE06dPO8UIV6X8YWFhAICcnByEh4cby3NyctChQweH2jSHrTqEhYWZBANptVrcunXLKKstdOvWDQBw+vTpKjXCQUFBcHFxQU5Ojqw8JyfHorxhYWF21a9qHNGhIm5ubujYsSNOnz5dFSI6HUvPwM/Pr9Z7wZbo2rUr9uzZU9Ni1AnICNtJcHAwgoODq+16ly5dws2bN2VG7U6oSvkbN26MsLAw7Ny502h0CwoKsH//frsjxK1hqw6xsbHIy8tDZmYmOnfuDAD4+eefodfrjYbVFg4dOgQATnsGllAqlejcuTN27tyJAQMGAAD0ej127tyJCRMmmD0nNjYWO3fuxKRJk4xl27dvl3mW1YkjOlREp9PhyJEj6NevXxVK6jxiY2NNpoXV5DNwBocOHary9524TU1Hht3LnD9/nmVlZbGUlBTm4+PDsrKyWFZWFissLDTWadGiBdu8eTNjjLHCwkI2ZcoUlpGRwc6ePct27NjBOnXqxJo3b87KyspqvfyMMbZo0SIWEBDAvvnmG3b48GHWv39/1rhxY1ZaWlrt8jPGWJ8+fVjHjh3Z/v372Z49e1jz5s3ZkCFDjMcvXbrEWrRowfbv388YY+z06dNs3rx57MCBA+zs2bPsm2++YU2aNGE9evSoFnm//PJL5u7uztauXcv++usvNmbMGBYQEMCys7MZY4wNHz6cTZ8+3Vh/7969zNXVlb399tvs+PHjbM6cOczNzY0dOXKkWuQ1h706pKSksG3btrEzZ86wzMxMNnjwYObh4cGOHTtWI/IXFhYa33UA7N1332VZWVns/PnzjDHGpk+fzoYPH26s/88//zAvLy/22muvsePHj7Ply5czFxcX9tNPP90V8r/33nvs66+/ZqdOnWJHjhxhEydOZAqFgu3YsaNG5K9rkBGuQpKTkxkAk8+uXbuMdQCwNWvWMMYYKykpYY8++igLDg5mbm5uLCoqio0ePdr45VXb5WfMME3pjTfeYKGhoczd3Z316tWLnTx5svqFv83NmzfZkCFDmI+PD/Pz82MjR46U/Yg4e/asTKcLFy6wHj16sHr16jF3d3fWrFkz9tprr7H8/Pxqk/mDDz5gjRo1YkqlknXt2pXt27fPeCw+Pp4lJyfL6m/YsIHdd999TKlUstatW7Mffvih2mS1hD06TJo0yVg3NDSU9evXjx08eLAGpDZQPmWn4qdc5uTkZBYfH29yTocOHZhSqWRNmjSR/U1UN/bKv3jxYta0aVPm4eHB6tWrxxISEtjPP/9cM8LXQWg9YYIgCIKoIWieMEEQBEHUEGSECYIgCKKGICNMEARBEDUEGWGCIAiCqCHICBMEQRBEDUFGmCAIgiBqCDLCBEEQBFFDkBEmCIIgiBqCjDBBVDMjRoww5lW2RHp6OiRJQl5eXpXKkpCQAEmSIEmSMUd2VRIdHW28XlXrRhB3A5QxiyCqmfz8fDDGEBAQAMBgCDt06IClS5ca66jVaty6dQuhoaGQJKnKZElISMB9992HefPmISgoCK6uVbumy/Xr1/Hrr79i0KBByM3NNd4Dgqir0CpKBFHN+Pv7V1pHqVRW23KEXl5e1Xat4OBg1KtXr1quRRB3A9QdTdyzrFu3DvXr14dKpZKVDxgwAMOHDzd7zrlz5yBJEr788kvExcXBw8MDbdq0we7du2X1du/eja5du8Ld3R3h4eGYPn06tFqt8fimTZvQtm1beHp6on79+khMTERxcTEAeXf0iBEjsHv3bixbtszYTXvu3Dmz3dH/93//h9atW8Pd3R3R0dF45513ZDJFR0fjP//5D5577jn4+vqiUaNG+Pjjj+2+b2vXrjXxUL/++muZRz537lx06NABq1evRqNGjeDj44Nx48ZBp9PhrbfeQlhYGEJCQvDmm2/afX2CqEuQESbuWZ566inodDp8++23xrJr167hhx9+wHPPPWf13Ndeew2vvvoqsrKyEBsbiyeeeAI3b94EAFy+fBn9+vXD/fffjz///BMfffQRPv30UyxYsAAAcPXqVQwZMgTPPfccjh8/jvT0dAwcOBDmRn6WLVuG2NhYjB49GlevXsXVq1cRGRlpUi8zMxNPP/00Bg8ejCNHjmDu3Ll44403sHbtWlm9d955B126dEFWVhbGjRuHsWPH4uTJk/beOps4c+YMfvzxR/z000/44osv8Omnn+Kxxx7DpUuXsHv3bixevBizZs3C/v37q+T6BHFPUJNLOBFEVTN27FjWt29f4/4777zDmjRpwvR6vdn65UsbLlq0yFim0WhYw4YN2eLFixljjM2cOZO1aNFC1sby5cuZj48P0+l0LDMzkwFg586dM3uN5ORk1r9/f+N+fHw8mzhxoqxO+XJ0ubm5jDHGnn32WfbII4/I6rz22musVatWxv2oqCg2bNgw475er2chISHso48+MiuHpWuvWbOG+fv7y8q2bNnCxK+LOXPmMC8vL1ZQUGAs6927N4uOjmY6nc5Y1qJFC7Zw4UKruhFEXYY8YeKeZvTo0fjf//6Hy5cvAzB0tY4YMaLSYKfY2FjjtqurK7p06YLjx48DAI4fP47Y2FhZGw888ACKiopw6dIltG/fHr169ULbtm3x1FNP4ZNPPkFubu4d6XH8+HE88MADsrIHHngAp06dgk6nM5a1a9fOuC1JEsLCwnDt2rU7urYloqOj4evra9wPDQ1Fq1atoFAoZGVVdX2CuBcgI0zc03Ts2BHt27fHunXrkJmZiWPHjmHEiBFVek0XFxds374dP/74I1q1aoUPPvgALVq0wNmzZ6v0ugDg5uYm25ckCXq93q42FAqFSde5RqOx6VrOuD5B1CXICBP3PM8//zzWrl2LNWvWIDEx0eyYa0X27dtn3NZqtcjMzETLli0BAC1btkRGRobMUO3duxe+vr5o2LAhAIPxeeCBB5CSkoKsrCwolUps2bLF7LWUSqXMmzVHy5YtsXfvXlnZ3r17cd9998HFxaVSfewhODgYhYWFxkAyANUyh5gg6iJkhIl7nmeffRaXLl3CJ598UmlAVjnLly/Hli1bcOLECYwfPx65ubnGc8eNG4eLFy/ipZdewokTJ/DNN99gzpw5mDx5MhQKBfbv34///Oc/OHDgAC5cuIDNmzfj+vXrRiNekejoaOzfvx/nzp3DjRs3zHqOr776Knbu3In58+fj77//xmeffYYPP/wQU6ZMcfzGWKBbt27w8vLCzJkzcebMGaSlpZkEgBEE4RzICBP3PP7+/hg0aBB8fHwqzVRVzqJFi7Bo0SK0b98ee/bswbfffougoCAAQIMGDbB161b8/vvvaN++PV588UWMGjUKs2bNAgD4+fnhl19+Qb9+/XDfffdh1qxZeOedd9C3b1+z15oyZQpcXFzQqlUrBAcH48KFCyZ1OnXqhA0bNuDLL79EmzZtMHv2bMybN69Kutbr1auHzz//HFu3bkXbtm3xxRdfYO7cuU6/DkEQlDGLqCP06tULrVu3xvvvv2+13rlz59C4cWNkZWWhQ4cO1SNcDWIuW1dVk56ejp49e1LGLIIAecLEPU5ubi62bNmC9PR0jB8/vqbFqZWsWLECPj4+OHLkSJVfq3Xr1hZ7BAiiLkJpK4l7mo4dOyI3NxeLFy9GixYtalqcWkdqaipKS0sBAI0aNary623dutUYae3n51fl1yOI2g51RxMEQRBEDUHd0QRBEARRQ5ARJgiCIIgagowwQRAEQdQQZIQJgiAIooYgI0wQBEEQNQQZYYIgCIKoIcgIEwRBEEQNQUaYIAiCIGoIMsIEQRAEUUOQESYIgiCIGoKMMEEQBEHUEGSECYIgCKKGICNMEARBEDUEGWGCIAiCqCHICBOIjo7G3Llzq+Va48aNwyOPPFIt16qM7t27Y+rUqWaPJSQkYMSIEU693qlTp/Doo4/C398fkiTh66+/truNhIQEtGnTxqlyEbYRHR3t9HeCIMgIE2ZJSEiAJElmPzExMQ61efbsWfz3v//FzJkznSytY0ybNg3Lly9HdnZ2tVwvOTkZR44cwZtvvon169ejS5cuZutduXIFc+fOxaFDh6pFLpH09HSLz73iBwDWrl1rtc6+ffuMbb/yyivo1KkT6tWrBy8vL7Rs2RJz585FUVFRtetJELUF15oWgKi9NGzYEAsXLjQp9/f3d6i9ZcuWoXHjxujZs+ediuYU+vfvDz8/P6xYsQLz5s2r0muVlpYiIyMDr7/+OiZMmGC17pUrV5CSkoLo6Gh06NChSuWqSMuWLbF+/XpZ2YwZM+Dj44PXX3/d4nnz5s1D48aNTcqbNWtm3P7jjz/w0EMPYeTIkfDw8EBWVhYWLVqEHTt24JdffoFCQT4BUfcgI0xYxN/fH8OGDXNKWxqNBqmpqXjxxRed0p4zUCgUePLJJ7Fu3TqkpKQYvbuq4Pr16wCAgICAKruGMwgNDTV55osWLUJQUJDVd6Fv374WPfty9uzZY1LWtGlTTJkyBb///ju6d+/umNAEcRdDPz0Jh9m1axckScKWLVtMjqWlpUGSJGRkZAAwfAHfuHEDiYmJsnrJycnw8PDA8ePHZeW9e/dGYGAgrly5YpdMc+bMgZubm9HoiYwZMwYBAQEoKyszlj3yyCM4f/78HXX9ZmVloW/fvvDz84OPjw969eol64adO3cuoqKiAACvvfYaJElCdHS02bbS09Nx//33AwBGjhxp7NZdu3atrN5ff/2Fnj17wsvLCw0aNMBbb71l0pZKpcKcOXPQrFkzuLu7IzIyElOnToVKpXJYV2dTfh/y8vKs1ivvJt+wYQNSUlLQoEED+Pr64sknn0R+fj5UKhUmTZqEkJAQ+Pj4YOTIkSZ6arVazJ8/H02bNoW7uzuio6Mxc+ZMk3qMMSxYsAANGzaEl5cXevbsiWPHjpmVKy8vD5MmTUJkZCTc3d3RrFkzLF68GHq93uF7QtQxGFHniYqKYnPmzJGVxcfHs5iYGHb9+nWTT1FREWOMMb1ezyIjI9mgQYNM2uzXrx9r2rSpcX/BggVMkiSWn58vq5ebm8saNmzI7r//fqbVahljjK1cuZIBYOvXr7dbl1OnTjEA7IMPPpCVq1QqFhgYyJ577jlZ+aVLl8zWj4+PZ8nJyZVe7+jRo8zb25uFh4ez+fPns0WLFrHGjRszd3d3tm/fPsYYY3/++Sd77733GAA2ZMgQtn79erZlyxaz7WVnZ7N58+YxAGzMmDFs/fr1bP369ezMmTNGuSIiIlhkZCSbOHEiW7FiBXv44YcZALZ161ZjOzqdjj366KPMy8uLTZo0ia1atYpNmDCBubq6sv79+1eql0jr1q1ZfHy82WNr1qxhANiOHTtM3pMbN26Y1NdoNOz69evs8uXLbNu2bSwmJob5+vqymzdvWpVh165dDADr0KEDi42NZe+//z57+eWXmSRJbPDgwezZZ59lffv2ZcuXL2fDhw9nAFhKSoqsjeTkZAaAPfnkk2z58uUsKSmJAWADBgyQ1Zs1axYDwPr168c+/PBD9txzz7GIiAgWFBQkeyeKi4tZu3btWP369dnMmTPZypUrWVJSEpMkiU2cONGme0sQZIQJi0YYgNnPCy+8YKw3Y8YM5u7uzvLy8oxl165dY66urrI2hw0bxurXr2/2+tu2bWMA2IIFC9g///zDfHx8TL4Y7SE2NpZ169ZNVrZ582YGgO3atcukvlKpZGPHjpWV2WqEBwwYwJRKpdFIMsbYlStXmK+vL+vRo4ex7OzZswwAW7JkSaVt/vHHHwwAW7Nmjcmx8ueybt06Y5lKpWJhYWGyH0Pr169nCoWC/frrr7Lzy3/g7N27t1I5yrHFCJv7uLu7m9TPyMiQ1WnRooXZZ1KRciPcpk0bplarjeVDhgxhkiSxvn37yurHxsayqKgo4/6hQ4cYAPb888/L6k2ZMoUBYD///DNjzPDuKpVK9thjjzG9Xm+sN3PmTAZA9k7Mnz+feXt7s7///lvW5vTp05mLiwu7cOFCpXoRBHVHExaJjo7G9u3bTT6TJk0y1klKSoJKpcKmTZuMZV999RW0Wq1sDPHmzZsIDAw0e51HH30UL7zwAubNm4eBAwfCw8MDq1atcljupKQk7N+/H2fOnDGWpaamIjIyEvHx8Sb1AwMDcePGDbuvo9Pp8L///Q8DBgxAkyZNjOXh4eF49tlnsWfPHhQUFDimhBV8fHxk91apVKJr1674559/jGUbN25Ey5YtERMTgxs3bhg/Dz/8MADDUIIzWb58ucl78uOPP5rUa9WqFbZv346vv/4aU6dOhbe3t13R0UlJSXBzczPud+vWDYwxPPfcc7J63bp1w8WLF6HVagEAW7duBQBMnjxZVu/VV18FAPzwww8AgB07dkCtVuOll16SxQiI73w5GzduxEMPPWR8f8o/iYmJ0Ol0+OWXX2zWi6i7UGAWYRFvb2+TMdyKxMTE4P7770dqaipGjRoFwGDwunfvLouMBQxjbZZ4++238c033+DQoUNIS0tDSEiIw3I/88wzmDRpElJTUzF79mzk5+fj+++/xyuvvGI2+Iox5lBQ1vXr11FSUoIWLVqYHGvZsiX0ej0uXryI1q1bO6SHJRo2bGgib2BgIA4fPmzcP3XqFI4fP47g4GCzbVy7ds2pMnXt2rXSwCwA8PPzM75T/fv3R1paGvr374+DBw+iffv2lZ7fqFEj2X55pH5kZKRJuV6vR35+PurXr4/z589DoVCYvJNhYWEICAjA+fPnAcD4f/PmzWX1goODTX5Enjp1CocPH662e0zcm5ARJu6YpKQkTJw4EZcuXYJKpcK+ffvw4YcfyurUr18fubm5FtvIysoyfmkdOXIEQ4YMcViewMBAPP7440YjvGnTJqhUKovRvXl5eQgKCnL4etWNi4uL2XLxR45er0fbtm3x7rvvmq1b0WjVFAMHDsTw4cPx5Zdf2mSELeluyz0B4NQIeL1ej0ceecRiwpf77rvPadci7l3ICBN3zODBgzF58mR88cUXKC0thZubG5555hlZnZiYGKSmpiI/P99knnFxcTFGjhyJVq1aIS4uDm+99Rb+/e9/G6OEHSEpKQn9+/fHH3/8gdTUVHTs2NGsR3r58mWo1Wq0bNnS7msEBwfDy8sLJ0+eNDl24sQJKBQKh4ydMwxF06ZN8eeff6JXr15VOvXqTlGpVEaPtSqJioqCXq/HqVOnZM86JycHeXl5xuj18v9PnTolG2K4fv26yY/Ipk2boqioqNLeIoKwBo0JE3dMUFAQ+vbti88//xypqano06ePiWcZGxsLxhgyMzNNzp82bRouXLiAzz77DO+++y6io6ORnJx8R1Np+vbti6CgICxevBi7d++26AWXyxMXF2f3NVxcXPDoo4/im2++wblz54zlOTk5SEtLw4MPPgg/Pz+72/X29gZQ+bQdazz99NO4fPkyPvnkE5NjpaWlKC4udrhtR8jLy4NGozEp/+9//wsANnVl3wn9+vUDACxdulRWXt5T8NhjjwEAEhMT4ebmhg8++EDmRVc8DzDc44yMDGzbts3kWF5ennE8miCsQZ4wYZH8/Hx8/vnnZo9VNGpJSUl48sknAQDz5883qf/ggw+ifv362LFjhzE4CAB+/vlnrFixAnPmzEGnTp0AAGvWrEFCQgLeeOMN2fzX8jmlosGzhJubGwYPHowPP/wQLi4uFru3t2/fjkaNGqFjx46VtmmOBQsWYPv27XjwwQcxbtw4uLq6YtWqVVCpVGbn7tpC06ZNERAQgJUrV8LX1xfe3t7o1q2b2YxUlhg+fDg2bNiAF198Ebt27cIDDzwAnU6HEydOYMOGDdi2bZtTDd+PP/6IEydOmJTHxcWhSZMmSE9Px8svv4wnn3wSzZs3h1qtxq+//orNmzejS5cuTksKY4n27dsjOTkZH3/8MfLy8hAfH4/ff/8dn332GQYMGGDM4hYcHIwpU6Zg4cKFePzxx9GvXz9kZWXhxx9/NPlh+dprr+Hbb7/F448/jhEjRqBz584oLi7GkSNHsGnTJpw7d+6uGuYgaogajMwmagn2TlEy99qUz8P19/dnpaWlZq/z8ssvs2bNmhn3CwoKWFRUFOvUqRPTaDSyuq+88gpTKBQsIyPDWBYUFMS6d+9us16///47A8AeffRRs8d1Oh0LDw9ns2bNMjlm6xQlxhg7ePAg6927N/Px8WFeXl6sZ8+e7LfffpPVsWeKEmOMffPNN6xVq1bM1dVVNl0pPj6etW7d2qR+cnKybEoOY4yp1Wq2ePFi1rp1a+bu7s4CAwNZ586dWUpKisl8bWs4OkVJlPv06dMsKSmJNWnShHl6ejIPDw/WunVrNmfOHOO8c2uUT1HauHGj2ev/8ccfsvI5c+YwAOz69evGMo1Gw1JSUljjxo2Zm5sbi4yMZDNmzGBlZWWyc3U6HUtJSWHh4eHM09OTJSQksKNHj7KoqCiTd6KwsJDNmDGDNWvWjCmVShYUFMTi4uLY22+/LZtKRRCWICNMmDXC9qLRaFhwcLBJMgyRM2fOMDc3N7Zjxw672z927BgDwL7//nubzymfGyrOqRXZsmUL8/T0ZFeuXDE5Zo8RJgiCcBQaEyacwtdff43r168jKSnJYp0mTZpg1KhRWLRokd3t79q1C7GxscaxO1v45JNP4OPjg4EDB5o9vnjxYkyYMAHh4eF2y0MQBOEMaEyYuCP279+Pw4cPY/78+ejYsaPZZBgiH330kUPXGT9+PMaPH29T3e+++w5//fUXPv74Y0yYMMEY6FSR8rzWBEEQNQUZYeKO+Oijj/D555+jQ4cOJosM1BQvvfQScnJy0K9fP6SkpNS0OARBEBaRGLOSxoggCIIgiCqDxoQJgiAIooag7uhK0Ov1uHLlCnx9fWt15iGCIIjqgjGGwsJCREREQKFwji9XVlYGtVptUq5UKuHh4eGUa9RGyAhXwpUrV2pNnl2CIIjaxMWLF9GwYcM7bqesrAyNGzdAdvYtk2NhYWE4e/bsPWuIyQhXgq+v7+0tBQDyhAmCIAy5WPTC9+OdoVarkZ19C+dOfQ4/Py9jeUFBCaKbD4NarSYjXFfhXdASyAgTBEFwnD1E5+ftAT9vwdjq9E5tvzZCRpggCIKoHWi1ho+4f49DRpggCIKoHegqGGEdGWGCIAiCqBYknRaSYHglMsJEXUaqyjFwR8eSHMwtw1A9OWlsuWfVJYslKpOxNt0ryydX7/tj1yVq+Pne1ag1ho+4f49DyToIgiCI2oFOZ+iCNn50Np/60UcfoV27dvDz84Ofnx9iY2Px448/Go+XlZVh/PjxqF+/Pnx8fDBo0CDk5ORUhRZ2YZMnfPjwYbsbbtWqFVxdydEmCIIgbESrM3zEfRtp2LAhFi1ahObNm4Mxhs8++wz9+/dHVlYWWrdujVdeeQU//PADNm7cCH9/f0yYMAEDBw7E3r17q0AR27Epd7RCoYAkSbA1zbRCocDff/+NJk2a3LGANU1BQQH8/f0BuKCuTVGi7mj7oe5o58lh/WTqjq5ZGAAd8vPz4efnd8etlX/P5h1YBj8fT15eVIqALhMdvk69evWwZMkSPPnkkwgODkZaWhqefPJJAMCJEyfQsmVLZGRkoHv37nesg6PY7Kru378fwcHBldZjjKFNmzZ3JBRBEARRB9FoAI2rfB8GIy3i7u4Od3d3i83odDps3LgRxcXFiI2NRWZmJjQaDRITE411YmJi0KhRo7vDCMfHx6NZs2YICAiwqdEePXrA09Oz8opEteCwx2G3t2F/iIG9sjHJFi/DdIK/pdPs9VosymvHvZK1YcEzs0cum+5hDcpn0malMlX+Htnz3shktek0BxNE3L5Xdr/TdcJzthEL3dEVUwfPmTMHc+fONTn9yJEjiI2NRVlZGXx8fLBlyxa0atUKhw4dglKpNLFhoaGhyM7OdrYWdmGTEd61a5ddjW7dutUhYQiCIIg6jE4vD8a6nTHr4sWLsu5oS15wixYtcOjQIeTn52PTpk1ITk7G7t27q1TkO+Wui45evnw5oqOj4eHhgW7duuH333+3WHft2rWQJEn2uVfzjxIEQdz16HTcG9bqjAa5POK5/GPJCCuVSjRr1gydO3fGwoUL0b59eyxbtgxhYWFQq9XIy8uT1c/JyUFYWFhVa2UVu8OXGWPYtGkTdu3ahWvXrkGvl3fdbN682WnCVeSrr77C5MmTsXLlSnTr1g1Lly5F7969cfLkSYSEhJg9x8/PDydPnjTu03KEBEEQtRQnp63U6/VQqVTo3Lkz3NzcsHPnTgwaNAgAcPLkSVy4cAGxsbF3dI07xW4jPGnSJKxatQo9e/ZEaGhotRq1d999F6NHj8bIkSMBACtXrsQPP/yA1atXY/r06WbPkSTJrl86KpUKKpXKuF8xIIAgCIKoIjRaw0fct5EZM2agb9++aNSoEQoLC5GWlob09HRs27YN/v7+GDVqFCZPnox69erBz88PL730EmJjY2s0KAtwwAivX78emzdvRr9+/apCHouo1WpkZmZixowZxjKFQoHExERkZGRYPK+oqAhRUVHQ6/Xo1KkT/vOf/6B169YW6y9cuBApKSlOlZ0gCIKwgTuYJ3zt2jUkJSXh6tWr8Pf3R7t27bBt2zY88sgjAID33nsPCoUCgwYNgkqlQu/evbFixQpna2A3dhthf3//Gpn/e+PGDeh0OoSGhsrKQ0NDceLECbPntGjRAqtXr0a7du2Qn5+Pt99+G3FxcTh27JjFhahnzJiByZMnG/cLCgpMIvNqI1UTAW05ZMB8tKu5+ubbkMzWrRzxqoxZimIVym/XkUdV8+NisRilKtNPdo8s6OPg/bcU7S3JdGB3hXz2yig/rjA5bnLN6npn4CI/VOEci9HMxgtZuIaFSPPaMm+7VqDVVzDCtkeqf/rpp1aPe3h4YPny5Vi+fLmj0lUJdr/Vc+fORUpKCkpLS6tCHqcSGxuLpKQkdOjQAfHx8di8eTOCg4OxatUqi+e4u7ubBAEQBEEQ1YD+ial4jgAAPslJREFUdjBW+Udvuyd8t2K3J/z000/jiy++QEhICKKjo+Hm5iY7fvDgQacJJxIUFAQXFxeTXJ/2RLe5ubmhY8eOOH36dFWISBAEQdwJd9AdfbditxFOTk5GZmYmhg0bVq2BWUqlEp07d8bOnTsxYMAAAIbIt507d2LChAk2taHT6XDkyJFqH88mCIIgbECtBVxd5Pv3OHYb4R9++AHbtm3Dgw8+WBXyWGXy5MlITk5Gly5d0LVrVyxduhTFxcXGaOmkpCQ0aNAACxcuBADMmzcP3bt3R7NmzZCXl4clS5bg/PnzeP7556tddoIgCKISdHpjgg7j/j2O3UY4MjKyxsZJn3nmGVy/fh2zZ89GdnY2OnTogJ9++skYrHXhwgUoFHyYOzc3F6NHj0Z2djYCAwPRuXNn/Pbbb2jVqlWNyH+nVEXwlVQxCEV20PLrIUluJmUKM/WlSgJuLAXbWCq3FFgjljPGfz3ry7eZsC6pcJxJQneXGDgj3DPZPRJ0FO9BubyShTALZiFYhwlyyXQzJ6Pd8imEbdPnZUleUVb5fXXOPZQUShOZRDkkCzrI5Lbj/bAlGEuso2cVvC+pQpeorD3TIEAxsMtyykzbg7fEv/t7PkhLV6E72o6lDO9WbFpFSeSHH37ABx98gJUrVyI6OrqKxKo91KZVlMgIO26ELRoQ6ITzhKhp0YDVtBG+LaP98lWTEbbzHt51RhhyQ8AqNcJCkUWjaV8EdeXtVTdVtIrSihfg56nk5aVqBIxb5bTr1Ebs9oSHDRuGkpISNG3aFF5eXiaBWbdu3XKacARBEETdgWl0YK462X5t49dff8WqVatw5swZbNq0CQ0aNMD69evRuHFjh4Zp7TbCS5cutfsiBEEQBFEpWr18brAd84Srg//7v//D8OHDMXToUGRlZRmzK+bn5+M///mPQ4sXORQdTRAEQRBOp5Yb4QULFmDlypVISkrCl19+aSx/4IEHsGDBAofatNsIX7hwwerxRo0aOSQIQRAEUbdhOj2YYHhZLYuOPnnyJHr06GFS7u/vb7JCk63YbYSjo6Otzg3W1YFotqrGoQCsKgi+clF4Wj7mYrokpItCaVKmEIJvXMwE3CjMBDeZiCgE7VgMGhKCZ7R6tXFbpzd0F2l1ZUIZ39bris22LQYNKYT74KLgersK96BcD1EHhSC33oLc5fIZtkW5TWWUySc8U4WLt1n5xOfhouBLv1UmozxIiQdjWbyHep49jzGuT2UyivdPlM9VkFthQ0CZpaC3ctnlwWXCvZcF8HE99Xp5YJb4XAxtiEFppoFrsuA0C4FbzFKyQsmMLsxCKlCxSq0J2LpDarknHBYWhtOnT5sEJe/Zs8fhdM52G+GsrCzZvkajQVZWFt599128+eabDglBEARBEEyjB3PRy/ZrE6NHj8bEiROxevVqSJKEK1euICMjA1OmTMEbb7zhUJt2G+H27dublHXp0gURERFYsmQJBg4c6JAgBEEQRN2GaRmYlsn2axPTp0+HXq9Hr169UFJSgh49esDd3R1TpkzBSy+95FCbdhthS7Ro0QJ//PGHs5ojCIIg6ho6BoiGV1e7jLAkSXj99dfx2muv4fTp0ygqKkKrVq3g4+PjcJt2G+GKi9wzxnD16lXMnTsXzZs3d1gQgiAIom7DtAzMpfZ6wuUolUqnZV602wgHBASYBGYxxhAZGSkL2SYIgiAIe2A6BiZ4v6yWecI9e/a0Gpj8888/292m3UZ4165dsn2FQoHg4GA0a9YMrq5O690mzGF1xSorS0NbiYBWCFGpFXF18bJ4zFMZaFLm7mKaVs5d4t00rpIQDQtD1KsbcxfKuJxuTIiQhRjNy++BXogI1Ug8grUMPOK5FPkAgGLdTWNZieYGrytExUo6HvXq6uJr3PZQ1jdue7nWM257Kvg98IBBT1dwfUS5deBtayQeQaxihVwufR7fVl8X9DGg1/LjYrSxpzKYb7tx+bwUAcZtd4nrY+mel0dHa8HlK0ORcbtUn8vl0/LMeGVqfm81QiSxJESVu7txWbzcggAA3i78vnrC37jtAa6b/D0w/+zFyHPxPSi/5+L91kGI9mY8wlvNeIS3Ws91BgC1EEEPAFodrytGTjNmuJdi2ktZWlLYGzV9u1z8u7eQ1vJeyS/N1ACT5Pu1iQ4dOsj2NRoNDh06hKNHjzqcQ8NuqxkfH+/QhQiCIAjCGkwnS0sOVstmvL733ntmy+fOnYuioiKzxyrDivvE+fbbb6HRaCqveJutW7eitLS08ooEQRAEcRu9zvRzNzBs2DCsXr3aoXNtMsL//ve/7coGMnjwYFy9etUhgQiCIIi6CdOafu4GMjIy4OFhmsDIFmzqjmaMYcSIEXB3tzx+KFJWVlZ5JYIgCIIQ0Gsk6IUxcL2mZpePrUjFPBjls4MOHDhQtck67B1wHjp06D279mNtxVqqS0vpIAFAIZmmmizH3dXX4jE/1wiTsvqsoUmZv56/Bx5CgJji9h+aUsFl83LhaQ49Xbk+Hi5820VQRS/En6iFOJciYeeW2hDZcU2RZyzLdj9l3L4upGIUg4q8hGCnYPcY43aELtK4XV/BA9f83Ay6eQhyi3ddJwTUlAjTLvLV/Kf+NSmfy+hxlsuIkwAArRCYJQY61Xfn6fLCWGPjdogQ7OTvxu+9lyCji/iFd/v/UiFVYIGa9wfeEALerrpfEMr/5voIMrq58qC8QPdoLiOa3/6fB7YFKnl6Sm83fueUwk1UCK+4mFK4TIigLRZkL9dDZaFPs0xwswokPp6X53pNVq9YcUO2r1LwaZpqLb8nxiAt4T2S53sS144Wyy1lhVKYHr/Hg7T0Ogl6nSTbr00Y1pbnKBQKtGjRAvPmzcOjjz7qUJs2GeE1a9Y41DhBEARB2IpeX8EI62uXEa4KW0hzigiCIIhaAdNJ0AtdHqyWecJVgU2BWQRBEARR1eh1CpOPrSxcuBD3338/fH19ERISggEDBuDkyZOyOmVlZRg/fjzq168PHx8fDBo0CDk5OVbbDQwMRL169Wz6OAJ5wnUCy0sZKhSWXwE3ISFERXwRYlLWSBFsUtbQm4/1BbrzX7VXSgzjXOL4ZIgQXBjszsey6in5WJqHi/nxs1Id1/GWmm9fKTUkjDhbKIx989wNKHLjf4AaLR+T9VPy8e1m+qZ8248noGgo3J5Qd4Ncfm5cVkE1qIRutTwNly+7jMt1vijIuO1ezMtLlHkAgOLSc8Yyb2WocTtK38K4fZ83H4OP8uHXDPPg983fjY+FuiuEhCe3syQUCvLlqPjzu1AcYNz2KuRBmmpliXG7oPQf47aHKx8/iwCXsYW7Qc/Gvvw6EZ5cvvp2Pu9c4XlfUwnbpYbtYi1/xxt68y/1PDXX/Uoxf/ku6eR/L3pJPqbMFEJyDXHFn/KlIMUxXL24dKK4VKbQnuALSbLEHXfXeK4z0GoV0AoxLFqt7UZ49+7dGD9+PO6//35otVrMnDkTjz76KP766y94exv+WF955RX88MMP2LhxI/z9/TFhwgQMHDgQe/futdju0qVLHdbHFsgIEwRBELUCvV6SjQPbMyb8008/yfbXrl2LkJAQZGZmokePHsjPz8enn36KtLQ0PPzwwwAMY7wtW7bEvn370L17d7PtOpoJy1bICN8rWImAth4dbfkVcLWS0tJHbxo5HeJj2labAP5rvl/jS8btsb8avOZO9bkH0sKXR5U29+PpHMPq8W1PXyHNpKCWqph7Lzdv8ajcU/kGz9DDhetSdJ2nS7zkGsDLBX2DWSPjdhNf7v22D+SeSmt/HlHbMNAQMevjz91sFzfByyzjwube4lHV5/O55+rnxstVOn5/L2vCAABizK6/C49Oj1byum0C+ZdWGz/uoTYO4F6+fyBPpOMmeMi629NBCvP4M7mYy+X7S8ldf8b4PblWzHsNLkv8HoopNBu68Ejo1gGGe9HWn0emN/XnEcf16/H76u7NvVDBSURJAe8pyMnlz/vvAi6vSmfw4s8U8uvM78bTgf74TwPjtlbP3938InkPUAHkK+SohUhqjcR7ChS3t/UQJ7cKXq7wwrLalgqqlqDTK6DTK2T7gOnCQe7u7pVOmc3PN7zz5d3EmZmZ0Gg0SExMNNaJiYlBo0aNkJGRYdEIW6KsrAxqtTyvpiOzghwywjt37sTOnTtx7do16PXy7iJHs4YQBEEQdRt9hcCs8kjpyMhIWb05c+Zg7ty5ltvR6zFp0iQ88MADaNOmDQAgOzsbSqUSAQEBsrqhoaHIzs62Sb7i4mJMmzYNGzZswM2bN02O63T2/7iy2winpKRg3rx56NKlC8LDw62uKEEQBEEQtqJjFTxhZti+ePGizMuszAseP348jh49ij179jhVvqlTp2LXrl346KOPMHz4cCxfvhyXL1/GqlWrsGjRIofatNsIr1y5EmvXrsXw4cMduiBhwFpyDcs4P5jdWld1+UpH5vCE6R+Bn9JUpyB33n2sVPJfiQFuhrYjvXhZTADvcmp8H1+lx6M57x5VBAsRiEKiD+9c3vXqczrPuO16wtB+oYYHPZ335K+9Rwn/w5aE++vPeHk473nFfb78OvdF8iQOvrfjjlwieNew5MGvw4p5t5XPed6d6Xmc358SISDoUgm/v955AaiID+NloZ5c7mbevDs8JpT/Ug9qyctdo3j3quTNu3VZmaEb1fsKl8/rONdRc4FfJ7uMd9n6F/IALPF98pB4eYgnf5eivQ3XaVmfP+Pwlvyayia8bSlQWMlLy98V7+s8SYbvKa6ny2k+BJCrNrwr/xTya7sJ72CQO+829lfy++1VIVjRXeh6BwBXoctdHM4p193S35T4fslDrsysnGTX8XsHrV4BjWCEtbe3/fz8bO7qnTBhAr7//nv88ssvaNiQD5WEhYVBrVYjLy9P5g3n5OQgLCzMpra/++47rFu3DgkJCRg5ciQeeughNGvWDFFRUUhNTcXQoUNtakfE7m91tVqNuLg4uy9EEARBENbQ6SXjuLDhY7uzwhjDhAkTsGXLFvz8889o3Lix7Hjnzp3h5uaGnTt3GstOnjyJCxcuIDY21qZr3Lp1C02aGDLU+fn54dYtww/JBx98EL/88ovNsorY7Qk///zzSEtLczhPJlH9SFZ+a1k7ppAse8LuZqY9ebqY/sH4unJvw8OHe30+t/MRhrpzDzE8mHvCni25ByS1FtJhhvCgKtETlm7mcdk8L/PqRYbycCFgx1/J23YvFTxXwavxUXAPUZwuFeHLPTbf5rzctW24YaOR8IvanbchFXLPzc2XL25Sr5QHCkXk8YCpQNEz05tOFRPL6gmzryK8uKderwkPSHJrI0wfaxzOt30Fr7PUUN+1Pg8B89NyWRvkct2DC/k9FO+V+D55CAFNAYKMYR4Grzy4oRCA1TqAV2ghPO9AIU2gEH+iyOYeuqeSP++wPP4OhRYYnq2vG3+PPXz4+yi+m16uXEB3hfxvwkUr/5oU/y5cxMAsmHrC8mAsWavCtpiWUri2E4K37rYUlgYjLMn2bWX8+PFIS0vDN998A19fX+M4r7+/Pzw9PeHv749Ro0Zh8uTJqFevHvz8/PDSSy8hNjbW5qCsJk2a4OzZs2jUqBFiYmKwYcMGdO3aFd99953JWLOt2G2Ey8rK8PHHH2PHjh1o164d3NzkX9TvvvuuQ4IQBEEQdRsdUxjHgcv3beWjjz4CACQkJMjK16xZgxEjRgAwrAesUCgwaNAgqFQq9O7dGytWrLD5GiNHjsSff/6J+Ph4TJ8+HU888QQ+/PBDaDQah22f3Ub48OHD6NChAwDg6NGjsmPVEaS1fPlyLFmyBNnZ2Wjfvj0++OADdO3a1WL9jRs34o033sC5c+fQvHlzLF68GP369atyOe8FFFa8ZBcz415KhekvbQ8X/mve1ZsJ5Yb/xeQWXkHcM5EihGQgDbh3qY8QFo4QPWFvwXMu5h6le7BhmkKAko+Jerly78+NmQ/wEBeW8HHlnoqvjzAFKVzwUBsa5GWRfNoLc+dj2VIhn2Ylqbj37xqaZ9z29+Ceq7fwl6k082fqLozXe7vy++rvKXi/ocIP5IZ8TFwmo6/QE3B7DXDxr9glm09t8vUR5BOSVIj3SvT8XIW4AVGfAHfDPVSGCFdqyHs4WEPuqbMgwYPX8vdDIfz4l3L5vfUK4lGuvhcM9d1duJfr6iW+g/zdFBeKcFXIv8dcK/T6KCTzyW+sxVc4QrkXa9GDtWExh7sNS2PCtsBsuAceHh5Yvnw5li9f7pB8r7zyinE7MTERJ06cQGZmJpo1a4Z27do51KbdRnjXrl0OXcgZfPXVV5g8eTJWrlyJbt26YenSpejduzdOnjyJkBDTDE6//fYbhgwZgoULF+Lxxx9HWloaBgwYgIMHDxrD1gmCIIjawZ10R1cHFy9elE2XioqKQlRU1B21eUfJOi5dMiRfECPQqpJ3330Xo0ePxsiRIwEYIrV/+OEHrF69GtOnTzepv2zZMvTp0wevvfYaAGD+/PnYvn07PvzwQ6xcudLsNVQqFVQq7u1UnCROGFCYie5WmPl7EctEB6J8+NhV8J4V4prYXkLUrrfgcXoKkari2J1Y7sU9MMnDUMdV8NxcJQtLwAmejIsguJsgo6sQXSu5C38+ngbhmacQzStMo2CCFyd5Ch6yO78proLH7SLIaG7cXrz/bqIXJ7QBM/IZZBTulXBv2e37KZePt+HqJnjZ4j2x0AMm9qSI4QJut5+FwkMQ3EMYNLb0vIUxYebFyyXheYv5Zdxup5eUvYPCLXER3z2hTsV3W7LSJeps77euo2MSdEyS7dcmoqOj8eCDD2LYsGF48sknERgYWPlJlWD3G6TX6zFv3jz4+/sbfwUEBARg/vz5Jok7nIlarUZmZqYs24lCoUBiYiIyMjLMnpORkSGrDwC9e/e2WB8wJAH39/c3fipOEicIgiCqhvIxYfFTmzhw4AC6du2KefPmITw8HAMGDMCmTZtkjpu92O0Jv/766/j000+xaNEiPPDAAwCAPXv2YO7cuSgrK8Obb77psDDWuHHjBnQ6HUJDQ2XloaGhOHHihNlzsrOzzda3lh1lxowZmDx5snG/oKCADLEZ9GbGqfRmHEyxTAz2LF+HXSvmieWOFlDCx02lYh5ZzEr5eK/MExbLS/gfBCsz/DDUCquxaC38umZCXkSdILhGkFErLBbAVIJ3ezuyWCrl0clM+FEqifKVckWZit8UrZaPc4oeADMzN1S8/xrhsCzhvfjFIFxTlIW5upqWy+TjOmo1vG3ZPWHmf3zrBbl1wnuguf0s9GWC518mpP8TnjfEngWxN6HE/PPWCyqXjy3K3kEho6TY1SnWqfhuM8myc8Es6E44Rm33hDt27IiOHTvirbfeQnp6OtLS0jBmzBjo9XoMHDjQoYyRdhvhzz77DP/973/xr3/9y1jWrl07NGjQAOPGjasyI1xd2JKTlCAIgnA+Gr0k+4GnqWVjwuVIkoSePXuiZ8+eGDt2LEaNGoXPPvuseozwrVu3EBMTY1IeExNjnLhcFQQFBcHFxcVk7Udr2U7CwsLsqk/I0VvJzqMz4wGozfzBlAlZoLTFklBu+L9Aw72/khv8dXS/kmfclgJ5z4VCw6OpZZ6wME8YV/h7qLpu8Gry1PyHVYlW8CIl891IasGLLRI81MIi3k7gVe6xuV4yzK2VxEhhYZ4whHnCuMIzPGlzuD75ZQHG7WLBY1PLFgQwoIJGqMvva34pH8/V5AjzcC/xebWSGFkszBM2esCX+Dxh3VXu2RcW8Xm/xULPglrP5RM9Q62wZqSoT57KcA/V1/hzcLvE74nkLYz3FvPri2PCEOYJs2wetyG+Q4W35/eqBDdcWyK+g/zdVIu9CRW6dLSQz9fVW5i/62yvuNJ5vfdIRLSIDpKsp0rnUGbBqufSpUtIS0tDWloajh49itjYWIcjru3ucG/fvj0+/PBDk/IPP/wQ7du3d0gIW1AqlejcubMs24ler8fOnTstZjuJjY2V1QeA7du325wdhSAIgqg+yrujxU9tYtWqVYiPj0d0dDTWrVuHZ555BmfOnMGvv/6KF1980aE27faE33rrLTz22GPYsWOH0ZhlZGTg4sWL2Lp1q0NC2MrkyZORnJyMLl26oGvXrli6dCmKi4uN0dJJSUlo0KABFi5cCACYOHEi4uPj8c477+Cxxx7Dl19+iQMHDuDjjz+uUjlrG+bGFG05pmcai8dUZryBUp3pL/NCIdtQWRH3wIpuux45Kn786nWe1crjuJA7WnvBuK0IFlYuEbxOJuSOVp/mXue1S4Z5sFdLuVeaLyzmrmJ8jikTBgyL9HyM8rqKn3ulkHuDgaf4NX0VBm/d5Sb3Pi3ljtYKuaNvneOe65US7gHmCkOkJQrBizZTdkvNIzSvlPAx1JB/eNtB7txzdBWW9jOXO1on5I4uOMXv8WVB9+sq/uUo3ivxfSoDbydP0Ce7zOAJX7/E23M9lmfcVpYKy1VayB2tF3JHl53iHnf2DZ5bPKfM8L4VCoPmZUWmnjIAlAi9CaoKAaY6Sd4ToRd6IXTC30h5z5HoEVv2ji1kw6pub7qWUdvHhBcsWIAhQ4bg/fffd5rTabcRjo+Px99//43ly5cbA6IGDhyIcePGIUJMpFAFPPPMM7h+/Tpmz56N7OxsdOjQAT/99JMx+OrChQtQCF/McXFxSEtLw6xZszBz5kw0b94cX3/9Nc0RJgiCqIXUdiN84cIFpyelcmiecERERI0FYE2YMAETJkwweyw9Pd2k7KmnnsJTTz1VxVIRBEEQd4pGL0Ej1d7ArKrICmmTET58+DDatGkDhUKBw4cPW63raOquuoa1biLLyxxa66oyn0qvUjmsdH/pYLk7uhSmAU0FatOFBm4I3c1qYXpP3u0Aq4slvMs0II93R+tO8HsQdo13GXv68m5qMU+Cqpi3ffNWgHH7VL6hzXMlXI5rQndnmZ4H9YhdqfkSL79ayrtN/xYWLnC7yFNBNiwy1Pc5zWV1cRMCwMq4sLm3eHvn87nO/xTzoK/sEi5LsZSHihQJZTmlvAfqtNCGRw5PBdlYxdNP+p/n3ehuHrzLWKcx3PPCPP5MLuZy+U4V8e5yIV4L+Qretvg+lTFeLt7zc8WGbmLfm7zrWH2EP5/6l4WAMm9xyhe/ZkkB70bPyeV6/i0s1HGxxHDP89T8XdUI76D4bopDFCV6efezSiqV7WuZMCWKmQalWfqbsjz0U1kXdN2ZBqVjgBA3CTMjXPccNhnhDh06IDs7GyEhIejQoQMkSTKbp1OSJOh0d77yB0EQBFH3qO3d0VWBTUb47NmzCA4ONm4TtRArHq01b1f8JV8Rrd5yFpgil0KTsmulpotuH83jwViX/+JJT8I8DTLlCR7ISWHxdTHYqF4BX2TAw8W8LqXCdJNbgrdzpdTgDZ0t5D8OL+p5cFeZNs+4rRf0vS7xYLB/CrksCnBv8Kaa6xtaYPBu/dz4/XQVvj9UQrdanobLly14yOeL+L24UMbvbwFMk8vk664Yt8+V8vuqFDzXQg332s8Wc+/W/xq/F+5C6kbN7S+8QkG+HBWX74IQH3amiHuHN6VLxm0meImlGt5rcQm5xm3vPEMPQolO8LiFwLn6Qk+GLc87V3je14SAsXLvNsyT9w6sOtrIuC2+e9dK+XMrhDwQTgwwAyp6whqTbbnHa0uQFlGOjsm9X/KEbyMmqD5//jzi4uLg6io/VavV4rfffrvjZNYEQRBE3USjl+ci19SB3y12B2b17NkTV69eNVm1KD8/Hz179qTuaIIgCMIhaqMn3LFjR5sDsg4ePGh3+3YbYcaYWYFu3rwJb2/TwByiNmD5h5Feb7k7WqMznZ9aTqHLNZOyC3qlSVm+ECjjISxho7j9Dolr0d4q492K54W+XA8X3k3tIgRjiYmNxIxHRcLOLbWh2/Qa8oxl2Thl3C7V8G5SMbFwgZp3sZ5254FUJQW86/eyMCfXz82gm4crvwdiJhydEEMhZuzKV/MJtNeEQKZsBR/2KS6TZ30DgGI1LzvvcdK4rSppbNzOKfU3bvsr+b33EnqxXIS/5fK7Vqrl969Azbtbbwjvw1UX3l1foBK7o/m7Vqbl+lxx4zLqVYb2c4Uhh7NKYX1kIaOXuM6vuNKRTnjeZcI3dbEwl7hcD5Wel2ULMVZl4vOWhDnNCvm7XarPle2r9byuRscbLP9bEv+m5MM9XA5Z17Q4r/gum9frbPQVxoT1tWBMeMCAAcbtsrIyrFixAq1atTLmydi3bx+OHTuGcePGOdS+zUZ44MCBAAzBVyNGjJDlV9bpdDh8+DDi4uIcEoIgCIIgtBWio7W14DfJnDlzjNvPP/88Xn75ZcyfP9+kzsWLFx1q32Yj7O9v+FXNGIOvry88hXU+lUolunfvjtGjRzskBEEQBEHUxu5okY0bN+LAgQMm5cOGDUOXLl2qdgGHNWvWADAsajxlyhTqeiYIgiCcikYPuEjy/dqEp6cn9u7di+bNm8vK9+7dCw8PDwtnWcfuMWHRNSdqD1bHkqxOUVJbPKbSmk5DKqdAccWkTOVSZFJ2UyHkB5b4S+oCw7ifm54Pa7jo+evophbHVhXCtjiGKa6GxPUoE6aYlEqGccliHZ+WVKLheZS1OvO5o0vU143bOcI0k0JXPl3IU8/HND1UBj1dVVwfUW6dsBKSuHKTCvz6JSyPb6v49VUaXm6u7Kb0Dz/PjZdnSwHGbXcNn+blJqwo5SJ8BZTnPhZXPxKn55QK04xKVHz6UZlayOctjAlrtPzcXNU5LrubofyGC0+y4anm49ceQtIXNya+B+afvbjal/gelN9zjUIllPExbi3jObTVjI/tqrXy91hdITZCK4wD68S82bffH3kCD42wbX7qkmXM1LFh5aS7eVy5tnvCkyZNwtixY3Hw4EF07doVALB//36sXr0ab7zxhkNt2mSEO3XqhJ07dyIwMLDSSDFHosMIgiAIQo8KgVm1bCnD6dOno0mTJli2bBk+//xzAEDLli2xZs0aPP300w61aZMR7t+/vzEQS4wUIwiCIAhnUds9YQB4+umnHTa45rDJCItd0NQdTRAEQVQFOsZk0/l0NnS/3+3YPSZ88eJFSJKEhg0bAgB+//13pKWloVWrVhgzZozTBSQIgiDqBhq9fH59bQjMCgwMtDlZx61btyqvVAG7jfCzzz6LMWPGYPjw4cjOzkZiYiLatGmD1NRUZGdnY/bs2XYLQdiItV+FkpW31Up+aL2V07SyPwc5JWrTE1UK00AuhSQk2hCSdUi3l0ASj0uS+etJghzMQi5eJiRC0ArBMrrb+aC1ujKhjG8z2YL0/P6KAVslKn7/VBqegKLQ5apxu1wPUQcxMEtvQW6dkK9aJ5Oby6g3kzRFLCsVYuvUQjBdkYLL56LgwViVySjKJ+ZGtnQP9XoeqCTeQyaUi4Fk5e2UuPAAOVE+V4UQjCW8HyKW3gkRYy5nZuHeM61JXcA0gY34XAxtCIFXsudqej1ZcJVNSTnqXjCWyJ12R//yyy9YsmQJMjMzcfXqVWzZskU2hMoYw5w5c/DJJ58gLy8PDzzwAD766COTaGeRpUuX2ieEndhthI8ePWqMCtuwYQPatm2LvXv34n//+x9efPFFMsIEQRCEQ+j18vx+1pwEcxQXF6N9+/Z47rnnjAmmRN566y28//77+Oyzz9C4cWO88cYb6N27N/766y+LU4ySk5PtE8JO7DbCGo3GGKS1Y8cO/Otf/wIAxMTE4OrVq9ZOJQiCIAiL3Kkn3LdvX/Tt29fsMcYYli5dilmzZqF///4AgHXr1iE0NBRff/01Bg8ebNM1zpw5gzVr1uDMmTNYtmwZQkJC8OOPP6JRo0Zo3bq1fQIDVvobLdC6dWusXLkSv/76K7Zv344+ffoAAK5cuYL69etXcjZBEARBmEejZyYfACgoKJB9VCrLy6xa4uzZs8Yh1HL8/f3RrVs3ZGRk2NTG7t270bZtW+zfvx+bN29GUZFhTvmff/7pcNCy3UZ48eLFWLVqFRISEjBkyBC0b98eAPDtt98au6kJgiAIwl7KPWHxAwCRkZHw9/c3fhYuXGh329nZhkQ7oaGhsvLQ0FDjscqYPn06FixYgO3bt0Op5LELDz/8MPbt22e3TIAD3dEJCQm4ceMGCgoKEBjIMwaNGTMGXl5eVs4kbMVSkIVkbeK6leANJlleRUmy0t2jEwJrKqI3E+ylk0xfJ3mwlelvPovBWBbKLS2MLg++MV3FRsxcBFlgjfl7I9bXC0v26IVAKq2uxEReycLvWkvBQxYzKlUio1gmBmnJ5BPuoWRDgJM5WeX31c57aEHG8nbE4C5RDslMAJ+J3Ha8H5beGVjQ0/TdlutnS+CVscieACxD4xbqV9bevYHB8DLZPmCYlePnx1dkExcQqk6OHDmCtLQ0k/KQkBDcuHHDzBmVY7cRBgAXFxdotVrs2bMHANCiRQtER0c7JABBEARBAIYlKnUV9gHAz89PZoQdISwsDACQk5OD8PBwY3lOTg46dOhgUxsBAQG4evUqGjduLCvPyspCgwYNHJLL7u7o4uJiPPfccwgPD0ePHj3Qo0cPREREYNSoUSgpKam8AYIgCIIwg/52so7yj96JyToaN26MsLAw7Ny501hWUFCA/fv3G9cGrozBgwdj2rRpyM7OhiRJ0Ov12Lt3L6ZMmYKkpCSH5LLbCE+ePBm7d+/Gd999h7y8POTl5eGbb77B7t278eqrrzokBEEQBEFYCsyylaKiIhw6dAiHDh0CYAjGOnToEC5cuABJkjBp0iQsWLAA3377LY4cOYKkpCRERETYnI75P//5D2JiYhAZGYmioiK0atUKPXr0QFxcHGbNmmWntgYkxuz7qREUFIRNmzYhISFBVr5r1y48/fTTuH79uvkT71IKCgpur6XsAtRwMnGrY8JWT7R8ngQXK+dZHq0wN8aouMvHhMU2xOvL7pFsvNI00UhVjgnbL1/1jwnbIqN0OxmH7P7RmHB54xbqV9ZedcMA6JCfn3/H3cQA/559PPA1uEl8vFfDVPg+d4nN10lPT0fPnj1NypOTk7F27Vpjso6PP/4YeXl5ePDBB7FixQrcd999dsl74cIFHD16FEVFRejYsaPVZB+VYfeYcElJiUl0GWAYmKbuaIIgCMJRdIxBASbbt4eEhARY8yslScK8efMwb948h2UEgEaNGqFRo0Z31EY5dhvh2NhYzJkzB+vWrTNmGCktLUVKSorN/eqEY1j7FVwVkdNWf5WbjY42553Y58nYgy0eTrl3Ir934nELOgrlsnsklgueoaO9FDZ5SuZktEk+XizB8rrRVSJfRVkEGdntCG6ZTJX0mADV+M6YnCQ/Vrk36piXa/Hytcb7rXq0TA9JuH9aK2uhVxeTJ0/G/Pnz4e3tjcmTJ1ut++6779rdvt1GeNmyZejduzcaNmxonCP8559/wsPDA9u2bbNbAIIgCIIAAD0YdMKPDn0t+AGSlZUFjcbwg/vgwYMWF3OwdZGHiththNu0aYNTp04hNTUVJ06cAAAMGTIEQ4cOhaenp0NCEARBEISG6eSLsTArPXXVxLJly4zj0enp6U5v36H+HS8vL4wePRrvvPMO3nnnHTz//PNVboBv3bqFoUOHws/PDwEBARg1apQxZZglEhISIEmS7PPiiy9WqZwEQRCEY+jM/KtpOnbsaEzE0aRJE9y8edOp7TuUrOPkyZP44IMPcPz4cQBAy5YtMWHCBMTExDhVOJGhQ4fi6tWr2L59OzQaDUaOHIkxY8aYzV4iMnr0aNkgPGX1IgiCqJ1ooYc4pq61NlZfTQQEBODs2bMICQnBuXPnoLd3aadKsNsI/9///R8GDx6MLl26GAOx9u3bh7Zt2+LLL7/EoEGDnCogABw/fhw//fQT/vjjD3Tp0gUA8MEHH6Bfv354++23ERERYfFcLy8vY6YUW1CpVLLk4AUFBY4LXo1URdCWtTWKzZ5lti1LaSFvX8LOgCbbglRsX5PVUnuycuFcyVJ9B8eD7JXL3HF56lEL97ua5atYx5yMMplk3Y6Wph/xbXveG/sDmxz8kqXAqztGJ+kgSTzoszZ4woMGDUJ8fDzCw8MhSRK6dOkCFxfzUzv/+ecfu9u32whPnToVM2bMMAnxnjNnDqZOnVolRjgjIwMBAQFGAwwAiYmJUCgU2L9/P/79739bPDc1NRWff/45wsLC8MQTT+CNN96w6g0vXLgQKSkpTpWfIAiCqBwtNGDCDywdNFZqVw8ff/wxBg4ciNOnT+Pll1/G6NGj4evr67T27TbCV69eNZuea9iwYViyZIlThKpIdnY2QkJCZGWurq6oV6+e1dUvnn32WURFRSEiIgKHDx/GtGnTcPLkSWzevNniOTNmzJCFoRcUFCAyMvLOlSAIgiCsopW0YMJUNB1Mp0LWBOVL9mZmZmLixIk1a4QTEhLw66+/olmzZrLyPXv24KGHHrKrrenTp2Px4sVW65SPOzvCmDFjjNtt27ZFeHg4evXqhTNnzqBp06Zmz3F3d6+xFToIgiDqMgajW/uMcDlr1qxxept2G+F//etfmDZtGjIzM9G9e3cAhjHhjRs3IiUlBd9++62srjVeffVVjBgxwmqdJk2aICwsDNeuXZOVa7Va3Lp1y67x3m7dugEATp8+bdEIEwRBEDWDwehKFfbvbezOHa1Q2DarSZIk6HTOGVQ/fvw4WrVqhQMHDqBz584AgP/973/o06cPLl26ZDUwS2Tv3r148MEH8eeff6Jdu3Y2nVObckc7SlXknDaP/TPeamtgliUsylsDgU/GS9tyD2tQPsCCjBZlqvw9osCsmqZqckc3CRwAFyGnuI5p8E/u1067Tm3Ebk/Y2eHZttCyZUv06dMHo0ePxsqVK6HRaDBhwgQMHjzYaIAvX76MXr16Yd26dejatSvOnDmDtLQ09OvXD/Xr18fhw4fxyiuvoEePHjYb4HsFR//IJbtPs+NH1+0vYLsvUcNfdBbbuS2XLcbB2V+6NrUni/C2LmNVGAVzbVp+vyp/j5wd7e1M7k6jWjvQMZVsARE9q/nArKrGoXnCNUFqaiomTJiAXr16QaFQYNCgQXj//feNxzUaDU6ePGlcREKpVGLHjh1YunQpiouLERkZiUGDBjm83BRBEARRteigqZDl/d43wnZ3R9c17oXuaEdxuBvbpsar15OpLu+kJjxhe6kJT9gROayfTJ5wzVI13dER/gmyJVH1TIsr+enUHU0QBEEQVY3BExYXcLj3A7PICBMEQRC1Ah3TyrujzSyZeq9BRpggCIKoFej0atna0/pasIpSVWP3nJKHH37YbFrH3NxcPPzww04RiqgdsKr8x/SOfRz8V5vuWU1TW+S7m96f2viu3YswpoFe+DCKjjYlPT0dR44cQVZWFlJTU+Ht7Q0AUKvV2L17t9MFJAiCIOoGOqaVLZLCyBM2z44dO5CdnY3u3bvj3LlzThaJIAiCqIvo9RqTz72OQ0Y4PDwcu3fvRtu2bXH//fcjPT3dyWIRBEEQdQ2dXgOdXi18yAibIN2en+fu7o60tDRMnDgRffr0wYoVK5wuHEEQBFF30DOtyedex+4x4Yq5PWbNmoWWLVsiOTnZaUIRBEEQdQ/G5KsoMVb9aZKrG7uN8NmzZxEcHCwrGzRoEGJiYnDgwAGnCUYQBEHULfRMC4mMsHWioqLMlrdu3RqtW7e+Y4EIgiCIuonBE5aE/Xt/yhcl6yAIgiBqBUyvluUFJyNMEARBENUEgw4yT7gOJD8hI1wJ/JfYvf8yEARB2Ibh+9D5nqq+Oha6qlWQEa6EwsLC21v3foAAQRCEPRQWFt5e6vXOUCqVCAsLQ3Z2tsmxsLAwKJXKO75GbYXWE64EvV6PK1euwNfX1zhH2hEKCgoQGRmJixcv3rXrYt7tOtzt8gOkQ23gbpcfuHMdGGMoLCxEREQEFAqHcj6ZUFZWBrVabVKuVCrh4eHhlGvURsgTrgSFQoGGDRs6rT0/P7+79g+3nLtdh7tdfoB0qA3c7fIDd6aDMzxgEQ8Pj3va2FrCOT9hCIIgCIKwGzLCBEEQBFFDkBGuJtzd3TFnzhy4u7vXtCgOc7frcLfLD5AOtYG7XX7g3tDhXoECswiCIAiihiBPmCAIgiBqCDLCBEEQBFFDkBEmCIIgiBqCjDBBEARB1BBkhKuQN998E3FxcfDy8kJAQIBN54wYMQKSJMk+ffr0qVpBLeCI/IwxzJ49G+Hh4fD09ERiYiJOnTpVtYJa4datWxg6dCj8/PwQEBCAUaNGoaioyOo5CQkJJs/gxRdfrCaJgeXLlyM6OhoeHh7o1q0bfv/9d6v1N27ciJiYGHh4eKBt27bYunVrNUlqGXt0WLt2rcn9rsmkDb/88gueeOIJREREQJIkfP3115Wek56ejk6dOsHd3R3NmjXD2rVrq1xOS9grf3p6usn9lyTJbApJwvmQEa5C1Go1nnrqKYwdO9au8/r06YOrV68aP1988UUVSWgdR+R/66238P7772PlypXYv38/vL290bt3b5SVlVWhpJYZOnQojh07hu3bt+P777/HL7/8gjFjxlR63ujRo2XP4K233qoGaYGvvvoKkydPxpw5c3Dw4EG0b98evXv3xrVr18zW/+233zBkyBCMGjUKWVlZGDBgAAYMGICjR49Wi7zmsFcHwJC5Sbzf58+fr0aJ5RQXF6N9+/ZYvny5TfXPnj2Lxx57DD179sShQ4cwadIkPP/889i2bVsVS2oee+Uv5+TJk7JnEBISUkUSEjIYUeWsWbOG+fv721Q3OTmZ9e/fv0rlsRdb5dfr9SwsLIwtWbLEWJaXl8fc3d3ZF198UYUSmuevv/5iANgff/xhLPvxxx+ZJEns8uXLFs+Lj49nEydOrAYJTenatSsbP368cV+n07GIiAi2cOFCs/Wffvpp9thjj8nKunXrxl544YUqldMa9upgz99HdQOAbdmyxWqdqVOnstatW8vKnnnmGda7d+8qlMw2bJF/165dDADLzc2tFpkIOeQJ10LS09MREhKCFi1aYOzYsbh582ZNi2QTZ8+eRXZ2NhITE41l/v7+6NatGzIyMqpdnoyMDAQEBKBLly7GssTERCgUCuzfv9/quampqQgKCkKbNm0wY8YMlJSUVLW4UKvVyMzMlN0/hUKBxMREi/cvIyNDVh8AevfuXSP3G3BMBwAoKipCVFQUIiMj0b9/fxw7dqw6xHUKte0ZOEqHDh0QHh6ORx55BHv37q1pceoMtIBDLaNPnz4YOHAgGjdujDNnzmDmzJno27cvMjIy4OLiUtPiWaV8DCk0NFRWHhoaWiPjS9nZ2SZdaq6urqhXr55VeZ599llERUUhIiIChw8fxrRp03Dy5Els3ry5SuW9ceMGdDqd2ft34sQJs+dkZ2fXmvsNOKZDixYtsHr1arRr1w75+fl4++23ERcXh2PHjjl18ZSqwtIzKCgoQGlpKTw9PWtIMtsIDw/HypUr0aVLF6hUKvz3v/9FQkIC9u/fj06dOtW0ePc8ZITtZPr06Vi8eLHVOsePH0dMTIxD7Q8ePNi43bZtW7Rr1w5NmzZFeno6evXq5VCbIlUtf3Vgqw6OIo4Zt23bFuHh4ejVqxfOnDmDpk2bOtwuYZ7Y2FjExsYa9+Pi4tCyZUusWrUK8+fPr0HJ6gYtWrRAixYtjPtxcXE4c+YM3nvvPaxfv74GJasbkBG2k1dffRUjRoywWqdJkyZOu16TJk0QFBSE06dPO8UIV6X8YWFhAICcnByEh4cby3NyctChQweH2jSHrTqEhYWZBANptVrcunXLKKstdOvWDQBw+vTpKjXCQUFBcHFxQU5Ojqw8JyfHorxhYWF21a9qHNGhIm5ubujYsSNOnz5dFSI6HUvPwM/Pr9Z7wZbo2rUr9uzZU9Ni1AnICNtJcHAwgoODq+16ly5dws2bN2VG7U6oSvkbN26MsLAw7Ny502h0CwoKsH//frsjxK1hqw6xsbHIy8tDZmYmOnfuDAD4+eefodfrjYbVFg4dOgQATnsGllAqlejcuTN27tyJAQMGAAD0ej127tyJCRMmmD0nNjYWO3fuxKRJk4xl27dvl3mW1YkjOlREp9PhyJEj6NevXxVK6jxiY2NNpoXV5DNwBocOHary9524TU1Hht3LnD9/nmVlZbGUlBTm4+PDsrKyWNb/t3fvMTX/fxzAn6fLOWmny1JiyBE6q6QysrQpyzUzxpiaViIjs4zamkUXtzK5x6ZRDLWGZJMQipqOdZzROEg6kmVuR3Ln9Pr94eez39HBt9/XOR/q9djOdj7v8/qc1+tzVufV593notFQe3u7EKNUKunEiRNERNTe3k5JSUl09epVampqooqKCho5ciQNGzaMPnz48MfXT0SUlZVFzs7OVFpaSjdv3qQZM2bQ4MGD6f379xavn4hoypQpFBgYSCqViqqrq2nYsGEUGRkpvN7S0kJKpZJUKhUREd2/f58yMzOprq6OmpqaqLS0lDw9PWncuHEWqbeoqIhkMhkVFBTQ7du3afHixeTs7ExPnjwhIqLo6GhKSUkR4mtqasjGxoa2bNlCWq2W0tLSyNbWlurr6y1Sryld3YaMjAw6e/YsNTY2klqtpnnz5pGdnR3dunVLlPrb29uFn3UAtHXrVtJoNPTw4UMiIkpJSaHo6Ggh/sGDB2Rvb0/Jycmk1WopNzeXrK2tqby8/K+of9u2bXTy5ElqaGig+vp6SkxMJCsrK6qoqBCl/p6Gm7AZxcTEEIBOj0uXLgkxACg/P5+IiN69e0eTJk0iNzc3srW1pUGDBlF8fLzw5fWn10/09TSlNWvWkLu7O8lkMgoPD6e7d+9avvj/evHiBUVGRpJcLidHR0dasGCB0R8RTU1NRtvU3NxM48aNIxcXF5LJZDR06FBKTk6mtrY2i9W8a9cu8vDwIKlUSkFBQVRbWyu8FhoaSjExMUbxxcXF5OXlRVKplHx9fen06dMWq/VHurINK1asEGLd3d0pIiKCrl+/LkLVX307Zef7x7eaY2JiKDQ0tNM6AQEBJJVKydPT0+h3wtK6Wn92djYNGTKE7OzsyMXFhcLCwujixYviFN8D8a0MGWOMMZHwecKMMcaYSLgJM8YYYyLhJswYY4yJhJswY4wxJhJuwowxxphIuAkzxhhjIuEmzBhjjImEmzBjjDEmEm7CjFlYbGyscF3lH6msrIREIsGrV6/MWktYWBgkEgkkEolwjWxzUigUQj5zbxtjfwO+YhZjFtbW1gYigrOzM4CvjTAgIADbt28XYj59+oSXL1/C3d0dEonEbLWEhYXBy8sLmZmZcHV1hY2Nee/p8uzZM1y5cgWzZ8+GXq8XPgPGeiq+ixJjFubk5PTLGKlUarHbEdrb21ssl5ubG1xcXCySi7G/AU9Hs27r0KFD6N27Nz5+/Gg0PnPmTERHR5tcR6fTQSKRoKioCGPHjoWdnR2GDx+Oqqoqo7iqqioEBQVBJpOhX79+SElJwZcvX4TXjx07Bj8/P/Tq1Qu9e/fGhAkT8PbtWwDG09GxsbGoqqrCjh07hGlanU5ncjr6+PHj8PX1hUwmg0KhQE5OjlFNCoUCGzduRFxcHBwcHODh4YF9+/Z1+XMrKCjotId68uRJoz3y9PR0BAQE4MCBA/Dw8IBcLkdCQgIMBgM2b96Mvn37ok+fPtiwYUOX8zPWk3ATZt3WnDlzYDAYcOrUKWHs6dOnOH36NOLi4n66bnJyMlatWgWNRoPg4GBMnz4dL168AAA8fvwYERERGD16NG7cuIG9e/di//79WL9+PQCgtbUVkZGRiIuLg1arRWVlJWbNmgVT//nZsWMHgoODER8fj9bWVrS2tmLgwIGd4tRqNebOnYt58+ahvr4e6enpWLNmDQoKCozicnJyMGrUKGg0GiQkJGDp0qW4e/duVz+6f6SxsRFnzpxBeXk5CgsLsX//fkybNg0tLS2oqqpCdnY2UlNToVKpzJKfsW5BzFs4MWZuS5cupalTpwrLOTk55OnpSR0dHSbjv93aMCsrSxj7/PkzDRgwgLKzs4mIaPXq1aRUKo3eIzc3l+RyORkMBlKr1QSAdDqdyRwxMTE0Y8YMYTk0NJQSExONYr7djk6v1xMRUVRUFE2cONEoJjk5mXx8fITlQYMG0fz584Xljo4O6tOnD+3du9dkHT/KnZ+fT05OTkZjJSUl9L9fF2lpaWRvb0+vX78WxiZPnkwKhYIMBoMwplQqadOmTT/dNsZ6Mt4TZt1afHw8zp07h8ePHwP4OtUaGxv7y4OdgoODhec2NjYYNWoUtFotAECr1SI4ONjoPUJCQvDmzRu0tLTA398f4eHh8PPzw5w5c5CXlwe9Xv+vtkOr1SIkJMRoLCQkBA0NDTAYDMLYiBEjhOcSiQR9+/bF06dP/1XuH1EoFHBwcBCW3d3d4ePjAysrK6Mxc+VnrDvgJsy6tcDAQPj7++PQoUNQq9W4desWYmNjzZrT2toa58+fx5kzZ+Dj44Ndu3ZBqVSiqanJrHkBwNbW1mhZIpGgo6OjS+9hZWXVaer88+fP/yjX78jPWE/CTZh1e4sWLUJBQQHy8/MxYcIEk/9z/V5tba3w/MuXL1Cr1fD29gYAeHt74+rVq0aNqqamBg4ODhgwYACAr80nJCQEGRkZ0Gg0kEqlKCkpMZlLKpUa7c2a4u3tjZqaGqOxmpoaeHl5wdra+pfb0xVubm5ob28XDiQDYJFziBnribgJs24vKioKLS0tyMvL++UBWd/k5uaipKQEd+7cwbJly6DX64V1ExIS8OjRIyxfvhx37txBaWkp0tLSsHLlSlhZWUGlUmHjxo2oq6tDc3MzTpw4gWfPnglN/HsKhQIqlQo6nQ7Pnz83uee4atUqXLhwAevWrcO9e/dw8OBB7N69G0lJSf//B/MDY8aMgb29PVavXo3GxkYcPXq00wFgjLHfg5sw6/acnJwwe/ZsyOXyX16p6pusrCxkZWXB398f1dXVOHXqFFxdXQEA/fv3R1lZGa5duwZ/f38sWbIECxcuRGpqKgDA0dERly9fRkREBLy8vJCamoqcnBxMnTrVZK6kpCRYW1vDx8cHbm5uaG5u7hQzcuRIFBcXo6ioCMOHD8fatWuRmZlplql1FxcXHD58GGVlZfDz80NhYSHS09N/ex7GGF8xi/UQ4eHh8PX1xc6dO38ap9PpMHjwYGg0GgQEBFimOBGZulqXuVVWVmL8+PF8xSzGwHvCrJvT6/UoKSlBZWUlli1bJnY5f6Q9e/ZALpejvr7e7Ll8fX1/OCPAWE/El61k3VpgYCD0ej2ys7OhVCrFLuePc+TIEbx//x4A4OHhYfZ8ZWVlwpHWjo6OZs/H2J+Op6MZY4wxkfB0NGOMMSYSbsKMMcaYSLgJM8YYYyLhJswYY4yJhJswY4wxJhJuwowxxphIuAkzxhhjIuEmzBhjjInkP4710Xd1ubBEAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "mode_indices = [0, 1, 2, 3]\n", "\n", "f, ax = plt.subplots(4, 1, tight_layout=True, figsize=(5, 8))\n", "\n", "for i, mode_index in enumerate(mode_indices):\n", " abs(mode_data.Ey.isel(mode_index=mode_index)).plot(\n", " x=\"y\", y=\"z\", ax=ax[i], cmap=\"magma\"\n", " )\n", " ax[i].set_title(f\"|Ey(x, y)| of the TE{i} mode\")\n" ] }, { "cell_type": "markdown", "id": "7ade4295", "metadata": {}, "source": [ "Submit the simulation job to the server." ] }, { "cell_type": "code", "execution_count": 18, "id": "9a594a8c", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:01:57.091318Z", "iopub.status.busy": "2023-03-28T00:01:57.091112Z", "iopub.status.idle": "2023-03-28T00:03:15.864942Z", "shell.execute_reply": "2023-03-28T00:03:15.864352Z" }, "tags": [] }, "outputs": [ { "data": { "text/html": [ "
[09:28:38] Created task 'evanescent_coupler_te3' with task_id                                         webapi.py:139\n",
       "           'fdve-83de6566-5817-4e04-a443-ab52292bcff3v1'.                                                          \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:28:38]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'evanescent_coupler_te3'\u001b[0m with task_id \u001b]8;id=924529;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=156631;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-83de6566-5817-4e04-a443-ab52292bcff3v1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "27bb2ac77a464c6a8d2abaf51716c30a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:28:43] status = queued                                                                            webapi.py:269\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:28:43]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=87748;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=296976;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:28:50] status = preprocess                                                                        webapi.py:263\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:28:50]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=223391;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=808857;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
[09:28:57] Maximum FlexCredit cost: 0.099. Use 'web.real_cost(task_id)' to get the billed FlexCredit  webapi.py:286\n",
       "           cost after a simulation run.                                                                            \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:28:57]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.099\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit \u001b]8;id=919086;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=205011;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mcost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           starting up solver                                                                         webapi.py:290\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=25706;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=270711;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           running solver                                                                             webapi.py:300\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=586301;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=801681;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4ccd5d45b804486da268e42f738ac3a3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:29:47] early shutoff detected, exiting.                                                           webapi.py:314\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:29:47]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=23464;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=709500;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#314\u001b\\\u001b[2m314\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           status = postprocess                                                                       webapi.py:331\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=658204;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=217562;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#331\u001b\\\u001b[2m331\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:30:09] status = success                                                                           webapi.py:338\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:30:09]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=407467;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=263075;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#338\u001b\\\u001b[2m338\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "e097b4daf42e4505824fcfab652aaa43",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:30:12] loading SimulationData from data/simulation_data.hdf5                                      webapi.py:510\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:30:12]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/simulation_data.hdf5 \u001b]8;id=921742;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=734685;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#510\u001b\\\u001b[2m510\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "job = web.Job(simulation=sim, task_name=\"evanescent_coupler_te3\", verbose=True)\n", "sim_data = job.run(path=\"data/simulation_data.hdf5\")\n" ] }, { "cell_type": "markdown", "id": "03fb721c", "metadata": {}, "source": [ "#### Postprocessing and Visualization" ] }, { "cell_type": "markdown", "id": "36d98510", "metadata": {}, "source": [ "After the simulation is complete, we can visualize the field intensity distribution, the transmission to the bus waveguide, and the mode composition at the bus waveguide. Since similar postprocessing and visualization will be performed for other directional couplers, we define a function here." ] }, { "cell_type": "code", "execution_count": 19, "id": "3cfe4651", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:03:17.168735Z", "iopub.status.busy": "2023-03-28T00:03:17.168597Z", "iopub.status.idle": "2023-03-28T00:03:17.189408Z", "shell.execute_reply": "2023-03-28T00:03:17.188829Z" }, "tags": [] }, "outputs": [], "source": [ "def postprocess(sim_data, pol):\n", " fig = plt.figure(constrained_layout=True)\n", "\n", " gs = GridSpec(2, 2, figure=fig)\n", " ax1 = fig.add_subplot(gs[0, :])\n", " ax2 = fig.add_subplot(gs[1, 0])\n", " ax3 = fig.add_subplot(gs[1, 1])\n", "\n", " sim_data.plot_field(\n", " field_monitor_name=\"field\", field_name=\"E\", val=\"abs^2\", f=freq0, ax=ax1\n", " )\n", " ax1.set_aspect(\"auto\")\n", "\n", " T_bus = sim_data[\"bus_flux\"].flux\n", "\n", " ax2.plot(ldas, T_bus)\n", " ax2.set_xlim(1.5, 1.6)\n", " ax2.set_ylim(0, 1)\n", " ax2.set_xlabel(\"Wavelength ($\\mu$m)\")\n", " ax2.set_ylabel(\"Transmission to bus waveguide\")\n", "\n", " mode_amp = sim_data[\"bus_mode\"].amps.sel(direction=\"+\")\n", " mode_power = np.abs(mode_amp) ** 2 / T_bus\n", " ax3.plot(ldas, mode_power)\n", " ax3.set_xlim(1.5, 1.6)\n", " ax3.set_xlabel(\"Wavelength ($\\mu$m)\")\n", " ax3.set_ylabel(\"Mode fraction\")\n", " ax3.legend((f\"{pol}0\", f\"{pol}1\", f\"{pol}2\", f\"{pol}3\"))\n" ] }, { "cell_type": "markdown", "id": "9fff099c", "metadata": {}, "source": [ "From the field intensity distribution, we can see an efficient conversion of the TE0 mode at the access waveguide to the TE3 mode at the bus waveguide. The transmission spectrum also confirms a high transmission around 95% at 1550 nm. The mode composition shows a nearly pure TE3 mode at the bus waveguide." ] }, { "cell_type": "code", "execution_count": 20, "id": "0319f06d", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:03:17.191345Z", "iopub.status.busy": "2023-03-28T00:03:17.191206Z", "iopub.status.idle": "2023-03-28T00:03:19.083402Z", "shell.execute_reply": "2023-03-28T00:03:19.082843Z" }, "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAooAAAHrCAYAAABINLzuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADHJ0lEQVR4nOydd3wU1drHf2c22U1PCGmEUAJI71UQRK5oUERBvTZUQERFLBh9VRRBvAp2kYvKbYp6LaBXsaAIUsSCoCBIkSahJ6GmJ1tmzvvH7MzOzM5udsMmm/J8/azsnHPmzDOzm5nfPuc8z2Gccw6CIAiCIAiCMCCE2wCCIAiCIAiifkJCkSAIgiAIgjCFhCJBEARBEARhCglFgiAIgiAIwhQSigRBEARBEIQpJBQJgiAIgiAIU0goEgRBEARBEKaQUCQIgiAIgiBMIaFIEARBEARBmEJCkSCIWmXdunVgjGHdunXhNoUgCIIIEhKKBEGEhNdffx2LFy8Otxk14v3338f8+fPDbQYAQJIkPP/888jOzkZUVBR69uyJDz74IOD9i4qKcMcddyA1NRWxsbEYMWIEtmzZYtr2888/R9++fREVFYXWrVtj9uzZcLlcoToVgiAaAYzWeiYIIhR0794dKSkpXp5DSZLgcDhgtVohCPXzt+kVV1yBHTt24ODBg+E2BTNmzMCzzz6LKVOmYMCAAfjss8+wfPlyfPDBB7jhhhv87itJEoYNG4Zt27bh//7v/5CSkoLXX38dR44cwebNm3Heeeepbb/++muMHj0aF110EW688UZs374dr732Gu644w688cYbtX2aBEE0EEgoEkQIKS8vR2xsbLjNCAu+hGJDoL4IxWPHjiE7Oxt33HEHFi5cCADgnGP48OHIy8vDwYMHYbFYfO6/dOlSXH/99fjoo49w7bXXAgBOnjyJjh074rLLLsP777+vtu3WrRsiIyPx66+/IiIiAgAwc+ZMzJ07F7t27ULnzp1r8UwJgmgo1M+f9wRRDzh27BgmT56MzMxM2Gw2ZGdnY+rUqXA4HACAxYsXgzGG7777DnfffTfS0tKQlZWl7v/666+jW7dusNlsyMzMxLRp01BUVKQ7xr59+3DNNdcgIyMDUVFRyMrKwg033IDi4mK1zapVqzB06FAkJSUhLi4OnTp1wmOPPVat/YHsZ7fbMXv2bHTo0AE2mw2tWrXCww8/DLvd7tXff//7XwwcOBAxMTFo1qwZLrzwQqxcuRIA0LZtW+zcuRPfffcdGGNgjOGiiy4C4HuO4kcffYR+/fohOjoaKSkpuPnmm3Hs2DFdm4kTJyIuLg7Hjh3D2LFjERcXh9TUVDz00EMQRbHaa/DZZ59h9OjR6mfYvn17/O1vf9Pte9FFF2H58uU4dOiQanvbtm199jlx4kS1nfH15JNPVmtTdfY6nU7cfffdahljDFOnTsXRo0exYcMGv/t//PHHSE9Px9VXX62Wpaam4rrrrsNnn32mfq67du3Crl27cMcdd6giEQDuvvtucM7x8ccfn9N5EATReIiovglBND2OHz+OgQMHqvO9OnfujGPHjuHjjz9GRUUFrFar2vbuu+9GamoqZs2ahfLycgDAk08+iTlz5mDkyJGYOnUq9uzZgzfeeAO//PILfvzxR0RGRsLhcCAnJwd2ux333nsvMjIycOzYMXz55ZcoKipCYmIidu7ciSuuuAI9e/bEU089BZvNhv379+PHH3/0a38g+0mShCuvvBI//PAD7rjjDnTp0gXbt2/HK6+8gr1792LZsmVq2zlz5uDJJ5/EkCFD8NRTT8FqtWLjxo1Ys2YNLr30UsyfPx/33nsv4uLi8PjjjwMA0tPTfdq3ePFiTJo0CQMGDMC8efNQWFiIV199FT/++CN+++03JCUlqW1FUUROTg4GDRqEF198Ed9++y1eeukltG/fHlOnTvV7HRYvXoy4uDjk5uYiLi4Oa9aswaxZs1BSUoIXXngBAPD444+juLgYR48exSuvvAIAiIuL89nnnXfeiZEjR+rKVqxYgffeew9paWlq2alTp/zaphAfHw+bzQYA+O233xAbG4suXbro2gwcOFCtHzp0qM++fvvtN/Tt29driH/gwIH45z//ib1796JHjx747bffAAD9+/fXtcvMzERWVpZaTxAEAU4QhBe33norFwSB//LLL151kiRxzjl/6623OAA+dOhQ7nK51PoTJ05wq9XKL730Ui6Kolq+cOFCDoC/+eabnHPOf/vtNw6Af/TRRz7teOWVVzgAfvLkyaDsD2S/d999lwuCwL///ntd+aJFizgA/uOPP3LOOd+3bx8XBIGPGzdOdz6ce64F55x369aNDx8+3Os4a9eu5QD42rVrOeecOxwOnpaWxrt3784rKyvVdl9++SUHwGfNmqWWTZgwgQPgTz31lK7PPn368H79+vm/CJzziooKr7I777yTx8TE8KqqKrVs9OjRvE2bNtX2Z8a+fft4YmIiv+SSS3TfAwABvd566y2dHe3atfM6Rnl5OQfAH330Ub+2xMbG8ttuu82rfPny5RwAX7FiBeec8xdeeIED4IcPH/ZqO2DAAH7++ecHevoEQTRyaOiZIAxIkoRly5ZhzJgxXh4XQB4K1DJlyhTdvLFvv/0WDocD06dP13l2pkyZgoSEBCxfvhwAkJiYCAD45ptvUFFRYWqL4ln77LPPIElSwOcQyH4fffQRunTpgs6dO+PUqVPq6y9/+QsAYO3atQCAZcuWQZIkzJo1y8tTZbwWgfDrr7/ixIkTuPvuuxEVFaWWjx49Gp07d1avj5a77rpLtz1s2DAcOHCg2mNFR0er70tLS3Hq1CkMGzYMFRUV2L17d9C2GykvL8e4cePQrFkzfPDBB7rvwapVqwJ65eTkqPtUVlaq3kUtynWqrKz0a0+g+yv/+mpb3XEIgmg60NAzQRg4efIkSkpK0L1794DaZ2dn67YPHToEAOjUqZOu3Gq1ol27dmp9dnY2cnNz8fLLL+O9997DsGHDcOWVV+Lmm29WReT111+Pf//737j99tvx6KOP4uKLL8bVV1+Na6+91m8EcSD77du3D3/88QdSU1NN+zhx4gQA4M8//4QgCOjatWtA16M6fF0fAOjcuTN++OEHXVlUVJSXjc2aNcPZs2erPdbOnTsxc+ZMrFmzBiUlJbo67TzQmjJlyhT8+eef+Omnn9C8eXNdnXF4OhCio6NN54dWVVWp9aHYX/nXV9vqjkMQRNOBhCJBnCPn8lB96aWXMHHiRHz22WdYuXIl7rvvPsybNw8///wzsrKyEB0djfXr12Pt2rVYvnw5VqxYgSVLluAvf/kLVq5c6TMCNpD9JElCjx498PLLL5v20apVqxqfVyjxF+Xrj6KiIgwfPhwJCQl46qmn0L59e0RFRWHLli145JFHgvLQmvHqq6/igw8+wH//+1/07t3bq76goCCgfhITE9XvUIsWLbB27VpwznXe2vz8fADyHEJ/tGjRQm2rxbh/ixYt1HLj55yfn6/OiSQIgqChZ4IwkJqaioSEBOzYsaNG+7dp0wYAsGfPHl25w+FAXl6eWq/Qo0cPzJw5E+vXr8f333+PY8eOYdGiRWq9IAi4+OKL8fLLL2PXrl145plnsGbNGnVo2BfV7de+fXucOXMGF198MUaOHOn1Ujx+7du3hyRJ2LVrl9/jBToM7ev6KGXG61NT1q1bh9OnT2Px4sW4//77ccUVV2DkyJFo1qyZV9tgh9C///57PPTQQ5g+fTrGjx9v2qZFixYBvZYsWaLu07t3b1RUVOCPP/7Q9bVx40a13h+9e/fGli1bvETwxo0bERMTg44dO+r6+fXXX3Xtjh8/jqNHj1Z7HIIgmg4kFAnCgCAIGDt2LL744guvBykg57Xzx8iRI2G1WrFgwQJd2//85z8oLi7G6NGjAQAlJSVeq2D06NEDgiCoQ4Jnzpzx6l95iJsNGyoEst91112HY8eO4V//+pdX28rKSjWCe+zYsRAEAU899ZSXANGeX2xsrFf6HzP69++PtLQ0LFq0SHcOX3/9Nf744w/1+pwriidSa6PD4cDrr7/u1TY2Njbgoej8/Hxcd911GDp0qBo5bUZN5iheddVViIyM1NnIOceiRYvQsmVLDBkyRGfH7t274XQ61bJrr70WhYWF+OSTT9SyU6dO4aOPPsKYMWPUOYndunVD586d8c9//lOXKuiNN94AY0zNwUgQBEFDzwRhwty5c7Fy5UoMHz5cTR2Tn5+Pjz76CD/88IMufYuR1NRUzJgxA3PmzMGoUaNw5ZVXYs+ePXj99dcxYMAA3HzzzQCANWvW4J577sFf//pXdOzYES6XC++++y4sFguuueYaAMBTTz2F9evXY/To0WjTpg1OnDiB119/HVlZWX7TpASy3y233IKlS5firrvuwtq1a3HBBRdAFEXs3r0bS5cuxTfffIP+/fujQ4cOePzxx/G3v/0Nw4YNw9VXXw2bzYZffvkFmZmZmDdvHgCgX79+eOONN/D000+jQ4cOSEtLUwNjtERGRuK5557DpEmTMHz4cNx4441qepy2bdvigQceqOnHpmPIkCFo1qwZJkyYgPvuuw+MMbz77rumQr9fv35YsmQJcnNzMWDAAMTFxWHMmDGm/d533304efIkHn74YXz44Ye6up49e6Jnz54AajZHMSsrC9OnT8cLL7wAp9OJAQMGYNmyZfj+++/x3nvv6YbhZ8yYgbfffht5eXlq3sdrr70W559/PiZNmoRdu3apK7OIoog5c+bojvXCCy/gyiuvxKWXXoobbrgBO3bswMKFC3H77bd7pechCKIJE8aIa4Ko1xw6dIjfeuutPDU1ldtsNt6uXTs+bdo0brfbOeee9DhmKXQ4l9PhdO7cmUdGRvL09HQ+depUfvbsWbX+wIED/LbbbuPt27fnUVFRPDk5mY8YMYJ/++23apvVq1fzq666imdmZnKr1cozMzP5jTfeyPfu3evX9kD3czgc/LnnnuPdunXjNpuNN2vWjPfr14/PmTOHFxcX69q++eabvE+fPmq74cOH81WrVqn1BQUFfPTo0Tw+Pp4DUFPlGNPjKCxZskTtLzk5mY8fP54fPXpU12bChAk8NjbW6/xmz57NA7l9/fjjj/z888/n0dHRPDMzkz/88MP8m2++8bKnrKyM33TTTTwpKYkD8JsqZ/jw4T5T3cyePbtam6pDFEU+d+5c3qZNG261Wnm3bt34f//7X692SuqgvLw8XfmZM2f45MmTefPmzXlMTAwfPny4z+/op59+ynv37s1tNhvPysriM2fO5A6H45zPgSCIxgMt4UcQBEEQBEGYQnMUCYIgCIIgCFNIKBIEQRAEQRCmkFAkCIIgCIIgTCGhSBAEQRAEQZhCQpEgCIIgCIIwhYQiQRAEQRAEYUqTS7gtSRKOHz+O+Pj4oJftIgiCIAhCXjGotLQUmZmZEIT67XNavXo1Vq56E8/O+y8992tAk8ujePToUbRq1SrcZhAEQRBEg+fIkSPIysoKtxk+cTgc6NatHfLy8vHRRx9j3Lhx4TapwdHkPIrx8fHudwIA+mVBEARBEMHDAUiaZ2r95I1FDyEyMgKvzL8HjzxyH6644gpERkaG26wGRZPzKJaUlCAxMRGABSQUCYIgCKImcAAiiouLkZCQEG5jTCkuLkaHDm3w7/88glGjBqJ3r9sw7Z5xuGfa/HCb1qCo3xMLCIIgCIIgasC8Z+9Gt+7ZGD36fEREWDBv3h14as7bKCkpCbdpDQoSigRBEARBNCqOHDmCBa/+D889d5cawHLFmCHo1Lk1nn1uWpita1jQ0DNBEARBEEFSv4eeJ0wYBYfDif++94SufNOmPzDy4lzs3bsfLVu2DJN1DQsSigRBEARBBEn9FYrbtm3D+ecPxI6db6Nt2wyv+ptufAqxsVF4882vwmBdw6NBDz0/++yzYIxh+vTp4TaFIAiCIIh6wIIFj2HSpMtMRSIA/O3pyVi8eAXOnj1bx5Y1TBpsepxffvkF//jHP9CzZ89wm0IQBEEQRD2hqioJHTrEAJJkWt86KxWcczgcjjq2rGHSID2KZWVlGD9+PP71r3+hWbNmftva7XaUlJToXgRBEARBNGJECXC5fL+IgGmQQnHatGkYPXo0Ro4cWW3befPmITExUX3RqiwEQRAE0QTg3PeLCJgGJxQ//PBDbNmyBfPmzQuo/YwZM1BcXKy+jhw5UssWEgRBEAQRViTyKIaKBjVH8ciRI7j//vuxatUqREVFBbSPzWaDzWarZcsIgiAIgqg3KELRDBKKQdGghOLmzZtx4sQJ9O3bVy0TRRHr16/HwoULYbfbYbFYwmghQRAEQRBhh0s+g1l8lhOmNCihePHFF2P79u26skmTJqFz58545JFHSCQSBEEQBAEmSWCiuefQVzlhToMSivHx8ejevbuuLDY2Fs2bN/cqJwiCIAiiiSJxwCWa1/kqJ0xpUEKRIAiCIAiiWjinoecQ0eCF4rp168JtAkEQBEEQ9QlJAnwNMdPQc1A0eKFIEARBEAShg3N5+NkMX+WEKSQUCYIgCIJoXFB6nJBBQpEgCIIgiMaFJIGJ5kErTKQ5isFAQpEgCIIgiMYFBbOEDBKKBEEQBEE0Lig9TsggoUgQBEEQRONCEv3MUSShGAwkFAmCIAiCaFxwyMPPPiuJQCGhSBAEQRBE40KSaOg5RJBQJAiCIAiiceE3PQ4JxWAgoUgQBEEQROOCgxJuhwgSigRBEARBNC64BPjIo+iznDCFhCJBEARBEI0LifIohgoSigRBEARBNC4omCVkkFAkCIIgCKJxwTkNPYcIEooEQRAEQTQuOKdglhBBQpEgCIIgiMYFLeEXMkgoBggDAxjzrvCZ+d0cThnhCYIgCKJ2ETng8hG04qucMIWEYqAwCxiLdG9ov2Ty++oFoNyOQSM2DSKTRCRBEARBhAAuUdRziCChGCARlgTYIpPAIYFztzjkEjgkSJILWvGo1Kvb6j6ipl4CGOQvM2SRyGD48pp4K0lMEgRBEEQ1cA6IPgShr3LCFBKKBEEQBEE0LmhllpBBQjFAmsd2wnnoDxdEOJkTInPBBRccrBJ2XgoRnjUlRe6ExJ26bZHbIUkuiNwFUbKDcwkSd8leSe6CxF0ARI030u11hNaLKMlD1zRkTRAEQZwDumlQQdBgnjeURzFkkFAMkMGW4bgxm6FSZKgUBVSJDE4OnLEznHVwVLk4BAaInMMhcjgleVviQLnoRBGvgMNih4M5UMlKYOdlcEoVqoh0ilUGAelSh7ZlMekEIMlD1Uz5Y3XPezT83TaYP2SCIAjinAhK8JkFZAZ7PN5AnjEUzBIymqxQTEhIAGNCwO0/frYMfPLVgPoHwtX37MhhsIKTgMCAKgdwqgiwO+VthwvOXWewd1MznK5MRJVowaGKNsivEnDGzmEXOc7aRZxwVqKCVcLOqlChCEleAZdkh0uqhFOshCg5IEoOWURCFo+cSwCTBaTyx6vOdSTPI0EQRIPFpwjUCT5B39bvc00AYwwREZEQhEhYLBYIggCLRS6v7pnIuQQuVUFyP3tKSs4GfjJ1DQe4jyFmX+WEOU1WKGZnt4PFYgm4vbMsDtY9R4HICPDYaLAzRcCZErkyozkQnw4cKQCqJCA1Cygth3T0LMSzEiLHnY8uT/eCZziZA5WVEH7ZArhEiJuO4I/ViSioiEeFmIRDFa1RUMlwqkpCuUvCaYcDZyNKUSycRiUvRpVUAlGywyGWQ5TsECUHJMmhF4/uY9GwNUEQRP3GSxD6EoI6IScgIiIKNpsNNpsVVqsAqzVCI/60/zJ1+1yRR7hEiKKIbds2n3N/tYa/YBaKeg6KJisUg2X/rmR0vv88dZunZ3g36tzZq8gC9wCxKIIVl4CVlgKiCygpBSoskA6fheWvI9D10Wx01Q4nHzsK9vM28OJKHP/CgR2FKcgrT8WfZbKALHK4cEIoRalQjHKcRaV0Fg6pTB3ClrgLkuTQzIN0D10bxSMNWxMEQdQJph5CxmAuBgUwFomIiAjYbDZYrQJsNvl9VFQUbDar29nhX/yxEAw36+AN5Ckh+Rl6pqjnoCChGCBbzsbBWwYGgcUCntwMPLmZV5UEAA4nWFkZWEkxUFEBlJYC0Ulgrki0+HQUWrgFpPDLZiDvOOwbT+CXX1rgaEVr7C5tj+MVEk5UOnFaKEeJUIxKVoJy6RQcYjmcUiVcYiVcYpUhcEZO60PCkSAIIrT49hIaRaEsCCMjBcTE2BATHQVbVJRbDEZBdgIKhq7MxF/gI2T++/EN5xzQBG7WayR/S/jVrSkNnQYnFOfNm4dPPvkEu3fvRnR0NIYMGYLnnnsOnTp1qtXjumpbL1kj9UJSFMFKS4CycggrNgExNki9OkMaMAQYICLyOglDv10DfvgUDn8qYvvJ5sirsCKvzIpTlYkocjpxAhkojTiLMpxGlVgMu1gKl3uuoyIYOXcC3OWe4yjIuR01cxyVmx0JRoIgiOrRCUQf4tBisSA2thliY2MQE2NFbGwUIiK0j+NzF4Yh9yQ2MLjEwX14FDl5FIOiwQnF7777DtOmTcOAAQPgcrnw2GOP4dJLL8WuXbsQGxtba8dtG+OsvlEosVjAk5oBSc3As7LUYnbihPxvcQkgJIG1jEarL4ahFeSE3sL6H4CDp1D+01n8+HsrHKxIxb5ShuPlIo47ynDGKgtHOy9DlXgWDlc5XFIVJMkFiTt8zHGk+Y0EQRBm+BKGiihkzIK4uGaIiYlCTEyE7DG02XRDzvKuWmHnWwTWzAvYBKGh55DR4ITiihUrdNuLFy9GWloaNm/ejAsvvLDWjts/u7DW+g4Gnpbm+fe8DnJhWRmYew4kPwmw+BREL7wWIyMYABHCxl/Af92P3/4Xi70lWdhVko1Tdo7j5Q4UWIpQLJxGuXQKlWIRHGI5XGKlbo6jz2FqEo8EQTQhzIeTBd0wss0Wi/j4aMTE2BAbG4vo6Ch348BEoVKnCDzjtoJvAVizHIGBCsqGc4/npqubyVUN5RzqBw1OKBopLi4GACQnJ5vW2+122O12dbukRI5UrqqqCirqOSrdCf7WZ7C0aQ60TAPOFANlVUBcFHjbLEDiYEXFQHQUpJQUMC4BdjsQEQmemAAEcaygiYuTk/UkJgKtW3n+jEtKIZw5DWlPMYTh/dF7Wmf0hghWUAC2bScqPjuEH7a2woHyVOwuYThe7kK+qxRnbadQiRKUS6fhFMvgFCvdXkeHOlztM7Ka5jgSBNFI8PYW6oeQGYuAzRaDuDgb4uJiEB8fh8jISPcO7rbVeAp9CUEFfbmo0zj+xV31XjNJkiCKIiSJg0uBCUwOEZxziGI9T1otAdzHnDEu0nMpGBq0UJQkCdOnT8cFF1yA7t27m7aZN28e5syZ41W+Z89uIIhEpR/9ZyxufEYCSguA7UeB5AQgPRlSp/aALQoAA2/ZTO2TgwGIdu/NIezfC+nH3WBx0WDt08EzM9zJswXw5s1rR0gmxENKiAfatpVvGWVlYHY7+KqdQISIqNfvwEj3r09hzXq4fjqMTavSsL+0PY5UCsgr5civrMLJiGIUC6dQJp2AQyyHQyyHxJ1wiVXkdSQIolEQiLeQsUhERUUiLi4acXGxiI+Pc88tNBOFAGAJyEPoea8IQYv7PQdjzEQQekSgJEmw2x2w251wOiW4XKJGACr/uiCKIkTRpW5LNUwR43EU1PP7uN9glnpuez2jQQvFadOmYceOHfjhhx98tpkxYwZyc3PV7ZKSErRq1SroY31+FEieI8LFLeA8AjERlYiNOIhmUXvQPLkMCdkiItrFgyVGy6IvxgpER8l5F9NSIHVoD3TIdKfpFsBOnwG+/hmQGIR2LcA7nweIoiwcU1LlZN2hJi4OPC4ObPSFAJcg7DkCHMwH79ke0l9GQviLiCFDv8P52w/j5HoJG49kYHdJNPLKolBQmYx8pKE48jTKLafg4JVwimXuXI4OnbcR3B0Vx5ksCpnmhqQJkFGL6vsNhyCIRkt1cwxjYuIRF5eAuLgoxClBJz7nFwb/g18rEj1lLl29KDrdYtDufjlQVeWAwyHB5XK52ykp0LSd67dDcq9tIMO2nDyKIaPBCsV77rkHX375JdavX48sTbCHETkZqe2cj/dt1VfYv6cfJLfosfAIRMACG7fCytIRI0QgNsKCSIHBwhgiBcDCRFiYiKiIY2gZfQwZUS7ER4hoGVuO7DZnEHd+HFhyLJAWBZ6ieB8FAFVg+YVgv+2GdMYBYVgvSM2S3cIz0qeNgaJEVvPmzYFOHQEA7ORJwBIBVNggdOuE1HuH4AqIuAIuCJ+tgH39MXz/cxb2l6VibylDkZ0jv6oKJyJPoxgnUcVL1OAYURWNrmqHqgF4eR1JOBIEUVv4FIZMFnkxMUmIj49ThaFFjUaufihZW+fbYyh7C/XlEgABDocdFRUVqKyoQJXdBYdDgt1uhyiKeiHoFoDGe2ldiLgGc3+WOAnFENHghCLnHPfeey8+/fRTrFu3DtnZ2XVy3KKKA9htLXLbIIExAcx9c2FMgIVFwOKyQWCRECC46+WbiIVFIrIoGjFIhI1HIYbHIOa3lkhabkV8pIBmtgK0ic1HiygXEiNdaJtYjKzupbAOaQmhSxqkNs0h36QksA+WgcXFAq0zwNu2BkTJNDdjsPDUVPnfy0fIBXY74HRBOHAQ3BED6xM34i9JCfgLRAg/bgDyT+H4+8XYdCwde0uzcLAcyK9wIN9ShFJ2FlUoQxUvhl0sUZOA69PyyFHa3J2aR7t+te5G7ufG12BuWARBhIXqvIWAgNjYRHWOYVxsTI2EoSL4jPMJ5TIY6hwAAJfLhYqKSpSXV6KiwoGKiko4nZXQisFAhSDdC03wrF/hDQU9B0WDE4rTpk3D+++/j88++wzx8fEoKCgAACQmJiI6OrqavWuOJFWg0u6dIsezNqZFFY/6cs+2wCIgCBEQWKQsLEUbIh3RiKyMQVRxAmJ4Amw8CnE8DvGbktHsv5FoHlWGtrHfoVWME/1anEDLq2xAagSkXtmQb1oWCL9vBU6XAlFR4K1bArHRcmqdc8FmA2w2SD27Az3l+Z+suBiw28GP2AFEIeOTsbgSIgAO4ZvVqFpxCD9sysLRyhQcrxRwpJzjRKULJ4QylCgryPCz6tKD8jrWcmoefSJwxfsI9V/9jdDcExkKgrnh+lyHtYb9EQRRc/wluPYEn9gQGxvlFoVRiIuLg6BZ3cRsjqG+y+qFoXe5BEkUUVFZhfLySlRWOlFeXgG7vdTd2JOGTNOB1/nRvSQ4OPftOSSPYnA0OKH4xhtvAAAuuugiXflbb72FiRMn1t6BuQhu8jPE8/dsWJjdiG5ZJuWmFOn2SioCUn5FCDYIUgQixBhYq6IRXdIMcTwJKfuSkfqzDc1tAtKi16NTvAvnxZei+yVFsJyXAumaKyDf2AQAIoTVPwFOEbxvV/Bmzc552JonJspvbhgt/2u3Ay4G4ZctkPKdsL5yJ/7iFo4AIHy2Aq5t+diyNhVHylviz7K2yCvjOF0lolR04jSKUSqcRQU/C7tUpkZYq8sOQlJFpHLtPcsRAp61s/3dRIP76RiI+Atnfz5pIPOGQgU9NAm/3kIATLBCECIRHS0Hn8THxSI2Ls693nHNIpLN5xMafsRyjiq7A+XlVe5XKSorywLyENL3OnRw0TNd3qyOCJwGJxTDlTyUg3ulftEjAoxp/swN62+q30wR4O6bD3NBEY4SV0SjACeLcHsgi2ERbKiwnEaxEIOzQhLynSmItycirjQae4ujkBHTDB2XJCIzyol+S95B2nXNgPZZkPr0hnRxHwAWsPe/gpCWDGnwQDCXyyP4zhWbDbAB0kXDwAoLwP44CBScASIFSEMHQLrqSghXiRiYsxED9x1B0coibNrfEkcrrcivisbR8iicrGqOk2I5SoQSlFuKUCGdhYvbIXEnJO5Uh621whGwgnNJ9kAy2QPJfAlC7l+oNZobs8/TbABjLDX4m65NAd5ovhONEHNxCHWaT3RMPOLi4tz5C62IjrIZ2hoDUPx7DPXo1YV2fmFlZRXKyspQWlqB8vIKuFzcM6fQ6DEkcVg3hHDoOZAV4aqqqvDggw/iww8/hN1uR05ODl5//XWkp6erbQ4fPoypU6di7dq1iIuLw4QJEzBv3jzdqjzr1q1Dbm4udu7ciVatWmHmzJm16wQLgAYnFMNJtX/QSvoDyImuffejoNyUAMDuuQl6eR8tEFgEigUrBBYBi2BFhGBDpBSLaEczxBY1QyxPRPO9acj40YaUqBK0iF6PjnEODGqTj9Sr4iEN6AjEcnBEQvjqa0BkQLeO4ImJ4M2SzznKmqdngKdnAF3cBRIHO1sEWASgSACPbI6Ed250p+NxryLj9jhuXZuC45UZOFLRCn+WyYEyLomj1OXCGaECZUIZnHDAzipQxUvglCogcidEbodTrILkDpZRxKTn45DUYWzOfd8ZzDzFtYk/W2pOaH4iB29bCM6FwSs6MxBq/oD1f6ygRWgIf7ySaPBQ3VJ4tqhYxMXFqesjx8TEyEJP5yU0eg6rF4beqWqMQSdAZWUVSktL3cLQDlF0qPOtdV5DEoXhQwqdRzGQFeEeeOABLF++HB999BESExNxzz334Oqrr8aPP/4IABBFEaNHj0ZGRgZ++ukn5Ofn49Zbb0VkZCTmzp0LAMjLy8Po0aNx11134b333sPq1atx++23o0WLFsjJyanxpThXGG9i6/uUlJQgMTER8g2jfqyF6XtujYIxl5dHPDK3cLQIVkRaohFpiYNNiIONxSGeJyONN0dGlA1ZsRZ0S3CiV/MidB7rAMtIhDTuMsg3UguEFd8D8XFymp6IiNB5HY2UlYFVVoJt3Q3pRBGEgR0gndcOcAtI4betwM48QOJw7i/Crh+bI68sFlWigNMOCw6WM5y1c1SJEspdIorESpSxcjiYAxwSRDghMQkSRLi4HSKcHg+lOnztfZeoLbFoFF7ch6ALRKD5ayP5sd+vSPZxxzSfZiH53fa1XyC2mJdXb4O/4/o+75p+Bn7qfdpV3e01iO9dDW/V9V2c+JtbqNRbbTGIiYlBTLTVvT5yjGfBBBNvoVys9RiKUHIaBustBICK8nKUllWivNyOsrJyuFxV8PIWNjlRyAGIKC4uRkJCQriN0TF+/Hh0zvsDD/btZlrvFCUkLXofBQUFOo9foJw8eRJpaWn47rvvcOGFF6K4uBipqal4//33ce211wIAdu/ejS5dumDDhg04//zz8fXXX+OKK67A8ePH1WMuWrQIjzzyCE6ePAmr1YpHHnkEy5cvx44dO9Rj3XDDDSgqKvJala4uIY9iPcDrhqLzTAKACKXEUy3ISb2ZAJcIMBaBSo14FARZQOYJ0bDyBETZE5BwJg0pB1LRYlszJFgFdJq1Hl3jqzCo4zEkXp4CadT5UIXjwf3AgQKgZTp4UrzsLQwF7lyO/BI5yloCgJJSsMpysFNngfIIIDUT/HQpIi/MRI+nhqIHlOSuXBWS3O6Cc38J9v7aHMfKk1HmssApMTg5g0NisEsMlSJDqZOhxMlR6eJwSoDIuS7XqnJvl8A1730j+KnT7qt9GElc7t94PDMbdH35SBnkCfPx9oJIunba/SWf9aqAZpJ5ubIvk9QybZ2kna+laes5jkk915cpAtp4TEXIespFnaAzin/tXFalvW6b6+3X13nb6d1G8mpjVgf4bu/d1ihSjN9A97ZyOzAV6L7n6HoJsWoEZ6gFju952x6BJzBBTWVmtVnd7+V/rVYrBCaY7ucpMnoMRei9h/J7/3MM3Z+ZJKGiokIjDEsgig6/3sLGLwobIAF4FO12u7pam0IgKfWMK8Jt3rwZTqcTI0eOVNt07twZrVu3VoXihg0b0KNHD50wzcnJwdSpU7Fz50706dMHGzZs0PWhtJk+fXogZ1xrkFCsx/gXkEbx6IRWPMr3QQFVLBICKwRjEThlicJhSzSsPBaRzmjEVqYg+XgG0vZmIe1bK9rMWo8+SQ50TzmNVkMqYemTBalTX8g3WReE738BXBy8czZgtcp5GENBQjx4grcY5QBQWQlWUSn/e+YsUGgHYpIBVMJ6aWt0nTcEXd0iEj5u1uzQIbB9ecCZUqDKCe5eKJ5FCPJ7p+jOuSV5svn7ytzva4he4gDn8jPcvb/nPeR8Xlz+VwnqVv/lnhsaV54/EnO/l48nueT3XGJye8N7SZJfnDNImjqJe8pE93vZXAZRaQ8LOAdcPBKcAyIX3Kcg7yNq9he5PBtU4tDUARwMLneZcuk4PNsS5POSwKAEHMp9wH1sQ3t1m0PkgChBc1ylL/khL3LAJcl/L3I919W7ONeUcUicg4PDBQ7OZZkqSwBJfS9BAmeS5z0kVSh7SkW1XIQTkjvgjUOUW7m92Iq4lSCBa4Li5KkSojpFQjJMkVDaaoWocdt9JXX1nv3lKR76bXgS4OtErHZCjEGIBuPJNBsNYQyCIMBiscBiscBmi1QfxvIrClarVd+Nn2FnT7H/CGWPWPQTeAJZGJZXVKK8vAqlpZUoKyuS50L7mVtIwrD+wyXA16qEyqI0CxYswEsvvaSrmz17Np588kmf/ZqtCFdQUACr1YqkpCRd2/T0dDUzi5n3Utmurk1JSQkqKytrNbOLP0goNkB0NyndSid68ShXOyFBvvG6RDlIpoJFQmAROCvkoUCIwj5LNGxSAqKrmuHzky2QvC8JiZtSkRYdga5Ja9EtoRL9uh5D3MVpkK67CkpaHnbsKNiOA0DLFPC0FPC0tNCfbHQ0uPuPg2dlAT211wFy5LXdAVZVCVZZBVRUAJVVgMMJVNkBlyiveMOjgHgrYHMClQ7wCgd4pQipzAnusvjWmcZnkfbSK6IP8DgYNM9YrQAE5F+xXPR0KIkMkuhZ8pFzQJI0D0MBEEVZAEKQ24gQPM8ri9xelAT1GamIOvUYHHBp+nRxQRaUYGq9UxLUE3VxWcjJIoup4k0rAF0SU+uVPhQBydwvbXsBstDjXK4ToOhqpr4XuOxBVeJROQCnBFi4+1HvFoiixNWblsvtIY4AYAVkQagR+KJbIFrdH5rIPeJQvuYcIkSNB5XDxVyQIEGAIEtB5oJLIzQkOCEyz7YsEJ0AIt3bLrdAVI4huqP4NX1wUefpVKSous2VebxQy3QeWM3cWyW/Kuc8AJHI3Z+OouTNhaJypl4oP1QFAQyAxWJRBaDu3wj9tregA3TeQB8BKtULQ0AvBM0EofIH6BF7nHOUV1ShrMyO0tIylJWdAZdEn6IQIGHYIHH/4DbFXX7fffdh1qxZuqrqvImBrAjX2CCh2AjQewMMuQWZMgQnANwJcAbOJHDmhMRdkCQHXFIVHGI57JYSVFrO4ozQDFFSHI6WJSO/Igl/FMdg89nz0HGbAwM/fluOrG6VDmnQAPCW/cGO5QPf/gShR3tI2dlgLue553EMFHe+R54Q730rF0XA5QKcTjm4RnIBThdgt0NwOAGnE0KVXW4jQf6ZafSeGB9OnHvaiJJ7H3edxN0/VdWxZLciklQXmezNVLyWch/qQ83l9koqLjflvaIJOJeD5t3uMkWYclFjtqjxSnK3V1L1TrrN1XklFbNl7yLngEuUPdMcchtRYnBxwW02cwtDQb4Pq95GjbCE3Jfo9jQqHkLRLQiUtqLba8g5k2eouj2OcJ+yS/Lod1Hpw12m9S6q7RVPJOfqceRjcLenlKv1nj48nkbOORS54PE0Sm5vo/s985QAgMhESHB5huSZCBHKkmqiW4y610DnHm8kuNKL+4gab6AkudT+VS+i6jXkqsDTlhnX3uXql0YrmsxWA9F8rxGgYKwR3pM2qp+b7RtlDWTvc9KiXE8J5WVlKC0rR3m5HeXlVeDulaPIa9h44ZLnh7gRyS0UbTZbUPMrfa0Il5GRAYfDgaKiIp1XsbCwEBkZGWqbTZs26forLCxU65R/lTJtm4SEhLB5EwESio0O38PVyoMA8ETz2eUHsztIpopFwiJY5TmO7iCZfREJsJUmIKa8GRLzU5CyLw0tf4pCkrUSnRK+Q8f4SgwZfhyRg1pC6pHtPlIUWFEh2M/bgdhY8I7y6jkhm+cYKBaL/HL/QtRemfr8CGCALHJFCYy7xajTJQtdwCNQ3Wu8QuJgLpfbc+pWgxKX69VtZYjdrRhFSfa2utx5L10ccIkaISsBTgncKe8rr5sqAU7F3QhILi7/9nA7ciQXILkEz7bEIIluD6bkHsoWLRAlAKrAFOASZQ+nBAaXxCBKgvr5uCRBLoPHu+mUPCKUc8AhuYfbIcsGWdiql8bjJeWq1taJTJcqKN0CkSv7KWJNfi9x7hlC5xwilyAqc0M5h8vtnVREpYvJgk8Zwna5A664O8+Wi9vdrd37cVlwcsEtcLgsQmUjtOmh3EXgsrfSICKNApIx5W/fAvXDUxHl/ZSEC16CyRIywRRI0J6MuTg1ikHToDRJQmVlJcrLy1Fe4UBlpRNVVVXg3G7Yh4RhY4dL8j3JDCnI3z/VrQjXr18/REZGYvXq1bjmmmsAAHv27MHhw4cxePBgAMDgwYPxzDPP4MSJE0hzj76tWrUKCQkJ6Nq1q9rmq6++0vW9atUqtY9wQUKxiWA+XO09z5FLlbro6irnGfeKMlbkC1ZYLbGwVSQgsioGcSXNkSSlIGN3G6S/G4nsR9ejU7wDHZOK0a5PEawDM8H7twdPiYc8ROSEsPYn8BInWJs08FYtwePiVCFHaFBErkK0f3Eb0CNOFD13SEmSh+wVsSnKnlZ1G5Dr7Q7Pw7TKIXtklT6cImB3yipLYOAuEbzC6XnOcw7JLsriEgAkQLJzSA6omkCyM4gO5nHSuixwOgVwzsAYhyha4HBZ1OF0l8hglyyqR4CDoUoUZI+n+zrYRcE951Fu45RkcamY5ZKYKg6ZbBbs8jRVMMjeTZEDDpFBYIpoBFySRziK4HCJgqdPzuGULKqnS+ISHG4PItweSyezQoQIxhk4OJwsUvU+AoBLkFM+AXJeQJE54OLycm9gsnBkFu1cBkmeZwr575kzDpE7AC6o0b2y54yrfXIueuYoKh2rNsjDuFrhCEie/LHMfCUkrt5FmOm251DubWMfnLvrjE9v38PfCpVVlagor0BllQsVFU5UVJRAkpzq9aFUNU0XZbTCtK6a/LpGqlsRLjExEZMnT0Zubi6Sk5ORkJCAe++9F4MHD8b5558PALj00kvRtWtX3HLLLXj++edRUFCAmTNnYtq0aepw91133YWFCxfi4Ycfxm233YY1a9Zg6dKlWL58ec0vRAggodhECUw4CjDzOiqR1acEKyIs0dgrxcJaFovYihTEFyajudQM8ZuT0Py/EciI3o2eSdvRMroSPbsUIPaiVGBYX0gtW0NZRUZYux5SYQWE9AQ5UMZikUVNTEztpelpijBBPwIoMM12BMCcchtVEDBAEDzCUHDXCe6dBFkgqlPfwNzBPoowZHJXikAQOJRJiKoziXEwgamagDGuesC07z3bzG264slzn4Ya9c3c21Dn/SmCRT1Vt4nMfQmUPlS9wg2XR1PGDNvahToFMNMpUUyzg148KelfBNULyHQBGZ4lQeUt8yRIRkGmXCPGGMAFcIimaWE8x/VekURno1ZY+hCL/nJPKkLWVCCavYe5iHM4HKistKOiQlkjuQSiKA/rB7ouMonDpkMgQ8+BEsiKcK+88goEQcA111yjS7itYLFY8OWXX2Lq1KkYPHgwYmNjMWHCBDz11FNqm+zsbCxfvhwPPPAAXn31VWRlZeHf//53WHMoApRHMdzm1Fv8TTDXJgZnLALMLR4FJZ+jEA2LYEOkEI1ooRkSkIo4KR7NhBik2KxoGSugVYyEVtEOdEgqRocrXWDtUsH79AJPS4f8AJXDHtjxArAte8GdIlh0JHBea/C4GPn4kTbw5DqaCxkulDmOLpd7mBiAKMpD0i6Nd8899MzU8VXR40GUJPdQs0szZ9K9j9PlnvTHAYcyfC1vc5coDz+7Q465S5KHnxUHlIvLw88uAFwegpZcUAN2uMQguuThZ0C+OYuiPPwMQJ0PqURZcy7PhXRJ7nmK7m1RidCGPM/RKQmaqGh5aNkleeZUOt37aucxuqd/gsMdBAPPtiR5hp/lS8695zdKXB1m9hxXCSKRQ1NcXFSFiAgJIhMhKml/mAgXNLk8IcHFnOo8Rnn42RMdLV8fl87jyLnoXg9d2ZbUSGulT64J8+RKkIsatKIEvGiDXpQBe+22QY76EHEMLITCSz6mw+GC3S7C6eRw2F1wOJyoqCxDVVWZxzZ1jib32t/MXl+QaDxX5O9Ofc2j2O73vbi3c0/TeqckIeuTxTXOo9jUII8iYYpu+MgQHCNvCbIy4BI4c4GzCIiSA5JghYtVuYVjBKqEIpRHnIZNiEMhi0O8PRlHK5thT4QNzWxWpJ1OR+d/u9Ai2oFW8evQblgZLD1aALHR4Oe1BW/VGjxzIOS5jwKEn38FfjkFCBFgMTawrAwgOgqIiJBXgREs4BYLECG/hyUC3BopD2+f41rXPpG4PHSrXCZlXqEmkIVJ7oAZ0T1vkEvuaA1JFneS6Jl7KHHIk+dEj+hT/lWCbpR2GmEHSan3lKtzDl3cEzijDZoRJfnjdQEQObjEoQTdylHayscs/zrnohL4AnD3ELBsjuCOwAaU+YcSZIGnRFnLws+zLQsuwR2kIm/LwhDQBsG4lNQ+UIJamCr05D6VQBhP0ItkLJM8l0b5V0mtowwly21k9SgaAl5Ed7SsIgrlwBclqY47eloT6MKZ5I6WdifUYW4hCO4JcuGGIBfuUr2gxiAXz8pDHuGnJvZR/j65flsb4OKJiNa0B6AONXu+zPrvth9Pn5cHLwA457Db7bDbHe5/nXA6AacDcDiUwBQXJPcQvOc8FC9hNSIR8On1NFJn67A3MhqKwJZ/OPqoaxinUG8goUj4xSw4RrtEoSIn1TyOxjmOsKh5HJUk4JFCNCJ4NCLFaNgq4xB3JgXxUiLiWByabUlGgtUCmwVoZj2EVjF5aBHlRHykC1nxpcj+SyWETumAVQLvkA7evp3GOCU5Cwz/MgjbtwO7D0MqccgCTRDAXRws0j23TRFPJs88JsBTrvlXiT5WLgRX3FzQtHFp6jl06XIkCeAuZd6WOz2OW5Qp15aLnnQ4SgSyMr9Gbu+pl8AgSfL8Ps80QXeORfe2yGVBJ8HTh5zuRpNfkXuCQ7iaP9Fzak63raqYA1SPntKHHOWsnDpTPXTKMRVBJ7f3BJgAkttbyGUd7W7j0og+BVGS28jHkJd91H58osTVgBT53DlcumTd8rY2GbkIUQ02kbdd4IyrXj4RLk+ACSCn09F8qBKcbs+gNoWOyy0KFVtderFnmv7G4530yo/onm+nz7moD3JR9tNcDXNB6DdFju+nKeccoihCkiSI7h8YEhfAYJO3OdToepfLBUmSILk/cIm7IIpV7hWm4E4fZLRVu60d+pb/GPUiz+Jtf4PUgP4Ed3Wp/usKec5qQxCLXGIQRfPrJgYZzNLUIaFIBI0/8agIR3cxfCUBZ0yAwCIACPLa1ZZoWFgELKINkc5oCCwSVhYN29l4RPFY2HgU4ngskn5NRnykBVaBIcF6DC1jjiHdJiIh0oVoiwQLk31VEQKHVRARFSEiIaYKyWkViGrJIDS3gcVEglkEIFpwT0RT/lUiFzTRlHIiQnn4Vdl2uB/iEnfnIpc8KW2UNooKinBfCxcHGMCi4NmWoP4Fqgm5LVwdXeMuQAlUlUQYcjK6PXya571kEJWS6LlRysO8FvXhDQCiOwejpLR3C1F1f3i2JXeEscg1ORklxdPHdNuiEnjCvZNyO92BJBYojlBZRCq9KqIUkOcZcsg3dabWe3I0CpDzLIpuD6BVrfd8NIKm3gKAaeoZOCyKR9F9UQQui0ttGVc+UvkDBYcFIldyH8ofoCcfY5T7ekm6fIscck5GpU6btFupdzGnR7S6h5RFONWcjkoCb8F9tUQ4NYIqAkpCby2KiGUsAkqCbwBgsLrrne565XsiC1fttiKSFTvkYzK1T6UPAJCkSujlOtR+GPPMuZSnrAhqv/I8SO1DXfLa36vPADyZoVxXnbGai7XaWd/dP8HaG6iNXKp0OwbqN+RRDB0kFImQUO1QtVomD8fJzjjZ6yhxB0SpCooXUk7RI0BgkYgQrBBYJCyCDRHMBpsUB6sjBpHchqiKGCScjUOcYEV0RAQiGYNFkG0QGBApABbGYLUAsREMsREcVkEuF8ARKXgEiMC4Rox43BEcnvlt0NTr/B0GR6JSJvdrvq2UKdvaX7ge75/xGEy3rVuKUG3D1bljRruU1U10fWqPAc+2MnpnfHQYlyZUjqseg3OvbY/H0y08dMf0zP0TwKBdSlHbxricoWSo19rlMlitTaott5fU5QpVGzReQu0KLGofTP9g5Mz7oSoxCYJbSCvrjQtub5eyiovOLs3DVk7Mra83CkNllRezxzljghzAo8QNuUWdhVk828wjJBmzuNvYwLkIxpR5o556ZdsTaCOoHlDlmFrxKbf3DKVr7VZsUPYxik8jxmPo6wJfqz0UAu1cBKIZtSUaQ2Wn/7XhJThcAMQGIBQ50y9goCHY9DhNHRKKREgxehs9Qavm6+hyLoDBAUm9yQlwMXm9acUDwTRD2crcRwYBgiALSQu3IYLbEOF21zEIsCBSFzFqYZGI4J4yARZYEKE+zATu8XYYHzrKah1a+xURoDw8tdtKGwYBEZo/MeUY2oejvMVUISNoxSB4tdvafYLZZko6GSaBcUG9Dkq99jjMbaMWY59Gm7Qo10J5r+3X5zEZM8T8Kj8A5KkEFuivFZh39hXttvbaednsnnuoDmdqhtaM89giDA9jC2O6WK8IgXmtIKLNDijAW4QLUES00S5zu82+E4ozHJB/fCg2KOl6jI9LC2O6/c2uFWMeoa+v98ANPwyMQl87XZAx6L7r2nMxOw+lzLNqjf442jJ1dR3VC6z9YaBvUx3a66tcNzVynjHTdmbofpz4sSsY23zZp7VR1zbAJOZm68qb2cc5x262BUeL1gVsb7jwP/RMLsVgaLJCsVev3rBY/KWFIOoz+tufBKASYFVB9qK/iZjdOhgY/IbA+EwarFQr9RZtockgm6B5r69Th+t0NnoeCxxuj5LhuBHaEk29mj5FU+8R5Jo+lSkEkGW+tl6x0+jFUI6iFYdg2uMYUrnA4nnwaYYmlX6UHwnQ9aDMSdP3qW4z/d81gz4BjPGv3mJil2BoxTgzCFu9XYrgZ9z3uUaazDOrSeSwdh+v68mVVEC+7ahO4PjC/EeAtx060V3NcbXt/O3j79hm28b2gVxjf9fJ+3sb+DX0ZyfgWyR6rbhlgj8bjRjrza6JWZnWPg4OgWUjrbQEoihi27bNfo8ZTrhhxMRYRwROkxWKRMOi2ttyNevJBnYMkz6q/UVe3Xq0FpMyvUAzWuFtgv9jmAoyxrzqmU58ec5X3Wb6dl59mog8I15igHmfq2CwAxqPJYNFY5fnvSLctIJNL40177mxrnqMdiuCz3N8wzXjzKtMThylf3AbvaShwO83nZl8Tsxjn6cs8OOZPVQD8YCZCkPj18PLVrN+zMM8dGkYtWLGxPPova9GhJkcVP0+6pzW1dvqz0Z/dvqz1ZdtvuyoSTS3qWg0MUfkEqwsfEvJBYM855o8iqGAhCJR7wn+theYSAhuSTETb5CJKPSuMwol7cNa8C36AFVkmYk+7TYziDndtsZLp/Spih0o89eY51gQvESW0asnGPZXjqvfx6IrE2BRvV3exxG8PHIMDBbuEYfuWi8Piv4YTJdYmjFtqutqBJbP82A60SBfX8++DFohJhcYRYayn69jKm3Mhsy120qZ2i8Uz6+7X62o0X1nvPvxZUd1BDu1q7pjCIHYpHele9li9szXD49XY4TxcBqbzOwRqqk3swEwt9OsnT97a/IZGq9xdfZ4tTPsU1CZHNiOYYaTUAwZJBSJhk81P+2Nw2KB9eHtrTKKED3mnkOvWXYGr5+XiDMRjso8SKMoBADBMMwqsAho8/nIgs3TRhZT+j97izv63HMm+npZHOlFoXZoVuvlU+yUgzoUX5CACF17RfRpxCeXZ41q7VTEo3KtjEPEFiaoAksr4vRz4vRzAY2aw+tT9HbP6MSpoARLufu1MPmlNmfMVEh4lRkUrHZunra9WVCUwDx2K0LRxOxqfdVeosNwTKXM7JlqDHry1ae2D6V/bRMzu33t72WDwRZtE6W93uvoG1/Xpjqbq/sRqz2mL1uM51adsPX1uQViT3WYHVprn4sD0RUNw6PI4fuHDcWyBAcJRaLho3Wz+GvmY66Q+VCN4kX0eBPr4yJG2lQmnsKa3gbNPafV2sC4JmjJV8+eoAzOJIDXxJ/lx4YAvgKBnJ33p+67nXJcCb69NoESrIND60nk7v/pPI/QPwwDudpaMReoXYH+SVR3fbx+YgUgYtV9lR8L8BY6uh8O7jJ/PxR03sRzFIlKG8/cWb0tSrlRCJstie3rux2ISPT3d2H8/Myuke5HCqAbGajP0NBz6CChSNR7/A0dehppn5T6x3xAwQKmd2Vtlm1D4IvXHCcRnBuHnpVEyZ5hXTm1hzpYCGUdXgByIlvdU0yp9yRnZgaBJXsctfOe9MLRnQ1R0x8DuEs37Kykk/F4BZXce56hYXCnbshZhFNzDMXrZz4UbTq/kAlwauYaCox5eRoZmGfYmTPdHEAGBkEjiBljpmK1OoHkb6hZ3va0c3+kugkEakSx6nnksndTs5/g1ZeJnT48iEqZL6FlNsSsPRbg+xoEK24DfbYavZ+mdpgIMkOxp4yZC1KlSLVLNzdR8z4ITWBqbxC2muHTe+jDXtO2MP+8fF3T6vbzdQwz2wD9ML9DsHs1r49wTV5YI77KCXNIKBKNBz9i8dzx7Z9RUpB4UgBZNGUeWzyRwLI/yJOvTAlGMaSOUVbv4IAyh1ArLD3H10cYq7nwFA8e3OKRa7yjTI5MFQEwrohGCWCCmqlPEaVqPjxVOCrnqdQrLhC3wDTMXZTgkkUk89ikFY+SMl+RyYPUqiDlgluIaeZV+ggiATf3DPub2K8IO7WtRpGoeyleFM0QuG7Oom6Y25Pp0pOShqudVReEEAjecxn1XnGv4WYTcWoUDr6CbPx50P2JLzNh4j2lwttGILi/WLN5iPqhXs9WIGKxtuZ4+pov6cvWQPH1I0GuC64vf0Lc00ZOheSCdx7L+giHLBZN6xqIV7S+QEKRaHAE5GEEEKhY9BqCDmTMB3qRp5+7KEIRi54yj1fQOHeRawUhZE+eIghVwekWg/LybRpRqKy0oYhMdWjLfQw1gbKgE01yII0y/1FuIzHBEHAip67xPBZMAnogaGSjMpfTswSbOh/SnVxatsLjkTTOf7QgwmMDg9u/qMlFyQQ1yMVjg36+o1mqFsaZujQf4D18JkDQPRmVwBk1p6DizVQ8fmBeD2qL4Rtp8YpWl/v1N+XBbM6f2ddR+5tIPwvW2J93XL2xkVkKGmO+Qx2Baho/f6C+RHNNo7F9RjrXZIRRJ1y9vcvG99Xhy07AJNI5EHt9fH7B2mUkkOh2iQMu1jA8ispypL7qiMAJ7UQhgqhFOAK4jwb8y1yCccAn9OuXNoxf3jVFCTfRiTRNqh3PEm0ez59ZSh1Pf4HdvM1WRdHV+/gcFXHoa46Vblhb6600oI+8ll/enrzQPYjMujITidpjKy/vSmU/8/MSqjl3tQ/l5dNo7yJj/1o8S0/qX74ISCT6sMMvftobjxnoy2x/U1tDQE2nUdc0BVJ9hgPudefNX42RLVu2YMaMGTh79iwAYObMmSHplzyKRINE+TPnMLm3BzQEbeYd8xqT87OfPnpZj0X9V1/nHQUt72/elxzlrGwImjJ9G+2/2v785kk0tjEkvjb2qSy/pj0X5YyUM1ZEoN5zKZdFmAw5q8fgijdSM2dRO/wM/XCzMam0bgga3p+jbr6k1mPqY+hOnVOoXj+N0NV6lTTbnn1g2EdfUZPhZ3O9Z/SIerevyXBzsPgbMq3JMWpildkQqRlm8z+rtcfHOQRrp8+pgCEKkPM3tF8dwdgmciDC7ncJgnoD9+NR9FXe0Lnjjjswbtw4jBs3Dp999hnWrFkTkn5JKBJEwJiIS90N2uKnzjxZid90OQCqy6VolkdR269XEm3jELQiEA2Jsb29hHphaJyHGGj6HLkPQfPO068xybXFICotmgAc9bhaEWgyHOyp018fz7kZ99fUGbaVIBb9PvoDafvQBrR42WEUbvBNTef8+RsuOtcobe2RgxFgik2G2bnnjN7HzIKOIjfD1/nU1GZzP7h72L+G9obKRn+2AR77LAAi/K9VVW+QwCD6yK4ghkig1zeioqLw+OOP49JLL8XkyZND9kOEhCLRIAnu61+DwBa/eRWVJoE8bfUCTHvzNSbc1nr61L29lqOThaES3awk2Fa3/STYlvfXCEMuB69o8yYqolAw7GP0Epol09bmezQucRdhFNGGvInaBNvKtjHK2Tjnz5hX0Sxi2RPQw919eOdV1PVp+EwFps/NqORR9Jy7chyPd9siGPvQH8PUv+2jjfrNNbjQvTyEhv4UmzS7ePdp3Efz3tRT76e+uvZau9R9OLz/zGpAIIEYNcWfeaEIGNHVB9edjupM8RU5HijKriKASG6teUd1COd+kpw3Tp2I6Gg5x+WAAQNw2WWXYerUqSHpt8HOUXzttdfQtm1bREVFYdCgQdi0aVO4TSLqE43kFyPXBcHUbF/zSk+dpGmnBKHIiX14UPOUzI/n6c8XktrG859uqTPlPx+fqdnauRK4JhJWE/1qsEyp4Sb1Sl9ec9M0/0mG/eU2XH0p+2j/9YfPVUZ0B/C0k9zvvYdf9XN6OfSzcs3ec3jv4+tlrDea6Avj3L3q5vUF0peuLEA7AsVff4HYHeg5navN1Z13jecuVtNvfUYeehZ8vhojTz/9NFwuOfvE5MmTsXTp0pD02yA9ikuWLEFubi4WLVqEQYMGYf78+cjJycGePXuQlpYWbvOI+kKQLgtdNKrX+mmB5VKUsaj1TBN4obRWE6dwyTvSWSNVZA+dJyoZTJZAyhCtmhZHTYfDwXS5BQVw7tANP3MmixtPuhkLANGT2IUJuj4ECHDBBV85FeV+9eszq9cQ+jmJuuFnQx5FF1xqLkVlf7N8inK2Gc2cQa0d3GRtZc1TTutV85R5z0P07G9so14BtT9lX99zEfV5FT3nZrAjgKFo4wonnn3Nh9vN+lX7Mi+uFUI3zO2buvIQ1ca51IbtNbEzEDskAE7mCL7zMCAPPTetOYqDBg3SbY8dOzYk/dZYKE6YMAGTJ0/GhRdeGBJDguHll1/GlClTMGnSJADAokWLsHz5crz55pt49NFH69weIrxo72++//zNZkUFMFPKKzDGiK/0OJ7dFeGoTZxtHJLWpshRRBmHCHBN3kSuKdfkNPQk7DYMc3NR7ouLGrGjn3uoJL+RALdI1AtANfWNmrLGbC6j09O3xoYazWc0yChlCFvQHDeQ9DiM60Wir/Q5ip368zYTjd4x2fqwJO8oY7M5j3JfvvrwRulTn5fTfH+zTswijM9luNc4dHyu/fk9VkCD2d4eZa967Y+FWrA1UDu1hD7DgjfGNFGhgHPAjsqQ9FXbNLWh5/Xr19dov7Zt26J169Z+29RYKBYXF2PkyJFo06YNJk2ahAkTJqBly5Y17S5gHA4HNm/ejBkzZqhlgiBg5MiR2LBhg1d7u90Ou92T96mkpKTWbSQaGqGbWu/rga7UAd5zGz2JuJV2+tVVlD61Q7uMQxVtZvWAXoAqcxW5cXk/rZDhANesE60k5QZk6ctg0a2GwpleOgsGB65cJ0DQpQmyAFzUeW91+Q2ZXjh6kokLkNypuSUm6YSfAKb37oLpzkuA4PWg1ApDJVOiFnm9G29vpTKELoCB6z5HDmYY3xMMx1HmUErcs5yhcYEI74htz/A1M3nYe3kmDU3MFqAQlGFrH31Ui7/JidykTY0JwaQ6X4RUMNaR6jAeptpzqAW7OHR/r/UZCb49h43RozhhwoSg92GMYfr06bjvvvv8tquxUFy2bBlOnjyJd999F2+//TZmz56NkSNHYvLkybjqqqsQGVk7kVGnTp2CKIpIT0/Xlaenp2P37t1e7efNm4c5c+bUii1E/cPrOeVz+Fn7mDTPp+iVgDsAd0TgKUFqLk51A5fugJRzQSdMa7xOtBmCl0dLG5wCQA2Mqc7jIRk+I0kjQxU4817i0Azt6i56a/VeRWNEtfZfX1HHyrdJgLmnSRGa2rWvA8Fv3kSvtkbRqxxbv7/fK2WMhDHgEbqGz62mz99QC7u60AF1KkZrob9GDveTL7Ex5lHMy8urtb7PaY5iamoqcnNzkZubiy1btuCtt97CLbfcgri4ONx88824++67cd5554XK1hoxY8YM5ObmqtslJSVo1apVGC0i6hzT4eOAH5kyTCsFtMVmN5zA0+SYRUIb99GmtvHqk1nUevXfYNPlMK2A06eg0eZUFLz616S2MeRQ9DdXUXd8DoNo88xb1NphTJ1jmlfRq41HlHqVKcP1mqMa5yvq23ss9E6xY7Re21bbjnm30e3rfSzTbZ2Ara6tb0KRTzBYqstxGAg1mX8XrP01Xb7QF3UxT7MukDgQYbeF24yA4GhaHsXaJCTBLPn5+Vi1ahVWrVoFi8WCyy+/HNu3b0fXrl3x/PPP44EHHgjFYQAAKSkpsFgsKCws1JUXFhYiIyPDq73NZoPN1jC+2ERoCMUtQCcGAhKJ3iuOyPVaH5PBGwgWUB5FryTc2vl2Ppbm07aHQTgaV0cRdHMG3emuDcm1tfMNzeYZWniEvg+upMeR3PsbUu5wwSB4vId/jZ4/i+HaePVpmEcoALq5jcqcQW0ri04AKsPD0BV6pdzROJrNUvCYiTcGj3POLBiFGdor9pshaOp1XkJm3k5bHdh8Xr0dPus1732NQPvay5cOC1SD+TMtNJo2NHZ6eqqmTQ1sDkdiB5EDUVVRdX/gGiBywOXjGvkqb+gsXboUY8eOhdUqpzA6evQoMjMzIQjyXaKiogILFy7Eww8/HFS/NRaKTqcTn3/+Od566y2sXLkSPXv2xPTp03HTTTchISEBAPDpp5/itttuC6lQtFqt6NevH1avXq1G9EiShNWrV+Oee+4J2XGIxox/D6L62PZz9zbzUHgHHug9bx7vYYB3KbdI1OYn9JVH0WND8HkUFXGozAFU12d2Y0GEXtSxCBgTalt0txKPMHT3CMEQgCK4xaQy38koCrV5FNUciEah6BZ12qFeozdQ0IpsppfzqijUfJQWY95EzTHkes0nyDxlgDycJTDv7wZzH1sRlmbfPq2oM9qkPYb2XIzH0PVncoyaCEMl0tpoo7bPmjxzjV65moqe6gRWTT15qn2a/c9VmAUqBs1sNvVihsEpJnGP577+o59nrMVXeUPnxhtvRH5+vpr9pWvXrti6dSvatWsHACgtLcWMGTPqTii2aNECkiThxhtvxKZNm9C7d2+vNiNGjEBSUlJND+GT3NxcTJgwAf3798fAgQMxf/58lJeXq1HQBBESggzr9B6uMkttHPzTxhik4omQllTPnjEApvpOJc+/TDDMAdTbLafn0QSYgEPSBKgIzAJJl1LHE8gi98bdt2yP6AM8k+K1ZXJ7JVjFM3dRPqYhIAWeZEKSxkKu+dx0cx85g27EiXNIjKnBHfJx1CpZ3LklumID594hJdpcihIHBGMLd5oe7m5kDDARYBACDDqb3KYbCgzbhnrf8fm+Z8fKATP6eb6i5jhicNmm/GKW/7Cm/fgzqaYzbmsliXcAHTBmLgrPVaT62z2Yj1RCIwlmaaRC0fgMCvvKLK+88gr++te/IirKtxs6KSmpViZYXn/99Th58iRmzZqFgoIC9O7dGytWrPAKcCGaJqbz732u/2ySH9EgXDz7etp6Rzd751AEALM8igq6qGQAssTQprtxPyA06XIY00dIS5poWM5FMINgZG7ZouZuZB7Z6cml6InkFd3voN0HAhjzCEORu3TzEiW4oF2txWw+oqRZBlBuo5+DCAZDeh8fKW80+7t028y7DZd0w7pm8xB1S+6BgWkegsrR9cPC+m+Wr/Q0+uFqbVS351jaPvRzIN3l2jKNulTe1UWOxEBWlakJXonNz+F55s9rWFN7TVPH1xMbgxG/gdocqH0uDrjgCsKC8CFxwOXjYjXWoefaosZC8ZZbbgmlHUFzzz330FAz4RPTLB3V5kTU7m8S+WwiFo1oBZWym8fX5U6MrQxRG+YucnfibM7l4WQl0bbiN5PbQM2jqKbE4R5RB3gEl5JDUTkPeVtrq7KPUxZzgHtIGp59lFyKHJ4ha2V/7XxGDhjnMnqO638daE2leh7aoXD1UaWKsMDnOxrXiZbrmUbEagWjXowZZpPCSPU5DvXD3sZ+jMPQTNMntMfXDUub2eFVdE74C57R2WXYJxjnhfGvzxj17qsvX+dq9vn4EmBmfZgdrzobfe0bChsDwewOdi75EgOxTwJgZw0jj2JTHHquLRrkyiwEETqCGa7VikXz/c1Fg37oVo8sFnU5Ek08jdo8iXIybTnBimcnCczQjz5ywSNE5T70NnK4PZFGD6fGG8bB3Cu5KLUSJBah7iPoPIey18GCCHDu8UCY5U3UIqheSlH9lxmGjyTDnEowT0S2+2p5vJMM6pC3ekz3fEhdUAv0Alnpx2On5lq5P2PGNb1yz6NH+yNFHYbneo+mcu5egTKG57zFMAnQOPBtXH3GH8bvpr+cn0Yfu/G56pX2SPN7yh9eSzlybZ033qsf+bLTfAw6UGFtLhRN5iT4sLM6FN+8xwhtXc1Ei79r6WlTPbprqODj85bAUZPlRMOB1ASDWQDgm2++QWJiIgBP/MaOHTsAAEVFRTXqk4QiQYSQQNLl+N0/UOHqYz6iMVWOvq76B5I2cMZnIIzBBn3aHCWIxZMnUC+OLF52CMZ0Qm5hyBnXLf2n2OUZttb/K79n5h5Gw7C1Eiyj2Kfdlu00CCHte0OaG+OcP+1kBiUUST2OIdjGmHbHmGrH33F9YhCXmg58byv7+BBbxkhvs+7MyowCzAKmL2MewSPAxG5/7lI/Yqu6FENeXel+CJjYWp2dfjvXb/r6ARKIndprZwHTlzFv8Risx7K66yg0oLQyTS3htoIx8fadd96p265JqisSikSjxmsIWjf8HGD0M2C4Y+pT2ujxlSZHi/64TCMr5PaK8GL6eh/lgeRP1PWr80R67yPA6v7XM9TsK4+iMYeica6iMW+iJ2LSe76iZ1tRJRozubedWgvkNvr1odV5i1pR6J6zaJyvaJyr6LlmWruCw/ip+8qjqM2faBSO6jdDtU1PqPLz+RPG2uPrjl1Nn+YeQs17rzpPSXVz65Tz9rXOdU0/N6/hZrcdXFemN86frYGuy+0lyGpgI+DfTl9U99nLbdzH5oDNFR1Qv+GmqS3hB8gexNqAhCLRKNEOAwbyLPXrbQswj6L5LzX9nD4zK30KQwDaPIqB5lA0zcUIT8QxM8zX8znvUNNKm/5GYIZ0ObCo6W+U/InGeYSCbsjaI+bU47pFnnbFFe/8hMYHGtOIUqYTgUq9Rb22yrZSpwhEqF8QNc+iiVjTeg2N8/HMvG16Oz2Ypc/R5kX0WcYMwS3GYwTwJTc6Gv1/W73b+EqfA7ijvTXvtfgSMt5zAD0HqE7jmAln8+Aj//2YYWav1lbj/LZAbTXaZpyf6muf6myUbfKgncRirPOyzaTM33dABGAtbxh5iSUwn57DxrgyS21CQpFotJzzj0Y/d2v5YV/dkLLptH9oLTOmtDETiUZxqLfDmFdR8PISejx+3sIQgCEHIsBYhH54DBYImtyKFkTo1zCGAAERmqFg7+Ffi8a7KLfRC0ELFDHr7Wn0JRTN8ihadB5UTxu1vc7TxCAIesGq5En0HEP+rLXrdGt/hMjn79lm0AtHpU9APyTtL2+ixUuseoahjcfQ2mnETBj6E4qBiFx/9Yptxr87yYdQ9OddDNRLp7z1KcYCsNkM5fhm9gZjq9EGXyI2WE+xlxjXvjexx5eJ/ryHZm1Erg8Mq+/4Ou/G6FDMzs6u0bByra71TBD1mcBuBB4/kSJGdKlxzNxGSv+cQx/hbFGDAzxBAoo08ASs6L193CtoBZp0OozLqWm0ZdywFrMEgOnyKho9iv4DUuQD6TctHNCeGWNcFwgjp+nx9CEHrMihJfIRvQNM1Gujij6PlxOQ85oZ5yYah6SNXl8L13tK5fQ+nnMVONSVWWRvIdcl4BbAIXDPHEIwtx3aBzhTxI8yz1AToKL2I2OWNVPpQ2e38UHsJWD1CMxbTJqtunKu+BMIil3BHMdLUPmpDzavopngCtRb5w9fNivlNcn/GIg49PWTsjr7AKO309A+QEUUyGcPuNPjsAaUHsfH+YuNUCkuXry4Rvu1bdu22jYkFAnCjTa5s/lQtCEiWBc1Kkc2K54n7zyKbjFn6JHpxJRBajDJk0sRAJgAibn0+3KNZ8sdtawVk9UJR/m42mhoi+c8lWFbTYQ1Y4IcqKKJZJbgUj2O2vQ31eVR9B5K1p67RxhqxaUWl0ZcArKnQ9B5OhksWk8g9z030VPG/YqMQH6xm84vM3gy5b6UPvXfN2V428yz6csubX/GIXBfQ+IB2W1sY/Rk+mgXTJ5EndAJ4gFe3TxEM69cMHP/zGyuLVuB4OebBnpNAyXQuZxO5qhB73WPxJtWMMvw4cNrrW8SikSjx2u4zWvFFeNtVfDOR8YN4pEpXjzPPjBJRCs/pM1uSu7E3MbcilzpC7oADqjiwjyQxhjwotZzQ72xvdrWZN6gr6UBNW2VYW1P4my9MDWb76hrr9pj8en6MYp2rTdTqTfmZtTmY1RkqXJcNc+k+2EhaIbJjcPj/uwIBv1QPtP9q9qlzkXV7mfYpxrFp01jci42qrZ6eZqMn4Xv/syHQI0/UvT1ZnZrh/2N+IogDsZOf/aoPx4DsNMf/qKJzXN0Bmefr/rq7Az2M+fgKMUZv33WFzh8i/lwrJPdkGmyQnHbtq0IzYANUZ8I6GFuCE5R9/FKOWP+G1svfCym5abpaXz07wlm8UQYK9tagcaYBYzpo4/leovp/so+nqOZz3XUB7cI0CfIVnx/Fvk9c/8LiztwxemWaZHu/uUBaFl8eYJaFHGmFWx68VS9P8NrjqLOM8hVb6HsmZFgYXIacQvjAHOveKPzHsprO6uBIxovnm5eWU0iInR26mHM4zVUjqVsKzYIzHMuyrbWLu+FBGWMgRZar1Og8/6Mx/Bs6+t1P2NMLpH2Yaz61Q3z/DzbzK+9vuZWCuo1416fnyqyjV5QZtK/D1u57r2nI2XfQOcnml1TX9czEPFtdj19XUutjV4e4Wo+a6N9Lg6UFlqwpXgL6vtMv6Y29FybNFmhSDROAlqZQH0qSGDaR65nDDew3U0JdADHg09xa+KJU6tM8yhWP8k8kPWgqxe5PryRfgJzzI4b1NrUfvAljLX9e6f20Qpr39ctVDZ69et1DYMT9NXBIVbfqBrMjmf0suraGzy92ikNWiQfA6PV2WycUqE7Nsyvn5ld5n0HZuu5XFfj9fR1Lf3Za2ZnKGwM5rM+6zgYdP/hgMO3ICShGBwkFIkmjamwDDT/mKnAC/4m7XU0dbKZr76EkA+dBDWs6lc8+RdWtSW8PJg/ZE2Fag1Efajwfx1qfg2NwU6hoDY/s1Da29TtDIWNgdjmEkvP+Th1Aee+b+U09BwcJBQJooacy7qq/jv23a8s6M7dW+R1yHNtHODwbN3foMMnBoPlXOZAEkRdEQpvdV0ggYaeQwUJRYIgCIIgGhUcTSuPYm1CQpEgGhC15sU8V+rtWI48HNcQvHX19QoShJZ6ew8ywLnvlVkaY3qc2qThjMsQBEHUEE7/0X/0X0j+ayhIHHBJvl/Bsn79eowZMwaZmZlgjGHZsmW6es45Zs2ahRYtWiA6OhojR47Evn37dG3OnDmD8ePHIyEhAUlJSZg8eTLKysp0bX7//XcMGzYMUVFRaNWqFZ5//vngjQ0xJBQJgiAIgmhU8GpewVJeXo5evXrhtddeM61//vnnsWDBAixatAgbN25EbGwscnJyUFVVpbYZP348du7ciVWrVuHLL7/E+vXrcccdd6j1JSUluPTSS9GmTRts3rwZL7zwAp588kn885//rIHFoYOGngmCIAiCaFRwcIg+psT4KvfHZZddhssuu8z8WJxj/vz5mDlzJq666ioAwDvvvIP09HQsW7YMN9xwA/744w+sWLECv/zyC/r37w8A+Pvf/47LL78cL774IjIzM/Hee+/B4XDgzTffhNVqRbdu3bB161a8/PLLOkFZ15BHkSAIgiCIRoW8hJ/vFwDY7XaUlJToXna7Pehj5eXloaCgACNHjlTLEhMTMWjQIGzYsAEAsGHDBiQlJakiEQBGjhwJQRCwceNGtc2FF14Iq9WqtsnJycGePXtw9uzZmlyGkEBCkSAIgiCIRoWyWo2vFwAsWLAAiYmJute8efOCPlZBQQEAID09XVeenp6u1hUUFCAtLU1XHxERgeTkZF0bsz60xwgHNPRMEARBEESjQuLVr8xy3333YdasWbo6m81Wy5Y1PEgoEgRBEATRqOAcEH1ENytC0WazISEh4ZyPlZGRAQAoLCxEixYt1PLCwkL07t1bbXPixAndfi6XC2fOnFH3z8jIQGFhoa6Nsq20CQc09EwQBEEQRKOCQ86i6usVSrKzs5GRkYHVq1erZSUlJdi4cSMGDx4MABg8eDCKioqwefNmtc2aNWsgSRIGDRqktlm/fj2cTqfaZtWqVejUqROaNWsWYqsDh4QiQRAEQRCNikCCWYKhrKwMW7duxdatWwHIASxbt27F4cOHwRjD9OnT8fTTT+Pzzz/H9u3bceuttyIzMxNjx44FAHTp0gWjRo3ClClTsGnTJvz444+45557cMMNNyAzMxMAcNNNN8FqtWLy5MnYuXMnlixZgldffRW5ubkhuio1g4aeCYIgCIJodHAfaXB8lfvj119/xYgRI9RtRbxNmDABixcvxsMPP4zy8nLccccdKCoqwtChQ7FixQpERUWp+7z33nu45557cPHFF0MQBFxzzTVYsGCBWp+YmIiVK1di2rRp6NevH1JSUjBr1qywpsYBAMZrcsUaMCUlJUhMTARgARrAsl4EQRAEUf/gAEQUFxeHZJ5fKBk/fjz2fXECveKHmtZLXMSb+X8zjTImvCGPIkEQBEEQjQplCT9fdUTgkFAkCIIgCKJR4W9t6oa0ZnV9oEEFsxw8eBCTJ09GdnY2oqOj0b59e8yePRsOhyPcphEEQRAEUU9Q0uP4ehGB06A8irt374YkSfjHP/6BDh06YMeOHZgyZQrKy8vx4osvhts8giAIgiDqARJ8r+ksNa3QjHOmQQnFUaNGYdSoUep2u3btsGfPHrzxxhskFAmCIAiCAODJo2gGORSDo0EJRTOKi4uRnJzss95ut+sW+S4pKakLswiCIAiCCBMS5xB9RK2QRzE4GtQcRSP79+/H3//+d9x5550+28ybN0+34HerVq3q0EKCIAiCIOoazuWhZ18vInDqhVB89NFHwRjz+9q9e7dun2PHjmHUqFH461//iilTpvjse8aMGSguLlZfR44cqe3TIQiCIAgijHBwSH5eRODUi6HnBx98EBMnTvTbpl27dur748ePY8SIERgyZAj++c9/+t3PZrPBZrOFwkyCIAiCIBoAFMwSOuqFUExNTUVqampAbY8dO4YRI0agX79+eOuttyAI9cIpShAEQRBEPYFz7lMQklAMjnohFAPl2LFjuOiii9CmTRu8+OKLOHnypFqXkZERRssIgiAIgqgvSABEH0PMNPQcHA1KKK5atQr79+/H/v37kZWVpatrYktWEwRBEAThAw4OkZsnwpF8lBPmNKhx24kTJ4JzbvoiCIIgCIIAKJgllDQojyJBEARBEER1SJAgQvRRZ15OmENCkSAIgiCIRoUEDpePNVgkWpslKEgoEgRBEATRqJCHnkkohgISigRBEARBNCokcIiMhp5DAQlFgiAIgiAaFeRRDB0kFAmCIAiCaFRwJkJkLvM6EopBQUKRIAiCIIhGhQQJLpBQDAUkFAmCIAiCaFRw9+CzeR0JxWAgoUgQBEEQRKNCzqPoNK0joRgcJBQJgiAIgmhUSBDhYiQUQwEJRYIgCIIgGhk09BwqSCgSBEEQBNGokCBC5D48ipyEYjCQUCQIgiAIolHBIdIcxRBBQpEgCIIgiEYFRT2HDhKKBEEQBEE0KiQu0dBziCChSBAEQRBEI0MC97GmM3kUg4OEIkEQBEEQjQoJEkTuY2UW8igGBQlFgiAIgiAaFZyLkGjoOSSQUCQIgiAIonHBuU9BSEIxOEgoEgRBEATRqOCQ/HgUeR1b07AhoUgQBEEQRKNC4qKfOYokFIOBhCJBEARBEI0KDn9DzyQUg4GEIkEQBEEQjQrOaeg5VJBQJAiCIAiiUcG5BEmioedQQEKRIAiCIIhGhr8l/EgoBgMJRYIgCIIgGhWci+RRDBFCuA2oKXa7Hb179wZjDFu3bg23OQRBEARB1Bs4AMnPiwiUBisUH374YWRmZobbDIIgCIIg6hlyHkWXzxcROA1SKH799ddYuXIlXnzxxXCbQhAEQRBEPYNzCZw7fb6IwGlwQrGwsBBTpkzBu+++i5iYmGrb2+12lJSU6F4EQRAEQTRmJLdYNH/VhNdeew1t27ZFVFQUBg0ahE2bNoXY5vpJgxKKnHNMnDgRd911F/r37x/QPvPmzUNiYqL6atWqVS1bSRAEQRBEWOESwF2+X0GyZMkS5ObmYvbs2diyZQt69eqFnJwcnDhxohaMr1/UC6H46KOPgjHm97V79278/e9/R2lpKWbMmBFw3zNmzEBxcbH6OnLkSC2eCUEQBEEQ4YaDg0P0+QqWl19+GVOmTMGkSZPQtWtXLFq0CDExMXjzzTdrwfr6Rb1Ij/Pggw9i4sSJftu0a9cOa9aswYYNG2Cz2XR1/fv3x/jx4/H222977Wez2bzaEwRBEATRmOGAzzQ4crkyNU2LmWZwOBzYvHmzzkklCAJGjhyJDRs2hNTq+ki9EIqpqalITU2ttt2CBQvw9NNPq9vHjx9HTk4OlixZgkGDBtWmiQRBEARBNADef/8DAP4Sa8vlixYtwrx583Q1s2fPxpNPPqkrO3XqFERRRHp6uq48PT0du3fvDonN9Zl6IRQDpXXr1rrtuLg4AED79u2RlZUVDpMIgiAIgqhHHD16xK0JOABmqOUARAAMs2fPxqOPPqqrpRFIbxqUUCQIgiAIgvBHy5YtIQtEEYAFerEoexNLSooDnpqWkpICi8WCwsJCXXlhYSEyMjJCZXa9pV4Es9SUtm3bgnOO3r17h9sUgiAIgiDqCcXFRe532uFnebWWN954A/Hx8QH3ZbVa0a9fP6xevVotkyQJq1evxuDBg0Nhbr2mQQtFgiAIgiAIIwkJCVi4cCHk5foUsSj/O3ny5KD7y83Nxb/+9S+8/fbb+OOPPzB16lSUl5dj0qRJIbO5vsJ4E1sdu6SkBImJifB2RxMEQRAEERjyXL/i4mIkJCSE2xhTnE4nrFYrZJ+YPBS9bNkyXHXVVTXqb+HChXjhhRdQUFCA3r17Y8GCBU0ikJaEIkEQBEEQQVL/hSIAfPrpp7j66qshP+85JEkCY/TsD4YmF8zi0cVNSh8TBEEQRAiRn6H13dc0duxY9zuOjRs3kkisAU1OKJaWlrrf1WytR4IgCIIgZEpLS92jdPUTxhj++OMPdOnSDQMHDgy3OQ2SJjf0LEkSjh8/jvj4+Eb9y6KkpAStWrXCkSNH6vWwQChoKufaVM4TaDrn2lTOE6BzbWxwzlFaWorMzEwIAsXFNmaanEdREIQmlZw7ISGh0d6ojDSVc20q5wk0nXNtKucJ0Lk2JuqzJ5EIHfQzgCAIgiAIgjCFhCJBEARBEARhCgnFRorNZsPs2bObxLqVTeVcm8p5Ak3nXJvKeQJ0rgTRUGlywSwEQRAEQRBEYJBHkSAIgiAIgjCFhCJBEARBEARhCglFgiAIgiAIwhQSigRBEARBEIQpJBQJgiAIgiAIU0goNkKeeeYZDBkyBDExMUhKSjJtwxjzen344Yd1a+g5Esh5Hj58GKNHj0ZMTAzS0tLwf//3f3C5XHVraC3Qtm1br8/v2WefDbdZIeG1115D27ZtERUVhUGDBmHTpk3hNinkPPnkk16fX+fOncNtVkhYv349xowZg8zMTDDGsGzZMl095xyzZs1CixYtEB0djZEjR2Lfvn3hMfYcqO48J06c6PUZjxo1KjzGEsQ5QEKxEeJwOPDXv/4VU6dO9dvurbfeQn5+vvoaO3Zs3RgYIqo7T1EUMXr0aDgcDvz00094++23sXjxYsyaNauOLa0dnnrqKd3nd++994bbpHNmyZIlyM3NxezZs7Flyxb06tULOTk5OHHiRLhNCzndunXTfX4//PBDuE0KCeXl5ejVqxdee+010/rnn38eCxYswKJFi7Bx40bExsYiJycHVVVVdWzpuVHdeQLAqFGjdJ/xBx98UIcWEkSI4ESj5a233uKJiYmmdQD4p59+Wqf21Ba+zvOrr77igiDwgoICteyNN97gCQkJ3G6316GFoadNmzb8lVdeCbcZIWfgwIF82rRp6rYoijwzM5PPmzcvjFaFntmzZ/NevXqF24xax3ifkSSJZ2Rk8BdeeEEtKyoq4jabjX/wwQdhsDA0mN1PJ0yYwK+66qqw2EMQoYQ8ik2YadOmISUlBQMHDsSbb74J3shyr2/YsAE9evRAenq6WpaTk4OSkhLs3LkzjJaFhmeffRbNmzdHnz598MILLzT4IXWHw4HNmzdj5MiRapkgCBg5ciQ2bNgQRstqh3379iEzMxPt2rXD+PHjcfjw4XCbVOvk5eWhoKBA9xknJiZi0KBBjfIzXrduHdLS0tCpUydMnToVp0+fDrdJBBE0EeE2gAgPTz31FP7yl78gJiYGK1euxN13342ysjLcd9994TYtZBQUFOhEIgB1u6CgIBwmhYz77rsPffv2RXJyMn766SfMmDED+fn5ePnll8NtWo05deoURFE0/cx2794dJqtqh0GDBmHx4sXo1KkT8vPzMWfOHAwbNgw7duxAfHx8uM2rNZS/O7PPuKH/TRoZNWoUrr76amRnZ+PPP//EY489hssuuwwbNmyAxWIJt3kEETAkFBsIjz76KJ577jm/bf7444+AJ8Q/8cQT6vs+ffqgvLwcL7zwQtiFYqjPsyERzLnn5uaqZT179oTVasWdd96JefPm0fqyDYDLLrtMfd+zZ08MGjQIbdq0wdKlSzF58uQwWkaEihtuuEF936NHD/Ts2RPt27fHunXrcPHFF4fRMoIIDhKKDYQHH3wQEydO9NumXbt2Ne5/0KBB+Nvf/ga73R5WoRHK88zIyPCKmC0sLFTr6hvncu6DBg2Cy+XCwYMH0alTp1qwrvZJSUmBxWJRPyOFwsLCevl5hZKkpCR07NgR+/fvD7cptYryORYWFqJFixZqeWFhIXr37h0mq+qGdu3aISUlBfv37yehSDQoSCg2EFJTU5Gamlpr/W/duhXNmjULuzcqlOc5ePBgPPPMMzhx4gTS0tIAAKtWrUJCQgK6du0akmOEknM5961bt0IQBPU8GyJWqxX9+vXD6tWr1Qh8SZKwevVq3HPPPeE1rpYpKyvDn3/+iVtuuSXcptQq2dnZyMjIwOrVq1VhWFJSgo0bN1abpaGhc/ToUZw+fVonkAmiIUBCsRFy+PBhnDlzBocPH4Yoiti6dSsAoEOHDoiLi8MXX3yBwsJCnH/++YiKisKqVaswd+5cPPTQQ+E1PEiqO89LL70UXbt2xS233ILnn38eBQUFmDlzJqZNmxZ2QXwubNiwARs3bsSIESMQHx+PDRs24IEHHsDNN9+MZs2ahdu8cyI3NxcTJkxA//79MXDgQMyfPx/l5eWYNGlSuE0LKQ899BDGjBmDNm3a4Pjx45g9ezYsFgtuvPHGcJt2zpSVlek8o3l5edi6dSuSk5PRunVrTJ8+HU8//TTOO+88ZGdn44knnkBmZmaDS8/l7zyTk5MxZ84cXHPNNcjIyMCff/6Jhx9+GB06dEBOTk4YrSaIGhDusGsi9EyYMIED8HqtXbuWc875119/zXv37s3j4uJ4bGws79WrF1+0aBEXRTG8hgdJdefJOecHDx7kl112GY+OjuYpKSn8wQcf5E6nM3xGh4DNmzfzQYMG8cTERB4VFcW7dOnC586dy6uqqsJtWkj4+9//zlu3bs2tVisfOHAg//nnn8NtUsi5/vrreYsWLbjVauUtW7bk119/Pd+/f3+4zQoJa9euNf27nDBhAudcTpHzxBNP8PT0dG6z2fjFF1/M9+zZE16ja4C/86yoqOCXXnopT01N5ZGRkbxNmzZ8ypQpulRdBNFQYJw3spwoBEEQBEEQREigPIoEQRAEQRCEKSQUCYIgCIIgCFNIKBIEQRAEQRCmkFAkCIIgCIIgTCGhSBAEQRAEQZhCQpEgCIIgCIIwhYQiQRAEQRAEYQoJRYIgCIIgCMIUEooEQRAEQRCEKSQUCYIgCIIgCFNIKBIEUS84efIkMjIyMHfuXLXsp59+gtVqxerVq8NoGUEQRNOF1nomCKLe8NVXX2Hs2LH46aef0KlTJ/Tu3RtXXXUVXn755XCbRhAE0SQhoUgQRL1i2rRp+Pbbb9G/f39s374dv/zyC2w2W7jNIgiCaJKQUCQIol5RWVmJ7t2748iRI9i8eTN69OgRbpMIgiCaLDWeo7h//3588803qKysBACQ3iQIIhT8+eefOH78OCRJwsGDB8NtDkEQRJMmaI/i6dOncf3112PNmjVgjGHfvn1o164dbrvtNjRr1gwvvfRSbdlKEEQjx+FwYODAgejduzc6deqE+fPnY/v27UhLSwu3aQRBEE2SoD2KDzzwACIiInD48GHExMSo5ddffz1WrFgRUuMIgmhaPP744yguLsaCBQvwyCOPoGPHjrjtttvCbRZBEESTJWihuHLlSjz33HPIysrSlZ933nk4dOhQyAwjCKJpsW7dOsyfPx/vvvsuEhISIAgC3n33XXz//fd44403wm0eQRBEkyQi2B3Ky8t1nkSFM2fOUGQiQRA15qKLLoLT6dSVtW3bFsXFxWGyiCAIggjaozhs2DC888476jZjDJIk4fnnn8eIESNCahxBEARBEAQRPoIOZtmxYwcuvvhi9O3bF2vWrMGVV16JnTt34syZM/jxxx/Rvn372rKVIAiCIAiCqENqlEexuLgYCxcuxLZt21BWVoa+ffti2rRpaNGiRW3YSBAEQRAEQYQBSrhNEARBEARBmBJQMMvvv/8ecIc9e/assTEEQRAEQRBE/SEgj6IgCGCMgXMOxpharuyqLRNFsRbMJAiCIAiCIOqagKKe8/LycODAAeTl5eF///sfsrOz8frrr2Pr1q3YunUrXn/9dbRv3x7/+9//attegiAIgiAIoo4Ieo7iwIED8eSTT+Lyyy/XlX/11Vd44oknsHnz5pAaSBAEQRAEQYSHoPMobt++HdnZ2V7l2dnZ2LVrV0iMIgiCIAiCIMJP0EKxS5cumDdvHhwOh1rmcDgwb948dOnSJaTGEQRBEARBEOEj6KHnTZs2YcyYMeCcqxHOv//+Oxhj+OKLLzBw4MBaMZQgCIIgCIKoW4L2KA4cOBAHDhzA008/jZ49e6Jnz5545plncODAgaBF4vr16zFmzBhkZmaCMYZly5ZVu8+6devQt29f2Gw2dOjQAYsXLw72FAiCIAiCIIgACCiPopHY2Fjccccd53zw8vJy9OrVC7fddhuuvvrqatvn5eVh9OjRuOuuu/Dee+9h9erVuP3229GiRQvk5OScsz0EQRAEQRCEh4CGnj///HNcdtlliIyMxOeff+637ZVXXlkzQxjDp59+irFjx/ps88gjj2D58uXYsWOHWnbDDTegqKgIK1asqNFxCYIgCIIgCHMC8iiOHTsWBQUFSEtL8yvkGGO1mnB7w4YNGDlypK4sJycH06dP97mP3W6H3W5XtyVJwpkzZ9C8eXNdonCCaApwzlFaWorMzEwIQtAzTwgNkiTh+PHjiI+Pp3sJ0eSge0nTISChKEmS6fu6pqCgAOnp6bqy9PR0lJSUoLKyEtHR0V77zJs3D3PmzKkrEwmiQXDkyBFkZWWF24wGzfHjx9GqVatwm0EQYYXuJY2fGs1RbEjMmDEDubm56nZxcTFat26NI0eOICEhIYyWBQ/nHGfKHThwshyHTpfj8NlKHDtbgfziKhSWVOF0mQMuKagg9oAQGNA81oq0hCi0SIxCi6RotE6ORqvkWLRNjkFmUjQEgTwqDYGSkhK0atUK8fHx4TalwaNcw4Z4LyGIc4XuJU2HoIXiU0895bd+1qxZNTamOjIyMlBYWKgrKywsREJCgqk3EQBsNhtsNptXeUJCQr2+uYsSx/4TZdh+rBg7jhXjj/wS7CksRVGF08ceFiAyGgKA+KgINIuxIiE6AvG2SMTaLLBFWmCLEBApCBAEBsYAzgFJ4nCKEuwuCVVOEeUOF8rtIkqqnDhb7kBJlQsAcNoJnD7twh+nywCU6Y4cFSngvLR4dM6IR7fMBHRvmYhumYmItlpq9RoRNYeGSs8d5RrW93sJQdQmdC9p/AQtFD/99FPdttPpRF5eHiIiItC+fftaFYqDBw/GV199pStbtWoVBg8eXGvHrCtKqpzYfPAsfjl4BpsPncX2Y8WocHjP92QMyGoWjeyUOLRtHoPWyTFomRSNFknRSE+woXmsDdaI0M0XcYoSzpQ7cKLEjvziShwvqsTRs5U4dKYCB0+V4+DpclQ5JWw/Voztx4rxkXsFR4vA0Ck9Hv3bNkP/tskYlJ2M9ISokNlFEARBEETtE7RQ/O2337zKSkpKMHHiRIwbNy6ovsrKyrB//351Oy8vD1u3bkVycjJat26NGTNm4NixY3jnnXcAAHfddRcWLlyIhx9+GLfddhvWrFmDpUuXYvny5cGeRtipcorYlHcGP/55Cj/tP42dx4thHDWOtVrQLTMR3VsmomtmAjpnxKNDWhyiIuvOUxdpEZCeEIX0hCj0yEr0qneJEg6fqcCeglL8UVCKXceL8fvRYpwotWNXfgl25ZfgnQ2HAADtUmMxtEMKhnZIwQUdUhBra/QzH4g6Yv369XjhhRewefNm5OfnV5tBAZBzsubm5mLnzp1o1aoVZs6ciYkTJ9aJvQRBEA2FkDypExISMGfOHIwZMwa33HJLwPv9+uuvGDFihLqtzCWcMGECFi9ejPz8fBw+fFitz87OxvLly/HAAw/g1VdfRVZWFv797383mByKB0+VY83uE1i75wQ25Z2B3aUPDGrTPAYD2iajf5tm6NO6GTqkxcFSz+f+RVgEtEuNQ7vUOFzWowUAeS5lQUkVthwqwq+HzuCXg2ew83gJDpwsx4GT5XhnwyFYLQIGtUvGyC7puKRrOjKTzKcOEEQgUE5WgiCI2iHoJfx88cMPP2DMmDE4e/ZsKLqrNUpKSpCYmIji4uJan1ckSRzbjhZh5a5CrNpViP0n9HP7MhKiMPS8FFzQoTkGt0tBRmLjHZotrnTi5wOn8cO+U/hu70kcPlOhq+/TOglX9MzEmJ4tkEZD1LVGXX7/w0Vd5WRtCteSIHxB3/+mQ9AexQULFui2OefIz8/Hu+++i8suuyxkhjVUJInjtyNn8eXv+VixowD5xVVqXYTAMDA7GSM6pWF4p1SclxbXZCYCJ0ZHIqdbBnK6ZYBzjgOnyrHmjxNYuasAvx46i98OF+G3w0V4ZvkuXNAhBdf2y0JOt4w6HWYnmg6hyMlaUlICAPjzyqsQb3F/T92/uzncv7+5p8zXv7q2Zu3go1xTz41tAt2uaXkABLvnOd8JA7mXVtfGV71ZuY+2XqWB9qnd9lVnLFYKfLY3/muyj5+26jEY09czhlKXr8BKorERtFB85ZVXdNuCICA1NRUTJkzAjBkzQmZYQ4Jzjt0FpVi29Ri+3JaPY0WVal2s1YKLOqchp1sGLuqUioSoyDBaWj9gjKF9ahzap8ZhyoXtcKKkCl9tz8cXv+dj86Gz+H7fKXy/7xQSoyNxdd+WuPn8NmifGhdus4lGRChzsrqOHYPTQj9ozpXQJ/YiahNnLS6uQdQvghaKeXl5tWFHg+RESRWWbT2GT7Ycw+6CUrU8zhaBS7qmY3SPFhh6Xgp5xaohLSEKEy/IxsQLsnH4dAX+t+UoPt58FMeKKvHWjwfx1o8HMey8FNw2NBsXdUxtMl5Yon5hzMmq5JFr/dabSIiL8+GZUbwxSlE1XhwVg1fHX3v1vZe7Sb/pz4MVSHl1dXVJIJ7O6tpUU+9zVpZpcQ09t4Zt3TG9ugjQ02zsS+eprsa7rduH6+s519WXlJUBIy82Gkk0QijsNEjsLhGr/ziBpb8ewfq9J9VIZatFwF86p+HK3pn4S+c0Eoc1pHXzGDxwSUfcd/F5WL/vJN77+RBW7z6hehk7psfhzgvb48remYi00LJRRM0IZU7W6J49EU1ztIgmhuieekE0foIWiuPGjTP16DDGEBUVhQ4dOuCmm25Cp06dQmJgfWFvYSk+3HQEn/52FGc1Sa/7tWmGa/pmYXSPFkiMoWHlUGERGEZ0SsOITmk4cqYCi386iA83HcbewjI8+NE2vLxqL6aN6IBr+2WFNG8k0TRozDlZCYIgQknQUc8TJ07EsmXLkJSUhH79+gEAtmzZgqKiIlx66aXYtm0bDh48iNWrV+OCCy6oFaPPhWAitSodIr78/Tg+2HQYWw4XqeXpCTZc0zcL1/bLQjuaO1dnlFQ58d+fD+HNH/JwqswBAGiZFI37R56Hq/u0RAR5GKulsUYqanOy9unTBy+//DJGjBjhMydrXl4eunfvjmnTpqk5We+77z4sX7484PQ4jfVaEkQg0Pe/6RC0UHz00UdRUlKChQsXQhDkB7MkSbj//vsRHx+PZ555BnfddRd27tyJH374oVaMPhcC+XLvKyzFexsP439bjqLUvYRdhMDwl85puGFgKwzvmFbv8xs2ZqqcIt7feBhvfPcnTpbKUajtU2PxyKjOuKRrOs1h9ENjvbmvW7dOl5NVQcnJOnHiRBw8eBDr1q3T7fPAAw9g165dyMrKwhNPPBFUwu3Gei0JIhDo+990CFoopqam4scff0THjh115Xv37sWQIUNw6tQpbN++HcOGDUNRUVEobQ0Jvr7cDpeElbsK8O6GQ9iYd0Ytz2oWjRsHtsZf+2VRfr96RpVTxDsbDuL1dX+qa2APzE7GrCu6ontL71VkCLq5hxK6lkRThr7/TYeg5yi6XC7s3r3bSyju3r0bojtcPioqqsF4dQpLqvD+xsN4f9Nh1TslMODiLukYP6g1LjwvFQJ5D+slUZEW3HFhe9wwsDUWrfsT//khD5vyzmDMwh/w135ZeHhUZ6TEeQcfEARBEAQRGEELxVtuuQWTJ0/GY489hgEDBgAAfvnlF8ydOxe33norAOC7775Dt27dQmtpiPnt8Bl89Pt+rNhRAJc7dDk13oYbB7TCDQNb05JyDYiEqEg8PKozbj6/DZ5bsRufbT2Opb8exYodBfi/nE64aVAbmipAEARBEDUg6KFnURTx7LPPYuHChWp6ifT0dNx777145JFHYLFYcPjwYQiCgKysrFox+lxQ3OWtpi+FYIsBAPRv0wwThrRFTrcMiqBtBGw+dAZPLNuJXfly+oZerZIwd1x3dMuk4WgaLgoddC2Jpgx9/5sO57TWs7KEVUP6kihf7vYPfYyrB3XAhCFtSUA0QkSJ478/H8KL3+xBqd0Fi8Bwx4XtcP/F5zXpHJd0cw8ddC2Jpgx9/5sONXKfuVwufPvtt/jggw/UuYjHjx9HWVlZSI2rTb7NHY7nr+1FIrGRYhEYJgxpi28fHI7Le2RAlDjeWPcnLl/wPbYcPhtu8wiCIAiiQRC0UDx06BB69OiBq666CtOmTcPJkycBAM899xweeuihkBtYWyTHWsNtAlEHpCdE4fXx/fCPW/ohLd6GAyfLce0bP+HZr3fD7qK1SgmCIAjCH0ELxfvvvx/9+/fH2bNndUtdjRs3DqtXrw6pcQQRKnK6ZWDlAxfi6j4tIXFg0Xd/YuxrP2FvYWn1OxMEQRBEEyVoofj9999j5syZsFr1Hrm2bdvi2LFjITOMIEJNUowVL1/fG4tu7ofkWCv+yC/BmL//gHc3HMQ5TNUlCIIgiEZL0EJRkiQ1X6KWo0ePIj4+PiRGEURtMqp7BlZMH4bhHVNhd0l44rOduPPdzSjWrOFNEARBEEQNhOKll16K+fPnq9uMMZSVlWH27Nm4/PLLQ2kbQdQaafFReGviADxxRVdYLQJW7irE5Qu+x9YjReE2jSAIgiDqDUELxZdeegk//vgjunbtiqqqKtx0003qsPNzzz1XGzYSRK0gCAyTh2bjf1OHoE3zGBwrqsRfF/2Ed2gomiAIgiAA1DCPosvlwocffojff/8dZWVl6Nu3L8aPH68LbqmvUO4nwoySKice+fh3fL2jAAAwrk9LzB3XA9HWxpVzkb7/oYOuJdGUoe9/0yHoJfyqqqoQFRWFm2++uTbsIYiwkBAVidfH98V/fsjDvK9349PfjmFPQSn+cUs/tEqOCbd5BEEQBBEWgh56TktLw4QJE7Bq1SpIklQbNhFEWGCM4fZh7fDfyYPQPNaKXfkluOq1H/HzgdPhNo0gCIIgwkLQQvHtt99GRUUFrrrqKrRs2RLTp0/Hr7/+Whu2EURYGNy+Ob64dyh6tEzEmXIHbv73Rnyw6XC4zSIIgiCIOidooThu3Dh89NFHKCwsxNy5c7Fr1y6cf/756NixI5566qnasJEg6pzMpGgsvXMwxvTKhEvimPHJdvzty10QJQpyIQiCIJoONVrrGQDi4+MxadIkrFy5Er///jtiY2MxZ86coPt57bXX0LZtW0RFRWHQoEHYtGmT3/bz589Hp06dEB0djVatWuGBBx5AVVVVTU+DIHwSbbVgwQ29kXtJRwDAf37Iw53vbkaFwxVmywiCIAiibqixUKyqqsLSpUsxduxY9O3bF2fOnMH//d//BdXHkiVLkJubi9mzZ2PLli3o1asXcnJycOLECdP277//Ph599FHMnj0bf/zxB/7zn/9gyZIleOyxx2p6GgThF8YY7rv4PCy8qQ+sEQK+/aMQ1/1jA06U0I8TgiAIovETtFD85ptvMGHCBKSnp2Pq1KlIT0/HypUrcejQITz77LNB9fXyyy9jypQpmDRpErp27YpFixYhJiYGb775pmn7n376CRdccIGau/HSSy/FjTfeWK0XkiDOlSt6ZuKDKecjOdaKHcdKMO71n7D/BK0TTRAEQTRuajRHsbKyEu+88w4KCgrwj3/8AxdeeGHQB3Y4HNi8eTNGjhzpMUYQMHLkSGzYsMF0nyFDhmDz5s2qMDxw4AC++uorvyvC2O12lJSU6F4EURP6tWmGT+8egrbu5NzXvLEBvx48E26zCIIgCKLWCDqPYmFhYUjWdD516hREUUR6erquPD09Hbt37zbd56abbsKpU6cwdOhQcM7hcrlw1113+R16njdvXo3mThKEGW2ax+KTuy/A5Ld/wW+HizD+3xvx9xv74NJuGeE2jSAIgiBCTtAeRa1IrKqqqlNv3bp16zB37ly8/vrr2LJlCz755BMsX74cf/vb33zuM2PGDBQXF6uvI0eO1KqNROMnOdaK928/Hxd3ToPdJeGu/27G0l/pe1UfoOA4giCI0BK0R7G8vByPPPIIli5ditOnvRMRi6IYUD8pKSmwWCwoLCzUlRcWFiIjw9w788QTT+CWW27B7bffDgDo0aMHysvLcccdd+Dxxx+HIHjrXpvNBpvNFpBNBBEo0VYL/nFLPzz26XYs/fUoHv74d5wtd+DO4e3DbVqTRQmOW7RoEQYNGoT58+cjJycHe/bsQVpamld7JTjuzTffxJAhQ7B3715MnDgRjDG8/PLLYTgDgiCI+kfQHsWHH34Ya9aswRtvvAGbzYZ///vfmDNnDjIzM/HOO+8E3I/VakW/fv2wevVqtUySJKxevRqDBw823aeiosJLDFos8lq8NViymiDOiQiLgOeu6Yk7h7cDAMz7ejeeW7GbvothoraD42i+M0EQTZGgheIXX3yB119/Hddccw0iIiIwbNgwzJw5E3PnzsV7770XVF+5ubn417/+hbfffht//PEHpk6divLyckyaNAkAcOutt2LGjBlq+zFjxuCNN97Ahx9+iLy8PKxatQpPPPEExowZowpGgqhLGGOYcVkXPHpZZwDAG+v+xBOf7YBEibnrlLoIjps3bx4SExPVV6tWrUJ/IgRBEPWMoIeez5w5g3btZA9KQkICzpyRoz6HDh2KqVOnBtXX9ddfj5MnT2LWrFkoKChA7969sWLFCjXA5fDhwzoP4syZM8EYw8yZM3Hs2DGkpqZizJgxeOaZZ4I9DYIIKXcNb4+EqEg8vmw7/vvzYVQ4RDx/TU9EWGqcqpQIgroIjpsxYwZyc3PV7ZKSEhKLBEE0eoIWiu3atUNeXh5at26Nzp07Y+nSpRg4cCC++OILJCUlBW3APffcg3vuuce0bt26dXpjIyIwe/ZszJ49O+jjEERtc9Og1oi1WZC7dBs+2XIMVU4Rr97QB5EkFk0RRRGLFy/G6tWrceLECUiSpKtfs2ZNrR5fGxw3aNAg7N+/H/fffz/+9re/4YknnvBqT/OdCYJoigQtFCdNmoRt27Zh+PDhePTRRzFmzBgsXLgQTqeTJoATTZ6rerdEVKQF977/G77aXgCHawteG98HtgiaGmHk/vvvx+LFizF69Gh0794djLEa91VXwXFE40DxIAcafNkUsVgsiIiIOKe/S6JxELRQfOCBB9T3I0eOxO7du7F582Z06NABPXv2DKlxBNEQyemWgX/e2g93vLsZ3/5RiDvf3YxFN/dDVCSJRS0ffvghli5d6jdhfqBog+PGjh0LwBMc52vEgoLjmiYOhwP5+fmoqKgItyn1npiYGLRo0QJWqzXcphBhJGihWFVVhaioKHW7TZs2aNOmTUiNIoiGzkWd0vDWxAGY/PYvWLfnJKa88yv+dWt/EosarFYrOnToELL+cnNzMWHCBPTv3x8DBw7E/PnzvYLjWrZsiXnz5gGQg+Nefvll9OnTRx16puC4xo0kScjLy4PFYkFmZiasVit5zEzgnMPhcODkyZPIy8vDeeedRx72JkzQQjEpKQkDBw7E8OHDcdFFF2HIkCGIjo6uDdsIokFzQYcUvDVxIG5b/Au+33eKxKKBBx98EK+++ioWLlwYkoc1BccR1eFwOCBJElq1aoWYmJhwm1OviY6ORmRkJA4dOgSHw6FzEBFNC8aDHGP54YcfsH79eqxbtw4//fQTXC4X+vfvrwrHSy65pLZsDQklJSVITExEcXExEhISwm0O0QTYlHcGE9/ahAqHiAs7puKft4RvGLo+ff/HjRuHtWvXIjk5Gd26dUNkZKSu/pNPPgmTZYFRn64lERhVVVXIy8tDdnY2CZ8A8He96PvfdAjalzx06FA89thjWLlyJYqKirB27Vp06NABzz//PEaNGlUbNhJEg2ZgdjLemjgA0ZEWrN97Enf9dzPsLppEn5SUhHHjxmH48OFISUnR5ShMTEwMt3kEQRAEajD0DAB79+7FunXr1JfdbscVV1yBiy66KMTmEUTjYFC75nhr0gBMfGsT1u05iWnvbcHr4/vBGtF05/289dZb4TaBIAiCqIaghWLLli1RWVmJiy66CBdddBEeeeQR9OzZkyYEE0Q1nN+uOf4zYQBuW/wLvv3jBKYv+Q0LbujT5JNynzx5Env27AEAdOrUCampqWG2iCAIglAI+gmVmpqKiooKFBQUoKCgAIWFhaisrKwN2wii0XFBhxT845Z+sFoEfLW9AA99tA1iE13ur7y8HLfddhtatGiBCy+8EBdeeCEyMzMxefJkSl1CEBoYY35fTz75JA4ePOiz/ueff1b7WrduHfr27QubzYYOHTpg8eLF4TsxokEQtFDcunUrCgoK8Oijj8Jut+Oxxx5DSkoKhgwZgscff7w2bCSIRsVFndKw8KY+iBAYlm09jpnLdjTJvH25ubn47rvv8MUXX6CoqAhFRUX47LPP8N133+HBBx8Mt3kEUW/Iz89XX/Pnz0dCQoKu7KGHHlLbfvvtt7q6/Px89OvXDwCQl5eH0aNHY8SIEdi6dSumT5+O22+/Hd988024To1oAAQd9azl9OnTWLduHT777DN88MEHkCSp3me6p0gtor7w5e/Hcd8Hv0HiwJRh2Xjs8i61PoWjPn3/U1JS8PHHH3vNbV67di2uu+46nDx5MjyGBUh9upZEYJhF8XLOUems++dWdKSlRn/vixcvxvTp01FUVKQrP3jwILKzs/Hbb7+hd+/epvs+8sgjWL58OXbs2KGW3XDDDSgqKsKKFSu82lPUMwHUYI7iJ598ogax7Nq1C8nJyRg6dCheeuklDB8+vDZsJIhGyRU9M1FhF/Hw/37Hv77PQ2J0JO75y3nhNqvOqKioUHMcaklLS6OhZ6LOqHSK6Dqr7j1qu57KQYy1RvGkNWbDhg0YOXKkriwnJwfTp0+vUzuIhkXQ39K77roLF154Ie644w4MHz4cPXr0qA27CKJJcN2AVii1u/C3L3fhxZV7kRAdiVsHtw23WXXC4MGDMXv2bLzzzjuqt6KyshJz5szB4MGDw2wdQTRMhgwZ4rWKSllZGQCgoKDA68dZeno6SkpKUFlZSYtnEKYELRRPnDhRG3YQRJNl8tBsFFc6sWD1Psz6bCcSoyNxVe+W4Tar1nn11VeRk5ODrKws9OrVCwCwbds2REVF0Zwpos6IjrRg11M5YTlubbBkyRJ06dKlVvommiZ16/cmCMKUB0aeh5JKJxb/dBAPLt2GxOhIXNQpLdxm1Srdu3fHvn378N5772H37t0AgBtvvBHjx48nzwZRZzDG6nwIuDZp1aqVzzXUMzIyUFhYqCsrLCxEQkIC/c0RPmk8fx0E0YBhjGHWFV1xptyBz7cdx9T/bsH7UwahT+tm4TatVomJicGUKVPCbQZBNAkGDx6Mr776Sle2atUqmupB+IWEIkHUEwSB4cW/9kJRpRPr957EbYt/wUd3DUGHtLhwmxYyPv/8c1x22WWIjIzE559/7rftlVdeWUdWEUTj4fTp0ygoKNCVJSUlISoqCnfddRcWLlyIhx9+GLfddhvWrFmDpUuXYvny5WGylmgIkFAkiHqENULAG+P74qZ//YxtR4sx4c1N+OTuIUhPiKp+5wbA2LFjUVBQgLS0NIwdO9ZnO8ZYvU+1RRD1EWNUMwB88MEHuOGGG5CdnY3ly5fjgQcewKuvvoqsrCz8+9//Rk5O3c/RJBoO55RHEZBzKa1ZswadOnVqEBNoKfcT0RA4XWbHXxdtwIFT5eicEY+ldw1GQlTkOfdL3//QQdey4eEvLyDhDeVRJIAarMxy3XXXYeHChQDkVBb9+/fHddddh549e+J///tfyA0kiKZI8zgb3r5tIFLjbdhdUIo739kMu6txedjeeecd2O12r3KHw4F33nknDBYRBEEQRoIWiuvXr8ewYcMAAJ9++ik45ygqKsKCBQvw9NNPh9xAgmiqtEqOweJJAxBni8CGA6fxfx/9DqkRrQs9adIkFBcXe5WXlpZi0qRJYbCIIAiCMBK0UCwuLkZycjIAYMWKFbjmmmsQExOD0aNHY9++fSE3kCCaMt0yE/HGzX0RITB8vu04nvtmd7hNChmcc9MlzI4ePYrExMQwWEQQBEEYCTqYpVWrVtiwYQOSk5OxYsUKfPjhhwCAs2fP0pwPgqgFhp2Xiueu6YkHP9qGf3x3AFlJ0bilAa/e0qdPHzDGwBjDxRdfjIgIz21IFEXk5eVh1KhRYbSQIAiCUAhaKE6fPh3jx49HXFwc2rRpg4suugiAPCRdk+X8XnvtNbzwwgsoKChAr1698Pe//x0DBw702b6oqAiPP/44PvnkE5w5cwZt2rTB/Pnzcfnllwd9bIJoKFzTLwvHiyrx0qq9mP35TrRIjMbIrt7rJDcElGjnrVu3IicnB3FxnvQ/VqsVbdu2xTXXXBMm6wiCIAgtQQvFu+++GwMHDsSRI0dwySWXqGtKtmvXLug5ikuWLEFubi4WLVqEQYMGYf78+cjJycGePXuQlua9KoXD4cAll1yCtLQ0fPzxx2jZsiUOHTqEpKSkYE+DIBoc9/ylA46ercSSX4/g3g9+w9I7B6NHVsMbop09ezYAoG3btrjhhhtgs9nCbBFBEAThi6DnKAJA//79MW7cOJ0nYPTo0bjggguC6ufll1/GlClTMGnSJHTt2hWLFi1CTEwM3nzzTdP2b775Js6cOYNly5bhggsuQNu2bTF8+HB1nViCaMwwxvD0uO4Ydl4KKp0ibnv7Fxwrqgy3WTWma9eu2Lp1q1f5xo0b8euvv9aoz9deew1t27ZFVFQUBg0ahE2bNvltX1RUhGnTpqFFixaw2Wzo2LGj18oVBEEQTZmgPYq33Xab33pfIs+Iw+HA5s2bMWPGDLVMEASMHDkSGzZsMN3n888/x+DBgzFt2jR89tlnSE1NxU033YRHHnkEFov5Aut2u12XgqOkpCQg+wiiPhJpEfDa+L64btEG7C4oxW1v/YKPpoYmx2JdM23aNDz88MMYNGiQrvzYsWN47rnnsHHjxqD6oxEKgiCI0BO0R/Hs2bO614kTJ7BmzRp88sknKCoqCrifU6dOQRRFpKfr51mlp6d7LT+kcODAAXz88ccQRRFfffUVnnjiCbz00kt+h7znzZuHxMRE9dWqVauAbSSI+khCVCTenDgAafE27CksxbT3tsApSuE2K2h27dqFvn37epX36dMHu3btCro/GqEgCIIIPUELxU8//VT3+vLLL3HgwAFcf/31OP/882vDRhVJkpCWloZ//vOf6NevH66//no8/vjjWLRokc99ZsyYgeLiYvV15MiRWrWRIOqCzKRo/GfCAERHWvD9vlOY9dlOnOMiS3WOzWZDYWGhV3l+fr4uEjoQlBEK7fJlwYxQpKeno3v37pg7d67PpQPtdjtKSkp0L4IgiMZOjeYoenUiCMjNzcUrr7wS8D4pKSmwWCxeD4rCwkJkZGSY7tOiRQt07NhRN8zcpUsXFBQUwOFwmO5js9mQkJCgexFEY6BHViIW3NgHjAEfbDqM//yQF26TguLSSy9Vf8gpFBUV4bHHHsMll1wSVF91MUJBoxNEuFDSSfl6Pfnkkzh48KDP+p9//hmA/CPspptuQseOHSEIAqZPnx7eEyMaBCERigDw559/wuVyBdzearWiX79+WL16tVomSRJWr16NwYMHm+5zwQUXYP/+/ZAkzzDb3r170aJFC1it1pobTxANlEu6puPxy+U11p/56g+s3GkuiuojL774Io4cOYI2bdpgxIgRGDFiBLKzs1FQUICXXnqp1o8f7AgFjU4Q4SI/P199zZ8/HwkJCbqyhx56SG377bff6ury8/PRr18/ALJXPDU1FTNnzqQpFkTABB3Mkpubq9vmnCM/Px/Lly/HhAkTgu5rwoQJ6N+/PwYOHIj58+ejvLxcXb7r1ltvRcuWLTFv3jwAwNSpU7Fw4ULcf//9uPfee7Fv3z7MnTsX9913X7CnQRCNhslDs5F3qhzvbTyM+z/cio+nDka3zPqfNqdly5b4/fff8d5772Hbtm2Ijo7GpEmTcOONNyIyMrjgnJqOUERGRvocoTD++LTZbJTKpzHCOeCsqPvjRsYAJisTmaH9DicmJoIx5vW9PnXqFACgefPmPr/zbdu2xauvvgog8MBTgghaKP7222+6bUEQkJqaipdeeqnaiGgj119/PU6ePIlZs2ahoKAAvXv3xooVK9Tho8OHD6t5GgF5VZhvvvkGDzzwAHr27ImWLVvi/vvvxyOPPBLsaRBEo4Exhiev7IbDZyrw/b5TuP3tX/HZtAuQllD/V0qKjY3FHXfccc79aEcolITeygjFPffcY7rPBRdcgPfffx+SJKn3GRqhaII4K4C5mXV/3MeOA9bYuj8uQQRJ0EJx7dq1ITXgnnvu8XkjX7dunVfZ4MGD1fkWBEHIRFoELLypL65+/Uf8ebIcU975FUvuHIyoSPO0UfWJXbt24fDhw17zjK+88sqg+qERCoIAhgwZonOwAEBZWVmYrCEaA0ELRYUTJ05gz549AIBOnTqZ5ikjCKLuSIyW0+Zc9dqP2Ha0GA9+tA0Lb5TXVa6PHDhwAOPGjcP27dvBGFOjthV7fUUf+4JGKIgaERkje/fCcdxaYMmSJejSpUut9E00TYIWiiUlJZg2bRo++OADNajEYrHg+uuvx2uvvYbExPo/N4ogGittmsdi0c39cPO/N2L57/nomBaP+0eeF26zTLn//vuRnZ2N1atXIzs7G5s2bcLp06fx4IMP4sUXX6xRnzRCQQQNY41qCLhVq1bo0KFDuM0gGhFBRz1PmTIFGzduxPLly1FUVISioiJ8+eWX+PXXX3HnnXfWho0EQQTB+e2a4+mx3QEAr3y7F8t/zw+zReZs2LABTz31FFJSUiAIAgRBwNChQzFv3jwa/iUIgqgnBO1R/PLLL/HNN99g6NChallOTg7+9a9/YdSoUSE1jiCImnHDwNbYW1iGN3/Mw4MfbUWb5jHo3rJ+eftF8f/bu/OoKK60f+DfBmkWZSciIpvgCrgiqIkRMyhxAc0yUTQB95W4oE40GnGLqFFwiSMRoyQTFzQuyYzRY+QVFUUZFXxdcQPRCCioIKAgcH9/+NI/WxqksKFZvp9z+hz71q2qp8o6l6erbt1bDENDQwAv31q+f/8+2rRpAzs7O0W3FiKSJisrq8zYoSYmJtDTe/lyW+n86rm5uXj48CESExMhl8vRvn37mg6V6gjJiaK5ubnKx8vGxsYwNTVVS1BE9Pa+HtAWtx7m4tj1hxj381n8FvguatN70C4uLrhw4QIcHBzg4eGBlStXQi6XY9OmTWjZsqWmwyOqk16dnajUjh07MGzYMAAvp8gsde7cOWzfvh12dnZISUmpqRCpjpH86Hn+/PkICgpS+sWSnp6O2bNn45tvvlFrcERUdY20tbDOrzNavtMYadnPMfFf51BQJO0Fkeo0f/58RT/nxYsXIzk5Gb169cIff/yBdevWaTg6otpp5MiRePLkSZlye3t7CCFUfkqTRAAqlzNJpIpU6o5i587Kb07euHEDtra2sLW1BfDybUJdXV08fPiQ/RSJahFjfR38GNANg7+PxfnUJ1j87yuaDknB29tb8W8nJydcu3YNjx49gqmpaa19U5uIqKGpVKJYOoAtEdU9DhaN8f3wLhi5NR6/JWpgGBAVXrx4AX19fSQmJsLFxUVRbmZmpsGoiIjodZVKFIODg6s7DiKqRu+3fgfzBrbHoj1nNR0KAEBHRwe2traSx0okIqKaJbmPIhHVTaPftceQThqYqqwc8+bNw9dff41Hjx5pOhQiIipHlWdmIaK6RSaTYdFgF6zXdCD/5/vvv8fNmzfRvHlz2NnZoXFj5UGPz58/r6HIiIioFBNFogZEW6v2vCTCvs9ERLUfE0UiqjHr1q3D+PHjoaenh1GjRqFFixZK8y8TEVHt8lYtdOkYTERElREUFIScnBwAgIODAzIzMzUcERERVaRKieLPP/8MV1dX6OvrQ19fHx06dMC//vUvdcdGRPVM8+bNsWfPHty5cwdCCNy7dw+pqakqP0REpHmSHz2Hhobim2++QWBgIN59910AQGxsLCZOnIjMzEzMmDFD7UESUf0wf/58fPnllwgMDIRMJkO3bt3K1BFCQCaTcegcIqJaQHKiuH79emzcuBH+/v6KMl9fXzg7O2PhwoVMFImoXOPHj4efnx/u3LmDDh064MiRIzA3N9d0WES12ptmKgoODsbIkSPh4OCgcnlcXBy6d++OvXv3YuPGjUhMTERBQYHi7/arsyQRvU5yopiWloaePXuWKe/ZsyfS0tLUEhQR1V+GhoZwcXHB1q1b8e6770JXV1fTIRHVaq/+bY2KisKCBQuQlJSkKGvSpImiv++RI0fg7OystH7pj7Hjx4+jb9++WLZsGUxMTLB161b4+PjgzJkz6Ny5cw0cCdVFkhNFJycn7Nq1C19//bVSeVRUFFq1aqW2wIiofgsICNB0CEQQQuBZ0bMa369+I/1Kz2nerFkzxb+NjY0hk8mUygAoEkVzc/Myy0qtWbNG6fuyZcvw22+/4d///jcTRSqX5ERx0aJFGDp0KI4fP67oo3jy5ElER0dj165dag+QiIioujwregaP7R41vt8zw8/AQMegxvf7qpKSEjx9+pRzrFOFJCeKn3zyCc6cOYOwsDDs378fANCuXTvEx8fzFwkREZEG9ezZs8zYpLm5uSrrrlq1Crm5ufjss89qIjSqo6o04HbXrl3xyy+/qDsWIiKiGqXfSB9nhp/RyH6rQ1RUFNq1a/fGetu3b8eiRYvw22+/oWnTptUSC9UPksdR1NbWxoMHD8qUZ2VlQVtbWy1BEVHDUVhYiKSkJBQVFb31tjZs2AB7e3vo6enBw8MD8fHxlVpv586dkMlknFawAZLJZDDQMajxT2X7J0plY2MDJycnpc/rdu7cibFjx2LXrl3w8vKqljio/pCcKJY3E0tBQQHkcvlbB0REDUN+fj7GjBkDAwMDODs7KwbZ/vLLL7F8+XLJ24uKikJQUBCCg4Nx/vx5dOzYEd7e3ip/2L4qJSUFs2bNQq9evap0HER1yY4dOzBq1Cjs2LEDAwcO1HQ4VAdUOlFct24d1q1bB5lMhs2bNyu+r1u3DmFhYZgyZQratm1bpSB4F4Co4Zk7dy4uXLiAmJgY6OnpKcq9vLwQFRUleXuhoaEYN24cRo0ahfbt2yM8PBwGBgbYsmVLuesUFxdjxIgRWLRoEVq2bFml4yCqTbKyspCenq70ef78OYCXj5v9/f2xevVqeHh4KJZnZ2drOGqqzSrdRzEsLAzAyzuK4eHhSo+Z5XI57O3tER4eLjmA0rsA4eHh8PDwwJo1a+Dt7Y2kpKQK+03wLgBR3bZ//35ERUWhe/fuSo/hnJ2dcevWLUnbKiwsxLlz5zB37lxFmZaWFry8vBAXF1fueosXL0bTpk0xZswYnDhxosJ9FBQUoKCgQPG9dM5qotpE1aPkHTt2YNiwYdi0aROKioowZcoUTJkyRbE8ICAAkZGRNRgl1SWVThSTk5MBAH369MHevXthamqqlgBevQsAAOHh4Thw4AC2bNmCOXPmqFzn1bsAJ06cwJMnT9QSCxHVnIcPH6r8MZiXlye5/1ZmZiaKi4thaWmpVG5paYlr166pXCc2NhY//vgjEhMTK7WPkJAQLFq0SFJcROo2cuRIjBw5sky5vb19uV3DSsXExFRPUFSvSe6jePToUbUliaV3AV79BST1LsCbFBQUICcnR+lDRJrn5uaGAwcOKL6XJoebN29Gjx49qnXfT58+xRdffIGIiAhYWFhUap25c+ciOztb8bl79261xkhEVBtUaXgcdeFdAKKGa9myZejfvz+uXLmCoqIirF27FleuXMGpU6dw7NgxSduysLCAtrY2MjIylMozMjJUzlJx69YtpKSkwMfHR1FWUlICAGjUqBGSkpLg6OiotI6uri6nGySiBkfyHUVN4l0AovrjvffeQ2JiIoqKiuDq6orDhw+jadOmiIuLQ9euXSVtSy6Xo2vXroiOjlaUlZSUIDo6WuXdybZt2+LixYtITExUfHx9fdGnTx8kJibCxsbmrY+PiKg+0OgdRd4FIGrYHB0dERERoZZtBQUFISAgAG5ubnB3d8eaNWuQl5en6P/s7+8Pa2trhISEQE9PDy4uLkrrm5iYAECZciKihkyjieKrdwFKh7gpvQsQGBhYpn7pXYBXzZ8/H0+fPsXatWt5F4ColpPSR9jIyEjStocOHYqHDx9iwYIFSE9PR6dOnXDo0CFF15bU1NQyU5sREVHFqpQoPnnyBPHx8Xjw4IHijl4pf39/SdviXQCihsPExKTSbzQXFxdL3n5gYKDKH5nAm9/45PAgRERlSU4U//3vf2PEiBHIzc2FkZGRUqMvk8kkJ4q8C0DUcBw9elTx75SUFMyZMwcjR45U9COMi4vDTz/9hJCQEE2FSEREr5CJNw289JrWrVtjwIABWLZsGQwMDKorrmqTk5MDY2NjZGdnS360RVTX1abr/29/+xvGjh0LPz8/pfLt27dj06ZNtX7Mt9p0Lqlynj9/juTkZDg4OCjNBkSqVXS+eP03HJJv1f3111+YOnVqnUwSiaj2iIuLg5ubW5lyNze3Sk/jSURE1Utyoujt7Y2zZ89WRyxE1IDY2NiofON58+bNfDGNiKiWkNxHceDAgZg9ezauXLkCV1dX6OjoKC339fVVW3BEVH+FhYXhk08+wcGDB+Hh4QEAiI+Px40bN7Bnzx4NR0dUe7zpBbDg4GCMHDkSDg4OKpfHxcWhe/fuiI2NxVdffYVr164hPz8fdnZ2mDBhAmbMmFEdYVM9ITlRHDduHICX0+i9TiaTVelNRSJqeAYMGIAbN27gn//8p2ImJh8fH0ycOJF3FIlekZaWpvh3VFQUFixYgKSkJEVZkyZNkJmZCQA4cuQInJ2dldY3NzcHADRu3BiBgYHo0KEDGjdujNjYWEyYMAGNGzfG+PHja+BIqC6SnCi+PhwOEVFVtWjRAsuWLdN0GNSACSEgnj2r8f3K9PUrPVTUqxNQGBsbQyaTlZmUojRRNDc3VzlhBQB07twZnTt3Vny3t7fH3r17ceLECSaKVC6NDrhNRA3bkydP8OOPP+Lq1asAAGdnZ4wePRrGxsYajowaCvHsGZK6SJsyUh3anD8HmYZfCk1ISMCpU6ewdOlSjcZBtVuVBig8duwYfHx84OTkBCcnJ/j6+uLEiRPqjo2I6rGzZ8/C0dERYWFhePToER49eoTQ0FA4Ojri/Pnzmg6PqE7q2bMnmjRpovR5XYsWLaCrqws3NzdMmTIFY8eO1UCkVFdIvqP4yy+/YNSoUfj4448xdepUAMDJkyfxt7/9DZGRkRg+fLjagySi+mfGjBnw9fVFREQEGjV62RQVFRVh7NixmD59Oo4fP67hCKkhkOnro835cxrZb3WIiopCu3btKqxz4sQJ5Obm4vTp05gzZw6cnJzKjGdKVEpyovjtt99i5cqVSm9JTZ06FaGhoViyZAkTRSKqlLNnzyoliQDQqFEj/OMf/1A5viJRdZDJZBp/BKxONjY2cHJyqrBO6dvRrq6uyMjIwMKFC5koUrkkP3q+ffs2fHx8ypT7+voiOTlZLUERUf1nZGSE1NTUMuV3796FoaGhBiIianhKSkpQUFCg6TCoFpN8R9HGxgbR0dFlfrEcOXKEQ1oQUaUNHToUY8aMwapVq9CzZ08AL7uxzJ49m3c3iKooKysL6enpSmUmJibQ09PDhg0bYGtri7Zt2wIAjh8/jlWrVim6kRGpIjlRnDlzJqZOnYrExESlxj0yMhJr165Ve4BEVD+tWrUKMpkM/v7+KCoqAgDo6Ohg0qRJWL58uYajI6qbvLy8ypTt2LEDw4YNQ0lJCebOnYvk5GQ0atQIjo6OWLFiBSZMmKCBSKmukAkhhNSV9u3bh9WrVyuGtGjXrh1mz56NwYMHqz1AdeNE5tSQ1cbrPz8/H7du3QIAODo61pl55GvjuaSKPX/+HMnJyXBwcICenp6mw6n1KjpfvP4bjiqNo/jRRx/ho48+UncsRNQAGRgYwNXVVdNhEBGRChxwm4hq1OjRoytVb8uWLdUcCRERvUmlEkUzMzNcv34dFhYWMDU1rXDaoUePHqktOCKqfyIjI2FnZ4fOnTujCj1fiIioBlUqUQwLC1MMVxEWFlbp+SmJiF43adIk7NixA8nJyRg1ahQ+//xzmJmZaTosIiJSoUovs9Rl7IBLDVltuf4LCgqwd+9ebNmyBadOncLAgQMxZswY9OvXr878EK0t55Iqr/TlDDs7uzrz0pQm5efn486dO3yZpYGT3Efx/Pnz0NHRUXQ+/+2337B161a0b98eCxcuhFwuV3uQRFS/6Orqws/PD35+frhz5w4iIyMxefJkFBUV4fLlyyrnpyV6W3K5HFpaWrh//z7eeecdyOXyOvPDpCYJIVBYWIiHDx9CS0uLf9cbOMmJ4oQJEzBnzhy4urri9u3bGDp0KD7++GPs3r0b+fn5WLNmTTWESUT1lZaWFmQyGYQQKC4ufqttbdiwAd999x3S09PRsWNHrF+/Hu7u7irrRkRE4Oeff8alS5cAAF27dsWyZcvKrU91n5aWFhwcHJCWlob79+9rOpxaz8DAALa2ttDSkjyJG9UjkhPF69evo1OnTgCA3bt3o3fv3ti+fTtOnjyJYcOGMVEkojd69dFzbGwsBg0ahO+//x4ffvhhlf8oRUVFISgoCOHh4fDw8MCaNWvg7e2NpKQkNG3atEz9mJgY+Pn5oWfPntDT08OKFSvQr18/XL58GdbW1m97iFRLyeVy2Nraoqio6K1/mNRn2traaNSoEe+4kvREUQiBkpISAC+n7Rs0aBCAl1P7ZWZmqjc6Iqp3Jk+ejJ07d8LGxgajR4/Gjh07YGFh8dbbDQ0Nxbhx4zBq1CgAQHh4OA4cOIAtW7Zgzpw5Zepv27ZN6fvmzZuxZ88eREdHw9/f/63jodpLJpNBR0cHOjo6mg6FqNaTnCi6ublh6dKl8PLywrFjx7Bx40YAQHJyMiwtLdUeIBHVL+Hh4bC1tUXLli1x7NgxHDt2TGW9vXv3VnqbhYWFOHfuHObOnaso09LSgpeXF+Li4iq1jfz8fLx48aLcN7ALCgpQUFCg+J6Tk1Pp+IiI6irJz3jWrFmD8+fPIzAwEPPmzYOTkxMA4Ndff1XM/SzVhg0bYG9vDz09PXh4eCA+Pr7cuhEREejVqxdMTU1hamoKLy+vCusTUe3i7++PPn36wMTEBMbGxuV+pMjMzERxcXGZH6uWlpZIT0+v1Da++uorNG/eXOVcuQAQEhKiFJ+NjY2kGImI6iLJdxQ7dOiAixcvlin/7rvvoK2tLTkA9isialgiIyM1HUIZy5cvx86dOxETE1PuHMBz585FUFCQ4ntOTg6TRSKq9yTfUbx79y7u3bun+B4fH4/p06fj559/rlJ/j1f7FbVv3x7h4eEwMDAod/qubdu2YfLkyejUqRPatm2LzZs3o6SkBNHR0ZL3TUT1g4WFBbS1tZGRkaFUnpGRgWbNmlW47qpVq7B8+XIcPnwYHTp0KLeerq4ujIyMlD5ERPWd5ERx+PDhOHr0KAAgPT0dffv2RXx8PObNm4fFixdL2lZpv6JXH/VUR7+inJwcpQ8R1S9yuRxdu3ZV+sFY+gOyR48e5a63cuVKLFmyBIcOHYKbm1tNhEpEVKdIThQvXbqkGGds165dcHFxwalTp7Bt2zbJj5TYr4iI1CUoKAgRERH46aefcPXqVUyaNAl5eXmKt6D9/f2VXnZZsWIFvvnmG2zZsgX29vZIT09Heno6cnNzNXUIRES1juQ+ii9evICuri6Al8Pj+Pr6AgDatm2LtLQ09Ub3BuxXRESlhg4diocPH2LBggVIT09Hp06dcOjQIcUP0dTUVKUxGjdu3IjCwkJ8+umnStsJDg7GwoULazJ0IqJaS3Ki6OzsjPDwcAwcOBB//vknlixZAgC4f/8+zM3NJW1LHf2Kjhw58sZ+RaWJLRHVb4GBgQgMDFS5LCYmRul7SkpK9QdERFTHSX70vGLFCvzwww/w9PSEn58fOnbsCAD4/fffJU99xX5FRERERLWX5DuKnp6eyMzMRE5ODkxNTRXl48ePh4GBgeQAgoKCEBAQADc3N7i7u2PNmjVl+hVZW1sjJCQEwMtEdcGCBdi+fbuiXxEANGnSBE2aNJG8fyIiIiJSTXKiCLycA/LVJBEA7O3tqxQA+xURERER1U4yIYR4U6UuXbogOjoapqam6Ny5c4WThJ8/f16tAapbTk4OjI2NkZ2dzXHQqMHh9a8+PJfUkPH6bzgqdUdx8ODBihdChgwZUp3xEBEREVEtUak7ivUJfwVRQ8brX314Lqkh4/XfcFSpj2Kp3NxclJSUKJXxgiEiIiKqHyQPj5OcnIyBAweicePGMDY2hqmpKUxNTWFiYlLmBRciIiIiqrsk31H8/PPPIYTAli1bYGlpWeGLLURERERUd0lOFC9cuIBz586hTZs21REPEREREdUSkh89d+vWDXfv3q2OWIiIiIioFpF8R3Hz5s2YOHEi/vrrL7i4uEBHR0dpeUXzLhMRERFR3SE5UXz48CFu3bqlmGIPAGQyGYQQkMlkKC4uVmuARERERKQZkhPF0aNHo3PnztixYwdfZiEiIiKqxyQninfu3MHvv/8OJyen6oiHiIiIiGoJyS+zfPDBB7hw4UJ1xEJEREREtYjkO4o+Pj6YMWMGLl68CFdX1zIvs/j6+qotOCIiIiLSHMmJ4sSJEwEAixcvLrOML7MQERER1R+SE8XX53YmIiIiovpJch9FVZ48eaKOzRARERFRLSI5UVyxYgWioqIU3//+97/DzMwM1tbWfMmFiDRqw4YNsLe3h56eHjw8PBAfH19h/d27d6Nt27bQ09ODq6sr/vjjjxqKlIiobpCcKIaHh8PGxgYA8Oeff+LIkSM4dOgQ+vfvj9mzZ6s9QCKiyoiKikJQUBCCg4Nx/vx5dOzYEd7e3njw4IHK+qdOnYKfnx/GjBmDhIQEDBkyBEOGDMGlS5dqOHIiotpLJoQQUlbQ19fH9evXYWNjg2nTpuH58+f44YcfcP36dXh4eODx48fVFata5OTkwNjYGNnZ2TAyMtJ0OEQ1qj5f/x4eHujWrRu+//57AC/7U9vY2ODLL7/EnDlzytQfOnQo8vLy8J///EdR1r17d3Tq1Anh4eFv3F/puUy+cx2GRobqOxCiOuBpzlM42LWul20JKZP8MoupqSnu3r0LGxsbHDp0CEuXLgUACCH4xjMRaURhYSHOnTuHuXPnKsq0tLTg5eWFuLg4levExcUhKChIqczb2xv79+9XWb+goAAFBQWK7zk5OQCAAX8Mhra+9lseAVHdUvyMf+8bCsmPnj/++GMMHz4cffv2RVZWFvr37w8ASEhI4GwtRKQRmZmZKC4uhqWlpVK5paUl0tPTVa6Tnp4uqX5ISAiMjY0Vn9IuOERE9ZnkO4phYWGwt7fH3bt3sXLlSjRp0gQAkJaWhsmTJ6s9QCKi2mDu3LlKdyBzcnJgY2ODPwb8xkfP1OA8zXkKB7TWdBhUAyQnijo6Opg1a1aZ8hkzZqglICIiqSwsLKCtrY2MjAyl8oyMDDRr1kzlOs2aNZNUX1dXF7q6umXKzUws2UeLGhwdLQNNh0A1RHKiCAA3btzA0aNH8eDBgzIDcC9YsEAtgRERVZZcLkfXrl0RHR2NIUOGAHj5Mkt0dDQCAwNVrtOjRw9ER0dj+vTpirI///wTPXr0qIGIiYjqBsl9FCMiItCuXTssWLAAv/76K/bt26f4lNcJ/E049hkRva2goCBERETgp59+wtWrVzFp0iTk5eVh1KhRAAB/f3+ll12mTZuGQ4cOYfXq1bh27RoWLlyIs2fPlptYEhE1SEIiW1tbsXz5cqmrlWvnzp1CLpeLLVu2iMuXL4tx48YJExMTkZGRobL+yZMnhba2tli5cqW4cuWKmD9/vtDR0REXL16s1P6ys7MFAJGdna22YyCqK+r79b9+/Xpha2sr5HK5cHd3F6dPn1Ys6927twgICFCqv2vXLtG6dWshl8uFs7OzOHDgQKX3Vd/PJVFFeP03HJLHUTQyMkJiYiJatmyplkRVU2Ofcewnaoh4/asPzyU1ZLz+Gw7JfRT//ve/4/Dhw5g4ceJb71wTY59lZ2cD+P9joBE1JKXXvcTfh6RC6TlkW0INEduShkNyoujk5IRvvvkGp0+fhqurK3R0dJSWT506tdLbqmjss2vXrqlcpypjny1atKhMOcdAo4YsKysLxsbGmg6jTsvKygLAtoQaNrYl9Z/kRHHTpk1o0qQJjh07hmPHjiktk8lkkhLFmvD62GdPnjyBnZ0dUlNTeXFrQOnYc3fv3uXjCg3Izs6Gra0tzMzMNB1KnVd6DtmWaAbbEs1iW9JwSE4Uk5OT1bZzTY59ZmxszMZFg4yMjHj+NUhLS/KAB/Sa0nPItkSz2JZoFtuS+k+j/8Ovjn1WqnTss/LGMisd++xVHPuMiIiISP2qNOD2vXv38PvvvyM1NRWFhYVKy0JDQyVtKygoCAEBAXBzc4O7uzvWrFlTZuwza2trhISEAHg59lnv3r2xevVqDBw4EDt37sTZs2exadOmqhwKEREREZVDcqIYHR0NX19ftGzZEteuXYOLiwtSUlIghECXLl0kBzB06FA8fPgQCxYsQHp6Ojp16oRDhw4pXlhJTU1VurXds2dPbN++HfPnz8fXX3+NVq1aYf/+/XBxcanU/nR1dREcHKzycTRVP55/zeL5Vx+eS83i+dcsnv+GQ/I4iu7u7ujfvz8WLVoEQ0NDXLhwAU2bNsWIESPw4YcfYtKkSdUVKxERERHVIMmJoqGhIRITE+Ho6AhTU1PExsbC2dkZFy5cwODBg5GSklJNoRIRERFRTZL8Mkvjxo0V/RKtrKxw69YtxbLMzEz1RUZEREREGiW5j2L37t0RGxuLdu3aYcCAAZg5cyYuXryIvXv3onv37tURIxERERFpgORHz7dv30Zubi46dOiAvLw8zJw5E6dOnUKrVq0QGhoKOzu76oqViIiIiGqQpEfPxcXFuHfvHmxtbQG8fAwdHh6O//3f/8WePXtqPEk8fvw4fHx80Lx5c8hksnLney4VExMDmUxW5vP69H8bNmyAvb099PT04OHhgfj4+Go8irqrOs7/woULyyxv27ZtNR9J3ST1/AMv5z6fN28e7OzsoKurC3t7e2zZskWpzu7du9G2bVvo6enB1dUVf/zxRzUdQe3C9kRz2JZoFtsSqoikRFFbWxv9+vXD48ePqyseSfLy8tCxY0ds2LBB0npJSUlIS0tTfJo2bapYFhUVhaCgIAQHB+P8+fPo2LEjvL298eDBA3WHX+dVx/kHAGdnZ6XlsbGx6gy73qjK+f/ss88QHR2NH3/8EUlJSdixYwfatGmjWH7q1Cn4+flhzJgxSEhIwJAhQzBkyBBcunSpOg6hVmF7ojlsSzSLbQlVSEjUtWtXceTIEamrVTsAYt++fRXWOXr0qAAgHj9+XG4dd3d3MWXKFMX34uJi0bx5cxESEqKmSOsndZ3/4OBg0bFjR7XG1hBU5vwfPHhQGBsbi6ysrHLrfPbZZ2LgwIFKZR4eHmLChAnqCLPOYHuiOWxLNIttCb1O8lvPS5cuxaxZs/Cf//wHaWlpyMnJUfrUBZ06dYKVlRX69u2LkydPKsoLCwtx7tw5eHl5Kcq0tLTg5eWFuLg4TYRaL5V3/kvduHEDzZs3R8uWLTFixAikpqZqIMr65/fff4ebmxtWrlwJa2trtG7dGrNmzcKzZ88UdeLi4pSufwDw9vbm9V8Btieaw7ZEM9iWNCyVfut58eLFmDlzJgYMGAAA8PX1hUwmUywXQkAmk6G4uFj9UaqJlZUVwsPD4ebmhoKCAmzevBmenp44c+YMunTpgszMTBQXFytmhSllaWmJa9euaSjq+uNN5x8APDw8EBkZiTZt2iAtLQ2LFi1Cr169cOnSJRgaGmr4COq227dvIzY2Fnp6eti3bx8yMzMxefJkZGVlYevWrQCA9PR0ldf/6/3uiO2JJrEt0Sy2JQ1LpRPFRYsWYeLEiTh69Gh1xlOt2rRpo9SHomfPnrh16xbCwsLwr3/9S4ORNQyVOf/9+/dXLO/QoQM8PDxgZ2eHXbt2YcyYMTUec31SUlICmUyGbdu2wdjYGMDLudk//fRT/POf/4S+vr6GI6xb2J5oDtsSzWJb0rBUOlEU/zeKTu/evastGE1wd3dXdHC2sLCAtrY2MjIylOpkZGSgWbNmmgiv3nv1/KtiYmKC1q1b4+bNmzUYVf1kZWUFa2trRcMOAO3atYMQAvfu3UOrVq3QrFkzXv9vge2J5rAtqTlsSxoWSX0UX33UXF8kJibCysoKACCXy9G1a1dER0crlpeUlCA6Oho9evTQVIj12qvnX5Xc3FzcunWrwjpUOe+++y7u37+P3NxcRdn169ehpaWFFi1aAAB69OihdP0DwJ9//snrv5LYnmgO25Kaw7akgansWy8ymUyYmJgIU1PTCj816enTpyIhIUEkJCQIACI0NFQkJCSIO3fuCCGEmDNnjvjiiy8U9cPCwsT+/fvFjRs3xMWLF8W0adOElpaW0lvcO3fuFLq6uiIyMlJcuXJFjB8/XpiYmIj09PQaPba6oDrO/8yZM0VMTIxITk4WJ0+eFF5eXsLCwkI8ePCgxo+vtpN6/p8+fSpatGghPv30U3H58mVx7Ngx0apVKzF27FhFnZMnT4pGjRqJVatWiatXr4rg4GCho6MjLl68WOPHV9PYnmgO2xLNYltCFZGUKK5du1ZERkZW+KlJpUMkvP4JCAgQQggREBAgevfurai/YsUK4ejoKPT09ISZmZnw9PQU//M//1Nmu+vXrxe2trZCLpcLd3d3cfr06Ro6orqlOs7/0KFDhZWVlZDL5cLa2loMHTpU3Lx5swaPqu6Qev6FEOLq1avCy8tL6OvrixYtWoigoCCRn5+vVGfXrl2idevWQi6XC2dnZ3HgwIEaOiLNYnuiOWxLNIttCVWk0lP4aWlpIT09vcyApkRERERUP1W6j2J97J9IREREROWrdKJYyRuPRERERFRPVPrRMxERERE1LJKn8CMiIiKihoGJIhERERGpxESRiIiIiFRiokhEREREKjFRJCIiIiKVmCgSERERkUpMFImIiIhIJSaKVCFPT09Mnz5d02EoVDWerKwsNG3aFCkpKWqP6XXDhg3D6tWrq30/RHUJ2xLp2JZQbcBEsRYIDw+HoaEhioqKFGW5ubnQ0dGBp6enUt2YmBjIZDLcunWrhqOsWer+o/Ltt99i8ODBsLe3V9s2yzN//nx8++23yM7OrvZ9Eb2KbUlZbEuI3g4TxVqgT58+yM3NxdmzZxVlJ06cQLNmzXDmzBk8f/5cUX706FHY2trC0dFRE6HWSfn5+fjxxx8xZsyYGtmfi4sLHB0d8csvv9TI/ohKsS2pXmxLqCFiolgLtGnTBlZWVoiJiVGUxcTEYPDgwXBwcMDp06eVyvv06QMAOHToEN577z2YmJjA3NwcgwYNUro7sGnTJjRv3hwlJSVK+xs8eDBGjx4NACgpKUFISAgcHBygr6+Pjh074tdffy031srU9/T0xNSpU/GPf/wDZmZmaNasGRYuXKhU5+nTpxgxYgQaN24MKysrhIWFKX75jxw5EseOHcPatWshk8kgk8mUHvOUlJRUuO3X/fHHH9DV1UX37t2VymNjY6Gjo6P0xzMlJQUymQx37tyBp6cnvvzyS0yfPh2mpqawtLREREQE8vLyMGrUKBgaGsLJyQkHDx4ss08fHx/s3LmzwriI1I1tCdsSIrUTVCsMHz5c9OvXT/G9W7duYvfu3WLixIliwYIFQggh8vPzha6uroiMjBRCCPHrr7+KPXv2iBs3boiEhATh4+MjXF1dRXFxsRBCiEePHgm5XC6OHDmi2G5WVpZS2dKlS0Xbtm3FoUOHxK1bt8TWrVuFrq6uiImJEUII0bt3bzFt2jTF+m+qX7qOkZGRWLhwobh+/br46aefhEwmE4cPH1bUGTt2rLCzsxNHjhwRFy9eFB999JEwNDQU06ZNE0+ePBE9evQQ48aNE2lpaSItLU0UFRVVetuvmzp1qvjwww/LlK9fv164uroqle3du1eYmpoq9mVoaCiWLFkirl+/LpYsWSK0tbVF//79xaZNm8T169fFpEmThLm5ucjLy1PazsGDB4VcLhfPnz8vNy6i6sC2hG0JkToxUawlIiIiROPGjcWLFy9ETk6OaNSokXjw4IHYvn27eP/994UQQkRHRwsA4s6dOyq38fDhQwFAXLx4UVE2ePBgMXr0aMX3H374QTRv3lwUFxeL58+fCwMDA3Hq1Cml7YwZM0b4+fkJIZQb98rUL13nvffeU6rTrVs38dVXXwkhhMjJyRE6Ojpi9+7diuVPnjwRBgYGin29/kelsttW5fVzUGrs2LHC399fqWzBggXC09NT5b6KiopE48aNxRdffKEoS0tLEwBEXFyc0nYuXLggAIiUlJRy4yKqDmxL2JYQqRMfPdcSnp6eyMvLw3//+1+cOHECrVu3xjvvvIPevXsr+hbFxMSgZcuWsLW1BQDcuHEDfn5+aNmyJYyMjBSdq1NTUxXbHTFiBPbs2YOCggIAwLZt2zBs2DBoaWnh5s2byM/PR9++fdGkSRPF5+eff1bZwV1K/Q4dOih9t7KywoMHDwAAt2/fxosXL+Du7q5YbmxsjDZt2lTqXFW0bVWePXsGPT29MuWJiYno1KmTUllCQoJS2av70tbWhrm5OVxdXRVllpaWAFBm//r6+gBe9mkiqklsS9iWEKlTI00HQC85OTmhRYsWOHr0KB4/fozevXsDAJo3bw4bGxucOnUKR48exQcffKBYx8fHB3Z2doiIiFD0H3JxcUFhYaFSHSEEDhw4gG7duuHEiRMICwsD8PJtSAA4cOAArK2tleLR1dUtE6OU+jo6OkrfZTJZmf5NVSV12xYWFnj8+LFSWXFxMS5duoTOnTsrlZ8/fx6ffPJJhft6tUwmkwFAmf0/evQIAPDOO++86XCI1IptSeWxLSF6MyaKtUifPn0QExODx48fY/bs2Yry999/HwcPHkR8fDwmTZoE4OVYXklJSYiIiECvXr0AvOxQ/To9PT18/PHH2LZtG27evIk2bdqgS5cuAID27dtDV1cXqampij8mFZFavzwtW7aEjo4O/vvf/yruaGRnZ+P69et4//33AQByuRzFxcVV3serOnfuXOatwaSkJDx//hzNmzdXlMXFxeGvv/4qc2egKi5duoQWLVrAwsLirbdFJBXbErYlROrCRLEW6dOnD6ZMmYIXL14oNZ69e/dGYGAgCgsLFW8pmpqawtzcHJs2bYKVlRVSU1MxZ84cldsdMWIEBg0ahMuXL+Pzzz9XlBsaGmLWrFmYMWMGSkpK8N577yE7OxsnT56EkZERAgIClLYjtX55DA0NERAQgNmzZ8PMzAxNmzZFcHAwtLS0FL+q7e3tcebMGaSkpKBJkyYwMzODllbVekp4e3tj7ty5ePz4MUxNTQG8fFQEAOvXr8fUqVNx8+ZNTJ06FQCU7qJU1YkTJ9CvX7+33g5RVbAtYVtCpC7so1iL9OnTB8+ePYOTk5OivwrwsnF/+vSpYugLANDS0sLOnTtx7tw5uLi4YMaMGfjuu+9UbveDDz6AmZkZkpKSMHz4cKVlS5YswTfffIOQkBC0a9cOH374IQ4cOAAHBweV25JavzyhoaHo0aMHBg0aBC8vL7z77rto166dov/PrFmzoK2tjfbt2+Odd95R6isllaurK7p06YJdu3YpyhITE+Ht7Y3bt2/D1dUV8+bNw6JFi2BkZIR169ZVeV8A8Pz5c+zfvx/jxo17q+0QVRXbErYlROoiE0IITQdBlJeXB2tra6xevbpaBrM9cOAAZs+ejUuXLkFLSwve3t7o1q0bli5dqvZ9bdy4Efv27cPhw4fVvm0iqhjbEiL14qNn0oiEhARcu3YN7u7uyM7OxuLFiwG8HMC3OgwcOBA3btzAX3/9BRsbG1y4cEExULC66ejoYP369dWybSJSxraEqHrxjiJpREJCAsaOHYukpCTI5XJ07doVoaGhSsNFVJf09HRYWVnh8uXLaN++fbXvj4iqD9sSourFRJGIiIiIVOLLLERERESkEhNFIiIiIlKJiSIRERERqcREkYiIiIhUYqJIRERERCoxUSQiIiIilZgoEhEREZFKTBSJiIiISCUmikRERESkEhNFIiIiIlLp/wGA9ATLnKHiLgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "postprocess(sim_data, \"TE\")\n" ] }, { "cell_type": "markdown", "id": "d17da4e0", "metadata": {}, "source": [ "### TE0 to TE2 Convertion " ] }, { "cell_type": "markdown", "id": "f4072175", "metadata": {}, "source": [ "We repeat the above process for the TEO to TE2 coupler as well as the other four couplers." ] }, { "cell_type": "code", "execution_count": 21, "id": "da87d8c3", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:03:19.085579Z", "iopub.status.busy": "2023-03-28T00:03:19.085398Z", "iopub.status.idle": "2023-03-28T00:05:04.539967Z", "shell.execute_reply": "2023-03-28T00:05:04.539444Z" } }, "outputs": [ { "data": { "text/html": [ "
[09:30:14] Created task 'evanescent_coupler_te2' with task_id                                         webapi.py:139\n",
       "           'fdve-4ef9b8e8-70db-4f10-ab44-f6ebeae4d7c5v1'.                                                          \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:30:14]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'evanescent_coupler_te2'\u001b[0m with task_id \u001b]8;id=491763;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=186519;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-4ef9b8e8-70db-4f10-ab44-f6ebeae4d7c5v1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4e4db30471454c5d80650ea51e742f73", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:30:16] status = queued                                                                            webapi.py:269\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:30:16]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=494769;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=475292;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:30:18] status = preprocess                                                                        webapi.py:263\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:30:18]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=279318;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=496142;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
[09:30:25] Maximum FlexCredit cost: 0.102. Use 'web.real_cost(task_id)' to get the billed FlexCredit  webapi.py:286\n",
       "           cost after a simulation run.                                                                            \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:30:25]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.102\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit \u001b]8;id=451;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=951912;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mcost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           starting up solver                                                                         webapi.py:290\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=601456;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=590317;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           running solver                                                                             webapi.py:300\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=563879;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=676381;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "96ddda8c153b4d78b5da69c564ec73e0", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:31:20] early shutoff detected, exiting.                                                           webapi.py:314\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:31:20]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=470616;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=484607;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#314\u001b\\\u001b[2m314\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           status = postprocess                                                                       webapi.py:331\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=834644;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=901216;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#331\u001b\\\u001b[2m331\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:31:46] status = success                                                                           webapi.py:338\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:31:46]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=35607;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=781846;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#338\u001b\\\u001b[2m338\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "5c115860ddbc40079f7674a5e1ebf004",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:31:48] loading SimulationData from data/simulation_data.hdf5                                      webapi.py:510\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:31:48]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/simulation_data.hdf5 \u001b]8;id=385295;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=606512;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#510\u001b\\\u001b[2m510\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim = make_sim(\"TE\", **design_params[\"TE2\"])\n", "\n", "job = web.Job(simulation=sim, task_name=\"evanescent_coupler_te2\", verbose=True)\n", "sim_data = job.run(path=\"data/simulation_data.hdf5\")\n" ] }, { "cell_type": "code", "execution_count": 22, "id": "fd732a51", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:05:06.462901Z", "iopub.status.busy": "2023-03-28T00:05:06.462753Z", "iopub.status.idle": "2023-03-28T00:05:08.510894Z", "shell.execute_reply": "2023-03-28T00:05:08.510376Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAooAAAHrCAYAAABINLzuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/FUlEQVR4nOydd3wU1drHfzOb7KY3SCEQIID03qvAFQmKKOhV7IAIFwQV4r0giiBcBSsioqDXF7ALWEBFUQwgFkQFQYogSGghCTVZ0rbMnPeP2Zmd2Z3d7CabbMrz5bNk58wpz5kt89vnnPMcjjHGQBAEQRAEQRAu8ME2gCAIgiAIgqiZkFAkCIIgCIIgdCGhSBAEQRAEQehCQpEgCIIgCILQhYQiQRAEQRAEoQsJRYIgCIIgCEIXEooEQRAEQRCELiQUCYIgCIIgCF1IKBIEQRAEQRC6kFAkCKJK2b59OziOw/bt24NtCkEQBOEnJBQJgggIr732GtasWRNsMyrE+++/j6VLlwbbDACAKIp47rnnkJ6ejrCwMHTu3BkffPCBz+ULCgowefJkJCYmIjIyEkOHDsWePXt083722Wfo3r07wsLC0LRpU8yfPx92uz1QXSEIog7A0V7PBEEEgo4dO6Jhw4ZunkNRFGG1WmE0GsHzNfO36Q033IADBw7gxIkTwTYFc+bMwTPPPINJkyahV69e2LhxIzZt2oQPPvgAt99+u9eyoihi0KBB2LdvH/7zn/+gYcOGeO2113D69Gns3r0bV111lZL3q6++wsiRIzFkyBDccccd2L9/P1599VVMnjwZK1asqOpuEgRRSyChSBABpLi4GJGRkcE2Iyh4Eoq1gZoiFHNycpCeno7Jkydj+fLlAADGGAYPHozs7GycOHECBoPBY/l169Zh7NixWL9+Pf75z38CAM6fP4/WrVvjuuuuw/vvv6/k7dChA0JDQ/Hbb78hJCQEADB37lwsWrQIhw4dQtu2bauwpwRB1BZq5s97gqgB5OTkYOLEiUhNTYXJZEJ6ejqmTp0Kq9UKAFizZg04jsN3332HBx54AElJSWjSpIlS/rXXXkOHDh1gMpmQmpqKadOmoaCgQNPG0aNHccsttyAlJQVhYWFo0qQJbr/9dhQWFip5tmzZgoEDByIuLg5RUVFo06YNHnvssXLt96WcxWLB/Pnz0apVK5hMJqSlpWHWrFmwWCxu9b377rvo3bs3IiIiEB8fj6uvvhrffPMNAKB58+Y4ePAgvvvuO3AcB47jMGTIEACe5yiuX78ePXr0QHh4OBo2bIi7774bOTk5mjzjx49HVFQUcnJyMHr0aERFRSExMRH//ve/IQhCuddg48aNGDlypPIatmzZEv/97381ZYcMGYJNmzbh5MmTiu3Nmzf3WOf48eOVfK6PJ598slybyrPXZrPhgQceUNI4jsPUqVNx5swZ7Ny502v5jz76CMnJybj55puVtMTERNx2223YuHGj8roeOnQIhw4dwuTJkxWRCAAPPPAAGGP46KOPKtUPgiDqDiHlZyGI+sfZs2fRu3dvZb5X27ZtkZOTg48++gglJSUwGo1K3gceeACJiYmYN28eiouLAQBPPvkkFixYgGHDhmHq1Kk4cuQIVqxYgV9//RU//vgjQkNDYbVakZGRAYvFggcffBApKSnIycnBF198gYKCAsTGxuLgwYO44YYb0LlzZyxcuBAmkwnHjh3Djz/+6NV+X8qJoogbb7wRP/zwAyZPnox27dph//79eOmll/DXX39hw4YNSt4FCxbgySefRP/+/bFw4UIYjUbs2rULW7duxfDhw7F06VI8+OCDiIqKwuOPPw4ASE5O9mjfmjVrMGHCBPTq1QuLFy9Gfn4+Xn75Zfz444/4/fffERcXp+QVBAEZGRno06cPXnjhBXz77bd48cUX0bJlS0ydOtXrdVizZg2ioqKQmZmJqKgobN26FfPmzYPZbMbzzz8PAHj88cdRWFiIM2fO4KWXXgIAREVFeazzX//6F4YNG6ZJ27x5M9577z0kJSUpaRcuXPBqm0x0dDRMJhMA4Pfff0dkZCTatWunydO7d2/l/MCBAz3W9fvvv6N79+5uQ/y9e/fGG2+8gb/++gudOnXC77//DgDo2bOnJl9qaiqaNGminCcIggAjCMKNe++9l/E8z3799Ve3c6IoMsYYW716NQPABg4cyOx2u3L+3LlzzGg0suHDhzNBEJT05cuXMwBs1apVjDHGfv/9dwaArV+/3qMdL730EgPAzp8/75f9vpR75513GM/z7Pvvv9ekr1y5kgFgP/74I2OMsaNHjzKe59mYMWM0/WHMeS0YY6xDhw5s8ODBbu1s27aNAWDbtm1jjDFmtVpZUlIS69ixIystLVXyffHFFwwAmzdvnpI2btw4BoAtXLhQU2e3bt1Yjx49vF8ExlhJSYlb2r/+9S8WERHBysrKlLSRI0eyZs2alVufHkePHmWxsbHs2muv1bwPAPj0WL16tcaOFi1auLVRXFzMALBHH33Uqy2RkZHsvvvuc0vftGkTA8A2b97MGGPs+eefZwDYqVOn3PL26tWL9e3b19fuEwRRx6GhZ4JwQRRFbNiwAaNGjXLzuADSUKCaSZMmaeaNffvtt7BarZgxY4bGszNp0iTExMRg06ZNAIDY2FgAwNdff42SkhJdW2TP2saNGyGKos998KXc+vXr0a5dO7Rt2xYXLlxQHv/4xz8AANu2bQMAbNiwAaIoYt68eW6eKtdr4Qu//fYbzp07hwceeABhYWFK+siRI9G2bVvl+qiZMmWK5njQoEE4fvx4uW2Fh4crz69cuYILFy5g0KBBKCkpweHDh/223ZXi4mKMGTMG8fHx+OCDDzTvgy1btvj0yMjIUMqUlpYq3kU18nUqLS31ao+v5eW/nvKW1w5BEPUHGnomCBfOnz8Ps9mMjh07+pQ/PT1dc3zy5EkAQJs2bTTpRqMRLVq0UM6np6cjMzMTS5YswXvvvYdBgwbhxhtvxN13362IyLFjx+LNN9/E/fffj0cffRTXXHMNbr75Zvzzn//0uoLYl3JHjx7Fn3/+icTERN06zp07BwD4+++/wfM82rdv79P1KA9P1wcA2rZtix9++EGTFhYW5mZjfHw8Ll++XG5bBw8exNy5c7F161aYzWbNOfU80IoyadIk/P333/jpp5/QoEEDzTnX4WlfCA8P150fWlZWppwPRHn5r6e85bVDEET9gYQiQVSSytxUX3zxRYwfPx4bN27EN998g4ceegiLFy/Gzz//jCZNmiA8PBw7duzAtm3bsGnTJmzevBlr167FP/7xD3zzzTceV8D6Uk4URXTq1AlLlizRrSMtLa3C/Qok3lb5eqOgoACDBw9GTEwMFi5ciJYtWyIsLAx79uzB7Nmz/fLQ6vHyyy/jgw8+wLvvvouuXbu6nc/Ly/OpntjYWOU91KhRI2zbtg2MMY23Njc3F4A0h9AbjRo1UvKqcS3fqFEjJd31dc7NzVXmRBIEQdDQM0G4kJiYiJiYGBw4cKBC5Zs1awYAOHLkiCbdarUiOztbOS/TqVMnzJ07Fzt27MD333+PnJwcrFy5UjnP8zyuueYaLFmyBIcOHcLTTz+NrVu3KkPDniivXMuWLXHp0iVcc801GDZsmNtD9vi1bNkSoiji0KFDXtvzdRja0/WR01yvT0XZvn07Ll68iDVr1uDhhx/GDTfcgGHDhiE+Pt4tr79D6N9//z3+/e9/Y8aMGbjrrrt08zRq1Minx9q1a5UyXbt2RUlJCf78809NXbt27VLOe6Nr167Ys2ePmwjetWsXIiIi0Lp1a009v/32mybf2bNncebMmXLbIQii/kBCkSBc4Hkeo0ePxueff+52IwWkuHbeGDZsGIxGI5YtW6bJ+3//938oLCzEyJEjAQBms9ltF4xOnTqB53llSPDSpUtu9cs3cb1hQxlfyt12223IycnB//73P7e8paWlygru0aNHg+d5LFy40E2AqPsXGRnpFv5Hj549eyIpKQkrV67U9OGrr77Cn3/+qVyfyiJ7ItU2Wq1WvPbaa255IyMjfR6Kzs3NxW233YaBAwcqK6f1qMgcxZtuugmhoaEaGxljWLlyJRo3boz+/ftr7Dh8+DBsNpuS9s9//hP5+fn45JNPlLQLFy5g/fr1GDVqlDInsUOHDmjbti3eeOMNTaigFStWgOM4JQYjQRAEDT0ThA6LFi3CN998g8GDByuhY3Jzc7F+/Xr88MMPmvAtriQmJmLOnDlYsGABRowYgRtvvBFHjhzBa6+9hl69euHuu+8GAGzduhXTp0/HrbfeitatW8Nut+Odd96BwWDALbfcAgBYuHAhduzYgZEjR6JZs2Y4d+4cXnvtNTRp0sRrmBRfyt1zzz1Yt24dpkyZgm3btmHAgAEQBAGHDx/GunXr8PXXX6Nnz55o1aoVHn/8cfz3v//FoEGDcPPNN8NkMuHXX39FamoqFi9eDADo0aMHVqxYgaeeegqtWrVCUlKSsjBGTWhoKJ599llMmDABgwcPxh133KGEx2nevDlmzpxZ0ZdNQ//+/REfH49x48bhoYceAsdxeOedd3SFfo8ePbB27VpkZmaiV69eiIqKwqhRo3Trfeihh3D+/HnMmjULH374oeZc586d0blzZwAVm6PYpEkTzJgxA88//zxsNht69eqFDRs24Pvvv8d7772nGYafM2cO3nrrLWRnZytxH//5z3+ib9++mDBhAg4dOqTszCIIAhYsWKBp6/nnn8eNN96I4cOH4/bbb8eBAwewfPly3H///W7heQiCqMcEccU1QdRoTp48ye69916WmJjITCYTa9GiBZs2bRqzWCyMMWd4HL0QOoxJ4XDatm3LQkNDWXJyMps6dSq7fPmycv748ePsvvvuYy1btmRhYWEsISGBDR06lH377bdKnqysLHbTTTex1NRUZjQaWWpqKrvjjjvYX3/95dV2X8tZrVb27LPPsg4dOjCTycTi4+NZjx492IIFC1hhYaEm76pVq1i3bt2UfIMHD2ZbtmxRzufl5bGRI0ey6OhoBkAJleMaHkdm7dq1Sn0JCQnsrrvuYmfOnNHkGTduHIuMjHTr3/z585kvX18//vgj69u3LwsPD2epqals1qxZ7Ouvv3azp6ioiN15550sLi6OAfAaKmfw4MEeQ93Mnz+/XJvKQxAEtmjRItasWTNmNBpZhw4d2LvvvuuWTw4dlJ2drUm/dOkSmzhxImvQoAGLiIhggwcP9vge/fTTT1nXrl2ZyWRiTZo0YXPnzmVWq7XSfSAIou5AW/gRBEEQBEEQutAcRYIgCIIgCEIXEooEQRAEQRCELiQUCYIgCIIgCF1IKBIEQRAEQRC6kFAkCIIgCIIgdCGhSBAEQRAEQehS7wJui6KIs2fPIjo62u9tuwiCIAiCkHYMunLlClJTU8HzNdvnlJWVhW+2rMIzi9+l+34FqHdxFM+cOYO0tLRgm0EQBEEQtZ7Tp0+jSZMmwTbDI1arFR06tEB2di7Wr/8IY8aMCbZJtY5651GMjo52POMB0C8LgiAIgvAfBkBU3VNrJitW/huhoSF4ael0zJ79EG644QaEhoYG26xaRb3zKJrNZsTGxgIwgIQiQRAEQVQEBkBAYWEhYmJigm2MLoWFhWjVqhne/L/ZGDGiN7p2uQ/Tpo/B9GlLg21araJmTywgCIIgCIKoAIufeQAdOqZj5Mi+CAkxYPHiyVi44C2YzeZgm1arqNVC8ZlnngHHcZgxY0awTSEIgiAIooZw+vRpLHv5Yzz77BRlAcsNo/qjTdumeObZaUG2rnZRa4Xir7/+itdffx2dO3cOtikEQRAEQdQg5s6dhJtuGoCePdsoaRzH4bnnpuDlpR8hJycniNbVLmqlUCwqKsJdd92F//3vf4iPjw+2OQRBEARB1BD27duHdeu24amnJ7md6927HW64oR+eeML9HKFPrRSK06ZNw8iRIzFs2LBy81osFpjNZs2DIAiCIIi6ybJlj2HChOvQvHmK7vn/PjURa9ZsxuXLl6vZstpJrQuP8+GHH2LPnj349ddffcq/ePFiLFiwoIqtIgiCIAiiJlBWFodWrSIAUdQ937RJIhhjsFqt1WxZ7aRWeRRPnz6Nhx9+GO+99x7CwsJ8KjNnzhwUFhYqj9OnT1exlQRBEARBBBVBBOx2zw/CZ2qVR3H37t04d+4cunfvrqQJgoAdO3Zg+fLlsFgsMBgMmjImkwkmk6m6TSUIgiAIIph4ChNdv8JHV5paJRSvueYa7N+/X5M2YcIEtG3bFrNnz3YTiQRBEARB1ENE0bPnkDyKflGrhGJ0dDQ6duyoSYuMjESDBg3c0gmCIAiCqKeQUAwYtUooEgRBEARBlAsTPS5m8ZhO6FLrheL27duDbQJBEARBEDUIThTBCfqeQ0/phD61XigSBEEQBEFoEBlgF/TPeUondCGhSBAEQRBE3YIxGnoOECQUCYIgCIKoW4gi4GmImYae/YKEIkEQBEEQdQvGpOFnPTylE7qQUCQIgiAIom5B4XECBglFgiAIgiDqFqIITtBftMIJNEfRH0goEgRBEARRt6DFLAGDhCJBEARBEHULCo8TMEgoEgRBEARRtxAFL3MUSSj6AwlFgiAIgiDqFgzS8LPHk4SvkFAkCIIgCKJuIYo09BwgSCgSBEEQBFG38Boeh4SiP5BQJAiCIAiibsFAAbcDBAlFgiAIgiDqFkwEPMRR9JhO6EJCkSAIgiCIuoVIcRQDBQlFgiAIgiDqFrSYJWCQUCQIgiAIom7BGA09BwgSigRBEARB1C0Yo8UsAYKEIkEQBEEQdQvawi9gkFAkCIIgCKJuITDA7mHRiqd0QhcSij7AgQM4TpvocWsgdxhtF0QQBEEQ1QcTadVzgCChSBAEQRBE3YIxQPAgCD2lE7qQUPQFzgCOC3VJE6VfLCjPYyhKHkkZF08keRsJgiAIIsDQziwBg4SiD4SGJCDC2AAiJGEoijaIzA6R2cGYCMbUv06czxkTwSCfF6S/LgKTU+XXG84mIUkQBEEQfkJxFAMGCUUfaBLVG124jhAYg52JKGN2lHClKOaKYYcFIidChACB2cAcwk+ADXZmgVUsgshsEEU77KIFgmh1CEy10LQBEAEOLl5KhzeSvJAEQRAE4Tu0mCVgkFAkCIIgCKJuwQDmYYjZUzqhDwlFH/jt+hjEvH2NJo3/Yz/Yb0cg5okQCgWI1hCIFhNEGwfBxsFSEoJT5+Ow53IMSgQOZhuHnGIRFy12FAt2FLEyXOYvoBRmWFgRbGIJBGaBXbTCLpRCEK0qr6PNMXwtD1tL3kYA5G0kCIIg/EYzd94Pas09xttiFlr17Bf1Vih27twFBoPBp7y2pJawPbcFYpkIziDCmMIDXdLA7rsbHBhClA8OUx7RABLP5aPzSxshlgFFeaHYfTIFJ0tMKLSF4qIlHCeLYmC2WVHELDAbzCjhJNFoFYtgEcywOQSjRjTCJs1rZJz0geW0cxzlD3+t+TATBEEQAYPneZhMJoSGhMJgMGgePM9Lfw28fjrP+9yOIAj44489VdiTSiJ6GXqmVc9+UeuE4uLFi/HJJ5/g8OHDCA8PR//+/fHss8+iTZs2ftXDcRw419iIHii1mNDg4WsAixWc3Q7YbUCZBfzfp6RfJjwPlFmAK8VAcRlgs4NZ7GBXrOBSm8FgtyGhM49rJ9wAyRMoPcSn1sB6VkBBXhj25SYjuyQNBVYOZ0qAM8UWXDaU4BJ/DsW4jDLRDJtQBJtQCptQou9thOhxbiMJR4IgiLpDaEgowsPDERYWBlOYCWFhYQgLC0NoaGj5hQOAr/fPoCF628Kvek2p7dQ6ofjdd99h2rRp6NWrF+x2Ox577DEMHz4chw4dQmRkZJW0eaggFk1MJsBk0vgOfUHxWZaWgv/zOFBYJAm4wmLYjI1gaGRFcjsR1w1rAbFdawACuNOnUPrsFpw7EYWtOVchp5TH6WKGc6U2XDQU45whB6WiJB6tQjEEeZGM4n10LI7xIBxJNBIEQdR8OHAwmUwaMSiLQ0/ev6qWb7Xl7sFEBubBo8jIo+gXtU4obt68WXO8Zs0aJCUlYffu3bj66qurpM2cUt+GqL0SHg6xXVtNUugIxxOrDTh9GvzOA9IvoAsF4GIboPmdJoy/cygABv7rLJR9eRJnj0Xjq9MdkF/G4/gVO85bLbgMMwr5CygWL6LUfhE2oRR2scxNODJIIQE4nfmNJB4JgiCCC8/xiIiMQFRUFKKiohAZGak7RaqG+/JqBjT0HDBqnVB0pbCwEACQkJCge95iscBisSjHZrPZ7zYMVf2pNIZCbNkCaNkCAMDlnEV4g9Ng+WaIr2WBMzGw67vBmDECzSFg4sP/gznXiK3HG+NESQRySiJwtrgBzrEi5IaeQGnIZVgEM6z2YkUwiswOUbQAzA7AoJ3fSHMbCYIgqh2DwYDoqGhERkUiKioKERERukO6JAwrAvO81a4fW/AStVwoiqKIGTNmYMCAAejYsaNunsWLF2PBggWVaqd5hK1S5f2FNU4Fa5wKAJAHF7gDh8D9nQsIIrgmTRHXpAy3rcsAIIC7kA/L058h50gMPj/dDaeKgZNXbMjjzbhgyEWpeBmlQgHK7AWwC07hWN4QNUDCkSAIIlAYQ42StzBa8hiGhYW55SFRGCBEgNk9hMcR6L7mD7VaKE6bNg0HDhzADz/84DHPnDlzkJmZqRybzWakpaX51U6bhMIK2xgoxI7tleehgwEUl4DfewQQGcQDp2EPa4SW06Px0PWDAYiwPfJ/yD4Yh625HZBTwuNvsw0nDJdwic9DiXgZZcJljcdREK2Qdo+xg4QjQRBE5THwBsTExCA6JhoxMTEwGo2a8zVFFNbJb3Wvi1nqZI+rjForFKdPn44vvvgCO3bsQJMmTTzmM5lMMJlMbumC4PsWPmFGK2wvbgQXAvAhHLhwDlwoD/A8OJMBXJQRMBgAngNCDUBoCGAMAUwmiFe1BHTarzSRERC7dpaed++CCADs0mXwe45C2HcCYngDtJ2VjNb/6Cf1d+4qHNrZADvOd8aZEuBvsw35fBEu8edQhIsotp+D1V7sCMdT5rKi2k7CkSAIohw4cAiPCEdMTAxiY2M1Cyxr+iITxhhEP+IL+nMPDQaMPIoBo9YJRcYYHnzwQXz66afYvn070tPTK1TPgQP74etHl+/cAaHPTnAcccqD37cfbPcxWP8shWjhIdp4cEYehnAeXIQBEAwIzTkPxEQAJiNYcqIypFwVsIR4sIR4GBomILxtHlBigf3lLBgiBRiemoJOsKP1Q//DuewofH06BSeK45F9JQb51lTkhp5BseECSoUCWIVil6DfjrmNrrEbaW4jQRD1nJCQEMTGxCImNgbR0dEICXG/rVaFSPT0jWuz2VBWVgabzQZBEDQPURS1x4KopDMf5+05v+tr+He+yEgoBohaJxSnTZuG999/Hxs3bkR0dDTy8vIAALGxsQgPD6+SNsd8loQR7XdAnmNs4ICoEIYGRjuSw0KQGs0hLq4EYfF2cFZANAOcETC2i4WY0QPS1wQP/rMsWN/cBj7eCM5oREjjaCAxBggzAtFREJumAQGIgSU2TQOaSsPrIdcAXGEhuF37gYJiIKkp0roKuP++awAIEBeuQuFhHusPtsXpEh4nrtiRay3BBdN5FOECSsQClNouKcJRZFaHp1E9RK2/khogAUkQRN2C4zhERUUhJiYGMTExuvedQApDvW9QxhgsFgvKysqUh6VMOhZFkb53Ac0GZm7Qome/qHVCccWKFQCAIUOGaNJXr16N8ePHV0mbv1k/w4lzVynHHAwwcKEwsnCYEI4wMRzhiEIYFwLeoSYNHIfokBCkLtqBMAOHOCNDl9gytEkqQli4HdHpAsQpEyEtV+HB//kXrM98DEOsCYYEE/hGMUBiHMQO7aRh7UrAYmPB+vQAAJgyAK7gMrg9RwCbHWViCqLal2Ly+/8AIEB8ag0KDvL49mhTHC9ugRNFDMeKi3DOlIciXESpcBkW4Qps9mLHSmr3hTEAaKiaIIg6Q5gpTJlnGB0d7RbDMFDC0PXbkTGG0tJSlJaWasRgmaUsQC3WXRjz7Dkkj6J/1Dqh6Kt7PJCUWHJx1l6kSeM4XnqAB8+HgOdCYeBCwHHOLxCD3YRQazgMCEUoF4Go3AaIORSLcBgRE2JEqw+/Q5wRiA5haBdThq7NLiIs3o7Qe7pC7NMLXP4F4J0vYLsIhKYYwbdMBGKj3OIx+guLiwfrHg8ACOvTAxAE8HsPAgVFKClKRFzPUtz2wTAAIviNm5H/7mV8e7wFTpRchb/NDDllpbhgvIQr3CUUCec02w1KolG9a4zkeQQkkcipf8p5eC1JTBIEEUwMvAFR0VHKXEP1IpSqEoWAFMmjuLgYxUXFKCoqwpWiK0G559UFmOCIBufhnD/4siNcWVkZHnnkEXz44YewWCzIyMjAa6+9huTkZCXPqVOnMHXqVGzbtg1RUVEYN24cFi9erJmusH37dmRmZuLgwYNIS0vD3Llzq8wJ5iu1TigGA8ZsEMRil1TJy8dxPDjBIRo57eXkuRDwfAg48AjhTbhiyMNFPgohnAnhLBb5l1IQwZkQwYfgj8th+OFCC8SFMrT//QL6tn8dkX2jgYm3IhQc+HWbYck6jJDECBjOXQbCjBA7tAGioirfQYNBWhhTWoqo0BCAMdhfzwIrs4K7sz8Sb0rA7c+vRtFBO74/nIY/CiNwpiQCZ4uTcI5rhIvGfJSKl2ERi2ATimF37BTjuihGs0c1oN2n2nmxNZvVk2gkCKI6CA8PR1xsHKJjohEZGVkl8Qxdv83sdjuKiopQVFSE4qJilJSU0HdeoAjg0LMvO8LNnDkTmzZtwvr16xEbG4vp06fj5ptvxo8//ghAWvwzcuRIpKSk4KeffkJubi7uvfdehIaGYtGiRQCA7OxsjBw5ElOmTMF7772HrKws3H///WjUqBEyMjIqeCEqD8fq2c8Vs9mM2NhYSELPt489Bw7Q3deS1+YBAM51WyXpWPI0GsA7vI4cF4JQQwR4PhQhvBEhfARMfBRCEY5oNEAqS0QDowlNong0iWAYmHgZzZpcRnQ3I/DwXQAM4D74CvYcG7jIMIR0bgQ0jIfY5ioEEn7ffsBqh+3nkxAKLTA+dA0QEwkUm2GZ8yFO/xWHrbkNkVfG42yJiLxSKy6LJbjMX8AVnEepcBl2oRR20eIIxSN5GLWrqgHlk8vU82u8fJrr19u21kI3PaKmYjQaER0djehoaUi5KhahuL77LRaLRhhaLJZa/BlhAAQUFhYiJiYm2MZouOuuu9Au+0880qOD7nmbICJ2xfs4efIk4uLiNOc8RUpRc/78eSQlJeG7777D1VdfjcLCQiQmJuL999/HP//5TwDA4cOH0a5dO+zcuRN9+/bFV199hRtuuAFnz55VvIwrV67E7Nmzcf78eRiNRsyePRubNm3CgQMHlLZuv/12FBQUuO1KV52QR9EHmEuEd6fHS1DlcZ7VrYMBAA9RLs/xsNkLdQUkz4UgOyQSoUI4TNYYRBY0wNtnkhD7eyMkfm1Cx9d3oHG4gAEpBUhOu4KIOcMgNmsBPvs0LP/9CKGJRoT0SAPioiFe1apSfRe7dAIAGHp1gwEAf+AQYLGAnb4IISoVV93NodXd/wAggt/5M4rWHMPFs1H44WwLHC1qjewrAi5arLjCynCRP48SXIadWRTvo8DsEJkNomhXhq0Zk4SkFNdRTyw650IGG2k43b/bSe25MVT+Gvt7bXyihv9IqD2vb/0iPDxc2RovKioKoToLBwMtDAVBwJUrV2A2m3HFfAUWq0W3HBF4GMrfmGXZsmV48cUXNefmz5+PJ5980mvdrjvC7d69GzabDcOGDVPytG3bFk2bNlWE4s6dO9GpUyfNUHRGRgamTp2KgwcPolu3bti5c6emDjnPjBkzyu9wFUJCsQJ4vRF4uYlxjnJM/o/j3AUkAHA8rPbLkAXkRd6IHN6IEEM4jGIkfjqXiAjEIzY7AQ12NUWTr06ieeRJtI2x4h+dziLs3msdwvEUrM98CoBH2DVNAyMc5cDfPYCI0QArKgK/7xhQUATb3sswtmiApgNCcMe9/wDAwP1vHUr3XcHlnHB8fzodp0quQonAIbdERG6pFSWiDRbYUMRfQTFXACsrgY2VwCKYIYp2CMwO5phQwiAqIpIx0YOIVCz1sUeuHmDfyntqm3PzKPtWzl+YF/sC1YZE5WKl+W+LD/ld7+aV7G/FhZ2H94CvciPAgpcEqhOO4xAZGakRhq4LUJS8lWhH74qXlJTAbDajsLAQxcWuU5aIakMsf47iQw89hHnz5mnOledN1NsRLi8vD0aj0c07mZycrERmycvL04hE+bx8zlses9mM0tLSKovsUh4kFKsRBhevpHyj4OTFHgDAO2bhigDHQ2A2ZXWxXSiDjS+GNaQYV/h8XDZEIh/xyC1KRnZRPP4sNOFoUSv0u3c/Orb8FjG3N4fx0WvBXSqA8P53YCFhCDl7HoiPhtixgxQgvLJERSlex9CUo0BREVBmg+WZb2EIt8Pwr9sQNikUjSBg7BsfwvxTMexWHgdOJ+P3ggiYbWEoExjOlcbhQlkKikQrSrhSXA69ACsrgQCbQyAKECFCZDbYmQWCaJFEo4ebtVqgMJeZyxxnUD3Xv3m4ChzXOiqDq8irrLBzs7USnkA9WwIl9nypxxfb3erhAH8FrboO90+Bj/1l5X9+vIo33eJ+XGsXoVkR721dEZcmkwnh4eGKOPS0Z7IrFf0GVF81m80Gs9mseA3tggd1QlQrTARED18Lclxxk8nk97C5LzvC1TVIKAYJzRc0k2MRcpBveFqvo03xONod3kaOC3WsuDYiT+Vt3GFJwYe5jdDwQCoaf8OjVcwOtI22YlDLAjR4pBPEHp3Bnb8M/N962AtDYOyWCMRFQezWtdLCUT0/0jgAgMUC/thx4EoxWO5lCCwRkX0SYMu3YPD4WAwafjXkYWT+629RsvEkygpDcPlyBL7Pa4NLVh5lAiAwwCZysIoMpXbAbBNRbBNRJgoQmFYqimDKKkFRkpiO6yk6rjEP3nF7kP+qbyjqspo6Va24npPhvdx25Hyytczx40Bbl28iQbZFVOrQ/nUVW2I5Isq9PkGbzgS3vM5j97pd7VCLbOc5VZ06AlJ9LZhO+3IZuR7tDwPX/nsW5t7qdntejsDXHnu2R08M64tob9dI1KocLyLcsxgUPYtLH7yd1S0yeZ5HWFiY28NkMvkkCmX8/ZbTC1lTVFSkCMPS0tI6I7jrFAyA6OHV9pReDp52hEtJSYHVakVBQYHGq5ifn4+UlBQlzy+//KKpLz8/Xzkn/5XT1Hk8xeusLkgo1iB0v2wY0w5Zg3PELLSAAwdBAGyO+Y0lXCjM3BnkG8IQYgiHSYxGZFkDRJ9LQuLRRLT+sQgto7/DVVFWDGx5HvH9jRCvGQEgBOJrH8FWEIrwAclAbKQk+ir7xjSZpDiQDmTfnQkATp4Cv/sQUGYDCothP8sh9KpU8GYbogxW3DtXCs/j/Jp2/LVawf+0C+LvZ2A7Y4G9GBBt2g+9YOMg2HmIAi/F0mIcRJEDzzNwHAPHAZzLcwBgIqfcHxnjlGNBVQ9jHETVOQAQVZ4lntO+hvI5uZzgqEMQDRBl2+TdbXTqA6A5LzJOCjKkei4w6VhwtCHK7cG5pSlT3R5d0+winHU6ytqZY6o6U6dLtih2OupiqnoZ06Yr5R3Hkp1Mee5Wl+qYKe0yRzm5HuasxyWP9EPB+Veqi0FkTPl8iXD+oJB/TDCIsEs+azBOdKQ7/uecnmvnGUEjsOVjkQmOGgWNYJY94kw171Y5z5x1MSZqxK86r3Tskpc525DT1H8B12M9QewqtlUiVFPO1YPpIk51xKU/AorneRgMBhgMBoSGhroJQr05hb7ijyzQs9hisUhew0IzrhRd8WurOyI4MJGDKOi/8qKfQrG8HeF69OiB0NBQZGVl4ZZbbgEAHDlyBKdOnUK/ftI2uv369cPTTz+Nc+fOISkpCQCwZcsWxMTEoH379kqeL7/8UlP3li1blDqCBQnFWoCr91H2PDpTBcd3tAUiONgFaVFMCReKQu4UDLwRJ0MicehKAsKL4xGDRCT+lYRG28LR6pXtSIsQcWO7c4gfHA5x8AgABuD9r1FylCGqVxTQJFESjgHcs1ps1hRo1lQ5lkWkQRDAXTGD++MYYBeAkjKg2AJWZgUrsYGV2mAvs4OFNIShOYOBiWA2AWKZCOGKCNHKIJQYwERO2WwRAEI4gOMdXkVOuZSSLQ7hJ6Vpv0CYyIFX5WWMA+8QZGCSaJIHstUCjzkEkvJc7qdDKHIu5wGHCFPVxRyijFeOATgEogEcOCYJPFmbykLRkQ3qqJUic4pBphZ7DDC4iEQGIFQl7NR/FbEIrSBkLiJR0GnHWQ/TllPX5agDLgKQQRK00ORjSlnGtAJRLRQF1Up6d5EopcqCURaKACCohKKcS3S0ymRh6BCJkslMIxTlNrVC0SnSFE+nXIbJ+Z1iUs6n1KUSilDlcZ73LhTV3yWehaKznFr8uYu+8oWiFDCCUwSg/FCLQvm4qtA4XlXH3iSsKIqKx7DQXAir1Vpl9hFVAxMB0cMsAH91fnk7wsXGxmLixInIzMxEQkICYmJi8OCDD6Jfv37o27cvAGD48OFo37497rnnHjz33HPIy8vD3LlzMW3aNGVe5JQpU7B8+XLMmjUL9913H7Zu3Yp169Zh06ZNFb4OgYCEYi3E21xHSUwwgEk3PMbZIDKrI66hBWV8AYoM53DZEI98awpyzjVEw9AwnC5JR/ujNgz97v8Q3VKAYeF9iAAH9tYXsP+Vj9BLZiDEANa+NVhCfNV1zmCQAoLHqdqwWMAVl4ArLQVvsQAWCyCIzk+7XQAsVqDEApRYEVlqAxNE532MB8Bz0vAUz2mVougYqrar3Fmu2xDK9Sj54Vx4rSgbKHceJeKUCGdeuR6mSmNy3Y46HceScJQyMlEWYZzjZeUVUcRE6b0gezplseYwUxGVsk9aFq9KXkjeTFHknOJMlV+UvaeAsxwAAZzKY8m5iEhovJpyWaUeaAWn7G2EnE9uC04RKYguYhKq/qnKMaUck4SqnO64vrKAlPqiFpnOPLKIZA6/niwo5X+KTOQEx7EjReWFlCUlgwjGMY2QlISeVLvosMApBp1vFFERo7IAtDv+im7CUC15lfce06Y5RaBTvCpvUnU5RTQyzXnl/Y9yBKPHIPrBQxaHTHWsh7wIxWw2o7ioWKefRG1C/s7TPefD/GI1vuwI99JLL4Hnedxyyy2agNsyBoMBX3zxBaZOnYp+/fohMjIS48aNw8KFC5U86enp2LRpE2bOnImXX34ZTZo0wZtvvhnUGIoAxVEMtjkBRzPnSJm3wztC8sgheELBc0YY5LmNhkhEhiQiFilIFCXh2CImBOmRDNc0zkfTfiXg544HYAD/6RbYz5YBzISQdg2kbQbbtgGMld+juk4iOhSd6FA7gl2VxsAx0fEcznyi4HDLCeBk95kgSH/tgvO8Ol0QpDqUY1WbdgGALIZFZQyXiaLi/pOENYOssJicxwZHfQ7BIe92wKS/kvmOIR7mME3kHIIWEAWHQBR5iHKayEFgvEMEOofzRcbB7pgm4BxS5xwmcRCgOob0V/1cm9dxuVVD32ohqgyNi1DyavKpRatKeAoOQSkwp+AU4BSb0nC4U+I5PZfywLMAxsmiU1REpywwBdgVcakWlgIce6urRaWroJRFo0pMqoem1V5LZ16n4NSKSFVeT+JRVzh69zLWpJtNWVmZtPvJlSsoulIEm90WbJNqGdLPxpoaR7HlgSN4qF0n3fM2UUTq+rd1VxkT7pBHsY7hfZhaAGM8lCFqjofVHoISGHCFP4vz/J844VgU88OlGEQXJGHNqSQ03d0MV739PZpFChjS6CJSW5kR/s+2EK/uDsAAvLkBpWdCEN7KBL5dI4DjIbZrXfk5jnUBngNgUO3XrRXU5d04A3pjFZlDqDpEpCCAEwTAbgcnC1S7KKWJgqSi7KrngvzX8dyuzuMQqwIDs4vSOLEgSgJUYGCCXTpmAGwO4Sk4hKfqIdo5h/B0Ck5R5BzmGhzPJaEpMg6C6C4yRcjnJSFqV4lOWQQKLuJSdIhLtbCUhajsDZVEJaecU+eTzjvmTqrEJBx/ZTEpMqYMhUtCVJo/KQ1gOwa3OdFNRIqwg0GEwNudApJzEZCcCMbsEDkv4pFjjr9ehCPjAPDgOFk0qgdrBQAGKR8HSH5hTiUa5SFkh2B0mefhy7BvVcAYQ0lJiRLouqioiFYn13Gk7xH9KQ00xdQ/SCjWcTTD1AzQrKpWFsbwYGKpRjgaeCMu8ceQw4fhLzEGP9riEH0pCWtOJqHBL82QulFA88jtaBFlx9BW5xCTLoC7fgzEhCQABghLN4ILDUVI+4aSWIoIA2vaCCw5pdqvAeGA5wBeR6iqBaRdABMEcKJdJQ6lB2e3a8Wjza4ITthl8SmCE0TAbgfsTBKdgsN7aZc8ncwm5ZWEIgPsAOxMORbtkpAUBYAJolM4CqIkBAWHZ1EwOBynPATGI0TkIPKyaHTk5TnYRcl7aRc5ZdhcYAwC42BnTBGLgsOLyDjpUyKI0qIe2bvIc4DBcWxXicQQxzFvkEQkL8r5OYgOsWhwCEiB48Ax3iEkRfCcJD55xkmL08CBZ7wytA0m1SNJGslDzDgGkeOU8wwCRA7gGSByIVJUVsZJPkTOLn3u1YtTON6p1DiHOOR4Rz4RAK94GDnwjqwiOI4DYwb4FoqIh5t3UYV6KLgqEEVRIwqLi4uVKQVE/UDy6Hs4R28DvyChWI/wdW4jOB52wQZOtELgymAXy2A1FKPUUIBCQx7yuXicLUpCdlEsDhaYcMjcAo0Oiej20w9olXYB0R0NMMy6FwAHbPwWRT9cQWh8CIztzoNPOS2JjfgYiM3SArNXNeEfguD0KtoFcHabY0jaRRgqgs+DV1EWjp68iqLsTXSIRFkc2mR3nX9eRUHgHEPY7l5FO3OkM0BgvGbYWnQMW2uHsiWBZhe1HkX1cLVdni2gEoWSx9AhHh3dgpKHKSKSgUmXGI7V2MzpQXQdnpY9jILKi8iUYWpRmcsoquY8Sgtn7M5SHoakfQ5GrprTqElWpdXUWUqCIKCsrAxlZWUoKSlBcVExSktLNXlIINY/mMhB8OBRFMij6BckFOsp3oeo5RXANmn+l1gMm70QpVwoeC4EPG9ELm+EgTfBJEYj3BqPSMQj+nQ8YvalIPGbMLR483ukRYgYkGRGWpMCGCIBDOoDsWEiAB6w2IHVn8GaDyA0FCFJYQhJjwfCjIAxFKxRIhAdDWY0AiEhQCVCY9RI1HMXlYeUxgmCdt6ifCwPC8uCXnApLws59ZxF9TlRnp8oqibqiYBNBJOVjwjHEDEDU4s72d0mCzwmzV+Up1jKmkSer8hkkcegmq8oCTtF7DHH3EXZy+cyjAyV6GPgJOGmmqsoCS+VN9AlTZ6rKHkEPc9VdApH59xFVxEoDy07hSNThpKVIWR4GV4G04hBzRAzJy2GsUsWaBbCCLBrF8A4VkIJzO7zPEUAmkUv/sxTlNLlIWedeYqAb3MVXaiIbLPZbIogtJRZUOp4brfbyUVEuEEexcBBQpEA4C4cAWnLQe0QtTS3ERwPaQ4T7wjBYwTPh8DgEI+hYjjCbXGIvNwQq043QPzuVMSFGpG05k8kh/+J2FCGVlEWdE8rRHSKFYYoDiFt20Ic2A3SkJUB+L+NsJwWpLZ4DnwoD87EgwvlwfEcEMqBM/LgwgzgjAZwxhDA4NwCUV4s4hxig3tAcdUSWiYvo5XTlTyqayLKN1SV2pCX08IhmJizDs3qaKUOqRmmWi0t5/O0KlpaEc05V0Sr0uUVzJAXgcj5IJ9TPxxdYM7FJEpcSMaDMQMYnGJNlN4YjufyCmhHbElFiKlWVANuq6AFR35RtgfOsqpuQnD0Sy3gmHIOqjahKaesmmZOYae8LI7XSnBcbxFaTx8Uu5wroBUBCN9WP8tCT5AXn8irnznphVeH23HOKQTKXf2sxE90F4FSec8LVpT3qDpdIwahvNerbPWzKp8myS1FGiYWBEH5Kz8sFissZTaUWawoKy2BoNlmw6Ut14DbjElpyncZpzkmKk5t8c4yx49SPWiOon+QUCQ8onwhePQ4OhfGqMUjx4XiisPzaOCNCOXDESKGw2iLgrEoHCYuGtFiPOION0QEH4owA4+Ed+1oHPEdYkKB6BARA5KL0aiJGcaGDHykARw4cIJjkn1cOLjGCWCd24GlpEjiRRM1MTi4th5wa+ShXvlbjqmeOzyHHHN4Bhlz5BcAmw2czeZYYGKX5hbKQ8zyghRRdIprxbsoKzRRMweRORaqwOZ8Ls01dHgfHXMMmezoEZ3PlSFmu+OLXIAzOLooxQAVRF6ah+jwMCrzCkVn4HNlcQrHORengJf+itJ5wRE4XGC81HXZWwmnAHWG0ZEEreJFlJ2rDI4g6bIzlTmdspDmMUoimldEqXPBDBxi1ClW7aoFLlK6Y70zkwJ+M0XuOZ5pgn8z1UIX9VpqEXZO3upSPic4vJHO9daA07PofO6MHyrl4ZR0UZVP+it5PKXnTrHgPZg3IIoCBEGEINhgt9sgCCLsgtUhCL3HJ3TWw6u22xThjF7qWsCRX/7wefpQynX5OjRPqBA0r29NxfvQc+0QuzUFEoqETzh9i+pf5YK0xSDgSBMkzxdnhwjeMccxBDauRPE48lwoQngjLhuikM9HIQQmhIgmRBTHIO5KLMI4IyL4EOy+lIQGx5MRGcJg4gEDx2BwhEEM4xkiQkQkGH9Hw7BSxIZbEB5uRahJAG9gMIQy8KEM6gWYTASY4FgIYYdm1xb1LitKf1VxtjhHRGu9XcLkOuR5c4xxyk4uosOTB0jPPV5bJeA2FEEkz7WT65GFjGs9zOVO6IxJ6NzBxTk3j3OIH2fgbfmvtqy2fnnoVlrtGqIIKHk1sByCUrFRVQdTP1edY8pf7Spiae6d6ry6jMoujfMWDo8fEzVeRnnnFkEZFtbu3iKV1T4XVd4yUTnPHF4/2cMniTrpWHSJoSiJJdcg3Uq6bqBu544u0rGglJXPS9fPNd0p/qSdW5z1edriUCPgXLxyelsbaucoes6vpLl6+tzqVT/nwHPuQfxlQciYqBF6enW72eHvr7O6FyGt6hFLPb4WNQnm8p3heo7wHRKKhF+4DTuovI3Secd/HAfGLBAdao3T8TpyipdA+ivNfwwBz4Ui1BaGED4CBi4EBoSC4wyQ9mnmIe1LwoPnDDAgFAYm5QmBEQYWghAYwDEpr4wIUQk1ot56rTx4JtvvrEtdr7p+qevSAKenuuX6vKEuq7f/s2v73ur0tB+0J/hy+qlXh697VKvxdKNx3Zea1/EccR7sUteprseXm5pSp55wcB3V9KO/3t5jPAwQpXXOCOX05+BqXltP29by+v3Ws9XTtfNkWyDQu17q/cPd2ubcX3PX/BoBGwA7OU8eynLw1ra3z4Wnz5Y3OwLRz/Lw1L667QtlR1FUerzKbaksouNHtx7kUfQPEopEpWGQxaI60fFBlOdngZeCS0MEc4Tf4DgeYNIXE8fxYFwIBFESjYJoAc8Vg+dDYZADhcOgGn6CQ2gaJPHoOG/gQmFAiCIsnTaKEGBTnjMm6E+YAsCpb1QcFIEqHRrKFSquX+jqL1/Zfr2bYXnI7criSRGxXPk3f72btVb8Sv0SIZYrRD3f5PTTPeV3nte+dzjmLlZ56dXWbUddXvT0onpoU6mT41zSveP2fveEizm8nltaY4fLMa899oRrvz15TNTNK33VqZrzYKe/eFop7ek+rWeLXhm5v2pvsK+Udy1d0Zv+qIevr4FrnXr2qM/72p4/+HsN1PwehlohFBkJxYBRb4Vily5dYTBU7FckUT2U/1UmotxJ7QDKv+2r29S9a5Zbn/cbq/Z9ps2rFb6u1jjLaM+p63ArpyMcPeWXn8v1cy5tugpzvTb0rpmrZ0JzY1LacheEUnsCnNdFUAlEx48KVy+ZSnS7i0jVOeZ+DbQiVpumtplzEcuehKKeKHbNq7bD+QPERbiq23YpX5mbvOv71Ns722cxXIn2ne3635Y3oaQnUAPZtq92uNri7XvCXzsqIxQr0p7cpgUtkGDuDkEQsG/f7krZUJU4pkfrUvMHzmsW9VYoEjUb3a8wv7wc3oWMfqP6Ak46pT5n8JCuJxK0t15nOVkYuXjJ1ALM9ZzqOacj1DRpegJPrwwMzhsGx7sJKHlqgLtYk9s0uNUplXcXaO7izF2YccwpnFxFFMfc01yFldYGrbeQU9JdrgGn8lZyznNO7x405dV1OttyweUt51a/qh2lfs5ZlFfyaW1X59PD959Ejvwaz5a6Ef08/uKpqLc+qE/5IoUqOt/M1QZ/u6nXbKBsqQi+ejA95tGrUyftYmEj5PlqVBChoefAQUKRqNP4JBJ9EojexaGv3kBPwtA13ZOnzykwPQtBtQh0Wsm55FENpzvEoJxPGl53CkFJzDgEInNKGx68406iP1Qs5XcVds5jWUCq06T2Oc2xfH04zneRpz52FXpSGWcirxKFngSc5hV3EXGqqpzPPQkwR3lN+yqBqBGLbna72+CpfU+o69Dtk4f6KiMWXdGry1eB69FD5Od939UG3fZd7dRpQ8+eytri1SYPbVaUilz3CFY7tmaVY7Pq4Smd0IeEIlEH8fD15/VntbuYkzC4pLkKQx8FIaARhXqC0JMY5MB7FIHlC0CnzbIIlOuRvYGyEJRFoNrjxzNe8fS5evn88fBJYszpHeMdTzhHunO+nFPk8ZDFk1wHdIWdJ1GnFnRqEaYZbOZU9boINm9iTVdY6aRp6nRJ49X2cAAP5iYUne2qA1O5iwtv72y5rGKTjs1SHUxzXq8/em17g9NRV3ofw8oKRX89ed6EvOv1cm9L2wFXmypjiytVJRb99Tyr24s2uK9Ur4kwuL9WyjkvUSgId0goErUHOYhuDcQfkagkeRCJnOscPpVI9CYQpXR3kageNnb1FEo5XEUiD3l9uTeB6E0cehv2lcWhXFYWe4AqZjpUnj9FUDnyehCHrsJQPqcrDB318pxWGDpt1IpCV6GoJ9g4eD6n27YHYchxTFOHq1h0FXLOKj0rFHcx5G63U9S6h4PSikvflJDeJ5VX2ViZT7KbBY7KxHJq9da+r/1SF1QLDqZz3pM9vJfXKhjfcOq+exNRDEBIBRbiBQM5JJinc4TvkFAkaiQMlfnCFCHf2jQrspWV2Ho1OwP7ypPPJTEjQIofKKfJK5sdVcntMEGxWNKzPBgEpzBkIjhIcRGhnJPqksSYLMQYwASNcIRSH8DJMfZkgajM/zM47FLLHck+aWkID44TnOeYTfEwCrBB9jC6DTNzWvEISF4/WUAC2qFjGcXbKF9ytXiEetjZ3dOoJySVciqxJYtJpbcuglK6flDZqRV65XkceZdjpX4v3kTXdD2PpFP8ySLZWS8Hlb1qoebBFmc7XoSHzttdz0atncwtn6tNHtvzaIdnz2ZFqYxnzZNnFfAsul3jlgLuHsSK2BSIa+EP/vzedu1fmVj1YXoCgRRTtX4JxT179mD9+vWYNWsW4uPjMXfuXDz11FOVrpeEIlFj0RWLPnsVPYhFuQ4Zt7pU5RhTiUXAm2AEtB5EZ4Bjp3dPEY4+iEYpFCUP5hCNcn1u3kY46wbHQ4RDaDBZPEqrhgVVXkXcuohHntkd5w0a4SidNWgWpfCaeY3qOYqcpg1AJXxcvJJymkY0Ov6BqUQkc4pIdX2u8xOd6U7Pm1P4qASlVIlKUKo9e+UPY0NVr5xPjd5N33WYWU5TC0i1xHf1YJYnTrUy3TPehqy1fXWvzZ8hZ1/m/HkTt75SngfRG67tV2Swwl0kBs6e6qC8PusNo1tF77vp1BSYF4+ip/TazuTJkzFmzBiMGTMGGzduxNatWwNSLwlFokZTJZ5FTQM634SqIMlMExbFrggFqZgkxABJQDCVV1LbhKDyPAJSjwSHt9BZXjqjGm5mznTlHIM2H5ziUUrn3NMU76N2KFtK03okeXDKeXXQck9D2eo2pXwG2RBNutpLqa5PMx9SEZ6cxl5PnktOVIlNTVucNp9S3ikwHSY60qHN78GbKZ1TmtEVQ67vMPXr5ypS1fW5tqPn7dJ4AV0Fnw8qx7Onz8U+Fyq6kMWjl4zTPtGrPyCLUvXq4NwPfF0Y5MmkwC2gVb1XfLzmFW27Iq+p3JaZK6pYo9WMCGlPez2EOro1S1hYGB5//HEMHz4cEydO9BjH1F9IKBI1Hjex6MmrqOsp1IpFPdwEpKZ+9UCS3rA0oPU0ctAbfGIqO6Q2ec1wtdoz6OZ1BBTPo9yGOoA2p9o9xjkkLg8dckpwc7mMdoW2jkdSJR69DWUDNo0glYe0pWdqgWtQgp27LqKR8rqISGWIW+s1dfNccuWLSXW9SnnmLh7VZTwNizst0eZX4x42Ry2i1eWYm0DTegt1BCbcMzrrd59X6An3YVZXmz3lc/8sersNeTIlkCuoy8PfwN6+CO5A3XxrEt767dpfG2epanMCgrTlqf65uhodJzxcWpHeq1cvXHfddZg6dWpA6q21QvHVV1/F888/j7y8PHTp0gWvvPIKevfuHWyziCrCZ7HoA+UO0rnVy7ucVp93XRWtX0Zq1302mD/xFF3rcPUqaj17Wk9gebEUnVZzmnzewuioy+p5FT15FGVxVxlvolyXfM6XVddO+9TXU7bAeU1cd2nRDmtr87vW41o/r5OpPG+ibv2qBjx5FssLpu1aj6e29Or2ls9vqlEoKpTrXdSi7ru7qAhGByqA81djJdFWEMpqyapnVv88ik899RTsdjtCQkIwceJENGjQICD11kqhuHbtWmRmZmLlypXo06cPli5dioyMDBw5cgRJSUnBNo8IFhxXbmwKryJRV3jqCzZ9gagv4tStO+vyLBB1V0brDDW7CkNvq6Wlvy4rpjV5tOLN31XTgFO4SR47dzEoH6vFoFoIunv0XMUip+0z9FdXextKlo6hqUOd5jqv0ZfhYnU9zp5q8yiCVCmr9VSWN6StLqvJw+mf90UkevppoxW9HozxEY+eu8pV6xe+SIKK2FNV9VaUikifithnqiVCURp61u9hXZ2j2KdPH83x6NGjA1JvhYXiuHHjMHHiRFx99dUBMcQflixZgkmTJmHChAkAgJUrV2LTpk1YtWoVHn300Wq3h6hBeLmzuYnEcoShlEXOoxdw213E6YlBdRlfAm2XF2TbmxD0tMuKXkxFuYxch96QsFuAbfm5Kr6itoxW8HkSe64iT31FpeDa3r16alGjF2dRzudalleny21y+sJNM6jOacWZ6+IStzqhfz5QoXbUabqiUR0GxotA1H/nAuoVyt5uqb4OI1fVbdlbSBuKlVc1RHG1QyjWt6HnHTt2VKhc8+bN0bRpU695KiwUCwsLMWzYMDRr1gwTJkzAuHHj0Lhx44pW5zNWqxW7d+/GnDlzlDSe5zFs2DDs3LnTLb/FYoHF4pxTYTabq9xGomqo2MIWHf+ML8PEPnoPXQNvu3oKNXl8FIeBFoaugbalunVWNLt5Ap3xFAGnB9DXmIp6YpDX2ODYiUURTOWHv9EIRx0ByEHrteOg9RbKuAW7Vok2TQgduIhHD/nkOr0JPFexKbXvnFuoJ+CcbbuHq9Ha4rzzuc4xdA31oufxdDHLzXZfA2frtaGHzzELHTBlEVTl7vB64rGidbrWVVnbagtGQy2JowjPnsO66FEcN26c32U4jsOMGTPw0EMPec1XYaG4YcMGnD9/Hu+88w7eeustzJ8/H8OGDcPEiRNx0003ITQ0tKJVe+XChQsQBAHJycma9OTkZBw+fNgt/+LFi7FgwYIqsYUIMhWdp+hWTrvQRMrC4BR7zliK5U12VxaOqPIySAtTwERAdU5OZxBVsRKZlE+NfMN33IeYIgIFiPJwMhMhf/eJAHhVyEgRPAC7Q2Q5vuSZ4AjBY4AIwSHCDNJiGsY5lr1I10WUBSMnOnY7YIpgZByTVpQzua+ymJQWDzHI4W6kM4zjFNHBM9V5OEWZHOKH4+Ao5xhWY4Aoiy3HrwZZIDIOziFrx8vLOaYhyB5DEU6BJzKprOioy1P4GvmVkOpz5HVm0YhHgekLTfm5fJ7noBon5JRjb55B548Dp51yfbIdmvOqNlw96RpBw9xFnfIWZ2qBqBLsnvK7pusnO+wr/3Or7/VxlqvMyl1/bSmvPul6+1+PP56t6lwEpIdsq1hL5vcxxtWrOIrZ2dlVVnel5igmJiYiMzMTmZmZ2LNnD1avXo177rkHUVFRuPvuu/HAAw/gqquuCpStFWLOnDnIzMxUjs1mM9LS0oJoEVG9uItAAB7EIjR5PYlFAPAUeBtwxjxUvI6qVcqK2FO8hOpQPA5BKQtBJRajc9WyFFJHFpgAc1TIwIFj8hxEEYJOiBspSLccY1D2EjqFiAi75GlUvHgGpS+yWAR4gBPcPY1KGc9Dzzxkr6VaHHIaEcSrxI3u8LNKAPNM7rnsnXQqJ/UuLm5xGNVCTuV9lNOU+qFFd/jZm1hTPVfqdMnjcQ6js5Sud9LdJm1B70PP7hW5iUWN3TreRHdTvAqZ6rwtcxyjYecqxC7agm2CTzDUL49iVRKQxSy5ubnYsmULtmzZAoPBgOuvvx779+9H+/bt8dxzz2HmzJmBaAYA0LBhQxgMBuTn52vS8/PzkZKS4pbfZDLBZKodcyqI8qnY6mdJLDIX74zbwhdO9mdpq3feRvXjKHqMoeio3xk7EVDHT+Q4zrlZjHp42Yf4iZ5iJ3KcFL7GNWYipxGSquvlupiFudbvnNPocfja4Y0EoA1xw7nMa1TXVV6MRMdQuC97SXuc66hK15RVNJX22HW+ntvqZY2nTzVkrr6cLp43XxezuNbjbei2vB1j1Ha41qvG06dGZyKGbl6vQ88V8DLK+OOvqgu3+5rW3/LsMbPSarCi8ggMsHvojKf02s66deswevRoGI1GAMCZM2eQmpoKnpc+1SUlJVi+fDlmzZrlV70VFoo2mw2fffYZVq9ejW+++QadO3fGjBkzcOeddyImJgYA8Omnn+K+++4LqFA0Go3o0aMHsrKylBU9oigiKysL06dPD1g7RM1FVywCzjuX7lZ9qi36NPu9qvJ4GlIpJwC3UzQCvgTg9ldAyvETJVEnuNmtiEcXkedpMYygKiNdTG1+qS7ve0oDkqj0ZZGM1LbLQhnOZaW0qm7eITK19Wrr1/QX7otm9HZ+0dqn57Nzqd9FzPEu+bVCUl+EqtNc5x26tqPtsWsm9Xn3uvXa9WeYWKcZrU3evIUeKg2UqFF/Kr3V6a1vwRgtrWn2BIoSviTYJvgIp7vlIgCP6bWdO+64A7m5uUr0l/bt22Pv3r1o0aIFAODKlSuYM2dO9QnFRo0aQRRF3HHHHfjll1/QtWtXtzxDhw5FXFxcRZvwSGZmJsaNG4eePXuid+/eWLp0KYqLi5VV0ETdx+vCFq93Qw9D0RWqS400NF2lOOY4+oL7vDS1B1JVh4/1KfMr5fmWcrJjWNzv6+pmr1YQwnHknubIz9zFrfOc1ktZIXv8mLfmr6fSUxsVt9Y7FZlDCFRMHPpSr7+UV58vL5U6T1WLtJpmT6CpzOeqOvG6mKWOCkXX4OhB35nlpZdewq233oqwsDCPeeLi4qpkguXYsWNx/vx5zJs3D3l5eejatSs2b97stsCFINxxH7J1w+M3vaqszqpo93QP4syR4izjnMvolt9biB3V84qsmpae6wTb1uRVeRDdhr31t/NTew897rqiMySttkFPCHr1GvowNC3Zru8ldLsuPgxXu3oIXVdou/VJfXld3mKe3oseF5qo++BhONvXoWy3Nsu5h3qtq5rvv5VZ4OF1IUlFtpxBxe0JZLgW2YaqCgETwmpH+GWRAXb3TbIA1N2h56qiwq/4PffcE0g7/Gb69Ok01Ew48ckDpCMSdctpb4Xu3hPPMRWlurUSwms8RcBNDFZGCPoSOkdrk/6QsdyWlNeP+IrgwTt2X/EWW9FTOB1Nmo6o0wz7ci5zBVXP1QtJXANna9uA9q9igzNdT5BxqjIaHyinFYqeFq+o05Sy0EfrhfReL6d3zsV+b1RIJJZbxvNdWfRBWXorD/j40Vfh6mQp1wYfdjhxtdEfm8pz+qjtK+9a+Iov191Tm0fNkQGxoeqpf0PPVUXt+GlAEC74cnvRL+fJrePJWwhUVBj6si2f684r6q34dAWhWjCqd1rxIY5iecJP2xeVAFQtKpEXopQXT9GgOifvmSyLmPLiKMpX15OnzjWWorMdd8GkXuDiy0pmOU1dRitUHfWo2pHzuC4ycY2hqD7n+gb2JjT03qVO+1S7cXPadLXYlcowTR2u7Wja10/WFZJ6MRa91e2KnlDypaxHYa2zStt1FbSro0nPBlcx4Ws/Kzow68H5VWX4Miqp9zpEhlRN6LtAI9bDxSwA8PXXXyM2NhaAc/3GgQMHAAAFBQUVqpOEIkH4LRKd+CsSvQlE6dhdJPrqMXTdk9l16z1P2+55225P+it7A70LRG+7rsjewIoE2ZZtUHv/1H5XtVBTeyFdhaEvu6u4ikI53ZMw5FT5FDHIudruW1BtxTQXoaMpo7HDKfzUYtCrN9RL2BxvAseXEDl63i4O7g45t1w+CkpP2XwKdK0q7Coamct50bOlCm7CviI2ebBHY5cHfLxk3uv0oxJ1VkNVz8UOEPUt4LaMa+Dtf/3rX5pjf+Zfy5BQJOoo/iyucOZ1D6rtXKSiF3DbubhDWl7jGnDbp2DbgOpuKsktZz2i8i3NMW2wbWn1skEKtu2InciBVwJOSzXz4OU+qIJsC7BLYotzBtkWlL6oV2vzjqvDQ4qfyHkMuO0Mtu0c8pGEpDPQdkWCbEvBspkUN9GhPHhIwbc5xzEHztFvrYdNVA0Ty0G25evtLcyMt0DbsnBUB9h2imGXIMyOin0Jqu085erJUuVl6jRO6a9TCHJOAala/M8xp1yrmEfRmeLZq+g8UYF7kd+oX0tnu57llTevov9z/uUfQv7b5EkYVrdHUcZjsAcPr6FQdaYElPq2hR8geRCrAhKKRK3EbdqQbjxF1w+NSyxFTRgddQgcKa8T1/iJgHpbP9cwOIwJkghUbgjO0DdyGckGnXmKqhiKzgUdPnodHaFupL7pex0B6MRKdNquWfjhKcQNp12k4hozUW/bP8A5CO4tRqJ6EYqbPaphZKc3zumllPKo7fXiqYTqhKodf+csehva9iXeoboNTZpbHlW9mjTVcL3KNvUQvGub5Wk4b+d9XaxR2V1T/Clf7rxJHVHg+s1QUeHgamdVDDuLrGLX0+e2y+m7a9tme3HVGRNARHAePYd1cWeWqoSEIlGr0fgx9MSi+ueyOh6i+ivd4SHTov3d7D75WQDAq7Smq6dRuz+00wxe621wu7WohZH+kLi/cx6lY624dHvuaodOQG/puff4iq7D35KA5DRlFVs594UzUh2qdE9xFh3P1MfKzi/lBPN2rdc13IeuSHV57m3BjTq/XqxFKR1e8bQKWm8ls1McehbCru2Xhy8eQb08HiMJVCGBFGdMT1Xq4Osq9YraURE8tR1oH9NF/nyAa6w6PL2addGhmJ6eXqFh5Srd67m2s2/fXpT/25qo6egvTvHt61pbVis+nFXq1WXwmIdzEUqeVijr1+upLoNyTi3EnHU6z7uWUS9skTyMLnVCVadrv1TXgteIOl4RczzjlWO5LmnlM6865hziTXC0xRyiRd5/WtuePBTrKsZ4x67VUl5O2aNXnr+o9grKz2Wvn9oj6Oo9VDsX1O8JAVpvimZOo8qbKHsS5SFp9ZxBtZcPLvV5wlWEuG/rp50PqSxSUeVTezM9rZTWw5cbqKuXUn1tpePya1Gvui1v2Le8e5/u3EgfrrPcrmyL89hbW+71e9su0Vu7alxXIftzTcpbcV1ee74Ou8v1Fp6xY0/hHtR0ueVtMYtQs02vEGvWrKlQuebNm5ebp94KRaJuoDuUDMGnb2zNd4W6rANprmA5lXC8Th5XMehZWHqs1qNgdfcIevIMluc91Hj0PNikG+xap14OBo0YVgtV9/bdJ8Prt6MVp675nEPjvGPOoSM/U+VnqjiRLkP5Un36E/PdPb1aO5W/LnW6Drt76lt56Hn/XNO0/XD3XHryZgbC86SZ56iu2w+PhljJYMDltVWeB1VUfQOobfHmVXQX8eW/Tnrt6Z6vwPXwdg14cF7brOj1P8Lvq1C56kZk9Wsxy+DBg6usbhKKRJ3AbVs+v78EXaZoc56CYbg27Dq1m1fqcm7D5zosLbfhr4DwLtqceBA/Onk9CaLy23C3yZMwLa+d8oSzL3arRaWncp4Emy/C3VN+Ny+st+F8v9rwvrLUn77oCfNA4WaHMhXDc5vM7TNTQTwuwvC9v55sEXVks+4196G//rbtXyXOp77aUNl2L5Uer1T56oLB822gtu2GE2xIKBJ1Dl/nGXmvxHevghb3L2FtSApV2QDcKNwX3vhOwOaT+SgkK9WEX2LO95u2vyLRYz2+TndwtMeYd/9d5e0KTL/8xVe7y+t/VbfvSkXtCcT7p7LXorr7bBeuVKhcdVPfhp6rEhKKBOEnlRKiVfBT1kffpxsBs6Tc4fnKC9Ka5QEIjgirKBX9QeDPECxRf2C1JEAOg2dBSELRP0goEkQtJyAe1KqkZqm8AKDviamp4qkqrn5de0UJ36nx3zcOGKOh50BBQpEgCCIA1JYbKEHUB0TQ0HOgIKFIEARBEESdwrGhksdzhO/Ursk2BEEQBEEQ5cCYtDOLp4e/7NixA6NGjUJqaio4jsOGDRtc2mOYN28eGjVqhPDwcAwbNgxHjx7V5Ll06RLuuusuxMTEIC4uDhMnTkRRUZEmzx9//IFBgwYhLCwMaWlpeO655/y2NdCQUCQIgiAIok4hMsAuen74S3FxMbp06YJXX31V9/xzzz2HZcuWYeXKldi1axciIyORkZGBsrIyJc9dd92FgwcPYsuWLfjiiy+wY8cOTJ48WTlvNpsxfPhwNGvWDLt378bzzz+PJ598Em+88Yb/BgcQGnomCIIgCKJOEeih5+uuuw7XXXedfn2MYenSpZg7dy5uuukmAMDbb7+N5ORkbNiwAbfffjv+/PNPbN68Gb/++it69uwJAHjllVdw/fXX44UXXkBqairee+89WK1WrFq1CkajER06dMDevXuxZMkSjaCsbsijSBAEQRBEnYKBQWCeHwBgsVhgNps1D4vF4ndb2dnZyMvLw7Bhw5S02NhY9OnTBzt37gQA7Ny5E3FxcYpIBIBhw4aB53ns2rVLyXP11VfDaDQqeTIyMnDkyBFcvny5QtchEJBQJAiCIAiiTiFt4ef5AQDLli1DbGys5rF48WK/28rLywMAJCcna9KTk5OVc3l5eUhKStKcDwkJQUJCgiaPXh3qNoIBDT0TBEEQBFGnYJDEoh5y+kMPPYR58+ZpzplMpqo1rBZCQpEgCIIgiDqFyMrfmcVkMiEmJqbSbaWkpAAA8vPz0ahRIyU9Pz8fXbt2VfKcO3dOU85ut+PSpUtK+ZSUFOTn52vyyMdynmBAQ88EQRAEQdQpGAME0fMjkKSnpyMlJQVZWVlKmtlsxq5du9CvXz8AQL9+/VBQUIDdu3crebZu3QpRFNGnTx8lz44dO2Cz2ZQ8W7ZsQZs2bRAfHx9Yo/2AhCJBEARBEHUKBml3Fk8PfykqKsLevXuxd+9eANIClr179+LUqVPgOA4zZszAU089hc8++wz79+/Hvffei9TUVIwePRoA0K5dO4wYMQKTJk3CL7/8gh9//BHTp0/H7bffjtTUVADAnXfeCaPRiIkTJ+LgwYNYu3YtXn75ZWRmZlbyalQOGnomCIIgCKJO4cvQsz/89ttvGDp0qHIsi7dx48ZhzZo1mDVrFoqLizF58mQUFBRg4MCB2Lx5M8LCwpQy7733HqZPn45rrrkGPM/jlltuwbJly5TzsbGx+OabbzBt2jT06NEDDRs2xLx584IaGgcAOMbq1/bYZrMZsbGxAAwA/I/OThAEQRAEAyCgsLAwIPP8Asldd92Fv784h67RA3XPC0zAm2f/q7vKmHCHPIoEQRAEQdQpvHkUPa2GJvQhoUgQBEEQRJ1C3sLP0znCd0goEgRBEARRp2COf57OEb5DQpEgCIIgiDqFHB5HD/Io+ketCo9z4sQJTJw4Eenp6QgPD0fLli0xf/58WK3WYJtGEARBEEQNQQTK3euZ8I1a5VE8fPgwRFHE66+/jlatWuHAgQOYNGkSiouL8cILLwTbPIIgCIIgagByHEU9Ahxvu85Tq4TiiBEjMGLECOW4RYsWOHLkCFasWEFCkSAIgiAIAIDIGAQPY8wieRT9olYJRT0KCwuRkJDg8bzFYoHFYlGOzWZzdZhFEARBEESQYAweh5hJKPpHrZqj6MqxY8fwyiuv4F//+pfHPIsXL0ZsbKzySEtLq0YLCYIgCIKobhgYRC8PwndqhFB89NFHwXGc18fhw4c1ZXJycjBixAjceuutmDRpkse658yZg8LCQuVx+vTpqu4OQRAEQRBBhBazBI4aMfT8yCOPYPz48V7ztGjRQnl+9uxZDB06FP3798cbb7zhtZzJZILJZAqEmQRBEARB1AIYYx6HmGno2T9qhFBMTExEYmKiT3lzcnIwdOhQ9OjRA6tXrwbP1winKEEQBEEQNQQRgOBhiJmGnv2jRghFX8nJycGQIUPQrFkzvPDCCzh//rxyLiUlJYiWEQRBEARRU2BgEJh+IBzRQzqhT60Silu2bMGxY8dw7NgxNGnSRHOOkSuZIAiCIAg4F7PoQR5F/6hV47bjx48HY0z3QRAEQRAEAQAiRAhe/hG+U6s8igRBEARBEOUhgsHuYQ8WkfZm8QsSigRBEARB1CmkoWcSioGAhCJBEARBEHUKEQwCpz/ELNLQs1+QUCQIgiAIok5BHsXAQUKRIAiCIIg6BeMECJxd/xwJRb8goUgQBEEQRJ1ChAg7SCgGAhKKBEEQBEHUKZhj8Fn/HAlFfyChSBAEQRBEnUKKo2jTPUdC0T9IKBIEQRAEUacQIcDOkVAMBCQUCYIgCIKoY9DQc6AgoUgQBEEQRJ1ChACBefAoMhKK/kBCkSAIgiCIOgWDQHMUAwQJRYIgCIIg6hS06jlwkFAkCIIgCKJOITKRhp4DBAlFgiAIgiDqGCKYhz2dyaPoHyQUCYIgCIKoU4gQITAPO7OQR9EvSCgSBEEQBFGnYEyASEPPAYGEIkEQBEEQdQvGPApCEor+QUKRIAiCIIg6BYPoxaPIqtma2g0JRYIgCIIg6hQiE7zMUSSh6A8kFAmCIAiCqFMweBt6JqHoDyQUCYIgCIKoUzBGQ8+BgoQiQRAEQRB1CsZEiCINPQcCEooEQRAEQdQxvG3hR0LRH0goEgRBEARRp2BMII9igCChSBAEQRBEHYMBHrfqI6HoDyQUCYIgCIKoU0hxFMmjGAhIKBIEQRAEUadgTASjVc8BgQ+2ARXFYrGga9eu4DgOe/fuDbY5BEEQBEHUGESHWNR/VIRXX30VzZs3R1hYGPr06YNffvklwDbXTGqtUJw1axZSU1ODbQZBEARBEDUNJgLM7vnhJ2vXrkVmZibmz5+PPXv2oEuXLsjIyMC5c+eqwPiaRa0Uil999RW++eYbvPDCC8E2hSAIgiCIGgYDA4Pg8eEvS5YswaRJkzBhwgS0b98eK1euREREBFatWlUF1tcsat0cxfz8fEyaNAkbNmxAREREufktFgssFotybDabq9I8giAIgiCCDgM8zkWU0i0Wi5smMJlMMJlMmjSr1Yrdu3djzpw5ShrP8xg2bBh27twZUKtrIrXKo8gYw/jx4zFlyhT07NnTpzKLFy9GbGys8khLS6tiKwmCIAiCCBbvv/8BZJ+i3j9ZKK5cuVKjD2JjY7F48WK3+i5cuABBEJCcnKxJT05ORl5eXjX0KLjUCKH46KOPguM4r4/Dhw/jlVdewZUrVzSqvjzmzJmDwsJC5XH69Okq7AlBEARBEMHkzJnTgEoQamEABAAc5s+fr9EHhYWFfumL+kKNGHp+5JFHMH78eK95WrRoga1bt2Lnzp1ubuGePXvirrvuwltvveVWTs+NTBAEQRBE3aRx48YAOEiC0OB4LiOJR7O50Gd90LBhQxgMBuTn52vS8/PzkZKSEiizayw1QigmJiYiMTGx3HzLli3DU089pRyfPXsWGRkZWLt2Lfr06VOVJhIEQRAEUUsoLCxAbGwsJGEoC0Vpt5YVK1YgOjra57qMRiN69OiBrKwsjB49GgAgiiKysrIwffr0AFte86gRQtFXmjZtqjmOiooCALRs2RJNmjQJhkkEQRAEQdQwYmJisHz5coeQ4xwPyZs4ceJEv+vLzMzEuHHj0LNnT/Tu3RtLly5FcXExJkyYEFC7ayK1SigSBEEQBEH4wuTJkx1CUZ6rKGLDhg0IDQ31u66xY8fi/PnzmDdvHvLy8tC1a1ds3rzZbYFLXYRj9WwvG7PZ7HBHu85bIAiCIAjCN6RFIYWFhYiJiQm2MR759NNPcfPNN0P2KIqiCI6je78/1DuPolMX1yt9TBAEQRABRLqH1nRfkzynEGDYtWsXicQKUO+E4pUrVxzPKrbXI0EQBEEQEleuXHGM0tVMOI7Dn3/+iXbtOqB3797BNqdWUu+GnkVRxNmzZxEdHV3pXxZmsxlpaWk4ffp0jXa9+0td7Fdd7BNA/apN1MU+AdSv2kQg+8QYw5UrV5CamgqerxEhmYkqot55FHmeD/gK6ZiYmDrzRaKmLvarLvYJoH7VJupinwDqV20iUH2qyZ5EInDQzwCCIAiCIAhCFxKKBEEQBEEQhC4kFCuByWTC/Pnz69wWgXWxX3WxTwD1qzZRF/sEUL9qE3WxT0TVU+8WsxAEQRAEQRC+QR5FgiAIgiAIQhcSigRBEARBEIQuJBQJgiAIgiAIXUgoEgRBEARBELqQUCQIgiAIgiB0IaFYAU6cOIGJEyciPT0d4eHhaNmyJebPnw+r1arJ98cff2DQoEEICwtDWloannvuuSBZ7DtPP/00+vfvj4iICMTFxenm4TjO7fHhhx9Wr6F+4EufTp06hZEjRyIiIgJJSUn4z3/+A7vdXr2GVpLmzZu7vS7PPPNMsM3ym1dffRXNmzdHWFgY+vTpg19++SXYJlWKJ5980u11adu2bbDN8psdO3Zg1KhRSE1NBcdx2LBhg+Y8Ywzz5s1Do0aNEB4ejmHDhuHo0aPBMdZHyuvT+PHj3V67ESNGBMdYH1m8eDF69eqF6OhoJCUlYfTo0Thy5IgmT1lZGaZNm4YGDRogKioKt9xyC/Lz84NkMVHTIaFYAQ4fPgxRFPH666/j4MGDeOmll7By5Uo89thjSh6z2Yzhw4ejWbNm2L17N55//nk8+eSTeOONN4JoeflYrVbceuutmDp1qtd8q1evRm5urvIYPXp09RhYAcrrkyAIGDlyJKxWK3766Se89dZbWLNmDebNm1fNllaehQsXal6XBx98MNgm+cXatWuRmZmJ+fPnY8+ePejSpQsyMjJw7ty5YJtWKTp06KB5XX744Ydgm+Q3xcXF6NKlC1599VXd88899xyWLVuGlStXYteuXYiMjERGRgbKysqq2VLfKa9PADBixAjNa/fBBx9Uo4X+891332HatGn4+eefsWXLFthsNgwfPhzFxcVKnpkzZ+Lzzz/H+vXr8d133+Hs2bO4+eabg2g1UaNhREB47rnnWHp6unL82muvsfj4eGaxWJS02bNnszZt2gTDPL9ZvXo1i42N1T0HgH366afVak8g8NSnL7/8kvE8z/Ly8pS0FStWsJiYGM3rV9Np1qwZe+mll4JtRqXo3bs3mzZtmnIsCAJLTU1lixcvDqJVlWP+/PmsS5cuwTYjoLh+B4iiyFJSUtjzzz+vpBUUFDCTycQ++OCDIFjoP3rfa+PGjWM33XRTUOwJFOfOnWMA2HfffccYk16X0NBQtn79eiXPn3/+yQCwnTt3BstMogZDHsUAUVhYiISEBOV4586duPrqq2E0GpW0jIwMHDlyBJcvXw6GiQFl2rRpaNiwIXr37o1Vq1aB1eK47Tt37kSnTp2QnJyspGVkZMBsNuPgwYNBtMx/nnnmGTRo0ADdunXD888/X6uGz61WK3bv3o1hw4YpaTzPY9iwYdi5c2cQLas8R48eRWpqKlq0aIG77roLp06dCrZJASU7Oxt5eXma1y42NhZ9+vSp9a/d9u3bkZSUhDZt2mDq1Km4ePFisE3yi8LCQgBQ7k+7d++GzWbTvFZt27ZF06ZNa/1rRVQNIcE2oC5w7NgxvPLKK3jhhReUtLy8PKSnp2vyyUIkLy8P8fHx1WpjIFm4cCH+8Y9/ICIiAt988w0eeOABFBUV4aGHHgq2aRUiLy9PIxIB7WtVW3jooYfQvXt3JCQk4KeffsKcOXOQm5uLJUuWBNs0n7hw4QIEQdB9LQ4fPhwkqypPnz59sGbNGrRp0wa5ublYsGABBg0ahAMHDiA6OjrY5gUE+XOi99rVps+QKyNGjMDNN9+M9PR0/P3333jsscdw3XXXYefOnTAYDME2r1xEUcSMGTMwYMAAdOzYEYD0WhmNRrf52rX9tSKqDvIoqnj00Ud1F2qoH643rJycHIwYMQK33norJk2aFCTLvVORfnnjiSeewIABA9CtWzfMnj0bs2bNwvPPP1+FPXAn0H2qqfjTz8zMTAwZMgSdO3fGlClT8OKLL+KVV16BxWIJci/qN9dddx1uvfVWdO7cGRkZGfjyyy9RUFCAdevWBds0ohxuv/123HjjjejUqRNGjx6NL774Ar/++iu2b98ebNN8Ytq0aThw4ECNXmxI1HzIo6jikUcewfjx473madGihfL87NmzGDp0KPr37++2SCUlJcVtFZl8nJKSEhiDfcTffvlLnz598N///hcWi6XaNpsPZJ9SUlLcVtYG67VypTL97NOnD+x2O06cOIE2bdpUgXWBpWHDhjAYDLqfm2C/DoEkLi4OrVu3xrFjx4JtSsCQX5/8/Hw0atRISc/Pz0fXrl2DZFXgadGiBRo2bIhjx47hmmuuCbY5Xpk+fTq++OIL7NixA02aNFHSU1JSYLVaUVBQoPEq1rXPGRE4SCiqSExMRGJiok95c3JyMHToUPTo0QOrV68Gz2uds/369cPjjz8Om82G0NBQAMCWLVvQpk2bah929qdfFWHv3r2Ij4+vNpEIBLZP/fr1w9NPP41z584hKSkJgPRaxcTEoH379gFpo6JUpp979+4Fz/NKn2o6RqMRPXr0QFZWlrKKXhRFZGVlYfr06cE1LoAUFRXh77//xj333BNsUwJGeno6UlJSkJWVpQhDs9mMXbt2lRtBoTZx5swZXLx4USOGaxqMMTz44IP49NNPsX37drcpUD169EBoaCiysrJwyy23AACOHDmCU6dOoV+/fsEwmajhkFCsADk5ORgyZAiaNWuGF154AefPn1fOyb/I7rzzTixYsAATJ07E7NmzceDAAbz88st46aWXgmW2T5w6dQqXLl3CqVOnIAgC9u7dCwBo1aoVoqKi8PnnnyM/Px99+/ZFWFgYtmzZgkWLFuHf//53cA33Qnl9Gj58ONq3b4977rkHzz33HPLy8jB37lxMmzatWsVvZdi5cyd27dqFoUOHIjo6Gjt37sTMmTNx991316r5sJmZmRg3bhx69uyJ3r17Y+nSpSguLsaECROCbVqF+fe//41Ro0ahWbNmOHv2LObPnw+DwYA77rgj2Kb5RVFRkcYLmp2djb179yIhIQFNmzbFjBkz8NRTT+Gqq65Ceno6nnjiCaSmptbo0Fne+pSQkIAFCxbglltuQUpKCv7++2/MmjULrVq1QkZGRhCt9s60adPw/vvvY+PGjYiOjlbmHcbGxiI8PByxsbGYOHEiMjMzkZCQgJiYGDz44IPo168f+vbtG2TriRpJsJdd10ZWr17NAOg+1Ozbt48NHDiQmUwm1rhxY/bMM88EyWLfGTdunG6/tm3bxhhj7KuvvmJdu3ZlUVFRLDIyknXp0oWtXLmSCYIQXMO9UF6fGGPsxIkT7LrrrmPh4eGsYcOG7JFHHmE2my14RvvJ7t27WZ8+fVhsbCwLCwtj7dq1Y4sWLWJlZWXBNs1vXnnlFda0aVNmNBpZ79692c8//xxskyrF2LFjWaNGjZjRaGSNGzdmY8eOZceOHQu2WX6zbds23c/RuHHjGGNSiJwnnniCJScnM5PJxK655hp25MiR4BpdDt76VFJSwoYPH84SExNZaGgoa9asGZs0aZImjFZNxNO9afXq1Uqe0tJS9sADD7D4+HgWERHBxowZw3Jzc4NnNFGj4RirxXFNCIIgCIIgiCqDVj0TBEEQBEEQupBQJAiCIAiCIHQhoUgQBEEQBEHoQkKRIAiCIAiC0IWEIkEQBEEQBKELCUWCIAiCIAhCFxKKBEEQBEEQhC4kFAmCIAiCIAhdSCgSBEEQBEEQupBQJAiCIAiCIHQhoUgQRI3g/PnzSElJwaJFi5S0n376CUajEVlZWUG0jCAIov5Cez0TBFFj+PLLLzF69Gj89NNPaNOmDbp27YqbbroJS5YsCbZpBEEQ9RISigRB1CimTZuGb7/9Fj179sT+/fvx66+/wmQyBdssgiCIegkJRYIgahSlpaXo2LEjTp8+jd27d6NTp07BNokgCKLeUuE5iseOHcPXX3+N0tJSAADpTYIgAsHff/+Ns2fPQhRFnDhxItjmEARB1Gv89ihevHgRY8eOxdatW8FxHI4ePYoWLVrgvvvuQ3x8PF588cWqspUgiDqO1WpF79690bVrV7Rp0wZLly7F/v37kZSUFGzTCIIg6iV+exRnzpyJkJAQnDp1ChEREUr62LFjsXnz5oAaRxBE/eLxxx9HYWEhli1bhtmzZ6N169a47777gm0WQRBEvcVvofjNN9/g2WefRZMmTTTpV111FU6ePBkwwwiCqF9s374dS5cuxTvvvIOYmBjwPI933nkH33//PVasWBFs8wiCIOolIf4WKC4u1ngSZS5dukQrEwmCqDBDhgyBzWbTpDVv3hyFhYVBsoggCILw26M4aNAgvP3228oxx3EQRRHPPfcchg4dGlDjCIIgCIIgiODh92KWAwcO4JprrkH37t2xdetW3HjjjTh48CAuXbqEH3/8ES1btqwqWwmCIAiCIIhqpEJxFAsLC7F8+XLs27cPRUVF6N69O6ZNm4ZGjRpVhY0EQRAEQRBEEKCA2wRBEARBEIQuPi1m+eOPP3yusHPnzhU2hiAIgiAIgqg5+ORR5HkeHMeBMQaO45R0uag6TRCEKjCTIAiCIAiCqG58WvWcnZ2N48ePIzs7Gx9//DHS09Px2muvYe/evdi7dy9ee+01tGzZEh9//HFV20sQBEEQBEFUE37PUezduzeefPJJXH/99Zr0L7/8Ek888QR2794dUAMJgiAIgiCI4OB3HMX9+/cjPT3dLT09PR2HDh0KiFEEQRAEQRBE8PFbKLZr1w6LFy+G1WpV0qxWKxYvXox27doF1DiCIAiCIAgiePg99PzLL79g1KhRYIwpK5z/+OMPcByHzz//HL17964SQwmCIAiCIIjqxW+PYu/evXH8+HE89dRT6Ny5Mzp37oynn34ax48f91sk7tixA6NGjUJqaio4jsOGDRvKLbN9+3Z0794dJpMJrVq1wpo1a/ztAkEQBEEQBOEDPsVRdCUyMhKTJ0+udOPFxcXo0qUL7rvvPtx8883l5s/OzsbIkSMxZcoUvPfee8jKysL999+PRo0aISMjo9L2EARBEARBEE58Gnr+7LPPcN111yE0NBSfffaZ17w33nhjxQzhOHz66acYPXq0xzyzZ8/Gpk2bcODAASXt9ttvR0FBATZv3lyhdgmCIAiCIAh9fPIojh49Gnl5eUhKSvIq5DiOq9KA2zt37sSwYcM0aRkZGZgxY4bHMhaLBRaLRTkWRRGXLl1CgwYNNIHCCaI+wBjDlStXkJqaCp73e+YJoUIURZw9exbR0dH0XULUO+i7pP7gk1AURVH3eXWTl5eH5ORkTVpycjLMZjNKS0sRHh7uVmbx4sVYsGBBdZlIELWC06dPo0mTJsE2o1Zz9uxZpKWlBdsMgggq9F1S96nQHMXaxJw5c5CZmakcFxYWomnTpjh9+jRiYmKCaFlwsAkicgpKcepiCU5fKsbpy2XIKSjB2YIy5BWWorDUXm22cByQGGVC04QING8YgfSGkWiVFI3WyVFIjA6rNjvqE2azGWlpaYiOjg62KbUe+RrW1+8Son5D3yX1B7+F4sKFC72enzdvXoWNKY+UlBTk5+dr0vLz8xETE6PrTQQAk8kEk8nklh4TE1Onv9zLbAKOnSvCX/lXcPRcEY7mF+H4hSKculgCu+hpWqoRvMmIsFAeyTFhSIwyoUGUEQmRJsSGhyImPATRphCEG0MQYTTAaOARGsLDwHHgOEBkDILIYBMYymwCSqx2FFkEmEttKCix4mKxFReKLDhntuBsYSnKbCIuWIELeRbsybMAuKxY0jDKhI6NY9C5SRy6NY1D97R4xEaEVsu1qw/QUGnlka9hXf8uIQhv0HdJ3cdvofjpp59qjm02G7KzsxESEoKWLVtWqVDs168fvvzyS03ali1b0K9fvyprszZw/ooFB88W4uBZM/7MlR7ZF4rhSQ+GhfJo3iASzRpEoFmDSKTFh6NxfDgax0UgJTYMMWEhVf7hZ4zhUrEVpy6V4OTFEhw/X4Sj54pwJP8KTlwoxoUiC7YfOY/tR84rZdqmRKN3egL6tWiAfi0bIC7CWKU2EgRBEER9x2+h+Pvvv7ulmc1mjB8/HmPGjPGrrqKiIhw7dkw5zs7Oxt69e5GQkICmTZtizpw5yMnJwdtvvw0AmDJlCpYvX45Zs2bhvvvuw9atW7Fu3Tps2rTJ327UWgpKrNh7ugB/nCnEH2cKcSCnEHnmMt28cRGhaJ0sDeW2SoxCq6RotEiMREpMGHg+uL8COY5DgygTGkSZ0K1pvOZcqVXA4Twz9ucUYu+pAuw5dRknLpbgcN4VHM67grd3ngTHAZ0bx+Lq1okY0iYJXdPiYAhyn4jgsWPHDjz//PPYvXs3cnNzy42gAEgxWTMzM3Hw4EGkpaVh7ty5GD9+fLXYSxAEUVsIyBzFmJgYLFiwAKNGjcI999zjc7nffvsNQ4cOVY7luYTjxo3DmjVrkJubi1OnTinn09PTsWnTJsycORMvv/wymjRpgjfffLPOxlC0CyIO513BnlOX8fupAvzuEEyucBzQomEk2qfGon2jGLRtFI32jWKQFG2qlcMC4UYDujWNR7em8bjX4Sw+f8WC305cwq7sS/jx2AUcPVeEfWcKse9MIV7ZegwJkUYMbZOE4R2SMbh1IsJCDcHtBFGtUExWgiCIqsHvLfw88cMPP2DUqFG4fPly+ZmDiNlsRmxsLAoLC2vcvKJSq4DfT13GLycu4bcTl/H7qcsotrqHG0pvGIkuTWLRqUkcOjeRxGGkqc6vS9KQby7Djr/OY/tf57Hjr/O4UuZchBNhNGBo2ySM6twIQ9okkWhUUZPf/4GiumKy1odrSRCeoPd//cFvdbFs2TLNMWMMubm5eOedd3DdddcFzLD6QJlNwO6Tl7Hz74v4+fhF7DtTAJug1e3RphB0bRqHHs0kD1uXJrE0Nw9AckwYbu2Zhlt7psEmiPjtxGV8cygPXx/Iw9nCMmz6Ixeb/shFlCkEGR1SMKZbY/Rr2YCGpwkAgYnJajabAQDD1g2DIUL/xwiD59/hAfqN7hfe7KkIHOrv56kmjdYE8nXwtS57SfVFyCCCi99C8aWXXtIc8zyPxMREjBs3DnPmzAmYYXURUWQ4eNaMHUfP48djF/Dbycuw2rVxKVNiwtA7PQG90hPQs1k8WidHk7gph1ADj34tpQUu825ojz/OFGLT/lx8se8szhaW4eM9Z/DxnjNoFBuGm7s3xq090tC8YWSwzSaCSCBjshbZi2CwkdeaqF8I9qrbXIOoWfgtFLOzs6vCjjrLpWKrNER65Bx2HL2AS8VWzfnkGBP6t2yIfi0aoE+LBDRNiKhRv1RrGxzHoUtaHLqkxeHREW3x28nL2LA3B1/sO4vcwjK8uu1vvLrtb/RtkYA7ejfFiI4pMIXQTZ4oH9eYrHIcuXU3rEN0jDOWnJ5Hxm+PD30FVD3V79CtEIH2AgeiTsYYrpivoDM6B8gioiZTvya2VQOMMRw9V4Qth/KR9Wc+fj9dAPUIU5QpBH1bNMCgqxpi4FUN0aJhJAnDKoLnOfROT0Dv9ATMu6E9vv0zH+t/O4MdR8/j5+OX8PPxS2gQacRtvdJwd99maBynH4uTqHsEMiZr05imNEeLqHeYOXOwTSCqCb+F4pgxY3SFDcdxCAsLQ6tWrXDnnXeiTZs2ATGwNiCKDL+fvoyvD+bj64N5OOmyMrltSjSGtk3CkNaJ6N4sHqEG2hezugkLNeCGzqm4oXMqcgpKse7X01j762nkmcuwYvvfeP27vzG8fQomDGiO3ukJJN7rOBSTlSAIwjf8FoqxsbHYsGED4uLi0KNHDwDAnj17UFBQgOHDh2Pt2rV49tlnkZWVhQEDBgTc4JqCKDLsOXUZX/yRi68O5CLf7Jzkbgzh0b9lA1zTLhnXtE1CKnmqahSN48Ix89rWePAfrfDtn+fw9s4T+Onvi9h8MA+bD+ahU+NY3D8oHSM7NUIIifpaAcVkJQiCqBr8Do/z6KOPwmw2Y/ny5eB56SYqiiIefvhhREdH4+mnn8aUKVNw8OBB/PDDD1VidGWozJJ+xhgO5Jjx2b4cfPFHLnILnYGuo00huKZdEjI6pODq1on1LlxNbeev/CtY/eMJfLLnDCyOBUaN48Ix+eoWuK1nGsKNdWMeY10NabF9+3ZNTFYZOSbr+PHjceLECWzfvl1TZubMmTh06BCaNGmCJ554wq+A23X1WhKEL9D7v/7gt1BMTEzEjz/+iNatW2vS//rrL/Tv3x8XLlzA/v37MWjQIBQUFATS1oBQkTd3TkEpNvyeg0/2nMHf54uV9ChTCIa3T8bIzo0w8KqGtCiiDnCp2Ip3fz6Jt346gYuOhUcNIo2YOCgd9/Rthuiw2r3fNH25Bw66lkR9ht7/9Qe/3V52ux2HDx92E4qHDx+GIEjL5cPCwmr9HK9Sq4DNB3Ox/rcz2Hn8orIgxRTCY1i7ZIzqkoohbWgHkLpGQqQRD11zFSZf3QLrd5/BGzv+xulLpXhu8xG8/t1x3D8wHeMHNK/1gpEgCIIgfMFvoXjPPfdg4sSJeOyxx9CrVy8AwK+//opFixbh3nvvBQB899136NChQ2AtrQYYY9ifU4gPfz2Nz/eexRWLM6Bo3xYJuLlbE4zolIIYEgl1nrBQA+7p2wx39ErDZ/vOYvm2Yzh+vhgvbvkLb/6QjX8NboHx/ZsjwkhTDAiCIIi6i99Dz4Ig4JlnnsHy5cuV8BLJycl48MEHMXv2bBgMBpw6dQo8z6NJkyZVYnRl0HOXXymzYcPes/hg1ykcynUu+U9LCMc/u6fh5u6NkZYQESyTiRqAIDJ88cdZLMs6qkw/aBhlxIP/uAp39G4KY0jtWPRCw0WBg64lUZ+h93/9oVJ7PctbWNWmN4n6zX26iOHdn09i496zKHHsqWw08BjRMQW3905D3/QG4GlXFEKFIDJs3JuDl7OOKmGQ0hLCMSujLW7o3KjGT7mgL/fAQdeSqM/Q+7/+UCGhaLfbsX37dvz999+48847ER0djbNnzyImJgZRUVFVYWfAkN/cN7zwNfaftynpLRMjcWefZri5W2PER9JeyoR3bIKItb+exstZR3H+ihQaqUtaHJ4Y2Q49mycE2TrP0Jd74KBrSdRn6P1ff/B7gtXJkycxYsQInDp1ChaLBddeey2io6Px7LPPwmKxYOXKlVVhZ8DZd6YQxvBIjOiYgrv7NkMfCrJM+EGogcfdfZvh5u6N8eb32Xj9u7+x73QB/rlyJ0Z2boTHrm9HO70QBEEQtR6/J1Y9/PDD6NmzJy5fvqzZ6mrMmDHIysoKqHFVyfShrfDTnH9g+Z3d0bdFAxKJRIWIMIbgoWuuwrb/DMHtvdLAccCmP3JxzYvb8fK3R1FmE4JtIkEQBEFUGL+F4vfff4+5c+fCaNQOzzZv3hw5OTkBM6yqmTKkJZKiw4JtBlFHSIoOwzO3dMYXDw5E7/QElNlEvPTtXxj+0g5sO3wu2OYRBEEQRIXwWyiKoqjES1Rz5swZREdHB8QogqitdEiNxdrJffHKHd2QEhOGU5dKMGHNr5j67m7kqXbyIQiCIIjagN9Ccfjw4Vi6dKlyzHEcioqKMH/+fFx//fWBtI0gaiUcx2FUl1RkPTIYkwalw8Bz+OpAHq5d8h3e+fkkRLHCgQYIgiAIolrxe9XzmTNnkJGRAcYYjh49ip49e+Lo0aNo2LAhduzYgaSkpKqyNSDQSi2iuvkz14w5n+zH3tMFAIBezePxzC2d0TKx+iME0Ps/cNC1JOoz9P6vP1Q4PM6HH36IP/74A0VFRejevTvuuusuzeKWmgq9uYlgIIhSzM7nNh9GsVWAMYTHv4e3xsSBLWCoxlid9P4PHHQtifoMvf/rD34LxbKyMoSF1d5FIPTmJoLJmcsleOzTA9jx13kAQI9m8Xjx1i5o3jCyWtqn93/goGtJ1Gfo/V9/8HuOYlJSEsaNG4ctW7ZAFMWqsIkg6ixN4iPw1oReePaWTogyhWD3ycu47uXv8e7PJ1GJTZIIgiAIokrwWyi+9dZbKCkpwU033YTGjRtjxowZ+O2336rCNoKok3Ach7G9muLrmVejX4sGKLUJmLvhAO5/6zdcKLIE2zyCIAiCUPBbKI4ZMwbr169Hfn4+Fi1ahEOHDqFv375o3bo1Fi5cWBU2EkSdpHFcON67vw/mjmwHo4FH1uFzGLH0e2VYmiAIgiCCjd9CUSY6OhoTJkzAN998gz/++AORkZFYsGCB3/W8+uqraN68OcLCwtCnTx/88ssvXvMvXboUbdq0QXh4ONLS0jBz5kyUlVF8OqJ2wvMc7h/UAhunD0Cb5GhcKLLg3lW/YPFXf8Im0NQOgiAIIrhUWCiWlZVh3bp1GD16NLp3745Lly7hP//5j191rF27FpmZmZg/fz727NmDLl26ICMjA+fO6e9k8f777+PRRx/F/Pnz8eeff+L//u//sHbtWjz22GMV7QZB1AjaNYrBxukDcE/fZgCA1787jtte34kzl0uCbBlBEARRn/FbKH799dcYN24ckpOTMXXqVCQnJ+Obb77ByZMn8cwzz/hV15IlSzBp0iRMmDAB7du3x8qVKxEREYFVq1bp5v/pp58wYMAA3HnnnWjevDmGDx+OO+64o1wvJEHUBsJCDfjv6I5YeXd3RIeF4PdTBRi57AfaApAgCIIIGhWao1haWoq3334beXl5eP3113H11Vf73bDVasXu3bsxbNgwpzE8j2HDhmHnzp26Zfr374/du3crwvD48eP48ssvve4IY7FYYDabNQ+CqMmM6NgIXz40CJ2bxKKw1IYJa37Fkm+OQKAdXQiCIIhqJsTfAvn5+QHZ0/nChQsQBAHJycma9OTkZBw+fFi3zJ133okLFy5g4MCBYIzBbrdjypQpXoeeFy9eXKG5kwQRTNISIrB+Sj889cWfeOfnk1i29Rj2ninEy2O7Ij7SGGzzCIIgiHqC3x5FtUgsKyurVm/d9u3bsWjRIrz22mvYs2cPPvnkE2zatAn//e9/PZaZM2cOCgsLlcfp06er1EaCCBSmEGkoeunYrggL5bHjr/O48dUf8GcuecU9QYvjCIIgAovfHsXi4mLMnj0b69atw8WLF93OC4LgUz0NGzaEwWBAfn6+Jj0/Px8pKSm6ZZ544gncc889uP/++wEAnTp1QnFxMSZPnozHH38cPO+ue00mE0wmk082EURNZHS3xmidHI0p7+7GqUsluPm1n/DCrV0wsnOjYJtWo5AXx61cuRJ9+vTB0qVLkZGRgSNHjujuQS8vjlu1ahX69++Pv/76C+PHjwfHcViyZEkQekAQBFHz8NujOGvWLGzduhUrVqyAyWTCm2++iQULFiA1NRVvv/22z/UYjUb06NEDWVlZSpooisjKykK/fv10y5SUlLiJQYPBAAC0qwVRp2mfGoPPpg/AoKsaotQmYNr7e7Bky18Qad6iQlUvjqP5zgRB1Ef8Foqff/45XnvtNdxyyy0ICQnBoEGDMHfuXCxatAjvvfeeX3VlZmbif//7H9566y38+eefmDp1KoqLizFhwgQAwL333os5c+Yo+UeNGoUVK1bgww8/RHZ2NrZs2YInnngCo0aNUgQjQdRV4iKMWD2+F+4fmA4AWJZ1FA+8twelVt+8+HWZ6lgct3jxYsTGxiqPtLS0wHeEIAiihuH30POlS5fQokULAEBMTAwuXboEABg4cCCmTp3qV11jx47F+fPnMW/ePOTl5aFr167YvHmzssDl1KlTGg/i3LlzwXEc5s6di5ycHCQmJmLUqFF4+umn/e0GQdRKQgw85t7QHm1SovH4pwew+WAecl7fiTfH9URyTFiwzQsa1bE4bs6cOcjMzFSOzWYziUWCIOo8fgvFFi1aIDs7G02bNkXbtm2xbt069O7dG59//jni4uL8NmD69OmYPn267rnt27drjQ0Jwfz58zF//ny/2yGIusStPdPQvGEk/vXObuzPKcToV3/EqvG90K5RTLBN8xlBELBmzRpkZWXh3LlzEEXtTjRbt26t0vbVi+P69OmDY8eO4eGHH8Z///tfPPHEE275ab4zQRD1Eb+F4oQJE7Bv3z4MHjwYjz76KEaNGoXly5fDZrPRBHCCqEZ6NU/AhgcGYMKaX/D3+WL8c8VPeO3uHhjcOjHYpvnEww8/jDVr1mDkyJHo2LEjOI6rcF3VtTiOqBvIHmRfF1/WRwwGA0JCQir1uSTqBn4LxZkzZyrPhw0bhsOHD2P37t1o1aoVOnfuHFDjCILwTtMGEfhk6gBMeXc3dh6/iPvW/IpFYzpibK+mwTatXD788EOsW7fOa8B8X1Evjhs9ejQA5+I4TyMWtDiufmK1WpGbm4uSEtoeszwiIiLQqFEjGI0Uu7U+47dQLCsrQ1iYcy5Us2bN0KxZs4AaRRCE78RGhOKt+3pj9sd/4NPfczD74/04W1CGGcOuqtHeAKPRiFatWgWsvszMTIwbNw49e/ZE7969sXTpUrfFcY0bN8bixYsBSIvjlixZgm7duilDz7Q4rm4jiiKys7NhMBiQmpoKo9FYoz8jwYIxBqvVivPnzyM7OxtXXXUVedjrMX4Lxbi4OPTu3RuDBw/GkCFD0L9/f4SHh1eFbQRB+IgxhMeS27ogNS4Mr277Gy9nHcW5K2X4700dEWKomV/wjzzyCF5++WUsX748IDdrWhxHlIfVaoUoikhLS0NERESwzanRhIeHIzQ0FCdPnoTVatU4iIj6Bcf8HGP54YcfsGPHDmzfvh0//fQT7HY7evbsqQjHa6+9tqpsDQhmsxmxsbEoLCxETEztmfhPEL7yzs8nMX/jAYgMGN4+Gcvu6IawUMlDVpPe/2PGjMG2bduQkJCADh06IDQ0VHP+k08+CZJlvlGTriXhG2VlZcjOzkZ6ejoJHx/wdr3o/V9/8NvVMHDgQDz22GP45ptvUFBQgG3btqFVq1Z47rnnMGLEiKqwkSAIP7inbzO8dlcPGEN4fHMoH/eu+gXmMluwzXIjLi4OY8aMweDBg9GwYUNNjMLY2Nhgm0cQBEGgAkPPAPDXX39h+/btysNiseCGG27AkCFDAmweQRAVYUTHFLx9X29Meus3/JJ9Cbe//jPeuq83alJwl9WrVwfbBIIgCKIc/BaKjRs3RmlpKYYMGYIhQ4Zg9uzZ6Ny5M00IJogaRt8WDfDhv/pi3KpfcCjXjNte34nXbm0bbLPcOH/+PI4cOQIAaNOmDRITa0d4H4IgiPqA30PPiYmJKCkpQV5eHvLy8pCfn4/S0tKqsI0giErSITUW66f0R+O4cGRfKMa4Vfr7GAeD4uJi3HfffWjUqBGuvvpqXH311UhNTcXEiRMpdAlBqOA4zuvjySefxIkTJzye//nnn5W6tm/fju7du8NkMqFVq1ZYs2ZN8DpG1Ar8Fop79+5FXl4eHn30UVgsFjz22GNo2LAh+vfvj8cff7wqbCQIohKkN4zER1P7oWViJPLMlmCbo5CZmYnvvvsOn3/+OQoKClBQUICNGzfiu+++wyOPPBJs8wiixpCbm6s8li5dipiYGE3av//9byXvt99+qzmXm5uLHj16AACys7MxcuRIDB06FHv37sWMGTNw//334+uvvw5W14haQIXmKMbFxeHGG2/EgAED0L9/f2zcuBEffPABdu3aRaElCKIG0ig2HGv/1Q93vLoNp4NtjIOPP/4YH330kWZu8/XXX4/w8HDcdtttWLFiRfCMI+oNjDGU2qp/h5bwUIPPU7bUuwvFxsaC4zi3HYcuXLgAAGjQoIHH3YhWrlyJ9PR0vPjiiwCAdu3a4YcffsBLL72EjIyMinSDqAf4LRQ/+eQTZRHLoUOHkJCQgIEDB+LFF1/E4MGDq8JGgiACQMMoE1aN74WmjwbbEomSkhIlxqGapKQkGnomqo1Sm4D286rfo3ZoYQYijBXy1VSYnTt3YtiwYZq0jIwMzJgxo1rtIGoXfr9Lp0yZgquvvhqTJ0/G4MGD0alTp6qwiyCIKiA2PLT8TNVEv379MH/+fLz99ttKjLbS0lIsWLAA/fr1C7J1BFE76d+/v9suKkVFRQCAvLw8tx9nycnJMJvNKC0tpc0zCF38Fornzp2rCjsIgqhnvPzyy8jIyECTJk3QpUsXAMC+ffsQFhZGc6aIaiM81IBDC6t/2DU8tGq2iVy7di3atWtXJXUT9ZPq9XsTBEE46NixI44ePYr33nsPhw8fBgDccccduOuuu8izQVQbHMdV+xBwVZKWluZxD/WUlBTk5+dr0vLz8xETE0OfOcIjdefTQRBErSMiIgKTJk0KthkEUS/o168fvvzyS03ali1baKoH4RUSigRBVBufffYZrrvuOoSGhuKzzz7zmvfGG2+sJqsIou5w8eJF5OXladLi4uIQFhaGKVOmYPny5Zg1axbuu+8+bN26FevWrcOmTZuCZC1RGyChSBBEtTF69Gjk5eUhKSkJo0eP9piP4zgIQvWHLCGI2o7rqmYA+OCDD3D77bcjPT0dmzZtwsyZM/Hyyy+jSZMmePPNNyk0DuGVSgtFs9mMrVu3ok2bNjSBliAIr4iiqPucIAjfGD9+PMaPH++W3rx5czDGyi0/ZMgQ/P7771VgGVFX8Xtnlttuuw3Lly8HIIWy6NmzJ2677TZ07twZH3/8ccANJAiibvL222/DYnHfKcZqteLtt98OgkUEQRCEK34LxR07dmDQoEEAgE8//RSMMRQUFGDZsmV46qmnAm4gQRB1kwkTJqCwsNAt/cqVK5gwYUIQLCIIgiBc8VsoFhYWIiEhAQCwefNm3HLLLYiIiMDIkSNx9OjRgBtIEETdhDGmu4XZmTNnEBsbGwSLCIIgCFf8nqOYlpaGnTt3IiEhAZs3b8aHH34IALh8+bKyuwJBEIQnunXrBo7jwHEcrrnmGoSEOL+GBEFAdnY2RowYEUQLCYIgCBm/heKMGTNw1113ISoqCs2aNcOQIUMASEPSFdnO79VXX8Xzzz+PvLw8dOnSBa+88gp69+7tMX9BQQEef/xxfPLJJ7h06RKaNWuGpUuX4vrrr/e7bYIgqh95tfPevXuRkZGBqKgo5ZzRaETz5s1xyy23BMk6giAIQo3fQvGBBx5A7969cfr0aVx77bXKnpItWrTwe47i2rVrkZmZiZUrV6JPnz5YunQpMjIycOTIESQlJbnlt1qtuPbaa5GUlISPPvoIjRs3xsmTJxEXF+dvNwiCCBLz588HIK3SvP3222EymYJsEUEQBOEJv+coAkDPnj0xZswYjSdg5MiRGDBggF/1LFmyBJMmTcKECRPQvn17rFy5EhEREVi1apVu/lWrVuHSpUvYsGEDBgwYgObNm2Pw4MHKPrEEQdQe2rdvj71797ql79q1C7/99luF6nz11VfRvHlzhIWFoU+fPvjll1+85i8oKMC0adPQqFEjmEwmtG7d2m3nCoIgiPqM3x7F++67z+t5TyLPFavVit27d2POnDlKGs/zGDZsGHbu3Klb5rPPPkO/fv0wbdo0bNy4EYmJibjzzjsxe/ZsGAz6G6xbLBZNCA6z2eyTfQRBVC3Tpk3DrFmz0KdPH016Tk4Onn32Wezatcuv+miEgiAIIvD4LRQvX76sObbZbDhw4AAKCgrwj3/8w+d6Lly4AEEQkJycrElPTk7G4cOHdcscP34cW7duxV133YUvv/wSx44dwwMPPACbzaYMZ7myePFiLFiwwGe7CIKoHg4dOoTu3bu7pXfr1g2HDh3yuz71CAUArFy5Eps2bcKqVavw6KOPuuWXRyh++uknhIaGApCGwwmCIAgnfgvFTz/91C1NFEVMnToVLVu2DIhRnhBFEUlJSXjjjTdgMBjQo0cP5OTk4Pnnn/coFOfMmYPMzEzl2Gw2Iy0trUrtJAiifEwmE/Lz89GiRQtNem5urmYltC9UxwgFjU4QBFEfqdAcRbdKeB6ZmZl46aWXfC7TsGFDGAwG5Ofna9Lz8/ORkpKiW6ZRo0Zo3bq15ku8Xbt2yMvLg9Vq1S1jMpkQExOjeRAEEXyGDx+OOXPmaIJuFxQU4LHHHsO1117rV13eRijy8vJ0yxw/fhwfffQRBEHAl19+iSeeeAIvvviix0V5ixcvRmxsrPKgH5xEdSGHk/L0ePLJJ3HixAmP53/++WcA0o+wO++8E61btwbP85gxY0ZwO0bUCgIiFAHg77//ht1u9zm/0WhEjx49kJWVpaSJooisrCz069dPt8yAAQNw7NgxzR6xf/31Fxo1agSj0Vhx4wmCqHZeeOEFnD59Gs2aNcPQoUMxdOhQpKenIy8vDy+++GKVt68eoejRowfGjh2Lxx9/HCtXrtTNL4ta+XH69Okqt5EgAEngyY+lS5ciJiZGk/bvf/9byfvtt99qzuXm5qJHjx4AJK94YmIi5s6dS4tACZ/xe+hZPYwLSLsr5ObmYtOmTRg3bpzfdY0bNw49e/ZE7969sXTpUhQXFytzjO699140btwYixcvBgBMnToVy5cvx8MPP4wHH3wQR48exaJFi/DQQw/52w2CIIJM48aN8ccff+C9997Dvn37EB4ejgkTJuCOO+5Q5gz6SkVHKEJDQz2OULj++DSZTBTKpy7CGGArqf52QyMAnZ2J9FC/h2NjY8FxnNv7+sKFCwCABg0aeHzPN2/eHC+//DIA3xeeEoTfQvH333/XHPM8j8TERLz44ovlroh2ZezYsTh//jzmzZuHvLw8dO3aFZs3b1aGj06dOqXEaQSkXWG+/vprzJw5E507d0bjxo3x8MMPY/bs2f52gyCIGkBkZCQmT55c6XrUIxRyQG95hGL69Om6ZQYMGID3338foigq3zM0QlEPsZUAi1Krv93HzgLGyOpvlyD8xG+huG3btoAaMH36dI9f5Nu3b3dL69evnzLfgiCI2s+hQ4dw6tQpt3nGN954o1/10AgFQQD9+/fXOFgAoKioKEjWEHUBv4WizLlz53DkyBEAQJs2bXTjlBEEQXji+PHjGDNmDPbv3w+O48AYAyBN3AekfZ/9gUYoiAoRGiF594LRbhWwdu1atGvXrkrqJuonfgtFs9mMadOm4YMPPlAWlRgMBowdOxavvvoqYmNjA24kQRB1j4cffhjp6enIyspCeno6fvnlF1y8eBGPPPIIXnjhhQrVSSMUhN9wXJ0aAk5LS0OrVq2CbQZRh/B71fOkSZOwa9cubNq0CQUFBSgoKMAXX3yB3377Df/617+qwkaCIOogO3fuxMKFC9GwYUPwPA+e5zFw4EAsXryYhn8JgiBqCH57FL/44gt8/fXXGDhwoJKWkZGB//3vfxgxYkRAjSMIou4iCAKio6MBSKuWz549izZt2qBZs2bKtBaCIPzj4sWLbrFD4+LiEBYWBgDK/upFRUU4f/489u7dC6PRiPbt21e3qUQtwW+h2KBBA93h5djYWMTHxwfEKIIg6j4dO3bEvn37kJ6ejj59+uC5556D0WjEG2+84bZbC0EQvjFs2DC3tA8++AC33347AGmLTJndu3fj/fffR7NmzXDixInqMpGoZfg99Dx37lxkZmZqfrHk5eXhP//5D5544omAGkcQRN1l7ty5yjznhQsXIjs7G4MGDcKXX36JZcuWBdk6gqiZjB8/HgUFBW7pzZs3B2NM9yGLRAC650kkEt7wyaPYrVs3ZSUiABw9ehRNmzZF06ZNAUirCU0mE86fP0/zFAmC8ImMjAzleatWrXD48GFcunQJ8fHxmu8bgiAIInj4JBTlALYEQRCBwGazITw8HHv37kXHjh2V9ISEhCBaRRAEQbjik1CcP39+VdtBEEQ9IjQ0FE2bNvU7ViJBEARRvfg9R5EgCCIQPP7443jsscdw6dKlYJtCEARBeKDCO7MQBEFUhuXLl+PYsWNITU1Fs2bNEBmpDXq8Z8+eIFlGEARByJBQJAgiKNDcZ4IgiJoPCUWCIKqNZcuWYfLkyQgLC8OECRPQpEkTzf7LBEEQRM2iUt/QcgwmgiAIX8jMzITZbAYApKen48KFC0G2iCAIgvBGhYTi22+/jU6dOiE8PBzh4eHo3Lkz3nnnnUDbRhBEHSM1NRUff/wxTp48CcYYzpw5g1OnTuk+CIIgiODj99DzkiVL8MQTT2D69OkYMGAAAOCHH37AlClTcOHCBcycOTPgRhIEUTeYO3cuHnzwQUyfPh0cx6FXr15ueRhj4DiOQucQBEHUAPwWiq+88gpWrFiBe++9V0m78cYb0aFDBzz55JMkFAmC8MjkyZNxxx134OTJk+jcuTO+/fZbNGjQINhmEUSNprydiubPn4/x48cjPT1d9/zOnTvRt29ffPLJJ1ixYgX27t0Li8Wi3LfVuyQRhCt+C8Xc3Fz079/fLb1///7Izc0NiFEEQdRdoqOj0bFjR6xevRoDBgyAyWQKtkkEUaNR31vXrl2LefPm4ciRI0paVFSUMt/322+/RYcOHTTl5R9jO3bswLXXXotFixYhLi4Oq1evxqhRo7Br1y5069atGnpC1Eb8FoqtWrXCunXr8Nhjj2nS165di6uuuipghhEEUbcZN25csE0gCDDGUGovrfZ2w0PCfd7TPCUlRXkeGxsLjuM0aQAUodigQQO3czJLly7VHC9atAgbN27E559/TkKR8IjfQnHBggUYO3YsduzYocxR/PHHH5GVlYV169YF3ECCIAiCqCpK7aXo836fam931527EBEaUe3tqhFFEVeuXKE91gmv+C0Ub7nlFuzatQsvvfQSNmzYAABo164dfvnlF/pFQhAEQRBBpH///m6xSYuKinTzvvDCCygqKsJtt91WHaYRtZQKBdzu0aMH3n333UDbQhAEQRDVSnhIOHbduSso7VYFa9euRbt27crN9/7772PBggXYuHEjkpKSqsQWom7gdxxFg8GAc+fOuaVfvHgRBoMhIEYRBFF/sFqtOHLkCOx2e6XrevXVV9G8eXOEhYWhT58++OWXX3wq9+GHH4LjONpWsB7CcRwiQiOq/eHr/ER/SUtLQ6v/b+/Oo6I68r6BfxukQZRVIiKyKKgo4oqgThIwQyRGQZPJjKIJLmhc44I6kUkCbglqFDSOEyKGkDzjgvuTZ4i8Rh4wIBhHBQc3VAQxCaCggkAAgXr/8KVfWxrkYkMD/f2c0+fYdevW/d3rPUV13bpVjo5Kn2ft378fc+bMwYEDB+Dl5dUicVDHIbmh2NBKLJWVlZDL5S8cEBFph/LycgQEBMDQ0BDOzs6KSbY/+OADbNy4UXJ5MTExCAwMREhICC5cuIAhQ4bA29tb5Q/bp+Xk5GDlypV45ZVXmnUeRO3Jvn37MGvWLOzbtw8TJkzQdDjUDjS5ofjFF1/giy++gEwmw+7duxXfv/jiC4SHh2PRokVwcnJqVhDsBSDSPkFBQbh48SISExNhYGCgSPfy8kJMTIzk8sLCwjB37lzMmjULAwcOREREBAwNDREVFdXgPjU1NZg+fTrWrl2LPn36NOs8iNqSoqIi5OfnK30qKioAPHnc7O/vj61bt8Ld3V2xvbi4WMNRU1vW5DGK4eHhAJ70KEZERCg9ZpbL5bC3t0dERITkAOp6ASIiIuDu7o5t27bB29sbmZmZjY6bYC8AUft27NgxxMTEYNSoUUqP4ZydnZGVlSWprKqqKpw/fx5BQUGKNB0dHXh5eSE1NbXB/datW4fu3bsjICAASUlJjR6jsrISlZWViu91a1YTtSWqHiXv27cPU6dOxa5du1BdXY1FixZh0aJFiu0zZsxAdHR0K0ZJ7UmTG4rZ2dkAgLFjx+LIkSMwMzNTSwBP9wIAQEREBGJjYxEVFYXVq1er3OfpXoCkpCQ8fPhQLbEQUeu5d++eyh+DZWVlksdvFRYWoqamBpaWlkrplpaWuHbtmsp9kpOT8fXXXyM9Pb1JxwgNDcXatWslxUWkbjNnzsTMmTPrpdvb2zc4NKxOYmJiywRFHZrkMYoJCQlqayTW9QI8/QtIai/A81RWVqKkpETpQ0Sa5+rqitjYWMX3usbh7t27MXr06BY99qNHj/Dee+8hMjISFhYWTdonKCgIxcXFis+dO3daNEYioragWdPjqAt7AYi012effYbx48fjypUrqK6uxvbt23HlyhWkpKTg1KlTksqysLCArq4uCgoKlNILCgpUrlKRlZWFnJwc+Pj4KNJqa2sBAJ06dUJmZiYcHByU9tHX1+dyg0SkdST3KGoSewGIOo6XX34Z6enpqK6uhouLC06cOIHu3bsjNTUVI0aMkFSWXC7HiBEjEB8fr0irra1FfHy8yt5JJycnZGRkID09XfHx9fXF2LFjkZ6eDhsbmxc+PyKijkCjPYrsBSDSbg4ODoiMjFRLWYGBgZgxYwZcXV3h5uaGbdu2oaysTDH+2d/fH9bW1ggNDYWBgQEGDRqktL+pqSkA1EsnItJmGm0oPt0LUDfFTV0vwOLFi+vlr+sFeNrHH3+MR48eYfv27ewFIGrjpIwRNjY2llT2lClTcO/ePQQHByM/Px9Dhw5FXFycYmhLbm5uvaXNiIiocc1qKD58+BBnz57F3bt3FT16dfz9/SWVxV4AIu1hamra5Deaa2pqJJe/ePFilT8ygee/8cnpQYiI6pPcUPyf//kfTJ8+HaWlpTA2Nlaq9GUymeSGInsBiLRHQkKC4t85OTlYvXo1Zs6cqRhHmJqaim+//RahoaGaCpGIiJ4iE8+beOkZ/fr1w5tvvonPPvsMhoaGLRVXiykpKYGJiQmKi4slP9oiau/a0v3/xz/+EXPmzIGfn59S+t69e7Fr1642P+dbW7qW1DQVFRXIzs5G7969lVYDItUau168/7WH5K66X3/9FUuWLGmXjUQiajtSU1Ph6upaL93V1bXJy3gSEVHLktxQ9Pb2xrlz51oiFiLSIjY2NirfeN69ezdfTCMiaiMkj1GcMGECVq1ahStXrsDFxQV6enpK2319fdUWHBF1XOHh4fjTn/6E48ePw93dHQBw9uxZ3LhxA4cPH9ZwdERtx/NeAAsJCcHMmTPRu3dvldtTU1MxatQoJCcn48MPP8S1a9dQXl4OOzs7zJs3D8uXL2+JsKmDkNxQnDt3LoAny+g9SyaTNetNRSLSPm+++SZu3LiBf/zjH4qVmHx8fDB//nz2KBI9JS8vT/HvmJgYBAcHIzMzU5HWtWtXFBYWAgBOnjwJZ2dnpf27desGAOjSpQsWL16MwYMHo0uXLkhOTsa8efPQpUsXvP/++61wJtQeSW4oPjsdDhFRc/Xq1QufffaZpsMgLSaEgPj991Y/rqxz5yZPFfX0AhQmJiaQyWT1FqWoayh269ZN5YIVADBs2DAMGzZM8d3e3h5HjhxBUlISG4rUII1OuE1E2u3hw4f4+uuvcfXqVQCAs7MzZs+eDRMTEw1HRtpC/P47ModLWzJSHfpfOA+Zhl8KTUtLQ0pKCjZs2KDROKhta9YEhadOnYKPjw8cHR3h6OgIX19fJCUlqTs2IurAzp07BwcHB4SHh+P+/fu4f/8+wsLC4ODggAsXLmg6PKJ2acyYMejatavS51m9evWCvr4+XF1dsWjRIsyZM0cDkVJ7IblH8Z///CdmzZqFt99+G0uWLAEAnD59Gn/84x8RHR2NadOmqT1IIup4li9fDl9fX0RGRqJTpydVUXV1NebMmYNly5bhp59+0nCEpA1knTuj/4XzGjluS4iJicGAAQMazZOUlITS0lKcOXMGq1evhqOjY735TInqSG4ofvrpp9i8ebPSW1JLlixBWFgY1q9fz4YiETXJuXPnlBqJANCpUyf89a9/VTm/IlFLkMlkGn8ErE42NjZwdHRsNE/d29EuLi4oKCjAmjVr2FCkBkl+9Hzr1i34+PjUS/f19UV2drZagiKijs/Y2Bi5ubn10u/cuQMjIyMNRESkfWpra1FZWanpMKgNk9yjaGNjg/j4+Hq/WE6ePMkpLYioyaZMmYKAgABs2bIFY8aMAfBkGMuqVavYu0HUTEVFRcjPz1dKMzU1hYGBAXbu3AlbW1s4OTkBAH766Sds2bJFMYyMSBXJDcUVK1ZgyZIlSE9PV6rco6OjsX37drUHSEQd05YtWyCTyeDv74/q6moAgJ6eHhYsWICNGzdqODqi9snLy6te2r59+zB16lTU1tYiKCgI2dnZ6NSpExwcHLBp0ybMmzdPA5FSeyETQgipOx09ehRbt25VTGkxYMAArFq1CpMmTVJ7gOrGhcxJm7XF+7+8vBxZWVkAAAcHh3azjnxbvJbUuIqKCmRnZ6N3794wMDDQdDhtXmPXi/e/9mjWPIpvvfUW3nrrLXXHQkRayNDQEC4uLpoOg4iIVOCE20TUqmbPnt2kfFFRUS0cCRERPU+TGorm5ua4fv06LCwsYGZm1uiyQ/fv31dbcETU8URHR8POzg7Dhg1DM0a+EBFRK2pSQzE8PFwxXUV4eHiT16ckInrWggULsG/fPmRnZ2PWrFl49913YW5urumwiIhIhWa9zNKecQAuabO2cv9XVlbiyJEjiIqKQkpKCiZMmICAgACMGzeu3fwQbSvXkpqu7uUMOzu7dvPSlCaVl5fj9u3bfJlFy0keo3jhwgXo6ekpBp//93//N7755hsMHDgQa9asgVwuV3uQRNSx6Ovrw8/PD35+frh9+zaio6OxcOFCVFdX4/LlyyrXpyV6UXK5HDo6Ovjtt9/w0ksvQS6Xt5sfJq1JCIGqqircu3cPOjo6/Luu5SQ3FOfNm4fVq1fDxcUFt27dwpQpU/D222/j4MGDKC8vx7Zt21ogTCLqqHR0dCCTySCEQE1NzQuVtXPnTnz++efIz8/HkCFDsGPHDri5uanMGxkZie+++w6XLl0CAIwYMQKfffZZg/mp/dPR0UHv3r2Rl5eH3377TdPhtHmGhoawtbWFjo7kRdyoA5HcULx+/TqGDh0KADh48CA8PDywd+9enD59GlOnTmVDkYie6+lHz8nJyZg4cSL+/ve/44033mj2H6WYmBgEBgYiIiIC7u7u2LZtG7y9vZGZmYnu3bvXy5+YmAg/Pz+MGTMGBgYG2LRpE8aNG4fLly/D2tr6RU+R2ii5XA5bW1tUV1e/8A+TjkxXVxedOnVijytJbygKIVBbWwvgybJ9EydOBPBkab/CwkL1RkdEHc7ChQuxf/9+2NjYYPbs2di3bx8sLCxeuNywsDDMnTsXs2bNAgBEREQgNjYWUVFRWL16db38e/bsUfq+e/duHD58GPHx8fD393/heKjtkslk0NPTg56enqZDIWrzJDcUXV1dsWHDBnh5eeHUqVP48ssvAQDZ2dmwtLRUe4BE1LFERETA1tYWffr0walTp3Dq1CmV+Y4cOdLkMquqqnD+/HkEBQUp0nR0dODl5YXU1NQmlVFeXo7Hjx83+AZ2ZWUlKisrFd9LSkqaHB8RUXsl+RnPtm3bcOHCBSxevBgfffQRHB0dAQCHDh1SrP0s1c6dO2Fvbw8DAwO4u7vj7NmzDeaNjIzEK6+8AjMzM5iZmcHLy6vR/ETUtvj7+2Ps2LEwNTWFiYlJgx8pCgsLUVNTU+/HqqWlJfLz85tUxocffoiePXuqXCsXAEJDQ5Xis7GxkRQjEVF7JLlHcfDgwcjIyKiX/vnnn0NXV1dyABxXRKRdoqOjNR1CPRs3bsT+/fuRmJjY4BrAQUFBCAwMVHwvKSlhY5GIOjzJPYp37tzBL7/8ovh+9uxZLFu2DN99912zxns8Pa5o4MCBiIiIgKGhYYPLd+3ZswcLFy7E0KFD4eTkhN27d6O2thbx8fGSj01EHYOFhQV0dXVRUFCglF5QUIAePXo0uu+WLVuwceNGnDhxAoMHD24wn76+PoyNjZU+REQdneSG4rRp05CQkAAAyM/Px+uvv46zZ8/io48+wrp16ySVVTeu6OlHPS0xrqikpETpQ0Qdi1wux4gRI5R+MNb9gBw9enSD+23evBnr169HXFwcXF1dWyNUIqJ2RXJD8dKlS4p5xg4cOIBBgwYhJSUFe/bskfxIieOKiEhdAgMDERkZiW+//RZXr17FggULUFZWpngL2t/fX+lll02bNuGTTz5BVFQU7O3tkZ+fj/z8fJSWlmrqFIiI2hzJYxQfP34MfX19AE+mx/H19QUAODk5IS8vT73RPQfHFRFRnSlTpuDevXsIDg5Gfn4+hg4diri4OMUP0dzcXKU5Gr/88ktUVVXhnXfeUSonJCQEa9asac3QiYjaLMkNRWdnZ0RERGDChAn48ccfsX79egDAb7/9hm7dukkqSx3jik6ePPnccUV1DVsi6tgWL16MxYsXq9yWmJio9D0nJ6flAyIiauckP3retGkTvvrqK3h6esLPzw9DhgwBAHz//feSl77iuCIiIiKitktyj6KnpycKCwtRUlICMzMzRfr7778PQ0NDyQEEBgZixowZcHV1hZubG7Zt21ZvXJG1tTVCQ0MBPGmoBgcHY+/evYpxRQDQtWtXdO3aVfLxiYiIiEg1yQ1F4MkakE83EgHA3t6+WQFwXBERERFR2yQTQojnZRo+fDji4+NhZmaGYcOGNbpI+IULF9QaoLqVlJTAxMQExcXFnAeNtA7vf/XhtSRtxvtfezSpR3HSpEmKF0ImT57ckvEQERERURvRpB7FjoS/gkib8f5XH15L0ma8/7VHs8Yo1iktLUVtba1SGm8YIiIioo5B8vQ42dnZmDBhArp06QITExOYmZnBzMwMpqam9V5wISIiIqL2S3KP4rvvvgshBKKiomBpadnoiy1ERERE1H5JbihevHgR58+fR//+/VsiHiIiIiJqIyQ/eh45ciTu3LnTErEQERERURsiuUdx9+7dmD9/Pn799VcMGjQIenp6StsbW3eZiIiIiNoPyQ3Fe/fuISsrS7HEHgDIZDIIISCTyVBTU6PWAImIiIhIMyQ3FGfPno1hw4Zh3759fJmFiIiIqAOT3FC8ffs2vv/+ezg6OrZEPERERETURkh+meW1117DxYsXWyIWIiIiImpDJPco+vj4YPny5cjIyICLi0u9l1l8fX3VFhwRERERaY7khuL8+fMBAOvWrau3jS+zEBEREXUckhuKz67tTEREREQdk+Qxiqo8fPhQHcUQERERURsiuaG4adMmxMTEKL7/+c9/hrm5OaytrfmSCxFp1M6dO2Fvbw8DAwO4u7vj7NmzjeY/ePAgnJycYGBgABcXF/zwww+tFCkRUfsguaEYEREBGxsbAMCPP/6IkydPIi4uDuPHj8eqVavUHiARUVPExMQgMDAQISEhuHDhAoYMGQJvb2/cvXtXZf6UlBT4+fkhICAAaWlpmDx5MiZPnoxLly61cuRERG2XTAghpOzQuXNnXL9+HTY2Nli6dCkqKirw1Vdf4fr163B3d8eDBw9aKla1KCkpgYmJCYqLi2FsbKzpcIhaVUe+/93d3TFy5Ej8/e9/B/BkPLWNjQ0++OADrF69ul7+KVOmoKysDP/6178UaaNGjcLQoUMRERHx3OPVXcvc/3MIxl26NJyRaxJ0XNL+fHYoJWXlsPV+p0PWJaRM8sssZmZmuHPnDmxsbBAXF4cNGzYAAIQQfOOZiDSiqqoK58+fR1BQkCJNR0cHXl5eSE1NVblPamoqAgMDldK8vb1x7NgxlfkrKytRWVmp+F5SUgIAyF8UhFJd3Rc8A6L2pZR/77WG5Ibi22+/jWnTpqFv374oKirC+PHjAQBpaWlcrYWINKKwsBA1NTWwtLRUSre0tMS1a9dU7pOfn68yf35+vsr8oaGhWLt2bb10mX4tZLqt0G2ovZ1XqrGntpWovtCyGt6Q2kJyQzE8PBz29va4c+cONm/ejK5duwIA8vLysHDhQrUHSETUFgQFBSn1QJaUlMDGxga9Es/y0RtpnZKSEuClbpoOg1qB5Iainp4eVq5cWS99+fLlagmIiEgqCwsL6OrqoqCgQCm9oKAAPXr0ULlPjx49JOXX19eHvr5+vXRDeScYyiVXpUTtWjXvea3RrP/pGzduICEhAXfv3q03AXdwcLBaAiMiaiq5XI4RI0YgPj4ekydPBvDkZZb4+HgsXrxY5T6jR49GfHw8li1bpkj78ccfMXr06FaImIiofZA8PU5kZCQGDBiA4OBgHDp0CEePHlV8GhoE/jyc+4yIXlRgYCAiIyPx7bff4urVq1iwYAHKysowa9YsAIC/v7/Syy5Lly5FXFwctm7dimvXrmHNmjU4d+5cgw1LIiKtJCSytbUVGzdulLpbg/bv3y/kcrmIiooSly9fFnPnzhWmpqaioKBAZf7Tp08LXV1dsXnzZnHlyhXx8ccfCz09PZGRkdGk4xUXFwsAori4WG3nQNRedPT7f8eOHcLW1lbI5XLh5uYmzpw5o9jm4eEhZsyYoZT/wIEDol+/fkIulwtnZ2cRGxvb5GN19GtJ1Bje/9pD8jyKxsbGSE9PR58+fdTSUNXU3Gec+4m0Ee9/9eG1JG3G+197SB6j+Oc//xknTpzA/PnzX/jgmpj7rLi4GMD/nwONSJvU3fcSfx+SCnXXkHUJaSPWJdpDckPR0dERn3zyCc6cOQMXFxfo6ekpbV+yZEmTy9Lk3Gd1yxASaaOioiKYmJhoOox2raioCADrEtJurEs6PskNxV27dqFr1644deoUTp06pbRNJpNJaii2hmfnPnv48CHs7OyQm5vLm1sD6uaeu3PnDh9XaEBxcTFsbW1hbm6u6VDavbpryLpEM1iXaBbrEu0huaGYnZ2ttoNrcu4zExMTVi4aZGxszOuvQTo6kic8oGfUXUPWJZrFukSzWJd0fBr9H3567rM6dXOfNTSXWd3cZ0/j3GdERERE6tesCbd/+eUXfP/998jNzUVVVZXStrCwMEllBQYGYsaMGXB1dYWbmxu2bdtWb+4za2trhIaGAngy95mHhwe2bt2KCRMmYP/+/Th37hx27drVnFMhIiIiogZIbijGx8fD19cXffr0wbVr1zBo0CDk5ORACIHhw4dLDmDKlCm4d+8egoODkZ+fj6FDhyIuLk7xwkpubq5S1/aYMWOwd+9efPzxx/jb3/6Gvn374tixYxg0aFCTjqevr4+QkBCVj6Op5fH6axavv/rwWmoWr79m8fprD8nzKLq5uWH8+PFYu3YtjIyMcPHiRXTv3h3Tp0/HG2+8gQULFrRUrERERETUiiQ3FI2MjJCeng4HBweYmZkhOTkZzs7OuHjxIiZNmoScnJwWCpWIiIiIWpPkl1m6dOmiGJdoZWWFrKwsxbbCwkL1RUZEREREGiV5jOKoUaOQnJyMAQMG4M0338SKFSuQkZGBI0eOYNSoUS0RIxERERFpgORHz7du3UJpaSkGDx6MsrIyrFixAikpKejbty/CwsJgZ2fXUrESERERUSuS9Oi5pqYGv/zyC2xtbQE8eQwdERGB//znPzh8+HCrNxJ/+ukn+Pj4oGfPnpDJZA2u91wnMTERMpms3ufZ5f927twJe3t7GBgYwN3dHWfPnm3Bs2i/WuL6r1mzpt52JyenFj6T9knq9QeerH3+0Ucfwc7ODvr6+rC3t0dUVJRSnoMHD8LJyQkGBgZwcXHBDz/80EJn0LawPtEc1iWaxbqEGiOpoairq4tx48bhwYMHLRWPJGVlZRgyZAh27twpab/MzEzk5eUpPt27d1dsi4mJQWBgIEJCQnDhwgUMGTIE3t7euHv3rrrDb/da4voDgLOzs9L25ORkdYbdYTTn+v/lL39BfHw8vv76a2RmZmLfvn3o37+/YntKSgr8/PwQEBCAtLQ0TJ48GZMnT8alS5da4hTaFNYnmsO6RLNYl1CjhEQjRowQJ0+elLpbiwMgjh492miehIQEAUA8ePCgwTxubm5i0aJFiu81NTWiZ8+eIjQ0VE2Rdkzquv4hISFiyJAhao1NGzTl+h8/flyYmJiIoqKiBvP85S9/ERMmTFBKc3d3F/PmzVNHmO0G6xPNYV2iWaxL6FmS33resGEDVq5ciX/961/Iy8tDSUmJ0qc9GDp0KKysrPD666/j9OnTivSqqiqcP38eXl5eijQdHR14eXkhNTVVE6F2SA1d/zo3btxAz5490adPH0yfPh25ubkaiLLj+f777+Hq6orNmzfD2toa/fr1w8qVK/H7778r8qSmpird/wDg7e3N+78RrE80h3WJZrAu0S5Nfut53bp1WLFiBd58800AgK+vL2QymWK7EAIymQw1NTXqj1JNrKysEBERAVdXV1RWVmL37t3w9PTEzz//jOHDh6OwsBA1NTWKVWHqWFpa4tq1axqKuuN43vUHAHd3d0RHR6N///7Iy8vD2rVr8corr+DSpUswMjLS8Bm0b7du3UJycjIMDAxw9OhRFBYWYuHChSgqKsI333wDAMjPz1d5/z877o5Yn2gS6xLNYl2iXZrcUFy7di3mz5+PhISEloynRfXv319pDMWYMWOQlZWF8PBw/Nd//ZcGI9MOTbn+48ePV2wfPHgw3N3dYWdnhwMHDiAgIKDVY+5IamtrIZPJsGfPHpiYmAB4sjb7O++8g3/84x/o3LmzhiNsX1ifaA7rEs1iXaJdmtxQFP9vFh0PD48WC0YT3NzcFAOcLSwsoKuri4KCAqU8BQUF6NGjhybC6/Cevv6qmJqaol+/frh582YrRtUxWVlZwdraWlGxA8CAAQMghMAvv/yCvn37okePHrz/XwDrE81hXdJ6WJdoF0ljFJ9+1NxRpKenw8rKCgAgl8sxYsQIxMfHK7bX1tYiPj4eo0eP1lSIHdrT11+V0tJSZGVlNZqHmuYPf/gDfvvtN5SWlirSrl+/Dh0dHfTq1QsAMHr0aKX7HwB+/PFH3v9NxPpEc1iXtB7WJVqmqW+9yGQyYWpqKszMzBr9tKZHjx6JtLQ0kZaWJgCIsLAwkZaWJm7fvi2EEGL16tXivffeU+QPDw8Xx44dEzdu3BAZGRli6dKlQkdHR+kt7v379wt9fX0RHR0trly5It5//31hamoq8vPzW/Xc2oOWuP4rVqwQiYmJIjs7W5w+fVp4eXkJCwsLcffu3VY/v7ZO6vV/9OiR6NWrl3jnnXfE5cuXxalTp0Tfvn3FnDlzFHlOnz4tOnXqJLZs2SKuXr0qQkJChJ6ensjIyGj182ttrE80h3WJZrEuocZIaihu375dREdHN/ppTXVTJDz7mTFjhhBCiBkzZggPDw9F/k2bNgkHBwdhYGAgzM3Nhaenp/jf//3feuXu2LFD2NraCrlcLtzc3MSZM2da6Yzal5a4/lOmTBFWVlZCLpcLa2trMWXKFHHz5s1WPKv2Q+r1F0KIq1evCi8vL9G5c2fRq1cvERgYKMrLy5XyHDhwQPTr10/I5XLh7OwsYmNjW+mMNIv1ieawLtEs1iXUmCYv4aejo4P8/Px6E5oSERERUcfU5DGKHXF8IhERERE1rMkNxSZ2PBIRERFRB9HkR89EREREpF0kL+FHRERERNqBDUUiIiIiUokNRSIiIiJSiQ1FIiIiIlKJDUUiIiIiUokNRSIiIiJSiQ1FIiIiIlKJDUVqlKenJ5YtW6bpMBSaG09RURG6d++OnJwctcf0rKlTp2Lr1q0tfhyi9oR1iXSsS6gtYEOxDYiIiICRkRGqq6sVaaWlpdDT04Onp6dS3sTERMhkMmRlZbVylK1L3X9UPv30U0yaNAn29vZqK7MhH3/8MT799FMUFxe3+LGInsa6pD7WJUQvhg3FNmDs2LEoLS3FuXPnFGlJSUno0aMHfv75Z1RUVCjSExISYGtrCwcHB02E2i6Vl5fj66+/RkBAQKscb9CgQXBwcMA///nPVjkeUR3WJS2LdQlpIzYU24D+/fvDysoKiYmJirTExERMmjQJvXv3xpkzZ5TSx44dCwCIi4vDyy+/DFNTU3Tr1g0TJ05U6h3YtWsXevbsidraWqXjTZo0CbNnzwYA1NbWIjQ0FL1790bnzp0xZMgQHDp0qMFYm5Lf09MTS5YswV//+leYm5ujR48eWLNmjVKeR48eYfr06ejSpQusrKwQHh6u+OU/c+ZMnDp1Ctu3b4dMJoNMJlN6zFNbW9to2c/64YcfoK+vj1GjRimlJycnQ09PT+mPZ05ODmQyGW7fvg1PT0988MEHWLZsGczMzGBpaYnIyEiUlZVh1qxZMDIygqOjI44fP17vmD4+Pti/f3+jcRGpG+sS1iVEaieoTZg2bZoYN26c4vvIkSPFwYMHxfz580VwcLAQQojy8nKhr68voqOjhRBCHDp0SBw+fFjcuHFDpKWlCR8fH+Hi4iJqamqEEELcv39fyOVycfLkSUW5RUVFSmkbNmwQTk5OIi4uTmRlZYlvvvlG6Ovri8TERCGEEB4eHmLp0qWK/Z+Xv24fY2NjsWbNGnH9+nXx7bffCplMJk6cOKHIM2fOHGFnZydOnjwpMjIyxFtvvSWMjIzE0qVLxcOHD8Xo0aPF3LlzRV5ensjLyxPV1dVNLvtZS5YsEW+88Ua99B07dggXFxeltCNHjggzMzPFsYyMjMT69evF9evXxfr164Wurq4YP3682LVrl7h+/bpYsGCB6NatmygrK1Mq5/jx40Iul4uKiooG4yJqCaxLWJcQqRMbim1EZGSk6NKli3j8+LEoKSkRnTp1Enfv3hV79+4Vr776qhBCiPj4eAFA3L59W2UZ9+7dEwBERkaGIm3SpEli9uzZiu9fffWV6Nmzp6ipqREVFRXC0NBQpKSkKJUTEBAg/Pz8hBDKlXtT8tft8/LLLyvlGTlypPjwww+FEEKUlJQIPT09cfDgQcX2hw8fCkNDQ8Wxnv2j0tSyVXn2GtSZM2eO8Pf3V0oLDg4Wnp6eKo9VXV0tunTpIt577z1FWl5engAgUlNTlcq5ePGiACBycnIajIuoJbAuYV1CpE589NxGeHp6oqysDP/+97+RlJSEfv364aWXXoKHh4dibFFiYiL69OkDW1tbAMCNGzfg5+eHPn36wNjYWDG4Ojc3V1Hu9OnTcfjwYVRWVgIA9uzZg6lTp0JHRwc3b95EeXk5Xn/9dXTt2lXx+e6771QOcJeSf/DgwUrfrayscPfuXQDArVu38PjxY7i5uSm2m5iYoH///k26Vo2Vrcrvv/8OAwODeunp6ekYOnSoUlpaWppS2tPH0tXVRbdu3eDi4qJIs7S0BIB6x+/cuTOAJ2OaiFoT6xLWJUTq1EnTAdATjo6O6NWrFxISEvDgwQN4eHgAAHr27AkbGxukpKQgISEBr732mmIfHx8f2NnZITIyUjF+aNCgQaiqqlLKI4RAbGwsRo4ciaSkJISHhwN48jYkAMTGxsLa2lopHn19/XoxSsmvp6en9F0mk9Ub39RcUsu2sLDAgwcPlNJqampw6dIlDBs2TCn9woUL+NOf/tTosZ5Ok8lkAFDv+Pfv3wcAvPTSS887HSK1Yl3SdKxLiJ6PDcU2ZOzYsUhMTMSDBw+watUqRfqrr76K48eP4+zZs1iwYAGAJ3N5ZWZmIjIyEq+88gqAJwOqn2VgYIC3334be/bswc2bN9G/f38MHz4cADBw4EDo6+sjNzdX8cekMVLzN6RPnz7Q09PDv//9b0WPRnFxMa5fv45XX30VACCXy1FTU9PsYzxt2LBh9d4azMzMREVFBXr27KlIS01Nxa+//lqvZ6A5Ll26hF69esHCwuKFyyKSinUJ6xIidWFDsQ0ZO3YsFi1ahMePHytVnh4eHli8eDGqqqoUbymamZmhW7du2LVrF6ysrJCbm4vVq1erLHf69OmYOHEiLl++jHfffVeRbmRkhJUrV2L58uWora3Fyy+/jOLiYpw+fRrGxsaYMWOGUjlS8zfEyMgIM2bMwKpVq2Bubo7u3bsjJCQEOjo6il/V9vb2+Pnnn5GTk4OuXbvC3NwcOjrNGynh7e2NoKAgPHjwAGZmZgCePCoCgB07dmDJkiW4efMmlixZAgBKvSjNlZSUhHHjxr1wOUTNwbqEdQmRunCMYhsyduxY/P7773B0dFSMVwGeVO6PHj1STH0BADo6Oti/fz/Onz+PQYMGYfny5fj8889Vlvvaa6/B3NwcmZmZmDZtmtK29evX45NPPkFoaCgGDBiAN954A7Gxsejdu7fKsqTmb0hYWBhGjx6NiRMnwsvLC3/4wx8wYMAAxfiflStXQldXFwMHDsRLL72kNFZKKhcXFwwfPhwHDhxQpKWnp8Pb2xu3bt2Ci4sLPvroI6xduxbGxsb44osvmn0sAKioqMCxY8cwd+7cFyqHqLlYl7AuIVIXmRBCaDoIorKyMlhbW2Pr1q0tMpltbGwsVq1ahUuXLkFHRwfe3t4YOXIkNmzYoPZjffnllzh69ChOnDih9rKJqHGsS4jUi4+eSSPS0tJw7do1uLm5obi4GOvWrQPwZALfljBhwgTcuHEDv/76K2xsbHDx4kXFRMHqpqenhx07drRI2USkjHUJUctijyJpRFpaGubMmYPMzEzI5XKMGDECYWFhStNFtJT8/HxYWVnh8uXLGDhwYIsfj4haDusSopbFhiIRERERqcSXWYiIiIhIJTYUiYiIiEglNhSJiIiISCU2FImIiIhIJTYUiYiIiEglNhSJiIiISCU2FImIiIhIJTYUiYiIiEglNhSJiIiISCU2FImIiIhIpf8LgEOjdbL0wrEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "postprocess(sim_data, \"TE\")\n" ] }, { "cell_type": "markdown", "id": "d2936650", "metadata": {}, "source": [ "### TE0 to TE1 Convertion " ] }, { "cell_type": "code", "execution_count": 23, "id": "26a6086c", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:05:08.512894Z", "iopub.status.busy": "2023-03-28T00:05:08.512723Z", "iopub.status.idle": "2023-03-28T00:06:51.390537Z", "shell.execute_reply": "2023-03-28T00:06:51.389921Z" } }, "outputs": [ { "data": { "text/html": [ "
[09:31:51] Created task 'evanescent_coupler_te1' with task_id                                         webapi.py:139\n",
       "           'fdve-bf40a85c-cd2a-439f-a5e6-d90e52b8d4afv1'.                                                          \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:31:51]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'evanescent_coupler_te1'\u001b[0m with task_id \u001b]8;id=423839;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=357446;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-bf40a85c-cd2a-439f-a5e6-d90e52b8d4afv1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "cf7c8ab8fac040e9a1458d087c0cc539", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:31:53] status = queued                                                                            webapi.py:269\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:31:53]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=366738;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=704425;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:31:55] status = preprocess                                                                        webapi.py:263\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:31:55]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=780314;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=250507;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
[09:32:01] Maximum FlexCredit cost: 0.082. Use 'web.real_cost(task_id)' to get the billed FlexCredit  webapi.py:286\n",
       "           cost after a simulation run.                                                                            \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:32:01]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.082\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit \u001b]8;id=287186;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=43660;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mcost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           starting up solver                                                                         webapi.py:290\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=753002;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=731307;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           running solver                                                                             webapi.py:300\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=561817;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=716014;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4afe655cd50a43498f9ec029f30b2d9f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:32:40] early shutoff detected, exiting.                                                           webapi.py:314\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:32:40]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=349669;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=544989;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#314\u001b\\\u001b[2m314\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           status = postprocess                                                                       webapi.py:331\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=220746;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=20508;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#331\u001b\\\u001b[2m331\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:32:57] status = success                                                                           webapi.py:338\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:32:57]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=713180;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=616145;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#338\u001b\\\u001b[2m338\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "3344c9cae7864107a275b0622d3e40af",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:33:00] loading SimulationData from data/simulation_data.hdf5                                      webapi.py:510\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:33:00]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/simulation_data.hdf5 \u001b]8;id=795846;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=287052;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#510\u001b\\\u001b[2m510\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim = make_sim(\"TE\", **design_params[\"TE1\"])\n", "\n", "job = web.Job(simulation=sim, task_name=\"evanescent_coupler_te1\", verbose=True)\n", "sim_data = job.run(path=\"data/simulation_data.hdf5\")\n" ] }, { "cell_type": "code", "execution_count": 24, "id": "df089645", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:06:53.197968Z", "iopub.status.busy": "2023-03-28T00:06:53.197745Z", "iopub.status.idle": "2023-03-28T00:06:55.087198Z", "shell.execute_reply": "2023-03-28T00:06:55.086705Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAooAAAHrCAYAAABINLzuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADCHklEQVR4nOydd5wUVfa3n6qemZ48pBlyRkFUREEQE7qi6GJ217iK6OqKGJDdVTGhriuGVdE1sOFV1J/ZNa0oiiBiYFFRDCAKioDADHHyTIeq+/5RXdXVaWZ66Mnn4dNM161b956qrqn+zrn3nKsppRSCIAiCIAiCEIXe0gYIgiAIgiAIrRMRioIgCIIgCEJcRCgKgiAIgiAIcRGhKAiCIAiCIMRFhKIgCIIgCIIQFxGKgiAIgiAIQlxEKAqCIAiCIAhxEaEoCIIgCIIgxEWEoiAIgiAIghAXEYqCIDQpS5YsQdM0lixZ0tKmCIIgCEkiQlEQhJTw6KOPMm/evJY2o1E8++yzzJkzp6XNAMA0Te655x4GDhxIZmYmI0aM4Lnnnmvw8aWlpVx66aUUFhaSk5PD0UcfzRdffBG37htvvMFBBx1EZmYm/fr1Y9asWQSDwVSdiiAI7QBN1noWBCEV7LfffnTr1i3Gc2iaJn6/n4yMDHS9df5teuKJJ/Ltt9/y888/t7QpzJw5k7vuuotLLrmEgw8+mNdff5358+fz3HPPcfbZZ9d5rGmaHHHEEXz11Vf8+c9/plu3bjz66KNs2rSJFStWsNdeezl13377bSZNmsRRRx3FOeecwzfffMMjjzzCpZdeymOPPdbUpykIQhtBhKIgpJCqqipycnJa2owWIZFQbAu0FqG4efNmBg4cyKWXXsrDDz8MgFKK8ePHs379en7++Wc8Hk/C41988UXOOussXnrpJX7zm98AsH37dvbee29OOOEEnn32WafuvvvuS3p6Op9//jlpaWkA3HTTTdx5552sXr2aYcOGNeGZCoLQVmidf94LQitg8+bNXHzxxfTq1Quv18vAgQOZOnUqfr8fgHnz5qFpGh988AGXX345RUVF9OnTxzn+0UcfZd9998Xr9dKrVy+mTZtGaWlpRB9r167ljDPOoEePHmRmZtKnTx/OPvtsysrKnDoLFy7k8MMPp1OnTuTm5jJ06FBuuOGGeu1vyHE+n49Zs2YxZMgQvF4vffv25dprr8Xn88W093//93+MGTOG7OxsOnfuzJFHHsm7774LwIABA1i1ahUffPABmqahaRpHHXUUkHiO4ksvvcSoUaPIysqiW7du/O53v2Pz5s0RdS688EJyc3PZvHkzp556Krm5uRQWFvKnP/0JwzDqvQavv/46kyZNcj7DwYMH85e//CXi2KOOOor58+ezYcMGx/YBAwYkbPPCCy906kW/br311nptqs/eQCDA5Zdf7pRpmsbUqVP55ZdfWLZsWZ3Hv/zyy3Tv3p3TTz/dKSssLOTMM8/k9ddfdz7X1atXs3r1ai699FJHJAJcfvnlKKV4+eWX9+g8BEFoP6TVX0UQOh5btmxhzJgxznyvYcOGsXnzZl5++WWqq6vJyMhw6l5++eUUFhZyyy23UFVVBcCtt97KbbfdxoQJE5g6dSrff/89jz32GJ999hkff/wx6enp+P1+Jk6ciM/n48orr6RHjx5s3ryZN998k9LSUgoKCli1ahUnnngiI0aM4Pbbb8fr9bJu3To+/vjjOu1vyHGmaXLyySfz0Ucfcemll7LPPvvwzTff8MADD/DDDz/w2muvOXVvu+02br31Vg499FBuv/12MjIyWL58OYsXL+a4445jzpw5XHnlleTm5nLjjTcC0L1794T2zZs3jylTpnDwwQcze/ZsSkpKePDBB/n444/58ssv6dSpk1PXMAwmTpzI2LFj+dvf/sZ7773Hfffdx+DBg5k6dWqd12HevHnk5uYyY8YMcnNzWbx4Mbfccgvl5eXce++9ANx4442UlZXxyy+/8MADDwCQm5ubsM0//OEPTJgwIaJswYIFPPPMMxQVFTllO3bsqNM2m7y8PLxeLwBffvklOTk57LPPPhF1xowZ4+w//PDDE7b15ZdfctBBB8UM8Y8ZM4Z//vOf/PDDD+y///58+eWXAIwePTqiXq9evejTp4+zXxAEASUIQgwXXHCB0nVdffbZZzH7TNNUSin1xBNPKEAdfvjhKhgMOvu3bdumMjIy1HHHHacMw3DKH374YQWoxx9/XCml1JdffqkA9dJLLyW044EHHlCA2r59e1L2N+S4p59+Wum6rj788MOI8rlz5ypAffzxx0oppdauXat0XVennXZaxPkoFb4WSim17777qvHjx8f08/777ytAvf/++0oppfx+vyoqKlL77befqqmpceq9+eabClC33HKLUzZ58mQFqNtvvz2izQMPPFCNGjWq7ouglKquro4p+8Mf/qCys7NVbW2tUzZp0iTVv3//etuLx9q1a1VBQYE69thjI+4DoEGvJ554IsKOQYMGxfRRVVWlAHX99dfXaUtOTo666KKLYsrnz5+vALVgwQKllFL33nuvAtTGjRtj6h588MHqkEMOaejpC4LQzpGhZ0GIwjRNXnvtNU466aQYjwtYQ4FuLrnkkoh5Y++99x5+v5/p06dHeHYuueQS8vPzmT9/PgAFBQUAvPPOO1RXV8e1xfasvf7665im2eBzaMhxL730Evvssw/Dhg1jx44dzutXv/oVAO+//z4Ar732GqZpcsstt8R4qqKvRUP4/PPP2bZtG5dffjmZmZlO+aRJkxg2bJhzfdxcdtllEdtHHHEEP/30U719ZWVlOe8rKirYsWMHRxxxBNXV1axZsyZp26OpqqritNNOo3Pnzjz33HMR98HChQsb9Jo4caJzTE1NjeNddGNfp5qamjrtaejx9s9EdevrRxCEjoMMPQtCFNu3b6e8vJz99tuvQfUHDhwYsb1hwwYAhg4dGlGekZHBoEGDnP0DBw5kxowZ3H///TzzzDMcccQRnHzyyfzud79zRORZZ53Fv//9b37/+99z/fXXc8wxx3D66afzm9/8ps4I4oYct3btWr777jsKCwvjtrFt2zYAfvzxR3RdZ/jw4Q26HvWR6PoADBs2jI8++iiiLDMzM8bGzp07s3v37nr7WrVqFTfddBOLFy+mvLw8Yp97HmhjueSSS/jxxx/55JNP6Nq1a8S+6OHphpCVlRV3fmhtba2zPxXH2z8T1a2vH0EQOg4iFAVhD9mTL9X77ruPCy+8kNdff513332Xq666itmzZ/O///2PPn36kJWVxdKlS3n//feZP38+CxYs4IUXXuBXv/oV7777bsII2IYcZ5om+++/P/fff3/cNvr27dvo80oldUX51kVpaSnjx48nPz+f22+/ncGDB5OZmckXX3zBddddl5SHNh4PPvggzz33HP/3f//HyJEjY/YXFxc3qJ2CggLnHurZsyfvv/8+SqkIb+3WrVsBaw5hXfTs2dOp6yb6+J49ezrl0Z/z1q1bnTmRgiAIMvQsCFEUFhaSn5/Pt99+26jj+/fvD8D3338fUe73+1m/fr2z32b//ffnpptuYunSpXz44Yds3ryZuXPnOvt1XeeYY47h/vvvZ/Xq1fz1r39l8eLFztBwIuo7bvDgwezatYtjjjmGCRMmxLxsj9/gwYMxTZPVq1fX2V9Dh6ETXR+7LPr6NJYlS5awc+dO5s2bx9VXX82JJ57IhAkT6Ny5c0zdZIfQP/zwQ/70pz8xffp0zjvvvLh1evbs2aDXCy+84BwzcuRIqqur+e677yLaWr58ubO/LkaOHMkXX3wRI4KXL19OdnY2e++9d0Q7n3/+eUS9LVu28Msvv9TbjyAIHQcRioIQha7rnHrqqfz3v/+N+SIFK69dXUyYMIGMjAweeuihiLr/7//9P8rKypg0aRIA5eXlMatg7L///ui67gwJ7tq1K6Z9+0s83rChTUOOO/PMM9m8eTP/+te/YurW1NQ4Edynnnoquq5z++23xwgQ9/nl5OTEpP+Jx+jRoykqKmLu3LkR5/D222/z3XffOddnT7E9kW4b/X4/jz76aEzdnJycBg9Fb926lTPPPJPDDz/ciZyOR2PmKJ5yyimkp6dH2KiUYu7cufTu3ZtDDz00wo41a9YQCAScst/85jeUlJTwyiuvOGU7duzgpZde4qSTTnLmJO67774MGzaMf/7znxGpgh577DE0TXNyMAqCIMjQsyDE4c477+Tdd99l/PjxTuqYrVu38tJLL/HRRx9FpG+JprCwkJkzZ3Lbbbdx/PHHc/LJJ/P999/z6KOPcvDBB/O73/0OgMWLF3PFFVfw29/+lr333ptgMMjTTz+Nx+PhjDPOAOD2229n6dKlTJo0if79+7Nt2zYeffRR+vTpU2ealIYcd/755/Piiy9y2WWX8f7773PYYYdhGAZr1qzhxRdf5J133mH06NEMGTKEG2+8kb/85S8cccQRnH766Xi9Xj777DN69erF7NmzARg1ahSPPfYYd9xxB0OGDKGoqMgJjHGTnp7O3XffzZQpUxg/fjznnHOOkx5nwIABXHPNNY392CI49NBD6dy5M5MnT+aqq65C0zSefvrpuEJ/1KhRvPDCC8yYMYODDz6Y3NxcTjrppLjtXnXVVWzfvp1rr72W559/PmLfiBEjGDFiBNC4OYp9+vRh+vTp3HvvvQQCAQ4++GBee+01PvzwQ5555pmIYfiZM2fy5JNPsn79eifv429+8xsOOeQQpkyZwurVq52VWQzD4Lbbbovo69577+Xkk0/muOOO4+yzz+bbb7/l4Ycf5ve//31Meh5BEDowLRhxLQitmg0bNqgLLrhAFRYWKq/XqwYNGqSmTZumfD6fUiqcHideCh2lrHQ4w4YNU+np6ap79+5q6tSpavfu3c7+n376SV100UVq8ODBKjMzU3Xp0kUdffTR6r333nPqLFq0SJ1yyimqV69eKiMjQ/Xq1Uudc8456ocffqjT9oYe5/f71d1336323Xdf5fV6VefOndWoUaPUbbfdpsrKyiLqPv744+rAAw906o0fP14tXLjQ2V9cXKwmTZqk8vLyFOCkyolOj2PzwgsvOO116dJFnXfeeeqXX36JqDN58mSVk5MTc36zZs1SDXl8ffzxx+qQQw5RWVlZqlevXuraa69V77zzTow9lZWV6txzz1WdOnVSQJ2pcsaPH58w1c2sWbPqtak+DMNQd955p+rfv7/KyMhQ++67r/q///u/mHp26qD169dHlO/atUtdfPHFqmvXrio7O1uNHz8+4T366quvqpEjRyqv16v69OmjbrrpJuX3+/f4HARBaD/IEn6CIAiCIAhCXGSOoiAIgiAIghAXEYqCIAiCIAhCXEQoCoIgCIIgCHERoSgIgiAIgiDERYSiIAiCIAiCEBcRioIgCIIgCEJc2nTC7bvuuouZM2dy9dVXM2fOnAYdY5omW7ZsIS8vL+lluwRBEARBsFYMqqiooFevXuh66/Y5LVq0iHcXPs5ds/9PvvcbQZsVip999hn/+Mc/nFUQGsqWLVvo27dvE1klCIIgCB2HTZs20adPn5Y2IyF+v5/LLpvM+vVbOWTsbzjttNNa2qQ2R5sUipWVlZx33nn861//4o477kjq2Ly8vNA7HZC/LARBEAQheRRgur5TWyePzf0T6elpPDDnCq677ipOPPFE0tPTW9qsNkXr9hcnYNq0aUyaNKlBa6n6fD7Ky8udV0VFRWiPJi95yUte8pKXvBr9olUP5ZaVlXHHX55i9l1/4NJLT8bj0fnHP//c0ma1OdqcUHz++ef54osvmD17doPqz549m4KCAuclw86CIAiC0P6Zfdfl7LvfQCZNOoS0NA+zZ1/K7bc9SXl5eUub1qZoU0Jx06ZNXH311TzzzDNkZmY26JiZM2dSVlbmvDZt2tTEVgqCIAiC0JJs2rSJhx78D3fffZnj9TzxpEMZOqwfd909rYWta1toSinV0kY0lNdee43TTjsNj8fjlBmGgaZp6LqOz+eL2BeP8vJyCgoKAA+261wQBEEQhGRQgEFZWRn5+fktbUwMkycfj98f4P+euTmi/NNPv2PCMTP44Yd19O7du4Wsa1u0KY/iMcccwzfffMPKlSud1+jRoznvvPNYuXJlvSJREARBEIT2zVdffcWLL77PHX+9JGbfmDH7cOKJ47j55th9iXjssccYMWIE+fn55OfnM27cON5++21nf21tLdOmTaNr167k5uZyxhlnUFJSEtHGxo0bmTRpEtnZ2RQVFfHnP/+ZYDAYUWfJkiUcdNBBeL1ehgwZwrx585I78SaiTQnFvLw89ttvv4hXTk4OXbt2Zb/99mtp8wRBEARBaGEeeugGpkw5gQEDesTd/5c7LmbevAXs3r27Qe316dOHu+66ixUrVvD555/zq1/9ilNOOYVVq1YBcM011/Df//6Xl156iQ8++IAtW7Zw+umnO8cbhsGkSZPw+/188sknPPnkk8ybN49bbrnFqbN+/XomTZrE0UcfzcqVK5k+fTq///3veeedd/bgSqSGNjX0HI+jjjqKkSNHNjjhtgw9C4IgCMKe0nqHns877zz22y+ba/98Ttz9gUCQrOyJFBcX071790b10aVLF+69915+85vfUFhYyLPPPstvfvMbANasWcM+++zDsmXLOOSQQ3j77bc58cQT2bJli9Pf3Llzue6669i+fTsZGRlcd911zJ8/n2+//dbp4+yzz6a0tJQFCxY0ysZU0aY8ivFYsmRJg0WiIAiCIAgdAMOEYDDxi9j0eeXl5fh8vrqbNQyef/55qqqqGDduHCtWrCAQCESk6xs2bBj9+vVj2bJlACxbtoz9998/QpROnDiR8vJyxyu5bNmymJR/EydOdNpoSdq8UBQEQRAEQYhBqcQv4KGHHopIn1dQUJAw9d4333xDbm4uXq+Xyy67jFdffZXhw4dTXFxMRkYGnTp1iqjfvXt3iouLAeJ6Lu3t+uqUl5dTU1Ozx5diT2iTK7MIgiAIgiAkxDQdz2EMofKrrroqYp4ggNfrjXvI0KFDWblyJWVlZbz88stMnjyZDz74IKUmt1ZEKAqCIAiC0L5ogFD0er0Nnl+ZkZHBkCFDABg1ahSfffYZDz74IGeddRZ+v5/S0tIIr2JJSQk9eljBND169ODTTz+NaM+OinbXiY6ULikpIT8/n6ysrAbZ2FTI0LMgCIIgCO0LZVpiMdFrDzFNE5/Px6hRo0hPT2fRokXOvu+//56NGzcybtw4AMaNG8c333zDtm3bnDoLFy4kPz+f4cOHO3Xcbdh17DZaEvEoCoIgCILQrtBME82I71FMVJ6ImTNncsIJJ9CvXz8qKip49tlnWbJkCe+88w4FBQVcfPHFzJgxgy5dupCfn8+VV17JuHHjOOSQQwA47rjjGD58OOeffz733HMPxcXF3HTTTUybNs0Z6r7ssst4+OGHufbaa7noootYvHgxL774IvPnz9+zC5ECRCgKgiAIgtC+MBUEjfj7EpUnYNu2bVxwwQVs3bqVgoICRowYwTvvvMOxxx4LwAMPPICu65xxxhn4fD4mTpzIo48+6hzv8Xh48803mTp1KuPGjSMnJ4fJkydz++23O3UGDhzI/Pnzueaaa3jwwQfp06cP//73v5k4cWLy555i2nwexWSRPIqCIAiCsKe07jyK+/c3ufbyk+LuDwSCZA6avEd5FDsS4lEUBEEQBKF9YZqQaIg5yaHnjo4IRUEQBEEQ2hdKWcPP8UhULsRFhKIgCIIgCO2LBqTHERqGCEVBEARBENoXpolmxA9a0Yw9T4/TkRChKAiCIAhC+0KpxPkSU5BHsSMhQlEQBEEQhPZFCtPjdHREKAqCIAiC0L4wjTrmKIpQTAYRioIgCIIgtC8U1vBzwp1CQxGhKAiCIAhC+8I0Zeg5RYhQFARBEAShfVFnehwRiskgQlEQBEEQhPaFQhJupwgRioIgCIIgtC+UCQnyKCYsF+IiQlEQBEEQhPaFKXkUU4UIRUEQBEEQ2hcSzJIyRCgKgiAIgtC+UEqGnlOECEVBEARBENoXSkkwS4oQoSgIgiAIQvtClvBLGSIUBUEQBEFoXxgKggmCVhKVC3ERoSgIgiAIQvtCmRL1nCJEKAqCIAiC0L5QCowEgjBRuRAXEYpJoKHVuV/JQuOCIAiC0PLIyiwpQ4RiEmha7OVyi0ONJP5KUbE3qghNQRAEQUgBkkcxZYhQTIKMjEKUMtE0HaVMlDIB66fC3nbfgJ6obZxjHOekMh2BGCE0RUgKgiAIQuOQYJaUIUJREARBEIT2hQKVYIg5UbkQnzYnFGfPns0rr7zCmjVryMrK4tBDD+Xuu+9m6NChTd73wOzDAdDQMbQgflVNEB+GChBUPkwVwFSBUB0PCiPkQbQ8iSYmhunDNIOOB1KpIKYKOt5Ix+MY8i4mHNqO8jiKt1EQBEEQQtQVzCJRz0nR5oTiBx98wLRp0zj44IMJBoPccMMNHHfccaxevZqcnJwm7fvsbkNRaHg0haE0dvkU1UFFddCk1jCpNQxqVRAAj6ajlCJAkCCWSAxoASr03fhUBSYmQeXDb1biN6osIakCmGYQw/QDpktAglIBbPGIMlGaLQytMi1KJ4pwFARBEDosZh1DzxL1nBRtTiguWLAgYnvevHkUFRWxYsUKjjzyyKTbqy+S2c2fJ65FKfDkgFkLO3/OYmdFNttqsigNpFMeyKA8mAlApq4wFFQbGgHTmi5RGYTNVYVUBgyCyqRaBdjt2U1VWilBVWsJR1VDwKjEUMEI76NpBlEq7InEFo7Kst8SjraQVDHnJcJREARBgOS+96JpM98lZl1L+DWvKW2dNicUoykrKwOgS5cucff7fD58Pp+zXV5eDsDQocPweDwN/oVRKDIO7A9pOuVf+qmt9dDz1wF69+8MA3ph7r0XVjy+co6IeV9VhfnAS/iLDTBh+6ZcPivpxS81/fAbUBqArdUmO30Bas0gVdRSqVdQq1XiU5X4zUoCZg2G6Qv99DsC0vI+WsPeaKYrSCbkcUST4WpBEIR2gvu7S9M0PB4PHo8H3f6p63h0Pfze9TO6TNf1Bvdrf28YhsH3369K+XmlCmUqVAKPohKPYlK0aaFomibTp0/nsMMOY7/99otbZ/bs2dx2220x5ZmZmSGhmAS/PQ6UScFJBgW1NRC0vHtaRSX6ilWQlgYFeeDzw5YdYBqQnwvVtQS/205gh0FaTncyR+kYJVX0OyyLvudNwC0qtUeeo/qbavxVHrZvz2Plzj5s93nY6dfZWm2yvTZIjRFkO2WU6tvwq2r8ZiU+o5yAERKPKogZ+hk97zEsDs0Y8SjCURAEoeVJ5MDwer1kZmbi9Xoj3mdkpDebbfa3hGG08hQzMvScMtq0UJw2bRrffvstH330UcI6M2fOZMaMGc52eXk5ffv2bVyHOdlA6BeloMApjiuvhu5t/ayqRqutIa1/T9JKy6GqFnIy0StrCH5dgnHfQtK7p2PWBNGzQE2bQhYmWZgUYDLk4Wfwr62mojiD1VsK+b4ii7JAOj9VZLK1ugvVZoDdWhm700uoSdtN0PQRMKriehzRDAjNoURpljDUYoerRTAKgiA0H25haItAtxDMzMxsVjHYPlBx08xZu+Q7LhnarFC84oorePPNN1m6dCl9+vRJWM/+hUuI1vi5Gg0iJxuVk43q2jVml3446ABV1ei6hr59Byz70rJJ01AbdlBT2h29yKDzkCDjD+/PEQfuDxjo771P9Ssb8FV4+N+63nxX0YtfqmFHjckuv58dlLNb30ZAVVNrllvD1kYtwZDXMXK42u1tjPU0gohHQRCEVGCLQk3TyM7OJicnh5ycHLKzs8nISEdr7HdSU3+X2bQVkWWCCiZIj2O0kXNoJbQ5oaiU4sorr+TVV19lyZIlDBw4sKVN2nNCnkqzX1/o5/J2joVMsFzo1VWweQv6O5+CMjG2mqQP6Y6+q5bjHxrDxM4hD+cD/0ftjz7WrC7k4x37URGALdXwS5WfMr2G7d5tVLObarOUgGFFXNueR1P5USqAUkErIbgS8SgIgtAYooePvV6vIwpzcnLIyspMThQ2lxBsL9QZzCLfXcnQ5oTitGnTePbZZ3n99dfJy8ujuLgYgIKCArKyslrYuiZC1yA3F3Po3taQdk0Nnh/X46moIr2sisqHvsDb2SR9VCHmNReTicnIilKGXfc8/kqdb3/uzhe7cymp9fJzRS47Aj526Luo8Oyi0tiG36wkaPoJGjUEjdqQYDRRBKzcjdHD1CBD1YIgCFHYz0SPxxMhCnNycvB4Gh4wIqJwz1HiUUwZbU4oPvbYYwAcddRREeVPPPEEF154YfINthU3upusLMz9hjub2ccDPh+UbENfthJ2VGCW+8gYOYD0Kh+H/6Enhx42GjAwb32Cqp/h/e/68nN1H36ssLyNVUaAkoztlLKFGmO3FVlt1BAwqjFNfygtTyBOYIx4GwVB6JjYwjAzM5O8vDxHFHq9GQ04OCQGlWo6YdgWv99ShalEKKaINicUVQve+PrHn4KuobaVoaV5oHdXSE+H6lprsmFuDqpzJ0izJh2rtNDlTU+DpvZ2er0xQ9e6z2dloF+9Bn3RCshMx8grIqN3LSfPmwgYaDu24/vLG9Ts8vDOd/1YUzGQ9RUGZf4g2z0VbPdsptrc7SQGjzfHUSkzJiWPRFQLgtCeiA44ycvLc15paZ56Dq5DCCYrEjuy+EsGV2rhGCToOSnanFBMFRs3bkTX9aQSj5pffY8KwI5vM9A90HXUdrQ8L4H1NQQqPXj76KTt2xMqazFKqtHzMtD6doVAEMqqISMNBvREFRWiMjKaRTwCmKMOBJ8PrbKSdI+H9O3lVN72Ht7OBulH9CPjwalkYHDm355gx6caS3/uzdbaDNZXduWn8jy2qwoqPRVUeLZRZewkaNYQMGoImrVOGp46h6qjEoCLaBQEoa2goZGRkREhDNPT6/nq3BNvYfQxjRSGhmFimiaGYcT8jC4zTbPBThj7+W228mXwlErsORSPYnJ0WKG4e/curEdAw3+Jd31Yga4r8joH0T1QuUxHmeDtbJLZMx3dTIeaNMxfH2PFggDKaV8DdPQPlmHM/4ya4jSCZFKwnwd9n55Q47fyL3bvankGvRmO0EsJXi/K63Wir7NPwhqu3rgJfeFyVGUtPrMX3U4wOePUMajO+YBJ9R/+H79s6MTXO/uwrnIAa8tNdvuC7PRUscNTTJW5A59ZGZWSxx/pbSRYZ/5GGxGQgiC0JPb3QXp6eoQwrDc1TSIx2BCRGE+g1SHaTFM5C0n4fD5qa2vx+XwEAgFHBDblyFv4Od26n9fKlQ0u3j6h4XRYoWiTjDg5+51u6GhkaB50TSMQWofZq3nI0HU8ukamR6OrdyldvJCuW7/vGR7I8Si8uqJXlo+9ulSTm1dLVpcgeuf+mKOGYo1d6+hfr4JXF2FWKGp3pJGWY5I5LA+KCsA0UUOHoHJzIRU5tbxezL2GwF5DAMgAKK9A++Y7tLIqzNIaMvftwdDxHvY+7TDI8qL/36tUfbSLLRsKWLJ1GD9WapTUmGyr9bGdMir03VSY2/AZ5aGIah9Bozacy9FJAB6Muv5mWLTLfEdBEJoYt5MgLS0tQhjWOcdwTzyEDfXaKYXP548Qgm5B6NSTZ2NiZOg5ZXR4oZgMa/Wv0dDxkI6GjqlZv7BpWiYelY4e1PEE08mtzSOPHHQ0dMCj6WToOum6Tk5aJl1LepKbBp0yYODnfoY/+jz5+bXkFAbImtgPJh+LDmSjof30M+qTVRhrt+AvyyBry270TtlQ2Alz0ADIzU3tSebnYR42BkyFvnEDeslOVHEpFX9dRkZmgMyLx5P1u+4MxqDfn//F1u9yWbGtGz9VZbG+MottNV3ZqoooTdtBVdpuK4djsNxJw6OUGYqqDkUA2sEx9nA1SHS1IAhNhoa13J1bGGZm1jN6o8UfBakX+5g6jvX5/FRVVVFVVeWIQb/fH785eQY2HFM8iqlChGISlFR+FXqno2l6yDMGmmZtA2jo6HoaHt2Ljh6xX8ODrqWRVuMlTcvEq+WSqXLJ+6GALHLJ82TQ9ZV0irKWkpsGXTIU/bP9DC6ooUevcvLGZqPO+DUKHe3nTQTuf4Oq8lzy+inSx/WDYBC6FGAOGgi6Dp56JljXha5hDhgAAwYAkHcK1ioz635E27ANc902atMGMuD3afQffyCqcwH6smXUvriWjd914oPivdlaq7O5ymRjdS0708so03cQUNVUm6X4g+UYKohh+pzgGEtEJlp20IycJlDHg1cepoIg2Gho6LoeIQyzsjLrOCDB/MJ4nsQk5xMahumIQvvlXgpPnl2pQyELs6QKEYpJEAyWJd6puXNkhYUjWGJNc+3XQvs1LQ1dS0PX09C1dNKMDNKCWXhrcknTvHi1PLJVHplmFvlaL4oWeOl/34fkpikG5wY4cmAZOV23k37AUMyDhwEe9Pc+pvqZ78jsrZM2rBv4g5CfjbnfPpDm2bN5jznZmAfsb70/BPIAtX072oataJ+vo3pZGWQXsveVBQyZdBSg0N9ZROkzW1i3qRuf79qX0oDGhkrF5mo/1WaAMq2c3VoJtaqcoPIRMCoj1qxWKohh+gmLR7AFJMR7sCYewo6HfXwyc1Xrepgn0059bQmCkBz275+u6+Tm5pKbl2ulrcnOruOgRgrDeryFSilqamojRKHP57P2ye990yMexZQhQjEJFInuLj3qzjNAhR4mIYEY+SxxexrT0QxLOPq1NDx6BjXaLnQ9nTQ9gzQ9G4+WhlfLZYu/iI07OpOtZfDtbi/flA2gS4Zi2MpqRvaZR+e9AvCn08ie0BnQMR/7D5XrdNJyvGSbprUsYJ8eqDqWPEz6mhQWogoLwecju9NqqKwBj0btX9/Dkx4k46yR5D91PAf5qtnv+qfw7db55qfufLorl8pgJpurctha05XdqppqvYoKzy6qzd0EzGoCRhVB0xeKrg4CZtjrqFnCMfwoN0PD2J74Q9gxhicvEG0ac0xztNXakS9HoalIT0t3chjm5eWRnZ3VsFVP6hOG8UggDINBg8rKSiorK6mqqqK6ujoiqETu/+ZFmWAm+MpONmB79uzZvPLKK6xZs4asrCwOPfRQ7r77boYOHerUqa2t5Y9//CPPP/88Pp+PiRMn8uijj9K9e3enzsaNG5k6dSrvv/8+ubm5TJ48mdmzZ5OWFpZiS5YsYcaMGaxatYq+ffty0003NS5HdAoRoZgEzlBzzJd77N0YfiQkfvhYzxBfuE1NJ+DyRmpaemiWI2ghEenRM0jTvaSZWWQFOuPVcsnb2oXOa7rS7YNMuj/zDb2zoUemya/61dK5RzXZR/bGHDcc8KA9+SalX6fT+fBstH7dwARzn732fK6j14t58IHOZuaRoO3cibbhF7Tib1GbdlKTMQRPURWHX9aHQw85CDDQP/ucyn9+xbYtuXy3q5AfK/uwqRpKqq01q8tUDbv0bdRSSRAfQVXrBMkYKogZiqw2VTBWTIY+l7An0ibskWwttO4vkdRcqz0Sxa10rKh1f27tE13TnTWSs3Osn96MBiS4huTSzjRgGLmiosJ51dbWhg+V+6LlUYCZ4JmTqDwBH3zwAdOmTePggw8mGAxyww03cNxxx7F69WpycnIAuOaaa5g/fz4vvfQSBQUFXHHFFZx++ul8/PHHABiGwaRJk+jRoweffPIJW7du5YILLiA9PZ0777wTgPXr1zNp0iQuu+wynnnmGRYtWsTvf/97evbsycSJExt9KfYUTbVkBusWoLy8nIKCAqwh4Zb15sT94nQeZHpsPc2KjLY9kbqW5hKQXjI8OWR4csjUCsgin65mIQV6Fj2yMuiTo9M1w+T4PtvovVc5GfddCGletB2lVD7wCVp6OrmHdYJsL3TrhNmnD2R692yeYzwCAfTNm+GXEqiswbdyJ5rHR3rPdLRDhmEOCa3d/fdnqVlVw/Zfclm6pTvb/TpVQY1yv2JrtUFZIECtClKDD7/mo1Ivw6cq8KsagspH0Ky21q8OCUeljNDqMmEhGSsg49F0grJh/Sc4dg/sSr7fxo/TNLyvPbjODexjz7+8k7SxCR6tHUmA2M+9jIwMcnNzHVGYndVAbyHEDhNHC8Uk5xdWVlY6wrCmpsY6rAN9JpEowKCsrIz8/PyWNiaC8847j73XrGH6/vvF3R8wTQqf/j82bNhAp06dIvZ5vV689UzR2r59O0VFRXzwwQcceeSRlJWVUVhYyLPPPstvfvMbANasWcM+++zDsmXLOOSQQ3j77bc58cQT2bJli+NlnDt3Ltdddx3bt28nIyOD6667jvnz5/Ptt986fZ199tmUlpayYMGCPbgie4Z4FFuQ6AdMZH5Bw3mIObWUQsO0EolqQZSWBngwzFp0LY2gUUOtXkqNvosKTxblejEZ5LK5ppCfqjpR4PGysbo7/X4p4tCJ8+lbVErXCVnk/PW3gAbvL8O3eCOegizShmyGrvmoYUNQBQWpO+n0dCtIpldvMIJ4e66zVrYJBPG9/hPV2zfSeawHc8qZZOVm0g+T8+58gqp1Jv4aD7t257B8exe2+TKpCmpUBXMp9Sl21BZSqQJUKx+1Wg2V6WX4VTUKA4MgShkYBBwvpGH6LMFYx5d/tMhRKZ7Y0hCxl4yoa0jd+vqsq43622/c+dRlU4POX4O6xGx4JCCaJIRfaFpDwt3xxEJEh40UwirOM6Ku6m1ctKSnp5OVmWUNI+fmkJ2dHTEsl/I/7evJV+gWhtXV1ZGHtvFr3d5RJpgJ5ijaQ88PPfQQ9913X8S+WbNmceutt9bZdlmZFa/QpUsXAFasWEEgEGDChAlOnWHDhtGvXz9HKC5btoz9998/Yih64sSJTJ06lVWrVnHggQeybNmyiDbsOtOnT2/AGTcdIhRbETEPnph5dEbEkLZSAWzPo4lGUKsAdGqjPI7FIY9jupnJ8t2dySnrytObi8hXhfRemsVef1tKlwzF4UW7GTR0J+k3X4yJZqU6fGI+FT95yRmgk7Zfd8vb2LMn5Oft2clmpAPp4eAYIP1IKAgEUCUl6N+vh/IajA27MHP7kD3KIGN3gDwC7DV1FKprF+whZH35Z9Q88zU1O9MoL8tkY1kBayp6UhHUCJjgNzV8BtQYCr8B5X6TqqBBrRl04qpjPgulMC0fpCNkoutFb+txpUhs225xqlzzKN11owVstJgyo+ZfuutHtB9RHimmIvZpZkwd57xVbJl7vm5dtrrFtRl1rC3gnPI4/bjrRfcbsy+qPXeZ3XbCdlX8axa9L3K7/uNjhW6caSpxxXCozL6lom2IK1LMxEIyyVU3mpL09HTHa5OZmem893q96LoeUTdpYVhfvsK6siUoRWVllSMMq6qqwvtEFLY5rKjn+HeQXX7VVVdxyy23ROyrz5tomibTp0/nsMMOY7/9LI9lcXExGRkZMd7J7t27U1xc7NRxi0R7v72vrjrl5eXU1NSQ1dSruSVAhGIbIO5DyskvaH8Bgv1YtXIU+iyxFzHv0UOlvpWdWhpbPJl4dC/e6jxyfF3xank89Us3uq/sz+C3ltItE/pnG0wYvJOuByv4w4WYeNC//g7j8feo2pZBp2M7W0PVnfKtnI7pKUgCnp6O6tPHCbjRCPlxqqrJ0DW00lK0dVvQvtsEvgBqZxXBkir0Hj3IKgiQZQYYcJCHw884mhgvjmmibf4F7dNvCHxVgq9EYfh0TCP8MNE0hVIaQb8H09QIBnUMU0eZGkqBqTTnIWMmeAi5ceq6tu02TAXgQSkNw9WmSbgvAIVV11Sas9KPqSLLrXr28aF+QvXcbYSPcb2Pqm8oLdSWvY+wTYChXO2Gyqz2ItvFVVehIurY5YYKt2GEDoo+xipTzne8ZZMK2adCx4d/mkph2CLfJfgNjNB7E6WZ4feYmJrlXQ6LWRMz1IpbRCtMTHsaA4ZzvFL2e8PxVNvTHazPKxC6XqbzMyyQw2JWucqc8jhl9lzc6P2hqxW1bTZQcDYsBVVDRFNaWlqEEHQLwmgxGI8GC8To/IbRNtcjDKuqqiOEoVJKRGE7QZlaxLPdjRmao+j1epMeNp82bRrffvstH3300R7b2FYQodiGcT/Q4g1bKwiVhaKwNZ2gEUDT0jFNP5qWRtBTg89TQZqeQblnKzspYltpT/K1bLpmZLC2cgB7/xhg5Hsv0ad/Kbl/OhLP9GPJR8d46GXMYAaewlz0db9An26oAf2slWNSPbcxx0pvobKyUD17QlU1KBOtqpK07btI21UGviCqrIbg9lqCdy/EkwWBckWwRkMFFbonSFqmQeaQTNLPPQbPsL2dKxke4He/TyGmGX4pZeW8DG1rRhAM0ypToTpBw9pnmmAY1v6I443wtmG4ypS1bbq2TWWF/wXNiDJlKKvMMFGmAr/VjgqGXgHTCiY3lJVmwgQzgLU0VsgMFbQexlaEoW6VmTqmqTmvYNCDUmCYOoZpieKgoWMoHSMkkgOmjql0R6gGTGs/QDBUZqqw2A0qS9wGQ2LTCInQYFSZYQtfBQHTEpy2OA2q0GXFEg1u8WqG6tjSzTRt4Wm1EVSmI0YNZYlKE0UQA0MzLFEaEp8GQZRLdBoE6xGb9jzaQITQdObXYq3LGz3v1v0+dNO5xKR1T1vbLs+tk6/ULjCdurqu4/FYyal1Xcej66EyDx6PB0137QuV2e+bjSTngbqFYWVlJfYUfRGH7Q9LKMb/o6Sxy1RfccUVvPnmmyxdupQ+ruwhPXr0wO/3U1paGuFVLCkpoUePHk6dTz/9NKK9kpISZ5/90y5z18nPz28xbyKIUGw3xBu2TuxxDGBiicugkeZ4Gz16Brv19WzVM53I6o8CXSnY0YP8nwro/Hk/+izYSu/srQzOCTK+fw1dBuwm7cJxmF0K0b9chXp9McGdkN4vF61TJhR2xtxrMKT6JreFY24uqnuPiF06kGFaYszj96FVV6NVV0NNLfgDUOuHnVXoH31hHWCaljoIGqhqP6rSj/IFUQGs8rpwPGuWW8z53jJxMia5y5z67rpKC21roFwiLCRwCHkglcISZfZhtmfSDKdgMpWGaWaETNOc4RfT1Z6BDnZdrL+uFZFeTcOuj+VnCnsq3d7JsDfQOt51TKh9A1BpYduCrsvpFngq9NMwQ15HcLVjbdieS9NV3xZ49sdkKoUR2ukIQKe+LfTCEwqcNrDLQl7NkNCzPrbQPs1wvIA6hjVfWFN4MEJtG5ihpSnN0B8chjIADWVfc/szCc13VK6gKhWyy+0pVCFRaN80Ye9huB7O2dg3Weh+jBCEKmK/W2BFexUjiLsme9PQFKGF1dU1EcLQNE1EFHYM7OdK3H1J3gJKKa688kpeffVVlixZwsCBAyP2jxo1ivT0dBYtWsQZZ5wBwPfff8/GjRsZN24cAOPGjeOvf/0r27Zto6ioCICFCxeSn5/P8OHDnTpvvfVWRNsLFy502mgpRCi2YxLPebT/igYrkTWAjjJrrKFqzbotNC2dcu0Xdni+R9fSSPdk4a3IJ6Mql4LtPfjHT50pTOtJ9/+sYnAejCioYVjRDgqH+1DX/B5FGvrq71HPvEvNZp3sYenoPQogNxM1cACqID/1nkcbXbPmQWakW2IyycM1GvHFZSowgqEnlO0BDCk/U6HZX+yGGR4CNE3L2+eMB5tohstLaHsNg65tFXKF2V5GpcJlZkhpBSPbxFSogEFIIYKhUIZpudVM0zLHMC1xa4REb1CFvIaEV1o0rL/UbWGrDDAMzRGzpqlhGGEBa5mkY6JhmPaQu0bQ1B0xaaJhKN0x1xKUuiP+jJDQDbqG1Q23EHXVsUWu42G0Lw84nkZ7ONsMeRWdYWzbg2iGhF7Ie+gWmoZSmMoMldlSzgz5BS3haIlMS6QFNQNsr6KuQsPXYVFphmSxUlYd+76w2g064jDsNVRh76EtIt3CMiQgNU0B6bY/NDRCGxaPMWusO541twfGjDvnT6PpxGJjUQChBNd2AEplZSVBI0E0g9DuUaaGkcCjaCTpUZw2bRrPPvssr7/+Onl5ec6cwoKCArKysigoKODiiy9mxowZdOnShfz8fK688krGjRvHIYccAsBxxx3H8OHDOf/887nnnnsoLi7mpptuYtq0ac68yMsuu4yHH36Ya6+9losuuojFixfz4osvMn/+/MZfiBQgQrEDErEaiZM2wgwPVdtfPFoQpQUwlR9dSyNgVOP3VOHRvdR4dlPqKaBYdWZjRVc2VBbwXWkmRdv6MfhngxO+f4pO/Xx4T9ob7ffHkI2G+bcXCazbjqdLNmklpZYQ65KHGjYYlZObmjmOLYmugZ74HBr65ZqwniP6Qq+ANe9NM0JjwYFg+PMzFVogiJNx1jDRgsEIwakFQ0PatigNBENKyrAcS6FtFTQcN54KWEPYts5VQdMa0w2558ygQoWGp7GbCuooI+S5VNYQtWFYQtIWlwHD48y1NExLSAZDHtawcAx7RoMhD6jpiEi7nkswgrMNoZF3l1AMmla8luMFNa36YS+nskbmQ55Iew5k0NRdXk1F0LTlX+gYjNBwtEm6SziaSoU8kpYoNLSgIxqVptAIOkniDRVEVxqmZhlrasGw91HzhIamDZRmomwxZxI63vYwm2jozv2kaSZKeQDDSS9jzWcOC0JNuUVkaF8rxecPr5FcVVlFTU2NDCULDqn0KD722GMAHHXUURHlTzzxhJMM+4EHHkDXdc4444yIhNs2Ho+HN998k6lTpzJu3DhycnKYPHkyt99+u1Nn4MCBzJ8/n2uuuYYHH3yQPn368O9//7tFcyiC5FFsaXNaFTERk5qGs4pMKDAmOo+jHkoCnuHJId2Ti1fPJY9CiswedEvLorPXw8A8jUE5QY7ot5W8brVkD/PCNb+z2q6sgZeW4NsM6GlkjeoMnXIgPwezd28rEbgun1OT4A9YYtMRln4IBiwFBdZ2IGjNnQRLYQUC4LMEqjMv0ucP64lAMCQmLWWlDBNVawlSZTnPIKAwfcoSm8oSlYZPwwyGhr5NDSOoO55JpTQCQZ2gaQ/XagQNjYDpCYs+pRMwdYKhSeoGGkFTI2BqztB40NTwh7bt0/GbmstzGdK8ytG9BEOn4j4mYCgn/4A191ERVOHtoDIJqnAMe1AZBAkPW5uaSVALEHSGhi3hGNQC2NHZlrcxvGylQRBD+cMCyE4yb0dzh7yMpj2BFMvDaJq2zzV0GEEiH/lGaDssCOMnqCfm27U5vzgMw6C6utpa8aTK+hkMBkUQtiiWh7q15lHs9+U6Lh8yMu7+gGkyeP6/40YZC7GIR1FwiD/P0T1MbXshwB1VbaXksdPx6OzQM9nkySLDzCE9mEVWTWfyKWTuj53J0tLo5vUy5B9WSp7eWQHG9N5Bl/61ZJ68N+bRB0Mourp89vukZWpkD9LRe+WHv8u65kPXzpidO4M3A9LSmm4Iuz1hGC7RZ6L5/eGgGqXA77eGve06wWCsUPQHrBeElFQQfEFnkqAKGih/SF2F+lF+MzycbSrLu+jHmcNpBjWMQHjiuRNtbtjCEIKmh2AoWAYgYHoImlp4/qSyhGAwFABjKDuwJSwMgwpnGNkMzbOMnN9oDz+Hh6vtUA/3nEhnO+RhNEMR2fbvj6lMzJChocFiZ1jafm86rRPeF5WnM+k8nyny/mlo8QVYVIRxUw5B19TUOIKwqqqK2tpaEYVCUtQ99Cz3UjKIUBTqJO4wNUQOVROah6UCaJqOqYIYZi0BowqPnkGtXkqlZxu7PAWk4SXX35Wt2wrJ8aTTOSOdFbv70ftHk70/q2bUkH/j7WySeeZ+5M/+ldXz1hL45CuqPq3AVF4y+5aQ1q8TemaG5T3J8kKvQlRRISojAzxpoTyNHQR7bqQ9lxHAMKyhZnuOlmlAIGgJwZAH0RGB9tzHoFXHmVtpGBAaagas+XI+IzzxD1ABwxKCVrSKJf78oYhqcEShGcSax2hankMjqEcE6AQNKx2Rqaw5jYFQ5LSVYj4kAkNBO2YoUjpoahhozpxFWxhaAStWWUCFg38MU8MfmsKpCHkQDZcgVKHgc1s4Yn2huFP4mEqFypRznLUdDpAJKtMlBiGoBQmGglyUZoY8iaF5i5o1b9FUwYhAGKWCMXMWY9LnuOYrWmWK6IAXN7FCMtabSDOmh/H7/fh8Pmpra/H5fNar1vopCHuK/cdcon1CwxGhKDSIeqOqVSglT53eRsvj6NEz2ODJIs3MwBP04q3NJUfvRq5ZQJfvepLnSafry7X0z7W8jv2z/QzpVEbvgWV4CyC9exHmKYdg5RS0+tDfep/apz9DaRno2R7SCz3oBZmQpqOl6eCx7QHSNEhPc4JdyPKCN7RcoaahdA3NVKg4Q96aGfX0sUVX6Jo4IgvXe3cQSkhQWceF2nBS57jqGqGfhBSKnfJGYQky013PyhfoTkxoBZuEBJvtFgtNvrPKsVLeqMj5hMrQnGAVe06hne5GhUSWaeqh+YVgmunY+R1NZQWs2AEqZmiY1zD1kDDTQyLOnkOoOalrnGAUwkIwdKrOfEMz5AlEheca2oLPeW/iBLjYl8h0jrXFoHKOU67gFdO+Nq59Vv5GSzzZASzuCGkDwwlgUShLCIYCWOxUNxFzEUMtOUEsZjiIxXR6AXfqG2u74YEs4d9Y+4N3i0Yjars+kRi5P1kCgUBYCNb68IXEoc/nixGyDgmSZu/RWuFCymgrnl3reSQexVQgQlFoNHWJR9sPaRUHsBNFuxOAa1o6Wui9PdfRo3tJN7LwBL1k13QiiwKyVR7ZKpu8T/uSm5ZGfoaHzjcspZsXctIUeWkmIzqVM7D/LtJzTTxBDc/p4zH32jtkpzuG2fXeH0Bf9yPmp2vw/xLA9OsYQQ8mHkzTg+4xnQTccb/T7ETXKjwk77w3cYIz7DoqZjusMbETcdvXLFTHndYGNCe1DeAEcrgTc9uCzPWROGlr7Hbd6W7sduzh17DnLLzfzlfo2E14eBYixRtOm2Ft6rbDiTgmrGttw9yCzj3UG2lbeKjX6ifs3Qu3G0qRYx9PONAEiBB69pF27kPHfs0IzyG0k3Fr9vzBcORyWEKGPYERSbudFWEiBaDTjxk5z84tBG3743kJlT3BE9tT6J5jaH9CRJUlFn2RVzB8jGEYGIaBaZoYhvUHimEYoQh2CAYDoX0GhmGG3gcIBoN1i0HSIpZZjrtet+jCVokKJY9v7SgRiilDhKKQUuqMqEYHFco/h45SQezgGFMFMYxaNC0Nv16BR8/Ar5dT6ckiTfOSrmfj1XLJMLLIrs4jqyqTPC2TTI+HbI+Hr3Z3pmhrZ3LTFdkexfBPvmNIr4/ILAiS3kVDyww9MEwFuoaek4ZemAM9OsPpY8nI28MlCVsK0wwPHweD1jxDd9LugN9xrWnBoBWMYifgtt8Hg+Gh5mDopcxwgm47OjqUxFv5Q9tB04p69htO8m4VVKjQ0LMKWl5L23upTNtjCUYglConFLDiDl4xTN1ZEcewtw09lITbSqVjvw+alnANhCKRbc+kncjbTsxti1YnuEVZw9KGCg832/ttb6L93jCtPx4Mle4IV6sP5fy0BbZSVmBLuMwalg6iHG+ktfq44awOYwWyBB0PpImBoVnBLBAWnCYBbPVkEE6+DWCqAPZqMNZ2KMl31Eowphn+knd7LJ2yqG1TBSP2qdB23csU2ngixWBdNFIUWqmA6l/pZU9pzn5smro/Zw30JPvRjLYRRBT1p1EEqZnN23EQoSg0CREPEmWLR9sDEvpP01y7a7BWSw57HmsIeR013fE8alqaEzRjRV2n49HS8NR6SdPCrywKyP46j3Ry8aoM0l23uqZp6Gh40EjTgmSlfU6WR8frgTRdw6NZo9PRX3K6Fh4ddmN7wtxE5+mOd0y91zDqoOg+VFSZvexdwvoh4RLbTzzb9NArzbEj7A1UEcfE2zYTeqxicTyb9v3hCgRxypw5f9bj35ZUEX2EUstoSo9YQzvCLrfAwYxYMzs8s9Bdlnh97ITnY7ephbyP7j6iPIphb6R91XXrfT3fwxo6aOAJJe72aOmh6R/hc3G37/QXJXjqEkAaHkds2nUMl3C0jg+fj2an5annGmk0TJjEayexKK1b8NTVZyJ76+orUX/1nVuy55Son/r6asw5NaQfhcmuim/ahFdRhp5ThwhFodlwi4WY4BhweR6x3FDooIIo5wEWHrK22rDXsNbRdUtAWiLSQ5qeQZqeZb3XvHhCw9w4Ldlpfzx4jHTSg148pOMhjTSVhobu1Akfo8UVWu4veXtbYcY8YOMR/bCP7jNev+5tEzPimHi21NVuIjT38HUc0eUm2ra62otnR/w243yhxrHDbaem9NCnpoEKR8HbNsX97KLFeLRgc9qIvReizzVaKFk5DMPBKJH92D722M82uh+7Hbv9RPdD9D0W/15V6EqLaENXWpz7MPKa6Srch7tdJ8+j6z5MFKntvoZ13XuJ7DcxIzyP7vvBfR9E91VffxHn47Zdq/+ei+6rof1E9GVPyWyivqLPKV5fDb1+Jorlnp8wg6UJ+24tqNCc6XgkKhfiI0JRaBEU9nxGd6HrQapphL7WwiuaOEPWlofD8kx6rPdGENOV5zGopaHrVeia5XHUdZdHkdAxrqEXu56GxxIbWnrMw1Kzl10LeWnibbvFgVUWu22ja56IMh0PutLjfGlHpv6J50lwCxtbLkVeWt3Vjx7xJRMhsJz23N/IifqMI2pCbli7N/sz1nUttD+6ft1tRuyznc2a207rVrHb0jWrT7uutR2/rbqcCtF92f2436e5Grb7dmNvxusmNAMipr5tv9t2dz2rzPayamiu1lXUmSY6P3d7GirmGukazqdt37l26m1XPJXTZ7x+7LLoc3TbH29/dBv2OblX06kL9+duE6+/WO984n7cVaOvk/unFvVJN3dfyfTj7iuZfgyl8ZW/C5VtQSgSnpsdsy9BuRCfDisUDzhgZPMuXi80KzGPgbiTpdyffzD0ciUYr7eNKCEZs9+TYJ/LCxaSU1YdPaauI9C02L6ixZu97bSD5mpTj2lLQ3PErmWVFtFPPK+q7cG161vi2GWv5gn5wEJ9KC1OO5HbOlqkZzB0RES7ytWmLaRCZxA+JixUtZCVkbbF8QJq0XVsm2xbYoUpWqSg1VzTFMK2RRJ9a9ibEYJGi7zrNC22nRjhFfppxukzLlGiM6qoTlshvuhtSDB0XW3Wh7v5+vpKNCcyUX+NPZ9EfdV1XnvSV7L9pfK83JumghGFw6j1dcIwDL76akXDGm0B7OwJifYJDafDCkWh/VDvr3wCkZa4PS3uMYmEYN0iMNJKa+hci9wfVeYWfJrruIif7mMdseQJWaCFysMeRGeIPkrchYWdB02FbQgLufB7W9BFCEE0R8Q5Yi30zxZujiiy67sEmy3UbH1qy2arTvjS2R5Du74j5FxeN7svt8Bye8dwPI7hY+1PJlIYho+1t93CTiPcJ67ySHtVTB/2+bmqhdZktverCPGmaSriPK1ye8ja1U4DRFis9zLSvsj23FNE4tPYGV5xbYs7RB5bM774se+j+BY1VA5EH12fxym6v8YK38b219A+E31O0f01tP2g0ni9NJ9aX3EDem9ZLM93xxKKX3zxBS+99BLXXnstnTt35qabbuKOO+7Y43ZFKAoCCTyIQHyRGC0Qo8RbaMuq4xKObi9gSBxqrmPjCUNdS3Pq23YmEoRWmRXwY++3RWG0IHTEoLJqptnn5BKCji1RQtDux/HghcSTJ0oE6prmiLYI8Re6bJ7QfrcXrj7hB6EhX6cN1zGhYo8eKQad9ggf41wvt1ByCTy38LNFm7sdW8S5BZzbfpy6sYLM/aXswS0UQ+1GiEWXONTCg8uRw6nRc30jNyN8uXZd9zVwbIi01banLpIdwovXXqLh59hgrD3vKxHx2q4vzWNj+2rO/vZkiDVeHwHTg65lNLrN5kTV4VFMVN7WufTSSznttNM47bTTeP3111m8eHFK2hWhKLRpGvvrXmfy3mgBqFkyKLzb7YOyBaLm2m+LPNfQdpQwtPanRQhDZ3jYJQo9pOEeDvaQFiE+dTwxHkIPaVHewTR0J5hEQ1ceJ1oWwKM8eNzCEA2PpkcIHl2zhaFdZslV9xw+XdPQbR2MFT1uizJN0yK9bliCT48Sde4V2LXQ8dHzDSPKAI8eFlCWHSrcL+DRVITg8rjEo1VHhQRnpIDTo0SbtR0Wdh7dFR+uKdDA456Pqlm2hbcVeqhdU2mhYxQe10XRNOW8nGNi9kd9iYfK3MR4vDQiZy9EtaHpVjvu+k55A6gncDdxO/X9AsfRQ/X1VWd/dXXViJwpcfuJd05JnIeTVSzBtWnqc6ur/aBPJ+OHnOQNaAFMtIicsm6MZMb82xCZmZnceOONHHfccVx88cV15DFNDhGKQrtA0XjRGJ/kn8bR3sOY/VHiMmZYOSQSI4aSo+YMuucI2nUcryMhj6MrilUnHKgS4S10zfnzEDln0KPpIcFm26dZ3j+XUEyL8g7qaHj0yCHhNF2L8BbpQJrrstqCz+25i/YGejRbiIXacI4Je/48hD1l1n63UFQxwlB3vIEu0YeKEHW6Bh7NHfWs0PXwULAtGjXCIs2jK8fzaPet62ZEm7quIgSarkcOsuqeKCEYJQwdwRftNfSEAlzMWNEXcZxTQMQtrrm8tE5Z5K1WN3UJkThtNDi/IvXMrXP32wBbo5arrru9hhDVZ13nFbffxiT0S3CeKTm3eq5hmmaiR98orZSIBQ2iaK/ZcbKysgA4+OCDOeGEE5g6dWpK2m2zQvGRRx7h3nvvpbi4mAMOOIC///3vjBkzpqXNEpqZxv6+x6TqwRWJrRRo7nhPCK904UEphebab6cusZIda65yIzz3UIWf05qmWZHQziig2xY9JHp1lGat/hEeajYJRqRJ0TE008ltZw81qwjPWBqaClry0JmnqDseRWcQ2pW+Jqis2G9nvwrPNbTnGQZC4tGuo2kKj0nE8LLHjBxa9mjgsTOChNqLHgbWDVxeyVgvo0e3BZ/miD/bm+m0ERKSjoBz2or0KNrbutNPpFCMHjr2aCri07U9jpHC1k6NExKKIU+jTVrUtk6k2LSHnt0i1mkHHAFo1Qm3E+tBVDHl0XMPNT2yflyvZF1DnEoL769vKC+OcG0odYofd79JDv/W2159xJvXl6xQTHYItI5ztPtu8PVKsn0AI+jBaAM5FMEeeu5YHsU77riDYDBIWloaF198MV27dk1Ju21SKL7wwgvMmDGDuXPnMnbsWObMmcPEiRP5/vvvKSoqamnzhNaGUnU+wSOWUItJ22NaqWWc4w3CYlHDjjeNSTqsooSmZoa/UxWg6ZhaMCQwLfFngpMKKBylrDvCT6GhKQ9goKOFpKtuSz0MQNMMDBUMi0aMmPmJJrqTSshqIVY4BkOeSWe/cs+RtIRkQIUdU85wtRa+frawssVjQMMZvrbrRc7zCwkgs46gFDM8L9E+xmPXdQQgLhHr9ia6hr9dXsnoOY5WWf1zEj3RdqPQNI9js9NGnHmIEGmv3aYeJRCtemFx6fZouhuNDgiJTmviFqI2elRZ9G9IhECth7qCA+K2kYyoq6Ntd78NtbUukglySPq84rSdbFBFnefYANFeX3/1XcOg0jGUv846rQVr6Dn++bbXOYpjx46N2D711FNT0m6jheLkyZO5+OKLOfLII1NiSDLcf//9XHLJJUyZMgWAuXPnMn/+fB5//HGuv/76ZrdHaB24H3ExjwFHLEZ7CuO1o8LP+9AxKhT0YYlDe91esGRKKI+i7Sl0t+2szau56oXSHauwsIwcctaddDGJUt0Y2MdGBbkowkNDIbGpO22lRQwb6VjJyW3boyOfLTEV9kKGrgC6sj2coRhnexhb4YhI26akIp81dx2XdxKcwBh3/bgiM0EATIRAdI7RHJEY2a/donuOZVQ/RG7H6yd8nVVEP+6+rLYjhVp05HPEMW4HGpH7iNofZUZE29FtRB8X/duRbLBGQ6nr6zqZHpXSUmZjQwNAmru/Pe2zIf3U176hNAKqptE2NCcdbeh56dKljTpuwIAB9OvXr846jRaKZWVlTJgwgf79+zNlyhQmT55M7969G9tcg/H7/axYsYKZM2c6ZbquM2HCBJYtWxZT3+fz4fP5nO3y8vImt1FopUR4FuvOPOesWR0jGKPnIVoeRqt5t5fRbscWdC6vpQr3bQ9Payo8ZKQ0a2jb9jYC6Fqas46v2+uIssVk2PNoEhJByoNuL0KnWYnLleucTU2hu5Zkc0dIgy3GLPEYHnhPAy28LFxaKMl4OHI51hupqcj8hRpa2EOpaaCImBMJON5Ju76mqYisl9ER1G5PpdOGS3zaVT26Frkd9d3pJNG2240SeG7vo409TO1uN7JfLaafSIGpOe04bbpsCJepmPNx6kaVhe2N9jQSkZw5XsRxPDkRN1qZhk0RjP7TLNG20PoxlYZpBuuv2Aqw136PR3v0KE6ePDnpYzRNY/r06Vx11VV11mu0UHzttdfYvn07Tz/9NE8++SSzZs1iwoQJXHzxxZxyyimkp6c3tuk62bFjB4Zh0L1794jy7t27s2bNmpj6s2fP5rbbbmsSW4Q2SD3D0MmTbNL2sGcw/m5XYItzRGx9O0o6Tuuhn1Ycs3siWjifYvQxYWFoD1Nb9cOpdIhoJexdrCuvor2dKDF2PC+j3a7bgwj28HL83Irha2KJw4jtiP2xwTXRkdjuKGy7jXjC0P0+VhjW7XW0j4v4JLQ4w8dxvJDuPqw6kfMO4632Ei3ybBGa6E+lhNG2cXx8eoL30dQlKJMPG2s7KOe+bx8uLBPqfn61IpTSOlQexfXr1zdZ23s0R7GwsJAZM2YwY8YMvvjiC5544gnOP/98cnNz+d3vfsfll1/OXnvtlSpbG8XMmTOZMWOGs11eXk7fvn1b0CKhNeL2ZsXMU4ybLgfqSrjtiv8N1Yk8NlGybftn9JBzdGS0s88WhHZbLiHnTrJt1Y/NqQhE5VUMH+9RkfMW3SLQLQDDwjIkALX6h5hjhpddwi96aNkRXvUNK9vtuMSbW+TZZe7hZPc8Q7fQih5Cdnvzotu02lIRx9sCLXpeY/Rwud1XvCFg91zHiPp1zHl0n2f4krjnJcYJwIgpiU997dTZUMIhwIb1noq5kqnsp76+opdTrEsopqrPZIjXZ0PaDiodXW8jeRTpWB7FpiQlwSxbt25l4cKFLFy4EI/Hw69//Wu++eYbhg8fzj333MM111yTim4A6NatGx6Ph5KSkojykpISevToEVPf6/Xi9XpT1r/Q+mngV4+rfvRDXYvjVnEHtMQm3I4nDGOW4otTFr0KS8ySe1HpcnTN4xwTveKKVZaW0CvozDdU4XQ51tl4HBFob0evsKK7BF04cCUs/OyrEi383HkVHQ+eI8Yih2TtRNoRQo5I8aZFtaGRYPjY5aGzRZ8t3txRz7rTT+Q8Qjv3olusuaOiNcI5EsOCLXHUszPXUle4E1y7h8vdwSXuU0oU9Wz3GZ13MboN2wEUL7ciNNzJrkXZ4G4jpk4U0fPjEgadtkQUcwMiiZ3mUhG5nKDPRJ/BHvXZ2GuYoP1gQCddy2pcm82MoSCY4PQTlbd1XnzxRU499VQyMiwx/8svv9CrVy/00IO4urqahx9+mGuvvTapdhstFAOBAG+88QZPPPEE7777LiNGjGD69Omce+655OfnA/Dqq69y0UUXpVQoZmRkMGrUKBYtWuRE9JimyaJFi7jiiitS1o/QNknJ34lxRGJsFS1OeaRIjBiyTZBw2zrKfVzkmsw6kQEoGjoeV95EHQ+669dY19LwqLSI+lYbkcEo0SuvpLvbQI9MuA3omh6RDicstjSnjkd3BZy46tQlDN1DvXZOxOgI5jSnzbBIdHsQI9PWgHsFEzuvYtg7GRaKHlduQo9LCEYISpc30OMWSFF5FSEsAiNS6rjyJlp9mhFizy0Uo5NtO7a4b6OovIpWoWVLuA4xuRY1TcUmUm6AiIgRgvHGvxs6Ehk9GbExX9aN8FpC/ITTjU4CnqCvhia1bnCS7j3sMxUjxNHtp/kjnz+tGy3Gs2uTqLytc84557B161Yn+8vw4cNZuXIlgwYNAqCiooKZM2c2n1Ds2bMnpmlyzjnn8OmnnzJy5MiYOkcffTSdOnVqbBcJmTFjBpMnT2b06NGMGTOGOXPmUFVV5URBC0JCGhjMEntY4geLvTJLfXN34s07jCsSXUPL7mFlwPEKhtvxoLlWgNHxRPRji8ToYWTdFZTjeBQdL6QWN+G27hKFetR8P3u/O/rWSqitueq4gkWwRKKdUBtCQtEWT4QFYfRwcMRqJ1i5CTXCSdc9GhGiLk2L9RZ6tPDwm50TMXJI2kSPGmrVXcdY7USuwqJpKmKVGDvhttv7p+tmjNdP9yjH4xadkDs64bbTl8uB7YhAl/CtK7m2XScGu0xFbdubkbdebDsNnaRIHR7FJH4tNa2enIEJ+o6hrinDDfEoNqSPBvSZlEcxmf4aIxgTtK/ppjNlpbVTZzBLOxWK0SuxtPjKLA888AC//e1vyczMTFinU6dOTTLB8qyzzmL79u3ccsstFBcXM3LkSBYsWBAT4CJ0PGyxYP+MrdCAyOeYsbhwtLMd6ayUBzvptnIfZ9Wy2nULCRX57NU0MxQIYotChaZM7Ehmq44VyayhhVLPeEI2B0PHWH24E26bBHGv1OLBQFMawSihmeYWl3GW9AuqSI+j7WEMi7pID6MdlRy9pF/EiiIuLyNYHsiItZYJexmdq6iFw4VsT6NbfFrC0BUYU4fHMWy7irDD9h56cNsaKTY1LdJzaV3bqFVWHE+o7TEML9ln22J7PMPbkR7I6GFo2z53v+Eh7UjPpF3XOSZ6OJpIbDFpe43q80C5P8vosnBBgi8m1xd2ojQt7u+0+obC3f3Wl/alvu/KuvqKN5SezDrNyfTZ0GH7ZPrbk7i9eH0EgzoB5Yvd0QoxFQQTCN72OvTcVDRaKJ5//vmptCNprrjiChlqFuKiXD8bNqLj9lCFjoj51gol1nZS4Fhi0dodKRjtVVrsB7ymhVZpca2qolQ4DQ4QFo3KCM9TVKYlKB0Po4Gp6a5chx6UCmIHsRiAR0uLEY7xUt4Y7mX+XCu26GjY6brdkcseZQfAhHyPylrKKxyIY6ejCXsl65zDiC0kwyLSmS/oiJ7I9aGjl/Gz+3V7C3VXmXvIW3Mfj0a0l9IWlHab7jmNTpkWeT95ooSTO1hFi1NHJ1L06aiIPmx7YgSdS3xadRIJx/A1sOs5xhOes5kIdx/WnyeJ59HFS9zdEKLz16Uit188kslNuCd9JSPiGjqfc0/6S1b0NrQPm6Cpt5mVWeiAQ89NRVuZbCAIjSL60ahB+MnqEoDh+vEmAoWDD9A014M53hidtRqK1bzmOtzlKQwP0IbquYaS40RF2+XuqGj7uOih6+hj3YE68SKkLcvC7YHueOzqyqto9+MeCo9Om2Mn4HYLTiAictqpTzhwBogcxiY2ejpcHr7y7ml5bs9mWCjFF6Z2FTuymqh24jnaoj2hTh8RnkpX28SWu8WuuzyqyZg+I46Jsy+ufYkaTQK30KzP1nhE/2Y1tVesMaNujekrXj9m1BWJJ9Kboq9U9FPXdTOVhi9YllyDLYTZAYNZAN555x0KCgqAcPzGt99+C0BpaWmj2uywQvGrr1ayR09NodUSHcUcv5L99e2qX+fYm1vM2e89EeJMc03iiifc3BHN7nKrLNyWHtWG5upH19Kxo50t4adbxzr+QFdUdESEdGg1FWWn0PE4Njj/nH3WnEY95CHTMUKR0Jb31OnFmcdnhDxmYeFme+3cgs1dR4XEWpqtabXQELJmz20M/wx787QIIRYZDe0ahiVSKHn0cJlOOKI5zamrnLmSdiS03aa7D+ezcvUVvR3ZhuW3SNOV05ZHMyOO0zXlumaJv72i05lY1zI8tKxr4NEt77THNeysh97XlYIlOi1KIo+Sux1rHqRy2rf32/usdiLbdOe1U2b4D65EaVnc18buK7IfFWNvQ/qIXsUl3jm524+H3aeptLj9RF9D9+fRmL7qOid3X4n6iSxLPMRd37XzGx7WrtpGcdkXNC4aqfnoaAm3baITb//hD3+I2K5rvn0iOqxQFNovcb2CLqw5f5bAQXO+5kEZdRzl2uf+0nFEY6QItAjP+4vwGsbxUUUeFytKYwWp7VHUwx6/KKEZ02+EDZG2hcWsLT51p45bjDrbLqFpXQhLmFpeRFeZS6C669tBN/Y/u064LJy+x9623kd5XF1l7m33w9A+O8eDqdlJv13taZFD0tbxkZ9UuMnItqP3u5cIDM9bDO+L8HZGtNsw4h3nHqJ3D7sn8ji6iRkOTlAvui3Ndb3c++Nht2n3Zf+O1reUmrsv93Z0f+5m6usj3pSUuvpJRF39xB3JaIa+mrIfsOb8lfs2199QK6CjLeEHlgexKRChKHQ4IuYkOm9dQrCecErl/oZWBtZXtHv951ivpoJ6PJYQZ6AwZE7d4jNaeMaPvk7cd7QYdbdZ1z6rPH4EZDwb4gnY8DkkPq/oPvQ455Io4tzdbngI3E407hLWKrKuu/9E6InOPULExhfK7n2NIdo2PaJd13tV3z0Xi6nF/7KJbktL0GfCdiOWtoztw9TMuPbWda7J9BF9XnvSlxnVdrJ9peqcUtlXQ/oxMfEFShPa2pow0RJ6DtvjyixNiQhFoUNT15zExAdFB7/EeiIjWnDG4uryWNbXXSIhlOQDr0HJ1RouxMIkJ3riLyXYmH7jUb8obkgf9QnF+kimrz3qJ+EfGMkLUVXPPVpXm3Wdm6oj4V+iPpPtqzF91NdPdF919bGn/TRnX3vSj2lW11m/NZHoSd4eHYoDBw5s1LByk671LAhC/cPcVqU9fywlWgIs6ZYbekDUAydF6biiSL1ocpO0iK6zMZetSWVvbk5agw1C+8Zs9B+8zU1dwSxGO1SK8+bNa9RxAwYMqLeOCEVBaAM0SJCmtMPm6M+VZ7IJAstSegb1Ndbav3jieRpS8RmnMqQ2lX21hX6as68U9tPsz6JGYqqOFcwyfvz4JmtbhKIgCIIgCO0KRWLN2yx/B7cjRCgKgtDitBUvRZulqb4Zm/Mbt7n6knNqF3S0oeemRISiIAiCIAjtCkViQShCMTlEKAqCIAiC0K5QSoaeU4UIRUEQBEEQ2hUmMvScKkQoCoIgCILQrlB0rDyKTYkIRUEQBEEQ2hVKJV6ZpT2mx2lKRCgKgiAIgtCuMJW1NnU8ZOg5OUQoCoIgCILQrpCh59Qhaz4JgiAIgtCuUCgMlfiVLEuXLuWkk06iV69eaJrGa6+9FtmfUtxyyy307NmTrKwsJkyYwNq1ayPq7Nq1i/POO4/8/Hw6derExRdfTGVlZUSdr7/+miOOOILMzEz69u3LPffck7StqUaEoiAIgiAI7QprCb/Er2SpqqrigAMO4JFHHom7/5577uGhhx5i7ty5LF++nJycHCZOnEhtba1T57zzzmPVqlUsXLiQN998k6VLl3LppZc6+8vLyznuuOPo378/K1as4N577+XWW2/ln//8Z/IGpxAZehYEQRAEoV2hsMRiPBKV18UJJ5zACSecEL8vpZgzZw433XQTp5xyCgBPPfUU3bt357XXXuPss8/mu+++Y8GCBXz22WeMHj0agL///e/8+te/5m9/+xu9evXimWeewe/38/jjj5ORkcG+++7LypUruf/++yMEZXMjHkVBEARBENoVDfEo+nw+ysvLI14+ny/pvtavX09xcTETJkxwygoKChg7dizLli0DYNmyZXTq1MkRiQATJkxA13WWL1/u1DnyyCPJyMhw6kycOJHvv/+e3bt3N+YypAQRioIgCIIgtCuUAsNM/AJ46KGHKCgoiHjNnj076b6Ki4sB6N69e0R59+7dnX3FxcUUFRVF7E9LS6NLly4RdeK14e6jJZChZ0EQBEEQ2hUKa3WWeNjlV111FbfcckvEPq/X25RmtUlEKAqCIAiC0K4w6whascu9Xi/5+fl73FePHj0AKCkpoWfPnk55SUkJI0eOdOps27Yt4rhgMMiuXbuc43v06EFJSUlEHXvbrtMSyNCzIAiCIAjtDqVUwlcqGThwID169GDRokVOWXl5OcuXL2fcuHEAjBs3jtLSUlasWOHUWbx4MaZpMnbsWKfO0qVLCQQCTp2FCxcydOhQOnfunFKbk0GEoiAIgiAI7Yq6glkaE/VcWVnJypUrWblyJWAFsKxcuZKNGzeiaRrTp0/njjvu4I033uCbb77hggsuoFevXpx66qkA7LPPPhx//PFccsklfPrpp3z88cdcccUVnH322fTq1QuAc889l4yMDC6++GJWrVrFCy+8wIMPPsiMGTNSdFUahww9C4IgCILQrqhrCb/GCMXPP/+co48+2tm2xdvkyZOZN28e1157LVVVVVx66aWUlpZy+OGHs2DBAjIzM51jnnnmGa644gqOOeYYdF3njDPO4KGHHnL2FxQU8O677zJt2jRGjRpFt27duOWWW1o0NQ6AplLtg23llJeXU1BQAHgAWRhcEARBEJJHAQZlZWUpmeeXSs477zzWvFHC/rmHx91vKoOnS+6IG2UsxCIeRUEQBEEQ2hV2epx4NMaj2JERoSgIgiAIQrvChIRrOpsdayB1jxGhKAiCIAhCu6IheRSFhtGmop5//vlnLr74YgYOHEhWVhaDBw9m1qxZ+P3+ljZNEARBEIRWgqkUhpn4JTScNuVRXLNmDaZp8o9//IMhQ4bw7bffcskll1BVVcXf/va3ljZPEARBEIRWgFIy9Jwq2pRQPP744zn++OOd7UGDBvH999/z2GOPiVAUBEEQBAEAhcIkgVBMUC7Ep00JxXiUlZXRpUuXhPt9Ph8+n8/ZLi8vbw6zBEEQBEFoISSYJXW0qTmK0axbt46///3v/OEPf0hYZ/bs2RQUFDivvn37NqOFgiAIgiA0N0opzDpeQsNpFULx+uuvR9O0Ol9r1qyJOGbz5s0cf/zx/Pa3v+WSSy5J2PbMmTMpKytzXps2bWrq0xEEQRAEoQUxAQOV8CU0nFYx9PzHP/6RCy+8sM46gwYNct5v2bKFo48+mkMPPZR//vOfdR7n9Xrxer2pMFMQBEEQhDaAQmGo+IlwzATlQnxahVAsLCyksLCwQXU3b97M0UcfzahRo3jiiSfQ9VbhFBUEQRAEoZUgwSypo1UIxYayefNmjjrqKPr378/f/vY3tm/f7uzr0aNHC1omCIIgCEJrwcTEwEiwL365EJ82JRQXLlzIunXrWLduHX369InYp2RyqiAIgiAIWF7DYII1WExZmyUp2tS47YUXXohSKu5LEARBEAQB7KHnxP+EhtOmPIqCIAiCIAj1YaIwNBl6TgUiFAVBEARBaFfYHsV4iEcxOUQoCoIgCILQrlCagaEF4+8ToZgUIhQFQRAEQWhXmJgEEaGYCkQoCoIgCILQrlChwef4+0QoJoMIRUEQBEEQ2hVWHsVA3H0iFJNDhKIgCIIgCO0KE4OgJkIxFYhQFARBEAShnSFDz6lChKIgCIIgCO0KEwNDJfAoKhGKySBCURAEQRCEdoXCkDmKKUKEoiAIgiAI7QqJek4dIhQFQRAEQWhXmMqUoecUIUJREARBEIR2holKsKazeBSTQ4SiIAiCIAjtChMTQyVYmUU8ikkhQlEQBEEQhHaFUgamDD2nBBGKgiAIgiC0L5RKKAhFKCaHCEVBEARBENoVCrMOj6JqZmvaNiIUBUEQBEFoV5jKqGOOogjFZBChKAiCIAhCu0JR19CzCMVkEKEoCIIgCEK7QikZek4VIhQFQRAEQWhXKGVimjL0nApEKAqCIAiC0M6oawk/EYrJIEJREARBEIR2hVKGeBRThAhFQRAEQRDaGQoSLtUnQjEZRCgKgiAIgtCusPIoikcxFYhQFARBEAShXaGUiZKo55Sgt7QBgiAIgiAIqcUMicX4r8bwyCOPMGDAADIzMxk7diyffvppim1unYhQFARBEAShfaFMUMHEryR54YUXmDFjBrNmzeKLL77ggAMOYOLEiWzbtq0JjG9diFAUBEEQBKFdoVAojISvZLn//vu55JJLmDJlCsOHD2fu3LlkZ2fz+OOPN4H1rQsRioIgCIIgtDMUqASvUNSzz+ejvLw84uXz+WJa8vv9rFixggkTJjhluq4zYcIEli1b1lwn1GK0WaHo8/kYOXIkmqaxcuXKljZHEARBEIRWwLPPPoftU4z3zxaKc+fOpaCgIOI1e/bsmPZ27NiBYRh07949orx79+4UFxc3wxm1LG1WKF577bX06tWrpc0QBEEQBKEV8csvm8AlCCNRgAFozJo1i7KysojXzJkzm9XWtkCbTI/z9ttv8+677/Kf//yHt99+u6XNEQRBEAShldC7d29AwxKEntB7G0s8lpeX4fV68Xq99bbXrVs3PB4PJSUlEeUlJSX06NEjVWa3WtqcR7GkpIRLLrmEp59+muzs7Hrrx5uDIAiCIAhC+6WsrDT0zu1VtFZreeyxx8jLy2twWxkZGYwaNYpFixY5ZaZpsmjRIsaNG5cKc1s1bUooKqW48MILueyyyxg9enSDjpk9e3bE/IO+ffs2sZWCIAiCILQk+fn5PPzww1jL+Nli0fp58cUXJ93ejBkz+Ne//sWTTz7Jd999x9SpU6mqqmLKlCkps7m10iqE4vXXX4+maXW+1qxZw9///ncqKiqSmkMwc+bMiPkHmzZtasIzEQRBEAShNXDppZeG3tnzFU1ee+010tPTk27rrLPO4m9/+xu33HILI0eOZOXKlSxYsCAmwKU9oqlWsJbN9u3b2blzZ511Bg0axJlnnsl///tfNC0838AwDDweD+eddx5PPvlkvX2Vl5dTUFBA7LwFQRAEQRAahhUUUlZWRn5+fksbk5BXX32V008/Hev7XmGaZoSGEOqnVQjFhrJx48aIOYZbtmxh4sSJvPzyy4wdO5Y+ffrU20ZZWRmdOnXCcqbKzSIIgiAIyWN56EpLS0POl9aJUgpdtwZPly9fzpgxY1rYorZHm4p67tevX8R2bm4uAIMHD26QSASoqKgIvWvcWo+CIAiCIFhUVFS0aqGoaRrfffcd++yzr4jERtKmhGIq6NWrF5s2bSIvL69Nup/Ly8vp27cvmzZtatXu/lQj5y3n3RHoiOfdEc8Z2v55K6WoqKhoE/mMhw0bhlLJL9snWLRpoThgwACSHTnXdb3B3sfWTH5+fpt8uOwpct4dCznvjkNHPGdo2+fdmj2JQupoFVHPgiAIgiAIQutDhKIgCIIgCIIQFxGKbQyv18usWbMatOxQe0LOW867I9ARz7sjnjN03PMW2h5tKj2OIAiCIAiC0HyIR1EQBEEQBEGIiwhFQRAEQRAEIS4iFAVBEARBEIS4iFAUBEEQBEEQ4iJCURAEQRAEQYiLCMU2xF//+lcOPfRQsrOz6dSpU9w6mqbFvJ5//vnmNTTFNOS8N27cyKRJk8jOzqaoqIg///nPBIPB5jW0iRkwYEDMZ3vXXXe1tFkp55FHHmHAgAFkZmYyduxYPv3005Y2qUm59dZbYz7XYcOGtbRZKWfp0qWcdNJJ9OrVC03TeO211yL2K6W45ZZb6NmzJ1lZWUyYMIG1a9e2jLEppL7zvvDCC2M+/+OPP75ljBWEOIhQbEP4/X5++9vfMnXq1DrrPfHEE2zdutV5nXrqqc1jYBNR33kbhsGkSZPw+/188sknPPnkk8ybN49bbrmlmS1tem6//faIz/bKK69saZNSygsvvMCMGTOYNWsWX3zxBQcccAATJ05k27ZtLW1ak7LvvvtGfK4fffRRS5uUcqqqqjjggAN45JFH4u6/5557eOihh5g7dy7Lly8nJyeHiRMnUltb28yWppb6zhvg+OOPj/j8n3vuuWa0UBDqQQltjieeeEIVFBTE3QeoV199tVntaS4Snfdbb72ldF1XxcXFTtljjz2m8vPzlc/na0YLm5b+/furBx54oKXNaFLGjBmjpk2b5mwbhqF69eqlZs+e3YJWNS2zZs1SBxxwQEub0axEP6dM01Q9evRQ9957r1NWWlqqvF6veu6551rAwqYh3vN58uTJ6pRTTmkRewShIYhHsR0ybdo0unXrxpgxY3j88cdR7Tyn+rJly9h///3p3r27UzZx4kTKy8tZtWpVC1qWeu666y66du3KgQceyL333tuuhtf9fj8rVqxgwoQJTpmu60yYMIFly5a1oGVNz9q1a+nVqxeDBg3ivPPOY+PGjS1tUrOyfv16iouLIz77goICxo4d2+4/e4AlS5ZQVFTE0KFDmTp1Kjt37mxpkwTBIa2lDRBSy+23386vfvUrsrOzeffdd7n88suprKzkqquuamnTmozi4uIIkQg428XFxS1hUpNw1VVXcdBBB9GlSxc++eQTZs6cydatW7n//vtb2rSUsGPHDgzDiPtZrlmzpoWsanrGjh3LvHnzGDp0KFu3buW2227jiCOO4NtvvyUvL6+lzWsW7N/TeJ99e/odjsfxxx/P6aefzsCBA/nxxx+54YYbOOGEE1i2bBkej6elzRMEEYotzfXXX8/dd99dZ53vvvuuwZPbb775Zuf9gQceSFVVFffee2+rE4qpPu+2SjLXYcaMGU7ZiBEjyMjI4A9/+AOzZ8+W9WLbMCeccILzfsSIEYwdO5b+/fvz4osvcvHFF7egZUJzcPbZZzvv999/f0aMGMHgwYNZsmQJxxxzTAtaJggWIhRbmD/+8Y9ceOGFddYZNGhQo9sfO3Ysf/nLX/D5fK1KTKTyvHv06BETGVtSUuLsa83syXUYO3YswWCQn3/+maFDhzaBdc1Lt27d8Hg8zmdnU1JS0uo/x1TSqVMn9t57b9atW9fSpjQb9udbUlJCz549nfKSkhJGjhzZQla1DIMGDaJbt26sW7dOhKLQKhCh2MIUFhZSWFjYZO2vXLmSzp07tyqRCKk973HjxvHXv/6Vbdu2UVRUBMDChQvJz89n+PDhKemjqdiT67By5Up0XXfOua2TkZHBqFGjWLRokROpb5omixYt4oorrmhZ45qRyspKfvzxR84///yWNqXZGDhwID169GDRokWOMCwvL2f58uX1Znlob/zyyy/s3LkzQjALQksiQrENsXHjRnbt2sXGjRsxDIOVK1cCMGTIEHJzc/nvf/9LSUkJhxxyCJmZmSxcuJA777yTP/3pTy1r+B5S33kfd9xxDB8+nPPPP5977rmH4uJibrrpJqZNm9bqBHJjWbZsGcuXL+foo48mLy+PZcuWcc011/C73/2Ozp07t7R5KWPGjBlMnjyZ0aNHM2bMGObMmUNVVRVTpkxpadOajD/96U+cdNJJ9O/fny1btjBr1iw8Hg/nnHNOS5uWUiorKyO8pOvXr2flypV06dKFfv36MX36dO644w722msvBg4cyM0330yvXr3afHqvus67S5cu3HbbbZxxxhn06NGDH3/8kWuvvZYhQ4YwceLEFrRaEFy0dNi10HAmT56sgJjX+++/r5RS6u2331YjR45Uubm5KicnRx1wwAFq7ty5yjCMljV8D6nvvJVS6ueff1YnnHCCysrKUt26dVN//OMfVSAQaDmjU8yKFSvU2LFjVUFBgcrMzFT77LOPuvPOO1VtbW1Lm5Zy/v73v6t+/fqpjIwMNWbMGPW///2vpU1qUs466yzVs2dPlZGRoXr37q3OOusstW7dupY2K+W8//77cX+PJ0+erJSyUuTcfPPNqnv37srr9apjjjlGff/99y1rdAqo67yrq6vVcccdpwoLC1V6errq37+/uuSSSyJSfQlCS6Mp1c5zpwiCIAiCIAiNQvIoCoIgCIIgCHERoSgIgiAIgiDERYSiIAiCIAiCEBcRioIgCIIgCEJcRCgKgiAIgiAIcRGhKAiCIAiCIMRFhKIgCIIgCIIQFxGKgiAIgiAIQlxEKAqCIAiCIAhxEaEoCIIgCIIgxEWEoiAIrYLt27fTo0cP7rzzTqfsk08+ISMjg0WLFrWgZYIgCB0XWetZEIRWw1tvvcWpp57KJ598wtChQxk5ciSnnHIK999/f0ubJgiC0CERoSgIQqti2rRpvPfee4wePZpvvvmGzz77DK/X29JmCYIgdEhEKAqC0Kqoqalhv/32Y9OmTaxYsYL999+/pU0SBEHosDR6juK6det45513qKmpAUD0piAIqeDHH39ky5YtmKbJzz//3NLmCIIgdGiS9iju3LmTs846i8WLF6NpGmvXrmXQoEFcdNFFdO7cmfvuu6+pbBUEoZ3j9/sZM2YMI0eOZOjQocyZM4dvvvmGoqKiljZNEAShQ5K0R/Gaa64hLS2NjRs3kp2d7ZSfddZZLFiwIKXGCYLQsbjxxhspKyvjoYce4rrrrmPvvffmoosuammzBEEQOixJC8V3332Xu+++mz59+kSU77XXXmzYsCFlhgmC0LFYsmQJc+bM4emnnyY/Px9d13n66af58MMPeeyxx1raPEEQhA5JWrIHVFVVRXgSbXbt2iWRiYIgNJqjjjqKQCAQUTZgwADKyspayCJBEAQhaY/iEUccwVNPPeVsa5qGaZrcc889HH300Sk1ThAEQRAEQWg5kg5m+fbbbznmmGM46KCDWLx4MSeffDKrVq1i165dfPzxxwwePLipbBUEQRAEQRCakUblUSwrK+Phhx/mq6++orKykoMOOohp06bRs2fPprBREARBEARBaAEk4bYgCIIgCIIQlwYFs3z99dcNbnDEiBGNNkYQBEEQBEFoPTTIo6jrOpqmoZRC0zSn3D7UXWYYRhOYKQiCIAiCIDQ3DYp6Xr9+PT/99BPr16/nP//5DwMHDuTRRx9l5cqVrFy5kkcffZTBgwfzn//8p6ntFQRBEARBEJqJpOcojhkzhltvvZVf//rXEeVvvfUWN998MytWrEipgYIgCIIgCELLkHQexW+++YaBAwfGlA8cOJDVq1enxChBEARBEASh5UlaKO6zzz7Mnj0bv9/vlPn9fmbPns0+++yTUuMEQRAEQRCEliPpoedPP/2Uk046CaWUE+H89ddfo2ka//3vfxkzZkyTGCoIgiAIgiA0L0l7FMeMGcNPP/3EHXfcwYgRIxgxYgR//etf+emnn5IWiUuXLuWkk06iV69eaJrGa6+9Vu8xS5Ys4aCDDsLr9TJkyBDmzZuX7CkIgiAIgiAIDaBBeRSjycnJ4dJLL93jzquqqjjggAO46KKLOP300+utv379eiZNmsRll13GM888w6JFi/j9739Pz549mThx4h7bIwiCIAiCIIRp0NDzG2+8wQknnEB6ejpvvPFGnXVPPvnkxhmiabz66quceuqpCetcd911zJ8/n2+//dYpO/vssyktLWXBggWN6lcQBEEQBEGIT4M8iqeeeirFxcUUFRXVKeQ0TWvShNvLli1jwoQJEWUTJ05k+vTpCY/x+Xz4fD5n2zRNdu3aRdeuXSMShQtCR0ApRUVFBb169ULXk555IrgwTZMtW7aQl5cnzxKhwyHPko5Dg4SiaZpx3zc3xcXFdO/ePaKse/fulJeXU1NTQ1ZWVswxs2fP5rbbbmsuEwWhTbBp0yb69OnT0ma0abZs2ULfvn1b2gxBaFHkWdL+adQcxbbEzJkzmTFjhrNdVlZGv3792LRpE/n5+S1oWfMTMEw2l9bwy+4aNpdWU1Lqo6Silp1VPnZVBiit8VNRG6DKZ2A2MBY+3aOT6/WQn5VOQVY6XXIy6JabQWFuJoX5XnoWZNKrUya9CrLJyvA07QkK9VJeXk7fvn3Jy8traVPaPPY17IjPEkGQZ0nHIWmhePvtt9e5/5Zbbmm0MfXRo0cPSkpKIspKSkrIz8+P600E8Hq9eL3emPL8/Px2+3A3TcWGXdWs3lLOd1vL+aGkgnXbKtmwqxqjTgWoA17ICIfDaxqk6zqaBgpruCFghNswgDIDyiphU2UAtgeAqritF+Z5GdA1m/5dcxjYzXoNLsxlQLdsvGkiIpsTGSrdc+xr2J6fJYJQH/Isaf8kLRRfffXViO1AIMD69etJS0tj8ODBTSoUx40bx1tvvRVRtnDhQsaNG9dkfbYFtlf4+GLjbr7cWMpXm0r5dnMZFb5g3LpZ6R76dcmmT+csenXKonu+l6K8TLrmZtApO4OCrDTyMtPJzvCQme4h3RM790Qphd8wqfWbVPmDVNQGKa32s7s6wM4qH9srfGyr8FFcVsuW0ho2766hwhdke4W177Ofd0e0p2vQt0s2exXlMqQoj72Kctm7ex5DinLFCykIgiAILUjSQvHLL7+MKSsvL+fCCy/ktNNOS6qtyspK1q1b52yvX7+elStX0qVLF/r168fMmTPZvHkzTz31FACXXXYZDz/8MNdeey0XXXQRixcv5sUXX2T+/PnJnkabRSnF+h1VfLp+F5/9vJvPN+xiw87qmHoZaTr79Mhjn575DO2Rx15FeQwuyqFHfuYe/wWoaRreNA/eNA8F2ekNsrmsJsCGndX8vLPK+rmjip92VPHj9koqaoNs2FnNhp3VvPfdNlc/0L9LNkN75DGsRz779LTOp2/nbHRd/ooVwixdupR7772XFStWsHXr1nozKICVk3XGjBmsWrWKvn37ctNNN3HhhRc2i72CIAhthZTMUczPz+e2227jpJNO4vzzz2/wcZ9//jlHH320s23PJZw8eTLz5s1j69atbNy40dk/cOBA5s+fzzXXXMODDz5Inz59+Pe//92ucyiapuKHbRUs/2kXy9fv5NP1u9hR6Y+oo2mwd1EeB/brxMi+nTigbyeGFOXG9Qa2BJqm0Snb8lge0LdTxD6lFNsrfKzbVsm67ZWsLankh5IK1m6rZFeVn593VvPzzmreWRWecpDrTWN4z3z27Z3Pfr0KGNGngEGFuXhEPHZYJCerIAhC05D0En6J+OijjzjppJPYvXt3/ZVbkPLycgoKCigrK2uV84oMU/Hd1nL+99NOlq/fxWc/76K0OhBRJyNNZ2TfThw8oDMHD+jCgf06U5BVv2evrbG9wsf3xRWsKS5nTejnDyWV+IOxkfc5GR7271PAyL6dObBfJw7s14mivMwWsLp109rv/1TQXDlZO8K1FIREyP3fcUjao/jQQw9FbCul2Lp1K08//TQnnHBCygzrKAQNk1Vbylm+fif/+8kShhW1kfMLs9I9jB7QmTEDujB2UFdG9CkgM739z90rzPNSmOfl8L26OWUBw+TH7ZWs2lzOt1vK+HZzGau2lFPlN/jfT7v430+7nLp9u2Qxql9nRg/owpiBXdirKFcmXgtAanKylpeXW2/u2wcyW4f3XohDanwh9XXSDF2kuI89fRbWtlyqPKF5SVooPvDAAxHbuq5TWFjI5MmTmTlzZsoMa68YpmLVljKW/biT//20k89+3k1lVOBJrjeNgwd0Zuygrowd2IX9ehe0mmHklibdozOsRz7DeuRzxigrd5dhKtZtq2Tlpt2s3FTGlxt3831JBZt21bBpVw2vrdwCQJecDMYM6MIhg7pw6JBuIhw7MCnNyeqv2PMvXUFoawSaQ4ALrYGkheL69eubwo52i2kqVoeGkpf9aM0xjI5IzstMY+zALowd2JVDBnVln555pIkwbDAeXWNojzyG9sjjrIOtsoraAF9uLOXzDbv5bP0uvty0m11VfhasKmbBqmLA8lgePqQbR+zVjSP2KqQwLzaNkiDYROdktfPI8YelILnk2gdNIvjb6R8R5RVw1wEtbYXQDLT7hNvNjR18YnsM//fTLspqIucY5mWmMWZAF8YNtoVhvgRipJi8zHSO3LuQI/cuBMAfNPlmcyn/+2kXy37cyWc/72J7hY9Xv9zMq19uBmD/3gX8algRxw7vzr698sXb2I5JZU5WugwCmaMldDTSylvaAqGZSFoonnbaaXG/QDVNIzMzkyFDhnDuuecydOjQlBjY2nFHJdsBKLuqIqOS7aHkcYO7Mm5QN4b3EmHY3GSk6Yzq34VR/bsw7egh1AYMvti4m4/W7mDp2u18u7mcbzaX8c3mMh5ctJbenbI4bt/unDiiJwf27SzpeNoZkpNVEAShYSQd9XzhhRfy2muv0alTJ0aNGgXAF198QWlpKccddxxfffUVP//8M4sWLeKwww5rEqP3hD2N1AoaJqu3lvPp+l0Jo5Lt4BPbYziid4EMJbdytlXUsuT77Sz6roQP1+6g2m84+3oVZHLSyF6cfmAfhvZo20OM7TVS0Z2T9cADD+T+++/n6KOPTpiTdf369ey3335MmzbNycl61VVXMX/+/Aanx2mv11IQGoLc/x2HpIXi9ddfT3l5OQ8//DC6bokf0zS5+uqrycvL469//SuXXXYZq1at4qOPPmoSo/eEZG9uX9Dgm1/KWB4Shit+3kWVS0QAZGd4GNW/M4eEgk9G9OlERpoIw7ZKbcDgw7U7ePubrby7uiQi2GhEnwJ+O7ovp47sRV5m20tJ1F4f7kuWLInIyWpj52S98MIL+fnnn1myZEnEMddccw2rV6+mT58+3HzzzUkl3G6v11IQGoLc/x2HpIViYWEhH3/8MXvvvXdE+Q8//MChhx7Kjh07+OabbzjiiCMoLS1Npa0pob6bO2iYfL25jE/W7WDZTztZsWE3tYHINAD5mWkcHEq5cvDALuwvUcntltqAwZLvt/HKF5t5//ttzjrX2RkeThnZi8mHDmBYj7bzkJSHe+qQayl0ZOT+7zgkPUcxGAyyZs2aGKG4Zs0aDMPytGVm7vkycc3J5tIalny/jaU/bOeTdTtjopK75WZw8IAujB3YhTEDuzKsR57MWesgZKZ7OH6/nhy/X092Vvp4beUWnvt0I+u2VfLcp5t47tNNHDKoC5ccMYijhxbJfSEIgiC0K5IWiueffz4XX3wxN9xwAwcfbOUi+eyzz7jzzju54IILAPjggw/Yd999U2tpivn6l1KWbdrCou+2saa4ImJfQVY64wZ15dAhXRk3qCtDJN+eAHTN9XLx4QO56LABfLp+F08t28CCVcVOou8hRblcNn4wJx/QS6YeCIIgCO2CpIeeDcPgrrvu4uGHH3bSS3Tv3p0rr7yS6667Do/Hw8aNG9F1nT59+jSJ0XuC7S7vO/1FdG82ALoGB/brzFGhdCr79S6QqGShQWwpreHJT37m2eUbHU90705ZTD1qML8d3QdvWutaQUeGi1KHXEuhIyP3f8dhj9Z6tpewaks3iX1zD732ZY4ZMZAJw4s4au8iOudktLRpQhumvDbAs8s38u8P17Oj0lrmrVdBJlf8ai9+O7pPq5nDKg/31CHXUujIyP3fcWiUUAwGgyxZsoQff/yRc889l7y8PLZs2UJ+fj65ublNYWfKsG/ukh27KOrauaXNEdoZtQGD5z/dyGMf/EhJuSUY+3fNZsaxe3PSiF4tPodRHu6pQ66l0JGR+7/jkLRQ3LBhA8cffzwbN27E5/Pxww8/MGjQIK6++mp8Ph9z585tKltTgtzcQnNQGzB4dvlGHl2yjh2VVgL24T3zuf6EYc5qMS2B3P+pQ66l0JGR+7/jkPR42NVXX83o0aPZvXt3xFJXp512GosWLUqpcYLQVslM93DR4QP54M9H8+eJQ8nzprF6azkXPP4pkx//lB9KKupvRBAEQRBamKSjnj/88EM++eQTMjIi5/QNGDCAzZs3p8wwQWgP5HjTmHb0EM4Z04+/L17L//1vAx/8sJ0P127n3LH9mHHsULrI/FhBEAShlZK0R9E0TSdfoptffvmFvLy2vbyZIDQVXXIymHXSviy8ZjzH79sDU8H//W8jR937Pk8v+xnDbHRMmSAIgiA0GUkLxeOOO445c+Y425qmUVlZyaxZs/j1r3+dStsEod0xoFsOc88fxXOXHMI+PfMprw1y8+urOPnhj/hi4+6WNk8QBEEQIkg6mOWXX35h4sSJKKVYu3Yto0ePZu3atXTr1o2lS5dSVFTUVLamBJmAK7QWDFPx7PIN3PvO95TXBtE0OPvgflx//DAKsptmHWm5/1OHXEuhIyP3f8eh0elxnn/+eb7++msqKys56KCDOO+88yKCW1orcnMLrY2dlT5mv72Gl1f8AkC3XC+zThrOiSN6pnxFILn/U4dcS6EjI/d/xyFpoVhbW0tmZmZT2dPkyM0ttFaW/7STG179hh+3VwEwYZ8i7jh1f3oUpO73Te7/1CHXUujIyP3fcUh6jmJRURGTJ09m4cKFmKbZFDYJQodk7KCuvHX1EVx9zF6kezTe+24bxz7wAS9+vok9WEBJEARBEBpN0kLxySefpLq6mlNOOYXevXszffp0Pv/886awTRA6HN40D9ccuzdvXnkEB/TtREVtkGtf/pqL5n3GtvLaljZPEARB6GAkLRRPO+00XnrpJUpKSrjzzjtZvXo1hxxyCHvvvTe33357U9goCB2OoT3y+M9l47j+hGFkpOm8//12jpuzlDe/3tLSpgmCIAgdiKSFok1eXh5Tpkzh3Xff5euvvyYnJ4fbbrst6XYeeeQRBgwYQGZmJmPHjuXTTz+ts/6cOXMYOnQoWVlZ9O3bl2uuuYbaWvG0CO2PNI/OZeMHM//Kw9mvdz6l1QGuePZLZrywkvLaQEubJwiCIHQAGi0Ua2trefHFFzn11FM56KCD2LVrF3/+85+TauOFF15gxowZzJo1iy+++IIDDjiAiRMnsm3btrj1n332Wa6//npmzZrFd999x//7f/+PF154gRtuuKGxpyEIrZ69uufx6uWHceWvhqBr8MqXm/n1gx+yYsOuljZNEARBaOckLRTfeecdJk+eTPfu3Zk6dSrdu3fn3XffZcOGDdx1111JtXX//fdzySWXMGXKFIYPH87cuXPJzs7m8ccfj1v/k08+4bDDDuPcc89lwIABHHfccZxzzjn1eiEFoa2T7tH543FDeemycfTpnMUvu2s48x//46FFa2VVF0EQBKHJaNQcxZqaGp566imKi4v5xz/+wZFHHpl0x36/nxUrVjBhwoSwMbrOhAkTWLZsWdxjDj30UFasWOEIw59++om33nqrzhVhfD4f5eXlES9BaKuM6t+Ft64+glNH9sIwFfcv/IFz//U/istk+oUgCIKQetKSPaCkpCQlazrv2LEDwzDo3r17RHn37t1Zs2ZN3GPOPfdcduzYweGHH45SimAwyGWXXVbn0PPs2bMbNXdSEFor+ZnpzDn7QI7cu5CbXvuW5et38euHPuT+Mw/gqKGte2UkQRAEoW2RtEfRLRJra2ub1Vu3ZMkS7rzzTh599FG++OILXnnlFebPn89f/vKXhMfMnDmTsrIy57Vp06YmtVEQmovTD+rD/KuOYN9e+eyq8nPhE59x94I1BI2Om99UguMEQRBSS9JCsaqqiiuuuIKioiJycnLo3LlzxKuhdOvWDY/HQ0lJSUR5SUkJPXr0iHvMzTffzPnnn8/vf/979t9/f0477TTuvPNOZs+enTD5t9frJT8/P+IlCO2Fgd1y+M/UQ7lgXH8AHlvyI+f+a3mHHIqW4DhBEITUk7RQvPbaa1m8eDGPPfYYXq+Xf//739x222306tWLp556qsHtZGRkMGrUKBYtWuSUmabJokWLGDduXNxjqqur0fVIkz0eD4CsXCF0WDLTPdx+yn48cu5B5HrT+PTnXUx66EM+XLu9pU1rVpo6OE7mOwuC0BFJWij+97//5dFHH+WMM84gLS2NI444gptuuok777yTZ555Jqm2ZsyYwb/+9S+efPJJvvvuO6ZOnUpVVRVTpkwB4IILLmDmzJlO/ZNOOonHHnuM559/nvXr17Nw4UJuvvlmTjrpJEcwCkJHZdKInrx55eEM75nPzio/Fzz+KXPe+wGzA0RFN0dw3OzZsykoKHBeffv2Tf2JCIIgtDKSDmbZtWsXgwYNAiA/P59du6xcbocffjhTp05Nqq2zzjqL7du3c8stt1BcXMzIkSNZsGCBE+CycePGCA/iTTfdhKZp3HTTTWzevJnCwkJOOukk/vrXvyZ7GoLQLhnQLYdXLj+U2/67iuc+3cSc99byxcZS5pw1ki45GS1tXpPRHMFxM2fOZMaMGc52eXm5iEVBENo9SQvFQYMGsX79evr168ewYcN48cUXGTNmDP/973/p1KlT0gZcccUVXHHFFXH3LVmyJNLYtDRmzZrFrFmzku5HEDoKmekeZp8+glH9u3DTa9+w9IftnPjQhzz6u1EMKmh0jv2UYxgG8+bNY9GiRWzbti1mnvHixYubtH93cNzYsWNZt24dV199NX/5y1+4+eabY+p7vV68Xm+T2iQIgtDaSFooTpkyha+++orx48dz/fXXc9JJJ/Hwww8TCAS4//77m8JGQRAawW9G9WHfXvlc/swXrN9RxW/nfsKff9Wvpc1yuPrqq5k3bx6TJk1iv/32Q9O0Rre1p8FxAPvvvz9VVVVceuml3HjjjTHzoYX2g+1BNgyjpU1ptXg8HtLS0vbo91JoHyQtFK+55hrn/YQJE1izZg0rVqxgyJAhjBgxIqXGCYKwZ+zTM5/XrziMa1/6mgWrirnjze9a2iSH559/nhdffLHOhPkNxR0cd+qppwLh4LhEIxYSHNcx8fv9bN26lerq6pY2pdWTnZ1Nz549ychov9NWhPpJWijW1taSmZnpbPfv35/+/fun1ChBEFJHfmY6j/3uIP714U/Mfv3LljbHISMjgyFDhqSsvRkzZjB58mRGjx7NmDFjmDNnTkxwXO/evZk9ezZgBcfdf//9HHjggc7QswTHtW9M02T9+vV4PB569epFRkaGeMzioJTC7/ezfft21q9fz1577SUe9g5M0kKxU6dOjBkzhvHjx3PUUUdx6KGHkpWV1RS2CYKQIjRN49IjBzO4wMOEVjJD5I9//CMPPvggDz/8cEq+rCU4TqgPv9+PaZr07duX7OzsljanVZOVlUV6ejobNmzA7/dHOIiEjoWmkhxj+eijj1i6dClLlizhk08+IRgMMnr0aEc4HnvssU1la0ooLy+noKCAsrIySb4tdDha0/1/2mmn8f7779OlSxf23Xdf0tPTI/a/8sorLWRZw2hN11JoGLW1taxfv56BAweK8GkAdV0vuf87Dkl7FA8//HAOP/xwbrjhBoLBIJ999hn/+Mc/uOeee7jrrrtkcrAgCA2iU6dOnHbaaS1thiAIglAHSQtFgB9++IElS5Y4L5/Px4knnshRRx2VYvMEQWivPPHEEy1tgiAIglAPSQvF3r17U1NTw1FHHcVRRx3Fddddx4gRI2RCsCAIjWL79u18//33AAwdOpTCwsIWtkgQBEGwSTqMqbCwkOrqaoqLiykuLqakpISampqmsE0QhHZMVVUVF110ET179uTII4/kyCOPpFevXlx88cWSukQQXGiaVufr1ltv5eeff064/3//+5/T1pIlSzjooIPwer0MGTKEefPmtdyJCW2CpIXiypUrKS4u5vrrr8fn83HDDTfQrVs3Dj30UG688camsFEQhHbIjBkz+OCDD/jvf/9LaWkppaWlvP7663zwwQf88Y9/bGnzBKHVsHXrVuc1Z84c8vPzI8r+9Kc/OXXfe++9iH1bt25l1KhRAKxfv55JkyZx9NFHs3LlSqZPn87vf/973nnnnZY6NaEN0Kg5ip06deLkk0/msMMO49BDD+X111/nueeeY/ny5ZJaQhCEBvGf//yHl19+OWJu869//WuysrI488wzeeyxx1rOOKHDoJSiJtD8QZhZ6Z4GT9lyry5UUFCApmkxKw7t2LEDgK5duyZcjWju3LkMHDiQ++67D4B99tmHjz76iAceeICJEyc25jSEDkDSQvGVV15xglhWr15Nly5dOPzww7nvvvsYP358U9goCEI7pLq62slx6KaoqEiGnoVmoyZgMPyW5veorb59ItkZjfLVNJply5YxYcKEiLKJEycyffr0ZrVDaFskfZdedtllHHnkkVx66aWMHz+e/fffvynsEgShnTNu3DhmzZrFU0895eRoq6mp4bbbbmPcuHEtbJ0gtE0OPfTQmFVUKisrASguLo7546x79+6Ul5dTU1Mji2cIcUlaKG7btq0p7BAEoYPx4IMPMnHiRPr06cMBBxwAwFdffUVmZqbMmRKajax0D6tvb/5h16z0plkm8oUXXmCfffZpkraFjknz+r0FQRBC7Lfffqxdu5ZnnnmGNWvWAHDOOedw3nnniWdDaDY0TWv2IeCmpG/fvgnXUO/RowclJSURZSUlJeTn58vvnJCQ9vPbIQhCmyM7O5tLLrmkpc0QhA7BuHHjeOuttyLKFi5cKFM9hDoRoSgIQrPxxhtvcMIJJ5Cens4bb7xRZ92TTz65mawShPbDzp07KS4ujijr1KkTmZmZXHbZZTz88MNce+21XHTRRSxevJgXX3yR+fPnt5C1QltAhKIgCM3GqaeeSnFxMUVFRZx66qkJ62maJuvGC0IjiI5qBnjuuec4++yzGThwIPPnz+eaa67hwQcfpE+fPvz73/+W1DhCneyxUCwvL2fx4sUMHTpUJtAKglAnpmnGfS8IQsO48MILufDCC2PKBwwYgFKq3uOPOuoovvzyyyawTGivJL0yy5lnnsnDDz8MWKksRo8ezZlnnsmIESP4z3/+k3IDBUFonzz11FP4fL6Ycr/fz1NPPdUCFgmCIAjRJC0Uly5dyhFHHAHAq6++ilKK0tJSHnroIe64446UGygIQvtkypQplJWVxZRXVFQwZcqUFrBIEARBiCZpoVhWVkaXLl0AWLBgAWeccQbZ2dlMmjSJtWvXptxAQRDaJ0qpuEuY/fLLLxQUFLSARYIgCEI0Sc9R7Nu3L8uWLaNLly4sWLCA559/HoDdu3c7qysIgiAk4sADD0TTNDRN45hjjiEtLfwYMgyD9evXc/zxx7eghYIgCIJN0kJx+vTpnHfeeeTm5tK/f3+OOuoowBqSbsxyfo888gj33nsvxcXFHHDAAfz9739nzJgxCeuXlpZy44038sorr7Br1y769+/PnDlz+PWvf51034IgND92tPPKlSuZOHEiubm5zr6MjAwGDBjAGWec0ULWCYIgCG6SFoqXX345Y8aMYdOmTRx77LHOmpKDBg1Keo7iCy+8wIwZM5g7dy5jx45lzpw5TJw4ke+//56ioqKY+n6/n2OPPZaioiJefvllevfuzYYNG+jUqVOypyEIQgsxa9YswIrSPPvss/F6vS1skSAIgpCIpOcoAowePZrTTjstwhMwadIkDjvssKTauf/++7nkkkuYMmUKw4cPZ+7cuWRnZ/P444/Hrf/444+za9cuXnvtNQ477DAGDBjA+PHjnXViBUFoOwwfPpyVK1fGlC9fvpzPP/+8UW0+8sgjDBgwgMzMTMaOHcunn35aZ/3S0lKmTZtGz5498Xq97L333jErVwiCIHRkkvYoXnTRRXXuTyTyovH7/axYsYKZM2c6ZbquM2HCBJYtWxb3mDfeeINx48Yxbdo0Xn/9dQoLCzn33HO57rrr8HjiL7Du8/kiUnCUl5c3yD5BEJqWadOmce211zJ27NiI8s2bN3P33XezfPnypNqTEQpBEITUk7RQ3L17d8R2IBDg22+/pbS0lF/96lcNbmfHjh0YhkH37t0jyrt3786aNWviHvPTTz+xePFizjvvPN566y3WrVvH5ZdfTiAQcIazopk9eza33XZbg+0SBKF5WL16NQcddFBM+YEHHsjq1auTbs89QgEwd+5c5s+fz+OPP871118fU98eofjkk09IT08HrOFwQRAEIUzSQvHVV1+NKTNNk6lTpzJ48OCUGJUI0zQpKirin//8Jx6Ph1GjRrF582buvffehEJx5syZzJgxw9kuLy+nb9++TWqnIAj14/V6KSkpYdCgQRHlW7dujYiEbgjNMUIhoxOCIHREGjVHMaYRXWfGjBk88MADDT6mW7dueDweSkpKIspLSkro0aNH3GN69uzJ3nvvHfEQ32effSguLsbv98c9xuv1kp+fH/ESBKHlOe6445g5c2ZE0u3S0lJuuOEGjj322KTaqmuEori4OO4xP/30Ey+//DKGYfDWW29x8803c9999yUMyps9ezYFBQXOS/7gFJoLO51Uotett97Kzz//nHD///73P8D6I+zcc89l7733Rtd1pk+f3rInJrQJUiIUAX788UeCwWCD62dkZDBq1CgWLVrklJmmyaJFixg3blzcYw477DDWrVsXsUbsDz/8QM+ePcnIyGi88YIgNDt/+9vf2LRpE/379+foo4/m6KOPZuDAgRQXF3Pfffc1ef/uEYpRo0Zx1llnceONNzJ37ty49W1Ra782bdrU5DYKAlgCz37NmTOH/Pz8iLI//elPTt333nsvYt/WrVsZNWoUYHnFCwsLuemmmyQIVGgwSQ89u4dxwVpdYevWrcyfP5/Jkycn3dbkyZMZPXo0Y8aMYc6cOVRVVTlzjC644AJ69+7N7NmzAZg6dSoPP/wwV199NVdeeSVr167lzjvv5Kqrrkr2NARBaGF69+7N119/zTPPPMNXX31FVlYWU6ZM4ZxzznHmDDaUxo5QpKenJxyhiP7j0+v1Siqf9ohSEKhu/n7TsyHOykTxcN/DBQUFaJoWc1/v2LEDgK5duya85wcMGMCDDz4INDzwVBCSFopffvllxLau6xQWFnLffffVGxEdzVlnncX27du55ZZbKC4uZuTIkSxYsMAZPtq4caOTpxGsVWHeeecdrrnmGkaMGEHv3r25+uqrue6665I9DUEQWgE5OTlceumle9yOe4TCTuhtj1BcccUVcY857LDDePbZZzFN03nOyAhFByRQzf9v776jorrW/oF/B2QoSicqIE2wIGBFUKMRc1E0CppygyWxd4kF9UajEVtEjYolXokYJblRRGNJboy+Rq5YUa4KvtiwgWgEFRQQUBTY7x/8mJ8jA3JwYCjfz1qzlrPPPuc8c5y1eWafffbGMqvqP+9X9wF5w+o/L5FEkhPFo0ePqjWAgICAMhvy6OjoUmVdu3ZVjLcgotrvypUrSElJKTXO2M/PT9JxeIeCCOjWrZtSBwsA5OTkaCgaqgskJ4olHj58iMTERABAq1atVM5TRkRUltu3b+PDDz9EQkICZDIZhBAAigfuA8XrPkvBOxRUKToGxb17mjhvFYiMjISzs3OVHJvqJ8mJYnZ2NqZMmYKIiAjFQyXa2trw9/fHxo0bYWxsrPYgiajumTZtGhwcHBAVFQUHBwfExsYiIyMDM2fOxKpVqyp1TN6hIMlksjp1C9jGxgZOTk6aDoPqEMlPPY8bNw5nz57FgQMHkJmZiczMTPz+++84d+4cJkyYUBUxElEdFBMTg8WLF8PCwgJaWlrQ0tJC9+7dERwczNu/REQ1hOQexd9//x3/8z//g+7duyvKfHx8EBYWhr59+6o1OCKquwoLC2FoaAig+Knl+/fvo1WrVrCzs1MMayEiaTIyMkrNHWpiYgI9PT0AUKyvnpOTg0ePHiE+Ph5yuRxt2rSp7lCplpCcKJqbm6u8vWxsbAxTU1O1BEVEdZ+rqysuXrwIBwcHeHp6YuXKlZDL5di8eXOp1VqIqGK8vb1LlUVERGDw4MEAipfILHH+/Hns2LEDdnZ2SE5Orq4QqZaRfOt5/vz5CAwMVPrFkpaWhtmzZ+Prr79Wa3BEVHfNnz9fMc558eLFSEpKQo8ePfDHH39g/fr1Go6OqGYaOXIkMjMzS5Xb29tDCKHyVZIkAlC5nUkiladCPYodOnRQPIkIADdu3ICtrS1sbW0BFD9NqKuri0ePHnGcIhFViI+Pj+LfTk5OuHbtGh4/fgxTU1Ol9oaIiDSnQoliyQS2RETq8PLlS+jr6yM+Ph6urq6KcjMzMw1GRUREr6tQohgUFFTVcRBRPaKjowNbW1vJcyUSEVH1kjxGkYhIHebNm4evvvoKjx8/1nQoRERUhkqvzEJE9Da+++473Lx5E1ZWVrCzs0PDhsqTHl+4cEFDkRERUQkmikSkERz7TERU8zFRJKJqs379eowfPx56enoYNWoUmjVrprT+MhER1Sxv1UKXzMFERFQRgYGByM7OBgA4ODggPT1dwxEREVF5KpUo/vTTT3Bzc4O+vj709fXRtm1b/Otf/1J3bERUx1hZWWHPnj24c+cOhBC4d+8eUlJSVL6IiEjzJN96XrNmDb7++msEBATg3XffBQCcPHkSEydORHp6OmbMmKH2IImobpg/fz6++OILBAQEQCaToXPnzqXqCCEgk8k4dQ4RUQ0gOVHcsGEDNm3ahOHDhyvK/Pz84OLigoULFzJRJKIyjR8/HkOGDMGdO3fQtm1bHDlyBObm5poOi6hGe9NKRUFBQRg5ciQcHBxUbo+JiUGXLl2wd+9ebNq0CfHx8cjPz1f83X51lSSi10lOFFNTU9GtW7dS5d26dUNqaqpagiKiusvQ0BCurq7Ytm0b3n33Xejq6mo6JKIa7dW/rZGRkViwYAESExMVZY0aNVKM9z1y5AhcXFyU9i/5MXb8+HH07t0by5Ytg4mJCbZt2wZfX1+cPXsWHTp0qIZPQrWR5ETRyckJu3btwldffaVUHhkZiRYtWqgtMCKq20aMGKHpEIgghMCzgmfVfl79BvoVXtO8adOmin8bGxtDJpMplQFQJIrm5ualtpVYu3at0vtly5bh119/xb///W8milQmyYniokWL4O/vj+PHjyvGKJ46dQpRUVHYtWuX2gMkIiKqKs8KnsFzh2e1n/fs0LMw0DGo9vO+qqioCE+fPuUa61QuyYnixx9/jLNnzyIkJAT79+8HADg7OyM2Npa/SIiIiDSoW7dupeYmzcnJUVl31apVyMnJwaefflodoVEtVakJtzt16oSff/5Z3bEQERFVK/0G+jg79KxGzlsVIiMj4ezs/MZ6O3bswKJFi/Drr7+icePGVRIL1Q2S51HU1tbGw4cPS5VnZGRAW1tbLUERUf3x4sULJCYmoqCg4K2PtXHjRtjb20NPTw+enp6IjY2t0H47d+6ETCbjsoL1kEwmg4GOQbW/Kjo+USobGxs4OTkpvV63c+dOjB07Frt27YK3t3eVxEF1h+REsayVWPLz8yGXy986ICKqH/Ly8jBmzBgYGBjAxcVFMcn2F198geXLl0s+XmRkJAIDAxEUFIQLFy6gXbt28PHxUfnD9lXJycmYNWsWevToUanPQVSbREREYNSoUYiIiED//v01HQ7VAhVOFNevX4/169dDJpNhy5Ytivfr169HSEgIpkyZgtatW1cqCPYCENU/c+fOxcWLFxEdHQ09PT1Fube3NyIjIyUfb82aNRg3bhxGjRqFNm3aIDQ0FAYGBti6dWuZ+xQWFmLYsGFYtGgRmjdvXqnPQVSTZGRkIC0tTen1/PlzAMW3m4cPH47Vq1fD09NTsT0rK0vDUVNNVuExiiEhIQCKexRDQ0OVbjPL5XLY29sjNDRUcgAlvQChoaHw9PTE2rVr4ePjg8TExHLHTbAXgKh2279/PyIjI9GlSxel23AuLi64deuWpGO9ePEC58+fx9y5cxVlWlpa8Pb2RkxMTJn7LV68GI0bN8aYMWNw4sSJcs+Rn5+P/Px8xfuSNauJahJVt5IjIiIwePBgbN68GQUFBZgyZQqmTJmi2D5ixAiEh4dXY5RUm1Q4UUxKSgIA9OrVC3v37oWpqalaAni1FwAAQkNDceDAAWzduhVz5sxRuc+rvQAnTpxAZmamWmIhourz6NEjlT8Gc3NzJY/fSk9PR2FhIZo0aaJU3qRJE1y7dk3lPidPnsQPP/yA+Pj4Cp0jODgYixYtkhQXkbqNHDkSI0eOLFVub29f5tCwEtHR0VUTFNVpkscoHj16VG1JYkkvwKu/gKT2ArxJfn4+srOzlV5EpHnu7u44cOCA4n1JcrhlyxZ07dq1Ss/99OlTfP755wgLC4OFhUWF9pk7dy6ysrIUr7t371ZpjERENUGlpsdRF/YCENVfy5YtQ79+/XDlyhUUFBRg3bp1uHLlCk6fPo1jx45JOpaFhQW0tbXx4MEDpfIHDx6oXKXi1q1bSE5Ohq+vr6KsqKgIANCgQQMkJibC0dFRaR9dXV0uN0hE9Y7kHkVNYi8AUd3RvXt3xMfHo6CgAG5ubjh8+DAaN26MmJgYdOrUSdKx5HI5OnXqhKioKEVZUVERoqKiVPZOtm7dGgkJCYiPj1e8/Pz80KtXL8THx8PGxuatPx8RUV2g0R5F9gIQ1W+Ojo4ICwtTy7ECAwMxYsQIuLu7w8PDA2vXrkVubq5i/PPw4cNhbW2N4OBg6OnpwdXVVWl/ExMTAChVTkRUn2k0UXy1F6BkipuSXoCAgIBS9Ut6AV41f/58PH36FOvWrWMvAFENJ2WMsJGRkaRj+/v749GjR1iwYAHS0tLQvn17HDp0SDG0JSUlpdTSZkREVL5KJYqZmZmIjY3Fw4cPFT16JYYPHy7pWOwFIKo/TExMKvxEc2FhoeTjBwQEqPyRCbz5iU9OD0JEVJrkRPHf//43hg0bhpycHBgZGSk1+jKZTHKiyF4Aovrj6NGjin8nJydjzpw5GDlypGIcYUxMDH788UcEBwdrKkQiInqFTLxp4qXXtGzZEh988AGWLVsGAwODqoqrymRnZ8PY2BhZWVmSb20R1XY16fv/t7/9DWPHjsWQIUOUynfs2IHNmzfX+DnfatK1pIp5/vw5kpKS4ODgoLQaEKlW3vXi97/+kNxV99dff2Hq1Km1MkkkopojJiYG7u7upcrd3d0rvIwnERFVLcmJoo+PD86dO1cVsRBRPWJjY6PyiectW7bwwTQiohpC8hjF/v37Y/bs2bhy5Qrc3Nygo6OjtN3Pz09twRFR3RUSEoKPP/4YBw8ehKenJwAgNjYWN27cwJ49ezQcHVHN8aYHwIKCgjBy5Eg4ODio3B4TE4MuXbrg5MmT+PLLL3Ht2jXk5eXBzs4OEyZMwIwZM6oibKojJCeK48aNA1C8jN7rZDJZpZ5UJKL654MPPsCNGzfwz3/+U7ESk6+vLyZOnMgeRaJXpKamKv4dGRmJBQsWIDExUVHWqFEjpKenAwCOHDkCFxcXpf3Nzc0BAA0bNkRAQADatm2Lhg0b4uTJk5gwYQIaNmyI8ePHV8MnodpIcqL4+nQ4RESV1axZMyxbtkzTYVA9JoSAePas2s8r09ev8FRRry5AYWxsDJlMVmpRipJE0dzcXOWCFQDQoUMHdOjQQfHe3t4ee/fuxYkTJ5goUpk0OuE2EdVvmZmZ+OGHH3D16lUAgIuLC0aPHg1jY2MNR0b1hXj2DIkdpS0ZqQ6tLpyHTMMPhcbFxeH06dNYunSpRuOgmq1SExQeO3YMvr6+cHJygpOTE/z8/HDixAl1x0ZEddi5c+fg6OiIkJAQPH78GI8fP8aaNWvg6OiICxcuaDo8olqpW7duaNSokdLrdc2aNYOuri7c3d0xZcoUjB07VgORUm0huUfx559/xqhRo/DRRx9h6tSpAIBTp07hb3/7G8LDwzF06FC1B0lEdc+MGTPg5+eHsLAwNGhQ3BQVFBRg7NixmD59Oo4fP67hCKk+kOnro9WF8xo5b1WIjIyEs7NzuXVOnDiBnJwcnDlzBnPmzIGTk1Op+UyJSkhOFL/55husXLlS6SmpqVOnYs2aNViyZAkTRSKqkHPnzikliQDQoEED/OMf/1A5vyJRVZDJZBq/BaxONjY2cHJyKrdOydPRbm5uePDgARYuXMhEkcok+dbz7du34evrW6rcz88PSUlJagmKiOo+IyMjpKSklCq/e/cuDA0NNRARUf1TVFSE/Px8TYdBNZjkHkUbGxtERUWV+sVy5MgRTmlBRBXm7++PMWPGYNWqVejWrRuA4mEss2fPZu8GUSVlZGQgLS1NqczExAR6enrYuHEjbG1t0bp1awDA8ePHsWrVKsUwMiJVJCeKM2fOxNSpUxEfH6/UuIeHh2PdunVqD5CI6qZVq1ZBJpNh+PDhKCgoAADo6Ohg0qRJWL58uYajI6qdvL29S5VFRERg8ODBKCoqwty5c5GUlIQGDRrA0dERK1aswIQJEzQQKdUWMiGEkLrTvn37sHr1asWUFs7Ozpg9ezYGDhyo9gDVjQuZU31WE7//eXl5uHXrFgDA0dGx1qwjXxOvJZXv+fPnSEpKgoODA/T09DQdTo1X3vXi97/+qNQ8ih9++CE+/PBDdcdCRPWQgYEB3NzcNB0GERGpwAm3iahajR49ukL1tm7dWsWREBHRm1QoUTQzM8P169dhYWEBU1PTcpcdevz4sdqCI6K6Jzw8HHZ2dujQoQMqMfKFiIiqUYUSxZCQEMV0FSEhIRVen5KI6HWTJk1CREQEkpKSMGrUKHz22WcwMzPTdFhERKRCpR5mqc04AJfqs5ry/c/Pz8fevXuxdetWnD59Gv3798eYMWPQp0+fWvNDtKZcS6q4kocz7Ozsas1DU5qUl5eHO3fu8GGWek7yGMULFy5AR0dHMfj8119/xbZt29CmTRssXLgQcrlc7UESUd2iq6uLIUOGYMiQIbhz5w7Cw8MxefJkFBQU4PLlyyrXpyV6W3K5HFpaWrh//z7eeecdyOXyWvPDpDoJIfDixQs8evQIWlpa/Ltez0lOFCdMmIA5c+bAzc0Nt2/fhr+/Pz766CPs3r0beXl5WLt2bRWESUR1lZaWFmQyGYQQKCwsfKtjbdy4Ed9++y3S0tLQrl07bNiwAR4eHirrhoWF4aeffsKlS5cAAJ06dcKyZcvKrE+1n5aWFhwcHJCamor79+9rOpwaz8DAALa2ttDSkryIG9UhkhPF69evo3379gCA3bt3o2fPntixYwdOnTqFwYMHM1Ekojd69dbzyZMnMWDAAHz33Xfo27dvpf8oRUZGIjAwEKGhofD09MTatWvh4+ODxMRENG7cuFT96OhoDBkyBN26dYOenh5WrFiBPn364PLly7C2tn7bj0g1lFwuh62tLQoKCt76h0ldpq2tjQYNGrDHlaQnikIIFBUVAShetm/AgAEAipf2S09PV290RFTnTJ48GTt37oSNjQ1Gjx6NiIgIWFhYvPVx16xZg3HjxmHUqFEAgNDQUBw4cABbt27FnDlzStXfvn270vstW7Zgz549iIqKwvDhw986Hqq5ZDIZdHR0oKOjo+lQiGo8yYmiu7s7li5dCm9vbxw7dgybNm0CACQlJaFJkyZqD5CI6pbQ0FDY2tqiefPmOHbsGI4dO6ay3t69eyt8zBcvXuD8+fOYO3euokxLSwve3t6IiYmp0DHy8vLw8uXLMp/Azs/PR35+vuJ9dnZ2heMjIqqtJN/jWbt2LS5cuICAgADMmzcPTk5OAIBffvlFsfazVBs3boS9vT309PTg6emJ2NjYMuuGhYWhR48eMDU1hampKby9vcutT0Q1y/Dhw9GrVy+YmJjA2Ni4zJcU6enpKCwsLPVjtUmTJkhLS6vQMb788ktYWVmpXCsXAIKDg5Xis7GxkRQjEVFtJLlHsW3btkhISChV/u2330JbW1tyABxXRFS/hIeHazqEUpYvX46dO3ciOjq6zDWA586di8DAQMX77OxsJotEVOdJ7lG8e/cu7t27p3gfGxuL6dOn46effqrUeI9XxxW1adMGoaGhMDAwKHP5ru3bt2Py5Mlo3749WrdujS1btqCoqAhRUVGSz01EdYOFhQW0tbXx4MEDpfIHDx6gadOm5e67atUqLF++HIcPH0bbtm3LrKerqwsjIyOlFxFRXSc5URw6dCiOHj0KAEhLS0Pv3r0RGxuLefPmYfHixZKOVTKu6NVbPVUxrig7O1vpRUR1i1wuR6dOnZR+MJb8gOzatWuZ+61cuRJLlizBoUOH4O7uXh2hEhHVKpITxUuXLinmGdu1axdcXV1x+vRpbN++XfItJY4rIiJ1CQwMRFhYGH788UdcvXoVkyZNQm5uruIp6OHDhys97LJixQp8/fXX2Lp1K+zt7ZGWloa0tDTk5ORo6iMQEdU4kscovnz5Erq6ugCKp8fx8/MDALRu3Rqpqanqje4NOK6IiEr4+/vj0aNHWLBgAdLS0tC+fXscOnRI8UM0JSVFaY7GTZs24cWLF/jkk0+UjhMUFISFCxdWZ+hERDWW5ETRxcUFoaGh6N+/P/78808sWbIEAHD//n2Ym5tLOpY6xhUdOXLkjeOKShJbIqrbAgICEBAQoHJbdHS00vvk5OSqD4iIqJaTfOt5xYoV+P777+Hl5YUhQ4agXbt2AIDffvtN8tJXHFdEREREVHNJ7lH08vJCeno6srOzYWpqqigfP348DAwMJAcQGBiIESNGwN3dHR4eHli7dm2pcUXW1tYIDg4GUJyoLliwADt27FCMKwKARo0aoVGjRpLPT0RERESqSU4UgeI1IF9NEgHA3t6+UgFwXBERERFRzSQTQog3VerYsSOioqJgamqKDh06lLtI+IULF9QaoLplZ2fD2NgYWVlZnAeN6h1+/9WH15LqM37/648K9SgOHDhQ8UDIoEGDqjIeIiIiIqohKtSjWJfwVxDVZ/z+qw+vJdVn/P7XH5Uao1giJycHRUVFSmX8whARERHVDZKnx0lKSkL//v3RsGFDGBsbw9TUFKampjAxMSn1gAsRERER1V6SexQ/++wzCCGwdetWNGnSpNwHW4iIiIio9pKcKF68eBHnz59Hq1atqiIeIiIiIqohJN967ty5M+7evVsVsRARERFRDSK5R3HLli2YOHEi/vrrL7i6ukJHR0dpe3nrLhMRERFR7SE5UXz06BFu3bqlWGIPAGQyGYQQkMlkKCwsVGuARERERKQZkhPF0aNHo0OHDoiIiODDLERERER1mORE8c6dO/jtt9/g5ORUFfEQERERUQ0h+WGW999/HxcvXqyKWIiIiIioBpHco+jr64sZM2YgISEBbm5upR5m8fPzU1twRERERKQ5khPFiRMnAgAWL15cahsfZiEiIiKqOyQniq+v7UxEREREdZPkMYqqZGZmquMwRERERFSDSE4UV6xYgcjISMX7v//97zAzM4O1tTUfciEijdq4cSPs7e2hp6cHT09PxMbGllt/9+7daN26NfT09ODm5oY//vijmiIlIqodJCeKoaGhsLGxAQD8+eefOHLkCA4dOoR+/fph9uzZag+QiKgiIiMjERgYiKCgIFy4cAHt2rWDj48PHj58qLL+6dOnMWTIEIwZMwZxcXEYNGgQBg0ahEuXLlVz5ERENZdMCCGk7KCvr4/r16/DxsYG06ZNw/Pnz/H999/j+vXr8PT0xJMnT6oqVrXIzs6GsbExsrKyYGRkpOlwiKpVXf7+e3p6onPnzvjuu+8AFI+ntrGxwRdffIE5c+aUqu/v74/c3Fz8/vvvirIuXbqgffv2CA0NfeP5Sq7l6YQTaGTYSH0fhCSp7Ys+yFA74895moMuru/WybaElEl+mMXU1BR3796FjY0NDh06hKVLlwIAhBB84pmINOLFixc4f/485s6dqyjT0tKCt7c3YmJiVO4TExODwMBApTIfHx/s379fZf38/Hzk5+cr3mdnZwMAGnw4Gg20td/yExDVLlr8e19vSL71/NFHH2Ho0KHo3bs3MjIy0K9fPwBAXFwcV2shIo1IT09HYWEhmjRpolTepEkTpKWlqdwnLS1NUv3g4GAYGxsrXiVDcIiI6jLJPYohISGwt7fH3bt3sXLlSjRqVHzLJTU1FZMnT1Z7gERENcHcuXOVeiCzs7NhY2MD66j/8NYb1TvZ2dmAHX8s1QeSE0UdHR3MmjWrVPmMGTPUEhARkVQWFhbQ1tbGgwcPlMofPHiApk2bqtynadOmkurr6upCV1e3VHkjEyM0YqJI9UyRWibXo9pAcqIIADdu3MDRo0fx8OHDUhNwL1iwQC2BERFVlFwuR6dOnRAVFYVBgwYBKH6YJSoqCgEBASr36dq1K6KiojB9+nRF2Z9//omuXbtWQ8RERLWD5N8EYWFhcHZ2xoIFC/DLL79g3759ildZg8DfhHOfEdHbCgwMRFhYGH788UdcvXoVkyZNQm5uLkaNGgUAGD58uNLDLtOmTcOhQ4ewevVqXLt2DQsXLsS5c+fKTCyJiOolIZGtra1Yvny51N3KtHPnTiGXy8XWrVvF5cuXxbhx44SJiYl48OCByvqnTp0S2traYuXKleLKlSti/vz5QkdHRyQkJFTofFlZWQKAyMrKUttnIKot6vr3f8OGDcLW1lbI5XLh4eEhzpw5o9jWs2dPMWLECKX6u3btEi1bthRyuVy4uLiIAwcOVPhcdf1aEpWH3//6Q/I8ikZGRoiPj0fz5s3Vkqhqau4zzv1E9RG//+rDa0n1Gb//9YfkMYp///vfcfjwYUycOPGtT66Juc+ysrIA/P850Ijqk5LvvcTfh6RCyTVkW0L1EduS+kNyoujk5ISvv/4aZ86cgZubG3R0dJS2T506tcLHKm/us2vXrqncpzJzny1atKhUOedAo/osIyMDxsbGmg6jVsvIyADAtoTqN7YldZ/kRHHz5s1o1KgRjh07hmPHjiltk8lkkhLF6vD63GeZmZmws7NDSkoKv9waUDL33N27d3m7QgOysrJga2sLMzMzTYdS65VcQ7YlmsG2RLPYltQfkhPFpKQktZ1ck3OfGRsbs3HRICMjI15/DdLS4iRob6vkGrIt0Sy2JZrFtqTu0+j/8Ktzn5UomfusrLnMSuY+exXnPiMiIiJSv0pNuH3v3j389ttvSElJwYsXL5S2rVmzRtKxAgMDMWLECLi7u8PDwwNr164tNfeZtbU1goODARTPfdazZ0+sXr0a/fv3x86dO3Hu3Dls3ry5Mh+FiIiIiMogOVGMioqCn58fmjdvjmvXrsHV1RXJyckQQqBjx46SA/D398ejR4+wYMECpKWloX379jh06JDigZWUlBSlru1u3bphx44dmD9/Pr766iu0aNEC+/fvh6ura4XOp6uri6CgIJW3o6nq8fprFq+/+vBaahavv2bx+tcfkudR9PDwQL9+/bBo0SIYGhri4sWLaNy4MYYNG4a+ffti0qRJVRUrEREREVUjyYmioaEh4uPj4ejoCFNTU5w8eRIuLi64ePEiBg4ciOTk5CoKlYiIiIiqk+SHWRo2bKgYl2hpaYlbt24ptqWnp6svMiIiIiLSKMljFLt06YKTJ0/C2dkZH3zwAWbOnImEhATs3bsXXbp0qYoYiYiIiEgDJN96vn37NnJyctC2bVvk5uZi5syZOH36NFq0aIE1a9bAzs6uqmIlIiIiomok6dZzYWEh7t27B1tbWwDFt6FDQ0Pxv//7v9izZ0+1J4nHjx+Hr68vrKysIJPJylzvuUR0dDRkMlmp1+vL/23cuBH29vbQ09ODp6cnYmNjq/BT1F5Vcf0XLlxYanvr1q2r+JPUTlKvP1C89vm8efNgZ2cHXV1d2NvbY+vWrUp1du/ejdatW0NPTw9ubm74448/qugT1CxsTzSHbYlmsS2h8khKFLW1tdGnTx88efKkquKRJDc3F+3atcPGjRsl7ZeYmIjU1FTFq3HjxoptkZGRCAwMRFBQEC5cuIB27drBx8cHDx8+VHf4tV5VXH8AcHFxUdp+8uRJdYZdZ1Tm+n/66aeIiorCDz/8gMTERERERKBVq1aK7adPn8aQIUMwZswYxMXFYdCgQRg0aBAuXbpUFR+hRmF7ojlsSzSLbQmVS0jUqVMnceTIEam7VTkAYt++feXWOXr0qAAgnjx5UmYdDw8PMWXKFMX7wsJCYWVlJYKDg9UUad2krusfFBQk2rVrp9bY6oOKXP+DBw8KY2NjkZGRUWadTz/9VPTv31+pzNPTU0yYMEEdYdYabE80h22JZrEtoddJfup56dKlmDVrFn7//XekpqYiOztb6VUbtG/fHpaWlujduzdOnTqlKH/x4gXOnz8Pb29vRZmWlha8vb0RExOjiVDrpLKuf4kbN27AysoKzZs3x7Bhw5CSkqKBKOue3377De7u7li5ciWsra3RsmVLzJo1C8+ePVPUiYmJUfr+A4CPjw+//+Vge6I5bEs0g21J/VLhp54XL16MmTNn4oMPPgAA+Pn5QSaTKbYLISCTyVBYWKj+KNXE0tISoaGhcHd3R35+PrZs2QIvLy+cPXsWHTt2RHp6OgoLCxWrwpRo0qQJrl27pqGo6443XX8A8PT0RHh4OFq1aoXU1FQsWrQIPXr0wKVLl2BoaKjhT1C73b59GydPnoSenh727duH9PR0TJ48GRkZGdi2bRsAIC0tTeX3//Vxd8T2RJPYlmgW25L6pcKJ4qJFizBx4kQcPXq0KuOpUq1atVIaQ9GtWzfcunULISEh+Ne//qXByOqHilz/fv36Kba3bdsWnp6esLOzw65duzBmzJhqj7kuKSoqgkwmw/bt22FsbAygeG32Tz75BP/85z+hr6+v4QhrF7YnmsO2RLPYltQvFU4Uxf+bRadnz55VFowmeHh4KAY4W1hYQFtbGw8ePFCq8+DBAzRt2lQT4dV5r15/VUxMTNCyZUvcvHmzGqOqmywtLWFtba1o2AHA2dkZQgjcu3cPLVq0QNOmTfn9fwtsTzSHbUn1YVtSv0gao/jqrea6Ij4+HpaWlgAAuVyOTp06ISoqSrG9qKgIUVFR6Nq1q6ZCrNNevf6q5OTk4NatW+XWoYp59913cf/+feTk5CjKrl+/Di0tLTRr1gwA0LVrV6XvPwD8+eef/P5XENsTzWFbUn3YltQzFX3qRSaTCRMTE2Fqalruqzo9ffpUxMXFibi4OAFArFmzRsTFxYk7d+4IIYSYM2eO+PzzzxX1Q0JCxP79+8WNGzdEQkKCmDZtmtDS0lJ6invnzp1CV1dXhIeHiytXrojx48cLExMTkZaWVq2frTaoius/c+ZMER0dLZKSksSpU6eEt7e3sLCwEA8fPqz2z1fTSb3+T58+Fc2aNROffPKJuHz5sjh27Jho0aKFGDt2rKLOqVOnRIMGDcSqVavE1atXRVBQkNDR0REJCQnV/vmqG9sTzWFbollsS6g8khLFdevWifDw8HJf1alkioTXXyNGjBBCCDFixAjRs2dPRf0VK1YIR0dHoaenJ8zMzISXl5f4z3/+U+q4GzZsELa2tkIulwsPDw9x5syZavpEtUtVXH9/f39haWkp5HK5sLa2Fv7+/uLmzZvV+KlqD6nXXwghrl69Kry9vYW+vr5o1qyZCAwMFHl5eUp1du3aJVq2bCnkcrlwcXERBw4cqKZPpFlsTzSHbYlmsS2h8lR4CT8tLS2kpaWVmtCUiIiIiOqmCo9RrIvjE4mIiIiobBVOFCvY8UhEREREdUSFbz0TERERUf0ieQk/IiIiIqofmCgSERERkUpMFImIiIhIJSaKRERERKQSE0UiIiIiUomJIhERERGpxESRiIiIiFRiokjl8vLywvTp0zUdhkJl48nIyEDjxo2RnJys9pheN3jwYKxevbrKz0NUm7AtkY5tCdUETBRrgNDQUBgaGqKgoEBRlpOTAx0dHXh5eSnVjY6Ohkwmw61bt6o5yuql7j8q33zzDQYOHAh7e3u1HbMs8+fPxzfffIOsrKwqPxfRq9iWlMa2hOjtMFGsAXr16oWcnBycO3dOUXbixAk0bdoUZ8+exfPnzxXlR48eha2tLRwdHTURaq2Ul5eHH374AWPGjKmW87m6usLR0RE///xztZyPqATbkqrFtoTqIyaKNUCrVq1gaWmJ6OhoRVl0dDQGDhwIBwcHnDlzRqm8V69eAIBDhw6he/fuMDExgbm5OQYMGKDUO7B582ZYWVmhqKhI6XwDBw7E6NGjAQBFRUUIDg6Gg4MD9PX10a5dO/zyyy9lxlqR+l5eXpg6dSr+8Y9/wMzMDE2bNsXChQuV6jx9+hTDhg1Dw4YNYWlpiZCQEMUv/5EjR+LYsWNYt24dZDIZZDKZ0m2eoqKico/9uj/++AO6urro0qWLUvnJkyeho6Oj9MczOTkZMpkMd+7cgZeXF7744gtMnz4dpqamaNKkCcLCwpCbm4tRo0bB0NAQTk5OOHjwYKlz+vr6YufOneXGRaRubEvYlhCpnaAaYejQoaJPnz6K9507dxa7d+8WEydOFAsWLBBCCJGXlyd0dXVFeHi4EEKIX375RezZs0fcuHFDxMXFCV9fX+Hm5iYKCwuFEEI8fvxYyOVyceTIEcVxMzIylMqWLl0qWrduLQ4dOiRu3boltm3bJnR1dUV0dLQQQoiePXuKadOmKfZ/U/2SfYyMjMTChQvF9evXxY8//ihkMpk4fPiwos7YsWOFnZ2dOHLkiEhISBAffvihMDQ0FNOmTROZmZmia9euYty4cSI1NVWkpqaKgoKCCh/7dVOnThV9+/YtVb5hwwbh5uamVLZ3715hamqqOJehoaFYsmSJuH79uliyZInQ1tYW/fr1E5s3bxbXr18XkyZNEubm5iI3N1fpOAcPHhRyuVw8f/68zLiIqgLbErYlROrERLGGCAsLEw0bNhQvX74U2dnZokGDBuLhw4dix44d4r333hNCCBEVFSUAiDt37qg8xqNHjwQAkZCQoCgbOHCgGD16tOL9999/L6ysrERhYaF4/vy5MDAwEKdPn1Y6zpgxY8SQIUOEEMqNe0Xql+zTvXt3pTqdO3cWX375pRBCiOzsbKGjoyN2796t2J6ZmSkMDAwU53r9j0pFj63K69egxNixY8Xw4cOVyhYsWCC8vLxUnqugoEA0bNhQfP7554qy1NRUAUDExMQoHefixYsCgEhOTi4zLqKqwLaEbQmROvHWcw3h5eWF3Nxc/Pe//8WJEyfQsmVLvPPOO+jZs6dibFF0dDSaN28OW1tbAMCNGzcwZMgQNG/eHEZGRorB1SkpKYrjDhs2DHv27EF+fj4AYPv27Rg8eDC0tLRw8+ZN5OXloXfv3mjUqJHi9dNPP6kc4C6lftu2bZXeW1pa4uHDhwCA27dv4+XLl/Dw8FBsNzY2RqtWrSp0rco7tirPnj2Dnp5eqfL4+Hi0b99eqSwuLk6p7NVzaWtrw9zcHG5uboqyJk2aAECp8+vr6wMoHtNEVJ3YlrAtIVKnBpoOgIo5OTmhWbNmOHr0KJ48eYKePXsCAKysrGBjY4PTp0/j6NGjeP/99xX7+Pr6ws7ODmFhYYrxQ66urnjx4oVSHSEEDhw4gM6dO+PEiRMICQkBUPw0JAAcOHAA1tbWSvHo6uqWilFKfR0dHaX3Mpms1PimypJ6bAsLCzx58kSprLCwEJcuXUKHDh2Uyi9cuICPP/643HO9WiaTyQCg1PkfP34MAHjnnXfe9HGI1IptScWxLSF6MyaKNUivXr0QHR2NJ0+eYPbs2Yry9957DwcPHkRsbCwmTZoEoHgur8TERISFhaFHjx4AigdUv05PTw8fffQRtm/fjps3b6JVq1bo2LEjAKBNmzbQ1dVFSkqK4o9JeaTWL0vz5s2ho6OD//73v4oejaysLFy/fh3vvfceAEAul6OwsLDS53hVhw4dSj01mJiYiOfPn8PKykpRFhMTg7/++qtUz0BlXLp0Cc2aNYOFhcVbH4tIKrYlbEuI1IWJYg3Sq1cvTJkyBS9fvlRqPHv27ImAgAC8ePFC8ZSiqakpzM3NsXnzZlhaWiIlJQVz5sxRedxhw4ZhwIABuHz5Mj777DNFuaGhIWbNmoUZM2agqKgI3bt3R1ZWFk6dOgUjIyOMGDFC6ThS65fF0NAQI0aMwOzZs2FmZobGjRsjKCgIWlpail/V9vb2OHv2LJKTk9GoUSOYmZlBS6tyIyV8fHwwd+5cPHnyBKampgCKbxUBwIYNGzB16lTcvHkTU6dOBQClXpTKOnHiBPr06fPWxyGqDLYlbEuI1IVjFGuQXr164dmzZ3ByclKMVwGKG/enT58qpr4AAC0tLezcuRPnz5+Hq6srZsyYgW+//Vblcd9//32YmZkhMTERQ4cOVdq2ZMkSfP311wgODoazszP69u2LAwcOwMHBQeWxpNYvy5o1a9C1a1cMGDAA3t7eePfdd+Hs7KwY/zNr1ixoa2ujTZs2eOedd5TGSknl5uaGjh07YteuXYqy+Ph4+Pj44Pbt23Bzc8O8efOwaNEiGBkZYf369ZU+FwA8f/4c+/fvx7hx497qOESVxbaEbQmRusiEEELTQRDl5ubC2toaq1evrpLJbA8cOIDZs2fj0qVL0NLSgo+PDzp37oylS5eq/VybNm3Cvn37cPjwYbUfm4jKx7aESL1465k0Ii4uDteuXYOHhweysrKwePFiAMUT+FaF/v3748aNG/jrr79gY2ODixcvKiYKVjcdHR1s2LChSo5NRMrYlhBVLfYokkbExcVh7NixSExMhFwuR6dOnbBmzRql6SKqSlpaGiwtLXH58mW0adOmys9HRFWHbQlR1WKiSEREREQq8WEWIiIiIlKJiSIRERERqcREkYiIiIhUYqJIRERERCoxUSQiIiIilZgoEhEREZFKTBSJiIiISCUmikRERESkEhNFIiIiIlKJiSIRERERqfR/w7IH4tSZ4z4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "postprocess(sim_data, \"TE\")\n" ] }, { "cell_type": "markdown", "id": "2c969833", "metadata": {}, "source": [ "### TM0 to TM3 Convertion " ] }, { "cell_type": "code", "execution_count": 25, "id": "56b176c2", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:06:55.089137Z", "iopub.status.busy": "2023-03-28T00:06:55.088990Z", "iopub.status.idle": "2023-03-28T00:07:55.655933Z", "shell.execute_reply": "2023-03-28T00:07:55.655415Z" } }, "outputs": [ { "data": { "text/html": [ "
[09:33:02] Created task 'evanescent_coupler_tm3' with task_id                                         webapi.py:139\n",
       "           'fdve-453a5d92-c1cb-4c00-bb9d-275b67ecef4cv1'.                                                          \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:33:02]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'evanescent_coupler_tm3'\u001b[0m with task_id \u001b]8;id=257230;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=414729;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-453a5d92-c1cb-4c00-bb9d-275b67ecef4cv1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8b4276f780434eb591c80d1a94fc7245", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:33:04] status = queued                                                                            webapi.py:269\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:33:04]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=123225;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=175907;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:33:07] status = preprocess                                                                        webapi.py:263\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:33:07]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=85288;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=262383;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
[09:33:14] Maximum FlexCredit cost: 0.087. Use 'web.real_cost(task_id)' to get the billed FlexCredit  webapi.py:286\n",
       "           cost after a simulation run.                                                                            \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:33:14]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.087\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit \u001b]8;id=635926;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=421955;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mcost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           starting up solver                                                                         webapi.py:290\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=351199;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=248019;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           running solver                                                                             webapi.py:300\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=3267;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=215429;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b67bd1249845403da60aa526ec87ffc8", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:33:58] early shutoff detected, exiting.                                                           webapi.py:314\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:33:58]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=764608;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=344906;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#314\u001b\\\u001b[2m314\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           status = postprocess                                                                       webapi.py:331\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=272876;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=572827;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#331\u001b\\\u001b[2m331\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:34:21] status = success                                                                           webapi.py:338\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:34:21]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=577170;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=30863;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#338\u001b\\\u001b[2m338\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "c170b35fdf26431a93c09b35e8cfdbe0",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:34:24] loading SimulationData from data/simulation_data.hdf5                                      webapi.py:510\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:34:24]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/simulation_data.hdf5 \u001b]8;id=188847;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=189181;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#510\u001b\\\u001b[2m510\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim = make_sim(\"TM\", **design_params[\"TM3\"])\n", "\n", "job = web.Job(simulation=sim, task_name=\"evanescent_coupler_tm3\", verbose=True)\n", "sim_data = job.run(path=\"data/simulation_data.hdf5\")\n" ] }, { "cell_type": "code", "execution_count": 26, "id": "e53c7226", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:07:56.896816Z", "iopub.status.busy": "2023-03-28T00:07:56.896676Z", "iopub.status.idle": "2023-03-28T00:07:58.808818Z", "shell.execute_reply": "2023-03-28T00:07:58.808116Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAooAAAHrCAYAAABINLzuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADo0UlEQVR4nOydeZwUxfn/P1U9x94LyC03KogKKAhqYtTITzTGxCsxJho8ohExUUm+KokRNUZMTNRv4pVvDk1MjEcSNdFExStexAO8EFFREORGZBfY3Znprvr9UV3d1T3dcyy7zC77vHkNO11d3V1d1dP96aeqnodJKSUIgiAIgiAIIgSvdAEIgiAIgiCIrgkJRYIgCIIgCCISEooEQRAEQRBEJCQUCYIgCIIgiEhIKBIEQRAEQRCRkFAkCIIgCIIgIiGhSBAEQRAEQURCQpEgCIIgCIKIhIQiQRAEQRAEEQkJRYIgdgrPPPMMGGN45plnKl0UgiAIokRIKBIE0aHceuutuPPOOytdjHZx991346abbqp0MQAAQgj87Gc/w8iRI1FVVYXx48fjL3/5S8nbb9myBeeeey769euH2tpaHHHEEVi0aFFk3n/84x844IADUFVVhWHDhmHu3LmwbbujToUgiG4Mo1jPBEF0JPvuuy/69u2bZzkUQiCbzSKVSoHzrvmO+sUvfhGLFy/GihUrKl0UzJkzB9dddx3OOeccHHjggXjooYfwyCOP4C9/+Qu+9rWvFdxWCIFDDz0Ub7zxBv7nf/4Hffv2xa233opVq1Zh4cKF2HPPPb28//73v3Hsscfi8MMPx6mnnoq33noLt9xyC84991zcdtttnX2aBEF0cUgoEkQnsH37dtTW1la6GBUhTih2B7qKUFy9ejVGjhyJc889FzfffDMAQEqJww47DMuXL8eKFStgWVbs9vfddx9OOeUU3H///Tj55JMBABs3bsRee+2FY445BnfffbeXd5999kEymcSrr76KRCIBALj88stx7bXXYsmSJRg7dmwnnilBEF2drvlaTxBdiNWrV+Pss8/G4MGDkU6nMXLkSMycORPZbBYAcOedd4Ixhv/85z84//zz0b9/fwwZMsTb/tZbb8U+++yDdDqNwYMHY9asWdiyZUvgGO+//z5OOukkDBw4EFVVVRgyZAi+9rWvoampycszf/58fPazn0WvXr1QV1eHMWPG4Ac/+EHR8peyXSaTwdy5c7HHHnsgnU5j6NChuOSSS5DJZPL296c//QlTpkxBTU0Nevfujc997nN4/PHHAQAjRozA22+/jf/85z9gjIExhsMPPxxA/BjF+++/H5MmTUJ1dTX69u2L0047DatXrw7kOeOMM1BXV4fVq1fj+OOPR11dHfr164fvf//7cBynaB089NBDOPbYY702HD16NH784x8Htj388MPxyCOP4KOPPvLKPmLEiNh9nnHGGV6+8OfKK68sWqZi5c3lcjj//PO9NMYYZs6ciY8//hgLFiwouP1f//pXDBgwACeeeKKX1q9fP3z1q1/FQw895LXrkiVLsGTJEpx77rmeSASA888/H1JK/PWvf92h8yAIovuTKJ6FIHoua9aswZQpU7zxXmPHjsXq1avx17/+FS0tLUilUl7e888/H/369cMVV1yB7du3AwCuvPJKXHXVVZg2bRpmzpyJd999F7fddhteeeUVvPDCC0gmk8hms5g+fToymQy+853vYODAgVi9ejUefvhhbNmyBY2NjXj77bfxxS9+EePHj8fVV1+NdDqNZcuW4YUXXihY/lK2E0LgS1/6Ep5//nmce+652HvvvfHWW2/hxhtvxHvvvYcHH3zQy3vVVVfhyiuvxCGHHIKrr74aqVQKL730Ep566ikcddRRuOmmm/Cd73wHdXV1+OEPfwgAGDBgQGz57rzzTpx55pk48MADMW/ePKxfvx7/+7//ixdeeAGvvfYaevXq5eV1HAfTp0/H1KlT8fOf/xxPPPEEfvGLX2D06NGYOXNmwXq48847UVdXh9mzZ6Ourg5PPfUUrrjiCjQ3N+P6668HAPzwhz9EU1MTPv74Y9x4440AgLq6uth9fvvb38a0adMCaY8++ij+/Oc/o3///l7apk2bCpZNU19fj3Q6DQB47bXXUFtbi7333juQZ8qUKd76z372s7H7eu2113DAAQfkdfFPmTIF//d//4f33nsP++23H1577TUAwOTJkwP5Bg8ejCFDhnjrCYLowUiCIGL55je/KTnn8pVXXslbJ4SQUkp5xx13SADys5/9rLRt21u/YcMGmUql5FFHHSUdx/HSb775ZglA/v73v5dSSvnaa69JAPL++++PLceNN94oAciNGzeWVf5Strvrrrsk51w+99xzgfTbb79dApAvvPCClFLK999/X3LO5QknnBA4Hyn9upBSyn322Ucedthhecd5+umnJQD59NNPSymlzGazsn///nLfffeVra2tXr6HH35YApBXXHGFlzZjxgwJQF599dWBfe6///5y0qRJhStBStnS0pKX9u1vf1vW1NTItrY2L+3YY4+Vw4cPL7q/KN5//33Z2Ngo/9//+3+B6wBASZ877rgjUI5Ro0blHWP79u0SgLzssssKlqW2tlaeddZZeemPPPKIBCAfffRRKaWU119/vQQgV65cmZf3wAMPlAcddFCpp08QxC4KdT0TRAxCCDz44IM47rjj8iwugOoKNDnnnHMC48aeeOIJZLNZXHTRRQHLzjnnnIOGhgY88sgjAIDGxkYAwGOPPYaWlpbIsmjL2kMPPQQhRMnnUMp2999/P/bee2+MHTsWmzZt8j6f//znAQBPP/00AODBBx+EEAJXXHFFnqUqXBel8Oqrr2LDhg04//zzUVVV5aUfe+yxGDt2rFc/Juedd15g+dBDD8WHH35Y9FjV1dXe961bt2LTpk049NBD0dLSgqVLl5Zd9jDbt2/HCSecgN69e+Mvf/lL4DqYP39+SZ/p06d727S2tnrWRRNdT62trQXLU+r2+m9c3mLHIQhi14e6ngkiho0bN6K5uRn77rtvSflHjhwZWP7oo48AAGPGjAmkp1IpjBo1yls/cuRIzJ49GzfccAP+/Oc/49BDD8WXvvQlnHbaaZ6IPOWUU/Db3/4W3/rWt3DZZZfhyCOPxIknnoiTTz654AziUrZ7//338c4776Bfv36R+9iwYQMA4IMPPgDnHOPGjSupPooRVz8AMHbsWDz//POBtKqqqrwy9u7dG59++mnRY7399tu4/PLL8dRTT6G5uTmwzhwH2l7OOeccfPDBB3jxxRex2267BdaFu6dLobq6OnJ8aFtbm7e+I7bXf+PyFjsOQRC7PiQUCaKD2JGH6i9+8QucccYZeOihh/D444/ju9/9LubNm4f//ve/GDJkCKqrq/Hss8/i6aefxiOPPIJHH30U9957Lz7/+c/j8ccfj50BW8p2Qgjst99+uOGGGyL3MXTo0HafV0dSaJZvIbZs2YLDDjsMDQ0NuPrqqzF69GhUVVVh0aJFuPTSS8uy0Ebxv//7v/jLX/6CP/3pT5g4cWLe+nXr1pW0n8bGRu8aGjRoEJ5++mlIKQPW2rVr1wJQYwgLMWjQIC+vSXj7QYMGeenhdl67dq03JpIgiJ4LdT0TRAz9+vVDQ0MDFi9e3K7thw8fDgB49913A+nZbBbLly/31mv2228/XH755Xj22Wfx3HPPYfXq1bj99tu99ZxzHHnkkbjhhhuwZMkS/OQnP8FTTz3ldQ3HUWy70aNHY/PmzTjyyCMxbdq0vI+2+I0ePRpCCCxZsqTg8Urtho6rH50Wrp/28swzz+CTTz7BnXfeiQsvvBBf/OIXMW3aNPTu3Tsvb7ld6M899xy+//3v46KLLsI3vvGNyDyDBg0q6XPvvfd620ycOBEtLS145513Avt66aWXvPWFmDhxIhYtWpQngl966SXU1NRgr732Cuzn1VdfDeRbs2YNPv7446LHIQhi14eEIkHEwDnH8ccfj3/+8595D1JA+bUrxLRp05BKpfDLX/4ykPd3v/sdmpqacOyxxwIAmpub86Jg7LfffuCce12Cmzdvztu/fohHdRtqStnuq1/9KlavXo3f/OY3eXlbW1u9GdzHH388OOe4+uqr8wSIeX61tbV57n+imDx5Mvr374/bb789cA7//ve/8c4773j1s6NoS6RZxmw2i1tvvTUvb21tbcld0WvXrsVXv/pVfPazn/VmTkfRnjGKX/7yl5FMJgNllFLi9ttvx+67745DDjkkUI6lS5cil8t5aSeffDLWr1+Pv//9717apk2bcP/99+O4447zxiTus88+GDt2LP7v//4v4CrotttuA2PM88FIEETPhbqeCaIA1157LR5//HEcdthhnuuYtWvX4v7778fzzz8fcN8Spl+/fpgzZw6uuuoqHH300fjSl76Ed999F7feeisOPPBAnHbaaQCAp556ChdccAG+8pWvYK+99oJt27jrrrtgWRZOOukkAMDVV1+NZ599FsceeyyGDx+ODRs24NZbb8WQIUMKukkpZbvTTz8d9913H8477zw8/fTT+MxnPgPHcbB06VLcd999eOyxxzB58mTsscce+OEPf4gf//jHOPTQQ3HiiScinU7jlVdeweDBgzFv3jwAwKRJk3DbbbfhmmuuwR577IH+/ft7E2NMkskkfvrTn+LMM8/EYYcdhlNPPdVzjzNixAhcfPHF7W22AIcccgh69+6NGTNm4Lvf/S4YY7jrrrsihf6kSZNw7733Yvbs2TjwwANRV1eH4447LnK/3/3ud7Fx40ZccskluOeeewLrxo8fj/HjxwNo3xjFIUOG4KKLLsL111+PXC6HAw88EA8++CCee+45/PnPfw50w8+ZMwd/+MMfsHz5cs/v48knn4yDDjoIZ555JpYsWeJFZnEcB1dddVXgWNdffz2+9KUv4aijjsLXvvY1LF68GDfffDO+9a1v5bnnIQiiB1LBGdcE0S346KOP5De/+U3Zr18/mU6n5ahRo+SsWbNkJpORUvrucaJc6Eip3OGMHTtWJpNJOWDAADlz5kz56aefeus//PBDedZZZ8nRo0fLqqoq2adPH3nEEUfIJ554wsvz5JNPyi9/+cty8ODBMpVKycGDB8tTTz1VvvfeewXLXup22WxW/vSnP5X77LOPTKfTsnfv3nLSpEnyqquukk1NTYG8v//97+X+++/v5TvssMPk/PnzvfXr1q2Txx57rKyvr5cAPFc5Yfc4mnvvvdfbX58+feQ3vvEN+fHHHwfyzJgxQ9bW1uad39y5c2Upt7EXXnhBHnTQQbK6uloOHjxYXnLJJfKxxx7LK8+2bdvk17/+ddmrVy8JoKCrnMMOOyzW1c3cuXOLlqkYjuPIa6+9Vg4fPlymUim5zz77yD/96U95+bTroOXLlwfSN2/eLM8++2y52267yZqaGnnYYYfFXqMPPPCAnDhxokyn03LIkCHy8ssvl9lsdofPgSCI7g+F8CMIgiAIgiAioTGKBEEQBEEQRCQkFAmCIAiCIIhISCgSBEEQBEEQkZBQJAiCIAiCICIhoUgQBEEQBEFEQkKRIAiCIAiCiKTHOdwWQmDNmjWor68vO1wXQRAEQRD5SCmxdetWDB48GJx3PxvUj6/5FvbdZwROOOHyShely9Hj/Ch+/PHHGDp0aKWLQRAEQRC7HKtWrcKQIUMqXYyyeO6553DEEYejb99GLFu2EnV1dZUuUpeixwnFpqYmN+waB0AWRYIgCILYcSQAgS1btqCxsbHShSkZKSWmHjQOxx33Gfz73//FtGmTcfVVd1a6WF2KHtf17Hc3M5BQJAiCIIiOo7sN6brvvvuw+uNNuOiik3H44RNxzNH/g5nnzcOgQYMqXbQuQ/cbSEAQBEEQBLGDZDIZzJlzMa666kzU1FThkEP2xfTpUzB37rmVLlqXgoQiQRAEQRA9jptvmY26ump8c8Z0L+0n156Du+56HEuWLKlgyboWJBQJgiAIguhRfPrpp/jJNXdh3nXfhmVZXvqeew7B2Wcfi0su+VYFS9e1IKFIEARBEESP4ifXzsT+B+yJ6dMPzFt3+Y++ieeeexPPPPPMzi9YF6THzXpubm52Z2RZoMksBEEQBNERSAAOmpqa0NDQUOnCFEQIgZqaKjz51E046KBxkXmuvPIOvPnGB3jooed3cum6HmRRJAiCIAiixyClRCaTw7AhfQEhIj/DhvRDW1ttpYvaJehx7nEIgiAIgiBgO4BtR68TYueWpQtDQpEgCIIgiJ6HlOoTt44AQEKRIAiCIIieiGOTRbEESCgSBEEQBNHzKNT17Dg7tyxdGBKKBEEQBEH0PPTklSio69mjW896vu6668AYw0UXXVTpohAEQRAE0Y1gwgZzoj/U9ezTbS2Kr7zyCn79619j/PjxlS4KQRAEQRDdDdtRnyhIKHp0S4vitm3b8I1vfAO/+c1v0Lt374J5M5kMmpubAx+CIAiCIHo4Qsb6UaSuZ59uKRRnzZqFY489FtOmTSuad968eWhsbPQ+Q4cO3QklJAiCIAiiSyNsNfM56iNoMoum2wnFe+65B4sWLcK8efNKyj9nzhw0NTV5n1WrVnVyCQmCIAiC6PIIWfhDAOhmYxRXrVqFCy+8EPPnz0dVVVVJ26TTaaTT6U4uGUEQBEEQ3QqKzFIS3UooLly4EBs2bMABBxzgpTmOg2effRY333wzMpkMLMuqYAkJgiAIgugOMOGAxfhLZCQUPbqVUDzyyCPx1ltvBdLOPPNMjB07FpdeeimJRIIgCIIgSoP8KJZEtxKK9fX12HfffQNptbW12G233fLSCYIgCIIgYinkHschi6KmWwlFgiAIgiCIDsGhMYql0O2F4jPPPFPpIngwsB3aXqI0U3epxyl1fwRBEATR45AyvouZup49ur1QrCSRgo2VKRaNi3FHhWZeUYz9kWgkCIIgCAOKzFISJBQJgiAIguh5UNdzSZBQ3BFYB8yyZp10MYbM5mFrJVkYCYIgiB5NIcfa5HDbg4RiO2FgYJ5QLDfAjSEOZcd0N+cJv7AALSIci+6PIAiCIHYlHEd9oiCLogcJxfbCGCxeayxGi0Up8y826QpFKQXA2h9P0tw30+LTS7OCYo8BAYGav7PAIlkgCYIgiF0a8qNYEiQU2wmDhXSyl/oe0wUtZVAESghIKTyBp5dLIZhPBNIC+2GO950FLJcCgF/OohZIdQB/tSscSTASBEEQuwSOoMksJUBCsZ0wXo1e6WGxIhHwhaJwBZuQOQgISOn4ohGFLYqmsPT2I3JqnbsPIW0jX1CI6n0oned4y8zdo3+giBnSpnh0RSNZGgmCIIhdAup6LgkSigRBEARB9DwKTWYhG4gHCcV2krBqMFqO9y4mZkxo0ZY84a4UkBAQyLEcJARsbsOBDQHHyxtGMOGtF9KBgGuNhIAjc551UujvwnatlSotqovb777W1sz8sZIBa6M0upujxjhKWXBSDFkbCYIgdg4d7Ye3FLr9Pd6hEH6lQEKxnaQS9dirtgHc+G0y19m2lowCgJQSQgKOBHJCwhYSjpSwpfqrhwGafrodKSGEhISEDQlHCjhaWjIbOeSQ5Vk4yMFhNrKyBQ588WjLTKB7WwtH4QlGx++uDohIEUjT4x3DwhEwxaOmdBHZ7W8uBEEQnUAlxN6OwMC69/3cFuoTBbnH8SCh2E7SiXrs0RD8USc5kOISSQakuYTFpCsWGXISaHMYMoIjK4CcABzJICSQ4EAVl7A4PFHpuNdoTjDkBGBLqbYRQJujvmeFQNaRyEqBnHSQkwI52MjChsOVtLSZjRwycJithKXMwUEOtswErJKOyMBxxaO2UEoICGEjygKpztwJWCnVSj2pxhSEwR8iK/D769Y3HYIgCIMOEX6MIdKi0BXo7jODhaRZzyXQY4Viv379wXm5/g99+tT1QU2fGtiOhCMkpFBCLwGBNBeoZg7SXEAKtd52lAGOMYAz1VGdc62NaQ7UJSWquITjikop9f1BIicZsg6Qk0pcZhyGrJDIOhayQqLN4cgJC7aQyIkUclLAkQI2JHLCQQ42ciwXEI45noEtM54lMstaYXnd2Ak4zIaQOXCWCEyYAdTEGCUcuVqGA4C7VkidBjCv69usZxG82RVwy0OikSCI7sQOCcNCIrAdApFzHvgwxooul42U3n1aCIGNG9eWv49K4oj4LmYhgG5m4e0seqxQHDx4MCyr/ZFVDm88DjP/tT+Qy4HlMkAmA7ZlK9DaCmxvA7a1QTa1QrTakNsdOC0SmSaOTKuF1tYEWrMW2mwL27KWEpnChpNzsLHFwtY2CWEL1LMcUiKH7Rlgu8PhSIaEOxO5TTC0Ogw5weBI9VFWRglHKKmWE4AtJDKO+puTEjkhkBUCbY7tWR+zLIMMb0OOZZCTbbCRQU62wJG2123tiEzRrmsp7bxxj3kzrM1xj0Ds2Ee1ipyCEwTRteg0MRiZnSGVSiGZTEZ+EgkLnCfyhF9sGUs6fukGFCltz7uH4zjdTyhKmsxSCj1WKO4ohw2wgFQSSCUhUQMAkAMG5uVj7ocDSAKoK3H/bP06sA9XwV68Dpm1Ak0bE2jeZqEtC3zaksAnrQyftAAtGQf1zAGzHbRkJVpt1ZWd5HpcJIOUQM61ROou7FY7jayQyDgSWSHRajvICAcZqQRkG2tFlmdhIwOb5QLWR9WFbSvxqIWkISp9dz221zUdO+4RiBGPxnpNidFlSEASBLGjlC0IyxCBnPMYARhMC4g+b/++kPOtgPlGj8IWwtLFIIvJq4Ym5fsL7lbYxSazdECY3l0AEortZO/GrZ26fzlgIOSAgeAHA9VQnzwZ6jjgH62EeOVdZJdn0bwpjY2fVmHzNoZtrRKbtgHNrQ56IYu2NgctDofFVEfwdsMamXEYWmzLs0i2ORJtTgOyjlDjHoXwBGSO5ZBjWeRYFhmrJdh9LVsDs7BN8Rjuvg5PmlEn7XZte5VQooD08sdbIkk8EgQRRVmCsAwxmEgkkE6nUVVVZfxV3y1uhfYXFn9WaDmYR5WbB5ZKK377h1uFhaeUEpI5ADLt3mfFocksJUFCsZ1UJexKFwGwLIhRI4FRI5EC0Nf9mPCVq2DPfx3bPuBYvz6N5haGpu0MHzQxOBkb1SKH1ozAthyDxQFHMLQ43J1sI2G7E2+ywp1A46gu7Kwj0CLsgIBs5S2q25plYMs2Tzgqdz62+92GEDlvokyUeAQKdF0D0c7BgYLRZcq1DpCwJIhdj44WhZzzPCGolxNWIk8ImiJQfTcEYhHhV0zkmUJOFpmI0a7xiJ2wj0ojJSBjBGFcek+EhGI7WbW1DoMrXYgSEMOGgp89FA0AGoz0z2cy4K8vhv3aany6LIll6+qwrUVi43Zg3VYHPOeA2zZaMkp8WYwhKwBHctiucGy1k273tZqB3Wr3RkY4yAoHGeTQytqQ41k1eYapyTM515WPtjaGZ1vHRZqJijJTtAsbKB7jWlNCtzaJR4LoPpQsCksQPFVVVYYgrPaEYTKRDIhBsys4bAlUQjB4rDjxV47oC+crJSxs4V3GrQzXkwSKRBbr8hSazEKznj1IKLaTBZ+kMbXShdgR0mmIqZPAp07CbgB2M1axjRshH3sFzUskPt5Qh03NDOuagfXNDlKODZ7NYVtO3TYcydDmAI5MoM2RyIokso4Ski12vXLfI4Q3/rGNtXl+IG1kVPc1Mt7YR1tkIq2P3oSZIn4fAfguekICEigg9uIEZUS86/B+aNINQVSWkkRhCYIwlUqhurra/dSgulqJQs64u328GPQtgv5xwkIwzgoXFoPxok8a38Lr8u9fpYpMRfmiT4ou0LO2IxTqenbovq3psUJx5cqPdmi8xh+2PI4Jx2xA0gJSCYnqhIOG6hyqq2yka2wkqwRSvRl4nQVelwSrS4P1qQNqq4H6WqCuFrKuHrJPnw48q45B9usHnPYFNAAYZ6SztWuBl9/G9tccrPq4Dmu2WFjbDGxotpG2bWTabGQFYDE1iabVScBxJ8+0uTOvW+xa17WPEo9tbtd1xhv32OpZH01/j7r7WsKBLbJlWiDDUWc0Zne2P3C5lO7svAdT+AEQIzDz9h9Dd3O829mQ2CY0HWEpTCQShiBUorCqqkqNHYwVhDyye9h8jhQTgtECME78icA2CicvTUoHQggV3MFR371l97sjdB54aeE87ZqUYrjHKcWS2eUoOOuZ7jmaHisUP/30U+yIjySZfR/z5X7gTN24LMZRZaWQ5CkkuT/yJOOKpO020OZsA7ANnG1EkgNpztArJVGbAqpSHDxhoSbN0KdaoF+djX69W9F3goQ1ui8wdBDkwP6QvXp3xOm375wHDQK+PAg1XwbGQH0AgK9YAfHSUnz8fAqrNlehuUViTZPElm05VNk2WjKOKyAZWmzuOhRX1sdW2x/7qNz2KAGZk8r/o9l97TDbc99jCkhHZiJDGIYFJODfzMwbcmwIQyDaGlnKZbMDbn86hZ0xnqgTb6w7o85IjHZNdsRayDnPE4TV1dV54wf12MFCFsJyBKH6ni8G/fuOMPKGxZ/KY9s2ctkscrkcMu5f9cl4323b9rcL//529Ddfape397vpfr8faQtIsigWpccKxR0l62zHiq1BsztjDBZTtxiLF+6qTHDlxqY5B/AWQGgn2ULCYgwpC+CoRu7fgEAL0vwD1KSWoyrF0MYsSM5RW5VA31qGQbUS6RRDTZqjb52NYSO2oGqfemDsMIgRw4FkslPrQowYAYwYgSGnAEOiMrS2gr+6CJlnVuCthb2wrpnjk23A6q1AokrVRauj3tiFBLKCwZESjgRabNcHpDGRptV2kIGDjGuJbLNaYcMOuPKxkYEjc64FMuN3WbtjGx1PRDrexJq4bm0gGI2mEMFINZbRDY5QtJpoOtLlz04XVxUxgnaQFaNI3PKim3fDh2RXoSPc0DDGUFVV5YrBWtRUV6O6pgbJZBLtEYJxeC+aEihd/AlPdElI2HYW2WzOEH455LJZZLNZ5GzbE4AlR2OJE3Q7wSLW7a97W9Ks5xIgodhOcnYLPrQ3KZHhdk9y6Q9a5uCwpO/igLs3JXV7YmDgSIDDYtwd4uzfDDhjsNxPQv/lDOmcRKKVwWIOLAZkLaBtM8MmS7pWOgaLSaQWVGE7l0imP0a/+nXoV8vRq5ZhSEMGgwc1o2ZCDXD4gZCNjTunsqqrIQ79DJKHfgYHGMmsaQvk357CJ6/Y+HB1LdY3c3z0KfBJG9CQVF3YrY6yRDoSyDgcEkCrbSHjWSElWu1G5IT0XPm0ySxsCN+Vj6XiYttMjXfUYQzDPiElHM+tjxkrO68r2yW/q0XAtFiaE2/8jdonbLpqR3R+uTq5+ymv/or7OSvpYVbqpCcg8gFM41TLo13i0K33dDrtCcLq6irUVNcgXVWF8MziHRGF/m+7sBgMWAGNbljHySGTyaKtrQ2ZTAZtra3IZNWyEK5wNEPzFS5M8TydQM+4ZmVFhXZ3gYRiO3FEG9bgXQC+w1EphXcDYrDUAGgAjBk+sVwRyWCBgcNiytrH3Qcel+qmxqUFSyaQkAlYSCApk0iAI4kEUsxCmltIWRwpzlBlMVicgUPCYkAy40BAicntnwAfutd7TZKhKl2FtgcZGn/+OgbWczTWcvSqBsYO/RQNe3PwSaMg9h67U+pQNvYCzjoRu50VnEzDF78N54V3sPFVgcUrG/Dpdom1zUoMNyQlsgkVmYYBkODYbvNANJqMU+XOzFYW2owQykIp3LCG0gn4hLSZjTZrGxyZC0ysUZZHYzKNEdvaFInCfYiEJ94IaeflLVdIdeVxP/mD6Uvcrt3n5BRVzFH79jeJm92o04Ois+yJT8GChDYpLox25Qdze6y1ydDEkqoqJQoZ5ygkCtXx8ieWmBTrFlZ5/Fm9UZZBKR1XCLqCsK3NE4a2XcIkjw4QIrvyNbMzkLaEtMk9TjG6nVCcN28e/v73v2Pp0qWorq7GIYccgp/+9KcYM2ZM8Y07ECkz2Jpd6353bybGw4MhQiQybVXk3jJjSjSG8zBwMGbBYgkwWLB4EpYrFdOogSWTSNoppGUaaZmCBQsW40iAIckszyKZ5AwpS32vygGJNhsJZiOzNYumjf75vPKGBfmYhTZrLXrXbMCwXhJ11RaG9Mlg4IhtSH95H4g99+iEmsxH7LsP2L77oP+3gc8b6fzNN+G88A4+fK4KH32SxpYWho3bBVqagZoEQ11CKkuj4LCYcuWTFSqetpRwfUOq8ZHapY/q1pYBn5AOs5FDDja34cCGgKNiX8PtptbWRvchIiAC1kl/jGTOeyCJCItkHOag8ryxlB1AIWtKsWMUXd/BQjh+fdQMT5GnC8Llyd9fUHya6/P8dwKRojLyYd1JYjL2eF2McoRhOp1GVbXvcqaqqho11TUqxKrha7C465koQrOJI8UgUMg6mMtl0NrahrbWVt9C2NaGXC5X8jlGl6zrt+Mujyg0mWXnFqUr0+2E4n/+8x/MmjULBx54IGzbxg9+8AMcddRRWLJkCWpra3daOaR0kMk1uUvRIiD6gcwD6/PcJ0Ss16KRMQ6LJcBZEpwlYLEkEiyNBE+DIwnOLFhIwpIJWDKprJFOAulsGkkkkGQW0sxCknFUJzhSnCPJgZTF0GIDSe6AwUGuWeLT9UBOAikOpKqq0XLvKgxoWIP+9QyNtRzD+mQw7NAc2NS9IYYP65A6LYYYPx5s/HiMngmMNtL5W29DLHofza9lsGp1DT7YXIWtrQIbtwlsagV2SwEWV5OKhASSnCErGHKCe2Mht+eSaHOUaNRpjtud7UgJISS0PJRSy0QHrnMe5FgOGdamRCbLuKIxFxCTQFj45Y939PM5ESJz5/ksixJ84etbFhivWUgAxq0TpRwzRkSbefPLWWjYQHhSU/w2pqgsKCg7SkzGWJy6YujKYsIwlUr5Tqk9n4QppNPV/raRzqmBoINqf71J9AuK2bYR1kG14NabgOM4niBsNT6OU/rvjsRf90I68RbFHZ3Mct1112HOnDm48MILcdNNNwEA2tra8L3vfQ/33HMPMpkMpk+fjltvvRUDBgzwtlu5ciVmzpyJp59+GnV1dZgxYwbmzZuHRKJycq3bCcVHH300sHznnXeif//+WLhwIT73uc/txJIIOGK7t1SqtSdfPFoF1yuRqNO4Jx45S7h/k8rq6KUn86yRCZ5WApIlkZRpJGQa6WwV0lIJyDRLoIYnkLI4kkxZIKssNTEnyYFExobFHOS2Aqsh4UiGmoQEXkiCpT/EwPqP0L8eGN7HxpAh21A3uQ7ywH0g+/cvt1LbhdhvH2C/fdAwA9gH6gMAyObAl72P3GOLsXkpw+qNNdjQbGF7m8CKJomtWYZqC0hbQEsC2GarcIYJpiYaOa4VUo911kOKHOlaKd3D6G7uVlvP2FYTk7SQDJTVXRYQkEzkp7ljXoX7V0JAIN9iXVK9RLn2KbYN4oWYKCTSIkRjpPDLE3fB7cxtJPwhHeH1UYLRHx/q5InCsEVXj0ENpono/YVEpRaU5YnJKCEJRLpk8jYqT0S2dzJOe8WNPp7ePpFIhKKUpFFVrf6aUUjKjV2cP8M4fA0Vch8TFoSq7VtblHXQFISlWghJDO46dFbX8yuvvIJf//rXGD9+fCD94osvxiOPPIL7778fjY2NuOCCC3DiiSfihRdeAAA4joNjjz0WAwcOxIsvvoi1a9fim9/8JpLJJK699tp2l2dH6XZCMUxTk7Lq9YnxR5jJZJDJ+LEom5ubO+bAUkKKbDCplBuIjLiZG+Iw//4ftDAqLMPSyMFYwlvPDDEZtkRqIcldS6TFk0ggjQRLIy1rkLRTSMoUkjKJaqSQZBxJZiHBGaos3wKprJBAVTYHa5uN7BaJVQBeY0BtKoHcww54agn26PMOetUyDO6Tw+Bh21B1YB+IIw8tXkcdRSoJMW4crHHj0A9AP3NdJgP+3nuQi1egdck2rPqwHmub09jUwtGSFdjWJtHU6mBLm4SU6pz7pJU4zDgctpRIcYYkV6KxzUlgW06izUkgK6Ry+C8lmDsLnjGAu02vu8KVdVI9yqQrPh1trZQSQiorJqDzRovOOIqtjxKewjien+YKIiby8pnro/YbFqtmXoGg4FJpQVEsPDHtp4vQUA8JJ2CxldJcdkJC0Z+kZK43rbdxYjJqUpNvhdTbJbxyqBcLfW5xIlt99+4KIREZfU8RhWfCljn2rZiFkjGGVDKFZDIZ+0lXpcG5+ZJrhqYz9h8od9hyaOLAE9GGNdArW+AcfTHol1ulZdoyATHY2toaeB4UOm+iByAQb9Rv52Wwbds2fOMb38BvfvMbXHPNNV56U1MTfve73+Huu+/G5z+vBlXdcccd2HvvvfHf//4XBx10EB5//HEsWbIETzzxBAYMGICJEyfixz/+MS699FJceeWVSKVS7SvUDtKthaIQAhdddBE+85nPYN99943MM2/ePFx11VUdfmx1M2mHJ/vIRAdR3SkKc8as4W6HmQO6ObR4BMzxkfpvUEhynnD/+tZIy+3CtpAEdwWktkBaIolqpwZJmQx0YddYFlKcI2VpKyRQlZOwWA5JnsM7W1QXbpIDNakUMn/PorH2GQxsZOhTxzGodwZDDsmBTxkDMXpU2XW5Q6TTEPvtB+y3H6oA7Ol+TNjmT8E2bgTWbYT4YAOa3rKxZXMKn2xNYfP2BLZmJDI5iW1tElta1bjHnGSuIUh6s9WrEqpuktwXBBIqcpQeN6m6vOGJRd39rQWkFpUmcUIwTidE5Rem37eA+MvfRj+co8RkUOwZ+8kTt0HRaVpTzf14AtEUcHodnEC+wLJ0IJkIikfmi0fp+st0vIlGbn53shKHLwoF40FByUKz2qEmr6k0jsBTR5+295P192XqomD1CP+lUecNWe30vrz8UcQfIADnvKD40x/L4vn7De4pvwhh8VlA2MZHD7ER7NKPulbV+lw2lycI29raYvdNYpAA3K7nmC5mKZTGCBuX0uk00ul07D5nzZqFY489FtOmTQsIxYULFyKXy2HatGle2tixYzFs2DAsWLAABx10EBYsWID99tsv0BU9ffp0zJw5E2+//Tb233//9p7qDtGtheKsWbOwePFiPP/887F55syZg9mzZ3vLzc3NGDp0aMcUoEOnz8eITjPmZ96xdcg6BjDuFifaAmkuM0d3Zwe7slV3thKcCZ5yZ277YyE5T8KCOy5SJlHl1LoTalJIIoEankSKc6Rd8ajGQaqu3VQWsFgWbdskNm9UIillAckXLbQlVmC3+lUY3MAwqJfA0EHb0DghCTZljPLRWCFkn96QfXoDY/YCDgMaoT7DwxmFBPtkE9jqtcDmrZBN2yGbWmFvtGFvF8hu58i2WshkLGzPJJDNcWRshqyjZmy35RjabIaMI9FmM+XqR6jWdSSDI/y2N3tDAsIukI7IdHOFiMijL2cR+q7W+UI11Knnbx/apwwcz89k7lPI4HrT0qrPUbjdhgK+ZVWPDfUlm/S6873vEJBMd94bk5GYhITjz2iH8PN71kjhWSIDrpK8fHqd8ERd0A+nv6zOS3g1FNfFjYiu9ryalQKcK7+AnHP1nTN32U8L58nbhjHECs2CtDOaVeS9Mvqely/ifIuh44g8Qdja2qpczhTdD0EEkQ4g4yaoO8Dy5cvRGHIjN3fuXFx55ZWRm9xzzz1YtGgRXnnllbx169atQyqVQq9evQLpAwYMwLp167w8pkjU6/W6StFtheIFF1yAhx9+GM8++yyGDIl08wyguPrvaHbk5hTZBRQrRt2bLGPqiMbsPc8K4Vk1uLEcFpKuWx7D6gjD6miOfQx2XyfyLJBp1CAh0kg5KaSyadSiCknGkeKWEo+cozqhrI9JribKVGUFOMsgt1Vi41rgdQlUJznkYwzZxHKM7P0RetVx9K8XGDpwGxr24WBfPGTn+YAsBc4g+/VToQ8NEu6nakf2LSRg24BjA46ajcOErZ6djuuU102HFGBCAsLxlZoQ7sy+cJrwtlH7cpR6l1L9tR14qs5x3L9SjdsRehvXp5xw8wmhNJOjQoXBhlZ+7nbujdnx33OEzaC0FlNFFAxScAjB3GJyOI4FIRgcyWELBkdwCMlgS/Xdlhy2gJvGYUsGW6hfgi2Y8qnr5rfd085JeN9tfcpSWXdtd6Z8Trjd/1KNlswJoRzjA8o5Phw1DtUdU2ozGwIqQpBgjhKnbthJoR29wwbcv8rFih89SC2bYlS1j/cdvuCMn70LBLq5o7po4bZLsck2wQsxfx95GENoCu6v+NhLIaQ3hrCltcUThNrtDAMjIUjsOEW6nkeOHIlFixYFkuP0xKpVq3DhhRdi/vz5qKraobt+l6PbCUUpJb7zne/ggQcewDPPPIORI0dWriwdfKMqd38MLCAQtfUxuBfudm3Dz+duawpJR2YAY+KMI4LjIJE39pF7Fkiv+5qnA+Mfk6hGklUhKdNIOikk7RSqM2mkWDIw+zrJGVLc775O5ZRTcc4cvN/sW51q0xxsfgK4ZREG1HP0r5Ooq2YYNXgbGkc5SEwYBLHPWKChvqx67NJwBqSSAPzoOoWukko/Olnob1nkckA2B2bnlDi2c0DOBstk1XImqwRsJgtkbS9NZmzIrAPkBGTWgWyVEFkJYQMiC4gcRy5jwbYZHMeCbXO02QnYQgnPrLDccadczYaXzE1nyLoi1JFAVihxqYVlRvii0pZqxrztji21hbJf5qTjykQlKG2Wg80cJSiZA1tmoOybqpvVltmAkIQ0QlFCusIzX0T6wlFCwoJht3X/OpDSsAbqsaOxL6LlTaTRxygHCSCbzQZczui/2Wy2yLaVvtKJXQFpx1sUpQB4gqOhoaGkfS1cuBAbNmzAAQf4YSUcx8Gzzz6Lm2++GY899hiy2Sy2bNkSsCquX78eAwcOBAAMHDgQL7/8cmC/69ev99ZVim4nFGfNmoW7774bDz30EOrr6z1zbGNjI6qrqytcup1LOCxgbPdOxPig/G5sN68eBxnqyjatj54/SKYvH3Pcoz/+0ey+1tbHJK/Jm32dlEmkkECKJVHNEu6kGTW+rybBvJCGzTmJJLdRZeWQawbWMvUAf+UtIJVMooU3gSdfxcjeDPXVQH0Nw6Dd2tBvgg1rvyEQe40G6uraWdtEp5NMAslkngTIu6pbW8GyWSCbVcKyrQ2sLaOEZiYHtGSUkMzaSkRmHIgWG8hKiGwWIgPYbRx2jsHOWrAdC5lcAjmHwxYcWYcjJy20ORw5wZATyhrZ5nBliZRMhZQU8CyWjmCecFTL0hWPCSUcpeNaJW0lHJkDW9rIsbQnGgUcWEjBYTYs6cYuhw2HWV73N5cWhFRCUzIGSA4GAcmYOzxAQLneB+LFnghN/DDSvUrPv5e0V5rlcrk8IagnGcaPT/SpSGz0IuzKQrWc+t4V6iH2Eizz1I488ki89dZbgbQzzzwTY8eOxaWXXoqhQ4cimUziySefxEknnQQAePfdd7Fy5UocfPDBAICDDz4YP/nJT7Bhwwb0d72GzJ8/Hw0NDRg3blx5BepAup1QvO222wAAhx9+eCD9jjvuwBlnnLHzC9RFyBONgZXFrvgIa6S7DfO6tpDXhS2QybdAGuMfze5rbX1M8FTk7GsLCSRYFVKyGkmRRsJJIIkkqtqqkGQWkuBeNJrahDuBxp2BXW1xJDMSnGVhMeD9ZtextgCqLIA9k8A2tgn11Z+ibx1HQw3HgHqJQb1a0XtAK9IjU2pCzZDdgZ04TIEokWwOyOXAchklDFvblEi0bbWuNePmsYGMDdlqQ2ZtyKyAzAogK+G0Sogs4OQ4nBxTFkbXupgTFjK25VkXlTDkaHM4bAnkhPqb0V3a0g8Ra3Zba+uicK2K0h1b6Ujh9tz74ycdd3IMjBQ3N2CMmXQ7pAH4k2yi/ERqkeh3S+vuau1IOmpmMPLS1brycRwn0jKYyWQixw8C6j7VoSKwWEzk9tKBrogCu92JIqtD6jkqxrbs3mKxmEWxHOrr6/Mm1dbW1mK33Xbz0s8++2zMnj0bffr0QUNDA77zne/g4IMPxkEHHQQAOOqoozBu3Dicfvrp+NnPfoZ169bh8ssvx6xZs3bqELow3U4olvIG2tPZsS5snagH3Js7Do6DCndfawFZqPs6a3Rfc66chzOmwhpynoDF1GxrNSbSFZKGBTKVS6EqW400kt7s6yqLI8FVFJokZ0gbPiCTHLAyAkAWmW1A0yfKDyQA1CUk6tNJCItjq/gQ1emP0LuaoVe1RH0aSKY46qsFGmtt1DdkUDtSIjGsFzBoN8h+fSAHVK4roEviOG6XsQM4Dlguq9JyNphel3O7jG1bKaxszs0v3K5kG9J1XiltB7AlZM6BzKmBhdKWcDLwxjcKm8HOcjgOh+OoruWczeHIKtiOP64xKyw4Uo9ZVF3MeuyikNpqCH8cI3wfmg5cUahFotHd7Ij4MYwCAjnYEEwJQ4crS6DjRv8RUo9pdCCFyq+dtJvjF4V0gmMXhVO2OCwkDIF4cWjbNnK5XNFP3H25qBgsS9y1cyLNjlKwiGWqCaOeKmYp7cg6Z6IEQ0TXRTjqE0VnRE+98cYbwTnHSSedFHC4rbEsCw8//DBmzpyJgw8+GLW1tZgxYwauvvrqji9MGTDZw5RXc3OzO4vJQjtHUu3ytO/GHuE3zXAUrjbNd+MTNfvaF5LhCTRqOclqAu570qiGJXU8bAtVLOWFMlQCUoX00yENLQZUWQxVCSDNGRIcYJDeBJskh9e1yKFmZ6cTQCssbJUJ8ARDfbWFfjUc6RQHT3CkEgz1SQe1SYGqpEB1ykFtVQ6plINkyoGVFuApwKoGWIIBSQaW4GApDmapg7KEBaQSQIIBYID2SyfcGbO2O/kkJyCFb86SOXWzlo5ehjspBa77B38SCfS8FpsDei6LYJCCQUol/IWjJkgJwd00N10oUSWg0hzB3MNwt3hM7QsMjivAlIsfBgdqn8F09brh5ZFqQopbTDcv/A+0+6BgWmDZyOe5FpJQ0ksq10Nw/0p3W2X1UxZAx5VU6rtwXaa786I9R+g6Io/uHlazqx3YbhexP+bQcccUQmrroOONPZQQEEJPalFPJQHbF13mGERz1nSkKFRbx1kMhRCQQkIIEfhoIZjNZSMFYCF29D5R2n5KEYedJSCLKIVSwnGWPEmos4mvo6KCtWDITwfSM8mp67GpqankcX2VwnEcJBIJvPu1kzCopiYyzx/fex//qGnAY489tpNL1/XodhZFovMJ39wCN5JCA9ljuq8D1kfP8giY1se42ddRE2i0gDRDGXKWDHRhe6EMRRIpJwUGjgQsJGUSFix3LKSajZ3gzHAmroSkxdWtlTHt/1C5E1GTfoC2JoZmS1mZMq6FSQlNhhSXSFtAFVfiM2Epx+dgDK2So0UwtAqOFkd1ZzKmnA5bnCGZEEhaDJwBLOxkGEpISWlBwIKU3qRi468fNUZPSFaTINztXcGkm8D00whvP/53fT2oCUW+mxp4+9Jp/hrD9uX5S9RiK9+Rtkr3BE3AR6LMT/MmZgVdzIT9MJqRW7zzCcwG9h/QUduY3b3mtmHXNiKcL1w+L10GtouP+hKdz5wo4jg2hJCQ0lGCz7GVEJRKCDrCCSwXDP1YwE5Qmi/EIsIvT2SEIk8ViVQVncc8VseKxELRj/LcFjEg1sWP5wfTJGrfVueYrkyKhJL1skXmK9weQrQaQrH7IRwG4UQLZSHIkKQhoUgUJeqtuKgrn5CfNqlvTNIxthV+uiEU1M3TdRAuTWukKxZFAnZo1rUaD2kFhCMH97qwLTe0YUIqX5BpWYWkSCLtpFwn4ioKjW91VB/mWiITXIJBCSwGJSSTzCy5Fmaqa9uWQI5DiU5bR2WRyDoOMgJocxhsIZFz/GpTx1J5LXffnCHSz6Ef3SVfJGr/saZIdAw/iGbeOP+FAtJzlq3bX4+oMx1v+/Y26e3L9GfoLRsCUf9T+w6GKCw1EoumWAztqJCAKk/w4VwoNKCZP08whsILBkMH7mCYwIh8irC/xZDQCIhgiXhrkijSDRm9Xb6AjI7IAuT7cg2m5Qu9fLFSqqApLU8poVZj84SiDJmReIDg9RKMymMSjjAjilhNSxGR7amP4qFjC2/vjldnOQCFI910ZYStPlEUer/qaZBQJNpFUfGYZ6mIct/ju+6JnjRjiEQJ6G5rUcBljxfv2h33aC6bMbCV1TGBBFfWx6RMq2WRgCUSsKSFBCxwMFjuX8YYuHsLtRiH5S7rMH0pyxeYCQ4ktHUyFL5PjXMTXkQW0ym2xZiXl4eexyJCAOYLPDXjNiwAHS3upG8V9POYDqy1ePPFoPor/GgqLN86WKr4C1sGw+JPhASSKl+08DO3C6SVaKGJikXN3BnGgP+w1BFY3AU/HxwvXUoBCzxg4fSjthgCk8UIwVC6FggMEfURGZnFEI8BIVaoLvKtRfkUEgwhR/6Rzv7z0wrnLyYko8tcing0ibtGwtbXqJeFqOW4fPnHCa0zb5klicLSKSz2yqv7uDywBYTTUkIXe9dED62JhiyKGhKKRIcRd7PwBGSZ4rGUCTOFxjwCyBOROp/ZfR1wKA7LnVijLI8MHJxZ6i8scMm975ZMqLyCw0IClq3EpRaWFuNIuIP5uSsqPeHljoczLXSqvMytBf1XYT5Coqx6qg59y17YqqfGzEWLOrCgBc/PF0ozxJ0n7Iz96IesGWcZgBpPiaAwi7PcqXXlPTDjREJct2Sc2Ihbz0xBxcyy+3Gd/Utcld1CvvVRfw/Wg8iri3D+SMtmQGTkp7VXdJQiLuIEX/g3ptJCLrVCv02Vt5Dg9OueF7VylUecVVmty78+g8Iw2rIcbtuS9hUxi31HKNSGce2j13EE8waFY7CddNlzuU92qLyVRDn6j+t63smF6cKQUCQ6nUJvmyxvVeiNPhC3Vq/zxzkyd5JEVPdXoW6vQo7EAXjd2nqbuAdc2FKphSbzxKWySeobM3f3GRBhMS+ucUJHbxMl1gD1YDLFWuAhJoNdoip/fpdu1IOs1IdgoKxliL6oB3/cAw3whUNcu0iIvO3D2+j85rr8cuULy6hxf3HWznD3tLl9Xhd0GQIkaj/h9cUo1OVYTOSZwkH/BvLyub8HvT/9m9Drwr8Lb1m3ieSBdHNd5PlEtGHUdSngRFrzBBOBPOa2whxKYMYSj/ndqbRg+xVrdzMtbtk716jfS8R1baZH/R4KtZXOo9fn3cdkDq2ZjyOMAN0D4XAIJ+Y+K3bsRWRXgoQiUVEK+n8EgjcgTzTqGyf3tmfmzTRg3eGA0XWobtSWJyLUjY8HurnNLkO97ACBh6H59q3zCHccpEqzvJtw4AZshk2L6FKNEythosbemQ8l84EUJ0LC24TTwmUsvXutdKuI+WCXUgQfdIbY87qDi3Q9spCF2dwm0F7It1TlWxLj2yJgVYG2IlruefgvNKoL2k2Ho7qn3e5hAQEG1dUdPFcR6NrW3dq6jvS2Xh1J4Z2P3le4bIXOKUqEh+srXG9x4tAU3WGxEScMo0ShKQbDgiX8vVwEBCzj0WcKPkv6L3H6GFo8evcQCAip1gas68xIk/62ut3VtvHtDsBre405vCEOFhLOUd3HcS9KhcRhuL3CIl6l+xGjuiN6QmD0yp1alC5NjxWKEyZMhGWVMkaH2FmUNCIkb/C9eVNkMflM8aHTLWOZGw9Q5go/5qe5y2pt0CKpj6lnZMNI8x5GTHdXB2/ScV1f5YpFTwx4ok/6ohDSSy9V6IUtwO3tCjbbIzwUQFuAuVtHHAxgqgtfW3pVTaoJSqo1LHDpDg1AQq2XHAkkwKQ3OADajqvaELDc7xZzvfoxd0Y7VPtzVVjo8aaqnMHylypLzJqSxthRc5IQpDkBStW2cPP4s62N8aFeu+r9IjD0QB/L/Guu88/BaA993XpDHJhxjev68cfl6vrQdcfdeuNMz9rX9ay2t7hb98Z4Ww7l8UnVu5vP/c5ZMF0ve+Uxfs6B7yidwPANGfzueQEwlrV3AD0W2Gsnd50j4bWl3p8j/fYx3TXpa8FrVy+/9I+ry2B4GzCXw5i3OP8+pJbN6xvw68wbU+22n1nfui25txxsFwv+d72/xZ8eggXb0xAiA8dx8MYbC6ML20VRvlejryKa9ezTY4UiseshIaOtkmYeKd2bpzu7GoB+pIbf6s03/XKP6b3lR4pE87v/+LLyjlX42LoTW5cZTIlHDuGfm5ceetoYXdelErTCMU/s6TqyzJCOUA6JlJVCiTwmGSwkPJHHpRrPaUmVx5IcCWbBkgDXk4UYQ8Kd4OMvKyGScB9YCe7OFIf6ricQWcbDLsGkK0okLHdZPfzcvwxgEL6IZBKWtla7y0BQpOiv4ee4P0udeesEmCsgWEAQOJJ5wkMJCu5/d9f5wsUfz6sFi96PPkZkgfIbEjrInycUjPP0hYN0RYMMiQcJiwlYkGqdV8fqLDmXSDAJ6DQmYXEJDgnOhcrPJRhTywwAt6QrOCWYu47pS8xLB+Cme6fCg+eVh1EX+n1HSgCSGcsM+n1K+wuFO8lB+Rh161xw17eoOylNqCvEcX2QisAHEFI5d5dgnrD0/JC6x1XCkvnXjHEtAMonqdnGgWbULzXwpzcFhbZbx14bBtvLYsIV836bWBDgXHrrzfayLCfQVlIC1R8Owsut1RCie858LmRRJIOiDwlFosugxFqxTDJkLdTdy3ofrnAL5AvmCe5OC8dgKcLp+fnKx7SU+cR0pQa63oqIX0j4GiEo/kT+INCCBK1OuntQWyt80QfAs+7BFcJa8GlbYEK6glALR8aQcAUgA4PFgYTrP5IzNUM8YQhALQKTrpBLcNWKKQ5YXAk/i0mkuHoAJphaTnIl8hJuukoTgQehcnekhIrFoR6Irmhh3BcyWpgEhIuqlOLIkDiBK/60UHG/S+mLEd/BueHo3M0PKKEhwQIPMemty08LYwpeLQqZKyDgigh9vpwL969edvNwVRc8ocQb4xLMgvcBd79rP09cpysn81qNM4sDVsI3YYEZ27iVrU2RYMocqZW6Pj3OzZML1b9pNjTsiVp9e+mGWVAKT5lL211nKzUhHaF8qTh62XVyL+CqQEDaruXQdttfO7t321A4zFsudC3oYhZqS92enuWVG9cpC7aVcuOa315gAEuE2ivhXgNJruo3wYy24n4+R2L0+gw4774yQkgl/qMoVO89je7bwsQuSUeIxeh8fp5oqyIiLYgSQk242cEZlhotxMIiLIw3FtLrGuzYYRIs4iaYPxbMt4RyMDDBA0LQF4au8AM3uiS5JwC9rkrDKuhZ/bhar6yE8ESiKQwTXFkAtWUwwYCEKwY5gycUtThMcAGuhaIrDhOWFo2uYLRcEcQkuOU+UE1LlqUsJ2BBy5Y3GoEhcKEWuzy83vuAmEOgPzls8dLbeQ8sLTZD4jPyeFHta7w0eNaosMUOiDxnXSf6u/rL3P5It6E4wCylNJnXr8k8Iajy83xhaPYz5wlEwBOJUQjhryt1QoU2uQmpthXCKz+Epc5JSHUuQqqnpO5Hht+fzBw3Oo7Xv+wKRzdNSgA2THOxEpvw294IuJN3PWhi3TqGX1q40a5RbaWvX8Y9MQiL+21luYJQvy0kGJgW5xYDLCso2oWDJO/edjfhcOp6LgESikSXY0fFYqA7uASxKKUFxtQ6c0IB4I9NVF24fne0dGcQhycOMAlIxqFEaPTPSw0S9610wXVBYWgKuqhB/VECudQxjgHrofS30WJQf9dl0JM1TGGoxwHqMW0W4954Nst9NjFXJPo+J32k29i2fnC6OkJIFfXG4mqdKTiVmJRedzN3u5MtV+Ak3GUG9y+TSLjdcJb3DBSeJU13rbmdhOqZqUUjfIubts4A2nIjPfFlWnaAfOFoirQo4qwXUSLB3FN7H2Vx5Qt06+oyF1iX3w3siqmo/YSPG6qTsEEwT3xHnWxHvL9FCbG4LmsvkQXWqfUsbzu1DfPWR+0jcNh2WLEC15bRLmYbmaIy+FJgB/OERae5rSE8AUDmgLVtQyDigiV3Awp2PXdvDdyhkFAkuiQdKhYDRFsflXCMFotgelmJy/AsRTDuPzEYPLEoIMGlgGTuUaWeGaksmeEJBUC05TDK0mcuxwm+cgiWgeelAfAG1+satOGASWaIWwbbHahvikfAFYsITooAfHtu1KQSndczTrl51UQJfx+qW9tv1fCECX2cQpMm9Hcg1NvpCkf/fPwHsJ6oodO8Z68rUqG3MfLp/avlfAuf3sZPz39aha9qDllwfRSFnoEiYg/h/F53t7es8/nbmuPuzDyB7cLXWOhA5U2jiifqV5EnTPMm/0Tnzav/IvuJOlZcuUpp71IIXxOl7rMcbWRLjsVbGITMlrFV18IRHA51PReFhCLRZekwsRiTR88cZcx1meOJRX3skFiU8IeNm+G8dNd0SCwKZqsSSAscAoIlYLnTTUw5aIpaYYwx5LAgmd8nqUrCESd2AXgRPqLIm9BSKiXeL3kpGWXob6HDliB6o14GAk6DAyKaBdabAtdcDs8ENowskcJXb+NNhNHHM8Svvz8EtjHFpc7qCUnGgMD+zHOMJixaohARdZ8v+ODPrA6k+Xm9EI8yOJtbz+QG/HCSetavGQ3IjBvui0n9MiK97QDkfffLHX0hRV2LgWsh8GLkt6lap9Pz21t9D77smD3AZj790qO3Mbf1j53/IgEE27GcsdEywgwWbu+wcPfbQAbSzfZCOK9Uo6GXi48gu+lEFkBNRIoTiqKdL927IiQUiS5NZ4tFtbl0xSIgpXab48+EDotFtV8eEIvKlx1XXZeuP0DPRyOTABLg0la2RJaAA1sJB6nKF/W4k17XkRYuFoRnxeOecIyThkFfi8Z3ph/Gpo9E44Esnfw0z7m3TjNmWxvHinLVY27v7bNozGPzwRV9HlHLKn9xFRr38A04nDa/s3zxGRuSznAPxIzu+uC6fHdJvqVYC5b8cawBn4eRIjl+LGtUe4fbOtjO+W0svYF1vhsm7YLJbEvfd6eEGV1G+RiMuwby2zv8RtGxUUvMejXbmgXzeu3sS3vTOb95PQSuhRKvA5UevhZUapiwAI4WytGur/LuByX8RuPaVKdl7a2QMiZYcjfAHBYatY5QkFAkujw7KhYDeTSMwb9F+N3KcW5ztFhUDnCZsi66lkSdpgurtpGeNcm0LloSsKEc/grGoW9HkdY4acOc/SygxxPFT4SJE3wBASDdb2EBAESLADddO+8uKgJkvijwH1imHSkoEPx4xeFbdOhW3hmDh3ZwRruidAtEaVaijprAFBUPu7w6zrfmRQ2e7PqP1s4oYcGWjGzn/OukmGeD+H25lFD38RGyYqRSgX12/ZYuDUfGdz0L6nr2IKFIdAt2RCx60VvMPXgxAJmfz+iKjrcsAmHBqMqn09zxi243XNi66DCAScs7prYsRQ0HZ96kGI0/irywZSHGEgQAUngiUJVbBkSg3q6QCDQtQIUEoM7jU9qg97BT9GBayHqXZ90LOkoPb8/ytkdg+0LExeQNW8TUQmGxbG4XFMxmKDc7sF5fs0VFW3sFW+C3E7SgMhh95uCBNjLbhukO23B7hJzYmw7r85yxAzAd1+dZ47yCFWizPGf25VvNSnkJim7T/Pb0r43A7Bf/a0lCPP50FaFr2qwvxoxlv20UVmjZ/I0U/n3ZTgscu7nbCkfV9Rz9ZKFYzz4kFIlug74ZFRSM5U5w8fKHrYvBcYtaLKpN/Ly6+zmyS9qwLmrByAFI5pbEHbvoRITcUtvn36l0F1VYcsV1MxeK1hJ+QJpdSpEiSIc1hDvhhzHEhdQzCZxTKMpNOMIN5wlfWLhddjp8mA4Tx2HBjNhiyYTRlcuRgAUmfVc+XHqxWqD3Gh6HqMpj1nO4fo0q1X+N8XT6nzm2TkBAMAEtzSXTkl2JCbXegXAttyoGt2on3fUrpd5eRIt8o43N9iq5TULdo2bXaDhKTtiBuvKjmYD2oWlBO063vL3luUxyBYueEW+5M4Us5k900uv8yUX+OL8oaRgelxk3BlO6v0cdNUW6aUK3lwiOtRRSen+Vw2y/9tUYPeG2lN/WDpxAOwvY6qpgUuWWdr6Fv4h1P3ge/skFhHNEV7Y5pEFHOVLCPN8JPuBHNPKiH4V+N6Y/VL3nVfxjfNz8fLftftb+SiPXlWLl7SGQUCS6HUWti0XEIhBhXQy50AmPWwyKRb8EnqXAsyQKhMcvwu2iVg9627Mu+mMX3bxu3NcwptASJQgBM7++B3JjQUACzLCusKDgKEVshMWfSguKDcYSxgMrX2xYMuE9pBKu8NCRWizv0caRACspUouerZxg8Hwz67Bj2s+zL1DcenG34aYrERh1FoNpR/ImBRgzgbXbPenm0e719F9tazLd89kyWtAUCwNnTjAo2GbGbyI8yUbNFPdnmCuf1/4EHe38XAs4C65LRJ0Xvt9L03WR7/Qcnt9Ly13Wvi8trqPByIgIIupaNV0XRUXJyWsffUlrNzZSPfiFuvBhu65stANzx42oIuFGWoGa1asjpzgSsGXCbUO17LhRdvwoLH5bme2t04TMD/sXbm9ddv9lJHReZvt57er+1etCbeen+bP8vd+GkW4Zbe2nqbbRbal+O76bqFc2jcZq/grgdE+hKKRq+7h1hIKEItEt2RGxqLYPWRdjxSKD6WvRFIvStRKqzWWkWDR9Lpozo+O6OuNCBoZ9I0YNei8669hYXWwGdFyElrA1opAlLyG1xc8VfUyJPvWdgfN80Zfi8Bxya3GiQu75TrgTDAFfikk3+krCi8gCN1KLL0QsN48XYo77gkSHmGNwx5ZGRClRdZ5fZ6Y1IhBJBQAkgyO5KwKYGzPYDecGHitYdMg3CV+EhEMAht3RRFnRgNDsWeMFwJuhrUP2uXsyfU1aTARFWxkh3rQDc+5GAeGWLBzBhcOI4qIKEOu02zyxuHF7vnp3F2VAmcU6xnZUXukA0nZ/ro76K2w3gooDN7SfCvEnHDfUolDOm4VU3yUYbDO8H9z8quG8a0O3vS62bspCkXbMa9EMVuO5nXLD8wV8hbpCXP8GdJoZociMyGPpsIpchba0Eq5odx3RQzJss4fgX1tScLA9uh26ODrkYhTdYMhtHosWLcL999+PSy65BL1798bll1+Oa665Zof3S0KR6Lbo33GsPMoTi+HtyxGL5nZBP4p5TrcRvaxjSEcSGRPaJH9GrCnc1DrLcwFjliHfATcPLYX2bYg9b5yYZPDtfFrscVdk+N2KnEdHYvGtUr4I9IQg/HjNniDME4LKkpFg0ojUooRg0pKeqPEiszCJhOUKHe5GZnHTuSXBLREIb+YJGQ7AgpcO1xKp/oZNN7rtIq6xsO8RQA1FMNLNSBw6Qkc4OkdctBaVVvjFwBO4AfOTbzkNrPPOUX1n3Dx/5pthuZHPjOrBVKMxbaLyxB0PRl+xLN+MCwYkLPfYuivc2N4Thdyoa+NkSjEpuhXGAL9ehVv5WjxK6aa52+mwfrbbAOGQfp7ZMBSZRdhuO7oC1IFvMvTaVwbaPmqCdzkCJXDpmW0avm71D5VpMQ6vnqMFOc+PomOalBkHbAdDPsiC846NGrUzcQpZFLth1/O5556LE044ASeccAIeeughPPXUUx2yXxKKRLenoHUxQvwFty0uFhXREVwAlicW1X6UVVGLi6jwgIArzgyRqLtpvXUoYtGTvkXPHGME+AKQgUX6EDT9BwaWGXO7bP1l7n78Z4kvCPUzxgIzuq2Y172bcMWHFoCuxgCD2V2phaIMdAdbzBCF+nnnWgGVM2z/qSrB1Lgy91xth8PiElIwAA64sJQlRQpYkkHq6CvuQ51ZTFlLHAluGZeCBXWRWcZLg2EBU3UEX+AA/sNXY34v1Ke9o3C/zcJpkYI27x0iX3kw0xM58lYX2N7MaxxI6F+sBLKhLst21Y0+ZhGFFR5RERKTkeuMLMwVTKrTQAIJjrBjK2buM2oER3vMVOF2K9hm3kbq/3DbeS855rVZRHxHtgkDnO4bkUUjJIcT4y9RvYh1L7NiVVUVfvjDH+Koo47C2WefXXQ4SqmQUCR2CYp2RXvkj/IpJhalNASf55Sbe1trsQhXGAatiEaXdKC8Ks3tpDbgeVZDABGTCHxx6Mdc5p4oLDZ5wzSKMTfNdCCtJxBw6C6t0iKnKK3EvJrmcEPwuVUlXYFoC/U3J/wuM29sld4P/O9R0VL0+ENteVT78cfD+YYwP5Sf0n2qq1lto7ulRV73XMLyBakO4cddccm5UOP63HQwfx3j8KyTnpXSs+7As9jFWn2gK8RvJH9Car7oY+Y2rodraQpaJ7QtEBRJ/iBHP03PsA6v0121ersoi5m7LmA1M61l5rIwDitZvrXUyBcqWrsIa668eMmIsMTGhMILvCS4aXHh7gLW6Jg2Duwr1M6BNg6fUClubMLujgKWzBLa1t2ZNJadDLC2rRFCdM/xiYAxRjhq3c4tSodQXV0NADjwwANxzDHHYObMmR2y324rFG+55RZcf/31WLduHSZMmIBf/epXmDJlSqWLRVSQWLEY2QWdP2YR8K1o0WIxfya02sbvWvbv+K5zbsY9saiOw/1xihCQzIGQ6rkgAC9yi7JVOGAd8BOND2donLsEhPsCzcHgSCW0hK4T6T8sERK3ARtUeMIEYjJ6eYKJUc/B4C58AeuvN4QvC85izhvQ764wB/VrHaetnN5kDr3e+55v7fQtnbp73M2n84Qma5jjJFXPrBr3p8dCRo2V1GPH8uJL6zrwRIb/xIuOLW1YXz3h5op6ofaoZ4FK6Y6nc7u8vXGS7lhLIZg3zlK4aXrMnSO5MZHDH1+pJ4yYM44dMF9nupNJ/PXucqj0vhYt/mpohrKL1GrwXyCCY/38dg2/CJnta47t9HvYI9rZnZRjtjU3Xl6ixsbqdowaIxts3+DMXX8Cj/83MGTTm7hjjHt12zQ84UenhdtVSoaM5FjSBAiZK9oOXRUHLNaiKLqhRfGaa66BbdtIJBI4++yzsdtuu3XIfrulULz33nsxe/Zs3H777Zg6dSpuuukmTJ8+He+++y769+9f6eIRFcQXb+EV7pq8CS5ArGAM+VqUkgOwldXQ64Y2jxn0tQgm3PFRHNrPos7H3MkwnCfAmHKNwmB5lkbpdkO7HdheBBcBG5wloCNwMMkgWMI7JodyR6LHGerUQPezcWMMWlKL1W0wQ8Alj/vgMvP40VoMgeK6DsnfhwgtK6uruW9/m+JdXuEIJeGxm9oiq7+rOg6OzfQttcZ8btfiacEdo+laPvUsYSUKuDeLWItHxoKzsuGJypAgNQSJmy3WououuucQJEpCmbVoGPXcIXX+DF4gOFNXCzdHKOOkFnPKnUxoVq+QxrKE487OcKR0xYa6HqLczYTdDPmxxUXg+gpeI/EXrXlth8M2xlndTYu7aW0PuvVhRnsGZ4xzpmOR+y8pur0DQzX1et3OMe1u4vUix5yv90syjcVadJvfpbEsQ23qZjZn4Atj9r0Df+Z9Tgh8IFZ17xB+BcYodsdYz1OnTg0sH3/88R2y33YLxRkzZuDss8/G5z73uQ4pSDnccMMNOOecc3DmmWcCAG6//XY88sgj+P3vf4/LLrtsp5eH6HoUFIyR1kWguGB0hYtrXVTJcYLRgZRqULiyDLpCSAr4PgI5pJBgsMEYB2cJCFOWSAY9flGVzh3DKDPwRY7K65UVUN3UXtex4bS6wI0vHNYvKsSb799P5Qz4+AMgvLzxYd3CvhrznFXL/LSwU2P1LW/AWey5BQk+ZsOOuwEgzrmwXg47i/YcRbOApESUL0I9nECL/biZ46pE+cMJ/HSjvJGyMEhQwOeLLuXbU8L0+agCTvptLJmEAxthf49S2ojy9SjddWbbR7Z7ASfu6v/gy4S3XRkEJ6Tpegy2PQv5+Aw7CefuC5lud71cyOdnXLsDyGt7c1KZeQ0AvtA108KEX9K835rxcmb68DT9O0b58Qy3qwM78LsWwkamu4fwk0FhbdLdup6fffbZdm03YsQIDBs2rGCedgvFpqYmTJs2DcOHD8eZZ56JGTNmYPfdd2/v7komm81i4cKFmDNnjpfGOce0adOwYMGCvPyZTAaZjP/G09zc3OllJLoOEqVaF4GSBGPAuoiAYIQbrUW63dpaMKpD6oeRBKTjPYAEU9+5TKjvhvgQbtdeIMJI2E2GIQSjHPDGV4y24OmHsS/uAEC4N/+oB7wv4HQe/XDX0VlMoecYD3VzCq/5YIsfgNZRHT9l2QaiJn14hIVmKG+EIFHJZno4EoafN3/CU76ALZdwRJl4wR0S7e2KKhLzeO1CvkbaU5LYKyLvWom5Psq4LvLTo/ddmGA7xEVICqbH/T7z9+fn6d7sShbFGTNmlL0NYwwXXXQRvvvd7xbM126h+OCDD2Ljxo2466678Ic//AFz587FtGnTcPbZZ+PLX/4ykslke3ddkE2bNsFxHAwYMCCQPmDAACxdujQv/7x583DVVVd1SlmI7kGkWARirItA8Kbojj/UgtEzG/rucwDAdM6tcOA73TZu8J7IYgAccG65XUEOwDg4swAJz2oVRSkWpIDLnrzQc77VJi5EX9CaZ1p2RHEhESMKwmMl/e+WMSgr6iEaDBOnts23BpnbRDkED+6zNPIsVxFRUPItn2qtmSdKhKkuvPgHtdo+XJfFZ3V0mBDKq3ND9LgzNfyJUVGh/JR1W/1lkVa6cGQe/ZKk16kvPHTdFHfHIkPDE8JRbOJCVnrrzOs85jdRKARj4Deh+2q9cpgvU7qA8a1WrD0LXtEFhGzgPhKYoe96TTB+fypLfvsK2QbhtHVbwVjIj2J3syguX7680/a9Q2MU+/Xrh9mzZ2P27NlYtGgR7rjjDpx++umoq6vDaaedhvPPPx977rlnR5W1XcyZMwezZ8/2lpubmzF06NAKloioBOWLRU2E2PO289eZzrkVliEiw+LCfxAK4agHozv5RedkTHiCsRiReWT0OD7TghTV7evtMyQS1Hp3dF7YiMZDVpRQ951OYwEB4Y4PiwrZF9Fta2lX3ZEOvxOR4wxVGfK7bdVZhS2z+ddAXHetWs4fN6e7bHX+qG4+B9oK67idfH4856hwfWr/TkDoBNrQEDtxsIBQNoVCvhAz6z/chRpuAzN0Ikcib/a9GWFHje/jntul/HF/6hrxx2EGZ9arNtPnEDq/QJsZ36WuWf1y5KebofpUOD5Xz7n5BCSEFN5YSz8kn99Fr8MzqjCM0SH78rt0Ha+tzLZ2rwCvvYHQS0KB9vUrIl8EBuJkGwI8yhUXd+VAVPvqrvFwG2/ACmzY9nrs/aarU9CPYjezKHYmHTKZZe3atZg/fz7mz58Py7LwhS98AW+99RbGjRuHn/3sZ7j44os74jAAgL59+8KyLKxfvz6Qvn79egwcODAvfzqdRjqd7rDjE7sgRcWikRXxM4iDzrnVDOn89NIxBWBYDLKIh0JeeoRFshThqTIWeei4eaLGY4XD9EWJCcsVeklXfOiYwJYhIvTkkIQ70l/HA47z1xg1IUTPaDYnDgBagPjbRbVOrABx/4Zd7YUnCQD+a4N015sh3PQ+hLGtDttnbuOP2JP+cYwCxUXZCYxjZP4lboy8DE6iYMFJGOFZ4mZIRB2+jwGGf0tj4gb8MH7+DGLlqkjPGtazy3VoPu0X04I02knmtU++UJTGFn5b6DrU9ezPovZn++oQfX6oRD8yjiMTkPBn+XohF8EACS9kn9uk/oQP6benL0D9iSLmpCEn0NbSK6tZ9nJ77fMmOjHz5c1vX73ObGO9Xr0SBn83QQ8Aavs3NtdjE38bTjf1qei47RhF3NjFrsx9992H448/HqlUCgDw8ccfY/DgweDuy3xLSwtuvvlmXHLJJWXtt91CMZfL4R//+AfuuOMOPP744xg/fjwuuugifP3rX0dDQwMA4IEHHsBZZ53VoUIxlUph0qRJePLJJ70ZPUIIPPnkk7jgggs67DjErkesVbGDKH8cmh6PmN8tV06XXNhqkDf5xV+COfElKqpL2IJQaDaw5aWrjzkTWIk+HYPZnxlaLC6zF3OW+QJER20xxYcflkwE3Jh48Wm1SDSEhyk6fH+Jbmtpq2/gISq9NL8Fiz89Am5bTEFnxILW60yrhXZDYubV6SalCAdfLATP03fDopZVnUlP3GnRBkC56olw3xJ218O170hmxGLWbaD9SKqD++Hf3DKaPia9cvvvIT6lDs/TvfehUQCB0RFqhIXR7avC8Hl53XVCMMBzF+QKTQFPZAY/hV3PwNvGFabwjxd1XXinE7Jqha+FKMJOwMPXceD69tKCbR923wOYvxG1TgiGNmc3PLc9BaCtaLm6Iu5Zx6zrfpx66qlYu3at5/1l3LhxeP311zFq1CgAwNatWzFnzpydJxQHDRoEIQROPfVUvPzyy5g4cWJeniOOOAK9evVq7yFimT17NmbMmIHJkydjypQpuOmmm7B9+3ZvFjRBdCzlTiIwRWLhMXVcBbv1BCJnunvPFYrMi44c2yVozqpkzFJdhIboU12zzHPUHdctqKwI8d2CCdeiZ4bkixJ9pnXJs0QZlggzPF9Q9AWdZZv+CU2fdaZfQp3uix24vuv8OM76gccLiB1PEHF4jrNhCB9T1Gin2jDTddNyw+JlrjMuo6he/cALRfi5FdXnWkBE+fv3nvrBSDGmydA8dlQEF9P05BXO3c7038ILlL+9RD2pDTOPDJh8ZGy+wGCzgCnW2FdMet723j5iZEQZ5r9SepPL3SeAvPJ32jyijMTum3uhlDGjXZWCk1k61azQOYTHVFc8MsuNN96Ir3zlK6iqqorN06tXr04ZYHnKKadg48aNuOKKK7Bu3TpMnDgRjz76aN4EF4IIE2tVLKP7uTCFRWJ40kXYisiZFRCIapxeIiAM48eKJcAld0WgXqcEIQf3xohxxj1Ln4VoEZjgKj3s50/5BPStf2ZXrykMtaXK7P71nFObXY/wI6iYzoxVHfmRVPSy2T3mNR2Y160HJiGEW5uGpSwsGh3hWkh0GbX1TEooD0ZMRVzhwi29IRotP0Y0c/tiWcJd1ifsKmNmMTBdaUypZGZxQ6xxPxay5SrLQH+g0cfL9XbG/uCme5XmfgkIt5AA5GHFGoE3wC80wcb03KyVjtePHpy4ofphHd1IvvNFs/81tF56/bNGn7sTGktrrgv3w6Ps4Xz59QMEhbRl1HlgHQuGyNMXsW5DwPgbakd9vELt5JWlyIuqME44MBDT/C6M/m8Awq133Q46pjUQ3xbuPnV8a2k5vrWym+JIFSUqbh2haLdQPP300zuyHGVzwQUXUFcz0S7K74IOTmjxxika7nL8J7U/NnFHYVDWRi0Suerc9ayOfjg/fzIHd0WiKRA5lBDkjHtj/xKeVVB1CxeL01zIWbAm8BwC3PJ4JwPuaXF/VGXQzup2WwbqIJ8445XeNmyAi4qu4Y+LQ6B7OhxFRYlJFW/aYiqqhgr/J2FxR43V4wKcC1iWG8bPDfXHExI8ITxBySyAJV0xaTEgAbAEd8P5cSUiE1ZQQFoMsKygeExYIeEojJN1r9VC4sJcFfCOI4JCwxFBgSGcoMBzDDFhq/xaROiBejIn1C5tePmlcs8I6bhzINxd6y5g6Wj953bVCp7X9auKyKDdVJXiysSMcGJ2qfrd5r4lWb04uG2mu9a5VC8GbrWzpPvXH4Cp2lRdSMF2VReO94OKfDnw2ob57VeKpdYfr+C3oynGpdBhciCF8NtHSEhHeCJQOroNg+1ltpWe2C0cwG7j+CSbMArQ/SjU9dxxpvHuT7eMzEIQO0qkWIz1r6gxZjlHiEU/JrSDYpFb1GYcgA1IDslUWEAmOZhUcYR1SD016i0BCQEdxYUjoWZWMgeW1GH/ODhTb/wOczzByMAgpAUL6nlugcFhbgQXJmEJNVFEWd+Ya3nzYzgDhsBizBB18Z3y4agS/l6M2ox8vrBATeu68r5HbOF3r7gWoIj2M62Q4d5U/TzXebQY1iH9PL1mCGaLSSRgdJcziYRrnUxwV2RCIqlFpSs0E5YK2ce5CteXYMKLIa3Epu2KTeGP8dNixbBkel3crs7I69bOq6NQQngsnzbMmWP4BAv8dRymxJxQ4/Ich0EIrr4LwBFJNYFDMC/Enw4D6EjudfMJd1yeAwbbDRGnJ4A43nc90QRe1BjpnoeeTGKcRsGJB3kRTZj6BXsvDm476rYOhGD0NKARstGddJPgyirtxQJnQIIL9yXCzeO2r2pLkRcjnGlLtm5H5gtTcywnELKCmm0b9qqkBbX0Rbceb2m2nQrTmFAGW8lgS92WapylLbjSmkKNqbQFNyb2MLQ5HB80SwjZPccnAup+GDeZpbtaFB977DE0NjYC8OdvLF68GACwZcuWdu2ThCLRYwnKC3NF6A6R9/TVAtDtRvZ25L6NwxWA3p4tb72Ce8dR+f1JLUowMjAnB84Sfle0dCe7SNUdDTctaqyicjnju5CxlKTxon4wMHCp9hUVyswtEfJcyBToqjTHwoRdyZjfC4Vm89L09nkRJfy698MDhnxExnSF5Tsq9yNhwLC8qry6Jq1A/VjKhqvGcAIBC60ao+lP3FFjPYFEaAynni2shWjc+E1TsGoRooSsaR31v/vnZdSF+d1YUKKLeenKoBQdZ9mBL850F50WcI7uldRGRASXPcMi/NB+OgScDu1nS2n0arouZly3NKochUP7FWrzcNuHI9vof1Fh+8xJWdxt63DIPn+oBfNemszJWQzB4Rja6Jg3Sz8kWnU7a+EabtcowkZFsw21YVGABdvHaC/VRn4bSqguWbPX2RbSaHeJnJD40FkNKbpvZJbC7nF2cmE6iLDj7W9/+9uB5fZ44CChSPR4YgWjlyHijuF1OfuCEVK7ztF+0PQepbcb80cqjfGManw8B3MFZtxsaFXOIjOiQ37xAPWAC/tR0yddasQP01dfvlAL+v1Tf6Vn7tAOjn2nxtLbZ57TbyCwncpniM6IkH7BspRG0FWQ3y55IfwifEFGhfBTY0bz/UDqIQMMUaH7gj4g9dhS0/ejZQgcf5Z6vPU0jOd2JSTcC4l30zckgNiQfqavQAHbOIZqawc2wmH9fAfWwdB+qlzRzq7D51Io2kyQ8MtOcIxwOESjTgu3MQBwlgj8trwXNkS/sEW3t84T7VEAQKTfT8Bv8yjCbavSfCEd9vUZ5efTYbbXlsGQnTFtKR205jZjVw3h1x11ohDl3QNLhYQiQbiYN4aij19TPAYcagOmxVDty7yJm3t2jGyhSS6y+MxptZ4b36NLXYrvxDzLXAFhZorDUqO0xIYDC09EKFrSyhDdk26mGu1g5g5NcTajzQSXw/uIFrHtx7wGAwMTg7kC7eEUWFeoDcOtGPHw2oFIJDuL2FrP+50Ff1/R7R/MF74O8tPz99s+4tq3SBg/tUL9KfLb7Srt1R4cCXK4XQIkFAkigqJWxkBmUzT6lkZ/Xzw6r4EWk/5wOy28CglBq8S7dGFnuPkuFKJFQEkCwNyuoLXLsGgGhG/+g7JU/5TePjrkARtloSxNVEXXpz821Z8t4HYRxjZiTP12lr+TyPaKEcBmfhZsE21vM9PMfUWJ4EIvPHHhGNtFRAhGIM5Smf9iZObNfzny85iTgvJjmotgE3aa/5oQsb/Hwm0cnnoW6BWRDqTIdWAhdy4S3VvomowcObJd3cqdGuuZIHZ1dub7ZKGIL0C0WCpEMH/Uz9x8MIe2jRVa0d14+nhmN144LaorT3fZRoXvy3cabowhhO8oPOw0HAiOR4w6Fx5zfiJCmAXEhDEWToTCrEmZH3ZNd8GLkFAo3IUPhP27xEVeKUZeV2XIYbvXvWk4ZTe3M52zq3zBZbNL1d9fcN+6e1VvZ9a97mI38wf3zwLL4fXlEDVeFgiOpw2PeQykGV22aju/21at97vivfzGNVHoWjCvO+862MFrILKbOiJ8Y6DeQyH9oto//Fvb4qxG0/Z3I16Ouge70mSWO++8s13bjRgxomgeEooEEUHZj6IC3VGxlpg88rsndddzlC9GM2+U1aWUcY1hoQb44xnNsYxxzr2jJs2Yrnr0Fmq9BWNElzcphLnfVZpe9gf26xnZumzahaD/0DKMW7om9bJR1+Fab8fLdx7Fno8d8awpVO4oycuj1hsTKBiC9cX91cF9h+o0atJM1GSLgA2xhDqOy9MxduFou2zcuDQzXYb+xoXWM9fnpYX3FbGNeZEUmsVdyuizuOsx7lovdP1EXTvGIiSAd5oGYCFbDikzJZSu6yEKTWbZyWXZUQ477LBO2zcJRYIwKEs7lCIOQ2PUVFJEF7KXrkVh/IQW7UdRbRMt+DizfEkW4YMxIVMIR22xPMFneeH5vIgtMmomKAvMBNUzfZV/6Xxn3VG+GD1f1DofQkKHmQ8uf3aoWaNK+PhPSBbYR3BUaNjXYrgpzfGkPG9dsFw6b9jtjumjjxvH1w6//TKrfWinxQzGsrFP03E49LKxPzPMnrden6dxGeb5ETSPa75nFJlFHOez0DSCBXtWWezfyIAoOqRdTBjDcOlK8aEYptg5xu0xHB6vHEoJFRc+FzP8n5+n8H6LhZBUeYoUpASywoItavBaWxJCdE+hGOGv3Vi5U4vSpSGhSBDlUOo4rgKTGOLHbQXFIePKmba2BCq3N8bsWlcMWkxZ8nTElgRLexY+LQQTMqmitrh2vQSzPBcvCcZdn3C+e5cEY67fOOb5D0xwX4RZ0NFb8t27gLl+56Dz+yH6tPDxXbz4osuzIhoCRosjU2wBQTFZyOIWEH4hMWmuLybOGFxfhyFhxrnwgnZwLjwBFucrjyd8H3ncAlyf6upjIei82U3znDe7lc20Xx1dYV50F6OBopw4Q+UNVGAxjWWavrQjZyDozNn1pyJtw35mu09gHcnDdvNqx85C+kM1PR89aryf1MM9hSs+9cPc9PkY9h0IeAIzgNnm5nVhmlHd69j76XIjjRu/XcvYkZkH8NojL1Siu38vDyJeFKNMqhEmxUBkGiDa2ageaymMNF3XwthG96u6dQ4RrONAvetj+U2odpHheG/rELBuLCMKdj3v3KJ0abpvCxPEzqbcwf4FRWJ0d3I49jNjEWH9WCrgesViaZUuE7CQQEImPVcrXHIkkUAClhJ9rpUwyY0ILa4wNH3+pSxfEGqRmGC+DzjlEzAoBrXjaW0p05rHFIJWSAQWEoA6345gWlvMZ68vGpmXEzL6gDr8n47aogWiGZWFAbASylG2GdWDJ0RAEPKkKwYT3I/MYhkCMMmV8FPKXW2U4Coaiw79l7CU4NOCkXMjeourgLzvcIVNlIhy14ddzYRDv3nRVxw/TUdu0dFbhADzliVU6A4JOA6YF+FDADl3W1uCCQFp+ZFa4EgwwXxhA78YeUJFWyU9wRhvA/Ssh65A91rdbG9mCETL/c16IYhKEOw64or5NlUsHGNU2xQYD8HCQtFb1pVgrAuH6HMcb73XFr4DSxWhRUfTcdOlIwNC3ovS4rYHYwIWNxqqG6J9fcatIxQkFAnCICwfgitlxI3cd6ItPesTc/PqAetaMOqILQx6eLoSi8qPHGNcDWaXAjpai9peuGJRgLMEHGShOpgSqqAyA+59d0vDEt6DMOf6OeOSQzKuBtkLC5ypgfuWZJBc3TB9h8B+SD+L6YguvjbJAkgI5hutvK7mfOfB6tyN7tgSxGDcPTrq5l3u/dw8XrArONqZtWUKXyPcX4LriBwSHFIt8/jIK5bl5IX5s1KOFxrOC/GnY0abYf6M0DCRYf4KCZPwiYcrTIQEB2QBi6FvLZQ5HdJPQDqGsDBC9UnbFXNu2Ddhc7V7Byrih6OigSitqb+7H6mitgg3mosX0g8qUohn3IzoUjWHFngvBSzYfW923XvRVbTIZ9parCzAOloO564lmAHccq3FHOpFgMGP/60tkYbYVILTsDwChoU3dEEiwvKIGKuiOcPasxgas+xdER622kpbL/vtI92ILZCAY+sQipbSio7bJu4nk0vgkzYGiW7sRxHU9VwKJBQJIgLzHhG4XRdxvu1vy728nusbV8mZjrelYWXUTrfVNkpmiYhxiro72rQ06i5mxhJ+V7SOCc0TsKTqttYOni3ph/cLx4U2LY95YxLdCrGYP/HEHMsXFoP+w664bTAQ3cW0KEVUf9CJSbBNik0wCXZNqwVd6+Fz0BE7vGc98zSabxyCL6j9aBt+V7zX9Q4/FJzFdGg/vZ0SpgkmjK56de3oNDC4YQKlZ6H1xY5w5ZM0hFG0lTY8FlClKVHmrQqIM1ewue6YtHBzpJJdjlSxmB29Tos7wA3RpyO0MD+P+9cN9awmFBj61IsQA8/Q5bZ19KQR7zx024Xb3Gh3c0IPM5cRbr/gS49lRMixvBcEfz/amm7pqCpafAauKUOoAqH2ii57HN5vQPpi2Yu4A79NYdapF62FuSKJBdpGem3A/L/S35/XPlCRepZtzUF0Y/c41PVcGiQUCaIIRV8sZdQwdcOvHqCeJt6O1INVSRDbTy5xNjRjCS89buKLzl/SrGcAvusTC1wq6xSTyvrju6hRxwy7T/GKX4oYjKhNadRVvhsQ09ddvlsZfx9xPgcj0iN88YXd6ES5jgm75zHdxZQTfSMcFtB0B+PF2DbaSb0YAHo2uMprWmtNseudUGGMavbsiCEHyn663kQaQl2NPZRGzesQfF5e+CH3CkV88aOEqD3rFLU+6HLGK77Mf4yb66OuRd1e5nrTpVIpYR2jIqi4g0S8/QaWWdALof9789vcL1+ovEUaMVgffnogSkvIabbpDsiM2GO2l15vtpnK50d2AQAbDj4RyyFltmA5uzL6ZaQjmDdvHv7+979j6dKlqK6uxiGHHIKf/vSnGDNmjJenra0N3/ve93DPPfcgk8lg+vTpuPXWWzFgwAAvz8qVKzFz5kw8/fTTqKurw4wZMzBv3jwkEpWTaz1WKL7xxusoxcpBEDtC5M0+YjJLydsbvs58EWN537UgNPdt+i3UeQqn+/vL97NmHjdfLBZDRrynmwIwHJotTxBGCL8o0aCOVdjBRZy/yICgMM41LB6V0LaM70HRrQW273ZIT0Qy3A7BXfZEJ/fEC5emP0nL+J5fJp2/2LlpzLoR7oPfrOso336+YBPedmaakMH1KgScIfqkYwhJ7aw6eGwVPi7/epABh+btd1wSd+2a7aeWrfz2hplmthcP7M9rJxZaNo7HZfA356WX+XvSiHAUnYj2NfN5bRjRZipfsN38NL/dBAS2Z9ejpfUjV0x2v77awrGey9MH//nPfzBr1iwceOCBsG0bP/jBD3DUUUdhyZIlqK2tBQBcfPHFeOSRR3D//fejsbERF1xwAU488US88MILqjyOg2OPPRYDBw7Eiy++iLVr1+Kb3/wmkskkrr322h072R2Aye7qKbOdNDc3o7GxEfCG4RNE51JcLAKldDj5M6qjhKBlfM8Xg0C84CsmHFVacP9qj6V2kvkUE37RlqJi2xQWDlGCsZCQCvqpzBdf4booR0CaecsRHjxgDYsXHqWcH1BcSJh5hMxPMwWFTjcFhc5TSAiGRaC3HGM5LuVaicIU/n5a4RcAIF5Imi8CUfmj2jR8rLz9R7QXjyh3GCHjBaJaNq31+eIfQGS7qXQRaDdzOxWj20FL9hNkMmsNoeigqakJDQ0NRcteSRzHQSKRwIXDv4/6RHRZX2teiNz+rXjsscfadYyNGzeif//++M9//oPPfe5zaGpqQr9+/XD33Xfj5JNPBgAsXboUe++9NxYsWICDDjoI//73v/HFL34Ra9as8ayMt99+Oy699FJs3LgRqVSqfSe8g/RYiyJB7Cwiu8T0+5knGItbSbxQgNJx9yMAxt0HaHB0ltQPIZkvdvxDmw+nCGthhEiKWlcueQ/8iHMvTQzG11k5Vqf4c4k/52gxzfPqrBRRqfLmC0u1HC1KzG2CJS6vXQSEZwiKs9qJCFGh8hcWfPp7lNgLC4+o7cLHiVpXDlHtHG6/8PdCL0ulWtsL/46ixWA57RgZUaiYgAzUb367hwV+cJ3fdo7TVnI5uyLF7KBCCDQ3NwfS0uk00ul00X03NTUBAPr06QMAWLhwIXK5HKZNm+blGTt2LIYNG+YJxQULFmC//fYLdEVPnz4dM2fOxNtvv43999+/9JPrQEgoEsROJDAzGggOLioGM2/ugJow47j7M2Y5Mg54MxF54BCBh6WXHhprGHqgRlk72iMU4x7wpQhFRbwFaUe6I8PEn1t8PcUJjkKWXHO7UgR6WFQUaoNiQiNaXBS22BUUG7ExlOMsggUshSVfD+2nmGiMzlNYVJayj7g266j45ED8kIvoYRvxdV9oSIhuP0e0Ro477i44UsKJuQcLKbF8+XK3B9Jn7ty5uPLKKwvuVwiBiy66CJ/5zGew7777AgDWrVuHVCqFXr16BfIOGDAA69at8/KYIlGv1+sqBQlFgqgAxQbeR28UvqG5D3IWihcRyKeFJMtfBYREZXjzwg+vUsVi8Yd8gfVFu5U7/iEVENYF2kYWEBLe9nl5OkKUd5yoCFK6wABKtfQ5JeSJP7baqGNFIuC+IxW8fkt9OSrcrR1IL7Hd2mutL0VMFxq3W+rLWVBAdt8Zz0ARP4oARo4ciUWLFgXSS7Emzpo1C4sXL8bzzz/fAaWsPCQUCaLCtFfsxFslnbwxkPlH8Lux4/HXRQmm9o5uLv18yxAInTHUOizA846p60c/2CPqMm5AvCsG8ovdMeJ8RygsOIq0SYFtS2v3jheFseRd+2bdRgmkEl7qGC/hUuz8NsynnN9SOS9nO7G9OgHtNigKKQHOednjLS+44AI8/PDDePbZZzFkyBAvfeDAgchms9iyZUvAqrh+/XoMHDjQy/Pyyy8H9rd+/XpvXaWoxBVLEARBEARRURwZ/yk3MouUEhdccAEeeOABPPXUUxg5cmRg/aRJk5BMJvHkk096ae+++y5WrlyJgw8+GABw8MEH46233sKGDRu8PPPnz0dDQwPGjRvX/hPdQciiSBDdlCgLTeljH/1u69KOtZNop2WwM7qgWcm7DFmfjDqN3YV0EP2enm/JMq1YO9NHRXl1WmHrb4cQY10vpT29DGErcxnHqThlWge7bDuWjiO9IDZ5CFmeJW3WrFm4++678dBDD6G+vt4bU9jY2Ijq6mo0Njbi7LPPxuzZs9GnTx80NDTgO9/5Dg4++GAcdNBBAICjjjoK48aNw+mnn46f/exnWLduHS6//HLMmjWrpC7vzoKEIkHsQsQ93GO7zLr4zb6SA+XLPXb5E5QMwVBAsHepFurA66UrT4II/F7adc7FRedOpxN+6125DUtBRamJX1cOt912GwDg8MMPD6TfcccdOOOMMwAAN954IzjnOOmkkwIOtzWWZeHhhx/GzJkzcfDBB6O2thYzZszA1VdfXWZpOhbyo0gQRFFKnnBTIt39AbOjdHR9VpKe3pZhumvb7ng7dj8/iqcP+h5qreiyvrN9IdIHtrXbj+KuRLcao7hixQqcffbZGDlyJKqrqzF69GjMnTsX2Wz3DSFEEN0B2cH/ejpdse66Wnm6Kx39W9lZ/3oiUsrYTw+tkki6Vdfz0qVLIYTAr3/9a+yxxx5YvHgxzjnnHGzfvh0///nPK108giAIgiC6CXriShTlTmbZlelWQvHoo4/G0Ucf7S2PGjUK7777Lm677TYSigRB9Ah6qvWHIDoaRwB2zEiBOAHZE+lWQjGKpqYmL0ROFJlMBplMxlsOh+MhCIIgCKLnoUL4xSlCUoqabjVGMcyyZcvwq1/9Ct/+9rdj88ybNw+NjY3eZ+jQoTuxhARBEARBdEUcEf+hrmefLiEUL7vsMjDGCn6WLl0a2Gb16tU4+uij8ZWvfAXnnHNO7L7nzJmDpqYm77Nq1arOPh2CIAiCILo4OtZz1IeEok+X6Hr+3ve+5/kZimPUqFHe9zVr1uCII47AIYccgv/7v/8ruF06na6oo0qCIAiCILoeHelHcVemSwjFfv36oV+/fiXlXb16NY444ghMmjQJd9xxBzjvEkZRgiAIgiC6EY6UcGJMh6JnuZguSJcQiqWyevVqHH744Rg+fDh+/vOfY+PGjd66SgbMJgiCIAiie6G7maMQZFP06FZCcf78+Vi2bBmWLVuGIUOGBNb1sAAzBEEQBEHsAAIyVhCSovDpVv22Z5xxRrwXdYIgCIIgiBIRBSezkK7QdCuLIkEQBEEQREcgCghC0ok+JBQJgiAIguhxOJBwYjqZaYyiDwlFgiAIgiB6HEIKODLaQQ4JRR8SigRBEARB9DgE4gUhxVT3IaFIEARBEESPw3H/RSEgALCdW6AuCglFgiAIgiB6HDYErJjYLMrSSEIRIKFIEARBEEQPREK4lsN8aIyiDwlFgiAIgiB6HA4TcFh017OEAGDt3AJ1UUgoEgRBEATR4xBkUSwJEooEQRAEQfQ4BLPhMDtynYyxNPZESCgSBEEQBNHjsOGAIVooOjGWxp4ICUWCIAiCIHocEsIdixi1jrqeNSQUCYIgCILocTjIgSMXuU7G+FfsiZBQJAiCIAiix+EwG4xFC8W42dA9ERKKBEEQBEH0OAp1PYPGKHqQUCQIgiAIosfhSBtMRlsUhSSLooaEIkEQBEEQPQ4HObAYp9qCxih6kFAkCIIgCKIHQrOeS4GEIkEQBEEQPQ5H2gB1PReFhCJBEARBED0OCaeAGxyazKIhoUgQBEEQRI9DWRTjxiiSUNSQUCQIgiAIoschpA0meeQ6SV3PHiQUCYIgCILoeUgBKWMms8Sk90SipXQ3IJPJYOLEiWCM4fXXX690cQiCIAiC6EYIaUPIXOSHQvj5dFuheMkll2Dw4MGVLgZBEARBEN0QR9qxH0EWRY9uKRT//e9/4/HHH8fPf/7zSheFIAiCIIhuiHS7niM/5EfRo9uNUVy/fj3OOeccPPjgg6ipqSmaP5PJIJPJeMvNzc2dWTyCIAiCILoBAjbi9CBNZvHpVhZFKSXOOOMMnHfeeZg8eXJJ28ybNw+NjY3eZ+jQoZ1cSoIgCIIgujpS2BAxHxKKPl1CKF522WVgjBX8LF26FL/61a+wdetWzJkzp+R9z5kzB01NTd5n1apVnXgmBEEQBEF0B6Qbwi/6Q13Pmi7R9fy9730PZ5xxRsE8o0aNwlNPPYUFCxYgnU4H1k2ePBnf+MY38Ic//CFvu3Q6nZefIAiCIIiejRAOGIteRxZFny4hFPv164d+/foVzffLX/4S11xzjbe8Zs0aTJ8+Hffeey+mTp3amUUkCIIgCGKXQgCIUYpkUfToEkKxVIYNGxZYrqurAwCMHj0aQ4YMqUSRCIIgCILohghpg8UIQnK47dOthCJBEARBEERHIKUNxMR0pq5nny4xmaW9jBgxAlJKTJw4sdJFIQiCIAiiG1HIj2KcgCzGLbfcghEjRqCqqgpTp07Fyy+/3LGFrgDdWigSBEEQBEG0C+kA0o75lC8U7733XsyePRtz587FokWLMGHCBEyfPh0bNmzohMLvPEgoEgRBEATR45BwCnzKF4o33HADzjnnHJx55pkYN24cbr/9dtTU1OD3v/99J5R+50FCkSAIgiCIHogEZMwHgBACzc3NgY8Z6c0km81i4cKFmDZtmpfGOce0adOwYMGCnXI2nQUJRYIgCIIgegzMc56oHGtH/QMEnnjiiUBkt8bGRsybNy9yn5s2bYLjOBgwYEAgfcCAAVi3bl3nnlAnQ7OeCYIgCILoMXDOoexk2o9i2JeiBCDxxhtvYMSIEYE1PTGABwlFgiAIgiB6FJlMqyv6JPKFohKQ48ePL3l/ffv2hWVZWL9+fSB9/fr1GDhw4I4Wt6JQ1zNBEARBED2KVCqF++67D0oUmk63lTVx3bq1Ze9v0qRJePLJJ700IQSefPJJHHzwwR1R5IpBFkWCIAiCIHocJ598svtNWxUlAAcAzxtrWAqzZ8/GjBkzMHnyZEyZMgU33XQTtm/fjjPPPLPjCl0BSCgSBEEQBNHjYIzh+eefx2c/+1n4QhHYtq25Xfs75ZRTsHHjRlxxxRVYt24dJk6ciEcffbRdorMrwaSUPSrydXNzMxobGwFYiA8GThAEQRBE6ShrXFNTExoaGipdmLJgTI/Ck/jNb36Db33rWxUtT1ejxwnFpqYm9OrVC2p4JglFgiAIgthxlEuZLVu2uMaY7sO7776LsWPHAgByuRwSCepsNelxtbF161b3W/viOBIEQRAEEc3WrVu7nVAcM2YMAI7XXltIIjGCHmdRFEJgzZo1qK+vN5xu5tPc3IyhQ4di1apV3c6MvrOhuiodqqvyoPoqHaqr8qD6Kp1S6kpKia1bt2Lw4MGun0JiV6HHSWfOOYYMGVJy/oaGBrqJlAjVVelQXZUH1VfpUF2VB9VX6RSrq+5mSSRKg2Q/QRAEQRAEEQkJRYIgCIIgCCISEooxpNNpzJ07t0fGdSwXqqvSoboqD6qv0qG6Kg+qr9KhuurZ9LjJLARBEARBEERpkEWRIAiCIAiCiISEIkEQBEEQBBEJCUWCIAiCIAgiEhKKBEEQBEEQRCQkFAmCIAiCIIhISCiG+MlPfoJDDjkENTU16NWrV2Qexlje55577tm5Be0ilFJfK1euxLHHHouamhr0798f//M//wPbtnduQbsoI0aMyLuWrrvuukoXq0twyy23YMSIEaiqqsLUqVPx8ssvV7pIXZIrr7wy7xoaO3ZspYvVJXj22Wdx3HHHYfDgwWCM4cEHHwysl1LiiiuuwKBBg1BdXY1p06bh/fffr0xhuwDF6uuMM87Iu9aOPvroyhSW2GmQUAyRzWbxla98BTNnziyY74477sDatWu9z/HHH79zCtjFKFZfjuPg2GOPRTabxYsvvog//OEPuPPOO3HFFVfs5JJ2Xa6++urAtfSd73yn0kWqOPfeey9mz56NuXPnYtGiRZgwYQKmT5+ODRs2VLpoXZJ99tkncA09//zzlS5Sl2D79u2YMGECbrnllsj1P/vZz/DLX/4St99+O1566SXU1tZi+vTpaGtr28kl7RoUqy8AOProowPX2l/+8pedWEKiIkgikjvuuEM2NjZGrgMgH3jggZ1anq5OXH3961//kpxzuW7dOi/ttttukw0NDTKTyezEEnZNhg8fLm+88cZKF6PLMWXKFDlr1ixv2XEcOXjwYDlv3rwKlqprMnfuXDlhwoRKF6PLE75vCyHkwIED5fXXX++lbdmyRabTafmXv/ylAiXsWkQ952bMmCG//OUvV6Q8ROUgi2I7mTVrFvr27YspU6bg97//PST5LY9kwYIF2G+//TBgwAAvbfr06Whubsbbb79dwZJ1Ha677jrstttu2H///XH99df3+G75bDaLhQsXYtq0aV4a5xzTpk3DggULKliyrsv777+PwYMHY9SoUfjGN76BlStXVrpIXZ7ly5dj3bp1geussbERU6dOpeusAM888wz69++PMWPGYObMmfjkk08qXSSik0lUugDdkauvvhqf//znUVNTg8cffxznn38+tm3bhu9+97uVLlqXY926dQGRCMBbXrduXSWK1KX47ne/iwMOOAB9+vTBiy++iDlz5mDt2rW44YYbKl20irFp0yY4jhN53SxdurRCpeq6TJ06FXfeeSfGjBmDtWvX4qqrrsKhhx6KxYsXo76+vtLF67Lo+0/UdUb3pmiOPvponHjiiRg5ciQ++OAD/OAHP8AxxxyDBQsWwLKsSheP6CR6hFC87LLL8NOf/rRgnnfeeafkAeA/+tGPvO/7778/tm/fjuuvv36XEYodXV89jXLqb/bs2V7a+PHjkUql8O1vfxvz5s2juKpESRxzzDHe9/Hjx2Pq1KkYPnw47rvvPpx99tkVLBmxq/G1r33N+77ffvth/PjxGD16NJ555hkceeSRFSwZ0Zn0CKH4ve99D2eccUbBPKNGjWr3/qdOnYof//jHyGQyu8TDvSPra+DAgXmzVdevX++t2xXZkfqbOnUqbNvGihUrMGbMmE4oXdenb9++sCzLu04069ev32WvmY6kV69e2GuvvbBs2bJKF6VLo6+l9evXY9CgQV76+vXrMXHixAqVqnsxatQo9O3bF8uWLSOhuAvTI4Riv3790K9fv07b/+uvv47evXvvEiIR6Nj6Ovjgg/GTn/wEGzZsQP/+/QEA8+fPR0NDA8aNG9chx+hq7Ej9vf766+Cce3XVE0mlUpg0aRKefPJJz5uAEAJPPvkkLrjggsoWrhuwbds2fPDBBzj99NMrXZQuzciRIzFw4EA8+eSTnjBsbm7GSy+9VNTrBaH4+OOP8cknnwSENrHr0SOEYjmsXLkSmzdvxsqVK+E4Dl5//XUAwB577IG6ujr885//xPr163HQQQehqqoK8+fPx7XXXovvf//7lS14hShWX0cddRTGjRuH008/HT/72c+wbt06XH755Zg1a9YuI6zby4IFC/DSSy/hiCOOQH19PRYsWICLL74Yp512Gnr37l3p4lWU2bNnY8aMGZg8eTKmTJmCm266Cdu3b8eZZ55Z6aJ1Ob7//e/juOOOw/Dhw7FmzRrMnTsXlmXh1FNPrXTRKs62bdsCltXly5fj9ddfR58+fTBs2DBcdNFFuOaaa7Dnnnti5MiR+NGPfoTBgwf3WHdnheqrT58+uOqqq3DSSSdh4MCB+OCDD3DJJZdgjz32wPTp0ytYaqLTqfS0667GjBkzJIC8z9NPPy2llPLf//63nDhxoqyrq5O1tbVywoQJ8vbbb5eO41S24BWiWH1JKeWKFSvkMcccI6urq2Xfvn3l9773PZnL5SpX6C7CwoUL5dSpU2VjY6OsqqqSe++9t7z22mtlW1tbpYvWJfjVr34lhw0bJlOplJwyZYr873//W+kidUlOOeUUOWjQIJlKpeTuu+8uTznlFLls2bJKF6tL8PTTT0fen2bMmCGlVC5yfvSjH8kBAwbIdDotjzzySPnuu+9WttAVpFB9tbS0yKOOOkr269dPJpNJOXz4cHnOOecEXJ8RuyZMSvLrQhAEQRAEQeRDfhQJgiAIgiCISEgoEgRBEARBEJGQUCQIgiAIgiAiIaFIEARBEARBREJCkSAIgiAIgoiEhCJBEARBEAQRCQlFgiAIgiAIIhISigRBEARBEEQkJBQJgiAIgiCISEgoEgRBEARBEJGQUCQIokuxceNGDBw4ENdee62X9uKLLyKVSuHJJ5+sYMkIgiB6HhTrmSCILse//vUvHH/88XjxxRcxZswYTJw4EV/+8pdxww03VLpoBEEQPQoSigRBdElmzZqFJ554ApMnT8Zbb72FV155Bel0utLFIgiC6FGQUCQIokvS2tqKfffdF6tWrcLChQux3377VbpIBEEQPY52j1FctmwZHnvsMbS2tgIASG8SBNGRfPDBB1izZg2EEFixYkWli0MQBNEjKdui+Mknn+CUU07BU089BcYY3n//fYwaNQpnnXUWevfujV/84hedVVaCIHoI2WwWU6ZMwcSJEzFmzBjcdNNNeOutt9C/f/9KF40gCKJHUbZF8eKLL0YikcDKlStRU1PjpZ9yyil49NFHO7RwBEH0TH74wx+iqakJv/zlL3HppZdir732wllnnVXpYhEEQfQ4yhaKjz/+OH76059iyJAhgfQ999wTH330UYcVjCCInskzzzyDm266CXfddRcaGhrAOcddd92F5557Drfddluli0cQBNGjSJS7wfbt2wOWRM3mzZtpRiJBEDvM4YcfjlwuF0gbMWIEmpqaKlQigiCInkvZFsVDDz0Uf/zjH71lxhiEEPjZz36GI444okMLRxAEQRAEQVSOsiezLF68GEceeSQOOOAAPPXUU/jSl76Et99+G5s3b8YLL7yA0aNHd1ZZCYIgCIIgiJ1Iu/woNjU14eabb8Ybb7yBbdu24YADDsCsWbMwaNCgzigjQRAEQRAEUQHI4TZBEARBEAQRSUmTWd58882Sdzh+/Ph2F4YgCIIgCILoOpRkUeScgzEGKSUYY1663tRMcxynE4pJEARBEARB7GxKmvW8fPlyfPjhh1i+fDn+9re/YeTIkbj11lvx+uuv4/XXX8ett96K0aNH429/+1tnl5cgCIIgCILYSZQ9RnHKlCm48sor8YUvfCGQ/q9//Qs/+tGPsHDhwg4tIEEQBEEQBFEZyvaj+NZbb2HkyJF56SNHjsSSJUs6pFAEQRAEQRBE5SlbKO69996YN28estmsl5bNZjFv3jzsvffeHVo4giAIgiAIonKU3fX88ssv47jjjoOU0pvh/Oabb4Ixhn/+85+YMmVKpxSUIAiCIAiC2LmUbVGcMmUKPvzwQ1xzzTUYP348xo8fj5/85Cf48MMPyxaJzz77LI477jgMHjwYjDE8+OCDRbd55plncMABByCdTmOPPfbAnXfeWe4pEARBEARBECVQkh/FMLW1tTj33HN3+ODbt2/HhAkTcNZZZ+HEE08smn/58uU49thjcd555+HPf/4znnzySXzrW9/CoEGDMH369B0uD0EQBEEQBOFTUtfzP/7xDxxzzDFIJpP4xz/+UTDvl770pfYVhDE88MADOP7442PzXHrppXjkkUewePFiL+1rX/satmzZgkcffbRdxyUIgiAIgiCiKcmiePzxx2PdunXo379/QSHHGOtUh9sLFizAtGnTAmnTp0/HRRddFLtNJpNBJpPxloUQ2Lx5M3bbbbeAo3CC6AlIKbF161YMHjwYnJc98oQoghACa9asQX19Pd1fiB4F3Vt2XUoSikKIyO87m3Xr1mHAgAGBtAEDBqC5uRmtra2orq7O22bevHm46qqrdlYRCaJbsGrVKgwZMqTSxdjlWLNmDYYOHVrpYhBExaB7y65Hu8YodifmzJmD2bNne8tNTU0YNmwYVq1ahYaGhgqWjCB2Ps3NzRg6dCjq6+srXZRO5dlnn8X111+PhQsXYu3atUWHtQBqotzs2bPx9ttvY+jQobj88stxxhlnlHVcXa90fyF6Gj3l3tITKVsoXn311QXXX3HFFe0uTDEGDhyI9evXB9LWr1+PhoaGSGsiAKTTaaTT6bz0hoYGupETPZZdvVu0UhPldL3S/YXoqezq95aeSNlC8YEHHggs53I5LF++HIlEAqNHj+5UoXjwwQfjX//6VyBt/vz5OPjggzvtmARBdD+OOeYYHHPMMSXnv/322zFy5Ej84he/AKACCzz//PO48cYbyaMCQRA9mrKF4muvvZaX1tzcjDPOOAMnnHBCWfvatm0bli1b5i0vX74cr7/+Ovr06YNhw4Zhzpw5WL16Nf74xz8CAM477zzcfPPNuOSSS3DWWWfhqaeewn333YdHHnmk3NMgOgkhJDZtz2BDcwYbt2awpTWLrW022nIOco6ElBKcM6QTFmpTFhqrk+hTm0L/hioMaqxCVdKq9CkQPZD2TJQD8ifLNTc3d0bxCIIgKkaHjFFsaGjAVVddheOOOw6nn356ydu9+uqrOOKII7xlPZZwxowZuPPOO7F27VqsXLnSWz9y5Eg88sgjuPjii/G///u/GDJkCH7729/SG38FkFLi409b8faaJry9phnvrd+KDzZux6rNLcjY7ZvwxBgwsKEKo/vVYa8B9dhncAMmDG3EqL514Jy6M4jOoz0T5QCaLEcQxK5Ph01maWpqQlNTU1nbHH744SjkxjEq6srhhx8eadUkOhcpJd7fsA0vLNuE/374CRZ+tAWbtmUi83IG9K1Lo199Gr1rUqivSqA6aSFpcTAG2EIiYwu0ZGw0tebwyfYs1jW1oTXnYG1TG9Y2teH5ZZu8/fWuSeLAEX3w2T374rC9+mH4brU767QJoiDhyXJ6QD9BEMSuQtlC8Ze//GVgWUqJtWvX4q677iprTBDR9WnLOXhh2SY88c56PPPuRqxtagusT1oMYwbWY59BjRgzsB579K/DiN1qMahXFZJWeX60pJTYvD2LFZ+04IMN2/DOumYsXt2Et1Y34dOWHB5fsh6PL1ETmfbsX4fp+wzEcRMGY8xAmmFH7DjtmSgHxE+WIxRSCIjt2yGam+Fs2w6xfRvE1q0QLS3qs93929YK2doG0dYG2dYK0ZaBzGQgs1nIbBYil4XM5YCcDZnLQdo2pOMAjuP/lRJwHEBKQEqETRAMADgHOFcTLjgHLAuMcyBhgVkJsEQCLGEBiSRY0vikkmCpFHgqBZZKg6XTYOkUeLoKrLoKvKoavLoKzP3Lq6vBa2rAamrAa2rAa2th1daC1dTQZA+i21G2ULzxxhsDy5xz9OvXDzNmzMCcOXM6rGBEZcjaAs++txH/fHMNnliyHtuzvgP1dIJjysg+OHj0bpgyog/23b2xw8YUMsawW10au9WlMWl4by895wgsXt2EFz/4BM+9vxGvrvgU72/Yhvc3LMPNTy/D2IH1+MrkoThh/93RpzbVIWUheh40Ua44UkqIrVthb/oEziebYH+yGc6nm92/n6pPU1PgI7ZuVcKtC9AlSsE5eG0teH0drLp68Pp6WPXu34YGWI2NsHo1un97qU+fPrB69wavrSWRSVSEkkL47Uo0NzejsbERTU1N5L7CYMmaZtz36io89PpqfNqS89IHNVbh/40bgCP3HoCpI/tUfLJJU2sOTy/dgH+9tRbPvLsRWUeNh0xZHF+cMAhnHjIS+w1prGgZuzI95fo3J8rtv//+uOGGG3DEEUfETpRbvnw59t13X8yaNcubKPfd734XjzzySFljoLtr/Urbhr1xI3Jr1yK3di3sdeuQW78e9voNsDe4n02bIDPRw02KwZJJ8Pp68Po617pW51raasCqq8Gra1yLXBV4VRVYusq12KXBUinXqpdSFr9kEiyRAKwEmMX9v9wCGJSFkDH1CZykBISAFBKAsj5KITyrpMzZgGMra6XtKMtlLqesmvpvNguZzUBkMpBtGYhMG2RbBjLTBtHSCtHaqqyj+vv27a7ldPsOC2aWSsHq0weJ3XaD1Xc3JPr2RaJvPyT69UNiQH8k+/dHYuBAJPr2BbN2/n26u177RHFIKPZg2nIOHn5zLe7670d4Y9UWL71vXRpfmjAYX5wwCPsP7dVl32KbWnL4x5trcO8rK7F4tT/b9OBRu2Hm4aNx6J59u2zZK0VPuf6feeaZwEQ5jZ4od8YZZ2DFihV45plnAttcfPHFWLJkCYYMGYIf/ehHZTvc7qr1K6WEs3kzsh+tRG7VSmQ//hi5VR8jt3q1+qxfr7ptS4DX1blipS8SfXrD6q0sXlavXrB691LWsMZesBobYDU0KIFYVdXJZ9i1kVJCtrbC2bYNYtt2iG1bIbZtg9O8FWLbVjhNzXCam+E0N0E0NcHZsgX2li1wPt0C59NPIdvaih9EY1lI9O+P5KBBSO6+O5K7D0Zy992RGjIEyaHDkBw0sFOEZFe99okdp2yheMIJJ0Q+fBljqKqqwh577IGvf/3rGDNmTIcVsiOhixnYsLUNf1rwEf700kps3p4FoMYb/r9xA/CVyUNx6B59kShzjGGleX3VFtz5wnI8/OZa2EJd0hOH9sJF0/bEYXv1I8HoQtd/51Lp+hUtLcgsX47sh8uRXb4c2RXLkVmxArmPViqrViGSSSQHDEBy4EAkBg5EcuAAJPoPQKJ/fyT691N/+/bt8aKvEojWVjibN8PevBn2pk1wPvkE9saNsDdugr1xA3IbNijr78aNRQU/SyaRHDoUqeHDkRo5EulRI5EaPRrpPfaAtQNRVSp97ROdR9lC8YwzzsCDDz6IXr16YdKkSQCARYsWYcuWLTjqqKPwxhtvYMWKFXjyySfxmc98plMKvSP05It5+abt+L9nP8DfFq72umwHN1bhGwcNx1cnD0W/+u4/KH/Nllb89rnluPvlj9CWU+c4dWQfXHbMWOw/rHeRrXd9evL1vzPYWfUr2tqQWfYBMu+/rz7L3kdm2TLYa9bGb8QYEoMGIjV0GJJDhyA1ZKhrcVJWp0p1WRIdh3Qc2Js2wV67Frk1a5BbswbZ1auR+3g1cqtWIbt6NZDLxW6fGDgQ6b32RNWYMUiPGYuqceOQGjFcdecXge4tuy5lC8XLLrsMzc3NuPnmm8Hdi0cIgQsvvBD19fX4yU9+gvPOOw9vv/02nn/++U4p9I7QEy/m99dvxc1PL8M/31gD19iGA4b1wrcOHYWjxg3odtbDUti4NYNf/+cD/PG/HyHr+nU8fuJgXHrMWAxqjJ/FuqvTE6//nUln1K+9aRPalixB2ztL0bb0HWTefQ/ZFSsAEe2v1OrTB6lRI5EeORKpESORGjEcqREjkBwyBJxmaPdopOMgt3Ydcis/QmbFCmV5/vBDZD74AHZo1r+G19aiatw4VO23H6onTED1xIlIDuifl4/uLbsuZQvFfv364YUXXsBee+0VSH/vvfdwyCGHYNOmTXjrrbdw6KGHYsuWLR1Z1g6hJ13MH27chpueeB//fHONN47682P74/zDR2PyiD6VLdxOYs2WVvzi8ffwt0UfAwBqUhYuPHJPnPmZkUgldj2BXIyedP1Xgh2tX/vTT9H21ltoXbwYbYvfRtvixbA3bIjMa/XqhfSYMUjvsQfSe+6J9B6jkRo9GoneZDknysdpbvYs1G1LlyLzzlK0vftu5PjI5ODBqJ48CTWTJ6N26lQkhw3D1q1b6d6yi1K2exzbtrF06dI8obh06VI47tiIqqoqGhNWQdY1teGmJ97D/Qs/huOaEI/eZyAu+Pwe2Hf3njUjeHCvavziqxNwxiEjcOU/38bCjz7FvH8vxd8XrcZ1J+1H3dFExZDZLNqWLkXr66+j9Y030frmm8itWpWfkTGkRoxA1d5jkd57b1SNHYv0mDFI9KOxt0THYTU0oGbSJNS4Q8oANRs+8+GHaHtrMVrffBOtb7yBzHvvqW7tf6xB8z/+CQBIDBoEMemAShWd6GTKFoqnn346zj77bPzgBz/AgQceCAB45ZVXcO211+Kb3/wmAOA///kP9tlnn44tKVGUrW053P6fD/C755d74/OOHNsfs4/aC/sM7lkCMcx+Qxpx/7cPxt8WfYx5/16Kd9dvxYm3vYizPzMS358+puJuf4hdH6epCS2vvYbWhYvQ8toitL21ONLdTGrkSFTtty+q990XVfvui6oxY8BrKRoRsfNhiQSq9toLVXvthV4nnQgAcLZtR+sbr6N14UJsf/lltL7xJuy1a7HtoX9UuLREZ1F217PjOLjuuutw8803e5EMBgwYgO985zu49NJLYVkWVq5cCc45hgwZ0imF3hF2xa43R0jc+8oq3DD/XWzapmYxHziiNy47ZiwmDe8ZXczlsHl7Ftc8vAR/f201AGBUv1rc+NWJmDC0V2ULthPYFa//roRZvzW2jZaXX0HLK6+g5dVXkXnvvTxfelavXu64rwmonjABVfvuC4vahehGiNZWtCxchHVPPYU9515B95ZdkB3yo9jcrHzXdaeLYld7UL704Se48p9L8M5a1RYj+9ZizjFj8f/GDaBuqSI8+c56zPn7W9iwNYMEZ7j4/+2F8w4bDYvvuvW2q13/XQ1dv69Pn47Uio/y1qdGjED1pANQc8ABqN7/AKRGjqDfKbFLQPeWXZeyu54BNU7xmWeewQcffICvf/3rAIA1a9agoaEBdXV1HVpAIpr1zW249l/v4KHX1wAAGqoSuGjaXjjtoOE9cpJGezhy7wF4/OLe+OEDi/HIW2tx/WPv4oVlm3DTKRPRv4F8xRHtJ/vBh0hZFtJ77YWaKVNQM3kyaiZPQqJv30oXjSAIoizKtih+9NFHOProo7Fy5UpkMhm89957GDVqFC688EJkMhncfvvtnVXWDqG7v/U4QuKPC1bgF4+/h20ZG4wBXztwGL5/1F7YrY5cX7QHKSX+tmg1rnhoMVqyDvrWpfDLr+2PQ/bY9R7q3f367+ro+l31179h4BGHI9GHhn4QPQO6t+y6lG16uvDCCzF58mR8+umnqK72/dGdcMIJePLJJzu0cESQxaubcPwtL+Cqfy7BtoyNCUN74aFZn8G8E/cjkbgDMMZw8qQh+Od3PouxA+uxaVsWp/3uJdzy9DL0sAiXRAfR8P+mkUgkCGKXoOyu5+eeew4vvvgiUqlUIH3EiBFYvXp1hxWM8GnJ2rhx/nv43fPLIaTqZr70mLE49cBh4LvweLqdzeh+dXhw1mfwowcX4/6FH+P6x97F22uacP3JE1CbbtcoDYIgCILo1pT99BNCeP4STT7++GPU70CcSCKaF5dtwqV/fxOrNrcCAI6bMBg/+uLe6F9PY+g6g6qkheu/MgEHDO+NKx5ajH+9tQ4fbtyO386YjCG9aypdPIIgCILYqZTd9XzUUUfhpptu8pYZY9i2bRvmzp2LL3zhCx1Zth7N1rYcfvDAW/j6b1/Cqs2tGNxYhd+fMRm/OnV/Eok7gVOnDMM95x6EvnVpLF23Fcff8gIWfvRppYtFEARBEDuVsiezfPzxx5g+fTqklHj//fcxefJkvP/+++jbty+effZZ9O+fHwOyK9EdBtw+//4mXPq3N7F6i7IinnbQMFx69FjUVyUrXLKex5otrfjWH17FkrXNSCU4bvzqRBw7flCli9VuusP1352h+iV6KnTt77q0y4+ibdu455578Oabb2Lbtm044IAD8I1vfCMwuaWr0pUv5pasjXn/Woq7/qv8rw3tU42fnjQeh4ze9Wbfdie2Z2xceM/reOId5WD+B18Yi3MOHdUt/d915et/V4Dql+ip0LW/61L2GMW2tjZUVVXhtNNO64zy9FgWrfwUs+99HSs+aQEAnH7QcFx2zFiaRNEFqE0n8OvTJ+HHDy/BnS+uwLX/Wor1zRn88At702QigiAIYpem7DGK/fv3x4wZMzB//nwIITqjTD2KnCNww+Pv4uTbXsSKT1owqLEKfzp7Kn58/L4kErsQFmeYe9w4/PALewMAfvf8clx83+vIOfQbIAiCIHZdyhaKf/jDH9DS0oIvf/nL2H333XHRRRfh1Vdf7Yyy7fIs37QdJ9/2In751DIICRw/cTAevehz+Oye1NXcFWGM4ZzPjcJNp0xEgjM89PoanPvHV9GazfcCQBAEQRC7AmULxRNOOAH3338/1q9fj2uvvRZLlizBQQcdhL322gtXX311Z5Rxl0NKifteWYVjf/kc3vi4CQ1VCfzy1P1x09f2R2M1TVjp6hy//+74zYzJqEpyPP3uRsy442Vsy9iVLhZBEARBdDjtDgpcX1+PM888E48//jjefPNN1NbW4qqrrip7P7fccgtGjBiBqqoqTJ06FS+//HLB/DfddBPGjBmD6upqDB06FBdffDHa2traexo7naaWHC64+zVc8rc30ZJ1cNCoPnj0os/hSxMGV7poRBkcMaY//njWVNSnE3h5+Wac9tuX0NSSq3SxCIIgCKJDabdQbGtrw3333Yfjjz8eBxxwADZv3oz/+Z//KWsf9957L2bPno25c+di0aJFmDBhAqZPn44NGzZE5r/77rtx2WWXYe7cuXjnnXfwu9/9Dvfeey9+8IMftPc0dioLP9qML/zyOTzy1lokOMMlR4/Bn791EAb36vqzxYl8pozsgz+fMxW9apJ4fdUWfP23/8Wn27OVLhZBEARBdBhlC8XHHnsMM2bMwIABAzBz5kwMGDAAjz/+OD766CNcd911Ze3rhhtuwDnnnIMzzzwT48aNw+23346amhr8/ve/j8z/4osv4jOf+Qy+/vWvY8SIETjqqKNw6qmnFrVCVhpHSNzy9DJ89df/xeotrRi+Ww3+OvMQnH/4HrBo1my3ZvyQXq5j7hTeXtOMr//2JWwmsdhl6Gk9FgRBEB1Nu8Yotra24o9//CPWrVuHX//61/jc5z5X9oGz2SwWLlyIadOm+YXhHNOmTcOCBQsitznkkEOwcOFC72b/4Ycf4l//+lfBiDCZTAbNzc2Bz85kw9Y2fPP3L+H6x96FIyRO2H93PPLdQzFxaK+dWg6i8xg7sAF/OUdFcXlnbTO+/huyLHYFelqPBUEQRGdQtv+V9evXd0hM502bNsFxHAwYMCCQPmDAACxdujRym69//evYtGkTPvvZz0JKCdu2cd555xW8kc+bN69dYyc7guff34SL7n0N/7+9+46L4lr7AP7bXXYpShWpUkRUUFAUhKAYMEHRKGCahFgIWCKKDTWKBWyR2HskYhCNGrHHxBIjESNKNCoQKzYQC0tTQEFA4Lx/8LrXlRIGd1nK8/3cuTd7ZubMM3M3Zw9zWs6LUqgKBVg81Aaf2bdTSCxEvjrqq2PPuPfgG/k3bomfY/jWC9g91glaaiJFh9ZivdliAQARERE4evQooqKiMHv27CrHv9liAQDm5ubw9fXFhQsXGjRuQghpTDi/UXyzklhcXNygb+vi4uKwdOlSfP/997hy5QoOHjyIo0ePYvHixTWeExISgvz8fMn28OFDucYIVDY1rz6ZgpFRF5DzohRWBur4dZILVRKbOUu91vh5rBN0W4twI6MAo6IuoqCYBrgoQktpsSCEEHnj/EaxsLAQs2bNwt69e5Gbm1tlf3l53eaU09XVhUAgQGZmplR6ZmYmDAwMqj1n/vz5GDlyJMaMGQMAsLW1RWFhIcaNG4e5c+eCz69a71VWVoaysnKdYpKFrOfFmLonCefvVT4bX0cThHl2hYpQ0GAxEMWx1FPH7rHvweeHBPz7KB8B2/7BjtGOUBPR5OkNqSW0WBBCSEPg/Ebxm2++wZ9//onNmzdDWVkZW7duxcKFC2FkZIQdO3bUOR+RSAR7e3vExsZK0ioqKhAbGwtnZ+dqzykqKqpSGRQIKitg9ViyWuYS7uVi8Pp4nL+XCzWRAOu+sEP4J92oktjCdNJXx0+jnaChooRLD55h3I7LKH5Fk3I3dk2lxYIQQhoS59ccv/76K3bs2AE3Nzf4+/ujb9++sLS0hJmZGXbt2oXhw4fXOa/g4GD4+fnBwcEBjo6OWLt2LQoLCyV9ikaNGgVjY2OEh4cDADw9PbF69Wr06NEDTk5OuHv3LubPnw9PT09JhVERKioYNp+5h1UnU1DBgM766tg0vCcs9VorLCaiWDbGmtge4IgRWy8g/m4OJv2ciM3De0JJUO8ZqQgHzbXFghBCGhrniuLTp09hYWEBANDQ0MDTp08BAC4uLggMDOSUl4+PD7KzsxEaGgqxWAw7OzucOHFC0lyUnp4uVTjPmzcPPB4P8+bNw+PHj9G2bVt4enri22+/5XobMpNXVIrpe5MRe6tyJOWnPdthyVAbqIroLWJL18NUG5F+Dvhq2z/440YmZh24ihWfdQOfpkSSuzdbLIYOHQrgfy0WQUFB1Z7T2FssCCFEEThXFC0sLJCamgpTU1NYWVlh7969cHR0xK+//gotLS3OAQQFBdVYcMfFxUkHq6SEsLAwhIWFcb6OPFx9lI/AXZfx6NlLiJT4WOzdFcMcTMDjUUWAVOrdQRebvuyJ8Tsv48CVR9BWE2LuYGv6jlSjvLwc0dHRiI2NRVZWFioqKqT2//nnn5zyay4tFoQQokicK4r+/v5ITk6Gq6srZs+eDU9PT2zcuBGvXr3C6tWr5RFjo8MYw55/HiLsl+soLa+AqY4aNo/oia5GmooOjTRC/bvoY/mn3TB9XzK2xqdCV10Z4107KDqsRmfKlCmIjo7G4MGDYWNj886V6ebQYkHk5/WApboOwGzpBAIBlJSU6I/cFojH3rFN5cGDB7h8+TIsLS3RrVs3WcUlNwUFBdDU1ER+fj40NDQ4n1/8qhzzDl/D/suPAADu1vpYNaw7NFWFsg6VNDNbz97HkqM3AQArP++ukOmS3vX7L0+6urrYsWNHrdPRNHaN+fmS/yktLUVGRgaKiooUHUqToqamBkNDQ4hEVeeHpe9+88X5jWJxcTFUVFQkn83MzGBmZibToBqr9NwijN95GTcyCsDnATM9rPD1+xbU54zUyZi+Fsh6XoItf93HrAP/ok1rEfp11lN0WI2GSCSCpaWlosMgzVxFRQVSU1MhEAhgZGQEkUhEb8n+A2MMpaWlyM7ORmpqKjp27Fjt4C7SPHGuKGppacHR0RGurq5wc3ND7969oaqqKo/YGpXTt7IwZU8iCorL0KaVCBt8e6C3pa6iwyJNzOyBVsh5XoKDiY8xcdcVxIxzhm076rIAANOnT8e6deuwceNG+uEmclNaWoqKigqYmJhATU1N0eE0GaqqqhAKhXjw4AFKS0ulXhiR5o1zRfHUqVP466+/EBcXhzVr1qCsrAwODg6SimP//v3lEafCVFQwrP/zDtbF3gFjgJ2JFr4f3hNGWs2/ckxkj8/n4btPuyHreQni7+bAP/oiDk3oAxMd+sGKj4/H6dOncfz4cXTt2hVCoXR3joMHDyooMtIc0Rsx7uiZtUyc/193cXHBnDlzcPLkSeTl5eH06dOwtLTE8uXLMXDgQHnEqDB5RaUYvf0frD1VWUkc7mSKmK/fo0oieSciJT42j+iJLoYayHlRiq+2XUR+ES31p6WlhY8//hiurq7Q1dWFpqam1EYIIaTh1Wtdsdu3byMuLk6ylZSUYMiQIXBzc5NxeIpz/Uk+xu+8jIdPX0JZiY+lH9viU1qrmciIuooQ2/x7Yeimc7iXXYixP13CT6MdoazUcqdh2bZtm6JDIIQQ8hbOFUVjY2O8fPkSbm5ucHNzw6xZs9CtW7dm1afoUOIjhBy8iuJXFTDRUcXm4fawMaY3GkS29DVUsM2/Fz7fnICLqU8RcuAqVg3r3qz+XaqP7OxspKSkAAA6d+6Mtm3bKjgiQghpuTg3Pbdt2xZFRUUQi8UQi8XIzMzEy5cv5RFbg3tVXoEFR65jWkwyil9VwLVTW/wa5EKVRCI3VgYa2DS8JwR8Hg4mPsbaU3cUHZLCFBYWIiAgAIaGhnj//ffx/vvvw8jICKNHj6ZpTEiLxuPxat0WLFiAtLQ08Hg8CAQCPH78WOr8jIwMyRyIaWlpkvT09HQMHjwYampq0NPTw8yZM1FWVtbAd0caO84VxaSkJIjFYsyePRslJSWYM2cOdHV10bt3b8ydO1ceMTaIrOfFGB55AdHn0wAAkz+wRNRXvaClVnW+KEJk6f1ObbFkqA0AYF3sHfyS9Pg/zmiegoODcebMGfz666/Iy8tDXl4efvnlF5w5cwbTp09XdHiEKExGRoZkW7t2LTQ0NKTSZsyYITnW2NgYO3bskDp/+/btMDY2lkorLy/H4MGDUVpaivPnz2P79u2Ijo5GaGhog9wTaTreacLt3NxcxMXF4ZdffsHPP/+MioqKRj/LfXWTgl5+8AyBOy8j63kJ1JWVsGpYdwzoaqDgSElLE37sJn746z5ESnz8PNYJ9mY6Mr9GY54UV1dXF/v376/S1/n06dMYNmwYsrOzFRMYB435+ZJKxcXFSE1NRfv27aGiogLGGF6+UszvlqpQwLmrSXR0NKZOnYq8vDyp9LS0NLRv3x7z5s1DTEwMbt++LdnXuXNn+Pj4YPHixUhNTYW5uTmOHz+OIUOG4MmTJ5LViiIiIjBr1ixkZ2dXO6n228/uTfTdb74491E8ePCgZBDLjRs3oKOjAxcXF6xatQqurq7yiFFuGGPYdSEdC3+9jlflDJZ6rfHDSHt0aNta0aGRFuibgVa4n1OIP25kYtyOy/glqA/aabecaXOKiookP1hv0tPTo6ZnIjcvX5WjS+jvCrn2jUUeUBPVa0xpjby8vBAREYH4+Hi4uLggPj4ez549g6enJxYvXiw5LiEhAba2tlL/znl4eCAwMBDXr19Hjx49ZBoXabo4Nz2PHz8eT548wbhx45CYmIisrCwcPHgQkydPRvfu3eURo1wUvyrHN/v/xbzD1/CqnOEjWwMcntiHKolEYQR8HtZ9YYeuRhrILSzFmO2X8KKk5fQXcnZ2RlhYGIqLiyVpL1++xMKFC+Hs7KzAyAhpOoRCIUaMGIGoqCgAQFRUFEaMGFFlXlKxWFzlD7PXn8ViccMES5oEzn/KZGVlySOOBjfqx4u49bQMfF7lm5yv37do8aNNieKpiZSw1c8BXhvP4Zb4OabuScQPIx0gaAHLRK5btw4eHh5o166d5I/O5ORkqKio4PffFfPGhzR/qkIBbizyUNi15SEgIAC9e/fG0qVLsW/fPiQkJNAgFVJvsn3n3YTcyChAG21NbPDtCZeOtBQfaTwMNVUROcoBPj8k4NTNLKw8mYJZA60UHZbc2djY4M6dO9i1axdu3boFAPD19cXw4cNbxDKhRDF4PJ7Mm38VzdbWFlZWVvD19YW1tTVsbGyQlJQkdYyBgQEuXrwolZaZmSnZR8hrzevfDg6sDdXx41iXFtUHjDQddiZaWP5ZN0zZk4TNcffQSb81Pu7R/Cd8V1NTw9ixYxUdBiFNXkBAACZMmIDNmzdXu9/Z2RnffvstsrKyoKenBwD4448/oKGhgS5dujRkqKSRa7EVxZ9GO0GPKomkEfO2M0aK+Dm+j7uHWQeuwkK3NbqbaCk6LJk6cuQIBg0aBKFQiCNHjtR6rJeXVwNFRUjTN3bsWHz++efQ0tKqdv+AAQPQpUsXjBw5EsuXL4dYLMa8efMwceJEKCsrN2ywpFFrsRVFFTn1DSFElmYM6Izbmc9x6mYWxv10Cb8GuUBPQ+W/T2wihg4dCrFYDD09PQwdOrTG43g8XqOfeouQxkRJSQm6ujV3qxIIBPjtt98QGBgIZ2dntGrVCn5+fli0aFEDRkmagneaRxGonDvpzz//ROfOnWFtbS2ruOSG5noiTc3z4lf45PvzuJP1AnYmWtgz7r16/6FD33/5oufb+NU2FyCpHc2j2DJxnh5n2LBh2LhxI4DKqSscHBwwbNgwdOvWDQcOHJB5gIS0dOoqQmz1c4CmqhBJD/Mw//A1vOPfd43Sjh07UFJSUiW9tLS0ykoThBBCGgbniuJff/2Fvn37AgAOHToExhjy8vKwfv16LFmyROYBEkIAszatsPHLHuDzgH2XH2H7/y812Zz4+/sjPz+/Svrz58/h7++vgIgIIYRwrijm5+dDR6dyabETJ07g008/hZqaGgYPHow7d+7IPEBCSKW+HdtizkeV3TsWH72JhHu5Co5Ithhj1c5l+ujRI2hqaiogIkIIIZwHs5iYmCAhIQE6Ojo4ceIE9uzZAwB49uwZ9fcgRM5Gu7TH9ScFOJT4GBN3X8GRZrDMX48ePcDj8cDj8fDhhx9CSel/xVJ5eTlSU1MxcOBABUZICCEtF+c3ilOnTsXw4cPRrl07GBkZwc3NDUBlk7StrS3nADZt2gRzc3OoqKjAycmpygSgb8vLy8PEiRNhaGgIZWVldOrUCceOHeN8XUKaIh6Ph/BPbGFjrIGnhaX4+qfLKH7VtEcDDx06FN7e3mCMwcPDA97e3pLtiy++wA8//ICdO3fWK28qXwgh5N1wfqM4YcIEODo64uHDh+jfvz/4/Mq6poWFBec+ijExMQgODkZERAScnJywdu1aeHh4ICUlRTIB6JtKS0vRv39/6OnpYf/+/TA2NsaDBw9qnCeKkOZIRSjADyMd4LkhHtefFCDk4FWsHta9yS5BGRYWBgAwNzfHF198IbM53Kh8IYSQd/fO0+O8CycnJ/Tq1UsyirqiogImJiaYNGkSZs+eXeX4iIgIrFixArdu3aqywHld0RB+0lwk3MvFiB8voLyCIXRIFwS4tP/Pcxrz9/+ff/5BRUUFnJycpNIvXLgAgUAABwcHTvlR+UKqQ9Pj1B9Nj9MycW56DggIqHWrq9LSUly+fBnu7u7/C4bPh7u7OxISEqo958iRI3B2dsbEiROhr68PGxsbLF26tNaJeEtKSlBQUCC1EdIcOHdog7n/P7jl22M38ff9pj24ZeLEiXj48GGV9MePH2PixImc8qLyhRBCZINzRfHZs2dSW1ZWFv78808cPHgQeXl5dc4nJycH5eXl0NfXl0rX19eHWCyu9pz79+9j//79KC8vx7FjxzB//nysWrWq1ibv8PBwaGpqSjYTE5M6x0hIY+ffxxxD7YxQXsEwcdcVPMl7qeiQ6u3GjRvo2bNnlfQePXrgxo0bnPKi8oUQQmSDcx/FQ4cOVUmrqKhAYGAgOnToIJOgalJRUQE9PT1s2bIFAoEA9vb2ePz4MVasWCHp5/S2kJAQBAcHSz4XFBRQYU6ajcrBLd1wO/MFbmQUIHDnZcR87dwkl6hUVlZGZmYmLCwspNIzMjKkRkLLC5UvhBBSFec3itVmwucjODgYa9asqfM5urq6EAgEyMzMlErPzMyEgYFBtecYGhqiU6dOEAj+9yNobW0NsViM0tLSas9RVlaGhoaG1EZIc6IqEuCHkfbQUhMi+VE+wn653iRXbhkwYABCQkKkJt3Oy8vDnDlz0L9/f055UflCmpPX00fVtC1YsABpaWng8XgQCAR4/Pix1Pmv/9ji8XhIS0uTpE+ePBn29vZQVlaGnZ1dw94UaTJkUlEEgHv37qGsrKzOx4tEItjb2yM2NlaSVlFRgdjYWDg7O1d7Tp8+fXD37l1UVFRI0m7fvg1DQ0OIRKL6B09IE2eio4b1X1Su3BJz6SF2X0xXdEicrVy5Eg8fPoSZmRn69euHfv36oX379hCLxVi1ahWnvKh8Ic1JRkaGZFu7di00NDSk0mbMmCE51tjYuMqSl9u3b4exsXG1eQcEBMDHx0eu8ZOmjXN7zpvNLEDlagoZGRk4evQo/Pz8OOfl5+cHBwcHODo6Yu3atSgsLJQs1zVq1CgYGxsjPDwcABAYGIiNGzdiypQpmDRpEu7cuYOlS5di8uTJXG+DkGbn/U5tMcOjM5afSMGCI9dhbaiBnqbaig6rzoyNjfHvv/9i165dSE5OhqqqKvz9/eHr61uvUchUvpA6YQx4VaSYawvVgDpMa/XmW3BNTU3weLwqb8ZzcnIAAH5+fti2bRtCQkIk+7Zt2wY/Pz8sXrxY6pz169cDALKzs/Hvv//W+zZI88a5opiYmCj1mc/no23btli1ahWnUc8A4OPjg+zsbISGhkIsFsPOzg4nTpyQdEBPT0+XzNMIVK4K8/vvv2PatGno1q0bjI2NMWXKFMyaNYvrbRDSLAW6dkDywzz8fj0TE3Zewa+TXNBWXTbzEjaEVq1aYdy4cTLJi8oXUievioClRoq59pwngKiVTLP08vJCREQE4uPj4eLigvj4eDx79gyenp5VKoqE1AXniuLp06dlGkBQUBCCgoKq3RcXF1clzdnZGX///bdMYyCkueDxeFj5eXfczTqHe9mFCNp9BbvGOEFJILNeJnJ348YNpKenV+kX6OXlxTkvKl9ISyMUCjFixAhERUXBxcUFUVFRGDFiRL3nBiWk3kMJs7KykJKSAgDo3LlztSsdEEIanrqKED+MdID3xnhcSH2K747fwrwhXRQd1n+6f/8+Pv74Y1y9ehU8Hk8yIOf1ijO1zWdISL0J1Srf7Cnq2nIQEBCA3r17Y+nSpdi3bx8SEhI4jSEg5E2cXzMUFBRg5MiRMDIygqurK1xdXWFsbIwRI0ZIjVYkhCiOpV5rrBrWHQCwNT4VvyYr6IeQgylTpqB9+/bIysqCmpoarl+/jr/++gsODg7Vvv0jRCZ4vMrmX0Vsclp209bWFlZWVvD19YW1tTVsbGzkch3SMnCuKI4dOxYXLlzA0aNHkZeXh7y8PPz222+4dOkSvv76a3nESAiph4E2hhjvWjm36Tf7/0WK+LmCI6pdQkICFi1aBF1dXfD5fPD5fLi4uCA8PJwGlBDCUUBAAOLi4jiPHSDkbZybnn/77Tf8/vvvcHFxkaR5eHggMjISAwcOlGlwhJB3M2NAJ1x9nIdzd3Px9U+XsNOvm6JDqlF5eTnU1dUBVM6D+OTJE3Tu3BlmZmaSbi6EkLoZO3YsPv/8c2hpadV4zN27d/HixQuIxWK8fPkSSUlJAIAuXbrQlFBEgnNFsU2bNtDU1KySrqmpCW3tpjMVByEtgZKAj/Vf9IDnhnik5RZhzsGrig6pRjY2NkhOTkb79u3h5OSE5cuXQyQSYcuWLVVWayGE1E5JSQm6urq1HjNmzBicOXNG8rlHjx4AgNTUVJibm8szPNKEcG56njdvHoKDg6XWSxWLxZg5cybmz58v0+AIIe+uTWtlRIy0h0iJj7iUbEWHU6N58+ZJJrtetGgRUlNT0bdvXxw7dkwy3xshLd1XX32FvLy8Kunm5uZgjNW4woqdnR0YY1IVwLi4ODDGqmxUSSRvqtMbxR49ekhGHgLAnTt3YGpqClNTUwCV85EpKysjOzub+ikS0gh1a6eFJd42mLG78U794uHhIflnS0tL3Lp1C0+fPoW2trZU+UMIIaTh1KmiOHToUDmHQQiRt2G9THD7YRbmr1V0JFW9evUKqqqqSEpKkhqhqaOjo8CoCCGE1KmiGBYWJu84CCENYLJ7RzTGDiJCoRCmpqY0VyIhhDQyTWe5BkJIszZ37lzMmTMHT58+VXQohBBC/l+9V2YhhBBZ2rhxI+7evQsjIyOYmZmhVSvpNXCvXLmioMgIIaTloooiIaRRoL7QhBDS+FBFkRCiMOvXr8e4ceOgoqICf39/tGvXDnw+9YghhJDG4p1K5NdzLhFCSH0EBwejoKAAANC+fXvk5OQoOCJCCCFvqldFcceOHbC1tYWqqipUVVXRrVs3/PTTT7KOjRDSzBkZGeHAgQN48OABGGN49OgR0tPTq90IIYQ0PM5Nz6tXr8b8+fMRFBSEPn36AADi4+Mxfvx45OTkYNq0aTIPkhDSPM2bNw+TJk1CUFAQeDweevXqVeUYxhh4PB5NnUMIIQrA+Y3ihg0bsHnzZixbtgxeXl7w8vLC8uXL8f3339MyW4QQTsaNG4ecnBwkJyeDMYY//vgDV65ckdoSExNpxDNp0Xg8Xq3bggULkJaWBh6PB4FAgMePH0udn5GRASUlJfB4PKSlpQEAkpOT4evrCxMTE6iqqsLa2hrr1q1TwN2Rxo7zG8WMjAz07t27Snrv3r2RkZEhk6AIIS2Huro6bGxssG3bNvTp0wfKysqKDomQRuXN39aYmBiEhoYiJSVFkta6dWtJ/15jY2Ps2LEDISEhkv3bt2+HsbGxVBeOy5cvQ09PDzt37oSJiQnOnz+PcePGQSAQICgoqAHuijQVnCuKlpaW2Lt3L+bMmSOVHhMTg44dO8osMEJIy+Ln56foEEgLxBjDy7KXCrm2qpJqndYxNzAwkPyzpqYmeDyeVBoASUXRz88P27Ztk6oobtu2DX5+fli8eLEkLSAgQOp8CwsLJCQk4ODBg1RRJFI4VxQXLlwIHx8f/PXXX5I+iufOnUNsbCz27t0r8wAJIYQQeXlZ9hJOu50Ucu0LX16AmlBNpnl6eXkhIiIC8fHxcHFxQXx8PJ49ewZPT0+pimJ18vPzaX11UgXnPoqffvopLly4AF1dXRw+fBiHDx+Grq4uLl68iI8//lgeMRJCCCGkDoRCIUaMGIGoqCgAQFRUFEaMGAGhUFjreefPn0dMTAzGjRvXEGGSJqReE27b29tj586dso6FEEJkatOmTVixYgXEYjG6d++ODRs2wNHR8T/P27NnD3x9feHt7Y3Dhw/LP1CiMKpKqrjw5QWFXVseAgIC0Lt3byxduhT79u1DQkICysrKajz+2rVr8Pb2RlhYGAYMGCCXmEjTxbmiKBAIkJGRAT09Pan03Nxc6Onp0RQWhJB3UlpaitTUVHTo0AFKSvVfPComJgbBwcGIiIiAk5MT1q5dCw8PD6SkpFQpv96UlpaGGTNmoG/fvvW+Nmk6eDyezJt/Fc3W1hZWVlbw9fWFtbU1bGxskJSUVO2xN27cwIcffohx48Zh3rx5DRsoaRI4Nz3XtBJLSUkJRCLROwdECGmZioqKMHr0aKipqaFr166SEZqTJk3Cd999xzm/1atXY+zYsfD390eXLl0QEREBNTU1SZNcdcrLyzF8+HAsXLgQFhYW9b4XQhQtICAAcXFxVQatvOn69evo168f/Pz88O233zZgdKQpqXNFcf369Vi/fj14PB62bt0q+bx+/XqsWbMGEydOhJWVVb2C2LRpE8zNzaGiogInJydcvHixTuft2bMHPB4PQ4cOrdd1CSGNR0hICJKTkxEXFwcVFRVJuru7O2JiYjjlVVpaisuXL8Pd3V2Sxufz4e7ujoSEhBrPW7RoEfT09DB69Og6XaekpAQFBQVSGyGNwdixY5GdnY0xY8ZUu//atWvo168fBgwYgODgYIjFYojFYmRnZzdwpKSxq3O7zpo1awBUvlGMiIiAQCCQ7BOJRDA3N0dERATnAKh5iBACAIcPH0ZMTAzee+89qSlDunbtinv37nHKKycnB+Xl5dDX15dK19fXx61bt6o9Jz4+Hj/++GONTXTVCQ8Px8KFCznFRkhDUFJSgq6ubo379+/fj+zsbOzcuVNqzIGZmZlkUm5CAA5vFFNTU5GamgpXV1ckJydLPqempiIlJQW///47nJy4TzFAzUOEEADIzs6u9o/DwsLCOs019y6eP3+OkSNHIjIystYf17eFhIQgPz9fsj18+FCOURICfPXVV8jLy6uSbm5uDsYY7Ozsqj3Pzs4OjDGYm5sDABYsWADGWJWNKonkbZx7ip8+fVpmF3/dPPTmxKBcm4fOnj1b6zVKSkpQUlIi+UxNQ4Q0Tg4ODjh69CgmTZoEAJLK4datW+Hs7MwpL11dXQgEAmRmZkqlZ2ZmVpmoGADu3buHtLQ0eHp6StIqKioAVL6ZSUlJQYcOHaqcp6ysTCvJEEKatfoPKZSBhmgeoqYhQpqGpUuXYtCgQbhx4wbKysqwbt063LhxA+fPn8eZM2c45SUSiWBvb4/Y2FhJH+aKigrExsZWu+qElZUVrl69KpU2b948PH/+HOvWrYOJiUm974sQQpoyzqOeFak+zUPUNERI0+Di4oKkpCSUlZXB1tYWJ0+ehJ6eHhISEmBvb885v+DgYERGRmL79u24efMmAgMDUVhYCH9/fwDAqFGjJK0ZKioqsLGxkdq0tLQk61DTjA6EkJZKoW8UG6J5iJqGCGk6OnTogMjISJnk5ePjg+zsbISGhkIsFsPOzg4nTpyQtGCkp6eDz29SfysTQkiDU2hFkZqHCGnZuPQZ1tDQ4Jx/UFBQtWUJAMTFxdV6bnR0NOfrEUJIc1OvimJeXh4uXryIrKwsyRu910aNGsUpr+DgYPj5+cHBwQGOjo5Yu3ZtleYhY2NjhIeHS5qH3qSlpQUAVdIJIY2flpZWnUc006pPhBDS8DhXFH/99VcMHz4cL168gIaGhlQhz+PxOFcUqXmIkJbrzVkU0tLSMHv2bHz11VeSUc4JCQnYvn07wsPDFRUiIYS0aDxW05p8NejUqRM++ugjLF26FGpqTW99zIKCAmhqaiI/P79eTVmENGWN+fv/4YcfYsyYMfD19ZVK3717N7Zs2fKfTcWNQWN+vqRScXExUlNT0b59e6kVgMh/q+3Z0Xe/+eL8qu7x48eYPHlyk6wkEkIar4SEBDg4OFRJd3BwqPOynoQQQmSLc0XRw8MDly5dkkcshJAWzMTEpNoRz1u3bqWBaoQQoiCc+ygOHjwYM2fOxI0bN2BrawuhUCi138vLS2bBEUJajjVr1uDTTz/F8ePHJcuBXrx4EXfu3MGBAwcUHB0hivNfA77CwsLw1VdfoX379uDz+UhPT4exsbFkf0ZGBkxMTFBeXo7U1FSYm5sjNzcXw4cPx7///ovc3Fzo6enB29sbS5cupaZjIoVzRXHs2LEAKpfRexuPx6ORiYSQevnoo49w584dfP/995KVmTw9PTF+/Hh6o0hatIyMDMk/x8TEIDQ0FCkpKZK01q1bIycnBwBgbGyMHTt2SC2Nu337dhgbGyM9PV2Sxufz4e3tjSVLlqBt27a4e/cuJk6ciKdPn2L37t0NcFekqeBcUXx7OhxCCJGVdu3aYenSpYoOg7QgjDGwly8Vcm2eqmqdpod6cwEKTU1N8Hi8KotSvK4o+vn5Ydu2bVIVxW3btsHPzw+LFy+WpGlrayMwMFDy2czMDBMmTMCKFSvqfT+keVLohNuEEPKmvLw8/Pjjj7h58yYAoGvXrggICICmpqaCIyPNFXv5Eik9uS8RKQudr1wGT8YDQ728vBAREYH4+Hi4uLggPj4ez549g6enp1RF8W1PnjzBwYMH4erqKtN4SNNXrwkKz5w5A09PT1haWsLS0hJeXl44e/asrGMjhLQgly5dQocOHbBmzRo8ffoUT58+xerVq9GhQwdcuXJF0eER0iQIhUKMGDECUVFRAICoqCiMGDGiyniC13x9faGmpgZjY2NoaGhg69atDRkuaQI4v1HcuXMn/P398cknn2Dy5MkAgHPnzuHDDz9EdHQ0vvzyS5kHSQhp/qZNmwYvLy9ERkZCSamyaCorK8OYMWMwdepU/PXXXwqOkDRHPFVVdL5yWWHXloeAgAD07t0bS5cuxb59+5CQkICysrJqj12zZg3CwsJw+/ZthISEIDg4GN9//71c4iJNE+eK4rfffovly5dj2rRpkrTJkydj9erVWLx4MVUUCSH1cunSJalKIgAoKSnhm2++qXZ+RUJkgcfjybz5V9FsbW1hZWUFX19fWFtbw8bGBklJSdUea2BgAAMDA1hZWUFHRwd9+/bF/PnzYWho2LBBk0aLc9Pz/fv34enpWSXdy8sLqampMgmKENLyaGhoSI3KfO3hw4dQV1dXQESENF0BAQGIi4tDQEBAnc95PVi1pKREXmGRJojzG0UTExPExsbC0tJSKv3UqVM0hQUhpN58fHwwevRorFy5Er179wZQ2a1l5syZVZb1I4TUbuzYsfj888+hpaVV7f5jx44hMzMTvXr1QuvWrXH9+nXMnDkTffr0gbm5eYPGSho3zhXF6dOnY/LkyUhKSpIqzKOjo7Fu3TqZB0gIaRlWrlwJHo+HUaNGSfpTCYVCBAYG4rvvvlNwdIQ0LUpKStDV1a1xv6qqKiIjIzFt2jSUlJTAxMQEn3zyCWbPnt2AUZKmgMcYY1xPOnToEFatWiWZwsLa2hozZ86Et7e3zAOUNVq4nLRkTeH7X1RUhHv37gEAOnTo0KTWlW8Kz7elKy4uRmpqKtq3bw8VFRVFh9Ok1Pbs6LvffNVrHsWPP/4YH3/8saxjIYQQqKmpwdbWVtFhEEIIAU24TQhRsLp2tn89LxwhhJCGU6eKoo6ODm7fvg1dXV1oa2vXuuTQ06dPZRYcIaT5i46OhpmZGXr06IF69IQhhBAiR3WqKK5Zs0YyPcWaNWvqtDYlIYTURWBgIH7++WekpqbC398fI0aMgI6OjqLDIoQQgnoOZmnKqMMtacka6/e/pKQEBw8eRFRUFM6fP4/Bgwdj9OjRGDBgQJP6w7SxPl/yP68HZJiZmTWpgVKNQVFRER48eECDWVoYzn0Ur1y5AqFQKOls/ssvv2Dbtm3o0qULFixYAJFIJPMgCSHNm7KyMnx9feHr64sHDx4gOjoaEyZMQFlZGa5fv47WrVvXK99NmzZhxYoVEIvF6N69OzZs2ABHR8dqj42MjMSOHTtw7do1AIC9vT2WLl1a4/GkaRKJRODz+Xjy5Anatm0LkUjUpP4YUQTGGEpLS5GdnQ0+n0+/8y0M54ri119/jdmzZ8PW1hb379+Hj48PPvnkE+zbtw9FRUVYu3atHMIkhLQUfD4fPB4PjDGUl5fXO5+YmBgEBwcjIiICTk5OWLt2LTw8PJCSkgI9Pb0qx8fFxcHX1xe9e/eGiooKli1bhgEDBuD69eswNjZ+l1sijQifz0f79u2RkZGBJ0+eKDqcJkVNTQ2mpqbg8zkv6kaaMM5Nz5qamrhy5Qo6dOiAZcuW4c8//8Tvv/+Oc+fO4YsvvsDDhw/lFatM0Otx0pI11u//m03P8fHxGDJkCPz9/TFw4MB6/yg5OTmhV69e2LhxI4DK5clMTEwwadKkOk0qXF5eDm1tbWzcuBGjRo2q0zUb6/MlVTHGUFZW9k5/jLQkAoEASkpKNb59pe9+88X5jSJjTLIe5KlTpzBkyBAAlUv75eTkyDY6QkizN2HCBOzZswcmJiYICAjAzz//XOuKEnVRWlqKy5cvIyQkRJLG5/Ph7u6OhISEOuVRVFSEV69e1TqwpqSkRGpd3IKCgvoHTRoUj8eDUCiEUChUdCiENGqcK4oODg5YsmQJ3N3dcebMGWzevBkAkJqaCn19fZkHSAhp3iIiImBqagoLCwucOXMGZ86cqfa4gwcP1jnPnJwclJeXVymT9PX1cevWrTrlMWvWLBgZGcHd3b3GY8LDw7Fw4cI6x0UIIU0N5zadtWvX4sqVKwgKCsLcuXNhaWkJANi/f79k7WeuNm3aBHNzc6ioqMDJyQkXL16s8djIyEj07dsX2tra0NbWhru7e63HE0Iat1GjRqFfv37Q0tKCpqZmjVtD+u6777Bnzx4cOnSo1mXeQkJCkJ+fL9kae9cbQgjhivMbxW7duuHq1atV0lesWAGBQMA5AOpwTkjLFh0dLfM8dXV1IRAIkJmZKZWemZkJAwODWs9duXIlvvvuO5w6dQrdunWr9VhlZWUoKyu/c7yEENJYcX6j+PDhQzx69Ejy+eLFi5g6dSp27NhRr74eq1evxtixY+Hv748uXbogIiICampqNS7XtWvXLkyYMAF2dnawsrLC1q1bUVFRgdjYWM7XJoQ0TyKRCPb29lLlwutywtnZucbzli9fjsWLF+PEiRNwcHBoiFAJIaRR41xR/PLLL3H69GkAgFgsRv/+/XHx4kXMnTsXixYt4pTX6w7nb/YBknWH85KSEhQUFEhthJDmLzg4GJGRkdi+fTtu3ryJwMBAFBYWwt/fH0Blk/ebg12WLVuG+fPnIyoqCubm5hCLxRCLxXjx4oWiboEQQhSOc0Xx2rVrkglo9+7dCxsbG5w/fx67du3i3IRUW4dzsVhcpzz+q8N5eHi4VD8nExMTTjESQpomHx8frFy5EqGhobCzs0NSUhJOnDghKW/S09ORkZEhOX7z5s0oLS3FZ599BkNDQ8m2cuVKRd0CIYQoHOc+iq9evZL0yTl16hS8vLwAAFZWVlKFbkN43eE8Li6uxg7nISEhCA4OlnwuKCigyiIhLURQUBCCgoKq3RcXFyf1OS0tTf4BEUJIE8P5jWLXrl0RERGBs2fP4o8//sDAgQMBAE+ePEGbNm045SWLDucnT56stcO5srIyNDQ0pDZCCCGEEPLfOFcUly1bhh9++AFubm7w9fVF9+7dAQBHjhzhvCYqdTgnhBBCCGm8ODc9u7m5IScnBwUFBdDW1pakjxs3DmpqapwDCA4Ohp+fHxwcHODo6Ii1a9dW6XBubGyM8PBwAJUV1dDQUOzevVvS4RwAWrdujdatW3O+PiGEEEIIqR7niiJQuebjm5VEADA3N69XAD4+PsjOzkZoaCjEYjHs7OyqdDh/c63XNzucvyksLAwLFiyoVwyEEEIIIaQqHmOM/ddBPXv2RGxsLLS1tdGjR48aFwUHgCtXrsg0QFmjhctJS0bff/mi50taKvruN191eqPo7e0tGek8dOhQecZDCCGEEEIaiTq9UWxO6K8e0pLR91++6PmSloq++81XvfoovvbixQtUVFRIpdEXhBBCCCGkeeA8PU5qaioGDx6MVq1aQVNTE9ra2tDW1oaWllaVAS6EEEIIIaTp4vxGccSIEWCMISoqCvr6+rUObCGEEEIIIU0X54picnIyLl++jM6dO8sjHkIIIYQQ0khwbnru1asXHj58KI9YCCGEEEJII8L5jeLWrVsxfvx4PH78GDY2NhAKhVL7a1t3mRBCCCGENB2cK4rZ2dm4d++eZIk9AODxeGCMgcfjoby8XKYBEkIIIYQQxeBcUQwICECPHj3w888/02AWQgghhJBmjHNF8cGDBzhy5AgsLS3lEQ8hhBBCCGkkOA9m+eCDD5CcnCyPWAghhBBCSCPC+Y2ip6cnpk2bhqtXr8LW1rbKYBYvLy+ZBUcIIYQQQhSHc0Vx/PjxAIBFixZV2UeDWQghhBBCmg/OFcW313YmhBBCCCHNE+c+itXJy8uTRTaEEEIIIaQR4VxRXLZsGWJiYiSfP//8c+jo6MDY2JgGuRBCGpVNmzbB3NwcKioqcHJywsWLF2s9ft++fbCysoKKigpsbW1x7NixBoqUEEIaJ84VxYiICJiYmAAA/vjjD5w6dQonTpzAoEGDMHPmTJkHSAgh9RETE4Pg4GCEhYXhypUr6N69Ozw8PJCVlVXt8efPn4evry9Gjx6NxMREDB06FEOHDsW1a9caOHJCCGk8eIwxxuUEVVVV3L59GyYmJpgyZQqKi4vxww8/4Pbt23BycsKzZ8/kFatMFBQUQFNTE/n5+dDQ0FB0OIQ0qJb0/XdyckKvXr2wceNGAJX9q01MTDBp0iTMnj27yvE+Pj4oLCzEb7/9Jkl77733YGdnh4iIiDpd8/Xz/e7XeVBppcIxYsUtXsDA6Weg0V+rLr9qXON4+/jafjqrHFvlsyST2veDSf676vWY1LGv82Bv5VklL/ZGnm/8d/XnMlT+53+fJf/EmFTexUWl+P7zrS2ibGlpOA9m0dbWxsOHD2FiYoITJ05gyZIlACq/YDTimRDSGJSWluLy5csICQmRpPH5fLi7uyMhIaHacxISEhAcHCyV5uHhgcOHD9d4nZKSEpSUlEg+FxQUAAC2PzoAgargHe6AkKal/CX9/jdXnCuKn3zyCb788kt07NgRubm5GDRoEAAgMTGRVmshhDQKOTk5KC8vh76+vlS6vr4+bt26Ve05YrG42uPFYnGN1wkPD8fChQurpPd7UQLl8pZRUZTle1CeHF821hZnTfvqem+8Gv4ZqPmeqhwn+d/qT+C9kVfN59a8n8dqPo8PVm3cPFS9typp/39ccXEFZlUbOWnqOFcU16xZA3Nzczx8+BDLly9H69atAQAZGRmYMGGCzAMkhJDGKiQkROotZEFBAUxMTBA+LpGa30iLUlBQgFlzNBUdBpEDzhVFoVCIGTNmVEmfNm2aTAIihJB3paurC4FAgMzMTKn0zMxMGBgYVHuOgYEBp+MBQFlZGcrKyu8eMCGENFKcK4oAcOfOHZw+fRpZWVlVJuAODQ2VSWCEEFJfIpEI9vb2iI2NxdChQwFUDmaJjY1FUFBQtec4OzsjNjYWU6dOlaT98ccfcHZ2boCICSGkceI8PU5kZCSsra0RGhqK/fv349ChQ5Kttk7ftaG5zgghshYcHIzIyEhs374dN2/eRGBgIAoLC+Hv7w8AGDVqlNRglylTpuDEiRNYtWoVbt26hQULFuDSpUs1ViwJIaRFYByZmpqy7777jutpNdqzZw8TiUQsKiqKXb9+nY0dO5ZpaWmxzMzMao8/d+4cEwgEbPny5ezGjRts3rx5TCgUsqtXr9bpevn5+QwAy8/Pl9k9ENJUtLTv/4YNG5ipqSkTiUTM0dGR/f3335J9rq6uzM/PT+r4vXv3sk6dOjGRSMS6du3Kjh49yul6Le35EvIaffebL87zKGpoaCApKQkWFhYyqag29FxnLWkeOULeRt9/+aLnS1oq+u43X5z7KH7++ec4efIkxo8f/84Xb4i5zt6e5yw/Px/A/+Y7I6Qlef295/j3Iamj18+VyhfS0lDZ0nxxrihaWlpi/vz5+Pvvv2FrawuhUCi1f/LkyXXOqyHmOqtpnrPXyxAS0hLl5uZCU5OmspC13NxcAFS+kJaLypbmh3NFccuWLWjdujXOnDmDM2fOSO3j8XicKooN4e15zvLy8mBmZob09HT6MivA63nmHj58SM0TCpCfnw9TU1Po6OgoOpRm6fVzpfKl4VHZolhUtjRfnCuKqampMrt4Q8x1VtM8Z5qamlSYKJCGhgY9fwXi8zlPeEDq4PVzpfJFcahsUSwqW5ofhf4/+uZcZ6+9nuusprnLXs919iaa64wQQgghRPbqNeH2o0ePcOTIEaSnp6O0tFRq3+rVqznlFRwcDD8/Pzg4OMDR0RFr166tMteZsbExwsPDAVTOdebq6opVq1Zh8ODB2LNnDy5duoQtW7bU51YIIYQQQkgNOFcUY2Nj4eXlBQsLC9y6dQs2NjZIS0sDYww9e/bkHICPjw+ys7MRGhoKsVgMOzs7nDhxQjJgJT09XepVdu/evbF7927MmzcPc+bMQceOHXH48GHY2NjU6XrKysoICwujZbcUhJ6/YtHzly96vopDz16x6Pk3X5znUXR0dMSgQYOwcOFCqKurIzk5GXp6ehg+fDgGDhyIwMBAecVKCCGEEEIaEOeKorq6OpKSktChQwdoa2sjPj4eXbt2RXJyMry9vZGWlianUAkhhBBCSEPiPJilVatWkn6JhoaGuHfvnmRfTk6O7CIjhBBCCCEKxbmP4nvvvYf4+HhYW1vjo48+wvTp03H16lUcPHgQ7733njxiJIQQQgghCsC56fn+/ft48eIFunXrhsLCQkyfPh3nz59Hx44dsXr1apiZmckrVkIIIYQQ0oA4NT2Xl5fj0aNHMDU1BVDZDB0REYF///0XBw4caPBK4l9//QVPT08YGRmBx+PVuN7za3FxceDxeFW2t5f/27RpE8zNzaGiogInJydcvHhRjnfRdMnj+S9YsKDKfisrKznfSdPE9fkDlWufz507F2ZmZlBWVoa5uTmioqKkjtm3bx+srKygoqICW1tbHDt2TE530LhR+aJYVL4oDpUt5E2cKooCgQADBgzAs2fP5BUPJ4WFhejevTs2bdrE6byUlBRkZGRINj09Pcm+mJgYBAcHIywsDFeuXEH37t3h4eGBrKwsWYff5Mnj+QNA165dpfbHx8fLMuxmoz7Pf9iwYYiNjcWPP/6IlJQU/Pzzz+jcubNk//nz5+Hr64vRo0cjMTERQ4cOxdChQ3Ht2jV53EKjRuWLYlH5ojhUthApjCN7e3t26tQprqfJHQB26NChWo85ffo0A8CePXtW4zGOjo5s4sSJks/l5eXMyMiIhYeHyyjS5klWzz8sLIx1795dprG1BHV5/sePH2eamposNze3xmOGDRvGBg8eLJXm5OTEvv76a1mE2WRR+aJYVL4oDpUthPOo5yVLlmDGjBn47bffkJGRgYKCAqmtKbCzs4OhoSH69++Pc+fOSdJLS0tx+fJluLu7S9L4fD7c3d2RkJCgiFCbpZqe/2t37tyBkZERLCwsMHz4cKSnpysgyubnyJEjcHBwwPLly2FsbIxOnTphxowZePnypeSYhIQEqe8/AHh4eND3nwMqXxSLypeGR2VL81bnUc+LFi3C9OnT8dFHHwEAvLy8wOPxJPsZY+DxeCgvL5d9lDJiaGiIiIgIODg4oKSkBFu3boWbmxsuXLiAnj17IicnB+Xl5ZJVYV7T19fHrVu3FBR18/Ffzx8AnJycEB0djc6dOyMjIwMLFy5E3759ce3aNairqyv4Dpq2+/fvIz4+HioqKjh06BBycnIwYcIE5ObmYtu2bQAAsVhc7ff/7X52pCoqXxSLyhfFobKleatzRXHhwoUYP348Tp8+Lc945Kpz585SfSZ69+6Ne/fuYc2aNfjpp58UGFnLUJfnP2jQIMn+bt26wcnJCWZmZti7dy9Gjx7d4DE3JxUVFeDxeNi1axc0NTUBVK7N/tlnn+H777+HqqqqgiNs2qh8USwqXxSHypbmrc4VRfb/s+i4urrKLRhFcHR0lHRm1tXVhUAgQGZmptQxmZmZMDAwUER4zd6bz786Wlpa6NSpE+7evduAUTVPhoaGMDY2lhTkAGBtbQ3GGB49eoSOHTvCwMCAvv8yROWLYlH50jCobGneOPVRfLOpublISkqCoaEhAEAkEsHe3h6xsbGS/RUVFYiNjYWzs7OiQmzW3nz+1Xnx4gXu3btX6zGkbvr06YMnT57gxYsXkrTbt2+Dz+ejXbt2AABnZ2ep7z8A/PHHH/T9rycqXxSLypeGQWVLM1fXUS88Ho9paWkxbW3tWreG9Pz5c5aYmMgSExMZALZ69WqWmJjIHjx4wBhjbPbs2WzkyJGS49esWcMOHz7M7ty5w65evcqmTJnC+Hy+1CjuPXv2MGVlZRYdHc1u3LjBxo0bx7S0tJhYLG7Qe2sK5PH8p0+fzuLi4lhqaio7d+4cc3d3Z7q6uiwrK6vB76+x4/r8nz9/ztq1a8c+++wzdv36dXbmzBnWsWNHNmbMGMkx586dY0pKSmzlypXs5s2bLCwsjAmFQnb16tUGvz9Fo/JFsah8URwqW8ibOFUU161bx6Kjo2vdGtLr6RDe3vz8/BhjjPn5+TFXV1fJ8cuWLWMdOnRgKioqTEdHh7m5ubE///yzSr4bNmxgpqamTCQSMUdHR/b333830B01LfJ4/j4+PszQ0JCJRCJmbGzMfHx82N27dxvwrpoOrs+fMcZu3rzJ3N3dmaqqKmvXrh0LDg5mRUVFUsfs3buXderUiYlEIta1a1d29OjRBrqjxoXKF8Wi8kVxqGwhb6rzEn58Ph9isbjK5KWEEEIIIaR5qnMfxebYP5EQQgghhNSszhXFOr54JIQQQgghzUSdm54JIYQQQkjLwnkJP0IIIYQQ0jJQRZEQQgghhFSLKoqEEEIIIaRaVFEkhBBCCCHVoooiIYQQQgipFlUUCSGEEEJItaiiSAghhBBCqkUVRVIrNzc3TJ06VdFhSNQ3ntzcXOjp6SEtLU3mMb3tiy++wKpVq+R+HUKaOipfuKPyhTQ0qig2AhEREVBXV0dZWZkk7cWLFxAKhXBzc5M6Ni4uDjweD/fu3WvgKBuWrH9Avv32W3h7e8Pc3FxmedZk3rx5+Pbbb5Gfny/3axHyX6h8qYrKF0LqjiqKjUC/fv3w4sULXLp0SZJ29uxZGBgY4MKFCyguLpaknz59GqampujQoYMiQm2SioqK8OOPP2L06NENcj0bGxt06NABO3fubJDrEVIbKl/ki8oX0txRRbER6Ny5MwwNDREXFydJi4uLg7e3N9q3b4+///5bKr1fv34AgBMnTsDFxQVaWlpo06YNhgwZIvUmYMuWLTAyMkJFRYXU9by9vREQEAAAqKioQHh4ONq3bw9VVVV0794d+/fvrzHWuhzv5uaGyZMn45tvvoGOjg4MDAywYMECqWOeP3+O4cOHo1WrVjA0NMSaNWskf+V/9dVXOHPmDNatWwcejwcejyfVpFNRUVFr3m87duwYlJWV8d5770mlx8fHQygUSv1QpqWlgcfj4cGDB3Bzc8OkSZMwdepUaGtrQ19fH5GRkSgsLIS/vz/U1dVhaWmJ48ePV7mmp6cn9uzZU2tchDQEKl+ofCHknTDSKHz55ZdswIABks+9evVi+/btY+PHj2ehoaGMMcaKioqYsrIyi46OZowxtn//fnbgwAF2584dlpiYyDw9PZmtrS0rLy9njDH29OlTJhKJ2KlTpyT55ubmSqUtWbKEWVlZsRMnTrB79+6xbdu2MWVlZRYXF8cYY8zV1ZVNmTJFcv5/Hf/6HA0NDbZgwQJ2+/Zttn37dsbj8djJkyclx4wZM4aZmZmxU6dOsatXr7KPP/6YqaursylTprC8vDzm7OzMxo4dyzIyMlhGRgYrKyurc95vmzx5Mhs4cGCV9A0bNjBbW1uptIMHDzJtbW3JtdTV1dnixYvZ7du32eLFi5lAIGCDBg1iW7ZsYbdv32aBgYGsTZs2rLCwUCqf48ePM5FIxIqLi2uMi5CGQuULlS+E1BdVFBuJyMhI1qpVK/bq1StWUFDAlJSUWFZWFtu9ezd7//33GWOMxcbGMgDswYMH1eaRnZ3NALCrV69K0ry9vVlAQIDk8w8//MCMjIxYeXk5Ky4uZmpqauz8+fNS+YwePZr5+voyxqQL8roc//ocFxcXqWN69erFZs2axRhjrKCggAmFQrZv3z7J/ry8PKampia51ts/IHXNuzpvP4PXxowZw0aNGiWVFhoaytzc3Kq9VllZGWvVqhUbOXKkJC0jI4MBYAkJCVL5JCcnMwAsLS2txrgIaShUvlD5Qkh9UdNzI+Hm5obCwkL8888/OHv2LDp16oS2bdvC1dVV0o8oLi4OFhYWMDU1BQDcuXMHvr6+sLCwgIaGhqQjdXp6uiTf4cOH48CBAygpKQEA7Nq1C1988QX4fD7u3r2LoqIi9O/fH61bt5ZsO3bsqLYzO5fju3XrJvXZ0NAQWVlZAID79+/j1atXcHR0lOzX1NRE586d6/Ssasu7Oi9fvoSKikqV9KSkJNjZ2UmlJSYmSqW9eS2BQIA2bdrA1tZWkqavrw8AVa6vqqoKoLL/EiGKRuULlS+E1JeSogMglSwtLdGuXTucPn0az549g6urKwDAyMgIJiYmOH/+PE6fPo0PPvhAco6npyfMzMwQGRkp6StkY2OD0tJSqWMYYzh69Ch69eqFs2fPYs2aNQAqRz4CwNGjR2FsbCwVj7KycpUYuRwvFAqlPvN4vCp9meqLa966urp49uyZVFp5eTmuXbuGHj16SKVfuXIFn376aa3XejONx+MBQJXrP336FADQtm3b/7odQuSOype6o/KFEGlUUWxE+vXrh7i4ODx79gwzZ86UpL///vs4fvw4Ll68iMDAQACV83alpKQgMjISffv2BVDZefptKioq+OSTT7Br1y7cvXsXnTt3Rs+ePQEAXbp0gbKyMtLT0yU/HLXhenxNLCwsIBQK8c8//0jeXuTn5+P27dt4//33AQAikQjl5eX1vsabevToUWWEYEpKCoqLi2FkZCRJS0hIwOPHj6u8BaiPa9euoV27dtDV1X3nvAiRBSpfqHwhpD6ootiI9OvXDxMnTsSrV6+kCkpXV1cEBQWhtLRUMiJRW1sbbdq0wZYtW2BoaIj09HTMnj272nyHDx+OIUOG4Pr16xgxYoQkXV1dHTNmzMC0adNQUVEBFxcX5Ofn49y5c9DQ0ICfn59UPlyPr4m6ujr8/Pwwc+ZM6OjoQE9PD2FhYeDz+ZK/oM3NzXHhwgWkpaWhdevW0NHRAZ9fv54SHh4eCAkJwbNnz6CtrQ2gslkIADZs2IDJkyfj7t27mDx5MgBIvTGpr7Nnz2LAgAHvnA8hskLlC5UvhNQH9VFsRPr164eXL1/C0tJS0jcFqCzInz9/LpnmAgD4fD727NmDy5cvw8bGBtOmTcOKFSuqzfeDDz6Ajo4OUlJS8OWXX0rtW7x4MebPn4/w8HBYW1tj4MCBOHr0KNq3b19tXlyPr8nq1avh7OyMIUOGwN3dHX369IG1tbWkr8+MGTMgEAjQpUsXtG3bVqpfFFe2trbo2bMn9u7dK0lLSkqCh4cH7t+/D1tbW8ydOxcLFy6EhoYG1q9fX+9rAUBxcTEOHz6MsWPHvlM+hMgSlS9UvhBSHzzGGFN0EIQUFhbC2NgYq1atksvEtUePHsXMmTNx7do18Pl8eHh4oFevXliyZInMr7V582YcOnQIJ0+elHnehBDuqHwhpP6o6ZkoRGJiIm7dugVHR0fk5+dj0aJFACon65WHwYMH486dO3j8+DFMTEyQnJwsmRRY1oRCITZs2CCXvAkh/43KF0Jkh94oEoVITEzEmDFjkJKSApFIBHt7e6xevVpqagh5EYvFMDQ0xPXr19GlSxe5X48Q0rCofCFEdqiiSAghhBBCqkWDWQghhBBCSLWookgIIYQQQqpFFUVCCCGEEFItqigSQgghhJBqUUWREEIIIYRUiyqKhBBCCCGkWlRRJIQQQggh1aKKIiGEEEIIqRZVFAkhhBBCSLWookgIIYQQQqr1fx2UqSLlENi/AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "postprocess(sim_data, \"TM\")\n" ] }, { "cell_type": "markdown", "id": "27391958", "metadata": {}, "source": [ "### TM0 to TM2 Convertion " ] }, { "cell_type": "code", "execution_count": 27, "id": "f63bd043", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:07:58.811440Z", "iopub.status.busy": "2023-03-28T00:07:58.811275Z", "iopub.status.idle": "2023-03-28T00:08:58.022796Z", "shell.execute_reply": "2023-03-28T00:08:58.022165Z" } }, "outputs": [ { "data": { "text/html": [ "
[09:34:26] Created task 'evanescent_coupler_tm2' with task_id                                         webapi.py:139\n",
       "           'fdve-d3c48fc9-c27f-4fc9-9f70-e871c0e4a211v1'.                                                          \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:34:26]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'evanescent_coupler_tm2'\u001b[0m with task_id \u001b]8;id=599980;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=820763;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-d3c48fc9-c27f-4fc9-9f70-e871c0e4a211v1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "92c5ed958a5e4f319ca32cb3d855bb53", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:34:28] status = queued                                                                            webapi.py:269\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:34:28]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=176381;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=539837;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:34:30] status = preprocess                                                                        webapi.py:263\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:34:30]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=283974;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=121466;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
[09:34:38] Maximum FlexCredit cost: 0.073. Use 'web.real_cost(task_id)' to get the billed FlexCredit  webapi.py:286\n",
       "           cost after a simulation run.                                                                            \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:34:38]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.073\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit \u001b]8;id=120554;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=453102;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mcost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           starting up solver                                                                         webapi.py:290\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=836068;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=123089;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           running solver                                                                             webapi.py:300\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=956976;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=694227;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9616530cbb934898bc879ac3824c801f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:35:18] early shutoff detected, exiting.                                                           webapi.py:314\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:35:18]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=324878;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=282474;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#314\u001b\\\u001b[2m314\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           status = postprocess                                                                       webapi.py:331\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=169942;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=793783;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#331\u001b\\\u001b[2m331\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:35:40] status = success                                                                           webapi.py:338\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:35:40]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=520028;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=199372;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#338\u001b\\\u001b[2m338\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "d8bf162138a14dcdafce7a655c83bf2a",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:35:42] loading SimulationData from data/simulation_data.hdf5                                      webapi.py:510\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:35:42]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/simulation_data.hdf5 \u001b]8;id=313732;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=246964;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#510\u001b\\\u001b[2m510\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim = make_sim(\"TM\", **design_params[\"TM2\"])\n", "\n", "job = web.Job(simulation=sim, task_name=\"evanescent_coupler_tm2\", verbose=True)\n", "sim_data = job.run(path=\"data/simulation_data.hdf5\")\n" ] }, { "cell_type": "code", "execution_count": 28, "id": "632bfec1", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:08:59.108776Z", "iopub.status.busy": "2023-03-28T00:08:59.108632Z", "iopub.status.idle": "2023-03-28T00:09:00.939824Z", "shell.execute_reply": "2023-03-28T00:09:00.939298Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAooAAAHrCAYAAABINLzuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADXG0lEQVR4nOydd4AURfr+n+qesIHdJW1gyUHJSA4m8OQrKqKYzoAeICcnYkC8U1EE4U4xnXKKit6dop4BvZ/pDhMSxMAhghhAgpLDLnl32TChq35/dJjunp60gdnZfT/e3E5XV1fXVDfTz7xv1fsyIYQAQRAEQRAEQdiQkt0BgiAIgiAIon5CQpEgCIIgCIJwhIQiQRAEQRAE4QgJRYIgCIIgCMIREooEQRAEQRCEIyQUCYIgCIIgCEdIKBIEQRAEQRCOkFAkCIIgCIIgHCGhSBAEQRAEQThCQpEgiJPCypUrwRjDypUrk90VgiAIIk5IKBIEUas8++yzWLRoUbK7US1ef/11zJ8/P9ndAABwzvHoo4+iY8eOSEtLQ58+ffDGG2/Effzx48cxefJk5ObmIjMzE+eccw7Wr1/vWPeDDz5A//79kZaWhnbt2mH27NkIBoO19VEIgkhhGOV6JgiiNunVqxdatmwZZjnknMPv98Pj8UCS6udv1Isuugg//fQTdu7cmeyuYMaMGXj44Ydx4403YtCgQXj//fexZMkSvPHGG7j66qujHss5x1lnnYXvv/8ef/rTn9CyZUs8++yz2LNnD9atW4dTTjnFqPvRRx9h9OjRGDFiBK655hr8+OOPeOaZZzB58mQ899xzdf0xCYKo55BQJIg6oLy8HJmZmcnuRlKIJBRTgfoiFPft24eOHTti8uTJWLBgAQBACIHhw4djx44d2LlzJ2RZjnj8W2+9hauuugpvv/02rrjiCgDAoUOHcOqpp+KCCy7A66+/btTt2bMn3G43vv32W7hcLgDAzJkz8dBDD2HTpk3o1q1bHX5SgiDqO/XzZz1B1CP27duHSZMmobCwEF6vFx07dsSUKVPg9/sBAIsWLQJjDJ9//jluvvlm5OXloU2bNsbxzz77LHr27Amv14vCwkJMnToVx48ft5xj27ZtuPzyy1FQUIC0tDS0adMGV199NUpKSow6S5cuxZlnnommTZuiSZMm6Nq1K+69996Y/Y/nOJ/Ph9mzZ6NLly7wer1o27Yt7rrrLvh8vrD2/vWvf2Hw4MHIyMhAs2bNcPbZZ+PTTz8FAHTo0AEbN27E559/DsYYGGMYMWIEgMhzFN9++20MGDAA6enpaNmyJa677jrs27fPUmfChAlo0qQJ9u3bh7Fjx6JJkybIzc3FH//4RyiKEnMM3n//fYwePdq4hp07d8af//xny7EjRozAkiVLsGvXLqPvHTp0iNjmhAkTjHr21wMPPBCzT7H6GwgEcPPNNxtljDFMmTIFe/fuxerVq6Me/+9//xv5+fm47LLLjLLc3Fz89re/xfvvv29c102bNmHTpk2YPHmyIRIB4Oabb4YQAv/+979r9DkIgkh9XLGrEETjZf/+/Rg8eLAx36tbt27Yt28f/v3vf6OiogIej8eoe/PNNyM3NxezZs1CeXk5AOCBBx7AnDlzMHLkSEyZMgVbtmzBc889h7Vr1+Krr76C2+2G3+/HqFGj4PP5cOutt6KgoAD79u3Df//7Xxw/fhw5OTnYuHEjLrroIvTp0wdz586F1+vFL7/8gq+++ipq/+M5jnOOiy++GF9++SUmT56M7t2748cff8STTz6JrVu34r333jPqzpkzBw888ABOP/10zJ07Fx6PB2vWrMHy5ctx3nnnYf78+bj11lvRpEkT3HfffQCA/Pz8iP1btGgRJk6ciEGDBmHevHkoLi7G3/72N3z11Vf47rvv0LRpU6OuoigYNWoUhgwZgscffxyfffYZ/vrXv6Jz586YMmVK1HFYtGgRmjRpgunTp6NJkyZYvnw5Zs2ahdLSUjz22GMAgPvuuw8lJSXYu3cvnnzySQBAkyZNIrb5hz/8ASNHjrSUffzxx3jttdeQl5dnlB0+fDhq33SysrLg9XoBAN999x0yMzPRvXt3S53Bgwcb+88888yIbX333Xfo379/mIt/8ODBeOGFF7B161b07t0b3333HQBg4MCBlnqFhYVo06aNsZ8giEaMIAgiIr/73e+EJEli7dq1Yfs450IIIV566SUBQJx55pkiGAwa+w8ePCg8Ho8477zzhKIoRvmCBQsEAPHiiy8KIYT47rvvBADx9ttvR+zHk08+KQCIQ4cOJdT/eI579dVXhSRJ4osvvrCUL1y4UAAQX331lRBCiG3btglJksSll15q+TxChMZCCCF69uwphg8fHnaeFStWCABixYoVQggh/H6/yMvLE7169RKVlZVGvf/+978CgJg1a5ZRNn78eAFAzJ0719Jmv379xIABA6IPghCioqIirOwPf/iDyMjIEFVVVUbZ6NGjRfv27WO258S2bdtETk6O+L//+z/LfQAgrtdLL71k6UenTp3CzlFeXi4AiHvuuSdqXzIzM8UNN9wQVr5kyRIBQHz88cdCCCEee+wxAUDs3r07rO6gQYPE0KFD4/34BEE0UMj1TBAR4Jzjvffew5gxY8IsLoDqCjRz4403WuaNffbZZ/D7/Zg2bZrFsnPjjTciOzsbS5YsAQDk5OQAAD755BNUVFQ49kW3rL3//vvgnMf9GeI57u2330b37t3RrVs3HD582Hj95je/AQCsWLECAPDee++Bc45Zs2aFWarsYxEP3377LQ4ePIibb74ZaWlpRvno0aPRrVs3Y3zM3HTTTZbts846C9u3b495rvT0dON9WVkZDh8+jLPOOgsVFRXYvHlzwn23U15ejksvvRTNmjXDG2+8YbkPli5dGtdr1KhRxjGVlZWGddGMPk6VlZVR+xPv8frfSHVjnYcgiIYPuZ4JIgKHDh1CaWkpevXqFVf9jh07WrZ37doFAOjataul3OPxoFOnTsb+jh07Yvr06XjiiSfw2muv4ayzzsLFF1+M6667zhCRV111Ff7xj3/g97//Pe655x6ce+65uOyyy3DFFVdEXUEcz3Hbtm3Dzz//jNzcXMc2Dh48CAD49ddfIUkSevToEdd4xCLS+ABAt27d8OWXX1rK0tLSwvrYrFkzHDt2LOa5Nm7ciJkzZ2L58uUoLS217DPPA60uN954I3799Vd8/fXXaNGihWWf3T0dD+np6Y7zQ6uqqoz9tXG8/jdS3VjnIQii4UNCkSBqiZo8VP/6179iwoQJeP/99/Hpp5/itttuw7x58/C///0Pbdq0QXp6OlatWoUVK1ZgyZIl+Pjjj7F48WL85je/waeffhpxBWw8x3HO0bt3bzzxxBOObbRt27ban6s2ibbKNxrHjx/H8OHDkZ2djblz56Jz585IS0vD+vXrcffddydkoXXib3/7G9544w3861//Qt++fcP2FxUVxdVOTk6OcQ+1atUKK1asgBDCYq09cOAAAHUOYTRatWpl1DVjP75Vq1ZGuf06HzhwwJgTSRBE44VczwQRgdzcXGRnZ+Onn36q1vHt27cHAGzZssVS7vf7sWPHDmO/Tu/evTFz5kysWrUKX3zxBfbt24eFCxca+yVJwrnnnosnnngCmzZtwoMPPojly5cbruFIxDquc+fOOHr0KM4991yMHDky7KVb/Dp37gzOOTZt2hT1fPG6oSONj15mH5/qsnLlShw5cgSLFi3C7bffjosuuggjR45Es2bNwuom6kL/4osv8Mc//hHTpk3DuHHjHOu0atUqrtfixYuNY/r27YuKigr8/PPPlrbWrFlj7I9G3759sX79+jARvGbNGmRkZODUU0+1tPPtt99a6u3fvx979+6NeR6CIBo+JBQJIgKSJGHs2LH4z3/+E/YgBdS4dtEYOXIkPB4PnnrqKUvdf/7znygpKcHo0aMBAKWlpWFZMHr37g1JkgyX4NGjR8Pa1x/iTm5DnXiO++1vf4t9+/bh73//e1jdyspKYwX32LFjIUkS5s6dGyZAzJ8vMzMzLPyPEwMHDkReXh4WLlxo+QwfffQRfv75Z2N8aopuiTT30e/349lnnw2rm5mZGbcr+sCBA/jtb3+LM88801g57UR15ihecsklcLvdlj4KIbBw4UK0bt0ap59+uqUfmzdvRiAQMMquuOIKFBcX45133jHKDh8+jLfffhtjxowx5iT27NkT3bp1wwsvvGAJFfTcc8+BMWbEYCQIovFCrmeCiMJDDz2ETz/9FMOHDzdCxxw4cABvv/02vvzyS0v4Fju5ubmYMWMG5syZg/PPPx8XX3wxtmzZgmeffRaDBg3CddddBwBYvnw5brnlFlx55ZU49dRTEQwG8eqrr0KWZVx++eUAgLlz52LVqlUYPXo02rdvj4MHD+LZZ59FmzZtooZJiee466+/Hm+99RZuuukmrFixAmeccQYURcHmzZvx1ltv4ZNPPsHAgQPRpUsX3Hffffjzn/+Ms846C5dddhm8Xi/Wrl2LwsJCzJs3DwAwYMAAPPfcc/jLX/6CLl26IC8vz1gYY8btduORRx7BxIkTMXz4cFxzzTVGeJwOHTrgjjvuqO5ls3D66aejWbNmGD9+PG677TYwxvDqq686Cv0BAwZg8eLFmD59OgYNGoQmTZpgzJgxju3edtttOHToEO666y68+eabln19+vRBnz59AFRvjmKbNm0wbdo0PPbYYwgEAhg0aBDee+89fPHFF3jttdcsbvgZM2bg5Zdfxo4dO4y4j1dccQWGDh2KiRMnYtOmTUZmFkVRMGfOHMu5HnvsMVx88cU477zzcPXVV+Onn37CggUL8Pvf/z4sPA9BEI2QJK64JoiUYNeuXeJ3v/udyM3NFV6vV3Tq1ElMnTpV+Hw+IUQoPI5TCB0h1HA43bp1E263W+Tn54spU6aIY8eOGfu3b98ubrjhBtG5c2eRlpYmmjdvLs455xzx2WefGXWWLVsmLrnkElFYWCg8Ho8oLCwU11xzjdi6dWvUvsd7nN/vF4888ojo2bOn8Hq9olmzZmLAgAFizpw5oqSkxFL3xRdfFP369TPqDR8+XCxdutTYX1RUJEaPHi2ysrIEACNUjj08js7ixYuN9po3by7GjRsn9u7da6kzfvx4kZmZGfb5Zs+eLeL5Gvvqq6/E0KFDRXp6uigsLBR33XWX+OSTT8L6c+LECXHttdeKpk2bCgBRQ+UMHz48Yqib2bNnx+xTLBRFEQ899JBo37698Hg8omfPnuJf//pXWD09dNCOHTss5UePHhWTJk0SLVq0EBkZGWL48OER79F3331X9O3bV3i9XtGmTRsxc+ZM4ff7a/wZCIJIfSiFH0EQBEEQBOEIzVEkCIIgCIIgHCGhSBAEQRAEQThCQpEgCIIgCIJwhIQiQRAEQRAE4QgJRYIgCIIgCMIREooEQRAEQRCEI40u4DbnHPv370dWVlbC6boIgiAIgghHCIGysjIUFhZCklLLBsU5xx//dA0uv+w2nHHGGcnuTr2j0cVR3Lt3L9q2bZvsbhAEQRBEg2PPnj1o06ZNsruREC+/fC8mTXoEPXt2wPr1Wy2Zj4hGKBRLSkq0tGsSALIoEgRBEETNEQA4jh8/jpycnGR3Jm4qKyvRtWsHzJo1Hg8++Cruv388brjh4WR3q17R6FzPIXczAwlFgiAIgqg9Um1K1/y/TUNubg7GTzgf6ele3H33QlxzzWykp6cnu2v1htSaSEAQBEEQBFELHD58GA/Pew0PP3ITJEnCb686B61atcATT96W7K7VK0goEgRBEATR6Jg79w8444xe+M1v+gMAJEnCw4/chEcfeQOHDh1Kcu/qD41ujmJpaak2f0IGuZ4JgiAIojYQABSUlJQgOzs72Z2JyS+//ILevXvif2sWolevjpZ9l1x8Lzp0KMCCBe8kqXf1CxKKBEEQBEHUkNQSildeOQLZ2Zl44e9/Ctu3adNODB70B/zww0845ZRTktC7+gUJRYIgCIIgakjqCMV9+/ahXbt22LlrMQoLWzrWmThhHpo1y8Lf/vbvk9y7+kejW/VMEARBEETjpaqqCrIsobCgOcC5Y522bfNw+HDGSe5Z/SSlF7M8/PDDYIxh2rRpye4KQRAEQRCpRDAY+RVBQDZGUtaiuHbtWjz//PPo06dPsrtCEARBEESqEW3mXeOalReVlLQonjhxAuPGjcPf//53NGvWLNndIQiCIAgi1SCLYlykpFCcOnUqRo8ejZEjR8as6/P5UFpaankRBEEQBNHIIaEYFynnen7zzTexfv16rF27Nq768+bNw5w5c+q4VwRBEARBpBRRxSC5nnVSyqK4Z88e3H777XjttdeQlpYW1zEzZsxASUmJ8dqzZ08d95IgCIIgiPqNAFOCkV9kUTRIKYviunXrcPDgQfTv398oUxQFq1atwoIFC+Dz+SDLsuUYr9cLr9d7srtKEARBEER9JqhE3sfJoqiTUhbFc889Fz/++CM2bNhgvAYOHIhx48Zhw4YNYSKRIAiCIAjCEc4jv6qx6nnfvn247rrr0KJFC6Snp6N379749ttvjf1CCMyaNQutWrVCeno6Ro4ciW3btlnaOHr0KMaNG4fs7Gw0bdoUkyZNwokTJ2r8UWtCSlkUs7Ky0KtXL0tZZmYmWrRoEVZOEARBEAQRESUYeZ9IzPV87NgxnHHGGTjnnHPw0UcfITc3F9u2bbNEZnn00Ufx1FNP4eWXX0bHjh1x//33Y9SoUdi0aZMxnW7cuHE4cOAAli5dikAggIkTJ2Ly5Ml4/fXXq/URa4OUEooEQRAEQRC1QjT3shBQFCUsUkqk6WyPPPII2rZti5deesko69ixo6k5gfnz52PmzJm45JJLAACvvPIK8vPz8d577+Hqq6/Gzz//jI8//hhr167FwIEDAQBPP/00LrzwQjz++OMoLCysyaetNinlenZi5cqVmD9/frK7QRAEQRBEKhE1PI7Ad999h5ycHMtr3rx5jk198MEHGDhwIK688krk5eWhX79++Pvf/27s37FjB4qKiixh/XJycjBkyBCsXr0aALB69Wo0bdrUEIkAMHLkSEiShDVr1tTRIMSGLIoEQRAEQTQ6mBJtMQtHv379sGLFCktxpMWx27dvx3PPPYfp06fj3nvvxdq1a3HbbbfB4/Fg/PjxKCoqAgDk5+dbjsvPzzf2FRUVIS8vz7Lf5XKhefPmRp1kQEKRIAiCIIjGhUD0OIpCQJZlZGdnx9Uc5xwDBw7EQw89BADo168ffvrpJyxcuBDjx4+vhQ4nj5R3PRMEQRAEQSRMUIn8SjA8TqtWrdCjRw9LWffu3bF7924AQEFBAQCguLjYUqe4uNjYV1BQgIMHD1q7GAzi6NGjRp1kQEKRIAiCIIjGRy2m8DvjjDOwZcsWS9nWrVvRvn17AOrCloKCAixbtszYX1paijVr1mDYsGEAgGHDhuH48eNYt26dUWf58uXgnGPIkCHV/ZQ1hlzPBEEQBEE0PqLGSkzMonjHHXfg9NNPx0MPPYTf/va3+Oabb/DCCy/ghRdeAAAwxjBt2jT85S9/wSmnnGKExyksLMTYsWMBqBbI888/HzfeeCMWLlyIQCCAW265BVdffXXSVjwDJBQJgiAIgmiMxMrMkkAOj0GDBuHdd9/FjBkzMHfuXHTs2BHz58/HuHHjjDp33XUXysvLMXnyZBw/fhxnnnkmPv74Y0tK4tdeew233HILzj33XEiShMsvvxxPPfVUdT5drcGEqEb48RSmtLQUOTk5UO8AVqfnYtVoX9QwEbnTOWvaJkEQBEFERwBQUFJSEvcCkGTx66+/onu3rvCtfDBinfv//ikOebvg+eefP4k9q5+QRbGGJCwGma2+TadXR1zGPCWJR4IgCIKwEiPgNqFCQpEgCIIgiMZHtDiKJBQNSCjWFLuFMNGF5AwAEltdlTAON7zZykjWRYIgCKLRESOOIqFCQrEGMDAwyACrQZQhwWGeMRtNtFXPhcwdxCws/wiiubtJRBIEQRANDxFjMUsdG3BSCBKKNYExMCkdrBpCUQjtJmQAoBhlic5QtNa33diaCHUUeyzCP4I450ySgCQIgiBSmqgp/OgZp0NCsQYwyPC4suMWioY4BCA0UScEN5Un9gsmUnsqCsDM4tPUtsmKGSb4ornCI1ghSTQSBEEQKQctZokLEooEQRAEQTQ+YsVRJACQUKwRTPIgK601AECKsIiFm6xzQmguZqhWRAHFsCjyOKyJurXQ3o6+z2hXcADWcvPxYE6ubrPFMYK10G5t1H5x2d3TZGEkCIIg6j3BKM9dEooGJBRrgCylo7XUA5KI7nrm2nxArv0nwKEgAM60v0IxxJwdoc1f1I8TQtHeK4bAFEIBF0EIKOA8qJVxcBGwuLatQlJt1bwP0MSkad4k7G5xwUJC0MlNLQQtjiEIgiDqNwK06jlOSCjWALerCU6RC4xtZlpdbJaOxqxBLlSJJ7QX5whCQBGq9Asdq88qFBAhiQgODoUpUBAEZxxBFoSCAAQ4AswHRQQ04an+VUTQIiLN1kv1vWIRj9EskmqZWt8y51GzPlrFo/lTm4giIklAEgRBxEddJGaoDin/va2QUIwHEoo1QJa8yE+3DiFjgMRUoShL1lXJitBeHAgIVTgGOKAIASFUYSiBwSWFxJfCNcEoVOmlcIGA4JrYVIVmQCjwwQ+FKQgwP4IsiCB8CEoBKCJgWDAFuLatisag8BkucLMl0hCXDuKRi6DaN5NwBAAWz2IZp5XW5L4mCKKRU1+EX6Mj6mKWk9eN+g4JxRogMxfStBHkQhWIDOpfF2NwSwJeKRTGUBeKAc4Q4EBQAAGubus/XmQGpLnUdhTBoIjQvSyEVWAGecg6WaV4ERAKApwjgCCC4AiwABQEEWSqCFQQgCIFDXd3ED7D+igkVUTaXdicqwKT86AqCrkEQJ/36IJgZle2ormu1ToAwCwrsx3srOYYj1FiO5JwJAiiIUCisB5BcRTjotEKxW7dukOW5dgVo1CQMwQXts2GoqhiT1EEOBfq/SUACA4mBLgiEBCAPwj4FaAqCFQEBaoCQJXCURUQCCqqZdEtOPI8HDJTRaRfu1c9kioigxzwcaaKS6giUkCgIqjWDXKBoGalDHKBgElMBk2WyACC8COoikkWRID5oSCAIAsgKHzqe6EJSU1Aqu+DhniM5LIOX0CjhIfpcVowE2HOo7qL5j0SBJE61IUglCQJbrcbkiRBkiQwxoz3kiSBmd5HrGPZZmCMWaZNJYIw/bhXFAWbN/9UWx/15ECLWeKi0QpFr9dbY6E4ImsAznq9f/wHBAKAzwdWUQFWWQVUVACVPqCiCij3QZRVQSkJoHIXUFEq43ipG8fKXSjzMQQDHFU+jhIfcKxCoLSKgykcTVwCEgNKAwxVigAXDLL2jz4oBHyKqrUYs1okFQH4FYGAEAhwropKzSLpQwABFkAAAfglP4LwGXMgA6LCmP+oL5bR/+pzIs0WSCcBaV4wE0lAxjvnUa0S/UuOhCRBELVNbQpBWZbhdrvDXx6P9t6lCcTwR3bMflRLBMYTG5hD8IDx7apEC15dTxHkeo6LRisUa4PTmiV4J7ndgNsN0aRJxHtQApCpvXKdKpRXQDp8GDhwEGL3Efh2VKB0n4zdh5vgSIWMsirAF+A4USVwtJLjaHkQIsCR41EP93MGgMEtAVWK0FzbsiYcAb9mkfRzDr8i4OdcnQPJFQQQRCWrslggIy2i4ULd5jxoXVQTxQKpCsjIq611ologjUqxUxSSgCQIIho1FYOyLMNjiD2z8HObBKDXsOiFnS9M5IULuPitgTUzjISjQLBgai/6oMUscUFCsQbkp/lP/kkzM8Az2wHt2wFDAQ+AltrLDDt0CKz4EFB8FMEdx3BiaxBFRWnYV+LBsRPAiUqOncc5/AEFOW71mEqFgQsGiamu9ColNK8yyAV8ioCfZ4VZIM1zIgPMr71U97VfVIALzZ1tcmGbLZDhAjIY7r4Oi/0YRUACkUVkDAFJ4pEgGh81EYSSJMHr9SItLU39m56ubXshy+7w9mOIP2fhF1vkVdd9XF2EqG3hmQTI9RwXJBRrQHmw/v5DEbm5ELm5QC/1ayhbe51qqiN9/yPE1v2o+L4M+/ZkYO8xDw6fECit4CgqU+CvFPDKgFdi8HOgSmFwMSAoZAS5aRW2aU6kTxeRXIFPKKiETxWQkh8BzYUdbQ6kEBxB7rNYHXUh6RiyJ5ILG0jMChmnG9txrElcEkRKUF1ByBiD1+u1CcE0eL1pcLvdUYSgZGkjnPgFoD4fMJYgFHVkCQs/b+q5msOgFH5xQUKxBmwpc+PsZHeiBvDTegOn9Ub6lUAXqC8AQCAAaftOYPte+DYcQtHWNOw4nI69pRKOlCs4VKqgzC+Q42aQmDo3UtK+RAJcRoCr/8b8XKAqmIGAEPArXHVfCw6/CBgLacwCUhEBNaxPhEU0sUL3JGqFjMsCGQmyTBJEvaW6gtDj8SAtLS1MDHo8nghiMJoQrB1DglX4KXHrl9oWjOHN8ZQXUyKKRTHq/MVGRsoJxXnz5uGdd97B5s2bkZ6ejtNPPx2PPPIIunbtetL7sr+igS6fd7vBu54CdD0F7guAdkeOoP3O3eC/FKNotYw9pU1xoExGWUUQh8uCOFwahCuogAWCAATcWvxIP2fwykxzW0sIclmd88jd2pxHrloe4Q+5reGDX6o0RKOizXWM322tiUYtKqWKuvIakCzhexhgmgtpD99jxuE6RwjrY+yGgxh12G+GxCVBVJ9ExKHb7UZaWhrS09ONV1p6GiRJgkX86W06WAnrShiqOFvrYou/Gj6TYrUf43sv5SDXc1yknFD8/PPPMXXqVAwaNAjBYBD33nsvzjvvPGzatAmZmZlxt7Nv3z7tS6H6vFO2BKeMPAFZBtwSQ5pLwOsSyHBxpLsF0twcGZ4A0rwKPF4OdzqHOx2QMgApQ4aU6QLLdINleIFML5CRBmSmQ+TnQjRtVqO+1SaiRQuIFi2AAUDBVUCBaZ/063Zgyy5UbqjAvr052HXUjcMnBI6dUFBUEgT3KxABBVWKgBAMgKTGjhRuCG1VtjrfUbU6BgRHlRK0hO9xclvbF84o3GdknbHHfqyW1dEyADFEXQKBxKNRW+Kxuu2kSnw3EtREvPeqLMuqCDSLwox0LeKFTRDG5TKuiRgMF3/Ows85RJixGeH+5zwIzjk45xBCaO+FbTv0Eub31RR95r7wVIw7GO1z09eMQcoJxY8//tiyvWjRIuTl5WHdunU4++z4HcGHDx8CavhgrDzxC1aVDwC0lmSJQWaAW1JfMgNkxsCFC0EhUBVUVxr7uZpxhTEOl+SHxxVAursCGW6GJukupHn2gsky0rwSmqYztEgXaJHBUdC0Ck3zq+AplCHnZgItsoBWeeBt26pRvpMA79wJ6NwJ3guBTlBfAMCOHAHbuh3lSw9g994c7DzmxpEyjqPlCopLAvBVBZEOgSpFIMDVuY8BLiMggCD3IKDFgNRjQepuaz0LjTn+Y4D5EBBVlgDi9pXXZgEZbe4jYMt7DVhyX+tlLK65kEC48LT/OEl8wU11qJV2amOyfC1YIRL9LCQsU5t4rjdjLGQZ1EVhRjrcbjcMC2AU13HNrYOxRKD5+yK68BNCQSAQQCAQVP/6/dp26KUoikX0JQtr31Pv35kIRukzWRQNUk4o2ikpKQEANG/e3HG/z+eDz+cztktLS2vt3FwEUOq3fkEwpopFCQyyBCOmIaAu+OBC/QsAklDdsiIAcEWB389QUqEgyFUBpXA1DWCarAZE9SsCFYoMj0dC0/QAmmaUIivtBNI9u9Asg6FlhkB+ZhAtc3xoVuCDt70HUtumQKtc8A7t1fA8JwnRogXEsBZIHwZ0hfoCALZvP9jWnQj8eAj7t2RgxyEv9pcylJQrKC4N4GhZEE09gF9hCGrZbhQO+LkLXMtko1sg9dXXPq7AJ1QrpH3ldUBUgSMURNzssrbPfbRaH62C0SjTUxiCm4RkNKukrLq3mYP12pTqUG0zjrA/J5WaWdwdiRYXsyZEEaDxCksSlPWDWNdLF4JmQej1erW9Uh3NJayeELRa3HThFwgTfn6TGKwPlrlo/xZiTatJKSiOYlyktFDknGPatGk444wz0KtXL8c68+bNw5w5c+rk/IFgBXYHj6l9Md1VEhiYkKD+x7SvLvWLKpQbObRPZpKaG5qpZeb21P3MIjiFT+BYgOPEiQBkpoavkZkqKDPdqjitDLoRkBgy0svRvIkPTdIPoEm6jIIshtbZAbTOK0XOkAygfR74KZ2B9PQ6GSM7onUhROtCyOcAbaG+AAAnTkDasg18037s/NKDX4+k4WCZwPETCg6UBFBaHkSGrP7brQqqIpwLGX6OMBd2gHNtLiQPE5BBFjTiP9rd2IbrWpsHqefE1svNwcVD1kiEWSWF6aERWpntAIvPStkwif1wTuhBVIPFSKEmSFAmg0jj7vF4rFbCDPWvKvRiWwnVonhXGtdUCKr7A4EAqiqr4PP5UFUV+uv3+2t1cUky78EGc/+L6BZFWswSIqWF4tSpU/HTTz/hyy+/jFhnxowZmD59urFdWlqKtm3bRqyfCAqvwn72q8nyFPqyYZL6ZcQ0uai+D31B6cJRYjJkuCEJSatrrSNBgiQkyNyl7hUyXJAhQ4abyXBDgotJ8EgSPDJDWUCCWzJi5SMQ4DhR5lfjIXIBt8TgkoCA5ILnHQX52UeQk3EcWRkyWmUDbXP8KCwoRWZPL1infIjOHSBycmplvKLSpAn4gH7AgH7ocD3QQR+D48fAtmyHsnE/Dm8AdhRnYucxGSXlCg6VBlFcFoRXZsj2AD5T+B5zOsMgVwOHB7VUhgHOjdXXlpzYUhAKtFzYTMuNrYtIqLmw9RXZhpg0ichoVkkzdoHp6PI2ubvjQ45ZP5STWxtbJyvnScLeFycizhm1NGSz3pp3RXugxSssSVDWCWarlMvlsi4q0URhIgtLjDpxTY8I/TuJJQat11DdHwwGHcWgz+dLSAzS/ZF8orueT14/6jspKxRvueUW/Pe//8WqVavQpk2biPX02Fd1gRA+lPr3AgC4fV6bhv4wliy/ciXrX8hgTDLEI2OhB54ESdsnq6JRcmvy0Q2ZueESbrjghVdJgzvohgcuuOGCzCTIYHAxCYyZLJOS7hrncFUpqDqhBg3nQrVIemSAuzwQbhm5TUrQMutHZGfIaJbBUJgdwKndjsLTqznQuQ14p451MawWRNNmEEMGgA0ZgFyo2WoG62OzZSvE5t2oXHccG35ujl3HJJRWKDhcpqCoLAhJYsjxqMHDfYrqvpcAbf4jIJAGhQMBIbS0huE5sYOq49oQkz6pyggmbs5IwxGyQCoioPbdIgKt1sNILu+w+ZH6OMQh8pzFVyLfdtUVjol9o0azskYT1la0h72tHXPdqELT5vZXz+3w0IjXVV4DQRn1/A0Il+xyXGnscumPIQdRCEQVhqEq1rGOLNjiswwqQSVMBOrvE3UNN/TrmtJEu5R02QxSTigKIXDrrbfi3XffxcqVK9GxY92Llch9UVAZOKa9N99x5vf2X7zO2yGRGHk/Y6qgNMQjkyAxNyTmhot54ZK8kDUBqVspZbghC80ayV1wKTJk4YILEjzMDS+TITMGN1Mtkm6JQWYCbimIohM+HDmofhoJQIabIfBFOpg3iLzsvWieVYxmmTLaZvvRrkUJmvYUkLoVgnftAmRn1Xh8Y8G7ngp0PRVplwBDob4AVUDi133wfX8E+7emY+fRNOwpYThewVFWEcShcg4RFMh2S+AAqhRorn/1swY1l4N9TqTCBaq4ls5QKFA0+6NgHEEoUFgQQaautObQcl6z0Hu1TQUcqujUQ//Y3d2A9X6Kx/oGOP9YMVu5o2H+cRKLeNp0EnzqsbGFYJjrPmJdh30sdhuAYhGYIdd/eJtqhThEZaJzL2tBWDr2I8mYs5SkedNC2UrS0iC77PdYBGEIxJW6zowqDCOvFnayDAIAVzgqKystr6qqKgSDwejnq2fjTlQPoURxPTeE8D+1RMoJxalTp+L111/H+++/j6ysLBQVFQEAcnJykH6S5tmF4OA8lMYv0sPRDBPRhGO41dG+zUwiURePMnNBkbwIMBdk5gZjqkBkTIYMl2qxhARZUi2QqpB0wSvS4OZuuCDBDRc8igyvJGvuaQaPJMErhxboICDAA0GgKoiDJ4C9iiqymqdLyM12o+kaF9o3PYourVYiry+Hq3ch+LBBiQ9rDdEFpPtCoENxETpu3wO+/TAqtgWxvzgb+06koegEcOyEgmMVCo6UBcACCrw8CH9AGAuRVOsjEBAMClcfDRVBBr8iI6BZHbkQUKBZHwWHAkWL4sghGAcX2ntDNHLDvR2QfGGubSDc+giERGAkdPFmWWRjaquuiCZinfbZP0ckURtJ6Fk/m7WcsQiij9mPk2zHmd32UnjftbibZpiT4IVAZEFjq+/kIq3GgykZ8Tj1LCVmEaj/dbscHilRRF9sgaiT+DQBs5VQCIGqqipUVlhFYSAQiN0sicIGi4j2e4BczwYpJxSfe+45AMCIESMs5S+99BImTJhwcjsjBBReaSuM9+6Kbmm0IofV0wWj3pYkuSAxl0VA2q2PuotbYqr72sW8kCTV+uhiXriF9gp64BZueOEx5kG6JQleSYJL0q2OmgubASVVHCVVHBwBfC8B8o8yypfIyEo/gg7NPkOzTBntmyno3PoEmvd3QerVFvzUzkCTJnGOVfUR+QUQ+QXAMCAD1gw0rLgIbOc+iF2HUbmtCsUHsnGgLA3FZQxllQrKKhQcOhFEWYUCiSuQFY4Ml4zKoICfq0uU3JLqodDD+Qhhfdbpc0ND20IL88Ph4+pCG4UFVcukJiZ1LO/hLJA4QgLRbL3kJuFYm9iFp5OAtQo4xbFuNDEsbH2P5L7X/5otqRGPjRT6yHgfvgApslVSCROfgG0xknGgXuawut0Cjz/8UAxBGckymYjgkWUZbrfbyFRiFoRqlpJoHXDaa/u+izj3oLpz/EJjX1VZpYpCs5XQV2WcVz/O/J5opJDrOS5STijWO3Ow6SdJYl86NktPPKtcmWT6HrVaHxUum0RiaBK4LhIBq7jUBaOsiUvVha1aJCXmNtzYuoCUhRueoAce4YVL3aOKSCapL008htzXwIkqji3FfnABrJcBaYMHZe8BTTOLUJhzGDmZMgqygM65VWjVvQqe0/IgTu0A0bowgXGsPoaIHAKkAWivvYxx3bcfbM9+8F2HUfWLD0eLM7H9eCYOl0s4ViVQ5VPgDwicqAqitJKjpCKIYEBBGjjSZPV6+hVVROqLiIQAAgKoCgr4FG7kxuZQrZMQgGRf5a5dc6MO1HtNWwoDAFCEPksyZNEEAOEUDDwG3OE+jihUI4hZ470muDis1kL9OLPQBVTXvCHmoIQ+B0IiUP+kAIzFROr70HxP/XizUIwkKKOJyVAIpHDRqI9tmIg01zN+zNnnTgL2hTjRvz/MFs6wiZlRjjMdBgbZpQrAWC/GEnSERxW5DvNpE34Kh7uV/f6A4SqurKxERWUFqqqqoj4jzOclkUhEsyjGOeOnUZByQrE+oX7RRHHtxfMFrid8j+uEaho6FdN5BTOJSPtcR9m2DYuYtLqxQ/MeGZMgM1eYgJQldfGMPg9SFi6LFVJfTONmEjySjDRZhtsQkKrbqqxCwfYqBYpQA5N7JIbKpR64vCdQ0HQzCrK2oXWOQKe8SuT3DMDVJx/ilPaqqDuJ6KF8MFQVkoXay8Dng7R3H3DoKHC0DPxIAP6iIMoOenCkJB3HKmQcq5RwuALwBzh8fo5yH0dppYIyH4cUEEBAAVMUBBQOlwCYADyyhHRZgsv0fOUCRgxOof3V43JyCNO26goH1PJ4f1g5i0O7K4+HlevC1SIkmbWeWewBqrjkJmtgqF3FWsc2t1OwkEA0jmOqQFRd/aow5MwkHBk3LISSLhyZVThyHrD0WxeIjElhYlB3cQPqvyOjnvH5pZD7O2q2M5OINNzltgUZlvEPCU7GGCRJMv5KkgRJe69bAp1fyfq6r8YT1zRgwaBiEYK6lbA+xBskUpv6Zneqr5BQrCk1vdMSPl5f7WnOBgKTiFRUl4reLNPnXOm17fMgQ0LSuqBGF40ui5iUJLsVUluFbRORbuGFS3iRHsiAW7jhhgtepgtI1ZUdEpBCdWVXBrHPH8TeYmCDLiA/dsGTXoqCnJ/RvMlWtGgioUPzANq2LUPGaRlgp7YBP/UUQK7NPKtx4vUamWl0PABaaC8LigJp337g8FHgWCnEsUooJX7wUo5AGYO/0g2fzwVfwAVfQMYJvwu+IINfYfAragDygAL4FQF/UMDHGfxBgYAi4Fc0l7YCBIV6rTnUv/pljyYY7Y9bY2aX0I/Vy4VjuSpIrccKTcSa9wtz25p1VLeMCk3U6lm69f8s8z1Npfp8z1Cp5nI3yrRV6No+o0yY9unzRw1LpFoXJkui2nebBVIrM49eSEgK53IHl7cu+hiDIfhU8cds29b91osVaV6enQiiqraelLXQjsJ52KKSysrKmAtLCKK6kEUxPkgo1pCT6b6wWBwcv5gVgDFrj8LqKaEYZiYxGckaaReQjLlC7y1iUna0QurzIM0C0s29cCseeIXXcGF7NTe2R5bgkRi8suqqlQAEygPYWxXAbnXdEtJkBiG54V8s0DK7GLlZh9Eqh6FDswDatC5DZq80sFNaqdloTsLq67iQZfB2bYF2oRie+gQBF4BqLcPyB8AqK4CqSrAqP1BRAQSCQFBR/3KumSEVVaFxoZZBU5JcqN+GXFVxIqjvE+rkSi4gFK7V5eoXpxAQAe14RTtOERCqvlLrKABXAAgGrjAIBVAUBsElcM7AOaAosvaeQRESuGAIKgwKJAS18qCQoAgGhTMEwaAIpu4TQFBo2wLqsdpfP4f2Xu2e8V4rVz+W0PYJcK7+DerWWCHAheoQV4S++IhDYYomORUEWACq/VOdXyog1ADsmttfiKAhTFVXuoLwMEjCJFpNIlNYt0PCUp9yEBKoQghLvE0hhHURjyUWYLgLPBJ1/Y1mLCyxiUK/3x/7YIKoRXg0hyAJRQMSiilEPKKUhVVRwuYPWatImjVSqwuE5ks6CkirK9tpTqTZChlpHqSjgBReuAMepIs0i4BUF9CoFkiXxOCVVQskYwEUVQZwsBjYCMArMwjZDcXF0CzzMPKzjyE7XUJ2hoRW2UG0anYCOV2CcHVtCbRvDd6+XczxrNd43BCeHCAn56T8XGG2v3GjKECVDywYAIJBwO8HCwTV94EgENDKfQFV5PqDgD8IUeUDghzCH4Twc1XI+gR4QID7AREAlIAEJcCgBCUoCoPP70KQywgqEoJcgl+REBQSApwhIFQRGuAMQaG+ApzBzyUEBeDnmrjURaX2N6gtSAr9VV8KF1C46iAP2kSlAgWcKQgyBRxBBJlfE5MCCoIQQg3uDqEKToGQSOTcLD55RAHJmG6PZapIZICaYlJbpa0WOF+TMEtk7eP3+x2DUptTqhInh1gzThvtfE0eZVwafHas+CGh2MAw/4M3vhyiuoWiCEnjuHB3tllAAuFWSPX8IREpSa4wC2QkAemSvHCxNMjQLZAeuBWP4cI2r8TWF9J4ZAaPpAcU94NX+lF2lGkPXNUK6fUyVEnpkD0+tGiyG3lN9iIzXUZBkyAKsirQom0FvKdmAW1bQrRrC9G8WcLjTzggy0BmhuVR5HhHKooqIv1+9W9FpbYdUMWkLwD4/Kq49AUhAgrgUyB8QXC/AlQJKJV+cH9IQAYDMoJBCYGghCCXEQhKCHAZAS5pL4YqLiPIAb+wikhdMKqxNJkmFBl8XMv6owlHLkziUQvYrpapS4uCLAhtfTs4guBMjbnJhWqRlHXRqFkpmeyCEEEwzkJzM5ka5DP6Knb9B1/IomgPJG3+LqgNaRAIBCKKweouPKxOPMnqcLLF0cn6XNWhun1LdYHJlcifm+YvhiCh2IAxh4GIXtHhXwRjsIQMMYtC8/wsYw4kh2HJMPJay1o2awmKEgwTjYohGv1aLEgXAqiELHkhM5cmFtUoj24pTV04Ay/cQls4o7iMVIZpimwJ3+NX1CwzeggfQECpAgLcD8APlDLsUwSqFKCJiyE3S0JmWiZyMoBW2cVo13IXcjv74enaFKxNc4jCAohWrRK/CET86K5ywcPvSS6sZZorPZYYYUyAhZvZwaBa4Jj2Xg95r2cRlrQyBoRe2hum3VOS0AwSQq/DjOkEHKF/dwxa7ncWWeYxSGEiUP/3a1gV9XKhz+rU1r07paGLIRITQVHCs5TofxNZUFLfhFJ960+dEG/IJTuNRCVxmqMYFyQUGwHRfvXFH88sZHmMPAcyuuVRtzQ6hfKxLphxGQtnJCNGpNsx/qO++toj0uEJeuCGG17hUQOIM9lidXRpIXzcEnAioIpIAKgICuw+riDAFQgBpLkAQEbZx+lgzIcWmYeQm3kYWd5NyPQyNEsXaJ6hoHmTAJrl+pDZhkFumw3WMgtomgWRkwXRogVw0gPA10MUBQgGwaqqHNzOAW1OZRDqSh2T6zkQhPAFIdT4QhB+BSIAiACHCADcr37J84AEJcigBGXD9axwWXMxq38VzXoY1N3PhrVQtRz6eMiCqM9rNNzPpvdcaFl69HSPmlUxZD0MzWsMIKjlC1egMAVB+FVLIjRLopP7WZvHqLueFeHX3MxB03xFu0BUrAtonAQi4Pjg55wjEAhEfQUDQShK5IlcCYmt6ooWIg5qOW97xEsVHqYolRHR3MvkejYgodjIidd1wBBpvpPVdW0VkaGV2Op2fHMfmRJdQJoXzuiuaxfzavMh1ffmldcu4TJc1y5IhhVST1+o58BW0/gxyAEYcQxlBpSUB+Hzqd+dQQ7IEpCuuboVkYbSAOBXfMhMDyA7rQRN0iR43TIkl4QMr4SCJgqapXM0axJA0+Z+pDVVIOdIkJq4wDI8YBkewOsCvB7A6wbcbiDNq55IkiHcLtV9yxggu9RhYxIEk9RyiQGSZA23oq4YAVMUbbJdQN02zw3kujgLampIUYVdQAktglEERFAxJu0JhavzBgNcvbyKUBevBAVE0LSYJRhayMI5A1dUQccFAzcWtagLWfTFKwq0cgEEhQdBnqYtPmFQoC5kUYS6XwEz9gU5gwIYi1y4CIk8fSGLvl8vC70XqkAE1wyamggEwha3CCE057G6itosBNVV2EFwSVFnKprmIwIcQeEHuL7ERR0oruf7Ni1s4dqqIFUwKnAShoC+utrJnSygKAoCAR8CgWC4+PP7jfdxWQMZS0DgJSZWkmHRq2+u0jobg6gJHBLEFu/TtrPejWkikOs5PkgoEnFh/zKIvQJbx8ES6TT30RLGx5x1xjTn0SYgAThaIfWV1+bFNDLcYVZINZC4Cy7uAlMkuBDKgy1DhswkuCHBK8nwyOpiGlkC3BJDmQS4tSHQv0Yrqjj8Po4jpeq8Nj9XH+heLYakXwFKAwCHC24Xg8fFkOZS4JUrkeaW4HVVwOsC3LK66ptJ6kM6oI1UUDBVHDIGWVsVLmttyxJT9aI2ylwbV81DC6GNrS6Y1DIGhav79JiMgAQOyRJiR9G8vmobejibkDdYnweqvw8dq941ejscQltwrfVRCOMxw/X/N9rXBRIsIXMAGKFy1HtK3RMK4M1txyq24/QwN8KUvSZoOVa9D7VVyqawNtwUXie0ojgUWsdoQ3+w6quaRWh/KJi42gbnaugdRVHAOYfCg+BcAecCnKtiTt3mWllQO0aAK0GtXNvW3vO4fGYMiJLfO6aAiSpE4hMp0bNRVZ9oaSWrJ8vi9UHW3uep+djURrgwPRSb816h/ypMVUUlAK5EHmcRbaFLDB5++GHMmDEDt99+O+bPnw8AqKqqwp133ok333wTPp8Po0aNwrPPPov8/HzjuN27d2PKlClYsWIFmjRpgvHjx2PevHlwOaXGPImQUCSqRc0skU7i0RZM3GT2F6ZUhYBzMPFIVkh7EHHJVqa7s/UUh7LkBoMUJijdQQ9k4YJXeC1C0qXOQDOyqUhgFgOMBHXOpF4mhDpvTvgZeFAgKCmokhhOMDX4uD6nkkEz1glVYPq5gE8RCHJhEnVaXT2dosM3uh7DUBdueoBuXbjpQbr1a8qNY0IxDdV9oeiEelxDvX1zQG2zYAsLtG3PwmLLzmLeB8AxDaE5hWCkbDGx0gaqdXhYneqkDgyVJZY60B5P0V7mHHfR2QUcqsOg/rCKTyREFiPhxzvVZQ7CKLrAqRthGE78k8uiicq6JD4hmKCFto6EN+A8TkIEEVTUUFGpSl1o3LVr1+L5559Hnz59LOV33HEHlixZgrfffhs5OTm45ZZbcNlll+Grr74CoM4FHj16NAoKCvD111/jwIED+N3vfge3242HHnqo9juaACQUiToloiXScQGN+UEJGF+U2kOYGQ9PaBaNoLYdOf6jUzpDFiYmrXmxAThbJA0Xt2xkpZG0BTsuuCBxzbqptqSeU2iWSshGmczU/TIYXEwKc38zk+jTM67oK2p1YWdf3S5pItWM3XLnJALNAlA9RgtuzUzbDgIwUjYVvUy9htq2cBaCZkGnt20m0tIP+3F2nPJP29GvsxAcknZ/6AYEBhlCKEbGFV0QGeKNafejKcsLmMskOPVyLSd0WDk3rDRO+aSF4KEraUvB6Chs4jR8RBYSTtELImzbczY7Ccg4RWVtEX0luFYnhiA8WYIxlpiLtD+R8Yv3h0IsYv07U7gfCi/XQjKlJkoUiyKvhkXxxIkTGDduHP7+97/jL3/5i1FeUlKCf/7zn3j99dfxm9/8BgDw0ksvoXv37vjf//6HoUOH4tNPP8WmTZvw2WefIT8/H3379sWf//xn3H333XjggQfg8XgS/4C1BAlF4qTiZImMLB4jzX80x35U60VaRBMplSGz7LMKSfN+c0YafWENg2yE+DFbIyWjHdn4YpeYBAluSFqZBBmSUC2WYQJTUQUkE5LRFhASb0EHUQYAkpAAEf4wsabD45a21PeKTQTaUuYZFsFQ2jy9XXPeZeN8wtliZ/4ciSDFeDhGe+gyJ6uYo6VMNj6fbD4fc4VbHY3bVBPCtvzPMpytlmYLpBmLBTGimE5szBIRGrqgMB8jRRCN4YJRjrIv8rlqi2giJvIPjAjl0dKwxnF8IpY8p3swWhs1GctY/36ciPVv1DzuQV4Jf/AYgNSNixnLoqgoCkpLSy1lXq8XXq/Xsf7UqVMxevRojBw50iIU161bh0AggJEjRxpl3bp1Q7t27bB69WoMHToUq1evRu/evS2u6FGjRmHKlCnYuHEj+vXrV41PWDuQUCSSTsLzH1n4l1kkC2Qk6yNgXUQT2g59OVtc2TzcEqnWCbdGhtpR25aMbDZWYSkzVSxKpvqqKJWNftitcnbxprcbCSeRp46DKWeysLpW7a5Y63HOrlz7vkhEfiDKYfVCDlXzNQvVk0R4m/Z2nB6W4ePlDqujWwPNGA9R5iAIma0OEhN/1RlLO9HEnH2/+f7VkSA51JMt++zHmK+N41hHmSsXyUoWl4UwgriLxyodSWQm+kMmXiIJtkj/bu3jYj8+2phGaycWscbdPuY+6QTKWPi/nVSC8yhzFAXDd999h5ycHEv57Nmz8cADD4TVf/PNN7F+/XqsXbs2bF9RURE8Hg+aNm1qKc/Pz0dRUZFRxywS9f36vmRCQpGodzgGDbdUcBKP1riPajsh4RhqR3/YS9rD2PwAh+Zu1Au0hTTCbIEMX0ijv7f8tQlJAJb5kSwsMLns+KC2fmzr5+PgER9C5jrqsZFFX6S5e07z+Jz6ES/6WOpYxQcP1dH6q4+R3l8GSXMJx35QSg5CSG8j7r6GtWl+mLpDY2oSifpRAgrAQl+vlrF0+KGj1jE9iB1c02F9DHMDh4s++2cxiwz7GDmJPovl0Lzf8Zjw6yKJ6ONtd+vHItLYcbvQdmiP265XRMtjnBbGWES0Hjrcg5LDPR0uGBMf35riNN7c9OOzLqcUnAyiup4FQ79+/bBixQpLuZM1cc+ePbj99tuxdOlSpKWl1Xo/k02jFYqnndYXsly77hCi7ol71khYSA8na4epToT6zCiXTdtWMaj3KiQWmXW/qVwPQK7XZ2HH2tuOjFlARdtvbIsY2zbLbk2tWjE/m/nzm+ZwQnf3m8Q5oM7bVK2uzCRu1KVHTITGXBU5IXGuHwsATJ/ParuTEnHThVutTOFpmF3MC9P7WOOZyHg7W50ifc6Q8NP3h8pDdZi1jr3cuK/De2AeT8bsY1uzEDAc4T8M7YHWhWWczeWRj7O3G22BXrVi0Trss4+FfayifWtFG+No54iF0/gC4WMMWMehXPixOeBGlU+1dimKgu+/X5fQuZNNVNezAGRZRnZ2dsx21q1bh4MHD6J///5GmaIoWLVqFRYsWIBPPvkEfr8fx48ft1gVi4uLUVBQAAAoKCjAN998Y2m3uLjY2JdMGq1QJBobHHW56jKaSAwrQ0gkOlkn7QIqXqI+IKq5ItLRyhRFvJmFmyraXJAgQRayVlPdpy/u0Rf+SExrRV89ztRPrr+XJPVBKTN9ZTjTFv0ALi1jir5iXIL2V1s9bn6vbwOhuvqw6bZk+zM4nsdupOdNIqsqIz37I4kHvZwxYbyXmbqt11OzzwjTe60NrVwfQ3MbEtT3jAljrJipfwwCknYOpm2rbZo+rGXlv63/DplyANWCE1Zm3jAdZq6r91xE2yes22H1LMc4w21XQopQ01zLnBXIPJah/ebjwseR2fbZ99dIg9u67zRu5mr6fn1fUVUm/lHUFXt8yXWL1gQliuvZ6X6MxLnnnosff/zRUjZx4kR069YNd999N9q2bQu3241ly5bh8ssvBwBs2bIFu3fvxrBhwwAAw4YNw4MPPoiDBw8iLy8PALB06VJkZ2ejR48eiX60WoWEIpFSCNTsuzHh8wkR9de7uTcWQeggHO2WRMt8Rxay+KiLZUKuvWjWLquL1LTaGiGLm1rPum12Y5mtceaWzFY5fZENA4MkJPVlyETtL1PPLuvvNUEnA1oObj2MUEjsyUwVepKkPkhd0OKMMzVOpcSgxotkQhOOQjuew6UJGb1MYgIuxo33ajnXhKIqbhgEJEkYZYbo0dpimtAyp/5jTg/uGLrbKW2gdb9DXWYVqpbzhoytlo4wJtQyXRzK2j5JO4Zpx+jbknZPms2CulqUTP3SBiN0PhbaqStxmCxbhgqKqhCjDYkVblcxpvdCONYzLGB6WaRjzAHKI9WJ1A87Tp/JNAaW+4TZxsjyTzeCtdDefrTxjYTdUO0wfsJpTLmtvh5GSys/sU3gg32tsBeRxXV9J5pQjJq1xUZWVhZ69eplKcvMzESLFi2M8kmTJmH69Olo3rw5srOzceutt2LYsGEYOnQoAOC8885Djx49cP311+PRRx9FUVERZs6cialTp0ZcPHOyIKFIpBxxiUV1wqGtsCZWRQXxBLG1Wg3jF4lmgWh3u+pyTG3L7roKd8Ga3a+GS1KEhB5gdUUywSzbem/0bV0ASuZtCVpIHu0vU62LkqQKRYmZg4DrYk997snatqQJRkMsMmH565a4tk9of7m6T9KFoiYCJU0gSpowlDhkCZBlRRWDklqHSVwViZqYkmRNIMrqpY0prMyiKaSjrbeZTTBZhBYc3ktQVbJ+v+hq1dgXsimp7dmFmem8TLKaSbV2Q6ZVU4fN/TTOZ/q3YfTb1Ia9/5bP4fDvKpGUfRKLLcp0IphpmVOmGae6dRUg2unzRhsjp/qJiOlocGdhDH2MbOKP6fV1Fcht9R2OyfQXIWN18kK21BQ1xH/0/bXJk08+CUmScPnll1sCbuvIsoz//ve/mDJlCoYNG4bMzEyMHz8ec+fOreWeJA4JRYJImOoJTscwImaRaBJx6kpq2XDrqseHi0XdMqi6c11GaZgVUJd/MUShGjCcWYQhMwUS192/ZpHILNtWgai7fV2SKhB1cSgZ4jBcJMqalVCC7kqF4Rp1ct85uQBjWfRsFyL0NppItFveTKIuouUNar2IljdTHUDLxmP+kLoANB9rPk7vvF0U6mXm8zqJVSdxaBkMDS5C5zcLBr2dKPmgLeeLRO2sH4l9XscfkFHqx8JJIMdqr7piMJaQdhKE5nK7xTWSKHSyvjoJT+48jzGVqC3XsxMrV660bKelpeGZZ57BM888E/GY9u3b48MPP6zReesCEopESlIbVkUBERJdYXVN9Qz3swIhZOOhHwrGHDrOEqA5pts6nJBF0mTxM839AxDmKjZbD6OJw1jCUD+rkzi0GrmYYbSyIwAomqjQf7FLQt0RZNZ5hAH9PdPmIuptG2VCE5fC5E4GGITJfa26mBkAGQIuSRhuZkl3M0O1KMrgYAyQJdWtLGluZ1kOuZolSZ2JZlghNbe0LlZ1a6Tq8jXt028Ds/tWLzcJT8DkWjSVOVopnYSosdN+40S4z+L5PeNkVknAEhf3mqdYIs1EmGs/bOKobTuCG1etyiLuq76rvKaWvzjc3HbXbzQ3u1N9m6vY3o5xObntr/06h7mu1T8lu90oF/7wz5FCKFGCaguRjGzk9RMSikTKkhyxqL9X9+nCUF0hrD/luTpljEnqF7q+ElaoVkUBAQgOjiAkuLQUhQo4ZEgiCIVJkAXAmQtAEEwISMxlhKWQmOpi1s+th2VRzyJBYhwQkrHKVtLOyQSDmijRutI1JDxNZbqY1B4KoalxunUzVFfdDu23G8uYVt8sLg0RynTBqr/X9jOTtVLvFzN5VXVDH9PFrXq8YYE07bMvXpF0cQfTNkILQfS+yBCWtvTFH7owtS/6YMZnEEaboTmQZuOhPidRHwt1rqRlHM0LSeK0jprnVFkNQKYfMrZFHcYCDRGyoBi6wNAVzHJMtEUj5nNY+ubQX6d/u2F60LbAg0XaZ7vnnMbYfIx9Hqh9rJ3OY8e+KCeSBUrYPqn5DPq1MYx8+librlOsaxTr+oQv6NH3m/oUx2IeO8U+Nw5JW1N2fiIQfR7iyZ4PX58hoUikNLUlFgFNBJmfcowh9JUsaQJRD04tA1DAmOkxIvTeSBBQtK94CULfZtwUtkQCg4AQ3DRfUQFnkibcOICgakdkLigiCH2uIteCh1sDH9ssjsxucYRhpjEvjjGvlGYJxGQLi0EnnN87hd6IFb7D3g+rq10KK4sU6sVuOQUQ5lYHYCy80evqxj27wFWnBDiL25DQYIZgtBu57N5imI6zFTsIphD2EY0oAITJWBTB8CQQsk5xEWpDmI7V/32YDVXGdQ15IW19Cr/u9hJnoWi+1uEVw36YMPMPHHOZVp+F2mSm/Zb2YfoxEaGDiXqLw7zEDuPkZEC0X0s9P7teJmztCIhwz7Lt2tjPa7429m7GYxzWx+iE4sfRwI44jqi/KNGEYg1dzw0JEopEyqN/2UX9Zx0mAAGzCFTbMVkXzceYBGMor3RswajqU9UmoJarglENmcNVCyMk1VVsXvXMJHAWAIMLDAyK0OYvmkLoSJDCvuWdA3U7iz/HvNDMWhL6OLaMLeDGfCY1X7SeNcY69ykssLclq4vZjWYujxQEOT7/pmPKM1NZonEeLfWMLCXMtt8qwO2pIc3HRA7CHN9DySmeXyj7jtWXKASHPSMPBLfUFVDCrpu5frRrV9fXzV4e7dqZ30e6fup752toP5dzRp/4fkhFS19pGQ9LQHuzeIv+78l8jnj+TYWd197fBDPS6OPEhQJ/4EhCx9Y3os1DTEVL6fr16/H222/jrrvuQrNmzTBz5kxLKsHqQkKRaDDEJRgBmwAEnKyLajvMWh+A7kYOpQIMqiJRAICsCUa1PT2TSOiXqaI+bIQCSygdAJZ4i0JPFxgwhCNjUsjSFumBJYD4J4zph0R++AjN4qnXC4kH1XVu3g49mIStXdMx2hiEzheHPSOZk+UTXdhQW8TxmSMHgE5sDFPxYVhdErqatX3t47yPG9P1qA9EsyjWdDFLMpg8eTIuvfRSXHrppXj//fexfPnyWmmXhCLR4IhbMFoIX8kcVTQys8AKWRlVCyPAGDcEY6gNVTiqx+gWEd1qYBOPxmpoKWR5dLCQ2Pupth2fWBQOVg5DvNmEoLVduxgEYjmtQi5Fl6lMf2d3NVtWbpjqm61HLEJ9vTB+N7qTuHYcE4SPgb0uIhwXXSBbj4tHpFjvAdv4WY6XHcqdrGh266rD+EbbhwjXAYhoiYt0n1rGPtJ4OlrZwi2d8VynsLYB1N4ybIfUfGHXN9oYOllOI9z7Eeo4t1szBDgEV+APHAUXwVpt+2SiRJluY59bmgqkpaXhvvvuw3nnnYdJkybV2qp0EopEgyXm/EXHxSuAk7vWMo8x7FhtYYsxh1E2/oEyFmrT/KAKrYzmWj0p9I9aWwwTmtsYmsxufC5mPb46GLEdLQ8b7YEaRz5lezv651DLQg+4iEHFTe50p7iREnMhWnxIc7o6fa/RvskaYMl7HOWOsAtuw13IhKVOyI2oCRNmdedymzXV7nYUcS5OMfosIj/0Q58t5P62r3xXj3Fe/e4UEsmob1v5DsAyf1Pdts4PtMzri/NBa5nHap+DJ0JXRZ/DZ54zySFCAlEbYcu8S9UubhzDLe9D18OaAtDZnWuU2dI0Rprba49ZqpeZ59Ra60WfV6vWMV8Lcx3rNdLrqm3Z+pWgtTQ8XaLKCSWIH6QVqKjal1B79YloEYdSMfJPeno6AGDQoEG44IILMGXKlFppN2WF4jPPPIPHHnsMRUVFOO200/D0009j8ODBye4WUc+IKRbrhPiCczsRZglg+rIJfdtuPYr+kIpWL945V2p74ZYL89w9XfTpde3CT4ILepgfWbiMOmqKP1XYGGn+jHR/ktqy9qDUU/zp4kUP0xO+6CS0otrcT4udMo6bwhKWTi8ziRTz30iLO0IiJrytaDj1NdJCD4tYYLrI0N+HFnQwhIQeYFoFLsHYp4tFoy4LvddOFypD+CIPx1CPEbCPQ9jiDn2xjWmfvqBDLzMv/uAO+yHUcvtiHmFpT1jOH1pIEr2/dsJsgaYxA8IXPOl1oi16MofFNF8fvV39Gpm39fcRF0rF+Bxm7FrJEO0COO53YWtZM1QgdYVidIti6vGXv/wFwWAQLpcLkyZNQosWLWql3ZQUiosXL8b06dOxcOFCDBkyBPPnz8eoUaOwZcsWI0ciQcRFArHdImP/stHdz4m5+uzzFfWMLvZsLpZ2nCb4O0zYNy+4MC+2MC+yCFkkwuM22q15upgz7H9C1ixWpvzNWqsyk6Cn69PjJEZK5xeKoRgKyC2b/prrqHEQ1dFmpliLenzEMLEEa27j0FUwh09JnPCZltFbsdc317b3wynfsjksjFEP1jA8offWtIXMFrZHjRWplZtfUG8tZoohaY4naQgSm9nKknYwilI0G8Itq0tN6zeEUPcZgk0wY1sIptYxtaG/OGeaSFTb5YJBD0AkBLOEolFFpVYPzHJxzHPUEhX3QOwwSObQPMzxWobSSqrHWNNKWo6RTPe0qW2Yr0c1bu4wq5oRvoeh+FgTrN/WEcfwU0qKKqDhzVEcMmSIZXvs2LG10m61heL48eMxadIknH322bXSkUR44okncOONN2LixIkAgIULF2LJkiV48cUXcc8995z0/hCNA4uVzuFb1zJ3yCQSExWHAAy3q+G61bdjuGzVs8jasSHBF03syZAtbkk9d7MEZsq4Ihnbsia+dLGnW/fMok8XZC6m5m62iz5zVhZZEpC1h6OLaVlZmIBHghFQ2wUBWdJzO3PowbRdenBtJiwp/PTUfpLEVbFlFj0StwgeJmvvJYTEkPmS6Zco9CS3iiD7flu55X5gzvvD/IWSVmTOuWw2k6oXJdSurijM5kKwUKYX43bUpgDYU/0lmubPGB+bPIo3jozdfGjPEgKoK+stMXnM7/VV3Ka2uGZTNJsQBbeaCvVg0+YYQnp/rDFk4us34PyZ7TeD7boAsKVjdLhG+j7LENuvg9N95XBD1jS+T5h5lSPr58NouTUXWxJruV4R1fV88rpRK6xatapax3Xo0AHt2rWLWqfaQrGkpAQjR45E+/btMXHiRIwfPx6tW7eubnNx4/f7sW7dOsyYMcMokyQJI0eOxOrVq8Pq+3w++Hw+Y7u0tLTO+0g0PKoXo7/m1kNdIMpwgTGXJgxdYe5cCTIkIVuEoDm/sy4GZU0G6lY/F2OQmARZ0mQoAyw5nCUY5WpAamaIPN1taVj1oIpCQxDCLgZ14Rf667JsC1N2FTW3s+yQz1mtq+Vt1sSgxAQkWUCSQ/mcmaSKPyYJVQzqWVVcmjjUP4RbE1yypGVSkVShpn8YFvqwzKx2Ywkus9iSJKvIMgsBc1BAu1CTNEew/t4iDMMFgbD4G23JDe15ogHHNoz+RiLiqvs47G5O+ZgBZ2Fmbs/JL+1Qj1mjSEdsjzm1Ga0v8RCPyc5RVNrG06EdkajQi3UOo+HI14xFU1EAXCeqkCZXb4pNfSF6HMWT2JFaYPz48QkfwxjDtGnTcNttt0WtV22h+N577+HQoUN49dVX8fLLL2P27NkYOXIkJk2ahEsuuQRut7u6TUfl8OHDUBQF+fn5lvL8/Hxs3rw5rP68efMwZ86cOukLkRrEnKcYJSNLqA1RLbFoX21omYNosyJa64UskQwywCRDJMpwGRbH0Hw/V8jlqwlGfeK8XRxKLLZLWBd5qoC0pt4z6yHV7RvKiKJbG3VjmMmAog01A9fGUtGujCIEZMbAGUMQAkGhCUcwyJKktaWn6rNaEvVtWdJT9nFVrEqaZVGzJEqSmnJP0kSjJAuTgNT/cjCZAbICyEwVlmbxqJtHZVW0MZfQBkFWv0k5h5rjT0MXgYypya6ZpB6vC0Kz6DOEmU1cWix7IVEXj3Bgev7lKIIJgD1Fh6k8klAT0fc7WJ8cifUkjia8IglZp2Ocxsrx+Ajnq6lIiyi4HMrtY8VNUxGcro1TXuaY50VsUR9pt2nY+JEKBHhm9HbqOdHjKNbwup9kduzYUWdt12iOYm5uLqZPn47p06dj/fr1eOmll3D99dejSZMmuO6663DzzTfjlFNOqa2+VosZM2Zg+vTpxnZpaSnatm2bxB4RyUD/yoz4Tz9RsRghGLc1JzTXpJBqFdLT/OmxFvWVzeZQO+oBEjgPgjFVAHIWNNSuLACFqfUk5oLCgpCFS8vW4lL7zBR1BTZUa6GAgCxkcAjIkNQ5W0wN1SNpM6eYUPUPZ9Dm+GkLQoTQFpGYxB8PuZZ1nNLr6cPD1E+tCkhNlIbttwnMsDbhnHYvtNhCy/8MYRKswkjLp7u2Q3MgTe5rXWQyEcNiySFJivpXt1jKWv5nVcurL1m7DPoH0EWnxFQhqotHKfRhmd3VC4QPsAX7drgLVWjuWv2vNSWLCGkFhRvFlgXb1vQsodWv3FpX6KtITM0bbTh00RGnf5gOLn/AZByz75dMP8RYaH9Etz4QNuZRc2onMsnPQcAllHPZnILF8LjHHv+wtpwNr47djAfzEBwpzsBRcSKxBuoZ0econsSO1HNqZTHLgQMHsHTpUixduhSyLOPCCy/Ejz/+iB49euDRRx/FHXfcURunAQC0bNkSsiyjuLjYUl5cXIyCgoKw+l6vF16vt9bOT6Q25n/7YV8RjoG4dSTteNPkcDDrNy3j2qYENaYioCoIk+gUesotpk441+Inqqn+tKwt+gxBIYEzBQwMQnKBCwkKk8GEDInJqjUxwspiidkWohj1rAtRJG4EVNFtkKH3JkEn6Z8XoYexPfyJ03M0lhU20rPXtkbCdt7QTksIEQboAWEsApSFrKJAyNJpiEZbWWgOprlMGBZUlxRaLKO70J2EqVnASoYFVK0XMf+z/UPHwtAc6kFcKzMv4DDeC/NqYW0fGLhgVg0JFlpxLHStwoz9qo4JZSKypv4Ldd7+nLXrlFg2PfNiDeuCHmEcH9KF4YuX9HLzjxpLmyabkX3REGC9NyPle45EtPzKRj5nvczUutCuhSXXs+laqPVhXE9uOi7a9Yh1LeLBoqEBHA0wHMR3KTeXz0wwSuerH3gsebz11lsYO3YsPB4PAGDv3r0oLCyEpFnQKyoqsGDBAtx1110JtVttoRgIBPDBBx/gpZdewqeffoo+ffpg2rRpuPbaa5GdnQ0AePfdd3HDDTfUqlD0eDwYMGAAli1bZqzo4Zxj2bJluOWWW2rtPETDJ6JojJruz3y87VEndIujYnoEmR3fMvT0XKFsLhIgzC5qXfiYMrVAAnjITR220EU1X0Ff7KK2ajW/RFz1bJxDE5Zh4i/6HCQ9gLj+UcOCf4ell1O3jP02VxuvxtezJU6dzdwkmcbEvMBH3afP23RBF9HmGIT2RT66+15mkmGwUudvajmgoVtadeupc8ge82SDMKOV6b3TMyxWyB5LuB5D1AmYjYV6LMJQHEI1uqDZMCiEsMQcVPeb31tjQkaKQxj6LOGfxulHhFPMy+rGHZRM7Zh/3ITEpT5nOPoPE8BZ1EbDui5GHyPrPntMSHWfc1xIczvRrou6n4fF/gz1q2byx3x9qlgFjvt21ai9ZBPdvZzIL7b6wTXXXIMDBw4Y0V969OiBDRs2oFOnTgCAsrIyzJgx4+QJxVatWoFzjmuuuQbffPMN+vbtG1bnnHPOQdOmTat7iohMnz4d48ePx8CBAzF48GDMnz8f5eXlxipogkgUs5yz7nASjTqRLY7G97TJyqin+ws1q+aJ1uuZ2zFbHvXUf7pQ5EyzQoqQCNQXwajddBJOZjEKi48t0bmXYQ/9OHLRRssPHDH7hqntuAiLMWkS2nqZIQ6s41XdoOBh4lPYV5gDZhEKwHTd4h/3MAFuC/KtvufQ70kOU2YdJsBN+YOFUExCQwFnIRlp5IdmpuvikB/a6JOhYqzXKdH8wYDt/gQs1yJUJ7EfQua6xg8GIyuSdVsPB2Uui9i3GNg/vy7cuC2Ps5GpyTy2zHxdTf+OWEjoxbo2YT/a4siC40S0z81FEEEldV3PAg3P9RwWHD3ZmVmefPJJXHnllUhLS4tYp2nTpnUywfKqq67CoUOHMGvWLBQVFaFv3774+OOPwxa4EEQiRHVLA5En9JjmKVrbkoxjmPFgMB9jTusWZdELABipAc3OYPsXeU1/AYd/Pqe0Z06p6axlliB5WjsR9tvqxd+zyCQ8Co7+b4cFRvaWo8XDgcM1NIh3pWh4GrmY6f9CFa2bjiNYvUlryXx+xnVtI467s+iJKtgTmZfoRNQ825H2VXPxj9EuES/BKDo5FYViXVFtoXj99dfXZj8S5pZbbiFXM1FnGHoursoO3yg28ejkplbb18+gOO02Pah0QWa2FppnTkUTH5Hz1kb/xZmYkIj84LM/jLW+WieBwfwgj52v2EyijkEzDm7SGHl/w/dz619h+1EA+9gEEuhP7M/mKHSY3SJmdsY6j6+1LIIlWiuxnqom4x/COR2l2YVq3x/JEh3v9bJUitQp52LbvZ6QVd6wdEf/oaFWdf53EL7PeryzJdC5j/FcP6drI6BAUcqt009SjIbmeq4rUjIzC0GcDGrvayIO65SxI7Y1RH1ARH+4W4ksIiUW2SJpdWGb3X/hLmz7frOLVz2PbGyb51Sq9WO7eNV6LOQuhDVzjLlfUtg4xHoQRp4naXGL29yH6n6TkBHO5ep29R6mzCySDVd5ImMQ2rbnxtbL9TBK5jmAIXet9a95HqBaHk5io221gJlFnX0unl5m3eZh8yS5fmQNcnBzJ2tuArY65/mX4a5t53s2NG0h0jUznyPaHE5LPVOfzAvREsn9bL4+5awSv/i+RJX/YNzH1zca2mIWAPjkk0+Qk5MDILR+46effgIAHD9+vFptklAkCBsJCcSoX7IOc9GiWQFiWtF0AaYvZDE9bOzb+rE2wRZpXl6kOXmhY015W7TFNJEyvjgtCNFjORpnYUwL0q0uNJCZtt6a6bEZmRYeJxT0O9JqZvNiBHNIHX3btBluxHQgktCp7QdH7FW/9tW+ofeR8i2H5QrW58zq4wZze+EhhvR+mVcTm/vKbONpPm8swpJ9mN8bizn0fcwoj2dlr2WxjnEcMwq46Th7f4SpL5ZwkLb+10YcbuNfsq3MqVzfttzPEGHXQIL5/hbGPmuYqkjXMfShErULH/Kn4/DhjihKYaHY0OYoAuGBt//whz9YthP5YaBDQpEgTET9JxTzH1iEBSIs9IiO7vKzzztksGdzYZJsWOwkJsOewSXeBRgScyGUzcUFF2QwIanCDmruZl3ayUKCOZWfDFNQbilc0JmzuOgPOheDtj8UkkaPdxjK3WwPUyOMjC96mBkGLVQNUx9yeplk3tYFEEIhakJiSK0XKU+yfhXMeXpD+ZdDogswPXxt2+Z2obcVVtdUP9JfIGK+Zb0eUy81oH9uCca5jHr2Jb2S6VZmiBqXUKc6Dxcdi+s3fPqqtcwW/89SR1jrWHJAG2XMsZ4RJsZ0jFHfVG4J72P7ZeCkG0QEoWHOeR22z/zeMsbO95fTNQ873rzfKIuQk9t+nZ3a04miHo/v8eKzg21RjDUpOy8yVcVgJHik4PY1hIQiQWhEfBQmMC/O2XqoW/vChWE0UeiU3i8kDl1Qs7EwMOaCrAs/LZaiDJcl9ItZCEraXxkSXEzW4giqafwkzdInMxbaNgQd09LuwZK6z5zVzizc1FR/6sPKBZgCXgtL3MFIMQhdkh48m2sCkWvCDWogbF3wWdrlABNaAhRtn8QN0SVJwhBckhSe61lP+6c/UPUg2oa4kmAJpB0qZwBjlhSA0HMxW9IAqvYjSw7msHSA2t0YLQezHmtHPxcQasN+z0YSedHS9MXC/kCKlCEkQqq9kInPSTlGa8NcHkHJhaX74w6VYDURR8o9jSh1bM3VCo5fNXa1ZyoDbF9F+q8dh7rG145NKdrTSMJWz34OrR8tN+1Ds+9SOzNLdIti9X8cNTRIKBJELRFdJOrFDuYaRHYlRxKJoaDYIZEoM69mAXRZBKIkVFmoB9qWNUkpMQYPk2FO4+diqmVQtRoCLolZrH4uSf3SiJTTGSxkCdStdjLTRB/CrYKhQNYiZDXUhKOLccPS5zICVIeLQzWNXygntFkcSrJudeOarrIKQj2Nn1kUOmVWgQQjqwpzmYSgnpJP+/DMZTabyiG/oUvWPrjsLPR0kWcuNz/I9ZzP5m3Lg9768E80N3DEvL6RwhU5iTfusA8Owi5u4eckzKJNKouyL1KYJafiRFMOxvJJ15bZyjFPdIwyc35xwFls6vecub6lDQfxCQaW6TbisKYqDcmg2LFjx2pZ/us01zNBNBrC0vslAkcotZ/qhovnH3OkHNBqI1xTM+pEfCE4OFOnymuOYUB3Owv9LwsTiXpqPnOuZ1WkaeVSKDixLgYZ9DpRLLBQn79MMIAJLV6Zaj8VUEUgF2rbnDEwCAQZgyRgcRv7IUV1G+t5ng1XMQNkcK3vwmjLbmXUU/IZFkZJS9enp+UzBGQoFzQ0AckkBuHmRko+Pe8zXKpoFEGuvpck9UPLuogTgCQDQjHlezb9aJA4wE3WQUUJCUYOgCuh+hymh7bDAz3StYmUr9mYrGcqE/Yykz+XA2G5hsPq2cSj+dRRLX4JEMki6iioqneKiDgpDCdBWB1rJhAubKsrNu1j4SQUzVZswCQuTZZIByukcrQKwUTinNZDGtJilkWLFlXruA4dOsSsQ0KRIDTM3xlhz5VE0/tZGtODbuuFqg1N3weoeZfVQMxMFTich4SittiEi5B1kYFBYWqWliCTIAkXFOaHzFRLogwXJN3aKGRtTqKkzT00zUNUtLR+WrYRGaFMI2Y3tJ772eyKNs9BtOZ6ZiZhpy+/sWojfds81mELT2zl5vfGuRwWa6hth6yXjIXSu+m5oM1WTRcLubHNuaB1kalbLvWXPR+0qufUPNARrZjR3Nua6ra4uKG/tz/okRgW4511xYieL1jPFWyfD2iZC6jP5eMJzAOE6TibGy/ehSFhH9+S6lA41rPP9QOs+kgtiNJugoTNU4zixbbPhYw1Vk5zJ53aDdvnUOZ064QM0eFjaZ4jqZebx/bgkSY4Ikojd6LewxrUYpbhw4fXWdskFAnCgYhftI5POCXsiSbCNiSEntAMQBBgpjR+MIkCITu6qCOl+dNd1RKTw93UkKBmDnFY5CLplsfwLCMSZDDuvKJZEnp2jPhCq9jf23NEOxHN6mreY3OGGceGwriYy81Ckhkjqotgi7A1iWFmOtYQxpLVuqq3K9vLdbEKk8g1iWr1MzivZLV/VjORnmHRIxGaVxczYydH+GpgYTvWuso4fJ+9fac+JmqhiabtnDyj5jrMoSxS3UjbieK42MW2zUV4udOYOY1pvONZHX0T+d+U9tdhvEv8wAHxVeq6b0WEr3MijEYrFL//fgNq3x9BNFYSTYMX7sq2Phat8x2jLTrQRaaE0GKZkOXRXscppV9oEY3TPjlsnwSH+g59NMcAjIfqxhqMdd5on8v+WUIp4qTQZ9fqqMJYDm0z03v9OCGFlZlDDZnj5UmmFIxGWaTpBhFwzqvsLCE4C5Wbj7PHE7TGieQOx9oCWtvjUNZiAGYpQq5x+7QMc4xCyZ7lyGFMpQj3ZqKp+uzESokXc+yYbdvhWji2G8eYRzo+0md2GntzXZ84gQNl6xAIHjXOkGpEdT2n3sepMxqtUCSI2kRAJCYWw+Y9qi5o57qmL/gwQaa7rrnWnGzkhdW/t9VyyZJdgTEJAqp72zEjht41w/WlGMKJG/u4IWzU81v7Zn4w6fucs29EJt765nPbz6sHwmaQjX3MEEd2gagHX5bAtHMbn5HJxnGSadwYJCgIQGIyOAuJRAVBixhUy2BshyyKkYWiWfTYRYRRHkkYxhCRobzDpjIWWSwCVkESls84itCP1Ec79s/PRSiLjdMPD124KFq2G4nJUJh1n7V9WasfDJWJmonDaES+ZomJbSeRF+uHVbxjbsY8/vrYRxp387VJVZQGNEexLiGhSBC1RKTMDREFpKNYBFRnpHA+1i6cWMilbW5OCPXhwpikiT2uiaaQsASs1kSLkLSkCtTei6DRnv4Q5kYd2dGgEDrW/tFjfw1XNzUYc7KEOFhEzeV2i2Jo22SBFLqlMdz6aDnWZEE0lxnnN/XPak209lsSITFpxkl8OGUSAZwFhpPYM0SHsAoMS2Ya03F2ERJJtCT6wyBaOjknwRJmgRXh1z/c+uh8jkQt4JGwjIV93U6cFuBoY+14Hqf91VhoEmn8ncYmKHzgIuhQO3Ug13N8kFAkiDrGssglTPiZJ+fr+8IFY+TGFVObHKGc0uY2AEDWHqJWN6z19PaHhM2Fx6Jv620mSix3XXUeeEB8/YvmdlfLrcIxzFVtE43WMqub23x85P7FIVbsotsp3VyEMQsTeBEshObj7e075v2N4xo5CZ54Xe0RBUycYxhZANWdNdFMpHs80rjFM+bRyqNhvw7xXAOn8VNEECLFrYrkeo4PEooEcRJxEn6G0LP/vI3gtgpvU0cCDDdryMqoWh2D2nYUsWc0FFms1PYDt65EohPx9D2aWI40JzPS8ZHqqPsizJGLOh/VmcgiIrLFKcxtLKJvOx0T7dzO/Qmvm+jnjW5xjF9MVvf81SXWOEXbn6jIrCvsY8V5EEh1i2I19zU2SCgSRJKJKB4T9ouEVl9bV10LSx2zVTPsFCZR6djXsC7VxoM2zgdeDR+MRtfjWBxkJlxMxLZYOYmW6KKkpuMYjyu/NsVI7S1YSZzYVtd4BeDJsigCsX8UWerGvNfrw/grtbYALRkIRM/MIpzmfTRSSCgSRD0kquUxQp3I4tIavsdZfupzCRP94q/rB0UdWE0cP6MuGJzcuOrfiHNNmRRF00cXIrVt0UrcyhSjfiIWw1q2wSQcScA4MNr1iEZdiMYa3L81/mFUs+sRa/xFA4gvE4wyxOR6DkFCkSBShFhf/FEX08T8QtcEUrJTciXtwRNF8DpZac0YwtNJaFjbDRP7dfhxayYUaiJwavihYo13zPObxzwR8VcfrGMnyZ0cNs3FIaB3PM2kuIOWXM/xQUKRIAiCIIhGhxLlR41IcWtpbUJCkSAaOAmF7amHX47JtFokNlfUZpGqppXmpFIH17sm16t6c3OjEcNKeDIt6PXw35ZBfe5bHRItjmLjHBFnSCgSRCMl1d1GJ4NExihq6KMUIpn3RV2cO+pcu3p2jejf5Mkl2jzEenZrJJWTt+SLIAiiASOq8V99609DFCrVHYdk/EecXBQR+ZXobNF58+Zh0KBByMrKQl5eHsaOHYstW7ZY6lRVVWHq1Klo0aIFmjRpgssvvxzFxcWWOrt378bo0aORkZGBvLw8/OlPf0IwmNwwRCQUCYIgCIJodCg88itRi+Lnn3+OqVOn4n//+x+WLl2KQCCA8847D+Xl5UadO+64A//5z3/w9ttv4/PPP8f+/ftx2WWXhfqjKBg9ejT8fj++/vprvPzyy1i0aBFmzZpVWx+5WjDRyGZslpaWIicnB2osKIqTRBAEQRA1RwBQUFJSguzs7GR3Jiq//vorTu3SFVPaRhZga0qWof/V3fD8889X6xyHDh1CXl4ePv/8c5x99tkoKSlBbm4uXn/9dVxxxRUAgM2bN6N79+5YvXo1hg4dio8++ggXXXQR9u/fj/z8fADAwoULcffdd+PQoUPweDzV6ktNIYsiQRAEQRCNjqiuZ6Fa+EpLSy0vn88XV9slJSUAgObNmwMA1q1bh0AggJEjRxp1unXrhnbt2mH16tUAgNWrV6N3796GSASAUaNGobS0FBs3bqytj50wJBQJgiAIgmhkCAgR+QUA3333HXJyciyvefPmxWyZc45p06bhjDPOQK9evQAARUVF8Hg8aNq0qaVufn4+ioqKjDpmkajv1/clC1r1TBAEQRBEoyNaeBwugAH9+mHFihWWcq/XG7PdqVOn4qeffsKXX35Z0y7WC1LKorhz505MmjQJHTt2RHp6Ojp37ozZs2fD7/cnu2sEQRAEQaQQQR75xQUgyzKys7Mtr1hC8ZZbbsF///tfrFixAm3atDHKCwoK4Pf7cfz4cUv94uJiFBQUGHXsq6D1bb1OMkgpobh582ZwzvH8889j48aNePLJJ7Fw4ULce++9ye4aQRAEQRApRPRQRYmt8xVC4JZbbsG7776L5cuXo2PHjpb9AwYMgNvtxrJly4yyLVu2YPfu3Rg2bBgAYNiwYfjxxx9x8OBBo87SpUuRnZ2NHj16VP+D1pCUcj2ff/75OP/8843tTp06YcuWLXjuuefw+OOPJ7FnBEEQBEGkEkqUYInRgnE7MXXqVLz++ut4//33kZWVZcwpzMnJQXp6OnJycjBp0iRMnz4dzZs3R3Z2Nm699VYMGzYMQ4cOBQCcd9556NGjB66//no8+uijKCoqwsyZMzF16tS4XN51RUoJRSdKSkqMVUVO+Hw+yyql0tLSk9EtgiAIgiDqMVFzPSfY1nPPPQcAGDFihKX8pZdewoQJEwAATz75JCRJwuWXXw6fz4dRo0bh2WefNerKsoz//ve/mDJlCoYNG4bMzEyMHz8ec+fOTbA3tUtKC8VffvkFTz/9dFRr4rx58zBnzpyT2CuCIAiCIOo70bKvJCoU4wlJnZaWhmeeeQbPPPNMxDrt27fHhx9+mODZ65Z6MUfxnnvuAWMs6mvz5s2WY/bt24fzzz8fV155JW688caIbc+YMQMlJSXGa8+ePXX9cQiCIAiCqMcIAAoXEV+8ceUiiUq9sCjeeeedhmk2Ep06dTLe79+/H+eccw5OP/10vPDCC1GP83q9SfXtEwRBEARR/4jqeiadaFAvhGJubi5yc3Pjqrtv3z6cc845GDBgAF566SVIUr0wihIEQRAEkULwKA5mkbDzueFSL4RivOzbtw8jRoxA+/bt8fjjj+PQoUPGvmTGGCIIgiAIIrWozcUsDZmUEopLly7FL7/8gl9++cUSyBKIbyIpQRAEQRAEgKjzEElThEgpv+2ECROi5mUkCIIgCIKIBwUi4ivaiujGRkpZFAmCIAiCIGoDRUSWgzRHMQQJRYIgCIIgGh3RF7MQOiQUCYIgCIJodChQIu7j5Hw2IKFIEARBEESjIxhFDEazNjY2SCgSBEEQBNHoiGY1pDmKIUgoEgRBEATR6FBYZNczCcUQJBQJgiAIgmh0kEUxPkgoEgRBEATR6FBYMOI+zmgxiw4JRYIgCIIgGh1BRBGKtOrZgIQiQRAEQRCNjuj5V8j1rENCkSAIgiCIRoUAoCAQcT+PEmOxsUFCkSAIgiCIRoZAkEUWipTtOQQJRYIgCIIgGh3RxCCteg5BQpEgCIIgiEaHIsiiGA8kFAmCIAiCaHTQHMX4IKFIEARBEESjg1Y9xwcJRYIgCIIgGh3RXM9ckOtZh4QiQRAEQRCNDhHVvUxCUYeEIkEQBEEQjQ5FUGaWeCChSBAEQRBEo4NHW/VMrmcDEooEQRAEQTQ6ootBWsyiQ0KRIAiCIIhGR3SLIoXH0SGhSBAEQRBEo4PmKMYHCUWCIAiCIBoZIrrrWZDrWYeEIkEQBEEQjY6ormeyKBqQUCQIgiAIotHBeWTXM616DiEluwPVxefzoW/fvmCMYcOGDcnuDkEQBEEQKYQAj/Ii17NOygrFu+66C4WFhcnuBkEQBEEQKQjnwYgvsiiGSEmh+NFHH+HTTz/F448/nuyuEARBEASRkvAoL7Io6qTcHMXi4mLceOONeO+995CRkRGzvs/ng8/nM7ZLS0vrsnsEQRAEQaQAPEp4HLIohkgpi6IQAhMmTMBNN92EgQMHxnXMvHnzkJOTY7zatm1bx70kCIIgCKK+I0Qg4gu06tmgXgjFe+65B4yxqK/Nmzfj6aefRllZGWbMmBF32zNmzEBJSYnx2rNnTx1+EoIgCIIgUgEheJRX9VzPzzzzDDp06IC0tDQMGTIE33zzTS33+uRTL1zPd955JyZMmBC1TqdOnbB8+XKsXr0aXq/Xsm/gwIEYN24cXn755bDjvF5vWH2CIAiCIBo5UVzP1bEoLl68GNOnT8fChQsxZMgQzJ8/H6NGjcKWLVuQl5dX/X4mGSaqK5uTwO7duy1zDPfv349Ro0bh3//+N4YMGYI2bdrEbKO0tBQ5OTkAZACs7jpLEARBEI0GAUBBSUkJsrOzk92ZqPz666/o0qULGPNErCNEEJMn/x7PP/983O0OGTIEgwYNwoIFCwAAnHO0bdsWt956K+65554a9ztZ1AuLYry0a9fOst2kSRMAQOfOneMSiQRBEARBEABipulTFCVsAWwkL6Xf78e6dessU+MkScLIkSOxevXq2ulvkqgXcxQJgiAIgiBOBqpXEUZgbaf/AIGtW7daFsPm5ORg3rx5jm0ePnwYiqIgPz/fUp6fn4+ioqK6/kh1SkpZFO106NCh2hNOCYIgCIJofLRs2RLq1DMOdRqaHTWO4htvvIGsrCzLnsa45iGlhSJBEARBEESiHD58SBOMHFbnqjDKWrduHXd7LVu2hCzLKC4utpQXFxejoKCgFnqcPMj1TBAEQRBEo6JFixZQJZA9C4v6vqLiRELteTweDBgwAMuWLTPKOOdYtmwZhg0bVuP+JhOyKBIEQRAE0eiorCxHeno6VHHIoFsTX375Za08MaZPn47x48dj4MCBGDx4MObPn4/y8nJMnDixlnt+ciGhSBAEQRBEoyMtLQ3/+te/cN111yEkFKFtJ85VV12FQ4cOYdasWSgqKkLfvn3x8ccfhy1wSTVSKo5ibUBxFAmCIAiitkmdOIpmOOeQZV0PCCxduhQjR45MdrfqFY1OKJaUlKBp06ZQ5yaQUCQIgiCImqO6bY8fP26En0kVli9fjnPPPRcAgxCU49lOo3M9l5WVae/oZiAIgiCI2qSsrCzlhOJvfvMbABJ++WVrsrtSL2l0FkXOOfbv34+srCwwRhbFSJSWlqJt27bYs2dPSrkR6hM0hjWHxrDm0BjWHBrD2AghUFZWhsLCQkgSBVRpSDQ6i6IkSZTuLwGys7Ppi7GG0BjWHBrDmkNjWHNoDKOTapZEIj5I9hMEQRAEQRCOkFAkCIIgCIIgHCGhSDji9Xoxe/bsRpnXsragMaw5NIY1h8aw5tAYEo2ZRreYhSAIgiAIgogPsigSBEEQBEEQjpBQJAiCIAiCIBwhoUgQBEEQBEE4QkKRIAiCIAiCcISEIkEQBEEQBOEICUXCwoMPPojTTz8dGRkZaNq0qWOd3bt3Y/To0cjIyEBeXh7+9Kc/IRgMntyOphgdOnQAY8zyevjhh5PdrXrNM888gw4dOiAtLQ1DhgzBN998k+wupQwPPPBA2P3WrVu3ZHer3rNq1SqMGTMGhYWFYIzhvffes+wXQmDWrFlo1aoV0tPTMXLkSGzbti05nSWIkwQJRcKC3+/HlVdeiSlTpjjuVxQFo0ePht/vx9dff42XX34ZixYtwqxZs05yT1OPuXPn4sCBA8br1ltvTXaX6i2LFy/G9OnTMXv2bKxfvx6nnXYaRo0ahYMHDya7aylDz549Lffbl19+mewu1XvKy8tx2mmn4ZlnnnHc/+ijj+Kpp57CwoULsWbNGmRmZmLUqFGoqqo6yT0liJOIIAgHXnrpJZGTkxNW/uGHHwpJkkRRUZFR9txzz4ns7Gzh8/lOYg9Ti/bt24snn3wy2d1IGQYPHiymTp1qbCuKIgoLC8W8efOS2KvUYfbs2eK0005LdjdSGgDi3XffNbY556KgoEA89thjRtnx48eF1+sVb7zxRhJ6SBAnB7IoEgmxevVq9O7dG/n5+UbZqFGjUFpaio0bNyaxZ/Wfhx9+GC1atEC/fv3w2GOPkbs+An6/H+vWrcPIkSONMkmSMHLkSKxevTqJPUsttm3bhsLCQnTq1Anjxo3D7t27k92llGbHjh0oKiqy3Jc5OTkYMmQI3ZdEg8aV7A4QqUVRUZFFJAIwtouKipLRpZTgtttuQ//+/dG8eXN8/fXXmDFjBg4cOIAnnngi2V2rdxw+fBiKojjeZ5s3b05Sr1KLIUOGYNGiRejatSsOHDiAOXPm4KyzzsJPP/2ErKysZHcvJdG/35zuS/ruIxoyZFFsBNxzzz1hE9vtL3oAJ04i4zp9+nSMGDECffr0wU033YS//vWvePrpp+Hz+ZL8KYiGyAUXXIArr7wSffr0wahRo/Dhhx/i+PHjeOutt5LdNYIgUgyyKDYC7rzzTkyYMCFqnU6dOsXVVkFBQdjq0+LiYmNfY6Im4zpkyBAEg0Hs3LkTXbt2rYPepS4tW7aELMvGfaVTXFzc6O6x2qJp06Y49dRT8csvvyS7KymLfu8VFxejVatWRnlxcTH69u2bpF4RRN1DQrERkJubi9zc3Fppa9iwYXjwwQdx8OBB5OXlAQCWLl2K7Oxs9OjRo1bOkSrUZFw3bNgASZKMMSRCeDweDBgwAMuWLcPYsWMBAJxzLFu2DLfccktyO5einDhxAr/++iuuv/76ZHclZenYsSMKCgqwbNkyQxiWlpZizZo1EaNEEERDgIQiYWH37t04evQodu/eDUVRsGHDBgBAly5d0KRJE5x33nno0aMHrr/+ejz66KMoKirCzJkzMXXqVHi93uR2vp6yevVqrFmzBueccw6ysrKwevVq3HHHHbjuuuvQrFmzZHevXjJ9+nSMHz8eAwcOxODBgzF//nyUl5dj4sSJye5aSvDHP/4RY8aMQfv27bF//37Mnj0bsizjmmuuSXbX6jUnTpywWF137NiBDRs2oHnz5mjXrh2mTZuGv/zlLzjllFPQsWNH3H///SgsLDR+0BBEgyTZy66J+sX48eMFgLDXihUrjDo7d+4UF1xwgUhPTxctW7YUd955pwgEAsnrdD1n3bp1YsiQISInJ0ekpaWJ7t27i4ceekhUVVUlu2v1mqefflq0a9dOeDweMXjwYPG///0v2V1KGa666irRqlUr4fF4ROvWrcVVV10lfvnll2R3q96zYsUKx++/8ePHCyHUEDn333+/yM/PF16vV5x77rliy5Ytye00QdQxTAghkiVSCYIgCIIgiPoLrXomCIIgCIIgHCGhSBAEQRAEQThCQpEgCIIgCIJwhIQiQRAEQRAE4QgJRYIgCIIgCMIREooEQRAEQRCEIyQUCYIgCIIgCEdIKBIEQRAEQRCOkFAkCIIgCIIgHCGhSBAEQRAEQThCQpEgiHrFoUOHUFBQgIceesgo+/rrr+HxeLBs2bIk9owgCKLxQbmeCYKod3z44YcYO3Ysvv76a3Tt2hV9+/bFJZdcgieeeCLZXSMIgmhUkFAkCKJeMnXqVHz22WcYOHAgfvzxR6xduxZerzfZ3SIIgmhUkFAkCKJeUllZiV69emHPnj1Yt24devfunewuEQRBNDqqPUfxl19+wSeffILKykoAAOlNgiBqk19//RX79+8H5xw7d+5MdncIgiAaJQlbFI8cOYKrrroKy5cvB2MM27ZtQ6dOnXDDDTegWbNm+Otf/1pXfSUIopHg9/sxePBg9O3bF127dsX8+fPx448/Ii8vL9ldIwiCaFQkbFG844474HK5sHv3bmRkZBjlV111FT7++ONa7RxBEI2T++67DyUlJXjqqadw991349RTT8UNN9yQ7G4RBEE0OhIWip9++ikeeeQRtGnTxlJ+yimnYNeuXbXWMYIgGicrV67E/Pnz8eqrryI7OxuSJOHVV1/FF198geeeey7Z3SMIgmhUuBI9oLy83GJJ1Dl69CitSCQIosaMGDECgUDAUtahQweUlJQkqUcEQRCNl4QtimeddRZeeeUVY5sxBs45Hn30UZxzzjm12jmCIAiCIAgieSS8mOWnn37Cueeei/79+2P58uW4+OKLsXHjRhw9ehRfffUVOnfuXFd9JQiCIAiCIE4i1YqjWFJSggULFuD777/HiRMn0L9/f0ydOhWtWrWqiz4SBEEQBEEQSYACbhMEQRAEQRCOxLWY5Ycffoi7wT59+lS7MwRBEARBEET9IS6LoiRJYIxBCAHGmFGuH2ouUxSlDrpJEARBEARBnGziWvW8Y8cObN++HTt27MD/+3//Dx07dsSzzz6LDRs2YMOGDXj22WfRuXNn/L//9//qur8EQRAEQRDESSLhOYqDBw/GAw88gAsvvNBS/uGHH+L+++/HunXrarWDBEEQBEEQRHJIOI7ijz/+iI4dO4aVd+zYEZs2baqVThEEQRAEQRDJJ2Gh2L17d8ybNw9+v98o8/v9mDdvHrp3716rnSMIgiAIgiCSR8Ku52+++QZjxoyBEMJY4fzDDz+AMYb//Oc/GDx4cJ10lCAIgiAIgji5JGxRHDx4MLZv346//OUv6NOnD/r06YMHH3wQ27dvT1gkrlq1CmPGjEFhYSEYY3jvvfdiHrNy5Ur0798fXq8XXbp0waJFixL9CARBEARBEEQcxBVH0U5mZiYmT55c45OXl5fjtNNOww033IDLLrssZv0dO3Zg9OjRuOmmm/Daa69h2bJl+P3vf49WrVph1KhRNe4PQRAEQRAEESIu1/MHH3yACy64AG63Gx988EHUuhdffHH1OsIY3n33XYwdOzZinbvvvhtLlizBTz/9ZJRdffXVOH78OD7++ONqnZcgCIIgCIJwJi6L4tixY1FUVIS8vLyoQo4xVqcBt1evXo2RI0daykaNGoVp06ZFPMbn88Hn8xnbnHMcPXoULVq0sAQKJ4jGgBACZWVlKCwshCQlPPOEiAHnHPv370dWVhZ9vxCNCvpuabjEJRQ5547vTzZFRUXIz8+3lOXn56O0tBSVlZVIT08PO2bevHmYM2fOyeoiQaQEe/bsQZs2bZLdjQbH/v370bZt22R3gyCSBn23NDyqNUcxlZgxYwamT59ubJeUlKBdu3bYs2cPsrOzk9gzgjj5lJaWom3btsjKykp2Vxok+rjS9wvR2KDvloZLwkJx7ty5UffPmjWr2p2JRUFBAYqLiy1lxcXFyM7OdrQmAoDX64XX6w0rz87Opi9yotFCbtG6QR9X+n4hGiv03dLwSFgovvvuu5btQCCAHTt2wOVyoXPnznUqFIcNG4YPP/zQUrZ06VIMGzaszs7Z2FG4QFFpFfYfr8SBkiocLvPhaLkfJZUBnPAFUelX4AsqUIQ6R8UlMbhlCZleFzK9Mpqme9As04O8LC9a5aShTbMM5GV5IUn0ZUIQBEEQ9Z2EheJ3330XVlZaWooJEybg0ksvTaitEydO4JdffjG2d+zYgQ0bNqB58+Zo164dZsyYgX379uGVV14BANx0001YsGAB7rrrLtxwww1Yvnw53nrrLSxZsiTRj0HYEEJg15EKbNxfip8PlGJrcRl+OXQCe45WIKAkFJM9JmluCR1aZOKU/Cx0b5WFXoU56NMmB00zPLV6HqLxsmrVKjz22GNYt24dDhw4EDOiAqDGaJ0+fTo2btyItm3bYubMmZgwYcJJ6S9BEER9pVbmKGZnZ2POnDkYM2YMrr/++riP+/bbb3HOOecY2/pcwvHjx2PRokU4cOAAdu/ebezv2LEjlixZgjvuuAN/+9vf0KZNG/zjH/+gGIrVwBdUsGH3cazZcRTrdh3Dhj3HUVIZcKzrlhkKctLQKjsdudletMj0oGm6G1lpbqR5ZHhdEmTN3aAIAX+Qo9KvoKwqgJLKAA6X+3Go1If9JapVsirAsbmoDJuLyvCf70Pn6ZSbicEdmmNY5xY4vXNL5GaFTxkgiHigGK0EQRC1Q8Ip/CLx5ZdfYsyYMTh27FhtNFdnlJaWIicnByUlJY1qDpEQAr8eKsfKLQexatthfLPjCKoC1hXsHllCt1ZZ6NEqG10LstAlrwk6tsxEq5x0yLXkKg4qHHuPVeLXQyewpbgMPx8ow497j2PnkYqwuj0Ls3FO1zyc1zMfvVvn0NyXWqAx3v8nM0ZrYxxfggDo3m/IJGxRfOqppyzbQggcOHAAr776Ki644IJa6xhRczgX+G7PMXz8UxE+3VSMXTYx1rKJF0M6Nceg9s3Qv30zdCvIhsdVt/GvXLKEDi0z0aFlJs7tHgp1dKzcj3W7juGbnUfx9a+HsXF/qfFasOIXtG6ajtF9WuHi0wrRszCbRCNRq1QnRisQHqe1tLQUAPDkt0/CnekGFxyKUNS/XP3LwcG59leEXkIIo0wIAQER9p4L9cedfZ/x1/xea0+3Bejl+vFGucN7o56pPGy/ZmIwn9dcV8epDXO5Uc/UpqUsyrb9HNGIdKwZhujfK/bvHXN94z2zbuvHMP0/Zj2GMWMP1P8xSEyy7mPhZRKT1HJIzu+1+rIkQ4JaJjPZ2CcxCTKTjffmbf2vS3IZ2zKTIUvWvy7JBRdzQZZk+MpD/w6IhkXCQvHJJ5+0bEuShNzcXIwfPx4zZsyotY4R1UMIgY37S/Hed/uw5McDOFBSZezzyBKGdGqO4afm4uxTc3FKXpN6I7iaZXowskc+RvZQxeOREz6s3HIIyzYXY+WWQ9h3vBIvrNqOF1ZtR7eCLFwxoA0u698GzTNpXiNRc6oToxWIHKd18dbFkNPlOukrQdRHlMq6S7ZBJJeEheKOHTvqoh9EDTlYVoV31+/Dv9ftxbaDJ4zyLK8L53bPw6ieBTjr1Fw08aZG6MwWTby4fEAbXD6gDaoCClZuOYgPvt+Pz34+iM1FZfjLkp/x6MdbcGHvAow/vQP6tWuW7C4TjRB7nFY9ltz4HuORkZVhWGLsFhsnq45uJQIAWZItliWJSQCDYRmSIBnWJ7N1CUCYJcputXKqByDye1s9/Y/eF72Ojv1YvcxSz/b71F7f8Rg4H+Owo3aJYIi0W0iBCNZTYbWi6v/Z6+sWYL2+2SLsZEE29mllilAghPbXVJ8LHrbfbMk2W7319wpXQpZw098gD4ILjiAPWrYDPICKsgr8jJ9refCJ+kBqqAbCEc4Fvvr1MF7732589nMxglz90vG6JIzsno+L+xZi+Km5SHOntmUjzS3j/F6tcH6vViipCOA/P+zHm2t346d9pXhvw368t2E/TmvbFH84uxNG9SyotfmUROOhOjFagchxWqf0nULztIhGRWlpKZ7BM8nuBlEHJCwUL730Ukd3JWMMaWlp6NKlC6699lp07dq1VjpIhHPCF8Tb3+7BK6t3YcfhcqO8X7um+O3AthjdpxWy09xJ7GHdkZPhxnVD2+O6oe3xw97jePnrXfjP9/vx/Z7juPm19ejQIgNTRnTGpf3a1Pl8S6LhQDFaCYIgnEl41fOECRPw3nvvoWnTphgwYAAAYP369Th+/DjOO+88fP/999i5cyeWLVuGM844o046XRNSeWXW/uOVePHLHVi8dg/KfEEAQBOvC5f3b41rhrRDt4LU+jy1xaEyH15dvROv/G8XjleoIX5aN03Hrb/pgssHtIFbJsGok8r3fyKYY7T269cPTzzxBM4555yIMVp37NiBXr16YerUqUaM1ttuuw1LlixJKDxOYxlfgrBD937DJWGheM8996C0tBQLFiyAJKkPYM45br/9dmRlZeHBBx/ETTfdhI0bN+LLL7+sk07XhFS8mbcWl2Hhyl/xwff7Dfdyp9xMTDy9Ay7t3yZl5h3WNeW+IN74ZjeeX7Udh8rUFXgdWmTgj6O6YnTvVvVm4U4yScX7vzqsXLnSEqNVR4/ROmHCBOzcuRMrV660HHPHHXdg06ZNaNOmDe6///6EA243lvElCDt07zdcEhaKubm5+Oqrr3Dqqadayrdu3YrTTz8dhw8fxo8//oizzjoLx48fr82+1gqpdDP/tK8ETy/fhk82huZODevUApPP7oThp+ZSGrwIVAUU/Ot/u/Dcyl9xpNwPADitTQ5mXtQDgzo0T3Lvkksq3f+pCI0v0Vihe7/hkrApKhgMYvPmzWFCcfPmzVAUdXl8WloaWW9qwMb9JXhy6TZ89rMqEBkDzu9ZgJuGd8ZpbZsmt3MpQJpbxu/P6oSrB7fDP77Yjr+v2o7v95bgyoWrMbpPK9x7YXe0bhp5gQJBEARBECoJC8Xrr78ekyZNwr333otBgwYBANauXYuHHnoIv/vd7wAAn3/+OXr27Fm7PW0E/HLwBJ5cuhVLfjwAAJAYMOa0QtxyTheckp+V5N6lHk28LkwbeSrGDWmPJ5ZuxeK1u7HkhwNY9nMxbv3NKbjxrE604IUgCIIgopCw61lRFDz88MNYsGCBEU4iPz8ft956K+6++27Isozdu3dDkiS0adOmTjpdE+qjefxASSXmL92Gt9ftAReqBXFMn0Lcdu4p6JLXJNndazBs3F+CBz7YiLU71TSTXfKa4KFLe2Nwx8bjjq6P939DgsaXaKzQvd9wqVGuZz1dVSrdFPXpZi6rCmDh57/iH1/sgC+opuYa2T0ffxx1aqNdwVzXCCHw7nf78OCSn435i9cMbocZF3ZrsCGFzNSn+78hQuNLNFbo3m+4VGu5bDAYxMqVK/Hrr7/i2muvBQDs378f2dnZaNKELGCxULjAm2t344lPtxpiZVCHZrjngu4Y0J4yjNQljDFc1r8Nzu2Wj4c//hlvfLMHb3yzGyu3HMRDl/XGOV3zkt1FgiAIgqg3JCwUd+3ahfPPPx+7d++Gz+fD//3f/yErKwuPPPIIfD4fFi5cWBf9bDCs/vUI5vxnIzYXlQEAOrXMxD0XdMP/9cinBUAnkZwMN+Zd1geX9G2Ne/7fD9h5pAITX1qLqwa2xcyLuiOrEVgXCYIgCCIWCc/kv/322zFw4EAcO3bMktrq0ksvxbJly2q1cw2JfccrcfNr63DN3/+HzUVlyEl344ExPfDJHWfjvJ4FJBKTxNBOLfDR7WfjhjM6gjFg8bd7cMHfvsDanUeT3TWCIAiCSDoJWxS/+OILfP311/B4PJbyDh06YN++fbXWsYaCL6jgH1/swNPLt6EqwCEx4Lqh7XHHyFPRLNMTuwGizkn3yJg1pgfO65mPO9/6HnuPVeKq51fjlnO64LZzT4GLMrsQBEEQjZSEhSLn3IiXaGbv3r3IyqIQLma++uUw7n/vJ2zX8jEP7tgccy7uie6taKJvfWRopxb4eNpZmP3BRryzfh+eWv4Lvvr1CP52dV+0aZaR7O4RBEEQxEknYVPJeeedh/nz5xvbjDGcOHECs2fPxoUXXlibfUtZDp/wYdqb32HcP9Zg++FytGzixfyr+mLx5KEkEus5WWluPPHbvnjqmn7I8rqwbtcxXPi3L7B0U3HsgwmCIAiigZFweJy9e/di1KhREEJg27ZtGDhwILZt24aWLVti1apVyMur36tG63IJvxACb327Bw99uBkllQEwBvxuaHvcOaprowi90tDYfaQCt775Hb7fcxwAMPnsTrhrVNeUdkVTCIu6hcaXaKzQvd9wqVYcxWAwiDfffBM//PADTpw4gf79+2PcuHGWxS31lbq6mXccLseMd37A/7ariyB6FmbjoUt7U8q9FMcf5Hj4o8148asdANTpAwuu7Ye8rLQk96x60Jd53ULjSzRW6N5vuCQsFKuqqpCWlpoPSaD2b+agwvGPL3fgyaVb4QtypLkl3Pl/XTHxjA4pbXkirHz80wH88e0fcMIXRF6WF89dNyAlY17Sl3ndQuNLNFbo3m+4JKxk8vLyMH78eCxduhSc87roU8qwpagMlz33NR7+aDN8QY6zTmmJT6cNx41ndyKR2MA4v1crvH/LGTglrwkOlvlw9Qur8fqa3cnuFkEQBEHUKQmrmZdffhkVFRW45JJL0Lp1a0ybNg3ffvttXfSt3hJQOBYs34aLnv4CP+wtQXaaC49d0Qev3DAY7VrQ6tiGSufcJnh36hm4oFcBAorAve/+iFnv/4SA0rh/MBEEQRANl4SF4qWXXoq3334bxcXFeOihh7Bp0yYMHToUp556KubOnVsXfaxXbC0uw2XPfo3HP92KgCIwsnselk4fjisHtqWg2Y2AJl4Xnh3XH38a1RWMAa+s3oXxL36D4xX+ZHeNIAiCIGqdavtHs7KyMHHiRHz66af44YcfkJmZiTlz5iTczjPPPIMOHTogLS0NQ4YMwTfffBO1/vz589G1a1ekp6ejbdu2uOOOO1BVVVXdjxE3ChdY+PmvuOipL/HjvhLkpLvx5FWn4e+/G4j87NSds0kkDmMMU8/pgr9fPxCZHhlf/3oElz77NbYfOpHsrhEEQRBErVJtoVhVVYW33noLY8eORf/+/XH06FH86U9/SqiNxYsXY/r06Zg9ezbWr1+P0047DaNGjcLBgwcd67/++uu45557MHv2bPz888/45z//icWLF+Pee++t7seIi11HynHV86vx8Eeb4Vc4ftMtD5/ecTYu7deGrIiNmJE98vH/bj4drZumY8fhclz67NdYs/1IsrtFEARBELVGwqueP/nkE7z++ut477334HK5cMUVV2DcuHE4++yzEz75kCFDMGjQICxYsACAmvWlbdu2uPXWW3HPPfeE1b/lllvw888/W3JK33nnnVizZg2+/PLLuM6ZyMosIQTe+GYP/rJkEyr8Cpp4XZg1pgeuHEACkQhxqMyHG1/5Fhv2HIdbZnj0ij64tF+bZHfLEVqZWLfQ+BKNFbr3Gy7VmqNYWVmJV155BUVFRXj++eerJRL9fj/WrVuHkSNHhjojSRg5ciRWr17teMzpp5+OdevWGe7p7du348MPP4yaEcbn86G0tNTyiodDZT78/uVvce+7P6LCr2Bop+b4eNpZ+C3NRSRs5GZ58ebkobiwt7rI5Y7F3+OZFb+gGiFKCYIgCKJekbBQLC4uxltvvYVLLrkEbnf1s40cPnwYiqIgPz/fUp6fn4+ioiLHY6699lrMnTsXZ555JtxuNzp37owRI0ZEdT3PmzcPOTk5xqtt27Yx+/bZpmKcP38Vlm0+CI9LwszR3fH674dSvl8iImluGQuu6Y8/nN0JAPDYJ1sw872foHASi8kkVeZAEwRB1FcSFopZWVnG+6qqqmpZ66rLypUr8dBDD+HZZ5/F+vXr8c4772DJkiX485//HPGYGTNmoKSkxHjt2bMnYt1Kv4L73v0Rv3/lWxwp96NbQRY+uOUM/P6sTpAksiIS0ZEkhhkXdseci3uCMeC1Nbsx5V/rUBVQkt21RkmqzIEmCIKoz7gSPaC8vBx333033nrrLRw5Ej5xX1Hieyi2bNkSsiyjuLjYUl5cXIyCggLHY+6//35cf/31+P3vfw8A6N27N8rLyzF58mTcd999kKRw3ev1euH1emP256d9Jbjtze+w/VA5AODGszrij6O6wuuS4/o8BKEz/vQOyMvy4vbFG/DppmL87p/f4O/jByInnfJ9n0yeeOIJ3HjjjZg4cSIAYOHChViyZAlefPFFxznQX3/9Nc444wxce+21AIAOHTrgmmuuwZo1a05qvwmCIOoTCVsU77rrLixfvhzPPfccvF4v/vGPf2DOnDkoLCzEK6+8Enc7Ho8HAwYMsCxM4Zxj2bJlGDZsmOMxFRUVYWJQllUhV935YJwL/H3Vdlz67FfYfqgc+dle/GvSENw3ugeJRKLaXNC7FV69YTCy0lz4ZudRXPX8ahwsJRfmyaK+z4EmCIJIFRK2KP7nP//BK6+8ghEjRmDixIk466yz0KVLF7Rv3x6vvfYaxo0bF3db06dPx/jx4zFw4EAMHjwY8+fPR3l5uWEB+N3vfofWrVtj3rx5AIAxY8bgiSeeQL9+/TBkyBD88ssvuP/++zFmzBhDMCbCwbIq3PnW9/hi22EAwKie+Xj4sj5olulJuC2CsDOkUwssnjwM41/6BpuLynDl86vxr0lD0LY5zXWta6LNgd68ebPjMddeey0OHz6MM888E0IIBINB3HTTTTHnQFcnfixBEESqkLBF8ejRo+jUSZ2wn52djaNHjwIAzjzzTKxatSqhtq666io8/vjjmDVrFvr27YsNGzbg448/Nr7cd+/ejQMHDhj1Z86ciTvvvBMzZ85Ejx49MGnSJIwaNQrPP/98oh8Dq7YdwgXzv8AX2w4jzS3hoUt7Y+F1A0gkErVKj8Js/L+bTkfb5unYdaQClz/3NbYVlyW7W4QDdT0HmiAIIhVJOI5inz598PTTT2P48OEYOXIk+vbti8cffxxPPfUUHn30Uezdu7eu+lor6LGe2k57C5I3A91bZePpa/qiS15W7IMJopoUl1bhd//8BluKy9Asw41XJw1Br9Y5J70f9TnWmaIoWLRoEZYtW4aDBw+Cc2sO7eXLl8fdlt/vR0ZGBv79739j7NixRvn48eNx/PhxvP/++2HHnHXWWRg6dCgee+wxo+xf//oXJk+ejBMnTjjOgbZTn8eXIOoSuvcbLgm7nidOnIjvv/8ew4cPxz333IMxY8ZgwYIFCAQCeOKJJ+qij3XGhNM74J4LuiHNTXMRibolPzsNi/8wFONf/Abf7y3BNS/8Dy9NHISBHZonu2v1httvvx2LFi3C6NGj0atXrxrFKzXPgdaFoj4H+pZbbnE8pi7mQBP1F316QbwLMBs7sizD5XJRHOFGSMIWRTu7du3CunXr0KVLF/Tp06e2+lVn6L963l2zDWMHd0l2d4hGxglfEJMWrcWaHUeR4ZHxj/EDcXrnlift/PX5V3/Lli3xyiuvRF08kgiLFy/G+PHj8fzzzxtzoN966y1s3rwZ+fn5YXOgH3jgATzxxBN44YUXjDnQU6ZMwYABA7B48eK4zlmfx5cI4ff7ceDAAVRUVCS7KylFRkYGWrVqBY8nfIoW3fsNl4QtilVVVUhLSzO227dvj/bt29dqp04Gv+mWl+wuEI2QJl4XFk0cjMmvfosvth3GxJfW4oXfDcTwU3OT3bWk4/F40KVL7f14u+qqq3Do0CHMmjULRUVF6Nu3b9gcaLMFcebMmWCMYebMmdi3bx9yc3MxZswYPPjgg7XWJyL5cM6xY8cOyLKMwsJCeDwespLFQAgBv9+PQ4cOYceOHTjllFPimopBNAwStiimpaVh8ODBGD58OEaMGIHTTz8d6enpddW/Wod+9RD1gaqAglteX4/Pfj4Ijyxh4fX98Ztu+bEPrCH1+f7/61//iu3bt2PBggUp++Cuz+NLqFRVVWHHjh1o3749MjIoAkEiVFRUYNeuXejYsaPFYATQvd+QSdii+Nlnn2HVqlVYuXIlnnzySQSDQQwcONAQjv/3f/9XF/0kiAZFmlvGs+MG4NY31uOTjcX4w6vr8Ny4ARjZo+7FYn3lyy+/xIoVK/DRRx+hZ8+eYSlC33nnnST1jGiIkEUscWjMGicJX/UzzzwT9957Lz799FMcP34cK1asQJcuXfDoo4/i/PPPr4s+EkSDxOOSsODa/hjduxUCisCU19Zh6abi2Ac2UJo2bYpLL70Uw4cPR8uWLS052nNyTv4KcYIgCKIaFkUA2Lp1K1auXGm8fD4fLrroIowYMaKWu0cQDRu3LOFvV/cFY8B/fziAm19rvJbFl156KdldIAiCIGwkLBRbt26NyspKjBgxAiNGjMDdd9+NPn36pOycIoJINi5Zwvyr+gJQxeKURiwWAeDQoUPYsmULAKBr167IzaWFPgRBEMkiYddzbm4uKioqUFRUhKKiIhQXF6OysrIu+kYQjQZdLI7uo7qhb35tPVZsOZjsbp1UysvLccMNN6BVq1Y4++yzcfbZZ6OwsBCTJk2iMCZEo4YxFvX1wAMPYOfOnWCMQZZl7Nu3z3L8gQMHjBiIO3fuNMp3796N0aNHIyMjA3l5efjTn/6EYDB4kj8dUd9JWChu2LABRUVFuOeee+Dz+XDvvfeiZcuWOP3003HffffVRR8JolHgkiX87aq+uLB3AfwKxx9eXYdVWw8lu1snjenTp+Pzzz/Hf/7zHxw/ftzIoPL555/jzjvvTHb3CCJpHDhwwHjNnz8f2dnZlrI//vGPRt3WrVvjlVdesRz/8ssvo3Xr1pYyRVEwevRo+P1+fP3113j55ZexaNEizJo166R8JiJ1qFHA7SNHjmDlypV4//338cYbb4BzXu+j3NMSfqK+E1A4pr62Hp9uKkaaW8JLEwZjWOcWtdJ2fb7/W7ZsiX//+99hc51XrFiB3/72tzh0qP6L5vo8voSKHh5HD/EihEBlIDnPrXS3nPC0rUWLFmHatGk4fvy4pXznzp3o2LEjZs6cicWLF2Pr1q3Gvq5du+Kqq67Cn//8Z+zYsQMdOnTARx99hIsuugj79+83YosuXLgQd999Nw4dOuQYVNs+dmbo3m+4JDxH8Z133jEWsWzatAnNmzfHmWeeib/+9a8YPnx4XfSRIBoVblldDX3Tv9Zh+eaDmPTyWrw6aTAGtG/Y6f4qKiqMB5aZvLw8cj0TdUZlQEGPWZ8k5dyb5o5Chqdaa0ojcvHFF2PhwoX48ssvceaZZ+LLL7/EsWPHMGbMGPz5z3826q1evRq9e/e2/JsbNWoUpkyZgo0bN6Jfv3612i8idUnY9XzTTTdh//79mDx5Mr777jscPHgQ77zzDm677TacdtppddFHgmh0eFwSnh3XH2ed0hIVfgUTXlyLH/YeT3a36pRhw4Zh9uzZqKqqMsoqKysxZ84cDBs2LIk9I4jUwe1247rrrsOLL74IAHjxxRdx3XXXhcUlLSoqCvthpm8XFRWdnM4SKUHCP2UOHmxcE+wJIlmkuWW8cP1AjH/pG3yz4yiu/+c3eHPyUHRv1TDdOn/7298watQotGnTxvjR+f333yMtLQ2ffJIciw/R8El3y9g0d1TSzl0X3HDDDTj99NPx0EMP4e2338bq1atpkQpRbWrX5k0QRK2S7pHx4oRBuO4fa7Bhz3Fc/881eOsPw9Apt0myu1br9OrVC9u2bcNrr72GzZs3AwCuueYajBs3LqXShBKpBWOs1t2/yaZ3797o1q0brrnmGnTv3h29evXChg0bLHUKCgrwzTffWMqKi4uNfQSh07D+dRBEA6SJ14WXbxiMa174HzYdKMV1/1iDt24ahjbNGl6e2oyMDNx4443J7gZBpDw33HADbr75Zjz33HOO+4cNG4YHH3wQBw8eRF5eHgBg6dKlyM7ORo8ePU5mV4l6DglFgkgBctLdeHXSYPz2+dX49VC5IRbzstJiH1yP+eCDD3DBBRfA7Xbjgw8+iFr34osvPkm9IojU58Ybb8SVV16Jpk2bOu4/77zz0KNHD1x//fV49NFHUVRUhJkzZ2Lq1Knwer0nt7NEvYaEIkGkCC2aePHa74fiioVfY+eRClz/j2+w+A9D0TQjPIxFqjB27FgUFRUhLy8PY8eOjViPMVbvQ28RRH3C5XKhZcuWEffLsoz//ve/mDJlCoYNG4bMzEyMHz8ec+fOPYm9JFKBGsVRBNTYScuXL0fXrl3RvXv32upXnUGxnohUZ9eRcly5cDUOlvnQ9/+3d+dhURx5H8C/MzjDoYAggogc3qigqAjxWjQhojGiOQnqSsAjXtFIdCOJilckmihGY0LE4LFqvHXzRuMmsmKCEl0PjEfEC8QDFJRDUUGg3j9YOowMSOPAcHw/z9PPOtXV1b/u9BbV3dVV9o2xaYwnGhpW7J6P13/V4vmt+cobC5DKx3EU6yfZw+O8/fbb+OqrrwAUDV3h7u6Ot99+G507d8bOnTt1HiARaXJs0hAbx3iisYkK8dczMe6fx5GbX/uftm3YsAG5ubml0vPy8krNNEFERNVDdkPx119/Rd++fQEAu3fvhhACmZmZWLFiBRYuXKjzAImotHY2plj7bg+YqA1w+PJdTP0+HvkFhfoO67kEBgYiKyurVPr9+/cRGBioh4iIiEh2QzErKwuWlkUzROzfvx9vvPEGTExMMHjwYFy6dEnnARKRdl0dLBA5yh1qAyX2n0vFx7vP4Dl7kuiVEELrdGY3btyAubm5HiIiIiLZH7PY29sjLi4OlpaW2L9/P7Zs2QIAyMjIYH8PomrWu40VVvh3xcRNJ7Dt+A1YNFQjZFDN7ytcUteuXaFQKKBQKPDSSy+hQYO/qqWCggIkJiZi4MCBeoyQiKj+kv1E8YMPPsCIESPQokULNG/eHP369QNQ9Era1dVVdgCrVq2Ck5MTjIyM4OnpWWoA0KdlZmZi0qRJsLW1haGhIdq1a4d9+/bJ3i9RXTHQpRk+e70zAODbQ1cRceiKniOSZ9iwYRg6dCiEEPDx8cHQoUOl5Z133sG3336LjRs36jtMIqJ6SfYTxYkTJ8LDwwPXr1/Hyy+/DKWyqK3ZqlUr2X0Ut27diuDgYERERMDT0xPLly+Hj48PEhISpAFAS8rLy8PLL78Ma2tr7NixA3Z2drh27VqZ40QR1Rdv97BHxsM8hP10AZ/9dAGWJmq83cNe32FVSGhoKADAyckJ77zzDsdwIyKqQWQ/UQQAd3d3vPbaa2jU6K9pxAYPHozevXvLKmfZsmUYO3YsAgMD0bFjR0RERMDExESazPxpUVFRuHfvHvbs2YPevXvDyckJXl5e0rywRPXZe16t8Z5XKwDAzF1/4Jfzt/UckTwdO3YsNc0YABw9ehTHjx+vVJl8Y0FE9HxkP1EMCgoqd31Zjbyn5eXl4cSJEwgJCZHSlEolvL29ERcXp3WbH374AT179sSkSZPwr3/9C02bNsXw4cPx0UcfwcBA++Tqubm5GkNuZGdnVyg+otpo5kBn3HuQh+0nbmDS5pP4Z5AHPFs10XdYFTJp0iT84x//gKenp0b6zZs3sXjxYhw9elRWeXxjQUT0/GQ3FDMyMjR+P3nyBGfPnkVmZiZefPHFCpeTnp6OgoIC2NjYaKTb2NjgwoULWre5evUq/vOf/2DEiBHYt28fLl++jIkTJ+LJkyfS66unhYWFYd68eRWOi6g2UygUCHvdFRkPn+DAn7cxZsNxbHuvJzrY1vwBcM+fP49u3bqVSu/atSvOnz8vu7ySbywAICIiAnv37kVUVBRmzpxZKn/xG4sjR45ApVIBKHodTkRUn8l+9bx7926N5ccff8TVq1fh5+eHF154oSpilBQWFsLa2hqrV69G9+7d4efnh08++QQRERFlbhMSEoKsrCxpuX79epXGSKRvDQyU+Gp4V3g4WeL+43yMijqG6/ce6jusZzI0NMTt26Vfl6ekpGh8CV0RxW8svL29pTQ5byxsbGzg4uKCRYsWlTt1YG5uLrKzszUWIqK6pFJ9FEsVolQiODgY4eHhFd7GysoKBgYGpf4w3L59G82aNdO6ja2tLdq1a6fxmrlDhw5ITU1FXl6e1m0MDQ1hZmamsRDVdUYqA0QGuMO5mSnS7udiVNQxpD8oPetJTTJgwADpxq5YZmYmPv74Y7z88suyyirvjUVqaqrWba5evYodO3agoKAA+/btw+zZs7F06dJyP9ILCwuDubm5tNjb144PiKh2KR4+qqxl7ty5SEpKgkKhgIGBAW7evKmxffHNlkKhQFJSkpQ+ZcoUdO/eHYaGhnBzc6veg6JaQycNRQC4cuUK8vPzK5xfrVaje/fuiI6OltIKCwsRHR2Nnj17at2md+/euHz5MgoL/5qB4uLFi7C1tYVara588ER1kLmxCuuDPGDX2BiJ6TkIXPtfPMit+P9Hq9sXX3yB69evw9HREf3790f//v3RsmVLpKamYunSpVW+f76xoJoqJSVFWpYvXw4zMzONtOnTp0t57ezsSk15uX79etjZ2WktOygoCH5+flUaP9VusvsoBgcHa/wWQiAlJQV79+5FQECA7LICAgLg7u4ODw8PLF++HDk5OVKfolGjRsHOzg5hYWEAgAkTJuCrr77C1KlT8f777+PSpUtYtGgRpkyZIvcwiOoFGzMj/HO0B96MiMOZm1mYtjVe3yGVyc7ODn/88Qc2bdqE06dPw9jYGIGBgfD395f6DFZUZd9YqFSqMt9YaLsZNTQ05HA+tZ0QwBM9dc1QmQBaZiN6Wslr1tzcHAqFotR1nJ6eDgAICAjA2rVrNT4UXbt2LQICArBgwQKNbVasWAEASEtLwx9//FHpw6C6TXZD8dSpUxq/lUolmjZtiqVLlz7zi+in+fn5IS0tDXPmzEFqairc3Nywf/9+6XVRcnKyNE4jUDQrzL///W9MmzYNnTt3hp2dHaZOnYqPPvpI7mEQ1RutmjZC1Ls94L/6d8RduavvcMrVsGFDjBs37rnLKfnGYtiwYQD+emMxefJkrdv07t0bmzdvRmFhoVTv8I1FPfDkIbCouX72/fEtQN1Qp0X6+voiIiICsbGx6NOnD2JjY5GRkYEhQ4aUaigSVYTshuLBgwd1GsDkyZPLrLhjYmJKpfXs2RO///67TmMgquvc7Bvjm5HdELT6V32H8kznz59HcnJyqX7Hvr6+ssrhGwuqj1QqFUaOHImoqCj06dMHUVFRGDlypOyn8kTFZDcUi925cwcJCQkAgPbt22sdl4yIao5+7a2xcnhXvLpM35Fod/XqVbz22ms4c+YMFAoFhBAAijryAyj362Nt+MaCKkRlUvRkT1/7rgJBQUHo1asXFi1ahO3btyMuLk7WNwREJcluKGZnZ2PSpEn4/vvvpY9KDAwM4Ofnh1WrVsHc3FznQRKRbvRt21TfIZRp6tSpaNmyJaKjo9GyZUscO3YMd+/exYcffogvvviiUmXyjQU9k0Kh89e/+ubq6gpnZ2f4+/ujQ4cOcHFx0TrrEVFFyP7qeezYsTh69Cj27t2LzMxMZGZm4scff8Tx48fx3nvvVUWMRFQPxMXFYf78+bCysoJSqYRSqUSfPn0QFhbG179EMgUFBSEmJkb2twNET5P9RPHHH3/Ev//9b/Tp00dK8/HxQWRkJAYOHKjT4Iio/igoKICpqSmAoq+Wb926hfbt28PR0VHq5kJEFTN27Fi89dZb5U5BefnyZTx48ACpqal49OiR9NSxY8eO/ICLJLIbik2aNNH6etnc3BwWFhY6CYqI6h8XFxecPn0aLVu2hKenJ5YsWQK1Wo3Vq1ejVatW+g6PqFZp0KABrKysys0zZswYHDp0SPrdtWtXAEBiYiKnrySJ7FfPs2bNQnBwsMbsBqmpqZgxYwZmz56t0+CIqP6YNWuW1O95/vz5SExMRN++fbFv3z5pvDei+u7dd99FZmZmqXQnJycIIcqcYcXNzQ1CCI0GYExMDIQQpRY2EqmkCj1R7Nq1q/TlIQBcunQJDg4OcHBwAFD09aChoSHS0tLYT5GIKsXHx0f6d5s2bXDhwgXcu3cPFhYWGvUPERFVnwo1FIsHrCUiqgpPnjyBsbEx4uPj4eLiIqVbWlrqMSoiIqpQQzE0NLSq4yCiekylUsHBwUH2WIlERFS1ZPdRJCKqCp988gk+/vhj3Lt3T9+hEBHR/1R6ZhYiIl366quvcPnyZTRv3hyOjo5o2FBzEOSTJ0/qKTIiovqLDUUiqhHYF5qIqOZhQ5GI9GbFihUYN24cjIyMEBgYiBYtWmjMv0xERPr1XDVy8ZhLRESVERwcjOzsbABAy5YtkZ6erueIiIiopEo1FDds2ABXV1cYGxvD2NgYnTt3xj//+U9dx0ZEdVzz5s2xc+dOXLt2DUII3LhxA8nJyVoXIiKqfrJfPS9btgyzZ8/G5MmT0bt3bwBAbGwsxo8fj/T0dEybNk3nQRJR3TRr1iy8//77mDx5MhQKBXr06FEqjxACCoWCQ+cQEemB7CeKK1euxDfffIPFixfD19cXvr6+WLJkCb7++mtOs0VEsowbNw7p6ek4ffo0hBD45ZdfcPLkSY3l1KlT/OKZ6jWFQlHuMnfuXCQlJUGhUMDAwAA3b97U2D4lJQUNGjSAQqFAUlISAOD06dPw9/eHvb09jI2N0aFDB3z55Zd6ODqq6WQ/UUxJSUGvXr1Kpffq1QspKSk6CYqI6g9TU1O4uLhg7dq16N27NwwNDfUdElGNUvJv69atWzFnzhwkJCRIaY0aNZL699rZ2WHDhg0ICQmR1q9fvx52dnYaXThOnDgBa2trbNy4Efb29jhy5AjGjRsHAwMDTJ48uRqOimoL2Q3FNm3aYNu2bfj444810rdu3Yq2bdvqLDAiql8CAgL0HQLVQ0IIPMp/pJd9GzcwrtA85s2aNZP+bW5uDoVCoZEGQGooBgQEYO3atRoNxbVr1yIgIAALFiyQ0oKCgjS2b9WqFeLi4rBr1y42FEmD7IbivHnz4Ofnh19//VXqo3j48GFER0dj27ZtOg+QiIioqjzKfwTPzZ562ffR4UdhojLRaZm+vr6IiIhAbGws+vTpg9jYWGRkZGDIkCEaDUVtsrKyOL86lSK7j+Ibb7yBo0ePwsrKCnv27MGePXtgZWWFY8eO4bXXXquKGImIiKgCVCoVRo4ciaioKABAVFQURo4cCZVKVe52R44cwdatWzFu3LjqCJNqkUoNuN29e3ds3LhR17EQERFVK+MGxjg6/Kje9l0VgoKC0KtXLyxatAjbt29HXFwc8vPzy8x/9uxZDB06FKGhoRgwYECVxES1l+wnigYGBrhz506p9Lt378LAwEAnQRFR/ZWXl4eEhIRy/7BV1KpVq+Dk5AQjIyN4enri2LFjFdpuy5YtUCgUnFawHlAoFDBRmehlqUj/xMpwdXWFs7Mz/P390aFDB7i4uJSZ9/z583jppZcwbtw4zJo1q0riodpNdkOxrJlYcnNzoVarnzsgIqqfHj58iNGjR8PExASdOnWSvtB8//338dlnn8kub+vWrQgODkZoaChOnjyJLl26wMfHR+uNbklJSUmYPn06+vbtW6njIKoJgoKCEBMTU+qjlZLOnTuH/v37IyAgAJ9++mk1Rke1SYUbiitWrMCKFSugUCiwZs0a6feKFSsQHh6OSZMmwdnZuVJB8K6fiEJCQnD69GnExMTAyMhISvf29sbWrVtll7ds2TKMHTsWgYGB6NixIyIiImBiYiL13dKmoKAAI0aMwLx589CqVatKHQdRTTB27FikpaVhzJgxWtefPXsW/fv3x4ABAxAcHIzU1FSkpqYiLS2tmiOlmq7CfRTDw8MBFD1RjIiI0HjNrFar4eTkhIiICNkBFN/1R0REwNPTE8uXL4ePjw8SEhJgbW1d5na86yeqW/bs2YOtW7fihRde0Hgl16lTJ1y5ckVWWXl5eThx4oTGECFKpRLe3t6Ii4src7v58+fD2toao0ePxm+//fbM/eTm5iI3N1f6XTxvNZG+NWjQAFZWVmWu37FjB9LS0rBx40aNbw4cHR2lQbmJABlPFBMTE5GYmAgvLy+cPn1a+p2YmIiEhAT8+9//hqen/CEGeNdPRACQlpam9eYwJydHdl+u9PR0FBQUwMbGRiPdxsYGqampWreJjY3Fd999h8jIyArvJywsDObm5tJib28vK04iud59911kZmaWSndycoIQAm5ublq3c3NzgxACTk5OAIC5c+dCCFFqYSORnia7j+LBgwdhYWGhk50X3/V7e3v/FZDMu/5nyc3NRXZ2tsZCRDWPu7s79u7dK/0ubhyuWbMGPXv2rNJ9379/H3//+98RGRlZ7lOYp4WEhCArK0tarl+/XoVREhFVv0oNj6Mr5d31X7hwQes2xXf98fHxFdpHWFgY5s2b97yhElEVW7RoEQYNGoTz588jPz8fX375Jc6fP48jR47g0KFDssqysrKCgYEBbt++rZF++/btUjNaAMCVK1eQlJSEIUOGSGmFhYUAil7hJSQkoHXr1qW2MzQ05JSDRFSnyX6iqE+VuevnHT9R7dCnTx/Ex8cjPz8frq6u+Pnnn2FtbY24uDh0795dVllqtRrdu3dHdHS0lFZYWIjo6GitTyednZ1x5swZxMfHS4uvry/69++P+Ph4vlImonpLr08Uq+Oun3f8RLVH69atZfURLE9wcDACAgLg7u4ODw8PLF++HDk5OQgMDAQAjBo1CnZ2dggLC4ORkVGpseYaN24MAOWOQUdEVNfptaFY8q6/eIib4rt+bZOSF9/1lzRr1izcv38fX375Je/6iWoZOX2GzczMZJXt5+eHtLQ0zJkzB6mpqXBzc8P+/fulri7JyclQKmvVSxUiompXqYZiZmYmjh07hjt37khP9IqNGjVKVlm86yeqvxo3blzhL5oLCgpklz958mStN50AEBMTU+6269atk70/IqK6RnZD8f/+7/8wYsQIPHjwAGZmZhqVvEKhkN1Q5F0/Uf118OBB6d9JSUmYOXMm3n33XakfYVxcHNavX4+wsDB9hUhEVK8pRFlz8pWhXbt2eOWVV7Bo0SKYmJhUVVxVJjs7G+bm5sjKypL9KouotqvJ1/9LL72EMWPGwN/fXyN98+bNWL169TOfANYENfn8UpHHjx8jMTERLVu21JgBiJ6tvHPHa7/ukv2o7ubNm5gyZUqtbCQSUc0VFxcHd3f3Uunu7u4VntaTiIh0S3ZD0cfHB8ePH6+KWIioHrO3t9f6xfOaNWv4oRoRkZ7I7qM4ePBgzJgxA+fPn4erqytUKpXGel9fX50FR0T1R3h4ON544w389NNP0nSgx44dw6VLl7Bz5049R0ekP8/64Cs0NBTvvvsuWrZsCaVSieTkZNjZ2UnrU1JSYG9vj4KCAiQmJsLJyQl3797FiBEj8Mcff+Du3buwtrbG0KFDsWjRIr46Jg2yG4pjx44FUDSN3tMUCkWlvkwkInrllVdw6dIlfP3119LMTEOGDMH48eP5RJHqtZSUFOnfW7duxZw5c5CQkCClNWrUCOnp6QAAOzs7bNiwASEhIdL69evXw87ODsnJyVKaUqnE0KFDsXDhQjRt2hSXL1/GpEmTcO/ePWzevLkajopqC9kNxaeHwyEi0pUWLVpg0aJF+g6D6hEhBMSjR3rZt8LYuELDQ5WcgMLc3BwKhaLUpBTFDcWAgACsXbtWo6G4du1aBAQEYMGCBVKahYUFJkyYIP12dHTExIkT8fnnn1f6eKhu0uuA20REJWVmZuK7777Dn3/+CQDo1KkTgoKCYG5urufIqK4Sjx4hoZu8KSJ1pf3JE1Do+MNQX19fREREIDY2Fn369EFsbCwyMjIwZMgQjYbi027duoVdu3bBy8tLp/FQ7VepAQoPHTqEIUOGoE2bNmjTpg18fX3x22+/6To2IqpHjh8/jtatWyM8PBz37t3DvXv3sGzZMrRu3RonT57Ud3hEtYJKpcLIkSMRFRUFAIiKisLIkSNLfU9QzN/fHyYmJrCzs4OZmRnWrFlTneFSLSD7ieLGjRsRGBiI119/HVOmTAEAHD58GC+99BLWrVuH4cOH6zxIIqr7pk2bBl9fX0RGRqJBg6KqKT8/H2PGjMEHH3yAX3/9Vc8RUl2kMDZG+5Mn9LbvqhAUFIRevXph0aJF2L59O+Li4pCfn681b3h4OEJDQ3Hx4kWEhIQgODgYX3/9dZXERbWT7Ibip59+iiVLlmDatGlS2pQpU7Bs2TIsWLCADUUiqpTjx49rNBIBoEGDBvjHP/6hdXxFIl1QKBQ6f/2rb66urnB2doa/vz86dOgAFxcXxMfHa83brFkzNGvWDM7OzrC0tETfvn0xe/Zs2NraVm/QVGPJfvV89epVDBkypFS6r68vEhMTdRIUEdU/ZmZmGl9lFrt+/TpMTU31EBFR7RUUFISYmBgEBQVVeJvij1Vzc3OrKiyqhWQ/UbS3t0d0dDTatGmjkX7gwAEOYUFElebn54fRo0fjiy++QK9evQAUdWuZMWNGqWn9iKh8Y8eOxVtvvYXGjRtrXb9v3z7cvn0bPXr0QKNGjXDu3DnMmDEDvXv3hpOTU7XGSjWb7Ibihx9+iClTpiA+Pl6jMl+3bh2+/PJLnQdIRPXDF198AYVCgVGjRkn9qVQqFSZMmIDPPvtMz9ER1S4NGjSAlZVVmeuNjY0RGRmJadOmITc3F/b29nj99dcxc+bMaoySagOFEELI3Wj37t1YunSpNIRFhw4dMGPGDAwdOlTnAeoaJy6n+qw2XP8PHz7ElStXAACtW7euVfPK14bzW989fvwYiYmJaNmyJYyMjPQdTq1S3rnjtV93VWocxddeew2vvfaarmMhIoKJiQlcXV31HQYREYEDbhORnlW0s33xuHBERFR9KtRQtLS0xMWLF2FlZQULC4typxy6d++ezoIjorpv3bp1cHR0RNeuXVGJnjBERFSFKtRQDA8Pl4anCA8Pr9DclEREFTFhwgR8//33SExMRGBgIEaOHAlLS0t9h0VERKjkxyy1GTvcUn1WU6//3Nxc7Nq1C1FRUThy5AgGDx6M0aNHY8CAAbXqxrSmnl/6S/EHGY6OjrXqQ6ma4OHDh7h27Ro/ZqlnZPdRPHnyJFQqldTZ/F//+hfWrl2Ljh07Yu7cuVCr1ToPkojqNkNDQ/j7+8Pf3x/Xrl3DunXrMHHiROTn5+PcuXNo1KiRvkOkOkKtVkOpVOLWrVto2rQp1Gp1rboZ0QchBPLy8pCWlgalUsm/8/WM7Ibie++9h5kzZ8LV1RVXr16Fn58fXn/9dWzfvh0PHz7E8uXLqyBMIqovlEolFAoFhBAoKCh4rrJWrVqFzz//HKmpqejSpQtWrlwJDw8PrXkjIyOxYcMGnD17FgDQvXt3LFq0qMz8VDsplUq0bNkSKSkpuHXrlr7DqVVMTEzg4OAApVL2pG5Ui8luKF68eBFubm4AgO3bt8PLywubN2/G4cOH8c4777ChSESylXz1HBsbi1dffRVfffUVBg4cWOk/Slu3bkVwcDAiIiLg6emJ5cuXw8fHBwkJCbC2ti6VPyYmBv7+/ujVqxeMjIywePFiDBgwAOfOnYOdnd3zHiLVIGq1Gg4ODsjPz3/um5H6wsDAAA0aNODT13pIdkNRCCHNB3ngwAG8+uqrAIqm9ktPT9dtdERU502cOBFbtmyBvb09goKC8P3335c7o0RFLVu2DGPHjkVgYCAAICIiAnv37kVUVJTW2Sc2bdqk8XvNmjXYuXMnoqOjMWrUKK37yM3N1ZgXNzs7+7njpuqhUCigUqmgUqn0HQpRjSa7oeju7o6FCxfC29sbhw4dwjfffAMASExMhI2Njc4DJKK6LSIiAg4ODmjVqhUOHTqEQ4cOac23a9euCpeZl5eHEydOICQkREpTKpXw9vZGXFxchcp4+PAhnjx5Uu4X2GFhYZg3b16F4yIiqm1kv9NZvnw5Tp48icmTJ+OTTz5BmzZtAAA7duyQ5n6Wa9WqVXBycoKRkRE8PT1x7NixMvNGRkaib9++sLCwgIWFBby9vcvNT0Q126hRo9C/f380btwY5ubmZS5ypKeno6CgoNTNq42NDVJTUytUxkcffYTmzZvD29u7zDwhISHIysqSluvXr8uKk4ioppP9RLFz5844c+ZMqfTPP/8cBgYGsgNgPyKi+m3dunX6DqGUzz77DFu2bEFMTEy58wEbGhrC0NCwGiMjIqpesp8oXr9+HTdu3JB+Hzt2DB988AE2bNhQqb4eJfsRdezYERERETAxMSlzuq5NmzZh4sSJcHNzg7OzM9asWYPCwkJER0fL3jcR1U1WVlYwMDDA7du3NdJv376NZs2albvtF198gc8++ww///wzOnfuXJVhEhHVeLIbisOHD8fBgwcBAKmpqXj55Zdx7NgxfPLJJ5g/f76ssor7EZV8taPrfkS5ubnIzs7WWIioblOr1ejevbvGDWTxDWXPnj3L3G7JkiVYsGAB9u/fD3d39+oIlYioRpPdUDx79qw0rti2bdvg4uKCI0eOYNOmTbJfIVVHP6KwsDCNfk729vayYiSi2ik4OBiRkZFYv349/vzzT0yYMAE5OTnSV9CjRo3S+Nhl8eLFmD17NqKiouDk5ITU1FSkpqbiwYMH+joEIiK9k91H8cmTJ1KfnAMHDsDX1xcA4OzsjJSUFN1G9wwV6UcUEhKC4OBg6Xd2djYbi0T1gJ+fH9LS0jBnzhykpqbCzc0N+/fvl25Mk5OTNcZo/Oabb5CXl4c333xTo5zQ0FDMnTu3OkMnIqoxZDcUO3XqhIiICAwePBi//PILFixYAAC4desWmjRpIqssXfQjOnDgQLn9iNjZnKj+mjx5MiZPnqx1XUxMjMbvpKSkqg+IiKiWkf3qefHixfj222/Rr18/+Pv7o0uXLgCAH374QfZUV+xHRERERFRzyX6i2K9fP6SnpyM7OxsWFhZS+rhx42BiYiI7gODgYAQEBMDd3R0eHh5Yvnx5qX5EdnZ2CAsLA1DUUJ0zZw42b94s9SMCgEaNGqFRo0ay909ERERE2sluKAJFcz6WbCQCgJOTU6UCYD8iIiIioppJIYQQz8rUrVs3REdHw8LCAl27di13UvCTJ0/qNEBdy87Ohrm5ObKysmBmZqbvcIiqFa//qsXzS/UVr/26q0JPFIcOHSp9EDJs2LCqjIeIiIiIaogKPVGsS3jXQ/UZr/+qxfNL9RWv/bqrUn0Uiz148ACFhYUaabxAiIiIiOoG2cPjJCYmYvDgwWjYsCHMzc1hYWEBCwsLNG7cuNQHLkRERERUe8l+ojhy5EgIIRAVFQUbG5tyP2whIiIiotpLdkPx9OnTOHHiBNq3b18V8RARERFRDSH71XOPHj1w/fr1qoiFiIiIiGoQ2U8U16xZg/Hjx+PmzZtwcXGBSqXSWF/evMtEREREVHvIbiimpaXhypUr0hR7AKBQKCCEgEKhQEFBgU4DJCIiIiL9kN1QDAoKQteuXfH999/zYxYiIiKiOkx2Q/HatWv44Ycf0KZNm6qIh4iIiIhqCNkfs7z44os4ffp0VcRCRERERDWI7CeKQ4YMwbRp03DmzBm4urqW+pjF19dXZ8ERERERkf7IbiiOHz8eADB//vxS6/gxCxEREVHdIbuh+PTczkRERERUN8nuo6hNZmamLoohIiIiohpEdkNx8eLF2Lp1q/T7rbfegqWlJezs7PiRCxHVKKtWrYKTkxOMjIzg6emJY8eOlZt/+/btcHZ2hpGREVxdXbFv375qipSIqGaS3VCMiIiAvb09AOCXX37BgQMHsH//fgwaNAgzZszQeYBERJWxdetWBAcHIzQ0FCdPnkSXLl3g4+ODO3fuaM1/5MgR+Pv7Y/To0Th16hSGDRuGYcOG4ezZs9UcORFRzaEQQgg5GxgbG+PixYuwt7fH1KlT8fjxY3z77be4ePEiPD09kZGRUVWx6kR2djbMzc2RlZUFMzMzfYdDVK3q0/Xv6emJHj164KuvvgJQ1L/a3t4e77//PmbOnFkqv5+fH3JycvDjjz9KaS+88ALc3NwQERFRoX0Wn99T3l4wVauhUCoBpQJQKqH43/9CqSyaqECpABRFi5QPReml1v/vfwFIaVCgxDqUWi+lo/R6jYkSSuUp+rdmnuL1xXn/l+fpsp/KryiRt9S+8Nd2ipL7gEIKQ9qoeJ0QUoxFmwpoHDfEXxsW/y6OA3hqv0LzuEtuWvI4hHgqfjyVUfwVv0bekvGU+DOrEab4X2wl1ytKHKfQ+HdR0cV5S5Rd/Gf8f+dIIW1b8hwV5yuxfXG8xeni6fT/xSitL7nvEmlCIPtRHlpM+65e1C31jeyPWSwsLHD9+nXY29tj//79WLhwIQBACMEvnomoRsjLy8OJEycQEhIipSmVSnh7eyMuLk7rNnFxcQgODtZI8/HxwZ49e8rcT25uLnJzc6Xf2dnZAIAnSbeQZ2DwHEdAVLs84N//Okt2Q/H111/H8OHD0bZtW9y9exeDBg0CAJw6dYqztRBRjZCeno6CggLY2NhopNvY2ODChQtat0lNTdWaPzU1tcz9hIWFYd68eaXSC3sZoFBl8NfDm+LBIko8iCn1u/hpTcl1cv4XgKLk+6ESD4hKpj3z38/6rWW/T/8ud7/l/daaXuJppbYXYFKSQkvaX79FWevKSy/vGMpIFyj676A1e7llPPVkEQotx6t5jFqeVz57X2WGoIBCiP9tVvbUvKWLLcr7mA3FOkt2QzE8PBxOTk64fv06lixZgkaNGgEAUlJSMHHiRJ0HSERUU4WEhGg8hczOzoa9vT0clx7m6zeqV7Kzs4GmTfQdBlUB2Q1FlUqF6dOnl0qfNm2aTgIiInpeVlZWMDAwwO3btzXSb9++jWbNmmndplmzZrLyA4ChoSEMDQ1LpZuoG8BELbt6Jaq18nm911mV+i976dIlHDx4EHfu3Ck1APecOXN0EhgRUWWp1Wp0794d0dHRGDZsGICij1mio6MxefJkrdv07NkT0dHR+OCDD6S0X375BT179qyGiImIaibZw+NERkaiQ4cOmDNnDnbs2IHdu3dLS3mdvsvDsc6ISNeCg4MRGRmJ9evX488//8SECROQk5ODwMBAAMCoUaM0PnaZOnUq9u/fj6VLl+LChQuYO3cujh8/XmbDkoioXhAyOTg4iM8++0zuZmXasmWLUKvVIioqSpw7d06MHTtWNG7cWNy+fVtr/sOHDwsDAwOxZMkScf78eTFr1iyhUqnEmTNnKrS/rKwsAUBkZWXp7BiIaov6dv2vXLlSODg4CLVaLTw8PMTvv/8urfPy8hIBAQEa+bdt2ybatWsn1Gq16NSpk9i7d6+s/dW380tUjNd+3SV7HEUzMzPEx8ejVatWOmmoVvdYZ/VpHDmip/H6r1o8v1Rf8dqvu2T3UXzrrbfw888/Y/z48c+98+oY6+zpcc6ysrIA/DXeGVF9Unzdy7w/pAoqPq+sX6i+Yd1Sd8luKLZp0wazZ8/G77//DldXV6hUKo31U6ZMqXBZ1THWWVnjnBVPQ0hUH929exfm5ub6DqPOuXv3LgDWL1R/sW6pe2Q3FFevXo1GjRrh0KFDOHTokMY6hUIhq6FYHZ4e5ywzMxOOjo5ITk7mxawHxePMXb9+na8n9CArKwsODg6wtLTUdyh1UvF5Zf1S/Vi36BfrlrpLdkMxMTFRZzuvjrHOyhrnzNzcnJWJHpmZmfH865FSKXvAA6qA4vPK+kV/WLfoF+uWukev/0VLjnVWrHiss7LGLise66wkjnVGREREpHuVGnD7xo0b+OGHH5CcnIy8vDyNdcuWLZNVVnBwMAICAuDu7g4PDw8sX7681FhndnZ2CAsLA1A01pmXlxeWLl2KwYMHY8uWLTh+/DhWr15dmUMhIiIiojLIbihGR0fD19cXrVq1woULF+Di4oKkpCQIIdCtWzfZAfj5+SEtLQ1z5sxBamoq3NzcsH//fumDleTkZI1H2b169cLmzZsxa9YsfPzxx2jbti327NkDFxeXCu3P0NAQoaGhWl9HU9Xj+dcvnv+qxfOrPzz3+sXzX3fJHkfRw8MDgwYNwrx582BqaorTp0/D2toaI0aMwMCBAzFhwoSqipWIiIiIqpHshqKpqSni4+PRunVrWFhYIDY2Fp06dcLp06cxdOhQJCUlVVGoRERERFSdZH/M0rBhQ6lfoq2tLa5cuSKtS09P111kRERERKRXsvsovvDCC4iNjUWHDh3wyiuv4MMPP8SZM2ewa9cuvPDCC1URIxERERHpgexXz1evXsWDBw/QuXNn5OTk4MMPP8SRI0fQtm1bLFu2DI6OjlUVKxERERFVI1mvngsKCnDjxg04ODgAKHoNHRERgT/++AM7d+6s9kbir7/+iiFDhqB58+ZQKBRlzvdcLCYmBgqFotTy9PR/q1atgpOTE4yMjODp6Yljx45V4VHUXlVx/ufOnVtqvbOzcxUfSe0k9/wDRXOff/LJJ3B0dIShoSGcnJwQFRWlkWf79u1wdnaGkZERXF1dsW/fvio6gpqN9Yv+sG7RL9YtVJKshqKBgQEGDBiAjIyMqopHlpycHHTp0gWrVq2StV1CQgJSUlKkxdraWlq3detWBAcHIzQ0FCdPnkSXLl3g4+ODO3fu6Dr8Wq8qzj8AdOrUSWN9bGysLsOuMypz/t9++21ER0fju+++Q0JCAr7//nu0b99eWn/kyBH4+/tj9OjROHXqFIYNG4Zhw4bh7NmzVXEINRrrF/1h3aJfrFtIg5Cpe/fu4sCBA3I3q3IAxO7du8vNc/DgQQFAZGRklJnHw8NDTJo0SfpdUFAgmjdvLsLCwnQUad2kq/MfGhoqunTpotPY6oOKnP+ffvpJmJubi7t375aZ5+233xaDBw/WSPP09BTvvfeeLsKstVi/6A/rFv1i3UKyv3peuHAhpk+fjh9//BEpKSnIzs7WWGoDNzc32Nra4uWXX8bhw4el9Ly8PJw4cQLe3t5SmlKphLe3N+Li4vQRap1U1vkvdunSJTRv3hytWrXCiBEjkJycrIco654ffvgB7u7uWLJkCezs7NCuXTtMnz4djx49kvLExcVpXP8A4OPjw+tfBtYv+sO6RT9Yt9RtFf7qef78+fjwww/xyiuvAAB8fX2hUCik9UIIKBQKFBQU6D5KHbG1tUVERATc3d2Rm5uLNWvWoF+/fjh69Ci6deuG9PR0FBQUSLPCFLOxscGFCxf0FHXd8azzDwCenp5Yt24d2rdvj5SUFMybNw99+/bF2bNnYWpqqucjqN2uXr2K2NhYGBkZYffu3UhPT8fEiRNx9+5drF27FgCQmpqq9fp/up8dlcb6RX9Yt+gX65a6rcINxXnz5mH8+PE4ePBgVcZTpdq3b6/RZ6JXr164cuUKwsPD8c9//lOPkdUPFTn/gwYNktZ37twZnp6ecHR0xLZt2zB69Ohqj7kuKSwshEKhwKZNm2Bubg6gaG72N998E19//TWMjY31HGHtxvpFf1i36Bfrlrqtwg1F8b9RdLy8vKosGH3w8PCQOjRbWVnBwMAAt2/f1shz+/ZtNGvWTB/h1Xklz782jRs3Rrt27XD58uVqjKpusrW1hZ2dnVSRA0CHDh0ghMCNGzfQtm1bNGvWjNe/DrF+0R/WLdWHdUvdJquPYslXzXVFfHw8bG1tAQBqtRrdu3dHdHS0tL6wsBDR0dHo2bOnvkKs00qef20ePHiAK1eulJuHKqZ37964desWHjx4IKVdvHgRSqUSLVq0AAD07NlT4/oHgF9++YXXfyWxftEf1i3Vh3VLHVfRr14UCoVo3LixsLCwKHepTvfv3xenTp0Sp06dEgDEsmXLxKlTp8S1a9eEEELMnDlT/P3vf5fyh4eHiz179ohLly6JM2fOiKlTpwqlUqnxFfeWLVuEoaGhWLdunTh//rwYN26caNy4sUhNTa3WY6sNquL8f/jhhyImJkYkJiaKw4cPC29vb2FlZSXu3LlT7cdX08k9//fv3xctWrQQb775pjh37pw4dOiQaNu2rRgzZoyU5/Dhw6JBgwbiiy++EH/++acIDQ0VKpVKnDlzptqPT99Yv+gP6xb9Yt1CJclqKH755Zdi3bp15S7VqXhIhKeXgIAAIYQQAQEBwsvLS8q/ePFi0bp1a2FkZCQsLS1Fv379xH/+859S5a5cuVI4ODgItVotPDw8xO+//15NR1S7VMX59/PzE7a2tkKtVgs7Ozvh5+cnLl++XI1HVXvIPf9CCPHnn38Kb29vYWxsLFq0aCGCg4PFw4cPNfJs27ZNtGvXTqjVatGpUyexd+/eajqimoX1i/6wbtEv1i1UUoWn8FMqlUhNTS01gCkRERER1U0V7qNYF/snEhEREVHZKtxQrOCDRyIiIiKqIyr86pmIiIiI6hfZU/gRERERUf3AhiIRERERacWGIhERERFpxYYiEREREWnFhiIRERERacWGIhERERFpxYYiEREREWnFhiKVq1+/fvjggw/0HYaksvHcvXsX1tbWSEpK0nlMT3vnnXewdOnSKt8PUW3H+kU+1i9U3dhQrAEiIiJgamqK/Px8Ke3BgwdQqVTo16+fRt6YmBgoFApcuXKlmqOsXrr+A/Lpp59i6NChcHJy0lmZZZk1axY+/fRTZGVlVfm+iJ6F9UtprF+IKo4NxRqgf//+ePDgAY4fPy6l/fbbb2jWrBmOHj2Kx48fS+kHDx6Eg4MDWrdurY9Qa6WHDx/iu+++w+jRo6tlfy4uLmjdujU2btxYLfsjKg/rl6rF+oXqOjYUa4D27dvD1tYWMTExUlpMTAyGDh2Kli1b4vfff9dI79+/PwBg//796NOnDxo3bowmTZrg1Vdf1XgSsHr1ajRv3hyFhYUa+xs6dCiCgoIAAIWFhQgLC0PLli1hbGyMLl26YMeOHWXGWpH8/fr1w5QpU/CPf/wDlpaWaNasGebOnauR5/79+xgxYgQaNmwIW1tbhIeHS3f57777Lg4dOoQvv/wSCoUCCoVC45VOYWFhuWU/bd++fTA0NMQLL7ygkR4bGwuVSqXxhzIpKQkKhQLXrl1Dv3798P777+ODDz6AhYUFbGxsEBkZiZycHAQGBsLU1BRt2rTBTz/9VGqfQ4YMwZYtW8qNi6g6sH5h/UL0XATVCMOHDxcDBgyQfvfo0UNs375djB8/XsyZM0cIIcTDhw+FoaGhWLdunRBCiB07doidO3eKS5cuiVOnTokhQ4YIV1dXUVBQIIQQ4t69e0KtVosDBw5I5d69e1cjbeHChcLZ2Vns379fXLlyRaxdu1YYGhqKmJgYIYQQXl5eYurUqdL2z8pfvI2ZmZmYO3euuHjxoli/fr1QKBTi559/lvKMGTNGODo6igMHDogzZ86I1157TZiamoqpU6eKzMxM0bNnTzF27FiRkpIiUlJSRH5+foXLftqUKVPEwIEDS6WvXLlSuLq6aqTt2rVLWFhYSPsyNTUVCxYsEBcvXhQLFiwQBgYGYtCgQWL16tXi4sWLYsKECaJJkyYiJydHo5yffvpJqNVq8fjx4zLjIqourF9YvxBVFhuKNURkZKRo2LChePLkicjOzhYNGjQQd+7cEZs3bxZ/+9vfhBBCREdHCwDi2rVrWstIS0sTAMSZM2ektKFDh4qgoCDp97fffiuaN28uCgoKxOPHj4WJiYk4cuSIRjmjR48W/v7+QgjNirwi+Yu36dOnj0aeHj16iI8++kgIIUR2drZQqVRi+/bt0vrMzExhYmIi7evpPyAVLVubp89BsTFjxohRo0ZppM2ZM0f069dP677y8/NFw4YNxd///ncpLSUlRQAQcXFxGuWcPn1aABBJSUllxkVUXVi/sH4hqiy+eq4h+vXrh5ycHPz3v//Fb7/9hnbt2qFp06bw8vKS+hHFxMSgVatWcHBwAABcunQJ/v7+aNWqFczMzKSO1MnJyVK5I0aMwM6dO5GbmwsA2LRpE9555x0olUpcvnwZDx8+xMsvv4xGjRpJy4YNG7R2ZpeTv3Pnzhq/bW1tcefOHQDA1atX8eTJE3h4eEjrzc3N0b59+wqdq/LK1ubRo0cwMjIqlR4fHw83NzeNtFOnTmmkldyXgYEBmjRpAldXVynNxsYGAErt39jYGEBR/yUifWP9wvqFqLIa6DsAKtKmTRu0aNECBw8eREZGBry8vAAAzZs3h729PY4cOYKDBw/ixRdflLYZMmQIHB0dERkZKfUVcnFxQV5enkYeIQT27t2LHj164LfffkN4eDiAoi8fAWDv3r2ws7PTiMfQ0LBUjHLyq1Qqjd8KhaJUX6bKklu2lZUVMjIyNNIKCgpw9uxZdO3aVSP95MmTeOONN8rdV8k0hUIBAKX2f+/ePQBA06ZNn3U4RFWO9UvFsX4h0sSGYg3Sv39/xMTEICMjAzNmzJDS//a3v+Gnn37CsWPHMGHCBABF43YlJCQgMjISffv2BVDUefppRkZGeP3117Fp0yZcvnwZ7du3R7du3QAAHTt2hKGhIZKTk6U/HOWRm78srVq1gkqlwn//+1/p6UVWVhYuXryIv/3tbwAAtVqNgoKCSu+jpK5du5b6QjAhIQGPHz9G8+bNpbS4uDjcvHmz1FOAyjh79ixatGgBKyur5y6LSBdYv7B+IaoMNhRrkP79+2PSpEl48uSJRkXp5eWFyZMnIy8vT/oi0cLCAk2aNMHq1atha2uL5ORkzJw5U2u5I0aMwKuvvopz585h5MiRUrqpqSmmT5+OadOmobCwEH369EFWVhYOHz4MMzMzBAQEaJQjN39ZTE1NERAQgBkzZsDS0hLW1tYIDQ2FUqmU7qCdnJxw9OhRJCUloVGjRrC0tIRSWbmeEj4+PggJCUFGRgYsLCwAFL0WAoCVK1diypQpuHz5MqZMmQIAGk9MKuu3337DgAEDnrscIl1h/cL6hagy2EexBunfvz8ePXqENm3aSH1TgKKK/P79+9IwFwCgVCqxZcsWnDhxAi4uLpg2bRo+//xzreW++OKLsLS0REJCAoYPH66xbsGCBZg9ezbCwsLQoUMHDBw4EHv37kXLli21liU3f1mWLVuGnj174tVXX4W3tzd69+6NDh06SH19pk+fDgMDA3Ts2BFNmzbV6Bcll6urK7p164Zt27ZJafHx8fDx8cHVq1fh6uqKTz75BPPmzYOZmRlWrFhR6X0BwOPHj7Fnzx6MHTv2ucoh0iXWL6xfiCpDIYQQ+g6CKCcnB3Z2dli6dGmVDFy7d+9ezJgxA2fPnoVSqYSPjw969OiBhQsX6nxf33zzDXbv3o2ff/5Z52UTkXysX4gqj6+eSS9OnTqFCxcuwMPDA1lZWZg/fz6AosF6q8LgwYNx6dIl3Lx5E/b29jh9+rQ0KLCuqVQqrFy5skrKJqJnY/1CpDt8okh6cerUKYwZMwYJCQlQq9Xo3r07li1bpjE0RFVJTU2Fra0tzp07h44dO1b5/oioerF+IdIdNhSJiIiISCt+zEJEREREWrGhSERERERasaFIRERERFqxoUhEREREWrGhSERERERasaFIRERERFqxoUhEREREWrGhSERERERasaFIRERERFqxoUhEREREWv0/r9ZaO+c8fYIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "postprocess(sim_data, \"TM\")\n" ] }, { "cell_type": "markdown", "id": "e901c1cd", "metadata": {}, "source": [ "### TM0 to TM1 Convertion " ] }, { "cell_type": "code", "execution_count": 29, "id": "03345ee5", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:09:00.942191Z", "iopub.status.busy": "2023-03-28T00:09:00.942038Z", "iopub.status.idle": "2023-03-28T00:09:46.329477Z", "shell.execute_reply": "2023-03-28T00:09:46.328829Z" } }, "outputs": [ { "data": { "text/html": [ "
[09:35:44] WARNING: A bound of Simulation.structures[0] was detected as being within the simulation PML.  log.py:50\n",
       "           We recommend extending structures to infinity or completely outside of the simulation PML to            \n",
       "           avoid unexpected effects when the structures are not translationally invariant within the PML.          \n",
       "           Skipping rest of structures.                                                                            \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:35:44]\u001b[0m\u001b[2;36m \u001b[0mWARNING: A bound of Simulation.structures\u001b[1m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1m]\u001b[0m was detected as being within the simulation PML. \u001b]8;id=718004;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\log.py\u001b\\\u001b[2mlog.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=883225;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\log.py#50\u001b\\\u001b[2m50\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mWe recommend extending structures to infinity or completely outside of the simulation PML to \u001b[2m \u001b[0m\n", "\u001b[2;36m \u001b[0mavoid unexpected effects when the structures are not translationally invariant within the PML. \u001b[2m \u001b[0m\n", "\u001b[2;36m \u001b[0mSkipping rest of structures. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:35:45] Created task 'evanescent_coupler_tm1' with task_id                                         webapi.py:139\n",
       "           'fdve-81f1a32c-bc4f-49c9-9c84-b6368b300541v1'.                                                          \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:35:45]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'evanescent_coupler_tm1'\u001b[0m with task_id \u001b]8;id=121328;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=990520;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-81f1a32c-bc4f-49c9-9c84-b6368b300541v1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c86b0100bef14365b63073ef3151fa36", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:35:46] status = queued                                                                            webapi.py:269\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:35:46]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=63774;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=954819;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:35:49] status = preprocess                                                                        webapi.py:263\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:35:49]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=522501;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=925032;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
[09:35:54] Maximum FlexCredit cost: 0.060. Use 'web.real_cost(task_id)' to get the billed FlexCredit  webapi.py:286\n",
       "           cost after a simulation run.                                                                            \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:35:54]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.060\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit \u001b]8;id=639016;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=229239;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mcost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           starting up solver                                                                         webapi.py:290\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=784410;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=209473;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:35:55] running solver                                                                             webapi.py:300\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:35:55]\u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=943037;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=655157;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1a7cf12597cd48e988f52fedbbe377af", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:36:19] early shutoff detected, exiting.                                                           webapi.py:314\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:36:19]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=393718;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=842487;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#314\u001b\\\u001b[2m314\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           status = postprocess                                                                       webapi.py:331\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=741519;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=438511;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#331\u001b\\\u001b[2m331\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:36:35] status = success                                                                           webapi.py:338\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:36:35]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=278808;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=639929;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#338\u001b\\\u001b[2m338\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "85bdba38125d46b8837661890b8fa977",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:36:38] loading SimulationData from data/simulation_data.hdf5                                      webapi.py:510\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:36:38]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/simulation_data.hdf5 \u001b]8;id=113351;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=721432;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#510\u001b\\\u001b[2m510\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:36:38] WARNING: A bound of Simulation.structures[0] was detected as being within the simulation PML.  log.py:50\n",
       "           We recommend extending structures to infinity or completely outside of the simulation PML to            \n",
       "           avoid unexpected effects when the structures are not translationally invariant within the PML.          \n",
       "           Skipping rest of structures.                                                                            \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:36:38]\u001b[0m\u001b[2;36m \u001b[0mWARNING: A bound of Simulation.structures\u001b[1m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1m]\u001b[0m was detected as being within the simulation PML. \u001b]8;id=558707;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\log.py\u001b\\\u001b[2mlog.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=623726;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\log.py#50\u001b\\\u001b[2m50\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mWe recommend extending structures to infinity or completely outside of the simulation PML to \u001b[2m \u001b[0m\n", "\u001b[2;36m \u001b[0mavoid unexpected effects when the structures are not translationally invariant within the PML. \u001b[2m \u001b[0m\n", "\u001b[2;36m \u001b[0mSkipping rest of structures. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim = make_sim(\"TM\", **design_params[\"TM1\"])\n", "\n", "job = web.Job(simulation=sim, task_name=\"evanescent_coupler_tm1\", verbose=True)\n", "sim_data = job.run(path=\"data/simulation_data.hdf5\")\n" ] }, { "cell_type": "code", "execution_count": 30, "id": "366b6f4c", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:09:47.070740Z", "iopub.status.busy": "2023-03-28T00:09:47.070555Z", "iopub.status.idle": "2023-03-28T00:09:48.787461Z", "shell.execute_reply": "2023-03-28T00:09:48.786965Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAooAAAHrCAYAAABINLzuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADKQUlEQVR4nOydeXgUVdbG31vVW/awZIUAAWQH2RFQQWVAh0FRxxUdRAcVQUWcEVAEwQWXGUVFwZlvFHXcZ9x1UGQREURkUWRH2UkCCNmTXqru90ct3dVd3elOOul0cn48/XTXrVu3TlcX3W/OuedcxjnnIAiCIAiCIAg/hFgbQBAEQRAEQTROSCgSBEEQBEEQppBQJAiCIAiCIEwhoUgQBEEQBEGYQkKRIAiCIAiCMIWEIkEQBEEQBGEKCUWCIAiCIAjCFBKKBEEQBEEQhCkkFAmCIAiCIAhTSCgSBNEgrFmzBowxrFmzJtamEARBEGFCQpEgiKjy4osvYtmyZbE2o1a8+eabWLRoUazNAADIsownn3wS+fn5cDgc6NOnD956662wjy8uLsatt96KjIwMJCUl4YILLsCWLVtM+3788cfo378/HA4H2rVrh3nz5sHj8UTrrRAEEccwWuuZIIho0qtXL7Ru3TrAcyjLMlwuF2w2GwShcf6N+oc//AE///wzDh48GGtTMHv2bDz++OOYPHkyBg0ahI8++gifffYZ3nrrLVx77bUhj5VlGeeddx5+/PFH/PWvf0Xr1q3x4osv4siRI9i8eTPOOussve///vc/jB07FiNHjsR1112H7du344UXXsCtt96KJUuW1PfbJAiikUNCkSDqgYqKCiQlJcXajJgQTCjGA41FKB47dgz5+fm49dZbsXjxYgAA5xwjRozAgQMHcPDgQYiiGPT4d999F9dccw3ee+89/PGPfwQAnDx5El26dMEll1yCN998U+/bs2dPWK1W/PDDD7BYLACAOXPm4LHHHsPOnTvRrVu3enynBEE0dhrnn/UE0Yg4duwYbrnlFuTm5sJutyM/Px9TpkyBy+UCACxbtgyMMXz99de44447kJmZibZt2+rHv/jii+jZsyfsdjtyc3MxdepUFBcXG86xb98+XHnllcjOzobD4UDbtm1x7bXXoqSkRO+zYsUKnHvuuUhPT0dycjK6du2K+++/v0b7wznO6XRi3rx56Ny5M+x2O/Ly8nDffffB6XQGjPfvf/8bgwcPRmJiIlq0aIHzzz8fX375JQCgQ4cO2LFjB77++mswxsAYw8iRIwEEn6P43nvvYcCAAUhISEDr1q1xww034NixY4Y+N910E5KTk3Hs2DGMHz8eycnJyMjIwF/+8hdIklTjNfjoo48wduxY/TPs1KkTHn74YcOxI0eOxGeffYZDhw7ptnfo0CHomDfddJPez//x0EMP1WhTTfa63W7ccccdehtjDFOmTMHRo0exYcOGkMf/5z//QVZWFq644gq9LSMjA1dffTU++ugj/XPduXMndu7ciVtvvVUXiQBwxx13gHOO//znP3V6HwRBxD+WmrsQRPPl+PHjGDx4sD7fq1u3bjh27Bj+85//oLKyEjabTe97xx13ICMjA3PnzkVFRQUA4KGHHsL8+fMxatQoTJkyBXv27MGSJUuwadMmfPvtt7BarXC5XBgzZgycTifuvPNOZGdn49ixY/j0009RXFyMtLQ07NixA3/4wx/Qp08fLFiwAHa7Hfv378e3334b0v5wjpNlGZdeeinWrVuHW2+9Fd27d8f27dvxzDPPYO/evfjwww/1vvPnz8dDDz2EYcOGYcGCBbDZbNi4cSNWrVqF0aNHY9GiRbjzzjuRnJyMBx54AACQlZUV1L5ly5Zh0qRJGDRoEBYuXIiioiI8++yz+Pbbb7F161akp6frfSVJwpgxYzBkyBD87W9/w1dffYW///3v6NSpE6ZMmRLyOixbtgzJycmYMWMGkpOTsWrVKsydOxelpaV46qmnAAAPPPAASkpKcPToUTzzzDMAgOTk5KBj3nbbbRg1apShbfny5XjjjTeQmZmpt506dSqkbRopKSmw2+0AgK1btyIpKQndu3c39Bk8eLC+/9xzzw061tatW9G/f/+AEP/gwYPxj3/8A3v37kXv3r2xdetWAMDAgQMN/XJzc9G2bVt9P0EQzRhOEERQ/vSnP3FBEPimTZsC9smyzDnn/JVXXuEA+Lnnnss9Ho++/8SJE9xms/HRo0dzSZL09sWLF3MA/OWXX+acc75161YOgL/33ntB7XjmmWc4AH7y5MmI7A/nuNdff50LgsC/+eYbQ/vSpUs5AP7tt99yzjnft28fFwSBX3755Yb3w7n3WnDOec+ePfmIESMCzrN69WoOgK9evZpzzrnL5eKZmZm8V69evKqqSu/36aefcgB87ty5etvEiRM5AL5gwQLDmP369eMDBgwIfRE455WVlQFtt912G09MTOTV1dV629ixY3n79u1rHM+Mffv28bS0NP673/3OcB8ACOvxyiuvGOzo2LFjwDkqKio4AD5r1qyQtiQlJfGbb745oP2zzz7jAPjy5cs555w/9dRTHAA/fPhwQN9Bgwbxc845J9y3TxBEE4VCzwQRBFmW8eGHH2LcuHEBHhdACQX6MnnyZMO8sa+++goulwvTp083eHYmT56M1NRUfPbZZwCAtLQ0AMAXX3yByspKU1s0z9pHH30EWZbDfg/hHPfee++he/fu6NatG06dOqU/LrzwQgDA6tWrAQAffvghZFnG3LlzAzxV/tciHH744QecOHECd9xxBxwOh94+duxYdOvWTb8+vtx+++2G7fPOOw+//vprjedKSEjQX5eVleHUqVM477zzUFlZid27d0dsuz8VFRW4/PLL0aJFC7z11luG+2DFihVhPcaMGaMfU1VVpXsXfdGuU1VVVUh7wj1eew7Wt6bzEATR9KHQM0EE4eTJkygtLUWvXr3C6p+fn2/YPnToEACga9euhnabzYaOHTvq+/Pz8zFjxgw8/fTTeOONN3Deeefh0ksvxQ033KCLyGuuuQb/93//hz//+c+YNWsWLrroIlxxxRX44x//GDKDOJzj9u3bh127diEjI8N0jBMnTgAAfvnlFwiCgB49eoR1PWoi2PUBgG7dumHdunWGNofDEWBjixYtcObMmRrPtWPHDsyZMwerVq1CaWmpYZ/vPNDaMnnyZPzyyy9Yv349WrVqZdjnH54Oh4SEBNP5odXV1fr+aByvPQfrW9N5CIJo+pBQJIgoUZcf1b///e+46aab8NFHH+HLL7/EXXfdhYULF+K7775D27ZtkZCQgLVr12L16tX47LPPsHz5crzzzju48MIL8eWXXwbNgA3nOFmW0bt3bzz99NOmY+Tl5dX6fUWTUFm+oSguLsaIESOQmpqKBQsWoFOnTnA4HNiyZQtmzpwZkYfWjGeffRZvvfUW/v3vf6Nv374B+wsLC8MaJy0tTb+HcnJysHr1anDODd7agoICAMocwlDk5OTofX3xPz4nJ0dv9/+cCwoK9DmRBEE0Xyj0TBBByMjIQGpqKn7++edaHd++fXsAwJ49ewztLpcLBw4c0Pdr9O7dG3PmzMHatWvxzTff4NixY1i6dKm+XxAEXHTRRXj66aexc+dOPProo1i1apUeGg5GTcd16tQJp0+fxkUXXYRRo0YFPDSPX6dOnSDLMnbu3BnyfOGGoYNdH63N//rUljVr1uC3337DsmXLcPfdd+MPf/gDRo0ahRYtWgT0jTSE/s033+Avf/kLpk+fjgkTJpj2ycnJCevxzjvv6Mf07dsXlZWV2LVrl2GsjRs36vtD0bdvX2zZsiVABG/cuBGJiYno0qWLYZwffvjB0O/48eM4evRojechCKLpQ0KRIIIgCALGjx+PTz75JOCHFFDq2oVi1KhRsNlseO655wx9//Wvf6GkpARjx44FAJSWlgasgtG7d28IgqCHBE+fPh0wvvYjbhY21AjnuKuvvhrHjh3DP//5z4C+VVVVegb3+PHjIQgCFixYECBAfN9fUlJSQPkfMwYOHIjMzEwsXbrU8B7+97//YdeuXfr1qSuaJ9LXRpfLhRdffDGgb1JSUtih6IKCAlx99dU499xz9cxpM2ozR/Gyyy6D1Wo12Mg5x9KlS9GmTRsMGzbMYMfu3bvhdrv1tj/+8Y8oKirC+++/r7edOnUK7733HsaNG6fPSezZsye6deuGf/zjH4ZSQUuWLAFjTK/BSBBE84VCzwQRgsceewxffvklRowYoZeOKSgowHvvvYd169YZyrf4k5GRgdmzZ2P+/Pm4+OKLcemll2LPnj148cUXMWjQINxwww0AgFWrVmHatGm46qqr0KVLF3g8Hrz++usQRRFXXnklAGDBggVYu3Ytxo4di/bt2+PEiRN48cUX0bZt25BlUsI57sYbb8S7776L22+/HatXr8bw4cMhSRJ2796Nd999F1988QUGDhyIzp0744EHHsDDDz+M8847D1dccQXsdjs2bdqE3NxcLFy4EAAwYMAALFmyBI888gg6d+6MzMxMPTHGF6vViieeeAKTJk3CiBEjcN111+nlcTp06IB77rmnth+bgWHDhqFFixaYOHEi7rrrLjDG8Prrr5sK/QEDBuCdd97BjBkzMGjQICQnJ2PcuHGm49511104efIk7rvvPrz99tuGfX369EGfPn0A1G6OYtu2bTF9+nQ89dRTcLvdGDRoED788EN88803eOONNwxh+NmzZ+PVV1/FgQMH9LqPf/zjH3HOOedg0qRJ2Llzp74yiyRJmD9/vuFcTz31FC699FKMHj0a1157LX7++WcsXrwYf/7znwPK8xAE0QyJYcY1QcQFhw4d4n/60594RkYGt9vtvGPHjnzq1Knc6XRyzr3lccxK6HCulMPp1q0bt1qtPCsri0+ZMoWfOXNG3//rr7/ym2++mXfq1Ik7HA7esmVLfsEFF/CvvvpK77Ny5Up+2WWX8dzcXG6z2Xhubi6/7rrr+N69e0PaHu5xLpeLP/HEE7xnz57cbrfzFi1a8AEDBvD58+fzkpISQ9+XX36Z9+vXT+83YsQIvmLFCn1/YWEhHzt2LE9JSeEA9FI5/uVxNN555x19vJYtW/IJEybwo0ePGvpMnDiRJyUlBby/efPm8XC+xr799lt+zjnn8ISEBJ6bm8vvu+8+/sUXXwTYU15ezq+//nqenp7OAYQslTNixIigpW7mzZtXo001IUkSf+yxx3j79u25zWbjPXv25P/+978D+mmlgw4cOGBoP336NL/lllt4q1ateGJiIh8xYkTQe/SDDz7gffv25Xa7nbdt25bPmTOHu1yuOr8HgiDiH1rCjyAIgiAIgjCF5igSBEEQBEEQppBQJAiCIAiCIEwhoUgQBEEQBEGYQkKRIAiCIAiCMIWEIkEQBEEQBGEKCUWCIAiCIAjClGZXcFuWZRw/fhwpKSkRL9dFEARBEEQgnHOUlZUhNzcXghBfPihZlvGXv16HK6+4C8OHD4+1OY2OZldH8ejRo8jLy4u1GQRBEATR5Dhy5Ajatm0bazMi4tVX78cttzyBnj07YMuWvYaVj4hmKBRLSkrUZdcEAORRJAiCIIi6wwHIKC4uRlpaWqyNCZuqqip07doBc+dOxKOPvo4HH5yIm29+PNZmNSqaXejZG25mIKFIEARBENEj3qZ0LXp2OjIy0jDxpouRkGDHzJlLcd1185CQkBBr0xoN8TWRwI/HH38cjDFMnz491qYQBEEQBBFHnDp1Co8vfAOPP3E7BEHA1ddcgJycVnj6mbtibVqjIm6F4qZNm/DSSy+hT58+sTaFIAiCIIg4Y8GC2zB8eC9ceGF/AIAgCHj8idvx5BNv4eTJkzG2rvEQl0KxvLwcEyZMwD//+U+0aNEi1uYQBEEQBBFH7N+/H//856dY+PhthvaRI/vivPP6YP7824Ic2fyIS6E4depUjB07FqNGjaqxr9PpRGlpqeFBEARBEETzZfbsP+P660ehV6/8gH0LH78V//rXZ9i3b18MLGt8xJ1QfPvtt7FlyxYsXLgwrP4LFy5EWlqa/qDSOARBEATRfDl27Bjef/8bPDR/kun+Hj064KqrRmLx4tkNbFnjJK6E4pEjR3D33XfjjTfegMPhCOuY2bNno6SkRH8cOXKknq0kCIIgCKKxUl1dDVEUkJvdEpBl00deXiaqq1uFPaYkSXjwwQeRn5+PhIQEdOrUCQ8//DB8KxByzjF37lzk5OQgISEBo0aNCvBanj59GhMmTEBqairS09Nxyy23oLy8PGrvvTbElVDcvHkzTpw4gf79+8NiscBiseDrr7/Gc889B4vFAkmSAo6x2+1ITU01PAiCIAiCaOZ4PMEfshzRUE888QSWLFmCxYsXY9euXXjiiSfw5JNP4vnnn9f7PPnkk3juueewdOlSbNy4EUlJSRgzZgyqq6v1PhMmTMCOHTuwYsUKfPrpp1i7di1uvfXWqL3l2hBXdRQvuugibN++3dA2adIkdOvWDTNnzqRq6gRBEARBhEeo9UY4hyRJAXkNdrsddrs9oPv69etx2WWXYezYsQCADh064K233sL333+vDsexaNEizJkzB5dddhkA4LXXXkNWVhY+/PBDXHvttdi1axeWL1+OTZs2YeDAgQCA559/Hr///e/xt7/9Dbm5udF41xETVx7FlJQU9OrVy/BISkpCq1at0KtXr1ibRxAEQRBEvFCDR3Hr1q2GHIe0tLSg+RHDhg3DypUrsXfvXgDAjz/+iHXr1uGSSy4BABw4cACFhYWGJNy0tDQMGTIEGzZsAABs2LAB6enpukgEgFGjRkEQBGzcuLG+rkKNxJVHkSAIgiAIIip4PMH3yTL69euH1atXG5rNvIkAMGvWLJSWlqJbt24QRRGSJOHRRx/FhAkTAACFhYUAgKysLMNxWVlZ+r7CwkJkZmYa9lssFrRs2VLvEwviXiiuWbMm1iYQBEEQBBFvhJyHyCGKYth5De+++y7eeOMNvPnmm+jZsye2bduG6dOnIzc3FxMnToyOvTEi7oUiQRAEQRBEZHAwKbhHkUWYzPLXv/4Vs2bNwrXXXgsA6N27Nw4dOoSFCxdi4sSJyM7OBgAUFRUhJydHP66oqAh9+/YFAGRnZ+PEiROGcT0eD06fPq0fHwviao4iQRAEQRBEVPBIwR9yiEQXEyorKyEIRkkliiJkVXDm5+cjOzsbK1eu1PeXlpZi48aNGDp0KABg6NChKC4uxubNm/U+q1atgizLGDJkSG3fZZ0hjyJBEARBEM2PUF7DUBnRJowbNw6PPvoo2rVrh549e2Lr1q14+umncfPNNwMAGGOYPn06HnnkEZx11lnIz8/Hgw8+iNzcXIwfPx4A0L17d1x88cWYPHkyli5dCrfbjWnTpuHaa6+NWcYzQEKRIAiCIIjmSIjQM3hkoefnn38eDz74IO644w6cOHECubm5uO222zB37ly9z3333YeKigrceuutKC4uxrnnnovly5cbFhB54403MG3aNFx00UUQBAFXXnklnnvuuYjfWjRhnEcom+Oc0tJSpKWlARABsFibQxAEQRBNAA5AQklJSaNf2OKXX35B9+5dUb3nX0H7zH36vzjpysFLL73UgJY1TsijSBAEQRBE8yNkeZxm5UMLCQlFgiAIgiCaHcxk2V+dCLOemzIkFAmCIAiCaF5wRDWZpSlDQpEgCIIgiOaHJ5RHkVMagwoJRYIgCIIgmh81LOEHseFMacyQUCQIgiAIovkRMrxMoWcNEooEQRAEQTQ/ago9k0cRAAlFgiAIgiCaIzWFngkAJBQJgiAIgmiOhKqVSFnPOiQUYwzzS6viNC+CIAiCIOqfUHUUSSjqkFCMAv5iL9pjmYnHaJyTRClBEATRbKE6imFBQpEgCIIgiGYGryGZheYoapBQjAasHqpy+vw1E02PpS8U9iYIgiCaLSGX8KPfQw0SilFB0F/VRdQZhJo+jO9fNQIiJ3zXek22k5AkCIIgmgyUzBIWJBQJgiAIgmh+1FRHkQBAQjEqMGYFY7Xx9ilwrnj9FH+evwewlhU/uTaO9/gAjyCLbCJvMI8jeRoJgiCIuMMT4jeQhKIOCcUoYBFT9Nc1CUbO/W9MOWAfDxUuDndcJgXsY77jchmaiDQVesxom8kJfbqGl6lNEARBEI0CDsp6DhMSilEg0dYKQGQiUVZFGOcyOFdEHfdpqwnfPv7Heff5nMN/bFVIci77yDy/8/IQyS5mQjKEeCThSBAEQTQqJBKK4UBCkSAIgiCI5kfIZJaGM6OxQ0IxCrS0dTJsCyxwXqHs7zWEBBmKp49z7bWke/xkH2+dAMGwbeaB1I7lXFbGUj2VXH9t9Coq5/HzRAbxOmptAXMoVY+j7i00zdQGwHnIjGryNhIEQRANDtVRDAsSilEgT+5o2GZ+ZWwEXWIpgoh7JSIk5oEHiqCTmfpQ9/qP4z3Wp7/6WuJucEiQ4AHnEiS4wbnWLkPmbsUG2WMQktqYwcWkanlA+FoCmImANJv7GGy+o+raJxFJEARRM/VVU7e2xP33MyWzhAUJxSjQypJo2NaEocAAxhS551uTm3NA4hyy+uzmMmTOlTZwcJ+5ESITIECRWdo+TWQCUKWhBIkprzzMA5nJkOCGW3BC4m7IcOviUxeU3GP0OPp5JGXZHSAafQWlLh6Zr6D0ikfAZ+5jsMSZGgSk0oUyrQmCaJo0NuHX3OAUeg4LEopRwC4onj9N8mh+QJExiAJgFRhEVTQCUMQeByQOuGUOiQuQOCDJXrGoHW8VBH08GUof5bUqFDmHW1b8ipImOCHBBQ8kJsHNXFB8lorw8whug2CUVW+j/zMXvF5IRVR6Q9my7DGKRqYJSYOl6nuVAaZJXVUbGhJx/L2mcuBKNzWU6iHRSBBEY4XEYCOGklnCotkKxe7de0AUa1mj0I/R+dmQZMAtcUgyhywDsqx4/7jMwaD85cI5h9uj9HHLMpxuDqfE4fJweCQZVW4ZLkmCR+aQJQ4LB1JEBruofNG4JA6JAyJTxCegyC+XxOGWuX5fy+DwyBxOWYbEVQGptrtlCRIkPeyt+BIVT6TEFEHpYW6DJ1Lmbkhw615ImXuUNlVAytwd1OsImGRdh8q45iYCsJahaxKQBEE0FPUlCAVBgMVigSAIEARBiVKprwVBAPN5bbrfdJvpr+uCb/RLkiTs2rW9rm+3YaHQc1jEnVBcuHAh3n//fezevRsJCQkYNmwYnnjiCXTt2jWicWw2W9SE4p9e7aJ4ySRZWTtSfTCXG6iqBpwuoMoJVLsAtwTulACnB9wlQXZK4FUyuATIVYDHKcDjFOByWVDltKHUaUVptYjSKqCkGihzclQ5JbhdMtxuGWXVEkqqPHBXSbAIDIkWBsYU8VgtCfDIHIwp3kkt5O2WFa+lAKYIRS3szTnckCHJMtyqH5IzGW644WIuSMwNN/OGsz3cqQtIXSxCCpgHKWseSZPQNYAQIjJE4gxAcx8Jgqh36ksAiqIIq9Xqfdhsxm2rBVarFYJg/JkOy546CsBw4bJb/yaVQq2b3FihJfzCIu6E4tdff42pU6di0KBB8Hg8uP/++zF69Gjs3LkTSUlJMbGJp6WZt4dxrH/g1VZDf1Z8BqzoFHDyNFDhhFzsgnzGDddvHGUnbThR7MCpCgtOVjKcqeIorpThdEuodkpwumSUVnlQ5pIggCHZKkJggFPyhrolrngjZXhD5C5Zhocr4W23LMEND9zMDTfc8DCPIh6ZB25erYS14TaEsSXuVsSij4jU5kCGnP/oIybBpJAeyLAEJBCWiNS7kpgkiCZPtIWgJvQsFouJ+LPCalXaGGOB5w4QeIEJjZF5AaPjDDFHAmeeuBZUPIRHMeT8xWZG3AnF5cuXG7aXLVuGzMxMbN68Geeff35Af6fTCafTqW+XlpbWu431CU9vAZ7eAvBxoAoAEorPILHoJLKOnwI/WQbptBOeYo7y32w4XZ6Ik9VJqJIEFLtFFFdzlFV64HRKKK7woKTcDY/LA6skGaoFCIxB5oBVZpC4AJkDbi7CLVvghg0Sl+Hmimj0cGU+pKwKRUnwqN5Gty4ctXaZuyELWlZ2JPMffZJmIBjmP4ae++jzZRDG/Ee9K82DJIgmSV3Fod1uh91uh8PhMLy22X3/1DeKPMM5axCE5mKw9qKvriFmMzivTxHaQFDoOSziTij6U1JSAgBo2bKl6f6FCxdi/vz5DWlSTPAKyC4AlK8dG4CW6qOz1rGqCuz0GbCik8Cx3+AprICriONUURKOl6ehsFJEYZmMiioJ5ZVulFdJOFXmhMcpwS4ogrFa9UAKUJJx3FwG54CHy+Dg8IBDkmU1I1uGm7khwWMavpbgUT2OXs+jFsb2nRMZyusIBJv7GDjvETDzPvr0NXSk7GuCiGfqIghtNptBDDocDtgddthsNlV4CYHnMAiymsRfcKFVH8KOMCGUN7QWX+3Hjh3DzJkz8b///Q+VlZXo3LkzXnnlFQwcOFA9Hce8efPwz3/+E8XFxRg+fDiWLFmCs846Sx/j9OnTuPPOO/HJJ59AEARceeWVePbZZ5GcnBy5QVEiroWiLMuYPn06hg8fjl69epn2mT17NmbMmKFvl5aWIi8vr6FMbHwkJIC3SQBvkwv0V77KHADaqg8AYAUFYIeOgR8ug1TmgquA42RRMo4UO3CslKGwjKO00o2ySg9+K3WjuMIJm0WAlVn0+Y7aF51vJrdblgPmQLqZEoJ2CS544NRFpAfOoALSP3StC0mTBBpFQAK+WdiB4esIy/coA6ldIv9CJ3FJENGjLmLQarUaxWBCAux2RSAydeGEcIRgJCLQvH9weL2Hdms3t7D+7ap/uCfEe4jQo3jmzBkMHz4cF1xwAf73v/8hIyMD+/btQ4sWLfQ+Tz75JJ577jm8+uqryM/Px4MPPogxY8Zg586dcDgcAIAJEyagoKAAK1asgNvtxqRJk3DrrbfizTffrNV7jAZxLRSnTp2Kn3/+GevWrQvaRwsL1CfCrt2AIAIWEbBYwG1WQBQBmxXc7gBsNmU7TuA5OeA5OcA5XiGZpz7gdkM4XgAcOgb5UDlcxz0oOeHAkVOJOFgsorRCwvESCWUVLhSXu1HilOAQRVgEBqdaioAxwCNzeFRRyTng5hLcXFY8kNocSOaCm7mUmpA+AlIrKK4l0Rg9kNHIwg5MogEiEJGmF5W8kwRRV2orCm02GxISEpRHYiIcDjvs9gQIgp9XMGwhCNQlFBxcZJmLtppFWRRWEQlX+GnXgvO4np8IIKpL+D3xxBPIy8vDK6+8orfl5+d7h+McixYtwpw5c3DZZZcBAF577TVkZWXhww8/xLXXXotdu3Zh+fLl2LRpk+6FfP755/H73/8ef/vb35CbmxuZUVEiboXitGnT8Omnn2Lt2rVo27ZtzQf4wTmP2l9Ehf88DEGQITAOi1WGIMoQLIBolSHYAdHBAAeDYBfBHBYwuwVwWAG7BUhwAHZVWCY4wO12wGFXnm12wGaNio1Rw2qF3L4d0L4dAMBWWoasY8eQdaAAfQ+egaeMo7goAUdKUnC00o7CchmlFW4Ul7txstQFT7UbglstyM0ZNAnvlBlsqnB0cwskboOb2/XQtRsuuKGIRo+gehmZMfNa1DyOJqFrAKbCURGMFvVZq/8o+CTR+NSA5MYv48AakL74fXH7frkGQfuxMhOMJC6J5kok4tBqtSIhIQEOh0MXhg6HA4Ko/V8NP1wcqZcwfCIVg6GnxQQjnO+GWv0G6ofIhuPjzsPIQ3sUucwhSVJAXkMw59PHH3+MMWPG4KqrrsLXX3+NNm3a4I477sDkyZMBAAcOHEBhYSFGjRqlH5OWloYhQ4Zgw4YNuPbaa7Fhwwakp6frIhEARo0aBUEQsHHjRlx++eV1fde1Iu6EIuccd955Jz744AOsWbPGoNgj4aeffgTqELLw5ZYDF+m1qqyCAKtFgEUQYLdaYRUE2CxMbWMQ1BpWXJAB5oYguJXC3BYGm8hgEwU4LIDDypBsZ0ixM6Q7ZKTZ3Eh1VCMxwQ1Hsge2lgBLEiHmpgKtUoH0VPC0VPD09Ib1XqamQE7tBnTvps+LzFQfAwAIh48AvxyB59cSVB0CCk6m4lB5Io6UcPxW7kFpuQdlFS6cKnWCu2VYBAaXrNSaFJgdHj0LW5kL6eZqDUg1bK2Er11K1jVz6gk0/qFrALUOX2uvawxh+1IbT2QtwtnRLAEUr4WBSSw3LcK5D0VR9HoINWGYmOBT8qyhPYVG8WcumkILPrP7WJLccLvdcLs9kGUZsiQpz7Ii0rTXtd2uK0ab4+//YejQM7B161ak+VU1mTdvHh566KGA7r/++iuWLFmCGTNm4P7778emTZtw1113wWazYeLEiSgsLAQAZGVlGY7LysrS9xUWFiIzM9Ow32KxoGXLlnqfWBB3QnHq1Kl488038dFHHyElJUW/eGlpaUhISIiZXRJX/vqQJAlOt/LlY2GCXsNQAIPAoC/bp3jOJMNXhwBlyT4rE9TVXJRKghUeD5yCBJvVghSbHckJSUi0i7BYRdhtIpIc1UhzeNAi8QzSbAeQaXcjI7EKacnVSEhzw5LOIGYkgCXbgZyW4BmtwFu1bhBvpdwuD2iXB+ECIAlKUk1nqGV+fj0MeV8B5DMulB8RcPRkGn49bcWRYhmnyjwoqfDgVIkTlU43HKKormQjq9eKwc1lvf6jVronYFUa5oEHTn1Zw4AsbJ/wtW/pHiBwDWwzIan10/At56NthwpnK8f7FhbXr5z6bOa1DC00NeJV+EVKJO+TRGXjI9TnJwhCgIcwITEBFosFBsFn6iGsSyZx8Hl7gQLL9/92KOHn7efxeOB2aSIw+CPuvHTxRqiIPQf69euH1atXG5qDTWWTZRkDBw7EY489BkA59ueff8bSpUsxceLEaFkcE+JOKC5ZsgQAMHLkSEP7K6+8gptuuqnhDQJwAmf01zKTIXD1r1kuQOACBDDltc8Xl2xyhwoQYOECRIgQJOZNCOEyZJnD7ZHgrHLjTKm2ZKCy6orIBFghwC6IEC0CPAIHswpItFqRmpCAtAQLEuwiLDYRDlsV0hIK0NJ+HFl2N3KSK9EirRKJmRIs7ZPA2meC52SCZ2XX5yVTsrT7twD6nw0BQCqAHuqDFRSA/XoE0v6TcB6RUHQ8CftPJeBgMVBQ4kZVpQfFZS6cqfLALXMkWAVdRGpFxDUvpFLCR9a9kL5Z2FoNSDdz6iFsTUDqXke/cHYoIQn4iEeTouL+IlLrFyAkAYT0aoT0VpqNFS4myynGE2H8qNYkKklINhy+nwVjzBguTkhAQoIDNptWbqauGcbB8P2/WIMXMKgI9BGAbg+cTmdQ4efxeOB2u8O0LTh0n0YHLoUIPXMOURSRmpoa1lg5OTno0aOHoa179+7473//CwDIzlZ+U4uKipCTk6P3KSoqQt++ffU+J06cMIzh8Xhw+vRp/fhYEHdCsTH+hVUuKCV6ZO1LR/2OEtQfe4ELYEzQt/1h6pecoP4TuUV9pUoI5n3PIhdh4aK+DwBkzpVzyoDgVtZ75tXKEn2eMhfKmFc8OWUZViYgPdmG5EQrkhMtyEhOR3aKgHZpMtq0KEJ6y0Nw5AKWjulAejJ4brYiHIUGqvavJtOw4UDCb78h/9fDaL+/EK5DLpwqSERxtQOHKtJRUM5wqsyNsgoPfit1oqTSCdElq4VSZVWYi3r5Hq9wtMEDGRJXwtdurq48AzfcghKy5sy8cDiHrNeA1ISjVgcSCO6FZFBC18Y1sQFjbUj1/fMaBFqIeZOKDaHmTkZCtMaJNkGuTzBxEMF3hr+QpB/k6ONwOOBwOJCYkKgLQ7tWf9DEGxiuOFR2h/cdFVZoOIgwlCQ3qquV+rzVVVXKc3U1nE4nZLl+/7ii+zG6qNPXzYnwoxw+fDj27NljaNu7dy/at28PQElsyc7OxsqVK3VhWFpaio0bN2LKlCkAgKFDh6K4uBibN2/GgAEDAACrVq2CLMsYMmRIZAZFkbgTio2R056DAIwhSF80IaiVW9Dw9TAypv3FLCoSkYn6cb79tXaRWdU2ESK3QIQVFlggcgssapuFC6hyW2GFAMHnC5RzGb+VOXGyrBoS5xAZg5UJqJaV+X8tkhxomWxDUqKMBEclMpIPISf1KPJS3GiTVoa0zGrY2lgh5LcGb58Lntum3kQkb9UKvFUrYJAy/zFXffQAwIoKwQ4chbz/NKoPuXGqMBmHylJwuFRAYakbpeUenC5341RpNdzVHjhEZRlDt8z1aQBuLsOtztdxcyXjWpV4itBW50DKTIYHTnjUcj6KaFR8lFoWNgBj7ccgK9Fon4GvF9IrDs3vIV/xaJax7dsn+p9EDD2LpqLZ+P+oxh9PFqb9JuIh3LA2/YAHomUaJyYk6t5Ch8OuiLlgcwYjKEptRtgJIX79vJ+f0k+SJDg1MaiKQO25tkvV0T3SCKkh9BwJ99xzD4YNG4bHHnsMV199Nb7//nv84x//wD/+8Q8Ayh8x06dPxyOPPIKzzjpLL4+Tm5uL8ePHA1A8kBdffDEmT56MpUuXwu12Y9q0abj22mtjlvEMkFCMCpXuU8YfcpMfN00I+r/W23zEpLZfgH84RdCfGUT1WRGPAgQIzAqRWcEgwMLsEJkVVm7XRaTAlf4WiGCyoHstRYiwQF0sHgwlFU6UV7ogqV+mNjVJx8M5mE1Ey6QktEyxITnBjfSkY8hKKUSbJA/apZUhMcmJ5FwZlvwUoFNbyO3aAvU0d5RnqZ7Oc4y1IIeXl0M4dAR8/3F4DpWj9JgNZZXJOPCbA4eLGY6XKCKyuMKNk6VOQIAyB1LmcMmKABdVL6wmImUoUwA8UAqJKzJPhsQkPYytbLshsSCr0qgiUvc0QjKIRBmy333kIwJNRGYogVmjV7Kma1uDOAw1vtn9Hc5xXnx+iAMW0jH5v2WaJODbFqawDKfkURAh0pyz0rXC1Jp3UBOGgvbHYwjBF1oYBvY3p+asYH8hCACyJOsrd/mLQY8nlKvJnObwWTc1QnkUI/0KHTRoED744APMnj0bCxYsQH5+PhYtWoQJEybofe677z5UVFTg1ltvRXFxMc4991wsX75cr6EIAG+88QamTZuGiy66SC+4/dxzz0X61qIK440xlluPlJaWqllMIqLle7FajKvC1PQj6+8p1Nv1H9gaRKUqEH33a22CYFUEoGBRvJPMApFZITBNAClCUoTyLDARIqxquFuRjFZu072SAhissMDKRD3ZxiYIsKjL+wlMEZKCKMBtYbAnWNA61YG0JBvSkq3ITATaJLjRPrUUrbIqYW9vg9AlG7xDW/CMjHAub3RRRSR+LYD7UBkqjltQcCIRv5624Xg5UFjqQVmlB9XVHhSXuVHqVr5JEiwiOFdC98p1VLyTWjFxQJkC4IYMiRtXpXEzl1ZeXJGXelhb0nyXikiEEsLW5q9ynwxrGT7LHPLA0LfSzygsw8VffAVsR8GjGEogmu8L/YeXaQKRjn8Gqv/+moSldo4IypUYTxh6v9khjVxkBBSmdjjgsDtgt9uM4d6alqYz+86NdBWSoCJQwzivkHOO6monqqqq9Ed1dTVcLpf58I38s2i8cAASSkpKwp7XFyt++eUXdO/SBcVTrg/aZ8HGbTjTfxheeumlBrSscUIexSggG/4sqTksYfwaEg07DJ5HCKa/OUbxKBjFouxS5kPKFjAmQmQWeJigC0WBWXQPJGMCGBcN4lFUvZIit8DK7PqcSSu3wgIRVm6Bm4uwMtUbyZTJkYxzSC4Od6UbruJqHFbnQ7ZIsKFVqg2pyTZkpyaiQzrQufUZZGYfgaO9CLFzBtAyFXK7dkBSYo3Xrs4kJ0Pu2R3o2R2iJCH96DGkHzyGLgd+g/OYhJJTiSgoS0Kp24ITTgtOlHMUl7tRWe1GcYUbp8urwV0yrDL3SaARDKFsJRPbAg4ON7fByW3wQAJnqhzkMiTNA6n6KDUBKTPvXEcAiphUhaUmJM28k8oxwec51uTJk4MIL1/xqbfVQTiair4QwpRz2acEpbfd14vIA157/38ox2v/x7T3IgSe10y/BBWPNWSi+wqfMEWjmYBqaMFisVgCl6xTa8Z5C1MHIYwwcdAwPufmYjHItQslDKurqnUhqIlCp9MJDt4orjHRuIimR7EpQ0IxCnDu9Guo5R3G/IVhzXNyvKJR1Le93kaLsu3ngTRui2qijZpww6z6s8gUr6SovrYwB0Qo4WwrbIqAlK2wSKIhfG2RGERVSJZUuVFa7QYvgl7yp1KSkJxgQ0aqHWlJVUhM9CA3rRTt0jny00rROrcStg52CJ2zwPM7gLdsEfC+o4Io6sXD2QglfO0AoFe5Ki+HUHQCOFwI6VAJXMcllJ22o7AkFcerHCgq5zhV7kFFlYSyCjcqqjw4XeGE2ynBYVGur1vmqJYtcHNZ98gC8GZi+90rymrZsu6l1Nok5oEbbshMVgqPM7c+X1IOIeZ8xaN/pr13rqNk2O/ryTQ9zuR8wfAXlca5loHC1v+cobyl/seYeRnNQvP6PhbYpuBNSjO2y4FSQ99vsgQkEN78yAjC2XUVNqIomopBJVRsJu5CYOoJDBItqSl6w3n4HlzO4XK5DR7CqmpFHIYKkJEoJPyRQ3yVkVD0QkIxCgT+cNbyDuPKqiBeQv8gM7CA3xjuE772FZHeZBljyBomAtL4WjlWZBZdRFqYXZ8PKTILBNUTaeFez6RFDWGLsggt1UaUBT2xprLKjaPVHhxWv7ztglJzUrIISEtKQus0G1ITq9A6dT/yUoH2yZXIyShFQntATHeAdc6GnN8BSE2p1aUOi+RkyMnJQKeOYADs6qM1gF5Qa0EWFAGHT8BztBxyuYzKEyJ+K05FUZkdhRUiTldxnK6UUFIlw+n0wOWWUVHtQXm1G5VON5ycQ2QCEgULrAIzFBi3MkGfKylxDpcswaPW33TDo3olufZpK58j9/GmMU10qaFxeAWVzLyCTGbexBrNuwkAsqD4PLVjfDETp2b9zISqUdAFD7Vr+/0FoG8/s/mdvhnoWj/Ds998TwAGQefbjwWIRT9xq/8/8kkkMpkfaS5StHMHTMQ06at2BTMdy2KxwGq11vgINys4coGoYfToakQUxvd5/263R/cQVlZV6q/rO7uYaCbIIe5lHuGUiCYMCcWoYJwTUzd8J/LXVPPNrFFrlbw3usFT6S8UAd/wt6+gZH6iU/E0WgyeR9F3WxWWwTyRIrfACjus3KZ4IlUBKUDJurYyEcwjQXJKKCmuAlczsu0WAZJVhNWegIxUG5ISrUhJcqJV0n7kODxon1yB7KwyJOQBYqfW4J3ywGuxrGOk8PQW4Okt9FVptHqQqQDyAcDlBjvzG9jpYuC3EvCiakhFVXCd4XBVWOB2O1Babsdv5RacrBBxuhoorZJRWsVRVq2ISpdbQlW1hHKXpHyGXILk8zOu1ei0waLOJRVMS7x4wNWkHCVXW/aZW6kJTm2eJKDUA5X9vXu+iQAmf8QEiEldjAaG0/VtBn2OptamCUEZMjiTjF5G5iMemVc4CvARjsxi8EjqwpJppYoEr4hkmmj0LtvI1PJDTG1jzKe/b9lK0wizr3jUdsqGz8QrmrxljgyoAzMgLPFnsXj//zaIzyzYRdAJIeKCfD96JClgDmFVVVWtM4wJIhxkKcTKVuSA1iGhGA3q646KZFz9C9s3tKcV/g6ci+X1kvj/WKnztyAa5kwytRakDI8qDJVnyS+JhjEBHjUr25tIU6WIRijeR6vgMIhGAQKs3AorV5JmrBBgkRUPo5UJkD0y4JHhqnJDKqsGAFR5ZNgtIlqn2pCabEHrlBbIS2PIb+lCXvY2JOdtgSU/HejcFnLbNkCQavr1is3qzcxWEVxuJBSfQWJZOeByIeN0KTqeKoVUWAVPsQxXuQBntQWllQ6cqU7CGZcFJR4RFW6g3A24JBlVLg6nR4ZL4vBIMjySIgIZB2R1+UNZkuGR1ULtkgy3pCTZuCQPPNwDlywpcyW5BBFWXSTKTPYJfGsCSVCFl3ZvGL1Gsu6N8woWGZJPf7VAvC4QtXZNEPoKMRmy7oWTwLn22tfDKBrmZep9OA8asjbzIpp6FlWLtPGM5zb3LAIcgiBAEAQw5vtaWa5T3/bpJwgCwGDY1pYBFQRve1CChqt9rao9HDV4FWuwIxiyzHURqHkIq6qqapVlTBB1RaY5imFBQjEKxGLuS8CcH9MvbAlgzGhdQD/JMJ6+mwk+2/5eSG9pHm+7X1KNwQsZ6H0UfLyNWl1IC7PDwq2wwA4bt8HKNS+kIiAtYKjyiGBMDbV6JBSeqcbxM4qFNpHBJXFwgaF1agJaJMtITSpATvoJtEgS0T6lGrmtS3zK97SB3LZtwyTRaNis4JmZ4H7reWrrZNsAJANoBR+vZPEZsLJyoLwCcHmA8iqg0gle4YJc5QGvkiBXcUhVgKdagOQR4HEL8EgiZJnBIwmQuAUeiUHiAjwyg0sW4ZIEuLkAD2fwyIAEBokDnKvPAGSupI1wKPeCrLgAIUNJ3tGQ1f7c9zX3bss+x2ht4IBHbedcyRrX+krgkGUlbC5zRbRxAJLWT0sKgrJPUmd3Kr5JX8HLITGt1QMOJZGIg6thby18L0NSZ7Zr8z6VhSE54FeOSDlWq7bpIyq53zZ8xaVRdKpXzdDXu464XykXs8LP/qV86uGPVbMRww3GyZwbEkq018EyjQkiFvBQ4WUKPeuQUIxTwhGnTInN+bVKpuGigNEMx6nek4BQdqCA9N32hq+9/QSfBBs9cUYt56OFry2CUvtRmwfpLyAZVzyQFkmd+8gEWMBgVUWkKDOcLK7GyWJlcrtFTaLxMMBit6J1mh3pyVYkJxQjK6UUWUkcbZKqkN2yFEk5Eiw5iWDpDqBdDuScbCA5ucZrXW8EEZYaTH0IUP4z1+g3lSTA4wGcLjBnNeB0gjldgMsFuNzKPo8MeCSlr1tS07k9gMTBZVlRd5IMLslKm6IulWcPAI/yWnYD3ANwCZA9THnIDLIkQJYZJIlBkkRIEoOHC/BIgvIsM0iy9hrKM1fm43o40/t49G1V6KrC06OayKG+lr0CUxHEyjxQSVZ8mpLM1ZJGyv8qD1cqZUqQlELrghseSFD8pOrcUO7RRSbnHnWOpBbC9+iiUZY95sJS1jLWudrGAVjVeZGyKhYl5dlHFGqLNHmzr83dHvX1p2tAvrEsG2oQ+mYaE0Rjh0LP4UFCsQljJibNxaMZWuan79wq7YXXA2JIqDHxQipDKEvpaa/NPJHeOpAWw1xHs3qQZkk0moj0lvIRdBEpgkFQi4mLLgnOCieOqbbZBAF2qwBuEcEtNqQn25GebEGCw4JERylaJpShlc2DnMRq5KSXIznDBWu2FUJeC6BtFuSMjPpNqIk2oqg87HZwKHbX9fuQudzKPDy3W3ntcQMuF5jHAzjdgFsVoE63IjidbkV8ujzgLg/glsBdLnCXBO7i4C4O2QXILkByC5DcXnHp8QhwewR4ZBFujwC3LMIjM7i5CLfE4AGDWxbgkhVvqIczuFVR6ZKZKiYZ3JKqaWWvsPTIXBWjioj0cPUhKyLSw2V4ICk1MpkHMlP8mB7mgqwWXpe5R12tR3mWmeqZ1Fbr0TySgurhVD2RMpd85k9CFYsiGFPFoqkobBiRKMvhF6bWIhPhrmhDxC9xn0XOAVkKsThAqESXZgYJxWaG9p877C9yf1Gp1k30jucjCP3neenCUfY5RlAtUJYi1GpFaqJR5h5dNMqCBUz2ikZJFY2+5XtEropHWGERFM+jyKze8j1q/UeBKyvQiEyAVRZgUTOKARmymytihQOnK1woOcEgcY4qjwyHVUSrFBtSEkUkJSQjM0VEdjLQNt2F7JZ7kNRyO6zZFojtWgCpCeBZGcqSg/W0Gk2jxKbU6FTEJxRh6HIDbqfy7HIpAtLtBpwuVTjKgNsDpotHCcwtgTslcLcE5uQQ3DKEahmiC5DcHFwCRAuDxSPC7eawMAEWmcMtKc8WJsAtCxDBITABsir+BMYgyAwCAzwyg6g66bRngQGCDAhqEXkme29zJgNMEL33NlenPajOUwYOMBs83OV173JAYsr4UOtrcsa9yTFgtfiJ9f0/53e0ITRdOzjnQcWg2+0O6E+CkAiWgR9PkNcwPEgoNlMi+Q9u+DEIEcquKXzt730MNf8RAJgkmHodjR7I4CvR+HoefVegscIOiyoirZI1IHwtMqY7UqvdEoqKq1F4RlmFRQtjV3lkSALQMikB6clWJDgkOBxVaJV8DK0SC5CRKCPD4ULLpCokpzphTZEhpgsQWzrAMtOA1i0Ahx08OQnckdCw8ySjjdsNyDKgeRTdTlUAur0hbZdHDW1LymtJEYXQxKFHBnfJgItDdnHIHsWjKLsFeDSPosTgkUR4PEpYWvMoutUwta9HUZtz6ZaZ6nGEHqL2cMCtRdB9QtWSWkRdK1GkeBW1uZMyZLXWnwStpBBXi6grcx9l1XNo8Ciq8yA59xjC0Jo3kXPtWQk/K2Fov9CzyVzFYN7EUMksHo8HbrcbHrcnQAyGmjsYlhiMdHUVomkQ50pLCuFRlMmjqENCkaiRUKIydCjbOB/S0MtvAn+wUj7BakGale7R2rXVZ3znPwZ4ItU5kGZrYouyRV2RRoS6mKG6Co0SxrYwATI4BJnhdGkVzpRVwaNmdtgEAQ5RgCgAHjBIImC32pCcYEVKgohEuwir1QOH7QxsNgGpDgFJVo4Ui4x0mwfp9mokO1ywO9ywJUqwpgBiCwtYqgMs2Q5YRcBuA+xWwGoFLCIgCN6QMmPgAlO8uUKILzpZCXkyJVNESfGTZEXwyVypROv2qAJQndfo9qivlTmMSthYBndJyhxFtwzZxcE9HNytZBQqz8r8RElSBJ8kMciyAFkWIEkCPNyiz0+UVWHn4QIkrryWoDxzaEJPCSlrYWQPZ6r3UE2OUV8r8w29YlCGUQwq0y05ZK61yWpijNoGNdTMlHCzLEjwqK1aqNmbECOBy3JQcShzRUxytcKvFmoOFIfK/4lgCS3+pXU456oAVESg2+2G2+XyvvZ5GPAXdmELvZoXAaiJhvJCxpu3qzF6Z2u6hopPMb6usy9xrnMbDBKKRJ2oMZQdtOaasSSP/mXDJe9YerFjbX5W6NI9mmiUmcfoeZSFAOHom3ktciucavhaW8JQ4IJe0sfCLRBhgchFPYzNIOji0eL73mVFn4lcLZTt5uAuGXKVG1WCImgqPRLcMgdjQKIoItEmwGEXYbGKsFoEpCQ4kOJIRJqDIT2BoUUCR4pDRqLFDdHiht1aDptVgsUiQxBliCKHYFEeTIT+gKBeckG7/N7r6vch+nxcHJCVBBTDQ1aTUSSoYs8r+DySVRF+UDKsZc7gkZWEExnKayWZxCj6JA69XRN+Sh9AUsWfrPbxZmEretajvtZya2R9H9ezpvW1uDWvIKCKQm/GtKQW99bqS3LGdVGoJaZI8KjtHlXwSbrQM0ti0eYiamt5y8oF9Cav+AlE/bpDmf4gyxJkWYYkqeLP5VTFnrLtcnuFoFJnMIw6HiGFYHjir9ZCxmS9+oYg+Co6jYgYXZtwCfqJ6yWm4htZDjFHkbKedUgoElEh2F+VocPWGkE8j8GSZoCwMq/NVqEJlTjjm4mtlexhTFlpRk+uUcPYDIJhJRoBgiIouQVWt1X1TRqXNBTVhBq9SiFXljN0VcuQqzxwyTI8XIbAlALkjClz7MplFyRIumfTygTYBAusFgEOiwiryGCzCEpYXFTC5pwx/SFxdQECxsDU0LkgMoiC4vlkYAbno1b2RpMy4FCze1VBpq4cw3UBx/WwrFaShus5vtxvW/YZW/OSeWs4Auq59H4+q7Soz0rYV/KO41sr0a+vVtYmYPUXzQJDnUVu7MN924w1F/1Xi5FUcSfLHl3kKa+5V/ip+ziHul+GLLuV+o/qMcEJFmpmMKwXH4oaRUno/SxsUROmPQ2N4Xc/1oW8G+k1ChcGAJLiIY9jt1zI0DMJRR0SikS9UnPoQq8AbrLXm3kdfP6jX+gaMF2JRhnGL4wtGUv4mK2L7R/G1vootnvD2do+EVYIgo93Up0XKUBUnwUIXBWqqlfSd9k99aIpnkv12njXfZYgQ1CEm+yB28VQ7fboApT5XEpJXerPAw4Xd8MDGW7m1gWTcmUE9Tn08n/+S/95fXDqvDwfAee7Covsv5Sez4or3rfqK7jM16Xmfj/qvoWv5SDHh7PGtKHNZMxw1pn2P95svenA/r7t3ntSFKzwx/991AUWRAiGFoC1OSb8PvWB/2fTnKntZxDONVSmVjgRlke7kRJS48av/o06JBSJmFJrTyTz+6HWXwlKrFQfx/dHGapXxaP/QDMmqAcHWw87cC1s7z7f4uKBcyI1kaktaSj49WN+dScFJurnFyBC4IJh2ysuFbEpwqKEwWWv6AS84k5JtOCQmEcp5+Ij7pQr5bN0I4SAOJPp+s/MTxz6rMWsCSp/D6D/Wuiyv4gL4t2p6cfKfxzGtBVapABR5LsMn7bPIOqY1wZtOUDv3zDmwtTMxmBiNbhoNBItYRiJKDRtMzleu77hjhsKIYh9ofC/9pESTwIyViI7EiTZCY9UBs7jd1UdKUTomTyKXkgoEo2SoDUg9Q61SKAxHBc6CxsIXkhcsSUwrK1tm2VnB/NKKmMFW2tb1H9QmbYsopnYZKqY9PkhN4ZjJV0kKpdAXY2H+QlF/0tl4q2Tdc+Z0SsXKKDqHtoLJUx8CRAd4f7IsprFR7D3UZOgM/NgBttvalodhQIzCW36jxkopgOPMRN0wWwzO2coQonFuojCYH94mPZtBOKxIUVhuJ9RONfQLVeh2nUaQPwWVw8lFGmOohcSikTcEJb3EQgdT2C+P+AaXi9kMA+ksm0iIvVBjHMj/edF+u4zHO//Wt/v520MEvY2O8Zrv1/o1+RHMZR4CCd8Wxv8f6yC2cC5ZHhP/sIimNgO1t94bORzxGorfmsreiL1upm9J38xGHAN/T8L//4s9H7vuGGKev9pFiGQWWTXTQ7znoxmOL++CHadGxNOVo4SdjDmsz1ri0/hqaD7CQUSikTc4y8gQ2ZnmmZh+wog//mCPlnYWj8m+Iku31Uz1ILi3Ec4cn9xGFzw+G77ikozUegrIv2PDxUu9SfaYcAavVC+00kh6rYGXodAkWgmDn3P5y+WahJK/mOFpAEdDOEKBX8hF+x4fyHnL9iC9ueh7Ql2PWtzTwVg8ksdjugOp09jF4v1KRQj+WxCXksGMBbfEoJCz+ER358yQZjgKxzrIhq95Xj8xgvwzMkwrkKjCEdFsEngmrcRRrHnfx6vWX7zINUEFoM3Ul3BRjm7ucAy84BxyAHn57XwroXCt06t9qPEuazba3gNqUaR5i8SQwlE3/dm2F+D50w/JsJrEe4PejBhUhcPncAFUzFVk0isSTybCQkzT2Ck4jEaREsERuqtjAWReF9rQ033bk3X0QNrXMylDIUUoqg2542xsmVsaLZC8eyz+0IU47xEAVEjYf9HN60zZ/bjaNLPcKwmarQ20W87MMzsa6kxJM28fZigj6Etfaj1Z37HBp9D5uvV00QX8xFezDC/T+sf6M0T9P4Mos/5ldcCRDC91qSgjuDN8PZWoWRgXE/dUW1RSglp5R8FpvZkqq1Ma1etY9D3a21KX9VSpl1H6MfCZ582hrbts6l/rP6fnP9+s2P99/vi3+xbmoiF2c8M3/2GO8DQzgNsC7x7je2McdO+/ucMZp7v8ZEQao6Y/4iyySnMzuo/ZjDLYiEjQ0mucL7HIrnO0RBAv7kE/Pd0GorKNgMAJEnCjz9ujsLIDUdN9xgJRYVmKxSJpk80RWKAQAw4xijwgglEVcqo+4yiUsk89raZCUJD9rXWppXS0epDwlvyRzmzVwwqY5gJOktQMSdytT9n3j5MGVEXdkx77RVsAmPKojFQ6jSKAtPFmcDUwuTaMwCL4G3T2gUGWJjik2WMq+1cadP7yRAZV9d49vYBoLQzWR1L2c/AIQhcb2PqcYKg1rcUOBjzeUD5WJRt9QfZ5zXT9LW2rStK7hWb/irT55Yx3Er+/c36+Op9syLqBrUXRD2ajssCGr12+yrCYGP6HBdMJdekdgFz1afC/ecf+/aVDR1NX/NgffzGCpjmXJNyjERZ1uSEM9kf+HVT0/cRgud0hbMKT019OEflLxK+X9MFJ7A5bufzSaGEIoWedUgoEk2SaHsSg/f3F4iAUSSaC0Qzb2FNwlALr4qw6KJQZBaoqS6K2GNKzUaBaxnTJt48bhSAoubR8xN/grrmtQgotRrDFH4WfxHo0y4KqugDYBG4QfRZGIdFUASfReCqyOMQBVnpC+9rkakr0ggyREGGaOFggtLGREAQFTEnWGBYrYZphljU14wpzyIDE32UqiCACb7KVfS6Hy1KpjkEQXVTKv2ViyNobkx1n18fg3tPc2WaqDZdtBlUIQAoSzT67/M9Jti2f3//e1kQzPsahKd3gxv6MEMfg3AIRxyGg7+A9FV9fvuYts/QR736hjaf15o6DDZuqPNHCzN1J5jcF/59w/0s9f0RnN8PzgQwLiN5+260/ja+o3Kh5iHGo/jdsmUL3nvvPdx3331o0aIF5syZg0ceeaTO45JQJJo3nNf413PwmSpmIjE0NYlE7zw8M++h0XOoiURRFYiK+FOWG1Q8hF5xKKreQ81L6ON7hMCUAHKk4tCiah/RRyyaiUPFkweDIFTOwWERlG1FMMqwCIDIZPW16iFUxSEDh0WUIYqKOBREDkGUFe+gBRAsMgQRYKo4hAAIFvXNWBVByFQRCAsDs4jKs/YmRNEbjxZEb5uoij2L6vHVtrWpKxZV+lpEb7vvmtsW72et32uCUKMYCyXETNu1cUPegEH2B/z94y8qQ5yzEaL/yPuKO03YGcQhgu83O9a/HT6iNArwYJ+P2efv/4eG/34gss/V7FzB7ATAUhIhCq4a+zZmQnkU4zGZ5dZbb8Xll1+Oyy+/HB999BFWrVoVlXFJKBJNkrrNL/FmMCtjca9YNAhL2duH8yBi0dsnXDSR6G0QDGLVOPeP6f/8RaLmVRS47lPU5wKahY8FpoSOGcxFokVg8A0Ji5rTDKqDTdtm5teea+tfg4FBuY5MqUGkB8m5xCELAmTGIHHFc2jhDJKsiEaJCxAkDlGQIAqAKEqKmLRwMIF5RaPuUdTWv1afLQwQZdWj6AETGbgmHHVB6CceLQy6ENRFouYpFNQL4CcgBQYmaMLTx6uofa6+tT7NfpiZEHgNzfrV9KMeIowbNqHOEYmXMtRxtcFMoMl+bdxMKAbxEmrZ9/oalmEIRd8+/ueuBfrVM7tuoTzOwe6nkH9UmN93Qc/pz6kSuGVH8P1xgBQiYYjH4QxFh8OBBx54AKNHj8Ytt9wSOFWjlpBQJJosei3tGjtqNUD8e/oIwZBiEQAE/T8lY1oxai0ELUOTQ5xLSjYdU4Ql42pJHqYUxGbq8n7aooWMy2BMVr2LSh6iwLn6JeaBCAtkJkHgHsiwQPINPTN13iHzikYPvAkkyrMqM7m6HrX2bpi6NrXsM9+QKfMdBUETl74C0etpBLxiUhGNviFqpgtJpolN+MxJhDpvUHUECuocQUWUqvMSwfVjBS08rc0z1EWsrB6nzk8UOETIqsbT5jLK6nxEQBBkCIKkz0cUBCWUzZj2GmDqMxiHoMXPlY9eiTSL3tfKs3aB4FXUIaKF0aLG+XXB9ExtflSCzkUM0j+c+XdRIOQ1CDlPUWv37cIDj/M91L89yhHpAE1d13mrAQeb7A9j9k3ZLwy/udOCd4wDQv0dFY9LWCckJAAABg0ahEsuuQRTpkyJyrhxKxRfeOEFPPXUUygsLMTZZ5+N559/HoMHD461WUQjJCLBWINYVMZhJuIymGAUVW+j7GOHUudQOR0HgwxwNRTpJxgVgckNglGGDJkJELhFt89XMApQlw7UlurjIgTmM1+RedeXNk1aUYWjbwayqHogAzKM4f1h0qbw6VnKmkiE9torKjWhaBCW2vE+YlLQRKaPuNSFo3ZcEIEJ+ApRb7jbK2K5fpygCk39GB+xqSe/aOMyQIASCteTW/T3xr3HqEkvmqdVuSe44bkmwp1Qb9bP4OwyhFgD+0Y7zCYEe39B2mtyjIaRWxGSSN6/5kkyHOKz3+hQNI5Vkx2hvFQmK9oH9vF1Fvrcd8Y+2vdU8PFNPx+TtlCfS2F5EkqEMyHtbeyE9ijGH4888gg8Hg8sFgtuueUWtGrVKirjxqVQfOeddzBjxgwsXboUQ4YMwaJFizBmzBjs2bMHmZmZsTaPaKSY/ccP+B70/6ZnDP4uA0NRbu7jaQQAbZ0Cpi0P6C9TRSX4qiUmcG9Bbq2PbzZ0uOVxApYL1OYzasfq4Wp1fAZoMk3Qz+vNjNa2tddahjQAxV71bRlr5hm/dH33+QdSWUDBZxZwjG4HN+7TxKz22nss00WoZg1T27z7tTZ1W70emkj17adcA6PY1bp5E4QZfA7Vjwm8GpFP7Qs3auzvwPK/hY2CJ3DQYOepyw9lTW812LUIZ65vuJcxlP3BQnIB+SqGY0z6B5wz9FULuWhUBPeH/7zpUA5Ds2Frc/3995S5JJzw7I5LQaXR1OYoDhkyxLA9fvz4qIxba6E4ceJE3HLLLTj//POjYkgkPP3005g8eTImTZoEAFi6dCk+++wzvPzyy5g1a1aD20PEL/5fcrUTjkDAV7XmVVT3KlPxGKCvkewVg94zGIWassNXOBkyHtTjveMY+vgJS/Mx6gezQr3BivdGaw6N2Q9cwFrGvteBBQpS030mdSW9DTVfy+CJUOYEFRom8czg1zSy9hrPHWXCvSYNVcy5rtclkvWiaypiXdv/n6GuVTjXuzbXWpLdqHKdiPi4xkTI0HMdxn388ccxe/Zs3H333Vi0aBEAoLq6Gvfeey/efvttOJ1OjBkzBi+++CKysrL04w4fPowpU6Zg9erVSE5OxsSJE7Fw4UJYLDVLtbVr19bK1g4dOqBdu3Yh+9RaKJaUlGDUqFFo3749Jk2ahIkTJ6JNmza1HS5sXC4XNm/ejNmzZ+ttgiBg1KhR2LBhQ0B/p9MJp9O7aHlpaWm920jEL7UTjkCwiV8GEelzbKCABPxFpD+mf+1z/3WTQ01MCoWJEAkq4qQw+pmUHfEfvyHLHTeSCUeNwwqCIICa6ijWbsxNmzbhpZdeQp8+fQzt99xzDz777DO89957SEtLw7Rp03DFFVfg22+/VWyRJIwdOxbZ2dlYv349CgoK8Kc//QlWqxWPPfZYjeedOHFixLYyxjB9+nTcddddIfvVWih++OGHOHnyJF5//XW8+uqrmDdvHkaNGoVbbrkFl112GaxWa22HDsmpU6cgSZJBhQNAVlYWdu/eHdB/4cKFmD9/fr3YQjR9asyeDpoI44sxi1oZN5z5jr4IQQSZxyAOlS6aeJTUYc1tMx8vcNm/mo/xxcR2U4HrH7L37VsPnqSw45W1+3UI1xtXl2BWpN7J2mWJRPPa10Hwx0rYRyWzpmE8oQq1vMZRuL4cHOBSXP/xE7qOYuT3Qnl5OSZMmIB//vOfhvqFJSUl+Ne//oU333wTF154IQDglVdeQffu3fHdd9/hnHPOwZdffomdO3fiq6++QlZWFvr27YuHH34YM2fOxEMPPQSbzRby3AcOHIjY3nCp0xzFjIwMzJgxAzNmzMCWLVvwyiuv4MYbb0RycjJuuOEG3HHHHTjrrLOiZWutmD17NmbMmKFvl5aWIi8vL4YWEU2OWv64GH74A8YIEUoy9BVN2rW5fIGhauM4IWzzW0rQO4qxbE+o/WahXu/8R8GvXfCOp88/NM6z9B0z1LKChvdhsmZyJIKL1WId7MD5YyY21DD/KfR6zIJpe03zQM1s86c26zTXtP6ymYjmJmstyyEkRzhrPNeWUO/ZpEgRAPNrC4R3b4U6XyTvM9QfJ/7X1+za1nyu0PudrAqFFT/B7YnfhJbQcxQVL59/FNJut8Nut5seM3XqVIwdOxajRo0yCMXNmzfD7XZj1KhRelu3bt3Qrl07bNiwAeeccw42bNiA3r17G5xgY8aMwZQpU7Bjxw7069evtm+zzkQlmaWgoAArVqzAihUrIIoifv/732P79u3o0aMHnnzySdxzzz3ROA0AoHXr1hBFEUVFRYb2oqIiZGdnB/QP9aEShBk1ftWHJQzNkzUCj/cXWzWHkr0iwiu6/BNfBCaaJrxo2167vMdodoZaElBbASaSdZ39i32LPkkpZlnVWtFvvZyO+laDrelcYya1djzzfrbM57XxavokozDzdt82034+bb77fW1Rtn2mIgQbO8A2b0ar+frSPpmtMBLtMjRhJXeEWFvZkD0c4hj//dHC7HL4Z6MH/Plm5gSvYQz92DDtMpNnwbLfTSd9hHlda6qiVBNnXAzvy6U4WRa/QtET4saSAWzduhVpacYSQPPmzcNDDz0U0P/tt9/Gli1bsGnTpoB9hYWFsNlsSE9PN7RnZWWhsLBQ72MWKdX2hcO7776L8ePH697Ho0ePIjc3F4Jal7OyshKLFy/GfffdF9Z4GrUWim63Gx9//DFeeeUVfPnll+jTpw+mT5+O66+/HqmpqQCADz74ADfffHNUhaLNZsOAAQOwcuVKPaNHlmWsXLkS06ZNi9p5iOZHWL+jpr+2YU4kZ/7SRBOC5utCK8fXkBHtt62t0MKY8lrZ55MF7eOZM3rlvDJOOV5d3k8t4g0IsEAE4wJEiBBk5XitgLep6FMfvkW8wZRnpVSN+qyKP1F9+9qKL5oYEqHUsoa2rY/n7a8ISa6LQ0U0cq+QhLdEDvPJWzeITW06gDaGryjzCUQxteSN91OBPq5io3+JHG/5Ht+DtBI7hlvD57yCX5tXiHKfsYx9zcbxp66leUKVhAlIDlD7+of4fMN64ZShqcmmcDB738FKy+jb/mP4yatwysxEJds9zJJGkV7XSMv7+FJUnYCU4gycDP+QRkfo8DJDv379sHr1akOrmePpyJEjuPvuu7FixQo4HLErQn7dddehoKBAr/7So0cPbNu2DR07dgQAlJWVYfbs2Q0nFHNyciDLMq677jp8//336Nu3b0CfCy64IEBBR4MZM2Zg4sSJGDhwIAYPHoxFixahoqJCz4ImiEionUAMI6wXhudQWw/abC1oZUxFDPqXxgkoi6Mt4QcLGLNAVAtva8JPYBaD6BMgeOsmcu/qLSK8Xj9taT+LoL1WlvDTVm1R1m42rvdsEbzizndJP4vhWRFsFkAtfA1YBFmvcSj6rPnsu18Re8YC2oLAlQLa0NZ9hlo8W+kviEoNRDC1FqIIvXC2XkBbXXlPizJ7C2erb0Q1lumKkqmFt5lXVQpqGR7fNw0G5rvNBB83p6qGfd2c2gouQKDy09sFHzejEEwhBtybYRFQVyeIAvRbP1l51tZWNqgQk2O5sT8Q3M0YcqWTYIomxHv3X+0kQCWG6O9/TQMVpokp9fw5mPUNWJnG5DhDH//jwzUS6LCnEDmHMnEgcJS4gKPm0LMoirrjKxSbN2/GiRMn0L9/f71NkiSsXbsWixcvxhdffAGXy4Xi4mKDJvKNhGZnZ+P77783jKtFTs2ipabvye9+iPnKLM888wyuuuqqkOo5PT29XiZYXnPNNTh58iTmzp2LwsJC9O3bF8uXLw9w2xJEKML+Gq9BJEYqEM3nEjIYQsgma0Dr9QIFi95HX9NZFYfKjDhl7WcLt6qeQwusslXxBKoeQVEVhfo6z5oY9PH+KSLQKwgtqtATBa/oE1VxqHn4lLWauS4CLYJ3fWftWStwrazl7F3bWVAFocCUNZ018WcRlWeBcV34CaKsiz7vMn0As6rPmiATGZi6zjME0btUn7rmM7MIfus8e/epqlN9Uz7rOGvtWjxbO5YJ4KLgFXCiCM4YIFoAAeCCxU8wqn0ZvK/jYB1lAzJHwBrJ2m+T2drK+vJ4tVw72X9fDWVdAtZODhB4QvB9BqHoN06oj6mm9baDYSaMDW5B32sW/PoFXCOf/YZrG9AvPDM1rLbdSPm4fpJWGwpPiPccyeqXF110EbZv325omzRpErp164aZM2ciLy8PVqsVK1euxJVXXgkA2LNnDw4fPoyhQ4cCAIYOHYpHH30UJ06c0D2CK1asQGpqKnr06BHZG4sytRaKN954YzTtiJhp06ZRqJmoE9r3QI0/zQErtkS+frNxOG1d6FqsAx2i/l/AeZj3R5wzWS+loweL9bl+xhCwNjfQ2+bzG6o5tnR7DM0m75UBjINz5d3KqhCVwSAp6xGCgUGCAECGRxYgCBzcA1hEDi4zgMsQBHV+oixDFGRlaUGJK0LRowhFwSJD8EDxEGpeQysH3AxcZIBFVgSjJhKtArhHUNd2lr1vVhN+FlEx1iMCoqSKRDlgTWflR1vpzyTtgongkqQIDIvyzERZFYNQRKUmDIMJRyBQoERTSJqKNh+x5y/0DKJQDZlr21z2Wf7OXzgG80b6e7Pq4P0Icl1YKGEY4CUMIQyB4P9Va1vvMZQgDpjsGUQkBngfg4vEkG21WXewygmJx+WaHTo1hZ7DJSUlBb169TK0JSUloVWrVnr7LbfcghkzZqBly5ZITU3FnXfeiaFDh+Kcc84BAIwePRo9evTAjTfeiCeffBKFhYWYM2cOpk6dGvM8i/j+lAkiCtRYAgcIKRYN60AH9FX6ecVhqHWg1TGZbFgD2mukslY04zIEwQJwVQzCAoF74IEMERZITFbWlIYExkS1jIUVMuOwwAIODpGL4FwEhwABMjhn4EzQl5sTOYfIGWTNuSYrjjWJK15Ht+o9dHO/MLMMWBhTPY5M8QLKStjaInAIMle9ltqSeIoHUl+3GWoomQGixy/crHkjGQ9Yr1l5GL2OAeFmUV2jWVT1mMXH+ygyb3hZFBRByZifB5KBCYKfoAQ0kej1DPr0FbzCUBeYACCKqtfTxzNpGnoOIWx8b08/QcSCLrdiItp0wegXFpY59D+nDGLRr437H+8nQA3rLAdbMDkKmF2fgHCzb38zMRhmCD8amUGh3rtpppCJsAdM1vIOIvoiPV8NSMfLUC0nRHxcY6KmZJZo8swzz0AQBFx55ZWGgtsaoiji008/xZQpUzB06FAkJSVh4sSJWLBgQUTn+eKLL/QEHC1/4+effwYAFBcX18p2EooEAfM5NgE/BQHFtr1fJQG5pvrKLL7iED4/MBIUAal49JTe6pJ5+jrMxpC03sYEQIZpaNp3KT8wbb6hBWCCd/4iLBAE9ZmLavhanbPom53ss/azlsns9Th6t0Vd22jzFZmajOITyhY0L6b3t1pPQlH76FMCoWst/TWDd1v00VJakojWR5lS6E1iMa7nDN1LyqAKVlWcKjZ6E0OU/VxPHNHGUhJTuHpOD0zXdwZgtsaz9oCPjUzQ9nn7+SZDRKpHQv7e+65nbHhtbOM+f5sY2v2ejW3e0+ga1W/+V11q1tW0DnK4a0sHX7rOrK1+Z96Fk5gTSi96O5mPU9cl6IJ9JtpnUVTZGgWI75VZapqjWBfWrFlj2HY4HHjhhRfwwgsvBD2mffv2+Pzzz+t0Xv/C27fddpthO5xlMv0hoUgQQajxe4KbfZX6rVri/5/SNJNTk05ur2cy5DxHIDBT2tsP0ESm8krpZz7/Uc+M9hGZhuP9axtq4Wuuhky5t69vGR1lWxO33jWj/deTVvqpbdpa0j7vw1tzLrBNH58bbfRdE1obN9Q60d61rrV2LTxvvO6GNaB9XhuvNAzHGC03dvKt0eefs+Ltbmyoy1rCwfYH1NjzFX0BxwcO4N8SMgWlFj++kfyu1RQEjuQnsjY/qL7UJZEg3CPrr7pkzVRKHhx3b4/LRBaNuorBxoYcMgGs9jRbofjjj9sQ2dcGQYQm4pUz9AP9jzMKHW8//59BH2FoOk9KNOxnfkLO4H30GSPY+sa+xae1PoKJDV6xKRq2Q43nP1aw9+RbQFsIZpuJqNRt0UQm89uGJoAF03b/MQ2Frrn5+zN7T952H5HIA+2tDeEUazYrdK0cG/iLaTae2VrFcpAxw7UpEiK9PkKQwtihiOZ66DWt7Rwpoa51Q1PJynCgbCNcbs2rGH+qK7RHkfSBRrMVigQRbXy9PRGJxiBL+HFfIQRmkvHpO4RZYoysDiuocxZ9inArAVn11KqA1M0ILnyMK7YIuv+0JkGpnCUMIRgkMcB0hRW/vuGIUP0Y7h3TTHCGEpsB+4XAY7zHBl/ZRRcxupfSX2QGP1auYalFoGaRElrgBY4fbDyZ17DsY5TEUqQCTmBirXwBjVkoAjVf74bCJZeDc0+szagT8Sdtg5Ofn18rL3i9rvVMEERw/EOEYQlH31CVnhWtjWfy48Ulv3HNS4dwXWDK6pxIdU0QLnq9f7wmEVezqAtXYIbTbuhTww+32TJ7ZuOaeT/N+jKYC91gQjQcARxs/GD21ZWwPHkc4CEEJw+SCRuW57IBxExtlleM5jWOJvWxRGGoz6A2184fj1wJmTvrPE4sachklvpm2bJltTquQ4cONfYhoUgQBEEQRDOD1WsyS0MzYsSIehubhCJBNAA1JSFo6B7CEBnWxnE1zD2OxrFl79BMAODxSaTx84TpA4f2PAQPFQf33ITjRQyP8MYJN8RtZnMor2no4yLz2ETvmgQSzDNo3je6YeRIzl0Tdb1G0Qwp1wf1EaauT2TZAy67Ym1G7eGBX7OEOSQUCaIRETRkXeM3mlRjeqhhBH08ST+P6SlqWvnC1KyG/UGuvYAILuZCjVm/Ijga165ugqM24i7WIqexi8CGoiE/B87lkFMX4oGQoWcSkTokFAmiERPKExkw7zGiP4/VL3hVXJofKQR4JSMaOwi1zQ4Pdi1Cve3anws1imQj0RMqdRWb0fTieYkvb1fNNBZhGcfXlctx75KTmtAcxfqEhCJBEARBEM2OONe5DQYJRYKIU8Kd9xgMpeROqDGMXsdo0ZDfzXU6l6k3NZgnKjohuKBTAGpJXe+R2tGQvpjaegbjO2Rae3w/m7p6VeUY3V/Rg0LP4UFCkSCaKcG+5OsW0m7q1CAw6rqaR52OjiJx85nXk+CL8h9HOo3qujZXsewl5IqXDWZF44eEIkEQBEEQzQqO0Cuz1LT+eHOChCJBEAbiPZzU0Bg8sI3KY1R/xNs9EnFSUyP+HOPt2jdmPCFmSVDo2QsJRYIgiDpAP9yNH/qMCDMo9BweJBQJgiAIgmh2SCE8x7wRe5UbGhKKBEEQBEE0O0LVUSSZ6IWEIkEQBEEQzY5Q8xDJoeiFhCJBEARBEM0OWpklPEgoEgRBEATR7JBCqEHyKHohoUgQBEEQRLMjlNeQdKIXEooEQRAEQTQ7QoaeSSnqkFAkCIIgCKKZwakETpiQUCQIgiAIotlBHsXwIKFIEARBEESzg5bwCw8SigRBEARBNDtCL+1ISlGDhCJBEARBEM2OUOVxyKPoRYi1AZFw8OBB3HLLLcjPz0dCQgI6deqEefPmweVyxdo0giAIgiDiCInzoA/SiV7iSiju3r0bsizjpZdewo4dO/DMM89g6dKluP/++2NtGkEQBEEQcYQc4hGpUFy4cCEGDRqElJQUZGZmYvz48dizZ4+hT3V1NaZOnYpWrVohOTkZV155JYqKigx9Dh8+jLFjxyIxMRGZmZn461//Co/HU9u3GBXiSihefPHFeOWVVzB69Gh07NgRl156Kf7yl7/g/fffj7VpBEEQBEHECRyAJPOgDznC0jlff/01pk6diu+++w4rVqyA2+3G6NGjUVFRofe555578Mknn+C9997D119/jePHj+OKK67Q90uShLFjx8LlcmH9+vV49dVXsWzZMsydOzdab7tWxP0cxZKSErRs2TLofqfTCafTqW+XlpY2hFkEQRAEQTRipBBiMNISi8uXLzdsL1u2DJmZmdi8eTPOP/98lJSU4F//+hfefPNNXHjhhQCAV155Bd27d8d3332Hc845B19++SV27tyJr776CllZWejbty8efvhhzJw5Ew899BBsNlvE7zEaxJVH0Z/9+/fj+eefx2233Ra0z8KFC5GWlqY/8vLyGtBCgiAIgiAaIzJ40AcHhyRJKC0tNTx8HU+hKCkpAQDdkbV582a43W6MGjVK79OtWze0a9cOGzZsAABs2LABvXv3RlZWlt5nzJgxKC0txY4dO6L1tiOmUQjFWbNmgTEW8rF7927DMceOHcPFF1+Mq666CpMnTw469uzZs1FSUqI/jhw5Ut9vhyAIgiCIRk5NySxbt241OJrS0tKwcOHCGseVZRnTp0/H8OHD0atXLwBAYWEhbDYb0tPTDX2zsrJQWFio9/EVidp+bV+saBSh53vvvRc33XRTyD4dO3bUXx8/fhwXXHABhg0bhn/84x8hj7Pb7bDb7dEwkyAIgiCIJkKoeYicc/Tr1w+rV682tIejJ6ZOnYqff/4Z69atq7ONjYFGIRQzMjKQkZERVt9jx47hggsuwIABA/DKK69AEBqFU5QgCIIgiDhCCpHbLAMQRRGpqakRjTlt2jR8+umnWLt2Ldq2bau3Z2dnw+Vyobi42OBVLCoqQnZ2tt7n+++/N4ynZUVrfWJBXKmsY8eOYeTIkWjXrh3+9re/4eTJkygsLIypS5YgCIIgiPhD4nLQR6SVFDnnmDZtGj744AOsWrUK+fn5hv0DBgyA1WrFypUr9bY9e/bg8OHDGDp0KABg6NCh2L59O06cOKH3WbFiBVJTU9GjR486vNO60Sg8iuGyYsUK7N+/H/v37zcodUD5kAiCIAiCIMJBDiEGI1UUU6dOxZtvvomPPvoIKSkpugMrLS0NCQkJSEtLwy233IIZM2agZcuWSE1NxZ133omhQ4finHPOAQCMHj0aPXr0wI033ognn3wShYWFmDNnDqZOnRrTKXRx5VG86aabwDk3fRAEQRAEQYSLFOKfjBDr+5mwZMkSlJSUYOTIkcjJydEf77zzjt7nmWeewR/+8AdceeWVOP/885GdnW2oAy2KIj799FOIooihQ4fihhtuwJ/+9CcsWLAgau+5NsSVR5EgCIIgCCIaeEKIwVDeRjPCcVg5HA688MILeOGFF4L2ad++PT7//POIzl3fkFAkCIIgCKLZEcprSKs9eyGhSBAEQRBEs0NiUtB9JBS9kFAkCIIgCKLZQR7F8CChSBAEQRBEs0NinqD7ZBZZMktThoQiQRAEQRDNDg9CCMUIs56bMiQUCYIgCIJodvCQYpBCzxokFAmCIAiCaFZwABLcQffLCJ7o0twgoUgQBEEQRDODw8OCC8XQ3sbmBQlFgiAIgiCaHaHEIGU9eyGhSBAEQRBEs0Pi5FEMBxKKBEEQBEE0O2iOYniQUCQIgiAIotlBWc/hQUKRIAiCIIhmR6jQs8wp9KxBQpEgCIIgiGYHDxleJqGoQUKRIAiCIIhmh8RpZZZwIKFIEARBEESzQw6V9UyhZx0SigRBEARBNDtCi0FKZtEgoUgQBEEQRLMjtEeRyuNokFAkCIIgCKLZQXMUw4OEIkEQBEEQzQweOvTMKfSsQUKRIAiCIIhmR8jQM3kUdUgoEgRBEATR7JDl4KFnynr2QkKRIAiCIIhmRyivIaesZx0SigRBEARBNDvIoxgeJBQJgiAIgmiGUB3FcCChSBAEQRBEs0MOUR6HPIpeSCgSBEEQBNHs4CGynkN7G5sXQqwNIAiCIAiCaGg4l0M8ahd6fuGFF9ChQwc4HA4MGTIE33//fZStbnjiVig6nU707dsXjDFs27Yt1uYQBEEQBBFPcE/wRy08iu+88w5mzJiBefPmYcuWLTj77LMxZswYnDhxIvq2NyBxKxTvu+8+5ObmxtoMgiAIgiDiEA4p6KM2QvHpp5/G5MmTMWnSJPTo0QNLly5FYmIiXn755egb34DEpVD83//+hy+//BJ/+9vfauzrdDpRWlpqeBAEQRAE0czhPPgDgCRJAfrB6XSaDuVyubB582aMGjVKbxMEAaNGjcKGDRsa5O3UF3EnFIuKijB58mS8/vrrSExMrLH/woULkZaWpj/y8vIawEqCIAiCIBojaWlpAJSC2zzIP4Bj7969Bv2QlpaGhQsXmo556tQpSJKErKwsQ3tWVhYKCwvr+y3VK3GV9cw5x0033YTbb78dAwcOxMGDB2s8Zvbs2ZgxY4a+XVpaSmKRIAiCIJoprVu3BsCghJdFkx4yAI633noLKSkphj12u73+DWxkNAqhOGvWLDzxxBMh++zatQtffvklysrKMHv27LDHttvtzfKDJQiCIAjCnFOnTqqCUYYxuMr1tjZt2oQ9XuvWrSGKIoqKigztRUVFyM7OjoLFsYPx2uaAR5GTJ0/it99+C9mnY8eOuPrqq/HJJ5+AMaa3S5IEURQxYcIEvPrqqzWeq7S0VHU7i1D+oiAIgiAIom5wABJKSkqQmpoaa2PCgjERXq+ipgdkADIqKyuRkJAQ0XhDhgzB4MGD8fzzzysjyTLatWuHadOmYdasWVG0vGFpFB7FjIwMZGRk1NjvueeewyOPPKJvHz9+HGPGjME777yDIUOG1KeJBEEQBEE0IaqqKlQxyKEIRcWb+Oqrr0YsEgFgxowZmDhxIgYOHIjBgwdj0aJFqKiowKRJk6JsecPSKIRiuLRr186wnZycDADo1KkT2rZtGwuTCIIgCIKIQxwOB/7973/jhhtugFcoQt2OnGuuuQYnT57E3LlzUVhYiL59+2L58uUBCS7xRqMIPdeWgwcPIj8/H1u3bkXfvn3DOoZCzwRBEAQRbeIv9Awo4WFR1PQAx4oVKwwlbog4F4q1oaSkBOnp6VAmr5JQJAiCIIi6o4Rti4uL9fIz8cKqVatw0UUXAWDgnNZ49ieuQs/RoKysTH1FNwNBEARBRJOysrK4E4oXXnghAAH79++NtSmNkmbnUZRlGcePH0dKSoohe7qpotWNPHLkSFyFA+IFur71C13f+oOubf3S3K4v5xxlZWXIzc2FIMTdWh5ECJqdR1EQhGaZ+JKamtosvqxiBV3f+oWub/1B17Z+aU7XN948iUR4kOwnCIIgCIIgTCGhSBAEQRAEQZhCQrGJY7fbMW/ePFrGsJ6g61u/0PWtP+ja1i90fYmmQrNLZiEIgiAIgiDCgzyKBEEQBEEQhCkkFAmCIAiCIAhTSCgSBEEQBEEQppBQJAiCIAiCIEwhoUgQBEEQBEGYQkKxCfPoo49i2LBhSExMRHp6ummfw4cPY+zYsUhMTERmZib++te/wuPxNKyhTYQOHTqAMWZ4PP7447E2K2554YUX0KFDBzgcDgwZMgTff/99rE1qEjz00EMB92m3bt1ibVbcsnbtWowbNw65ublgjOHDDz807OecY+7cucjJyUFCQgJGjRqFffv2xcZYgqgFJBSbMC6XC1dddRWmTJliul+SJIwdOxYulwvr16/Hq6++imXLlmHu3LkNbGnTYcGCBSgoKNAfd955Z6xNikveeecdzJgxA/PmzcOWLVtw9tlnY8yYMThx4kSsTWsS9OzZ03Cfrlu3LtYmxS0VFRU4++yz8cILL5juf/LJJ/Hcc89h6dKl2LhxI5KSkjBmzBhUV1c3sKUEUUs40eR55ZVXeFpaWkD7559/zgVB4IWFhXrbkiVLeGpqKnc6nQ1oYdOgffv2/Jlnnom1GU2CwYMH86lTp+rbkiTx3NxcvnDhwhha1TSYN28eP/vss2NtRpMEAP/ggw/0bVmWeXZ2Nn/qqaf0tuLiYm632/lbb70VAwsJInLIo9iM2bBhA3r37o2srCy9bcyYMSgtLcWOHTtiaFn88vjjj6NVq1bo168fnnrqKQrj1wKXy4XNmzdj1KhRepsgCBg1ahQ2bNgQQ8uaDvv27UNubi46duyICRMm4PDhw7E2qUly4MABFBYWGu7ltLQ0DBkyhO5lIm6wxNoAInYUFhYaRCIAfbuwsDAWJsU1d911F/r374+WLVti/fr1mD17NgoKCvD000/H2rS44tSpU5AkyfTe3L17d4ysajoMGTIEy5YtQ9euXVFQUID58+fjvPPOw88//4yUlJRYm9ek0L5Hze5l+o4l4gXyKMYZs2bNCpiI7v+gH9PoEcn1njFjBkaOHIk+ffrg9ttvx9///nc8//zzcDqdMX4XBOHlkksuwVVXXYU+ffpgzJgx+Pzzz1FcXIx333031qYRBNEIIY9inHHvvffipptuCtmnY8eOYY2VnZ0dkElaVFSk7yPqdr2HDBkCj8eDgwcPomvXrvVgXdOkdevWEEVRvxc1ioqK6L6sB9LT09GlSxfs378/1qY0ObT7taioCDk5OXp7UVER+vbtGyOrCCIySCjGGRkZGcjIyIjKWEOHDsWjjz6KEydOIDMzEwCwYsUKpKamokePHlE5R7xTl+u9bds2CIKgX1siPGw2GwYMGICVK1di/PjxAABZlrFy5UpMmzYttsY1QcrLy/HLL7/gxhtvjLUpTY78/HxkZ2dj5cqVujAsLS3Fxo0bg1ajIIjGBgnFJszhw4dx+vRpHD58GJIkYdu2bQCAzp07Izk5GaNHj0aPHj1w44034sknn0RhYSHmzJmDqVOnwm63x9b4OGPDhg3YuHEjLrjgAqSkpGDDhg245557cMMNN6BFixaxNi/umDFjBiZOnIiBAwdi8ODBWLRoESoqKjBp0qRYmxb3/OUvf8G4cePQvn17HD9+HPPmzYMoirjuuutibVpcUl5ebvDGHjhwANu2bUPLli3Rrl07TJ8+HY888gjOOuss5Ofn48EHH0Rubq7+RxBBNHpinXZN1B8TJ07kAAIeq1ev1vscPHiQX3LJJTwhIYG3bt2a33vvvdztdsfO6Dhl8+bNfMiQITwtLY07HA7evXt3/thjj/Hq6upYmxa3PP/887xdu3bcZrPxwYMH8++++y7WJjUJrrnmGp6Tk8NtNhtv06YNv+aaa/j+/ftjbVbcsnr1atPv2YkTJ3LOlRI5Dz74IM/KyuJ2u51fdNFFfM+ePbE1miAigHHOeaxEKkEQBEEQBNF4oaxngiAIgiAIwhQSigRBEARBEIQpJBQJgiAIgiAIU0goEgRBEARBEKaQUCQIgiAIgiBMIaFIEARBEARBmEJCkSAIgiAIgjCFhCJBEARBEARhCglFgiAIgiAIwhQSigRBEARBEIQpJBQJgmhUnDx5EtnZ2Xjsscf0tvXr18Nms2HlypUxtIwgCKL5QWs9EwTR6Pj8888xfvx4rF+/Hl27dkXfvn1x2WWX4emnn461aQRBEM0KEooEQTRKpk6diq+++goDBw7E9u3bsWnTJtjt9libRRAE0awgoUgQRKOkqqoKvXr1wpEjR7B582b07t071iYRBEE0O2o9R3H//v344osvUFVVBQAgvUkQRDT55ZdfcPz4cciyjIMHD8baHIIgiGZJxB7F3377Dddccw1WrVoFxhj27duHjh074uabb0aLFi3w97//vb5sJQiimeByuTB48GD07dsXXbt2xaJFi7B9+3ZkZmbG2jSCIIhmRcQexXvuuQcWiwWHDx9GYmKi3n7NNddg+fLlUTWOIIjmyQMPPICSkhI899xzmDlzJrp06YKbb7451mYRBEE0OyIWil9++SWeeOIJtG3b1tB+1lln4dChQ1EzjCCI5smaNWuwaNEivP7660hNTYUgCHj99dfxzTffYMmSJbE2jyAIollhifSAiooKgydR4/Tp05SRSBBEnRk5ciTcbrehrUOHDigpKYmRRQRBEM2XiD2K5513Hl577TV9mzEGWZbx5JNP4oILLoiqcQRBEARBEETsiDiZ5eeff8ZFF12E/v37Y9WqVbj00kuxY8cOnD59Gt9++y06depUX7YSBEEQBEEQDUit6iiWlJRg8eLF+PHHH1FeXo7+/ftj6tSpyMnJqQ8bCYIgCIIgiBhABbcJgiAIgiAIU8JKZvnpp5/CHrBPnz61NoYgCIIgCIJoPITlURQEAYwxcM7BGNPbtUN92yRJqgczCYIgCIIgiIYmrKznAwcO4Ndff8WBAwfw3//+F/n5+XjxxRexbds2bNu2DS+++CI6deqE//73v/VtL0EQBEEQBNFARDxHcfDgwXjooYfw+9//3tD++eef48EHH8TmzZujaiBBEARBEAQRGyKuo7h9+3bk5+cHtOfn52Pnzp1RMYogCIIgCIKIPRELxe7du2PhwoVwuVx6m8vlwsKFC9G9e/eoGkcQBEEQBEHEjohDz99//z3GjRsHzrme4fzTTz+BMYZPPvkEgwcPrhdDCYIgCIIgiIYlYo/i4MGD8euvv+KRRx5Bnz590KdPHzz66KP49ddfIxaJa9euxbhx45CbmwvGGD788MMaj1mzZg369+8Pu92Ozp07Y9myZZG+BYIgCIIgCCIMwqqj6E9SUhJuvfXWOp+8oqICZ599Nm6++WZcccUVNfY/cOAAxo4di9tvvx1vvPEGVq5ciT//+c/IycnBmDFj6mwPQRAEQRAE4SWs0PPHH3+MSy65BFarFR9//HHIvpdeemntDGEMH3zwAcaPHx+0z8yZM/HZZ5/h559/1tuuvfZaFBcXY/ny5bU6L0EQBEEQBGFOWB7F8ePHo7CwEJmZmSGFHGOsXgtub9iwAaNGjTK0jRkzBtOnTw96jNPphNPp1LdlWcbp06fRqlUrQ6FwgmgOcM5RVlaG3NxcCELEM0+IGpBlGcePH0dKSgp9vxDNCvpuabqEJRRlWTZ93dAUFhYiKyvL0JaVlYXS0lJUVVUhISEh4JiFCxdi/vz5DWUiQcQFR44cQdu2bWNtRpPj+PHjyMvLi7UZBBEz6Lul6VGrOYrxxOzZszFjxgx9u6SkBO3atcORI0eQmpoaQ8sIouEpLS1FXl4eUlJSYm1Kk0S7rvT9QjQ36Lul6RKxUFywYEHI/XPnzq21MTWRnZ2NoqIiQ1tRURFSU1NNvYkAYLfbYbfbA9pTU1Ob3Re5yyPjTKULxZVulFa7Ue70oNIpodotwSXJ8Mgcsqyt3w2IAoNNFGC3iki0ikiyW5CaYEFaghWtkuxIsIkxfkdEbaGwaP2gXdfm+P1CEAB9tzRFIhaKH3zwgWHb7XbjwIEDsFgs6NSpU70KxaFDh+Lzzz83tK1YsQJDhw6tt3PGC5xznChz4sCpChw+XYkjpytxrLgKhSXVKCqtxokyJ8qqPVE9Z6JNREaKHVkpDuSmO9CmRQLatUxE+1ZJ6JiRhIxkO31pEARBEEQcE7FQ3Lp1a0BbaWkpbrrpJlx++eURjVVeXo79+/fr2wcOHMC2bdvQsmVLtGvXDrNnz8axY8fw2muvAQBuv/12LF68GPfddx9uvvlmrFq1Cu+++y4+++yzSN9GXPNbuRM7C0qxq6AUuwvLsP9EOX45UY4KV82JRAID0hNtSHVYkGS3IMlmgd0qwG4RYRUZBFXYyZzDLXF4ZBnVbglVLgnlTg9Kqz0oqXTDJcmodEk49FslDv1WaXquFIcFXbJS0CUrBT1yU9EzNxU9clLhsJInkqhf1q5di6eeegqbN29GQUFBjRUVAKVG64wZM7Bjxw7k5eVhzpw5uOmmmxrEXoIgiMZKVOYopqamYv78+Rg3bhxuvPHGsI/74YcfcMEFF+jb2lzCiRMnYtmyZSgoKMDhw4f1/fn5+fjss89wzz334Nlnn0Xbtm3xf//3f026hmKVS8JPR4ux9Ugxth0uxk9Hi3G8pNq0rygwtFW9enktE9EmPQG56Q5kpTqQmeJA62QbUh1WCELdvHycc1S4JJwqc+JEmRMFJVUoKKnG0TOVOHy6CgdPVeDomUqUVXuw+dAZbD50xmBj16wU9G+fjv7tWmBwfku0bZFYJ3sIwh+q0UoQBBEdIl7CLxjr1q3DuHHjcObMmZo7x5DS0lKkpaWhpKSkUc4hKqt2Y9PB0/ju19P4/sBp/HysBB458CPq0CoRPXJT0TUrFV2zk9E5MxntWibBZmkcZQmcHgkHTlVgb1E5dheUYmdBKX4+VoJT5a6Avm3SE3BOx1Y496xWGN65NTJTHDGwuHnQ2O//+qAha7Q2x+tLEADd+02ZiD2Kzz33nGGbc46CggK8/vrruOSSS6JmWHPBI8nYdqQYa/edwrp9J/Hj0RJIfsIwK9WO/u1aoG9eOvq0TUevNqlIcVhjZHF42C0iumWnolt2Ki49OxeAeq+UVGPbkWJsOXQGmw6dwY5jJThWXIX/bjmK/245CgDokZOKkV0zcFH3LPTNS4dYRw8oQdREbWq0AoF1WktLS5UXf+sKOPz/aPO7jw3zd/33+Z8p1LGRjh3k2LDHZCZtYY7F/LbNxvY/j9l5zdrD2g5iRyRjGcaJwG7/axLMvpDt4drj/35NxmZCiD6+zybvz6xvlRtE0yRiofjMM88YtgVBQEZGBiZOnIjZs2dHzbCmTHGlC2v2nMRXu4qwdu9JlPolmbRvlYhz8lthSMeWGNShJdq2SGgSSSGMMeSmJyA3PQG/750DAKhwevDDoTNY/8spfLv/FH4+pngfdxaU4sU1v6B1sg2jumdhTK9sDO/UutF4TImmRW1qtAIh6rS6K5QJwQTRXHBGJThJNEIiFooHDhyoDzuaPAUlVVj+cyG+3FGE7w+eNngN0xOtOLdza5x3VmsM79y6Wc3ZS7JbMKJLBkZ0yQAAnCp34pt9J7Fy1wl8veckTpW78PamI3h70xGkOiwY0zMbl/bNxdCOrWARSTQSscW/TqtWSw63rQNSUwAE+fEMNeMnYB+v5X5u0hbhmKGOMzuPWXvAW/UfO8SY0dwOald9jB3mdo395DDO69vOg9jlv9/kOZw+HMH3V1QBeBRE06PJF9yOJceLq/D59gJ8tr0AWw8XG/Z1y07BRd0zcWG3TPTNa0HhVZXWyXZc3q8tLu/XFi6PjO8PnMYXOwqxfEchTpY58d7mo3hv81G0Trbjsr65uKJ/G/TMTYu12UScU5sarUDwOq1o2QGgeVpEc6K0FCQUmyYRC8XLL7/cNAzKGIPD4UDnzp1x/fXXo2vXrlExMN4ornThs+0F+GjrcXx/8LTezhgwsH0LjOmZjdE9stGuVfPxGtYWm0XAuWe1xrlntcZDl/bEpoOn8fGPx/H59gKcKnfiX+sO4F/rDqBnbiquHpiH8X3bIC2xcc/dJBonVKOVIAjCnIiznm+66SZ8+OGHSE9Px4ABAwAAW7ZsQXFxMUaPHo0ff/wRBw8exMqVKzF8+PB6Mbou1EdmlssjY82eE/jvlqNYtfsE3JL3kg7u0BJ/ODsHF/fMRmYqZfNGA5dHxtq9J/HfLUfx1a4i/XrbLQLG9snBjee0R9+89CYxrzPaNJfMRN8arf369cPTTz+NCy64IGiN1gMHDqBXr16YOnWqXqP1rrvuwmeffRZReZzmcn0Jwh+695suEQvFWbNmobS0FIsXL4YgKHPEZFnG3XffjZSUFDz66KO4/fbbsWPHDqxbt65ejK4L0byZ9xaV4d1NR/DB1mP4rcJb9qV7TirG983FuLNzkZsePGxF1J0zFS58tO0Y3t50BLsLy/T2Xm1SMXFoB4w7O5cKfPvQXL7M16xZY6jRqqHVaL3ppptw8OBBrFmzxnDMPffcg507d6Jt27Z48MEHIy643VyuL0H4Q/d+0yVioZiRkYFvv/0WXbp0MbTv3bsXw4YNw6lTp7B9+3acd955KC4ujqatUaGuN3OVS8KnPx3HW98fxhafeYcZKXZc3q8NrujfBt2y6T9JQ8M5x5bDxXhj4yF8+lMBXB4ZANAqyYYJ57THjee0R0aKyVyyZgZ9mdcvdH2J5grd+02XiOcoejwe7N69O0Ao7t69G5KkLCHncDiaXNjvl5PleOO7w/jP5iN6ORtRYLioWyauGZSHEV0yKAs3hjDGMKB9Cwxo3wJzxvbAO5uO4PUNB3G8pBrPrdyHpV//giv7t8Gfz+uIThnJsTaXIAiCIOKCiIXijTfeiFtuuQX3338/Bg0aBADYtGkTHnvsMfzpT38CAHz99dfo2bNndC2NAZLMsWr3Cby24SC+2XdKb2/bIgHXDW6Hqwa2pVVEGiEtk2yYMrITJp+Xj+U7CvF/3xzAtiPFeOt7pczOmB7ZmHpBZ/RuS9nSBEEQBBGKiEPPkiTh8ccfx+LFi/VyEllZWbjzzjsxc+ZMiKKIw4cPQxAEtG3btl6MrgvhuMfLqt1494ejeHX9QRw+XQlAyVq+sGsmbhjaHiPOyqjzeslEw8E5x+ZDZ7D061/x1S5vCZQRXTJw10WdMaB9yxha17BQeKh+oetLNFfo3m+61GmtZ225qni6KULdzEdOV+KVbw/i3R+OoNyphJfTEqy4dlAebjinPfJaUkmbeGdvURmWrPkFH/94XC96fm7n1rjnd2c1C8FIX+b1C11forlC937TpVYFtz0eD9asWYNffvkF119/PQDg+PHjSE1NRXJy/M3/2n60BC+t/QWfby+AtmBK58xkTBreAZf3a4NEG9Ulbyp0yUrBM9f0xT2juuDFNfvxn81HsW7/Kazbfwrnd8nAX0Z3QZ+26bE2kyAIgiAaBRF7FA8dOoSLL74Yhw8fhtPpxN69e9GxY0fcfffdcDqdWLp0aX3ZGhW0v3qKi4ux/YQbS77ej2/3/6bvP++s1rjl3HyM6JLR5BJyiECOnK7Ei2v2470fjsKj/pUwpmcW/jqmKzpnpsTYuuhDf/XXL3R9ieYK3ftNl4hdZXfffTcGDhyIH3/8Ea1atdLbL7/8ckyePDmqxtUn17z0HXaf9mYvX3p2Liaf1xE9cukGb07ktUzEwiv6YMqIzli0ci8+2HoMX+wowoqdRbhqQB7u+V0XZKdRwhJBEATRPIlYKH7zzTdYv349bDabob1Dhw44duxY1Ayrb3YWlCIpOQXXDMrDn8/LR9sWNP+wOdOuVSKevrovbh/RCU99sQcrdhbhnR+O4KMfj+HP53bE7SM7IdlOUxAIgiCI5kXEv3yyLOv1En05evQoUlLiJ1R3+/kdcfvo3miZZKu5M9Fs6JKVgn/+aSA2HzqNhZ/vxg+HzmDx6v14e9MRzPhdF1wzKA8iZbwTBEEQzYSIK0SPHj0aixYt0rcZYygvL8e8efPw+9//Ppq21SvTLjqLRCIRlAHtW+K924di6Q0DkN86CafKnbj/g+0Y+9w3WP/LqZoHIAiCIIgmQMTJLEePHsWYMWPAOce+ffswcOBA7Nu3D61bt8batWuRmZlZX7ZGBZpwS0SKyyPj398dwqKv9uqr8lzSKxv3/7573JVMovu/fqHrSzRX6N5vutSqjqLH48Hbb7+Nn376CeXl5ejfvz8mTJiAhISE+rAxqtDNTNSWMxUuPPPVXvz7u0OQOWC3CLhjZGfcNqIjHFYx1uaFBd3/9QtdX6K5Qvd+0yVioVhdXQ2HI36zQOlmJurKroJSPPTxDmw8cBoA0L5VIh66tCcu6Nq4vekA3f/1DV1forlC937TJeI5ipmZmZg4cSJWrFgBWZbrwyaCaNR0z0nF27eeg+eu64esVDsO/VaJSa9swu2vb0ZBSVWszSMIgiCIqBGxUHz11VdRWVmJyy67DG3atMH06dPxww8/1IdtBNFoYUypvbny3pGYfF4+RIFh+Y5CjPr713h53QF9eUCCIAiCiGciFoqXX3453nvvPRQVFeGxxx7Dzp07cc4556BLly5YsGBBfdhIEI2WZLsFD4ztgU/vPBf926WjwiVhwac7cfmL32LH8ZJYm0cQBEEQdSJioaiRkpKCSZMm4csvv8RPP/2EpKQkzJ8/P+JxXnjhBXTo0AEOhwNDhgzB999/H7L/okWL0LVrVyQkJCAvLw/33HMPqqura/s2CCIqdM9JxX9uH4ZHL++FFIcFPx0twaWLv8UTy3ej2h1Yd5QgCIIg4oFaC8Xq6mq8++67GD9+PPr374/Tp0/jr3/9a0RjvPPOO5gxYwbmzZuHLVu24Oyzz8aYMWNw4sQJ0/5vvvkmZs2ahXnz5mHXrl3417/+hXfeeQf3339/bd8GQUQNQWCYMKQ9Vt47AmN750CSOZas+QWXPPsNNv76W80DEARBEEQjI+Ks5y+++AJvvvkmPvzwQ1gsFvzxj3/EhAkTcP7550d88iFDhmDQoEFYvHgxAGXVl7y8PNx5552YNWtWQP9p06Zh165dWLlypd527733YuPGjVi3bl1Y56TMLKKh+HJHIR786GcUlToBAH8a2h4zL+6GpBguBUj3f/1C15dortC933Sp1RzFqqoqvPbaaygsLMRLL71UK5HocrmwefNmjBo1ymuMIGDUqFHYsGGD6THDhg3D5s2b9fD0r7/+is8//zzkijBOpxOlpaWGB0E0BKN7ZuPLe0bg2kF5AIDXNhzCmEVrsX4/rexCEARBxAcRuzaKioqisqbzqVOnIEkSsrKyDO1ZWVnYvXu36THXX389Tp06hXPPPRecc3g8Htx+++0hQ88LFy6s1dxJgogGaQlWPH5lH/yhTy5m/vcnHD1Thev/byNuOKcdZl/SPabeRYIgCIKoiYg9ir4isbq6ukG9dWvWrMFjjz2GF198EVu2bMH777+Pzz77DA8//HDQY2bPno2SkhL9ceTIkXq1kSDMOPes1vjinvNxwzntAAD//u4wLnn2G2w6eDrGljVtKFmOIAiibkTszqioqMDMmTPx7rvv4rffAifoS1J4GZ6tW7eGKIooKioytBcVFSE7O9v0mAcffBA33ngj/vznPwMAevfujYqKCtx666144IEHIAiButdut8Nut4dlE0HUJ8l2Cx4Z3xuX9MrBX9/7EYdPV+Lqlzbg1vM7YsbvusBuiY9lAOMFLVlu6dKlGDJkCBYtWoQxY8Zgz549pmvSa8lyL7/8MoYNG4a9e/fipptuAmMMTz/9dAzeAUEQROyJ2KN43333YdWqVViyZAnsdjv+7//+D/Pnz0dubi5ee+21sMex2WwYMGCAITFFlmWsXLkSQ4cONT2msrIyQAyKovLjWoslqwkiJgzv3BrL7zkffxzQFpwDL339Ky5b/C12FdD82Wjy9NNPY/LkyZg0aRJ69OiBpUuXIjExES+//LJp//Xr12P48OG4/vrr0aFDB4wePRrXXXddSC8kzYEmCKKpE7FQ/OSTT/Diiy/iyiuvhMViwXnnnYc5c+bgsccewxtvvBHRWDNmzMA///lPvPrqq9i1axemTJmCiooKTJo0CQDwpz/9CbNnz9b7jxs3DkuWLMHbb7+NAwcOYMWKFXjwwQcxbtw4XTASRDyQ6rDib1edjX/cOACtkmzYXViGyxZ/i3+s/QUyrepSZxoqWW7hwoVIS0vTH3l5edF9IwRBEDEm4tDz6dOn0bFjRwBAamoqTp9W5lide+65mDJlSkRjXXPNNTh58iTmzp2LwsJC9O3bF8uXL9cTXA4fPmzwIM6ZMweMMcyZMwfHjh1DRkYGxo0bh0cffTTSt0EQjYLRPbPRv30LzPrvT/hq1wk89vlurNlzEn+/+mzkpCXE2ry4paGS5WbPno0ZM2bo26WlpSQWCYJoUkQsFDt27IgDBw6gXbt26NatG959910MHjwYn3zyCdLT0yM2YNq0aZg2bZrpvjVr1hiNtVgwb948zJs3L+LzEERjpXWyHf/800C8vekIFnyyE+t/+Q0XL/oGj1/RG5f0zom1eQ2GJElYtmwZVq5ciRMnTkCWZcP+VatW1ev5fZPlhgwZgv379+Puu+/Gww8/jAcffND0GJoDTRBEUydioThp0iT8+OOPGDFiBGbNmoVx48Zh8eLFcLvdNOGbIGoJYwzXDW6HIfktMf2dbfjpaAmmvLEF1w7Kw9xxPZBoa/pldO6++24sW7YMY8eORa9evcAYq/VYDZUsR8Qvmtc43ATM5o4oirBYLHX6f0nEJxH/+txzzz3661GjRmH37t3YvHkzOnfujD59+kTVOIJobnTMSMZ/bh+GZ77ai6Vf/4K3Nx3BpoOn8fx1/dEjt2mvdvD222/j3XffDTknMFx8k+XGjx8PwJssFyyCQclyzQeXy4WCggJUVlbG2pS4IjExETk5ObDZbLE2hWhAIhaK1dXVcDgc+nb79u3Rvn37qBpFEM0Zm0XAzIu74bzOrXHPu9vwy8kKjH/hW9z/+26YOKxDk/2L3mazoXPnzlEbb8aMGZg4cSIGDhyIwYMHY9GiRQHJcm3atMHChQsBKMlyTz/9NPr166eHnilZrukhyzIOHDgAURSRm5sLm83WZP9PRQvOOVwuF06ePIkDBw7grLPOIg97MyJioZieno7BgwdjxIgRGDlyJIYNG4aEBJp0TxDRZljn1vjf3efjvv/8iK92ncBDn+zEuv2/4W9X9UF6YtP7i/7ee+/Fs88+i8WLF0flh5uS5QgzXC4XZFlGXl4eEhMTY21O3JCQkACr1YpDhw7B5XIZHEZE04bxCGMq69atw9q1a7FmzRqsX78eHo8HAwcO1IXj7373u/qyNSrQwuVEvME5x6vrD+Kxz3fDJcnITXPg+ev7YUD7lhGP1Zjv/8svvxyrV69Gy5Yt0bNnT1itVsP+999/P0aWhU9jvr6EQnV1NQ4cOID8/HwSOxES6trRvd90iVgo+uLxeLBp0ya89NJLeOONNyDLcqOfGEw3MxGv/HysBNPe3IKDv1VCFBj+Mrorbju/IwQhfO9bY77/tZBwMF555ZUGsqT2NObrSyiQUKw9JBSbJ7VKpdy7dy/WrFmjP5xOJ/7whz9g5MiRUTaPIAiNXm3S8Old5+GBD7bjo23H8cTy3fj+wG/4+9V90TIp/kPR8SAECYIgmhsRC8U2bdqgqqoKI0eOxMiRIzFz5kz06dOHJgMTRAOQbLdg0TV9MbRjK8z7eAdW7zmJsc99g8W1DEU3Rk6ePIk9e/YAALp27YqMjIwYW0QQBNF8iThtKSMjA5WVlSgsLERhYSGKiopQVVVVH7YRBGECYwzXDm6HD6cOR8fWSSgoqcY1L32Hf679Na7LuFRUVODmm29GTk4Ozj//fJx//vnIzc3FLbfcQmVMiGYNYyzk46GHHsLBgwfBGIMoijh27Jjh+IKCAr0G4sGDB/X2w4cPY+zYsUhMTERmZib++te/wuPxNPC7Ixo7EQvFbdu2obCwELNmzYLT6cT999+P1q1bY9iwYXjggQfqw0aCIEzonpOKj+88F+POzoVH5nj081247fXNKKlyx9q0WjFjxgx8/fXX+OSTT1BcXIzi4mJ89NFH+Prrr3HvvffG2jyCiBkFBQX6Y9GiRUhNTTW0/eUvf9H7tmnTBq+99prh+FdffRVt2rQxtEmShLFjx8LlcmH9+vV49dVXsWzZMsydO7dB3hMRP9QpmeW3337DmjVr8NFHH+Gtt96iZBaCiAGcc/z7u0N4+NNdcEky2rdKxIsT+qNnblpA38Z8/7du3Rr/+c9/AuY6r169GldffTVOnjwZG8MioDFfX0LBPyGDc44qd2x+txKsYsTTtpYtW4bp06ejuLjY0H7w4EHk5+djzpw5eOedd7B37159X9euXXHNNdfg4YcfxoEDB9ChQwf873//wx/+8AccP35cLxm1dOlSzJw5EydPnjQtqk3JLM2TiOcovv/++3oSy86dO9GyZUuce+65+Pvf/44RI0bUh40EQYSAMYYbh3ZAn7bpuOONLTj0WyWueHE9Hh7fC1cPzIu1eWFTWVmp/2D5kpmZSaFnot6ockvoMfeLmJx754IxUV+e89JLL8XSpUuxbt06nHvuuVi3bh3OnDmDcePG4eGHH9b7bdiwAb179zb8nxszZgymTJmCHTt2oF+/flG1i4hfIg4933777Th+/DhuvfVWbN26FSdOnMD777+Pu+66C2effXZ92EgQRBicnZeOz+46FyO7ZsDpkXHff37C7Pd/QnWMvCWRMnToUMybNw/V1dV6W1VVFebPn4+hQ4fG0DKCiB+sVituuOEGvPzyywCAl19+GTfccENAXdLCwsKAP8y07cLCwoYxlogLIv5T5sSJE/VhB0EQUSA90YaXJw7CC6v34+mv9uKt74/g52OleHFCf+S1bNyrUDz77LMYM2YM2rZtq//R+eOPP8LhcOCLL2Lj8SGaPglWETsXjInZueuDm2++GcOGDcNjjz2G9957Dxs2bKAkFaLWRNfnTRBEzBEEhjsvOgtn56Xj7re3YvuxEoxbvA7PXtsP/bLtsTYvKL169cK+ffvwxhtvYPfu3QCA6667DhMmTKBlQol6gzEW9fBvrOnduze6deuG6667Dt27d0evXr2wbds2Q5/s7Gx8//33hraioiJ9H0FoNK3/HQRB6JzfJQOf3Hku7nhjC346WoKbXvkeU4fnxtqskCQmJmLy5MmxNoMg4p6bb74Zd9xxB5YsWWK6f+jQoXj00Udx4sQJZGZmAgBWrFiB1NRU9OjRoyFNJRo5JBQJognTtkUi3r1tKB76eAfe3nQEz63cH2uTDHz88ce45JJLYLVa8fHHH4fse+mllzaQVQQR/0yePBlXXXUV0tPTTfePHj0aPXr0wI033ognn3wShYWFmDNnDqZOnQq7vfFGHoiGh4QiQTRxHFYRj1/ZB2fnpWPOu5tibY6B8ePHo7CwEJmZmRg/fnzQfoyxRl96iyAaExaLBa1btw66XxRFfPrpp5gyZQqGDh2KpKQkTJw4EQsWLGhAK4l4oE51FAGldtKqVavQtWtXdO/ePVp21RtU64lozny78zDO7dme7v96gr5fGj+hagESoaE6is2TiMvjXH311Vi8eDEApXTFwIEDcfXVV6NPnz7473//G3UDCYKIHr3bpsfahKC89tprcDqdAe0ulytgpQmCIAiiYYhYKK5duxbnnXceAOCDDz4A5xzFxcV47rnn8Mgjj0TdQIIgmgeTJk1CSUlJQHtZWRkmTZoUA4sIgiCIiIViSUkJWrZsCQBYvnw5rrzySiQmJmLs2LHYt29f1A0kCKJ5wDk3Xc7s6NGjSEsLXI6QIAiCqH8iTmbJy8vDhg0b0LJlSyxfvhxvv/02AODMmTM034MgiIjp168fGGNgjOGiiy6CxeL9WpIkCQcOHMDFF18cQwsJgiCaLxELxenTp2PChAlITk5G+/btMXLkSABKSLp3794RG/DCCy/gqaeeQmFhIc4++2w8//zzGDx4cND+xcXFeOCBB/D+++/j9OnTaN++PRYtWoTf//73EZ+bIIjYo2U7b9u2DWPGjEFycrK+z2azoUOHDrjyyitjZB1BEETzJmKheMcdd2Dw4ME4cuQIfve730EQlOh1x44dI56j+M4772DGjBlYunQphgwZgkWLFmHMmDHYs2ePXgDUF5fLhd/97nfIzMzEf/7zH7Rp0waHDh0KWieKIIjGz7x58wAAHTp0wLXXXks13AiCIBoREc9RBICBAwfi8ssvN/zlP3bsWAwfPjyicZ5++mlMnjwZkyZNQo8ePbB06VIkJibqi5n78/LLL+P06dP48MMPMXz4cHTo0AEjRozQ14UlCCJ+6dGjR8AyYwCwceNG/PDDD7Ua84UXXkCHDh3gcDgwZMiQgCXL/CkuLsbUqVORk5MDu92OLl264PPPP6/VuQmCIJoCEXsUb7755pD7g4k8f1wuFzZv3ozZs2frbYIgYNSoUdiwYYPpMR9//DGGDh2KqVOn4qOPPkJGRgauv/56zJw5E6Jovri60+k0lNwoLS0Nyz6CIBqWqVOn4r777sOQIUMM7ceOHcMTTzyBjRs3RjQeRSwIgiDqTsRC8cyZM4Ztt9uNn3/+GcXFxbjwwgvDHufUqVOQJAlZWVmG9qysLOzevdv0mF9//RWrVq3ChAkT8Pnnn2P//v2444474Ha79fCVPwsXLsT8+fPDtosgiNiwc+dO9O/fP6C9X79+2LlzZ8Tj+UYsAGDp0qX47LPP8PLLL2PWrFkB/bWIxfr162G1WgEo4XCCIIjmTMRC8YMPPghok2UZU6ZMQadOnaJiVDBkWUZmZib+8Y9/QBRFDBgwAMeOHcNTTz0VVCjOnj0bM2bM0LdLS0uRl5dXr3YSBBE5drsdRUVF6Nixo6G9oKDAkAkdDhSx+P/27jyuiqr/A/jnXryXRQFRXBDZ1BQVFEMht9QiyQy07SHUJHFJzTBRnyQV3JI0FZcsEsPlSXPPp1+alfzEREkfFcglcQMx5SKggqKiwPn94cP8vHIhhu7lsnzer9e8Xt4zZ858Z5zX4czMmXOIiPSjSn0UyxSiVCI0NBRRUVGV3sbW1hYmJibIysrSSs/KykLLli11bmNnZ4f27dtrVdodO3aERqPBw4cPdW5jamoKKysrrYWIap6BAwciLCxMa9Dt27dv4+OPP8ZLL70kq6yK3lhoNBqd21y+fBk7duxAcXEx9u7di9mzZ2Pp0qUVfqQXGRkJa2traeFNKBlC6fBR5S1z5sxBeno6FAoFTExMcO3aNa3tS2+2FAoF0tPTpfSQkBB4enrC1NQUHh4e1XtQVGvopaEIAJcuXUJRUVGl86vVanh6eiIuLk5KKykpQVxcHHr27Klzm969e+PixYsoKSmR0s6fPw87Ozuo1eqqB09ERrdkyRJcvXoVTk5OGDBgAAYMGAAXFxdoNBosXbrU4Pt/8o2Fp6cnAgICMHPmTERHR5e7TWnDtnS5evWqweOk+iczM1Nali9fDisrK620adOmSXnt7e3LTHm5YcMG2Nvb6yw7ODgYAQEBBo2fajfZr56ffI0LPJ5NITMzE3v27EFQUJDssoKCgtC9e3d4eXlh+fLlKCgokPoUjRw5Evb29oiMjAQATJgwAZ9//jkmT56MDz74ABcuXMDChQsREhIi9zCIqIaxt7fH77//jk2bNiElJQXm5uYYNWoUAgMDpT6DlVXVNxYqlarcNxa6bkZNTU05nE9tJwTw6J5x9q2yAHTMRvS0J69Za2trKBSKMtdxTk4OACAoKAjr1q3T6naxbt06BAUFYf78+VrbrFy5EgCQnZ2N33//vcqHQXWb7IZiUlKS1m+lUolmzZph6dKlf/lF9NMCAgKQnZ2N8PBwaDQaeHh4YN++fdLrooyMDGmcRuDxrDA//fQTpkyZgi5dusDe3h6TJ0/GRx99JPcwiKgGatiwIcaNG/e3y3nyjUXpgN6lbywmTZqkc5vevXtj8+bNKCkpkeodvrGoBx7dAxa2Ms6+P74OqBvqtUh/f39ER0cjISEBffr0QUJCAm7dugU/P78yDUWiypDdUDxw4IBeA5g0aVK5FXd8fHyZtJ49e+K3337TawxEVHOcPXsWGRkZZfod+/v7yyqHbyyoPlKpVBgxYgRiY2PRp08fxMbGYsSIEbKfyhOVkt1QLHXjxg2kpqYCADp06KBzXDIiosq6fPkyXnvtNZw6dQoKhQJCCACPO/IDj+d9loNvLKhSVBaPn+wZa98GEBwcjF69emHhwoXYvn07EhMTZX1DQPQk2Q3F/Px8vP/++/j222+lj0pMTEwQEBCA1atXw9raWu9BElHdN3nyZLi4uCAuLg4uLi44duwYcnNzMXXqVCxZsqRKZfKNBf0lhULvr3+Nzd3dHa6urggMDETHjh3h5uamc9YjosqQ/dXz2LFjcfToUezZswe3b9/G7du38cMPP+D48eN47733DBEjEdUDiYmJmDdvHmxtbaFUKqFUKtGnTx9ERkby9S+RTMHBwYiPj5f97QDR02Q/Ufzhhx/w008/oU+fPlKar68vYmJi8PLLL+s1OCKqP4qLi2FpaQng8VfL169fR4cOHeDk5CR1cyGiyhk7dizeeuutCqegvHjxIu7evQuNRoP79+9LTx07derED7hIIruh2LRpU52vl62trWFjY6OXoIio/nFzc0NKSgpcXFzg7e2NxYsXQ61WY82aNWVmayGiijVo0AC2trYV5hkzZgwOHjwo/e7WrRsAIC0tjdNXkkT2q+dZs2YhNDRUa3YDjUaD6dOnY/bs2XoNjojqj1mzZkn9nufNm4e0tDT07dsXe/fulcZ7I6rv3n33Xdy+fbtMurOzM4QQ5c6w4uHhASGEVgMwPj4eQogyCxuJ9KRKPVHs1q2b9OUhAFy4cAGOjo5wdHQE8PjrQVNTU2RnZ7OfIhFVia+vr/Tvdu3a4dy5c7h58yZsbGy06h8iIqo+lWoolg5YS0RkCI8ePYK5uTmSk5Ph5uYmpTdp0sSIURERUaUaihEREYaOg4jqMZVKBUdHR9ljJRIRkWHJ7qNIRGQIM2fOxMcff4ybN28aOxQiIvqvKs/MQkSkT59//jkuXryIVq1awcnJCQ0bag+CfPLkSSNFRkRUf7GhSEQ1AvtCExHVPGwoEpHRrFy5EuPGjYOZmRlGjRqF1q1ba82/TERExvW3auTSMZeIiKoiNDQU+fn5AAAXFxfk5OQYOSIiInpSlRqKGzduhLu7O8zNzWFubo4uXbrgX//6l75jI6I6rlWrVti5cyeuXLkCIQT+/PNPZGRk6FyIiKj6yX71vGzZMsyePRuTJk1C7969AQAJCQkYP348cnJyMGXKFL0HSUR106xZs/DBBx9g0qRJUCgU6NGjR5k8QggoFAoOnUNEZASynyiuWrUKX375JRYtWgR/f3/4+/tj8eLF+OKLLzjNFhHJMm7cOOTk5CAlJQVCCPzyyy84efKk1pKUlMQvnqleUygUFS5z5sxBeno6FAoFTExMcO3aNa3tMzMz0aBBAygUCqSnpwMAUlJSEBgYCAcHB5ibm6Njx45YsWKFEY6OajrZTxQzMzPRq1evMum9evVCZmamXoIiovrD0tISbm5uWLduHXr37g1TU1Njh0RUozz5t3Xr1q0IDw9HamqqlNaoUSOpf6+9vT02btyIsLAwaf2GDRtgb2+v1YXjxIkTaN68Ob755hs4ODjgyJEjGDduHExMTDBp0qRqOCqqLWQ3FNu1a4dt27bh448/1krfunUrnnnmGb0FRkT1S1BQkLFDoHpICIH7RfeNsm/zBuaVmse8ZcuW0r+tra2hUCi00gBIDcWgoCCsW7dOq6G4bt06BAUFYf78+VJacHCw1vZt2rRBYmIidu3axYYiaZHdUJw7dy4CAgLw66+/Sn0UDx8+jLi4OGzbtk3vARIRERnK/aL78N7sbZR9Hx12FBYqC72W6e/vj+joaCQkJKBPnz5ISEjArVu34Ofnp9VQ1CUvL4/zq1MZsvsovvHGGzh69ChsbW2xe/du7N69G7a2tjh27Bhee+01Q8RIRERElaBSqTBixAjExsYCAGJjYzFixAioVKoKtzty5Ai2bt2KcePGVUeYVItUacBtT09PfPPNN/qOhYiIqFqZNzDH0WFHjbZvQwgODkavXr2wcOFCbN++HYmJiSgqKio3/+nTpzFkyBBERERg4MCBBomJai/ZTxRNTExw48aNMum5ubkwMTHRS1BEVH89fPgQqampFf5hq6zVq1fD2dkZZmZm8Pb2xrFjxyq13ZYtW6BQKDitYD2gUChgobIwylKZ/olV4e7uDldXVwQGBqJjx45wc3MrN+/Zs2fx4osvYty4cZg1a5ZB4qHaTXZDsbyZWAoLC6FWq/92QERUP927dw+jR4+GhYUFOnfuLH2h+cEHH+DTTz+VXd7WrVsRGhqKiIgInDx5El27doWvr6/OG90npaenY9q0aejbt2+VjoOoJggODkZ8fHyZj1aedObMGQwYMABBQUH45JNPqjE6qk0q3VBcuXIlVq5cCYVCgbVr10q/V65ciaioKLz//vtwdXWtUhC86yeisLAwpKSkID4+HmZmZlK6j48Ptm7dKru8ZcuWYezYsRg1ahQ6deqE6OhoWFhYSH23dCkuLsbw4cMxd+5ctGnTpkrHQVQTjB07FtnZ2RgzZozO9adPn8aAAQMwcOBAhIaGQqPRQKPRIDs7u5ojpZqu0n0Uo6KiADx+ohgdHa31mlmtVsPZ2RnR0dGyAyi964+Ojoa3tzeWL18OX19fpKamonnz5uVux7t+orpl9+7d2Lp1K5577jmtV3KdO3fGpUuXZJX18OFDnDhxQmuIEKVSCR8fHyQmJpa73bx589C8eXOMHj0ahw4d+sv9FBYWorCwUPpdOm81kbE1aNAAtra25a7fsWMHsrOz8c0332h9c+Dk5CQNyk0EyHiimJaWhrS0NPTr1w8pKSnS77S0NKSmpuKnn36Ct7f8IQZ4109EAJCdna3z5rCgoEB2X66cnBwUFxejRYsWWuktWrSARqPRuU1CQgK+/vprxMTEVHo/kZGRsLa2lhYHBwdZcRLJ9e677+L27dtl0p2dnSGEgIeHh87tPDw8IISAs7MzAGDOnDkQQpRZ2Eikp8nuo3jgwAHY2NjoZeeld/0+Pj7/H5DMu/6/UlhYiPz8fK2FiGqe7t27Y8+ePdLv0sbh2rVr0bNnT4Pu+86dO3jnnXcQExNT4VOYp4WFhSEvL09arl69asAoiYiqX5WGx9GXiu76z507p3Ob0rv+5OTkSu0jMjISc+fO/buhEpGBLVy4EIMGDcLZs2dRVFSEFStW4OzZszhy5AgOHjwoqyxbW1uYmJggKytLKz0rK6vMjBYAcOnSJaSnp8PPz09KKykpAfD4FV5qairatm1bZjtTU1NOOUhEdZrsJ4rGVJW7ft7xE9UOffr0QXJyMoqKiuDu7o6ff/4ZzZs3R2JiIjw9PWWVpVar4enpibi4OCmtpKQEcXFxOp9Ourq64tSpU0hOTpYWf39/DBgwAMnJyXylTET1llGfKFbHXT/v+Ilqj7Zt28rqI1iR0NBQBAUFoXv37vDy8sLy5ctRUFCAUaNGAQBGjhwJe3t7REZGwszMrMxYc40bNwaACsegIyKq64zaUHzyrr90iJvSu35dk5KX3vU/adasWbhz5w5WrFjBu36iWkZOn2ErKytZZQcEBCA7Oxvh4eHQaDTw8PDAvn37pK4uGRkZUCpr1UsVIqJqV6WG4u3bt3Hs2DHcuHFDeqJXauTIkbLK4l0/Uf3VuHHjSn/RXFxcLLv8SZMm6bzpBID4+PgKt12/fr3s/RER1TWyG4r/8z//g+HDh+Pu3buwsrLSquQVCoXshiLv+onqrwMHDkj/Tk9Px4wZM/Duu+9K/QgTExOxYcMGREZGGitEIqJ6TSHKm5OvHO3bt8crr7yChQsXwsLCwlBxGUx+fj6sra2Rl5cn+1UWUW1Xk6//F198EWPGjEFgYKBW+ubNm7FmzZq/fAJYE9Tk80uPPXjwAGlpaXBxcdGaAYj+WkXnjtd+3SX7Ud21a9cQEhJSKxuJRFRzJSYmonv37mXSu3fvXulpPYmISL9kNxR9fX1x/PhxQ8RCRPWYg4ODzi+e165dyw/ViIiMRHYfxcGDB2P69Ok4e/Ys3N3doVKptNb7+/vrLTgiqj+ioqLwxhtv4Mcff5SmAz127BguXLiAnTt3Gjk6IuP5qw++IiIi8O6778LFxQVKpRIZGRmwt7eX1mdmZsLBwQHFxcVIS0uDs7MzcnNzMXz4cPz+++/Izc1F8+bNMWTIECxcuJCvjkmL7Ibi2LFjATyeRu9pCoWiSl8mEhG98soruHDhAr744gtpZiY/Pz+MHz+eTxSpXsvMzJT+vXXrVoSHhyM1NVVKa9SoEXJycgAA9vb22LhxI8LCwqT1GzZsgL29PTIyMqQ0pVKJIUOGYMGCBWjWrBkuXryI999/Hzdv3sTmzZur4aiotpDdUHx6OBwiIn1p3bo1Fi5caOwwqB4RQkDcv2+UfSvMzSs1PNSTE1BYW1tDoVCUmZSitKEYFBSEdevWaTUU161bh6CgIMyfP19Ks7GxwYQJE6TfTk5OmDhxIj777LMqHw/VTUYdcJuI6Em3b9/G119/jT/++AMA0LlzZwQHB8Pa2trIkVFdJe7fR+qz8qaI1JcOJ09AoecPQ/39/REdHY2EhAT06dMHCQkJuHXrFvz8/LQaik+7fv06du3ahX79+uk1Hqr9qjRA4cGDB+Hn54d27dqhXbt28Pf3x6FDh/QdGxHVI8ePH0fbtm0RFRWFmzdv4ubNm1i2bBnatm2LkydPGjs8olpBpVJhxIgRiI2NBQDExsZixIgRZb4nKBUYGAgLCwvY29vDysoKa9eurc5wqRaQ/UTxm2++wahRo/D6668jJCQEAHD48GG8+OKLWL9+PYYNG6b3IImo7psyZQr8/f0RExODBg0eV01FRUUYM2YMPvzwQ/z6669GjpDqIoW5OTqcPGG0fRtCcHAwevXqhYULF2L79u1ITExEUVGRzrxRUVGIiIjA+fPnERYWhtDQUHzxxRcGiYtqJ9kNxU8++QSLFy/GlClTpLSQkBAsW7YM8+fPZ0ORiKrk+PHjWo1EAGjQoAH++c9/6hxfkUgfFAqF3l//Gpu7uztcXV0RGBiIjh07ws3NDcnJyTrztmzZEi1btoSrqyuaNGmCvn37Yvbs2bCzs6veoKnGkv3q+fLly/Dz8yuT7u/vj7S0NL0ERUT1j5WVldZXmaWuXr0KS0tLI0REVHsFBwcjPj4ewcHBld6m9GPVwsJCQ4VFtZDsJ4oODg6Ii4tDu3bttNL379/PISyIqMoCAgIwevRoLFmyBL169QLwuFvL9OnTy0zrR0QVGzt2LN566y00btxY5/q9e/ciKysLPXr0QKNGjXDmzBlMnz4dvXv3hrOzc7XGSjWb7Ibi1KlTERISguTkZK3KfP369VixYoXeAySi+mHJkiVQKBQYOXKk1J9KpVJhwoQJ+PTTT40cHVHt0qBBA9ja2pa73tzcHDExMZgyZQoKCwvh4OCA119/HTNmzKjGKKk2UAghhNyNvvvuOyxdulQawqJjx46YPn06hgwZovcA9Y0Tl1N9Vhuu/3v37uHSpUsAgLZt29aqeeVrw/mt7x48eIC0tDS4uLjAzMzM2OHUKhWdO177dVeVxlF87bXX8Nprr+k7FiIiWFhYwN3d3dhhEBEROOA2ERlZZTvbl44LR0RE1adSDcUmTZrg/PnzsLW1hY2NTYVTDt28eVNvwRFR3bd+/Xo4OTmhW7duqEJPGCIiMqBKNRSjoqKk4SmioqIqNTclEVFlTJgwAd9++y3S0tIwatQojBgxAk2aNDF2WEREhCp+zFKbscMt1Wc19fovLCzErl27EBsbiyNHjmDw4MEYPXo0Bg4cWKtuTGvq+aX/V/pBhpOTU636UKomuHfvHq5cucKPWeoZ2X0UT548CZVKJXU2//e//41169ahU6dOmDNnDtRqtd6DJKK6zdTUFIGBgQgMDMSVK1ewfv16TJw4EUVFRThz5gwaNWpk7BCpjlCr1VAqlbh+/TqaNWsGtVpdq25GjEEIgYcPHyI7OxtKpZJ/5+sZ2Q3F9957DzNmzIC7uzsuX76MgIAAvP7669i+fTvu3buH5cuXGyBMIqovlEolFAoFhBAoLi7+W2WtXr0an332GTQaDbp27YpVq1bBy8tLZ96YmBhs3LgRp0+fBgB4enpi4cKF5ean2kmpVMLFxQWZmZm4fv26scOpVSwsLODo6AilUvakblSLyW4onj9/Hh4eHgCA7du3o1+/fti8eTMOHz6Mt99+mw1FIpLtyVfPCQkJePXVV/H555/j5ZdfrvIfpa1btyI0NBTR0dHw9vbG8uXL4evri9TUVDRv3rxM/vj4eAQGBqJXr14wMzPDokWLMHDgQJw5cwb29vZ/9xCpBlGr1XB0dERRUdHfvhmpL0xMTNCgQQM+fa2HZDcUhRDSfJD79+/Hq6++CuDx1H45OTn6jY6I6ryJEydiy5YtcHBwQHBwML799tsKZ5SorGXLlmHs2LEYNWoUACA6Ohp79uxBbGysztknNm3apPV77dq12LlzJ+Li4jBy5Mi/HQ/VLAqFAiqVCiqVytihENVoshuK3bt3x4IFC+Dj44ODBw/iyy+/BACkpaWhRYsWeg+QiOq26OhoODo6ok2bNjh48CAOHjyoM9+uXbsqXebDhw9x4sQJhIWFSWlKpRI+Pj5ITEysVBn37t3Do0ePKvwCu7CwEIWFhdLv/Pz8SsdIRFQbyH6ns3z5cpw8eRKTJk3CzJkz0a5dOwDAjh07pLmf5Vq9ejWcnZ1hZmYGb29vHDt2rNy8MTEx6Nu3L2xsbGBjYwMfH58K8xNRzTZy5EgMGDAAjRs3hrW1dbmLHDk5OSguLi5z89qiRQtoNJpKlfHRRx+hVatW8PHxKTdPZGSkVowODg6y4iQiqulkP1Hs0qULTp06VSb9s88+g4mJiewA2I+IqH5bv369sUMo49NPP8WWLVsQHx9f4XzAYWFhCA0NlX7n5+ezsUhEdYrsJ4pXr17Fn3/+Kf0+duwYPvzwQ2zcuLFKfT2e7EfUqVMnREdHw8LCotzpujZt2oSJEyfCw8MDrq6uWLt2LUpKShAXFyd730RUN9na2sLExARZWVla6VlZWWjZsmWF2y5ZsgSffvopfv75Z3Tp0qXCvKamprCystJaiIjqEtkNxWHDhuHAgQMAAI1Gg5deegnHjh3DzJkzMW/ePFlllfYjevLVjr77ERUWFiI/P19rIaK6Ta1Ww9PTU+sGsvSGsmfPnuVut3jxYsyfPx/79u1D9+7dqyNUIqIaTXZD8fTp09K4Ytu2bYObmxuOHDmCTZs2yX6FVB39iNiHiKh+Cg0NRUxMDDZs2IA//vgDEyZMQEFBgfQV9MiRI7U+dlm0aBFmz56N2NhYODs7Q6PRQKPR4O7du8Y6BCIio5PdR/HRo0cwNTUF8Hh4HH9/fwCAq6srMjMz9RvdX6hMPyL2ISKqnwICApCdnY3w8HBoNBp4eHhg37590o1pRkaG1hiNX375JR4+fIg333xTq5yIiAjMmTOnOkMnIqoxZDcUO3fujOjoaAwePBi//PIL5s+fDwC4fv06mjZtKqssffQj2r9/f4X9iExNTaWGLRHVL5MmTcKkSZN0rouPj9f6nZ6ebviAiIhqGdmvnhctWoSvvvoK/fv3R2BgILp27QoA+P7772VPdcV+REREREQ1l+wniv3790dOTg7y8/NhY2MjpY8bNw4WFhayAwgNDUVQUBC6d+8OLy8vLF++vEw/Int7e0RGRgJ43FANDw/H5s2bpX5EANCoUSM0atRI9v6JiIiISDfZDUXg8ZyPTzYSAcDZ2blKAbAfEREREVHNpBBCiL/K9OyzzyIuLg42Njbo1q1bhZOCnzx5Uq8B6lt+fj6sra2Rl5fHMc+o3uH1b1g8v1Rf8dqvuyr1RHHIkCHSByFDhw41ZDxEREREVENU6oliXcK7HqrPeP0bFs8v1Ve89uuuKvVRLHX37l2UlJRopfECISIiIqobZA+Pk5aWhsGDB6Nhw4awtraGjY0NbGxs0Lhx4zIfuBARERFR7SX7ieKIESMghEBsbCxatGhR4YctRERERFR7yW4opqSk4MSJE+jQoYMh4iEiIiKiGkL2q+cePXrg6tWrhoiFiIiIiGoQ2U8U165di/Hjx+PatWtwc3ODSqXSWl/RvMtEREREVHvIbihmZ2fj0qVL0hR7AKBQKCCEgEKhQHFxsV4DJCIiIiLjkN1QDA4ORrdu3fDtt9/yYxYiIiKiOkx2Q/HKlSv4/vvv0a5dO0PEQ0REREQ1hOyPWV544QWkpKQYIhYiIiIiqkFkP1H08/PDlClTcOrUKbi7u5f5mMXf319vwRERERGR8chuKI4fPx4AMG/evDLr+DELERERUd0hu6H49NzORERERFQ3ye6jqMvt27f1UQwRERER1SCyG4qLFi3C1q1bpd9vvfUWmjRpAnt7e37kQkQ1yurVq+Hs7AwzMzN4e3vj2LFjFebfvn07XF1dYWZmBnd3d+zdu7eaIiUiqplkNxSjo6Ph4OAAAPjll1+wf/9+7Nu3D4MGDcL06dP1HiARUVVs3boVoaGhiIiIwMmTJ9G1a1f4+vrixo0bOvMfOXIEgYGBGD16NJKSkjB06FAMHToUp0+frubIiYhqDoUQQsjZwNzcHOfPn4eDgwMmT56MBw8e4KuvvsL58+fh7e2NW7duGSpWvcjPz4e1tTXy8vJgZWVl7HCIqlV9uv69vb3Ro0cPfP755wAe9692cHDABx98gBkzZpTJHxAQgIKCAvzwww9S2nPPPQcPDw9ER0dXap+l5/ffiXFo2KjRX+aXV/vKyqwXopx9you7vLL/OqXSZRng1DxZZkXTSlS0a60yniikvG10HYecvLq2eDqfKPcH8HRzoKQ0Q0Vl/Ne9uwUY+eLL9aJuqW9kf8xiY2ODq1evwsHBAfv27cOCBQsAPL7A+MUzEdUEDx8+xIkTJxAWFialKZVK+Pj4IDExUec2iYmJCA0N1Urz9fXF7t27y91PYWEhCgsLpd/5+fkAALt3xqORicnfOAKi2uUu//7XWbJfPb/++usYNmwYXnrpJeTm5mLQoEEAgKSkJM7WQkQ1Qk5ODoqLi9GiRQut9BYtWkCj0ejcRqPRyMoPAJGRkbC2tpaW0m45RER1hewnilFRUXB2dsbVq1exePFiNPrv65XMzExMnDhR7wESEdVUYWFhWk8h8/Pz4eDggGcO/crXb1Sv5OfnA3Z2xg6DDEB2Q1GlUmHatGll0qdMmaKXgIiI/i5bW1uYmJggKytLKz0rKwstW7bUuU3Lli1l5QcAU1NTmJqalklXWlhAaWFRhciJaidlUZGxQyADkd1QBIALFy7gwIEDuHHjRpkBuMPDw/USGBFRVanVanh6eiIuLg5Dhw4F8Phjlri4OEyaNEnnNj179kRcXBw+/PBDKe2XX35Bz549qyFiIqKaSXYfxZiYGHTs2BHh4eHYsWMHvvvuO2mpqNN3RTjWGRHpW2hoKGJiYrBhwwb88ccfmDBhAgoKCjBq1CgAwMiRI7U+dpk8eTL27duHpUuX4ty5c5gzZw6OHz9ebsOSiKheEDI5OjqKTz/9VO5m5dqyZYtQq9UiNjZWnDlzRowdO1Y0btxYZGVl6cx/+PBhYWJiIhYvXizOnj0rZs2aJVQqlTh16lSl9peXlycAiLy8PL0dA1FtUd+u/1WrVglHR0ehVquFl5eX+O2336R1/fr1E0FBQVr5t23bJtq3by/UarXo3Lmz2LNnj6z91bfzS1SK137dJXscRSsrKyQnJ6NNmzZ6aahW91hn9WkcOaKn8fo3LJ5fqq947dddsvsovvXWW/j5558xfvz4v73z6hjr7OlxzvLy8gD8/3hnRPVJ6XUv8/6QKqn0vLJ+ofqGdUvdJbuh2K5dO8yePRu//fYb3N3doVKptNaHhIRUuqyKxjo7d+6czm3kjnUWGRmJuXPnlknneGdUn+Xm5sLa2trYYdQ5ubm5AFi/UP3FuqXukd1QXLNmDRo1aoSDBw/i4MGDWusUCoWshmJ1eHqcs9u3b8PJyQkZGRm8mI2gdJy5q1ev8vWEEeTl5cHR0RFNmjQxdih1Uul5Zf1S/Vi3GBfrlrpLdkMxLS1NbzuvjrHOyhvnzNrampWJEVlZWfH8G5FSKXvAA6qE0vPK+sV4WLcYF+uWuseo/6NPjnVWqnSss/LGLisd6+xJHOuMiIiISP+qNOD2n3/+ie+//x4ZGRl4+PCh1rply5bJKis0NBRBQUHo3r07vLy8sHz58jJjndnb2yMyMhLA47HO+vXrh6VLl2Lw4MHYsmULjh8/jjVr1lTlUIiIiIioHLIbinFxcfD390ebNm1w7tw5uLm5IT09HUIIPPvss7IDCAgIQHZ2NsLDw6HRaODh4YF9+/ZJH6xkZGRoPcru1asXNm/ejFmzZuHjjz/GM888g927d8PNza1S+zM1NUVERITO19FkeDz/xsXzb1g8v8bDc29cPP91l+xxFL28vDBo0CDMnTsXlpaWSElJQfPmzTF8+HC8/PLLmDBhgqFiJSIiIqJqJLuhaGlpieTkZLRt2xY2NjZISEhA586dkZKSgiFDhiA9Pd1AoRIRERFRdZL9MUvDhg2lfol2dna4dOmStC4nJ0d/kRERERGRUcnuo/jcc88hISEBHTt2xCuvvIKpU6fi1KlT2LVrF5577jlDxEhERERERiD71fPly5dx9+5ddOnSBQUFBZg6dSqOHDmCZ555BsuWLYOTk5OhYiUiIiKiaiTr1XNxcTH+/PNPODo6Anj8Gjo6Ohq///47du7cWe2NxF9//RV+fn5o1aoVFApFufM9l4qPj4dCoSizPD393+rVq+Hs7AwzMzN4e3vj2LFjBjyK2ssQ53/OnDll1ru6uhr4SGonuecfeDz3+cyZM+Hk5ARTU1M4OzsjNjZWK8/27dvh6uoKMzMzuLu7Y+/evQY6gpqN9YvxsG4xLtYt9CRZDUUTExMMHDgQt27dMlQ8shQUFKBr165YvXq1rO1SU1ORmZkpLc2bN5fWbd26FaGhoYiIiMDJkyfRtWtX+Pr64saNG/oOv9YzxPkHgM6dO2utT0hI0GfYdUZVzv8//vEPxMXF4euvv0Zqaiq+/fZbdOjQQVp/5MgRBAYGYvTo0UhKSsLQoUMxdOhQnD592hCHUKOxfjEe1i3GxbqFtAiZPD09xf79++VuZnAAxHfffVdhngMHDggA4tatW+Xm8fLyEu+//770u7i4WLRq1UpERkbqKdK6SV/nPyIiQnTt2lWvsdUHlTn/P/74o7C2tha5ubnl5vnHP/4hBg8erJXm7e0t3nvvPX2EWWuxfjEe1i3GxbqFZH/1vGDBAkybNg0//PADMjMzkZ+fr7XUBh4eHrCzs8NLL72Ew4cPS+kPHz7EiRMn4OPjI6UplUr4+PggMTHRGKHWSeWd/1IXLlxAq1at0KZNGwwfPhwZGRlGiLLu+f7779G9e3csXrwY9vb2aN++PaZNm4b79+9LeRITE7WufwDw9fXl9S8D6xfjYd1iHKxb6rZKf/U8b948TJ06Fa+88goAwN/fHwqFQlovhIBCoUBxcbH+o9QTOzs7REdHo3v37igsLMTatWvRv39/HD16FM8++yxycnJQXFwszQpTqkWLFjh37pyRoq47/ur8A4C3tzfWr1+PDh06IDMzE3PnzkXfvn1x+vRpWFpaGvkIarfLly8jISEBZmZm+O6775CTk4OJEyciNzcX69atAwBoNBqd1//T/eyoLNYvxsO6xbhYt9RtlW4ozp07F+PHj8eBAwcMGY9BdejQQavPRK9evXDp0iVERUXhX//6lxEjqx8qc/4HDRokre/SpQu8vb3h5OSEbdu2YfTo0dUec11SUlIChUKBTZs2wdraGsDjudnffPNNfPHFFzA3NzdyhLUb6xfjYd1iXKxb6rZKNxTFf0fR6devn8GCMQYvLy+pQ7OtrS1MTEyQlZWllScrKwstW7Y0Rnh13pPnX5fGjRujffv2uHjxYjVGVTfZ2dnB3t5eqsgBoGPHjhBC4M8//8QzzzyDli1b8vrXI9YvxsO6pfqwbqnbZPVRfPJVc12RnJwMOzs7AIBarYanpyfi4uKk9SUlJYiLi0PPnj2NFWKd9uT51+Xu3bu4dOlShXmocnr37o3r16/j7t27Utr58+ehVCrRunVrAEDPnj21rn8A+OWXX3j9VxHrF+Nh3VJ9WLfUcZX96kWhUIjGjRsLGxubCpfqdOfOHZGUlCSSkpIEALFs2TKRlJQkrly5IoQQYsaMGeKdd96R8kdFRYndu3eLCxcuiFOnTonJkycLpVKp9RX3li1bhKmpqVi/fr04e/asGDdunGjcuLHQaDTVemy1gSHO/9SpU0V8fLxIS0sThw8fFj4+PsLW1lbcuHGj2o+vppN7/u/cuSNat24t3nzzTXHmzBlx8OBB8cwzz4gxY8ZIeQ4fPiwaNGgglixZIv744w8REREhVCqVOHXqVLUfn7GxfjEe1i3GxbqFniSrobhixQqxfv36CpfqVDokwtNLUFCQEEKIoKAg0a9fPyn/okWLRNu2bYWZmZlo0qSJ6N+/v/jf//3fMuWuWrVKODo6CrVaLby8vMRvv/1WTUdUuxji/AcEBAg7OzuhVquFvb29CAgIEBcvXqzGo6o95J5/IYT4448/hI+PjzA3NxetW7cWoaGh4t69e1p5tm3bJtq3by/UarXo3Lmz2LNnTzUdUc3C+sV4WLcYF+sWelKlp/BTKpXQaDRlBjAlIiIiorqp0n0U62L/RCIiIiIqX6UbipV88EhEREREdUSlXz0TERERUf0iewo/IiIiIqof2FAkIiIiIp3YUCQiIiIindhQJCIiIiKd2FAkIiIiIp3YUCQiIiIindhQJCIiIiKd2FCkCvXv3x8ffvihscOQVDWe3NxcNG/eHOnp6XqP6Wlvv/02li5davD9ENV2rF/kY/1C1Y0NxRogOjoalpaWKCoqktLu3r0LlUqF/v37a+WNj4+HQqHApUuXqjnK6qXvPyCffPIJhgwZAmdnZ72VWZ5Zs2bhk08+QV5ensH3RfRXWL+UxfqFqPLYUKwBBgwYgLt37+L48eNS2qFDh9CyZUscPXoUDx48kNIPHDgAR0dHtG3b1hih1kr37t3D119/jdGjR1fL/tzc3NC2bVt888031bI/ooqwfjEs1i9U17GhWAN06NABdnZ2iI+Pl9Li4+MxZMgQuLi44LffftNKHzBgAABg37596NOnDxo3boymTZvi1Vdf1XoSsGbNGrRq1QolJSVa+xsyZAiCg4MBACUlJYiMjISLiwvMzc3RtWtX7Nixo9xYK5O/f//+CAkJwT//+U80adIELVu2xJw5c7Ty3LlzB8OHD0fDhg1hZ2eHqKgo6S7/3XffxcGDB7FixQooFAooFAqtVzolJSUVlv20vXv3wtTUFM8995xWekJCAlQqldYfyvT0dCgUCly5cgX9+/fHBx98gA8//BA2NjZo0aIFYmJiUFBQgFGjRsHS0hLt2rXDjz/+WGaffn5+2LJlS4VxEVUH1i+sX4j+FkE1wrBhw8TAgQOl3z169BDbt28X48ePF+Hh4UIIIe7duydMTU3F+vXrhRBC7NixQ+zcuVNcuHBBJCUlCT8/P+Hu7i6Ki4uFEELcvHlTqNVqsX//fqnc3NxcrbQFCxYIV1dXsW/fPnHp0iWxbt06YWpqKuLj44UQQvTr109MnjxZ2v6v8pduY2VlJebMmSPOnz8vNmzYIBQKhfj555+lPGPGjBFOTk5i//794tSpU+K1114TlpaWYvLkyeL27duiZ8+eYuzYsSIzM1NkZmaKoqKiSpf9tJCQEPHyyy+XSV+1apVwd3fXStu1a5ewsbGR9mVpaSnmz58vzp8/L+bPny9MTEzEoEGDxJo1a8T58+fFhAkTRNOmTUVBQYFWOT/++KNQq9XiwYMH5cZFVF1Yv7B+IaoqNhRriJiYGNGwYUPx6NEjkZ+fLxo0aCBu3LghNm/eLJ5//nkhhBBxcXECgLhy5YrOMrKzswUAcerUKSltyJAhIjg4WPr91VdfiVatWoni4mLx4MEDYWFhIY4cOaJVzujRo0VgYKAQQrsir0z+0m369OmjladHjx7io48+EkIIkZ+fL1Qqldi+fbu0/vbt28LCwkLa19N/QCpbti5Pn4NSY8aMESNHjtRKCw8PF/3799e5r6KiItGwYUPxzjvvSGmZmZkCgEhMTNQqJyUlRQAQ6enp5cZFVF1Yv7B+IaoqvnquIfr374+CggL85z//waFDh9C+fXs0a9YM/fr1k/oRxcfHo02bNnB0dAQAXLhwAYGBgWjTpg2srKykjtQZGRlSucOHD8fOnTtRWFgIANi0aRPefvttKJVKXLx4Effu3cNLL72ERo0aScvGjRt1dmaXk79Lly5av+3s7HDjxg0AwOXLl/Ho0SN4eXlJ662trdGhQ4dKnauKytbl/v37MDMzK5OenJwMDw8PrbSkpCSttCf3ZWJigqZNm8Ld3V1Ka9GiBQCU2b+5uTmAx/2XiIyN9QvrF6KqamDsAOixdu3aoXXr1jhw4ABu3bqFfv36AQBatWoFBwcHHDlyBAcOHMALL7wgbePn5wcnJyfExMRIfYXc3Nzw8OFDrTxCCOzZswc9evTAoUOHEBUVBeDxl48AsGfPHtjb22vFY2pqWiZGOflVKpXWb4VCUaYvU1XJLdvW1ha3bt3SSisuLsbp06fRrVs3rfSTJ0/ijTfeqHBfT6YpFAoAKLP/mzdvAgCaNWv2V4dDZHCsXyqP9QuRNjYUa5ABAwYgPj4et27dwvTp06X0559/Hj/++COOHTuGCRMmAHg8bldqaipiYmLQt29fAI87Tz/NzMwMr7/+OjZt2oSLFy+iQ4cOePbZZwEAnTp1gqmpKTIyMqQ/HBWRm788bdq0gUqlwn/+8x/p6UVeXh7Onz+P559/HgCgVqtRXFxc5X08qVu3bmW+EExNTcWDBw/QqlUrKS0xMRHXrl0r8xSgKk6fPo3WrVvD1tb2b5dFpA+sX1i/EFUFG4o1yIABA/D+++/j0aNHWhVlv379MGnSJDx8+FD6ItHGxgZNmzbFmjVrYGdnh4yMDMyYMUNnucOHD8err76KM2fOYMSIEVK6paUlpk2bhilTpqCkpAR9+vRBXl4eDh8+DCsrKwQFBWmVIzd/eSwtLREUFITp06ejSZMmaN68OSIiIqBUKqU7aGdnZxw9ehTp6elo1KgRmjRpAqWyaj0lfH19ERYWhlu3bsHGxgbA49dCALBq1SqEhITg4sWLCAkJAQCtJyZVdejQIQwcOPBvl0OkL6xfWL8QVQX7KNYgAwYMwP3799GuXTupbwrwuCK/c+eONMwFACiVSmzZsgUnTpyAm5sbpkyZgs8++0xnuS+88AKaNGmC1NRUDBs2TGvd/PnzMXv2bERGRqJjx454+eWXsWfPHri4uOgsS27+8ixbtgw9e/bEq6++Ch8fH/Tu3RsdO3aU+vpMmzYNJiYm6NSpE5o1a6bVL0oud3d3PPvss9i2bZuUlpycDF9fX1y+fBnu7u6YOXMm5s6dCysrK6xcubLK+wKABw8eYPfu3Rg7duzfKodIn1i/sH4hqgqFEEIYOwiigoIC2NvbY+nSpQYZuHbPnj2YPn06Tp8+DaVSCV9fX/To0QMLFizQ+76+/PJLfPfdd/j555/1XjYRycf6hajq+OqZjCIpKQnnzp2Dl5cX8vLyMG/ePACPB+s1hMGDB+PChQu4du0aHBwckJKSIg0KrG8qlQqrVq0ySNlE9NdYvxDpD58oklEkJSVhzJgxSE1NhVqthqenJ5YtW6Y1NIShaDQa2NnZ4cyZM+jUqZPB90dE1Yv1C5H+sKFIRERERDrxYxYiIiIi0okNRSIiIiLSiQ1FIiIiItKJDUUiIiIi0okNRSIiIiLSiQ1FIiIiItKJDUUiIiIi0okNRSIiIiLSiQ1FIiIiItKJDUUiIiIi0un/AA4QraV2J4APAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "postprocess(sim_data, \"TM\")\n" ] }, { "cell_type": "markdown", "id": "90e5a7be", "metadata": {}, "source": [ "## 8-channel (De)multiplexer Simulation" ] }, { "cell_type": "markdown", "id": "e877ea9d", "metadata": {}, "source": [ "Once we confirm the efficiency of the six couplers individually, we are ready to put them together to construct the entire (de)multiplexer device. This device is made by connecting the couplers via linear tapers. The linear tapers have a small angle of 1.8 degree to ensure good transmission. The overall device has a length of about 200 $\\mu m$.\n", "\n", "The process of creating the structure is rather long and tedious. Therefore, we will skip that in this notebook and only import the constructed GDSII file. The GDSII file can be downloaded from our documentation [repo](https://github.com/flexcompute-readthedocs/tidy3d-docs/tree/readthedocs/docs/source/notebooks/misc) if needed.\n", "\n", "There are eight input ports labeled as I1, I2, ..., I8. The top four ports are for TE0 excitation. The bottom four ports are for TM0 excitation.\n", "\n", "" ] }, { "cell_type": "code", "execution_count": 31, "id": "6d85f620", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:09:48.790117Z", "iopub.status.busy": "2023-03-28T00:09:48.789940Z", "iopub.status.idle": "2023-03-28T00:09:48.810419Z", "shell.execute_reply": "2023-03-28T00:09:48.809883Z" } }, "outputs": [], "source": [ "gds_path = \"misc/8ChannelDemultiplexer.gds\" # path of the gds file\n", "\n", "lib = gdstk.read_gds(infile=gds_path) # import gds file\n", "cell = lib.cells[0] # read cell\n" ] }, { "cell_type": "markdown", "id": "b87fa9f2", "metadata": {}, "source": [ "Similar to what is demonstrated above, we will define a list of [PolySlabs](../_autosummary/tidy3d.PolySlab.html?highlight=polyslab) from the cell." ] }, { "cell_type": "code", "execution_count": 32, "id": "ec60d73d", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:09:48.812521Z", "iopub.status.busy": "2023-03-28T00:09:48.812374Z", "iopub.status.idle": "2023-03-28T00:09:48.848601Z", "shell.execute_reply": "2023-03-28T00:09:48.848002Z" } }, "outputs": [], "source": [ "demultiplexer_poly = td.PolySlab.from_gds(\n", " cell,\n", " gds_layer=0,\n", " axis=2,\n", " slab_bounds=(-h / 2, h / 2),\n", ")\n" ] }, { "cell_type": "markdown", "id": "15e0cada", "metadata": {}, "source": [ "Convert the list of PolySlabs to a list of Tidy3D [Structures](../_autosummary/tidy3d.Structure.html)." ] }, { "cell_type": "code", "execution_count": 33, "id": "0303dd85", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:09:48.850895Z", "iopub.status.busy": "2023-03-28T00:09:48.850739Z", "iopub.status.idle": "2023-03-28T00:09:48.871574Z", "shell.execute_reply": "2023-03-28T00:09:48.871116Z" } }, "outputs": [], "source": [ "demultiplexer_structure = []\n", "for s in demultiplexer_poly:\n", " demultiplexer_structure.append(\n", " td.Structure(\n", " geometry=s,\n", " medium=si,\n", " )\n", " )\n" ] }, { "cell_type": "markdown", "id": "a4a2f477", "metadata": {}, "source": [ "To confirm the structures are defined correctly, we can visualize them. Since this device has a large aspect ratio (~200 $\\mu m$ in length and ~35 $\\mu m$ in width), we will set the aspect ratio of the plot to `auto`. Otherwise, the details of the structures are not clearly viewed. " ] }, { "cell_type": "code", "execution_count": 34, "id": "1b4e1e71", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:09:48.874016Z", "iopub.status.busy": "2023-03-28T00:09:48.873805Z", "iopub.status.idle": "2023-03-28T00:09:49.063236Z", "shell.execute_reply": "2023-03-28T00:09:49.062736Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACLIklEQVR4nOzdd3hT5f/G8XeSJmnT3dJBoayCbGRPZc8vslT2BnGwRATcCiig4mCDk71VQESQPWQqgrL3hg7oSGeSJuf3B9KfZZZCe5rm87quXNrkJLnTlubOc855Ho2iKApCCCGEEC5Aq3YAIYQQQojcIsVHCCGEEC5Dio8QQgghXIYUHyGEEEK4DCk+QgghhHAZUnyEEEII4TKk+AghhBDCZUjxEUIIIYTLkOIjhBBCCJchxUcI4ZS2bt2KRqNh69atakcRQjgRKT5CiDxtxowZzJkzR+0Y2bJo0SImTZqkdgwAHA4Hn376KcWLF8fd3Z1KlSqxePHiLN8/Pj6eF198kaCgIDw9PWnUqBF//fXXXbf9+eefqVq1Ku7u7hQpUoQPPviA9PT0x/VShHgkGlmrSwiRl1WoUIECBQrcMbLjcDiwWq0YDAa02rz5Ge6ZZ57h8OHDnD9/Xu0ovPXWW3z88ccMGDCAGjVqsGrVKtasWcPixYvp0qXLfe/rcDh4+umn+fvvvxk5ciQFChRgxowZXLp0if3791OqVKmMbdeuXUvr1q1p2LAhXbt25dChQ0yfPp0XX3yRmTNn5vTLFOKBpPgI4QSSk5Px9PRUO4Yq7lV8nEFeKT5XrlyhePHivPjii0ybNg0ARVFo0KAB586d4/z58+h0unvef9myZXTu3Jnly5fz/PPPAxATE8MTTzxBq1atWLRoUca25cuXR6/X8+eff+Lm5gbAu+++y/jx4zl69ChlypTJwVcqxIPlzY9JQuRjV65coX///oSFhWE0GilevDivvPIKVqsVgDlz5qDRaNi2bRsDBw4kODiYwoULZ9x/xowZlC9fHqPRSFhYGIMGDSI+Pj7Tc5w6dYrnnnuO0NBQ3N3dKVy4MF26dCEhISFjmw0bNvDUU0/h5+eHl5cXpUuX5u23335g/qzcz2Kx8MEHH1CyZEmMRiPh4eGMGjUKi8Vyx+MtWLCAmjVrYjKZ8Pf3p379+qxfvx6AYsWKceTIEbZt24ZGo0Gj0dCwYUPg3sf4LF++nGrVquHh4UGBAgXo0aMHV65cybRNnz598PLy4sqVK7Rv3x4vLy+CgoIYMWIEdrv9gd+DVatW0bp164yfYUREBB9++GGm+zZs2JA1a9Zw4cKFjOzFihW752P26dMnY7vbL6NHj35gpgfltdlsDBw4MOM6jUbDK6+8wuXLl9m9e/d97//DDz8QEhLCs88+m3FdUFAQnTp1YtWqVRk/16NHj3L06FFefPHFjNIDMHDgQBRF4Ycffnik1yHE4+D24E2EEI/L1atXqVmzZsbxEmXKlOHKlSv88MMPpKSkYDAYMrYdOHAgQUFBvP/++yQnJwMwevRoxowZQ9OmTXnllVc4ceIEM2fO5I8//mDnzp3o9XqsVistWrTAYrEwZMgQQkNDuXLlCr/88gvx8fH4+vpy5MgRnnnmGSpVqsTYsWMxGo2cPn2anTt33jd/Vu7ncDho27Ytv//+Oy+++CJly5bl0KFDfPnll5w8eZKVK1dmbDtmzBhGjx5N3bp1GTt2LAaDgb1797J582aaN2/OpEmTGDJkCF5eXrzzzjsAhISE3DPfnDlz6Nu3LzVq1GDChAlERUUxefJkdu7cyYEDB/Dz88vY1m6306JFC2rVqsVnn33Gxo0b+fzzz4mIiOCVV1657/dhzpw5eHl5MXz4cLy8vNi8eTPvv/8+ZrOZiRMnAvDOO++QkJDA5cuX+fLLLwHw8vK652O+9NJLNG3aNNN169atY+HChQQHB2dcd/369ftmu8Xb2xuj0QjAgQMH8PT0pGzZspm2qVmzZsbtTz311D0f68CBA1StWvWOXYo1a9bk66+/5uTJk1SsWJEDBw4AUL169UzbhYWFUbhw4YzbhVCVIoTINb169VK0Wq3yxx9/3HGbw+FQFEVRZs+erQDKU089paSnp2fcHh0drRgMBqV58+aK3W7PuH7atGkKoHz//feKoijKgQMHFEBZvnz5PXN8+eWXCqDExMQ8VP6s3G/+/PmKVqtVduzYken6WbNmKYCyc+dORVEU5dSpU4pWq1U6dOiQ6fUoyv9/LxRFUcqXL680aNDgjufZsmWLAihbtmxRFEVRrFarEhwcrFSoUEFJTU3N2O6XX35RAOX999/PuK53794KoIwdOzbTY1apUkWpVq3a/b8JiqKkpKTccd1LL72kmEwmJS0tLeO61q1bK0WLFn3g493NqVOnFF9fX6VZs2aZfg+ALF1mz56dKUeJEiXueI7k5GQFUN588837ZvH09FT69et3x/Vr1qxRAGXdunWKoijKxIkTFUC5ePHiHdvWqFFDqV27dlZfvhA5RnZ1CZFLHA4HK1eupE2bNnd8Ioabux7+a8CAAZmOu9i4cSNWq5Vhw4Zl+uQ9YMAAfHx8WLNmDQC+vr4A/Pbbb6SkpNw1y62Rj1WrVuFwOLL8GrJyv+XLl1O2bFnKlCnD9evXMy6NGzcGYMuWLQCsXLkSh8PB+++/f8dIwu3fi6z4888/iY6OZuDAgbi7u2dc37p1a8qUKZPx/fmvl19+OdPXTz/9NGfPnn3gc3l4eGT8f2JiItevX+fpp58mJSWF48ePP3T22yUnJ9OhQwf8/f1ZvHhxpt+DDRs2ZOnSokWLjPukpqZmjP78163vU2pq6n3zZPX+t/57r20f9DxC5AbZ1SVELomJicFsNlOhQoUsbV+8ePFMX1+4cAGA0qVLZ7reYDBQokSJjNuLFy/O8OHD+eKLL1i4cCFPP/00bdu2pUePHhmlqHPnznz77be88MILvPnmmzRp0oRnn32W559//r5nSGXlfqdOneLYsWMEBQXd9TGio6MBOHPmDFqtlnLlymXp+/Eg9/r+AJQpU4bff/8903Xu7u53ZPT39ycuLu6Bz3XkyBHeffddNm/ejNlsznTbf4+jyq4BAwZw5swZdu3aRWBgYKbbbt8dlhUeHh53Pb4qLS0t4/bHcf9b/73Xtg96HiFygxQfIfKoR3mT+Pzzz+nTpw+rVq1i/fr1DB06lAkTJrBnzx4KFy6Mh4cH27dvZ8uWLaxZs4Z169axdOlSGjduzPr16+95hk9W7udwOKhYsSJffPHFXR8jPDw826/rcbrfWUz3Ex8fT4MGDfDx8WHs2LFERETg7u7OX3/9xRtvvPFQI2h3M3nyZBYvXsyCBQuoXLnyHbdHRkZm6XF8fX0zfocKFizIli1bUBQl02jatWvXgJvH4NxPwYIFM7b9r9vvX7BgwYzrb/85X7t2LeOYIiHUJLu6hMglQUFB+Pj4cPjw4Wzdv2jRogCcOHEi0/VWq5Vz585l3H5LxYoVeffdd9m+fTs7duzgypUrzJo1K+N2rVZLkyZN+OKLLzh69Cjjxo1j8+bNGbui7uVB94uIiCA2NpYmTZrQtGnTOy63RmQiIiJwOBwcPXr0vs+X1d1e9/r+3Lru9u9Pdm3dupUbN24wZ84cXn31VZ555hmaNm2Kv7//Hds+7C67HTt2MGLECIYNG0b37t3vuk3BggWzdFm6dGnGfSpXrkxKSgrHjh3L9Fh79+7NuP1+KleuzF9//XVHqdu7dy8mk4knnngi0+P8+eefmba7evUqly9ffuDzCJEbpPgIkUu0Wi3t27dn9erVd7wxwM15Ve6nadOmGAwGpkyZkmnb7777joSEBFq3bg2A2Wy+Y5bcihUrotVqM3ZBxMbG3vH4t96U7rab4pas3K9Tp05cuXKFb7755o5tU1NTM85Qa9++PVqtlrFjx97xhvrf1+fp6XnH6fp3U716dYKDg5k1a1am17B27VqOHTuW8f15VLdGiv6b0Wq1MmPGjDu29fT0zPKur2vXrtGpUyeeeuqpjDPD7iY7x/i0a9cOvV6fKaOiKMyaNYtChQpRt27dTDmOHz+OzWbLuO75558nKiqKn376KeO669evs3z5ctq0aZNxTE/58uUpU6YMX3/9daZT+2fOnIlGo8mYA0gINcmuLiFy0fjx41m/fj0NGjTIONX72rVrLF++nN9//z3T6da3CwoK4q233mLMmDG0bNmStm3bcuLECWbMmEGNGjXo0aMHAJs3b2bw4MF07NiRJ554gvT0dObPn49Op+O5554DYOzYsWzfvp3WrVtTtGhRoqOjmTFjBoULF77vac1ZuV/Pnj1ZtmwZL7/8Mlu2bKFevXrY7XaOHz/OsmXL+O2336hevTolS5bknXfe4cMPP+Tpp5/m2WefxWg08scffxAWFsaECRMAqFatGjNnzuSjjz6iZMmSBAcHZxwo/V96vZ5PPvmEvn370qBBA7p27ZpxOnuxYsV47bXXsvtjy6Ru3br4+/vTu3dvhg4dikajYf78+XctrtWqVWPp0qUMHz6cGjVq4OXlRZs2be76uEOHDiUmJoZRo0axZMmSTLdVqlSJSpUqAdk7xqdw4cIMGzaMiRMnYrPZqFGjBitXrmTHjh0sXLgw026/t956i7lz53Lu3LmMeYeef/55ateuTd++fTl69GjGzM12u50xY8Zkeq6JEyfStm1bmjdvTpcuXTh8+DDTpk3jhRdeuON0eiFUoeIZZUK4pAsXLii9evVSgoKCFKPRqJQoUUIZNGiQYrFYFEX5/9PZ73bKu6LcPH29TJkyil6vV0JCQpRXXnlFiYuLy7j97NmzSr9+/ZSIiAjF3d1dCQgIUBo1aqRs3LgxY5tNmzYp7dq1U8LCwhSDwaCEhYUpXbt2VU6ePHnf7Fm9n9VqVT755BOlfPnyitFoVPz9/ZVq1aopY8aMURISEjJt+/333ytVqlTJ2K5BgwbKhg0bMm6PjIxUWrdurXh7eytAxqntt5/OfsvSpUszHi8gIEDp3r27cvny5Uzb9O7dW/H09Lzj9X3wwQdKVv4s7ty5U6ldu7bi4eGhhIWFKaNGjVJ+++23O/IkJSUp3bp1U/z8/BTgvqe2N2jQ4J6npn/wwQcPzPQgdrtdGT9+vFK0aFHFYDAo5cuXVxYsWHDHdrdO9T937lym62NjY5X+/fsrgYGBislkUho0aHDP39EVK1YolStXVoxGo1K4cGHl3XffVaxW6yO/BiEeB1myQgghhBAuQ47xEUIIIYTLkOIjhBBCCJchxUcIIYQQLsNpis+ECROoUaMG3t7eBAcH0759+zvm60hLS2PQoEEEBgbi5eXFc889R1RUlEqJhRBCCJHXOE3x2bZtG4MGDWLPnj1s2LABm81G8+bNM+YEAXjttddYvXo1y5cvZ9u2bVy9epVnn31WxdRCCCGEyEuc9qyumJgYgoOD2bZtG/Xr1ychIYGgoCAWLVqUMUnW8ePHKVu2LLt376Z27doqJxZCCCGE2px2AsNbs6EGBAQAsH//fmw2W6bJvcqUKUORIkXuW3wsFkumWV4dDgexsbEEBgZma4VoIYQQQuQ+RVFITEwkLCzsvostO2XxcTgcDBs2jHr16mWsdB0ZGYnBYLhj5tuQkJD7Luo3YcKEO2YeFUIIIYRzunTpEoULF77n7U5ZfAYNGsThw4f5/fffH/mx3nrrLYYPH57xdUJCAkWKFOHSpUv4+Pg88uMLIYQQIueZzWbCw8Px9va+73ZOV3wGDx7ML7/8wvbt2zM1utDQUKxWK/Hx8ZlGfaKioggNDb3n4xmNxowF9v7Lx8dHio8QQgjhZB50mIrTnNWlKAqDBw9mxYoVbN68meLFi2e6vVq1auj1ejZt2pRx3YkTJ7h48SJ16tTJ7bhCCCGEyIOcZsRn0KBBLFq0iFWrVuHt7Z1x3I6vry8eHh74+vrSv39/hg8fTkBAAD4+PgwZMoQ6derIGV1CCCGEAJzodPZ7DV3Nnj2bPn36ADcnMHz99ddZvHgxFouFFi1aMGPGjPvu6rqd2WzG19eXhIQE2dUlhBBCOImsvn87TfHJLVJ8hBBCCOeT1fdvpznGRwghhBDiUUnxEUIIIYTLkOIjhBBCCJchxUcIIYQQLkOKjxBCCCFchhQfIYQQQrgMKT5CCCGEcBlSfIQQQgjhMqT4CCGEEMJlSPERQgghhMuQ4iOEEEIIlyHFRwghhBAuQ4qPEEIIIVyGFB8hhBBCuAwpPkIIIYRwGVJ8hBBCCOEy3NQOkFeNHz8eo9GodgwhXJqiKAQHB1OxYkVq164t/yaFEI9MoyiKonaIvMRsNuPr64vRNxCNRgbEhFCLoihYEq6j0elQ7Ha8fXzp07sXI0aMoEiRImrHE0LkMbfevxMSEvDx8bnndlJ8bnPrGxc+bBlao0ntOEK4PMVhxxZzgeTjOzDvWQ7Am2++yfjx49FoNCqnE0LkFVktPjKkIYTI0zRaHYaQEvg36E3hV5fgWb4RH3/8Me07dCAxMVHteEIIJyMjPre51RgBkE+TQqhKgwa9yRu3oGIYi1fHs0JjdCZfUk7tJe7Xz6lUvhy/rVtLgQIF1I4qhFCZ7OrKplvfuEmTJuHh4aF2HCFcmt1u5/r16+zZu5cN6zfg0Gjxqt4e3zqdsN24RMyydyleOIzdu3YSGBiodlwhhIqk+GRTVr9xQojcdePGDT7//HMmTvwMt4AwAtq8ieKwcW32UKpUrcae3bswGAxqxxRCqESO8RFC5CuBgYGMHz+egwcPUDTARPSC4dhTzAR3HMPBgwd5++231Y4ohHACUnyEEE6lfPny/PnHPho1eJrrP44BwK9RPz7//HMWL16scjohRF4nxUcI4XS8vLz4ZfVqWrVswY2V4zEWLI1Xhcb06/8CZ86cUTueECIPk+IjhHBKBoOBH5Yvp0b1asT+PAGful1Q3H3o07cfDodD7XhCiDxKio8Qwmm5u7uz4qcf8TcZiF87Cd+mr/D7ju1Mnz5d7WhCiDxKio8QwqmFhoaycsVPWK+dIvXcX5jKPM3QoUM5e/as2tGEEHmQFB8hhNOrXbs2Eyd+SuKfq/Cq0AS9lz+vvPKK2rGEEHmQFB8hRL4wdOhQ6tSth3nz13jX68b69evZtm2b2rGEEHmMFB8hRL6g1WqZO2c2juRYbNcv4lGoDIOHDMVut6sdTQiRh0jxEULkG6VKlWL8uI9I/OsXPCo05fChf/j+++/VjiWEyENkyYrbyJIVQjg3m81G+QoVuWIxoPUMxDPuJOfPnsHd3V3taEKIHCRLVgghXJJer2fK5EmkXDiEW1BRoqOi+Oabb9SOJYTII5yq+Gzfvp02bdoQFhaGRqNh5cqVmW7v06cPGo0m06Vly5bqhBVCqKZly5a0bNWK1H9+w1S6Lh9+NI7U1FS1Ywkh8gCnKj7Jyck8+eST952crGXLlly7di3jImv3COGaJn35JTZzDFqTHzHRUXz22WdqRxJC5AFuagd4GK1ataJVq1b33cZoNBIaGppLiYQQeVXp0qXp1bMni35chUep2kz4+BOGDx+Op6en2tGEECpyqhGfrNi6dSvBwcGULl2aV155hRs3btx3e4vFgtlsznQRQuQP7733HvbURNy8C5CakszXX3+tdiQhhMryVfFp2bIl8+bNY9OmTXzyySds27aNVq1a3XcejwkTJuDr65txCQ8Pz8XEQoicVKJECfr26YPl5O+YImowacpU0tPT1Y4lhFCR057OrtFoWLFiBe3bt7/nNmfPniUiIoKNGzfSpEmTu25jsViwWCwZX5vNZsLDw+V0diHyiQsXLlCyZCkMJWuTcnwHS5cupVOnTmrHEkI8ZnI6Ozc/7RUoUIDTp0/fcxuj0YiPj0+mixAi/yhatCi9e/ci/epRPMLLM+HjT3DSz3tCiMcgXxefy5cvc+PGDQoWLKh2FCGEikaOHIktMRaNZwAHD/zFli1b1I4khFCJUxWfpKQkDh48yMGDBwE4d+4cBw8e5OLFiyQlJTFy5Ej27NnD+fPn2bRpE+3ataNkyZK0aNFC3eBCCFWVLl2aNm3b4rh+HvfgokyeMkXtSEIIlTjVMT5bt26lUaNGd1zfu3dvZs6cSfv27Tlw4ADx8fGEhYXRvHlzPvzwQ0JCQrL8HLJkhRD50+7du6lbty7uJaphPX+As2fPUrRoUbVjCSEek6y+fztV8ckNUnyEyL/qPfU0f525hj0hiteGDOSTTz5RO5IQ4jGRg5uFEOI2I0e8TlrkGbQFivHV19/IMhZCuCApPkIIl9GmTRsKhRcBxUFCfBzff/+92pGEELlMio8QwmXodDqGDh6ELfIU7mGlmfXV13JquxAuRoqPEMKl9O/fHzedDoeicPjQP+zbt0/tSEKIXCTFRwjhUgIDA+nZozskXcfgHSC7u4RwMVJ8hBAuZ/DgwVgTY1E8fFmwcCGJiYlqRxJC5BIpPkIIl1O5cmWqVa+BRnGQkpLCkiVL1I4khMglUnyEEC7plZdfwnr9IoYCRZgxc5bacYQQuUSKjxDCJXXu3BmTpycKGg4e+It//vlH7UhCiFwgxUcI4ZK8vLzo2b07pMSjN3kze/ZstSMJIXKBFB8hhMt68cUXsSXHoxi8mDtvPlarVe1IQogcJsVHCOGyqlatSqUnK6NBIS72BmvWrFE7khAih0nxEUK4tBf698OeGIPeN4jvZXeXEPmeFB8hhEvr1q0bOq0OhwK/rF5NZGSk2pGEEDlIio8QwqUFBgbStm0btCho3fQsXLhQ7UhCiBwkxUcI4fL69euHzXwdjYcv38+eo3YcIUQOkuIjhHB5zZs3JzgkFBQHR48c5siRI2pHEkLkECk+QuQgRVFQFEXtGOIB3Nzc6NO7F9hS0Rk9mD9/vtqRhBA5RKPIX+VMzGYzvr6+uLnp0Wg0ascRTs7usOOw2ylcpCgtmzfjhRdeoFatWmrHEndx+PBhKlasiM4rgCAfD65cuohWK58NhXAWt96/ExIS8PHxued2Unxuc+sb59+oHxo3g9pxhJNTFAXLlWPoTH6kHt1CemoizZu34KeffsTT01PteOI2lZ6szNGzl7En3WDTpk00btxY7UhCiCzKavFxy8VMTsXryZZojSa1Y4j8oFobAJQmL5Cwaymbtv5Irdp12LD+NwoWLKhyOPFffXr3YuSoN3Az+TB//nwpPkLkQzLic5tbjTG400doDe5qxxH5gUaDzisQnXcgGo0Ga8x5ri99B3etwokTx6X85CHXrl2jcOHCaEx+uGMlJjoaDw8PtWMJIbJAdnVl061vnBCPm3tQEUxV2+BVqTnpcdeInPsqT5Qswd8HD2IwyG7VvKJ5ixZs3rkPe3I8P/zwA88995zakYQQWSDFJ5tufeP27NmDl5eX2nFEPpCens7Zs2dZtGgRP/74I+5hpQloO4r0hGhilr7LgBf6M2vWLLVjin8tXLiQHj16oPPwpm3Lpvz0009qRxJCZIEUn2zK6jdOiOzYvXs3nTp3ITohmcCOH2K5fJTY36axcuVK2rVrp3Y8ASQlJREUHIIVN3R2C9FRkfj5+akdSwjxAFl9/5ZzNYXIRXXq1OHPP/ZRMrwgN5a/j0eJaphKVKNr126yRlQe4eXlRYf27dGgYLNZWbFihdqRhBCPkRQfIXJZSEgImzZuoIC3O7GrJuDX9GVSU1MYPvx1taOJf3Xv3g17aiJavTvfff+92nGEEI+RFB8hVBAaGsrPq1Ziv3GRxH0/4t/0JRYvXsSePXvUjia4uYSFn38A6PTs2rmTa9euqR1JCPGYSPERQiXVqlVjyuRJJB5ch94vFPfgYgx/fYQscZEH6PV6unbpDOlW0GpZsmSJ2pGEEI+JFB8hVPTiiy/SuHETEjbOxLtuN3bv2snPP/+sdiwBdOvWDYctDY3egyVLl6kdRwjxmMhZXbeRs7pEbrtw4QKly5TF+GRr0qNOUcJb4e+DB2SdKJU5HA7CixbjWkwsiiWZc+fOUaxYMbVjCSHuQc7qEsJJFC1alLfefIOk/avwKNeYw4f+Yc6cOWrHcnlarZYe3bqicaSj1bmxdOlStSMJIR4DGfG5jYz4CDWkpKRQstQTmL2LQbqVwvokjhw+hE6nUzuaSztw4ABVq1ZFa/Sk7BMRHP7nb7UjCSHuQUZ8hHAiJpOJ8eM+IvnETgxFn+TE8WOsXr1a7Vgur3LlykSUegKAI4f+4dixYyonEkI8Kik+QuQRPXr0oERESayXDuFRqDRffDlJ7UguT6PR0KNbV7Db0LoZZHeXEPmAUxWf7du306ZNG8LCwtBoNKxcuTLT7Yqi8P7771OwYEE8PDxo2rQpp06dUiesEA/Jzc2NsWNGk3xqL/rwiuzYvo0//vhD7Vgur0uXLjjSrSg6NxYsWizTDQjh5Jyq+CQnJ/Pkk08yffr0u97+6aefMmXKFGbNmsXevXvx9PSkRYsWpKWl5XJSIbKnS5cuFCsRgT3uGsaAgkyePEXtSC6vTJkyVKj0JCgKZ06d5J9//lE7khDiEThV8WnVqhUfffQRHTp0uOM2RVGYNGkS7777Lu3ataNSpUrMmzePq1ev3jEyJERepdPpeGPkCFJO7kZftArLli0jKipK7Vgu7+buLitaN4NMZiiEk3Oq4nM/586dIzIykqZNm2Zc5+vrS61atdi9e7eKyYR4OL1798Y/IABHWhI2m5Uvv/xS7Ugur1OnTih2O4rWjYWLl8juLiGcWL4pPrdWtg4JCcl0fUhIyH1XvbZYLJjN5kwXIdTk4eHBq0OHYDmzD1PZ+syeMxebzaZ2LJdWvHhxqteoCShcunCeffv2qR1JCJFN+ab4ZNeECRPw9fXNuISHh6sdSQheeuklNA47aDRER0WyatUqtSO5vG5du0C6Fa1ezu4Swpnlm+ITGhoKcMfxEFFRURm33c1bb71FQkJCxuXSpUs5mlOIrAgJCaFz587YI0/iUbAks2UmZ9V16tQJFAeKRseiJUtxOBxqRxJCZEO+KT7FixcnNDSUTZs2ZVxnNpvZu3cvderUuef9jEYjPj4+mS5C5AVDhw7BEnsNPANZt3atlHKVFSpUiDp166EBoq5dZefOnWpHEkJkg1MVn6SkJA4ePMjBgweBmwc0Hzx4kIsXL6LRaBg2bBgfffQRP//8M4cOHaJXr16EhYXRvn17VXMLkR01a9bkySpVwZaKVu/O7Nmz1Y7k8rp364pis6DVu8vuLiGclFOt1bV161YaNWp0x/W9e/dmzpw5KIrCBx98wNdff018fDxPPfUUM2bM4Iknnsjyc8haXSIv+frrr3n55VcwFnuSIEcc58+ekVXbVRQdHU3BggVR3Iz4+3gRde0qbm5uascSQpD192+nKj65QYqPyEsSExMJCQ1FCS5N2vkDbNmyhYYNG6ody6U1adKUrb/vwmFNZcOGDZmm0BBCqEcWKRUiH/D29qZb164o8VfQewcwffoMtSO5vG7duuKwpaE1yO4uIZyRFB8h8rgXXngBS3w0Wv/C/LJmDYmJiWpHcmkdOnTATeeGgoZly3/AarWqHUkI8RCk+AiRx9WqVYuIUk+Aw05aagrLli1TO5JLCwgIoHmL5mg0GswJ8axfv17tSEKIhyDFR4g8TqPRMKB/P9KjTuMeGsGiRYvVjuTyunbpgsOSgtZoYvFiWbtLCGciBzffRg5uFnnR1atXCQ8Pxy2kFLbIk1y+fJmwsDC1Y7msxMRECgQFY1O0uLtpuB4TjclkUjuWEC5NDm4WIh8JCwujSdOmaOwWtG4GFi1apHYkl+bt7c0zrf+HRgOpKcn88ssvakcSQmSRFB8hnETvXr2wRJ/HLbAIc+cvUDuOy+vWrdvN3V3unixaLLsfhXAWsqvrNrKrS+RVycnJBAWHYPcOxRp1hiNHjlCuXDm1Y7ms1NRUCgQHk2pTcFPSiYmOwtfXV+1YQrgs2dUlRD7j6elJx+efA0sieg8v5s+fr3Ykl+bh4cFzHTqgQcFms7JixQq1IwkhskCKjxBOpEePHljjo1E8/Jg3fwEyYKuuLhlnd3myUI67EsIpSPERwok0btyYAkHBaHRuXL1ymb1796odyaU1btwYXz9/UBQ2b9pEZGSk2pGEEA8gxUcIJ6LT6ejerSukxqP39JHdXSpzd3enc6eOaDSgaDQyuaQQTkCKjxBOpnv37tiS4sHdj+U//Ijdblc7kkvr0qUL9rRkNAZP5i9YqHYcIcQDSPERwslUr16dosVLABATHcX27dtVTuTaGjRoQGhYIQD+/GMfp0+fVjmREOJ+pPgI4WQ0Gg09unVFSYnF4BPIYplDRlVarZae3buhsdvQ6mVySSHyOik+Qjihrl27kp6ahKL3ZNnyH7DZbGpHcmndunXDbk0FvQdz5s2Xs+2EyMOk+AjhhMqXL0/Z8hUAhYT4ODZu3Kh2JJf25JNPUqp0GTQaLefOnGbfvn1qRxJC3IMUHyGcVI9uXXEkxmDwDWLJElkhXE0ajYZePbqDNRk3d085206IPEyWrLiNLFkhnMXZs2eJiIhAHxiOwRrP9eho3N3d1Y7lss6dO0eJEiXQeQXgrYeoyGsYDAa1YwnhMmTJCiHyuRIlSlC1WnUAkhMTWbduncqJXFvx4sWpU7ceGo2G+LhY+XkIkUe5qR0grxo4cGC+/rR2a+6XqlWr0qFDB4oUKaJyIpEd3bp2YdSbb2PwD2Xx4iW0b99e7UgurU/vXux5+RXcPP2YN28+bdu2VTuSEOI2sqvrNreGyjwKlUaj1akdJwcppFw6lvHVxIkTGTFihIp5RHZcunSJIkWKoA8sgi7lOtdjovH09FQ7lsuKi4sjJCQUh9ELrTWZqMhr+Pv7qx1LCJeQ1V1dMuJzDwU6fojWaFI7Ro5zWJKJWTGekSNHEhAQQL9+/dSOJB5CeHg4tevU5a9Tl0hLTeGXX36hc+fOasdyWf7+/rRp8ww/r99Keno6ixcvZuDAgWrHEkL8hxzj4+K0Rk+CO3+EZ9n69O/fn3/++UftSOIhde/WFVvcVQwBBVkkkxmqrmvXrqQnxaLzCeLb775XO44Q4jayq+s2t4bK9CYfNBqN2nFylkaDW0AhPKu1x6NENa5M74WflwfXrl5Br9ernU5kUWRkJIUKFULnXwgSo4mJjsLX11ftWC7LarUSElqQRIcee0IUhw4dokKFCmrHEiLfk11dj+idUcPz/anB6enpbNq8mS0rxuFT81mCu4zn2pyhfPbZZ7z11ltqxxNZFBoaytP1G7D70CmsNisrV66kd+/easdyWQaDgY7PP8f3cxfg5uHFnDlz+Oyzz9SOJYT4l4z43MbV5vFRFIUpU6YwbNgw/Bu/gO36BZSze7h08YIclOlEvvnmG1566WX0AQVpUK0863/7Te1ILu3AgQNUrVoVN7+C+LqlyyiqELlA5vERWaLRaHj11Vd5/fXXSdg2G4+StUlOSuTzzz9XO5p4CM8++yxanRYFHZs2bSImJkbtSC6tSpUqlK9YCYAb12NYs2aNyomEELdI8REAjB8/nrJly5G0ZyneVVszZeo0EhIS1I4lsigwMJBmzZqhwY6iwA8//KB2JJc3oH+/m0uK+IXw1ddfqx1HCPEvKT4CuHlcwlezZpJ69SRaDx+SkpJYsGCB2rHEQ+jWtSvWG1fQBxRi/oKFasdxed27d0er0aC4Gflt3TouXryodiQhBFJ8xH/Uq1eP9h06kHZsK+5FKvHe+x/gcDjUjiWy6JlnnkFvMKIosHvXTi5cuKB2JJdWoEAB2rZtg8ZuRWfw4Pvv5dR2IfICKT4ik7FjxmCJvYbON4S42Bts2LBB7Ugii/z9/Wnbpg1aJR2dwSgrtucBL774Ita4SDS+IXz1zbekp6erHUkIlyfFR2RSsWJF/te6NenXjuMeVIRp06apHUk8hC5dOmOJvYrOL4w58+arHcflNWvWjELhN9fBi7x6RRYuFSIPkOIj7jByxAjSos+j8S3I2nXriI6OVjuSyKI2bdrg5e0DGi3Hjx7h77//VjuSS9Nqtbz84gAc8VcxBhZi2vTpakcSwuVJ8RF3aNCgAWXLlUexJGNPT+e7775TO5LIIqPRSOdOHdFYEjF4+TF/voz6qK1v374o9nQUgye/rVvHqVOn1I4khEvLV8Vn9OjRaDSaTJcyZcqoHcvpaDQaBg8aiOXKMdwLl2f+goXIPJfOo3v37ljio8E7mHnzF8hxJSorVKjQzakGbCkYPH2ZLqM+QqgqXxUfgPLly3Pt2rWMy++//652JKfUvXt3jEYjDruNY0ePsH//frUjiSyqX78+IQXDAA0x0VFs2rRJ7Ugub8jgwViuX0bjX5hvv/+epKQktSMJ4bLyXfFxc3MjNDQ041KgQAG1IzklX1/fm7tMUhMwePrKGUJORKfT0btnD5SEaxgDCzFnzly1I7m8li1bUiAoCBzppCSnMG/ePLUjCeGy8l3xOXXqFGFhYZQoUYLu3bvLpGGPoE+fPljio1A8A5k3fwF2u13tSCKLevbsiS3FDEZvflqxgvj4eLUjuTSdTsc7b7+NLeo0xoJPMGnyFJkjSwiV5KviU6tWLebMmcO6deuYOXMm586d4+mnnyYxMfGe97FYLJjN5kwXcVP9+vVvnorrsBMTHcWOHTvUjiSyqHz58pQpVx6NVovNZpMRuzygb9++GI3u4Gbk1MkT/PLLL2pHEsIl5avi06pVKzp27EilSpVo0aIFv/76K/Hx8Sxbtuye95kwYQK+vr4Zl/Dw8FxMnLdptVr69OqJknQdg3cgixYtUjuSyCKNRsML/fqSdvkoxoKl+PY7mTVYbb6+vvTp3QtH7EU8wp5gwsefqB1JCJeUr4rP7fz8/HjiiSc4ffr0Pbd56623SEhIyLhcunQpFxPmfT169CA9LRmHm4HFS5ZgtVrVjiSyqHv37gAoOj37//yDf/75R+VEYvDgwVgTY9F4B7Fn9y527typdiQhXE6+Lj5JSUmcOXOGggUL3nMbo9GIj49Ppov4f2XKlKFipSfRaHQkJSbKEhZOJDQ0lDZt26KxJGHwDuCbb75RO5LLK1euHM1btMARdwX3AuF88umnakcSwuXkq+IzYsQItm3bxvnz59m1axcdOnRAp9PRtWtXtaM5tZ49uuNIjMHgG8TSpUvVjiMeQv9+/UiLOocuOIK58+aTkpKidiSX99abb5IWfR5tYFFW//wzR44cUTuSEC4lXxWfy5cv07VrV0qXLk2nTp0IDAxkz549BAUFqR3NqXXu3Bm7zYJD68aPK1aQlpamdiSRRf/73/8IDAoGINGcwPLly1VOJBo0aEDVatVRUmIx+gUzZswYtSMJ4VLyVfFZsmQJV69exWKxcPnyZZYsWUJERITasZxekSJFqFO3HhogJSmJX3/9Ve1IIov0ej0D+vcj/eoxPIpUZPKUqTILt8o0Gg1vvjGK1EtH0RepzPLlyzl06JDasYRwGfmq+Iic071bV9LN0eh9g1i8WE6NdiYvvPACttQkNB6+HPhrP3v37lU7kstr164d4UWKoqQlYgwoyPsffKB2JCFchhQfkSXPP/88GkVB0bix+pdfZMp9JxIREUGduvVQkmNxDwhjypSpakdyeQaDgZEjXif55G4MxWuwcsUKDhw4oHYsIVyCFB+RJSEhITxdvwEaDVjSUvn555/VjiQewqtDh5B6+Si6sDIsW76My5cvqx3J5b388ssULV4ChzkK9wLhDH99hOyGFCIXSPERWda9W1fS46Mw+BdkoUxm6FQ6dOiAn78/ijUNjd6dyZMnqx3J5en1esaO/oDkU3sxlqnP1i2b5QOFELlAo8hHjEzMZjO+vr4kJCTInD63uXHjBkFBQej8QlESY4i8dk0WgXUi48eP5/3RY/Eo1xDHmZ1cvXwZX19ftWO5tPT0dMqULUck/iiOdIKUeE4cO4rRaFQ7mhBOJ6vv3zLiI7IsMDCQFi1botVocTiU+y4FIvKeF154AS0KGjcjaWkWZs6cqXYkl+fm5saHY8eQfHof7qXqcPHCBaZMmaJ2LCHyNRnxuY2M+NzfggUL6NmzJ4YCRXiyREH27d2jdiTxEPr378+CH1ahL1oV/eX9XLxwHm9vb7VjuTSHw0HNWrU5eiUOt4JlsB3bzJHDhyhRooTa0YRwKjLiI3JEu3btcNPrUTRa/ti3l5MnT6odSTyEkSNHYjXfwM03GHNioowu5AFarZapUyaTeu00bv4FUdx96NO3Hw6HQ+1oQuRLUnzEQ/H29ub5555Ha7fg5uHFnDlz1I4kHkKZMmVo2qwZace341mpOZ98OpHY2Fi1Y7m8OnXq0LFjJxJ3LcGn8QB2bN8muyKFyCFSfMRD69q1C5bYa2j9wvh+9hzS09PVjiQewugPPsBy/RJuviGkWm2yZEIeMX78OBzWFFJO7MS7amtGjBzF0aNH1Y4lRL4jxUc8tFatWhFYIAiN3khU5DVZwsLJ1KtXjzp165J8YA1eNZ9n2vTpHDt2TO1YLq9kyZK8+847JB/ejEdETfAOpk3bdsTHx6sdTYh8RYqPeGh6vZ7OnTpiu3YC99ASTJ8xQ+1I4iFNmTwZa3wUWpMvet9gXh44UI4pyQM++OAD6tSth3nTV/i3fp1LVyPp1r27/GyEeIyk+IhseeWVV3DYrGi8glj/229ykLOTqV69Om3btSN5z1J8Gg1g+9atfPXVV2rHcnlarZa5c2bjSI4l6e91+Lcewdq1axk+fLjM6izEYyLFR2RLhQoVqFylKliTMXj58+WXX6odSTykzyZOxJ4UhzXqDF6VW/L6iJEcP35c7Vgur1SpUnzx+Wck/rUGe1oiAU1fZvLkybz55ptSfoR4DKT4iGwbMngQqZeOYChRg+++n01kZKTakcRDKFWqFP369SVx73J8qrdH8QykTdt2JCQkqB3N5Q0cOJCePXsR/9s0jIXK4N9kAJ9++ik9e/YiJSVF7XhCODUpPiLbunTpAoqCw5qKotPz8ccfqx1JPKRPPvkEh83KjdWfEtD+Hc5fukLHTp2wWq1qR3NpGo2Gr76aRfFiRbj+4xg8yzagQJuRLFm+nGrVa7Bv3z61IwrhtKT4iGwzmUy89dZbWM/vx6NCU2bMmMmZM2fUjiUegp+fH6tXr8YSdRbL5aMEtHuLTZu30LZdO8xms9rxXJqHhwfrf/sNW2IsUXOH4l6sMsE9PudCvJVatWrRtl07Vq9eTWJiotpRhXAqUnzEIxkwYABKuhWtwQOtpx+vDBwoxyE4mWeeeYbevfuQsPlrdJ5+FHjuAzZt3U6VqtVYv369/DxVVLx4cY4dO4avuxvXF7+J1uBBUI/PCfzfMDbu+Ye2bdvi6+uLX0AgBQuFU65CRUqWLMkbb7zBnj175GcnxF3IWl23kbW6Hl7Pnj1ZsGABBdqO4vrPnzJ16lQGDx6sdizxEJKTk6lStRrnI28Q0ncajpQE4tdNIeXSEUqVLkO9OrXx8fHB398fi8VCjx49KFOmDDqdTu3oLuHMmTM0btqMa9E38Gs1DFPJmiiKQnrsZSxXT2JPuoHDmkLqqX04UhOwp9w8TstoNDJ27Fh69OhBWFiYyq9CiJyV1fdvKT63keLz8M6ePUtERAS+9brhSEsk5e+1/LB8Oe3bt1c7mngIR44coXKVKmg8AwjtPRmN0ZO08wdIPrYDJe4SijWV1OgLme7Tvn17xo4dS8WKFVVK7TpiY2Pp3qMH69auxRBUjMC2ozAUKHLXbR22NJKPbiP1+O+knj8AwIsvvsinn36Kr69vbsZ2SnFxcXz22WcsXrKMObO/o379+mpHElkgxSebpPhkz8CBA/nq2+8o2H8WCVu/J/nETrp27UadOrUxmUy4u7vTqFEjChYsqHZUcR+7du2iabPmKN7BBLR7G73/nT8ve6qZ1DN/knx4M+lRp0lPS+KJJ0ozadKXtGzZEo1Go0Jy1+BwOJg0aRIffvQR8XFxeBQqjb5QeRy2NPSB4bj5haL3D8PNvyAazc0jGdLNMcRtnU3aqT34eHsx7NWhvP322+j1epVfTd5jtVoZM2YMU6ZNIzXNisOezodjRvPOO++oHU1kgRSfbJLikz3x8fH4+/tjCCpKaJ8pJB1cS+rBNaTduIrisGfadtiwYTz//PPUq1dPpbTifg4fPkzTZs2IiozEu3o7fGt3ROfpd9dtFXs6SX//hnnXYtKT42nQsCFjRo+mQYMGuRvaxVgsFlauXMny5T+wZ+8+rly+mOl2g6cv+qKVMZWtj0fxamh0bqSbrxO3cRYpp/fyxBOlmTZ1Cs2aNVPpFeQ9a9asYeirwzh39iweT9QhoNnLXF84kuGv9GPcuHFqxxNZIMUnm6T4ZN/q1atp27YtPrWfx79Bn4zrHbY00mOvknJqD5Yrx0j7d+i9VKknmD59Gk2bNpVRgruw2WwsW7aMp556iqJFi+bqc1+6dIn33nuPuXPn3rxCo0Fn8MBY8Am0fqEYQkvhUbwKbj7BACiKg5QTu4jfMIP0FDN9+vTh448/JiQkJFdzuypFUUhPTycqKoqjR4+yY8cOflyxkmNHDmP0LYBHlbZ4V2mF1uCBNeosCZu/JuXiYdq2a8eXX3xBiRIl1H4Jqjl58iSvDhvGurVrMRWrjG/jFzAEFcNhSSFq9iAG9evBF198oXZMkQVSfLJJis+jefvtt5kwYQJeT7YgoPlANNo7D35V0q0k/vULqUc2kxZ9nhIRJfn2m69p1KiRConznvT0dObNm8d773/A1SuXqVajJn/u26tKluvXr7NmzRoOHTpEYmIiN27c4MjR45w8cQyHw4FHodJ4VGyOZ7mGaPXGjBGgxJ0LMWgdjBk9miFDhmAwGFTJ7+oOHDjAlClTWLBgIVp3TzxrdcK7SivQupFybDuJ2+dgT45n8OBBvPvuuwQGBqodOddER0czduxYZn31FW7eBfBp0A+PJ+qAPZ3Ev1aTtPcHSLcwbeoUXnzxRbXjiiyQ4pNNUnwejcPh4NVXX2XatGkAaN29cC9SCZ1vMIaQCNzDy/9nlEAh5eQu4jd+RXpSLB07dmTixIm5PrqRl+zcuZP+L7zAiePHMYaVRuvhQ1FjCseOHFY7WiYJCQmsXbuWefPns27tWvSevpiqtce72jNo9e7YUxNJ+H0BSQfWUrxECT6b+Cnt27eXkb27uHz5Mna7PUd/7y9evMjo0aOZO3cuBr9QvBv0xaNUbZR0C4l/rCLpjx8xuml5dehQhgwZQmhoaI5lUduVK1eYNGkS02fMwKZo8ar5PD7V24JOT8qJnSRun4PNHMOAF17gvffeo1ChQmpHFlkkxSebpPg8HgcPHmTUqFF4eXmRYDZz+sw5Lp4/C4BHwZK4l2uMV8UmaI2eKIqD5MObSfx9PliSefONUbzxxhuYTCaVX0XuuXLlCiNHjmLx4kV4FCyJT6MXcA+vQNzW2fhHH+T82dNqR7yn06dP89lnn/Hdd9+jNfniXa8bnhWaoNHqsMacx7xtNsln9lOrdh3GjhlNs2bNpAAB165d44svvmDK1GlogJiYaLy9vXP0OY8cOcJrw4ezYf16TCWq4tdoAPoC4dhTEjDv/ZGUv9eB3Ua7dm3p0qULTZs2xc/PL0cz5YbY2Fg2bNjAosWLWbNmDRo3I6YqrfGp0QGdhzfW6HMkbP6GlAv/0PqZZ/hs4kTKlCmjdmzxkKT4ZJMUn5wTGxvLxo0bWbJkCT+vXo1GZ8BU+X/41OyAzuSLw5JCwp7lJP25ktCQECZ++gldunRBq82/82ympKTw+eefM+Hjj7FrjXg/3RPPik3RaLTYrl/ixrop+DkSiLx6Re2oD3T27Fneeustli1bhkdoBD6NB+AeXgGA1HMHSPx9PqlXT1KhYiWGDB7E888/T0BAgMqpc5fD4WDnzp189913LFq0GEXnhr5QeVLP/MHVq1dz5axHRVFYvXo1Q18dxqVLF/Gs/D98anfEzSsAR1oSSYc2knZ0C6mRZ9BoNBQtHsETJUvg6+vrVIVVURTi4uM5eerM/3/oCit180NXhSZojSbSzTGY9ywj6eBvRJQsydQpk2nZsqXKyUV2SfHJJik+uePatWtMnjyZqdOmYbUreNV8Hu/q7dDqjdjirpKwdTbJJ3dTuUpVxn30Ia1atXKqP7oPYrFYmD17NqPHjCXm+nW8qrbBt25ntEZP0hNvkPD7ApIPbSKsUCHGjP6A/v37qx05y/bs2cOgwUP4a/+feJVrgG+Dvrj5FEBRFNIu/E3S/lWknPkTrVZLrVq1qV2rJqVKlcLf3z/fTYioKAqpqalcunSJQ4cOsXHzFmKvx2D0D8Hjyf/h/WQLrFFniVryNqdPnyYiIiLXslksFiZNmsSbb74JGi0+NZ/Fp9Zz6DxujjqlJ0SRdvEQ1uhz2BOiIN2Sa9keG707Op9gDCElcC9SMWM3uz05HvO+nzDv+wmAzz//nMGDB8uxaE5Oik823frGFS5S9LGNNCiKgqKAVqslMDCAtJRkevToQYMGDVz+lO7r168zbtw4pk2bjs7LH+/6fTGVeQqNRkPapcMkbp9HyuWjVKz0JMNeHUrHjh1zfHdATrpy5Qpz5sxh6rTpREVF4lm2Pr5P90TvF4qSbsX8x0qS9i7Hy+TB2DGjeemll5zyj7HD4WDu3LmMHPUG8QlmPMo1wr9RX7RGTwDSE2+QenovaRcOoty4QFps5B3THuQnBk9f3AIK4xZWFo+SNTAWKotGo0VRFJL+/o3Y36bxzz//qDIRZFRUFEOHDmX58uVodG64l6qD31Pd0Qfkv2NbrNcvkvD7QlJO7kar1dC9Wze+/PJLlzqo+2GlpaWRkJCQ5YvNZlMtq81mY926dVJ8Htat4uNdvR0at8c4wZfDgeKwk3p2Pxq7BVtCDAAeJhPjPvqIzp07u/SU8qdOnWL466/zy+rVmIpUwLfxixhCStwcJbj4D0l/rCDl7H6MRneaNG5E/fr1qVixIsHBwej1+jw5GqQoCmlpaVy+fJkDBw6wcdNm9u3dg1ZvwKNsA3xqPIs+sPDNUYFTuzFvm026OYZXhw7lvffeyxfHVpjNZkaOHMm3336Lxs2AqVILfOt0QmfKPHuwojhQrGlA/vtzpNEZ7vhboigOUs/uJ2Hzt1hjr1C33lP89OMPqp7+f/nyZUaMGMHSpUsBcPP0xS2oBKYn6qDzCsDNPwwU5a5nauY9ys1T/G9cxp6aQMqJXdiiTmNPTUSr1dK1a1cmTpyYrydUvTXaeL+SYjabM30dFxdPXHwC8QkJmM0JJJnN2GzWez6Hm9EDnbsnOqMnGEwoeg/QueXiq8xMcdhJO7tfis/DulV8woctQ2vMuYNrHdZUkg9vIu38AVJO3TxV+aWXXuKTTz5x6Snl169fz5Chr3Ly5AlMJWvh33wgbl43jwNJT4gm+fgOrOf/wnrtFOmWFJXTZp3B2//mp/0SNTCVrpsx8pF24R8Sdy0i5eJhmrdowZTJkyldurTKaR+/Y8eO8fnnn/Pdd98B4Fm2PsailfEs1wCt3qhyutyhKAq2G5dI/GsNKYc34rBZKFO2LG+MGkXv3r3zTHmPi4tj5cqVTJkyhRMnT5GakpxxW0BoOLGRl1RMlz2+/v5EFC/OkCFDePbZZ/P8YQyKopCSkvJQIy1x8fHExSUQnxCP2WwmOSmR9PuMvrgZTbi5e958nzOaUPQmNAYTWuPN67RGTzTGW1/f7TpTnivBDksKlyZ1kuLzsG4Vn5Cen6M1eDzWx9ZotGhNvmjdvTL9kUs3Xydu62xST/6Oj7cPQ4cM5t1333XKXRyPg81m46OPPuKLLyeRlGjGs1xD/Br2wc27QMY2iuLAnngdR2oiij1dxbT3p3EzoPMKQOvhk+lnbok8Tfymr0m7fJQiRYvxyccT6Ny5c55588spZ8+e5ZtvvmHylCmkptwsru5BRUm3WXEv+iRotfnqe6DY7SjpFlJP78Xxn6Jeo2ZNxoweTYsWLXLt4H273Z7pE358/M03SLv93rsYFUUhLi6OhIQEUlNT0ev1qu7KeFgmkyljcd37/V5ZrdY7ikRKSs5/sLr1vLFx8cTFx5OQYCbRnEBSUiL29Hv/XXNzv1Vabo60oL9ZXrS3FRXNfwrL/xcXT7QGjzxXWh4HKT7ZdKv45CS9yQd9aCmMxapgKl0PN58gANITrxO3fiYpZ/YREVGSaVOnuPQZBnFxcbz99tt8/fXXNyfLK1YFj9L18CzfEK3eXe14D82eaibp4DqSDv5Kuvk6YYUK8+rQIQwfPhw3N/WGh9WgKArr1q3jxIkTfPPNN/j6+RMXH59RAvJD+bn1p1Wv1xNcoAAGg55nnnmGHj164OXl9VCPlZ6efsduiftd4uPjiY1PID7+5tdJiQmkJCc/+IlcXKZCoTcCOfx7qNGiGExoDHcrKJm/zigz+bS0PA5SfLLpVvFZv349np6ej/WxbTYb0dHRHDt2jN937mTr1m3YbFZMJarhVaMD7kUqodFobs4pseVbUs7/zf9at2bSl19SqlSpx5rFmVy+fJnFixfz/vvvk5aWBoCbTwG0Jj/0BYreLI4q7le+J7sdhzUFy6XDWKPOZFxdtGgx3n77Lfr27es0C0XefoDjA9+EzWYcdofasZ2SoigkpaQQf2sEIDGB1PuUFq2bHjd3T3TunmgMppvHWhhMaG97M737p/+8t7tCDRqtTgpFPiDFJ5ty83R2s9nM8uXLmTR5CocP/YNH4bL4PN0L9yIVb+7jPbGTxG3fY0+KY/DgQbzzzjsUKFDgwQ+cTymKwu7du1m9ejU//PADaHQEBodw8M99eHp756lRgptn8inodDr8/fwIDPCncePGDBw4MMszwd6+a+JeF6v13gcfZtWt5zKbzQ99gKPO4H7zU/KtN169CQweoMm/8y/lNI3eeNun/VvF5S7lxc01d4kLcTspPtmkxjw+iqLw22+/8fY773Lgr/14lqqNb8O+6AMK4bBZSPxzFUl7f8Co1zJ0yBCGDh3qtFPKK4pCUlJSlobrExMTcYVfT6vV+tC7JjQ6HXp3r5uf8nWPYdRIowWDe744wFEI4ZpcuvhMnz6diRMnEhkZyZNPPsnUqVOpWbNmlu6r5gSGDoeDZcuWMXLUG1y9ehWv6u3wrdMZrdGUaUp5jSOd9u3b061bV5o0aZJr89o4HI4sl5Zbl9h/Rw8SEhJINCeQnJSIw3H3XSAajTZjyF5rNIHeRUYNtNos75rI2D3hZshTI1xCCKG2HCs+vXv3pn///tSvX/+RQ+aEpUuX0qtXL2bNmkWtWrWYNGkSy5cv58SJEwQHBz/w/nlh5ubU1FQmTpzI+Akfo+g98H6qJ54VGqPR6m5OKf/PBtKObiY16hxanY6Ikk9Q5olS+Pv7PZYzRG6OQPx7euRtpeVevy53lJZ/53TQGv/dBfLfN2/Df84u+O8bvcFD3syFEEJkS44Vn/bt2/Prr79StGhR+vbtS+/evfPU6rW1atWiRo0aGauDOxwOwsPDGTJkyM2p2R8gLxSfWy5evMjIkSNZtmwZeu8A/JoNxKNkrYxyYIu7StrFQ9iiz2KPj4L0VHgcA3gaHYrB4+4jD1JahBBC5EE5uqsrJiaG+fPnM3fuXI4ePUrTpk3p378/7dq1U/UsFavVislk4ocffqB9+/YZ1/fu3Zv4+HhWrVp1x30sFgsWy/+vQWM2mwkPD88TxeeWLVu28MrAQZw4fgxDQBieVZ7Bu0qrx3NshxBCCJEPZLX4ZGu/SFBQEMOHD+fvv/9m7969lCxZkp49exIWFsZrr73GqVOnsh38UVy/fh273X7HtO8hISFERkbe9T4TJkzA19c34xIeHp4bUR9Ko0aNOHb0CGvXrqWQrztxm77m8qTORC15B/O+n7DFXsnX6xwJIYQQj8sjTX5y7do1NmzYwIYNG9DpdPzvf//j0KFDlCtXjk8//ZTXXnvtceXMMW+99RbDhw/P+PrWiM/jNn36DKbPmEmd2jWpWfPmpUKFClkeIdNoNLRs2ZKzZ8+we/duvvvuO7777jvSLvxN3JbvgZuTb2k0OjTaR9zlpNWhM5oeek4QOfBWCCFEXvfQu7psNhs///wzs2fPZv369VSqVIkXXniBbt26ZQwtrVixgn79+hEXF5cjoe8lO7u6bpdTx/jUfepp9h06gdHTh9So8ygOOwajO1WqVKFO7VoZZahEiRJZLg2KonDx4kXWrFmDw+EgJSUFh8PxyKXDZrPdcxZYc0ICiYnmTOv33E6rc8PNw+tmebq1eJ2UJyGEEDkoq7u6HnrEp2DBgjgcDrp27cq+ffuoXLnyHds0atRIlZWlDQYD1apVY9OmTRnFx+FwsGnTJgYPHpzreW7nHl6BAs+8jsOWhjXqLNZrJzl87SR/z1vGpEmTAPD186dWrZrUrnWzDEVERDywADRp0iRbeUJCQrL9c8r+FPpXSLjy4HlqtDo33Nw9IZfWMVKT5t8Rtow1dwz/v+bOg+bQ0Ro90eTFWauFECKPeui/mF9++SUdO3bE3f3eayX5+flx7ty5RwqWXcOHD6d3795Ur16dmjVrMmnSJJKTk+nbt68qee5Gq3fHvXA53AuXy7jOnpKA9dopLNdO8vvpU2zdORlrUkKO5ihaIoIj//ydraU53NzcCAgIICAgINvPf6+ZiW9O1X9zAsN7zfmTn9wxwpaQQFxcLPGxZzGbzSSazVgtafe8v0ajhUcdHdP8/2rNGaN0/05HoPlPEbv3iJ0nGoP7zSxCCJGHPXTx6dmzZ07keGw6d+5MTEwM77//PpGRkVSuXJl169bdccBzXqMz+eIRUR2PiOrAzd1Y6QlR2BOv58jzpZ7ex4V9P5GcnPzY1yTLKp1Oh7+/P/7+/qo8vzO52+rRty7/PSsxu+x2O4mJiXesxXVzAsqLJFy/uWq0OdF87zKq0WSUJ63RBDKjc/bpDDeX/TDce6Qv02rbt/5fvudCPFC+HCMfPHhwnti19Sg0Gg16v1D0fjmzNIXDkgz7fsqRxxaPn8FgICgoiKCgoDtui4+P59q1ayQlJWG32x/qGDGj0UiBAgUICwtDp3vwm6aiKCQnJz9w16bZfJ+CJO5LURRSU1NJSPh3EtG4GOKvn8ZsNpNkNmO13rvo3lo3TefuhebfY+vuvuv0//+LNl++DTwUjVaH1mBCY/x3lFPvLscY5mPyGy+Ek1EUhV9//ZXp06dz8tRpzpx+PNNHlCpVihEjRtCsWTOKFy9+1200Gg1eXl54eXnlqYlLXYnFYsnSMXW3/v9mebqe5fIk/j3uzpDz5efW8X2ajNnuTXcdybvXLmYpaNkjxScXKelWFEWRX1SRLSkpKYwdO5bFS5Zy8cJ5AAwFS+Hf9CW0encMISVurm2W1d8vxYHDkoI1+hxpF/7mcvINXnrpJQAaN27MpEmTqFixYg69GpFdRqOR4ODgLC3Bcy//LU92u8wBZrFYMu3qTUhIIPk+J188LneeQXtrqaAoEiJv7l5OSU6691JBWh1u7qZ/lwryBL1JZt3PAik+ucTHy5OUnb8R/f1A3Ms2xLN8I9x8s/+HS7gOi8XCl19+yQejR2O1WDAWKkNwp7G4F33ysRzT4R5eAZ9qbQBIT7xOwu7l/L5/L5UqVaJevaf45puvKVu27CM/j8g7Hkd5cgWKopCYmEh0dDQWi+WRCoKiKOh0Ory9vQkJCcHNLWtvvw6H445Sdv/RvlvlKYaEqEdbZzEro07OeGJDvlyd/VHk1Dw+drudTZs2MW/efH786SfSUlMwFamIe7mGeJauh9bd67E9V1aknN5LzI8fEhUVJX/88ihFUVi1ahV9+vQlISEez3IN8K7RAWNoyYxt0hOvY712ClvcNRRLMgoP989Zo9Oj8wrEEFQUQ0iJjGVQFHs65j9Xkbh7KXZLCn369OGzzz4jMDDwsb5GIfKaqKgoNm3axGeffcaBAwdy7HmqVa9B+XJlGTRoEDVr1syx54Gb5SkpKemex+Pd7fqbJzbEk5Bwc+Qp6QEnNuj/LU9qLqWkOBykxV7NmbW68rPcWKQ0KSmJFStWMHfePLZs3gxaNzxK1sRUvhEexavlyrwsUnzytqNHjzJkyFA2b96EqURVfJ7qibFgKQBs8ZEk/bMB2+ldpMZcAsDk6YmPjx86t6yPACkKpKWlEnfjOoqi4Gb0wFisCqZyjfAoWRONVofDkkLiwV9J2rMck1HP+HEf8dJLL2X506oQzuLkyZOMGjUqY6Jb96AiYPLHGF4BY2hJNEbPRxzxARQ7lqsnUWxppBzfge3GzX+/latUpVvXLrz22mt59t9WVk9ssFqtqmW0WCxMmTJFis/Dyu3V2a9evcqiRYuYPXceRw8fwuDpi7H003iWb4Sh4BM5tu9Vik/edOPGDUaPHs2MmTPR+4bg0+gFPCJqoNFosFw7SeKeZSSf2ouXlzedOj7P//73P2rXrk1YWFi2f1fS0tL4+++/2bJlC0uWLefvA39h9AvGVLUdXpVboNW7Y0+OI377fJIObaBs2XJM+vILmjdv/phfvRC579y5c7z88iusX/8bepMPhhLV8a3dCX1g4Rx/boclhdSzf2L+fSHW2CsEBBZg8qQv6datG9p8MHmroigkJSU9lik37ubWlCi3ZPX9W4rPbXK7+PzX33//zfz585m/YCHRUZG4FyiMW6EKjz453V2kJ0STdm6/FJ88Ijk5menTp/PRuPGkWtPxqt0Rn2rt0Ljpsd24TML2OSSf3ENEyVK89eYbdOvWDQ8PjxzJcvDgQb744ksWLlqIm6cfXnW64lWpGRqtDkvkacybvyHl0hGaNW/OxxMmULVq1RzJIUROMpvNvPXWW8yYMQOtmwHvms/iW6cTGjcDAIriwHbjMrboc9iT41Dstkd/Uo0WrdETvX8YhtCImwck/yv13F8k719N8pk/GDFiBBMnTnz058tlNpuNXbt28fnnn7Nnz15iYqJz/Dl//PFHnn32WUCKT7apWXxu+e/xQIcOH3nIozayrnLlJ/n+22/y7NCqK7h27Rpff/01k6dMJT4hHs9KLfGr1xWdpx/2tCQSfl9I8sFfCQsrxITx4+jatWuW5tt5HM6cOcP773/AokULcQ8uhk/jAXgUfRJFUUg5uYuk3+eTdv0yLVu1Yvhrr9GkSZN88SlV5G8Oh4O5c+cy6o03iUsw41WjA97V2qDz8EFRHKSdP0jykS1Yz+3HlmIGwMNkwmAwPvKHUIfdTnLSvzPSazSYCpXBWKounuUbofP0AyB69iBe6taBL7/88lFfaq6Ji4vjgw8+YOrUqQA3lxsy+eNR7En0BYqiM/nlyPJD8b9N5a3XX2XMmDFA1t+/5R0vD9LpdDRv3lx2JeQziqKQkJDAiRMn2LNnD6t/+YUtW7ag0enxKN+EsFrP4uYbguKwk3hwHYm/z0dPOuM++ohhw4bdd5mYnBAREcHChQsYNuxVBg8Zyr4l7+BZph5+DfvhWboeplK1ST62nW1//MS65s0JKxxO7549GD9+fK7mFCKrfv/9d4a+OowDf+3Hq1xDQp/vg5tPARS7jcSD60j5cwVpN64QUeoJurw2hEaNGlGlSpVHWprndjabjVOnTrFr1y5W//ILa3+dT8KOeZjKNcSn1vOQbs2x0dzHLT4+njfeeIP5CxaSlpqKe5GK+NR8FvcS1XLlLK/EzV9l634y4nMbNUd8Dh8+zMaNG1m8eDEeJhMxMTdwKDePon/Q8Ru3foxuOjdCQoJQHA7atm1Lt27d7jrbr8gd586d480332LZsqWZrte66W+u11b6KTzLPJ1xVl/KyV0k7VpCatRZevbsxSeffEzBggXViJ6JoigsWrSI10eMJOb6DbyqtMan1rPoPP1RFAXLlWMk/L4Qt9hzJJpzdo05IR7WsWPHePudd1i5YgUeYaXwafQC7oXLoygOko9uI2nnQqzxUbTv0IHXhw+nbt26uTa3zY0bN/juu+/4/IsviYmOBo2GsWNG8+677+bK82dHeno6U6dOZdQbb5Bus+FZvhH+Dfuh8/r/423sqYnYYs5jT4pFSc+ZY3wStn7P2yOHP/SIjxSf2+R28YmLi+PHH3/k3ffeIyoyEgCduyfoPW6u26XRocniEKHicIDdRuqZfdiT4zOuL1O2LGNGj6Z9+/YYDIaceBniLg4ePEiVKlUA8KzQGJ13EIagorj5FcQQVAyN2/+f9plyai9Jf64g9eJhSpYqxcIFC3L8FNfsSEpK4p133mH69Ok40OBdrS2+9bqiNXiQsHsZmiO/Ens9Ru2YQqAoCrt37+aLL77gp59+wuAbhFe9HniWb4hGo71Z1jd/Q+rVk7Rt147x48ZRvnx51fKmpaUxa9Ys5i1YyMzp06hVq5ZqWe5ny5YtDBo8hGPHjuJVoQk+tZ5DHxgOgO36JZKObMZ29g9So8/neBadTsfq1atp1aoVIMUn23Kr+KSmpjJ69Gg+++wzHA4HHkUqYCxWFa8nW6Az+T6W50hPiCLxwFpSj23FZr5OYIEg3n7rTV599dVcO07EVZ08eZKq1aqTZtcQ2m8abl53DpXbk+NJPfMH5p2LsJljCC9ShHEffUSPHj3y/Eyqly9fZuDAgaxevRqd0QNjsWpo9Aa8bpwg8uplteMJF6QoCrGxsfz1119s27aNpct/4PTJE7gHFsJUvQNeFZug0elJT7xBwrY5JB3ZQqUnKzN1ymTq16+vdvw878yZM4wYOZKVK1ZgKlwOnyYvYgwtiaIopJ37i6Q/fiLl/N/4+PrxbIf2NGnShKpVq1KkSBE8PHJuduj/HlcoxSebcrr42O12vvzySyZ+9jnRUZF4RNTAv1H/O06dVNKt2FPN8LALPerc0Hn43DEXUNrlo8Rv/hbLtZOUK1+Bd995m65duz7qyxF3YbfbqVa9BoePnyS071R0XoFYo85gT47HcvkoAMmHN2FPjgOgbr2n6N6tKy+//LLTHRx86tQpxo0bx48rVpBkNlOyVGlOnTyudizhAo4ePcp3333HF198gbuHCXt6OjbbzTlk9J6+GIpXw7NcQ9yLVUaj0WJPTSRx/88k/7kSb08Tn3w8gX79+smHwAeIiYlhwoQJTJ06DZ2nL15P98azXEM0Gg1pl49g3jaH1MvHqFqtOiNHvE6HDh0wGo2qZJXik005WXx+//13Bg0ewj9/H8Sj6JP4txiE3j8MAHtKAiknd2M5fwB79GnS4qKy/TwarQ73gIJoQ0vjUaI6HhE10BpuHhibeuFvzFu/Jy3yDC1btWLypEk88cQTj+X1iZtmzJjBoEGDCH5+NBqjiYR1k0m7cSXTNk2bNaNE8eIMHz6c0qVLq5T08bFYLKxfv55KlSpRtGhRteOIfMxisdCzZ0+WL1+ORqfHVK4hjrRE3ItUQucVcHN3ckChjINrlXQrCbuXk/jHTzhsFl544QUmTpyIn5+fui8kjzt//jxTp05l5qxZ2BzgWeNZfGq0R6t3Jz0hivgt35N8YieVq1Tl4wnjad68ueoj1VJ8siknis/ly5cZNeoNFi9ehEfYE/g2HoCx0M21jyzXTpL0x0pSTu4CxUGNmrWo//RTlC1blpCQEPT6rE//rSgKVquVK1eucPjwYTZv3cbRw4dwczfhUa4R3tXbo/cvmHE6cuK22dgTb/Daa8N49913VTt9Pz8xm80UDCuEpmg1PCs24/qPY6hVsyaffvIxEREReHt74+WVu8uTCJFfxMbG0vqZNuz74w88q7TGv0Hvey6RYLtxiYS9P2I9uw9bspnGTZrw9VdfERERkcupnYPdbuf48eNs376d5ct/YOvWLbi5e+JRuTU+Ndqh8/DBYU3DvPcHEvf9RFBQASZ+8jHdu3fPMyPVUnyy6XEWH7PZzGeffcanEz9DcXPH++meeFZsevPAusjTmHfMI+XsXxQtXoJhQ4fQrVu3xz6Z4JkzZ5g7dy7TZ8wkLjYWz/KN8H2qO26+wThsFsz7fiJp3w/4+fjw0Ydj6d+//0OVLZHZ0KFDmTp1KiHdPyF2xUc0fKoOv6xeLQeVC/GIYmNjqfTkk0RG3yCo04cYC5VBURTsidexJ17HkZaM5coxLFePoyTHYrl+czmI5557jtGjR1OhQgWVX0He4HA42L59Oz///DMzZ84kpGAYljQLsTeuY7Va0Oh0eIRXwL1MAzzL1kdrcEdx2Ek6tInk3YtwpJgZMeJ13n777Tz3IU6KTzY9juITFxfHrFmzmPjZ55gTk/Cs1gbf2p3QGk2km6+TsH0uSUe28ETpMnw4dgzPPfdcju9nTk1N5dtvv2Xshx8RGxeHV7W2+Nbp/P+Zdswj6fBmihYvwej336NXr155psU7i9jYWAoVDset1FM4EiIJcMRz6J+/ZUhdiEdkt9upXacOf/7xB6G9J2EILk7SPxtI+etn0mIu3rF9lSpVGDFiBE2bNpWZ6f9lt9tZtGgR773/ARfOn8PoG4SuYGnS46NwL1YZnac/hqBiGEJL3lylnX/X5zq8GfOuRdjio2jYsBHfffctJUqUUPnV3J0Un2zKbvGxWq1s376dJUuWsGjxYixWG6YKTfCt0xk3nyCUdCvmfStI3LscPx9vxo/7iH79+uX6rMlJSUl89tlnfPLpRBxuRryf7o1nhcZoNFqs0WeJ3/wtqRf+ITU1NdcnzHN2Y8aMYczYD/Fr2I+4zd+wYcMGmjZtqnYsIZze22+/zccff0KB597DEFSc2NWfkHblOM8++yzdu3enZMmSeHp6EhwcnOdGIfKCuLg42rVrz44d29EHhBHQcijGwuXveUyOw5KM+Y9VpJ3YjuX6ZUqUiGDOnNk8/fTTuZz84UjxyaZb37gBAwY8cPeEw+EgISGBo8dPcPTIEayWNIz+obiXa4x35VbovG5O7pZyYieJO+aSbo5h2Kuv8v7776t+PM2lS5cYOXIkS5cuxaNQaXwavoB74bIkHlxH3Prp2O121Q9UcyY2m43wIkVJCixD+tWjtKhfm1UrV6odSwint3nzZpo0aYJfwz6YStbi+vL3KODlzrKlS6hXr57a8fK8U6dO0ax5C65GX8e32SA8yzyVcZvDkoI91YxiScESeQrL5WM4EqNJvfAPAHXr1WPUyJG0bdvWKd4PpPhk061vnEdI8axNHKg3ofENwVCgKO5FK6EPLpHxC5J28RBx66ZgjbtGy1atmPTll3nuDJ4dO3YwcNBgDh/6B/fw8uiDimM9uom01BS1ozmVefPm0bt3b7yq/I/kg2s5fPgw5cqVUzuWEE4tPj6eEhElSTOFENBmFDGLRlAiLJjNmzbmiRnN87rDhw/TsFFjkjXuBDz7AXq/UGzxkSQd+BXrmb13nG0KEBwSwojXX6dZs2ZUrlw590M/Aik+2XTrGxc+bFnGfs6HoSgOko9sIfmvX0i7dopChcOZPm0q7dq1y4G0j4fdbuerr77io3HjuXb1Cr5+/sTHxaody6nUrlOXQ1cTcSTdoE2Tp1i2bJnakYRwei+//DJfffUVBftNJ379VHztZvb/+QdhYWFqR8vzTpw4QZkyZTAWCCeo68dodHrid8wn+eCveHv70LVLZ+rWrUvBggXx9PSkQIECFCpUCJPp4d/38gopPtmUneJjT44n5fRe0s7ux3rxb9LTkilQIIjp06fx7LPPOs3q5xaLhdmzZ1OqVCmaNGmidhyncfToUcqXL4/pibqknNzFn3/+SbVq1dSOJYRTu/Xvyq9+L+xJN0g7vJHfd2zPk0u55DWJiYmULFWKuFQHwT0/x5EcT+zPE9CkJjD6g/cZMmSIUxece5HV2R9R9JxB919dVnHgSLdhTYrPdHXnzp3p1asXrVq1cop9ov9lNBp5+eWX1Y7hdObMmYPe5IOSdIO69Z6S0iPEYzD89dcx+hdEH1yc+O3zmDp1qpSeLHA4HPTo2ZPYhESCun+GLfocN1ZNoHzZMvz04w6ZxwgpPvf06ot97zvttqIoaDQaPD09AWjTpg1lypSRU8BdTHp6OtNnzETrH07qlWMMm/Sh2pGEcHqbN2/mt3XrCGz9GuZNs6jfoAEDBw5UO5ZTGD9+PD+vWkXQs+9hN8dw/acPadGiOT8sX54vR3myQ3Z13Sa3V2cXzm3NmjU888wzGAuXxystmqtXLstkhUI8AkVRqFvvKf6+cB190cqk7l/F8WNH8+zcMXnJ/v37qVmrFt41n8ejVG1ilrxJ86ZNWLlihUv8Xcrq+7cMTwjxCObMmYvRvyCO2Iv079fXJf64CJGTVqxYwZ7du/Ao35ikP1YyauQIKT1ZYLVa6dmrN8agYnhVaUXcqvE8WbEiP/7wg/xduo2M+NxGRnxEViUmJhIUHILiG4Y16gzHjh2jTJkyascSwmkpikKNmrU4FpWC1isQU+xJzpw+JZMSZsGrr77KlClTCO09CfPW7/BIjuTggb8oXLiw2tFyjYz4CJHDfvjhByxpqeBIp0bNWlJ6hHhEW7ZsYf+ff2AoVpWkY9v56MOxUnqyYP/+/UyZMgWfms+ScmInlivHWPHTjy5Veh6GFB8hsmnxkiUYAgtju3GZvn16qx1HCKf35aRJuAcXxRZ1miJFi9GnTx+1I+V5iqIweMgQjAFheJSqQ+LeHxkzenSeX15CTVJ8hMiGa9eusWnTJhyKgk6rpVOnTmpHEsKpHT9+nF9Wr0ZfpDLJJ3cz+oP30ev1asfK837++Wf27N6Nd/3eJGyYxpOVK/PGG2+oHStPk9PZhciGlStXoiigVRw0b9WSwMBAtSMJ4dSmTJmCwTsAR+J1CocXoUePHmpHyvMsFguvvjYcU4mqWCNPkx57lfmbfnGaSXPVIiM+QmTDwkWLcfMLwRp3je7duqkdRwinFh8fz5y5c9EXrUrKqT2MGjlCRnuyYPr06Vy8cAHPyv8j6Y8VvPvuO1SoUEHtWHmenNV1GzmrSzzIlStXCA8PR+cXit6SwPWYGJkYTIhH8NFHH/Hee+9hKvM0+sjDXLl8KWNyWHF3SUlJFClaDFt4dZSUBPxSr3Dq5Ak8PDzUjqYaOatLiByyfPlyNDo3NHYb7du1l9IjxCNwOBx8+/1sTCVrYj23n8GDBkrpyYJp06aRkJCAMaw0yaf28PlnE1269DwMKT5CPKRFi5eg8wrEZr5Oly6d1Y4jhFNbv349F86dBZ0exW7llVdeUTtSnmc2m/n4k08xVWxK8v6fqVO3npxg8RDyVfEpVqwYGo0m0+Xjjz9WO5bIR86dO8cf+/aiAN4+vrRo0ULtSEI4tdmz5+AeFI7j+nmee/Y5ChUqpHakPO/DDz8kIT4ON98Q0qLPM3nSl063KLaa8t2h32PHjmXAgAEZX3t7e6uYRuQ3S5YsQWcworHbeO65DvddyFYIcX8xMTH89NNPuBWpRNrZ/QwdOkTtSHlefHw8X339Dd7V2pB6aANt2ralRo0aasdyKvmu+Hh7exMaGqp2DJFPzV+4CK1XAWyxV+jatavacYRwavPmzcMBkG6lbPkK1K1bV+1Ied4333xDUlISPkYvLLFX+XDsWLUjOZ18dVZXsWLFSEtLw2azUaRIEbp168Zrr7123zkNLBYLFosl42uz2Ux4eLic1SXucPjwYSpWrIhbQGG8SSU6KlLmyxAimxRFoWz5ClxI0mK9eozJkyYxePBgtWPlaTabjWLFS5DgU5z0yFO0blyPH3/4Qe1YeUZWz+rKV3+1hw4dStWqVQkICGDXrl289dZbXLt2jS+++OKe95kwYQJjxozJxZTCWS1evBg3Dy80lkSe79ZJSo8Qj+DPP//kxLGjGMMr4OamlwkLs2Dp0qVcvXIZ79AqWOOjGDN6tNqRnFKeH/F58803+eSTT+67zb1Wxf7+++956aWXSEpKuuexGDLiI7LC4XAQXrQYMalgu3GJrVu30qBBA7VjCeG0+vbty/wly3Hz8KZzm+bMnTtX7Uh5mqIoVKhYifOpRhzmKFo8VZ2VK1aoHStPyeqIT54vPjExMdy4ceO+25QoUQKDwXDH9UeOHKFChQocP36c0qVLZ+n5ZAJDcTfbtm2jYcOG6AOL4KezEHntKlptvjopUohck5aWRnBIKFafQlguH2Xbtm3Ur19f7Vh52vr162nRogXe1dqSuP9ndu/eTe3atdWOlafkm11dQUFBBAUFZeu+Bw8eRKvVEhwc/JhTCVczZ84cDL7BKGkJ9B30kpQeIR7BqlWrSDQnYPQKpWjxErKSeBZMnjIFj9ASpEedpG69p6T0PII8X3yyavfu3ezdu5dGjRrh7e3N7t27ee211+jRowf+/v5qxxNOLCkpiaXLloFPGLbI03Tv3l3tSEI4tYWLFmEsUJj06xd44b13ZA6aBzh79ixrf/0VU/kmJB/eyJszflY7klPLN8XHaDSyZMkSRo8ejcVioXjx4rz22msMHz5c7WjCyS1ZsoTU1FSMfjpKlylLxYoV1Y4khNO6ceMGa39diyYgHIfNQu/evdWOlOdNnz4dNw8vlORYnihdhtatW6sdyanlm+JTtWpV9uzZo3YMkQ/NnPUV7mFlSLtyjH6vfiKfToV4BEuXLsXucGBQ7DRo2Ijw8HC1I+VpiYmJTJ02DX2x6qSe2sPwmTNkV/sjku+eEPexb98+/tr/JxhuLkQqp9wK8WjmzV+APrAwlpgL9OndS+04ed6CBQuwWa2g0eLl7S1/gx4DKT5C3MeUKVMxBhSElFhaP/MMYWFhakcSwmmdO3eOvXt2oyhgdPfg2WefVTtSnjdl6jQ8ilXGdulvBrzQX1aufwyk+AhxDxcvXmTJ0iW4FSxDWtQ5+vXtq3YkIZza4sWL0Rnc0aSn0qF9e1lL8QH+/PNPjh87Cm5G0lOTGDRokNqR8gUpPkLcw6efforWYMKRlkRggQK0a9dO7UhCOC1FUfju+9loTH5Y46Pp2VN22TzI119/jdE3CMUcRav//Y8SJUqoHSlfkOIjxF1cuHCBr7/+BvdyjUg98wevDh2KTqdTO5YQTuvw4cOcPXMatG74BwTSrFkztSPlaYmJiSxYuAhNQBHSos8zRNYxe2yk+AhxFyNHjkTj7gWAXm9g4MCBKicSwrktWLAAndEDjTWZrl06o9fr1Y6Upy1atIi01FRQ7BQuUpTmzZurHSnfkOIjxG1++eUXli9fjledLqQd3cKAAS8QGBiodiwhnJaiKCxeugyNyR9bUhzdunVTO1KeN3PWVxgLl8V29RivvPSinML+GMl3Uoj/OH/+PD179cazZA3SE6KxpZgZNWqU2rGEcGr79u3j0oXzAIQVDqdOnTrqBsrj/v77b/4+eAB0BhR7On3lxIrHSoqPEP86ePAgDRo1JlVjxKd+b1IOrmHIkCEULVpU7WhCOLUlS5agN/mgSTPTo1tXGb14gDlz5mDw8oPkG7Rp04aCBQuqHSlfyfOrs+e2W6u7Vq1WHZ1bvpnYWjxAXFwcZ06dxD24GAEd3iN+22y0V/7h+LGjMnePEI/A4XBQsFBhYtMgPf4aBw4coHLlymrHyrOsViuhBcNI8QjBcuUoa9eupWXLlmrHcgr5ZnV2tRxP9Uajk2+Pq9B6BxHQ6n94lqtPyoldJB/bwRdffCGlR4hH9PvvvxMdeQ03v4KUfKI0Tz75pNqR8rQ1a9YQF3sDY6FgQsMKydlvOUDe2e8hsPkraI0mtWOIXJZ6/iDXf/mcZs2aMWzYMLXjCOH0lixZgt7TDyU1nh7dXpK17h5g1ldfYSxQGEfsJfoPf1Wm0cgBUnzuwZ6agGK3qR1D5BKHJZnE/b+QuP9nwsIK8dNPP8kfaCEeUXp6OkuXLUfRu5OeHE+XLl3UjpSnRUVFsf633zAULI0t9TJ9+vRRO1K+JMXnHq5+NUDtCEIFzz33PDNnzsDLy0vtKEI4va1btxJ74zpufgWpUOlJSpcurXakPG3BggVo3fRoFDt16z1FyZIl1Y6UL0nxuYeFCxdiMsmuLlfgcDjQ6/XUrFmTkJAQteMIkW8sWbIEvXcAjpRYuncdqnacPG/+goXoA4tgiTrDC+PfVjtOviVndd0mq0eFCyGEuDer1UqBoGBStSbS469x9uxZihcvrnasPOvYsWOUK1cOQ2hJdOarREdFycjzQ8rq+7dMpiCEEOKx27BhA4nmBDQaqF6jppSeB5g/fz56kzeatEQ6Pv+8lJ4cJMVHCCHEY7dkyRL0PgWwJ16nW1c5qPl+HA4Hc+cvQOMdjCU+il69eqkdKV+T4iOEEOKxSk1N5acVK1C0ehR7Op06dVI7Up62fft2rl6+BEBIwTAaNmyobqB8ToqPEEKIx+rXX38lJTkZjUZDnbr1KFSokNqR8rQFCxZg9A1GSYyhd88eMndPDpPiI4QQ4rFatGgRBr8Q0s1RdO/WVe04eZrFYmHpsuU4DCZsKWZ69uypdqR8T4qPEEKIx8ZsNvPLml9xaHRoFIXnnntO7Uh52tq1a0lKNIOiUKHSk1SoUEHtSPmeFB8hhBCPzapVq7Ba0tCg0KhxY5kb6wEWLFiAwT8Ue/w1+vSS0Z7cIMVHCCHEYzN/wQIM/gWxxUfSvVs3tePkaWazmZ9X//LvQeA2WdIjl0jxEUII8VhERUWxadMmHBotejc9bdq0UTtSnrZ8+XJsVgsaFOo3aCgHgecSKT5CCCEei+XLlwMatCi0aNmCAgUKqB0pT1uwYCF6/1CssVfo2aO72nFchhQfIYQQj8W8+Qtw8yuINfYqXWW3zX1FRkayffs20OrRu+l59tln1Y7kMqT4CCGEeGSnTp3ij317UTQaTJ6etG/fXu1IedqyZctQNBpIt9Dqf63w9/dXO5LLkOIjhBDikS1YsAA3dxOa9DSef+45TCaT2pHytMVLluLmG4ItIZoe3WU3V26S4iOEEOKRKIrCnHnz0fqEYo2PpmtXmbTwfi5evMie3btQFDB5etK6dWu1I7kUKT5CCCEeya5du7h4/hwKUCAomKZNm6odKU9btmwZOr0RrcNGh/YdZHQsl0nxEUII8UjmzJmDwScQkm/Qs0d33Nzc1I6Upy1YuAitVyDWhBi6ysr1uU6KjxBCiGxLTk5m0ZIlYArAlpxAjx491I6Up506dYq/Dx5AAXz9/GnWrJnakVyOFB8hhBDZ9tNPP5GSlIRGp6NEyVJUqVJF7Uh52pIlS9AZPdCmp9Gp4/MYDAa1I7kcKT5CCCGy7dvvv8c9NALL1RP079sHjUajdqQ8beHiJWhMflgTY+UgcJU4TfEZN24cdevWxWQy4efnd9dtLl68SOvWrTGZTAQHBzNy5EjS09NzN6gQQriI06dPs33rVhSdARSFXr16qR0pTzt8+DAnjh0FRSEoJJT69eurHcklOU3xsVqtdOzYkVdeeeWut9vtdlq3bo3VamXXrl3MnTuXOXPm8P777+dyUiGEcA3ffvsteg8vNOlptGjZksKFC6sdKU9bunQpbu6eaGwpdO3cCZ1Op3Ykl6RRFEVRO8TDmDNnDsOGDSM+Pj7T9WvXruWZZ57h6tWrhISEADBr1izeeOMNYmJisrwf1Ww24+vrS0JCAj4+Po87vhBC5AtWq5WwQoVJ9ipM2vkDLFu2jI4dO6odK89SFIUSJUtxOTaZ9PhIdu3aRZ06ddSOla9k9f3baUZ8HmT37t1UrFgxo/QAtGjRArPZzJEjR+55P4vFgtlsznQRQghxfz///DM3rscA4OcfQNu2bVVOlLcdOHCA82fPABBWOJzatWurnMh15ZviExkZman0ABlfR0ZG3vN+EyZMwNfXN+MSHh6eozmFECI/mDJ1Gh5hpbDHnKV/v74YjUa1I+VpS5YsQW/yRmNNpnvXLnIQuIpULT5vvvkmGo3mvpfjx4/naIa33nqLhISEjMulS5dy9PmEEMLZHTp0iB3bt4FnILbkBAYMGKB2pDxNURQWLl6CYvDClpJI586d1Y7k0lSdXvP111+nT58+992mRIkSWXqs0NBQ9u3bl+m6qKiojNvuxWg0yicVIYR4CFOnTsXgUwDSEqleoyalS5dWO1KetmfPHq5evoSbX0GKFi9B1apV1Y7k0lQtPkFBQQQFBT2Wx6pTpw7jxo0jOjqa4OBgADZs2ICPjw/lypV7LM8hhBCu7saNG8ybvwC3YtVJOb6DV8fPVztSnrdkyRL0nr4oaWZ6dOsnu7lU5jQLqly8eJHY2FguXryI3W7n4MGDAJQsWRIvLy+aN29OuXLl6NmzJ59++imRkZG8++67DBo0SEZ0hBDiMZk+fTrpDgdaRzrePr48//zzakfK0+x2O4uWLEXRm0hPvkaXLrI2l9qcpvi8//77zJ07N+PrW9Oib9myhYYNG6LT6fjll1945ZVXqFOnDp6envTu3ZuxY8eqFVkIIfKVlJQUJk2egnupuqSd2s0bb7+Ju7u72rHytO3bt3M9Ogo3v4KULluOChUqqB3J5TlN8ZkzZw5z5sy57zZFixbl119/zZ1AQgjhYr7//nvi4+LwKuaJxmHnpZdeUjtSnrd06VL0Xv4oqfH06DZQ7TiCfHQ6uxBCiJyTlpbGR+PGYypTD+uZvXTr1u2+J44IsNlsLF22HMXNnXRLqpzNlUdI8RFCCPFAX3/9NdHR0ej8wrAkxDBy5Ai1I+V5GzduJD4uFo1Gw5OVq1CqVCm1Iwmk+AghhHiA5ORkPho3Hs9yDbGe2UPDRo3kWJUsWLJkCQafAjiSbtCtqxzUnFdI8RFCCHFfn3zyCTdi43ALDCct+gKjP/hA7Uh5XmpqKj/89BMOnQG7zUKnTp3UjiT+JcVHCCHEPZ0/f55PPp2IV/W2pB7eQI2aNalfv77asfK8tWvXkpKUhEYDNWvVplixYmpHEv9ymrO6hBBC5C5FURgydCgYPdH7h2G+cYXJq5fLBHxZsHjxEgx+IaQnRNOj+5tqxxH/ISM+Qggh7mrRokX8sno1Pg36kbR3Oa3+9z/q1Kmjdqw8LzExkZ9Xr8ah0YHioGPHjmpHEv8hxUcIIcQdLly4wMBBg/EqW590czTp5hi++PxztWM5hVWrVmG1pKEB6jdoKKf95zFSfIQQQmSSmppKu/YdsGiNeNfpTOLuZfTu1YsyZcqoHc0pzF+wAL1fKOnxkXTpLAc15zVSfIQQQmSw2+306tWLw0ePEtDuHWLXTcZuTWXixIlqR3MK0dHRbNy4EXR6dDqdrGWWB0nxEUIIAdwc6enatSs//rSCgNavY405j+XqSVauXElAQIDa8ZzC8uXLUQDsNpo1b0ZgYKDakcRtpPgIIYRgz5491KhZi59W/kyBtm/gFlCYhI2z6N69B+3atVM7ntOYN38Bbn5h2OIj6dG9u9pxxF1oFEVR1A6Rl5jNZnx9fRk+fDhGo1HtOEIIkaMSExPZvHkLR48ewSM0Ar9Wr+LmG0LU7MGEB/lx8MBfeHl5qR3TKZw9e5aIiAj0geG4pcZyPSYak8mkdiyXcev9OyEhAR8fn3tuJ/P43MOM2YvQaGVATAiRv2ncDGiDIghq3w6PUrVQbGlEznkVe+INftq+UUrPQ1i8eDE6gzua9DSe7dBBSk8eJcXnHoJ6T0FrlF9aIYTrsMVHErdqPHpbEpu3baNSpUpqR3IaiqIwe+48tD7BWK9fpHv3bmpHEvcgxUcIIVycPTkO896fMP+xgqDgYDbv2S2LkD6kP//8kzOnTqIPKoZ/QCBNmzZVO5K4Byk+93B94QjZ1SWEyL8UhbS4SBw2S8ZVffr0YfTo0RQtWlTFYM5p/vz5GLz8Ic1M155d0Ov1akcS9yDF5x76PN9aDm4WQuRbiqLgcDgwmUxUqFCBVq1ayanX2WSz2Vi4aDGKyR9b9Fl69OihdiRxH1J87uHjjz++71HhQgghBMBvv/1G7I3rGEJ8KVYigtq1a6sdSdyH7MsRQgghHsG8efMxBoThiL9Gn149ZfX6PE6KjxBCCJFNcXFxrFy1CkXvQbolRXZzOQEpPkIIIUQ2LV68mPT0dDQo1KxVm4iICLUjiQeQ4iOEEEJk03ffz8YQGoE15gI9e8gSFc5Aio8QQgiRDUeOHOGv/X+ioEFx2OnWTSYtdAZSfIQQQohsmD17NnpPXzSpZtq1aycr2DsJKT5CCCHEQ7LZbMyZOw+tXyEscdd46aWX1I4kskiKjxBCCPGQfvnlF25cjwEgJLQgzZs3VzmRyCopPkIIIcRD+urrr3EPKY4j9iJ9+/RGp9OpHUlkkRQfIYQQ4iFcuHCB9b/9Bh5+2FKT6NOnj9qRxEOQ4iOEEEI8hO+++w6d0QNNehq1atehdOnSakcSD0GKjxBCCJFF6enpfP3Nt7iFlib18jFeeVkOanY2UnyEEEKILPr111+JirwGGg1e3j507NhR7UjiIUnxEUIIIbJo6tRpuIdG4Lh+nr59emMymdSOJB6SFB8hhBAiC06cOMHGjRvQeAdhTYxlwIABakcS2SDFRwghhMiCadOmYfDyB2sKlZ6sTMWKFdWOJLLBaYrPuHHjqFu3LiaTCT8/v7tuo9Fo7rgsWbIkd4MKIYTId8xmM9/Pno1b4QqkXviHoUMGqx1JZJOb2gGyymq10rFjR+rUqcN33313z+1mz55Ny5YtM76+V0kSQgghsmrOnDmkpaVhtNvwMHnStWtXtSOJbHKa4jNmzBjg5i/f/fj5+REaGpoLiYQQQrgCu93OF5MmYyxWBdulfxg1fJgc1OzEnGZXV1YNGjSIAgUKULNmTb7//nsURVE7khBCCCe2YsUKLpw7i9bDD4fNwiuvvKJ2JPEInGbEJyvGjh1L48aNMZlMrF+/noEDB5KUlMTQoUPveR+LxYLFYsn42mw250ZUIYQQTkBRFCZ8/AmmopWwR52kQ/v2FC5cWO1Y4hGoOuLz5ptv3vWA5P9ejh8/nuXHe++996hXrx5VqlThjTfeYNSoUUycOPG+95kwYQK+vr4Zl/Dw8Ed9WUIIIfKJbdu28df+P9EVKEZazMX7fpAWzkGjqLgvKCYmhhs3btx3mxIlSmAwGDK+njNnDsOGDSM+Pv6Bj79mzRqeeeaZmwekGY133eZuIz7h4eEkJCTg4+OTtRcihBAiX2rZqhXbD5xA4+FDmUA9f/6xD41Go3YscRdmsxlfX98Hvn+ruqsrKCiIoKCgHHv8gwcP4u/vf8/SA2A0Gu97uxBCCNf0119/8du6dXhXa0vi/p95a+JyKT35gNMc43Px4kViY2O5ePEidrudgwcPAlCyZEm8vLxYvXo1UVFR1K5dG3d3dzZs2MD48eMZMWKEusGFEEI4pXffew/3AoVxJMZQtHgJOnTooHYk8Rg4TfF5//33mTt3bsbXVapUAWDLli00bNgQvV7P9OnTee2111AUhZIlS/LFF1/IlOJCCCEe2t69e1n766/4PtUd887FvD55EjqdTu1Y4jFQ9RifvCir+wiFEELkX82aN+f3v0/iFlYOtwt7uXjhPN7e3mrHEveR1ffvfDePjxBCCPEoduzYwcYNG3Av15ikg2sZNPAVKT35iIz43EZGfIQQwnU5HA6qVa/BiUgzugLFcI/8hwvnz8lMzU5ARnyEEEKIhzRv3jwOHvgLU5VnSD6yhXfefktKTz4jIz63kREfIYRwTUlJSZSIKElK4BNotG543jjOubNn8PDwUDuayAIZ8RFCCCEewrhx47gRG4epTH2Sjm7l/ffeldKTD8mIz21kxEcIIVzP/v37qVmrFt61O2O79A+FPdI5fOgf9Hq92tFEFsmIjxBCCJEFVquVnr16Ywwqhj6gECkXDzNl8iQpPfmUFB8hhBAu7cMPP+TEieP4Nh+EecdcGjRsSIsWLdSOJXKI08zcLIQQQjxuGzduZPz48XjX7UrykS1Y46OZMnmD2rFEDpIRHyGEEC7p3LlzPN+xE+7FKuNRvCqJ+1czatQoKlWqpHY0kYOk+AghhHA5ycnJtGvfgTSNO/6thhH/21SerFyFjz76SO1oIofJri4hhBAuxWKx0K59e46eOElwt09J/GMl6bFXmLdhlRzQ7AJkxEcIIYTLSEpK4pk2bdiydTsFOryHLfYK5n0/MWHCeNnF5SKk+AghhHAJJ0+epFbtOmzdsZOg50ej9fAift1kOnfuzOuvv652PJFLpPgIIYTI15KSkhg3bhwVKz3J2ah4grp9ipt/Qa7/MIaQoEC+++47NBqN2jFFLpFjfO5h165deHp6qh1DCCFENlgsFq5cucLvv//OwkWLsVgseFVtg+9T3VGsqcQsfgNb4g22HTgtf+tdjBSfe2jVqpXaEYQQQjwij6BwDJXbEvBkM9x8grHFXSX2xzH46h1sO3aMiIgItSOKXCbF5x5Ce09Ca5DF6YQQwilpdehMvhl/xxVFIfnoNuI3zqRooYJsWP8bxYsXVzmkUIMUn3vQ+4ehNZrUjiGEEOIRKIoDy8XD3Fg7mfSEKBo3bsJPP/2Ir6+v2tGESqT43EP8jvlodDKfgxBCOBvFYSft4j/o/Qtiv3YSi/k6JSJKMm7WJDp16oRWK+f1uDIpPvcQEHtE/nEIIYQTstsdYIKiIW7UatOHdu3aUbduXfmbLgApPvf0z8ED+Pj4qB1DCCGEEI+R1F8hhBBCuAwpPkIIIYRwGVJ8hBBCCOEypPgIIYQQwmVI8RFCCCGEy5DiI4QQQgiXIcVHCCGEEC5Dio8QQgghXIYUHyGEEEK4DCk+QgghhHAZUnyEEEII4TKk+AghhBDCZUjxEUIIIYTLcIric/78efr370/x4sXx8PAgIiKCDz74AKvVmmm7f/75h6effhp3d3fCw8P59NNPVUoshBBCiLzITe0AWXH8+HEcDgdfffUVJUuW5PDhwwwYMIDk5GQ+++wzAMxmM82bN6dp06bMmjWLQ4cO0a9fP/z8/HjxxRdVfgVCCCGEyAs0iqIoaofIjokTJzJz5kzOnj0LwMyZM3nnnXeIjIzEYDAA8Oabb7Jy5UqOHz+e5cc1m834+vqSkJCAj49PjmQXQgghxOOV1fdvp9jVdTcJCQkEBARkfL17927q16+fUXoAWrRowYkTJ4iLi1MjohBCCCHyGKfY1XW706dPM3Xq1IzdXACRkZEUL14803YhISEZt/n7+9/1sSwWCxaLJePrhIQE4GZzFEIIIYRzuPW+/aAdWaoWnzfffJNPPvnkvtscO3aMMmXKZHx95coVWrZsSceOHRkwYMAjZ5gwYQJjxoy54/rw8PBHfmwhhBBC5K7ExER8fX3vebuqx/jExMRw48aN+25TokSJjN1XV69epWHDhtSuXZs5c+ag1f7/nrpevXphNptZuXJlxnVbtmyhcePGxMbGZnnEx+FwEBsbS2BgIBqN5hFeXe4zm82Eh4dz6dIllzo+SV63vG5XIK9bXrcreJTXrSgKiYmJhIWFZeoHt1N1xCcoKIigoKAsbXvlyhUaNWpEtWrVmD179h0vqk6dOrzzzjvYbDb0ej0AGzZsoHTp0vcsPQBGoxGj0ZjpOj8/v4d7IXmMj4+PS/1DuUVet2uR1+1a5HW7luy+7vuN9NziFAc3X7lyhYYNG1KkSBE+++wzYmJiiIyMJDIyMmObbt26YTAY6N+/P0eOHGHp0qVMnjyZ4cOHq5hcCCGEEHmJUxzcvGHDBk6fPs3p06cpXLhwpttu7anz9fVl/fr1DBo0iGrVqlGgQAHef/99mcNHCCGEEBmcovj06dOHPn36PHC7SpUqsWPHjpwPlEcZjUY++OCDO3bd5XfyuuV1uwJ53fK6XUFuvG6nncBQCCGEEOJhOcUxPkIIIYQQj4MUHyGEEEK4DCk+QgghhHAZUnyEEEII4TKk+DihcePGUbduXUwm010nW5wzZw4ajeaul+joaAC2bt1619v/OzdSXvOg1w3c9TUtWbIk0zZbt26latWqGI1GSpYsyZw5c3I+/CN40Ov++++/6dq1K+Hh4Xh4eFC2bFkmT56caZv8+vO+ePEirVu3xmQyERwczMiRI0lPT8+0jbP9vG93r5+dRqPhjz/+AOD8+fN3vX3Pnj0qp380xYoVu+M1ffzxx5m2+eeff3j66adxd3cnPDycTz/9VKW0j8f58+fp378/xYsXx8PDg4iICD744AOsVmumbfLjz3v69OkUK1YMd3d3atWqxb59+3LkeZzidHaRmdVqpWPHjtSpU4fvvvvujts7d+5My5YtM13Xp08f0tLSCA4OznT9iRMnMs2OefvtecmDXvcts2fPzvT6//umee7cOVq3bs3LL7/MwoUL2bRpEy+88AIFCxakRYsWORk/2x70uvfv309wcDALFiwgPDycXbt28eKLL6LT6Rg8eHCmbfPTz9tut9O6dWtCQ0PZtWsX165do1evXuj1esaPHw8458/7dnXr1uXatWuZrnvvvffYtGkT1atXz3T9xo0bKV++fMbXgYGBuZIxJ40dOzbTuoze3t4Z/282m2nevDlNmzZl1qxZHDp0iH79+uHn5+e0c7gdP34ch8PBV199RcmSJTl8+DADBgwgOTk508LckL9+3kuXLmX48OHMmjWLWrVqMWnSJFq0aMGJEyce/98pRTit2bNnK76+vg/cLjo6WtHr9cq8efMyrtuyZYsCKHFxcTkXMIfc73UDyooVK+5531GjRinly5fPdF3nzp2VFi1aPMaEOSOrP29FUZSBAwcqjRo1yvg6P/68f/31V0Wr1SqRkZEZ182cOVPx8fFRLBaLoijO/fO+F6vVqgQFBSljx47NuO7cuXMKoBw4cEC9YDmgaNGiypdffnnP22fMmKH4+/tn/LwVRVHeeOMNpXTp0rmQLvd8+umnSvHixTO+zo8/75o1ayqDBg3K+NputythYWHKhAkTHvtzya4uFzBv3jxMJhPPP//8HbdVrlyZgv/X3t2GNBV/cQA//xlOl8xS5wNFkRXDUFoqGzMxn6U35ttEk4h8kWAvREJ6okQzIhWkslInGGFlIJImqRlUW1HiZKmBGYZPaUVllvl4/i/+uH8jbT5sTne/Hxji3W+/e849u3h2767Xx4diYmLo+fPnNojO8tLS0sjDw4OUSiWVlZUZ/7s3EZFOp6Po6GiT8XFxcaTT6VY6TKv6/v07ubm5/bXcnuqt0+koICCAvLy8jMvi4uJoZGSE2tvbjWPsrd41NTX05csXOnz48F/PxcfHk6enJ4WGhlJNTY0NorO8vLw8cnd3pz179tClS5dMTmXqdDoKCwsz3siaiIxHCb5+/WqLcK1ivv3ZXuo9MTFBLS0tJvuqSCSi6Ohoq+yrONUlAKWlpZSYmEjOzs7GZT4+PlRcXEzBwcE0Pj5OJSUlFB4eTi9fvqTAwEAbRrs858+fp8jISJJIJPTo0SM6duwYjY6OUnp6OhERffz40eQPJRGRl5cXjYyM0NjYmMk2Wqu0Wi3duXOHamtrjcvssd7z1XL2uX+NWcv1Li0tpbi4OJPb97i4uNDly5dp7969JBKJ6P79+5SQkEDV1dUUHx9vw2iXJz09nQIDA8nNzY20Wi1lZWXR4OAg5efnE9H/6rtt2zaT1/z5HvjXDarXinfv3lFRUZHJaS57q/fnz59penp6zn317du3ll+hxY8hwZKcOHGCieifj87OTpPXLOTUh1arZSLi169fm40hLCyMk5KSlpPGolkr71mnT5/mzZs3G3/fuXMn5+bmmoypra1lIuJfv34tO5+FslbeBoOBPTw8ODs722wMa73eR48e5djYWJNlP3/+ZCLiuro6Zl499Z7LUrZFb28vi0QirqqqMjt/cnIyh4aGWiv8JVtK3rNKS0t53bp1/Pv3b2ZmjomJ4dTUVJMx7e3tTETc0dFh9VwWYyl59/X18fbt2/nIkSNm51+t9V6I/v5+JiLWarUmyzMzM1mpVFp8fTjis0pkZGSYvR+Zr6/vouctKSkhhUJBQUFBZscqlUp69uzZotexHNbKe5ZKpaLs7GwaHx8nsVhM3t7eNDQ0ZDJmaGiIpFLpin76t0beHR0dFBUVRampqXTq1Cmz49d6vb29vf+66mO2tt7e3safq6Hec1nKttBoNOTu7r6gT/UqlYoaGhqWE6JVLOc9oFKpaGpqinp6ekgul89bX6L/vwdWi8XmPTAwQBERERQSEkI3btwwO/9qrfdCeHh4kIODw5y1tEYd0fisEjKZjGQymUXnHB0dpbt379KFCxcWNF6v15OPj49FYzDHGnn/Sa/X08aNG403vFOr1VRXV2cypqGhgdRqtdVimIul825vb6fIyEhKSUmhnJycBb1mrddbrVZTTk4ODQ8PG6/6aGhoIKlUSrt27TKOWQ31nstitwUzk0ajMV65Zo4t6rsQy3kP6PV6EolExnqr1Wo6efIkTU5OGrdJQ0MDyeXyVXeaazF59/f3U0REBAUFBZFGoyGRyPzXcVdrvRfC0dGRgoKCqKmpiRISEoiIaGZmhpqamv66MtUiLH4MCazuw4cP3NrayufOnWMXFxdubW3l1tZW/vHjh8m4kpISdnJymvNKnoKCAq6uruauri42GAx8/PhxFolE3NjYuEJZLJ65vGtqavjmzZtsMBi4q6uLr169yhKJhM+cOWOc4/379yyRSDgzM5M7Ozv5ypUr7ODgwPX19bZKyyxzeRsMBpbJZJyUlMSDg4PGx/DwsHEOe6z31NQU+/v7c2xsLOv1eq6vr2eZTMZZWVnGOdZivefT2Ng472mg8vJyvn37Nnd2dnJnZyfn5OSwSCTisrIyG0RqGVqtlgsKCliv13N3dzffunWLZTIZHzp0yDjm27dv7OXlxcnJyfzmzRuurKxkiUTC169ft2Hky9PX18c7duzgqKgo7uvrM9mnZ9ljvSsrK1ksFnN5eTl3dHRwamoqb9iwweSqTUtB47MGpaSkzHl+uLm52WScWq3mxMTEOee4ePEib9++nZ2cnNjNzY3Dw8P58ePHKxD90pnL++HDh6xQKNjFxYXXr1/Pu3fv5uLiYp6enjaZp7m5mRUKBTs6OrKvry9rNJqVT2YRzOV99uzZOZ/funWrcQ57rDczc09PD+/fv5+dnZ3Zw8ODMzIyeHJy0mSetVbv+Rw8eJBDQkLmfK68vJz9/PxYIpGwVCplpVLJ9+7dW+EILaulpYVVKhW7urqyk5MT+/n5cW5urvH7PbPa2to4NDSUxWIxb9q0ifPy8mwUsWVoNJp5vwM0yx7rzcxcVFTEW7ZsYUdHR1YqlfzixQurrOc/zH9c6wsAAABgx/B/fAAAAEAw0PgAAACAYKDxAQAAAMFA4wMAAACCgcYHAAAABAONDwAAAAgGGh8AAAAQDDQ+AAAAIBhofAAAAEAw0PgAAACAYKDxAQC79unTJ/L29qbc3FzjMq1WS46OjtTU1GTDyADAFnCvLgCwe3V1dZSQkEBarZbkcjkpFAo6cOAA5efn2zo0AFhhaHwAQBDS0tKosbGRgoODyWAw0KtXr0gsFts6LABYYWh8AEAQxsbGyN/fn3p7e6mlpYUCAgJsHRIA2AC+4wMAgtDd3U0DAwM0MzNDPT09tg4HAGwER3wAwO5NTEyQUqkkhUJBcrmcCgsLyWAwkKenp61DA4AVhsYHAOxeZmYmVVVVUVtbG7m4uNC+ffvI1dWVHjx4YOvQAGCF4VQXANi1J0+eUGFhIVVUVJBUKiWRSEQVFRX09OlTunbtmq3DA4AVhiM+AAAAIBg44gMAAACCgcYHAAAABAONDwAAAAgGGh8AAAAQDDQ+AAAAIBhofAAAAEAw0PgAAACAYKDxAQAAAMFA4wMAAACCgcYHAAAABAONDwAAAAgGGh8AAAAQjP8C63P0HEiU//cAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f, ax = plt.subplots(1, 1)\n", "for s in demultiplexer_structure:\n", " s.plot(z=0, ax=ax)\n", "ax.set_ylim(-20, 20)\n", "ax.set_xlim(-194, 6)\n", "ax.set_aspect(\"auto\")\n" ] }, { "cell_type": "markdown", "id": "60d0be55", "metadata": {}, "source": [ "Now we are ready to perform simulation on this device. To fully characterize the device, we need to excite all eight inputs individually and obtain the transmission at the end of the central bus waveguide. However, since the model is pretty large, for the sake of not making the notebook too long, we will only select two inputs in this notebook as demonstrations.\n", "\n", "First, let's excite the I7 port with the TM0 mode, which should be converted to TM2 mode in the bus waveguide. " ] }, { "cell_type": "code", "execution_count": 35, "id": "83087ce8", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:09:49.065311Z", "iopub.status.busy": "2023-03-28T00:09:49.065158Z", "iopub.status.idle": "2023-03-28T00:09:49.097103Z", "shell.execute_reply": "2023-03-28T00:09:49.096521Z" } }, "outputs": [], "source": [ "# define a mode source at the straight part of the I7 port\n", "mode_source = td.ModeSource(\n", " center=(-75, -12.5, 0),\n", " size=(0, 2.5, 8 * h),\n", " source_time=td.GaussianPulse(freq0=freq0, fwidth=fwidth),\n", " direction=\"+\",\n", " mode_spec=td.ModeSpec(num_modes=1, target_neff=n_si),\n", " mode_index=0,\n", ")\n", "\n", "# define a mode monitor at the end of the bus waveguide to measure coupling efficiency\n", "bus_mode_monitor = td.ModeMonitor(\n", " center=(6, 0, 0),\n", " size=(0, 4, 8 * h),\n", " freqs=freqs,\n", " mode_spec=td.ModeSpec(num_modes=4, target_neff=n_si),\n", " name=\"bus_mode\",\n", ")\n", "\n", "# define a field monitor at the xy plane to visualize field distribution\n", "field_monitor = td.FieldMonitor(\n", " center=(0, 0, 0), size=(td.inf, td.inf, 0), freqs=[freq0], name=\"field\"\n", ")\n", "\n", "run_time = 5e-12 # simulation run time\n", "\n", "# define simulation\n", "sim = td.Simulation(\n", " size=(200, 20, 10 * h),\n", " center=(-94, -5, 0),\n", " grid_spec=td.GridSpec.auto(min_steps_per_wvl=15, wavelength=lda0),\n", " structures=demultiplexer_structure,\n", " sources=[mode_source],\n", " monitors=[bus_mode_monitor, field_monitor],\n", " run_time=run_time,\n", " boundary_spec=td.BoundarySpec.all_sides(boundary=td.PML()),\n", " medium=sio2,\n", " symmetry=(0, 0, -1),\n", ")\n" ] }, { "cell_type": "markdown", "id": "416c3df7", "metadata": {}, "source": [ "Since this simulation is computationally heavy, it is always a good practice to visualize the simulation setup first before submitting the job to the server. This helps avoid running incorrectly set up simulations and wasting time and FlexCredit." ] }, { "cell_type": "code", "execution_count": 36, "id": "2a8f323e", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:09:49.099419Z", "iopub.status.busy": "2023-03-28T00:09:49.099269Z", "iopub.status.idle": "2023-03-28T00:09:49.395271Z", "shell.execute_reply": "2023-03-28T00:09:49.394725Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACCjklEQVR4nO3dd3hb9dk//vc5mpZkWR7yip29FwkJCUmBTAhtWkpLacuGQtIynxI6yLfM8IVAaYE+lPH0B036FCjr2wKFFghJGCUhgUAgexHHjveQLVvz6Jzz+0OWHMeyLceyJR2/X9elK5F0JH10zpF16zPuW1BVVQURERERpT0x2Q0gIiIiosRgYEdERESkEQzsiIiIiDSCgR0RERGRRjCwIyIiItIIBnZEREREGsHAjoiIiEgjGNgRERERaQQDOyIiIiKNYGBHRNQP77//PgRBwPvvv5/sphARMbAjIorHk08+ifXr1ye7GafkhRdewGOPPZbsZgAAFEXBb3/7W4waNQpmsxnTp0/H3/72t7gf39zcjJUrV8LpdMJqtWLRokX4/PPPY277xhtv4PTTT4fZbMbw4cNx9913IxQKJeqtEKUkgbViiYh6N3XqVOTl5XXpmVMUBcFgEEajEaKYmr+Vv/3tb2P37t0oKytLdlOwevVqPPjgg1ixYgXOOOMMvP7663jrrbfwt7/9DT/+8Y97fKyiKDj77LPx5Zdf4pe//CXy8vLw5JNPoqKiAjt27MC4ceOi2/773//G8uXLsXDhQlxyySXYtWsXnnjiCaxcuRJPPfXUQL9NoqRhYEdEcfN4PLBarcluRlJ0F9ilg1QJ7CorKzFq1CisXLkSf/zjHwEAqqpiwYIFOHr0KMrKyqDT6bp9/Msvv4wf/ehHeOWVV/CDH/wAAFBfX4/x48fjm9/8Jl544YXotlOmTIHBYMBnn30GvV4PALjjjjvwwAMPYO/evZg4ceIAvlOi5EnNn5dENOAqKytx7bXXori4GCaTCaNGjcL111+PYDAIAFi/fj0EQcAHH3yAG264Afn5+SgpKYk+/sknn8SUKVNgMplQXFyMG2+8Ec3NzZ1e49ChQ7joootQWFgIs9mMkpIS/PjHP0ZLS0t0mw0bNuCss86Cw+GAzWbDhAkT8H/+z//ptf3xPC4QCODuu+/G2LFjYTKZUFpail/96lcIBAJdnu+5557DnDlzYLFYkJ2djXPOOQfvvvsuAGDkyJHYs2cPPvjgAwiCAEEQsHDhQgDdz7F75ZVXMGvWLGRkZCAvLw+XX345KisrO21z9dVXw2azobKyEhdeeCFsNhucTid+8YtfQJblXvfB66+/juXLl0eP4ZgxY3Dfffd1euzChQvx1ltv4dixY9G2jxw5stvnvPrqq6PbnXy55557em1Tb+2VJAk33HBD9DZBEHD99dfj+PHj2Lp1a4+Pf/XVV1FQUIDvf//70ducTid++MMf4vXXX48e171792Lv3r1YuXJlNKgDgBtuuAGqquLVV1/t1/sgSmX63jchIq2pqqrCnDlzovOVJk6ciMrKSrz66qvwer0wGo3RbW+44QY4nU7cdddd8Hg8AIB77rkH9957L5YuXYrrr78eBw4cwFNPPYVPP/0UH3/8MQwGA4LBIJYtW4ZAIICbb74ZhYWFqKysxJtvvonm5mZkZWVhz549+Pa3v43p06djzZo1MJlMOHz4MD7++OMe2x/P4xRFwQUXXID//Oc/WLlyJSZNmoRdu3bh0UcfxcGDB/Haa69Ft7333ntxzz33YP78+VizZg2MRiO2bduGTZs24bzzzsNjjz2Gm2++GTabDb/5zW8AAAUFBd22b/369bjmmmtwxhlnYO3ataitrcUf/vAHfPzxx/jiiy/gcDii28qyjGXLlmHu3Ln43e9+h/feew+///3vMWbMGFx//fU97of169fDZrNh1apVsNls2LRpE+666y643W48/PDDAIDf/OY3aGlpwfHjx/Hoo48CAGw2W7fP+dOf/hRLly7tdNvbb7+N559/Hvn5+dHbGhoaemxbRGZmJkwmEwDgiy++gNVqxaRJkzptM2fOnOj9Z511VrfP9cUXX+D000/vMuQ9Z84c/OlPf8LBgwcxbdo0fPHFFwCA2bNnd9quuLgYJSUl0fuJNEkloiHnyiuvVEVRVD/99NMu9ymKoqqqqq5bt04FoJ511llqKBSK3l9XV6cajUb1vPPOU2VZjt7+xz/+UQWg/vnPf1ZVVVW/+OILFYD6yiuvdNuORx99VAWg1tfX96n98Tzur3/9qyqKovrRRx91uv3pp59WAagff/yxqqqqeujQIVUURfV73/tep/ejqh37QlVVdcqUKeqCBQu6vM7mzZtVAOrmzZtVVVXVYDCo5ufnq1OnTlV9Pl90uzfffFMFoN51113R26666ioVgLpmzZpOzzlz5kx11qxZPe8EVVW9Xm+X237605+qFotF9fv90duWL1+ujhgxotfni+XQoUNqVlaWeu6553Y6DwDEdVm3bl2ndowePbrLa3g8HhWAevvtt/fYFqvVqv7kJz/pcvtbb72lAlDffvttVVVV9eGHH1YBqOXl5V22PeOMM9Qzzzwz3rdPlHY4FEs0xCiKgtdeew3f+c53uvRoAOGhsROtWLGi07yn9957D8FgED//+c879ZysWLECdrsdb731FgAgKysLAPDOO+/A6/XGbEuk5+r111+Hoihxv4d4HvfKK69g0qRJmDhxIhoaGqKXxYsXAwA2b94MAHjttdegKAruuuuuLj1BJ++LeHz22Weoq6vDDTfcALPZHL19+fLlmDhxYnT/nOhnP/tZp+tnn302vv76615fKyMjI/r/1tZWNDQ04Oyzz4bX68X+/fv73PaTeTwefO9730N2djb+9re/dToPNmzYENdl2bJl0cf4fL5o792JIvvJ5/P12J54Hx/5t7tte3sdonTGoViiIaa+vh5utxtTp06Na/tRo0Z1un7s2DEAwIQJEzrdbjQaMXr06Oj9o0aNwqpVq/DII4/g+eefx9lnn40LLrgAl19+eTTo+9GPfoRnnnkG1113HW6//XYsWbIE3//+9/GDH/ygxxWm8Tzu0KFD2LdvH5xOZ8znqKurAwAcOXIEoihi8uTJce2P3nS3fwBg4sSJ+M9//tPpNrPZ3KWN2dnZcLlcvb7Wnj17cMcdd2DTpk1wu92d7jtxHuOpWrFiBY4cOYItW7YgNze3030nD9fGIyMjI+b8Rr/fH70/EY+P/Nvdtr29DlE6Y2BHRD3qz5fg73//e1x99dV4/fXX8e677+KWW27B2rVr8cknn6CkpAQZGRn48MMPsXnzZrz11lt4++238dJLL2Hx4sV49913u10hGc/jFEXBtGnT8Mgjj8R8jtLS0lN+X4nU0yrQnjQ3N2PBggWw2+1Ys2YNxowZA7PZjM8//xy//vWv+9QDGssf/vAH/O1vf8Nzzz2HGTNmdLm/pqYmrufJysqKnkNFRUXYvHkzVFXt1BtaXV0NIDwHridFRUXRbU908uOLioqit598nKurq6Nz+oi0iEOxREOM0+mE3W7H7t27T+nxI0aMAAAcOHCg0+3BYBBHjx6N3h8xbdo03HHHHfjwww/x0UcfobKyEk8//XT0flEUsWTJEjzyyCPYu3cv7r//fmzatCk6VNqd3h43ZswYNDU1YcmSJVi6dGmXS6RHbcyYMVAUBXv37u3x9eIdlu1u/0RuO3n/nKr3338fjY2NWL9+Pf7rv/4L3/72t7F06VJkZ2d32bavQ8offfQRfvGLX+DnP/85LrvsspjbFBUVxXV56aWXoo+ZMWMGvF4v9u3b1+m5tm3bFr2/JzNmzMDnn3/eJWjdtm0bLBYLxo8f3+l5Pvvss07bVVVV4fjx472+DlE6Y2BHNMSIoogLL7wQ//znP7t88QHhvGI9Wbp0KYxGI/77v/+707bPPvssWlpasHz5cgCA2+3ukuV/2rRpEEUxOkTW1NTU5fkjX7qxhtEi4nncD3/4Q1RWVuL/+//+vy7b+ny+6ArfCy+8EKIoYs2aNV0ChhPfn9Vq7ZLOJZbZs2cjPz8fTz/9dKf38O9//xv79u2L7p/+ivT0ndjGYDCIJ598ssu2Vqs17qHZ6upq/PCHP8RZZ50VXVkby6nMsfvud78Lg8HQqY2qquLpp5/GsGHDMH/+/E7t2L9/PyRJit72gx/8ALW1tfj73/8eva2hoQGvvPIKvvOd70Tn1E2ZMgUTJ07En/70p06pX5566ikIghDNgUekRRyKJRqCHnjgAbz77rtYsGBBNBVIdXU1XnnlFfznP//plI7jZE6nE6tXr8a9996L888/HxdccAEOHDiAJ598EmeccQYuv/xyAMCmTZtw00034eKLL8b48eMRCoXw17/+FTqdDhdddBEAYM2aNfjwww+xfPlyjBgxAnV1dXjyySdRUlLSY9qLeB53xRVX4OWXX8bPfvYzbN68Gd/4xjcgyzL279+Pl19+Ge+88w5mz56NsWPH4je/+Q3uu+8+nH322fj+978Pk8mETz/9FMXFxVi7di0AYNasWXjqqafwf//v/8XYsWORn58fXYhxIoPBgIceegjXXHMNFixYgEsuuSSa7mTkyJG49dZbT/WwdTJ//nxkZ2fjqquuwi233AJBEPDXv/41ZmA+a9YsvPTSS1i1ahXOOOMM2Gw2fOc734n5vLfccgvq6+vxq1/9Ci+++GKn+6ZPn47p06cDOLU5diUlJfj5z3+Ohx9+GJIk4YwzzsBrr72Gjz76CM8//3ynYenVq1fjL3/5C44ePRrNu/eDH/wAZ555Jq655hrs3bs3WnlClmXce++9nV7r4YcfxgUXXIDzzjsPP/7xj7F792788Y9/xHXXXdcl3QqRpiRxRS4RJdGxY8fUK6+8UnU6narJZFJHjx6t3njjjWogEFBVtSPdSayUKKoaTm8yceJE1WAwqAUFBer111+vulyu6P1ff/21+pOf/EQdM2aMajab1ZycHHXRokXqe++9F91m48aN6ne/+121uLhYNRqNanFxsXrJJZeoBw8e7LHt8T4uGAyqDz30kDplyhTVZDKp2dnZ6qxZs9R7771XbWlp6bTtn//8Z3XmzJnR7RYsWKBu2LAhen9NTY26fPlyNTMzUwUQTX1ycrqTiJdeein6fDk5Oepll12mHj9+vNM2V111lWq1Wru8v7vvvluN58/zxx9/rJ555plqRkaGWlxcrP7qV79S33nnnS7taWtrUy+99FLV4XCoAHpMfbJgwYJuU5fcfffdvbapN7Isqw888IA6YsQI1Wg0qlOmTFGfe+65LttFUsEcPXq00+1NTU3qtddeq+bm5qoWi0VdsGBBt+foP/7xD3XGjBmqyWRSS0pK1DvuuEMNBoP9fg9EqYwlxYiIiIg0gnPsiIiIiDSCgR0RERGRRjCwIyIiItIIBnZEREREGsHAjoiIiEgjGNgRERERaQQTFCeAoiioqqpCZmZmn0v3EBEREfVEVVW0traiuLgYothznxwDuwSoqqpKmYLiREREpE0VFRUoKSnpcRsGdgmQmZkJAPjVL25FSb4NBn3fe+2CkoJmT7imocOqg9Ew+KPkqqqiviVc29NkEJBlTezp0RYIwuMPIctihNnQ/XO3eEIISOG82c4sfVJ6QYfC8YhXvMfDL4XQ4g3CatbDZjImtA08Hh0S+fmIfCYzMwywGA1xP47HowP/XoXxeHRI9PGQQiqO17Xht797NBpv9ERTgd0999zTpV7ghAkTsH///m4f88orr+DOO+9EWVkZxo0bh4ceegjf+ta3+vS6kRPHbDbBnpkBYx8Du6CkwCPJyGo/XpICZJkH98OpqCoa3TKsVgNMegF+SYWoE5Fp0fX+4DgZTQaooh9mswFZFlPMbVq9MnQGPXIsAgIhFZIqIDdTB3EQP5xD5XjEoy/HwyIrkCDAZNAhKzMjYW3g8eiQ6M+H2WyEKvpgNOqRZTPH9Rgejw78exXG49FhII5HMKTC7JYAIK5AVXOLJ6ZMmYLq6uro5T//+U+3227ZsgWXXHIJrr32WnzxxRe48MILceGFF2L37t2D1t6gpKChVYZBJyAvS4+8LD0MOgENrTKCkjIobYh8KCVZRV6mDrl2PewZItw+Ba1eOWGvY9SHP+RBOfb7avXKcPsU2DNE5Nr1yMvUQZLDbVMGqfLdUDoevenr8dCLIkRBgNTN8T0VPB4dBuLzYdCLEAAEQ/G9Dx6PDvx7Fcbj0SEVjgegwcBOr9ejsLAwesnLy+t22z/84Q84//zz8ctf/hKTJk3Cfffdh9NPPx1//OMfB6WtJ54EufbwrwpRCP9/sE6Gkz+UkV8VmRZdwj+cOlGAXoz9xX/ihzLyK89oEAf1wznUjkdPTuV4CAJg0ImQFRWy0v/9xOPRYaA+H6IgwKAPH7NQLwE5j0cH/r0K4/HokArHI0Jzgd2hQ4dQXFyM0aNH47LLLkN5eXm3227duhVLly7tdNuyZcuwdevWgW5mzJMgYrBOhu4+lBED8eE06HRQTvoSifWhjBisD+dQPR6x9Od4GPThNgdD/dtHPB4dBvrzEelJD/TQa8fj0YF/r8J4PDqkwvE4kabm2M2dOxfr16/HhAkTUF1djXvvvRdnn302du/eHXPCYU1NDQoKCjrdVlBQgJqamh5fJxAIIBAIRK+73W4AgKqGJzn2RpIUuDwy9DoBdouI8N/Tro+zW0S42mTUtYSQbdXBkMA5E6qqwtUmIySryLbqAEFAMEbbTUYRFllFsye8rTWjf3MmBEGAogC+oAyTQYDHJ6PNr8BmFmEyijHbAEFAVoYIl0dGXbOKbJsuoRNih/LxOFl/j4eA8PH1BmToxFNrG49Hh8H4fOgEMfyZDMgw6Lp+JfB4dODfqzAejw6DcTykkIq+xKSaCuy++c1vRv8/ffp0zJ07FyNGjMDLL7+Ma6+9NmGvs3bt2i6LNIDwoQxICmSl+5NGUcK9GSaDCKNeaF+90/0Ry2g/WT0BBUYZ6CV9TVxUNTwZUxQAm1kHWQXkYPe/InQ6AVaziKCsQvWFT+BTf20RiiLAG1AghcK/9qxmETqdAH8PbQDCbQ2GFLi9Cox6AYn4bA7143GikKz2+3goSvj4+iUVBl3ff5nyeHRIxPGIh6IKUBQBvqACo77za/B4dBis49ETHo8OQ+l4hGS1h2ftSlOB3ckcDgfGjx+Pw4cPx7y/sLAQtbW1nW6rra1FYWFhj8+7evVqrFq1Knrd7XajtLQUWVYdvnVGFrKsg7sSKJ34pBA2fHUMRQ4rzhjjTHZzKMEUVcW/dh6FXhRw/mmjkt0citN7u8vhDUg4d1oeMoya/logSjstHhn/7yN/3Ntr+hPc1taGI0eO4Iorroh5/7x587Bx40b8/Oc/j962YcMGzJs3r8fnNZlMMJm6puvQ6wRkWXXIydT0bu0nPewWEX45wP2kUYUOI+pbfTAaFNjMic1nRwOjJNeMo/UBBOQAhmXGl/aEiAZPX3o6NbV44he/+AU++OADlJWVYcuWLfje974HnU6HSy65BABw5ZVXYvXq1dHt/+u//gtvv/02fv/732P//v2455578Nlnn+Gmm25K1lsYErJtZrT5g3GnWKD0ktuew66xNf5fmJRcTnv4mNW5vUluCRH1l6YCu+PHj+OSSy7BhAkT8MMf/hC5ubn45JNP4HSGh/zKy8tRXV0d3X7+/Pl44YUX8Kc//QmnnXYaXn31Vbz22muYOnVqst7CkOBoT07s8vCLX4ty2hPdNrT5ktwSipezPRivbWFgR5TuNDUW9uKLL/Z4//vvv9/ltosvvhgXX3zxALWIYol88Td7AijIsia5NZRoubb2HjsGdmnDYTXDZNChzR+ENyDBYoq/vBgRpRZN9dhResi2hgM7lzfQy5aUjjLNBhh0OjS1BqAkIFExDY4Ce/hHVi2HY4lSTl/SnTCwo0FnMxugF0W4PAzstEgQBOTYzJBVBc3eYLKbQ3HKt3M4lihVxZMjN4KBHQ06URDgsJrQ4glAUQanhh8NrlzOs0s7+VkWAAzsiFKR2ocuOwZ2CcRRp/hlW8M9Om4/e3S0KDKPsrGVgV26cFhM0Xl2bh8/l0SpJFKuMR4M7BKov/Uxh5Jsa3hlbDNXxmpSXvsqywYGdmlDEATkZ4Z77WqaPUluDRGdqC9VQxjYUVJEF1Bwnp0mWU0GZBgNcPuCCEjMV5guIsOx1c1tSW4JEZ0qBnYJZOxDV+lQF8ll18yVsZqV1z4cW89eu7ThPGEBBVc0E6WOvnwcGYkkUCIKLA8Vep0Ie4aRPXYalttemqqe6TPSRrbFDKNOB0lW0MDKIUQpQ+rDVC+GIpQ0DqsZvqAEvxRKdlNoAOTYOM8u3YiigILIcGwL59kRpQpBGKK1Yim9ZEdKi7Wx106LcqMrY/0c1ksj0cDOxcCOKFUY9AzsKA10VKDgkI8WGfU6ZFlMkFUFTQze08awHBsAoKnNz4UvRCmiDx12DOwoeSIpTzjPTrsiaU+4gCJ92MxGZJqNUKFydSxRGmJgR0ljMRlg1OvgYi47zXK2B3a1bg7rpZMiR7hu7PEmBnZE6YaBHSVVttUMtzeIkMw5WFqUbw/P16pv8UHpSxVrSqrC7HBgV+XycH4kUZphYEdJlW01QYWKFh+HY7UoM8MIs0GPoCyjhUPuaaMwywJRECDJMmvHEqUZBnaUVA5LeAFFUxuHY7WqYziWAUK6MOh0yG0/bhyOJUovDOwoqXK4gELzItUM6tjzk1Y4z44oPTGwo6TKshghCgIXUGhYXnth+Vq3Fyrn2aWN4vZ5dt6ghMY2rmomShcM7CipRFFElsUElycAReGXvhbl2kzQiSKCIRnN7JlNGzlWMzKMBgDstSNKJwzsKOkcFhNkRYGbCyg0SRTFaD67KpapShuCIKCkPVlxRUNrkltDRPFiYEdJl9NeeqqJvTmaFSlTVcMyVWklEti1+AJc4ESUJhjYUdJFKlDwi0O78iMLKNw+5ixMIwVZFhh04a+Jo/UtSW4NEcWDgR0lXbTHjhO0NSs3MwM6QYSiKqhj2pO0oRNFFGWHe+2O1buZZJooDTCwo6Qz6HTINBu5gELD9KKIbFu4Z7aqmcOx6aS0fTjWJ4VQy2NHlPIY2FFKyLaZEVIUVqDQsEhetGoXV1imk8Isa/T/R+vdSWwJEcWDgR2lhGwL59lpXWQBhdsXhNsXTHJrKF5mox4FWZFkxa2cI0mU4hjYUUqIzLNrZGCnWbm2jOhE/Iomps9IJ5HhWElWcKyBvXZEqYyBHaWESGDX0MoFFFql14nRYb3KRgZ26WRUfhZ0Qvjr4kC1K8mtIaKeMLCjlGA26GExGtDsCXCoR8MK28tU1bf64AuGktwaipdRr8Ow3HCvncvjZ91fohTGwI5SRq7NDBUq59lpWGQBBQBUchFFWhnltEf/z147otTFwI5SRm5meDi2vpW9AVqVaTbCZjYCAMq4wjKtFDusMOp1AICKxlZ4AlKSW0REsTCwo5SRYwtXJ6h3c56dlg1rH46tbfHAG2RwkC5EUcSIvHCvnQoVB9lrR5SSGNhRysi1RXrsfFCZ4V6zhuVkRv/PXrv0MsqZFf3/oZpmBCQ5ia0holgY2FHKMOp1sGcYEQzJaPEyUbFWFdgzYNSFh/QY2KUXpz0D2dbwDzBJlrG/qinJLSKikzGwo5SSa+soFk/aJIoiinM6VlhysUx6mVCUHf3/geomDqcTDYKQHP8oFgM7SilOeziwq2WheE07sUzVgWr2+qSTEU47TIZwj6skK9hZVp/kFhFp35AN7NauXYszzjgDmZmZyM/Px4UXXogDBw70+Jj169dDEIROF7PZfEqvz2lh/RftsWvxcJ6dhpXm2iC2J7wtq2+Fnznt0oZeFDG2oKPX7mh9C2pbPElsEZH26XVC3NtqKrD74IMPcOONN+KTTz7Bhg0bIEkSzjvvPHg8Pf/RsdvtqK6ujl6OHTt2Sq8fkJhYt78cFhMMOh38kgyXh/PstMqo16HQEa4dq6gKDtc2J7dB1CfjChydrm89VA1J5kIKooHSl8BOP4DtGHRvv/12p+vr169Hfn4+duzYgXPOOafbxwmCgMLCwoFuHsVBFAU47RmocrWhurktWmqMtGdsgQNV7UmKD1S7MLE4B3qdpn5rapbVbEBpbiYq2kvDeQISPjlcg7MnDEtyy4hI039FW1paAAA5OTk9btfW1oYRI0agtLQU3/3ud7Fnz54etw8EAnC73Z0uACAK8UfU1D1nZng4tsrF4R0tK862RlfH+qUQDtQwL1o6mVKS2+l6eYMbX5Zzvh3RQOjLzCTNBnaKouDnP/85vvGNb2Dq1KndbjdhwgT8+c9/xuuvv47nnnsOiqJg/vz5OH78eLePWbt2LbKysqKX0tJSAIDRwMAuEfLt4SG6ercPfubJ0iydKGJ4XkdOuz0Vjawfm0ZybRkYeUJeOwDYXdGAL8rqOD+WKMGk0BBdPHGiG2+8Ebt378aLL77Y43bz5s3DlVdeiRkzZmDBggX4+9//DqfTif/5n//p9jGrV69GS0tL9FJRUZHo5g9pOTYzREGAChVVTawnqmWj8x3R/0uyjM+O1iavMdRn04fnQSd0/hrZW9mI93aXo7GNKYuIEqUvP5Y0Nccu4qabbsKbb76JDz/8ECUlJX16rMFgwMyZM3H48OFutzGZTDCZTP1tJnVDrxPhtFtQ2+LBsUY3Rhdk9f4gSktOewZybBloag8CyhvcOOywYuxJk/MpNWWajZg0LAe7jzd0ur3O7cXbX5Yh02xEZoYRRr0ODosJw7KtcFg5b5aorwz6+PvhNNVjp6oqbrrpJvzjH//Apk2bMGrUqD4/hyzL2LVrF4qKigaghRSvgqzwcGy1y8PhOY07MeEtAHx6pAblDaxIkS6mlOTCZjbGvK/VH0SVqw1l9S3YeawOb+08ig27jqGuhXkqifpC7EO0pqnA7sYbb8Rzzz2HF154AZmZmaipqUFNTQ18vo4hgSuvvBKrV6+OXl+zZg3effddfP311/j8889x+eWX49ixY7juuuuS8RaoXXF7oXgVKr6ua05uY2hADc/NhFGvi15XVBUfHajEp1/XoNnjR0hhGqFUpteJmD+uGALim2Nc5/Ziw+5j2HakBiGZx5Yo0TQ1FPvUU08BABYuXNjp9nXr1uHqq68GAJSXl0M8IfR1uVxYsWIFampqkJ2djVmzZmHLli2YPHnyYDWbYsixmmE26OGXQjhU3YxJxbkQRS5O0SK9TsSEomzsqug8nHew2oWD1eGVsgadiLxMC0pzbRjlzGJalBTjtGfgtJFO7Cyri/sxh2tcaHD7sHByCawmwwC2jmho0VRgF8/kwvfff7/T9UcffRSPPvroALWITpUgCCjOtuLruhZ4ghKO1rsxhnPtNGtCUQ4O1rgQ6GYVtCQrqG4O5zbcVdGI04Y7eT6kmCnDcuFq8+NYH4bRm71+vP1lGRZNLmXOygRp9vhR3+rDuMLs3jcmTeLPXkpZhY6OeqJfltd3+6VP6c9k0GFaSV5c2/qCEj45XIX391YwHU6KmT+uCBOLe84bejK/FMJ7u8vR0MpVtP3V2ObDht3l8Pg5L3koY2BHKaskxxZNpeALSvjPgUpInJOjWeMKs5HThxWTla42vPNVGVq8LD2XKkRRxKxRBVgwqQT2jNgLKmKRZBmb9lQwRUo/uNr82LS7AsGQDAX8OzmUaWoolrTFoNOhKNuC4+257GpaPPjnjiPIsZlhNuiQm5mB0txMmA08jbVAFAXMG1+Md74si3vBRJs/iHd3HcOiyaXIa69YQslXkpOJkpxMuDx+uH1BBEPh2s+VTW3wBqWYj4kEd0unDkc2U6L0SYs3gE17yxFsr9erMD/0kMZvREppYwuyo4EdAPikECrb64seqWvBZ1/XYXRBFqaV5sJi5ATsdOewmHDGmEJsPVQV92OCIRmb9pRj0eThcNoZ3KWSbKu5U5CmjlZxvKkNXx6rR4uva09r+FhW4LxpI5DZhx6/oczjl7BpT+dpCSojO20IeYCmHYDXAITinzPJoVhKaUUOa48Bm6IqOFzjwpufH8XXdS2D2DIaKKPzs3DWhGEwGXS9b9xOkhVs3stqB6lOEASU5mbiWzNGYlppXswUKX4phE17K7rt2aMOvmAIG/eUd9lXCku6DWkM7CiliaIQV+UJSZax9VAVth2uhsK8Z2lvRJ4dF5w+BnPHFmHysFyMyc/qdc6WJCvYtLsCLo9/kFpJp0oURUwf7sSSqaWdchhGtPmD2LznOBdM9UCSZWzeW4FWf7DLfQzshjYGdpTyJhblQBdn2u3Dtc3YvPc4JJlfCH3V6gtiX2VjspsRZdTrMLbAgZkj83HmuGJ85/Qx+NaMURjl7D7QD7bP02r1df2yo9RTkGXFsukjY+axa/b68cG+Ci6YiiEkK/hgX2XMHzEZRgMmDctNQqsoVTCwo5RnMuhw2ghn3NvXtHiwaU8Ff+33gcvjx4bd5XCneECUbTVj/vhiLJs2stsePA7lpRd7hhHnThsRsyxZfasPH+w7zgoVJwgpCj7cX4naFk+X+6wmA86bNhwOC2uZD2UM7CgtTCjKRoHdEvf2Da0+bNpbwZ67ODR7A9i0pxy+oJQ2Qzh59gycf9ooDM+1x7y/zR/E+3s5lJcurCYDzp06PGZwV9viYXDXLqQo+Gh/Jaqb27rcZzUasLSbfUhDCwM7SguiIGDB5BJMLc1DQZYVWRZTr7Upm9p8eH8vvxB60uoLdlpRl06L6Qw6EWdNKMbkboadXB4/3mdwnzYsJgOWThkOa4zFUjUtHmwe4sdSkmV8sPc4qlxdg7oMowFLGNRROwZ2lDYMOh1OG+7E0qnD8e2Zo3HRnHE4Y0xhj5Pq69xefLi/kgsqYvAGJWxs76mLSJceuwhBEDBzZD5mjsyPeX9Dmw+bGdyfkurmrkN9A81qNmDR1NKYK6Lr3F68+1U52mIsFtA6b0DChl3lqIkx/GrU67B4cgnTw1AUAztKWyaDDuMLs7F8xmicPqqg2wUW1c1t+PhQddoFLQMpIMnYtLsCnkDneWjpmv9q8rBczBgRO7ird3vx/r7jnITfB3sqGrCrvD4pr52VYcKiyaUw6Lp+npu9frz9VVmn3JZaV+Vqw7+/LIu5UEIvilg4qRQOJnSmEzCwo7QnigImFefg/NO6n1Bf3uDGZ1/XDnLLUpMkK3h/b0XMBLHpHPxOKcnFtNLY9WZrWzzYuLsc/iBraPZEVVV8XlaLneX1kJN4KuTaMnDOpBKIQtevqIAk44N9FfjoQGXMVB9a4fFL+PhgFTbvrYBf6nreioKAsycOY1Ju6oKVJ0gzHBYTlk0fiY/2V8YcsjhU44JJ37cVtlojKwo+3H8cDd0k8k33slzThzsRkhXsq2rqcl9jmw9vf1WGBZNKWLIqBkmWsfVgNSqaWgGEg7xkKsyy4qwJxfhofyVUdG1LeYMbFQ2tGJZjxbCcTORYzdDH6OVLJyFZgcvjR2VTG443tcV83wAgQMD88cUozrYNcgspHTCwI00x6nVYNLkEHx+sRnmju8v9u483QC8KmNJNz46WKYqC/xyoRE03c6dmjMzHFA3kvzp9VAECITlmJRJPQMI7Xx3D6SPzMa7QAUHoeQHOUFHv9uGTw1Wd0t0oKTAsX5qbifnji/Dxwdgl5lSES5QNpaFZADhzbBFG5MVeEU7EwI40RxRFfGN8MYRDwLGGrsHdzvJ6CKLQ7WpKLVIUBR8frO72C3DWqAJMLM4Z5FYNnLljihAMKTje3vt0IllR8OnXNThS14xppU4UO6wQxaEZ4DV7/Nhb2YSj9V2D4FQZlh/pzIKiAp8cqu62B2somTu2KK5qPDR0MbAjTRJFAfPHFUFW1Jhf7l+U1UGSFZw2XPvDsiE53FNXGSNNAgDMGOHUVFAHhI//N8YX4/19x2MmcgWAprZwZQOzQYf8LCvsGUbohkAPngrAGwih3u2NOc8yIlUCOyBcP1gUBGw9VJVS7RpMAgScOa4Io/MZ1FHPGNglkC8Ywt7jjbBmDMyXg04UYDMZUZRtQUaMXE/UmSiG85y9v+94zOHH3RUN8AUknDGmMO6SZenGG5Tw0b7KbufUTSnJw5QSbQ5L63UiFkwqweY95ahvjf3+AcAvySiP0bM71KXaMPVIpx0ZRh0+3F+JYGho5bMz6HQ4e+IwFDmsyW7KkCHJCrxBCXISVxEJcgDGQAi+oNCnqREM7BLIH5RxuLYZBsPAp1UYlm3DtOF5yLWl92T3gaYTRZwzsQSbdpfHDG6O1LWg2RvEN8YXay4PVE2LB1sOVnfKU3eicYXZmKHxhSQGnYhFU0qxcXcFGrsJbqkrg06Hb4wvTnYzuijIsuL800Ziy8EqNPQQrGtJjs2Mb4wf1mO+TuqbgCTDG5TgDYTC/wZD8AVD8AYit4VSIhm2EQEMFxrglczwS9lxP46BXZqqdLWh0tWGcYXZmDnSCYOua0JPCjPoRCycXIoNu47FHHpqbPPhrZ1HMbUkFxOKc2Lmz0on3qCEr8obcKS2udttRuTZMXt0weA1KokMOh2WTC3F+3uPo87tTXZzUp5Rr8PiKaUp+6Mx02zEuVNH4FCNC7uPN0SrpmiNyaDDlGF5mFDkgKjREYVEU1UVfikcmHmDIfgCIXgCUjhoiwRuwRBkjSesZ2CX5g7VuFDb4sGCSaX8RdcDk0GHxVNL8e5Xx7ok5QXCE+q/LK/H3somjHTaUeSwwmY2pMUQrQoVIVlBizfYniahtcd5SEUOG+aPK4KYYkNtA8mg02HRlFJsPVTNYdce2MxGLJqc+n9LRFHAhOIcjC5woKKxFZWuNjR7/AiG0vsL26gX4bCYUZxtxfC8TP5gP4GiqPBJoc69bO2BWqT3zRcMaXYOZl/eFgM7DXD7gnjnqzIsmFiC/CxLspuTsixGA5ZMGY4Nu8u7HZ6UZBmHalw4VOMa5NYNjny7BedMHDYkewD0ooizxhdjr9WEr8obNPsFcKqGZdswb1xxzHJeqcqgEzE6P4sLCtKcrCjRgM0XDMETCdoCHb1v/mBoSK+KDqnxfy4Z2GlEMCRj054KLJhUgqJsTrDtTmaGEUumlOK93cc0O4TTnVxbBhZMKkn7JK79IQgCppTkochhw2dHa1DvHhrztHqSYTTgtOFOjGEKDRoAkUUI3kCovVdN6gjc2nvbAkPsb/Gp6Mv4CgO7BFLV5A5tyaqCD/Ydx8IpJSjMYnDXnSyLCedOG4mNu8vh7abnTmsK7BYsmFzCoZ12OTYzzps2EtXNHnxd14Ka5rYhFejrBBFOewaG52VilDNrSAf7dOpOXoTQaS5bCi1C0AK9EP9+ZGCXUAJMeh1MhoH5IxlS1F4/JLKq4IO9x7FwcgkKGNx1y55hxHnTRmBzNzVTtSScvb8Y+iE4/NqbIoc1mkIiJCuQU6DawkAThPAQZqqlM4mIBAu+oLbnTPWXqqLTggBfe4AV0vjCgCGrDx9XBnYJZDHpsOy04cjJHLjd6gtKqHZ58XVdM2q7WeEXUsI9d0umDk/ZlW2pwGo2YNlpIzrVx9SaaaV5mFaal7Jf4qlErxOhZ4fmgPIHO+ZMdQzPMTAhSiQGdgk0UD11J8owGjC6IAujC7JQ3ezBZ1/XdKrvGCHJCjbvrcB500am/Aq3ZDLodDhnUgmO1Dbj87I6zSQ+tWcYMXdsEfLtXExDA0+JpJkIhOdOeU7MC3ZC6glZZdBGdCqUPkz1YmCXQIPdKVLksOKbp43CjqO1OBwjZ1lAkrFpdznOnT4CVhMrVfRkTIEDw/MycaDKhSN1LWjzdw2W00GuLQPjC7Mx0mkfcvVPwzmsZPiC7PUZCKqqwh+UO/e2nZBmYiivWCQaaLLCVbFDhl4nYu7YIjgsJuw4Wtflj6snKGHTnnKcO20kzGmUxiAZDDodppbmYWppHty+IHxBKW3mXOlEAZkZRlg0WmpuqOewIqKhTSdy8cSQM6E4BxlGPT4+2LVIttsXxKY95Vg6dTiMnEQUF3uGkUPYgySkKPCdELBFV9gxhxUREQBAFFgrdkganmeHKIr4aP/xLsGdy+PH5j0VWDSllMEd9SgkK/AGTyjFc1LPmCQrUBPUMxZSFOawIiJKIAZ2GlOSY8NZE4bho/2VXXo4Gtp82LinHIsmDx/Sw7KqqvapPIuWhBSl04T2jhWJoegKxSDzThERpS0GdhoUzltWhI8PVnW5r6nNj3e/KsPCNKgHeSoURem0Co8TvYmIKPWoMMGHABKfuYCBnUaNdGYhIMn47Ghtl/ta/UG882UZ5o0vQklOZhJad2pCstKe2VzCydnNI0GbXwolu5lEREQxZaANw4SjGC4eQgbasEn+PnywJfQ1GNhp2ITiHARCMnZVNHS5LyjL+GDfcYxyZmHGSGfSV1NKshytJdhlEn37fC+t5JgjIqKhQwcJhUIFSsXDyBcqoYcEQIUMffv/E0uTgd0TTzyBhx9+GDU1NTjttNPw+OOPY86cOd1u/8orr+DOO+9EWVkZxo0bh4ceegjf+ta3BrHFA2f6cCcCIRkHq10x7z9a34LyhlaMcGZieK4deZkZMCV4/t3J9QQjqSo80eFSCZLMvGNERKQVKnJQh2Hi1ygRj8AMHwAVIdUAL6zQQYZeGJha5ZoL7F566SWsWrUKTz/9NObOnYvHHnsMy5Ytw4EDB5Cfn99l+y1btuCSSy7B2rVr8e1vfxsvvPACLrzwQnz++eeYOnVqEt5B4s0eVYCQrODrupaY98tq+L7I/aIgQOhLYboeqFCZW4yIiIaEE4da7YILImTIqg5+mKGic6eJAGCqbhtCauwRMx+s8Kt9r/kuqInKW5Ai5s6dizPOOAN//OMfAYQn05eWluLmm2/G7bff3mX7H/3oR/B4PHjzzTejt5155pmYMWMGnn766bhe0+12IysrC48+dAeuPLdoQGvFnipFVbH1YBXKGtzJbgoREZFmxBpqVVUBQRghQw/E7ChRkQEvhG7y04mQ4YMVB+SZ8EpmbC0fjd+seRwtLS2w2+09tif1IpB+CAaD2LFjB1avXh29TRRFLF26FFu3bo35mK1bt2LVqlWdblu2bBlee+21gWzqoBMFAfPGFQOCgLL62D13REREFA8V2ahHiXgk5lBr7GDuRAJ8sKK7BA1G+Ht/im5oKrBraGiALMsoKCjodHtBQQH2798f8zE1NTUxt6+pqen2dQKBAAKBQPS6250evWCiKGDeuCKY9CIOdDPnjoiIiHp2uvghSsUjMMIPSTXGHGpNFjHZDUhHa9euRVZWVvRSWlqa7CbFTRQEzB5diDNGF0IUhlaReCIiokQoV8ehWhmOADIgCgrM8EPXvto12TQV2OXl5UGn06G2tnPuttraWhQWFsZ8TGFhYZ+2B4DVq1ejpaUleqmoqOh/4wfZ+KJsnDd9BBwWc7KbQkRElFYa1GJsV5bi3dAP8aU8H83IhV4IwSJ4YIIPAnpPzyVAhohQzIuAU88UoanAzmg0YtasWdi4cWP0NkVRsHHjRsybNy/mY+bNm9dpewDYsGFDt9sDgMlkgt1u73RJR7m2DHzztBGYO7ZIk1UoiIiIBpIfVhxRp2Kz/D18GPoODirTEYQZZsEPi9AGAwKI1YsnQoZF8MAoSDEvgiAgpJ7a97Km5tgBwKpVq3DVVVdh9uzZmDNnDh577DF4PB5cc801AIArr7wSw4YNw9q1awEA//Vf/4UFCxbg97//PZYvX44XX3wRn332Gf70pz8l82104ZdCaGz1oyjbmtAhVFEUMbbAgbEFDjR7/Ghs8yMYUqAkqjtZVeGXZJb0IiIiDRPgQj5cSj72YTYKhAqUCIdRKB6HBZ4uq2QFqAjBgE/lxfCqsStAKRCRL1T2uSWaC+x+9KMfob6+HnfddRdqamowY8YMvP3229EFEuXl5RDFjo7K+fPn44UXXsAdd9yB//N//g/GjRuH1157LeVy2AUkGe/vq4DFaMDogiyMzXfAak5stQiH1QyHdeCHZhVVhV/qKDrfUYT+xOL0ISgqkxYTEVF6kaFHlToKVeoomBVPe167g7ALLpgQgKzqILcvtGhVHWhFdsznMSIQ8/beaC6PXTIMRh67Fm8Ab37xdafbihxWjClwoDTH1ilY1Qp/sHMd2E6VK9pvCykM/oiIKNWF06MME79GqXAEZsELBTpsCn2vx8BuuHBwaOexG2qqmz2obvbAbNBhlDMLYwodyMowJbtZCWM26mE26pGD7nsRI+XKIvVkfdEev456s5LMGrNERJRMXYdqs4V6eBB7GLY/GNhpgF+Ssa+qCfuqmuC0WzA234HheZnQ67TXi3cyk0EHk0GH7B6qrkiy0qnXzxeUIA/RjmpZVtpr9HYMgbPkGxHR4DlxqHYgMLDTmHq3F/VuLz47qsNIpx1jCxzIsQ3tlCYGnYisDJOmejMTRVVV+KTIHMfO8xx9Aak9CAxB5nxHIqK0wMBOoyRZxqEaFw7VuAYlEfHCSaUo6qnbjFKSIAiwGA2wGA3ItXW/XWTI2xsIISjLSFQnX0hRogGl74T5lJw7SUR0ahjYDQGDMdTG9CXaFs+QdyIFQ3KnFdOd50+GA8BgiHMniYhOxsCOiFKOUa+DUa+Do4dAMiQr0RXSnkDHSmlfkD1+A0FVAZ/EBUlEqY6BHRGlJb1OhD3DyKopSRBrQVKn1ehBCQGJwR9RMjCwIyKiPolnQVJIUeA7IfdkZAg9fFso2ttKRHHow2wnBnZEdEpCsoKQoqIvS3NUADoR0IsihEFY1EPJoxdFZGYYkdlDj6qiKPAF5c6JyCNJyNt7/xRO341Jba/gQ0NDSNXFvS0DOyKKW1ObH4dqmlHpautXb4tRp0NhthVj8x1cTT2EiaIIq1lsL4+YkezmpJ0ugXEwhJA8ePNLw4ucOvfEciHdwOjLXmVgl0Ccr01a5QlI+PxoHcob3Ql5vqAso7zBjfIGN/IyMzBndCGyh3i+RaK+SrXA+MQ64L4Ta3+fMP+SeTFPjV6If84qA7sECoZ4spL2HGtwY9vhmgFbCdnQ6sPbX5Vh+vA8TB6WyyFaojQlnpAXE5ndB5p+KRzgeU6o+33iULwvGII0iD2P6aAvfxYZ2KUJg06EXhSZxoEG1ZfH6rH7eMOAv46iqth5rB5NbQHMG1c0JMrhEQ1VZoMeZoMe2T1sc3Iuy5NrgDOXZfcY2CWQUT9wX0YWkwHfmjkKnxyqRp3bO2CvQwSEA63th6txpK5lUF+3vNENvxTCwsklMOjinyxMRNpySrksT0i3EwkAtbLApC91BhjYJZA4wJ0MmWYjlk4djgPVLuwsq+c8BRoQiqLi40NVKG9IzHy6vqpze/He7nIsmTIcRj2DOyKKLZ5cloqinDDPL9SpdKH3hKTmqb7og6tiNUwQBEwszkFxtg1bD1WhodWX7CaRhiiqiq2Hq5MW1EU0tfmxeU8FFk8tZc8dUR/4JRlH61twvLEVbl8QIVnp0/ysnhh1OuRkmjEi147SXBvEge7NSABRFGEzG2Ez9xD8nbTow3PC8O9grjI+mV41IFsyQx8wQd+Hg8jALk3ZM4w4d9oI7KtqwlfHGqCw944S4NOva1FW3/Pwa6bZiGE5NtgzjKc0F05RVLT5JVQ1t6Gpzd/tdg1tPnywrxILJ5dAnwZfIETJFJIV7K1sxP4q14AtdJJkBZ5GCRWNrbCZjZgxwokRefYBea3BFO+ij0EX8gBNVWjyGmA5Gv/DGNilMVEQMGVYLoY5rNh6uLrHL0mi3uwsq8fhGle39+faMnDacGfC8s6dNsIJV5sfX1U04HhTa8xtals8+PhAFc6eMAyiyNWyRLG4PH58fKAKLb7AoL1mmz+I/xyoxLEGN84cW8RpEwOsL72u/BmsAQ6rGcumjcBpw50QmSqCTsG+yibsqYy9+lUniJg9qgDLpo9IeDLhbJsZCyaVYMGkEpgMsb8Yjje1YtuR6oS+LpFWlDe48c5XxwY1qDtRRWMr/v1lGdy+YFJen7piYKcRoihiamkezj9tJLKtTPRK8TtS24zPy2pj3mc1GnDe9BGYUJwzoPnlSnIy8a3TRiHHFnsY5Ou6Fnx+NHYbiYaqgzUufHSgEnKS02C1+YN4d1cZGts45zsVMLDTmGyrGedPH4GppXkQ+lTFk4aiSPLhWBwWM847bQRyBqkihMVkwLlTh2NYti3m/fuqmvBVef2gtIUo1e2pbMSnR2J/dpMhIMnYuLsC9W4Gd8nGOXYaJIoiThvuREmODVsPVieti55S2/GmVmw5WBVzmX+uLQOLJpd2Ozw6UPQ6EedMHIYth6pxLMbK3F0VDdDpREwZljuo7SJKJfuqmrCzrC7ZzehCkmVs3luOH545IdlNSTi/JKOi0Y3aFi8CkgxFVQe062TxlNJT7nljYKdhubYMnD9jJJpa/QOeo8dh4fBvOqloasV/9ldCiZH1MsdqxuIppUmbDC2KIuaPK4aqImZt2p1ldYAKTClhcEdDz6EaV6/TEnSiiMIsC7IsJhgSVMVFBRAIyWhs9fWYZiskp3Y+uL4KSDJ2HW/AoermQc0+oainPqTKwE7j9KKI/CxLsptBKeRIbTO2Ha6JGexnWUxYlAKJgUVRwDfGF0Her6DS1dbl/p3H6hCQQpg5Mp+1ZWnIONbgxvYehl/NBj2mlORidH7WgH6GW/1BHKhqwqGa5i4/DrW0gK+iqRXbD1fDL6VX6TIGdkRDhKKo+LK8HnsrG2PebzMbsXhKKcyDPPzaHVEUcdaEYdi8tyJmGb19VU1o80uYN76ISYxJ86pdHmw5WNXt/WMKHDh9ZP6g/CjLNBsxe3QhxhZm45ND1Z0WTWgh5aTaXru6u7+VqU4Dh4CIeuP2BfHenmPd/qEyG/RYPLk0nKAzheh1IhZMKul2pXdFUyv+vbOM9ZNJ0xrcPny4/3jMqRM6QcT88cVJySXnsJhw3rThGF+UHb0t3XvQFUXBxwer0jaoAxjYEWlaqy+Iz47W4q0vjna7Ws2o02HxlFJk9lBvMZmMeh0WTS5BZjclgVr9QWzYdQwNXI1HGuTy+LF5XwVCMVKaGPU6LJk6HKOcWUloWZgoijhjdCFmjSoIX0/jwC4kK/hgf2XMhVvphEOxGhYMyfAGJMgxfuX1Rq8TYTMZoNNCv/oQUu/24XhTK4IhGU0ef6/VSPSiiIWTS1M+92GG0YAlU4Zjw65j8ASlmNvILKtHGtPiDWDTnnIEQ13neGUY9Fg8pRSOFPnsTizOgcmgw5fH0jMlkawo+OhAJapizOlNNwzsNCakKDhS04yj9e5+J4vUCSIKsy0YX5iN4m5yi1HqOFTj6nFi9cl0gohzJpXAaU+h2og9sJoNWDw1HNz5pVCym0M0oJq9AWzcXR5z4r7ZEO6py7KYktCy7o1yZsFiTL+wQlFUfHywqtegToCAbJsJGUY9xAHOEysKwKkms0i/I0Ddqmhw49OjdfB106PRV7KqoLKpDZVNbXBmZmDOmMKU+XVInbl9Qez4Ov68VjoxnC+uyJHYEmEDzZ5hxJIppdi093iX81wU2LtM2tDg9mHzvoqYPXVGvQ6Lp6ReUBdRkJVef1MAYNuRalQ0xq5XDYQXlk0qzsGIPPvg5vY8xUEIBnYaEJIVbD9Sg6P1LQP2GvWtPvz7y2OYOdKJicU5A/Y6dGq2H6mJeyjSoNNhwaRhafkHGAjXRj536nBs3FMOT6AjuEvjqT1EUcfq3dh6uDpmmTC9KGLRpNSfOpFOPj9ai6/rYn93ioKAqaV5mDwsJ62mJTGwS3O+oIQP9lUOSo0+RVWw42gt3L4gZo8qgCjymzQVNLh9qG3xxLWt1WjAgsndrzJNF5kZRpw3fQQ+POHcZ2BH6UySZXxRVo9DNa6Y94uCgLMnDkNemkydSAd7jjdgX1VTzPusRgPOnjQMud3Urx4UeiuQfw7QGgL01fE/bACbRAPM45ewYfexTr0Wg+FQjQu+YAhnTShOq18xWnWwmy+Ckw3LtuHMccUpk6euvyxGA86dNhyfl9XhYLVrwOe8EA2EkKzgaH0Ldlc0wtvDNJr544o51zmBDta4sLObhR45NjMWTipFRhrOFwQY2KWtNn8Q7+0uH/SgLuJ4Uys+2l+JcyYOg8jgLmmCIRnlDd3PDQHC80OmD89LakqEgaJrT7UwPDdz0OvaEp0Kl8ePhlYfgiEZzZ4AKl0eSHLPlQ3mji3CCKd9kFqofUdqW/BpNwvNCrKsWDBpWFonPWdgl4Y8ASmpQV1EpasN/zlQhbMmFDO4S5Kv61q6zK0zGXQw6XXItppRmpuJ0hyb5o9Pus4XpKHDF5Sw7XBNzBJ5PZk1qgBjCxwD06gh6Ou6Fmw7HHtYsyDLioWTSqBPUH3dZGFgl2Z8wRA29hLU6QQRw3JsKHRYYDMboTuFuXAhWYHL40ely4P6HrL6VzS1YsuhaswfX5zWiSnT1YkruQw6Hc5Ow5WuRFrnDUjYsLscbf5gnx43Y0Q+F6sl0MFqFz79OnZPndOegQUaCOoADQV2ZWVluO+++7Bp0ybU1NSguLgYl19+OX7zm9/AaOw+o/7ChQvxwQcfdLrtpz/9KZ5++umBbnKfBUMyNu+tQGs3fxxEQcDE4hxMGpabkHlUxdk2TCnJQ7PHj53H6rv9pXmswQ2jXoc5Ywr7/ZoUP09A6lRK6xvjixnUEaUYRQ3nSOtrUDd7VAEmMKhLCEVV8WUPtV+zreE5dQYNBHWAhgK7/fv3Q1EU/M///A/Gjh2L3bt3Y8WKFfB4PPjd737X42NXrFiBNWvWRK9bLJaBbm6fhWQFH+w7DpcndiUBh8WMb4wvGpA8cw6rGQsnl+JYgxvbD9cgGGM+yKEaF0wGHU4b7kz461Nstc0dQV1pbiaG5XBiNVGq2V/V1KdaxjpBxLzxRRiRxzl1ieANSth6sBo13WQOyDQbsWhy6aDX2R1Imgnszj//fJx//vnR66NHj8aBAwfw1FNP9RrYWSwWFBambm9TOCt2Zbd/HIbn2jFvXNGAdyGPyLMj22rGB/sq4PZ1/fW5u6IBJr2OQweD5MQe1GmleUlsCRHF4g1I2FXeEPf2mWYjzpowDDm29E5HlApCsoJDtc3YVd7Q7eKUDKMBi6ek7+rX7mjr3ZykpaUFOTm9BxnPP/88nnvuORQWFuI73/kO7rzzzh577QKBAAKBQPS62z1wBYMVVcXWw9U43hR7GHRScQ5mjsyHMEjz2+wZRpw3bSQ+2F8Rs6j8jqO1MOh0GFOgvRWYqURRFNQ0h3+BFmRZ0z4vHZEWfXGsHqEYiYZPphNFTCjKxrTSPE3M8RpsqqrCE5DgDYbgC4ZQ2+LFsQZ3zModESaDDounlMJm7n6qVrrSbGB3+PBhPP7447321l166aUYMWIEiouL8dVXX+HXv/41Dhw4gL///e/dPmbt2rW49957E93kLlRVxfYjNSjrpqLEtNI8TE/C0KfJoMPiycPx/r7jMRPjbjtcDZ0IjNRgeo1UUd/qiw6Jj+OKOaKU4/L4u/3bDYTnRGdZTCjNzcSYgixYjIZBbJ02KIqCfVUuHKx29ZgD8GQGnQ6LJpfCkaJl2for5QO722+/HQ899FCP2+zbtw8TJ06MXq+srMT555+Piy++GCtWrOjxsStXroz+f9q0aSgqKsKSJUtw5MgRjBkzJuZjVq9ejVWrVkWvu91ulJaWxvN24qaoKrYfrsaRbkqdTC1JTlAXodeJWDipBJv3VnQZIlahYsvBaigqMDqfwd1AqG0J73ODTse5dUQpaG9l14oGBVlWTCvNRY7NnNZ50lKBJyD1OO+8O3pRxKLJpcmtKHEKQrIa97YpH9jddtttuPrqq3vcZvTo0dH/V1VVYdGiRZg/fz7+9Kc/9fn15s6dCyDc49ddYGcymWAyDVykH5IVbDlYhYqm2IlnJxbn4LQRyV+koNeJWDi5BJt2V6DhpJJmKlRsPVQFWVEwrjA7SS3UrsgwbGmujUM3RCkmIMldisqPK8zGGaMLBm3ajJa5fUFs2HUMfinUp8cZ9eHh13QL6gCNBXZOpxNOZ3xBTGVlJRYtWoRZs2Zh3bp1p5SUdefOnQCAoqKiPj9WjX+/d8sTkPDh/uNoaov9K2R0fhZmjSro/wsliEGnw8LJpdiw6xhafIEu91e62hjYJVhIUdDYfn6U5GQmuTVEdLLDdc2QT5hbNzzXzqAuQSRZxof7jvc5qLOaDFiYxsOvel38545mfupXVlZi4cKFGD58OH73u9+hvr4eNTU1qKmp6bTNxIkTsX37dgDAkSNHcN9992HHjh0oKyvDG2+8gSuvvBLnnHMOpk+f3uc2BKTeJ8n25Ou6Fvxr59Fug7qSHBvmjul7wDnQIpNQraauc0SYtDjxGlt9UFQVOkFk3jqiFKOoKg5Vd9RvthgNmDu2kEFdgmw/XBOzE6EnBVlWLJs+Mm2DOqBvgV3K99jFa8OGDTh8+DAOHz6MkpKSTvep7V1pkiThwIED8HrD85OMRiPee+89PPbYY/B4PCgtLcVFF12EO+64Y9DaHVIUVDa1YX9lU5fhzBMV2C34xvhhEE+hisRgsJgMWDxlODbsKoNf6liJxMAu8SKrkQscFg7DEqWY2mZPp8pAs0cXaCpHWjIda3CjrCH+LBQGnYjThjsxvih7SAXWmgnsrr766l7n4o0cOTIa5AFAaWlpl6oT/REMKdhxtA6WODJPqKoKXzCExjZ/py77WHJtGVgwOfVLndgzjFg0eTg27i6PrthkYJd49a3hwK6QvXVEKedofUfgUZBlRWkup0skgiTL+Ozr2ri2tZmNGOW0Y2JxjmaC6r5M9dJMYJcKZEVGZVMrDIb+DcmeKNtqxqLJpWmzgirHZsaiKaXYtKcckqwgRTsY05aiqtHavRyGJUotIVnB8RMWvU0fzsThibKroiHmvDqzQYfR+Q7kZWYgw6hHhlEfc1pQupNCGlo8MZRlW81YMmU4TAmo+zqY8jIzsGjycGzeWwFBSO1exnTT4g1AkhVkGPRpPV+ESIuONbghyeEf9k57BvLtqVeeMh15/BIOVLm63D7SmYUzhshQt9qHLjt+66aovMyMtAzqIpz2DCyZWooMY3q2P1U1tA/D5mfxC4Mo1ZSfkOJkQhFLKybKzvJ6KCcFNpOH5eIb44uHRFAHAAZ9/OEae+xS0GDVfh1oubYMlrpKsEYGdkQpyS/J0fySFqMBpUwcnhBuX7BLBY+xhdmYOTI/SS1Kjr5kb2Ngl0J0gogZI52YWKydX3pcPJFYTZ7wMn8O8RCllroWT7RXaVyh45TyqFJX+6o6V/Bw2i04Y9TQCur6ioFdihiea8eMEU5kZmivIDElRkhW0OwJwKjXIYvnCVFKOd7UFv3/6AKWUkwESZZx7IRVxgadiPnjihg094KBXQLpdSKyLHqY45jTLiC8msdpz8DwXDsDOupVU5sfKlQ4MzOGVE4molSnKCoqXeHAriDLCotRe6syk+Hr2hZIckde1NOGO2Ez87uyNwzsEigzw4AFk4qQk8ndSonX2F7s2pmZfnUOibSsvtWLYCgcgIxy2pPcGm1QVRUHazpWwjosZpanjBP7M4nSRGThRJ6dgR1RKon01ukEEcPzmJA4EaqbPXD7gtHrp490pmzlpVTDwI4oTbg8fggQkGNjYEeUSqpd4aThw3JsaZNMPtUdPKHebr7dgqJsrjKOFwM7ojQgyTLcviCyLCYY0jwNDpGWeIMSmr3haRIluQw+EsEfDKHK5YleZwWPvuE3BFEaaGoLf3HkZjIvIFEqqWkO99YJEFDsYGCXCMca3FARTh2TYzWjIIvlE/uCgR1RGnC156/LtTGwI0olkfl1+VmWtK0UlGqOnpDiZDwrePQZAzuiNBDpscthYEeUMlRVjVabKGGliYRw+4JobAsvFDMbdBjh5GKUvmJgR5QGXJ4AREFEtiWOJIlENCiaPYFomhMGdolxYvmwsQXZ0DMZcZ9xjxGluJCioMUbgMNqYsZ1ohRS3RLurbNnGJk4NwFUVcXh2nBgJwoCxhU5ktugNMVvCaIU1+INQIXKYViiFNPQnluyiIsmEqKh1Q9fUAIAlORksoLHKWJgR5TiovPrrByGJUoVqqqizh1eEVvk4KrNRChr6BiGHZXPerunioEdUYqLrIhljx1R6mj2BhCQZIiCgIIsS7Kbowm17aljTAYdih3cp6eKgR1RinN5/BAFAQ4unCBKGXUt4SDEabdAz6Th/eb2BdHiC/+IHZFr53zifuCeI0phqqqi2RNAlsUEHf/QEaWMOnd4fl0he+sSorKpNfr/kU4Ow/YHvymIUlirX0JIUZDN+XVEKSUyv66QVRESoqIpnOjZZjbCaWc97P5gYEeUwlye8MKJbCvn1xGlilZfEH4pBL0oIsfGH1395ZdCaGjvAR3ptCe5NemPgR1RCmv2huecsMeOKHXUtwchTnsG54IlQGVTW7Q2LAO7/uMZSZTCXG3ssSNKNfWt4WHYAjvn1yVCZfswrD3DiKwM/ojtLwZ2RCms2ROAzWyEUc/i4kSpor49MXE+59f1m6IoqGmJ1NtlXdhEYGBHlKICkgxPUGJ9WKIU4pdktHgD0Isicjm/rt/qW32QZAUAA7tEYWBHlKKaveFhWAfn1xGljEgZsbxMzq9LhOr2pMRmgx65mZxy0h1FiX9bnpVEKSpScYLz64hSR2Nrx8IJ6r/q5vAw7LAcG0RBSHJrUpcUij+yY2BHlKI6Up2wx44oVUTm1zkzuXCiv/ySjKa28P7kMGzPhD4EvQzsEigoqcluAmmIyxOAQaeDzWxMdlOICOFKME1tPggQkGdnT3p/1bT31ulFkRU8emHQM7BLCkVlYEeJoSgqWrxB9tYRpRC3LwhJVuCwmmDQcaV6f9U0h9OcFDpYb7c3fRml5p4kSkFuXwCKylJiRKmkoTU8PcKZyfl1/aWqKipd4R67Ioctya3RFgZ2CWQycHdSYri8XDhBlGoa27hwIlGavQH4pRAAoMjBfIC9CcnxjwgyEkkgLuihRIlUnGCqE6LUcWKqE+qfmpZwmhOb2YjMDM4j7s2QDexGjhwJQRA6XR588MEeH+P3+3HjjTciNzcXNpsNF110EWprawepxUSxuTwBCBBYXocoRYRkBc2eAMwGPRc0JUBtc2QYlr118dDrhvDiiTVr1qC6ujp6ufnmm3vc/tZbb8U///lPvPLKK/jggw9QVVWF73//+4PUWqLYXF4/7BlGTigmShFNHj9UqEyimyAN7cPaDOziM6CB3VVXXYUPP/ywrw8bNJmZmSgsLIxerNbuT5qWlhY8++yzeOSRR7B48WLMmjUL69atw5YtW/DJJ58MYquJOniDEgKSzGFYohTS1D49Is/GYdj+avb4EZBkCBBQwDQnCdfnwK6lpQVLly7FuHHj8MADD6CysnIg2nXKHnzwQeTm5mLmzJl4+OGHEQqFut12x44dkCQJS5cujd42ceJEDB8+HFu3bh2M5hJ10dQWWTjBwI4oVTS2B3a5nF/Xb3Xu9rmKdjOMeqaNSbQ+B3avvfYaKisrcf311+Oll17CyJEj8c1vfhOvvvoqJEkaiDbG7ZZbbsGLL76IzZs346c//SkeeOAB/OpXv+p2+5qaGhiNRjgcjk63FxQUoKamptvHBQIBuN3uTheiRGmOVpzgkA9RqohUSMi18XPZX7XtCyeY5mRgnNIEHqfTiVWrVuHLL7/Etm3bMHbsWFxxxRUoLi7GrbfeikOHDiWsgbfffnuXBREnX/bv3w8AWLVqFRYuXIjp06fjZz/7GX7/+9/j8ccfRyAQSFh7AGDt2rXIysqKXkpLSxP6/DS0NXm4IpYolUiyDLcvCHuGkT1MCVDnbl84kcX5dQOhXzOzq6ursWHDBmzYsAE6nQ7f+ta3sGvXLkyePBmPPvpoQhp42223Yd++fT1eRo8eHfOxc+fORSgUQllZWcz7CwsLEQwG0dzc3On22tpaFBYWdtum1atXo6WlJXqpqKg41bdH1IWrfeWdxWhIdlOICCfMr+MwbL+F89fJMOhE5Nj443Ug6Pv6AEmS8MYbb2DdunV49913MX36dPz85z/HpZdeCrvdDgD4xz/+gZ/85Ce49dZb+91Ap9MJp9N5So/duXMnRFFEfn5+zPtnzZoFg8GAjRs34qKLLgIAHDhwAOXl5Zg3b163z2symWAy8YSkxAtIMtr8QQ5REKWQhsj8Oi6c6Le69mHYvEwLRJGr/gdCnwO7oqIiKIqCSy65BNu3b8eMGTO6bLNo0aIu89YG2tatW7Ft2zYsWrQImZmZ2Lp1K2699VZcfvnlyM7OBgBUVlZiyZIl+N///V/MmTMHWVlZuPbaa7Fq1Srk5OTAbrfj5ptvxrx583DmmWcOavuJgI5hWC6cIEodTa2RhROcX9dfte5wYFfA6h0Dps+B3aOPPoqLL74YZnP3J7jD4cDRo0f71bC+MplMePHFF3HPPfcgEAhg1KhRuPXWW7Fq1aroNpIk4cCBA/B6vdHbHn30UYiiiIsuugiBQADLli3Dk08+OahtJ4pwMbAjSjlNHj9EQYDDws9lf9W399jlc37dgOlzYHfFFVcMRDv67fTTT+8199zIkSOhqp3LcpjNZjzxxBN44oknBrJ5RHGJzOXJ4ZAPUUqITI/IsZmh49Bhv7T6gvBJIehFEbmcXzdgeJYSpZDGNj/0oohMMxdOEKWCyPQI/tjqv/oTau1yft3A4Z4lShGRnoFsqwmCEH/5GCIaOM2ecLqsPOav67dIYMdqEwOLgR1RiogunOAXCFHK6Oix4+eyvxraK07kM7AbUAzsiFJEZH4dK04QpY6mNh90goisDM4J649gSEaz1w+dKLJ6xwBjYEeUIhrbhylyGdgRpYSQrMDtCyLbZoIocnpEfzScML+Oi1AGFvcuUYpoaPOHewYsxmQ3hYhwwjAsf2z1W2R+nZP56wYcAzuiFOAJSPAFJTisJq4WI0oRrjbOr0uU+vb5dU6WZRtw/AYhSgGRYQp+gRClDhd77BJCVpROQ7E0sBjYEaWAyB89TiomSh1NngBETo/oN5cnAFlR4LCYYdTrkt0czWNgR5QCIsMUDOyIUoOiKGjxBuCwGjk9op8iC8PyOL9uUPBsJUqykKzA5fHDoBNhZy1KopTQ4g1CUVUOwyZAdOEEh2EHBQM7oiSrb/VBUVVkW80QWXGCKCUwMXHiNLYvQuGK2MHBwI4oyercXgCcVEyUSlztpcSYMLx/IqUSMwx6ZJo5V3EwMLAjSrK6FgZ2RKnG5fFDgAAHp0f0S2Mb59cNNgZ2REkUkhU0tIaHKXIz2TNAlApUVYXL44fdYoRex6/J/miIzq9jfdj+UNX4t+UZS5REtS1eKKoCm9kIi9GQ7OYQEYA2vwRJVrhwIgGi8+s4ItEvUij+yI6BHVESVbd4AAD5HKYgShmRxMScX9d/Da0+iIKIbBuHtPtD7UOXHQO7BFKUZLeA0k21qw0A4LRzmIIoVUQXTjAY6Re3L4hgSEa21QQdcwH2i0Ef//7jnk6gYIiRHcWvxReA2xcEAOQzsCNKGdEeOwt77PojunCC84f7rS9xMQM7oiQ53hjurTMbdMg0c34dUapweQKwmgwwGVj+qj+ipRI5v25QMbBLIGMfukqJjjW4AQCFWVYITExMlBICkgxvUEK2lcOw/dXYvuI/z8bArr/6MtWLkUgCcQoBxavZ448O9+RncRiWKFU0ceFEQiiKApcnAJNBh8wMJibuL6kPU70YihAlwZG6luj/ix22JLaEiE7UzIoTCeHyBqCoCnLZW5cQfRnVYWBHNMgkWcaR2nBgl2Uxwcr5dUQpoyPVCYdi+6OpPX9dLmvtJoRBz8COKGUdrHZBkmUAwLBs9tYRpRKXJwCDTgcb65r2SyQxMUslJkZfpmEzsCMaRJ6AhD3HG6PXCx3WJLaGiE4kKwrcvgB76xKgo8eOgd1gY2BHNEj8Uggf7jsOSQ5PgjUb9CjgwgmilOH2BqGoKgO7fgrJClq8AWSajUwZkwT6ZDdAS9r8IXxyuBoZ/JtAJ1FVFY2tfgTbh2ABoCQnEyLTnBClDBcXTiREsycARVWZvy5JGNglkBSSUdcShMHAChTUu7GFWcluAhGdwOVlqpNEiFScyOHCiaTgUCxREmRbzZx7QpRiXJ4AREFAloULJ/ojsnAilwFyUjCwI0qCsQWOZDeBiE7S7PXDnsGC9f3V1OaHAIE9dknCs5dokJkNeowu4DAsUSrxBiUEJJkLJ/pJkmW4fUHYLUbodQwxkoF7nWiQzRpVAD17BIhSiqstsnCCgV1/NLX5oUJlYuIk4rcL0SAanmfHSKc92c0gopM0t1eccFgYkPRHU/vK4hzOr0saropNIINeB6fdxHQn1IWiqihyWDCpOCfZTSGiGFxe9tglAhMTJ59mArv3338fixYtinnf9u3bccYZZ8S8b+HChfjggw863fbTn/4UTz/9dJ/bYDPrMW9cEXIyNbNbiYiGBJfHjwyDHmYj/373h6vND1EQ4GCAnDSaOYPnz5+P6urqTrfdeeed2LhxI2bPnt3jY1esWIE1a9ZEr1ssrAZARDRUhGQFrT6JJf76KSQrcPuCcFhNXDiRRJoJ7IxGIwoLC6PXJUnC66+/jptvvhlCL9n9LRZLp8cSEdHQ0ewNQAVLifWXyxPej0xzklyaDanfeOMNNDY24pprrul12+effx55eXmYOnUqVq9eDa/XOwgtJCKiVODyRCpOMLDrj8h+5IrY5NJMj93Jnn32WSxbtgwlJSU9bnfppZdixIgRKC4uxldffYVf//rXOHDgAP7+9793+5hAIIBAIBC97na7E9ZuIiIaXM3tKzkdFgZ2/dHUHtixxy65Uj6wu/322/HQQw/1uM2+ffswceLE6PXjx4/jnXfewcsvv9zr869cuTL6/2nTpqGoqAhLlizBkSNHMGbMmJiPWbt2Le6999443wEREaUylzcAnSDCzpQG/dIUWTjBADmpUj6wu+2223D11Vf3uM3o0aM7XV+3bh1yc3NxwQUX9Pn15s6dCwA4fPhwt4Hd6tWrsWrVquh1t9uN0tLSPr8WEREll6qqaPb4kWU1QhR7no9N3ZMVBS3eALIsLMmWbCkf2DmdTjidzri3V1UV69atw5VXXgmDwdDn19u5cycAoKioqNttTCYTTCb+IiEiSndtAQmSrCCbCXX7pdkbgKJy4UQq0FxYvWnTJhw9ehTXXXddl/sqKysxceJEbN++HQBw5MgR3HfffdixYwfKysrwxhtv4Morr8Q555yD6dOnD3bTiYhokHF+XWJEEhOz4kTypXyPXV89++yzmD9/fqc5dxGSJOHAgQPRVa9GoxHvvfceHnvsMXg8HpSWluKiiy7CHXfcMdjNJiKiJOCK2MSIlBJjz2fyaS6we+GFF7q9b+TIkVBVNXq9tLS0S9UJIiIaOlwMSBLC1eaHAIEBcgrQ3FAsERFRvFweP6wmA4x6XbKbkrYURUWzJwB7hpEVJ1IAjwAREQ1JwZAMT0BiL1M/uX0ByKrChRMpgoEdERENSZH5dQ4Ow/aLyxsezmZgN3BCstr7Ru0Y2BER0ZAUnV/HFbH94mrjApSBxsAuSdT49zsRESVZc3RFLHua+iOyIpY9dgNHr4s/eTYDuwQKSEqym0BERHFq8gRg0ImwmfuezJ46uDx+ZJqNMOi4AGWgMLAjIiLqgaIoaPEG4bCaIAgsJXaqPH4JwZDM3roUwsAugUT+cSAiSgstviAUVUG2hQFJfzR5Ob9uMPRlqhcDuwQyGhjYERGlA1dbeykxBiT90rFwggHyQJJCXDxBRETULVd7TxOHEPuHlTsGh9qHLjsGdkRENORESmBlZbDHrj9cHj8yjAZkGDVXoTSlGPTxh2sM7IiIaMhpYgmsfgtIrNwxWMQ+nKY8o4mIaEhp8wchyTIDkn5qYh7AlMTAjoiIhpTIhH8H59f1S0eCZwbIqYSBHRERDSlNkdqmTHXSL5GFEznssUspDOyIiGhIiaboYI9dv7hYuSMlMbAjIqIhpckTgMVogNnAElinSlYUuH0BOKxmVu5IMQzsiIhoyPAFJfiCXMnZXy3eIBRVRQ73Y8phYEdERENGU3vFCQ7D9o+LK2JTFgM7IiIaMiIBSY6FPU39wYoTqYuBHRERDRlNXDiREC6PH6IgIMtiTHZT6CQM7IiIaMho8vhh1OlgMzMg6Q+XJwB7hgm6vpREoEHBI0JERENCtAQWe+v6hZU7UhsDOyIiGhIiJbC4krN/OL8utTGwIyKiIaGpzQcAyGGPXb9EFqA4GCCnJAZ2REQ0JERSneTYMpLckvTWzFJiKY2BHRERDQmNbT4YdCIyWQKrX5o8fliMBphYuSMlMbAjIiLN80sheAISsiwmlsDqh2CofQEKh2FTFgM7IiLSvEj+Og4f9k8zF06kPAZ2RESkeY2RwI7z6/qFCydSHwM7IiLSvMboilgGJP3R7GWPXapjYEdERJrX1BaAThSRlcHArj9cngAXoKQ4BnZERKRp3oAEX1BCjs0EUeTCiVOlqCqavQE4uAAlpTGwIyIiTWtoDQ/D5nJ+Xb+0+oOQFQUODsOmNAZ2RESkaR0LJxiQ9EdzW2R+HYezUxkDOyIi0jT22CUGa8Qmj6LEv23aBHb3338/5s+fD4vFAofDEXOb8vJyLF++HBaLBfn5+fjlL3+JUCjU4/M2NTXhsssug91uh8PhwLXXXou2trYBeAdERDTYFFVFU5sfBp2OE/77yeVtT3ViYY/dYJNC8Ud2aRPYBYNBXHzxxbj++utj3i/LMpYvX45gMIgtW7bgL3/5C9avX4+77rqrx+e97LLLsGfPHmzYsAFvvvkmPvzwQ6xcuXIg3gIREQ2yFm8AIUVBjs3MCf/91OwJwJ5hhF6XNqGDZvTl3E2bo3Pvvffi1ltvxbRp02Le/+6772Lv3r147rnnMGPGDHzzm9/EfffdhyeeeALBYDDmY/bt24e3334bzzzzDObOnYuzzjoLjz/+OF588UVUVVX1uY1BSe3zY4iIaOB0DMNy+LA/ApIMb1DiwokkMeg1GNj1ZuvWrZg2bRoKCgqity1btgxutxt79uzp9jEOhwOzZ8+O3rZ06VKIooht27Z1+1qBQABut7vTBQh3+RMRUeqILJzIy+T8uv5oaq84kc1h2KToS2ezZgK7mpqaTkEdgOj1mpqabh+Tn5/f6Ta9Xo+cnJxuHwMAa9euRVZWVvRSWlraz9YTEdFAaHC399hlsqepPyI1Ytljl/qSGtjdfvvtEAShx8v+/fuT2cSYVq9ejZaWluiloqICAGAyaCZOJiJKewFJRosvAIvRAIuRCyf6I1IjlqlOkiMkxz8iqB/AdvTqtttuw9VXX93jNqNHj47ruQoLC7F9+/ZOt9XW1kbv6+4xdXV1nW4LhUJoamrq9jEAYDKZYDJ1Pbk5L5eIKHXUt8+v4zBs/zV7AzDqdbCaGCAnQ9oEdk6nE06nMyHPNW/ePNx///2oq6uLDq9u2LABdrsdkydP7vYxzc3N2LFjB2bNmgUA2LRpExRFwdy5cxPSLiIiSo56txcAExP3l6IoaPEG4LRbkt2UIUuv0+DiifLycuzcuRPl5eWQZRk7d+7Ezp07oznnzjvvPEyePBlXXHEFvvzyS7zzzju44447cOONN0Z717Zv346JEyeisrISADBp0iScf/75WLFiBbZv346PP/4YN910E3784x+juLg4ae+ViIj6L7IiloFd/7T4glBUlcOwSdSXwC6pPXZ9cdddd+Evf/lL9PrMmTMBAJs3b8bChQuh0+nw5ptv4vrrr8e8efNgtVpx1VVXYc2aNdHHeL1eHDhwAJIkRW97/vnncdNNN2HJkiUQRREXXXQR/vu//3vw3hgRESWcoihobPVDgMCh2H6KVJxgYuL0kDaB3fr167F+/foetxkxYgT+9a9/dXv/woULoZ6UkiQnJwcvvPBCIppIREQposkTgKwqyLaaYWBC3X5pji6cYM9nOuDZTkREmlPXPr+O9WH7z+UJQIAAu8WY7KZQHBjYERGR5tS2hAO7giwGdv3l8vphtxihFxkypAMeJSIi0hRFVVHfnpjYmcmVnP3hDUoISDKHYdMIAzsiItIUl8cPSZZhMRpgNTPvWn+42sILJ7giNn0wsCMiIk2pa2lPTGznMGx/NbNGbNphYEdERJpS2+IBADiZ5qTfmryRHjsOxaYLBnZERKQZiqKirn1+XT4rJfRbs8ePDIMeZmPaZEcb8hjYERGRZjS2hefXGXU6ODgvrF9CsoJWnwQHe+vSCgM7IiLSjOrmcJlJZ1YGRCH+MkzUVbM3ABUsJZZuGNgREZFm1DSH59cV2K1Jbkn6c0UrTjCwSycM7IiISBOCIRkNreFgJJ+JifstWiOWQ7FphYEdERFpQm2LFypU6ESR6TkSoNnjh04QYTezlFg6YWBHRESaUB0Zhs2yQGT5q35RVRXN3gCyrEaIIucqphOe+UREpAmVTeGFE4VZTHPSX61+CZKsMH9dGmJgR0REaa+xzQdvUAIAFGRx4UR/uVhxIm0xsCMiorR3vDHcW2cxGpBjYy9TfzVHF04wsEs3DOyIiCjtHY8Mwzo4DJsIHalOGCSnG9YIISKiPvPJPuzz7et026SMScjQDX6akVZ/EM3ecCBS5OAwbCK4PAFYTQYY9bpkN4X6iD12RESU1srr3dH/FzpsSWyJNgQkGd6ghBz21qUlBnZERJTWjrYHdrm2DJgN7GHqL1d77yfn16UnBnZERJS2mtr8aPGFJ/qX5LC3LhFcbeH9yfl16YmBHRERpa2y+pbo/xnYJQZrxKYeVY1/WwZ2RESUlhRFQVlDKwDAZjaypmmCuDwBGHQ62FhKLGVIofgjOwZ2RESUlsob2+BrT0pcyNWwCRFSFLh9AfbWpRi1D112DOwSSFGS3QIioqHjQHVT9P8j8zKT2BLtaPEGoKgqA7sUY9DHH64xsEugYIiRHRHRYGhs86Gh1QcAMBl0cNqZmDgRXB4unEhFYh+iNQZ2RESUdvZXdvTWjXZmQRSEJLZGO1xtrDiR7hjYJZCxD12lRER0apq9AZQ1dCQlHpWflcTWaIvL44coCMiycOFEKunLVC9GIgnUl65SIiI6NV+U1UX/77CY2buUIKqqwuUJwJ5hgo5faClF6sNULx45IiJKG+UNblS52qLXR7O3LmFa/RJCioIcGxdOpBqhD1MNGNgREVFa8AQkbP+6JnpdL4oM7BKI8+tSl0HPwI6IiDTEL8n4YN9xBCQ5etvI/CyYWBs2YZpYcSJl9WVtkH7gmkFERBSmqAqaAl7kmfte9qu2xYNth2vQ6g92un1sAXvrEompTrSBgV0CtfokfLjvOMz8sUNEGhcSAnAZGjvdViWVQ6/G/gO413scj1X+C8NNeTjLPgGzMkcjU5fR6+v4gyF42qtLnKggy4pcW++Pp/i5PH7YzEYY9ewFTWcM7BIoJCto9kowSExUTETaJgtBeC2dAy7V64dOjf33r87XBnfIh91SBXZ7KmCtMWG6ZSRmWcZgvKkYOqFvM4OmleaectupK29Qgl8KodTOCh7pLm3m2N1///2YP38+LBYLHA5Hl/u//PJLXHLJJSgtLUVGRgYmTZqEP/zhD70+78iRIyEIQqfLgw8+OADvgIiIHDorHKIFkipja9sBPFX/Nv5vzSv4V8sOVEuuuJ5jeJ4dBVmsDZtITW3hYdgcDsOmvbTpsQsGg7j44osxb948PPvss13u37FjB/Lz8/Hcc8+htLQUW7ZswcqVK6HT6XDTTTf1+Nxr1qzBihUrotczM/mLhYioL2RVwStNn8CnhGLe3yb7ov8XBRE2XTiAkNQQGkOteKtlBza0fomRxnycYRmL0zJGwqrrGmToRRGnj8gfmDcxhLnaF044GNilvbQJ7O69914AwPr162Pe/5Of/KTT9dGjR2Pr1q34+9//3mtgl5mZicLCwoS0k4hoKGoLBbHNcwg+RYKum8EgnSDi5MV9BkGPLJ0eqqoioEo45K/CwUAVXmveFnOo9vRR+bCaDQP8boaeprZw4M0cdukvbYZiT0VLSwtycnJ63e7BBx9Ebm4uZs6ciYcffhihUOxfnERE1DO7mIEcvS3mJUtn6TbRqiAIMItGZOttyOpmqFaXGcK4wuxBfkdDQ1NbAGaDDhYjg+Z0lzY9dn21ZcsWvPTSS3jrrbd63O6WW27B6aefjpycHGzZsgWrV69GdXU1HnnkkW4fEwgEEAgEotfdbne32xIRUd/oThqqrZda8Kb7U2w/uh91xnrcMnFxkluoLX4pBG9QQqGD8xa1IKmB3e23346HHnqox2327duHiRMn9ul5d+/eje9+97u4++67cd555/W47apVq6L/nz59OoxGI376059i7dq1MJlid0mvXbs2OjR8IpNeh2HZGbBwigIRaZyEIOp1HelOxKAKvShCL4gw6vqfLkNVVfgUCT41CKNBhxyTHcuKJmNpUd++D6h3Te0VJ7hwQhuSGtjddtttuPrqq3vcZvTo0X16zr1792LJkiVYuXIl7rjjjj63ae7cuQiFQigrK8OECRNibrN69epOAaHb7UZpaSksZj1mjS5ATqZmO0KJiAAAPtmHfb6OVaz1fgNMB/XQCQIMutjDrTpBgF7sOegLyBKaJR8kVYZFb8TCnHG4aPjpOL9oCrJN7FEaCC4GdpqS1AjE6XTC6XQm7Pn27NmDxYsX46qrrsL9999/Ss+xc+dOiKKI/PzuV12ZTKZue/OIiIYio6iDWaeHJxREUPHF3MYTCmKENQfiSfPsZEVBi+SDV5agF0SUWnPwg9LT8Z2S6RhvLxiM5g9pTZGKEzYGdlqQNl1L5eXlaGpqQnl5OWRZxs6dOwEAY8eOhc1mw+7du7F48WIsW7YMq1atQk1NuFC0TqeLBo/bt2/HlVdeiY0bN2LYsGHYunUrtm3bhkWLFiEzMxNbt27FrbfeissvvxzZ2ZygS0QUryyjGf84ZyWC3eRn39Z4FHd9+QYAFYAAVVXRFgrALbWn2TBa8N2SGbiwdAbmO8fA0EvPHiVOk8cPg06HTK421oS0Cezuuusu/OUvf4lenzlzJgBg8+bNWLhwIV599VXU19fjueeew3PPPRfdbsSIESgrKwMAeL1eHDhwAJIUzpZuMpnw4osv4p577kEgEMCoUaNw6623dhpmJSKi+Iyw5SKjmzJhNf7wIrOAHII75IekyLDojPiGcwyHWpMoGJLR5g8i3979imVKL2kT2K1fv77bHHYAcM899+Cee+7p8TkWLlwIVVWj108//XR88sknCWohERH1RCeIaJH8HGpNIZHExDkchtWMtAnsiIgofZ3mKMHPxp2Ds/PHcag1hURKiWVz4YRmMLAjIqIBV5Bhxx3Tlie7GXSSxkjFCSsXBGqFpitPEBERUfea2vzQiSLsFgZ2WsHAjoiIaAgKhmS0+oPItpq6pKCh9MXAjoiIaAhqZGJiTWJgR0RENAQ1tc+vc3B+naYwsCMiIhqCIitic22xcw9SemJgR0RENAQ1tvkgCiIcFmOym0IJxMCOiIhoiPFLMjwBCQ6LEaLIUEBLeDSJiIiGmMj8utxMDsOmg5Cs9r5ROwZ2REREQ0xT+4rYXJYSSwsM7JJEjX+/ExERJU204gQDu7Sg18WfZ5CBXQIFJCXZTSAiIupVY1sAelFEVgZTnaQDBnZEREQUkzcowReUwhUnRFac0BoGdgnEkixERJTqGlvbK04wf13a6MtULwZ2CWQ0MLAjIqLU1tDK+XXpRgpx8QQRERHF0MgVsWlH7UOXnX4A20FERBqVocvA6bbTk90M6iNFVdHU5oNBJ8KewYoT6cKgj78fjj12REREQ4TbG4AkK8ixmiFwXnja6EtxEAZ2REREQ0RkGJbz67SLgR0REdEQ0dC+IpalxLSLgR0REdEQEak4kcdUJ5rFwI6IiGgICMkKmj0BZBj0sJoNyW4ODRAGdkRERENAU5sfKlQOw2ocAzsiIqIhoGMYlgsntIyBHRER0RBQ315xItfOHjstY2BHREQ0BNS72wM79thpGgM7IiIijWv1BeGXQsiymGDQ6ZLdHBpADOyIiIg0LjIMy/l12sfAjoiISOMigV22lYGd1jGwIyIi0riG9vl1TrslyS2hgcbAjoiISMOCIRnNXj/0ogiHxZTs5tAAY2BHRESkYQ3tw7A5NjNEUUhya2igMbAjIiLSsMj8uvwsDsMOBQzsiIiINCySv87JUmJDAgM7IiIijVIUFY2RVCcM7IaEtAns7r//fsyfPx8WiwUOhyPmNoIgdLm8+OKLPT5vU1MTLrvsMtjtdjgcDlx77bVoa2sbgHdAREQ0uJo8foQUBdlWM4x6JiYeCtImsAsGg7j44otx/fXX97jdunXrUF1dHb1ceOGFPW5/2WWXYc+ePdiwYQPefPNNfPjhh1i5cmUCW05ERJQctW4vAPbWDSX6ZDcgXvfeey8AYP369T1u53A4UFhYGNdz7tu3D2+//TY+/fRTzJ49GwDw+OOP41vf+hZ+97vfobi4uF9tJiIiSqa6lnBg57QzsBsq0iawi9eNN96I6667DqNHj8bPfvYzXHPNNRCE2Mu7t27dCofDEQ3qAGDp0qUQRRHbtm3D9773vZiPCwQCCAQC0etutxsAEJJVtHjkBL4bIiKiU6MoKiob/QjJIgyCEU2toWQ3iU5Bi0dGSFbj3l5Tgd2aNWuwePFiWCwWvPvuu7jhhhvQ1taGW265Jeb2NTU1yM/P73SbXq9HTk4Oampqun2dtWvXRnsQT9TikfGvT1ug13UEkiFZhSSrMOiETrf3R1+fU1GAYEiBIAgw6gV0E+f2SV+fU1WBYEiFqqow6kWICZgEcCrPyeMRxuPRgcejA49HmFaOR0hR4PaGc9e9tb3tlJ6Tx6NDsj4ffe00Smpgd/vtt+Ohhx7qcZt9+/Zh4sSJcT3fnXfeGf3/zJkz4fF48PDDD3cb2J2q1atXY9WqVdHrbrcbpaWlEACYDCIM+vDB8fhkePwKbGYR1ozETlr1+GS0xfHckqTA7Zeh1wnItord9l6eCoMEuDwyZEVAtk3X7XOrqgpXW/gXR7ZVB4MhcVM7zcbwc7f55V6fm8cjjMejA49HBx6PMC0dD08gBFFUYTboYDZ2vBaPR1i6fD6kkIq+7PmkBna33XYbrr766h63GT169Ck//9y5c3HfffchEAjAZOpaRqWwsBB1dXWdbguFQmhqaupxnp7JZIr5fIIAGPThXyCtXhneoAqHVYdMS+JXIhkz9dDrZLh9CvQ6JeZrBCUFLT4FJoOIXLsOYgI/lABg1Otg0AtoaJXh9ioxX0NRVTS6FSgqkJ+lhzGBH8owAfkOAY1uGS0+BXl6IeZr8HiE8Xh04PHowOMRprXj4fYpEEXAYtLBqO94rzweEenz+VDjH4lNbmDndDrhdDoH7Pl37tyJ7OzsmEEYAMybNw/Nzc3YsWMHZs2aBQDYtGkTFEXB3LlzT/l1W73hA2TPEAfkJIiIPLfbp3S6DoQ/lA2tMgw6YUA+lBFGg4i8TKChVUajW+70WuEPpQxJVpGXqRuAD2WYKITfY6NbRkOrjLxMdHotHg8ejxOvAzwePB7aPx7hocbwvo6V5oTHIywdPh9SSEX7oYxL2qQ7KS8vx86dO1FeXg5ZlrFz507s3LkzmnPun//8J5555hns3r0bhw8fxlNPPYUHHngAN998c/Q5tm/fjokTJ6KyshIAMGnSJJx//vlYsWIFtm/fjo8//hg33XQTfvzjH5/yiliPf3BOgohMiw72DBFun4JWb3gMfrA+lBHhD6cOkhz+ICqqOmgfyojIh9OgC/8CDErhT8FgfSgjeDzCeDw68Hh04PEIG4zjIckKFFWFKAgw6GK/Hx6PsFT/fLja5PQZiu2Lu+66C3/5y1+i12fOnAkA2Lx5MxYuXAiDwYAnnngCt956K1RVxdixY/HII49gxYoV0cd4vV4cOHAAkiRFb3v++edx0003YcmSJRBFERdddBH++7//+5TaKIWANp8yYN213Tkx0g+GVARC6qB9KCNO/OXV0BJeeRVSMCgfyoiTf3mZ9Ar8kjpoH8oIHo8wHo8OPB4deDzCBvp4BELhwMCk1/W4OIHHIyyVPx96HdBNbB6ToKp9GbmlWFpaWuBwOHDrrbciz5GBnMzkxMstnhACUvhwOrP0CZ3oGq+gpKC5ffWOwzp4H8oTqaqK+vY/DiaDgCwrjwfA48HjEcbj0UHLx6PZG0BAkmHLMMBqNPS6PY9HWCp+PrKsOlTVe/Db3z2K5uZmZGVl9fhYBnYJcPz4cZSWlia7GURERKRhFRUVKCkp6XEbBnYJoCgKqqqqkJmZmZRfOYkWSd9SUVEBu92e7OYkFfdFB+6LDtwXHbgvOnBfdOC+6JCIfaGqKlpbW1FcXAyxl6R7aTPHLpWJothrBJ2O7Hb7kP9ARnBfdOC+6MB90YH7ogP3RQfuiw793Re9DcFGpM2qWCIiIiLqGQM7IiIiIo1gYEddmEwm3H333d0mdh5KuC86cF904L7owH3RgfuiA/dFh8HeF1w8QURERKQR7LEjIiIi0ggGdkREREQawcCOiIiISCMY2A1h999/P+bPnw+LxQKHw9Hl/vXr10MQhJiXuro6AMD7778f8/6amppBfjf909u+ABDzfb744oudtnn//fdx+umnw2QyYezYsVi/fv3ANz7BetsXX375JS655BKUlpYiIyMDkyZNwh/+8IdO2wyl86K8vBzLly+HxWJBfn4+fvnLXyIUCnXaRgvnxcm6O8aCIODTTz8FAJSVlcW8/5NPPkly6xNv5MiRXd7ngw8+2Gmbr776CmeffTbMZjNKS0vx29/+NkmtHThlZWW49tprMWrUKGRkZGDMmDG4++67EQwGO20zVM6LJ554AiNHjoTZbMbcuXOxffv2AX9NJigewoLBIC6++GLMmzcPzz77bJf7f/SjH+H888/vdNvVV18Nv9+P/Pz8TrcfOHCgU+LFk+9Pdb3ti4h169Z12icnftkfPXoUy5cvx89+9jM8//zz2LhxI6677joUFRVh2bJlA9n8hOptX+zYsQP5+fl47rnnUFpaii1btmDlypXQ6XS46aabOm2r9fNClmUsX74chYWF2LJlC6qrq3HllVfCYDDggQceAKCd8+Jk8+fPR3V1dafb7rzzTmzcuBGzZ8/udPt7772HKVOmRK/n5uYOShsH25o1a7BixYro9czMzOj/3W43zjvvPCxduhRPP/00du3ahZ/85CdwOBxYuXJlMpo7IPbv3w9FUfA///M/GDt2LHbv3o0VK1bA4/Hgd7/7XadttX5evPTSS1i1ahWefvppzJ07F4899hiWLVuGAwcODOzfQpWGvHXr1qlZWVm9bldXV6caDAb1f//3f6O3bd68WQWgulyugWvgIOppXwBQ//GPf3T72F/96lfqlClTOt32ox/9SF22bFkCWzh44j0vVFVVb7jhBnXRokXR60PlvPjXv/6liqKo1tTURG976qmnVLvdrgYCAVVVtXdedCcYDKpOp1Nds2ZN9LajR4+qANQvvvgieQ0bJCNGjFAfffTRbu9/8skn1ezs7Oh5oaqq+utf/1qdMGHCILQuuX7729+qo0aNil4fKufFnDlz1BtvvDF6XZZltbi4WF27du2Avi6HYilu//u//wuLxYIf/OAHXe6bMWMGioqKcO655+Ljjz9OQusGx4033oi8vDzMmTMHf/7zn6GekC1o69atWLp0aaftly1bhq1btw52MwddS0sLcnJyutyu9fNi69atmDZtGgoKCqK3LVu2DG63G3v27IluMxTOizfeeAONjY245pprutx3wQUXID8/H2eddRbeeOONJLRucDz44IPIzc3FzJkz8fDDD3cakt+6dSvOOeccGI3G6G2R3huXy5WM5g6a7v4+aPm8CAaD2LFjR6fPviiKWLp06YB/9jkUS3F79tlncemllyIjIyN6W1FREZ5++mnMnj0bgUAAzzzzDBYuXIht27bh9NNPT2JrE2/NmjVYvHgxLBYL3n33Xdxwww1oa2vDLbfcAgCoqanp9AUPAAUFBXC73fD5fJ32m5Zs2bIFL730Et56663obUPlvOjumEfu62kbrZ0Xzz77LJYtW9apbrbNZsPvf/97fOMb34Aoivh//+//4cILL8Rrr72GCy64IImtTbxbbrkFp59+OnJycrBlyxasXr0a1dXVeOSRRwCEz4NRo0Z1esyJ50p2dvagt3kwHD58GI8//ninYdihcF40NDRAluWYn/39+/cP7IsPaH8gDbpf//rXKoAeL/v27ev0mHiG3LZs2aICUD/77LNe23DOOeeol19+eX/eRkIM1L6IuPPOO9WSkpLo9XHjxqkPPPBAp23eeustFYDq9Xr7/X76Y6D2xa5du9S8vDz1vvvu67UNWjwvVqxYoZ533nmdbvN4PCoA9V//+peqqql9XsRyKvunoqJCFUVRffXVV3t9/iuuuEI966yzBqr5CXUq+yLi2WefVfV6ver3+1VVVdVzzz1XXblyZadt9uzZowJQ9+7dO+Dvpb9OZV8cP35cHTNmjHrttdf2+vzpdF7Eo7KyUgWgbtmypdPtv/zlL9U5c+YM6Guzx05jbrvtNlx99dU9bjN69Og+P+8zzzyDGTNmYNasWb1uO2fOHPznP//p82sk2kDti4i5c+fivvvuQyAQgMlkQmFhIWprazttU1tbC7vdnvRemYHYF3v37sWSJUuwcuVK3HHHHb1ur8XzorCwsMsqt8g5UFhYGP03Vc+LWE5l/6xbtw65ublx9bbMnTsXGzZs6E8TB01/zpW5c+ciFAqhrKwMEyZM6PY8ADrOlVTW131RVVWFRYsWYf78+fjTn/7U6/On03kRj7y8POh0upjHfKCPNwM7jXE6nXA6nQl9zra2Nrz88stYu3ZtXNvv3LkTRUVFCW3DqRiIfXGinTt3Ijs7O1r/b968efjXv/7VaZsNGzZg3rx5A9aGeCV6X+zZsweLFy/GVVddhfvvvz+ux2jxvJg3bx7uv/9+1NXVRVe5bdiwAXa7HZMnT45uk6rnRSx93T+qqmLdunXR1cC9SZXzIB79OVd27twJURSj58W8efPwm9/8BpIkRffThg0bMGHChLQYhu3LvqisrMSiRYswa9YsrFu3DqLY+3T+dDov4mE0GjFr1ixs3LgRF154IQBAURRs3LixS/aARGNgN4SVl5ejqakJ5eXlkGUZO3fuBACMHTsWNpstut1LL72EUCiEyy+/vMtzPPbYYxg1ahSmTJkCv9+PZ555Bps2bcK77747WG8jIXrbF//85z9RW1uLM888E2azGRs2bMADDzyAX/ziF9Hn+NnPfoY//vGP+NWvfoWf/OQn2LRpE15++eVOc8/SQW/7Yvfu3Vi8eDGWLVuGVatWReeS6XS66B/+oXJenHfeeZg8eTKuuOIK/Pa3v0VNTQ3uuOMO3HjjjdGAXyvnRXc2bdqEo0eP4rrrruty31/+8hcYjUbMnDkTAPD3v/8df/7zn/HMM88MdjMH1NatW7Ft2zYsWrQImZmZ2Lp1K2699VZcfvnl0aDt0ksvxb333otrr70Wv/71r7F792784Q9/wKOPPprk1idWZWUlFi5ciBEjRuB3v/sd6uvro/dFeqqGynmxatUqXHXVVZg9ezbmzJmDxx57DB6PJ+YCo4Qa0IFeSmlXXXVVzHkSmzdv7rTdvHnz1EsvvTTmczz00EPqmDFjVLPZrObk5KgLFy5UN23aNAitT6ze9sW///1vdcaMGarNZlOtVqt62mmnqU8//bQqy3Kn59m8ebM6Y8YM1Wg0qqNHj1bXrVs3+G+mn3rbF3fffXfM+0eMGBF9jqFyXqiqqpaVlanf/OY31YyMDDUvL0+97bbbVEmSOj2PFs6L7lxyySXq/PnzY963fv16ddKkSarFYlHtdrs6Z84c9ZVXXhnkFg68HTt2qHPnzlWzsrJUs9msTpo0SX3ggQei8+sivvzyS/Wss85STSaTOmzYMPXBBx9MUosHzrp167qdgxcxVM4LVVXVxx9/XB0+fLhqNBrVOXPmqJ988smAv6agqifkayAiIiKitMU8dkREREQawcCOiIiISCMY2BERERFpBAM7IiIiIo1gYEdERESkEQzsiIiIiDSCgR0RERGRRjCwIyIiItIIBnZEREREGsHAjoiIiEgjGNgRERERaQQDOyKiQVBfX4/CwkI88MAD0du2bNkCo9GIjRs3JrFlRKQlgqqqarIbQUQ0FPzrX//ChRdeiC1btmDChAmYMWMGvvvd7+KRRx5JdtOISCMY2BERDaIbb7wR7733HmbPno1du3bh008/hclkSnaziEgjGNgREQ0in8+HqVOnoqKiAjt27MC0adOS3SQi0hDOsSMiGkRHjhxBVVUVFEVBWVlZsptDRBrDHjsiokESDAYxZ84czJgxAxMmTMBjjz2GXbt2IT8/P9lNIyKNYGBHRDRIfvnLX+LVV1/Fl19+CZvNhgULFiArKwtvvvlmsptGRBrBoVgiokHw/vvv47HHHsNf//pX2O12iKKIv/71r/joo4/w1FNPJbt5RKQR7LEjIiIi0gj22BERERFpBAM7IiIiIo1gYEdERESkEQzsiIiIiDSCgR0RERGRRjCwIyIiItIIBnZEREREGsHAjoiIiEgjGNgRERERaQQDOyIiIiKNYGBHREREpBEM7IiIiIg04v8HNWblR6WDQ4gAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ax = sim.plot(z=0)\n", "ax.set_aspect(\"auto\")\n" ] }, { "cell_type": "markdown", "id": "b70a3ae9", "metadata": {}, "source": [ "Submit the simulation job to the server." ] }, { "cell_type": "code", "execution_count": 37, "id": "97aaf4aa", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:09:49.397527Z", "iopub.status.busy": "2023-03-28T00:09:49.397329Z", "iopub.status.idle": "2023-03-28T00:13:45.442801Z", "shell.execute_reply": "2023-03-28T00:13:45.440988Z" } }, "outputs": [ { "data": { "text/html": [ "
[09:36:40] Created task '8_channel_demultiplexer_I7' with task_id                                     webapi.py:139\n",
       "           'fdve-34cf17f3-8d45-4f33-a24f-936f85d7072bv1'.                                                          \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:36:40]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'8_channel_demultiplexer_I7'\u001b[0m with task_id \u001b]8;id=162087;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=863683;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-34cf17f3-8d45-4f33-a24f-936f85d7072bv1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "499a1ee831984f0cb7271f9cc9ee2d22", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:36:43] status = queued                                                                            webapi.py:269\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:36:43]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=453112;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=229212;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:36:49] status = preprocess                                                                        webapi.py:263\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:36:49]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=631376;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=694367;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
[09:36:56] Maximum FlexCredit cost: 4.289. Use 'web.real_cost(task_id)' to get the billed FlexCredit  webapi.py:286\n",
       "           cost after a simulation run.                                                                            \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:36:56]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m4.289\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit \u001b]8;id=219198;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=388121;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mcost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           starting up solver                                                                         webapi.py:290\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=469596;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=765304;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           running solver                                                                             webapi.py:300\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=530779;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=297823;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1661590cb4aa4f679c7feda1e6f6a69d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:40:19] early shutoff detected, exiting.                                                           webapi.py:314\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:40:19]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=193658;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=389255;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#314\u001b\\\u001b[2m314\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           status = postprocess                                                                       webapi.py:331\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=778005;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=782278;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#331\u001b\\\u001b[2m331\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:40:40] status = success                                                                           webapi.py:338\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:40:40]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=188149;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=55285;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#338\u001b\\\u001b[2m338\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "a37f7925573b452d81e9cee80244ab3e",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:40:46] loading SimulationData from data/simulation_data.hdf5                                      webapi.py:510\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:40:46]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/simulation_data.hdf5 \u001b]8;id=61417;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=856001;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#510\u001b\\\u001b[2m510\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "job = web.Job(simulation=sim, task_name=\"8_channel_demultiplexer_I7\", verbose=True)\n", "sim_data = job.run(path=\"data/simulation_data.hdf5\")\n" ] }, { "cell_type": "markdown", "id": "3c5cb75e", "metadata": {}, "source": [ "The visualization process is similar to what we did in the previous section. First, inspect the field intensity distribution. This shows that the TM0 mode is indeed converted to the TM2 mode in the bus waveguide.\n", "\n", "Noticeably, there appears to be some leakage at the waveguide bends. This leaves room for further optimization. It can be improved by using a smoother transition such as a [Euler bend](../notebooks/EulerWaveguideBend.html). " ] }, { "cell_type": "code", "execution_count": 38, "id": "11688bab", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:13:49.034860Z", "iopub.status.busy": "2023-03-28T00:13:49.034657Z", "iopub.status.idle": "2023-03-28T00:14:00.749465Z", "shell.execute_reply": "2023-03-28T00:14:00.748911Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACzmklEQVR4nOy9d5xcdfX//3zfe2fuzOxsTbZk0xsJVZQmKAKSr0FBRbGAKEUEpYiAjShSlSgoYKGIPwX9CKL4kCJ+PihSLRFpFlp6sskmm7bZPu3e+/79cWdmZ7K7yW4yu7M7c5553Eey977vnXNnJzOvOVVprTWCIAiCIAjChMYotgGCIAiCIAjCviOiThAEQRAEoQQQUScIgiAIglACiKgTBEEQBEEoAUTUCYIgCIIglAAi6gRBEARBEEoAEXWCIAiCIAglgIg6QRAEQRCEEkBEnSAIgiAIQgkgok4QhFHnmWeeQSnFM888U2xTBEEQShYRdYIgFIw77riDe++9t9hm7BX3338/t912W7HNAMDzPG666SZmz55NKBTikEMO4Ve/+tWwz+/o6OCCCy6gvr6eiooKTjjhBF5++eVB1z766KO87W1vIxQKMWPGDK655hocxynUrQiCMIYomf0qCEKhOOigg5g8efIAj5zneSSTSYLBIIYxPr9LnnLKKbz66qusW7eu2KawZMkSvv3tb3P++edzxBFH8Mgjj/CHP/yBX/3qV5x++um7PdfzPI499lj+/e9/8+Uvf5nJkydzxx13sGHDBl566SXmz5+fXft///d/nHzyyRx//PGcccYZ/Pe//+X222/nggsu4M477xzt2xQEocCIqBOEAtPb20tFRUWxzSgKQ4m6icB4EXWtra3Mnj2bCy64gB/96EcAaK057rjjWLt2LevWrcM0zSHP/81vfsPHP/5xHnzwQT7ykY8AsG3bNvbbbz/e+973cv/992fXHnjggQQCAV588UUsywLgqquu4sYbb+T1119n4cKFo3ingiAUmvH5lVkQxgmtra2cd955NDc3Y9s2s2fP5sILLySZTAJw7733opTi2Wef5aKLLqKhoYFp06Zlz7/jjjs48MADsW2b5uZmLr74Yjo6OvIeY+XKlZx22mk0NTURCoWYNm0ap59+Op2dndk1TzzxBO985zupqakhGo2yYMECvva1r+3R/uGcl0gkuOaaa5g3bx62bTN9+nS+8pWvkEgkBlzvl7/8JUceeSSRSITa2lre9a538ac//QmAWbNm8dprr/Hss8+ilEIpxfHHHw8MnVP34IMPcthhhxEOh5k8eTKf/OQnaW1tzVtzzjnnEI1GaW1t5dRTTyUajVJfX8+XvvQlXNfd43PwyCOPcPLJJ2d/h3PnzuWGG27IO/f444/nD3/4A+vXr8/aPmvWrCGvec4552TX7bpde+21e7RpT/amUikuuuii7D6lFBdeeCEbN25k2bJluz3/t7/9LY2NjXz4wx/O7quvr+djH/sYjzzySPb3+vrrr/P6669zwQUXZAUdwEUXXYTWmt/+9rf7dB+CIIw91p6XCEJ5smnTJo488shsftLChQtpbW3lt7/9LX19fQSDwezaiy66iPr6eq6++mp6e3sBuPbaa7nuuutYtGgRF154IcuXL+fOO+/khRde4G9/+xuBQIBkMsnixYtJJBJ8/vOfp6mpidbWVh577DE6Ojqorq7mtdde45RTTuGQQw7h+uuvx7ZtVq1axd/+9rfd2j+c8zzP4wMf+AB//etfueCCC9h///3573//y6233sqKFSt4+OGHs2uvu+46rr32Wo455hiuv/56gsEgzz//PE899RTvec97uO222/j85z9PNBrl61//OgCNjY1D2nfvvfdy7rnncsQRR7B06VK2bNnC97//ff72t7/xyiuvUFNTk13rui6LFy/mqKOO4rvf/S5//vOf+d73vsfcuXO58MILd/s83HvvvUSjUa644gqi0ShPPfUUV199NV1dXdx8880AfP3rX6ezs5ONGzdy6623AhCNRoe85mc/+1kWLVqUt+/xxx/nvvvuo6GhIbtv+/btu7UtQ2VlJbZtA/DKK69QUVHB/vvvn7fmyCOPzB5/5zvfOeS1XnnlFd72trcNCHMfeeSR3H333axYsYKDDz6YV155BYDDDz88b11zczPTpk3LHhcEYQKhBUEYlLPOOksbhqFfeOGFAcc8z9Naa33PPfdoQL/zne/UjuNkj2/dulUHg0H9nve8R7uum93/ox/9SAP6Zz/7mdZa61deeUUD+sEHHxzSjltvvVUDetu2bSOyfzjn/c///I82DEP/5S9/ydt/1113aUD/7W9/01prvXLlSm0Yhv7Qhz6Udz9a9z8XWmt94IEH6uOOO27A4zz99NMa0E8//bTWWutkMqkbGhr0QQcdpGOxWHbdY489pgF99dVXZ/edffbZGtDXX3993jXf+ta36sMOO2z3T4LWuq+vb8C+z372szoSieh4PJ7dd/LJJ+uZM2fu8XqDsXLlSl1dXa3/3//7f3mvA2BY2z333JNnx5w5cwY8Rm9vrwb0lVdeuVtbKioq9Kc//ekB+//whz9oQD/++ONaa61vvvlmDeiWlpYBa4844gj99re/fbi3LwjCOEHCr4IwCJ7n8fDDD/P+979/gCcD/HBYLueff35entOf//xnkskkl112WZ7H5Pzzz6eqqoo//OEPAFRXVwPwxz/+kb6+vkFtyXisHnnkETzPG/Y9DOe8Bx98kP3335+FCxeyffv27Pbud78bgKeffhqAhx9+GM/zuPrqqwd4gHZ9LobDiy++yNatW7nooosIhULZ/SeffDILFy7MPj+5fO5zn8v7+dhjj2XNmjV7fKxwOJz9d3d3N9u3b+fYY4+lr6+PN998c8S270pvby8f+tCHqK2t5Ve/+lXe6+CJJ54Y1rZ48eLsObFYLOu1yyXzPMVisd3aM9zzM38PtXZPjyMIwvhDwq+CMAjbtm2jq6uLgw46aFjrZ8+enffz+vXrAViwYEHe/mAwyJw5c7LHZ8+ezRVXXMEtt9zCfffdx7HHHssHPvABPvnJT2YF38c//nH+v//v/+Mzn/kMV155JSeeeCIf/vCH+chHPrLbStLhnLdy5UreeOMN6uvrB73G1q1bAVi9ejWGYXDAAQcM6/nYE0M9PwALFy7kr3/9a96+UCg0wMba2lp27ty5x8d67bXXuOqqq3jqqafo6urKO5abt7i3nH/++axevZq///3vTJo0Ke/YriHa4RAOhwfNZ4zH49njhTg/8/dQa/f0OIIgjD9E1AlCAdiXD8Dvfe97nHPOOTzyyCP86U9/4tJLL2Xp0qX84x//YNq0aYTDYZ577jmefvpp/vCHP/D444/z61//mne/+9386U9/GrIScjjneZ7HwQcfzC233DLoNaZPn77X91VIdlftuTs6Ojo47rjjqKqq4vrrr2fu3LmEQiFefvllvvrVr47I8zkY3//+9/nVr37FL3/5Sw499NABx9va2oZ1nerq6uxraMqUKTz99NNorfO8oJs3bwb8nLfdMWXKlOzaXHY9f8qUKdn9u/6eN2/enM3hEwRh4iDhV0EYhPr6eqqqqnj11Vf36vyZM2cCsHz58rz9yWSStWvXZo9nOPjgg7nqqqt47rnn+Mtf/kJrayt33XVX9rhhGJx44onccsstvP7663zrW9/iqaeeyoZHh2JP582dO5f29nZOPPFEFi1aNGDLeNLmzp2L53m8/vrru3284YZih3p+Mvt2fX72lmeeeYYdO3Zw77338oUvfIFTTjmFRYsWUVtbO2DtSMPIf/nLX/jSl77EZZddxplnnjnomilTpgxr+/Wvf50959BDD6Wvr4833ngj71rPP/989vjuOPTQQ3n55ZcHCNbnn3+eSCTCfvvtl3edF198MW/dpk2b2Lhx4x4fRxCE8YeIOkEYBMMwOPXUU/n9738/4EMP/L5hu2PRokUEg0F+8IMf5K396U9/SmdnJyeffDIAXV1dA7r3H3zwwRiGkQ2Ltbe3D7h+5gN3sNBZhuGc97GPfYzW1lZ+8pOfDFgbi8WylbynnnoqhmFw/fXXDxALufdXUVExoGXLYBx++OE0NDRw11135d3D//3f//HGG29kn599JePhy7UxmUxyxx13DFhbUVEx7HDs5s2b+djHPsY73/nObAXtYOxNTt0HP/hBAoFAno1aa+666y6mTp3KMccck2fHm2++SSqVyu77yEc+wpYtW/jd736X3bd9+3YefPBB3v/+92dz6A488EAWLlzI3Xffndfe5c4770Qple1xJwjCxEHCr4IwBDfeeCN/+tOfOO6447LtPjZv3syDDz7IX//617yWG7tSX1/PkiVLuO666zjppJP4wAc+wPLly7njjjs44ogj+OQnPwnAU089xSWXXMJHP/pR9ttvPxzH4X/+538wTZPTTjsNgOuvv57nnnuOk08+mZkzZ7J161buuOMOpk2bttvWFsM571Of+hS/+c1v+NznPsfTTz/NO97xDlzX5c033+Q3v/kNf/zjHzn88MOZN28eX//617nhhhs49thj+fCHP4xt27zwwgs0NzezdOlSAA477DDuvPNOvvnNbzJv3jwaGhqyRRe5BAIBvvOd73Duuedy3HHHccYZZ2RbmsyaNYvLL798b39teRxzzDHU1tZy9tlnc+mll6KU4n/+538GFeWHHXYYv/71r7niiis44ogjiEajvP/97x/0updeeinbtm3jK1/5Cg888EDesUMOOYRDDjkE2LucumnTpnHZZZdx8803k0qlOOKII3j44Yf5y1/+wn333ZcXil6yZAk///nPWbt2bbav3kc+8hHe/va3c+655/L6669nJ0q4rst1112X91g333wzH/jAB3jPe97D6aefzquvvsqPfvQjPvOZzwxoqSIIwgSgiJW3gjDuWb9+vT7rrLN0fX29tm1bz5kzR1988cU6kUhorftbmgzW9kRrv4XJwoULdSAQ0I2NjfrCCy/UO3fuzB5fs2aN/vSnP63nzp2rQ6GQrqur0yeccIL+85//nF3z5JNP6g9+8IO6ublZB4NB3dzcrM844wy9YsWK3do+3POSyaT+zne+ow888EBt27aura3Vhx12mL7uuut0Z2dn3tqf/exn+q1vfWt23XHHHaefeOKJ7PG2tjZ98skn68rKSg1k25vs2tIkw69//evs9erq6vSZZ56pN27cmLfm7LPP1hUVFQPu75prrtHDeQv729/+pt/+9rfrcDism5ub9Ve+8hX9xz/+cYA9PT09+hOf+ISuqanRwG7bmxx33HFDtie55ppr9mjTnnBdV99444165syZOhgM6gMPPFD/8pe/HLAu0+5l7dq1efvb29v1eeedpydNmqQjkYg+7rjjhnyNPvTQQ/rQQw/Vtm3radOm6auuukonk8l9vgdBEMYeGRMmCIIgCIJQAkhOnSAIgiAIQgkgok4QBEEQBKEEEFEnCIIgCIJQAoioEwRBEARBKAFE1AmCIAiCIJQAIuoEQRAEQRBKAGk+XAA8z2PTpk1UVlaOeNSQIAiCIIwFWmu6u7tpbm7GMMSnU4qIqCsAmzZtGjeDzwVBEARhd2zYsIFp06YV1YZUKsWRRx7AiYsO47s3P7DnE4RhIaKuAFRWVqb/ZQCl7ambO3cenueydu3aYptSdtTXNzBlyhT+859/F9uUksKyAhx44IG0tLSwc+fAebmCUDpowMv5zCoeP/vZErZu7eD2Hz3EpZ9vYcaMGcU2qSQoKf/rtddei1Iqb1u4cOFuz3nwwQdZuHAhoVCIgw8+mP/93/8d8eP2h1xVyW+pVIpwOFJ0O8pxSyaTWJaFbYeKbkspbY7jABCNRotui2yyjf5G0dOEYrEYN9zwc773vYv40IeO5dprP1dUe0qJkhJ1AAceeCCbN2/Obn/961+HXPv3v/+dM844g/POO49XXnmFU089lVNPPZVXX311DC2eWMTjcWzbLrYZZUk8HgcgFAoV2ZLSo6+vj3A4XGwzBKEsuP2OL1JfX8NpHzmOa649l/vv/zPLly8vtlklQcmJOsuyaGpqym6TJ08ecu33v/99TjrpJL785S+z//77c8MNN/C2t72NH/3oR2No8cQiFouhlBJhVwQSiQRaaxF1o0AsFhNRJwhjQFdXF99eeh83fPMzGIbBvHlTOfvsk/jGN8RbVwhKTtStXLmS5uZm5syZw5lnnklLS8uQa5ctW8aiRYvy9i1evJhly5aNtpkTFvEWFZdkMinP/SgQi8UwTZNgMFhsUwShpPneLV9g4f4zOemkI7P7vn7Vp3jssWW8/PLLRbSsNCgpUXfUUUdx77338vjjj3PnnXeydu1ajj32WLq7uwdd39bWRmNjY96+xsZG2tradvs4iUSCrq6uvK1cSKVSeJ4nnroiEY/HxaM0CsRiMQAikUiRLRGE0mX79u3cestv+OY3P5OX1zd1aj0XXnQqX//6RUW0rjQoKVH33ve+l49+9KMccsghLF68mP/93/+lo6OD3/zmNwV9nKVLl1JdXZ3dyq2dSSKREG9RkYjH4/LcjwIi6gRh9Llx6cW84x0Hc+yxhww49pWvnMHf/vZf/vKXvxTBstKhpETdrtTU1LDffvuxatWqQY83NTWxZcuWvH1btmyhqalpt9ddsmQJnZ2d2W3Dhg0Fs3kiIMUSxSMej2MYBoFAoNimlBRaa+LxuIg6QRglNm7cyF13PsIN3zxv0OOTJ1dz+RUfY8nXLkZrPcbWlQ4lLep6enpYvXo1U6ZMGfT40UcfzZNPPpm374knnuDoo4/e7XVt26aqqipvKyfEW1Q8Mh4lef4LTywWE1EnCKPEDTdcxCmnHM1b3zp/yDWXX/5Rlr/ZwuOPPz6GlpUWJSXqvvSlL/Hss8+ybt06/v73v/OhD30I0zQ544wzADjrrLNYsmRJdv0XvvAFHn/8cb73ve/x5ptvcu211/Liiy9yySWXFOsWJgTxeJxAIFD0XkflSKZQRfLqCk8sFsOyLPGCCkKBWbVqFb/4xR+59rpzd7uusjLCV6/8BF/72qV4njdG1pUWJSXqNm7cyBlnnMGCBQv42Mc+xqRJk/jHP/5BfX09AC0tLWzevDm7/phjjuH+++/n7rvv5i1veQu//e1vefjhhznooIOKdQsTAqmALR6e56UbQIuoKzR9fX2A5NUJQqG5+urP8YlPLGLBgj1PjbjwwlPZvr2T3/72t2NgWemhtASv95muri6qq6sBk0zH7lLGMAwOPfRQ1qxZQ0dHR7HNKTvmz5+PYRjSrLPAWJbFIYcckm1cLgilhwZcOjs7xyxt6D//+Q9vf/uRvPb6z5kxo3HPJwD/308e45ZbfsNrr63BsmSa6UgoKU+dMDZkvEXiqSsO0ih3dHAch1QqJZ46QSggX//6hZx/wfuHLegAzj7nJLTW3HPPkj0vFvIQUSfsFYlEQipgi0SmAlYa5Raevr4+Kioqim2GIJQEy5Yt45lnXuHKKz8xovMCAYtrrz2XG274RTbdZyQ899xzvP/976e5uRmlFA8//HDeca01V199NVOmTCEcDrNo0SJWrlyZt6a9vZ0zzzyTqqoqampqOO+88+jp6clb85///Idjjz2WUCjE9OnTuemmm0Zsa6ERUSfsFVIBWzwkp3H06O3tlWIJQSgAWmuWfO0iLv3CR2hoqB3x+R/92PHU1VVyx51fGvG5vb29vOUtb+H2228f9PhNN93ED37wA+666y6ef/55KioqWLx4cZ6APPPMM3nttdd44okneOyxx3juuee44IILsse7urp4z3vew8yZM3nppZe4+eabufbaa7n77rtHbG8hkZy6AlBuOXXgT95obGzkP//5T7FNKTtM0+Qtb3kLra2tA/osCvtGVVUV8+bNk3xRoUQZu5y6J554go9//DRWrb6f6uroXl3jD39YxmfOu4nVq1uorKzcq2sopXjooYc49dRTAV9sNjc388UvfpEvfckXjJ2dnTQ2NnLvvfdy+umn88Ybb3DAAQfwwgsvcPjhhwPw+OOP8773vY+NGzfS3NzMnXfeyde//nXa2tqyUZMrr7yShx9+mDfffHOvbC0E4qkT9op4PI5lWZimWWxTyg7XdaUCdpTIVMBKCFYQ9h6tNV/72uf5ylfP2GtBB/C+972defOncuttlxXMtrVr19LW1pY39726upqjjjoqO/d92bJl1NTUZAUdwKJFizAMg+effz675l3veldeGszixYtZvnw5O3fuLJi9I0VEnbBXJBIJAMmrKxIyA3Z0yBRLiKgThL3nmWeeYf36LVx88Yf26TpKKa677tN877sP0NHRkTdvPfMZNFIys913N/e9ra2NhoaGvOOWZVFXV5e3ZrBr5D5GMRBRJ+wVIuqKSywWk5y6USIWi4moE4R9oKOjg5kzG4lE9v09av/9Z9LV1UdtbW3ezPWlS5cWwNLSQxrACHuF1ppkMinCokjEYjGUUoTD4ezoMKEw9PX1UVVVRSQSyYZjBUEYIRooxFSI9DXa29vz0n321qGQme2+ZcuWvBGiW7Zs4dBDD82u2bp1a955juPQ3t6ePX+o2fG5j1EMxFMn7DXxeFw8dUVCxoWNHr29vYDk1QnCvqF9QVaIDQbMW9/bz57Zs2fT1NSUN/e9q6uL559/Pjv3/eijj6ajo4OXXnopu+app57C8zyOOuqo7JrnnnuOVCqVXfPEE0+wYMECamtHXu1bKETUCXtNIpEQT12REFE3eoioE4SJTU9PD//617/417/+BfjFEf/6179oaWlBKcVll13GN7/5TR599FH++9//ctZZZ9Hc3JytkN1///056aSTOP/88/nnP//J3/72Ny655BJOP/10mpubAfjEJz5BMBjkvPPO47XXXuPXv/413//+97niiiuKdNc+En4V9pp4PE5dXV2xzShLMhWwMv2g8DiOQzKZFFEnCPtCgcOvI+HFF1/khBNOyP6cEVpnn3029957L1/5ylfo7e3lggsuoKOjg3e+8508/vjjeU6K++67j0suuYQTTzwRwzA47bTT+MEPfpA9Xl1dzZ/+9CcuvvhiDjvsMCZPnszVV1+d18uuGIioE/aaRCKBaZpYloXjOMU2p+yIxWIi6kaJ3t5eamtr5bUtCHuNhkK0wd2Laxx//PHsrgWvUorrr7+e66+/fsg1dXV13H///bt9nEMOOYS//OUvI7ZvNJHwq7DXSAVscenr65PpB6NEZhxQNLr3PbYEQRDGGhF1wl6TSCTQWkteXZHIVGaKt67wZPLq9raLvSAIFKZIQoZejQgJvwr7hLQ1KR6ZViaRSITOzs4iW1NaxGIxtNbiqROEvaWIOXXljHjqhH0iHo+LqCsSGU+peOoKj9aavr4+wuGwjMITBGHCIKJO2CcSiYTk1BURKZYYPTIhWPHWCcLeUNg+dcLwEFEn7BPSgLi4xGIxAoEAliWZFIVG8uoEYR8RUTfmiKgT9olEIoFSSoRdkcgUS0hPtcLT3d0NiKdOEISJg4g6YZ/ITDaQvLriIKJu9HAch0QiQSQSkbw6QRgpWsKvxUBEnbBPpFIpPM8TUVckRNSNLhlvXVVVVZEtEYSJh9JeATZpaTISRNQJ+4xUwBYPrTXxeFyKJUaJTBPi6urqIlsiCBOQgvSpE0/dSBBRJ+wziURCRF0R6evrwzRN+R2MAuKpEwRhIiGiTthnxFNXXDJNiCUEW3hSqRTJZBLLssQbKggjQWvwCrQJw0ZEnbDPxONxTNOUthpFQvqpjS6Z51e8dYIwQqRQYswRUSfsM4lEAoBwOFxkS8qTTLGEiLrRoaurC5C8OkEQxj8i6oR9RtqaFBfP84jFYti2TSAQKLY5JUcmr66iokK80YIwXDKzX8VTN6aIqBP2Gc/zSKVS4qkrIpkqTfHWFZ5kMpnNW6ytrS2yNYIwUdB+5eo+b5JTNxJE1AkFIR6Pi6grIjLSanTp7OwEoK6ursiWCIIgDI2IOqEgxGIxCb8WESmWGF0yeXUVFRUS4haE4SJ96sYcEXVCQchUwAaDwWKbUpYkEglc1yUUCsnvYBTo6enBdV1AQrCCMCw00tKkCIioEwpCJudIQrDFI5NXJ603RodMwYSEYAVhOMjs12Igok4oCJkKWGnQWjxkpNXoksmri0Qi8uVFEIRxiYg6oSC4rovjOPJhV0QyniQplhgdOjo60OlKvPr6+iJbIwjjHGlpUhRE1AkFIxaLiaeuiPT19eF5HoZhSAh2FHBdNy8Ea5pmkS0ShPGMRnleQTZh+IioEwpGLBYjGAzKh10RyUyXkGT+0aG9vR0AwzDEWycIwrijpETd0qVLOeKII6isrKShoYFTTz2V5cuX7/ace++9F6VU3iatOfYOGSxffDKtN2pqalBKFdma0iM3BNvY2IhhlNRbqCAUFq0LsBX7JiYWJfWO9Oyzz3LxxRfzj3/8gyeeeIJUKsV73vOebA+voaiqqmLz5s3Zbf369WNkcWmR8RKJqCsemfCgaZoSgh0FPM/Le46bmpqKbJEgjFMKlVMnfepGREkNMnz88cfzfr733ntpaGjgpZde4l3veteQ5yml5M25AMTjcbTWIuqKSG9vL47jYFkWkydPzlZsCoVjx44dWcHc2NhIe3t7tvpbEAShmJSUp25Xhjvap6enh5kzZzJ9+nQ++MEP8tprr+12fSKRoKurK28TQGtNPB4XUVdkMq/76upqmX4wCnR0dOA4DuB/IZw1a5aEugVhANKnrhiUrKjzPI/LLruMd7zjHRx00EFDrluwYAE/+9nPeOSRR/jlL3+J53kcc8wxbNy4cchzli5dSnV1dXabPn36aNzChCQWi2GaprQ2KSK5XzIaGxuLaElporVm+/bt2Z8jkQizZs0qnkGCMF6RiRJjTsmKuosvvphXX32VBx54YLfrjj76aM466ywOPfRQjjvuOH73u99RX1/Pj3/84yHPWbJkCZ2dndltw4YNhTZ/wpLJq5NeacWjs7Mzr5+aeOsKz7Zt27LPMfjVxvvtt58UWQlCBulTVxRKKqcuwyWXXMJjjz3Gc889x7Rp00Z0biAQ4K1vfSurVq0aco1t29i2va9mliSZopSqqiq2bt1aZGvKE8/z6Orqorq6GqUU06dPZ82aNcU2q6RIpVK0t7czadKk7L5oNMoBBxyA67okk0m6u7vZtm0biUSiiJYKglBOlJSnTmvNJZdcwkMPPcRTTz3F7NmzR3wN13X573//y5QpU0bBwtIn09aksrJS8oyKSKafGvjtTRoaGopoTWmyefPmPG9dhkz6QUNDAwcccIC8lwhliuTUFYOSEnUXX3wxv/zlL7n//vuprKykra2Ntra2rNAAOOuss1iyZEn25+uvv54//elPrFmzhpdffplPfvKTrF+/ns985jPFuIUJj+d59PX1oZSSGaRFpKurK09wTJs2jRkzZhCNRsXLXCCSySTbtm3b7RqlFFOmTGHOnDnyJUcoPwrRp04a1Y2Ikgq/3nnnnQAcf/zxefvvuecezjnnHABaWlryGobu3LmT888/n7a2NmpraznssMP4+9//zgEHHDBWZpccvb29RCIR6urq6OjoKLY5ZYnrunR2dlJTU5PdN3nyZCZPngz4gqStrS0v4V8YOZs2baK2tnaPeYs1NTXMmTOH1atXj5FlgiCUIyUl6gYLhezKM888k/fzrbfeyq233jpKFpUnPT091NfXU11djWVZ2fYPwtiydevWPFGXSzAYZMaMGdTV1bFmzRr5He0lnufR0tLC3Llz97i2urqamTNnSnNz/Abltm3npQkIJUamUGJfkerXEVFS4VdhfJApllBKSUuNItLT05OtRh6KaDTKggULCAaDY2RV6dHZ2UlLS8uw1k6aNKns8xsDgQBz586VEWslT4HamYioGxHyv0ooOMlkMlvx19DQIOOqisjmzZv3uMa2bebPn49llZTjfkzZvn07q1evHlal69SpU8u6QffcuXOxLEtyDAVhFJB3cWFU6O7uxrZtlFLMmzcvK/R27twpeVxjSGdnJ93d3XvsG2jbNnPnzmXFihXDSmMQBpLpWxkIBAgGg1RVVTF58uQB+XZKKebMmcPrr7+O67pFsrY4TJ8+nUgkAiCirtQpWPhVql9HgnjqhFFh586deT8Hg0EqKyuZMWMGBxxwgEycGENaWlrwhvHGWFFRwYwZM8bAotImlUrR29vL5s2bee211wb9EhMIBPaq5dJEprq6mvr6+uzPIurKAGlpMuaIqBNGhe7u7iGFRCgUYsGCBdLyZIxIJBKsXLlyWMUQkyZNylbICvtOppBisJy7qqqqssmvCwQCA0apiagrdSSnrhiIqBNGjd21MzEMgzlz5oiwGyN6e3t59dVXWb16NS0tLXR2dg65dvr06eJJLTDbt28ftOp16tSpZfFcz549G9M08/ZJmF8QCo+IOmHU2LFjx26PK6WYPXt2NsemnLBte8wrgz3Po7OzM5vU//rrrw9aHZv5vYgnpbDs2LGDTZs25e3L5NeVciXolClTiEajefvi8fgeGzcLExwNaG/fNyT8OhJK951EKDrd3d309PTsdo1hGMybN6+shs6bpsm8efOKXm0aj8d58803B+0VFgqFmD59ehGsKm3a2toG5Jvatj0gNFkqVFVVDRiT5rouq1atGlaepzDBKUj4tdg3MbEQUSeMKq2trXsMs1iWxZw5c8bIouIza9asbGXweGDdunWDelUnT55MbW1tESwqbdatW0c8Hs/bV1NTQ1NTU5EsGh2CweCgxSBr164lmUwWwSJBKH1E1AmjSm9vLytWrGDr1q10dnYOKfAqKiqYNm3aGFs39jQ2NmbzCMeLqANYv379oHl2M2fOlFmxBUZrzerVqwd4qpqbm0smxzTjjd41j27z5s10dXUVySphbNFS/VoERNQJo05vby8bN25k9erV/Pe//x2yT11DQ0PJfKgNRkVFBc3NzcU2Y0jWrFlDLBbL22cYBnPnzh1XAnSsGM3XYiKRGLQids6cOQPyzyYamZSKUCiUt7+np2dYzbBHiqL8XpsTAo1UvxYBEXXCmOI4Di0tLaxZs2bQnJqZM2eWZH6dYRgDig/Gm1DSWrNmzZoBDXFDoVDJ5nwNxdSpU0d9Ekp7e/uAfMZMs+6J+uXGNE3mz58/YGKG67qsXbu2oI+l0n92/fdEQeX8EYRCIaJOKAodHR2DJktbllWSTVlnzpw5YL7qeBN14HuQBmu9UVtbO669jIVk8uTJY1aZ3NLSMmC0WMY7OnXq1HH5GhmKyspK9t9//0FHoK1bt45UKjWs64ym2CnEdffl/KHubST3rPbhz5gj4dcxR8aECUWjp6eH1atXM2/evLwPr2g0ypQpU0YlVFMMhio42F2vuGLS0dHBtm3b8rr/AzQ1NeF5Hm1tbUWybPSpq6vLTtUYC0HleR5r1qxh4cKFAx6vsbGRSZMmsWPHDnp7e8dtXzfbtqmpqRkybLxt27Zhv9aHKzyy63KfM61RKDSDP0+5197duuHYtevPu15ryPvI+x3n+lT6hYsarll78/ocy5dQJvy6z9cZn6/78YqIOqGodHd3s2HDhgHjqaZMmUJPTw/d3d1FsqwwhMPhQVuDbNq0abfNmYvNxo0biUajAxrjNjc3Y1kWGzduLJJlo0djYyNTp07N/jxWXrJYLDbo/wHwPddj3c+wkPT19bFhw4ZhrR2xJ2nX349SexYAmXP2IAB3a1fONXLXZK416H0MIeYya3V2nzdCsTbSYNtYzhrW6T5z+3oZ8dSNBAm/CkVn+/btgxZPzJ49e0DIciJhmuagRQadnZ3j3tuVya8bLO+xoaGBhQsXDhpmm4iEw2HmzZuXJ+hgbMPj27dv32Oz7omG4zisXr16WGvzhJBSWWEzmEBSZI4bu2x7uH72nP7HGFbIUuVuZv/jKTO95V8rf33+OQoTpTJbAJQFykKpgL8Pfxt4b0b+NTKbGmLL/Nllv1D6iKdOGBds2LCBioqKPM+QZVnMmzePN998c8I1KlVKMXfu3AGiNJlMFjxhfLRIJBJs2LCBmTNnDjgWiURYsGABiUSCvr6+cRsa3B1KKcLh8IAqzdzjY0lLSwu2bU/46lfob9sy3Dw6IMdDlRFe3m48b0ZaQOWIOa3QykVpBnrN0oLO/9ns99CpPb2vGLtcZxDxqNNeulxdmvdDjmdOWYCZ87N/TGsPcNH4ExT2/Moz8s4fwIALmIytly5NIcKvUv06IkTUFZBZs2ZhGPv+bUgpheM4dHZ2jusQXSHJeIb233//vJFJoVCIefPmsXLlygklHGbPnj3gw3l33q/xyo4dO4hGo0yaNGnQ47Ztl2wfu12rgEcbrTWrVq1iwYIFE3oebEbQ9fb2Dmt9vxcN+oVXOiSpvIEiLe2J8j1c/e8VGsdfmxZ2/gk51816zDKaxwOdeayB7y35otHwPWsMFGIo0iOtnPSJuULLQCkDrT2U8q+h0vcVCoUJhyJpuzy09vC0A7iDvtcN/JJhZm1R6fvSQ4xfUBhoPFIpi46OMfIIFyqnbuK8XY4LRNQVkOrqmgHNNveFSZMmEY/HWb9+/bDfICcymcrLXatfo9Eo8+fPZ/Xq1WP+QTtSMq1LBmtJ0draOuis1fFOS0sL4XC4rGb0JpNJWltbx/xxPc9jxYoVzJs3b0KGtzOFH3vTYFhhpgVRRqh4vqMuLez8nemwohHMCqSMaPIw0aTSwi4/3w1loJSdLwK1B8r1BVf/HeRYZKTXmxh5ArLfk+hlhBxejqDyj1uWQShUQShUgW0HCYciRMLVRMJVhIIRDBUkoOz02R6uTuHpJK6XxNNunkBTu3jm/NCqgaEs/95y7mB3RRvbO18dO1EnFAURdeOcUCjEfvvtx4YNG4Zs2ltK7Ny5k6qqqgGeoWg0yv7778+6dev2OE+2WEQiEWbNmjVoOK+rq4utW7cWwap9J+N5WbhwYUn2ENwVz/OK+gXCdV2WL1/O1KlTJ1SRRF9f36Aj0HZHXq6bMnYJT/rPf0bY+etNlBHEUDaGEfS9X2kvlPKSuJ7vIFIDxFkA0whhGFbaw5bxtOUKsxzvW44XzBd0Foay8LTjCynA9ZLYwRC2HcS2bQJBk1AoRCgUIRyqwLKCmCqIZdhYRhhbRQlTSUhHsHWQgLKw0oLLQZMgRcJIkDTjOCqFi0MuCoWBidIKEwsDC0tbmOl9BgYeHlrpPM+mqfsdDdt5ddi/m31HF6YdyQSKbIwHRNRNAJRSzJgxA6UU27ZtK7Y5o86GDRuIRqMDwnrBYJD99tuPnp4edu7cOW7mRwYCAWpqaoZsVptKpSZMHt1QpFIpVq1axX777VdQb/R4IyNgd52sUQxaW1vZtm0bkyZNIhKJ5KUljCeSySQdHR370KLHSCfyWxg53rRcsZUJk2YEnWmGsIwQhhHIihnHjaGUhevFs8ItI/qUsghYkawAzOB5Dnj97yMeSbQmxzOnCYVCRMKVRCLVhGybSLiCsB0lZIdzbHUzd+I/lrKxVIig9reIDlOhgoQtg7BpYJsKywAz7URLeZBwbWJOBTHXI+k5OFrjodPX9P1tBr5QswwDSykspTANhZETmvVyq3IVmKhsFPqlseyiVLDw68RJuxkPiKibQEyfPh3Hcdi5c2exTRlVMp6S/ffff9Bk9Wg0OqGSydeuXTvuw8bDIRaLsXLlSubNm4dlld5bR+Z1N57a6CSTyZLp1zgUGbmS8b5lPGFKO3iegYefK+aHG20sM0LAqiBoVmDlhC8dI0jS8dNUdE4bDKUMTCNI0KxAKQMnLeIMDFLEUIYv3EJ2iEDQTIdKK4iGqwmHaggZUSLUEPGiVKgQljLSQgtcrUlpjxQOblosKq2wtImtTIKmScgwiAQMKiyosCBkQsjQmEpjKHA1JD1F3FX0OYo+1yDhmiS9/FxCAzAUaREHQQWmAYH03xk83f+eaah+4WhMnD7Wwj5Qeu/MJc6sWbOIx+PjwpMwmmRyCSf6eKrW1tZxGy7eG/r6+njjjTcGLQSZyMRiMdauXTui0KFQAFQm3y2AUhZmnqhLKxUPtPL84KMZImBVYJuV2EaUgPLzPDUuCWWhMPG0kw2TZooP7GCY6ugkKkJRAkGTilAVYbuCsB3GMI1saNN/XEWAEBEvQlTZRC2LaMCkMuCLMt9/lxZjLvS5kHA1Sa/fS2YohW0qggbYJkQtqLA0FaZH0NDYpp8BCOBog6SniLkGIVMRchVxR5HS4OYINFOlRRppMWeApfzNUHrXPsz+U0t/MNsYdlfjAiLNh8ccEXUTjEyrjDfeeKMkvD+7o729nXA4PKHyinJpb29ny5YtxTaj4KRSKVasWEFNTQ2TJ08mFAphGMaEqk5WSqG1Jh6P097eXnI94sYzhmFkczMzFaGGEcYyI+n8M9/75ngJXM/C9QKAh1IWlmljW1FCZjW2qsLGD6m6ysEmCIEqMGsJ2CaRUBXRUCXRUC1Vuo5aolRYAYKm3+Ut47nyNDha42qdnbhgGoqIZVAVgMoAVFoe1QGXsOm/5/pCzKDXMehxDHpdRdIFR6tsmUJAQdAE24CIqamwXEKmJqg8LMP30nka8Dw8w8DWHq428DKNVzxwc9LJlMoRdunND+HqPPEGoAx/n6H6u5tYxlj//5ScumIgoq6AdHd3FyzfKBAIDNk/KxgMMnv2bFatWlWQxxrPtLa2EgwGBx2zNZ7p7u5m3bp1xTZjVOno6CibljuFJhgMZtvBBIPBCTXjdaQopQgEAtn7zbxHKvy+bUY6nBqyaogYddj4Vb+ecknpOI6O4+ERUDYhqqj2aqkxw0QDJmHLD0s6GuKuR9LVfi6a1hhKEVSKkGVQFVTUBCBiaWxDk5FeroakViRcg4QHTro1nmVAxPLFXFXApdJyiAZSBEwP11MkXZO4a2KlvYoog4CClM6/hqX6hZVG4XjgKRND+zMkXA0pT+FoRdJTpLTC0/3paJr+etyMJtM5m+umQ7M5IVbDf9Ix6Pfe+SJxjF9jmsJ42SbQl8XxgIi6ArJmzWoG6fq41wSDQZqampg8efKAY1VVVTQ2NpakJ2hX1q5di1KKmpqaYpsyLLq7u4fdSV8oTZRSecItFAqVjYgbNulpC4YKEDDC2EYVldQR9iKYGLh4JFQCR/kFE0EdpJIItcEgdbZBVdAXXpbSOJ6fixZz/aIDJ62EgiaETd/bVm25hE2PgKEz9bI42s9liysDyzOy5xkKwoYmbHqEDJeg6WIaHobSeKo/lNnfxMQXkbndRDS+2DS1L/YMV+EamfV+Tp7jKRzt58E56dw6R6fvQfuiLxPBNBQo3S/cFP1t+DLCMePNU+SLvcwaofQRUTeOSSaTtLS0sHPnTubMmTPAC9jc3Ex3d/eE7H02UtasWUNzczNNTU3FNmW3bN++nZaWlmKbIYwBhmFkhdqu20Qeb1dofC/VwH2kq1JNM0jQqCDKJGp0NZWWRcDIVJVGcLVGKYVtGlQHFZNtmGy71AZSVAYcAoaLqw36HIs+1yTh+jlqrlYo5XvmoqZL2PKFWSYM6aQ9brYysBSYLqSU78MzlCZgaKyMePMUCccikT4v4Zn0OiY9jkmPa5BIi8mE5//tacD1hVSfgoBSWIbKjqfNPB+uBw79+zydCQeD62nfs5fzvBkMHA2bcWRlBZ1S/R673HOLIeqk+nXMEVE3Aeju7ubNN99kwYIFeVWHSinmzJnD66+/PqGmFOwtmzZtoqOjg+bm5iHbhxSLnp4eNm3aNOGLIizLEm/SIOzqebNtuyQrgEeDoT6SVbpVh/+DgZEuVTANRdBMiyB8sWKpfo9bbdClxnKoDqaIBFIELL9Jcdh1iDomSc8g6ZokXQONn0sWMDzfc+YZ2V52Kc8g4RmkPIO4p4inw6B+oztFSmtS6QKGTJg1N0za5yhiri/k/Hw6SLmalOeHgDP4Vav9gs5L5+9lQquZ4opdGwi7WuNpb8jhXjrd8sTLVN2m/5jKyLY/GfS5HkuKIOpc1+Xaa6/ll7/8JW1tbTQ3N3POOedw1VVXZZ8DrTXXXHMNP/nJT+jo6OAd73gHd955J/Pnz89ep729nc9//vP8/ve/xzAMTjvtNL7//e+P+wIxeVeaICQSCVasWMGCBQvyPHbBYJCZM2dO+D5ow6Wvr49Vq1Zl83SKnZyfGek2kUT1ruIkdxuvvdCE0kFBnrtJa42jE8SNHrq9ECql8LSFne7nZpKu9Ey/NFOeosc1cRM2fY5F0PBHdRn4XjSN76Vz0n/HHf+x4q4vyPxUL7+61Pfo9XvZMnls6a542f5w4B9LpMWb42nirkvS01mR5mgPJ9PeRLm4u8gxjcZVLh4OLg5aaTxcNDpbfWtoEyMtx/xGwl7euv7nzEUrnW5Q7OX15fObtSi/UTMqe/1y4Tvf+Q533nknP//5zznwwAN58cUXOffcc6murubSSy8F4KabbuIHP/gBP//5z5k9ezbf+MY3WLx4Ma+//no2l/3MM89k8+bNPPHEE6RSKc4991wuuOAC7r///mLe3h4RUTeBiMfjrFmzhnnz5uV966qtraW7u7ssJk5k0FqPm+bD4w3DMIYUbuKBE8YTWmtcN0FK9dLDdhwjTg9VRFNVRJwQEdMibBqkPEXCVfQa0JEyMDGyzXutdBVo0NCYgFIaTyuS2i9MSKY9aT0OxF2Nm54l63jaF3Fa4+KHO3Px8D1lGW9aEieb4+fhZKc+6HTjYU85eMrF1Q5ap4VbRoilW6t42sXTDhrP/0KqveysWEP548gMZeY8P172GtlJGGn/nNYarZ303znNllVGkuZ8QVNF+LKmC1T9OsIv7n//+9/54Ac/yMknnwz4bcB+9atf8c9//jN9Oc1tt93GVVddxQc/+EEAfvGLX9DY2MjDDz/M6aefzhtvvMHjjz/OCy+8wOGHHw7AD3/4Q973vvfx3e9+l+bm5n2/r1FCRN0Eo7u7m9bWVqZNm5a3f/r06cRisbKYEVsqmKY5pMesHMZxCQK4aFIknR5cL0Hc2ImpAnSZldiqigqvlgqnAlsF8oaHudrD/6MxMbCViW1ahAzDb84LvtfM0yRcjz4vRbfRTVz14eKkhZWbndiQi0o/ki/KHFydxMXB9RI4XsKfHqH7Z71mxFO/0PLbJev0mK9MNEFr36uGzozxyp8Vm/Gy9X/pMukflZYRNulztM7x3Hn5wmfQL21F8sAXIfx6zDHHcPfdd7NixQr2228//v3vf/PXv/6VW265BfAL79ra2li0aFH2nOrqao466iiWLVvG6aefzrJly6ipqckKOoBFixZhGAbPP/88H/rQh/b9vkYJEXUTkK1bt1JRUZHX5iO3f10qlSqidYUhk8NUCuS2c8jdSnncliAMB1+saDRJPDfp9+gAYmo7phGiy4xim5VYyg+JudrB0fGswMoIK1MFCegIthHFws7OaXVI4eg4Sa+bZLIH10uicfLSNlR69my/ZysjinR6rZP1iuUJqKx4ypzXL7h2e88D9rh+MUna46eHXDdMBn38id/TtKurK+89M/M+uitXXnklXV1dLFy4ENM0cV2Xb33rW5x55pkAtLW1AQzof9rY2Jg91tbWRkNDQ95xy7Koq6vLrhmviKiboKxfv55IJJL3orYsi/nz57NixQocx9nN2eODXT1VuW0fJAldEMoN188V0x6QQmsHz3NxdAJT+V/wPO17zFwvidbJrDhTyiKhgsStEKYKYigzPU3CTQvAOJ6XyBdmeR4toz/vLLM/16Om9QCRpbLiKV+M5a3J/qO/dEFlj6WT9vPO9IYVbhz8uoNdL+e6Y02BZ7/W1dXl7b7mmmu49tprByz/zW9+w3333cf999/PgQceyL/+9S8uu+wympubOfvss/fdnnGOfHJOUDzPY+3atSxYsCAvRyoUCjF//nxWrlw5LoTdUF4q8VQJQnnSX4jge8n8YgQLCOAR9/PItIvrunjEcdyMJ03tErbMXFDjkcCll+xbXo4wyzwmmcdN98frxwPt9l9V77IWA2X4njz/vdbMevfIyW1TuZ66zHnKQikThYlhmOmf83PevIyHLi1idVbcDnz/9p8vi4xnUSnTz8FTxqC5stm8PfzwsOOMcV/TAoq69vb2AZ66wfjyl7/MlVdeyemnnw7AwQcfzPr161m6dClnn312ti3Wli1bmDJlSva8LVu2cOihhwLQ1NTE1q1b867rOA7t7e3jvq2WiLoJTF9fH5s2bWLq1Kl5+8PhMPvvvz9r164d9RYbg7V6yN0kKV8QhAFonVZNJoayMc0gBhaaChw3juvF0V4iLXDSTd/SgsYwKrCMEJYZznrkHJ3AceJ4Opbj7fNAmShlYBphLCOEadhYpp0jqPziBcdL4Hkp/9xsrpyJadqYKoBl2hgqgInl25A+P5Nv5+lU1jOYwVAmhhHEIoCpglgqhKGsbKWr0ipbweqlCytcncTVKTydTIeK/Rw9pYx0WxLDv4YyMVUwa4+JlXdtgEwzFFen0vmDLn2xMRR1GnQBRF3mGlVVVcNyBPT19Q2o4jdNM9uhYPbs2TQ1NfHkk09mRVxXVxfPP/88F154IQBHH300HR0dvPTSSxx22GEAPPXUU3iex1FHHbXP9zSalKSou/3227n55ptpa2vjLW95Cz/84Q858sgjh1z/4IMP8o1vfIN169Yxf/58vvOd7/C+971vDC3ee7Zs2UJlZeWAvm2BQID99tuPzs5OduzYQV9f31633VBKZfuXSZNVQRAKglK+ODGD2GYlAaMCAwM34OB4MRwvgePGcD0/R9hMz32tMCdTRT0VXgVBZaGBhE7RG+yll50kdA+OF8PTDoaysIwwEaOWkI4S8kKEsTHSTYYd7ZIkRTwQJ6560iPJdNoPZhEkgq3D2NomgIWpDKx0qxNPeyRJtzAxXJx0K5NM3zgLE0sHCOgAQW0R8JuW+I5C/LEPmX50jvbwtMbBJYVDykiRMhPZ1icASitMLCwCWDqAoQ1MTCxt+nZpv0ddbk88jSaV9kKmtEsr/yjO73oMef/738+3vvUtZsyYwYEHHsgrr7zCLbfcwqc//WnA/zy77LLL+OY3v8n8+fOzLU2am5s59dRTAdh///056aSTOP/887nrrrtIpVJccsklnH766eO68hVKUNT9+te/5oorruCuu+7iqKOO4rbbbmPx4sUsX758QOIj+OXPZ5xxBkuXLuWUU07h/vvv59RTT+Xll1/moIMOKsIdjJy1a9dywAEHDFoxWV1dTXV1dRGsEgRBGIJscYLvcQoYFYSNaoI6goGBZzq4pkMqEEejMZSFrSuo8aqpNWxqQxZVFoQs3+EXd0PE3Eq6k430OS5x5ZHSHiYQNi0qLJOgqbDTY8Msw4/qJT1IuRBzNb1OPY7ntzxRinR/PL9Xnm0qLCM9ois9hsvV/U2HXU+nx335Ii0TY7YMRUApAqbKzoHNnezgpceB+W1T+q+T8jwcz29k7HqZdiUKUyms9GYaCkMpzPQkiYDhP4Zp9EefPQ1JN4AHJBwNnWP4O0YXZfbrD3/4Q77xjW9w0UUXsXXrVpqbm/nsZz/L1VdfnV3zla98hd7eXi644AI6Ojp45zvfyeOPP543b/2+++7jkksu4cQTT8w2H/7BD36w7/czyihd7O6tBeaoo47iiCOO4Ec/+hHg555Nnz6dz3/+81x55ZUD1n/84x+nt7eXxx57LLvv7W9/O4ceeih33XXXsB6zq6srLZxMCjn7dSRUVFSw3377SbhTEIRxS3+Cv4lhBLDMKLZVRcSqJ0otYV2BrYNYysxORbCUSdBQRCyTyqCiLgi1QY9KyyVkeJiGTo/uMuh1DWKukW407Isd28RfpyBgaELpUWGuVn7/u/TUiMw5mZw/I90DL2hoAsrvf0fOsZTn98LLjPbKjPfy0jNbwRePVlp05Y7uysRMsufu8rPj+fNiMzNgM2l6/vPRL9wynziW4Tdo9je/X19GKGYaLMcc+PH6H/Pvf79EZ2fnqE7leeihh7jx8s/y/JKP7PO1Nnf2Mu2rv8BxHMnDHgYl5alLJpO89NJLLFmyJLvPMAwWLVrEsmXLBj1n2bJlXHHFFXn7Fi9ezMMPPzyaphac3t5eNmzYwIwZM4ptiiAIwtAola7UNNPJ/v35T36I0SCgDAKGQVApAqZByFRUBKAmAJWWR1XAJWq52IaDoXwBU+EpKjyTuGv6Ak37XqyA0thmuvUJ6ZmuhoeXFnUhbWAbmrhhpAWUPzM2I95yZ8C62hdoAJZSBNKiDsDTCgdwc/YZgJkWWdAval1yWpdo/9ycTio4GS+i1y8UoV9o5nr8zLTYC6YbMAcMjZG21/F8711Sq71vkSJMKEpK1G3fvh3XdQftP/Pmm28Oek5bW9tu+9UMRiKRIJFIZH/u6uraB6sLx/bt27Fte8D9CIIgFJvcalK/gMHMTjrQ2iFpxLGMAKZnEsQkZBhEgwaVlj/ztcLURC2XsOX53jbl+ePBDE1QeVhBD4UvZDxP4ab9YgYaD4XjKjytMJTOCqKgAa42CJsGjucLOt9MjU4LoYzWclA4Xn++mjIggMZUZIdxuWkvnaf9EWVK6ax3zs0RVioj5NJPiVa+ELMyRbvp+8iMMssdX5Ybvs3gT9XwBV2uCDUVuFqjXGPwE0eTArc0EYZHSYm6sWLp0qVcd911xTZjUFpbWzFNk8mTJxfbFEEQhAFkhstnWoRo7ZHSCfDAVSkcIwVeNQHPoEIb2RFgAcP/cE+4BjGn37tnGRAyXCKWS9hyMA0Py9QElIPWCtdTJF2DmGuR9Ay8HE9cBgNfVJlGv+DTWpPy/BmyKc8g4an0bFkfT2dy2TysbJuSjCfPr6HVWe8dOJlQLf0hW/AFGcr/MFZoLENnQ6raU3gGeeszf2v6vX1u+ro6/e+MPRmBmUp7/8YcEXVjTkmJusmTJ2OaJlu25Jdtb9myZcjeMk1NTSNaD7BkyZK8kG1XVxfTp0/fB8sLS0tLC8lkctxX6QiCUD7ker1y84+19nB1HFfHgU4SqouEGcN16jGIYipf7iQ938vnpPPDUuncM0NBhWVRaUF1wCVsetjpvDlPQ0obdKdMelyDRE7eXCZsmRGNdo6XS+FriYRnEPf8x467fjg0Uwfhh2YhZBpYae9f1isHuJ7Khk5T2i/IcPDPdzU5xRT+B3HAVNiGSs+01ei0EMzk1/mFFP5pLjlCL30dP9SssAyVDc9mPHwptxRmSgjDoaREXTAY5LDDDuPJJ5/MliZ7nseTTz7JJZdcMug5Rx99NE8++SSXXXZZdt8TTzzB0UcfPeTjDDWeZDzR1tZGd3c306ZNo6KiotjmCIIg5PSnI5tLp9F4noOj/V5xCbpImN0krR6SXjO9vdVUJwJYpkJriLkevU6KGAmSRgJDm0R0mErTpjpoErVMQiYETV/QJF3odqA35ZFwXRKe3zDYVIZfMWooQqZBxDIImhBICyI3LaZiLsQcf4asozWe1ij8XLVgOt8vU3lKTq6b4/VXxvr5cR6up/18unS7ESNdyRowFEGjv8rWMlRWWLrp6ziabHWuXyWr/cbH6afWUL6Y88/tH3oG4BSrHrIgnrp9v0Q5UVKiDuCKK67g7LPP5vDDD+fII4/ktttuo7e3l3PPPReAs846i6lTp7J06VIAvvCFL3Dcccfxve99j5NPPpkHHniAF198kbvvvrto95ARYb29vft0nd7eXpYvX54dwbUvlbGD9anbtcGjIAhCTr7/oPjZZ6QbBPfv01rjekk8L0HK7SXhdBML7GSnWYvtVWK5QRyVJKljxOkk5fTien5us2nYBIkSSdQRTlQT9aLYBPDQpHDoMXpIqF5Sus8fGYbG0AqLEJZnE3KqiMQihLGxlMJQhh9+1R4xEvQZfTgqkW0U7M/AsAmlIgSSQYI64PelyxaBgIsvAJM4pFQKR6VwSOHh9c+s1X7fuWDKJkiAgDKxDTNtg/KfEzIiziWpPRxcHOXg4uIpFy/9TBsoVLp3nUKh0jl7BgaucjH1GFeOal3Q5sPC8Cg5Uffxj3+cbdu2cfXVV9PW1sahhx7K448/ni0eaGlpyRMjxxxzDPfffz9XXXUVX/va15g/fz4PP/xwUXvUhUIhZs6cSXd3N5s2bdpncbdrYUehGEzoZea3Sum5IJQ3it0Npc8PBqq8DDcP7SVwcYmnwPVSJKxef0xYevpDyu3F9eJ4XgrwUCpI0ukhafXQZ0XpMaJY+NEUhxQJrys9AzY9OQIPheG3VTFs+owO+owoQVWBpW2/V57ycFWSJDGSaTGYO3HCVCHiRhhL2ViG7TcExsqKJ608HOXiqIQ/8SIzzzZX1GGlJ1aECOoQAW1juzYWJiZGeqWHi4ejHJJGEockjkriaccXwznPpT+SzG/qnHleDUw8XCxdhEbxhRBkpdV1bdQpOVEHcMkllwwZbn3mmWcG7PvoRz/KRz/60VG2auRUVlayYMECuru72bx586iP/BopjuPgOM6gotMwjDyRl7sN1iRZEITSx0//8sOfZPu+KQzDwtQBPBVAq6Q/dsuN+147pwOVNMjr8qZ1dg6s32o1lZ79upO+9GgwpTIixkV7vgBCuwPnwKZntBpGAEUA0whkq3LRHq6XQqcFmf9YHqQFocLKzl9VhomB5c9izd6vxtVJtOeLQc/LbWaSGftlYhp2+u8glrL90V/K/3jW2kt7CF08zx8f5o/+8vJmu+aRtj9TkAJgKnnfLQdKUtSVGpWVlVRWVtLT08OmTZvGnbgbDM/ziMVixGKxAceUUkPOig0Gg9JAWRAmMLvzq2QCgnn7lC+qAqbfsy7lKlwVT89idfCFm18Z6jcttjGUnR1knyu8MudoL4VHapfHBVT/bFTfVl+keV4CLx3KdXLW+ov0oPek0+uz69L3lfU6Znqf5DxO5no5Nw/ZXn3+8+B728y8/n0ZD6E/19Z/TvKvPTi5tig11uFXpPq1CIiom0BEo1H2228/enp62Lx5M93d3cU2aa/QWhOPx4nH44MeDwaDWY9eKQi8QCAgnkqh7Ml4xjItTTLBQaWMtIdLoUwTy7D93Drt4qUllsLAVAFMM4StKggaUQLaxiKIh4eHQ0olSHo9JHQvjuvPjkV7oIysx8pUAQzDQikLtIenHVJeDNdN4qULNdC71Ikau5YdZMj3GGa8gFkJovPFpL+vX6Do7M8uOv2Yil2FInnnjVTe6Lx/pIZeOFqIqBtzRNRNQKLRKPPnz6e3t5fNmzfT19dXsGtrrXHd4ha/J5NJkslkUW0YTcRTKZQb/a9oI+01sjAME0P5AstQ/nSJIEGUYWCYmVCmhaWDBLEJeWFCKkjIMAkaBkFT+SUBmWpTrXE8Tdz1iCuXhE7h4qJVvygwtZ+rZuAPvk8qh4SZIBbsIUEPSR3D0Yl0qDUzc9UYIOr8UKqTFZ5aaz9fznPS+XL9IVG1y8ds5nheODcrDsk7d9d8MpWdmav6GznnHQO/XYybPj33+tLUpBwQUTeBqaioYN68eQW9ZjKZ5NVXXy3oNYV8huOp3BdvXiafUaqVhXFFtjLU8HPRBvF+KWVgEiSgQgR1GNuzCWmbkGERsgxClum3/VB+yxIjZ/6pRvmD612ThGuR9Gxcz69AddMhVL85sMI0fDHoeEESbpiYFyWuk8SNGEmVyCtEAN+nmBvm1Lh4pourfRHnaRdP++f4/3ayxRgZb6TWftlDJhfOF4F+jp0mI/B2EWN+mXD/86dM38tIRmiq7PPm/+17Ffsfw8u5vkNOcHlsKESRgxRKjAgRdYIwziiEp3Kw0Pxg1cq5oW5BGHXSXjqlTAzDL0ow8EOh6Q4cGMoipCNUepXUWEGqbYtoAKKWP9bLUhqVMyrVUn7jYEv5zYMzs1ddFAlXkdIGcbd/1Bb4jXqt9MxYv4ecRcILEXeqSHmahOd7/fxWIuBpX45p3V9vqnPEhof2K10Nv9WIo/wq14zXLVPx6iq/JYqHg6tTuDqZPuLkeQd9AajJbfuilIFpBHzPJhYGyg8tZwshfLFn+KUogOeLTp3uAagdksmVo/WbHcBQNRwjvo70qRsRIuoEoUzYXbXyYCFhCQP3o5TKCuBgsAitISY4udMkMtWihur31vmCyc+jwzDwqMRSvmeuOgC1NkTTkyLAH1CfGdllKX8iRIXpEg2ksEyNpTyU0qQ8k4Rj0uNY/sgv7c9n9cd76fTkBpUe6QUpTxFPjwRLegZJD+IOJNPTK/wxX+keyukJEplmw5lj3i5NgjOewpTWOJ6HQ7rnHCkc5XsDXeWmRWCGfjGYwcDye+HpAIb2Q8h+3p5vgKmNTJYiAG5OK5SEkcDDYydjJ+qE4iCiThCEPYaEhXyCweCg7XpEDA+TdCuPTOsNDwfP873TGpc+I0BIh6h0AyQ805/OYACegash5hkkXH/KgqUgbCpSAf95r1IpzIAmYDpY6SR7RxuY+F47R/vB1KDysE0PS3kETQ8jnXuXdA0SnkXcNYi5Br2O/3fS86WWmzOz1TZ9T6EJqPT5nlbZMWFJzx9LlvD8UV0JD1KeJuVpXC/kT6hIPyU5UdacwGq/IFbpiRGm6s8jzAg6I32eIn88mKv9SRZO+nlYXrjf4DDQUihRBETUCYIgjJDdhch3rXbO3cq6KbfO1IZ6frhVp/9WfpsOx0vgaRfDS6BNF21qSIGno8RdiwrLSOfB+WO74q4vjgzANg0qAyY1tkltIJCeAevnpyU9kz5XkfIMUp7KlguETY+Ip4mYDobShCwP09AYSmN5GlOZGJi+x0371bqO7vfOhUxNhen5c2NNDwuNaWSEnT9zNpEWhjHPDwXHXUh4yvcaev1ePzPne4ClwPTrSbLNV/q9nEM/vYbKF4KZ2bAp7YtiywB27OsvcYRI8+ExR0SdIIxTDMPIVsPqPbyxKaVwXbekq4YnCqlUilQqNWg/SdM0y9K7FwgEsIPBdJ6YX0zg6hRK+xlgrpfy97kJHFxSTh9Jq5c+q512bxLRWC1Bz5/04CiHuOojoWKktO9ZttwAoWQVNd3V1Fo2VUGLsBXAMtLiJj0/NRMeVYBtmkQtqAqYVFoBopZH0HAxFTieIpHOxet1fFGY8Po1iqHAUgrX8Es0TDRB0z+/f/arIpGu8PXdjEC6WtcEXKM/x8/CF3JGOtcvkM4dNHKEXYZM+2KtwWOQ103OfUL6vrWfjzimSE5dURBRJwjjjGAwyNSpU6mpqRnxh30qlWLr1q1s2bJllKwT9gXXdenr6ytoG6KJgkJhhyKEw1XYwSoCVhjDCPojubSD48ZxvQRuOgxrGkEsM0zQimIblZgqiFImrk6Q8mI4Xjy7VimDoFlBVXgyk+1pTA5MpjoUJhQIZEOUvqBM26IgaBj0WgYxVxELmMRcA9s0MNM9gx2tiHuKPkcRcyCl+0OvASNdbOEpv5pWGRhKYyqDbNUq/d6ybLOSnO9m6ZUY5Au6TL5fQOn0z/0nuVphaD/EqxXZua/+/aWFnvLXoPoFbNDw8w6F0kdEnSCMIyZNmsSMGTP22nMTCASYOnUqdXV1rFmzZlRm/grCSMn0VUsmkjhOjJipCFpgGS4KE0+nSLq9OG4cz0vmzGYNYpldBM0KDBVAKQNPp0i5cRw35rcO0V66MjRIm7GJDYGNmMoi6fZimhbhUIRgMIgZcAjaQUJ2mHAoQiQYxfYqqYrXUUmEqGkRskyCBlnvuKsh6Xp+XlqeIFRUWAYVAUWFZVJhmoRNk4jpETT9AgxXK5Kuotc1iLsG8XTRRa44hHTo1fOFola5z5kv6DLVvhlBqlH9BRvkeOx0v1cu46kzcoRdUZCcujFHRJ0gjBOmTJnClClTCnKtcDjMggULWLVqVVl6hYTio3KlRKZprhHENEIErUpCVg1BFcZQAVK6D0MFSKrerFgD8ipkId3qQ3s5Y7Oc9M/9D5V0ujANG42L47p09ybwuh2Sbm+2RYgvBlOEQlEqK+qoCFdi22EqQpVUhmsJ2xUYuWO60GjtopSJqS2CTphIMkJYBakwLcKWSYVlELYMbMMXaOCLrLgLCRdS6SIJR+ts9axCpT1zyg+5GhBUkPQUQUNhmxoLvwhDa0VK+8fctDDMeAEzHkEnZ39G1BlAwISUHmNpl06f3Gck/DoiRNSNQyQvqvxobGwsmKDLYFkW8+fPZ/ny5VLVKowpefNPwZ9lagQxjQrsQDUVgclEjQYC2sYkQNKIkVDdxI0ukmYPjpf0R3ZBdmapxvWH2+t0rzfPyXrqwEV7Hp7nNwA2jYFtZzLnAL4YxCMe7yWVdOno3InWnj/BwrD9/m4qjm37Vc7BYIBg0MC2Q4RDFQQCISzDxjIihLwodjJKOBElrEOElEXAMDGUSodxPRzt+a1N/OYtgN9RzlT+JFpLmQQMhaUUlqkIKIVtKn9qhiLde46059D/2/F01lPnotN5g75o9HR/02RT+YUkAaNo/jphDBFRNw7p7u5m9erVzJ49W6YAlAG1tbVMnTp1VK5tmibz5s3jzTffxHHGuJu8UJbkCzojPQXBxjIjhAO1RAONVKkmqt06tPKwdZCYitCnbAwjgKVskkYM10vg6f55pRkvneel0kIu47VLkRm7RXqaQqY9Sj9GukAj83/AF4haZTx3VnbqQ2aN66VIJmN0d3em92dSGUwsKyPywkTCVYTCEULBEOFwBZFQJaYOZUefGRh+v7lMc+XsvNv+UWimtjC9IAEdwHIsLG0RxCKgDCzDyE60yPS5c7U/8dZNT77VSuPg4CoXhySZRikKA0sHsV0bU4995bUuQOi0ENcoJ0TUjVM6OztZvnw58+bNk27/JUw4HGbWrFmj+hjBYJC5c+eyfPnYdqkSyo/BBJ1hhAmYUcLBWqJWE7U0U+VVEVE2XbqPCsNOT0fQoDzfg0WAlNeXnsPq5Xjp/HpPhb8cXMgZ5wUunufhpYVTP/48VJ0RdTrjMfNwPRcwszNeM+d5ORMeMiIwna2G47ikUh59fX10dHRlR3MZysIwAgSDAQJBsG07ndNnEQia2HbIr4ZFYRhm3txble7dZ6QnbphYKHzBl5nxqnFwccjMqNC4/n143oARZf7vw8BUgUE9l6NOocKvoulGhIi6cUwsFuPNN99k3rx5hMPhYpsjFBjDMJg7d+6YtLOoqKhg2rRpbNy4cdQfSyhP1C7p+AqVFi1+FattVlFBLWEdpiIQYvqUOhrqZ1IdMok5mj7HJea6xHSKhEoSV30kVRxHx/FwcXQSVydx3BiOTuA4cTydpK+vi61bt7B9+1bA8HtgKHIEWabO1MsRc+B799K2pgsRMgUaQI4XkOz6/mvnnt/vhfM9iS7xeIq+WL9n3L+W7+kLBkOEQmGCQYtQKJrtXaiyXs2MsDRyBJ/Zn0dIZpSYpt9bmZ7xmpkvm753Xyj6IlIpg1h8+z78hoWJgIi6cU4qlWL58uXMnj2b6urqYpsjFJBZs2YNOXKqr6+PHTt2EI/H99ijLoNpmkSjUSZPnjxok9uGhga6u7vp7OzcJ7sFYbekvXQoC9MIYweqqQxOoU5Np9arI1ob5r0HzuT4pl6mN7RhGJreHpuumE1XMki3E6IzFaErVUeXA50JTU/Kpdt16FI99AQ76PN2klCdJN0eIhGYOcNm8uQ61qxeTTKVymtYqzIiKEfM9au5tDDTXna6hdZGzrpcEdh/rsq6oDIiykjfugE5Id4MuTNck8k4yWQ83YBtS/ZxyXoJd/Ua5nocc2fDejnXdnP+7fU3d0ufn/E+uu7A3omjSiG8bOKpGxEi6iYAnuexevVqpk2bRkNDQ7HNEQpAfX09NTU1A/a7rktLSws7d+7cq+t2dnayefNmpk2bxuTJkwccnzVrFq+//jqpVGqQswVh7xg87GoTsKJUBCYzSc2kzqtl+pTJXHBkFUcftwnz8DnohgWo7h4qt+6gcWsX3s5unB0usXaTrq4w22IRNseCbElYbItbbI+bmJ6JNjSe6Tcw9jwHVyWJRMIsXLiQlStXEovFsu43nRGZGSGWFnQa7YdwVbrbm+4P4faTEz/MFYK5N58j8vz5Fk7+48Eg4jDnucsKsP6Zsr5Xzs+5Ay8ryjLicE+CLvNYKs+zONZoyakrAiLqJhAbN24kHo8zY8aMYpsi7AOhUIhp06YN2J9MJlm5cuU+95bzPI+Wlhb6+voGvFZM02T27NmsWLFinx5DKD92Da8OECmDFEZEApOpM2YyyZvE9CmTWPKuIAsvq8VbcFT/zNOGBlRtLWryDsyObsz2bgLbewm39RBuS2KqKlwdIu4a9KQMgm4AEyubf5aeeAqAZZnM328+K5av2KXiu1/Q5dqdFXYAapAEsF3UUN76LG5aODKEMNzFhl0fIm27yhR/kPGu9bdo27WtS+5jDBRz/Y+jyeQeFqEviLQ0KQpSWjnB2L59O6tWrcLz5JU+EVFKMWfOnAF5dMlkkuXLlxe0WfD27dtZv379gP3RaLTg7VOE0mZXQTdwQa6gszCNEOFALTXWdCZ59dTWRrnqXRYLvv0WvAX75Z/a2YnauRO6e6EvDknHn+uVg6dVto1HUqVwtD8ntj93rF/YmabJ3HlzMS3TFzk6ZxuErMjTesC265/c9bn7+q/v5W/azdkGXj/3nGzRg/b84o90Lz2/SCOV3Xwxl67e1Q4DBN2Q9zCY0BRKDfHUTUC6urqyBRRD5WQJ45OZM2cSCoXy9rmuy8qVK0clJLpjxw4syxrQMmXKlCn09PTQ3d1d8McUSouBTYTZJWdNZf9W6Ty6oBUlGmhiktdITTTK146vZe4tb0XvUvBlvPQK3uubcLtc3JjGjSuchCIeC9Abj7A9FmJTLMimuGJrzGWHE6PT3EHc7STl9uB6iXRlbL5gCwaDzJkzZ4BHeqgQqEbv2RM5xLFsqHMPcc7Brpd3jvJHS+R57rIFH7v6XzKex9x8wf5cwdzHUruEnceKTKriPl9H/BcjQkTdBCUej/Pmm28yd+5cKioqim2OMAwmTZpEXV3dgP2jPc5ry5YthEIhJk2alLd/9uzZvPHGG5JfJwyP3VRp9zcXDhOwokSDjdQxjSojysePbOZt35yaJ+hU6yach17gzf/Wsb63kYSnfG8c4HqKpAcJD7pT0Jn02JGMs12102NsI+bsJOH04LoJNCm/SbF22TVOF41GqaurY2e7n5+6O5E2nON7Ym/Oz5xjGib19fVU19RgWX4Lq/48RYPBB33pQURdvh2dnZ1sat00YrsKhrQ0GXNE1E1gHMdhxYoV0sduAlBRUTFoLmRra+uYeMtaWlqIRCJ5rXEsy8r2rxtuha1QXuxaANFPTihPKVAGRrbBcB3V5lRq3GqOOWQqn7g0hZcT7jdefZ0Vt2/j9+ua+UfLVrpTW3B1fmjQUy4ODkkVJ667iLsdxN0uUo7vnfO8BKBRSlNREaa2tmbI1kD7KtZGm6qqKmbOnEkwEOgPY6dn5fohbYVfEbuLJ1FryHgpdSZ06+bdbWZE4Hh/DoTCIaJugqO1lrFi4xzbtgftR9fZ2cmWLVvGxAatNatXr+aAAw7Im1ISiUSYPXs2a9asGRM7hAlIntDw+8Dp3AnzGBhG2C+MCE6m1prJZLeJeVMa+MZFnXjvWpy9lPHkX3n0/wvxwEtx1m9vYZvZ2v8wucUAeLg6hUOChNdD0uki6fbiuH24XszPJUs3Jd62VbNxg8W06dOora3NM328f1lpaGhg2rRpeX64oQWdkfccZdqxKOWidxP6LZqg0xJ+LQYi6gRhFAkGg8yfPx/Lyv+vlkqlWLdu3ZjakkwmWb9+PbNnz87bX1NTw8yZMwctqhDKnJwCiEy/M50pACCTRxfwPXTBWqrMZia7U6iMhLn5gzH0x07JXsr4w9PcfmcVv3t5Ncl4im6jk4TuwdFxtPbSvdl2nfOawvFipLwYjhvH9ZLpAoJ8z57jOKxdu5be3t68yvLxLOoaGxsHHQ/Y32pl7G0qOFL9OuaIqBOEUSISiTB37txBw+Nr167Fdce+Gm3nzp1UVVUNyK+bNGkSpmmybt06qawWgIEFEEoFUBh4OH6DXeXn0plGmJBVTZXVTKM3gwojxNJFdVTdeHz2Wsbjz/DdH1Xy7Csb6E310WnuoNvbSszZgZOe05rpxWakvVEe/pxXTzs4rj89QutEWtB5eZ6pjDdq69atuK7LzJkzMwfGJXV1dXmCblANp9MeuOxRM6/tSn74dZzeqDDmiKgThAJjGAaNjY00NTUNmuezefNmenrGuLN7Di0tLVRUVAyowq2pqaGpqYlNm4qYWC2MMwxQBkoF0j3hfMnlKiPdKdfCNEMEzAoi1BLGZv+5Uzj4/+Xnia591OG5f7fSm0wQM/ro0ztJuF2k3BjuLqIut9Gu1l56Bmu6vUe2J9tAQZdhqIrv8UJFRUW/6NwVrdPNjY3+yljlT6xQyk3fdmZaTKbqd2B/uvFCIbSm6NWRIaJuAmNZFqFQCMMw9hhmUErhui6xWEw8MaOAbds0NjYSCASorKzMy1vLpaenh82bN4+xdflorVmzZg0LFy4cYOdYzKEVxj+ZvC7fS2en57eGUMrA9ZJ42gFSWGZFfz86t57G+mq+9d6dcOb7s9fq/vpjfPkPms54LzuMbXToTfSltpFwunG9eFq0ZcKv/SOtgBxRl/J7t9Hvldpdrlim4nu8hV8tyxq0TyX0OxVVxgOXbR+Tnk6hM+fkzJTNnuWle9KNIwqUUzcOteq4RkTdBCQzkaCqqmrE53qeR3t7O62trUUJ/5UilmWx33777bEK2XGccVOQEI/H2bBhwwCPwXj7EBSKTLqRcNCKErQqUJikvFjWixYK1lIdmMYkr5Fw1Oa6E20i1/YXRni3P8qXHq5gS3cb7cZWdnob6E1tJ5kRdF6C/nmmwCCiLq+5bqbKcxisX7+eYGB89fGcPXv2kO8TnufR3d1NKpXK+3+4x8bPDC1wM9WvRUNE3Zgjom6CUV9f71dL7aVHxTAMJk+eTE1NDWvWrClqGLBUyHjodkfGO+Y4zm7XjSU7duygoqJi0BmxQpmjFIrM/NYIkWA9IaMKkwAJ3ZPNe4sGGqmlGTsY5NoTmphz25HZSxhP/52v/nISKzavZ7vZRruzjliqnaTTg+vF0Tqxy2grA4U3INyW540aIcnU+OkM0NTURGVl5YD9Wmva2trYsmXLHqMoI2mQLJQnIuomEFOnTqWxsbEg17Isi/nz57NmzRo6OzsLcs1yxDAMGhoa9riupaVlXArolpYWbNvOftiIp07o701n5fSda6bKqyOobbqNTqygDUAVDUQCEb61aAZH3TgbHUw3zm3dxI9vDfLyylXsNNrZ6W6gN7k1ryXJgIIH5eVIlNy0gMHntk4kKioqBh3Nl0qlWL169bA9ahPq/gvV0mQC3fJ4QGa/ThCampoKJugyZOaQDvbtURgedXV1e/Sabtq0iR07doyRRSNnJB8qQrngh0FNI0jQiBLVNVTqSqpUhIiOElbV2CpKZTjK8Qcu4Mh37EBPbc6e7T7yAs/9ZxtxL0UfnSSdLlwvuUtLkvyCh/z5rLkzVJnQn+ymaTJ79uwh5z2X6v89zdDjbke6CcNHRN0EoK6ujubm5j0v3AuUUsydOxfbtkfl+qXOrs1Od6W1tZW2trYxsmbv8DyPlStX0tPTI546AfC9dX6rkhomqZlM0ZOZbIWpD9pUE6VGT2ba5Gl85NBDuOYjmzE+94HsucYfnuaKu6vZ0tVNu7mVTmcjsdROHLd70JYkuSPn/R2Df6pPKC9VDjNnzhwwo9txHFauXCmN44WCI+HXcU44HB66/L1AGIbBvHnzeOONN6QydgQYhkE0Gh30WCqVoqWlZcKEtl3XZcWKFXljxIQyRals6LXKaqZJNxC1LOxIgNkNFUzW1dTWhjm2yeO4k7ehP5Yj6P71H265LcK/W1bTYXTQ7qyjL7kdx+1De8ndDp7P/blUcscaGhqoqanJ25fJrx3Nec/jAwVeAarpC3GNMkJE3TjGNM1Bx0uNBrZtM2vWrHFTnTkRqK6uzvvdJBIJkskknZ2dbN++fUIK5FgsVmwThCLiiykDw7AJB+po8mZRaQU4ZH4tn3l7L9VTdqI9sOoMrBMOwpuTUxjRsoGHbkzw+L820GV0sUOvpy+1nZTb43vocIftdZuoIi6XaDQ6aK+8DRs2jMv82oIjY8KKgoi6ccxgbvsM3d3d7Nixg76+vmGHzEzTJBqNUl9fP2i4taamhoaGBrZu3bpPdpcLuS1lWltbx2yOqyCMJkqZWS9dg6pk4YwavvbVFN77T8pbl/tZqzZvZtk1rfzoH2vp8nrZwXq6k5tJOT14XjrkOsHDqCNhqHnPO3fuZPv27UWySigHSianbt26dZx33nnMnj2bcDjM3Llzueaaa/aYs3D88cejlMrbPve5z42R1UNTX18/wG0Pfi7G6tWrWblyJe3t7cTjcRKJxLC2vr4+tm7dymuvvUZra+vAB8WvsJUQ3PDIiLre3l4RdEJpoPyRYEGrkkY9g4pQkOsv7cZ7/7uHPmVLG//8+jquf66Vrt5etqkWulKbSaQ605WuqWx/uXIQdIFAgPnz52OaZt7+RCJRdvOVtVYF2YThUzKeujfffBPP8/jxj3/MvHnzePXVVzn//PPp7e3lu9/97m7PPf/887n++uuzP0cikdE2d7eEw+G8odQZEolEwZJrt2zZQl9fH3Pnzs2bKpCpiJX8ut1jWVa2N12xJ0QIQiFRKkDACBPVEebMqEZ98KDdSjH34Rf4zb+q6NkZJ2b0Eve6cNxYelbr+OnLOBbYts38+fMHRFi01qxdu7bs3lMl/Dr2lIyoO+mkkzjppP7wwJw5c1i+fDl33nnnHkVdJBKhqalptE0cFkqpIcvfV6xYQSqVKthjdXd3s3r1aubNm5f3eLZtM3369LL7VjkSMgUSqVSKrq6uIlsjCPuOPxTMxDRCVFnNTLYjXP2J7ejq6sHXt++k57a/cv0fqnhlXRs9Rjft3np6k1tIOl14Xiwddh3+FIiJTG1tLTNmzBjgoQM/PaNUW5cMifSpKwolI+oGo7Ozk7q6uj2uu++++/jlL39JU1MT73//+/nGN76xW29dJpyZoZAf6jNnzhwwaN1xnIILugzd3d2sXbuWOXPm5O2fNGkS3d3dtLe3F/wxS4GMqNu5c2eRLRGEAqIs7EA19Xo686dXYVx8bPaQ8ewynFXbMYIGznaHF1+p5zcvR1i+eTs9qpcdej09yS0kUzmCroRnPAWDQUKhEKFQiEmTJg2ZttLZ2Sl5ysKYUbKibtWqVfzwhz/co5fuE5/4BDNnzqS5uZn//Oc/fPWrX2X58uX87ne/G/KcpUuXct111xXaZCZPnjxAhGbK30ezn1FHRwebN28e0PF8xowZ9PX1EY/HR+2xJyoZUdfR0VFcQwShUCiFUgEqApOZTBXfOKf/C13yO4/wmxdnsLG3Gc/xiHfGWb9xJ47r0aPjbDdafEHndKXz6Pp70ZWal86yLGbNmjWs2dvJZJJ169aNvlHjEL/58L7nw0lO3cgY96Luyiuv5Dvf+c5u17zxxhssXLgw+3NraysnnXQSH/3oRzn//PN3e+4FF1yQ/ffBBx/MlClTOPHEE1m9ejVz584d9JwlS5ZwxRVXZH/u6upi+vTpw7mdIamoqBj0Gps2bRqT8vfNmzcTiUSozgm15Pavc1131G2YSITDYVzXLY/WBEKZYGCZEWrUVCbVVmB8bjEA+me/Z8ljDTzd8hyhnmpsHWRKIIqjNR1Ogq1mK12pTekGw73ZwggovUrXQCDAggULhuxKkEvmC3k5v3fqAvSYK8Q1yolxL+q++MUvcs455+x2TW7ocNOmTZxwwgkcc8wx3H333SN+vKOOOgrwPX1DiTrbtgs6gWGo8vfOzs4xrapct24d+++/f94bVjAYZO7cuaxYsWLM7BjvRCIRlFJ0d3cX2xRBKBgKhaEsKnQ1sxr7m2q/8lwtT698iZibQKk4Boq465HQLl2qh7juIuXG8bwkuaO9Sk3QGYYxaBHEUKxfv7788uiEojPuRV19fT319fXDWtva2soJJ5zAYYcdxj333JNX1Tlc/vWvfwEMOnx5NAgGg+y3335YVv6vIpVKjbnb3nVd1q5dy4IFC/L2F7saeLyRyZ0RUSeUCgoFyiAcrKVB1fCNT/q91NRDT/C1ZzqIuX3EvJ3EVRe2ESXlpUiqJN1spSfVltO+xC3JkCv487d3zXceik2bNkk+coHmtkqhxMgomT51ra2tHH/88cyYMYPvfve7bNu2jba2try5m62trSxcuJB//vOfgD/I/IYbbuCll15i3bp1PProo5x11lm8613v4pBDDhl1mysqKliwYEG2NUYua9euLYrbvre3l02bNuXtk3mg+WREroRehVJCKZuo1UR1VQTjcx8E4Lu3V9LWs4Vut42e1BY6kxvpcDawVa1jh15Pl7OJeKoT14uDdkq20tW2bRobG4e1dtfPnfKlQD3qJKduRIx7T91weeKJJ1i1ahWrVq0a0OMtI0pSqRTLly/PusSDwSB//vOfue222+jt7WX69OmcdtppXHXVVaNqq2VZNDY20tDQMOgIsM2bNxdVMLS1tVFVVTXkXNNyJxwO43mejNQSSgelMI0Qk5jGBxdWAGD88Tl+t2IVHbo1XQThvyeljF4cy3/tJ91ef66rTpWkmMswderUPY5r1FrT0tLCjh07xsgqQRhIyYi6c845Z4+5d7NmzcrzOk2fPp1nn322YDbMmjULwxjYoyiDUopAILDbcGZ3d/e4aGa7Zs0aDjjgACzLEk/dLkQiEXp7e4tthiAUEIOgFWWSV8vHvlWFB9z1fZv22Pb0dIgOPO23cfJ0Ek87KGXgeUl/v3YArySFXSgUGnS6TwatNTt37mTTpk2j2qVgIiKFEmNPyYi68UB1dc2gjSeHSyqVYu3atQW0aO9xHIe1a9cyf/58EXU52LaNYRgi6oSSQaFQyiQcqKMiHMR761sAeGDlCjrdTcSTO/vHfQFKOWjtoZSB1h5aO76YK9H3icHCrl1dXWzbto14PE4ymZT3yEHwW5oU4Dry1I4IEXXjhEz5u+OMn7E63d3dtLa2DrtQpRzIJEpLVZtQSihlYRtRJtX6KRfGU3+jq6OPlNuDp5NZTxwAWqFJAQHATY8NKM0mw6ZpDugdunnz5nERTRn3aOlTVwxE1I0TWlpaxqX3Z8uWLXtVRVyqZELnIuqEUsJQNpPUTK56ux9ivfdmRZfeTl9yhz8dAjfrMtHKRWnQJdq6JJf6+vq8XLpt27aJoBPGNSLqxgGtra3jOrlW3sT6CYVCuK4ruTNC6aAUlhmhQU9mxp3/D4CfLH+TLndTtggit02J0r6w64+LlebkCPCn/GSIxWJs2LChiNZMPLwC5MN54qkbESLqiszGjRtlLuAEIhQKiZdOKCkUJrZVSV1lBAIBvB89Qmd3F33J7WgvNkCwaTRKA6o0Q64ZotFoXqPh9evXF9GaiYnk1I09ElcrEslkkpUrV4qgm2CEQiFpZSKUDH7TYYtooJF5DX4+3bUP1NPhbSbpdKEZvO9cXmFEiX7q5la87ty5U77MCRMC8dQVkO7u7j1WvzqOQ1dXF+3t7VIxNcGwbRullLy5CyWFUgYho5r3zvY9by9t2UTS68lWu+6WEn4Pq62tzf5714bswp7xq1+lUGKsEVFXQNasWQ3IC7BUyYwHE0+dUDIohaFsJntTOObmOXjAlp5t6dBrctiirdTy6SoqKrKTfjo6OkgkEkW2aAKSmQixr5cRUTciJPwqCMMk084kHo8X2RJBKBQGlhmhKVyLN2MGHV98mI7Ult2GXjOUmpDLJbeNyZYtW4poibA3tLa28slPfpJJkyYRDoc5+OCDefHFF7PHtdZcffXVTJkyhXA4zKJFi1i5cmXeNdrb2znzzDOpqqqipqaG8847b0KMhhRRJwjDJBQKkUgkJGwulAwKRShQTbTC/8Jy5Z+r6XI24aULJPaEpjSrXjP5dLFYbFy2mpooeFrt8zbSt9udO3fyjne8g0AgwP/93//x+uuv873vfS8vnH7TTTfxgx/8gLvuuovnn3+eiooKFi9enPeF/cwzz+S1117jiSee4LHHHuO5557jggsuKNRTM2pI+FUQhokUSQilRH+RRBMXHOTnAq/qaqMvuQOtd++lK2XC4XA29Lp9+/YiWzOxKcaYsO985ztMnz6de+65J7tv9uzZ/dfTmttuu42rrrqKD37wgwD84he/oLGxkYcffpjTTz+dN954g8cff5wXXniBww8/HIAf/vCHvO997+O73/0uzc3N+3xfo4V46gRhmIioE0oNw7CpYxrv/N4cjHXr2N63lZTTQ6lOiBgO1dXV2X/v3LmziJZMbDJjwgqxgT+aLXcbKs/x0Ucf5fDDD+ejH/0oDQ0NvPWtb+UnP/lJ9vjatWtpa2tj0aJF2X3V1dUcddRRLFu2DIBly5ZRU1OTFXQAixYtwjAMnn/++cI/WQVERJ0gDINAIIBhGJJPJ5QUhrKIGhV4s2aTevRFet2ubLPhcqWqqgrwRcR4GttY7tTV1VFdXZ3dli5dOui6NWvWcOeddzJ//nz++Mc/cuGFF3LppZfy85//HIC2tjZg4EzfxsbG7LG2tjYaGhryjluWRV1dXXbNeEXCr4IwDGzbBqRIQighlMI0QkyK1ABw3f1NdDlPgnbKNvRqGAbRqN+vT7x0+4guzDSIzDXa29vzWoZl3pMHrPc8Dj/8cG688UYA3vrWt/Lqq69y1113cfbZZ++zPeMd8dQJwjCQyleh9DAIB2upr6oA4O9bW/xWJrhFtqt4ZLx0Wms6OjqKa0wJoNNtTfZpS7cJq6qqytuGEnVTpkzhgAMOyNu3//7709LSAkBTUxMwsKp5y5Yt2WNNTU0DBgM4jkN7e3t2zXhFRJ0gDAOpfBVKDaVMKqwGrj7Kr+7s7Osm5faUdeg1UyHZ1dWF65avuJ3IvOMd72D58uV5+1asWMHMmTMBv2iiqamJJ598Mnu8q6uL559/nqOPPhqAo48+mo6ODl566aXsmqeeegrP8zjqqKPG4C72Hgm/CsIwCIVC4qUTSgaFQim/SGLqD06E+x5jh9OK58XKNvQKZEOv4qXbdzSqoOHX4XL55ZdzzDHHcOONN/Kxj32Mf/7zn9x9993cfffdACiluOyyy/jmN7/J/PnzmT17Nt/4xjdobm7m1FNPBXzP3kknncT555/PXXfdRSqV4pJLLuH0008f15WvIKJOEIZFKBSSHBuhpDCURaWqhHCE5f9nEfe6QJdv1WtuK5POzs4iW1MaFGOixBFHHMFDDz3EkiVLuP7665k9eza33XYbZ555ZnbNV77yFXp7e7ngggvo6Ojgne98J48//ng2zQbgvvvu45JLLuHEE0/EMAxOO+00fvCDH+zz/Yw2IuoEYQ8opQgGg+KpE0oKy4xQX+G377jmBU1fcltZ59NFIhEA+vr6pOp1gnPKKadwyimnDHlcKcX111/P9ddfP+Sauro67r///tEwb1QRUScIe0AqX4WSQylsq5LKiO+Z2BTfStLpKut8usrKSsDPrxIKQyH8vuX7itw7RNQJwh7IiDoZ6i2UCgqTaKCRSw7xf26P7cCVfDpAQq+Fwm8+PPbh13JHql8FYQ+EQiFc15WQjFA6KIsaNZXDvzMP7nmYDmcj2ksW26qiEQgECAaDuK4rs16FCY146gRhD9i2LaFXoWRQKAzDpoEGvJmz+O7PW+lNlXd/Ogm9jgIFbj4sDA8RdYKwBzI96gShVDCURWUkDMCLmzpxvfJ+fWdCryLqCouEX8ceEXWCsAds25Y3e6F0UArLjBAOBQHYEt9JyinvpsMZT113d3eRLSkdNOAV4CVViGuUE5JTJwi7wTAMAoGAhF+FEsIgFKjmkwv8AqAdsW1lXSRhmia2bZNKpUgmyzevUCgNxFMnCLtBKl+FUkOhiFpNvO+6KnjmL+z0NoIu3yKgigp/9m1PT0+RLSk1lIRfi4CIOkHYDSLqhJJDWdTSjPe2t/G7U/5a9kUSmXw6Cb0WHo8CFEoUwI5yQsKvgrAbQqEQqVQKz5O3FqE0UCpAVcDPIXuqJYXjxopsUXERT51QSoinThB2g7QzEUoJhcI0QlSF/JFYK7u3ln2RRCQSwXEc+X8+ChTkZVW+L829QkSdIOyGUChELFbengyhhFCKgBWhsaIKgPZYR1kXSYRCIUzTpKOjo9imlBxa+tQVBQm/CsJusG1b8umEEsIgHKjj64fHMFatYofTKkUSSOhVKB3EUycIQ2AYBpZlSVhGKBkUiqhZz6zvvZ2XLv0PPU6bFEkgom60KEyhhHjqRoKIOkEYglAoBEjlq1BCKIMw1ehJk/m/dQFSbnl/YamoqEBrLSkWo0QhcurKMzFg7xFRJwhDIKJOKDWUsmgINAHw3JY2EqnOsi2SMAyDUChEb28vukyfg9HEnyghOXVjTUnl1M2aNQulVN727W9/e7fnxONxLr74YiZNmkQ0GuW0005jy5YtY2SxMJ6xbZtkMilv+EJJ4Fe+hqkO+SHHWDyO68XLtkgiEvErgHt7e4tsiSAUjpISdQDXX389mzdvzm6f//znd7v+8ssv5/e//z0PPvggzz77LJs2beLDH/7wGFkrjGdCoZB46YSSwjIjNFX6xQHbkm1oXb6v73A4DIioGz0UukCbMHxGHH49++yzOe+883jXu941GvbsM5WVlTQ1NQ1rbWdnJz/96U+5//77efe73w3APffcw/77788//vEP3v72t4+mqcI4x7ZtecMXSgelCAWq+doR3Rh/W0aXsxmty7dIQjx1o49XACdwIa5RTozYU9fZ2cmiRYuYP38+N954I62traNh117z7W9/m0mTJvHWt76Vm2++GccZulz/pZdeIpVKsWjRouy+hQsXMmPGDJYtWzYW5grjGPHUCaWFQdRqYvotx/KH7zr0prZTzkOYMk2Hk8lksU0RhIIxYlH38MMP09rayoUXXsivf/1rZs2axXvf+15++9vfkkqlRsPGYXPppZfywAMP8PTTT/PZz36WG2+8ka985StDrm9rayMYDFJTU5O3v7Gxkba2tiHPSyQSdHV15W1CaREIBDAMQ9qZCCWDQmGrKLq6jidbtD8erEzzRZVS2SIJYXTINB/e101LocSI2Kucuvr6eq644gr+/e9/8/zzzzNv3jw+9alP0dzczOWXX87KlSsLZuCVV145oPhh1+3NN98E4IorruD444/nkEMO4XOf+xzf+973+OEPf1hwb8vSpUuprq7ObtOnTy/o9YXiY9s2IJWvQgmhLJqsqQC82tGG4/YV2aDiEQ6HUUqJqBtlJKduaF5++WWWLFnCzp07AbjqqqsKct19KpTYvHkzTzzxBE888QSmafK+972P//73vxxwwAHceuutBTHwi1/8Im+88cZutzlz5gx67lFHHYXjOKxbt27Q401NTSSTyQEjYrZs2bLbvLwlS5bQ2dmZ3TZs2LC3tyeMU0KhEFprEXVCSaBQGIZNjV0JQE+it6zHg2Xy6fr6ylfYCsXlggsuIBqN8qEPfYjOzk6eeuqpglx3xIUSqVSKRx99lHvuuYc//elPHHLIIVx22WV84hOfoKrKnyf40EMP8elPf5rLL798nw2sr6+nvr5+r87917/+hWEYNDQ0DHr8sMMOIxAI8OSTT3LaaacBsHz5clpaWjj66KOHvK5t21lPjlCaSD6dUGpYZoSqsN97cVtic1mPBxNRNzZIocTQhEIhvv71r/Oe97yH8847r2Cts0Ys6qZMmYLneZxxxhn885//5NBDDx2w5oQTThiQpzbaLFu2jOeff54TTjiByspKli1bxuWXX84nP/lJamtrAWhtbeXEE0/kF7/4BUceeSTV1dWcd955XHHFFdTV1VFVVcXnP/95jj76aKl8LXNE1AklhVIErUq++BaN8cKLfuVrGY8Hi0QipFKp3RbSCfuGhoKETks1/JppqXPEEUfw3ve+lwsvvLAg1x2xqLv11lv56Ec/mu22Pxg1NTWsXbt2nwwbKbZt88ADD3DttdeSSCSYPXs2l19+OVdccUV2TSqVYvny5Xnfzm699VYMw+C0004jkUiwePFi7rjjjjG1XRh/hEKhbK6DIJQCASPMQcf10PdoO45X3mOxwuGwFLiNAeKpG5pvfvObOI6DZVmcd955TJo0qSDXHbGo+9SnPlWQBy40b3vb2/jHP/6x2zWzZs0a4OIMhULcfvvt3H777aNpnjCBUEoRDAal8lUoIQwqrUaMC0/jhiOfI17G48FCoRBKKQm9CkXlqKOOyvv51FNPLch1ZfarIOyCzHwVSg2lTOotv0r/pfYtOG5f2RZJZMJeIupGF5n9OjTPPffcXp03a9YsZsyYsds1IuoEYRcyok48dUKpoJTN5KAf3umL9+GWcfhViiTGjvL82rBnzj777BGfo5Tisssu49JLL93tOhF1grALoVAI13UliVooCRQK0wgRsYOAP/O1nCtfw+EwjuMUvVm+UL6MZs2BiDpB2IVwOCyhV6F0UIqAFeHd06tQbZvoLPPK13A4LF66MUFJ+LUI7FPzYUEoRUKhELFY+YanhNIjYIQ5aVYX+o/Pk3J7im1O0TBNk0AgIKJuDND4k4ULsZUiv/nNb/LmDm/cuBHP67/bvr4+brrpphFfV0SdIOSQmQkp+XRC6WAQDtQx69uH8eOf15d15asUSQjjhTPOOCNvmtUBBxyQN/2qu7ubJUuWjPi6En4VhBykSEIoNZQyqTab0Q2N/O+GZWVd+ZopkhBP/BigQRcgdFqq3z92ba9WtIkSglDKZL7Ji6gTSgWlLBoD/izrWDKOp8s3XzQSieB5nuTMjhGFCJ2Wavh1tBBRJwg5hMNhtNbypi+UBH7la5jKYBSA7YntaC+5h7NKl3A4LF/Yxgi/T92+X6dUJ0qMFiLqBCEHqXwVSg2lLGzbf6vvcTrLNvQKfnrFjh07im2GIADwxz/+kerqagA8z+PJJ5/k1VdfBcjLtxsJIuoEIYdwOExPT/lWBwqlR9Cq5N3TqzGWv0m320a5BrQy48Ekn27s0BSiHUnptjTZtQnxZz/72byflRr5vYuoE4Q0lmURCAQkPCOUDkoRDtTx2U9s5d/X9hJLtZdu5vkeyBRBiagbOwoSft33S4xLctuXFBJpaSIIaaQyTig1FCZVZhOceyrf/bci6ZSvF1pEnVAOiKdOENKIqBNKDmUwSTUBih2xblwvXrY5deFwmGQyieuW7zSNsaYQ4dfChHDHF7Nnz96r0KrMfhWEEVBRUSGVr0JJoZRNte1XvnYlu9Fl3M4kHA7LF7YxRKpfh+bee+/dq/NmzZq1xzUi6gQhTUVFhbzpCyWFoSyCdgCAzmQn6FLNUNoztm3vdUWhIBSS4447btSuLaJOEIBAIIBlWfKmL5QMCoVphjhwUh2g6fQ2oynP0KNUvhYH8dSNPSLqBAGIRv0QlcyEFEoGpQhZ1Xz9hFa45yF6nW1lW/mamRQjom4sUZJTVwRE1AkCUFlZCYioE0qLcKCOyLc/xo9P/DvxVGexzSkamUkx0q5o7NC6MF62Mv0estdISxNBoN9TJ2/6QqmgMKlRUwGDxze047h9ZVv5GgqFpABKKAvEUyeUPYFAgFAoRDweH7WGkIIw5iiDaKAKgHgiiaedIhtUPMLhsHjhi0Ah3k3lHXlkiKgTyp6qKv+Dr7e3t8iWCELhUMqiLlgDQFeifNuZKKWwbZv29vZim1J2aF2AnLoCXKOckPCrUPbU1NQAIuqE0kGhMI0wkaA/RWGHuwWty7fyFaRIQigPxFMnlDWmaWY9dT095TtCSSg9LDPCe2dVY/zzBbrcNso1kCWirjhoJPxaDETUCWVNXV0dSilc15UiCaF0UArbquS8c3fw9E01xFLtZVtGGAqFZFJMkZA+dWOPhF+FsqahoQGQViZC6REwo7Do7Ty5wcD1ylfQZIqgBKEcEFEnlC3Nzc3Ytg1AV1dXka0RhEJiEDXq0Q2NvLxjGymnp2zbmcjM1+KgC7gJw0fCrwVk5syZGIZZbDOEYWBZVrbhMEB3d3cRrRGEwqKUSWNgOgCxZByvTCtfAal8LSKeVL+OOSLqCkhNTS2mKaJuopFKpST8KpQUStlU235D7fbkdrSXLLJFxcG2bZn5WkQK4WUTT93IkPCrUPZ0dHQU2wRBKBh+O5Mg0Uw7k1Rr2YZeM5WvklMnlAviqRPKHhF1QqkRsKJ8emEE/ucR+lLbKNfGEFL5Wjw0Uv1aDETUCWVNKpWSfDqh5DANm3ceuJX1T0ZwvETZtjMJh8Mi6IqI9KkbeyT8KpQ1W7ZsKbYJglBYlCJi1RH51ml8++UKkk75NtWWdiZCuSGeOqFsSSQSbNu2rdhmCEJBUZhUWVPAMGnt6cT14mWdU9fZ2VlsM8oTXRgHcZk6mfcaEXUFpLe3V6pfJwiu67Jhwwa0vGMIpYYyaLCmANCT6kOXaTuTQCCAYRjiqSsS/piwfW9HUohrlBMi6grIqlUrQV6AgiAUEaVsKu0IAFtTm9DaLbJFxUEqXwWAb3/72yxZsoQvfOEL3HbbbYD/mvjiF7/IAw88QCKRYPHixdxxxx00NjZmz2tpaeHCCy/k6aefJhqNcvbZZ7N06VIsa3zLppLJqXvmmWdQSg26vfDCC0Oed/zxxw9Y/7nPfW4MLRcEQSgchrKwgwFA0+eU76QUEXXFR+vCbHvLCy+8wI9//GMOOeSQvP2XX345v//973nwwQd59tln2bRpEx/+8Iezx13X5eSTTyaZTPL3v/+dn//859x7771cffXVe2/MGFEyou6YY45h8+bNedtnPvMZZs+ezeGHH77bc88///y882666aYxsloQBKFwKBSmGeK4qZMwXnqZXqe825kkEglJsSgiXgG2vf3t9fT0cOaZZ/KTn/yE2tra7P7Ozk5++tOfcsstt/Dud7+bww47jHvuuYe///3v/OMf/wDgT3/6E6+//jq//OUvOfTQQ3nve9/LDTfcwO23304yOb4beZeMqAsGgzQ1NWW3SZMm8cgjj3Duueei1O5DopFIJO/cqqqqMbJaEAShsISsai7+SCt/vbGDuNNRtpnmtm2Ll66IZPrUFWIDfz537ranVjUXX3wxJ598MosWLcrb/9JLL5FKpfL2L1y4kBkzZrBs2TIAli1bxsEHH5wXjl28eDFdXV289tprhXmCRomSEXW78uijj7Jjxw7OPffcPa697777mDx5MgcddBBLlizZ48ioRCIx4AUmCIJQdJQiEqjHuOgj3PmGS8rpKevKVxF1pUNdXR3V1dXZbenSpUOufeCBB3j55ZcHXdPW1kYwGKSmpiZvf2NjI21tbdk1uYIuczxzbDwzvjP+9oGf/vSnLF68mGnTpu123Sc+8QlmzpxJc3Mz//nPf/jqV7/K8uXL+d3vfjfkOUuXLuW6664rtMmCIAj7hMKkxpgCKDpivbheec48NQyDYDAooq7IFHL2a3t7e153Cdu2B12/YcMGvvCFL/DEE09k8yrLiXHvqbvyyiuHLIDIbG+++WbeORs3buSPf/wj55133h6vf8EFF7B48WIOPvhgzjzzTH7xi1/w0EMPsXr16iHPWbJkCZ2dndltw4YN+3yfgiAI+4wyqLcbAOhMdaG1U2SDikPmA19EXXEpSPg1fa2qqqq8bShR99JLL7F161be9ra3YVkWlmXx7LPP8oMf/ADLsmhsbCSZTA4YD7llyxaampoAaGpqGtCYPvNzZs14Zdx76r74xS9yzjnn7HbNnDlz8n6+5557mDRpEh/4wAdG/HhHHXUUAKtWrWLu3LmDrrFte8gXlCAIQrFQyiISCAPQk+wBXb5FEiCirhw58cQT+e9//5u379xzz2XhwoV89atfZfr06QQCAZ588klOO+00AJYvX05LSwtHH300AEcffTTf+ta32Lp1Kw0N/pekJ554gqqqKg444ICxvaERMu5FXX19PfX19cNer7Xmnnvu4ayzziIQCIz48f71r38BMGXKlBGfKwiCUEwMZRMO2YCm3d2Ipnx71DmOg+uW5/2PF4oxUaKyspKDDjoob19FRQWTJk3K7j/vvPO44oorqKuro6qqis9//vMcffTRvP3tbwfgPe95DwcccACf+tSnuOmmm2hra+Oqq67i4osvHvcOnXEffh0pTz31FGvXruUzn/nMgGOtra0sXLiQf/7znwCsXr2aG264gZdeeol169bx6KOPctZZZ/Gud71rQF8bQRCE8YxCYZkRPjG3EuOxJ/x2JmVa+SpFEsXHnyhRmK3Q3HrrrZxyyimcdtppvOtd76KpqSkvj940TR577DFM0+Too4/mk5/8JGeddRbXX3/9KFhTWMa9p26k/PSnP+WYY45h4cKFA46lUimWL1+erW4NBoP8+c9/5rbbbqO3t5fp06dz2mmncdVVV4212YIgCPuGUoQC1Xz40hS/uS1MPFW+M09DodAeuxgI5cMzzzyT93MoFOL222/n9ttvH/KcmTNn8r//+7+jbFnhKTlRd//99w95bNasWXmNKKdPn86zzz47FmYJgiCMMgYVVj3ee07gwUv/D8ftK9t2JrZt097eXmwzypucHnP7dJnyfAnvNSUn6gRBEMoRhSJsVQGKeCKBLtNJEoFAAMMwJPw6DihkSxNheIioEwRBKAWURUNwKgA9yRiet/uO+6WKVL6ODzITJfaVQlyjnCi5QglBEIRyxDBsqoKVAGxLboUy7VEXCoXQWu9xjJQglCLiqRMEQSgBTCPEpFAU0HR4m8u2nYlt2yLoxgma3c9dH6trlBMi6gRBECY4CoUdqOaLb9G4t/yGvpS0MxGKj4Rfxx4JvwqCIEx0lCJi1fGWq6dx68PTSDjdxbaoaIioE8oZEXWCIAglQNCI4i08gH9v6cH1ksU2pygopQgGgxJ+HQdkCiUKsQnDR8KvgiAIExyFyaSAX/namejD9eJl2aMuM8JJPHXjA2lpMvaIp04QBGGioyxqg9UAdCf60DpVZIOKg7QzEcod8dQJgiBMcEwjTCQYBmCr01a27Uxs28Z1XVy3PCt/xxOF6lNXpvU+e42IOkEQhAmMQmGZET41rxa6u+gq43YmUiQxvihECkA5phHsCyLqBEEQJjimEeSEedsxnvobSbe32OYUDRF144gCFTlIocTIkJw6QRCEiYxShAN11H37PfzqjgriTkfZxqyk8bBQ7oinThAEYUJjUGk2QUWU367pJuX0FdugomCaJpZliaduHCHVr2OPiDpBEIQJjFImjUG/nUk8kZJ2JiLqxgWFKpSQ8OvIkPCrIAjCBEYpm6gdBWBHoh2tyzP8mGlnIuFXoZwRT50gCMIEJVP5OrdyEgDb3c2gvSJbVRxs2yaZTKLLNJ9wPFKIX4X8OkeGiDpBEIQJjGkEOXZaAOO1V0nqnrIMvYJUvo5HCvH1ojxfzXuPiDpBEISJilKEAtWccVEfy65N0OtsozAfpRMP27bp7S3fdi6CAJJTJwiCMIExiFpNeKe8hzte84inOss2XiWeuvFFplBin7di38gEQzx1giAIExSlTOqt6QB0xWO4XnmKGsuyMAxDiiTGE1py6oqBiDpBEIQJilI2tcFaADqS3bherCxz6jKVr+KpG18UwssmnrqRIeFXQRCECYhCoZSBbfvfzTsTXegyrnzVWpNMJottiiAUFfHUCYIgTFAsM8KBdZMATYfeDNoptklFIRQKSeh1nKGR8GsxEFEnCIIwEVGKkFXNNxZtwln6a3qctrIMvYKIuvGKhF/HHgm/CoIgTEgMooFGwt/6GN9+bJpf+VqmH4G2bUs+nSAgnjpBEIQJiVImNeYUQPGfbZ04bl/Zxqps2xZP3TikENM9ZELIyBBRJwiCMMHwiyRsJtv1APQm4rheeRYJBINBlFLiqRtnZPrU7fN1RNONCAm/CoIgTECUMrCDQQC6E31onSrLnDrbtgFpZyIIIJ46QRCECYllRphW4feo2+q2lnXlq+d5OE553v94phBfMcrva8q+IaJOEARhopGpfD2iD+P3f6LLLd/KV8mnG78UIvxaiGuUEyLqBEEQJhgKk3CgjunfOYr7PrWcWKqdcq18lZmv4xOtRdQVA8mpEwRBmGgog2qzGT25nkfXdpN0uss2o1w8dYLQj3jqBEEQJhhKWVTbNQDE4ym8Mq18BelRN54pREpAuaYV7C0i6gRBECYQCoWhbKrtSgC64314OlGWH36Zylfx1I1PJPw69kyY8Ou3vvUtjjnmGCKRCDU1NYOuaWlp4eSTTyYSidDQ0MCXv/zlPVZEtbe3c+aZZ/L/t3fvUVFdd9/Av+fMMDdhQOSmhniJXV4SW7wUgklTvERsXE/iW+ubm0YTI00C9alYY3xqvBYxxhgTa7RdKpgYlyZp0iRqrYgkaQKK5S3WK+tN3lgMCkhQRkAYZma/fyATRq4DB+Zyvh/XrDjn7Nnsna3yY+/928dsNiMkJATz589HdXV1D/SAiEgZWo0Jd/YJAwCU2a5AqHSmjseZELnymaDOarVi1qxZeP7551u9b7fbMX36dFitVuTm5mL37t3IzMzEihUr2q33ySefxNmzZ5GVlYUDBw7giy++QFJSUk90gYio+yQJRl1fLP9pNeS8E6gS6s18NRgMsNvtsNvtnm4K3UagcZunEi/qPJ9Zfl29ejUAIDMzs9X7R44cwblz53D06FFERkYiJiYGa9euxdKlS7Fq1Srobh3S2dz58+dx+PBhnDx5EuPHjwcAbNmyBQ899BA2btyIAQMG9Fh/iIi6QoIGfbQRiH7tfhyedxq1DVeh1sxX7qfzbg7uqet1PjNT15G8vDyMHj0akZGRzmuJiYmwWCw4e/Zsm58JCQlxBnQAMGXKFMiyjBMnTrT5terr62GxWFxeRES9QtIiVB4IEdwXu4tuos5WpdrpDIPBwP10RM34TVBXWlrqEtABcL4vLS1t8zMREREu17RaLUJDQ9v8DACkp6cjODjY+YqOju5m64mIOkeSAhB0K0mi9mY9M185U+e1uPza+zwa1L300kuQJKnd14ULFzzZxFYtW7YMVVVVztelS5c83SQiUgEJEjSyAYFGIwDgxs1a2B1WVS5RSZIEnU7HmTovJdC4KUCJF3WeR/fULV68GPPmzWu3zNChQztVV1RUFPLz812ulZWVOe+19Zny8nKXazabDZWVlW1+Bmj86bAp64qIqDfpA4IRG9a4ClFuK4MQ6gxqmPnq7QSEAtNsavyBpTs8GtSFh4cjPDxckbri4+ORlpaG8vJy55JqVlYWzGYzRo0a1eZnrl+/joKCAowbNw4AcOzYMTgcDsTFxSnSLiIixUgS+gSE4fe/LIGc8wWui8sQQp2ZnwaDAQDPqCNqzmf21BUXF6OwsBDFxcWw2+0oLCxEYWGh80y5qVOnYtSoUZgzZw5OnTqFv//971i+fDmSk5OdP9Hl5+djxIgRKCkpAQCMHDkS06ZNw4IFC5Cfn4+vvvoKKSkpeOyxx5j5SkReR4IGwZqB0PzuUXz4mqz6zFebzQaHQ53993q3nv2qxIs6z2eONFmxYgV2797tfD9mzBgAQE5ODhISEqDRaHDgwAE8//zziI+PR58+fTB37lysWbPG+Zna2loUFRWhoaHBee3dd99FSkoKJk+eDFmWMXPmTLz55pu91zEios6SZAQFBAMAPrtkg81Rr9qd5EyS8G6Ne+q6/2dTiTrUxGeCuszMzDbPqGsyaNAgHDp0qM37CQkJLdb4Q0NDsXfvXiWaSETUo2TZiBC9GQDwnyoLrDb1Pv2Gx5kQteQzQR0RkZpJkBCgCcRdQY37kK/VWWB31Kl2I7ler+cZoV5OkUlkdf7x7jIGdUREvuDW48HSJn0PQOCqXb2Zr7IsIyAggMuvXo7Lr73PZxIliIjUTIIGgdoohGyeiYY/vIcqe4lqM1+bkt+4/ErkijN1REQ+QJJ1CNX2ByBh7YGBqLVVQq2Zr03HmXCmzrspsfyq0jygLmNQR0Tk5SRIjY8HMwYCAL6puAGb/aaHW+U5er0eDQ0NihxuSz1DuexXcgeDOiIiHxCgCUSkIQwAUFNnhc1eq9ppDIPBwFk6ryfgUODPpxJ1qAn31BEReTtJA6OuL34/tvHn8O/rqlT7zFegcaaO++mIWuJMHRGRF2tcem1MkvjxhpGwb/0LrkqXVZv5CjQGddeuXfN0M6gDSvzQodYfXLqKM3VERN5MkiDLRoQG9IcYeAc27I9Cla0EEOrcbaTRaKDVajlT5+Ua99R1/8WQzj0M6oiIvJwsaRFo6gMA+L/ltbA5bqp2BqPpOBPuqSNqicuvREReTIIGOq0Zd/UZCACorq1HXUMV1JoX2HScidVq9XBLqCM8fLj3MagjIvJSEiRA0iJQF4m0+2sBABW1N1Sd+arX62G1WnmciQ9QYow4zu7h8isRkbeSJGhkI4I1AxH1xjRIH/wN5SiFQ8VJEjzOhKhtnKkjIvJaMrQaE0KN/YCAAPxxezCuixIIYVPtnjqDwYDq6mpPN4M6oNzhw+r8c95VDOqIiLyQdOuXVmNEn8DGfWQFJTWw2mtUm/kKNC6/VlRUeLoZ1CHBoM4DuPxKROStJC0CdRF4asidAIDKG7W42VCp2lk6rVYLWZZ5nAm1KT09HT/96U8RFBSEiIgIzJgxA0VFRS5l6urqkJycjH79+iEwMBAzZ85EWVmZS5ni4mJMnz4dJpMJERERWLJkCWw2W292pUsY1BEReaNb++n6StGYvcgOALhWW92YJKHyzFfuqfMNjXN13X+54/PPP0dycjKOHz+OrKwsNDQ0YOrUqaipqXGWWbRoET799FO8//77+Pzzz3H58mX88pe/dN632+2YPn06rFYrcnNzsXv3bmRmZmLFihWK/b/pKVx+JSLyMhIkADICtIEIN4TDMeVnqF+9HxWaUtgdN1Wd+SqE4HEmPkCpPXXuzkofPnzY5X1mZiYiIiJQUFCABx54AFVVVdi5cyf27t2LSZMmAQAyMjIwcuRIHD9+HPfeey+OHDmCc+fO4ejRo4iMjERMTAzWrl2LpUuXYtWqVdDpdN3uV0/hTB0RkReSpACYdGEYGNQPALDqYH9U2RuTJNTKYDBw6dWH9P48XUtVVVUAgNDQUABAQUEBGhoaMGXKFGeZESNG4M4770ReXh4AIC8vD6NHj0ZkZKSzTGJiIiwWC86ePdvNFvUsztQREXkbSYIs6xGijcYf7mtcei2uqEGtrRJC2FW7p45BnXpZLBZoNBrne71e73y6SFscDgd++9vf4r777sM999wDACgtLYVOp0NISIhL2cjISJSWljrLNA/omu433fNmnKkjIvI6MmRJB5MUhMGPNH7jslTXwWa/CbXupwMav5FzP51vEBBwKPQLaJxpCw4Odr7S09M7bENycjLOnDmDffv29XR3vQZn6oiIvIwkaaAPCEZYnzA4/msy5M+/wvf2KlU/SQJgUOdrhNT9H0Ca6qisrGwxU9eelJQUHDhwAF988QXuuOMO5/WoqChYrVZcv37dZbaurKwMUVFRzjL5+fku9TVlxzaV8VacqSMi6iJJwV/N65RlIwJ1EYiJGAAAyEgTuCpdakySUCmdTgdJkrj8qlJms9nl1VZQJ4RASkoKPvroIxw7dgxDhgxxuT9u3DgEBAQgOzvbea2oqAjFxcWIj48HAMTHx+P06dMoLy93lsnKyoLZbMaoUaN6oHfK4UwdEZESpB8Csw5n01op6wzsJA10WjPMcn+s+9+Nh+zmXKyBxXZZ9U+SAHiciS/xxOHDycnJ2Lt3Lz7++GMEBQU598AFBwfDaDQiODgY8+fPR2pqKkJDQ2E2m/Gb3/wG8fHxuPfeewEAU6dOxahRozBnzhxs2LABpaWlWL58OZKTkzucIfQ0BnVERF3lDM5uW/SQgJZ739pYGLmtbFPWa0hgMLSL/xfgEPjecuvQYWFXpNm+yGAwwOFw+MQBsPTDnrrucreObdu2AQASEhJcrmdkZGDevHkAgNdffx2yLGPmzJmor69HYmIi3nrrLWdZjUaDAwcO4Pnnn0d8fDz69OmDuXPnYs2aNd3qS29gUEdE1GU/BGrNl1ABQLQSxN1exrWsA4AMWdZDJwci2jyw8Sv8/Rgs1lrYHVaoPUmCS6/UEdGJPacGgwFbt27F1q1b2ywzaNAgHDp0SMmm9QoGdUREXSRJAbe9lyFuPZe19fCtjXrgAIQESFrotGaEyP2xMtYEANj6qh7lmhLYHXWqTpIwGAxcevUx3T9lDlDzDzJdwaCOiKiLNLIRAg5It2blmgd17hBwQAgHNLIOfXQRCAkOxqg/DIcA8Nn/q8J12yU4HOqepTIYDKioqPB0M6jTBBwKZL86JPX+INMVDOqIiLooQBsIIRyQJBmS9MNyq7uBnRCNZ+frtEEI1ETgt6NHQkRGQT7xT1yz1KC2oQJQcZKEJEkICAjg8qsPaXxMWO/vqVM7BnVERF1k0oU5fy8120PX1rKT1EayhOPWo7+MmhD0NffDr17UwAFg31orrsoVaLBVQ0DdSRIAM1+JOsKgjoioi/pqB7ksvzbXPLBrK5hrYhcNEHBAK+mxLGYsHPE/BQB8dP46rgl1n08HMKjzVZyp630M6oiIusgkzHDAAfnWr+bfgJqud4YdNtjRgNCIIDx499XGi9XVqLXUod5R3bicq+IkCb1eD5vNBoeD3+B9h1AkUUKZZAv1YFBHRNRFgY4gt4K3ttglGwL6ynhxzEgErh0PAPg6+UtY7HW42VAJCHWfzcbMV6LOYVCnoIED74As88lrRGoxNizaOYHWdA6xuxNqsgwYjQFIHKJBwhKTc15iXZ6Mcs0VWG3VELd+qZXBYEBtba2nm0FuaJyn6/4+UCXqUBMGdQoKCwtzeeAwEfm31+Zf7/oxWk0xmgTIQRrIP/8xHHdGAwBu/M8nqLomYHFcgUOo+9BhoHH59dq1a55uBrlJmeVX9f4w0xU+E9SlpaXh4MGDKCwshE6nw/Xr113unzp1CuvXr8eXX36JiooKDB48GM899xz++7//u916Bw8ejP/85z8u19LT0/HSSy8p3QUi8jPycw8rVlfzb39r/x6MSnsJamwVjefTqXg/nVarhUaj4fIrUSf4TFBntVoxa9YsxMfHY+fOnS3uFxQUICIiAnv27EF0dDRyc3ORlJQEjUaDlJSUdutes2YNFixY4HwfFBSkePuJiDpDzjuJyqs1qJarYXfUQ+2zdMx89V1KHD4sFKhDTXwmqFu9ejUAIDMzs9X7zzzzjMv7oUOHIi8vDx9++GGHQV1QUBCioqIUaScRUXds+586WOoa8D2+Q4OtFujCEyr8SVNQx4OHfQv31HmGX+/qr6qqQmhoaIfl1q9fj379+mHMmDF49dVXYbOpO9OMiDzjSsph/J9vbuCqrQbVtlI4hFX1e4oMBgMDOh8l4FDkRZ3nMzN17srNzcX+/ftx8ODBdsstXLgQY8eORWhoKHJzc7Fs2TJcuXIFmzZtavMz9fX1Lv/IWCwWxdpNRL5D+uAIoJGABgeE/dY3H1mCJEmALLkWdrQdnIl6G879IwhvZMuotjagXHMF9dYbEKIBXH7lcSZEneXRoO6ll17CK6+80m6Z8+fPY8SIEW7Ve+bMGTzyyCNYuXIlpk6d2m7Z1NRU5+9//OMfQ6fT4de//jXS09Oh1+tb/Ux6erpzObi5uro6Zr8SqcjqbSGQpXbjtQ5pZODmTRsuXboOYbWj1FqNKpSgwVYLofLz6YDGoO72xDjyBQIOocDyq8q3H7jLo0Hd4sWLMW/evHbLDB061K06z507h8mTJyMpKQnLly93u01xcXGw2Wy4ePEihg8f3mqZZcuWuQSDFosF0dHRKCq6AEBq9TNE5H8+L/kGAOBoZYlUbvZvQWv3m9MjAGatDjfsDSjVXEZtfWXjUSa3niSh1iVYSZKg0+k4U+eDBJQ60oRBnTs8GtSFh4cjPDxcsfrOnj2LSZMmYe7cuUhLS+tSHYWFhZBlGREREW2W0ev1bc7iEZF62G59w2nt+ZTNnzLR0fMrZUioscu4gRrcFFWwO+ohhEO1wVwTZr4Sucdn9tQVFxejsrISxcXFsNvtKCwsBAAMGzYMgYGBOHPmDCZNmoTExESkpqaitLQUAKDRaJyBY35+Pp566ilkZ2dj4MCByMvLw4kTJzBx4kQEBQUhLy8PixYtwuzZs9G3b19PdZWIfESlXA6g5dENsnDNQevoaAeN0EKDAFTje1TbSmGz193aT6duTT88M6jzRQJCgcxVJepQE58J6lasWIHdu3c7348ZMwYAkJOTg4SEBHzwwQe4evUq9uzZgz179jjLDRo0CBcvXgQA1NbWoqioCA0Njf9Y6vV67Nu3D6tWrUJ9fT2GDBmCRYsWuSytEhG15XvHfzou1AkyZEiSDKu9BvW2G7A76tCYIKHupSeDwQC73c4TCXxURzPUncHlV/dIQqj4qHKFWCwWBAcHA9CAe+qI1KOPcbAi9UiQIUka2B31sNnrYHfUQDisjbMUKt5TN3jwYOj1ehQVFXm6KX5CALCjqqoKZrO5x77KRx99hMdmPY0o84Ru12V31KGkKgc2m42JiJ3gMzN1RETepsFWDXErO0+SunfspyRpIYQNdocVQtgaAzmV/8xtMBhw8+ZNTzeDukDcOn5YiXqo8xjUERF1kd1x0xnUdUdjQNg4CyFEg+qfItHEYDDg2rVrnm4GdZFQ4EgTJepQEwZ1RERdpNQ5co2BYVMg15T1qu7ALiAgALIsM0nCZwlF9tQpUYeaMKgjIuoiJWcRpDa+eal1+cloNAJg5iuROxjUERF1meOHfW9SN5KkhICQJDQ+jtvhvKZmTWfU8bmvvotHmvQ+BnVERF3VPPDqbhAmBCAxoGtiMBgY0PkwAaHIflMe0OEeBnVERF2k5NKoBKlFMKfWpVegMajj0iuRexjUERF5AQHRGNgRgMY9dRUVFZ5uBnUDEyV6H4M6IiIv0TQzJ0FS9SydVquFRqPhTJ0vE4JHmnhA907LJCIixak5oAN+SJJgUEfkHs7UERGRV2kK6vg0Cd+mzHNbufzqDgZ1RETkVYxGIxoaGuBw8Bu6r1Iu+5V/BtzBoI6IiLwKM1/9gzLn1DGocwf31BERkVdhUEfUNZypIyIir6HRaBAQEMD9dD6Py6+ewKCOiIi8BjNf/QeDut7H5VciIvIaRqMRAIM6oq7gTB0REXkNo9EIu90Om83m6aZQNwgIPlHCAxjUERGR1zAYDNxP5ycUWX5lUOcWLr8SEZHXMBqNXHol6iLO1BERkVfQarXQarWcqfMHij37lTN17mBQR0REXoGZr/5FiaVTLr+6h0EdERF5habMV87U+QdFZtk4U+cW7qkjIiKvwMxXou7hTB0REXkFZr76D8EnSngEgzoiIvIKRqMRlZWVnm4GKUSZPXVCgZaoB5dfiYjI4wICAqDRaJgkQdQNnKkjIiKPY5KEv+HyqycwqCMiIo8zmUwAGNT5EwZ1vY/Lr0RE5HFGoxE2mw12e/cPrCVSK87UERGRxxmNRs7S+RUBKHJwMGfq3MGgjoiIPEqSJBgMBlgsFk83hZQiuPzqCQzqiIjIo5qSJJj56j8EeKSJJ3BPHREReVRTUFdbW+vhlhD5Ns7UERGRR/E4E3/EI008gUEdERF5lMlkQl1dHYTgUpt/USKTmUGdO3xm+TUtLQ0TJkyAyWRCSEhIq2UkSWrx2rdvX7v1VlZW4sknn4TZbEZISAjmz5+P6urqHugBERG1hpmvRMrwmZk6q9WKWbNmIT4+Hjt37myzXEZGBqZNm+Z831YA2OTJJ5/ElStXkJWVhYaGBjz99NNISkrC3r17lWo6ERG1QafTQaPRMKjzO1x+9QSfCepWr14NAMjMzGy3XEhICKKiojpV5/nz53H48GGcPHkS48ePBwBs2bIFDz30EDZu3IgBAwZ0q81ERNS+pidJMEnCH/Gcut7mM8uvnZWcnIywsDDExsZi165d7e7RyMvLQ0hIiDOgA4ApU6ZAlmWcOHGizc/V19fDYrG4vIiIyH18PBiRcnxmpq4z1qxZg0mTJsFkMuHIkSN44YUXUF1djYULF7ZavrS0FBERES7XtFotQkNDUVpa2ubXSU9Pd84cEhFR15lMJtjtdjQ0NHi6KaQoASixdMrkGbd4dKbupZdeajW5ofnrwoULna7v5Zdfxn333YcxY8Zg6dKlePHFF/Hqq68q3u5ly5ahqqrK+bp06ZLiX4OISA1MJhNn6fyUUOgXdZ5Hg7rFixfj/Pnz7b6GDh3a5frj4uLw3Xffob6+vtX7UVFRKC8vd7lms9lQWVnZ7r48vV4Ps9ns8iIiIvcEBARAq9VyP53fcij0ct/WrVsxePBgGAwGxMXFIT8/v3td8REeXX4NDw9HeHh4j9VfWFiIvn37Qq/Xt3o/Pj4e169fR0FBAcaNGwcAOHbsGBwOB+Li4nqsXURExCQJ6hn79+9Hamoqtm/fjri4OGzevBmJiYkoKipqseXK3/hMokRxcTEKCwtRXFwMu92OwsJCFBYWOs+U+/TTT7Fjxw6cOXMGX3/9NbZt24Z169bhN7/5jbOO/Px8jBgxAiUlJQCAkSNHYtq0aViwYAHy8/Px1VdfISUlBY899hgzX4mIehiDOj8nRPdfXVh+3bRpExYsWICnn34ao0aNwvbt22EymbBr1y7l++hlfCZRYsWKFdi9e7fz/ZgxYwAAOTk5SEhIQEBAALZu3YpFixZBCIFhw4Y5B7ZJbW0tioqKXDbkvvvuu0hJScHkyZMhyzJmzpyJN998s/c6RkSkUiaTCQ6HA3V1dZ5uCilOqf1w7tVhtVpRUFCAZcuWOa/JsowpU6YgLy9PgfZ4N58J6jIzM9s9o27atGkuhw63JiEhocURJ6Ghod0+aPiHOrmhk4ioswwGw63VFv7b2Tsa/z/39OPYmp7lC9gUqc9gMMBisUCj0Tiv6fX6VrdWVVRUwG63IzIy0uV6ZGSkW4mXvspngjpvduPGjVu/4yGJRESddfbsKU83QZVu3LiB4ODgHqs/MTEROTk5bSYpuuvjjz9GaGioy7WVK1di1apVitTvTxjUKWDAgAG4dOkSgoKCIEmSp5vTKovFgujoaFy6dMlvsnXZJ9/gj30C/LNf7JNv6GqfhBC4ceNGj+8ZlyQJCQkJitWXkJCA9evXu1xrKwEyLCwMGo0GZWVlLtfLyso6/bQpX8agTgGyLOOOO+7wdDM6xR+PYGGffIM/9gnwz36xT76hK33qyRm6ntLWUmtrdDodxo0bh+zsbMyYMQMA4HA4kJ2djZSUlB5spXdgUEdERER+IzU1FXPnzsX48eMRGxuLzZs3o6amBk8//bSnm9bjGNQRERGR33j00Udx9epVrFixAqWlpYiJicHhw4dbJE/4IwZ1KqHX67Fy5cpOT2H7AvbJN/hjnwD/7Bf75Bv8sU9KS0lJUcVy6+0k0dO5zURERETU43zmiRJERERE1DYGdURERER+gEEdERERkR9gUOdn0tLSMGHCBJhMJoSEhLS4n5mZCUmSWn2Vl5cDAD777LNW75eWlvZybxp11CcArbZ33759LmU+++wzjB07Fnq9HsOGDWv3sXO9oaN+nTp1Co8//jiio6NhNBoxcuRIvPHGGy5lfHGsiouLMX36dJhMJkRERGDJkiWw2VwfJ+RtY9Wkrf/fkiTh5MmTAICLFy+2ev/48eMebn37Bg8e3KLNtx/4+u9//xs/+9nPYDAYEB0djQ0bNniotR27ePEi5s+fjyFDhsBoNOKuu+7CypUrYbVaXcr44lht3boVgwcPhsFgQFxcHPLz8z3dJPISzH71M1arFbNmzUJ8fDx27tzZ4v6jjz7a4hm58+bNQ11dHSIiIlyuFxUVuRxsefv93tJRn5pkZGS49K15UPHtt99i+vTpeO655/Duu+8iOzsbzz77LPr374/ExMSebH6bOupXQUEBIiIisGfPHkRHRyM3NxdJSUnQaDQtsrp8ZazsdjumT5+OqKgo5Obm4sqVK3jqqacQEBCAdevWAfDOsWoyYcIEXLlyxeXayy+/jOzsbIwfP97l+tGjR3H33Xc73/fr169X2tgda9aswYIFC5zvg4KCnL+3WCyYOnUqpkyZgu3bt+P06dN45plnEBISgqSkJE80t10XLlyAw+HAn/70JwwbNgxnzpzBggULUFNTg40bN7qU9aWx2r9/P1JTU7F9+3bExcVh8+bNSExMRFFRkcf+3pMXEeSXMjIyRHBwcIflysvLRUBAgHj77bed13JycgQAce3atZ5rYBe01ycA4qOPPmrzsy+++KK4++67Xa49+uijIjExUcEWdk1nx0oIIV544QUxceJE53tfG6tDhw4JWZZFaWmp89q2bduE2WwW9fX1QgjvHqvbWa1WER4eLtasWeO89u233woA4l//+pfnGtYFgwYNEq+//nqb99966y3Rt29f5zgJIcTSpUvF8OHDe6F1ytiwYYMYMmSI870vjlVsbKxITk52vrfb7WLAgAEiPT3dg60ib8HlV5V7++23YTKZ8Ktf/arFvZiYGPTv3x8PPvggvvrqKw+0zj3JyckICwtDbGwsdu3aBdHstJ68vDxMmTLFpXxiYiLy8vJ6u5ndUlVV1eLB1oDvjFVeXh5Gjx7tcghoYmIiLBYLzp496yzjK2P1ySef4Pvvv2/1pPqHH34YERERuP/++/HJJ594oHXuW79+Pfr164cxY8bg1VdfdVkWz8vLwwMPPACdTue81jRDdO3aNU80121t/f3xlbGyWq0oKChw+fshyzKmTJnilX8/qPdx+VXldu7ciSeeeAJGo9F5rX///ti+fTvGjx+P+vp67NixAwkJCThx4gTGjh3rwda2bc2aNZg0aRJMJhOOHDmCF154AdXV1Vi4cCEAoLS0tMVp4pGRkbBYLLh586ZL/71Vbm4u9u/fj4MHDzqv+dpYtTUOTffaK+ONY7Vz504kJia6PPs5MDAQr732Gu677z7Isoy//OUvmDFjBv7617/i4Ycf9mBr27dw4UKMHTsWoaGhyM3NxbJly3DlyhVs2rQJQOO4DBkyxOUzzceub9++vd5md3z99dfYsmWLy9Krr41VRUUF7HZ7q38/Lly44KFWkVfx9FQhdWzp0qUCQLuv8+fPu3ymM0t6ubm5AoD45z//2WEbHnjgATF79uzudMNFT/WpycsvvyzuuOMO5/sf/ehHYt26dS5lDh48KACI2trabvenSU/16/Tp0yIsLEysXbu2wzZ481gtWLBATJ061eVaTU2NACAOHTokhOi9sWquK328dOmSkGVZfPDBBx3WP2fOHHH//ff3SNvb05V+Ndm5c6fQarWirq5OCCHEgw8+KJKSklzKnD17VgAQ586d6/G+NOlKn7777jtx1113ifnz53dYv6fGqjNKSkoEAJGbm+tyfcmSJSI2NtZDrSJvwpk6H7B48WLMmzev3TJDhw51u94dO3YgJiYG48aN67BsbGwsvvzyS7e/Rlt6qk9N4uLisHbtWtTX10Ov1yMqKgplZWUuZcrKymA2mxWd+emJfp07dw6TJ09GUlISli9f3mF5bx6rqKioFpl6TeMSFRXl/G9vjFVzXeljRkYG+vXr16kZnbi4OGRlZXWniV3SnbGLi4uDzWbDxYsXMXz48DbHBfhh7HqDu326fPkyJk6ciAkTJuDPf/5zh/V7aqw6IywsDBqNptVx6M0xIO/FoM4HhIeHIzw8XNE6q6ur8d577yE9Pb1T5QsLC9G/f3/Fvn5P9Km5wsJC9O3b1/lsxPj4eBw6dMilTFZWFuLj4xX9ukr36+zZs5g0aRLmzp2LtLS0Tn3Gm8cqPj4eaWlpKC8vd2bqZWVlwWw2Y9SoUc4yvTFWzbnbRyEEMjIynJm7HVF6TDqrO2NXWFgIWZad4xQfH4/f//73aGhocPY5KysLw4cP79WlV3f6VFJSgokTJ2LcuHHIyMiALHe8jdxTY9UZOp0O48aNQ3Z2NmbMmAEAcDgcyM7OVuVzTqklBnV+pri4GJWVlSguLobdbkdhYSEAYNiwYQgMDHSW279/P2w2G2bPnt2ijs2bN2PIkCG4++67UVdXhx07duDYsWM4cuRIb3XDRUd9+vTTT1FWVoZ7770XBoMBWVlZWLduHX73u98563juuefwxz/+ES+++CKeeeYZHDt2DO+9957L/rTe1lG/zpw5g0mTJiExMRGpqanOPWcajcb5Tc3Xxmrq1KkYNWoU5syZgw0bNqC0tBTLly9HcnKyMwD3xrG63bFjx/Dtt9/i2WefbXFv9+7d0Ol0GDNmDADgww8/xK5du7Bjx47ebman5eXl4cSJE5g4cSKCgoKQl5eHRYsWYfbs2c6A7YknnsDq1asxf/58LF26FGfOnMEbb7yB119/3cOtb11JSQkSEhIwaNAgbNy4EVevXnXea5rV8sWxSk1Nxdy5czF+/HjExsZi8+bNqKmpaTVZh1TI0+u/pKy5c+e2usckJyfHpVx8fLx44oknWq3jlVdeEXfddZcwGAwiNDRUJCQkiGPHjvVC61vXUZ/+9re/iZiYGBEYGCj69OkjfvKTn4jt27cLu93uUk9OTo6IiYkROp1ODB06VGRkZPR+Z5rpqF8rV65s9f6gQYOcdfjaWAkhxMWLF8UvfvELYTQaRVhYmFi8eLFoaGhwqcfbxup2jz/+uJgwYUKr9zIzM8XIkSOFyWQSZrNZxMbGivfff7+XW+iegoICERcXJ4KDg4XBYBAjR44U69atc+6na3Lq1Clx//33C71eLwYOHCjWr1/voRZ3LCMjo809d018cayEEGLLli3izjvvFDqdTsTGxorjx497uknkJSQhmp37QEREREQ+iefUEREREfkBBnVEREREfoBBHREREZEfYFBHRERE5AcY1BERERH5AQZ1RERERH6AQR0RERGRH2BQR0REROQHGNQRERER+QEGdURERER+gEEdERERkR9gUEdEXuHq1auIiorCunXrnNdyc3Oh0+mQnZ3twZYREfkGSQghPN0IIiIAOHToEGbMmIHc3FwMHz4cMTExeOSRR7Bp0yZPN42IyOsxqCMir5KcnIyjR49i/PjxOH36NE6ePAm9Xu/pZhEReT0GdUTkVW7evIl77rkHly5dQkFBAUaPHu3pJhER+QTuqSMir/LNN9/g8uXLcDgcuHjxoqebQ0TkMzhTR0Rew2q1IjY2FjExMRg+fDg2b96M06dPIyIiwtNNIyLyegzqiMhrLFmyBB988AFOnTqFwMBA/PznP0dwcDAOHDjg6aYREXk9Lr8SkVf47LPPsHnzZrzzzjswm82QZRnvvPMO/vGPf2Dbtm2ebh4RkdfjTB0RERGRH+BMHREREZEfYFBHRERE5AcY1BERERH5AQZ1RERERH6AQR0RERGRH2BQR0REROQHGNQRERER+QEGdURERER+gEEdERERkR9gUEdERETkBxjUEREREfkBBnVEREREfuD/AxmwaBHXxe1NAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ax = sim_data.plot_field(\n", " field_monitor_name=\"field\", field_name=\"E\", val=\"abs^2\", f=freq0, vmin=0, vmax=1000\n", ")\n", "ax.set_aspect(\"auto\")\n" ] }, { "cell_type": "markdown", "id": "f9323e7e", "metadata": {}, "source": [ "Despite the loss at the waveguide bend, the coupling efficiency to TM2 mode is still about 95%." ] }, { "cell_type": "code", "execution_count": 39, "id": "24861f06", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:14:00.751844Z", "iopub.status.busy": "2023-03-28T00:14:00.751678Z", "iopub.status.idle": "2023-03-28T00:14:00.885385Z", "shell.execute_reply": "2023-03-28T00:14:00.884730Z" }, "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAG6CAYAAADtZYmTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABf9UlEQVR4nO3deXhMZ/8G8PvMZLLJLrKIkNiDEEQQS2jVHltf+5JK6YsqlfKiai8pv9fSRZuWl9LWrlRLKaktFVsidrFEJMgissmezJzfH2JqmiDDrMn9ua65mOds35mD3J7znOcIoiiKICIiIiJI9F0AERERkaFgMCIiIiIqxWBEREREVIrBiIiIiKgUgxERERFRKQYjIiIiolIMRkRERESlGIyIiIiISjEYEREREZViMCIiIiIqpddgdPz4cQQGBqJmzZoQBAF79ux56TZHjx5Fq1atYGZmhvr16+P777/Xep1ERERUNeg1GOXm5qJFixZYs2ZNhda/c+cO+vTpg65duyImJgYffvghxo0bh4MHD2q5UiIiIqoKBEN5iKwgCNi9ezcGDBjw3HVmzpyJffv24fLly8q2YcOGITMzEwcOHNBBlURERFSZmei7AHVERkaiW7duKm09evTAhx9++NxtCgsLUVhYqHyvUCiQnp6O6tWrQxAEbZVKREREGiSKIh4/foyaNWtCItHeBS+jCkbJyclwdnZWaXN2dkZ2djby8/NhYWFRZpvQ0FAsXLhQVyUSERGRFiUmJqJWrVpa279RBaNXMXv2bISEhCjfZ2VloXbt2khMTISNjY0eKyMiIqKKys7Ohru7O6ytrbV6HKMKRi4uLkhJSVFpS0lJgY2NTbm9RQBgZmYGMzOzMu02NjYMRkREREZG28NgjGoeo/bt2yM8PFyl7dChQ2jfvr2eKiIiIqLKRK/BKCcnBzExMYiJiQHw5Hb8mJgYJCQkAHhyGWzMmDHK9SdMmIC4uDj85z//wfXr1/H1119j+/btmDZtmj7KJyIiokpGr8Ho3LlzaNmyJVq2bAkACAkJQcuWLTFv3jwAQFJSkjIkAYCnpyf27duHQ4cOoUWLFlixYgXWrVuHHj166KV+IiIiqlwMZh4jXcnOzoatrS2ysrI4xoiIiMhI6Ornt1GNMSIiIiLSJgYjIiIiolIMRkRERESlGIyIiIiISjEYEREREZViMCIiIiIqxWBEREREVIrBiIiIiKgUgxERERFRKQYjIiIiolIm+i6AiIyTQlQguzAbGYUZyCzMRHZhNrKLsvG46LHylV+Sj/ySfOSV5CG/JB8FJQUokhehWFGMYkWx8veiKEKECIWogAgRoihCIkgglUhhIphAIkhgIjGBmdTsycvEDKZSU5hLzVFNVg1WMqsnv5pawUpmBVszW9iZ2cHOzA62ZrawN7eHmdRM318ZERkBBiMiUlEsL0ZqfipSclOQkpeCh3kPkZafhof5D/Ew/yEe5T9CekE6sgqzIBfl+i63wmxMbVDDogYcLR3hZOGEGpY14FrNFTWtasKlmgtcq7nC2tRa32USkZ4xGBFVMTlFObiXcw/3c+7jQc4DPMh5gKTcJDzIeYCUvBSkF6SrtT9rmTVszWxha2YLa1NrWJtaw8bUBlYyK1jKLGFpYgkLEwtYyCxgLjWHmdQMMokMMqnsya8SGSSCBBLhyZX9p78qRAXkohxyhRxyUf6kl0lejAL5k16nQnkh8kvykVucq3zlFOfgcdFjZBVmIbMwU9mTVSKWILvoSY/W7azbz/8sptZwt3ZHbevacLd2h7u1O+rY1IGnrSfsze1f/UsnIqPBYERUCeUU5eBu9l3EZcXhbvZdJDxOwL3H93Dv8T1kFGa8dHtTiSmcqznDydIJThZOcLR0fNLbYuEIRwtHOJg7wMHcAXZmdpBJZTr4RK9OFEVkF2X/3euV96TnKyU3BUm5SUjOTUZSbhIyCzPxuOgxrj66iquPrpbZj52ZHTxtPeFp64m6tnXR0L4hGto3RHWL6nr4VESkLYIoiqK+i9Cl7Oxs2NraIisrCzY2Nvouh+i15Bbn4lbmLdzMuIlbmbdwK+MW4rLi8DD/4Qu3czB3QM1qNeFq5Qo3KzeVS0rOls6wM7ODIAg6+hSGIa84D/dz7iPxcaLylZCdgITHCbifc/+52zlaOKKhfUM0sm+EJtWboEn1JqhlXUvZ80VEmqGrn98MRkRGIr0gHdceXcO19GvKXo0X/cCubl4dHrYe8LDxQB2bOnC3dkct61qoZVULVqZWOqzc+OWX5ONu9l3cybqDuKw43M68jRsZN5CQnQARZf8JtZZZo3H1xmhavSm8Hb3RvEZzOFs6V7mwSaRJDEZawmBExiC/JB9XH13FpYeXcDHtIi6nXUZSblK56zpZOKG+fX3Ut3vyqmdXDx62HrAx5Z9vbcsrzsOtzFuIzYhFbHosrj66itj0WBQpisqsW8OihjIktXRqiaaOTXmnHJEaGIy0hMGIDI0oikjKTcL51POISY3BhYcXcCPjRpk7vgQIqGNTB17VvdDE4cklm4b2DWFnbqefwqlcxYpixGXG4eqjq7icdhmX0i6Vez5lEhmaVG+Clk4t0cqpFVo5t4Ktma2eqiYyfAxGWsJgRPqmEBW4mXETUSlRiE6NxvmU80jNTy2znpOFE7xreCt7GbwcvHgJzEjll+Tj2qNruJR2CRceXkB0SjQeFTxSWUeAgEYOjeDr7AtfF1/4OvsyKBE9g8FISxiMSNfkCjmup1/H2eSzOJdyDtGp0Xhc9FhlHRPBBI0dGsPHyQc+Tj5oUaMFXKq56Kli0jZRFHHv8T2cf3ge0SnRiEqJQnx2vMo6AgQ0rd4U7Wq2QzvXdvBx8uGlN6rSGIy0hMGItE0hKhCbHoszyWdwNvksolKikFOco7KOhYmFyiWUZo7NYGFioaeKyRA8zHuIqJQonE0+i7MpZ3En647KcnOpOVo7t0anWp3Q0a0j6tjU0VOlRPrBYKQlDEakDYmPE3Eq6RROPTiFM8lnkFmYqbLcWmaN1s6tlZdIGjk0gomE04jR86XkpuB08mmcenAKp5JOlZmCwd3aHR3dOqJzrc7wc/GDqdRUT5US6QaDkZYwGJEm5Bbn4nTSaZx8cBJ/3f8L93LuqSy3NLGEr4sv/Fz84Ovii8b2jSGVSPVULRk7URRxK/MW/rr/FyLuRyAqNQolihLlcksTS/jX9EeAewA61+oMB3MHPVZLpB0MRlrCYESvQhRF3M68jaP3jiLifgQupF5Aifj3DyYTwQTNazRHu5rt0N61PZo6NoVMYtgzQpPxehrMj987jhP3TqgM3hcgoKVTS7xZ+028WedNuFm56bFSIs1hMNISBiOqqGJ5Mc6mnMWxxGM4du9YmckU3a3d4V/THx1qdoCfqx+qyarpqVKqykRRxNX0qziWeAxHE4/iWvo1leVeDl7oVqcb3qrzFjxtPfVTJJEGMBhpCYMRvUhBSQFOPjiJw3cP42jiUTwu/vvuMVOJKfxc/dC5Vmd0rNkR7jbu+iuU6DmSc5MRnhCO8IRwRKVEQSEqlMsa2jdED48e6F6nOzxsPfRXJNErYDDSEgYj+qeCkgJE3I/AwfiDOH7vOPJK8pTLqptXR4B7AAJqBaCdaztYyiz1WCmRetIL0nE08Sj+uPsHTj84rXL5t5F9I/T07Ilenr14uY2MAoORljAYEfBkduLIB5E4cOcA/kz8E7nFucplLtVc0K12N3T36I4WNVrwYaBUKWQVZuHPhD9xMP4gTiWdUpmJ26eGD3p59kJ3j+5wtHDUY5VEz8dgpCUMRlWXXCFHVEoUfo//HYfuHkJWYZZymUs1F/T06InudbqjmWMzPuyTKrXMgkwcTjiM3+/8jrPJZ5UPwpUKUrSr2Q796/VHV/euMDcx13OlRH9jMNISBqOqRRRFXEy7iAN3DuBg/EGVuWCqm1dHD48e6OXZC81rNGfPEFVJqXmpOHDnAH6/8zsuP7qsbLeWWaO7R3f0r98fPjV8+J8F0jsGIy1hMKr8RFHE1UdXcTD+IA7GH8SD3AfKZTamNnirzlvo6dkTbZzbcG4homfczb6Lvbf34tfbvyIpN0nZ7mnribcbvI1+9frB3txejxVSVcZgpCUMRpWTKIq4kXEDB+Kf9AwlPk5ULrMwscAbtd9AL49e8K/pD5mU8wsRvYhCVOBs8lnsvb0Xh+4eQn5JPgBAJpGhW51u+FeDf6GNSxv2IpFOMRhpCYNR5XLv8T38fud37L+zH7cybynbzaXm6FyrM3p69kQnt04cK0H0inKKcrD/zn7svLFTZY4kT1tPDG00FP3r9YeVqZUeK6SqgsFISxiMjN/josf4/c7v2Ht7Ly48vKBsl0lk6OTWCb08e6Fzrc68tZ5Iw648uoJdN3ZhX9w+5bQWliaWCKwXiGGNhqG+fX09V0iVGYORljAYGSdRFHEu5Rx+vvkzDt09hEJ5IYAnjz/wc/VDH88+eLPOm7Ax5Tkl0racohz8Gvcrtl7firisOGV7W5e2GOk1Ep1rdeb4PdI4BiMtYTAyLhkFGdh9azd23tipMm6onm09DGwwEL08e8HJ0kmPFRJVXaIo4kzyGWy9vhVHEo8o50aqZVULI7xGYGD9gbzMRhrDYKQlDEaGTxRFXHh4Adtit+Fg/EEUK4oBANVk1dDToycGNRgEb0dvDvwkMiBJOUnYErsFu27sQnZRNoAnl9kGNRiEUU1GcXZtem0MRlrCYGS48kvysT9uP7bGbsX19OvK9qbVm2Joo6Ho4dGD44aIDFxecR5+i/sNP137SXmZTSJI0L1OdwQ1DUIzx2Z6rpCMFYORljAYGZ6E7ARsi92G3bd243HRk4e2mknN0MuzF4Y2Gsp/SImMkCiKOPngJDZe2YjIpEhleyunVnjX+110cuvEXl9SC4ORljAYGQa5Qo6I+xHYGrsVEfcjlO21rGphWONhGFB/AGzNbPVYIRFpSmx6LDZd3YT9cfuVD7JtaN8Q47zH4a06b8FEYqLnCskYMBhpCYORfqXlp+Hnmz9j542dypl1BQjo6NYRwxoPQ0e3jnw0B1EllZKbgh+v/YjtsduVt/u7W7tjbLOx6F+vP0ylpnqukAwZg5GWMBjpnkJU4EzyGeyI3YE/E/5U/o/RzswOA+oPwJCGQ+Bu467nKolIV7IKs7Dl+hb8dO0nZBZmAgCcLZ0x3ns8BjYYyIBE5WIw0hIGI93JKMjAL7d+wc6bO3E3+66y3aeGD4Y0GoLuHt1hJjXTY4VEpE95xXn4+ebP2HBlA1LzUgE8CUjver+LQQ0G8d8HUsFgpCUMRtr19Fb7Lde34NDdQyq32vet2xeDGw5GI4dGeq6SiAxJobwQP9/8GesurVMGJCdLJ7zn/R4GNRjE5xsSAAYjrWEw0o6CkgL8fud3bLm+ReV5Sk2qN8HghoPR27M3b7Unohcqkhdh983dWHtpLVLyUgAAblZumNBiAvrW7ctB2lUcg5GWMBhpVlJOErZc34Kfb/2MrMIsAH/faj+s0TA0dWyq5wqJyNgUyYuw6+YufHfxO6TlpwEAPGw8MMlnEnp49OANGlUUg5GWMBhpxpW0K9h4ZSP+uPuH8jEAblZuGNpoKAbWHwg7czv9FkhERi+/JB/brm/D/y7/TzlIu5F9I0xpNYXzIFVBDEZawmD06hSiAsfvHcfGKxtxLuWcsp0PjiQibcotzsUPV3/AxisbkVOcA+DJRJEftv4QLZ1a6rk60hUGIy1hMFJfsbwY++7sw4bLG5RT/JsIJujp2RNjmoyBV3UvPVdIRFVBZkEm/nf5f9hyfQsK5YUAgIBaAZjaaioa2DfQc3WkbQxGWsJgVHG5xbnYeWMnfrj6g3IgpJXMCoMbDsYIrxFwqeai5wqJqCpKzk1G2IUw7Lm1B3JRDokgQf96/THJZxL/XarEGIy0hMHo5dLy07D52mZsi92mfEq2o4UjRjcZjcENB8Pa1FrPFRIRAfFZ8fji/Bc4dPcQgCc3foxuMhrBzYL571QlxGCkJQxGzxeXFYdNVzZh7+29yvmH6tjUwdimYxFYL5Cz0RKRQYpJjcGqqFWITo0G8GRW/Uk+k/Cvhv+CTMI5kCoLBiMtYTBSJYoiolOj8f2V73E08aiyvXmN5hjbdCy6unflgGoiMniiKOJI4hGsjl6NO1l3AACetp6Y7judd7BVEgxGWsJg9ESJogSHEw5j4+WNuPzosrK9q3tXjG02lnd6EJFRKlGUYNeNXVgTswYZhRkAgHau7TDddzpn3TdyDEZaUtWDUV5xHnbf2o0frv6A+zn3AQCmElME1gvEmKZjUNe2rp4rJCJ6fY+LHmPtxbX48dqPKFYUQyJI8K8G/8LklpNhb26v7/LoFTAYaUlVDUaZBZlPnmZ9/SflDNX2ZvYY1ngYhjYaiuoW1fVcIRGR5iU+TsSqqFXKAdrWptZ43+d9DG00lI8YMTIMRlpS1YJRcm4yNl3dhJ03diK/JB8A4G7tjneavoPAeoGwMLHQc4VERNp3Nvkslp1ZhtiMWABAfbv6+E+b/6B9zfZ6rowqisFIS6pKMHqY9xBrL63Fzhs7lXeYNXZojHebvYu36rzFAdVEVOXIFXLsurkLX57/UvmIke51umNGmxmc/8gIMBhpSWUPRhkFGdhweQO2XN+CAnkBAKC1c2uM8x6HDjU78M4MIqrysgqz8HXM19gauxUKUQELEwtMbDERo5qM4u39BozBSEsqazDKKcrBxqsb8cPVH5BbnAsAaFGjBT5o+QHaurbVc3VERIYnNj0Wn576FDEPYwAA9WzrYU67OWjj0ka/hVG5GIy0pLIFo2J5Mbbf2I5vL3yrvDXVy8ELk1tO5twdREQvoRAV2Ht7L1ZFrUJ6QToAoH+9/pjuOx125nb6LY5UMBhpSWUJRgpRgYPxB/FF9Be4l3MPAOBh44EpraagW+1uDERERGrIKszCl+e/xPbY7RAhwt7MHjPazEDfun3576mBYDDSEmMPRqIoIvJBJD4//zmuProK4MlzzCa2mIhBDQbx9lMiotcQkxqDhZELcSvzFgCgvWt7zG03F+427nqujHT181uitT1X0Jo1a+Dh4QFzc3O0bdsWZ86ceeH6q1evRqNGjWBhYQF3d3dMmzYNBQUFOqpWv2JSYxB8MBj/PvxvXH10FdVk1TDZZzL2DdyHIY2GMBQREb0mHycfbO+7HVNbTYWpxBSRSZEYuHcgvr/8PeQKub7LIx3Qa4/Rtm3bMGbMGISFhaFt27ZYvXo1duzYgdjYWDg5OZVZf/PmzQgODsb69evh7++PGzdu4J133sGwYcOwcuXKCh3TGHuMYtNj8eX5L3Hs3jEAT2aqHtp4KMZ5j4ODuYOeqyMiqpwSshOwKHIRTiefBgA0q94MizosQgP7BnqurGqqEpfS2rZtizZt2uCrr74CACgUCri7u+ODDz7ArFmzyqw/efJkXLt2DeHh4cq2jz76CKdPn0ZERESFjmlMwejKoyv49sK3OJJ4BAAgFaQYUH8AJrSYwDk3iIh0QBRF7L61G/89+188Ln4ME4kJ3vN+D+O8x0Em5a39ulTpL6UVFRUhKioK3bp1+7sYiQTdunVDZGRkudv4+/sjKipKebktLi4O+/fvR+/evZ97nMLCQmRnZ6u8DF1MagwmHp6IYb8Nw5HEIxAgoJdHL+zpvwcL/BcwFBER6YggCBjUYBD2DNiDLu5dUKIowdcXvsaQ34bgStoVfZdHWqC3QSlpaWmQy+VwdnZWaXd2dsb169fL3WbEiBFIS0tDx44dIYoiSkpKMGHCBHz88cfPPU5oaCgWLlyo0dq1QRRFnEs5h28vfKvstpUKUvT27I1xzcfx4a5ERHrkZOmEL7p+gYPxBxF6JhS3Mm9hxP4ReKfpO5jkMwlmUjN9l0gaovfB1+o4evQoli5diq+//hrR0dH4+eefsW/fPixevPi528yePRtZWVnKV2Jiog4rfjlRFBFxPwJBB4IQfDAYp5NPw0RigrcbvI1fB/yKpZ2WMhQRERkAQRDQ07Mn9vTfg16evaAQFVh/eT0G/zoYMakx+i6PNERvPUaOjo6QSqVISUlRaU9JSYGLS/mXiubOnYvRo0dj3LhxAABvb2/k5ubivffew5w5cyCRlM15ZmZmMDMzvCQviiKO3TuGsAthuPLoSXesqcQUgxoMQnCzYLhaueq5QiIiKo+9uT2Wd16Onh49sfjUYtzJuoMxv4/B6CajMbnlZD6c28jprcfI1NQUrVu3VhlIrVAoEB4ejvbty3/acV5eXpnwI5U+eRiqMU3HdDrpNEbtH4UP/vwAVx5dgYWJBcY0GYPf3/4dc9rNYSgiIjICb9R+A3v670G/ev0gQsSmq5vwr73/wrnkc/oujV7DK/cY3bp1C7dv30bnzp1hYWEBURTVnh00JCQEQUFB8PX1hZ+fH1avXo3c3FyMHTsWADBmzBi4ubkhNDQUABAYGIiVK1eiZcuWaNu2LW7duoW5c+ciMDBQGZAM2aWHl/DF+S9wKukUAMDCxALDGw9HUNMg3nZPRGSEbM1ssaTjEvTw6IGFkQuR8DgBYw+OxbBGwzCt9TRYyiz1XSKpSe1g9OjRIwwdOhR//vknBEHAzZs3UbduXbz77ruwt7fHihUrKryvoUOH4uHDh5g3bx6Sk5Ph4+ODAwcOKAdkJyQkqPQQffLJJxAEAZ988gnu37+PGjVqIDAwEEuWLFH3Y+jU3ey7WBW1CuEJT3rHTCQmGNxwMN5r/h4cLRz1XB0REb2uzrU6Y0//PVhxbgV23dyFrbFbcfzeccz3nw//mv76Lo/UoPY8RmPGjEFqairWrVsHLy8vXLhwAXXr1sXBgwcREhKCK1cM+/ZFXc5jlFmQibCLYdh2fRtKxBJIBAkC6wZios9EuFm5afXYRESkH5EPIrEwciHu59wHALzd4G1M950OK1MrPVdm3Ax2gkcXFxccPHgQLVq0gLW1tTIYxcXFoXnz5sjJydFWrRqhiy+2SF6ELde34NuL3+Jx0WMAQCe3TvjI9yPUs6unlWMSEZHhyCvOw+ro1dhyfQsAwKWaCxa2Xwh/N/YevSpdBSO1L6Xl5ubC0rLsNdP09HSDvPtLl0RRxKG7h7AqapXyifcN7Rtiuu90tK9Z/oByIiKqfCxllvi47cd4q85bmPfXPNzLuYd/H/433m7wNj7y/QjWptb6LpGeQ+270jp16oRNmzYp3wuCAIVCgeXLl6Nr164aLc6YXHh4AWN+H4OPjn2Eezn3UMOiBhb5L8L2vtsZioiIqqg2Lm2wq98ujGg8AgCw6+YuDNo7CKeTTuu5MnoetS+lXb58GW+++SZatWqFP//8E/369cOVK1eQnp6Ov/76C/XqGfalIk13xSU+TsTn0Z/jYPxBAE/uNHun6Tt4p+k7vBuBiIiUziafVfYeAcAor1GY2moqzE3M9VyZcTDYMUYAkJWVha+++goXLlxATk4OWrVqhffffx+uroY//46mvti0/DSsvbgW229sR4miBAIEDKg/AJNbToaTpZMGKyYiosoirzgP/z33X+y4sQMA4GnridCOoWjq2FTPlRk+gw5Gxux1v9icohxsvLoRG69sRH5JPgCgvWt7fOT7ERo5NNJ0uUREVAkdv3cc80/OR1p+GkwEE7zX4j2M9x4PE4neHkhh8AwqGF28eLHCO2zevPlrFaRtr/rFFsoLsT12O9ZeXIuMwgwAQLPqzTC19VS0c22nrXKJiKiSyizIxOJTi/HH3T8AAC2dWiK0Uyinc3kOgwpGEokEgiCUmd366abPtsnlci2UqTnqfrElihLsvb0X31z4Bsm5yQAADxsPfNDyA7xV5y21Z/smIiJ6ShRF/Bb3G5acXoLc4lxYyawwp90c9K3bV9+lGRyDul3/zp07yt+fP38e06dPx4wZM5TPNIuMjMSKFSuwfPly7VSpBwpRgT/u/oE159cgPjseAOBk6YQJLSZgYP2B7O4kIqLXJggCAusFoqVTS8w+MRsxD2Mw+8RsRNyPwJy2c3hbvx6oPcbIz88PCxYsQO/evVXa9+/fj7lz5yIqKkqjBWpaRRLnyQcnsTpqNa6lXwMA2JvZY5z3OAxtPBRm0qo9VxMREWlHiaIEay+uRdjFMChEBdys3PBZp8/g4+Sj79IMgkFdSnuWhYUFoqOj4eXlpdJ+7do1tGrVCvn5+RotUNNe9MVefXQVq6NWIzIpEgBQTVYNQU2DMKbJGFSTVdNHuUREVMXEpMZg1olZuJ9zH1JBikk+k/Bus3chlRj+w9K1yWCDUatWrdCsWTOsW7cOpqamAICioiKMGzcOly9fRnR0tFYK1ZTyvth7j+/hy/NfYv+d/QCePOR1WKNheK/5e7A3t9dnuUREVAU9LnqMxacW4/c7vwN4MlHk0o5L4VLNRc+V6Y/BBqMzZ84gMDAQoigq70C7ePEiBEHAr7/+Cj8/P60UqinPfrGimYi1F9di8/XNKFYUAwD61O2DyT6TUcu6lp4rJSKiqkwURey9vRdLTi9Bfkk+bExtsMh/Ed6s86a+S9MLgw1GwJPnpf3000+4fv06AMDLywsjRoxAtWqGf7np6RcbdioMm+I2IbsoG8CTuYimtZ4Gr+peL9kDERGR7tzNvouZx2fiyqMrAIDBDQdjRpsZsDCx0HNlumXQwciYPf1ivb7xgtRCivp29THddzo6uHXQd2lERETlKpYX48uYL7Hh8gYAQF3buljeeXmVmljYoILR3r170atXL8hkMuzdu/eF6/br109jxWnD0y+244aOmNZhGvrX61/lB7QREZFxiHwQiTkRc/Aw/yFkEhk+8v0IIxqPqBJz6hlUMJJIJEhOToaTkxMkEsnzdyYIRjPBY1JaElyqV91BbEREZJzSC9Ix/6/5OHrvKACgk1snLO6wGNUtquu3MC3TVTB6fsp5hkKhgJOTk/L3z3sZeih6Fp98T0RExsjB3AFfvPEFPm77MUwlpjhx/wTe3vs2Iu5H6Lu0SqFCwYiIiIgMhyAIGN54OLb03YL6dvXxqOARJh6eiGVnlqFIXqTv8oya2oOvFy1a9MLl8+bNe62CtE1XXXFERES6UFBSgJVRK7Hl+hYAQCP7RljeeTnq2tXVc2WaZVBjjJ7VsmVLlffFxcW4c+cOTExMUK9ePaOc4JGIiMjYHUs8hrl/zUVGYQbMpeaY0WYGBjccXGkGZhtsMCpPdnY23nnnHQwcOBCjR4/WRF1aw2BERESVVVp+GuZEzMHJBycBAG/WfhML2i+AnbmdfgvTAKMKRgBw6dIlBAYGIj4+XhO70xoGIyIiqswUogI/XP0Bq6NXo0RRAidLJ4R2DIWfq2E/meJlDOqutIrIyspCVlaWpnZHREREr0AiSBDUNAibe2+Gh40HUvNSMe6Pcfg8+nPl46/o+dTuMfriiy9U3ouiiKSkJPzwww8ICAjA5s2bNVqgprHHiIiIqoq84jwsP7scu27uAgA0d2yOzzp/Bndrdz1Xpj6DvZTm6emp8l4ikaBGjRp44403MHv2bFhbW2u0QE1jMCIioqrmj/g/sCByAR4XPUY1WTV80u4T9K3bV99lqcVgg5GxYzAiIqKqKCknCbNOzEJ06pO7xwPrBuLjth/DytRKz5VVjNGNMSIiIiLD5Wrliv/1+B8m+UyCRJDg17hfMeS3IbiSdkXfpRkUtXuMBg4cWO6cCIIgwNzcHPXr18eIESPQqJFhPvGXPUZERFTVnU89j5nHZyIpNwkmEhN82OpDjG4yGhLBcPtLDLbHyNbWFn/++Seio6MhCAIEQcD58+fx559/oqSkBNu2bUOLFi3w119/aaNeIiIiek0tnVpiR+AOdKvdDSWKEvz33H8xOXwy0gvS9V2a3qkdjFxcXDBixAjExcVh165d2LVrF27fvo1Ro0ahXr16uHbtGoKCgjBz5kxt1EtEREQaYGtmi5VdVuKTtp8oH0b7r73/wpmkM/ouTa/UvpRWo0YN/PXXX2jYsKFK+40bN+Dv74+0tDRcunQJnTp1QmZmpiZr1QheSiMiIlIVmx6L/xz/D+Ky4iBAwMQWE/Fe8/cglUj1XZqSwV5KKykpwfXr18u0X79+HXK5HABgbm5eaZ7NQkREVNk1cmiELX22YGD9gRAh4usLX+Pfh/6NtPw0fZemc2oHo9GjR+Pdd9/FqlWrEBERgYiICKxatQrvvvsuxowZAwA4duwYmjZtqvFiiYiISDssZZZY1GERlnZcCgsTC5xOPo23976NyAeR+i5Np9S+lCaXy/HZZ5/hq6++QkpKCgDA2dkZH3zwAWbOnAmpVIqEhARIJBLUqlVLK0W/Dl5KIyIierG4rDhMPzYdNzNuQoCAf7f4NyY0n6DXS2tGMcFjdnY2ABhVwGAwIiIiermCkgIsO7sMO2/sBAC0c22Hzzp9huoW1fVSj8GOMQKejDM6fPgwtmzZohxL9ODBA+Tk5Gi0OCIiItIPcxNzzG8/H6GdQmFhYoFTSacw5NchiE6J1ndpWqV2j9Hdu3fRs2dPJCQkoLCwEDdu3EDdunUxdepUFBYWIiwsTFu1agR7jIiIiNRzO/M2Qo6GIC4rDlJBiqmtpuKdpu/o9EYrg+0xmjp1Knx9fZGRkQELCwtl+8CBAxEeHq7R4oiIiEj/6tnVw5Y+W9Cnbh/IRTlWRq3ElCNTkFWYpe/SNE7tYHTixAl88sknMDU1VWn38PDA/fv3NVYYERERGQ5LmSVCO4Zibru5kElkOJp4FEN/G4orjyrXs9bUDkYKhUI5X9Gz7t27B2tra40URURERIZHEAQMaTQEP/b+EW5Wbrifcx+j94/G9tjteI17uQyK2sGoe/fuWL16tfK9IAjIycnB/Pnz0bt3b03WRkRERAaoSfUm2NZ3G7q4d0GxohiLTy3GrBOzkFecp+/SXpvag6/v3buHHj16QBRF3Lx5E76+vrh58yYcHR1x/PhxODk5aatWjeDgayIiIs0QRRHfX/ken0d/DrkoR13buljZZSXq2dXT+LEMeh6jkpISbN26FRcvXkROTg5atWqFkSNHqgzGNlQMRkRERJoVlRKFGcdm4GH+Q1iYWGBuu7kIrBeo0WMYbDAqKCiAubm5turROgYjIiIizXuU/wgzT8zE6aTTAIB/NfwXZvnNgpnUTCP7N9jb9Z2cnBAUFIRDhw5BoVBooyYiIiIyMtUtquPbbt9iYouJECBg542dGLV/FBKzE/VdmlrUDkYbN25EXl4e+vfvDzc3N3z44Yc4d+6cNmojIiIiIyKVSDHJZxLCuoXB3swe19OvY8hvQ3D47mF9l1ZhagejgQMHYseOHUhJScHSpUtx9epVtGvXDg0bNsSiRYu0USMREREZEX83f+wI3IGWTi2RU5yDaUenYdmZZSiWF+u7tJd6rYfIPnX16lWMHDkSFy9eLHeOI0PCMUZERES6UawoxhfRX+D7K98DAFrUaIH/BvwXLtVc1N6XwY4xeqqgoADbt2/HgAED0KpVK6Snp2PGjBmarI2IiIiMmEwiw0e+H+Hzrp/DWmaNCw8vYPCvgxFxP0LfpT2X2sHo4MGDCAoKgrOzMyZOnAhnZ2f88ccfuHv3Lj777DNt1EhERERG7I3ab2Bb4DZ4OXghszATkw5PwpqYNZArDO8qk9qX0iwtLdG3b1+MHDkSvXv3hkwm01ZtWsFLaURERPpRKC/E8jPLsf3GdgBAO9d2WNZ5GRzMHV66rcHOY/T48WOjfiYagxEREZF+/Xr7Vyw+tRj5JflwsnTCioAV8HHyeeE2BjvG6NlQVFBQgOzsbJUXERER0YsE1gvE5t6b4WHjgdS8VIw9MBY/XP3BIB5Eq3Ywys3NxeTJk+Hk5IRq1arB3t5e5UVERET0MvXt62Nr363o6dETJWIJlp9djunHpiO3OFevdakdjP7zn//gzz//xDfffAMzMzOsW7cOCxcuRM2aNbFp0yZt1EhERESVUDVZNSzvvByz/GbBRDDBH3f/wLDfhuFWxi291aT2GKPatWtj06ZN6NKlC2xsbBAdHY369evjhx9+wJYtW7B//35t1aoRHGNERERkeGJSY/DRsY+QmpcKCxMLLGi/AL3r9lYuN9gxRunp6ahbty4AwMbGBunp6QCAjh074vjx45qtjoiIiKoEHycf7AjcgbaubZFfko+ZJ2Yi9HSozmfLVjsY1a1bF3fu3AEANG7cGNu3P7nl7tdff4WdnZ1GiyMiIqKqw8HcAd92+xbjvccDADZf34yxB8ciJTdFZzWoHYzGjh2LCxcuAABmzZqFNWvWwNzcHNOmTePM10RERPRapBIpprSagi/f+FI5W/aQ34bgXLJuHlj/2s9Ku3v3LqKiolC/fn00b95cU3VpDccYERERGYfE7ERMOzoNsRmxEAtEXJlwxfDGGBUUFKi8r1OnDgYNGmQUoYiIiIiMh7uNO37o/QP61esHhajQyTFN1N3Azs4Ofn5+CAgIQJcuXeDv7w8LCwtt1EZERERVnIWJBT7t8CkaWDTAWIzV+vHU7jE6fPgwevbsidOnT6N///6wt7dHx44dMWfOHBw6dEjtAtasWQMPDw+Ym5ujbdu2OHPmzAvXz8zMxPvvvw9XV1eYmZmhYcOGBj9FABEREb06QRAwqMEg3RzrdcYYlZSU4OzZs/j222/x008/QaFQQC6v+JNyt23bhjFjxiAsLAxt27bF6tWrsWPHDsTGxsLJyanM+kVFRejQoQOcnJzw8ccfw83NDXfv3oWdnR1atGhRoWNyjBEREZHx0dXPb7UvpQHAjRs3cPToUeWrsLAQffv2RZcuXdTaz8qVKzF+/HiMHfukaywsLAz79u3D+vXrMWvWrDLrr1+/Hunp6Th58iRkMhkAwMPD41U+AhEREVEZavcYubm5IT8/H126dEGXLl0QEBCA5s2bQxAEtQ5cVFQES0tL7Ny5EwMGDFC2BwUFITMzE7/88kuZbXr37g0HBwdYWlril19+QY0aNTBixAjMnDkTUqm03OMUFhaisLBQ+T47Oxvu7u7sMSIiIjIiBjvzdY0aNZCXl4fk5GQkJycjJSUF+fn5ah84LS0Ncrkczs7OKu3Ozs5ITk4ud5u4uDjs3LkTcrkc+/fvx9y5c7FixQp8+umnzz1OaGgobG1tlS93d3e1ayUiIqKqQe1gFBMTg+TkZMyaNQuFhYX4+OOP4ejoCH9/f8yZM0cbNSopFAo4OTnhu+++Q+vWrTF06FDMmTMHYWFhz91m9uzZyMrKUr4SExO1WiMREREZr1caY2RnZ4d+/fqhQ4cO8Pf3xy+//IItW7bg9OnTWLJkSYX24ejoCKlUipQU1Wm+U1JS4OLiUu42rq6ukMlkKpfNvLy8kJycjKKiIpiampbZxszMDGZmZmp8OiIiIqqq1O4x+vnnnzFlyhQ0b94czs7OmDhxInJycrBixQpER0dXeD+mpqZo3bo1wsPDlW0KhQLh4eFo3759udt06NABt27dgkLx9yRPN27cgKura7mhiIiIiEgdavcYTZgwAZ07d8Z7772HgIAAeHt7v/LBQ0JCEBQUBF9fX/j5+WH16tXIzc1V3qU2ZswYuLm5ITQ0FAAwceJEfPXVV5g6dSo++OAD3Lx5E0uXLsWUKVNeuQYiIiKip9QORqmpqRo7+NChQ/Hw4UPMmzcPycnJ8PHxwYEDB5QDshMSEiCR/N2p5e7ujoMHD2LatGlo3rw53NzcMHXqVMycOVNjNREREVHV9doPkTU2nOCRiIjI+Bjs7fpERERElRWDEREREVEpBiMiIiKiUq8djLKzs7Fnzx5cu3ZNE/UQERER6Y3awWjIkCH46quvAAD5+fnw9fXFkCFD0Lx5c+zatUvjBRIRERHpitrB6Pjx4+jUqRMAYPfu3RBFEZmZmfjiiy9e+MwyIiIiIkOndjDKysqCg4MDAODAgQN4++23YWlpiT59+uDmzZsaL5CIiIhIV9QORu7u7oiMjERubi4OHDiA7t27AwAyMjJgbm6u8QKJiIiIdEXtma8//PBDjBw5ElZWVqhTpw66dOkC4Mklttd5PAgRERGRvqkdjCZNmgQ/Pz8kJibirbfeUj6yo27duhxjREREREaNjwQhIiIig6ern99q9xgFBwe/cPn69etfuRgiIiIifVI7GGVkZKi8Ly4uxuXLl5GZmYk33nhDY4URERER6ZrawWj37t1l2hQKBSZOnIh69epppCgiIiIifdDIs9IkEglCQkKwatUqTeyOiIiISC809hDZ27dvo6SkRFO7IyIiItI5tS+lhYSEqLwXRRFJSUnYt28fgoKCNFYYERERka6pHYzOnz+v8l4ikaBGjRpYsWLFS+9YIyIiIjJkagejI0eOaKMOIiIiIr1TOxg9lZqaitjYWABAo0aN4OTkpLGiiIiIiPRB7cHX2dnZGD16NGrWrImAgAAEBATAzc0No0aNQlZWljZqJCIiItIJtYPR+PHjcfr0aezbtw+ZmZnIzMzEb7/9hnPnzuHf//63NmokIiIi0gm1n5VWrVo1HDx4EB07dlRpP3HiBHr27Inc3FyNFqhpfFYaERGR8dHVz2+1e4yqV68OW1vbMu22trawt7fXSFFERERE+qB2MPrkk08QEhKC5ORkZVtycjJmzJiBuXPnarQ4IiIiIl2q0F1pLVu2hCAIyvc3b95E7dq1Ubt2bQBAQkICzMzM8PDhQ44zIiIiIqNVoWA0YMAALZdBREREpH9qD742dhx8TUREZHwMdvA1ERERUWXFYERERERUisGIiIiIqBSDEREREVGp1wpGoiiiio3dJiIiokrslYLRpk2b4O3tDQsLC1hYWKB58+b44YcfNF0bERERkU5VaB6jZ61cuRJz587F5MmT0aFDBwBAREQEJkyYgLS0NEybNk3jRRIRERHpgtrzGHl6emLhwoUYM2aMSvvGjRuxYMEC3LlzR6MFahrnMSIiIjI+BjuPUVJSEvz9/cu0+/v7IykpSSNFEREREemD2sGofv362L59e5n2bdu2oUGDBhopioiIiEgf1B5jtHDhQgwdOhTHjx9XjjH666+/EB4eXm5gIiIiIjIWavcYvf322zh9+jQcHR2xZ88e7NmzB46Ojjhz5gwGDhyojRqJiIiIdIIPkSUiIiKDZ7CDr6VSKVJTU8u0P3r0CFKpVCNFEREREemD2sHoeR1MhYWFMDU1fe2CiIiIiPSlwoOvv/jiCwCAIAhYt24drKyslMvkcjmOHz+Oxo0ba75CIiIiIh2pcDBatWoVgCc9RmFhYSqXzUxNTeHh4YGwsDDNV0hERESkIxUORk9ntO7atSt+/vln2Nvba60oIiIiIn1Qex6jI0eOaKMOIiIiIr1Te/A1ERERUWXFYERERERUisGIiIiIqBSDEREREVEptQdfA0BmZibOnDmD1NRUKBQKlWVjxozRSGFEREREuqZ2MPr1118xcuRI5OTkwMbGBoIgKJcJgsBgREREREZL7UtpH330EYKDg5GTk4PMzExkZGQoX+np6dqokYiIiEgn1A5G9+/fx5QpU2BpaamNeoiIiIj0Ru1g1KNHD5w7d04btRARERHpldpjjPr06YMZM2bg6tWr8Pb2hkwmU1ner18/jRVHREREpEuCKIqiOhtIJM/vZBIEAXK5/LWL0qbs7GzY2toiKysLNjY2+i6HiIiIKkBXP7/V7jH65+35RERERJUFJ3gkIiIiKvVKwejYsWMIDAxE/fr1Ub9+ffTr1w8nTpzQdG1EREREOqV2MPrxxx/RrVs3WFpaYsqUKZgyZQosLCzw5ptvYvPmzdqokYiIiEgn1B587eXlhffeew/Tpk1TaV+5ciXWrl2La9euabRATePgayIiIuOjq5/favcYxcXFITAwsEx7v379cOfOnVcqYs2aNfDw8IC5uTnatm2LM2fOVGi7rVu3QhAEDBgw4JWOS0RERPQstYORu7s7wsPDy7QfPnwY7u7uahewbds2hISEYP78+YiOjkaLFi3Qo0cPpKamvnC7+Ph4TJ8+HZ06dVL7mERERETlUft2/Y8++ghTpkxBTEwM/P39AQB//fUXvv/+e3z++edqF7By5UqMHz8eY8eOBQCEhYVh3759WL9+PWbNmlXuNnK5HCNHjsTChQtx4sQJZGZmqn1cIiIion9SOxhNnDgRLi4uWLFiBbZv3w7gybijbdu2oX///mrtq6ioCFFRUZg9e7ayTSKRoFu3boiMjHzudosWLYKTkxPefffdl94NV1hYiMLCQuX77OxstWokIiKiqkPtYAQAAwcOxMCBA1/74GlpaZDL5XB2dlZpd3Z2xvXr18vdJiIiAv/73/8QExNToWOEhoZi4cKFr1sqERERVQFGNcHj48ePMXr0aKxduxaOjo4V2mb27NnIyspSvhITE7VcJRERERmrCvUYOTg44MaNG3B0dIS9vT0EQXjuuunp6RU+uKOjI6RSKVJSUlTaU1JS4OLiUmb927dvIz4+XuWuuKePKDExMUFsbCzq1aunso2ZmRnMzMwqXBMRERFVXRUKRqtWrYK1tbXy9y8KRuowNTVF69atER4errzlXqFQIDw8HJMnTy6zfuPGjXHp0iWVtk8++QSPHz/G559//kp3xRERERE9VaFgFBQUpPz9O++8o9ECQkJCEBQUBF9fX/j5+WH16tXIzc1V3qU2ZswYuLm5ITQ0FObm5mjWrJnK9nZ2dgBQpp2IiIhIXWoPvo6OjoZMJoO3tzcA4JdffsGGDRvQpEkTLFiwAKampmrtb+jQoXj48CHmzZuH5ORk+Pj44MCBA8oB2QkJCZBIjGooFBERERkptR8J0qZNG8yaNQtvv/024uLi0KRJEwwaNAhnz55Fnz59sHr1ai2Vqhl8JAgREZHxMdhHgty4cQM+Pj4AgB07diAgIACbN2/G999/j127dmm6PiIiIiKdUTsYiaKovBPs8OHD6N27N4AnjwpJS0vTbHVEREREOqR2MPL19cWnn36KH374AceOHUOfPn0AAHfu3CkzUSMRERGRMVE7GK1evRrR0dGYPHky5syZg/r16wMAdu7cqXx2GhEREZExUnvw9fMUFBRAKpVCJpNpYndaw8HXRERExsdgB18nJibi3r17yvdnzpzBhx9+iE2bNhl8KCIiIiJ6EbWD0YgRI3DkyBEAQHJyMt566y2cOXMGc+bMwaJFizReIBEREZGuqB2MLl++DD8/PwDA9u3b0axZM5w8eRI//fQTvv/+e03XR0RERKQzagej4uJi5UNZDx8+jH79+gF48hyzpKQkzVZHREREpENqB6OmTZsiLCwMJ06cwKFDh9CzZ08AwIMHD1C9enWNF0hERESkK2oHo2XLluHbb79Fly5dMHz4cLRo0QIAsHfvXuUlNiIiIiJj9Eq368vlcmRnZ8Pe3l7ZFh8fD0tLSzg5OWm0QE3j7fpERETGR1c/v01eZSOpVKoSigDAw8NDE/UQERER6U2FglGrVq0QHh4Oe3t7tGzZEoIgPHfd6OhojRVHREREpEsVCkb9+/dX3ok2YMAAbdZDREREpDcaeySIseAYIyIiIuNj0GOMnsrJyYFCoVBpY9ggIiIiY6X27fp37txBnz59UK1aNdja2sLe3h729vaws7MrMyCbiIiIyJio3WM0atQoiKKI9evXw9nZ+YUDsYmIiIiMidrB6MKFC4iKikKjRo20UQ8RERGR3qh9Ka1NmzZITEzURi1EREREeqV2j9G6deswYcIE3L9/H82aNYNMJlNZ3rx5c40VR0RERKRLagejhw8f4vbt2xg7dqyyTRAEiKIIQRAgl8s1WiARERGRrqgdjIKDg9GyZUts2bKFg6+JiIioUlE7GN29exd79+5F/fr1tVEPERERkd6oPfj6jTfewIULF7RRCxEREZFeqd1jFBgYiGnTpuHSpUvw9vYuM/i6X79+GiuOiIiISJfUflaaRPL8TiZjGHzNZ6UREREZH4N9Vto/n41GREREVFmoPcaoPJmZmZrYDREREZFeqR2Mli1bhm3btinfDx48GA4ODnBzc+OgbCIiIjJqagejsLAwuLu7AwAOHTqEw4cP48CBA+jVqxdmzJih8QKJiIiIdEXtMUbJycnKYPTbb79hyJAh6N69Ozw8PNC2bVuNF0hERESkK2r3GNnb2ysfInvgwAF069YNACCKosHfkUZERET0Imr3GA0aNAgjRoxAgwYN8OjRI/Tq1QsAcP78ec6GTUREREZN7WC0atUqeHh4IDExEcuXL4eVlRUAICkpCZMmTdJ4gURERES6ovYEj8aOEzwSEREZH4Od4BEAbt68iSNHjiA1NbXMhI/z5s3TSGFEREREuqZ2MFq7di0mTpwIR0dHuLi4QBAE5TJBEBiMiIiIyGipHYw+/fRTLFmyBDNnztRGPURERER6o/bt+hkZGRg8eLA2aiEiIiLSK7WD0eDBg/HHH39ooxYiIiIivVL7Ulr9+vUxd+5cnDp1Ct7e3pDJZCrLp0yZorHiiIiIiHRJ7dv1PT09n78zQUBcXNxrF6VNvF2fiIjI+Bjs7fp37tzRRh1EREREevdK8xhVBXK5HMXFxfouw2jIZDJIpVJ9l0FERPRaXikY3bt3D3v37kVCQgKKiopUlq1cuVIjhemLKIpITk5GZmamvksxOnZ2dmXmtiIiIjImagej8PBw9OvXD3Xr1sX169fRrFkzxMfHQxRFtGrVShs16tTTUOTk5ARLS0v+kK8AURSRl5eH1NRUAICrq6ueKyIiIno1agej2bNnY/r06Vi4cCGsra2xa9cuODk5YeTIkejZs6c2atQZuVyuDEXVq1fXdzlGxcLCAgCQmpoKJycnXlYjIiKjpPY8RteuXcOYMWMAACYmJsjPz4eVlRUWLVqEZcuWabxAXXo6psjS0lLPlRinp98bx2YREZGxUjsYVatWTTmuyNXVFbdv31YuS0tL01xlesTLZ6+G3xsRERk7tS+ltWvXDhEREfDy8kLv3r3x0Ucf4dKlS/j555/Rrl07bdRIREREpBNqB6OVK1ciJycHALBw4ULk5ORg27ZtaNCggdHfkUZERERVm1qX0uRyOe7du4fatWsDeHJZLSwsDBcvXsSuXbtQp04drRRJLyYIwgtfCxYsQHx8PARBgFQqxf3791W2T0pKgomJCQRBQHx8vLI9ISEBffr0gaWlJZycnDBjxgyUlJTo+NMRERHpjlrBSCqVonv37sjIyNBWPfQKkpKSlK/Vq1fDxsZGpW369OnKdd3c3LBp0yaV7Tdu3Ag3NzeVNrlcjj59+qCoqAgnT57Exo0b8f3332PevHk6+UxERET6oPbg62bNmhn889CqGhcXF+XL1tYWgiCotFlZWSnXDQoKwoYNG1S237BhA4KCglTa/vjjD1y9ehU//vgjfHx80KtXLyxevBhr1qwpM6knERFRZaF2MPr0008xffp0/Pbbb0hKSkJ2drbKq7IRRRF5RSV6ean5fN8K6devHzIyMhAREQEAiIiIQEZGBgIDA1XWi4yMhLe3N5ydnZVtPXr0QHZ2Nq5cuaLxuoiIiAxBhQdfL1q0CB999BF69+4N4MkP2GdvzxZFEYIgQC6Xa75KPcovlqPJvIN6OfbVRT1gaarZx9nJZDKMGjUK69evR8eOHbF+/XqMGjUKMplMZb3k5GSVUARA+T45OVmjNRERERmKCv/UXbhwISZMmIAjR45osx7SgeDgYPj7+2Pp0qXYsWMHIiMjOaiaiIgIagSjp5d1AgICtFaMIbKQSXF1UQ+9HVsbvL290bhxYwwfPhxeXl5o1qwZYmJiVNZxcXHBmTNnVNpSUlKUy4iIiCojta7TVMWZjQVB0PjlLEMQHByMSZMm4Ztvvil3efv27bFkyRLls88A4NChQ7CxsUGTJk10WSoREZHOqPUTv2HDhi8NR+np6a9VEOnG+PHjMXjwYNjZ2ZW7vHv37mjSpAlGjx6N5cuXIzk5GZ988gnef/99mJmZ6bZYIiIiHVErGC1cuBC2trbaqoV0yMTEBI6Ojs9dLpVK8dtvv2HixIlo3749qlWrhqCgICxatEiHVRIREemWIFbwnnCJRILk5GTlZRVNWrNmDf7v//4PycnJaNGiBb788kv4+fmVu+7atWuxadMmXL58GQDQunVrLF269Lnr/1N2djZsbW2RlZUFGxsblWUFBQW4c+cOPD09YW5u/nofqgri90dERNryop/fmlTheYy0Nb5o27ZtCAkJwfz58xEdHY0WLVqgR48eSE1NLXf9o0ePYvjw4Thy5AgiIyPh7u6O7t27l3nMBREREZG6KhyMtDHZIPDkobTjx4/H2LFj0aRJE4SFhcHS0hLr168vd/2ffvoJkyZNgo+PDxo3box169ZBoVAgPDxcK/URERFR1VHhMUYKhULjBy8qKkJUVBRmz56tbJNIJOjWrRsiIyMrtI+8vDwUFxfDwcGh3OWFhYUoLCxUvq+Ms3MTERGRZqj9SBBNSktLg1wuL3eG5YrOrjxz5kzUrFkT3bp1K3d5aGgobG1tlS93d/fXrpuIiIgqJ70Go9f12WefYevWrdi9e/dzB/vOnj0bWVlZyldiYqKOqyQiIiJjodeZCx0dHSGVSpUzKj+VkpLy0tmV//vf/+Kzzz7D4cOH0bx58+euZ2Zmxnl3iIiIqEL02mNkamqK1q1bqwycfjqQun379s/dbvny5Vi8eDEOHDgAX19fXZRKREREVYDen3UREhKCoKAg+Pr6ws/PD6tXr0Zubi7Gjh0LABgzZgzc3NwQGhoKAFi2bBnmzZuHzZs3w8PDQzkWycrKClZWVnr7HERERGT89B6Mhg4diocPH2LevHlITk6Gj48PDhw4oByQnZCQAInk746tb775BkVFRfjXv/6lsp/58+djwYIFuiydiIiIKpkKz3xdWXDma+3h90dERNpicDNfk+ESBOGFrwULFiA+Ph6CIEAqlZaZJTwpKQkmJiYQBAHx8fHK9ilTpqB169YwMzODj4+Pbj8UERGRHjAYVQJJSUnK1+rVq2FjY6PSNn36dOW6bm5u2LRpk8r2GzduhJubW7n7Dg4OxtChQ7VaPxERkaHQ+xgjgyeKQHGefo4tswQq8Iy6Z6c2sLW1hSAIZaY7SEtLAwAEBQVhw4YNKrONb9iwAUFBQVi8eLHKNl988QUA4OHDh7h48eIrfwwiIiJjwWD0MsV5wNKa+jn2xw8A02oa3WW/fv0QFhaGiIgIdOzYEREREcjIyEBgYGCZYERERFTV8FJaFSOTyTBq1CjlQ3rXr1+PUaNGQSaT6bkyIiIi/WOP0cvILJ/03Ojr2FoQHBwMf39/LF26FDt27EBkZCRKSkq0ciwiIiJjwmD0MoKg8ctZ+ubt7Y3GjRtj+PDh8PLyQrNmzRATE6PvsoiIiPSOl9KqqODgYBw9ehTBwcH6LoWIiMhgsMeoiho/fjwGDx4MOzu7565z69Yt5OTkIDk5Gfn5+cpepSZNmsDU1FQ3hRIREekQg1EVZWJiAkdHxxeuM27cOBw7dkz5vmXLlgCAO3fuwMPDQ5vlERER6QUfCfIMPtLi9fD7IyIibeEjQYiIiIh0jMGIiIiIqBSDEREREVEpBiMiIiKiUgxGRERERKUYjIiIiIhKMRgRERERlWIwIiIiIirFYERERERUisGIiIiIqBSDUSUgCMILXwsWLEB8fDwEQYBUKsX9+/dVtk9KSoKJiQkEQUB8fDwA4MKFCxg+fDjc3d1hYWEBLy8vfP7553r4dERERLrDh8hWAklJScrfb9u2DfPmzUNsbKyyzcrKCmlpaQAANzc3bNq0CbNnz1Yu37hxI9zc3JCQkKBsi4qKgpOTE3788Ue4u7vj5MmTeO+99yCVSjF58mQdfCoiIiLdYzB6CVEUkV+Sr5djW5hYQBCEl67n4uKi/L2trS0EQVBpA6AMRkFBQdiwYYNKMNqwYQOCgoKwePFiZVtwcLDK9nXr1kVkZCR+/vlnBiMiIqq0GIxeIr8kH203t9XLsU+POA1LmaVG99mvXz+EhYUhIiICHTt2REREBDIyMhAYGKgSjMqTlZUFBwcHjdZDRERkSDjGqIqRyWQYNWoU1q9fDwBYv349Ro0aBZlM9sLtTp48iW3btuG9997TRZlERER6wR6jl7AwscDpEaf1dmxtCA4Ohr+/P5YuXYodO3YgMjISJSUlz13/8uXL6N+/P+bPn4/u3btrpSYiIiJDwGD0EoIgaPxylr55e3ujcePGGD58OLy8vNCsWTPExMSUu+7Vq1fx5ptv4r333sMnn3yi20KJiIh0jJfSqqjg4GAcPXq0zCDrZ125cgVdu3ZFUFAQlixZosPqiIiI9IM9RlXU+PHjMXjwYNjZ2ZW7/PLly3jjjTfQo0cPhISEIDk5GQAglUpRo0YNHVZKRESkO+wxqqJMTEzg6OgIE5Pys/HOnTvx8OFD/Pjjj3B1dVW+2rRpo+NKiYiIdEcQRVHUdxG6lJ2dDVtbW2RlZcHGxkZlWUFBAe7cuQNPT0+Ym5vrqULjxe+PiIi05UU/vzWJPUZEREREpRiMiIiIiEoxGBERERGVYjAiIiIiKsVgRERERFSKwYiIiIioFIMRERERUSkGIyIiIqJSDEZEREREpRiMiIiIiEoxGFUCgiC88LVgwQLEx8dDEARIpVLcv39fZfukpCSYmJhAEATEx8cDAB49eoSePXuiZs2aMDMzg7u7OyZPnozs7Gw9fEIiIiLdYDCqBJKSkpSv1atXw8bGRqVt+vTpynXd3NywadMmle03btwINzc3lTaJRIL+/ftj7969uHHjBr7//nscPnwYEyZM0MlnIiIi0ofyH61OSqIoQszP18uxBQsLCILw0vVcXFyUv7e1tYUgCCptAJCWlgYACAoKwoYNGzB79mzlsg0bNiAoKAiLFy9Wttnb22PixInK93Xq1MGkSZPwf//3f6/8eYiIiAwdg9FLiPn5iG3VWi/HbhQdBcHSUqP77NevH8LCwhAREYGOHTsiIiICGRkZCAwMVAlG//TgwQP8/PPPCAgI0Gg9REREhoSX0qoYmUyGUaNGYf369QCA9evXY9SoUZDJZOWuP3z4cFhaWsLNzQ02NjZYt26dLsslIiLSKfYYvYRgYYFG0VF6O7Y2BAcHw9/fH0uXLsWOHTsQGRmJkpKSctddtWoV5s+fjxs3bmD27NkICQnB119/rZW6iIiI9I3B6CUEQdD45Sx98/b2RuPGjTF8+HB4eXmhWbNmiImJKXddFxcXuLi4oHHjxnBwcECnTp0wd+5cuLq66rZoIiIiHeCltCoqODgYR48eRXBwcIW3USgUAIDCwkJtlUVERKRX7DGqosaPH4/BgwfDzs6u3OX79+9HSkoK2rRpAysrK1y5cgUzZsxAhw4d4OHhodNaiYiIdIXBqIoyMTGBo6Pjc5dbWFhg7dq1mDZtGgoLC+Hu7o5BgwZh1qxZOqySiIhItwRRFEV9F6FL2dnZsLW1RVZWFmxsbFSWFRQU4M6dO/D09IS5ubmeKjRe/P6IiEhbXvTzW5M4xoiIiIioFIMRERERUSkGIyIiIqJSDEZEREREpRiMylHFxqNrDL83IiIydgxGz3j6vLC8vDw9V2Kcnn5vz3vuGhERkaHjPEbPkEqlsLOzQ2pqKgDA0tISgiDouSrDJ4oi8vLykJqaCjs7O0ilUn2XRERE9EoYjP7BxcUFAJThiCrOzs5O+f0REREZIwajfxAEAa6urnByckJxcbG+yzEaMpmMPUVERGT0GIyeQyqV8gc9ERFRFWMQg6/XrFkDDw8PmJubo23btjhz5swL19+xYwcaN24Mc3NzeHt7Y//+/TqqlIiIiCozvfcYbdu2DSEhIQgLC0Pbtm2xevVq9OjRA7GxsXByciqz/smTJzF8+HCEhoaib9++2Lx5MwYMGIDo6Gg0a9aswsctTk1FcX6++gWXd0v607Znl2nw1vXyd1XOsV5UW0VocqC5Nm7dL6++iraVv8OKHerpm2cby2srb3//aNL2YP5yp0x42Z+fvzd+vYOX+9kElV+erFbB7/OZ35fZRhDK2UZQ3bQC2wjlHbu89XgTBpHOiKIIlJRAfPZVXIzizEydHF/vD5Ft27Yt2rRpg6+++goAoFAo4O7ujg8++KDcJ7kPHToUubm5+O2335Rt7dq1g4+PD8LCwl56vKcPoTtTvwGseKmMiF7XizLTy/KUUOY36u3vZf8vEJ5ZqWx+VGkrU8rTbQURgFA2fwr/2L689qf1KF8CAPHv4wmq6yvXLT3uP/f57Mcp06ZSp6i6Tzxd/uwxyl9etr10fwCEZ9dRfmei6voqnqmj3P+hPL9NtRxR5Rfg7//HCOUtFp/5VRQhPrM/UXx2uQiIwj/a/l7nya9CmfX+/lX4+71CeBJonq6n+Ht7UVG6vuLZZc+0i8I/2sr/S5Ajl8Pv1k2tP0RWrz1GRUVFiIqKwuzZs5VtEokE3bp1Q2RkZLnbREZGIiQkRKWtR48e2LNnT7nrFxYWorCwUPk+KysLAJAjyv/Rw/OcIl/eCfCCha+SOZ+393L2VcF/Syu78v790BzhufvVyHFft97XOfHa+kNTkc+ksk5V/tNLldtLepSplPiPX8tfJ1dUPPmdlvtz9BqM0tLSIJfL4ezsrNLu7OyM69evl7tNcnJyuesnJyeXu35oaCgWLlxYpv2N23GvWDURERHpy6NHj2Bra6u1/et9jJG2zZ49W6WHKTMzE3Xq1EFCQoJWv1h6uezsbLi7uyMxMVGr3aJUMTwfhoPnwnDwXBiOrKws1K5dGw4ODlo9jl6DkaOjI6RSKVJSUlTaU1JSnjtRoIuLi1rrm5mZwczMrEy7ra0t/5AbCBsbG54LA8LzYTh4LgwHz4XhkEi0e0O9Xm/XNzU1RevWrREeHq5sUygUCA8PR/v27cvdpn379irrA8ChQ4eeuz4RERFRRen9UlpISAiCgoLg6+sLPz8/rF69Grm5uRg7diwAYMyYMXBzc0NoaCgAYOrUqQgICMCKFSvQp08fbN26FefOncN3332nz49BRERElYDeg9HQoUPx8OFDzJs3D8nJyfDx8cGBAweUA6wTEhJUus38/f2xefNmfPLJJ/j444/RoEED7Nmzp8JzGJmZmWH+/PnlXl4j3eK5MCw8H4aD58Jw8FwYDl2dC73PY0RERERkKAzikSBEREREhoDBiIiIiKgUgxERERFRKQYjIiIiolJGHYyOHz+OwMBA1KxZE4IgPPd5aU8dPXoUgiCUef3zcSJr1qyBh4cHzM3N0bZtW5w5c0aLn6Ly0Mb5CA0NRZs2bWBtbQ0nJycMGDAAsbGxWv4kxk9bfzee+uyzzyAIAj788EPNF1/JaOtc3L9/H6NGjUL16tVhYWEBb29vnDt3ToufxPhp41zI5XLMnTsXnp6esLCwQL169bB48WKtP8/L2Kl7LoAnzz6dM2cO6tSpAzMzM3h4eGD9+vUq6+zYsQONGzeGubk5vL29sX//frVrM+pglJubixYtWmDNmjVqbRcbG4ukpCTly8nJSbls27ZtCAkJwfz58xEdHY0WLVqgR48eSE1N1XT5lY42zsexY8fw/vvv49SpUzh06BCKi4vRvXt35Obmarr8SkUb5+Kps2fP4ttvv0Xz5s01VW6lpo1zkZGRgQ4dOkAmk+H333/H1atXsWLFCtjb22u6/EpFG+di2bJl+Oabb/DVV1/h2rVrWLZsGZYvX44vv/xS0+VXKq9yLoYMGYLw8HD873//Q2xsLLZs2YJGjRopl588eRLDhw/Hu+++i/Pnz2PAgAEYMGAALl++rF5xYiUBQNy9e/cL1zly5IgIQMzIyHjuOn5+fuL777+vfC+Xy8WaNWuKoaGhGqq0atDU+fin1NRUEYB47Nix1yuwCtHkuXj8+LHYoEED8dChQ2JAQIA4depUjdVZFWjqXMycOVPs2LGjZourYjR1Lvr06SMGBwertA0aNEgcOXKkBqqsGipyLn7//XfR1tZWfPTo0XPXGTJkiNinTx+VtrZt24r//ve/1arHqHuMXpWPjw9cXV3x1ltv4a+//lK2FxUVISoqCt26dVO2SSQSdOvWDZGRkfootUp43vkoT1ZWFgBo/SGCVdXLzsX777+PPn36qPwdIe140bnYu3cvfH19MXjwYDg5OaFly5ZYu3atniqt/F50Lvz9/REeHo4bN24AAC5cuICIiAj06tVLH6VWWk//zC9fvhxubm5o2LAhpk+fjvz8fOU6kZGRZf5t6tGjh9o/v/U+87Uuubq6IiwsDL6+vigsLMS6devQpUsXnD59Gq1atUJaWhrkcrly1u2nnJ2dcf36dT1VXXm97Hz8k0KhwIcffogOHTpUeKZzqpiKnIutW7ciOjoaZ8+e1XO1lVtFzkVcXBy++eYbhISE4OOPP8bZs2cxZcoUmJqaIigoSM+foPKoyLmYNWsWsrOz0bhxY0ilUsjlcixZsgQjR47Uc/WVS1xcHCIiImBubo7du3cjLS0NkyZNwqNHj7BhwwYAQHJycrk/v583VvK51OpfMmCoQFdceTp37iyOGjVKFEVRvH//vghAPHnypMo6M2bMEP38/DRRZpWhifPxTxMmTBDr1KkjJiYmvmZ1VYsmzkVCQoLo5OQkXrhwQbmcl9LUp6m/FzKZTGzfvr3KOh988IHYrl271y2xytDUudiyZYtYq1YtccuWLeLFixfFTZs2iQ4ODuL333+vwWort4qci7feeks0NzcXMzMzlW27du0SBUEQ8/LyRFF88vdi8+bNKtutWbNGdHJyUqueKnkp7Vl+fn64desWAMDR0RFSqRQpKSkq66SkpMDFxUUf5VU5z56PZ02ePBm//fYbjhw5glq1aumhsqrn2XMRFRWF1NRUtGrVCiYmJjAxMcGxY8fwxRdfwMTEBHK5XM/VVm7//Hvh6uqKJk2aqKzj5eWFhIQEXZdW5fzzXMyYMQOzZs3CsGHD4O3tjdGjR2PatGnKB5+TZri6usLNzQ22trbKNi8vL4iiiHv37gEAXFxcNPLzu8oHo5iYGLi6ugIATE1N0bp1a4SHhyuXKxQKhIeHo3379voqsUp59nwAgCiKmDx5Mnbv3o0///wTnp6eeqyuann2XLz55pu4dOkSYmJilC9fX1+MHDkSMTExkEqleq62cvvn34sOHTqUmbbixo0bqFOnjq5Lq3L+eS7y8vJUHnQOAFKpFAqFQtelVWodOnTAgwcPkJOTo2y7ceMGJBKJ8j/L7du3V/n5DQCHDh1S++e3UY8xysnJUUnud+7cQUxMDBwcHFC7dm3Mnj0b9+/fx6ZNmwAAq1evhqenJ5o2bYqCggKsW7cOf/75J/744w/lPkJCQhAUFARfX1/4+flh9erVyM3NxdixY3X++YyNNs7H+++/j82bN+OXX36BtbW18lqxra0tLCwsdPsBjYimz4W1tXWZcV3VqlVD9erVOd7rJbTx92LatGnw9/fH0qVLMWTIEJw5cwbfffcdvvvuO51/PmOijXMRGBiIJUuWoHbt2mjatCnOnz+PlStXIjg4WOefz5ioey5GjBiBxYsXY+zYsVi4cCHS0tIwY8YMBAcHK38WTJ06FQEBAVixYgX69OmDrVu34ty5c+r/vVDrwpuBeXor5T9fQUFBoiiKYlBQkBgQEKBcf9myZWK9evVEc3Nz0cHBQezSpYv4559/ltnvl19+KdauXVs0NTUV/fz8xFOnTunoExk3bZyP8vYHQNywYYPuPpgR0tbfjWdxjFHFaOtc/Prrr2KzZs1EMzMzsXHjxuJ3332no09kvLRxLrKzs8WpU6eKtWvXFs3NzcW6deuKc+bMEQsLC3X4yYyPuudCFEXx2rVrYrdu3UQLCwuxVq1aYkhIiHJ80VPbt28XGzZsKJqamopNmzYV9+3bp3Ztgihyek4iIiIigGOMiIiIiJQYjIiIiIhKMRgRERERlWIwIiIiIirFYERERERUisGIiIiIqBSDEREREVEpBiMiIiKiUgxGRERERKUYjIhIr7p06YIPP/xQ32UovWo9jx49gpOTE+Lj4zVe0z8NGzYMK1as0PpxiKoiBiOiKiAsLAzW1tYoKSlRtuXk5EAmk6FLly4q6x49ehSCIOD27ds6rlK3NB3IlixZgv79+8PDw0Nj+3yeTz75BEuWLEFWVpbWj0VU1TAYEVUBXbt2RU5ODs6dO6dsO3HiBFxcXHD69GkUFBQo248cOYLatWujXr16+ijVKOXl5eF///sf3n33XZ0cr1mzZqhXrx5+/PFHnRyPqCphMCKqAho1agRXV1ccPXpU2Xb06FH0798fnp6eOHXqlEp7165dAQAHDhxAx44dYWdnh+rVq6Nv374qPUnfffcdatasCYVCoXK8/v37Izg4GACgUCgQGhoKT09PWFhYoEWLFti5c+dza63I+l26dMGUKVPwn//8Bw4ODnBxccGCBQtU1nn8+DFGjhyJatWqwdXVFatWrVL2Er3zzjs4duwYPv/8cwiCAEEQVC6BKRSKF+77n/bv3w8zMzO0a9dOpT0iIgIymUwleMbHx0MQBNy9exddunTBBx98gA8//BD29vZwdnbG2rVrkZubi7Fjx8La2hr169fH77//XuaYgYGB2Lp16wvrIiL1MRgRVRFdu3bFkSNHlO+PHDmCLl26ICAgQNmen5+P06dPK4NRbm4uQkJCcO7cOYSHh0MikWDgwIHKIDR48GA8evRIZb/p6ek4cOAARo4cCQAIDQ3Fpk2bEBYWhitXrmDatGkYNWoUjh07Vm6dFV1/48aNqFatGk6fPo3ly5dj0aJFOHTokHJ5SEgI/vrrL+zduxeHDh3CiRMnEB0dDQD4/PPP0b59e4wfPx5JSUlISkqCu7t7hff9TydOnEDr1q3LtMfExMDLywvm5ubKtvPnz8Pe3h516tRRHsvR0RFnzpzBBx98gIkTJ2Lw4MHw9/dHdHQ0unfvjtGjRyMvL09l335+fjhz5gwKCwufWxcRvQKRiKqEtWvXitWqVROLi4vF7Oxs0cTERExNTRU3b94sdu7cWRRFUQwPDxcBiHfv3i13Hw8fPhQBiJcuXVK29e/fXwwODla+//bbb8WaNWuKcrlcLCgoEC0tLcWTJ0+q7Ofdd98Vhw8fLoqiKAYEBIhTp04VRVGs0PpPt+nYsaPKOm3atBFnzpwpiqIoZmdnizKZTNyxY4dyeWZmpmhpaak81rPHfdbL9l2ef34HT40bN04cM2aMStu8efPELl26lHuskpISsVq1auLo0aOVbUlJSSIAMTIyUmU/Fy5cEAGI8fHxz62LiNTHHiOiKqJLly7Izc3F2bNnceLECTRs2BA1atRAQECAcpzR0aNHUbduXdSuXRsAcPPmTQwfPhx169aFjY2NcmBxQkKCcr8jR47Erl27lD0XP/30E4YNGwaJRIJbt24hLy8Pb731FqysrJSvTZs2lTu4W531mzdvrvLe1dUVqampAIC4uDgUFxfDz89PudzW1haNGjWq0Hf1on2XJz8/X6VX6KmYmBj4+PiotJ0/f16l7dljSaVSVK9eHd7e3so2Z2dnAChzfAsLCwAo05NERK/HRN8FEJFu1K9fH7Vq1cKRI0eQkZGBgIAAAEDNmjXh7u6OkydP4siRI3jjjTeU2wQGBqJOnTpYu3atcixRs2bNUFRUpLKOKIrYt28f2rRpgxMnTmDVqlUAntz5BgD79u2Dm5ubSj1mZmZlalRnfZlMpvJeEIQyY51elbr7dnR0REZGhkqbXC7H5cuX0bJlS5X26OhovP322y881rNtgiAAQJnjp6enAwBq1Kjxso9DRGpgMCKqQrp27YqjR48iIyMDM2bMULZ37twZv//+O86cOYOJEycCeDIvT2xsLNauXYtOnToBeDKY+J/Mzc0xaNAg/PTTT7h16xYaNWqEVq1aAQCaNGkCMzMzJCQkKIPYi6i7/vPUrVsXMpkMZ8+eVfZ+ZWVl4caNG+jcuTMAwNTUFHK5/JWP8ayWLVuWuUMsNjYWBQUFqFmzprItMjIS9+/fL9OL9CouX76MWrVqwdHR8bX3RUR/YzAiqkK6du2K999/H8XFxSrBIyAgAJMnT0ZRUZFy4LW9vT2qV6+O7777Dq6urkhISMCsWbPK3e/IkSPRt29fXLlyBaNGjVK2W1tbY/r06Zg2bRoUCgU6duyIrKws/PXXX7CxsUFQUJDKftRd/3msra0RFBSEGTNmwMHBAU5OTpg/fz4kEomyB8bDwwOnT59GfHw8rKys4ODgAInk1UYX9OjRA7Nnz0ZGRgbs7e0BPLmMBgBffvklpkyZglu3bmHKlCkAoNLj9qpOnDiB7t27v/Z+iEgVxxgRVSFdu3ZFfn4+6tevrxy7AjwJRo8fP1be1g8AEokEW7duRVRUFJo1a4Zp06bh//7v/8rd7xtvvAEHBwfExsZixIgRKssWL16MuXPnIjQ0FF5eXujZsyf27dsHT0/Pcvel7vrPs3LlSrRv3x59+/ZFt27d0KFDB5U7xKZPnw6pVIomTZqgRo0aKuOm1OXt7Y1WrVph+/btyraYmBj06NEDcXFx8Pb2xpw5c7Bw4ULY2Njgiy++eOVjAUBBQQH27NmD8ePHv9Z+iKgsQRRFUd9FEBFpW25uLtzc3LBixQqtTMS4b98+zJgxA5cvX4ZEIkGPHj3Qpk0bfPrppxo/1jfffIPdu3fjjz/+0Pi+iao6Xkojokrp/PnzuH79Ovz8/JCVlYVFixYBeDL5pDb06dMHN2/exP379+Hu7o4LFy4oJ7nUNJlMhi+//FIr+yaq6thjRESV0vnz5zFu3DjExsbC1NQUrVu3xsqVK1VuhdeW5ORkuLq64sqVK2jSpInWj0dEmsNgRERERFSKg6+JiIiISjEYEREREZViMCIiIiIqxWBEREREVIrBiIiIiKgUgxERERFRKQYjIiIiolIMRkRERESlGIyIiIiISjEYEREREZViMCIiIiIq9f8E3v4wuXkzyQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for index in range(4):\n", " amp = sim_data[\"bus_mode\"].amps.sel(mode_index=index, direction=\"+\")\n", " T = np.abs(amp)**2\n", " plt.plot(ldas, T, label=f'TM{index}')\n", " plt.xlim(1.5, 1.6)\n", " plt.ylim(0, 1)\n", " plt.xlabel(\"Wavelength ($\\mu$m)\")\n", " plt.ylabel(\"Transmission to bus waveguide\")\n", "plt.legend()\n", "plt.show()\n" ] }, { "cell_type": "markdown", "id": "5374eba5", "metadata": {}, "source": [ "Lastly, we perform a simulation by exciting the I3 port with the TE0 mode. For this simulation, we only need to update a few things from the previous simulation." ] }, { "cell_type": "code", "execution_count": 40, "id": "cad91b66", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:14:00.887598Z", "iopub.status.busy": "2023-03-28T00:14:00.887424Z", "iopub.status.idle": "2023-03-28T00:14:01.164138Z", "shell.execute_reply": "2023-03-28T00:14:01.163573Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB930lEQVR4nO3deXxb1Zk//s+9V6u1eF9jJ3H2kARCEhISwlZS0jZdaKd76QBtoQU6DKVTSn6lMEBLulCgGzDdgOk2lH6ntFMKJRAoW9hCoAnZd8e740WWrOXq3vP7Q5Zsx5ItOZalq/t5v15+JZau5COdK+nROc95jiSEECAiIiIiw5Nz3QAiIiIimhwM7IiIiIgKBAM7IiIiogLBwI6IiIioQDCwIyIiIioQDOyIiIiICgQDOyIiIqICwcCOiIiIqEAwsCMiIiIqEAzsiIhO8txzz0GSJDz33HO5bgoRUUYY2BGRad1333146KGHct2MCfnd736He++9N9fNAADouo7vfe97aGxshMPhwOmnn47f//73ad++t7cXV111FSorK+FyuXDhhRfizTffTHrsX/7yFyxbtgwOhwPTp0/Hrbfeimg0OlkPhcjwJO4VS0RmtXjxYlRUVIwamdN1HZFIBDabDbKcn99/3//+92Pnzp04cuRIrpuCjRs34jvf+Q6uvPJKnHXWWfjzn/+Mxx9/HL///e/xyU9+cszb6rqOc889F2+//Ta+9rWvoaKiAvfddx+ampqwbds2zJ07N3HsE088gQ0bNuCCCy7Apz71KezYsQM//elPcdVVV+H+++/P9sMkMgQGdkQmFwgE4HK5ct2MnEgV2BlBvgR2zc3NaGxsxFVXXYWf/OQnAAAhBM4//3wcPnwYR44cgaIoKW//hz/8AZ/4xCfw6KOP4qMf/SgAoLOzE/PmzcN73/te/O53v0scu2jRIlitVrzxxhuwWCwAgJtvvhl33nkndu3ahQULFmTxkRIZQ35+FSWiCWlubsbnP/951NXVwW63o7GxEVdffTUikQgA4KGHHoIkSfjHP/6Ba665BlVVVaivr0/c/r777sOiRYtgt9tRV1eHa6+9Fr29vSP+xv79+/Ev//IvqKmpgcPhQH19PT75yU+ir68vcczmzZuxdu1alJSUwO12Y/78+fj//r//b9z2p3O7cDiMW2+9FXPmzIHdbkdDQwNuvPFGhMPhUff3m9/8BitXrkRRURFKS0tx3nnn4amnngIAzJw5E++88w7+8Y9/QJIkSJKECy64AEDqHLtHH30Uy5cvh9PpREVFBS699FI0NzePOObyyy+H2+1Gc3MzLrnkErjdblRWVuI//uM/oGnauM/Bn//8Z2zYsCHRh7Nnz8Ydd9wx4rYXXHABHn/8cRw9ejTR9pkzZ6a8z8svvzxx3Mk///mf/zlum8Zrr6qquOaaaxKXSZKEq6++GsePH8fWrVvHvP0f//hHVFdX4yMf+UjissrKSnz84x/Hn//850S/7tq1C7t27cJVV12VCOoA4JprroEQAn/84x9P6XEQFQrL+IcQkRG0tLRg5cqViXylBQsWoLm5GX/84x8xMDAAm82WOPaaa65BZWUlbrnlFgQCAQDAf/7nf+K2227DunXrcPXVV2Pv3r24//778frrr+Oll16C1WpFJBLB+vXrEQ6H8W//9m+oqalBc3Mz/vrXv6K3txfFxcV455138P73vx+nn346br/9dtjtdhw4cAAvvfTSmO1P53a6ruODH/wgXnzxRVx11VVYuHAhduzYgXvuuQf79u3DY489ljj2tttuw3/+539izZo1uP3222Gz2fDqq69iy5YtuPjii3Hvvffi3/7t3+B2u/GNb3wDAFBdXZ2yfQ899BCuuOIKnHXWWdi0aRPa29vxwx/+EC+99BK2b9+OkpKSxLGapmH9+vVYtWoV7rrrLjz99NP4wQ9+gNmzZ+Pqq68e83l46KGH4Ha7ccMNN8DtdmPLli245ZZb4PP58P3vfx8A8I1vfAN9fX04fvw47rnnHgCA2+1OeZ9f/OIXsW7duhGXPfnkk/jtb3+LqqqqxGVdXV1jti3O4/HAbrcDALZv3w6Xy4WFCxeOOGblypWJ69euXZvyvrZv345ly5aNmvJeuXIlfvazn2Hfvn1YsmQJtm/fDgBYsWLFiOPq6upQX1+fuJ7I9AQRFYR//dd/FbIsi9dff33UdbquCyGEePDBBwUAsXbtWhGNRhPXd3R0CJvNJi6++GKhaVri8p/85CcCgPjVr34lhBBi+/btAoB49NFHU7bjnnvuEQBEZ2dnRu1P53a//vWvhSzL4oUXXhhx+QMPPCAAiJdeekkIIcT+/fuFLMviwx/+8IjHI8TQcyGEEIsWLRLnn3/+qL/z7LPPCgDi2WefFUIIEYlERFVVlVi8eLEIBoOJ4/76178KAOKWW25JXHbZZZcJAOL2228fcZ9nnnmmWL58+dhPghBiYGBg1GVf/OIXRVFRkQiFQonLNmzYIGbMmDHu/SWzf/9+UVxcLN797nePOA8ApPXz4IMPjmjHrFmzRv2NQCAgAIibbrppzLa4XC7xuc99btTljz/+uAAgnnzySSGEEN///vcFAHHs2LFRx5511lni7LPPTvfhExU0TsUSFQBd1/HYY4/hAx/4wKgRDSA2NTbclVdeOSLv6emnn0YkEsH1118/YuTkyiuvhNfrxeOPPw4AKC4uBgD8/e9/x8DAQNK2xEeu/vznP0PX9bQfQzq3e/TRR7Fw4UIsWLAAXV1diZ93vetdAIBnn30WAPDYY49B13Xccssto0aCTn4u0vHGG2+go6MD11xzDRwOR+LyDRs2YMGCBYnnZ7gvfelLI34/99xzcejQoXH/ltPpTPy/v78fXV1dOPfcczEwMIA9e/Zk3PaTBQIBfPjDH0ZpaSl+//vfjzgPNm/enNbP+vXrE7cJBoOJ0bvh4s9TMBgcsz3p3j7+b6pjx/s7RGbBqViiAtDZ2Qmfz4fFixendXxjY+OI348ePQoAmD9//ojLbTYbZs2albi+sbERN9xwA+6++2789re/xbnnnosPfvCDuPTSSxNB3yc+8Qn84he/wBe+8AXcdNNNuOiii/CRj3wEH/3oR8dcYZrO7fbv34/du3ejsrIy6X10dHQAAA4ePAhZlnHaaael9XyMJ9XzAwALFizAiy++OOIyh8Mxqo2lpaXo6ekZ92+98847uPnmm7Flyxb4fL4R1w3PY5yoK6+8EgcPHsTLL7+M8vLyEdedPF2bDqfTmTS/MRQKJa6fjNvH/0117Hh/h8gsGNgRmdCpfAj+4Ac/wOWXX44///nPeOqpp3Dddddh06ZNeOWVV1BfXw+n04nnn38ezz77LB5//HE8+eSTeOSRR/Cud70LTz31VMoVkuncTtd1LFmyBHfffXfS+2hoaJjw45pMY60CHUtvby/OP/98eL1e3H777Zg9ezYcDgfefPNNfP3rX89oBDSZH/7wh/j973+P3/zmN1i6dOmo69va2tK6n+Li4sQ5VFtbi2effRZCiBGjoa2trQBiOXBjqa2tTRw73Mm3r62tTVx+cj+3trYmcvqIzI5TsUQFoLKyEl6vFzt37pzQ7WfMmAEA2Lt374jLI5EIDh8+nLg+bsmSJbj55pvx/PPP44UXXkBzczMeeOCBxPWyLOOiiy7C3XffjV27duHb3/42tmzZkpgqTWW8282ePRvd3d246KKLsG7dulE/8RG12bNnQ9d17Nq1a8y/l+60bKrnJ37Zyc/PRD333HM4ceIEHnroIfz7v/873v/+92PdunUoLS0ddWymU8ovvPAC/uM//gPXX389PvOZzyQ9pra2Nq2fRx55JHGbpUuXYmBgALt37x5xX6+++mri+rEsXboUb7755qig9dVXX0VRURHmzZs34n7eeOONEce1tLTg+PHj4/4dIrNgYEdUAGRZxiWXXIL/+7//G/XBB8Tqio1l3bp1sNls+NGPfjTi2F/+8pfo6+vDhg0bAAA+n29Ulf8lS5ZAluXEFFl3d/eo+49/6CabRotL53Yf//jH0dzcjJ///Oejjg0Gg4kVvpdccglkWcbtt98+KmAY/vhcLteoci7JrFixAlVVVXjggQdGPIYnnngCu3fvTjw/pyo+0je8jZFIBPfdd9+oY10uV9pTs62trfj4xz+OtWvXJlbWJjORHLsPfehDsFqtI9oohMADDzyAadOmYc2aNSPasWfPHqiqmrjsox/9KNrb2/G///u/icu6urrw6KOP4gMf+EAip27RokVYsGABfvazn40o/XL//fdDkqREDTwis+NULFGBuPPOO/HUU0/h/PPPT5QCaW1txaOPPooXX3xxRDmOk1VWVmLjxo247bbb8J73vAcf/OAHsXfvXtx3330466yzcOmllwIAtmzZgi9/+cv42Mc+hnnz5iEajeLXv/41FEXBv/zLvwAAbr/9djz//PPYsGEDZsyYgY6ODtx3332or68fs+xFOrf77Gc/iz/84Q/40pe+hGeffRbnnHMONE3Dnj178Ic//AF///vfsWLFCsyZMwff+MY3cMcdd+Dcc8/FRz7yEdjtdrz++uuoq6vDpk2bAADLly/H/fffj29961uYM2cOqqqqEgsxhrNarfjud7+LK664Aueffz4+9alPJcqdzJw5E1/5ylcm2m0jrFmzBqWlpbjssstw3XXXQZIk/PrXv04amC9fvhyPPPIIbrjhBpx11llwu934wAc+kPR+r7vuOnR2duLGG2/E//zP/4y47vTTT8fpp58OYGI5dvX19bj++uvx/e9/H6qq4qyzzsJjjz2GF154Ab/97W9HTEtv3LgRDz/8MA4fPpyou/fRj34UZ599Nq644grs2rUrsfOEpmm47bbbRvyt73//+/jgBz+Iiy++GJ/85Cexc+dO/OQnP8EXvvCFUeVWiEwrhytyiWiSHT16VPzrv/6rqKysFHa7XcyaNUtce+21IhwOCyGGyp0kK4kiRKy8yYIFC4TVahXV1dXi6quvFj09PYnrDx06JD73uc+J2bNnC4fDIcrKysSFF14onn766cQxzzzzjPjQhz4k6urqhM1mE3V1deJTn/qU2Ldv35htT/d2kUhEfPe73xWLFi0SdrtdlJaWiuXLl4vbbrtN9PX1jTj2V7/6lTjzzDMTx51//vli8+bNievb2trEhg0bhMfjEQASpU9OLncS98gjjyTur6ysTHzmM58Rx48fH3HMZZddJlwu16jHd+utt4p03nJfeuklcfbZZwun0ynq6urEjTfeKP7+97+Pao/f7xef/vSnRUlJiQAwZumT888/P2XpkltvvXXcNo1H0zRx5513ihkzZgibzSYWLVokfvOb34w6Ll4K5vDhwyMu7+7uFp///OdFeXm5KCoqEueff37Kc/RPf/qTWLp0qbDb7aK+vl7cfPPNIhKJnPJjICoU3FKMiIiIqEAwx46IiIioQDCwIyIiIioQDOyIiIiICgQDOyIiIqICwcCOiIiIqEAwsCMiIiIqEKYqUKzrOlpaWuDxeDLejoeIiIgoF4QQ6O/vR11dHWR57DE5UwV2LS0tebNJOBEREVEmmpqaUF9fP+YxpgrsPB4PAODG//gK6qvcsFpio3Z9gSjCaqxOc2WxJSejeRFVR28gtv9hiUuBzTr1s+RCCHT2xfYBtVslFLtyc3qwP2Iy6Q9fMIJgJAqnzQKv0zap7WB/xEzF66OrPwhJklDudqQ8hv0Rw/erIeyPIYXYH2pU4HiHH9+7655EHDMWUwV28Q52OOzwepywWST0D2hQrBaUFUkIRwVUIaHco0CewpMhouoIqBqKB/tL1YFix9S+OHUhcMKnweWywm6REFIFZEWGp0gZ/8aTiP0Rk2l/KDYLpEAYVkVGscc5ae1gf8RM1esjAiCiavC6nUj2FLM/Yvh+NYT9MaRQ+yMSFXD4VABIK1A19eKJ/gENvqAOr1NGudeCCo8CVYudoPoU7bQWUXV09WuwKhIqii2oKLbAqkjo6tcQUfUpaUP8RalqAhUeBeVeC7xOGb6gjv4BbUraALA/4ibSHzYl9lKOajom66lif8RM5evDIssQADR99GNjf8Tw/WoI+2MI+2OIaQO7QGjoJIh/q7BZ5Sk9GYafBOXe2LcKWYr9f6pOhpNflPFvFZ4iZUpfnMNflOyPzPvDosiQENvVPaqdehvZHzFT/fqwKLFv41F95HPL/ojh+9UQ9scQ9sdIeRPYPf/88/jABz6Auro6SJKExx57bMT1QgjccsstqK2thdPpxLp167B///4J/a2oBvhPOgnipupkSHYSxE3VyZDqRRk3VS/OZC/KOPbHkLH6Q5YkWAZH7VTt1PqK/RGTi9eHZXC1W3TYiB37I4bvV0PYH0PYH6PlTWAXCARwxhln4Kc//WnS67/3ve/hRz/6ER544AG8+uqrcLlcWL9+PUKhUMZ/SxeAO8lJEJftk2GskyAu2yfDeC/KuGy/OMd6UcaxP4aM1R9WSzywm3jb2B8xuXp9xINzbbAP2R8xfL8awv4Ywv5ILm8Cu/e+97341re+hQ9/+MOjrhNC4N5778XNN9+MD33oQzj99NPx3//932hpaRk1spcOWQJcjrGTOrN1MqRzEgy1MzsnQ7ovyrhsvTjTeVHGsT+GpOoPmxJ7DiMTDOzYHzG5fH0ocuzxqprO/hjE96sh7I8h7I/UDLEq9vDhw2hra8O6desSlxUXF2PVqlXYunUrPvnJTya9XTgcRjgcTvzu8/kAAIocWz48LklCsVNGT0BDR69AqVs5paXTqqqjJ6DBokjwFsmIakAsK2ps3iIZPX4NHX1RlLoUWE9hdY0QAj1+DVFNoNSlAJKESBrPhd0mo0gT6A3Ebutyntpqp0BQgz+kw+2QYbfJabWB/TEkaX8ICboee7NJ6/kchv0Rkw+vDxkSAiEgCI39kQf9AfD1Ecf+GDKV/aFGRUaL4gwR2LW1tQEAqqurR1xeXV2duC6ZTZs24bbbbht1uQAQVnVoenqd6nYoiER1+AZ02CxS0jIE49F1IBLVYbfKsFmkwTo76feUc/DkDYR12DRgnMLTSQkRWzYtS7HHpAlAi6T/rUFRJLgcMiKagAhqiUTvTEU1AVUTcDlkKIqEUAZtANgfcSf3hyJL0PVYcBcM62k/L+yPmHx5fWi6DE0TcLvYH/nQH3x9xLA/hkx1f0Q1kcG9GySwm6iNGzfihhtuSPzu8/nQ0NCAYpeC951VjGLX1NbYIcq2zTuOIhiJYs28ElRMYj07mjpvH+vE0U4fLlpcDpfdmuvmEFGO9QU0/L8X0l9PYIjArqamBgDQ3t6O2traxOXt7e1YunRpytvZ7XbY7fZRl1sUCcUuBWUeQzx8orRVl9rQ3B2BgIqyNCqUU/6pKbWjpVeHomgoY3BOREBGI5x5s3hiLI2NjaipqcEzzzyTuMzn8+HVV1/F6tWrc9gyovxSWhTbisoXiuS4JTRRXkdsS7j+IPuQiDKXN0NWfr8fBw4cSPx++PBhvPXWWygrK8P06dNx/fXX41vf+hbmzp2LxsZGfPOb30RdXR0uueSS3DWaKM+UuGIj1H0DDAqMyjO4128/g3MiGmTIxRNvvPEGLrzwwsTv8dy4yy67DA899BBuvPFGBAIBXHXVVejt7cXatWvx5JNPwuFIvVk2kdmUumKvh76BzOs7Un5w2y2QIKE/pOa6KUSUJ9Kq5DEobwK7Cy64AGKMkFSSJNx+++24/fbbp7BVRMbidlihyDJCqoZQJAqHLW9e4pQmWZbhcljh41QsEQ0aKz46mSFy7IgoPbIkoaRocDo2GB7naMpXXqcNgZAKXc9uhXoiMob4zkLpYGBHVGDieXa9AQZ2RuVx2CAg4A9Hc90UIsoDmdQeZGBHVGCKB0fsejmVZ1geR6x+HadjiShTDOyICkyJM74yliN2RpVYGcvAjogQ2+0iXQzsiApMsSsWFPiYY2dYLHlCRMOp0fQjOwZ2RAWmyGaFzaIgrGoIqczRMiKX3QpZkjliR0QAYpVB0sXAjqgAxfPsOB1rTLIkwe2wMLAjIgCA1cLAjsjU4oEdk++Ny+O0IRBREdVY8oTI7DIYsGNgR1SISgZztPoY2BlWfM9YP/PsiCgDDOyICtDQnrGcijUqrowloolgYEdUgIoHS574BhgUGFU8sPNxz1giygADO6IC5LBZYLcqGIioiES1XDeHJiA+FcuSJ0SUCVMGdlEt/c10iYyKo3bG5rRZoMgseUJEmWFgR1SgvPGSJwwMDEmSJHgcNgZ2RJQRUwZ2FiWDdcNEBlXs5A4URud12hBUo1A1TqcTUXoY2BEVqKHAjiM+RuV2WAEA/UEuoCCi9JgysCMyA2+iSDFH7IzKy5InRJQhBnZEBcplt8KqyOgPqtB15pUakccRL3nCwI6I0sPAjqiAeZ12CAj4w5zKMyIWKSaiTDGwIypgXubZGZrTZhkcdWX/EVF6GNgRFbDioviID/PsjMrjsHEqlojSxsCOqICxlp3xeZw2RKIaQipLnhDR+EwZ2Ol6rltANDUSu08wsDMs5tkRUSZMGdipUUZ2ZA5uuwWyJLHkiYGx5AkRZcKUgZ0ksUAxmYMsy3A7rAirGsKcyjMkljwhokyYMrCzWhjYkXlwOtbY4oFdPwM7IkqDKQM7DtiRmXhY8sTQ7FYFdqvCqVgiSospAzsiM/E6ubWY0XkcNgZ2RJQWBnZEBS6RfM+pPMPyOGyI6joGItxBhIjGxsCOqMANrapkUGBUXBlLROliYEdU4OxWBY7BHC0hRK6bQxPAPEkiShcDOyIT8Drt0ISOQJijdkbkdXDEjsjMolr6X8oZ2BGZgJcjPoaWGLFjniSRKTGwI6IR4itjOeJjTBZFhtNmZf8RmZRFSb9OGwM7IhNgjpbxeZ02+EMqdJ15kkRmw8COiEbgVKzxeRxW6EIwT5KIxsTAjsgE3HYLZEliLTsDY3BOZF6ZFDQwTGCnaRq++c1vorGxEU6nE7Nnz8Ydd9zB8g1EaZBlGW6HFYGwiqim57o5NAFuLqAgMi01mn6sY8liOybVd7/7Xdx///14+OGHsWjRIrzxxhu44oorUFxcjOuuuy7XzSPKex6HDb5gBP2hCEpdjlw3hzLEIsVE5pXJIJZhAruXX34ZH/rQh7BhwwYAwMyZM/H73/8er732Wo5bRmQMXqcNzT2xwICBnfF47FZIkDgVS2RCVkv6E6yGmYpds2YNnnnmGezbtw8A8Pbbb+PFF1/Ee9/73hy3jMgYPBzxMTRZluFysOQJkRnJGURrhhmxu+mmm+Dz+bBgwQIoigJN0/Dtb38bn/nMZ1LeJhwOIxwOJ373+XxT0dQpE9SC2B3cPeKyhc6FcCrOHLWI8lliKo85WoblcdjQ2uuHqumwKob5Xk5EU8gw7wx/+MMf8Nvf/ha/+93v8Oabb+Lhhx/GXXfdhYcffjjlbTZt2oTi4uLET0NDwxS2mCi/cPcC42OeHRGNxzCB3de+9jXcdNNN+OQnP4klS5bgs5/9LL7yla9g06ZNKW+zceNG9PX1JX6ampqmsMVE+aXIZoVVkdEfZB00o2LJEyIaj2GmYgcGBiCfNMmsKAp0PXXpBrvdDrvdnu2mERmGx2lDtz+ESFSDzaLkujmUIQ+n04loHIYJ7D7wgQ/g29/+NqZPn45FixZh+/btuPvuu/G5z30u4/saIxYkKmgeRyyw6w9FUO5mLqbRcMSOiMZjmMDuxz/+Mb75zW/immuuQUdHB+rq6vDFL34Rt9xyS8b3pUYZ2ZE5DV8Zy8DOeIpsFlhkmYEdEaVkmMDO4/Hg3nvvxb333nvK9yVJ6W+mS1RIOOJjbJIkweO0cfEEEaVkmMUTk8lqYWBH5uRxxHO0uIDCqDxOG1RNQzDCPiSi0UwZ2HHAjswqHthxxM64vOxDIhqDKQM7IrOyWxXYrQqn8gzMw+l0IhoDAzsik/E6YlN5ITWa66bQBLBIMRGNhYEdkclwxMfYOJ1ORGNhYEdkMokFFNyBwpDsVgUOq4I+BnZElAQDOyKT4e4Fxudx2hAIqdBYbZ2ITmLKwE6IXLeAKHe8DOwMz+uwQUAwz46IRjFlYKdGGdmReQ1NxTIoMCqPM7YHNvuQiE5mysBOcMiOTMyiyCiyWRkUGBh3ECGiVEwZ2FktpnzYRAkepw1RXccAdy8wpHhgxwUURHQyU0Y4sikfNdEQTscam8dhhQSJ/UdEozDEITIhr9MKgFN5RiXLMtwOK/uPiEZhYEdkQu7BqTx/iFOxRuUtsiGiaQhGuIMIEQ1hYEdkQl5OxRre0AKKcI5bQkT5hIEdkQm5B3O0OJVnXMWDJU/Yh0Q0HAM7E2kKdOO+fc9hV18LS76YnCLLKLJb4A+pPBcMinv+EplHJpvMWLLXjPwlAOhCQDf4B5rA6F004o8tmefa9+HbO5/A93c9hSUl0/DR6cuwYdoSlNvdWW8r5R+P04ZAOICBcBQuhzXXzaEMeTliR2QaajT9yM6UgV2vP4y/vnkIVqux91nUpAgGitpGXPbOgAJF2JIev9XfikA4AiHb8ULrAbzQdhC3OR7H+6YtxiUNZ+DcyrmwKaY8JUzJ67ChDQH4QhEGdgbksCqwWRQGdkQmIElS2sfyU7zA+LQBaHoo6XWBwcsdshUO2Qpd6PCHI/jD0Tfwp6btmFZUgo80nIkP1J+Ohd7ajE4kMh7PsD1ja+HKcWtoIoqdNnT1hxDVdVhYoJOoYFktDOxMqTMSwAOtz0MVWspjdAxN08qSDJdkh1VWYLNJaA324Z49z+CB/c/j9JJ6fHT6Mrxv2mJO1RYoFik2Pq/Ths7+IPqDEZS6HLluDhFlSSbjLAzsCkhYjyKkq7BKCpQU62IcyugpN1XT4IQdVQ4PhBAIRCN4vfsIXjtxGN/e+Te8u/Y0TtUWoMSIHQM7w/IUxfLs+gYY2BFRDD+lC5BVssAqKRndJqRG4VaskCQJbqsdbqsdmtDhU0P447FtI6ZqL5u1GjXO4iy1nqaK226BLEnoDzGwMyrWsiMyh6iW/mJPJmUQgNiKm5MX0yqSjFJbESrtbkSFhn2+dvzq4Mt4suWd3DSSJpUsy3DZrfCHVOi6sVeIm1W80HQfR12JClomgR1H7AgAICCgajpsllisrwkd/WoI/mgYiiSjoagMlzQsxQennYHFJXU5bi1NFo/Thv5QBIGwmpiaJeNIFJoeYGBHVMgsChdPmFq/FoScItPSAgVuJXkuTliNQoVAXyQEAQGv1YEPN5yJDzecifOr5sKeJD+PjM3jtAE9sZWxDOyMR5FleJxW+IIR6LqALHMlO1EhYmBnUqUWJxY56xHWk28KHtDDaIqcwMlrXKNCw4AeRlTTUSI5sKysAR+dvhzvm7YYVQ5v9htOOROfyvMFI6grzXFjaEK8Tjt8wQj8YTWRc0dE5mXKwM6iyCgtssBhz3VLTk1UkiFbh0bR3HYrvt74PlhE8ge2pXcnft62BRZZhi50BLQwgroKWZJQoriwomg2rj79HFxQP4c17EyCJU+MLx7M9QXDDOyIyJyBncdpxbkLa1HmMfbDD2pB7A4GRly20DkdTsWZ9Piuw+2wdsrwIwghCXidDqx2zsU8qQELHNNglSwoEyUM6kzE44x9MfBxZaxhJVbGDoSBMk+OW0NEuWbsyIYy4lSsKLE5MddTlZhqLbe58be3Die2JWrrCeCM6ZU5bilNlSK7FYokc8TOwIqH1bIjIjJlYHdyWQ+zeP+003Fm2XTMdJWPGJVbOr0Sz+9tBgB0+YOIajosCivhmIEsSXA7rOgLhqHpOhRuS2U4xUUseUJEQ0z5Lq5GzRnZ2RQLGt0Vo6Za68s9cDuGcnO6/cn3mqXCxB0ojM2qKCiyWdHPIsVEBJMGdsKsQ3YpSJKEWVVDO0l0+AZy2BqaavE8u/6QmuOW0ER5i2xQNR2BMPuQyOxMGdhZLaZ82GOaUTFU1qTLH8xhS2iqxVfGcgGFcRU7Y3l2vgGO2hGZnSkjHKYRjeZ12hKbiHf2BTmqaSLxVZV+TsUaFvPsiCiOIQ4lTCuNlS6OaBqn5UzE4xwqUkzGlKhlxxE7ItNjYEcJtaWuxP+5gMI8imxWWGSWPDGyoZInDOyIzI6BHSVUuJ2wKQoA4ATz7EzF47QhqEahalqum0IT4LBaYLcq6GUtOyLTM1Rg19zcjEsvvRTl5eVwOp1YsmQJ3njjjVw3q2DIsoTK4tiuFQzszGWo5Amn4I2q2GmHqmkY4MpYIlMzTGDX09ODc845B1arFU888QR27dqFH/zgBygt5c7lk6naG5uOZRV7c/HGV8ayFppheQdXxvZyOpbI1Ayz88R3v/tdNDQ04MEHH0xc1tjYmMMWFaaqwRG7SFSDPxQZUbiYChcXUBhfYmXsQAR1/L5LZFqGGbH7y1/+ghUrVuBjH/sYqqqqcOaZZ+LnP//5hO4rqrGURyqlRQ5YBuvB9AT4zd8s4rXsuBrauIZWxnLhE5GZGSawO3ToEO6//37MnTsXf//733H11Vfjuuuuw8MPP5zyNuFwGD6fb8QPwMBuLLIsocwdq2fXE+AHhFkMjdgxmDeq+MpYLqAgMjfDBHa6rmPZsmW48847ceaZZ+Kqq67ClVdeiQceeCDlbTZt2oTi4uLET0NDAwDAokgpb0NAuScW2LHkiXk4rApsFoWLJwzMZbfCqigMzolMzjCBXW1tLU477bQRly1cuBDHjh1LeZuNGzeir68v8dPU1ASAgd14yt2xPDsmYZuL12mDqmkIRhjcGVXx4J6xfm4PR2Rahlk8cc4552Dv3r0jLtu3bx9mzJiR8jZ2ux12uz3bTSs4FYOBXSCsQtU0WAdr21Fh8zhs6OoPwheMwGmz5ro5NAHFRXZ09QfRN8CFT0RmZZgRu6985St45ZVXcOedd+LAgQP43e9+h5/97Ge49tprc920guNyWGG3xoK53gC/+ZuFlytjDa8knmfH6Vgi0zJMYHfWWWfhT3/6E37/+99j8eLFuOOOO3DvvffiM5/5TK6bVpBKXbE8u16usDONoSLFDOyMqniwll0fV7QTmZZhpmIB4P3vfz/e//7357oZplDmcqCtN8C9J00kMWLH/CzDKnbFS57wdUtkVoYZsaOpFS950sfRG9NI1LJjnxtWkc0Km0VBXzACIVjWiahQZPJyZmBHScWnYrm1mHlYFBkuuxX9QRW6rue6OTRBxUV2aLoOP4tNExUMNZp+ZMfAjpJyO6xQZBnBiIqwquW6OTRFPE4bBAT6uZG8YSUKFbPAOFHByGQEnoEdJSVLUuIDgqskzcM7OB3r40itYZUM5kr2MM+OqGBYLemHawzsKKVSVzyw4weEWXBrMeMrccVH7NiHRIVCziBaM9SqWBrJqTixzL0sa/efqInFb/6mwVp2xhcfaeeIHZE5ccSOUuJUrPkwsDM+h9UCu1WBPxSBqjE/lqgQZLKejYEdpVRcxA95symyW6FIMvvc4OIBOneOISoMajT9yI6BHaUUr4nlD0UQ1Vj+wgxkSYLHaUMkqiEUiea6OTRBpUWxckU93DmGqCBIkpT2sQzsaEzxPDsWrTUPTscaHxdQEBUWq4WBHU0S5tmZT3xlbB9XxhoWa9kRFZYMBuwY2NHYiuMbw3P/UNOIj9hxlNa4hq9o59ZiRObCwI7G5B38gOCesebhTYzYsc+NymZR4HHYoGo6/NxFhMhUGNjRmLgy1nzifd7HOmiGxjw7InNiYEdjKrJZYVVkTsuZiFVR4LRaEAirXA1tYPHp2B7m2RGZiikDu6jGnJNMeJ12qJqGYIRTOmbh5aIZwyt1xUqecOcYInNhYEfjYvkL8/E4rAC4Z6yRxadiu/0csSMyE1MGdhYlg3XDxMDOhLzOwUUzA+xzo3LbY2kUgbCKsMqtxYjMgoEdjYslT8zHy1p2hidJUiLPrpt5dkSmYcrAjjLj4e4TppNYDc0RO0MrGcyzY2BHZB4M7GhcXocVEiROxZpIkd0KRZLRH4pA17ky1qhKB/PsephnR2QaDOxoXLIsw+2wwh9SoetceGIGsiTB47RBFwL9LHBrWCVFgyN2DOyITIOBHaUl/iEf4Ie8acRXVfaxwK1hlbiG8mNVjQsoiMyAgR2lxcsFFKZTzK3FDM+qKHA7Yv3IUTsic2BgR2lhyRPzifc5C9waW1liAQX7kcgMTBnYMRc8c4kROwZ2plFcxKnYQlDGBRREpmLKwE6NMrLLlMfBqViz8TiskCWJK2MNrtTNBRREZmLKwE6SWKA4U0V2KyyyjP4QF0+YRXw1tC4Ep+ANrGwwsPMFI4hqDNCJCp0pAzurhYHdRHicNgRCKkdvTKSYW4sZnsNqQZHNCgGBHk6rExU8UwZ2HLCbGI/DBgHWNTMT72CeXS+3FjO0+KjdCX8wxy0homwzZWBHE+PhAgrTKRncWqyPK2MNLRHY9TOwIyp0DOwobd74AoogR+zMIrEyloGdoZUOljzp4gIKooLHwI7SFh+x83FlrGl4nDZIkNAfVJl4b2Bl7liA7g9FEFKjOW4NEWUTAztKG6dizcciy/A4Y4n3fcyzM6wimxUOqwUA0NXPUTuiQsbAjtLmsCqwWRQGdiYTn47t5YpKQ+MCCiLjimoi7WMZ2FFGPA4bBiKcljOTeGDHUhnGVjy4EKbLx8COyGgY2FHWJKZjmWdnGiWDtey4Z6yxVbidAIAT/hCESP9Dgohyz6KkX6eNgR1lxOOwAgD8nI41De/gSE9PgLlZRlY+GNipmsadRIgMxhSB3Xe+8x1IkoTrr78+100xFS9XxpqOxxFbGRuJahhgcWrDcjmssFsVAEAX69kRFSxDBnavv/46/uu//gunn356rptiOlwZaz4WJbYyFmCendFVeooAsJ4dkdFkkj1huMDO7/fjM5/5DH7+85+jtLQ0180xHY8jPmLHkRszKRkscNvL6VhDq/AO5tlxxI7IUNRoAS+euPbaa7FhwwasW7cu100xJZtFgcPKkidmUxJfGcsFFIZW4Y4H6GGompbj1hBRujJZ8GTJYjsm3f/8z//gzTffxOuvv57W8eFwGOHw0AeRz+fLVtNMxeOwobM/CFXTYFWUXDeHpkCxkwsoCkG52wkJEgQEOn1B1JW6c90kIkqD1ZL+OJxhRuyamprw7//+7/jtb38Lh8OR1m02bdqE4uLixE9DQ0OWW2kOia3FOGpnGvEVlb5ghCM9BmZRZJS4YqOv7X0DOW4NEaVLziBaM0xgt23bNnR0dGDZsmWwWCywWCz4xz/+gR/96EewWCzQknzYbNy4EX19fYmfpqamHLS88MTz7Dgdax4uhxW2wdHZbibeG1o8SO/wMbAjKkSGmYq96KKLsGPHjhGXXXHFFViwYAG+/vWvQ0kyJWi322G326eqiabBETtzKnHZ0eEbQE8gjOpiV66bQxNU4XHgQHssQI9qOiyKYb7fE1EaDBPYeTweLF68eMRlLpcL5eXloy6n7PI6GNiZUTyw44idsZV7YiN2uhDo7A+itoRBOlEh4Vc1yhhH7MwpvjK2mwsoDK3YaUsseuJ0LFHhMcyIXTLPPffchG6nc//6U2JRZDhtVvi5+4SplA7WsvMNRDiFZ2CSJKHc7UBbXwAdXEBBVHBM+c6sRhnZnSqv0wZV0zEQYaFis4iP2AkI9HIHCkMbKlQcQpTfdIkKiikDO0lKfzNdSi6+MrZvgKN2ZmFR5MRewZyONbYqb2xrMU3o3IWCqMCYMrCzWhjYnSov94w1pbLB6VhuIm9slR4n5MEvuB0+9iVRITFlYMcBu1MX3xTeF+SUnJmUDW5JdcLPYMDILIqc6MvWXn+OW0NEk8mUgR2dOq8zlm/VxxE7UykdDAZ8wQjCKnegMLL4dGyXL4RIlH1JVCgY2NGEuO1WyJLEqViTiU/FAhy1M7p4YCcg0NobyHFriGiyMLCjCZFlCW6HFYGwClXjqjqzsFkUuAcXzjDPztgqvU5IiOWlMLAjKhwM7GjCvIlCxcyzM5PSwU3ku/q5MtbIbBYFJYN92dLDwI6oUDCwowmL70DBkifmEq9nx6lY46sujk3HBiMqeljChqggmDKwEyLXLSgM8QUUPgZ2plIxuNdoJKqhj6O1hlbuHsqZ5KgdUWEwZWCnRhnZTQaPgyVPzKhsWDDALamMrWpwxA5gnh1RoTBlYCc4ZDcp4jl2vQMM7MzEYbWgyBYL6lnc1tiKbFaUFMUC9U7fAFSNZU+IjM6UgZ3VYsqHPemcNitsigJ/SOV+kyYT32uUI3bGV1Uc60tdCBzvZrFiIqMzZYQjm/JRZ4e3yAYBgX7m2ZlK1WCe3UBEhT/Evjey6eWexP+Pdvly2BIimgwMceiUJKZjmWdnKvEROwBo7+N0rJFVepywKgoAoLVngLtQEBkcAzs6JfGVsb0BBnZmUlpkhyLF3j46fUy6NzJZllEzuIhCFzqOn+B0LJGRMbCjUxKvadbHBRSmIssySt2xvm/nAgrDqy11Jf5/9ASnY4mMjIEdnZLiosGpWI7YmU68np0/FIGPewYbWl2pO/H/tt4AwiqnY4mMioEdnRKX3QpFlhGIqPwwMJl4YAcALT2cvjMyl92K4sHRd10INHX357hFRDRcJoUnGNjRKZEkaVg9O25JZCZVXha3LSR1w6Zjj3RyOpYon6jR9CM7BnZ0yuJ5dpyONRenzZII6tv7BhDVWMvQyKYNm45t7wtwep0oj0iSlPaxDOzolMU/3Lu5ibjpxEftNF1Hh4/Fio2s0lsEh9WS+P1Ae08OW0NEw1ktDOxoCsVzc3o4Ymc6w/caZZ6dscmSNKJY8aGOPo7CEuWJDAbsGNjRqRs+Fcutxcylwj20gOLYCT/3YTa4GRXexP/DqoZDnX05bA0RTQQDOzplbocVFlmGgGCencl4nDY4bVYAQDCicjrW4Cq9ThQN9icA7G7uhq4zWCfKtaiW/uuQgR2dMkmSEtOx3X7m2ZlNbcnQdOyxLpbJMDJJkjC9Ymg61h+K4Aj3jyXKOQZ2NOVKXbHArqufuxCYzfCyJ8dO9HOEx+Cml3tH/P7PY51MsSDKMYvCxRM0xcrcDgDACT8DO7OpLXVBQuxNJ6RG0d7H6VgjK3fbR6yODYRV7G/lClmiXMpqYHfZZZfh+eefz/RmVOBKimKBnS8Y4Q4UJlNks6J8MLAHgAMdvblrDJ0yWZbRWHXyqF0X/CHWtSMygowDu76+Pqxbtw5z587FnXfeiebm5my0iwwmPhULcDrWjIZvIn/8RD+CkWgOW0OnalZVyYjfo7qOVw60QeeqZ6K8l3Fg99hjj6G5uRlXX301HnnkEcycORPvfe978cc//hGqqmajjWQAFkVOFCrmykjzGb6JvC4E9nHqztBKiuyoLXGPuKy9L4A3j3TkqEVElK4J5dhVVlbihhtuwNtvv41XX30Vc+bMwWc/+1nU1dXhK1/5Cvbv3z/Z7SQDiE/HMrAznzK3A3arkvh9X2sPIlFOyRvZvNqSUZftbenG9iMdrFdIlMdOafFEa2srNm/ejM2bN0NRFLzvfe/Djh07cNppp+Gee+6ZrDZOOr4nZUeZa6jkiarxQ91MZElCfdlQmYyIpmHX8e4ctohO1bRSd2IUfrhdzSfwzDtN6PIFGeAR5SHL+IeMpKoq/vKXv+DBBx/EU089hdNPPx3XX389Pv3pT8PrjSXc/ulPf8LnPvc5fOUrX5n0Bk8GNco3o2wo98Z2IdCFQFvfABqGfdBT4ZtR7sXB9t7E73tautFY5U3UOCRjkSQJp00rxysHWkdd194XwN93BGCRZThtFnicNtSXuTGjwgubRUlyb0Q0VTIO7Gpra6HrOj71qU/htddew9KlS0cdc+GFF6KkpGQSmpcd/JaZHWWuoZWRLT0BBnYmU11cBIdVQWhwVbQmdLy8vwXvXjwDFoWVlYxoZqUXO5q6EAgnz5+O6jr6QxH0hyJo6fHjraOdWN5YjVlVxVPcUiKKy/jd9p577kFLSwt++tOfJg3qAKCkpASHDx8+1bZljdXCD5lssFkUuB2xqZuWbu4bajayLGFa6ciE+25/CC/sbeZm8galyDJOn16Z9vGRqIat+1vY50Q5lHGE89nPfhYOh2P8A/OYzLgua2qKY7sQDERUdPVzezGzmV7hHXVZS48ff91+CDuaunC4sw8dvgFo3MnAMBorvSh1Zfaef6zLhy27jnEBDVEOMMShSVXhcSb+f/QE95g0m9oSF5zDNpGPC4RV/PNYJ17e14LNO47isTcO4u1jnVA5qpP3JEnCqjk1id1F0tXpC+K53U0cuSOaYoYJ7DZt2oSzzjoLHo8HVVVVuOSSS7B3795cN4tOUjls39CjnX0cmTEZSZIwp3r8/KqQGsXOpi48vv0Qy+MYQLnbiblJyp+Mp9MXxAt7m6HzfSArdF3H7hauPqeRDBPY/eMf/8C1116LV155BZs3b4aqqrj44osRCARy3TQaxuu0warEVsWFVA1HOjlqZzbzakqhSOm9tQTCKp7ecQyH2vuy3Co6VWfOrEL1sC9u6Wrp8WMbCxtnxWuH2tHaw89AGskwgd2TTz6Jyy+/HIsWLcIZZ5yBhx56CMeOHcO2bdty3TQ6SZV3aDp2R1MXp2JMxmGzoDGNUbs4AYGtB1qwlyMPec0iyzhvYf2IUfl07WvtYfA+yfa2dONgey8XqdEohgnsTtbXF3uTKCsry3FL6GS1JUP7hgbCKl472MY3H5NZNK0McpqjdnFvHG7HoQ5++Oczm0XBRYsasKCuLO1R2bjXDrahJ8AFVZOhqz+Y2N6N7610sozr2OUDXddx/fXX45xzzsHixYtTHhcOhxEOhxO/+3ycFpwKVcUjv9Ef7uxDTyCMEpcdLrsVDeVulLudKW5NhcDtsGF+XQl2N2c2CvfqgVY4bZYRXw4ovyiyjOWN1Vg0rRyd/UEMhFX4ghE0d/sRiKTeL1wTOl7Y04z3Lp2ZSNegzIVVDS/ubYY+GNDpYGBHIxkysLv22muxc+dOvPjii2Met2nTJtx2222jLo9qfCFkU0mRHW6HDf5QJHFZ70AIvQOxb+vvHO9ClbcIZ82uQQl3JShYi+srcKijD2E1/ZIXuhB4cW8z3nP6THiSbGdF+cNhs6ChfKgI+fJZAse6fNh+pBMDKQK8/lAErx1sxznz6qaqmQXnlQMtIwpGC2a6FK5oAOjeBgxYgWhp2jcz3FTsl7/8Zfz1r3/Fs88+i/r6+jGP3bhxI/r6+hI/TU1NABjYZZskSagvc495TIdvAH/bfhh7mFdVsGwWBefMrcu4TEYkqrHArQHJkoSZlcV439LGEfsGn+xIZx8OMt9uQva2dON4t3/EZRyxo5MZJrATQuDLX/4y/vSnP2HLli1obGwc9zZ2ux1er3fEDwBYlMw+aChz4wV2QCxpftvhdubgFbDaUjfOW1gPa4ZbivUEQth2uD1LraJsslsVnLdgGhbWpc5/fuNQG3zBSMrrabSeQAhvHukcdTnfOulkhgnsrr32WvzmN7/B7373O3g8HrS1taGtrQ3BYDDj+2Jgl30VHifs1vTyaPa39eDVA60M7gpUfZkbH1g2C0unV2JOdSmqi12QpfFfgwfae7mS0qAkScKyxmqcNq086fVRXceLe5tZ5zJNUU0fzKsb/XzpfN+kkxgmsLv//vvR19eHCy64ALW1tYmfRx55JNdNoyQUWcasyvRLXhzs6MP2o6x1NRlOnqrJB06bFYsaKrBqTg3WLZ6Oj5w1F0tnVI6bRP86R3YM7cyZVZhTXZL0up5ACNuPjh6BotG2HW5P+TqoK+VCIxrJMIGdECLpz+WXX57rplEKjVXFGeVX7W7uxv62niy2qPC19gbw+sG2XDdjXHargkX1FdiwtBGVntQrpDmyY3xnzapGTXHy4GNvSzeaulitYCyHO/twoL036XX1ZW4snVE1tQ2ivGeYwI6Mp9TlwIyK1EnUybxxqB2tvaykPhF9wTBe2NMMzUDL5FwOK9Ytno7GMUZ3ewIhvMWRHcOSZRlr50+D25F8lfPWA60clU2hNxDCaweSf1HzOm1YM68urbQGMhcGdpRVi+rLYZHTP810IfDyvuaU5RIouagWqxGmaprhyh/IsozVc2sxqyp1cLenpRvNeTjFTOmxWxWcN39a0qLGauLcNdiJm2WRqIbn9zQjmmS02iLLOHdBPesBUlIM7CirSlwOrJlbm9EbUEjV8NLeFug6k4LT9fqhNvQNxIpxCwOWP5AkCavm1GJ6uTflMVtPqt9FxlLqduCs2dVJr+sdCOGV/VxAFafrAi/ta0F/KPlI5tlzalkD1GQyeWkwsKOsa6jw4sNnzcaGpY04f2EDZlUVj7vdVIdvADuauqaohcZ2qL1vxFZcRk1HkyUJa+bVptyLNFFx36gPMI/kKoCaXV2Sctr92Akfp9wHvXG4HS09yUeo59aUYkZl6i9AVJhULf1wjYEdTQmroqDE5UB9mRur59bhg8tmjahan8zO413MtxtHXzCM1w+NzMEx4ohdnCLLOHf+NDht1qTXd/UH8SY//E+JLxjB4c7cLVg4a3Y1PCny7XY1n8A7x839he7to50pF5EVF9mxbCYXS5gRR+wo77kcVpy3oB5nzaoZc+Xs1n0tCEWiU9gy44jqOl7a2zIqB8foda2cNgvOnT8tZVL43pZuHOlkfbuJUDUNz+8+ntE2b5PNqig4Z37qpP+3jnbin8fMF7wLIbD9SAd2pghsFUnG2nl1sGRY7JsKg1VJ/32dZwjl1LzaUpy3sD7l1GxQjWIrixcn9daRDvQEQkmvM3pwV+l14swxRiZe2d+GTl/mxcnNTNcFXtrbgr5gOOfbUJW7nVg6ozLl9TuauvDi3thiIDMIqxpe2NOMXc0nUh6zfFYVSlyOKWwV5RNZZmBHBlJf5sZ5C1KP0LT0+LGnlfXthjve7cfesZ4Tgwd2ALCgrizldL0mdDy3uwm9KQJbGkkIgVcPtqJ5MG9L5MHCpAV1ZagrTb314NEuHx7ffhhHO32G/6KSiq4LHOrow+NvHUZTd3/K46aXezG3Jv1N4MncLLluABEATCtzY9WcWmzd35L0+reOdKDK60S5O3UxW7MIhNSUzxMALGmogJxBiZl8tmp2Lbr9oaSrYSNRDc+804R1i6ejmCsEUxJC4PVD7SMX2ORBoCRJElbPrcUTbx1JWd4oEFbx4r5mFB2xoq7MDa/TlkHJ8/wlBOALhtHcE0BwnNJObocNq+bUTFHLKF/pevpnPgM7yhuzqorhD0WSrobVhcALe5rx3jMa096DthDpuo4X9zUjEk0+RTWzwovTp6ee4jIau1XBmnl1eHrHsaSLQkJqFJt3HsV5C+pRlWI1rZlFNR2vHmjFkZN2d8h9WBfjsFpwzvzU/Rs3EFFxwIS70siSjLXz62CzmPc9j2JULf3ArjC+1lPBWNJQgfqy5NMzgXBspMrM+XZvHulEV3/y3LJSlwOr5tROcYuyr8pbhCXTK1JeH1Y1PLPzGN5p6mIplGF6AiH8/Z9HRwV1APKqRmSVt2jMfEozWzGrirMUBADIZIMRBnaUVyRJwtlz6lJuP9Tc4zdtrauD7b3Y29qd9DqrouDc+dMKdsXcovryMUfkdCHw1rFO/HX7Yexp6UYgZM5CxlFdR2tPAC/ta8ETbx1B70DyHMR8K4mzcFoZZo6xrZwZzakuZV4dJViV9L+0ciqW8o7dqmDt/Do89c9j0JPsj7Wr+QQ8ThvmVJdMfeNypLU3gNcOJt8zEgBWz6mBx5k8GC4EsiThnHl1+Nvbh8cs1dEfimDb4XZsO9wOqyJDlgshIys9QgBqVE8raMvHQe9Vc2oQCKvo9A3kuik5V1viwlmzOIpJQzIZsTNlYBcIRfH6oXZkM99akSV4nTZMr/DCW8AfuNlS7nZi2cxKvHG4Pen1rx1og92ijFvkuBCc8Afxwp7jKRPe59eWoqGi8CvRF9mtOGfeNGx551hax6uaDpijWkbG8nHjeIss48LT6rF5x7GUZXzMoMLjxHkL6gtmAZQRDURUDISjOf8CJGkh2EMqAmFAyyB9wpSBXSSqobXHD6s1+/k4bx/rREOZBytmVaPInryaPiU3v64MbX0DOJ6kDICAwIt7m3HOvDpML+CgptMXxLO7mlJukF7qcpgqP6m2xIUzplfibRMWsJ0sLrsVp00rz3UzkrIqCt61qAHPvtOEbhMGdxUeJy5Y2FCwKRX5QtcFAmEV/lAE/aHh/8b+f3LR91yxIYzp0gkMqA6E1bK0b2fKwG6qNXX3o7U3gLPn1mJGAQch2XD2nFr87a1Q0nIIuhB4YW8zzgyreftBdSqOdPrwyoFWaCneZCyyjLXzp0Ex2Tf7RfXl6PaHxqz7RckpsozzF9Tn9cpyh9WCdUtm4OV9LUm/1BWq6RVerJ5Ty6BukkQ1fUTA1h+KJH4PhNS8yzOdTAzspkhU1/Hi3mb4QxEsqk+9wo9GipW7qMUzO5tSvhC3H+lAW+8Als+qQrHT+PXMBiIq3jrSicPjbJu1Yla1Kaf5JUnC6nm1COxU0e0336jOqVgztxal7vzfvcCqyDh/YT32t/XgraOdKcv7FAKHVcGZM6sxq4qLRzIVVrVEwBYP3uKB3Hj1AQuZKQM7IXKXX/LW0U4IASxuYHCXrupiFxY3lCetbxfX2uvHX9/0o6HMg/oyD1wOi6FGsnQhEAxH0dLrx9HOfmhJFo0MN7PCi9kmWjxyMqui4IKFsXys/lAk180xhLNm1xgubWFuTSlmVHhxtMuH5h4/+oMRaLqAlIc5gukSQsAiy/A4bagvc2N6hQdWJX9HUHNJCIFgJDoYvKnoHzby5g+qiJhky7lMmTSwy+3ff/tYJ2xWBfO4lD1tixsq0OELor0vMOZxTd39BT9F53HYsJKV6OG0WXHRoul45h0Gd+NZNrPasO83NouCuTUs/VGodF2HPxw9adQtFrj5Q+q4X3JpNFMGdvnwZe+Ng+1w261j7pVIQ2RJwpp5tXjyrSMIqtFcNydnFEnGufOn8Rv+IJfDiotPn4nndzehM0XhZjNTJBlnz61hjTjKqaimDxt1G5wuDUbgDxd+vlsumDSwy/1JJCDw0t4WvOeMmQVdf2wyFdmsOGd+Hba8czxpfTszWDmnxhA5UlPJYVWwbvF07Dx+Au8cP5EX+6DmgzK3E2fPqUGpi+cLZV9I1QZH3WKBW38wAn84gv6gipCJv4zngikDu3wR0TS8sLcZFy+ZwZVQaaoudmHl7Gq8cqA1102ZcqdNK2eCdQqyLOP06ZWYVVWMfW09aDrhh9+E07NWRUaltwizq4rRUO4xdC4ajU0XIuWK+WyJRPWTArfYyFt/SIXKfLe8wcAux3oCIbxxuB1nF+Aen9kyu7oE/UEV7zSnXkxRaKZXeLF0RmWum5H33A4bls2sxrKZ1dCFgBACZgptjFLUVgiBgXAU/nAkr/atzVeaEIkaa/G6a/5Q1LQzFzQ2UwZ2xUU2rFtciRJ39vKUorpATyCEY13949ZiOtjei0pPEWZXczQmXUtnViKiadjf1pPrpmRdXakba+bWcvQlQ7Ik5UdCrUnFk+L7g5FEfpU/nhjPoIQoa0wZ2MmyhCK7FW5Hdh9+SZEdjZXF6BsI47WDbegYYw/ENw61odLrNGVdsolaObsGFlnC7pbuXDcla6aXe7FmXq2hSreQeajxIrDBCPqHTcv5Q5HYlkxMiieacqYM7KZacZEdFy2ejn8e7Uo5fRgvYLz+9Bn8EM/AssZqeJw2bDvUUVDL4iVIWNRQjtMbKjhSRzkVUqPwB1X0h2MB3PApQSbFE+UfBnZTRJYkLJ1ZCZfDgtcOtiU9picQwvajnVjRWD3FrTO2uTWlqClxYdvhdjR3+3PdnFNW6XVieWM1yt3OXDcl53RdRySqc9wny3RdxFYwxpPiE4VgmRRPZDSmDOxyub/v3JpSCAG8fih5cLe3pRu1xS5MK2N9u0x4HDZcsLABvmAEzd1+BCIqhIGSsiUptkdmbanLdAHd8BpX/lAEPta4IiKaMFMGdmo0t1N282pLEY5q+OexzqTXbz3Qgvee0QiX3TrFLTM+r9MG77SyXDeDTjJ8Os+fGBXidB4R0WQzZWCXDzlLSxoq4AtGcCTJRu9hVcNLe5uxbvF0w5QvIHOL73U7Mg9raF9HVSuc/EcionxmysDOasl9YAcAq2bXoG8gjJ5AaNR1nf1BbD/aieXMt6MJEkJgIBJNWlDUH1IRncScBCHAKVMiojxgysAuDwbsAAAWRca5C6bhibeOJE1Q3tPSjdIiB2axvh2lMLxWmD80vOREBIFQtKBWChMR0fhMGdjlE4/DhtVza/H8nuNJr3/1YCtcDguqi11T3LL8MDKxnvlYABCJaqwVRkRESTGwywMN5R7Mqy3FvtbRuyjoQuAfu4/josXTC3a1ZFjVErlY8bys/sFALhhRc908IiIiw2BglyfOnFmFTl8wab6dqunY8k4TLjytARUe4wV3QggE1eiw+ljDthYKqoiwThYREdGkYGCXJyyyjHPm1eGJt49AS5LUHolqeGbnMZw9txYzKrw5aOHYdF1HIBxNTJvGR+DiI2/JHhMREZEZSdDgRAADmPzPcwZ2eaS4yI4Vs6rx6oHWpNfHtx1r7fHjjBlVcNqmtvui8X0hh5WyiAdyLCRLREQ0Ng96ME0+hOnSflgRwdPaRxFG0bi300X6qz4Z2OWZOdUlaOsN4GiXL+UxBzv6cKSzH9MrPKgrdcFlt2Eyy93pOhAID5suHZw+Zb4bERFRZmwIoU46ggb5AMqkDiiIAhDQYB38//g0XUn77xkusPvpT3+K73//+2hra8MZZ5yBH//4x1i5cmWumzWpVs2pQU8gBF8wkvIYTeg43NmHw0kKHBMREVHuSNBQKbWgQTqIWvkorAgDAFRhQxguKIjCIqWfX67I6R9rqMDukUcewQ033IAHHngAq1atwr333ov169dj7969qKqqynXzJo1VUbB2/jT8/Z9HmZtGRERkEMOnWl2SHxJ0RIUFIRRB4OSpNYHlyvPQkHw0zi9KMCBi+8bLUvqpToYK7O6++25ceeWVuOKKKwAADzzwAB5//HH86le/wk033ZTj1k2uUpcDZ8+pwUv7WnLdFCIiIkoh2VSrLmSEhQ16ijBLgwVWEUEFkufUK5KGALqxX5yecXsME9hFIhFs27YNGzduTFwmyzLWrVuHrVu35rBl2TOzshjd/hB2t3TnuilEREQ0aLypVmC8xQ4SQki98YBNBEdekMHaRMMEdl1dXdA0DdXVI/dOra6uxp49e5LeJhwOIxwOJ373+VIvSMhXS2dWIRCO4tgJ47WdiIioEK1UtqBWOgYrQogIR4qp1skTFekvnsheK/LApk2bUFxcnPhpaGjIdZMyJksSzplXi9oSc24pRkRElG/260vQpM9GEG7IkgaHNAALVGQ0tJaBTO7VMIFdRUUFFEVBe3v7iMvb29tRU1OT9DYbN25EX19f4qepqWkqmjrpZFnGeQvq0VDmyXVTiIiITK9b1GCbfgGein4c27VzcULUQJE0FEkBODAAGeOtYhWQEYWS4kfGyIWTmaygNUxgZ7PZsHz5cjzzzDOJy3RdxzPPPIPVq1cnvY3dbofX6x3xY1QWRcbaBdOwqL4i100hIiIiABE4cUQsxPPaB/Bs9BLs0c9EEC7YpRCKJD9sCEHC6OoWMjQ4pCAskpr0R0gyIrAnjpfSr09snBw7ALjhhhtw2WWXYcWKFVi5ciXuvfdeBAKBxCrZQidLEpbOqMS0Uje2HW7HCX9w/BsRERFRlknwoQy79DLswTJUSi2oH1xY4cAAAEAVdkRhASBBGixQ/LK2HsHBkiYn0yGhTjqacUsMFdh94hOfQGdnJ2655Ra0tbVh6dKlePLJJ0ctqMg1VdMQUXW4HNas3H+l14n3nDET3f4QWnv8GFCj0HWMvwgnTUIIBAa3DBsIR7lVGBERUZp0KGgXDWgXDbDpQdRJRzBd3o9SqQs2hKELGfpg7bqA8KTcL9aGcNLLx2OowA4AvvzlL+PLX/5yrpsxppCq4a9vHsKsqmIsqi+H22HLyt8pcztQ5nZk5b7jdF2HPxyNbS8WjMAfVmP/Du4XqwkWUCYiIkomPlV7RFsAL3pQLx9Eg3QARZIfWpZCMMMFdkahC4ED7b041NGHxsEAz5OlAC+bZFmG12mD12kDSkdeJ4TAQCQW9PlDKnyDgZ8/GEF/SIWqpZ/sSUREVLhGT9UWSycQRPJp2FNhysBuKnfp0oXAwfZeHGrvQ2OVF4vrK+BxGi/AS0aSJLjsVrjsVlQXj74+pGqxkb7BwC820hcL+kJqehsfExERFZLhU7XZYMrATo1O/fShgMChjj4c7vBhZqUXixsqYqNgBcxhVeCwOlHhcY66TtX02EhfMIL+sIr+oJoIApnXR0RENDGmDOykTNYNTzIBgcOdfTjSaZ4ALxmrIqPU5UCpa3SO4Ml5ff2D07v+kIpQNAph8pgvqunQzf4kEBFRUqYM7KyW3AV2ccMDvBmVXiyuL0dxkX38G5rAWHl9FJveHwir6A+pifzG+HS3PxSBqnFBCxGRWZkysMvhgN0oAgJHOvtwpLMPMyq8WFRfjiJbdsqknMxuTX/vOcofsiTB7bANrrYevdVcMBIdFuxFhgWAEYRULmghIipkpgzs8tXRLh+Odvmm5G/ZrQo+unLelPwtmlpOmwVOmwWV3mS5jRr8wVjQF9UmbzpXQMRWRIcGV0WHIwgziCQimnIM7IhMxKooKHUrKM1y/UMAiES1ESOHsf/HRg8DYTXrf5+IyIwY2BFRVtgsCsrcStIi2pquD9Y8HJkfGPt/FDoLXxMRTQgDOyKacooso9hpR7Fz9IIhIQQGwlH4w4M1DyOseZht2rBtBJmLSWRsDOyIKK9IkgSXwwqXI3nha8o+VdPQH0wyjR6MIBDhNDpRPjNlYMcSYEREqVmV1NPoUV1H4KSi4v5hpXdYY5Eot0wZ2KlRvvEQEU2EZYxp9LFqLPYHI4hO5X6ORCZlysBO8BslEQAM7t+rQpvAa0KWAIfVghKXHXI+FYeknEmnxuLJI3wTOffMRtd1+EOx3XgYHNN4TBnYWS1yrptAlFNHOn3Y1XwCPYHQKd+X02rBvNpSzK8rg1Xha4tSi9dYrPLmuiXGNRCJ14tUEdY0TOW22qo2soQRF9nkJ1MGdjI/e8ikBiIqXtnfitbewKTdZ1CN4u1jnTjY0YfVc2tR5S2atPsmopGKbFYU2ax5ERzHC577RpQsYq3KXDNlYEdkRt3+EJ7bfRzBLK1q9IcieHrHMayaU4PZ1SVZ+RtElD/GKniu6ToC4Sj6gxHWqpxiDOyITKDTF8Szu45B1bL7Ziog8MqBVkSiOhZOK8vq3yKi/KXIMrxOG7xO26jrdCEQHKxV6QvGg76hhTaqxineU8HALgussgyLLDPJlfJCjz+EZ3c1ZT2oG+7NI+2wKBLm1pRO2d8kImOQR9SqHL3IJqRGY7vShCOJBV7xad6QyoLl42FglwUOmwXvXjIjq9NeROkIhFU8u/t4Tr4Bv36wHUU2K6aVuaf8bxORcTmsFjisFlTAOeo6VdNjK6qDEfSfVE9xIByFmMrVJHmKgV2WlLkdeM8ZM/DcruOTsvKQKFOqpuP5Pbn7ciEg8NK+Zrx7yQyUukbn4BARZcqqyCh1OZK+p+i6Dn84VhamPxiBP6wOG/FToRk4ry+TqkAM7LKoyGbFu5fMwEv7mtHc7c91c8hkXjvYhm5/br9UxILLZrz3jJmwWZSctoWokPWHIghHtEkdr7JbFXgcVkgGqVMpD8/rOykLRAgxoo5i/+BUrz8Ym+LN97y+qEj//ZOBXZZZFRnnLajHm0c6sLelO9fNIZPY39aDI519uW4GgNhq2VcPtOHcBdNy3RSigqJqOva39WBfa0/Wyos4rRbMqSnB/Noy2K3G/XImSRKK7FYU2ZPvQR1WtUR9vv6QioGwmvPNDBQRRHnEif6wHRY5/eCagd0UkCUJKxqr4XXY8MahduYAUFb1+EPYdqhj3OMssozaEhc8ThuUDN404oSI1cVr7R0Yd7r32Akf9rY4Mb+OK2WJJkN7XwCvHmhDfyiS1b8TVKPY0dSFg+19OGt2DeoLNGfWblVgtzpR4Rmd15cz0QDQ3YzuASuKRi8uTomB3RSaV1sKt8OKF/c2T+kKRTIPVdPx4r7mMXNJLLKMhdPKsKCubFKmR3Vd4OgJH94+2jnmqMGbRzpR5S1KWvOKiNK3v60Hrx+c2kGCgYiKf+xuwhnTK7G4oWLK/i7FZDIbzj0YplhdqRvvXjIDLps1102hArTtUBt8wdTf4EtdDrx3aSNOn145aTlvsiyhsbIYG86chcbKJHMcg3QRCzr5pYZo4nY2deG1g205m/l5+1gn3jjUlpO/TelhYJcDpS4HLj5jBso4ckGT6EhnHw52pM6rqyt14+IlM5IWDJ0MVkXGmnl1WDq9MuUxvmAE2/ihQDQhu1u68faxzlw3A3tbe7D9yPjpHjR5olr64RoDuxwpslnx7sUz0FDmyXVTqAD0ByN47WDqgKm+zI3zF0yDRcn+S35RQwWWNVanvP5gR1/eLOwgMoqjXT68ebg9181I2NV8ggsCp1BUT38uloFdDlkUGecumMatl+iUaLqOF/e1pJzirPYW4Zz50yDLU/dyX1hXhiVj5OG8dnDsKWMiGnLCH8TW/a25bsYo2w53oK0vkOtmmIJFTn/qnYFdjkmShGUzq7Fydg0kGKNWEOWXNw93oNsfTHqd12nDuQvqYZnCoC7u9OmVmFWVPOdO1XS8uLcZUebbEY0pFIni+d3N0PJwi0oBgRf2NMOf5ZW5+SSq6VA1Las/yd4XLUr6/c9VsXlibk0p3HYrXtjbkveFEil/HO3yYV9bT9LrrIqC8xc25LT21MrZNfAFI+jqHx149gRCeONwO86eU5uDlhHlPyEEXt7fgoE83poyEtVwuNM35gi90bX0+LGvtQdtfQNTEmAXO+14/7JZE749A7s8UlvqxoaljfCHs//txyiVxCm1nkAIr4wxPbNmXm3WFkqkS5FlnDt/Gv729mGE1dFfWA6296Lc7cDcmtIktyYyt3eOn0Br7/hTnXargipPERw2S0ZlMcYkgFBUQ2ffAIJqdMxDC/XTxB+K4LWD7WjtNdbOUQzs8ozLYYXLwVIoNLZgRMU/dh9HNMW3x9OmlaM+TxbmFNmtOGduHbbsakp6/esH2+G221Bb6prilhHlrw7fAP55rGvMY1x2K5Y0VKKx0pO1HFpdCDSd6Mc/j3WmzIuVJlDgPN+19wXw/J5mRKLGm0Fjjh2RwUSiGp7ddTxlMeAKjxNnTM+vaZHaUjcW1ydvk4DAC3uP53xfW6J8EVY1vLyvZcxadbOqYrUjZ1cXZ3VhlCxJmFHhxfuWNmJBip1j5AIbszvW5cOWd5oMGdQBJg3scrz9G9GExYK6JvQEkgdBVkXBOfPqpnQFbLqWNJSn3K5H1XRs2XUs5eMiMpPXDraNuYvLspnVWD23DtYpKF8Up8gyljdWY/WculEL/Qops+d4tx8v7WuBbuBAIf/e/aeAGjVuh5F5BcIqnt55LOlChLhVc2rgduQ2ry4VWZZxzrw6WJXkiznCqobNO46xfAKZ2r62Hhw74Ut5/crZNTktkTWruhhr548M7uQCiey6+oN4cW+zoYM6wKSBnTB4p5H5HO/248m3D485ojWnugQzKrxT2KrMuR02rJpTk/J6VdOwZWcTmk70T2GriPJDTyCENw+l3tHhzJlVebHQaHqFF6uGrWYvhLguEFbx/O7jeVlWJlOmXDxhtZgyniWD0XUdbX0D2N3cPe4oVnGRHcvH2O0hn8yo8KKtbwAHUpRpERDoGwijoTw/Fn8QTQVV0/DCnmZoInlgMa+mFKdNK5/iVqU2u7oYAxEV/zzWafgRu6iu4x+7j4+7+tcoDBHYHTlyBHfccQe2bNmCtrY21NXV4dJLL8U3vvEN2GyZTzvlYfoRQmoUnb4gQmp0QjmAFkVGcZENZS4HS5kYWDASxfYjHejwDSAY0aCneJMfziLLWDt/arYLmyzLZ1bhRH8w5Qgkz2Aym1cOtKE/RaHf6mJXXn5xW9JQgd6BsOE/c7Yd7iio/F5DBHZ79uyBruv4r//6L8yZMwc7d+7ElVdeiUAggLvuuivXzTslvmAEbx/rxPET/ZMyr+912nDatArMrk5e8Z/yl67HdmPo8A1kdLuzZtWgpMiepVZlh0WJBaNPvHU4ecmWAiyfQJTK7uYTONaVPK+uyGbF2vl1kPP0NbF6Ti36Dbw94JFOX8rZg5N5HDY4bZasB7Ju+6mFZoYI7N7znvfgPe95T+L3WbNmYe/evbj//vsNHdjtaenGW0c7J3VO3xeM4JUDLTjc0Ys18+tQZGNNPKM43NmfcVA3p7oEswwaxHudNpw9txYv7m0edV2hlU8gSqWpux9vHkmeVydBwjnz6+Cw5u9HtUWRUep25LoZE9IfjOC1g2PvwatIMubVlmBebWneLkw7Wf6eLePo6+tDWVnuVgadCl3X8drBNhzs6Mva32j3DeDJt47g/NPqUe5OXmKC8kdU1/HO8bGLkZ6syluEFbPyb3omEzMqvOgbCGNH08jHbvCZHaK0dPqCeGlvS8rrz5hZiSpv0RS2yDx0XceL+1qgjrFfdYXHiTVz6+DJ8Q4+mTJOUs4wBw4cwI9//GN88YtfHPO4cDgMn8834ifXdF3gxb0tWQ3q4oJqFM/sbBqzPAblh9aeQMr8mmQ8DhvOXVAPJR8TRjO0pKEi71fzEk22E/4gnt3VlHLGpqbEhdNSFASmU/f2sS50+1N/Ns6qKsa6xdMNF9QBOQ7sbrrpJkiSNObPnj17RtymubkZ73nPe/Cxj30MV1555Zj3v2nTJhQXFyd+GhoasvlwxiWEwCsHWtHUPXWlHFRNw3O7m9BbQImhhehQBoG+02bFhac1wGFNXg/OaCRJwuq5tagpHtpSzOir7IjG0toTwDM7j0HVku9s4LAqWDO31vCLEvJVS48fu5pPpLx+Xm0pVs+ty/0XZ4sLqDoPKD8r9v90b5bFJo3rq1/9Ki6//PIxj5k1a1bi/y0tLbjwwguxZs0a/OxnPxv3/jdu3Igbbrgh8bvP58tpcPf20S4c7sz+SN3JwmpsC6r3nDEDTubc5R1V09Hcnd4m00U2Ky4y6LfIsSiyjPMX1uMfe46jrTfAqVgqSLquY1dzN/55rGvM7cJWz63je3WWDERUbN2fevp7dnUJzpqVutamEeQ0sKusrERlZWVaxzY3N+PCCy/E8uXL8eCDD6a1ZZLdbofdPnq1YFSb+gLFR7t8eKc5sxyqyTQQUfHCnmasWzw9L7ebMrOWHv+Yb/JxZS4Hzj+tvmAXxFgUGRcurMfrYxRoJTKiqKbj2Il+vHO8C75xVpCeNq0cdaXuKWqZuei6wEt7WxBSk4+U1pa4sdLgQR1gkMUTzc3NuOCCCzBjxgzcdddd6OzsTFxXU5N5J0x1YNcbCOGV/WOvvJkKnf1BvHmk0/AJ94VmvNE6WZKwsK4cixvKDVWrbiJkWcaqOTUIp3jjJTICXRc42NGLphP9GAhH4Q+pKQsPD1fhceKM6RVT0EJz+uexrpSVB7xOW16XlcmEIQK7zZs348CBAzhw4ADq6+tHXDeR7cEsytR1nKrpeGFvc/JaXTmwt7UblV4nk9XzhK7rOJ4k59KmKHDaLagrdWFejXGW2U8We4HkD5L5qJqO5wdTCjJhsyhYO28aZ1SypOlEf8pZM4ss47wF9bBZCuN9xxCB3eWXXz5uLl4mpjKwe+1g27hD70Dsm1ptiQtOm2VCieOqpqPbH8Lxbn/KhNy4V/a3otTlgLfA8rSMqDsQHrHcPrYwoh6lLmPWhSIyMyEEXtzbnHFQBwDnzKuDy1GYaRa51u0P4eV9qfPqVs2pQbHBiryPxRCBnVEdbO/FkXEWS9SWuHHmzMpJ+yCPajr2t/ViR1Nnyvo80cEdDtafPiP3q35M7uQPgLXz6xjUERnU/vZetPSktxBquGUzq5hXlyWBkIrndh9POWs2p6YUMyuNWeQ9FX6qZ4kvGMEbh9pTXi9LEs6aXYN3LWqY1A9yiyJj4bQyvG9p45j32xMIYfuRzpTX09Ro6xvK95hR4WUxUiKDikQ1vH008/fU2dUlWDitPAstooGIiqffOYZgRE16fXGRHctnVk1xq7KPgV0WaIMjYqm+IVgVGRcuasC8mtKstcHtsOHiJTMwbYxvgXtbu3E8zTIbNPl0IdDtH6ovuHAai5ESGdXulm5Eopkt+plW6sZKLmbLCl8wgs07jsGfovC7IslYO6+uIBekFd4jygPbj3aiJ0VBYEWWccHChhHFWLPFosg4b8G0MYf4XznQgoEU32You/oGwol8yFKXg1u/ERmUqmnY25LeRvJx00rdWLuAiyWy4Xh3P/7+9pGUQR0ALJ9VhZICTXvhGTXJjnf7sbelO+l1EiSct2AaqoqnbrpNlmWcO38aKr3Jg4awquHlfa3QJ7C6mE7N8K3eZlRylTKRUR1o6xt30dpwc2tKcd6CelgY1E2qbn8I/9h9HP/YfRyRMfpjerkXc7M4Y5YNmXxEc/HEJPKHItg6xsqbs2ZX5yRBNjZy14C//zP5N5j2vgB2HOvCGTPSKxZNk6NjeH5duSeHLSGiidJ1HXtSfJk/md2qYEVjDWbyi9wp03UdTd1+nOgPIhCJoi8QRl8wPO7t3A4bVs0xXhFiNZp+ZMfAbpJEB+vVpfqWMK+mNKffEBxWBectmIan/nk0ae7fzuNdqPQ6uTJrCnUN5teVuhymq1NHVCja+gbGTGdRJBkepw0zK72YV1sCq1IYtdJy6YQ/iJf2tqB/jKnWZGRJwtr5dYasV5dJzV4GdpPk9UNtIxLhh6twO7G8Mfcrb0pdDqyaU4OXUowqvrS3BevPmMn6dlMgrGqJ0dPakuznWxJRdhxsH13SyqYoOLOxCvWlbjhs/JidTC09fjy/uzmtnTxOtryx2rC5zFZL+tP2nOCfBLuaT+BQR/J6dTaLgrXz8ydBdmZlccqRw4im4R+7m7id0xTo9g/l19WVMrAjMiJN10fVrbNZFLz79BmYU13CoG6SdfqCeHHvxIK6OdUlmFdrrLy64TIJIfIj2jCwQ+192H4k9ablq+fmXzXx5Y1VKWvc+YIR7GhifbtsOzE4uqvIMio9xvwGSWR2rb2BUakta+fVoaSAdjHIF6qm4aW9zSkL74+l2ltkqj3SGdidgiOdPrxyoDXl9fNrS1Ffln85a4os45z5dSlXZE3gdUMZ6hvcZq7C48yb0VwiyszRrpH7PM+pLkUt85SzYsexLgQmUJqrpMiBcxfUG36XpUy2mzf2I82h3c3deGlfMwSSJzSWuhxYmscVrYud9pTfYOSp20rXtOJTsVUpytAQUX6Lajqau4cCO6si44zpFTlsUeHqDYSwJ8M6gUBsZ4l3LaqH3Wq8xRInU6PpR3ZMAMhQMKLijUMdOHbCl/IYyzgjYvlidnUJWnsDONo18rFIEiO7bIpqOnyDI3aV3EKMyJDa+wZGTAvOrytjTl2WvHW0M+UgSipV3iKct6Awgjogs89lnoVp0HWB7kAIR7t8ONjeO+4c/4pZ1Sh2GiPHYuXsGnT1BxEIDw1xc8Quu3oDQ7WWKjyFWfmcqNANXzShyDLmGzgxP591+AbQ3JP+1pcSJJxWX47TG8oLKs3FamFgN6beQAR/e+sQbNb0vgFENZH2t4XGymLMri45hdZNLZtFwbmD9e3iu09wxC67ugdiCyeKi+ysaUVkUC29gcT/Z1Z64bCa8uM063Y1n0jrOEWW0VDuwaJpZQW5VVgmH8umPBOFEIhqApI8uasESoocWDnbeBWty91OLG+sxuuH2gAwsMu2Hn9sxK6Cq2GJDMkXjIzYxWduTUnuGlPA+gbCaO5OPlpXZLNiXm0pKjwOFNmscNossCiFM0J3KkwZ2GWDVZFx7oJphj2x5tWWoqs/iMOdfZyKzbK+wRG7cnfhfaskMoOmE0OLJoqddsMWvc13qRZMTK/wYvWcWsN+3mYbA7tJsmbeNMPv2LBydg36ghGO2GVZ70Dsm34ZAzsiQ2obNg07g/u+ZkUkquFI5+jC/42VxVg9t5afU2NguDsJls2szst6dZmyKDLOXzgN7jwrqFxI/KEIVE2DLEkoZhFTIsOJ6jq6+od2jplRwcAuG/a39Y4q/lzhcWLVnBoGdeMwZWAnxOSdFKdNK8fCaWWTdn+5VmSzorGyONfNKFh9g6N1xUX2vC+HQ0SjdfYNJAKOUpfD8DM1+erwSaN1FlnGmnl1hi80PBVM+QyJzMrhpHTatHKcmcdFiCn/xOvXlbo4WkdkRPHtAAFgRrknhy0pXJ2+IPoGwiMuWzqjEh4Hg+h0mDLH7lRHcWVJwopZ1Zhbw7pFlJn4wolUe/USUX7rHDYN28Bp2Kxo7R25EtbrtPHzNgMmDewmPmRX7nZi1ewalDLxnSYgvnCihCN2RIaj6wKdvgEAgNth4zRslpy8G9LSmVWQWa4hbaYM7BRZgtthhd02foAnRGxRQUmRHY2VXm7wTKfEF4xNL5QW8YsBkdH0DIQSOw/Vlrhy3JrC1OMPJVJWgNjsRkMZp7wzYcrAzltkw7sW1aLMY8qHTzkyEFGhajqcNmvB7F9IZCYdfUPTsHX8kp8VR04arTutgBYnThVTLp4gyoX4HrFcOEFkTB2D07CyJKO6uCjHrSlMx4YVf3bZrZhezjzGTDGwI5oi8emFYublEBlSvH5dldcJK3c9mHQn/MGTtmorZW7dBPDMJJoiicCO+XVEhhMIqQipUQBADfPrsuJY19BonSxJmF3FmqoTwcCOaIrEA7sSF0fsiIxm+G4TVV5Ow2ZDS8/QVm0N5R44bMyDnwhTBnYn7VJCNCXiBTeLncyxIzKaLn8ssLPIMsrdfA1PtoGwit6BoeLP3AFp4kwZ2KlRRnY0tSJRDSE1CrfDBgtzc4gM58TgiF2FxwmZ21pNupbeodE6m0VBbQlHRSfKlGcnNxCmqdY/mBDMgqZExhPVdHT7YyPuVVwNmxWtJ03DMnieOFM+c1YLAzuaWlwRS2Rc3YEQNBGb6anyOnPcmsKj6wKtw0bsZrDEySkxZWDHATuaakMrYpmbQ2Q0Pf5Y7pciySj3MLCbbF3+IFRNAwA4rAprBJ4iUwZ2RFMtHth5uXCCyHBODAZ2ZR4HLJwinHTN3f7E/xvKvaxdd4p4hhJNgf4gc+yIjOqEP75wgjUos6Fp2G4TMyq4L+ypYmBHlGVCCPiCETisFu4RS2QwUV2HP6QCAMrdnIadbAMRNbG4zGG1oJI1Ak8ZAzuiLBsIR6HpOkfriAyobyAMXQgAsVInNLnaegYS/68rdUFmEvwpM1xgFw6HsXTpUkiShLfeeivXzSEal4/TsESG1T2YX+e0WeGyW3PcmsLT7htaDVtX4s5hS/JbVBNpH2u4wO7GG29EXV1drptBlLahGnZcOEFkNPH6dRVu5tdlQ3xhigSJe/COoWADuyeeeAJPPfUU7rrrrlw3hShtPhYnJjKs7kBs4QTLnEy+sKoltlos9ziYgzwGi5L+FLVhdthtb2/HlVdeicceewxFRUyuJOPgilgiY9J1Hb2B2OuXK2InX4dveH4dp2HHUnCBnRACl19+Ob70pS9hxYoVOHLkSFq3C4fDCIfDid99Pl+WWkiUmi8YgSxJcDmYn0NkJH3BCPTBHSfKOBU76UYGdpyGnSw5nYq96aabIEnSmD979uzBj3/8Y/T392Pjxo0Z3f+mTZtQXFyc+GloaMjSIyFKTtd1BEIqPA4bV3sRGUzPYH6d12mDVeE04WTr6IsFdg6rgjIXA+exiPRT7HI7YvfVr34Vl19++ZjHzJo1C1u2bMHWrVtht49MPl+xYgU+85nP4OGHH056240bN+KGG25I/O7z+Rjc0ZTyh6MQEPBwGpbIcHoGBnecYNAx6SJRDT2BWOBcU+KGxC++Y1Kj6Ud2OQ3sKisrUVlZOe5xP/rRj/Ctb30r8XtLSwvWr1+PRx55BKtWrUp5O7vdPioYJJpKzK8jMq7ewcCjjIWJJ12nLwiBWLDCadjxiQyG7AyRYzd9+vQRv7vdsSTL2bNno76+PhdNIkoLV8QSGVdixM7NAYLJNjy/rrqYCyLHY7WknzlnqHInREYTH7HzOBjYERnJQERFWNUAAKWcip10nYOBndthQ5GNC8vGI2cQrRlixO5kM2fOzGhYkihXEoEdR+yIDCU+Det22GCzcOHEZNJ1PVH4udrLae7JxhE7oizqD0VgVRQ4bYb8DkVkWj2J/DqO1k227kAY2mAZmUov8+smGwM7oiyJ6joCYRUeJ6cZiIymOxBfEcv8usl2oj+Y+H91MUfsJhsDO6Is8cdXxDK/jshw4ltdMb9u8nUN7g/rslnh5vvjpDNlYKfruW4BmUF/SAXA/Doio9F1PZEfW8IRu0nXNThiV8nVsFlhysBOjTKyo+yLlzphYEdkLLGtxAQcVoUrNidZSNXgH3xvrOLCiawwZWDHCtc0FfwsdUJkSPGFEyVFnIadbMPz66o4YpcVpgzsrBYGdpR9rGFHZEz9IU7DZkuXPxbYOawWFDv5/GaDKQM7DtjRVPCFVNitCuxW1sAiMpI+jthlTSK/jtOwWWPKwI4o26KajmBE5WgdkQH1JlbEckRpMum6npiKrfAwsMsWBnZEWeDjNCyRIUV1Hf6QCgkSiov4+p1MfcEIVC22eLHCzcAuWxjYEWVBPL/OyxWxRIbSPxCBgIDXaYOSyQadNK7uwfp1EiTu6JFFPGuJsiBR6oQjdkSG0hsczK/jNOykixcmLnHZYVEYfmQLn1miLEisiOWIHZGh9CYWTjCwm2zMr5sapgzshMh1C6jQDQV2LG5KZCR9gyN2xRyxm1S6EIn3RebXZZcpAzs1ysiOsssXisBptcCqsNQJkZH0DQzWsGONtUnlC0YQHdzPs9zL/LpsMmVgJzhkR1kUVjVEohqnYYkMJqrrCIRUKJIMl4Oj7ZOpJxDLr7MpCrzMPc4qUwZ2VospHzZNER/z64gMqT84uCK2yAaZlewnVXxFbLnHwW09s8yS6wbkgi4E+gJarptBBar5RBCqKkMSVnT3R3PdHCJK0/HuEFRVhk2287U7yVpOxJ5bh8XB5zZDfQENUS39mUZTBnZ9AQ1/e70PFiW9bw1CAJGogBACNouMiZQ2imoCqiZgVaS0/+5k34euA5GoDkmSYLNIE9pa7VTvYzKey3zvj4FIFKFIEfp9Gt7a35Py9uyPIXx9xLA/huSiP4KRKIKRIvT1Sjh4vIf9Mcyp9kdPQIEQRTjRreONPd18fWRwH1Ets8EoUwZ2EgC7VYbVkn6HOGwCPX4N/pCGUpcCqzX9syEQ1BAI6XA7ZLicp5ZMHwhq8E/gvlRVhy+kwaJIKHXJpzQUblWBnoAGTZdQ6lbSvi8hYs9hVBMZP4cny+f+CKkCsixQZJNhSTHtz/4YwtdHDPtjSK76I/7addpl2CwS+2PQqfZHVNMhSTokCfA4FfTx9ZG4r3T6Q40KZPKMmzOwkwCrJfatI4NboapEwgmfhr6gjgqLBFsaJ0P/gIaBiECJS4Gn6NRXSNo8FlgUDb6gDouip3WfEVVHX1CH3Sqj3Kuccu6IzaLAapHQ1a/BN6CndZ+6EDjh06ELoKrYktZzN7b87Q8BHbIMOOxy0ueF/TGEr48Y9seQXPZH/LVrt8roC7A/gMnpj6gmIMuARZbgcSqw8/UBILP+yORp5yqCDMiShHKvAqsSOykjqj7m8f0DsQ7zOuVJOQniPEUKvE4ZvqCO/oGxh2cjqo6ufg1WRZqUN8k4m1VGhUeBqgmc8GnQx1hpHHtRalA1gQqPMgkvyph87A/fgIaopsMiSymDOvZHDF8fMeyPIbnsDyEEooP7mPb5BfsDk9cfqhb7O/HyT3x9DMmkP9LFwC5D6Z4M2ToJ4tI5GbL1JhmXzoszWy/KuLzrjwENalSCkmS7HPbHEL4+YtgfQ3LdH1FdQBeAFlWg6uyPyeyPyGDAPLwiBV8fQ9LpD33suHMEBnYTMN7JkO2TIG6skyHbb5JxY704s/2ijMun/nDagKgmQ4uOfKzsjyF8fcSwP4bkQ39EohrUqAwBif0xyf2hRgcDu5O+8PL1MWSs/lCjAlEGdtmX6mSYqpMgLtnJMFVvknHJXpxT9aKMy5f+sNkkWBQdYRXsjzzoD74+YtgfQ1L1R69fhxASiovSy7c6FWbqj6imJwI2W5LFZHx9DEnVHz1+jYsnpkr8ZDjh09DVr8Fu0RFSxZSdBHHxv+UL6ohEBcJRMWVvknGxFyfQ1a+hqy9WoyiqY0pelHH50B9RTYfFIuC0SuyPPOgPgK+POPbHkGT9oWoCVosGh21qdpwwS3+og9OwiixBSVFbhK+PIcn6w6IASbJ7UjJVYBffSiwUCsPXH8yo3MlYrJJAbyCKAAC7VYJus6Cvf1LuOiOaGkX3QOwxVhZb0O+f+ureVujo7Y990yhxKQiGZARDU9yGHPZHXyCMSFRDkVuCpursD/D1MRz7Y0i+9Ycsa4gIHQMWCZGwOnVtKPD+8IcjGAhFYbcq6OsPjnksXx9DhvdHsUtBJBIGkN6WqJIw0capx48fR0NDQ66bQURERJSxpqYm1NfXj3mMqQI7XdfR0tICj8dTUHvV+Xw+NDQ0oKmpCV6vN9fNyQt8TpLj85Icn5fk+Lwkx+dlND4nyU3W8yKEQH9/P+rq6iCPs12GqaZiZVkeN9I1Mq/XyxfUSficJMfnJTk+L8nxeUmOz8tofE6Sm4znpbi4OK3juCqWiIiIqEAwsCMiIiIqEAzsCoDdbsett94Ku92e66bkDT4nyfF5SY7PS3J8XpLj8zIan5PkcvG8mGrxBBEREVEh44gdERERUYFgYEdERERUIBjYERERERUIBnYG8u1vfxtr1qxBUVERSkpKRl3/0EMPQZKkpD8dHR0AgOeeey7p9W1tbVP8aCbPeM8LgKSP+X/+539GHPPcc89h2bJlsNvtmDNnDh566KHsNz6Lxnte3n77bXzqU59CQ0MDnE4nFi5ciB/+8IcjjjHr+XLs2DFs2LABRUVFqKqqwte+9jVEo9ERxxTa+TJcqn6XJAmvv/46AODIkSNJr3/llVdy3Prsmjlz5qjH/J3vfGfEMf/85z9x7rnnwuFwoKGhAd/73vdy1NrsO3LkCD7/+c+jsbERTqcTs2fPxq233opIJDLiGDOeKwDw05/+FDNnzoTD4cCqVavw2muvZf1vmqpAsdFFIhF87GMfw+rVq/HLX/5y1PWf+MQn8J73vGfEZZdffjlCoRCqqqpGXL53794RxRJPvt5Ixnte4h588MERz8/wD/XDhw9jw4YN+NKXvoTf/va3eOaZZ/CFL3wBtbW1WL9+fTabnzXjPS/btm1DVVUVfvOb36ChoQEvv/wyrrrqKiiKgi9/+csjjjXT+aJpGjZs2ICamhq8/PLLaG1txb/+67/CarXizjvvBFCY58twa9asQWtr64jLvvnNb+KZZ57BihUrRlz+9NNPY9GiRYnfy8vLp6SNuXT77bfjyiuvTPzu8XgS//f5fLj44ouxbt06PPDAA9ixYwc+97nPoaSkBFdddVUumptVe/bsga7r+K//+i/MmTMHO3fuxJVXXolAIIC77rprxLFmO1ceeeQR3HDDDXjggQewatUq3HvvvVi/fj327t2b3fdQQYbz4IMPiuLi4nGP6+joEFarVfz3f/934rJnn31WABA9PT3Za2COjPW8ABB/+tOfUt72xhtvFIsWLRpx2Sc+8Qmxfv36SWxhbqR7vgghxDXXXCMuvPDCxO9mPF/+9re/CVmWRVtbW+Ky+++/X3i9XhEOh4UQhX2+JBOJRERlZaW4/fbbE5cdPnxYABDbt2/PXcNyYMaMGeKee+5Jef19990nSktLE+eKEEJ8/etfF/Pnz5+C1uWH733ve6KxsTHxu1nPlZUrV4prr7028bumaaKurk5s2rQpq3+XU7EF7L//+79RVFSEj370o6OuW7p0KWpra/Hud78bL730Ug5aN/WuvfZaVFRUYOXKlfjVr34FMazSz9atW7Fu3boRx69fvx5bt26d6mbmVF9fH8rKykZdbqbzZevWrViyZAmqq6sTl61fvx4+nw/vvPNO4hgznS9/+ctfcOLECVxxxRWjrvvgBz+IqqoqrF27Fn/5y19y0Lqp953vfAfl5eU488wz8f3vf3/ENP3WrVtx3nnnwWazJS6Lj9L09PTkorlTLtX7iJnOlUgkgm3bto14n5BlGevWrcv6+wSnYgvYL3/5S3z605+G0+lMXFZbW4sHHngAK1asQDgcxi9+8QtccMEFePXVV7Fs2bIctja7br/9drzrXe9CUVERnnrqKVxzzTXw+/247rrrAABtbW0jPsgBoLq6Gj6fD8FgcMRzWKhefvllPPLII3j88ccTl5nxfEl1LsSvG+uYQj1ffvnLX2L9+vUj9tp2u934wQ9+gHPOOQeyLOP//b//h0suuQSPPfYYPvjBD+awtdl13XXXYdmyZSgrK8PLL7+MjRs3orW1FXfffTeA2LnR2Ng44jbDz5/S0tIpb/NUOnDgAH784x+PmIY147nS1dUFTdOSvk/s2bMnu388q+OBNK6vf/3rAsCYP7t37x5xm3Sm1l5++WUBQLzxxhvjtuG8884Tl1566ak8jEmXrecl7pvf/Kaor69P/D537lxx5513jjjm8ccfFwDEwMDAKT+eyZKt52XHjh2ioqJC3HHHHeO2odDPlyuvvFJcfPHFIy4LBAICgPjb3/4mhDDO+XKyiTxPTU1NQpZl8cc//nHc+//sZz8r1q5dm63mZ81Enpe4X/7yl8JisYhQKCSEEOLd7363uOqqq0Yc88477wgAYteuXVl/LJNlIs/J8ePHxezZs8XnP//5ce/fqOdKupqbmwUA8fLLL4+4/Gtf+5pYuXJlVv82R+xy7Ktf/Souv/zyMY+ZNWtWxvf7i1/8AkuXLsXy5cvHPXblypV48cUXM/4b2ZSt5yVu1apVuOOOOxAOh2G321FTU4P29vYRx7S3t8Pr9ebV6Es2npddu3bhoosuwlVXXYWbb7553OML/XypqakZtXItfm7U1NQk/jXC+XKyiTxPDz74IMrLy9MaWVm1ahU2b958Kk3MiVM5f1atWoVoNIojR45g/vz5Kc8NYOj8MYJMn5OWlhZceOGFWLNmDX72s5+Ne/9GPVfSVVFRAUVRkp4L2T4PGNjlWGVlJSorKyf1Pv1+P/7whz9g06ZNaR3/1ltvoba2dlLbcKqy8bwM99Zbb6G0tDSxf9/q1avxt7/9bcQxmzdvxurVq7PWhomY7OflnXfewbve9S5cdtll+Pa3v53WbQr9fFm9ejW+/e1vo6OjI7FybfPmzfB6vTjttNMSxxjhfDlZps+TEAIPPvhgYlXwePLx3EjHqZw/b731FmRZTpwrq1evxje+8Q2oqpp4zjZv3oz58+cbaho2k+ekubkZF154IZYvX44HH3wQsjx++r5Rz5V02Ww2LF++HM888wwuueQSAICu63jmmWdGVR2YbAzsDOTYsWPo7u7GsWPHoGka3nrrLQDAnDlz4Ha7E8c98sgjiEajuPTSS0fdx7333ovGxkYsWrQIoVAIv/jFL7BlyxY89dRTU/UwJt14z8v//d//ob29HWeffTYcDgc2b96MO++8E//xH/+RuI8vfelL+MlPfoIbb7wRn/vc57Blyxb84Q9/GJFvZjTjPS87d+7Eu971Lqxfvx433HBDIn9MUZTEG7oZz5eLL74Yp512Gj772c/ie9/7Htra2nDzzTfj2muvTXwRKMTzJZktW7bg8OHD+MIXvjDquocffhg2mw1nnnkmAOB///d/8atf/Qq/+MUvprqZU2br1q149dVXceGFF8Lj8WDr1q34yle+gksvvTQRtH3605/Gbbfdhs9//vP4+te/jp07d+KHP/wh7rnnnhy3Pjuam5txwQUXYMaMGbjrrrvQ2dmZuC4+MmXGcwUAbrjhBlx22WVYsWIFVq5ciXvvvReBQCDpIqRJldWJXppUl112WdI8h2effXbEcatXrxaf/vSnk97Hd7/7XTF79mzhcDhEWVmZuOCCC8SWLVumoPXZM97z8sQTT4ilS5cKt9stXC6XOOOMM8QDDzwgNE0bcT/PPvusWLp0qbDZbGLWrFniwQcfnPoHM4nGe15uvfXWpNfPmDEjcR9mPF+EEOLIkSPive99r3A6naKiokJ89atfFaqqjrifQjtfkvnUpz4l1qxZk/S6hx56SCxcuFAUFRUJr9crVq5cKR599NEpbuHU2rZtm1i1apUoLi4WDodDLFy4UNx5552J/Lq4t99+W6xdu1bY7XYxbdo08Z3vfCdHLc6+Bx98MGUOXpwZz5W4H//4x2L69OnCZrOJlStXildeeSXrf1MSYljNByIiIiIyLNaxIyIiIioQDOyIiIiICgQDOyIiIqICwcCOiIiIqEAwsCMiIiIqEAzsiIiIiAoEAzsiIiKiAsHAjoiIiKhAMLAjIiIiKhAM7IiIiIgKBAM7IiIiogLBwI6IaII6OztRU1ODO++8M3HZyy+/DJvNhmeeeSaHLSMis5KEECLXjSAiMqq//e1vuOSSS/Dyyy9j/vz5WLp0KT70oQ/h7rvvznXTiMiEGNgREZ2ia6+9Fk8//TRWrFiBHTt24PXXX4fdbs91s4jIhBjYERGdomAwiMWLF6OpqQnbtm3DkiVLct0kIjIp5tgREZ2igwcPoqWlBbqu48iRI7luDhGZGEfsiIhOQSQSwcqVK7F06VLMnz8f9957L3bs2IGqqqpcN42ITIiBHRHRKfja176GP/7xj3j77bfhdrtx/vnno7i4GH/9619z3TQiMiFOxRIRTdBzzz2He++9F7/+9a/h9XohyzJ+/etf44UXXsD999+f6+YRkQlxxI6IiIioQHDEjoiIiKhAMLAjIiIiKhAM7IiIiIgKBAM7IiIiogLBwI6IiIioQDCwIyIiIioQDOyIiIiICgQDOyIiIqICwcCOiIiIqEAwsCMiIiIqEAzsiIiIiAoEAzsiIiKiAvH/A/opgqxsUuidAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# define a mode source at the I3 port\n", "mode_source = td.ModeSource(\n", " center=(-175, 6.8, 0),\n", " size=(0, 2.5, 8 * h),\n", " source_time=td.GaussianPulse(freq0=freq0, fwidth=fwidth),\n", " direction=\"+\",\n", " mode_spec=td.ModeSpec(num_modes=1, target_neff=n_si),\n", " mode_index=0,\n", ")\n", "\n", "# define a simulation by copying the previous simulation and updating a few things\n", "sim = sim.copy(update={\n", " 'size':(200, 15, 10 * h),\n", " 'center':(-94, 2.5, 0),\n", " 'symmetry':(0, 0, 1),\n", " 'sources':[mode_source],\n", " })\n", "\n", "\n", "ax = sim.plot(z=0)\n", "ax.set_aspect(\"auto\")\n" ] }, { "cell_type": "code", "execution_count": 41, "id": "7cbf0289", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:14:01.166260Z", "iopub.status.busy": "2023-03-28T00:14:01.166056Z", "iopub.status.idle": "2023-03-28T00:17:28.432682Z", "shell.execute_reply": "2023-03-28T00:17:28.432153Z" } }, "outputs": [ { "data": { "text/html": [ "
[09:41:00] Created task '8_channel_demultiplexer_I3' with task_id                                     webapi.py:139\n",
       "           'fdve-d96b749f-d8a6-43ea-a41f-d8d212b051a3v1'.                                                          \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:41:00]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'8_channel_demultiplexer_I3'\u001b[0m with task_id \u001b]8;id=393118;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=986126;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-d96b749f-d8a6-43ea-a41f-d8d212b051a3v1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fda9c5acb1634c8087b3bc02ed3dc555", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:41:02] status = queued                                                                            webapi.py:269\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:41:02]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=117690;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=868160;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:41:04] status = preprocess                                                                        webapi.py:263\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:41:04]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=67897;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=464196;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
[09:41:09] Maximum FlexCredit cost: 3.293. Use 'web.real_cost(task_id)' to get the billed FlexCredit  webapi.py:286\n",
       "           cost after a simulation run.                                                                            \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:41:09]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m3.293\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit \u001b]8;id=382684;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=180783;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mcost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           starting up solver                                                                         webapi.py:290\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=829755;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=362390;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           running solver                                                                             webapi.py:300\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=283210;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=11953;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "383e3849f25540838eae6fc37d3fa753", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:44:09] early shutoff detected, exiting.                                                           webapi.py:314\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:44:09]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=701233;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=845956;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#314\u001b\\\u001b[2m314\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           status = postprocess                                                                       webapi.py:331\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=408670;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=560528;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#331\u001b\\\u001b[2m331\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:44:26] status = success                                                                           webapi.py:338\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:44:26]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=635824;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=554468;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#338\u001b\\\u001b[2m338\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "8f26e46656f540b98dbf05a56efa8f6a",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:44:32] loading SimulationData from data/simulation_data.hdf5                                      webapi.py:510\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:44:32]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/simulation_data.hdf5 \u001b]8;id=541600;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=575196;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#510\u001b\\\u001b[2m510\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "job = web.Job(simulation=sim, task_name=\"8_channel_demultiplexer_I3\", verbose=True)\n", "sim_data = job.run(path=\"data/simulation_data.hdf5\")\n" ] }, { "cell_type": "markdown", "id": "ab9b9dea", "metadata": {}, "source": [ "Field distribution shows a good conversion to the TE1 mode. Loss at the waveguide bend also appears to be smaller in this case." ] }, { "cell_type": "code", "execution_count": 42, "id": "8036a25a", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:17:31.272189Z", "iopub.status.busy": "2023-03-28T00:17:31.271919Z", "iopub.status.idle": "2023-03-28T00:17:39.936251Z", "shell.execute_reply": "2023-03-28T00:17:39.935676Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHWCAYAAAD+VRS3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD5RUlEQVR4nOydeZwcZZ3/308dfcyZ+yJ3kHBjQESQU1gQEe91QVTQCAooC+wqogiIaBRWPBHWXRVWQQFXwR+syE1QInJFjmC4ArnvzExmprvreJ7fH3VMd2aSTDIz3XN833nVK9NVT1V9q6an69Pf61HGGIMgCIIgCIIwZLFqbYAgCIIgCILQN0TQCYIgCIIgDHFE0AmCIAiCIAxxRNAJgiAIgiAMcUTQCYIgCIIgDHFE0AmCIAiCIAxxRNAJgiAIgiAMcUTQCYIgCIIgDHFE0AmCIAiCIAxxRNAJgrDLPPLIIyileOSRR2ptiiAIgoAIOkEQdsBPfvITbrrpplqbsVvceuutfP/736+1GQBorbnmmmuYNWsWuVyOAw88kF//+te93r+lpYVzzjmH8ePHU19fz3HHHcczzzzT49g//OEPHHzwweRyOaZPn84VV1xBEAT9dSmCIAxSlMzlKgjC9th///0ZN25cN0+c1hrP88hkMljW4Pxe+N73vpcXXniBN954o9amcOmll/Ltb3+bs88+m0MPPZS77rqLe+65h1//+tecdtppO9xXa81RRx3F3//+d774xS8ybtw4fvKTn7BixQqefvpp3vKWt6Rj//jHP3LKKadw7LHHcvrpp/P8889z/fXXc84553DDDTcM9GUKglBDRNAJwk7o6Oigvr6+1mbUhO0JuqHAYBF0q1atYtasWZxzzjn8+Mc/BsAYwzHHHMOyZct44403sG17u/vffvvt/Mu//At33HEHH/nIRwDYsGEDe+21FyeffDK33nprOna//fbDdV2eeuopHMcB4LLLLuNb3/oWS5YsYe+99x7AKxUEoZYMzq/WgjBArFq1ivnz5zNlyhSy2SyzZs3i3HPPxfM8AG666SaUUjz66KOcd955TJgwgalTp6b7/+QnP2G//fYjm80yZcoUzj//fFpaWirO8corr/DhD3+YSZMmkcvlmDp1Kqeddhqtra3pmPvvv58jjzySUaNG0dDQwNy5c/nKV76yU/t7s1+pVOKKK65gzz33JJvNMm3aNL70pS9RKpW6He9Xv/oVb3/726mrq2P06NEcffTR3HfffQDMnDmTF198kUcffRSlFEopjj32WGD7OXR33HEHhxxyCPl8nnHjxvHxj3+cVatWVYw566yzaGhoYNWqVXzgAx+goaGB8ePH8+///u+EYbjTe3DXXXdxyimnpL/DOXPm8I1vfKNi32OPPZZ77rmHN998M7V95syZ2z3mWWedlY7bdrnyyit3atPO7PV9n/POOy9dp5Ti3HPPZeXKlSxatGiH+//2t79l4sSJfOhDH0rXjR8/no9+9KPcdddd6e91yZIlLFmyhHPOOScVcwDnnXcexhh++9vf9uk6BEEY3Dg7HyIIw4PVq1fz9re/Pc1H2nvvvVm1ahW//e1v6ezsJJPJpGPPO+88xo8fz+WXX05HRwcAV155JV//+tc54YQTOPfcc1m6dCk33HADTz75JH/5y19wXRfP8zjppJMolUp84QtfYNKkSaxatYq7776blpYWmpubefHFF3nve9/LgQceyFVXXUU2m+XVV1/lL3/5yw7t781+Wmve97738ec//5lzzjmHffbZh+eff57vfe97vPzyy9x5553p2K9//etceeWVHHHEEVx11VVkMhmeeOIJHnroIU488US+//3v84UvfIGGhga++tWvAjBx4sTt2nfTTTfxqU99ikMPPZQFCxawbt06fvCDH/CXv/yFZ599llGjRqVjwzDkpJNO4rDDDuM//uM/eOCBB/jud7/LnDlzOPfcc3d4H2666SYaGhq4+OKLaWho4KGHHuLyyy+nra2Na6+9FoCvfvWrtLa2snLlSr73ve8B0NDQsN1jfvazn+WEE06oWHfvvfdyyy23MGHChHTdxo0bd2hbQmNjI9lsFoBnn32W+vp69tlnn4oxb3/729PtRx555HaP9eyzz3LwwQd3C22//e1v56c//Skvv/wyBxxwAM8++ywAb3vb2yrGTZkyhalTp6bbBUEYphhBGCF88pOfNJZlmSeffLLbNq21McaYX/ziFwYwRx55pAmCIN2+fv16k8lkzIknnmjCMEzX//jHPzaA+fnPf26MMebZZ581gLnjjju2a8f3vvc9A5gNGzbskv292e+Xv/ylsSzLPPbYYxXrb7zxRgOYv/zlL8YYY1555RVjWZb54Ac/WHE9xnTdC2OM2W+//cwxxxzT7TwPP/ywAczDDz9sjDHG8zwzYcIEs//++5tCoZCOu/vuuw1gLr/88nTdmWeeaQBz1VVXVRxz3rx55pBDDtnxTTDGdHZ2dlv32c9+1tTV1ZlisZiuO+WUU8yMGTN2eryeeOWVV0xzc7P5p3/6p4r3AdCr5Re/+EWFHbNnz+52jo6ODgOYL3/5yzu0pb6+3nz605/utv6ee+4xgLn33nuNMcZce+21BjDLly/vNvbQQw8173jHO3p7+YIgDEEk5CqMCLTW3HnnnZx66qndPBgQhcDKOfvssyvymh544AE8z+PCCy+s8JScffbZNDU1cc899wDQ3NwMwJ/+9Cc6Ozt7tCXxVN11111orXt9Db3Z74477mCfffZh7733ZuPGjenyrne9C4CHH34YgDvvvBOtNZdffnk3z8+296I3PPXUU6xfv57zzjuPXC6Xrj/llFPYe++90/tTzuc+97mK10cddRSvv/76Ts+Vz+fTn7du3crGjRs56qij6Ozs5B//+Mcu274tHR0dfPCDH2T06NH8+te/rngf3H///b1aTjrppHSfQqGQeuvKSe5ToVDYoT293T/5f3tjd3YeQRCGNhJyFUYEGzZsoK2tjf33379X42fNmlXx+s033wRg7ty5FeszmQyzZ89Ot8+aNYuLL76Y6667jltuuYWjjjqK973vfXz84x9Pxd6//Mu/8N///d985jOf4ctf/jLHH388H/rQh/jIRz6yw4rR3uz3yiuv8NJLLzF+/Pgej7F+/XoAXnvtNSzLYt999+3V/dgZ27s/AHvvvTd//vOfK9blcrluNo4ePZotW7bs9Fwvvvgil112GQ899BBtbW0V28rzFHeXs88+m9dee43HH3+csWPHVmzbNizbG/L5fI/5i8ViMd3eH/sn/29v7M7OIwjC0EYEnSD0QF8eft/97nc566yzuOuuu7jvvvu44IILWLBgAX/961+ZOnUq+XyehQsX8vDDD3PPPfdw7733ctttt/Gud72L++67b7sVj73ZT2vNAQccwHXXXdfjMaZNm7bb19Wf7Kiqc0e0tLRwzDHH0NTUxFVXXcWcOXPI5XI888wzXHLJJbvk8eyJH/zgB/z617/mV7/6FW9961u7bV+7dm2vjtPc3Jy+hyZPnszDDz+MMabC+7lmzRogynHbEZMnT07HlrPt/pMnT07Xb/t7XrNmTZqzJwjC8ERCrsKIYPz48TQ1NfHCCy/s1v4zZswAYOnSpRXrPc9j2bJl6faEAw44gMsuu4yFCxfy2GOPsWrVKm688cZ0u2VZHH/88Vx33XUsWbKEb37zmzz00ENpSHR77Gy/OXPmsHnzZo4//nhOOOGEbkviQZszZw5aa5YsWbLD8/U2/Lq9+5Os2/b+7C6PPPIImzZt4qabbuJf//Vfee9738sJJ5zA6NGju43d1dDxY489xr//+79z4YUXcsYZZ/Q4ZvLkyb1abrvttnSft771rXR2dvLSSy9VHOuJJ55It++It771rTzzzDPdxOoTTzxBXV0de+21V8VxnnrqqYpxq1evZuXKlTs9jyAIQxsRdMKIwLIsPvCBD/D//t//6/bAg6gv2I444YQTyGQy/PCHP6wY+7Of/YzW1lZOOeUUANra2rp15T/ggAOwLCsNhW3evLnb8ZOHbU/hsoTe7PfRj36UVatW8V//9V/dxhYKhbRi9wMf+ACWZXHVVVd1Ewrl11dfX9+tLUtPvO1tb2PChAnceOONFdfwxz/+kZdeeim9P30l8eyV2+h5Hj/5yU+6ja2vr+91CHbNmjV89KMf5cgjj0wrZXtid3Lo3v/+9+O6boWNxhhuvPFG9thjD4444ogKO/7xj3/g+3667iMf+Qjr1q3jd7/7Xbpu48aN3HHHHZx66qlpztx+++3H3nvvzU9/+tOKFi433HADSqm0h50gCMMTCbkKI4Zvfetb3HfffRxzzDFpS481a9Zwxx138Oc//7mirca2jB8/nksvvZSvf/3rvPvd7+Z973sfS5cu5Sc/+QmHHnooH//4xwF46KGH+PznP88///M/s9deexEEAb/85S+xbZsPf/jDAFx11VUsXLiQU045hRkzZrB+/Xp+8pOfMHXq1B22r+jNfp/4xCe4/fbb+dznPsfDDz/MO9/5TsIw5B//+Ae33347f/rTn3jb297GnnvuyVe/+lW+8Y1vcNRRR/GhD32IbDbLk08+yZQpU1iwYAEAhxxyCDfccANXX301e+65JxMmTEgLLMpxXZfvfOc7fOpTn+KYY47h9NNPT9uWzJw5k4suumh3f20VHHHEEYwePZozzzyTCy64AKUUv/zlL3sU5Icccgi33XYbF198MYceeigNDQ2ceuqpPR73ggsuYMOGDXzpS1/iN7/5TcW2Aw88kAMPPBDYvRy6qVOncuGFF3Lttdfi+z6HHnood955J4899hi33HJLRfj50ksv5eabb2bZsmVp37yPfOQjvOMd7+BTn/oUS5YsSWeKCMOQr3/96xXnuvbaa3nf+97HiSeeyGmnncYLL7zAj3/8Yz7zmc90a5siCMIwo4YVtoJQdd58803zyU9+0owfP95ks1kze/Zsc/7555tSqWSM6Wpb0lNrE2OiNiV77723cV3XTJw40Zx77rlmy5Yt6fbXX3/dfPrTnzZz5swxuVzOjBkzxhx33HHmgQceSMc8+OCD5v3vf7+ZMmWKyWQyZsqUKeb00083L7/88g5t7+1+nueZ73znO2a//fYz2WzWjB492hxyyCHm61//umltba0Y+/Of/9zMmzcvHXfMMceY+++/P92+du1ac8opp5jGxkYDpC1Mtm1bknDbbbelxxszZow544wzzMqVKyvGnHnmmaa+vr7b9V1xxRWmNx9Jf/nLX8w73vEOk8/nzZQpU8yXvvQl86c//ambPe3t7eZjH/uYGTVqlAF22MLkmGOO2W4LkiuuuGKnNu2MMAzNt771LTNjxgyTyWTMfvvtZ371q191G5e0dFm2bFnF+s2bN5v58+ebsWPHmrq6OnPMMcds9z36+9//3rz1rW812WzWTJ061Vx22WXG87w+X4MgCIMbmfpLEARBEARhiCM5dIIgCIIgCEMcEXSCIAiCIAhDHBF0giAIgiAIQxwRdIIgCIIgCEMcEXSCIAiCIAhDHBF0giAIgiAIQ5wR1VhYa83q1atpbGzc5WmBBEEQBGEoYoxh69atTJkyBcsSP85wZUQJutWrVw+ayckFQRAEoZqsWLGCqVOn1toMAH71q1/x7/9+AU8//Tx77LFHrc0ZFoyoxsKtra3x9E4WIB46YfcYP34CU6ZM4fXXX2fr1rZamzOsmT17Dr7vs2LF8lqbIghDGANoWlpaaG5urrUxeJ7H3LkzCEPNe97zDm688a5amzQsGFEeuq4wq0IEnbC7eJ6Hbdvk83m2bt1aa3OGNWEYksvlkL9XQeg7gyXV6D9/+kXq6rL85rYrOfRt5/DFL77GnDlzam3WkEeC6YKwixSLRQCy2WyNLRn+eJ5HJpOptRmCIPQTHR0dfPPqX3LVVfPZd9+ZnH768Vx++edqbdawYNAIuoULF3LqqacyZcoUlFLceeedFduNMVx++eVMnjyZfD7PCSecwCuvvFIbY4URTalUwhgjgq4KiKAThOHFD390MdOmT+T9HzgSgK9dfia/+91Cnn/++RpbNvQZNIKuo6ODgw46iOuvv77H7ddccw0//OEPufHGG3niiSeor6/npJNOSr0lglBNPM+LQ4HCQOJ5HkopHGdEZYcIwrCkpaWFa6/5NVdf/Zk0/DtjxiTOPvu9fPWr4qXrK4PmU/Lkk0/m5JNP7nGbMYbvf//7XHbZZbz//e8H4H/+53+YOHEid955J6eddlo1TRUEisUizc3NKKUYQXVFVcfzPAAymQxBENTYGkEQ+sI1136Bt87bkxNOOKRi/ZcvPYO93nIGixYt4vDDD6+RdUOfQeOh2xHLli1j7dq1nHDCCem65uZmDjvsMBYtWlRDy4SRiuTRVYdyQScIwtBl3bp1/PAHv+Ub3/hMt20TJ47hgn/9CJd+5Tz5gtwHhoSgW7t2LQATJ06sWD9x4sR0W0+USiXa2toqFkHoD0TQVQdjDGEYiqAThCHON795Hu9618G84x379rj93/7tX3ju76/x4IMPVtmy4cOQEHS7y4IFC2hubk4XaSos9BelUgkQQVcNpDBCEIY2b775Jv/1X3dz1Tfmb3fMqFENfPFLp3PpV74gXrrdZEgIukmTJgGRy7acdevWpdt64tJLL6W1tTVdVqxYMaB2CiMH8dBVD8/zcF231mYIgrCbXHnl5/jQh47mgANm73Dc5z//QVauWN+ty4XQO4aEoJs1axaTJk2qcMW2tbXxxBNP7DCBMpvN0tTUVLEIQn8QBAFaaxF0VUA8dIIwdPnHP/7Br3/9IFdcedZOx9bV5fjqZZ/gsssuIgzDgTdumDFoBF17ezuLFy9m8eLFQFQIsXjxYpYvX45SigsvvJCrr76aP/zhDzz//PN88pOfZMqUKXzgAx+oqd3CyKVUKonQqAIi6ARh6PK1r32Os846mTlzejdf6/z5p1AoeNxyyy0DbNnwY9C0LXnqqac47rjj0tcXX3wxAGeeeSY33XQTX/rSl+jo6OCcc86hpaWFI488knvvvVd6gQk1o1gsxnMDCwOJhFwFYWjyzDPP8H//9wT/WPrLXu+TybhcccVZXHHFJZx22mnyZW4XGDQeumOPPRZjTLflpptuAqI56K666irWrl1LsVjkgQceYK+99qqt0cKIplQqoZQSsTHASOsSQRiafOUr53Luee9nypRxu7Tf6R87nrq6LP/50y/u8jkXLFjAoYceSmNjIxMmTOADH/gAS5curRhTLBY5//zzGTt2LA0NDXz4wx/ulqO/fPlyTjnlFOrq6pgwYQJf/OIXu/XCfOSRRzj44IPJZrPsueeeqV6pFYNG0AnCUEMqXauDCDpBGHosXLiQRYte5EtfOn2X97Vtm6uums83r/4lHR0du7Tvo48+yvnnn89f//pX7r//fnzf58QTT6w4zkUXXcT/+3//jzvuuINHH32U1atX86EPfSjdHoYhp5xyCp7n8fjjj3PzzTdz0003cfnll6djli1bximnnMJxxx3H4sWLufDCC/nMZz7Dn/70p12+3v5CmRFUH9zW1kZzczNgA6rW5ghDnPr6eubOncubb77Jpk2bam3OsObggw/mjTfeYPPmzbU2RRCGIAYIaW1trUpxoDGGI486kBNPPJTLLvvkbh/j8MPP44MfPIqvXPrT3bZlw4YNTJgwgUcffZSjjz6a1tZWxo8fz6233spHPvIRICrc2GeffVi0aBHveMc7+OMf/8h73/teVq9enfa/vfHGG7nkkkvYsGEDmUyGSy65hHvuuYcXXnghPddpp51GS0sL9957727b2xfEQycIu4l46KqH7/vioROEIcIf//hHXnl5Jf/6rx/Z7WMopbj66s9w7TW/pqWlZbeP09raCsCYMWMAePrpp/F9v2Lmqb333pvp06enM08tWrSIAw44oGIyg5NOOom2tjZefPHFdEz5MZIxtZy9SgSdIOwm0rqkekilqyAMHb5zzVf49y+eRmNjXZ+Oc8IJh3DAgbO58cYbu836lHyh3hFaay688ELe+c53sv/++wPRzFOZTKZbQVv5zFNr167tcWaqZNuOxrS1tVEoFHbrevuKCDpB6AOlUkkEXRUQQScIQ4fWFpg7d3q/HGufvWdwzz33VMz61NzczIIFC3a67/nnn88LL7zAb37zm36xZbAzaNqWCMJQxPM86uvra23GsMfzvDj/VRCEIYHRoHU/HMdwxBFHcM8991Ss3tkX6c9//vPcfffdLFy4kKlTp6brJ02ahOd5tLS0VHjpymeemjRpEn/7298qjpdUwZaP6Wn2qqamJvL5/K5dYz8hHjpB6AOlUgnHcVBKimwGEvHQCcIQQ5tI0PV1MQbHcbrN+rQ9QWeM4fOf/zy///3veeihh5g1a1bF9kMOOQTXdStmnlq6dCnLly9PZ546/PDDef7551m/fn065v7776epqYl99903HVN+jGTMjmavGmjEQycIfaC8MCKZ31XofzzPw7IsLMtC98e3fkEQhiXnn38+t956K3fddReNjY1pzltzczP5fJ7m5mbmz5/PxRdfzJgxY2hqauILX/gChx9+OO94xzsAOPHEE9l33335xCc+wTXXXMPatWu57LLLOP/881Mh+bnPfY4f//jHfOlLX+LTn/40Dz30ELfffns3T2I1EUEnCH1ABF11KO9FJ/dZEIYA/RVyZdc6q91www1ANFlBOb/4xS8466yzAPje976HZVl8+MMfplQqcdJJJ/GTn/wkHWvbNnfffTfnnnsuhx9+OPX19Zx55plcddVV6ZhZs2Zxzz33cNFFF/GDH/yAqVOn8t///d+cdNJJu3eZ/YAIOkHoA4mgk3DgwCKCThCGGAbojza3u3iI3rTWzeVyXH/99Vx//fXbHTNjxgz+7//+b4fHOfbYY3n22Wd3zcABRHLoBKEPJEJDKl0HljAM0VqLcBYEQdgO4qEThD5gjJGE/Soh91kQhhD9WOUq9A4RdILQR6QXXXUQQScIQ4ikyrXPiKDrLRJyFYQ+4nmeCLoqIIJOEARh+4iHThD6SKlUwrIsbNsmDMNamzNs8TyvKhOLC4LQD5h+8tCJg67XiKAThD5SXoFZqzn8RgKe5+G6bq3NEAShN0gOXdWRkKsg9JHyXnTCwOH7PkopEXWCIAg9IB46Qegj5R46YeAov8++79fYGkEQdkh/FUWIh67XiKAThD7i+z7GGBF0A0y5oOvo6KixNYIg7AiFRhmpcq0mIugEoR+QCsyBxxhDEARynwVhKCAeuqojOXSC0A9IL7rqIMJZEAShZ8RDJwj9gOd51NfX19qMYY8IOkEYIhgTeen6fJy+H2KkIIJOEPqBUqmEbdtYloXul+7oQk94nkdjY2OtzRAEYWdIyLXqSMhVEPoBqXStDuKhEwRB6Bnx0AlCP1Au6IrFYo2tGb54nieeUEEYCvRXY2GJufYaEXSC0A9Ic+HqkAhn13XTey4IwiDEmEjU9fk4fT/ESEFCroLQDwRBIL3oqoCEtgVBEHpGPHSC0E9IftfAI8JZEIYIRooiqo0IOkHoJ0qlkgiNKiDCWRCGALq/2paIoOstIugEoZ/wPI/m5uZamzHsEUEnCEOAfiuKEHqL5NAJQj/heR6u66KUqrUpwxoRdIIgCN0RD50g9BPlFZjJz0L/43keDQ0NtTZDEIQdITl0VUcEnSD0E0kbjUwmI4JuABEPnSAMfpQ2KBF0VUVCroLQT0hLjergeR5KKRxHvo8KgiAkyCeiIPQTvu9jjJHmwgNMuXAOgqDG1giC0CPGiHetyoigE4R+xPd98dANML7vA5Gg6+zsrLE1giD0iOTQVR0JuQpCPyL5XQOP1powDOU+C4IglCEeOkHoR0qlklRgVgHP8yS0LQiDmf7qQyceul4zZDx0YRjyta99jVmzZpHP55kzZw7f+MY3MPLLFgYR4qGrDnKfBWGQk8wU0ddFnvG9Zsh46L7zne9www03cPPNN7Pffvvx1FNP8alPfYrm5mYuuOCCWpsnCEBlBaYk7A8c0otOEAY5/ZZD1/dDjBSGjKB7/PHHef/7388pp5wCwMyZM/n1r3/N3/72txpbJghdSAVmdRAPnSAIQiVDJuR6xBFH8OCDD/Lyyy8D8Pe//50///nPnHzyyTW2TBC6kF501cHzPGzbxrKGzEeYIIwsdOyh6+siLrpeM2Q8dF/+8pdpa2tj7733xrZtwjDkm9/8JmecccZ29ymVSmn3foC2trZqmCqMYETQVYfy+1wsFmtsjSAI3emn/DfJoes1Q+br7e23384tt9zCrbfeyjPPPMPNN9/Mf/zHf3DzzTdvd58FCxbQ3NycLtOmTauixcJIxBhDEAQi6AaY8mnWBEEQhCHkofviF7/Il7/8ZU477TQADjjgAN58800WLFjAmWee2eM+l156KRdffHH6uq2tTUSdMOBIftfAEwQBxhi5z4IwWNFSFFFthoyHrrOzs1u+jG3b6B28YbLZLE1NTRWLIAw0Iuiqg9xnQRjEmH5qW7KLim7hwoWceuqpTJkyBaUUd955Z8V2pVSPy7XXXpuOmTlzZrft3/72tyuO89xzz3HUUUeRy+WYNm0a11xzze7eqX5jyHjoTj31VL75zW8yffp09ttvP5599lmuu+46Pv3pT9faNEGoQFpqVAdpLiwIwrZ0dHRw0EEH8elPf5oPfehD3bavWbOm4vUf//hH5s+fz4c//OGK9VdddRVnn312+rqxsTH9ua2tjRNPPJETTjiBG2+8keeff55Pf/rTjBo1inPOOaefr6j3DBlB96Mf/Yivfe1rnHfeeaxfv54pU6bw2c9+lssvv7zWpglCBZ7n4TgOSilpfD2AeJ5HLpertRmCIPREjWaKOPnkk3fY/WLSpEkVr++66y6OO+44Zs+eXbG+sbGx29iEW265Bc/z+PnPf04mk2G//fZj8eLFXHfddTUVdEMm5NrY2Mj3v/993nzzTQqFAq+99hpXX321hFyEQYdUulYHCbkKwiCmv9qWmChntq2trWIp72Cxu6xbt4577rmH+fPnd9v27W9/m7FjxzJv3jyuvfbair6iixYt4uijj674/DnppJNYunQpW7Zs6bNdu8uQ8dAJwlChXND1x4eO0DOe5+G6bq3NEAShJ5Icun44zuOPP05zc3PF6iuuuIIrr7yyT4e++eabaWxs7BaaveCCCzj44IMZM2YMjz/+OJdeeilr1qzhuuuuA2Dt2rXMmjWrYp+JEyem20aPHt0nu3YXEXSC0M+Ih646lN/n5GdBEIYfRxxxBPfcc0/Fuv7In/35z3/OGWec0S11o7w7xoEHHkgmk+Gzn/0sCxYsGNR5uyLoBKGfkZYa1UEEnSAMYoyJ8uj6fiAcx+n3LhWPPfYYS5cu5bbbbtvp2MMOO4wgCHjjjTeYO3cukyZNYt26dRVjktfby7urBkMmh04QhhKS3zXwiCdUEAYx/dW2ZIDqyn72s59xyCGHcNBBB+107OLFi7EsiwkTJgBw+OGHs3DhQnzfT8fcf//9zJ07t2bhVhBBJwgDguR3DTzJrByDOQQiCEJ1aW9vZ/HixSxevBiAZcuWsXjxYpYvX56OaWtr44477uAzn/lMt/0XLVrE97//ff7+97/z+uuvc8stt3DRRRfx8Y9/PBVrH/vYx8hkMsyfP58XX3yR2267jR/84AcVodpaICFXQRgAPM+jvr6+1mYMe0qlknjoBGEw0m8zReyai+6pp57iuOOOS18nIuvMM8/kpptuAuA3v/kNxhhOP/30bvtns1l+85vfcOWVV1IqlZg1axYXXXRRhVhrbm7mvvvu4/zzz+eQQw5h3LhxXH755TVtWQIi6ARhQPA8r6au95GChLYFYZDSb1Wuuzb82GOP3Wn/z3POOWe74uvggw/mr3/9607Pc+CBB/LYY4/tmnEDjIRcBWEA8DwPy7KwbbvWpgxrZLYIQRCECPHQDRMUCiOzGA8ayhP2C4VCja0ZvkiuoiAMUmoUch3JiKAbxCjULgxWKIOIukGCCLrq4HkeSilc162oOBMEocb0V8hV6DUi6AYzahcEHRYoLd9mBgnSUqM6lN9nEXSCMIjorz508kzrNSLoBjGWld/pGGM0SlmAjdEFIh+d/AHUmqSlhgi6gSWZWi2TydDR0VFjawRBEGqHCLpBjG0lbS+SbznWNj8n2yyUsvCNDyZAGBxIBebAo7UmDEMpjBCEwUY/zuUq9A4RdIOYXCZqe2Fit7VSVsXPyTZbOWg0QdiJoVgbY4Vu+L4vgq4KiHAWhEGI5NBVHRF0g5i3O6eglCKMRZytLEKj0Ric2EMXoMkqh05TYnH2XtoLneKlGyR4nkddXV2tzRj2iKATBEEQQTeoOWZiPQrwtMJS4ChDYBSBBtcyWApKoaLOMawv5nmtdTIdxeUYEXSDAmmpUR1KpRLNzc21NkMQhHKkbUnVEUE3iPncvGVYtsErOihlcFyN79kEgUUuH1X0lYoOdQ0er64Yx2PPvYV16mmgVFvDBaCyAjP5Weh/xEMnCIOQGs0UMZIZkYKuLl+P2qWWILVh9K2f6uVIxcGEXHjIw3xu6Xg6C51S6ToISESc67oi6AaQpBed4zgEgXinBUEYmYxIQbfXXm8ZIlMy7Ur+lc+/fPBN/u26iXQWl4ubehBQ7qGTlhoDR3nrEhF0gjBI0FLlWm1kLtdhg4t12ac52nkXSkne1mDA932MMRIOHGAS4SytSwRhEGHiHLq+LqLnes2I9NCh2MVZGIYKLsdMsvl9i4Pk0Q0OpHXJwBOGIVpruc+CMJgwpp+8a6Loeot46IYVLme+4/WyhsRCrZGE/ergeZ546ARBGNGIoBtm1P30bCbU74tiOHoghx4i6KpDqVQSQScIgwlDVx5dXxZx0PUaEXTDDodpZt9hGlIeeoigqw4S2haEQUZ/iDndX2HbkYEIumGHzaHNY1EMhSre4Y/nedi2jWXJn9pAUiqVRNAJgjCiGZlPGUNXwuZgXnYLxffvHI1tN/bnHRN2k/LWJcLAkfSik5k5BGGQYPqhwlVrJObae0amoBvm6IPm4ToNtTZDIAoFAiI0BpikF53k0QnCIEFy6KrOiGxbsnHjpq4QmFKV3rCdve4vejoPdK1TCvB7ezDUmg2YyZPj1zaz80fxYunXGNMPc+kJu4146KqD3GdBEEY6I1LQrVy1cohUgfa+l5yZPKbslc3e1nRe7H+DhF1EeqRVhyAIMMaIh04QBgv9NlNE3w8xUhiRgo4hMtPp8vfehuNoCiUX29JkMwElzyEIbXLZyHtXLLmERrH3LUdhxs0giqJbHDPZ5nebbQzioas1UulaHaQwQhAGEUam/qo2I1TQDQ0+9XgdCouQEAAbm5AQjcElB4BPQKgCDn3bS3zvjSlA5KE49+/HcVH2x+igpUbWCwki6KqD9KIThMGD0WDEQ1dVRNANYl5Tz6GUjTGRoEt+1mjseL7W0PgYQvyte2P9373o97w/3tvCtnLIVOW1x/M8Ghul6nig8TyP5ubmWpshCIJQE0TQDWJavVUAGBOiVFdfufLXxoQYNIFb4s6vH8/73qOJwq42GaeRkre2BpYL5YiHrjpIyFUQBhMyl2u1EUE3iOksrQbAGI1SXR1myl8nVaxFbzNffW027yMAMoDFntkjWdz56hDJGBy+JD3SHMchCMRnOlCUV7omPwuCUCOkKKLqSB+6QYzRHkZ7YIL0521fYwKM8TG6wLrgJYjz7cBmb2eyTAE2CJCWGtVBetEJgjCSEUE3iDEm6NWCCTEmoLXzTf7nkIfS/f/zA8tlCrBBgAi66iCCThAGEdJYuOqIoBvimPJ/usC9K0OIW5XU3fhpUPIrrjXJbBEi6AYWrTVhGIqgE4TBQH+IOd1feXgjA8mhG8Tsau6bIeT58DWisGvUj06pLLvSoFjof4wx+L4vgq4KeJ4ngk4QhBHJkHLfrFq1io9//OOMHTuWfD7PAQccwFNPPVVrswYNxmiWdf6Zrjw6i7rsxFqaJMRIpWt1kEpXQRgkmH7y0Am9ZsgIui1btvDOd74T13X54x//yJIlS/jud7/L6NGja23aoCIIOwmv/EX8yqIhM6Gm9ggRIuiqgzQXFoTBgTEGo/u+SMi19wyZkOt3vvMdpk2bxi9+8Yt03axZs2po0eBE6wI33Tmd+VcCWExQe7KGv9TYKsHzPJqammptxrDH8zxs28a2bcIw3PkOgiAMDBppW1JlhoyH7g9/+ANve9vb+Od//mcmTJjAvHnz+K//+q9amzXoMMbn+ytfJvprUnx26jQU0rqk1iRCw7KGzJ/ckEQqXQVBGKkMmafL66+/zg033MBb3vIW/vSnP3HuuedywQUXcPPNN293n1KpRFtbW8Uy7DGG9UEi6ODjRyyXXnSDAKl0rQ5JixgRdIJQY/orh24XPXQLFy7k1FNPZcqUKSiluPPOOyu2n3XWWSilKpZ3v/vdFWM2b97MGWecQVNTE6NGjWL+/Pm0t7dXjHnuuec46qijyOVyTJs2jWuuuWZ37lK/MmQEndaagw8+mG9961vMmzePc845h7PPPpsbb7xxu/ssWLCA5ubmdJk2bVoVLa4NBkNr4Q2Swoi6n3wKFc/7KtQO6UVXHcRDJwiDhBq1Leno6OCggw7i+uuv3+6Yd7/73axZsyZdfv3rX1dsP+OMM3jxxRe5//77ufvuu1m4cCHnnHNOur2trY0TTzyRGTNm8PTTT3Pttddy5ZVX8tOf/nTX7lE/M2Ry6CZPnsy+++5bsW6fffbhf//3f7e7z6WXXsrFF1+cvm5raxsRok7rAtaSF9H7Hoy0LhkcJEJDBN3AkrSIEUEnCCOTk08+mZNPPnmHY7LZLJMmTepx20svvcS9997Lk08+ydve9jYAfvSjH/Ge97yH//iP/2DKlCnccssteJ7Hz3/+czKZDPvttx+LFy/muuuuqxB+1WbIeOje+c53snTp0op1L7/8MjNmzNjuPtlslqampoplJGBMyNP/+mr0ItDYVq62BgmEYYjWWgRdFZDWJYIwSDCm7wsQBEG39KnkS/Lu8MgjjzBhwgTmzp3Lueeey6ZNm9JtixYtYtSoUamYAzjhhBOwLIsnnngiHXP00UdXfM6cdNJJLF26lC1btuy2XX1lyAi6iy66iL/+9a9861vf4tVXX+XWW2/lpz/9Keeff36tTRt8mJCLn44ngXdcRtVJNfBgQFqXVAdpXSIIgwANpj8WA48//nhF+lRzczMLFizYLbPe/e538z//8z88+OCDfOc73+HRRx/l5JNPTqvi165dy4QJle2+HMdhzJgxrF27Nh0zcWJlj9fkdTKmFgyZkOuhhx7K73//ey699FKuuuoqZs2axfe//33OOOOMWps26DAY3rCWEBVGWIyzZrGeJ2pt1ohHBF11KJVKjB07FqUURnpYCcKQ54gjjuCee+6pWLe7X9pOO+209OcDDjiAAw88kDlz5vDII49w/PHH98nOWjNkBB3Ae9/7Xt773vfW2owhQUtpOZGgc3iLmsmSWhskSC+6KlGer9iXsIwgCH0gqXLth+M4jjNgn52zZ89m3LhxvPrqqxx//PFMmjSJ9evXV4wJgoDNmzeneXeTJk1i3bp1FWOS19vLzasGQybkKuwanaXVJK1LrnlHu/SiGwSIh646SOsSQRgEDJGpv1auXMmmTZuYPHkyAIcffjgtLS08/fTT6ZiHHnoIrTWHHXZYOmbhwoVpOyqA+++/n7lz59Z09ioRdMMUoz0SQfeW7x8kvegGAdK6pDpI6xJBqD39kj+n2eU+dO3t7SxevJjFixcDsGzZMhYvXszy5ctpb2/ni1/8In/961954403ePDBB3n/+9/PnnvuyUknnQRE3TPe/e53c/bZZ/O3v/2Nv/zlL3z+85/ntNNOY8qUKQB87GMfI5PJMH/+fF588UVuu+02fvCDH1R01agFIuiGKcYE/OadjwCg57wFhV1bgwQRdFUiCAK01iLoBGEE8tRTTzFv3jzmzZsHwMUXX8y8efO4/PLLsW2b5557jve9733stddezJ8/n0MOOYTHHnus4vPilltuYe+99+b444/nPe95D0ceeWRFj7nm5mbuu+8+li1bxiGHHMK//du/cfnll9e0ZQkMsRw6Ydf40xshUfqnBcoB4+9kD2EgEUFXPUqlErmctOsRhJphqMlcrscee+wOi6H+9Kc/7fQYY8aM4dZbb93hmAMPPJDHHnts14wbYETQDVMMhhdKq4j+GhS2lUfrQq3NGtFIblf1KJVK5PP5WpshCCMXTZL10zekUL3XSMh1GPNK8VGivwaLpvz0WpsjEM3pKh66gUeaCwuCMNIQQTeM8YJ2kl50o93tz6ghVA+pdK0OnuehlBJvqCDUCGMMRvfDIr0ke40IumFMqDtIfN5zeEttjREAmcWgWkilqyDUGN1Pi9BrRNANY7QukfxFfOVAW3rRDQI8z8N13VqbMewRQScIwkhDBN2wRhNccRMAR36qJL3oBgFJKFBE3cCSCDqpdBWEGmL6aRF6hQi64YwxnH9TlDtnPv4B6UU3CJDWJdXD8zzx0AlCreiP/DltRNDtAiLohjEGw9/b18SvLJQlIqLWSCiwehSLRfHQCUKtMEgOXZURQTfMWc1Sor8KhaVERNQa8dBVj2KxKPdZEIQRgwi6Yc7Gjn+Q9KKrz06stTkjHmMMQRCIh64KiDdUEGqHMbWZy3UkI4JumBPqIomHrsEVQTcYkF501UEKIwShhvRX2xIRdL1GBN0wx5gSyfRfk9VetTZHQHrRVYtisQiIh04QhJGBCLphjjE+1l//CsA5sydLL7pBgEz/VR08z8MYIx46QagB/RVylYkieo8IuuGOMSy+aj0A//y2FTU2RoCuUKCIuoHH8zwRdIJQCyTkWnVE0A1zDIbLn476zzX85JOgpBddrZFK1+ohrUsEQRgpiKAbAbyiX49/UigRdDVHqi+rR6lUwnEcbFve94JQbYzp+yL0HqfWBggDz6bgdUCjWlpRygFKtTZpRJN46ETQDTxJYUQul6Ojo6PG1gjCyCFtO9LX44io6zXioRsBtBWWAwYzagxZd2ytzRnxaK0Jw1BCrlVAWpcIQo3or5kiRND1GhF0I4BQF4j+Mizy7phamyMgrUuqhQg6QRBGCiLoRgBad/WiO8A6tsbWCCCCrlpI6xJBqA390rJEPHS7hAi6EUHXLMcHjGmurSkC0JWsb1nyJzjQSKWrIFQfgxRFVBt5mowEjMF69M8AHL+HlubCgwBpXVI9isWi3GdBEIY9IuhGAAbDV88NAXjvo+8CJYKu1kjrkupRLBZRSsm9FoRqolX/LOKl6zXStmSE8OTatvgnRaTj+6GeXNhtpHVJ9ShvXZIIaUEQBhgjbUuqjXjoRgivWy8TfdWxJOQ6CBBBVz0SQZfP52tsiSAIwsAhHroRwtrCcySVrrbdiA4219qkEY0xBt/3RdBVgXIPnSAI1cEYhTH94TwQB0RvEUE3QvCDdpJedI5dhy+CruZI65LqYIzB8zzx0AlCFTEScq06EnIdIYThVhIP3R71h9TaHIFI0En1ZXWQ1iWCUGWkD13VEUE3QjDpPCyK2eYttTZHIBJ0SikRdVVAKl0FQRjuiKAbMXR91TlkQkNtTREAaV1STaQwQhCqS9RYWPV5EXqPCLqRgjHcf+wDAHzzO0WpdB0EiKCrHsm9FkEnCNXBaNU/i4Rce40IuhGCwXD/KhsAfepJ0lx4EJC0LpHcroFHBJ0gCMMdqXIdQSzetDX+yUJhY6S5cE0JggCttXjoqoDneWitRdAJQhUR71p1EQ/dCOLv+mGSwghlyYNtMFAqlcRDVyWKxSLZbBYl3mlBGHD6I39O8uh2jSEr6L797W+jlOLCCy+stSlDhoK/mWS2CMeuq7U5ApHnSKpcq4M0GBaE4c/ChQs59dRTmTJlCkop7rzzznSb7/tccsklHHDAAdTX1zNlyhQ++clPsnr16opjzJw5E6VUxfLtb3+7Ysxzzz3HUUcdRS6XY9q0aVxzzTXVuLwdMiQF3ZNPPsl//ud/cuCBB9balCFFyd9E4qEbnZ9Va3MEutppiKgbeDo7OwHJoxOEahD1ket7UcSu0tHRwUEHHcT111/fbVtnZyfPPPMMX/va13jmmWf43e9+x9KlS3nf+97XbexVV13FmjVr0uULX/hCuq2trY0TTzyRGTNm8PTTT3Pttddy5ZVX8tOf/nSX7e1PhlwOXXt7O2eccQb/9V//xdVXX11rc4YUxgQkHrpx1mzWsqjWJo14kmT9XC6XFkkIA0OhUABE0AlCNYjalvTTgXaBk08+mZNPPrnHbc3Nzdx///0V63784x/z9re/neXLlzN9+vR0fWNjI5MmTerxOLfccgue5/Hzn/+cTCbDfvvtx+LFi7nuuus455xzds3gfmTIeejOP/98TjnlFE444YRamzLkMCaEuBBirjOjtsYIgLQuqSYi6AShivRXDt0At9hqbW1FKcWoUaMq1n/7299m7NixzJs3j2uvvZYgCNJtixYt4uijj66IrJx00kksXbqULVu2DKi9O2JIeeh+85vf8Mwzz/Dkk0/2anypVEofmBC5SUc0JqTzC/9D3Y/O4ZojWvjdXSqeQUKoFeUeOmFgCYKAIAioq5P8UUEYSgRB0O35nc1m+/xFuFgscskll3D66afT1NSUrr/gggs4+OCDGTNmDI8//jiXXnopa9as4brrrgNg7dq1zJpVmbY0ceLEdNvo0aP7ZNfuMmQ8dCtWrOBf//VfueWWW3r98FuwYAHNzc3pMm3atAG2cvDzv3+LXMozv/d26UU3CPA8D2OMCLoqUSwWcRwH13VrbYogDGu0UWjd98UYePzxxyue5c3NzSxYsKBP9vm+z0c/+lGMMdxwww0V2y6++GKOPfZYDjzwQD73uc/x3e9+lx/96EcVDqLByJARdE8//TTr16/n4IMPxnEcHMfh0Ucf5Yc//CGO4xCGYbd9Lr30UlpbW9NlxYoVNbB88GAwLFwV3SczYyZD6Nc/rJHWJdUjCbuKl04QBhgT5dD1dQE44ogjKp7lra2tXHrppbttWiLm3nzzTe6///4K71xPHHbYYQRBwBtvvAHApEmTWLduXcWY5PX28u6qwZAJuR5//PE8//zzFes+9alPsffee3PJJZdg23a3ffrDJTvceLD4BPAewMKysoRhsLNdhAGmWCwyatQoLMtCa2n2PJCUC7rW1tYaWyMIQm9wHGenoqu3JGLulVde4eGHH2bs2LE73Wfx4sVYlsWECRMAOPzww/nqV7+K7/upt//+++9n7ty5NQu3whASdI2Njey///4V6+rr6xk7dmy39cL22eqvJiobUthWnjDsqLVJI57yPLqktYYwMIiHThCqQ+Rh64e0nl1M825vb+fVV19NXy9btozFixczZswYJk+ezEc+8hGeeeYZ7r77bsIwZO3atQCMGTOGTCbDokWLeOKJJzjuuONobGxk0aJFXHTRRXz84x9PxdrHPvYxvv71rzN//nwuueQSXnjhBX7wgx/wve99r+/X2weGjKAT+of24hqiSleLpvx0Nvoba23SiEcEXfVImguLoBOEgcXQP7M87GqV61NPPcVxxx2Xvr744osBOPPMM7nyyiv5wx/+AMBb3/rWiv0efvhhjj32WLLZLL/5zW+48sorKZVKzJo1i4suuig9DkTtT+677z7OP/98DjnkEMaNG8fll19e05YlMMQF3SOPPFJrE4Yc2pTAK0GmjtHODDbyTK1NGvHIDAbVIwzDNEziOE5FKwJBEIY+xx57LGYHDfB2tA3g4IMP5q9//etOz3PggQfy2GOP7bJ9A4lkxY8wjPYg4wCKOWbPWpsjIK1Lqo30oxOEgccYFVW69nHpl+bEIwQRdCMMQ4jasgmAr74V1AA3bRR2ju/7aK1F0FWJJKwtYVdBGDj6Y9ovoxX0Rx7eCEEE3UjDGFZ/Lpr65J2flz+UwUKxWJSK7CqRCLr6+voaWyIIw5dk6q8+L7W+kCGECLoRyG/+EXW01h94jzQXHiQUi0WUUuKlqwIi6ARBGI6IoBthGAy/WLU0fqVQSrxCg4Ekj07yugYez/MIwxDXdWXGCEEYIIyhX3LohN4jgm4EslEvI2ldYlki6AYDSaWrCLrqkHjpGhoaamyJIAxPjFH9tNT6SoYOIuhGIC2drxFlJlg05WV+28GACLrqImFXQRCGGyLoRiCh9og8dIpRzoxamyMggq7aiIdOEAYWQz+1LZFODL1GBN0IxJgSyfRfe7J3rc0RiJpd+r5PJpPBsuTPcqBJBF0+n0dJYZAg9DvJ1F99XaTMtffIk2MEYoxP5KGD777dl150g4Sk4a1Uug48pVIJYwxKKQm7CoIwLBBBNxIxhuCKmwHY74f7SeuSQYLMM1pdJI9OEAYOQ+Q26OsiDrreI4JuhHL3A1MB0HvuhcKusTUCiKCrNpJHJwgDR39VuSIRpF4jgm4EYjD86KU2ANTK1dh2Y40tEkCmpKo2HR0dgAg6QRCGB06tDRBqw3LrVcBgpk7Dsevwg821NmnEI5PGV5etW7cCYNs29fX1qcATBKHvJFWufT+O0FvEQzdCWdv5HElz4an1h9baHIGo0rVUKqGUElFXBXzfx/M8AJqammpsjSAML6TKtfqIoBuhBGEnSXPht+g9pdJ1kJB46STsWh0Sr5wIOkHoX6Kpv/q+iJ7rPSLoRijalEhalxw+WcTDYEEEXXVpb28Hovst/f8EQRjKyCfYCEXrLkH3lUf3BSWVroOBpNJVWmlUh8RDp5SisVGKgwShv+i/uVwletRbRNCNWDThVVEvOjN2Ikq5NbZHgEoPnXiMBp7Ozk60jr7YSNhVEPoPjeqXReg98sQYqRjD7/5vj/iFwrKyNTVHiCgWi6nAkLBrdUjaxYigEwRhKCOCboRiMPzglU3xK4vG3B47HC9Uj8RLJ/3RqkOSR5fNZmXaNUHoR6JK1z4utb6IIYQIuhHMKvUKSeuS0e6sWpsjxMiUVNWlra0t/Xn06NE1tEQQhg/aqH5ZjIRde40IuhHMhs6XSFqXnDlunrQuGSTIlFTVpb29PQ1zjxo1qrbGCIIg7CYi6EYwYVgkqXT91P7rQImgGwwkIVfbtiWPrkokYdd8Pi9NnQWhHzD0T2GE0HtE0I1gQl0gEXRTfnsaCmldMhgoFAoYE2WOSKJ+dSgPu44dO7aGlgjC8KBf8ufiRegdIuhGMMb4WLf9IX5l4TjNNbVHiDDGpF466Y1WHcoF3ZgxY1DirRaEPpHM5So5dNVDBN2IRvPofyb952wyjniDBgvleXQiLgaeYrFIEAQAOI7DmDFjamyRIAjCriGCbiRjDHe/mYlfWDRmJ0thxCBBZjCoPlu3bk1/njBhQg0tEYShj0H1yyL0nl0WdGeeeSYLFy4cCFuEKmMw/L71WZLWJe+rP06mABsklIsLqbysDq2trenP+Xye5mZJQRCE3cUY0P2wSA5d79llQdfa2soJJ5zAW97yFr71rW+xatWqgbBLqBItwZskrRs/PDtEiaAbFHiel4YARdBVh9bW1rQYBWCPPaTZtiAIQ4ddFnR33nknq1at4txzz+W2225j5syZnHzyyfz2t7/F9/2BsFEYQLYWVpFUur7rkRPJuuMl7DpISFppOI4j1a5VIAzDiuKIXC7H5MmTa2iRIAxdIg9bfxRFCL1lt3Loxo8fz8UXX8zf//53nnjiCfbcc08+8YlPMGXKFC666CJeeeWV/rZTGCDKW5eATX12gvSjGyQkgg6klUa12LJlS8XrSZMmiZgWhN2iv3Lohufz6JlnnuHSSy9NP3Muu+yyPh+zT0URa9as4f777+f+++/Htm3e85738Pzzz7Pvvvvyve99r8/GCVXABFgvPB+/sJhk74PUygwOts2jc113B6OF/qClpSWdNQKiopQ5c+Ywfvz4GlolCMJw45xzzqGhoYEPfvCDtLa28tBDD/X5mLv85PZ9n//93//lve99LzNmzOCOO+7gwgsvZPXq1dx888088MAD3H777Vx11VV9Nk4YeIwJuOwjG+JXNl+fMw3bbkjDrqrsn1BdCoVCmkenlGLixIk1tmj4o7WmpaWlYp1SimnTpjFv3jz23XdfZsyYQS6Xq42BgjBE0PRTUUStL2SAyOVyfPWrX+Xaa69l/vz5Ffm7u4uzqztMnjwZrTWnn346f/vb33jrW9/abcxxxx0nidxDiL+tbyf6s1F88KuGzOlNFMI2lKEr/CqlRjVh69at6YTx48ePZ8OGDZRKpRpbNbzZtGlTj33olFLkcjlyuRxjxoxh9erVrFu3rgYWCsJQQNqO7IhkisFDDz2Uk08+mXPPPbfPx9xlD933vvc9Vq9ezfXXX9+jmIMoPLRs2bK+2iZUAYPhNesfJHl0+n0n05CdHE0DphTRW8SSvLoaUR52VUoxe/ZsLEtC4gPJ1q1bKRaLOxyjlGKPPfZg2rRpVbJKEIYW/eGd2522JQsXLuTUU09lypQpKKW48847K7YbY7j88suZPHky+XyeE044oVve/+bNmznjjDNoampi1KhRzJ8/vyKnGeC5557jqKOOIpfLMW3aNK655ppdsvPqq69OIzDz58/n9ttv37UL7YFdfjJ84hOfkHDDMGNN52K6CiMcPtR4Iq47FsvKY1l1WFYdSmVRypLwa5Upr7qE6Fvd3nvvzfjx42lqahJxN0D01vM2fvx4Jk2aNMDWCILQWzo6OjjooIO4/vrre9x+zTXX8MMf/pAbb7yRJ554gvr6ek466aSKL3FnnHEGL774Ivfffz933303Cxcu5Jxzzkm3t7W1ceKJJzJjxgyefvpprr32Wq688kp++tOf9trOww47DMfpCpJ+4AMf2PWL3YZdDrkKw48g7KS80vVjM9q5vXU87UWNZUVvkTAsEoYBRoUSfq0inudRLBYrvkQl3wgharWxdu1aCf31M5s2bWLy5MlkMpmdjp0yZQodHR0V3lRBGOmYuG1Jn4+ziw6Ek08+mZNPPnk7Nhm+//3vc9lll/H+978fgP/5n/9h4sSJ3HnnnZx22mm89NJL3HvvvTz55JO87W1vA+BHP/oR73nPe/iP//gPpkyZwi233ILnefz85z8nk8mw3377sXjxYq677roK4bc9dndyhpkzZzJ9+vTtbh8ygm7BggX87ne/4x//+Af5fJ4jjjiC73znO8ydO7fWpg15dNjBhjNuYfwtnwbgiIWncuoedTzuLsHEQq8lWEFbYTlB2AEEYALMsE1XHVy0tLRs1wtk2zZ77LEH9fX1LFu2rF8Sa4WItWvX7vDDs5xZs2axZMmSNIQiRORyOZRSFAqFWpsiVBnD4CtoWLZsGWvXruWEE05I1zU3N3PYYYexaNEiTjvtNBYtWsSoUaNSMQdwwgknYFkWTzzxBB/84AdZtGgRRx99dMUXvpNOOonvfOc7bNmyJc173h5nnnnmLtuulOLCCy/kggsu2O6YISPoHn30Uc4//3wOPfRQgiDgK1/5CieeeCJLliyhvr6+1uYNaQwhv3puEhela1xOn+FReG1viqFGY3jdzlN0WjBGx73rxFNXLTZt2rTTsN6oUaOYPXs2r732WpWsGv5s3LiRMWPG0NDQsNOxjuMwffp0Xn/99SpYNnSYOXMmK1asqLUZwhAnCIJu6SfZbJZsNrtLx1m7di1At44BEydOTLetXbu221zOjuMwZsyYijGzZs3qdoxk284E3UDVGAyZBJx7772Xs846i/3224+DDjqIm266ieXLl/P000/X2rShjzE8vtanPI/uxOsn8qHpcPyUDMdMyrK/PYtR2elk3CZsK4/Clly6KlEqlejs7NzpuObmZqZOnVoFi0YOy5Yt6/UMOKNGjZL5X8uYOHEidXV1KCmoGpGYfpglQhuFMfD444/T3NxcsSxYsKDWlzjoGDKCbluSibR7ai8g7BoGw5+DB1AbuvKw9Fv24yNPvovznzuai144ml+e/QYfG30U+2VPorluJrbdCDLva9XYuHFjr8ZNmDBBWgb1I77v88orr+y06jVh2rRpImAA13Vl2rQRju6nxQBHHHEEra2tFcull166yzYlkY5tc47XrVuXbps0aRLr16+v2B4EAZs3b64Y09Mxys+xM26//XY8z0tfr1y5sqKpeWdn5y5Xzg5JQae15sILL+Sd73wn+++//3bHlUol2traKhahZzr9jZjxZeK4YRToLJAFbOyrP81Ze27gsMYJTLD3IuM2oZR46arFpk2bCMOwV2NnzJhRUT0l9I1isciSJUt49dVXWblyZbfGw+VkMhkRMkTCNqnAFoEr9JVkPuvyZVfDrRDluk6aNIkHH3wwXdfW1sYTTzzB4YcfDsDhhx9OS0tLRfTvoYceQmvNYYcdlo5ZuHBhhff+/vvvZ+7cuTsNtyacfvrpFZ8l++67L2+88Ub6euvWrbssWoekoDv//PN54YUX+M1vfrPDcQsWLKhw0UrPqO1T9DZg3f9A5UrLBVwgD57NXvd+hO89ewAXTZvDXrnjcJ3RKOWg1JB8Gw0pjDHdvjVuD9u2e53ML/SetrY21q9fz+uvv86SJUu2m+g/ceLE3XrYDBcaGxvFSywACmP6vuwq7e3tLF68mMWLFwNR2sTixYtZvnx5Wlhw9dVX84c//IHnn3+eT37yk0yZMiVtG7LPPvvw7ne/m7PPPpu//e1v/OUvf+Hzn/88p512GlOmTAHgYx/7GJlMhvnz5/Piiy9y22238YMf/ICLL76413ZuW8DWHwVtQ+5J/PnPf567776bhx9+eKf5QpdeemmFi1aSc7ePMQGPXlVgu3VJmTxQB6PH8MlTXmdebg/qs+NRVgawxFNXBdatWyf5XIOEYrHI0qVLe2xVopQa0bmM235xFg/dyKQ/Q667wlNPPcW8efOYN28eABdffDHz5s3j8ssvB+BLX/oSX/jCFzjnnHM49NBDaW9v5957761oDXXLLbew9957c/zxx/Oe97yHI488sqLHXHNzM/fddx/Lli3jkEMO4d/+7d+4/PLLe9WyZCAZMnEZYwxf+MIX+P3vf88jjzzSrcKkJ3anCmakYkzI71fWcRQh239bKKAO++r5fPDB+3js1T1pt9ZhTIAxvQsHCruP1ppXX32VvfbaC9veef7itGnTaGtrk1YmA0Ty+5g7dy51dXUV25qbm2lqahpxaR7jx4/v1nheBN3IxMQzPfT5OLs4/thjj93hZ55SiquuumqH882PGTOGW2+9dYfnOfDAA3nsscd20bqBZcgIuvPPP59bb72Vu+66i8bGxrR8uLm5OZ0TTegDJuTOrX/lOo5nx28LBeQ4edE/sXaey7dWlFjd8Qy+v0l601WBQqHASy+9xPjx48lmszucLSLJ51q9enWVrRw5GGN49dVX2XfffbvlLU6dOpUlS5bUyLLqY9t2GpISBGHn/OlPf0ojKVprHnzwQV544QWAHebqbo8hI+huuOEGIFLf5fziF7/grLPOqr5Bw5A2byUQEBVC7AgbyHDW6cv53Xf2ZYu7jCDciglHVlNVy7JwXZdSqVTV83qex6pVq1IbJk2atN3KqokTJ7Jx48aKaiqhfwmCgDfeeIM999yzYn0ul2PChAm9zn0c6kyZMqWb59gYI02FRygGtcuzPPTM8PXwbttg+LOf/WzF6131bg+ZHDpjTI+LiLn+wWAo+FvY+NH/oasf3Y7IoL50FsdOyjMqMx3byo+4NibTpk3r1dRQA4nWmtWrV/Paa6/1GGYY6flc1aKtrY0NGzZ0Wz958uQRUXGcz+cZP358t/WrVq2SLxMjlCTk2tdluGaMaK13uvS2s0HCkBF0wsDjB618+sGJQO8S7yHHv714NPPHv51x9ftiWXUjpuK1ubmZsWPH1tqMlNbW1u3OUjBq1CgaGxurbNHIY9WqVd2KVmzbHhHV9T1VVXd2do4Y76QgDAaG/1dHofeYgFesV4nCrhl27uq2gAyf2X85//fg/myyX8bTnSjMsM6lU0qlD+nBlPDd2trKqlWr2GOPPbptmzZt2ojK56oFWmuWL1/OnDlzKtaPHj2aTZs2DdsCifHjx/c4/eKbb75ZA2uEwUI0l2vfPx+H45Nk1qxZu/XsGDZzuQoDjzEBKzue5IYDH+Hc544HcjvdBzKMv+MT/Pj4u/iX5w7jjbZHCcN2lAmHraibPHlyzUOt22PdunU0NjbS1NRUsX6k5XPViqRF0rYtY6ZPn86SJUsqOsEPB1zX7fELxPr16yV3boSj6Z8q1+HITTfdtFv7zZw5c4fbRdAJFQRhJ4+uDTmXAOgg8sI50FaAbURCF1kO+u1R7PuWp1ntPEtRlzDoYZn8kM1mKyZ2HkweuoQ33nijx6rLKVOmsHnzZoJgZBWvVJsVK1bQ1NRU8d7IZDJMnTqV5cuX19Cy/mfmzJndqqyDIJDKakHYAcccc8yAHHdkJDwJvcJgCHWBJXoZm/7ll0TO7hAoQZPD9oslHBg9juOnZGjITsaysgzXZsNTp06teFAPRkEXBAErV67stt6yrBGRz7Uj8rn8gLc58jyv2zyPAOPGjev1tEBDgUmTJvWYm7lq1aph54kUdh0piqg+IuiECowp8Ubhcc56YALXH7iQy96ykG/vs5C1H/ol0Mn2RV2W8587mg81nsjouj2x7QYYZnO9NjU1DZnZFzZv3tzjLAajR4/uFo4dSUyfMX27ffv6k7Vr1/Y4q8eMGTO6NSEeijQ3N/fYc66zs5NNmzbVwCJhsJG0LemPRegdIuiEbvhBO69Yr/DIGp9Fm1p5aF07P31xOv6//QzY3vRgFuDyiZlbmWLvh2s3oOI2JsNF1PXk3RqMHrqE5cuX99jKZPr06oiawcaECROor6+vyu9Ma532CizHsiz23HPPId0MvampidmzZ/e4TaZXFBL6y0Mn9J6R96ku7Bhj0KbEZv91/mFe53XrRV5Wz/LnDVv52QN7opa9TiTqeiLLO259K/Oy06jPTkCpbNqbbqiLugkTJvQ4jdxgFnSlUqnH0F8mk9lpcu1wo66ujj322KOq78LNmzfT0dHRbb3jOMydO3dIhl8nTJjAnDlzenzfb+96BUGoDlIUIVRgMGhdoq2wgqLTShAWMSagLbuGVasP4O9Hw5Vvf5yJ/3sWPc0oYfaYzc9ve5OP//O7udf8P1o738ToAoYQZRiSla+O4zB58uRu633fp7W1tQYW9Z41a9YwduxYXNetWD9q1CjGjx/fYzPc4YZjO8yePRtLKVCqqiJ8+fLl7LPPPt3WW5bFrFmzmDhxIlu2bBn0hSqZTIYxY8Zsd27sMAx7zNsURi6G3rWo781xhN4hgk7oAY3WJfygHW1KGBNQ9Bw2Wq/ylGnkP1+YzuVeB2QcomnAynHRRx7J+6Y+wLPL9qHT2YQfhKA9jIpE3a5gMKl3r1ZicOrUqd2mNIKoz9audvKuNsYYVq5cyaxZs7ptmzZtGp7nDXpR2heUUsyeM7uizUw1BV2hUGDDhg09zqIAkedwOOTUrVmzZtCLUqG6GBTGSB+6aiKCTuiGMRooEYZBJKJMSGC20FrwWOpsZsPG2Xj7Ga5+5Rige0NRyPGRJ99F6RDFd960WFF6mpK/hSDsAIIdCLPk+5yVvi4P1SpUV8lT8lDuIUesP4VfQ0MDY8aM6bZ+8+bNQ6ZR7JYtW9L8sW2ZPXs2b7zxBlu2bKmBZQOLYzvMnjObxoaGmtqxevVqRo8ePWynACsUCtLfUBAGAZJDJ/SMSWZ70PG8DyFaF/CCNlpKy/nLphbaPvlzoKd5GqMZJD7+uQ0c7M5hdHYmGacpnu/VQSm754V4KXsdtT/p+hllx3l5VvxadVt6+rc7KKWYMWNGt/VDMby0vWR1pRSzZs1i5syZ5HK9aSQ9MPTmd1W+fUfjLWUxbuw49t133x7FXLXzHsMwHHb958qRGSF6R8+fTDv+15f9yvetBbqfFqH3DM+vjEI/UdYc2HSJupLfwrLs8/zsmaO4CA9w6T5NWAZz9ml85Gf3sfrl/Xkp24k2ASq0CHUkApN5XyOPIKCS8KXd9drorvlhTfwnbjSk61TqkVPxpGOobT4GjEm37Ur4durUqT3mDK1evXrIhZeSdhLbm392zJgxjBkzBt/3a9ZDLP399ZFMJoNSZY8xpSrex7UoZGlpaWHLli1DshBiR6xdu5bOzs5amzEo6SakenzfdUUjejyG2dl+Pe+bprakkYzt2zlQmH6qUpU+dL1nRAq6qVOn9WvbBt/32bx5M6VSqd+OWWsMpqKIIXodYtAEYRvrO17gP9c1M+GQkDOePgHoqQ1Djvf+9QQO++dfcfWT7+JxtZINZhmdYdSnSsXCzRBijCY0ARYWSlkYowniGSdU/OGlTVAhBo3RGBNEQjEeY9AY48ciMfmg07GY6/rgSz7wticgmpube8x7SnKihiIrV66kubl5h6G/bYsnqkny2NrZ53f54217Y7cn2Wr5bHjzzTepq6vbbmHBUKO9vX3EzgjRs1grF2fbNFZXFkplUcrCdZ3oC4eyKj63yok+v6LPxegLrd31xRbS/ZJ90y/F6f5+bFa0bxC04nkivIc7I1LQjR07tsck974wefJk1q9fP+RCcTuiR7FjIg9YqAts8d/kgTX784mXX0LvdRDdCyQsIMf4Oz7O+9/5J9rfmMLLhTwb3TUVQs2gCY1PSPQhZOMS4uObzrIPNPB1gVCX0nWJ6NOmy1umTYDWXrrOGB17+gIoS9A1Kkw9d9tebzab3W5bj6HcZysMQ1atWtVjGLkaKHonwLY3rrd+tR2JuWKxWLMiEK01r7/+OnPnzh3yfQB932fZsmW1NmPA2W64MvWalYmsNBUkEnSuG81Kks+75HJZ8vkcuVwOy7LKvMTJZ2ZlcVXUP7Irp7i7V7n8szYs2yehXOBZ+H4nf//709u9zoHA0D9foMRB13tGpKAbKCZMmEBdXR2vvvrqsJz6JhV4xqB1gbbCcu63HuLf330C17w+l54LJBwgy7v+chLHfesmnvjTBP68YX8CA46KPnZ8DcVQEcQfSLYCL4StvsHTBlsptIF2P2Rr6BMajVIK34RsVVspqSKayHtYopOC2YKvCxij0cbHDwv4YScmFnnaBJEXT3tpniBEXrtMJsNb3vKWHgV/S0sL7e3t/X5fq8mmTZsYM2ZMj1M2DQSJOOu3IGd5+FQplNmOj7V8XBnba7ZcLQqFAq+99hp77rnnoO5huCOCIOCVV17pcSaMoUaPgq1MrHX3xEW5u0pZKOWisHCcSLBlsjb5fIZ8Pkc+Xx9/hoTxIR2SfODotRWnBXT30BljYo+bSb/4RnnF5blxVmSL0bGHzlR46UxyXixA4VN971wUch2a7/Ghigi6fqahoYHZs2fz6quv1tqUgcVE8762e+t4sqWF0gX/TfaH5xHl021LlGOnvnIWRxz/JHt+9x+EoYVlGbRW+IFNRzFDwXdQCmyl6fBdNnsZCqGNrQy+Vmz0bDaVHHytsBQUQsOWUgNb/egDLTCGjjBgC1tpt1sJVYBvihScLRSDFgLtYUxIqD1CXYw+8so8d3UNdcyeNQPH7f5nkbT/GA68+eab7LvvvoPLS7SNUOvvxBkDbNiwYVAI8q1bt/Lyyy8zZ86cIVf5WiwWee2114ZsesnO89rKRJxy0pAlhCjlUJdvoK6ujnw+lwo4183GYqt7SNQkAg4by7JRykmFmYVDtzxiInGnTZiKNYWFsuzo//i4lkrSVSIhZ9CpKIzEXYAxJhqnavN3Lh666jO0Pk2GCE1NTUydOnXYCICeiNqZ+BS8dfzduo9P3/5hbvlhiegt1dO3MgeoRx92BONuPyw9ym6xpQXl+6iVqzB/fx3/tTbCTvDbLTasa+C1ltGsKkykPbBo8xVrC5pVnR4tupOS8uhQrbSa1bR76/HDDmxb0zzKZezY0amQ2NaytWvX4nk9VfQOPTzPY/ny5f02W8SOQqkDTa/OawyFQmFQ/T12dHTw4osvMmHCBEaPHl3T3MXeUCqV2LJ5C+s3rK+ph3NH7NjbloyxU89WlNfmlA11sVQGy3LI5/Jksg7ZrBV73KLX0TGiz7hEjFnK7ia4thVqtuViWRksHCwUKAtHZbCw0Uk3gXisJsoNDuIUFIXCVhkUVppjbMWV/4YQTUhogkjQGR1JO+NFYlA5WDh00H0aOmH4IYJugJgwYQJbt24d1k1bQWO0R9HbwouZN9nysZsZfet8YHvtLxTp7BLagBV/2HZ0olpaUMUiBCGUSrCpDdPSgekMMH6Ibg/xNiuKHS6FokPRd+nwXbZ4c2nxbYraohjCVgVt9YZCVlMINUUd0KEKWFYndaZIRhfJmYDGsJ4gmIQ2fhSKNWEaptgWz/NYu3Ztf9+8mrJ582YaGhoYN25crU0ZcIIwZNnrywadEAnDkLVr1rJ2Tff3VnlFdm+3lVd773B8mQe02z7xtp2dY2dsW1W+I/u2Pe6uXFvlSSu9ZN3Gx4UJlnJSz1cu1xAXqrjkchmyOZtcLh+JNNVznnW5gAOwlYtlOZXicJtqegcXW2WwlRt565SDY1xsHGIJhrFMnDpi0CbAwYvzhR0cXCzlRELOKGwckny9QPmEKsCYEKMMIQHGZNFoLCxsVZsvC1LlWn1E0A0gM2bM4MUXXxz0swnsLlHBAQTBFl7rfJQz/3Q6dz/9N/Qh76R7gcQ2WGUftPV1mPq6HSbM20Dd+vXUr98Im1uhtUC4YTP+ek3HlgztnVm2ei4tXoaNJYcW36bNt9nqOWz1XVqCLB2qgYLdTtG0pR/GQaAwSqE18SdH99/VihUrBp0Y6A+WL1+O67o0Nzf36Tj9cmfK7++O7vUujtPa8PrryyiWin00sDvbPrR7DOcZs522E+UkifRluxrSeZC7bWPbispKe7bd1l0EWWlrn+1t255wSpt7b++a0m1WeoQucbed40U7bvd8XRXq1jbrVEU4USkH20ryeKPxjh19ubRti2zOIZt1qaurI5fPkY8LFKJ9VRoOtXBSj1q5jeXiTCkHO86Lc3BxVBbLdH3mWbGtIVHerk2GjMngaAcbGxsLR9nY8fFDDMZE4dIQTUBIoAI0GtvYOMbBwcZWVtSRU1lYKEKjCYwhMCFhXM0fqICQkFCF2MbG1S61KOXqrz5yw++Td+AQQTeAOI7DtGnTeOONN2ptysBhDEaF+GE7L1sv8/jFAe94tAT0/3RGZsIEzIQJqNZW1KbN2Os2Yo1uwVlXIL/Jo74lQ64jj00OhRsFKJRCGxtfZzA6yjcJVUCgigSqhLZ8Qh2ilOpRH7S2tg5rL+trr73GzJkze5wNoz8wZf/3NT26t8dIxgVByGuvv07HAOTNbdu8Nfqh3Dor2bhzj5OyKiqwAYwyXR6inhLLy/owbnvcHe6X7LuTbTv0EKrKfo4VXrjU7srQo4K0KCkpKohIbO0qsCgPV6okPJqIU+WkxwOiZuXxWNvO0ZAbTy7n4uYcbCckm7XJ5TM4thuFKi23ohghOlYcxlR2/L+Lo3LYKhNn1Nmp915jKgSclQg67WKZrmNaWGg0OhbOjnFwccgoC0tZ2ErhxAvx1Wlj0v99HRIYF43BVhauZeEoC1uBpaIcYguFNhahMfjGJjQGbTQhGQITRjl0RPsJIwMRdAPMmDFj2Lhx46BIxh4Ikn51YdjOyo4n+eLze3DTybcz548fAzI73X+3ztncjGluhtmzUGvW4KzbgLNqE9l17dSvbaVuvU+mvYG6kkPOtzFGoXGwfAUhBFZIaJUITIlAl+LvxzaKoOLbYBiGw6ILfk9hr3LefONN2tq2MnHiBPL5nvoJ9g87+qbd22/hiVjb0XitNS0t7axatbzHBtDbNjDuKTxYuUMPLSpS75AVFdbE4bwE28qglBMJDSuDUlbaSkfR9XO6TQfbVDpG+wEVbXkUFoaubWlfxrJqSSsWPeU9G5P9rDjRP9lmxTZ2XaoVV4F3Haer0rL7Nm2CWAQ56baM00jGrkcbH9vKYikXbXyCsBBfczYVbU58zzzdjtYBluVgxSHC5DyhKeGHRWzl4Nj5+FpC7IzGcUNy+Qy5bJ76+kby2e5fJKOK0ihfzlV5bNX1uZT4EW2VxcbBMjYZsmR0loxxK4Rr8p5JRJKNijxmViTMyoMOmC6RFl2nwrGjcbYC21JkFJTXJWkNgYHQQKAdgrgPqI3CscC1FE68j6WivwNtIIz3CwwEOioO05pYDHaJxlowDAMbgxoRdFVg+vTpLFmypNZmDBhJSCQIO1mhlnDTq0fzDTxI8zwG8NyNjai2dsi5qKyDnfdw3QBXhWRsGzcAV0UtUhxFnFYcfa9G9dDfqSy/aPnyngXBYKVcqGwv/Le9xPEtW7awZUsrlmVh225cYZe0dEm8QSEou8yrpFOPkDEh6cwiaS6TRik3/TkaH5a9NmXHc9JzRQKn1MPxwLIiAZA0jjbGjzwoiehRNmEQ9+VKwudKdXXOL7tX3V735GFLb5G9zWsHK24Uq00Q5UTZdalXKes04tg53IwiazeglIsxfprXFJgSCouM1YBSNqEpEqa9E6MWPFmrCQDfFGKLumyyVRalbALdSWh8HCsbtelBY8ciKdCdGDRObGdogki4KBdPt6fH2baBbWhKaOOnYis0fpT7pVxCU8KYMD1f+TatfGzXx3EN2ZxDPp/DcTKp2NPaj4VVWeuOJDRpRqe/61RIxjZpE2B0GP/+3dhOQ3kBgkJh2zkc3G5VnUkxga1csjRgk0k9aMk9TUKhjnHI4JCxbFwrCm8mfwWJOLPKvGtKxWLNitYnGCDUXV8bEhHnKHCs6LWjov+T3bSBQEdJH4FWBDq2vmyfTCzm7LJ9wni/wECoFYFRhKbry49dIz2nUeg+++XZTrBe6IkRKeiWLl3abz2glFJkMhnGjh273VykXC7HxIkTWbduXb+cc1BiDFqXaPPXsGhTGxs/+kvG3f5Jeu5N14/opDjeROFfDaaHcJK1zaqdJXdv2rRp0E9Y35M465b8DpSH/3rOaulq1WC0IUjEUZkAi8RiCGlIT6djoilFKgVgFMLWKBWwraCLQljR2NRaRZmny0HrREgnXfcjD4llxe0aUkGn43OF6WG6wpFltqvy3Mhtc9a6crO67p1VNs7CsrIVAsKyMmScqJdfqEs05JsZ1ziNTN7FzSjsTICViUUIDpayo1YUMYk3LhJDFqF203WJR8xSTpRfZTKRdy3+uE4EDIA2bjo+NT1uuq1jD3nSHqO8Sbc2dup167qfiYcuF9+Pyh5pkTevLh0XHSeIbY2uL/UCotL7ZOGgiRp+J8chEWHxNQWmlArjbQWZMQFaB+nxyj2qCjutGs2oPBlVjzIKU6bglYlCrBmy5HQet4fHXuJxc20b11JkbEXWUvF7y0QCKfa62apLoFl0ia3kM8YQjQ2NSl3JiVfNice7VpfQcuL/AwOhFf2vrcjzFt3rWABapILQig+sUakQ9MuEXVKMoNROs5mFYcSIFHTFYoG+Z/R00dnZSUtLC42NjcyaNavH3lKTJ09m06ZNQ8rjsytEbUxKdBTX8Ezuj3zqwVO57bP/Td1/nkPP04L1HbVmDWrlWszqzYRrOvA2QntLlvVb69nkZWn1LbYGis4QCoGhEIYUVQmfIiEeWnvxN/+oGMLEonBrezsrlq/olgy9behyp5Nep/Momu7rdmd9+XYVPcwqz5fkG0HSQytpfhqF/4KusJ+y0umBIk+Tk3q5VBpO8yIPWHyM5IGr4mNr7aUP8CTcFh0vGqONl/6cnNsYH9vKpz8n545ETTESB1aGULkVx4vsCbCtXGx7kJ7TtnKEulh27tjro730dTI28QpF9yEsuz+JWIhCk46Vw7XzhCbAsTLUOxPIqSZc18bJQphpJ5OzyedyZHJRblYi3GySisc4f4qkstKkwjN5T7kqhzKKQPlds5vEnkVHRcIqND6GsEzQ2akQ8k103RU5fbHHNGl7ESXxR+sS71gkxFTFvU32TX6OBFyUop9UZib2J9dTfpzy/RwTCTnXuDg4BAT4Tim1xzJRaYBtbDQazy4R4GPh4JjKz0/P8gicEpaxyZo8NnbqXVOoqOrT2NThkrUcLBV5rdL7HOedZZQil7VwLZU64pO/NCv2mLlW5AXL2rFHX0XNcUPTdczy8ZZKPGZdfqTIO6cIthlvAZYy8XkMViw6bQUKgzaRdy3QKv1qBF2+YlsZsrbBLvsyGrUfjvYJDPhGEeokpzMyxtrWPV0tjIRcq82IFHQDxdatW1m6dClz587tJuosy2Lq1KnDv0DClCh6W1ia+Qe/WDSP8wmBIttvZbLrqJYtqE1bYM0G9KotBGtLFDbYdLRnaSnk2FjMssWzaQ8UWwPoDAyFUFMwPiUrEnSBLhJqP/UqJFWsnZ0FXnvtjYqq1p68Xt0mvy67B11VfnEIVG370ZwemO4f293Xd2tDESelKytD0vQUImGWzOtoKQfbzmFbGSzlYiuHQJcq8qqSn127DsfKRr2s4nCaRhOEBULt4dg5FNF428rg2pFA98NCLLKyaOOXHa8eWzn4uhAlmFsZQhMQxOMdK4dBR8e2cjhxGNULOyIxYGXxdSH10jnx+YKwgOvUx9fiEepSut0POlIhZlmRGAzCQnT9lkuoS2mOViLoEoGanNO161PB0+SOZ0x+IlZOU5fNofMFyBSwbScSU6oxSpzHISTAQqV5WI5xcXAJCLGwyJostrbTJPmoqjH6nWV1FguFT0CgggrPcVbH90V5cS5VFJ5WWuHioDH4yq8QN1FOa/R+8VX0+3CMm67DRB6rNFlfx/l2Kkz3TWyzTeRJDQmjukxtYVTsKdWxhy6+Hlvb6TEcHVdkYuEqC8eyCLSmpBOhasV5YVYapiyFOTyjcVRlEr8xBl9rvPge55SDo6LebUn+m7KisGfOscjZViTotEm9VIZINLmWIu90CbFQd4UlVez5chVkbMgog2tFIi2MvW3lPl4V/+U58Ri1jWjylUpnSagI5CuDYxkcZVIPXRQWjX7znjY4SnX7VNCAo0wccjXxvem6PkcZAqNQYeTdU7HA7I9ipN1Fqlyrjwi6fqZUKvHKK6/0OF/jmDFjWL9+PZ2dw3OS5KTZcBC2sqrjKX6yJkfHvvDln2XRhx8R67reeevU5i2oLVugoxMKJWjvxGwpEG4pEbZq/HaLznaXlo48W0rNbA0cOgKLrYFFiw8dPnQGUS+6zjCgjXba7RY804GnC3jhVgJdiPvQeWBCNm9uY8WKVRhdlttFmYeuYq7GxBOWhOZIPUdRyNHFtnIQC5dke3mYK/FSgZ0muadd3yvWJ/ljUQK7MQGWlaEuMxbHqiPUJZSyqLPHRsnnpkTeGs1EM53RNNDouGQsi61BwOawE4tIELSpDgAmqGaaXIdiqAmNoc628bVhY1CgXXUwyjSSUTZFE5BTDmMyGWwLtpQC2rVHneVSMiFb6cA1LuPsenK2Ravv41oW9Y5NIdBsDjsJ0DSrPAZDuynRqHI0uy4a2OyXcFA0Oi6tgU+7KZLFpdnOEhpDmy4x2s6Rdyw6gpCtoYetLBptl7bAo4BHk8qRtx0CHY1vsDLkLJutoU/ReNSpDK6yadMlfALqrRyZnMOm/EbCfDt1uTz5XB2ZTFfifNbkcc0kiH4jUcWiccjGbSTC2JOYs+w4OV7hWtFUdkpB3rZQsYcmiBxGBLHaqHeih3eU/2QqvEA5OxE7XSvdeF1GRe/A8m3bppGUQoNVto9Kx3WF5JJwX5JzFb0HIzFkW13hxqS6Mvp76AovhtpgxYn+Qdx2I8kVsxRk41BjYMAPI5vdWDg5VrRoA4XQwQ/BjsOK5d6ukgZPxzNDO9G+pLZ2ibG8DXnLoJSJPFVxyDPJAs1YhqytcRJBhErvd+I9y1qx4CL6P7k3gbHS+xOaqCLesbq8ZRqViicD+NpK75vCEJooNBrl3HUd2xiFpbqO41qx3XR5/Ux8TltFdtlW9PspTy0xRDa6SqUCNm34UisHXVnot6/HEXqHCLoBoFAobLcT/7Rp01i6dGn1jaoWJvpOH4SdbPRf5c/rZvHwFzs55s9h7KQrQdEH30cl/fkKnajWrdBZiBoLb+2Alk70lgK6qNGFkHArlLY6FDpdOksu7V6GjsBhi2fR4msKoU9HoGj3DVt9Q2eg6QwCCiagU3XSbrVRNK14uhNfd+CHhdhj5FMqdVDocGhv7wAcUH78QElyq5L8omyai4QKAXsbkZYIOnDsOrJOI6EJ8MNIOCXeoMQLFMYeMyup3lMWWkeht/L1dhw2dKx8lLCuA1y7non2XBpMIyWnhGUsJjEWlbdQWajP5+moa0fnS1hOHZbJ4Kp2xsShMUVAngwhHjksNA4OGgeNH+drNRKSN+CqAKUMeeNGLV+MjTE2llWgETCmSJ2yyRkXQ4iLRYhFXRwS9tDYQGPck8uJ89myuFhAaCKRnMfHUlF4Lo8mayIh5BoLi4BRykIRUjIaWxkaTBi1cDDQoKDOWFhKo4zGUgFNRhOVZCjqlSKX+LiMoSnpUxbvP41JgMY1WRwcVJi8AyyyuGQsG1tFWVuOgqwTPTwdS0XtJgxkbZXmU7kqCn9ZCnJ2LIiIhIlSXXNc5uOoeVShGCXCJ+HAvJOIgyRfLgoFRvcw+r8Yloda0z9BlIq2WUQCSpWJpPKQpKsSwdAl6BLbLBWJhi5B1/VnnvwcxNPwJYJOx9fsJoLOjia/Cgx4OhIXGSsSQ27spTJAUStKYXRvbasrfKnj/TxNei8zKhFRXbjKkLM1OdvE9zk6V0iX/a6KBJ0dp9mHsQhLsIm8co6lsTBYVnSsQCs0On6fJpWlCtsy6X1I3gNWIpYtsGIRpgDbQJAKtehcGgXKYGFSD58q3ycWb6FW8RcCk96b5HeolEnPaWFwLFKxqWJbddnvTRjeiKAbIDZv3kxjYyNjx46tWF9fX8/YsWPZtGlTjSyrAiZE605aC2+wKPd/XPLSEbxrz4WctecG9l4wBz3vrZBzMbjgedDQhJk4CkolrDffhHVbwDFYe7hYm7YSbG6BkqZhtEXDaCi8aQg3N4PvUA80eFmWdeQIPIscUcZei6cISgbf1zRhk9Oj2OBlabXWE+JiM55QtdOhNxKaHMb45DMudpAhiHO5bCtKRk9CdRm7PhVVUVjTxbXyOCqLq+pwVJaSacfCYpyZzmxnHO1BwEba0GjqTT71EGkMrbpAp+okZ/KMtupwlUVJh2w1RTpVJ3WmjjF2HTnbpt6xGJdTdATQ5mlCx6LkGJycTT6fJZ/PELoGDx8bmzrlMt0ejaMUDRkbS0EpGE1HEKYf8L7WkdhxbOpci1AbAhOJBd8YOvwJ+CYkY9lk4jBQFLaKHmyd/lg8rbFiUePH3pl6x06PAVE4zAsNnbGAz1kWxGEx17LI2lH+TzGuTnUti8AYfG1wLUXWttDG4IU6qjy0FL7WBLF3KGMrgtDgGUNGKWxLERpDoA0ZK8qZ8nUUunOtSCSWQo0GMpYia1k4VvSAzNmKrF0meJKcqtibFF2Poc6OHvx2XOYRaEXODlPPiGsZPG1hKUPOCiORY2lKYVKEEP0S6pwAjSI0Fn6o8I2VhtSylo5/T7GgQ5Gzo3WuCjEoCoGNUgZjVPpwD3TkWy6ZqIbTTcKrlqnwIkXXFwkVE+eIJXZFXrgor0sTlbGo8jCh6spBS/RCaLrEoGOZyKOkNJYy0fXpyMvlWhrH0mStMBW3nrbwQjvOMdPpQUNt4WkrvaaMrcnYYZefPL43GTs6pmNHhTZ+aBEYCx0LO1TiUdORuFXRPNKJdNRx9qRr627h01Cr9DzR78OOhWyXmAqMRWii4h1LKUwYX38srAKtAAtNfO5YTIZGVf5CYuzYQ2gpEwUB4vBw4vFKfi+Roy9aaRH/fhSpJy/UiqBGQVdDt8sSBhgRdAPIihUraGxsrAjfAOyxxx60tLQMyxkkuooFNFqXKPhbWGm/wKLNOcyr4znlgjXsM+V5tFYUCi6htrAtjeNoPN9mc2eeDcVcnAAc0B40sKk0Gg00OtGDcWPJYX0pCk04ytARKDYUNR1+SNa2cC1o90NafZ8QgxuHxdpVJ76KvFkuGTANBKoIirTAoGi34oUdKGXhxk1LA13CsbI0WZPJmXo8CmilyZl66nQ9eZOlQWWot206gughNacpwzvGBWz2srzZMZHQGEZlYJQbiQHfwNpili2lUTRlFJNzmgZH0x44rC/laPNH0eTC7GZwcy7/KGVZVgxROYtMDrIqQ5PjkrWtNLzl6UioWAoaXJucFXl5Gt3IO1TSilY/SYKHYhiJlTobmjKkidUZK/LutPkWvnbIxknigYk8Sg1O9HMhtOgIovvtx2GxnA31TiSASjoKTWUs6AgUhdBCx54nG/Di42Xjyr7O0MGY6BglHTlrXTsao42iqC1cFYmsUmjjx56XnA1eGO2TjSsI/bjqL7G9FEaiIWn7kNiSs6IwnhN7mHI2ZFVSzxt5gxzLkLMMGSsKP7qWod4JIi9OLFYCY5G1gtRj41gaL4zyuTJ2iFKGrB1SDJxUgAHkXB+tLTSKIIxEjRMLOTcWb0GYiCxFxgkj740VglHp8bRWkUdJRWJGYShpO87Vio/naEJd2S/NVhqTiItthEuXaIuy85QCx67MikqEpIlDimGcW2cpE3uwoqNromR9YxSOrXGskGwm8thqbeEHFoG2o3w0DFZ8DwJt4wdWnI0YCS7XCuPKapV6zVw7jK7figRZGNoEQfR7Sb1pZfLCUgZtqfTak+tw4nulTZfYs61KWWJhIiFVdh91HIZNj9fDZ6OmS/BG9y4SdFpVVuUC6evy44V05eUlhRpKKRyiawtR6XVEY0ivrRaUC9C+HkfoHSLoBhCtNStWrGDOnDkV6x3HYY899mD58uU1smxgSZoNG3yCsJN2bx1v5JbA5n3pDEYxc0t9nDeThGAMWTt6CLf50ObFD1ZbUQgN7b7BsRSjMlHid6tnaPM0jqXIOYpCELKp5KONoREXQ+SRMbGYq7NttLEpBXWgIW+y1KssPpqtNKKMRZ4oOb1NddDptGPjUKfrMUpTsAs06Eb2sBqpc2xKYfQtvyljMzqjqHcMk+oMkxuhzaqHjEOQcXm15OIbgw40XmjYbCmCjE3ehkIIraUgEla2xRo7yrsyQDHQeL5mo60weZc6R+FqmB6aKNkbQ962aM4qGp1I1Og4V6gQRMK0ORPd12YnpMkNMCby/mwsxQLAKLYGke15WzPWDQhQlEKLBiegxXdoC2x8rXAtQ4OtKWlFo6NpcAICY1EILdp8m6ytKYQWnlbU25o6W1PnaIqpgNO0eA7F2FuStyMPViGwaHBC8k7kuSqEFoGBeltT1BYlrcjbmlzsWeoILLJ2lOfUGSq80MK1olBbSUe25+McKc8ofK3I2YacFW0vhtH+ChMLuvj4tkmTynNWSNbW+LH4yNgaR2kytsa1w1Q41Wf9VMgYo/ADC9fp8u5EoiLyBjpOJFzcTEjOq6xMdjIhRsceslARBE4qSmw7bsMTj9XaIpOJxKGyDEYrcr6PsqJ9E29OEMRVvvH5bTsuRnA0Ogkl27FXx0quAXQYCYZyD1W5GEhsKmvVWCHojI49R9qKvIVW5C1Liq8TcWEpg+NqnIyO9tGKrIEwsNPzJF4037cIQzu1w7ZDHEdjWZGITa7HdkyF3bZtsG2FE9roOGSZCN8oPxAs01U4oRMhGuenRbNldL8H23zQoVWUMqDj6tTkXoRJwYaO3wuxGEu8mF1h7igFIFRlE7cpAAulNbZl4i9aVlnlrkrbqCgFWkX3NBGUFtF6yxB7f3s2Xxh+iKAbYFpbW2lpaWHUqFEV68eNG8fmzZuH+QwSITrsoAhs1B7t7lpWtc9iYtt0jNKUVAnbOIwyjdRZLr4JaTdR5eI4u568Y6WJ+uNzLo6y0iabzVmL8TnF6EwkDFr9HPWOYXZ9QKMbsNW36QyzjMkETKnrxBhYU8hRCPNMyZeYWL8VL7DZVKzHtTQT6zuxLc3GzjrWF0aRs0PG54qARYs3jn0mb2DCewKYPp7gr6v4wwNzeNXPM67RZnS9Teg4rPKij+QGF8a5AVNjodPiZwh0lE/U5IRkLUNJK9qCDKVQkbEMTa4mZ0VCojVwKIZRPtbEbECz62Mrw9bAYasfeV1GZUo0uj5jGzuwLCgUXFCG9lKWQCvG1hdRytA0toDbCHFdBq1rs6kHo62QZXRDJ45jqJ/kY3wIi4rMaGhfbVEsZCJxoAyNjSVKRYfGMSWcBggLoANo25Qnl/MpFDKUApvmhiKOG5Jp1oRF0L6F26Bp3xAdKwwtstkANxNQLLjUN3nYeUPQaRGULHzfIpcP8EoOvm+Tr/Ow3ehh7RWi6ZycrKHU4RAGCtsxuNmQwFd4JYdMNsC2DWF8LjcT4OY1QdHCKzk4biSIfM8hDBWZbICTMViOJixZ2FmNlQFdisSC7WrifrvY2eg+KhusvIpb68XekLKpYpMpgY2ubKlmZcGEYdSfuazdmglDUNF47XlYdnS+uCdFVyMxDVYmOr8xUDaBBHEtTvSA97oEV5JXpyxQLuksWmmtTZnDTUedXLrOlwQQEqVhomMoh2imLlUm1sraDYYllZ4z6QuplMFyTGqX5UQ2mJCkX3XUUNnvEirKAqdkgQkiARsXOVhOdCwdgokFnbINOrBI2hcqS2FZCsuKZmBIoppB6MTirezC0zCzwg9ttFFRyDap5KWraEIbha+ttOgBonCrF79Orq9rny7vua+tuHBExUUMXZ0Yu/LmovNkrCjdQIVJSLeypUlIWUFIvE8ye0QU6o5EcViWu1dtTNn96NuB+uEYIwQRdFVgxYoVNDU1dat6nTlzJkuWLEHr/ijurj2u65LP58lmo3YLUfd9G8vKYFs5HDtD1i1h2XE7BTwy2OR17DEzUa+tOpVhYjZHvRvlXilgar1iel2UDN8aRHMazqgrMqGuSNF3aPNdxuVLTJ/VgjsG/C3RQzY33cLZK8pj1Mu3oAshzl7jYM+9oiKM1RugLguzDsDkc8x+YyWs2AANeZg+CwDz5Cs8/n9zeer/8tTnLVDjyE+x2EsrxmZCRmdKaOOxxc+gjaLBCRiXL9KQL9JeyLGpkCPQigbXpyHr41ghgbZpL7ls9V0ytmFsvkBd1qNQyrCpkMMLLfJOyNh8gYbGIk7G0NGWYUtHnqwT0pgvkqsPyE2LPtTrN3koC5paivieQ8P4uIXIHhmshiymFIBSNKtOlBU99HOtPnUTA5QNzrR6CAym4GONztOgtpLrKKRCMDNWkeso4U7JoOoy2J1eLAwKOHWK3NZOgpJFbrwBV2GPqcMUA0wpwGrK0+gWMEEkBKwsWA0WufYS9hgHlbNxCwGmGBJ2BNhNFrmCh/bAbraiOeptm2x7ABmFythk2gN0YLAcBTkFvkYXSpHQshV4ISYMUHkLK+/ilkJyBQ8Vt+c3BQ/tg12vwFUox8EUNcq1UK6FLsYxWzcujLFBZWwsLwRLoVwbtMb4ccGMY1IBZEKD9st0UFzokE6aoaJ7oJRCB3HbC7tMhFllool4PwAdC6o08z7aL96UFlwrE9XsxC3m0ge/5cYCSoOVUamtEO1nWdE5k2Lu9Px2LARNdAxlK3SSt+VE+WLJ+Y0GKzTpOY3uEnfKJulBnfbjSB/4KhafcReeROwqFSVxRGIwEm0JSsU5fKkwBh12bddaoXWXgNI6CuuGWmEZq8Kjl4SDjYEQCy+w8I1dIYxtpWNBF3nMgnh8YBQlHXngykOMkZiLVgRa4ceiDNM1xVfX5au08MRScQ6oqWybEsTn0mX7JqLRUV05fY4CD5Xm94W1EnTUpm3JzJkze5yy8bzzzuP666/n2GOP5dFHH63Y9tnPfpYbb7wxfb18+XLOPfdcHn74YRoaGjjzzDNZsGBBjz1mBxOD27phgu/7rF27lilTplSsz2QyzJgxg2XLltXIst3Dtm3y+Ty5XI58Pp8utr39nuQKQCkUrXhWMg2aTWjl2GKvo00lk2dnMFYjK1U9GZPDwiGnc/gqyzocbKWwM4qcrdjijCIfgm2DZcN627ByzVRy6+Mu/BjqXwpoWuZhYfB1PbZlqF9bIvu3N6O8n9DCsktkn3wZ7MgzE5RcLCfEeXEFAGEhz/5zO8k2bMUZGwmMcKsmaIfMKIU9tQ7l2IQbWtDtISpv4UwfBROmMn7tFqat3BjZMy6PashFT04dYtpLhGu2oDIKe9ZYGDMeNrYwdcVm0AarOYdqyMK4sdBQT8PK9Yxb0YJV56LGNoDrwIw9wGjstRtBKbIb29DtJaxxYwED40dDNosqFiHjkm3aAGGIKYVktpawJsfjJo0Dx0YVipDP4+TW4fgB+BrjhahxDTheABNGgeNEx7NtcqM3QdbBbi+R1QY1vilyiYxpRmkdtZzJumQaW6InT9GPBFdTHZQ8aGqI4l8lD7TBaS9CzoUgiJ4GDbnoqZRxozEQje+MPLkVE1v6ITiJwjHxk84Gx8bSGvwyl5YfZ8m5cSmpbUHJT4WS5QWYIIzeuUH8WHIUyu96RBmfru41GY3u1KBB+6BLXUJMl6JwpB0YsOP9TORVCuIORlYivpKZ0QwEnbH3Jl/m9gmIvFU+6BDsXDQ2Ed7KAh1E3kUnNk4HCpRJPXo6de+UedrsWBAFsS1W1zGtDBBG+0VCretYxo1+1n4kugBCzyIMItsjT6nCiT2pqOgcqhjZGvjRODerIy+bb6XrIlstLCtSLzqEIJ6b2Y5z+ZJwKkCp5FCMc0QTj5wpE1m+tun0Hfw4jzB620SCMSkK0UbhGQsvVHimKyct8dCVN/Ht8polnjC2EYCVBSO+Lp+rtazAIR5j0TWLhBNXUCu6cuEiL1/X2zEhmd81mreVdL+EkRZyffLJJyvy01944QX+6Z/+iX/+539O15199tlcddVV6eu6uq45gMMw5JRTTmHSpEk8/vjjrFmzhk9+8pO4rsu3vvWt6lzEbiKCrkqsW7eOcePGdSuQGD16NO3t7WzYsKFGlm0fpVSPws113Z3vvP2DErX7UBBPGWQpJ2r4qpy0YjRnGsiaaILsvHJpcB0aXDud+iZnRaHNBkdHrQZUFM4cnfXIu3HOkh1SV+eRbYi8UDqIhJ/TpLCa4uSz0KAyLqqpAWwb0+lBKQDbQuXjOSUL0cPdam6A8c3gONgt7bgtnahRdTBlPGQy2Bs3Ybe0RyJh+mT0+AlYDWtxcm70yT52FDQ2RPfBGFR7B07DRnAcmDUVPXYs1qiN2Lm10ZOhqR6yWcyYUZiGhmieVW0ij2JzJIT02DGoMESVYpXgB1i2ijyMWkM2G4saJ1ryGfBDFB5oF3IZCMNom+tE+zg2ZN3ofzdEWT5knEj0ZNzo6ZEcrz6eJiobu1Wy8fFch0gxxK6anBsnLsWPWjc5XvwRlIljkEEsyuw4fpjNREIsOX8iyhL7kmZXjg1u7ApL5kxy7PhJl5SnOpFtxkTfAiDalpwzEX3pAzO21RhMqFGhwoQ6DoUajBdiiiZ6EocQdkTDdaDwixa2Gz1J/WKcG1bS2HaUx2X7BsuOQsdKGSxbV+SmWQ54BTtq26LLpgzTkfgKfYXRCjcMI9ESdOV6Ga0IQwsTRvcqjMPmab6cVjhBlKcXeHG+mx0JJq1VlCdnQeBF+zl+FN7UoYVd0un5ozBqJATDwEIlPeDicHaSWxhqO80/hCjfLyEM45krQh/L1gSejR84ZdsVjqPJ6IAwVJQ8B0xkY/KrTzxRBc+lEDgYFLYVJe3p8nCqtugI7bRqOAlLJrln2kStZnwdedyidiVd4dbkPDr1lsVTbWkIiLfF753y7xmmbFuynx8awtj3lP7OY0Hm2l1zvpLsG+/nhZHnrpyoSXPUNzATi7uyKDm1CgAldveVXT3E+PHjK15/+9vfZs6cORxzzDHpurq6OiZNmtTj/vfddx9LlizhgQceYOLEibz1rW/lG9/4BpdccglXXnllt2f4YEIEXZUwxrBy5Upmz57dbdu0adMIgqCmc4dms9kK0VYeOu0r2zr8EzGnsFGWHYs6F1tlcFQO12TJ6Rx5smQsm3rbpiljU+9EFZNuLOga3ZAmR5OzQ1xL05jxGN1YIFsXoCywsganycJqysQhMhMJtVG5yDOUcaJPU9eFxgaM66A6C1AsxaIm+sNVhSIq1NDUiB4/Dmwnmq1iSyumPo+ZPBlsG9VQj2ppjYTWlD0g46InTYq8Q5aFGTsaU58IOlCd7VH4zHHQkyeB66LdyVhxo1rT2AiOg2lsAkthxoxGbe2IRFVDXaROXRdj26isGwkZNxZm0Y2OPF1BAL7f9QvQcWKOZSVPMyjFHq9QQ6HYJYoS/CASQX4Q7eOVebuCIDpeVsVPrTC6h5nYpjBelwirwESvk3b9yTFtouN4QZd3Ldk3mTJP665j2lbXz2ljtDB6rYj3D6MlEXAmEr3RUy8+f8nvOk8x9swFJvpfG4ynMeVukQCMr9GlLg8XBkrtdiqmPM/BdYL41rpRfzZL4zoarS0cJ2om0VnMRBWhdldlJ4BlaQrF6P2XK/vdaW1hWVFFOCYqikgKERJBF4ZR9WcuDk/6vo1lmdSTFWrIeHEuoe+k1aFaW7Ggi8Se50ftbhwnjMKVocKJ7UyEmOMEaUVpVDAR7efH9nhh9HPWDsnH+wTl4c24SjUX2DhWiB86+GFU9ZsIMtcPyfo2GkXRdwji6vZytFF0Bg4doZ32YSvHxGHRjsCK+gNCXIEbbyfxzkUet8Qbpk38VtpmurDyuVMTsVU+O4VjVTZiTho0B8YQxKKsfHoyY4gbMitcHf2vVLmnMdrXC3XkCUy7CXQ1fXbiFj72Nh+4tfTQ9depgyCgra2tYl02m93pM8rzPH71q19x8cUXVzTevuWWW/jVr37FpEmTOPXUU/na176WeukWLVrEAQccwMSJE9PxJ510Eueeey4vvvgi8+bN66er6n9E0FWRlpYWtm7dSmNjY7dtyRywA+2pS/LcypdcLtety/zAEeckJfNnEjXbTcRcRuXJ6Trq447/GUvR6No0u1H7jVzc7b3ONjS5AaOyRfJugOsG1DX6ZCerSMDZFqrOhdENsXhzU2+NaWrGjBndo3W9/QAyEyZgJkyoXDd2LCaXj8RFJvZi5vPRubTG5Osi8ZiMN3UwZlQqzADIuJjRoyHUmGw2Fj0BGAsCP/YoBdAexeos349ETttWaC9CexFTDGBTR+wR2xKFTUONsi1MqNHtQdQzJKewtpYwoUGtbEE1RDaYdh/jh6i4S6nuCMFtx2pwUXZLdHxjUFkH44XotgBshVVvg92O8TTKsVANGQg0emskFpVrYwKNKYSojMJqyGBCjSlEHlEr76ALQbQ9Z2HVuRhjMIUAlbVRGQdT8NEdISqrUFk7On6nxqq3URk72r+oo/3rXUwpjK4l76AyNqbDR5dCrKwdfTPwQvTWMJ0pPdyqu4oKjEIHisCzCEMnTa7XRuF5DqXQJtRdfePafTdqYaKhqG1yVuQ96wi7Zt/MWlG+WSZuj9Ee2BWzByQPcBtDRyyA8nF40cIQxLlfpTBqwlFvh/EE7apbFWSyn6ctylvoGhRuXIGa9Mqzk9YjdCXo+3E404mLAUKThBJNXNHZNeVUoFXUN42oqa8fj/fjnzPKUBd7IYN4W6C7qmrztiZjRULK01YaZkzuWSauPu0MLUITSRlVJsi0UXSEilIssJJ8tHLBVopb23ixw9NRUdFEtH+0+Jq4Z6GJZ+4w2PHsH+UeVB3nuPnaEBpN1E4dQhP1dnTiJtQGkzp8Tbw9meYtmWLNxO8FFVq4xsXFwYoncysnIKSkvHS/hGhWZ5uMcXGVU15Dk563FvSbh87A448/TnNzc8X6K664giuvvHKH+9555520tLRw1llnpes+9rGPMWPGDKZMmcJzzz3HJZdcwtKlS/nd734HwNq1ayvEHJC+Xrt2bd8vaAARQVdlVqxYwb777tvjtmnTpjFmzBjWrVtHR0cHxuz+X4NSqkev27aFGdWnZ/+/wsLGwTbRLJB23BnOIu6SrtJ8cuz4QeKqyDPnugGOY7AzJkpqd+KZtbNO5IXLuJh8LgrpuU7080BQKqGKBVBWVP3o2KiOTlRHZ5wAFGCamiPxViyiOtojj6DjQMsWTF0DeCXo7ER5PnR2dHmWwhC1uQVa2rvyyyxIv8N3+ujWIroUQskQFkyaBB9PeZrmSvkdFqFvkakLUZYmieg5DR5Kgd8WPUgsN9oQFOJeX40lMFElLMpgOQFYUGq1o2rTBj8Kg3lx9V2DhwnBa7WwXI3lhFFUuDPKQ8w0FdFedHzLCbFzAdoDv2Dh5EKchhDtRTlolhNi13kE7fH2rMbOhen4TL2PlfUJOomrVQOcugBdgtBT2PkSdhbCTgiKFk7eRznRvfE67bRVRrGQwS/r1RdqGz/uD5fc8mSqKk9HifGJAGoPrDhpPfIGZS2b0EAxFigQtZIxdH3wdoRd+VyOMunDGKCgVTplVSJg/FjMeHHYMG/ZafJ51LomFgEmEkIG8EzUNDdpnqtR6WwLXlmD3Hi31IbAdFVRhvHxE69R+dRhXTNExI2Ny/LKkpwv11bkbSudLUNDOsZWipwdNXdOvGOJoFNEXvmMFe1TDKNjRmKtK38u0JFYK8bOZ6fsMyO5lsBAMdTptGu26tof4oi7jjxgvg4JiAoxlIo+i9K5meP7HRhNJMvCdI7bMJ4FxcHBNl3z9yaEKsRXJQLloxNBh8GYEMtycEwGhwy26Z6PHKowmodaRR7bxENnYWMZm5LKkDEZLNM15+5w4YgjjuCee+6pWNebCNLPfvYzTj755Ir89XPOOSf9+YADDmDy5Mkcf/zxvPbaa91ajA01hpygu/7667n22mtZu3YtBx10ED/60Y94+9vfXmuzek2xWGT9+vVM2Ma7k1BfX99jWHaosj2/n0n7z5clmZd980y+8dpxr6ggzj+xib/Z25GnwZCEm0J0oDAlg3GDKIHdsaPwXRCggiASWpaKQnB9RRtob4/Csm4GCgWsdeui0KUV9ctLw51BAF6AsizUqK2RoCsUoynOTBT6VC2tqFz8AVUoQtFDGdOV91XwMG0FTKcX5fT5RH+9JRPnbRn81ig/SoeKQmcWx9H4vh2F52KymYDOUoYgVDR0+FFk1Sh8bZPP+Nh2SFtnLhLKTvS7KQU2QWjR1F4kCGwKvoNtRU1YHUfTVsji2pq6rR5haBHEIbO6rIcxirbOLFknTJvS/v/23jxKrrO88/++y12qetOulmRZkmVjMEsEdizkEMYmjkXiczKeYXI4MIANxByIfHIGETCeODEDP2yGYcAZhuDkACLJhBOTTJLJ2A6DF2CSSISMZwzeQbK1WFJrVy+13Xvf9/n98b7vrVvd1VJLXd3Vy/vRqaO++3vrVtX93metJgEYI/SNNpCkArUkQCA1IqmgNFBNQsQyQylOkKbSFNtlGlGUotEIUE0DRFIhlApKMdRSidJwhjDMUGuESDKOSJrCtWkq0FACpSBDGGSoJxKNTKIUZBDCvD9jaWjaL4FQzQIkuvnQk2kTJJ9qY1Uy4XIMdWWtULZoLQBUM2YzEo0oiTjL/1YEEzpoLYHuitTtR1Fwl6nYtALVrXAJmLNIMetuawbGx7Z2oU1CbdaHAxBatZISALheoy5+rLmMobXYsHtwyuz/NvG0kJHZFHeurRfBuP3cMlWIF8vyjh+wnSycNazZLisSDIH1oCfWskNEti+uMaa69zJVTQHq3JqZJjQUIdGmA4iAEWxg5qFQk+kkYgSbzoVrMX2AQEisSMtYhgwZiGsw4q5pXItIyniKDCkUsrwQsEJmLGZk2vURdEvRYIUMihpQ2ogybX//CPY4LIREAMYnCjpNGRQSKJ21zOfgJv4YARIegbm4wXFu6dnG/T5Pfz+mdmt/f/8FbXfgwAE89thjueVtMrZu3QoA2Lt3LzZv3ozBwUH86Ec/alnn2LFjADBp3N1cYV4JugcffBA7d+7EAw88gK1bt+L+++/H9u3b8eKLL04qkOYiR44cwdKlS6eXXDBfIbL9TgUIHJqU+aGiFBwcGU+RIkFdB1AKSBm3LjAT+xJxhpJoFtYkAGESIOAKpVqK3moCGWXggiDiBuSyMfDlw2DlKC83wfp7gJ5yMwhecKCnBxQY8cQ0gUoxqLfXiK2xMRMbl2Vm/bEqMFozGZuhBDIFfbaO5LhJC2QCUA0gGTGB8SIkpFUOlXFEva9AlICswpBUBWSkwQWZTEQAIjQ/8FndrM+FRpYKVGsBMi0ARBhLenORM5qZzxAHYTiTCOyP+KlEIOSERLO83ycB6JeEijLvX78kNOyPfyUzHRliTjibMsTCWIxcK6mqApYE/ahrhrpqZvD1SrN+yIEeYfan7Y23LMz2wylDj7AxS8x0bcjs8euaoaZM789QmPMYy8zxy7bAsBMvZdFcP+LGcpWR6fMZcjP2qt23ZEAszPmn2nSLiJip/9fQprgxY8YlWFfWMsWAWuYEUDN+KVFGfABGVClNSDRBaZ275MBg5xkXnAJBMg4iQkoaCsYtJ21CkLvNJTZdlINDMg5hlygQMhtLWZzvrEbKCoGANW/8mkzRaT5OtLkg+uIyF2Kh7DEEc6EQha+qnXZV21wsGGMs9x64v92+3bSCOeeMZea8SZpzt6LIiSYNDQEBSRIhpNkGCoopEAicOEIEEODQoNxdacbKwIiBgyNhiRVhSW6L5AXXpbGkJVAsgzbvorXwiXxfmjJkLAVRBoUMIA1N9j1jEz0bWpvRgpqijEjD9Xd2dVzceNw6yvZrbr7P1uUKbno9g4G1OR6RNr+XyPL1HaZVYQDuChxSlzIhChA643K9WHbt2oVVq1bh5ptvPud6Tz31FABgzZo1AIBt27bhs5/9bIvh5dFHH0V/f/+k3rW5wrwSdF/84hdx++234/3vfz8A4IEHHsDDDz+Mb3zjG/jkJz/Z5dFNHddBYiFZ4ibD3RRa5pHNLoMGUZb/SCkIKGogQ4oGS6CJoEiA5xYEDi2Yfarn+VN6xDUCLtHQAqmSiGQGzglhmCFupAjrVbByHUwY1cCHa0A5aAbnCwaUIrBQ5r9ALA7AyiUT31apAmdGTMB8LYUeS6DHFHTdlKbQiXE7jo6WjSuIAfVUYrQRIJQakVCopRKp5iifSRFJhWoWoJEJlGQGzih36cW2TVQjM+sLrtFQEmOZyDP2KpnpymCKDZsfdc6MKAtshtupBmwPU6Bhg6s0AQMRQz0zAmUkMMsBoJISImnKwYwkhFiYuCHnBqtmhLGQIVFAXZmekYwxlCXDaEIIhPm7bu9TDUUoSXPdRhP3t5luKGNRGQmNmErs/gIbFD6Wke2pytFQzaDuSBhXXi0zY5XMfBYayhw/5Cy34ASCIWQMCbmesSZg3ImzkrWUJWTWd5/TxMZPmU+bc60REqVyEeREmhEJGi5qKUEKzbR1wWlwEiAQUp7mN+GiyNAgZMwIEAEJbt10gHGvadbcRpAAMQ0NgrZCiOeihdn5GsUiGG5cGXMW6eYyDm6sQ6x1nvmrWWeuOG3WtzNZc6vmcXk+rZFBM2WsV6QgeQROIj+uZgqZLSLOmICkAAIyX+a2c25IDglAI2Npy3bMBmtk9neDqPneMCZzAatBUJSAdAYX8cYgWuLUzDlmIMpAZMRZU/hZQWYFm/k+qQnCzAleZn61zLyCYCNokFb5uvm2TggyBsYmuS1bcdguFIcxZh6KmWg5blH0LSa01ti1axduvfXWltpx+/btw7e+9S386q/+KpYvX46f/OQn+OhHP4q3vvWteMMb3gAAuOmmm3DVVVfhve99Lz7/+c9jaGgId999N3bs2NGxRMGZYt4IuiRJ8OSTT+Kuu+7K53HOceONN2LPnj1dHNnFcfbsWQwPD08I9FyIFEWd+YHUME4cBq0VFE/AFAO4NoVRmUDGU0iKEFMMrTWSVCLTEnXBEQsTo1RTHMOCI7RB07EIEHHTDD3ghIBrlIdT9JxIEQSZqbYRZJBhktfMApBX0ecFgymTDIhsIHSNkI0SkgpHrRqinpTRyAQSZRpy1zKBmhYYSZvdIuuKo2p7pUpurTxkm7wzE+9jmsGb9VNtXQv2jXKtvBQ1+5Q2A7fJWq0YakqZxAEAdaUQCyMMh7O6DZbmaCBFxowrqLdeQkIZEpYirkb5NamyGsJ6iAgBqqwOQQLCigIFjSqroadWBoHQYEludXHrM2IoIcotMylLEVEIDo4aq0PWmxaaFBkUU4hrETQ0GiwBA0NIARgYGiyBIIEIATIopFYMRQjz9d3+nBVIkEAAmVt+JEkI8NzaE1IADt48NkW5pUgxEwfFwY1gMBFj9kpyKCRIWT235hCM2FKUGgsTCwFoKMpy6w4rxEARKRCp/MPG7c+uKVxhLNbMWmaEXZZRM7PVzde5pc1ahZhx7ZvQBdXiDnTzi8cpLnPX3fyh83Mzy0VL+EORc+6nOK8gdpxYKVqPCBraug6NkDECrCla9MTtACPYxm0HAFqbB8OikHFihjFurFvIjBgqWq/GWcKMmCOQq6Rsz2o8Zp+qJWTE0PzcOGFVCHjN3xu0e38JaJZ0ag+5NiRtMEKweD563PTs4srKTHs/F7HNY489hoMHD+IDH/hAy/wwDPHYY4/h/vvvR6VSwfr16/GOd7wDd999d76OEAIPPfQQPvKRj2Dbtm3o6enBrbfe2lK3bq4ybwTdyZMnoZRqm33ywgsvtN2m0Wig4coxABPSnrvNgQMHcNVVV8356tMdg8haBMb/iJIN4jUuBcUyMGqAwwYV21tGRgRJtrehbsYfmUw5gLnCp9amwBhHQwmwBAiUqYWlFIPKTC9ILrRps8QAnhGo6GsDgVXNNGVAUuFo1CVqSYB6ajIc64qjrgXqtvF7zboHXTC4y6gT1sqlYKYZmj/JqW66jtvR0M34wcxl39m4Qpdpp5zFiBSUImgyoktDI6QQDdZAyhqQCFDTAglLkNhsOUkSGcuQsDoIBE0aKUtQYwohhZAkkbIUKWtYuxJDyhJkUAgQQEGhwRrQrGk5cMudpaTO6uCMIyRThiNhSfPag8xy8FwY1FkdkgkoMkIrY5mNgzKfhoQlkNaqo6CQsjQfS4YsnxYQuUDLkEHAnHvzEwUbnE7WgsabbjnKcgtQRnUoSq1A4LkVSFFqxZIGSOdWJbNtU1Boa4XOHa08tOeuczcaZ9rGXJlPhtLN94gxDmJN8aC1cRlyK8I4ky0iyG1TtCo5cUSkwW0VY7du0eqUH2+cy67dvHbz3bQ7r9w6RRzEmmMwn7UsX2aEm267LM8CZbzFKua2c+9x0frlXJ7MtpMgG+rRFGtmf7BC27mKnZBrCjXze1V0mTI0xVwu1HPctABY0ZqmWtaZLOGNMQVqkxBxvu0MJpSl/XhmHxs22pH9XCg33XRT2/dq/fr1E7pEtGPDhg145JFHLuLI3WVB22Pvu+8+DAwM5K/169d3e0gtZFmG/fv3d3sYXYBj/A9P8WaEwg3XZLwax0juyChk5Cnd/MI7dydjpg5VwFQeZE4tx3IV4AEeaBPHJk3GBZNotj7K7Es3s/sYTAsgwTUEg220bTL8Qhtz5o7lrG15WTS0ijlZOA+GZiFRVZy2ljrbscrkUNj3QMMEhQv7RO8EgylkYWKVBExAN8AhycXb2ZsgUxAwbkFji7O1xag1tpOYBrfuMEkyd51J+zzo3Famf6+N38pzlRmkFebFAHS3DSdzZGdrciKwuZ61shDPt8/n2X9OaDJqTufLiefLi/t002Y5g3MXNq067W6qTYuPg0FM8nerQHJuO8Z423isdrSLo3Llflr2Vzhe09rVWh4on2Z88nULf59zDG22uxDan1f78znvOAqfglzEYerv8aRjzI/PJ5nvxjD9oP+pc27rncczb0xDK1asgBAizzZxHDt2bNLMk7vuugs7d+7Mp0dGRuacqBsZGcHhw4exbt26bg9llmjeMBkEOLdB4rbtl2ABOAQCFqOse9GDEkpC5jFQvZKjRxqxI5hxaQ4EGn1SIeYaodDoDVL0lxqIomZ8iwwUgh4NHltxJhj4gATrK4FJkReOZQE3RXwbClQ3raCYMMHt5UqK/uEEOoMtlyFwdti4XwXX0JphNA1RyUzxUxMbx6DAENg6Y64KfcgIJalRVyaDMham20XdthwqC+MyPlEPkJIJ4q8phpGU58JvJAVCZp7LRxOZWxnqigCU0FAaPVKgoUtoqH70hByZzSxMtKmF2BdLjKUlU6HelrTRIFSyXpSkKSxbVz22rhZQlgINVUZDE3pDgVTpvB5XKBhCwVHJFAJm/la6Wa+rJxAmHk1rhNzEQErOULfvfSw5GpnOy2WEVkXXMo1IckjG8n0xBpQEz2uGRYJBcIZUm/0HnCHgPC9DEQhmm6SbIq6RzerItHWK2YzKVGskSuUxZM4tm7AEIOQC2AThJ/YTLQFmLHQp6nnclYNAUMJ8FgUkhO0J5ixRCpmVmKZrCpFCJpzLVYNb5zfyOSYOTMAF0NtuC+P2VXSJOstfcX67ZWaeakmgGL+s3T7GY7I5k9x6yZiEYNJa3amZeGDfE8Y4BEJr5WwmJbjt3O/GxO3M+6IoyZcRqdwdnY/RWvY0qVYr5jh3atFtW0z8GC/k3HIqxtCNs/4Vk0datiXVtDrmbtnm++y2nbgdTWnb5vrdTYzoVB26jpj5FgnzRtCFYYirr74ajz/+OG655RYAJvDx8ccfxx133NF2m6lUkp4LHDt2DEKIOZ8SfbGM/2lyP1bOWmCyuwQkmt0iQiohohCxEIgEQ8Q5QsFQksg7RghOiDlhSaDQH6QoyQyhVOiJG+gZSCF77E1ZA6LEwAdCsFi6Xj5gS3qAgR7Tm9R1IghMSylWb4BV63BtpRjnQLUOfraSN22MKinCw6PI6hwitO7CMYmxSgRlC8AmmalwH3BTM6+RmTIaodAoBynqmUSmOQLb7cJNl8MUkmmURA9SxVCSCnXFcTaVpiYXAWekQMSNC3pEmltTRgw1ZW6/dcXREwANLVDPTGFmV0LDZMyaeaNS2pZDzdIXYylHT2BEUCUViGwtix4J1JRAooCB0PztXMIhNzGCIylHxE1mqaumn2qgPzDTtUygJG3tNZhisRwmnrCuOLI8CcL8X80EXB1gV9eMM5OVm9oYw8iWHkwJqCuRdxRJFUdCzVjGui3hF7sSGqrZX1MwE59YV4XWU7kgLUHDZK5qIjRI5Rmijsy6f10pCpcAQKA8oUGShNS2zh3TucuXW2uiJJm7md1+pK0zVkwo0CAIskkB1nqZ2fhAt68Jwo01S3AAxZIZzWUA8rG2CLrCMrfvPLGicAxHylIoZtzXAGx9SZkLU82yvJ6aOTdpLbkmUcQlRphkiTB/P92y4nYcHCmrQ/EMGdVzMe6ELQAoJMgoabrGreh2MYsuti8XhEDTtVuwajbP1XgUXPkRN0+TmpAUMWE7XXBFF9ZxlkWX2DAet/+iiCzCmMyPPSG2r9F2kxmmM7XwvJ6bOvNG0AHAzp07ceutt+Kaa67Btddemwc2uqzX+cyRI0eQJAkuueSSOVD8d+ZxIo7bVHvBI4S8BxF6EVEJJV1GL4/QIwV6Am7LUgD9IbAsVCgJDckIvTLD8lIN5XKCMFaQsYbsYxArI7Cl5WZLqN4SsHJZs6gwZ9D9A0CpdGHjHh42gdsyAM9SlI6dAMZsAeAgQLlax7KRMdBYw/YOSoGAmwxaxkG1FFSrgoUCrD8CFIHqrtE8gLRu2pP1BAA41hw5CV3VYJEpxKXGyPSlTYDqGWPp0YqhUo/AQCZJI5XgjFDNJEKhUM8k6ppjSZAgI45Mc1NTjQElmWE4CSFAiKWCIm4r8gsMBCkYgNFMIuamyn8kMlRSiYw4loYJ6rY3piaGSGhIpnEmDRFzhVhopNrWcAPDkiBBogWqSqAkNAJ7Y65kEpITSjJDLTMFewUIJamgiGE0k+ixgjfRHInmkEyjJ8iQKIGaEigJhVAoNJRETXFEXCPiyohZJRALhYgrVDOJDCw/fkMLNLTpPmAspBxV1ZQydVs82BW8dWK6kgW569y1q82UqR03vqSHK7GTkcneFZzlYQCpMrdeApm2T5wh02SL9ZJ19TebrpsYyubHxVlrjXXRiE8BE05gQgLsGGGOH9hM4+J8oCloGZoJOcVfoWJBYbdvoNUCU7zxptq0qcojyphtbWW/j5kydeEAIOQ2A9oe0C3TRLmlNW9bRpRbVSU37xcRkGhrKSaVl2nhzMgik6ms0UDSIqJzQWyln8ksVi215TQUXOHeIgQNxYoC0sYNwpWBcVbF1rjGYuJMc1/28wJmH2hDjHf1AtY6SQkypBOWOXFqEnTstckFu8YYXpmwzUxjLN/T348XdFNnXgm6d77znThx4gR+7/d+D0NDQ9iyZQu+853vTEiUmE0459Ad6n588uRJnD17FitXrpx2VwfXKWIuNhImk7mQ4zLyBIsgKAQnYWKwbBkLd+MyxVcJESeUhYJghLJMEUcpwpIRc6IEsB4OVgpME3vXoL2/1zS5L5XtQXmzPdeFjL2QlUwAqNwLNnzWTJdKYFkKjFXAzo4AtYatcVcyBYKzzPSFrSfm2D1lY/1LEqCRmALCrsF9KQaUgug9BTFWM4KRAzK11eVrKeTJOpAQSBF6a8b9R8rUsCMCkro0DeAbAdKMo6ecgDSgbJ9NIRSCQGPJWAQwQhiYVlXKdkbojRvgglCtmcK/nJvm8vV6AK0ZensbyFKeN1MPwwyMEforMSRXiMMMSnOktrBxT08ClTHUGwHCMIOUGkQMtVoAIQhxnCJJBNJUQAhTdkZroFKPEAcZgkDlhZIDqRHHKbKModEIEEUpgkAjSYTZf6AQhplp0ZVKRIEpPOzeizhKIaXOpxVxCGYsqJUsaAo6xZESR6YZ6poj4kZQjaYCCua26+reJbZeH8GIDG5jLHNBB4aYF2IlCUiUsaMpK9oiYWrjmSQaZqP7XPFdU8PP3SSLcZeSm+0SzfLYzGJPT4IZX8jRIuiApmvMdaxwcakMRrw5weqWueOxwn4YmuVlOAMamqGe8bxdmPsOB3a8qc3cNq515M3sASOMi+VmooKWUlTsMGHeE3LXSRFSEqYTBBkB6cZvXPEBMls7UI/rAMGYSbrJNOXlaFwtPFMouFXQaZtdbZJsjDjT3OR4A02LpIbOXaQAQJyQUr0g6Ir3Do6AxZAUtFjonCU04wkUpZDIxm1n1pIIIJkpLOzEqLn2XhItFuaVoAOAO+64Y1IXazdYsWIF+vr6cPDgQaTpxCenCyXLMhw9erQDIzNwzlt6trq/u51ZO94l4MKbuQ3ib9aPsusXfpMYyLZK0qZZuH25ZIbmTpm983DT8ksGpquDW9YJwgC0fIX169qenUuWAqVTYMMjoJ4SaMlSE9NTqwL1GlgjBQkB6uszoi5JwM6eBUtSUBiY+VEENBrgYQgM2+zsyArUTIFVqpD9I6CxBNAaMi3cNBIF3VAo11OQIpSrKXTGIPvMe0S2KgcPjdklHqlAK0DY6ARlDYbBAMA4Q7mSgnFT1oUIKFVMi69gwOxHJwnAjFubNCE+mwGMIMvmWKrOwCVB9pvlvZUEPDTH1xmhNGamZZlB1VPohkkEFSUGnRB6Kil4RKZ1V8NYJ0UEiDKDTgmqkkD0ADxi0LUMqtYAjwAeAaqWQtUYRIkgSkC5lkIngCyb46taClU33TW41EhrAvVaAM7N+9loBMiII804aplEKE2s5IgIctGTkrEYNjRHTXFjcbM9SpuCjqFBDCWuTV9SGLGXapfIAgT2YSXRDIpMgWTXvorbZXXFi3mUeR9ZaV3vCbG8uLSz0DkBl9ieqm66eJvPiOX7U+SSbJCfAxu3LLDdMVRB0FHhvFNiqGUsd5+7VlyRMDMatu8qYNz0TkxymPM37b+MAA0LWsr1W83IFqPmzZZgie3ekdoSPy7OlmBL/1h3vtJG0IEh79Nq9k15TKapgdmsQyfGPVxrmMLPiXb53KYjhCt/w6lZ6891bGDEoJlGwkp5AeQiDBwhRQgozJOLgIKgY6aocoo6iFHLOgwcISJIbUr/mGLPTZd6t/BScnaZd4JuLjIwMIDXvva1OHLkCI4fP97t4bSgtUalUkGlUmmZL6VsK/Rmwt3rbnyFUQE2HgRkYk1MELUpwJoyhgYJSOX6uQpk9oeaM9Mj0zQYNy2mGCMo1YCsmFIkQUkhrIyBVxPb15WDjVbBGw2gpweueSkFobGeMQ4kCcC56Q7h4i6T1Ay80NGDnToFSNliqUOjbjpI9Pc1zzkugY1VQL39+f6Ilc2NL4rMMXvKxvJWKpnjpyOgnl6gt9fsJAigGQcLA7BaHbR8mTmuJrCzZ4FVFbCjJ0zHi56S+b8Ug3EOfnbYmEGGq5B128FCCmBJj1FlggPlGBirQdZNWzFwDiY5qJ6B9cfGwik4JJHpihEIYKwGapg2Zggl0Bub9mpxYKyQYzUESQaq2/demAQT1hsBUQAIjiDJjBkmDoFqA2HduKURSEgpmh04AgE0EoSNzNztA4kg08aSGQXNoL8kM0I3lEA9MSYcyQFuj5VktqevRKBt0Jzdv2wkQCMDpSa3uJRp9I4lJkmSMehKDcgIOiNkY7biiALqI7IpXlIOIQhZxlFvBCi2O0qVC+YHGkoglgqB0NDEkCkGRdwkz2iOkGvE0riRM+LQmoFzFw9GiKRCLZPItHEPgwHC3rQDqZEpnruXmRURboxErGWZ0q3f80xzSG6yt1PTVw/CWpaMRKGWZYFw5VXMfgTXUNp8HwW0jds0YxV5L1og4hnAkIcBMACx0PYhjeB6zdYyAVVwjTd/S1iL2z0S2oQZKJ4LtsT2zpXcJBppYqgrjoZ1nWdWZANG8Ll3wv3GJLrZusyRtxoDANYUlolqlg5yGelunfyhtPA0qsh0GclI5ck4AHJrYcAFAt7MXEfheBmZTiQJKeiCiXX8tsUC2Mp+9p7B7NOppIhptDRfdHhB1yE457jkkkuwbNkyHDx4ENVqtdtDOidZlmF0dBSjo6Mt88MwnCD04jjuYLq8BsjWfLIZcJpl0JQiozoSHkCTBjggNAfXHEwZS0YmTAxOxDk0MUhufsQVcSQ201RwQlRR6KnXEdUaYIF1+ZytQ1TqQE9sf2kUWCCBXhtnVzcd5Vlv2YgjpYF6wwaaxaByGWysApw5a4TLmtWggQGwShXszBkgU6A0AS1fDgBGcJ05CxaHoJ5yPo/V6s1fKKVBy5baZcPA2WEwzmzLMWbi9ZLEHLdWB3p7zHakAWV600LbQnaBBLQGlctAIMHqDSAwPWCZtR4CMOfPmDkHd55xAJaZa4FAmttQX8kILimN+BupmGM0UpNJ53x9vSXTEi2OrU9Omf0BZjqUYEFmhKRzcytl3NHubyv8IIQRhlZ8mYrPDIgjIwBDacartXFLu4ePSJn1Amn2pa0vDzCiL5Q2JTpovvfuvAQHggwszYsagksOZk1GLE5BqQLPNHhku4ooQswyIyYFEDaMBVJnDGEtA1wvTWJQtqUbAWgkElGYQUqC1gxKmT7EnGtkmYCUCmGokKbc9idm4FxDa5NgE0UZ4oZEmnEIDnCuc+EmpYZSDOVUIgyyvGoHaZjWcoohSWVeYDvLXLa52d4dXwjKXeTCijZ3fLeMiCGQxmWYKQHONbgVTlpzCKGQphK1VELZbidOEAVcAYxQTwPUlYBklItD1x84I444kwABkVQIuMq7pHBGaCiBVAkIpnMhGymBTHOkVuxpYpBMI7CWy7rgaGhm4yGNBVSbywdpRXNqLZyuCHhRjLhfP3ceTtA1hNtf0xrlxKuj2F+32TaOQ1GzfDOHadUmBUPATJxlESKyyUWEULOW6nLGgmuqALgYSTdGFw/pWRx4QddhyuUyXv3qV+PEiRM4fPhwx+LrZoskSZAkCYaHh1vmF6147u/pZRCbdt+aFLgGlC1ey0ia3gAsATjAtBF/gpl2V65kQt22pioLjrpmqGYif8KPhMZAIo2rzrrO4lKK6OQIRM8oKCOQAnjMwXtN1ivVjBWIlwOwUgDSGlRN7U09MBamagJ1ugYWC/DhMbCBXqBaB86MAQDYyBjY8IgRC0eOASdGwJQCuDDxc8dPmvWtH4z1me2QNsz6p8fAag3TS1YIsJERI2CGx4BqA0wIUE8vWKMBNjrW7CurYcQXY2BKgZxw4dxYIzUBAYBGZiPahXEVSyvehDB3/lQD1iWGwApAxoAwBHit6bsjDXDTwxZu+6IL3/2tFKBt5WYhbIygFZMsscKUmndJpQARA1y31hET3BxL6eb4ObfrC/PSuhDgZcQt3HfPBZMpbUWciUfMCwwGRjyY6wKwsnPL2xt5YPbPWWoDxzSkVrmg06FxZQtN4IHKTdKkAJXyXDQFdQ0ZavBAgxSDSq1IEUCWZpABmaSeBgfZItlcmEvIGCAiDS40IsXBOOXWO8As0xlHmCrIUIMJMg9OGmCCQIpBNhRkSMaNmrE8Ns689RmEMH2Hg4ZtOWYvo60CAsYJQZpBawZps7p1lpkHJkkgzaCV2S5IFIIkg1ICQqjcJSulOX7Q0IhTkcduNj86Jq4yShSIgDDIIAPj5nYfxyhjSFMJzglSKGRKIEwFUs2hrKBTmiPgGpJra6ET1oLHc1FH9qPh3NapNg+OdcaRAbl72cFB+ftlEjEYIm3cuQqtgq5o/8zDRmD6Ikea5YXCxye4BJzlrmJ3vkRmLEZEmrFnhNwdPNm2BPMVKFoaZxXy1rXZxgu6GWLlypVYsmQJDh06hLNnz3Z7ONOmXq+jXq/jzJkz+TzGWC7yikIvCCYmG+RuV9sVAkTQSMGQQVOzAnzGq3mrn4RX0OADCGAyU6WS6MnK6EmCvPG4ZAw9AUdvIPKivjEH+oMYESd7n2YIOaFXKkTcWAAUASWh0BeYXqp1ZXqlhjYbMtUBaspYxEoiQzlMUE8lxtJliEWGJaUxxOFZVOoRaplEJBSW9B1F1HMIjBNqIwGqtQD9/a+gPHgIAJCcMWVNlGImCaDvCMIV+0CpxtjhAJVKiHL5OHpWHAaPAVUBdMqQ1Di04uhdfRrBZUcAraHHTIJDctjcfMO1w2CBAB88a6yMJ03cXfaKFZsxB40pSEWmj20cgcUB6OBJsHKE7PAoqKLBSiabVroo91ACS3pAQ2cBAGqoCkiARwJ6LINMMnMH6S0BjRR0qgLWE0IdGwPVyCSoSA6eZqBKaly5oQSdHjPxd6MNMBv1TomGWFbLBR4lmXH/lkPQaMPcHUIBFpqaI1RNwWIJFkpQPbOuZGamkwxUzQDJTB3B1DSFZT0BWCTNdDHAK9WgVNmyNuOCzwBzV7Z3V9IAIiswhKk3CA4wATD3jMMBJASRabgaxbJu3I08AHRKRgDaZEiZGCHEQwZe0rnvjjGTKA2Y7USkQZkGs1WqnSblIUxx7szEDjLOQPb8mGAgRZCJgi2BB0pNPb7ckpcBTJptRcO6eSNz3qSKY6FczwOAtoZiHgCkzIMSC4AgRS7KuDQ/ADpjYJzAOCAb2mzrxCCZL68IjfyJUpNgIyLz3jqTFJNmrJkTnYKgkgxxZlzUJqmH5UJSCIJSDEkqoLT5jivNbLa37f3BjXkt0wyJNi39UmpKMhfvyEDNZwNyLlpTV1Jbi5+t7jMhdsxlfGobG5lo2Oxwe21tuK8rIC4ZWuJUMt20tmXaxgnaFQTMM0dg9+FiETVYvl030OiMddBrwqnjBd0MEgQBLrvsMoyMjODgwYNIkuT8G80jiAjVanWCe9kUCi4G7LIWHwSDgJQDkKJsW/1olMPlWBZchhKVkaEBBsJKHaM/DBALjUQRONdY1pNhYw+hR2hUFUcsNDb3VrFuySi0YjhTK6EnSLF25VmUNknoUYX0DCG6REC8aT2wbAlw5ATo1CjYyn7gyk3mMfblV4BqA7jiUuhNl4ONjIDtO2B+HVcsh/7eM3j8oUGcII5SKcCK3hABJ5zNJBqKIRYay2sxYuuKqqQSdS0wUC1j6dkGBNMYS0OMJgEa2pTVGBhO0HsiQaIETlZLqCiBeExh2XADkVRIlECiTNkNAFhRqWH5aAWMA1mDQWuG4ZE+MBCW1KqQcYKwehZioAp12mQ21Ies8I0zNMYEetgYWI8A7wmAgCM7XAUv15EMaSQVCRkahRAHY0BKYCEDrydQQyaWrHaMQYQEHqVIRjjKGAWLOVipDqorqNMZeG+C5LhJMAhKCiJSkMko1KiGGGiAlST0ySSPSxOxjceqA2G9kps3qKahU0D0ZsjOmtRLHmV5MkdWIYhSAlbioIpZl0cAiziooaEqRuiwANB1IwREb2pEa93ExTEB07dXAToh8HIGZg2crJgmCiNYkFJLNyUSlAsnBLxpktDNorKufAmzhlBy5pzC3S63/Kjm7csJQVsiDS1dptzQrN8wF13jQmBbEspZ85jkju/Wd//riftoR6GpS6s5ylmWhH3BXANtTF42NtEIMdj4VybMe0ouGUMAnExbPmYNvOSOxazwVCZ0A4zAOAMX5nPLmAl/4cwlSzXbmmlthKPSgNICmbX6CW7mC2XclYIRZEEFGVepGWuroOPGKmaLh5vMZrL6s9UC6qxsGVGe7JFYSxtDU8QJTnlyCiscXzOWx8Nl3Ag6Z9zmcHUWm9uaZxGCZqxQIMWz0PGCbhbo7+/HVVddhaNHj07odLEQMRXNW5+rilXrGRS0PoOEjQI2jq6RjGBUHANnMi/ouV+UEWX9MD0cjZkiri1Fz+nlkBQYFy04BvQK9FIvFBRqrAYJgaX/tA49IkCiNRqkUOYSSyOBUIyhkkZoqACR4OgLTEbxSCKgqIT+8BR6g9NINTCSmHPoC4YwEK7E2lKKkXQEDQ1sKGv86uuOgEcSz59Yh9Mo4xkWYwwR6orZTDkgEAFKomyK4GpgOAXqSqMkOAaCGIKbDL2aMjXJOJMoyRi9ErY8RrNob39QwsDJpQhtvFJKQFUZK8PAqSXolRpLXs7QI1MkqgcEhtNJaOKUmEZNCyw7lqAnSBEHKQDCqeoKRFLhbD3EaCas60ZjxVDDBN9zQn/UwEh9AHUlcDYJEHBCyDUqmcCyoQTlIEMgTMmP0TREj0xxthFiTAnEQqMkNHqCFNVUohxkKMkMo40e1JVEQ3OUhALBBK4PHEgQ2qSBaiahiaE3SDGaBki0EfCRMPFrlUyaaalQz4zLLeRmupEJ1DJTwDnkCnUlkWqGHpkhtutnxCEYIbIxXIni6AlTlIIsN9BJqczNlcMmQNj2aNL0Ay4mHwSRguvsxbiGSoyQcO5IAMjsPLLWpCCyCTpFcWcFEg+MaNGZcWVq3SzDIYSxsKlMGDEDQEgCc0kUkszxmYuhs8e1rlytGUBGCOVCipHpbZyPo2k5y7/bGrn7051H3hPZLnfuWQDW9QuoxLiYi+dgjmlr8mkOlTHI1FjVGIdVL4BWLBezInf1uveE5+fGGACuwbgGF+6poBl7J4Lme61JIctE0xCrGTgzCUCBTVZxikpbN6cTSkDT2kZgSAXPxaEsZP9mZJJJnMXOeQYIJuauYfcLACGnXAy6mn+CuX2xllg4Astdr4yR7fKi8zqCwgpPZ83rloXORTF0Yj+eqeEF3SzBOce6deuwZs2a8zRYvnBeeumlCckNc41i6rz5WxUCLDSga8gANJt9K2idINN1MPBc5DXEKOryDBgElG6AMY5RMYSAl0GkkFANHBxDvB8R9SFFHRlrIEQZffVlECRRZ1WkrIFARSg3eqGhUWWjxlKY9iGmEhTLUGEmM7hUL6NMJfTzCFWdIkWG5bKMlyqmjdyBsRQMI3j72jN484qzONboxwtJP15uSJQFIEOGQBASDVTqMK25JEMcmZIN2uZfjGW2fVbIkArCiYzjhGJAyFAKA4ykHKcTjliYH+mGMkHSDMDZkKNXcpxIJEq2+bsmhpGMmad/bmJ9ziYCvTJESWooYjibCEhOqGQco3bdmNs6a8QgGKGvHmEsE6jadSJuLAm1jOFsKtArTZHnmjLZhpEIUMk4xjJjiegRhFgEqFuLaizM8Wo2ZqnETXB4ohl6hBFpmlheAqQkAlRti7SQE2Ie5jfEkBNiQahlHCkBESdEwrRQq2uOkBECTvnNs0cGCLk2+7bnF3ITG5Vpht4kRMkKPG5vlJJpc6NmQGKTCUoyA+dk+wcTlGYohxmkzIxVyiYQuGQCJ3SSRDYFFYAoS3NBRYWkAsYIUhrRlmUmSSJTDFJQnixBxJBlPBd3LqnBJUJkmYnfc4KCwSQxmF7G5mbrdI8TpoxR82W3K44PMCLKTJttOac8VtXtg3NACA0wE+unMpEnezjcNlobd2mmOIJMQ0oTz8eFEbRKcWOhBCBTGwOom65VJxI516b2XJ4rZEvH2GPyvCNDK01x5sZv4+WQnyC4fQNdvJ2GdbW7osCMg8EkdQBASgKcdEstPxOHad5Vl+RhRBhZV2vBOluYZnZ8ZuxkryXlYSeBzeZ19f4YI9gCSuCcQ3X2djNlqFMxdF7RTRkv6GaZmSgLMi8bNhMBTOffeGIKoAaIuPGNAVBMQ1NmRZ6x0GmdIFN1Y7XTZlmDj0LwCK5fIwBUxWlIHkLrDIoySB5iRPSa9kG6AaUb4CxAwE2niFTVQFCQvIyQlaCQIlU1AEDAS5A8RoASUl6DohSHaSlOndgADcJJfgwMHGMHNmH3yRUYTjTONEbQGwj0hwJLQtOmqpIBx2um12iP5KhFDL3SxNKcqGucaSiUpUBWYoiF6ef6moAwdIrjtGI4yTh0yNBXjiBCCRUCxI3t82wi0R8IhLZNmjChcKikZAs0G0tfzBl6AomIm+mKrQjSUGZdAChJhjNS5N60shRGjKZAJSPTFxXGXXQ6MUJScqCWmWKxAReoZUa4Ss5QlgwBE0gJCJhAKKxV0rbhCm3wY0JALLjNYjZjAoBAiLwQbcQZgoKgDQVDyMy2pgUYQ1CYlrY7gWvxFUuOgHE0bM6E4GZ9wU2cUllylG1ShykFYW6WATdWj4Y2sVRlEUIyc8MW3Aq6JEMoNQSM9S7VIi/3QcQghUY9ldZqYgRBlEob2k55SY6QmzIegU0QyBSDAkeScYTWGseZjZGybkLzPmpbEsVc01QZkeEEhRuT1ibeC1Qox1FMsHDCp2BJIzAjYqwYcTFjgCn27YSOE0GB1JBcQVjLZpZxNJRoKW0ibQKOK9+SEYPMCJGQCLiNf9OmTR1ZK1XATYFrEEOqBVJl9mdqUhrxzbmxjufCEwyCaQjBc7FqxLM5rnOpOqGb/0TZ61IUFE5YOUyJEp0LZmlrDEqtbVddgmCmA67ksD2DzfHAeZ6D5N5DJ6CLooxgXMuAE3lmZE1PvzkGy8fUvB5ygk989hgXVTCt/Ximhhd0nq5AIDBqWu7M3zb6O/9VVbmQcz8NGg0wXfDvAEiZLFj23M1IwtySTTNuxji4jVg3fRhTwDZDB2CFoAJjgW2Q3hSTDNzG4XAQZSBocBZiSD4NgkaamRjCI+FyBGkPMl1DqmrgSYCgVoLgESSLkFEDSTYCDQ3JQ4ixCJJHINJI9BhSVYfkIYKaEZ6McUgWo6HHoCnFcnkZLtUbcJAU6qyOPvRgSRxDhAK9PRHOhhwjcRVBJNCDMhosQZ1VAXBICDDiIKbRo3sQMomUFBKk0NaqUGdVZCxFudEHSTJviSTs/2OsgpSlkGj65Rhx9FIPOBhqaICY6d+ooZGwOgCgRD159XpGDAEkNAg1bt43SQFcj1JOAiWKoaCRsCQv0moKsiaQJBFSCMUUMmQQEKb/qZ2WkJAkTRFWu5wTR8ZM/86AAtsT1PRKFRAQtjOJgkbMAsRcFrobmHqHpsOCcaULZkSvtF45926UZISSMDds88mbWPy3ppruOW6tg2TFnbbFhyN7c5e8WZhYE0PdWiSLgfeJtTIqu10otHUPInfJma8UQ8AJdeuCK3aAcOfgbsByXPyW214V1nNigrHm+RfjviJBiLmxbBKZciGJbtaIC7kRyUTmHDQ13ZrFbU0ZEuS1/SRrWqNcQgJgLLMBJ0TOmgrk7xsDEAhCwBRkITs408yWD2EtZVHc9eJoWuMyXXDrWgQzArJoPXMURUjuh7ACmjPrks4tdoAA5UWcMxhxqVnzmth8H7MerFubXLmTQtkYF9piRSErfP48Cx8v6DxdY7wbtvi7k0+7tjl50I0uPEUXljm3kNun83FZ0UdkLH75dna5KgpGMm16iKW5ODTHcoIOzfksRSO1LX+oASKNagIIPgqlE5AVgw0mwZkE59JYC3UCQIMV5psm3wm0TsCYhODD+fE4k2YZZciCGirBSSiWItMNRLwXshFBNTIEoyWsoHXYKJchlIQsqGCEZTjS8zJkYEQph4RCghIGUKJe1FkVmmVIqQHOBBKqIqMGYtYPwQIIMj8PDBwBQoziNBQScHsLZxAgKPTC1N5rMCPQFKX5/ogUYj7Qct0lGZdwDcPmHO3PkCvDEKGnZVyu2XhKNTMSFttC1BkEMy2WitOSQmQsyacZzHUmEEJmMqYVMmhSCESIMA5QDsvQPENIMUId5w3sRSYQQCJkHJxxZKQhwFASpjUdR7NmWCwYSpLlxWqNOELzpm0toQ3tbuymbphZZvvFEhDaOmSu0wPBWA+N9ZPlAsoJK86s9YoxhELkLjZT5aWpQCRneYkNh1sqWTOLUo6rZeaSfV2LMxvaBtfeLM+rYCxPGgg5UJLmyiqgpR8uobXLgwvwN0LTWEzdtq4YMPJjGIsUgxFkDW3OIRTIBW3oYs9srBoHECpCJDgkKC907OLcsoJlziQnOFdp05qWjXPUMvueKc5z6yqYRqZdjBxHps17QmBNty7Z2MTCvnhhSoPlcXZ5ngq5ODjXrswJziZkxZwTdZwROJn9dUvOdcrl6uXo1PGCzjNnGN+ihtDmF4GasS3NptYTm9u4Ja3bF9MT7Z2ymIZm18n/bEZut+6GCMRSaNgeWVZYZlmGzIrIYsNtWOueEYhq3Hy3z+Y2GStEpheWpdkwxhpH7RBSMFboYAGOIyLG86IHgsm87Y84LVsshAwcsRhAgBIyNJDoMXAWgKDQUCMg0ohEPwJeRkZ1MAhErBcEhao+i0xXIXnZWLnIuK3LfAkYBOo0DCINySIopGioEbO9MAIx1VVwFiBkJWTUQF2b0iohN/tPdQ2SRQh5LzSlaOgxCBYg4GWkuopU1xDwEgJehqIUiR7L10+psJyVW6Yli5FqI1ZD3gvJIqRUzUVxRiYWc0lpNVaH67AkZlDlFLXSaXCZGpHNnOg01l6pIwQ6BjGCzAIAHAEFiCmGLLSuc3FODLYQtlZI7WdAMlGwbhmxmJGGZBySGfuohkkwUjCN54vbmKxHZ0UiSMYRMpG3rHI4p1vxGCJ/QGn2NNUwXwnX37T4GSZQbqEDTNcCd0wUtuN2OuIcseSQzFkYte1yYNpqhdxkiJp6bjq3Qpn3BYilgGBAqjXSQmQ9ByCFqUaZkVnGmTleKBgCblz6AkaAup6vsTDxqqY0COUljpTNNM2TYDhse7RmRqsTY+48ndgLuGnHJnN3qMjduYqadeyKrdYYAElUTCq2317kdeZSW/jY7cudvbTZt8Yy3GzDpux7nmqTbesQE34VZ5dOuVw9U8cLOs+8o53wK2bRAlYwufg8t7zd42Jh3ngrYbt1WuaNsx6aOED7M2b9WZQvd2LSWgwn7LewTYsFkje3obRZqJo0iGX532AcmhpQNr6wiLMGNuMLT4KzAJpSKJ3kLmZnPazz4dyiCADCJllkug6tM3Au80QVxjiq/AQAGMsk9Lj9ATVxGoxxKJ2AgUPwEJqyfLngYe7i5kyaaeg8VlK4WEidgHOZT7v13VinMi14mMdfummyVtyx5DiOiZ9B2gSbgJexnF+KUklCxgpZPAYKKojiAFFYgmAhoK21FRyMSYS8lFsgubWKmr8ZuBamFyer5xZT7hzbxI3bmCXgkAioKdaJadMwniUQCCEhoK1b23zsTS9RiRCSpBFfhXZZZpmYcAzz4TCfMQmBDKbJr0SQr+vG7o7HrRTR1mXNC7cQCQFum9iHWYhYhblQ1ETGjY4UxAihCvLzyKByNz0xgiSJWAUQYEhJ23HZ4YJBZiJ3aaeUgYMjYgKhEAhttwXJTIkQshbMWJhkHikACZYng5hWYFaQMtiMUdZipczfx4Io48y4v1Pr6jWCmex7Besqt2J+XBu2sODqzq8xmrXtkrxfb6uIVAxQjEGBWrbVZIRcXnA4d7eac5iHEdaei8QLOs+CoK11b9z0eNEHYMK8ScVhm/068VeMA3TCrUUcssJzalHEtZs/XigWEkea7ma3fLzFUUOxDOODoI3Ac7dAQNnM4WIsodlFCsAIsWZMonH7unWJNJg2+zNWQg5lY+WKcYhEbt/2eHlii2jZH2AyL93xGQsK7m27vLA/pnk+7aLU3FiL27dbDpiuAsVppYP8PFM1hgYLczc4ZxK14BSQABhGbrlk4IhEBh6n0HIUURSgXO5BqVRGJktg9vwEZEFcc+MahUKm6wDjEPbn1whuu4wSCEgIa33V7nNJGRQyu09plpCLKzVyS7IQgoVQyFC0jTRjSAU0FJQVQW5bJ0aJbFwhC3Oh6MbujufOR9mHg9xyWTgGAEgeI6RyUygyIzpT1jBimcUQCAFoZCyFtqIOAAQkQiqZxBuWImNpSyN6J2qbIlcaV3kWGvd4ZtzjmrR1IZtEG2cVlLzpBte2pZb5nAOBYLammxVu9pjNkiHNmMNQMITcxjUWYgmdZar4K9McO0NmrX/Mlikx1klj1UupKczM+Jpjk8yUEZKE1l6vQL6t0q7AsVFyxWSJ2aZd+aqL3Y9nanhB51k0THTMTm1eu3Wmsp4Th1KIKWU35y7XNDM/hmhNHHHu5vbjsVVX2xkTgdYoeNRQtPw1V3SWxrRlti6uSwQquKmJsQmuZ7P/4v7c8nH7K7i0m/trtBlbrbCctUy3RKnn22PS5eechmlE38w5ZWikp/JlRRc3t4k4nIe5xZBzieW9G9Bb6oeINMKYmxYQ0ODcWOMUKRsr6USUAmMCrvgwUQaAmQztwntgrKVGThjBSfm2ZCsVG9ewMPY6O57ieuOPYbbN8n06i2xxXTPNJuxH2/YVLBd0CkJIBIFp58UhIXjQYhk2VlhlxG5BuGtSuTh1Fl7Bg9wKrFsqKsPEVebFgrP8OkgEECyEYAE4pE3QUeCQCHUZoY4gKYAk5xQ31zmFEbgCHAGTCBhHwHmefOLeA3MOxkUtGUPAmc0qNxY/3ubrV/yIOyEoraiUhY+esc4Bqe0j62IKi4kUkhvrotu+mLhi+ryaRxgnAp0lUXZJ0enCWKaDl3NTxws6j2eGWLFiBdasWdO2Fdq5ICKcPXsWr7zyCtK0VVxNJi6Ly87lfi7GCk66/YRDqJZ1Wpa3uJMvfH+tYzr//ibsq02M5VSn27vYVS5YJ7jFqVlzX9m4SKZrBYshcGIkw6kxmbuyI9lnrH1cgkFAU4rMupqldfcay1aQLxPWTWwOr3OLYqpqkDyC4BE0pfkxAeSledwyJ3TcMsEkOAugdKNgleO5tS53S9sMbKApltzx8yQTxvNzEC4j3G4neQwZEqI4QBByCMFAaIo1siEJjAkjuqDHCTZjXzKCz7xfmhRaO89wCC4RRgJxHIJxAa4byJgEZ8KKbWE+f2Qy0husAsFCBDyGgAQnAQ6eZ1czYhCQCChCoAMEWuZWTA42UdDBxOtFiqEuTBb0eBHc/MiZbVwCiXSxfDDlclzCiaKmMMtsYXKHsyq6mpKSNy2CCtZ1nCeXNMfAGbom6Dyzjxd0Hk+H4Zxj06ZNGBgYuKjtGWNYunQp+vr68NJLL2FsbOyCtp+KhbEY9H6+7S90+XTXn619Tba/VpFXELMt1j3Ta4sIYGi29Euy4nYCmSq2xTOWR00ZmqVwJi4zpXSKzr52y3SL2ANQsPppuCxroCkK27lOm9vKwjJZODbabMetZQ/jjmHLB1UzMCZRDpdPEJ+ZTkCkIHmUi1YzT9vYxhScBwiF6aOsdGOCi1gwCclLUNRAklUQhBxRLFEqxSjFPSiXSyjFPUZA2jg/Zy1MWJhnTudi1I5NsBCSBZDcWPJa4h/JCkRm4/hIIlQB6log0gKBbXdYFHTjr6DgrCDKjOVMMrPcWOfICDtNtkWYkcICxsXKbfaztNsX25ClbhuNfDt3zGB8MOAs4q1rs4sXdB5PB2GM4fLLL0dvb++09yWlxBVXXIGf/exnFyzqzkenhdFCYtL3ZkIsj7bCuLCKHmuuy5gtbju+uGurUBq/TI2LgWxdVtyu3d/FY4yXFMVjT7btZNtNtp/J1gXS7MyEecWSQW3HNGHZ+DEbnHAFZUBDgleiPBmHMYk4XII4jhCEhFIpRhByxKUYURiBMWbySp2gtsc0Iqwp/txyk7xSEEWMQ/IQHAKSxQgpRqCjlockAdFiKefEEdgkGMG4LVot8lg+kwGsTEwfFBQ0Mpv05ARkXnyINV8EQqY1MhCUtZQqmyTDbbKLHJ81P0s4l/F08b9UU8cLOo+ng2zcuLEjYs7hBOLzzz+PRqNx/g08s8p48Te5O7qdG3myZe1dzu2XT/b3+ZZNdT/nG9vk61Lb9YuZ4a2Z380NjfVzwjYFAUxU2JYIWmXQhQSUaiNBtdG0TkpRhuQxhAgQxQJBCERRiFIpRByHkDKEiSvkUFqAcZFXgmMwyR7uWnMmkFm3rmA1JCyGtC5iF2coIPNEDmIETgISIQSJFgufAM8zfTOWmQLYLqvZWn7N8WWeqSwgILXMC3y7bRVT+bbuPZMIIOnCQj46BXVK0HlFN2W8oJsmPgPH41i1ahWWLl3a8f1yzrF582Y8//zz/vM2x/GWzwKUncO1f+4KZe2Tf5qFwVv3OzEhSFHrw49SY0hs7cfRKqx7uJktHQQl9JT7USqVUCrFiOMQUSzBeTHX1Y3NpEu4rF5uLXrFbHhX2qe5EYdEYCyBNgZQILRWRQWNLM9ANpZHjcx2zskthMzZ6LixItrbd4Y0z1B2iSf5OJiAZOE532vPwsELumly8uRJLFmyBH19fd0eiqeLxHGMdevWzej+L7nkEhw6dGjGjuHxdJqLFbgXGsd5TkspANdv1ZX6IVJ57COBkDQSJEkFZ866WMQAgscIAmkFXoAwEtaiF5tsXzBo4mA6BS9Y9Mzxm9Mujk/Z7FwX68hhkjhAGgoZyGYAmxjIpjArloNptiIUedmbdtu6LG3GODLWnds8wT/gzDZe0E0TIsK+fftwxRVXoKenp9vD8XSJjRs3tmS2zQQrV67EmTNnOh5P5/EsNM4r8ArZzHk5HFdmhwDGMmjdQJoB1ZopWcMLwiiKQ0QRR6lUQrnch3KpjDBqWsLyftOWXPDZWD3nRuVM5AJM2z7RZgyuvAxa4v3cts4NDCAvBZNnEReyn1EQg7MNwcfQzTZe0HUArTX27t2LK6+8EnEcd3s4nllm9erVKJfLs3KsjRs34tlnn/WuV8+8g43LBL3QbfMuKRdBW0vRhHI5xeSMcfGArNHiJM4qHNUKwxlXvsbWwiuXehDHEUqlGFHMTWJGEBT66jpLm3HlFq14yMu6OIpjaIqyidtm59xuph80PXMHL+g6hFIKP/3pT/HqV78aYehjFhYLQRBgzZo1s3a8MAwxODiIo0ePztoxPZ6LhTGGNWvWYMWKFZByercbrTVOnz6NI0eOIMuy828wDaZs4SuUryGdYHSsilFrQHdxepwzxHGMUinIxZ4Rt60dXIp1BdvbpQq1+Aolb1q3a7ctQ5pWMdsQdSihwT+7Thkv6DpIlmX46U9/iiuvvPKCi8l65ifr168/ZxeILMtQqVSmbF1gjCEMw3Na/AYHB3Hq1CkkSTLpOh5Pt4miCJdffjmiKOrI/jjnWLFiBZYsWXJR9Rmnw7ktfIXyNUWjH0sB1KAUkKbDGB3lzcSJQkau2wfGCbN2rQdzxpd9Ode2jEPr+vlPssOQdQRPfz+eqeIFXYdJkgQ/+9nPcOWVV0KI7sQueGaHvr4+LFmypO0yrTUOHz6MEydOXNS+S6USLr300rZxmYwxrF+/Hvv27buofXs8M00URbjyyiunbZVrx0zWZ7xYzl+gGmiN23OlWSYp3QI0Y/rauUxbSrtM/rBYTATxLHzO32DSc8HU63Xs3bt3WjEfnrnP+vXr285P0xQvvPDCRYs5AKjVanjxxRdx6tSptssHBgZ8ZrVnTuIE10yIOYerzziXY5ap3T8qZKJSVnjpia+227TbfrLlzVdXzp868/JMHS/oZohKpYJ9+/b54PUFysqVK9veTFwsZb3eGRfHgQMHcPr06bbLJhOUHk832bRp06zEEbv6jOcKefB0D5dmMt2Xv4NOHf9NmEFGR0fx8ssvd3sYng4jhMDatWvbLtu3b1/HOzocOHAAlUplwvw4jrFq1aqOHsvjmQ6rV6+eVctxFEX+wWaOYqyLHXh5STdlvKCbYc6ePYsDBw50exieDrJu3bq28ZFHjhyZkZgeIsJLL70EpSbGwqxZs2ZGXVsez1SJ43jSB52ZZPny5T78wOOBF3SzwqlTp/DKK690exieDlAul7FixYoJ8yuVCoaGhmbsuGma4uDBgxPmCyFmtEOFxzNVNmzY0LWaZ908tqc9mjrzulAD3ac+9am85qF7vfrVr86X1+t17NixA8uXL0dvby/e8Y534NixYy37OHjwIG6++WaUy2WsWrUKH//4x2e8VE4n8I/2s8Tx48chpcTg4GC3h+KZBpdeeumEeUSE/fv3z/ixz5w5g6VLl07IrF2+fDlOnjzZ1i3r8cwGy5cv72qnnDAMsXTp0knjTecqS5YswYoVKzpW2sUxOjra9gFwNjExdN0pW/La174Wjz32WD5d9GJ89KMfxcMPP4y/+Iu/wMDAAO644w7863/9r/GP//iPAEwc9M0334zBwUHs3r0bR48exfve9z4EQYB77713uqczo3hBN4scOXIE9Xq94+VMOhWA7zk3K1eubFsf7ujRox2Pm5uMQ4cOob+/f0Ig+IYNG/Dcc8/Nyhg8niJTsRKnaYokSaaVJBaG4TmTLeaThY5zjo0bN05a9mi6LPZ7wmTGk+HhYXz961/Ht771LbztbW8DAOzatQuvec1r8MMf/hBvfvOb8d3vfhfPPfccHnvsMaxevRpbtmzBZz7zGdx555341Kc+NacbB3hBN8vMtydIjyEMw7Y3rUajMcFcP5OkaYojR47gkksuaZnv4peOHDkya2PxeABg7dq1k8ZxJkmCQ4cOYXh4uCPH6unpwaWXXopSqTRh2XypKMA5x6te9apZaxfYLTpVdoRgCrSPjIy0zI+iaFLL5s9+9jOsXbsWcRxj27ZtuO+++3DppZfiySefRJqmuPHGG/N1X/3qV+PSSy/Fnj178OY3vxl79uzB61//eqxevTpfZ/v27fjIRz6CZ599Fm984xunf1IzhI+h83imwKZNm9qWRzh06NCs30iOHz/e9gl8cHCwq24vz+IjjmOsXLmy7bLR0VE899xzHRNzgIlVff7559vWZ5wvgu7yyy9f8GIOaHaKmO4LIOzevRsDAwMtr/vuu6/tcbdu3YpvfvOb+M53voOvfvWrePnll/GLv/iLGB0dxdDQEMIwnGAZXb16dR4DPTQ01CLm3HK3bC7jLXQez3lYt25dW6E0PDw84alxtjh06BCuuOKKCfMvu+wyPP/88/MigNcz/5msZMjY2Bj27t07YyLrwIEDYIxh2bJlM7L/mWL9+vXo7e3t9jDmHddddx0efvjhlnmTWed+5Vd+Jf/7DW94A7Zu3YoNGzbg29/+dlvL7kLCW+g8nnOwfPnyCU9rgLEGdDNzeXR0tK3lIwgCbN68eV7FE3nmJ0uWLGlbLiRJklkpqr5///6WRKC5bqHr7++f1Jq5EOlUpwgiExPX39/f8ppqIsmSJUvwqle9Cnv37sXg4CCSJMHZs2db1jl27Fgeczc4ODghjMZNz/WkRi/oPJ5JWL58OTZs2NB22fHjx2ctEWIyJnP39vT04PLLL+/CiDyLBcbYhDhOwIiqffv2ta2ZOBPs27cvt0bPZUEnhJj0t2Sh0imX63Sv6tjYGPbt24c1a9bg6quvRhAEePzxx/PlL774Ig4ePIht27YBALZt24ann34ax48fz9d59NFH0d/fj6uuumqao5lZvKDzeMbhfnwn+wFO0xRHjx6d5VFNJEmSSRMy+vr6vJXOM2MMDg62zfY7cuQIarXarI0jy7Kul+eYCuvXr0cQBN0exqyiQdA0/deFCrrf/u3fxg9+8APs378fu3fvxr/6V/8KQgi8613vwsDAAD74wQ9i586d+N73vocnn3wS73//+7Ft2za8+c1vBgDcdNNNuOqqq/De974XP/7xj/G//tf/wt13340dO3Z0vLxMp5kXMXT79+/HZz7zGTzxxBMYGhrC2rVr8Z73vAe/8zu/M6dTiMcTBMEFfamVUl23Ai0WOOdYt24d4jhGb2/vOcXQ4cOHoXV3Gl6P5+jRo1i+fHnbz9Vctlh45i9RFLV1PVWr1VnN+HacPXsWZ86cmbOf997e3nkX6zefeeWVV/Cud70Lp06dwsqVK/GWt7wFP/zhD3N395e+9CVwzvGOd7wDjUYD27dvxx/8wR/k2wsh8NBDD+EjH/kItm3bhp6eHtx666349Kc/3a1TmjLzQtC98MIL0FrjD//wD3H55ZfjmWeewe23345KpYIvfOEL3R7eeenr68O6desuKrOp0Wjg6NGjvtzJDHPZZZehv7//vOuNjY3NqWtBRDh06BAuu+yybg/Fs0i49NJL2z7wdLPF4aFDh+bsw/1Ues1qrTsqSOfKA2dn+rBe2D7+/M///JzL4zjGV77yFXzlK1+ZdJ0NGzbgkUceuaDjzgXmhaB7+9vfjre//e359GWXXYYXX3wRX/3qV+e8oFu9evW0WjNFUYSNGzeir6/P94SdIXp7e6ck5ohoTrp3zp49i5GRkSmdg8czHVasWNE2EeL48eOz6modT5ZlczKze+XKlZNmVhIRjh07huPHj8/JsU8XbV/TZW7aXecm8zaGbnh4eM6bsQcHBzvWZ3P58uXYtGlTR/blaaVdb9Z2DA0NzdkK7AcPHpwzT+WehUkURW0TIbIs8wWt2yCEwNq1a9suS5IEzz//PI4cObIgxZynO8wLC9149u7diy9/+cvntc41Go2WGLTZrBm2bNmySb/MF8vSpUuRJAkOHz7c0f0uZhhjWLp06XnXq9VqcyIRYjKSJMErr7zSttesxzNdGGO47LLL2hbXnksxpXOJdevWtW3zmCQJXnzxRaRp2oVRzR6UFwae7n48U6WrFrpPfvKTYIyd8/XCCy+0bHP48GG8/e1vx6//+q/j9ttvP+f+77vvvpbK0lOJZegEURTN2I119erV3rXWQaaSDaq1xssvvzxLI7p4Tp48mdemm6sB4p75ycaNG9u6DqvVatuuDYudUqnU1vKvtcbevXsXvJgDzG9QJ15e0k2drlroPvaxj+G222475zrFYO8jR47ghhtuwHXXXYc/+qM/Ou/+77rrLuzcuTOfHhkZmRVRN9mTbKfYuHEjnnvuOW+q7wBTaY598ODBOetqHc/+/fvx6le/es4GiHvmHxs3bpzUin3o0KFZHs38YLL7zIEDB+bNb4ln/tFVQbdy5copV84+fPgwbrjhBlx99dXYtWvXlATTuZr3zhSDg4Mz3l5ESon169fPC6vRXOd8vU+PHDkyp7Jaz4dSCj/72c/wqle9qttD8cxzXELWZN+R06dPt3Rq8BiWLVvWtr3X6dOncebMmS6MqDsQ4F2us8y8iKE7fPgwrr/+emzYsAFf+MIXcOLEiXzZXGrFEUUR1qxZMyvHWrp0KU6dOtW1XqILASHEOcX3K6+80lItfL6QJAl++tOfdnsYnnmIa6sUx/E5Qzu01l1tfTdX4Zy3TRxJ03ROZsjPJNrH0M0680LQPfroo9i7dy/27t074csyl2KFJqvPNJPHe/bZZ+fUezCfaFd+AQAqlQpeeeWVeW19SJKk20PwzDPWrFkz5QdSn53ZnnXr1kHKibfVQ4cO+cQRz4wzLwTdbbfddt5Yu26zdOnSSQUCYITnyMjIBQXDCiHQ39/fNlMKAMIwxJo1a3zJgIuk6EpKkgT79+9HvV73NyrPomNgYGDKYq5Wq81Ly/VM09vb2zaEaGRkZEIz+MWByXPtxH48U2NeCLq5zmSNqh0nT57E4cOHL6phNWMMq1evxpo1a9pa/1avXo2TJ096i8xFUBR0Bw4cwNjYWBdH4/F0jwtJFvMFzifCOcfGjRsnzJ+rxchng865XL2gmyrztrDwXGJwcHDSHq0HDhzAwYMHL0rMAeYHYWhoCD/72c/amuzPJyY9k+NasVWrVYyOjnZ5NB5Pd1i2bNmUs6KPHTuGarU6wyOaf2zYsKHte3js2LFF+7Dt6tBN9+Xl3NTxgm6ahGE4aWLGgQMHOlajaWxsDHv37m0bL7dkyZJzuns9EwnDMM+UPnnyZJdH4/F0j1WrVk1pvWq16ouat2FwcLBtWZc0TTE0NNSFEXkWK17QTZN169a1dYUeP3684wU3x8bGJjXfz1bR5IVCMbt1cca3eDzme+As1edCKYWXXnppFkY0v1i5cuWkHYEWewcNY6Gb/j8fQzd1vKCbBr29vW2fzKrV6oyl9J86daqtUIzjeMo1/TxNQVetVn0ShGfRMpV+2ESEvXv3LlrXYTsYY1i/fv2kD9KVSmVe1a+cCYjpzry8oJsyPiliGrRr7zUbbaIOHTqEvr6+CTEba9euxZkzZ7xAmQLOKuFj5zyLmfMJuizL8NJLL83rEj6dIooi9PT0II5jLF++fNK4aQCLNhHC0128oLtIVq9ejTiOJ8w/cuQIGo3GjB5ba40DBw7giiuuaJkvhMAll1yC/fv3z+jxFwLOQucFnWex0tPTc05RMjw8jEOHDnnLHMzDe7verO04efIkarXaDI9o7qPhO0XMNl7QXQSu/tt4ZrM+0+joKE6fPj3hCXvZsmU4deqUFyrngDGWt4TzpUo8i5WBgYGWaSLCsWPHMDIygkajsSgayE+FjRs3Tsk1DRiLpk8cMVAeAzf9PXmmho+huwg2bNjQtpfsbNdneuWVV9qWQ5lsfB6Ds6zWarVFHbTsWdyMb+114MABHDlyBGNjY17MWVasWDFlMQdM/pvs8cwG/q5/gaxataptiZBTp07Nen2mLMtw9OjRCfMnsyB6DE7Q+XpansUK57wlu/XMmTOLPoh/PEEQXFCNz+HhYf8eFiBfiW7W8S7XC6Cnpwfr1q2bMF8p1TUz+/Hjx7FixYoJ8Xznio1Z7HhB51nsFK1zROTdhG1YvXr1lD0dWZb5DhrjIGhoNn0PiBd0U8db6KZIFEXYvHlz25pzQ0NDXc0sPXTo0IR57QoQewwufs4LOs9ipehlOHPmjE98GIeU8oLKQL388su+usA4OleHzjNVvKCbAnEc41WvehWknGjQbDQaOHbsWBdG1WR0dBTDw8Mt87ygmxxvofMsdooWuhMnTnRxJHOTlStXtn14b8fBgwd9EppnTuBdrueAMYYVK1Zg3bp1k5re21nHusGhQ4fQ398/5R+hxUwcx2g0Gl70ehYlQojcSl2v132NuTZM1Tr3yiuv+NaBk6CthW66eJfr1FmUgm7Tpk3gXJxzHRc0LMTk6w0PD2NkZKTTw7sokiTBsWPH8r6yXqy0R0oJzrmvE+VZtPT29uZ/+yD+iQwMDLT1xhRJkgQHDhzwlrlz4JIapr8ffy+bKotS0PX3D5xTqE0FrfWcsc45jh49imXLliEMQy/oJqFYssTjWYz09PTkf/s+xhNZvnx52/lnzpxBpVJBvV6fMw/yHk+RRSnoOsHQ0NCcCyQmIhw6dAibN2/u9lDmLEVXk8ezGHEJEY1Gw38PxsE5n1BwWSmFvXv3etf0BWIcrp2oyeeNE1PFC7qLoFarYWhoqNvDaMvw8DDOnDnjLXST4AWdZ7Hj6s95K9NElixZMiEOed++fV7MXQSuDl0n9uOZGj7L9QIhojlfb+jgwYO+0vskeEHnWcyUSqVcsHhBN5HxXSGOHTvm2wN65g3eQneBHDlyZM6Xu1BKzVpP2flGHMdIksRbMD2LEpcQQUQ+oH8cnPOW+nyTdeLxTA1iHSoszPxv9VTxgu4CGB4e7nrNOc/0CMPQu088ixbnbq1Wq76P8TjGl306evSof4+mge5QDJ13uU4dL+imSKVSwUsvvdTtYXimAeccQgjvbvUsWlyWt3e3TmS8dc7Xl5sunYmh80kRU8cLuikwMjKCl156ybvp5jkufq7RaHR5JB5Pd3AWOh8XNpGioDtx4oT/vffMO7ygOwdJkmBoaMg/qS0QvKDzLGbiOM5dij7soJUgCHLrJQD/m98BNGlo6oDL1QvrKbMoBd2zzz573hZZWmso1YkaOp65QhiGAHyGq2dx4qxztVrNx4aNo9jbdmRkxFcJ6Aid6RThXa5TZ1GWLcmyFGl67pcXcwuPKIpARHOuILTHMxs4QeetcxMpCrpTp051cSSe6XLffffh53/+59HX14dVq1bhlltuwYsvvtiyzvXXXw/GWMvrwx/+cMs6Bw8exM0334xyuYxVq1bh4x//OLIsm81TuWAWpYXOsziJosiLOc+ipVQqAfDxc+1w8XNEhOHh4S6PZmFgernOfpbrD37wA+zYsQM///M/jyzL8O///b/HTTfdhOeee66l7d3tt9+OT3/60/m0e+ABTOmvm2++GYODg9i9ezeOHj2K973vfQiCAPfee++0z2mm8ILOs2gIw9DHz3kWLU7QeQtdK6VSCVKaW+Hw8LB3R3cIss2/OrGnC+E73/lOy/Q3v/lNrFq1Ck8++STe+ta35vPL5TIGBwfb7uO73/0unnvuOTz22GNYvXo1tmzZgs985jO488478alPfSoP35lrLEqXq2dx4gWdZ7EihICUElpr/x0Yhyu2DABnz57t3kA8M4KzuI7vAvJnf/ZnWLFiBV73utfhrrvuamkYsGfPHrz+9a/H6tWr83nbt2/HyMgInn322dkZ+EXgLXSeRYGUEpxzfzPzLEqcdW6ud7npBkVB592tnYM6lBRBIGRZNqF2YhRFeeWCydBa49/9u3+HX/iFX8DrXve6fP673/1ubNiwAWvXrsVPfvIT3HnnnXjxxRfxV3/1VwCAoaGhFjEHIJ+eq33cAS/oPIsEZyL3gs6zGPGCbnJcXFW1WvXJcB2EoEEdKFsCEHbv3o2BgYGWuffccw8+9alPnXPLHTt24JlnnsE//MM/tMz/0Ic+lP/9+te/HmvWrMEv/dIvYd++fdi8eXMHxtwdvKDzLAqcoPNJEZ7FSLHll6eJlDL/bfDdMzpLp2LoCITrrrsODz/8cMv881nn7rjjDjz00EP43//7f+OSSy4557pbt24FAOzduxebN2/G4OAgfvSjH7Ws49p+ThZ3NxfwMXSeRYG30HkWM95C156iu9ULurmLlBL9/f0tr8kEHRHhjjvuwF//9V/jiSeewKZNm867/6eeegoAsGbNGgDAtm3b8PTTT+P48eP5Oo8++ij6+/tx1VVXTf+EZghvofMsCqIoglLKZ7B5FiVxHIOIfFHtcTh3q9bal3PpMJ0qW3KhWa47duzAt771LfyP//E/0NfXl8e8DQwMoFQqYd++ffjWt76FX/3VX8Xy5cvxk5/8BB/96Efx1re+FW94wxsAADfddBOuuuoqvPe978XnP/95DA0N4e6778aOHTvOaxnsJl7QeRYFPsPVs1gJggCcc2+da4Oz0I2OjnZ5JAsPIg2izrhcL4SvfvWrAEzx4CK7du3CbbfdhjAM8dhjj+H+++9HpVLB+vXr8Y53vAN33313vq4QAg899BA+8pGPYNu2bejp6cGtt97aUrduLuIFnWdR4AWdZ7Hi3K21Wq3LI5lbcM5zC50XdAuH8/V+Xb9+PX7wgx+cdz8bNmzAI4880qlhzQpe0HkWBWEY+hgZz6LEuYi8oGul2BnA/zZ0nk4mRXimhhd0ngUP5xxCCJ/h6lmUxHEMwAu68ThBl2WZjy2cAYzLtQMxdOexuHmazLss10ajgS1btoAxlmemeDznwpcs8SxmvKBrj4uf863QPAuFeSfoPvGJT2Dt2rXdHoZnHuFLlngWM3EcQymFLMu6PZQ5hRO6Prt1ptB5t4jpvC40y3UxM68E3d/93d/hu9/9Lr7whS90eyieeYS30HkWK5xzBEHgrXPjYIzlgs5b6GYGAuWZrtN6dftE5hHzJobu2LFjuP322/E3f/M3LcGsHs/5CMPQ16DzLEp8QkR7XOYvEXlBN0N0rg6d/92eKvNC0BERbrvtNnz4wx/GNddcg/37909pu0aj0eJm85lMi5MwDL11zrMo8fFz7XFGgVqtdt4yFx7PfKGrLtdPfvKTYIyd8/XCCy/gy1/+MkZHR3HXXXdd0P7vu+8+DAwM5K/169fP0Jl45jJe0HkWK07Q+SzOVpyg8/FzMwdRh1yuXm9Pma5a6D72sY/htttuO+c6l112GZ544gns2bNnQsuNa665Bv/23/5b/PEf/3Hbbe+66y7s3Lkznx4ZGfGibhEShiGGh4e7PQyPZ9bxgq49TtB5d+sM0qFOET4pYup0VdCtXLkSK1euPO96/+W//Bf8f//f/5dPHzlyBNu3b8eDDz6IrVu3TrpdFEVzuu+aZ3bwXSI8ixXXw9hnuLbiYui8hc6zkJgXMXSXXnppy7SrH7R582Zccskl3RiSZ54QBAEAn+HqWZxEUeStc+MolUpgjCHLMqRp2u3hLFi07xQx68wLQefxXCy+ZIlnsSKlhBDCC7pxOHdrtVrt8kgWOt7lOtvMS0G3ceNGn5nkmRJe0HkWKy7cxAu6Vpy71Qs6z0JjXgo6j2eqhGEIIvIxRJ5Fhxd07fGCbnboVC9Xb7yZOl7QeRY0vmSJZ7HihIsXdK14QTc7EMi27pr+njxTwws6z4LGCzrPYsVZ6HyGdxMhBKSUUEr534WZxpctmXXmVS9Xj+dCCcPQZ7J5FiVRFHkxNw5vnfMsZLyFzrOgCYLAFxX2LEqiKPJ11sbhBd3s4TpFdGI/nqnhBZ1nwcIYg5TSu1Y8iw4pJTjnPn5uHF7QzR6di6HzTBXvcvUsWHzJEs9ixcfPtce1QvOCzrMQ8RY6z4LFCzrPYsV99r2ga6VUKkFr7d+XWYA6VFjYd4qYOl7QeRYsXtB5Fiu+Bt1EgiCAEMJb52aLDsXQ+SzXqeNdrp4FSxiGUEpBax/H4VlcRFEEIvIPMwVcy69ardblkXg8M4O30HkWLL4GnWexEkWR/+yPw8XPeUE3W2j7mi7eQjdVvKDzLFi8oPMsVqIo8q7FcXhBN7t0qmwJfNmSKeMFnWfBEoYhRkZGuj0Mj2dWYYwhCAIf+D8OV7LEC7rZoVNlS7ycmzo+hs6zYPEWOs9ixGe4tieOYyilkGVZt4fi8cwI3kLnWZBIKcEY84LOs+hwGa7+s9/EFVr2nTNmE9/Ldbbxgs6zIPElSzyLFV9UeCI+fq4baACqA/vxgm6qeJerZ0HiBF2apl0eicczu3iX60S8oPMsBryFzrMg8RY6z2IliiKkaeqbmhfwgm72MZ+/DiRF+M/xlPGCzrMgCcPQW+c8i5IwDL11bhxO0PnOGbOJr0M323iXq2dB4jNcPYuVKIq8oBtHHMdI0xRKdSKmy+OZm3gLnWdBEkWRfxr3LDo45xBCeEFXgDGGMAwxOjra7aEsLjrkcvUWuqnjBZ1nQeKLCnsWIz7DdSLe3dodCAQvxmYX73L1LDiclcK7XD2LDV+DbiJe0HULZ6Gb7uviROFXvvIVbNy4EXEcY+vWrfjRj340rbOZD3hB51lw+AxXz2LFlyyZiBd0i48HH3wQO3fuxD333IP/+3//L37u534O27dvx/Hjx7s9tBnFCzrPgsNbKTyLlSiKoLX27a0KeEHXLcjE0U33dRF88YtfxO233473v//9uOqqq/DAAw+gXC7jG9/4RofPcW7hBZ1nweEtdJ7Fis/unogTub6M0WxDHfl3oS7XJEnw5JNP4sYbb8zncc5x4403Ys+ePR0+x7nFokqKaBYo9IGaCxkpJZIkgVLeSuFZXEgpUatV4X/jmkgpUalUsLjfE3Pus1Wkt1QqoXN16IAgCCYkuUVRlHtjipw8eRJKKaxevbpl/urVq/HCCy90ZDxzlUUl6Jpp6535kHnmJkePHsLRo4e6PQyPZ9Z58cVnuz2EOcczzzzV7SHMGUZHRzEwMDDjx/n2t7+N5557rmP7+/u///sJ477nnnvwqU99qmPHWAgsKkG3du1aHDp0CH19fWCMdXs452RkZATr16/HoUOH0N/f3+3hdJSFfG6AP7/5zkI+v4V8boA/v8kgIoyOjmLt2rUzOLom69evx/r16zu2v+uvvx6f+MQnWua1s84BwIoVKyCEwLFjx1rmHzt2DIODgx0b01xkUQk6zjkuueSSbg/jgujv71+QP0zAwj43wJ/ffGchn99CPjfAn187ZsMyN1NM5l5tRxiGuPrqq/H444/jlltuAQBorfH444/jjjvumMFRdp9FJeg8Ho/H4/EsbHbu3Ilbb70V11xzDa699lrcf//9qFQqeP/739/toc0oXtB5PB6Px+NZMLzzne/EiRMn8Hu/93sYGhrCli1b8J3vfGdCosRCwwu6OUoURbjnnnumbGaeTyzkcwP8+c13FvL5LeRzA/z5eZrccccdC97FOh5Gs5XH7PF4PB6Px+OZEXxhYY/H4/F4PJ55jhd0Ho/H4/F4PPMcL+g8Ho/H4/F45jle0HWZz372s7juuutQLpexZMmSCcu/+c1vgjHW9nX8+HEAwPe///22y4eGhmb5bCZyvvMD0Hbsf/7nf96yzve//3286U1vQhRFuPzyy/HNb35z5gc/Bc53fj/+8Y/xrne9C+vXr0epVMJrXvMa/P7v/37LOnP1+k3l2h08eBA333wzyuUyVq1ahY9//OMTGsPP1WtXZLJrwBjDP//zPwMA9u/f33b5D3/4wy6Pfmps3Lhxwtg/97nPtazzk5/8BL/4i7+IOI6xfv16fP7zn+/SaC+M/fv344Mf/CA2bdqEUqmEzZs345577mnpazvfr99XvvIVbNy4EXEcY+vWrfjRj37U7SF55hg+y7XLJEmCX//1X8e2bdvw9a9/fcLyd77znXj729/eMu+2225DvV7HqlWrWua/+OKLLcUmxy/vBuc7P8euXbtazrMoIF5++WXcfPPN+PCHP4w/+7M/w+OPP47f+I3fwJo1a7B9+/aZHP55Od/5Pfnkk1i1ahX+23/7b1i/fj12796ND33oQxBCTMjAmmvX73znppTCzTffjMHBQezevRtHjx7F+973PgRBgHvvvRfA3L52Ra677jocPXq0Zd7v/u7v4vHHH8c111zTMv+xxx7Da1/72nx6+fLlszLGTvDpT38at99+ez7d19eX/z0yMoKbbroJN954Ix544AE8/fTT+MAHPoAlS5bgQx/6UDeGO2VeeOEFaK3xh3/4h7j88svxzDPP4Pbbb0elUsEXvvCFlnXn4/V78MEHsXPnTjzwwAPYunUr7r//fmzfvh0vvvhi138nPHMI8swJdu3aRQMDA+dd7/jx4xQEAf3Jn/xJPu973/seAaAzZ87M3ACnybnODwD99V//9aTbfuITn6DXvva1LfPe+c530vbt2zs4wukx1etHRPSbv/mbdMMNN+TTc/36TXZujzzyCHHOaWhoKJ/31a9+lfr7+6nRaBDR/Lh27UiShFauXEmf/vSn83kvv/wyAaD/9//+X/cGNg02bNhAX/rSlyZd/gd/8Ae0dOnS/NoREd1555105ZVXzsLoOs/nP/952rRpUz49n6/ftddeSzt27MinlVK0du1auu+++7o4Ks9cw7tc5xl/8id/gnK5jH/zb/7NhGVbtmzBmjVr8Mu//Mv4x3/8xy6M7uLZsWMHVqxYgWuvvRbf+MY3QIVqOnv27MGNN97Ysv727duxZ8+e2R5mRxgeHsayZcsmzJ9v12/Pnj14/etf31Ksc/v27RgZGcGzzz6brzMfr93f/u3f4tSpU20ry//ar/0aVq1ahbe85S3427/92y6M7uL53Oc+h+XLl+ONb3wj/tN/+k8t7vE9e/bgrW99K8IwzOc5K9CZM2e6MdxpMdn3bL5dvyRJ8OSTT7Z8jzjnuPHGG+f898gzu3iX6zzj61//Ot797nejVCrl89asWYMHHngA11xzDRqNBr72ta/h+uuvxz/90z/hTW96UxdHOzU+/elP421vexvK5TK++93v4jd/8zcxNjaG3/qt3wIADA0NTajwvXr1aoyMjKBWq7W8F3Od3bt348EHH8TDDz+cz5uv12+y6+KWnWuduX7tvv71r2P79u0tvZ97e3vxn//zf8Yv/MIvgHOO//7f/ztuueUW/M3f/A1+7dd+rYujnRq/9Vu/hTe96U1YtmwZdu/ejbvuugtHjx7FF7/4RQDmWm3atKllm+L1XLp06ayP+WLZu3cvvvzlL7e4W+fr9Tt58iSUUm2/Ry+88EKXRuWZk3TbRLgQufPOOwnAOV/PP/98yzZTcdnt3r2bAND/+T//57xjeOtb30rvec97pnMakzJT5+f43d/9Xbrkkkvy6SuuuILuvffelnUefvhhAkDVanXa5zOemTq/p59+mlasWEGf+cxnzjuGmbp+nTy322+/nW666aaWeZVKhQDQI488QkSzf+3GczHne+jQIeKc01/+5V+ed//vfe976S1vectMDf+8XMz5Ob7+9a+TlJLq9ToREf3yL/8yfehDH2pZ59lnnyUA9Nxzz834ubTjYs7vlVdeoc2bN9MHP/jB8+6/29dvKhw+fJgA0O7du1vmf/zjH6drr722S6PyzEW8hW4G+NjHPobbbrvtnOtcdtllF7zfr33ta9iyZQuuvvrq86577bXX4h/+4R8u+BhTYabOz7F161Z85jOfQaPRQBRFGBwcxLFjx1rWOXbsGPr7+2fEwjMT5/fcc8/hl37pl/ChD30Id99993nXn6nr18lzGxwcnJBp567T4OBg/v9sXrvxXMz57tq1C8uXL5+S1Wbr1q149NFHpzPEaTGd67l161ZkWYb9+/fjyiuvnPRaAc3rOdtc6PkdOXIEN9xwA6677jr80R/90Xn33+3rNxVWrFgBIUTba9Ot6+KZm3hBNwOsXLkSK1eu7Og+x8bG8O1vfxv33XfflNZ/6qmnsGbNmo6OwTET51fkqaeewtKlS/N+hdu2bcMjjzzSss6jjz6Kbdu2zcjxO31+zz77LN72trfh1ltvxWc/+9kpbTNT16+T57Zt2zZ89rOfxfHjx/NMu0cffRT9/f246qqr8nVm89qN50LPl4iwa9euPFv3fMzk92wqTOd6PvXUU+Cc59du27Zt+J3f+R2kaZqf+6OPPoorr7yya+7WCzm/w4cP44YbbsDVV1+NXbt2gfPzh4h3+/pNhTAMcfXVV+Pxxx/HLbfcAgDQWuPxxx9fdL1KPefGC7ouc/DgQZw+fRoHDx6EUgpPPfUUAODyyy9Hb29vvt6DDz6ILMvwnve8Z8I+7r//fmzatAmvfe1rUa/X8bWvfQ1PPPEEvvvd787WaUzK+c7vf/7P/4ljx47hzW9+M+I4xqOPPop7770Xv/3bv53v48Mf/jD+63/9r/jEJz6BD3zgA3jiiSfw7W9/uyUOrVuc7/yeeeYZvO1tb8P27duxc+fOPLZMCJHfqObq9Tvfud1000246qqr8N73vhef//znMTQ0hLvvvhs7duzIxfhcvnbteOKJJ/Dyyy/jN37jNyYs++M//mOEYYg3vvGNAIC/+qu/wje+8Q187Wtfm+1hXjB79uzBP/3TP+GGG25AX18f9uzZg49+9KN4z3vek4u1d7/73fgP/+E/4IMf/CDuvPNOPPPMM/j93/99fOlLX+ry6M/P4cOHcf3112PDhg34whe+gBMnTuTLnBVrPl+/nTt34tZbb8U111yDa6+9Fvfffz8qlUrbpB3PIqbbPt/Fzq233to2LuR73/tey3rbtm2jd7/73W338R//43+kzZs3UxzHtGzZMrr++uvpiSeemIXRn5/znd/f/d3f0ZYtW6i3t5d6enro537u5+iBBx4gpVTLfr73ve/Rli1bKAxDuuyyy2jXrl2zfzJtON/53XPPPW2Xb9iwId/HXL1+U/ls7t+/n37lV36FSqUSrVixgj72sY9RmqYt+5mr164d73rXu+i6665ru+yb3/wmveY1r6FyuUz9/f107bXX0l/8xV/M8ggvjieffJK2bt1KAwMDFMcxveY1r6F77703j59z/PjHP6a3vOUtFEURrVu3jj73uc91acQXxq5duyaNsXPM5+tHRPTlL3+ZLr30UgrDkK699lr64Q9/2O0heeYYjKhQH8Lj8Xg8Ho/HM+/wdeg8Ho/H4/F45jle0Hk8Ho/H4/HMc7yg83g8Ho/H45nneEHn8Xg8Ho/HM8/xgs7j8Xg8Ho9nnuMFncfj8Xg8Hs88xws6j8fj8Xg8nnmOF3Qej8fj8Xg88xwv6Dwej8fj8XjmOV7QeTwej8fj8cxzvKDzeDwej8fjmed4QefxeGaMEydOYHBwEPfee28+b/fu3QjDEI8//ngXR+bxeDwLC0ZE1O1BeDyehcsjjzyCW265Bbt378aVV16JLVu24F/+y3+JL37xi90emsfj8SwYvKDzeDwzzo4dO/DYY4/hmmuuwdNPP41//ud/RhRF3R6Wx+PxLBi8oPN4PDNOrVbD6173Ohw6dAhPPvkkXv/613d7SB6Px7Og8DF0Ho9nxtm3bx+OHDkCrTX279/f7eF4PB7PgsNb6Dwez4ySJAmuvfZabNmyBVdeeSXuv/9+PP3001i1alW3h+bxeDwLBi/oPB7PjPLxj38cf/mXf4kf//jH6O3txb/4F/8CAwMDeOihh7o9NI/H41kweJerx+OZMb7//e/j/vvvx5/+6Z+iv78fnHP86Z/+Kf7+7/8eX/3qV7s9PI/H41kweAudx+PxeDwezzzHW+g8Ho/H4/F45jle0Hk8Ho/H4/HMc7yg83g8Ho/H45nneEHn8Xg8Ho/HM8/xgs7j8Xg8Ho9nnuMFncfj8Xg8Hs88xws6j8fj8Xg8nnmOF3Qej8fj8Xg88xwv6Dwej8fj8XjmOV7QeTwej8fj8cxzvKDzeDwej8fjmed4QefxeDwej8czz/n/AXZSAsSnZHMmAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ax = sim_data.plot_field(\n", " field_monitor_name=\"field\", field_name=\"E\", val=\"abs^2\", f=freq0, vmin=0, vmax=2000\n", ")\n", "ax.set_aspect(\"auto\")\n" ] }, { "cell_type": "markdown", "id": "95041b87", "metadata": {}, "source": [ "Nearly 100% coupling efficiency is achieved. " ] }, { "cell_type": "code", "execution_count": 43, "id": "33aa1acf", "metadata": { "execution": { "iopub.execute_input": "2023-03-28T00:17:39.938413Z", "iopub.status.busy": "2023-03-28T00:17:39.938225Z", "iopub.status.idle": "2023-03-28T00:17:40.058924Z", "shell.execute_reply": "2023-03-28T00:17:40.058304Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAG6CAYAAADtZYmTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTA0lEQVR4nO3dd1wUZ/4H8M8svfcmgqBYULEixhLBHIrR2HK/xKiJRNNMYixcjBpjTSJn7iwpJkSNyXlnwcRoiolGsfeC2KKoEcVCEREQpO7O749ZFpaijG5h4fN+vea17DOzM9/dUfbDM8/MCKIoiiAiIiIiKIxdABEREVF9wWBEREREpMZgRERERKTGYERERESkxmBEREREpMZgRERERKTGYERERESkxmBEREREpMZgRERERKTGYERERESkZtRgtHfvXgwePBhNmjSBIAjYvHnzQ1+ze/dudOnSBVZWVggKCsJ3332n9zqJiIiocTBqMCooKEDHjh2xbNmyOi2fkpKCQYMGoW/fvkhKSsLkyZPx6quvYtu2bXqulIiIiBoDob7cRFYQBGzatAnDhg2rdZlp06Zhy5YtOHv2rKbthRdeQE5ODrZu3WqAKomIiKghMzd2AXIcOnQIkZGRWm1RUVGYPHlyra8pLi5GcXGx5rlKpUJ2djbc3NwgCIK+SiUiIiIdEkUR9+7dQ5MmTaBQ6O+Al0kFo/T0dHh5eWm1eXl5IS8vD4WFhbCxsan2mtjYWMybN89QJRIREZEeXb9+HU2bNtXb+k0qGD2KGTNmICYmRvM8NzcX/v7+uH79OhwdHY1YGREREdVVXl4e/Pz84ODgoNftmFQw8vb2RkZGhlZbRkYGHB0da+wtAgArKytYWVlVa3d0dGQwIiIiMjH6HgZjUtcx6tGjBxISErTatm/fjh49ehipIiIiImpIjBqM8vPzkZSUhKSkJADS6fhJSUlITU0FIB0GGzNmjGb58ePH48qVK3jvvfdw4cIFfPnll9iwYQOmTJlijPKJiIiogTFqMDp+/Dg6d+6Mzp07AwBiYmLQuXNnzJ49GwCQlpamCUkAEBgYiC1btmD79u3o2LEjFi1ahJUrVyIqKsoo9RMREVHDUm+uY2QoeXl5cHJyQm5uLscYERlKyX3gfhZQcBsovAsU5kiP97OBolyg9D5QWig9lhVJk4Z6PIGgAMytAQtr6dHcGrCwASxsAUu7isnCVj3ZqJ/bVCxrbg2YW0mPCjNjfBJE9IgM9f1tUoOviaieKC0ECrLUYeeO+jGrIvwUqJ+X/1xaYOyKq1NYqEOSlXZgKn80s6x4rglVlYKZmQVgpn69mYW0PoUZIJipHxXqqZaBopX/JhWESsurJ4WZtH4zS8DcUvrZwgawtK8IfLwWG5HOMRgRUQWVEriXDuSkSlNuKnAvA8jPAPIzpceC20BJvvx1m1kBdu6ArStg41IxWTtLX/SVe4DMK51JWh4gRKW6N6lYCmZlxeqepvtSj1RJvvrnAnXvU2GVnqhiQFVa6b2WAiWlj/Ze6gVBCknWjtJnaONc8WjrCti6qz9vd8DOA7D3AOy9tD9bIqqGwYioMSq4A2RdrDRdAu5cAnKua4eHB1FYVPridav4ArZzkx41z9WPVg7G7+FQlgHK4opwVf5zeeAqKwLKSqo8V0+lRdrPlSXSsspiQFkqPVcppQCnUk+oMlJBFKt8BuU/i9I8UaWelICqTL1+9VRes6b3TQRK7klT3s26fwY2roCDtxSSHH0BxyaAky/g2FR6dPIDrOwf/TMmMnEMRkQNVVmJ1OtzN0UKP7eTKx4Ls2t/nWAGODUFnP2lycFH+hK196x4tHMHrByNH3TkMjOXJks7Y1fy6FQqdc9YPlCcDxTnSmO2inIqHu9nVzq0qZ7yM6TQW5gtTZl/1r4NWzf1/m8GuDQDXAIB1+bS5OgL6PF2DETGxmBEZEqUZUBxHlB8T3rUjOXJlA51FdxWh6GrQO4NVOuxqMzJH3BvCbi3Uj+2lL4AHXyk8ED1k0Ih9ehY2QNyLgAsitKA93tp0uHSe+lA3i2ptynvJpB7E8i7IQ2Gv39Hmm6drL4eMyvAJUD69+IWpP3vx8ZFV++SyGj424/ImERR+gLKvSFNeTelx4Is7R6Awhz12VsyBzFb2EpfYm4tAPfWgEfrii8yU+41IfkEQT32yBXwalf7ckW5FWPM7l4Dcq4B2SlA9hUpcCuLgaxkaarK3hvwbAN4BAOelSYr/d7CgUiXGIyIDEEUpb/QM84Bt88DmRekx9vJjzb419xaOpRl66oeWOsJ2KkPcTn5Aa6BUiCy8zC9w11kXNZOgHeINFWlLJN6le78Bdy5LI1Ny7oo/Zx3E8hPl6Yru7Vf5xIIeLcHvNSTT0fpcC3/bVI9xOsYEemaSiWdzZV+BriVBKSdkqaCzNpfUz4Q1qmpNNl5aJ9lZO0sfWFZO0mByNzSIG+FqM6K70lBP/O8NN0+D2T8KQWlmti6AT6dpJDUpBPg21X6P8CwRLUw1Pc3gxHRoxJFaVzPncvqL4Fz6ulP6UyhqgSFNCbDMxjwaCNNnsHSgFaeQk0NVUEWkHFW+r+Rflb6g+H2eemsu6rsvaSA5NtF/dhV+mOACAxGesNgRLIoy6RDBDmp0liLnFRprMWdy9LhhOK8ml9nZimN5yn/i9inkzSuw9LWkNUT1U+lRUDmuYoe1VsnpbPkqoUlQfp/1DQUaNpNmjza8KrljRSDkZ4wGFE1ZSXqsHNJGmR6N6VisGnuDemaMrUSpNOa3VtJwcervTSWwi1IuhoyEdVNaSGQdhq4eUKabhyT/hipytJB6lHyCwOahkmhydbV8PWSwTEY6QmDUSMmitJZNemn1YOgL0iDoLP/qrlbv5yZpTSg2aWZFIJcAgA39anKLgHSLSKISPfybwM3j0sh6cYx4MaJms/MdG8tBSX/JwC/J6SzMDlWqcFhMNITBqNGQqWUDneVd9Wnn5b+Gi3OrXl5SwfAPUga7+MSqD6rS/1o780L2hHVByqldMjt+lEpKF0/Kv1hU5WtO9CsB9CslzR5tePhtwaAwUhPGIwaIJVSOm04LUkdhJKkAZ41nQZvZgl4tpVORfYMlsYveLTh2TBEpqogSwpI1w9LjzcTpWstVWblJAWlwD5AYLj0O4B/7JgcBiM9YTAyceUh6OYJacBm2ikpBJUVVl/W3EYKQE06qQdAd5S63HmqO1HDVVYs/YF07YA0pR6pfpaorbsUkppHAC37SfeLo3qPwUhPGIxMTGEOkHpImm4mSmGopp4gCzvAp0PFGWBNOkkDotl9TtS4KcukQ+lX9wMpe4BrB6V7zVXmFSIFpJb9pTPfeEuceonBSE8YjOq5ojzg6j7pl9jV/VJvUNX7fVnYSuHHt0tFCHJtzhBERA9XViIN6L6yB/grAbhxHFq/Y2xcgFYDgODBQIunAAsbo5VK2hiM9ITBqJ4RRWmQ9MVtwKVtwLVD0h3AK3NrCTTrKf0l59tFOhzGv+iISBcK7gCXdwCX/pAei3Iq5lnYSuEoeAjQegAvNmlkDEZ6wmBUD5SVAKkHgeStUhjKvqI937W5dOy/WS8goDfg4G2UMomokVGWSYO4z/8KXPgVyL1eMc/MEmjeF2g3DGj9tNSzRAbFYKQnDEZGkndLurHkxa3A5Z3agyEVFkBAL6BlFNAqSroGCRGRMYmiNDbp/K/Anz8BWckV8xTm0h9vbYcCrQcBdm5GK7MxYTDSEwYjA8m7BVw9AFzdK40VqtorZOdREYRa9AWsHIxTJxFRXWRekALSn5ulaymVE8yknu22Q6VxSfaeRiuxoWMw0hMGIx1TlkmhJ/20NFC6fKp6J3lBAXh3kM78aPU00KQzryNCRKYp65I6JP0k/e7TEAC/7kDwM0CbZ6QLxJLOMBjpCYPRYyjKlS6glnEWyDwv/dV0+2L1i6kBAATp1PmA3kDAk9Kl+m2cDV0xEZF+ZacA53+WQtLNE9rzPNtJIan109IZtLyI7GNhMNITBiMZSoukgYgpe6VTW2+drPmGqhZ20iX3vdtLF1T0CgG82gKWdoavmYjIWHJvAhe2ABd+kYYSVP596dBECkitBwKBTwLmVsar00QxGOkJg1EdZJwDji4HTm+ofiE01+ZAky7S7TQ820oByMmfh8WIiCq7ny2dbJL8m3TCSeWb31o6AC0jpcNtLfvxMgB1xGCkJwxGtVCWAclbgCPLgWv7K9rtvYHm4dL9hQL7AM5+xquRiMgUlRZJPe/JvwHJvwP56RXzFBZSD1KbZ6TrJdl7GK/Oeo7BSE8YjKpQqYDT64FdCyqu2SGYScfFw96QLqzI4+JERLqhUknDEi78Kh12q3wZAEEhXb+t3TB1SOIZbpUxGOkJg1El1w4CW2dId6MHpBsrdn0ZCB0HOPkaszIiosYh65IUkv78SQpM5QSF1EvfabTUm2Rpa7wa6wkGIz1hMIJ0FsX22dKZFIB0vLvPu0D38YCFtXFrIyJqrO5elQLSuc3ArcSKditHoN1wKST5hTXaXnwGIz1p1MGoKA/Ytwg4/CWgLJH+IukSDfSdyePaRET1SXYKcDoeSFoD5KRWtHu0AcJeBzq+0OjO/GUw0pNGGYxUSuk/V8KHFRdebN4XiPpYOs2eiIjqJ5UKuHYASForXXW7/Exhayeg80tAt1cbzYUkGYz0pNEFo6sHgG0zgLRT0nPXFkDUAulWHI20O5aIyCQV5UoB6cjXwN0UdaMAtBkE9I4BmnY1ann6xmCkJ40iGJUWAmc3AsdWVgzms3IEwqdJXbDmlsatj4iIHp1KBVzeARyJA/5KqGgPeBLoPQVo8VSD/MOXwUhPGmwwUqmArIvAyf8CJ/8HFOVI7WaW0oA9jiMiImp4Mi8ABz+TxiOpyqQ2n47Ak+9KZ7M1oIvvMhjpSb0KRgV3pBuwFtyWpvtZQEGWNCbIwgawsJUeLW0BMytAYQ4ozKRJMAPybgIZfwKZ54DbydpXqXbyB7qNk45B27kb7z0SEZH+5VyXTqw58V3Fd4FnOyBiGtBmcIMISAxGemLUYFSYI107KGWvNGWe0+36za2lrtRur0qXmVeY6Xb9RERUvxXcAY58JY1DKs6T2jzbAeHvSReNNOGAxGCkJwYPRoU5wLlNUjfn9SOAqNKe7+QH2HmoJ3fA1k06/FVaKKX+0kLpHjvKUqmbVFUm9SgpS6VDY57tpPuWebWT7mPGMERERIV3gcNfSVPlgBQx3WQPsTEY6YlBPlhlKXA5ATi1TrovjrK4Yp5bkHQ108A+Uu8OD3MREZG+FN4FDsdJh9nKA5JXCNB3BtB6oEkN0mYw0hO9fbCiCKSfBpLWAWe+l8YLlfMIBjqNBNo9y5uwEhGR4RXeBQ59KfUgldyT2nw6AhEzgFYDTCIgMRjpic4/2Lw04OwPUiCqPGbIzgMIeU66Oql3B5P4R0dERA3c/Wzg0BfSGKSSfKnNpyMQPh1o/XS9/q5iMNITnXyw2VeA878C538BbhytaDezlLomO42SriNhZqGboomIiHSp4A5w6HPgyHJpHCsg/REfMb3eHmJjMNKTR/pgVSog7SRwcRtwYQuQcVZ7vl93qWeo3XDAxkX3RRMREelDwR2pB+no8ooeJK/20oUi2w4DzMyNWl5lDEZ6UucPtqQA+GsXcPF34OIfFfcYA6RrCAU+CQQPBloPAhx99F84ERGRvtQUkFwCgd6TgY4jAXMro5YHMBjpzQM/2MIcqVfo/M/S5dbLiirmWToAQU9Jg9RaDQBsXQ1aNxERkd4V3gWOrpAGaRdmS20OPsATbwJdX5ZuXmskDEZ6Uu2DLcqTxgqd2wRc2Q2oSisWdm4mDUZrNQBo1ov3GCMiosahpAA48R/g4OfAvVtSm6U90CUaeGI84Oxv8JIYjPRE88Ee2wDHK78CF7dq9wy5twbaDpGuEOodUi8HoBERERlEWbF0CZqDXwC3z0ttghnQbhjwxFtA01CDlcJgpCeaD3a6Axyt1KHHvZV0an3boYBHa+MWSEREVN+IonTh4oOfASl7KtqbdAG6vyGdfKTncUgMRnqi+WA/bAHHbiOkQOTTkT1DREREdZF2WrqS9tmNgLJEarN1l8YghY4DnHz1slkGIz3RfLB3s+HozFPriYiIHkn+bSDxP8DxVUDeTalNMAOCnwHCXpfG5uqw04HBSE8MfhNZIiKihkxZBlz4VTrV/9qBinbPtkDYa0CHEYCl3WNvhsFITxiMiIiI9CTjnHS6/+l4oPS+1GbtDISOlXqRHJs88qoZjPSEwYiIiEjPCnOAU+uke7LdTZHaFObSzdR7vAU06Sx7lQxGesJgREREZCAqJZD8uzRYu/JhthZ/A8LfA/yfqPOqGIz0hMGIiIjICG6dBA6pz2YTlVJbYB8gfBoQ0PuhL2cw0hMGIyIiIiPKTgH2LwGS1gCqMqmtWS8gch7g163Wlxnq+1uhtzUTERERVeUaCAz5DJh4Egh9BTCzlA6zfRMJbHwNyL1h1PIYjIiIiMjwnP2BZxYDE5OATqOltjMbgM9Dgd3/BEruG6UsBiMiIiIyHidfYNiXwOu7Af8eQFkhsDsW+CJUGrhtYAxGREREZHxNOgNjfwee+w5w8peupr3uBWDjq8D9bIOVwWBERERE9YMgSDeknXAU6DUJEBTAme+BZWHA+V8NUgKDEREREdUvFjZAv/nAKzsAj2Cg4DawebxBNs1gRERERPVT067AG3uAPlMBmBlkkwxGREREVH+ZWwFPfQCMbSSH0pYtW4aAgABYW1uje/fuOHr06AOXX7p0KVq3bg0bGxv4+flhypQpKCoqMlC1REREZBTeIQbZjFGDUXx8PGJiYjBnzhwkJiaiY8eOiIqKQmZmZo3Lr127FtOnT8ecOXNw/vx5fPPNN4iPj8f7779v4MqJiIioITJqMFq8eDFee+01jB07Fm3btkVcXBxsbW2xatWqGpc/ePAgevXqhVGjRiEgIAD9+/fHyJEjH9rLRERERFQXRgtGJSUlOHHiBCIjIyuKUSgQGRmJQ4cO1fianj174sSJE5ogdOXKFfz2228YOHBgrdspLi5GXl6e1kRERERUE3NjbTgrKwtKpRJeXl5a7V5eXrhw4UKNrxk1ahSysrLQu3dviKKIsrIyjB8//oGH0mJjYzFv3jyd1k5EREQNk9EHX8uxe/duLFiwAF9++SUSExPx448/YsuWLfjwww9rfc2MGTOQm5urma5fv27AiomIiMiUGK3HyN3dHWZmZsjIyNBqz8jIgLe3d42vmTVrFl566SW8+uqrAICQkBAUFBTg9ddfx8yZM6FQVM95VlZWsLKy0v0bICIiogbHaD1GlpaW6Nq1KxISEjRtKpUKCQkJ6NGjR42vuX//frXwY2YmXfBJFEX9FUtERESNwiP3GF2+fBl//fUX+vTpAxsbG4iiCEEQZK0jJiYG0dHRCA0NRVhYGJYuXYqCggKMHTsWADBmzBj4+voiNjYWADB48GAsXrwYnTt3Rvfu3XH58mXMmjULgwcP1gQkIiIiokclOxjduXMHI0aMwM6dOyEIAi5duoTmzZvjlVdegYuLCxYtWlTndY0YMQK3b9/G7NmzkZ6ejk6dOmHr1q2aAdmpqalaPUQffPABBEHABx98gJs3b8LDwwODBw/Gxx9/LPdtEBEREVUjiDKPQY0ZMwaZmZlYuXIlgoODcerUKTRv3hzbtm1DTEwMzp07p69adSIvLw9OTk7Izc2Fo6OjscshIiKiOjDU97fsHqM//vgD27ZtQ9OmTbXaW7ZsiWvXrumsMCIiIiJDkz34uqCgALa2ttXas7OzefYXERERmTTZwejJJ5/E6tWrNc8FQYBKpcInn3yCvn376rQ4IiIiIkOSfSjtk08+wd/+9jccP34cJSUleO+993Du3DlkZ2fjwIED+qiRiIiIyCBk9xi1b98eFy9eRO/evTF06FAUFBTg2WefxcmTJ9GiRQt91EhERERkELLPSjN1PCuNiIjI9NSrs9JOnz5d5xV26NDhkYshIiIiMqY6BaNOnTpBEIRqV7cu72yq3KZUKnVcIhEREZFh1GmMUUpKCq5cuYKUlBRs3LgRgYGB+PLLL5GUlISkpCR8+eWXaNGiBTZu3KjveomIiIj0pk49Rs2aNdP8/Nxzz+Gzzz7DwIEDNW0dOnSAn58fZs2ahWHDhum8SCIiIiJDkH1W2pkzZxAYGFitPTAwEH/++adOiiIiIiIyBtnBKDg4GLGxsSgpKdG0lZSUIDY2FsHBwTotjoiIiMiQZF/gMS4uDoMHD0bTpk01Z6CdPn0agiDgl19+0XmBRERERIbySNcxKigowJo1a3DhwgUAUi/SqFGjYGdnp/MCdY3XMSIiIjI99eo6RlXZ2dnh9ddf13UtREREREZVp2D0888/4+mnn4aFhQV+/vnnBy47ZMgQnRRGREREZGh1OpSmUCiQnp4OT09PKBS1j9cWBKHeX+CRh9KIiIhMT706lKZSqWr8mYiIiKghkX26PhEREVFDJXvw9fz58x84f/bs2Y9cDBEREZExyQ5GmzZt0npeWlqKlJQUmJubo0WLFgxGREREZLJkB6OTJ09Wa8vLy8PLL7+M4cOH66QoIiIiImPQyRgjR0dHzJs3D7NmzdLF6oiIiIiMQmeDr3Nzc5Gbm6ur1REREREZnOxDaZ999pnWc1EUkZaWhv/+9794+umndVYYERERkaHJDkZLlizReq5QKODh4YHo6GjMmDFDZ4URERERGZrsYJSSkqKPOoiIiIiMjhd4JCIiIlKT3WM0fPhwCIJQrV0QBFhbWyMoKAijRo1C69atdVIgERERkaHI7jFycnLCzp07kZiYCEEQIAgCTp48iZ07d6KsrAzx8fHo2LEjDhw4oI96iYiIiPRGdo+Rt7c3Ro0ahS+++AIKhZSrVCoVJk2aBAcHB6xfvx7jx4/HtGnTsH//fp0XTERERKQvgiiKopwXeHh44MCBA2jVqpVW+8WLF9GzZ09kZWXhzJkzePLJJ5GTk6PLWnUiLy8PTk5OyM3NhaOjo7HLISIiojow1Pe37ENpZWVluHDhQrX2CxcuQKlUAgCsra1rHIdEREREVJ/JPpT20ksv4ZVXXsH777+Pbt26AQCOHTuGBQsWYMyYMQCAPXv2oF27drqtlIiIiEjPHukCj15eXvjkk0+QkZEBAPDy8sKUKVMwbdo0AED//v0xYMAA3VZKREREpGeyxxhVlpeXBwAmNVaHY4yIiIhMT70dYwRI44x27NiBdevWacYS3bp1C/n5+TotjoiIiMiQZB9Ku3btGgYMGIDU1FQUFxejX79+cHBwwMKFC1FcXIy4uDh91ElERESkd7J7jCZNmoTQ0FDcvXsXNjY2mvbhw4cjISFBp8URERERGZLsHqN9+/bh4MGDsLS01GoPCAjAzZs3dVYYERERkaHJ7jFSqVSa6xVVduPGDTg4OOikKCIiIiJjkB2M+vfvj6VLl2qeC4KA/Px8zJkzBwMHDtRlbUREREQGJft0/Rs3biAqKgqiKOLSpUsIDQ3FpUuX4O7ujr1798LT01NfteoET9cnIiIyPYb6/n6k6xiVlZVh/fr1OH36NPLz89GlSxeMHj1aazB2fcVgREREZHoM9f0te/B1UVERrK2t8eKLL+qjHiIiIiKjkT3GyNPTE9HR0di+fTtUKpU+aiIiIiIyCtnB6D//+Q/u37+PoUOHwtfXF5MnT8bx48f1URsRERGRQckORsOHD8f333+PjIwMLFiwAH/++SeeeOIJtGrVCvPnz9dHjUREREQG8Vg3kS33559/YvTo0Th9+nSN1ziqTzj4moiIyPTU65vIAtIg7A0bNmDYsGHo0qULsrOzMXXqVF3WRkRERGRQss9K27ZtG9auXYvNmzfD3Nwc//d//4c//vgDffr00Ud9RERERAYjOxgNHz4czzzzDFavXo2BAwfCwsJCH3URERERGZzsYJSRkcF7ohEREVGDJDsYVQ5FRUVFKCkp0ZrPAc1ERERkqmQPvi4oKMCECRPg6ekJOzs7uLi4aE1EREREpkp2MHrvvfewc+dOfPXVV7CyssLKlSsxb948NGnSBKtXr9ZHjUREREQGIftQ2i+//ILVq1cjIiICY8eOxZNPPomgoCA0a9YMa9aswejRo/VRJxEREZHeye4xys7ORvPmzQFI44mys7MBAL1798bevXt1Wx0RERGRAckORs2bN0dKSgoAoE2bNtiwYQMAqSfJ2dlZp8URERERGZLsYDR27FicOnUKADB9+nQsW7YM1tbWmDJlCq98TURERCbtse+Vdu3aNZw4cQJBQUHo0KGDrurSG94rjYiIyPQY6vtb9uDroqIiWFtba543a9YMzZo102lRRERERMYgOxg5OzsjLCwM4eHhiIiIQM+ePWFjY6OP2oiIiIgMSvYYox07dmDAgAE4cuQIhg4dChcXF/Tu3RszZ87E9u3bZRewbNkyBAQEwNraGt27d8fRo0cfuHxOTg7efvtt+Pj4wMrKCq1atcJvv/0me7tEREREVT3WGKOysjIcO3YMX3/9NdasWQOVSgWlUlnn18fHx2PMmDGIi4tD9+7dsXTpUnz//fdITk6Gp6dnteVLSkrQq1cveHp64v3334evry+uXbsGZ2dndOzYsU7b5BgjIiIi01NvxxgBwMWLF7F7927NVFxcjGeeeQYRERGy1rN48WK89tprGDt2LAAgLi4OW7ZswapVqzB9+vRqy69atQrZ2dk4ePAgLCwsAAABAQGP8haIiIiIqpHdY+Tr64vCwkJEREQgIiIC4eHh6NChAwRBkLXhkpIS2Nra4ocffsCwYcM07dHR0cjJycFPP/1U7TUDBw6Eq6srbG1t8dNPP8HDwwOjRo3CtGnTYGZmVuN2iouLUVxcrHmel5cHPz8/9hgRERGZEEP1GMkeY+Th4YH79+8jPT0d6enpyMjIQGFhoewNZ2VlQalUwsvLS6vdy8sL6enpNb7mypUr+OGHH6BUKvHbb79h1qxZWLRoET766KNatxMbGwsnJyfN5OfnJ7tWIiIiahxkB6OkpCSkp6dj+vTpKC4uxvvvvw93d3f07NkTM2fO1EeNGiqVCp6enli+fDm6du2KESNGYObMmYiLi6v1NTNmzEBubq5mun79ul5rJCIiItP1SGOMnJ2dMWTIEPTq1Qs9e/bETz/9hHXr1uHIkSP4+OOP67QOd3d3mJmZISMjQ6s9IyMD3t7eNb7Gx8cHFhYWWofNgoODkZ6ejpKSElhaWlZ7jZWVFaysrGS8OyIiImqsZPcY/fjjj5g4cSI6dOgALy8vvPnmm8jPz8eiRYuQmJhY5/VYWlqia9euSEhI0LSpVCokJCSgR48eNb6mV69euHz5MlQqlabt4sWL8PHxqTEUEREREckhu8do/Pjx6NOnD15//XWEh4cjJCTkkTceExOD6OhohIaGIiwsDEuXLkVBQYHmLLUxY8bA19cXsbGxAIA333wTX3zxBSZNmoR33nkHly5dwoIFCzBx4sRHroGIiIionOxglJmZqbONjxgxArdv38bs2bORnp6OTp06YevWrZoB2ampqVAoKjq1/Pz8sG3bNkyZMgUdOnSAr68vJk2ahGnTpumsJiIiImq8HvsmsqaGF3gkIiIyPfX2dH0iIiKihorBiIiIiEiNwYiIiIhI7bGDUV5eHjZv3ozz58/roh4iIiIio5EdjJ5//nl88cUXAIDCwkKEhobi+eefR4cOHbBx40adF0hERERkKLKD0d69e/Hkk08CADZt2gRRFJGTk4PPPvvsgfcsIyIiIqrvZAej3NxcuLq6AgC2bt2Kv//977C1tcWgQYNw6dIlnRdIREREZCiyg5Gfnx8OHTqEgoICbN26Ff379wcA3L17F9bW1jovkIiIiMhQZF/5evLkyRg9ejTs7e3RrFkzREREAJAOsT3O7UGIiIiIjE12MHrrrbcQFhaG69evo1+/fppbdjRv3pxjjIiIiMik8ZYgREREVO8Z6vtbdo/RuHHjHjh/1apVj1wMERERkTHJDkZ3797Vel5aWoqzZ88iJycHTz31lM4KIyIiIjI02cFo06ZN1dpUKhXefPNNtGjRQidFERERERmDTu6VplAoEBMTgyVLluhidURERERGobObyP71118oKyvT1eqIiIiIDE72obSYmBit56IoIi0tDVu2bEF0dLTOCiMiIiIyNNnB6OTJk1rPFQoFPDw8sGjRooeesUZERERUn8kORrt27dJHHURERERGJzsYlcvMzERycjIAoHXr1vD09NRZUURERETGIHvwdV5eHl566SU0adIE4eHhCA8Ph6+vL1588UXk5ubqo0YiIiIig5AdjF577TUcOXIEW7ZsQU5ODnJycvDrr7/i+PHjeOONN/RRIxEREZFByL5Xmp2dHbZt24bevXtrte/btw8DBgxAQUGBTgvUNd4rjYiIyPQY6vtbdo+Rm5sbnJycqrU7OTnBxcVFJ0URERERGYPsYPTBBx8gJiYG6enpmrb09HRMnToVs2bN0mlxRERERIZUp7PSOnfuDEEQNM8vXboEf39/+Pv7AwBSU1NhZWWF27dvc5wRERERmaw6BaNhw4bpuQwiIiIi45M9+NrUcfA1ERGR6am3g6+JiIiIGioGIyIiIiI1BiMiIiIiNQYjIiIiIrXHCkaiKKKRjd0mIiKiBuyRgtHq1asREhICGxsb2NjYoEOHDvjvf/+r69qIiIiIDKpO1zGqbPHixZg1axYmTJiAXr16AQD279+P8ePHIysrC1OmTNF5kURERESGIPs6RoGBgZg3bx7GjBmj1f6f//wHc+fORUpKik4L1DVex4iIiMj01NvrGKWlpaFnz57V2nv27Im0tDSdFEVERERkDLKDUVBQEDZs2FCtPT4+Hi1bttRJUURERETGIHuM0bx58zBixAjs3btXM8bowIEDSEhIqDEwEREREZkK2T1Gf//733HkyBG4u7tj8+bN2Lx5M9zd3XH06FEMHz5cHzUSERERGQRvIktERET1Xr0dfG1mZobMzMxq7Xfu3IGZmZlOiiIiIiIyBtnBqLYOpuLiYlhaWj52QURERETGUufB15999hkAQBAErFy5Evb29pp5SqUSe/fuRZs2bXRfIREREZGB1DkYLVmyBIDUYxQXF6d12MzS0hIBAQGIi4vTfYVEREREBlLnYFR+Reu+ffvixx9/hIuLi96KIiIiIjIG2dcx2rVrlz7qICIiIjI62YOviYiIiBoqBiMiIiIiNQYjIiIiIjUGIyIiIiI12YOvASAnJwdHjx5FZmYmVCqV1rwxY8bopDAiIiIiQ5MdjH755ReMHj0a+fn5cHR0hCAImnmCIDAYERERkcmSfSjtH//4B8aNG4f8/Hzk5OTg7t27mik7O1sfNRIREREZhOxgdPPmTUycOBG2trb6qIeIiIjIaGQHo6ioKBw/flwftRAREREZlewxRoMGDcLUqVPx559/IiQkBBYWFlrzhwwZorPiiIiIiAxJEEVRlPMChaL2TiZBEKBUKh+7KH3Ky8uDk5MTcnNz4ejoaOxyiIiIqA4M9f0tu8eo6un5RERERA0FL/BIREREpPZIwWjPnj0YPHgwgoKCEBQUhCFDhmDfvn26ro2IiIjIoGQHo//973+IjIyEra0tJk6ciIkTJ8LGxgZ/+9vfsHbtWn3USERERGQQsgdfBwcH4/XXX8eUKVO02hcvXowVK1bg/PnzOi1Q1zj4moiIyPQY6vtbdo/RlStXMHjw4GrtQ4YMQUpKyiMVsWzZMgQEBMDa2hrdu3fH0aNH6/S69evXQxAEDBs27JG2S0RERFSZ7GDk5+eHhISEau07duyAn5+f7ALi4+MRExODOXPmIDExER07dkRUVBQyMzMf+LqrV6/i3XffxZNPPil7m0REREQ1kX26/j/+8Q9MnDgRSUlJ6NmzJwDgwIED+O677/Dpp5/KLmDx4sV47bXXMHbsWABAXFwctmzZglWrVmH69Ok1vkapVGL06NGYN28e9u3bh5ycHNnbJSIiIqpKdjB688034e3tjUWLFmHDhg0ApHFH8fHxGDp0qKx1lZSU4MSJE5gxY4amTaFQIDIyEocOHar1dfPnz4enpydeeeWVh54NV1xcjOLiYs3zvLw8WTUSERFR4yE7GAHA8OHDMXz48MfeeFZWFpRKJby8vLTavby8cOHChRpfs3//fnzzzTdISkqq0zZiY2Mxb968xy2ViIiIGgGTusDjvXv38NJLL2HFihVwd3ev02tmzJiB3NxczXT9+nU9V0lERESmqk49Rq6urrh48SLc3d3h4uICQRBqXTY7O7vOG3d3d4eZmRkyMjK02jMyMuDt7V1t+b/++gtXr17VOiuu/BYl5ubmSE5ORosWLbReY2VlBSsrqzrXRERERI1XnYLRkiVL4ODgoPn5QcFIDktLS3Tt2hUJCQmaU+5VKhUSEhIwYcKEasu3adMGZ86c0Wr74IMPcO/ePXz66aePdFYcERERUbk6BaPo6GjNzy+//LJOC4iJiUF0dDRCQ0MRFhaGpUuXoqCgQHOW2pgxY+Dr64vY2FhYW1ujffv2Wq93dnYGgGrtRERERHLJHnydmJgICwsLhISEAAB++uknfPvtt2jbti3mzp0LS0tLWesbMWIEbt++jdmzZyM9PR2dOnXC1q1bNQOyU1NToVCY1FAoIiIiMlGybwnSrVs3TJ8+HX//+99x5coVtG3bFs8++yyOHTuGQYMGYenSpXoqVTd4SxAiIiLTU29vCXLx4kV06tQJAPD9998jPDwca9euxXfffYeNGzfquj4iIiIig5EdjERR1JwJtmPHDgwcOBCAdKuQrKws3VZHREREZECyg1FoaCg++ugj/Pe//8WePXswaNAgAEBKSkq1CzUSERERmRLZwWjp0qVITEzEhAkTMHPmTAQFBQEAfvjhB82904iIiIhMkezB17UpKiqCmZkZLCwsdLE6veHgayIiItNTbwdfX79+HTdu3NA8P3r0KCZPnozVq1fX+1BERERE9CCyg9GoUaOwa9cuAEB6ejr69euHo0ePYubMmZg/f77OCyQiIiIyFNnB6OzZswgLCwMAbNiwAe3bt8fBgwexZs0afPfdd7quj4iIiMhgZAej0tJSzU1Zd+zYgSFDhgCQ7mOWlpam2+qIiIiIDEh2MGrXrh3i4uKwb98+bN++HQMGDAAA3Lp1C25ubjovkIiIiMhQZAejhQsX4uuvv0ZERARGjhyJjh07AgB+/vlnzSE2IiIiIlP0SKfrK5VK5OXlwcXFRdN29epV2NrawtPTU6cF6hpP1yciIjI9hvr+Nn+UF5mZmWmFIgAICAjQRT1ERERERlOnYNSlSxckJCTAxcUFnTt3hiAItS6bmJios+KIiIiIDKlOwWjo0KGaM9GGDRumz3qIiIiIjEZntwQxFRxjREREZHrq9Rijcvn5+VCpVFptDBtERERkqmSfrp+SkoJBgwbBzs4OTk5OcHFxgYuLC5ydnasNyCYiIiIyJbJ7jF588UWIoohVq1bBy8vrgQOxiYiIiEyJ7GB06tQpnDhxAq1bt9ZHPURERERGI/tQWrdu3XD9+nV91EJERERkVLJ7jFauXInx48fj5s2baN++PSwsLLTmd+jQQWfFERERERmS7GB0+/Zt/PXXXxg7dqymTRAEiKIIQRCgVCp1WiARERGRocgORuPGjUPnzp2xbt06Dr4mIiKiBkV2MLp27Rp+/vlnBAUF6aMeIiIiIqORPfj6qaeewqlTp/RRCxEREZFRye4xGjx4MKZMmYIzZ84gJCSk2uDrIUOG6Kw4IiIiIkOSfa80haL2TiZTGHzNe6URERGZnnp7r7Sq90YjIiIiaihkjzGqSU5Oji5WQ0RERGRUsoPRwoULER8fr3n+3HPPwdXVFb6+vhyUTURERCZNdjCKi4uDn58fAGD79u3YsWMHtm7diqeffhpTp07VeYFEREREhiJ7jFF6eromGP366694/vnn0b9/fwQEBKB79+46L5CIiIjIUGT3GLm4uGhuIrt161ZERkYCAERRrPdnpBERERE9iOweo2effRajRo1Cy5YtcefOHTz99NMAgJMnT/Jq2ERERGTSZAejJUuWICAgANevX8cnn3wCe3t7AEBaWhreeustnRdIREREZCiyL/Bo6niBRyIiItNTby/wCACXLl3Crl27kJmZWe2Cj7Nnz9ZJYURERESGJjsYrVixAm+++Sbc3d3h7e0NQRA08wRBYDAiIiIikyU7GH300Uf4+OOPMW3aNH3UQ0RERGQ0sk/Xv3v3Lp577jl91EJERERkVLKD0XPPPYc//vhDH7UQERERGZXsQ2lBQUGYNWsWDh8+jJCQEFhYWGjNnzhxos6KIyIiIjIk2afrBwYG1r4yQcCVK1ceuyh94un6REREpqfenq6fkpKijzqIiIiIjO6RrmPUGCiVSpSWlhq7jHrN0tISCoXsYWpERET11iMFoxs3buDnn39GamoqSkpKtOYtXrxYJ4UZiyiKSE9PR05OjrFLqfcUCgUCAwNhaWlp7FKIiIh0QnYwSkhIwJAhQ9C8eXNcuHAB7du3x9WrVyGKIrp06aKPGg2qPBR5enrC1tZW6wKWVEGlUuHWrVtIS0uDv78/PyciImoQZAejGTNm4N1338W8efPg4OCAjRs3wtPTE6NHj8aAAQP0UaPBKJVKTShyc3Mzdjn1noeHB27duoWysrJqZycSERGZItkDRM6fP48xY8YAAMzNzVFYWAh7e3vMnz8fCxcu1HmBhlQ+psjW1tbIlZiG8kNoSqXSyJUQERHphuxgZGdnpxlX5OPjg7/++kszLysrS3eVGREPC9UNPyciImpoZB9Ke+KJJ7B//34EBwdj4MCB+Mc//oEzZ87gxx9/xBNPPKGPGomIiIgMQnYwWrx4MfLz8wEA8+bNQ35+PuLj49GyZUuTPyONiIiIGjdZh9KUSiVu3LgBf39/ANJhtbi4OJw+fRobN25Es2bN9FIkPZggCA+c5s6di6tXr9Y6//Dhw5p17d69G126dIGVlRWCgoLw3XffGe+NERERGZisHiMzMzP0798f58+fh7Ozs55KIrnS0tI0P8fHx2P27NlITk7WtNnb22vGf+3YsQPt2rXTen35GXgpKSkYNGgQxo8fjzVr1iAhIQGvvvoqfHx8EBUVZYB3QkREZFyyD6W1b98eV65ceeA908iwvL29NT87OTlBEAStNqBiYLybm1u1eeXi4uIQGBiIRYsWAQCCg4Oxf/9+LFmyhMGIiIgaBdnB6KOPPsK7776LDz/8EF27doWdnZ3W/IZ2Y1ZRFFFYapzT0W0szAx65tehQ4cQGRmp1RYVFYXJkycbrAYiIiJjqnMwmj9/Pv7xj39g4MCBAIAhQ4ZofWmLoghBEBrcNW0KS5VoO3ubUbb95/wo2Frq9nZ2PXv2rHZ/s/LB9Onp6fDy8tKa5+Xlhby8PBQWFsLGxkantRAREdU3df7WnTdvHsaPH49du3bpsx7Ss/j4eAQHBxu7DCIionqpzsFIFEUAQHh4uN6KqY9sLMzw53zjjK+xsTDT+Tr9/PwQFBRU4zxvb29kZGRotWVkZMDR0ZG9RURE1CjIOk7TGK90LAiCzg9n1Vc9evTAb7/9ptW2fft29OjRw0gVERERGZasb/xWrVo9NBxlZ2c/VkGkX3fu3EF6erpWm7OzM6ytrTF+/Hh88cUXeO+99zBu3Djs3LkTGzZswJYtW4xULRERkWHJCkbz5s2Dk5OTvmohA6h61hkArFu3Di+88AICAwOxZcsWTJkyBZ9++imaNm2KlStX8lR9IiJqNASxfPDQQygUCqSnp8PT01PnRSxbtgz/+te/kJ6ejo4dO+Lzzz9HWFhYjcuuWLECq1evxtmzZwEAXbt2xYIFC2pdvqq8vDw4OTkhNze32qUFioqKkJKSgsDAQFhbWz/em2oE+HkREZGhPOj7W5fqfEsQfY0vio+PR0xMDObMmYPExER07NgRUVFRyMzMrHH53bt3Y+TIkdi1axcOHToEPz8/9O/fHzdv3tRLfURERNR41DkY1bFjSbbFixfjtddew9ixY9G2bVvExcXB1tYWq1atqnH5NWvW4K233kKnTp3Qpk0brFy5EiqVCgkJCXqpj4iIiBqPOo8xUqlUOt94SUkJTpw4gRkzZmjaFAoFIiMjcejQoTqt4/79+ygtLYWrq2uN84uLi1FcXKx5npeX93hFExERUYNV5x4jfcjKyoJSqazxastVz5yqzbRp09CkSZMaBxUDQGxsLJycnDSTn5/fY9dNREREDZNRg9Hj+uc//4n169dj06ZNtQ7+nTFjBnJzczXT9evXDVwlERERmQqjXrnQ3d0dZmZmNV5tubY7wJf797//jX/+85/YsWMHOnToUOtyVlZWsLKy0km9RERE1LAZtcfI0tISXbt21Ro4XT6Q+kFXW/7kk0/w4YcfYuvWrQgNDTVEqURERNQIGP1eFzExMYiOjkZoaCjCwsKwdOlSFBQUYOzYsQCAMWPGwNfXF7GxsQCAhQsXYvbs2Vi7di0CAgI0Y5Hs7e1hb29vtPdBREREps/owWjEiBG4ffs2Zs+ejfT0dHTq1Albt27VDMhOTU2FQlHRsfXVV1+hpKQE//d//6e1njlz5mDu3LmGLJ2IiIgamDpf+bqh4JWvdYefFxERGUq9u/I11V+CIDxwmjt3Lq5evVrr/MOHDwMA0tLSMGrUKLRq1QoKhQKTJ0827hsjIiIyMKMfSqPHl5aWpvk5Pj4es2fPRnJysqbN3t4eWVlZAIAdO3agXbt2Wq93c3MDIF0M08PDAx988AGWLFligMqJiIjqFwajhxFFoPS+cbZtYQvU4R51lS9t4OTkBEEQql3uoDwYubm51XophICAAHz66acAUOstWYiIiBoyBqOHKb0PLGhinG2/fwuwtDPOtomIiBohBqNGpmfPnlpn+QFAfn6+kaohIiKqXxiMHsbCVuq5Mda2dSw+Ph7BwcE6Xy8REVFDwGD0MILQoA5n+fn5ISgoyNhlEBER1Us8XZ+IiIhIjT1GjcydO3c0t1Ep5+zsrLlAY1JSEgBp3NHt27eRlJQES0tLtG3b1tClEhERGRyDUSMTGRlZrW3dunV44YUXAACdO3fWtJ84cQJr165Fs2bNcPXqVUOVSEREZDQMRg3Myy+/jJdffrlae0BAAOpy95dGdocYIiIiLRxjRERERKTGYERERESkxmBEREREpMZgRERERKTGYERERESkxmBEREREpMZgRERERKTGYERERESkxmBEREREpMZgRERERKTGYNQACILwwGnu3Lm4evVqrfMPHz4MAPjxxx/Rr18/eHh4wNHRET169MC2bduM/O6IiIgMh/dKawDS0tI0P8fHx2P27NlITk7WtNnb2yMrKwsAsGPHDrRr107r9W5ubgCAvXv3ol+/fliwYAGcnZ3x7bffYvDgwThy5IjWzWWJiIgaKgajhxBFEYVlhUbZto25DQRBeOhy3t7emp+dnJwgCIJWGwBNMHJzc6s2r9zSpUu1ni9YsAA//fQTfvnlFwYjIiJqFBiMHqKwrBDd13Y3yraPjDoCWwtbo2wbAFQqFe7duwdXV1ej1UBERGRIDEaNTM+ePaFQaA8ty8/Pr3HZf//738jPz8fzzz9viNKIiIiMjsHoIWzMbXBk1BGjbVvX4uPjERwc/NDl1q5di3nz5uGnn36Cp6enzusgIiKqjxiMHkIQBKMeztI1Pz8/BAUFPXCZ9evX49VXX8X333+PyMhIA1VGRERkfDxdn7SsW7cOY8eOxbp16zBo0CBjl0NERGRQ7DFqZO7cuYP09HStNmdnZ1hbW2Pt2rWIjo7Gp59+iu7du2uWs7GxgZOTkzHKJSIiMij2GDUykZGR8PHx0Zo2b94MAFi+fDnKysrw9ttva82fNGmScYsmIiIyEEEURdHYRRhSXl4enJyckJubC0dHR615RUVFSElJQWBgIKytrY1Uoeng50VERIbyoO9vXWKPEREREZEagxERERGRGoMRERERkRqDEREREZEagxERERGRGoMRERERkRqDEREREZEagxERERGRGoMRERERkRqDEREREZEag1EDIAjCA6e5c+fi6tWrtc4/fPgwAGD//v3o1asX3NzcYGNjgzZt2mDJkiVGfndERESGY27sAujxpaWlaX6Oj4/H7NmzkZycrGmzt7dHVlYWAGDHjh1o166d1uvd3NwAAHZ2dpgwYQI6dOgAOzs77N+/H2+88Qbs7Ozw+uuvG+CdEBERGReD0UOIogixsNAo2xZsbCAIwkOX8/b21vzs5OQEQRC02gBogpGbm1u1eeU6d+6Mzp07a54HBATgxx9/xL59+xiMiIioUWAwegixsBDJXboaZdutE09AsLU1yrYB4OTJkzh48CA++ugjo9VARERkSAxGjUzPnj2hUGgPLcvPz9d63rRpU9y+fRtlZWWYO3cuXn31VUOWSEREZDQMRg8h2NigdeIJo21b1+Lj4xEcHPzAZfbt24f8/HwcPnwY06dPR1BQEEaOHKnzWoiIiOobBqOHEATBqIezdM3Pzw9BQUEPXCYwMBAAEBISgoyMDMydO5fBiIiIGgWerk8PpFKpUFxcbOwyiIiIDII9Ro3MnTt3kJ6ertXm7OwMa2trLFu2DP7+/mjTpg0AYO/evfj3v/+NiRMnGqNUIiIig2MwamQiIyOrta1btw4vvPACVCoVZsyYgZSUFJibm6NFixZYuHAh3njjDSNUSkREZHiCKIqisYswpLy8PDg5OSE3NxeOjo5a84qKipCSkoLAwEBYW1sbqULTwc+LiIgM5UHf37rEMUZEREREagxGRERERGoMRkRERERqDEZEREREagxGNWhk49EfGT8nIiJqaBiMKrGwsAAA3L9/38iVmIaSkhIAgJmZmZErISIi0g1ex6gSMzMzODs7IzMzEwBga2sLQRCMXFX9pFKpcPv2bdja2sLcnP+MiIioYeA3WhXe3t4AoAlHVDuFQgF/f3+GRyIiajAYjKoQBAE+Pj7w9PREaWmpscup1ywtLaFQ8GgsERE1HAxGtTAzM+PYGSIiokamXvy5v2zZMgQEBMDa2hrdu3fH0aNHH7j8999/jzZt2sDa2hohISH47bffDFQpERERNWRG7zGKj49HTEwM4uLi0L17dyxduhRRUVFITk6Gp6dnteUPHjyIkSNHIjY2Fs888wzWrl2LYcOGITExEe3btzfCOyCi+koURaCGSZRmSpNKJbVJjZrnUpv6khTly6hUQI3LabdplhOrrKu2tvJ6UKlOVG6XqfK4v/KfNW2VnguoGCMoCBWTZhn1fM2kqGhTKDRtgkI9X6EAIEjPNfMFCAqF+rn2spr1qJfleEWqD4x+E9nu3bujW7du+OKLLwBIZzv5+fnhnXfewfTp06stP2LECBQUFODXX3/VtD3xxBPo1KkT4uLiHrq98pvQbXp+KOzNzSGofwkJKumXkqD55SVKvxrUH4+mHZWelxOr/fB4avjlIFb65SUKAFDxCKG8XahYVih/TeWftV8PzUN5m/b2xcq1CICo9RrNwuptPrj+au+jfNGa/vmJIoRKnzVEQFB/YQiVltG8XrO/ath3mtdCs6812wAAVU37udL2q7zuoduD9r+VyuupupzW+6/0b0io+u9JrPKaKp/Bw9T8GdfppTUvWKmpxnVrllN/HjW0ab228mcEVP9cK6+r6mdReX9W3mdanyOZElH9u0xUVPp9phA07eVhSwQ07UDNy5e3l7+u4hEVz6uuQ9Deltaymsfy37OKSj9X+h2sqFyTUGUZ1NAmVPpdXDGv2u94oOL3c6U2zT91rUCs/jw17WLF7/Aq/6/Fym01/K4Ra/k/p718eaiv9Hu0fH55G0T179xK/8c1v3PVP6sqfhZUleapRNwvKcXwn3fo/SayRu0xKikpwYkTJzBjxgxNm0KhQGRkJA4dOlTjaw4dOoSYmBittqioKGzevLnG5YuLi1FcXKx5npubCwBwOn4G9gqOISLTI/f7nvlAN1SA+g8E6UtJFMq/dB7Spn6OKsuIldvKN1JlXjmxyuODVOkXkn4Wq7SJlZYTtZcTKs0XxOrLK0Tt+ULVn9VTvRinoVbTZ0Kmx0KlBKAd1PTBqMEoKysLSqUSXl5eWu1eXl64cOFCja9JT0+vcfn09PQal4+NjcW8efOqtT915cojVk1ERETGcufOHTg5Oelt/UYfY6RvM2bM0OphysnJQbNmzZCamqrXD5YeLi8vD35+frh+/bpeu0Wpbrg/6g/ui/qD+6L+yM3Nhb+/P1xdXfW6HaMGI3d3d5iZmSEjI0OrPSMjQ3Ohxaq8vb1lLW9lZQUrK6tq7U5OTvxHXk84OjpyX9Qj3B/1B/dF/cF9UX/o+/p5Rj0MbGlpia5duyIhIUHTplKpkJCQgB49etT4mh49emgtDwDbt2+vdXkiIiKiujL6obSYmBhER0cjNDQUYWFhWLp0KQoKCjB27FgAwJgxY+Dr64vY2FgAwKRJkxAeHo5FixZh0KBBWL9+PY4fP47ly5cb820QERFRA2D0YDRixAjcvn0bs2fPRnp6Ojp16oStW7dqBlinpqZqdZv17NkTa9euxQcffID3338fLVu2xObNm+t8DSMrKyvMmTOnxsNrZFjcF/UL90f9wX1Rf3Bf1B+G2hdGv44RERERUX1Rny41QURERGRUDEZEREREagxGRERERGoMRkRERERqJh2M9u7di8GDB6NJkyYQBKHW+6WV2717NwT1HZwrT1VvJ7Js2TIEBATA2toa3bt3x9GjR/X4LhoOfeyP2NhYdOvWDQ4ODvD09MSwYcOQnJys53di+vT1f6PcP//5TwiCgMmTJ+u++AZGX/vi5s2bePHFF+Hm5gYbGxuEhITg+PHjenwnpk8f+0KpVGLWrFkIDAyEjY0NWrRogQ8//FDv9/MydXL3BSDd+3TmzJlo1qwZrKysEBAQgFWrVmkt8/3336NNmzawtrZGSEgIfvvtN9m1mXQwKigoQMeOHbFs2TJZr0tOTkZaWppm8vT01MyLj49HTEwM5syZg8TERHTs2BFRUVHIzMzUdfkNjj72x549e/D222/j8OHD2L59O0pLS9G/f38UFBTouvwGRR/7otyxY8fw9ddfo0OHDroqt0HTx764e/cuevXqBQsLC/z+++/4888/sWjRIri4uOi6/AZFH/ti4cKF+Oqrr/DFF1/g/PnzWLhwIT755BN8/vnnui6/QXmUffH8888jISEB33zzDZKTk7Fu3Tq0bt1aM//gwYMYOXIkXnnlFZw8eRLDhg3DsGHDcPbsWXnFiQ0EAHHTpk0PXGbXrl0iAPHu3bu1LhMWFia+/fbbmudKpVJs0qSJGBsbq6NKGwdd7Y+qMjMzRQDinj17Hq/ARkSX++LevXtiy5Ytxe3bt4vh4eHipEmTdFZnY6CrfTFt2jSxd+/eui2ukdHVvhg0aJA4btw4rbZnn31WHD16tA6qbBzqsi9+//130cnJSbxz506tyzz//PPioEGDtNq6d+8uvvHGG7LqMekeo0fVqVMn+Pj4oF+/fjhw4ICmvaSkBCdOnEBkZKSmTaFQIDIyEocOHTJGqY1CbfujJrm5uQCg95sINlYP2xdvv/02Bg0apPV/hPTjQfvi559/RmhoKJ577jl4enqic+fOWLFihZEqbfgetC969uyJhIQEXLx4EQBw6tQp7N+/H08//bQxSm2wyv/Nf/LJJ/D19UWrVq3w7rvvorCwULPMoUOHqv1uioqKkv39bfQrXxuSj48P4uLiEBoaiuLiYqxcuRIRERE4cuQIunTpgqysLCiVSs1Vt8t5eXnhwoULRqq64XrY/qhKpVJh8uTJ6NWrV52vdE51U5d9sX79eiQmJuLYsWNGrrZhq8u+uHLlCr766ivExMTg/fffx7FjxzBx4kRYWloiOjrayO+g4ajLvpg+fTry8vLQpk0bmJmZQalU4uOPP8bo0aONXH3DcuXKFezfvx/W1tbYtGkTsrKy8NZbb+HOnTv49ttvAQDp6ek1fn/XNlayVrL6l+ox1KErriZ9+vQRX3zxRVEURfHmzZsiAPHgwYNay0ydOlUMCwvTRZmNhi72R1Xjx48XmzVrJl6/fv0xq2tcdLEvUlNTRU9PT/HUqVOa+TyUJp+u/l9YWFiIPXr00FrmnXfeEZ944onHLbHR0NW+WLdundi0aVNx3bp14unTp8XVq1eLrq6u4nfffafDahu2uuyLfv36idbW1mJOTo6mbePGjaIgCOL9+/dFUZT+X6xdu1brdcuWLRM9PT1l1dMoD6VVFhYWhsuXLwMA3N3dYWZmhoyMDK1lMjIy4O3tbYzyGp3K+6OyCRMm4Ndff8WuXbvQtGlTI1TW+FTeFydOnEBmZia6dOkCc3NzmJubY8+ePfjss89gbm4OpVJp5Gobtqr/L3x8fNC2bVutZYKDg5Gammro0hqdqvti6tSpmD59Ol544QWEhITgpZdewpQpUzQ3Pifd8PHxga+vL5ycnDRtwcHBEEURN27cAAB4e3vr5Pu70QejpKQk+Pj4AAAsLS3RtWtXJCQkaOarVCokJCSgR48exiqxUam8PwBAFEVMmDABmzZtws6dOxEYGGjE6hqXyvvib3/7G86cOYOkpCTNFBoaitGjRyMpKQlmZmZGrrZhq/r/olevXtUuW3Hx4kU0a9bM0KU1OlX3xf3797VudA4AZmZmUKlUhi6tQevVqxdu3bqF/Px8TdvFixehUCg0fyz36NFD6/sbALZv3y77+9ukxxjl5+drJfeUlBQkJSXB1dUV/v7+mDFjBm7evInVq1cDAJYuXYrAwEC0a9cORUVFWLlyJXbu3Ik//vhDs46YmBhER0cjNDQUYWFhWLp0KQoKCjB27FiDvz9To4/98fbbb2Pt2rX46aef4ODgoDlW7OTkBBsbG8O+QROi633h4OBQbVyXnZ0d3NzcON7rIfTx/2LKlCno2bMnFixYgOeffx5Hjx7F8uXLsXz5coO/P1Oij30xePBgfPzxx/D390e7du1w8uRJLF68GOPGjTP4+zMlcvfFqFGj8OGHH2Ls2LGYN28esrKyMHXqVIwbN07zXTBp0iSEh4dj0aJFGDRoENavX4/jx4/L/38h68BbPVN+KmXVKTo6WhRFUYyOjhbDw8M1yy9cuFBs0aKFaG1tLbq6uooRERHizp07q633888/F/39/UVLS0sxLCxMPHz4sIHekWnTx/6oaX0AxG+//dZwb8wE6ev/RmUcY1Q3+toXv/zyi9i+fXvRyspKbNOmjbh8+XIDvSPTpY99kZeXJ06aNEn09/cXra2txebNm4szZ84Ui4uLDfjOTI/cfSGKonj+/HkxMjJStLGxEZs2bSrGxMRoxheV27Bhg9iqVSvR0tJSbNeunbhlyxbZtQmiyMtzEhEREQEcY0RERESkwWBEREREpMZgRERERKTGYERERESkxmBEREREpMZgRERERKTGYERERESkxmBEREREpMZgRERERKTGYERERhUREYHJkycbuwyNR63nzp078PT0xNWrV3VeU1UvvPACFi1apPftEDVGDEZEjUBcXBwcHBxQVlamacvPz4eFhQUiIiK0lt29ezcEQcBff/1l4CoNS9eB7OOPP8bQoUMREBCgs3XW5oMPPsDHH3+M3NxcvW+LqLFhMCJqBPr27Yv8/HwcP35c07Zv3z54e3vjyJEjKCoq0rTv2rUL/v7+aNGihTFKNUn379/HN998g1deecUg22vfvj1atGiB//3vfwbZHlFjwmBE1Ai0bt0aPj4+2L17t6Zt9+7dGDp0KAIDA3H48GGt9r59+wIAtm7dit69e8PZ2Rlubm545plntHqSli9fjiZNmkClUmltb+jQoRg3bhwAQKVSITY2FoGBgbCxsUHHjh3xww8/1FprXZaPiIjAxIkT8d5778HV1RXe3t6YO3eu1jL37t3D6NGjYWdnBx8fHyxZskTTS/Tyyy9jz549+PTTTyEIAgRB0DoEplKpHrjuqn777TdYWVnhiSee0Grfv38/LCwstILn1atXIQgCrl27hoiICLzzzjuYPHkyXFxc4OXlhRUrVqCgoABjx46Fg4MDgoKC8Pvvv1fb5uDBg7F+/foH1kVE8jEYETUSffv2xa5duzTPd+3ahYiICISHh2vaCwsLceTIEU0wKigoQExMDI4fP46EhAQoFAoMHz5cE4See+453LlzR2u92dnZ2Lp1K0aPHg0AiI2NxerVqxEXF4dz585hypQpePHFF7Fnz54a66zr8v/5z39gZ2eHI0eO4JNPPsH8+fOxfft2zfyYmBgcOHAAP//8M7Zv3459+/YhMTERAPDpp5+iR48eeO2115CWloa0tDT4+fnVed1V7du3D127dq3WnpSUhODgYFhbW2vaTp48CRcXFzRr1kyzLXd3dxw9ehTvvPMO3nzzTTz33HPo2bMnEhMT0b9/f7z00ku4f/++1rrDwsJw9OhRFBcX11oXET0CkYgahRUrVoh2dnZiaWmpmJeXJ5qbm4uZmZni2rVrxT59+oiiKIoJCQkiAPHatWs1ruP27dsiAPHMmTOatqFDh4rjxo3TPP/666/FJk2aiEqlUiwqKhJtbW3FgwcPaq3nlVdeEUeOHCmKoiiGh4eLkyZNEkVRrNPy5a/p3bu31jLdunUTp02bJoqiKObl5YkWFhbi999/r5mfk5Mj2traarZVebuVPWzdNan6GZR79dVXxTFjxmi1zZ49W4yIiKhxW2VlZaKdnZ340ksvadrS0tJEAOKhQ4e01nPq1CkRgHj16tVa6yIi+dhjRNRIREREoKCgAMeOHcO+ffvQqlUreHh4IDw8XDPOaPfu3WjevDn8/f0BAJcuXcLIkSPRvHlzODo6agYWp6amatY7evRobNy4UdNzsWbNGrzwwgtQKBS4fPky7t+/j379+sHe3l4zrV69usbB3XKW79Chg9ZzHx8fZGZmAgCuXLmC0tJShIWFaeY7OTmhdevWdfqsHrTumhQWFmr1CpVLSkpCp06dtNpOnjyp1VZ5W2ZmZnBzc0NISIimzcvLCwCqbd/GxgYAqvUkEdHjMTd2AURkGEFBQWjatCl27dqFu3fvIjw8HADQpEkT+Pn54eDBg9i1axeeeuopzWsGDx6MZs2aYcWKFZqxRO3bt0dJSYnWMqIoYsuWLejWrRv27duHJUuWAJDOfAOALVu2wNfXV6seKyurajXKWd7CwkLruSAI1cY6PSq563Z3d8fdu3e12pRKJc6ePYvOnTtrtScmJuLvf//7A7dVuU0QBACotv3s7GwAgIeHx8PeDhHJwGBE1Ij07dsXu3fvxt27dzF16lRNe58+ffD777/j6NGjePPNNwFI1+VJTk7GihUr8OSTTwKQBhNXZW1tjWeffRZr1qzB5cuX0bp1a3Tp0gUA0LZtW1hZWSE1NVUTxB5E7vK1ad68OSwsLHDs2DFN71dubi4uXryIPn36AAAsLS2hVCofeRuVde7cudoZYsnJySgqKkKTJk00bYcOHcLNmzer9SI9irNnz6Jp06Zwd3d/7HURUQUGI6JGpG/fvnj77bdRWlqqFTzCw8MxYcIElJSUaAZeu7i4wM3NDcuXL4ePjw9SU1Mxffr0Gtc7evRoPPPMMzh37hxefPFFTbuDgwPeffddTJkyBSqVCr1790Zubi4OHDgAR0dHREdHa61H7vK1cXBwQHR0NKZOnQpXV1d4enpizpw5UCgUmh6YgIAAHDlyBFevXoW9vT1cXV2hUDza6IKoqCjMmDEDd+/ehYuLCwDpMBoAfP7555g4cSIuX76MiRMnAoBWj9uj2rdvH/r37//Y6yEibRxjRNSI9O3bF4WFhQgKCtKMXQGkYHTv3j3Naf0AoFAosH79epw4cQLt27fHlClT8K9//avG9T711FNwdXVFcnIyRo0apTXvww8/xKxZsxAbG4vg4GAMGDAAW7ZsQWBgYI3rkrt8bRYvXowePXrgmWeeQWRkJHr16qV1hti7774LMzMztG3bFh4eHlrjpuQKCQlBly5dsGHDBk1bUlISoqKicOXKFYSEhGDmzJmYN28eHB0d8dlnnz3ytgCgqKgImzdvxmuvvfZY6yGi6gRRFEVjF0FEpG8FBQXw9fXFokWL9HIhxi1btmDq1Kk4e/YsFAoFoqKi0K1bN3z00Uc639ZXX32FTZs24Y8//tD5uokaOx5KI6IG6eTJk7hw4QLCwsKQm5uL+fPnA5AuPqkPgwYNwqVLl3Dz5k34+fnh1KlTmotc6pqFhQU+//xzvaybqLFjjxERNUgnT57Eq6++iuTkZFhaWqJr165YvHix1qnw+pKeng4fHx+cO3cObdu21fv2iEh3GIyIiIiI1Dj4moiIiEiNwYiIiIhIjcGIiIiISI3BiIiIiEiNwYiIiIhIjcGIiIiISI3BiIiIiEiNwYiIiIhIjcGIiIiISI3BiIiIiEiNwYiIiIhI7f8BzTDKAf45bgsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for index in range(4):\n", " amp = sim_data[\"bus_mode\"].amps.sel(mode_index=index, direction=\"+\")\n", " T = np.abs(amp)**2\n", " plt.plot(ldas, T, label=f'TE{index}')\n", " plt.xlim(1.5, 1.6)\n", " plt.ylim(0, 1)\n", " plt.xlabel(\"Wavelength ($\\mu$m)\")\n", " plt.ylabel(\"Transmission to bus waveguide\")\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "99b4b9d3", "metadata": {}, "source": [ "Besides I3 and I7, other input ports can also be examined systematically, which we do not explicitly shown in this notebook. " ] }, { "cell_type": "code", "execution_count": null, "id": "4f0a3f31", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.0" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "00091f280c974b42a4cd360d66a98345": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_c06a196d107b4e56849e1ee84184a128", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 3.63e-05) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\n
\n", "text/plain": "% done (field decay = 3.63e-05) \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "01b0db9cbbc94121af67c229b4134b83": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "075dfefee2684cd88143e6be75c50b59": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_4b0ab2e398c94c1387b536882b314355", "msg_id": "", "outputs": [ { "data": { "text/html": "
🚶  Finishing 'evanescent_coupler_te1'...\n
\n", "text/plain": "\u001b[32m🚶 \u001b[0m \u001b[1;32mFinishing 'evanescent_coupler_te1'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "080e41c4a1a047f897299bcc66e6d1a0": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_d097b35e7b384d1390325fe3bdd51dd2", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 2.36e-06) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\n
\n", "text/plain": "% done (field decay = 2.36e-06) \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "0994aaa59b82439eb0216acbe2e991b2": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_b6bd256fc87f4e46a330bd571ee4ac5d", "msg_id": "", "outputs": [ { "data": { "text/html": "
🚶  Starting 'evanescent_coupler_tm2'...\n
\n", "text/plain": "\u001b[32m🚶 \u001b[0m \u001b[1;32mStarting 'evanescent_coupler_tm2'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "0b5d328d111d40f891c5151cb60de00d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "115d2f738ef94fb89c574da6e6235fde": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_49b231de68ba422fa34fd82490262526", "msg_id": "", "outputs": [ { "data": { "text/html": "
🚶  Finishing '8_channel_demultiplexer_I7'...\n
\n", "text/plain": "\u001b[32m🚶 \u001b[0m \u001b[1;32mFinishing '8_channel_demultiplexer_I7'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "15239b0ab1c04d1cbdb82c2fc6a5ea6d": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_baa1050b3f5a46008582d66e838ad490", "msg_id": "", "outputs": [ { "data": { "text/html": "
🚶  Finishing '8_channel_demultiplexer_I3'...\n
\n", "text/plain": "\u001b[32m🚶 \u001b[0m \u001b[1;32mFinishing '8_channel_demultiplexer_I3'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "1a32f181874944178d53e55eeea90a24": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_b63a76f5a269420098a0019214403e6b", "msg_id": "", "outputs": [ { "data": { "text/html": "
🚶  Finishing 'evanescent_coupler_te3'...\n
\n", "text/plain": "\u001b[32m🚶 \u001b[0m \u001b[1;32mFinishing 'evanescent_coupler_te3'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "1ad8ccad1d8b45e19e931b508299c90a": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_2ac5224e97144cce9b44262fc6e3672b", "msg_id": "", "outputs": [ { "data": { "text/html": "
 simulation.json ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%10.2/10.2 kB?0:00:00\n
\n", "text/plain": "\u001b[1;31m↑\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m10.2/10.2 kB\u001b[0m • \u001b[31m?\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "1cf4355027bf44fd855af9ac46e77ac8": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_75909859756040d7a52a7e8845c0cf73", "msg_id": "", "outputs": [ { "data": { "text/html": "
 monitor_data.hdf5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%11.7/11.7 MB28.1 MB/s0:00:00\n
\n", "text/plain": "\u001b[1;32m↓\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m11.7/11.7 MB\u001b[0m • \u001b[31m28.1 MB/s\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "20d451530795466fa353085d58919411": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_bf881d0def4a44809b29a42ceb087d3f", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 3.74e-05) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\n
\n", "text/plain": "% done (field decay = 3.74e-05) \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "259007a4e09c436ba7ee92bcf23c7398": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_f729159213464abe941ac14f3d34a329", "msg_id": "", "outputs": [ { "data": { "text/html": "
 monitor_data.hdf5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%8.1/8.1 MB35.4 MB/s0:00:00\n
\n", "text/plain": "\u001b[1;32m↓\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m8.1/8.1 MB\u001b[0m • \u001b[31m35.4 MB/s\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "2ac5224e97144cce9b44262fc6e3672b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2e505155f08d4f7d918eba719e023414": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3703031fd35b400f95d59c684494dd3c": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_d7cdb6614c55437987bc128261417068", "msg_id": "", "outputs": [ { "data": { "text/html": "
🚶  Finishing 'evanescent_coupler_tm3'...\n
\n", "text/plain": "\u001b[32m🚶 \u001b[0m \u001b[1;32mFinishing 'evanescent_coupler_tm3'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "3703133060c941a0b5d183256403b266": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_aafbbce14d6148b08a10f733e1246059", "msg_id": "", "outputs": [ { "data": { "text/html": "
 simulation.json ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%10.2/10.2 kB?0:00:00\n
\n", "text/plain": "\u001b[1;31m↑\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m10.2/10.2 kB\u001b[0m • \u001b[31m?\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "3965d28696c945448a4c3e7efa92bd3b": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_8e10196f45ee481b8ec98fc6b3a7b0da", "msg_id": "", "outputs": [ { "data": { "text/html": "
 simulation.json ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%10.2/10.2 kB?0:00:00\n
\n", "text/plain": "\u001b[1;31m↑\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m10.2/10.2 kB\u001b[0m • \u001b[31m?\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "3b59bbba23e74111849fee46d9fcd664": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "432f412c59a046ec8cd340da1a329e41": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4750b8322c1a42a1817573d216d2fc50": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_d0f293f515cc44a8b2494e38666fe26f", "msg_id": "", "outputs": [ { "data": { "text/html": "
 monitor_data.hdf5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%229.7/229.7 MB66.4 MB/s0:00:00\n
\n", "text/plain": "\u001b[1;32m↓\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m229.7/229.7 MB\u001b[0m • \u001b[31m66.4 MB/s\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "48536f4035194a0d8befd3f35a00f18e": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_81c6364b37c643eca019048296420793", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 5.57e-01) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\n
\n", "text/plain": "% done (field decay = 5.57e-01) \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "49b231de68ba422fa34fd82490262526": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4b0ab2e398c94c1387b536882b314355": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4b6abd32a43647f7aa42bb4d6e60d5ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4d52325674384672859452ff12cc174c": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_a61315fb4a654ca2b97b30230260e611", "msg_id": "", "outputs": [ { "data": { "text/html": "
🏃  Starting 'evanescent_coupler_tm3'...\n
\n", "text/plain": "\u001b[32m🏃 \u001b[0m \u001b[1;32mStarting 'evanescent_coupler_tm3'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "515f54960b9a4427a65940315cc95016": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_eecfea44a8a6435894b0512bc90bdc88", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 7.58e-06) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\n
\n", "text/plain": "% done (field decay = 7.58e-06) \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "56ea6f69d5224d3aa8aef85128a8d728": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_cdea62582e084d51a93c36cfbb8e5713", "msg_id": "", "outputs": [ { "data": { "text/html": "
🚶  Starting '8_channel_demultiplexer_I7'...\n
\n", "text/plain": "\u001b[32m🚶 \u001b[0m \u001b[1;32mStarting '8_channel_demultiplexer_I7'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "5ba3cbd445e14d7f9f8ba9d3cbcf5d05": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_432f412c59a046ec8cd340da1a329e41", "msg_id": "", "outputs": [ { "data": { "text/html": "
 simulation.json ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%10.2/10.2 kB?0:00:00\n
\n", "text/plain": "\u001b[1;31m↑\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m10.2/10.2 kB\u001b[0m • \u001b[31m?\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "5d9526ab029c46cdaea3d2691c71e706": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5e0ecb6dfe9047c79bed5232224f43f0": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_e426eb69de9745fe8e05e96ab776eff6", "msg_id": "", "outputs": [ { "data": { "text/html": "
🏃  Finishing 'evanescent_coupler_tm1'...\n
\n", "text/plain": "\u001b[32m🏃 \u001b[0m \u001b[1;32mFinishing 'evanescent_coupler_tm1'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "6a41f6a6eb2b4d5aba61580b06be0e6f": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_da66ef767d5049af9ddf8ba9c6d84f0a", "msg_id": "", "outputs": [ { "data": { "text/html": "
🏃  Starting 'evanescent_coupler_te3'...\n
\n", "text/plain": "\u001b[32m🏃 \u001b[0m \u001b[1;32mStarting 'evanescent_coupler_te3'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "6a8be15e28c646f19f693b70215457c0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6ef964fef658449a96b2efcba6dc31d6": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_01b0db9cbbc94121af67c229b4134b83", "msg_id": "", "outputs": [ { "data": { "text/html": "
🏃  Starting 'evanescent_coupler_te1'...\n
\n", "text/plain": "\u001b[32m🏃 \u001b[0m \u001b[1;32mStarting 'evanescent_coupler_te1'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "75909859756040d7a52a7e8845c0cf73": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "803e29ea905b4ca0b23e4cc3cb7c89de": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "81c6364b37c643eca019048296420793": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "828cad061ee2497c84a1cb2b51a5cab4": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_3b59bbba23e74111849fee46d9fcd664", "msg_id": "", "outputs": [ { "data": { "text/html": "
 simulation.json ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%50.3/50.3 kB?0:00:00\n
\n", "text/plain": "\u001b[1;31m↑\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m50.3/50.3 kB\u001b[0m • \u001b[31m?\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "82ae029428a74f40a07f9f74db78b504": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_6a8be15e28c646f19f693b70215457c0", "msg_id": "", "outputs": [ { "data": { "text/html": "
 monitor_data.hdf5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%9.8/9.8 MB33.9 MB/s0:00:00\n
\n", "text/plain": "\u001b[1;32m↓\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m9.8/9.8 MB\u001b[0m • \u001b[31m33.9 MB/s\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "832bca11297e4ac3ae1ab28a21a5288d": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_4b6abd32a43647f7aa42bb4d6e60d5ac", "msg_id": "", "outputs": [ { "data": { "text/html": "
🚶  Starting '8_channel_demultiplexer_I3'...\n
\n", "text/plain": "\u001b[32m🚶 \u001b[0m \u001b[1;32mStarting '8_channel_demultiplexer_I3'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "8e10196f45ee481b8ec98fc6b3a7b0da": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "93649b1013564bd9b38ecdf2085b2df8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "94244c6b381d4a82be7a81a912903055": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_0b5d328d111d40f891c5151cb60de00d", "msg_id": "", "outputs": [ { "data": { "text/html": "
 simulation.json ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%10.1/10.1 kB?0:00:00\n
\n", "text/plain": "\u001b[1;31m↑\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m10.1/10.1 kB\u001b[0m • \u001b[31m?\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "9886b478029449d4811748f89e5171cb": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_f4b20cd229ee45e4b7cdf9883fba95af", "msg_id": "", "outputs": [ { "data": { "text/html": "
🚶  Starting 'evanescent_coupler_te2'...\n
\n", "text/plain": "\u001b[32m🚶 \u001b[0m \u001b[1;32mStarting 'evanescent_coupler_te2'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "9b85857b1a9a4005829d7a3348a24973": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_9ef6f5606fdb46fe931dc094a8bc87c9", "msg_id": "", "outputs": [ { "data": { "text/html": "
 monitor_data.hdf5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%174.8/174.8 MB59.3 MB/s0:00:00\n
\n", "text/plain": "\u001b[1;32m↓\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m174.8/174.8 MB\u001b[0m • \u001b[31m59.3 MB/s\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "9cc97c7ee4de4a289be1f56c6e57e842": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_2e505155f08d4f7d918eba719e023414", "msg_id": "", "outputs": [ { "data": { "text/html": "
 simulation.json ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%10.1/10.1 kB?0:00:00\n
\n", "text/plain": "\u001b[1;31m↑\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m10.1/10.1 kB\u001b[0m • \u001b[31m?\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "9ef6f5606fdb46fe931dc094a8bc87c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a61315fb4a654ca2b97b30230260e611": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a83ce0446ffe4eaebd6cf317532bc98b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "aa870198ed5a474cb38fe100c9740202": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_a83ce0446ffe4eaebd6cf317532bc98b", "msg_id": "", "outputs": [ { "data": { "text/html": "
🏃  Finishing 'evanescent_coupler_te2'...\n
\n", "text/plain": "\u001b[32m🏃 \u001b[0m \u001b[1;32mFinishing 'evanescent_coupler_te2'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "aafbbce14d6148b08a10f733e1246059": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ac7f46d0c77442aaaf889fff3366cce8": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_5d9526ab029c46cdaea3d2691c71e706", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 3.45e-07) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\n
\n", "text/plain": "% done (field decay = 3.45e-07) \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "ae9265a98c6049bd9408f59bd7ba7922": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_b75d62f9dc084e48918885405d3e6fed", "msg_id": "", "outputs": [ { "data": { "text/html": "
 monitor_data.hdf5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%10.8/10.8 MB31.5 MB/s0:00:00\n
\n", "text/plain": "\u001b[1;32m↓\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m10.8/10.8 MB\u001b[0m • \u001b[31m31.5 MB/s\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "b63a76f5a269420098a0019214403e6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b6bd256fc87f4e46a330bd571ee4ac5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b75d62f9dc084e48918885405d3e6fed": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "baa1050b3f5a46008582d66e838ad490": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bee1f73021a8439f8df589781a6b175d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bf881d0def4a44809b29a42ceb087d3f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c06a196d107b4e56849e1ee84184a128": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c22be6ee507543d3b61979faad48f0f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c76c6d42342f4606a2e09897c423f553": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c90052443ad64ac1bc95ff6c926d8a56": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_c22be6ee507543d3b61979faad48f0f3", "msg_id": "", "outputs": [ { "data": { "text/html": "
 monitor_data.hdf5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%13.0/13.0 MB34.5 MB/s0:00:00\n
\n", "text/plain": "\u001b[1;32m↓\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m13.0/13.0 MB\u001b[0m • \u001b[31m34.5 MB/s\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "cdea62582e084d51a93c36cfbb8e5713": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d097b35e7b384d1390325fe3bdd51dd2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d0f293f515cc44a8b2494e38666fe26f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d5b8fdc413c941199e8f27cd61a1036f": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_c76c6d42342f4606a2e09897c423f553", "msg_id": "", "outputs": [ { "data": { "text/html": "
🚶  Starting 'evanescent_coupler_tm1'...\n
\n", "text/plain": "\u001b[32m🚶 \u001b[0m \u001b[1;32mStarting 'evanescent_coupler_tm1'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "d62958e499474a26a76dbbbf956dbc57": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d7cdb6614c55437987bc128261417068": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d7e2996f33a3439683ae86ed456bcae5": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_803e29ea905b4ca0b23e4cc3cb7c89de", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 9.03e-06) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\n
\n", "text/plain": "% done (field decay = 9.03e-06) \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "da66ef767d5049af9ddf8ba9c6d84f0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e426eb69de9745fe8e05e96ab776eff6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e69586f27b8849e688d4c9298bb79b7a": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_d62958e499474a26a76dbbbf956dbc57", "msg_id": "", "outputs": [ { "data": { "text/html": "
 monitor_data.hdf5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%13.4/13.4 MB24.1 MB/s0:00:00\n
\n", "text/plain": "\u001b[1;32m↓\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m13.4/13.4 MB\u001b[0m • \u001b[31m24.1 MB/s\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "eecfea44a8a6435894b0512bc90bdc88": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ef6da3c97333466f9a77342f4a551752": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_bee1f73021a8439f8df589781a6b175d", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 1.17e-04) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\n
\n", "text/plain": "% done (field decay = 1.17e-04) \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "f27121c9fc354cfcbe2b753f8efcc15f": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_f94e4ff114b94192b60409550ff592fb", "msg_id": "", "outputs": [ { "data": { "text/html": "
🚶  Finishing 'evanescent_coupler_tm2'...\n
\n", "text/plain": "\u001b[32m🚶 \u001b[0m \u001b[1;32mFinishing 'evanescent_coupler_tm2'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "f4b20cd229ee45e4b7cdf9883fba95af": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f729159213464abe941ac14f3d34a329": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f94e4ff114b94192b60409550ff592fb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "fd07ff16554c45b39c5d7391fd1ba035": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_93649b1013564bd9b38ecdf2085b2df8", "msg_id": "", "outputs": [ { "data": { "text/html": "
 simulation.json ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%50.3/50.3 kB?0:00:00\n
\n", "text/plain": "\u001b[1;31m↑\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m50.3/50.3 kB\u001b[0m • \u001b[31m?\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }