{
"cells": [
{
"cell_type": "markdown",
"id": "49a31b4f",
"metadata": {},
"source": [
"# THz integrated demultiplexer/filter based on ring resonator"
]
},
{
"cell_type": "markdown",
"id": "7431b8fb",
"metadata": {},
"source": [
"Note: the cost of running the entire notebook is larger than 1 FlexCredit.\n",
"\n",
"Wireless communication technology has been experiencing rapid development to satisfy the ever growing need for higher data transmission speed. The current 5G network has been harnessing the power of microwave and mm wave. The future generations of wireless communication clearly points to even higher frequencies, entering the THz territory. \n",
"\n",
"Inspired by the advancement of integrated photonics at telecom wavelength, integrated THz technology is a promising candidate for future mass production of compact THz communication devices. This model aims to demonstrate the modeling of a silicon-based THz demultiplexer/filter, which is a crucial component in a high-speed integrated THz communication system. The device utilizes a ring resonator structure similar to a typical ring resonator used in a telecom integrated circuit. It achieves <1.5 dB transmission loss and 3 GHz free spectral range. The design of the device is adapted from [Deng, W. et al. On\u2010Chip Polarization\u2010 and Frequency\u2010Division Demultiplexing for Multidimensional Terahertz Communication. Laser Photon. Rev. 16, 2200136 (2022)](https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.202200136).\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "8cf441f1",
"metadata": {},
"source": [
"## Simulation Setup "
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "6d1a57be",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T22:08:29.006769Z",
"iopub.status.busy": "2023-03-27T22:08:29.006589Z",
"iopub.status.idle": "2023-03-27T22:08:30.436016Z",
"shell.execute_reply": "2023-03-27T22:08:30.435398Z"
}
},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"import tidy3d as td\n",
"import tidy3d.web as web\n",
"from tidy3d.plugins.mode import ModeSolver\n"
]
},
{
"cell_type": "markdown",
"id": "db3bc0d9",
"metadata": {},
"source": [
"The demultiplexer/filter device consists of a ring resonator, a through port waveguide, and a drop port waveguide. It is fabricated on a silicon wafer with a thickness of 130 $\\mu m$. A ridge waveguide with 110 $\\mu m$ height is used. The radius of the ring resonator is designed to ensure low loss for the TE0 mode. "
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "cd6bd27d",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T22:08:30.439158Z",
"iopub.status.busy": "2023-03-27T22:08:30.438772Z",
"iopub.status.idle": "2023-03-27T22:08:30.487776Z",
"shell.execute_reply": "2023-03-27T22:08:30.486809Z"
}
},
"outputs": [],
"source": [
"t_si = 130 # thickness of the si wafer\n",
"t_wg = 110 # height of the ridge waveguide\n",
"W0 = 200 # width of the waveguide\n",
"R1 = 3500 # inner radius of the ring resonator\n",
"R2 = 2000 # inner radius of the waveguide bend\n",
"Wg = 50 # width of the gap\n",
"s = 3000 # horizontal shift of the waveguide bend\n",
"inf_eff = 1e5 # effective infinity. This parameter is used to ensure the ports extend into the pml.\n",
"\n",
"freq0 = 380e9 # central frequency\n",
"lda0 = td.C_0 / freq0 # central wavelength\n",
"freqs = np.linspace(375e9, 385e9, 301) # wavelength range.\n",
"# To ensure we resolve the spectral features, 301 frequency points are used.\n"
]
},
{
"cell_type": "markdown",
"id": "90212abb",
"metadata": {},
"source": [
"Since the whole structure is made of silicon, only two materials need to be defined -- silicon and air. At the simulation frequency, silicon has a small loss of $\\alpha$=0.025 $cm^{-1}$. Therefore, the imaginary part of the refractive index can be calculated as $k = \\frac{\\alpha \\lambda}{4\\pi}$. Since the frequency dispersion is very small, we will model silicon as dispersionless material."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "03bdd9e3",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T22:08:30.492196Z",
"iopub.status.busy": "2023-03-27T22:08:30.491790Z",
"iopub.status.idle": "2023-03-27T22:08:30.543564Z",
"shell.execute_reply": "2023-03-27T22:08:30.542552Z"
}
},
"outputs": [],
"source": [
"alpha = 0.025 # loss\n",
"k_si = alpha * lda0 * 1e-4 / (4 * np.pi) # imaginary part of the Si refractive index\n",
"n_si = 3.405 # real part of the Si refractive index\n",
"\n",
"si = td.Medium.from_nk(n=n_si, k=k_si, freq=freq0)\n",
"air = td.Medium(permittivity=1)\n"
]
},
{
"cell_type": "markdown",
"id": "51ae0cf5",
"metadata": {},
"source": [
"To build the device, we need to keep in mind that when two structures overlap, the one added later will override the one added earlier. This gives us great flexibility when making more complex geometries. \n",
"\n",
"To make the ring resonator, we first create a [Cylinder](../_autosummary/tidy3d.Cylinder.html?highlight=cylinder) made of silicon with the radius set to the outer radius of the ring. Then, another [Cylinder](../_autosummary/tidy3d.Cylinder.html?highlight=cylinder) made of air with the radius set to the inner radius of the ring is added. This effectively results in a silicon ring. The waveguide bend structure is built using the same principle. "
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "8526222d",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T22:08:30.548063Z",
"iopub.status.busy": "2023-03-27T22:08:30.547866Z",
"iopub.status.idle": "2023-03-27T22:08:30.572589Z",
"shell.execute_reply": "2023-03-27T22:08:30.572019Z"
}
},
"outputs": [],
"source": [
"# through port waveguide\n",
"wg1 = td.Structure(\n",
" geometry=td.Box.from_bounds(rmin=(-inf_eff, 0, 0), rmax=(inf_eff, W0, t_si)),\n",
" medium=si,\n",
")\n",
"\n",
"\n",
"# ring resonator\n",
"ring_out = td.Structure(\n",
" geometry=td.Cylinder(\n",
" center=(0, 2 * W0 + Wg + R1, t_si / 2), radius=R1 + W0, length=t_si, axis=2\n",
" ),\n",
" medium=si,\n",
")\n",
"\n",
"ring_in = td.Structure(\n",
" geometry=td.Cylinder(\n",
" center=(0, 2 * W0 + Wg + R1, t_si / 2), radius=R1, length=t_si, axis=2\n",
" ),\n",
" medium=air,\n",
")\n",
"\n",
"\n",
"# waveguide bend\n",
"wg_bend_out = td.Structure(\n",
" geometry=td.Cylinder(\n",
" center=(-s, 4 * W0 + 2 * Wg + 2 * R1 + R2, t_si / 2),\n",
" radius=R2 + W0,\n",
" length=t_si,\n",
" axis=2,\n",
" ),\n",
" medium=si,\n",
")\n",
"\n",
"wg_bend_in = td.Structure(\n",
" geometry=td.Cylinder(\n",
" center=(-s, 4 * W0 + 2 * Wg + 2 * R1 + R2, t_si / 2),\n",
" radius=R2,\n",
" length=t_si,\n",
" axis=2,\n",
" ),\n",
" medium=air,\n",
")\n",
"\n",
"wg_bend_left = td.Structure(\n",
" geometry=td.Box.from_bounds(\n",
" rmin=(-s, 3 * W0 + 2 * Wg + 2 * R1, 0),\n",
" rmax=(-s + R2 + W0, 5 * W0 + 2 * Wg + 2 * R1 * 2 * R2, t_si),\n",
" ),\n",
" medium=air,\n",
")\n",
"\n",
"\n",
"# drop port waveguide\n",
"wg2 = td.Structure(\n",
" geometry=td.Box.from_bounds(\n",
" rmin=(-s, 3 * W0 + 2 * Wg + 2 * R1, 0), rmax=(s, 4 * W0 + 2 * Wg + 2 * R1, t_si)\n",
" ),\n",
" medium=si,\n",
")\n",
"\n",
"wg3 = td.Structure(\n",
" geometry=td.Box.from_bounds(\n",
" rmin=(-s, 4 * W0 + 2 * Wg + 2 * R1 + 2 * R2, 0),\n",
" rmax=(inf_eff, 5 * W0 + 2 * Wg + 2 * R1 + 2 * R2, t_si),\n",
" ),\n",
" medium=si,\n",
")\n",
"\n",
"\n",
"# si wafer\n",
"si_substrate = td.Structure(\n",
" geometry=td.Box.from_bounds(\n",
" rmin=(-inf_eff, -inf_eff, 0), rmax=(inf_eff, inf_eff, t_si - t_wg)\n",
" ),\n",
" medium=si,\n",
")\n"
]
},
{
"cell_type": "markdown",
"id": "d2114d96",
"metadata": {},
"source": [
"Define source and monitors. Here we will define a [ModeSource](../search.html?q=modesource) that launches the TE0 mode into the input waveguide. Two [FluxMonitors](../_autosummary/tidy3d.FluxMonitor.html?highlight=fluxmonitor) are added to the through port and the drop port to monitor the transmission. A [FieldMonitor](../_autosummary/tidy3d.FieldMonitor.html?highlight=fieldmonitor) is added in the xy plane to visualize the field distribution."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "c55531c4",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T22:08:30.575035Z",
"iopub.status.busy": "2023-03-27T22:08:30.574857Z",
"iopub.status.idle": "2023-03-27T22:08:30.597430Z",
"shell.execute_reply": "2023-03-27T22:08:30.596877Z"
}
},
"outputs": [],
"source": [
"mode_spec = td.ModeSpec(\n",
" num_modes=1, target_neff=3\n",
") # we are only interested in the TE0 mode so num_modes is set to 1\n",
"# add a mode source at the input of the waveguide\n",
"mode_source = td.ModeSource(\n",
" center=(-1.5 * R1, W0 / 2, t_si / 2),\n",
" size=(0, 4 * W0, 4 * t_si),\n",
" source_time=td.GaussianPulse(freq0=freq0, fwidth=freq0 / 10),\n",
" direction=\"+\",\n",
" mode_spec=mode_spec,\n",
" mode_index=0,\n",
")\n",
"\n",
"# add two flux monitors at the through port and the drop port\n",
"flux_monitor1 = td.FluxMonitor(\n",
" center=(1.5 * R1, W0 / 2, t_si / 2),\n",
" size=(0, 4 * W0, 4 * t_si),\n",
" freqs=freqs,\n",
" name=\"flux1\",\n",
")\n",
"\n",
"flux_monitor2 = td.FluxMonitor(\n",
" center=(1.5 * R1, 4.5 * W0 + 2 * Wg + 2 * R1 + 2 * R2, t_si / 2),\n",
" size=(0, 4 * W0, 4 * t_si),\n",
" freqs=freqs,\n",
" name=\"flux2\",\n",
")\n",
"\n",
"freq1 = 378.8e9 # frequency at which the power is transmitted to the through port\n",
"freq2 = 380.2e9 # frequency at which the power is transmitted to the drop port\n",
"\n",
"# define a field monitor in the z=0 plane to visualize the field flow\n",
"field_monitor = td.FieldMonitor(\n",
" center=(0, 0, t_si / 2),\n",
" size=(td.inf, td.inf, 0),\n",
" freqs=[freq1, freq2],\n",
" name=\"field\",\n",
")\n"
]
},
{
"cell_type": "markdown",
"id": "ebf3cf30",
"metadata": {},
"source": [
"Define the simulation using the above structures, source, and monitors. Due to the high-Q resonance of the ring resonator, we need to ensure that the simulation run time is sufficiently long."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "66b2caf7",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T22:08:30.599663Z",
"iopub.status.busy": "2023-03-27T22:08:30.599506Z",
"iopub.status.idle": "2023-03-27T22:08:30.958131Z",
"shell.execute_reply": "2023-03-27T22:08:30.957586Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb8AAAHWCAYAAADn6IfgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8QklEQVR4nO3deXwTdfoH8M/k7pUmTXrSUko5yn2DRRCQLkXxQJEVxXNZUAQV2Z/XyuK1yor3Ceu6iqsoiK6oyHLIIQjlKiDlKncppQdJc7Rpm0yS7++P2kDMpBSYHG2e9+uVF3Tmm8kzuZ7M9+QYYwyEEEJIBJGEOgBCCCEk2Cj5EUIIiTiU/AghhEQcSn6EEEIiDiU/QgghEYeSHyGEkIhDyY8QQkjEoeRHCCEk4lDyI4QQEnEo+RESxjZu3AiO47Bx48ZQh0JIm0LJj5Aw8MEHH2DRokWhDuOyfPHFF3jrrbdCHQYA4KWXXsJNN92E5ORkcByH5557TrDct99+i/z8fKSlpUGpVCI9PR233XYb9u/fL1j++++/R//+/aFSqdC+fXs8++yzcDqdLYrJ7XZj/vz5yMrKgkqlQu/evfHll18Klj106BDGjh2L2NhYJCQk4O6778a5c+da9DjkEjFCSMj16NGDjRgxwme7y+Vi9fX1zOVyBT+oFho3bhzLzMwMdRiMMcYAsJSUFJafn88AsGeffVaw3PPPP89uv/129o9//IN99NFH7O9//zvr2LEji4qKYnv37vUqu3LlSsZxHBs1ahT78MMP2cMPP8wkEgl78MEHWxTTU089xQCwqVOnsg8//JCNGzeOAWBffvmlV7nS0lKm1+tZdnY2e/vtt9lLL73EtFot69OnD7Pb7Zf1fBD/KPmRsFFbWxvqEELGX/JrDcIp+Z08eZIxxti5c+eaTX5CKioqmEwmYw888IDX9u7du7M+ffownuc925555hnGcRw7dOhQs8c8c+YMk8vlbMaMGZ5tbrebDR8+nKWnpzOn0+nZPn36dBYVFcVKSko829auXcsAsH/+858tPg/SMlTtSQKirKwMU6ZM8VQrZWVlYfr06XA4HACARYsWgeM4/Pzzz3jooYeQlJSE9PR0z/0/+OAD9OjRA0qlEmlpaZgxYwbMZrPXYxw9ehQTJkxASkoKVCoV0tPTMWnSJFgsFk+ZtWvXYtiwYdBoNIiNjUXXrl3x17/+9aLxt+R+drsdzz77LDp16gSlUomMjAw88cQTsNvtPsf7/PPPMXjwYERHR0Or1eKaa67BmjVrAAAdOnTAgQMH8PPPP4PjOHAch5EjRwLw3+a3bNkyDBgwAFFRUdDr9bjrrrtQVlbmVea+++5DbGwsysrKMH78eMTGxiIxMRH/93//B5fLddHn4LvvvsO4ceM8r2F2djZefPFFr/uOHDkSP/74I0pKSjyxd+jQwe8x77vvPk+539/8VVFeiuYe+2KSkpIQHR3t9T47ePAgDh48iGnTpkEmk3m2P/TQQ2CM4euvv272mN999x14nsdDDz3k2cZxHKZPn44zZ86goKDAs/2bb77BDTfcgPbt23u25eXloUuXLvjqq68u+7yIMNnFixByac6ePYvBgwfDbDZj2rRpyMnJQVlZGb7++mvU1dVBoVB4yj700ENITEzE3LlzYbPZAADPPfccnn/+eeTl5WH69OkoLi7GggULsHPnTmzZsgVyuRwOhwP5+fmw2+14+OGHkZKSgrKyMqxYsQJmsxnx8fE4cOAAbrjhBvTu3RsvvPAClEoljh07hi1btjQbf0vu53a7cdNNN+GXX37BtGnT0K1bNxQVFeHNN9/EkSNHsHz5ck/Z559/Hs899xyGDh2KF154AQqFAtu3b8f69esxZswYvPXWW3j44YcRGxuLZ555BgCQnJzsN75Fixbh/vvvx6BBgzBv3jxUVlbi7bffxpYtW7Bnzx5oNBpPWZfLhfz8fAwZMgSvvfYafvrpJ7z++uvIzs7G9OnTm30eFi1ahNjYWMyePRuxsbFYv3495s6dC6vVildffRUA8Mwzz8BiseDMmTN48803AQCxsbF+j/nAAw8gLy/Pa9uqVauwePFiJCUlebYZDIZmY2sSFxcHpVLZorJCzGYzeJ5HRUUF3nrrLVitVowePdqzf8+ePQCAgQMHet0vLS0N6enpnv3+7NmzBzExMejWrZvX9sGDB3v2Dxs2DGVlZaiqqvJ5nKayK1euvKzzI80I9aUnaXvuueceJpFI2M6dO332ud1uxhhjn3zyCQPAhg0b5lX1U1VVxRQKBRszZoxXO9d7773HALCPP/6YMcbYnj17GAC2bNkyv3G8+eabDAA7d+7cJcXfkvt99tlnTCKRsM2bN3ttX7hwIQPAtmzZwhhj7OjRo0wikbBbbrnFp92u6blgzH+154YNGxgAtmHDBsYYYw6HgyUlJbGePXuy+vp6T7kVK1YwAGzu3Lmebffeey8DwF544QWvY/br148NGDCg+SeBMVZXV+ez7YEHHmDR0dGsoaHBs+1Kqj2PHj3K4uPj2R/+8Aev9wGAFt0++eQTweO2tNqza9eunmPFxsayOXPmeL1Or776KgPATp8+7XPfQYMGsauuuqrZ448bN4517NjRZ7vNZmMA2FNPPcUYY2znzp0MAPvPf/7jU/bxxx9nALyec3LlqNqTiMrtdmP58uW48cYbBX/Fchzn9ffUqVMhlUo9f//0009wOByYNWsWJBKJVzm1Wo0ff/wRABAfHw8AWL16Nerq6gRjaboC+u677+B2u1t8Di2537Jly9CtWzfk5OTAYDB4btdeey0AYMOGDQCA5cuXw+12Y+7cuV7nA/g+Fy2xa9cuVFVV4aGHHoJKpfJsHzduHHJycjzPz4UefPBBr7+HDx+OEydOXPSxoqKiPP+vqamBwWDA8OHDUVdXh8OHD19y7L9ns9lwyy23QKvV4ssvv/R6H6xdu7ZFt/z8/CuK4ZNPPsGqVavwwQcfoFu3bqivr/eq1q2vrwcAwatLlUrl2e9PfX293/teePyLPc6FZYg4qNqTiOrcuXOwWq3o2bNni8pnZWV5/V1SUgIA6Nq1q9d2hUKBjh07evZnZWVh9uzZeOONN7B48WIMHz4cN910E+666y5PYrz99tvx0Ucf4c9//jOeeuopjB49Grfeeituu+02n0R0oZbc7+jRozh06BASExMFj1FVVQUAOH78OCQSCbp3796i5+Ni/D0/AJCTk4NffvnFa5tKpfKJUavVwmQyXfSxDhw4gDlz5mD9+vWwWq1e+y5sV71cU6dOxfHjx7F161bodDqvfb+vGg2U3Nxcz/8nTZrkqZ587bXXAJz/ASDUjtvQ0OD1A0FIVFSU3/teePyLPc6FZYg4KPmRkLqSD/Trr7+O++67D9999x3WrFmDRx55BPPmzcO2bduQnp6OqKgobNq0CRs2bMCPP/6IVatWYenSpbj22muxZs0aryuN38d0sfu53W706tULb7zxhuAxMjIyLvu8xOTvHC/GbDZjxIgRUKvVeOGFF5CdnQ2VSoXdu3fjySefvKQraSFvv/02vvzyS3z++efo27evz/6KiooWHSc+Pl60pKDVanHttddi8eLFnuSXmpoKACgvL/d5TcvLyz1td/6kpqZiw4YNYIx5XemXl5cDaGw7/P3j/F55eTkSEhKuqG2T+KJqTyKqxMREqNVqv4OFLyYzMxMAUFxc7LXd4XDg5MmTnv1NevXqhTlz5mDTpk3YvHkzysrKsHDhQs9+iUSC0aNH44033sDBgwfx0ksvYf369Z5qSX8udr/s7GxUV1dj9OjRyMvL87k1XZllZ2fD7Xbj4MGDzT5eS6tA/T0/Tdt+//xcro0bN8JoNGLRokV49NFHccMNNyAvLw9ardan7KVW327evBn/93//h1mzZmHy5MmCZVJTU1t0W7p06WWdnz/19fVeV7VNiXnXrl1e5c6ePYszZ84IJu4L9e3bF3V1dTh06JDX9u3bt3sdv127dkhMTPR5HADYsWPHRR+HXDpKfkRUEokE48ePxw8//CD4QWaMNXv/vLw8KBQKvPPOO15l//3vf8NisWDcuHEAAKvV6jPDRq9evSCRSDxVR9XV1T7Hb/oSEapeatKS+/3xj39EWVkZ/vWvf/mUra+v9/RcHT9+PCQSCV544QWfq6ULzy8mJsZnKIeQgQMHIikpCQsXLvQ6h//97384dOiQ5/m5Uk1XjBfG6HA48MEHH/iUjYmJaXE1aHl5Of74xz9i2LBhnh6jQgLd5tdULX2hU6dOYd26dV5t1T169EBOTg4+/PBDr7bABQsWgOM43HbbbZ5tFosFhw8f9noubr75Zsjlcq/njTGGhQsXol27dhg6dKhn+4QJE7BixQqUlpZ6tq1btw5HjhzBxIkTL+s8iX9U7UlE9/LLL2PNmjUYMWKEZxhAeXk5li1bhl9++cWrK/7vJSYm4umnn8bzzz+PsWPH4qabbkJxcTE++OADDBo0CHfddRcAYP369Zg5cyYmTpyILl26wOl04rPPPoNUKsWECRMAAC+88AI2bdqEcePGITMzE1VVVfjggw+Qnp6OYcOG+Y2hJfe7++678dVXX+HBBx/Ehg0bcPXVV8PlcuHw4cP46quvsHr1agwcOBCdOnXCM888gxdffBHDhw/HrbfeCqVSiZ07dyItLQ3z5s0DAAwYMAALFizA3//+d3Tq1AlJSUmezjMXksvleOWVV3D//fdjxIgRuOOOOzxDHTp06IDHHnvscl82L0OHDoVWq8W9996LRx55BBzH4bPPPhP88TJgwAAsXboUs2fPxqBBgxAbG4sbb7xR8LiPPPIIzp07hyeeeAJLlizx2te7d2/07t0bwOW3+X322WcoKSnxdILatGkT/v73vwNofM2arox79eqF0aNHo2/fvtBqtTh69Cj+/e9/g+d5/OMf//A65quvvoqbbroJY8aMwaRJk7B//3689957+POf/+w1hOHbb7/F/fffj08++QT33XcfACA9PR2zZs3Cq6++Cp7nMWjQICxfvhybN2/G4sWLvaql//rXv2LZsmUYNWoUHn30UdTW1uLVV19Fr169cP/991/W80GaEcKepqQNKykpYffccw9LTExkSqWSdezYkc2YMcMzTVPTUAeh4RCMNQ5tyMnJYXK5nCUnJ7Pp06czk8nk2X/ixAn2pz/9iWVnZzOVSsUSEhLYqFGj2E8//eQps27dOnbzzTeztLQ0plAoWFpaGrvjjjvYkSNHmo29pfdzOBzslVdeYT169GBKpZJptVo2YMAA9vzzzzOLxeJV9uOPP2b9+vXzlBsxYgRbu3atZ39FRQUbN24ci4uLYwA8wx5+P9ShydKlSz3HS0hIYJMnT2ZnzpzxKnPvvfeymJgYn/N79tlnWUs++lu2bGFXXXUVi4qKYmlpaeyJJ55gq1ev9omntraW3XnnnUyj0TAAzQ57GDFihN9hC5cyG8vlHP/CmJ999lk2cOBAptVqmUwmY2lpaWzSpEls3759gsf99ttvWd++fZlSqWTp6elszpw5zOFweJVpek//fviFy+ViL7/8MsvMzGQKhYL16NGDff7554KPs3//fjZmzBgWHR3NNBoNmzx5MquoqLii54QI4xi7SD0UIYQQ0sZQmx8hhJCIQ8mPEEJIxKHkRwghJOJQ8iOEEBJxKPkRQgiJOJT8CCGERBwa5C4St9uNs2fPIi4u7rJm6yeEENI8xhhqamqQlpbW7OT0LUHJTyRnz54Nm8mMCSGkLSstLUV6evoVHYOSn0ji4uIAAE888YRnlvmm+QP0ej3kcnmz93c4HJ65HTUajddq58HCGMO5c+cANK4r1rQ0ULBZLBbPvJWJiYkhuZKm1+M8ej0a0etxXjBeD57nYTAYAJyfPL2+vh7z58/3fN9eCUp+Iml6caKiohAbGwugsSrU7XZDrVY3++ZwOByw2WyeDxPP84iPjw/qB9ztdsNoNCImJgZKpRINDQ2QSCSivMkuRU1NDaRSKRISEmC328HzPHQ63RVXcVwKej3Oo9ejEb0e5wXr9Wh6HIlEIspC0L9HHV5CzOFwwGAwQC6XQ6/Xe64SDQYDHA5HUGJo+mDzPA+9Xg+dTge1Wg2r1YqampqgxAA0frCtVivUajV0Oh30ej14nofRaLzi9eNail6P8+j1aESvx3nh8HqIha78RMYY87wR3W43GGPgeV6wLM/zMJlMkMlkUKvVniV61Go1TCYTqqqqoNVqL1pleqXxmkwmOJ1Oz1ptDocDSqUS0dHRMJvNcDqdiImJCVgMAGCz2VBbW4vY2FgolUrPByk+Pt7ruQhkFQ+9HufR69GIXo/zgv168Dzv9X0KQNQkT8lPZELJz263e60F1rSv6UOkUCh81peLioryXPYrFIqAVGswxuBwOCCRSBAbGwuXy+UVp1QqRUxMDBwOBxhjkMkC83ZxOp3geR4xMTGQSqVoaGjw2h8bGwuHwwGr1QqFQhGQDzi9HufR69GIXo/zQvF6OJ1OuN1uz/kwxnzW8LwSlPxE1rSSOdD4y8Vut+P6668PWeM4IYS0RhaLBStXroRSqYRMJoPJZBK1apWSn8jkcrlXw6/L5UJ8fDwSEhJCGBUhhLQ+MpkMMpkMVqsVbrdb1O9R6vBCCCEkLDW1uTZ1NhKzfZeSHyGEkLDkcDjgdDqh1+tFH0pByY8QQkhYYoxBq9UGZEwnJb8AC9b4G0IIaWsUCkXAhrJQ8gsgnudb3cBPQggJF4GcuYaSX4A4HA6YTCZa4YEQQsIQJb8AaJoCSCaThWQCXkIIIc2jcX4i43keNpsNcrkcarXaZyYEQgghoUdXfiIzm82Qy+XQ6XRU5UkIIWGKkp/IpFJp0JcYIYQQcmnoG5oQQkjEoTY/kblcLhiNRuh0ulCHQggh4nOYgNPLvLe1nwgotKGJ5zLRlZ/INBqNZ4FJxliowyGEECKAkp/ImlY4blr4kRIgIYSEH0p+AaBQKKDX6+F0OmmGF0IICUOU/AJEoVBAq9XSlR8hhIQhSn4B9PuFbQkhhLRcIBcGCGny27RpE2688UakpaWB4zgsX77cs4/neTz55JPo1asXYmJikJaWhnvuuQdnz571OkZ1dTUmT54MtVoNjUaDKVOmoLa21qvMvn37MHz4cKhUKmRkZGD+/Pk+sSxbtgw5OTlQqVTo1asXVq5cKco50ng/Qgi5PA6HAzzPB+TYIf1mttls6NOnD95//32ffXV1ddi9ezf+9re/Yffu3fjvf/+L4uJi3HTTTV7lJk+ejAMHDmDt2rVYsWIFNm3ahGnTpnn2W61WjBkzBpmZmSgsLMSrr76K5557Dh9++KGnzNatW3HHHXdgypQp2LNnD8aPH4/x48dj//79gTt5cll4lxu1DYH5MBBCwgvHcTCZTAHpO8GxMGmU4jgO3377LcaPH++3zM6dOzF48GCUlJSgffv2OHToELp3746dO3di4MCBAIBVq1bh+uuvx5kzZ5CWloYFCxbgmWeeQUVFhacK8qmnnsLy5ctx+PBhAMDtt98Om82GFStWeB7rqquuQt++fbFw4cIWxW+1WhEfH48FCxYgPj4eQOOvloaGBkycOBEJCQmX87REDKfLDUNtPaosdaiy1KHS2vhvTQMPO+9CA++E3emCyx0Wb1dCIlY0atBf+rPXtt2uEahDnKiPI3XWQ2M4DM7FgwODUxYFe0MD3njhr7BYLFCr1Vd0/FY1yN1isYDjOGg0GgBAQUEBNBqNJ/EBQF5eHiQSCbZv345bbrkFBQUFuOaaa7za3vLz8/HKK6/AZDJBq9WioKAAs2fP9nqs/Px8r2pYIq46O49jlWYcKTfhSIUZZdW1cIfH7zBCSBhxyZSQuhyQOethF/E7otUkv4aGBjz55JO44447PBm/oqICSUlJXuVkMhkSEhJQUVHhKZOVleVVJjk52bNPq9WioqLCs+3CMk3HEGK3271WbLBarZd/chGAMYZT56zYfaoKxeUmnDHWgFIdIeTiODhlUZA56yFz2kQ7aqtIfjzP449//CMYY1iwYEGowwEAzJs3D88//3yowwh7lZY67DhegZ3HK3Cupj7U4RBCWiOuMQEyTrzvkLBPfk2Jr6SkBOvXr/eq501JSUFVVZVXeafTierqaqSkpHjKVFZWepVp+vtiZZr2C3n66ae9qkqtVisyMjIu4wzbHt7pwrZj5dhypBwlBroiJoSIgOPgkilFO1xYJ7+mxHf06FFs2LDBZ7Lo3NxcmM1mFBYWYsCAAQCA9evXw+12Y8iQIZ4yzzzzDHieh1wuBwCsXbsWXbt2hVar9ZRZt24dZs2a5Tn22rVrkZub6zc2pVIJpVK8F6ItqHc4sflwGdYdOA1r/ZX1zopWyJAcHw1dXBSi5DKo5FIo5VIo5TIo5VIM79pOpKgJIZfEYQJOe190TG4/QvSJraurq7FsWRlUKpWnz4bFIt646ZAmv9raWhw7dszz98mTJ7F3714kJCQgNTUVt912G3bv3o0VK1bA5XJ52uASEhKgUCjQrVs3jB07FlOnTsXChQvB8zxmzpyJSZMmIS0tDQBw55134vnnn8eUKVPw5JNPYv/+/Xj77bfx5ptveh730UcfxYgRI/D6669j3LhxWLJkCXbt2uU1HIL4V1PvwPqDpfj50BnUO5yXfP8UTQy6pGiQqVcjOT4ayfHRiFXR5ACEkMAJafLbtWsXRo0a5fm7qRrx3nvvxXPPPYfvv/8eANC3b1+v+23YsAEjR44EACxevBgzZ87E6NGjIZFIMGHCBLzzzjuesvHx8VizZg1mzJiBAQMGQK/XY+7cuV5jAYcOHYovvvgCc+bMwV//+ld07twZy5cvR8+ePQN05m2D0+XG+oOlWLnnJOxOV4vvp4tVoUe6Dl1SteiSokVcFCU6QkhwhTT5jRw5stm5L1syBDEhIQFffPFFs2V69+6NzZs3N1tm4sSJmDhx4kUfjzQ6fLYaSwuKUWGpa1H5GKUMA7KSMTg7BdnJmsAGRwghFxHWbX4k/JhsDfhmx1EUnqy6aFkOQM8MPYZ1TUOPdB2kNNUbISRMUPIjLbbzRAW+2HIYDXzzVZwSjsPAjskY0ysT7RJigxQdIYS0HCU/clEOpwtfbTuCLUfONltOJuEwtEsa/tArE/q4qCBFRwiJFDZbhA1yJ6FTbqrFvzbsR7m5+Tdd93YJuP2qrkiKjw5SZISQSFJTU0PJjwTH9mPlWLzlMHiX/zW1EmJVmDikM/pmJvktQwghV6KmpgZWqxUxMTGiHZOSH/HBGMOafSVYXnjcbxkJx+EPvdrj+r5ZUMikQYyOEBJSCi3QadrFy4nEZrOhrq4OarVa1MVtKfkRL27G8M2Oo1h/oNRvmfhoJf40oge6pIo7owMhhFzI6XTCZrNBo9EgLi4OFotFtGNT8iMeTpcbn24+iF0nKv2W6ZGuw73Du9PAdEJIwPE8j9jYWMTFibtWIEDJL+DCZK3gi+KdLixYtw+HyqoF90s4DjcN6Ij83h2CGxghJGLJ5XJR2/kuRMkvgBhjcDiubILnYHC7GT7++YDfxCeXSjBlZE/0yUwMcmSEkEgmkwUuRVHyCxC32w2TyQRJmM9qwhjDlwWHsbfknOD+aIUM0//QB51oSjJCSBtCyS8A3G43jEYjnE4nYmPDe4aTH/ecxC/FwoPXNdFKPJzfF2na8D4HQgi5VJT8RMYYg9FoBM/z0Gq1cLlavtpBsG06fAY/7j0puE8Xq8Ls6wcgIVYV5KgIISTwKPmJzGw2Q6FQQK/XA0DYJr+jFSYsKSgW3BerkuPh/H6U+AghbVZ4N0i1Qk6nE3q93rPycDiqbeDxyc8HINQRVSmTYsYf+iKZpikjhLRhlPxEplAowjrxMcbwn80HYbLZffZJJRymXdsLHRLVIYiMEEKCh5KfyOx2O2pqakIdhl/rD5SiqNQguO/OoTnonq4LckSEEBJ81OYnspiYGFitVgCAUqkMcTTeSgxWfLvrmOC+qzqlYmiXtCBHRAghoUHJT2QxMTGQSCSwWq2Ijo6GVBoekz673QyLtxyGy+3b0JeiicGk3K4hiIoQQkKDkl8ANM1DZzabAzY1z6X65UgZSo2+1bFyqQR/HtkTSnl4JGlCCAkGSn4BEhcXB6fTGRbTm9U2OPDdLuHliSYO6YJ2CTSInRASWSj5BVBMTExYTGy9fNdx1DmcPts7JWswPKddCCIihJCLC+T3J/X2DLBATszaEqfOWbDliO/0ZRKOw+25XUIQESGEtIzD4QhYAqTk18at2CM8fdmIbu2QniD+GlmEECIWxhhMJpOoK7g3oeTXhpUaa3DgjNFnuzpKgRv7Z4cgIkIIaTmFQgGn0wmj0Sh6AqTk14at3ndKcPsN/TsiSkHNvYSQ8CaRSKDVasHzPIxGo6hVoJT82qgqSx12n6ry2a6JViK3U2oIIiKEkEsnl8uh1+vB8zzMZrNox6Xk10atKSoRnLh6dM/2kEnpZSeEtB5NK+U4nb691i8XfQu2QXV2HtuPV/hsj1HKMKwrTWFGCGl9FAoFNBqNaMej5NcG7Sk5B6fLt3F4ZPcMqOTU1kcIaZ3kcrlox6Lk1wbtELjqk3AcRuSkhyAaQggJP5T82hiTrQFHy00+27u3S0BcVPiuM0gIIcFEya+N2XmiEkKdgQd3Sgl6LIQQEq4o+bUxOwWqPJUyKfq0TwxBNIQQEp4o+bUh1noHzlTX+mzv2yERChktWUQIIU0o+bUhRyt82/oAoF9mUpAjIYQQ8fE8L9qxKPm1IUcEOrpwHNA5RRP8YAghREQOh4NmeCHCjlaYfbalJ8QhWine2BhCCAk2h8MBg8Eg6hJxNOK5jbDW21Futvls70JXfYSQVozneVgsFsjlckRHR4t2XLryayNOVFoEt3dJ1QY5EkIIEYfb7YbJZIJcLodOpwPHcaIdm5JfG1FhqRPcnp2sCW4ghBAiEofDAZlMBp1OB4lE3HRFya+NqLL6Jr84lQIx1N5HCGmlOI6DVqsVPfEBlPwCTswlOJpTKXDllxwvXv04IYQEm0KhELWq80KU/ALIZrOJOi6lOUJXfknqqKA8NiGEBEKgEh8Q4uS3adMm3HjjjUhLSwPHcVi+fLnXfsYY5s6di9TUVERFRSEvLw9Hjx71KlNdXY3JkydDrVZDo9FgypQpqK31nuVk3759GD58OFQqFTIyMjB//nyfWJYtW4acnByoVCr06tULK1euvKJzq6mpQW1trahLcPhjs/OobfBNskl05UcIIYJCmvxsNhv69OmD999/X3D//Pnz8c4772DhwoXYvn07YmJikJ+fj4aGBk+ZyZMn48CBA1i7di1WrFiBTZs2Ydq0aZ79VqsVY8aMQWZmJgoLC/Hqq6/iueeew4cffugps3XrVtxxxx2YMmUK9uzZg/Hjx2P8+PHYv3//ZZ1XTU0NrFYrYmNjRR2X4o+ptkFwO1V7EkKIsJCO87vuuutw3XXXCe5jjOGtt97CnDlzcPPNNwMA/vOf/yA5ORnLly/HpEmTcOjQIaxatQo7d+7EwIEDAQDvvvsurr/+erz22mtIS0vD4sWL4XA48PHHH0OhUKBHjx7Yu3cv3njjDU+SfPvttzF27Fg8/vjjAIAXX3wRa9euxXvvvYeFCxde0jnZbDYwxqBWq6FUKr0SdaDU88LtirFKWsKIEEKEhG2b38mTJ1FRUYG8vDzPtvj4eAwZMgQFBQUAgIKCAmg0Gk/iA4C8vDxIJBJs377dU+aaa66BQnE+EeTn56O4uBgmk8lT5sLHaSrT9DhC7HY7rFar1w1oTH5qtRpxcXFX+Ay0nJ13CW5Xymkya0IIERK2ya+ionFpnuTkZK/tycnJnn0VFRVISvKetFkmkyEhIcGrjNAxLnwMf2Wa9guZN28e4uPjPbeMjAwAgFKpDGriAyj5EULIpQrb5Bfunn76aVgsFs+ttLQUQOOgTIfDEdRY7E7h5KeS0+x1hBAiJGyTX0pK48rjlZWVXtsrKys9+1JSUlBVVeW13+l0orq62quM0DEufAx/ZZr2C1EqlVCr1V43oPHK02AwBDUBNvhp81PRlR8hhAgK2+SXlZWFlJQUrFu3zrPNarVi+/btyM3NBQDk5ubCbDajsLDQU2b9+vVwu90YMmSIp8ymTZu8xtutXbsWXbt2hVar9ZS58HGayjQ9zqXQaDSQy+UwGAxBG+PnZsLbAzlGhhBCWrOQJr/a2lrs3bsXe/fuBdDYyWXv3r04ffo0OI7DrFmz8Pe//x3ff/89ioqKcM899yAtLQ3jx48HAHTr1g1jx47F1KlTsWPHDmzZsgUzZ87EpEmTkJaWBgC48847oVAoMGXKFBw4cABLly7F22+/jdmzZ3viePTRR7Fq1Sq8/vrrOHz4MJ577jns2rULM2fOvORz4jgOOp0OcrkcJpMJbrf7ip+ni1H6WaXdX1sgIYREupA2Cu3atQujRo3y/N2UkO69914sWrQITzzxBGw2G6ZNmwaz2Yxhw4Zh1apVUKlUnvssXrwYM2fOxOjRoyGRSDBhwgS88847nv3x8fFYs2YNZsyYgQEDBkCv12Pu3LleYwGHDh2KL774AnPmzMFf//pXdO7cGcuXL0fPnj0v67wkEgl0Oh2qqqqCUv3pr3rTzjsRq6K5PQkh5PdCmvxGjhwJxvzU2aHxKuqFF17ACy+84LdMQkICvvjii2Yfp3fv3ti8eXOzZSZOnIiJEyc2H/AlkEgk0Gq1niEQgeSvV2cDXfkRQoigsG3zaws4jvMaXxgo/np1+usFSgghrUEgFwag5Bdgweh04u/Kr94RnA43hBASCDzPw2azBeTYlPzagPgo4avLc9b6IEdCCCHikcvlqK2tRU1NjejHplHQbUB8tBIKmQQOp3fPUqFljgghpLWQyWSIjY0NSN8JSn5tAMdxSFJH40y191JOQgvcEkJIaxITEwOZTAar1SpqMxJVe7YRQssX0ZUfIaQtiIuLg1qtFrX9j5JfG5Gk9k1+xtoG8K7AD7InhJBAi4uLQ0xMjGjHo+TXRghd+TEGlBgCP86QEEKCgZIf8ZGZqBbcfrTcFORICCEk/FHyayOS1dFQCwx5OFJByY8QQn6Pkl8bwXEcuqRofbafqLLASe1+hBDihZJfG9IlVeOzzeF04xS1+xFCiBdKfm1Il9QEwe1Fpw1BjoQQQsIbJb82JEkdBU200mf7zhMVIYiGEELE1dwqQJeKkl8bwnEcBmQl+Ww32ew4Qr0+CSGtmNvthtlsFu14lPzamEHZKYLbdxynqz9CSOvkdrthNBpFXeKIkl8b014XhxSBAe+7T1XRbC+EkFaHMQaj0Qie56HRaEQ7LiW/NobjOMGrv3qHE4UnKkMQESGEXB7GGEwmE3ieh16vh1wuF+3YlPzaoEEdhas+VxeVBDkSQgi5fA6HA06nE3q9HgqF8Lqll4uSXxuUqI5CTprvsIcKsw17S6pCEBEhhFw6xhi0Wq3oiQ+g5Bdwbndo2tnye2cKbl/1K139EUJaB4VCIWpV54Uo+QUQz/NwOBwheeyuqVpk6n0nuy4xWHH4bHUIIiKEkEsjkQQuRVHyCxCHwwGTySTqysOXguM4jO3TQXDftzuPwS3iYFFCCGltKPkFgMPhgMFggEwmC0hddUv1bq9HqsZ3/avTxhr8UlwWgogIISQ8UPITGc/zMBgMkMvl0Gq1IbvyAwBJM1d/3xceR20DH9yACCEkTFDyE5nZbIZcLodOpwtp4msysGMyspPifbbb7E58V3gsBBERQkjoUfITmVQqhU6nC2hD7aWQcBwm5XaFUB7ecuQsTlRZgh8UIYSEWHh8Q5OAStfFYUS3dJ/tjAEfb9yPOjtVfxJCIgslP5G5XC4YjcaQje/z58Z+HRGn8h0vY6xtwOe/HApBRIQQEjqU/ESm0WjA8zyMRqOoa09dqWilHBMGdxbct6fkHDYeLA1yRIQQEjqU/EQml8uh1+vB8zxMJlNYJcDB2SkY1DFZcN83O4/htMEa5IgIISQ0KPkFgEKhgF6vh9PpDNkML0I4jsOdV+cgUR3ls8/pcmPBT/tQXdsQgsgIISS4KPkFiEKhgFarDasrPwBQyWWYOqoXZBLf7p/mOjveXb2Hxv8RQto8Sn4BJJfLQzrDiz8Zuji/7X8Vljp8sHYvHE5XkKMihBBvgew4SMkvwMJlvN/vjeiWjsECi94CwMlzVvxrfRFcYdZjlRASWRwOB3g+MDVR4fnNTAKO4zjcPawbugms+wcA+88YseCnfbDzdAVICAkNjuNgMpkC0neCkl8Ek0klmDa6FzL1cYL7D5wx4q1Vu1HbED6ddgghkUOhUEAmk8FgMIieACn5RTiVXIaH/tAXSQI9QAHg1DkrXltRCGNtfZAjI4REOo7joNVqIZfLYTAYRK0CpeRHoI5S4OH8foiPVgrur7TW4dUfduHkOZoHlBASXBzHQafTQS6Xw2w2i3ZcSn4EAKCPi8Lj4wYgSR0tuN9S78DrPxZibVFJkCMjhEQ6iUQCnU4HmUwm3jFFOxJp9XRxUfi/cQPQQa8W3O9yM/x35zG8v3YvjQUkhASVRCKBRqMR73iiHYm0CXFRCjx6XT90byfcCxQA9pca8fJ321FcbgpiZISQSCfmGqmU/IgPlVyG6Xl9MKST8DhAADDZ7Hjrf7vx8cb9sNTZgxgdIYRcOUp+RJBMKsG9w7tj8tU5kEv9v012nqjEc98U4Kf9JTQonhDSaoR18nO5XPjb3/6GrKwsREVFITs7Gy+++KLXfJmMMcydOxepqamIiopCXl4ejh496nWc6upqTJ48GWq1GhqNBlOmTEFtba1XmX379mH48OFQqVTIyMjA/Pnzg3KO4YzjOAzr2g5P3jQIKRrhjjAA0MC78M2OY3h5+Q7sOVUVxAgJIeTyhHXye+WVV7BgwQK89957OHToEF555RXMnz8f7777rqfM/Pnz8c4772DhwoXYvn07YmJikJ+fj4aG86sTTJ48GQcOHMDatWuxYsUKbNq0CdOmTfPst1qtGDNmDDIzM1FYWIhXX30Vzz33HD788MOgnm+4aqeNxVM3DsbQzqnNljtrtuHD9UV4/r/bsO1oOV0JEkLClnj9RgNg69atuPnmmzFu3DgAQIcOHfDll19ix44dABqv+t566y3MmTMHN998MwDgP//5D5KTk7F8+XJMmjQJhw4dwqpVq7Bz504MHDgQAPDuu+/i+uuvx2uvvYa0tDQsXrwYDocDH3/8MRQKBXr06IG9e/fijTfe8EqSkUwpl+Lu4d3RI0OPr7cfgcnmv52vwmzDp5sP4ofdJ5DXqz2GZKcgWum7ijwhhIRKWF/5DR06FOvWrcORI0cAAL/++it++eUXXHfddQCAkydPoqKiAnl5eZ77xMfHY8iQISgoKAAAFBQUQKPReBIfAOTl5UEikWD79u2eMtdcc43XCgz5+fkoLi6GySTco9Fut8NqtXrdIkH/DkmYe+tVyO+dCanAskgXqrY14KttR/Dkkl/w4bp92HOqCryLrgYJIZfHZrOJdqywvvJ76qmnYLVakZOTA6lUCpfLhZdeegmTJ08GAFRUVAAAkpO9VydPTk727KuoqEBSUpLXfplMhoSEBK8yWVlZPsdo2qfVan1imzdvHp5//nkRzrL1UcllGD+wE67qnIqvCo7g0NnqZss7XW7sKTmHPSXnEK2QoV+HJPTM0KFzihYxdEVICGmBmpqayEl+X331FRYvXowvvvjCUxU5a9YspKWl4d577w1pbE8//TRmz57t+dtqtSIjIyOEEQVfSnwMHs7vi32lBqzaewqnDBe/+q1zOLHlyFlsOXIWHIC0hFh0SdGiS6oGHfRqaGJUgQ+cENKq1NTUwGq1IiYmRrRjhnXye/zxx/HUU09h0qRJAIBevXqhpKQE8+bNw7333ouUlMZxaJWVlUhNPd8Zo7KyEn379gUApKSkoKrKuwei0+lEdXW15/4pKSmorKz0KtP0d1OZ31MqlVAqhefCjCQcx6FP+0T0ztCjuNyE1ftKcPgiV4JNGICy6lqUVddiw8FSAIBSJkWiOgrJ8dFIUkdDHxeFKIUMSrkUSpkUKnnj//VxwhNxE0LaFpvNhrq6OqjValEXtw3r5FdXV+ezGKxUKvU8AVlZWUhJScG6des8yc5qtWL79u2YPn06ACA3NxdmsxmFhYUYMGAAAGD9+vVwu90YMmSIp8wzzzwDnuchlzdWw61duxZdu3YVrPIkvjiOQ05aAnLSEnDqnBVrik7h1xID3BcMS2kJu9OFM9W1OFNde/HChISJBX8aHeoQ2iSn0wmbzQaNRoO4uDhYLOJNrh/WHV5uvPFGvPTSS/jxxx9x6tQpfPvtt3jjjTdwyy23AGj8wp01axb+/ve/4/vvv0dRURHuuecepKWlYfz48QCAbt26YezYsZg6dSp27NiBLVu2YObMmZg0aRLS0tIAAHfeeScUCgWmTJmCAwcOYOnSpXj77be9qjVJy3VIVGPatb3xyh3DMCm3KzomxYc6JEJIK8TzPGJjYxEXJ7zm6JUI6yu/d999F3/729/w0EMPoaqqCmlpaXjggQcwd+5cT5knnngCNpsN06ZNg9lsxrBhw7Bq1SqoVOfbjhYvXoyZM2di9OjRkEgkmDBhAt555x3P/vj4eKxZswYzZszAgAEDoNfrMXfuXFGGObBLvPJpS2JVCozolo4R3dJxzlqPnScqsPtkFcpMdFVHCLk4uVwuajvfhTgWyd/OIrJarYiPj8eCBQsQH994pdM0HOKuu+5CQoL/iaIjTW2DA0crzDhSYcKRchPOmsTrwUVIKFC1p/iqq6uxbNkyqFQqzzA0i8WC6dOnw2KxQK0WXn2mpcL6yq81c7vdMJlMPm2WpPGKsF+HJPTr0DgEpabegVJjDaqsdai01qHKUodKSx2qaxtAv8wIIYFAyS8A3G43jEYjnE4nYmNjQx1O2IuLUqB7ug7dofPazrvcsNl52HkXGngn7Lyr8f9OJ6QSCVTy33p/yqRQyaVQymWIUcpEXfaEENI2UfITGWMMRqMRPM9Dq9XC5XKFOqRWSy6VQBNNw0nE4HYz2J0u2HknGngX7M7GHxQSjvMaQqKUS6GQSSGhHxCkjaPkJzKz2QyFQgG9Xg8AlPxIQLndDCZbw/nq4t/+tdQ5PAnOzrsuaVo5DoBC1pgIm66oE2JUjWMv46OR9Ns4zDiVgq6ySatFyU9kTqcTaWlpUCgUcDgcoQ6HtBGMMZSbbTh1zopKS11j+6ilDudq6uEUeb5UhsbxlnanC9b6xm2lxhqfciq51DMZQVJ8NJLjo5GdpEFCLM3SQ8IfJT+RKRQKrwmyCbkcTcnuSLnJ0zO2toEPdVheGngXSgw1KDF4J8bEuCh0TtWiS4oGXVK10NKUdSQMUfITmd1uR01NTUAGZZK2qzUku5Y6V1OPczX12HrkLABKhiQ8UfITWUxMjGd5I5r7kzSHMYbTxhpsP1aBwpOVsNa3zWry3yfDVE0MBmWnYHDHZOhojlYSIpT8RBYTEwOJRAKr1Yro6GhIpdJQh0TCTNNsN9uPVaDKWifqsZsmBk9URyNK7t2Ls+n/qgsmCXcz1tj7s2k4idP125CS871Caxt4VFnrYKiph8t95SMvy802fF94HN8XHkd2cjwGZ6egf4dkxKpoeSsSPJT8AqCpytNsNgdsah7SutQ2OFB4sgo7jlfgRNWVTc4rlXDQx0Y19ryMj0ZyU4cTdVRAl4RyuxkMtfWouqDDTdO/Zpv9siYkOF5pwfFKC77adgQ903UYlJ2CXhl6KGT0o5EEFiW/AImLi4PT6aQenxGMMYbDZ6ux4eAZHDhjvOQVLpooZVJ0StGg829tZu11cZCGYOYgiYRr7NmpjvbZ18A7caLKgqPlJhypMKPEYL2kq0SXm+HX0wb8etoAlVyK/lnJGN0jA2lamiSCBAYlvwCKiYmJ6ImtI5WbMewtOYfVv57CaYEhAhejlEmRnRyPLqnakCa7S6GSy9C9nQ7d2zXO0mPnXTheeX7+1hJDTYuTfwPvwtYjZ7H1yFn0aa9Hfu8OyKKVQSJSIL8/KfkFmExGT3GkcLrc2HG8AmuKSlBpubS2PG2MEoOyU9C3fSLa68M/2V2MUi5tnLIuvTEZNvBOHK+0YPfJSuwpOYd6h7NFx2m6GuySqsXY3pnISUuggfURxOFweK3QIyb6ZibkCtl5F7YcKcNP+0/DZLO3+H7RChn6ZyVhUMcUdElt24smq+Qy9EjXoUe6DpNyXSgqNWLH8XIcOGOEswXVo0fKG68gM/VxyO/dAX0yE2kKtgjAGIPJZEJSUpLoiwRQ8iPkMjXwTqw/UIoNB0tbPCZPJpWg128dO3pm6CGXtu4rvMshl0nRPysJ/bOSYLPz2P1bR6DjleaLdpopMdTgw/VFSImPRn7vDhjcKYWSYBumUChQW1sLo9EInU538TtcAkp+hFwixhh2n6rCNzuOtvhKL00Tg1E9MtC/QxKildSlv0mMUo7hOe0wPKcdjLX12H6sAhsPnkFNQ/MdxSosdfh080H8fOgMJg3tikz9la3tRsKTRCKBVquFxWKB0WiEXC7eZ4eSHyGXoNxsw9KCYhSXm1pUPitRjbF9OqB3+8QAR9b66WKjcH3fLPyhZ3tsPVqOtUUlMNY2NHufUwYrXvl+J4Z1bYebBmTTWME2SC6XQ6/Xw2AwwGYTb+FrSn6EtEAD78T/9p7CT/tPt6jXYrd2CRjbu0Obb8sLBLlMihHd0jGsaxp2najEmn0lOGv2/6XHAGwuLsPuU5UYP7AThnZJo6rQNqZppZzTp0+LdkxKfoQ0gzGG3Ser8PWOozDXNV/FyXFAv8wk5PfORHuqhrtiUokEQzqlYkinVPxacg6r953CyXNWv+VtdicWbzmMX4rPYlJuV3RIpNegLVEoFNBoNKIdj5IfIX5UWGxYsrVlVZyDOiZjXL8sJMfTjD6B0CczEX0yE1FcbsJ3u441mwRLDFbM/2Enru6ahvEDOyGG2ljbDGrzIySAGGMoOFqOJQXFF10ENk0bg9uv6krVm0HSNVWLJ24chK1HzmL5rmOo8dPLlgH4pfgsDpwxYsrInshO1gQ1ThL+KPkRcoEG3okvtxZjx/GKZsup5FLc0K8jRnZPb/UD0lujoV3S0DczEd/vPoFNh8/AXzOsyWbHGyt346YBHfGHXpnUFkg8KPkR8ptSYw0+2lCEqqbly/0YnJ2CWwd1Qnw0LVkVStFKOSbldsXQzqlYUlDstyrUzRiW7zqOI+Um3HtND6ijaLFpQsmPEDDGsOlwGb7ecRTOZqo507QxmJTbFZ1TqIoznLTXq1tUFXqwrBovL9+OP43sSdXUhJIfiWx1dh6fbzmEPafO+S0j4Tjc2L8j/tCrPVVxhrGmqtCl2474rba21Dvw1qrduL5vFq7vkwWJhKpBIxUlPxKxSgxW/Gt9UbMDqRNiVZgysic60qoCrUK0Uo77R/RA11Qtlm4rhsPpeyXPGPDjnpM4Wm7Cn0b2pOrrVoTnWzaNYEvQz1gSkQ6cMeKNlYXNJr4+mYl45ubBlPhaoaFd0vDUjYORpvU/9ORIhRmv/ViIKuulrcBBQsPhcMBsNot2PEp+JOJsP1aOD9b+KnhVAAAyCYc/DumCB0f3pnk4W7FUbQyevHEQru6S5reMoaYer63YhdMG/+MGSeg5HA4YDAZRl4ij5Eciyk9FJVi06aDfKcoS46Lw+A0DMapHRpAjI4GgkElx17Bu+NPIHlDJpYJlahp4vLFyNw6VVQc5OtISPM/DYDBALpeLOsMLJT8SEdyM4ZsdR/HNzmN+ywzMSsbTNw+mqcnaoEEdUxpfW12c4H6704X31+5F4YnKIEdGmuN2u2EymSCXy6HT6URdyJiSH2nzXG43/rPpIH7a739S3Bv6dcSUUT0RpaA+YG1Vkjoafxk3AL0z9IL7XW6Gf2/cjw0HS4McGfHH4XBAJpNBp9OJvpgtJT/Sptl5Fxb8tA/b/XR9l3Ac7hyag3H9soIcGQkFhUyKB0b3xtDOqYL7GYCvth3Bd4XHwVqwegcJLI7joNVqRU98ACW/gHM6naEOIWI18E68s3oPDpwxCu6XSSWYem1PDM9pF+TISChJJBzuHt4dY/t08Ftm1a+nsKSgmBJgiCkUClGrOi9EyS+AbDabqONSSMs5XW58uL4IJ6osgvujFDI8kt8XfTOTghwZCRc3D8jGH6/qAn9frZsOl2HFnpNBjYl4C1TiAyj5BUxNTQ1qa2tFXYKDtIybMXz2yyG/vffioxSYfX1/mqaMYFT3DPxpZE/I/Mz0snLvSfx86EyQoyLBQMkvAGpqamC1WhEbGyvquBRycYwx/HfHUb/TWyWpG4cypCcI9/ojkWdgx2TMGNPX71CIpQXF2H2SeoG2NZT8RGaz2WC1WqFWqxETQwubBtva/aex7oBwb73k+Gj837iB0MVFBTkqEu5y0hLw6Nj+UMp8EyAD8MnPB1BcTuMA2xJKfiKz2WxQq9WIi6Mri2ArOFqOb/2M49NEK/FIfj/E0XI2xI8OiWo8MLoXpAJVoE43w8Kf9qHUWBOCyEggUPITmVKppMQXAkWlBnz+yyHBfdEKGR7O74uEWFWQoyKtTbd2Otx7TXfBTjANvAvvrdmLczQXaJtAyU9kDocDDocj1GFElJNVFvxrfZHglGVyqQTT8/ogTRsbgshIazSoYwpuG9JZcJ+13oF3V++FtZ4+460dJT+RyWQyGAwGSoBBUtvgwIfri8ALLEIr4ThMGdkTnVI0wQ+MtGrX9miPMb0yBfedq6nHok0H/M4PS1oHSn4i02g0kMvlMBgMNMYvwBhj+HTzQZjr7IL77xjaFX0yE4McFWkrbhnUCbl+ZoI5VFaNtftKghwRERMlP5FxHAedTge5XA6TyQS3W3jZHHLl1h0oxf5S4dlbbuzfEcO60swt5MpMvjoHPTN0gvu+330CxyvNwQ2IiCbsk19ZWRnuuusu6HQ6REVFoVevXti1a5dnP2MMc+fORWpqKqKiopCXl4ejR496HaO6uhqTJ0+GWq2GRqPBlClTUFtb61Vm3759GD58OFQqFTIyMjB//vzLjlkikUCn00Emk1H1Z4CcOmfx27Pzqk4puL4vzdVJrpxUIsHUUb3QTqDN2M0aJ8KubaAantbokpPfvffei02bNgUiFh8mkwlXX3015HI5/ve//+HgwYN4/fXXodWen5lj/vz5eOedd7Bw4UJs374dMTExyM/PR0PD+RW6J0+ejAMHDmDt2rVYsWIFNm3ahGnTpnn2W61WjBkzBpmZmSgsLMSrr76K5557Dh9++OFlxy6RSKDVagM6PU+kqrPz+GjDfsE2lxRNDCbl5oQgKtJWKWRSTBnVU3AMoMlmx382H6Q5QFuhS05+FosFeXl56Ny5M15++WWUlZUFIi4AwCuvvIKMjAx88sknGDx4MLKysjBmzBhkZ2cDaLzqe+uttzBnzhzcfPPN6N27N/7zn//g7NmzWL58OQDg0KFDWLVqFT766CMMGTIEw4YNw7vvvoslS5bg7NmzAIDFixfD4XDg448/Ro8ePTBp0iQ88sgjeOONN64ofo7joFDQuDIxMcbw+ZZDMNY2+OyTSyX488ieUPqZqYOQy5WqicHtuV0E9xWVGrCelkEKiEAuDHDJyW/58uUoKyvD9OnTsXTpUnTo0AHXXXcdvv76a9E7eHz//fcYOHAgJk6ciKSkJPTr1w//+te/PPtPnjyJiooK5OXlebbFx8djyJAhKCgoAAAUFBRAo9Fg4MCBnjJ5eXmQSCTYvn27p8w111zjlajy8/NRXFwMk8l0RedAV37i2nS4DHtOnRPcN/GqLmiXQEMaSGDkdk7DVZ1SBPd9u/MYTp2zBjmito/nedhstoAc+7La/BITEzF79mz8+uuv2L59Ozp16oS7774baWlpeOyxx3za3C7XiRMnsGDBAnTu3BmrV6/G9OnT8cgjj+DTTz8FAFRUNM7fmJyc7HW/5ORkz76KigokJXnP3C+TyZCQkOBVRugYFz7G79ntdlitVq8bCawzxhp8vf2I4L6BHZMxnDq4kACblJuD5Phon+0uN8NHG4pQ76AlzMQkl8tRW1uLmhrxZ9a5og4v5eXlWLt2LdauXQupVIrrr78eRUVF6N69O958880rDs7tdqN///54+eWX0a9fP0ybNg1Tp07FwoULr/jYV2revHmIj4/33DIyMkIdUpvmZgyLtx6G0+3btpIYF4XJV1M7Hwk8pVyKP4/qCbnU96vTWNuAH/ecCEFUbZdMJkNsbCysVqvoCfCSkx/P8/jmm29www03IDMzE8uWLcOsWbNw9uxZfPrpp/jpp5/w1Vdf4YUXXrji4FJTU9G9e3evbd26dcPp06cBACkpjVUQlZXeM65XVlZ69qWkpKCqqsprv9PpRHV1tVcZoWNc+Bi/9/TTT8NisXhupaVU5x9IBUfLBauVZBIOfx7VEyo5rZ5BgiM9IQ63DRaeAWbDwTMoM9UK7iOXJyYmBmq1GlarVdQq0EtOfqmpqZg6dSoyMzOxY8cO7Nq1Cw8++CDUarWnzKhRo6DRaK44uKuvvhrFxcVe244cOYLMzMaZF7KyspCSkoJ169Z59lutVmzfvh25ubkAgNzcXJjNZhQWFnrKrF+/Hm63G0OGDPGU2bRpk1eb5dq1a9G1a1evnqUXUiqVUKvVXjcSGDY773dYwy2DOqO9np57ElzXdEtH/w6+CyG7GcNSWgFedHFxcVCr1aFNfm+++SbOnj2L999/H3379hUso9FocPLkla+A/Nhjj2Hbtm14+eWXcezYMXzxxRf48MMPMWPGDACNnUlmzZqFv//97/j+++9RVFSEe+65B2lpaRg/fjyAxivFsWPHYurUqdixYwe2bNmCmTNnYtKkSUhLSwMA3HnnnVAoFJgyZQoOHDiApUuX4u2338bs2bOv+BzIlfu+8Dhsdt/OVFmJalzbg6qbSWhMyu2KKIVvjcPRCjN2nqD1/8QWFxcn6jJxl5z87r77bqhUwZkdf9CgQfj222/x5ZdfomfPnnjxxRfx1ltvYfLkyZ4yTzzxBB5++GFMmzYNgwYNQm1tLVatWuUV4+LFi5GTk4PRo0fj+uuvx7Bhw7zG8MXHx2PNmjU4efIkBgwYgL/85S+YO3eu11hAEholBis2H/YdTsNxjV8+hIRKXJQCN/bvKLjvmx1HqfNLAIiZ/DhG1+eisFqtiI+Px4IFCxAfHw+gcYWHhoYGTJw4EQkJCSGOsPVxM4ZXV+wSbOu7Jqcd7hhKnVxIaLndDPO+34Ez1b7tfKN7tPe7OgS5uOrqaixbtgwqlcozDM1isWD69OmwWCxX3NQU9tObkci1zU8nl1iVHDcNyA5BRIR4k0g4TMrtKrj+34aDpdT5JYxR8iNhyWbn8e0u4U4u4wdkI0YpD3JEhAjLTtZgSCff1R+o80t4o+RHwtKqX08JThiclajG1TSYnYSZWwd18tv55dcS4RmJSGhR8iNhp7aBp04upFVprvPLqn2n6OovDFHyI2Fn48FS2J0un+3DurSjMX0kbI3ISUe6wNyyJYYaHD57ZXMEk0Zi/oig5EfCSgPvxAaBGfJlEg7X96M1+kj4kkg43NBP+Opv9b5TwQ2mDXK73TCbzaIdj5IfCSu/FJ9FncD4qKs6p0ITrQxBRIS0XJ/MRKRpfMeiFZebcOqcJQQRtQ1utxtGo1HUJY4o+ZGwwbvc+Gn/aZ/tEo7DH3plhiAiQi7dmN7C79VVv5YEOZK2gTEGo9EInudFmTazCSU/Eja2HyuHpc7us71/hyQkqX2XkSEkHA3smAxdrO8sWL+ePodyGvd3SRhjMJlM4Hkeer0ecrl4Q5wo+ZGw4HYzrCkS/mXs75c0IeFIKpH4ralYvY+u/i6Fw+GA0+mEXq/3WmxcDJT8SFjYfaoK56z1Ptt7pOuQoYsLQUSEXL7czqmIU/l+We88UQljje/7nAhjjEGr1Yqe+ABKfgHndrtDHUKrsP6Ab1sfAIzt3SG4gRAiAoVMKrjiiJsxbDx0JgQRtU4KhULUqs4LUfILIJ7n4XA4Qh1G2Kuy1OGkwBye2cnx6JSiCX5AhIhgRLd0qORSn+07j1fA7aZB7y0hkQQuRVHyCxCHwwGTyQSOE5ryllxox4kKwe15PdsHORJCxBOlkAlOxWepd+BIBQ16DzVKfgHgcDhgMBggk8kCUlfdljDGsOO4b/KLUcrQM10fgogIEc+Q7BTB7ULveRJclPxExvM8DAYD5HI5tFotXfldxKlzVsGOLv07JEMmpbcnad0ydHGCg973nKqCQ2AKPxI89O0iMrPZDLlcDp1OR4mvBfxVeQ7284uZkNZmkMB7uYF3oei0IQTRkCaU/EQmlUqh0+kC2lDbVrjcbuw6UemzXReroo4upM0YnJ0iuNjtdqr6DCn6hiYhc6isWnDNPqFfyoS0Vgl+fswdOGNEbQP1Bg8VSn4ic7lcMBqNNL6vBfw1+lOVJ2lrhH7QuRlD4cmqEERDAEp+otNoNOB5HkajkRawbIbD6cKvp31XuM7QxSFVoIMAIa3ZgA5JkEl8Kz93+mnzJoFHyU9kcrkcer0ePM/DZDJRAvTjRJUFDqfv1fHg7OQQRENIYEUr5eiR4Tt052SVFQ28eMv0kJaj5BcACoUCer0eTqeTZnjx40i58CDffplJQY6EkODo38H3ve1mDCcqaZ2/UKDkFyAKhQJarZau/PwQSn66WBV0cVEhiIaQwOvipwdzsZ8fgiSwKPkFkFwupxleBNh5F04ZfOfy7JKqDUE0hASHJkaFRLXvjzua6sy/QHYcpOQXYDTez9eJKgtcAhP7dkmh5EfaNqH3+GlDDbX7+eFwOMDzvsOhxEDfzCTo/P3S7ZyqCW4ghASZUO2GmzEcp3Y/QRzHwWQyBaTvBCU/EnRH/bX3xVJ7H2nb/LX7+esAFukUCgVkMhkMBoPoCZCSHwkqau8jkYza/S4Nx3HQarWQy+UwGAyiVoFS8iNB5be9j5IfiRDU7ndpOI6DTqeDXC6H2WwW7biU/EhQnTwn3LZBnV1IpPDX7nfqnG+NCGkkkUig0+kgk8nEO6ZoRyKkBSotdT7bNNFKJMSqQhANIcGXnRQvuL3K6vvZIOdJJBJoNBrxjifakQhpAaHklxwfHYJICAkNbawKcoGFmqsEPhvEm5hrpFLyI0HDGBP8dUvJj0QSCcchUWAmo0q68gsqSn4kaGoaeNQ7fBv1k9SU/EhkEfrBR1d+wUXJjwSNvw93El35kQgj9J431DTAReuABg0lPxI0/hr0k+nKj0QYodoON2Mw1jSEIJrIRMmPBI1QZxephIMujnp6ksjir52b2v2Ch5IfCRqhKz99bBSkNPk3iTD+2rmp3a95NptNtGPRtw4JGqErP2rvI5EoLkqBaIXvgG268vOvpqaGkh9pncx1dp9tQvMcEhIJEgWu/sw2388IaUx8VqsVMTExoh1TvLliCGkGYwx23uWzPUYpD0E0hIRetNL365fm9/Rls9lQV1cHtVot6uK2dOVHgoJ3ueFmvhNaK2XSEERDSOipBN77Qj8QI5nT6URtbS3UajXi4uJEPTYlPxIU/j7UKjklPxKZlHKhKz9KfhfieR6xsbGiJz6glSW/f/zjH+A4DrNmzfJsa2howIwZM6DT6RAbG4sJEyagsrLS636nT5/GuHHjEB0djaSkJDz++ONwOr2rFzZu3Ij+/ftDqVSiU6dOWLRokSgxM4GrnUjk70Mt9AVASCQQ+uFnd1Lyu5BcLhe1ne9CrSb57dy5E//85z/Ru3dvr+2PPfYYfvjhByxbtgw///wzzp49i1tvvdWz3+VyYdy4cXA4HNi6dSs+/fRTLFq0CHPnzvWUOXnyJMaNG4dRo0Zh7969mDVrFv785z9j9erVVxQzY0z01YdbK7tTuC1DSVd+JEIJvfft1ObnRcwljH6vVSS/2tpaTJ48Gf/617+g1Z5fC8tiseDf//433njjDVx77bUYMGAAPvnkE2zduhXbtm0DAKxZswYHDx7E559/jr59++K6667Diy++iPfff9+TmBYuXIisrCy8/vrr6NatG2bOnInbbrsNb7755mXH7Ha7YTKZ6MrvN1TtSYg3lUCth5130XdGkLSK5DdjxgyMGzcOeXl5XtsLCwvB87zX9pycHLRv3x4FBQUAgIKCAvTq1QvJycmeMvn5+bBarThw4ICnzO+PnZ+f7znGpXK73TAajXA6nVAoFJd1jLbGX/KjDi8kUgm99xkAh5Pm9wyGsG9wWbJkCXbv3o2dO3f67KuoqIBCofBZ4DA5ORkVFRWeMhcmvqb9TfuaK2O1WlFfX4+oKN+xaHa7HXb7+TE5VmvjKsyMMRiNRvA8D61WC5eL6vAB/124hX79EhIJ/FX5N/BOag4IgrC+8istLcWjjz6KxYsXQ6UKr/kf582bh/j4eM8tIyMDAGA2m8HzPPR6PeRyGsPWxF9DPn3ISaTy996nTi/BEdbJr7CwEFVVVejfvz9kMhlkMhl+/vlnvPPOO5DJZEhOTobD4YDZbPa6X2VlJVJSUgAAKSkpPr0/m/6+WBm1Wi141QcATz/9NCwWi+dWWloKoHFcil6vp+rO36FmDEK8cfCzKjl9VoIirJPf6NGjUVRUhL1793puAwcOxOTJkz3/l8vlWLdunec+xcXFOH36NHJzcwEAubm5KCoqQlVVlafM2rVroVar0b17d0+ZC4/RVKbpGEKUSiXUarXXDQAUCgUlPgH+OrbQoF4Sqfw1BVBtSHCEdYNLXFwcevbs6bUtJiYGOp3Os33KlCmYPXs2EhISoFar8fDDDyM3NxdXXXUVAGDMmDHo3r077r77bsyfPx8VFRWYM2cOZsyYAaVSCQB48MEH8d577+GJJ57An/70J6xfvx5fffUVfvzxx0uO2W63o6amJiCDMlszf+P5qIqHRCpqCgitsE5+LfHmm29CIpFgwoQJsNvtyM/PxwcffODZL5VKsWLFCkyfPh25ubmIiYnBvffeixdeeMFTJisrCz/++CMee+wxvP3220hPT8dHH32E/Pz8S44nJibG0/mlKbkS/1d+NJchiVRCtR4cqAd0sLS65Ldx40avv1UqFd5//328//77fu+TmZmJlStXNnvckSNHYs+ePVccX0xMDCQSCaxWK6KjoyGV0hsZ8P+BpumcSKQS+uGnlEvBcX7aAomoWl3yaw2aqjzNZnPApuZpbfxWe1LyIxFK6L1PV33BQ8kvQOLi4uB0Oml6s9/47dZN1Z4kQgnVetBct8FDz3QAxcTE0FRFv/Hb25M6vJAIJfTep84u3gL5/RnWQx3agkBOzNqayKUSCDVlUJsfiVRCbX401603h8MRsARIyY8EBcdxglOZ1dn5EERDSOjVO4Q7vJDzGGMwmUyiruDehJIfCRpNtO/Qj3PW+hBEQkjoVVnqfLZpo8NrGsdQUygUcDqdMBqNoidASn4kaJLU0T7bKq2+XwCEtHW1DQ7UCVz5JcX7fkYimUQigVarBc/zMBqNolaBUvIjQZMs8ME21NTD7aZOQSSyVApc9QFAssAPxEgnl8uh1+vB87zPPM5XgpIfCRqhX7UuN4Ohlqo+SWSp8lPjkRgvPJF+pFMoFNDr9XA6xRsaRcmPBE2SWviDLdT2QUhbJvSel3Ac9LGU/PwRWrv1SlDyI0EjVO0J+P8VTEhbVSnQ0UsXp4JMSl/JzRFzjVR6pknQxKkUguOY/LV/ENJWCV35UXtfcFHyI0HDcZzg1R9d+ZFII/Sep56ewUXJjwSV4HAHuvIjEcRYWw/e5TtmTeizQQKHkh8JKqFftyabHSZbQwiiIST4TlRZBLf7axMngUHJjwRVx6R4we1Hyk1BjoSQ0DhSbvbZxnFApl4d/GAiGCU/ElQdk+IhEZjhmpIfiRRHBd7r7XVqRCloEvyL4Xnx5gKm5EeCSiWXoUOi7y/cIxXm4AdDSJBZ6uyCU/p1SdUEP5hWxuFw0AwvpHXrnKLx2WaoqUd1LbX7kbbtSIVwDUeXFG2QI2ldHA4HDAaDqEvEUfIjQdclVfiDftTPFwMhbYVQ9b6E45CdrAl+MK0Ez/MwGAyQy+U0wwtp3bKTNNTuRyKS0Hu8vS6O2vv8cLvdMJlMkMvl0Ol04IRWxL5MlPxI0CnlUmr3IxHHXGdHlcC0Zv5qQkhjdadMJoNOp4NEIm66ouRHQkKojYPa/UhbJtTLExBuAyeNOI6DVqsVPfEBlPwCTswlONoSf73b9pZUBTcQQoJkT8k5n23U3tc8hUIhalXnhSj5BZDNZhN1XEpb0jFJA7nADPbbj1WEIBpCAqve4URRqcFne4dEGt/XnEAlPoCSX8DU1NSgtrZW1CU42hKlXIo+7RN9tp821qDSYgtBRIQEzu5TVXAKzOc5qGNyCKIhACW/gKipqYHVakVsbKyo41LamsHZKYLb6eqPtDU7BN7TEo7DgCxKfqFCyU9kNpsNVqsVarUaMTExoQ4nrHVPT0CM0vfKeOcJSn6k7aiubRAcw9o9PQFxUYoQREQASn6is9lsUKvViIuLC3UoYU8qkWBAVpLPdkNNA45XmoMfECEBsOtEJZjA9sEdhWs+SHBQ8hOZUqmkxHcJhnRKFdy+4zhd/ZG2Qei9rJRJ0SfTt82bBA8lP5E5HA44HI5Qh9FqZCWqoY+L8tleeLIKLrdvBwFCWpOy6lqUmWp9tvftkAiFTBqCiEgTSn4ik8lkMBgMlABbiOM4DM72bfS32XkcOGMMQUSEiGf78XLB7f46e5HgoeQnMo1GA7lcDoPBQGP8WmiQny+Cn/afDnIkhIingXdiS/FZn+3qKAW60pRmIUfJT2Qcx0Gn00Eul8NkMsFNVXcXlRIfI7iK9dEKM05UWUIQESFXbvPhMtQ5fGd4GtQxGdIATNdFLg29AgEgkUig0+kgk8mo+rOFru2RIbh99a+nghsIISLgXW6sE6i54DhgRDfh9zoJLkp+ASKRSKDVagM6PU9bMiArSbDjS1GpAWXVvh0GCAlnBUfPwlLv+8N3YFYyEtW+73MSfJT8AojjOCgUNIi1JaQSCf7Qq73PdgZg9b5TQY+HkMvldjOsLRJur87v3SG4wbRygVwYgJJfgNGVX8vldkqFWmDGi8KTVTDU+K6DRkg4KjxZKfh+7ZWhR7uE2BBE1HrxPA+bLTBz/VLyI2FDLpNidA/fqz83Y1hbVBKCiAi5dKv3Cb9X83tnBjmS1k8ul6O2thY1NTWiH5uSHwkrw3PaCS7xsvVoOSx19hBEREjLFZ02CA5q75yioXX7LoNMJkNsbCysVqvoCZCSHwkrUQoZRnZL99nudLnxP+r5ScKYmzGs2HNCcN9Yauu7bDExMVCr1bBaraJWgVLyI2FnVPcMwYVuNx8uQ6lR/OoPQsTwy+EynBZ4f2bo4tCtXUIIImo74uLioFarKfmRti0uSoFhXdv5bHczhiUFxSGIiJDm1TY48F3hccF9Y3tnUsc3EcTFxYm6TBwlPxKWru+bhRilb9vfiSoLCo76ThlFSCgt33VccDaX7OR49Ovgu2wXuTwRk/zmzZuHQYMGIS4uDklJSRg/fjyKi71/+Tc0NGDGjBnQ6XSIjY3FhAkTUFlZ6VXm9OnTGDduHKKjo5GUlITHH3/cZ/zIxo0b0b9/fyiVSnTq1AmLFi0K9OmRZsSq5Lh5QLbgvm93HkedneZNJeHh5DkLth7x/UHGccCkq7rSVV+YCuvk9/PPP2PGjBnYtm0b1q5dC57nMWbMGK9638ceeww//PADli1bhp9//hlnz57Frbfe6tnvcrkwbtw4OBwObN26FZ9++ikWLVqEuXPnesqcPHkS48aNw6hRo7B3717MmjULf/7zn7F69eqgni/xdnWXdsjU+66NWNPgwA+7hTsWEBJMbsawZGux4GK1I7ulI11Ha3uGK996pTCyatUqr78XLVqEpKQkFBYW4pprroHFYsG///1vfPHFF7j22msBAJ988gm6deuGbdu24aqrrsKaNWtw8OBB/PTTT0hOTkbfvn3x4osv4sknn8Rzzz0HhUKBhQsXIisrC6+//joAoFu3bvjll1/w5ptvIj8/P+jnTRpJJBwm5XbF/B92+Xy5bDpchqFd0pBBXy4khPx1colTyXFDv44hiIi0VFhf+f2exdI4w39CQmPPqcLCQvA8j7y8PE+ZnJwctG/fHgUFBQCAgoIC9OrVC8nJ59eMy8/Ph9VqxYEDBzxlLjxGU5mmYwix2+2wWq1eNyK+DonxuLpLms926vxCQq25Ti63DuqMaKU8yBGRS9Fqkp/b7casWbNw9dVXo2fPngCAiooKKBQKaDQar7LJycmoqKjwlLkw8TXtb9rXXBmr1Yr6euFptebNm4f4+HjPLSODZmoPlJsHZvvt/PLzoTMhiIgQ4KttR4Q7uSTFY0gnWqw23LWa5Ddjxgzs378fS5YsCXUoAICnn34aFovFcystLQ11SG1WrEqBm/x0fvlmx1GcqaaxfyS4thw5i50nKn22cxwwKZc6uQQKY0Ktq5enVSS/mTNnYsWKFdiwYQPS08/P/pGSkgKHwwGz2exVvrKyEikpKZ4yv+/92fT3xcqo1WpERQkvP6JUKqFWq71uJHCGdWmH9gLte7zLjY827EcDH7jZ3wm50FlTLb7aJlzlPoI6uQSM2+32+a6/EmGd/BhjmDlzJr799lusX78eWVlZXvsHDBgAuVyOdevWebYVFxfj9OnTyM3NBQDk5uaiqKgIVVVVnjJr166FWq1G9+7dPWUuPEZTmaZjkNCTSDhMvjoHUonvL+pKSx2+3ErtfyTwHE4XPtqwHw6n22dfQqwKN1Inl4Bwu90wGo2iLnEU1slvxowZ+Pzzz/HFF18gLi4OFRUVqKio8LTDxcfHY8qUKZg9ezY2bNiAwsJC3H///cjNzcVVV10FABgzZgy6d++Ou+++G7/++itWr16NOXPmYMaMGVAqlQCABx98ECdOnMATTzyBw4cP44MPPsBXX32Fxx57LGTnTny116tx66BOgvt2HK8QHGtFiJiWFhSj3Ow7xZaE4zBlZE/q5BIAjDEYjUbwPO/Tv+NKhHXyW7BgASwWC0aOHInU1FTPbenSpZ4yb775Jm644QZMmDAB11xzDVJSUvDf//7Xs18qlWLFihWQSqXIzc3FXXfdhXvuuQcvvPCCp0xWVhZ+/PFHrF27Fn369MHrr7+Ojz76iIY5hKFR3TPQu71ecN/SbcJfTISIYefxCmw9Wi647+aB2eiYFB/kiNo+xhhMJhN4noder4dcLt6Pi7Ae59eSxk2VSoX3338f77//vt8ymZmZWLlyZbPHGTlyJPbs2XPJMZLg4jgO9wzvjpeWb4fJ5r3EkcPpxr837McTNw6EQiYNUYSkLaqy1OGLrYcF9/VI1yGvp+86lOTKORwOOJ1OJCUlQaFQ+O19fznC+sqPECExSjmmjOwJiUCPujJTLb7adiQEUZG2ine68NHG/WjgXT774qOVuHd4d8H3IrlyjDFotVooFArRj03JL8Dcbt+GcXLlspM1uGmAcOeCLUfOYo2f1bQJuRRuN8PHPx8QXEqL44A/jeiBuCjxv5hJI4VCIWpV54Uo+QUQz/NwOByhDqPN+kOvTHT3s07a8l3HsM1P+wwhLfVlQTH2lpwT3Deubxa6pGqDHFFkkUgCl6Io+QWIw+GAyWSiwa4BJOE43HtND6gFfnkzAJ/9cgj7Sw3BD4y0CT/sPoFfissE93VJ1eK6PlmC+0jrQMkvABwOBwwGA2QyWUDqqsl56igFpo7qBZnAyu9uxvCvDUU4WWUJQWSkNfv50Bms3HtScJ8uVoU/jegBicCYU9J6UPITGc/zMBgMkMvl0Gq1dOUXBJ1SNJgysieEnmqH04331+6lIRCkxXafrMJSPzO4xKrkeDi/H+KjlUGOioiNkp/IzGYz5HI5dDodJb4g6puZiDuH5gjus9mdeHf1HphsDUGOirQ2xeUmfLLpAIRGWSllUsz4Q18kx0cHPzAiOkp+IpNKpdDpdAFtqCXChnVthxv7C/cANdnseG/1XthoBXjiR6mxBgt/+hVOl28PbQnHYdroXuiQSHP4thX0DU3alOv6dMCIbumC+86abXjtx0JU19IVIPF2tMKEN/+3W3AsHwDce013dG+nC3JUJJAo+YnM5XLBaDTS+L4Q4TgOfxzSBf07JAnurzDb8NqPu1BuojZA0mhvSRXeXb0X9QJr8wHAbUM6Y3A2rc/X1lDyE5lGowHP8zAajaKuPUVaTiLhcN+IHujqZwyWyWbHaz/uwvFKc3ADI2Fn8+EyfLi+CLxAVScA5PfOxOgeNHVZW0TJT2RyuRx6vR48z8NkMlECDBG5VIIHRvdGpl54bbU6hxNvr9qDotM0DjBS/bjnBL7YeliwcwsADO2Shpv9LKJMWj9KfgGgUCig1+vhdDpphpcQilLIMOu6/shJE54Fhne5sXDdPloKKcK4GcOXWw9jxR7hcXwA8Ide7TH56hzqsd2GUfILEIVCAa1WS1d+IaaSyzDjD30wMCtZcL+bMXz2yyGs+vVUcAMjIcG73Phow35sOiw8cwsATBjUCbcO6kyTVbdxYb2kUWsnl8tphpcwIJNKcP/IHoiNkmPjwTOCZb4rPI5Kiw2TcnOglNNySG2RsaYeH23cj1PnrIL7JRyHe4Z3w5BOqUGOjPgTyI6DlPwCjMb7hQfJb71A46OU+K7wuGCZbccqcOqcFVNG9UR6gnBbIWmd9pyqwue/HEKdnx6dCpkE067tjR7pNJwhnDgcjoBdRNA3M4kYHMdhbJ8OuHtYN8Gp0ACgwlKH+T/swqbDwleIpHXhXW4sKSjGh+uL/Ca+GKUcs8b2p8QXhjiOg8lkCkjfCbryIxFnaJc0xKjk+PeG/YJd3HmXG19uLcaRchMmX90NUQr6mLRGVZY6/GtDEc5U1/otkxCjwsP5fZGiiQliZKSlFAoFXC4XDAYD9Hq9qMemKz8Skfq0T8Ss6/pDG+N/guLCk1V4+bsdKDEItxGR8LXzeAVe/m5Hs4mvY1I8Hr9hACW+MMZxHLRaLeRyOQwGA3hevOkJKfmRiNUxKR5/vXkIemX4/0VpqKnHayt24af9JXC7qeduuKt3OPH5L4fw8c8HYHcKT1UGNA5en319f2hiVEGMjlwOjuOg0+kgl8thNptFOy7V55CIFquSY3peb6w/WIpvdx6DSyDBOd0M3+w4hh3HKzEptys6JsWHIFJyMduPleO/O4/BWu+/fShWJcf91/RAd2rfa1UkEgl0Oh1sNvGmJaTkRyIex3EY3aM9spM0+GhDEYx+Jr4uNdbgtRW7cFXnVNwysBPiBFaQJ8F31lSLJQXFOFphbrZc11Qt7h/Rg9bia6UkEgk0Go1ox6PkR8hvOiSq8cz4Ifj8l0PYfapKsAwDUHC0HL+WnMNNA7IxPKcdDYYOkXqHEyv2nMDGg2fgbmYyCY4DbujXEWN7d6DV11s5MWfcoeRHyAWiFDL8eVRP/FJchq+2HxVc2w1onBt0SUExthw5S1WhIdCSKk4AiI9W4k8jeqCLn0nOSeSi5EfI73Ach+E56eiYrMGXWw/jeKXFb9mmqtAhnVIxrl8W9HFRQYw08hyvNOO7wuMXreIEgFyqnibNoORHiB/ttLH4y/UDsON4RbNXGQzAtmPl2HG8AgOykpDfuwPaJcQGN9g27sAZI1b9egrHWrAMVXpCLCbldkV2sibgcZHWi5IfIc3gOA5DOqWid/vEi7YvuRnDzhOV2HWiEj0z9MjvnUlfwFfAzRj2nKrC6n0lKDXWXLR8lEKGm/p3xDU56dS2Ry6Kkh8hLRClkGHikC4Y2jkNSwqKm70CYQCKSg0oKjWgc4oG+b070NRZl8DpcmP7sXKsKSpBlbW+RffJ7ZyK8QM7QU1VnKSFKPkRcgnaJcRi9vX9sfNEJb7ZcfSiHS6OVphxtGIvMnRxuLZ7Bvp2SIRKTh87IeY6O3Ycq8CGg6Uw19lbdJ/0hFjcMTSHOhxFCBrnR0gIcRyHwdkp6JWhx9qiEmw8dAb1fiZNblJqrMGnmw/iywIJerdPxOCOKeiengBphK/6Ue9wYs+pKuw4XoEjFSa/q6r/nj4uCvm9MzG0cxpVcUaImpoaSn6EhIMohQw3DcjGH3plYnNxGdbtP33RK0GH041dv7ULxqrkGJCVjMHZKRF15eJyu3HgjBHbj1eg6LRBcHJxf9ppY5HfJxP9OyRF/A+HSFJTUwOr1YqYGPHmYaXkR8gVilLIMKZXJkZ1S8e2Y+VYU3QahpqLt1XVNvD4+dAZ/HzoDBLjojAoOwV9MxPRLiG2zQ2c550unDhnxe6TlSg8WQWb/dImKM5Oikd+nw7oma4TdaAzCX82mw11dXVQq9WiLm5LyY8QkchlUgzPScfQLmnYfbKxl2KZyf+qAhc6V1OPlXtPYuXek4hWyNApWYMuqVp0SdW2ymTYlOyOlptwpMKEk+esficMaE6PdB3ye2eicwoNUo9ETqcTNpsNGo0GcXFxsFj8j7m9VJT8CBGZVCLBoOwUDOyYjP1njNhwsBSHz1a3uD2rzuHEvlID9pUaAKAxGaZo0CUlfJMh73LjZJUFRypMOFJ++ckOaFxVvV9mEkb3bI8MXZzIkZLWhOd5xMbGIi5O/PcBJb8AYy39xrsEVqcVP5l/8tqWp8mDWqYW/bHI5eM4Dr0y9OiVoYelzo5dJyux41gFTrdgzNqF6hxO7DttwL7TjclQLpUgUR2FZHU0kuKjkaSORvJv/wZ6NpPq2gZUWetQaalDlaUOldbGf421Dc3Or3kxEo5Dt3YJGJydgt7t9dQjNpw5TMDpZd7b2k8EFOJfncvlclHb+S5E77AAYozB4Wi+AwSJDPHRSozu0R6je7RHhdmGHccrsON4hd8VJJrDu9w4a7LhrMm351u0Qoak+GgkxkUhSiGDUi6FSi6DUiaFSi6FUt64relvNwPsvBN2pwsNvAt23oWG3/1ts/OostShylp3SZ1TWqKDXv3bVXIS1FG02gLxJpMFLkVR8gsQt9sNk8kECfVII7+ToonBTQOycWP/jjhRZcGO4xWX1QlESJ3DiVPnrDh1LnxXn09UR2FwxxQMzk5BUnx0qMMhEYqSXwC43W4YjUY4nU7ExtIcj0QYx3HITtYgO1mD26/qijJTLY781kHkaIX5omMHWwttjNLTXtk5RQt9nIp6bJKQo+QnMsYYjEYjeJ6HVquFy+UKdUgAgP8d/R9iFDEYmjEUMgm97OFGIuGQoYtDhi4Oo3u2h9vNWm0ypGRHWgP6FhSZ2WyGQqGAXq8HgLBJfn9d/1cY6gzIjM/EhG4TcGPXG9EpoVOowyJ+CCXDM9U1OGWwenU0MdRcWUeTKyGXSrw62yTHRyM7OR76uChKdiTsUfITmdPpRFpaGhQKRVh1dnG5XWCMocRcgle2vIJ3d7yLgWkDMaHbBOR3yodGpQl1iKQZEgmH9no12uu9e/S63G4Yahq8EmKlxQZrvcPTaaWBd7Z4mEUTmYRr7BjzW2cZXazKp2epJkYZdkMuCGkpSn4iUygUUCiCP7O8m7lhtTffyUEhVSAhKgGMMdQ6arH59GZsPr0ZCT8n4LrO1+GmrjdRtWgrI5VIkBzfmJB6+SnDGAPvcv/Wk9MFu9MJ+289OTmO+61HqNSrZ6hMSh21SNtG33Iis9vtqKmpCcigzOa8sPEF/HDoB7/7G1wNUEgbkzLHcYhTxiFOGQen2wmr3YrP932OpQeWUrVoG8RxHBQyKRQyKWiheUIaUfITmZUHnJUGuAxWME4KCXNh7tdb4ZKJ963jlNahWnPIa9v+Y0U4Y6uCUuJ/oLuck6CmVmiAtRxAPGzMgb21R7C77EU8u24+EhVd0TF6GDJUg6CUUK9VQggQjRr0l3p//+ze9DPqIO4PfqmzHhpjDdxcHZhECgBw1Im3qgPVbfzO+++/jw4dOkClUmHIkCHYsWPHJd2fSeRwSRWQuhzg3Fc+butSSDgZFJJovzeOa/7llnEKREu1iJHoIYEM5fZ92GpagOWVj2Cr6Z+otB9q9v6EENJaUPK7wNKlSzF79mw8++yz2L17N/r06YP8/HxUVVVd0nHcUsVvCZAHmLgzYgQDx3FQSKIRI9FDzkWh1nUOR+vWYat5AVysdXS3J4SQ5lDyu8Abb7yBqVOn4v7770f37t2xcOFCREdH4+OPP77kYzUmQDm4Vpj8XIxHvcsMm9sAF5xIUfbEkPj7ka9/HlKOasoJIa0ffZP9xuFwoLCwEE8//bRnm0QiQV5eHgoKCnzK2+122O12z99Wq29PSyaRgwWx6tPFHKh3mYV3coCSi4OEkwruZswNB6sDz+rBQYJoqRZZUcOQGZULnbwjjdsihLQplPx+YzAY4HK5kJyc7LU9OTkZhw8f9ik/b948PP/88z7bO6dqER/fuCq3w+FAQ0MDZt82FAkJCaLF2riqg3dSPZGsxMpi/wPqSywlYMyNhCiNZxtjDHV8HSx2Cxhj0CrjMLLDONyScwtGZY2CSqYSLWZCSBvhMAGnvZuCJrcfIfqqDtXV1fj88xNQq9VQKhsnPbdYxBtGRsnvMj399NOYPXu252+r1YqMjIyQxTNt4DT831X/53d/7wW9UetoXFjV4XLA0mCB3WWHSqZCn+Q+mNhjIq7vfD1SYlOCFTIhhDSLMQaTyYSkpCTRFwmg5PcbvV4PqVSKyspKr+2VlZVISfFNCEql0vNrpLWw8TbU8/WQcBIkxybjlpxbcFPXm9A7uTdVaxJCwo5CoUBtbS2MRiN0Op2ox6bk9xuFQoEBAwZg3bp1GD9+PIDG1RnWrVuHmTNnhjY4EUTLoxGvjMfIDiOpWpMQ0ipIJBJotVpYLBYYjUbI5XLRjk3J7wKzZ8/Gvffei4EDB2Lw4MF46623YLPZcP/994c6tCu2aPwiaFQaqtYkhLQqcrkcer0eBoMBNpt4g9wp+V3g9ttvx7lz5zB37lxUVFSgb9++WLVqlU8nmNYoR58T6hAIIeSyNK2Uc/r0adGOScnvd2bOnNkmqjkJIaQtUSgU0Gg0oh2PBrkTQghpFajNL8KpZWrcqr811GEQQiKRQgt0mhbqKK4YXfkRQgiJOJT8CCGERBxKfoQQQiIOJT9CCCERh5IfIYSQVoHnxVslh5IfIYSQsOdwOGA2m0U7HiU/QgghYc3hcMBgMEAmE290Ho3zI4QQErZ4nofFYoFcLkd0dLRox6UrP0IIIWHJ7XbDZDJBLpdDp9OJuvQaJT9CCCFhyeFwQCaTQafTib6YLSU/QgghYYnjOGi1WtETH0DJL+CcTmeoQyCEkFZJoVCIWtV5IerwIjKe5+FwOAAAVqsVDocDFoslxFERQkjrYrFY4HK5vMb2iTnOj5KfyM6dOwebzQan0wmXywWJRIKVK1eK2kW3idPpBM/zkMvlgsd3u91wOBzgOC5gv6Au9hiMMTgcDjDGoFAoAlJ90ZLHuNhzJQZ6PVr+GPR6NKLX47zfP1culwtmsxkcx3lirqurEy0eSn4i4zjOK/HJZDIolUpR16G6kM1mQ21tLWJjYxETE+PZzvM8rFYrZDIZtFptwKoOgMY1tkwmE1wul9djMcZgMpngdDqh1WoD9hwAgEqlgslkQm1trc9j2Ww22Gw2n+coEOj1aESvx3n0epx3Ka8Hz/OQSCReyU/M14mSn8icTqcn6cnlcrjdbsjlcigUioA8nkKhgEwm87xx4uLiPFWtSqUyIL2khGKQy+UwGAywWq3Q6XQAAKPRCLfbjaSkpICd/4WSkpJgNBphsVig1+uhUChQU1ODuro6aDQaxMXFBTwGej3Oo9fjfAz0ejS61NejKfFR8msF3G6352rP7XYH5TGb3rRNbYx2u90zLibQH+wmCoUCer0eBoMBBoMBQOMPgaYPWTBIJBLodDoYjUYYDAYolUo0NDRArVYH5YPdhF6PRvR6nEevx3nh8HoAlPxEwxgD0Dguhed58Dzv2Wa1WgNapdHE5XKhuroaAJCYmIiampqAP+bvyeVyz/x7Go0G9fX1qK+vD0kMNpvN8yMkFJ2O6PXwjoFeD3o9LnSx14Pnec9z03TF1/R303frleCYGEchOHPmDDIyMkIdBiGEtHmlpaVIT0+/omNQ8hOJ2+3G2bNnERcX57de2mq1IiMjA6WlpVCr1UGOMHDa6nkBdG6tVVs9t7Z6XkDLzo0xhpqaGqSlpV1xFSlVe4pEIpG0+JeIWq1uc29coO2eF0Dn1lq11XNrq+cFXPzc4uPjRXkcmuGFEEJIxKHkRwghJOJQ8gsipVKJZ599FkqlMtShiKqtnhdA59ZatdVza6vnBQT/3KjDCyGEkIhDV36EEEIiDiU/QgghEYeSHyGEkIhDyU8kP/74I4YMGYKoqChotVqMHz/ea//p06cxbtw4REdHIykpCY8//rjPQrcbN25E//79oVQq0alTJyxatMjncd5//3106NABKpUKQ4YMwY4dOwJ4VufZ7Xb07dsXHMdh7969Xvv27duH4cOHQ6VSISMjA/Pnz/e5/7Jly5CTkwOVSoVevXph5cqVXvsZY5g7dy5SU1MRFRWFvLw8HD16NCDncurUKUyZMgVZWVmIiopCdnY2nn32Wc86jK31vC5FqN5HLTVv3jwMGjQIcXFxSEpKwvjx41FcXOxVpqGhATNmzIBOp0NsbCwmTJiAyspKrzJife4C6R//+Ac4jsOsWbM821rzuZWVleGuu+6CTqdDVFQUevXqhV27dnn2t+QzUV1djcmTJ0OtVkOj0WDKlCmora31KtOSz2ezGLliX3/9NdNqtWzBggWsuLiYHThwgC1dutSz3+l0sp49e7K8vDy2Z88etnLlSqbX69nTTz/tKXPixAkWHR3NZs+ezQ4ePMjeffddJpVK2apVqzxllixZwhQKBfv444/ZgQMH2NSpU5lGo2GVlZUBP8dHHnmEXXfddQwA27Nnj2e7xWJhycnJbPLkyWz//v3syy+/ZFFRUeyf//ynp8yWLVuYVCpl8+fPZwcPHmRz5sxhcrmcFRUVecr84x//YPHx8Wz58uXs119/ZTfddBPLyspi9fX1op/L//73P3bfffex1atXs+PHj7PvvvuOJSUlsb/85S+t+rxaKpTvo5bKz89nn3zyCdu/fz/bu3cvu/7661n79u1ZbW2tp8yDDz7IMjIy2Lp169iuXbvYVVddxYYOHerZL9bnLpB27NjBOnTowHr37s0effTRVn9u1dXVLDMzk913331s+/bt7MSJE2z16tXs2LFjnjIt+UyMHTuW9enTh23bto1t3ryZderUid1xxx2e/S35fF4MJb8rxPM8a9euHfvoo4/8llm5ciWTSCSsoqLCs23BggVMrVYzu93OGGPsiSeeYD169PC63+23387y8/M9fw8ePJjNmDHD87fL5WJpaWls3rx5Yp2O3/hzcnLYgQMHfJLfBx98wLRarec8GGPsySefZF27dvX8/cc//pGNGzfO65hDhgxhDzzwAGOMMbfbzVJSUtirr77q2W82m5lSqWRffvllgM7K2/z581lWVpbn77ZyXkJC9T66ElVVVQwA+/nnnxljjc+jXC5ny5Yt85Q5dOgQA8AKCgoYY+J97gKlpqaGde7cma1du5aNGDHCk/xa87k9+eSTbNiwYX73t+QzcfDgQQaA7dy501Pmf//7H+M4jpWVlTHGWvb5vBiq9rxCu3fvRllZGSQSCfr164fU1FRcd9112L9/v6dMQUEBevXqheTkZM+2/Px8WK1WHDhwwFMmLy/P69j5+fkoKCgA0LhaRGFhoVcZiUSCvLw8T5lAqKysxNSpU/HZZ58hOjraZ39BQQGuueYar2VZ8vPzUVxcDJPJ5CnT3LmdPHkSFRUVXmXi4+MxZMiQgJ7bhSwWCxISEjx/t5Xz+r1QvY+uVNOqA02vUWFhIXie9zqPnJwctG/f3nMeYnzuAmnGjBkYN26cz+O35nP7/vvvMXDgQEycOBFJSUno168f/vWvf3n2t+QzUVBQAI1Gg4EDB3rK5OXlQSKRYPv27Z4yF/t8Xgwlvyt04sQJAMBzzz2HOXPmYMWKFdBqtRg5cqRnuY6KigqvNykAz98VFRXNlrFaraivr4fBYIDL5RIs03QMsTHGcN999+HBBx/0eiNe6ErO7cL9F95PqEwgHTt2DO+++y4eeOABz7a2cF5CQvE+ulJutxuzZs3C1VdfjZ49ewJofG4VCgU0Go1X2d8//1f6uQuUJUuWYPfu3Zg3b57PvtZ8bidOnMCCBQvQuXNnrF69GtOnT8cjjzyCTz/91Cu2i31ukpKSvPbLZDIkJCRc0vlfDCU/P5566ilwHNfs7fDhw54Fa5955hlMmDABAwYMwCeffAKO47Bs2bIQn4Wwlp7bu+++i5qaGjz99NOhDrlFWnpeFyorK8PYsWMxceJETJ06NUSRk+bMmDED+/fvx5IlS0IdiihKS0vx6KOPYvHixVCpVKEOR1Rutxv9+/fHyy+/jH79+mHatGmYOnUqFi5cGOrQfNCqDn785S9/wX333ddsmY4dO6K8vBwA0L17d892pVKJjh074vTp0wCAlJQUn950TT23UlJSPP/+vjdXZWUl1Go1oqKiIJVKIZVKBcs0HUPsc1u/fj0KCgp8phsaOHAgJk+ejE8//dRv3C05twv3N21LTU31KtO3b1/Rz6vJ2bNnMWrUKAwdOhQffvihV7lwOi8x6fV60d5HwTBz5kysWLECmzZt8lo1JSUlBQ6HA2az2esK6ffP/5V+7gKhsLAQVVVV6N+/v2eby+XCpk2b8N5772H16tWt9txSU1O9vgsBoFu3bvjmm2+8YmvuM5GSkoKqqiqvYzidTlRXV1/03C58jItqcesgEWSxWJhSqfTq8OJwOFhSUpKn51FT4/SFven++c9/MrVazRoaGhhjjY3TPXv29Dr2HXfc4dPhZebMmZ6/XS4Xa9euXcA6KpSUlLCioiLPbfXq1QwA+/rrr1lpaSlj7HzDs8Ph8Nzv6aef9ukYcsMNN3gdOzc316djyGuvvebZ3/S8BqpjyJkzZ1jnzp3ZpEmTmNPp9NnfWs+rJYL9ProcbrebzZgxg6WlpbEjR4747G/qFPL11197th0+fFiwU8iVfu7EZrVavT5XRUVFbODAgeyuu+5iRUVFrfrc7rjjDp8OL7NmzWK5ubmMsZZ9Jpo6vOzatctTZvXq1YIdXpr7fF4MJT8RPProo6xdu3Zs9erV7PDhw2zKlCksKSmJVVdXM8bOd0seM2YM27t3L1u1ahVLTEwU7Jb8+OOPs0OHDrH3339fcKiDUqlkixYtYgcPHmTTpk1jGo3Gq8dXIJ08edKnt6fZbGbJycns7rvvZvv372dLlixh0dHRPkMCZDIZe+2119ihQ4fYs88+KzgkQKPRsO+++47t27eP3XzzzQEbEnDmzBnWqVMnNnr0aHbmzBlWXl7uubXm82qpUL+PWmL69OksPj6ebdy40ev1qaur85R58MEHWfv27dn69evZrl27WG5urudLljHxPnfBcGFvT8Za77nt2LGDyWQy9tJLL7GjR4+yxYsXs+joaPb55597yrTkMzF27FjWr18/tn37dvbLL7+wzp07ew11aMnn82Io+YnA4XCwv/zlLywpKYnFxcWxvLw8tn//fq8yp06dYtdddx2Liopier2e/eUvf2E8z3uV2bBhA+vbty9TKBSsY8eO7JNPPvF5rHfffZe1b9+eKRQKNnjwYLZt27ZAnpoXoeTHGGO//vorGzZsGFMqlaxdu3bsH//4h899v/rqK9alSxemUChYjx492I8//ui13+12s7/97W8sOTmZKZVKNnr0aFZcXByQ8/jkk08YAMFbaz6vSxHK91FL+Ht9LvxM1NfXs4ceeohptVoWHR3NbrnlFq8fMIyJ97kLtN8nv9Z8bj/88APr2bMnUyqVLCcnh3344Yde+1vymTAajeyOO+5gsbGxTK1Ws/vvv5/V1NR4lWnJ57M5tKoDIYSQiEO9PQkhhEQcSn6EEEIiDiU/QgghEYeSHyGEkIhDyY8QQkjEoeRHCCEk4lDyI4QQEnEo+RFCCIk4lPwIIYREHEp+hBBCIg4lP0IIIRGHkh8hEeTcuXNISUnByy+/7Nm2detWKBQKrFu3LoSRERJcNLE1IRFm5cqVGD9+PLZu3YquXbuib9++uPnmm/HGG2+EOjRCgoaSHyERaMaMGfjpp58wcOBAFBUVYefOnVAqlaEOi5CgoeRHSASqr69Hz549UVpaisLCQvTq1SvUIRESVNTmR0gEOn78OM6ePQu3241Tp06FOhxCgo6u/AiJMA6HA4MHD0bfvn3RtWtXvPXWWygqKkJSUlKoQyMkaCj5ERJhHn/8cXz99df49ddfERsbixEjRiA+Ph4rVqwIdWiEBA1VexISQTZu3Ii33noLn332GdRqNSQSCT777DNs3rwZCxYsCHV4hAQNXfkRQgiJOHTlRwghJOJQ8iOEEBJxKPkRQgiJOJT8CCGERBxKfoQQQiIOJT9CCCERh5IfIYSQiEPJjxBCSMSh5EcIISTiUPIjhBAScSj5EUIIiTiU/AghhESc/wcxlF9pJGnW6AAAAABJRU5ErkJggg==\n",
"text/plain": [
"