{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "-" } }, "source": [ "# Scattering matrix plugin\n", "\n", "Note: the cost of running the entire notebook is larger than 1 FlexCredit.\n", "\n", "This notebook will give a demo of the tidy3d [ComponentModeler](../_autosummary/tidy3d.plugins.ComponentModeler.html) plugin used to compute scattering matrix elements." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "tags": [] }, "outputs": [], "source": [ "# make sure notebook plots inline\n", "%matplotlib inline\n", "# standard python imports\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import os\n", "import gdstk\n", "\n", "# tidy3D imports\n", "import tidy3d as td\n", "from tidy3d import web\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Setup\n", "\n", "We will simulate a directional coupler, similar to the GDS and Parameter scan tutorials.\n", "\n", "Let's start by setting up some basic parameters." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "tags": [] }, "outputs": [], "source": [ "# wavelength / frequency\n", "lambda0 = 1.550 # all length scales in microns\n", "freq0 = td.constants.C_0 / lambda0\n", "fwidth = freq0 / 10\n", "\n", "# Spatial grid specification\n", "grid_spec = td.GridSpec.auto(min_steps_per_wvl=14, wavelength=lambda0)\n", "\n", "# Permittivity of waveguide and substrate\n", "wg_n = 3.48\n", "sub_n = 1.45\n", "mat_wg = td.Medium(permittivity=wg_n**2)\n", "mat_sub = td.Medium(permittivity=sub_n**2)\n", "\n", "# Waveguide dimensions\n", "\n", "# Waveguide height\n", "wg_height = 0.22\n", "# Waveguide width\n", "wg_width = 0.5\n", "# Waveguide separation in the beginning/end\n", "wg_spacing_in = 8\n", "# length of coupling region (um)\n", "coup_length = 5.0\n", "# spacing between waveguides in coupling region (um)\n", "wg_spacing_coup = 0.07\n", "# Total device length along propagation direction\n", "device_length = 100\n", "# Length of the bend region\n", "bend_length = 16\n", "# Straight waveguide sections on each side\n", "straight_wg_length = 4\n", "# space between waveguide and PML\n", "pml_spacing = 1.2\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Define waveguide bends and coupler\n", "\n", "Here is where we define our directional coupler shape programmatically in terms of the geometric parameters" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "tags": [] }, "outputs": [], "source": [ "def tanh_interp(max_arg):\n", " \"\"\"Interpolator for tanh with adjustable extension\"\"\"\n", " scale = 1 / np.tanh(max_arg)\n", " return lambda u: 0.5 * (1 + scale * np.tanh(max_arg * (u * 2 - 1)))\n", "\n", "\n", "def make_coupler(\n", " length,\n", " wg_spacing_in,\n", " wg_width,\n", " wg_spacing_coup,\n", " coup_length,\n", " bend_length,\n", " npts_bend=30,\n", "):\n", " \"\"\"Make an integrated coupler using the gdstk RobustPath object.\"\"\"\n", " # bend interpolator\n", " interp = tanh_interp(3)\n", " delta = wg_width + wg_spacing_coup - wg_spacing_in\n", " offset = lambda u: wg_spacing_in + interp(u) * delta\n", "\n", " coup = gdstk.RobustPath(\n", " (-0.5 * length, 0),\n", " (wg_width, wg_width),\n", " wg_spacing_in,\n", " simple_path=True,\n", " layer=1,\n", " datatype=[0, 1],\n", " )\n", " coup.segment((-0.5 * coup_length - bend_length, 0))\n", " coup.segment(\n", " (-0.5 * coup_length, 0),\n", " offset=[lambda u: -0.5 * offset(u), lambda u: 0.5 * offset(u)],\n", " )\n", " coup.segment((0.5 * coup_length, 0))\n", " coup.segment(\n", " (0.5 * coup_length + bend_length, 0),\n", " offset=[lambda u: -0.5 * offset(1 - u), lambda u: 0.5 * offset(1 - u)],\n", " )\n", " coup.segment((0.5 * length, 0))\n", " return coup\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create Base Simulation\n", "\n", "The scattering matrix tool requires the \"base\" [Simulation](../_autosummary/tidy3d.Simulation.html) (without the modal sources or monitors used to compute S-parameters), so we will construct that now.\n", "\n", "We generate the structures and add a [FieldMonitor](../_autosummary/tidy3d.FieldMonitor.html?highlight=FieldMonitor) so we can inspect the field patterns." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
[10:07:20] WARNING: No sources in simulation. log.py:57\n", "\n" ], "text/plain": [ "\u001b[2;36m[10:07:20]\u001b[0m\u001b[2;36m \u001b[0mWARNING: No sources in simulation. \u001b]8;id=899243;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/log.py\u001b\\\u001b[2mlog.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=342169;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/log.py#57\u001b\\\u001b[2m57\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Geometry must be placed in GDS cells to import into Tidy3D\n", "coup_cell = gdstk.Cell(\"Coupler\")\n", "\n", "substrate = gdstk.rectangle(\n", " (-device_length / 2, -wg_spacing_in / 2 - 10),\n", " (device_length / 2, wg_spacing_in / 2 + 10),\n", " layer=0,\n", ")\n", "coup_cell.add(substrate)\n", "\n", "# Add the coupler to a gdspy cell\n", "gds_coup = make_coupler(\n", " device_length, wg_spacing_in, wg_width, wg_spacing_coup, coup_length, bend_length\n", ")\n", "coup_cell.add(gds_coup)\n", "\n", "# Substrate\n", "(oxide_geo,) = td.PolySlab.from_gds(\n", " gds_cell=coup_cell, gds_layer=0, gds_dtype=0, slab_bounds=(-10, 0), axis=2\n", ")\n", "\n", "oxide = td.Structure(geometry=oxide_geo, medium=mat_sub)\n", "\n", "# Waveguides (import all datatypes if gds_dtype not specified)\n", "coupler1_geo, coupler2_geo = td.PolySlab.from_gds(\n", " gds_cell=coup_cell, gds_layer=1, slab_bounds=(0, wg_height), axis=2\n", ")\n", "\n", "coupler1 = td.Structure(geometry=coupler1_geo, medium=mat_wg)\n", "\n", "coupler2 = td.Structure(geometry=coupler2_geo, medium=mat_wg)\n", "\n", "# Simulation size along propagation direction\n", "sim_length = 2 * straight_wg_length + 2 * bend_length + coup_length\n", "\n", "# Spacing between waveguides and PML\n", "sim_size = [\n", " sim_length,\n", " wg_spacing_in + wg_width + 2 * pml_spacing,\n", " wg_height + 2 * pml_spacing,\n", "]\n", "\n", "# source\n", "src_pos = sim_length / 2 - straight_wg_length / 2\n", "\n", "# in-plane field monitor (optional, increases required data storage)\n", "domain_monitor = td.FieldMonitor(\n", " center=[0, 0, wg_height / 2], size=[td.inf, td.inf, 0], freqs=[freq0], name=\"field\"\n", ")\n", "\n", "# initialize the simulation\n", "sim = td.Simulation(\n", " size=sim_size,\n", " grid_spec=grid_spec,\n", " structures=[oxide, coupler1, coupler2],\n", " sources=[],\n", " monitors=[domain_monitor],\n", " run_time=50 / fwidth,\n", " boundary_spec=td.BoundarySpec.all_sides(boundary=td.PML()),\n", ")\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAFVCAYAAAAAO6bXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4q0lEQVR4nOzdeZwcZZ0/8E9V9X3NnUkmd8KRkIMjhBuCGgQFFWVRcFUSWZBLxawHEQQSXCOigqsCuitkfxzK8VphFUXCLYjIKUdICCEh10yS6cxM9/RV3VXP74+a6pqjZ6a6u7rn+rxfr37NdE9V9zPzhczz/czTT0lCCAEiIiIiIiIiIiIiIhpAHukBEBERERERERERERGNVgzRiYiIiIiIiIiIiIgGwRCdiIiIiIiIiIiIiGgQDNGJiIiIiIiIiIiIiAbBEJ2IiIiIiIiIiIiIaBAM0YmIiIiIiIiIiIiIBsEQnYiIiIiIiIiIiIhoEAzRiYiIiIiIiIiIiIgGwRCdiIiIiIiIiIiIiGgQDNGJiIiIiIiIiEbA008/DUmS8PTTT4/0UIiIaAgM0YmIiIiIiIiIKujWW2/F+vXrR3oYJbn33ntxyy23jPQwAAA7d+7EmjVrcMwxx6Curg6NjY049dRT8fjjjxc8vrOzExdffDGampoQDAbxoQ99CK+++qqt11qxYgUkSRpwmzdv3oBjdV3Hj370I8yePRs+nw+LFy/Gb3/727K+VyIaXVwjPQAiIiIiIiIiovHs1ltvRWNjI1asWNHn8VNOOQWpVAoej2dkBmbDvffei7feegtXXnnlSA8FDz/8MG688UacffbZuOCCC5DL5fD//t//w2mnnYY77rgDK1euzB+r6zrOPPNM/POf/8S3vvUtNDY24tZbb8Wpp56KV155BQcffPCwr+f1evHf//3ffR6rqakZcNzVV1+NH/7wh7jooouwdOlSPPzww/j85z8PSZJw3nnnlf+NE9GIk4QQYqQHQURERERERETjWyKRQDAYHOlhjIiFCxeisbFxTG7bctZZZ+Gtt97C9u3bR3ooePvtt9Hc3IzGxsb8Y5lMBkcccQS6u7uxc+fO/OP3338/Pve5z+GBBx7Av/zLvwAA9u/fj0MOOQQf+9jHcO+99w75WitWrMCDDz6I7u7uIY/bvXs3Zs+ejYsvvhi/+MUvAABCCCxbtgzbtm3D9u3boShKqd8yEY0S3M6FiIiIiIiIiIqye/duXHjhhWhpaYHX68Xs2bNx6aWXQlVVAMD69eshSRKeeeYZXHbZZZg0aRKmTZuWP//WW2/FggUL4PV60dLSgssvvxydnZ19XmPLli0455xzMHnyZPh8PkybNg3nnXceurq68sds2LABJ510EmpraxEKhXDooYfiu9/97rDjt3NeJpPBddddh4MOOgherxfTp0/Ht7/9bWQymQHPd/fdd+OYY45BIBBAXV0dTjnlFDz22GMAgFmzZuHtt9/GM888k98S5NRTTwUw+J7oDzzwAJYsWQK/34/GxkZ84QtfwO7du/scs2LFCoRCIezevRtnn302QqEQmpqa8M1vfhOapg37M3j44Ydx5pln5ms4d+5c3HDDDX3OPfXUU/HII4/ggw8+yI991qxZgz7nnXfeCUmScMcdd/R5/Ac/+AEkScKf/vSnYcc1lAULFvQJ0AFjtfjHP/5x7Nq1C/F4PP/4gw8+iObmZnzmM5/JP9bU1ITPfvazePjhhwvWsRBN0xCLxQb9+sMPP4xsNovLLrss/5gkSbj00kuxa9cuvPDCC3a/PSIaxbidCxERERERERHZtmfPHhxzzDH5/abnzZuH3bt348EHH0QymeyzNclll12GpqYmXHvttUgkEgCA66+/HmvWrMHy5ctx6aWXYvPmzbjtttvw0ksv4fnnn4fb7Yaqqjj99NORyWTw1a9+FZMnT8bu3bvxxz/+EZ2dnaipqcHbb7+Ns846C4sXL8batWvh9Xrx3nvv4fnnnx9y/HbO03Udn/zkJ/Hcc8/h4osvxvz58/Hmm2/i5ptvxrvvvouHHnoof+yaNWtw/fXX44QTTsDatWvh8Xjw4osv4sknn8RHP/pR3HLLLfjqV7+KUCiEq6++GgDQ3Nw86PjWr1+PlStXYunSpVi3bh327t2Ln/3sZ3j++efx2muvoba2Nn+spmk4/fTTceyxx+LHP/4xHn/8cfzkJz/B3Llzcemllw75c1i/fj1CoRBWrVqFUCiEJ598Etdeey1isRhuuukmAMY2JV1dXdi1axduvvlmAEAoFBr0OVeuXIn//d//xapVq3Daaadh+vTpePPNN7FmzRpceOGF+PjHP54/tqOjw1bYHwgEEAgEhjymra1twHGvvfYajjrqKMhy3/WjxxxzDH7961/j3XffxaJFi4Z83mQyiUgkgmQyibq6Opx//vm48cYb+/wMXnvtNQSDQcyfP3/A65hfP+mkk4b9PololBNERERERERERDZ96UtfErIsi5deemnA13RdF0IIceeddwoA4qSTThK5XC7/9X379gmPxyM++tGPCk3T8o//4he/EADEHXfcIYQQ4rXXXhMAxAMPPDDoOG6++WYBQOzfv7+o8ds576677hKyLIu//vWvfR6//fbbBQDx/PPPCyGE2LJli5BlWXz605/u8/0IYf0shBBiwYIFYtmyZQNe56mnnhIAxFNPPSWEEEJVVTFp0iSxcOFCkUql8sf98Y9/FADEtddem3/sggsuEADE2rVr+zznkUceKZYsWTL0D0EIkUwmBzz2la98RQQCAZFOp/OPnXnmmWLmzJnDPp+ptbVV1NfXi9NOO01kMhlx5JFHihkzZoiurq4+x82cOVMAGPZ23XXXDfl6W7ZsET6fT3zxi1/s83gwGBRf/vKXBxz/yCOPCADi0UcfHfJ5r7rqKvGd73xH3HfffeK3v/1t/ud94oknimw2mz/uzDPPFHPmzBlwfiKREADEVVddNeTrENHYwJXoRERERERERGSLrut46KGH8IlPfAJHH330gK9LktTn/kUXXdRnP+jHH38cqqriyiuv7LNC+KKLLsJ3v/tdPPLII1i5cmX+4o1/+ctf8PGPf7zgSmRzRfbDDz+MlStXDlhxPBg75z3wwAOYP38+5s2bh/b29vzjH/7whwEATz31FE444QQ89NBD0HUd11577YDn6f+zsOPll1/Gvn37cP3118Pn8+UfP/PMMzFv3jw88sgjWLNmTZ9zLrnkkj73Tz75ZNx1113Dvpbf789/Ho/HkclkcPLJJ+NXv/oVNm3ahMMPP7zo8QPA5MmT8ctf/hLnn38+Tj75ZLz++uvYsGEDIpFIn+PuuecepFKpYZ9vzpw5g34tmUzi3HPPhd/vxw9/+MM+X0ulUvB6vQPOMX+uw732unXr+tw/77zzcMghh+Dqq6/Ggw8+mL9gaLmvQ0RjA/dEJyIiIiIiIiJb9u/fj1gshoULF9o6fvbs2X3uf/DBBwCAQw89tM/jHo8Hc+bMyX999uzZWLVqFf77v/8bjY2NOP300/HLX/6yz37on/vc53DiiSfi3/7t39Dc3IzzzjsP999/P3RdH3JMds7bsmUL3n77bTQ1NfW5HXLIIQCAffv2AQC2bt0KWZZx2GGH2fp5DGewnw8AzJs3L/91k8/nQ1NTU5/H6urq0NHRMexrvf322/j0pz+NmpoaRCIRNDU14Qtf+AIA9Pk5l+K8887DmWeeiX/84x+46KKL8JGPfGTAMSeeeCKWL18+7G2wEF3TNJx33nnYuHEjHnzwQbS0tPT5ut/vL7jveTqdzn+9WN/4xjcgyzIef/zxir4OEY0+XIlORERERERERBVRToD4k5/8BCtWrMDDDz+Mxx57DF/72tewbt06/P3vf8e0adPg9/vx7LPP4qmnnsIjjzyCRx99FPfddx8+/OEP47HHHuuzAr7/mIY7T9d1LFq0CD/96U8LPsf06dNL/r6cNNj3OJzOzk4sW7YMkUgEa9euxdy5c+Hz+fDqq6/iO9/5zrB/iBhONBrFyy+/DADYuHEjdF0fsFJ///79tvZED4VCBfdhv+iii/DHP/4R99xzT/4dAr1NmTIFra2tAx43H+sfutvh9/vR0NCAAwcO9Hmdp556CkKIPu8+KOd1iGj04Up0IiIiIiIiIrKlqakJkUgEb731Vknnz5w5EwCwefPmPo+rqopt27blv25atGgRrrnmGjz77LP461//it27d+P222/Pf12WZXzkIx/BT3/6U2zcuBH/8R//gSeffBJPPfXUkOMY7ry5c+fiwIED+MhHPlJwdbS5Unzu3LnQdR0bN24c8vXsbu0y2M/HfKz/z6dUTz/9NKLRKNavX4+vf/3rOOuss7B8+XLU1dUNOLaUbWkuv/xyxONxrFu3Ds899xxuueWWAccsXboUU6ZMGfb24x//eMC53/rWt3DnnXfi5ptvxvnnn19wDEcccQReffXVAX8QePHFFxEIBPLvKihGPB5He3t7n9X/RxxxBJLJJN55550Br2N+nYjGPoboRERERERERGSLLMs4++yz8Yc//CG/0rg3IcSQ5y9fvhwejwf/+Z//2efY3/zmN+jq6sKZZ54JAIjFYsjlcn3OXbRoEWRZzm+d0Xs1sMkMLAttr2Gyc95nP/tZ7N69G//1X/814NhUKoVEIgEAOPvssyHLMtauXTsgrO39/QWDQXR2dg46JtPRRx+NSZMm4fbbb+/zPfz5z3/GO++8k//5lMtcwd57jKqq4tZbbx1wbDAYLGp7lwcffBD33XcffvjDH+Kqq67Ceeedh2uuuQbvvvtun+PuuecebNiwYdjbl770pT7n3XTTTfjxj3+M7373u/j6178+6Dj+5V/+BXv37sX//u//5h9rb2/HAw88gE984hN99jHfunUrtm7dmr+fTqcRj8cHPOcNN9wAIQTOOOOM/GOf+tSn4Ha7+/zshBC4/fbbMXXqVJxwwgk2fmpENNpxOxciIiIiIiIisu0HP/gBHnvsMSxbtgwXX3wx5s+fj9bWVjzwwAN47rnn8hfuLKSpqQmrV6/GmjVrcMYZZ+CTn/wkNm/ejFtvvRVLly7N78n95JNP4oorrsC5556LQw45BLlcDnfddRcURcE555wDAFi7di2effZZnHnmmZg5cyb27duHW2+9FdOmTcNJJ5006BjsnPfFL34R999/Py655BI89dRTOPHEE6FpGjZt2oT7778ff/nLX3D00UfjoIMOwtVXX40bbrgBJ598Mj7zmc/A6/XipZdeQktLS/7ilEuWLMFtt92G73//+zjooIMwadKkgluQuN1u3HjjjVi5ciWWLVuG888/H3v37sXPfvYzzJo1C9/4xjdKLVsfJ5xwAurq6nDBBRfga1/7GiRJwl133VXwjyBLlizBfffdh1WrVmHp0qUIhUL4xCc+UfB59+3bh0svvRQf+tCHcMUVVwAAfvGLX+Cpp57CihUr8Nxzz+W3dTnxxBOLHvfvf/97fPvb38bBBx+M+fPn4+677+7z9dNOOw3Nzc0AjBD9uOOOw8qVK7Fx40Y0Njbi1ltvhaZpAy7Oau7Zvn37dgBAW1sbjjzySJx//vmYN28eAOMit3/6059wxhln4FOf+lT+3GnTpuHKK6/ETTfdhGw2i6VLl+Khhx7CX//6V9xzzz0lb7lDRKOMICIiIiIiIiIqwgcffCC+9KUviaamJuH1esWcOXPE5ZdfLjKZjBBCiDvvvFMAEC+99FLB83/xi1+IefPmCbfbLZqbm8Wll14qOjo68l9///33xZe//GUxd+5c4fP5RH19vfjQhz4kHn/88fwxTzzxhPjUpz4lWlpahMfjES0tLeL8888X77777pBjt3ueqqrixhtvFAsWLBBer1fU1dWJJUuWiDVr1oiurq4+x95xxx3iyCOPzB+3bNkysWHDhvzX29raxJlnninC4bAAIJYtWyaEEOKpp54SAMRTTz3V5/nuu+++/PPV19eLf/3XfxW7du3qc8wFF1wggsHggO/vuuuuE3binueff14cd9xxwu/3i5aWFvHtb39b/OUvfxkwnu7ubvH5z39e1NbWCgBi5syZgz7nZz7zGREOh8X27dv7PP7www8LAOLGG28cdlxDMb+3wW79f44HDhwQF154oWhoaBCBQEAsW7as4H+TM2fO7PN9dXR0iC984QvioIMOEoFAQHi9XrFgwQLxgx/8QKiqOuB8TdPED37wAzFz5kzh8XjEggULxN13313W90pEo4skxDDvtSIiIiIiIiIiIiIimqC4JzoRERERERERERER0SAYohMRERERERERERERDYIhOhERERERERERERHRIBiiExERERERERERERENgiE6EREREREREREREdEgXCM9ACIiIiIiIpOu69izZw/C4TAkSRrp4RARERHROCaEQDweR0tLC2R58PXmDNGJiIiIiGjU2LNnD6ZPnz7SwyAiIiKiCWTnzp2YNm3aoF9niE5ERERERKNGOBwGAHz729+G3+939Lmz2Sx0Xc/fd7vdQ644KoUQAgDQ2NgIt9tdcAydnZ3544LBIILBoKNjsDPGzs5OZLNZAMbPoba2tuor/xOJBBKJBABAkiTU1tYW/JlVEuthYT0MrIeF9bCwHgbWw8J6WGKxGDo6OvL3KzG/Go6u6/mfAwDIsmz7v4lUKoUf/ehH+TnoYBiiExERERHRqGE2fn6/H6FQyNHn1nUdqVQKgNFcOR3Sm6+h6zoikQg8Hk/BYyRJQjqdBgBMnjy56o0mYPx829vbARiBv9frrfoYwuEwWltbAQA+nw8NDQ1VHwPAephYDwvrYWE9DKyHhfWwsB4Gr9eLdDoNIUTF5ld2pFKp/GIJv99fdD2G++MDLyxKRERERETjnq7ryGQykCQJsizn71dbPB5HOp2Gz+eDJEmIRqN9VsdXg6qqiEajcLvdcLvdiEajUFW1qmPQdR3RaBSSJMHn8yGdTiMej1d1DADrYWI9LKyHhfUwsB4W1sPCehh0XUdnZycAjOj8KpPJQNd1yLIMSZLy953EEJ2IiIiIiMY1s6ETQsDj8cDv98PlciGXy1W10YvH44jFYohEImhoaEBjYyOy2WxVG29VVdHe3g63243Gxsb8tjPt7e1Va7zNACSbzaKxsRENDQ2IRCKIxWJVDUJYDwPrYWE9LKyHgfWwsB4W1sNg1iOXy8HlcsHr9Y7I/CqTyeTH4Pf74fF4IIRwPEhniE5ERERERONW/wDd5TJ2tKx2o9e74Tb33PR4PFVtvHs33A0NDZBlGbIso6GhoWqNd/8AxNzyJhwOVzUIYT0MrIeF9bCwHgbWw8J6WFgPQ+961NXV5bdOqfb8qneAbm5l43K5KhKkM0QnIiIiIqJxabAA3VStRq9Qw22qVuNdqOE2VavxHiwAMVUrCGE9DKyHhfWwsB4G1sPCelhYD0P/evS/gGe15leFAnRTJYJ0huhERERERDTuDBegmyrd6A3VcJsq3XgP1XCbKt14DxeAmCodhLAeBtbDwnpYWA8D62FhPSysh8FuPSo9vxoqQDc5HaQzRCciIiIionHFboBuqlSjZ6fhNlWq8bbTcJsq1XjbbbhNlQpCWA8D62FhPSysh4H1sLAeFtbDUGw9KjW/shOgm5wM0hmiExERERHRuFFsgG5yutFLJBK2G26T0413MQ23yenGu9iG2+R0EFJMAGJiPSysh4H1sLAeFtbDwHpYWA+L0/OrYgJ0k1NBOkN0IiIiIiIaF0oN0E1ONXq5XA7d3d1FNdwmpxrvUhpuk1ONd6kNt8mpIKSUAMTEelhYDwPrYWE9LKyHgfWwsB4Wp+ZXpQToJieCdIboREREREQ06hTb3JQboJvKbfRUVYWu6wiFQkU33KZyG+9yGm5TuY13uQ23qdwgpJwAxMR6WFgPA+thYT0srIeB9bCwHpZy51flBOimcoN0huhERERERDTqZLNZ5HI5W8c6FaCbSm30MpkMNE2DLMsIBoNljaHUxtuJhttUauPtVMNtKjUIcSIAMbEeFtbDwHpYWA8L62FgPSysh6Wc+VW5AbqpnCCdIToREREREY1KqqoOG6Q7HaCbim30zAZPURTHxlBs4+1kw20qtvF2uuE2FRuEOBmAmFgPC+thYD0srIeF9TCwHhbWw1Lq/MqJAN3UP0gXQtg6jyE6EREN6+mnn4YkSXj66adHeihERDRBeDweSJI0ZJBeqQDdZLfR693gOdVkmuw23pVouE12G+9KNdwmu0FIJQIQE+thYT0MrIeF9bCwHgbWw8J6WEqZXzkVoJt6B+l2V+YzRCciorxbb70V69evH+lhlOTee+/FLbfcMtLDAGBMOn70ox9h9uzZ8Pl8WLx4MX7729/aOre1tRVXXXUVPvShDyEcDg/5x4vHHnsMF154IRYuXAhFUTBr1iznvgkiohEmSRK8Xu+gQXqlA3TTcI1eJRs803CNdyUbbtNwjXelG27TcEFIJQMQE+thYT0MrIeF9bCwHgbWw8J6WEbD/KrYxQ8M0YmIKG+wEP2UU05BKpXCKaecUv1B2TSaQvSrr74a3/nOd3Daaafh5z//OWbMmIHPf/7z+N3vfjfsuZs3b8aNN96I3bt3Y9GiRUMee++99+Lee+9FTU0NWlpanBo+EdGoIctywSC9WgG6abBGrxoNnmmwxrsaDbdpsMa7Wg23abAgpBoBiIn1sLAeBtbDwnpYWA8D62FhPSyjYX7lcrngdrttHcsQnYion0QiMdJDGHVkWYbP56voL/LxYvfu3fjJT36Cyy+/HL/+9a9x0UUX4Q9/+ANOPvlkfOtb34KmaUOev2TJEkSjUbz77rtYtWrVkMf+4Ac/QCwWw/PPP4/DDz/cyW+DiGjUKBSkVzNAN/Vv9KrZ4Jn6N96ZTKZqDbepf+OdyWSq2nCb+gch1QxATKyHhfUwsB4W1sPCehhYDwvrYRkN8yu7P2+mIUQ0ru3evRsXXnghWlpa4PV6MXv2bFx66aX5v7SuX78ekiThmWeewWWXXYZJkyZh2rRp+fNvvfVWLFiwAF6vFy0tLbj88svR2dnZ5zW2bNmCc845B5MnT4bP58O0adNw3nnnoaurK3/Mhg0bcNJJJ6G2thahUAiHHnoovvvd7w47fjvnZTIZXHfddTjooIPg9Xoxffp0fPvb3y74lqi7774bxxxzDAKBAOrq6nDKKafgscceAwDMmjULb7/9Np555hlIkgRJknDqqacCGHxP9AceeABLliyB3+9HY2MjvvCFL2D37t19jlmxYgVCoRB2796Ns88+G6FQCE1NTfjmN785bKAMAA8//DDOPPPMfA3nzp2LG264oc+5p556Kh555BF88MEH+bEPtbXJihUr8sf1v11//fXDjmm48WazWVx22WX5xyRJwqWXXopdu3bhhRdeGPL8cDiM+vp6W6/V0tJi+6/mRERjmRmkA8bvPV3Xqxqgm3o3etVu8Exm422uWHO5XFVruE1m4+1yufIr2KrZcJt6ByHVDkBMrIeF9TCwHhbWw8J6GFgPC+thGQ3zKzuqO+skIqqiPXv24JhjjkFnZycuvvhizJs3D7t378aDDz6IZDLZ5xfDZZddhqamJlx77bX5lejXX3891qxZg+XLl+PSSy/F5s2bcdttt+Gll17C888/D7fbDVVVcfrppyOTyeCrX/0qJk+ejN27d+OPf/wjOjs7UVNTg7fffhtnnXUWFi9ejLVr18Lr9eK9997D888/P+T47Zyn6zo++clP4rnnnsPFF1+M+fPn480338TNN9+Md999Fw899FD+2DVr1uD666/HCSecgLVr18Lj8eDFF1/Ek08+iY9+9KO45ZZb8NWvfhWhUAhXX301AKC5uXnQ8a1fvx4rV67E0qVLsW7dOuzduxc/+9nP8Pzzz+O1115DbW1t/lhN03D66afj2GOPxY9//GM8/vjj+MlPfoK5c+fi0ksvHfLnsH79eoRCIaxatQqhUAhPPvkkrr32WsRiMdx0000AjO1Turq6sGvXLtx8880AgFAoNOhzfuUrX8Hy5cv7PPboo4/innvuwaRJk/KPtbe3Dzk2Uzgczv+Sf+211xAMBjF//vw+xxxzzDH5r5900km2npeIiIiIiIiIRh5DdCIat1avXo22tja8+OKLOProo/OPr127FkKIPsfW19fjiSeegKIoAID9+/dj3bp1+OhHP4o///nP+b8Gz5s3D1dccQXuvvturFy5Ehs3bsS2bdvwwAMP4F/+5V/yz3fttdfmP9+wYQNUVcWf//xnNDY22h6/nfPuvfdePP7443jmmWf6BLMLFy7EJZdcgr/97W844YQT8N5772Ht2rX49Kc/jQcffLDPX7fNn8XZZ5+Na665Jr+ifCjZbBbf+c53sHDhQjz77LPw+XwAgJNOOglnnXUWbr75ZqxZsyZ/fDqdxuc+9zl873vfAwBccsklOOqoo/Cb3/xm2BD93nvvhd/vz9+/5JJLcMkll+DWW2/F97//fXi9Xpx22mmYOnUqOjo6hh07ABx//PE4/vjj8/ffe+89XHHFFTjttNPwla98Jf94U1PTsM8FAHfeeSdWrFgBwLgwaHNzMyRJ6nPMlClTABh/3CEiouKYe6ADxmqlbDabf1dZNVej936LMYD8Hu3VXC1lrljzeDyIRCKIRqOIRqNVXb1m7pmay+XQ2NiIWCyG9vb2qq9e6/0WfACIxWIAUNXVhKyHhfUwsB4W1sPCehhYDwvrYRkN8ys7uJ0LEY1Luq7joYcewic+8Yk+Abqpf8B50UUX5QN0AHj88cehqiquvPLKPr/ALrroIkQiETzyyCMAgJqaGgDAX/7yFySTyYJjMVdkP/zwwwOuvj0UO+c98MADmD9/PubNm4f29vb87cMf/jAA4KmnngIAPPTQQ9B1Hddee+2AX8j9fxZ2vPzyy9i3bx8uu+yyfIAOAGeeeSbmzZuX//n0dskll/S5f/LJJ+P9998f9rV6B+jxeBzt7e04+eSTkUwmsWnTpqLH3l8ikcCnP/1p1NXV4be//W2f/w42bNhg63b66afnz0mlUgV/2Zs/p1QqVfaYiYgmkkIXES10sdFK679H52AXw6qk/hcd83q9BS9OVkn9Lzrm9XoLXpys0vrvYTvYxeIqifWwsB4G1sPCelhYDwPrYWE9LKNhfmX3580QnYjGpf379yMWi2HhwoW2jp89e3af+x988AEA4NBDD+3zuMfjwZw5c/Jfnz17NlatWoX//u//RmNjI04//XT88pe/7LMf+uc+9zmceOKJ+Ld/+zc0NzfjvPPOw/333z/sP9R2ztuyZQvefvttNDU19bkdcsghAIB9+/YBALZu3QpZlnHYYYfZ+nkMZ7CfD2Cs1je/bvL5fANWddfV1aGjo2PY13r77bfx6U9/GjU1NYhEImhqasqvNu/9cy7VRRddhK1bt+L3v/89Ghoa+nxt+fLltm7mKnPACP0L/bJPp9P5rxMRkT2FAnSg8MVGK2mwi1xVs9Hr33CbfxTvf3GySjbe/Rtuc5Va/4uTVbrxHuwicNUMQlgPC+thYD0srIeF9TCwHhbWwzIa5le5XA7ZbNbWsQzRiYhQXrD5k5/8BG+88Qa++93vIpVK4Wtf+xoWLFiAXbt25Z/72WefxeOPP44vfvGLeOONN/C5z30Op5122pAX1rRznq7rWLRo0aArpHtf3HIk9V7dXYzOzk4sW7YM//znP7F27Vr84Q9/wIYNG3DjjTcCsP8X48H87Gc/w29/+1v813/9F4444ogBX29ra7N16726fMqUKWhraxuwZVBraysA42KgREQ0PCFEwQDdVK0gfbAGz1SNRm+whttUjcZ7sIbbVK3Ge7AAxFSNIIT1sLAeBtbDwnpYWA8D62FhPSyjYX6Vy+WK+v4YohPRuNTU1IRIJIK33nqrpPNnzpwJANi8eXOfx1VVxbZt2/JfNy1atAjXXHMNnn32Wfz1r3/F7t27cfvtt+e/LssyPvKRj+CnP/0pNm7ciP/4j//Ak08+md9uZTDDnTd37lwcOHAAH/nIRwqukDZXis+dOxe6rmPjxo1Dvp7drV0G+/mYj/X/+ZTq6aefRjQaxfr16/H1r38dZ511FpYvX466uroBxxa7Lc1f//pXfPOb38SVV16Jf/3Xfy14zJQpU2zd7rvvvvw5RxxxBJLJJN55550+z/Xiiy/mv05ERMNTVXXQAN1U6SB9uAbP1LvRc7rZHK7hNlWy8R6u4TZVuvEeLgAxVTIIYT0srIeB9bCwHhbWw8B6WFgPSynzK6eDdHPOJkmS7f3fGaIT0bgkyzLOPvts/OEPf8DLL7884Ov9Vwn3t3z5cng8Hvznf/5nn2N/85vfoKurC2eeeSYA4wIk/Rv2RYsWQZbl/D/yBw4cGPD8ZpA61C8CO+d99rOfxe7du/Ff//VfA45NpVJIJBIAjIuGyrKMtWvXDvgl3Pv7CwaD6OzsHHRMpqOPPhqTJk3C7bff3ud7+POf/4x33nkn//Mpl7mCvfcYVVXFrbfeOuDYYDBoe3uX1tZWfPazn8VJJ52Em266adDjStkT/VOf+hTcbnefMQohcPvtt2Pq1Kk44YQT+oxj06ZNtt8+RkQ00QwVoJsqFaTbbfBMZqOnaZpjY7DbcJsq0XjbbbhNlWq87QYgpkoEIayHhfUwsB4W1sPCehhYDwvrYSl1fuVkkN47QDfnkHZU71L2RERV9oMf/ACPPfYYli1bhosvvhjz589Ha2srHnjgATz33HP5C3cW0tTUhNWrV2PNmjU444wz8MlPfhKbN2/GrbfeiqVLl+b35H7yySdxxRVX4Nxzz8UhhxyCXC6Hu+66C4qi4JxzzgEArF27Fs8++yzOPPNMzJw5E/v27cOtt96KadOm4aSTThp0DHbO++IXv4j7778fl1xyCZ566imceOKJ0DQNmzZtwv3334+//OUvOProo3HQQQfh6quvxg033ICTTz4Zn/nMZ+D1evHSSy+hpaUF69atAwAsWbIEt912G77//e/joIMOwqRJk/IXKe3N7XbjxhtvxMqVK7Fs2TKcf/752Lt3L372s59h1qxZ+MY3vlFq2fo44YQTUFdXhwsuuABf+9rXIEkS7rrrroJ/BFmyZAnuu+8+rFq1CkuXLkUoFMInPvGJgs/7ta99Dfv378e3v/1t/O53v+vztcWLF2Px4sUAjD+mFGvatGm48sorcdNNNyGbzWLp0qV46KGH8Ne//hX33HNPn61tVq9ejf/5n//Btm3bMGvWrPzj3//+9wEY+8EDwF133YXnnnsOAHDNNdfkj3vjjTfwf//3fwCA9957D11dXflzDz/88EG/fyKiscDtdg8boJvMID2TyeSbPLvnFlJsg2fyer0QQkDXdSQSCdsrmwoptuE2mY13e3s7otFoUef2V2zDbTIb72g0ivb29qLOLaTYAMRkHhuLxfrcLwXrYWE9DKyHhfWwsB4G1sPCeljKmV8ByC9SKObc/voH6MX8TBmiE9G4NXXqVLz44ov43ve+h3vuuQexWAxTp07Fxz72MQQCgWHPv/7669HU1IRf/OIX+MY3voH6+npcfPHF+MEPfgC32w3ACCpPP/10/OEPf8Du3bsRCARw+OGH489//jOOO+44AMAnP/lJbN++HXfccUf+F8+yZcuwZs0a1NTUDPr6ds6TZRkPPfQQbr75Zvy///f/8Pvf/x6BQABz5szB17/+9fwFRgEjlJ89ezZ+/vOf4+qrr0YgEMDixYvxxS9+MX/Mtddeiw8++AA/+tGPEI/HsWzZsoIhOgCsWLECgUAAP/zhD/Gd73wHwWAQn/70p3HjjTcO+QeKYjQ0NOCPf/wj/v3f/x3XXHMN6urq8IUvfAEf+chH+qz+BoDLLrsMr7/+Ou68807cfPPNmDlz5qAh8v79+6FpGlatWjXga9ddd10+RC/VD3/4Q9TV1eFXv/oV1q9fj4MPPhh33303Pv/5z9s6/3vf+16f+3fccUf+894h+quvvjrgWPP+BRdcwBCdiMa0YhtFp4L0Uhs8k8fjgaqq6O7uhsvlKqnxLrXh7j2GchvvUhtuk1ONd6kBiMmJIIT1sLAeBtbDwnpYWA8D62FhPSzlzq+cCNLLCdABQBLD7WlARERERERUJbFYDDU1NbjuuusQCoWKPl/X9SEvSDqUchs88/V1XUckEkEymSy6eS+34XbiucptuJ16rnIDECeei/WwsB4G1sPCelhYDwPrYZlI9VBVFa2trZBlueDYnJhflftcQwXo3d3dWLNmDbq6uhCJRAZ9Du6JTkRERERE40ape6Q72eABxrU6it1T1cmGGyhtT1UnG26g9D1VnQxAgNL2uGU9LKyHgfWwsB4W1sPAelhYD4vT86tS9kgvdwW6iSE6ERERERE5Yt26dVi6dCnC4TAmTZqEs88+G5s3b676OIoN0p1u8EzFNN5ON9ymYhpvpxtuU7GNt9MBiIn1MLAeFtbDwnoYWA8L62FhPQzF1qNS86tignSnAnSAIToRERERETnkmWeeweWXX46///3v2LBhA7LZLD760Y8ikUhUfSx2g/RKNXgmO413pRpuk53Gu1INt8lu412pAMTEehhYDwvrYWE9DKyHhfWwsB4Gu/Wo9PzKTpDuZIAOMEQnIiIiIiKHPProo1ixYgUWLFiAww8/HOvXr8eOHTvwyiuvjMh4hgvSK93gmYZqvCvdcJuGarwr3XCbhmu8Kx2AmFgPA+thYT0srIeB9bCwHhbWw9C/Htlsts/XqzW/GipIdzpABxiiExERERFRhXR1dQEA6uvrBz0mk8kgFov1uTlpsCC9Wg2eqVDjXa2G21So8a5Ww20aLAipVgBiYj0MrIeF9bCwHgbWw8J6WFgPQ+96dHR05MP8as+vCgXplQjQAUASQghHnmmc0nUde/bsQTgchiRJIz0cIiIiIhrHhBCIx+NoaWmpeANWabqu45Of/CQ6Ozvx3HPPDXrc9ddfjzVr1gx4/LrrrkMoFHJ0PJlMBkIISJIEXdcr0uCZjeyUKVMKNrBms+/z+ZDJZKrWcPdmNvsulwuA0WxWo+HurXez7/V6kU6nqxaA9MZ6GFgPC+thYT0MrIeF9bCwHgZd17Fv3z7E4/GKzq+GY4b3sizn53p2A/Tu7m6sWbMGXV1diEQigx7ncnLA49GePXswffr0kR4GEREREU0gO3fuxLRp00Z6GGW5/PLL8dZbbw0ZoAPA6tWrsWrVqvz9WCxWkfm3uSI9lUpBCJG/X23hcBiqqiKdTgNA1RtuwFjB1tDQgPb2dgCoesMNWCvYWltbkU6n4fP5qh6AAKyHifWwsB4W1sPAelhYDwvrYZBlGbW1tYjH49B1fcTmV16vN7+QAQB8Pp/j9WCIPgzzf8Rvf/Mb8PuN/wjMtfuNETfcrvJXpwsh0JnQkM0ZT+x2SagNKlVf+Z5Ia0ikjf/YJAmoDShwu6v7D0A2q6MzqeV/xkGfjKBPqeoYWA8L62FhPQysh4X1sLAeBtbDwnpYBqtHNifQHsvmHzelUhn86Mc3j0gz6KQrrrgCf/zjH/Hss88O+8cAr9dbtWar956dQoj8242rSVXVPvt2JhKJqtdb1/U+2+bEYrERaf57X3A2k8lAVdWqN/+sh4X1MLAeFtbDwnoYWA8L62FJpVL5z0dqfpXL5dB7sxXznQpOYog+DLPR8vu9CAUDAABdF9AFEAm74SkzRNeFQDSmweMVaGk0msv2uIaskNAQViBXqdGLJzUIWcfkBhlBv4xoTIOqCUR8CjxVarzVrI5EVkNNWEJDREEipSOW0iErMsKB6jTerIeF9bCwHgbWw8J6WFgPA+thYT0sQ9XDL0lIZF2QJUCWB45nrG4jKITAV7/6Vfz+97/H008/jdmzZ4/0kPJ679HpdrvzTTeAqjV6/fdMTSQS+ea3Wo1377fBNzU1AQDa29sRjUar2nj33sM2GAwiGo2ivb29qqvoWA8L62FgPSysh4X1MLAeFtbDEo/H0d3dDVmW4Xa7oapq1edXvfdA9/l8yGaz+WvgOBmkj+2NFsc4s8HLagKNYaO59bhlNIYVZDXja3oVtqyPJzXEUjoifqO5lSWj6XUrEtrjGtSsPvyTlEnN6miPa3ArxmvLkoRwQEHELyOW0hFPahUfA+thYT0srIeB9bCwHhbWw8B6WFgPy3D1MFfIjzeXX3457r77btx7770Ih8Noa2tDW1tbnxVKI6H/Ra4Gu9hoJRW66Fihi5NVUqGLjhW6OFml9b8I3GAXi6sk1sPCehhYDwvrYWE9DKyHhfWwmPUIhUJwuVz5fcirOb8qdBHRQhcbdQJD9BFSqMEzVbPR69/gmarZeBdquE3VarxZDwvrYWE9DKyHhfWwsB4G1sPCeljs1KOjW4Ouj78g/bbbbkNXVxdOPfVUTJkyJX+77777RmxM/QN0UzWD9EINt6lajXehhttUzca7fwBiqmYQwnpYWA8D62FhPSysh4H1sLAelv7vCDBVc35VKEA3VSJIZ4g+AoZq8EzVaPQGa/BM1Wi8h2q4TZVuvFkPC+thYT0MrIeF9bCwHgbWw8J6WOzWw6UAOR3QxlmQLoQoeFuxYsWIjGewAN1UjUZvqIbbVOnGe6iG21SNxnuwAMRUjSCE9bCwHgbWw8J6WFgPA+thYT0sdupR6fnVUAG6yekgnSF6ldlp8EyVbPSGa/BMlWy87TTcpko13qyHhfWwsB4G1sPCelhYDwPrYWE9LMXUozakQAKg5oCcVvm3205EwwXopko2enYablOlGm87Dbepko33cA23qZJBCOthYT0MrIeF9bCwHgbWw8J6WIqpR6XmV3YCdJOTQTpDdJuyDtS6mAbPVIlGz26DZ6pE411Mw21yuvFmPSysh4X1MLAeFtbDwnoYWA8L62EppR6KDCNIzzJId5rdAN1UiUYvm83abrhNTjfexTTcpko03nYbblMlgpBiAhAT62FgPSysh4X1MLAeFtbDwnoYKjG/KiZANzkVpDNEt0kXQKaMZrOUBs/kZKNXbINncrLxLqXhNjnVeLMeFtbDwnoYWA8L62FhPQysh4X1sJRcD1mC1w1IEoN0JxUboJucbPR0XUdHR0dRDbfJqca7lIbb5GTjXWzDbXIyCCklADGxHgbWw8J6WFgPA+thYT0srIfByflVKQG6yYkgnSG6TbIE5LTSgvRyGjyTE41eqQ2eyYnGu5yG21Ru4816WFgPC+thYD0srIeF9TCwHhbWw1JuPSSpb5Bewes/jTmihHqUGqCbnGj0NE3Lj6HYhttUbuNdTsNtcqLxLrXhNjkRhJQTgJhYDwPrYWE9LKyHgfWwsB4W1sPgxPyqnADdVG6QzhDdJrcLxgWgNEDN2Z/QO9Hgmcpp9Mpt8EzlNN5ONNymUhtv1sPCelhYDwPrYWE9LKyHgfWwsB4Wx+ohy/kgPev8NVfHLFVVi2r0yg3QTeU0er0bvNra2pIaPFOpjbcTDbepnMa73IbbVE4Q4kQAYmI9DKyHhfWwsB4G1sPCelhYD4NT86tSA3RTOUE6Q/QieN0yXAqg6UBOG77BcrLBM5XS6DnV4JlKabydbLhNxTberIeF9bCwHgbWw8J6WFgPA+thYT0sjtejJ0invjKZjK1Gz6kA3VRKo9e7wVMUpawGz1Rs4+1kw20qpfF2quE2lRKEOBmAmFgPA+thYT0srIeB9bCwHhbWw1Du/KrcAN1UapDOEL1IXrcMRTbeaptID97oVaLBMxXT6Dnd4JmKabwr0XCb7DberIeF9bCwHgbWw8J6WFgPA+thYT0sFauHLMPjcuzpxjy32w0hxLBButMBuqmYRq8SDZ7JbuNdiYbbVEzj7XTDbSomCKlEAGJiPQysh4X1sLAeBtbDwnpYWA/DaJlf9Q7Ss9msrXM4TbdJCEDXjWbKpQBZAcSSGiCAoF/pd6xAR7eGnCZQF1QASSpqCxhbJAk1fhkdCQ37OgXqQgqkfs1sIqWhO60j5JPh9cjOjwFAJCCjo1vDvq4c6oIK3P2a2WxWR0dCg0uREAnIyGkA4Ow4vB4ZAU2gM2H8zFkP1oP1sLAeFtajB+uRx3pYWI8eVaxHNicghIAOANwHvSBZluHxeKCqKjKZTMHmqVIBeu8xeL1eZDKZfNPtcvVtofo3eEBp+7kPxWxeY7FYn/umSjbcJrPxbm9vRzQaLRguVKrhNplBSDQaRXt7e8HvtZIBiIn1MLAeFtbDwnoYWA8L62FhPQylzK8qUQ9z3pZOp20dzxDdJgGgJ0OHLgBZBgJeGaomIFJGUwkYYbuaE5AlIORToAlAUyvXGYV8CtScjlhSh8clwezzcppAVhMI+mQoioR0Bcfg72kgExkdHs342QDGan01p8PrluFxSchkBZxuuE2KIiHoYz0A1qM31sPAelhYDwvrYWA9LKyHpRr1yGkCugD6r+evzE927DIbqkJBeqUDdNNQjV6hBq+UC3bZMVjjXY2G2zRU413phts0VBBSjQDExHoYWA8L62FhPQysh4X1sLAehmLnV5Xi9XqRTCZtHcsQ3aamiBuRsLFRZTYnkMnq+PjSGtQEnXsLLxERERFNDF0JDX96qQtetwy3y4rSY3H7F1maKAoF6dlstioBuqlQo2eOqRoNnql/4x0MBqvWcJsKNd6JRKIqDbepUBACoGoBiIn1MLAeFtbDwnoYWA8L62FhPQyjZX7ldtu7MBFDdJvcLgmeXg2OpkuoCSqoD/NHSERERETFcynSgDlm70CdLL2D9FQqlX+sGgG6qXejZ16EynysGg2eqXfjHYvFIElS1RpuU+/Gu7W1FQCq1nCbegch+/fvz4+rWgGIifUwsB4W1sPCehhYDwvrYWE9DKNlfmXH6BrNEK6//npIktTnNm/evCHPeeCBBzBv3jz4fD4sWrQIf/rTn6o0WiIiIiIicpLL5eqzR73dVUNOkmW5z+u63e4RafCCwWD+c6/XW9WG2+TxePr8EaP3mKpFlmVEIpH8/UgkwnoUGFO1sB4W1sPCehhYDwvrYWE9DKNlfjWc0TeiISxYsACtra3523PPPTfosX/7299w/vnn48ILL8Rrr72Gs88+G2effTbeeuutKo6YiIiIiIickMlkoOs6ZFmGJEn5+9XUe49OSZKgqipyuepuwWPumSpJEnw+H9LpNOLxeFXHABh7pqbTafh8PkiShGg0WvV6qKqKaDQKt9sNt9uNaDTa5+3g1cB6WFgPC+thYD0srIeF9TCwHpbRML+yY0yF6C6XC5MnT87fzL2LCvnZz36GM844A9/61rcwf/583HDDDTjqqKPwi1/8YsjXyGQy+bdSmDciIiIiIho5vS8i6vf74fF4IISoapDeu8Hz+Xz5ZrOajV7/i441NDQgEokgFotVtfHufdGxhoYGNDY2IpvNVrXx7n0RuMbGRjQ2NsLtdqO9vb1qQQjrYWE9LKyHgfWwsB4W1sPAelhGw/xKCGHruDEVom/ZsgUtLS2YM2cO/vVf/xU7duwY9NgXXngBy5cv7/PY6aefjhdeeGHI11i3bh1qamryt+nTpxc8zubPl4iIiIiIytA7QDffbuxyuaoapPdu8Mw9Os39OqvV6PVvuM23fIfD4ao23r0bbnPPVHNP1Wo13r0DEHMPW3OP22oFIayHhfWwsB4G1sPCelhYDwPrYRkt8yu7NR8zIfqxxx6L9evX49FHH8Vtt92Gbdu24eSTTx70P6y2tjY0Nzf3eay5uRltbW1Dvs7q1avR1dWVv+3cuXPAMUIIqDmm6ERERERElVQoQDdVK0gv1OCZqtXoDdZwm6rVeBdquE3VarwLBSCmagUhrIeF9bCwHgbWw8J6WFgPA+thGS3zK/NipnaMmRD9Yx/7GM4991wsXrwYp59+Ov70pz+hs7MT999/v6Ov4/V6EYlE+tx604VAR7dme6k/EREREZFd2Wx196AczbLZ7KABuqnSQfpQDZ6pf6OnaZqjYxiu4TZVuvEequE2VbrxHioAMVU6CGE9LKyHhfUwsB4W1sPCehhYD0sp8yung3QzQBdC2L5Y/ZgJ0furra3FIYccgvfee6/g1ydPnoy9e/f2eWzv3r2YPHlyya+pC4FoTENOE/C4xuyPjoiIiIhGITWrozPpbAA7lum6PmSAbqpUkG6nwTP1b/ScGoPdhttUqcbbTsNtqlTjbScAMVUqCGE9LKyHhfUwsB4W1sPCehhYD0s58yungvTeAbrH4xlyDH3G48irj4Du7m5s3boVU6ZMKfj1448/Hk888USfxzZs2IDjjz++pNcTPQF6VhOoCyqw+fMlIiIiIhqWmtXRHtfgUqSRHsqoYTZOdjgdpBfT4PUfryRJyOVyyGazZY2h2Ibb5HTjXUzDbXK68S4mADE5HYSwHhbWw8J6GFgPC+thYT0MrIel3PmVE0F6/wDd5XLZPnfMRMHf/OY38cwzz2D79u3429/+hk9/+tNQFAXnn38+AOBLX/oSVq9enT/+61//Oh599FH85Cc/waZNm3D99dfj5ZdfxhVXXFHS63cmjAC9MazA7R4zPzYiIiIiGuXMAN2tSKgNKiM9nFHD7ltrTU4F6aU0eKbejV5HR0fJjXepDbfJqca7lIbb5FTjXUoAYnIqCGE9LKyHhfUwsB4W1sPCehhYD4tT86tygvRyAnRgDIXou3btwvnnn49DDz0Un/3sZ9HQ0IC///3vaGpqAgDs2LEDra2t+eNPOOEE3Hvvvfj1r3+Nww8/HA8++CAeeughLFy4sKTXz/UE6B4G6ERERETkkGyvAL0hokCSuBK9HOUG6eU0eCZJkqAoClwuV0mNd7kNt6ncxruchttUbuNdTgBiKjcIYT0srIeF9TCwHhbWw8J6GFgPixPzq3KD9HIDdAAo/owR8rvf/W7Irz/99NMDHjv33HNx7rnnOvL6tQEG6ERERETkHF0HYmkNXreMhogCmQG6I8ymSFVVZDIZ282aEw2eSZZl1NbWIh6Po7293Xbz7FTDbTKb5Vgs1uf+cJxouE1m493e3o5oNGo7zHAiADGZQUg0GmU9WI881sPAelhYDwvrYWA9LKXWw+n5ldfrRSaTyf9Rw04Y7kSADoyhlegjjVu4EBEREZGT1JwOV88KdAbozip2RbqTDZ6p2BVsTjfcpmJXsDnZcJuKXcHmZABiYj0srIeF9TCwHhbWw8J6GFgPS7H1qNT8qpgV6U4F6ABDdCIiIiKiESFJEupCDNArxW6QXokGz2S38a5Uw22y23hXouE22W28KxGAmFgPC+thYT0MrIeF9bCwHgbWw2K3HpWeX9kJ0p0M0AGG6EREREREI8LjkrgHeoUNF6RXssEzDdd4V7rhNg3XeFey4TYN13hXMgAxsR4W1sPCehhYDwvrYWE9DKyHZbh6VGt+NVSQ7nSADoyhPdFHmtrZjUzG+B8kKyTkdAnRv+1GzqWN8MiqQYIkA5IkA7IESBKkno/m55IkAZIMyMaqKshy36/1+tj7fPNYSYLxfLIMSZIgKRIkRYHksm6y+TmbTSIiIkcJXYfIadBzWp+P0HQIXUAIAejG5xDGzfzc+FrPx/znvY7VrWPM8/rcFzqgA0IICF03zpkAunIKtO46qEkBIVnfs5oq7qJVNLzB9kivRoNnGmxP1Wo13KbB9lStRsNtGmxP1WoEICbWw8J6WFgPA+thYT0srIeB9bD0rkdnZyd0XR+R+VWhPdIrEaADDNFtE2oWumyEtwISdChQ27uQQXaERzbBSICkyJBdLkguGZLLNSBklz0uyD43FJ8Xss8DxeeB7PcaH13KSH8HREREFaGrWWhpFVpKhZ4xPmrpDPRMFiKbg8j2hOOaBj1rhOT5mzb0fobkPBVu6IhAQIMOK0QXKueWldA/SHe73VVr8Ez9G++GhgbEYrGqNdym/o23+Xk1Gm5T/yAkEokgGo1WJQAxsR4W1sPCehhYDwvrYWE9DKyHxazHvn37oGnGIuNcLlf1+VX/ID2bzToeoAMM0WmsEYDI6dBypa3SktyKEab7PFD8Hito93sge71Qgl64wwHIbv6vQUREo4OWVpGLJ6GlMlZIns5AT6nQMuZ9lUE40TDMJiqTySCTyVS1wTOZjXd7ezva29sBAE1NTVVruE39G+9qNtwms/Hev39/1VYQ9sd6WFgPC+thYD0srIeF9TCwHhaPx4O6ujrs2bMH2Wx2xOZXXq8X6XQamUwGAOD1eh0N0AGG6DTBiKyGXDYFxFNDHqf4PXBFgnBFAnCHA3BFAnCFg3CF/dxOhoiIHKdrOnKxJHLxBHKxJLKxBHLxJHKxJHR16CvOExERERERUWUxRCcqQEsZK/syezv6PC55XPDUh+FpiMBTH4GnIQJX0D9CoyQiorFI6AK5eAJqNGbcDsSQ7ejmSnKifoQQAy5UVQ5N0/JbuJjbuaTTaXg8HkdXS+m6DiEEstmBW/MIIdDR0YFcLofa2lp0d3dj3759qKurg9vtdmwMw0kkEuju7kYoFAIAdHZ2IpfLIRgMVm0M2WwWHR0dcLlcCIVC6OzszP8sqrVohfWwsB4W1sPAelhYDwvrYWA9LObFRQHjXX+5XK4i86uh6LoOVVXzW7hks9n8nuiKMvy2zsLmNZkYohMVQag5ZNo6kGmzwnXF7zEC9cYaeFsa4KkLc7U6ERHl6ZoOdX8n0m0HoLZ3QT0Qg8hOhAuTE5XHyRBd13XkcjnIsgyXy5UP0nO5HLLZbP4xp15LCIFMJpPfHxQwvh9VVSHLMkKhEHRdh9/vh6qqSCQSVWs2ze85GAzmG8tgMJhvPp1+63MhZrPr9XrzF2QLhUJQVRWxWAwej6fi82nWw8J6WFgPA+thYT0srIeB9bD0roe5lUul5leDEUIglzPeuet2uweMQQgxbD0YohNViZZSkdrdjtTuduCfW6H4PfBOroevpRG+yfVQfNXdE4uIiEZetjuJ9J4oMnuiSO/rYGhOVIKmpiZEIpGyn8dcseb3+wesUuu9ms2pFWzm6qePf/zjqKmpKfv5iIiIiEazrq4u/OlPf4LX64Xb7a7I/KqQ3u8I6P8ugKG+1l/vi7MOhSG6TbLfCyXgBQDoOiBrEgJTJiPomQBvvRYCQsD4xoWA0AUgBKALiD739Z7jBIQwjwUgdOuYnuOF6P0cOjCOfoxaSkVyWxuS29oACfDUReBraUBgZjPctaGRHh4REVWAEAKZfR1I7diPdGs7csNce2NMkyVjItz/oyRBko2PkGRIcu/7Az83z+3zNVmGJMH4fJzLqTK03R7ApaP3u0zlCfC92+V2u8u+QJeqqujq6oLX6y140TGPxwO324329nbEYjHHLkymaRpqampQX19f9nMRERERjXYulys/d6vU/Ko3XdcRjUah6zomTZpUcM44adIkRKNRdHV1obGxcdB5pd0teBii2+QOB+AJ9+x9nRPQVB01h09BfZg/QqeInre+Qu8J2nMaRC4HPaf1fG7c8vezGnSt79dEVoOmZqGnVGgZdeRX/glAPWDsdxt7axs89WEE5kxBYOZkrlAnIhoHsrEEEttakdzWBi2RHunh9CF7XJB9Xih+D2SPC5KiQHYrkFx9b7Jr8MdklwJIMiADkiRBqtK+hhNCPAepPYqEAII1rnx47raxbyPZo6oq2tvb4Xa7h2zePB4PGhsb0d7ejmg0WpFGj4iIiGgiqeT8ygzQs9nskOG4LMtoaGhANBpFe3v7kMfawQTYpmx2HC2VHqUkWYYEAGbv6C3/Ygx6VoOWzkBPq9BSGWhpFXrPTUsbFw/V08bjIlf5GqsH4lAPxNH16hZjdfrsKfBNbYKssFEjIhorNDWL5HbjHUdqe1dVX1vyuKD4PFB8Hsg+DxQzJPd5jI9eT/6+zDB21PO4ZHSnNURjGhoiClehO8hugG5ikE5ERETkrErMr+wG6CYng3SG6DZ1JjVEwjo8bk6mxxLZrUB2B4BwYNhjNTWLXCyJXCyBbDxpfN7zUWjOBuxCF0jtakdqVztkrxuBWZMRnjcDrpDf0dchIiLnZNq7EH9nB9K79zv+e6E32eOCKxKAKxyAOxLMf+4KB4yV4TRuyDJQF1TQldLzQTqVr9gA3eRko2f3AlVERERE45mT86tiA3STU0E6Q3SbXIqE9riGxjAmxD6dE5HicUNprIG3se8FoIQQ0BJpY1uWaM/tQMyxrWL0TBbdm3eie8suBGY0I3zYLHjquHc6EdFokdrTjvjGD5DZ2+H4cyt+Dzz1EXgaInA3ROCuj8DF7b4mFLdbRqPLmGdGYxrcEsPXcpQaoJucaPSEEFBVtahziIiIiMYrJ+ZXpQboJieCdIboNtUGFWSF0eDU+LkafSKRJAmukB+ukB+BGc0AjJXkuXgiH6qnW6PlX0ROF8b2ANvb4GtpQPiwWfA11znwHRARUbGEriO5Yx/iG7cj29HtzJP2XGzaO6WuJzivgSvoc+a5aUzzuGU0hoH2uIZEZoSv5zKKJBIJ1NTUDH9gj3IDdFM5jZ6u6+jo6OBWMERERES9lDu/KidAN5UbpDNEt0mSJDSEFURjGjoSGkI+vt12IpNkCe6aENw1IQTntAAAsvEk0q1RZPZEkd7XUdZK9fSeKNJ7ovA01SB82Cz4pzZC4jsgiIgqTtc0JLbuQfc7O5DrLvOPowAUnwfeKfXwTWmAb0oDLypNgzKD9B1JrkQ3JRIJxONxhMPhYY91KkA3ldLomQ1eLpdDKMR3FRIRERH1Vs78qtwA3VQoSLeLIXoRZElCQ0TBvk4BtQoXoaSxxR0OwB0OIHzIdOiaDnV/J9J72pH8YC+0ZKak51T3dyH6zD/haYyg9qiD4W3iynQiokoQwng3UNc/t0JLpMt6LndtCIGZzfC2NMBTF+YfQck2j1tGbYALNUzBYBCxWAwAhgzSnQ7QTcU0er0bvLq6Omga31FARERE1F+p8ysnAnRT/yDd7vMyRC+SLEmoCymIJRmi0+BkRYZvcj18k+tRc8TByOw9gMT7rUjt2gdRwh9g1PYY9j32CvwzJqH2yIN5AVIiIgdl9nei89V3obbHSn4OxeeBf9ZkBGdPhqc+4uDoaKJx8yL2ecFgELIsDxmkVypAN9lp9Po3eAAYohMRERENopT5lVMBuql3kN7Z2WnrHIboJZAkCR4XV5WRPZIs5d/Gr2dzSO3Yh8S2VmT2dQBFvmM7tWMf0rvbEZo3HZHDZkH2uCszaCKiCSDXnULna+8htWNvSedLigzf1EYE50yBb0oDJO6BTOQ4MzgvFKRXOkA3DdXoFWrweFFRIiIioqEVO7+qBDNITyQS9o6vyCgmAL4zm0ohu10Izm3BpOVLMPmTJyJ06HRIruL+NxSajvjbH6DtDy+ge8suCJ3viiAiKoaezaHz9ffQ9scXSgrQFb8HNUcehCmfORmNJy+Gf2oTA3SiXp599ll84hOfQEtLCyRJwkMPPVTW84XDYUQiEcRiMcTjcQDVC9BNZqOXzWYRjUah63rVGjwiIiKi8Wg0zK9kWUZtba2tY7kSnWiEuEN+1B19KCILZ6N78050b9kFPZO1fb6WVtHxj03o3rILdccdBi+3DyAiGlZyx150vrwZWqr4laKusB/h+TMRmDMFssJ9q4kGk0gkcPjhh+PLX/4yPvOZzzjynL1XpKuqikwmU7UA3dR7xVR7ezsAIJfLMUAnIiIiKtFomF/ZvYYVQ3SiEab4PKg5fC7Ch81E4r3diG/aUdSFSLMd3dj3l5cQPmwWahbN5mpIIqICtLSKjpc2IbVjX9HneurDCB82E/7pk/hvLJENH/vYx/Cxj33M8ecNh8NQVRXptHHx32oG6CaPx4OGhoZ8k8cAnYiIiKg8Y2V+xRCdaJSQ3S6E589E6NDpSGxrReyN9+2H6bpA/K1tSO/ez1XpRET9JHfsRedLm6Gli1t97qmPoObwufC1NFRoZEQEAJlMBpmMNecx9z/vz1yBbkokEgUvNlpJuq73GV8sFhuRMJ+IiIhovBgr86vRNRoigiTLCM2dismfOAGRxXMgue1vGWCuSu96Yyv3SieiCU9Lq4g+9yaif32zqABdCXhRf8JhmHTGUgboRFWwbt061NTU5G/Tp08fcEzvPdCnTJkyYI/0aui9R2dTUxOampr67OFJRERERMUZS/OrMROir1u3DkuXLkU4HMakSZNw9tlnY/PmzUOes379ekiS1Ofm8/mqNGKi8sguBTWL5mDyWccjMGcKYPditrpA7M1t2PvoP6AeKLySi4hovEvu2Iu9j/wdyQ/sXzhUciuILJ6DyZ84AcHZLbb3xiOi8qxevRpdXV35286dO/t8vdBFRAtdbLSSCl3kqtDFsIiIiIjIntEyv0okEraOGzPbuTzzzDO4/PLLsXTpUuRyOXz3u9/FRz/6UWzcuBHBYHDQ8yKRSJ+w3amGOKcJR56HaDiugA8Nxy9A6NDp6Hp1CzJ7O2ydl98rfcEsRBZyr3Qimhi0tIrOVzYjud1+eA4JCMyegprD58IV4B/biarN6/XC6/UW/FqhAN3U+2Kjve87rVCDZ+p9MaxoNIqGBr57hYiIiGg4xc6vKrW1SzweH38h+qOPPtrn/vr16zFp0iS88sorOOWUUwY9T5IkTJ482dGxJFIasgzRqcq89RFMWr7E2Nv3lXdt7Zcuelalp3btR/3xC+Cpq+6+oURE1ZTcuQ+dL22ClrK/dYunIYLaY+bxWhI0agjBOaYpm80ikUgUDNBNlQ7Sh2rwTP0bvUiE/54QERERDaaU+VUlgvR4PI5YLDbk4uzexuzS1K6uLgBAfX39kMd1d3dj5syZmD59Oj71qU/h7bffHvL4TCaDWCzW59ZbPKmhO63DrfAt3jQyAjOaMfnM44wtXmzKdnRj36P/QNeb73OvdCIad7RMFtHn30L02TdsB+iSIqPm8LmY9NGjGaDTqKELgc6ENtLDKFt3dzdef/11vP766wCAbdu24fXXX8eOHTuKep7Ozs4hA3RTpbZ2sdPgmXq/9bijo4N/DCEiIiIqoNT5ldNbu5gBeiQSGd8huq7ruPLKK3HiiSdi4cKFgx536KGH4o477sDDDz+Mu+++G7qu44QTTsCuXbsGPWeoCxvFkxpiKR0hnwwXQ3QaQbLHjYbjF6Dx1MOh+Af/B6c3oQvE3ngf+/7yEtSO7gqPkIioOpK79mPvIy8gub3N9jme+giazziGW13RqKILgWhMGxdbBr788ss48sgjceSRRwIAVq1ahSOPPBLXXnttUc/jcrlsrzpyOkgvpsEzmY1eLpeDqtp/RwwRERHRRFDO/MrJIL13gF7MuxjHzHYuvV1++eV466238Nxzzw153PHHH4/jjz8+f/+EE07A/Pnz8atf/Qo33HBDwXNWr16NVatW5e/HYjFMnz4dibQGIeuI+GV4PTLSKlfz0sjzT22C56xadL68Gclt9gIk9UAc+/7yD0QWzkb4sJkMkIhoTNLUbFH/9gHG6nP+20ejkRmgZzWB2oAy0sMp26mnnurISuza2tqi3rbr1NYupTR4Jo/Hg7q6Ott7axIRERFNBOXOr5za2qXUAB0YgyH6FVdcgT/+8Y949tlnMW3atKLOdbvdOPLII/Hee+8NesxgFzZKpHVMbpARDihQc2N/hRCNH4rHjYYTFsI/oxmd/3jH1lYGQtPR9c+tSO3ch7rjF8BTG6rCSImInJHavR8dL9r7987kqQ+j7rgF8NTx3zsaXYQQiMZ0ZDWBxrCCVJp/4DFJUvHv/Cw3SC+nwTO53e6SziMiIiIaj5yYXzkRpJcToANjaDsXIQSuuOIK/P73v8eTTz6J2bNnF/0cmqbhzTffxJQp9veSNgV9RoBONFoFpjWh+azjEZht/0K66oE49j36D8Te2sa90olo1NPVLKJ/ewvtT//T/t7nsoSaxXMw6fSlDNBp1BEC6OjW8gG6xz1mpuajWqlbuzjR4JmcvvAVERER0Vjk5PyqnK1dyg3QgTG0Ev3yyy/Hvffei4cffhjhcBhtbcbbt2tqauD3+wEAX/rSlzB16lSsW7cOALB27Vocd9xxOOigg9DZ2YmbbroJH3zwAf7t3/6t6NcP+hig0+iXX5U+vRmdLxW7Kn0/6o8/DG6uSieiUaiU1efuuhDqj18AT11pkySiSlNzAjlNYFKNiwG6w4pdke5kg0dERERElZlflbIi3YkAHRhDIfptt90GwNhjsbc777wTK1asAADs2LGjzw+uo6MDF110Edra2lBXV4clS5bgb3/7Gw477LBqDZtoRASmN8E7qWevdJsX21MPxLD3Ue6VTkSji65m0fHKu0i+32r7HEmWEF44C5EFvHAojW5CCNQFuQK9UuwG6QzQiYiIiJxVyflVMUG6UwE6MIZCdDsXJ3r66af73L/55ptx8803V2hERKOb4nWj4cSF8M+YhM5/bIKWLmJV+q6eVek1XJVORCMntafdWH2ezNg+x10XQv1xh8FTH6ngyIic4XHJcDNAr6jhgnQG6ERERETOqsb8yk6Q7mSADoyhEJ2IShOYPgneplp0vrIZye17bZ2jRmPY++d/ILJ4DsLzZnAlJxFVla5m0fHqFiS37rF/kiwhsmAWIgu5+pzGDv6nWh2DBekM0ImIiIicVc351VBButMBOsAQnWhCUHweNJy4CP7pk9D50mb7q9Jfew+pnftQfxxXpRNRdZS0+rw2hLrjD4OXq8+JaBD9g/RgMMgAnYiIiMghuVwOQoiqz68KBemJRMLxAB1giE40oQRmNMM7qQ4dL21Casc+W+eo7b1Xpc+EJEsVHiURTUS6mkXnq1uQKHL1efgwY/W5rHBJLxENrXeQHovFIEkSA3QiIiIiB2SzWezbtw+KolR9ftU7SG9tNa6l5XSADjBEJ5pwFJ8HjScvRnLHXnS+tAlaOjvsOdaq9J690iPBKoyUiCaK9J4oDvzjHWiJtO1z3LVB1B2/gKvPiagowWAwvxrd6/UyQCciIiJy0EjNrzweD7xeL9Jpo6cMBp3Prbhsi2iCCsxoRvOZx8M/Y5Ltc9T2Luz904uIbdwOoesVHB0RTQS6msWBFzdi/1Ov2Q/QZSC8YBYmnXEsA3QiKoq5R6ckSfD5fEin04jH4yM9LCIiIqIxT5KkfIg9EvOreDyOdDoNn88HSZIQjUahO5xbcSU60QSWX5X+QRs6Xt4MvYhV6cltrag98hD4WhqqMFIiGk+EriOxdQ9ib7xv6xoNJndN0Nj7vKGmgqMjovGo0EWuzAtOAXD87b5EREREE4nH40EgEEAmk6n6/Kr/RURVVS14sdFyMUQnIgRmToanuR6d/3gHqZ37bZ2T7Uxg/1OvwdfSiNqjDoa7hlu8ENHw0q1RdL66BdnObvsnyUB4/ixEFs2GrCiVGxwRjUuFAnRg4MVGGaQTERERlcYMqqs9v+ofoAOFLzbqRJDOEJ2IAAAunweNpxyOxPY2dL68GXpm+FXpAJDe0462tihCB01DZNFsKD7uLUpEA2W7Euh8bQvSu9uLOs9VE0T9cYfB28jV5zT+5DQx0kMY9wYL0E0M0omIiIicVa35VaEA3VSJIJ0hOhH1EZw1Gd7mOnS+tMn2qnToAt3v7kRyeysiC2cjeMh0yAovuUBEgJZWEXtrG7q37AL0IgJDrj6nCSCrCSRSGjxhTskrYbgA3cQgnYiIiMhZlZ5fDRWgm5wO0jljt0kIrhSiicPl95a0Kl1Xc+h8dQvi73yA0LwZCB08DbKb/8wQTUS5RBrxTR8gsXUPRFYr6lyuPqeJwq1I6E7rcCkawgH+schJdgN0E4N0IiIiImdVan5lJ0A3ORmkM92yqTOhIRIWkCVppIdCVDUlrUoHoKVUdL32HuJvb0fwkGkIHToDLm7zQjQhZLu6Edv4AVLb2yCKWXkOGKvP581EZPEcrj6nCcGlSAj5ZMRSOgAwSHdIsQG6iUE6ERERkbOcnl8VE6CbnArSGaLblNMEojENDRE2NzSxmKvSkzv3oeu1LcjFU7bP1dUc4m9tR/c7OxCc24LQ/Jlwh/wVHC0RjZRMexfib29Havd+oIQ3b3kn1aJmySHw1kecHxzRKBb0K3Apej5Ip/KUGqCbnGr0crlcSecRERERjTdOza9KCdBNTgTpDNFtqg0oUHuC9EiAez3TxBOYPgm+lkZ0v7sTsbe2Qaj2m0Oh6eh+dxe639sF/9QmBGZPgX9qIyQHro5MRCNHV7NI7tiHxPt7oO7vKuk5XGE/ao44CIEZzQ6PjmjsMFegx1I6JL247Y/Gs2zW3nZypnIDdFO5jV4ikSh67ERERETjWbnzq3ICdFO5QTpDdJvcbhkRn4L2uIaObg1+D8M/mnhkRUZk/kwEZ09B7M330f3eLqCYhXM6kNq5H6md+yH73AjMmIzAnMnwNnDfY6KxQug60q0HkNzWitSu/RBaaatnJY8LkQWzEDp0Bi9ETAQrSG+LckW6qbOzE5FIxFYY7lSAbiq10YvH4+ju7kYwGCzr9YmIiIjGm3LmV+UG6KZCQbpdDNGL4HHLaAwD+7pyUHO80ChNXIrPg7ql8xA6ZBo6X92C9J5o0c+hp7Pofncnut/dCVdNEME5UxCY0QwXt3shGpUyB2JIbW9DcnsbtJRa+hPJQOigaYgsmgOF10og6iMcUBBP8I9KJpfLhfb29mFDcacDdFOxjZ7Z4IVCISi8rgMRERHRAKXOr5wI0E39g3S3223rPIboRfK4ZdQFFSQyXCVE5K4JoelDRyK9J4qut94veTuHXFcCXa+9h67X3oMrEoCvpQG+KQ3wTqqD7GITSjQStLSKdNsBpFujyLRGywvOAUAG/NOaUbN4Ntw1IWcGSTQOBX38vWeqra1FNpsdMkivVIBustvo9W7wvF4v0um0o+MgIiIiGi9KmV85fcH33kF6IpGwdQ5D9BK43TI83K6SKM/X0gBfSwPS+zoQ3/gB0nvaS7qwIADkYkl0x5Lo3rQTkiLDM6kW/imN8E6ug7smyH3UiSpEz2nIdsSQbjWCczUaK/n/494kRUZwzhSE5s2EOxIo/wmJaMKQJAkNDQ2IRqMFg/RKB+im4Rq9/g2eqpb5R0ciIiKica7Y+VUlmEH6jh07bB3PEL1EzPGIBvJNqoNvUh3Uzm7EN25H8oO9gF56Cic0HZnWA8i0HgAASC4Znrow3A018DRE4KmPMJQjKoHQdWQ7u6EeiEONdkGNxpDtSpT1/2t/kltB6JBpCB06Ay6/17HnJaKJRZblgkF6tQJ002CNXjUaPCIiIqLxaDTMrzweD2pra20dyxCdiBznqQ2h4YSFqFk8F/FNO5DYuhsiV/4WSCKnI7O/C5le28bIXjfcdSG4I0G4wgG4Ij23gB+SLJX9mkRjma5p0OIpZONJ5OJJZGNJ5LoSyHbES74g6HAUvweheTMQOmgqZI+9veWIiIbSP0hvaGhALBarWoBu6t/omZ8zQCciIiIqzWiYX3FPdCIaca6QH3VHH4qaxXOQ3LEPyW2tyOzvdGSLCJOeySLT1oFMW0efxyVFhhLywx0OQPF7IPuMm+L3QvF5IPs9ULxeyG7uPUtjk65moaVUaGkVejoDLa1CS6nQ0yq0VAa5WAK5RNrR/98GIykyfFMbEJjdAn9LA7ddIiLHmUF6e3s72tvbAQBNTU1VC9BN/Rs9BuhERERE5Rkr8yuG6ERUcbLHjdBBUxE6aCqy3Ukkt7Uiua0NuXiqYq8pNB25rgRyXUNfIEJyK0ao7vNA6bnJfg8UnxeS2wXZrUByGTfZpUByuXruy5AVBvBUHj2nQfTcCn2uZ3pCcjMcT5uhuVqxleTF8DRGEJg9BYGZk6F4ueqciIiIiIiIxieG6ERUVe5QADWL5qJm0Vyk93Ugua0V6V37oaWzIzIekdWQy6aAUgJ9WeoVrlsfJZcCSZIAWQIkydhWRpIAWYYkoedrsvE1CT2P9z5OgiTJgIye8+WecwBIsnVczzn51wK3rxmeAHQBIQSELgBdB4SAEAB0HUII475ufDSPHfix51gdgNCt5ytwvq7r+XC8f0hejVXiTnOF/fDPaEZwzhS4I8GRHg4RTRDmHui5XA6NjY2IxWIFLzZaab336AQGvxgWEREREdkzVuZXDNGJaMSYFyIVxwioB2LItB5Aak871GiXEU6OdrqAUHPQ1NxIj4SoYiS3Au+kOvimNMA3pYEX8yWiqit0EdFCFxuttMEucjVaGz0iIiKi0W40zK+yWXuLOhmil0gfCwEf0RghSRK8DTXwNtQgsnA2dDWLdNsBpPdEkW47AC2RHukhEk0cEuCuCRqheUsDPE213LqIiEZMoQAdGHix0UoH6YM1eP338GSQTkRERGTPaJhfqaqKzs5OW8cyRC9BNqtDzTFFJ6oU2eNGYEYzAjOaAQC5VBpqNA41GoMa7UL2QBx6ZmS2fyEab5SgD576MDyNNfDUR+CpD0P2cH9zIhp5QoiCAbqpWkH6YA2eqX+j5/V6HR8DERER0XhS7PyqEkG6qqpob2+Hy2UvHmeIXiQ1q6MjocHrlkd6KEQThsvvg2uaD4FpTfnHsvEk1GgM2c5u5GIJ5GJJ5LpTo+Jii0SjkeRW4A4H4IoE4YoE4KkPw10fgcvPsIdoNEmktZEewqjR2dkJj8czZDhe6SB9uAbP1LvRCwQCUPgOHiIiIqKCSplf9b7vBDNAd7vdCATsbVk65kL0X/7yl7jpppvQ1taGww8/HD//+c9xzDHHDHr8Aw88gO9973vYvn07Dj74YNx44434+Mc/XtJrq1kd7XENLkWCx8UL+BGNJHc4AHe47z90QhfIJdNGqB5PIhdLQUuloaVV6GkVWlqFyDKcoPFJ9rgg+71QfB4ofg8Uv9cIzMMBuCIBhuVEY0A8qSGR5h+DTblcDi0tLcOG4pUK0u02eCbzmM7OTgSDvPAyERERUX+lzq+cDNJ7B+gNDQ2Ix+O2zhtTIfp9992HVatW4fbbb8exxx6LW265Baeffjo2b96MSZMmDTj+b3/7G84//3ysW7cOZ511Fu69916cffbZePXVV7Fw4cKiXjub1ZHIanArEiIBGZmscOrbIiKHSLIEd8gPd8g/6DF6ToOWzkBPGaG6lspAz6i97vcE7hkVIqcB/F+dRooEyG4XZJ8RiMvennDc5+l5rOejzwvZ54Gs8B1SRGNZPKkhltIR9PH/ZVNtba3tMNzpIL3YBs8UDoeRy+WgqmrJr01EREQ0HpUzvwKcCdL7B+iybH/uXXSIfsEFF+DCCy/EKaecUuypZfvpT3+Kiy66CCtXrgQA3H777XjkkUdwxx134Kqrrhpw/M9+9jOcccYZ+Na3vgUAuOGGG7Bhwwb84he/wO23317Ua3cmNdSEJTREFOQ0gMka0dgkuxTIoQAQGv7tOkIIiJwOPZeD0DSIrAaR0yA0Dbr5ec9N7/25phtXHxYCQheAEIAujOfL39chBHoeN48FIHTrmJ7jhej9HDrARYrOkyVIkjTwoyRBko2PkGRIcu/7Az83z+39NUmWIbkUSC4Fcs/H3jd5kK/JLm4FQDRRmAF6xC9D15z7f//DH/4wli1bhuuuu67P4x0dHTjnnHPw5JNPOvZaleB2F3d9BqeC9FIbPFMwGDR+dxMRERERgPLnV04E6eUE6EAJIXpXVxeWL1+OmTNnYuXKlbjgggswderUYp+maKqq4pVXXsHq1avzj8myjOXLl+OFF14oeM4LL7yAVatW9Xns9NNPx0MPPTTo62QyGWQymfx9szguxQjQZUkCA3SiiUGSJEhuBbJ79IWZQteNBt0M2XXBf5lskAAr+O4JvaUif3ESETkpkdKQVAUifhnhgIIue+8mteXpp5/Gm2++iddeew333HNPfosRVVXxzDPPOPdCo0i5QXq5DZ7J7gWqxqN/XnZz1V7r8Fu/UbXXIiKisalav5f4O2lwTs2vygnSyw3QgRJC9Iceegj79+/HXXfdhf/5n//Bddddh+XLl+PCCy/Epz71qaJXjNjV3t4OTdPQ3Nzc5/Hm5mZs2rSp4DltbW0Fj29raxv0ddatW4c1a9YMeLw2aAboRDSR6ZoGkdMhcjlj1XnWWJne53NNN0Jt3fgI0W8Veq/P8wG4rgMCPR8LrFwv8LnoWdFuPA+Mr9HQJAmShJ7V4vLA1eN9PpchyeizCt0K3vsG8b3Pl2S5J63v+VyWICsKJHfPKvOezwesQGeYTzTh5DSBRFpHbVBBOFCZP9g+/vjj+MpXvoLjjjsOf/jDHzBr1qyKvM5oUmqQ7lSDR0REREQGp+dXpQTpTgToQIl7ojc1NWHVqlVYtWoVXn31Vdx555344he/iFAohC984Qu47LLLcPDBB5c0oJG2evXqPqvXY7EYpk+fboQkRDRu6Jpm7YPec+FRvWePdC2tQs9kIbI5Y5uWbA66pht7pOsMqqkyJEU2bm4XJKUnXPcovfZA90LxeiDn90I3bgzficaurCYQ8skVC9ABYMqUKXjmmWewcuVKLF26FA888ADmz59fsdcbLYoN0hmgExERETmrUvOrYoJ0pwJ0oMwLi7a2tmLDhg3YsGEDFEXBxz/+cbz55ps47LDD8KMf/Qjf+IZzb2VobGyEoijYu3dvn8f37t2LyZMnFzxn8uTJRR0PAF6vF16vt/wBE9GIyaVV5GIJaPGUEYqnVONiomkrNBdqbqSHSdSH0HTjXQzF/LcpAbLXnQ/XzYuMKn4PlIAPrrAf7kgQsnvibitANJq5FQlBf+UCdHMRiNfrxb333ovvf//7OOOMM/Cd73ynYq/pKJEF9NIv0CkDaKgLI3qgE+3t+9BYXwePZ+C7ZuPxBGLxbkTCIYSD3rJeE4AxbqEB2S5AnXgLcRQlWb0XUzuq91pERDQmVe330kT+nZTtMuY+Ipu/hpvj86t+jOcMINbVCeg5hMPBAceoahbtBzrgdrnQUBeGjFzha8yJrK3XLLqrzmaz+L//+z/ceeedeOyxx7B48WJceeWV+PznP49IJAIA+P3vf48vf/nLjoboHo8HS5YswRNPPIGzzz4bAKDrOp544glcccUVBc85/vjj8cQTT+DKK6/MP7ZhwwYcf/zxjo2LiEaGEAK5eBLZzm7kYklkYwnk4knkYknoDMhpohCAns5CT2eBrsSghyl+D1yRIFxhP1yRINyRANx1YbgCvioOloj6cymVDVj7X9zymmuuwfz583HBBRdU9HUdk24H3IP/22aHDKAhIBCNaWjf34rGsAKP21qB1PuirmFXDEjFyhw0gJwAVB3Y82cgPvH+iFnT+M/qvdiOB6r3WkRENCZV7ffSRP6dFM/1/BFBBnJSZeZXBYRdALwaYl1RQO3o8+5ONaujPa7BrUhoCOQgZ/YO/kTplK3XK3pWN2XKFOi6jvPPPx//+Mc/cMQRRww45kMf+hBqa2uLfephrVq1ChdccAGOPvpoHHPMMbjllluQSCSwcuVKAMCXvvQlTJ06FevWrQMAfP3rX8eyZcvwk5/8BGeeeSZ+97vf4eWXX8avf/1rx8dGRJWVS6ShRrugHohDjXYheyDOsJzIJi2lQkupyOztuzpC8XvgaaiBpyECT0ME7oYIlAKrNIlobNq2bRuampr6PHbOOedg3rx5ePnll0doVNUnSxIaIooRpMc1NIYBj1vu2+BVcEsdIiIiovFON1egV3l+Zb5GLKXn7/cJ0CPOXeOy6BD95ptvxrnnngufb/DVa7W1tdi2bVtZAyvkc5/7HPbv349rr70WbW1tOOKII/Doo4/mLx66Y8eOPnvbnHDCCbj33ntxzTXX4Lvf/S4OPvhgPPTQQ1i4cKHjYyMiZ2W7U0jvaUem7QDU9i5oKWff+kNERrie2rUfqV3784+5wn54Gmvga2mEb3I9FN/wF+MjotFp5syZBR9fsGABFixYUOXRjKz+QbrXpSOdFQzQiYiIiByg5nSo3TqyGqo+v+odpKs5gUxOOB6gAyWE6F/84hcde/FSXHHFFYNu3/L0008PeOzcc8/FueeeW+FREVG59JyGzN4OpFujSLe2Ixez93YaInJWLp5CLp5CclsbIAGe+gh8Uxrga2mApyHCC5kS0ZhlBumtB3JIZwV8bokBOhEREZEDBAA1KxDwjswChXBAgZoTSGeN7QydDtCBMi8sSkRUDk3NIvXBXiR37IO6v9O4qOJYJgGSS4GsKIAsAZIEyfwoSYBsfTS+JhvnyBIgydaxPR/NzyXJ+DrknovEyXLP1wBJkq3nG+nvfwwQACAEoAsIoUPootd94yOEgOh/X+iA3rO/sHmeeUyv8wc+n248ntXG5n/fAlCjMajRGGJvbYPsccE7uQGBmZPgm9oEWWGgTkSF/fKXv8RNN92EtrY2HH744fj5z3+OY445prgn8TUC/oij40rEE4DcDQDICAmqUvhio2XJZgGoQMvHgLpaZ597DOhq3z/8QQ6ZPoOLpYiIaGjV+r00oX8ndXQCyu8BTUVGKJWZXw1DVbPIiA5ANkL0hBYqeLHRgrL29mxniE5EVSV0Hak9USS3tSK9u33UBIuSIkP2eaD4PVB8Hsg+D2SPG7JLgeRSILkVSIrxuZz/3AXJLUNyuSArCiSXbITcRAUIXUBoGvRcDiKrQ+Ryxv2sBpEzbnrO+lzkNGiZLPS0Cj2tQktloGWyRrA/QnQ1h9SOvUjt2AvZ60ZgxiQE5rTA21gzYmMiotHnvvvuw6pVq3D77bfj2GOPxS233ILTTz8dmzdvxqRJk+w/keQGZOe2lIrH44h1JxGpqUUwGEQ0GkX7gS40NjbC43Fw6yoJgKQB7hrAU+fc844Rmhao3otNwJ8vEREVp2q/lyby7yS3gNvjRW1dPWKxWGXmV0NQVRXtB7rgdnvR0NCARCKBWCwGyC6Ew+Hhn0CyF/gzRCeiqsgciCG5rRWp7Xuhpau0v7kEKAGfEYx7PZD9Hsg+L5SesFz2GYG50hOYE1WSJEuQZBdktwvwl/YcQgjoPcG61nPTUyq0TAZaSrUC92QaWjrr7DfQj57JonvLbnRv2Q1XJIDg7CkIzJ4CV3Dwa6YQ0cTw05/+FBdddBFWrlwJALj99tvxyCOP4I477sBVV101ImOKx+OIxWKIRCL5ZqqhocEI0tvbq9roEREREY03LpcLkiRVfX6lqira29vhdrvR0NAAWZbzc71YzFhhbitIt4EhOhFVjNB1JLe1Ib55B7Id3RV7HdnjgisShCvshzsShCsSgCts3GQX9zql8UOSpPwffob7s4+uZpGNJZGLJ5CNpZDr+TwXSzr+DpBcLImuf25F1xtb4W2uR+SwmfBNaXD0NYjGI310vBnLUaqq4pVXXsHq1avzj8myjOXLl+OFF14oeE4mk0Emk8nfNxsepxQK0M1xMUgnIiIick4151eFAnRTJYJ0huhE5Dg9qyHx3m7EN++Alkg7+tySW4GnPgJPfRiehgjcDTVwh0pc1ks0jskeN7yNNQO2WhG6jmxXEuqBLmR79jvPdnYb+7mXSwCZtgPY33YAnvowwofNhH96s7HPPxENoOZ0uLOAZxz9wbe9vR2apqG5ubnP483Nzdi0aVPBc9atW4c1a9YMeHxLawc8XeW9e03WVCiaCk3xINqRBjoKzEuEgCuXRdeO3ci5/BByefWQdA2y0HDtg3+D5pqAc5SjF1fvte54onqvRUREY1O1fi9N4N9JSi6F2mgcupS05lEOz6/6k3QNrlwKQpKRy7rQmooWPE7WgNjedmjtMehK4TBfTSZsvSZDdCJyjJZW0f3uTnS/uwt6xpmtJBSfB94p9fA118PTGIErHGQgR1QGSZbhqQvBUxcC5k4FAOiahmxHN9RoFzKtB5De1wGR1cp6HfVAHNHn3oIrshXh+TMRmD3FuOguEeVJkoSOhAa3S4LHPXEv1Lt69WqsWrUqfz8Wi2H69OllP2/vAH2wpgkAIEnIufxw5VJw5VIVafSIiIiIJpQKzq/6BOguPzDEtenMOaCiqX3ul4Ihuk2JtIYaZ7bQIRp3cok04u98gMTW3RC5Mt+bLkvwNtbAN6UB3pYGeOrCvFgnUYXJipJftR4+dAZ0TYe6vxPpPe1It0aR7bT3l/lCcrEUOl7chNgb7yM0bwZCB08z9oUnInhcEjRdQntcQ2MY4yJIb2xshKIo2Lt3b5/H9+7di8mTJxc8x+v1wuv1OjoO2wG6iUE6ERERkbMqML8qJkA3ORWks4u1KZHWEU9qCAc4mSYy6dkcYhu3o/udHWXtsSwpMnxTmxCYOQm+yfW8yCfRCJMVGb7J9fBNrgcA5JJppPdEkdzehsy+DqCEnV+0lIqu195D96YdiCyei+CcFr6rhCY8SQLqQgpiST0fpI91Ho8HS5YswRNPPIGzzz4bAKDrOp544glcccUVVRlD0QG6yclGTziwRRYRERHRWOfg/KqUAN3kRJDOEN2moE9GLGWEhF7P2F8lRFQOoQsk3t+D2BtboaVK36vU01SD4JwpCMxoZnBONIq5Aj6EDpqK0EFTkUukkNzWhsS2VuRiyaKfS0up6HjxHXS/uxO1Rx2SD+qJJipJktAQURCNaWiPa/Bg7F9tdNWqVbjgggtw9NFH45hjjsEtt9yCRCKBlStXFvlMxQfRJQfoJicaPaFDEuVtiUVEREQ0bjgwvyonQDeVG6QzRLcp6FMgK0aQHtAEFIWr52hiSrcdQOer7yLb0V3S+a6QD4HZUxCYNQXuSMDh0RFRpbmCfkQWzkZk4Wxk2ruQfH8Pkh/sha7minqebEc39j/xKvzTGlFz5MFwR4IVGjHR6Cf3CtI742M/fP3c5z6H/fv349prr0VbWxuOOOIIPProowMuNjocJZcBRNB2k1R2gG4qo9EzGrw0hMw2i4iIiCiv7PlVeQG6qZwgnbO7IphbuXQmNAR9XI1OE0s2lkDXa+8htWt/Sed7GmsQPmwW/NMaucc50Thh7qNes+QQJLbuQfc7HyDXnS7qOVK72pHeE0XwkGmILJoDhe9KoQnKDNITyfHxO/KKK64oe/sWSej5Jmu4ZsmxAD3/4sU3er0bPO6nTkRERNRPmfOrcgN0U/8g3S6G6EUKBxTkNAFV4z6HNDEIXUfs7e2Iv729pH3PfS0NCB82C77mugqMjohGA1lRED5kOkIHTUVyxz7EN24v6t0qQhfo3rQTye1tqF1yKIKzCl98kGi8kyUJtUGGr6acywevjSDd8QDdVESj17vB0xQPZDH2t+UhIiIiclyJ8yunAnRT7yBd0u29q5ohegmCfgUiNfbfaks0HLWjGx1/fxvqgXhxJ8pAYEYzwofNgqduHFwljYhskWQZwVmTEZw1Gak97Yi/vR2ZfZ22z9fTWRx4/i2kdu5F3dL5UHwOhmFEYwTfrdWLJCPn8vVpsvo3TxUL0PNjGL7R69/gSQzQiYiIiAZXwvzKyQDdZAXpKVvHM0QvkYt7otM4JnQd8Y0fIPbWtuJWn0tAYOZkRA6fA3eI+50TTWT+lkb4WxqR2d+Jzte2QN3fZfvc1I79yOzrRN3RhyIwk6vSiSYyISsDmiyziap4gG4aotEr2ODxDatEREREQyt2flUhuuKBptjbUpQhOhH1oXZ2o+OF4lefe5pqUHvUIfA21lRoZEQ0FnmbatH80aVI7tiLrte22N4zXU9nEX3uLSR37EPd0nlclU40gRUK0mU9W50A3VSg0QNQtQaPiIiIaNwZJfMrITNEJ6IilLr63BXyoeaIg7halIiGFJjRDN/URnRv3mn8O5O1ty1aasc+qPs6ULt0HgIzmis8SiIarXoH6e5sAgCqF6Cb+jV6ABigExEREZVjDM2vGKITEbKd3TjwwkaoB2K2z5HcCiILZiE0bwZkhRdBI6LhyYqCyGGzEJjTgvgbW9G9dTdg4292WjqL6F/fRHLGPtQtPZSr0okmKCEr0GUFsm78EU63uWrIUZIETfHAlTPeVaMpnlHX4BERERGNKWNkfsUQnWgCK3X1eWBWM2qOOgQuv7eCoyOi8crl86DumPkIHjwdHf/YCLXd3h/wUjv29qxKP5Sr0okmIFlTIetaPkgf7GKjlWTs0ZmGkGQAgCuXLngxLCIiIiKyZ6zMrxiiE01Q2a6e1edR+6vPFZ8HtcfMQ2D6pAqOjIgmCk9dCJNOOxrxdz5A7E17f8zT0iqif30TqVn7ULuEq9KJJor+FxHVe0L0agbpAy5yBRS8GBYRERER2TM65lf2rgrPEL1Ewt7Pl2jUEbqO+KYdiL3xftGrzxlYEZHTJFlGZMFs+Kc2FbWtVHL7XmT29uyVzj/sEY1r/QN0oPDFRisZpA9o8Hpeq/8YGKQTERER2TMq5ldCQMllbB0qV24U45cQAmqOKTqNPdmubuzb8DK6XnvPdoCu+DxoOHkRGk5cxACdiCrGXRvCpNOPRs3hcyEp9qYnWkpF9Nk3EH3+TWiZbIVHSEQjoVCAbjKDdEnoxoWoKrTKZbAGz/iicTEsIclw5VKQdHsXTSYiIiKayEbF/EoI4/mFvXyMK9GLpAuBjm4N8ujb355oUKWuPvfPmIS6pfMYnhNRVUiyjMjC2fBNa0LHC29DPRC3dZ61Kn0+AtObKjxKosrKZu3/nh7vJD0LRRMFA3RTpVekD9ng5Q+S+o5B4TVjiIiIiAZT0vzK6RXpvQL0nMtn6xSuRC+CLgSiMQ05TcDj4o+OxoZsLIF9G14pcvW5Gw0nL0LjyYsZoBNR1XlqQ5h0+tISVqX/E9Hn3+KqdBqz1KyOziRXMpsULTtkgG6q1Ip0Ww1e/uDeK6bS3PuRiIiIqIDS51cOrkjvE6D7Aclez8mV6DaJngA9qwnUBRVonBfTKCd0gfimD7j6nIjGpPyq9KlN6Ph7MavS25DZewC1x8xHYBpXpdPYoWZ1tMc1uBS+3dGkKW7IwwToJqdXpBfV4OVP6lkxlU1CEvxjCBEREVFvZc2vnFqR3i9AL+a5uJzaps6EEaA3hhW43fyx0eiWjSWw7/Hi9j6XfW40nLSQq8+JaFTx1PWsSl88B5LNvdS0lIroM/9E9G9vQVO5Kp1GPzNAdysSaoO8MKVJyO4ij3dmRXpJDV7+ZAmaywuAfwwhIiIiMpU7v3JkRXoZATrAlei25TSBlrACj1vmRUVp1BK6QPfmHej659biVp9Pb0LtMfPhYnhORKOQJMuILJpj7JX+9432V6Vva0Om7QDqjp0P/1SuSqfRKZvV0ZXS4VYkNEQUxLsZvpaj3BXpZTV41rM4u2cnERER0RjmyPyq3BXpZQbowBhZib59+3ZceOGFmD17Nvx+P+bOnYvrrrsOqqoOed6pp54KSZL63C655JKSxlAbMAJ0otHKXH3e+eoW+6vPvW7Un7gQjacczgCdiEY9T10Yk05fisji2UWtSm9/+p+IvvA2dK5Kp1FG14GOhJYP0GUHL4g5kZW6It2ZAJ2IiIiITI7Or0pdke5AgA6MkZXomzZtgq7r+NWvfoWDDjoIb731Fi666CIkEgn8+Mc/HvLciy66CGvXrs3fDwQCJY2BW7jQaCV0ge53d6LrdftbtwA9q8+XzoPL763g6IiInCXJMmoWzYV/2iQceOFtZDu6bZ2XfL/VWpXe0ljhURLZo+Z0uBigV0SxK9IZoBMRERE5qyLzq2JXpDsUoANjJEQ/44wzcMYZZ+Tvz5kzB5s3b8Ztt902bIgeCAQwefJk26+VyWSQyWTy92OxWPEDJqqSbDyJjr9vRGZfp+1zZK8btUcfiuAs+/9fEBGNNp66MJrPOAaxt7Yh/vZ2CH34laZaMoP2p15HYG4L6o46GLKnuP2WiZwmSRLqgjID9AqxG6QzQCciIiJyVkXnV3aDdAcDdGCMbOdSSFdXF+rr64c97p577kFjYyMWLlyI1atXI5lMDnn8unXrUFNTk79Nnz7dqSETOUYIgfjmHdj7p78XFaD7pzWh+czjGKAT0bggyTJqFs9F0+lL4a4L2T4vuXUP2h75O1J72is4OqLheVzGdoNUOcNt7cIAnYiIiMhZVZlfDbe1i8MBOjBGVqL399577+HnP//5sKvQP//5z2PmzJloaWnBG2+8ge985zvYvHkz/vd//3fQc1avXo1Vq1bl78diMQbpNKpkYwl0/GMTMns7bJ8je92oXXIIgrOnVHBkREQjw1sfMValv7kNsY3bgSJWpQfntqDmqIOhcFU6jQDmtdUx2Ip0BuhEREREzqrq/GqwFekVCNCBEQ7Rr7rqKtx4441DHvPOO+9g3rx5+fu7d+/GGWecgXPPPRcXXXTRkOdefPHF+c8XLVqEKVOm4CMf+Qi2bt2KuXPnFjzH6/XC6+Ue0TT6aGoWsTffR+LdXba2LTD5pzWi9pj53PuciMY1SZZRc/hc+KY3oeOFjch22tsrPbF1D1K79iOyaDZCB0+DJI/ZN+kR0RD6B+ma4oErl2aATkREROQASdcAGXBpanXnVwOCdB8UTXU8QAdGOET/93//d6xYsWLIY+bMmZP/fM+ePfjQhz6EE044Ab/+9a+Lfr1jjz0WgLGSfbAQnWi0EbqO7i27EHtzG/RM1vZ5sseF2qMPQXB2SwVHR0Q0unjrI5hk7pVuc1W6nsmi8+V30f3uLtQedTD8U5sqP1Aiqrq+QToDdCIiIiLnCLhymfx8q6rzqz5BehoAHA/QgREO0ZuamtDUZK9R3b17Nz70oQ9hyZIluPPOOyGXsFLs9ddfBwBMmcItLWhsSO3ej85XtyAXG3ov//78UxtRe+w8uPy+Co2MiGj0khUZtYfPhX96EzpeeBvZzoSt83KxJNqf/ie8k+tRe9TB8NSFKzxSIiIiIiIiGgvGxHuWd+/ejVNPPRUzZszAj3/8Y+zfvx9tbW1oa2vrc8y8efPwj3/8AwCwdetW3HDDDXjllVewfft2/N///R++9KUv4ZRTTsHixYtH6lshskU9EMO+J15F+9P/LCpAlz0u1B9/GBpPPYIBOhFNeMaq9GMRXjCrqBlPpu0A9v75RRx4cSNyyXTFxkdE1dV3j07foBcbJSIiIqJiSci5vCMzv+qzB7pv8IuNlmlMXFh0w4YNeO+99/Dee+9h2rRpfb4meoqSzWaxefNmJJNG4OjxePD444/jlltuQSKRwPTp03HOOefgmmuuqfr4iexK7z2A+MYPkN4TLfpcX0sj6o6dB1eA4TkRkUlWZNQecRD805pw4O8bkeuytyodAki8twfJbW0IzJqM8GEz4Y4EKztYIqqYQhe5KnSxUSIiIiIqnpAVQCp8MffKvvDAi4jmJGXgxUYdMCZC9BUrVgy7d/qsWbPygToATJ8+Hc8880yFR0ZUPiEEUrv2I77xA6jtXUWfL3lcqDvqEATncu9zIqLBeBtr0PyxYxB7cxvi72wHdHvnCU1HYuseJN7fA/+0JoQXzIK3oaaiY6WJgwugq6NQgA4MvNgog3QiIiKi8lR1flUgQAdQcLGEE0H6mAjRicYjoetIbmtD7J0P7K+M7E0GgnOnIrJ4Llw+j/MDJCIaZ2RFQe0RByEwazI6X3kXmbYD9k8WQGrnfqR27od3ch0ih82Cb0pD5QZLE4KaE/B5BAAGt5UyWIBuYpBORERE5KyqzK8GC9BNFQjSGaITVZnaEUdyWyuS29ugpdSSnsO46N0h8NSFHB4dEdH456kNYdJHjkJqd3vPxZuL+0Nmpq0D+9s64KoJIjh7MgKzp3ArLSqJEAId3Rom1UqQGdw6brgA3cQgnYiIiMhZFZ1fDRegmxwO0hmi25TN2nzfN1EBuVQGqe1tSGxrRbaju+TncUWCqD3qIPinNjk4OiKiick/tRG+KfXo3rIbsTffh57JFnV+riuBrte3ouufW+FtrkdwzmT4pzdDdjmz5x6Nfx6XjO60hmhMQ0NEYZDuILsBuolBOhEREZGzKjK/shugmxwM0hmi29SZ1BAJ6/C45ZEeCo0RWiaLdGsUyW1tSLdFAb30jU9lrxuRRXMQOngqJJn/DRIROUWSZYQPnY7g7MmIvbUN3e/ugtCK/MO5ADJtB5BpOwDJvRn+6ZMQmNkMb3MdZIWBOg1OloG6oIKulJ4P0ql8xQboJgbpRERERM5ydH5VbIBucihIZ4huk0uR0B7X0BgGJ9NUkNAF1GgX0q1RpFujUKMxoMwLhsleN0KHTENo3gwoHrczAyUiogFkjxu1Rx2C4MHTEN+4HcltbcWH6QBEVkPy/VYk32+FpMjwNtfCN8VY8e6u4RZcNJDbLaPRZcwzozENbolXGy1HqQG6yZlGT0DStSLPISIiIhqfHJlflRqgmxwI0hmi21QbVJAVRoNT4+dKYDJC82wsAbW9C+nWA8jsPVD0VgCDUYI+hOfNQHDuVMhurkojIqoWdziA+mMPQ2TRHHRv2oHu93ZDZEsLw4SmI73nANJ7jAuYKkEffC0N8E2uh6c+AlfI7+TQaQzzuGU0hoH2uIZEhuGrSdKLm1eVG6Cbymr0hICSy3DRDREREVEv5c6vygrQTWUG6QzRbZIkCQ1hBdGYho6EhpCPweZEk+1OQm2PIXsgBjUag9oRLzlYGYyrJojIYTMRmDWZ27YQEY0gV8CH2qMOQWThbHS/uwvdm3dCS5d2MWiTlkgjsWU3Elt2AwAUnxvu+gg8DcbN3VADl8/jxPBpDDKD9B1JrkQ3KVoWsqZCV4b//8KpAN1UUqPXq8HTZf6/TERERNRbufOrci8MCqBgkG4XQ/QiyJKEhoiCfZ0Cao4XGh2PdE1DLp5CLpZALp5ENpZELp5ELpZ0bJV5IZ6mGoTnz4J/WiMkrlwiIho1ZI8bkYWzEZo/A4mte9C9aQdy8ZQjz62ls9D2RJHeE80/pgS8cEUCcIcDcEWCcEUCcIUDcAV9/OPqBOBxy6gNcKGGSVPc8GrGH6+GCtKdDtBNRTV6fRo8H+Ry9/QjIiIiGodKn185EKCb+gXpGWFv3sYQvUiyJKEupCCWZIg+lug5DXpahZZWoaVU6JmM8TGtQkv3fJ7KIJdIl72PuV1K0IfArMkIzpkCdyRYnRclIqKSyIqC8CHTET5kOjL7O5B4vxXJHfsg1Jyjr6MlM9CSGWTaOvo8LikylKAfit8Dxe+B7PNA8Xmg+LyQfR7IfvO+h2H7GOfmRezzhOyGprihDBGkVypAt8Zgo9Hr1+AZj3FbHiIiIqJCSplfORagm/oE6QlbpzBEL4EkSfC4uFq4WoQuIHI56JoGkdUgchr0nPHRvPW+r2ey0NIZ6CkVWsYIzZ3edqVUkluBf/okBGdPgbe5jqvOiYjGIG9THbxNdag9+lCkdu5Hclsr0m1RoIJ/XxeabrxLKjbMBE8yVs/nQ/aewF32uCG5FMguBVLPrffnkluBpCiQXS5ILpm/n2jUMIPzQkF6pQN005CNXoEGjxcVJSIiIhpasfOriugJ0oVk753GDNFt0lIqcrJRTE0zFpckP2iDxzfCA6sGYQTZEAJC1wHzcyHyj6PX50IIQO85Nn+ucd5g55ifC2EcKzQBYYbm2the9S+5ZHib6xGYMQn+6c28UCgR0TghKwqCsyYjOGsycqkMktvbkNq5D2q0q6KB+pAEoGey0DNZ5LrsragYQIIRsisKJJcMyDIgSZBkyQjXZcm43+dzGZIMY+IryZBk42tSz3mQrPu9z5dkGZDQ8/zW62ACZPjJNKBnZGg5INdraqClytt7fzwqFKRXK0A3FWz0gOo0eERERETj0KiYX0kSNJfX1qEM0W3KxRPIZo09sXOQkIOCrn/uhEDl9smmsctdE4SvpQG+lgZ4mmohK2yqiIjGM5ffi8j8mYjMnwldzSLddgDpPVGkW6PQkpmRHl5xBCCyGrRR8i6u8SoGN3KYDgUaeu8llyvzArbjVe8gXRIaZF2rWoBu6t/oAWCATkRERFSG0TG/sjeXZIhO5ADF74GnqRa+KQ3wTWmAKzgR3qJARESFyB43AjOaEZjRDABQO7uR3tOOdOsBqAdiju+jTjRR6IonH6ADqGqAbjIaPR9cuXTPGHwM0ImIiIjKMFbmVwzRiYoke1xw10fgabBurgBDcyIiKsxTG4KnNoTIYbMghEAunoQajeVv2Y74mN+6jKgaJN0K0AFA1rMFLzZaUULkt5UBjJXxOUmpephPRERENG6MkfkVQ3SiQUhuBe5wEK5IwLiFA/DUh+EKB3jBNSIiKokkSXBHgnBHggjOngIAELoOtbMbuY5uZONJ4wKi8SRy8RTDdaIe/fdAl/VswYuNVlS/i1wBKHwxLCIiIiKyZwzNrxii04QkKTIUvweyzwvF5+n53AMl4IMr3BOa++1dWICIiKgckizDWx+Btz7S53GhC2jJNLKxBHLxFLRUBnpahZZSoacz0NIq9LRqXKSbaBwrdBHRQhcbrah+DZ75FuMBF8MaRY0eERER0ag2SuZXkm7vepcM0Uuk2dx0nipPUmRILiV/k90KFJ8Hst8LxeuB7PcY930eKD6vEZi7+Z8+ERGNbpIswRXywxXyD3qMEAK6mjNC9ZSaD9a1npveE7zrOQ0ip+U/gsE7Vch//Md/4JFHHsHrr78Oj8eDzs7Osp6vUIBuqlqQPkiDBwy8GJa5goqIiIiIhlDs/KpCQbqsqVA0hugOk/IFSwk3NEiQ3S7I0gRoQiXJ2L5EAiDLkGTJeky2PkKSIMmy8aOSJUCSe74GSJJs/Px6jjefY8D55nPIEiRFgexSILl7AnLF+Fw2w3IzOJflkf4JERERjQhJkqB43VC8brhr7J+naxpETofI5YxwPatBaJr1ec66D2FsOSOEMMJ3IYzV70LkHxO63nOcAITecwwgej6H3nNsr8/N58h/Te85T8B4fJyThQtSVoIxcbIe18f4Qg1VVXHuuefi+OOPx29+85vynkzogwbopooH6UM0ePlD+jV6WrX3aSciIiIaS0qYX1UiSDcCdBUZxW3reIboNnkn1cIf9iOe1JBJaAj6ZDSfeizqw/wREhER0dgiKwqgKIDX3oSRnOeP5+D+awe8Hhkel9EQ6EIg3dY9wiMrz5o1awAA69evt31OJpNBJpPJ34/FYgAAVy4N4QkO2zRVLEi30eDlD+3V6Cm5DITNZoyIiIhoQilxfuV0kG4G6JrigZDtPSeX8BYhntQQS+kI+WS4lLG9SoiIiIiIRg9dCERjGnLa+F+F39+6detQU1OTv02fPh0AhlyB3p+ueKApHiiaCrknTC9LEQ1e/pSeRk8SOiRdK38MRERERONJmfMrVy7lyDtWewfoxSy+YIhuUyJtBOgRv4ygf/giExERERHZYQboWU2gNjDx5pmrV69GV1dX/rZz504AgObyFrXayLEgvYQGL3+qrCDn8gGYeH8MISIiIhpU2fMrZ4L0UgN0gCG6bYm0EaCHJ2BjQ0RERESVIXoF6I1hBW736JueX3XVVcZ1a4a4bdq0qeTn93q9iEQifW6G4t/5WXaQXkaDlyfJEBJ7BiIiIiIAjsyvnAjSywnQAe6JblvQxwCdiIiIiJwjBNDRrUEXQGNYgcctI5Ue6VEN9O///u9YsWLFkMfMmTOnOoOxoeQ90p0I0E0OX/iKiIiIaExycH5Vzh7p5QboAEN024I+BuhERERE5Bw1J5DTBCbVuOAZhSvQTU1NTWhqahrpYRSl6CDdyQCdiIiIiCoyvyolSHciQAcYohMRERERjQghBOqCyqgO0Iu1Y8cOHDhwADt27ICmaXj99dcBAAcddBBCoVBVx2I7SGeATkREROSsCs6vignSnQrQgTG0J/qsWbMG7L34wx/+cMhz0uk0Lr/8cjQ0NCAUCuGcc87B3r17qzRiIiIiIqLBeVzyqNwDvRzXXnstjjzySFx33XXo7u7GkUceiSOPPBIvv/zyiIxn2D3SGaATEREROasK8ys7e6Q7GaADYyhEB4C1a9eitbU1f/vqV7865PHf+MY38Ic//AEPPPAAnnnmGezZswef+cxnqjRaIiIiIqLByWNqJm7P+vXrIYQYcDv11FNHbEyDBukM0ImIiIicVcX51VBButMBOjDGtnMJh8OYPHmyrWO7urrwm9/8Bvfeey8+/OEPAwDuvPNOzJ8/H3//+99x3HHHVXKoREREREQ0SgzY2kV2M0AnIiIicorQAUmu+vyq0NYusp51PEAHxthK9B/+8IdoaGjAkUceiZtuugm5XG7QY1955RVks1ksX748/9i8efMwY8YMvPDCC4Oel8lkEIvF+tyIiIiIiGhs670i3Z1NMEAnIiIicogkdLiyI7NAofeKdHc2UZEAHRhDK9G/9rWv4aijjkJ9fT3+9re/YfXq1WhtbcVPf/rTgse3tbXB4/Ggtra2z+PNzc1oa2sb9HXWrVuHNWvWODl0IiIiIiIaBXTZ3Ws1usIAnYiIiOj/t3f/QVLU+f3HX90zu8sCu3ugIFIsCN4dntETBVzBiwUlBaZMqqggMaVS4nFErYUEITnwNOKlPDXilZyIIKkKqInRurK8u3hfLyEY4OoOfxzGnHgFCfEIZMkCRtnFZX/MdPf3j+kfM8vM7szsTPfs7vNRtRWYnen+7L76TL/ffPrzKaGo7q8cMybbjMm0LXccVSU/R6Qz0Tds2HDBZqG9vw4fPixJWrt2rebNm6evf/3ruu+++/T9739fW7ZsUXd3d0nH9OCDD6qtrc3/OnHiREmPDwAAACAC7hqdkvwiK+tmowAAACiYbZqR3V+ZVo9M25LtNvBzbTY6EJHORF+3bp2WL1/e53umTZuW9fWmpiYlk0kdO3ZM06dPv+D7EyZMUE9Pj86ePZsxG/3UqVN9rqteU1OjmpqavMYPAAAAYBDIssmV4244Jankj/sCAAAMJ44Rk23G5ThW6PdXvTcRtW0rY410GUZJzhNpE33cuHEaN25cUZ/98MMPZZqmxo8fn/X7M2fOVFVVlfbs2aMlS5ZIko4cOaLjx49rzpw5RY8ZAAAAwCCSpYEuZdlslEY6AABAcdxGddj3V70b6FL2zUZL0UgfFGuiHzhwQO+++67mz5+vuro6HThwQA888IDuuusujRkzRpLU0tKim2++WS+99JKuv/56NTQ0aMWKFVq7dq3Gjh2r+vp6rV69WnPmzNENN9wQ8U8EAACA4S5plfYRU2SRo4HuoZEOAABQWmHdX2VroHvK0UgfFE30mpoavfrqq3r00UfV3d2tqVOn6oEHHtDatWv99yQSCR05ckTnz5/3X3vmmWdkmqaWLFmi7u5uLVq0SM8//3wUPwIAAACQIWE56ui0VF03KG7JB59+GugeGukAAAClVe77q74a6J5SN9IHxR37ddddp3feeafP91x22WVyei0YP2LECG3dulVbt24d8Bh6ErZ6kqnjJ5KOkpajtg5rwMcFAADA8NPWYck0pPbO1P3kqNpUgzeRZHa6z7Fl2MXebzuKJbvdBvoISerzWI4Rk2XGFUt2S44tx6wq8rySHFtybJnJ7uKPAQAAMEiY7v2TZMiwg9dLen+VxrATilkJWbEqOUas3/vFZKxG8WSX4onzsuI1kno10h076+d6GxRN9ErQejapjkSPDMOQ7ThyHOn/vd+meCz/f8GwbaknacswDFXHjbz/8cNxpJ6kI8dxVB03ZZpF/hADPFbScpSwHFXFjIJ+7lIeq9jfYSmPRR4B8giQRwp5BMgjQB4p5BEgj9Tv7lynLduRPm239NkXluIxQ+c7E8UPZIipSpxXVbyIf1RwHBlKFUOOTFUlOwv4rK2qZFKOuiSjyIvCndjT8NlRSY4cwyzsWI4jw7EkGTlnz4dxrFRB6sgxYgN+/LnoYzm2DMcu/HdYymORR4A8fOThfY48fOThIw/vc8MoD8dWLNmtmJT9HKW4v0o7liFHjgzFLUdyZ7r3/zlHppNUrKdHjsyMcdqJ/O4VaaLnyXGkRFKqrnJkGpIjqabKVFU8vwswkbDV3pUqjsaMMmUUeOGOqHb0+ReWvuiyNGZUTFVVhV90jpM6RtJyij5GR6elL7psjR5h+jOmijlGxwCOUZWQPu+wZNmGxoyOFfy7lMij9zHIgzzSkUfmMciDPNKRR+YxyKP4PBJJR6ZhKWZKSUmWLUlO73kxw5qjIn4jji3TbaDbKqJwNmKSk0wVZ44lxyiuXDJkybATsmLVhc+6MiQ5puLJLsmxs8+YyodjK251yzFMWfHqwo8RMxVLdsu0e1Kz+Ysqens9EVBEHhmzzYqcwTagY5BHgDwC5OF+WOThIY8Aebgf1vDJwzAUk3fflmV8pbq/cpKpX6tSs9wL+7Ahx5FM2TJky3aC+8R8p2zQRM9TlZtNIilVxyUZhqriqRlP/elJ2GrrtFVTZeqi+pjMov7lx9D4Lxn6v3ZLbZ22Lo4bqi6g0LMdR//XnprtNL4hXtBn01XXxRWPWWrvtBWP2aobWdhFe+68pfM9jr40KlbwZ/0xxGOqihv69Jyl9vN2wb9T8giQRwp5BMgjQB4p5BEgjwB5pAw0D8MwZBrSiGpD3QlbSUtKslpgGqfgWWdBAz2mYh8vcIwqyU4VenIsOWZhJZPhWDKk1Bqd7lIyhYspaZiKJzsVs3oKXsPTsK1Uwe2uBVrszLNkVSy1jqjV3ee68ll5a9LLUbJqZNGz8BwzJhlmat1Twyx4TVXT6lHMTsqK1wxgPVby8A9DHj7y8JCHfxjy8JGHZ3jkYTiGOzYj5xgHfH9lew10o+DPBgeJybYNmbJkypYtw22k5/d7HeAc+uHDNKXqqtSM9O6EZNv5/TtFT8LWp+csVcWMARR47hiM1DGqYqmCsyeR35o9qQLPUsJydHFdrOiC21M3Mqb6WlPtnbbOnc+/0jt3PlWs19eaRRfcnuoqUxfXxZSwUj+b7ZAHeZCHhzwC5JFCHgHyCJBHSqXkUVNlKh6T8rzFHBZMOan1evLh2DKd1HU8kAa6fzgzLkeGDDky7GTenzPc4tCRMeANtLyC2XBsxZOd/jIx/Y/BUjzZKccwB7yBlgwjVWy7DYC816jPc1PXfNmxalmxasWsHpn5Prat/DYdyxd5BMjDOxh5eMgjQB7ewcjDQx5phyvB/VXRDXSPaabuFaXUvWOe66FLNNELEo+ZqUa6Uo/c9lfolbLA8xRa6JW6wPMUWniXsuD2FFp4k0eAPFLII0AeAfJIIY8AeQTII6VcedRUmTJZzyWDKav/RnqJG+j+YQss9NILvAGv9+mPobDCu6QFt3/QAgvvEhfcnkIbIaVsgHjII0Ae3kHJw0MeAfLwDkoeHvJIO+wA7q8G3ED39G6kK79GOk30AsVjpqrjqUb62S9yF3rlKPA8+RZ65SrwPPkW3uUouD35Ft7kESCPFPIIkEeAPFLII0AeAfJIKXceVSy26LPdR2v7bKSXqYHuHz7PQi+jwCt0jc5+x5Bf4V2Wgts/eJ6Fd5kKbk++jZByNEA85BEgD+/g5OEhjwB5eAcnDw95pB2+mPurUjXQPemN9DxXRaeJXoSYaShuptaszFbolbPA8/RX6JW7wPP0V3iXs+D29Fd4k0eAPFLII0AeAfJIIY8AeQTIIyWsPOAxZRtecZOlkV7mBrp/mn4KvbIWeP4Y+i68y1pw+yfpp/Auc8Ht6a8RUs4GiIc8AuThnYQ8POQRIA/vJOThIY+001TA/VV6Iz2vt5dnFEOfaRoaM/rCQi+MAs8fQ45CL+wCL1fhHUbB7clVeJMHeZAHeaQjjxTyCJBHgDxSKiUPuIwcjfSQGuieXIVeKAWeP4bshXcoBbcnV+EdUsHtydUICaMB4iGPAHm4yMNHHgHycJGHjzwClXB/lWqks7Fo2VXFjYxCrzvEAs/Tu9DrTtiRFHi9C+8wC25P78KbPMiDPALkESCPFPIIkEeAPFIqJQ+4LmikW6E20D29C71QCzx/DJmFt2Enwyu4PRcU3slQC25P70ZImA0QD3kEyMNFHj7yCJCHizx85BGohPurfNvjVAAD5BV6PUlHn7ZbipsKrcDzeIVe3JQ+bbfUk4ymwEsvvMMuuD3kESCPFPIIkEeAPFLII0AeAfJIqZQ84MpopLtPB4TYQPdkFHqhF3jeGNIL765wC25PRuHdFXrB7UlvhITdAPGQR4A8XOThI48AebjIw0cegUq4v8oHVQAAAAAAAAAAADnQRB8gb43O6rihi+tjStrZNxstJ2+NzqQtXVwfU3U8+2ZY5Zb+yHdfm5OVE3kEyCOFPALkESCPFPIIkEeAPFIqJQ+4MtZAT5UwWTcbLbOMR4z72AyrvGNIXzN1RM7NycoqY83UEbk3Jyuz9Efw+9osrpzII0AeLvLwkUeAPFzk4SOPQCXcX+Wj8ubGVxjHvXg7O7vTXkv938/aEvqi01I8ZmjkqJi6ugxVy9bZc5Y6zhv60qiYjDI/huE4js52WEpajr40MqauLlNVhqOObkvHz6deqwrhseOOLksdXbZGjTBlW6nHPgzbUuv/2TrXYWrUiPI/CpJI2Dp7njwk8vCQR4A8AuSRQh4B8giQR0oYeSSSjjo7E5Iyn9r17jmdMAuoSpdlE1HbMWQ6lkxZqT56CMu6ZF2j031NdjKUx46zbTqWjNcqnuxUPNkZzmPgWTYdSxqxjDGE8Rh4rjVsY24TJIzH8skjQB4u8vCRR4A8XOThI49AJdxfSflNyqCJ3o9z585Jkp56+pmIRwIAAIDh4ty5c2poaIh6GNHL0kCXlFojXQqtkZ5rkyvHjIdW6GUruFNjiIVXeGcpuFODu7D4L2fhnasB4v05jEYIeQTIw0UePvIIkIeLPHzkEaiE+yvZtkzlN3mFJno/Jk6cqBMnTqiurq7ss54Gor29XY2NjTpx4oTq6+ujHg4GMa4llALXEUqFawmlMliuJcdxdO7cOU2cODHqoVSAHA10T0iN9FwFnueCQs8ofbGZq+AOxhBC4Z2r4PYHGU7hnasB4gmjEUIeAfLwTkIeHvIIkId3EvLwkEfaaQq9vypHI922U8sD5okmej9M09SkSZOiHkbe6uvrK7owxODBtYRS4DpCqXAtoVQGw7XEDPQUb1ZQ1ga6p8yN9P4KPE9GoedYklHKMfRdcAdjKGPh3V/B7Q+2vIV3fw0QTzkbIeQRIA/v4OThIY8AeXgHJw8PeaQdvpj7q1I30tMa6Lby+/2ysSgAAACAitRnA91jmLLd2d+l3Gw03wLP45hxfzMsOaUaQ34FdzCGVOFd0s3J8i24/UGnCu9Sb06WbwPEY5dhszjyCJCHd1Dy8JBHgDy8g5KHhzzSDjuA+6uSbTaa3kA3Ysq3PU4THQAAAEDFsWXkP6u8xI30Qgs8T3qhN9DCu9CCOxhDCQvvQgtuf/ClLbwLbYB4StkIIY8AeXgHIw8PeQTIwzsYeXjII+1wJbi/GnAjvXcDvYCnB2miDxE1NTXauHGjampqoh4KBjmuJZQC1xFKhWsJpcK1NBgVWKqUqJFebIHncYyYHBky7UTRhXexBbc/hlIU3sUW3J4SFd7FNkA8pWiEkEeAPLyDkIeHPALk4R2EPDzkkXaYgd5flaKRPoAGuiQZjlOKZwIAAAAAYODa29vV0NCgb294SDUjRxZ+AKefDUn7MNACL3V+R4YcWbFqmXay4OJ9oAV3SY410IK7RMcaaAOkFMcijwB5uMjDRx4B8nCRh2845WE4tqp6vpAjI+vYSnJ/NdBj9dFA7z5/Xk89+T21tbX1uXcSM9EBAAAADB1FzkgvZYEnFTeDrZQFt1TkDLZSFtxS0TPYStkAkcjDRx4+8giQh4s8fOQRIA9XkXmU+v6qqBnpA5yB7qGJDgAAAGBoKbCRXuoCz1NI4V3qgttTUOFd6oLbU2DhXeoGiIc8XOThI48AebjIw0ceAfJwFZhHue6vCmqkl6iBLtFEBwAAADAU5dlIL1eB58mn8C5Xwe3Jq/AuV8HtybPwLlcDxEMeLvLwkUeAPFzk4SOPAHm48syj3PdXeTXSS9hAl2iiAwAAABiq+mmkl7vA8/RVeJe74Pb0WXiXu+D29FN4l7sB4iEPF3n4yCNAHi7y8JFHgDxc/eQR1v1Vn430EjfQJZroAAAAAIayHI30sAo8T7bCO6yC25O18A6r4PbkKLzDaoB4yMNFHj7yCJCHizx85BEgD1daHjGrW3Kiub/K2kgvQwNdook+6B07dkwrVqzQ1KlTVVtbq8svv1wbN25UT0/mv4j9+te/1u/+7u9qxIgRamxs1FNPPRXRiFHJvve972nu3LkaOXKkvvSlL2V9z/Hjx3Xrrbdq5MiRGj9+vP7iL/5CyWSemzlg2Ni6dasuu+wyjRgxQk1NTXrvvfeiHhIq3P79+/UHf/AHmjhxogzD0I9+9KOM7zuOo0ceeUSXXnqpamtrtWDBAv3nf/5nNINFxXriiSc0e/Zs1dXVafz48Vq8eLGOHDmS8Z6uri41Nzfroosu0ujRo7VkyRKdOnUqohEjNL0a6WEXeJ70wjuW7Ay14Pb0LrxDLbg9vRohsWRnqA0QD3m4yMNHHgHycJGHjzwC5OHy83Cb2E4091e9G+nlaKBLNNEHvcOHD8u2bb3wwgv6+OOP9cwzz2j79u36zne+47+nvb1dCxcu1JQpU3Tw4EFt2rRJjz76qHbs2BHhyFGJenp6tHTpUt1///1Zv29Zlm699Vb19PTol7/8pV588UXt2rVLjzzySMgjRSV77bXXtHbtWm3cuFEffPCBrrnmGi1atEinT5+OemioYB0dHbrmmmu0devWrN9/6qmn9Oyzz2r79u169913NWrUKC1atEhdXV0hjxSVbN++fWpubtY777yj3bt3K5FIaOHChero6PDf88ADD+gf//Ef9cMf/lD79u3TyZMn9Yd/+IcRjhqhSWukR1HgeexYtWwzJtOdQRdmwe1JFd4jZDi2W3CPCK/g9riFtySZtiXbjIXaAPGQh4s8fOQRIA8XefjII0AeLsOQFRuR+qMU2f1VeiNdKn0DXZIMx+lrO1cMRps2bdK2bdv0ySefSJK2bdumhx56SK2traquTv2HZcOGDfrRj36kw4cPRzlUVKhdu3ZpzZo1Onv2bMbrb731ln7/939fJ0+e1CWXXCJJ2r59u9avX68zZ8741xeGt6amJs2ePVvPPfecJMm2bTU2Nmr16tXasGFDxKPDYGAYht544w0tXrxYUmoW+sSJE7Vu3Tr9+Z//uSSpra1Nl1xyiXbt2qU//uM/jnC0qGRnzpzR+PHjtW/fPt10001qa2vTuHHj9Morr+i2226TlJqQ8LWvfU0HDhzQDTfcEPGIIaUmgDQ0NOjbGx5SzciRJT22NwPdYysmmSWeV+Q4MuQoUT1aTpbizXvk2xP27DlJGY98Swp99pzHewTfE+rsORd5BMjDRR4+8giQh4s8fOQRiCW7Mn4XZbm/6k/aEi5SYc387vPn9dST31NbW5vq6+tzvo+Z6ENQW1ubxo4d6//9wIEDuummmzIanIsWLdKRI0f0+eefRzFEDFIHDhzQ1Vdf7TfQpdS11N7ero8//jjCkaFS9PT06ODBg1qwYIH/mmmaWrBggQ4cOBDhyDCY/fa3v1Vra2vGddXQ0KCmpiauK/Spra1Nkvz7ooMHDyqRSGRcS1dccYUmT57MtTQMpC/h0tdmo+UdQ7BmaqJqVM7Nycqq15qpOTcnK7P0NWwTVaNybk5WTuQRIA8XefjII0AeLvLwkUfAtHpk2onU/ZXbZg77/qr3Gug5NxsdIJroQ8zRo0e1ZcsW3Xvvvf5rra2tGU1PSf7fW1tbQx0fBjeuJfTn008/lWVZWa8TrhEUy7t2uK5QCNu2tWbNGt1444266qqrJMl/Kq/3vh9cS0PfBWug59hstLxjuHDTsWybk5VVlk3Hsm5OVmYXbAKXY7O4ciKPAHm4yMNHHgHycJGHjzwCXh62WZVaOiWC+6tsm4hm3Wy0BGiiV6gNGzbIMIw+v3ovxdLS0qJbbrlFS5cu1cqVKyMaOSpNMdcSAACDXXNzsw4dOqRXX3016qEgYjk3EQ2x0MtWcHtCK7yzFNz+t0IsvC9ogHhCbISQR4A8XOQRnIo8fOThIo/gVOThy51HiI30LA10Tzka6eGv9I68rFu3TsuXL+/zPdOmTfP/fPLkSc2fP19z5869YMPQCRMm6NSpUxmveX+fMGFCaQaMilXotdSXCRMm6L333st4jWsJ6S6++GLFYrGs/83hGkGxvGvn1KlTuvTSS/3XT506pRkzZkQ0KlSyVatW6c0339T+/fs1adIk//UJEyaop6dHZ8+ezZiNzn+jhq6cDXT/DaZsSaZjyZSVqvNKvIZnXwW3xys+vfVdS76mah8Ft/8Wt/COJzsVT3aWZU3VnAW3x22EpI+h1GvckkeAPFzkEZyCPHzk4SKP4BTk4eudh7cmuy+E+6u+Gugex4xL3n44dnLAG54yE71CjRs3TldccUWfX94a5y0tLZo3b55mzpypnTt3yux1Yc6ZM0f79+9XIpHwX9u9e7emT5+uMWPGhPpzIXyFXEv9mTNnjj766COdPn3af2337t2qr6/XlVdeWa4fAYNIdXW1Zs6cqT179viv2batPXv2aM6cORGODIPZ1KlTNWHChIzrqr29Xe+++y7XFTI4jqNVq1bpjTfe0Ntvv62pU6dmfH/mzJmqqqrKuJaOHDmi48ePcy2VwLFjx7RixQpNnTpVtbW1uvzyy7Vx40b19IS4Pmiafhvo/hvLN2Mqn4LbU7YZbHkU3P5byziDrd8GiKeMMwrJI0AeLvIIDk0ePvJwkUdwaPLw5Z9HGWek59FA95RyRjoz0Qc5r4E+ZcoUPf300zpz5oz/PW9G1R133KHvfve7WrFihdavX69Dhw7pBz/4gZ555pmoho0Kdfz4cX322Wc6fvy4LMvShx9+KEn68pe/rNGjR2vhwoW68sortWzZMj311FNqbW3Vww8/rObmZtXU1EQ7eFSMtWvX6u6779asWbN0/fXXa/Pmzero6NA999wT9dBQwb744gsdPXrU//tvf/tbffjhhxo7dqwmT56sNWvW6LHHHtNXvvIVTZ06VX/5l3+piRMnavHixdENGhWnublZr7zyin784x+rrq7OX+e8oaFBtbW1amho0IoVK7R27VqNHTtW9fX1Wr16tebMmaMbbrgh4tEPfocPH5Zt23rhhRf05S9/WYcOHdLKlSvV0dGhp59+OtSx5N1A9z9Q+hlThm0pZnXnVXB7Sj6DrYCC2/9IGWaw5V1we8owo7CQBoiHPFzkEXyEPHzk4SKP4CPk4SMPVzlmpBfQQPeUaka64TghbtmKktu1a1fOxlR6tL/+9a/V3Nys999/XxdffLFWr16t9evXhzVMDBLLly/Xiy++eMHr//qv/6p58+ZJkv77v/9b999/v/bu3atRo0bp7rvv1pNPPql4nH+TQ+C5557Tpk2b1NraqhkzZujZZ59VU1NT1MNCBdu7d6/mz59/wet33323du3aJcdxtHHjRu3YsUNnz57VN77xDT3//PP66le/GsFoUamMHIXBzp07/aXNurq6tG7dOv3DP/yDuru7tWjRIj3//PMs51ImmzZt0rZt2/TJJ5/k/Zn29nY1NDTo2xseUs3IkQWfs+AGejrHlum4hZlixRV6jiPDsVIznwoouNMVXKTmGEehBXe6YpoG2QzoZxngz+AZ6M9CHi7y8JFHgDxc5OEjj8BwycNwbFX1fCFHRvbjl+L+SiqqgZ4xzhz3iN3nz+upJ7+ntrY21dfX5/48TXQAAAAA5fDwww/rZz/7mX71q1/lfE93d7e6u7v9v7e3t6uxsVHf3vCgakaOLuh8A2qgewZa6NmWTNmyYtVKxkfSPBgGzYN+kYePPALk4SIPH3kEyMM1SPLot4kuleD+amANdH+sWe4V822isyY6AAAAgJI7evSotmzZonvvvbfP9z3xxBNqaGjwvxobGyVJphyp90ZVfShJA10a2Bqetq3Ug8uSFRsxoMemi15TtUQFtzSwNVVL0gCRBrTGbakaIBJ5+MgjOBR5+MjDRR7BocjDRx6uAd9fDbyBLg1sjXSa6AAAAABy2rBhgwzD6PPr8OHDGZ9paWnRLbfcoqVLl2rlypV9Hv/BBx9UW1ub/3XixAn/e6Zj5dVIL1kD3T9gEYVeWoHnyBzwuqNSEYV3CQtu/5BFFN4lK7g9RTRCStkA8ZCHizyCQ5KHjzxc5BEckjx85OEa4P3VQBvonmIb6SxiDAAAACCndevW+WvK5zJt2jT/zydPntT8+fM1d+5c7dixo9/j19TUZN2g3FaqaDUdKzW3O0fRVPIGun/gAjbDSi/wZOZcn78YeW9OVoaC2z90AZuTlbzg9hSwWVw5GiAe8nCRR3Bo8vCRh4s8gkOTh488XMXeX5Woge5J32zUUH5PKdBEBwAAAJDTuHHjNG7cuLze29LSovnz52vmzJnauXOnzGI3jpIkmbIVkykrZyO9bA10/wR5FHq9CzwZkkq77VS/hXcZC27/FHkU3mUruD15NELK2QDxkIeLPIJTkIePPFzkEZyCPHzk4Srm/qqEDXRP0EjPD8u5AAAAABiwlpYWzZs3T5MnT9bTTz+tM2fOqLW1Va2trcUf1Ew10qULl3YpewPdP1Efjx6HUOD5p8r1KHgIBbd/qj4eBS97we3p49H8MBogHvJwkUdwKvLwkYeLPIJTkYePPFwVcn+VWtolP8xEBwAAADBgu3fv1tGjR3X06FFNmjQp43tOARtYXcA0ZdvKmJFuOHY4DXRPthlTUmgFnueCGWxmVWgFtyfbDDbTToRTcHuyzCiUFFoDxEMeLvLwkUeAPFzk4SOPAHm4KuT+ylF+v29mogMAAAAYsOXLl8txnKxfA9ZrRnqoDXRPrxlTYRd4nvQZbFWJjlALbk/6DLaqREe4Bben14zCsBsgHvJwkYePPALk4SIPH3kEyMNVIfdX+ais0QAAAABANqYpJ23VSieKwsowZaeVULbMSAo826xK+3Ms1ILb45gx2WnnTR9TaAxDVlqhb8WqQ22AeMjDRR4+8giQh4s8fOQRIA9Xhdxf9afyRgQAAAAAvaSvgS5duEZ6KGxbqQePU0zZmWt4hsFdM1VKFdymbWWuqRoS0+qRaVt+4d17TdUwpNaw7ZJjmO6Mwq6MNW5DQR4+8giQh4s8fOQRIA8XeQQq4f4qDzTRAQAAAFS03puI5tpstKx6bXKVczOscuq16ZgVr82+OVmZpW86ZsVrc25OVk69N4HLtVlcWZGHjzwC5OEiDx95BMjDRR6BSri/Un7noYkOACiZM2fOaMKECXr88cf91375y1+qurpae/bsiXBkAIDBqncDXdIFa6SXvZHeq8CTYV6whmfZC71eBbf3yHf6mqphFN7pBbe3Zmr6mqphFN69GyAyjAvWuC17I4Q8fOQRIA8XefjII0AeLvIIVMT9lS1T+f2cIe7EAwAY6saNG6e//du/1eLFi7Vw4UJNnz5dy5Yt06pVq3TzzTdHPTwAwCDgbUTa090lQ5YMSY4kRzFJvYvKoPCxZag8c4T6O0fm9w13uZmEVcrxOIolu2U7tpLxEVKy64J3GHZSMatTVqxKTpnWMzXshGJWQt2xKjmmISmR8f1ux1E82SHH6JQVr5FUhvVlHVvxZJeShpk6R+J8xrd73N+V4XSmfldlWVOVPHzkkXYO8nAHQR4e8kg7B3m4gxiiediye1JL0zh5Z1fY/VU57/G6u7slBfeguRhOf+8AAKBAzc3N+pd/+RfNmjVLH330kd5//33V1NREPSwAwCDwP//zP2psbIx6GAAAABhGTpw4oUmTJuX8Pk10AEDJdXZ26qqrrtKJEyd08OBBXX311VEPCQAwSNi2rZMnT6qurk6GMbCZaO3t7WpsbNSJEydUX19fohGi1Mip8pFR5SOjwYGcKh8ZDQ6lzMlxHJ07d04TJ06Uaeae8c5yLgCAkvuv//ovnTx5UrZt69ixYzTRAQB5M02zz1lAxaivr6cQHgTIqfKRUeUjo8GBnCofGQ0OpcqpoaGh3/fQRAcAlFRPT4/uuusu3X777Zo+fbq+9a1v6aOPPtL48eOjHhoAAAAAAEDByrEqOwBgGHvooYfU1tamZ599VuvXr9dXv/pVffOb34x6WAAAAAAAAEWhiQ4AKJm9e/dq8+bNevnll1VfXy/TNPXyyy/r5z//ubZt2xb18AAAw0xNTY02btzI5tYVjpwqHxlVPjIaHMip8pHR4BBFTmwsCgAAAAAAAABADsxEBwAAAAAAAAAgB5roAAAAAAAAAADkQBMdAAAAAAAAAIAcaKIDAAAAAAAAAJADTXQAAAAAw8JPf/pTNTU1qba2VmPGjNHixYujHhJy6O7u1owZM2QYhj788MOohwPXsWPHtGLFCk2dOlW1tbW6/PLLtXHjRvX09EQ9tGFv69atuuyyyzRixAg1NTXpvffei3pIcD3xxBOaPXu26urqNH78eC1evFhHjhyJeljox5NPPinDMLRmzZqoh4I0LS0tuuuuu3TRRReptrZWV199tX71q1+Fcm6a6AAAAACGvNdff13Lli3TPffco3//93/XL37xC91xxx1RDws5fPvb39bEiROjHgZ6OXz4sGzb1gsvvKCPP/5YzzzzjLZv367vfOc7UQ9tWHvttde0du1abdy4UR988IGuueYaLVq0SKdPn456aJC0b98+NTc365133tHu3buVSCS0cOFCdXR0RD005PD+++/rhRde0Ne//vWoh4I0n3/+uW688UZVVVXprbfe0m9+8xt9//vf15gxY0I5v+E4jhPKmQAAAAAgAslkUpdddpm++93vasWKFVEPB/146623tHbtWr3++uv6nd/5Hf3bv/2bZsyYEfWwkMOmTZu0bds2ffLJJ1EPZdhqamrS7Nmz9dxzz0mSbNtWY2OjVq9erQ0bNkQ8OvR25swZjR8/Xvv27dNNN90U9XDQyxdffKHrrrtOzz//vB577DHNmDFDmzdvjnpYkLRhwwb94he/0M9//vNIzs9MdAAAAABD2gcffKCWlhaZpqlrr71Wl156qX7v935Phw4dinpo6OXUqVNauXKlXn75ZY0cOTLq4SAPbW1tGjt2bNTDGLZ6enp08OBBLViwwH/NNE0tWLBABw4ciHBkyKWtrU2S+N9NhWpubtatt96a8b8pVIaf/OQnmjVrlpYuXarx48fr2muv1d/8zd+Edn6a6AAAAACGNG+G7KOPPqqHH35Yb775psaMGaN58+bps88+i3h08DiOo+XLl+u+++7TrFmzoh4O8nD06FFt2bJF9957b9RDGbY+/fRTWZalSy65JOP1Sy65RK2trRGNCrnYtq01a9boxhtv1FVXXRX1cNDLq6++qg8++EBPPPFE1ENBFp988om2bdumr3zlK/qnf/on3X///frTP/1Tvfjii6GcnyY6AAAAgEFpw4YNMgyjzy9vDWdJeuihh7RkyRLNnDlTO3fulGEY+uEPfxjxTzH05ZvTli1bdO7cOT344INRD3nYyTejdC0tLbrlllu0dOlSrVy5MqKRA4NLc3OzDh06pFdffTXqoaCXEydO6M/+7M/093//9xoxYkTUw0EWtm3ruuuu0+OPP65rr71Wf/Inf6KVK1dq+/btoZw/HspZAAAAAKDE1q1bp+XLl/f5nmnTpul///d/JUlXXnml/3pNTY2mTZum48ePl3OIUP45vf322zpw4IBqamoyvjdr1izdeeedoc00G47yzchz8uRJzZ8/X3PnztWOHTvKPDr05eKLL1YsFtOpU6cyXj916pQmTJgQ0aiQzapVq/Tmm29q//79mjRpUtTDQS8HDx7U6dOndd111/mvWZal/fv367nnnlN3d7disViEI8Sll16acS8nSV/72tf0+uuvh3J+mugAAAAABqVx48Zp3Lhx/b5v5syZqqmp0ZEjR/SNb3xDkpRIJHTs2DFNmTKl3MMc9vLN6dlnn9Vjjz3m//3kyZNatGiRXnvtNTU1NZVziMNevhlJqRno8+fP95/oME0ecI9SdXW1Zs6cqT179mjx4sWSUrM19+zZo1WrVkU7OEhKLVW1evVqvfHGG9q7d6+mTp0a9ZCQxc0336yPPvoo47V77rlHV1xxhdavX08DvQLceOONOnLkSMZr//Ef/xHavRxNdAAAAABDWn19ve677z5t3LhRjY2NmjJlijZt2iRJWrp0acSjg2fy5MkZfx89erQk6fLLL2fWZoVoaWnRvHnzNGXKFD399NM6c+aM/z1mPUdn7dq1uvvuuzVr1ixdf/312rx5szo6OnTPPfdEPTQotYTLK6+8oh//+Meqq6vz16pvaGhQbW1txKODp66u7oJ16keNGqWLLrqI9esrxAMPPKC5c+fq8ccf1x/90R/pvffe044dO0J7IoomOgAAAIAhb9OmTYrH41q2bJk6OzvV1NSkt99+W2PGjIl6aMCgsXv3bh09elRHjx694B82HMeJaFS4/fbbdebMGT3yyCNqbW3VjBkz9LOf/eyCzUYRjW3btkmS5s2bl/H6zp07+11GCUBg9uzZeuONN/Tggw/qr/7qrzR16lRt3rxZd955ZyjnNxz+Px0AAAAAAAAAAFmxeBkAAAAAAAAAADnQRAcAAAAAAAAAIAea6AAAAAAAAAAA5EATHQAAAAAAAACAHGiiAwAAAAAAAACQA010AAAAAAAAAAByoIkOAAAAAAAAAEAONNEBAAAAAAAAAMiBJjoAAAAAAAAAADnQRAcAAAAAAAAAIAea6AAAAAAAAAAA5EATHQAAAAAAYBB66aWXdNFFF6m7uzvj9cWLF2vZsmURjQoAhh6a6AAAAAAAAIPQ0qVLZVmWfvKTn/ivnT59Wj/96U/1zW9+M8KRAcDQQhMdAAAAAABgEKqtrdUdd9yhnTt3+q/93d/9nSZPnqx58+ZFNzAAGGJoogMAAAAAAAxSK1eu1D//8z+rpaVFkrRr1y4tX75chmFEPDIAGDoMx3GcqAcBAAAAAACA4sycOVO33XabFi5cqOuvv17Hjh1TY2Nj1MMCgCEjHvUAAAAAAAAAULxvfetb2rx5s1paWrRgwQIa6ABQYsxEBwAAAAAAGMTa2to0ceJEJZNJvfTSS7r99tujHhIADCmsiQ4AAAAAADCINTQ0aMmSJRo9erQWL14c9XAAYMihiQ4AAAAAADDItbS06M4771RNTU3UQwGAIYflXAAAAAAAAAapzz//XHv37tVtt92m3/zmN5o+fXrUQwKAIYeNRQEAAAAAAAapa6+9Vp9//rn++q//mgY6AJQJM9EBAAAAAAAAAMiBNdEBAAAAAAAAAMiBJjoAAAAAAAAAADnQRAcAAAAAAAAAIAea6AAAAAAAAAAA5EATHQAAAAAAAACAHGiiAwAAAAAAAACQA010AAAAAAAAAAByoIkOAAAAAAAAAEAO/x8rFElG0B1/YgAAAABJRU5ErkJggg==\n", "text/plain": [ "