tidy3d.FieldProjectionCartesianMonitor
tidy3d.FieldProjectionCartesianMonitor#
- class tidy3d.FieldProjectionCartesianMonitor#
Bases:
tidy3d.components.monitor.AbstractFieldProjectionMonitorMonitorthat samples electromagnetic near fields in the frequency domain and projects them on a Cartesian observation plane.- Parameters
center (Tuple[float, float, float] = (0.0, 0.0, 0.0)) – [units = um]. Center of object in x, y, and z.
size (Tuple[NonNegativeFloat, NonNegativeFloat, NonNegativeFloat]) – [units = um]. Size in x, y, and z directions.
name (ConstrainedStrValue) – Unique name for monitor.
freqs (Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]) – [units = Hz]. Array or list of frequencies stored by the field monitor.
apodization (ApodizationSpec = ApodizationSpec(start=None, end=None, width=None, type='ApodizationSpec')) – Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.
normal_dir (Optional[Literal['+', '-']] = None) – Direction of the surface monitor’s normal vector w.r.t. the positive x, y or z unit vectors. Must be one of
'+'or'-'. Applies to surface monitors only, and defaults to'+'if not provided.exclude_surfaces (Optional[Tuple[Literal['x-', 'x+', 'y-', 'y+', 'z-', 'z+'], ...]] = None) – Surfaces to exclude in the integration, if a volume monitor.
custom_origin (Optional[Tuple[float, float, float]] = None) – [units = um]. Local origin used for defining observation points. If
None, uses the monitor’s center.far_field_approx (bool = True) – Whether to enable the far field approximation when projecting fields.
proj_axis (Literal[0, 1, 2]) – Axis along which the observation plane is oriented.
proj_distance (float = 1000000.0) – [units = um]. Signed distance of the projection plane along
proj_axis. from the plane containinglocal_origin.x (Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]) – [units = um]. Local x observation coordinates w.r.t.
local_originandproj_axis. Whenproj_axisis 0, this corresponds to the global y axis. Whenproj_axisis 1, this corresponds to the global x axis. Whenproj_axisis 2, this corresponds to the global x axis.y (Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]) – [units = um]. Local y observation coordinates w.r.t.
local_originandproj_axis. Whenproj_axisis 0, this corresponds to the global z axis. Whenproj_axisis 1, this corresponds to the global z axis. Whenproj_axisis 2, this corresponds to the global y axis.
Example
>>> monitor = FieldProjectionCartesianMonitor( ... center=(1,2,3), ... size=(2,2,2), ... freqs=[250e12, 300e12], ... name='n2f_monitor', ... custom_origin=(1,2,3), ... x=[-1, 0, 1], ... y=[-2, -1, 0, 1, 2], ... proj_axis=2, ... proj_distance=5 ... )
Show JSON schema
{ "title": "FieldProjectionCartesianMonitor", "description": ":class:`Monitor` that samples electromagnetic near fields in the frequency domain\nand projects them on a Cartesian observation plane.\n\nParameters\n----------\ncenter : Tuple[float, float, float] = (0.0, 0.0, 0.0)\n [units = um]. Center of object in x, y, and z.\nsize : Tuple[NonNegativeFloat, NonNegativeFloat, NonNegativeFloat]\n [units = um]. Size in x, y, and z directions.\nname : ConstrainedStrValue\n Unique name for monitor.\nfreqs : Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]\n [units = Hz]. Array or list of frequencies stored by the field monitor.\napodization : ApodizationSpec = ApodizationSpec(start=None, end=None, width=None, type='ApodizationSpec')\n Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.\nnormal_dir : Optional[Literal['+', '-']] = None\n Direction of the surface monitor's normal vector w.r.t. the positive x, y or z unit vectors. Must be one of ``'+'`` or ``'-'``. Applies to surface monitors only, and defaults to ``'+'`` if not provided.\nexclude_surfaces : Optional[Tuple[Literal['x-', 'x+', 'y-', 'y+', 'z-', 'z+'], ...]] = None\n Surfaces to exclude in the integration, if a volume monitor.\ncustom_origin : Optional[Tuple[float, float, float]] = None\n [units = um]. Local origin used for defining observation points. If ``None``, uses the monitor's center.\nfar_field_approx : bool = True\n Whether to enable the far field approximation when projecting fields.\nproj_axis : Literal[0, 1, 2]\n Axis along which the observation plane is oriented.\nproj_distance : float = 1000000.0\n [units = um]. Signed distance of the projection plane along ``proj_axis``. from the plane containing ``local_origin``.\nx : Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]\n [units = um]. Local x observation coordinates w.r.t. ``local_origin`` and ``proj_axis``. When ``proj_axis`` is 0, this corresponds to the global y axis. When ``proj_axis`` is 1, this corresponds to the global x axis. When ``proj_axis`` is 2, this corresponds to the global x axis. \ny : Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]\n [units = um]. Local y observation coordinates w.r.t. ``local_origin`` and ``proj_axis``. When ``proj_axis`` is 0, this corresponds to the global z axis. When ``proj_axis`` is 1, this corresponds to the global z axis. When ``proj_axis`` is 2, this corresponds to the global y axis. \n\nExample\n-------\n>>> monitor = FieldProjectionCartesianMonitor(\n... center=(1,2,3),\n... size=(2,2,2),\n... freqs=[250e12, 300e12],\n... name='n2f_monitor',\n... custom_origin=(1,2,3),\n... x=[-1, 0, 1],\n... y=[-2, -1, 0, 1, 2],\n... proj_axis=2,\n... proj_distance=5\n... )", "type": "object", "properties": { "type": { "title": "Type", "default": "FieldProjectionCartesianMonitor", "enum": [ "FieldProjectionCartesianMonitor" ], "type": "string" }, "center": { "title": "Center", "description": "Center of object in x, y, and z.", "default": [ 0.0, 0.0, 0.0 ], "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number" }, { "type": "number" }, { "type": "number" } ] }, "size": { "title": "Size", "description": "Size in x, y, and z directions.", "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 } ] }, "name": { "title": "Name", "description": "Unique name for monitor.", "minLength": 1, "type": "string" }, "freqs": { "title": "Frequencies", "description": "Array or list of frequencies stored by the field monitor.", "units": "Hz", "anyOf": [ { "type": "array", "items": { "type": "number" } }, { "title": "ArrayLike", "type": "ArrayLike" } ] }, "apodization": { "title": "Apodization Specification", "description": "Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.", "default": { "start": null, "end": null, "width": null, "type": "ApodizationSpec" }, "allOf": [ { "$ref": "#/definitions/ApodizationSpec" } ] }, "normal_dir": { "title": "Normal vector orientation", "description": "Direction of the surface monitor's normal vector w.r.t. the positive x, y or z unit vectors. Must be one of ``'+'`` or ``'-'``. Applies to surface monitors only, and defaults to ``'+'`` if not provided.", "enum": [ "+", "-" ], "type": "string" }, "exclude_surfaces": { "title": "Excluded surfaces", "description": "Surfaces to exclude in the integration, if a volume monitor.", "type": "array", "items": { "enum": [ "x-", "x+", "y-", "y+", "z-", "z+" ], "type": "string" } }, "custom_origin": { "title": "Local origin", "description": "Local origin used for defining observation points. If ``None``, uses the monitor's center.", "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number" }, { "type": "number" }, { "type": "number" } ] }, "far_field_approx": { "title": "Far field approximation", "description": "Whether to enable the far field approximation when projecting fields.", "default": true, "type": "boolean" }, "proj_axis": { "title": "Projection plane axis", "description": "Axis along which the observation plane is oriented.", "enum": [ 0, 1, 2 ], "type": "integer" }, "proj_distance": { "title": "Projection distance", "description": "Signed distance of the projection plane along ``proj_axis``. from the plane containing ``local_origin``.", "default": 1000000.0, "units": "um", "type": "number" }, "x": { "title": "Local x observation coordinates", "description": "Local x observation coordinates w.r.t. ``local_origin`` and ``proj_axis``. When ``proj_axis`` is 0, this corresponds to the global y axis. When ``proj_axis`` is 1, this corresponds to the global x axis. When ``proj_axis`` is 2, this corresponds to the global x axis. ", "units": "um", "anyOf": [ { "type": "array", "items": { "type": "number" } }, { "title": "ArrayLike", "type": "ArrayLike" } ] }, "y": { "title": "Local y observation coordinates", "description": "Local y observation coordinates w.r.t. ``local_origin`` and ``proj_axis``. When ``proj_axis`` is 0, this corresponds to the global z axis. When ``proj_axis`` is 1, this corresponds to the global z axis. When ``proj_axis`` is 2, this corresponds to the global y axis. ", "units": "um", "anyOf": [ { "type": "array", "items": { "type": "number" } }, { "title": "ArrayLike", "type": "ArrayLike" } ] } }, "required": [ "size", "name", "freqs", "proj_axis", "x", "y" ], "additionalProperties": false, "definitions": { "ApodizationSpec": { "title": "ApodizationSpec", "description": "Stores specifications for the apodizaton of frequency-domain monitors.\n\nParameters\n----------\nstart : Optional[NonNegativeFloat] = None\n [units = sec]. Defines the time at which the start apodization ends.\nend : Optional[NonNegativeFloat] = None\n [units = sec]. Defines the time at which the end apodization begins.\nwidth : Optional[PositiveFloat] = None\n [units = sec]. Characteristic decay length of the apodization function.\n\nExample\n-------\n>>> apod_spec = ApodizationSpec(start=1, end=2, width=0.5)", "type": "object", "properties": { "start": { "title": "Start Interval", "description": "Defines the time at which the start apodization ends.", "units": "sec", "minimum": 0, "type": "number" }, "end": { "title": "End Interval", "description": "Defines the time at which the end apodization begins.", "units": "sec", "minimum": 0, "type": "number" }, "width": { "title": "Apodization Width", "description": "Characteristic decay length of the apodization function.", "units": "sec", "exclusiveMinimum": 0, "type": "number" }, "type": { "title": "Type", "default": "ApodizationSpec", "enum": [ "ApodizationSpec" ], "type": "string" } }, "additionalProperties": false } } }
- attribute apodization: ApodizationSpec = ApodizationSpec(start=None, end=None, width=None, type='ApodizationSpec')#
Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.
- Validated by
check_excluded_surfacesnormal_dir_exists_for_surface
- attribute center: Coordinate = (0.0, 0.0, 0.0)#
Center of object in x, y, and z.
- Validated by
_center_not_infcheck_excluded_surfacesnormal_dir_exists_for_surface
- attribute custom_origin: Coordinate = None#
Local origin used for defining observation points. If
None, uses the monitor’s center.- Validated by
check_excluded_surfacesnormal_dir_exists_for_surface
- attribute exclude_surfaces: Tuple[Literal['x-', 'x+', 'y-', 'y+', 'z-', 'z+'], ...] = None#
Surfaces to exclude in the integration, if a volume monitor.
- Validated by
check_excluded_surfacesnormal_dir_exists_for_surface
- attribute far_field_approx: bool = True#
Whether to enable the far field approximation when projecting fields.
- Validated by
check_excluded_surfacesnormal_dir_exists_for_surface
- attribute freqs: FreqArray [Required]#
Array or list of frequencies stored by the field monitor.
- Validated by
_freqs_non_emptycheck_excluded_surfacesnormal_dir_exists_for_surface
- attribute name: str [Required]#
Unique name for monitor.
- Constraints
minLength = 1
- Validated by
check_excluded_surfacesnormal_dir_exists_for_surface
- attribute normal_dir: Direction = None#
Direction of the surface monitor’s normal vector w.r.t. the positive x, y or z unit vectors. Must be one of
'+'or'-'. Applies to surface monitors only, and defaults to'+'if not provided.- Validated by
check_excluded_surfacesnormal_dir_exists_for_surface
- attribute proj_axis: Literal[0, 1, 2] [Required]#
Axis along which the observation plane is oriented.
- Validated by
check_excluded_surfacesnormal_dir_exists_for_surface
- attribute proj_distance: float = 1000000.0#
Signed distance of the projection plane along
proj_axis. from the plane containinglocal_origin.- Validated by
check_excluded_surfacesnormal_dir_exists_for_surface
- attribute size: Size [Required]#
Size in x, y, and z directions.
- Validated by
check_excluded_surfacesnormal_dir_exists_for_surface
- attribute x: Union[Tuple[float, ...], tidy3d.components.types.ArrayLike_dtype=<class 'float'>_ndim=1] [Required]#
Local x observation coordinates w.r.t.
local_originandproj_axis. Whenproj_axisis 0, this corresponds to the global y axis. Whenproj_axisis 1, this corresponds to the global x axis. Whenproj_axisis 2, this corresponds to the global x axis.- Validated by
check_excluded_surfacesnormal_dir_exists_for_surface
- attribute y: Union[Tuple[float, ...], tidy3d.components.types.ArrayLike_dtype=<class 'float'>_ndim=1] [Required]#
Local y observation coordinates w.r.t.
local_originandproj_axis. Whenproj_axisis 0, this corresponds to the global z axis. Whenproj_axisis 1, this corresponds to the global z axis. Whenproj_axisis 2, this corresponds to the global y axis.- Validated by
check_excluded_surfacesnormal_dir_exists_for_surface
- add_ax_labels_lims(axis: Literal[0, 1, 2], ax: matplotlib.axes._axes.Axes, buffer: float = 0.3) matplotlib.axes._axes.Axes#
Sets the x,y labels based on
axisand the extends based onself.bounds.- Parameters
axis (int) – Integer index into ‘xyz’ (0,1,2).
ax (matplotlib.axes._subplots.Axes) – Matplotlib axes to add labels and limits on.
buffer (float = 0.3) – Amount of space to place around the limits on the + and - sides.
- Returns
The supplied or created matplotlib axes.
- Return type
matplotlib.axes._subplots.Axes
- classmethod add_type_field() None#
Automatically place “type” field with model name in the model field dictionary.
- static bounds_intersection(bounds1: Tuple[Tuple[float, float, float], Tuple[float, float, float]], bounds2: Tuple[Tuple[float, float, float], Tuple[float, float, float]]) Tuple[Tuple[float, float, float], Tuple[float, float, float]]#
Return the bounds that are the intersection of two bounds.
- static car_2_sph(x: float, y: float, z: float) Tuple[float, float, float]#
Convert Cartesian to spherical coordinates.
- Parameters
x (float) – x coordinate relative to
local_origin.y (float) – y coordinate relative to
local_origin.z (float) – z coordinate relative to
local_origin.
- Returns
r, theta, and phi coordinates relative to
local_origin.- Return type
Tuple[float, float, float]
- static car_2_sph_field(f_x: float, f_y: float, f_z: float, theta: float, phi: float) Tuple[complex, complex, complex]#
Convert vector field components in cartesian coordinates to spherical.
- Parameters
f_x (float) – x component of the vector field.
f_y (float) – y component of the vector fielf.
f_z (float) – z component of the vector field.
theta (float) – polar angle (rad) of location of the vector field.
phi (float) – azimuthal angle (rad) of location of the vector field.
- Returns
radial (s), elevation (theta), and azimuthal (phi) components of the vector field in spherical coordinates.
- Return type
Tuple[float, float, float]
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel#
Copy a Tidy3dBaseModel. With
deep=Trueas default.
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny#
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod dict_from_file(fname: str, group_path: Optional[str] = None) dict#
Loads a dictionary containing the model from a .yaml, .json, or .hdf5 file.
- Parameters
fname (str) – Full path to the .yaml or .json file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to use as the base level.
- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod dict_from_hdf5(fname: str, group_path: str = '') dict#
Loads a dictionary containing the model contents from a .hdf5 file.
- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5')
- classmethod dict_from_json(fname: str) dict#
Load dictionary of the model from a .json file.
- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModelfrom.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_json(fname='folder/sim.json')
- classmethod dict_from_yaml(fname: str) dict#
Load dictionary of the model from a .yaml file.
- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModelfrom.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_yaml(fname='folder/sim.yaml')
- classmethod evaluate_inf_shape(shape: shapely.geometry.base.BaseGeometry) shapely.geometry.base.BaseGeometry#
Returns a copy of shape with inf vertices replaced by large numbers if polygon.
- classmethod from_bounds(rmin: Tuple[float, float, float], rmax: Tuple[float, float, float], **kwargs)#
Constructs a
Boxfrom minimum and maximum coordinate bounds- Parameters
rmin (Tuple[float, float, float]) – (x, y, z) coordinate of the minimum values.
rmax (Tuple[float, float, float]) – (x, y, z) coordinate of the maximum values.
Example
>>> b = Box.from_bounds(rmin=(-1, -2, -3), rmax=(3, 2, 1))
- classmethod from_file(fname: str, group_path: Optional[str] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
Loads a
Tidy3dBaseModelfrom .yaml, .json, or .hdf5 file.- Parameters
fname (str) – Full path to the .yaml or .json file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to use as the base level. Only for
.hdf5files. Starting / is optional.**parse_obj_kwargs – Keyword arguments passed to either pydantic’s
parse_objfunction when loading model.
- Returns
An instance of the component class calling load.
- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod from_hdf5(fname: str, group_path: str = '', **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
Loads
Tidy3dBaseModelinstance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_objmethod.
Example
>>> simulation.to_hdf5(fname='folder/sim.hdf5')
- classmethod from_json(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
Load a
Tidy3dBaseModelfrom .json file.- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModelfrom.- Returns
Tidy3dBaseModel– An instance of the component class calling load.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_objmethod.
Example
>>> simulation = Simulation.from_json(fname='folder/sim.json')
- classmethod from_orm(obj: Any) Model#
- classmethod from_yaml(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
Loads
Tidy3dBaseModelfrom .yaml file.- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModelfrom.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_objmethod.
- Returns
An instance of the component class calling from_yaml.
- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_yaml(fname='folder/sim.yaml')
- classmethod generate_docstring() str#
Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
- classmethod get_sub_model(group_path: str, model_dict: dict | list) dict#
Get the sub model for a given group path.
- static get_tuple_group_name(index: int) str#
Get the group name of a tuple element.
- static get_tuple_index(key_name: str) int#
Get the index into the tuple based on its group name.
- help(methods: bool = False) None#
Prints message describing the fields and methods of a
Tidy3dBaseModel.- Parameters
methods (bool = False) – Whether to also print out information about object’s methods.
Example
>>> simulation.help(methods=True)
- inside(x: numpy.ndarray[float], y: numpy.ndarray[float], z: numpy.ndarray[float]) numpy.ndarray[bool]#
For input arrays
x,y,zof arbitrary but identical shape, return an array with the same shape which isTruefor every point in zip(x, y, z) that is inside the volume of theGeometry, andFalseotherwise.- Parameters
x (np.ndarray[float]) – Array of point positions in x direction.
y (np.ndarray[float]) – Array of point positions in y direction.
z (np.ndarray[float]) – Array of point positions in z direction.
- Returns
Truefor every point that is inside the geometry.- Return type
np.ndarray[bool]
- inside_meshgrid(x: numpy.ndarray[float], y: numpy.ndarray[float], z: numpy.ndarray[float]) numpy.ndarray[bool]#
Perform
self.insideon a set of sorted 1D coordinates. Applies meshgrid to the supplied coordinates before checking inside.- Parameters
x (np.ndarray[float]) – 1D array of point positions in x direction.
y (np.ndarray[float]) – 1D array of point positions in y direction.
z (np.ndarray[float]) – 1D array of point positions in z direction.
- Returns
Array with shape
(x.size, y.size, z.size), which isTruefor every point that is inside the geometry.- Return type
np.ndarray[bool]
- intersections_2dbox(plane: tidy3d.components.geometry.Box) List[shapely.geometry.base.BaseGeometry]#
Returns list of shapely geoemtries representing the intersections of the geometry with a 2D box.
- Returns
List of 2D shapes that intersect plane. For more details refer to Shapely’s Documentaton.
- Return type
List[shapely.geometry.base.BaseGeometry]
- intersections_plane(x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None)#
Returns shapely geometry at plane specified by one non None value of x,y,z.
- Parameters
x (float = None) – Position of plane in x direction, only one of x,y,z can be specified to define plane.
y (float = None) – Position of plane in y direction, only one of x,y,z can be specified to define plane.
z (float = None) – Position of plane in z direction, only one of x,y,z can be specified to define plane.
- Returns
List of 2D shapes that intersect plane. For more details refer to Shapely’s Documentaton.
- Return type
List[shapely.geometry.base.BaseGeometry]
- intersects(other) bool#
Returns
Trueif twoGeometryhave intersecting .bounds.- Parameters
other (
Geometry) – Geometry to check intersection with.- Returns
Whether the rectangular bounding boxes of the two geometries intersect.
- Return type
bool
- intersects_axis_position(axis: int, position: float) bool#
Whether self intersects plane specified by a given position along a normal axis.
- Parameters
axis (int = None) – Axis nomral to the plane.
position (float = None) – Position of plane along the normal axis.
- Returns
Whether this geometry intersects the plane.
- Return type
bool
- intersects_plane(x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None) bool#
Whether self intersects plane specified by one non-None value of x,y,z.
- Parameters
x (float = None) – Position of plane in x direction, only one of x,y,z can be specified to define plane.
y (float = None) – Position of plane in y direction, only one of x,y,z can be specified to define plane.
z (float = None) – Position of plane in z direction, only one of x,y,z can be specified to define plane.
- Returns
Whether this geometry intersects the plane.
- Return type
bool
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- static kspace_2_sph(ux: float, uy: float, axis: Literal[0, 1, 2]) Tuple[float, float]#
Convert normalized k-space coordinates to angles.
- Parameters
ux (float) – normalized kx coordinate.
uy (float) – normalized ky coordinate.
axis (int) – axis along which the observation plane is oriented.
- Returns
theta and phi coordinates relative to
local_origin.- Return type
Tuple[float, float]
- classmethod map_to_coords(func: Callable[[float], float], shape: shapely.geometry.base.BaseGeometry) shapely.geometry.base.BaseGeometry#
Maps a function to each coordinate in shape.
- Parameters
func (Callable[[float], float]) – Takes old coordinate and returns new coordinate.
shape (shapely.geometry.base.BaseGeometry) – The shape to map this function to.
- Returns
A new copy of the input shape with the mapping applied to the coordinates.
- Return type
shapely.geometry.base.BaseGeometry
- classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model#
- static parse_xyz_kwargs(**xyz) Tuple[Literal[0, 1, 2], float]#
Turns x,y,z kwargs into index of the normal axis and position along that axis.
- Parameters
x (float = None) – Position of plane in x direction, only one of x,y,z can be specified to define plane.
y (float = None) – Position of plane in y direction, only one of x,y,z can be specified to define plane.
z (float = None) – Position of plane in z direction, only one of x,y,z can be specified to define plane.
- Returns
Index into xyz axis (0,1,2) and position along that axis.
- Return type
int, float
- plot(x: float = None, y: float = None, z: float = None, ax: matplotlib.axes._axes.Axes = None, **patch_kwargs) matplotlib.axes._axes.Axes#
Plot geometry cross section at single (x,y,z) coordinate.
- Parameters
x (float = None) – Position of plane in x direction, only one of x,y,z can be specified to define plane.
y (float = None) – Position of plane in y direction, only one of x,y,z can be specified to define plane.
z (float = None) – Position of plane in z direction, only one of x,y,z can be specified to define plane.
ax (matplotlib.axes._subplots.Axes = None) – Matplotlib axes to plot on, if not specified, one is created.
**patch_kwargs – Optional keyword arguments passed to the matplotlib patch plotting of structure. For details on accepted values, refer to Matplotlib’s documentation.
- Returns
The supplied or created matplotlib axes.
- Return type
matplotlib.axes._subplots.Axes
- plot_shape(shape: shapely.geometry.base.BaseGeometry, plot_params: tidy3d.components.viz.PlotParams, ax: matplotlib.axes._axes.Axes) matplotlib.axes._axes.Axes#
Defines how a shape is plotted on a matplotlib axes.
- static pop_axis(coord: Tuple[Any, Any, Any], axis: int) Tuple[Any, Tuple[Any, Any]]#
Separates coordinate at
axisindex from coordinates on the plane tangent toaxis.- Parameters
coord (Tuple[Any, Any, Any]) – Tuple of three values in original coordinate system.
axis (int) – Integer index into ‘xyz’ (0,1,2).
- Returns
The input coordinates are separated into the one along the axis provided and the two on the planar coordinates, like
axis_coord, (planar_coord1, planar_coord2).- Return type
Any, Tuple[Any, Any]
- reflect_points(points: tidy3d.components.types.ArrayLike_dtype=<class 'float'>_ndim=3, polar_axis: typing.Literal[0, 1, 2], angle_theta: float, angle_phi: float) tidy3d.components.types.ArrayLike_dtype=<class 'float'>_ndim=3#
Reflect a set of points in 3D at a plane passing through the coordinate origin defined and normal to a given axis defined in polar coordinates (theta, phi) w.r.t. the
polar_axiswhich can be 0, 1, or 2.- Parameters
points (ArrayLike[float]) – Array of shape
(3, ...).polar_axis (Axis) – Cartesian axis w.r.t. which the normal axis angles are defined.
angle_theta (float) – Polar angle w.r.t. the polar axis.
angle_phi (float) – Azimuth angle around the polar axis.
- static rotate_points(points: tidy3d.components.types.ArrayLike_dtype=<class 'float'>_ndim=3, axis: typing.Tuple[float, float, float], angle: float) tidy3d.components.types.ArrayLike_dtype=<class 'float'>_ndim=3#
Rotate a set of points in 3D.
- Parameters
points (ArrayLike[float]) – Array of shape
(3, ...).axis (Coordinate) – Axis of rotation
angle (float) – Angle of rotation counter-clockwise around the axis (rad).
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny#
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode#
- static sph_2_car(r: float, theta: float, phi: float) Tuple[float, float, float]#
Convert spherical to Cartesian coordinates.
- Parameters
r (float) – radius.
theta (float) – polar angle (rad) downward from x=y=0 line.
phi (float) – azimuthal (rad) angle from y=z=0 line.
- Returns
x, y, and z coordinates relative to
local_origin.- Return type
Tuple[float, float, float]
- static sph_2_car_field(f_r: float, f_theta: float, f_phi: float, theta: float, phi: float) Tuple[complex, complex, complex]#
Convert vector field components in spherical coordinates to cartesian.
- Parameters
f_r (float) – radial component of the vector field.
f_theta (float) – polar angle component of the vector fielf.
f_phi (float) – azimuthal angle component of the vector field.
theta (float) – polar angle (rad) of location of the vector field.
phi (float) – azimuthal angle (rad) of location of the vector field.
- Returns
x, y, and z components of the vector field in cartesian coordinates.
- Return type
Tuple[float, float, float]
- storage_size(num_cells: int, tmesh: tidy3d.components.types.ArrayLike_dtype=<class 'float'>_ndim=1) int#
Size of monitor storage given the number of points after discretization.
- classmethod strip_coords(shape: shapely.geometry.base.BaseGeometry) Tuple[List[float], List[float], Tuple[List[float], List[float]]]#
Get the exterior and list of interior xy coords for a shape.
- Parameters
shape (shapely.geometry.base.BaseGeometry) – The shape that you want to strip coordinates from.
- Returns
List of exterior xy coordinates and a list of lists of the interior xy coordinates of the “holes” in the shape.
- Return type
Tuple[List[float], List[float], Tuple[List[float], List[float]]]
- surface_area(bounds: Optional[Tuple[Tuple[float, float, float], Tuple[float, float, float]]] = None)#
Returns object’s surface area with optional bounds.
- Parameters
bounds (Tuple[Tuple[float, float, float], Tuple[float, float, float]] = None) – Min and max bounds packaged as
(minx, miny, minz), (maxx, maxy, maxz).- Returns
Surface area in um^2.
- Return type
float
- classmethod surfaces(size: Tuple[pydantic.types.NonNegativeFloat, pydantic.types.NonNegativeFloat, pydantic.types.NonNegativeFloat], center: Tuple[float, float, float], **kwargs)#
Returns a list of 6
Boxinstances corresponding to each surface of a 3D volume. The output surfaces are stored in the order [x-, x+, y-, y+, z-, z+], where x, y, and z denote which axis is perpendicular to that surface, while “-” and “+” denote the direction of the normal vector of that surface. If a name is provided, each output surface’s name will be that of the provided name appended with the above symbols. E.g., if the provided name is “box”, the x+ surfaces’s name will be “box_x+”.- Parameters
size (Tuple[float, float, float]) – Size of object in x, y, and z directions.
center (Tuple[float, float, float]) – Center of object in x, y, and z.
Example
>>> b = Box.surfaces(size=(1, 2, 3), center=(3, 2, 1))
- classmethod surfaces_with_exclusion(size: Tuple[pydantic.types.NonNegativeFloat, pydantic.types.NonNegativeFloat, pydantic.types.NonNegativeFloat], center: Tuple[float, float, float], **kwargs)#
Returns a list of 6
Boxinstances corresponding to each surface of a 3D volume. The output surfaces are stored in the order [x-, x+, y-, y+, z-, z+], where x, y, and z denote which axis is perpendicular to that surface, while “-” and “+” denote the direction of the normal vector of that surface. If a name is provided, each output surface’s name will be that of the provided name appended with the above symbols. E.g., if the provided name is “box”, the x+ surfaces’s name will be “box_x+”. If kwargs contains an exclude_surfaces parameter, the returned list of surfaces will not include the excluded surfaces. Otherwise, the behavior is identical to that of surfaces().- Parameters
size (Tuple[float, float, float]) – Size of object in x, y, and z directions.
center (Tuple[float, float, float]) – Center of object in x, y, and z.
Example
>>> b = Box.surfaces_with_exclusion( ... size=(1, 2, 3), center=(3, 2, 1), exclude_surfaces=["x-"] ... )
- to_file(fname: str) None#
Exports
Tidy3dBaseModelinstance to .yaml, .json, or .hdf5 file- Parameters
fname (str) – Full path to the .yaml or .json file to save the
Tidy3dBaseModelto.
Example
>>> simulation.to_file(fname='folder/sim.json')
- to_hdf5(fname: str) None#
Exports
Tidy3dBaseModelinstance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to save the
Tidy3dBaseModelto.
Example
>>> simulation.to_hdf5(fname='folder/sim.hdf5')
- to_json(fname: str) None#
Exports
Tidy3dBaseModelinstance to .json file- Parameters
fname (str) – Full path to the .json file to save the
Tidy3dBaseModelto.
Example
>>> simulation.to_json(fname='folder/sim.json')
- to_yaml(fname: str) None#
Exports
Tidy3dBaseModelinstance to .yaml file.- Parameters
fname (str) – Full path to the .yaml file to save the
Tidy3dBaseModelto.
Example
>>> simulation.to_yaml(fname='folder/sim.yaml')
- classmethod tuple_to_dict(tuple_values: tuple) dict#
How we generate a dictionary mapping new keys to tuple values for hdf5.
- static unpop_axis(ax_coord: Any, plane_coords: Tuple[Any, Any], axis: int) Tuple[Any, Any, Any]#
Combine coordinate along axis with coordinates on the plane tangent to the axis.
- Parameters
ax_coord (Any) – Value along axis direction.
plane_coords (Tuple[Any, Any]) – Values along ordered planar directions.
axis (int) – Integer index into ‘xyz’ (0,1,2).
- Returns
The three values in the xyz coordinate system.
- Return type
Tuple[Any, Any, Any]
- classmethod update_forward_refs(**localns: Any) None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- updated_copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel#
Make copy of a component instance with
**kwargsindicating updated field values.
- classmethod validate(value: Any) Model#
- volume(bounds: Optional[Tuple[Tuple[float, float, float], Tuple[float, float, float]]] = None)#
Returns object’s volume with optional bounds.
- Parameters
bounds (Tuple[Tuple[float, float, float], Tuple[float, float, float]] = None) – Min and max bounds packaged as
(minx, miny, minz), (maxx, maxy, maxz).- Returns
Volume in um^3.
- Return type
float
- property bounding_box#
Returns
Boxrepresentation of the bounding box of aGeometry.- Returns
Geometric object representing bounding box.
- Return type
- property bounds: Tuple[Tuple[float, float, float], Tuple[float, float, float]]#
Returns bounding box min and max coordinates.
- Returns
Min and max bounds packaged as
(minx, miny, minz), (maxx, maxy, maxz).- Return type
Tuple[float, float, float], Tuple[float, float float]
- property geometry: tidy3d.components.geometry.Box#
Boxrepresentation of monitor.
- property integration_surfaces#
Surfaces of the monitor where fields will be recorded for subsequent integration.
- property local_origin: Tuple[float, float, float]#
Returns the local origin associated with this monitor.
- property plot_params: tidy3d.components.viz.PlotParams#
Default parameters for plotting a Monitor object.
- property projection_surfaces: Tuple[tidy3d.components.monitor.FieldProjectionSurface, ...]#
Surfaces of the monitor where near fields will be recorded for subsequent projection.