[20:28:22] Created task 'aperture_1' with task_id 'fdve-87041967-6219-46d4-a291-51392d47023av1'. webapi.py:139\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:28:22]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'aperture_1'\u001b[0m with task_id \u001b[32m'fdve-87041967-6219-46d4-a291-51392d47023av1'\u001b[0m. \u001b]8;id=250919;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=85051;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8d7861951f2a49c789232f01af559ad3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:28:23] status = queued webapi.py:269\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:28:23]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=755068;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=522054;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7b0b3439257743c1a7adbbc6976163dc", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:28:25] status = preprocess webapi.py:263\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:28:25]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=859338;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=376407;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:28:32] Maximum FlexCredit cost: 0.025. Use 'web.real_cost(task_id)' to get the billed FlexCredit webapi.py:286\n", " cost after a simulation run. \n", "\n" ], "text/plain": [ "\u001b[2;36m[20:28:32]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.025\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit \u001b]8;id=820966;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=10175;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mcost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
starting up solver webapi.py:290\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=226079;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=791766;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
running solver webapi.py:300\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=635105;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=248283;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d6d89fd914c6478bafa11e55c6f5b3b2", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:28:39] early shutoff detected, exiting. webapi.py:314\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:28:39]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=35900;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=194036;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#314\u001b\\\u001b[2m314\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
status = postprocess webapi.py:331\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=674100;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=655143;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#331\u001b\\\u001b[2m331\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "41266184e5214ed3b6e4d1626d71b0c0", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:28:44] status = success webapi.py:338\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:28:44]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=800326;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=127691;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#338\u001b\\\u001b[2m338\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f6957a90640d4b3385f790b90790438b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:28:45] loading SimulationData from data/aperture_1.hdf5 webapi.py:510\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:28:45]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/aperture_1.hdf5 \u001b]8;id=547705;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=440015;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#510\u001b\\\u001b[2m510\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim_data = web.run(\n", " sim, task_name=\"aperture_1\", path=\"data/aperture_1.hdf5\", verbose=True\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Far field points \n", "Now, we'll define the set of observation angles far away from the source at which we'd like to measure the far fields." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2023-04-08T03:28:45.685639Z", "iopub.status.busy": "2023-04-08T03:28:45.685275Z", "iopub.status.idle": "2023-04-08T03:28:45.703735Z", "shell.execute_reply": "2023-04-08T03:28:45.703175Z" } }, "outputs": [], "source": [ "# radial distance away from the origin at which to project fields\n", "r_proj = 50 * wavelength\n", "\n", "# theta and phi angles at which to observe fields - part of the half-space to the right\n", "theta_proj = np.linspace(np.pi / 10, np.pi - np.pi / 10, 100)\n", "phi_proj = np.linspace(np.pi / 10, np.pi - np.pi / 10, 100)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, we define a far-field monitor, [FieldProjectionAngleMonitor](../_autosummary/tidy3d.FieldProjectionAngleMonitor), which stores the information regarding the far field projection grid, and then we define the object that does the actual projections, [FieldProjector](../_autosummary/tidy3d.FieldProjector)." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2023-04-08T03:28:45.705604Z", "iopub.status.busy": "2023-04-08T03:28:45.705469Z", "iopub.status.idle": "2023-04-08T03:28:48.627582Z", "shell.execute_reply": "2023-04-08T03:28:48.626994Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f6b23aeb0963421cb1931cd099cec348", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# far field projection monitor\n", "monitor_far = td.FieldProjectionAngleMonitor(\n", " center=[\n", " 0,\n", " offset_mon,\n", " 0,\n", " ], # the monitor's center defined the local origin - the projection distance\n", " # and angles will all be measured with respect to this local origin\n", " size=[td.inf, 0, td.inf],\n", " # the size and center of any far field monitor should indicate where the *near* fields are recorded\n", " freqs=[f0],\n", " name=\"far_field\",\n", " phi=list(phi_proj),\n", " theta=list(theta_proj),\n", " proj_distance=r_proj,\n", " far_field_approx=True, # we leave this to its default value of 'True' because we are interested in fields sufficiently\n", " # far away that geometric far field approximations can be invoked to speed up the calculation\n", ")\n", "\n", "# helper functin to call the projector\n", "def get_proj_fields(sim_data, monitor_near, monitor_far, pts_per_wavelength=10):\n", " # object that does projections is constructed using the near-field monitor, because those are the fields to be projected\n", " projector = td.FieldProjector.from_near_field_monitors(\n", " sim_data=sim_data,\n", " near_monitors=[monitor_near],\n", " normal_dirs=[\"+\"], # we are projecting along the + direction\n", " pts_per_wavelength=pts_per_wavelength, # to speed up calculations, the fields on the near-field monitor can be downsampled to these\n", " # many points per wavelength (default is already 10)\n", " )\n", " return projector.project_fields(monitor_far)\n", "\n", "\n", "# execute the projector, with the far field monitor as input, to do the projection\n", "# let's also time this, for later use\n", "import time\n", "\n", "t0 = time.perf_counter()\n", "projected_field_data = get_proj_fields(sim_data, monitor_near, monitor_far)\n", "t1 = time.perf_counter()\n", "proj_time = t1 - t0\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Analytical solution\n", "Before we plot and analyze the results, we need reference data with which to perform comparisons. In our simple aperture example, an analytical expression for the far fields is already available, so we'll simply implement the analytic formula here at the observation points of interest." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2023-04-08T03:28:48.684888Z", "iopub.status.busy": "2023-04-08T03:28:48.684742Z", "iopub.status.idle": "2023-04-08T03:28:48.712416Z", "shell.execute_reply": "2023-04-08T03:28:48.711894Z" } }, "outputs": [], "source": [ "def analytic_fields_aperture(\n", " proj_monitor, sim_size, aperture_height, aperture_width, r_proj\n", "):\n", " \"\"\"Compute the far fields analytically.\"\"\"\n", " # in Tidy3D, the plane wave source is normalized so that a total flux of 1 is injected into the simulation domain,\n", " # which corresponds to an electric field strength that is inversely proportional to the square root of the in-plane domain area\n", " thetas_ext = np.array(proj_monitor.theta)[None, :, None, None]\n", " phis_ext = np.array(proj_monitor.phi)[None, None, :, None]\n", " f = np.array(proj_monitor.freqs)[None, None, None, :]\n", " E0 = np.sqrt(2.0 * td.ETA_0 / sim_size[0] / sim_size[2])\n", " k = 2.0 * np.pi * f / td.C_0\n", " ux = k * np.sin(thetas_ext) * np.cos(phis_ext) * aperture_width / 2.0\n", " uz = k * np.cos(thetas_ext) * aperture_height / 2.0\n", " Etheta = (\n", " -k\n", " / 2.0\n", " / np.pi\n", " / r_proj\n", " * E0\n", " * np.sin(thetas_ext)\n", " * np.exp(1j * k * r_proj)\n", " * aperture_height\n", " * aperture_width\n", " * np.sinc(ux / np.pi)\n", " * np.sinc(uz / np.pi)\n", " )\n", " Hphi = Etheta / td.ETA_0\n", "\n", " # for convenience, let's encapsulate the data into one of Tidy3D's native data structures designed for\n", " # storing far fields - this is the same format in which data will be returned when using Tidy3D's\n", " # 'FieldProjector', so comparisons will be easier to make\n", " coords = dict(\n", " r=np.array([r_proj]),\n", " theta=np.array(proj_monitor.theta),\n", " phi=np.array(proj_monitor.phi),\n", " f=np.array(proj_monitor.freqs),\n", " )\n", " Etheta_data = td.FieldProjectionAngleDataArray(Etheta, coords=coords)\n", " Hphi_data = td.FieldProjectionAngleDataArray(Hphi, coords=coords)\n", " Er_data = td.FieldProjectionAngleDataArray(np.zeros_like(Etheta), coords=coords)\n", " Ephi_data = td.FieldProjectionAngleDataArray(np.zeros_like(Etheta), coords=coords)\n", " Hr_data = td.FieldProjectionAngleDataArray(np.zeros_like(Etheta), coords=coords)\n", " Htheta_data = td.FieldProjectionAngleDataArray(np.zeros_like(Etheta), coords=coords)\n", " return td.FieldProjectionAngleData(\n", " monitor=proj_monitor,\n", " Er=Er_data,\n", " Etheta=Etheta_data,\n", " Ephi=Ephi_data,\n", " Hr=Hr_data,\n", " Htheta=Htheta_data,\n", " Hphi=Hphi_data,\n", " projection_surfaces=proj_monitor.projection_surfaces,\n", " )\n", "\n", "\n", "analytic_field_data = analytic_fields_aperture(\n", " monitor_far, sim_size, height, width, r_proj\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plot and compare\n", "Now we can compare the analytic fields to those computed via `Tidy3D`'s [FieldProjector](../_autosummary/tidy3d.FieldProjector.html), and also compute the root mean squared error between the two." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2023-04-08T03:28:48.714314Z", "iopub.status.busy": "2023-04-08T03:28:48.714177Z", "iopub.status.idle": "2023-04-08T03:28:49.224706Z", "shell.execute_reply": "2023-04-08T03:28:49.224152Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalized root mean squared error: 4.79 %\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAFyCAYAAABhr+y4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC11ElEQVR4nO2de3wU1fn/PzO7ySYQkhAICVGQi1ZALViQiBekQrlZK4IXbFRACtoaq4BWaFXwVopFpFCVr/5aLxVLaxVqvVARRLykgFxsVURBFAQCakhC7snO/P6YObNnds/OzuzOZi8879drYXPmzJmzszPn2TPP5zyPpKqqCoIgCIIgCIIgCAfIie4AQRAEQRAEQRCpB00kCIIgCIIgCIJwDE0kCIIgCIIgCIJwDE0kCIIgCIIgCIJwDE0kCIIgCIIgCIJwDE0kCIIgCIIgCIJwDE0kCIIgCIIgCIJwDE0kCIIgCIIgCIJwDE0kCIIgCIIgCIJwDE0kiBOOp59+GpIk4csvv0zqNgmCIJKdL7/8EpIk4emnn3a878aNGyFJEjZu3Bix7ogRIzBixAjHx4gnieqTk/NGEPGGJhJEwnnssccgSRJKS0sT3ZWI/Pa3v8WaNWsS3Q2CIIh2gT0kEb3mzp2b6O6lNY899lhUEzSCaE+8ie4AQaxcuRK9evXCli1bsGfPHpx66qmJ7lJYfvvb3+KKK67AhAkTTOXXXXcdJk+eDJ/Pl5iOEQRBxJH77rsPvXv3NpWdeeaZOOWUU9DY2IiMjIwE9SxxvPHGG3Ft/7HHHkPXrl0xdepUU/nw4cPR2NiIzMzMuB6fIOxAEwkioezbtw/vv/8+XnrpJdx4441YuXIl5s+fn+huOcbj8cDj8SS6GwRBEHFh3LhxGDJkiHBbVlZWO/cmPtTX16Njx4626yfqh7wsy2lzzonUh6RNREJZuXIlOnfujEsuuQRXXHEFVq5cadrO9LeLFy/GE088gb59+8Ln8+Gcc87B1q1bTXX/+9//YurUqejTpw+ysrJQXFyMG264Ad99951lH6ZMmYKuXbuitbU1ZNvo0aNx+umnAwAkSUJ9fT2eeeYZw7XPnhSFWyPx+uuv46KLLkKnTp2Qm5uLc845B88//7zDs0QQBJGchFsj8emnn+KKK65AQUEBsrKyMGTIELz88su22mRjfXZ2NoYOHYp33nnHdn8kSUJ5eTlWrlyJ008/HVlZWRg8eDA2bdpkqrdgwQJIkoRPPvkEP/3pT9G5c2dccMEFAIC2tjbcf//9hr3p1asXfv3rX6O5udnUhmiNRHNzM+bPn49TTz0VPp8PPXr0wK9+9auQfQHgueeew9ChQ9GhQwd07twZw4cPN7wcvXr1wscff4y3337bsDfsWOHWSLzwwgsYPHgwsrOz0bVrV1x77bU4ePCgqc7UqVORk5ODgwcPYsKECcjJyUFhYSFuv/12+P1+2+eZIBg0kSASysqVKzFx4kRkZmbimmuuweeffx4yQQCA559/Hr///e9x44034oEHHsCXX36JiRMnmn78r1u3Dl988QWmTZuG5cuXY/LkyVi1ahXGjx8PVVXD9uG6667Dd999h3//+9+m8srKSmzYsAHXXnstAOAvf/kLfD4fLrzwQvzlL3/BX/7yF9x4441h23366adxySWXoKqqCvPmzcPvfvc7DBo0CGvXrnV6mgiCIBJKTU0Nvv32W9MrHB9//DHOPfdc7Nq1C3PnzsXDDz+Mjh07YsKECVi9erXlcf70pz/hxhtvRHFxMR566CGcf/75+MlPfoIDBw7Y7uvbb7+N2267Dddeey3uu+8+fPfddxg7diw++uijkLpXXnklGhoa8Nvf/hYzZswAAPzsZz/DPffcgx/84Ad45JFHcNFFF2HhwoWYPHmy5XEVRcFPfvITLF68GJdeeimWL1+OCRMm4JFHHsHVV19tqnvvvffiuuuuQ0ZGBu677z7ce++96NGjBzZs2AAAWLp0KU4++WT069fPsDe/+c1vwh776aefxlVXXQWPx4OFCxdixowZeOmll3DBBRegurraVNfv92PMmDHo0qULFi9ejIsuuggPP/wwnnjiCTunlyDMqASRID744AMVgLpu3TpVVVVVURT15JNPVm+99Vajzr59+1QAapcuXdSqqiqj/J///KcKQP3Xv/5llDU0NIQc469//asKQN20aZNR9tRTT6kA1H379qmqqqp+v189+eST1auvvtq075IlS1RJktQvvvjCKOvYsaM6ZcqUkOMEt1ldXa126tRJLS0tVRsbG011FUWxPjEEQRBJAhvbRC9VDYzRTz31lLHPyJEj1bPOOkttamoyyhRFUc877zz1tNNOM8reeustFYD61ltvqaqqqi0tLWq3bt3UQYMGqc3NzUa9J554QgWgXnTRRRH7y/r2wQcfGGVfffWVmpWVpV5++eVG2fz581UA6jXXXGPaf+fOnSoA9Wc/+5mp/Pbbb1cBqBs2bDDKLrroIlOf/vKXv6iyLKvvvPOOad8VK1aoANT33ntPVVVV/fzzz1VZltXLL79c9fv9prq8fTjjjDOEnznceTvzzDNN9uaVV15RAaj33HOPUTZlyhQVgHrfffeZ2jz77LPVwYMHhxyLICJBHgkiYaxcuRJFRUX44Q9/CEBzSV999dVYtWpViIv16quvRufOnY2/L7zwQgDAF198YZRlZ2cb75uamvDtt9/i3HPPBQBs3749bD9kWUZZWRlefvllHD9+3NS/8847L2SBoR3WrVuH48ePY+7cuSFaVkmSHLdHEASRSB599FGsW7fO9BJRVVWFDRs24KqrrsLx48cN78V3332HMWPG4PPPPw+R2zA++OADHD16FDfddJNp/cHUqVORl5dnu6/Dhg3D4MGDjb979uyJyy67DP/+979DbMtNN91k+vu1114DAMyePdtUPmfOHADAq6++Gva4L7zwAvr3749+/fqZPDcXX3wxAOCtt94CAKxZswaKouCee+6BLJt/hkVjH9h5+8UvfmGyN5dccgn69esn7HPw577wwgtN9pQg7EITCSIh+P1+rFq1Cj/84Q+xb98+7NmzB3v27EFpaSmOHDmC9evXm+r37NnT9DebVBw7dswoq6qqwq233oqioiJkZ2ejsLDQmATU1NRY9uf6669HY2Oj4XbfvXs3tm3bhuuuuy6qz7d3714AWlQTgiCIVGfo0KEYNWqU6SViz549UFUVd999NwoLC00vFkjj6NGjwn2/+uorAMBpp51mKs/IyECfPn1s9zV4fwD43ve+h4aGBnzzzTem8uAHRV999RVkWQ6JHlhcXIz8/HyjjyI+//xzfPzxxyGf+3vf+x6AwOfeu3cvZFnGgAEDbH8mK1if2Ho+nn79+oX0OSsrC4WFhaayzp07m+wpQdiFojYRCWHDhg04fPgwVq1ahVWrVoVsX7lyJUaPHm38HS4iksqtfbjqqqvw/vvv44477sCgQYOQk5MDRVEwduxYKIpi2Z8BAwZg8ODBeO6553D99dfjueeeQ2ZmJq666qooPyFBEMSJBxtrb7/9dowZM0ZYJ5lCfPOebJ5oPAOKouCss87CkiVLhNt79OjhuM14QBEGCTehiQSREFauXIlu3brh0UcfDdn20ksvYfXq1VixYoXt9o4dO4b169fj3nvvxT333GOUf/7557bbuP766zF79mwcPnwYzz//PC655BKTnAqwb1z69u0LAPjoo4+SymgSBEHEE+Y5yMjICOu1CMcpp5wCQBu3mRwIAFpbW7Fv3z4MHDjQVjuicf+zzz5Dhw4dQp7Ei/qgKAo+//xz9O/f3yg/cuQIqqurjT6K6Nu3Lz788EOMHDnS0lb07dsXiqLgk08+waBBg8LWs2tvWJ92795tOm+szKrPBBErJG0i2p3Gxka89NJL+PGPf4wrrrgi5FVeXo7jx4/bDhUIBJ6wqEHRmZYuXWq7jWuuuQaSJOHWW2/FF198YURr4unYsWNIBAwRo0ePRqdOnbBw4UI0NTWZtgX3kSAIIl3o1q0bRowYgf/7v//D4cOHQ7YHS4t4hgwZgsLCQqxYsQItLS1G+dNPP21r3GVUVFSY1sUdOHAA//znPzF69OiIT+PHjx8PINR2MC/DJZdcEnbfq666CgcPHsSTTz4Zsq2xsRH19fUAgAkTJkCWZdx3330h3nLePti1N0OGDEG3bt2wYsUKU5jZ119/Hbt27bLsM0HECnkkiHaHLWr+yU9+Itx+7rnnorCwECtXrkRpaamtNnNzczF8+HA89NBDaG1txUknnYQ33ngD+/bts92vwsJCjB07Fi+88ALy8/OFg+/gwYPx5ptvYsmSJSgpKUHv3r2FfczNzcUjjzyCn/3sZzjnnHOMOOUffvghGhoa8Mwzz9juF0EQRCrx6KOP4oILLsBZZ52FGTNmoE+fPjhy5AgqKirw9ddf48MPPxTul5GRgQceeAA33ngjLr74Ylx99dXYt28fnnrqKUdrJM4880yMGTMGv/zlL+Hz+fDYY48B0EKuRmLgwIGYMmUKnnjiCVRXV+Oiiy7Cli1b8Mwzz2DChAlGcBAR1113Hf7+97/jpptuwltvvYXzzz8ffr8fn376Kf7+97/j3//+N4YMGYJTTz0Vv/nNb3D//ffjwgsvxMSJE+Hz+bB161aUlJRg4cKFADR78/jjj+OBBx7Aqaeeim7duoV4HNh5W7RoEaZNm4aLLroI11xzDY4cOYI//OEP6NWrF2bNmmX73BGEYxIaM4o4Ibn00kvVrKwstb6+PmydqVOnqhkZGUaI2N///vchdQCo8+fPN/7++uuv1csvv1zNz89X8/Ly1CuvvFI9dOhQSL3gUK08f//731UA6syZM4X9+vTTT9Xhw4er2dnZKgAjFGy4Nl9++WX1vPPOU7Ozs9Xc3Fx16NCh6l//+tewn5sgCCKZYGPb1q1bhdtF4V9VVVX37t2rXn/99WpxcbGakZGhnnTSSeqPf/xj9R//+IdRJziMKeOxxx5Te/furfp8PnXIkCHqpk2bQkKthgOAevPNN6vPPfecetppp6k+n089++yzQ47Bwr9+8803IW20traq9957r9q7d281IyND7dGjhzpv3jxTOFtVDQ3/qqpaKNZFixapZ5xxhurz+dTOnTurgwcPVu+99161pqbGVPfPf/6zevbZZxv1LrroIiMcuqqqamVlpXrJJZeonTp1MoW/DXfe/va3vxntFRQUqGVlZerXX39tqjNlyhS1Y8eOIZ+ZnQ+CcIqkqqSzIAjGP//5T0yYMAGbNm0yQswSBEEQqYEkSbj55pvxxz/+Me7HuvDCC+Hz+fDmm2/G/VgEkazQGgmC4HjyySfRp08fXHDBBYnuCkEQBJHEHD58GF27dk10NwgiodAaCYIAsGrVKvz3v//Fq6++ij/84Q+UNI4gCIIQ8v777+Oll17C3r17ceeddya6OwSRUGgiQRDQIjbl5ORg+vTp+MUvfpHo7hAEQRBJypNPPonXX38dt912G6ZNm5bo7hBEQqE1EgRBEARBEARBOIbWSBAEQSSQRx99FL169UJWVhZKS0uxZcuWsHWffPJJXHjhhejcuTM6d+6MUaNGWdYnCIIgiHhCEwmCIIgE8be//Q2zZ8/G/PnzsX37dgwcOBBjxozB0aNHhfU3btyIa665Bm+99RYqKirQo0cPjB49GgcPHmznnhMEQRAESZuEKIqCQ4cOoVOnTrToliBSEFVVcfz4cZSUlECWnT8vaWpqMmXWdUJmZiaysrJs1S0tLcU555xjhKpUFAU9evTALbfcgrlz50bc3+/3o3PnzvjjH/+I66+/Pqr+Es4g+0AQqU+ibIQT+5Aq0GJrAYcOHUKPHj0S3Q2CIGLkwIEDOPnkkx3t09TUhOxOBUBbY1THLC4uxocffmgyFj6fDz6fz1SvpaUF27Ztw7x584wyWZYxatQoVFRU2DpWQ0MDWltbUVBQEFVfCeeQfSCI9KG9bURxcTH27duXVpOJpJpIbNq0Cb///e+xbds2HD58GKtXr8aECRNMdXbt2oU777wTb7/9Ntra2jBgwAC8+OKL6NmzJwDtC54zZw5WrVqF5uZmjBkzBo899hiKiops96NTp04AgLN/9Vd4fB1c+3yphqqQsypVkeQT+0mpv7kBOx66xriXndDS0gK0NSLjzGsAT4bDA7ei8qO/how38+fPx4IFC0xl3377Lfx+f0jdoqIifPrpp7YOd+edd6KkpASjRo1y1s8UJRlsBLumBs1eads+KA4d/3aFAnbHaEWJ7liqxX5au+Z9I/XHarvVObL7Od0QWIiOFet4atdzZXUcOUIbVvuKtsmW9S2OY9EPuw/27Z5Ppx6/SOeIx9/cgJ1LytrXRuj2oaWlhSYS8aK+vh4DBw7EDTfcgIkTJ4Zs37t3Ly644AJMnz4d9957L3Jzc/Hxxx+bvpBZs2bh1VdfxQsvvIC8vDyUl5dj4sSJeO+992z3g128Hl8HeLM6xv7BUhSaSKQuJ/pEghGT9MSTAcmT6WgXdsccOHAAubm5RnmwN8INfve732HVqlXYuHFjWhklK5LBRvD2wWPTPkhOJxJ2fzjbrCdZ1ItlIhHcbiwTCatz5Pb5sCJ4cgRY/+i2g+0fzik/kYj9c0ZTzzh+FON9e9qIdP1FlVQTiXHjxmHcuHFht//mN7/B+PHj8dBDDxllffv2Nd7X1NTgT3/6E55//nlcfPHFAICnnnoK/fv3x3/+8x+ce+65jvojy1LMA0gkRINWshDLj1GahLhDOk4I4n1PuXUMSfZAkj3OdlK1+rm5uaaJhIiuXbvC4/HgyJEjpvIjR46guLjYct/Fixfjd7/7Hd588018//vfd9bHFCbZbIRdRD9wrJ7Ai+57u0/KRfXY/SCyN+yHlGhCwf+gjDSpCO6PGzbAqg373pj4TC6sCB5/nH53boz7TtuwmjwA0U8gkmnS4DaObYTq0J6kCCkTtUlRFLz66qv43ve+hzFjxqBbt24oLS3FmjVrjDrbtm1Da2uryc3fr18/9OzZ07bmmCAIAggYCacvu2RmZmLw4MFYv369UaYoCtavX49hw4aF3e+hhx7C/fffj7Vr12LIkCExfcZ0gmwEQRDtSTztQyqRMhOJo0ePoq6uDr/73e8wduxYvPHGG7j88ssxceJEvP322wCAyspKZGZmIj8/37RvUVERKisrw7bd3NyM2tpa04sgiBMbSYpiIiE5MxSzZ8/Gk08+iWeeeQa7du3Cz3/+c9TX1xvZcq+//nrTYuxFixbh7rvvxp///Gf06tULlZWVqKysRF1dnaufPRWJl40g+0AQhAjHNsKhfUgVkkraZIWirxa77LLLMGvWLADAoEGD8P7772PFihW46KKLom574cKFuPfee13pp1PiJfNItGQqHSU5JxrtIUFKZiSPDMnjVNrk7NnM1VdfjW+++Qb33HMPKisrMWjQIKxdu9ZY+Lt//35TaMLHH38cLS0tuOKKK0ztiBZzn2jEy0aEtQ+yFJOUh5dm2FmMbfdYrJ6VxAkItRG8dMXuomUryVQiSXR/2PGTbQx12p9I6wdilTRF8zshWklTyLHckI85tREO7UOqkDITia5du8Lr9WLAgAGm8v79++Pdd98FoIXVamlpQXV1temJUyTN8bx58zB79mzj79raWgrvRxAnOHIUrmg1Ctd1eXk5ysvLhds2btxo+vvLL7903P6JQrxsBNkHgiBEOLUR0diHVCBlpkeZmZk455xzsHv3blP5Z599hlNOOQUAMHjwYGRkZJg0x7t378b+/fstNcc+n89YHGlnkSRBEOlPvNdIEO4SLxtB9oEgCBFkHzSSyiNRV1eHPXv2GH/v27cPO3fuREFBAXr27Ik77rgDV199NYYPH44f/vCHWLt2Lf71r38ZT+3y8vIwffp0zJ49GwUFBcjNzcUtt9yCYcOGRRWNI5WzlranSzXRbuQTiWRzlScjkiS5cu9GNfCnqaFIFpLNRvDYjaAkIliuEUnqZOdYkeo4jeTEovqIojeJ2hJJrKxkV4nErpQr2X4TiL5jN0K9Oo3QlGyRmdpLWu3YRqSpfUgqj8QHH3yAs88+G2effTYAbSHi2WefjXvuuQcAcPnll2PFihV46KGHcNZZZ+H//b//hxdffBEXXHCB0cYjjzyCH//4x5g0aRKGDx+O4uJivPTSSwn5PARBpC6SLEf1IuIH2QiCIJKF9rIPjz76KHr16oWsrCyUlpZiy5YtYet+/PHHmDRpEnr16gVJkrB06dIoP519ksojMWLEiIhPBm644QbccMMNYbdnZWXh0UcfxaOPPup29wiCOIEgj0TyQTaCIIhkoT08En/7298we/ZsrFixAqWlpVi6dCnGjBmD3bt3o1u3biH1Gxoa0KdPH1x55ZVG0Il4k1QTiWQk2VyZIuy6ZeMFyW1OHFLhfnAL7QmS04kEeSSIANHKnSJJOkTSp+BjRUqCplpEFmISJVEkJ5EUhsmdRFGhRMcUSZzYZ1ZUe1KoaKNTiXB7XIs2mpFQliTomx1Jk1iCFPbQwnMQybY7/Swh7bsiQU2cTXJsI6KwD0uWLMGMGTOMkOArVqzAq6++ij//+c+YO3duSP1zzjkH55xzDgAIt8cDsnoEQRAC2iOPBEEQBJGaxDuPREtLC7Zt22ZKoCnLMkaNGpVUCTTJI5EGnEhPiQmCIFIZqyeo0S7OBkK9FJG8IVYeDLGXIrQfwV4KfiG21QJsK2TBcRShFyTU4xG8je+HiGgDhdj1wreX9yFS3+wsqI639wFI/sXT7UVwUkufzwefzxdS79tvv4Xf7zfyCjGKiorw6aefxrWPTiCPBEEQhAiPB5LDF5wmsCMIgiBSkyjtQ48ePZCXl2e8Fi5cmOAPEhvkkSAIghAQzWLrdI0TThAEQZhxaiNY3QMHDpjy0Yi8EYCWZNPj8eDIkSOm8khJltsbmkikCFaLpAgiGRDFl09laCJBWCHJEiRZcjUnQiyyJyvZiKJGlgFFIxEKkTvJoX30mBZbB+0ftsdBzdqUOznFE2fJjKUEKQYZU7wXUkcrY4pl8XT75X6QXDtetBMJu4ktMzMzMXjwYKxfvx4TJkwAACiKgvXr16O8vDyqPscDmkgQBEEIkGUPZAr/ShAEQQhwbCOisA+zZ8/GlClTMGTIEAwdOhRLly5FfX29EcXp+uuvx0knnWTIo1paWvDJJ58Y7w8ePIidO3ciJycHp556quPj24EmEgRBEAKiCf9KCekIgiBODJzaiGjsw9VXX41vvvkG99xzDyorKzFo0CCsXbvWWIC9f/9+yFy7hw4dMhJ2AsDixYuxePFiXHTRRdi4caPj49uBJhJRcKLIjCg/ROoSbTSSWEjEfRFPORVJmwg7OJVIRCuFsnscYV4FK9lTDPdt6K4R8jcESZ+EsqcIuSiMI1mcR1Wyd45F+TjsYFfCE7VEyKF0CWi/KExO5UvxliwlNo9EdNImp5SXl4eVMgVPDnr16tXuucVoIkEQBCGAJhIEQRBEONprIpHs0ESCIAhCAE0kCIIgiHDQREKDJhIOSFZJU3tKkNotskIaJNlrL/eiUMoQp+8pEZIpK/h70m2ZE8ta6nQfgrAi2jHUriTKqQTKUqri4WRGgvGMHUvUN49wm/lYpmR1glvHyuaqir3PaTVmxcuk2xl/nUZZstt+e0ZccvP3QComnXNqI9LVPtBEgiAIQoCRRMjhPgRBEET649RGpKt9SNJn7ARBEARBEARBJDPkkXBAsHSiPaVObkpVYnEhuiE5ircUy00XaWzJpiL3wxWpUAzXodPPZ/XdtafsqT2S31H4VyKZiGVcE93nTtsTJYUz8IS2ZZUEz+hDFGOG8Vls3pqJkGM6tXFOvws79RMRXSkV5Umx0B7hX1MBmkgQBEEIoMXWBEEQRDhosbUGTSRiQPRU1G0vRbRP7x0/4bD59CLeT1o8yfZEw4X++C2eiIk+r1MvgWLz6bxo8bfV9xOLt8LNp4Dt4X0QQRMJIl1or6fN/JjhseGRtetVMI1FaXyLxeuJ/onmKWgvaCKhQRMJgiAIAbIsOZ/Ik8EmCII4IXBsI9LUPtBEgiAIQoAkS3HRLhMEQRCpj1Mbka72gSYSLhNJhuFU+sQkInZnvXYu1FhiVNs9jh2Jkl0ZU9LJnSwQyZhE/beSO/FPLazqqTavDXYNib53q1wXVjHirY4TDYmSL1khSZLj4ALpkP+EaH/aMxdQXLFrp+g+cYX2ylWUTCRTLiOnNiJdr3uaSBAEQQiQopA2qenyg5AgCIKwxKmNSFf7QBMJgiAIAZIUhbQpTZ84EQRBEGac2oh0tQ80kbBAVVVr6UcUF0Uic1FY9ddqVi26USLJjay2x2NbomESJLsyJlbPUuIU6ZiCMpEMiX23Ipcwuyba00XuhowpUn/d+Dy0RoKIB4mUMbnxQ8apzXJTlgvY+wzJIhWzK8OxM16JJaaC/B0ObUp7jMduEvzdJlLqRGskNGgiQRAEIUCWJMdJndQ0feJEEARBmHFqI9LVPtBEgiAIQgB5JAiCIIhwkEdCgyYSMWDXnWfliuXdilYuY6fRm+wias/qYhdJd+yU2d2P4XUhKlS84WVJov622ZA78dvsyJz4OiJ5lOi7C47u5LYr2E57dt3nJ2IUEuLEIl5jOcNxpDGbUiWn8lenUlq7EtpklcZajd+Rxvbg7aL6ImmTaOxlOc9EY6lQHiWHb0uEMBGv1W+cOI3pyRS96USHJhIEQRACyCNBEARBhIM8Eho0kSAIghAQTWbrdA3vRxAEQZhxaiPS1T60Y8ygyGzatAmXXnopSkpKIEkS1qxZE7buTTfdBEmSsHTpUlN5VVUVysrKkJubi/z8fEyfPh11dXVR9UdRVNsvK1j0J/4lrKeEvqz6JG5DtZ1AzC4eWTJeorJoX17By+eV4fPKwvqZXtl4ibd74vpy2h/2WUSf043zZ/X9uIHVtRT5OrS+jgH794XomLHek3aQ5OheRPxINhsRC/G4Zp1gdb2yH0j8SxK8ZI8M2SMbibk8Htl4sf08Xtl4ZWZ6kJnpgdcrw+uV4cv0GK9si1dOltd4sbJOWV50yvIiv0OG8RKVBV6ZcX6FHtOqj6LPZ3UO+HPFzh87n5mZHuMcG+ed+y7Y98O+L9kjh36XgpfVddOeY12i75VwkH3QSKqPVV9fj4EDB+LRRx+1rLd69Wr85z//QUlJSci2srIyfPzxx1i3bh1eeeUVbNq0CTNnzoxXlwmCSFOY8XX6IuIH2QiCIJIFsg8aSSVtGjduHMaNG2dZ5+DBg7jlllvw73//G5dccolp265du7B27Vps3boVQ4YMAQAsX74c48ePx+LFi4VGxQonT/atZsiimb3o6avoIrPKOxHvRXsinC5mY2Wixcj2F26HznftPH2P5Qm9OPeDJ2wdj8zKYg/KHWlBtZ1t8UJ0ndtZSG13wZ0bT5rc8srJsvN7S02qRzPpR7LZCLcRLp51cXy3eiIaaQG0yD6xfawWSgd7T8Nts7IR5jbksNuC9wMAj8WPt2htRMTF0/p4J6rHyvhtzG6ItjHaTPVFbahht7HPyY+LIaaKuzaCA3Ro9QW/WWRWP2RT1CSLt8EOTm1EutqHlPpYiqLguuuuwx133IEzzjgjZHtFRQXy8/MNAwEAo0aNgizL2Lx5c9h2m5ubUVtba3oRBHFiI5Jy2HkRiSMeNoLsA0EQItrLPjz66KPo1asXsrKyUFpaii1btljWf+GFF9CvXz9kZWXhrLPOwmuvvRbVce2SUhOJRYsWwev14pe//KVwe2VlJbp162Yq83q9KCgoQGVlZdh2Fy5ciLy8POPVo0cPV/tNEETqIUlRTCTS1HWdKsTDRpB9IAhChGMbEYV9+Nvf/obZs2dj/vz52L59OwYOHIgxY8bg6NGjwvrvv/8+rrnmGkyfPh07duzAhAkTMGHCBHz00UexftywJJW0yYpt27bhD3/4A7Zv3+66sZ43bx5mz55t/F1bW2sYC7sSCauZpl3Zkx25kyjvBN8+a4/vN+sba59vM1p5VCSXcLQSKLsypnjHC49eNiSamwe+tOD8EVaSJdF2p3knTL0QyZJsxBqPRs5kJWWK1nXtdhCBSFBm69QiXjYinH2wktC56ZlyKncSjfNOseo/f2zJGLcjy5j4917L+rKgTFBPitw+j1M7YoWVZImnzUqCpPJlsnmbQPbkEbRhJXcSHpPrGzvLYslS6O8Ip9iRs7aHjCncZ3BF/toOma2XLFmCGTNmYNq0aQCAFStW4NVXX8Wf//xnzJ07N6T+H/7wB4wdOxZ33HEHAOD+++/HunXr8Mc//hErVqxwfHw7pIxH4p133sHRo0fRs2dPeL1eeL1efPXVV5gzZw569eoFACguLg6ZpbW1taGqqgrFxcVh2/b5fMjNzTW9CII4wYnGbR3FD5Nkd1unCvGyEWQfCIIQEmf70NLSgm3btmHUqFGBQ8oyRo0ahYqKCuE+FRUVpvoAMGbMmLD13SBlJhLXXXcd/vvf/2Lnzp3Gq6SkBHfccQf+/e9/AwCGDRuG6upqbNu2zdhvw4YNUBQFpaWlieo6QRApSHuskUgFt3WqQDaCIIj2JFr7ELzmqrm5Wdj+t99+C7/fj6KiIlN5UVFRWClmZWWlo/pukFTSprq6OuzZs8f4e9++fdi5cycKCgrQs2dPdOnSxVQ/IyMDxcXFOP300wEA/fv3x9ixYzFjxgysWLECra2tKC8vx+TJk+MejcPKTWZX9mQnuhPvrmbykkiRnFjfgiVOwe2Fqy9CFBHCKdHKn+y2Yapnw6XoF7hiRe0Hy5MilYnaizbSkt39rK5HO3ImwL6kyU0XdnvLlxJNKritk4lUsRHRXsd2J6J25E6icV4kjY03oshMIslSptcTUhYsYxLt6/Nay2HtRndyQiRpk2EPBPWa25TQ+pIuPZJFsiStjy1tvDDJWd/iRbA9sJMLKLrjpJddCF5nNX/+fCxYsCAxnXGBpJpIfPDBB/jhD39o/M10qVOmTMHTTz9tq42VK1eivLwcI0eOhCzLmDRpEpYtWxaP7hIEkcZEk9la5p448fh8Pvh8PlMZc1vPmzeP2z+y25rX6wOa29oqMVs6QTaCIIhkwamNYHUPHDhgkkgG2wZG165d4fF4cOTIEVP5kSNHwkoxi4uLHdV3g6SaSIwYMcJ2vHkA+PLLL0PKCgoK8Pzzz7vYK4IgTkSiSSDE6tt54mTltv7000+F7SfCbZ1MkI0gCCJZcGojWF27a60yMzMxePBgrF+/HhMmTACghbhev349ysvLhfsMGzYM69evx2233WaUrVu3DsOGDbPdT6ck1UQi6QiKyhFtJA6RW07UlpvuaqtITpGOHXzMSJGFRIikPuHqiOq5IZ1KBBETFdlw0dp1TVslL+KxcifbkTRFI2ey48J2211tas+FtiXZufyD1bf7xIkgeGKJEhh8z4kiAlpJY002wOI4drEjXY0YoUkQmYlJmZxGirLTr3Db7UTPE5WJxmjWf76MyZ2MAH+Ccccc0TBUHhXct1gkTuw6jEXemggb0N44tRHRyAlnz56NKVOmYMiQIRg6dCiWLl2K+vp6Qw57/fXX46STTsLChQsBALfeeisuuugiPPzww7jkkkuwatUqfPDBB3jiiSecH9wmNJEgCIIQEIu0yc4Tp1RxWxMEQRChRCttcsLVV1+Nb775Bvfccw8qKysxaNAgrF271vBM79+/HzI3yTzvvPPw/PPP46677sKvf/1rnHbaaVizZg3OPPNMx8e2S8pEbSIIgmhP4h21iXdbM5jbOpwbmrmteeLttiYIgiBCaa/M1uXl5fjqq6/Q3NyMzZs3myLMbdy4MWR92JVXXondu3ejubkZH330EcaPHx/Lx4wIeSQShJ3ISIB1wjg77mpRGyZ3ol5PmKQOrC3nSdDsuFfFEY705DvcDNupi1bomnagqzbtZzPxkLgsvPvZKqGQqJ5VkiEeS5e0fg7iFaEp3SIzxbJGwi6p4LYmYseNxKZ222NtiKWygh30qEDtFcUpGlJJ3hoNbsiR4g2zB05lTG6M927fP24R7RqJdIMmEgRBEAJikTbZJRXc1gRBEEQo7SFtSgVoImFFDK4ot7HjmQDsLcAW5ZjgRW6sjWDPhNaWe09O+Kfx3qDP5VcCMbMDT2vAlYUuWIv3U53gdpnHwapOcFlbSBvReyQY/NOaeHgi4hUb3G1M96oL960kOb//o3niVF5eHjYCx8aNG0PKrrzySlx55ZWOj0PEBzc9bLG0JYk8zkHbhEE42P2tcF5phI79MOxISBFEGQ4svdFBHmitvuDekSO3JUJkF6zsQ6T8P063hdqK0G0ibzTznIvq8/bGsg0L77XIVojsg7GN+67teCIiXb/x9kbbad/N33RObQR5JAiCIE4gPLLkWFKhJsmDB4IgCCK+OLUR6WofaCJBEAQhQI5iIqGkqaEgCIIgzDi1EelqH2gi0c4kQiplGS/cYgE2w6TgEcijmFvbrjtZFOvbKu9EsOxJq2dvEXesOHVzB0uXwtWzkipZucjtypjC7RN2P8HC6nghugeScQF2NB6JdDUUhABFTarr1mlfgm95c5oCXQoFrk2hvFbm/jVLnFr03AiZ3tBV3CxvgnhsD80tIbQfghwTduyH2wu37dgBoVRJFZQJZUnauWLnk29f1C6rx28TBeFQdK2wlT3g7Ym4njNpUzJg9NGFvjq1EelqH5I4TgNBEARBEARBEMkKeSQIgiAEkEeCIAiCCAd5JDRoImFBLAlE3MLNcGFWOSZMx4xYEFnuZLheha5re2XR1rfbRjCxRAax24ZVNA+G7ehKNmRM4fYN1A+7yTaia9RpJCe37zM32qOJBJEolCjz3gCALIgMY0dywg8FTF2kclolI5ofL3fS91JVPRcFF3lJFciSmMzJkCwJbIZXDvREJIP1BCXDsGsf4p2Lws2cQ6JIf+JIToEyJmkSyZjsRGaKFJVJdA3Zuq5cvpaTCZpIaNBEgiAIQoBXFmu4rVBJLEoQBHFC4NRGpKt9oIkEQRCEAPJIEARBEOEgj4QGTSQsiCazbSJwmuRElKyOJ1iWIppEqxBJbQT90F3jfB9FyYuMY9k834mWnAH2I1TYlflYJX5z81hO5Uz8dxcpOR0j0feNG8ePJvyrSMpHpCm69NXNSDWxyECs2nAqd2KSGX6cFcmdAnLZUHmrSO7ULGiXIZYxRZYo2b1HnXoXnSKK2CfCjtwpkoyJ4WaCuUTLmKzac1PiZFx7CbAR6WofaCJBEAQhwCPJIXpsO/sQBEEQ6Y9TG5Gu9oEmEgRBEAKikTbFe0EnQRAEkRw4tRHpah9oImGBJEmOZUOphh2ZS6RIRMYkOwWS0aQ67Zk4TkSq3A9u9JMmEoQd3EywKJJwtJfcie8z+0yqQGJj/ry69ERl9RGyTfQQViQ9bBOUpcp44zaxROQT2QjWnp2kcna3Ae5LmQD3IzXFUwZNEwkNmkgQBEEIoIkEQRAEEQ6aSGjQRMICSRY/TUlVon2aHWmBLVt8Z3tRsa0Fwc6fdMTj6QiP0ycldp6E2H1aYnsRepRPc9LpOgfc+TweSYLH4fl0Wp9IT4Lv61gWZFuNO/Ea8+w+pWaf08prHe/AGHbPrZuL4kXY/ZwnyvmwIl75Ido7CItTG5Gu9iHNfj4QBEEQBEEQBNEekEeCIAhCQDThXxMd9pYgCIJoH5zaiHS1DzSRsECWJXi8yeG0ceqGFMmMRHIPq4VZVm3ZjTOtCGJaW9YPioUdqa+R+ukmVoOA6NwymZFoP5ELlpUJY77bbEMUiS5Y7mRX9uN00EuG3B6Adl25MWDTGgnCLSLdG24uzo4XQhmV34ZMtTV6qY3Q9gT1Q2QXnC4qdgPxeCwatwX7Bn2Pdm2G3X7YIZprqT2vP0ay2BmA1kgwaCJBEAQhwCtLjpNYpWvCIYIgCMKMUxuRrvaBJhIEQRACyCNBEARBhIM8Eho0kbBA9shJE8da8gjkLhYRO6zUK3YlQFbuYd5NLJIvsfciqRJzRSuC+sZ+EeJo23GDR4o2ZYXoew92N/MuVqFbW29DVI+1xbu5RVIoVl9Sw8ue+PbZObAr7bGWa1lsS5L7QoTkkSB7Ypck0kSCaC/aS67hWCIbKWJf8JjL2wULWZIdGxCuHyG2gm/DRv6FSPZPVfwhZZLsCVvfjgyJHy8DY7/ALliM73x9K/sh6peVlJbBn+N4RChMR2gioZEcCwAIgiCSDI8kGYbC9iuJJ1gEQRCEezi2EXG0D1VVVSgrK0Nubi7y8/Mxffp01NXVWe7zxBNPYMSIEcjNzYUkSaiuro7q2Ek1kdi0aRMuvfRSlJSUQJIkrFmzxtjW2tqKO++8E2eddRY6duyIkpISXH/99Th06JCpjWhOJkEQRDCy00mELKVtVI5kgWwEQRDJglMbEU/7UFZWho8//hjr1q3DK6+8gk2bNmHmzJmW+zQ0NGDs2LH49a9/HdOxk0raVF9fj4EDB+KGG27AxIkTTdsaGhqwfft23H333Rg4cCCOHTuGW2+9FT/5yU/wwQcfGPXKyspw+PBhrFu3Dq2trZg2bRpmzpyJ559/3nF/ZJe++FjcftauaK1dYYQmTgqlBkmP+M+kwOxqjtQHkfSIlfnbAo0Eu7BN21h9f2iZSArF9uVdziL3MytT/aHbrPazcltLHk/Yevzf7D0f5ctKquTRpTf8tcH25T+7pEimbQo39ZcF35mlHEnfN5Ir3kq2ZDsxXpTXvFuRVShqU3qSTDZCkqW0knREk8gsVgmrlQ0AAEXfbm7Db/pfaW0J2Wburz/iNqeIbIbIHoj+ljMyw9Zn4xYvzRRJoUT2I1g2K7Ij8YoGlYr3gRt9ThZp065du7B27Vps3boVQ4YMAQAsX74c48ePx+LFi1FSUiLc77bbbgMAbNy4MabjJ9VEYty4cRg3bpxwW15eHtatW2cq++Mf/4ihQ4di//796NmzZ9QnkyAIIhiaSCQfZCMIgkgWop1I1NbWmsp9Ph98Pl/U/aioqEB+fr4xpgHAqFGjIMsyNm/ejMsvvzzqtu2QVNImp9TU1ECSJOTn5wOIfDIJgiDs4pHhyG2tvRLda4KHbARBEPHCuY3Q9uvRowfy8vKM18KFC2PqR2VlJbp162Yq83q9KCgoQGVlZUxt2yGpPBJOaGpqwp133olrrrkGubm5AKI/mc3NzWhubjb+ZrNFSXLuunb9iWRQe36B+5k/pjiaEWtL0DyrA851bOHtFUVoMqRHJjmS7qbWt/FSKFbGu7WD5UtKG+eu9gvKBO5qY98oXdgid7UscD8H/w8AsldzV/s9oWV8PUO+xGRmnBRKVObR71B2fnjpFJM5eWB9zQVLmoQRPARRRQL7W7fv6jUvaEt0zUfCjahS5JFIbdyyEeHsQ6wkZD0NL2u1cV/x8slIEZwAs0SWta9wslY25oukTWyME43zIvkSq8eP7YrAfhj7+WOXOFlJmngZLIPZAJEdYdtMZQLZE6vnEdgKkdwJej2ZswtSePVu4DjcmGknyhOQ2EzN8U5Aa4doPRIHDhwwxiQAYb0Rc+fOxaJFiyzb3LVrl+3jx4uUnEi0trbiqquugqqqePzxx2Nub+HChbj33ntd6BlBEASRaNy0EWQfCIJwk9zcXNNEIhxz5szB1KlTLev06dMHxcXFOHr0qKm8ra0NVVVVKC4ujqWrtki5iQQzEF999RU2bNhg+jKiPZnz5s3D7Nmzjb9ra2vRo0ePkHrJ8HSSb1P0pFb0XMXwOugPfyLlVwg8zQ1fT+T54J9GBS/KFj2V4hdgsydI7MkT/0SJvfdH8EjwT62Ctzn1SAi9E0FPi8yeBv3JE/eUiT0BY/tp8O+D0J8kSaaFhboXwcP+5hbQWS1+s/lE3mpBOEN0Hcf7yTt/bds9VjSeCyvII5GauG0jwtkHt4Jx8LRnfhY5yENtEW9Dq88CZwjsglX+BmFgDoEN8Lc0avVbQ8d+3h74gzwRIm+FeexXwm4zjmPTIyFbeSRM9kMOu03kdTDsR5vAjhh9yw45tge8h1r3UrBxkFcqGN+Bs3xHpnoRPNnxRHR9xXrvJSIgh1P7UFhYiMLCwoj1hg0bhurqamzbtg2DBw8GAGzYsAGKoqC0tNTRMaMhpRS9zEB8/vnnePPNN9GlSxfTdv5kMuycTJ/PZ8wQ7c4UCYJIbyj8a+oRDxtB9oEgCBHJEv61f//+GDt2LGbMmIEtW7bgvffeQ3l5OSZPnmwEkDh48CD69euHLVu2GPtVVlZi586d2LNnDwDgf//7H3bu3ImqqipHx08qj0RdXZ3xgQBg37592LlzJwoKCtC9e3dcccUV2L59O1555RX4/X5D01pQUIDMzEzTyVyxYgVaW1tDTiZBEIQdPJLzBEKUkC6+kI0gCCJZcGoj4mkfVq5cifLycowcORKyLGPSpElYtmyZsb21tRW7d+9GQ0ODUbZixQqTbHP48OEAgKeeeiqipIonqSYSH3zwAX74wx8afzN38pQpU7BgwQK8/PLLAIBBgwaZ9nvrrbcwYsQIAJFPplPsuqLaSwIRleRD/z9Y4sQX8q4pdgw2e44kGWFuR7vxwkWL6ph72nBvW7iy+frmhXmRXdh2Ebmk2bGMBXQZoe5nj205VajEibmTVYlbmG4sqjNqWfZb9MQjeJG1aGG1adGeDWmTk+3hsLquRG1Gug49Nq9Xu8iSZFqAaHcfIn4ko40QEa3kQ2pHjYCkjyVMkhosdQLMcifRAl+jTP+8qkj2pISOZ4bsKUJQDZGsNXjsV9pauWP5Q+oHL7KO22JrXtrkYXmFQmVM7Fi8fMnOMfnzIsva4lyFsxWGpEmwsFp0PQbLl/i/rWRM7XmNGijRj6uRpNyx4NRGxNM+FBQUWObC6dWrV8i5WLBgARYsWBDzsZNqIjFixAjLL93OBRHpZBIEQdjBA8DjcNy3ERyFiAGyEQRBJAtObUS62oekmkgQBEEkC9EspqU1EgRBECcGTm1EutoHmkhEIBopkRWxthFJ8iGSdxhl+t+8Z9KI5MS5pJnrUpRPgrnmVL4fUSqIrKIqKYJt4ugciqAsNJ8Ec29bwccBt/LeivrDZE78MeWg+sHvo8HkfrZwk4rcz1YRmuxGZnIzKlGkCGROcT1qE62RICyQJCkqCZMdaUg0PzisoriJouwxWA4hiZNNiuRObMznc0sYdsCifbu5mKyiKYnGUJFUyZDB+u3Vdzoes/oiiZMIP7T+eExRmFguofA5kPhLxL7sKvJ5FtkPVmayCxYyJqtrM1IfrK5DEaHSXlGb1m2Eu0ddyTWURGskEglNJAiCIATQGgmCIAgiHMm0RiKR0ESCIAhCgCw5XyORpp5rgiAIIginNiJd7QNNJBzApBN2I8pY1Uu2xFUml2RQJA5RlA7TvoZkJlBmuLz95jrmY4ZPAMcn/lEFUTECLmY5pEwEL1uKFikorImo/1YJi4LfA5GjaRhRlSxlTKEu6XDbkwkrKZJdmZLbciYeWiNBRIub8iU37l+rNgLR/KzlraI2JNUsi+EXu0tBNsBcj9mW0LHRlLxNf69a1JM4rRWrb442ZWEXWPsxRG0S1vOY7UGkzxlsPyLXD5UjBW/jr0FRdD5JUBbYFvqZRG04xc6+/G8Mq3vEjuxJa89e36KB1khopFRCOoIgCIIgCIIgkgOaSBAEQQhg+lenr3hRVVWFsrIy5ObmIj8/H9OnT0ddXZ1l/VtuuQWnn346srOz0bNnT/zyl79ETU1N3PpIEARxopBM9iGRkLTJAlVVhVIeKyeo25Fo3MBpP4IT0fHuOCZZYi5tfrvIre3xhM5VA/XCJ+QRuXb9goQ/fHQOluBHHJ0jsn+Tly5ZuZ8NtzUXiYNF5eDLRInrWJnHK5v+BwLnyux+1vezcE1bJaGzi93oZG5e027Il8JFAXEjCZEnijUSTus7oaysDIcPH8a6devQ2tqKadOmYebMmWFzIhw6dAiHDh3C4sWLMWDAAHz11Ve46aabcOjQIfzjH/+IX0dPMJwm6Iol6o1Rz4UfJOweMcYRbpsSJG8FAtJV/n4MjuInKaH1RTbA6IOX/wmSHbYePw77g8Zh8xitHUvmxnuFyZ2YXRBE8IspIV2QjAkIjPNGf3i7kBFqK4Lth2mbL1uvEzhX7JzKAvshksMa37HgurGSz4oi/PHEeh2KxmnRcUTjPOubEsGOBN+fbkqdnNqIeNqHREITCYIgCAHJFLVp165dWLt2LbZu3YohQ4YAAJYvX47x48dj8eLFKCkpCdnnzDPPxIsvvmj83bdvXzz44IO49tpr0dbWBq+Xhn+CIIhooahNGmRJLFAUVTjbtXoA1aYIFpsJsLs42yl2nt5GmsFbYTzZ4FPWe0VnRJv2G4vH2gS5CzyBRwN+vQ1/kFcBABQ9NrhHmEcifLxwJYacDXYWvZkWBQqeMrHtIq8De5LEP61j9fgnKMH1ZcFTJqfw3z87lCTwpLkZGMCpJ8NuvPFw13Is1zjDI0uOPzurX1tbayr3+Xzw+XxR96WiogL5+fnGJAIARo0aBVmWsXnzZlx++eW22qmpqUFubi5NItqZZFlk6YanzmrRtcdkC9j4HmofgnMYAIDsYV7awLXpb2vTWmoLjP3MDrAyYR4J3n60hpYx7JaFBMmIEFSD2YOADQi1C1ZeCv4cBM6LtfeabZc9od+FaGG1G4v4Da9WAn8g8/eWG+O+E5zaiGQLsuMWtEaCIAhCQCxrJHr06IG8vDzjtXDhwpj6UllZiW7dupnKvF4vCgoKUFlZaauNb7/9Fvfffz9mzpwZU18IgiAIWiPBoMdSBEEQAmJZI3HgwAHk5uYa5eG8EXPnzsWiRYss29y1a5ezTgiora3FJZdcggEDBmDBggUxt0cQBHGiQ2skNGgiYYHiV4SuYL8/vPvM5OJzKudwwe1lx7Un+ky8lCQkPrNgAR0vZ5LYomyB7Ia1K3N3kFfVZUxtgWOyeob8SuW3Zen1Q1dJqWpoG1bnwI7bmke02Ezkxg3IkrhzJXDfG7Iub2hbogXVwS7sSDkm2Hcmki+J/I/GmkSrc9ZO12XY4zuUY6iKCsUf+4o6KYonSOy7yM3NNU0kwjFnzhxMnTrVsk6fPn1QXFyMo0ePmsrb2tpQVVWF4uJiy/2PHz+OsWPHolOnTli9ejUyMjIi9ouwD1u8abXoWiiRtbmoVLj41AWJkl35oNEPQb4gdpd59MFFlUSfkxuLdDug6DZUVgKNeTN0SSV376qKV/8/MBFn20XjvUjuFLy4WiSHdYpVbiAgdCG4ScbkcJwXyZhYG7xdDW6Xl83atR9WWF2bblyPVscR4dSmxCOfhFMbkUgJWDyhiQRBEISAWNZI2KWwsBCFhYUR6w0bNgzV1dXYtm0bBg8eDADYsGEDFEVBaWlp2P1qa2sxZswY+Hw+vPzyy8jKynLUP4IgCEIMrZHQoDUSBEEQAmQAsuTwFae+9O/fH2PHjsWMGTOwZcsWvPfeeygvL8fkyZONiE0HDx5Ev379sGXLFgDaJGL06NGor6/Hn/70J9TW1qKyshKVlZXwC0JgEgRBEPZxbCMS3eE4QR4JCxRFFcppnGI3YkcMQYYcYdclKHIFitzbEOUxUMy3jMhdKSpTIsiunGyLF1bRLkTbRK5PYeQTh/kgRG5SkczC+L5tyiuCaa/rEnAv6oYrUZskCR6Hrmin9Z2wcuVKlJeXY+TIkZBlGZMmTcKyZcuM7a2trdi9ezcaGhoAANu3b8fmzZsBAKeeeqqprX379qFXr15x6+uJiJV0QiR7sn2NCvL5REssY7+VfEU0dnl1WY/TcV5YX2Q/VFafL+0Qvr7NMjvEMn6zayFS3obgdt22LQxR5CV2ThVEOD8JuDatiId8yQqnNiKe9iGR0ESCIAhCQDLlkQCAgoKCsMnnAKBXr16mH3sjRoxwVbtMEARBBKA8Ehrp6mkhCIIgCIIgCCKOkEfCAsWvGtElYm3HUX0XXHyxuBqtIgsYblk4c8uK2rdb32qBUrTbImGVQM3pNitXfaQIWsH1RQhlCFyZ1VNpq2sz0ddhLLhx33pk7eV0H+LEQFVV+x4fJfb7wHFSx3bwRoXc33yEOht2xFabcJ48LVmi40QTcS4Yp2N/1McW2SKbslbReJuI78DJZ3bj/nBqI9LVPtBEgiAIQoC2QM6ptClOnSEIgiCSCqc2Il3tA00kCIIgBMhRLLZOVw0sQRAEYcapjUhX+0ATCQsURTW5Fe1EeLCdTMWmW83NqBIMUeI40b5WCWs8fEI6fTtfxmRFmXpZJrfNG7RNe+8xlfE3Jyvzcn0Nbp8vE0ma7MicRNIBvoy9b9EjefHb2oK2AYBfDS1rafObytq4NliZqQ19O4sexrtjrRL0WV23puSDFtdhLBGx7EgR7A6qdmUNfD1XZFlJttiaSC6C7YM1MSRkdCWajbOIS1b1hNIjI/lmoMxI0ilIuull47wcOs7zZT5hPY+pLNNjbQO8Qf2N1j4AkW0Eg43r/qD/AaDFH2o/mF1gZc0CGyCyC21cWbBclrcPTAIlkvMY+9mO6BX7tWSFG23YIRE2Ip72oaqqCrfccgv+9a9/GVH9/vCHPyAnJyds/fnz5+ONN97A/v37UVhYiAkTJuD+++9HXl6eo2PTRIIgCEIArZEgCIIgwpFMayTKyspw+PBhrFu3Dq2trZg2bRpmzpwZNtLfoUOHcOjQISxevBgDBgzAV199hZtuugmHDh3CP/7xD0fHpomEBWqbAoWf8Tt8emtn4ZR4sa2TXkYmeGGb6AmRzD3Zl9nCQPY0yBNan28jM9PsTQCADnpZdqZX/99jbMvO0N53ygpcftlGfe3/LG+gfoZ+/CzuLvTq77P4fut9yhA8lbLzkIP/atgTn1bB0/sm5k3wB76oJv19K7forEl/ytTYElixxt4fb2rT/m4N3dbY0maUNehlLfoHaOHaYt8F/2SLXV+i65aVmbwVcb7+RIsq7cRPNz2V8gvKBMjcglbVjfwv5JEgLFAV1ZWnuDyxeAhj9Vzw95cw6IUe5JG/swx7oN/nJq+0Pkb7uLGf2Yhg+wAE7EIH3lYE2QW+DVY/w+TB0Ms4m8W2s3vTbBf0Mpu3LRve+e+Jjb98GbMbzB40t/lDtvFjP/M2BGxAYBuzAWZb0WbaxrfR3BK6QtrwaHObgj0Rfr/Aw+1QkREJWzmYBAu83fZeA+58nmTxSOzatQtr167F1q1bMWTIEADA8uXLMX78eCxevNhIWspz5pln4sUXXzT+7tu3Lx588EFce+21aGtrg9drf3pAz88IgiAESFJ0L4IgCCL9idY+1NbWml7Nzc0x9aOiogL5+fnGJAIARo0aBVmWjaSkdqipqUFubq6jSQRAEwmCIAghMqSoXgRBEET6E6196NGjB/Ly8ozXwoULY+pHZWUlunXrZirzer0oKChAZWWlrTa+/fZb3H///Zg5c6bj45O0yQJFVQELd59osQ4vFTHSzMew8NVNdyJzq/HuP+aKlrnj8O5pIFh2ErqwmrmaealSXodMrcynleWYtmWYtgFAB91NnaO7ujtkyCHb2P8AkKn7ovmFdIakSS/iJTR2tIl+Qe4FPjw2c0kbC6u5jQ2627mBcz83tGoN1vFSJX378WatrKah1dhWp8udjjcHPqenoUUr07eZZEz+0AXYTL7Eu6mZW5vF+jYvwgt1y8fDhe14gT/3fVlJofi2/PqCVkmWbAczsCIaDwN5JE4ggqRN8ZC+Avblh9EuHrW650QLqz3888eg+9bDDbRM0sTbhZwsbezP0cd+8zbtfV52hlHGxvxsbuzvlGm2B7xd8AkCczC7wEyWSdoU9Hm5j2SCnVojmAW3zVj4zBUG2wp+8bTIVhwPki/x22oaNRvB7AMQsAd1zYGyuqaALQGA5pbAe2Oc94eO88xWKBYLt7X65m3RECphDa1jR/qq7SsoU8MPwCGyIjfsnEMbweoeOHAAubm5RrnP5xPWnzt3LhYtWmTZ5q5du+x3IAy1tbW45JJLMGDAACxYsMDx/jSRIAiCEKDFCHe+D0EQBJH+OLURrG5ubq5pIhGOOXPmYOrUqZZ1+vTpg+LiYhw9etRU3tbWhqqqKhQXF1vuf/z4cYwdOxadOnXC6tWrkZGRYVlfREzSptbWVhw4cAC7d+9GVVVVLE0BADZt2oRLL70UJSUlkCQJa9asMW1XVRX33HMPunfvjuzsbIwaNQqff/65qU5VVRXKysqQm5uL/Px8TJ8+HXV1dTH3jSAIgrCP2/YBIBtBEMSJQ2FhIfr162f5yszMxLBhw1BdXY1t27YZ+27YsAGKoqC0tDRs+7W1tRg9ejQyMzPx8ssvIysrK6p+OvZIHD9+HM899xxWrVqFLVu2oKWlBaqqQpIknHzyyRg9ejRmzpyJc845x3Fn6uvrMXDgQNxwww2YOHFiyPaHHnoIy5YtwzPPPIPevXvj7rvvxpgxY/DJJ58YJ8BpCCwrVDXIdR3k7uPdy6JYzFayEZE8KtCuTZe3EhreQJI9IWXBMhDe/ez3665gzj3M+sHq88c22uCm4SzKBnNbA0C+7p4uyNEkTp05d3WuXi+Pkzbl6W7tTizKU0ag/WzdJ+3jQmuwaE0ehXPn+jVfrsT+bzP5dtmHQwjM38j5WVVvpul/7WBav/2yVtbEuYKb/Vq/G7myxlbtWMc5aVON7pKuydT+78id92OZ2mfx1HFynaA45Hws8TbB98OutTbONe5vM5fxLmzm1hZd5wyn15m5XmiUL5EsyUp+J4pfb1yjSmi7/PZYIGmTc+JpH4DkshGKqkJSxZGbgsvsymBF9YNtRnAfwh1T1B9LWaFAfshLWNlobRV5xsvVzxbYBSZbyu9gtg8AkOfT7QIvg9VtBF/Gxn7DLng5u6DbCB8fza9NW8gq+XVb4Q/YBcmvj82qSdca+sGCbITq4X46Zei2whP4nIpXk6owSVMTJylq1sdj3lYwW2LYB06yxOS+NVkBW5dZp30GUf6L4BwWgNkeMIzfICwKYWuoHFYk3bO63iNFTRJda8Hb+DbYmM5LspiZ5sf+4PqidnnpK2A/l5cV0Uqb3KZ///4YO3YsZsyYgRUrVqC1tRXl5eWYPHmyEbHp4MGDGDlyJJ599lkMHTrUmEQ0NDTgueeeMxZ+A9oExuMJtfHhcDSRWLJkCR588EH07dsXl156KX7961+jpKQE2dnZqKqqwkcffYR33nkHo0ePRmlpKZYvX47TTjvNdvvjxo3DuHHjhNtUVcXSpUtx11134bLLLgMAPPvssygqKsKaNWswefLkqEJgEQRBiIhm8fSJvNg63vYBIBtBEETy4NRGxNM+rFy5EuXl5Rg5cqSRkG7ZsmXG9tbWVuzevRsNDQ0AgO3btxsRnU499VRTW/v27UOvXr1sH9vRRGLr1q3YtGkTzjjjDOH2oUOH4oYbbsCKFSvw1FNP4Z133nFsKMKxb98+VFZWYtSoUUZZXl4eSktLUVFRgcmTJ0cMgXX55ZcL225ubjaF32KzMoIgTmCiCed64s4jEmofgPjZCLIPBEEIcWoj4mgfCgoKLL2qvXr1MnlBR4wY4YrnHnA4kfjrX/9qq57P58NNN90UVYfCwUJYFRUVmcqLioqMbdGGwFq4cCHuvffekHJVUc2yEb9ZjhRJxmSVACzgOgy4HNl7U5k/tCy4Po9IcsLKZN0F6+fkOh5d2mR2V2qXhcej91EQ8oh3qbKoTTm+0MhMTNLUpUPgmAVM9tQh4ArO0aM0ddT/z+ESEHlatRm03BTQMUst9VpZc71RprY0av831ut/NwW2MZmTIgh3ImvHlLjzImdqMggpu2PgmJnZWn98WllGZmBbR5+Wht7fsYNRVqdH4ujAybQ6soR7DdoxMwSuWN4l3WwkKtJc3SJXtsn9zKI2tXHJkXQ3OXNv81GbFP28KK0Bd3/wdeX0OgMASXeLsjLTNv09L5sIjhIjSpCoCuVOId2ADLeSDdFiayck0j4A8bMR4eyD4lcgCSLd8FjJYE31giWvFnJYvg1VUM9uVJ1giaEpyp1XZBdgqg8AsiKbyvjxySewC0zSVNhJk/7wktfOugSqK2crcnx6G5wEtKM+nmbJWt/k5uOBvjUyu8DZilbdLjRp25RGzma06XKhtoBsiNlc02dmMg+v1kfJG+i3rNsIKStgD9QMzVZ4dbvQwRfYpmR3AgA0KYHzUq/LYLMN+xfY5vNoYzOfZM8j+PXK7AazFY2C8ZK/NpislUma2rhEdmybKcKfQNpk51qTBf0QRQUTSpsspK7QpUpCySt/fhRzvUAEKzeSlka32DrdoDwSAObNm4eamhrjdeDAgUR3iSCIBCNF+SLSC7IPBEGIIPugEXX419mzZwvLJUlCVlYWTj31VFx22WUoKCiIunM8LITVkSNH0L17d6P8yJEjGDRokFEnmhBYPp8vbBxfgiBOTGRJslxYGm4fov3tAxA/G0H2gSAIEU5tRLrah6gnEjt27MD27dvh9/tx+umnAwA+++wzeDwe9OvXD4899hjmzJmDd999FwMGDIi5o71790ZxcTHWr19vGIXa2lps3rwZP//5zwHAFAJr8ODBAOyFwAqHogCSX+BODkrkYioTuAJFUhImFxFJSngpiSE9iUHa5NElO1KLLinRJToAoGQwN3Ig7FcgYof2v1cg4TJLm/TEQJwciUXnYBGaCjgXNnNd5/kCDrFOPl3yo2haZLk2YOzlxhrtTd13Rpm/RnvfVhMoU+o1F3ebHsrR3xQ4t/5WzXWtcBGUjPZ1N7KHi5/sydL66M3JCdTrqLmk5bwuWh39fwCQc7T3cnaeUZbXoTMAwJcd+BGSIWvfmWjRFUti1Mqdb5aEiJ1j/ryLJA8Bd3Xg2mDvW5s0qRd/zfmZHEzhozxx0a5g/zqTuTKZXXMCaROT2CltofWZpIJ3mbMyPtkQS4oVzjktUrA5RUIUUZtiP2xa0N72AWh/G6EogCSQrQKhybtiiebHJBjmSE4CGSwrE0hzrGD3I3+PKnoUOjWDlyTqchROYuPNMEtb+PEpmyUX5e1CB3PEPl7G1FXflusLTT7XiZOHyo3H9P9rTP8DgP+YZjfajlcHPkud9t6vl7XVBySvbU2aveHtgr811EZ4MrT+MlvhzQqM6d6Omu30dMoP9DFHey/rZd7OATmdotuIDpytyMrWbAVLtMrsBAB49CiB/Lll10IL9xukUZcmsfN+vCn0c5hsRZtZviSyGf62Nm7f0N8sdpA8obJWoV0wri85pMwqwl8kySuL8hRsExJhI9LVPkQtbbrsssswatQoHDp0CNu2bcO2bdvw9ddf40c/+hGuueYaHDx4EMOHD8esWbNst1lXV4edO3di586dALTFczt37sT+/fshSRJuu+02PPDAA3j55Zfxv//9D9dffz1KSkowYcIEAOYQWFu2bMF7770XEgKLIAjCDnKULyI+9gEgG0EQRPJA9kEjao/E73//e6xbt86UnS8vLw8LFizA6NGjceutt+Kee+7B6NGjbbf5wQcf4Ic//KHxN3OPT5kyBU8//TR+9atfob6+HjNnzkR1dTUuuOACrF271pREI1IILIIgCDtIkmRetGdzHyI+9gEgG0EQRPLg1Eakq32IeiJRU1ODo0ePhrilv/nmGyM8Xn5+Plpa7LvBIoWjkiQJ9913H+67776wdSKFwHJCcEK6YEmTyE3IRwJgbkGFk4owt7MhWeK2+YNkT0DAjShyZVvBuwz9QVGb+DY8SnZIfZawjkX+ESVuEUVtyuZc2B10lzhzYfPROTrpkqZOnAs7u02PtlGvSZXkum+NbW3fHNT6810gqkrrd9r2xm+OGWXNxzRJU8txra1Wkwtb/y78oZ+Fueq9XNKjDN1dndkpEG3D11mTOWUXam7ojC5djW2eLpq+2lt4klHGEuNldwxIoKBH72BXiV8NnBeWlKiRczGzc8rOsShqE//9GN8Zn7iuRZN1+Zs1GROTM2nbtPeRJHZWWMmXAhGaAhIG1q4sKFMVJnEKHZr4KE9+/Qx6uGc87BNLsjsJ6ShqU/TEwz4AyWUjVFUNm1QuWNIkSuylCCI+iWRMwXJYINSO8NutIvwJJYlt2j1nvh/Z+4CEh0VSY5H+gj8XENkusAScLJITn5SURerL4+xCDpOCHg9IWOV6LUu6WnUYANDC2QVFlzY1fhPIpN70nXa9NVdr0teW4w3GttZ67fz5W/hzK4hUpdsIj97HjI6Bc5XZSYvU58vvZJRlddEm0NmF2hogf+dvjG1e3VZ4CgLreFjy1FzdVsjcOWCnuJXrV4NuIxoc2grTdeg3/54xSZtadMkXZxdEv1kC7Ya/vkQR+wzpKyd7UoK2AdZyJ+ifUxZIlPgiQ0YsByVaTYCNSFf7EJO06YYbbsDq1avx9ddf4+uvv8bq1asxffp0w428ZcsWfO9733OrrwRBEO0Gy1rq9EWQfSAIIv0h+6ARtUfi//7v/zBr1ixMnjwZbfqTd6/XiylTpmDJkiUAgH79+uH//b//505PE4CqAJKH/ztosbVwYXVgcZIoRn/wrJ5f2BrsfeDrqUr4vBMihE8BBE+2RPXb9KfBXv3pUaSY/Jme0CdPLIY480xkc0+TWa6ILDXw2eUGzbMg6YusWyv3G9v8R7T39YcCC7DrK7UnTo1HAx6J+iOaJ6K5tkX/P5BEqlX3SFg9bcrgPBK+XJ/+f+DpSMcizZuQrT/h6lgciF/ekeWuaA3EI/cWa9+ZLAU+e1YnzQPRpi/sbubyPbBz5ePOlfGUSZDLgyHKI8E/XQr2RLRy+TjYNoWPo27DIyG6viSZf1JpfkJl9oKFts8/hQo9lnau+PvNiHMvqVw9Fifc/HSYaH9OFPsQLj9EiK0QBOYQLahm9kPklRZ5H/gyJei+iuRRNO5bvQ3eayjyVLe1aPecN4N/Wh7qcTHa0H81ZXLjmU8PGsG8Dx1N3go9l5CXW1hdpy+srg94GJRvv9b6c0QLw9ty5LCxre5r7ck/76muP6qN003HNA9147GAp5p5JNoaObtt5bXO1mwE75HI7qx5r7M6B47ZsZueK0K3FTkn8/mOtON7+fGPvdFtRcecQmNbi35eWvycp0Y/bzXeQJnhiRD8WhXmudLLWP4I/reLyHstUkzYsRHmBdVmeyAJAnSY+m1s53+q6meL5eLiHvN7BM/G2Z0XHOCEbIR7RD2RyMnJwZNPPolHHnkEX3zxBQCgT58+yOGi3LDIGQRBEKlGNIvj0nUxnVPIPhAEke44tRHpah9i+lzvvPMObrrpJtx0003o0qULcnJy8Je//AXvvvuuW/0jCIJICGwhndMXoUH2gSCIdIbsg0bUHokXX3wR1113HcrKyrB9+3Y0N2sykpqaGvz2t7/Fa6+95lonE4lokZwIJrsQLYgTSZX8lrKn1tAyQYxw29ITfUGTV7CtTdZcl7xbUQlygwrd1rw7URa4sD1maVMmF3vcp7+XGgLSIBYLvE1fLOf/LuCuZpKm4/uPGGXHD2pu5LpDAZlO3VHNfdygS5pqWrkY27q7ukXwWTL1/mdzfczT2+qQG1hsyCRTOfUsJ0Xge2J09AYWT0s+zeXtNeXt0N77OmiL6vjzYkibOBlT8MK5iAvoVIFsQr+GRAur2bXWxrmwRddtMKLri88jwaR4Mnc+rDAkUOzYXBx1v55vgpdUGP3n7kkjpr9LK9posXX0nCj2AbCXK8J0jwYtrAZCJU2RFrm6EZhDJD0J3maSU2Vm6GWhMi1GRLsQJHnN4mRM2fp7uSUgA5KaNRuhVgdkrSzoBpM08Xah7qAmbao7FLAtdUe1xdWN32r/1zYExu06FuCCkzNZ2oha7f8cb2C8zNXbze7awShrrdPH3CazNBkA2JJsibcVbPFxhmZv5MxAW9le7X2jV2ArvDHYCvabxVj8H3rN8dJrJneKRdqkshxC+n4eC0krEAja4TelxGC/ZGTuX73f+oJqqwXYsouDNC221ojaI/HAAw9gxYoVePLJJ5HBJfI6//zzsX37dlc6RxAEkUgkhy9Cg+wDQRAnAmQfYvBI7N69G8OHDw8pz8vLQ3V1dSx9IgiCSDjkkYgesg8EQaQ75JHQiHoiUVxcjD179qBXr16m8nfffRd9+vSJtV9JjRGRQyB1Ern9TO7noDKzO7E1pMxv4a62LT1RdDe1ILoOcx2K3JqqYk+W4mWuVE7/l6HLczJYtAvuDvLqTkapLRBVSdUjCSnHqwEArdyPDRb5ouFojVHGIjQxORMAfKdH46jSo1Dw0qZ6FhVFlBND73dHTlJU16a9L7CKKZ4RqJ/RUZMsZeYG8k7InbTPoOYF8khIHbTPzM4Bf17Yucrg+sH65rU5AhmSCuH3KbrmQiV2jqM26deXKpBICPfVpVAKH7XERsQZc8x+Ve9H/EZmSkgXPSeCfVAUFZISyDUkkhiKZKGqQH5obLMY50Vlovs2ONJfOCTZHDlHFNOfb9/flm36bJEQSZsy9LIM3Qbx45oRma4pEFVJ1iWXbQ21gb7VaDklmr6rMf0PBORLTM4EBGzFN7qkqYrLGcGkTU2KPWlTlsykTYHPxGRRhQJbwfJOeLMCfWQ5ijJyArkxlE75Wj1Dfho4B5mZWoACL6fXYecvgz9/FvkjRChGpEk9d0kEOZ0wn4nFNcauL5NsWj+GKKeV1XXO2xvFGPvZ+Za4+vq9xWltgmVO7E/R/ecUSkinEbW0acaMGbj11luxefNmSJKEQ4cOYeXKlbj99tvx85//3M0+EgRBtDvsaZPTF0H2gSCI9Ifsg0bUHom5c+dCURSMHDkSDQ0NGD58OHw+H26//XbccsstbvaRIAii3YlG15qmdsIxZB8Igkh3nNqIdLUPUU8kJEnCb37zG9xxxx3Ys2cP6urqMGDAAFOc8BMJoRTDSqbhD19fsXD32ZU2iWAyKd7VKOqHFVbuQJlz27FgREyaw+dTkxQtBIPk59zyTMKlJ+tpa+SSydXridTqA9E2WvT3zccDbTA3NZM01baFurAF3mejryLZUyb3CCFHP5YvtzWkP6yPfL8z9c+ici5j9pnZOfDIgVvQOFfcaCNbuEKdumYD0Zi4aDGCJIh2o75Ywa5hyWgjIJMzrjlu9LG8V4yy9o3CLUuS5fkPtw9B9iGYSPeqcf0LIqbZsQvmstAIgnbgbUGwBDdce5GSlQYTiCik/c3f0ezWkfxcNDxd/qo2B6Q+fj0CWFujNna11ge2MbvAEs0BQF2zNtYyG1DHRZ2qNaI2cWOihY1oESQGNSI6NQdCC2Xqxw/0J9BH1m/2OQDAwz6f/nn5c8DOC39k1g27MiaGUGpnJcEWRInk7Yeda8xqTOevaUl0zQmi+AVHGePvLafnI1ac2oh0tQ9RTyQYmZmZGDBggBt9IQiCSBokKWDEnexDBCD7QBBEuuLURqSrfXA0kZg9e7btukuWLHHcGYIgCCI1IftAEARx4uFoIrFjxw7T39u3b0dbWxtOP/10AMBnn30Gj8eDwYMHu9dDgiCIBCCpKiSbEWr4fU5UyD4QBHEi4dRGpKt9cDSReOutt4z3S5YsQadOnfDMM8+gc+fOAIBjx45h2rRpuPDCC93tJUEQRHujKtrL6T4nKGQfCII4oXBqI9LUPkS9RuLhhx/GG2+8YRgJAOjcuTMeeOABjB49GnPmzHGlg6lC8AIgvky4jcXsbgutL/Mp5W3G5rfqD3vv0WM383kk+NjhdrBKL8/HF2cL1tgCZm4tG9QM7bJTPYFF3yyutJSpxdj2ZvuMbSxHQ0bHwILdTP29r1OgjRx94ZwoDjhbyGw3j0SeniOCjxfOjsWOzfeH9ZHvN/ssUgYXR1v/zKq+yJpfV2icK66LVjHbrb4LEey75r9/jyCet622BNcXXybbufYF7VndR+2NpCqQHA78TuunK2QfzPD3ql+UmyYolwPLzcJvE9kF8f1i715m44Aoj4To/hUfy9kY5FfM9oC/W9hQp3q4/EVebTyVfFlGkcenlXmztbGL5WUAgMyOTXoZZxfqtEGW5XuwyhMRabsojwR7n+ML/Jxixw/YikAfWb/Z5zB9Pv3z8ueAnRf+XLHz53e42F30fVmN34rH+vu3Ppb5+hIdS45gRwI2K/yxndpBN3FqI+JpH6qqqnDLLbfgX//6F2RZxqRJk/CHP/zBMsDFjTfeiDfffBOHDh1CTk4OzjvvPCxatAj9+vVzdOyow6DU1tbim2++CSn/5ptvcPz48WibJQiCSA7Y0yanrzhRVVWFsrIy5ObmIj8/H9OnT0ddXZ29j6KqGDduHCRJwpo1a+LWRwbZB4Ig0p4ksg9lZWX4+OOPsW7dOrzyyivYtGkTZs6cabnP4MGD8dRTT2HXrl3497//DVVVMXr0aPgdRvOM2iNx+eWXY9q0aXj44YcxdOhQAMDmzZtxxx13YOLEidE2SxAEkRyoauBxoJN94kRZWRkOHz6MdevWobW1FdOmTcPMmTPx/PPPR9x36dKl7ZpVlewDQRBpj1MbESf7sGvXLqxduxZbt27FkCFDAADLly/H+PHjsXjxYpSUlAj34ycavXr1wgMPPICBAwfiyy+/RN++fW0fP+qJxIoVK3D77bfjpz/9KVpbNdeh1+vF9OnT8fvf/z7aZlMC5h6UlPBuQv69yGXIXNN8TgcrrOI6i/sY6h5kx+KPKQn6wd7bdVu3MXc1d5O06r7XVt2d3Ma5YNvAjsm5drM095vcKR8AkJGfb2zL6lKvtaXnagAAv54rQhXIBLJrtVjcOd7A7N+OWzubS+DApE0dcgN9zOnWEQDQsUj7v0O3PK6PuSH9Zp+FfTYAUPXP3KY7A9u475Cdq1ZTTPPQ82cF+87E32fod81igsui2N1Ory/+OjeutYyQY9pxawtlFNwPYaeSiqhIojUS0RoKANi5cycefvhhfPDBB+jevXtc+hfMiWAfZFmCLEsQfeMyk+7oPn8+fj+7jk1yJ72+UN5hUSbzssmgPEGR5IohMhPBmMG379ElPHZj4TPZTQuXt6FVL2vVxx1+XGvRT4I3IyADUjI1yajcITfQt7wuAHi7wOVoaNJzNLSEfnb52wYAQHZDQE9aZ+SR4Pphw0bw0qbcDtoYl921g1GW062DqSyrC28r8kyfg/987POCOwfsvPDnip2/Vv78sVxJNm0F+x7Z9+rnvmu5Tf/+I9gFOzbC9PsnIzPsNqsyU7/Z7y/BdWjYP4GtMLbp/6tu2JAo10jU1taain0+H3yc1M0pFRUVyM/PN2wDAIwaNQqyLGPz5s24/PLLI7ZRX1+Pp556Cr1790aPHj0cHT9qaVOHDh3w2GOP4bvvvsOOHTuwY8cOVFVV4bHHHkPHjh2jbZYgCCIp0CJyKA5fmhGvra01vZq55FPREMlQhKOhoQE//elP8eijj6K4uDimPjiB7ANBEOmOcxuh2YcePXogLy/PeC1cuDCmflRWVqJbt26mMq/Xi4KCAlRWVlru+9hjjyEnJwc5OTl4/fXXsW7dOmRm2nvAzYg5VWzHjh3x/e9/H9///vfJQBAEkT7EsEYiWQzFrFmzcN555+Gyyy6L6fjRQvaBIIi0JUr7cODAAdTU1BivefPmCZufO3cuJEmyfH366acxfYSysjLs2LEDb7/9Nr73ve/hqquuQlNTU+QdORxJm/bv34+ePXvarn/w4EGcdNJJjjqUbPASClmXMvkhiPyjuwdVJVTywUfgsCNlMrv2dHey7sp06lbk3xsyE86F6WWuY96tHeQeFMlIePepyIXdrLtjG1q1Prb4Pdw2rX5GViejTGnVZEueztqPJbU5cCF3bONCG7E+ZmqfJZOLnOTL1T5DTq3m3s6rDTwFbm3SwmOJpFCS7q7OyArcDj5d0sTaBAKSpuxuWiSajsUFgW0lWr89XQLSEfZZlOyAW1vVPzM7By1cf9i5auakTcHuapHb2nSNCmQT7Ltl37XoGuIHAlbm9Prio0GFyKlMEonwEjtRlA6PN/zzDpEL2zVikDYdOHAAubkBOUY4t/XcuXOxaNEiyyZ37drlrA86L7/8MjZs2BCS3yFenIj2AQjca1YSJ15GIQvesTvQr0fx4+8XEez+UNpaQsrs3L98fSOqn0jaxN+jbGzh7sfgey6iXWgz24WmtsDI09im1c/yBSackk8bL+X8wCTao3/mTN0uBKxIYAzyZgX6nZGjvc/urMmFso8FbEtBvdZWW2MgfKIisBGybiO82Vp/+ahQrN2szgE5UsduWq+yCzVbkXNyobEts0izEZ4uAQ+hpH8+Rf+8SmbgHDQ2a+esqU1gK9pisBX69xj4XkO/f4/gGopJ2hQkozNtE8jpAtdm4DqR9eiKshz6+0T0myVY0uQqUUqbcnNzTfYhHHPmzMHUqVMt6/Tp0wfFxcU4evSoqbytrQ1VVVURPdHsYddpp52Gc889F507d8bq1atxzTXXROwfw5FH4pxzzsGNN96IrVu3hq1TU1ODJ598EmeeeSZefPFFJ80TBEEkDzF4JJihYK9wE4k5c+Zg165dlq9oDcWGDRuwd+9e5Ofnw+v1wqsb40mTJmHEiBHunScdsg8EQZxQxDlqU2FhIfr162f5yszMxLBhw1BdXY1t27YZ+27YsAGKoqC0tNT+x1FVqKrqWIrryCPxySef4MEHH8SPfvQjZGVlYfDgwSgpKUFWVhaOHTuGTz75BB9//DF+8IMf4KGHHsL48eMddYYgCCJpUBVAie9i68LCQhQWFkasxxsKlhk6kqGYO3cufvazn5nKzjrrLDzyyCO49NJLHfXTDmQfCII4oXBqI+IUjKN///4YO3YsZsyYgRUrVqC1tRXl5eWYPHmyEYjj4MGDGDlyJJ599lkMHToUX3zxBf72t79h9OjRKCwsxNdff43f/e53yM7Odjw2O5pIdOnSBUuWLMGDDz6IV199Fe+++y6++uorNDY2omvXrigrK8OYMWNw5plnOupEsiLJwX/rbjPVHO0AAPy6W5F3wYnbDB+dxh/kmua323VXB+/Hv2cuQyZxAQCP/t7jC5R5M5j7kSWUsXYJsqgSjVykjGAXdiPngq1v1d3EPs493EFzAcv6jZbBJ83L0ORLOdkBd68vX3MBN3YJuAc7Fmsx9VuOi6J5aK5rS7d1Fp9QSHNTZ3bijtlZi77E3NUZXboa25ib2lsYkGooOdp2pUMgKVeTpH3m+pbQ8yJyV7Nz2uIPPwCJ3NXsOwQAvy9U0hTYV5dItAYkEtFea1bROSLKJoIii/H3kSSF3m/BkTjM/Qm9d1OdaAxFcXGx0FvRs2dP9O7d2/U+noj2gb/OZASuxeC71cM5/xVZH4Pa+Fpsu3bdK5wc1jgelxyMRdAx3XMW9y0rE0bBEdyP7P7l70NvJou2Zi0lYbCIc2Zpk9aPOn1cq+dsRqY+Dmdy0fNy2NjJ/QBjZyqDjTuZAUlRRo42XmdxdiG7UIuQ01yt5S9pOd5gbGutD43yZCV/9ejngJc2ZXbSIjMxm8QfP7tQk7/KnQPSLK9uK6SCgAxW6ajVY7ainpMx1esRCvlzxc4fO58AJ20ShBgVRTNi3yP7XhV/4LtWdZthur50SRkvpzPqW1xfYpm1bh8ECe+EMmsuWaxRJogiJrILAQlUcL9CuprSrFy5EuXl5Rg5cqSRkG7ZsmXG9tbWVuzevRsNDdr1n5WVhXfeeQdLly7FsWPHUFRUhOHDh+P9998PWY8XiajCv2ZnZ+OKK67AFVdcEc3uBEEQSU+yZbZ2aigSBdkHgiBOBJIps3VBQYFlTqFevXpB5SaZJSUleO2111w5dtR5JAiCINKaJMojATg3FCIibScIgiBsEuVi63QjpSYSfr8fCxYswHPPPYfKykqUlJRg6tSpuOuuuwz5g6qqmD9/Pp588klUV1fj/PPPx+OPP47TTjvN8fEkSTK5yNglwNzUfs6BLYosI8maJMfPufaYW1AUnUaUSEjx6u7ECNETAscMdS16giIkeDhpU0DuFIh+xFyGHm+oO5ThFyTC4aVNTKZT06xJirK48+NhUSL4BvVIHVmdtEtS9XBRfvQIFh4ugY+ny3cAgMyi74wypV5zXbfVaRInf1PABevXk2IpLYHoHMbnzdSO6ckInAOPHvXDmxNIJid31COI6P3g+4Mc7b2fi9DE3NRNcmCh7fFmv/6/ds6ONQYiUrFzxc4dwEmbLJIN8d+P8Z1x55t9t6oS6q42pHOZgWP6g1zXdq8zUUI6O7Invr4nKJKIqYy7Fz2e0DI+UZErWZyTLLM1EZn2tBEh15kc+O6ZzMkqkhN4qZ5+XxsRoLj7XNHHD76M3ZN8hBtDkui3J0k0+iO4H5mkiZdIsntO9oRKSRiR7EK9PrbV6WNdDdd+hofZm0B7ii676dSpyChTmRRLt2OZ3DjsP6atN/IUVhtlHeq09/7j2v9tJsmrtqiUtwv+1lAb4cnw6sfUz0tWYEz36jJYj56AFADkHO09S0rq4aRNLIqfyVZka7bieKt2/o4LZEzMPgCB81fv0FaYxksm1/KEymEB7fP5BeM2L4O1g0i+JI7oFF7GJIzCZDNCE5MwBduEhNiINLUPKaUSW7RoER5//HH88Y9/xK5du7Bo0SI89NBDWL58uVHnoYcewrJly7BixQps3rwZHTt2xJgxYxzHxSUI4gQnhqhNRGIgG0EQRLtB9gFAinkk3n//fVx22WW45JJLAGiu/L/+9a/YsmULAO1J09KlS3HXXXcZCZieffZZFBUVYc2aNZg8ebKj48lyYJEVT7BnAgBUSZtpmjwY+pMBfuarerWnF2xxNr+wSLTIVZSWPrg+j9ViJ/ZEgT+mR7A4l70XPfVl781PnrR+NHBPUWr0J+0Zev0MwWI8BQEPQKveXke2sDqXy8egP7mROwbyNsidtQWm3uZ6o0xt0XJRZDbW638Hfhio7Cm7KMKCvrBb4hf/6gv4JG6Bt6Q/AVN07wkf61vxaZ4Lf0YHo8xYUMg/SdIXzlU1aOenivNI1DZp72u4sgbjKZP2P3/eRQvLRE+XVGMf/doTLKrknzIFxw53ep0BoR43kRfEtHg6KP8F71Gx++SJPWGTZQmqC49IWNZSp/sQiaM9bYQsm68/fmiR9MudPQ1VFb6e7n3g2mL3KPtfUXnvg2zaprXhMT5PcBuK4Em0uP/m+0rkBfRwT4eNMpt5JBr1p/wNLYGfGTX6uJcZlAuA39evBMYnZhf4PEQdM/MBAFlZul3ocDzQnxzNI+FtrguU6TmK1CbNLiiNnM1gOYq4XEUij47xVF3PxSR5OQ++biOkrIA9UDOYrdDsQpuPtxWaZ7uJuybqm7SLp87w2AQupm8btLH5WFOo95qdTyBgK9h5j+SRYN8jC0BiyoEl8A6wa03NDHhj7FxrsmDcDh7vTdts5oUQtw9T++HqAUiIjUhX++DoVB4/fhxz5sxB//79UVhYiFNPPRXjx4/Hgw8+GHN2PTucd955WL9+PT777DMAwIcffoh3330X48aNAwDs27cPlZWVGDVqlLFPXl4eSktLUVFREff+EQSRRpBHwhGJtg8A2QiCINoRsg8AHHokrr/+emzbtg0zZsxAUVERGhsbceedd+KLL77APffcgx//+Md4/PHHjXCEbjN37lzU1taiX79+8Hg88Pv9ePDBB1FWVgYAqKysBAAUFRWZ9isqKjK2iWhubjYl4KitrY1D7wmCSCmSbLF1spNo+wDEx0aQfSAIQggttgbgcCLxxhtv4N1338XZZ59tlN1111147bXX4PF48OCDD+Kcc87Bu+++G5c45X//+9+xcuVKPP/88zjjjDOwc+dO3HbbbSgpKcGUKVOibnfhwoW49957Q8olWRKmVbdyV0ucq4+55RSB+5m5jPl44YbrUOAuFLkQ7S+CNbsHeXe1KO9A8IJdYYxwwaK6Ok7C42vQ3eCCfZm7uomLL56n53DopC9mYxIgAMj2aq5UX1YgXnhWjrZ4zaMEXLvwa+8lv76gnVs0bLgfRa5F5gblAksrbOE7t+gbHrZ4PiOk/826e7ixPtCfRmPhXOC81Oj5LJhrupZzV7OF17y7mp1T2wvomPzAlHfCa6rn8QS2+fX6Vu5qp9eZqG+SIH652wvo+HYj5T6xBU0kHJFo+wDEx0aEsw+yR4bslQNjOnfNBcZw3QZInF3wBBZ9B+qbr1fzwmoLuyCwLSLYNnHeldCgGsZYwQdtyAiVO7F7TjVkSYE+NAvsQrA94HMetOpjaDM3duXpsqg8LsfPcb1P2fr/Pi+XvyFHy9/gy+f62KZNAiXdPsDP2QW/3jfuvhXKT4JshOoJ9MfvYbYiIHdSdJvFzkETl5uiuVG3FVwOCGZLgu2DuSxgF6rqtM9QLbAVzQJbwb4ffgxl36OaIbApbaG/FRSL3ydW15epXcG1FrxNFEDDXE//34Z8SdQn9rfa5oK2iSYSABxKm4qKisLGKD/llFPwxBNP4Oc//zluvfVWVzoXzB133IG5c+di8uTJOOuss3Dddddh1qxZWLhwIQAYyZeOHDli2u/IkSPCxEyMefPmoaamxngdOHAgLv0nCCJ1YDHCnb5OVBJtH4D42AiyDwRBiCD7oOFoIlFeXo4bbrgBH374Ydg61157LTZs2BBzx0Q0NDRAls1d9ng8UPRVbr1790ZxcTHWr19vbK+trcXmzZsxbNiwsO36fD7k5uaaXgRBnOAoSnSvE5RE2wcgPjaC7ANBEELIPgBwKG2aPXs2Dh06hB/84Af40Y9+hAkTJkBRFJOLadWqVejatavrHQWASy+9FA8++CB69uyJM844Azt27MCSJUtwww03ANBcXbfddhseeOABnHbaaejduzfuvvtulJSUYMKECY6PF5xHwhPkxo3srtb+F7mpRX8rApeqlbsaXNQjK6xkI8x1zccG9wSlnpcFLnvebcqiRXjkgJuVnStWTxhLnIvmcaxJk8rk6NKmDhmBHwMddNlVB05+lan318v1LUPWcxFIelx0L//dISK8Goh9j35OOdXarJW1KZpbuYVzV7PcD3wOiAZdnlXHSZvY9uOCqBt1ugv7OB/lSZc+sXMcyV3NvjNeqiZJiqmen5M2eYVRYoKvOXvXGU9IZA2BbEJUPyBP4rZZuLDDteVKjHDCEYm2D0D72ghZkrTr2hMqYQ2RU1jIQQAA+u1qRHTixmNREkHRg0270ZqCsbrnTGOLhdSV0cbJPdmY7+XsAoONYy1c/bosbdyrawmMN8f0cSybG886ZZrtAW8XfEyqa7ILrEyTG3nkgESWKTRNEknBx2Onln0X/On36xLWtsAyGrTqNqJN37GZ+5wiW8HyRjQKtrEofsw+AMBx/X2dwFaw885/FyKMMZedM26b3d8zTgmWHkkCuxytZClcmdFGULsq2QjXcBz+dfHixbjyyiuxePFizJkzB42NjRg4cCC6du2KmpoaNDU14emnn45DV4Hly5fj7rvvxi9+8QscPXoUJSUluPHGG3HPPfcYdX71q1+hvr4eM2fORHV1NS644AKsXbsWWZy+niAIIiKUkM4xibQPANkIgiDaEUpIByDKPBKlpaV44YUX0NLSgu3bt+Ozzz5DbW0tunbtiosvvhjdunWL3EgUdOrUCUuXLsXSpUvD1pEkCffddx/uu+++uPSBIIgTBFpsHRWJsg8A2QiCINoRWmwNIMaEdJmZmTj33HNx7rnnutWfpEKWJGHUAsMlyNW1imTAExIRx6bbOhaC3YeiSDeiBGCGK1vgAvRzbtMWvY3jnOs1WNLEy3VYpIlOXCSObN1dzf7P8gbc1Rm6mzWL+y68+vssQb9Z8juPbO2uDob/alj/WwXSMxZho43TQjXp71s5uVNTG0sQFHBTG+dDP1eNraHbGnkplJGQTo/EIXBXm75Pb6ivmF2vLEFiNLKJaInWde3UbQ2YXdduuK2jWRyXrovpoiHd7QOCooN5EP6aUyXBk8jQwGdCeavRRgRJSaTtkbBK+gWIE5QymF3zc2Nic0tINUPiw8a4umbOBjRoJ6QqM7BjsF0AgEwWtUmXNPHJTn263cjgxji2nY0PZrugl9kcLtjwzn9PfoE8lNkNIxIVF6GJbePH/hbjvITajIYg2ZO2vc20jW+jmclgue9CJEcyInMJlsqyElUgpY0FqzHciSwpmjYEjdqvG+54Dm1EutqHlMpsTRAE0W6QR4IgCIIIB3kkANBEgiAIQoyqRjGRSE8NLEEQBBGEUxuRpvaBJhIWSF7ZJBURRd4w0D2vokgcIqxc2DzRuhPtugntRNDhMRLvyVxCOkFEIeZmZa7XTD6xkd4uX5apu6RZmYfrY6YgEodH0IZHIGkK3maFKNkbXxYcaYTf1iaIQsKSLfFlLW1mqVKb4JyZ2mCSAb2MlyKJ3NXGdya4bo0ERBEihTFicWXbcTG77a7m6ykCiZdjVD8gSMYXcR/ihMBJ4kO79URXrXEfWtiTSFjdy04/g8gusN9SIullYxOXjE3ft1EQ6c8Y+01SpdAyZisMG+CxtgHeoP5Gax+AyDaCwcZ1f9D/ANDiD7UfzC6wsmaBDRDZBT4yE7MHRsRBbpvoty77HtkmkcRJdM25cS1Z4Uoy0fY6jlMbkab2gSYSBEEQAlRFgeow7rfT+gRBEERq4tRGpKt9oImEBbIsmZ++tNNMOZY4zQzRUyO72InBL3rypHCLu9hzpmZBP0Qxyo1tDp8WRbstEqKnTNFus1p0L17sHHmRfjjYufXwC6rl6K6nRF+HCT+uEoVHwml9ImUJsQ8WxJTXJEpPhGhsiRfsWPwDV6sfTS0WDkO7dsGKZMkj4/Q7cDr2W6lq7B7bON8uj9WJ+A6cnO+E2Ig0tQ80kSAIghBBEwmCIAgiHDSRAEATCYIgCCGq3w/V72zgd1qfIAiCSE2c2oh0tQ80kbBA9kimmPtRt5MgeUc47EpWRG5TViZyISpcDoWQfBl2JT82pT52tsULp7GwRYuK7eZJsLp2rFzHfP4GySK+fapem5Fw476Fomgvp/sQJwSSJNmWb4jyqTjF+b0aPlhGJIRjv2jMj8M4b1feY8ipBH0V1rdZZodYxm92LdjJp8O3G2/bIuqP3evWDTviytiv2O+HK9IrpzYiTe2DC8MbQRAEQRAEQRAnGjSRIAiCEKEoAQ2s7Vd6PnEiCIIggnBsI+JnH6qqqlBWVobc3Fzk5+dj+vTpqKurs7WvqqoYN24cJEnCmjVrHB+bpE0WyLIEj8N49LG4y9rLPSgJoviYcgsYuSLYNq6e7k7mjyNySfv1CE6szFTfiHMdvg3e9c3KRJGiVEE96ygXoRpFSQ4fFoX/TgwXs+A7ZtcJ70JmbmdJ0IbHG9qWLHBhs9wPIve2LHCRi1zRonaN+jau1/Z0W4u+imgin7jRZ1XxC6+XSPsQJyZO5Uu2Iz65KD/kI9lZyXoUhMqG2FhhFWnOygYAgXGAyWBFdsTvV0LK7NoWpa1F3xa4D4N16aZtUd6vvM0Q2Q/J4zFtk72Zxjan43zwNr4NXsIZ3K7HE3pB2rUB7FqOdI3G49q0KzcT2RSrezAeSaWd2oh42oeysjIcPnwY69atQ2trK6ZNm4aZM2fi+eefj7jv0qVLY/rtShMJgiAIEWoUayTiYa0IgiCI5MOpjYiTfdi1axfWrl2LrVu3YsiQIQCA5cuXY/z48Vi8eDFKSkrC7rtz5048/PDD+OCDD9C9e/eojk/SJoIgCAHsaZPTF0EQBJH+RGsfamtrTa/m5uaY+lFRUYH8/HxjEgEAo0aNgizL2Lx5c9j9Ghoa8NOf/hSPPvooiouLoz4+eSQskD2y7cgKIpy6/WJJoMawSpYWcAULNsqhb5n0iHdlG65pTmbEZEh8WcD9zNoK3Saqz+rxP8iYu1ppbeE+iz+kXnCZEsOPOlk2u6b598H/A4CcobmueRc2287L45i7WdbLePdzQB4V6Af7zlh9mY9Kwcr4xwGKWTqltRdekmUlezL6FefrUoTZvR3++EL3tkeCLHDrO4bySBA2sCNpcttmRCtD4Mfy4GNFkpRYyVpFMiY2lvPR/ALje6iMKVCfL2vTytoCYz+zAyIZk19QxuqLJvl2y4LlS0I5k8AeBGxAqF0wyZ2C7IfHG/hpxsYykR0xSaCYPRBErJNU3S5whp6dZZFEVoRltEIXrker44iuTdE9ZSWhFUm1YybKPBI9evQwFc+fPx8LFiyIuhuVlZXo1q2bqczr9aKgoACVlZVh95s1axbOO+88XHbZZVEfG6CJBEEQhBgK/0oQBEGEI8rwrwcOHEBubq5R7PP5hNXnzp2LRYsWWTa5a9cu+8fnePnll7Fhwwbs2LEjqv15aCJBEAQhgBLSEQRBEOGINiFdbm6uaSIRjjlz5mDq1KmWdfr06YPi4mIcPXrUVN7W1oaqqqqwkqUNGzZg7969yM/PN5VPmjQJF154ITZu3BixfwyaSFggy5JlghgRdmUgbshFrNrlpSTsPeu3SQkTpeSEj6rEJEpmN7Uadltbq1+vw8mjguRLJle2/t4vKONv4mBpk1n2FPmpgcRphETyJaPME+qaZq5rk7taf69kBMr8zHXt146lZgTaD5YxaQT1m9smse/O4bUkikTFw64hN69RUVuWcieuvlW9cKoSVxLtsdB+TvchiCD4cTaRSSB5CYrTaGjGfhYR+0xjuj+0LFjWymyBVk+TMfmbGwNttIXaA39QGS95DcidBLaF2QXBDz+7a5usIjTJvLTJy6RNsulvQCyDDbYffn6bL1vrvz/wc43ZDVkYVZKVBc4Bkz2pkuA7j+F6dCWpW4y4lcQ0yoM7lDY5sw+FhYUoLCyMWG/YsGGorq7Gtm3bMHjwYADaREFRFJSWlgr3mTt3Ln72s5+Zys466yw88sgjuPTSSx31kyYSBEEQImiNBEEQBBGOKNdIuE3//v0xduxYzJgxAytWrEBrayvKy8sxefJkI2LTwYMHMXLkSDz77LMYOnQoiouLhd6Knj17onfv3o6OTxMJCyRJsnxiGwmrem4+7Y20kFXkpbAieIYfKWeEYpQhpF7wImr+vWgBnb+lMWSb3/LJE78ou9VU5vZia9mbYSoTeUM8tmOU60+shDG8+Vjv2ntFf5Ik8d+FFLr40aMvtDOV2bjWEu1JC8Zvs//hzrAbT8pURbHlyQrehzixEC3etFqAze5NkWdCtKhUuPg0Sm+CCKv8O6JAGzzMM23YBUF93hsd7KFmXggg4Ikwjf26PfBbLLZm476pzGKxtd0F1iKsFlkrvK3Q22N2hB8XVIFnRGQ/Qsnmjmmx8NkIoBEoM75jLoeUB2ZbwQftkBBqR9hmk31y8ToM7msk7Hoi4hmR26mNiKd9WLlyJcrLyzFy5EjIsoxJkyZh2bJlxvbW1lbs3r0bDQ0Nrh+bJhIEQRAEQRAEkaIUFBRYJp/r1atXxIlftBNDmkgQBEGIIGkTQRAEEY4kkTYlGppIOMANqVJ7SUOcInInqmqojEm4r0V88eA65mOGlwEpgm1il7Q9V6GdyAps0VzYNvRjGdImQR/5fstB24LfA+HOS6g8wEoqYVr8qLuuJUgh2yVBfPFE4rFYUG13cbZVGzGjRjGRUNPTUBDOsJJTsHvZSpohy6H3bySs5C5WbQglTYL+i2StwbIokbxVdKxAW9bjvCIoswqqYbWgWoTTBJKsvkjiZKqnH5+dDsnUfznk2MH2Q45wXlRF++mmcIunA/aGndvA9WAljQ00wF9zer85u2NIoBCeSHlQ7F7Lwce0btNRk+7i1EakqX2giQRBEIQAWiNBEARBhCOZ1kgkEppIEARBiKDwrwRBEEQ44hz+NVWgiUQE3JYiMflFtO1Gkm+ItvuD3MkmCZJQWhO+/eAoHbEgytHA4GNyq/p7mcvHwCJxSHL4m9jkgo3gig7XN3MfZVMZ3x+jzCKqR/D7aDDJnnQZkwei6C/cH/qJCEjQQjaZoh8FR/mKJB+K17XsFKfRySJCayQIC1RVDbs40SpqWKyyp7BEed2z/og+i0iuyucQsmMH7EuzQsdGI+qRKJ+P8T+fL0HPw4BAlCc7x3QjapNpnNdlsh4jn0T4/vPvI9kPK4zzbFFdZD/Y6TPnOtHrc6eFXdMKLL7POOV0iEW+FO4edSXiFK2RAEATCYIgCCGU2ZogCIIIR7SZrdMNq3UzBEEQJy6KEt0rTlRVVaGsrAy5ubnIz8/H9OnTUVdXF3G/iooKXHzxxejYsSNyc3MxfPhwNDY2RtyPIAiCsCCJ7EMiSTmPxMGDB3HnnXfi9ddfR0NDA0499VQ89dRTGDJkCADNXTV//nw8+eSTqK6uxvnnn4/HH38cp512WlTHs50Yy6Hkww35hZWMiScksobANS1MNmTXJa27PPmENipLiqNq/3s8ojlrpqBMb1Pg9uWTEonkRXzCOsA6WpLdY/KwY4lc08yFLXsD/WHv+T6yMo9XOx/8eQkkEgpcNyx6i90Ea+w783ARmkKibZgicYQUhU3yxhPXaElRtul6P5JM2lRWVobDhw9j3bp1aG1txbRp0zBz5kzL2OEVFRUYO3Ys5s2bh+XLl8Pr9eLDDz+ELKfvM6T2thEiopZNKO0XWS24j+LoTTbLLD6vaDxTdbvAj5dsjObLrGDyIX4cDrSRwZUppm0iW2A3eamV9MhKBmtKbJoRKncKth/8OWCf01QmM5srhZSJCHw/gmhguq0wyZ4EbVjJneJNPBLfuQJJmwCk2ETi2LFjOP/88/HDH/4Qr7/+OgoLC/H555+jc+fORp2HHnoIy5YtwzPPPIPevXvj7rvvxpgxY/DJJ58gKysrgb0nCCKVUBV/1OEh3WbXrl1Yu3Yttm7davwgXr58OcaPH4/FixejpKREuN+sWbPwy1/+EnPnzjXKTj/99Lj0MRkgG0EQRHvh1EbEyz4kmpSaSCxatAg9evTAU089ZZT17t3beK+qKpYuXYq77roLl112GQDg2WefRVFREdasWYPJkye3e58JgkhNYgn/Wltbayr3+Xzw+XxR96WiogL5+fnGJAIARo0aBVmWsXnzZlx++eUh+xw9ehSbN29GWVkZzjvvPOzduxf9+vXDgw8+iAsuuCDqviQzZCMIgmgvKPyrRkpNJF5++WWMGTMGV155Jd5++22cdNJJ+MUvfoEZM2YAAPbt24fKykqMGjXK2CcvLw+lpaWoqKgIaySam5vR3Nxs/B38I4BhRzqRaMmHZRIgm+5BO/VMblRB0jTD9cpc9d5IUoog2RCXHM5w93LSJmGSnszQpHDB9a2wihpi6pvIXc2icwj6bXZhmyVNMndeZClU2hSciC5Swh8G/x1KgqhOwfVEkZwYojNnV/LnBvG4j+ygKipUv9OJhNbXHj16mMrnz5+PBQsWRN2XyspKdOvWzVTm9XpRUFCAyspK4T5ffPEFAGDBggVYvHgxBg0ahGeffRYjR47ERx995KqUJ1mIh40IZx8URY0uupKOLLhv2lPCEdz3SDImxUq+pI9dKhfRJ8QGICB59QiXZ2br+4XKgHjZqoclb9PtARv3gcDYr7SFRm1iC13FiU1diNokSGhq2C5RhCavIOqfQPYULIcFAvbDJBsT2A+jfQsJEvte5QhDnZXcKRHEcu+5sT/g3Ea4Ee0yGUkpoewXX3xhaFn//e9/4+c//zl++ctf4plnngEAw6AWFRWZ9isqKgprbAFg4cKFyMvLM17BPwIIgiCccODAAdTU1BivefPmCevNnTsXkiRZvj799NOo+qDos8Mbb7wR06ZNw9lnn41HHnkEp59+Ov785z9H/dmSmXjYCLIPBEEQ4Ukpj4SiKBgyZAh++9vfAgDOPvtsfPTRR1ixYgWmTJkSdbvz5s3D7Nmzjb9ra2vRo0cPLU64wxlkm6C+3afIIuwcP9LMWrXI/WB4K2xOqtlTD4WbgrInJf42Pp63Xt9YKB3YJnpywp6wKIoe1zszsFiO7Rtp8bThpbAIsSbazypON/+UKbieaHE2/9QosAg9dEGc6IkS29fk2dHbCGwLfQIVCfbdsvjfwqcHggXYgQI+vnjoMd285t16YuPGk13Vrzj3SOj1c3NzkZubG7H+nDlzMHXqVMs6ffr0QXFxMY4ePWoqb2trQ1VVFYqLi4X7de/eHQAwYMAAU3n//v2xf//+iH1LReJhI8LZh9j72v5PJ63uL6F9cHgf8WOXjFBvNBsXVMOLLbABGYFxVdHvJyUzm+un2bPAeyss7UIMnohgrDwTou2RFlsH8kjoNoMLwmEE3BCcK0lgWwL1bX8cAObvOpJ3guEXfI8nEk5thFN7kiqk1ESie/fuQqP44osvAoBhUI8cOWIYUfb3oEGDwrYbq36ZIIj0I5Y1EnYpLCxEYWFhxHrDhg1DdXU1tm3bhsGDBwMANmzYAEVRUFpaKtynV69eKCkpwe7du03ln332GcaNG+eon6lCPGwE2QeCIETQGgmNlJI2nX/++UKjeMoppwDQFtUVFxdj/fr1xvba2lps3rwZw4YNa9e+EgSR2rCnTU5f8aB///4YO3YsZsyYgS1btuC9995DeXk5Jk+ebERsOnjwIPr164ctW7YA0LxZd9xxB5YtW4Z//OMf2LNnD+6++258+umnmD59elz6mWjIRhAE0V4ki31INCnlkZg1axbOO+88/Pa3v8VVV12FLVu24IknnsATTzwBQDOct912Gx544AGcdtppRmi/kpISTJgwwfHxYl1MF2goTmnjLdzOVi5s/jPZkTSJ3Ja865PJnHhZj5GfQmKuT34bayO0vrEf99kyfOY6we+NfgQvHoxB3iJanBYs6xG5lU31hYunw7ufraRQxn5S+G2RCJY48ccynVuEd1f7/aqpr2FJ8KIyVxbSxSBtigcrV65EeXk5Ro4cCVmWMWnSJCxbtszY3trait27d6OhocEou+2229DU1IRZs2ahqqoKAwcOxLp169C3b9+49TORtKeNUBXn0tdE40Z/ReOCRzCOsLFf5nLaBGS22t9WNoBHEeQ+CuRA4mRPgjE/uL2IUmCH8leR3DP4HPHjpUiqJBrfg7cJ8wsJ7IeoX8IF2A7lSKl2rUfCjc9D0iaNlJpInHPOOVi9ejXmzZuH++67D71798bSpUtRVlZm1PnVr36F+vp6zJw5E9XV1bjggguwdu1aig9OEIQjVL8fisV6m3D7xIuCggLL5HO9evUS/pCaO3euKY9EOkM2giCI9sKpjYinfUgkKTWRAIAf//jH+PGPfxx2uyRJuO+++3Dfffe1Y68Igkg3VDWKNRJ2oxYQcYNsBEEQ7YFTG5Gu9iHlJhLtieJXkiY1u1M3nBvSDuYa5dsSurX16ByqpPKF2r4WEaOc5ryIdA/GOwqKyIXNEEXIEEmVAvXDl1m5tyOVWfVRhNU5s1pAxceLt+pPIlAV1Yj2ElM7SSZtItKXZJWN8GORKIJTiISHl9/o/9v9bHbkqkCobRDZBeF+cT7HdsdjK1thvZ+98TXacdhuFEAR7Xn9JoudAUjaxKCJBEEQhACaSBAEQRDhoImEBk0kCIIgBGiLaaPLbE0QBEGkN05tRLraB5pIWKAoqimRWqpjV54X6mYVVBK4F0XuZNGudm6maG44p8mTnOLU9WvHBWvXTWtXshQxmhLE14HI3e5YKpZEg6QbMjfFrziWSLkhqSLSj3j9gIhlzHM6ntmVXIbUyYivFCUW6ZSbxFt6ZJf2PB/RXn/xklG1t+zJqY1IV/uQUnkkCIIgCIIgCIIIUFVVhbKyMuTm5iI/Px/Tp09HXV2d5T4jRoyAJEmm10033eT42OSRIAiCEEBrJAiCIIhwJNMaibKyMhw+fBjr1q1Da2srpk2bhpkzZ1qGDAeAGTNmmCLYdejQwfGxaSJhgarYlwOlM5HkMkwWwyceIuJDvK7HdLvO3fg8NJEgosVNGU28JZsirCQiVtGJRLZCJJu0HckuBglMKmMnsR4QLjpV+PZEERitrtVESPLclj3FU+6ULBOJXbt2Ye3atdi6dSuGDBkCAFi+fDnGjx+PxYsXo6SkJOy+HTp0QHFxcUzHJ2kTQRCEABYj3NEr3WZkBEEQhBDHNkK3D7W1taZXc3NzTP2oqKhAfn6+MYkAgFGjRkGWZWzevNly35UrV6Jr164488wzMW/ePDQ0NDg+PnkkLFBVNWnySFgRy1Mb0dOiYGwv9LV6imWzj24cq72w+7TG7sJfq2vNOFaE78vOsWL5rZsK9wPgTj/JI0HYIRW8D3ae8kbKVSP0IujtGl5pro4k8FIYngtRPiK9zMNt81jUs6ojwhtnm9Fm8zrwC+oFl/F/s/ei/fhrLzgHk3mb9j//XRhjpCBfFNuX/55E13nwdeXG9Stqw00vhZu/HaL1SPTo0cNUPn/+fCxYsCDqflRWVqJbt26mMq/Xi4KCAlRWVobd76c//SlOOeUUlJSU4L///S/uvPNO7N69Gy+99JKj49NEgiAIQgBNJAiCIIhwRDuROHDgAHJzc41yn88nrD937lwsWrTIss1du3bZPn4wM2fONN6fddZZ6N69O0aOHIm9e/eib9++ttuhiQRBEIQARVGgOMwj4bQ+QRAEkZo4tRGsbm5urmkiEY45c+Zg6tSplnX69OmD4uJiHD161FTe1taGqqoqR+sfSktLAQB79uyhiYRbKIrqSjz6WLAj9eFlHHYkRJHkTMHHtLsIzu4COjvu6ljq220jGJHr2Gn9SG1YubAZwkV1kqCeyAUsOGbwNcx//3ZkTtHIhBJ937hxfPJIEJYoquuLUZmEoz3yQwSPzU5lTHw9uzKmTK+2s5WMySsoM9czj3J27YNTm+EUu/ZAXKaYtvF12gRlonotes4rdk3yNkOSw8udmA0wnVaB3ElE8PUvuvbaM9eJHYw+J8BGOLUPhYWFKCwsjFhv2LBhqK6uxrZt2zB48GAAwIYNG6AoijE5sMPOnTsBAN27d3fUT1psTRAEIUAzEn6HL5pIEARBnAg4txHxsQ/9+/fH2LFjMWPGDGzZsgXvvfceysvLMXnyZCNi08GDB9GvXz9s2bIFALB3717cf//92LZtG7788ku8/PLLuP766zF8+HB8//vfd3R88kgQBEEIYJE2nO5DEARBpD9ObUQ87cPKlStRXl6OkSNHQpZlTJo0CcuWLTO2t7a2Yvfu3UZUpszMTLz55ptYunQp6uvr0aNHD0yaNAl33XWX42PTRMICNQ6ua6cRA4Jdi3ajGomPHVpmR44UScZkNwKHk208omgbTqVQ0WIlVRJtE0XusHJvR3J9s/fsM4lc0yZE33HQ3+ZY4tDbFbRlE1dkRC7fZ260pypRSJtoIkG4gNuSjkgRmYCgMV0gYxLVkz2yqUwSyJKYnIkvE8mYArKn8PVNZZK9KE/B9sNtiZMdOyCUJal8mWzeZqqvjSlMusS3z9djn4vV47eJ5E6Aov+rR2gCH6FJ+5+XO9kZ2exEdkonnNqIeNqHgoICy+RzvXr1MsmUe/TogbffftuVY9NEgiAIQkQUayRA0iaCIIgTA6c2Ik3tA62RIAiCIAiCIAjCMeSRaGfimRwlHMHu6UhypmApUzQyJqukQVbuZ/sROELnwO0dlcMvcFN6IkiV2oKkSlYyJr7M+J8/lkO5E6vHf59MluQ0klMsuC1jiheKX4Hi8AmS0/pECiNLkGQpaa5ny4Sggm0h0fkkfpwPrWMnMhM/dgVHaOLf+wTbMr2esPUzPaFyJ5HNcCqltdpPhF2pq50Ec22CshZ/qCzJrwg+k769uS10vGHnnZdCMbthtpraX8KITmCRjfjvOuRQtuROPMlwrxj3ggu/F5zaiHS1DzSRIAiCEECLrQmCIIhwJNNi60RCEwmCIAgBlEeCIAiCCEe880ikCjSRsCIoalN7yJDCYRWtSRRVyWmEJqvITJGSyjmVNtmRMdmVLsU78ZAoKkZAguQJqcd54MXSJ4GkKda+mRJJ6f+bIjOx7zZI4gQEvmOrSE78tSFMgmczeVG8MbnNXUk2pEL1O2vHaX0i9bFjF+xKOtywMVZtRJtojq8nkjtZRleyGPsjRmgSRGYKbSN6WyRCtF0kO7XaZhWVz/LYTEoksN9mm6gNzqKIhoH6gr5y7wO2IqiA3wZ+TNWltGp4+yG69tz4DdWe948TnNqIdLUPNJEgCIIQoChRrJFIU9c1QRAEYcapjUhX+0ATiQRhd+YcD0+E1cJqvr7ThdVW3gGvxRMicxvhPRGxeB88NmJZ+wVP2516N8wejMBzneDtVu2KvCB2j8m+M9OzK/a0SAp92mVnATa/+Jq1YeWZ4NsQwfqYDAvvrIgmj0yyfyYiMbj9pNROe1beB3NbrnQprvBjnNVT+FTFDQ91vDGuE8Hib+FCbAsvBSNZPQ12cWoj0tU+0ESCIAhCgOIHFNnZwK/4I9chCIIgUh+nNiJd7QNNJAiCIASofgWqTIutCYIgiFCc2oh0tQ80kbBCjxMeK27ImIy2XFhY7fTYkeJ0R9onmjrxzgkRL0QL7kTbrVzZkdoQ1bOqb7UYWiQzCl1AF6jvdAE2w+rYPLG4fk3tuXD9qH4VqkOPRLoupiPah1jsTawy2Ej5gpxiZ4GyWfYpOGaoOtTInRCckyLcMYOlsZGko3ZkRqI6olwRonqs/8L6auh+gbZCJbJ2++YUS4mshT0QLcTmCbYDdq+zZJUEObUR6WofaCJBEAQhQPGrUUib0tNQEARBEGac2oh0tQ8psMwqPL/73e8gSRJuu+02o6ypqQk333wzunTpgpycHEyaNAlHjhxJXCcJgiCIhEA2giAIIr6krEdi69at+L//+z98//vfN5XPmjULr776Kl544QXk5eWhvLwcEydOxHvvvRfX/kTrCo4kZxK5pAPHtNdecN+s2hTVF+GG9MjKxWyVvyFcmVXfRBGZnPbRzrZIbuVY3c52ZU/8dxjsFhbJkkT17eSYCG4vuF2G04hOItrbvU1rJFKbRNqIeEeZcVMGG2/sjnktbdpK1Ii5JVS9TAlvF0SRndzMOWR37G8TSJyCZUymMmH98FKoNkFZexJtziGG3dxDsdxP8bQbtEZCIyU9EnV1dSgrK8OTTz6Jzp07G+U1NTX405/+hCVLluDiiy/G4MGD8dRTT+H999/Hf/7znwT2mCCIVENRVSiKw1eUE1bCXchGEAQRbxzbiDS1Dyk5kbj55ptxySWXYNSoUabybdu2obW11VTer18/9OzZExUVFe3dTYIgUhk9a6mTF9JUA5tqkI0gCCLukH0AkILSplWrVmH79u3YunVryLbKykpkZmYiPz/fVF5UVITKysqwbTY3N6O5udn4u7a21njvhovajhsaiCw5AmKL0GSVfM4pdiNf2N0miuLB9TKqvsUiv4o+ckdo/51KoOIVkUMoVRJE2wiO5GSVrE6rF3qs4GstUjSP4PZFtHeED8WvQJEcZrZOU9d1KuG2jQhnHySXovpFwukYbceOREI17nPryDtsGGDh8UV2QRRByS/YFpAjKSH1zW3IYbcF7wdYJyN1U9pk2i6IvhS8r5V8yUomFb6N8PIoBj82Wo21boyhVslLGXYiO8XcjzDfsRv3rlMbka72IaU8EgcOHMCtt96KlStXIisry7V2Fy5ciLy8POPVo0cP19omCCI1ceqNMJ46EQkjHjaC7ANBECLIPmik1ERi27ZtOHr0KH7wgx/A6/XC6/Xi7bffxrJly+D1elFUVISWlhZUV1eb9jty5AiKi4vDtjtv3jzU1NQYrwMHDsT5kxAEkezQRCL1iIeNIPtAEIQIsg8aKSVtGjlyJP73v/+ZyqZNm4Z+/frhzjvvRI8ePZCRkYH169dj0qRJAIDdu3dj//79GDZsWNh2fT4ffD5fSLkT11e83M9WUTailSXFgr0kQ/YSr9k/JovmwUuhQuvx0T7cOra5vfBuSadypDYLl3cs7cYbq0hOPMFyJzuRnfj2RTiJ8JEItzXbh0gc8bAR4exDPIj3mG6KthZ035okS4JElaLHjsaQKJBBGhGLLBKaRkp2KpYvafbAa1PaFCiL73NTp7JWKxtgN+GdaLtIliQaO4PHX7v7mfex3BwV7SF3cguSNmmk1ESiU6dOOPPMM01lHTt2RJcuXYzy6dOnY/bs2SgoKEBubi5uueUWDBs2DOeee24iukwQRIqiqqpjrbCVHpiIP2QjCIJoL5zaiHS1Dyk1kbDDI488AlmWMWnSJDQ3N2PMmDF47LHHompLliVXnhC54X1gRMw7EYcnWvHyNIhgT2lEccAjL/D2h5TFk0jnQPTEyWpfO2XR5K6IluBF1zyR8kIEX8t2FmQDzhfmuVE3HIpfhQJn5zZdM5emE27aiFhIhEeZx4j9L/Q0CO55URswL8r2c9e/cX/zT9JZW3r9Nq4tke1ymvsh2m1uEIv32M4479RjIBpLrX702n3qHw8vRCSS1Uvh1Eakq31IqTUSIjZu3IilS5caf2dlZeHRRx9FVVUV6uvr8dJLL1mujyAIghChaVoVh6/4GYqqqiqUlZUhNzcX+fn5mD59Ourq6iz3qaysxHXXXYfi4mJ07NgRP/jBD/Diiy/GrY/JCNkIgiDigXMbkVz2AQAqKipw8cUXo2PHjsjNzcXw4cPR2Njo6NgpP5EgCIKIB8m22LqsrAwff/wx1q1bh1deeQWbNm3CzJkzLfe5/vrrsXv3brz88sv43//+h4kTJ+Kqq67Cjh074tZPgiCIE4FUtw8VFRUYO3YsRo8ejS1btmDr1q0oLy+H7HA9UdpJm9oTN+J125EzAfFzgzP3IN9+sPuTdzlb54AIj115lJ1tgLVsKBHEKy+E033dcF07RbQAO5hIeSeMejbvqXTVmoZj165dWLt2LbZu3YohQ4YAAJYvX47x48dj8eLFKCkpEe73/vvv4/HHH8fQoUMBAHfddRceeeQRbNu2DWeffXa79Z8IEPcF1Rb3hlBOaFOqwsYboc2yuPeFshSBClUkbWoLrWZrjEi0bIxhWy5kYzyzq8V3Os67IVVKxHhsx+6cKERrH2bNmoVf/vKXmDt3rlF2+umnOz4+eSQIgiAEKH41qhegJS3jX3xCs2ioqKhAfn6+YSQAYNSoUZBlGZs3bw6733nnnYe//e1vqKqqgqIoWLVqFZqamjBixIiY+kMQBHGik8r24ejRo9i8eTO6deuG8847D0VFRbjooovw7rvvOj4+TSQIgiAEqIoS1QsAevToYUpitnDhwpj6UllZiW7dupnKvF4vCgoKwmZkBoC///3vaG1tRZcuXeDz+XDjjTdi9erVOPXUU2PqD0EQxIlOKtuHL774AgCwYMECzJgxA2vXrsUPfvADjBw5Ep9//rmj45O0yQJJklyRL5naTODUjbkfRZ9JFEPc2E8UKSiGftjNRcGId6QoN7HbRzfqueHqToRL2k7eiYhtRLgv3bhvY4nadODAAeTm5hrl4fIQzJ07F4sWLbJsc9euXY76wHP33Xejuroab775Jrp27Yo1a9bgqquuwjvvvIOzzjor6naJ6BFGRGonKY4b97vqcPAXRaoR35/JP74nGyeaxBNILilTtFGbksE+KPqk5sYbb8S0adMAAGeffTbWr1+PP//5z44mNzSRIAiCEKAqqhHe0sk+AJCbm2syFOGYM2cOpk6dalmnT58+KC4uxtGjR03lbW1tqKqqChtxaO/evfjjH/+Ijz76CGeccQYAYODAgXjnnXfw6KOPYsWKFTY+EUEQBCHCqY1IJvvQvXt3AMCAAQNM5f3798f+/fsj9o2HJhIEQRAi/ApU1eGTYovs5yIKCwtRWFgYsd6wYcNQXV2Nbdu2YfDgwQCADRs2QFEUlJaWCvdpaGgAgJAIHB6Px3gaRRAEQUSJUxuRRPahV69eKCkpwe7du03ln332GcaNG+eonzSRcBm3pUtOXd6qEVkj/H4idyjvarZyHcoWScp42mz0I1JkJqt6qYTT/jvNpuxmZJBY+hEpSZ0VVvdNIhIgAbrb2uE5i5fbvX///hg7dixmzJiBFStWoLW1FeXl5Zg8ebIRkePgwYMYOXIknn32WQwdOhT9+vXDqaeeihtvvBGLFy9Gly5dsGbNGiM8IJE8JJNcIxacjhmJbjfZiEdC2Xi2e6Lj1EYkk32QJAl33HEH5s+fj4EDB2LQoEF45pln8Omnn+If//iHo+PTRIIgCEKA6lfjPvlywsqVK1FeXo6RI0camZmXLVtmbG9tbcXu3bsNT0RGRgZee+01zJ07F5deeinq6upw6qmn4plnnsH48ePj1k+CIIgTAac2IpnsAwDcdtttaGpqwqxZs1BVVYWBAwdi3bp16Nu3r6Nj00SCIAhCgKJG4ZGI4+LHgoICPP/882G39+rVK8SonXbaaSdcJmuCIIj2wKmNSDb7AGgLuvk8EtFAE4kYaI8ITKKEcXawmvmK3Jx2Z9WOpdUOI5S4kWjOTTduvF3qbrg6Y4nc4ebni5fb1o0oT9HgV1X4HZ5bp/UJoj1w4z53LLl0MclaTP1IgCzKqb02bJbNiFh2bJzMyZXtnDM37OaJJqFyaiPS1T7QRIIgCEKAX9VeTvchCIIg0h+nNiJd7QNNJByQyBwQdhZA2yWmp1MunAO/jbsppjwASbIwr71ifLfnQsRkWRSaKC8FQSQKt+9zNz0MVm1ZbYs0nliNoXbv92T1SJjGsCBPRCT7Z9U+8wr4BWFJrTwGchTjZ3B7sVyjJ5o3I52giQRBEIQAkjYRBEEQ4SBpkwZNJAiCIASQtIkgCIIIB0mbNGgi4QDmSk2kxElEvFy3Ivdpe8lonGYUJswkiwQp3sRTzqRE4ZGIZ1QOIj2I9xjaXpKlSNtFY5BTqZLVOBatnMrUfpT3qxxBesQ+ipVcx1JmJPiNwf/uEMmDDTmURYAW/rwEH5+XQln2LU6LuKO9LxIpiXJqI9LVPtBEgiAIQoAfUXgk4tITgiAIItlwaiPS1T7QRIIgCEKAX1WFCxYj7UMQBEGkP05tRLraB5pIREEiosMkQk51oshjCHdIt6hJftX5E6R01cAS4Wk3uWcMx4lHxCUg1EZEilQXPEYI5U82y2KRZMWK3R+PkmoVJSl0mxFxSSRB4s6dMGqTbO4TL38SRYGK9ieFYrGjSPJl97uIVqLk9Lt2Uwrl1Eakq32giQRBEIQAmkgQBEEQ4aCJhAZNJAiCIASQtIkgCIIIB0mbNGgikSKkm2yEIJIdJQqPBKkBTxxURU14kjgeOxFh3JQxAaFSJjciL9mVMbkStSnK8+00Cazw2AKJkN2kcMJqeqEd2RMAKEGN8PuJzh+TBFlti3QNWkW7svrO3JQjseO4ce86tRHpah9oIkEQBCGAPBIEQRBEOMgjoUETCYIgCAG0RoIgCIIIB62R0KCJRBoQKVIGQbiFKPoHQRD2cUdSEZuMKdL2eCWTCz5me8iY4hF9MFKbsg0ZkPCzxyB3MuRFgoR0omS6wd9nsNQptI3o5E6mYwQdM1JiP6tjWx2HaF9oIkEQBCFAe9rkVNoUp84QBEEQSYVTG5Gu9oEmEgRBEAJI2kQQBEGEg6RNGjSRiADJhiJDievaDzeihcRCKtwPbsmvaLE1ESvRypjsSJeiOZZQTmMlGxLKjMK373aCuWglTU5tkt1xze7YIpIXGcfSt4kkOaJt7LzwMiBRveAy/hwEpFahfWVyJ/4csM8pOo8iuZPVZzEfy1wvlihPTo4TL2ixtUYC8iXHxsKFC3HOOeegU6dO6NatGyZMmIDdu3eb6jQ1NeHmm29Gly5dkJOTg0mTJuHIkSMJ6jFBEKmICi2iopNXepqJ1IHsA0EQ7YVTG5Gu9iHlJhJvv/02br75ZvznP//BunXr0NraitGjR6O+vt6oM2vWLPzrX//CCy+8gLfffhuHDh3CxIkTHR8rFZ6+hkNR1HZ7Ee0Hfa+RUVXVlXvXr6pRvYjE0Z72IRiWV4J/2UVRVdPLjWNFqmN1n4vuIVUJ740QtSU6Zjxyb7iBJEm2XsmG6Lt1/F0LvlerMVRkI+xe+07vj+D7wq6nLpZ70QlkHzRSTtq0du1a099PP/00unXrhm3btmH48OGoqanBn/70Jzz//PO4+OKLAQBPPfUU+vfvj//85z8499xzE9FtgiBSDFojkXqQfSAIor2gNRIaKeeRCKampgYAUFBQAADYtm0bWltbMWrUKKNOv3790LNnT1RUVAjbaG5uRm1trelFEMSJDXkkUh+yDwRBxAuyDxopPZFQFAW33XYbzj//fJx55pkAgMrKSmRmZiI/P99Ut6ioCJWVlcJ2Fi5ciLy8POPVo0ePeHfdIF1lKSLXIr2cvxJJul6bdvGr0b2I5CDu9iHGezUWuYadesJjWtyHTM7iRBaYrPe0LEvGK5HHTzacjsORrglryZT9azUaGaBTQmyrC9dtMtmHqqoqlJWVITc3F/n5+Zg+fTrq6urC1v/yyy/DSvheeOEFR8dO6YnEzTffjI8++girVq2KqZ158+ahpqbGeB04cMClHhIEkaqQRyK1IftAEEQ8SSb7UFZWho8//hjr1q3DK6+8gk2bNmHmzJlh6/fo0QOHDx82ve69917k5ORg3Lhxjo6dcmskGOXl5cbJOvnkk43y4uJitLS0oLq62vTU6ciRIyguLha25fP54PP54t1lgiBSCCWKNRJJ+HD2hITsA0EQ8capjYiXfdi1axfWrl2LrVu3YsiQIQCA5cuXY/z48Vi8eDFKSkpC9vF4PCFj3urVq3HVVVchJyfH0fFTziOhqirKy8uxevVqbNiwAb179zZtHzx4MDIyMrB+/XqjbPfu3di/fz+GDRvm6FgnemScVJXkpBPpeP4p6hQRL9rTPjjBafQZu/e03XpOIzQF2reO1mTVHzeQZClsTgC2jX+J4GVOdl7xaMNuX622OcXpdxHpu45V4uTWtWwcM8qITulIRUUF8vPzjUkEAIwaNQqyLGPz5s222ti2bRt27tyJ6dOnOz5+ynkkbr75Zjz//PP45z//iU6dOhm61ry8PGRnZyMvLw/Tp0/H7NmzUVBQgNzcXNxyyy0YNmwYReQgCMI2lJAu9SD7QBBEexFtQrrggA2xej0rKyvRrVs3U5nX60VBQUHYtV/B/OlPf0L//v1x3nnnOT5+yk0kHn/8cQDAiBEjTOVPPfUUpk6dCgB45JFHIMsyJk2ahObmZowZMwaPPfaY7WOwWbe/ucGVPqcqyf5kmwhPe2X2TFbYvRtLPolGKI4Xx7XA5qNbIi4kq31w+rTU7nVrd4xWLC5Lq2NF8kSIckdYYbXd6hzZfqruwkRedCw1xvHUbg4Kq3FbjdCG1b7CzNOW9S2OY9EP1abGxa59cpq7I9I54kmEjWD2ITigz/z587FgwYKQ+nPnzsWiRYss29y1a5f9DoShsbERzz//PO6+++6o9pfUVM66Fie+/vrrdo3cRBBEfDhw4IBJI2+HpqYm9O7d2/aTnGCKi4uxb98+ZGVlRbU/kdyQfSCI9KG9bURxcTE+/PBDk30I55H45ptv8N1331m216dPHzz33HOYM2cOjh07ZpS3tbUhKysLL7zwAi6//HLLNv7yl79g+vTpOHjwIAoLCx1+IppICFEUBYcOHUKnTp2SMptltNTW1qJHjx44cOAAcnNzE92dlIbOpXvE41yqqorjx4+jpKQEsux8KVhTUxNaWlqiOnZmZiZNItKYdLUPAI1rbkLn0j3SyUbEwz7s2rULAwYMwAcffIDBgwcDAN544w2MHTsWX3/9tXCxNc+IESPQtWtX/OMf/4jq+CknbWoPZFl2PENNJXJzc2lgcwk6l+7h9rnMy8uLet+srCyaDBBC0t0+ADSuuQmdS/cgGyGmf//+GDt2LGbMmIEVK1agtbUV5eXlmDx5sjGJOHjwIEaOHIlnn30WQ4cONfbds2cPNm3ahNdeey3q46dc1CaCIAiCIAiCIDRWrlyJfv36YeTIkRg/fjwuuOACPPHEE8b21tZW7N69Gw0N5rVdf/7zn3HyySdj9OjRUR+bpE0nELW1tcjLy0NNTQ09IYkROpfuQeeSIJIDuhfdg86le9C5TG7II3EC4fP5MH/+fEqu5AJ0Lt2DziVBJAd0L7oHnUv3oHOZ3JBHgiAIgiAIgiAIx5BHgiAIgiAIgiAIx9BEgiAIgiAIgiAIx9BEgiAIgiAIgiAIx9BEIs1YsGABJEkyvfr162dsb2pqws0334wuXbogJycHkyZNwpEjRxLY4+Ri06ZNuPTSS1FSUgJJkrBmzRrTdlVVcc8996B79+7Izs7GqFGj8Pnnn5vqVFVVoaysDLm5ucjPz8f06dNRV1fXjp8iOYh0LqdOnRpyrY4dO9ZUh84lQbgL2YjoIfvgHmQf0geaSKQhZ5xxBg4fPmy83n33XWPbrFmz8K9//QsvvPAC3n77bRw6dAgTJ05MYG+Ti/r6egwcOBCPPvqocPtDDz2EZcuWYcWKFdi8eTM6duyIMWPGoKmpyahTVlaGjz/+GOvWrcMrr7yCTZs2YebMme31EZKGSOcSAMaOHWu6Vv/617+attO5JAj3IRsRHWQf3IPsQxqhEmnF/Pnz1YEDBwq3VVdXqxkZGeoLL7xglO3atUsFoFZUVLRTD1MHAOrq1auNvxVFUYuLi9Xf//73Rll1dbXq8/nUv/71r6qqquonn3yiAlC3bt1q1Hn99ddVSZLUgwcPtlvfk43gc6mqqjplyhT1sssuC7sPnUuCcB+yEe5A9sE9yD6kNuSRSEM+//xzlJSUoE+fPigrK8P+/fsBANu2bUNraytGjRpl1O3Xrx969uyJioqKRHU3Zdi3bx8qKytN5y8vLw+lpaXG+auoqEB+fj6GDBli1Bk1ahRkWcbmzZvbvc/JzsaNG9GtWzecfvrp+PnPf47vvvvO2EbnkiDiA9kI9yH74D5kH1IDb6I7QLhLaWkpnn76aZx++uk4fPgw7r33Xlx44YX46KOPUFlZiczMTOTn55v2KSoqQmVlZWI6nEKwc1RUVGQq589fZWUlunXrZtru9XpRUFBA5ziIsWPHYuLEiejduzf27t2LX//61xg3bhwqKirg8XjoXBJEHCAbER/IPrgL2YfUgSYSaca4ceOM99///vdRWlqKU045BX//+9+RnZ2dwJ4RhJnJkycb78866yx8//vfR9++fbFx40aMHDkygT0jiPSFbASRCpB9SB1I2pTm5Ofn43vf+x727NmD4uJitLS0oLq62lTnyJEjKC4uTkwHUwh2joIjmPDnr7i4GEePHjVtb2trQ1VVFZ3jCPTp0wddu3bFnj17ANC5JIj2gGyEO5B9iC9kH5IXmkikOXV1ddi7dy+6d++OwYMHIyMjA+vXrze27969G/v378ewYcMS2MvUoHfv3iguLjadv9raWmzevNk4f8OGDUN1dTW2bdtm1NmwYQMURUFpaWm79zmV+Prrr/Hdd9+he/fuAOhcEkR7QDbCHcg+xBeyD0lMold7E+4yZ84cdePGjeq+ffvU9957Tx01apTatWtX9ejRo6qqqupNN92k9uzZU92wYYP6wQcfqMOGDVOHDRuW4F4nD8ePH1d37Nih7tixQwWgLlmyRN2xY4f61Vdfqaqqqr/73e/U/Px89Z///Kf63//+V73sssvU3r17q42NjUYbY8eOVc8++2x18+bN6rvvvquedtpp6jXXXJOoj5QwrM7l8ePH1dtvv12tqKhQ9+3bp7755pvqD37wA/W0005Tm5qajDboXBKEu5CNiB6yD+5B9iF9oIlEmnH11Ver3bt3VzMzM9WTTjpJvfrqq9U9e/YY2xsbG9Vf/OIXaufOndUOHTqol19+uXr48OEE9ji5eOutt1QAIa8pU6aoqqqF+Lv77rvVoqIi1efzqSNHjlR3795tauO7775Tr7nmGjUnJ0fNzc1Vp02bph4/fjwBnyaxWJ3LhoYGdfTo0WphYaGakZGhnnLKKeqMGTPUyspKUxt0LgnCXchGRA/ZB/cg+5A+SKqqqu3n/yAIgiAIgiAIIh2gNRIEQRAEQRAEQTiGJhIEQRAEQRAEQTiGJhIEQRAEQRAEQTiGJhIEQRAEQRAEQTiGJhIEQRAEQRAEQTiGJhIEQRAEQRAEQTiGJhIEQRAEQRAEQTiGJhIEQRAEQRAEQTiGJhIEQRAEQRAEQTiGJhIEQRAEQRAEQTiGJhJEytC/f3/8v//3/yLW++6779CtWzd8+eWXYeuMGDECt912m3ud05k8eTIefvhh19slCIIgwkP2gSASA00kiJSgsbERn3/+OQYOHBix7oMPPojLLrsMvXr1in/Hgrjrrrvw4IMPoqampt2PTRAEcSJC9oEgEgdNJIiU4KOPPoKqqjjzzDMt6zU0NOBPf/oTpk+f3k49M3PmmWeib9++eO655xJyfIIgiBMNsg8EkThoIkEkNTt37sTFF1+MCy64AIqioGfPnli6dGnY+q+99hp8Ph/OPfdco6y+vh7XX389cnJy0L17d6FrWVEULFy4EL1790Z2djYGDhyIf/zjH6Y6x48fR1lZGTp27Iju3bvjkUceEbrAL730UqxatSqmz00QBEFYQ/aBIBIPTSSIpGXv3r246KKLcPHFF+MnP/kJJk6ciDlz5mDWrFnYuXOncJ933nkHgwcPNpXdcccdePvtt/HPf/4Tb7zxBjZu3Ijt27eb6ixcuBDPPvssVqxYgY8//hizZs3Ctddei7ffftuoM3v2bLz33nt4+eWXsW7dOrzzzjsh7QDA0KFDsWXLFjQ3N8d+EgiCIIgQyD4QRJKgEkSSMmrUKHXq1Kmqqqrq0KFD1Ycfflj1+/1qbm6uumzZMuE+l112mXrDDTcYfx8/flzNzMxU//73vxtl3333nZqdna3eeuutqqqqalNTk9qhQwf1/fffN7U1ffp09ZprrlFVVVVra2vVjIwM9YUXXjC2V1dXqx06dDDaYXz44YcqAPXLL7+M+rMTBEEQ4SH7QBDJgTfRExmCEFFZWYkNGzbg/fffh9/vx//+9z8sXLgQsizD4/EgMzNTuF9jYyOysrKMv/fu3YuWlhaUlpYaZQUFBTj99NONv/fs2YOGhgb86Ec/MrXV0tKCs88+GwDwxRdfoLW1FUOHDjW25+XlmdphZGdnA9D0uARBEIS7kH0giOSBJhJEUvKf//wHiqJg0KBB2L17NxobGzFo0CB8+eWXOHbsGM477zzhfl27dsWxY8ccHauurg4A8Oqrr+Kkk04ybfP5fI77XlVVBQAoLCx0vC9BEARhDdkHgkgeaI0EkZS0tLQAAJqamrBjxw6ccsopKCgowIoVK3DmmWfirLPOEu539tln45NPPjH+7tu3LzIyMrB582aj7NixY/jss8+MvwcMGACfz4f9+/fj1FNPNb169OgBAOjTpw8yMjKwdetWY7+amhpTO4yPPvoIJ598Mrp27RrbSSAIgiBCIPtAEMkDeSSIpGTYsGHwer247777UFdXhz59+uCPf/wjli9fjk2bNoXdb8yYMZg3bx6OHTuGzp07IycnB9OnT8cdd9yBLl26oFu3bvjNb34DWQ7MoTt16oTbb78ds2bNgqIouOCCC1BTU4P33nsPubm5mDJlCjp16oQpU6bgjjvuQEFBAbp164b58+dDlmVIkmTqwzvvvIPRo0fH7dwQBEGcyJB9IIgkItGLNAgiHM8++6zavXt3FYDq9XrV0tJSddOmTRH3Gzp0qLpixQrj7+PHj6vXXnut2qFDB7WoqEh96KGH1Isuusi0CE5RFHXp0qXq6aefrmZkZKiFhYXqmDFj1LffftuoU1tbq/70pz9VO3TooBYXF6tLlixRhw4dqs6dO9eo09jYqObl5akVFRXunASCIAgiBLIPBJEcSKqqqomezBCEFQUFBXj66afxk5/8xFb9V199FXfccQc++ugj05Mlt6mvr8dJJ52Ehx9+2Ehw9Pjjj2P16tV444034nZcgiAIQoPsA0EkFpI2EUnN119/jWPHjkXMWMpzySWX4PPPP8fBgwcNDasb7NixA59++imGDh2Kmpoa3HfffQCAyy67zKiTkZGB5cuXu3ZMgiAIQgzZB4JIPOSRIJKa119/HVdeeSWOHz8eojVtb3bs2IGf/exn2L17NzIzMzF48GAsWbIk7MI+giAIIn6QfSCIxEMTCYIgCIIgCIIgHEPhXwmCIAiCIAiCcAxNJAiCIAiCIAiCcAxNJAiCIAiCIAiCcAxNJAiCIAiCIAiCcAxNJAiCIAiCIAiCcAxNJAiCIAiCIAiCcAxNJAiCIAiCIAiCcAxNJAiCIAiCIAiCcAxNJAiCIAiCIAiCcAxNJAiCIAiCIAiCcAxNJAiCIAiCIAiCcMz/B/ptNJirLW0iAAAAAElFTkSuQmCC", "text/plain": [ "
[20:28:49] Created task 'aperture_2' with task_id 'fdve-98ec4841-46dc-4e73-b637-169cb1210535v1'. webapi.py:139\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:28:49]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'aperture_2'\u001b[0m with task_id \u001b[32m'fdve-98ec4841-46dc-4e73-b637-169cb1210535v1'\u001b[0m. \u001b]8;id=387648;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=570602;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8a5f9231ed654ec3b2dc9715f7f4873f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:28:50] status = queued webapi.py:269\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:28:50]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=345214;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=641358;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fd871ba214b2414e9652d147dae822af", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:28:52] status = preprocess webapi.py:263\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:28:52]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=8847;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=691755;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:28:59] Maximum FlexCredit cost: 0.025. Use 'web.real_cost(task_id)' to get the billed FlexCredit webapi.py:286\n", " cost after a simulation run. \n", "\n" ], "text/plain": [ "\u001b[2;36m[20:28:59]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.025\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit \u001b]8;id=804901;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=558073;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mcost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
starting up solver webapi.py:290\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=859746;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=652609;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
running solver webapi.py:300\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=660514;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=845205;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "49860f137f3e413bb994c7aff72e77c4", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:29:06] status = postprocess webapi.py:331\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:29:06]\u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=280734;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=664170;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#331\u001b\\\u001b[2m331\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "277c5c934567495d9919c21f0e4d13de", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:29:11] status = success webapi.py:338\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:29:11]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=642559;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=928702;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#338\u001b\\\u001b[2m338\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "07a6163e75ba47fe9fdaa12b93f11dff", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:29:12] loading SimulationData from data/aperture_2.hdf5 webapi.py:510\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:29:12]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/aperture_2.hdf5 \u001b]8;id=822763;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=333882;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#510\u001b\\\u001b[2m510\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim_data2 = web.run(\n", " sim2, task_name=\"aperture_2\", path=\"data/aperture_2.hdf5\", verbose=True\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now the projected fields are already contained in the returned `sim_data2` object - all we have to do is access it as follows, and then plot and compare to analytical results as before." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2023-04-08T03:29:12.805622Z", "iopub.status.busy": "2023-04-08T03:29:12.805454Z", "iopub.status.idle": "2023-04-08T03:29:13.212457Z", "shell.execute_reply": "2023-04-08T03:29:13.211859Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalized root mean squared error: 4.78 %\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAFyCAYAAABhr+y4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC2uUlEQVR4nO2de3wU1fn/PzO7ySYQkhAIhCgIqOWiFhQk4hWFcrNWFC/YqIAUtDVeAK3QqqDVUhQRwUuqP68VausF6q1UBBUvKWAQ+1URBVEQCKghCUnIbWd+f+yc2TOzZ2dndmezF57367WvbM6cOXN2duY8e+b5nOeRVFVVQRAEQRAEQRAE4QA50R0gCIIgCIIgCCL1oIkEQRAEQRAEQRCOoYkEQRAEQRAEQRCOoYkEQRAEQRAEQRCOoYkEQRAEQRAEQRCOoYkEQRAEQRAEQRCOoYkEQRAEQRAEQRCOoYkEQRAEQRAEQRCOoYkEQRAEQRAEQRCOoYkEccTxzDPPQJIkfPvtt0ndJkEQRLLz7bffQpIkPPPMM473fffddyFJEt59992IdUeMGIERI0Y4PkY8SVSfnJw3gog3NJEgEs6jjz4KSZJQUlKS6K5E5M9//jNWrVqV6G4QBEG0C+whieg1Z86cRHcvrXn00UejmqARRHviTXQHCGL58uXo3bs3Nm7ciO3bt+O4445LdJfC8uc//xmXXHIJJkyYYCi/6qqrMGnSJPh8vsR0jCAIIo7cfffd6NOnj6HsxBNPxDHHHIPDhw8jIyMjQT1LHG+99VZc23/00UfRtWtXTJkyxVB+9tln4/Dhw8jMzIzr8QnCDjSRIBLKzp078dFHH+GVV17Btddei+XLl2PevHmJ7pZjPB4PPB5PortBEAQRF8aNG4ehQ4cKt2VlZbVzb+JDQ0MDOnbsaLt+on7Iy7KcNuecSH1I2kQklOXLl6Nz5844//zzcckll2D58uWG7Ux/u2jRIjz++OM49thj4fP5cOqpp2LTpk2Guv/73/8wZcoU9O3bF1lZWSgqKsI111yDn376ybIPkydPRteuXdHa2hqybfTo0ejXrx8AQJIkNDQ04Nlnn9Vd++xJUbg1Ev/+979xzjnnoFOnTsjNzcWpp56KFStWODxLBEEQyUm4NRJffvklLrnkEhQUFCArKwtDhw7Fq6++aqtNNtZnZ2dj2LBheP/99233R5IklJWVYfny5ejXrx+ysrIwZMgQrF+/3lBv/vz5kCQJX3zxBX7961+jc+fOOPPMMwEAbW1t+NOf/qTbm969e+MPf/gDmpubDW2I1kg0Nzdj3rx5OO644+Dz+dCzZ0/8/ve/D9kXAJ5//nkMGzYMHTp0QOfOnXH22WfrXo7evXvj888/x3vvvafbG3ascGskXnzxRQwZMgTZ2dno2rUrrrzySuzZs8dQZ8qUKcjJycGePXswYcIE5OTkoLCwELfccgv8fr/t80wQDJpIEAll+fLluPjii5GZmYkrrrgCX3/9dcgEAQBWrFiB+++/H9deey3uuecefPvtt7j44osNP/7XrFmDb775BlOnTsWyZcswadIkvPDCCxg/fjxUVQ3bh6uuugo//fQT/vOf/xjKq6qqsG7dOlx55ZUAgL/97W/w+Xw466yz8Le//Q1/+9vfcO2114Zt95lnnsH555+P6upqzJ07F3/5y18wePBgrF692ulpIgiCSCi1tbX48ccfDa9wfP755zjttNOwdetWzJkzBw888AA6duyICRMmYOXKlZbHefLJJ3HttdeiqKgI9913H8444wz86le/wu7du2339b333sPNN9+MK6+8EnfffTd++uknjB07Fp999llI3UsvvRSNjY3485//jOnTpwMAfvOb3+DOO+/EKaecggcffBDnnHMOFixYgEmTJlkeV1EU/OpXv8KiRYtwwQUXYNmyZZgwYQIefPBBXH755Ya6d911F6666ipkZGTg7rvvxl133YWePXti3bp1AIAlS5bg6KOPRv/+/XV788c//jHssZ955hlcdtll8Hg8WLBgAaZPn45XXnkFZ555Jmpqagx1/X4/xowZgy5dumDRokU455xz8MADD+Dxxx+3c3oJwohKEAni448/VgGoa9asUVVVVRVFUY8++mj1pptu0uvs3LlTBaB26dJFra6u1sv/9a9/qQDU1157TS9rbGwMOcbf//53FYC6fv16vezpp59WAag7d+5UVVVV/X6/evTRR6uXX365Yd/FixerkiSp33zzjV7WsWNHdfLkySHHMbdZU1OjdurUSS0pKVEPHz5sqKsoivWJIQiCSBLY2CZ6qWpwjH766af1fUaOHKmedNJJalNTk16mKIp6+umnq8cff7xe9s4776gA1HfeeUdVVVVtaWlRu3Xrpg4ePFhtbm7W6z3++OMqAPWcc86J2F/Wt48//lgv++6779SsrCz1oosu0svmzZunAlCvuOIKw/5btmxRAai/+c1vDOW33HKLCkBdt26dXnbOOecY+vS3v/1NlWVZff/99w37lpeXqwDUDz/8UFVVVf36669VWZbViy66SPX7/Ya6vH044YQThJ853Hk78cQTDfbm9ddfVwGod955p142efJkFYB69913G9o8+eST1SFDhoQciyAiQR4JImEsX74c3bt3x7nnngsg4JK+/PLL8cILL4S4WC+//HJ07txZ//+ss84CAHzzzTd6WXZ2tv6+qakJP/74I0477TQAwObNm8P2Q5ZllJaW4tVXX8WhQ4cM/Tv99NNDFhjaYc2aNTh06BDmzJkTomWVJMlxewRBEInkkUcewZo1awwvEdXV1Vi3bh0uu+wyHDp0SPde/PTTTxgzZgy+/vrrELkN4+OPP8aBAwdw3XXXGdYfTJkyBXl5ebb7Onz4cAwZMkT/v1evXrjwwgvxn//8J8S2XHfddYb/33zzTQDArFmzDOWzZ88GALzxxhthj/viiy9iwIAB6N+/v8Fzc9555wEA3nnnHQDAqlWroCgK7rzzTsiy8WdYNPaBnbff/e53Bntz/vnno3///sI+mz/3WWedZbCnBGEXmkgQCcHv9+OFF17Aueeei507d2L79u3Yvn07SkpKsH//fqxdu9ZQv1evXob/2aTi4MGDell1dTVuuukmdO/eHdnZ2SgsLNQnAbW1tZb9ufrqq3H48GHd7b5t2zZUVlbiqquuiurz7dixA0AgqglBEESqM2zYMIwaNcrwErF9+3aoqoo77rgDhYWFhhcLpHHgwAHhvt999x0A4PjjjzeUZ2RkoG/fvrb7at4fAH72s5+hsbERP/zwg6Hc/KDou+++gyzLIdEDi4qKkJ+fr/dRxNdff43PP/885HP/7Gc/AxD83Dt27IAsyxg4cKDtz2QF6xNbz8fTv3//kD5nZWWhsLDQUNa5c2eDPSUIu1DUJiIhrFu3Dvv27cMLL7yAF154IWT78uXLMXr0aP3/cBGRVG7tw2WXXYaPPvoIt956KwYPHoycnBwoioKxY8dCURTL/gwcOBBDhgzB888/j6uvvhrPP/88MjMzcdlll0X5CQmCII482Fh7yy23YMyYMcI6yRTim/dk80TjGVAUBSeddBIWL14s3N6zZ0/HbcYDijBIuAlNJIiEsHz5cnTr1g2PPPJIyLZXXnkFK1euRHl5ue32Dh48iLVr1+Kuu+7CnXfeqZd//fXXttu4+uqrMWvWLOzbtw8rVqzA+eefb5BTAfaNy7HHHgsA+Oyzz5LKaBIEQcQT5jnIyMgI67UIxzHHHAMgMG4zORAAtLa2YufOnRg0aJCtdkTj/ldffYUOHTqEPIkX9UFRFHz99dcYMGCAXr5//37U1NTofRRx7LHH4tNPP8XIkSMtbcWxxx4LRVHwxRdfYPDgwWHr2bU3rE/btm0znDdWZtVngogVkjYR7c7hw4fxyiuv4Je//CUuueSSkFdZWRkOHTpkO1QgEHzCopqiMy1ZssR2G1dccQUkScJNN92Eb775Ro/WxNOxY8eQCBgiRo8ejU6dOmHBggVoamoybDP3kSAIIl3o1q0bRowYgb/+9a/Yt29fyHaztIhn6NChKCwsRHl5OVpaWvTyZ555xta4y6ioqDCsi9u9ezf+9a9/YfTo0RGfxo8fPx5AqO1gXobzzz8/7L6XXXYZ9uzZgyeeeCJk2+HDh9HQ0AAAmDBhAmRZxt133x3iLeftg117M3ToUHTr1g3l5eWGMLP//ve/sXXrVss+E0SskEeCaHfYouZf/epXwu2nnXYaCgsLsXz5cpSUlNhqMzc3F2effTbuu+8+tLa24qijjsJbb72FnTt32u5XYWEhxo4dixdffBH5+fnCwXfIkCF4++23sXjxYhQXF6NPnz7CPubm5uLBBx/Eb37zG5x66ql6nPJPP/0UjY2NePbZZ233iyAIIpV45JFHcOaZZ+Kkk07C9OnT0bdvX+zfvx8VFRX4/vvv8emnnwr3y8jIwD333INrr70W5513Hi6//HLs3LkTTz/9tKM1EieeeCLGjBmDG2+8ET6fD48++iiAQMjVSAwaNAiTJ0/G448/jpqaGpxzzjnYuHEjnn32WUyYMEEPDiLiqquuwj//+U9cd911eOedd3DGGWfA7/fjyy+/xD//+U/85z//wdChQ3Hcccfhj3/8I/70pz/hrLPOwsUXXwyfz4dNmzahuLgYCxYsABCwN4899hjuueceHHfccejWrVuIx4Gdt4ULF2Lq1Kk455xzcMUVV2D//v146KGH0Lt3b8ycOdP2uSMIxyQ0ZhRxRHLBBReoWVlZakNDQ9g6U6ZMUTMyMvQQsffff39IHQDqvHnz9P+///579aKLLlLz8/PVvLw89dJLL1X37t0bUs8cqpXnn//8pwpAnTFjhrBfX375pXr22Wer2dnZKgA9FGy4Nl999VX19NNPV7Ozs9Xc3Fx12LBh6t///vewn5sgCCKZYGPbpk2bhNtF4V9VVVV37NihXn311WpRUZGakZGhHnXUUeovf/lL9aWXXtLrmMOYMh599FG1T58+qs/nU4cOHaquX78+JNRqOACo119/vfr888+rxx9/vOrz+dSTTz455Bgs/OsPP/wQ0kZra6t61113qX369FEzMjLUnj17qnPnzjWEs1XV0PCvqhoIxbpw4UL1hBNOUH0+n9q5c2d1yJAh6l133aXW1tYa6j711FPqySefrNc755xz9HDoqqqqVVVV6vnnn6926tTJEP423Hn7xz/+obdXUFCglpaWqt9//72hzuTJk9WOHTuGfGZ2PgjCKZKqks6CIBj/+te/MGHCBKxfv14PMUsQBEGkBpIk4frrr8fDDz8c92OdddZZ8Pl8ePvtt+N+LIJIVmiNBEFwPPHEE+jbty/OPPPMRHeFIAiCSGL27duHrl27JrobBJFQaI0EQQB44YUX8L///Q9vvPEGHnroIUoaRxAEQQj56KOP8Morr2DHjh247bbbEt0dgkgoNJEgCAQiNuXk5GDatGn43e9+l+juEARBEEnKE088gX//+9+4+eabMXXq1ER3hyASCq2RIAiCIAiCIAjCMbRGgiAIIoE88sgj6N27N7KyslBSUoKNGzeGrfvEE0/grLPOQufOndG5c2eMGjXKsj5BEARBxBOaSBAEQSSIf/zjH5g1axbmzZuHzZs3Y9CgQRgzZgwOHDggrP/uu+/iiiuuwDvvvIOKigr07NkTo0ePxp49e9q55wRBEARB0iYhiqJg79696NSpEy26JYgURFVVHDp0CMXFxZBl589LmpqaDJl1nZCZmYmsrCxbdUtKSnDqqafqoSoVRUHPnj1xww03YM6cORH39/v96Ny5Mx5++GFcffXVUfWXcAbZB4JIfRJlI5zYh1SBFlsL2Lt3L3r27JnobhAEESO7d+/G0Ucf7WifpqYmZHcqANoOR3XMoqIifPrppwZj4fP54PP5DPVaWlpQWVmJuXPn6mWyLGPUqFGoqKiwdazGxka0traioKAgqr4SziH7QBDpQ3vbiKKiIuzcuTOtJhNJNZFYv3497r//flRWVmLfvn1YuXIlJkyYYKizdetW3HbbbXjvvffQ1taGgQMH4uWXX0avXr0ABL7g2bNn44UXXkBzczPGjBmDRx99FN27d7fdj06dOgEATv793+HxdXDt86UaqkLOqlRFko/sJ6X+5kZ8ct8V+r3shJaWFqDtMDJOvALwZDg8cCuqPvt7yHgzb948zJ8/31D2448/wu/3h9Tt3r07vvzyS1uHu+2221BcXIxRo0Y562eKkgw2gl1Tg2ctj8o+KA5FAHZFA3bGa0WJ/jiqYF/F4pii/lj10eq8WO3n5vmJBbtjrpUXy6oNOYL3y7xvpP7IIfUtq1v22+4DfTvnyKmXL9J5CYe/uRFbFpe2r43Q7ENLSwtNJOJFQ0MDBg0ahGuuuQYXX3xxyPYdO3bgzDPPxLRp03DXXXchNzcXn3/+ueELmTlzJt544w28+OKLyMvLQ1lZGS6++GJ8+OGHtvvBLmSPrwO8WR1j/2ApCk0kUpcjfSLBiEl64smA5Ml0tAu7Y3bv3o3c3Fy93OyNcIO//OUveOGFF/Duu++mlVGyIhlsBG8fPFHYB8npRMLmOGynnhTDD3LRRMKyPYcTCavzYjmRsHl+rCY9bmD+YR4Oq7E5dScSsX92J3UMx45RXtieNiJdf1El1URi3LhxGDduXNjtf/zjHzF+/Hjcd999etmxxx6rv6+trcWTTz6JFStW4LzzzgMAPP300xgwYAD++9//4rTTTnPUH1mWbN8g0RLvwS0WYvkxSpMQd0jHCUG87ym3jiHJHkiyx9lOaqB+bm6uYSIhomvXrvB4PNi/f7+hfP/+/SgqKrLcd9GiRfjLX/6Ct99+Gz//+c+d9TGFSTYbEQ3sh49dzwQbAyKNqXbrJRORzoHTyYjebgznwGpCZfWj0+qY/Hgk6r/5uxON+/y5ivXHc3ti21PTzhMIN3BsI1SH9iRFSJmoTYqi4I033sDPfvYzjBkzBt26dUNJSQlWrVql16msrERra6vBzd+/f3/06tXLtuaYIAgCCBoJpy+7ZGZmYsiQIVi7dq1epigK1q5di+HDh4fd77777sOf/vQnrF69GkOHDo3pM6YTZCMIgmhP4mkfUomUmUgcOHAA9fX1+Mtf/oKxY8firbfewkUXXYSLL74Y7733HgCgqqoKmZmZyM/PN+zbvXt3VFVVhW27ubkZdXV1hhdBEEc2khTFREJyZihmzZqFJ554As8++yy2bt2K3/72t2hoaNCz5V599dWGxdgLFy7EHXfcgaeeegq9e/dGVVUVqqqqUF9f7+pnT0XiZSPIPhAEIcKxjXBoH1KFpJI2WaFoq8QuvPBCzJw5EwAwePBgfPTRRygvL8c555wTddsLFizAXXfd5Uo/nRIvmUeiJVPpKMk50mgPCVIyI3lkSB6n0iZnz2Yuv/xy/PDDD7jzzjtRVVWFwYMHY/Xq1frC3127dhlCEz722GNoaWnBJZdcYmhHtJj7SCNeNiKsfZAlwzjnVFLESzPsyJzsHstK4sTf02Ybwct27C5gZu25aW+cnke7x3Yj0r0bsic74yp/Dty0pU7H9EjrB6zac3M9hBsyppBjuSF/dWojHNqHVCFlJhJdu3aF1+vFwIEDDeUDBgzABx98ACAQVqulpQU1NTWGJ06RNMdz587FrFmz9P/r6uoovB9BHOHIUbii1Shc12VlZSgrKxNue/fddw3/f/vtt47bP1KIl40g+0AQhAinNiIa+5AKpMz0KDMzE6eeeiq2bdtmKP/qq69wzDHHAACGDBmCjIwMg+Z427Zt2LVrl6Xm2Ofz6Ysj7SySJAgi/Yn3GgnCXeJlI8g+EAQhguxDgKTySNTX12P79u36/zt37sSWLVtQUFCAXr164dZbb8Xll1+Os88+G+eeey5Wr16N1157TX9ql5eXh2nTpmHWrFkoKChAbm4ubrjhBgwfPjyqaBypnLW0PWUpiZZRHUkc6XIjO0iS5Mq9G9XAn6aGIllINhvBI5Jp2JXpmKUbkaROdo4VSQplJUti9w8v5WHhQUVhYJMZNyRNTo+TSr8dRGFfow31Gkmq1F6RmdpLWu3YRqSpfUiqicTHH3+Mc889V/+fuZMnT56MZ555BhdddBHKy8uxYMEC3HjjjejXrx9efvllnHnmmfo+Dz74IGRZxsSJEw3JhgiCIJwgyTIku5mWGE7rE44gG0EQRLLg2EakqX2Q1PaarqcQdXV1yMvLQ8n8147ozNZ2IY9E+0EeichIkoS2pgZsmH8BamtrHUtR2P2fd+5tkLzOEsmpbc2ofWdhVMclUgN2fQz546qICUujzengNPt1pGNZZpR2mKTOboZrOzkgRJ8z0jkLaSNS/QT8xHH6RN9pkjrRk3o7CenExxYc8wjwSLQ1NaDy3gntaiOitQ+PPPII7r//flRVVWHQoEFYtmwZhg0bJqz7+eef484770RlZSW+++47PPjgg7j55pttHysaksojkYykgosy0XNB+nF75JAK94NbBJ42OZU2pecTJyI6opU7iX5A2ZU72Ul4ZjiWDYkTELQz/A9PNqkQtSE6prlMFLnKaSQsq0hU/GeIt510I/Oz3laUk4ew+9qYQMQrQlO8IzMlMkKkYxsRhX34xz/+gVmzZqG8vBwlJSVYsmQJxowZg23btqFbt24h9RsbG9G3b19ceumlevS6eENWjyAIQkB75JEgCIIgUpP2yCOxePFiTJ8+HVOnTsXAgQNRXl6ODh064KmnnhLWP/XUU3H//fdj0qRJ8PmcedSjhTwSacCR9JSYIAgilbF6gmr1BN6ul8LKC2K1TfTE2eBhsLEAW+QdEHkYRN4K9vkUNdSDYYWhDYvP0J520s2n99F6ImKRMSWb9yHd8lKZk1r6fD7hj/6WlhZUVlYakpLKsoxRo0ahoqIi7v20C3kkCIIgRHg8kBy+4DSBHUEQBJGaRGkfevbsGVhjob0WLFggbP7HH3+E3+/XE5Qyunfvjqqqqrh/PLuQR4IgCEJANOFf0zVOOEEQBGHEqY1gdXfv3m1YbN1eEqR4QROJFEHkkiSIZCLV4stHgiYShBWSLIWVXEQbrcmp7CkxcidB52RB3yDYV7BryH4RKikObaHHYqG5m9iV39iVL1nVt7OgOt4yJjvbgeSRMdmJauW8zegmEnYTW3bt2hUejwf79+83lO/fvx9FRUXOOhtH6OcpQRCEAFn2RPUiCIIg0p9424fMzEwMGTIEa9eu1csURcHatWsxfPhwtz9O1JBHgiAIQkA04V8dJ7AjCIIgUhKnNiIa+zBr1ixMnjwZQ4cOxbBhw7BkyRI0NDRg6tSpAICrr74aRx11lL7OoqWlBV988YX+fs+ePdiyZQtycnJw3HHHOT6+HWgiEQVHisyI8kOkLolIEpiI+yKeciqSNhHR4jTakBttinIzmHEaEUnYfgxyp6DMiNWxjvJkPjYAeGCSKnmsP4coP0W8sSPnsStZ0tu0GYVJ3+aCjMntKExufgfJEMkpWmmTEy6//HL88MMPuPPOO1FVVYXBgwdj9erV+gLsXbt2QeYmKHv37sXJJ5+s/79o0SIsWrQI55xzDt59913Hx7cDTSQIgiAE0ESCIAiCCEd7TCQAoKysDGVlZcJt5slB79692z1JMU0kCIIgBNBEgiAIgghHe00kkh2aSDggWSVN7SlBai93Yjok2WuvpwLCaC5x+p4SIZmygr8n3ZY5saylTvchCDvYHUvtSqDsRHyyK0ERRUYSJZFjiCMjWSSHE9wmVvZVVWz2WzQW2tjPjXNshd3x2KlUye4xok0il4iIS8kgWbKLUxuRrvaBJhIEQRAC9CRCDvchCIIg0h+nNiJd7UOSPmMnCIIgCIIgCCKZIY+EA8zSifaUOrkpVYnFdeiG5CjeUiw3XaOxJTGK3A9XpEIxXIdOP5/Vd9eesqf2SH5H4V+JZCDa8Yy/t522YZkUThAlyW5kJMnGGCEckyxuQ37ckSNEcEoGnNq/WBLdhRy7HaVKqSRRipb2CP+aCtBEgiAIQgAttiYIgiDCQYutA9BEIgZET0Xd9lJE+/Te6dMAu56GeD1NYXiS7SmGC/3xWzyFE31ep14CYQx3AaLF33YWaNqFvzbc9E60h/dBBE0kiFTG7afJVuOBx4b3VasYuU26hSISj6f9R4IHwW1oIhGAJhIEQRACZFlyPpEnY0wQBHFE4NhGpKl9oIkEQRCEAEmWnHv20tRQEARBEEac2oh0tQ80kXCZSDIMp9InJhGxH4c6cr1Y4lHbPY4diZJdGVPSyZ0sEMmYRP23kjvxTy2s6qk2rw09drvge7fKdWEVN97qONGQKPmSFZIkOQ4ukA75T4j2pz1zAUVNvINktNO947b8ON5jV3tnKU52kimXkVMbka72gSYSBEEQAqQopE1qKvwgJAiCIGLGqY1IV/tAEwmCIAgBkhSFtClNnzgRBEEQRpzaiHS1DzSRsEBVVWvpRxQXRSJzUVj112pWLbpRIsmNrLbHY1uiYRIkuzImVs9S4hTpmIIykQyJfbcilzC7JtrTfe6GFCBSf934PLRGgogniZYzRfujxqnNcmpbhPWitF2xHNMuzqPsWchVbY5bVsd0Kv1pj/HYTazsWXtDayQC0ESCIAhCgCxJjhM4qWn6xIkgCIIw4tRGpKt9oIkEQRCEAPJIEARBEOEgj0QAmkjEgF13npVblncrWrmMnUZvsouoPauLXSTdsVNmdz+G14WoUPGGlyWJ+ttmQ+7Eb7Mjc+LriORRVomk4uUSttOeXfc5RSghCHewK12yK1VyaitExze3YVc2G0uZnW2x4HTcdqNMJG3SfyNoOc8iyj9ZG7Jx/0gIE/E6jAhIpBc0kSAIghBAHgmCIAgiHOSRCEATCYIgCAHRZLZO1/B+BEEQhBGnNiJd7UNSTSTWr1+P+++/H5WVldi3bx9WrlyJCRMmCOted911+Otf/4oHH3wQN998s15eXV2NG264Aa+99hpkWcbEiRPx0EMPIScnx3F/FEW17e6zuphELj6hK1DkMjS5nfn+iI7J3JVuznwjuZCjlTaJ5ECxuKY9cnxDYPkV4xcUSZbkRmQm6/5EJ4+ySyyRQexImZy6vp1IstyQb0my8wg17RmF7Ugk2WxELEQay6PFDUmTXRkTO5ZVfSv7YNeOeC3qifcL/XCJkDaZbUa4+qyMyWEjSZystrO/VvInAJA8xoh9kYYuPbEpV9FqnHczImAyRGgS4dRGpKt9SKqP1dDQgEGDBuGRRx6xrLdy5Ur897//RXFxcci20tJSfP7551izZg1ef/11rF+/HjNmzIhXlwmCSFNY1lKnLyJ+kI0gCCJZIPsQIKk8EuPGjcO4ceMs6+zZswc33HAD/vOf/+D88883bNu6dStWr16NTZs2YejQoQCAZcuWYfz48Vi0aJHQqFjhJD601YxZ6DmI0kvBz2jjtQDbCqceA9ETJTv1jWXRPV2K5QmU2MPgCVvHI7Oy2INyR1pQbWdbvBBd5256H9x48qQqquPY7iJk2fm9pSbVo5n0I9lshFuYr/t4jemxeCGceh+svA5WngZjfTmkzLK+wIbGYwF2pDHXvN2vhnoTrL0KimV9kefCXE+0TfT164cSbIw0jrLryY1cFCKS1RPBcGoj0tU+pNTHUhQFV111FW699VaccMIJIdsrKiqQn5+vGwgAGDVqFGRZxoYNG8K229zcjLq6OsOLIIgjG7aQzumLSBzxsBFkHwiCEEH2IUBKTSQWLlwIr9eLG2+8Ubi9qqoK3bp1M5R5vV4UFBSgqqoqbLsLFixAXl6e/urZs6er/SYIIvWQpCgmEmnquk4V4mEjyD4QBCHCsY2I0j488sgj6N27N7KyslBSUoKNGzda1n/xxRfRv39/ZGVl4aSTTsKbb74Z1XHtklTSJisqKyvx0EMPYfPmza4b67lz52LWrFn6/3V1dbqxsCuRsJpp2pU92ZE7ifJOiBbt8f1mfWPt821GK4+KvPA5OgmUXRlTvOOFRy8bEjqP9XfmBdJWkiXR9lgWVgtlSYJrznzNRyNnspIyReuudkOu5ATKbJ1axMtGWNmHeCG6R+yO0aJxXt9mM28RsxmRzqNZ0iSSMWV6gwfyWtYPlTGxfXnJkmjfcO3zOLUjVjjNAdEWob4uR9K+u5a20HGelzt5LOROLW3hB2c/9948nvLftV0pqpUdsNNGskuXItEema3/8Y9/YNasWSgvL0dJSQmWLFmCMWPGYNu2bSEPRQDgo48+whVXXIEFCxbgl7/8JVasWIEJEyZg8+bNOPHEEx0f3w4p45F4//33ceDAAfTq1QterxderxffffcdZs+ejd69ewMAioqKcODAAcN+bW1tqK6uRlFRUdi2fT4fcnNzDS+CII5wonFbR/HDJNmfNqUK8bIRZB8IghDSDvZh8eLFmD59OqZOnYqBAweivLwcHTp0wFNPPSWs/9BDD2Hs2LG49dZbMWDAAPzpT3/CKaecgocffjjWTxuWlJlIXHXVVfjf//6HLVu26K/i4mLceuut+M9//gMAGD58OGpqalBZWanvt27dOiiKgpKSkkR1nSCIFKQ91kiwp03z5s3D5s2bMWjQIIwZMybkxy6DPW2aNm0aPvnkE0yYMAETJkzAZ5995sZHTmnIRhAE0Z5Eax/Ma66am5uF7be0tKCyshKjRo3Sy2RZxqhRo1BRUSHcp6KiwlAfAMaMGRO2vhsklbSpvr4e27dv1//fuXMntmzZgoKCAvTq1QtdunQx1M/IyEBRURH69esHABgwYADGjh2L6dOno7y8HK2trSgrK8OkSZPiHo3DSnZhV/ZkJ7qTwf2osPZD2zNIpky5Jfg2xe7vyLkoRJGFnBKt/MluG4Z6NlyKfoErVtS+Vf6GeOeWsLuf1fVoR84E2Jc0uenCbm/5UqLhnzYBQHl5Od544w089dRTmDNnTkh9/mkTAPzpT3/CmjVr8PDDD6O8vLxd+54IUtlGxIpTuVOkcT5aeLtglhmJpE1WkZkyvZ6w2wAg0xMqd7KWR9mL7mSF1ZhvhVWeB6voSoC9/BF+JdivljZ/SD29vs3PyVpgPx9ciZgXwRakupTJLczSyHnz5mH+/Pkh9X788Uf4/X50797dUN69e3d8+eWXwrarqqqE9a3WCcdKUk0kPv74Y5x77rn6/0yXOnnyZDzzzDO22li+fDnKysowcuRIPdnQ0qVL49FdgiDSmGgyW7P65sg+Pp8PPp/PUMaeNs2dO5fbP/LTJl6vDwSeNq1atcpRP1MVshEEQSQLTm0Eq7t7926DRNJsG1KNpJpIjBgxwlEWxG+//TakrKCgACtWrHCxVwRBHIlEk0CI1bfzxClVnjYlE2QjCIJIFpzaCFbX7lqrrl27wuPxYP/+/Yby/fv3h13TVVRU5Ki+GyTVRCLpMCW2ijYGsEiuIWrLjuta5K52Gskp0rHNx4wUWUiESOoTro6onhvSqUTgNFFRtHX4epHqW7mT7UiaopEz2XFhuy1jMrTnQtuSbB3ZJtw+QPo9cSJCiTbxoZux5O3KnUSRnETS2OA2rV1uW9DecMeMMnqeVXQ+UYQmK3lUpCR4Vv1xKneyOzbHKmH1cDIm0UrW4PlzFhGQh32P7Brix3RLaaxNexBvGVO0cnI3cWojnNqTzMxMDBkyBGvXrsWECRMABHLlrF27FmVlZcJ9hg8fjrVr1+Lmm2/Wy9asWYPhw4c7O7gDaCJBEAQhIBZpk50nTqnytIkgCIIIJVppkxNmzZqFyZMnY+jQoRg2bBiWLFmChoYGfV3d1VdfjaOOOgoLFiwAANx0000455xz8MADD+D888/HCy+8gI8//hiPP/6442PbJWWiNhEEQbQn8Y7axD9tYrCnTeGeHrGnTTzxftpEEARBhNIema0vv/xyLFq0CHfeeScGDx6MLVu2YPXq1brEddeuXdi3b59e//TTT8eKFSvw+OOPY9CgQXjppZewatWquOWQAMgjkTDsREYCrBPG2XVXm9swuqYR0oZeH6wt60hEIuy4V8URjhRtmyzYZg9h1A0HumrDfg4TDxnLlIj1+URF1hE7QmVMovpmd7Vhm3YO4hWhKd0iM8WyRsIuqfC0iXAXN69/pxJZK2msAusIgiLsJMz0RvHjKdY27Epjo5UeRWojHlH5YrNF9mSwZvhriV0nsdiA9hr77RzHjb5Eu0bCKWVlZWGlTO+++25I2aWXXopLL700qmNFA00kCIIgBMQibbLL5Zdfjh9++AF33nknqqqqMHjw4JCnTTI3qWZPm26//Xb84Q9/wPHHHx/3p00EQRBEKO0hbUoFaCJhRZSuqHhgxzMB2FuALcoxIVpUZ/ZMBNqKbREZD/803vzEya8E42QHvRvgyuSQfsS6wC0SobHBQx/ZR3pC1BbSRvQeCQb/ZCUenohUiQ1uuFdduG8lyfn9H80Tp2R/2kQkL3YXnIq9FKYCboEv804Yquh2JKRIz0kgGp+a24I7+LyBPVgeBD6PRItWL9PLu9ND2zAvwI602NpO4I9YsOMVEI3zIm+0/pcbc9l54dtg588qF4XomCJbIbIP+jbuu7azoDpVvM1u4dRGuJnPJZmgiQRBEIQAjyw5/vGhJsmDB4IgCCK+OLUR6WofaCJBEAQhQI5iIqGkqaEgCIIgjDi1EelqH2gi0c4kQiplXoBtlWMiUGjc36DgEcijRG5ts4vZahu/XXRTihbaeWR7i7hjxeniN7N0KVw9K6mSldzJrowp3D5h9xMsrI4XonsgGV3i0Xgk0tVQENGRiOtaEo3ppm2AIAgHP3ZoMifDAuyQN0HbwIpaBBIkXqrEJEpWOR0i2QpzvgnRNh6nC7WFwTpsfI+Ox341dJwXy5JCpU3NArkTey+SQomCcJglTZEWVovtRvssarZLe/++cmoj0tU+UPhXgiAIgiAIgiAcQx4JgiAIAeSRIAiCIMJBHokANJGwINoEIm7iZrgwqxwThmNGLIgsd9IjSFi4sCOVRVvfbhtmnEZ7iiZ+uFU0D4bt6Eo2ZEzh9g3WD7vJNqJr1GkkJ7fvMzfao4kEYYmiJqUkz2mfREMAi+ikBoPncfZDII1VA38lLvITW1hqJVUSSaH4e846MlOoYXJqR9zEeQ4IJWS7nYhOkcrsyJj47Vb5IezKmZLlPrDTDzdtDU0kAtBEgiAIQoBXdq6vVkksShAEcUTg1Eakq32giQRBEIQA8kgQBEEQ4SCPRACaSFgQTWbbROA0yYkoWR2P2Z0pmkSrEEltBP3QXON8H/2htYLHsnm+Ey05A+y7c+3KfKwSv7l5LKdyJv67i5ScjpHo+8aN40cT/lUk5SMIpyg27zMRsoU9sD2OiNplhoCTLzE5DZM78fcdyynKj9V+rW+snmgcjxSFKVb5ktsSJzuS2Fgkr1by10jyJYadBHPxkjE5vZatrl830PvvghzLqY1IV/tAEwmCIAgBHkkW6rAj7UMQBEGkP05tRLraB5pIEARBCIhG2hTvBZ0EQRBEcuDURqSrfaCJhAWSJDmWDaUadmQukdyy+iQ7SSI3pDPtmThORKrcD270kyYSRHsTi6TJqg07cideZiSUxwS3hravyVoVf3Bb8B7kyiweyDK5U2v4KiH9TBfsyIUiyVbNtsFuFCarPsRbxmS3jXjLnaKFJhIBaCJBEAQhgCYSBEEQRDhoIhGAJhIWSLL1E5RUI9qn2ZEW2LJY47YXFdtaEOz8yYYbT0OscPpUxM6TM7tP12wvQo/yyU06XeeAO5/HI0nwODyfTusTKYwpz5AbsfRFY0y8xzVGpP6LPBcMpzl4nJIseQriTSK8LclybuPtdQg5t27kGnJoI9LVPqTZzweCIAiCIAiCINoD8kgQBEEIiCb8a6LD3hIEQRDtg1Mbka72gSYSFsiyBI83OZw2jhc9CeqL5B4iuZOb8aUVi9jWlvGuBe78SNIsu9KqaLEaBETnVjLFTDfWD18mcvGqNtsQRaIzy53syn6cDnrJsghSVVRXBmxaI0E4we7173QsT7aFpn6/PY2s1ee0GvsN9WzYgciLkNtfumN1LYjtgel/wXdu147Y2WZo18XrK9HXanvbIFojEYAmEgRBEAK8sgQvJaQjCIIgBDi1EelqH2giQRAEIYA8EgRBEEQ4yCMRgCYSFsgeOWni5ksegdzFIpqHlXrFrgTIStLEu4tF8iX2XiRVYq5pRVBf30/o0g6tb9XfSNGmrLDjWubdqEKZkdaGqB5ri3dpi6RQrL6khpc98e2zc2BX2mMt17LYliT3hQjJI0H2xC5JpIkEEQ8SKQF0Oy+AuT2DXbAhU7WyAfzxrWyLod0IdiPcfrFgR3IUyZ7o47xA3mreFv6YxmOJ2hf10Y28Dckia21vaCIRIDkWABAEQSQZHknSDYXtVxJPsAiCIAj3cGwj4mgfqqurUVpaitzcXOTn52PatGmor6+33Ofxxx/HiBEjkJubC0mSUFNTE9Wxk2oisX79elxwwQUoLi6GJElYtWqVvq21tRW33XYbTjrpJHTs2BHFxcW4+uqrsXfvXkMb0ZxMgiAIM7LTSYQspW1UjmSBbARBEMmCUxsRT/tQWlqKzz//HGvWrMHrr7+O9evXY8aMGZb7NDY2YuzYsfjDH/4Q07GTStrU0NCAQYMG4ZprrsHFF19s2NbY2IjNmzfjjjvuwKBBg3Dw4EHcdNNN+NWvfoWPP/5Yr1daWop9+/ZhzZo1aG1txdSpUzFjxgysWLHCcX9kl774WNx+1q5ozTUpitDESaFUk3uY/0wK2DZ7fRBJj1iZvy3YSPCYCN3G6vtDy0TucLavqvi5+sH35jLVH7rNaj9J9oStL3k8Yevx/7P3fJQvKxezR5Pe8NcG25f/7JIiGbYp3NRfFnxn1lE8ENIf0X5WsiXbifGivObdirBCUZvSk2SyEZIspa2kQ7cV3FgQDwmrlQ0AAEXbbmzDL/wLBMd+S/sg2BYLbOwX2RF9m8COiOwHG7d4aWZQBsvZCoH9CMpmA/+L7IjV2B9JNmtFKt4HbvQ5WaRNW7duxerVq7Fp0yYMHToUALBs2TKMHz8eixYtQnFxsXC/m2++GQDw7rvvxnT8pJpIjBs3DuPGjRNuy8vLw5o1awxlDz/8MIYNG4Zdu3ahV69eUZ9MgiAIMzSRSD7IRhAEkSxEO5Goq6szlPt8Pvh8vqj7UVFRgfz8fH1MA4BRo0ZBlmVs2LABF110UdRt2yGppE1Oqa2thSRJyM/PBxD5ZBIEQdjFI8OR2zrwSnSvCR6yEQRBxAvnNiKwX8+ePZGXl6e/FixYEFM/qqqq0K1bN0OZ1+tFQUEBqqqqYmrbDknlkXBCU1MTbrvtNlxxxRXIzc0FEP3JbG5uRnNzs/4/my1KknPXtetPJE3t+QXSD/6Y4mhGrC1B86wOONexhedX5N7WpUcGOZLmpta28VIoVsa7tc3yJaWtheuPoEzk1mb7Wri1rRC5pmWB+1nkmpa9mYHP4Qkt4+vp8iUmHeCkUKIyj3aHsvPDS6eYzMkD62vOLGkSRvDg3NpW0alEuHrNC9oSXfORcCOqFHkkUhu3bEQ4+2AmJdbH8LJWi4hL7J53KjXkJbKsfYWTtTI7oNsFgYzJ39bGtaeN6a2hYz+zB5FsQIgUSiB9tSt3EsqXPFZSJYttmn0wlGWIbEbACPByJ5GtkDX5ErQymbMLUnj1rhCrKE88KXHNm3Azale0Hondu3frYxKAsN6IOXPmYOHChZZtbt261fbx40VKTiRaW1tx2WWXQVVVPPbYYzG3t2DBAtx1110u9IwgCIJING7aCLIPBEG4SW5urmEiEY7Zs2djypQplnX69u2LoqIiHDhwwFDe1taG6upqFBUVxdJVW6TcRIIZiO+++w7r1q0zfBnRnsy5c+di1qxZ+v91dXXo2bNnSL1keDrJtyl6Uit6rqJ7HbQHQ5HyKwSf5oavJ3pSxT+NMi/K5p9K+fUnT9yTKu3pEnvyxHsf2Ht/BI8E/9TKvM2pR0LonTA9LTI+NQps458ysSdfbL8A/HsT2pMkybCwUPMieNj/oU8NhZ/F5hN5OzHHRddxvJ+889e23WNF47mwgjwSqYnbNiKcfYg2GEe03jLJBdkcP0Z7tIAcuj2w8FYAweAOfoFdsMrfYOWNNnq227Q63NhvYQ8Ux97r0KAd5jqRsFxQLcshZbpXWuCplrk+sjLWD6PNYAR/rqmq4Boy2w9eqaB/BwKvgkW+I0M95tG2uH5juUatAr5Y7ucwX5S+oD0FFlsXFhaisLAwYr3hw4ejpqYGlZWVGDJkCABg3bp1UBQFJSUljo4ZDSml6GUG4uuvv8bbb7+NLl26GLbzJ5Nh52T6fD59hmh3pkgQRHpD4V9Tj3jYCLIPBEGISJbwrwMGDMDYsWMxffp0bNy4ER9++CHKysowadIkPYDEnj170L9/f2zcuFHfr6qqClu2bMH27dsBAP/3f/+HLVu2oLq62tHxk8ojUV9fr38gANi5cye2bNmCgoIC9OjRA5dccgk2b96M119/HX6/X9e0FhQUIDMz03Ayy8vL0draGnIyCYIg7OCRnCcQooR08YVsBEEQyYJTGxFP+7B8+XKUlZVh5MiRkGUZEydOxNKlS/Xtra2t2LZtGxobG/Wy8vJyg2zz7LPPBgA8/fTTESVVPEk1kfj4449x7rnn6v8zd/LkyZMxf/58vPrqqwCAwYMHG/Z75513MGLECACRT6ZT7Lqi2ksCEZXkQ/trljjxhbxrih2DzZ4jSUaYa9FuvHAmaRK5sP0th0O2+QWL6kQub7PrOpZ44SL5EjuW7prm3M/sWB7bcqpQ17W+wFHipADa+Qu6jK2/c9ETD/Mia9HCakOMchvSJifbw2F1XYnajHQdemxer3aRJUkYWz3SPkT8SEYbwXAqWbIrA3H1KSZ3TH1sAVtYzR9Tq8PtqupjkXVwDzsEcw8FF1ab5a2GMoE9YPUMdkGv38ody7gAm19s7dRWWEleRYE5dKmSQPKqCuVL9vBmZkS9L8MsX+L/t5Ix8ddtPK5Nu4uh2fVq975zKoGyg1MbEU/7UFBQYJkLp3fv3iHnYP78+Zg/f37Mx06qicSIESMsv2w7F0Kkk0kQBGEHDwCPw3HfYXAUwiFkIwiCSBac2oh0tQ9JNZEgCIJIFqJZTEtrJAiCII4MnNqIdLUPNJGIQDRSIitibSOS5EMk79DLtP95j7oeyYmLxMFcl6J8Esw1p/L9iFJBZBVVSRQHXBRLXOV0WmY3taENQexwM4bIGjb6zfeHubf5Y8qm+ub30WBwPzuMnmEVocluZCY3oxJFikDmFNejNtEaCcICSZLsR0eLIGOy+oFhN5eRVV9Enhpzl/hcQlDYWMG1waLdKKFlklZftYj0FwtWeSGMEZ1aDdsAwG+SQInG41ikTXpbfBQ/Zg/aQuuZIzQBwc9nN/qNLimz+YibXRt280ME6wfLRNdoiDwqwv1gx2MY6RyEyn0FxxFEgDL3zZVcQ0m0RiKR0ESCIAhCAK2RIAiCIMKRTGskEglNJAiCIATIkvM1EmnquSYIgiBMOLUR6WofaCLhACadsBtRxqpesiWuMrgometQ4A4VRekISmaCZbr0yW+sYzxm+ARwfAQMVRBBibmF+SRAVu5pXrYULfyxzP3RExBZJCwyvwfCnRd70TNE9SO1l0xYSZHsypTcljPx0BoJIlrsRGSyIxUxbIvhaaZwXzn8v0zmxMtb9ahygqSY7LPw0hXJZAMM/dGjxVknAdX7ZmEPjG2ETzqXCMR9DC0z241I9S2vE/3cBstE0fnMieiMklcIysJLoOxiR34nOg5/zZnvG1GUJ/6zR5vozg60RiJASiWkIwiCIAiCIAgiOaCJBEEQhACmf3X6ihfV1dUoLS1Fbm4u8vPzMW3aNNTX11vWv+GGG9CvXz9kZ2ejV69euPHGG1FbWxu3PhIEQRwpJJN9SCQkbbJAVVWhlMfKaep2JBo3cNoPcyI63h2nR+lQQ+U3Ire2xxM6Vw3WC5+QR+Ta9fNlmlSJj8ZkjoZhjM4R2b/JS5csXdLasfkkQx6WpI4rEyWuY2Uer2z4CwTPlWThYpYErmarJHR2sRudzM1r2g35UriEWG4kH/JEsUbCaX0nlJaWYt++fVizZg1aW1sxdepUzJgxI2xOhL1792Lv3r1YtGgRBg4ciO+++w7XXXcd9u7di5deeil+HT1CiVeCObvyETvt8jIQ1q7VvWJMXhn4y0fsYxGczNGb+PoiGyBCVbRxNYZEbQzRWK4nNhUkpDP2I7QsRJIqsEUebuzXpa7eDO0vZwMyMkPqyyb7YYggaLIZQPCcyqIygRzWKlqTHfmsYT9BPafXtFCOZON6TDac2oh42odEQhMJgiAIAckUtWnr1q1YvXo1Nm3ahKFDhwIAli1bhvHjx2PRokUoLi4O2efEE0/Eyy+/rP9/7LHH4t5778WVV16JtrY2eL00/BMEQUQLRW0KQJbEAkVRhTNnq+crbYKFaCLsLs52ip2nt3ZT0IvQn2JwT57gFZ2RwKMqtohMahPkLvAEvQR+rQ2/KMa29iTJI8wjYRFfPIYFd7KNRXKGxXIZoR4Jtt3qSRL/tI7V459smuvLEZ4y2YH//tmhJIEnzc3AAE49GeE8DWbCXcuxXOMMjyw5/uysfl1dnaHc5/PB5/NF3ZeKigrk5+frkwgAGDVqFGRZxoYNG3DRRRfZaqe2tha5ubk0iUgh9EWoEX6EuHHNM8xeaR7h0201vHfUroJa8mm5F7hrk9kDQ64IzQ54BHkkdK8Dbz+0+l5Lm2FvRS7zdERcPK3Zg6ANCPU+WNkPD3cOZE+o91rk8WfbZY9o8XRofTeDcLhx7cXLE6HnxYrDomunNiLZguy4Ba2RIAiCEBDLGomePXsiLy9Pfy1YsCCmvlRVVaFbt26GMq/Xi4KCAlRVVdlq48cff8Sf/vQnzJgxI6a+EARBELRGgkGPpQiCIATEskZi9+7dyM3N1cvDeSPmzJmDhQsXWra5detWZ50QUFdXh/PPPx8DBw7E/PnzY26PIAjiSIfWSASgiYQFil8Rutv8fnuL0+BUzuGC28uOi1H0mXgpSUgKesECOl7OJLFF2QLZDWtX5u4gr6rJmNqCx2T1dPmVym/L0uqH+iZVNbQNq3NgZyEdj8g9LJIYBGVJ4eN08+893tC2RAuqzQuwI+WYYN+ZSL4k8j/qHn2rc9ZO12XY4zt0eauKCsUfux9biuIJEvsucnNzDROJcMyePRtTpkyxrNO3b18UFRXhwIEDhvK2tjZUV1ejqKjIcv9Dhw5h7Nix6NSpE1auXImMjIyI/SKcw0snrBZeC+WyghwNwbbiuwhVdEyrxbB8Oh32kXWpq8guyLzcN/DXowTeKBmc3dHGd37sV9o8Wn+C0iB2Hpg9sJK3AsHF1VZyWKdEzPPgscp1ESp5ZefWyo7wC6uDtiLYJ0tbIbBFThdZ69dJnHUsscpaQ9uLpTfWOLURseSCSWZoIkEQBCEgljUSdiksLERhYWHEesOHD0dNTQ0qKysxZMgQAMC6deugKApKSkrC7ldXV4cxY8bA5/Ph1VdfRVZWlqP+EQRBEGJojUQAWiNBEAQhQAYgSw5fcerLgAEDMHbsWEyfPh0bN27Ehx9+iLKyMkyaNEmP2LRnzx70798fGzduBBCYRIwePRoNDQ148sknUVdXh6qqKlRVVcHvT47MvwRBEKmKYxuR6A7HCfJIWKAoqlBO4xS7MZZjCDLkiFhcgiL3NkR5DBTjLSNyVwpd6hFkV062xQuraBeibSLXp1Vcb8O+VscStMu+M97lrX/fFpIKK9rrugTcizzjStQmSYLHoSvaaX0nLF++HGVlZRg5ciRkWcbEiROxdOlSfXtrayu2bduGxsZGAMDmzZuxYcMGAMBxxx1naGvnzp3o3bt33Pp6pGMlpxDJniyvV4tttm2L46hpgjILaRWT3Uj8cTysLTWkXvA49qSpRgmrcZuwvqBdESJ7Y4dIchaRvEjfVzj2a391+2ptH6zsjF3bwhBFBWPnWIHg/LhwPepNuRHtKY7SpUg4tRHxtA+JhCYSBEEQApIpjwQAFBQUhE0+BwC9e/c2/OAaMWJESiV3IgiCSCUoj0SAdPW0EARBEARBEAQRR8gjYYHiV6FYRGhy0o6j+i64+5y6GHmsIgvoLljYddkKymy6bxlWC5Si3RYJqwRqTrdZRUWJFEHLXF+EUIbAlVk9lba6NhN9HcaCG/etRw68nO5DHBmoqhqdx0eJ7p4QHcuN6zwWQu5vXn7jNOKZw3vH7tjiZuI1u9iR3LohN7Os7zTancgWOZS1xnI9RhvRKFqvqxveWqc2Il3tA00kCIIgBAQWyDmVNsWpMwRBEERS4dRGpKt9SNP5EUEQRGzI2kI6J6901cASBEEQRpzaiHjah+rqapSWliI3Nxf5+fmYNm0a6uvrLevfcMMN6NevH7Kzs9GrVy/ceOONqK2tdXxs8khYoCiqwf1ox11pO5mKTbdatFGJrNy5osRxon2tEtZYJdMBgrKiTK0sk9vmNW0LvPcYyvjoBqzMy/XV3D5fJpI02ZE5iWRJfBl736JF8uK3tZm2AYBfDS1rafMbytq4NliZoQ3FlHyJu26sEvRZXbeG5IMW12EsEbHsyAnsDqp2pQl8PVdkWUm22JpILsz2wT7u2ZFY9+GJdJ+Z7QIQHPuZLClSAk9z0s1I47eP2QOZtweesPUzPaH12XtvjPYBsLYRbQJbodsMv2BMN4z9fkNZs8gGCGyFKJEsswHCbQLJa3Cb9fXjRoREpzKzeMrSEmEj4mkfSktLsW/fPqxZswatra2YOnUqZsyYETZAx969e7F3714sWrQIAwcOxHfffYfrrrsOe/fuxUsvveTo2DSRIAiCEEBrJAiCIIhwJMsaia1bt2L16tXYtGkThg4dCgBYtmwZxo8fj0WLFum5hnhOPPFEvPzyy/r/xx57LO69915ceeWVaGtrg9drf3pAEwkL1DYFCvdkwOnTWzuLZsWLbZ30MjLmRWyiJ0R8fG+ZLQZkT4M8gidKvMcg0+hNAIAOWll2plf769G3ZWcE3nfKCl5+2Xr9wN8sb7B+hnb8LO4u9Grvs/h+a33KEDx5svNgg/9q2NOfVsHT+ybmTeCeMjVp71u5xWZN2lOmwy3BFWvs/aGmtsD/raHbDre06WWNWlmL9gFauLbYd+EXPHkSXbeszOCtiPP1J1pAKfJwmRdOGp5E+QVlAmRuEavqRv4X8kgQNnD6pDbavAZ2bUy0iPIUiK5n/s5itkG3I9wY7RF4o9n4zjwNzD4AQbsgtiNBe5Cp76vZCu6YGdr7DO6zeE1lGXwftWp271v2/fBrilvZ2M97qE1lrQJbwdsF5mFgZY2ibQZbEbARvOeC7at7zA1jYKgX3eyJEHmqbefj0LbFsgBeOL5rH9nq+0mklyNZPBIVFRXIz8/XJxEAMGrUKMiyjA0bNuCiiy6y1U5tbS1yc3MdTSIAmkgQBEEIkaTAy+k+BEEQRPrj1EawunV1dYZyn88Hn88XdT+qqqrQrVs3Q5nX60VBQQGqqqpstfHjjz/iT3/6E2bMmOH4+OSIJwiCECBDiupFEARBpD/R2oeePXsiLy9Pfy1YsEDY/pw5cyBJkuXryy+/jPlz1NXV4fzzz8fAgQMxf/58x/uTR8ICRVUBv2BBK5OPiFzNKu8KREg9pwtf3VzgJOsL47iFaJqbWOaOwy+aBszuytCF1czVzEuV8jpkBsp8gbIcw7YMwzYA6KC5tXM0V3eHDDlkG/sLAJke4wI6gJM0aUW8hMaONtEvWIhmcGGbFtW1cBsbNbdzI+d+bmwNNFjPS5W07YeaA2W1ja36tnpN7nSoOfg5PY0tgTJtm8E17Q9dgM3kS35+cR+TNPmNC7cB7lpW7bmw7WJ2Hzte4M99X1ZSKL4tv7aIVZIl28EMrCCPBGGFWfoqwu6Ybi6za1si7WMHkRxFNkmWgKD81cM/f9SGKnYfegQyJqOEVbMH2tjfSWAXcgR2IZsb+4P2QDb8z78X2QXWNcNCbJbTiDsFVvcwG1b574LZBd5WMNvAbIXRLjBboYSUHRbYkdrDARvB7AMQtAf1zcEyn7fNsO0w1+9gf0PHeWYrDHJYQZ4j0e8Zp4RKWLn3FuM8f7lL5rFfkLvCSkKkS7lckL9G65HYvXs3cnNz9fJw3ojZs2djypQplm327dsXRUVFOHDggKG8ra0N1dXVKCoqstz/0KFDGDt2LDp16oSVK1ciIyMj8gcxQRMJgiAIAYEY4c73IQiCINIfpzaC1c3NzTVMJMJRWFiIwsLCiPWGDx+OmpoaVFZWYsiQIQCAdevWQVEUlJSUhN2vrq4OY8aMgc/nw6uvvoqsrCx7H8RETNKm1tZW7N69G9u2bUN1dXUsTQEA1q9fjwsuuADFxcWQJAmrVq0ybFdVFXfeeSd69OiB7OxsjBo1Cl9//bWhjtNYugRBEIT7uG0fALIRBEEQZgYMGICxY8di+vTp2LhxIz788EOUlZVh0qRJesSmPXv2oH///ti4cSOAwCRi9OjRaGhowJNPPom6ujpUVVWhqqoKfr+zlOaOPRKHDh3C888/jxdeeAEbN25ES0sLVFWFJEk4+uijMXr0aMyYMQOnnnqq06bR0NCAQYMG4ZprrsHFF18csv2+++7D0qVL8eyzz6JPnz644447MGbMGHzxxRf6TMppLF0rVFWNEKcZodsEMiaRbEQkjxLFfza3b+ifEvplS7InpMwsA/FwOh+/X8vRwLmHWT9Yff7YehvcNJxF1sjJCrrE8rMD7wtyAhKnztnBbblavTzOhZ2nubg7sShPGcH2szWftI+LHsWiNXmUoDQI/oAMSGJ/21qC21TdJ40QmL+R87Oq3kzD38DBAv32y4GyJs412uwP9PswH0WjNXCsQ5y0qVZzO9dmBv525M77wczAZ/HUc3Idczxyrv02wffDrrU2zjXubzOW8S5s5tYWXecMp9eZsV7kWPL8e5H8ThS/Xr9GldB2+e2xQNIm58TTPgDJZSMUVYUU5jqzlLBayJbsyGH5MitJYiSJolkiIpIfejNDnzXy9cz3mV27wGRMBR2D4yuzB7y0iZXl8fIoTdLEojX5vJxd0GyEj4/m19Yc+EzaX3B2QVK0sZkb4ySBbkzVE2UEPpMqcz+ddFsRlKco2nsWVanJH6zfrI3HTX7eVgTe6/aBkyyxc8CXVTcEPoOvMfg5a0xR/Ax5jlpDx3D9GhLKYcNH/7MbyclSwioY50X7CaWuinEfUe4SP0J/s5hJhPw1nvZh+fLlKCsrw8iRIyHLMiZOnIilS5fq21tbW7Ft2zY0NjYCADZv3owNGzYAAI477jhDWzt37kTv3r1tH9vRRGLx4sW49957ceyxx+KCCy7AH/7wBxQXFyM7OxvV1dX47LPP8P7772P06NEoKSnBsmXLcPzxx9tuf9y4cRg3bpxwm6qqWLJkCW6//XZceOGFAIDnnnsO3bt3x6pVqzBp0qSoYukSBEGIiGbx9JG82Dre9gEgG0EQRPLg1EbE0z4UFBRYPgzp3bu3YeI/YsQIVx64AQ4nEps2bcL69etxwgknCLcPGzYM11xzDcrLy/H000/j/fffd2wowrFz505UVVVh1KhRelleXh5KSkpQUVGBSZMmRR1Lt7m5Gc3Nzfr/5tBcBEEcgUThkTiC5xEJtQ9A/GwE2QeCIIQ4tRFpah8cTST+/ve/26rn8/lw3XXXRdWhcLBYuN27dzeUd+/eXd8WbSzdBQsW4K677gopVxXVKBvxG+VIkWRMVgnA/HqK+6DLkb03lPlDy8z1eUSSE1YmZwRcsH5OruPRpE1GF2XgsvB4tD4KQh7xLmwWtcngktZc10zS1KVD8JgFTPbUIejyztHc1R21vzlcAiJPa8AVJzcFdcxSS0OgrLlBL1NbAnEq1MMN2v9NwW3Mna0IIjXIgWNK3HmRMwMyCCm7Y/CYmdmB/vgCZRmZwW0dfTkAAH/HDnpZvZYgqAMn0+rIkig1hiZOYvAu6WY9UVHAre0R1DfIJvRkRFxUEc0lztzbfNQmRTsvSmvQ3W++rpxeZwAgeTyGMsM27T0f4YVJn6wSJKpCuVNINyDDnchTtNjaGYm0D0D8bERY+2CSvlpJUu1G87Mjhw3fbvhogiLMEkNDlDuv4MbShkdeKuLVwjaxfY3J5wRSJW3M75oTkP7wkldmF7pydqGjKUJToCxwrCxZS4LWfEjfJh1mdoGzFa0Bu6A0BCaAalOjvo3ZBbWVk8gKxju9Lc2GSpnBRalSVmDMlzsGF8+qGQFb4dXsQgdf0FYo2Z0AAE1K8Lw0aDLYjqbohQBwMCPQNy9nh0VRifRogtr4zie1Y9+PIcIf+y2iSZraWjjZrMBWiKTXdq41kfTIPN4bthkSyUaWuvKficmeDDJXxSjVNn+eWIh2sXW6QXkkAMydOxe1tbX6a/fu3YnuEkEQCUaK8kWkF2QfCIIQQfYhQNThX2fNmiUslyQJWVlZOO6443DhhReioKAg6s7xsFi4+/fvR48ePfTy/fv3Y/DgwXqdaGLpxppVkCCI9EOWJMt45OH2IdrfPgDxsxFkHwiCEOHURqSrfYh6IvHJJ59g8+bN8Pv96NevHwDgq6++gsfjQf/+/fHoo49i9uzZ+OCDDzBw4MCYO9qnTx8UFRVh7dq1ulGoq6vDhg0b8Nvf/hZA9LF0w6EogOQXuJNNiVwMZQJXoEhKwuQiIkkJLyXRpScxSJs8mmRHatEkJZpEBwCUDCbn4Vy1enIhLXKHwAVvlDZp7mdOjpSnualZhKYCzoXdVZM55fmCDrFOPk3yowS0yHJd0NjLh2sDb+p/0sv8tYH3bbXBMqUh4OJu00I5+puC59avua4VLoKS3r7mRvZwiVg8WYE+enNygvU6BlzScl6XQB3tLwDIOYH3cnaeXpbXoTMAwJcd/BGSIQe+M9GiK5bYqJU73ywJETvHHoHLlnc1625qLkoHe9/aFJB68decn8nBFD7KExftCvavM5krk9k1J5A2MYmd0hZan0kqeJc5K5NUTnqhOVPDpRQSKdicIiGKqE2xHzYtaG/7ALS/jVAVNUT+qm+zEYVJlIzUyo4Y7vO2Nq1MII0VhG5k24SSRE2GKHPSTlUNn5SKj/pn/uwiyavBLmiyJRaFiZcxMbvQiYsUlavZhY5cZCb58EHtb63hLwD4DwbshsEu1NcEtmn2obUuKG1qawrYG6U1aBf8AhshaZ/Zy+xCFjem5wakTR7NPgCAnJMf+KvZCG/noJxO0WxEB85WZGUHbEUWs7mcViTDEzqqsOullRvoDmtSpvpmLaKhQEdjkGqbZLAim9HW0srV1367+EOvORH62O8JlbWK7II+zgskdvzYb5a6GqM8af3i5U5MRmXqnyuJV+EwalPMR0xOopY2XXjhhRg1ahT27t2LyspKVFZW4vvvv8cvfvELXHHFFdizZw/OPvtszJw503ab9fX12LJlC7Zs2QIgsHhuy5Yt2LVrFyRJws0334x77rkHr776Kv7v//4PV199NYqLizFhwgQA9mLpEgRB2EGO8kXExz4AZCMIgkgeyD4EiNojcf/992PNmjWG7Hx5eXmYP38+Ro8ejZtuugl33nknRo8ebbvNjz/+GOeee67+P3OPT548Gc888wx+//vfo6GhATNmzEBNTQ3OPPNMrF692pCNL1IsXYIgCDtIkmR4OmZ3HyI+9gEgG0EQRPLg1Eakq32IeiJRW1uLAwcOhLilf/jhBz08Xn5+PlpaWkS7C4kU11aSJNx99924++67w9aJFEvXCeGicoiSeDFXtGJI6hJwkSqcVIS5BXXJErfNb5I9AUEZikj2ZAXvMvSbojbxbXiU7JD6zHWtJ6URfCciF3Y258LuoEWfYMl0+OgcnTRJE5MzAUB2mxZtoyHgkpbrf9S3tf2wJ9Cfn4JRVVp/Cmw//MNBvaz5YEDS1HIo0FZrQzBqU5smEVL8oZ9F1lzHXi7pUUbHwA+PzE7BaBu+zgGZU3ZhwA2d0aWrvs3TJaCv9hYepZexxHjZHYMSKGjRO9hV4uckBCzB3WHOxczOKTvHQne1yl+HoYmEmHva3xyQMTE5U2CbFtEkgsTOCiv5UjBCEyeb0NqVBWWqwiROoUMTH0nGr51BD/eMh31iSU5MRA62DxEf+wAkl41QFEBSVGF/zJImkfzQvm2JbEcC+/iFf8Nhvm+N9yOTv4ZKXkWSXobBLnjC2wUWlSjPx0Xu0yRNuZxdyGFS0ENBqZLcEMiSrtYEZEytP+3TtzEbcfiHYCb1pp8C11tzTUDa1HIoKG1q1RK7tR0OypksbUR2oN8ZXCK9zE4BaZMvPyhtyuoSmEBnFwbWACldgv33dAms3/HkB+VOLHlqDrMV3DlgvWn1h9qKRpGt8IS3FVYyWF7axGSwzGYAobJs83szVhH7dOkrJ3tiYz9fn91bvJxOlzRpcieRDTBIh2UWzczYPzfkrxS1KUBM0qZrrrkGK1euxPfff4/vv/8eK1euxLRp03Q38saNG/Gzn/3Mrb4SBEG0GyxrqdMXQfaBIIj0h+xDgKg9En/9618xc+ZMTJo0CW3aExOv14vJkydj8eLFAID+/fvj//2//+dOTxOAqgCSh/8/8oI49vQIEMfoN3si+IWtZu8DX09VwuedECF8CiB4oiCq36Y9DfZqT48iLUoSPXnysYV2WhvZ3NNklisiSw1+drkx4FmQtEXWrVW79G3+/YH3DXuDC7AbqgJPnA4fCHokGvYHPBHNdS3a32ASqVbNI6EKnjZJ2tOmDM4j4cv1aX+DT546dg94E7K1J1wdi4Lxyzuy3BVcPHJvUeA7k6XgZ8/qFHiq1KYt7G7m8j2wc+UzxGI3PmUSIcojwT9dMnsiWrl8HGyb0hbst50nmqLrS+KSOpgXdxq9YKHt809DQ48VOFf8/ca8E6rELapjccWV4BNhIjEcEfZBVYX5IYDYA3MoArsg8j4Y6gnK9PqCBdjmRdaeCHbB7KnmP4vIK8OeiPN2IUtro5NW1pFbWJ2t2wwuX8KhgOeZeSEAQK0OeCDaNLvQsj/okWioCjz5b6wKegAaDwTG68YfA2MdbxfY+1g8EtmdA16bDl1r9LIO3QIeCeb96NgYfLKfqeU38vLjn2YjVDnQfoecoLe7RetPU0awX+z81TWF2gp23r18YA7Bgn3da8ZsBrewWuS99gtUFKLrimHOJQQEPdOixf+sLTmDtwWhdoHlimA2wM+F3BAF4dC9E5pnIl3lRYkk6olETk4OnnjiCTz44IP45ptvAAB9+/ZFDhflhkXOIAiCSDWiWRyXrovpnEL2gSCIdMepjUhX+xDT53r//fdx3XXX4brrrkOXLl2Qk5ODv/3tb/jggw/c6h9BEERCYAvpnL6IAGQfCIJIZ8g+BIjaI/Hyyy/jqquuQmlpKTZv3ozm5oCLsLa2Fn/+85/x5ptvutbJRCKK9S2CuaQN0iN/+LwQfkvZU2jsZua2dhrDGQi6GL2CbW1ywHXJS0uYW94c25yHX8jF3mdykhyfxyhtyuRiYfu091JjUBrEYoG3aXHA/dwCOiZpOrRrv152aE9A0lS/NyjTqT8QkBc1au7q2lYuxrbmHm4RfJZM5oLn+pintdUhNxgvnEmmchpYTorg98To6A0uiJN8AZe315C3I/De1yGwqI4/L7q0iZMxmRdZR1pAx74zY7xwbUGhYGE1u9baOBe26Lo1I7q++DwSTIone8PHoxe1px9b5vNaaNdvRmgMfP6elNhndmlFGy22jp4jxT4A9nJFiBZWq4YgCUZJk5UcNlA/vMxEJE20krNa3e+8zMSvLfa1solegV3gxywm22R/RXZBbgkuhpZaAuMwGoISVpYrovXHgD1o4GRM9ZqNqN9XFyzTJK8NBwLt1tcHz1mtJgE9zMmZLG1EXeBvXkYwkEfOwcB7XjLFpFKivEUsJ4WUGVzI7tVshZwRsDdqZgd9m8+jBf7whD+PgLWNYCiCa47J7gwyOZPNAKwldiLEi/g1+ZL212MhaTUSrKfLWkX5W6TQspAF2HJ4OZ5TaLF1gKg9Evfccw/Ky8vxxBNPIINL5HXGGWdg8+bNrnSOIAgikUgOX0QAsg8EQRwJkH2IwSOxbds2nH322SHleXl5qKmpiaVPBEEQCYc8EtFD9oEgiHSHPBIBop5IFBUVYfv27ejdu7eh/IMPPkDfvn1j7VdSYxWpQuRONkibTGVGd2JrSJnfIo+EbemJEnivCKLrMNe1yK2pKvZkKcyd7eH0fxma+zaDRbvg7iCv5myU2oKuYFWLJKQcqgEAtHI/Nlgc8MYDtXoZi9DE5EwA8JPmYq5uCZwXXtrUoLlv/aLoIlq/O3KSovq2wPsCiyhPHi66SEbHgGQpMzeYd0LuFPgMal4wj4TUIfCZ2Tngzws7VxlcP1jfvDZHIHZtir9P0TUXKqVwHLVJu75UOVR6JNxXk0IpfNQSGzHwjRFytAgccRyZKSFd9BwJ9sEqOphqkofyiHJLWOWAsCzjpK5maWzkPBLhQ5upmuTEOC50EPQ7vDyEjVl8xDndLmg2iLcZTLojNQVlQ1JrYLxUGoIyWKW+BkAwLwSzDwDQ+JMmb/0xKMlhkqZqTXrE7AMQtBENXFQtK2lTlva3notcVci+T64NNi7JWiQlb8dgH1mOIm9uTfAzNXQO1M8J9FFqC56DjKyAbcngbYXM7Csng9XeO7UV+rUqktNFkF5b24jQ64vZCnH90Ah/4ms/8PkUTcbES7nY/cYfOplsRLrah6ilTdOnT8dNN92EDRs2QJIk7N27F8uXL8ctt9yC3/72t272kSAIot1hT5ucvgiyDwRBpD9kHwJE7ZGYM2cOFEXByJEj0djYiLPPPhs+nw+33HILbrjhBjf7SBAE0e5Eo2tNUzvhGLIPBEGkO05tRLrah6gnEpIk4Y9//CNuvfVWbN++HfX19Rg4cKAhTviRhFCKYSXTECRy0aUnFq49u9ImEUwmZYiiYJFQRoRi4cqWObcdCzDBXNd8PjVJCUSykPyc25xJuLRkPW2HuWRyDVoitYagS7VFe998KNhGvRaFgrmr69r8IdsESiW9ryLZUyb3CCFHO5YvtzWkP6yPfL9Z4iGVcw+zz8zOgUcO3oL6ueJGG9nCFWr1XYgIRmcJ+n3N0jn+vdPry9g3LeGQ3kZQJqdfc9zoY3mv6GXtG4VbliTL8x9uH+LIsg8iqZIZgxzIRrQY0f1oZRdEZXbvX20oMsgVzRLcQFl4uZZd2P3BZJyisU7yByMdsfFS5SMFNQfGVX+TFgGxKTRaUktDsH5LY2CcNtsHIGgjIkVt0m2EVyDJYhGdmoL9ztLes/7wfWT95pOXss8XtI3BtkR2gdlTp+ON6BoNXr/hJdiAWDJn5xpTldBx264NENULbT80KalwO5ewlP8bC05tRLrah6gnEozMzEwMHDjQjb4QBEEkDZIUeDndhwhC9oEgiHTFqY1IV/vgaCIxa9Ys23UXL17suDMEQRBEakL2gSAI4sjD0UTik08+Mfy/efNmtLW1oV+/fgCAr776Ch6PB0OGDHGvhwRBEAlAUlVIDmUcTuunE2QfYsep1NQN+Ch+RyoiWWssqCINrZkYpKOEc5iES3ZxxbNTG5Gu9sHRROKdd97R3y9evBidOnXCs88+i86dA6HLDh48iKlTp+Kss85yt5cEQRDtjVV8T6t9jlDIPhAEcUTh1EbE0T5UV1fjhhtuwGuvvQZZljFx4kQ89NBDluvSrr32Wrz99tvYu3cvcnJycPrpp2PhwoXo37+/o2NHvUbigQcewFtvvaUbCQDo3Lkz7rnnHowePRqzZ8+OtumURBLE0Jf0vA2CbVosfbSF1pe5+nZj81v1h733aDkj+CdQej9sYjWb5xfhsQcy7EkPF2IbakbgslM9wUXfLJ+FlKnF2M726dtYjoaMjsEFu5nae1+nYBs52mI68WI5ydAf0TY+j0SeliMixxssY8dix+b7w/rI95t9Fikj2EdF+8yqtsjaH1xvFzxXXBetFjY6fbLCvmv++2fXhNOF1aLriy+T7Vz7gvas7qP2RlIVSA4Hfqf105UjyT6w+5D/5s2LWvlFoJIWB1+FKEeNdh8oofeXyC6I70N716D5not0/7LPGcuCUTaetfrDj3WqJ/izhI2TEhcgRPIFxlVPVqb2NzjmerMD9b1ZwTYyfIHPwOwDv7Cajbn84mk7eSR4u5Dj1bbxx9RsA+sP30fWb/Y5+M/HPi9/DhSBXWD21OnCd9FiZPa9Rvz+vYHPpHC/WayPZXGN2rQBdn6fRMoToef00D8nDH9jwamNiKd9KC0txb59+7BmzRq0trZi6tSpmDFjBlasWBF2nyFDhqC0tBS9evVCdXU15s+fj9GjR2Pnzp3wOPhtGPWprKurww8//BBS/sMPP+DQoUOCPQiCIFII9rTJ6StOVFdXo7S0FLm5ucjPz8e0adNQX19v76OoKsaNGwdJkrBq1aq49ZFB9oEgiLQnSezD1q1bsXr1avy///f/UFJSgjPPPBPLli3DCy+8gL1794bdb8aMGTj77LPRu3dvnHLKKbjnnnuwe/dufPvtt46OH/VE4qKLLsLUqVPxyiuv4Pvvv8f333+Pl19+GdOmTcPFF18cbbMEQRDJgapG94oTpaWl+Pzzz7FmzRq8/vrrWL9+PWbMmGFr3yVLlrRrVlWyDwRBpD1JYh8qKiqQn5+PoUOH6mWjRo2CLMvYsGGDrTYaGhrw9NNPo0+fPujZs6ej40ctbSovL8ctt9yCX//612jV4iF7vV5MmzYN999/f7TNpgTMVcZc1MZt9iQfzDXN53SwQo/r7LcXw1nkHmTH4o8pCfrB3ttNLd+mMNdr8CZp1XyvzIXdxrmL28COycmAsgI6PrlTPgAgIz9f35bVpSHQlparAQD8Wixw0aK27LpAzO4cb3D2z9zZVm7rbC5QN5M2dcgN9jGnW0cAQMfugb8duuVxfcwN6Tf7LOyzAYCqfeY2bQ7fxn2H7Fy1cjowdk7bbOaM0N24wu8z9LtmOSVkQexux9eXwQ3OrrWMkGOKpBpWMgu9DvdD2O61GRNJtEaCPXHatGmTbiyWLVuG8ePHY9GiRSguLg6775YtW/DAAw/g448/Ro8ePeLSPzNHgn2Q5MBL9JXr96G2zc/JmJjEQlX56zn89W9XIiLDeJ9HivdvHg/kjNAxgy/T7Z5s7z5kY1YLN57pdkFheX3UkPoZ3qDkR80MSEbljp2Cx+wQGGt9+YGylrpGfVsHzUYoLfxnD7Qr/RjYllkfzDHBZEmR80hIhvq8tCm3Q2CMY3YBADp07RD426Wj1tegDWD9Zp+D/3xqRsA+qNw5aPEL7KvC7KvC1Qu8d2or9GuV//7bQr9/EaIcEcH2Q+2N+beIR2AXIl/7RqkSj56LpL1SSEe5RqKurs5Q7PP54PP5RHvYoqqqCt26dTOUeb1eFBQUoKqqynLfRx99FL///e/R0NCAfv36Yc2aNcjMtPe7lBG1R6JDhw549NFH8dNPP+GTTz7BJ598gurqajz66KPo2LFj5AYIgiCSmEBEDsXhK2DE6+rqDK/m5uYIR7Mm2idOjY2N+PWvf41HHnkERUVFMfXBCWQfCIJId5zbiIB96NmzJ/Ly8vTXggULhO3PmTMHkiRZvr788suYPkNpaSk++eQTvPfee/jZz36Gyy67DE1NTY7aiDkhXceOHfHzn/881mYIgiCSixg8EmbX8Lx58zB//vyouxLtE6eZM2fi9NNPx4UXXhj1sWOB7ANBEGlLlB6J3bt3Izc36JEK542YPXs2pkyZYtlk3759UVRUhAMHDhjK29raUF1dHfEBEpvMHH/88TjttNPQuXNnrFy5EldccYWNDxTA0URi165d6NWrl+36e/bswVFHHeXkEEkH7yKTNSmTXxBtw6O5OlUlVPLBR+CwI2UyuvFk7dialMdmenqRe1CXmXDuSi9zHfNSGFN0DpGb0M+5T9n7lrbgDdWsuVkbWwN9bPF7uG2aCzsr6K5WWgNuZ0/nwI8ltTk4I+7YxoU2Yn3MDHyWTC5yki838Bly6gKu67y64FPg1qZAqAmRFErSJE0ZXNQNnyZpYm0CQdd1drdAJJqORQXBbcWBfnu6BKUj7LMo2UEJlKp9ZnYOWrj+sHPVzLurtXPKzrFf4LY2XKNSqNuXfbfsuxZdQ/xAwMqcXl98NKgQORV3zXksJHbByFIern54x6kcT7lTDBMJu4Zizpw5WLhwoWWTW7duddYHjVdffRXr1q0Lye8QL45E+wAEo7/ICF5/5qtGUkOvTV4aG7zGw9sH0T2ncGWK6b5VBXJFURQckcxEJIP1aFHtROMNo01gF/gxq1V738wi7HHjX5P2PksbpwBAzQyMuVLHYPQvT+cG7WCBcT7HH3qPypnBEY1FTmJjetbBoG3Jawi00XY4GIrI3xLanidTNrSV0TF4XrI7B2RIWZ2DcqSO3QLjfIeiLoE+HlWob8vo2j3QVhfuB572+djnVTI76JuamwLfXVNb8Fyx89ca4XwzmCyU/77YNce+V5Ec1st9F36BnM6c98QqGlPgmMbrShLJYQUSO94GSKbfJSKpneEaNUVrcpUoJxK5ubkG+xCOwsJCFBYWRqw3fPhw1NTUoLKyUs/Ts27dOiiKgpKSEvvdU1WoqurYg+7o1J566qm49tprsWnTprB1amtr8cQTT+DEE0/Eyy+/7KgzBEEQSUMMUZuYoWAvqydOW7dutXxF+8Rp3bp12LFjB/Lz8+H1euH1Bn4ETZw4ESNGjHDvPGmQfSAI4ogiSaI2DRgwAGPHjsX06dOxceNGfPjhhygrK8OkSZP09XN79uxB//79sXHjRgDAN998gwULFqCyshK7du3CRx99hEsvvRTZ2dkYP368o+M78kh88cUXuPfee/GLX/wCWVlZGDJkCIqLi5GVlYWDBw/iiy++wOeff45TTjkF9913n+POEARBJA2qAijxXWwdzydOc+bMwW9+8xtD2UknnYQHH3wQF1xwgaN+2oHsA0EQRxRObUQcw4MvX74cZWVlGDlypJ6QbunSpfr21tZWbNu2DY2NgeAEWVlZeP/997FkyRIcPHgQ3bt3x9lnn42PPvooREYbCUcTiS5dumDx4sW499578cYbb+CDDz7Ad999h8OHD6Nr164oLS3FmDFjcOKJJzrqRLJidoXpbjPNTc272/yaq9HjtT6lVtE5/IJoG+YIHHYThwmlTRmh7kqP9t7jC5Z5M5gUKtSVLYJFizjMRcpgrlcm1znMyZ4aWgPteX2ce7hDwLUrazdaBp80LyMgX8rJDi7SZJEvDncJugc7FgVi6rccYlGegi7sNk3apAikTbImbTIkMeoYcFNnduKO2TkQeSO7MNDXjC5d9W0ezU3tLQxKNZScwHalQ9At3yQFPnNDS+h50aVNXBk7py0C9z3D4MbVvjP2HQKA3xcqaQruq0kkWoORTKK91gxu6gyj6zqSbCI0mkfwu2CubIN7W+DCDm6Lkxs7gfBPnMrLy9Ha2ip84jRy5Eg899xzGDZsGIqKioTeil69eqFPnz6u9/GIsw/aYkdVW0DJX3NM5sTuWg/n/PeD2YpgmTmBnSwHPVjMLihtwXtUeM9ZSJuE/Te1YZAxaWOGNzMoHWVji8crkJIIQgsziQ1vF9gYx/42cDKiTCYx5e7pHDZ2cj/A2FnTk9Rx/c7vEOg3HyUpqyAQIadjTSB/ScuhYJSnVoG0ycpGyJmBc2WQ1GrHYjYJCEbxyy4MyF/lzsEfZsxGSPnBMqVjoB6zFY2tnA1gifS4skMtxvMIBM8zO++i6E1GGZD22ZjN4L5rVcmGGf23iCHqX2T5q1hmrdkHT6i0SSRr9XjCj/2ibbLgc5qv0fYMh90eFBQUWCaf6927tz5WAUBxcTHefPNNV44d1WLr7OxsXHLJJbjkkktc6QRBEESykWyZrZ0+cUoUZB8IgjgSSKbM1okk5qhNBEEQaUkS5ZEAnD9xEhFpO0EQBGGTKBdbpxspNZHw+/2YP38+nn/+eVRVVaG4uBhTpkzB7bffrrupVFXFvHnz8MQTT6CmpgZnnHEGHnvsMRx//PGOjydJksEVaHZT+7nYHKLIMpIccBX6+cgamntaFJ2GufZ4d6HiDdRXBC5EK6kKj8fkMvRw0qag3Cm8C9scmQMwRoZgkYVELuza5oDLOIs7Pyy5j+GM+QISoqxOgUtS9XBudi2ShSevS7Csy08AgMzuP+llSkPAdd1WH5A4+ZuCUgC/lhRLaQm6sPXPq0X48GQEz4EnSzsvOUEXOUsaJGv94PuDnMB7PxehibmpmziZwqFmv/Y3cM4OHg5GpGLnSuSuNkdvMvTfEImDJaQLnl323TJ3tcjVrGYGj+nnJBSB/exdZ6KEdHZkT3x9dh9Jgugi/L0ojCDDySxccVtHk4mUfqgnlPa0EbIcuOaEEmk5cB2YJU5A0H6oUvBaUWQmj9IiA3LyRmZHVE7u528LjBV8hBtVkLTUvE2Y6NETKm1iYwYvkWT3nEhKoveLtwsCyavZLvi4cSpDkw8ZWvQFjt+xU/fgZ2HSSM2OZWqJPwHAfzCw3ojZBwDoUF8T2KbZh1YugV1bUyA6jdLKR20KtRGS9pm9zC5kBcf0jNxAhCUPlzRPzgn0SbcVnLSJRfEz2IrsgK1o0CIz1TUHz1m9Jv862NTKlVnYCn94WyEaQ9l3bJTXZWn1Q3+7OE2Ky8uXrKTddsd+czTJSBGaJEEkQwBQ3ZC/OrURaWofUkpJvHDhQjz22GN4+OGHsXXrVixcuBD33Xcfli1bpte57777sHTpUpSXl2PDhg3o2LEjxowZ4zjBBkEQRzgxRG0iEgPZCIIg2g2yDwBSzCPx0Ucf4cILL8T5558PIODK//vf/66Hs1JVFUuWLMHtt9+uJ2B67rnn0L17d6xatQqTJk1ydDxZDuYY4BEtoGNPlwweDO2pEj/DVr2BmT574iQLFi6J4n+LZv52nxSbF1sbFtUJFuey96KnvvoTM4NHQlv4xT15qtWetLOFcxmCRbEKgh4AFg+7I1tYncvlY9Ce3Mgdg3kb5M6BBabe5ga9TG0J5KLIPNyg/R/8YaCyp+yix4fawm6JX/ybqT2R4RZ4S9oTMMXHYn0Htym+gOfCnxGM/12vnY+G5uATrnptwVx1Y+D8VHMeiTrtiVMtV9aoeySMC+kA8RMZ81MmgH/SpF17/MJn7ZrgF1t7TNeV0+sMCPW4ibwgotjgeg4Tbpson4loUZ2+IFKWXHnaxLKWOt2HSBztaSMkOeCx9mjXoPGJruaJ0O1CcIuq5Y9Q+HtZey+yI6xdvn1Zu895qRrbrgieRIuQTeOH6EmwwS5khvcCMkSeaoNdaGR2QctdwB2T7aqoQbvAHDNNGcET2DEzHwCQlaXZhQ6H9G1STsAj4e1WHyzTchSpTQG74DvM24yAjVBbuVxFoqfsbBzT7BOzD/x7uWMw8IeawWxFwC60+XhbEfBcNHF5RBqaWHCSwF/eI8E8EbytqNWCh7DzCfC2wsJ7LQjM4dE8GHwOLP2z8b9dNC8V7y2zgywYt0VeAqGHwcbYb8f7YG5D9H80OLUR6WofHJnbQ4cOYfbs2RgwYAAKCwtx3HHHYfz48bj33ntjTtNth9NPPx1r167FV199BQD49NNP8cEHH2DcuHEAgJ07d6KqqgqjRo3S98nLy0NJSQkqKiri3j+CINII8kg4ItH2ASAbQRBEO0L2AYBDj8TVV1+NyspKTJ8+Hd27d8fhw4dx22234ZtvvsGdd96JX/7yl3jsscf0cIRuM2fOHNTV1aF///7weDzw+/249957UVpaCgCoqqoCAHTv3t2wX/fu3fVtIpqbmw2Z/Orq6uLQe4IgUookW2yd7CTaPgDxsRFkHwiCEEKLrQE4nEi89dZb+OCDD3DyySfrZbfffjvefPNNeDwe3HvvvTj11FPxwQcfxCVO+T//+U8sX74cK1aswAknnIAtW7bg5ptvRnFxMSZPnhx1uwsWLMBdd90VUi7JUhgXWeCvyrkmmTtZ4t3PmptNEbifmQRF4dyJzE1tjinOt89jfxFs+LjLorwD5gW7IhegyIVdz0l4fI2a21SwL5MxNXEu0jwth0MnbeFzPRczO9sbWNjmywq6k7NyAovXPArnkvYH3kt+bUE7H3ed3cAi1yJz33I+UoUtfOcWfcPDFs9nhPS/WYs9frgh2J/DrYGyQ9ziPd0lrZ2rOm4BHVt4zbur2Tm1cleL8kh4DHknvIZ6Hk9wm1+rr2YGFw+arzWn15mob7yL3Hw98u/typhEscH5dt1wW9NEwhmJtg9AfGxEWPtgCsYhkiOJZE9M7iRzstng2K/VUUJtBo8uYxLYFqv9DP033Ye8zEgfK/ggGYLF1ub+txhy4ATGrno+8IPpvuT7b849BAB5vsDYlcfl+DmktZet/fV5ufwNOQF5kS+fs3FtgUmgpNkH+Dm7wIKf8HZBdA8HB5xAFV6SrNkIvycoyVI0m8U+UxOXm6L5sGYr2oKfk+XTYIuoa5tDbUY9Z0eqtfwXIlvBzjv/XYiitbHvW/8+OVMnshXsu/JmWF+b5jZEZaIALk4XT5vrRDpmSLkrATloIgE4lDZ17949bIzyY445Bo8//jh++9vf4qabbnKlc2ZuvfVWzJkzB5MmTcJJJ52Eq666CjNnzsSCBQsAQE++tH//fsN++/fvFyZmYsydOxe1tbX6a/fu3XHpP0EQqQOLEe70daSSaPsAxMdGkH0gCEIE2YcAjiYSZWVluOaaa/Dpp5+GrXPllVdi3bp1MXdMRGNjI2TZ2GWPxwNFW0Dbp08fFBUVYe3atfr2uro6bNiwAcOHDw/brs/nQ25uruFFEMQRjqJE9zpCSbR9AOJjI8g+EAQhhOwDAIfSplmzZmHv3r045ZRT8Itf/AITJkyAoigGF9ELL7yArl27ut5RALjgggtw7733olevXjjhhBPwySefYPHixbjmmmsABFxVN998M+655x4cf/zx6NOnD+644w4UFxdjwoQJjo9ndl2b3dQKFwecuamNUTQCf63c1AaXt8D9aO2ezrDYFsRKNsJc17ybXS8TREBg/eElNixahEcOulnZuWL1+FjiDZrrur4lePkdbApIZXI0aVMHLkpHB0121YGTX2Vq/eVd5RmylotA0vIUePnvDhHh1UDse/RzyqnW5kBZmxJwK7dw7mrmjufd8iwCB++SZtsPNYdG3ajXXNiH+ChPmvSJnWO/4FoyROLQvjNeqiZJiqGen3NXe21IJOxeZzxmd7JINiGqb8eVbawnbssVtzXhiETbB6B9bYQsSUKJBgDAY5S1GuQa2l9VZBe021YoZRXYFh670ZrMiCSJfAQ0vUwgdTXfZ5HsAtveLMg9lKPJl+pbguPNQW0cy+bGs6A9kA3/A8F8RZncgM8iRHm1fD4eOSiR9WQw2xj8DKKvlJ169vH83Hfh1ySsbcFlNGjVbESbtoPRLjBboYSUHWb2oYW3AW2GvwBwiJVxtoJJmkS2IvjZBJJRUQ4s7beNIoq2aCG1iyQpNV9rdsd54z7hx359P4vxn+2n2vlRQNjCcfjXRYsW4dJLL8WiRYswe/ZsHD58GIMGDULXrl1RW1uLpqYmPPPMM3HoKrBs2TLccccd+N3vfocDBw6guLgY1157Le688069zu9//3s0NDRgxowZqKmpwZlnnonVq1cji9PXEwRBRIQS0jkmkfYBIBtBEEQ7QgnpAESZR6KkpAQvvvgiWlpasHnzZnz11Veoq6tD165dcd5556Fbt26RG4mCTp06YcmSJViyZEnYOpIk4e6778bdd98dlz4QBHGEQIutoyJR9gEgG0EQRDtCi60BxJiQLjMzE6eddhpOO+00t/qTVMiSZIhQYXZT844xq8gaPCERcYRypmh6Gx7J5METRboRJQCTBSnrGXxSmhatjUOc69UsaeLlOjWanKcTF4kjO9Nj+JvlDbqrMzQ3exb3XXi191mCfrPkdx6D5CfkI4TAfzWs/60C6RmL1tTGaaGatPetnNypSYvKwbvv9fOhnavDraHbDvNSKHOSIUEyIMP3KXJTax+eJUgURYvhcfP6M197gD0XtpPoG3obfPIkF6RN0SyOS9fFdNGQ7vZB8sqQvbKl/NSD0OswKGOS+IoAgmOMSHRh18aIUAQySDOR7jlRglJzP/jx6bD2l5fYBCVNTJoTtAGZDVo0Jl7GpNmDTG5cM9uKDG5NDLMHfAJUZivEdkEr4z6SSBZjlh3zdkFkK5htEEUobFVCZV2HTeM8n8SP2QhRRKxmQ1l4WyG6TvTITBAlBwyNIGnn94zV9SU6dqQyvV0bUiW72JFG2W7LoY1IV/uQUpmtCYIg2g3ySBAEQRDhII8EAJpIEARBiFHVKCYS6amBJQiCIEw4tRFpah9oImEBc13r/1u5kTVvrMH9F5qzS0cUoUmEXde1GbtuQjsRdHj0xHsyl5BOECXC7KLNFCQl4ssyvUYXtofrIyvjIzR5BG14BK5r8zYrRFEu/AIXtig5XJtpGxCM7MGXtbQZ3c9tgnNmaMMkGeClSKLoGfp3JrhumTQhUqQwRrTXHmDPbWzlrnbalrmeIpB4OUb1A4JkfBH3IY4oopVWiBBFdNKxsCdh93FApM9hxy4AoUnQeIlNs2YPJH38Do30x4/VPmYPhGO/J/w2T6hdMCfDM+9rVcbQx2PBuW4T2Qp/qK0I2hF/SJk5qlW4YzIbYRjLtfeixLZWtkL0M1iX5HHXXKzXF+DuvZIUOLURaWofaCJBEAQhQFUUqA7jfjutTxAEQaQmTm1EutoHmkhYIMuS8elLO82Oo40HzmN30ZMIOzH4RYt+FW7xMXvO1CzyeAjyU+jbHD4hinZbJERPnKLdZrVITbzYOfKitnCwc+vhF1TL0V1Pib4OE35cJQqPhNP6RMoSYh8cYjnOCrwPorEi0ehPv7XLXuGCTdixI03ce1FgBhF2znmyPMl2uhjeui2Hx7Z5vejnM8HnzGnun1jvh4TYiDS1DzSRIAiCEEETCYIgCCIcNJEAQBMJgiAIIarfD9XvbOB3Wp8gCIJITZzaiHS1DzSRsED2SIaY+1G3kyRuVoZdyYrIlcrKRG5F3q0dki/DruTHptTHzrZ4YeU2F20TLSq2G0fbMu67ZWxt7r0glr2d9hOBG3IqAK7ct1CUwMvpPsQRgSRJjuUYgH0JT8h+3H0c7X0by9ivb7MI+BBpnDeP73bzFFjluxF9pphybgiOZScwhNMx3SrHTiTZr5Wdida2iK5lN+VmImIZ79n9EG1E1Wju3RCc2og0tQ8uhDYhCIIgCIIgCCIRVFdXo7S0FLm5ucjPz8e0adNQX19va19VVTFu3DhIkoRVq1Y5PjZNJAiCIEQoSlADa/uVnk+cCIIgCBOObUT87ENpaSk+//xzrFmzBq+//jrWr1+PGTNm2Np3yZIlMXloSNpkgSxL8DiMRx/Ll+GGzMSOq1ASRPERxZxmbk3edchczIrAJc234fcb41wb6uvxxcO3wbuXWZkoUpQqqGd1DlTBYidJDh+gXRa4k0XfMbtOeBeyyNXM3nu8oW0FXd5cXHSPsV1D+9r3IxnygoT/DEKXt43rtb2uSwAQfRVOo3OoiupKn1XFL7xeIu1DEE7lS5YSRhflh6JIdkJJEdh4bK9dRRubReO22C5o+/F2x6INfuw350kwttGibQveh0yXzspE96jd+1ZkK1gZv03yGMtkb6a+TTQe69H2LOwIn9NKJI+ytBVKaBvmYxs/k/E4xm3tfz2KMP9OCUc8k0k7tRHxsg9bt27F6tWrsWnTJgwdOhQAsGzZMowfPx6LFi1CcXFx2H23bNmCBx54AB9//DF69OgR1fHJI0EQBCFCVYIaWLuveFotgiAIInlwaiPiZB8qKiqQn5+vTyIAYNSoUZBlGRs2bAi7X2NjI37961/jkUceQVFRUdTHJ48EQRCEAPJIEARBEOGI1iNRV1dnKPf5fPD5fFH3o6qqCt26dTOUeb1eFBQUoKqqKux+M2fOxOmnn44LL7ww6mMDNJGwRPbIQrefXdmEUxdgLAnUGFbJ0oKuYMFGOfQtkx6JonQonKuZuaL5MrML2y/YJqrP6vE3J3NXK60t3GcJdVOby5QYftTJIne1qYzfJmcEXNe8C5tt5+VxzP3MXMzsf74e76pl3xmrz1zUAABWxvsVFaN0KtBeeEmWlexJ71ecr0sRRvd2+OOLJFOSR4LsccHZSnkkCAe4EeHGMiKcG1FmROgS1uC9xPrIJE5AMCqfSNYqsgG6reCi+bHx3Sx95bfxiU39bW1au9zYr0mVdLvQFmoX/IIyZj9ikTYxRHaB2QC+zKPZA4Ot8IbaCrZvcL/gTzM2lnn8oXaEv15UL6sviPzEbAsvA2PtCySyIqzsiAj9GrIbKUxlUiV7cie77Ysk2q4RZR6Jnj17GornzZuH+fPnh1SfM2cOFi5caNnk1q1b7R+f49VXX8W6devwySefRLU/D00kCIIgRFD4V4IgCCIcUYZ/3b17N3Jzc/XicN6I2bNnY8qUKZZN9u3bF0VFRThw4IChvK2tDdXV1WElS+vWrcOOHTuQn59vKJ84cSLOOussvPvuu9afhYMmEgRBEAIoIR1BEAQRjmgT0uXm5homEuEoLCxEYWFhxHrDhw9HTU0NKisrMWTIEACBiYKiKCgpKRHuM2fOHPzmN78xlJ100kl48MEHccEFF0Q8Jg9NJCyQZclx1AK7MhA35CJW7fJSEr9idBkalDBRSk74yBqKyV0NBGVRom1trcz9zLnBTfIl3l3N3vsFZfxNbJY2GWVPkZ8aSJxGSBiJg5V5QiNxeETuau29wrm8/VoZc1OrGcH2zTKmAKZ+c9t0N7XDa0kUiYqHXUNuXqOitizlTlx9q3rh1CSuJNpjof2c7kMQLuJUSmKF3fFeTwQnTEpqEW1PCZVCWclajTaDbQuO8/7mwyFlZnsgkrwa67cat1lEdIqEKGqTJ0MkX8oI9FEkbdLqe3j7kZmt7Zep9SfUjogiFIqiMIlGRWYr/Jw98bB6LoyVVteeaJtQkqpd506j9CUUpzYiTvZhwIABGDt2LKZPn47y8nK0trairKwMkyZN0iM27dmzByNHjsRzzz2HYcOGoaioSOit6NWrF/r06ePo+DSRIAiCEEFrJAiCIIhwRLlGIh4sX74cZWVlGDlyJGRZxsSJE7F06VJ9e2trK7Zt24bGxkbXj00TCQskSbJ8YhsJq3puPu2NtJBV5KWwwvy0IFLOCNHTKz3+t2kRNf/e8NRIe6rkbwl9AiV68iSKF2715MkposXW7CkTKxN5QzyCxd9itCdVwhje3AI6bfG0ImleJf67kEKfAno8oQvQ7FxrifakmfHb7H+4M+zGwlRVUWx5ssz7EEcm/PhntfCa3Zt2vWb6ItQI17Rj77KNJ7+iQBuGsd+U00FUn/c6mD0RIq8080LwZVb2QOR9MNQ3LbK2CtARCZGnmu3Ll3n0dgOfj9mOSNixGZH7GJpjgn0/RttitB980A7JIsAF/x2za1J07UW72Npt4ptHwpmNiKd9KCgowIoVK8Ju7927d8RzHO13QHkkCIIgCIIgCIJwDHkkCIIgRJC0iSAIgghHEkmbEglNJBzghlSpvaQhThHFaVbVUFe2cF81VGJj3kfkMhO5mBmKTfezXVehncgKbBF12Da0Y+nSJkEf+X7Lpm3m90C48xIqD7CSShgWP8pafYS6sCVPcl17HosF1XYXZ1u1ETNqFBMJNT0NBeEMs5xCdP/y4yWTgYjGWiZHiSQ7sJI+RRpnzP2xWmStCBb9WslbRccISmStpaDCBdKWQTUi339O64fb1wwvbWL9lfQ+Bi8AUb9ZfSubYSzTvmuByQqe2+D1IJLGsi6xMv4r1yVLXB4RoQkyFfLXoEjSZEtOF2EctyOViqecyXgghzYiTe0DTSQIgiAE0BoJgiAIIhzJtEYikdBEgiAIQgSFfyUIgiDCkSThXxMNTSQi4LYUickvom03knxDtN1vcicbXNhCl3f49s1ROmJBlKOBIfNRMbT3MpePgUXskOTwN7HB6yqI/22nb8Y+yoYyvj96meA4Vp/TKQbZkyZj8ggibBi+Q+1EBCVoIZsM0Y/MUb4iyYfidS07xWl0sojQGgnCAlVVhRFshHUFYyovd7KSa9iNiKLC2XVvPqZBlmRDrsqXxSvijmhcVU1jszGyXuCv0hZsg+V5YNGb+Fw/TqVN5n4Z+sFJYz2m/BHC+ny/Y7QLkRDJlCULOR2TyEIJHfv569Z8bTq9BkXYjvLk8De5+Rp15ZqlNRIAaCJBEAQhhDJbEwRBEOGINrN1ukHhXwmCIEQoSnSvOFFdXY3S0lLk5uYiPz8f06ZNQ319fcT9KioqcN5556Fjx47Izc3F2WefjcOHD0fcjyAIgrAgiexDIkk5j8SePXtw22234d///jcaGxtx3HHH4emnn8bQoUMBBNxV8+bNwxNPPIGamhqcccYZeOyxx3D88cdHdTzbibEcSj7ckF9YyZh4QiJrWETd4LHrYmQufT6hjcqS4qiBvx6PaM4aPsGOyBXs55IMieRFfMI6wHl0jkgSJHYskWuaubJ5tzl7z/eRlXm8gfPBn5dgIqHgdcOiudhNsMa+M48nNHqGfiSDpCKkKGySN564RkuKsk3X+5Fk0qbS0lLs27cPa9asQWtrK6ZOnYoZM2ZYJiGqqKjA2LFjMXfuXCxbtgxerxeffvopZDl9nyG1t41g2JVKsHvZrjRDJClxitWxRDKm4H72yuyiR6dS2VgXOuby46UdeElRUPIamjCOjb2R7IIokalZeiSWKsmCsvAyWI/IVghshlge5UbCTe1717rNS2SD10JoZDGR3CnYr1j6E+V+cZLV2YKkTQBSbCJx8OBBnHHGGTj33HPx73//G4WFhfj666/RuXNnvc59992HpUuX4tlnn0WfPn1wxx13YMyYMfjiiy+QlZWVwN4TBJFKqIrf1fCQsbB161asXr0amzZt0n8QL1u2DOPHj8eiRYtQXFws3G/mzJm48cYbMWfOHL2sX79+celjMkA2giCI9sKpjYiXfUg0KTWRWLhwIXr27Imnn35aL+vTp4/+XlVVLFmyBLfffjsuvPBCAMBzzz2H7t27Y9WqVZg0aVK795kgiNQklvCvdXV1hnKfzwefzxd1XyoqKpCfn69PIgBg1KhRkGUZGzZswEUXXRSyz4EDB7BhwwaUlpbi9NNPx44dO9C/f3/ce++9OPPMM6PuSzJDNoIgiPaCwr8GSKmJxKuvvooxY8bg0ksvxXvvvYejjjoKv/vd7zB9+nQAwM6dO1FVVYVRo0bp++Tl5aGkpAQVFRVhjURzczOam5v1/80/Ahh2pBOJlnxYJgGy6QK0U8/gWhW43tl2mblBvZF8nibZkIePxKG5ezlpkzBJT2Zo8iJzfSuEciaLaBvGaCGZYfttlEAZJU0yd15kKVTaZHYV23VpG6LJCKI6meuJIjkxRGfOruTPDeJxH9lBVVSofqcTiUBfe/bsaSifN28e5s+fH3Vfqqqq0K1bN0OZ1+tFQUEBqqqqhPt88803AID58+dj0aJFGDx4MJ577jmMHDkSn332WcxSnmQkHjYinH1QFDWs/FO2uCeilWK4ncsqNGpThOSYFv3W5VqcFCbEBgCWdkCWAxNtf1tbyDahBEogVfJ7W0LKQpKA+p1JXkUY+iNIZGq2EbyMyY794CWyHq9Xqx88j3bth35MG9LYiInggjWDxzQdK5nzrZmvd7vSbSuc2gg3ol0mIykllP3mm290Let//vMf/Pa3v8WNN96IZ599FgB0g9q9e3fDft27dw9rbAFgwYIFyMvL01/mHwEEQRBO2L17N2pra/XX3LlzhfXmzJkDSZIsX19++WVUfVC02eG1116LqVOn4uSTT8aDDz6Ifv364amnnor6syUz8bARZB8IgiDCk1IeCUVRMHToUPz5z38GAJx88sn47LPPUF5ejsmTJ0fd7ty5czFr1iz9/7q6OvTs2TMQJ9zhDLJNUD+WhVF2jh9pZi2KIW3e1+5CJ/bUQ+GmoOwpu79N4cq0+vpC6eA20ZMT9oRFUQL11cwMfRvbN9IiOd1LYRFiTbSfVW4H/mmTuZ7oKZmHe0IUXITOexiMi88N58DLyrhjaG0Et3ELsW0uwGbfrQLTomsewQLsYEH4J1CAu9e8W09s3FiAp/oV5x4JrX5ubi5yc3Mj1p89ezamTJliWadv374oKirCgQMHDOVtbW2orq5GUVGRcL8ePXoAAAYOHGgoHzBgAHbt2hWxb6lIPGxEOPtg3Y/kfPJo9/6K9j405hgI9UZLIYtzg+MEO6bMBaBQtKfxxnwWfuFfAPD6BZ5qs0cighfCsY2wyB0k8rBb5ZZg4yt/DmRBEA6zHeHLgvXDdjkiqq4yCP1+ePyCekcSTm2EU3uSKqTURKJHjx5Co/jyyy8DgG5Q9+/frxtR9v/gwYPDthurfpkgiPQjljUSdiksLERhYWHEesOHD0dNTQ0qKysxZMgQAMC6deugKApKSkqE+/Tu3RvFxcXYtm2bofyrr77CuHHjHPUzVYiHjSD7QBCECFojESClpE1nnHGG0Cgec8wxAAKL6oqKirB27Vp9e11dHTZs2IDhw4e3a18Jgkht2NMmp694MGDAAIwdOxbTp0/Hxo0b8eGHH6KsrAyTJk3SIzbt2bMH/fv3x8aNGwEEvFm33norli5dipdeegnbt2/HHXfcgS+//BLTpk2LSz8TDdkIgiDai2SxD4kmpTwSM2fOxOmnn44///nPuOyyy7Bx40Y8/vjjePzxxwEEDOfNN9+Me+65B8cff7we2q+4uBgTJkxwfDyrxXTOGoqPm9tKvmHlmja6iSMfR+S2lLn99DjUnAtbj1EtMdcnv421EVpf34/7bBk+Yx3ze70f5sWDMchbRIvTzLIekavZUF+4eDq8+9lKCqXvJ4XfFgmzxIk/luHcIry72u9XDX0NS4KlHa4spItB2hQPli9fjrKyMowcORKyLGPixIlYunSpvr21tRXbtm1DY2OjXnbzzTejqakJM2fORHV1NQYNGoQ1a9bg2GOPjVs/E0l72ghVcS59TTRO+ytaYC0aFzyCcSQ49vPHN0o1FcGYLlrgbRz7Q+VO+jYLGa/epsvfmdXCen2MjmBPnI7zomOy82xlR0R9Y/DftSyFfp/phhufjaRNAVJqInHqqadi5cqVmDt3Lu6++2706dMHS5YsQWlpqV7n97//PRoaGjBjxgzU1NTgzDPPxOrVqyk+OEEQjlD9figW623C7RMvCgoKLJPP9e7dWzh5njNnjiGPRDpDNoIgiPbCqY2Ip31IJCk1kQCAX/7yl/jlL38ZdrskSbj77rtx9913t2OvCIJIN1Q1ijUS0aZnJVyDbARBEO2BUxuRrvYh5SYS7YniVxKbfp3DsUvaBbcdc43ybQnd2lp0DlVS+cLAvhauZqc5LyLdg/GOlGLtwhaUCVzMwfrhy0TRmOy4piP1UYTVObNaQMXHi7fqTyJQFRWKCy7kZJM2EelBKslFRGMRL4Ex3/MGGafF57QjTQXs2YGIUQsTcL6txkIrWZL+vw1pbaTj2B2P7Ub/syJZrun2tkEkbQpAEwmCIAgBNJEgCIIgwkETiQA0kSAIghAQWEwbXWZrgiAIIr1xaiPS1T7QRMICRVENidRSHbvyPLNbVRZpXAQuRJGLWbSrnZspmhtOFGHETZy6gO24WW27n23WixhNCeLrQCTNciwVS6JB0g2Zm+JXHEuk3JBUEalJvH8kxDK+uSFfYfBJ0KwrunZIIan+oyyZpKBukehr1OqzxON8O7UR8bQP1dXVuOGGG/Daa6/pUf0eeugh5OTkhN1nxIgReO+99wxl1157LcrLyx0dmyYSBEEQBEEQBJGilJaWYt++fVizZg1aW1sxdepUzJgxwzLSHwBMnz7dEHiiQ4cOjo9NEwmCIAgBtEaCIAiCCEeyrJHYunUrVq9ejU2bNmHo0KEAgGXLlmH8+PFYtGiRnrRURIcOHVBUVBTT8WkiYYGq2JcDpTOR5DJMFiN7ksNVm87E63pMt+vcjc9DEwnCkjgmpIu3TFNEJOmH40hEwuhzkfeLpm92jp0Ioo36GOm6Eka4Mg09omOL9mPnNtIxEyHdc1OSx/rvpsQp2olEXV2dodzn88Hn80Xdj4qKCuTn5+uTCAAYNWoUZFnGhg0bcNFFF4Xdd/ny5Xj++edRVFSECy64AHfccYdjrwRNJAiCIARQHgmCIAgiHNHmkejZs6ehfN68eZg/f37U/aiqqkK3bt0MZV6vFwUFBaiqqgq7369//Wscc8wxKC4uxv/+9z/cdttt2LZtG1555RVHx6eJhAWqqiZNHgkrYnn6Ilpka8aNp0Z2+xivJ1TxwO4TGrsLf62uNf1YEb4vO8eK5bduKtwPgDv9JI8EkSj4J7F2vRNuBoOwylFj5Wngx29h7htTbh2+jkeUo8hGmaiOk+3xwG8xDou2mcsi1WH2gB/vzWMeb59YPdF3x/YTjVx8G3Y8F5GuQatr2U3vgxV6/13wsETrkdi9ezdyc3P18nDeiDlz5mDhwoWWbW7dutX28c3MmDFDf3/SSSehR48eGDlyJHbs2IFjjz3Wdjs0kSAIghBAEwmCIAgiHNFOJHJzcw0TiXDMnj0bU6ZMsazTt29fFBUV4cCBA4bytrY2VFdXO1r/UFJSAgDYvn07TSQIgiBiRVEUKA6lTU7rEwRBEKmJUxvh1D4UFhaisLAwYr3hw4ejpqYGlZWVGDJkCABg3bp1UBRFnxzYYcuWLQCAHj16OOonTSQsUBTVlXj0sWBH6sO7NO1IiCLJmczHtHJRW+0Xbl+7Luxo69ttw4yVO9pu/Uht2HFhi1zHiiSoJ1qcJjim+Rrmv387MqdoZEKJvm/cOD55JAhLZAmSLMV9Eaobko9oZUyGehKTI4XWkwSyJyv5Evub6ZVDtnltyp08WoKjWOyDUzti10bYkTb5uR+VVnahTa+vhmxvaQttQ5c9SbwsybgN4MZIhcnNQvtqdzSzew+0l3xJRMh17oLkLVmiNg0YMABjx47F9OnTUV5ejtbWVpSVlWHSpEl6xKY9e/Zg5MiReO655zBs2DDs2LEDK1aswPjx49GlSxf873//w8yZM3H22Wfj5z//uaPj00SCIAhCQMBI+B3vQxAEQaQ/Tm1EPO3D8uXLUVZWhpEjR+oJ6ZYuXapvb21txbZt29DY2AgAyMzMxNtvv40lS5agoaEBPXv2xMSJE3H77bc7PjZNJAiCIASoShRRm0jaRBAEcUTg1EbE0z4UFBRYJp/r3bu3QV3Qs2fPkKzW0UITCQvUOMQJdxptyCzRsBvVSHzs0DI7cqRIMiYr+ZK1a9qeS9rr0HXtZpQOp9E32mzKnfwCd7WoPnvPPpPRNS3olOg7Nv3PX1PsmoglkpMrMiKX7zM32lOVKKRNNJE44rAa0+Mte7LbD6s60cqY+HpWMiaRfIn99Qm3ha9vKJPCb+MR2Q+r+naIJHEy2wHRmO5XBWVCGZMSUtasSZr4/pvlTsIoTxZyJ37oYvaAlzvpkZ+4Y9rJzRDveyCRERyd2oh0tQ80kSAIghARxRoJkLSJIAjiyMCpjUhT+2AjiwBBEARBEARBEIQR8ki0M2Y3X3u45cySpkhyJrOUKRoZk1XSICv3s/2kRKFz4HgnHgqNrBH6dMETQarUZpIqWcmY+DL9L38sh3InVo//PoPu6mD1eCdnbk+5RywofgWKwydITusT6U0iZReRjh0SnU/ix/nQOnYiM1nJmICglCkoe/KE1De0YSFfEtkMp7JZN7ErYWXv20RyJ4HsqaUt1Fawz8JHbbKSU7F6vNXUbYWM0G0wRnQC7EV1Eo3tyZA8Nl44tRHpah9oIkEQBCGAFlsTBEEQ4UimxdaJhCYSBEEQAiiPBEEQBBGOZMkjkWhoImGFKWpTIl10VtGaRFGVnEZosorMFCmpnFNpkx0Zk13pUrxd2CJ3clCC5Amp55H5fQXSJ4GkKda+8d8PO7whMhP7bk0SJyD4HVtFcuKvDWESPEEbicDgVnclIZ0K1e+sHaf1CSIW7Nokq8hMwbZC61tFaOK3W9kAUWQmJmni6zNJk0ey14YduxOunptYSVItJayCMhaNidcMsfPCy5jYYO6RBXIqi3PAS2ODtsJUwG8DP6ZqUlo11H7oVUKObCRVZK12cWoj0tU+0ESCIAhCgKJEsUYiTV3XBEEQhBGnNiJd7QNNJBJELE+S9Dai9ERYLazm6ztdWG31NMhr+6lReE9ELN4Hj+BzmvELnrY7fYpl9GAEn+uYt1u1K/KC2D0m+86Mi+o0z4XJMwHYW4DNL75mbVh5Jvg2RLA+JvvTqWjyyCT7ZyKSEze93dHajFhyFMV7IbNTnPbHbn2RJ9lNL7MbiPoj+nyinEdW6L8tlNC2mD2IZAOivc7dHFcli983TnFqI9LVPtBEgiAIQoDiBxSBdCDSPgRBEET649RGpKt9oIkEQRCEANWvQJVpsTVBEAQRilMbka72gSYSVsiSK+4vN2RMelsuLKx2euxIi9ki7RNNnWRzldtFtOBOtN3KDR6pDVE9q/pWi6FFMiNzfVGOCbsLsBl23dyxuH4N7bnhtvarUB16JNJ1MR0RiuSSfYgFu3Iku3YjuM29cb5NILFhgShEAStMCQ1C2rBCJB0NDZJhb9y0i938EVbb2kxlvMxW3Eb4H6TRfhbDNSLKLWHDHlgtxObbcNy3JP094NRGpKt9oIkEQRCEAMWvRiFtSk9DQRAEQRhxaiPS1T5YPJNIfv7yl79AkiTcfPPNellTUxOuv/56dOnSBTk5OZg4cSL279+fuE4SBEEQCYFsBEEQRHxJWY/Epk2b8Ne//hU///nPDeUzZ87EG2+8gRdffBF5eXkoKyvDxRdfjA8//DCu/YnW9RbJNS1ySQePaa89c9+s2hTVF+GG9MgqqoRV/oZwZVZ9E0VkctpHO9siuZVjjexhV/bEf4dmuZBIliSqbyfHhLk9c7sMpxGdRLR3xAtaI5HaJJuNiBWnUZUijfNu4HQ8M9dvaQuuPmVR7oSyJG48YRH4RNH87OQoioTTKEx27AAvzRJJm9jnE27Ty0Kj//H1WA4K6zbCfyaRRNUpbkheUwlaIxEgJT0S9fX1KC0txRNPPIHOnTvr5bW1tXjyySexePFinHfeeRgyZAiefvppfPTRR/jvf/+bwB4TBJFqKKoKRXH4csEYE7FDNoIgiHjj2EakqX1IyYnE9ddfj/PPPx+jRo0ylFdWVqK1tdVQ3r9/f/Tq1QsVFRXt3U2CIFIZLWupkxfSVAObapCNIAgi7pB9AJCC0qYXXngBmzdvxqZNm0K2VVVVITMzE/n5+Yby7t27o6qqKmybzc3NaG5u1v+vq6vT37sRLSCWyBohdWKI0GSVfM4pkZLd2ImQIZbpiFx/zua7dpK+2W3DaR1RNA2nEqhot0VCKFUSRNswR3KySlYXqBd6LPO1Fimah7l9EXbvRbckUIpfgSI5zGydpq7rVMJtG2FlH+JFLMnhnMphRaj6fW4deYc1Zzc8PpPfiBOVhpep8olKzZImoYxJcA7ciBLoWOoqeAJtR74UyWaYozyJ2hVt48dGq7HW7hgqkrrq2yySlzLcjOyUCJzaiHS1Dynlkdi9ezduuukmLF++HFlZWa61u2DBAuTl5emvnj17utY2QRCpiVNvhP7UiUgY8bARZB8IghBB9iFASk0kKisrceDAAZxyyinwer3wer147733sHTpUni9XnTv3h0tLS2oqakx7Ld//34UFRWFbXfu3Lmora3VX7t3747zJyEIItmhiUTqEQ8bQfaBIAgRZB8CpJS0aeTIkfi///s/Q9nUqVPRv39/3HbbbejZsycyMjKwdu1aTJw4EQCwbds27Nq1C8OHDw/brs/ng8/nCyl3ImuKV0QNK1d0LO7vaLGb1Mdp5AvrY/pDjinyEPLub7eObWwvuiRAom2iBEtuSqDihVUkJx6zq9tOZCe+fRF2Xd5uJQojaVPqEQ8bEc4+uEl7jeWGaGum+9YgWRIkqhQ9dmRDIttkiE5kI4JSpOhKQQlU6H1lNzKT2S64HXFQvF0x/W9vbLeSLIn2tdomkifx37F5/I1UX4RI0hQrqSR3ImlTgJSaSHTq1Aknnniioaxjx47o0qWLXj5t2jTMmjULBQUFyM3NxQ033IDhw4fjtNNOS0SXCYJIUVRVdbzewo0QikT0kI0gCKK9cGoj0tU+pNREwg4PPvggZFnGxIkT0dzcjDFjxuDRRx+Nqi1Zllx5UuSG94ERMe9EHJ5sxcvTIII9kfHa9HgYt9td8ucOkc6ByOtgta+dsmhyV0SLedE1T6S8EOZr2c6CbMD5wjw36oZD8atQ4Ozcpmvm0nTCTRsRC/HyQui5YSLYnRCvIXfPiu5pkXlStftDVQXBPRTNVvBtaJ+5TT+mXa9CfBZPR+udiCXHhNU2u2V2vAeisdTqR6/b3gc3fzQnq5fCqY2Ip32orq7GDTfcgNdee00f3x566CHk5ORY7ldRUYE//vGP2LBhAzweDwYPHoz//Oc/yM7Otn3slFojIeLdd9/FkiVL9P+zsrLwyCOPoLq6Gg0NDXjllVcs10cQBEGICGhaFYev+BqK0tJS5ObmIj8/H9OmTUN9fb3lPlVVVbjqqqtQVFSEjh074pRTTsHLL78ctz4mI2QjCIKIB85tRPzsQ2lpKT7//HOsWbMGr7/+OtavX48ZM2ZY7lNRUYGxY8di9OjR2LhxIzZt2oSysjLIsrOpQdp5JAiCINxA9av6E1cn+8SL0tJS7Nu3D2vWrEFrayumTp2KGTNmYMWKFWH3ufrqq1FTU4NXX30VXbt2xYoVK3DZZZfh448/xsknnxy3vhIEQaQ7Tm1EvOzD1q1bsXr1amzatAlDhw4FACxbtgzjx4/HokWLUFxcLNxv5syZuPHGGzFnzhy9rF+/fo6PTxOJGLArWbJsw+bEL15ucOYe5Ns3uz9597N1Dojw2JVH2dkGWMuGEkG88kI43TcW13W0iBZgm4mUd0KvZ/OeSletaTiiNRQfffQRHnvsMQwbNgwAcPvtt+PBBx9EZWUlTSQSRLstrI5wj4TkeokgXWHjjdBmWdz7BhmkSX0qkja1hZTYHxeiPbfxzlFjd+y1+s7sHtvpOB/LgulEjsN27E6yYs5FE2tAh4qKCuTn5+u2AQBGjRoFWZaxYcMGXHTRRSH7HDhwABs2bEBpaSlOP/107NixA/3798e9996LM88809HxU17aRBAEEQ8UvxrVCwgYCv7FJzSLhkiGIhynn346/vGPf6C6uhqKouCFF15AU1MTRowYEVN/CIIgjnSitQ89e/Y05KZZsGBBTP2oqqpCt27dDGVerxcFBQVhE21+8803AID58+dj+vTpWL16NU455RSMHDkSX3/9taPj00SCIAhCgKooUb2A5DAUAPDPf/4Tra2t6NKlC3w+H6699lqsXLkSxx13XEz9IQiCONKJ1j7s3r3bkJtm7ty5wvbnzJkDSZIsX19++WVUfVe0vlx77bWYOnUqTj75ZDz44IPo168fnnrqKUdtkbTJAvZFudpmAqduVtE8RDHE9f1EkSRi6IfdXBSMeEeKchM3onnYreeGqzsRrmk7eScithHhvnTjvo0latPu3buRm5url4dzW8+ZMwcLFy60bHPr1q2O+sBzxx13oKamBm+//Ta6du2KVatW4bLLLsP777+Pk046Kep2iegRyUkTQbT3vupw8LcbqcZtW2vrmFHa43jkTwh7rCNMxmmXZJA0RRu1KTc312AfwjF79mxMmTLFsk7fvn1RVFSEAwcOGMrb2tpQXV0dNpBEjx49AAADBw40lA8YMAC7du2K2DcemkgQBEEIUJUoFlsryWModuzYgYcffhifffYZTjjhBADAoEGD8P777+ORRx5BeXm5jU9EEARBiHBqI5yusSksLERhYWHEesOHD0dNTQ0qKysxZMgQAMC6deugKApKSkqE+/Tu3RvFxcXYtm2bofyrr77CuHHjHPWTJhIEQRAi/IowPr4lFtnPRcTTUDQ2NgJASCg/j8eju7UJgiCIKHFqI+I07g4YMABjx47F9OnTUV5ejtbWVpSVlWHSpEl6II49e/Zg5MiReO655zBs2DBIkoRbb70V8+bNw6BBgzB48GA8++yz+PLLL/HSSy85Oj5NJFzGbemSU/e3qkfWCL+fyFXKu5WtXIasP5Fm1m02+hEpMpNVvVTCaf+dPrVwIyKIG/2IlKTOCqv7pj1lBDyKX4Xi8JzFy90ejaHo378/jjvuOFx77bVYtGgRunTpglWrVulxxonEkgzSDCdEG7EoWdpPdeKRbLY9209HnNqIeN7zy5cvR1lZGUaOHKknpFu6dKm+vbW1Fdu2bdMfMAHAzTffjKamJsycORPV1dUYNGgQ1qxZg2OPPdbRsWkiQRAEIUD1q3GffDnBqaHIyMjAm2++iTlz5uCCCy5AfX09jjvuODz77LMYP3583PpJEARxJODURsTTPhQUFFjmFOrdu7ewr3PmzDHkkYgGmkgQBEEIUNQoPBJxXBgZjaE4/vjjj7hM1gRBEO2BUxsRT/uQSGgiEQPtEYEp2ggfVjNfkQvT7qzascRP0A+rz+JGojk3XbTxdre74eqMJaqHm58vXm5bN6I8RYNfVeF3eG6d1ieIeBHLve1YXmnzunfabrxknu2NU/sttGERomXZsXuyRWQs0bmOxZYeCVIppzYiXe0DTSQIgiAE+NXAy+k+BEEQRPrj1Eakq32giYQDEpkDws4CaLvE9BTahXPgt3E3xRRTPEmeSrVX/O/2XKSYLE/8EuWlIIhE4cZ9bjv3jMXYZbcNUT03ctpY3efJMj6ZiWSjQ8Yzgfchkk00H0PkEfALQpVaeQ5km2OqUOXgOOBG+nsw0hWaSBAEQQggaRNBEAQRDpI2BaCJBEEQhACSNhEEQRDhIGlTAJpIOIC5VBMpcRIRL3euyB3bXjIapxmFCSPJ6uJ3m3jKmZQoPBLpGpWDcB+3x1I3F0hbtWW1TTTuiCRLTuVJ0fbH0G6c702rhcz8x7WS8Ii26bmbhLKk4HsmGdYlUNx5cSp/ZigRfuuwz2z3O7DMb5WCUiinNiJd7QNNJAiCIAT4EYVHIi49IQiCIJINpzYiXe0DTSQIgiAE+FVVuDgx0j4EQRBE+uPURqSrfaCJRBQkIjpMIuRUR4o8hnCHdIua5FedP0FKVw0s4Yx4SEDdzu0Qb/lSsC2bbdgsizWilNvfDZPYWP2gNMhwBIOEWSLE1/cLyvT9IJD3yKHth8ieDG1Ej5X0SST1cprfygo35FSx4tRGpKt9oIkEQRCEAJpIEARBEOGgiUQAmkgQBEEIIGkTQRAEEQ6SNgWgiUSKkG6yEYJIdpQoPBKkBjxyUBU1qSMv2W031WRMbn4WV9DajTYyEhAqEbKbCE5UTSR3YtJo0XenCBrRI0UJzhkvFTJv57dZXZvxlj3ZadeNe9epjUhX+0ATCYIgCAHkkSAIgiDCQR6JADSRIAiCEEBrJAiCIIhw0BqJADSRSAOsXM0E4SaiqB8EQdgnWkmFGzImu/WiTSzXntGYopUxuW0v2ZhodUxRcCORRIiVic5FvOVO/NiuWMi1+PNulhxZbTP0UfT5LGxLvGRPhDvQRIIgCEJA4GmTU2lTnDpDEARBJBVObUS62geaSBAEQQggaRNBEAQRDpI2BaCJRARINhQZSlzXfsQSGcQNUuF+cEt+RYutiViJt4zJ7rHclAHZjczkBsksaTK363TcEcmARAnp3EAkVWLfoyiik5VcS7YZtSlSxKeQPmrHt5I4iXB6HDehxdYBEpAvOTYWLFiAU089FZ06dUK3bt0wYcIEbNu2zVCnqakJ119/Pbp06YKcnBxMnDgR+/fvT1CPCYJIRVQE9MZOXulpJlIHsg8EQbQXTm1EutqHlJtIvPfee7j++uvx3//+F2vWrEFraytGjx6NhoYGvc7MmTPx2muv4cUXX8R7772HvXv34uKLL3Z8rFR4+hoORVHb7UW0H/S9RkZVVVfuXb+qRvUiEkd72gczLK8E/3KKoqq2vBF2jhWpH1b3uRv3kOjY5jL2eaPxwDhFkqS4BIuIV7tmROdK9B27kd/E6vu3shGRrjk7feM/Z7TXhhv3oh3IPgRIOWnT6tWrDf8/88wz6NatGyorK3H22WejtrYWTz75JFasWIHzzjsPAPD0009jwIAB+O9//4vTTjstEd0mCCLFoDUSqQfZB4Ig2gtaIxEg5TwSZmprawEABQUFAIDKykq0trZi1KhRep3+/fujV69eqKioELbR3NyMuro6w4sgiCMb8kikPmQfCIKIF8lkH6qrq1FaWorc3Fzk5+dj2rRpqK+vD1v/22+/1b1p5teLL77o6Ngp55HgURQFN998M8444wyceOKJAICqqipkZmYiPz/fULd79+6oqqoStrNgwQLcdddd8e6ukFSWkFgRL1fikUYiY2TH69pM9IJxu5BHIrVpL/vQXguq45UfQt8vQn/isciaX1hr93yYFyYb2pMj53Roz1w4VmNdsuQ/MC+6NmwTLMC23274hePRLsQGnC/GttOfaEkmj0RpaSn27dunSzqnTp2KGTNmYMWKFcL6PXv2xL59+wxljz/+OO6//36MGzfO0bFTeiJx/fXX47PPPsMHH3wQUztz587FrFmz9P/r6urQs2fPWLtHEEQKQ1GbUhuyDwRBxJNkidq0detWrF69Gps2bcLQoUMBAMuWLcP48eOxaNEiFBcXh+zj8XhQVFRkKFu5ciUuu+wy5OTkODp+yk4kysrK8Prrr2P9+vU4+uij9fKioiK0tLSgpqbG8NRp//79ISeN4fP54PP54t1lgiBSCCUKjwQ54pIDsg8EQcQbpzaC2QezPDLWMaaiogL5+fn6JAIARo0aBVmWsWHDBlx00UUR26isrMSWLVvwyCOPOD5+yq2RUFUVZWVlWLlyJdatW4c+ffoYtg8ZMgQZGRlYu3atXrZt2zbs2rULw4cPd3SsIz0yjijygd0X4Q7peP4p6hQRL9rTPiDKe81pJBq793Qq3PtOkWQprBTFapssS2FfbuP0WFF/JknSX9Hi9vhopy27dsnu9etWRKdEPvXp2bMn8vLy9NeCBQtiaq+qqgrdunUzlHm9XhQUFISVbJp58sknMWDAAJx++umOj59yHonrr78eK1aswL/+9S906tRJP0l5eXnIzs5GXl4epk2bhlmzZqGgoAC5ubm44YYbMHz4cIrIQRCEbUjalHqQfSAIor2IVtq0e/du5Obm6uXhvBFz5szBwoULLdvcunWr7eOH4/Dhw1ixYgXuuOOOqPZPuYnEY489BgAYMWKEofzpp5/GlClTAAAPPvggZFnGxIkT0dzcjDFjxuDRRx+1fQy2wMjf3OhKn1OVdHu6dSSRLAv5EgW7d2OJhX8YiuPFcS0QrEgl2o1UsA+OF1nbrG/raa7F5en2YmvHWaktjm+ZtTtOi9Ztt+dwrLVatGw1bqsRPBHmfSPZAHO/RYutDdstjq/a1LbYsUuOF3VH6aFJhI1g9iE3N9cwkQjH7Nmz9XErHH379kVRUREOHDhgKG9ra0N1dXVYySbPSy+9hMbGRlx99dUR64qQ1FTOuhYnvv/+e1pMRxBpwO7duw0aeTs0NTWhT58+tl3CZoqKirBz505kZWVFtT+R3JB9IIj0ob1tRDzsw9atWzFw4EB8/PHHGDJkCADgrbfewtixY/H9998LF1vzjBgxAl27dsVLL70U1fFpIiFAURTs3bsXnTp1atdQcfGGRRsxu9UI59C5dI94nEtVVXHo0CEUFxdDlp0vBWtqakJLS0tUx87MzKRJRBqTrvYBoHHNTehcukc62Yh42Ydx48Zh//79KC8v18O/Dh06VA//umfPHowcORLPPfcchg0bpu+3fft2/OxnP8Obb76JsWPHRnXslJM2tQeyLDueoaYSdt1qRGToXLqH2+cyLy8v6n2zsrJoMkAISXf7ANC45iZ0Lt2DbER4li9fjrKyMowcOVKXbi5dulTf3traim3btqGx0SjJfOqpp3D00Udj9OjRUR+bPBJHEHV1dcjLy0NtbS0NbDFC59I96FwSRHJA96J70Ll0DzqXyU3KhX8lCIIgCIIgCCLx0ETiCMLn82HevHmUXMkF6Fy6B51LgkgO6F50DzqX7kHnMrkhaRNBEARBEARBEI4hjwRBEARBEARBEI6hiQRBEARBEARBEI6hiQRBEARBEARBEI6hiUSaMX/+fEiSZHj1799f397U1ITrr78eXbp0QU5ODiZOnIj9+/cnsMfJxfr163HBBReguLgYkiRh1apVhu2qquLOO+9Ejx49kJ2djVGjRuHrr7821KmurkZpaSlyc3ORn5+PadOmob6+vh0/RXIQ6VxOmTIl5Fo1J8Shc0kQ7kI2InrIPrgH2Yf0gSYSacgJJ5yAffv26a8PPvhA3zZz5ky89tprePHFF/Hee+9h7969uPjiixPY2+SioaEBgwYNwiOPPCLcft9992Hp0qUoLy/Hhg0b0LFjR4wZMwZNTU16ndLSUnz++edYs2YNXn/9daxfvx4zZsxor4+QNEQ6lwAwduxYw7X697//3bCdziVBuA/ZiOgg++AeZB/SCJVIK+bNm6cOGjRIuK2mpkbNyMhQX3zxRb1s69atKgC1oqKinXqYOgBQV65cqf+vKIpaVFSk3n///XpZTU2N6vP51L///e+qqqrqF198oQJQN23apNf597//rUqSpO7Zs6fd+p5smM+lqqrq5MmT1QsvvDDsPnQuCcJ9yEa4A9kH9yD7kNqQRyIN+frrr1FcXIy+ffuitLQUu3btAgBUVlaitbUVo0aN0uv2798fvXr1QkVFRaK6mzLs3LkTVVVVhvOXl5eHkpIS/fxVVFQgPz8fQ4cO1euMGjUKsixjw4YN7d7nZOfdd99Ft27d0K9fP/z2t7/FTz/9pG+jc0kQ8YFshPuQfXAfsg+pgTfRHSDcpaSkBM888wz69euHffv24a677sJZZ52Fzz77DFVVVcjMzER+fr5hn+7du6OqqioxHU4h2Dnq3r27oZw/f1VVVejWrZthu9frRUFBAZ1jE2PHjsXFF1+MPn36YMeOHfjDH/6AcePGoaKiAh6Ph84lQcQBshHxgeyDu5B9SB1oIpFmjBs3Tn//85//HCUlJTjmmGPwz3/+E9nZ2QnsGUEYmTRpkv7+pJNOws9//nMce+yxePfddzFy5MgE9owg0heyEUQqQPYhdSBpU5qTn5+Pn/3sZ9i+fTuKiorQ0tKCmpoaQ539+/ejqKgoMR1MIdg5Mkcw4c9fUVERDhw4YNje1taG6upqOscR6Nu3L7p27Yrt27cDoHNJEO0B2Qh3IPsQX8g+JC80kUhz6uvrsWPHDvTo0QNDhgxBRkYG1q5dq2/ftm0bdu3aheHDhyewl6lBnz59UFRUZDh/dXV12LBhg37+hg8fjpqaGlRWVup11q1bB0VRUFJS0u59TiW+//57/PTTT+jRowcAOpcE0R6QjXAHsg/xhexDEpPo1d6Eu8yePVt999131Z07d6offvihOmrUKLVr167qgQMHVFVV1euuu07t1auXum7dOvXjjz9Whw8frg4fPjzBvU4eDh06pH7yySfqJ598ogJQFy9erH7yySfqd999p6qqqv7lL39R8/Pz1X/961/q//73P/XCCy9U+/Tpox4+fFhvY+zYserJJ5+sbtiwQf3ggw/U448/Xr3iiisS9ZEShtW5PHTokHrLLbeoFRUV6s6dO9W3335bPeWUU9Tjjz9ebWpq0tugc0kQ7kI2InrIPrgH2Yf0gSYSacbll1+u9ujRQ83MzFSPOuoo9fLLL1e3b9+ubz98+LD6u9/9Tu3cubPaoUMH9aKLLlL37duXwB4nF++8844KIOQ1efJkVVUDIf7uuOMOtXv37qrP51NHjhypbtu2zdDGTz/9pF5xxRVqTk6Ompubq06dOlU9dOhQAj5NYrE6l42Njero0aPVwsJCNSMjQz3mmGPU6dOnq1VVVYY26FwShLuQjYgesg/uQfYhfZBUVVXbz/9BEARBEARBEEQ6QGskCIIgCIIgCIJwDE0kCIIgCIIgCIJwDE0kCIIgCIIgCIJwDE0kCIIgCIIgCIJwDE0kCIIgCIIgCIJwDE0kCIIgCIIgCIJwDE0kCIIgCIIgCIJwDE0kCIIgCIIgCIJwDE0kCIIgCIIgCIJwDE0kCIIgCIIgCIJwDE0kiJRhwIAB+H//7/9FrPfTTz+hW7du+Pbbb8PWGTFiBG6++Wb3OqcxadIkPPDAA663SxAEQYSH7ANBJAaaSBApweHDh/H1119j0KBBEevee++9uPDCC9G7d+/4d8zE7bffjnvvvRe1tbXtfmyCIIgjEbIPBJE4aCJBpASfffYZVFXFiSeeaFmvsbERTz75JKZNm9ZOPTNy4okn4thjj8Xzzz+fkOMTBEEcaZB9IIjEQRMJIqnZsmULzjvvPJx55plQFAW9evXCkiVLwtZ/88034fP5cNppp+llDQ0NuPrqq5GTk4MePXoIXcuKomDBggXo06cPsrOzMWjQILz00kuGOocOHUJpaSk6duyIHj164MEHHxS6wC+44AK88MILMX1ugiAIwhqyDwSReGgiQSQtO3bswDnnnIPzzjsPv/rVr3DxxRdj9uzZmDlzJrZs2SLc5/3338eQIUMMZbfeeivee+89/Otf/8Jbb72Fd999F5s3bzbUWbBgAZ577jmUl5fj888/x8yZM3HllVfivffe0+vMmjULH374IV599VWsWbMG77//fkg7ADBs2DBs3LgRzc3NsZ8EgiAIIgSyDwSRJKgEkaSMGjVKnTJliqqqqjps2DD1gQceUP1+v5qbm6suXbpUuM+FF16oXnPNNfr/hw4dUjMzM9V//vOfetlPP/2kZmdnqzfddJOqqqra1NSkdujQQf3oo48MbU2bNk294oorVFVV1bq6OjUjI0N98cUX9e01NTVqhw4d9HYYn376qQpA/fbbb6P+7ARBEER4yD4QRHLgTfREhiBEVFVVYd26dfjoo4/g9/vxf//3f1iwYAFkWYbH40FmZqZwv8OHDyMrK0v/f8eOHWhpaUFJSYleVlBQgH79+un/b9++HY2NjfjFL35haKulpQUnn3wyAOCbb75Ba2srhg0bpm/Py8sztMPIzs4GENDjEgRBEO5C9oEgkgeaSBBJyX//+18oioLBgwdj27ZtOHz4MAYPHoxvv/0WBw8exOmnny7cr2vXrjh48KCjY9XX1wMA3njjDRx11FGGbT6fz3Hfq6urAQCFhYWO9yUIgiCsIftAEMkDrZEgkpKWlhYAQFNTEz755BMcc8wxKCgoQHl5OU488UScdNJJwv1OPvlkfPHFF/r/xx57LDIyMrBhwwa97ODBg/jqq6/0/wcOHAifz4ddu3bhuOOOM7x69uwJAOjbty8yMjKwadMmfb/a2lpDO4zPPvsMRx99NLp27RrbSSAIgiBCIPtAEMkDeSSIpGT48OHwer24++67UV9fj759++Lhhx/GsmXLsH79+rD7jRkzBnPnzsXBgwfRuXNn5OTkYNq0abj11lvRpUsXdOvWDX/84x8hy8E5dKdOnXDLLbdg5syZUBQFZ555Jmpra/Hhhx8iNzcXkydPRqdOnTB58mTceuutKCgoQLdu3TBv3jzIsgxJkgx9eP/99zF69Oi4nRuCIIgjGbIPBJFEJHqRBkGE47nnnlN79OihAlC9Xq9aUlKirl+/PuJ+w4YNU8vLy/X/Dx06pF555ZVqhw4d1O7du6v33Xefes455xgWwSmKoi5ZskTt16+fmpGRoRYWFqpjxoxR33vvPb1OXV2d+utf/1rt0KGDWlRUpC5evFgdNmyYOmfOHL3O4cOH1by8PLWiosKdk0AQBEGEQPaBIJIDSVVVNdGTGYKwoqCgAM888wx+9atf2ar/xhtv4NZbb8Vnn31meLLkNg0NDTjqqKPwwAMP6AmOHnvsMaxcuRJvvfVW3I5LEARBBCD7QBCJhaRNRFLz/fff4+DBgxEzlvKcf/75+Prrr7Fnzx5dw+oGn3zyCb788ksMGzYMtbW1uPvuuwEAF154oV4nIyMDy5Ytc+2YBEEQhBiyDwSReMgjQSQ1//73v3HppZfi0KFDIVrT9uaTTz7Bb37zG2zbtg2ZmZkYMmQIFi9eHHZhH0EQBBE/yD4QROKhiQRBEARBEARBEI6h8K8EQRAEQRAEQTiGJhIEQRAEQRAEQTiGJhIEQRAEQRAEQTiGJhIEQRAEQRAEQTiGJhIEQRAEQRAEQTiGJhIEQRAEQRAEQTiGJhIEQRAEQRAEQTiGJhIEQRAEQRAEQTiGJhIEQRAEQRAEQTiGJhIEQRAEQRAEQTiGJhIEQRAEQRAEQTjm/wMX4RW+vyRsMwAAAABJRU5ErkJggg==", "text/plain": [ "
[20:29:14] Created task 'aperture_3' with task_id 'fdve-faa2e7eb-1547-4bf7-8fd7-b3de396de288v1'. webapi.py:139\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:29:14]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'aperture_3'\u001b[0m with task_id \u001b[32m'fdve-faa2e7eb-1547-4bf7-8fd7-b3de396de288v1'\u001b[0m. \u001b]8;id=233464;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=654183;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "779a6c5b884949bfad27f5454c166038", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:29:15] status = queued webapi.py:269\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:29:15]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=122751;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=520395;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1f76d7ad145a4e29a92076c8228a5ebf", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:29:17] status = preprocess webapi.py:263\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:29:17]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=625916;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=488856;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:29:21] Maximum FlexCredit cost: 0.025. Use 'web.real_cost(task_id)' to get the billed FlexCredit webapi.py:286\n", " cost after a simulation run. \n", "\n" ], "text/plain": [ "\u001b[2;36m[20:29:21]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.025\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit \u001b]8;id=756482;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=964216;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mcost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
starting up solver webapi.py:290\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=621737;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=389666;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
running solver webapi.py:300\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=265211;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=287507;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "edc649a22db64a3ba067f380d90b73d3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:29:27] early shutoff detected, exiting. webapi.py:314\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:29:27]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=255563;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=253079;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#314\u001b\\\u001b[2m314\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
status = postprocess webapi.py:331\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=810118;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=602997;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#331\u001b\\\u001b[2m331\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fa5f8cfc0205494fbf730e9e9d63d6f5", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:29:30] status = success webapi.py:338\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:29:30]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=543480;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=336610;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#338\u001b\\\u001b[2m338\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4670b9534ed24e5890485342c0e683bb", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:29:31] loading SimulationData from data/aperture_3.hdf5 webapi.py:510\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:29:31]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/aperture_3.hdf5 \u001b]8;id=630874;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=827822;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#510\u001b\\\u001b[2m510\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim_data3 = web.run(\n", " sim3, task_name=\"aperture_3\", path=\"data/aperture_3.hdf5\", verbose=True\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's create the [FieldProjectionCartesianMonitor](../_autosummary/tidy3d.FieldProjectionCartesianMonitor.html), this time turning off the far field approximations, and then run the [FieldProjector](../_autosummary/tidy3d.FieldProjector.html) again.\n", "\n", "The [FieldProjectionCartesianMonitor](../_autosummary/tidy3d.FieldProjectionCartesianMonitor.html)'s xy observation grid is defined in a local coordinate system whose z axis points in the direction along which we want to project fields, in this case the +y axis. The mapping between local and global coordinates is as follows:\n", "* `proj_axis=0`: local x = global y, local y = global z\n", "* `proj_axis=1`: local x = global x, local y = global z\n", "* `proj_axis=2`: local x = global x, local y = global y" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "execution": { "iopub.execute_input": "2023-04-08T03:29:32.041175Z", "iopub.status.busy": "2023-04-08T03:29:32.041043Z", "iopub.status.idle": "2023-04-08T03:29:47.810306Z", "shell.execute_reply": "2023-04-08T03:29:47.809813Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "0f2250602092442e811043a992f765fd", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# make the projection monitor which projects fields without approximations\n", "xs = np.linspace(-sim_size[0] / 2, sim_size[0] / 2, 100)\n", "ys = np.linspace(-sim_size[1] / 2, sim_size[1] / 2, 100)\n", "monitor_intermediate_proj = td.FieldProjectionCartesianMonitor(\n", " center=[\n", " 0,\n", " offset_mon,\n", " 0,\n", " ], # the monitor's center defined the local origin - the projection distance\n", " # and angles will all be measured with respect to this local origin\n", " size=[td.inf, 0, td.inf],\n", " freqs=[f0],\n", " name=\"inter_field_proj\",\n", " proj_axis=1, # because we're projecting along the +y axis\n", " x=list(xs), # local x coordinates - corresponds to global x in this case\n", " y=list(ys), # local y coordinates - corresponds to global z in this case\n", " proj_distance=r_proj_intermediate,\n", " far_field_approx=False, # turn off the far-field approximation (is 'True' by default)\n", ")\n", "\n", "# execute the projector, with the projection field monitor as input, to do the projection\n", "# let's also time this, for later use\n", "import time\n", "\n", "t0 = time.perf_counter()\n", "projected_field_data_noapprox = get_proj_fields(\n", " sim_data3, monitor_near, monitor_intermediate_proj\n", ")\n", "t1 = time.perf_counter()\n", "proj_time_new = t1 - t0\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's compare the following three results:\n", "* Directly-measured fields at the projection distance\n", "* Projected fields with approximations turned off\n", "* Projected fields with approximations turned on (just to compare the accuracy)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "execution": { "iopub.execute_input": "2023-04-08T03:29:48.070297Z", "iopub.status.busy": "2023-04-08T03:29:48.070168Z", "iopub.status.idle": "2023-04-08T03:29:54.720295Z", "shell.execute_reply": "2023-04-08T03:29:54.719746Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6f7be4aae57a445e8fe8a45df3609896", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Compute projected fields *with* far field approximations, to facilitate an accuracy comparison\n", "monitor_intermediate_proj_approx = td.FieldProjectionCartesianMonitor(\n", " center=[\n", " 0,\n", " offset_mon,\n", " 0,\n", " ], # the monitor's center defined the local origin - the projection distance\n", " # and angles will all be measured with respect to this local origin\n", " size=[td.inf, 0, td.inf],\n", " freqs=[f0],\n", " name=\"inter_field_proj_approx\",\n", " proj_axis=1, # because we're projecting along the +y axis\n", " x=list(xs), # local x coordinates - corresponds to global x in this case\n", " y=list(ys), # local y coordinates - corresponds to global z in this case\n", " proj_distance=r_proj_intermediate,\n", " far_field_approx=True, # turn on the far-field approximation\n", ")\n", "\n", "# execute the projector, with the projection field monitor as input, to do the projection\n", "# let's also time this, for later use\n", "import time\n", "\n", "t0 = time.perf_counter()\n", "projected_field_data_approx = get_proj_fields(\n", " sim_data3, monitor_near, monitor_intermediate_proj_approx\n", ")\n", "t1 = time.perf_counter()\n", "proj_time_new_approx = t1 - t0\n" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "execution": { "iopub.execute_input": "2023-04-08T03:29:54.840982Z", "iopub.status.busy": "2023-04-08T03:29:54.840718Z", "iopub.status.idle": "2023-04-08T03:29:54.858594Z", "shell.execute_reply": "2023-04-08T03:29:54.858106Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Client-side field projection *with approximations on* took 6.63 s\n", "Client-side field projection *with approximations off* took 15.75 s\n" ] } ], "source": [ "# let's see how long this took compared to the previous case when the approximations were turned on\n", "print(\n", " f\"Client-side field projection *with approximations on* took {proj_time_new_approx:.2f} s\"\n", ")\n", "print(\n", " f\"Client-side field projection *with approximations off* took {proj_time_new:.2f} s\"\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As expected, when the approximations are turned off, the projections take longer. Now let's see if it was worth it!" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "execution": { "iopub.execute_input": "2023-04-08T03:29:54.860405Z", "iopub.status.busy": "2023-04-08T03:29:54.860270Z", "iopub.status.idle": "2023-04-08T03:29:54.879789Z", "shell.execute_reply": "2023-04-08T03:29:54.879229Z" } }, "outputs": [], "source": [ "# Helper function to plot fields\n", "def make_cart_plot(phi, theta, vals1, vals2, vals3):\n", " n_plots = 3\n", " fig, ax = plt.subplots(1, n_plots, tight_layout=True, figsize=(9, 3))\n", " im1 = ax[0].pcolormesh(ys, xs, np.real(vals1), cmap=\"RdBu\", shading=\"auto\")\n", " im2 = ax[1].pcolormesh(ys, xs, np.real(vals2), cmap=\"RdBu\", shading=\"auto\")\n", " im3 = ax[2].pcolormesh(ys, xs, np.real(vals3), cmap=\"RdBu\", shading=\"auto\")\n", " fig.colorbar(im1, ax=ax[0])\n", " fig.colorbar(im2, ax=ax[1])\n", " fig.colorbar(im3, ax=ax[2])\n", " ax[0].set_title(\"Ex\")\n", " ax[1].set_title(\"Ey\")\n", " ax[2].set_title(\"Ez\")\n", " for _ax in ax:\n", " _ax.set_xlabel(\"$y$ (micron)\")\n", " _ax.set_ylabel(\"$x$ (micron)\")\n" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "execution": { "iopub.execute_input": "2023-04-08T03:29:54.881569Z", "iopub.status.busy": "2023-04-08T03:29:54.881435Z", "iopub.status.idle": "2023-04-08T03:29:56.435010Z", "shell.execute_reply": "2023-04-08T03:29:56.434519Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalized RMSE for |E|, no far field approximation: 0.64 %\n", "Normalized RMSE for |E|, with far field approximation: 24.03 %\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2wAAAErCAYAAACirgCsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADtuklEQVR4nOx9eZwkRZX/NyIys6vnQjmGAURBFg8OYQVB8IBVZEBEWeVcOZVD3VFwXFT8cYrsiCg7qOiIy+EuIIiKu+qC4giLCoqArCLCuivXqjNcMkdPd2dmRPz+yIyIF1mZ1VXdNdPHxPfz6ZmoyKisyKrKV/Hi+973Ma21RkBAQEBAQEBAQEBAQMCUA5/sCQQEBAQEBAQEBAQEBATUIzhsAQEBAQEBAQEBAQEBUxTBYQsICAgICAgICAgICJiiCA5bQEBAQEBAQEBAQEDAFEVw2AICAgICAgICAgICAqYogsMWEBAQEBAQEBAQEBAwRREctoCAgICAgICAgICAgCmK4LAFBAQEBAQEBAQEBARMUQSHLSAgICAgICAgICAgYIoiOGwBAQEBARsF9t9/f+y///5jjsvzHB/96Eex7bbbgnOOww47DADAGMP555/f8+s+9thjYIzhmmuuGXPsiSeeiO22267n1wgICAgImLkIDltAQEDANMQ111wDxhgYY/jpT3/adlxrjW233RaMMbztbW+bhBlOX1x11VW45JJLcPjhh+NrX/saPvzhD0/2lAICAgICNmJEkz2BgICAgIDxo9Vq4frrr8frX/96r/8///M/8X//938YGBiYpJlNX/z4xz/GNttsg3/6p3/y+oeHhxFF4WczICAgIGDDIjBsAQEBAdMYb33rW3HTTTchz3Ov//rrr8cee+yBBQsWTNLM+oehoaEN+npPPfUUXvCCF7T1t1qt4LAFBAQEBGxwBIctICAgYBrjmGOOwbPPPovbbrvN9qVpim9+85v4u7/7u9rnKKWwdOlS7Lzzzmi1Wthyyy1x2mmn4S9/+Ys37t/+7d9wyCGHYOutt8bAwAB22GEHXHjhhZBSeuN+//vf413vehcWLFiAVquFF73oRTj66KOxatUqAJ1zuKp5Yeeffz4YY3jooYfwd3/3d3jhC1/osYfXXnst9thjDwwODmLTTTfF0UcfjSeffLLtvFdccQV22GEHDA4OYq+99sJPfvKTMd9LM8/bb78dv/3tb23I6R133FE7VwD44x//iPe85z3YcsstMTAwgJ133hlXXXXVmK8FAN/5znewyy67oNVqYZdddsHNN99cO+6GG27AHnvsgblz52LevHnYddddcdlll3X1GgEBAQEB0x9hqzAgICBgGmO77bbDPvvsg69//es4+OCDAQC33HILVq1ahaOPPhqf//zn255z2mmn4ZprrsFJJ52ED33oQ3j00UfxxS9+Eb/61a/ws5/9DHEcAyjy5ObMmYPFixdjzpw5+PGPf4xzzz0Xq1evxiWXXAKgcA4XLlyI0dFRfPCDH8SCBQvwxz/+Ed/73vfw/PPPY5NNNhnXdR1xxBHYcccd8Y//+I/QWgMALrroIpxzzjk48sgjcfLJJ+Ppp5/GF77wBbzxjW/Er371K8uKXXnllTjttNOw77774owzzsAf/vAHvP3tb8emm26KbbfdtvE1t9hiC/zrv/4rLrroIqxduxZLliwBALzyla+sHb9y5Uq89rWvBWMMixYtwhZbbIFbbrkF733ve7F69WqcccYZja/1wx/+EO9617uw0047YcmSJXj22Wdx0kkn4UUvepE37rbbbsMxxxyDN7/5zbj44osBAL/73e/ws5/9DKeffnq3b2dAQEBAwHSGDggICAiYdrj66qs1AP3LX/5Sf/GLX9Rz587V69at01prfcQRR+i/+Zu/0Vpr/ZKXvEQfcsgh9nk/+clPNAB93XXXeee79dZb2/rN+ShOO+00PWvWLD0yMqK11vpXv/qVBqBvuummxrk++uijGoC++uqr244B0Oedd559fN5552kA+phjjvHGPfbYY1oIoS+66CKv/ze/+Y2Oosj2p2mq58+fr3fffXc9Ojpqx11xxRUagN5vv/0a52mw33776Z133nnMub73ve/VW221lX7mmWe8cUcffbTeZJNN7PtXd/2777673mqrrfTzzz9v+374wx9qAPolL3mJ7Tv99NP1vHnzdJ7nY847ICAgIGBmIoREBgQEBExzHHnkkRgeHsb3vvc9rFmzBt/73vcawyFvuukmbLLJJnjLW96CZ555xv7tsccemDNnDm6//XY7dnBw0LbXrFmDZ555Bm94wxuwbt06PPzwwwBgGbQf/OAHWLduXd+u6X3ve5/3+Nvf/jaUUjjyyCO9eS9YsAA77rijnfe9996Lp556Cu973/uQJIl9/oknnjhutq8OWmt861vfwqGHHgqttTenhQsXYtWqVbj//vtrn/vnP/8ZDzzwAE444QRvTm95y1uw0047eWNf8IIXYGhoyAt5DQgICAjYuBBCIgMCAgKmObbYYgsccMABuP7667Fu3TpIKXH44YfXjv3973+PVatWYf78+bXHn3rqKdv+7W9/i7PPPhs//vGPsXr1am+cyU/bfvvtsXjxYlx66aW47rrr8IY3vAFvf/vbceyxx07IQdp+++3b5q21xo477lg73oRxPv744wDQNi6OY7z0pS8d93yqePrpp/H888/jiiuuwBVXXFE7hr6XFE1zBICXv/zlnqP3gQ98AN/4xjdw8MEHY5tttsGBBx6II488EgcddFAfriIgICAgYDogOGwBAQEBMwB/93d/h1NOOQUrVqzAwQcfXKtyCBSCI/Pnz8d1111Xe3yLLbYAADz//PPYb7/9MG/ePHzyk5/EDjvsgFarhfvvvx8f+9jHoJSyz/nc5z6HE088Ef/2b/+GH/7wh/jQhz6EJUuW4Oc//zle9KIXgTFW+1pV8RIKyu6ZeTPGcMstt0AI0TZ+zpw5jedaHzDXf+yxx+KEE06oHfOqV71qwq8zf/58PPDAA/jBD36AW265BbfccguuvvpqHH/88fja17424fMHBAQEBEx9BIctICAgYAbgb//2b3Haaafh5z//OW688cbGcTvssAN+9KMf4XWve12bU0Rxxx134Nlnn8W3v/1tvPGNb7T9jz76aO34XXfdFbvuuivOPvts3HXXXXjd616HZcuW4VOf+hRe+MIXAiicQArDNHWDHXbYAVprbL/99njZy17WOO4lL3kJgIKRe9Ob3mT7syzDo48+it12263r1+yELbbYAnPnzoWUEgcccEBPz6VzrOKRRx5p60uSBIceeigOPfRQKKXwgQ98AF/5yldwzjnn4K/+6q/GdwEBAQEBAdMGIYctICAgYAZgzpw5+PKXv4zzzz8fhx56aOO4I488ElJKXHjhhW3H8jy3TpVhsXSp0AgUipBf+tKXvOesXr26rQbcrrvuCs45RkdHAQDz5s3D5ptvjjvvvNMbVz1XJ7zzne+EEAIXXHCBNyczx2effRYAsOeee2KLLbbAsmXLkKapHXPNNde0OYwTgRAC73rXu/Ctb30LDz74YNvxp59+uvG5W221FXbffXd87Wtfs6GlQKEI+dBDD3ljzXUZcM4tc2fe34CAgICAmY3AsAUEBATMEDSF5lHst99+OO2007BkyRI88MADOPDAAxHHMX7/+9/jpptuwmWXXYbDDz8c++67L174whfihBNOwIc+9CEwxvCv//qvbc7Sj3/8YyxatAhHHHEEXvaylyHPc/zrv/6rdWgMTj75ZHz605/GySefjD333BN33nkn/vu//7vra9thhx3wqU99CmeddRYee+wxHHbYYZg7dy4effRR3HzzzTj11FPxD//wD4jjGJ/61Kdw2mmn4U1vehOOOuooPProo7j66qv7msMGAJ/+9Kdx++23Y++998Ypp5yCnXbaCc899xzuv/9+/OhHP8Jzzz3X+NwlS5bgkEMOwetf/3q85z3vwXPPPYcvfOEL2HnnnbF27Vo77uSTT8Zzzz2HN73pTXjRi16Exx9/HF/4whew++67N5YbCAgICAiYWQgOW0BAQMBGhmXLlmGPPfbAV77yFXziE59AFEXYbrvtcOyxx+J1r3sdAGCzzTbD9773PXzkIx/B2WefjRe+8IU49thj8eY3vxkLFy6059ptt92wcOFCfPe738Uf//hHzJo1C7vtthtuueUWvPa1r7Xjzj33XDz99NP45je/aUU0brnllkbxkzp8/OMfx8te9jL80z/9Ey644AIAwLbbbosDDzwQb3/72+24U089FVJKXHLJJTjzzDOx66674t///d9xzjnnTPSt87DlllvinnvuwSc/+Ul8+9vfxpe+9CVsttlm2HnnnW3NtCYcdNBBuOmmm3D22WfjrLPOwg477ICrr74a//Zv/2YLdQNFjtwVV1yBL33pS3j++eexYMECHHXUUTj//PPBeQiSCQgICNgYwHR1uzQgICAgICAgICAgICBgSiBszwUEBAQEBAQEBAQEBExRBIctICAgICAgICAgICBgiiI4bAEBAQEBAQEBAQEBAVMUwWELCAgICAgICAgICAiYoggOW0BAQEBAQEBAQEBAwBRFcNgCAgICAgICAgICAgKmKILDFhAQEBAQEBAQEBAQMEURHLaAgICAgICAgICAgIApiuCwBQQEBAQEBAQEBAQETFEEhy0gICAgICAgICAgIGCKIjhsAQEBAQEBAQEBAQEBUxTBYQsICAgICAgICAgICJiiCA5bQEBAQEBAQEBAQEDAFEVw2AICAgICAgICAgICAqYogsMWEBAQEBAQEBAQEBAwRREctoCAgICAgICAgICAgCmK4LAFBAQEBAQEBAQEBARMUQSHLSAgICAgICAgICAgYIoiOGwBAQEBAQEBAQEBAQFTFMFhCwgICAgICAgICAgImKIIDltAQEBAQEBAQEBAQMAURXDYAgICAgICAgICAgICpiiCwxYQEBAQEBAQEBAQEDBFERy2gICAgICAgICAgICAKYrgsAUEBAQEBAQEBAQEBExRBIctICAgICAgICAgICBgiiI4bAEBAQEBAQEBAQEBAVMUwWELCAgICAgICAgICAiYoggOWwCuueYaMMYa/37+859P9hQDAgICPAS7FRAQMB0RbFfAeBBN9gQCpg4++clPYvvtt2/r/6u/+qtJmE1AQEDA2Ah2KyAgYDoi2K6AXhActgCLgw8+GHvuuedkTyMgICCgawS7FRAQMB0RbFdALwghkQFd4bzzzgPnHMuXL/f6Tz31VCRJgv/6r/+apJkFBAQEtENrje222w7veMc72o6NjIxgk002wWmnnTYJMwsICAjojP33378xZPKaa66Z7OkFTAICwxZgsWrVKjzzzDNeH2MMm222Gc4++2x897vfxXvf+1785je/wdy5c/GDH/wAX/3qV3HhhRdit912m6RZBwQEbMzoZLeOPfZYfOYzn8Fzzz2HTTfd1B7/7ne/i9WrV+PYY4/d0NMNCAgIANDZdv2///f/cPLJJ3vHrr32WvzgBz/A/PnzN+Q0A6YImNZaT/YkAiYX11xzDU466aTaYwMDAxgZGQEAPPjgg9hjjz1w/PHH45JLLsEuu+yCrbbaCnfffTeiKPj+AQEBGw7d2K3//u//xstf/nJ8+ctfxvve9z57/B3veAd+/etf4w9/+AMYYxtqygEBAQFdr7ko7rrrLuy///447rjjcOWVV67vKQZMQYRVdoDF5Zdfjpe97GVenxDCtnfZZRdccMEFOOuss/DrX/8azzzzDH74wx8GZy0gIGDS0MluvexlL8Pee++N6667zjpszz33HG655RZ89KMfDc5aQEDApGGsNZfBihUrcPjhh2P33XfHl770pQ01vYAphrDSDrDYa6+9xkyAPfPMM3HDDTfgnnvuwT/+4z9ip5122kCzCwgICGjHWHbr+OOPx6JFi/D444/jJS95CW666SZkWYbjjjtuA84yICAgwEc3a648z3HkkUdCSolvf/vbGBgY2ECzC5hqCKIjAT3hD3/4A37/+98DAH7zm99M8mwCAgICOuPoo49GHMe47rrrABR5IHvuuSde/vKXT/LMAgICAjrjzDPPxN13341vfOMbeNGLXjTZ0wmYRASHLaBrKKVw4oknYt68efjEJz6Br3/96/j2t7892dMKCAgIaMSmm26KQw45BNdddx0ef/xx/OxnPwvsWkBAwJTHDTfcgKVLl+Kzn/0s9ttvv8meTsAkIzhsAV3j0ksvxV133YUrrrgCF154Ifbdd1+8//3vb1M5CggICJhKOO644/DQQw/hzDPPhBACRx999GRPKSAgIKARDz74IE4++WQce+yxOP300yd7OgFTACGHLcDilltuwcMPP9zWv++++2J0dBTnnHMOTjzxRBx66KEACqWj3XffHR/4wAfwjW98Y0NPNyAgIKCj3XrpS18KADjkkEOw2Wab4aabbsLBBx8cZLEDAgImHZ1sl1GRfOMb34hrr7227bixbQEbD4LDFmBx7rnn1vb/8z//M77yla9g8803x9KlS23/jjvuiCVLluD000/HN77xDRx55JEbaKYBAQEBBZrs1tVXX20XNUmS4KijjsKXvvSlEA4ZEBAwJdDJdj399NMYGhrCqaeeWns8OGwbH0IdtoCAgICAGY8Pf/jDuPLKK7FixQrMmjVrsqcTEBAQEBDQNUIOW0BAQEDAjMbIyAiuvfZavOtd7wrOWkBAQEDAtEMIiQwICAgImJF46qmn8KMf/Qjf/OY38eyzz4bk/YCAgICAaYngsAUEBAQEzEg89NBDePe734358+fj85//PHbffffJnlJAQEBAQEDPCDlsAQEBAQEBAQEBAQEBUxQhhy0gICAgICAgICAgIGCKIjhsAQEBAQEBAQEBAQEBUxQbZQ6bUgp/+tOfMHfuXDDGJns6ATMIWmusWbMGW2+9NTjvvB8yMjKCNE0bjydJglar1e8pBkxTBLsVsD7Rre0ay24BwXYFOAS7FbA+sTHZrY3SYfvTn/6EbbfddrKnETCD8eSTT+JFL3pR4/GRkREMzt0UyIcbxyxYsACPPvrolDYgARsOwW4FbAh0sl3d2C0g2K4Ah2C3AjYENga7tVE6bHPnzgUA3HzXrzF7zlwkgiOJip2fRDBEvGwzhkQU7VgwJKLw3oXKwPLSU89HwPJRACD/Z7atsxHo0ZGyPQpdPk9nGXRajIGS0DIr2wpQ0s5VS9c2YEIAXBQPOAczuwoiAYviYkwcA6YtYrBkoGgPDIKJol9HA+X/MSCSoi0i6KhVtmM7RjGBVKrikhWQykKrJtcamSraUmnbn0ltx4/kyo7JlUZW9mdKIy/bSgOq1L+RWkOpdi0czt3unCh36jhjiIRrt6LivYg5Q1R+XgOcY6D8fAcibj9TwRkS7j73mLQjFPNi+aj3+bp26j7jPIUeLQzB6r/8Bdsf+l77HWtCmqZAPox4l2OA8vPwIDOsePDrSNN0yhqPgA0L8536+a8fxuCcOShvNSitUd5GkFrDyEhlUtt7SmkNc0uZsQaqQXeKk91wwWm/O27GCO7GMwZwuLZ5jm2DwZgsRl6HwcXoM8bs6wgGuzNPTEB5TtfPbD+zr8W0BnR5L2tl2/D6Nel3/zOVuz7zHmlVjLf95TlUXtjutnNXX1OWTyV2XknfzitV36ao20ku+/zfB2HtPRiD5pHt18K0I2gusGbtWmz/6jd0tF1j2i0g2K4AD+b79NjP/gPz5sz2jjFNvt9em9gkes8Y1N07Stn7RStpz6eVtON1lrl7Skl3zoY1mJayMr7oV7mElub8bl5aKtcvJbT2j1FUH/cCRgyy12a8uP/Lfu+YtQ8cPCrH8MpaUji74exJbPvsWpMej2N7DsYFwDg5N284t2ibF5jrA2VimbsGzdrt3uq1Q9judW/dKOzWRumwmR/5LTd7AebMnYeYO8csoW3qpEmyWM8kGIofc4YcTBdtLUtnLB+CTgsnTQ27NvLUtnWWOedNKag0t22D6g1tbj7G3Y1Y3HzmB1lZA8iUAjOLpigGKx0WJgA2UN5cA8ZJS6Bj47y1/HaNw5ZK55il1ElTGjorxshcgUnj9CjovDB0ea6Q89J5kwpZ2U6lgiSOn2SubVHaZcEZoF07KZd5gjGM6tJhA0Or7B9lHK3yRpdcQJYGYlYsgMg4uwxMmPeIQZDvQOw5b8Xnx7JKu/zsWVy8p92GfvCB2WCls0xhvksBAQbmOzVn7lzMmjPXOmySOGxaF48B35FTWnv9vYAzZjdIzGOgs5NmHCtmnS7ngHlOGqt30hr7Qc/t99P5NTpsBm1OWLvDZtuqcrzpedTZk8bZa3LeyKKwsknnLRZ7QN2CiHFOFmSRW/C0OWxuKdCN7WqyW8W8g+0KcDDfp01aAvNablFerHXKx0rC3vFNGxjMOUzWGdMSdmEAVT5G4eSZ+yjPXFsrwKzTiDOm89SuvbRUUFlu22YdpqT0+5Xpp06a8s5jr1UqqJrNl16dNuqAGXDOax24tnViTT+PI/AaB4/HkXuuLP+PEn9TiJVrnTx39iZyzhu0ADOfL3jFDspyLoLstNHr9J26WgfPPM7L194I7FYQHQkImEQwJsB4zR/dbeoBl19+Obbbbju0Wi3svffeuOeeezqOv+mmm/CKV7wCrVYLu+66K/7jP/6jcez73vc+MMawdOnScc0tICBgZqDRbk3AdgUEBASsT0x3u7VRMmwGrYhjsAyRowybCasTKgMbXQsAYNkIWDbc1tYjQ5DDQ2V7HQCfVdOjw7YtR1K7QyPTzLZVlkNVdmOq6LRDIpLYtVvlrkeUgOUFxc+UAit3rDwP3eyKMA4os9OVQ6sylJLsCCtwG1KlALe7r1yIVZprjOTFg1GpsC4rXnMkVxgm7azcaRpOJdJyfJor25ZKI6dsW014pKDhkZyEO5afXULag4lAy4RHRgIDkWPYZsW0LcoxLlSyRUIoB6JBRCXjyMUwdGZCThPLtqE10jbXThBxXOxcVaBZ7+URb7zxRixevBjLli3D3nvvjaVLl2LhwoV45JFHMH/+/Lbxd911F4455hgsWbIEb3vb23D99dfjsMMOw/33349ddtnFG3vzzTfj5z//Obbeeuue5xWw/mFuB6n90ENwc9O2hxMX43Vtf3FOx6TRPnr+ppBH2m/O7Y5XQhkb+g2qrBq95iqzVoyBj5JV0iAsG+MAjJ3ljnmqY8M4XGiTdmFXTCvS7zNp9HzmNbWqsHO85rWUBFBGTFSZNwPax2sWGdXQJRpGVBNSNB402S1gfLYrYOZDDQ8Vy4y60EbAsWc0yoiEM0IpEv5IQiLNeMKSQUnoLHXns6GMmWPMsty2ZZo5xizNPfaMRj/Z8eS5WkqPVXOMnGPbzLHi//b7Q3XBtPEKu+YigvywR05YNZ9tc0yaiCM3prQVPIm8NSZPItsGAJHEtQwcp6wa5zbKyLNDUWLbmkYACBo2WThOQBlAZdi8CtNm373yuCrX391gututjdphGxSFw9aKSK4aFHhaOmnpOhcGma6zTpoaWg1FnbN1q20bAHQ6gnxdsXDPh0chRwrDIbPctlWaW4q8uMlr4rTh07/cOGbkZioctqItWgmi0gkUrRyi5sdekxuE5eXCIIqB0knzFhjan4v5OmuSb6bgQq0y5ZyxkVxZ5204k9Z5G84khtOynUqsK9tprlzIZa4glWsb5DWOW8SZddgEZxDcOWyD1gHjGEyK9mAiMKdVvF8twa2TNmcgsu1ZMcec8j1NlbbOXioYBsrvSSuZA2FiofMESEtDM9Cbw8aIkfJQ1zcGLr30Upxyyik46aSTAADLli3D97//fVx11VX4+Mc/3jb+sssuw0EHHYQzzzwTAHDhhRfitttuwxe/+EUsW7bMjvvjH/+ID37wg/jBD36AQw45pOd5BfQXHIVzoss7UmsGVf7YMAZwXXxHFdM2TJELoOb2QYx6J82cq3g9v88PW3ROXV0OWa/hjm4e7c5ZdUzTfBvBOOhbwNoaAMr3TmuyOKKhjwDAiX2sCZvUWgEmxLAaBkly3qytp84ed6/jOXIAWdw25GDY+dFcEO4cVsbJh+r67ZgenLlGu1V9/YCAEnp0GDpizjEDKqHAzgGqdchoLhp10kgOW1OaiWlXwxql2TSnThpZm6mKI2ccq+KcpRMoFXRpXJXUnmOmSueMbsLT/Pw6560TjJMG+Dn91nnyUjs4uGlzZp0xnjhHigvfMatbY1KHjjp6vGxzISrncG3rHNEctibnjfPicXFSO17TEEgvNLI8PtpZSIRiututEBIZEDCJ4FHc+AcAq1ev9v5GR0drz5OmKe677z4ccMAB7tyc44ADDsDdd99d+5y7777bGw8ACxcu9MYrpXDcccfhzDPPxM477zzRyw0ICJgB6GS3bE51QEBAwBTCdLdbGzXDNitmmB0zDEQcPDMCEuvA0sJj56Sth9dADq0BUDJs69aU/UOQwwXblg8V58iGhpEbVm0kJe1RSG/Xx+3QGGiy+0J3RZhgdhdFxBFh2GJEZRikSHO7kxQTap5+yJpzy7Bps/sRZVYlEtVd3Roo7dg2qQo1OqD4f9SERObShkGuyyTWjhbzGk4l1o4U7XWpGzOc5va51fBIu3ulDKNA3iPm7zhFJpyVMxsSOSsRGCzfr8FYYFbJts1pRZZtm51Kx7YlAusGlG3PLse3BEdWirfkSmOgfP8GBhKwckddJd3v9gBjM2xVOeTzzjsP559/ftvwZ555BlJKbLnlll7/lltuiYcffrj2tVesWFE7fsWKFfbxxRdfjCiK8KEPfaibywnYAGAlg2UiOCirBu5UIplmPqPUwEBVGTTbX8OkeQwbSNhkVbGxE8NGzm2OodpH51eZ+IRKOTUpjnmhkmXT2kHhRxtQlUgyVtcwaVBVhs2EqOb1Aick5JIyb8XU6Bw62OjqNVomjTnbX8e89fDGTved6oAND52OQHFikeoYs7r+vF0kpNcQR0lYNUVYNcqkuXQVyrZJuz6TGQmJTEnoo9KQqREK0pY1o8xb8bidbZsIw0ZZNdvXtmYs7XMiLCPHBIdIXNikiCnb5tguQaK4gCLCi9PwScK2CTsmqoRQjthz0BBKTUMoDZNGmDdw4cYA8NUpXdgkE8KJ+nXz/k1zu7VRO2wBAZMNLhpy2MoF2ZNPPol58+bZ/oGBgQ02t/vuuw+XXXYZ7r///lDwNCAgwKLJbgHtofQBAQEBUwHT3W5t1A5bi2u0uAYfXQuWFiwZS4csq4bRIcg1fwEAqKE1LldtaA3ytUWeWzY0bPPVsiH3vxwpQtfykRT5cCH+ITPHqslUOsaoYZeFCVa7KyISgajldj9UVpyfsmr+eThESffqdAQov7Am3puplp9/MYbstyY1nWg+W5HDVrRHc2XrrdG8tbUjOdYQtm3NSGbbhlXLMwmZm8RdV5NNV/5vu07OwEw+m+AQJRu2SnAkJIfNMWwx5gwU7+NcwrbNa8WOHRyIMCcrxm8yEGNQFZ9BHjEnvCIYWvGsYm4Dczq+d21zjhPwuN2AqFIQYd68eZ7D1oTNN98cQgisXLnS61+5ciUWLFhQ+5wFCxZ0HP+Tn/wETz31FF784hfb41JKfOQjH8HSpUvx2GOPjTmvgP6Dlzlg2jrR2qReFeIilhnT3q0s2jLAzLjyvE25avAFPQx/I3gHIREyV6COYatn9Vit7fGZJp827BzVrztsNHgvVVEIYwzQaN9x9ebXViagQYCkhknTKnYMHqkZ1ZjzppW7bDW2jfYuhOSAWPl+j3kbRw5bg90CnO0KCKBQw+ugua7PTysf236Tl5ZnNuetrvxRkVdWsm2UYctctFFbf7leojlpKsstS0bXaUpqyMyt2cxaTabSy1uj451giWPbvBw22XndR8uuVKMLDJhgPrNGWDWXt+Zy2HgivHw2YZg04doiFt54w7yZ40UJAMqwxeXzIuS0TIDRVKCsGikfQFk42mZ8pKgJDCNG4vLZzDvilykp+tVwDzls09xubdQOGx9dCz7KwNJhJzQyOgQ1VDpma5+HMmGQa/4COVSMSVcPIV3jwiCzoeIL4xy2UeRl2F8+nEOa2mSpdNQ5odGr8BJIjQOSCHJjcfvcqOUbPUPxewpBgoPHpWplnNii37pUkdRZCjZQszCo7DhQP8lG9kBboZFM+kWxR4zDljqHbV0qsbZ00taR8Mg0lchLw5hnCsqEREplnTcTCllEDdUbO+OkMcYgTHik4Bgp2+tijlVl6ONgK8Pc0kmjztsLZuXYZFZhOOZlEiOtoj2aK2xixieRK1ZMnLeU1xuDJjRR9I20fQOSJMEee+yB5cuX47DDDgNQfBeWL1+ORYsW1T5nn332wfLly3HGGWfYvttuuw377LMPAOC4446rzXE77rjjrLBJwIYHY6UyqjJCI8yFQXLtftx0RUaRoC78sOpEiYYQR+qYiTEcsrp6aADA6EJtvDubzNX20V0oIVIfhy6Kai1JF/4QIyngnIbvMOfY6bZabSSc0ivM7cQMvPGVulPV8V5f40QrjhkqoZJcQDNeW5S2+ZTNoUW92q6AjQM6G4Ee8R00v+i1WRv5qoueSEharllqFB1lmnvhji4MUnrhjq4t7dpMkbUZDXFUqbIOG3XMZCY9x4uGRBrbIrX2a2VWbApV6O0mMpL4Z56iryC2Wnh22w+JNG0uGERsnCfnpIlYgBNSgJO1pxlLnTgTEim88EhhwyMl6RfUSctI2GRWUZ40yuacOztCC3DX1GfTWX9CIqeD3dqoHbaAgMmGiGLwGoqe6XpnvhMWL16ME044AXvuuSf22msvLF26FENDQ9a5Ov7447HNNttgyZIlAIDTTz8d++23Hz73uc/hkEMOwQ033IB7770XV1xxBQBgs802w2abbea9RhzHWLBgAV7+8pf3PL+AgICZgSa7BYzPdgUEBASsb0x3u7VRO2x8dC34SMGqYaRg0uSavzhWbe3zUGVIZLZmHdLVhWx/WmlnQwVjla4tdgfykRz5cLGLk43k3q6MTN3OkYEi2yuciIswshMiEm53OqJW5IVT1oUIygodLcpdJZalllljtO5JXZJ8AxQKZg0oNozNpSitbUhkJpVXY83I9w9nTsp/7UiO0TI8Mk8VYdgc2yZz7bFtQMFOdiNAwgnDZti2KOaIyvc0HcmxbqBoPz+Q4QUlq+aVHpgVW6ZwNI/t9Y3kCpsMFOOl5naHLM96Ywv6xbABwFFHHYWnn34a5557LlasWIHdd98dt956qxUWeeKJJ2zSMADsu+++uP7663H22WfjE5/4BHbccUd85zvfaavBFjC1YGqamXIWTMNK/NN7oClqzhMWIc9pYtIEDY8kTBqtrcYqYYCecAbQJtDhJtnF/dIkFMJc0TlPmb/6HBMNUGHVXFg3EQagUQRjz4y8rm4QUuFFnUsUNom+XyZUkqncf5+sLXbCJG3M21jvK0Et+8iYz7aJyJUi6Oa6p/lOdcCGhx4dgaZ12JT0wh2dHL5CNyGP5niduIjKMhsSWYRH0jWYCXFUXrijSk0oo/KZt8yNp6Ijxp6kypU2krp4XLQpw+beBzqWQjYY7Gp9zKKvnWWr9iecQZQkvkilrS3LGfNFRwyrFgsrOiJiTsIfHavmr0fzmudFUEasJIst26Yyn2Fz/bkTNUlzvyQArSdXIzpiBZRGA8MWEBCwAcCjpH7HZ5y7PYsWLWoMgbzjjjva+o444ggcccQRXZ8/5K0FBAQ02i1g3LYrICAgYH2in3ZryZIl+Pa3v42HH34Yg4OD2HfffXHxxRev1+ijjdphYyNrwGINDK+GWvM8gCJXTa0t2vnqVRh9vmDb0tXrMPp8kcOWDw1jdHWRtza6OkVaMmyWVRvKkI2YHSDHqmVKNcY00/hksxMiaB4WERrxk1n9MgBm5yIfSe3Ohcpc3LbIMxcrXibfUhndXqG0JqIjjvnKlPYYttTms+WuP5XIzXszmns5bHnq2DbDrNlcNiWhyjy84j1wczcSsXQnRUQuWVZEjmGLBwSi0aKdDUiktXl2A5ZtS+cokq8X2d14pV07z3tk2FgDw8am/m5PwOSAl7uojlUDdKk6Qr81Svu5agadCldTJs3YJFoImylJxDIc08OqMvUGdKx5zS5YNY8VIqwwq4hl2HGEbeskniEJq2YZNjSwbXQ+3eS0ecxlO+PJmbaMnOAMnJlk+8Tm/HEQ5q2aw9YkTAI0R0ZoVft+aObKu4Dxgl3rhWFrsFvmWEBAG/IMOoWXn2ZZtQrD1sSqUQl/oH+sWtOYQta/ZMRy5bFnrg2vTRm0prZBHatG7+LqnVvPqrFKW7f1J7zSLt/HhDOI1Ggm5IQpE455K0XXVKogE2n7RPneiUS6MbEEN2vNOK9l2+hnzQS3c1GCg5efOxeilmHztBlMnlsZMdYN+mm3/vM//xN///d/j9e85jXI8xyf+MQncOCBB+Khhx7C7NmzezpXt9ioHTasex7gGeSa553DtupZZKsL0ZF09ZB10kafX4N0dSE0Mrp6FKOrTRhkimyo+MJkRGgkLW/4VGkMS3eT11HkQDOlnZSGoNVBSVKaOhqJsMZLkERb3zC6hF6rMUfVmrSuKEaapH4i+qHdAkaq+uRZqTWkMWLEeaNtJZVzxqSy4YS5J0AikaeF4qbKivdc5SkJpXBhFd77Qhw2xgXEwGDxHkUJoiQuzy2s85an0nMSh1MnNGKcTTr3TJLPkoRE8LxL9bYSPI7rVYt03tN5AjYeCM4Qc0CVThp1OJpQFRkZM8Sx6piV9xirimUYW9JBJdFiLEetGrpnHqtK+B5xNEz9wyIMUtjXpA6f2VDScDZM6YrzZqZoN2HIWNJPz9cEX7xF1zvHyu83iyzOAGEWJ4zbYq6eI1cNoTTX3Ot7XREg0T2EBDXaLSDYroBaqDyDytiYTlpVDdLWriUCJC4kMvNFSTKzBstqBUVkpohjJhtDH+0Y4qTR0MdUaaRGdKzivNU5aQrdO2yd0OSwcXK8zpErHDazrtSWFEiVW2MWjhxNteG2DRREgZCuz5EGvDKm3fYUa9DSGVPKjuFxZL8DInFtnURg0jiSxHlT3PYXzpuC6sFh66fduvXWW73H11xzDebPn4/77rsPb3zjG3s6V7fYuB22gIBJRj9z2AICAgI2BKZ7LkhAQMDGh27s1uqSsDEYGBjoqv7tqlWrAACbbrrpBGfZjI3aYZNrV0HqDGrVs5Zhy1avxsizxRs/+pe1SNcU4iIjfxmyrNro6lGkhlUbSq3YiBWqkHRXpj4JtQq6K1Iy0eV4t6PSGnY7AEaKVcYc0oiRSFI/hIQP0J2s4qD0/+8TpNLe7rNh2HLl2LbRXNmwQaWIoEju5Pup6EiejkKOFuGnJgxS5SmkKU1ApYEroOGRoqytx6MEeRnDLAYGEbdaxevLyIU+SOWFQZi5p7nCaE3II73mKOttl0ZEEXjUfhsytVHfmgEdIErBEUYYIhpSTVFfG80Xv2CGMevApDFJWTUypqFmGA2BLCfZfEFeLGG7BH3B/pTJ6IyjUC7wwyYZj6C1GV//Mko7JpLufhfCSW4nHCgea/I8WsZk7EvSlfBIU+JAN5Q+0F4JBcO2NTJvPCGCM+YaxhYlaUNVgKQHR6vJbgHBdgXUQ2USOlK1IZGqGhFUI9VPGTRVyvsX9dNy0m6vpUaZNJlKW3JJknQVmUky3qU+FEwaZdjQ1k9tSaocW98k69+rnD+FsQdFm9m+ujaHY9Kkds+V2pUhEsytMaVmSMq5xVJDl0yWWQsJ0tdUC9dHZj9fk55TB6acHRdlCKVKc8uqFddSj4J17X4d243d2nbbbb3+8847D+eff37H8yqlcMYZZ+B1r3vdehVtC5Y1IGASQYt9V/sDAgICpiKa7JY5FhAQEDDV0I3devLJJzFv3jzb3w279vd///d48MEH8dOf/rQ/E23ARu2wqVXPQeXDUGueR/qX5wEUuWqjf3F5ayPPl3lrq0ZrGbZ0XYa1JesybIQ1pL8rk5LdiLr9Tg5/t8SxahxGXLrYOSljfQkDpJWGsnHg9bseirBrurrzvZ4gyTXLht0YrUh+iXblCZTSkLnZNUs9Zg0A8nTY5rPpijQwBSNiBbJk1XjsVIKiPLXnkfkcwvZF3lxMLkv1OuquK8l7Yy254BCiZv+ori8gAAW7RvMTql/DagFsoCK7T5g0aEUYttzlpKm8C7atkqtWV/CZwObO8sp32zA7FVbNtoVw52YcWhvpZ+H4LlJEu0i4LW0i3BitHWtW5NjStstzA/zc3CrDVlcmwDwHaL91aRFxx7YVIiSm7TNs7cyb4AA3O92cQZCi6QAgGLfFu2nh7k6y/1W5f92D6Eij3TKTDQioQCvVMW+NRgTRvLU60RGPpVNu/WN+tzWNkqnkrSkvT4vmuZX56aqat1bMn4qLVNk2YyuyDqxaPwpnO2aM2ecXugeobZsFp2AgeWvuxRLOvOtwUEAKD1wwaFmcQ5Fi4RRMcDDzGQnm8twE+XxJWyKHKN0Qzd3nbpg2M95YrjrL0suathu7NW/ePM9hGwuLFi3C9773Pdx555140Yte1PXzxoON22FbtwYKGbLVq60a5Ohf1tr2yPPrMPyXosZD1WEz4Y9rc2VFRYzDliqNkdpaHPV3pR8G6X6wU+V+sGl4pKKGhtzpSlLnbcM4Zr1CNtRQa3fe2kVFbBikdCqRWinn0DWEeHIubGIqS0cgkiIMUuUpIuIMqnxO8Tqy5TtsY9D/gigwRXlvIZGMNTBsNbVXAgIAgMsMnEgQc+qsoHTIDKxwiPRD5koHjMncH0OcN+qY+U4d2SAx94+Ufhhkh3BrDfjhd1YBTADlZgrjHBBx+fIRGDc/9pETSwJsjTOtctdGfWifIqGPmooDqHYbTR02qZxzlylXf8mLMu8Q8kkdaLNW4IwhLq9bcDdGMAbB2x05EwYLAEKBCMU4J46Bhk+WTh9Z4nDynhfKov78e9FLarJb5lhAQB2qYZDU8TLotMFs0h/cOZTX9pwxeh6ywe3Ga2/91ARfRKS9H6jfiB/rfOac3T/POWNSu7VhJ5h5CfK6hbPnzkn7O55LajBjm6SCLidDiYLi82VkfLlJJxmUbStoXm4GEudJK2UfK6lsCLj33YDvtLEeN4f6abe01vjgBz+Im2++GXfccQe23377np4/HoStsICASYQod3zq/gICAgKmIjrZrfHYrssvvxzbbbcdWq0W9t57b9xzzz1dPe+GG24AYwyHHXZYz68ZEBCwcaGfduvv//7vce211+L666/H3LlzsWLFCqxYsQLDw8PrafYbOcOWr1mDPE8x+hcn2Z+uGfLDIFcVkvKjq1OMri7aw6m0YZB1DFvWQebVwK+7BisRm3Bmn1tQ4KztuU3ggtl6Y007D23hSOsJomEXQ3AGbnZ/u9jR8EMeS0GVPHUMY55aZs2EN9KxAKCoxL8Q9hjPU7tj18TOUdCdGcGZvcaItGf1KA0bctgCeoaSYLJByrgaAjeWcIjKfbaN9pevofPM3YMZqeNI+otajnRHu/l+MmJAAADOwUpWTXMOFmWuXcovsygGojKPQGuUEZFgIGF9jANc2TEUXr21sk8SISSpC2Gkor84nimFrDS6mVIVhq1sS+XZ5SaWzWPYmOszNiPmzI6JhZPfjoUbQ5k3T7q7lnUDGAmFcqZEd7S5vez29zOH7cYbb8TixYuxbNky7L333li6dCkWLlyIRx55BPPnz2983mOPPYZ/+Id/wBve8IaeXi9g8lAVkjD3I2VRuOC23M9Ug2O4/H5zVd0kRNCoqabzdXpteo6x0LTaaxKpmirglfWrWbdW67P1in7arS9/+csAgP3339/rv/rqq3HiiSf2PLduELbxAwImESLijX8BAQEBUxGd7FavtuvSSy/FKaecgpNOOgk77bQTli1bhlmzZuGqq65qfI6UEu9+97txwQUX4KUvfelELycgIGAjQD/tlta69m99OWvANGXY7rzzTlxyySW477778Oc//xk333zzuEIisrVDSPMc2dCIle9PVw9bmf7R1aQo9lDq5a05oRFtmbURLyG1nWHz4bx5GpvcBJpMCtAdB8qqMbByEK0Iz73q8MLlj5DC0uZ8mjF/17psMzhGjDEnWy04ybMgO8WC7CBTNkqQHQ5Gcjdo286T/N8JNq6dsGTVtj2fEna86IZVIzHPnGeWHVwjMntNScSRrCtjr0WvDJvTVqj2B8ws9MtuMZm5nDLAl26n8vrd5KfRfplB50YuOwVywrCVuWpQCtow2crloBQMG73n2nfIrY2huVRRDM2LPGEWJ64dJY6xU9JaSyYIixcBMHL/tHB0VVyjVjzE7WrnSiOzDFvx/0juGLZRqZCZJHkN21baPa94a9ojKQDfbhv7wQlLxhlDXNpnwWDbMWeIhWHhuG0b0ZmiXc+6uXO71y8Kd7vJ0Z8cTa69GzTZLXMM6K6eUZqmuO+++3DWWWfZPs45DjjgANx9992Nr//JT34S8+fPx3vf+1785Cc/6XreAb2jb3arQ3RPUy6TKZIMAFxyaFOqp7QNXHBb4JkLIjoimDtnpty6SDKyLtLQqszDEhxMlPeSpsWnqYiHhrlrChGPor+IiKreTSj76vLG2vu6ZbzqWLZqn3kcM+aNSShbT3NjWV2/v5YEzFqTrC/NOo5MoFh3MjLesWG0baIsOKdrU+59D7ph0hjnPUWNdWO3pjKmpcM2NDSE3XbbDe95z3vwzne+c9znyYZGkUmNdM06ZEPFQiEdSpEOpaRdLFpGRnJPBZKGQVJHzfxfFwbpozlptK5SvXczJcLeOCIWtU4a/fLzOHJfeuKc2dCkCRY6NY5WdRFiHJqBiNeGD3LivAnBkZchTUJwSM+Z9J234v/6kLBq+GS1v1PhRHs9ZEzGhQvh5Aw8Kha3XDCsLXdkBqIUiTUuvalECsEaVCKneMxCQM/ol92CygFJJLxUfQ0uL9xR5YBsD4OkzpgeHbEOm87TIvwRAPKU9LuQSCjpxpSPiynUqIdRRUcunNBInLiNoyguwh8BYEC50GXVcudJnNAIJAN4eR1ctDlqVWitXR02aqOV76gBRb1I086Uxmip/popbR05pbXnyHk1KGs26QRj3qaUdcCYHxIZm1BJwWvbAxG3giXuHE7QRKh6R46R8MhCsdJHLw5bo90yk0F39YyeeeYZSCmx5ZZbev1bbrklHn744drT//SnP8WVV16JBx54oOv5Bowf/bJbxSLfLbC1UNYhk6mzIxwRgHITKYmgSuVAJrit2WWeV6gSmrYCk24txI0DFo+9EldSQyRuXZDU1FsF6H3NvLUdFfEQNo1FQ8G13XhWOdfEQiKp0+UrjqPRYTPOZtEuN565a4uI2/eDkbUmL/tE7I6LRNj3mBNHmXHi9DU4ZuY7AQA8iaxTR9esjHOIJG4bbx/3EBrZjd2aypiWDtvBBx+Mgw8+eLKnERAwYXDBwWuoeJ1Pg+2egJ4Q7FbATEGT3QKc7RpPPaOxsGbNGhx33HH46le/is0333zC5wsYG8FuBcwUdGO3pjKmpcPWL+TrRpBLhXxoGJll1TIbBpmP5MiHi92dKqtm2LSi7oaT8Df/j7Vj4rNnzrmPG3Y8Es5sjK1IuN3pYIJBxGTXo6woz5PYVpdngrtK85yTkEje3DcGTD2hgklz18E52dEx8+XMMlBJxG1/KlzccJ6565OSQ5S7ZipOwPNCfECQHXzKpDHhwh0N6nb5q/1aSSs2wvLMsmp5OuyxeXlUvqcRRzbqGMHRkm1bE3EMJmX9kB5DInll193OLUhjBzSAqRwsJwybV2Mt99t1rFo6YsMadepYNeQZ9GihcFUwb4RhywjzZmsX5bWy3PRxbYhLlf0vRUcQx9BG1l8pMFN+AxUpZ2urIieqoiJXQ46EhSpwy6oVYZAu8kHbXXHtMWtAwbSNStK2bJsvRpKa2o1UxKRSg7JOgImGiSckAoGGPvpthoFI2PmY/lbE7dgBY28ZIEiolfkIGNxcOHzRJ856Ex1psluAs13d1DPafPPNIYTAypUrvf6VK1diwYIFbeP/93//F4899hgOPfRQ26fKzz2KIjzyyCPYYYcdur+QgA0GHgnwJKotOSSS2Mntc/rbnQNJ8zKVEREKJTiY/f1tEGVqQAxAZqRUignrS5Wrf8ucCFxRL7cYS4XipGbExrBaRo729SqtQu3gWCGRtJ1wvz+h6zRie0TimC/TNutLTpg0kQjHsBG2jY6JBmOyHo3AY8eS2f44Ai8/X07WqTyOwM26riFyzLBtPOt+zdWN3ZrK2CgcttHRUYyOjtrH1dj6gIDJAovqd3xUEB3Z6BHsVsBURZPdAnqzXUmSYI899sDy5cttXpRSCsuXL8eiRYvaxr/iFa/Ab37zG6/v7LPPxpo1a3DZZZe1hWEGbHgEuxUwVdEvuzVZ2CgctiVLluCCCy5o689HUuS6/L9k0vLh3GuPkGLYTVL9NH65E/ydEHjsWczqWDV/jNvRoLsYEaLB4mMUibC7FSKObLV4EcduVyJOXJ4Ikbr3Mi7HyL70druZn8NGcy48UY7IMGwCSVSKfkQcUXkdMheQucthU+V8ZZSAG9lvm9Mia4VGACftT/PUOrFt9jycsHZS2iLdPE+Rp8WPDye1OvJYIk+L1xiOJYbLOHvBemTYSJmDan/Axo0muwWZNRfC1spn1fLiu6vzrJZV06Mj0GmRv4s8tW2dudw2leVQ5S6mSvOiSHbZb3bF60RGKKo7o4LstvK4eB3RSqysf1XExJydcwGUYxiPAC3se9ANQWQ2t7UmEv7S5aVZpk0qrCt33P18NmXFp9JcWTaNtqXStkxAE6IGhs23lX6uWqucQyS4ZdbMvGOhkCnHtlGWzrFtbsefyv2zkl3Leshha7Jb5lgvWLx4MU444QTsueee2GuvvbB06VIMDQ3hpJNOAgAcf/zx2GabbbBkyRK0Wi3ssssu3vNf8IIXAEBbf8DkoMlusSgBT1peritl6I2NYZJbdkUKDm6YN8EhK0IUJr8NaM+TEuX5ZOwikkQqIc2aIxGQ5b0sYw6emfWVtGwbTzREOSZOlc1TlR1KN9WvDevz1eoF6ZpRzV2r9vsiKZ3YNhIhlZgcMl8bgearAd2xaiIRliUTSUSivESFbasb4/8u1GkwFDmQFdG8qHuesp92azKwUThsZ511FhYvXmwfr169Gttuuy3kaAqpNfKRHNlIeXOn7maVqaoNcyySSdvhbiAG1CwfqjeNpaIbwiAHBceg+eEdEIhaxcdFnbS4FTnnrZVAtIo8AdFKIFqJbfMyvKioaUTqGwHFF7900jTjsBKQFcfN/cAzsFJtjMOvG+QUzhRaZQhPmrjQoTRXSMsbPc2VddKiWNjaK1pr6DK8USkNrQa9edTVZqtD07EmBUr741E5v63/JpWdo8wV8vJ7kmcc60qjLnjzfOpAlZeq/QEbN5rsFlMSTKYu9LHqpFFBkTLEEXkGZZyxJidtdASqdOTkSGoXQzLLSNs5adRhA9rDIgG0ha+YttlM4rH7wdZKQbRK9Td6Ei5s2LPOU7C8tFtRDKiyrZ3wiq6qRJr/iTCIggtlz5RCppzACOCHQY7kCiOl6MhwKj2HbZTYNSdiUh8eCcALj7ROGtncGqg4bKY9mAiMCm7H5GXI+EjZ14q4dd5akUZcqt8NiHphEk1tOCt+sXpZPDbZLXOsFxx11FF4+umnce6552LFihXYfffdceutt1ohkieeeAJ8A9UPDZg4Gu3WQAssjlEEIAKQ0qo9QklrK7RUXki1aUtiQ3RpP2Sc25A4leaQJIxOWduTg5diYFKwMZ033YrIGlBCl+sumUmo8h7TUiMx46X2HDm6TuzknDVt8NNxYwnTVcdUhUaoY2bFQxInVMdJSg0TPilAxxd9vpNW79yREMe4GhLpnDQqNOJv3jnnzTpsUeyl7Ph1PAVYD0uuftqtycBG4bDVyQkHBEwFBIYtoAnBbgVMVfR7p3rRokW1IZAAcMcdd3R87jXXXNPz6wWsPwS7FTBVERi2ScDatWvxP//zP/bxo48+igceeACbbropXvziF3d9HpXmkGDFLkq53SEzZXdRlLdb0nwen1kDmiT7KRVdDYM0TNqgYBgsdxYGBUOrjlWbHSOZndj+eLZj1aKSVYtaid254ElU7mwBiBLbtsn+XPi117qAJw9tGDbOEXMXthOXNZPoTvGsRCCVxXXQMKKi6KD7OtryUVoDSNpen7JksmQRqGS/4sIKipgwybpzeLs1NaBhkwXbV343pGvLnDCIPcr6c1KfpNofMLPQL7sFlXuCItDKr6VGwxpNOx1xgiLpiDfGMG9yJEU+XIRQqixHPlKGRKYuJJIybFrKRtERAz9Z3O3CypEyhKaVWLZNK7ezHoGwbFxAE4EkK0ySkLBJIjTS+LZpx7ZJ5di2TGrLlBn5fhoGOZJLrC0jMIZTadn0NFcYNjvxSiPNXTtvYNgMBGeIaupUFiHjJcMmOGaVO9fDqcRg2R5MBLIyesHY2FxyZCZMUgkbMikVLNvWiriVGVckJFIwZsMiu0WT3TLHAmYO+mW3WDwA1hokZUGUVyKEm4gfpWw4Niey/jyJoOKSTSttH4+JbSJsm5YJZNkWaebGEFtWZdJk6myZzMooAqmgUte2v/lkzVisBZRrkxvJRiN4fa6tegyJ9GrVEkaI1kejx20/52SMY9IYd7XSeOLuaRE7hsuKjyTCY+Pqwhp54lg1yph5Y4igCK+wbTYKI0pc6Rfh1w62sv5mDZj1Ehkwve3WtHTY7r33XvzN3/yNfWzo9xNOOCHstgVMKwSGbeNBsFsBMwXTfac6oHsEuxUwUzDd7da0dNj2339/6B53JuqgshyKMWipXfyyVN4OSB0EY+DlXm0h6WqOuGKl1fHF/6gVFxkU3BYyHBQcc4xU84BATJi0ZHaxAxW3IiRzyvbsBNFgUrYHvbw10+ZJy8tbc8wat33a7GDQUvAVts1clcl5AIqcCJsjIeHlsJmE+VYkkCZO/trsZstWXLsTTZms4vX897Oae8Zr5fg5WJmPwwnbVoV5Lo8St7vTobC2ZdiUdjl3CpZhy8bY5a8iEhxRnTrRNNjtCegN/bJbTOZAnjnREZUTEZFhoGyrdAR6lDBsNldt2LblSApZMmn5yKhl1fwcthxypBQvkcruXFdtpSrvB17Z5S3+d/kndLe1EBto/xmiO8UijqFN3hoRQ9F5BhYV0QWaFAxvAi2crTU8eX6Tu+b+r89bW5dKrB0trj/NlRUbGs3rJf51xa7RRQEjDJsrgZJbVi2JhGXwBmNRyQMu2oZ1U8qPBlEkn66lS4EGrTEgDDPnfpcU0xC8t93+RrtVXETX5wmY+uib3WrNAktcqCQjoiNQEszmjSubp6qlBC+/6zpPoVuupAjg59FWc20FybX1c3CdaJIs+7VSUCnJVc8I20aYN2Xua6mtvdOEVaMsnKph2sz4KlQX9HY1x4oybNReOlbNsWdMMJK3xl2bM49JY4Rhc8ybW1PR3GMaMcG9ft7WT4XvqJQ/49xbj9qIJ7IeA3cMG6MlqMpjplh6N5judmtaOmz9grnRurlZfPUdp96YKm3bzo1xoF+Bal0157C59uxI2NDHyHPMXBhkMie2jlw8u4V4ViHKIVoJ4tmFuEg0OGAdNjbQsjWN2EDLio2w2NwokXXewLgLj2yApwwJUkOOc8TcJL5zu/hRWiMrb/pqQr5sxbWvYRY2jLO2KM1il2QuACATwlOGlFEZxpWntl/lKcwt3qRmxzi3apRMCDQJk9ShEEkprinvcZOGk3AoCjUNdnsCJglKliGRpjZaRQGyRlxEE+dNDq/znDTbHk5r+2WWNy5mfIetFLHwFhLOYTPiSCrLfaER1Z7vUqiBmaTzEbfhlKeuPpySnvCKnUll04RGJZp1pyc6IjWyckFlnDjqgNEwyLWjuXXS1lUESIyAkqILOzIVrbVX+8zYNc4ZUrOY4cyeM4lcSGSaREilqxVHnbfiuMBsc21aew6baQ9oZ0iVdkqSgjNAMTREtdaiyW4BwXYF1IMPzgYbJPe6cqIjWrrw5sKRa7l2eb8z1bJ2znPiynMIGu4oFWRmNq5cvUiZ+qJJ/uZTu/qtIuqVnpOmNBEgqbeD1ElTijpv9etN1XADNoXqeSGRvN15q9ph2m82izznLY6Ig8c9hUfTR+unOUdvbBGRxnDHOCFqj3G9Y0ZTVyoOG+MCXHVvb6a73dqoHbaAgMlGEnHENTs+bBrUBAkICNg40WS3gGC7AgICpiamu93aqB02pZRHa1fBWbU6fPs5aG2bOjRJ+bcxbGUyJw19LBi2hLRdGKRh0uJZg4hMe3YLUSnrH81qgQ/OBgCwhDBsUVLIYcPJ+mvCqo3FrhlY5X/m2rFgNsE9VhytiIq3uF2RJsnrJhg2z+xO84jbHSLGZyNPy913LsBzx6pRtq2pbpu9HrKLw6MEIkra+ys7MNVwJwCQrMe6KoFhC+gRhl2zYZBZWsuk6XQEemSoaI+OIF9XiI7IkRR5GeKYDY0QVi21oY/5SGpZtWyEMmzaJurTHecqaCgOUNw7yrDsmULcMgyU/3wXlsy9xHRhwiBVy4VOZRlYy4RUdSE6goJZA/yQSCouZeT9U+nqrQ2n0oYmDqe5Y9tGcuQlw5VnEjIvbQAJi9KE4Wp7j4xd4wyiXCwwxpBHRX9OwiALVo2wbST80vxv2mogGluiPwK8+A/em6x/k90Cgu0KqAcbGASfNbu4Vw1oeR5SVocRYRLDqoGGUFp7oGybt6QNB9dKemxbHfNG+xUpJeDVl5QKiggruXWE8sfQkEdyfWOHQvaWQlHHtjWFRtqQQhgmra7EinDMW6VWJpXYN+doqpnGa4RGGBdurSmEi5Lg3G8bVi12zBuIgBxqaq+ZfgBg+cZjtzZqhy0gYLIxELHaHR8eTX3jERAQsHGiyW4BwXYFBARMTUx3uxUcthKsNu+CISkZo+rmiEnYLoojtn/QdcycYD6rZkQ5osHIK4odl+14Tuzas2Mr3x/PbiGeXeStRbNbVso/nu3YNo9VS1pgA7RdFqIWpHA2j0jbsW2GceOMgdti2VRIRdtcTaGZTWqXyt/9NQyUUhqy1f61ozsfEWdYU7aHGbPMmo275rllu4TgEOUE8iiCzMvk4tFhy7ZpJaEM80YKYVMwLqwACePC5rPxKHG5bdzFftP5UHTLGho0xVTLabDbEzBJUDl0zsfOWxsZsmxbvm7YMmnZ0DCyISLl77FtZeHsTCIfNlLYEtmIy+OwAk2qPW8DaM+RAEop6TL3LZLayfdL3xZwTnZ4TcJ6moMnZR5LnkJnJIeN3Mte4WzTZrCCCZRAonlemdLIKzlsKckTW1cVHSnfizSVyDPHPOblGMqwKaXd65PNdBrIwBhh2DhDVEZbyFxDlj8eeYOoCS3W7aOLn3Y7xJQA6EEeu8NOdbBdAXXgs+aBD7bsY8pEMXIvF/lsToxEU7YtT23bjq1h27RS4JaJT914kvNWZd5c3ppfrsQyaV5ElvLZs0ZWjeaxdcem0eewLoQwaFF5X9a/nm3zilJ7bBth2EiEQxPrNmZOWpVJIxoBqHsuERfxBEhof+VawAW4GltnwA6f5nYrOGwBAZOIRAgkUY3BGaM+XEBAQMBkodFuAcF2BQQETElMd7sVHLYShlUTiYCwMq4asSmoTbZHBSkyWif4Q2X9i2LZrk1ZNVOQMGr5DFtSI+UftRJEJasWz25ZBUiPbZvlWDU+OBusVeawDbQKaX8ALI5d7lrJqmkRuS1fKuvf9F5Rts3L8yvkooGiWCuVk64DZdXorke1f9gUhB0t+yKOtJTW5oKBR0ZNjkOVeR6UbaM5bIZpA9rz2agypGnzOIGIyp1+wuaJiNUybE27N01oiqnu9TwGl19+OS655BKsWLECu+22G77whS9gr732ahx/00034ZxzzsFjjz2GHXfcERdffDHe+ta3AgCyLMPZZ5+N//iP/8Af/vAHbLLJJjjggAPw6U9/GltvvfW45hcwcWhTcDanKpFlu8K2ydGCPZMjKbKhIoctGxpBts4wbKOWbcuHM+Qle5QP55ZVU6nyCszWFYylqBZpBQq7SqWvY8KsGRZOxTlkWRiXEyluleW+lD/Je7Gv32X+lRkmlc9OUTl/wGfYUqlsUew0V17eWp65tjIMmFQ2n02TEiVVO0hz2Mx5RMTseXjEIWWZ2xxzlyfrFeau37X37Cljbf1caghrwzV4jyqRnXJBxmu7AmY2dNyCTmZXOp3KqwEjDHk1b838jnsMHMlbQxe5b7SUwFisXjVXzU1bNTNpsj2Cp0mdWveYw9bEuHmsUwlOHJAq81Zl3Kr9VbarON5QwLoiwe/Ux0l+Ghd23UmjuNpy2+rKS4FoKzAOz4oyBh3X6xLUYbrbrY3aYeOcl5XPSb0KzqwjpRWHlmUtsRQQrPxB1lRopC4cknlS954z2OCkxaTt+mMrLiJaA4hnGcn+BNEsIzTiaq/xwdkuDLI1uxIG6dpe+CMA8Mg5b53qsBnRD6at0IgoFKGLNgd0GR7aInHCTcnsvMlJG/EdNlOjaK0ppSCkXRDmsbBhSXnK7cKHOm9SxnbRJPOcGOMOAiTleyMiJ3XLI26dw8JpdWIo4y26mAiOpM4Ij6MmyI033ojFixdj2bJl2HvvvbF06VIsXLgQjzzyCObPn982/q677sIxxxyDJUuW4G1vexuuv/56HHbYYbj//vuxyy67YN26dbj//vtxzjnnYLfddsNf/vIXnH766Xj729+Oe++9dzyXG9APKAmdwcnb55lz0vLMyfePjiIvnbFqGKQkYZDZkJH1d05aPpxb502m0tYikplz2Ipk+xqxJiIhbW1fqiCS4n6rhkHSsbSGj5HclmkGUbZ5ZVFm23SR1/S2kTps1baxUVQuf5S01xEBEmtvMkVsj3PeVK5IjUYXDl6tZWXtKQm1VjmHLMWahCdeIuzl1dXEEjULNgNbgoUxjJS/YZwxiPLcxnnrpQ5bo90qJtP1eQI2HuhkFvTA7Eqti/I+IW2mlS9MYr6XWoGr3Hue54xRByzLGgVNPKfOOoDkudSumGOoOF01xwG489ljXTpkDWsRD12UGELFDjDKGvH6tlfvjBxv62+Q12fUAaM10+IYtQ4eF3ZtqbkjCzStt8u556SRyba1ddK90zvd7dbUn2FAwAxGHHEkNX9NibGdcOmll+KUU07BSSedhJ122gnLli3DrFmzcNVVV9WOv+yyy3DQQQfhzDPPxCtf+UpceOGFePWrX40vfvGLAIBNNtkEt912G4488ki8/OUvx2tf+1p88YtfxH333YcnnnhiQtcdEBAwfdFkt8ZruwICAgLWN6a73dqoGTZT/Z0nAqLcQRWJ8JLp3VgFYZNSda1Eq6skX6keT8MgY9PvCmTHrcgrlm1ERKLZg6TtxEWi1oAVFxEDA2B18v0DLXASEmn6EQ1Al2Ij2lSYZ9xp8/MuQiLhPP2CaSraxaWZ94V73y4almPAOSPiJT6rNpAWr5AIjiQqdtUGyhtqzUiO4dSEJkoXpig4RFTu4sfc7v7nqbS7xyoX3o537WfNmbf7bVi1KBYQkQvLNP00PLLuOjsh4gxRH0RH0jTFfffdh7POOsv2cc5xwAEH4O677659zt13343Fixd7fQsXLsR3vvOdxtdZtWoVGGN4wQte0NP8AvoHnaXQTLgwwSy1yfbIU9uvstwKihSS/aXoyDrHtmVDqRUXSYcy285Gcic6kklf1t+E/jWFOucMvGRyjE3UUkOrurAdbm2vjDl4bF4zh6AhkTYsiQgCVERHeoHUVLgDXrghUIZESsOwSSf4kbtwR5UrKzRC2bZGhq0Do29ER2SuIMqoDpVzx6opaqsiAHnjtVFbWixGSkEVxSDKKWQkVJ8zQCjYMMtu0GS3gOmRvB+w4aHiFlQ8aB+zGqYNKBnkaohkOUaTtj1Gw6LLfk4Zd63q2TMl/RBLypRRFr/aVz7Xv7jOLE8b89ZnsLHyr6oMfKX4dHUcq2PjGoRAmkIZ/WgtBs3r+ivj3aTcmtQ8LlEtPaXiZltYRT/t1p133olLLrkE9913H/785z/j5ptvxmGHHdbTOXrFRu2wBQRMNszuThW67Fu9erXXPzAwgIGBgbbxzzzzDKSU2HLLLb3+LbfcEg8//HDta69YsaJ2/IoVK2rHj4yM4GMf+xiOOeYYzJs3r/miAgICZjSa7BbgbFdAQEDAVEI/7dbQ0BB22203vOc978E73/nOfkxvTGzUDhuPI/A4goilLeoakV1GKiohYm0Zm6YEUsOk8ZK5A8q8tdgUgOUQ5es0sWqildji16KVIBosWbVZLUSDrt+KiNC8NZKrxqt5a1HxXM2jQmQEsLlsmuSwgdHYYX/Hwbwdmrn8C8E1yfdnNp9Ncw3Lw1W+ZZw5Jo3mV9B+c1MlEfd2i4v/BYbL3fd1qcRwbHa5OfK0FB3JpN3ljmJu2zJ3O9XdFrU134Mo5nYnPIqFZfa4cEYg6k3V39sNr/YDwLbbbuv1n3feeTj//PN7e5E+IMsyHHnkkdBa48tf/vIGf/0AAqWKxFErVU2KaI+SQtjDo64wLGXbhlPkw1nZ9vPWGnPYTD6XcvleNMhAau2X+jDt0lQmZPqMK7DygEwlZBl1wBNhc9VUlvnS2jZPxd8ht+fUyiWjV+wzfVSV9jf/WxGpmkLUo0SAREnHnkmSw6dy5YmO5KkTQrA5s9K16Q42E8Lm2/IoIWUA6o2JV1qElbl1ZOc4ibjNvxtOpYtcYC6iIVIasc3hM2VYal+uFk12yxwLCKhCx4PQySz3mBxrYts8Vk0pj22z5yA5bnWlPWi/OU85qF3spGEO7rn1TFnTmnCqoE6UBICft9aQK9bGfAHF2tAwZnRMhT3z+9sZM824Y/+qgncdWDUK3QPD1k+7dfDBB+Pggw/u6TkTxcbtsCURRBIVITe1YZBOjETR2jqVcEiriEZqD/HELeZNGGShDFk6hq3I1rSIBhOI0kmLWokVEYlaiVWAFK0EomRWaIgjratWDYm0qjzRgBMViWLPUSsn6d803bx3xjHTRF1HaeuwFQPawyNFxTGzbeZq18WC2cRQuiNi6h8lxEFKoty2h1OONDaqbdwuMvPMLaaU1q7dUCOJvg1UUIRHTiUyigWixIREuvnEurddmrhhx0eVfU8++aTHZtWxawCw+eabQwiBlStXev0rV67EggULap+zYMGCrsYbZ+3xxx/Hj3/848CuTTaUKjQ2ahPmpe+kDZfO20hq++WIU4PMRnJkazPbNmGQOWlnSmHYquUS56Zts6MUy2DMKhCaupPIpHXaCrta1rGMOWRpE0UqoUvBJS2VVYn0FNkaRANYMbDj20ZnS500RTZujJOWK+3VPXOiRc5+FOGRRBmynGOeZq7uY5b2JHKkshS6tOc6avp5dgsUY6dGySbXcJpbmzwQcXcdiXO2aR06qTQU7010pMluAc52BQRQqGQWFHHYAICZ31/a2aQYCSK4U6MuWRcyWbxwu6NXnqz5NRvm04huxkwiOjk8FpUxbc/xi0d6/XYsrzhcNcIh1VDJ2vPUzKd4brtTpZLuHbbpbrem/gwDAmYwjDpm3R8AzJs3z/trctiSJMEee+yB5cuX2z6lFJYvX4599tmn9jn77LOPNx4AbrvtNm+8cdZ+//vf40c/+hE222yziV5yQEDANEcnuzUd5LEDAgI2PnRjt1avXu39jZalcaYCJsSwZVmGFStWYN26ddhiiy2w6aab9mteGwQ8ilxYZJ08NWdQiZGw1rbKfdu4ioQ158wyaTwRvtCIkeBPokZWjYZEmv5GJi2O69k2yqSJ2AuDdOGPpSBAQxIobTMGlJvmYIzZnTHGGBhc2yqjKm1pOMZceCRnmjBsjqkrariV7FWuEPPivY4r4ZEAMJhKDJfJ/utigcHESG7nVn47zYUdE8XKfnYy154gQFONJAPOXEgk48wxbIlj25KIW0GURPVWfDGJWAPD1vuiZ/HixTjhhBOw5557Yq+99sLSpUsxNDSEk046CQBw/PHHY5tttsGSJUsAAKeffjr2228/fO5zn8MhhxyCG264Affeey+uuOIKAMX9ffjhh+P+++/H9773PUgpbX7bpptuiiRJ6icyxTHd7RaAsg6bq01m6rCpLIdMXduybWmGvAyVlBmR6U+lrbFGwyDz4RwjRnRDaaRGjEN1YtgKCAYkdVuB5etwwSCNrcwEpBE0aUV2LloqKOXCEK3oCJXxBkh4U3c73CZwkppyqf2abOZ/U+NMKmIztGsrqUmotQuDVHkKVdaAUnnq2LYGho3Tuo+Ru6e0SgC0b9AwDvDydY1AiZTK2jvKqo3mCgkpT2DqgGZcIyM2tlc02S1gfLYrYGxMd7s1SkpldAIjzApnHKZyEv1WuZI65HlNYiWAY96KB6TdPp82hm0jRS0r14Flq31ejWS/1v56y498IK9fGxLe3tfNd8qgG7s1VdJQ6tAzw7ZmzRp8+ctfxn777Yd58+Zhu+22wytf+UpsscUWeMlLXoJTTjkFv/zlL9fHXAMCZhz6uUt91FFH4bOf/SzOPfdc7L777njggQdw6623WmGRJ554An/+85/t+H333RfXX389rrjiCuy222745je/ie985zvYZZddAAB//OMf8e///u/4v//7P+y+++7Yaqut7N9dd93VnzdgAyHYrYCA/qHfDNvll1+O7bbbDq1WC3vvvTfuueeexrFf/epX8YY3vAEvfOEL8cIXvhAHHHBAx/HTGcFuBQT0D93YrSeffBKrVq2yf1R5e7LRE8N26aWX4qKLLsIOO+yAQw89FJ/4xCew9dZbY3BwEM899xwefPBB/OQnP8GBBx6IvffeG1/4whew4447rq+5Txg8icCTGBHZsWXCMSo8EUROujm+3zBrrugrd8WWEwFR5qoVYiFFXlnUSlwOG2XYBgdcIeyKcIjJSWMDgz6rFse2DSPZzyObUKqjxM9bM8yaYdpE5I5Xk0Pr3jdWCI+Qd6A8oG0Vbc6Lh6bb7IwwxVzRbS7sTlnMOUbL95rTwuOCIc6VHQP4eW1JxL0SAIOJSbbPMatkOdelTpY7z5WV2VZSEcnt5ut14dkup5HmrQ0mws2nRrq8E+KGQo5ynEUcFy1ahEWLFtUeu+OOO9r6jjjiCBxxxBG147fbbrvaIr3TDTPNbhVy9iTRneR1Ffm4hj3LbfFpleVWml+m0mPSqHy/aY9IhWGPYSteSmrHthWPi/8FsQdF23Ro0l/mraVOdETELm9NZhJKmnaOyNpeBSXbi9dOVCqb7vJSZs38TyX+XQ6b31ZEjETbz4CwankKaZjQSoFdI5Gt4Jg1T6TEY+QGHNOfMis2YkWbBEMuKKvmIg3odQzGNUIr2uQm9pDD1qEAba+268Ybb8TixYuxbNky7L333li6dCkWLlyIRx55BPPnz28bf8cdd+CYY47Bvvvui1arhYsvvhgHHnggfvvb32Kbbbbp6bWnMmaa3RrJNeJ87O8YY/4Y7h3z7QrdG2Dk36JfuOf4NZnbX3PMWTWj27umh6oZPaHb/ZGJ8t7V6dddT1GSgR43OYq69nl0fVFdgnVrjka6+E4ZdGO3TPrJVERPDtsvf/lL3Hnnndh5551rj++11154z3veg2XLluHqq6/GT37ykyltQKJWgmigDDks72KV5bYWkMhyz1GjIZGcfOg2FLJ0wArRkbIdx9ZhK8IgSzXIOPKcNPNcMTDgO2m2flriKUCCOm9GXISGOwpBREUiT2DEUtYmTLKq5lOiSombxYHU2tUp825FZr00rRm5M5m1uhzEkQMDj4vzZFzbcMqYMxumMyqVbdv/K6Ikg6VjRkMlB2OB4TK8ajBRSMsFDFV8k0RYgNLvirQ5sYasEp45ENE5lDX1ZPcJsICvjlntD+gPZprdKnYXuKeWqIxKJBHrKJy0or9w3lzoowlDlJny+jNVFwaJSkhku8MGOKdNeF9dt8AyQiSC+TUtzetHMiIbZE5QhKpEaunXS+oHFK3JZmuz+X1uY0fX1liTeV4bBilJeCR1xgCAkfBpe62xH2ZsQiUlF35oNgmFBAphJRG50Edj11JZsXfl+IGIew6r0u0Lpk5oslvmWC+49NJLccopp9jQ7WXLluH73/8+rrrqKnz84x9vG3/dddd5j//5n/8Z3/rWt7B8+XIcf/zxPb32VMZMs1sjUiHO1ZgOTtO3p/hemfSLmuPV81Scu+IcXUy0AZ0crqaNzW7vqW6ck25uq6atEtbhyRNNOa2+L3XvRSdnrCkdpdvvyYjs3nL1026tXbsW//M//2MfP/roo3jggQew6aab4sUvfnFP5+oWPTlsX//617saNzAwgPe9733jmlBAwMaEmDPEot1Q5CFxv28IdisgoL9osltAb7YrTVPcd999XtgR5xwHHHAA7r777q7OsW7dOmRZNu1yusZCsFsBAf1Fv+wWANx77734m7/5G/t48eLFAIATTjgB11xzzbjn2Akbtay/GHChiKpk2KQQlu1SWe7kpCtgHsNWhj+a0ETBHasWR5Zt88IgK6wa6sIdo7gSElmygVSyX8Q+e1YnLsKFS/4UUZvUahEmSWRWx5CAZXC7MgoMwq+oUpwTRHREE8ESaDDtxEiYcsnDotxNzrgTJokFw2huwhzKGkKCe6IkWRnmQ9m24VRiVk5CImXRLnafS3ZBaZuwKsk2kWzYShOcWVatqBUn3OuWtfZEl2UR7DlJbaRqf0BAE2g4oJbSZ6Zq6pcVYiRlyJ7Srp0SAZJceUyaCYNsFx1pD2PhcGxbwmGfayAYI/XbmFfT0tYyk8qLaLDX0VTjiEr8V+S/a4drt7NLWbU6SKWRKzoX9zyvbcuC+KGMskbW37Bu5poYJ2wbrxcrMv1MCMiyLYSCLMMfTXmEKNauVl6u7NzpddAwTxpF0Iucv0GT3TLHgEJtjWJgYKBN5faZZ56BlNLm2RpsueWWePjhh7uay8c+9jFsvfXWOOCAA7qdfsAkIJUaww3ha1p3wyDpWjZorOfxLoMBx+L+qrdJfUjg2OfsV5ZBPcvIxh5T6evX+wd0fg/rrrubMNFO3w3Oiu9Vt+jGbnWL/ffff4OnjEzIYVu+fDmWL1+Op556yip6GVx11VUTmlhAwMaAiIR/UmSBYVtvCHYrIGBiaLJbgLNdG0Jt7dOf/jRuuOEG3HHHHWi1Wn0991RDsFsBARNDN3ZrKmPcDtsFF1yAT37yk9hzzz2x1VZbdYyRnaqIWnHBegkOWeatccKqUWnpKjjJXDUMmsmD40nkREfiyMr08yRqZtUiJxzCYiLlb8e0AMOwRTG0KHMdKqyaz5oRcREzXzqmrgp9lwyR+bQ5K1g2ABDQLmOFuRw2xlArRiI0IMsnSA1IkxdHpP8z5XZEjOz/SK68fLas3GGpsm0md2MwcRL/o7mCVMX7lUrlJeQbyIbPXHBulYQE9/PoDPPGWG+y/pwzL0+O9gf0HzPBblmQAtKuS7oSFllu89lkKi17VUj5mzHSsm1VJq2uLbVGVrOrKOF2KFOlray/E7Zg9hwJ13YuSupaYaeqyJMX6dDnHDYvJ69my1d7TJufz6ZtW1oGrcq2uX7l5bDRtgmGoCwcQBg2Iv0vI14r6x+VOXGS5rDl0to7L4pA+yxbr2iyW+YYUKit0eT9uhqSm2++OYQQWLlypde/cuVKLFiwoOMcPvvZz+LTn/40fvSjH+FVr3pVr5cwrTAT7NZQqsAyYqsmwE70O8e7aS5eNIFnJ5qfKyu5oW3n7JP6SJ0aK+2qMkb0PaO6G15/x1y3/r3n/fzsh6rhHJ2e24XdmsoYt8O2bNkyXHPNNTjuuOP6OZ8NCjEwgKg1ACm4dbZ0EtkFjyb1fyiq4ZAm/JERJ02UapA0JJJHcb2TFsW2fhqiuBAVKdvUefOUHkuFscIZIwqPJrSGcefIVWqrtQmMVMIg6wRIzDCgoMjNDVcNj+QwKmTOoDANcO7CoZhdxPlKkubVOHOGI9bOYTOCCDFnGMmdEzdahjg2OW+pVDZU0kvIz53DNkraxdzaDYpgzHPYorJNVStZjyGRccOOz3hqIwWMjZlgtwC0OS2uTpnyN5yIQIYLg3RjCofJOWN1oY+pck6aJOqC5jFg7lcT98w8BUI3jtk+Yz+qjpnynDbl/V9t9xPVRRQNHwTqE+k9542EqColnYgIqRtHHTmlJDgJg1SlVhHjVLFY2NBKxgV4bJQkSf1I83+urABJpHmt2mX1mpquvRs02S1zDOhObS1JEuyxxx5Yvnw5DjvssPKaFJYvX96odgsAn/nMZ3DRRRfhBz/4Afbcc8+e5z/dMBPs1lAqgTSv/W1dXwqKnVD93nsOWYMohg0p7mKsUvVj6sb2iqrTQtOyqOPhO2Ptzxc9jPVebwOvT+pezqwLh9LuN/C6sVtTGeN22NI0xb777tvPuQQEbHQIKpEbFsFuBQRMHP1UW1u8eDFOOOEE7Lnnnthrr72wdOlSDA0NWdXI448/Httssw2WLFkCALj44otx7rnn4vrrr8d2222HFStWAADmzJmDOXPmTOCqpi6C3QoImDj6abcmA+N22E4++WRcf/31OOecc/o5nw2KaHarEP/IIqgyJFJJsiPajeAI55ZNowybbXdg1VAjIsKIfD+L4vq6arRuGhUMqUr2d2LVgNowyNrq9jUwX26ldX14JHO70gyu0j3Tbleea2Z3rBhjYEayVzNbi4UpBhYXc4rLsEoqSpIp5ZUAyIwYCWHbRnNpwxfTyA+DrGsDnYVHzP+ihmGTPYZExoLbUM9qf0D/MRPsllYS4H4dNk9oxDJTrl9J7dUftCGJqfSk/CkzRsMgnWAIvDaZFaiEv/n20pBIyrbRXXYzl6YSKr2CaT/1faJ54XSnnLJbxWPKpI3dVqYtJWTJwjEhPDlurUyJmdSGQWolbXkAGSU25D4yddW88MwKq6ZJmzAEHlPawL41oclumWO94KijjsLTTz+Nc889FytWrMDuu++OW2+91QqRPPHEE14Kwpe//GWkaYrDDz/cO8/6yJGbKpgJdms4l1CprGWWuvnujZeRqrJb3bBgPoOma8cqEnVg+ytriG4Z7W6uv8pq1bFc1cL1XtumnLBaRo6GQzaybQ2MXN3YbtGNo1Qf/llcx3DeA8PWR7s1GRi3wzYyMoIrrrjCxo/HpUKiwaWXXjrhyQUEzHQ0JcFG04Cen44IdisgYOLolLw/Htu1aNGixhDIO+64w3v82GOP9Xz+6Y5gtwICJo5+260NjXE7bL/+9a+x++67AwAefPBB79h0SYgVSQIxUMjrG4aNSmGbxwZVZs30eWwaUOSelTlmiJLuWDVjgMl4LRKfVbNMGpHsZ4zI93N/jMemNcv2t7FqY8n6M7drTXdHlNZ2h0XDsW3cL61t/9XQtui4VEQXheS2CUZ26RtESbJycMGqFSdpYtsypexOWRa7QrLVXA8D2q7uXFGGzexO5VmPsv6VHbG61wroH2aC3apDrax/JZ/NMlnKFatW0mfVfBasaCvU9/u5KCSHDW4H139e+/tbjWJoimpYX7lrVTTtdNcJdFT76lk15eWt0dw271zl/xyAVqLmPJW22d0neWs0r81cR95FDtt40GS3zLGA/mIm2K01qURWrrOAzjle3bJpdflw1XNXz1/HngFovE/G2583rCNqGbYurrcqCNLEpEUkCogeF/3o74KFs8eb7EMX39decvTW9ZDDNt3t1rgdtttvv72f85gUsMHZYIMtIEshIhpe1PkLwLhw4h6ce85ZcZx7io5GOARRPKaT5jljQhDHjHdXV40qQI4lKuJfVMdrbhtOvttjOm+M2aRi6rxp5gRIOHcLOlq3TSrnnDWJkhiHrcl5y5RGVi5sMsWRGydNOyETRcLBVCVkqw6CxEIL5uj0LO4xJJI1iI5Mkx/h6YaZYLeqqNorX6TDhRsqIjSiSL8koT31oY+9h0SaY3XfY+oYmvmMCxNUixxviFVTSGT9WD8McqzxCgCzY7h18JSS4J7z5pzv4n8i5KL8OY53gdgJTXbLHAvoL2aC3RrJJFQmrTPVyUlr+n6OVTuxaVzTZuxYDljeNEbXb4RQhenq+fOGOXW6jm6ci6jB0Soe87Z+wZ2QW9VJo85ekyNX1zfWpnOvTlKTY1gcK/vL6xjJegiJnOZ2a0J12J5//nlceeWV+N3vfgcA2HnnnfGe97wHm2yySV8mFxAw0xFERzY8gt0KCJgYpnvy/nREsFsBARPDdLdb43bY7r33XixcuBCDg4PYa6+9ABRx1BdddBF++MMf4tWvfnXfJrm+wOIBW+uMJvDbj43ughIJZtpmUWwfmzBJRAlh3RpYNS4cqyZijz1rrKtmwiMZb66rRlk1O0neF1atCd2wbXZTg7BqWjfXbePasWpmJ46V7FmbKEl5EqE4RNnvM2/KFkXMlIYqBUIyqSA1t3PMyJZf025f3c6PYI6m51GPsv6iYAPr+gP6j5lgtyxqWJqmcG4q3+/16+aQSDOqKVSSougrDtB7xLFxjNxH9T+MVGhEK73BwiCbYHa6qaR/p9pldUwahW6I3mhjSLlh0kR9SKSUbfPwREcaRBCqO/wTkRVvslvmWEB/MRPs1posx2Amx0w96IYpa+obq10NU+yGMaP9ecPc655Ly34A7aVBdM09XIe60EJG+mhILOfMHmtj1WoYr6htTD0jB7SXNTKIGs7dqd3U18t5zP/DmQuzHQvT3W6N22H78Ic/jLe//e346le/iigqTpPnOU4++WScccYZuPPOO/s2yYCAmYpC6SgwbBsKwW4FBEwcTXbLHAvoL4LdCgiYOKa73ZoQw0aNBwBEUYSPfvSj06aQJWvNAmvNKlg1kiQ+5vM4KVDNhWPTjBBJlHjtblg1M77XQtj2HLafufE9sGp6jC8r67AbS5/bC9tGC22XA8vXKgRJTB8ttA34oiQcgNkYkYxBcLfT1cS2mY2sjDupcaU1pNCu3cXms42lJjtPI1Gvsv6sgWGb+sZjOmJG2C0uADXq9TUVl26Sx6fFsmUNm9xNDhuFz6p1fy3jzl+bAqgrpl07To7NqlEYpo6p+pw3X4Ck/idcdclYAGW+cYdk/Do02S1zLKC/mAl2aySVkCLvKZ+MooktbmTVdOfX6cSeNRWep8I+5v6nTJpWzi5US20YUGa7yrKNBcqs0XWV6WecWUaOMeY06AjzxhgZ08DC0XZ9Xhtvzmdj/uO6djXvropOOXLVOY70Ujh7mtutcTts8+bNwxNPPIFXvOIVXv+TTz6JuXPnTnhiGwJ8cDb44Kzix8/+SHZw2EgtGBcGKXxHrRznqUSa51EnjXGgHKOroY+91lUbq55amypkf7+Ydc6cZqzReTMGSzA3F6UBYeqwkTlW67YBheE0YQCs0JosjoOqS/rOW1nKDZlyry8Fd6Ij2hl2Pxyy+brrHDbWY0hkyGHbsJgJdguAH6LdgKoTRwVI6sINq2IgE4ETHenP+aYrxhKw6vo8DWGWiiwI6WLSoBtVyPHYmumeCzLdMBPs1tCIRMTqHbamUEWgXsmx7rHfrnfG6LiqM5bnToBsLGdM5srdb9p3zOx4raGJmaX3qsFEHDbT5l6fC5H0nDTu7lfGGUS5TunGqYuiBuGSBmVK6tQZdBXqWHH0xnLwzJjRke5t7HS3W+NOYjrqqKPw3ve+FzfeeCOefPJJPPnkk7jhhhtw8skn45hjjunnHAMCZixESdHX/QX0H8FuBQRMHJ3sVrBd/UewWwEBE8d0t1vjZtg++9nPgjGG448/HnleJP3FcYz3v//9+PSnP923Ca5PWNERwDJsnXZEGQmDtKBsmmHdiBCJJ8dPWTXGbeijP6ahrloXkv0bklUbC5R1q7JtnIgOGDaLM79um9l4KjZTin4TJskEgyEIOPdFSVjJwmnts23SyP1rYV8zkxqxNgyfBiUdFAkHa4K5wenOjO6RYWPMDyOl/QH9x0ywW51QDYEcawe3Kiji+pvFSOhzXb01DXOf0sgSJ1zijs90FCGL7QxmVXTEtBkXfr+p1cb98apGgKRxDjV2q1812IBmu2WOBfQXM8FuDWcSQviiI0110Kp9RVt1ZNiqNQfpmLHCGgvGrBivtfbYMFPrsMpim3DuauijIuxcHeutxwiJpGOrgiOdxEbMccu8sQrDZvoFqx0vBPdYO3P+1AZ58Vr2rptabk0hkFTopO5YW19F+CTiDKM9yPpPd7s1boctSRJcdtllWLJkCf73f/8XALDDDjtg1qxZfZtcQMBMh+DFX11/QP8R7FZAwMTRZLfMsYD+ItitgICJY7rbrXE5bFmW4aCDDsKyZcuw4447Ytddd+33vDYIisLZsz15bNa0c9kk608FSGiOGWHMrKBIlVUjuWoeSzYRyX4vj21qbBk0sW1aO3aqa+n/YrAN5tXaFyUxrJrSPttmPjGtAanMDo22uXVNDFtx3vqd6TqJfxb3dtdzMI9xpP0B/cVMsVtjQTXk4dYVzh4P6FNNe1LytbvI4+v49Em0j1WmjY3zWupybaqQXQhp9Yomu2WOBfQPM8VuDac1DBsRADHoVHC6EwtXldQ3qOakydzlmNXlgEqpxmTS6Jj2vDU6vr4sh0GvOa7UTpjILsaF7Wdc+OxZQz6bKL2TTswbHQMAeaY8QRMRlf2V13FzHbusQPF/8R6MtwB42oPoyHS3W+Ny2OI4xq9//et+z2WDg8UtsGQQXmaobvhxa3SKahwpXhUFqRELaXLSmsb3KC4yVZy1KpjWTlCE1YuRFI+L/6mSpLHBgihHamj3tmtmx1SdN+P2KRLGpQDisDFo8lYqol7ZFBVZF+Ype9ym4Q07Pry30wR0gZlit7oFDY/sVD+MwmxOTG4FtAJskrc8e1FNXF8woZW9LOx0zWK232iyW+ZYQP8wU+yWC4ksvtNNjlk36pHdOGZjKTc2OV1KknauvBBHWQqTUMdM5rnvmMkaJ60mjLku3LkTuEcU+G3qsNm28PtFqTDKOENuashGJAySMVtHlnMGKZRtm+fR8Ekp28Mni6WsGy+7cOQMOtWKM79IdUqVaQ8hkdPdbo17isceeyyuvPLKfs4lIGCjA+vwF9B/BLsVEDBxdLJbwXb1H8FuBQRMHNPdbo07hy3Pc1x11VX40Y9+hD322AOzZ8/2jl966aUTntz6hhYxtIgrnd3QKQ0Mmx3bpUBIN6waff06Zm2SxUXGAxMi2SRGokgYJBUjMcxYNUxyLLZNa8cYaO3CHTW5RZX2P3rKMHTzlTCIe9yVp0m01f6A/mMm2K1+olpjrXqM/r8hwaYAu2XANvC9aHbelZLejmqn3foNjSa7ZY4F9BczwW6lUkLkLiSyW5EQg2roIe0HDHsGe7y25IXWUDXy/TL3hUOo0IjXLgVf6D2osrQ+9FHJWqGgsUIiaV81VHqskEjexLZxARUnbf1KRr7oSHmtVIDEHo8ck6a4cmxcg7hJU8kASHjMG6th1SiTllb6XQmBon5kWlPnsgnT3W6N22F78MEH8epXvxoA8N///d/esQ39AxcQMF3BUU9zTwN2floi2K2AgImjyW6hQ3/A+BHsVkDAxDHd7da4Hbbbb7+9n/OYFOi4BR23ygdjZG3UsWjmPE2MWNnn5ZmNxarR83QpLuLmMb0MN81nA0gKYEX2v7ohQvPaAIzJtgGM5KrVM2leX0WCfCx+gU4v61F9oRq3TfsD+o+ZYLcCAiYbTXbLHAvoL2aC3cpyhVyoBtERn2Grk94HfDateOznpxlUc8/qpfyb89maWDWVpa6du7ZhxWSeekxa5xw2Rdpjs0SsKnZH+j1WTdC8NceqmfnyKLHjtSLtyLFtWuk2hk0r7rFt5v1uKtDNI270RBrz3LRmdgxjDLrslx1ESmSFbcvy7jOu+223Lr/8clxyySVYsWIFdtttN3zhC1/AXnvt1fN5usW4HbaZAB0l0NFAc8xbFbUFsxoEQHidE8ebxzc4aR3HzlB0EiMp+mDfp0Iwst15A2O2VxH/S2ttQyyLx+68zt7T4919N4wxGu3RaRasXmFvUlT3AmYc6tQg62qEjYWmsMmpCF2xj9NhH6tTGFQ3qNrIservTRRNdsscCwioIlcAVxpp7itCmv/rnKo2URES8uj6iHDIGE6aVnDCIWS8yhURHSFt4oCpLO3KSfPHqLbx7nraay92gq33i3YBEuewcRceGSVerUfjvFFVWq0keOz6uR2jwYUTILGvq4zzxiDKkEitNZhyIY7G6So228vxxKnjmtnPkXHtnDfowoEDwJQ7TzU83nxnkvL1e/DX+mq3brzxRixevBjLli3D3nvvjaVLl2LhwoV45JFHMH/+/N5O1iXGvfJfsmQJrrrqqrb+q666ChdffPGEJhUQsLGAMdb4F9B/BLsVEDBxdLJbwXb1H8FuBQRMHP20W5deeilOOeUUnHTSSdhpp52wbNkyzJo1q/Y+7RfGzbB95StfwfXXX9/Wv/POO+Poo4/Gxz72sQlNbENAiwS63FHoCR3CI+v6GtmxXhi7ptfB9AuFpKACJF6/ZcTa6yW1yf/TsEqysWx21QQj7Blh3vxz+o8ds9bbe5v0uE3DG3Z8QlTR+sFMsFtgfOw43RrQ3Wo9HaiygDHhfaYTEIfhrLfd2ya7ZY4F9BczwW5JpZHnqpFVM2ivZQbvGB1fFRQZS6a/qd6a1yYy/VRQROWOYVMNoiMFI9fOqqmK3L+9nl7Eg3LHviu4NhPCMm4F2+Zen5OQSIOiVls7i0/HaC5g3APDehX9ZTgiuGUqC6ERdx5qR5QRHaE1bkF0+xSz3wfGyXM5YANBlK4NlUxzhSTiPZUu6cZurV692usfGBjAwMCA15emKe677z6cddZZ7vmc44ADDsDdd9/d9Xx6xbgZthUrVmCrrbZq699iiy3w5z//eUKT6gaXX345tttuO7RaLey9996455571vtrBgT0G5w1/40Hvd4XN910E17xileg1Wph1113xX/8x394x7XWOPfcc7HVVlthcHAQBxxwAH7/+9+Pb3JTAMFuBQRMHJ3s1nhsV7/t1kzDZNstINiugOmPbuzWtttui0022cT+LVmypO08zzzzDKSU2HLLLb3+LbfcEitWrFh/8x/vE7fddlv87Gc/a+v/2c9+hq233npCkxoLJnb0vPPOw/3334/ddtsNCxcuxFNPPdXTeXQ0AB21ev8TifurPjZ/PCr+RFwUya77MzltjLvxpbhIW+HtGZ631gTG3J8BZ8z+Cca8OhomRlkwl2AqOEMsij+TqFr9SwRDzGH/EsHG9Rf1+DHROVb/ekWv98Vdd92FY445Bu9973vxq1/9CocddhgOO+wwPPjgg3bMZz7zGXz+85/HsmXL8Itf/AKzZ8/GwoULMTIy0vP8pgJmgt2aqeCTXCi7G/DxeCMzEJ3sVq+2a33YrZmGybRbQH9s11hMiNbasmuq/Kuya67f/SmtLbtm+8q8NfOcpvH0fK5diIsY5swwa0am37Br9WOUZda88VJ6/eY51cd1f3VjvHNJf17uT/lzp/Ol19E4xn/vVOU9rL7f5j1v+oyaxtvPV8F/rtZjRg1UC6uPhW7s1pNPPolVq1bZP8qiTTbG/Qt5yimn4IwzzsDVV1+Nxx9/HI8//jiuuuoqfPjDH8Ypp5zSzzm2oV+xo4XDNsG/spZb459xxMb48xyzjdxJawJ13uhf4w3I2v9i3vyXCN6Xv56uqcNfr+j1vrjssstw0EEH4cwzz8QrX/lKXHjhhXj1q1+NL37xiwCKH8ilS5fi7LPPxjve8Q686lWvwr/8y7/gT3/6E77zne+MY4aTj5lgt9YnpJ6awiJMcLAN4NCNd7NkfWOy665V0clu9fru9dtuzURMpt0C+mO7zOLa/FUX7jRckaLJ8eokrFOcr138W1VehzoF1Nmx5xlHmzprWtY7a1X1yE73d9O8qk6bcdz6fR30PXXHnePrzxVjOlpNjnXjuIoTWP0e9eKwdWO35s2b5/1VwyEBYPPNN4cQAitXrvT6V65ciQULFnQ9n14x7hy2M888E88++yw+8IEPIE2LuN5Wq4WPfexj69UjHU/s6OjoKEZHR+3jaoxqQMBkYSxZ/27iqYHx3Rd33303Fi9e7PUtXLjQOmOPPvooVqxYgQMOOMAe32STTbD33nvj7rvvxtFHH93dRU4hBLsVEDBxdCOPvb5yQcayWzMRk2W3gN4/o2C3AqYq+iXrnyQJ9thjDyxfvhyHHXYYAEApheXLl2PRokX9mGotxr1lyRjDxRdfjKeffho///nP8V//9V947rnncO655/Zzfm0YT+zokiVLvJjUbbfdFgCgmNjgf5qxvv8xrdf73/qY9/q+Bq7lpPz1gk7zB7qLpx7vfbFixYqO483/GzpOe31iJtitgIDJxli2F1h/uSBj2a2ZiMmyW0Dvn1GwWwFTFd3YrW6xePFifPWrX8XXvvY1/O53v8P73/9+DA0N4aSTTlpPs+9DHbY5c+bgNa95TT/mst5w1llneTtyq1evDkYkYEqAqRxM5bX9QBFPPW/ePNtfx64F9I5gtwICxo8mu2WOAcF2rQ8EuxUQMH50Y7e6xVFHHYWnn34a5557LlasWIHdd98dt956a9vGRj/Rk8O2ePFiXHjhhZg9e3ZbSEIVl1566YQm1oTxxI42hpFJhVT2XkSWYqzaDVWWlTU48VXpenf+8cxqhqIakF6CNfTXju+0i9J0nh7A8tGxB1Vfs3aeRZ+Jox4L47kvFixY0HG8+X/lypWeQtnKlSux++67jzmnqYKZZrfWJ4zkcTbF8tj0BO10t+glH2JDYjzFtNcrmuyWOYbubNf6sFszBVPBbgG9f0ZNdktw5on2SLgQL6Xcg2pumlljcV5IwlM05bExxgBeHiNP4oxZqXmttD23hibFp4WV4Gdc2DwuxgVA2o1jzGuhfb7+3KUvpd+Qx1Z37/vFsoUtqs0r/XXn6LZdfV261mWc1a5ZGR97TcxoEW3eXP/MjGHMfW8YCWk04Y2ql5zjLuxWL1i0aNF6DYGsoieH7Ve/+hWyLLPtJqzPwpn9jB3NpEY6jgx7//p0rYyx6ZLwnTb6XNovS0eCnooz5vkXG6XzVnMTeQ5a9Th9w8ixjs+pPc/4FohMZr09QUn7I9DW3wPGc1/ss88+WL58Oc444wzbd9ttt2GfffYBAGy//fZYsGABli9fbh201atX4xe/+AXe//739zS/ycRMs1szFWoDOWUTgZqiDt0GR5PdMse6xPqwWzMFU8FuAf2zXYLX10A1sNdB6nEpOKXIYuFu+h1MjS9FEnw4XB2vqqNnxmvO7OtoTdpcgMdF/TKVpbaWmcpTW79MAY1jKNx11FwvcfTM47FQ52C112Ezbe7VYTPzpXXYGBcdxjgnCSidK9Nmrs2II151rroZ764H/nO7+F737LD1yW5NFnpy2G6//fba9obG4sWLccIJJ2DPPffEXnvthaVLl6732NGAgPWBIna6zintfWE41n1x/PHHY5tttrG5JKeffjr2228/fO5zn8MhhxyCG264Affeey+uuOKKYg6M4YwzzsCnPvUp7Ljjjth+++1xzjnnYOutt7Y/3NMBwW4FBPQXTXbLHOsF/bZbMwVTxW4BwXYFzAz0025NBiaUwzYyMoJf//rXeOqpp6AUYTMYw6GHHjrhyTWhX7GjmSr+xqr1YOA8fjfeZ89cm9s+ZmWyOfO/FLqGeaPno5KplG2rbjzosmM6fOGqaJxzEztWOQatx2bSqn2qF+aty/fUfAZ5j/XJVF781fX3iLHuiyeeeAKcu23IfffdF9dffz3OPvtsfOITn8COO+6I73znO9hll13smI9+9KMYGhrCqaeeiueffx6vf/3rceutt6LVavU8v6mC6W63xs3+EuPCTOxj71+zgCkE7zOdANOidOfwrfYnNNgtc6wHrA+7NRMxWXYL6I/tEpyBRxxpruxjE4IsidQ+DY/kcG2lNKBceCTQzpxVWTYDZsMgGaR5fXAo7n7flc1XiaBU51BF1iCbz7iwLJtWHLo8D1MSmvvnUfT5cmx2x4Q9ArAMmXlNyqqZNo8S+xzGBQRh0ugYj1Urx3DObF1Mw3rxiNswSMYZRFl0loZBUhaOhk02hUFSVs2MAzqHQRokER8Hw9Y/uzUZGLfDduutt+K4447Ds88+23aMMQbZxRdwItjQsaMBAesFY+Sw9YpO98Udd9zR1nfEEUfgiCOOaDwfYwyf/OQn8clPfnJc85lqCHYrIKAP2IC5IOOxWzMNk223gGC7AmYA+my3NjTG7bB98IMfxJFHHolzzz13vaqirE+kyomOjMWjsMoomnBJQq9Jn2HMtD0utc+8mbMxALx8JHUz22ZeU+sZns9WZczq8tTqWDU6tolJKyo7tr1W57y4MW5kUuCcyd52aZjKa5/Tq2JRQHeYCXarF3DRbigY5zUjO0OQ6IKpWFibgmnl2fPpEHhQJxTQC6oCAKyXXedxoMlumWMB/cVMsFsRL76XScnMtAn8lN9Zj21jrqiy4Mxn4VCuo7jp0y5nLFeWPWOV8xn7J3MNRuZg2pwzyHJdyPkAZF58nykzpZW0TBrNRZN5alktUzDbjK8ydZysTzoVzrbz81g17vXXCZB0YtVsO3ZtEUXWbgjBPaas2iciNiarxiM3xyZWrRohUMeqAWgTGjHtiDPoHn7OprvdGrfDtnLlSixevHjaGg8AyJRGWjEaTT/ufrgjg3HeGKtRgoTrY6zipJl+aBLiWO+8KSJBwlklRBKGOiZzL+uZTRe0zbXJeaoZN5aT5jl6xMFj1fF15wQ8Z6+rL4Xp6jUkss8MW0BnzAS7FRAw6ZjmO9XTDTPBbsURh4i4ddRypb2QSAPZ0K+VtmGLjPv9QOGwma8e58wKBGnqsGkNVYZEMuIMstw5g1pp60j47QiSOGxUdMQ4XDxKPCdN1ThsNPyxzlHrJETiOW2iXWikqhJJ2zT0cSwnrdZhqzhpxiHrJChi9rKpU2eO1fXXOWbV/qg6JurBY5vmdmvchbMPP/zw2lCFgICAHmBUi+r+AvqOYLcCAvqATnYr2K6+I9itgIA+YJrbrXEzbF/84hdxxBFH4Cc/+Ql23XVXxHHsHf/Qhz404cmtb+Sy+KMBNN0xbH4/ZdOK4wys3AniDJYn48yNEd2wbdqVDFBg7nXg2DYOumsxPQRIWE1IYtFfJxhSYcfMsbFYNSUbx9t+Rdi7KsM2lhgJ4IVC2nbem6w/U7KhcPbUNx7TETPBbvUTgjEb7igqRSJdvys7sqHQVF9pMtCtKFW/QHfL6/rraiRtaDTZLXMsoL+YCXYrEQIiEpDl77UgTBpQMG5AM9tGj0nChqG8FZRyjJlWmjBs7h5WSkOXYhpSKmtnhHDjldTgpXqJypVlkrTSVohDa8fayQqrZhg0j1WrCYmkj1UX90xVaIS2a1k14feLKCrbjikTkWPSOCOsGWc2nL5Opp8ycJ3CHSmT5uZbLyLSxKpFDWMEL0RHILq3hdPdbo3bYfv617+OH/7wh2i1Wrjjjjv8egqMTQsDEhAw6QghkRsUwW4FBPQB0zy0aLoh2K2AgD5gmtutcTts/+///T9ccMEF+PjHP+5J7k4njOQKUa683LCmnWRBDCRN8BbcPabiI+VGTJnDZo5rGA0A3QXbJjiD2Vzi0DanrRsxkqmaz9aRXavK9ZdjPKYMKKVZu2DVyp0URgVItHY7LJXnapq3RndbmnZe6C632cnqMYeNqbyBYZv6CbDTETPBbnULsxsM+DucnWDsHB9Thmn9Q09yIe02UYRJgBEX6IVRq8sJ6Tea7JY5FtBfzAS7NRgLiERAKic64hgzhaQcV2XV8g4MW7XPY95KVJk3mZesWsRr89wo86ZiDiUdOxfF7WOiWLjzaFqeQNcybGPlsHXCWDls1YLXTcIgQnDbtrL9oiL6QcZUxzLGIKLemLSmnDSDJiateMzb+gUvokNE3AvDNr3t1rgdtjRNcdRRR01b4wEAw5kCz4obxjhtnUJ/7GKmwWEzx2PBILVz4oyTxmnIYsV5M21GVUqUtjeChnN2CmfPOW82PLJSq03TXbhJdN6axEWKYzXqjZ1ERQBAKeJ0VRww6qQZw6hVZUxpOPPMtaX0hUaIoW28LmM8iRFVw8ON42uhfDVLrz+g75gJdmssNF2brasjWK16ZLcwT5XatScFEwxhUZNpE4my3ETCG10oEmt0ysX6+K432S1zLKCvmAl2azARELHwHSx7D4qOzljRVm2bKFXHrhsRE+N0UUdO5souLyKtPUfOKEZ64iVKe44cFSxRxDnUKrJjDGiIdV3oNx1bvaeb6i7WhS02iYFUHbNuwhyBMnyyxgGsOlEGtL/qjPljeOOxtj7WrhIp8h7s5zS3W+O++0844QTceOON/ZxLQMDGh2mcADsdEexWQEAfMM2T96cbgt0KCOgDprndGjfDJqXEZz7zGfzgBz/Aq171qrYk2EsvvXTCk1vfGFUKkSx2bRzD1jye7iZbVo07MZC43CnIlDsecw7BXR0RVcO2Ca5t6KPggJaw46ngvxUg0b70v+tvl/0HJodt64pVo/2dpPdl7j9PSTdW5X67jlWTmQt3zFMXkqAUdFlLBUo5Ns0Lh2zeddFmZ4jWZ0lHG8fXgVXFTkh/QP8xE+xWJ9AwSMDfka2DIOx+ESGgbduIkNAxALO74tQeFuNr5kOObywoQpTa90Ipk6aVbBMOsM+tCXUCnOhAN6IjrOb97md4ZJPdMscC+ouZYLcGY4EoqWfSqmGPHkNWw8LRsfVt5b1OU1ilN6aU++9GvKRg5FypAI9h88Ij3Vwpa2fQq7iSx7ARNsz11Uvm0/pojDOIUlykSXqf1kSLooZwxJpwxqooiEEdc9bWZn5/p3BJOoZnPYRETnO7NW6H7Te/+Q3++q//GgDw4IMPesfqfiwCAgJqoKQN42zrD+g7gt0KCOgDmuyWORbQVwS7FRDQB0xzuzVuh+3222/v5zwmBcOZBMtk1wybgWBVhs3ksBUeeiw4Yd00YuFy3GybsG0KjhHT0HanQSnX1iTnjUr/C2g7Z8Z8to2KkRhU2TbbPwHWrfG5TcxRDasGoFYMhEnHoJkbitFcNSJAAirZKrMiR63s11nR1nlqx3ttSSjxqgBJ03UThk0bhm20N4YNuoGK11PfeExHzAS7BaCrHxdG2DYmOFhpQJhg3jEDn0mbGCY1t20KoV/y+1Sim6I2d6VH0ZFx5fI12S1zLKCvmAl2a3ZLIG5FY+aZVY/V9dUxZm1t3fl1mli4KvNG256gSDclBOpEUMbIYesEyrBRLYVeCldT9qxJGKQu/6xWUh81OWms3v6MxZhRdCP3b/oj2YONneZ2a9wO20zAukwCmYRSzulpUoxsUomMBXXYyj6lSUikRqxceKQRI/GcN+3CiRRgHTnBYNUjBYOVh6RKkuDM1XmrKEma+TMy56rzZlDnxFF07dCN5aTRSVTFRYyzpZQX/ug5cgCg8sKRqx7v4KTZ/jxzIZF56hwzJd2Y8nFtm4Y12RAlbvv1aG9KQzrP/Ncl/QEBddBK+gqlaHfODKohkm6Ms0POtrkNIsFomzpgGkBnW9GLszYR8ZPJRrfMhglxpAJGVefLV3mrV3+jY11//RyanLa6xRFnrG3BPBaa7JY5FhBQRSsRGOzgsI3Vrnvc63maQi+lbnLSmp262vNUlCqbxEbMcQrVcP/ViQl1Eh9pEgNpqnHmj6kPfwTaBT8MooZzd2o39fVyHtvXQ0jkdLdbPYmOPPHEEz2d/I9//GNP4wMCNjpM4wTY6YJgtwIC+oxpnrw/HRDsVkBAnzHN7VZPDNtrXvMaHHbYYTj55JPxmte8pnbMqlWr8I1vfAOXXXYZTj311Cld0DHNFUSukEnlMWydpP2BYqfBsmq52wExoiMiV4jKne2YM8TKtOvZtphzmFISWjPoUqREM2YFS5Qu2Dfz+oZ561X6v3jcmW3rGWOJZnQp2W9ZMyK93yYqAgCSsGoqJ+xZ2syqZWnZnwGl0IhWyrWprD+pmdIExoVj1TgHi4sqMjrrkWHLMjvnan9AfzDT7JZFTYgcFbvwmTZGQiJJPxELqQqQcCtA4ouOGGESGj5ejKnZQfVYus5GhrKBjNeHbW5ImB3cOvnsOhhmTHnhi+4+roqO0H7LmAnKnnFfjISMqc6jGvJUvQbAD0MC/EiRXtFkt8yxgIljptmtuXGEhNQsq6afdFMPtxML3A0z100YJu3Pm8Z0YOSazp83zKnTdTSFNPejfln1PEYmv2589XU7hSzWzbGb6/D6GyLaimNlf3kdUdq9GzPd7VZPDttDDz2Eiy66CG95y1vQarWwxx57YOutt0ar1cJf/vIXPPTQQ/jtb3+LV7/61fjMZz6Dt771retr3gEBMwNK1e/sTIOaINMFwW4FBPQZTXbLHAuYMILdCgjoM6a53erJYdtss81w6aWX4qKLLsL3v/99/PSnP8Xjjz+O4eFhbL755nj3u9+NhQsXYpdddllf8+0r1uUSOpOQWiMtJV07Jb92SnwEgISwarwstliwZ8r2x+WYAUHZNp95M7ltEa+wasqxZzbnjbBwWld2g8lOeBPbVvSx3tm2Hlk1b4xXxJrK82vXJmNovhoAMJmOyarp0RHHntG4ZSrrn2dQZrxU0LZAppuv6QMqeUKc28c8joDyPCrtjVbXsiGHTU793Z7pgplmt6poy4fy8tmY/b+ucDYTDELSfDaUbSJ+hKYcNj/Hl7Jzndi0qrjJuPPYJijoMV6GyZfWbs8x88e6nLSm5QCV8ueVvLXGfiIaUPwPItvtz7F293uCyoJNdsscC5g4ZprdasUCrdjdJzRnqxPb1glNTFw1H4yev4nJq2PMJtLfjTDKWNdBUb1nxxL0aGLBJtTfwHzVlnTpgj1rQhOrVj0vZww67iGHbZrbrXGJjgwODuLwww/H4Ycf3u/5bFCMlKIjaa5qHbYmyrr6xU5InQoASCLuOXFx2R6IBOLynJlUjc5bSxf9SjAIK1ICmHWYYkSYpEPdNtfy67YZmMuohkuah433VaeaatTwdFNXzex20LppHURFgNIBGx0p22M7aXp02DlUeWadMJXlti3TrNFRozCLYcY5uFlMJVHhtGEcIZEN4ZdjhWQG9I6ZYrfqYL+XgtuwSLqp4KlEcgZR/shxkTeGRJo6bFLXh0RS8REa8igYrb9Gz9c876bHY/X3G00hOnWLj2pfbfgid/XWOOqdtiLEkT6X15yn0jbvtfl8ma8S2SwqMDFHzaDJbpljAf3DTLFbcxOBgSSqdca6EbwZl5opOjuDTU5jnVNXHeuUxZsds7FEUjr1VdFJoIP2jVXnjFdssbFj3ThjVWep7fXHYV662ThrEksSDBBJDw7bJNkts+nywAMPIEkSPP/88+M6z+QmCQQEbOzIs+a/gICAgKmITnYr2K6AgICpiEmyW2ma4ogjjsD73//+CZ1no5b1XzsikYvcY9jyCsNWR1VX60wM1DBshnWj7UzpRrZtICp2CWLuasLFilkhk4GIQ5dsm+bayvD3WreNae2YNVICwFwRrd/WCW3MGuDVVWtj1Rrqqjn5/rxZVCQt2bRSOAR5BlX2Ic8KBg2dWTWVFudTWQ6ZZrZtGTbSBuoZtoKlMGFljsngWQQRx8V5etwF1FK6EM1Kf0BAHQqmJbffP01ZGUFZNdfPhau9wwnbxhOBOC2+6wnXSJUTGknK8VJTZsiFRArmvu9NIZF1pQGqIZM0bNOgqRxBN9CswtpNkFSiu8q03lnxuIEB89ru3TMzU3AiJU3n4XHiy/2XwkYiiiAiw8I5Vo2GSTYJDJj+6i57r+xbk90yx9YXnnvuOXzwgx/Ed7/7XXDO8a53vQuXXXYZ5syZ0zj+vPPOww9/+EM88cQT2GKLLXDYYYfhwgsvxCabbLLe5hnQjsFIYHYian8jeyxH1hdUWS2fVWvoN3XYuhjbKeSzOrZX9BIyWDumRnRkrLHe6/WJqe8WdS9n17pRLyGRk2O3LrjgAgDANddcM6HzbNQOW0DApIOoVrb1BwQEBExFNNktc2w94d3vfjf+/Oc/47bbbkOWZTjppJNw6qmn4vrrr68d/6c//Ql/+tOf8NnPfhY77bQTHn/8cbzvfe/Dn/70J3zzm99cb/MMCAiYgpgku9UvjNthW7NmDebOndvPuWxwjGQSOpUYJQxbKlUlmbQ+l0kQ+ey2HDbhctgGIo7BMsaWsm2DFbYtK19zQHDbbkUcMXdx0oZtiwVDZPLZ0FxoW9ldFFdoW3Bmd7NoXpvZwWBwOz8czN+dpuwZ7eumELYVEdF+IeyyzWTeLCpi89VK9iwdcTL96UgtqyZHR6HKfDKV5shHRot2lkOZHLY0t3lrhoErplv/mfNKTpDJWxPKCZbU7aR1QsEKtt+G06GI43TETLBbABoLZ1fz1rhwTIyJ9ecJBxtxzJstoi2Zx6qZ73JCkq9KTs++rhdtYHIkQNm0unFEIKOS9EAFSOh1VPv6jbr8ENpXVySbccdaGnEQoGDOVPmYKQHG23duReXz41FcnlOAR4lti7LNI8q2+flqxXHu5bPV5a11I7/dLZrsljm2PvC73/0Ot956K375y19izz33BAB84QtfwFvf+lZ89rOfxdZbb932nF122QXf+ta37OMddtgBF110EY499ljkeY4omh571jPBbs1OBOYk7v3uJ8M0UTTNhbKBPtPW/Fz/OTXn7BOdWJ/XRY5X3iOPQeMN/R3e136+53397HvJYevCbq1evdrrHxgYwMDAQG+TXE8Yt7V6wxvegFtvvRULFizo53w2KNalEjKSGC6FRwAgzaW9oUZz1bXwCAAvNDKJnJO2rlQOnJUI67Cliap13rJIYCByoZKtckzhsJWOnOZQZpGlSSgSp+qR5KZUzXXbAEBA14ZHdkRdGCSpmdaxrlqdk6byZlERExJJHDfXV++k5cOkPZL6IZFlv5YKyihMjhEOCfhOGhMComyrLIJoFQsriV49toaCjTqERK4PzAS7ZWEW/WTziAthnTQRR5DlAkkkAvlIbtsiLoWNYgGRlCGRubK1IanDRpFWbg3zkLpRCa8PiTTOoGDOSSwcRuOYtYdJusd0hTExdcgqqiHuVfghkMRJ88IQnaOllfRDGct+lacujFUpv2aeCYOMEhL6mNjn8ti1hXDOmXFwheAwkaDCC8kXDWpvnWvKjYkmu2WOof8Ln7vvvhsveMELrLMGAAcccAA45/jFL36Bv/3bv+3qPKtWrcK8efOmjbMGzAy7NTvhGIzrN1wKheuxz1H3lR3reby7FQ3UGL/dVR+jbmnYNqbmnBPwVTzUXXf1WmvHVPr69f4Bnd/Duuvuxnft9N3gDNBJD5t4Xditbbfd1us+77zzcP7557cN//jHP46LL76448v97ne/wyte8Yru5zcGxr1d+dd//dfYe++98fDDD3v9DzzwQKgHEhDQJXSe29w7/683tcmA7hDsVkDAxNFst5zt2nbbbbHJJpvYvyVLlkzoNVesWIH58+d7fVEUYdNNN8WKFSu6OsczzzyDCy+8EKeeeuqE5rKhEexWQMDE0Y3devLJJ7Fq1Sr7d9ZZZ9We6yMf+Qh+97vfdfx76Utf2tf5j3uL6eqrr8Z5552H17/+9fjOd76D+fPn4+yzz8a3vvWtaWNARjIJlUkMp7ll2LzwyFzZ2meAn0RaTUQH/NDIJCq89YGIW7ZtOJMYLOW0h1NpQyWrbFuminZLcEsdZ0pjQLiEV1MGYEAImDIUWjNoU5ONMWiYNkkirUj/G4ia8MhGVMMgaYhjjWS/x6qpHJDt/ZqIh1BREU+q3/SlI5Ztq7JqcqQYK7PctlXqWDWVEQESqexzNaETFGHYuBeOxVwYZBLZJFVOQihVryFbqmHHJ0hjrxfMBLsFFAyvJu1aWX8qjBNHEEnxXefDuQ2PlJmCyIrvmkg5EitVTUN7fINAmTfapuGPhk1zrFpF9t+WGOC2TcVQzDH6fxu4cGxbUXysfpwZztxOLWedRTYEZ7aekTm9eZ7XtrXPfKERE8oIAKoM3+ZRYqWj6XjzGCiYNBoGyUnbCI3wiNs2FR8RROiK1mKibSs6MoY895hoslvmGIqFz7x582x3E7vW7U71RLF69Woccsgh2GmnnWp3zKcyZoLdSgTDYMTGjEFp+jbS72k9u1Q5T82giZDKndgg3VQPrstzd8O6dcVANj63U6jj2OfthOr7UvdeVN8HOqQpPLLb70naSy2BLuzWvHnzPLvVhC222AJbbLFF96/dB0woJuCCCy7AwMAA3vKWt0BKiTe/+c24++67sddee/VrfgEBMxo6y6Cz9hAvUww8oP8IdisgYGJoslvmGND9wucjH/kITjzxxI5jXvrSl2LBggV46qmnvP48z/Hcc8+NGSq4Zs0aHHTQQZg7dy5uvvlmxKWq73RCsFsBARNDN3ZrfeCJJ57Ac889hyeeeAJSSjzwwAMAgL/6q79qVLitw7gdtpUrV+If//Ef8dWvfhU77bQTHn74YZx44onTyngMZzlkmmNdKjFc5pmluYIsGTYllWXVPJ0Nrb0dC7PjmhHZbLODGZF8glmJwLBh0pLIy22jbJtpZ1SMJNLISuYnU8LltilYtq0VcZuLphjZ1eCA3Y8gOWzgbgfdEnBwAcNKa19+u0bK35Pvl3m9uIjKwYwyT6UQtpPszyoMGpHqr+SwqXTEsmeUVctH0kreWpnbNpI6hi2VlkGTmRML0R3UQpzsOIeIi89MZbll2yLCsOVNbEATAsO2QTET7JajeIT934pWiBS8zFvjcQSeFP0iy22x7GgwgsyK76xIJZTt1/Y+kNrls1Wl/Gkem7ltPIl4j2FD+b/rizktj+GKeDMvn41bIY8qa9jvHDbKttn/K300b83kj+VcuaKzUQStXA5bHWi/ltIXKjFMGsl58/PZIkTl+yQE93LXACCKXV6bV1ZGcD/yw+Q3MuYxFpz1mB/RxU51t+h2p3qfffbB888/j/vuuw977LEHAODHP/4xlFLYe++9G5+3evVqLFy4EAMDA/j3f/93tFqtnuY3FTAT7FZLcLtu6YQqGcS9Y1UhDXKsqb/Dc+qe2yu6TUlbX6ULumXIJioZUp1+fQ6f+62gx+lQr5+ObztXd/PKeolq6qPd6gXnnnsuvva1r9nHf/3Xfw0AuP3227H//vt3fZ5x57Btv/32uPPOO3HTTTfhvvvuw7e+9S2ceuqpuOSSS8Z7yoCAjQ4qzxr/AvqPYLcCAiaOTnZrfdmuV77ylTjooINwyimn4J577sHPfvYzLFq0CEcffbRViPzjH/+IV7ziFbjnnnsAFM7agQceiKGhIVx55ZVYvXo1VqxYgRUrVkBOo1qXwW4FBEwck2G3gKL+mta67a8XZw2YAMN21VVX4eijj7aPDzroINx+++1429vehsceewyXX375eE+9wZDlCsgVhlOJ0ZLtklIhL7eQpXQ5bFrpxlhbK1FdtwsbMaRlm+atrUslZhlWTUYYJXlzNocuUcgM2ya5La4ttYv7LYpul4pvWmOg3LWNBWyhbUBb6f+qemRxAW6XAwBYza65B629gtc2b01VVB+JGiQrFSChck+G32PVMiLbT1QgTdvmp42kVqY/H0k9hk0a+f40R27Gp9IyCiqVkOVnrZRjFFSDMqRXZJgzqPLz0EpDEFbOMACqhyKO5jx1qpR6fW3HoffiswAwMjKCj3zkI7jhhhswOjqKhQsX4ktf+hK23HJLAMB//dd/4dOf/jR++tOf4plnnsF2222H973vfTj99NPX23WMBzPBbjEuAK69wtmwOVCR7RdJ5JRM4wi8/O6KTCBqlf3EximpoQdLJdphJ3ojmIYojUKqXC5aU5H4gmEr2jSXzea4JRyiHMAT4coKxMIxR3FUKU9g8sNoTunEmDZf5pq1/W/LtEQco5ZJ48gz15ayvA6lvTy0Oii6g0t+eTktll1RhoySIu8rioVj0xKOqPwszf8i4ojK3wGaN51E3LsOc820cLbJL+wk6V1Fk90yx9YXrrvuOixatAhvfvObre36/Oc/b49nWYZHHnkE69atAwDcf//9+MUvfgGgCD+iePTRR7Hddtutt7n2EzPBbrWiIodtLLAK82v7yRi75qLHiWJ18bg9IghAheJp/w6zmr6NEbouJ5j2eW9+2c8qzyvbmozVZP0KsDHYt7GRdfGdsuecJLvVL4zbYaPGw+DVr3417rrrLhx88METmtSGwmiuoUoHSZYfYp4q5Jlz3pQJj1TafoGq97P9rjK3sOcmQZy5dhRze+4oFjYMczBxzttwFmEwLdqzEoE55cIqTQQGlREg4cil+3E2foPSrj5IS3PETmnEipGAM3tXmLWP1lSghLnrZMzS0l7oY6XNiMS/HwZZOGBM5UBeOFKeZH+DY1YVFTEOWTZUhEk2OWn5MA2JzK1jlg/nzmGTCip1bbpYpXCiCMwKj/CEe8IzBkww+7pNi9gmqCyvdfLM+dYHei0+CwAf/vCH8f3vfx833XQTNtlkEyxatAjvfOc78bOf/QwAcN9992H+/Pm49tprse222+Kuu+7CqaeeCiEEFi1atN6upVfMBLsFoHDQTL2uKAPKnByeRxBlGCQN2+VJjKgsPaFSCZGUQiOZsPdDNOh/d43TJpgzeIK5MMimKGJBnAHqsCWxqQMnbBikiLmrD+eFR3JwI5giSG05LnwREtMeQ3DEDjehnWS4J4jiOWwulNBuwDFl21K4to40tC7e9+qda52xhpCbNsGSgcHidUkYZBQL55w1yPrX1fsc8CT+3W9CLBhi4X6jekWT3TLH1hc23XTTjnZqu+228xZ6+++/f9cLv6mMmWC3BiJuN5cNWN1nU3W6/HwUb0x7TVjlHQdQ1IGt69f1jlubw9aNAzfVnbxu7GNlTJvD1sFZs2M5KQJAhaDIczXjEG7RXH+e8lxV6BpbVf1OdcJk2a1+oe+FSLbbbjvcdddd/T5tQMCMhJaqnmFr2AWaKMZTfHbVqlW48sorcf311+NNb3oTgEK17JWvfCV+/vOf47WvfS3e8573eM956Utfirvvvhvf/va3p5TD1oRgtwICukeT3TLHAjYMgt0KCOge091urZfKkS984QvXx2n7jjRX0KXIiAmDzDPpGLZcIS+ZGa20Y2O6CI1kNoSG7M5mnCSJK+RlWFBaKSWQlqIBqVQ2VHJuK0JaFrgdTAQyEh7pGDZtC30rrTGgy52HCHDpitrGGVjNEaWdsIbuEApJYUMiG+T788yxbfmoJxxCJfs9Vm14qDhlRVQkXzdStttDIou2Ydty5CUrkBGGTaUK0nymqSRhkBpa1d+kVg5duCK/kYxqxUkYZ+BxKWrSI62u0gyyJmnWCKZMheKz9913H7IswwEHHGD7XvGKV+DFL34x7r77brz2ta+tfa1Vq1Zh0003HfdcNzSmi90C5wUjU4YE0pBIxoVj1eII0aARwlD2OyVaMaIuxHYMWCoty5YqbVlkJ0pSMMtUtp+2ASCJhWXSRCxceCYp4k3DI5ngVjyFEZEST8qfcz8scoxd5GpIlZkb506AwzBsEWeeWAe15yYMUkhumXn6+4Aktiwb48KKjWgpPVl/Oy/hh0RayX7BHcOWCETl+xQP+MwbAAwkwu40DyaRLR9D2TYa9siZf830cTdoslvmWMCGw3SxWzxdB57WLzkbwxcpazYWU6Yrx+uigMrz2Od1E0LpPbdJUGhqL/Y7lkZxg2rbdSGOYMxjwDRl0kjb7y9tOzmPZtyLkmBjzKHOQvF0Xf211WC6261xi44EBARMHForaFXzV/5ITIXisytWrECSJHjBC17g9W+55ZaNz7nrrrtw4403TrsCtQEBAWOj0W4R2xUQEBAwlTDd7dZ6YdimC7KSYVOS5LB5DJu2bZUTiX9NdlMJrOgIczLQnCR6R4lLqs8ziSgzu6Qub244FRgs80sKVq34iKTSHgsnW45JU1rYtmxiAe0nzcFKAQHLsIHBpKlwrqF0A9tWnpPGlTOV+3lrVIDE5K2RnDQ1MlSfwzY8BDla5qINjXiiIvnQiG0Xx4cbWTXTpkIj+XBud8Bk6ihxJXU9YyaYy2ETTiAB8BNT7WecCAhTgLvHKpQqzaFqZMpNce+pVny2Gzz44IN4xzvegfPOOw8HHnjgBnnNjQqcuz8ALIqBUtYfAy0Iw+goVxiexxGi1oDtN/cD/T43sW1MMPCSrRZS27Infr4mEfAgbI0VFEmEvY9Ewi2rVvS7fDbHDsa1BcCL63blDOzcO+Q++LLgpL9OgKNGdITmgcmcQ4jSxgoOKYr3gkccnL4fZR6hVhEpDdOcw2YLYDPmM2xGXCTmlXy2Mi+tPD6YCAyWvxWJ4IRtcyVjBiKO2JZWIAxjKUTVkzp2g90yxwICqmDZMBhh2JoZrQbmqyZHjWlVy5i15dwTm2hZMiWhjVKoUn7ZDeX62/rK53oYg2HT61mRdEwBpirDRhl+eh8bm+v11UQ0eFEd3I0nDJumjBlh5DQZwyrjyaQ8Y82aGD8U36tuMd3t1kbtsBnHS5biI0ARBinz4gc2zyRyE1YnFWReLsqVbPzxBfwkchFF1pHLM0kESIRb+EgFKQV5feeYzWmZtkQqi0XAaK6sYyZbNERJ1IbkeQurangkinvDDFEV1Z5aNBnJPHVqkCQMUg0PeSGReqQIfdTpCFQZBilHUicqsm7Ehj9m60asqEhmHLfhDPlIKS4ynCMjbds/kkMatU8SBpkpRUQTGlTupFvMxJxDy/aVDOMM0iw0UwldisP0GhpRhFI1q0ROheKzCxYsQJqmeP755z2WbeXKlW3Peeihh/DmN78Zp556Ks4+++wx5x3QO1icgEXC3YNKWeVVKFWIkADgce6ctA6x+965hXO0zKaFTDlk6SzITFp1VC1Vm1gPYMKIuXc+ETuHLWpFiAajsp/74ZGJ6Y+8enLufE50hNHwyB7h1VljbvOFKiqammVJJJBEZZ3OiLs6jpIj0jWbLcyFUGqlyUZfZaFBRKpsyKXg9jdCRMx30mx4JMfAQPHeGFGqua3YOma0rmcSccTl+xVzjqi8plhwKzoS82JM1MNmU5PdMscCAqrg2Qh4FjWHG9Y5YYAf8mjrvBrbJ933kNTYUllGnDRpz6dpHS6liMMm6506cwyV3/YG563NMet2PdBNDbBubF3FMfMcuTonDCRcsnK8rZ8L4rBx0DB81NhkFsf+c+kY46TxiDhvdDetEk7pJuuLmqD4XnWL6W63NmqHLSBgsiHTHLImvlz2uNuzPovP7rHHHojjGMuXL8e73vUuAMAjjzyCJ554Avvss48d99vf/hZvetObcMIJJ+Ciiy7qaf4BAQHTB012yxwLCAgImGqY7nZro3bYVLn7qbWrsaa1Y9tUGS4JAHk6CpUVrA9l2OqYNkonyyixuxJFQnlkz51n5Y5zphDFpdx/IpAMuNpghklLPVYtdm3lwiDNNdWB1tjhcbmLXtZhk8yFRwrtamHQKvTlxdr/GQmJhA2JlLZNwyC99siQZdV0OmIFRbKhYcugFWxbyaaR8Md0qGAO8uEc6VBq23WsWj6cI1NUKAG2bVBl2JxQghNQkFqhVbwUmFBgvDinSLT9bijp2r1iQ6tE0uKzy5YtQ5ZltcVn3/zmN+Nf/uVfsNdee2GTTTbBe9/7XixevBibbrop5s2bhw9+8IPYZ599rODIgw8+iDe96U1YuHAhFi9ebHPbhBBdOZIBPYCLYveS2CCWtIpjSgIDRVt02LVVNbuMjDOv5iBlx2RiRHv4mKI9jHMSUkxCIq2sP0dcMkPRYOTarQSiZAQ5qSEnktiGSlZFR1ATitOEQlhDk7brN/c7lcAfIG1TdkVS8amKrTUsnYwYeF7uIHcQqxpLpIpHNAzStRNS7mUWCYmcS1g3c3wwFmhFhlVjrs2ZC48UvYuOTHe1tYAND5auAxutfMfGkuenDFqeQslKqKKSrq5rlT0r12vVc9QxclpK/5yEVdNWoImGR/rff9pWNeGPjaxOj/cKa4hbrhMV4YRdo8/zQszJMdrPqnYWJVtXw5ghSjw2jpk6lBUWjpmwfcrICVKepmLPa8Mg20oNMLAeREemu93aqB22gIDJhspzqKxGJTJff7s9vRafBYB/+qd/smNp4WyDb37zm3j66adx7bXX4tprr7X9L3nJS/DYY4+tt2sJCAjY8GiyW+ZYQEBAwFTDdLdbwWErYXZBZa6tAIkkeWsqS6HyYsdG5andgVEN+WxWppkLcLuDICDLthwY9Ng2lZfCIdIxfPFAZPPpJGXYlIZsxfa1/P76j5Qm2GclnWY2VKUumDUAUJqRQqMNO65VyVwiNGJ3u7LMl+8v89bU8BDUSOEI5EMjXjFsIy5C2bZsaBRZyayZXLVsbVaft0ZYtWGpLZsmtUZJvEFqXVvwt5Aid22iM2IlzVkqLWMgU46o7r3ucZdGZg0hkVOo+CwAtFotXH755bj88strn3P++efj/PPP7+c0AxpgdyLLHUvm7Sy33EAlYfZYm3YPOae7qiO2SDwVA5GptPdb1IpsuQwa809z2bhwjBEnuWzmfFEr8vLZTA4bZdV4NYfNFgmP/V1bm8jeHTtkhgnuF8t2YhyOVbNsm+BIIpMTppCW/Uq5HWzOGXJmJPuZEyYpIziK94vMg6ZlEKERxl3eWiE64gRIBsr3aW4rsgIjJldt7gBh1RJhZf1pseIBwT1WzRTRLvL5ehMdabJb5lhAQBUsGwFL3WNdFfQYg+0qcnVT27Zj89Sdj7bN+bLUjScMm5ZOlIkyL0pKb4xl2JSLuKoyNd61NDFvXeaz0ec0MWoUvIYta2tXxphjnLJqpL+IkhDeeZhwolAeGxcljjGLE0+MxGPPTFsQho0+t6lkSyVX2WMTuQDrIYdtutut4LCV8NTSrKqX9pw005akTWvr1IGRRM0iJDKx56POmywFRaRUUKp05Eg4jdbuh18qjbwhJNJAcKJUSRTPCvUzM6ZckDEGaZ03DVE6akq7MB5Ba5l4Sku5a8sMerRwwNpCIkm9tTrHLB8aQbZuuOwfQVaGPKZrncBIutYpQ3rhkUZhkzhpqfLbYwqNMAZRhkslleR7K0BSUZWsVdXrZdWDDR8SGTADwCMXXtIlqobe/Ahn9EdaCMjEqbOaEMZsJLfOlpLa1jTUHUKBqaMGlDbIOmbChkHyRCCeXYZwtgYgWoVNjFoJRByXY6IiBBQowm9iGlpToxRJVcjgktmNOi7g1yGLOSNiHMX1UIdtViKcsBNZdK2FC4PMM+lERKTyf0O6qNvpq0SWqsKxQETUHl34o6uzNpc6aeXxOQORddJmxQID5bW1iPPWomIkgnmqmN1guocWBWx4qHWroThxxoDuhEEaQhuLscRJkxIg4ZHUGaNtmWVt/Yo6bFnuhUEqz3mrD5VUXTlv7Xag11QKXrO+YETKu8lJ456dp06acM4b543OmTkH7TP2uTrWtummYjX0sSYMsnD2SGgldd5IKKZ9F8uxat3QGO+aw3S3W8FhCwiYRKgsh6pZKKlpsNsTEBCwcaLJbpljAQEBAVMN091ubdQOGycsFKtbNCtNdlQkJGXbMhoe2eyZe7scUQJVJmRStk0rCZWX7dYsl6SeC8uqNe3SVkGZNNtX2U3OymMmNDImsv5dvowTHSHMm84zt8OVpx6rZoRG8nWuxlo2RNi2dTQMMkW6tjhPOpTakEjTR2uvDeXSMmmdGDaDpk+KQ7cxa0DBrkltGEf/zaE7W5yEEvSCavIy7Q8IqIPmESDipoDlenCByOxkinXeTqokoYeShCTKUuyHJwKKljfJ6I5ze1gk93Z8ST1DUnvN7MJGg05oJGoliAYLOyhaiWXbeBQ37MjGLraQdyE6AsCIQjOmbUggrcNmQyIFt4xVNaKBYjh1YZC8ZOeEZKT2mhurtfakq93UmbUfnDPLqlGxk8EksvMZjIUnNmL+n11+jq1KGKQRGhmIOBEd4S4kkrMywqAXWf8OO9XBdgXUQI8OQ/EKu0ZDG2l9tBpREShJ2Lb2EEeV5rVMmkppHdbcY9KkFxIpbb8Lj6TsnIso0Epbe9dkB/1wyLHrXY4VrVCFt/7g7Sxb1Q7TfhqybqMg4ohERlDWzIVG0pB1cz6RRHbdU4S1tzNvnIxpDKH0wt059BjlBIpxwkZ1dYPpbrc2aoctIGCyodIcsmbpPR2KOAYEBGycaLJb5lhAQEDAVMN0t1sbtcPGygKnrIudRU/KX0qXw6aUy3NryGXj5Y6AyjPwcixl27SS4IZhkxJqcE55PppX53LrGqX7OYMYoblqLpGeMmymYKoR6JCaW+ZJaUDrzu8H82R3lZPyz1InOjI64hXLNrv1+fCoL99fk7c2umrU5qilQ5ll08zxbFRibW7ERZQVFCnajlXLbEHxzrlrQJG3Zp4rGCM5bx3fCgDljpVhEsbDsNUWzp76uz0BkwQuoHlkZY+rBaRNvL/ykrhdW3AOHhf3YMGqxbadJ25HVJXMl8xyW7y+2Lmmu9J0Z1mVL0UT3B3DZu4NkUSOYWsNWHGReHbL5bANun420HI5e1Hiy0ObAqyV4qre20XMmTH1HI5RKgQ4SuaptAEDEUcqXf5YfZ6wKzY9miukpU2iecWeMIvS/k44iYYw+XKCM8ueFQW7yzlUWLXBCsPWEhwDkRMaadUwbLFgGCh3qmPhrp8x9Cw60mS3zLGAgCrU8BA0yKK4oeh1W15aA5sG+GyYzDLbLzOfSfP7HZNmam9ppRqjCEypoCKfzbBnhG0jue2K5K8qL999rFy2sRcalDEDmnPXbEkVwtwzskbxWDXOCFPmcthEzB3rnzjWS1AhqNKWiKpAlD2H6xdx7Bi+OHW2PR2xglKaCI3oSqkATZg3L2+ZC6jhHmT9p7nd2qgdtjjiiCOOUQ5X+4bUxGmCJoZG5al11Gj4JIX5GvD4/7d3/jF2Fdcd/87Mvfe9/eHFODbeEHAIUBXSEkRMbCC0MQEFlAqRFCHRJggIJS2SnfJDISZRgKRFTQiIJC6BllIgKoj+QKSlbWgpkAa1BBCUqoBBIQ0FmRgIBuNfu/fHTP+4d2bOvHfvvvew1/vWez6S5dm5P97s3ffOmzPnzPckYX0Pcp1qjdS8ju+j6XiCpHICPv0xkplrt1Lp2knk018yLZFZA2cdt8K4iYeR8HXYugfk/6d1UlzKgldxKtMjK0c29Q5bMZW6drZjF/Jdtu3TIDMiKpLtSJ3DNlWJj+wqDHYVmrS7nbRSaKQ7JZJSTljsOV5spOisP0cIUrysIVMiCP0Pgk4LaNTI+qfNQjbMwsaoCIhiZ29ozRohpVsokeSLzigFYxUVpYSxaS5RAplU5xNHSrcTV/9QpTl05UgVWY7ITVRCNbU6qOoY/YJ3X+rtxE0CVDtBVDmJqp1A2tpyxEkTcRwoRoZCIz0WmkgdNiHgbGIsJeIqVYuqRbYjUk+zxoakSjsbO6IN0rxw5zalUFqUFM7m0sU16qQlShLnTQZOmh2b/R1Kh82mPqrAYXPnRP47QZE6dEoICIGB6rA12S17jGE6MVM7YZQJHTOaBklqrBm6IB44VVYkxDtdNmWx6EqJrM5Ns4ZzvIBSkRaBY2YdNl1o6NS3nZp4WtTWo9RdwmS+3/eRRZx+96BU0M9ouCXDz0vocUkWkmltTDd3oenYiXfSVCwDR67839fSpHMeugAnk9ilTRYkJTI4J44gp7wysJApadu0ycx9X9H6b4bWf7N9U/2nRM53uzVYOGAIuOaaa3DCCSdgdHQUixcvnuvhMMxuoSup4K5/82C1h+kftlvMvkSj3WLbtc/BtovZV5jvdmveRdjSNMVZZ52F448/Hrfeeutu3SupImwqkmQTJtmQKYXfcEnCsJ10RtZo+mRwni7KNCUAUhdQNec3XQskRAba9wohsEuUK0Zlak3ZLmsHlSemuUYWlSs5eaGR6TAlUhvpxEYaFoRrfmkvOuLGnqcw1UZfkLZOc7cBOJ9K3cp9MZUi21HJiO/KkdqUR5IGme/Kg8gaAGzPtWvTNMjM9Cfl7zfX+0iaalhcpvXZpPArVuUKVNVOlI8SxIN9pIrMoKiRQimywVbemOFmT9otyKgUHrFRNaNhCisLTySQo4zUu4mhSVqhE/HIUyeTL6Mpl5JYTKUu2jVTqlFTzSFLvZR0mFrjBUi8rL9M2hCtMsImkjZElYEgkna9rD+R8m98bMLHzZUEpPYpkTY6RVOhg9Xvtr3OR8PSXAc2tiAiJUVDhE3VZEYkyke+WrT+G2mPJAqJIuIhVduWI2hHMpDvt1G1llJd9dZs26WHVs+lyQbW0WS37DFm32FP2S6TTcNMUXsR1lvTuZfbr7Mx1A5REREnzZ96ERHdYbNs9KTIChft0mnhakoWmfb1JTsibzYiRq81hQnO1277RTjvoJmOnfOQpixIel6TEBD9rNJzyvmK6GpLIYL5ik+PFEHUzEbeVKyC88s+GZRmkSp358rEZ094ESsfbdNZFETbnEhJ5kVKdJYToZPcp1ASMRJICSgyF5cKJpuuf5A1zHe7Ne8ctq997WsAgNtvv31uB8IwewBTaBjZbUDmQ00Qpn/YbjH7Ek12yx5j9h3YdjH7CvPdbs07h+3dMD09jelp74W/8847AIDRRCJOFLbHClFc/rHyrPD72ZRfrRakkJ+gebSE3lGy7v1tnQipUNjXSXcF/bQEgRDlfZSSrtDqrrQgq7MFkrR7pbYd+T1sWWFXlQ00bIFuQUoJdKzuuD1sxhfRNj4Pne5bM3kGnXpxkXAPmy/Oa3PFMyLVn+/KXbHsbLoIomlAt2Q/3bdWJ+XfvZJlO0SwUmX/oorIfFO5a5VItxqlSPHfqB05aXLVSjpfbEaKVKMwdRG24TcezOzSZLeMVDAq8eU0jAaqKDuMAgpbuNSvZJo8K1cqAZgohqmiV2Z6ykfbkjaE3f+WZG4fCd0notM82D/iisf2SCcRHUVZ66SfVTvx+9NabYjER9hcAVYSHYSMfKFVIcP9bPS17f9kn5YEAin/2JU4Kf9vR7J2f0lnhG3E2ptcB1G1vEeqQhTsWwv3G9MIGy1uTaNqdI+aO14j2R9LWRtVU+RZCGLr+qXJbgGza7u2bNmCdevW4b777oOUEmeeeSa+853vYHx8vOe1xhh88pOfxP333497770Xn/rUp2ZtnAuZRrs1PQWjEBTLpntgdSBm5KNqgQw/ERsBwqiaKYravWpFWvg9aQ1Rta5zMitAYnx0LtVBJM3OMaioWXcb7nzLTFG3XnRG0zr7aUZQ1zym+opIsiKIvNk9ajJRkFM1UbPq91eJgqqekUoLF23ThYEiRcRlYcub+FIJIsvro21EZl8o6e4jSKFvE+tgL3QgpIWs/A7rk7myW3uKBeGw/cmf/IlbJaK04whJEmEkyZFXH9AoU4iS6gNaKOiinIjrLHV103Sehs6bTZvU1SbIPpw1owtXy41C76eJk6jzFEX1hSwLDVU5W3lWQNl+5ZXK0rxAmquq7ScTGUmJ1M4xM0H9tZ5v26C4kP9QUgESk6WB0S2C9ARvSKmTZj8wReaNauiEoauvOQ2y1y/RadxCo2cFSBJJJkojEaKRqLvdThBVqVxmrNX7hQkcYWOaaLJbUGWKiEH1xWVM6bwApWKrfT9p5fpFlEMk1cQmTlw9I+q8Ic9cTRuTZ+6zLEl6c6dSW5PoCP0StoQCJFYxLPJOWhyHzqN12FptJ0BSio5UjqeMnJNmeqRDujEI/78dWqwE4io9sm267yNJHctMC+dEZbpeGZKmQRbaBGmQFtXgsHU6W74tnApkqfTrhUTsuTatszP10bYFfBqmBAJ1ZCm84Eo/zNVK9Wc+8xn84he/wAMPPIAsy3D++efj85//PO66666e137729/uSxGa2T2a7JbJU+jUvz9MoQP74QU6vOOls9ypMdI6a1SpVgdbL+x8InvXTlqREocx1W7rCJ1fUFGzwqCn82Z/Lv/vXRe2CWqd6HyF9tU5bIkM++38RgkgqX6/ONXOeStSDWWd1mqRush0o/OmE3JO7EVlrANGxdg06acOnlTSPfeyJpxy59R9d9g0e7uw2A9zYbdeeukl/NEf/REeeughbN68GQceeCA++9nP4itf+QqSZLAF/qEQHVm/fn0psT/Dv+eff/5d3/+KK67A1q1b3b9XXnllD46eYd49Oi8VqTr/6ZwdtmGH7RazUGmyW7NpuzZu3Ij7778ff/EXf4HVq1fjxBNPxIYNG3D33Xfj1VdfnfHap59+Gtdffz3+8i//clbGNt+YTdvFdosZVubCbj3//PPQWuPP/uzP8Oyzz+KGG27AzTffjC9/+csD32soImyXXXYZzjvvvBnPOfTQQ9/1/VutFlqt7sjHWCtCqxVhVzvyK6W5RlGlFBW5cX/EojUSpjwW3emPhkTdLH1F24oCRlarGXnmri9ohC1LUVSrz0ppFKocVxRLFLmXnfURNo208Ku/7vdLfB03t+KjSbSNCHHMSFA/Rfs+J9MbpjhoIrFbuFUy7Va1TEfqgf2d6tIcu2usgbRnDq2FkTRSi4msOo0oiRFl24JE0iLEY+XqfjIWIx6rakaNjSAaq1LMRtu9nx1BFxpadBsKzRG2oWeu7JaREUxEVua09umRUsErCOWArPJgdEeqpI22tUZ8GvP0FEwVyeoSELKR8zxzn3GlC38OEKQ6dRKINknlxVDixKW4iMhHz0RrxKVBdgqQuGiiEL5N7mlIeqQkUv5lGqT97BsUZMXZRqrqkGSlOtMCmbSZCRJZZYc7RUrq7JAikToAgRiIq5OphC8toGRtu9WRKmnvURdVo6vsgkj5C9G9WjuI6EiT3bLHZoNHH30UixcvxrHHHuv6TjnlFEgp8dhjj+HTn/507XU7d+7E7/7u7+LGG2/E5OTkrIxtvjGbtqvJbum8CIoTG00jWVltemQpq++jbVSq3/XR4ySSpmsiaUVHtM2ek03lXlwkLRrnH75UEEDLBtUJjZRbTbr7Qfp8u/FxOrpTII3rdymOMIGNs+1UmyCqZl87rDmrkUxX/RGJAlYnxL2H2IFPZy2zwnz0rJYkAhC+PwBAFBIq6X51G3nTef9y/HNht0477TScdtpp7udDDz0UL7zwAm666SZcd911A91rKBy2ZcuWYdmyZXM9DIbZ6+i0Xk6WI2zDD9stZqHSZLcAb7vs3iVL00S+XzZv3owDDjgg6IuiCEuWLMHmzZsbr7vkkktwwgkn4IwzznjXr72vwbaLWYjMhd2qY+vWrViyZMnA1w2FwzYIL7/8MrZs2YKXX34ZRVHg6aefBgAcfvjhfW08pixqR2i1I6RFgunqj5Xn2su+5qRqvTaukLXRhSuW3UQvAZIZywT0kPsvConIRskK7dqa7KPISXua7GHTZKWH7mHbLUgBcEMib3XSvHRVrcxb75bMLdKC5IF3y/PPtBoVSvZ399PVqEQKtBuiaiNWIrsdIXFRtQRJFVVLxhLEVVQtWTTq2mZksA82R9gWBnvSbkFGgCIRNqn9u50WtS8UYKr9XrqAUFYSO4coqpVMlUDE5XtWJO1gDypIVM3tE9Da7X+DDj/vCPbo1kj8dxQ8BcqomouwxQkpQ5D4PWxx7NpQcVnSAIBRkWv3I+tPC2crKaCqh2akgUa4JwzwohzThXar24WBE23Sxrj9wOWjqbdPgbCR3UNGIl9SCMS2SK2Aa9O9anQ/m5JECKkmkkaPS7JPl0bYgDCPwgC1e+2a6Gel+uCDDw76r7rqKlx99dVd569fvx7f/OY3Z3y9jRs39j02yj/8wz/goYcewn/913+9q+uZPWe77J41+v2vC7/fic4X6L61un1uQZ9rGzdfK+9t5xa9961Rmf4i10FUrW6PfBhtC+co2QB72PqJrFG8LTEI97D5iJmqbFwc7GfrvIePwtWRkAVj5fan9Y5kCSUh7N9ICTe/M4r87Whbahjl/9Zwe91ySOKeFFVEVSoV7GEDBtt7tift1rvlxRdfxIYNGwaOrgHz0GG78sorcccdd7ifjznmGADAww8/jDVr1gx0r4mRCO3RuEwfHK3qD2mDwhoLHbsvYaMNjOkv3U1IhcKmGRWh00XPcW3V7LxZQscvdk6WIemM5VzNb3wv6tqG1AwhffY9b4zPqDLGwNivdTIRFEa7k4z2ddjopM1Qh62od9JMYbxhLkwwyRtUPIT+XxKqKdUJisTCO2YjSmC8mqyNRxIjlZGKxxKXBtmaSJCMV87bxAiSRWPVOW3XLqp6Uf1S5A0qkeyw7VPsSbtliNPSfZC8b5Qu0yJtf+Hb9jMrdA5TnSOKHKg2jMtWDhTdaZAmI+086/js+9d2QkQ1BPZOSic60tWOKwGSKAai0qks00FtHTZfi85Qh61TJdI5L8bXHgOxF8RRkdZuRH4yoyRQKC80ois7kRU6sE9NC180DZI6aV5oJEyJVLTt0pjq0xzpcUnsoCD2LnDSZhDdGMRha7JbgLddr7zyCiYmJlx/0yp1v+l5k5OTeP3114P+PM+xZcuWxlTHhx56CD/72c+6Cj6feeaZ+I3f+A386Ec/mvF1mT1nu2ZSkqXOmP3ZXuPmEdoLnNXNLTRx0kxhOu5H5nFkzuHPJ4vHxnQsGNcJitSrRGYNddj2VEqkPa9MZexOiUSwpYXeVLjxJpK+nuj4/fx4JHk2AKALAVGlg4tCw1RGyJDBl89RVOcbCGnTGgW0a2u/BYg4ePS1QARIALLY10E5/+x/rrQn7Va/C01HHHGE+3nTpk047bTTcNZZZ+HCCy/se9yWeeew3X777VwPhNln0KmGVt2TW46w7Vuw3WL2JZrsFuBt18TERDDxaaLf9Lzjjz8eb7/9Np588kmsXLkSQOmQaa2xevXq2mvWr1+P3/u93wv6jjrqKNxwww04/fTTe74mw7aL2XfYk3Zr0H2gr776Kk466SSccMIJ+PM///P+B02Ydw7bnmRxO8bISBzUzaHRKMBHrGZC2pQe5QVCROol/u0qdFMapZQK0spZS0naYe23XhhjfFpOw7ib+vc0TaseZaqCX+HqRWddEaBaISrsapFwcv9JQ0ZUp9StTYNMZH2EbSRRaE2UqyqtiQSt/ar2fi20F4+W1y4aQzJRtlv7L0JUfcCFHFR0xNfA6+xnmFqkglFkE7aQQWTNCZAALiUSuigjbkAVlq+ibUXurjW6gNA1aZOJcf1C5ySKrr1gSRFG2NBg6+jv4Ns2xUV5WX8py/IFKKNq9nyjIic0QvshaYQtjBQ5oQ2QWotSeEltbdxJooqqCSGhbG02LVwGQqaFz1AgJQtmSisPImzS91nhECX9OYEMf0dmQFM0zf4+NGBoz6VPgo5DCISlXIwZUHSk3m7ZY7PBkUceidNOOw0XXnghbr75ZmRZhrVr1+Lss8/GgQceCKBcwT755JPx/e9/H6tWrcLk5GRt9G3FihX4wAc+MCvjZJrplO+vmycM82Jl01t7kBG/25TIwvjPe2EMiao1Y8fVOXv0kbr+X39vogsNRaJqrpQMQrEkWjamv/vuObs1yD7QTZs24aSTTsLKlStx2223QTZEDHuxoB02hplriqxA3fdTMUNKGcMwzFzSZLeA2bVdd955J9auXYuTTz7ZFc7+7ne/645nWYYXXngBO3funLUxMAwzP5kLu7Vp0yasWbMG73//+3HdddfhjTfecMcGVa1d0A7bWCvCaCsqc3d7RJ6EFG7DuJACqvLs0yhBvms7ALjIWJ7ugqz2X+gsha5WoRWaN+PXFeJWURL22zaRgabbNYTwYxxkP8LeRCgJaYvmkuUdqYTLU5aqs/ijj6YB5eqSb7sFeicc4O5J2rQQtpfv9xG28UgiGfWS/XURtvbiUbQWLyr79x937XhiAnLR/uVrysEKIRptYGpWfPqJ7DILE61iaOHXTMvoDhHLoPtjbXTJGBi6B9VGySLtomfQfoN/ubetcOcbshfORd6McdE5ScVOyP0p7t6dq4t2vGQfWrAnTalAXMQQKX9XMJsU0W6CRp60JivUEmWUDT4KJQFIsl/E1tNOIHzVhI6oGtl+0fG6Nnrn98gJsreMRtIkaQcRNhlGB6mQSDnG8HWE24hMIq8d3z30eUkhEQ3wldFkt+yx2WLJkiUzFsk+5JBDYHqIaPU6zsweNCIiEUamnAS8km4/kZAde5mquZF9L0slYbSdNxDRESX8a2UaovrAiML3l+dX9mCGMYcy+WVfGe3y8xH7W/Uz5afX0fv1vq77Hr2oK7RN7xXuf+txLyXcnK0sWm3bJHKvpPu5PN8LhNB2nW4D/V6Q5H1iC2SX/d2iI4MwF3brgQcewIsvvogXX3wRBx10UPiaA9qiBe2wLW7HGGuH9R06HR3781bR4bBV6XMyksiiMh0um0qqvsQ5aTpPvQAJqd/WiTNEUkFF/j7WCZRxAhWVfy4phf+wNDhvTb/T3nLkmj58wTn0Ay1DY2DThQqjUZjOTbTSOXHlZt7634k6fd5hQ1hvrRIXScZ9XbVOh629fykokiwaQ2v/UhWr/Z79EFdpkHLRYshFi6vXGqxaiU4LFDWPp5cKKbNwKSqFMvv90m30/c+COAKi+vqWUkFU6YbCmFCYxL7vSNqkCZw0HThyLp2yU5Soc2GKjLHrK4pOGEgtNSoiEqhB2vRIIQFVoxJJ2qXz4p+FcBv1hfPIpBFuYmNHLWCgKudKEyGmYILZYHe6fqU6Jw2hg9Wk6uhFSsI0R9cmjplzyIgoFBo22Jf3J7mXQnrHvQ+a7BbAtoupp1yYDt809HNHJ+CqUgss0hyicsgUIhSwAklk8u/aGqLwcwhZycCqOHzNwKmrrpUJcSBSO6LqR+3FPRIyf/IiHr6WGTQCJyysEWvb3gYNmppY57R1iqr5mmwgtde8LaGL1nTLCe2PpYRKwmcjZOiMWfVIlSj3jCVxlIUU3lGWkvT7toqjwAGzf/fO86WdH6uwn/7fD3Nht84777yee936ZUE7bAwz15jC1K6ycISNYZhhpcluAWy7GIYZTua73VrQDtt+LYWxdhW1qgkLR1IgiezGcIGtkV9FUFVNo7Jd9kdxuQqQt9vIq7oROk9RTO8CEAqQdNZmq0t9lFHiUiujpOXuH8XKRfhUJCHtuKRAVLVbkXSrsJEUQWTNbXDf09E2qcIaSzUrKjKO/IrNlHQrMypRrj5KRPID2rv8qq+T2RbGCYwURtSmE3SKldgaa4kUSOxzHIkQV3//eCxGMl4+69ZE4iJsyQRJg1w8jmSikvKfmIDc7z3l77RoMVQVYYMeLMKWaY0M3X+HbACpWmZhYVO4XYQNLqOvBpvq53sEDEnHE5Ci/AwoKSBswEoXTrykK6pGIm82khZG20wYbXND6fGeJikCYYRNhKmSdkVVSC9AImSX2EgnUgBhUKz8wcC4lWDjVryF+2LXpB8QPetWdop7SNcWQRok7W+KpPkUTfJMde6X603386f9jXSln5reQjGEJrtljzFMJzJWjWlstNcoXdbkgo+0AYCRM7+vpJKu1iSQ9RxPGQGyqZUChcvw0RBVTTaV62DeUSelX0r8o+qnMvm+rRH2W4oBU+Lq0xp9hkCnwBqNnlHRNhp5o9tF3LwyUS7Cpqr5kiSRtPJ4FWGLpWvTc6KRGCquImZKQlZtmfh+SSJsKol86iNtd6RBushaFW2Tef+ZAfPdbi1oh41h5hqaKtHZzzAMM4w02S17jGEYZtiY73ZrQTtsi1oRxltRJaXsc3pjG42JpIuwJUqiVbW3JQrb43IFJ5pSSJPSw8+rVZlsukBerUoUeQLdHq3aeRBho/vZ6CZMKuvvVjyU9BG2RCGKfb+N8Eklg4ggbauaXGZLp5S0EyoQXiq6c0XW7o2hgin2Zzt2uioi3UqLcqsrKs6g7SpNphE3fGJGquea5OUKCC1aWf5MfxfyO1XtznxsGlWLRsp2MpagNWEjbCOIxsoC2GVUrZLvX7wI0cR+5X3GF3uhkUWLgZFyP5tJB/vUp9ogqtkEm86D8DwzNxTaINNoiAB5iFp9QBjdofuqaORNQgkfuW+KvPnNXb48AI3uWKETuqdN9Ir+IBTEAN2j0Lm3raZYdqf4iI1SaWP8nj7ymTNCuH1udkO6EqGIUfh861dow31rto9mNvgrlRS1+9mCSJrRQOH3FIbPveNZa13/XI2u3dxMI5WiilSKASJsTXbLHmOYTmQUQ8YRTBXVMoV2UTOjtNtPZgrt5hE6y127yPIuwQktJQpXTimMqsmq3lahyF4qRQRIlICsxhKcI/05Mi2gbAmhXJN9a7Rwtqgtoj1T21IXYaOf4s5PblOErVc7kU3RNqLHoITLflIxibCRPkn6bORNJbLjHNuOIBMbSSNRtSQi80FZH4XrEVUD/NxTRgvHbi1oh200lhiLJaQgX5gCiKs3RCy9AzSSKIxWb8S3d2XYats7M0xPl+1sunzj5K0CeVa1M43COhpFDF21NXlz0JxaqvRI1ShlJKEqGa8oVkF6ZFR9iJJEkfFGSKprqeMZE7XLWNrfWdSmhPYFSYMUcQxjnbfKOAM2DbJsR+3EGdZoJA7yhkNDWjmYiURR5RsU1TM1hUG7ppYbVZ0sN7D6kL41InE7ck5a1I6QjJcpjPFYgmRRVWNtYixox1VbLtofcnxx2R5b5Bw2tBfBtMpUSS0GC6trY+qNNiuZMQ3o6svfqxWGzpul6S0UOhYmFCYR3f1KhI6cFH4hiKpQ1qbn1YlfDJK6BzQ7YzQNsodCpMWaiMBJI2ptmqQr9fMJpFYzSDsNxF7s8YbnpfPgOTnHizrButNhq1GBbHiWXc8MgBAaVvrSHR9EdKTBbtljDNNFFEMkbS+OE2wR8fXZTKEhbd0tpaCrRQuhvGJkQSbtdm6h0whFXG1VyTJo186h4sp5SwoUaeUAxgpFUvbLVDoHRLe1256h08LNO4pUI7avn2qMVO/zVJvAGfPOmxdEq3PSOtenmz5PdSqOneqOdaqP1EmjqY9SCDc3aponqZioee8hJ42mOzY5abJOdIQ6bHTbjV3IG8Bhm+92a0E7bAwz16TGQNWs7KTzwHgwDLMwabJb9hjDMMywMd/t1oJ22EYjidFYBqsSsRJoR+XKTCyFS4NsEwn4kURhpFppGG/H2D5VRoy2TZXX7ZrKgwibdhE2H20zxqDI698gPsLmV2pVJINom02JjGKFJLFjiVwUcCT2EcEgwqZkEFkDyho/fmVddIXhu+ja+F+1pYKIKrnwOHErJyqJEbXLdENTaKiseyWXSsBK6SVji7RAkdpVuCqKUJigNgvFXidkvexsNBIhcimRLcRj7ao9gqhqJ4tGnbiIGhv3qY9ji0iEbcJH1ZJxmKRMoTSm92ZnSmHqa7fMZj71li1bsG7dOtx3332u+Ox3vvMdjI+PN14zNTWFyy67DHfffTemp6dx6qmn4nvf+x6WL1/ede6bb76Jo48+Gps2bcJbb72FxYsXz94vswCx0TVbO5KmRGrjq8zMlOHRKUJS9oViGVQIoy7yJkldolJQw6fYORtWE1EyGFCMpImZIm/0NGLbLJpE1QxdqR7k5Um789mJ2ohZGBkTtJxCUySNir1YOgVGbF/TOGvKHTihkarbFPlAEbYmu2WPMUwnotWGiEmdUl24lF+hSW1IXbiajTKOoKv5gkliFJWYm4uqxb52ZBHnkNW5NNqmisLdo0hz0i7CSFo1z9Da+HaqXYRNFwa66i+ywmX3JIU/3xTGRWrKCBu62hYa6dmdOmyNsv7Cz6lUokJJfiIk4rKZOlIeXU3fGkERlSgyv4tqt7zQ1McmQRGVxIEgXWe6YzVgn76tQmE7SAUxgBr/fLdb/eWRMAwzK6TaNP6bLT7zmc/g2WefxQMPPIB//Md/xI9//GN8/vOfn/GaSy65BPfddx/+9m//Fv/+7/+OV199Fb/9279de+4FF1yAD33oQ7MxdIZhhoCZ7NZ82AvCMMzCY77brYUdYav2sCkBqKqIqpJAJMsoUUsptKJyRacdSYxWqxJjSYTxKkqzfSrHtqny/O3TedWXYWe14rIrLZDa1ZpCu6haUWhfwLHhjSJIgWxJCkuryAuQJJGP/C1qx649mqggIth2+/KE36On7F42GRR3tXQJFtSsaAsh3aqZiGKYyLdFUkasVDsP8tNtWxIxASFlEBGzK1ZF6s+3+/5Mw1KIUCJYFaL52NFI+TeK2glUu5Tsj8faLsIWjbYRV0Ij0fg45Fgp5S9GJ1xbLtofcFG1EZikbJtkFDour02nt9eOrQndsOIzW7Zj48aNuP/++/HEE0/g2GOPBQBs2LABn/zkJ3HdddfhwAMP7Lpm69atuPXWW3HXXXfh4x//OADgtttuw5FHHomf/OQnOO6449y5N910E95++21ceeWV+OEPfzg7v8QCx0bXipqoGg08a5jGfWwUH4EK+6SNwMBHkErBEmsrRUPkjUbt7P1IBA6ApEJFNNrXNOCmCFKfe9c6X6eU7e/v3KCfXkT3j+mOfXu1+/kaImm66Hl+EGGjkbpeCBGIttgC5IJG21AF3waIdDbZLXuMYToRcRuiPeLLR+giECNy0WQqyJZnLkpjtA7aQBlhs3vcZOznGUWWQ1WlAXQW9ts99DrNoe3cIsv9nCPTLpKmC0P2sBVu7lGkRZDxQ893YyuMO59mBOli5nkM3UvVpC1A9/mXP8uu/rLgdGWTSSSNZh8JWgA7VsH5NJpWPt+I7GuLIOO4ui5CWLYpqu9Xyl1bF20TUgE2Q4tG0jpF7Tr6Rda/wZnvdmtBO2wq2wmVRRiNRwKVyKhy3mIpkFRCH6Nx4Ry2kenctXe2C+xIraNm/4+9w5YV2FUd35kWSG16pDbIBxUgsfUySIpjK5IYqT4gNA1yvB15hy1WzklrRT4lMrYfGrIZvkx/6iFA0lUXqfrgRAlE9SFG0obIS8OoWq3aFEaq+CPj2IuRtHMUNg2i0M6wWeMaCJXQ+nJK+hpvUroaLqrdcimZqp24Nk2DVCOjECOlAyZHF0GOlaqPcmwRxEjpsJlkBDoedW1TtXXcxnT1t9yZDZbelWrjJsZB/yzlUz/66KNYvHixc9YA4JRTToGUEo899hg+/elPd13z5JNPIssynHLKKa7viCOOwIoVK/Doo486h+25557D17/+dTz22GP43//931kZP1N+sWiApN6QlEh0ipGQ6xpkNHyqoKldsGlUldTGp1XTtMkghbLmOiB4z1NHz/XR8QkBiHoHrxeNDmDHa3SnGM6Qttkk+NHLMSNiIaJTVZM6ZnYSSxw/d6xpvMEv1rGwZscrBARy3185b+Xri4FSU5vsFjA/9oIwex85MgqRtHyHLpwyqelw3Gi/yNOyXRSQCVnkAKDzzC/oUscszbzjlPr5RFRolxKp0xzanZMFaZP+2sLNO4pMk/uHC8k0JZLOV+hcRdc4b01OWxOixkkLHDcpnFMlVJgS6eaSRGikVGn0KuN18ydaP01K6rB1Kz32k+4oozgQDnEK6VHiru2q6dvUrxSk7v8LYb7brQXtsDHMXFPmVHcbCmvH33nnnaC/1Wqh1Wp1nd8vmzdvxgEHHBD0RVGEJUuWYPPmzY3XJEnStRdt+fLl7prp6Wn8zu/8Dr71rW9hxYoV7LAxzD5Mk92yxxiGYYaN+W63FrTDJqe3QU4BRudoR1WaXNJCVEVLYmmQFFVUSwkXVRuNJRZlNqJSYHsl67+zVT7OqXHtom270gK7qtWX6VxjVxVeT3ONwm6W1cYJCOQdcdmILDv7umphfTjb7kyDHHHj9e1WpJyQikuJVKQOG2pSITuhtZCI0AhinwYJrb18L/wbLYiqJREKFwVLGle+LKamEr0gKzRCyWAFSNmoWuzb0UgL0Wg5RpG0Iauomhid8O32qIuwmXgEOqmialELJrFRtRFkVfwgzTSmqlTXXfmejbAdfPDBQf9VV12Fq6++uuv89evX45vf/OaMr7Vx48aBxjYIV1xxBY488kh89rOfnbXXYEpMJTpi3M8+elaQbLnOlMgm2WL6BdYpngHYCJxxfXWRNyVD8ZIZI2xBxE4EqZd+HD7yVhgTROfo923deGeklwx+ZzmCqq82utVHJK2pfprQeW0kbUZxkX7rpAXpph1CI7ZfwtXIE0bDGIm+0ywx/1eqmb1P+X076qT8Afg0SMB9HkxRhOmRuu3a6IjIqTx16ZNKa5gqGhdpDV1lNhnS1kSAxBTaRd50EFUL5x9Bv8vyoWmTPpJGBdFMYWqjakFG1W5E2KSsj7b58kgySIP06YzKpyQqGUjpyySu7h32l9f1J8cfSPNXW2T6iaR1pju682kdziDqZlMiF05mwIJ22BhmrsmNQVaz4pNXxuOVV17BxMSE62+Krl122WU477zzZnytQw89FJOTk3j99dfD18pzbNmyBZOTk7XXTU5OIk1TvP3220GU7bXXXnPXPPTQQ/if//kf/N3f/R0An9q7dOlSfOUrX8HXvva1GcfGMMz8oclu2WMMwzDDxny3WwvaYRPpTohUlqs2UbUyE2cYrQQkEiUx7aRbBaZk6cm3ohjjVURlZ1ZgvIpq7SRRt/1a5UrFdF5gqlpd2UX2sKW5du3pXLsIG4CgbVFkD1vUsJ+NCpDEUqJti2jHyrXbkXR71+z/Sgi3jyUo7tr1wPxKrZOKlmQvRJRAVCItSDRE0b0irKQKCmrrSgCkIDnkptBk465u3P9mkXRjKykl4NrtxEX+RGvEteXIGER7lLQrEZF4BDpuu7Yh7aISpJnKNdJqjGlhkFbvk6mGUg1N9JL1n5iYCBy2JpYtW4Zly5b1PO/444/H22+/jSeffBIrV64EUDpbWmusXr269pqVK1cijmM8+OCDOPPMMwEAL7zwAl5++WUcf/zxAIB77rkHu3btctc88cQT+NznPodHHnkEhx12WM9xMf1j969ZM0EjaTTaZgzZ56brI2xUWrqUg+6OtllBJttHI29C+H10NKpG97OV9+48bu2Nqe039hdAaYeMi86RFWbRsUG/RjgpoDFS1i0kIjqjW4HUfp1ASEeUjEj2N8r610bqvDUwROo8gPZRiWvXp8kKtu8WQBlJs2MRHa8/wB62+S6Pzex9RGsEoj0aZN6E73ci8U/6hBMp0S6aJohwicu8yVPf1gVklrrrBt3zRucfNFJHxUt8JM2PgYqqaTKPscfK/7s/ILpmjtOJJHMeAEEkzfVJSfawkeLTHZlINFJGI2iSnN8ZYet7T5ot3SB9JK8xqqa8ZH95PpXsJ2Ik/iF0Hx9gzjXf7daCdtjk9A7IRMDkGUxsN7ZmkEXZjqM2oipVMlESSfUBSQuDVJV/3ZFIYlH1xp5ywhMFpgvftv15WzvnLSsMMpISScVILJ2OmxNGIQ6bkgJJnQIkqSHXirzD1lLekbOCKkrCpUQqkq4khZ+0GfjUGiGlUxuDjABZGdG4FRhgex+jFEz14TJRDFOJkYgkBao2NaTUYevlrDWF4AVNz4yS0EmzztvIGIStnxa3oKPKMYta3kmLWihU+R5IC+0UP9PCy8CmhUFWtXekAxQFQRmiF3tRdOTII4/EaaedhgsvvBA333wzsizD2rVrcfbZZzuFyE2bNuHkk0/G97//faxatQr77bcfLrjgAlx66aVYsmQJJiYmsG7dOhx//PFOcKTTKfvlL3/pXo/rsM0+1FTQmmz246ONcc5ZU2pkU7/UgtT9MYEjF6pH2rYJ0h8BQHeJjoBcZ9skPbKj345MkPRIDRHc046/dCTJL9CYbtjgPLnj7y7dEUZDFNZh63DkamqsdTlmtr9mwasLco5LIYJ3uwVAHqT0ry9qHL0BaLJbwPxILWL2PnJkzG07AGqERkjbOWaATx3WhU+ntPODBocONH0yz0iKpQaIiIm7D3H2DBEmCR2woueictPcxRTapVlSmurJNiE6nDagTF8M5kSBk+adN1nTT9UbQxG4sCYagHJuReuh2bkWSWUUgfPWkdboUh9V6IzJ7tTHunpr7pgMn4EcYMo13+3WgnbYGGauKYxpEB2ZPeNx5513Yu3atTj55JNd4ezvfve77niWZXjhhRewc+dO13fDDTe4c2nhbIZhFh5NdsseYxiGGTbmu91a0A6b3rEVWuQQrREXVTNRCpMnVXsaJq4ibFEbcRVtaynpUuBS7dPhWlXEaizxx6dz7SJs04VGZiNs2rh+bQyywq9+0zeOrkmPlFIE1eztPtRIEcn+oC1IhE2R+mskxdKtlIs+ZP0lyW+KYCKykd/K7koa6pa+vkZrBKZKVTB55la7BF1lpnVY6MuqmhUXKnoilY+exbGPtiVtiJYXGjEukhYHUTXQqFqV+tgUVcvI3z3NDaar8W4fMMKWNaz4ZLNoPJYsWYK77rqr8fghhxwSlJcAgHa7jRtvvBE33nhjX6+xZs2arnswsw+V7qdpkIUxQXpkcE1TZM2KfsBAd6RFltf5CJeSJG0RgDFheqIJUh+FS7MUBjDW9pDUTiGEu5+CgXYp2z6aKDv6+xJ37qdWWvW/j5LtpohIr6hap71rSBkLqEmFDKJqpM+lFBntsiR2lya7Bcyu7WLmLyZqw1TbTSxNpSrCuoNE4r+jL/jsaPr5KoIonOvPsvBaGr2rsn2C6ByJwtEIH02n7Ex7pBG5upTIpp8HoS6iBtiUyO6ImT1m+50kf0eEy0fEVBg1q/pq0xrjuK/oWd296bgCm0btVEeZkk7rYqL+51zz3W4tSIfNTiTf2VFGEESm3d4rE2Wu+HPZJo5c5bDl8A5ZMHHXdkJkAodtusqxndYaeYPDlu+GwyYbHDarMBlLgaJy2DIlncNmUzyVFN55E8L1RxIu3VKaAiKfLp9XkUHkU1U7BypnV+SZO8cUGcx0uafJpNMwRWUM86w0mqgcNusoax0axr4dNgmhctdnFYNKh63sF2kBkdm0zQKm6jdRDOP+7ing2tOBw2ad6bQwLmyedzhsqU2B3b6tvEefH/5d0LW50ynevTFn9k3se2r7tm3lSmFN6mNhvNOTFd5Jo3veBnXYAJ8yXfb74z49Eg3pkf4a6rDZ72hBXkegMz2yem2iGEkVbGVHv3D9ZB9uo/NE+w1qHTbd5LAZ0j+Iw2YAM6jD1mAHZI3jRdOVgrSkasIlBEllVzDKp7UbqbBt+/ZqmL1tV5PdAth2MSFuvrV9R9exnrUOgfAzY2l02IiTZpocNuqA0TlHRu7Tw2HLi54OmykKp8RqjwXPZTYcNhHuVWt02KrUzpmdKns+mV8FDlt1vNNhE9Rhkw33rnHYaJo2DRp01pXswL6vFoLdWpAO27Zt5aT6A6eyBDkzO7z55pvYb7/9Go8nSYLJyUncuXlT4zmTk5NIkmQ2hsfMQ6zdOu5DR8zxSJh9mW3btjXarn7sFsC2i/FYu3XIRz85xyNh9mUWgt0SZgHmLWmt8cILL+CDH/xgl2w6080777yDgw8+mJ9VH2zduhUrVqzAW2+91VNsY2pqCmmaNh5PkgTtdnsPj5CZr7DdGgy2W/1jn9Vzzz2HX/3VX3X1LOvoZbcAtl2Mh+3WYLDd6p+FZrcWZIRNSon3ve99APqXTWf4WQ3CTIbD0m63h9o4MMMF2613Bz+r/nnf+97X03ax3WIGge3Wu4OfVf8sFLu1Z3YgMwzDMAzDMAzDMHscdtgYhmEYhmEYhmGGlAXrsLVaLVx11VVotVpzPZShh59V//CzYmYTfn/1Dz+r/uFnxcwm/P7qH35W/bPQntWCFB1hGIZhGIZhGIaZDyzYCBvDMAzDMAzDMMywww4bwzAMwzAMwzDMkMIOG8MwDMMwDMMwzJDCDhuAa665BieccAJGR0d7FjteaNx444045JBD0G63sXr1ajz++ONzPaSh5Mc//jFOP/10HHjggRBC4Ac/+MFcD4nZx2G71Qzbrf5gu8XsbdhuzQzbrt4sVLvFDhuANE1x1lln4aKLLprroQwVf/3Xf41LL70UV111FZ566ikcffTROPXUU/H666/P9dCGjh07duDoo4/GjTfeONdDYRYIbLfqYbvVP2y3mL0N261m2Hb1x0K1W6wSSbj99ttx8cUX4+23357roQwFq1evxkc+8hH86Z/+KQBAa42DDz4Y69atw/r16+d4dMOLEAL33nsvPvWpT831UJgFANutELZb7w62W8zehO1WN2y7Bmch2S2OsDG1pGmKJ598Eqeccorrk1LilFNOwaOPPjqHI2MYhqmH7RbDMPMRtl1ML9hhY2r55S9/iaIosHz58qB/+fLl2Lx58xyNimEYphm2WwzDzEfYdjG92GcdtvXr10MIMeO/559/fq6HyTAM42C7xTDMfIPtFsPMPtFcD2C2uOyyy3DeeefNeM6hhx66dwYzD1m6dCmUUnjttdeC/tdeew2Tk5NzNCqG2bdhu7V7sN1imL0P263dh20X04t91mFbtmwZli1bNtfDmLckSYKVK1fiwQcfdJs5tdZ48MEHsXbt2rkdHMPso7Dd2j3YbjHM3oft1u7DtovpxT7rsA3Cyy+/jC1btuDll19GURR4+umnAQCHH344xsfH53Zwc8ill16Kc889F8ceeyxWrVqFb3/729ixYwfOP//8uR7a0LF9+3a8+OKL7uef//znePrpp7FkyRKsWLFiDkfG7Kuw3aqH7Vb/sN1i9jZst5ph29UfC9ZuGcace+65BkDXv4cffniuhzbnbNiwwaxYscIkSWJWrVplfvKTn8z1kIaShx9+uPY9dO6558710Jh9FLZbzbDd6g+2W8zehu3WzLDt6s1CtVtch41hGIZhGIZhGGZI2WdVIhmGYRiGYRiGYeY77LAxDMMwDMMwDMMMKeywMQzDMAzDMAzDDCnssDEMwzAMwzAMwwwp7LAxDMMwDMMwDMMMKeywMQzDMAzDMAzDDCnssDEMwzAMwzAMwwwp7LAxDMMwDMMwDMMMKeywMQzDMAzDMAzDDCnssDEMwzAMwzAMwwwp7LDtY7z55ps44IAD8NJLL+3WfdasWYOLL754j4xpdzn77LNx/fXXz/UwGIaZRdh2MQwz32C7xewthDHGzPUgmD3HpZdeim3btuGWW27Zrfts2bIFcRxj0aJFe2hk755nnnkGv/mbv4mf//zn2G+//eZ6OAzDzAJsuxiGmW+w3WL2Fhxh24fYuXMnbr31VlxwwQW7fa8lS5bsluFI03S3x2D59V//dRx22GH4q7/6qz12T4Zhhge2XQzDzDfYbjF7E3bYhpiDDjoI3/ve94K+//zP/8To6Cj+7//+r+v8f/7nf0ar1cJxxx0X9K9Zswbr1q3DxRdfjP333x/Lly/HLbfcgh07duD888/HokWLcPjhh+OHP/xhcA0Nz2utce211+Lwww9Hq9XCihUrcM011wTnr127FhdffDGWLl2KU089FQAwPT2NL3zhCzjggAPQbrdx4okn4oknngiu+8IXvoDLL78cS5YsweTkJK6++uqu3+3000/H3XffPdDzYxhmbmDb5WHbxTDzA7ZbHrZbwwc7bEPM6tWrgw+aMQYXX3wxLrnkErz//e/vOv+RRx7BypUra+91xx13YOnSpXj88cexbt06XHTRRTjrrLNwwgkn4KmnnsInPvEJnHPOOdi5c2ft9VdccQW+8Y1v4Ktf/Sqee+453HXXXVi+fHnXayRJgv/4j//AzTffDAC4/PLLcc899+COO+7AU089hcMPPxynnnoqtmzZElw3NjaGxx57DNdeey2+/vWv44EHHgjuvWrVKjz++OOYnp7u7+ExDDNnsO3ysO1imPkB2y0P260hxDBDy7XXXmt+7dd+zf18xx13mMnJSbNt27ba88844wzzuc99rqv/Yx/7mDnxxBPdz3mem7GxMXPOOee4vl/84hcGgHn00UfdNX/4h39ojDHmnXfeMa1Wy9xyyy2NY/3Yxz5mjjnmmKBv+/btJo5jc+edd7q+NE3NgQceaK699trasRljzEc+8hHzpS99Kej77//+bwPAvPTSS41jYBhmOGDb5WHbxTDzA7ZbHrZbwwdH2IaY4447Dhs3bsT27duxY8cOfPnLX8Yf//EfY3x8vPb8Xbt2od1u1x770Ic+5NpKKbznPe/BUUcd5frsys3rr7/ede3GjRsxPT2Nk08+ecbxdq40/exnP0OWZfjoRz/q+uI4xqpVq7Bx48basQHAe9/73q5xjIyMAEDjahTDMMMD2y4P2y6GmR+w3fKw3Ro+orkeANPMypUrIaXEU089hX/7t3/DsmXLcP755zeev3TpUrz11lu1x+I4Dn4WQgR9QggAZd50J/aD24uxsbG+zutnbJ3jsOH8ZcuWvavXYBhm78G2y8O2i2HmB2y3PGy3hg+OsA0xo6OjOOqoo3DPPffguuuuww033AApm/9kxxxzDJ577rk9Po5f+ZVfwcjICB588MGBrjvssMNcfrUlyzI88cQT+OAHPzjQvZ555hkcdNBBWLp06UDXMQyz92Hb5WHbxTDzA7ZbHrZbwwdH2Iac4447Dhs2bMAZZ5yBNWvWzHjuqaeeiiuuuAJvvfUW9t9//z02hna7jS996Uu4/PLLkSQJPvrRj+KNN97As88+O6Oc7djYGC666CJ88YtfxJIlS7BixQpce+212Llz58AyuI888gg+8YlP7O6vwjDMXoJtVwnbLoaZP7DdKmG7NXywwzbkHH300YjjGN/61rd6nnvUUUfhwx/+MP7mb/4Gv//7v79Hx/HVr34VURThyiuvxKuvvor3vve9+IM/+IOe133jG9+A1hrnnHMOtm3bhmOPPRb/8i//MpBxm5qawg9+8APcf//9u/MrMAyzF2HbxbaLYeYbbLfYbg0rwhhj5noQTDMnnXQSPvzhD+P666/v6/x/+qd/whe/+EU888wzM4by5xM33XQT7r33Xvzrv/7rXA+FYZg+YdvFtoth5htst9huDSscYRtCtNZ44403cOutt+KnP/0p/v7v/77va3/rt34LP/3pT7Fp0yYcfPDBszjKvUccx9iwYcNcD4NhmB6w7Qph28Uwww/brRC2W8MJR9iGkB/96Ef4+Mc/jiOOOAK33XYbVq9ePddDYhiG6QnbLoZh5htst5j5ADtsDMMwDMMwDMMwQ8q+kXDLMAzDMAzDMAyzD8IOG8MwDMMwDMMwzJDCDhvDMAzDMAzDMMyQwg4bwzAMwzAMwzDMkMIOG8MwDMMwDMMwzJDCDhvDMAzDMAzDMMyQwg4bwzAMwzAMwzDMkMIOG8MwDMMwDMMwzJDCDhvDMAzDMAzDMMyQwg4bwzAMwzAMwzDMkMIOG8MwDMMwDMMwzJDy/wglvGNRl8aeAAAAAElFTkSuQmCC", "text/plain": [ "
[20:29:56] Created task 'aperture_4' with task_id 'fdve-41d3bfcd-296b-4066-8166-94c22f233a7ev1'. webapi.py:139\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:29:56]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'aperture_4'\u001b[0m with task_id \u001b[32m'fdve-41d3bfcd-296b-4066-8166-94c22f233a7ev1'\u001b[0m. \u001b]8;id=838731;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=410585;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "0ba252d1005e456987d43b3e4a550103", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:29:57] status = queued webapi.py:269\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:29:57]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=106109;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=736187;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e261f9e37164495e93c00571ef696732", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:30:00] status = preprocess webapi.py:263\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:30:00]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=800023;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=383787;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:30:07] Maximum FlexCredit cost: 0.025. Use 'web.real_cost(task_id)' to get the billed FlexCredit webapi.py:286\n", " cost after a simulation run. \n", "\n" ], "text/plain": [ "\u001b[2;36m[20:30:07]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.025\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit \u001b]8;id=449734;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=870557;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mcost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
starting up solver webapi.py:290\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=336379;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=986604;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
running solver webapi.py:300\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=882270;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=15252;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2a99307abc4248d5a819ef256dd3023c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:30:15] early shutoff detected, exiting. webapi.py:314\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:30:15]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=947516;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=880055;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#314\u001b\\\u001b[2m314\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
status = postprocess webapi.py:331\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=230771;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=529994;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#331\u001b\\\u001b[2m331\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a91faa7b4e7a4ceb9ba5e1936e79c4f4", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:30:20] status = success webapi.py:338\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:30:20]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=704604;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=846230;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#338\u001b\\\u001b[2m338\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fa040771f61b4986bc531e63bee3564d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:30:20] loading SimulationData from data/aperture_4.hdf5 webapi.py:510\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:30:20]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/aperture_4.hdf5 \u001b]8;id=374711;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=524702;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#510\u001b\\\u001b[2m510\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# run the simulation\n", "sim_data4 = web.run(\n", " sim4, task_name=\"aperture_4\", path=\"data/aperture_4.hdf5\", verbose=True\n", ")\n" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "execution": { "iopub.execute_input": "2023-04-08T03:30:21.459302Z", "iopub.status.busy": "2023-04-08T03:30:21.459117Z", "iopub.status.idle": "2023-04-08T03:30:22.557639Z", "shell.execute_reply": "2023-04-08T03:30:22.557016Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalized RMSE for |E|, no far field approximation, computed on the server: 0.91 %\n", "\n", "Client-side field projection *without approximations* took 15.75 s\n", "Server-side field projection *without approximations* took 1.04 s\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2wAAAErCAYAAACirgCsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADtuklEQVR4nOx9eZwkRZX/NyIys6vnQjmGAURBFg8OYQVB8IBVZEBEWeVcOZVD3VFwXFT8cYrsiCg7qOiIy+EuIIiKu+qC4giLCoqArCLCuivXqjNcMkdPd2dmRPz+yIyIF1mZ1VXdNdPHxPfz6ZmoyKisyKrKV/Hi+973Ma21RkBAQEBAQEBAQEBAQMCUA5/sCQQEBAQEBAQEBAQEBATUIzhsAQEBAQEBAQEBAQEBUxTBYQsICAgICAgICAgICJiiCA5bQEBAQEBAQEBAQEDAFEVw2AICAgICAgICAgICAqYogsMWEBAQEBAQEBAQEBAwRREctoCAgICAgICAgICAgCmK4LAFBAQEBAQEBAQEBARMUQSHLSAgICAgICAgICAgYIoiOGwBAQEBARsF9t9/f+y///5jjsvzHB/96Eex7bbbgnOOww47DADAGMP555/f8+s+9thjYIzhmmuuGXPsiSeeiO22267n1wgICAgImLkIDltAQEDANMQ111wDxhgYY/jpT3/adlxrjW233RaMMbztbW+bhBlOX1x11VW45JJLcPjhh+NrX/saPvzhD0/2lAICAgICNmJEkz2BgICAgIDxo9Vq4frrr8frX/96r/8///M/8X//938YGBiYpJlNX/z4xz/GNttsg3/6p3/y+oeHhxFF4WczICAgIGDDIjBsAQEBAdMYb33rW3HTTTchz3Ov//rrr8cee+yBBQsWTNLM+oehoaEN+npPPfUUXvCCF7T1t1qt4LAFBAQEBGxwBIctICAgYBrjmGOOwbPPPovbbrvN9qVpim9+85v4u7/7u9rnKKWwdOlS7Lzzzmi1Wthyyy1x2mmn4S9/+Ys37t/+7d9wyCGHYOutt8bAwAB22GEHXHjhhZBSeuN+//vf413vehcWLFiAVquFF73oRTj66KOxatUqAJ1zuKp5Yeeffz4YY3jooYfwd3/3d3jhC1/osYfXXnst9thjDwwODmLTTTfF0UcfjSeffLLtvFdccQV22GEHDA4OYq+99sJPfvKTMd9LM8/bb78dv/3tb23I6R133FE7VwD44x//iPe85z3YcsstMTAwgJ133hlXXXXVmK8FAN/5znewyy67oNVqYZdddsHNN99cO+6GG27AHnvsgblz52LevHnYddddcdlll3X1GgEBAQEB0x9hqzAgICBgGmO77bbDPvvsg69//es4+OCDAQC33HILVq1ahaOPPhqf//zn255z2mmn4ZprrsFJJ52ED33oQ3j00UfxxS9+Eb/61a/ws5/9DHEcAyjy5ObMmYPFixdjzpw5+PGPf4xzzz0Xq1evxiWXXAKgcA4XLlyI0dFRfPCDH8SCBQvwxz/+Ed/73vfw/PPPY5NNNhnXdR1xxBHYcccd8Y//+I/QWgMALrroIpxzzjk48sgjcfLJJ+Ppp5/GF77wBbzxjW/Er371K8uKXXnllTjttNOw77774owzzsAf/vAHvP3tb8emm26KbbfdtvE1t9hiC/zrv/4rLrroIqxduxZLliwBALzyla+sHb9y5Uq89rWvBWMMixYtwhZbbIFbbrkF733ve7F69WqcccYZja/1wx/+EO9617uw0047YcmSJXj22Wdx0kkn4UUvepE37rbbbsMxxxyDN7/5zbj44osBAL/73e/ws5/9DKeffnq3b2dAQEBAwHSGDggICAiYdrj66qs1AP3LX/5Sf/GLX9Rz587V69at01prfcQRR+i/+Zu/0Vpr/ZKXvEQfcsgh9nk/+clPNAB93XXXeee79dZb2/rN+ShOO+00PWvWLD0yMqK11vpXv/qVBqBvuummxrk++uijGoC++uqr244B0Oedd559fN5552kA+phjjvHGPfbYY1oIoS+66CKv/ze/+Y2Oosj2p2mq58+fr3fffXc9Ojpqx11xxRUagN5vv/0a52mw33776Z133nnMub73ve/VW221lX7mmWe8cUcffbTeZJNN7PtXd/2777673mqrrfTzzz9v+374wx9qAPolL3mJ7Tv99NP1vHnzdJ7nY847ICAgIGBmIoREBgQEBExzHHnkkRgeHsb3vvc9rFmzBt/73vcawyFvuukmbLLJJnjLW96CZ555xv7tsccemDNnDm6//XY7dnBw0LbXrFmDZ555Bm94wxuwbt06PPzwwwBgGbQf/OAHWLduXd+u6X3ve5/3+Nvf/jaUUjjyyCO9eS9YsAA77rijnfe9996Lp556Cu973/uQJIl9/oknnjhutq8OWmt861vfwqGHHgqttTenhQsXYtWqVbj//vtrn/vnP/8ZDzzwAE444QRvTm95y1uw0047eWNf8IIXYGhoyAt5DQgICAjYuBBCIgMCAgKmObbYYgsccMABuP7667Fu3TpIKXH44YfXjv3973+PVatWYf78+bXHn3rqKdv+7W9/i7PPPhs//vGPsXr1am+cyU/bfvvtsXjxYlx66aW47rrr8IY3vAFvf/vbceyxx07IQdp+++3b5q21xo477lg73oRxPv744wDQNi6OY7z0pS8d93yqePrpp/H888/jiiuuwBVXXFE7hr6XFE1zBICXv/zlnqP3gQ98AN/4xjdw8MEHY5tttsGBBx6II488EgcddFAfriIgICAgYDogOGwBAQEBMwB/93d/h1NOOQUrVqzAwQcfXKtyCBSCI/Pnz8d1111Xe3yLLbYAADz//PPYb7/9MG/ePHzyk5/EDjvsgFarhfvvvx8f+9jHoJSyz/nc5z6HE088Ef/2b/+GH/7wh/jQhz6EJUuW4Oc//zle9KIXgTFW+1pV8RIKyu6ZeTPGcMstt0AI0TZ+zpw5jedaHzDXf+yxx+KEE06oHfOqV71qwq8zf/58PPDAA/jBD36AW265BbfccguuvvpqHH/88fja17424fMHBAQEBEx9BIctICAgYAbgb//2b3Haaafh5z//OW688cbGcTvssAN+9KMf4XWve12bU0Rxxx134Nlnn8W3v/1tvPGNb7T9jz76aO34XXfdFbvuuivOPvts3HXXXXjd616HZcuW4VOf+hRe+MIXAiicQArDNHWDHXbYAVprbL/99njZy17WOO4lL3kJgIKRe9Ob3mT7syzDo48+it12263r1+yELbbYAnPnzoWUEgcccEBPz6VzrOKRRx5p60uSBIceeigOPfRQKKXwgQ98AF/5yldwzjnn4K/+6q/GdwEBAQEBAdMGIYctICAgYAZgzpw5+PKXv4zzzz8fhx56aOO4I488ElJKXHjhhW3H8jy3TpVhsXSp0AgUipBf+tKXvOesXr26rQbcrrvuCs45RkdHAQDz5s3D5ptvjjvvvNMbVz1XJ7zzne+EEAIXXHCBNyczx2effRYAsOeee2KLLbbAsmXLkKapHXPNNde0OYwTgRAC73rXu/Ctb30LDz74YNvxp59+uvG5W221FXbffXd87Wtfs6GlQKEI+dBDD3ljzXUZcM4tc2fe34CAgICAmY3AsAUEBATMEDSF5lHst99+OO2007BkyRI88MADOPDAAxHHMX7/+9/jpptuwmWXXYbDDz8c++67L174whfihBNOwIc+9CEwxvCv//qvbc7Sj3/8YyxatAhHHHEEXvaylyHPc/zrv/6rdWgMTj75ZHz605/GySefjD333BN33nkn/vu//7vra9thhx3wqU99CmeddRYee+wxHHbYYZg7dy4effRR3HzzzTj11FPxD//wD4jjGJ/61Kdw2mmn4U1vehOOOuooPProo7j66qv7msMGAJ/+9Kdx++23Y++998Ypp5yCnXbaCc899xzuv/9+/OhHP8Jzzz3X+NwlS5bgkEMOwetf/3q85z3vwXPPPYcvfOEL2HnnnbF27Vo77uSTT8Zzzz2HN73pTXjRi16Exx9/HF/4whew++67N5YbCAgICAiYWQgOW0BAQMBGhmXLlmGPPfbAV77yFXziE59AFEXYbrvtcOyxx+J1r3sdAGCzzTbD9773PXzkIx/B2WefjRe+8IU49thj8eY3vxkLFy6059ptt92wcOFCfPe738Uf//hHzJo1C7vtthtuueUWvPa1r7Xjzj33XDz99NP45je/aUU0brnllkbxkzp8/OMfx8te9jL80z/9Ey644AIAwLbbbosDDzwQb3/72+24U089FVJKXHLJJTjzzDOx66674t///d9xzjnnTPSt87DlllvinnvuwSc/+Ul8+9vfxpe+9CVsttlm2HnnnW3NtCYcdNBBuOmmm3D22WfjrLPOwg477ICrr74a//Zv/2YLdQNFjtwVV1yBL33pS3j++eexYMECHHXUUTj//PPBeQiSCQgICNgYwHR1uzQgICAgICAgICAgICBgSiBszwUEBAQEBAQEBAQEBExRBIctICAgICAgICAgICBgiiI4bAEBAQEBAQEBAQEBAVMUwWELCAgICAgICAgICAiYoggOW0BAQEBAQEBAQEBAwBRFcNgCAgICAgICAgICAgKmKILDFhAQEBAQEBAQEBAQMEURHLaAgICAgICAgICAgIApiuCwBQQEBAQEBAQEBAQETFEEhy0gICAgICAgICAgIGCKIjhsAQEBAQEBAQEBAQEBUxTBYQsICAgICAgICAgICJiiCA5bQEBAQEBAQEBAQEDAFEVw2AICAgICAgICAgICAqYogsMWEBAQEBAQEBAQEBAwRREctoCAgICAgICAgICAgCmK4LAFBAQEBAQEBAQEBARMUQSHLSAgICAgICAgICAgYIoiOGwBAQEBAQEBAQEBAQFTFMFhCwgICAgICAgICAgImKIIDltAQEBAQEBAQEBAQMAURXDYAgICAgICAgICAgICpiiCwxYQEBAQEBAQEBAQEDBFERy2gICAgICAgICAgICAKYrgsAUEBAQEBAQEBAQEBExRBIctICAgICAgICAgICBgiiI4bAEBAQEBAQEBAQEBAVMUwWELCAgICAgICAgICAiYoggOWwCuueYaMMYa/37+859P9hQDAgICPAS7FRAQMB0RbFfAeBBN9gQCpg4++clPYvvtt2/r/6u/+qtJmE1AQEDA2Ah2KyAgYDoi2K6AXhActgCLgw8+GHvuuedkTyMgICCgawS7FRAQMB0RbFdALwghkQFd4bzzzgPnHMuXL/f6Tz31VCRJgv/6r/+apJkFBAQEtENrje222w7veMc72o6NjIxgk002wWmnnTYJMwsICAjojP33378xZPKaa66Z7OkFTAICwxZgsWrVKjzzzDNeH2MMm222Gc4++2x897vfxXvf+1785je/wdy5c/GDH/wAX/3qV3HhhRdit912m6RZBwQEbMzoZLeOPfZYfOYzn8Fzzz2HTTfd1B7/7ne/i9WrV+PYY4/d0NMNCAgIANDZdv2///f/cPLJJ3vHrr32WvzgBz/A/PnzN+Q0A6YImNZaT/YkAiYX11xzDU466aTaYwMDAxgZGQEAPPjgg9hjjz1w/PHH45JLLsEuu+yCrbbaCnfffTeiKPj+AQEBGw7d2K3//u//xstf/nJ8+ctfxvve9z57/B3veAd+/etf4w9/+AMYYxtqygEBAQFdr7ko7rrrLuy///447rjjcOWVV67vKQZMQYRVdoDF5Zdfjpe97GVenxDCtnfZZRdccMEFOOuss/DrX/8azzzzDH74wx8GZy0gIGDS0MluvexlL8Pee++N6667zjpszz33HG655RZ89KMfDc5aQEDApGGsNZfBihUrcPjhh2P33XfHl770pQ01vYAphrDSDrDYa6+9xkyAPfPMM3HDDTfgnnvuwT/+4z9ip5122kCzCwgICGjHWHbr+OOPx6JFi/D444/jJS95CW666SZkWYbjjjtuA84yICAgwEc3a648z3HkkUdCSolvf/vbGBgY2ECzC5hqCKIjAT3hD3/4A37/+98DAH7zm99M8mwCAgICOuPoo49GHMe47rrrABR5IHvuuSde/vKXT/LMAgICAjrjzDPPxN13341vfOMbeNGLXjTZ0wmYRASHLaBrKKVw4oknYt68efjEJz6Br3/96/j2t7892dMKCAgIaMSmm26KQw45BNdddx0ef/xx/OxnPwvsWkBAwJTHDTfcgKVLl+Kzn/0s9ttvv8meTsAkIzhsAV3j0ksvxV133YUrrrgCF154Ifbdd1+8//3vb1M5CggICJhKOO644/DQQw/hzDPPhBACRx999GRPKSAgIKARDz74IE4++WQce+yxOP300yd7OgFTACGHLcDilltuwcMPP9zWv++++2J0dBTnnHMOTjzxRBx66KEACqWj3XffHR/4wAfwjW98Y0NPNyAgIKCj3XrpS18KADjkkEOw2Wab4aabbsLBBx8cZLEDAgImHZ1sl1GRfOMb34hrr7227bixbQEbD4LDFmBx7rnn1vb/8z//M77yla9g8803x9KlS23/jjvuiCVLluD000/HN77xDRx55JEbaKYBAQEBBZrs1tVXX20XNUmS4KijjsKXvvSlEA4ZEBAwJdDJdj399NMYGhrCqaeeWns8OGwbH0IdtoCAgICAGY8Pf/jDuPLKK7FixQrMmjVrsqcTEBAQEBDQNUIOW0BAQEDAjMbIyAiuvfZavOtd7wrOWkBAQEDAtEMIiQwICAgImJF46qmn8KMf/Qjf/OY38eyzz4bk/YCAgICAaYngsAUEBAQEzEg89NBDePe734358+fj85//PHbffffJnlJAQEBAQEDPCDlsAQEBAQEBAQEBAQEBUxQhhy0gICAgICAgICAgIGCKIjhsAQEBAQEBAQEBAQEBUxQbZQ6bUgp/+tOfMHfuXDDGJns6ATMIWmusWbMGW2+9NTjvvB8yMjKCNE0bjydJglar1e8pBkxTBLsVsD7Rre0ay24BwXYFOAS7FbA+sTHZrY3SYfvTn/6EbbfddrKnETCD8eSTT+JFL3pR4/GRkREMzt0UyIcbxyxYsACPPvrolDYgARsOwW4FbAh0sl3d2C0g2K4Ah2C3AjYENga7tVE6bHPnzgUA3HzXrzF7zlwkgiOJip2fRDBEvGwzhkQU7VgwJKLw3oXKwPLSU89HwPJRACD/Z7atsxHo0ZGyPQpdPk9nGXRajIGS0DIr2wpQ0s5VS9c2YEIAXBQPOAczuwoiAYviYkwcA6YtYrBkoGgPDIKJol9HA+X/MSCSoi0i6KhVtmM7RjGBVKrikhWQykKrJtcamSraUmnbn0ltx4/kyo7JlUZW9mdKIy/bSgOq1L+RWkOpdi0czt3unCh36jhjiIRrt6LivYg5Q1R+XgOcY6D8fAcibj9TwRkS7j73mLQjFPNi+aj3+bp26j7jPIUeLQzB6r/8Bdsf+l77HWtCmqZAPox4l2OA8vPwIDOsePDrSNN0yhqPgA0L8536+a8fxuCcOShvNSitUd5GkFrDyEhlUtt7SmkNc0uZsQaqQXeKk91wwWm/O27GCO7GMwZwuLZ5jm2DwZgsRl6HwcXoM8bs6wgGuzNPTEB5TtfPbD+zr8W0BnR5L2tl2/D6Nel3/zOVuz7zHmlVjLf95TlUXtjutnNXX1OWTyV2XknfzitV36ao20ku+/zfB2HtPRiD5pHt18K0I2gusGbtWmz/6jd0tF1j2i0g2K4AD+b79NjP/gPz5sz2jjFNvt9em9gkes8Y1N07Stn7RStpz6eVtON1lrl7Skl3zoY1mJayMr7oV7mElub8bl5aKtcvJbT2j1FUH/cCRgyy12a8uP/Lfu+YtQ8cPCrH8MpaUji74exJbPvsWpMej2N7DsYFwDg5N284t2ibF5jrA2VimbsGzdrt3uq1Q9judW/dKOzWRumwmR/5LTd7AebMnYeYO8csoW3qpEmyWM8kGIofc4YcTBdtLUtnLB+CTgsnTQ27NvLUtnWWOedNKag0t22D6g1tbj7G3Y1Y3HzmB1lZA8iUAjOLpigGKx0WJgA2UN5cA8ZJS6Bj47y1/HaNw5ZK55il1ElTGjorxshcgUnj9CjovDB0ea6Q89J5kwpZ2U6lgiSOn2SubVHaZcEZoF07KZd5gjGM6tJhA0Or7B9lHK3yRpdcQJYGYlYsgMg4uwxMmPeIQZDvQOw5b8Xnx7JKu/zsWVy8p92GfvCB2WCls0xhvksBAQbmOzVn7lzMmjPXOmySOGxaF48B35FTWnv9vYAzZjdIzGOgs5NmHCtmnS7ngHlOGqt30hr7Qc/t99P5NTpsBm1OWLvDZtuqcrzpedTZk8bZa3LeyKKwsknnLRZ7QN2CiHFOFmSRW/C0OWxuKdCN7WqyW8W8g+0KcDDfp01aAvNablFerHXKx0rC3vFNGxjMOUzWGdMSdmEAVT5G4eSZ+yjPXFsrwKzTiDOm89SuvbRUUFlu22YdpqT0+5Xpp06a8s5jr1UqqJrNl16dNuqAGXDOax24tnViTT+PI/AaB4/HkXuuLP+PEn9TiJVrnTx39iZyzhu0ADOfL3jFDspyLoLstNHr9J26WgfPPM7L194I7FYQHQkImEQwJsB4zR/dbeoBl19+Obbbbju0Wi3svffeuOeeezqOv+mmm/CKV7wCrVYLu+66K/7jP/6jcez73vc+MMawdOnScc0tICBgZqDRbk3AdgUEBASsT0x3u7VRMmwGrYhjsAyRowybCasTKgMbXQsAYNkIWDbc1tYjQ5DDQ2V7HQCfVdOjw7YtR1K7QyPTzLZVlkNVdmOq6LRDIpLYtVvlrkeUgOUFxc+UAit3rDwP3eyKMA4os9OVQ6sylJLsCCtwG1KlALe7r1yIVZprjOTFg1GpsC4rXnMkVxgm7azcaRpOJdJyfJor25ZKI6dsW014pKDhkZyEO5afXULag4lAy4RHRgIDkWPYZsW0LcoxLlSyRUIoB6JBRCXjyMUwdGZCThPLtqE10jbXThBxXOxcVaBZ7+URb7zxRixevBjLli3D3nvvjaVLl2LhwoV45JFHMH/+/Lbxd911F4455hgsWbIEb3vb23D99dfjsMMOw/33349ddtnFG3vzzTfj5z//Obbeeuue5xWw/mFuB6n90ENwc9O2hxMX43Vtf3FOx6TRPnr+ppBH2m/O7Y5XQhkb+g2qrBq95iqzVoyBj5JV0iAsG+MAjJ3ljnmqY8M4XGiTdmFXTCvS7zNp9HzmNbWqsHO85rWUBFBGTFSZNwPax2sWGdXQJRpGVBNSNB402S1gfLYrYOZDDQ8Vy4y60EbAsWc0yoiEM0IpEv5IQiLNeMKSQUnoLHXns6GMmWPMsty2ZZo5xizNPfaMRj/Z8eS5WkqPVXOMnGPbzLHi//b7Q3XBtPEKu+YigvywR05YNZ9tc0yaiCM3prQVPIm8NSZPItsGAJHEtQwcp6wa5zbKyLNDUWLbmkYACBo2WThOQBlAZdi8CtNm373yuCrX391gututjdphGxSFw9aKSK4aFHhaOmnpOhcGma6zTpoaWg1FnbN1q20bAHQ6gnxdsXDPh0chRwrDIbPctlWaW4q8uMlr4rTh07/cOGbkZioctqItWgmi0gkUrRyi5sdekxuE5eXCIIqB0knzFhjan4v5OmuSb6bgQq0y5ZyxkVxZ5204k9Z5G84khtOynUqsK9tprlzIZa4glWsb5DWOW8SZddgEZxDcOWyD1gHjGEyK9mAiMKdVvF8twa2TNmcgsu1ZMcec8j1NlbbOXioYBsrvSSuZA2FiofMESEtDM9Cbw8aIkfJQ1zcGLr30Upxyyik46aSTAADLli3D97//fVx11VX4+Mc/3jb+sssuw0EHHYQzzzwTAHDhhRfitttuwxe/+EUsW7bMjvvjH/+ID37wg/jBD36AQw45pOd5BfQXHIVzoss7UmsGVf7YMAZwXXxHFdM2TJELoOb2QYx6J82cq3g9v88PW3ROXV0OWa/hjm4e7c5ZdUzTfBvBOOhbwNoaAMr3TmuyOKKhjwDAiX2sCZvUWgEmxLAaBkly3qytp84ed6/jOXIAWdw25GDY+dFcEO4cVsbJh+r67ZgenLlGu1V9/YCAEnp0GDpizjEDKqHAzgGqdchoLhp10kgOW1OaiWlXwxql2TSnThpZm6mKI2ccq+KcpRMoFXRpXJXUnmOmSueMbsLT/Pw6560TjJMG+Dn91nnyUjs4uGlzZp0xnjhHigvfMatbY1KHjjp6vGxzISrncG3rHNEctibnjfPicXFSO17TEEgvNLI8PtpZSIRiututEBIZEDCJ4FHc+AcAq1ev9v5GR0drz5OmKe677z4ccMAB7tyc44ADDsDdd99d+5y7777bGw8ACxcu9MYrpXDcccfhzDPPxM477zzRyw0ICJgB6GS3bE51QEBAwBTCdLdbGzXDNitmmB0zDEQcPDMCEuvA0sJj56Sth9dADq0BUDJs69aU/UOQwwXblg8V58iGhpEbVm0kJe1RSG/Xx+3QGGiy+0J3RZhgdhdFxBFh2GJEZRikSHO7kxQTap5+yJpzy7Bps/sRZVYlEtVd3Roo7dg2qQo1OqD4f9SERObShkGuyyTWjhbzGk4l1o4U7XWpGzOc5va51fBIu3ulDKNA3iPm7zhFJpyVMxsSOSsRGCzfr8FYYFbJts1pRZZtm51Kx7YlAusGlG3PLse3BEdWirfkSmOgfP8GBhKwckddJd3v9gBjM2xVOeTzzjsP559/ftvwZ555BlJKbLnlll7/lltuiYcffrj2tVesWFE7fsWKFfbxxRdfjCiK8KEPfaibywnYAGAlg2UiOCirBu5UIplmPqPUwEBVGTTbX8OkeQwbSNhkVbGxE8NGzm2OodpH51eZ+IRKOTUpjnmhkmXT2kHhRxtQlUgyVtcwaVBVhs2EqOb1Aick5JIyb8XU6Bw62OjqNVomjTnbX8e89fDGTved6oAND52OQHFikeoYs7r+vF0kpNcQR0lYNUVYNcqkuXQVyrZJuz6TGQmJTEnoo9KQqREK0pY1o8xb8bidbZsIw0ZZNdvXtmYs7XMiLCPHBIdIXNikiCnb5tguQaK4gCLCi9PwScK2CTsmqoRQjthz0BBKTUMoDZNGmDdw4cYA8NUpXdgkE8KJ+nXz/k1zu7VRO2wBAZMNLhpy2MoF2ZNPPol58+bZ/oGBgQ02t/vuuw+XXXYZ7r///lDwNCAgwKLJbgHtofQBAQEBUwHT3W5t1A5bi2u0uAYfXQuWFiwZS4csq4bRIcg1fwEAqKE1LldtaA3ytUWeWzY0bPPVsiH3vxwpQtfykRT5cCH+ITPHqslUOsaoYZeFCVa7KyISgajldj9UVpyfsmr+eThESffqdAQov7Am3puplp9/MYbstyY1nWg+W5HDVrRHc2XrrdG8tbUjOdYQtm3NSGbbhlXLMwmZm8RdV5NNV/5vu07OwEw+m+AQJRu2SnAkJIfNMWwx5gwU7+NcwrbNa8WOHRyIMCcrxm8yEGNQFZ9BHjEnvCIYWvGsYm4Dczq+d21zjhPwuN2AqFIQYd68eZ7D1oTNN98cQgisXLnS61+5ciUWLFhQ+5wFCxZ0HP+Tn/wETz31FF784hfb41JKfOQjH8HSpUvx2GOPjTmvgP6Dlzlg2jrR2qReFeIilhnT3q0s2jLAzLjyvE25avAFPQx/I3gHIREyV6COYatn9Vit7fGZJp827BzVrztsNHgvVVEIYwzQaN9x9ebXViagQYCkhknTKnYMHqkZ1ZjzppW7bDW2jfYuhOSAWPl+j3kbRw5bg90CnO0KCKBQw+ugua7PTysf236Tl5ZnNuetrvxRkVdWsm2UYctctFFbf7leojlpKsstS0bXaUpqyMyt2cxaTabSy1uj451giWPbvBw22XndR8uuVKMLDJhgPrNGWDWXt+Zy2HgivHw2YZg04doiFt54w7yZ40UJAMqwxeXzIuS0TIDRVKCsGikfQFk42mZ8pKgJDCNG4vLZzDvilykp+tVwDzls09xubdQOGx9dCz7KwNJhJzQyOgQ1VDpma5+HMmGQa/4COVSMSVcPIV3jwiCzoeIL4xy2UeRl2F8+nEOa2mSpdNQ5odGr8BJIjQOSCHJjcfvcqOUbPUPxewpBgoPHpWplnNii37pUkdRZCjZQszCo7DhQP8lG9kBboZFM+kWxR4zDljqHbV0qsbZ00taR8Mg0lchLw5hnCsqEREplnTcTCllEDdUbO+OkMcYgTHik4Bgp2+tijlVl6ONgK8Pc0kmjztsLZuXYZFZhOOZlEiOtoj2aK2xixieRK1ZMnLeU1xuDJjRR9I20fQOSJMEee+yB5cuX47DDDgNQfBeWL1+ORYsW1T5nn332wfLly3HGGWfYvttuuw377LMPAOC4446rzXE77rjjrLBJwIYHY6UyqjJCI8yFQXLtftx0RUaRoC78sOpEiYYQR+qYiTEcsrp6aADA6EJtvDubzNX20V0oIVIfhy6Kai1JF/4QIyngnIbvMOfY6bZabSSc0ivM7cQMvPGVulPV8V5f40QrjhkqoZJcQDNeW5S2+ZTNoUW92q6AjQM6G4Ee8R00v+i1WRv5qoueSEharllqFB1lmnvhji4MUnrhjq4t7dpMkbUZDXFUqbIOG3XMZCY9x4uGRBrbIrX2a2VWbApV6O0mMpL4Z56iryC2Wnh22w+JNG0uGERsnCfnpIlYgBNSgJO1pxlLnTgTEim88EhhwyMl6RfUSctI2GRWUZ40yuacOztCC3DX1GfTWX9CIqeD3dqoHbaAgMmGiGLwGoqe6XpnvhMWL16ME044AXvuuSf22msvLF26FENDQ9a5Ov7447HNNttgyZIlAIDTTz8d++23Hz73uc/hkEMOwQ033IB7770XV1xxBQBgs802w2abbea9RhzHWLBgAV7+8pf3PL+AgICZgSa7BYzPdgUEBASsb0x3u7VRO2x8dC34SMGqYaRg0uSavzhWbe3zUGVIZLZmHdLVhWx/WmlnQwVjla4tdgfykRz5cLGLk43k3q6MTN3OkYEi2yuciIswshMiEm53OqJW5IVT1oUIygodLcpdJZalllljtO5JXZJ8AxQKZg0oNozNpSitbUhkJpVXY83I9w9nTsp/7UiO0TI8Mk8VYdgc2yZz7bFtQMFOdiNAwgnDZti2KOaIyvc0HcmxbqBoPz+Q4QUlq+aVHpgVW6ZwNI/t9Y3kCpsMFOOl5naHLM96Ywv6xbABwFFHHYWnn34a5557LlasWIHdd98dt956qxUWeeKJJ2zSMADsu+++uP7663H22WfjE5/4BHbccUd85zvfaavBFjC1YGqamXIWTMNK/NN7oClqzhMWIc9pYtIEDY8kTBqtrcYqYYCecAbQJtDhJtnF/dIkFMJc0TlPmb/6HBMNUGHVXFg3EQagUQRjz4y8rm4QUuFFnUsUNom+XyZUkqncf5+sLXbCJG3M21jvK0Et+8iYz7aJyJUi6Oa6p/lOdcCGhx4dgaZ12JT0wh2dHL5CNyGP5niduIjKMhsSWYRH0jWYCXFUXrijSk0oo/KZt8yNp6Ijxp6kypU2krp4XLQpw+beBzqWQjYY7Gp9zKKvnWWr9iecQZQkvkilrS3LGfNFRwyrFgsrOiJiTsIfHavmr0fzmudFUEasJIst26Yyn2Fz/bkTNUlzvyQArSdXIzpiBZRGA8MWEBCwAcCjpH7HZ5y7PYsWLWoMgbzjjjva+o444ggcccQRXZ8/5K0FBAQ02i1g3LYrICAgYH2in3ZryZIl+Pa3v42HH34Yg4OD2HfffXHxxRev1+ijjdphYyNrwGINDK+GWvM8gCJXTa0t2vnqVRh9vmDb0tXrMPp8kcOWDw1jdHWRtza6OkVaMmyWVRvKkI2YHSDHqmVKNcY00/hksxMiaB4WERrxk1n9MgBm5yIfSe3Ohcpc3LbIMxcrXibfUhndXqG0JqIjjvnKlPYYttTms+WuP5XIzXszmns5bHnq2DbDrNlcNiWhyjy84j1wczcSsXQnRUQuWVZEjmGLBwSi0aKdDUiktXl2A5ZtS+cokq8X2d14pV07z3tk2FgDw8am/m5PwOSAl7uojlUDdKk6Qr81Svu5agadCldTJs3YJFoImylJxDIc08OqMvUGdKx5zS5YNY8VIqwwq4hl2HGEbeskniEJq2YZNjSwbXQ+3eS0ecxlO+PJmbaMnOAMnJlk+8Tm/HEQ5q2aw9YkTAI0R0ZoVft+aObKu4Dxgl3rhWFrsFvmWEBAG/IMOoWXn2ZZtQrD1sSqUQl/oH+sWtOYQta/ZMRy5bFnrg2vTRm0prZBHatG7+LqnVvPqrFKW7f1J7zSLt/HhDOI1Ggm5IQpE455K0XXVKogE2n7RPneiUS6MbEEN2vNOK9l2+hnzQS3c1GCg5efOxeilmHztBlMnlsZMdYN+mm3/vM//xN///d/j9e85jXI8xyf+MQncOCBB+Khhx7C7NmzezpXt9ioHTasex7gGeSa553DtupZZKsL0ZF09ZB10kafX4N0dSE0Mrp6FKOrTRhkimyo+MJkRGgkLW/4VGkMS3eT11HkQDOlnZSGoNVBSVKaOhqJsMZLkERb3zC6hF6rMUfVmrSuKEaapH4i+qHdAkaq+uRZqTWkMWLEeaNtJZVzxqSy4YS5J0AikaeF4qbKivdc5SkJpXBhFd77Qhw2xgXEwGDxHkUJoiQuzy2s85an0nMSh1MnNGKcTTr3TJLPkoRE8LxL9bYSPI7rVYt03tN5AjYeCM4Qc0CVThp1OJpQFRkZM8Sx6piV9xirimUYW9JBJdFiLEetGrpnHqtK+B5xNEz9wyIMUtjXpA6f2VDScDZM6YrzZqZoN2HIWNJPz9cEX7xF1zvHyu83iyzOAGEWJ4zbYq6eI1cNoTTX3Ot7XREg0T2EBDXaLSDYroBaqDyDytiYTlpVDdLWriUCJC4kMvNFSTKzBstqBUVkpohjJhtDH+0Y4qTR0MdUaaRGdKzivNU5aQrdO2yd0OSwcXK8zpErHDazrtSWFEiVW2MWjhxNteG2DRREgZCuz5EGvDKm3fYUa9DSGVPKjuFxZL8DInFtnURg0jiSxHlT3PYXzpuC6sFh66fduvXWW73H11xzDebPn4/77rsPb3zjG3s6V7fYuB22gIBJRj9z2AICAgI2BKZ7LkhAQMDGh27s1uqSsDEYGBjoqv7tqlWrAACbbrrpBGfZjI3aYZNrV0HqDGrVs5Zhy1avxsizxRs/+pe1SNcU4iIjfxmyrNro6lGkhlUbSq3YiBWqkHRXpj4JtQq6K1Iy0eV4t6PSGnY7AEaKVcYc0oiRSFI/hIQP0J2s4qD0/+8TpNLe7rNh2HLl2LbRXNmwQaWIoEju5Pup6EiejkKOFuGnJgxS5SmkKU1ApYEroOGRoqytx6MEeRnDLAYGEbdaxevLyIU+SOWFQZi5p7nCaE3II73mKOttl0ZEEXjUfhsytVHfmgEdIErBEUYYIhpSTVFfG80Xv2CGMevApDFJWTUypqFmGA2BLCfZfEFeLGG7BH3B/pTJ6IyjUC7wwyYZj6C1GV//Mko7JpLufhfCSW4nHCgea/I8WsZk7EvSlfBIU+JAN5Q+0F4JBcO2NTJvPCGCM+YaxhYlaUNVgKQHR6vJbgHBdgXUQ2USOlK1IZGqGhFUI9VPGTRVyvsX9dNy0m6vpUaZNJlKW3JJknQVmUky3qU+FEwaZdjQ1k9tSaocW98k69+rnD+FsQdFm9m+ujaHY9Kkds+V2pUhEsytMaVmSMq5xVJDl0yWWQsJ0tdUC9dHZj9fk55TB6acHRdlCKVKc8uqFddSj4J17X4d243d2nbbbb3+8847D+eff37H8yqlcMYZZ+B1r3vdehVtC5Y1IGASQYt9V/sDAgICpiKa7JY5FhAQEDDV0I3devLJJzFv3jzb3w279vd///d48MEH8dOf/rQ/E23ARu2wqVXPQeXDUGueR/qX5wEUuWqjf3F5ayPPl3lrq0ZrGbZ0XYa1JesybIQ1pL8rk5LdiLr9Tg5/t8SxahxGXLrYOSljfQkDpJWGsnHg9bseirBrurrzvZ4gyTXLht0YrUh+iXblCZTSkLnZNUs9Zg0A8nTY5rPpijQwBSNiBbJk1XjsVIKiPLXnkfkcwvZF3lxMLkv1OuquK8l7Yy254BCiZv+ori8gAAW7RvMTql/DagFsoCK7T5g0aEUYttzlpKm8C7atkqtWV/CZwObO8sp32zA7FVbNtoVw52YcWhvpZ+H4LlJEu0i4LW0i3BitHWtW5NjStstzA/zc3CrDVlcmwDwHaL91aRFxx7YVIiSm7TNs7cyb4AA3O92cQZCi6QAgGLfFu2nh7k6y/1W5f92D6Eij3TKTDQioQCvVMW+NRgTRvLU60RGPpVNu/WN+tzWNkqnkrSkvT4vmuZX56aqat1bMn4qLVNk2YyuyDqxaPwpnO2aM2ecXugeobZsFp2AgeWvuxRLOvOtwUEAKD1wwaFmcQ5Fi4RRMcDDzGQnm8twE+XxJWyKHKN0Qzd3nbpg2M95YrjrL0suathu7NW/ePM9hGwuLFi3C9773Pdx555140Yte1PXzxoON22FbtwYKGbLVq60a5Ohf1tr2yPPrMPyXosZD1WEz4Y9rc2VFRYzDliqNkdpaHPV3pR8G6X6wU+V+sGl4pKKGhtzpSlLnbcM4Zr1CNtRQa3fe2kVFbBikdCqRWinn0DWEeHIubGIqS0cgkiIMUuUpIuIMqnxO8Tqy5TtsY9D/gigwRXlvIZGMNTBsNbVXAgIAgMsMnEgQc+qsoHTIDKxwiPRD5koHjMncH0OcN+qY+U4d2SAx94+Ufhhkh3BrDfjhd1YBTADlZgrjHBBx+fIRGDc/9pETSwJsjTOtctdGfWifIqGPmooDqHYbTR02qZxzlylXf8mLMu8Q8kkdaLNW4IwhLq9bcDdGMAbB2x05EwYLAEKBCMU4J46Bhk+WTh9Z4nDynhfKov78e9FLarJb5lhAQB2qYZDU8TLotMFs0h/cOZTX9pwxeh6ywe3Ga2/91ARfRKS9H6jfiB/rfOac3T/POWNSu7VhJ5h5CfK6hbPnzkn7O55LajBjm6SCLidDiYLi82VkfLlJJxmUbStoXm4GEudJK2UfK6lsCLj33YDvtLEeN4f6abe01vjgBz+Im2++GXfccQe23377np4/HoStsICASYQod3zq/gICAgKmIjrZrfHYrssvvxzbbbcdWq0W9t57b9xzzz1dPe+GG24AYwyHHXZYz68ZEBCwcaGfduvv//7vce211+L666/H3LlzsWLFCqxYsQLDw8PrafYbOcOWr1mDPE8x+hcn2Z+uGfLDIFcVkvKjq1OMri7aw6m0YZB1DFvWQebVwK+7BisRm3Bmn1tQ4KztuU3ggtl6Y007D23hSOsJomEXQ3AGbnZ/u9jR8EMeS0GVPHUMY55aZs2EN9KxAKCoxL8Q9hjPU7tj18TOUdCdGcGZvcaItGf1KA0bctgCeoaSYLJByrgaAjeWcIjKfbaN9pevofPM3YMZqeNI+otajnRHu/l+MmJAAADOwUpWTXMOFmWuXcovsygGojKPQGuUEZFgIGF9jANc2TEUXr21sk8SISSpC2Gkor84nimFrDS6mVIVhq1sS+XZ5SaWzWPYmOszNiPmzI6JhZPfjoUbQ5k3T7q7lnUDGAmFcqZEd7S5vez29zOH7cYbb8TixYuxbNky7L333li6dCkWLlyIRx55BPPnz2983mOPPYZ/+Id/wBve8IaeXi9g8lAVkjD3I2VRuOC23M9Ug2O4/H5zVd0kRNCoqabzdXpteo6x0LTaaxKpmirglfWrWbdW67P1in7arS9/+csAgP3339/rv/rqq3HiiSf2PLduELbxAwImESLijX8BAQEBUxGd7FavtuvSSy/FKaecgpNOOgk77bQTli1bhlmzZuGqq65qfI6UEu9+97txwQUX4KUvfelELycgIGAjQD/tlta69m99OWvANGXY7rzzTlxyySW477778Oc//xk333zzuEIisrVDSPMc2dCIle9PVw9bmf7R1aQo9lDq5a05oRFtmbURLyG1nWHz4bx5GpvcBJpMCtAdB8qqMbByEK0Iz73q8MLlj5DC0uZ8mjF/17psMzhGjDEnWy04ybMgO8WC7CBTNkqQHQ5Gcjdo286T/N8JNq6dsGTVtj2fEna86IZVIzHPnGeWHVwjMntNScSRrCtjr0WvDJvTVqj2B8ws9MtuMZm5nDLAl26n8vrd5KfRfplB50YuOwVywrCVuWpQCtow2crloBQMG73n2nfIrY2huVRRDM2LPGEWJ64dJY6xU9JaSyYIixcBMHL/tHB0VVyjVjzE7WrnSiOzDFvx/0juGLZRqZCZJHkN21baPa94a9ojKQDfbhv7wQlLxhlDXNpnwWDbMWeIhWHhuG0b0ZmiXc+6uXO71y8Kd7vJ0Z8cTa69GzTZLXMM6K6eUZqmuO+++3DWWWfZPs45DjjgANx9992Nr//JT34S8+fPx3vf+1785Cc/6XreAb2jb3arQ3RPUy6TKZIMAFxyaFOqp7QNXHBb4JkLIjoimDtnpty6SDKyLtLQqszDEhxMlPeSpsWnqYiHhrlrChGPor+IiKreTSj76vLG2vu6ZbzqWLZqn3kcM+aNSShbT3NjWV2/v5YEzFqTrC/NOo5MoFh3MjLesWG0baIsOKdrU+59D7ph0hjnPUWNdWO3pjKmpcM2NDSE3XbbDe95z3vwzne+c9znyYZGkUmNdM06ZEPFQiEdSpEOpaRdLFpGRnJPBZKGQVJHzfxfFwbpozlptK5SvXczJcLeOCIWtU4a/fLzOHJfeuKc2dCkCRY6NY5WdRFiHJqBiNeGD3LivAnBkZchTUJwSM+Z9J234v/6kLBq+GS1v1PhRHs9ZEzGhQvh5Aw8Kha3XDCsLXdkBqIUiTUuvalECsEaVCKneMxCQM/ol92CygFJJLxUfQ0uL9xR5YBsD4OkzpgeHbEOm87TIvwRAPKU9LuQSCjpxpSPiynUqIdRRUcunNBInLiNoyguwh8BYEC50GXVcudJnNAIJAN4eR1ctDlqVWitXR02aqOV76gBRb1I086Uxmip/popbR05pbXnyHk1KGs26QRj3qaUdcCYHxIZm1BJwWvbAxG3giXuHE7QRKh6R46R8MhCsdJHLw5bo90yk0F39YyeeeYZSCmx5ZZbev1bbrklHn744drT//SnP8WVV16JBx54oOv5Bowf/bJbxSLfLbC1UNYhk6mzIxwRgHITKYmgSuVAJrit2WWeV6gSmrYCk24txI0DFo+9EldSQyRuXZDU1FsF6H3NvLUdFfEQNo1FQ8G13XhWOdfEQiKp0+UrjqPRYTPOZtEuN565a4uI2/eDkbUmL/tE7I6LRNj3mBNHmXHi9DU4ZuY7AQA8iaxTR9esjHOIJG4bbx/3EBrZjd2aypiWDtvBBx+Mgw8+eLKnERAwYXDBwWuoeJ1Pg+2egJ4Q7FbATEGT3QKc7RpPPaOxsGbNGhx33HH46le/is0333zC5wsYG8FuBcwUdGO3pjKmpcPWL+TrRpBLhXxoGJll1TIbBpmP5MiHi92dKqtm2LSi7oaT8Df/j7Vj4rNnzrmPG3Y8Es5sjK1IuN3pYIJBxGTXo6woz5PYVpdngrtK85yTkEje3DcGTD2hgklz18E52dEx8+XMMlBJxG1/KlzccJ6565OSQ5S7ZipOwPNCfECQHXzKpDHhwh0N6nb5q/1aSSs2wvLMsmp5OuyxeXlUvqcRRzbqGMHRkm1bE3EMJmX9kB5DInll193OLUhjBzSAqRwsJwybV2Mt99t1rFo6YsMadepYNeQZ9GihcFUwb4RhywjzZmsX5bWy3PRxbYhLlf0vRUcQx9BG1l8pMFN+AxUpZ2urIieqoiJXQ46EhSpwy6oVYZAu8kHbXXHtMWtAwbSNStK2bJsvRpKa2o1UxKRSg7JOgImGiSckAoGGPvpthoFI2PmY/lbE7dgBY28ZIEiolfkIGNxcOHzRJ856Ex1psluAs13d1DPafPPNIYTAypUrvf6VK1diwYIFbeP/93//F4899hgOPfRQ26fKzz2KIjzyyCPYYYcdur+QgA0GHgnwJKotOSSS2Mntc/rbnQNJ8zKVEREKJTiY/f1tEGVqQAxAZqRUignrS5Wrf8ucCFxRL7cYS4XipGbExrBaRo729SqtQu3gWCGRtJ1wvz+h6zRie0TimC/TNutLTpg0kQjHsBG2jY6JBmOyHo3AY8eS2f44Ai8/X07WqTyOwM26riFyzLBtPOt+zdWN3ZrK2CgcttHRUYyOjtrH1dj6gIDJAovqd3xUEB3Z6BHsVsBURZPdAnqzXUmSYI899sDy5cttXpRSCsuXL8eiRYvaxr/iFa/Ab37zG6/v7LPPxpo1a3DZZZe1hWEGbHgEuxUwVdEvuzVZ2CgctiVLluCCCy5o689HUuS6/L9k0vLh3GuPkGLYTVL9NH65E/ydEHjsWczqWDV/jNvRoLsYEaLB4mMUibC7FSKObLV4EcduVyJOXJ4Ikbr3Mi7HyL70druZn8NGcy48UY7IMGwCSVSKfkQcUXkdMheQucthU+V8ZZSAG9lvm9Mia4VGACftT/PUOrFt9jycsHZS2iLdPE+Rp8WPDye1OvJYIk+L1xiOJYbLOHvBemTYSJmDan/Axo0muwWZNRfC1spn1fLiu6vzrJZV06Mj0GmRv4s8tW2dudw2leVQ5S6mSvOiSHbZb3bF60RGKKo7o4LstvK4eB3RSqysf1XExJydcwGUYxiPAC3se9ANQWQ2t7UmEv7S5aVZpk0qrCt33P18NmXFp9JcWTaNtqXStkxAE6IGhs23lX6uWqucQyS4ZdbMvGOhkCnHtlGWzrFtbsefyv2zkl3Leshha7Jb5lgvWLx4MU444QTsueee2GuvvbB06VIMDQ3hpJNOAgAcf/zx2GabbbBkyRK0Wi3ssssu3vNf8IIXAEBbf8DkoMlusSgBT1peritl6I2NYZJbdkUKDm6YN8EhK0IUJr8NaM+TEuX5ZOwikkQqIc2aIxGQ5b0sYw6emfWVtGwbTzREOSZOlc1TlR1KN9WvDevz1eoF6ZpRzV2r9vsiKZ3YNhIhlZgcMl8bgearAd2xaiIRliUTSUSivESFbasb4/8u1GkwFDmQFdG8qHuesp92azKwUThsZ511FhYvXmwfr169Gttuuy3kaAqpNfKRHNlIeXOn7maVqaoNcyySSdvhbiAG1CwfqjeNpaIbwiAHBceg+eEdEIhaxcdFnbS4FTnnrZVAtIo8AdFKIFqJbfMyvKioaUTqGwHFF7900jTjsBKQFcfN/cAzsFJtjMOvG+QUzhRaZQhPmrjQoTRXSMsbPc2VddKiWNjaK1pr6DK8USkNrQa9edTVZqtD07EmBUr741E5v63/JpWdo8wV8vJ7kmcc60qjLnjzfOpAlZeq/QEbN5rsFlMSTKYu9LHqpFFBkTLEEXkGZZyxJidtdASqdOTkSGoXQzLLSNs5adRhA9rDIgG0ha+YttlM4rH7wdZKQbRK9Td6Ei5s2LPOU7C8tFtRDKiyrZ3wiq6qRJr/iTCIggtlz5RCppzACOCHQY7kCiOl6MhwKj2HbZTYNSdiUh8eCcALj7ROGtncGqg4bKY9mAiMCm7H5GXI+EjZ14q4dd5akUZcqt8NiHphEk1tOCt+sXpZPDbZLXOsFxx11FF4+umnce6552LFihXYfffdceutt1ohkieeeAJ8A9UPDZg4Gu3WQAssjlEEIAKQ0qo9QklrK7RUXki1aUtiQ3RpP2Sc25A4leaQJIxOWduTg5diYFKwMZ033YrIGlBCl+sumUmo8h7TUiMx46X2HDm6TuzknDVt8NNxYwnTVcdUhUaoY2bFQxInVMdJSg0TPilAxxd9vpNW79yREMe4GhLpnDQqNOJv3jnnzTpsUeyl7Ph1PAVYD0uuftqtycBG4bDVyQkHBEwFBIYtoAnBbgVMVfR7p3rRokW1IZAAcMcdd3R87jXXXNPz6wWsPwS7FTBVERi2ScDatWvxP//zP/bxo48+igceeACbbropXvziF3d9HpXmkGDFLkq53SEzZXdRlLdb0nwen1kDmiT7KRVdDYM0TNqgYBgsdxYGBUOrjlWbHSOZndj+eLZj1aKSVYtaid254ElU7mwBiBLbtsn+XPi117qAJw9tGDbOEXMXthOXNZPoTvGsRCCVxXXQMKKi6KD7OtryUVoDSNpen7JksmQRqGS/4sIKipgwybpzeLs1NaBhkwXbV343pGvLnDCIPcr6c1KfpNofMLPQL7sFlXuCItDKr6VGwxpNOx1xgiLpiDfGMG9yJEU+XIRQqixHPlKGRKYuJJIybFrKRtERAz9Z3O3CypEyhKaVWLZNK7ezHoGwbFxAE4EkK0ySkLBJIjTS+LZpx7ZJ5di2TGrLlBn5fhoGOZJLrC0jMIZTadn0NFcYNjvxSiPNXTtvYNgMBGeIaupUFiHjJcMmOGaVO9fDqcRg2R5MBLIyesHY2FxyZCZMUgkbMikVLNvWiriVGVckJFIwZsMiu0WT3TLHAmYO+mW3WDwA1hokZUGUVyKEm4gfpWw4Niey/jyJoOKSTSttH4+JbSJsm5YJZNkWaebGEFtWZdJk6myZzMooAqmgUte2v/lkzVisBZRrkxvJRiN4fa6tegyJ9GrVEkaI1kejx20/52SMY9IYd7XSeOLuaRE7hsuKjyTCY+Pqwhp54lg1yph5Y4igCK+wbTYKI0pc6Rfh1w62sv5mDZj1Ehkwve3WtHTY7r33XvzN3/yNfWzo9xNOOCHstgVMKwSGbeNBsFsBMwXTfac6oHsEuxUwUzDd7da0dNj2339/6B53JuqgshyKMWipXfyyVN4OSB0EY+DlXm0h6WqOuGKl1fHF/6gVFxkU3BYyHBQcc4xU84BATJi0ZHaxAxW3IiRzyvbsBNFgUrYHvbw10+ZJy8tbc8wat33a7GDQUvAVts1clcl5AIqcCJsjIeHlsJmE+VYkkCZO/trsZstWXLsTTZms4vX897Oae8Zr5fg5WJmPwwnbVoV5Lo8St7vTobC2ZdiUdjl3CpZhy8bY5a8iEhxRnTrRNNjtCegN/bJbTOZAnjnREZUTEZFhoGyrdAR6lDBsNldt2LblSApZMmn5yKhl1fwcthxypBQvkcruXFdtpSrvB17Z5S3+d/kndLe1EBto/xmiO8UijqFN3hoRQ9F5BhYV0QWaFAxvAi2crTU8eX6Tu+b+r89bW5dKrB0trj/NlRUbGs3rJf51xa7RRQEjDJsrgZJbVi2JhGXwBmNRyQMu2oZ1U8qPBlEkn66lS4EGrTEgDDPnfpcU0xC8t93+RrtVXETX5wmY+uib3WrNAktcqCQjoiNQEszmjSubp6qlBC+/6zpPoVuupAjg59FWc20FybX1c3CdaJIs+7VSUCnJVc8I20aYN2Xua6mtvdOEVaMsnKph2sz4KlQX9HY1x4oybNReOlbNsWdMMJK3xl2bM49JY4Rhc8ybW1PR3GMaMcG9ft7WT4XvqJQ/49xbj9qIJ7IeA3cMG6MlqMpjplh6N5judmtaOmz9grnRurlZfPUdp96YKm3bzo1xoF+Bal0157C59uxI2NDHyHPMXBhkMie2jlw8u4V4ViHKIVoJ4tmFuEg0OGAdNjbQsjWN2EDLio2w2NwokXXewLgLj2yApwwJUkOOc8TcJL5zu/hRWiMrb/pqQr5sxbWvYRY2jLO2KM1il2QuACATwlOGlFEZxpWntl/lKcwt3qRmxzi3apRMCDQJk9ShEEkprinvcZOGk3AoCjUNdnsCJglKliGRpjZaRQGyRlxEE+dNDq/znDTbHk5r+2WWNy5mfIetFLHwFhLOYTPiSCrLfaER1Z7vUqiBmaTzEbfhlKeuPpySnvCKnUll04RGJZp1pyc6IjWyckFlnDjqgNEwyLWjuXXS1lUESIyAkqILOzIVrbVX+8zYNc4ZUrOY4cyeM4lcSGSaREilqxVHnbfiuMBsc21aew6baQ9oZ0iVdkqSgjNAMTREtdaiyW4BwXYF1IMPzgYbJPe6cqIjWrrw5sKRa7l2eb8z1bJ2znPiynMIGu4oFWRmNq5cvUiZ+qJJ/uZTu/qtIuqVnpOmNBEgqbeD1ElTijpv9etN1XADNoXqeSGRvN15q9ph2m82izznLY6Ig8c9hUfTR+unOUdvbBGRxnDHOCFqj3G9Y0ZTVyoOG+MCXHVvb6a73dqoHbaAgMlGEnHENTs+bBrUBAkICNg40WS3gGC7AgICpiamu93aqB02pZRHa1fBWbU6fPs5aG2bOjRJ+bcxbGUyJw19LBi2hLRdGKRh0uJZg4hMe3YLUSnrH81qgQ/OBgCwhDBsUVLIYcPJ+mvCqo3FrhlY5X/m2rFgNsE9VhytiIq3uF2RJsnrJhg2z+xO84jbHSLGZyNPy913LsBzx6pRtq2pbpu9HrKLw6MEIkra+ys7MNVwJwCQrMe6KoFhC+gRhl2zYZBZWsuk6XQEemSoaI+OIF9XiI7IkRR5GeKYDY0QVi21oY/5SGpZtWyEMmzaJurTHecqaCgOUNw7yrDsmULcMgyU/3wXlsy9xHRhwiBVy4VOZRlYy4RUdSE6goJZA/yQSCouZeT9U+nqrQ2n0oYmDqe5Y9tGcuQlw5VnEjIvbQAJi9KE4Wp7j4xd4wyiXCwwxpBHRX9OwiALVo2wbST80vxv2mogGluiPwK8+A/em6x/k90Cgu0KqAcbGASfNbu4Vw1oeR5SVocRYRLDqoGGUFp7oGybt6QNB9dKemxbHfNG+xUpJeDVl5QKiggruXWE8sfQkEdyfWOHQvaWQlHHtjWFRtqQQhgmra7EinDMW6VWJpXYN+doqpnGa4RGGBdurSmEi5Lg3G8bVi12zBuIgBxqaq+ZfgBg+cZjtzZqhy0gYLIxELHaHR8eTX3jERAQsHGiyW4BwXYFBARMTUx3uxUcthKsNu+CISkZo+rmiEnYLoojtn/QdcycYD6rZkQ5osHIK4odl+14Tuzas2Mr3x/PbiGeXeStRbNbVso/nu3YNo9VS1pgA7RdFqIWpHA2j0jbsW2GceOMgdti2VRIRdtcTaGZTWqXyt/9NQyUUhqy1f61ozsfEWdYU7aHGbPMmo275rllu4TgEOUE8iiCzMvk4tFhy7ZpJaEM80YKYVMwLqwACePC5rPxKHG5bdzFftP5UHTLGho0xVTLabDbEzBJUDl0zsfOWxsZsmxbvm7YMmnZ0DCyISLl77FtZeHsTCIfNlLYEtmIy+OwAk2qPW8DaM+RAEop6TL3LZLayfdL3xZwTnZ4TcJ6moMnZR5LnkJnJIeN3Mte4WzTZrCCCZRAonlemdLIKzlsKckTW1cVHSnfizSVyDPHPOblGMqwKaXd65PNdBrIwBhh2DhDVEZbyFxDlj8eeYOoCS3W7aOLn3Y7xJQA6EEeu8NOdbBdAXXgs+aBD7bsY8pEMXIvF/lsToxEU7YtT23bjq1h27RS4JaJT914kvNWZd5c3ppfrsQyaV5ElvLZs0ZWjeaxdcem0eewLoQwaFF5X9a/nm3zilJ7bBth2EiEQxPrNmZOWpVJIxoBqHsuERfxBEhof+VawAW4GltnwA6f5nYrOGwBAZOIRAgkUY3BGaM+XEBAQMBkodFuAcF2BQQETElMd7sVHLYShlUTiYCwMq4asSmoTbZHBSkyWif4Q2X9i2LZrk1ZNVOQMGr5DFtSI+UftRJEJasWz25ZBUiPbZvlWDU+OBusVeawDbQKaX8ALI5d7lrJqmkRuS1fKuvf9F5Rts3L8yvkooGiWCuVk64DZdXorke1f9gUhB0t+yKOtJTW5oKBR0ZNjkOVeR6UbaM5bIZpA9rz2agypGnzOIGIyp1+wuaJiNUybE27N01oiqnu9TwGl19+OS655BKsWLECu+22G77whS9gr732ahx/00034ZxzzsFjjz2GHXfcERdffDHe+ta3AgCyLMPZZ5+N//iP/8Af/vAHbLLJJjjggAPw6U9/GltvvfW45hcwcWhTcDanKpFlu8K2ydGCPZMjKbKhIoctGxpBts4wbKOWbcuHM+Qle5QP55ZVU6nyCszWFYylqBZpBQq7SqWvY8KsGRZOxTlkWRiXEyluleW+lD/Je7Gv32X+lRkmlc9OUTl/wGfYUqlsUew0V17eWp65tjIMmFQ2n02TEiVVO0hz2Mx5RMTseXjEIWWZ2xxzlyfrFeau37X37Cljbf1caghrwzV4jyqRnXJBxmu7AmY2dNyCTmZXOp3KqwEjDHk1b838jnsMHMlbQxe5b7SUwFisXjVXzU1bNTNpsj2Cp0mdWveYw9bEuHmsUwlOHJAq81Zl3Kr9VbarON5QwLoiwe/Ux0l+Ghd23UmjuNpy2+rKS4FoKzAOz4oyBh3X6xLUYbrbrY3aYeOcl5XPSb0KzqwjpRWHlmUtsRQQrPxB1lRopC4cknlS954z2OCkxaTt+mMrLiJaA4hnGcn+BNEsIzTiaq/xwdkuDLI1uxIG6dpe+CMA8Mg5b53qsBnRD6at0IgoFKGLNgd0GR7aInHCTcnsvMlJG/EdNlOjaK0ppSCkXRDmsbBhSXnK7cKHOm9SxnbRJPOcGOMOAiTleyMiJ3XLI26dw8JpdWIo4y26mAiOpM4Ij6MmyI033ojFixdj2bJl2HvvvbF06VIsXLgQjzzyCObPn982/q677sIxxxyDJUuW4G1vexuuv/56HHbYYbj//vuxyy67YN26dbj//vtxzjnnYLfddsNf/vIXnH766Xj729+Oe++9dzyXG9APKAmdwcnb55lz0vLMyfePjiIvnbFqGKQkYZDZkJH1d05aPpxb502m0tYikplz2Ipk+xqxJiIhbW1fqiCS4n6rhkHSsbSGj5HclmkGUbZ5ZVFm23SR1/S2kTps1baxUVQuf5S01xEBEmtvMkVsj3PeVK5IjUYXDl6tZWXtKQm1VjmHLMWahCdeIuzl1dXEEjULNgNbgoUxjJS/YZwxiPLcxnnrpQ5bo90qJtP1eQI2HuhkFvTA7Eqti/I+IW2mlS9MYr6XWoGr3Hue54xRByzLGgVNPKfOOoDkudSumGOoOF01xwG489ljXTpkDWsRD12UGELFDjDKGvH6tlfvjBxv62+Q12fUAaM10+IYtQ4eF3ZtqbkjCzStt8u556SRyba1ddK90zvd7dbUn2FAwAxGHHEkNX9NibGdcOmll+KUU07BSSedhJ122gnLli3DrFmzcNVVV9WOv+yyy3DQQQfhzDPPxCtf+UpceOGFePWrX40vfvGLAIBNNtkEt912G4488ki8/OUvx2tf+1p88YtfxH333YcnnnhiQtcdEBAwfdFkt8ZruwICAgLWN6a73dqoGTZT/Z0nAqLcQRWJ8JLp3VgFYZNSda1Eq6skX6keT8MgY9PvCmTHrcgrlm1ERKLZg6TtxEWi1oAVFxEDA2B18v0DLXASEmn6EQ1Al2Ij2lSYZ9xp8/MuQiLhPP2CaSraxaWZ94V73y4almPAOSPiJT6rNpAWr5AIjiQqdtUGyhtqzUiO4dSEJkoXpig4RFTu4sfc7v7nqbS7xyoX3o537WfNmbf7bVi1KBYQkQvLNP00PLLuOjsh4gxRH0RH0jTFfffdh7POOsv2cc5xwAEH4O677659zt13343Fixd7fQsXLsR3vvOdxtdZtWoVGGN4wQte0NP8AvoHnaXQTLgwwSy1yfbIU9uvstwKihSS/aXoyDrHtmVDqRUXSYcy285Gcic6kklf1t+E/jWFOucMvGRyjE3UUkOrurAdbm2vjDl4bF4zh6AhkTYsiQgCVERHeoHUVLgDXrghUIZESsOwSSf4kbtwR5UrKzRC2bZGhq0Do29ER2SuIMqoDpVzx6opaqsiAHnjtVFbWixGSkEVxSDKKWQkVJ8zQCjYMMtu0GS3gOmRvB+w4aHiFlQ8aB+zGqYNKBnkaohkOUaTtj1Gw6LLfk4Zd63q2TMl/RBLypRRFr/aVz7Xv7jOLE8b89ZnsLHyr6oMfKX4dHUcq2PjGoRAmkIZ/WgtBs3r+ivj3aTcmtQ8LlEtPaXiZltYRT/t1p133olLLrkE9913H/785z/j5ptvxmGHHdbTOXrFRu2wBQRMNszuThW67Fu9erXXPzAwgIGBgbbxzzzzDKSU2HLLLb3+LbfcEg8//HDta69YsaJ2/IoVK2rHj4yM4GMf+xiOOeYYzJs3r/miAgICZjSa7BbgbFdAQEDAVEI/7dbQ0BB22203vOc978E73/nOfkxvTGzUDhuPI/A4goilLeoakV1GKiohYm0Zm6YEUsOk8ZK5A8q8tdgUgOUQ5es0sWqildji16KVIBosWbVZLUSDrt+KiNC8NZKrxqt5a1HxXM2jQmQEsLlsmuSwgdHYYX/Hwbwdmrn8C8E1yfdnNp9Ncw3Lw1W+ZZw5Jo3mV9B+c1MlEfd2i4v/BYbL3fd1qcRwbHa5OfK0FB3JpN3ljmJu2zJ3O9XdFrU134Mo5nYnPIqFZfa4cEYg6k3V39sNr/YDwLbbbuv1n3feeTj//PN7e5E+IMsyHHnkkdBa48tf/vIGf/0AAqWKxFErVU2KaI+SQtjDo64wLGXbhlPkw1nZ9vPWGnPYTD6XcvleNMhAau2X+jDt0lQmZPqMK7DygEwlZBl1wBNhc9VUlvnS2jZPxd8ht+fUyiWjV+wzfVSV9jf/WxGpmkLUo0SAREnHnkmSw6dy5YmO5KkTQrA5s9K16Q42E8Lm2/IoIWUA6o2JV1qElbl1ZOc4ibjNvxtOpYtcYC6iIVIasc3hM2VYal+uFk12yxwLCKhCx4PQySz3mBxrYts8Vk0pj22z5yA5bnWlPWi/OU85qF3spGEO7rn1TFnTmnCqoE6UBICft9aQK9bGfAHF2tAwZnRMhT3z+9sZM824Y/+qgncdWDUK3QPD1k+7dfDBB+Pggw/u6TkTxcbtsCURRBIVITe1YZBOjETR2jqVcEiriEZqD/HELeZNGGShDFk6hq3I1rSIBhOI0kmLWokVEYlaiVWAFK0EomRWaIgjratWDYm0qjzRgBMViWLPUSsn6d803bx3xjHTRF1HaeuwFQPawyNFxTGzbeZq18WC2cRQuiNi6h8lxEFKoty2h1OONDaqbdwuMvPMLaaU1q7dUCOJvg1UUIRHTiUyigWixIREuvnEurddmrhhx0eVfU8++aTHZtWxawCw+eabQwiBlStXev0rV67EggULap+zYMGCrsYbZ+3xxx/Hj3/848CuTTaUKjQ2ahPmpe+kDZfO20hq++WIU4PMRnJkazPbNmGQOWlnSmHYquUS56Zts6MUy2DMKhCaupPIpHXaCrta1rGMOWRpE0UqoUvBJS2VVYn0FNkaRANYMbDj20ZnS500RTZujJOWK+3VPXOiRc5+FOGRRBmynGOeZq7uY5b2JHKkshS6tOc6avp5dgsUY6dGySbXcJpbmzwQcXcdiXO2aR06qTQU7010pMluAc52BQRQqGQWFHHYAICZ31/a2aQYCSK4U6MuWRcyWbxwu6NXnqz5NRvm04huxkwiOjk8FpUxbc/xi0d6/XYsrzhcNcIh1VDJ2vPUzKd4brtTpZLuHbbpbrem/gwDAmYwjDpm3R8AzJs3z/trctiSJMEee+yB5cuX2z6lFJYvX4599tmn9jn77LOPNx4AbrvtNm+8cdZ+//vf40c/+hE222yziV5yQEDANEcnuzUd5LEDAgI2PnRjt1avXu39jZalcaYCJsSwZVmGFStWYN26ddhiiy2w6aab9mteGwQ8ilxYZJ08NWdQiZGw1rbKfdu4ioQ158wyaTwRvtCIkeBPokZWjYZEmv5GJi2O69k2yqSJ2AuDdOGPpSBAQxIobTMGlJvmYIzZnTHGGBhc2yqjKm1pOMZceCRnmjBsjqkrariV7FWuEPPivY4r4ZEAMJhKDJfJ/utigcHESG7nVn47zYUdE8XKfnYy154gQFONJAPOXEgk48wxbIlj25KIW0GURPVWfDGJWAPD1vuiZ/HixTjhhBOw5557Yq+99sLSpUsxNDSEk046CQBw/PHHY5tttsGSJUsAAKeffjr2228/fO5zn8MhhxyCG264Affeey+uuOIKAMX9ffjhh+P+++/H9773PUgpbX7bpptuiiRJ6icyxTHd7RaAsg6bq01m6rCpLIdMXduybWmGvAyVlBmR6U+lrbFGwyDz4RwjRnRDaaRGjEN1YtgKCAYkdVuB5etwwSCNrcwEpBE0aUV2LloqKOXCEK3oCJXxBkh4U3c73CZwkppyqf2abOZ/U+NMKmIztGsrqUmotQuDVHkKVdaAUnnq2LYGho3Tuo+Ru6e0SgC0b9AwDvDydY1AiZTK2jvKqo3mCgkpT2DqgGZcIyM2tlc02S1gfLYrYGxMd7s1SkpldAIjzApnHKZyEv1WuZI65HlNYiWAY96KB6TdPp82hm0jRS0r14Flq31ejWS/1v56y498IK9fGxLe3tfNd8qgG7s1VdJQ6tAzw7ZmzRp8+ctfxn777Yd58+Zhu+22wytf+UpsscUWeMlLXoJTTjkFv/zlL9fHXAMCZhz6uUt91FFH4bOf/SzOPfdc7L777njggQdw6623WmGRJ554An/+85/t+H333RfXX389rrjiCuy222745je/ie985zvYZZddAAB//OMf8e///u/4v//7P+y+++7Yaqut7N9dd93VnzdgAyHYrYCA/qHfDNvll1+O7bbbDq1WC3vvvTfuueeexrFf/epX8YY3vAEvfOEL8cIXvhAHHHBAx/HTGcFuBQT0D93YrSeffBKrVq2yf1R5e7LRE8N26aWX4qKLLsIOO+yAQw89FJ/4xCew9dZbY3BwEM899xwefPBB/OQnP8GBBx6IvffeG1/4whew4447rq+5Txg8icCTGBHZsWXCMSo8EUROujm+3zBrrugrd8WWEwFR5qoVYiFFXlnUSlwOG2XYBgdcIeyKcIjJSWMDgz6rFse2DSPZzyObUKqjxM9bM8yaYdpE5I5Xk0Pr3jdWCI+Qd6A8oG0Vbc6Lh6bb7IwwxVzRbS7sTlnMOUbL95rTwuOCIc6VHQP4eW1JxL0SAIOJSbbPMatkOdelTpY7z5WV2VZSEcnt5ut14dkup5HmrQ0mws2nRrq8E+KGQo5ynEUcFy1ahEWLFtUeu+OOO9r6jjjiCBxxxBG147fbbrvaIr3TDTPNbhVy9iTRneR1Ffm4hj3LbfFpleVWml+m0mPSqHy/aY9IhWGPYSteSmrHthWPi/8FsQdF23Ro0l/mraVOdETELm9NZhJKmnaOyNpeBSXbi9dOVCqb7vJSZs38TyX+XQ6b31ZEjETbz4CwankKaZjQSoFdI5Gt4Jg1T6TEY+QGHNOfMis2YkWbBEMuKKvmIg3odQzGNUIr2uQm9pDD1qEAba+268Ybb8TixYuxbNky7L333li6dCkWLlyIRx55BPPnz28bf8cdd+CYY47Bvvvui1arhYsvvhgHHnggfvvb32Kbbbbp6bWnMmaa3RrJNeJ87O8YY/4Y7h3z7QrdG2Dk36JfuOf4NZnbX3PMWTWj27umh6oZPaHb/ZGJ8t7V6dddT1GSgR43OYq69nl0fVFdgnVrjka6+E4ZdGO3TPrJVERPDtsvf/lL3Hnnndh5551rj++11154z3veg2XLluHqq6/GT37ykyltQKJWgmigDDks72KV5bYWkMhyz1GjIZGcfOg2FLJ0wArRkbIdx9ZhK8IgSzXIOPKcNPNcMTDgO2m2flriKUCCOm9GXISGOwpBREUiT2DEUtYmTLKq5lOiSombxYHU2tUp825FZr00rRm5M5m1uhzEkQMDj4vzZFzbcMqYMxumMyqVbdv/K6Ikg6VjRkMlB2OB4TK8ajBRSMsFDFV8k0RYgNLvirQ5sYasEp45ENE5lDX1ZPcJsICvjlntD+gPZprdKnYXuKeWqIxKJBHrKJy0or9w3lzoowlDlJny+jNVFwaJSkhku8MGOKdNeF9dt8AyQiSC+TUtzetHMiIbZE5QhKpEaunXS+oHFK3JZmuz+X1uY0fX1liTeV4bBilJeCR1xgCAkfBpe62xH2ZsQiUlF35oNgmFBAphJRG50Edj11JZsXfl+IGIew6r0u0Lpk5oslvmWC+49NJLccopp9jQ7WXLluH73/8+rrrqKnz84x9vG3/dddd5j//5n/8Z3/rWt7B8+XIcf/zxPb32VMZMs1sjUiHO1ZgOTtO3p/hemfSLmuPV81Scu+IcXUy0AZ0crqaNzW7vqW6ck25uq6atEtbhyRNNOa2+L3XvRSdnrCkdpdvvyYjs3nL1026tXbsW//M//2MfP/roo3jggQew6aab4sUvfnFP5+oWPTlsX//617saNzAwgPe9733jmlBAwMaEmDPEot1Q5CFxv28IdisgoL9osltAb7YrTVPcd999XtgR5xwHHHAA7r777q7OsW7dOmRZNu1yusZCsFsBAf1Fv+wWANx77734m7/5G/t48eLFAIATTjgB11xzzbjn2Akbtay/GHChiKpk2KQQlu1SWe7kpCtgHsNWhj+a0ETBHasWR5Zt88IgK6wa6sIdo7gSElmygVSyX8Q+e1YnLsKFS/4UUZvUahEmSWRWx5CAZXC7MgoMwq+oUpwTRHREE8ESaDDtxEiYcsnDotxNzrgTJokFw2huwhzKGkKCe6IkWRnmQ9m24VRiVk5CImXRLnafS3ZBaZuwKsk2kWzYShOcWVatqBUn3OuWtfZEl2UR7DlJbaRqf0BAE2g4oJbSZ6Zq6pcVYiRlyJ7Srp0SAZJceUyaCYNsFx1pD2PhcGxbwmGfayAYI/XbmFfT0tYyk8qLaLDX0VTjiEr8V+S/a4drt7NLWbU6SKWRKzoX9zyvbcuC+KGMskbW37Bu5poYJ2wbrxcrMv1MCMiyLYSCLMMfTXmEKNauVl6u7NzpddAwTxpF0Iucv0GT3TLHgEJtjWJgYKBN5faZZ56BlNLm2RpsueWWePjhh7uay8c+9jFsvfXWOOCAA7qdfsAkIJUaww3ha1p3wyDpWjZorOfxLoMBx+L+qrdJfUjg2OfsV5ZBPcvIxh5T6evX+wd0fg/rrrubMNFO3w3Oiu9Vt+jGbnWL/ffff4OnjEzIYVu+fDmWL1+Op556yip6GVx11VUTmlhAwMaAiIR/UmSBYVtvCHYrIGBiaLJbgLNdG0Jt7dOf/jRuuOEG3HHHHWi1Wn0991RDsFsBARNDN3ZrKmPcDtsFF1yAT37yk9hzzz2x1VZbdYyRnaqIWnHBegkOWeatccKqUWnpKjjJXDUMmsmD40nkREfiyMr08yRqZtUiJxzCYiLlb8e0AMOwRTG0KHMdKqyaz5oRcREzXzqmrgp9lwyR+bQ5K1g2ABDQLmOFuRw2xlArRiI0IMsnSA1IkxdHpP8z5XZEjOz/SK68fLas3GGpsm0md2MwcRL/o7mCVMX7lUrlJeQbyIbPXHBulYQE9/PoDPPGWG+y/pwzL0+O9gf0HzPBblmQAtKuS7oSFllu89lkKi17VUj5mzHSsm1VJq2uLbVGVrOrKOF2KFOlray/E7Zg9hwJ13YuSupaYaeqyJMX6dDnHDYvJ69my1d7TJufz6ZtW1oGrcq2uX7l5bDRtgmGoCwcQBg2Iv0vI14r6x+VOXGS5rDl0to7L4pA+yxbr2iyW+YYUKit0eT9uhqSm2++OYQQWLlypde/cuVKLFiwoOMcPvvZz+LTn/40fvSjH+FVr3pVr5cwrTAT7NZQqsAyYqsmwE70O8e7aS5eNIFnJ5qfKyu5oW3n7JP6SJ0aK+2qMkb0PaO6G15/x1y3/r3n/fzsh6rhHJ2e24XdmsoYt8O2bNkyXHPNNTjuuOP6OZ8NCjEwgKg1ACm4dbZ0EtkFjyb1fyiq4ZAm/JERJ02UapA0JJJHcb2TFsW2fhqiuBAVKdvUefOUHkuFscIZIwqPJrSGcefIVWqrtQmMVMIg6wRIzDCgoMjNDVcNj+QwKmTOoDANcO7CoZhdxPlKkubVOHOGI9bOYTOCCDFnGMmdEzdahjg2OW+pVDZU0kvIz53DNkraxdzaDYpgzHPYorJNVStZjyGRccOOz3hqIwWMjZlgtwC0OS2uTpnyN5yIQIYLg3RjCofJOWN1oY+pck6aJOqC5jFg7lcT98w8BUI3jtk+Yz+qjpnynDbl/V9t9xPVRRQNHwTqE+k9542EqColnYgIqRtHHTmlJDgJg1SlVhHjVLFY2NBKxgV4bJQkSf1I83+urABJpHmt2mX1mpquvRs02S1zDOhObS1JEuyxxx5Yvnw5DjvssPKaFJYvX96odgsAn/nMZ3DRRRfhBz/4Afbcc8+e5z/dMBPs1lAqgTSv/W1dXwqKnVD93nsOWYMohg0p7mKsUvVj6sb2iqrTQtOyqOPhO2Ptzxc9jPVebwOvT+pezqwLh9LuN/C6sVtTGeN22NI0xb777tvPuQQEbHQIKpEbFsFuBQRMHP1UW1u8eDFOOOEE7Lnnnthrr72wdOlSDA0NWdXI448/Httssw2WLFkCALj44otx7rnn4vrrr8d2222HFStWAADmzJmDOXPmTOCqpi6C3QoImDj6abcmA+N22E4++WRcf/31OOecc/o5nw2KaHarEP/IIqgyJFJJsiPajeAI55ZNowybbXdg1VAjIsKIfD+L4vq6arRuGhUMqUr2d2LVgNowyNrq9jUwX26ldX14JHO70gyu0j3Tbleea2Z3rBhjYEayVzNbi4UpBhYXc4rLsEoqSpIp5ZUAyIwYCWHbRnNpwxfTyA+DrGsDnYVHzP+ihmGTPYZExoLbUM9qf0D/MRPsllYS4H4dNk9oxDJTrl9J7dUftCGJqfSk/CkzRsMgnWAIvDaZFaiEv/n20pBIyrbRXXYzl6YSKr2CaT/1faJ54XSnnLJbxWPKpI3dVqYtJWTJwjEhPDlurUyJmdSGQWolbXkAGSU25D4yddW88MwKq6ZJmzAEHlPawL41oclumWO94KijjsLTTz+Nc889FytWrMDuu++OW2+91QqRPPHEE14Kwpe//GWkaYrDDz/cO8/6yJGbKpgJdms4l1CprGWWuvnujZeRqrJb3bBgPoOma8cqEnVg+ytriG4Z7W6uv8pq1bFc1cL1XtumnLBaRo6GQzaybQ2MXN3YbtGNo1Qf/llcx3DeA8PWR7s1GRi3wzYyMoIrrrjCxo/HpUKiwaWXXjrhyQUEzHQ0JcFG04Cen44IdisgYOLolLw/Htu1aNGixhDIO+64w3v82GOP9Xz+6Y5gtwICJo5+260NjXE7bL/+9a+x++67AwAefPBB79h0SYgVSQIxUMjrG4aNSmGbxwZVZs30eWwaUOSelTlmiJLuWDVjgMl4LRKfVbNMGpHsZ4zI93N/jMemNcv2t7FqY8n6M7drTXdHlNZ2h0XDsW3cL61t/9XQtui4VEQXheS2CUZ26RtESbJycMGqFSdpYtsypexOWRa7QrLVXA8D2q7uXFGGzexO5VmPsv6VHbG61wroH2aC3apDrax/JZ/NMlnKFatW0mfVfBasaCvU9/u5KCSHDW4H139e+/tbjWJoimpYX7lrVTTtdNcJdFT76lk15eWt0dw271zl/xyAVqLmPJW22d0neWs0r81cR95FDtt40GS3zLGA/mIm2K01qURWrrOAzjle3bJpdflw1XNXz1/HngFovE/G2583rCNqGbYurrcqCNLEpEUkCogeF/3o74KFs8eb7EMX39decvTW9ZDDNt3t1rgdtttvv72f85gUsMHZYIMtIEshIhpe1PkLwLhw4h6ce85ZcZx7io5GOARRPKaT5jljQhDHjHdXV40qQI4lKuJfVMdrbhtOvttjOm+M2aRi6rxp5gRIOHcLOlq3TSrnnDWJkhiHrcl5y5RGVi5sMsWRGydNOyETRcLBVCVkqw6CxEIL5uj0LO4xJJI1iI5Mkx/h6YaZYLeqqNorX6TDhRsqIjSiSL8koT31oY+9h0SaY3XfY+oYmvmMCxNUixxviFVTSGT9WD8McqzxCgCzY7h18JSS4J7z5pzv4n8i5KL8OY53gdgJTXbLHAvoL2aC3RrJJFQmrTPVyUlr+n6OVTuxaVzTZuxYDljeNEbXb4RQhenq+fOGOXW6jm6ci6jB0Soe87Z+wZ2QW9VJo85ekyNX1zfWpnOvTlKTY1gcK/vL6xjJegiJnOZ2a0J12J5//nlceeWV+N3vfgcA2HnnnfGe97wHm2yySV8mFxAw0xFERzY8gt0KCJgYpnvy/nREsFsBARPDdLdb43bY7r33XixcuBCDg4PYa6+9ABRx1BdddBF++MMf4tWvfnXfJrm+wOIBW+uMJvDbj43ughIJZtpmUWwfmzBJRAlh3RpYNS4cqyZijz1rrKtmwiMZb66rRlk1O0neF1atCd2wbXZTg7BqWjfXbePasWpmJ46V7FmbKEl5EqE4RNnvM2/KFkXMlIYqBUIyqSA1t3PMyJZf025f3c6PYI6m51GPsv6iYAPr+gP6j5lgtyxqWJqmcG4q3+/16+aQSDOqKVSSougrDtB7xLFxjNxH9T+MVGhEK73BwiCbYHa6qaR/p9pldUwahW6I3mhjSLlh0kR9SKSUbfPwREcaRBCqO/wTkRVvslvmWEB/MRPs1posx2Amx0w96IYpa+obq10NU+yGMaP9ecPc655Ly34A7aVBdM09XIe60EJG+mhILOfMHmtj1WoYr6htTD0jB7SXNTKIGs7dqd3U18t5zP/DmQuzHQvT3W6N22H78Ic/jLe//e346le/iigqTpPnOU4++WScccYZuPPOO/s2yYCAmYpC6SgwbBsKwW4FBEwcTXbLHAvoL4LdCgiYOKa73ZoQw0aNBwBEUYSPfvSj06aQJWvNAmvNKlg1kiQ+5vM4KVDNhWPTjBBJlHjtblg1M77XQtj2HLafufE9sGp6jC8r67AbS5/bC9tGC22XA8vXKgRJTB8ttA34oiQcgNkYkYxBcLfT1cS2mY2sjDupcaU1pNCu3cXms42lJjtPI1Gvsv6sgWGb+sZjOmJG2C0uADXq9TUVl26Sx6fFsmUNm9xNDhuFz6p1fy3jzl+bAqgrpl07To7NqlEYpo6p+pw3X4Ck/idcdclYAGW+cYdk/Do02S1zLKC/mAl2aySVkCLvKZ+MooktbmTVdOfX6cSeNRWep8I+5v6nTJpWzi5US20YUGa7yrKNBcqs0XWV6WecWUaOMeY06AjzxhgZ08DC0XZ9Xhtvzmdj/uO6djXvropOOXLVOY70Ujh7mtutcTts8+bNwxNPPIFXvOIVXv+TTz6JuXPnTnhiGwJ8cDb44Kzix8/+SHZw2EgtGBcGKXxHrRznqUSa51EnjXGgHKOroY+91lUbq55amypkf7+Ydc6cZqzReTMGSzA3F6UBYeqwkTlW67YBheE0YQCs0JosjoOqS/rOW1nKDZlyry8Fd6Ij2hl2Pxyy+brrHDbWY0hkyGHbsJgJdguAH6LdgKoTRwVI6sINq2IgE4ETHenP+aYrxhKw6vo8DWGWiiwI6WLSoBtVyPHYmumeCzLdMBPs1tCIRMTqHbamUEWgXsmx7rHfrnfG6LiqM5bnToBsLGdM5srdb9p3zOx4raGJmaX3qsFEHDbT5l6fC5H0nDTu7lfGGUS5TunGqYuiBuGSBmVK6tQZdBXqWHH0xnLwzJjRke5t7HS3W+NOYjrqqKPw3ve+FzfeeCOefPJJPPnkk7jhhhtw8skn45hjjunnHAMCZixESdHX/QX0H8FuBQRMHJ3sVrBd/UewWwEBE8d0t1vjZtg++9nPgjGG448/HnleJP3FcYz3v//9+PSnP923Ca5PWNERwDJsnXZEGQmDtKBsmmHdiBCJJ8dPWTXGbeijP6ahrloXkv0bklUbC5R1q7JtnIgOGDaLM79um9l4KjZTin4TJskEgyEIOPdFSVjJwmnts23SyP1rYV8zkxqxNgyfBiUdFAkHa4K5wenOjO6RYWPMDyOl/QH9x0ywW51QDYEcawe3Kiji+pvFSOhzXb01DXOf0sgSJ1zijs90FCGL7QxmVXTEtBkXfr+p1cb98apGgKRxDjV2q1812IBmu2WOBfQXM8FuDWcSQviiI0110Kp9RVt1ZNiqNQfpmLHCGgvGrBivtfbYMFPrsMpim3DuauijIuxcHeutxwiJpGOrgiOdxEbMccu8sQrDZvoFqx0vBPdYO3P+1AZ58Vr2rptabk0hkFTopO5YW19F+CTiDKM9yPpPd7s1boctSRJcdtllWLJkCf73f/8XALDDDjtg1qxZfZtcQMBMh+DFX11/QP8R7FZAwMTRZLfMsYD+ItitgICJY7rbrXE5bFmW4aCDDsKyZcuw4447Ytddd+33vDYIisLZsz15bNa0c9kk608FSGiOGWHMrKBIlVUjuWoeSzYRyX4vj21qbBk0sW1aO3aqa+n/YrAN5tXaFyUxrJrSPttmPjGtAanMDo22uXVNDFtx3vqd6TqJfxb3dtdzMI9xpP0B/cVMsVtjQTXk4dYVzh4P6FNNe1LytbvI4+v49Em0j1WmjY3zWupybaqQXQhp9Yomu2WOBfQPM8VuDac1DBsRADHoVHC6EwtXldQ3qOakydzlmNXlgEqpxmTS6Jj2vDU6vr4sh0GvOa7UTpjILsaF7Wdc+OxZQz6bKL2TTswbHQMAeaY8QRMRlf2V13FzHbusQPF/8R6MtwB42oPoyHS3W+Ny2OI4xq9//et+z2WDg8UtsGQQXmaobvhxa3SKahwpXhUFqRELaXLSmsb3KC4yVZy1KpjWTlCE1YuRFI+L/6mSpLHBgihHamj3tmtmx1SdN+P2KRLGpQDisDFo8lYqol7ZFBVZF+Ype9ym4Q07Pry30wR0gZlit7oFDY/sVD+MwmxOTG4FtAJskrc8e1FNXF8woZW9LOx0zWK232iyW+ZYQP8wU+yWC4ksvtNNjlk36pHdOGZjKTc2OV1KknauvBBHWQqTUMdM5rnvmMkaJ60mjLku3LkTuEcU+G3qsNm28PtFqTDKOENuashGJAySMVtHlnMGKZRtm+fR8Ekp28Mni6WsGy+7cOQMOtWKM79IdUqVaQ8hkdPdbo17isceeyyuvPLKfs4lIGCjA+vwF9B/BLsVEDBxdLJbwXb1H8FuBQRMHNPdbo07hy3Pc1x11VX40Y9+hD322AOzZ8/2jl966aUTntz6hhYxtIgrnd3QKQ0Mmx3bpUBIN6waff06Zm2SxUXGAxMi2SRGokgYJBUjMcxYNUxyLLZNa8cYaO3CHTW5RZX2P3rKMHTzlTCIe9yVp0m01f6A/mMm2K1+olpjrXqM/r8hwaYAu2XANvC9aHbelZLejmqn3foNjSa7ZY4F9BczwW6lUkLkLiSyW5EQg2roIe0HDHsGe7y25IXWUDXy/TL3hUOo0IjXLgVf6D2osrQ+9FHJWqGgsUIiaV81VHqskEjexLZxARUnbf1KRr7oSHmtVIDEHo8ck6a4cmxcg7hJU8kASHjMG6th1SiTllb6XQmBon5kWlPnsgnT3W6N22F78MEH8epXvxoA8N///d/esQ39AxcQMF3BUU9zTwN2floi2K2AgImjyW6hQ3/A+BHsVkDAxDHd7da4Hbbbb7+9n/OYFOi4BR23ygdjZG3UsWjmPE2MWNnn5ZmNxarR83QpLuLmMb0MN81nA0gKYEX2v7ohQvPaAIzJtgGM5KrVM2leX0WCfCx+gU4v61F9oRq3TfsD+o+ZYLcCAiYbTXbLHAvoL2aC3cpyhVyoBtERn2Grk94HfDateOznpxlUc8/qpfyb89maWDWVpa6du7ZhxWSeekxa5xw2Rdpjs0SsKnZH+j1WTdC8NceqmfnyKLHjtSLtyLFtWuk2hk0r7rFt5v1uKtDNI270RBrz3LRmdgxjDLrslx1ESmSFbcvy7jOu+223Lr/8clxyySVYsWIFdtttN3zhC1/AXnvt1fN5usW4HbaZAB0l0NFAc8xbFbUFsxoEQHidE8ebxzc4aR3HzlB0EiMp+mDfp0Iwst15A2O2VxH/S2ttQyyLx+68zt7T4919N4wxGu3RaRasXmFvUlT3AmYc6tQg62qEjYWmsMmpCF2xj9NhH6tTGFQ3qNrIservTRRNdsscCwioIlcAVxpp7itCmv/rnKo2URES8uj6iHDIGE6aVnDCIWS8yhURHSFt4oCpLO3KSfPHqLbx7nraay92gq33i3YBEuewcRceGSVerUfjvFFVWq0keOz6uR2jwYUTILGvq4zzxiDKkEitNZhyIY7G6So228vxxKnjmtnPkXHtnDfowoEDwJQ7TzU83nxnkvL1e/DX+mq3brzxRixevBjLli3D3nvvjaVLl2LhwoV45JFHMH/+/N5O1iXGvfJfsmQJrrrqqrb+q666ChdffPGEJhUQsLGAMdb4F9B/BLsVEDBxdLJbwXb1H8FuBQRMHP20W5deeilOOeUUnHTSSdhpp52wbNkyzJo1q/Y+7RfGzbB95StfwfXXX9/Wv/POO+Poo4/Gxz72sQlNbENAiwS63FHoCR3CI+v6GtmxXhi7ptfB9AuFpKACJF6/ZcTa6yW1yf/TsEqysWx21QQj7Blh3vxz+o8ds9bbe5v0uE3DG3Z8QlTR+sFMsFtgfOw43RrQ3Wo9HaiygDHhfaYTEIfhrLfd2ya7ZY4F9BczwW5JpZHnqpFVM2ivZQbvGB1fFRQZS6a/qd6a1yYy/VRQROWOYVMNoiMFI9fOqqmK3L+9nl7Eg3LHviu4NhPCMm4F2+Zen5OQSIOiVls7i0/HaC5g3APDehX9ZTgiuGUqC6ERdx5qR5QRHaE1bkF0+xSz3wfGyXM5YANBlK4NlUxzhSTiPZUu6cZurV692usfGBjAwMCA15emKe677z6cddZZ7vmc44ADDsDdd9/d9Xx6xbgZthUrVmCrrbZq699iiy3w5z//eUKT6gaXX345tttuO7RaLey9996455571vtrBgT0G5w1/40Hvd4XN910E17xileg1Wph1113xX/8x394x7XWOPfcc7HVVlthcHAQBxxwAH7/+9+Pb3JTAMFuBQRMHJ3s1nhsV7/t1kzDZNstINiugOmPbuzWtttui0022cT+LVmypO08zzzzDKSU2HLLLb3+LbfcEitWrFh/8x/vE7fddlv87Gc/a+v/2c9+hq233npCkxoLJnb0vPPOw/3334/ddtsNCxcuxFNPPdXTeXQ0AB21ev8TifurPjZ/PCr+RFwUya77MzltjLvxpbhIW+HtGZ631gTG3J8BZ8z+Cca8OhomRlkwl2AqOEMsij+TqFr9SwRDzGH/EsHG9Rf1+DHROVb/ekWv98Vdd92FY445Bu9973vxq1/9CocddhgOO+wwPPjgg3bMZz7zGXz+85/HsmXL8Itf/AKzZ8/GwoULMTIy0vP8pgJmgt2aqeCTXCi7G/DxeCMzEJ3sVq+2a33YrZmGybRbQH9s11hMiNbasmuq/Kuya67f/SmtLbtm+8q8NfOcpvH0fK5diIsY5swwa0am37Br9WOUZda88VJ6/eY51cd1f3VjvHNJf17uT/lzp/Ol19E4xn/vVOU9rL7f5j1v+oyaxtvPV8F/rtZjRg1UC6uPhW7s1pNPPolVq1bZP8qiTTbG/Qt5yimn4IwzzsDVV1+Nxx9/HI8//jiuuuoqfPjDH8Ypp5zSzzm2oV+xo4XDNsG/spZb459xxMb48xyzjdxJawJ13uhf4w3I2v9i3vyXCN6Xv56uqcNfr+j1vrjssstw0EEH4cwzz8QrX/lKXHjhhXj1q1+NL37xiwCKH8ilS5fi7LPPxjve8Q686lWvwr/8y7/gT3/6E77zne+MY4aTj5lgt9YnpJ6awiJMcLAN4NCNd7NkfWOy665V0clu9fru9dtuzURMpt0C+mO7zOLa/FUX7jRckaLJ8eokrFOcr138W1VehzoF1Nmx5xlHmzprWtY7a1X1yE73d9O8qk6bcdz6fR30PXXHnePrzxVjOlpNjnXjuIoTWP0e9eKwdWO35s2b5/1VwyEBYPPNN4cQAitXrvT6V65ciQULFnQ9n14x7hy2M888E88++yw+8IEPIE2LuN5Wq4WPfexj69UjHU/s6OjoKEZHR+3jaoxqQMBkYSxZ/27iqYHx3Rd33303Fi9e7PUtXLjQOmOPPvooVqxYgQMOOMAe32STTbD33nvj7rvvxtFHH93dRU4hBLsVEDBxdCOPvb5yQcayWzMRk2W3gN4/o2C3AqYq+iXrnyQJ9thjDyxfvhyHHXYYAEApheXLl2PRokX9mGotxr1lyRjDxRdfjKeffho///nP8V//9V947rnncO655/Zzfm0YT+zokiVLvJjUbbfdFgCgmNjgf5qxvv8xrdf73/qY9/q+Bq7lpPz1gk7zB7qLpx7vfbFixYqO483/GzpOe31iJtitgIDJxli2F1h/uSBj2a2ZiMmyW0Dvn1GwWwFTFd3YrW6xePFifPWrX8XXvvY1/O53v8P73/9+DA0N4aSTTlpPs+9DHbY5c+bgNa95TT/mst5w1llneTtyq1evDkYkYEqAqRxM5bX9QBFPPW/ePNtfx64F9I5gtwICxo8mu2WOAcF2rQ8EuxUQMH50Y7e6xVFHHYWnn34a5557LlasWIHdd98dt956a9vGRj/Rk8O2ePFiXHjhhZg9e3ZbSEIVl1566YQm1oTxxI42hpFJhVT2XkSWYqzaDVWWlTU48VXpenf+8cxqhqIakF6CNfTXju+0i9J0nh7A8tGxB1Vfs3aeRZ+Jox4L47kvFixY0HG8+X/lypWeQtnKlSux++67jzmnqYKZZrfWJ4zkcTbF8tj0BO10t+glH2JDYjzFtNcrmuyWOYbubNf6sFszBVPBbgG9f0ZNdktw5on2SLgQL6Xcg2pumlljcV5IwlM05bExxgBeHiNP4oxZqXmttD23hibFp4WV4Gdc2DwuxgVA2o1jzGuhfb7+3KUvpd+Qx1Z37/vFsoUtqs0r/XXn6LZdfV261mWc1a5ZGR97TcxoEW3eXP/MjGHMfW8YCWk04Y2ql5zjLuxWL1i0aNF6DYGsoieH7Ve/+hWyLLPtJqzPwpn9jB3NpEY6jgx7//p0rYyx6ZLwnTb6XNovS0eCnooz5vkXG6XzVnMTeQ5a9Th9w8ixjs+pPc/4FohMZr09QUn7I9DW3wPGc1/ss88+WL58Oc444wzbd9ttt2GfffYBAGy//fZYsGABli9fbh201atX4xe/+AXe//739zS/ycRMs1szFWoDOWUTgZqiDt0GR5PdMse6xPqwWzMFU8FuAf2zXYLX10A1sNdB6nEpOKXIYuFu+h1MjS9FEnw4XB2vqqNnxmvO7OtoTdpcgMdF/TKVpbaWmcpTW79MAY1jKNx11FwvcfTM47FQ52C112Ezbe7VYTPzpXXYGBcdxjgnCSidK9Nmrs2II151rroZ764H/nO7+F737LD1yW5NFnpy2G6//fba9obG4sWLccIJJ2DPPffEXnvthaVLl6732NGAgPWBIna6zintfWE41n1x/PHHY5tttrG5JKeffjr2228/fO5zn8MhhxyCG264Affeey+uuOKKYg6M4YwzzsCnPvUp7Ljjjth+++1xzjnnYOutt7Y/3NMBwW4FBPQXTXbLHOsF/bZbMwVTxW4BwXYFzAz0025NBiaUwzYyMoJf//rXeOqpp6AUYTMYw6GHHjrhyTWhX7GjmSr+xqr1YOA8fjfeZ89cm9s+ZmWyOfO/FLqGeaPno5KplG2rbjzosmM6fOGqaJxzEztWOQatx2bSqn2qF+aty/fUfAZ5j/XJVF781fX3iLHuiyeeeAKcu23IfffdF9dffz3OPvtsfOITn8COO+6I73znO9hll13smI9+9KMYGhrCqaeeiueffx6vf/3rceutt6LVavU8v6mC6W63xs3+EuPCTOxj71+zgCkE7zOdANOidOfwrfYnNNgtc6wHrA+7NRMxWXYL6I/tEpyBRxxpruxjE4IsidQ+DY/kcG2lNKBceCTQzpxVWTYDZsMgGaR5fXAo7n7flc1XiaBU51BF1iCbz7iwLJtWHLo8D1MSmvvnUfT5cmx2x4Q9ArAMmXlNyqqZNo8S+xzGBQRh0ugYj1Urx3DObF1Mw3rxiNswSMYZRFl0loZBUhaOhk02hUFSVs2MAzqHQRokER8Hw9Y/uzUZGLfDduutt+K4447Ds88+23aMMQbZxRdwItjQsaMBAesFY+Sw9YpO98Udd9zR1nfEEUfgiCOOaDwfYwyf/OQn8clPfnJc85lqCHYrIKAP2IC5IOOxWzMNk223gGC7AmYA+my3NjTG7bB98IMfxJFHHolzzz13vaqirE+kyomOjMWjsMoomnBJQq9Jn2HMtD0utc+8mbMxALx8JHUz22ZeU+sZns9WZczq8tTqWDU6tolJKyo7tr1W57y4MW5kUuCcyd52aZjKa5/Tq2JRQHeYCXarF3DRbigY5zUjO0OQ6IKpWFibgmnl2fPpEHhQJxTQC6oCAKyXXedxoMlumWMB/cVMsFsRL76XScnMtAn8lN9Zj21jrqiy4Mxn4VCuo7jp0y5nLFeWPWOV8xn7J3MNRuZg2pwzyHJdyPkAZF58nykzpZW0TBrNRZN5alktUzDbjK8ydZysTzoVzrbz81g17vXXCZB0YtVsO3ZtEUXWbgjBPaas2iciNiarxiM3xyZWrRohUMeqAWgTGjHtiDPoHn7OprvdGrfDtnLlSixevHjaGg8AyJRGWjEaTT/ufrgjg3HeGKtRgoTrY6zipJl+aBLiWO+8KSJBwlklRBKGOiZzL+uZTRe0zbXJeaoZN5aT5jl6xMFj1fF15wQ8Z6+rL4Xp6jUkss8MW0BnzAS7FRAw6ZjmO9XTDTPBbsURh4i4ddRypb2QSAPZ0K+VtmGLjPv9QOGwma8e58wKBGnqsGkNVYZEMuIMstw5g1pp60j47QiSOGxUdMQ4XDxKPCdN1ThsNPyxzlHrJETiOW2iXWikqhJJ2zT0cSwnrdZhqzhpxiHrJChi9rKpU2eO1fXXOWbV/qg6JurBY5vmdmvchbMPP/zw2lCFgICAHmBUi+r+AvqOYLcCAvqATnYr2K6+I9itgIA+YJrbrXEzbF/84hdxxBFH4Cc/+Ql23XVXxHHsHf/Qhz404cmtb+Sy+KMBNN0xbH4/ZdOK4wys3AniDJYn48yNEd2wbdqVDFBg7nXg2DYOumsxPQRIWE1IYtFfJxhSYcfMsbFYNSUbx9t+Rdi7KsM2lhgJ4IVC2nbem6w/U7KhcPbUNx7TETPBbvUTgjEb7igqRSJdvys7sqHQVF9pMtCtKFW/QHfL6/rraiRtaDTZLXMsoL+YCXYrEQIiEpDl77UgTBpQMG5AM9tGj0nChqG8FZRyjJlWmjBs7h5WSkOXYhpSKmtnhHDjldTgpXqJypVlkrTSVohDa8fayQqrZhg0j1WrCYmkj1UX90xVaIS2a1k14feLKCrbjikTkWPSOCOsGWc2nL5Opp8ycJ3CHSmT5uZbLyLSxKpFDWMEL0RHILq3hdPdbo3bYfv617+OH/7wh2i1Wrjjjjv8egqMTQsDEhAw6QghkRsUwW4FBPQB0zy0aLoh2K2AgD5gmtutcTts/+///T9ccMEF+PjHP+5J7k4njOQKUa683LCmnWRBDCRN8BbcPabiI+VGTJnDZo5rGA0A3QXbJjiD2Vzi0DanrRsxkqmaz9aRXavK9ZdjPKYMKKVZu2DVyp0URgVItHY7LJXnapq3RndbmnZe6C632cnqMYeNqbyBYZv6CbDTETPBbnULsxsM+DucnWDsHB9Thmn9Q09yIe02UYRJgBEX6IVRq8sJ6Tea7JY5FtBfzAS7NRgLiERAKic64hgzhaQcV2XV8g4MW7XPY95KVJk3mZesWsRr89wo86ZiDiUdOxfF7WOiWLjzaFqeQNcybGPlsHXCWDls1YLXTcIgQnDbtrL9oiL6QcZUxzLGIKLemLSmnDSDJiateMzb+gUvokNE3AvDNr3t1rgdtjRNcdRRR01b4wEAw5kCz4obxjhtnUJ/7GKmwWEzx2PBILVz4oyTxmnIYsV5M21GVUqUtjeChnN2CmfPOW82PLJSq03TXbhJdN6axEWKYzXqjZ1ERQBAKeJ0VRww6qQZw6hVZUxpOPPMtaX0hUaIoW28LmM8iRFVw8ON42uhfDVLrz+g75gJdmssNF2brasjWK16ZLcwT5XatScFEwxhUZNpE4my3ETCG10oEmt0ysX6+K432S1zLKCvmAl2azARELHwHSx7D4qOzljRVm2bKFXHrhsRE+N0UUdO5souLyKtPUfOKEZ64iVKe44cFSxRxDnUKrJjDGiIdV3oNx1bvaeb6i7WhS02iYFUHbNuwhyBMnyyxgGsOlEGtL/qjPljeOOxtj7WrhIp8h7s5zS3W+O++0844QTceOON/ZxLQMDGh2mcADsdEexWQEAfMM2T96cbgt0KCOgDprndGjfDJqXEZz7zGfzgBz/Aq171qrYk2EsvvXTCk1vfGFUKkSx2bRzD1jye7iZbVo07MZC43CnIlDsecw7BXR0RVcO2Ca5t6KPggJaw46ngvxUg0b70v+tvl/0HJodt64pVo/2dpPdl7j9PSTdW5X67jlWTmQt3zFMXkqAUdFlLBUo5Ns0Lh2zeddFmZ4jWZ0lHG8fXgVXFTkh/QP8xE+xWJ9AwSMDfka2DIOx+ESGgbduIkNAxALO74tQeFuNr5kOObywoQpTa90Ipk6aVbBMOsM+tCXUCnOhAN6IjrOb97md4ZJPdMscC+ouZYLcGY4EoqWfSqmGPHkNWw8LRsfVt5b1OU1ilN6aU++9GvKRg5FypAI9h88Ij3Vwpa2fQq7iSx7ARNsz11Uvm0/pojDOIUlykSXqf1kSLooZwxJpwxqooiEEdc9bWZn5/p3BJOoZnPYRETnO7NW6H7Te/+Q3++q//GgDw4IMPesfqfiwCAgJqoKQN42zrD+g7gt0KCOgDmuyWORbQVwS7FRDQB0xzuzVuh+3222/v5zwmBcOZBMtk1wybgWBVhs3ksBUeeiw4Yd00YuFy3GybsG0KjhHT0HanQSnX1iTnjUr/C2g7Z8Z8to2KkRhU2TbbPwHWrfG5TcxRDasGoFYMhEnHoJkbitFcNSJAAirZKrMiR63s11nR1nlqx3ttSSjxqgBJ03UThk0bhm20N4YNuoGK11PfeExHzAS7BaCrHxdG2DYmOFhpQJhg3jEDn0mbGCY1t20KoV/y+1Sim6I2d6VH0ZFx5fI12S1zLKCvmAl2a3ZLIG5FY+aZVY/V9dUxZm1t3fl1mli4KvNG256gSDclBOpEUMbIYesEyrBRLYVeCldT9qxJGKQu/6xWUh81OWms3v6MxZhRdCP3b/oj2YONneZ2a9wO20zAukwCmYRSzulpUoxsUomMBXXYyj6lSUikRqxceKQRI/GcN+3CiRRgHTnBYNUjBYOVh6RKkuDM1XmrKEma+TMy56rzZlDnxFF07dCN5aTRSVTFRYyzpZQX/ug5cgCg8sKRqx7v4KTZ/jxzIZF56hwzJd2Y8nFtm4Y12RAlbvv1aG9KQzrP/Ncl/QEBddBK+gqlaHfODKohkm6Ms0POtrkNIsFomzpgGkBnW9GLszYR8ZPJRrfMhglxpAJGVefLV3mrV3+jY11//RyanLa6xRFnrG3BPBaa7JY5FhBQRSsRGOzgsI3Vrnvc63maQi+lbnLSmp262vNUlCqbxEbMcQrVcP/ViQl1Eh9pEgNpqnHmj6kPfwTaBT8MooZzd2o39fVyHtvXQ0jkdLdbPYmOPPHEEz2d/I9//GNP4wMCNjpM4wTY6YJgtwIC+oxpnrw/HRDsVkBAnzHN7VZPDNtrXvMaHHbYYTj55JPxmte8pnbMqlWr8I1vfAOXXXYZTj311Cld0DHNFUSukEnlMWydpP2BYqfBsmq52wExoiMiV4jKne2YM8TKtOvZtphzmFISWjPoUqREM2YFS5Qu2Dfz+oZ561X6v3jcmW3rGWOJZnQp2W9ZMyK93yYqAgCSsGoqJ+xZ2syqZWnZnwGl0IhWyrWprD+pmdIExoVj1TgHi4sqMjrrkWHLMjvnan9AfzDT7JZFTYgcFbvwmTZGQiJJPxELqQqQcCtA4ouOGGESGj5ejKnZQfVYus5GhrKBjNeHbW5ImB3cOvnsOhhmTHnhi+4+roqO0H7LmAnKnnFfjISMqc6jGvJUvQbAD0MC/EiRXtFkt8yxgIljptmtuXGEhNQsq6afdFMPtxML3A0z100YJu3Pm8Z0YOSazp83zKnTdTSFNPejfln1PEYmv2589XU7hSzWzbGb6/D6GyLaimNlf3kdUdq9GzPd7VZPDttDDz2Eiy66CG95y1vQarWwxx57YOutt0ar1cJf/vIXPPTQQ/jtb3+LV7/61fjMZz6Dt771retr3gEBMwNK1e/sTIOaINMFwW4FBPQZTXbLHAuYMILdCgjoM6a53erJYdtss81w6aWX4qKLLsL3v/99/PSnP8Xjjz+O4eFhbL755nj3u9+NhQsXYpdddllf8+0r1uUSOpOQWiMtJV07Jb92SnwEgISwarwstliwZ8r2x+WYAUHZNp95M7ltEa+wasqxZzbnjbBwWld2g8lOeBPbVvSx3tm2Hlk1b4xXxJrK82vXJmNovhoAMJmOyarp0RHHntG4ZSrrn2dQZrxU0LZAppuv6QMqeUKc28c8joDyPCrtjVbXsiGHTU793Z7pgplmt6poy4fy8tmY/b+ucDYTDELSfDaUbSJ+hKYcNj/Hl7Jzndi0qrjJuPPYJijoMV6GyZfWbs8x88e6nLSm5QCV8ueVvLXGfiIaUPwPItvtz7F293uCyoJNdsscC5g4ZprdasUCrdjdJzRnqxPb1glNTFw1H4yev4nJq2PMJtLfjTDKWNdBUb1nxxL0aGLBJtTfwHzVlnTpgj1rQhOrVj0vZww67iGHbZrbrXGJjgwODuLwww/H4Ycf3u/5bFCMlKIjaa5qHbYmyrr6xU5InQoASCLuOXFx2R6IBOLynJlUjc5bSxf9SjAIK1ICmHWYYkSYpEPdNtfy67YZmMuohkuah433VaeaatTwdFNXzex20LppHURFgNIBGx0p22M7aXp02DlUeWadMJXlti3TrNFRozCLYcY5uFlMJVHhtGEcIZEN4ZdjhWQG9I6ZYrfqYL+XgtuwSLqp4KlEcgZR/shxkTeGRJo6bFLXh0RS8REa8igYrb9Gz9c876bHY/X3G00hOnWLj2pfbfgid/XWOOqdtiLEkT6X15yn0jbvtfl8ma8S2SwqMDFHzaDJbpljAf3DTLFbcxOBgSSqdca6EbwZl5opOjuDTU5jnVNXHeuUxZsds7FEUjr1VdFJoIP2jVXnjFdssbFj3ThjVWep7fXHYV662ThrEksSDBBJDw7bJNkts+nywAMPIEkSPP/88+M6z+QmCQQEbOzIs+a/gICAgKmITnYr2K6AgICpiEmyW2ma4ogjjsD73//+CZ1no5b1XzsikYvcY9jyCsNWR1VX60wM1DBshnWj7UzpRrZtICp2CWLuasLFilkhk4GIQ5dsm+bayvD3WreNae2YNVICwFwRrd/WCW3MGuDVVWtj1Rrqqjn5/rxZVCQt2bRSOAR5BlX2Ic8KBg2dWTWVFudTWQ6ZZrZtGTbSBuoZtoKlMGFljsngWQQRx8V5etwF1FK6EM1Kf0BAHQqmJbffP01ZGUFZNdfPhau9wwnbxhOBOC2+6wnXSJUTGknK8VJTZsiFRArmvu9NIZF1pQGqIZM0bNOgqRxBN9CswtpNkFSiu8q03lnxuIEB89ru3TMzU3AiJU3n4XHiy/2XwkYiiiAiw8I5Vo2GSTYJDJj+6i57r+xbk90yx9YXnnvuOXzwgx/Ed7/7XXDO8a53vQuXXXYZ5syZ0zj+vPPOww9/+EM88cQT2GKLLXDYYYfhwgsvxCabbLLe5hnQjsFIYHYian8jeyxH1hdUWS2fVWvoN3XYuhjbKeSzOrZX9BIyWDumRnRkrLHe6/WJqe8WdS9n17pRLyGRk2O3LrjgAgDANddcM6HzbNQOW0DApIOoVrb1BwQEBExFNNktc2w94d3vfjf+/Oc/47bbbkOWZTjppJNw6qmn4vrrr68d/6c//Ql/+tOf8NnPfhY77bQTHn/8cbzvfe/Dn/70J3zzm99cb/MMCAiYgpgku9UvjNthW7NmDebOndvPuWxwjGQSOpUYJQxbKlUlmbQ+l0kQ+ey2HDbhctgGIo7BMsaWsm2DFbYtK19zQHDbbkUcMXdx0oZtiwVDZPLZ0FxoW9ldFFdoW3Bmd7NoXpvZwWBwOz8czN+dpuwZ7eumELYVEdF+IeyyzWTeLCpi89VK9iwdcTL96UgtqyZHR6HKfDKV5shHRot2lkOZHLY0t3lrhoErplv/mfNKTpDJWxPKCZbU7aR1QsEKtt+G06GI43TETLBbABoLZ1fz1rhwTIyJ9ecJBxtxzJstoi2Zx6qZ73JCkq9KTs++rhdtYHIkQNm0unFEIKOS9EAFSOh1VPv6jbr8ENpXVySbccdaGnEQoGDOVPmYKQHG23duReXz41FcnlOAR4lti7LNI8q2+flqxXHu5bPV5a11I7/dLZrsljm2PvC73/0Ot956K375y19izz33BAB84QtfwFvf+lZ89rOfxdZbb932nF122QXf+ta37OMddtgBF110EY499ljkeY4omh571jPBbs1OBOYk7v3uJ8M0UTTNhbKBPtPW/Fz/OTXn7BOdWJ/XRY5X3iOPQeMN/R3e136+53397HvJYevCbq1evdrrHxgYwMDAQG+TXE8Yt7V6wxvegFtvvRULFizo53w2KNalEjKSGC6FRwAgzaW9oUZz1bXwCAAvNDKJnJO2rlQOnJUI67Cliap13rJIYCByoZKtckzhsJWOnOZQZpGlSSgSp+qR5KZUzXXbAEBA14ZHdkRdGCSpmdaxrlqdk6byZlERExJJHDfXV++k5cOkPZL6IZFlv5YKyihMjhEOCfhOGhMComyrLIJoFQsriV49toaCjTqERK4PzAS7ZWEW/WTziAthnTQRR5DlAkkkAvlIbtsiLoWNYgGRlCGRubK1IanDRpFWbg3zkLpRCa8PiTTOoGDOSSwcRuOYtYdJusd0hTExdcgqqiHuVfghkMRJ88IQnaOllfRDGct+lacujFUpv2aeCYOMEhL6mNjn8ti1hXDOmXFwheAwkaDCC8kXDWpvnWvKjYkmu2WOof8Ln7vvvhsveMELrLMGAAcccAA45/jFL36Bv/3bv+3qPKtWrcK8efOmjbMGzAy7NTvhGIzrN1wKheuxz1H3lR3reby7FQ3UGL/dVR+jbmnYNqbmnBPwVTzUXXf1WmvHVPr69f4Bnd/Duuvuxnft9N3gDNBJD5t4Xditbbfd1us+77zzcP7557cN//jHP46LL76448v97ne/wyte8Yru5zcGxr1d+dd//dfYe++98fDDD3v9DzzwQKgHEhDQJXSe29w7/683tcmA7hDsVkDAxNFst5zt2nbbbbHJJpvYvyVLlkzoNVesWIH58+d7fVEUYdNNN8WKFSu6OsczzzyDCy+8EKeeeuqE5rKhEexWQMDE0Y3devLJJ7Fq1Sr7d9ZZZ9We6yMf+Qh+97vfdfx76Utf2tf5j3uL6eqrr8Z5552H17/+9fjOd76D+fPn4+yzz8a3vvWtaWNARjIJlUkMp7ll2LzwyFzZ2meAn0RaTUQH/NDIJCq89YGIW7ZtOJMYLOW0h1NpQyWrbFuminZLcEsdZ0pjQLiEV1MGYEAImDIUWjNoU5ONMWiYNkkirUj/G4ia8MhGVMMgaYhjjWS/x6qpHJDt/ZqIh1BREU+q3/SlI5Ztq7JqcqQYK7PctlXqWDWVEQESqexzNaETFGHYuBeOxVwYZBLZJFVOQihVryFbqmHHJ0hjrxfMBLsFFAyvJu1aWX8qjBNHEEnxXefDuQ2PlJmCyIrvmkg5EitVTUN7fINAmTfapuGPhk1zrFpF9t+WGOC2TcVQzDH6fxu4cGxbUXysfpwZztxOLWedRTYEZ7aekTm9eZ7XtrXPfKERE8oIAKoM3+ZRYqWj6XjzGCiYNBoGyUnbCI3wiNs2FR8RROiK1mKibSs6MoY895hoslvmGIqFz7x582x3E7vW7U71RLF69Woccsgh2GmnnWp3zKcyZoLdSgTDYMTGjEFp+jbS72k9u1Q5T82giZDKndgg3VQPrstzd8O6dcVANj63U6jj2OfthOr7UvdeVN8HOqQpPLLb70naSy2BLuzWvHnzPLvVhC222AJbbLFF96/dB0woJuCCCy7AwMAA3vKWt0BKiTe/+c24++67sddee/VrfgEBMxo6y6Cz9hAvUww8oP8IdisgYGJoslvmGND9wucjH/kITjzxxI5jXvrSl2LBggV46qmnvP48z/Hcc8+NGSq4Zs0aHHTQQZg7dy5uvvlmxKWq73RCsFsBARNDN3ZrfeCJJ57Ac889hyeeeAJSSjzwwAMAgL/6q79qVLitw7gdtpUrV+If//Ef8dWvfhU77bQTHn74YZx44onTyngMZzlkmmNdKjFc5pmluYIsGTYllWXVPJ0Nrb0dC7PjmhHZbLODGZF8glmJwLBh0pLIy22jbJtpZ1SMJNLISuYnU8LltilYtq0VcZuLphjZ1eCA3Y8gOWzgbgfdEnBwAcNKa19+u0bK35Pvl3m9uIjKwYwyT6UQtpPszyoMGpHqr+SwqXTEsmeUVctH0kreWpnbNpI6hi2VlkGTmRML0R3UQpzsOIeIi89MZbll2yLCsOVNbEATAsO2QTET7JajeIT934pWiBS8zFvjcQSeFP0iy22x7GgwgsyK76xIJZTt1/Y+kNrls1Wl/Gkem7ltPIl4j2FD+b/rizktj+GKeDMvn41bIY8qa9jvHDbKttn/K300b83kj+VcuaKzUQStXA5bHWi/ltIXKjFMGsl58/PZIkTl+yQE93LXACCKXV6bV1ZGcD/yw+Q3MuYxFpz1mB/RxU51t+h2p3qfffbB888/j/vuuw977LEHAODHP/4xlFLYe++9G5+3evVqLFy4EAMDA/j3f/93tFqtnuY3FTAT7FZLcLtu6YQqGcS9Y1UhDXKsqb/Dc+qe2yu6TUlbX6ULumXIJioZUp1+fQ6f+62gx+lQr5+ObztXd/PKeolq6qPd6gXnnnsuvva1r9nHf/3Xfw0AuP3227H//vt3fZ5x57Btv/32uPPOO3HTTTfhvvvuw7e+9S2ceuqpuOSSS8Z7yoCAjQ4qzxr/AvqPYLcCAiaOTnZrfdmuV77ylTjooINwyimn4J577sHPfvYzLFq0CEcffbRViPzjH/+IV7ziFbjnnnsAFM7agQceiKGhIVx55ZVYvXo1VqxYgRUrVkBOo1qXwW4FBEwck2G3gKL+mta67a8XZw2YAMN21VVX4eijj7aPDzroINx+++1429vehsceewyXX375eE+9wZDlCsgVhlOJ0ZLtklIhL7eQpXQ5bFrpxlhbK1FdtwsbMaRlm+atrUslZhlWTUYYJXlzNocuUcgM2ya5La4ttYv7LYpul4pvWmOg3LWNBWyhbUBb6f+qemRxAW6XAwBYza65B629gtc2b01VVB+JGiQrFSChck+G32PVMiLbT1QgTdvmp42kVqY/H0k9hk0a+f40R27Gp9IyCiqVkOVnrZRjFFSDMqRXZJgzqPLz0EpDEFbOMACqhyKO5jx1qpR6fW3HoffiswAwMjKCj3zkI7jhhhswOjqKhQsX4ktf+hK23HJLAMB//dd/4dOf/jR++tOf4plnnsF2222H973vfTj99NPX23WMBzPBbjEuAK69wtmwOVCR7RdJ5JRM4wi8/O6KTCBqlf3EximpoQdLJdphJ3ojmIYojUKqXC5aU5H4gmEr2jSXzea4JRyiHMAT4coKxMIxR3FUKU9g8sNoTunEmDZf5pq1/W/LtEQco5ZJ48gz15ayvA6lvTy0Oii6g0t+eTktll1RhoySIu8rioVj0xKOqPwszf8i4ojK3wGaN51E3LsOc820cLbJL+wk6V1Fk90yx9YXrrvuOixatAhvfvObre36/Oc/b49nWYZHHnkE69atAwDcf//9+MUvfgGgCD+iePTRR7Hddtutt7n2EzPBbrWiIodtLLAK82v7yRi75qLHiWJ18bg9IghAheJp/w6zmr6NEbouJ5j2eW9+2c8qzyvbmozVZP0KsDHYt7GRdfGdsuecJLvVL4zbYaPGw+DVr3417rrrLhx88METmtSGwmiuoUoHSZYfYp4q5Jlz3pQJj1TafoGq97P9rjK3sOcmQZy5dhRze+4oFjYMczBxzttwFmEwLdqzEoE55cIqTQQGlREg4cil+3E2foPSrj5IS3PETmnEipGAM3tXmLWP1lSghLnrZMzS0l7oY6XNiMS/HwZZOGBM5UBeOFKeZH+DY1YVFTEOWTZUhEk2OWn5MA2JzK1jlg/nzmGTCip1bbpYpXCiCMwKj/CEe8IzBkww+7pNi9gmqCyvdfLM+dYHei0+CwAf/vCH8f3vfx833XQTNtlkEyxatAjvfOc78bOf/QwAcN9992H+/Pm49tprse222+Kuu+7CqaeeCiEEFi1atN6upVfMBLsFoHDQTL2uKAPKnByeRxBlGCQN2+VJjKgsPaFSCZGUQiOZsPdDNOh/d43TJpgzeIK5MMimKGJBnAHqsCWxqQMnbBikiLmrD+eFR3JwI5giSG05LnwREtMeQ3DEDjehnWS4J4jiOWwulNBuwDFl21K4to40tC7e9+qda52xhpCbNsGSgcHidUkYZBQL55w1yPrX1fsc8CT+3W9CLBhi4X6jekWT3TLH1hc23XTTjnZqu+228xZ6+++/f9cLv6mMmWC3BiJuN5cNWN1nU3W6/HwUb0x7TVjlHQdQ1IGt69f1jlubw9aNAzfVnbxu7GNlTJvD1sFZs2M5KQJAhaDIczXjEG7RXH+e8lxV6BpbVf1OdcJk2a1+oe+FSLbbbjvcdddd/T5tQMCMhJaqnmFr2AWaKMZTfHbVqlW48sorcf311+NNb3oTgEK17JWvfCV+/vOf47WvfS3e8573eM956Utfirvvvhvf/va3p5TD1oRgtwICukeT3TLHAjYMgt0KCOge091urZfKkS984QvXx2n7jjRX0KXIiAmDzDPpGLZcIS+ZGa20Y2O6CI1kNoSG7M5mnCSJK+RlWFBaKSWQlqIBqVQ2VHJuK0JaFrgdTAQyEh7pGDZtC30rrTGgy52HCHDpitrGGVjNEaWdsIbuEApJYUMiG+T788yxbfmoJxxCJfs9Vm14qDhlRVQkXzdStttDIou2Ydty5CUrkBGGTaUK0nymqSRhkBpa1d+kVg5duCK/kYxqxUkYZ+BxKWrSI62u0gyyJmnWCKZMheKz9913H7IswwEHHGD7XvGKV+DFL34x7r77brz2ta+tfa1Vq1Zh0003HfdcNzSmi90C5wUjU4YE0pBIxoVj1eII0aARwlD2OyVaMaIuxHYMWCoty5YqbVlkJ0pSMMtUtp+2ASCJhWXSRCxceCYp4k3DI5ngVjyFEZEST8qfcz8scoxd5GpIlZkb506AwzBsEWeeWAe15yYMUkhumXn6+4Aktiwb48KKjWgpPVl/Oy/hh0RayX7BHcOWCETl+xQP+MwbAAwkwu40DyaRLR9D2TYa9siZf830cTdoslvmWMCGw3SxWzxdB57WLzkbwxcpazYWU6Yrx+uigMrz2Od1E0LpPbdJUGhqL/Y7lkZxg2rbdSGOYMxjwDRl0kjb7y9tOzmPZtyLkmBjzKHOQvF0Xf211WC6261xi44EBARMHForaFXzV/5ITIXisytWrECSJHjBC17g9W+55ZaNz7nrrrtw4403TrsCtQEBAWOj0W4R2xUQEBAwlTDd7dZ6YdimC7KSYVOS5LB5DJu2bZUTiX9NdlMJrOgIczLQnCR6R4lLqs8ziSgzu6Qub244FRgs80sKVq34iKTSHgsnW45JU1rYtmxiAe0nzcFKAQHLsIHBpKlwrqF0A9tWnpPGlTOV+3lrVIDE5K2RnDQ1MlSfwzY8BDla5qINjXiiIvnQiG0Xx4cbWTXTpkIj+XBud8Bk6ihxJXU9YyaYy2ETTiAB8BNT7WecCAhTgLvHKpQqzaFqZMpNce+pVny2Gzz44IN4xzvegfPOOw8HHnjgBnnNjQqcuz8ALIqBUtYfAy0Iw+goVxiexxGi1oDtN/cD/T43sW1MMPCSrRZS27Infr4mEfAgbI0VFEmEvY9Ewi2rVvS7fDbHDsa1BcCL63blDOzcO+Q++LLgpL9OgKNGdITmgcmcQ4jSxgoOKYr3gkccnL4fZR6hVhEpDdOcw2YLYDPmM2xGXCTmlXy2Mi+tPD6YCAyWvxWJ4IRtcyVjBiKO2JZWIAxjKUTVkzp2g90yxwICqmDZMBhh2JoZrQbmqyZHjWlVy5i15dwTm2hZMiWhjVKoUn7ZDeX62/rK53oYg2HT61mRdEwBpirDRhl+eh8bm+v11UQ0eFEd3I0nDJumjBlh5DQZwyrjyaQ8Y82aGD8U36tuMd3t1kbtsBnHS5biI0ARBinz4gc2zyRyE1YnFWReLsqVbPzxBfwkchFF1pHLM0kESIRb+EgFKQV5feeYzWmZtkQqi0XAaK6sYyZbNERJ1IbkeQurangkinvDDFEV1Z5aNBnJPHVqkCQMUg0PeSGReqQIfdTpCFQZBilHUicqsm7Ehj9m60asqEhmHLfhDPlIKS4ynCMjbds/kkMatU8SBpkpRUQTGlTupFvMxJxDy/aVDOMM0iw0UwldisP0GhpRhFI1q0ROheKzCxYsQJqmeP755z2WbeXKlW3Peeihh/DmN78Zp556Ks4+++wx5x3QO1icgEXC3YNKWeVVKFWIkADgce6ctA6x+965hXO0zKaFTDlk6SzITFp1VC1Vm1gPYMKIuXc+ETuHLWpFiAajsp/74ZGJ6Y+8enLufE50hNHwyB7h1VljbvOFKiqammVJJJBEZZ3OiLs6jpIj0jWbLcyFUGqlyUZfZaFBRKpsyKXg9jdCRMx30mx4JMfAQPHeGFGqua3YOma0rmcSccTl+xVzjqi8plhwKzoS82JM1MNmU5PdMscCAqrg2Qh4FjWHG9Y5YYAf8mjrvBrbJ933kNTYUllGnDRpz6dpHS6liMMm6506cwyV3/YG563NMet2PdBNDbBubF3FMfMcuTonDCRcsnK8rZ8L4rBx0DB81NhkFsf+c+kY46TxiDhvdDetEk7pJuuLmqD4XnWL6W63NmqHLSBgsiHTHLImvlz2uNuzPovP7rHHHojjGMuXL8e73vUuAMAjjzyCJ554Avvss48d99vf/hZvetObcMIJJ+Ciiy7qaf4BAQHTB012yxwLCAgImGqY7nZro3bYVLn7qbWrsaa1Y9tUGS4JAHk6CpUVrA9l2OqYNkonyyixuxJFQnlkz51n5Y5zphDFpdx/IpAMuNpghklLPVYtdm3lwiDNNdWB1tjhcbmLXtZhk8yFRwrtamHQKvTlxdr/GQmJhA2JlLZNwyC99siQZdV0OmIFRbKhYcugFWxbyaaR8Md0qGAO8uEc6VBq23WsWj6cI1NUKAG2bVBl2JxQghNQkFqhVbwUmFBgvDinSLT9bijp2r1iQ6tE0uKzy5YtQ5ZltcVn3/zmN+Nf/uVfsNdee2GTTTbBe9/7XixevBibbrop5s2bhw9+8IPYZ599rODIgw8+iDe96U1YuHAhFi9ebHPbhBBdOZIBPYCLYveS2CCWtIpjSgIDRVt02LVVNbuMjDOv5iBlx2RiRHv4mKI9jHMSUkxCIq2sP0dcMkPRYOTarQSiZAQ5qSEnktiGSlZFR1ATitOEQlhDk7brN/c7lcAfIG1TdkVS8amKrTUsnYwYeF7uIHcQqxpLpIpHNAzStRNS7mUWCYmcS1g3c3wwFmhFhlVjrs2ZC48UvYuOTHe1tYAND5auAxutfMfGkuenDFqeQslKqKKSrq5rlT0r12vVc9QxclpK/5yEVdNWoImGR/rff9pWNeGPjaxOj/cKa4hbrhMV4YRdo8/zQszJMdrPqnYWJVtXw5ghSjw2jpk6lBUWjpmwfcrICVKepmLPa8Mg20oNMLAeREemu93aqB22gIDJhspzqKxGJTJff7s9vRafBYB/+qd/smNp4WyDb37zm3j66adx7bXX4tprr7X9L3nJS/DYY4+tt2sJCAjY8GiyW+ZYQEBAwFTDdLdbwWErYXZBZa6tAIkkeWsqS6HyYsdG5andgVEN+WxWppkLcLuDICDLthwY9Ng2lZfCIdIxfPFAZPPpJGXYlIZsxfa1/P76j5Qm2GclnWY2VKUumDUAUJqRQqMNO65VyVwiNGJ3u7LMl+8v89bU8BDUSOEI5EMjXjFsIy5C2bZsaBRZyayZXLVsbVaft0ZYtWGpLZsmtUZJvEFqXVvwt5Aid22iM2IlzVkqLWMgU46o7r3ucZdGZg0hkVOo+CwAtFotXH755bj88strn3P++efj/PPP7+c0AxpgdyLLHUvm7Sy33EAlYfZYm3YPOae7qiO2SDwVA5GptPdb1IpsuQwa809z2bhwjBEnuWzmfFEr8vLZTA4bZdV4NYfNFgmP/V1bm8jeHTtkhgnuF8t2YhyOVbNsm+BIIpMTppCW/Uq5HWzOGXJmJPuZEyYpIziK94vMg6ZlEKERxl3eWiE64gRIBsr3aW4rsgIjJldt7gBh1RJhZf1pseIBwT1WzRTRLvL5ehMdabJb5lhAQBUsGwFL3WNdFfQYg+0qcnVT27Zj89Sdj7bN+bLUjScMm5ZOlIkyL0pKb4xl2JSLuKoyNd61NDFvXeaz0ec0MWoUvIYta2tXxphjnLJqpL+IkhDeeZhwolAeGxcljjGLE0+MxGPPTFsQho0+t6lkSyVX2WMTuQDrIYdtutut4LCV8NTSrKqX9pw005akTWvr1IGRRM0iJDKx56POmywFRaRUUKp05Eg4jdbuh18qjbwhJNJAcKJUSRTPCvUzM6ZckDEGaZ03DVE6akq7MB5Ba5l4Sku5a8sMerRwwNpCIkm9tTrHLB8aQbZuuOwfQVaGPKZrncBIutYpQ3rhkUZhkzhpqfLbYwqNMAZRhkslleR7K0BSUZWsVdXrZdWDDR8SGTADwCMXXtIlqobe/Ahn9EdaCMjEqbOaEMZsJLfOlpLa1jTUHUKBqaMGlDbIOmbChkHyRCCeXYZwtgYgWoVNjFoJRByXY6IiBBQowm9iGlpToxRJVcjgktmNOi7g1yGLOSNiHMX1UIdtViKcsBNZdK2FC4PMM+lERKTyf0O6qNvpq0SWqsKxQETUHl34o6uzNpc6aeXxOQORddJmxQID5bW1iPPWomIkgnmqmN1guocWBWx4qHWroThxxoDuhEEaQhuLscRJkxIg4ZHUGaNtmWVt/Yo6bFnuhUEqz3mrD5VUXTlv7Xag11QKXrO+YETKu8lJ456dp06acM4b543OmTkH7TP2uTrWtummYjX0sSYMsnD2SGgldd5IKKZ9F8uxat3QGO+aw3S3W8FhCwiYRKgsh6pZKKlpsNsTEBCwcaLJbpljAQEBAVMN091ubdQOGycsFKtbNCtNdlQkJGXbMhoe2eyZe7scUQJVJmRStk0rCZWX7dYsl6SeC8uqNe3SVkGZNNtX2U3OymMmNDImsv5dvowTHSHMm84zt8OVpx6rZoRG8nWuxlo2RNi2dTQMMkW6tjhPOpTakEjTR2uvDeXSMmmdGDaDpk+KQ7cxa0DBrkltGEf/zaE7W5yEEvSCavIy7Q8IqIPmESDipoDlenCByOxkinXeTqokoYeShCTKUuyHJwKKljfJ6I5ze1gk93Z8ST1DUnvN7MJGg05oJGoliAYLOyhaiWXbeBQ37MjGLraQdyE6AsCIQjOmbUggrcNmQyIFt4xVNaKBYjh1YZC8ZOeEZKT2mhurtfakq93UmbUfnDPLqlGxk8EksvMZjIUnNmL+n11+jq1KGKQRGhmIOBEd4S4kkrMywqAXWf8OO9XBdgXUQI8OQ/EKu0ZDG2l9tBpREShJ2Lb2EEeV5rVMmkppHdbcY9KkFxIpbb8Lj6TsnIso0Epbe9dkB/1wyLHrXY4VrVCFt/7g7Sxb1Q7TfhqybqMg4ohERlDWzIVG0pB1cz6RRHbdU4S1tzNvnIxpDKH0wt059BjlBIpxwkZ1dYPpbrc2aoctIGCyodIcsmbpPR2KOAYEBGycaLJb5lhAQEDAVMN0t1sbtcPGygKnrIudRU/KX0qXw6aUy3NryGXj5Y6AyjPwcixl27SS4IZhkxJqcE55PppX53LrGqX7OYMYoblqLpGeMmymYKoR6JCaW+ZJaUDrzu8H82R3lZPyz1InOjI64hXLNrv1+fCoL99fk7c2umrU5qilQ5ll08zxbFRibW7ERZQVFCnajlXLbEHxzrlrQJG3Zp4rGCM5bx3fCgDljpVhEsbDsNUWzp76uz0BkwQuoHlkZY+rBaRNvL/ykrhdW3AOHhf3YMGqxbadJ25HVJXMl8xyW7y+2Lmmu9J0Z1mVL0UT3B3DZu4NkUSOYWsNWHGReHbL5bANun420HI5e1Hiy0ObAqyV4qre20XMmTH1HI5RKgQ4SuaptAEDEUcqXf5YfZ6wKzY9miukpU2iecWeMIvS/k44iYYw+XKCM8ueFQW7yzlUWLXBCsPWEhwDkRMaadUwbLFgGCh3qmPhrp8x9Cw60mS3zLGAgCrU8BA0yKK4oeh1W15aA5sG+GyYzDLbLzOfSfP7HZNmam9ppRqjCEypoCKfzbBnhG0jue2K5K8qL999rFy2sRcalDEDmnPXbEkVwtwzskbxWDXOCFPmcthEzB3rnzjWS1AhqNKWiKpAlD2H6xdx7Bi+OHW2PR2xglKaCI3oSqkATZg3L2+ZC6jhHmT9p7nd2qgdtjjiiCOOUQ5X+4bUxGmCJoZG5al11Gj4JIX5GvD4/7d3/jF2Fdcd/87Mvfe9/eHFODbeEHAIUBXSEkRMbCC0MQEFlAqRFCHRJggIJS2SnfJDISZRgKRFTQiIJC6BllIgKoj+QKSlbWgpkAa1BBCUqoBBIQ0FmRgIBuNfu/fHTP+4d2bOvHfvvvew1/vWez6S5dm5P97s3ffOmzPnzPckYX0Pcp1qjdS8ju+j6XiCpHICPv0xkplrt1Lp2knk018yLZFZA2cdt8K4iYeR8HXYugfk/6d1UlzKgldxKtMjK0c29Q5bMZW6drZjF/Jdtu3TIDMiKpLtSJ3DNlWJj+wqDHYVmrS7nbRSaKQ7JZJSTljsOV5spOisP0cIUrysIVMiCP0Pgk4LaNTI+qfNQjbMwsaoCIhiZ29ozRohpVsokeSLzigFYxUVpYSxaS5RAplU5xNHSrcTV/9QpTl05UgVWY7ITVRCNbU6qOoY/YJ3X+rtxE0CVDtBVDmJqp1A2tpyxEkTcRwoRoZCIz0WmkgdNiHgbGIsJeIqVYuqRbYjUk+zxoakSjsbO6IN0rxw5zalUFqUFM7m0sU16qQlShLnTQZOmh2b/R1Kh82mPqrAYXPnRP47QZE6dEoICIGB6rA12S17jGE6MVM7YZQJHTOaBklqrBm6IB44VVYkxDtdNmWx6EqJrM5Ns4ZzvIBSkRaBY2YdNl1o6NS3nZp4WtTWo9RdwmS+3/eRRZx+96BU0M9ouCXDz0vocUkWkmltTDd3oenYiXfSVCwDR67839fSpHMeugAnk9ilTRYkJTI4J44gp7wysJApadu0ycx9X9H6b4bWf7N9U/2nRM53uzVYOGAIuOaaa3DCCSdgdHQUixcvnuvhMMxuoSup4K5/82C1h+kftlvMvkSj3WLbtc/BtovZV5jvdmveRdjSNMVZZ52F448/Hrfeeutu3SupImwqkmQTJtmQKYXfcEnCsJ10RtZo+mRwni7KNCUAUhdQNec3XQskRAba9wohsEuUK0Zlak3ZLmsHlSemuUYWlSs5eaGR6TAlUhvpxEYaFoRrfmkvOuLGnqcw1UZfkLZOc7cBOJ9K3cp9MZUi21HJiO/KkdqUR5IGme/Kg8gaAGzPtWvTNMjM9Cfl7zfX+0iaalhcpvXZpPArVuUKVNVOlI8SxIN9pIrMoKiRQimywVbemOFmT9otyKgUHrFRNaNhCisLTySQo4zUu4mhSVqhE/HIUyeTL6Mpl5JYTKUu2jVTqlFTzSFLvZR0mFrjBUi8rL9M2hCtMsImkjZElYEgkna9rD+R8m98bMLHzZUEpPYpkTY6RVOhg9Xvtr3OR8PSXAc2tiAiJUVDhE3VZEYkyke+WrT+G2mPJAqJIuIhVduWI2hHMpDvt1G1llJd9dZs26WHVs+lyQbW0WS37DFm32FP2S6TTcNMUXsR1lvTuZfbr7Mx1A5REREnzZ96ERHdYbNs9KTIChft0mnhakoWmfb1JTsibzYiRq81hQnO1277RTjvoJmOnfOQpixIel6TEBD9rNJzyvmK6GpLIYL5ik+PFEHUzEbeVKyC88s+GZRmkSp358rEZ094ESsfbdNZFETbnEhJ5kVKdJYToZPcp1ASMRJICSgyF5cKJpuuf5A1zHe7Ne8ctq997WsAgNtvv31uB8IwewBTaBjZbUDmQ00Qpn/YbjH7Ek12yx5j9h3YdjH7CvPdbs07h+3dMD09jelp74W/8847AIDRRCJOFLbHClFc/rHyrPD72ZRfrRakkJ+gebSE3lGy7v1tnQipUNjXSXcF/bQEgRDlfZSSrtDqrrQgq7MFkrR7pbYd+T1sWWFXlQ00bIFuQUoJdKzuuD1sxhfRNj4Pne5bM3kGnXpxkXAPmy/Oa3PFMyLVn+/KXbHsbLoIomlAt2Q/3bdWJ+XfvZJlO0SwUmX/oorIfFO5a5VItxqlSPHfqB05aXLVSjpfbEaKVKMwdRG24TcezOzSZLeMVDAq8eU0jAaqKDuMAgpbuNSvZJo8K1cqAZgohqmiV2Z6ykfbkjaE3f+WZG4fCd0notM82D/iisf2SCcRHUVZ66SfVTvx+9NabYjER9hcAVYSHYSMfKFVIcP9bPS17f9kn5YEAin/2JU4Kf9vR7J2f0lnhG3E2ptcB1G1vEeqQhTsWwv3G9MIGy1uTaNqdI+aO14j2R9LWRtVU+RZCGLr+qXJbgGza7u2bNmCdevW4b777oOUEmeeeSa+853vYHx8vOe1xhh88pOfxP333497770Xn/rUp2ZtnAuZRrs1PQWjEBTLpntgdSBm5KNqgQw/ERsBwqiaKYravWpFWvg9aQ1Rta5zMitAYnx0LtVBJM3OMaioWXcb7nzLTFG3XnRG0zr7aUZQ1zym+opIsiKIvNk9ajJRkFM1UbPq91eJgqqekUoLF23ThYEiRcRlYcub+FIJIsvro21EZl8o6e4jSKFvE+tgL3QgpIWs/A7rk7myW3uKBeGw/cmf/IlbJaK04whJEmEkyZFXH9AoU4iS6gNaKOiinIjrLHV103Sehs6bTZvU1SbIPpw1owtXy41C76eJk6jzFEX1hSwLDVU5W3lWQNl+5ZXK0rxAmquq7ScTGUmJ1M4xM0H9tZ5v26C4kP9QUgESk6WB0S2C9ARvSKmTZj8wReaNauiEoauvOQ2y1y/RadxCo2cFSBJJJkojEaKRqLvdThBVqVxmrNX7hQkcYWOaaLJbUGWKiEH1xWVM6bwApWKrfT9p5fpFlEMk1cQmTlw9I+q8Ic9cTRuTZ+6zLEl6c6dSW5PoCP0StoQCJFYxLPJOWhyHzqN12FptJ0BSio5UjqeMnJNmeqRDujEI/78dWqwE4io9sm267yNJHctMC+dEZbpeGZKmQRbaBGmQFtXgsHU6W74tnApkqfTrhUTsuTatszP10bYFfBqmBAJ1ZCm84Eo/zNVK9Wc+8xn84he/wAMPPIAsy3D++efj85//PO66666e137729/uSxGa2T2a7JbJU+jUvz9MoQP74QU6vOOls9ypMdI6a1SpVgdbL+x8InvXTlqREocx1W7rCJ1fUFGzwqCn82Z/Lv/vXRe2CWqd6HyF9tU5bIkM++38RgkgqX6/ONXOeStSDWWd1mqRush0o/OmE3JO7EVlrANGxdg06acOnlTSPfeyJpxy59R9d9g0e7uw2A9zYbdeeukl/NEf/REeeughbN68GQceeCA++9nP4itf+QqSZLAF/qEQHVm/fn0psT/Dv+eff/5d3/+KK67A1q1b3b9XXnllD46eYd49Oi8VqTr/6ZwdtmGH7RazUGmyW7NpuzZu3Ij7778ff/EXf4HVq1fjxBNPxIYNG3D33Xfj1VdfnfHap59+Gtdffz3+8i//clbGNt+YTdvFdosZVubCbj3//PPQWuPP/uzP8Oyzz+KGG27AzTffjC9/+csD32soImyXXXYZzjvvvBnPOfTQQ9/1/VutFlqt7sjHWCtCqxVhVzvyK6W5RlGlFBW5cX/EojUSpjwW3emPhkTdLH1F24oCRlarGXnmri9ohC1LUVSrz0ppFKocVxRLFLmXnfURNo208Ku/7vdLfB03t+KjSbSNCHHMSFA/Rfs+J9MbpjhoIrFbuFUy7Va1TEfqgf2d6tIcu2usgbRnDq2FkTRSi4msOo0oiRFl24JE0iLEY+XqfjIWIx6rakaNjSAaq1LMRtu9nx1BFxpadBsKzRG2oWeu7JaREUxEVua09umRUsErCOWArPJgdEeqpI22tUZ8GvP0FEwVyeoSELKR8zxzn3GlC38OEKQ6dRKINknlxVDixKW4iMhHz0RrxKVBdgqQuGiiEL5N7mlIeqQkUv5lGqT97BsUZMXZRqrqkGSlOtMCmbSZCRJZZYc7RUrq7JAikToAgRiIq5OphC8toGRtu9WRKmnvURdVo6vsgkj5C9G9WjuI6EiT3bLHZoNHH30UixcvxrHHHuv6TjnlFEgp8dhjj+HTn/507XU7d+7E7/7u7+LGG2/E5OTkrIxtvjGbtqvJbum8CIoTG00jWVltemQpq++jbVSq3/XR4ySSpmsiaUVHtM2ek03lXlwkLRrnH75UEEDLBtUJjZRbTbr7Qfp8u/FxOrpTII3rdymOMIGNs+1UmyCqZl87rDmrkUxX/RGJAlYnxL2H2IFPZy2zwnz0rJYkAhC+PwBAFBIq6X51G3nTef9y/HNht0477TScdtpp7udDDz0UL7zwAm666SZcd911A91rKBy2ZcuWYdmyZXM9DIbZ6+i0Xk6WI2zDD9stZqHSZLcAb7vs3iVL00S+XzZv3owDDjgg6IuiCEuWLMHmzZsbr7vkkktwwgkn4IwzznjXr72vwbaLWYjMhd2qY+vWrViyZMnA1w2FwzYIL7/8MrZs2YKXX34ZRVHg6aefBgAcfvjhfW08pixqR2i1I6RFgunqj5Xn2su+5qRqvTaukLXRhSuW3UQvAZIZywT0kPsvConIRskK7dqa7KPISXua7GHTZKWH7mHbLUgBcEMib3XSvHRVrcxb75bMLdKC5IF3y/PPtBoVSvZ399PVqEQKtBuiaiNWIrsdIXFRtQRJFVVLxhLEVVQtWTTq2mZksA82R9gWBnvSbkFGgCIRNqn9u50WtS8UYKr9XrqAUFYSO4coqpVMlUDE5XtWJO1gDypIVM3tE9Da7X+DDj/vCPbo1kj8dxQ8BcqomouwxQkpQ5D4PWxx7NpQcVnSAIBRkWv3I+tPC2crKaCqh2akgUa4JwzwohzThXar24WBE23Sxrj9wOWjqbdPgbCR3UNGIl9SCMS2SK2Aa9O9anQ/m5JECKkmkkaPS7JPl0bYgDCPwgC1e+2a6Gel+uCDDw76r7rqKlx99dVd569fvx7f/OY3Z3y9jRs39j02yj/8wz/goYcewn/913+9q+uZPWe77J41+v2vC7/fic4X6L61un1uQZ9rGzdfK+9t5xa9961Rmf4i10FUrW6PfBhtC+co2QB72PqJrFG8LTEI97D5iJmqbFwc7GfrvIePwtWRkAVj5fan9Y5kCSUh7N9ICTe/M4r87Whbahjl/9Zwe91ySOKeFFVEVSoV7GEDBtt7tift1rvlxRdfxIYNGwaOrgHz0GG78sorcccdd7ifjznmGADAww8/jDVr1gx0r4mRCO3RuEwfHK3qD2mDwhoLHbsvYaMNjOkv3U1IhcKmGRWh00XPcW3V7LxZQscvdk6WIemM5VzNb3wv6tqG1AwhffY9b4zPqDLGwNivdTIRFEa7k4z2ddjopM1Qh62od9JMYbxhLkwwyRtUPIT+XxKqKdUJisTCO2YjSmC8mqyNRxIjlZGKxxKXBtmaSJCMV87bxAiSRWPVOW3XLqp6Uf1S5A0qkeyw7VPsSbtliNPSfZC8b5Qu0yJtf+Hb9jMrdA5TnSOKHKg2jMtWDhTdaZAmI+086/js+9d2QkQ1BPZOSic60tWOKwGSKAai0qks00FtHTZfi85Qh61TJdI5L8bXHgOxF8RRkdZuRH4yoyRQKC80ois7kRU6sE9NC180DZI6aV5oJEyJVLTt0pjq0xzpcUnsoCD2LnDSZhDdGMRha7JbgLddr7zyCiYmJlx/0yp1v+l5k5OTeP3114P+PM+xZcuWxlTHhx56CD/72c+6Cj6feeaZ+I3f+A386Ec/mvF1mT1nu2ZSkqXOmP3ZXuPmEdoLnNXNLTRx0kxhOu5H5nFkzuHPJ4vHxnQsGNcJitSrRGYNddj2VEqkPa9MZexOiUSwpYXeVLjxJpK+nuj4/fx4JHk2AKALAVGlg4tCw1RGyJDBl89RVOcbCGnTGgW0a2u/BYg4ePS1QARIALLY10E5/+x/rrQn7Va/C01HHHGE+3nTpk047bTTcNZZZ+HCCy/se9yWeeew3X777VwPhNln0KmGVt2TW46w7Vuw3WL2JZrsFuBt18TERDDxaaLf9Lzjjz8eb7/9Np588kmsXLkSQOmQaa2xevXq2mvWr1+P3/u93wv6jjrqKNxwww04/fTTe74mw7aL2XfYk3Zr0H2gr776Kk466SSccMIJ+PM///P+B02Ydw7bnmRxO8bISBzUzaHRKMBHrGZC2pQe5QVCROol/u0qdFMapZQK0spZS0naYe23XhhjfFpOw7ib+vc0TaseZaqCX+HqRWddEaBaISrsapFwcv9JQ0ZUp9StTYNMZH2EbSRRaE2UqyqtiQSt/ar2fi20F4+W1y4aQzJRtlv7L0JUfcCFHFR0xNfA6+xnmFqkglFkE7aQQWTNCZAALiUSuigjbkAVlq+ibUXurjW6gNA1aZOJcf1C5ySKrr1gSRFG2NBg6+jv4Ns2xUV5WX8py/IFKKNq9nyjIic0QvshaYQtjBQ5oQ2QWotSeEltbdxJooqqCSGhbG02LVwGQqaFz1AgJQtmSisPImzS91nhECX9OYEMf0dmQFM0zf4+NGBoz6VPgo5DCISlXIwZUHSk3m7ZY7PBkUceidNOOw0XXnghbr75ZmRZhrVr1+Lss8/GgQceCKBcwT755JPx/e9/H6tWrcLk5GRt9G3FihX4wAc+MCvjZJrplO+vmycM82Jl01t7kBG/25TIwvjPe2EMiao1Y8fVOXv0kbr+X39vogsNRaJqrpQMQrEkWjamv/vuObs1yD7QTZs24aSTTsLKlStx2223QTZEDHuxoB02hplriqxA3fdTMUNKGcMwzFzSZLeA2bVdd955J9auXYuTTz7ZFc7+7ne/645nWYYXXngBO3funLUxMAwzP5kLu7Vp0yasWbMG73//+3HdddfhjTfecMcGVa1d0A7bWCvCaCsqc3d7RJ6EFG7DuJACqvLs0yhBvms7ALjIWJ7ugqz2X+gsha5WoRWaN+PXFeJWURL22zaRgabbNYTwYxxkP8LeRCgJaYvmkuUdqYTLU5aqs/ijj6YB5eqSb7sFeicc4O5J2rQQtpfv9xG28UgiGfWS/XURtvbiUbQWLyr79x937XhiAnLR/uVrysEKIRptYGpWfPqJ7DILE61iaOHXTMvoDhHLoPtjbXTJGBi6B9VGySLtomfQfoN/ubetcOcbshfORd6McdE5ScVOyP0p7t6dq4t2vGQfWrAnTalAXMQQKX9XMJsU0W6CRp60JivUEmWUDT4KJQFIsl/E1tNOIHzVhI6oGtl+0fG6Nnrn98gJsreMRtIkaQcRNhlGB6mQSDnG8HWE24hMIq8d3z30eUkhEQ3wldFkt+yx2WLJkiUzFsk+5JBDYHqIaPU6zsweNCIiEUamnAS8km4/kZAde5mquZF9L0slYbSdNxDRESX8a2UaovrAiML3l+dX9mCGMYcy+WVfGe3y8xH7W/Uz5afX0fv1vq77Hr2oK7RN7xXuf+txLyXcnK0sWm3bJHKvpPu5PN8LhNB2nW4D/V6Q5H1iC2SX/d2iI4MwF3brgQcewIsvvogXX3wRBx10UPiaA9qiBe2wLW7HGGuH9R06HR3781bR4bBV6XMyksiiMh0um0qqvsQ5aTpPvQAJqd/WiTNEUkFF/j7WCZRxAhWVfy4phf+wNDhvTb/T3nLkmj58wTn0Ay1DY2DThQqjUZjOTbTSOXHlZt7634k6fd5hQ1hvrRIXScZ9XbVOh629fykokiwaQ2v/UhWr/Z79EFdpkHLRYshFi6vXGqxaiU4LFDWPp5cKKbNwKSqFMvv90m30/c+COAKi+vqWUkFU6YbCmFCYxL7vSNqkCZw0HThyLp2yU5Soc2GKjLHrK4pOGEgtNSoiEqhB2vRIIQFVoxJJ2qXz4p+FcBv1hfPIpBFuYmNHLWCgKudKEyGmYILZYHe6fqU6Jw2hg9Wk6uhFSsI0R9cmjplzyIgoFBo22Jf3J7mXQnrHvQ+a7BbAtoupp1yYDt809HNHJ+CqUgss0hyicsgUIhSwAklk8u/aGqLwcwhZycCqOHzNwKmrrpUJcSBSO6LqR+3FPRIyf/IiHr6WGTQCJyysEWvb3gYNmppY57R1iqr5mmwgtde8LaGL1nTLCe2PpYRKwmcjZOiMWfVIlSj3jCVxlIUU3lGWkvT7toqjwAGzf/fO86WdH6uwn/7fD3Nht84777yee936ZUE7bAwz15jC1K6ycISNYZhhpcluAWy7GIYZTua73VrQDtt+LYWxdhW1qgkLR1IgiezGcIGtkV9FUFVNo7Jd9kdxuQqQt9vIq7oROk9RTO8CEAqQdNZmq0t9lFHiUiujpOXuH8XKRfhUJCHtuKRAVLVbkXSrsJEUQWTNbXDf09E2qcIaSzUrKjKO/IrNlHQrMypRrj5KRPID2rv8qq+T2RbGCYwURtSmE3SKldgaa4kUSOxzHIkQV3//eCxGMl4+69ZE4iJsyQRJg1w8jmSikvKfmIDc7z3l77RoMVQVYYMeLMKWaY0M3X+HbACpWmZhYVO4XYQNLqOvBpvq53sEDEnHE5Ci/AwoKSBswEoXTrykK6pGIm82khZG20wYbXND6fGeJikCYYRNhKmSdkVVSC9AImSX2EgnUgBhUKz8wcC4lWDjVryF+2LXpB8QPetWdop7SNcWQRok7W+KpPkUTfJMde6X603386f9jXSln5reQjGEJrtljzFMJzJWjWlstNcoXdbkgo+0AYCRM7+vpJKu1iSQ9RxPGQGyqZUChcvw0RBVTTaV62DeUSelX0r8o+qnMvm+rRH2W4oBU+Lq0xp9hkCnwBqNnlHRNhp5o9tF3LwyUS7Cpqr5kiSRtPJ4FWGLpWvTc6KRGCquImZKQlZtmfh+SSJsKol86iNtd6RBushaFW2Tef+ZAfPdbi1oh41h5hqaKtHZzzAMM4w02S17jGEYZtiY73ZrQTtsi1oRxltRJaXsc3pjG42JpIuwJUqiVbW3JQrb43IFJ5pSSJPSw8+rVZlsukBerUoUeQLdHq3aeRBho/vZ6CZMKuvvVjyU9BG2RCGKfb+N8Eklg4ggbauaXGZLp5S0EyoQXiq6c0XW7o2hgin2Zzt2uioi3UqLcqsrKs6g7SpNphE3fGJGquea5OUKCC1aWf5MfxfyO1XtznxsGlWLRsp2MpagNWEjbCOIxsoC2GVUrZLvX7wI0cR+5X3GF3uhkUWLgZFyP5tJB/vUp9ogqtkEm86D8DwzNxTaINNoiAB5iFp9QBjdofuqaORNQgkfuW+KvPnNXb48AI3uWKETuqdN9Ir+IBTEAN2j0Lm3raZYdqf4iI1SaWP8nj7ymTNCuH1udkO6EqGIUfh861dow31rto9mNvgrlRS1+9mCSJrRQOH3FIbPveNZa13/XI2u3dxMI5WiilSKASJsTXbLHmOYTmQUQ8YRTBXVMoV2UTOjtNtPZgrt5hE6y127yPIuwQktJQpXTimMqsmq3lahyF4qRQRIlICsxhKcI/05Mi2gbAmhXJN9a7Rwtqgtoj1T21IXYaOf4s5PblOErVc7kU3RNqLHoITLflIxibCRPkn6bORNJbLjHNuOIBMbSSNRtSQi80FZH4XrEVUD/NxTRgvHbi1oh200lhiLJaQgX5gCiKs3RCy9AzSSKIxWb8S3d2XYats7M0xPl+1sunzj5K0CeVa1M43COhpFDF21NXlz0JxaqvRI1ShlJKEqGa8oVkF6ZFR9iJJEkfFGSKprqeMZE7XLWNrfWdSmhPYFSYMUcQxjnbfKOAM2DbJsR+3EGdZoJA7yhkNDWjmYiURR5RsU1TM1hUG7ppYbVZ0sN7D6kL41InE7ck5a1I6QjJcpjPFYgmRRVWNtYixox1VbLtofcnxx2R5b5Bw2tBfBtMpUSS0GC6trY+qNNiuZMQ3o6svfqxWGzpul6S0UOhYmFCYR3f1KhI6cFH4hiKpQ1qbn1YlfDJK6BzQ7YzQNsodCpMWaiMBJI2ptmqQr9fMJpFYzSDsNxF7s8YbnpfPgOTnHizrButNhq1GBbHiWXc8MgBAaVvrSHR9EdKTBbtljDNNFFEMkbS+OE2wR8fXZTKEhbd0tpaCrRQuhvGJkQSbtdm6h0whFXG1VyTJo186h4sp5SwoUaeUAxgpFUvbLVDoHRLe1256h08LNO4pUI7avn2qMVO/zVJvAGfPOmxdEq3PSOtenmz5PdSqOneqOdaqP1EmjqY9SCDc3aponqZioee8hJ42mOzY5abJOdIQ6bHTbjV3IG8Bhm+92a0E7bAwz16TGQNWs7KTzwHgwDLMwabJb9hjDMMywMd/t1oJ22EYjidFYBqsSsRJoR+XKTCyFS4NsEwn4kURhpFppGG/H2D5VRoy2TZXX7ZrKgwibdhE2H20zxqDI698gPsLmV2pVJINom02JjGKFJLFjiVwUcCT2EcEgwqZkEFkDyho/fmVddIXhu+ja+F+1pYKIKrnwOHErJyqJEbXLdENTaKiseyWXSsBK6SVji7RAkdpVuCqKUJigNgvFXidkvexsNBIhcimRLcRj7ao9gqhqJ4tGnbiIGhv3qY9ji0iEbcJH1ZJxmKRMoTSm92ZnSmHqa7fMZj71li1bsG7dOtx3332u+Ox3vvMdjI+PN14zNTWFyy67DHfffTemp6dx6qmn4nvf+x6WL1/ede6bb76Jo48+Gps2bcJbb72FxYsXz94vswCx0TVbO5KmRGrjq8zMlOHRKUJS9oViGVQIoy7yJkldolJQw6fYORtWE1EyGFCMpImZIm/0NGLbLJpE1QxdqR7k5Um789mJ2ohZGBkTtJxCUySNir1YOgVGbF/TOGvKHTihkarbFPlAEbYmu2WPMUwnotWGiEmdUl24lF+hSW1IXbiajTKOoKv5gkliFJWYm4uqxb52ZBHnkNW5NNqmisLdo0hz0i7CSFo1z9Da+HaqXYRNFwa66i+ywmX3JIU/3xTGRWrKCBu62hYa6dmdOmyNsv7Cz6lUokJJfiIk4rKZOlIeXU3fGkERlSgyv4tqt7zQ1McmQRGVxIEgXWe6YzVgn76tQmE7SAUxgBr/fLdb/eWRMAwzK6TaNP6bLT7zmc/g2WefxQMPPIB//Md/xI9//GN8/vOfn/GaSy65BPfddx/+9m//Fv/+7/+OV199Fb/9279de+4FF1yAD33oQ7MxdIZhhoCZ7NZ82AvCMMzCY77brYUdYav2sCkBqKqIqpJAJMsoUUsptKJyRacdSYxWqxJjSYTxKkqzfSrHtqny/O3TedWXYWe14rIrLZDa1ZpCu6haUWhfwLHhjSJIgWxJCkuryAuQJJGP/C1qx649mqggIth2+/KE36On7F42GRR3tXQJFtSsaAsh3aqZiGKYyLdFUkasVDsP8tNtWxIxASFlEBGzK1ZF6s+3+/5Mw1KIUCJYFaL52NFI+TeK2glUu5Tsj8faLsIWjbYRV0Ij0fg45Fgp5S9GJ1xbLtofcFG1EZikbJtkFDour02nt9eOrQndsOIzW7Zj48aNuP/++/HEE0/g2GOPBQBs2LABn/zkJ3HdddfhwAMP7Lpm69atuPXWW3HXXXfh4x//OADgtttuw5FHHomf/OQnOO6449y5N910E95++21ceeWV+OEPfzg7v8QCx0bXipqoGg08a5jGfWwUH4EK+6SNwMBHkErBEmsrRUPkjUbt7P1IBA6ApEJFNNrXNOCmCFKfe9c6X6eU7e/v3KCfXkT3j+mOfXu1+/kaImm66Hl+EGGjkbpeCBGIttgC5IJG21AF3waIdDbZLXuMYToRcRuiPeLLR+giECNy0WQqyJZnLkpjtA7aQBlhs3vcZOznGUWWQ1WlAXQW9ts99DrNoe3cIsv9nCPTLpKmC0P2sBVu7lGkRZDxQ893YyuMO59mBOli5nkM3UvVpC1A9/mXP8uu/rLgdGWTSSSNZh8JWgA7VsH5NJpWPt+I7GuLIOO4ui5CWLYpqu9Xyl1bF20TUgE2Q4tG0jpF7Tr6Rda/wZnvdmtBO2wq2wmVRRiNRwKVyKhy3mIpkFRCH6Nx4Ry2kenctXe2C+xIraNm/4+9w5YV2FUd35kWSG16pDbIBxUgsfUySIpjK5IYqT4gNA1yvB15hy1WzklrRT4lMrYfGrIZvkx/6iFA0lUXqfrgRAlE9SFG0obIS8OoWq3aFEaq+CPj2IuRtHMUNg2i0M6wWeMaCJXQ+nJK+hpvUroaLqrdcimZqp24Nk2DVCOjECOlAyZHF0GOlaqPcmwRxEjpsJlkBDoedW1TtXXcxnT1t9yZDZbelWrjJsZB/yzlUz/66KNYvHixc9YA4JRTToGUEo899hg+/elPd13z5JNPIssynHLKKa7viCOOwIoVK/Doo486h+25557D17/+dTz22GP43//931kZP1N+sWiApN6QlEh0ipGQ6xpkNHyqoKldsGlUldTGp1XTtMkghbLmOiB4z1NHz/XR8QkBiHoHrxeNDmDHa3SnGM6Qttkk+NHLMSNiIaJTVZM6ZnYSSxw/d6xpvMEv1rGwZscrBARy3185b+Xri4FSU5vsFjA/9oIwex85MgqRtHyHLpwyqelw3Gi/yNOyXRSQCVnkAKDzzC/oUscszbzjlPr5RFRolxKp0xzanZMFaZP+2sLNO4pMk/uHC8k0JZLOV+hcRdc4b01OWxOixkkLHDcpnFMlVJgS6eaSRGikVGn0KuN18ydaP01K6rB1Kz32k+4oozgQDnEK6VHiru2q6dvUrxSk7v8LYb7brQXtsDHMXFPmVHcbCmvH33nnnaC/1Wqh1Wp1nd8vmzdvxgEHHBD0RVGEJUuWYPPmzY3XJEnStRdt+fLl7prp6Wn8zu/8Dr71rW9hxYoV7LAxzD5Mk92yxxiGYYaN+W63FrTDJqe3QU4BRudoR1WaXNJCVEVLYmmQFFVUSwkXVRuNJRZlNqJSYHsl67+zVT7OqXHtom270gK7qtWX6VxjVxVeT3ONwm6W1cYJCOQdcdmILDv7umphfTjb7kyDHHHj9e1WpJyQikuJVKQOG2pSITuhtZCI0AhinwYJrb18L/wbLYiqJREKFwVLGle+LKamEr0gKzRCyWAFSNmoWuzb0UgL0Wg5RpG0Iauomhid8O32qIuwmXgEOqmialELJrFRtRFkVfwgzTSmqlTXXfmejbAdfPDBQf9VV12Fq6++uuv89evX45vf/OaMr7Vx48aBxjYIV1xxBY488kh89rOfnbXXYEpMJTpi3M8+elaQbLnOlMgm2WL6BdYpngHYCJxxfXWRNyVD8ZIZI2xBxE4EqZd+HD7yVhgTROfo923deGeklwx+ZzmCqq82utVHJK2pfprQeW0kbUZxkX7rpAXpph1CI7ZfwtXIE0bDGIm+0ywx/1eqmb1P+X076qT8Afg0SMB9HkxRhOmRuu3a6IjIqTx16ZNKa5gqGhdpDV1lNhnS1kSAxBTaRd50EFUL5x9Bv8vyoWmTPpJGBdFMYWqjakFG1W5E2KSsj7b58kgySIP06YzKpyQqGUjpyySu7h32l9f1J8cfSPNXW2T6iaR1pju682kdziDqZlMiF05mwIJ22BhmrsmNQVaz4pNXxuOVV17BxMSE62+Krl122WU477zzZnytQw89FJOTk3j99dfD18pzbNmyBZOTk7XXTU5OIk1TvP3220GU7bXXXnPXPPTQQ/if//kf/N3f/R0An9q7dOlSfOUrX8HXvva1GcfGMMz8oclu2WMMwzDDxny3WwvaYRPpTohUlqs2UbUyE2cYrQQkEiUx7aRbBaZk6cm3ohjjVURlZ1ZgvIpq7SRRt/1a5UrFdF5gqlpd2UX2sKW5du3pXLsIG4CgbVFkD1vUsJ+NCpDEUqJti2jHyrXbkXR71+z/Sgi3jyUo7tr1wPxKrZOKlmQvRJRAVCItSDRE0b0irKQKCmrrSgCkIDnkptBk465u3P9mkXRjKykl4NrtxEX+RGvEteXIGER7lLQrEZF4BDpuu7Yh7aISpJnKNdJqjGlhkFbvk6mGUg1N9JL1n5iYCBy2JpYtW4Zly5b1PO/444/H22+/jSeffBIrV64EUDpbWmusXr269pqVK1cijmM8+OCDOPPMMwEAL7zwAl5++WUcf/zxAIB77rkHu3btctc88cQT+NznPodHHnkEhx12WM9xMf1j969ZM0EjaTTaZgzZ56brI2xUWrqUg+6OtllBJttHI29C+H10NKpG97OV9+48bu2Nqe039hdAaYeMi86RFWbRsUG/RjgpoDFS1i0kIjqjW4HUfp1ASEeUjEj2N8r610bqvDUwROo8gPZRiWvXp8kKtu8WQBlJs2MRHa8/wB62+S6Pzex9RGsEoj0aZN6E73ci8U/6hBMp0S6aJohwicu8yVPf1gVklrrrBt3zRucfNFJHxUt8JM2PgYqqaTKPscfK/7s/ILpmjtOJJHMeAEEkzfVJSfawkeLTHZlINFJGI2iSnN8ZYet7T5ot3SB9JK8xqqa8ZH95PpXsJ2Ik/iF0Hx9gzjXf7daCdtjk9A7IRMDkGUxsN7ZmkEXZjqM2oipVMlESSfUBSQuDVJV/3ZFIYlH1xp5ywhMFpgvftv15WzvnLSsMMpISScVILJ2OmxNGIQ6bkgJJnQIkqSHXirzD1lLekbOCKkrCpUQqkq4khZ+0GfjUGiGlUxuDjABZGdG4FRhgex+jFEz14TJRDFOJkYgkBao2NaTUYevlrDWF4AVNz4yS0EmzztvIGIStnxa3oKPKMYta3kmLWihU+R5IC+0UP9PCy8CmhUFWtXekAxQFQRmiF3tRdOTII4/EaaedhgsvvBA333wzsizD2rVrcfbZZzuFyE2bNuHkk0/G97//faxatQr77bcfLrjgAlx66aVYsmQJJiYmsG7dOhx//PFOcKTTKfvlL3/pXo/rsM0+1FTQmmz246ONcc5ZU2pkU7/UgtT9MYEjF6pH2rYJ0h8BQHeJjoBcZ9skPbKj345MkPRIDRHc046/dCTJL9CYbtjgPLnj7y7dEUZDFNZh63DkamqsdTlmtr9mwasLco5LIYJ3uwVAHqT0ry9qHL0BaLJbwPxILWL2PnJkzG07AGqERkjbOWaATx3WhU+ntPODBocONH0yz0iKpQaIiIm7D3H2DBEmCR2woueictPcxRTapVlSmurJNiE6nDagTF8M5kSBk+adN1nTT9UbQxG4sCYagHJuReuh2bkWSWUUgfPWkdboUh9V6IzJ7tTHunpr7pgMn4EcYMo13+3WgnbYGGauKYxpEB2ZPeNx5513Yu3atTj55JNd4ezvfve77niWZXjhhRewc+dO13fDDTe4c2nhbIZhFh5NdsseYxiGGTbmu91a0A6b3rEVWuQQrREXVTNRCpMnVXsaJq4ibFEbcRVtaynpUuBS7dPhWlXEaizxx6dz7SJs04VGZiNs2rh+bQyywq9+0zeOrkmPlFIE1eztPtRIEcn+oC1IhE2R+mskxdKtlIs+ZP0lyW+KYCKykd/K7koa6pa+vkZrBKZKVTB55la7BF1lpnVY6MuqmhUXKnoilY+exbGPtiVtiJYXGjEukhYHUTXQqFqV+tgUVcvI3z3NDaar8W4fMMKWNaz4ZLNoPJYsWYK77rqr8fghhxwSlJcAgHa7jRtvvBE33nhjX6+xZs2arnswsw+V7qdpkIUxQXpkcE1TZM2KfsBAd6RFltf5CJeSJG0RgDFheqIJUh+FS7MUBjDW9pDUTiGEu5+CgXYp2z6aKDv6+xJ37qdWWvW/j5LtpohIr6hap71rSBkLqEmFDKJqpM+lFBntsiR2lya7Bcyu7WLmLyZqw1TbTSxNpSrCuoNE4r+jL/jsaPr5KoIonOvPsvBaGr2rsn2C6ByJwtEIH02n7Ex7pBG5upTIpp8HoS6iBtiUyO6ImT1m+50kf0eEy0fEVBg1q/pq0xrjuK/oWd296bgCm0btVEeZkk7rYqL+51zz3W4tSIfNTiTf2VFGEESm3d4rE2Wu+HPZJo5c5bDl8A5ZMHHXdkJkAodtusqxndYaeYPDlu+GwyYbHDarMBlLgaJy2DIlncNmUzyVFN55E8L1RxIu3VKaAiKfLp9XkUHkU1U7BypnV+SZO8cUGcx0uafJpNMwRWUM86w0mqgcNusoax0axr4dNgmhctdnFYNKh63sF2kBkdm0zQKm6jdRDOP+7ing2tOBw2ad6bQwLmyedzhsqU2B3b6tvEefH/5d0LW50ynevTFn9k3se2r7tm3lSmFN6mNhvNOTFd5Jo3veBnXYAJ8yXfb74z49Eg3pkf4a6rDZ72hBXkegMz2yem2iGEkVbGVHv3D9ZB9uo/NE+w1qHTbd5LAZ0j+Iw2YAM6jD1mAHZI3jRdOVgrSkasIlBEllVzDKp7UbqbBt+/ZqmL1tV5PdAth2MSFuvrV9R9exnrUOgfAzY2l02IiTZpocNuqA0TlHRu7Tw2HLi54OmykKp8RqjwXPZTYcNhHuVWt02KrUzpmdKns+mV8FDlt1vNNhE9Rhkw33rnHYaJo2DRp01pXswL6vFoLdWpAO27Zt5aT6A6eyBDkzO7z55pvYb7/9Go8nSYLJyUncuXlT4zmTk5NIkmQ2hsfMQ6zdOu5DR8zxSJh9mW3btjXarn7sFsC2i/FYu3XIRz85xyNh9mUWgt0SZgHmLWmt8cILL+CDH/xgl2w6080777yDgw8+mJ9VH2zduhUrVqzAW2+91VNsY2pqCmmaNh5PkgTtdnsPj5CZr7DdGgy2W/1jn9Vzzz2HX/3VX3X1LOvoZbcAtl2Mh+3WYLDd6p+FZrcWZIRNSon3ve99APqXTWf4WQ3CTIbD0m63h9o4MMMF2613Bz+r/nnf+97X03ax3WIGge3Wu4OfVf8sFLu1Z3YgMwzDMAzDMAzDMHscdtgYhmEYhmEYhmGGlAXrsLVaLVx11VVotVpzPZShh59V//CzYmYTfn/1Dz+r/uFnxcwm/P7qH35W/bPQntWCFB1hGIZhGIZhGIaZDyzYCBvDMAzDMAzDMMywww4bwzAMwzAMwzDMkMIOG8MwDMMwDMMwzJDCDhuAa665BieccAJGR0d7FjteaNx444045JBD0G63sXr1ajz++ONzPaSh5Mc//jFOP/10HHjggRBC4Ac/+MFcD4nZx2G71Qzbrf5gu8XsbdhuzQzbrt4sVLvFDhuANE1x1lln4aKLLprroQwVf/3Xf41LL70UV111FZ566ikcffTROPXUU/H666/P9dCGjh07duDoo4/GjTfeONdDYRYIbLfqYbvVP2y3mL0N261m2Hb1x0K1W6wSSbj99ttx8cUX4+23357roQwFq1evxkc+8hH86Z/+KQBAa42DDz4Y69atw/r16+d4dMOLEAL33nsvPvWpT831UJgFANutELZb7w62W8zehO1WN2y7Bmch2S2OsDG1pGmKJ598Eqeccorrk1LilFNOwaOPPjqHI2MYhqmH7RbDMPMRtl1ML9hhY2r55S9/iaIosHz58qB/+fLl2Lx58xyNimEYphm2WwzDzEfYdjG92GcdtvXr10MIMeO/559/fq6HyTAM42C7xTDMfIPtFsPMPtFcD2C2uOyyy3DeeefNeM6hhx66dwYzD1m6dCmUUnjttdeC/tdeew2Tk5NzNCqG2bdhu7V7sN1imL0P263dh20X04t91mFbtmwZli1bNtfDmLckSYKVK1fiwQcfdJs5tdZ48MEHsXbt2rkdHMPso7Dd2j3YbjHM3oft1u7DtovpxT7rsA3Cyy+/jC1btuDll19GURR4+umnAQCHH344xsfH53Zwc8ill16Kc889F8ceeyxWrVqFb3/729ixYwfOP//8uR7a0LF9+3a8+OKL7uef//znePrpp7FkyRKsWLFiDkfG7Kuw3aqH7Vb/sN1i9jZst5ph29UfC9ZuGcace+65BkDXv4cffniuhzbnbNiwwaxYscIkSWJWrVplfvKTn8z1kIaShx9+uPY9dO6558710Jh9FLZbzbDd6g+2W8zehu3WzLDt6s1CtVtch41hGIZhGIZhGGZI2WdVIhmGYRiGYRiGYeY77LAxDMMwDMMwDMMMKeywMQzDMAzDMAzDDCnssDEMwzAMwzAMwwwp7LAxDMMwDMMwDMMMKeywMQzDMAzDMAzDDCnssDEMwzAMwzAMwwwp7LAxDMMwDMMwDMMMKeywMQzDMAzDMAzDDCnssDEMwzAMwzAMwwwp7LDtY7z55ps44IAD8NJLL+3WfdasWYOLL754j4xpdzn77LNx/fXXz/UwGIaZRdh2MQwz32C7xewthDHGzPUgmD3HpZdeim3btuGWW27Zrfts2bIFcRxj0aJFe2hk755nnnkGv/mbv4mf//zn2G+//eZ6OAzDzAJsuxiGmW+w3WL2Fhxh24fYuXMnbr31VlxwwQW7fa8lS5bsluFI03S3x2D59V//dRx22GH4q7/6qz12T4Zhhge2XQzDzDfYbjF7E3bYhpiDDjoI3/ve94K+//zP/8To6Cj+7//+r+v8f/7nf0ar1cJxxx0X9K9Zswbr1q3DxRdfjP333x/Lly/HLbfcgh07duD888/HokWLcPjhh+OHP/xhcA0Nz2utce211+Lwww9Hq9XCihUrcM011wTnr127FhdffDGWLl2KU089FQAwPT2NL3zhCzjggAPQbrdx4okn4oknngiu+8IXvoDLL78cS5YsweTkJK6++uqu3+3000/H3XffPdDzYxhmbmDb5WHbxTDzA7ZbHrZbwwc7bEPM6tWrgw+aMQYXX3wxLrnkErz//e/vOv+RRx7BypUra+91xx13YOnSpXj88cexbt06XHTRRTjrrLNwwgkn4KmnnsInPvEJnHPOOdi5c2ft9VdccQW+8Y1v4Ktf/Sqee+453HXXXVi+fHnXayRJgv/4j//AzTffDAC4/PLLcc899+COO+7AU089hcMPPxynnnoqtmzZElw3NjaGxx57DNdeey2+/vWv44EHHgjuvWrVKjz++OOYnp7u7+ExDDNnsO3ysO1imPkB2y0P260hxDBDy7XXXmt+7dd+zf18xx13mMnJSbNt27ba88844wzzuc99rqv/Yx/7mDnxxBPdz3mem7GxMXPOOee4vl/84hcGgHn00UfdNX/4h39ojDHmnXfeMa1Wy9xyyy2NY/3Yxz5mjjnmmKBv+/btJo5jc+edd7q+NE3NgQceaK699trasRljzEc+8hHzpS99Kej77//+bwPAvPTSS41jYBhmOGDb5WHbxTDzA7ZbHrZbwwdH2IaY4447Dhs3bsT27duxY8cOfPnLX8Yf//EfY3x8vPb8Xbt2od1u1x770Ic+5NpKKbznPe/BUUcd5frsys3rr7/ede3GjRsxPT2Nk08+ecbxdq40/exnP0OWZfjoRz/q+uI4xqpVq7Bx48basQHAe9/73q5xjIyMAEDjahTDMMMD2y4P2y6GmR+w3fKw3Ro+orkeANPMypUrIaXEU089hX/7t3/DsmXLcP755zeev3TpUrz11lu1x+I4Dn4WQgR9QggAZd50J/aD24uxsbG+zutnbJ3jsOH8ZcuWvavXYBhm78G2y8O2i2HmB2y3PGy3hg+OsA0xo6OjOOqoo3DPPffguuuuww033AApm/9kxxxzDJ577rk9Po5f+ZVfwcjICB588MGBrjvssMNcfrUlyzI88cQT+OAHPzjQvZ555hkcdNBBWLp06UDXMQyz92Hb5WHbxTDzA7ZbHrZbwwdH2Iac4447Dhs2bMAZZ5yBNWvWzHjuqaeeiiuuuAJvvfUW9t9//z02hna7jS996Uu4/PLLkSQJPvrRj+KNN97As88+O6Oc7djYGC666CJ88YtfxJIlS7BixQpce+212Llz58AyuI888gg+8YlP7O6vwjDMXoJtVwnbLoaZP7DdKmG7NXywwzbkHH300YjjGN/61rd6nnvUUUfhwx/+MP7mb/4Gv//7v79Hx/HVr34VURThyiuvxKuvvor3vve9+IM/+IOe133jG9+A1hrnnHMOtm3bhmOPPRb/8i//MpBxm5qawg9+8APcf//9u/MrMAyzF2HbxbaLYeYbbLfYbg0rwhhj5noQTDMnnXQSPvzhD+P666/v6/x/+qd/whe/+EU888wzM4by5xM33XQT7r33Xvzrv/7rXA+FYZg+YdvFtoth5htst9huDSscYRtCtNZ44403cOutt+KnP/0p/v7v/77va3/rt34LP/3pT7Fp0yYcfPDBszjKvUccx9iwYcNcD4NhmB6w7Qph28Uwww/brRC2W8MJR9iGkB/96Ef4+Mc/jiOOOAK33XYbVq9ePddDYhiG6QnbLoZh5htst5j5ADtsDMMwDMMwDMMwQ8q+kXDLMAzDMAzDMAyzD8IOG8MwDMMwDMMwzJDCDhvDMAzDMAzDMMyQwg4bwzAMwzAMwzDMkMIOG8MwDMMwDMMwzJDCDhvDMAzDMAzDMMyQwg4bwzAMwzAMwzDMkMIOG8MwDMMwDMMwzJDCDhvDMAzDMAzDMMyQwg4bwzAMwzAMwzDMkMIOG8MwDMMwDMMwzJDy/wglvGNRl8aeAAAAAElFTkSuQmCC", "text/plain": [ "
[20:30:22] Created task 'kspace_monitor' with task_id 'fdve-d3aa5946-9aed-4b02-9bfe-0693d3fb4456v1'. webapi.py:139\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:30:22]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'kspace_monitor'\u001b[0m with task_id \u001b[32m'fdve-d3aa5946-9aed-4b02-9bfe-0693d3fb4456v1'\u001b[0m. \u001b]8;id=281913;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=731939;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "36b12e9b2fc349638699ec89f4916fe7", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:30:23] status = queued webapi.py:269\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:30:23]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=779220;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=599162;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c83745833ece41abb041a7a6ec293634", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:30:25] status = preprocess webapi.py:263\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:30:25]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=546161;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=958556;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:30:30] Maximum FlexCredit cost: 0.045. Use 'web.real_cost(task_id)' to get the billed FlexCredit webapi.py:286\n", " cost after a simulation run. \n", "\n" ], "text/plain": [ "\u001b[2;36m[20:30:30]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.045\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit \u001b]8;id=776236;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=616835;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mcost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
starting up solver webapi.py:290\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=858498;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=892355;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
running solver webapi.py:300\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=861547;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=991557;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f1eab002fbe24be99faec94d666ea901", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:30:37] early shutoff detected, exiting. webapi.py:314\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:30:37]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=666916;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=255870;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#314\u001b\\\u001b[2m314\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
status = postprocess webapi.py:331\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=629495;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=730867;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#331\u001b\\\u001b[2m331\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "73fffe309ddb426b8bc4925f80a7a48f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:30:39] status = success webapi.py:338\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:30:39]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=297232;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=2904;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#338\u001b\\\u001b[2m338\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d4a603f424f14354b574d5433f3ba4a9", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[20:30:40] loading SimulationData from data/kspace_monitor.hdf5 webapi.py:510\n", "\n" ], "text/plain": [ "\u001b[2;36m[20:30:40]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/kspace_monitor.hdf5 \u001b]8;id=727780;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=922838;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#510\u001b\\\u001b[2m510\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim_data5 = web.run(\n", " sim5, task_name=\"kspace_monitor\", path=\"data/kspace_monitor.hdf5\", verbose=True\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plot and compare\n", "Extract and plot the fields. We use a polar plot, and observe that the far field spot is located along the `phi=45 deg` line, as expected. The angle `theta` is expected to be near `30 deg`, which is nearly what is observed in the plot. The small deviation is due to the way the fields are plotted - a better way would be to project the fields orthographically on the surface of a sphere prior to plotting." ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "execution": { "iopub.execute_input": "2023-04-08T03:30:40.961746Z", "iopub.status.busy": "2023-04-08T03:30:40.961606Z", "iopub.status.idle": "2023-04-08T03:30:41.315422Z", "shell.execute_reply": "2023-04-08T03:30:41.314906Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_188683/2062883249.py:16: UserWarning: The input coordinates to pcolormesh are interpreted as cell centers, but are not monotonically increasing or decreasing. This may lead to incorrectly calculated cell edges, in which case, please supply explicit cell edges to pcolormesh.\n", " im = ax.pcolormesh(\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAHqCAYAAABY/wcsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACX70lEQVR4nOzdd1wT9xsH8M9lsZdsBMSFAweKSnGiomgVtLXWrXUv2irVVvy5Wmux1lqrVXFr68CtqFWrKE5cUKzVKu6F4GZDILnfHxkShjIOLuN5v173glySuydKck+e72JYlmVBCCGEEMIBAd8BEEIIIUR/UGJBCCGEEM5QYkEIIYQQzlBiQQghhBDOUGJBCCGEEM5QYkEIIYQQzlBiQQghhBDOUGJBCCGEEM5QYkEIIYQQzlBiQQghhBDOUGJBiJZLT0/HpEmTUKNGDZiYmKB169a4dOmS+n6WZTFr1iw4OzvDxMQEAQEBuHXrlsYxYmNj4e3tDQ8PD6xdu7aqXwIhxIBQYkGIlhs1ahSOHj2KP/74A1evXkXXrl0REBCAJ0+eAAAWLFiAJUuWICIiAhcuXICZmRkCAwORk5OjPsbIkSMxc+ZMbNmyBeHh4Xj06BFfL4cQoucYWoSMEO2VnZ0NCwsL7Nu3Dz169FDv9/HxQffu3TF37ly4uLjgq6++wpQpUwAAqampcHR0xIYNG9C/f38AQI0aNRATEwMHBwf4+/tj48aNaNiwIS+viRCi36hiQYgWy8/Ph0wmg7GxscZ+ExMTnDlzBvfu3UNycjICAgLU91lZWcHX1xexsbHqfbNmzUKDBg1gZWWFDz74gJIKQkilocSCEC1mYWEBPz8/zJ07F0lJSZDJZNi0aRNiY2Px9OlTJCcnAwAcHR01nufo6Ki+D1A0hbx8+RLPnz/H0qVLq/Q1EEIMCyUWhGi5P/74AyzLonr16jAyMsKSJUswYMAACARle/uamZnBxsamkqIkhBAFSiwI0XK1a9fGyZMnkZGRgUePHuHixYvIy8tDrVq14OTkBABISUnReE5KSor6PkIIqUqUWBCiI8zMzODs7IzXr1/jyJEj6NWrF2rWrAknJydER0erH5eWloYLFy7Az8+Px2gJIYaKRoUQouWOHDkClmVRr1493L59G1OnToWxsTFOnz4NsViMH3/8EfPnz8fGjRtRs2ZNzJw5E//88w+uX79epNMnIYRUNhHfARBC3i01NRVhYWF4/PgxqlWrhj59+mDevHkQi8UAgK+//hqZmZkYM2YM3rx5g7Zt2+Lw4cOUVBBCeEEVC0IIIYRwhvpYEEIIIYQzlFgQQgghhDOUWBBCCCGEM5RYEEIIIYQzlFgQQgghhDOUWBBCCCGEM5RYEEIIIYQzlFgQQgghhDOUWBBCCCGEM5RYEEIIIYQzlFgQQgghhDOUWBBCCCGEM5RYEEIIIYQztGw6ITqEZVlkZWUhJycHcrlcvclkMjAMA4FAoLGZmJjAxMQEDMPwHTohBiknJwdSqZSz40kkEhgbG3N2vMpAiQUhPMjLy0NycjKePn2qsSUnJyM9PR3p6enIyMgo8ntGRgZYli3TuQQCAczNzWFubg4LCwtYWFiofzc3N4eVlRUcHR3h7OwMZ2dnuLi4wNnZGY6OjhCJ6COCkPLKycmBiUU1ID+bs2M6OTnh3r17Wp1cMGxZP6UIIe8llUpx9+5dJCYmqreHDx+qE4jnz5+DYRjY29sXuZhbWVkVmwQU/N3Y2BhCoVCjOgGgSBUjOzu72ASl4O+pqalFkpyC8alic3d3h6enp3qrWbMmxGIxz//ShGivtLQ0WFlZQdTwU0DIwXtFlof869uRmpoKS0vLih+vktDXEUIq4Pnz57hy5YpGApGYmIh79+7ByMgIdevWhaenJ+rWrQsfHx/1RdrZ2RkODg6cX5iFQiGEQqH6tqmpKWxtbct8HKlUipSUFI1k4/79+zh79izWr1+PW7duIT8/H7Vq1dJINjw9PeHt7Y1q1apx+bII0WmM2BiMUFLh47AC4fsfpAUosSCklFJSUhAfH4+4uDj19ujRI9SqVQv169eHp6cngoKC1BfY6tWrqysJukYikcDNzQ1ubm7F3i+Xy/Ho0SONZGrfvn3477//8ODBA3h4eMDHx0djK0+CQwjRPdQUQkgxMjIycPbsWVy4cEGdRDx58gSenp4aF8tmzZrBysqK73C1yuvXr4skYHfu3IG7u7v63+2DDz6An58fTE1N+Q6XkEqjagqRNBvOTcVCJoX07/Va3xRCiQUheJtIxMTEICYmBpcuXYK7uzv8/Pw0kghtfjNrszdv3mgkG+fOnUNycjJ8fX3h7+8Pf39/SjSI3lElFkY+ozhLLHLj1lBiQYg2KpxIXL58GW5ubuqLXIcOHVCjRg2+w9RbLMvi/v376n//EydOUKJB9A4lFoTouXv37mH//v3Yv38/YmJiKJHQIizL4t69exqJxrNnz9CpUycEBwcjKCgIrq6ufIdJSJmoEgvjFmPBiDhILPKlyLm8khILQvgil8tx8eJF7N+/H1FRUbhx4wY6dOiA4OBg9OzZE7Vq1eI7RFIClmVx69YtHDhwAFFRUThz5gyaNGmCoKAgBAcHo3nz5jTpF9F6qsTCxHc8GJFRhY/H5uci+8IKSiwIqUo5OTn466+/EBUVhQMHDiA3NxcffvghgoOD0a1bN+poqaNevnyJQ4cOYf/+/Th06BAsLS3Rs2dPBAcHIyAgABJJxb8NEsI1SiwI0VEymQwnT57E5s2bsXPnTtjZ2aFXr14IDg5GmzZtaBInPSOVSnHy5Ens378f+/btQ3p6Oj799FMMHjwYrVu31tkhvkT/qBILM78QzhKLzNjfKLEgpDKwLIt//vkHmzZtwtatWyGVStG/f38MHjwYLVu2pDK5gZDL5Th37hw2b96Mbdu2wdLSEoMGDcKgQYPQsGFDvsMjBk6VWJi3+ZKzxCLj7K9an1hQak90ysOHDzF//nw0adIErVu3xtOnT7F69Wo8efIES5YsQatWrSipMCACgQBt27bFihUrkJycjCVLluDWrVvw8fFB8+bNsWjRIiQlJfEdJiEGhRILovXy8vKwa9cudOnSBbVr18bJkycxbdo0pKSkYNOmTejevTs1dxBIJBIEBwdj+/btSE5Oxueff44///wTNWrUQI8ePbB//37IZDK+wyQGiBEIOdt0ATWFEK314MEDrF69GmvXroWxsTHGjh2Lzz77DE5OTnyHRnTI48ePsW7dOqxevRoAMHr0aIwcORLVq1fnOTKi71RNIZYdpnDWFJJ2ciE1hRBSFizL4tixY+jduzfq1q2Lf//9F+vXr8edO3cwbdo0SipImbm6umLWrFm4d+8eli1bhgsXLqBWrVr49NNPcfr06TIvQ08IeTdKLIhWyMjIwLJly9CwYUMMGDAAXl5euH37Nvbu3Ytu3bpRT39SYSKRCMHBwTh48CD+++8/uLu7Izg4GN7e3li9ejWys7P5DpHoKWoKIaQKvXz5EkuXLsXSpUtRs2ZNfPHFF/j0009hbGzMd2jEAGRlZWHLli1YsmQJUlJSMHnyZIwfP57mOyGcUDWFWHcOAyOq+Gcam5+DN9Hh1BRCSHGePHmCr776CjVq1MCZM2ewfft2XLp0CUOHDqWkglQZU1NTjBo1CleuXMH69etx8OBBuLu7Y/r06Xj27Bnf4RGikyixIFXq1q1bGD16NGrXro27d+/i+PHjOHbsGDp37kzDRAlvGIbBhx9+iNOnT+PAgQNISEiAh4cHQkJC8ODBA77DIzqOYThqCmF0oymEEgtSJRISEtC/f380btwYUqkU8fHx2LNnD1q1asV3aIRoaNeuHf7880+cO3cOL168QL169TBs2DBcv36d79CIrhIKwXCwQUiJBSFITExE37590bp1a9jb2+PmzZvYuHEjzYpItJ63tzciIyPx77//wsjICD4+PhgyZAju3bvHd2iEaDVKLEilSEpKwtixY9G0aVPY2tri9u3bWLp0KS1NTnROnTp1sGrVKty4cQNCoRANGzbEl19+iefPn/MdGtERhjYqhBILwqk3b94gLCwMdevWxevXr3HlyhVERETAxcWF79AIqZAaNWpgw4YNuHTpEu7du4fatWvj22+/RXp6Ot+hEaJVKLEgnMjOzsZPP/2EWrVq4dKlSzh58iS2b98OT09PvkMjhFONGjVCVFQU/vzzTxw9ehS1a9fG0qVLkZuby3doREtRxYKQMpDL5diwYQPq1q2Lbdu2Yfv27Th27BhatGjBd2iEVKq2bdvi9OnTWLduHVatWoX69etj27ZtNJMnKUIgEHK26QJKLEi5/f3332jbti1mz56Nn3/+GRcvXkRAQADfYRFSZRiGQc+ePZGQkIA5c+Zg0qRJ6Ny5M40gIQaNEgtSZq9fv0ZISAjatGmDTp064b///kO/fv1o2m1isIRCIYYNG4abN2+iWbNm8PHxwdSpU6n/BQEAMAIBR00huvEZqxtREq0gl8uxfv161KtXD7dv38aVK1fw/fffw9TUlO/QCNEKlpaW+Pnnn3Hp0iVcunQJ9evXR2RkJDWPGDjqY0FIMeLj49GmTRvMmTMHK1euxKFDh1C3bl2+wyJEKzVq1AgnTpzATz/9hNDQUHTu3BnXrl3jOyxCqgQlFuSd0tPT8fnnn6Nt27bo3Lkz/vvvP3z00Uc0/TYh78EwDAYOHIgbN26gWbNmaNmyJb7++mtaRdUAUcWCEKXjx4+jcePG+Pfff6nZg5ByUjWPXLx4EadPn4a3tzfOnTvHd1ikClFiQQxeeno6xo8fj169euHrr79GdHQ0NXsQUkGNGjXCmTNnMHr0aHTp0gVTpkyh6gXRS5RYEA3Hjx9HkyZNcOPGDVy5cgUTJkyg0R6EcEQoFGLKlCmIi4vDmTNn0KxZM8TGxvIdFqlktLopMUgZGRmYOHEigoOD8dVXXyE6Ohq1atXiOyxC9FL9+vVx9uxZjBgxAgEBAZg6dSpVL/QYFyubqlc41QGUWBCcOHFCoy9FSEgIVSkIqWRCoRBff/01Ll++jFOnTqFZs2Y4f/4832ERUmF09TBg+fn5+N///oegoCCEhobixIkTqF27Nt9hEWJQGjRogLNnz2L48OHo3LkzwsPDIZfL+Q6LcMjQJsgS8R0A4cejR48wcOBAvHr1ChcuXICXlxffIRFisEQiEb755hsEBASgX79+iImJwe+//w5HR0e+QyMc4GpEB40K0UOnTp1CUFAQXFxcwDAM9u7dq3H/nDlzUL9+fZiZmcHGxgYBAQG4cOGCxmM8PDzAMIzGNn/+fI3HrF69GjVq1ECzZs2KPJ8LBw4cgLe3N+rVq4dLly5RUkGIlvDx8UF8fDxsbGzg7e2N48ePV+n558+fD4ZhMGnSJPU+f3//Ip9Z48aN03heVFQUPD09Ua9ePRw4cKBKYybahyoWZZCZmYmmTZtixIgR+Pjjj4vc7+npid9++w21atVCdnY2fvnlF3Tt2hW3b9+Gvb29+nHfffcdRo8erb5tYWGh/v3hw4dYsGABIiMj8eTJEwwfPpyzBY2kUinCwsKwevVqrFixAoMGDeLkuIQQ7lhaWmLr1q1Ys2aNujP1rFmzIKzkjnuXLl3CypUr0aRJkyL3jR49Gt999536dsH5bHJzczFx4kSsX78eLMtixIgR6Nq1KyQSSaXGq0sMrWJBiUUZdO/eHd27dy/x/oEDB2rcXrRoEdauXYt//vkHnTt3Vu+3sLCAk5NTscdIS0uDtbU1mjRpAicnJ856it+7dw/9+vVDXl4eLl++DE9PT06OSwjhHsMwGD16ND744AN8+umnOHnyJDZv3ozq1atXyvkyMjIwaNAgrF69Gt9//32R+01NTUv8zMrNzYVQKIS3tzcARbNObm4uJRYFCAQMBAIOZivm4hhVgJpCKolUKsWqVatgZWWFpk2batw3f/582NraolmzZvjpp5+Qn5+vvq9Ro0Zo0qQJrKys4OXlVeybvKz27t2LZs2aoVWrVoiNjaWkghAd0bhxY1y+fBk1a9aEt7c3jhw5UinnmThxInr06IGAgIBi79+8eTPs7OzQqFEjhIWFISsrS32fpaUlhg8fDmdnZ7i4uGD8+PEaVVhieKhiwbEDBw6gf//+yMrKgrOzM44ePQo7Ozv1/V988QWaN2+OatWq4dy5cwgLC8PTp0+xaNEi9WPWrl2LBQsWwNTUFCYmJuWORS6XY+7cufj555+xbt06fPLJJxV6bYSQqmdmZob169fj999/R58+ffDtt98iNDSUs/V6IiMjER8fj0uXLhV7/8CBA1GjRg24uLjgn3/+wTfffIObN29i9+7d6sfMnj0bkyZNgkAgoKSiGIyAAcNBtYGLY1QFSiw41rFjRyQkJODFixdYvXo1Pv30U1y4cAEODg4AgNDQUPVjmzRpAolEgrFjxyI8PBxGRkbq+2xtbSsUR2ZmJoYNG4b4+HicO3cOjRo1qtDxCCH8Gjp0KBo0aIDevXvj6tWriIiIgLGxcYWO+ejRI3z55Zc4evRoiccaM2aM+vfGjRvD2dkZnTt3xp07dzSGp1tZWVUoFn2m6vTKxXF0ATWFcMzMzAx16tTBBx98gLVr10IkEmHt2rUlPt7X1xf5+fm4f/8+ZzE8ePAAbdq0watXr3Dp0iVKKgjREy1btsTly5dx48YNdOzYEU+fPq3Q8eLi4vDs2TM0b94cIpEIIpEIJ0+exJIlSyASiSCTyYo8x9fXFwBw+/btCp2b6C9KLCqZXC5Hbm5uifcnJCRAIBCoKxoVdfr0abRs2RJt27bFkSNHKlz5IIRoF2dnZ8TExKBu3brqRKO8OnfujKtXryIhIUG9tWjRAoMGDUJCQkKxI1ESEhLUcZDSYZSdNyu66UpTCCUWZZCRkaF+8wGKkRYJCQl4+PAhMjMzMX36dJw/fx4PHjxAXFwcRowYgSdPnqBv374AgNjYWCxevBhXrlzB3bt3sXnzZkyePBmDBw+GjY1NheNbvXo1unXrhrlz5+K3336DWCyu8DEJIdrH2NgYGzduxOTJk+Hv74+tW7eW6zgWFhZo1KiRxmZmZgZbW1s0atQId+7cwdy5cxEXF4f79+8jKioKQ4cORfv27Ysdlkq0y/vmXips9+7d6NKlC+zt7WFpaQk/P79ydRimPhZlcPnyZXTs2FF9W9VfYtiwYYiIiMCNGzewceNGvHjxAra2tmjZsiVOnz6tnoDKyMgIkZGRmDNnDnJzc1GzZk1MnjxZo99FeeTn52Py5MmIjIzEoUOH0L59+wodjxCi/RiGwVdffYWGDRtiwIAB+OeffzBv3jxO1/mRSCQ4duwYFi9ejMzMTLi5uaFPnz6YMWMGZ+cwBAzDUefNMvaxeN/cS4WdOnUKXbp0wQ8//ABra2usX78eQUFBuHDhApo1a1b6OFmWZcsUKdEq2dnZ6N+/P+7cuYMDBw7Aw8OD75AIIVXsxo0b6NmzJ3x9fbF+/XqaQ0JLpKWlwcrKCnXHb4XQyPT9T3gPWW4Wbq0YgNTUVFhaWpbpuQzDYM+ePejdu3eZnufl5YV+/fph1qxZpX4ONYXosNevX6Nr16549eoVTp8+TUkFIQZKtQz7jRs3EBQUhPT0dL5DInpALpcjPT0d1apVK9PzKLHQUU+ePEG7du1ga2uLv/76i5M+GoQQ3eXo6IiYmBjIZDJ06tQJz58/5zskoiRgGM42QFEJKbi9a4BARSxcuBAZGRn49NNPy/Q8Six00I0bN9C6dWv4+flh586dFZpEixCiPywsLHDw4EHUrl0bbdq0wb179/gOieDtBFlcbADg5uYGKysr9RYeHs55zFu2bMG3336L7du3l3nUIiUWOub8+fNo06YNhg4dilWrVkEkov63hJC3jIyMsGXLFnTr1g2tW7fGlStX+A6JcOzRo0dITU1Vb2FhYZwePzIyEqNGjcL27dtLnOb9XeiqpEP+/PNP9OvXD+Hh4QgJCeE7HEKIlhIIBPj111/h7OyMDh06YN++fejQoQPfYRksrqf0trS0LHPnzdLaunUrRowYgcjISPTo0aNcx6DEQkdERkZi5MiRWL9+fZnbuwghhodhGISFhcHR0RE9evRAZGQkevbsyXdYBomr1U3ZMh4jIyNDY4ZU1dxL1apVg7u7O8LCwvDkyRP8/vvvABTNH8OGDcOvv/4KX19fJCcnAwBMTEzKNGU7NYXogE2bNmHUqFHYtWsXJRWEkDIZMWIEfv/9d/Tr1++9EyQR/XL58mU0a9ZMPQdFaGgomjVrph46+vTpUzx8+FD9+FWrViE/Px8TJ06Es7Ozevvyyy/LdF6qWGi5jRs3YuLEidi7d2+52roIIeTjjz+GUCjEwIED1aukkqrDCBQbF8cpC39/f7xrqqoNGzZo3I6JiSl7UMWgxEKLrVu3Dl9++SX279+vMeMnIYSUVa9evbBt2zb069cPMpmMqp9ViFY3JVphw4YN+PLLL9ExwwzbOg3nOxxCiB44EBSCDlnmGDFiBHbt2sV3OERPUWKhhTZt2oTPP/8c+/fvhwuMAQDjGA9+gyKE6DTVZ4g7TBAZGYmhQ4di3759/AZlIAQCcLK6KYfLwFQqagrRMlu3bsW4ceOwb98++Pv7w5+9r/5AUP2MYO/zFh8hRLcU/lKi+vzYsmULBg4ciG3bttFokUrG9XBTbacj+Y9hiIqKwujRo7Fr1y507ty5xMdR9YIQUhrv+qzo1asX/vjjD/Tv3x/Hjx+vuqCI3qPEQkucOXMGAwcOxB9//IHAwECN+4qrUFByQQh5l+I+Iwp/lnz88cdYvnw5PvroI/z9999VE5gBUi2bXuFNRzpvUlOIFvj3338RFBSERYsW4aOPPir2MREFmkRUqGmEEFJYSV86SvqcGDp0KFJSUtC9e3ecPXsWtWvXrrzgDFTBBcQqgqXEgpTGgwcPEBgYiNDQUIwZM6Zcx6AEgxBSkSrmlClTkJycjMDAQJw9exaOjo7cBUYMDjWF8OjFixcIDAxE7969MWPGjPc+/n2JwzjGg5pICDEwpXnfv++zg2EY/PTTT/jggw/QvXt3pKWlcRcgAbha2ZQ6b5J3yczMRM+ePdG4cWMsWbKk1G1npalKUHJBiGEozXu9tJVMgUCAdevWwcHBAR9//DFyc3MrFhwxWJRY8CAvLw99+/aFqakpNm3aBKFQyPk5qHpBiP6qrPe3RCLBzp07kZaWhqFDh0Imk3F+DkPEScdNjoasVgVKLKoYy7IYN24cnj59ij179sDIyKjMxyhLXwpKMAjRH2V9P5en35W5uTkOHjyIhIQETJkypczPJ0VxMzkWNyukVgVKLKrYr7/+ikOHDuHgwYNlWoa2sLJ+YFByQYhuK+t7uCKdue3t7XHo0CH8/vvvWLduXbmPQwwTjQqpQn/99RdmzJiB48ePw8XFpcrPX/CDiUaQEKL9+PxCUKtWLezYsQNBQUGoV68e2rRpw1ssuo4WISOVIjExEf369UNERARatWrFyTErkhxQEwkh2qui70+uvjh06tQJCxYswMcff4yHDx9yckxDpFo2nYtNF+hImLotNTUVwcHBGDNmDAYPHszpsSv6AUIJBiHag4v3I9fVyAkTJqB3797o3bs3srKyOD020U+UWFQymUyGAQMGoHbt2vjhhx/4DqdElGAQwh9tfv8xDIOlS5fCwsICw4cPB8uyfIekc6jzJuFUWFgY7t27hy1btlTKsFKuafMHHCH6huv3W2X1nVINQ71w4YJWf0HSVoY23JQ6b1aiP/74A2vWrMGFCxcqNALkfYpbR6SiaJpwQiqPLibv9vb2iIqKQps2beDl5YXevXvzHRLRUpRYVJJ///0X48ePx65du1C3bl2+wym3wh+AlGgQUnZVkUhUxXuzSZMm2LBhAz777DPEx8ejVq1alX5OfWBoo0IosagEmZmZ6NevHyZPnlxkCfTKUhlVi+LQkFVCSqcqqxJV+V7s06cPTp48if79++PMmTOQSCRVdm5dxVX/COpjYcC++OIL2NraYvbs2XyHUqlU7cO6WNYlpDIYynvip59+Qn5+PsLCwvgOhWghqlhwbNOmTdi3bx8SEhIgElXtP29VVS2KQ30yiCHT90SiMCMjI2zbtg0+Pj7w9/dHUFAQ3yFpNYbhpuMlNYUYoMTEREyYMAFbt26Fq6sr3+HwghIMYki0IaHg671Wt25drFy5Ep999hkSEhLg5ubGSxy6QChgIOQgsWB1pCmEEguO5OTkoF+/fhgzZgx69OjBWxx8Vi0KKikGSjiILtKG95Q2GjBgAI4fP44BAwYgJiamyqu0RDtRHwuOTJkyBRKJRCvGeGvzxdtQ2qCJ7tOFv1VteK//+uuvePPmjd73KasIgbJiUdFNVzpvUnrJgd27d2PTpk34+++/qYd0GVCzCdFG2pxIaCNTU1Ns374drVq1QseOHREQEMB3SFqHq6YQOSUWhuHZs2cYO3YsVqxYgZo1a/Idjpq2NImUBg1hJXzTlfdKQdr0XmnYsCF+/vlnjBgxAlevXq3UCQGJ9mNYmvi9Qvr27Qu5XI6dO3dqXY9dXfywLIk2fYgS3UXvicrDsiy6du0KDw8PrF69mu9wtEJaWhqsrKzw4ZJjEJuYVfh4edmZ+POLAKSmpsLS0pKDCCsHVSwqYMeOHThx4gSuXbumdUkFoFtVi/cp7nVo2wcr0S768rdfHG3822cYBmvWrEHjxo3xySefVNnkgET7UGJRTs+ePcOECROwbNkyODo68h2OQaJkg6jocxKhS2rUqIGFCxdi1KhR+Pfff6lJRIn6WJBSmThxIjp06IBPP/2U71BIAbS2if6jJEK7jR49Gjt37sRXX32FNWvW8B2OVhAJABEn81hwEEwVoMSiHLZv346YmBitbQIhb1FVQ/dRIqFbCjeJdOvWje+QSBWjxKKMnj17hokTJ2L58uVwcHDgO5z30qd+Flx5178HJR38oL/R0tOFv1F3d3csXLgQo0ePpiYRUFMIeY+JEyeiY8eO6Nu3L9+hkEpQmgucLnywaxNKGgzTqFGjqElEScBRYiGjxEL/HD58GMeOHcPNmzf5DqVMqGrBrbL8W+prEkJ/T/zQpb8nhmGwatUqNGzYECNGjEDr1q35DolUEUosSik3Nxeff/455s2bpxNNIEQ7VMYFuKwXF0oCCF9q1KiB//3vf5g4cSIuXbpksGuJCBkBhIKK97wUMrrRe9Mw/5fLYeHChbCwsMDYsWP5DqVcqGqhP+j/0TDpUrWioK+++gobNmxAREQEQkJC+A6HF1z1seDiGFVBN9Ifnj148ADh4eFYtmwZhEIh3+EQQojOMDIywpIlSzBjxgw8e/aM73BIFaDEohQmT56MTz/9FH5+fnyHQojeEDIlb0S/dOvWDZ07d8Y333zDdyi84GJlU66qHlWBmkLe48iRIzhx4oTOddgsDjWHkMpW2UmB6vgyA1vhSFebQQr65Zdf0LBhQ4wZM8bgvqRRUwhRU3XY/P7776nDJiFViCoZ+sfd3R3Tp0/HhAkTIJPJ+A6HVCJKLN7h559/hpmZGcaNG8d3KISQYlDyoVu++uorZGZmIiIigu9QqpSQYTjbdAE1hZQgJSUF4eHhOHz4MHXYJKSQqr6Aqz5QZSzLy/kJN4yMjLB48WIMGTIEgwcPNpgZObmaIEtATSG67fvvv0fnzp3Rpk0bvkPhlD601RL9IhEwkAi4+5amb1UMfXvPdu/eHU2aNMFPP/3EdyikklDFohh3797FmjVrEBcXx3cohOiUkpIAri/uhc+jqmQQ7ccwDObPn4/OnTtj4sSJcHZ25jukSkedNwlmzpyJAQMGoGHDhnyHQghvSjMctDLaf99WMIqeV3VfeV8L0Q6+vr4IDAzE3Llz+Q6lSogEDGdbWZw6dQpBQUFwcXEBwzDYu3fve58TExOD5s2bw8jICHXq1MGGDRvK/HopsSgkISEBe/bswZw5c/gOpdLoW2mVaL/SdEorb9JQ0vH1gT6/V+fNm4f169fj9u3bfIeitzIzM9G0aVMsW7asVI+/d+8eevTogY4dOyIhIQGTJk3CqFGjcOTIkTKdl5pCCgkLC8P48ePh7u7OdyiEaCXVRftdFQAuL+yqZKPg3BVv57Ngi9z3LoVjNrT5MLRJ/fr1MWjQIMyYMQORkZF8h1Op+GoK6d69O7p3717qx0dERKBmzZr4+eefAQANGjTAmTNn8MsvvyAwMLDUx6HEooCYmBicO3cOmzZt4jsUQnhTUsJQGVUAk2JO9vZirzkSpDQKTqBF/TC035w5c+Dp6Yn4+Hg0b96c73AMXmxsLAICAjT2BQYGYtKkSWU6DjWFKLEsi2nTpuHrr7+Gra0t3+FUOn0usRJ+qJoyittMhMVvFTlPwT4X+tj3whDeo66urggJCUFYWBjfoVQqrqf0TktL09hyc3M5iTM5ORmOjo4a+xwdHZGWlobs7OxSH4cSC6WoqCjcv3+/zJkZIbqutB0zi3amrHjfiMKMBQKYCRWbsYCBsYCBiVCg3MqejBQXL9Eu06ZNw8WLFxETE8N3KJVGyHCUWCj/ft3c3GBlZaXewsPDeX6FmqgpBIpqxbx58/D111/DzMyM73AI0TvGAsV3mJLygor0dSiY1EjlmscrbfOHoa5Bog2qVauGL774AvPmzYO/vz/f4eiER48ewdLSUn3byMiIk+M6OTkhJSVFY19KSgosLS1hYmJS6uNQxQLA8ePHcefOHYwZM4bvUKqUIZRaScWVVKEo2tyhqCwUrDaoqg/lZS4SwFK5qY6l2lTnK/vr0f4RJIb23vziiy8QGxuLy5cv8x1KpRBwUa0QMOqZNy0tLTU2rhILPz8/REdHa+w7evRomReNo8QCQHh4OL744guYm5vzHQohVaak/gWFmz4qg5VYWGgTaGzmIgGsxOWfSl/VbFJcAkS0j62tLcaMGaN1JX2u8LVsekZGBhISEpCQkABAMZw0ISEBDx8+BKAYBTl06FD148eNG4e7d+/i66+/xo0bN7B8+XJs374dkydPLtN5Db4p5OLFizh//jy2b9/OdyiE6BRjgWrYqebwU0kJ+7liJVZ8H8pWtltI5YqfeSyr7oNRmiaQ4keQlG34KuFOaGgo6tSpgxs3bqB+/fp8h6MXLl++jI4dO6pvh4aGAgCGDRuGDRs24OnTp+okAwBq1qyJgwcPYvLkyfj111/h6uqKNWvWlGmoKQAwLGvYY7A++ugj1KpVSz1u1xCNYzz4DoFUocIX+sJNAar7CycGhW+LmfInFoXPWU2iSBYK941QJQ0FL/SqfcUlFipvFytjNB6jecyixy7rvBiVwdCaQQoaNWoUZDIZ1q9fz3conEhLS4OVlRVm74+HsVnFK+I5mRn4Nqg5UlNTNfpYaBuDbgq5fv06Dh06pM7iCCEVV7hZo5pEiGoSIeyN3m7VJAJUkwjUt7k4n6rvhZhhYCwQqDuMvk9xI0f0ZQEzbSWTyTBz5kzUrFkTJiYmqF27NubOnYupU6di69atePjwIViWxaxZs+Ds7AwTExMEBATg1q1bfIdeLkIBV80hfL+S0jHoppAff/wRQ4YMQfXq1fkOhZAqV9pKReEKhKpSodpf+CcX7MwlAACZcphHnlzxM7tAKSFbVnRfaajifDuCxKCLtrz48ccfsWLFCmzcuBFeXl64fPkyhg8fDisrKwQHB+Pnn3+Gi4sLlixZgo0bN6JmzZqYOXMmAgMDcf36dRgbG/P9Esg7GGxicf/+fWzbtg1Xr17lOxTeRbD3qTnEAPD97dvaWnExELwjELkySZBLZWU+vqo5JSO/aPKhUrBJ5F1USZSMZat0KKqhNIOcO3cOvXr1Qo8ePQAAHh4e2Lp1Ky5evIiwsDC0bdsW5ubmmDFjBnr16gUA+P333+Ho6Ii9e/eif//+fIZfZrS6qYFYvHgxgoODUbduXb5DIUQrqUZRiBlG2byg2MxFAo2tpKYPOyMR7IxEsDETw8ZMXKFYrBzMYOVghmqWRqhmaQRzkQD2RiLlVr7mlLczeDIaVRq+EzBD0Lp1a0RHRyMxMREAcOXKFZw5cwbdu3dHs2bN4OPjg2fPnmlML21lZQVfX1/ExsbyFXa58TUqhC8GWbHIyMjA+vXrcejQIb5DIaTSve9CWbgJpKqGZFrVsCqyj1WWBWTKikV+Tr7iZ3Z+mY+vSBwUCYcwX1G5EEDxM0fLKxf6btq0aUhLS0P9+vUhFAohk8kwb948DBo0CADQq1cvnD59GjY2NhrPc3R0RHJyMh8hkzIwyMTijz/+QJ06dco86Qch5C3VsE/VEE9jY8XHichE8VNspugnIVQ+TrVfwEEPNMvqFgCA3LRcqKYGMkmXAgAkAkVSUrBJ5F2K63NBSUTl2r59OzZv3owtW7bAy8tLvUS3i4sLhg0bBl9fXwDAwYMHMWHCBJ6jrTgBR9UGAVUstBPLsvjtt98wZcoUMFo44x4hle19w0gLDydVzW6pSiDKu3jY+9jUrAYAyM+RqvepKhbSjDzFz0zFfblpUpSWkHmbBKlDzy9b5aLw8QBKOipi6tSpmDZtmrqvROPGjfHgwQOEh4dj2LBhcHFxAQCsXLlSI7FISUmBt7c3HyFXCFczvGrjLLHFMbjEIiYmBikpKTrX+aeyUQdOUlFmjop1dsTK/hTGlopagqpSIVJVNIwVlQymUOWCLdTRsjQsnBVzA+S8zoFYeXzh6xwAgCRXkZSk5pXtuMXNfVEVDKXjJgBkZWVBUGg4sFAohFw5+qdmzZpwcHDAjRs3EBcXBx8fH6SlpeHChQsYP348HyGTMjC4xGLFihUYMWJEmRZUIUQXlTQR1vuGlb6vUmEuUuw3N1J8fEjMK9YxszBbr5oAgLzMHPU+aXoWACD3TToAIOe1YgnnrBelX8oZeBu7Wn7RpKOqEwpDFBQUhHnz5sHd3R1eXl74+++/sWjRIowYMQIAwDAMQkNDMWvWLISFheHnn3/GzJkz4eLigt69e/MbfDkIGAYCDqoNXByjKhhUYpGcnIx9+/bh2rVrfIdCiN6zrKFo2pBYKCoZIjPFcFNVxUIg1vz4YZXfVuXSsnfUVBGZiGBhoqhiCFVJR3ougLJXLopfNdXwkg4PDw88ePCgyP4JEyZg2bJlyMnJwVdffYXIyEjk5uYiMDAQy5cvh6OjY4nHXLp0KWbOnIkJEybg2bNncHFxwdixYzFr1iz1Y77++mvcvn0ba9euRYsWLdCuXTscPnxYJ+ewEIKb0UYVm0qu6hjUlN7h4eE4ceIE/vrrL75D0VrUHKI/3lexKDzxlWrtD9V+1bd7VaVCtSiYmbJpw0jZ1GFso/igN1H+VO03slEkFOVNLFQVCwv3txeonJepAICs528AANnPXgMAMlMyFftfvq1gqKoZqcUkFhnKSoWqn0RmgWYYVcXiXdOAF3wuF7S5GeT58+eQyd7OK/Lvv/+iS5cuOHHiBPz9/TF+/HgcPHgQGzZsgJWVFUJCQiAQCHD27FlOzu/r64thw4bpZCdO1ZTeS6KvwsTcosLHy85IxxedG2v9lN4GU7GQyWRYtWqVQa8JQgifrDwVTRwCE0WiwUiU3zyVQ0IhV1y8WKkioZBnK5KF/LS0Mp+LETAwczDV3FkgwVAlTaWpYhQcJQIY3vBTe3t7jdvz589H7dq10aFDB6SmpmLt2rXYsmULOnXqBABYv349GjRogPPnz+ODDz6o8PnHjRuHX375BePHj9fZDveCAkueV/Q4usBgEovjx48jOzsbQUFBfIdCiFYr3LdCdRFWVSpUFQrVT1M7xQXczEHxjczY1kr5U/GNysi64t/UAEDi6AyJo7MithcpAIAMa0Wzh9jsOQBAZKKoaKQnZZTp2KpqTY6cVVdstGFBMm0jlUqxadMmhIaGgmEYxMXFIS8vT2Miq/r168Pd3R2xsbGcJBb9+vXDpEmTcOnSJbRq1arCxyOVz2ASi02bNmHgwIEQi7ntaEaItil9p03Npo+qHsomqtNM8Uuh8zIyxdBSNkeRHIhSXwIA5K+fles8JVUugLdJQ2pe2acQVzGUygUA7N27F2/evMFnn30GQNFvTSKRwNraWuNxXE5kZWpqik8++QSbN2/W2cSChpvqoaysLOzevRsnT57kOxRCdJK9k6IyYGKnGE1lrhxaauqgqEqYOtkCAMyUPwFAbK/oGyG0UuwTWCo6cwrMFM/h4jqsal4RK/tvqPptFBzKmvao9E0pqhExOXJ5gcrF2/sNsfNmQWvXrkX37t3V80xUlcGDB6N///74+eefIRLp3mWLRoXooaioKLi6uqJZs2Z8h6L1aD4L/Vd4IizVJbjwKqWqJhEzUeX2RZc61tO4LVBWLBipoo+FwEYxxFRkr6hc5D9/AiMbB8XvSfdKfR5TZVKkmi78VXYezEWqOStUC5iVbuRIwam+K0qbO24W9ODBAxw7dgy7d+9W73NycoJUKsWbN280qhYpKSlwcnLi7NwdOnSAWCzGsWPH0K1bN86OSyqHQSQWmzdvxuDBg3W24w8h2kZVqTCvrujYZ6b8KXZ0AwAI7asDABhrRdVCbmKlrlDkGSsrFiLVZNwVZ1arluJ8hSZdSnv4EhYuimpL2uP0Uh+vYMlZyLwdJWJIzR6FrV+/Hg4ODuoVSQHAx8cHYrEY0dHR6NOnDwDg5s2bePjwIadLJggEAgwcOBCbN2/WycRCwNHidjrSd1P/Vzd9/vw5jhw5goEDB/IdCiGVqvDKnKp2XdX+wu28b+9XbKrVPk2EDJyMhTARMrC1MYbYXAwjSyMYWRrBxMZYPay0sjzMVGzPWHM8Y82RYVEdGRbVkefgiTwHTwjcGyo2UwtI6jSBpE6TMh1f9RqsxEJYiYWQylmYixiYi97+G5SHtqyM+uTJEwwePBi2trYwMTFB48aNcfnyZfX9LMti1qxZcHZ2homJCQICAnDr1q13HlMul2P9+vUYNmyYRlOElZUVRo4cidDQUJw4cQJxcXEYPnw4/Pz8OOm4WdCgQYOwe/duZGSUrWOuNlCNCuFi0wV6X7HYvn07WrVqhZo1a/IdCiF6S1WpELnWAQCwVooyeL65opKRzSjmrsiQyoF8IDufBZQrjebJNTtOiivw4Wnq4aE4v2pOjDzFnBhv7r6Eqa2iKaQslQsZyxbpa6HNM3O+fv0abdq0QceOHXHo0CHY29vj1q1bGquELliwAEuWLMHGjRtRs2ZNzJw5E4GBgbh+/XqJk08dO3YMDx8+VM+MWdAvv/wCgUCAPn36aEyQxbUmTZqgVq1a2Ldvn3oVVKKd9D6x2Lx5M4YMGcJ3GIRoDVXVori+FarFuiTKybDUk11ZKhIDE1tFp00Te8WFyrRAZ02uXXuumMbb0Vxx7momip921ZQdNkXKDpvP70LiUR8AIL1/o8znKTjNd7ZM1ezBXR+KqvTjjz/Czc0N69evV+8r+KWKZVksXrwYM2bMQK9evQAAv//+OxwdHbF3794S11Dq2rUrSppL0djYGMuWLcOyZcs4fCVFMQyDQYMGYfPmzTqXWFDnTT1y584dXL58Gfv37+c7FJ1CHThJeakrFVaKUQOvlYuQvspWVA5SMhVDPV9nKzpoZhUzQZWR8kJvZVT+jyfT6or5LlSzd6p+vr77Rj3/Rp5y5dTsNznFHKGowp1eFSqWgHDdcTMqKgqBgYHo27cvTp48ierVq2PChAkYPXo0AODevXtITk7WmHfCysoKvr6+iI2N1frFGQcOHIhZs2bh2bNncHBw4DucUuOqmUwbmtpKQ68Ti23btiEwMBC2tpX3rYoQXVH4wlhwfgt1pUJZvVCtSKpaMdTISjVNt2KyKxPlJFhiO0XnTJGTOwBuhpAWdvmJYtIrDxvFfBS5VorEwMlCkcSoivdM8i2I3eoCAKS3/ynzeTLy5epJwbJlip95bMFPcu2vXty9excrVqxAaGgopk+fjkuXLuGLL76ARCLBsGHD1HNLFF7Hg8t5JyqTu7s7/Pz8sGPHDkycOJHvcEgJ9Dqx2LdvH8aOHct3GIQYrJRMRWXizitFs8bjNEV1IFlZJXijrFzIlP0WJAXmn7BVNoG42ZR/JWLVqJXcN4oOf7lpbyfHkipjM0lXlFXKOtRUG/tayOVytGjRAj/88AMAoFmzZvj3338RERGBYcOG8RwdN3r37o2oqCidSiyoKURPJCcnIy4uTmNoFCGG6F2z9an6FxSehVNVqRArl0SXWCgXGFNOoW1UTVGxENoqmhxgpShLyywUP1VNIFz6O0lRuchRJwCKCkZ1S0UMknzlGiMPr0PkouhXILt1tcznyZax6sqFqq9FpkzO6dwVlcXZ2RkNGzbU2NegQQPs2rULANRzS6SkpMDZ2Vn9mJSUFHh7e1dZnBURHByMb775BmlpaVq9EFdBQgEDIQcjOrg4RlXQ28TiwIEDaNWq1TuX7iWEVI1bLxSTXd14qhiR8Uh5OydLWbFQJgtCZaJjbKpIaNzszPDgpaLa4VW9/BcRU3trxfmUq6O+vvta3SFV8lpxLhNlDNmy0k3vXbC9u+C8FnzOddGmTRvcvHlTY19iYiJq1KgBQNGR08nJCdHR0epEIi0tDRcuXMD48eOrOtxyqV27NurWrYu//voLn3zyCd/hkGLobWIRFRWF4OBgvsPQWdSBU3cVXhuk6P639xdZQl15YRdIFKNCVJULkXJEhnrqbAtrxU/ldN0yE8UokUxWcZFWdda89/rtMuZc+e+ZIjkxVsZqpJw909FC8SVCbJ+qfqxqfRHV8uplVXyHTW5UxoybkydPRuvWrfHDDz/g008/xcWLF7Fq1SqsWrUKgGJkxaRJk/D999+jbt266uGmLi4u6N27N+fxVJagoCBERUXpTGJBTSF6ICsrC8eOHUN4eDjfoRBCCrij7IiZrkw4MlMVfR7ylYuAva1YKBKZrAxFm4q7iwUu33sFAGhRs1q5z69aaVVipqiYpD5IhcRMWbHIVJyrrBNkydiyT/F9GW+KzARcr1493LihGC6bk5ODr776CpGRkRpzQ7yvAtuyZUvs2bMHYWFh+O6771CzZk0sXrxYY3jm119/jczMTIwZMwZv3rxB27Ztcfjw4RLnsNBGwcHBCAoKQn5+vk6sHUKjQvRAdHR0sW2NhJC3iltxUaD85BKKNSsXQmPFqBCxmaIjJWOqbJYwUsxrwRop+l5kKIePqoaVPklX9HtQNYFw6f5rRROJnbLZxFI5WkRopqiiyO//A4FyTRFj26cAgMzkV+U6l+rfKVsm56ypw8vLC8eOHVPfLniBnDx5Mg4ePIgdO3bAysoKISEh+Pjjj3H27Nn3Hrdnz57o2bNnifczDIPvvvsO3333XcVeAI98fX0hEAgQGxuLdu3a8R0OKUQvE4v9+/cjODiY1gYhREu9UTZn5LxWDHHMy1aM2mCEyom5zBVVibxczbkK6nnY4NoTxWqlbeuUfxi5RNkpVTWsFgDEAlVHVkX1JDXv7QqnOWUcAVKapEMkEhW7UFdqairWrl2LLVu2oFOnTgAU63Q0aNAA58+f53yqbF0kFArRs2dPREVF6URiwXDUFKIr1zS9WytELpdj//79CAoK4jsUQrSSAICZUPOtryrVMkIBGKEAAuUmFKs2kWIzlkBoLAFjZAzGyBis2Ais2AhysTHkYmNk58uRnS9Hak4+UnPykfwmB8lvcvD4VRYev8pC+utsdTMIV1IypEjJkCJDKkeGVA65sQXkxhYQWtlCaGWL/KR7EFlaQmRpCYmFKSQWpmU+h0C5FVxbpaJu3boFFxcX1KpVC4MGDcLDhw8BAHFxccjLy9OYxKp+/fpwd3dHbGxshc+rL1T9LHSBalQIF5su0LuKRVxcHLKzs3UiiyXE0GW/TgHwtmKhkl/otlg5C+cj5dwWbevZ45EyQXGzKv88FyJl59TUB6kQSpSThEk1O7lWBgcY4ZsNq1GvXj08ffoU3377Ldq1a4d///0XycnJkEgkGsuQA7oziRXLsli7di1kMhmGDBkCU9OyJ3Kl0bVrVwwcOBCJiYnw9PSslHOQ8tG7xOL48ePo1KkTxGIx36EQovUKdwZjlDuYQncwygqHallyRqBosoBA8RGSr2wqyFeO1MxWdsZ8oxxOmqucCCtHOSlVbupzrl6CmmJhM4A1U/T7YIwV/T4EJorbaddvqEe1qBKK8lIsoa7ZYbMs81u4wwR9+/YFoFhcy9fXFzVq1MD27dthYlL+RIlvLMuCYRjY2Nhg6dKluHjxIhYvXgwLCwv1fVwxNzdH69atcfz4ca1PLATgZslzXWli0JU4Sy0mJgb+/v58h6EXKmM4HCEF5UuzFVtOhsYmzUyDNDMNuRmvkJvxCjlZUuWWh5ysPLzMkOJlhhRezpZIzc1Ham5+heIQSITqrfBy8xn5cs6aP1QKv7esra3h6emJ27dvw8nJCVKpFG/evNF4TEpKSrF9MrSJaqGyPn36YPny5bh+/TrCwsIgl8srpX+Av78/YmJiOD8u1wo2oVV00wV6lVjk5eXhzJkzlFgQUkoytoKjGxiBYivhuDKWhYxlIZcpNlm+HLJ8uTqhqAxyoRhyoRiscmMkxmAkxhBIROpNZCyByFgCoUQIoXLkC5fKOrwwIyMDd+7cgbOzM3x8fCAWixEdHa2+/+bNm3j48CH8/Pw4j7Wi5HK5OqEQCN7+LTRs2BBTp05FdHS0euXTklZILS9VYsH1cUnF6FViER8fD4lEgkaNGvEdCiGkDBiB8G3zSgGsTAZWJlMnJKpNKlNsufmKrZGDOfLkLPLKuX6HQMhAIGTw5k3OO5MCruYjmDJlCk6ePIn79+/j3Llz+OijjyAUCjFgwABYWVlh5MiRCA0NxYkTJxAXF4fhw4fDz89Pq0aEqBIKgUAAhmEglUoRFRWFa9euqR/Ts2dP9OvXD/PmzUNGRgbnVQtfX1+kpqYWmW1U26gmyOJi0wV61cciJiYGHTp00MiaCSGa3rXUFqssX6h/ylW3Fc+S5+Ur9yv6UDByxW31bJ7Kt55YefVVLSqmnh9DtTaJSNEJU1BMMsE55TlU/UNe33jwts9IObKEs/lvcEL2Cs0ZS7QXVIOQAfJZOU6xr3ALWZCBhTtM0B7VYITiX9/jx48xYMAAvHz5Evb29mjbti3Onz8Pe3vFomm//PILBAIB+vTpozFBljZRfc6ePXsWly5dQmpqKlavXo3JkyfDy8sLACCRSDBu3Dj8+uuviIyMxKhRoziNwcjICK1bt0ZMTAzq16/P6bFJ+enVFZj6VxCimyRmVpCYWUGs2kzMNTaRWAiRWAihSKDYKmnoXfHt2ooqRY5cjiR5DuJlabCHRON5J9nXuI9sBMIOveGITOTjMEruoBoZGYmkpCTk5ubi8ePHiIyMRO3atdX3GxsbY9myZXj16hUyMzOxe/duXvtXyIpZPyU/Px8hISEIDAzE9evXkZCQgNTUVJw7dw7PnimmUpfL5XByckLv3r3x+++/q/dxSRf6WQgF3G26QEfCfD/qX0HI+6kmfFL1fXi7KfpEsDI5WJkcsjwZZHmyt30j8vIhy8uHXLmxuTlgc3PA5OWCycuFUJ4HoTwPEiEDiZCBuUQEc4kItuYS2JpLYGqm2IzNxDA2E0NiUU2xmdtAYm5TOS+WZRWbXKbYKkjKyrE3/zl6iO1gVOCjM5eV4xqbjjawgStjAgfGCJ1gh2TkIgW57zii9lH1VVD9VCUBQuXEZQX7Mjx48AAHDhzA8uXLsWrVKuzZswdTpkxBfHw8zpw5A+DthE7dunXDrVu3kJGRwXlFWRf6WQgYrppD+H4lpaM3iQX1ryBE95naumhsxjZOMLZxgpmVEcysjGBsKoaxqRjWJorNVCyAqVgAsYCBWMCglqUQjFwGpoKJxPPcos8/lP8CdQQmqCXQnJfhGXIhB+CKt8NEbRgxzCHUmcTi+fPnCAsLw/bt2zX2q5KAHTt2oHfv3pg1axb++usvAIo5g2QyGdq3b69+/Pjx42FnZ4eTJ09CKpWqEwsrKyvUr19fo/8FV1q1aqUT/SwMid70saD+FZWDVjnVPW/nU9Bc5VSxv/ivPOq5GKRy5U/FhTVfuUqpLEdxgczLVIzkMMpSTKvNSDM1fpqKFYt8qdbvcLRUzBtRw04xl0SWcqGvvBxrjfOLTRRzTsjypaV+ne8iSbqq/p2VKtYrUfcPUfYXeXX7ZZHnlTQXxZX8dCSzuRgpql7kvkxWBiEAo0KjY0whRBaKJijaOIybYRhERUUhPT0dvXr1Ui9I9uLFC0yYMAEXLlxA3759cffuXezatQuTJ09Gp06d8OTJE3VVIz8/Hw4ODmjcuDGOHj2KK1euoGXLlgAABwcH3Lt3D7Vq1eI8dlU/ixMnTmhtPwsBR0NFdaXzpt5chc+dO4e2bdvyHQYhpJwsnNxh7VoH1q51YOXiBisXN1g7WMDawQIWNiawsDGBm50Z3OzM4GRtDCdrY9iYiGFjIoaJiIGJiAGTnwsmn9sqwRt5Hg5IX6C3yAEiRoDsYsbnam8R/t3kcjlyc3NhZ2eHTz75BFevXsWlS5fU9587dw7Xrl1DXFwcFi5ciM2bN6Nhw4aYPn063rx5g0aNGmHdunUA3jaXODk54cmTJzhx4oT6ODVq1IBYLEZqaioqQ9u2bbV6unNDGxWiN4lFXFwcfHx8+A6DEK2j6kdR8Pe380woNqmchVTOQs4qNplUDplUjvycfOTn5CMvMwd5mTmQpmVBmpYFeWY65JnpkKW+hCz1JQTZqRBkp8JSIoSlRAhbEzFeZOWhuqUx0nLyUNfRHBk5eXBzVFQmqjmbQ2wsRDUXW5haWcLa1aPSXr88OxPy7Ezk50g1NrlMXmBT9CUp/G8mY1k8keciAzKsyXuCebl3sSj/Hh4jB/FsGn6V3YcpI4Qcir4WBWVBBtMSRoXw4eXLohUagUAAIyPFyrXt27eHTCbDyZMn1ffv27cPo0aNgkQiQVhYGGrUqIFLly5hypQpqFevHkaPHo1ff/0Ve/fuhUwmw+PHj5GYmIj69evjypUrePz4MQDFuiiDBg2CnZ1dpbw2Hx8fxMXFVcqxSdnpRVNISkoKkpKS0KxZM75DIYSUk4ObFYC3Q1MBwMhE0aTiWk3Rr6G+s6KpxVXZxOJoprgomivX+RAom2jkmWmcxJSaJ0dNgSk+N3JDrnLoba6cxWHZc1RjxPBhrGABEQQAHiMbtaFo8nnN5iEDMjjCiJM4Kmr06NEQCARYuXIl5HK5usk4OTkZX3/9NaKjo9GtWzfcv38fsbGxuH37NurUqQOZTIZvvvkG33//PRo2bIgff/wRwcHB6vU/Pv/8c1y8eBETJkxAeHg4rl27htmzZ8Pf3x+LFy9W97Fo3LgxLCwsiqx/whUfHx/cuHEDmZmZMFNO6a5NuBrRoSujQvQisYiLi0PdunVhaWnJdyiEaK2Cs2wWXt9CxiouAFLlxVOSo+iPoOpjkafsGyFNz1L8fP0GACC0UXwLFtu8Rn41d4iyXyFdbI1qJkLUsFZc/PNkmt/kzY0VycIDM8WQTVW/C3mFpgAtXvaVc+rf8zMVfS3yC722jKdvFzwrLgQjRgBHxgg5yhlAslkWYghgAiHsGMVraABznMVrGLNCiMHgNF7DEUZakVjI5XKYm5ujRo0aADRnx1y0aBH++ecf7N27F69fv0Z2djb27duHc+fOoU6dOujbty/++OMP/PHHH/jwww/Vz3v8+DEOHjyIbt26YePGjTh79izOnj2LhQsXol27dli9ejUeP36svsibmZmp57aoDC4uLrC3t0dCQgLatGlTaecpL66aMXSlKURvEgtqBiFEtzWpYwvg7WRb1soOoE7KBAUAqlsofq9poxiBUc1E0dRgwiqSk1WrVmPl5h24/1BRgq/vbItverVH16Z1AQA5+fmYd/kaDj98Cmm+DC2trTHW1BE2wvcvWlhc0qHa1wbVwOAVDuM5ZGDhBmO0hW2ZXn9lEQgEOHv2rHqhLlXFIikpCdHR0ejVq5e6k2WXLl3QokULnDx5Eh999BE6duyImjVrYuPGjbCxsUGLFi3w+PFj/Pjjj3j58iU6deoEgUCAdu3aqVeUjo+PR0REBP73v/9VWoWiMIZh1M0h2phYGBq9SSxomXRi6FQXudJMJqmqIagqFKqf2crqgolyVIhUWU3ITVV0iJS8Tlc87qWiE57ESrGMN2NmCaFYcbE3t1E2U5iqvq0ryuZiZR3XUlmxcFUmBy8zlNUQWcUnTqru7Ih533yBWpI8sAA2Ru7GgF8jsa9/V3jaWmHOics4+eQZfmzRBHiViyWP7uP79AdYYFdL49/hfcWTfiJnjceLGAbtYYv2BZKJSijAFOvy5cu4du0aevXqVeRCLpPJIBQKUa9ePZw5cwbjx49Xz/dgZWWFGzduYN68eQAUozpEIhGCgoKwY8cOXLx4EZ07d8a6deswY8YMfPLJJ6hbty7Onz+PDh064Ntvv0XduoqE7dmzZ9i5cydWrlyJu3fvok+fPhg5cmTV/AMoaXM/C4ZRbFwcRxfoRWIRHx+PSZMm8R0GIaQCWtdSVSwUt03EimqElXKJc1V/CuBtpcJGOQGmULkMe88WiuGGeY9uAQC+CWiFNdGXkJD8Es7mJthx7R7m+TRCK/tqSM1NxzcetTHs2hXckGahvkRzfor3kZZzXRKuPHv2DOPHj8exY8dgbW2NlStXYvr06ejZs6c6oRAKhcjPz4eHhwcuXryo7oMgk8lgZmaGJk2aYM+ePejWrZu6P0SfPn3w/fff4/Tp0+jcuTPat2+PAwcOID4+Hnfu3MHvv/8Od3d3jVjs7OzQtGlTjB8/HgMHDuSlWdrHxwd79uyp8vOWhgAMBCUM9S7rcXSBjnQFKdnz58/x6NEj6rhZibRx3D15v8IjQDT3vXt0iDRPptgy8yDNzENumhS5aVJI03MgTc9Bzss05LxMQ/bzV2BMzCB7/gTsi8dgXzyGMO0phGlPYcXkworJhYu5GC7mYtSzNUU9W1M0dbJAUycLNHe1RnNXa/jVqga/WtW4f/0yOfbE30BWbj68TE0Rf+cp8uRyNDUyR05aLvIypXCWCWEnEON6biZScvKK+fdRbJkcVFMAbt5LqnkjDh48iDdv3uDJkyeIioqCs7MzZs6cCUBzpkyRSAR7e3tkZWXh4sWLAN72sxg5ciT++OMP3LlzR/2co0ePwszMDIcPH0Z8fDwAwNLSEv7+/hg5ciTc3d0hl8s1pvkWCARo06YNxo0bB0tLS8hkMs6n7n4fHx8fXL9+HVlZWVV6Xl2wbNkyeHh4wNjYGL6+vuq/g5IsXrwY9erVg4mJCdzc3DB58mTk5OSU+nw6X7FQddy0srLiOxRCSAU0d9b8litSjtQ0US5cZi5W/DRj8gAoFz9LVaxJwaQqmmTynz/Bv/ceo8Pnc5GTlw8zsRirPw1AHZEYN16nQSwQwEKs+bFnLRDitXIxtdIoaRKtqiIQCJCVlYWNGzciKCgI5ubmaNq0KUaOHInhw4dj//79CAoKgkwmA8MwYBgG/v7+2LJlC06ePImOHTuqqxOjRo3CihUr0LdvX/Vw0NjYWISGhsLc3Bw1a9bUOHdxy6MXd78qSalK1atXh52dHa5cuaJ1y8vz2RSybds2hIaGIiIiAr6+vli8eDECAwNx8+ZNODg4FHn8li1bMG3aNKxbtw6tW7dGYmIiPvvsMzAMg0WLFpXqnDqfWPz9999o3rw532EQovUKzrxZeHTI274WivtVk0BJlCMnVH0tsl8rvrWIjFNhXt0eWcmvIJQoOz4qVxFVdYMUyRTPtbBQrNhpYqGoSlgYKS5KDmaKR0qV5+KoKABPVyecnjMGadm52BF9CZP3ncT6zr6KO1kWeZl5AN6OCpEDyGcBaYHzq/49VLv4TiYKYxgGV69exYQJE9T7unTpglatWiEqKgpBQUHq5cwBoEmTJmjVqhVOnjyJixcvolWrVsjNzYWRkRE2bdqETZs2Yd26dUhLS8O0adMwfvz4YpOH9y17zvWy6GXBMAyaN2+O+Ph4rUssFGuFcHOcslq0aBFGjx6N4cOHAwAiIiJw8OBBrFu3DtOmTSvy+HPnzqFNmzYYOHAgAMDDwwMDBgzAhQsXSh9n2cPULjdv3kSDBg34DoMQUk7ulhLFZiXW3JT7HcX5cBTnwzz3FcxzX0H0+qF6Y14qtvzHt5H/+DbyUh6BefUUTiwLT2MJJnl7on41S2z85zas5ALksSzS8zWrE6nyfFhztHx7wWalynTnzh24urqqK7WXLl1C//79cezYMSQnJyMtLU19kVc1SQwfPhw2NjaYNWsWAMWS5gDQoEEDzJs3D8eOHcOjR48wceJECAQCsCyr1Qt7FadBgwZITEzkO4xKl5aWprHl5hY/26xUKkVcXBwCAgLU+wQCAQICAkqcqbR169aIi4tTN5fcvXsXf/75p8Zw4/fR+YrFzZs3ERgYyHcYhGiN0owOUX0Dl0Nz/orCo0MkytEhwjRFxUIoUVyAhWIhBOLXAACm8Kw9ygXAhMo1OkT2ivVFBKaKESXVTBQXQxsTxRwHFV939N3kLIs8uRwNrC0gAoMLyS/QztIGOTn5eJKfi5fyfHgITdSvPSP/belC2yoVKnXq1MG9e/fw22+/ITQ0FMnJyRg4cCD69euHR48eaVQOVJWHZs2aYe7cuWjTpg1WrlyJvn37olq1apDL5WAYBs7OipEuqtEhfFYfysvT0xN79+7lO4wiuG4KcXNz09g/e/ZszJkzp8jjX7x4AZlMBkdHR439jo6OuHHjRrHnGDhwIF68eIG2bduCZVnk5+dj3LhxmD59eqnj1PnEIjExUT0+mxCieySv7il+ESg/jlRTYyv7PTB5ym9juYqFzuSpikm5ZC+fqo+R9yIFAPC/9fvRqV4N2OTmIVOah13xibjw5DkWNW4EUYYM3axtsfLZE1gIRWDy8rEmPRm1RSaoLTJBal752mKqOvmQy+UwNjZG+/btERMTg+XLl6N9+/aoUaMGjh8/jj59+sDCwqLY53l5eWHVqlXYuHEj/v77b0RERBRp8hCJdPey4OnpqZUVC65HhTx69Ehj5I1qWnYuxMTE4IcffsDy5cvh6+uL27dv48svv8TcuXPVnYPfR3f/gqCY+/7Vq1fqsdSEkKI0VztVdq5jNCsVqmvL24oFlI9TVi6yFP0SmNcMTG1NkPUiS2PqbeDtqqEyqeKxJtmKRIBVTq8tsFIMJxUpf4avicTeI8dx4859mBgbw69FM/zwv6moV9tDfcycnFx8/e18bDvwF3KlUnRt0xJLJg2Ho611sa/1RUY2Pt9+DCmpmbAwEqOuhTmWt2+BJsolzUeYOYLNk+O7x3eRx8rRWGKOPsYOyJaxBeawKLhmSOGf/FcwBAIBcnNz4e3tjRs3bmDIkCHq+5KTk+Hr64v09PQiyYWqAvHpp5+idevW2L59O54+faquVOgDT09P3L9/X91/RF9ZWlqWakivnZ0dhEIhUlJSNPanpKTAycmp2OfMnDkTQ4YMwahRowAopmPPzMzEmDFj8L///a9UK4jrdGKRmJgIJycnmsqbEB10MuYkxnRvi5aNRyNfJsOslVvx4adDcGXrEpiZGIOVyxD60yocOhuHzTMnwFLIYnLENvSdPBvR341D7ivFJF2qyboAYG7rJkDrJsh6pkhmMlIUyU32C0VzjIQRYLxNdYy3qY5U5dTe5a1U8MnIyAgtW7bEH3/8gRMnTqBjx44AgD179sDBwaHYioUqsWBZFq6urpg0aVKpLhK6xMXFBSYmJrhz5w4aNmzIdzhvcdQUUtaih0QigY+PD6Kjo9G7d28AispVdHQ0QkJCin1OVlZWkb+LgsOXS0PnEwtqBiHk/YSFPtXedi5U/JKn6pchV1U0FLdVo0PU/Q7SpUUqFao1PuR5yjU4cjTXFTFJVfStkNgoJrGSmSkuevsXfAMAYIwUM3Wumfk5qnf/DPE37qBdMy+kZmRiw/7j2DhjAjo29wKblYZVk4bAe9x3uHjrIZraln2IeUZuvubrQdH+JXkaFYvCa6qgyH18admyJdq0aYMRI0Zgy5YtePDgAdLS0hAeHv7O56kSDH1LKgDFa6pbty4SExO1K7HgUWhoKIYNG4YWLVqgVatWWLx4MTIzM9WjRIYOHYrq1aur/26CgoKwaNEiNGvWTN0UMnPmTAQFBZV6GLHOJxb16tXjOwxCSCm8uanoSyGxVE7xbaZonhAo55V4oaw8mKclQ3qXxcWrt5GXn4/W1cTIufMf8jKzUR1AdWtznIy9Co9GtQEAucppxgEg+6WyQqEcFpuj/JmbVnyveV3m4uKCJUuWYMiQIRg8eDDS0tIwe/Zs1K5dGyzL6mTnSy5oYz8LPoeb9uvXD8+fP8esWbOQnJwMb29vHD58WN2h8+HDhxpJ5owZM8AwDGbMmIEnT57A3t4eQUFB6qnfS0PnEwtfX1++wyBEKxUcHaLZzwJQVSoKz2uh/rauHqohVx9D7Y3iIq2qVLCqvgl5iiepVg+Vpiku8rlvFKuHSixKnjJbLmfxzR9/ws/THV5uig+8lNQMSERCWJsaazzW3twUzzLKN7uiqlKRXaD0oBoBk1eoKlHaKburak2QwliWhZ2dHXbt2oWkpCTUqVOHn0C0jDYmFgzK3IpR4nHKIyQkpMSmj5iYGI3bIpEIs2fPxuzZs8t5Nj1ILAp2XCKEaI/0x4oKhDRdUTUQK5dJF5spEgWhsaJznVAswvRD5/Dv3STsHh6E1zceAAAyn7wAWBavEx8BAGQ5ioRGlpsH6ZsMpD9UNK2oFkjLVQ6JVfyeq/EzM7v0M2tWFq6nxldVJExNTdVJhWqoqCHz9PTEqVOn+A7DoOn0X+D9+/eLTDlLCHm/wn0s3n5LV+5WVkaFyttvv+EX6OiYrriQs6qZM5VzXuRlKEaFGFlKShXLzMOxiL71CDs/6wlnSzP1fntzE0hlcqTlSGFp/PZYL7NzYFeoilFaqtdRsGJReDRI4Z+K31FknzYy9KQCAGrWrIl79+7xHYYGAcNAwEHTFBfHqAo6+1eYmZmJtLQ0vRoqpc0i2PsYx3jwHQbRYlnKkRdS5ZTZ6iXXlZUEkYni40ZkrGgiERoLMf/v/3AiKQVrO/nC8mU63rx821+ihlQGkYDB0Us3EODqBLlUhvvpmUjKyEYdVoy0R4rH5imbXgr2o1AlN5n5imSnYGdNot+cnZ2RnJwMuVyuNR1UGXA0QVbFD1EldDaxePr0KcRiMWxtbfkOhRCtJmPf9pFQfeN+3yiRwhWMe7JMnMl/g8fyHKSxMowxdYGfsWKYt7lcMfXz7pyXOJL5CpmsDA2NzRDqUQuuRiVXFn74+zoOPXyKJe2aw0wkwotsRWJgLhbBWCSEhUSMj2u54ecrN2AlEcMEAiz45wYaW1uisbWVOnkoi7cVC81+FYrXWnTkB9E9zs7OyM/Px8uXL2Fvb893OAZJpxMLZ2dng+35TEhVypDLYM9I4C22wBZpMqRyVl0FkLEsDuW8xKGcVxhr7gI3sQRbM59hauJ/WOHkCRNVxcJY8XEjlCi+Re64o+g7MeK45hLO0z090cPJEayMxVh7V0jTpQg98zfyWDlaWlrhC6cayEjKUFcqVIuJSZWdR4vrmJlN2YLBMDMzg6WlJZ4+fao1iYUA3CzMpR31l/fT+cSCEPJ+hdcPed8oEfWICOUnWV2hGRoy5sUem2VZHMt5jd4mdmhhZAETIYMvLKtjxPNExGanoZNR8VXFk60UK1AKxYqx8Uwxi5sYCQQIrVkLoTVrQaacyEouLf/qIiWNACn4e2nmrKA8Rbs5Ozvj6dOnaNKkCd+hAIB6+XoujqMLKLEghBRpCimcYAgZaHxdkspZdRUgRZaHVFaGGgLFehuq6cBriYxxJSsDrUSKCbFU04KrOqCpKheqRcwKJxaqTqGqqcJVw1tlykpJ4Ymt3k5HXrR5I5urNdmJTlAlFoQfOptYJCUlUWJBiBZIZxWZhCWj+XFiJRDhjZz/YZ4FqSoVxfWnKFypKG4ECFUqdIOLiwuSkpL4DkONzwmy+KCzicXTp09p8TFCyqikJhFVZ86SKhcA+3YoKoA8Ofu2/4Jc8TMzXw6hQA6J8tMvT3nxfqVael15KNX9wjxGY//7YlYpPDxUFVfhykVxjyWGQdsqFlwvm67tdKUvSBHUFEKIdjBXVioyWM2+D+msDJYC7fruIpUrVjGVsVBubIGNKhL6QtsSC0OjXe/6MqDEgpDyK2vlouCQVQDIZ1nkKKsB5owQ5hDien4mbCCGVM4gh5XjviwHLYSW6tEjqmMLGc2rd+Ghr29jKhxz8U0VhafgVu0v2KuitNNzE/2gbYkFjQrREampqbCxseE7DEIMgpSVIx1v+0u8YfORIs+FMSOEvUAMX5EVTuW/hi0jhq1AjOi8V7BghGgoNHvHUavO+5KS4h779nalhkYqgY2NDVJTU/kOQ41GheiI9PR0mJsXP/yNEFI6JQ9DVVHc8ZTNxR55inrvCfkrnJADjRhzfAh7NIclcgRyROU9Rw7kcGOMMUjsDBnLFFOx0DxD4YpFybEWnwwUrlC8K2kghsHc3Bzp6envfyCpFDqZWLAsi4yMDFhYWPAdCiEGwZUxwSSBB4DiEwSGYdBeVA3tUU29v7QJQ2Up2PxRUhXiXZ06KTHRXRYWFsjIyOA7DDUaFaIDcnJyIJPJKLEghCOFKxdv97/te1HStN9v+2UUmPOimGOp+lYUTTgU+0tqPy48A0V5kgRiWCwsLLSuYqEjOQEndDKxUP3BUFMIIUSlLPNPUKVCv5mbmyMvLw+5ubkwMjLiOxyDo5OJRUZGBkQiEf3BEMKxwhfV4vteFF9xKHx/4Yv32wpGSZWL0sZInSvJu6mq2RkZGVpxnaCmEB2Qnp4OCwsLnekhSwjhXklDSEsz0qM0zyG6y8TEBAKBAOnp6bQCNg90MrHIyMigZhBCqkBxfS9KGjlS+P6i/TVUxyq+okEIVxiGgbm5udZ04DS04aZlnm/j1KlTCAoKgouLCxiGwd69ezXuz8jIQEhICFxdXWFiYoKGDRsiIiJC4zE5OTmYOHEibG1tYW5ujj59+iAlJUXjMVFRUfD09ES9evVw4MABjftUFQtCiP7QnAWz5K3o7JmFt6LPKXouzY3on4p04Fy2bBk8PDxgbGwMX19fXLx4UX3fzZs30aZNG7i6uuL7778v1fFUTSFcbLqgzIlFZmYmmjZtimXLlhV7f2hoKA4fPoxNmzbhv//+w6RJkxASEoKoqCj1YyZPnoz9+/djx44dOHnyJJKSkvDxxx+r78/NzcXEiROxfPly/Pbbbxg/fjykUqn6/qysLJiampY1dEJIOb3rIlxyElD8hf9tYvDuiz8hFWFmZobMzMwyP2/btm0IDQ3F7NmzER8fj6ZNmyIwMBDPnj0DAISEhGDw4MHYt28f9u3bh3PnznEdus4rc1NI9+7d0b179xLvP3fuHIYNGwZ/f38AwJgxY7By5UpcvHgRwcHBSE1Nxdq1a7FlyxZ06tQJALB+/Xo0aNAA58+fxwcffIDc3FwIhUJ4e3srghSJkJubC4lEAgCQyWQQiXSyFYcQnVfSN/yShqqWjJvOm+9/fLlOQ3ScUCiEXF54sPL7LVq0CKNHj8bw4cMBABERETh48CDWrVuHadOm4fXr1/Dx8UGTJk3g4uKCN2/evPeYDLgZbqojBQvupx5v3bo1oqKi8OTJE7AsixMnTiAxMRFdu3YFAMTFxSEvLw8BAQHq59SvXx/u7u6IjY0FAFhaWmL48OFwdnaGi4sLxo8fr9H0IZfLIRDoyqzphBBCqppAIChzYiGVShEXF6dxfRIIBAgICFBfn7777jsEBATA1NQUAoEAgYGB74+FYTjbdAHnX/uXLl2KMWPGwNXVFSKRCAKBAKtXr0b79u0BAMnJyZBIJLC2ttZ4nqOjI5KTk9W3Z8+ejUmTJkEgEBTpT0GJBSHap7SVjLePr5xSAlUoCFC+xOLFixeQyWRwdHTU2O/o6IgbN24AAD788EM8f/4caWlpsLe35yxefVIpicX58+cRFRWFGjVq4NSpU5g4cSJcXFw0ssDSsLKyKnY/JRb8iGDv8x0CKcE4xoPvEAjRKlevXsXjx48r5dhGRkZlSioYRrFVlI4ULLhNLLKzszF9+nTs2bMHPXr0AAA0adIECQkJWLhwIQICAuDk5ASpVIo3b95oVC1SUlLg5ORUqvOw1NGLEJ1BFQTCl9u3b5fp8XZ2dhAKhUVGKZbl+lQchmXBcHDd4uIYVYHTxCIvLw95eXlFqgkFO9H4+PhALBYjOjoaffr0AaAYvvPw4UP4+fmV6jwCgYCSCx7Qt2JCiK5o0qQJOnToUKbnSCQS+Pj4IDo6Gr179wagqJBHR0cjJCSkEqLUT2VOLDIyMjSywHv37iEhIQHVqlWDu7s7OnTogKlTp8LExAQ1atTAyZMn8fvvv2PRokUAFM0bI0eORGhoKKpVqwZLS0t8/vnn8PPzwwcffFCqGMrTdkYIIcRwlLfJPDQ0FMOGDUOLFi3QqlUrLF68GJmZmepRIuXCyhVbRXFxjCpQ5sTi8uXL6Nixo/p2aGgoAGDYsGHYsGEDIiMjERYWhkGDBuHVq1eoUaMG5s2bh3Hjxqmf88svv0AgEKBPnz7Izc1FYGAgli9fXuoYKLEghBDyLuVNLPr164fnz59j1qxZSE5Ohre3Nw4fPlykQ2dZMKwcDAdJARfHqAplTiz8/f3f2Qzh5OSE9evXv/MYxsbGWLZsWYmTbL0PJRaEEELepSKd/ENCQqjpowJ0cpYpIyMj5OTk8B0GIYQQLZWTk6OeVJF31BSi/bRpcRlCCCHaJyMjQ3vWlGJZxcbFcXSATk4GUZHFZQghhOg/WqySPzpbsaDEghBCSHHy8vKQm5sLc3NzvkNRoKYQ7WdhYYHs7GzIZDIIhUK+wyGEEKJFVE3l2lKxUEyQxcWoEGoKqTSqLJT6WRBCCClMVdE2NTXlORLDpJMVC1VikZ6eXuJ6IoQQQgxTeno6zM3NtWdNKQNrCtGSf/WyEQqFMDU1pYoFIYSQIrRqRIgB0smKBUAdOAkhhBRPVbHQGgZWsdDZxMLCwgJpaWl8h0EIIUTLaN1QUwNLLHSyKQQAHBwc8Pz5c77DIIQQomWePXsGBwcHvsMwWDpbsXB2dkZSUhLfYRBCCNEySUlJcHZ25juMt1g5wMX6VjpSsdDpxOLp06d8h0EIIUTLPH36VKsSC0Nb3VRnm0IosSCEEFIcbUssDI3OJhYuLi6UWBBCCCkiKSkJLi4ufIfxlqrzJhebDqCmEEIIIXpF6yoWtLqpbqDEghBCSGEymQwpKSnalVjwbNmyZfDw8ICxsTF8fX1x8eLFdz7+zZs3mDhxIpydnWFkZARPT0/8+eefpT6fTlcs3rx5g+zsbJiYmPAdDiGEEC3w/PlzyOVyODk58R3KWzzOY7Ft2zaEhoYiIiICvr6+WLx4MQIDA3Hz5s1ih+RKpVJ06dIFDg4O2LlzJ6pXr44HDx7A2tq61OfU2cTCzs4OIpEIT58+Ra1atfgOR++NYzz4DoEQQt4rKSkJNjY2MDY25jsUNT5XN120aBFGjx6N4cOHAwAiIiJw8OBBrFu3DtOmTSvy+HXr1uHVq1c4d+4cxGIxAMDDw6NM59TZphCBQAAXFxc8fvyY71AIIYRoicePH6N69ep8h1Gp0tLSNLbc3NxiHyeVShEXF4eAgAD1PoFAgICAAMTGxhb7nKioKPj5+WHixIlwdHREo0aN8MMPP0Amk5U6Pp1NLACgbt26uHXrFt9hEELIe1HVr2rcunULnp6efIehieNRIW5ubrCyslJv4eHhxZ72xYsXkMlkcHR01Njv6OiI5OTkYp9z9+5d7Ny5EzKZDH/++SdmzpyJn3/+Gd9//32pX67ONoUAgKenJ27evMl3GIQQQrREYmKi9iYWXBwHwKNHj2BpaanebWRkVPFjK8nlcjg4OGDVqlUQCoXw8fHBkydP8NNPP2H27NmlOoZOVyw8PT2RmJjIdxiEEEK0hFYmFhyztLTU2EpKLOzs7CAUCpGSkqKxPyUlpcTOrc7OzvD09IRQKFTva9CgAZKTkyGVSksVHyUWhBBC9IZWJhY8TZAlkUjg4+OD6Oho9T65XI7o6Gj4+fkV+5w2bdrg9u3bkBdY2yQxMRHOzs6QSCSlOq9OJxb16tXD7du3y9SphBBCiH7KyMhAUlIS6tWrx3coGlRrhXCxlVVoaChWr16NjRs34r///sP48eORmZmpHiUydOhQhIWFqR8/fvx4vHr1Cl9++SUSExNx8OBB/PDDD5g4cWKpz6nTfSxq1KgBAHjw4AENOSWEEAN369Yt2NjYwNbWlu9QtEa/fv3w/PlzzJo1C8nJyfD29sbhw4fVHTofPnwIgeBtjcHNzQ1HjhzB5MmT0aRJE1SvXh1ffvklvvnmm1KfU6cTC5FIhNq1ayMxMZESC0IIMXCqZhCGYfgORZOco2XTy3mMkJAQhISEFHtfTExMkX1+fn44f/58uc4F6HhTCED9LAghhChoZf8KA6TTFQuAhpwSQghR0NrEghYh0y2NGjXClStX+A6DEEIIzxISEtC4cWO+wyjKwJZN1/nEwsfHBwkJCTQyhBBCDFhWVhauX78OHx8fvkMxeDqfWNSvXx9yuZz6WVQimoqYEG7Qe6ny/PPPP7C1tYWrqyvfoRTB53BTPuh8YiESieDt7Y24uDi+QyGEEMKTuLg4+Pj4aN+IEICaQnSRj48PJRaEEGLAVIkF4R8lFoQQQnSeVicWLMtRxYJGhVQZHx8f/P333xpzmxNCCDEM2dnZuHbtmhYnFjJAzsHG6sYgBb1ILBo0aID8/HzqwEkIIQbon3/+gY2NDdzc3PgOhUBPEguRSISmTZtScwghhBiguLg4NG/eXDs7bgJg5XLONl2gF4kFALRq1QoXLlzgOwxCCCFV7MKFC2jZsiXfYZSMi2YQ1aYD9Cax6NChA06ePMl3GIQQQqrYyZMn4e/vz3cYRElvEov27dvj33//xcuXL/kORa/QhD6EcIveU9y6d+8ekpKS4Ofnx3coJaOKhW6yt7dHw4YNcerUKb5DIYQQUkViYmLQqlUrmJmZ8R1KiViZjLNNF+hNYgEA/v7+xa4tTwghRD/FxMRQM4iWocSCEEKITmJZVjcSC7mcu00HiPgOgEuqfhYvXryAnZ0d3+EQQgipRPfv38fTp0+1u38FoEwKOGjG0JHEQq8qFtTPghBCDIcu9K8wRHqVWADUHEIIIYbixIkT2t8MAoCVyzjbdIFeJhbHjx/nOwy9QMPiCKkc9N6qOJZlceLECXTo0IHvUN6P5ah/BS2bzo/OnTvj5s2buH//Pt+hEEIIqST//PMPXr9+jXbt2vEdCilE7xILa2trtG/fHvv37+c7FEIIIZUkKioKXbt2hbGxMd+hvBc1heiB4OBgSiwIIUSP7d+/H8HBwXyHQYqhl4lFUFAQYmJikJqayncohBBCOJaUlIT4+Hj06NGD71BKh6b01n21atWCp6cnjhw5wncohBBCOHbw4EH4+vrC3t6e71BKx8AmyNLLxAJQNIdERUXxHQYhhBCORUVFUTOIFtPbxCIoKAh//vkn8vPz+Q5FJ9FwOEIqF73HyicrKwvHjh3TqcSCFiHTE61atYJYLMbZs2f5DoUQQghHjh07BldXV9SvX5/vUEpPNaV3hTdqCuGVUChEjx49sG/fPr5DIYQQwpGoqCgEBQWBYRi+QyEl0NvEAgD69OmDHTt2QK4jWR4hhJCSSaVS7N69G3369OE7lLKhUSH6o2vXrsjJyaFFyQghRA8cOnQIVlZWaN26Nd+hlAkrl3O26QK9TizEYjH69++PTZs28R2KTqFOZYRUDXqvlc2mTZswePBgagbRcnqdWADAoEGDsHPnTuTk5PAdCiGEkHJKTU3F/v37MWjQIL5DKTtqCtEvvr6+sLOzw8GDB/kOhRBCSDnt2rULjRo10q3RICosR0kFS4mFVmAYBoMGDcLmzZv5DoUQQkg5bd68WTerFQZIxHcAVWHQoEFo3LgxXr9+DRsbG77DIYQQUgZPnjzBqVOndLa/HFcdL6nzphbx9PRE06ZNsXPnTr5D0XrUmYyQqkXvuffbunUrOnbsCGdnZ75DKR+aIEs/DR48WGezXUIIMWSq0SBENxhMYjFgwACcP38eiYmJfIdCCCGklC5fvow7d+7go48+4juU8qNRIfrJ3t4eH3/8MVatWsV3KIQQQkpp5cqVGDRoECwsLPgOpdxoETI9NnbsWKxfv57mtCCEEB2QmpqKLVu2YOzYsXyHQsrAoBKLDh06wN7eHrt27eI7FK1EncgI4Qe994q3efNmNGrUCM2aNeM7lIqRy7nbdIBBJRYMw2DcuHFYvnw536EQQgh5B5ZlsWLFCqpW6CCDSiwAYNiwYUhISMDff//Ndyhahb4xEcIveg9qOnXqFJKSkjBgwAC+Q6k46ryp32xsbDB48GD89ttvfIdCCCGkBEuXLsWoUaNgYmLCdygVxsplnG26wOASCwAICQnBli1b8PLlS75DIYQQUsijR4+wf/9+jB8/nu9Q9MKyZcvg4eEBY2Nj+Pr64uLFi6V6XmRkJBiGQe/evct0PoNMLBo3bgxfX1+sWbOG71AIIYQUEhERge7du8PDw4PvUDihmtKbi62stm3bhtDQUMyePRvx8fFo2rQpAgMD8ezZs3c+7/79+5gyZQratWtX5nMaZGIBAJMnT8aSJUuQm5vLdyiEEEKU0tPTsXz5ckyaNInvUDjDylmwMnnFNzlb5nMvWrQIo0ePxvDhw9GwYUNERETA1NQU69atK/E5MpkMgwYNwrfffotatWqV+ZwGm1gEBQXB2toav//+O9+hEEIIUVq5ciXq16+PDh068B2KzpNKpYiLi0NAQIB6n0AgQEBAAGJjY0t83nfffQcHBweMHDmyXOc12MRCIBDgm2++wYIFCyDTkdnMKgv1RidEOxj6ezE3NxeLFi1CWFgYGIbhOxzOcFKtUG4AkJaWprGVVHl/8eIFZDIZHB0dNfY7OjoiOTm52OecOXMGa9euxerVq8v9eg02sQAU64fk5eXRqqeEEKIFNm7ciGrVqqFnz558h8IprvtYuLm5wcrKSr2Fh4dzEmd6ejqGDBmC1atXw87OrtzHEXESjY4Si8WYOnUqwsPD8emnn+pVhkwIIbokPz8fCxYswJw5cyAQGPR33vd69OgRLC0t1beNjIyKfZydnR2EQiFSUlI09qekpMDJyanI4+/cuYP79+8jKChIvU+uTGZEIhFu3ryJ2rVrvzc+g//fGzFiBJ4+fYrDhw/zHQovDL30Soi2MdT35M6dOyGTydC/f3++Q+Ec100hlpaWGltJiYVEIoGPjw+io6PV++RyOaKjo+Hn51fk8fXr18fVq1eRkJCg3oKDg9GxY0ckJCTAzc2tVK/XoCsWAGBiYoJJkybhhx9+QPfu3fkOhxBCDA7LsggPD8fUqVMhEunfZalgUlDR45RVaGgohg0bhhYtWqBVq1ZYvHgxMjMzMXz4cADA0KFDUb16dYSHh8PY2BiNGjXSeL61tTUAFNn/Lvr3P1gOEyZMwPz583HmzBm0bduW73AIIcSg/Pnnn0hOTlZf7Ah3+vXrh+fPn2PWrFlITk6Gt7c3Dh8+rO7Q+fDhQ86bnhiWZcs+MFYPhYWFISEhAYcOHeI7lCpjqCVXQnRBBHuf7xCqBMuyaNOmDYKDgzFt2jS+w+FUWloarKyscG/B57AwKb65oizSs3NR8+ulSE1N1ehjoW0Mvo+FyldffYVz587h1KlTfIdCCCEG48CBA7h9+zYmTpzIdyiVhmU5GhXC0rLpOsXOzg5Tp07FN998A0Mo4lC1ghDtZgjvUZlMhrCwMMycORMWFhZ8h0M4QolFAZMmTcK9e/ewb98+vkMhhBC9t2nTJmRmZmLs2LF8h1KpuB4Vou0osSjA3NwcM2fOxPTp0w1+Nk5CCKlMubm5mDVrFubOnQuJRMJ3OJWKEgsDN3r0aOTm5tIaIoQQUolWrFgBa2trDBw4kO9QCMcosShEIpHg+++/x+zZs5GTk8N3OJXCENpuCdEH+vpeTUtLw7x58xAeHm4Qs2yycpajKb11o/+f/v+PlkO/fv1gZ2eHZcuW8R0KIYTonYULF6Jhw4Y0KaGeogmyiiEQCBAeHo6BAwdi5MiR6pnHCCGEVExKSgoWLVqEY8eOGcz6THKZHHIO+kdwcYyqQBWLEnTt2hXNmjXD3Llz+Q6FU/paWiVEX+nbe/Z///sfAgMD8cEHH/AdSpUxtM6bVLEoAcMwWLJkCXx8fDB8+PAyzZNOCCGkqPPnz2Pr1q24du0a36GQSkQVi3do2LAhQkJCEBISYhCTZhFCSGWRyWSYOHEiwsLC4OHhwXc4VcrQKhaUWLzHrFmzcOvWLWzdupXvUCpM30qqhBgKfXjvrlq1CqmpqZgyZQrfoVQ5mtKbaLCwsMDPP/+MKVOmIC0tje9wCCFE5zx//hzTp0/H0qVLYWxszHc4pJJRYlEK/fr1Q/369fHtt9/yHQohhOicsLAwdOjQwWCHlxpaUwh13iwFhmGwdOlStGjRAiNGjICXlxffIRFCiE6gDpvgLCmgxELPeHl5YeLEiQgJCcHx48d1bvy1PrTR6pMI9j7fIZQK/d1oj3GMh8783aioOmxOmzbN4DpsGjJKLMpg9uzZqF+/Pn7//XcMGzaM73BKjS4OlUvXPuzLojyvjf7eKo+uJRfLli1Damoqpk6dyncovJLL5ZDLOZggi4NjVAVKLMrAwsICERERGDp0KLp06QIXFxe+QyJVQJc+yLXB+/69KPEwDLdv38b06dNx4MABg++waWhNIQxLEzSU2dChQ/Hq1Svs379f65tE6EO8dCh50A7091o62v73KpfL4e/vj6ZNm2Lp0qV8h8ObtLQ0WFlZ4UrIp7AwqvjS8Om5UjT9bTtSU1NhaWnJQYSVgyoW5fDrr7/Cy8tL55pEDJ22fxiTd/8fUdKhO5YuXYonT57g0KFDfIeiFRQVCxknx9EFlFiUg42NDVatWoUhQ4YgICAA1atX5zskokTJg/6ipEM33Lp1C//73/9w8OBBmJmZ8R2OVlBNcMXFcXQBJRbl1LNnTwQHB2PMmDE4cOCA1jeJ6CNKIohKcX8LlGxUPblcjhEjRmDEiBHo0KED3+EQnlBiUQGLFy9Go0aNsGHDBgwfPpzvcIrQxw9WSiZIaRX8W9G394K2jg5ZsmQJnj59isOHD/MdilZh5Rx13qSKhf5TNYkMGjQIXbp0gaurK98h6RVt/OAkuokqGpXv1q1bmDFjBg4dOkRNIIVxNWumjvSxoFEhHPjss8/w5MkTHDlyBAKBdsySrqsfmpRMED7Q+6Vi8vLy0L59e/j6+mLx4sV8h6M1VKNC4kcEw1wirvDxMqR5aL4uikaFGIIlS5bAx8cH8+fPx/Tp0/kOR2doy4ciIVTRqJgZM2YgKysL8+fP5zsUrSSXySHnoNrAxTGqAiUWHLC0tMS2bdvQrl07tG/fHm3btuU1Hm3+QKRkgugKXeijoQ19LQ4fPozly5fj0qVLBj8RFlGgxIIjzZs3x/z58zFgwAAkJCTA1taWlzi08QOQ7w8+QipKF5IMPiQlJWHIkCFYvnw56tevz3c4WsvQhptSHwsOsSyLjz/+GPn5+YiKiuJlCKq2fOhRMkEMgSG/32QyGTp37oyaNWti/fr1VX5+XaDqY3FxYDfO+li02nKY+lgYEoZhsG7dOjRr1gyLFy/G5MmTq/T8fH7IUSJBDFHhv3ttSTSqwty5c5GSkoKDBw/yHQrRMpRYcMzGxgaRkZHo3Lkz2rRpg1atWvEdUqWhZIIQTYbSZHL8+HEsXLgQ586do6GlpcDKWLCyijcOcHGMqkCJRSX44IMPMGfOHPTv3x/x8fGwtrau9HNW1YcYJROElE5VJhlV2Ynz2bNnGDRoEBYtWoQmTZpUyTl1nVzO0agQHeljoR2TLuihr776Cg0aNMDgwYMh42DxGb5FsPcpqSCknKri/VMVXy6kUin69u0Lf39/jB49utLPR3QTJRaVRCAQYPPmzeoFeSpTZX6gUEJBCHd0/f305ZdfIi0tDWvWrKH1kcqAlbOcbbqAmkIqkbW1NaKiovDBBx+gcePGGDRoEN8hlZouf/gRou1U7y+uvxRUZpPIihUrsGvXLly+fJn6VZSRXAbIBRVPCuQ6UvymxKKS1atXD5GRkejTpw88PT3RsmVLvkN6J0ooCKk6lZVgcO3EiROYMmUKjhw5And3d77DIVqOEosqEBgYiO+++w69e/fGpUuX4OLiwtmxK/qBRIkEIfzjctgq11WLu3fv4pNPPsGSJUt4n1VYV7EyOVgBBxNk6ciU3tTHoopMnjwZXbp0wUcffYScnBxOjklJBSH6qaLvTa4qIOnp6QgODsbgwYMxcuRITo5piFTDTbnYdAElFlWEYRhERERAIBBgzJgx4HPCU13vQEaIIeD7fSqXyzF48GA4Ozvj559/5i0OonsosahCxsbG2L17N44fP17hVQDL842E7w8qQkjZlfd9W9GqRVhYGK5fv45t27ZBJKJW84qQy1jONl1Afy1VzNnZGQcOHECHDh3g5OSE4cOHV8l5KaEgRLdFsPerrJPnr7/+irVr1+Ls2bOoVq1alZxTnxlaHwtKLHjg7e2NvXv3omfPnrC3t0fPnj3L9PyyfLhQQkGI/ijrKJLydOSMjIzEjBkzEB0djXr16pUtQEJAiQVvOnbsiI0bN6J///44evQo/Pz8OD0+JRSE6K/KGqZ69OhRjBw5Ert27dLrdY6qmpxlIedgciu5jixGTn0sePTJJ5/gp59+Qs+ePXH9+vVSPac0HySUVBBiGErzXi9t8nH58mX06dMHK1euRLdu3SoWGNHE1YgQ6mNBSmP8+PFITk5GYGAgzp07Bzc3txIf+74PCEooCDE8palevK9J5NatW/jwww8xZ84cDB48mNsAicGhxEILzJkzB8nJyejWrRtOnz5dbGepd31oUEJBCHlfglFScqH6YvPZZ58hNDS08gI0YHKZHHKGg9VNdaTzJjWFaAGGYbB8+XLUq1cPPXv2REZGRqmeR8NHCSGFleVz4fXr1+jevTvatWtX4SHwRHstW7YMHh4eMDY2hq+vLy5evFjiY1evXo127drBxsYGNjY2CAgIeOfji0OJhZYQCoXYsmULTExM0KNHD2RmZqrvK+4bCCUUhJB3Ke4zouBnyZs3b9C1a1e4u7tjzZo1EAjoclBZ+Jx5c9u2bQgNDcXs2bMRHx+Ppk2bIjAwEM+ePSv28TExMRgwYABOnDiB2NhYuLm5oWvXrnjy5Empz8mwfE4BSYrIyspCjx49IBAIsH//foSaNdS4nxIKQkhZFf5ysiD1H3Tt2hV2dnbYtWsXjIyM+AlMz6WlpcHKygpHfD+AGQeTjGXm5yPwwnmkpqbC0tKyVM/x9fVFy5Yt8dtvvwFQzKjq5uaGzz//HNOmTXvv82UyGWxsbPDbb79h6NChpTonpahaxtTUFPv370deXh569+6NfCja1KjZgxBSXgU/P6SQo3v37rCxscHOnTspqdBjUqkUcXFxCAgIUO8TCAQICAhAbGxsqY6RlZWFvLy8Mk2URomFFjI3N8fBgweRmZmJh13q45es//gOiRCiBxak/oPENu4wMzPD7t27YWxszHdIBkEuk3O2AYpKSMEtNze32PO+ePECMpkMjo6OGvsdHR2RnJxcqti/+eYbuLi4aCQn70OJhZaysLDA4cOHkZ2djZ49eyIrK4vvkAghOiw1NRWBgYEwNzfHvn37YGJiwndIBoNlWbByDjZlzwU3NzdYWVmpt/Dw8EqJe/78+YiMjMSePXvKlIRSYqHFLCwscOjQIchkMvTo0aPUo0UIIaSgN2/eoEuXLqhWrRr27t1LSYWOe/ToEVJTU9VbWFhYsY+zs7ODUChESkqKxv6UlBQ4OTm98xwLFy7E/Pnz8ddff6FJkyZlio8SCy2nahYRCATo1q0bXr9+zXdIhBAd8uzZM3Tu3BnOzs7U/METrlc3tbS01NhK6icjkUjg4+OD6Ojot7HI5YiOjn7nMhILFizA3LlzcfjwYbRo0aLMr5cSCx1gZmaGAwcOwNbWFu3bt0dSUhLfIRFCdMC9e/fQpk0b1KtXDzt27KCOmjxRDBWVc7CVfRBnaGgoVq9ejY0bN+K///7D+PHjkZmZqV5Ze+jQoRoVjx9//BEzZ87EunXr4OHhgeTkZCQnJ5epYk6JhY4wMTFRLwzUunVr3Lx5k++QCCFaLCEhAa1bt0aPHj2wadMmSCQSvkMiPOjXrx8WLlyIWbNmwdvbGwkJCTh8+LC6Q+fDhw/x9OlT9eNXrFgBqVSKTz75BM7Ozupt4cKFpT4nzWOhY1iWxYwZM7By5Ur8+eeftAIhIaSImJgY9O7dG9OmTcM333wDhmH4DskgqeaxiGrYHGZCYYWPlymTIfh6fJnmseADrRWiYxiGwbx58+Do6IjOnTtjx44dtBIhIURt586dGDZsGH777Td1uZvwSy5jIQcHy6bryOqm1BRSSuHh4WjZsiUsLCzg4OCA3r17azRHvHr1Cp9//jnq1asHExMTuLu744svvkBqaqrGcRiGKbJFRkZqPObbb7+Fq6sr2rZti8TExGLj+eKLL7B69Wr06dMHmzZt4v4FE0J0zooVK/DZZ59h27ZtxSYVK1asQJMmTdSd/vz8/HDo0CH1/atWrYK/vz8sLS3BMAzevHlT5BgeHh5FPsMKrzOyevVq1KhRA82aNcOFCxc4f51Eu1HFopROnjyJiRMnomXLlsjPz8f06dPRtWtXXL9+HWZmZkhKSkJSUhIWLlyIhg0b4sGDBxg3bhySkpKwc+dOjWOtX79eo8pgbW2t/v3s2bM4ePAg9u3bhwsXLiAkJAR//fVXsTH1798fdnZ2+Pjjj5GSkoLQ0FAqeRJigFiWxZw5c7B06VL89ddfaN26dbGPc3V1xfz581G3bl2wLIuNGzeiV69e+Pvvv+Hl5YWsrCx069YN3bp1K3EIIwB89913GD16tPq2hYWF+veHDx9iwYIFiIyMxJMnTzB8+HBcv36duxerg1i5HCwHn82sXDdWN6XEopQOHz6scXvDhg1wcHBAXFwc2rdvj0aNGmHXrl3q+2vXro158+Zh8ODByM/Ph6jAPPHW1tYljiF+/fo1XFxc0KRJE+Tn52PDhg3vjCsgIAAnTpxAjx49cPPmTfz222/USYsQA5KVlYWRI0fi7NmzOH36NLy8vEp8bFBQkMbtefPmYcWKFTh//jy8vLwwadIkAIo+Gu9iYWFR4mdYWloarK2t0aRJEzg5OSE7O7tMr0cfUVMIKRVVE8e75k9XdbARFVp8ZuLEibCzs0OrVq2wbt06FOw/GxgYiJycHJiamqJbt26lmlHNx8cHly5dQlxcHDp37lziqnWEEP3y+PFjtG/fHo8ePcKlS5femVQUJpPJEBkZiczMzHfOaVCc+fPnw9bWFs2aNcNPP/2E/Px89X2NGjVCkyZNYGVlBS8vL3z//fdlOjbRfVSxKAe5XI5JkyahTZs2aNSoUbGPefHiBebOnYsxY8Zo7P/uu+/QqVMnmJqa4q+//sKECROQkZGBL774AgAgFotx+PBhPHv2DNbW1qWuPri5ueH06dMYMWIEWrZsiX379sHb27tCr5MQor3Onz+P3r17o2fPnli2bFmp56i4evUq/Pz8kJOTA3Nzc+zZswcNGzZ8/xOVvvjiCzRv3hzVqlXDuXPnEBYWhqdPn2LRokXqx6xduxYLFiyAqakpzfIJKKbj5qBiwcp1o2JBw03LYfz48Th06BDOnDkDV1fXIvenpaWpp8+NioqCWCwu8VizZs3C+vXr8ejRI05iY1kW4eHhCA8Px4YNG9CnTx9OjksI0R4bN27EhAkTMH/+fISEhJSpb5VUKsXDhw+RmpqKnTt3Ys2aNTh58qRGchETE4OOHTvi9evXGn3AirNu3TqMHTsWGRkZNAFXIarhpjvdvGAqqPhw0yy5DJ88uqb1w02pKaSMQkJCcODAAZw4caLYpCI9PR3dunWDhYUF9uzZ886kAgB8fX3x+PHjElenKyuGYTB9+nRs2rQJw4cPx5w5cyDXkQ4/hJB3k8lkmDJlCiZPnox9+/bh888/L3OHbYlEgjp16sDHxwfh4eFo2rQpfv3113LH5Ovri/z8fNy/f7/cxyD6hZpCSollWXz++efYs2cPYmJiULNmzSKPSUtLQ2BgIIyMjBAVFVWqOfkTEhJgY2PDeabfq1cvnDt3DsHBwbh69So2btwIc3NzTs9BCKk6b968wYABA/DgwQNcuHABdevW5eS4crm8Ql9sEhISIBAI4ODgwEk8+kguYyHnoHFAriNNIZRYlNLEiROxZcsW7Nu3DxYWFuq17K2srGBiYoK0tDR07doVWVlZ2LRpE9LS0pCWlgYAsLe3h1AoxP79+5GSkoIPPvgAxsbGOHr0KH744QdMmTKlUmJu1KgRLl26hL59+6JVq1bYtm0bGjduXCnnIoRUnkuXLqF///5o0KABYmNjYWVlVa7jhIWFoXv37nB3d0d6ejq2bNmCmJgYHDlyBADU60Lcvn0bgKI/hoWFBdzd3VGtWjXExsbiwoUL6NixIywsLBAbG4vJkydj8ODBsLGx4ez16htWxoKLXge60seCmkJKacWKFUhNTYW/v7/G/Onbtm0DAMTHx+PChQu4evUq6tSpo/EYVf8JsViMZcuWwc/PD97e3li5ciUWLVqE2bNnV1rctra2+Ouvv9C3b1/4+flh9erVnPyBE0IqH8uyWLx4Mfz9/TF27FhERUWVO6kAFCudDh06FPXq1UPnzp1x6dIlHDlyBF26dAEAREREoFmzZuo5Ktq3b49mzZohKioKAGBkZITIyEh06NABXl5emDdvHiZPnoxVq1ZV/MUSvUGdNw1IdHQ0Bg8eDH9/f6xcuVKrO/8QYuhevXqF4cOHIyEhAVu3bi1x0iuivVSdN7c61Oes8+aAZzeo8ybRHp07d0ZCQgJevnyJ5s2bIz4+nu+QCCHFOHv2LLy9vSEQCPD3339TUkF0CiUWBsbR0RGHDx/GqFGj0K5dOyxZsoSaRgjREnK5HOHh4ejatSumTp2K3bt3v3MSPqIbZCzL2aYLqPOmARIIBJg2bRratWuH/v3748SJE1izZg1sbW35Do0Qg5WcnIxhw4bhzp07OHXqFHx8fPgOiXBExio2Lo6jC6hiYcDatGmDhIQEAEDDhg2xZ88efgMixACxLIvNmzfDy8sL9vb2iI+Pp6SC6DSqWBg4W1tb7N69G1u2bMHIkSOxY8cOLF26lKoXhFSB5ORkjBs3DrGxsVi7di169+7Nd0ikEnDVjKErTSFUsSBgGAaDBg3CtWvXkJmZCS8vL+zdu5fvsAjRWyzLYsuWLfDy8oKpqSmuX79OSYUeUzWFcLHpAkosiJqzszP27t2LhQsXYsSIERg0aBBevnzJd1iE6JXk5GR8/PHHmDx5MlavXo0tW7ZQhZDoFUosiAaGYTB48GBcu3YN6enp8PLywr59+/gOixCdx7Istm7dCi8vLxgZGeHatWv4+OOP+Q6LVAE5RyNCuJgWvCpQYkGK5ezsjH379uGnn37CZ599hj59+uDhw4d8h0WITrp9+zZ69OiBL7/8EqtWrUJkZCTs7Oz4DotUERk4agrh+4WUEiUWpEQMw2DIkCG4ceMGLC0t0bBhQ/zwww+crcRKiL7LysrCzJkz0aRJE3h4eODGjRvo06cP32ERUqkosSDv5ejoiPXr1+Ovv/7Cjh070LhxY/WiRYSQoliWxd69e9GwYUMcPXoUp0+fxvLly2myKwNlaBNkUWJBSq1169a4dOkSvvjiC/Tr14+aRwgphqrZY/To0Zg5cybOnTtH81IYOBoVQsg7iEQihISEIDExkZpHCCmgcLPHzZs3MXLkSAgE9DFLDAv9xZNycXBw0GgeqV+/PjZt2gS5XM53aIRUqfz8fKxZswaenp7U7EGKRRULQsqgdevWuHz5Mr777jvMmDEDzZo1w8GDB2lhM6L3WJbFrl270KhRIyxYsAC//PILNXuQYlEfC0LKSCgUYsiQIbh58yZGjBiBzz77DB06dEBsbCzfoRFSKU6cOIEPPvgAn3/+OSZPnoxr166hb9++1OxBCCixIBwyMjLCl19+iTt37qBjx47o2rUrevfujevXr/MdGiGc+Pvvv9GtWzd89NFH6N27N27duoWxY8dCLBbzHRrRYnKOmkHkulGwoMSCcM/S0hLffvstbt++DTc3N/j4+GD48OG4desW36ERUi7Xrl3DgAED0KZNGzRu3Bh37txBWFgYzMzM+A6N6ABqCiGEI46Ojli6dCmuXbsGlmXRuHFj9OvXT71UOyHa7sKFC+jduzdatGgBS0tL3Lx5Ez/99BOt7UHIO1BiQSpdrVq1sGHDBty8eROOjo5o3bo1unfvjtOnT/MdGiFFsCyLo0ePolOnTggICEDdunVx584drFy5Em5ubnyHR3QQjQohpJLUqFEDS5Yswf379+Hj44OgoCC0bduWRpEQrSCXy7F79260atUKAwYMQMeOHfHgwQP89NNPcHFx4Ts8QnQGJRakyjk4OOD777/Hw4cPERQUhJEjR8Lb2xubN2+GVCrlOzxiYHJycrBu3Tp4eXnhyy+/xODBg/HgwQPMnDmT5qIgnFBUG7joY8H3KykdhqWvioRn2dnZ2LBhA3755RekpaVh7NixGDt2LH1LJJXqwYMHiIiIwOrVq+Ho6IgpU6Zg0KBBkEgkfIdG9ERaWhqsrKwww7gWjJmKf4/PYeX4PucuUlNTYWlpyUGElYMqFoR3JiYmGD9+PG7cuIENGzbg8uXLqFmzJvr3749Tp05RMwnhjFwux7Fjx/Dxxx/D09MTN2/exI4dO/Dvv/9i+PDhlFQQwgFKLIjWEAgE6NatGw4ePIhr166hevXq+Oijj+Dl5YVff/0Vr1+/5jtEoqOeP3+On376CZ6enhg4cCDq1auHxMRE7N69Gx07dgTDMHyHSPSYoQ03paYQotVycnKwc+dOREREID4+Hp988gkGDx6MTp06QSQS8R0e0WJ5eXn466+/8Mcff2Dv3r1o3bo1xo0bh969e1NlglQJVVPINKOaMOKgKSSXlWN+7j1qCiGkIoyNjTF48GCcOXMGFy9ehIODAz777DO4ublh8uTJiIuLo6YSosayLGJjYxESEgIXFxeMHz8eHh4euHLlCo4fP45PP/2UkgpCKhlVLIjOkclkiImJwaZNm7Br1y64uLhg8ODBGDhwIGrVqsV3eIQHN2/exObNm7F582a8evUKffv2xeDBg9G2bVtav4PwRlWxmCrx4Kxi8ZP0vtZXLCixIDotOzsb+/fvx6ZNm3D48GG0bNkSAwYMQHBwMNzd3fkOj1Siu3fvYt++fdiyZQuuXr2Knj17YtCgQfjwww9hZGTEd3iEqBOLUDF3icWiPEosCKkyL168wI4dO7B9+3acOXMGXl5eCA4ORnBwMJo3b07fXHWcTCbDxYsXsX//fkRFRSExMREdOnRAv3798Mknn8Da2prvEAnRQIkFIXrk9evXOHToEKKionDo0CGYmZkhKCgIQUFB6Ny5M0xMTPgOkZRCZmYmjh49iqioKBw8eBB5eXno0aMHgoKCEBgYCCsrK75DJKREqsTiS1ENzhKLX/MfUGJBCN+kUilOnz6NqKgoREVFISUlBV26dEHnzp3h7++PRo0aUTVDS8hkMly5cgUxMTGIjo5GdHQ03Nzc0KtXLwQFBaFNmzY0GojoDFViESLkLrH4TUaJBSFahWVZXLt2DQcOHEBMTAzOnDkDIyMjdOjQAR07doS/vz+8vLwo0agiMpkM//zzD2JiYhATE4NTp05BJpOhffv28Pf3R8+ePVGvXj2aZ4LoJEosCDFAeXl5iIuLU1/Yzpw5A2NjY3To0AH+/v7w8/ND48aNqTMgR7Kzs3H16lWcO3cOJ06cKJJI+Pv7w9vbm6oSRC+oEovxAnfOEosV8oeUWBCiSwonGhcuXEBmZiYaNWoEHx8f9da4cWMYGxvzHa5Wy87OxpUrVxAXF6ferl27Bmtra/j6+qorRJRIEH2lSizGMu6QcJBYSFk5VrKUWBCi01iWxb179xAXF4f4+Hj1BTItLU2dbHh7e6N+/frw9PSEq6urwTWjyGQyPHz4ELdu3cKNGzfw999/Iy4uDtevX0e1atXUyVjz5s3h4+MDd3d3atogBoESC0JIqbAsiwcPHqiTjCtXriAxMRH37t2DWCxG3bp1UbduXXh6empsdnZ2OntBZVkWz549Q2JiYpHt9u3bkMvlqFWrFjw9PeHt7a1OJlxdXXX2NRNSUarEYhTcOEss1uARJRaEGAqpVIp79+4Ve/FNSkqCiYkJnJ2d1ZuLi0uR205OTrC0tKyyaadzc3ORmpqK5ORkPH36FE+fPkVSUpL694K3c3Nz4erqWiRh8vT0hIeHB8RicZXETIiuUCUWw+EGCQcraEghx3pKLAghAJCeno7Hjx8Xe8EuuKWnpwMAxGIxLCwsYGFhAXNz8yK/m5iYQCAQaGyAYlnwgltWVhYyMjKQnp6O9PT0Ir/n5eUBACwtLd+Z8Dg7O8PV1RVmZma8/RsSomtUicUgVOcssdiMJ5RYEEJKLysrq8QkoODP7OxssCyrTiBkMhkYhtFINBiGgampqToZKS5BMTc3h6WlJU0YRkglyMnJQc2aNZGcnMzZMZ2cnHDv3j2t7jxOiQUhhBBSSXJyciCVSjk7nkQi0eqkAqDEghBCCCEcMqxxcYQQQgipVJRYEEIIIYQzlFgQQgghhDOUWBBCCCGEM5RYEEIIIYQzlFgQQgghhDOUWBBCCCGEM5RYEEIIIYQzlFgQQgghhDOUWBBCCCGEM5RYEKIlwsPD0bJlS1hYWMDBwQG9e/fGzZs31fffv38fDMMUu+3YsUP9uIcPH6JHjx4wNTWFg4MDpk6divz8fI1zffvtt3B1dUXbtm2RmJhYZa+REKL/KLEgREucPHkSEydOxPnz53H06FHk5eWha9euyMzMBAC4ubkVWWb922+/hbm5Obp37w4AkMlk6NGjB6RSKc6dO4eNGzdiw4YNmDVrlvo8Z8+excGDB7Fv3z4MHDgQISEhvLxeQoh+okXICNFSz58/h4ODA06ePIn27dsX+5hmzZqhefPmWLt2LQDg0KFD6NmzJ5KSkuDo6AgAiIiIwDfffIPnz59DIpHgwIEDWLNmDXbs2IH4+Hh8/vnnuHjxYpW9LkKIfqOKBSFaKjU1FQBQrVq1Yu+Pi4tDQkICRo4cqd4XGxuLxo0bq5MKAAgMDERaWhquXbumvp2TkwNTU1N069YN4eHhlfgqCCGGRsR3AISQouRyOSZNmoQ2bdqgUaNGxT5m7dq1aNCgAVq3bq3el5ycrJFUAFDfTk5OBgCIxWIcPnwYz549g7W1NSQSSSW9CkKIIaLEghAtNHHiRPz77784c+ZMsfdnZ2djy5YtmDlzZrnP4eDgUO7nEkJISagphBAtExISggMHDuDEiRNwdXUt9jE7d+5EVlYWhg4dqrHfyckJKSkpGvtUt52cnConYEIIKYASC0K0BMuyCAkJwZ49e3D8+HHUrFmzxMeuXbsWwcHBsLe319jv5+eHq1ev4tmzZ+p9R48ehaWlJRo2bFhpsRNCiAqNCiFES0yYMAFbtmzBvn37UK9ePfV+KysrmJiYqG/fvn0bnp6e+PPPP9GtWzeNY8hkMnh7e8PFxQULFixAcnIyhgwZglGjRuGHH36ostdCCDFclFgQoiUYhil2//r16/HZZ5+pb0+fPh2bNm3C/fv3IRAULTo+ePAA48ePR0xMDMzMzDBs2DDMnz8fIhF1qSKEVD5KLAghhBDCGepjQQghhBDOUGJBCCGEEM5QYkEIIYQQzlBiQQghhBDOUGJBCCGEEM5QYkEIIYQQzlBiQQghhBDOUGJBCCGEEM5QYkEIIYQQzlBiQQghhBDOUGJBCE8aNGiANWvW/L+dewtpso/jAP517dDMrVo6ELODBkFMPME6IBTS4aJ0EASGkdGCuqtlKzpAYMguYhYZ5E0R0UVY0AEsMYhsKJXQjFZkpowO1I09rc1tLdy/i/fteXte52u9PU3S7we8+P+f3/+w5+rrs/+eceuGhoZgtVoRDAbHrFm1ahX27Nmj3ub+VlNTA6/Xq/q8RDR5MVgQTYBYLIb+/n4UFxePW9vY2AiHw4EFCxb8/o39y5EjR9DY2IhQKJT2tYnoz8RgQTQBAoEAhBCw2Wz/WReNRnH27Fk4nc407UzJZrOhsLAQFy9enJD1iejPw2BBlEa9vb2orKxERUUFkskk5s2bh5MnT45Zf/PmTRgMBixbtkzuGx4extatW5GVlYXc3NyUX1Ukk0l4PB4sXLgQRqMRxcXFuHLliqImHA6jtrYWM2bMQG5uLk6cOJHyK5WqqipcunTplz43EU0dDBZEaTIwMICVK1eisrIS1dXV2LhxI+rr6+FyudDb25tyjM/nQ3l5uaLP7Xajs7MT169fR0dHB+7evYtHjx4pajweDy5cuICWlhY8ffoULpcLW7ZsQWdnp1yzd+9edHV14caNG7h9+zZ8Pt+oeQDAbrfj4cOH+Pz586/fBCKa/AQRpcXq1avFtm3bhBBC2O124fV6xcjIiDCbzeLUqVMpxzgcDrF9+3a5HQ6HhV6vF62trXLf0NCQMBqNYvfu3UIIIeLxuMjMzBTd3d2KuZxOp9i8ebMQQohPnz4JnU4nLl++LF//+PGjyMzMlOf55vHjxwKACAaD//uzE9HUoZ3oYEM0Fbx//x537txBd3c3RkZG8OTJE3g8Hmg0GkybNg16vT7luFgshunTp8vtgYEBJBIJLF26VO6zWCxYvHix3H758iWi0SjWrFmjmCuRSKC0tBQAMDg4iC9fvsBut8vXZ86cqZjnG6PRCOCv8x5ERONhsCBKg/v37yOZTKKkpAR9fX2IxWIoKSlBMBiEJElYsWJFynHZ2dmQJOmn1opEIgCAtrY25OXlKa4ZDIaf3vuHDx8AADk5OT89loimHp6xIEqDRCIBAIjH4/D7/Zg/fz4sFgtaWlpgs9lQVFSUclxpaSmePXsmtwsLC6HT6fDgwQO5T5IkvHjxQm4vWbIEBoMBr169wqJFixR/+fn5AICCggLodDr09PTI40KhkGKebwKBAObOnYvs7OxfuwlENCXwiQVRGixfvhxarRYNDQ2IRCIoKCjA6dOn0dzcjHv37o05bt26dTh48CAkScLs2bORlZUFp9MJt9uNOXPmwGq14vDhw9Bo/vkfwWQyYd++fXC5XEgmk6ioqEAoFEJXVxfMZjPq6upgMplQV1cHt9sNi8UCq9WKo0ePQqPRICMjQ7EHn8+HtWvX/rZ7Q0STC4MFURrk5+fj3LlzOHDgAN69ewetVotoNIr29vZRv/r4XlFREcrKytDa2oqdO3cCAI4fP45IJIKqqiqYTCbU19ePeoHVsWPHkJOTA4/Hg8HBQcyaNQtlZWU4dOiQXNPU1IRdu3Zhw4YNMJvN2L9/P16/fq040xGPx3Ht2jW0t7erfEeIaLLKEEKIid4E0VRisVhw/vx5VFdX/1B9W1sb3G43AoGA4smE2oaHh5GXlwev1yu/kOvMmTO4evUqOjo6ftu6RDS58IkFURq9efMGkiSN+8bN761fvx79/f14+/atfEZCDX6/H8+fP4fdbkcoFEJDQwMAwOFwyDU6nQ7Nzc2qrUlEkx+fWBCl0a1bt7Bp0yaEw+FRZxnSze/3Y8eOHejr64Ner0d5eTmamprGPEhKRPQjGCyIiIhINfy5KREREamGwYKIiIhUw2BBREREqmGwICIiItUwWBAREZFqGCyIiIhINQwWREREpBoGCyIiIlINgwURERGphsGCiIiIVMNgQURERKr5CqTfLFiPp2dIAAAAAElFTkSuQmCC", "text/plain": [ "
↓ monitor_data.hdf5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0% • 538.0/538.0 kB • 24.1 MB/s • 0:00:00\n\n", "text/plain": "\u001b[1;32m↓\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m538.0/538.0 kB\u001b[0m • \u001b[31m24.1 MB/s\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "0ba252d1005e456987d43b3e4a550103": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_418942ad8b8547ee9bb9b784fdeb7ae0", "msg_id": "", "outputs": [ { "data": { "text/html": "
↑ simulation.json ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0% • 14.6/14.6 kB • ? • 0:00:00\n\n", "text/plain": "\u001b[1;31m↑\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m14.6/14.6 kB\u001b[0m • \u001b[31m?\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "0df5577a368841a19336793ce9b5ffa2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0f2250602092442e811043a992f765fd": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_9237303c6ef845239cec10dec1c53df7", "msg_id": "", "outputs": [ { "data": { "text/html": "
Computing projected fields ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\n\n", "text/plain": "Computing projected fields \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "19ee63ab2e7747a3915a55665b05720e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1e8a06087af84c4fbe5577dba8ad0970": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1f76d7ad145a4e29a92076c8228a5ebf": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_586fe5f58c4741c1970d3238e95b718e", "msg_id": "", "outputs": [ { "data": { "text/html": "
🚶 Starting 'aperture_3'...\n\n", "text/plain": "\u001b[32m🚶 \u001b[0m \u001b[1;32mStarting 'aperture_3'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "251322449fa045cfb1081b29f72579f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "277c5c934567495d9919c21f0e4d13de": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_df6ef6cb4618485691325be091b091cd", "msg_id": "", "outputs": [ { "data": { "text/html": "
🚶 Finishing 'aperture_2'...\n\n", "text/plain": "\u001b[32m🚶 \u001b[0m \u001b[1;32mFinishing 'aperture_2'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "2a99307abc4248d5a819ef256dd3023c": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_51a12df7701c450088ab1cbfd5c5e49b", "msg_id": "", "outputs": [ { "data": { "text/html": "
solver progress (field decay = 0.00e+00) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\n\n", "text/plain": "solver progress (field decay = 0.00e+00) \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "2bab94977bec43daaec7c2c316cc4381": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "36b12e9b2fc349638699ec89f4916fe7": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_251322449fa045cfb1081b29f72579f2", "msg_id": "", "outputs": [ { "data": { "text/html": "
↑ simulation.json ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0% • 13.6/13.6 kB • ? • 0:00:00\n\n", "text/plain": "\u001b[1;31m↑\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m13.6/13.6 kB\u001b[0m • \u001b[31m?\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "41266184e5214ed3b6e4d1626d71b0c0": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_4f601e732d8949d3867a7c082027f9d7", "msg_id": "", "outputs": [ { "data": { "text/html": "
🏃 Finishing 'aperture_1'...\n\n", "text/plain": "\u001b[32m🏃 \u001b[0m \u001b[1;32mFinishing 'aperture_1'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "418942ad8b8547ee9bb9b784fdeb7ae0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "43a43a1645d3401a9049798e5e3b29ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4670b9534ed24e5890485342c0e683bb": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_dfa076bd7dce4c9ba49a638564e36826", "msg_id": "", "outputs": [ { "data": { "text/html": "
↓ monitor_data.hdf5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0% • 1.7/1.7 MB • 6.2 MB/s • 0:00:00\n\n", "text/plain": "\u001b[1;32m↓\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m1.7/1.7 MB\u001b[0m • \u001b[31m6.2 MB/s\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "49860f137f3e413bb994c7aff72e77c4": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_717491fd4739498f8df9d89081bb3d6b", "msg_id": "", "outputs": [ { "data": { "text/html": "
solver progress (field decay = 0.00e+00) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\n\n", "text/plain": "solver progress (field decay = 0.00e+00) \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "4f359d578a154048b4f15e87ed93ff57": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4f601e732d8949d3867a7c082027f9d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "51a12df7701c450088ab1cbfd5c5e49b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "586fe5f58c4741c1970d3238e95b718e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5f826014cc774c179d6634618a6d9305": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "67f0ed2cdbcc4ffd8bac20035b92d981": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6b69e92601d54ba9a5661f88ff6a8c1b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6f7be4aae57a445e8fe8a45df3609896": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_edb8029d828f43a88e7b9ceab27c5b3a", "msg_id": "", "outputs": [ { "data": { "text/html": "
Computing projected fields ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\n\n", "text/plain": "Computing projected fields \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "717491fd4739498f8df9d89081bb3d6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "73fffe309ddb426b8bc4925f80a7a48f": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_4f359d578a154048b4f15e87ed93ff57", "msg_id": "", "outputs": [ { "data": { "text/html": "
🏃 Finishing 'kspace_monitor'...\n\n", "text/plain": "\u001b[32m🏃 \u001b[0m \u001b[1;32mFinishing 'kspace_monitor'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "779a6c5b884949bfad27f5454c166038": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_67f0ed2cdbcc4ffd8bac20035b92d981", "msg_id": "", "outputs": [ { "data": { "text/html": "
↑ simulation.json ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0% • 8.2/8.2 kB • ? • 0:00:00\n\n", "text/plain": "\u001b[1;31m↑\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m8.2/8.2 kB\u001b[0m • \u001b[31m?\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "793cd5d3bc784c90b298c05836cba0a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7b0b3439257743c1a7adbbc6976163dc": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_7d8e4a50550845fa93024f728fd7b738", "msg_id": "", "outputs": [ { "data": { "text/html": "
🚶 Starting 'aperture_1'...\n\n", "text/plain": "\u001b[32m🚶 \u001b[0m \u001b[1;32mStarting 'aperture_1'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "7bb22fcdcbce40feb983fa1047958480": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7d8e4a50550845fa93024f728fd7b738": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7e8a922965c04467b74b7039748cefb1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "84d81bcdbfcb4f40bd8eb194d4dd4e27": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8a5f9231ed654ec3b2dc9715f7f4873f": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_b7072487c6fa4074a04e5067d0bf0b2f", "msg_id": "", "outputs": [ { "data": { "text/html": "
↑ simulation.json ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0% • 14.4/14.4 kB • ? • 0:00:00\n\n", "text/plain": "\u001b[1;31m↑\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m14.4/14.4 kB\u001b[0m • \u001b[31m?\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "8d7861951f2a49c789232f01af559ad3": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_95c01b6416ec4b078ec56a45a35962ee", "msg_id": "", "outputs": [ { "data": { "text/html": "
↑ simulation.json ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0% • 7.3/7.3 kB • ? • 0:00:00\n\n", "text/plain": "\u001b[1;31m↑\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m7.3/7.3 kB\u001b[0m • \u001b[31m?\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "9237303c6ef845239cec10dec1c53df7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "95c01b6416ec4b078ec56a45a35962ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a91faa7b4e7a4ceb9ba5e1936e79c4f4": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_5f826014cc774c179d6634618a6d9305", "msg_id": "", "outputs": [ { "data": { "text/html": "
🚶 Finishing 'aperture_4'...\n\n", "text/plain": "\u001b[32m🚶 \u001b[0m \u001b[1;32mFinishing 'aperture_4'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "b7072487c6fa4074a04e5067d0bf0b2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bee0bdd0ef2e49ccb99a51f81a5f78bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c83745833ece41abb041a7a6ec293634": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_793cd5d3bc784c90b298c05836cba0a3", "msg_id": "", "outputs": [ { "data": { "text/html": "
🏃 Starting 'kspace_monitor'...\n\n", "text/plain": "\u001b[32m🏃 \u001b[0m \u001b[1;32mStarting 'kspace_monitor'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "d4a603f424f14354b574d5433f3ba4a9": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_19ee63ab2e7747a3915a55665b05720e", "msg_id": "", "outputs": [ { "data": { "text/html": "
↓ monitor_data.hdf5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0% • 537.7/537.7 kB • 27.2 MB/s • 0:00:00\n\n", "text/plain": "\u001b[1;32m↓\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m537.7/537.7 kB\u001b[0m • \u001b[31m27.2 MB/s\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "d6d89fd914c6478bafa11e55c6f5b3b2": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_7e8a922965c04467b74b7039748cefb1", "msg_id": "", "outputs": [ { "data": { "text/html": "
solver progress (field decay = 0.00e+00) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\n\n", "text/plain": "solver progress (field decay = 0.00e+00) \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "df6ef6cb4618485691325be091b091cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "dfa076bd7dce4c9ba49a638564e36826": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e261f9e37164495e93c00571ef696732": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_1e8a06087af84c4fbe5577dba8ad0970", "msg_id": "", "outputs": [ { "data": { "text/html": "
🚶 Starting 'aperture_4'...\n\n", "text/plain": "\u001b[32m🚶 \u001b[0m \u001b[1;32mStarting 'aperture_4'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "edb8029d828f43a88e7b9ceab27c5b3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "edc649a22db64a3ba067f380d90b73d3": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_0df5577a368841a19336793ce9b5ffa2", "msg_id": "", "outputs": [ { "data": { "text/html": "
solver progress (field decay = 0.00e+00) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\n\n", "text/plain": "solver progress (field decay = 0.00e+00) \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "f1eab002fbe24be99faec94d666ea901": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_43a43a1645d3401a9049798e5e3b29ca", "msg_id": "", "outputs": [ { "data": { "text/html": "
solver progress (field decay = 0.00e+00) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\n\n", "text/plain": "solver progress (field decay = 0.00e+00) \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "f4c6d5ae3e9e46d29c70604bea0dcfce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f6957a90640d4b3385f790b90790438b": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_6b69e92601d54ba9a5661f88ff6a8c1b", "msg_id": "", "outputs": [ { "data": { "text/html": "
↓ monitor_data.hdf5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0% • 868.4/868.4 kB • 6.2 MB/s • 0:00:00\n\n", "text/plain": "\u001b[1;32m↓\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m868.4/868.4 kB\u001b[0m • \u001b[31m6.2 MB/s\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "f6b23aeb0963421cb1931cd099cec348": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_bee0bdd0ef2e49ccb99a51f81a5f78bc", "msg_id": "", "outputs": [ { "data": { "text/html": "
Processing surface monitor 'near_field'... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\n\n", "text/plain": "Processing surface monitor 'near_field'... \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "fa040771f61b4986bc531e63bee3564d": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_84d81bcdbfcb4f40bd8eb194d4dd4e27", "msg_id": "", "outputs": [ { "data": { "text/html": "
↓ monitor_data.hdf5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0% • 538.8/538.8 kB • 21.4 MB/s • 0:00:00\n\n", "text/plain": "\u001b[1;32m↓\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m538.8/538.8 kB\u001b[0m • \u001b[31m21.4 MB/s\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "fa5f8cfc0205494fbf730e9e9d63d6f5": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_f4c6d5ae3e9e46d29c70604bea0dcfce", "msg_id": "", "outputs": [ { "data": { "text/html": "
🚶 Finishing 'aperture_3'...\n\n", "text/plain": "\u001b[32m🚶 \u001b[0m \u001b[1;32mFinishing 'aperture_3'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "fd871ba214b2414e9652d147dae822af": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_7bb22fcdcbce40feb983fa1047958480", "msg_id": "", "outputs": [ { "data": { "text/html": "
🚶 Starting 'aperture_2'...\n\n", "text/plain": "\u001b[32m🚶 \u001b[0m \u001b[1;32mStarting 'aperture_2'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 4 }