{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "-" } }, "source": [ "# Scattering matrix plugin\n", "\n", "Note: the cost of running the entire notebook is larger than 1 FlexCredit.\n", "\n", "This notebook will give a demo of the tidy3d [ComponentModeler](../_autosummary/tidy3d.plugins.ComponentModeler.html) plugin used to compute scattering matrix elements." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "tags": [] }, "outputs": [], "source": [ "# make sure notebook plots inline\n", "%matplotlib inline\n", "# standard python imports\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import os\n", "import gdstk\n", "\n", "# tidy3D imports\n", "import tidy3d as td\n", "from tidy3d import web\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Setup\n", "\n", "We will simulate a directional coupler, similar to the GDS and Parameter scan tutorials.\n", "\n", "Let's start by setting up some basic parameters." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "tags": [] }, "outputs": [], "source": [ "# wavelength / frequency\n", "lambda0 = 1.550 # all length scales in microns\n", "freq0 = td.constants.C_0 / lambda0\n", "fwidth = freq0 / 10\n", "\n", "# Spatial grid specification\n", "grid_spec = td.GridSpec.auto(min_steps_per_wvl=14, wavelength=lambda0)\n", "\n", "# Permittivity of waveguide and substrate\n", "wg_n = 3.48\n", "sub_n = 1.45\n", "mat_wg = td.Medium(permittivity=wg_n**2)\n", "mat_sub = td.Medium(permittivity=sub_n**2)\n", "\n", "# Waveguide dimensions\n", "\n", "# Waveguide height\n", "wg_height = 0.22\n", "# Waveguide width\n", "wg_width = 0.5\n", "# Waveguide separation in the beginning/end\n", "wg_spacing_in = 8\n", "# length of coupling region (um)\n", "coup_length = 5.0\n", "# spacing between waveguides in coupling region (um)\n", "wg_spacing_coup = 0.07\n", "# Total device length along propagation direction\n", "device_length = 100\n", "# Length of the bend region\n", "bend_length = 16\n", "# Straight waveguide sections on each side\n", "straight_wg_length = 4\n", "# space between waveguide and PML\n", "pml_spacing = 1.2\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Define waveguide bends and coupler\n", "\n", "Here is where we define our directional coupler shape programmatically in terms of the geometric parameters" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "tags": [] }, "outputs": [], "source": [ "def tanh_interp(max_arg):\n", " \"\"\"Interpolator for tanh with adjustable extension\"\"\"\n", " scale = 1 / np.tanh(max_arg)\n", " return lambda u: 0.5 * (1 + scale * np.tanh(max_arg * (u * 2 - 1)))\n", "\n", "\n", "def make_coupler(\n", " length,\n", " wg_spacing_in,\n", " wg_width,\n", " wg_spacing_coup,\n", " coup_length,\n", " bend_length,\n", " npts_bend=30,\n", "):\n", " \"\"\"Make an integrated coupler using the gdstk RobustPath object.\"\"\"\n", " # bend interpolator\n", " interp = tanh_interp(3)\n", " delta = wg_width + wg_spacing_coup - wg_spacing_in\n", " offset = lambda u: wg_spacing_in + interp(u) * delta\n", "\n", " coup = gdstk.RobustPath(\n", " (-0.5 * length, 0),\n", " (wg_width, wg_width),\n", " wg_spacing_in,\n", " simple_path=True,\n", " layer=1,\n", " datatype=[0, 1],\n", " )\n", " coup.segment((-0.5 * coup_length - bend_length, 0))\n", " coup.segment(\n", " (-0.5 * coup_length, 0),\n", " offset=[lambda u: -0.5 * offset(u), lambda u: 0.5 * offset(u)],\n", " )\n", " coup.segment((0.5 * coup_length, 0))\n", " coup.segment(\n", " (0.5 * coup_length + bend_length, 0),\n", " offset=[lambda u: -0.5 * offset(1 - u), lambda u: 0.5 * offset(1 - u)],\n", " )\n", " coup.segment((0.5 * length, 0))\n", " return coup\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create Base Simulation\n", "\n", "The scattering matrix tool requires the \"base\" [Simulation](../_autosummary/tidy3d.Simulation.html) (without the modal sources or monitors used to compute S-parameters), so we will construct that now.\n", "\n", "We generate the structures and add a [FieldMonitor](../_autosummary/tidy3d.FieldMonitor.html?highlight=FieldMonitor) so we can inspect the field patterns." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
[10:07:20] WARNING: No sources in simulation.                                                             log.py:57\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:07:20]\u001b[0m\u001b[2;36m \u001b[0mWARNING: No sources in simulation. \u001b]8;id=899243;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/log.py\u001b\\\u001b[2mlog.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=342169;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/log.py#57\u001b\\\u001b[2m57\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Geometry must be placed in GDS cells to import into Tidy3D\n", "coup_cell = gdstk.Cell(\"Coupler\")\n", "\n", "substrate = gdstk.rectangle(\n", " (-device_length / 2, -wg_spacing_in / 2 - 10),\n", " (device_length / 2, wg_spacing_in / 2 + 10),\n", " layer=0,\n", ")\n", "coup_cell.add(substrate)\n", "\n", "# Add the coupler to a gdspy cell\n", "gds_coup = make_coupler(\n", " device_length, wg_spacing_in, wg_width, wg_spacing_coup, coup_length, bend_length\n", ")\n", "coup_cell.add(gds_coup)\n", "\n", "# Substrate\n", "(oxide_geo,) = td.PolySlab.from_gds(\n", " gds_cell=coup_cell, gds_layer=0, gds_dtype=0, slab_bounds=(-10, 0), axis=2\n", ")\n", "\n", "oxide = td.Structure(geometry=oxide_geo, medium=mat_sub)\n", "\n", "# Waveguides (import all datatypes if gds_dtype not specified)\n", "coupler1_geo, coupler2_geo = td.PolySlab.from_gds(\n", " gds_cell=coup_cell, gds_layer=1, slab_bounds=(0, wg_height), axis=2\n", ")\n", "\n", "coupler1 = td.Structure(geometry=coupler1_geo, medium=mat_wg)\n", "\n", "coupler2 = td.Structure(geometry=coupler2_geo, medium=mat_wg)\n", "\n", "# Simulation size along propagation direction\n", "sim_length = 2 * straight_wg_length + 2 * bend_length + coup_length\n", "\n", "# Spacing between waveguides and PML\n", "sim_size = [\n", " sim_length,\n", " wg_spacing_in + wg_width + 2 * pml_spacing,\n", " wg_height + 2 * pml_spacing,\n", "]\n", "\n", "# source\n", "src_pos = sim_length / 2 - straight_wg_length / 2\n", "\n", "# in-plane field monitor (optional, increases required data storage)\n", "domain_monitor = td.FieldMonitor(\n", " center=[0, 0, wg_height / 2], size=[td.inf, td.inf, 0], freqs=[freq0], name=\"field\"\n", ")\n", "\n", "# initialize the simulation\n", "sim = td.Simulation(\n", " size=sim_size,\n", " grid_spec=grid_spec,\n", " structures=[oxide, coupler1, coupler2],\n", " sources=[],\n", " monitors=[domain_monitor],\n", " run_time=50 / fwidth,\n", " boundary_spec=td.BoundarySpec.all_sides(boundary=td.PML()),\n", ")\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAFVCAYAAAAAO6bXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4q0lEQVR4nOzdeZwcZZ0/8E9V9X3NnUkmd8KRkIMjhBuCGgQFFWVRcFUSWZBLxawHEQQSXCOigqsCuitkfxzK8VphFUXCLYjIKUdICCEh10yS6cxM9/RV3VXP74+a6pqjZ6a6u7rn+rxfr37NdE9V9zPzhczz/czTT0lCCAEiIiIiIiIiIiIiIhpAHukBEBERERERERERERGNVgzRiYiIiIiIiIiIiIgGwRCdiIiIiIiIiIiIiGgQDNGJiIiIiIiIiIiIiAbBEJ2IiIiIiIiIiIiIaBAM0YmIiIiIiIiIiIiIBsEQnYiIiIiIiIiIiIhoEAzRiYiIiIiIiIiIiIgGwRCdiIiIiIiIiIiIiGgQDNGJiIiIiIiIiEbA008/DUmS8PTTT4/0UIiIaAgM0YmIiIiIiIiIKujWW2/F+vXrR3oYJbn33ntxyy23jPQwAAA7d+7EmjVrcMwxx6Curg6NjY049dRT8fjjjxc8vrOzExdffDGampoQDAbxoQ99CK+++qqt11qxYgUkSRpwmzdv3oBjdV3Hj370I8yePRs+nw+LFy/Gb3/727K+VyIaXVwjPQAiIiIiIiIiovHs1ltvRWNjI1asWNHn8VNOOQWpVAoej2dkBmbDvffei7feegtXXnnlSA8FDz/8MG688UacffbZuOCCC5DL5fD//t//w2mnnYY77rgDK1euzB+r6zrOPPNM/POf/8S3vvUtNDY24tZbb8Wpp56KV155BQcffPCwr+f1evHf//3ffR6rqakZcNzVV1+NH/7wh7jooouwdOlSPPzww/j85z8PSZJw3nnnlf+NE9GIk4QQYqQHQURERERERETjWyKRQDAYHOlhjIiFCxeisbFxTG7bctZZZ+Gtt97C9u3bR3ooePvtt9Hc3IzGxsb8Y5lMBkcccQS6u7uxc+fO/OP3338/Pve5z+GBBx7Av/zLvwAA9u/fj0MOOQQf+9jHcO+99w75WitWrMCDDz6I7u7uIY/bvXs3Zs+ejYsvvhi/+MUvAABCCCxbtgzbtm3D9u3boShKqd8yEY0S3M6FiIiIiIiIiIqye/duXHjhhWhpaYHX68Xs2bNx6aWXQlVVAMD69eshSRKeeeYZXHbZZZg0aRKmTZuWP//WW2/FggUL4PV60dLSgssvvxydnZ19XmPLli0455xzMHnyZPh8PkybNg3nnXceurq68sds2LABJ510EmpraxEKhXDooYfiu9/97rDjt3NeJpPBddddh4MOOgherxfTp0/Ht7/9bWQymQHPd/fdd+OYY45BIBBAXV0dTjnlFDz22GMAgFmzZuHtt9/GM888k98S5NRTTwUw+J7oDzzwAJYsWQK/34/GxkZ84QtfwO7du/scs2LFCoRCIezevRtnn302QqEQmpqa8M1vfhOapg37M3j44Ydx5pln5ms4d+5c3HDDDX3OPfXUU/HII4/ggw8+yI991qxZgz7nnXfeCUmScMcdd/R5/Ac/+AEkScKf/vSnYcc1lAULFvQJ0AFjtfjHP/5x7Nq1C/F4PP/4gw8+iObmZnzmM5/JP9bU1ITPfvazePjhhwvWsRBN0xCLxQb9+sMPP4xsNovLLrss/5gkSbj00kuxa9cuvPDCC3a/PSIaxbidCxERERERERHZtmfPHhxzzDH5/abnzZuH3bt348EHH0QymeyzNclll12GpqYmXHvttUgkEgCA66+/HmvWrMHy5ctx6aWXYvPmzbjtttvw0ksv4fnnn4fb7Yaqqjj99NORyWTw1a9+FZMnT8bu3bvxxz/+EZ2dnaipqcHbb7+Ns846C4sXL8batWvh9Xrx3nvv4fnnnx9y/HbO03Udn/zkJ/Hcc8/h4osvxvz58/Hmm2/i5ptvxrvvvouHHnoof+yaNWtw/fXX44QTTsDatWvh8Xjw4osv4sknn8RHP/pR3HLLLfjqV7+KUCiEq6++GgDQ3Nw86PjWr1+PlStXYunSpVi3bh327t2Ln/3sZ3j++efx2muvoba2Nn+spmk4/fTTceyxx+LHP/4xHn/8cfzkJz/B3Llzcemllw75c1i/fj1CoRBWrVqFUCiEJ598Etdeey1isRhuuukmAMY2JV1dXdi1axduvvlmAEAoFBr0OVeuXIn//d//xapVq3Daaadh+vTpePPNN7FmzRpceOGF+PjHP54/tqOjw1bYHwgEEAgEhjymra1twHGvvfYajjrqKMhy3/WjxxxzDH7961/j3XffxaJFi4Z83mQyiUgkgmQyibq6Opx//vm48cYb+/wMXnvtNQSDQcyfP3/A65hfP+mkk4b9PololBNERERERERERDZ96UtfErIsi5deemnA13RdF0IIceeddwoA4qSTThK5XC7/9X379gmPxyM++tGPCk3T8o//4he/EADEHXfcIYQQ4rXXXhMAxAMPPDDoOG6++WYBQOzfv7+o8ds576677hKyLIu//vWvfR6//fbbBQDx/PPPCyGE2LJli5BlWXz605/u8/0IYf0shBBiwYIFYtmyZQNe56mnnhIAxFNPPSWEEEJVVTFp0iSxcOFCkUql8sf98Y9/FADEtddem3/sggsuEADE2rVr+zznkUceKZYsWTL0D0EIkUwmBzz2la98RQQCAZFOp/OPnXnmmWLmzJnDPp+ptbVV1NfXi9NOO01kMhlx5JFHihkzZoiurq4+x82cOVMAGPZ23XXXDfl6W7ZsET6fT3zxi1/s83gwGBRf/vKXBxz/yCOPCADi0UcfHfJ5r7rqKvGd73xH3HfffeK3v/1t/ud94oknimw2mz/uzDPPFHPmzBlwfiKREADEVVddNeTrENHYwJXoRERERERERGSLrut46KGH8IlPfAJHH330gK9LktTn/kUXXdRnP+jHH38cqqriyiuv7LNC+KKLLsJ3v/tdPPLII1i5cmX+4o1/+ctf8PGPf7zgSmRzRfbDDz+MlStXDlhxPBg75z3wwAOYP38+5s2bh/b29vzjH/7whwEATz31FE444QQ89NBD0HUd11577YDn6f+zsOPll1/Gvn37cP3118Pn8+UfP/PMMzFv3jw88sgjWLNmTZ9zLrnkkj73Tz75ZNx1113Dvpbf789/Ho/HkclkcPLJJ+NXv/oVNm3ahMMPP7zo8QPA5MmT8ctf/hLnn38+Tj75ZLz++uvYsGEDIpFIn+PuuecepFKpYZ9vzpw5g34tmUzi3HPPhd/vxw9/+MM+X0ulUvB6vQPOMX+uw732unXr+tw/77zzcMghh+Dqq6/Ggw8+mL9gaLmvQ0RjA/dEJyIiIiIiIiJb9u/fj1gshoULF9o6fvbs2X3uf/DBBwCAQw89tM/jHo8Hc+bMyX999uzZWLVqFf77v/8bjY2NOP300/HLX/6yz37on/vc53DiiSfi3/7t39Dc3IzzzjsP999/P3RdH3JMds7bsmUL3n77bTQ1NfW5HXLIIQCAffv2AQC2bt0KWZZx2GGH2fp5DGewnw8AzJs3L/91k8/nQ1NTU5/H6urq0NHRMexrvf322/j0pz+NmpoaRCIRNDU14Qtf+AIA9Pk5l+K8887DmWeeiX/84x+46KKL8JGPfGTAMSeeeCKWL18+7G2wEF3TNJx33nnYuHEjHnzwQbS0tPT5ut/vL7jveTqdzn+9WN/4xjcgyzIef/zxir4OEY0+XIlORERERERERBVRToD4k5/8BCtWrMDDDz+Mxx57DF/72tewbt06/P3vf8e0adPg9/vx7LPP4qmnnsIjjzyCRx99FPfddx8+/OEP47HHHuuzAr7/mIY7T9d1LFq0CD/96U8LPsf06dNL/r6cNNj3OJzOzk4sW7YMkUgEa9euxdy5c+Hz+fDqq6/iO9/5zrB/iBhONBrFyy+/DADYuHEjdF0fsFJ///79tvZED4VCBfdhv+iii/DHP/4R99xzT/4dAr1NmTIFra2tAx43H+sfutvh9/vR0NCAAwcO9Hmdp556CkKIPu8+KOd1iGj04Up0IiIiIiIiIrKlqakJkUgEb731Vknnz5w5EwCwefPmPo+rqopt27blv25atGgRrrnmGjz77LP461//it27d+P222/Pf12WZXzkIx/BT3/6U2zcuBH/8R//gSeffBJPPfXUkOMY7ry5c+fiwIED+MhHPlJwdbS5Unzu3LnQdR0bN24c8vXsbu0y2M/HfKz/z6dUTz/9NKLRKNavX4+vf/3rOOuss7B8+XLU1dUNOLaUbWkuv/xyxONxrFu3Ds899xxuueWWAccsXboUU6ZMGfb24x//eMC53/rWt3DnnXfi5ptvxvnnn19wDEcccQReffXVAX8QePHFFxEIBPLvKihGPB5He3t7n9X/RxxxBJLJJN55550Br2N+nYjGPoboRERERERERGSLLMs4++yz8Yc//CG/0rg3IcSQ5y9fvhwejwf/+Z//2efY3/zmN+jq6sKZZ54JAIjFYsjlcn3OXbRoEWRZzm+d0Xs1sMkMLAttr2Gyc95nP/tZ7N69G//1X/814NhUKoVEIgEAOPvssyHLMtauXTsgrO39/QWDQXR2dg46JtPRRx+NSZMm4fbbb+/zPfz5z3/GO++8k//5lMtcwd57jKqq4tZbbx1wbDAYLGp7lwcffBD33XcffvjDH+Kqq67Ceeedh2uuuQbvvvtun+PuuecebNiwYdjbl770pT7n3XTTTfjxj3+M7373u/j6178+6Dj+5V/+BXv37sX//u//5h9rb2/HAw88gE984hN99jHfunUrtm7dmr+fTqcRj8cHPOcNN9wAIQTOOOOM/GOf+tSn4Ha7+/zshBC4/fbbMXXqVJxwwgk2fmpENNpxOxciIiIiIiIisu0HP/gBHnvsMSxbtgwXX3wx5s+fj9bWVjzwwAN47rnn8hfuLKSpqQmrV6/GmjVrcMYZZ+CTn/wkNm/ejFtvvRVLly7N78n95JNP4oorrsC5556LQw45BLlcDnfddRcURcE555wDAFi7di2effZZnHnmmZg5cyb27duHW2+9FdOmTcNJJ5006BjsnPfFL34R999/Py655BI89dRTOPHEE6FpGjZt2oT7778ff/nLX3D00UfjoIMOwtVXX40bbrgBJ598Mj7zmc/A6/XipZdeQktLS/7ilEuWLMFtt92G73//+zjooIMwadKkgluQuN1u3HjjjVi5ciWWLVuG888/H3v37sXPfvYzzJo1C9/4xjdKLVsfJ5xwAurq6nDBBRfga1/7GiRJwl133VXwjyBLlizBfffdh1WrVmHp0qUIhUL4xCc+UfB59+3bh0svvRQf+tCHcMUVVwAAfvGLX+Cpp57CihUr8Nxzz+W3dTnxxBOLHvfvf/97fPvb38bBBx+M+fPn4+677+7z9dNOOw3Nzc0AjBD9uOOOw8qVK7Fx40Y0Njbi1ltvhaZpAy7Oau7Zvn37dgBAW1sbjjzySJx//vmYN28eAOMit3/6059wxhln4FOf+lT+3GnTpuHKK6/ETTfdhGw2i6VLl+Khhx7CX//6V9xzzz0lb7lDRKOMICIiIiIiIiIqwgcffCC+9KUviaamJuH1esWcOXPE5ZdfLjKZjBBCiDvvvFMAEC+99FLB83/xi1+IefPmCbfbLZqbm8Wll14qOjo68l9///33xZe//GUxd+5c4fP5RH19vfjQhz4kHn/88fwxTzzxhPjUpz4lWlpahMfjES0tLeL8888X77777pBjt3ueqqrixhtvFAsWLBBer1fU1dWJJUuWiDVr1oiurq4+x95xxx3iyCOPzB+3bNkysWHDhvzX29raxJlnninC4bAAIJYtWyaEEOKpp54SAMRTTz3V5/nuu+++/PPV19eLf/3XfxW7du3qc8wFF1wggsHggO/vuuuuE3binueff14cd9xxwu/3i5aWFvHtb39b/OUvfxkwnu7ubvH5z39e1NbWCgBi5syZgz7nZz7zGREOh8X27dv7PP7www8LAOLGG28cdlxDMb+3wW79f44HDhwQF154oWhoaBCBQEAsW7as4H+TM2fO7PN9dXR0iC984QvioIMOEoFAQHi9XrFgwQLxgx/8QKiqOuB8TdPED37wAzFz5kzh8XjEggULxN13313W90pEo4skxDDvtSIiIiIiIiIiIiIimqC4JzoRERERERERERER0SAYohMRERERERERERERDYIhOhERERERERERERHRIBiiExERERERERERERENgiE6EREREREREREREdEgXCM9ACIiIiIiIpOu69izZw/C4TAkSRrp4RARERHROCaEQDweR0tLC2R58PXmDNGJiIiIiGjU2LNnD6ZPnz7SwyAiIiKiCWTnzp2YNm3aoF9niE5ERERERKNGOBwGAHz729+G3+939Lmz2Sx0Xc/fd7vdQ644KoUQAgDQ2NgIt9tdcAydnZ3544LBIILBoKNjsDPGzs5OZLNZAMbPoba2tuor/xOJBBKJBABAkiTU1tYW/JlVEuthYT0MrIeF9bCwHgbWw8J6WGKxGDo6OvL3KzG/Go6u6/mfAwDIsmz7v4lUKoUf/ehH+TnoYBiiExERERHRqGE2fn6/H6FQyNHn1nUdqVQKgNFcOR3Sm6+h6zoikQg8Hk/BYyRJQjqdBgBMnjy56o0mYPx829vbARiBv9frrfoYwuEwWltbAQA+nw8NDQ1VHwPAephYDwvrYWE9DKyHhfWwsB4Gr9eLdDoNIUTF5ld2pFKp/GIJv99fdD2G++MDLyxKRERERETjnq7ryGQykCQJsizn71dbPB5HOp2Gz+eDJEmIRqN9VsdXg6qqiEajcLvdcLvdiEajUFW1qmPQdR3RaBSSJMHn8yGdTiMej1d1DADrYWI9LKyHhfUwsB4W1sPCehh0XUdnZycAjOj8KpPJQNd1yLIMSZLy953EEJ2IiIiIiMY1s6ETQsDj8cDv98PlciGXy1W10YvH44jFYohEImhoaEBjYyOy2WxVG29VVdHe3g63243Gxsb8tjPt7e1Va7zNACSbzaKxsRENDQ2IRCKIxWJVDUJYDwPrYWE9LKyHgfWwsB4W1sNg1iOXy8HlcsHr9Y7I/CqTyeTH4Pf74fF4IIRwPEhniE5ERERERONW/wDd5TJ2tKx2o9e74Tb33PR4PFVtvHs33A0NDZBlGbIso6GhoWqNd/8AxNzyJhwOVzUIYT0MrIeF9bCwHgbWw8J6WFgPQ+961NXV5bdOqfb8qneAbm5l43K5KhKkM0QnIiIiIqJxabAA3VStRq9Qw22qVuNdqOE2VavxHiwAMVUrCGE9DKyHhfWwsB4G1sPCelhYD0P/evS/gGe15leFAnRTJYJ0huhERERERDTuDBegmyrd6A3VcJsq3XgP1XCbKt14DxeAmCodhLAeBtbDwnpYWA8D62FhPSysh8FuPSo9vxoqQDc5HaQzRCciIiIionHFboBuqlSjZ6fhNlWq8bbTcJsq1XjbbbhNlQpCWA8D62FhPSysh4H1sLAeFtbDUGw9KjW/shOgm5wM0hmiExERERHRuFFsgG5yutFLJBK2G26T0413MQ23yenGu9iG2+R0EFJMAGJiPSysh4H1sLAeFtbDwHpYWA+L0/OrYgJ0k1NBOkN0IiIiIiIaF0oN0E1ONXq5XA7d3d1FNdwmpxrvUhpuk1ONd6kNt8mpIKSUAMTEelhYDwPrYWE9LKyHgfWwsB4Wp+ZXpQToJieCdIboREREREQ06hTb3JQboJvKbfRUVYWu6wiFQkU33KZyG+9yGm5TuY13uQ23qdwgpJwAxMR6WFgPA+thYT0srIeB9bCwHpZy51flBOimcoN0huhERERERDTqZLNZ5HI5W8c6FaCbSm30MpkMNE2DLMsIBoNljaHUxtuJhttUauPtVMNtKjUIcSIAMbEeFtbDwHpYWA8L62FgPSysh6Wc+VW5AbqpnCCdIToREREREY1KqqoOG6Q7HaCbim30zAZPURTHxlBs4+1kw20qtvF2uuE2FRuEOBmAmFgPC+thYD0srIeF9TCwHhbWw1Lq/MqJAN3UP0gXQtg6jyE6EREN6+mnn4YkSXj66adHeihERDRBeDweSJI0ZJBeqQDdZLfR693gOdVkmuw23pVouE12G+9KNdwmu0FIJQIQE+thYT0MrIeF9bCwHgbWw8J6WEqZXzkVoJt6B+l2V+YzRCciorxbb70V69evH+lhlOTee+/FLbfcMtLDAGBMOn70ox9h9uzZ8Pl8WLx4MX7729/aOre1tRVXXXUVPvShDyEcDg/5x4vHHnsMF154IRYuXAhFUTBr1iznvgkiohEmSRK8Xu+gQXqlA3TTcI1eJRs803CNdyUbbtNwjXelG27TcEFIJQMQE+thYT0MrIeF9bCwHgbWw8J6WEbD/KrYxQ8M0YmIKG+wEP2UU05BKpXCKaecUv1B2TSaQvSrr74a3/nOd3Daaafh5z//OWbMmIHPf/7z+N3vfjfsuZs3b8aNN96I3bt3Y9GiRUMee++99+Lee+9FTU0NWlpanBo+EdGoIctywSC9WgG6abBGrxoNnmmwxrsaDbdpsMa7Wg23abAgpBoBiIn1sLAeBtbDwnpYWA8D62FhPSyjYX7lcrngdrttHcsQnYion0QiMdJDGHVkWYbP56voL/LxYvfu3fjJT36Cyy+/HL/+9a9x0UUX4Q9/+ANOPvlkfOtb34KmaUOev2TJEkSjUbz77rtYtWrVkMf+4Ac/QCwWw/PPP4/DDz/cyW+DiGjUKBSkVzNAN/Vv9KrZ4Jn6N96ZTKZqDbepf+OdyWSq2nCb+gch1QxATKyHhfUwsB4W1sPCehhYDwvrYRkN8yu7P2+mIUQ0ru3evRsXXnghWlpa4PV6MXv2bFx66aX5v7SuX78ekiThmWeewWWXXYZJkyZh2rRp+fNvvfVWLFiwAF6vFy0tLbj88svR2dnZ5zW2bNmCc845B5MnT4bP58O0adNw3nnnoaurK3/Mhg0bcNJJJ6G2thahUAiHHnoovvvd7w47fjvnZTIZXHfddTjooIPg9Xoxffp0fPvb3y74lqi7774bxxxzDAKBAOrq6nDKKafgscceAwDMmjULb7/9Np555hlIkgRJknDqqacCGHxP9AceeABLliyB3+9HY2MjvvCFL2D37t19jlmxYgVCoRB2796Ns88+G6FQCE1NTfjmN785bKAMAA8//DDOPPPMfA3nzp2LG264oc+5p556Kh555BF88MEH+bEPtbXJihUr8sf1v11//fXDjmm48WazWVx22WX5xyRJwqWXXopdu3bhhRdeGPL8cDiM+vp6W6/V0tJi+6/mRERjmRmkA8bvPV3Xqxqgm3o3etVu8Exm422uWHO5XFVruE1m4+1yufIr2KrZcJt6ByHVDkBMrIeF9TCwHhbWw8J6GFgPC+thGQ3zKzuqO+skIqqiPXv24JhjjkFnZycuvvhizJs3D7t378aDDz6IZDLZ5xfDZZddhqamJlx77bX5lejXX3891qxZg+XLl+PSSy/F5s2bcdttt+Gll17C888/D7fbDVVVcfrppyOTyeCrX/0qJk+ejN27d+OPf/wjOjs7UVNTg7fffhtnnXUWFi9ejLVr18Lr9eK9997D888/P+T47Zyn6zo++clP4rnnnsPFF1+M+fPn480338TNN9+Md999Fw899FD+2DVr1uD666/HCSecgLVr18Lj8eDFF1/Ek08+iY9+9KO45ZZb8NWvfhWhUAhXX301AKC5uXnQ8a1fvx4rV67E0qVLsW7dOuzduxc/+9nP8Pzzz+O1115DbW1t/lhN03D66afj2GOPxY9//GM8/vjj+MlPfoK5c+fi0ksvHfLnsH79eoRCIaxatQqhUAhPPvkkrr32WsRiMdx0000AjO1Turq6sGvXLtx8880AgFAoNOhzfuUrX8Hy5cv7PPboo4/innvuwaRJk/KPtbe3Dzk2Uzgczv+Sf+211xAMBjF//vw+xxxzzDH5r5900km2npeIiIiIiIiIRh5DdCIat1avXo22tja8+OKLOProo/OPr127FkKIPsfW19fjiSeegKIoAID9+/dj3bp1+OhHP4o///nP+b8Gz5s3D1dccQXuvvturFy5Ehs3bsS2bdvwwAMP4F/+5V/yz3fttdfmP9+wYQNUVcWf//xnNDY22h6/nfPuvfdePP7443jmmWf6BLMLFy7EJZdcgr/97W844YQT8N5772Ht2rX49Kc/jQcffLDPX7fNn8XZZ5+Na665Jr+ifCjZbBbf+c53sHDhQjz77LPw+XwAgJNOOglnnXUWbr75ZqxZsyZ/fDqdxuc+9zl873vfAwBccsklOOqoo/Cb3/xm2BD93nvvhd/vz9+/5JJLcMkll+DWW2/F97//fXi9Xpx22mmYOnUqOjo6hh07ABx//PE4/vjj8/ffe+89XHHFFTjttNPwla98Jf94U1PTsM8FAHfeeSdWrFgBwLgwaHNzMyRJ6nPMlClTABh/3CEiouKYe6ADxmqlbDabf1dZNVej936LMYD8Hu3VXC1lrljzeDyIRCKIRqOIRqNVXb1m7pmay+XQ2NiIWCyG9vb2qq9e6/0WfACIxWIAUNXVhKyHhfUwsB4W1sPCehhYDwvrYRkN8ys7uJ0LEY1Luq7joYcewic+8Yk+Abqpf8B50UUX5QN0AHj88cehqiquvPLKPr/ALrroIkQiETzyyCMAgJqaGgDAX/7yFySTyYJjMVdkP/zwwwOuvj0UO+c98MADmD9/PubNm4f29vb87cMf/jAA4KmnngIAPPTQQ9B1Hddee+2AX8j9fxZ2vPzyy9i3bx8uu+yyfIAOAGeeeSbmzZuX//n0dskll/S5f/LJJ+P9998f9rV6B+jxeBzt7e04+eSTkUwmsWnTpqLH3l8ikcCnP/1p1NXV4be//W2f/w42bNhg63b66afnz0mlUgV/2Zs/p1QqVfaYiYgmkkIXES10sdFK679H52AXw6qk/hcd83q9BS9OVkn9Lzrm9XoLXpys0vrvYTvYxeIqifWwsB4G1sPCelhYDwPrYWE9LKNhfmX3580QnYjGpf379yMWi2HhwoW2jp89e3af+x988AEA4NBDD+3zuMfjwZw5c/Jfnz17NlatWoX//u//RmNjI04//XT88pe/7LMf+uc+9zmceOKJ+Ld/+zc0NzfjvPPOw/333z/sP9R2ztuyZQvefvttNDU19bkdcsghAIB9+/YBALZu3QpZlnHYYYfZ+nkMZ7CfD2Cs1je/bvL5fANWddfV1aGjo2PY13r77bfx6U9/GjU1NYhEImhqasqvNu/9cy7VRRddhK1bt+L3v/89Ghoa+nxt+fLltm7mKnPACP0L/bJPp9P5rxMRkT2FAnSg8MVGK2mwi1xVs9Hr33CbfxTvf3GySjbe/Rtuc5Va/4uTVbrxHuwicNUMQlgPC+thYD0srIeF9TCwHhbWwzIa5le5XA7ZbNbWsQzRiYhQXrD5k5/8BG+88Qa++93vIpVK4Wtf+xoWLFiAXbt25Z/72WefxeOPP44vfvGLeOONN/C5z30Op5122pAX1rRznq7rWLRo0aArpHtf3HIk9V7dXYzOzk4sW7YM//znP7F27Vr84Q9/wIYNG3DjjTcCsP8X48H87Gc/w29/+1v813/9F4444ogBX29ra7N16726fMqUKWhraxuwZVBraysA42KgREQ0PCFEwQDdVK0gfbAGz1SNRm+whttUjcZ7sIbbVK3Ge7AAxFSNIIT1sLAeBtbDwnpYWA8D62FhPSyjYX6Vy+WK+v4YohPRuNTU1IRIJIK33nqrpPNnzpwJANi8eXOfx1VVxbZt2/JfNy1atAjXXHMNnn32Wfz1r3/F7t27cfvtt+e/LssyPvKRj+CnP/0pNm7ciP/4j//Ak08+md9uZTDDnTd37lwcOHAAH/nIRwqukDZXis+dOxe6rmPjxo1Dvp7drV0G+/mYj/X/+ZTq6aefRjQaxfr16/H1r38dZ511FpYvX466uroBxxa7Lc1f//pXfPOb38SVV16Jf/3Xfy14zJQpU2zd7rvvvvw5RxxxBJLJJN55550+z/Xiiy/mv05ERMNTVXXQAN1U6SB9uAbP1LvRc7rZHK7hNlWy8R6u4TZVuvEeLgAxVTIIYT0srIeB9bCwHhbWw8B6WFgPSynzK6eDdHPOJkmS7f3fGaIT0bgkyzLOPvts/OEPf8DLL7884Ov9Vwn3t3z5cng8Hvznf/5nn2N/85vfoKurC2eeeSYA4wIk/Rv2RYsWQZbl/D/yBw4cGPD8ZpA61C8CO+d99rOfxe7du/Ff//VfA45NpVJIJBIAjIuGyrKMtWvXDvgl3Pv7CwaD6OzsHHRMpqOPPhqTJk3C7bff3ud7+POf/4x33nkn//Mpl7mCvfcYVVXFrbfeOuDYYDBoe3uX1tZWfPazn8VJJ52Em266adDjStkT/VOf+hTcbnefMQohcPvtt2Pq1Kk44YQT+oxj06ZNtt8+RkQ00QwVoJsqFaTbbfBMZqOnaZpjY7DbcJsq0XjbbbhNlWq87QYgpkoEIayHhfUwsB4W1sPCehhYDwvrYSl1fuVkkN47QDfnkHZU71L2RERV9oMf/ACPPfYYli1bhosvvhjz589Ha2srHnjgATz33HP5C3cW0tTUhNWrV2PNmjU444wz8MlPfhKbN2/GrbfeiqVLl+b35H7yySdxxRVX4Nxzz8UhhxyCXC6Hu+66C4qi4JxzzgEArF27Fs8++yzOPPNMzJw5E/v27cOtt96KadOm4aSTThp0DHbO++IXv4j7778fl1xyCZ566imceOKJ0DQNmzZtwv3334+//OUvOProo3HQQQfh6quvxg033ICTTz4Zn/nMZ+D1evHSSy+hpaUF69atAwAsWbIEt912G77//e/joIMOwqRJk/IXKe3N7XbjxhtvxMqVK7Fs2TKcf/752Lt3L372s59h1qxZ+MY3vlFq2fo44YQTUFdXhwsuuABf+9rXIEkS7rrrroJ/BFmyZAnuu+8+rFq1CkuXLkUoFMInPvGJgs/7ta99Dfv378e3v/1t/O53v+vztcWLF2Px4sUAjD+mFGvatGm48sorcdNNNyGbzWLp0qV46KGH8Ne//hX33HNPn61tVq9ejf/5n//Btm3bMGvWrPzj3//+9wEY+8EDwF133YXnnnsOAHDNNdfkj3vjjTfwf//3fwCA9957D11dXflzDz/88EG/fyKiscDtdg8boJvMID2TyeSbPLvnFlJsg2fyer0QQkDXdSQSCdsrmwoptuE2mY13e3s7otFoUef2V2zDbTIb72g0ivb29qLOLaTYAMRkHhuLxfrcLwXrYWE9DKyHhfWwsB4G1sPCeljKmV8ByC9SKObc/voH6MX8TBmiE9G4NXXqVLz44ov43ve+h3vuuQexWAxTp07Fxz72MQQCgWHPv/7669HU1IRf/OIX+MY3voH6+npcfPHF+MEPfgC32w3ACCpPP/10/OEPf8Du3bsRCARw+OGH489//jOOO+44AMAnP/lJbN++HXfccUf+F8+yZcuwZs0a1NTUDPr6ds6TZRkPPfQQbr75Zvy///f/8Pvf/x6BQABz5szB17/+9fwFRgEjlJ89ezZ+/vOf4+qrr0YgEMDixYvxxS9+MX/Mtddeiw8++AA/+tGPEI/HsWzZsoIhOgCsWLECgUAAP/zhD/Gd73wHwWAQn/70p3HjjTcO+QeKYjQ0NOCPf/wj/v3f/x3XXHMN6urq8IUvfAEf+chH+qz+BoDLLrsMr7/+Ou68807cfPPNmDlz5qAh8v79+6FpGlatWjXga9ddd10+RC/VD3/4Q9TV1eFXv/oV1q9fj4MPPhh33303Pv/5z9s6/3vf+16f+3fccUf+894h+quvvjrgWPP+BRdcwBCdiMa0YhtFp4L0Uhs8k8fjgaqq6O7uhsvlKqnxLrXh7j2GchvvUhtuk1ONd6kBiMmJIIT1sLAeBtbDwnpYWA8D62FhPSzlzq+cCNLLCdABQBLD7WlARERERERUJbFYDDU1NbjuuusQCoWKPl/X9SEvSDqUchs88/V1XUckEkEymSy6eS+34XbiucptuJ16rnIDECeei/WwsB4G1sPCelhYDwPrYZlI9VBVFa2trZBlueDYnJhflftcQwXo3d3dWLNmDbq6uhCJRAZ9Du6JTkRERERE40ape6Q72eABxrU6it1T1cmGGyhtT1UnG26g9D1VnQxAgNL2uGU9LKyHgfWwsB4W1sPAelhYD4vT86tS9kgvdwW6iSE6ERERERE5Yt26dVi6dCnC4TAmTZqEs88+G5s3b676OIoN0p1u8EzFNN5ON9ymYhpvpxtuU7GNt9MBiIn1MLAeFtbDwnoYWA8L62FhPQzF1qNS86tignSnAnSAIToRERERETnkmWeeweWXX46///3v2LBhA7LZLD760Y8ikUhUfSx2g/RKNXgmO413pRpuk53Gu1INt8lu412pAMTEehhYDwvrYWE9DKyHhfWwsB4Gu/Wo9PzKTpDuZIAOMEQnIiIiIiKHPProo1ixYgUWLFiAww8/HOvXr8eOHTvwyiuvjMh4hgvSK93gmYZqvCvdcJuGarwr3XCbhmu8Kx2AmFgPA+thYT0srIeB9bCwHhbWw9C/Htlsts/XqzW/GipIdzpABxiiExERERFRhXR1dQEA6uvrBz0mk8kgFov1uTlpsCC9Wg2eqVDjXa2G21So8a5Ww20aLAipVgBiYj0MrIeF9bCwHgbWw8J6WFgPQ+96dHR05MP8as+vCgXplQjQAUASQghHnmmc0nUde/bsQTgchiRJIz0cIiIiIhrHhBCIx+NoaWmpeANWabqu45Of/CQ6Ozvx3HPPDXrc9ddfjzVr1gx4/LrrrkMoFHJ0PJlMBkIISJIEXdcr0uCZjeyUKVMKNrBms+/z+ZDJZKrWcPdmNvsulwuA0WxWo+HurXez7/V6kU6nqxaA9MZ6GFgPC+thYT0MrIeF9bCwHgZd17Fv3z7E4/GKzq+GY4b3sizn53p2A/Tu7m6sWbMGXV1diEQigx7ncnLA49GePXswffr0kR4GEREREU0gO3fuxLRp00Z6GGW5/PLL8dZbbw0ZoAPA6tWrsWrVqvz9WCxWkfm3uSI9lUpBCJG/X23hcBiqqiKdTgNA1RtuwFjB1tDQgPb2dgCoesMNWCvYWltbkU6n4fP5qh6AAKyHifWwsB4W1sPAelhYDwvrYZBlGbW1tYjH49B1fcTmV16vN7+QAQB8Pp/j9WCIPgzzf8Rvf/Mb8PuN/wjMtfuNETfcrvJXpwsh0JnQkM0ZT+x2SagNKlVf+Z5Ia0ikjf/YJAmoDShwu6v7D0A2q6MzqeV/xkGfjKBPqeoYWA8L62FhPQysh4X1sLAeBtbDwnpYBqtHNifQHsvmHzelUhn86Mc3j0gz6KQrrrgCf/zjH/Hss88O+8cAr9dbtWar956dQoj8242rSVXVPvt2JhKJqtdb1/U+2+bEYrERaf57X3A2k8lAVdWqN/+sh4X1MLAeFtbDwnoYWA8L62FJpVL5z0dqfpXL5dB7sxXznQpOYog+DLPR8vu9CAUDAABdF9AFEAm74SkzRNeFQDSmweMVaGk0msv2uIaskNAQViBXqdGLJzUIWcfkBhlBv4xoTIOqCUR8CjxVarzVrI5EVkNNWEJDREEipSOW0iErMsKB6jTerIeF9bCwHgbWw8J6WFgPA+thYT0sQ9XDL0lIZF2QJUCWB45nrG4jKITAV7/6Vfz+97/H008/jdmzZ4/0kPJ679HpdrvzTTeAqjV6/fdMTSQS+ea3Wo1377fBNzU1AQDa29sRjUar2nj33sM2GAwiGo2ivb29qqvoWA8L62FgPSysh4X1MLAeFtbDEo/H0d3dDVmW4Xa7oapq1edXvfdA9/l8yGaz+WvgOBmkj+2NFsc4s8HLagKNYaO59bhlNIYVZDXja3oVtqyPJzXEUjoifqO5lSWj6XUrEtrjGtSsPvyTlEnN6miPa3ArxmvLkoRwQEHELyOW0hFPahUfA+thYT0srIeB9bCwHhbWw8B6WFgPy3D1MFfIjzeXX3457r77btx7770Ih8Noa2tDW1tbnxVKI6H/Ra4Gu9hoJRW66Fihi5NVUqGLjhW6OFml9b8I3GAXi6sk1sPCehhYDwvrYWE9DKyHhfWwmPUIhUJwuVz5fcirOb8qdBHRQhcbdQJD9BFSqMEzVbPR69/gmarZeBdquE3VarxZDwvrYWE9DKyHhfWwsB4G1sPCeljs1KOjW4Ouj78g/bbbbkNXVxdOPfVUTJkyJX+77777RmxM/QN0UzWD9EINt6lajXehhttUzca7fwBiqmYQwnpYWA8D62FhPSysh4H1sLAelv7vCDBVc35VKEA3VSJIZ4g+AoZq8EzVaPQGa/BM1Wi8h2q4TZVuvFkPC+thYT0MrIeF9bCwHgbWw8J6WOzWw6UAOR3QxlmQLoQoeFuxYsWIjGewAN1UjUZvqIbbVOnGe6iG21SNxnuwAMRUjSCE9bCwHgbWw8J6WFgPA+thYT0sdupR6fnVUAG6yekgnSF6ldlp8EyVbPSGa/BMlWy87TTcpko13qyHhfWwsB4G1sPCelhYDwPrYWE9LMXUozakQAKg5oCcVvm3205EwwXopko2enYablOlGm87Dbepko33cA23qZJBCOthYT0MrIeF9bCwHgbWw8J6WIqpR6XmV3YCdJOTQTpDdJuyDtS6mAbPVIlGz26DZ6pE411Mw21yuvFmPSysh4X1MLAeFtbDwnoYWA8L62EppR6KDCNIzzJId5rdAN1UiUYvm83abrhNTjfexTTcpko03nYbblMlgpBiAhAT62FgPSysh4X1MLAeFtbDwnoYKjG/KiZANzkVpDNEt0kXQKaMZrOUBs/kZKNXbINncrLxLqXhNjnVeLMeFtbDwnoYWA8L62FhPQysh4X1sJRcD1mC1w1IEoN0JxUboJucbPR0XUdHR0dRDbfJqca7lIbb5GTjXWzDbXIyCCklADGxHgbWw8J6WFgPA+thYT0srIfByflVKQG6yYkgnSG6TbIE5LTSgvRyGjyTE41eqQ2eyYnGu5yG21Ru4816WFgPC+thYD0srIeF9TCwHhbWw1JuPSSpb5Bewes/jTmihHqUGqCbnGj0NE3Lj6HYhttUbuNdTsNtcqLxLrXhNjkRhJQTgJhYDwPrYWE9LKyHgfWwsB4W1sPgxPyqnADdVG6QzhDdJrcLxgWgNEDN2Z/QO9Hgmcpp9Mpt8EzlNN5ONNymUhtv1sPCelhYDwPrYWE9LKyHgfWwsB4Wx+ohy/kgPev8NVfHLFVVi2r0yg3QTeU0er0bvNra2pIaPFOpjbcTDbepnMa73IbbVE4Q4kQAYmI9DKyHhfWwsB4G1sPCelhYD4NT86tSA3RTOUE6Q/QieN0yXAqg6UBOG77BcrLBM5XS6DnV4JlKabydbLhNxTberIeF9bCwHgbWw8J6WFgPA+thYT0sjtejJ0invjKZjK1Gz6kA3VRKo9e7wVMUpawGz1Rs4+1kw20qpfF2quE2lRKEOBmAmFgPA+thYT0srIeB9bCwHhbWw1Du/KrcAN1UapDOEL1IXrcMRTbeaptID97oVaLBMxXT6Dnd4JmKabwr0XCb7DberIeF9bCwHgbWw8J6WFgPA+thYT0sFauHLMPjcuzpxjy32w0hxLBButMBuqmYRq8SDZ7JbuNdiYbbVEzj7XTDbSomCKlEAGJiPQysh4X1sLAeBtbDwnpYWA/DaJlf9Q7Ss9msrXM4TbdJCEDXjWbKpQBZAcSSGiCAoF/pd6xAR7eGnCZQF1QASSpqCxhbJAk1fhkdCQ37OgXqQgqkfs1sIqWhO60j5JPh9cjOjwFAJCCjo1vDvq4c6oIK3P2a2WxWR0dCg0uREAnIyGkA4Ow4vB4ZAU2gM2H8zFkP1oP1sLAeFtajB+uRx3pYWI8eVaxHNicghIAOANwHvSBZluHxeKCqKjKZTMHmqVIBeu8xeL1eZDKZfNPtcvVtofo3eEBp+7kPxWxeY7FYn/umSjbcJrPxbm9vRzQaLRguVKrhNplBSDQaRXt7e8HvtZIBiIn1MLAeFtbDwnoYWA8L62FhPQylzK8qUQ9z3pZOp20dzxDdJgGgJ0OHLgBZBgJeGaomIFJGUwkYYbuaE5AlIORToAlAUyvXGYV8CtScjlhSh8clwezzcppAVhMI+mQoioR0Bcfg72kgExkdHs342QDGan01p8PrluFxSchkBZxuuE2KIiHoYz0A1qM31sPAelhYDwvrYWA9LKyHpRr1yGkCugD6r+evzE927DIbqkJBeqUDdNNQjV6hBq+UC3bZMVjjXY2G2zRU413phts0VBBSjQDExHoYWA8L62FhPQysh4X1sLAehmLnV5Xi9XqRTCZtHcsQ3aamiBuRsLFRZTYnkMnq+PjSGtQEnXsLLxERERFNDF0JDX96qQtetwy3y4rSY3H7F1maKAoF6dlstioBuqlQo2eOqRoNnql/4x0MBqvWcJsKNd6JRKIqDbepUBACoGoBiIn1MLAeFtbDwnoYWA8L62FhPQyjZX7ldtu7MBFDdJvcLgmeXg2OpkuoCSqoD/NHSERERETFcynSgDlm70CdLL2D9FQqlX+sGgG6qXejZ16EynysGg2eqXfjHYvFIElS1RpuU+/Gu7W1FQCq1nCbegch+/fvz4+rWgGIifUwsB4W1sPCehhYDwvrYWE9DKNlfmXH6BrNEK6//npIktTnNm/evCHPeeCBBzBv3jz4fD4sWrQIf/rTn6o0WiIiIiIicpLL5eqzR73dVUNOkmW5z+u63e4RafCCwWD+c6/XW9WG2+TxePr8EaP3mKpFlmVEIpH8/UgkwnoUGFO1sB4W1sPCehhYDwvrYWE9DKNlfjWc0TeiISxYsACtra3523PPPTfosX/7299w/vnn48ILL8Rrr72Gs88+G2effTbeeuutKo6YiIiIiIickMlkoOs6ZFmGJEn5+9XUe49OSZKgqipyuepuwWPumSpJEnw+H9LpNOLxeFXHABh7pqbTafh8PkiShGg0WvV6qKqKaDQKt9sNt9uNaDTa5+3g1cB6WFgPC+thYD0srIeF9TCwHpbRML+yY0yF6C6XC5MnT87fzL2LCvnZz36GM844A9/61rcwf/583HDDDTjqqKPwi1/8YsjXyGQy+bdSmDciIiIiIho5vS8i6vf74fF4IISoapDeu8Hz+Xz5ZrOajV7/i441NDQgEokgFotVtfHufdGxhoYGNDY2IpvNVrXx7n0RuMbGRjQ2NsLtdqO9vb1qQQjrYWE9LKyHgfWwsB4W1sPAelhGw/xKCGHruDEVom/ZsgUtLS2YM2cO/vVf/xU7duwY9NgXXngBy5cv7/PY6aefjhdeeGHI11i3bh1qamryt+nTpxc8zubPl4iIiIiIytA7QDffbuxyuaoapPdu8Mw9Os39OqvV6PVvuM23fIfD4ao23r0bbnPPVHNP1Wo13r0DEHMPW3OP22oFIayHhfWwsB4G1sPCelhYDwPrYRkt8yu7NR8zIfqxxx6L9evX49FHH8Vtt92Gbdu24eSTTx70P6y2tjY0Nzf3eay5uRltbW1Dvs7q1avR1dWVv+3cuXPAMUIIqDmm6ERERERElVQoQDdVK0gv1OCZqtXoDdZwm6rVeBdquE3VarwLBSCmagUhrIeF9bCwHgbWw8J6WFgPA+thGS3zK/NipnaMmRD9Yx/7GM4991wsXrwYp59+Ov70pz+hs7MT999/v6Ov4/V6EYlE+tx604VAR7dme6k/EREREZFd2Wx196AczbLZ7KABuqnSQfpQDZ6pf6OnaZqjYxiu4TZVuvEequE2VbrxHioAMVU6CGE9LKyHhfUwsB4W1sPCehhYD0sp8yung3QzQBdC2L5Y/ZgJ0furra3FIYccgvfee6/g1ydPnoy9e/f2eWzv3r2YPHlyya+pC4FoTENOE/C4xuyPjoiIiIhGITWrozPpbAA7lum6PmSAbqpUkG6nwTP1b/ScGoPdhttUqcbbTsNtqlTjbScAMVUqCGE9LKyHhfUwsB4W1sPCehhYD0s58yungvTeAbrH4xlyDH3G48irj4Du7m5s3boVU6ZMKfj1448/Hk888USfxzZs2IDjjz++pNcTPQF6VhOoCyqw+fMlIiIiIhqWmtXRHtfgUqSRHsqoYTZOdjgdpBfT4PUfryRJyOVyyGazZY2h2Ibb5HTjXUzDbXK68S4mADE5HYSwHhbWw8J6GFgPC+thYT0MrIel3PmVE0F6/wDd5XLZPnfMRMHf/OY38cwzz2D79u3429/+hk9/+tNQFAXnn38+AOBLX/oSVq9enT/+61//Oh599FH85Cc/waZNm3D99dfj5ZdfxhVXXFHS63cmjAC9MazA7R4zPzYiIiIiGuXMAN2tSKgNKiM9nFHD7ltrTU4F6aU0eKbejV5HR0fJjXepDbfJqca7lIbb5FTjXUoAYnIqCGE9LKyHhfUwsB4W1sPCehhYD4tT86tygvRyAnRgDIXou3btwvnnn49DDz0Un/3sZ9HQ0IC///3vaGpqAgDs2LEDra2t+eNPOOEE3Hvvvfj1r3+Nww8/HA8++CAeeughLFy4sKTXz/UE6B4G6ERERETkkGyvAL0hokCSuBK9HOUG6eU0eCZJkqAoClwuV0mNd7kNt6ncxruchttUbuNdTgBiKjcIYT0srIeF9TCwHhbWw8J6GFgPixPzq3KD9HIDdAAo/owR8rvf/W7Irz/99NMDHjv33HNx7rnnOvL6tQEG6ERERETkHF0HYmkNXreMhogCmQG6I8ymSFVVZDIZ282aEw2eSZZl1NbWIh6Po7293Xbz7FTDbTKb5Vgs1uf+cJxouE1m493e3o5oNGo7zHAiADGZQUg0GmU9WI881sPAelhYDwvrYWA9LKXWw+n5ldfrRSaTyf9Rw04Y7kSADoyhlegjjVu4EBEREZGT1JwOV88KdAbozip2RbqTDZ6p2BVsTjfcpmJXsDnZcJuKXcHmZABiYj0srIeF9TCwHhbWw8J6GFgPS7H1qNT8qpgV6U4F6ABDdCIiIiKiESFJEupCDNArxW6QXokGz2S38a5Uw22y23hXouE22W28KxGAmFgPC+thYT0MrIeF9bCwHgbWw2K3HpWeX9kJ0p0M0AGG6EREREREI8LjkrgHeoUNF6RXssEzDdd4V7rhNg3XeFey4TYN13hXMgAxsR4W1sPCehhYDwvrYWE9DKyHZbh6VGt+NVSQ7nSADoyhPdFHmtrZjUzG+B8kKyTkdAnRv+1GzqWN8MiqQYIkA5IkA7IESBKkno/m55IkAZIMyMaqKshy36/1+tj7fPNYSYLxfLIMSZIgKRIkRYHksm6y+TmbTSIiIkcJXYfIadBzWp+P0HQIXUAIAejG5xDGzfzc+FrPx/znvY7VrWPM8/rcFzqgA0IICF03zpkAunIKtO46qEkBIVnfs5oq7qJVNLzB9kivRoNnGmxP1Wo13KbB9lStRsNtGmxP1WoEICbWw8J6WFgPA+thYT0srIeB9bD0rkdnZyd0XR+R+VWhPdIrEaADDNFtE2oWumyEtwISdChQ27uQQXaERzbBSICkyJBdLkguGZLLNSBklz0uyD43FJ8Xss8DxeeB7PcaH13KSH8HREREFaGrWWhpFVpKhZ4xPmrpDPRMFiKbg8j2hOOaBj1rhOT5mzb0fobkPBVu6IhAQIMOK0QXKueWldA/SHe73VVr8Ez9G++GhgbEYrGqNdym/o23+Xk1Gm5T/yAkEokgGo1WJQAxsR4W1sPCehhYDwvrYWE9DKyHxazHvn37oGnGIuNcLlf1+VX/ID2bzToeoAMM0WmsEYDI6dBypa3SktyKEab7PFD8Hito93sge71Qgl64wwHIbv6vQUREo4OWVpGLJ6GlMlZIns5AT6nQMuZ9lUE40TDMJiqTySCTyVS1wTOZjXd7ezva29sBAE1NTVVruE39G+9qNtwms/Hev39/1VYQ9sd6WFgPC+thYD0srIeF9TCwHhaPx4O6ujrs2bMH2Wx2xOZXXq8X6XQamUwGAOD1eh0N0AGG6DTBiKyGXDYFxFNDHqf4PXBFgnBFAnCHA3BFAnCFg3CF/dxOhoiIHKdrOnKxJHLxBHKxJLKxBHLxJHKxJHR16CvOExERERERUWUxRCcqQEsZK/syezv6PC55XPDUh+FpiMBTH4GnIQJX0D9CoyQiorFI6AK5eAJqNGbcDsSQ7ejmSnKifoQQAy5UVQ5N0/JbuJjbuaTTaXg8HkdXS+m6DiEEstmBW/MIIdDR0YFcLofa2lp0d3dj3759qKurg9vtdmwMw0kkEuju7kYoFAIAdHZ2IpfLIRgMVm0M2WwWHR0dcLlcCIVC6OzszP8sqrVohfWwsB4W1sPAelhYDwvrYWA9LObFRQHjXX+5XK4i86uh6LoOVVXzW7hks9n8nuiKMvy2zsLmNZkYohMVQag5ZNo6kGmzwnXF7zEC9cYaeFsa4KkLc7U6ERHl6ZoOdX8n0m0HoLZ3QT0Qg8hOhAuTE5XHyRBd13XkcjnIsgyXy5UP0nO5HLLZbP4xp15LCIFMJpPfHxQwvh9VVSHLMkKhEHRdh9/vh6qqSCQSVWs2ze85GAzmG8tgMJhvPp1+63MhZrPr9XrzF2QLhUJQVRWxWAwej6fi82nWw8J6WFgPA+thYT0srIeB9bD0roe5lUul5leDEUIglzPeuet2uweMQQgxbD0YohNViZZSkdrdjtTuduCfW6H4PfBOroevpRG+yfVQfNXdE4uIiEZetjuJ9J4oMnuiSO/rYGhOVIKmpiZEIpGyn8dcseb3+wesUuu9ms2pFWzm6qePf/zjqKmpKfv5iIiIiEazrq4u/OlPf4LX64Xb7a7I/KqQ3u8I6P8ugKG+1l/vi7MOhSG6TbLfCyXgBQDoOiBrEgJTJiPomQBvvRYCQsD4xoWA0AUgBKALiD739Z7jBIQwjwUgdOuYnuOF6P0cOjCOfoxaSkVyWxuS29oACfDUReBraUBgZjPctaGRHh4REVWAEAKZfR1I7diPdGs7csNce2NMkyVjItz/oyRBko2PkGRIcu/7Az83z+3zNVmGJMH4fJzLqTK03R7ApaP3u0zlCfC92+V2u8u+QJeqqujq6oLX6y140TGPxwO324329nbEYjHHLkymaRpqampQX19f9nMRERERjXYulys/d6vU/Ko3XdcRjUah6zomTZpUcM44adIkRKNRdHV1obGxcdB5pd0teBii2+QOB+AJ9+x9nRPQVB01h09BfZg/QqeInre+Qu8J2nMaRC4HPaf1fG7c8vezGnSt79dEVoOmZqGnVGgZdeRX/glAPWDsdxt7axs89WEE5kxBYOZkrlAnIhoHsrEEEttakdzWBi2RHunh9CF7XJB9Xih+D2SPC5KiQHYrkFx9b7Jr8MdklwJIMiADkiRBqtK+hhNCPAepPYqEAII1rnx47raxbyPZo6oq2tvb4Xa7h2zePB4PGhsb0d7ejmg0WpFGj4iIiGgiqeT8ygzQs9nskOG4LMtoaGhANBpFe3v7kMfawQTYpmx2HC2VHqUkWYYEAGbv6C3/Ygx6VoOWzkBPq9BSGWhpFXrPTUsbFw/V08bjIlf5GqsH4lAPxNH16hZjdfrsKfBNbYKssFEjIhorNDWL5HbjHUdqe1dVX1vyuKD4PFB8Hsg+DxQzJPd5jI9eT/6+zDB21PO4ZHSnNURjGhoiClehO8hugG5ikE5ERETkrErMr+wG6CYng3SG6DZ1JjVEwjo8bk6mxxLZrUB2B4BwYNhjNTWLXCyJXCyBbDxpfN7zUWjOBuxCF0jtakdqVztkrxuBWZMRnjcDrpDf0dchIiLnZNq7EH9nB9K79zv+e6E32eOCKxKAKxyAOxLMf+4KB4yV4TRuyDJQF1TQldLzQTqVr9gA3eRko2f3AlVERERE45mT86tiA3STU0E6Q3SbXIqE9riGxjAmxD6dE5HicUNprIG3se8FoIQQ0BJpY1uWaM/tQMyxrWL0TBbdm3eie8suBGY0I3zYLHjquHc6EdFokdrTjvjGD5DZ2+H4cyt+Dzz1EXgaInA3ROCuj8DF7b4mFLdbRqPLmGdGYxrcEsPXcpQaoJucaPSEEFBVtahziIiIiMYrJ+ZXpQboJieCdIboNtUGFWSF0eDU+LkafSKRJAmukB+ukB+BGc0AjJXkuXgiH6qnW6PlX0ROF8b2ANvb4GtpQPiwWfA11znwHRARUbGEriO5Yx/iG7cj29HtzJP2XGzaO6WuJzivgSvoc+a5aUzzuGU0hoH2uIZEZoSv5zKKJBIJ1NTUDH9gj3IDdFM5jZ6u6+jo6OBWMERERES9lDu/KidAN5UbpDNEt0mSJDSEFURjGjoSGkI+vt12IpNkCe6aENw1IQTntAAAsvEk0q1RZPZEkd7XUdZK9fSeKNJ7ovA01SB82Cz4pzZC4jsgiIgqTtc0JLbuQfc7O5DrLvOPowAUnwfeKfXwTWmAb0oDLypNgzKD9B1JrkQ3JRIJxONxhMPhYY91KkA3ldLomQ1eLpdDKMR3FRIRERH1Vs78qtwA3VQoSLeLIXoRZElCQ0TBvk4BtQoXoaSxxR0OwB0OIHzIdOiaDnV/J9J72pH8YC+0ZKak51T3dyH6zD/haYyg9qiD4W3iynQiokoQwng3UNc/t0JLpMt6LndtCIGZzfC2NMBTF+YfQck2j1tGbYALNUzBYBCxWAwAhgzSnQ7QTcU0er0bvLq6Omga31FARERE1F+p8ysnAnRT/yDd7vMyRC+SLEmoCymIJRmi0+BkRYZvcj18k+tRc8TByOw9gMT7rUjt2gdRwh9g1PYY9j32CvwzJqH2yIN5AVIiIgdl9nei89V3obbHSn4OxeeBf9ZkBGdPhqc+4uDoaKJx8yL2ecFgELIsDxmkVypAN9lp9Po3eAAYohMRERENopT5lVMBuql3kN7Z2WnrHIboJZAkCR4XV5WRPZIs5d/Gr2dzSO3Yh8S2VmT2dQBFvmM7tWMf0rvbEZo3HZHDZkH2uCszaCKiCSDXnULna+8htWNvSedLigzf1EYE50yBb0oDJO6BTOQ4MzgvFKRXOkA3DdXoFWrweFFRIiIioqEVO7+qBDNITyQS9o6vyCgmAL4zm0ohu10Izm3BpOVLMPmTJyJ06HRIruL+NxSajvjbH6DtDy+ge8suCJ3viiAiKoaezaHz9ffQ9scXSgrQFb8HNUcehCmfORmNJy+Gf2oTA3SiXp599ll84hOfQEtLCyRJwkMPPVTW84XDYUQiEcRiMcTjcQDVC9BNZqOXzWYRjUah63rVGjwiIiKi8Wg0zK9kWUZtba2tY7kSnWiEuEN+1B19KCILZ6N78050b9kFPZO1fb6WVtHxj03o3rILdccdBi+3DyAiGlZyx150vrwZWqr4laKusB/h+TMRmDMFssJ9q4kGk0gkcPjhh+PLX/4yPvOZzzjynL1XpKuqikwmU7UA3dR7xVR7ezsAIJfLMUAnIiIiKtFomF/ZvYYVQ3SiEab4PKg5fC7Ch81E4r3diG/aUdSFSLMd3dj3l5cQPmwWahbN5mpIIqICtLSKjpc2IbVjX9HneurDCB82E/7pk/hvLJENH/vYx/Cxj33M8ecNh8NQVRXptHHx32oG6CaPx4OGhoZ8k8cAnYiIiKg8Y2V+xRCdaJSQ3S6E589E6NDpSGxrReyN9+2H6bpA/K1tSO/ez1XpRET9JHfsRedLm6Gli1t97qmPoObwufC1NFRoZEQEAJlMBpmMNecx9z/vz1yBbkokEgUvNlpJuq73GV8sFhuRMJ+IiIhovBgr86vRNRoigiTLCM2dismfOAGRxXMgue1vGWCuSu96Yyv3SieiCU9Lq4g+9yaif32zqABdCXhRf8JhmHTGUgboRFWwbt061NTU5G/Tp08fcEzvPdCnTJkyYI/0aui9R2dTUxOampr67OFJRERERMUZS/OrMROir1u3DkuXLkU4HMakSZNw9tlnY/PmzUOes379ekiS1Ofm8/mqNGKi8sguBTWL5mDyWccjMGcKYPditrpA7M1t2PvoP6AeKLySi4hovEvu2Iu9j/wdyQ/sXzhUciuILJ6DyZ84AcHZLbb3xiOi8qxevRpdXV35286dO/t8vdBFRAtdbLSSCl3kqtDFsIiIiIjIntEyv0okEraOGzPbuTzzzDO4/PLLsXTpUuRyOXz3u9/FRz/6UWzcuBHBYHDQ8yKRSJ+w3amGOKcJR56HaDiugA8Nxy9A6NDp6Hp1CzJ7O2ydl98rfcEsRBZyr3Qimhi0tIrOVzYjud1+eA4JCMyegprD58IV4B/biarN6/XC6/UW/FqhAN3U+2Kjve87rVCDZ+p9MaxoNIqGBr57hYiIiGg4xc6vKrW1SzweH38h+qOPPtrn/vr16zFp0iS88sorOOWUUwY9T5IkTJ482dGxJFIasgzRqcq89RFMWr7E2Nv3lXdt7Zcuelalp3btR/3xC+Cpq+6+oURE1ZTcuQ+dL22ClrK/dYunIYLaY+bxWhI0agjBOaYpm80ikUgUDNBNlQ7Sh2rwTP0bvUiE/54QERERDaaU+VUlgvR4PI5YLDbk4uzexuzS1K6uLgBAfX39kMd1d3dj5syZmD59Oj71qU/h7bffHvL4TCaDWCzW59ZbPKmhO63DrfAt3jQyAjOaMfnM44wtXmzKdnRj36P/QNeb73OvdCIad7RMFtHn30L02TdsB+iSIqPm8LmY9NGjGaDTqKELgc6ENtLDKFt3dzdef/11vP766wCAbdu24fXXX8eOHTuKep7Ozs4hA3RTpbZ2sdPgmXq/9bijo4N/DCEiIiIqoNT5ldNbu5gBeiQSGd8huq7ruPLKK3HiiSdi4cKFgx536KGH4o477sDDDz+Mu+++G7qu44QTTsCuXbsGPWeoCxvFkxpiKR0hnwwXQ3QaQbLHjYbjF6Dx1MOh+Af/B6c3oQvE3ngf+/7yEtSO7gqPkIioOpK79mPvIy8gub3N9jme+giazziGW13RqKILgWhMGxdbBr788ss48sgjceSRRwIAVq1ahSOPPBLXXnttUc/jcrlsrzpyOkgvpsEzmY1eLpeDqtp/RwwRERHRRFDO/MrJIL13gF7MuxjHzHYuvV1++eV466238Nxzzw153PHHH4/jjz8+f/+EE07A/Pnz8atf/Qo33HBDwXNWr16NVatW5e/HYjFMnz4dibQGIeuI+GV4PTLSKlfz0sjzT22C56xadL68Gclt9gIk9UAc+/7yD0QWzkb4sJkMkIhoTNLUbFH/9gHG6nP+20ejkRmgZzWB2oAy0sMp26mnnurISuza2tqi3rbr1NYupTR4Jo/Hg7q6Ott7axIRERFNBOXOr5za2qXUAB0YgyH6FVdcgT/+8Y949tlnMW3atKLOdbvdOPLII/Hee+8NesxgFzZKpHVMbpARDihQc2N/hRCNH4rHjYYTFsI/oxmd/3jH1lYGQtPR9c+tSO3ch7rjF8BTG6rCSImInJHavR8dL9r7987kqQ+j7rgF8NTx3zsaXYQQiMZ0ZDWBxrCCVJp/4DFJUvHv/Cw3SC+nwTO53e6SziMiIiIaj5yYXzkRpJcToANjaDsXIQSuuOIK/P73v8eTTz6J2bNnF/0cmqbhzTffxJQp9veSNgV9RoBONFoFpjWh+azjEZht/0K66oE49j36D8Te2sa90olo1NPVLKJ/ewvtT//T/t7nsoSaxXMw6fSlDNBp1BEC6OjW8gG6xz1mpuajWqlbuzjR4JmcvvAVERER0Vjk5PyqnK1dyg3QgTG0Ev3yyy/Hvffei4cffhjhcBhtbcbbt2tqauD3+wEAX/rSlzB16lSsW7cOALB27Vocd9xxOOigg9DZ2YmbbroJH3zwAf7t3/6t6NcP+hig0+iXX5U+vRmdLxW7Kn0/6o8/DG6uSieiUaiU1efuuhDqj18AT11pkySiSlNzAjlNYFKNiwG6w4pdke5kg0dERERElZlflbIi3YkAHRhDIfptt90GwNhjsbc777wTK1asAADs2LGjzw+uo6MDF110Edra2lBXV4clS5bgb3/7Gw477LBqDZtoRASmN8E7qWevdJsX21MPxLD3Ue6VTkSji65m0fHKu0i+32r7HEmWEF44C5EFvHAojW5CCNQFuQK9UuwG6QzQiYiIiJxVyflVMUG6UwE6MIZCdDsXJ3r66af73L/55ptx8803V2hERKOb4nWj4cSF8M+YhM5/bIKWLmJV+q6eVek1XJVORCMntafdWH2ezNg+x10XQv1xh8FTH6ngyIic4XHJcDNAr6jhgnQG6ERERETOqsb8yk6Q7mSADoyhEJ2IShOYPgneplp0vrIZye17bZ2jRmPY++d/ILJ4DsLzZnAlJxFVla5m0fHqFiS37rF/kiwhsmAWIgu5+pzGDv6nWh2DBekM0ImIiIicVc351VBButMBOsAQnWhCUHweNJy4CP7pk9D50mb7q9Jfew+pnftQfxxXpRNRdZS0+rw2hLrjD4OXq8+JaBD9g/RgMMgAnYiIiMghuVwOQoiqz68KBemJRMLxAB1giE40oQRmNMM7qQ4dL21Casc+W+eo7b1Xpc+EJEsVHiURTUS6mkXnq1uQKHL1efgwY/W5rHBJLxENrXeQHovFIEkSA3QiIiIiB2SzWezbtw+KolR9ftU7SG9tNa6l5XSADjBEJ5pwFJ8HjScvRnLHXnS+tAlaOjvsOdaq9J690iPBKoyUiCaK9J4oDvzjHWiJtO1z3LVB1B2/gKvPiagowWAwvxrd6/UyQCciIiJy0EjNrzweD7xeL9Jpo6cMBp3Prbhsi2iCCsxoRvOZx8M/Y5Ltc9T2Luz904uIbdwOoesVHB0RTQS6msWBFzdi/1Ov2Q/QZSC8YBYmnXEsA3QiKoq5R6ckSfD5fEin04jH4yM9LCIiIqIxT5KkfIg9EvOreDyOdDoNn88HSZIQjUahO5xbcSU60QSWX5X+QRs6Xt4MvYhV6cltrag98hD4WhqqMFIiGk+EriOxdQ9ib7xv6xoNJndN0Nj7vKGmgqMjovGo0EWuzAtOAXD87b5EREREE4nH40EgEEAmk6n6/Kr/RURVVS14sdFyMUQnIgRmToanuR6d/3gHqZ37bZ2T7Uxg/1OvwdfSiNqjDoa7hlu8ENHw0q1RdL66BdnObvsnyUB4/ixEFs2GrCiVGxwRjUuFAnRg4MVGGaQTERERlcYMqqs9v+ofoAOFLzbqRJDOEJ2IAAAunweNpxyOxPY2dL68GXpm+FXpAJDe0462tihCB01DZNFsKD7uLUpEA2W7Euh8bQvSu9uLOs9VE0T9cYfB28jV5zT+5DQx0kMY9wYL0E0M0omIiIicVa35VaEA3VSJIJ0hOhH1EZw1Gd7mOnS+tMn2qnToAt3v7kRyeysiC2cjeMh0yAovuUBEgJZWEXtrG7q37AL0IgJDrj6nCSCrCSRSGjxhTskrYbgA3cQgnYiIiMhZlZ5fDRWgm5wO0jljt0kIrhSiicPl95a0Kl1Xc+h8dQvi73yA0LwZCB08DbKb/8wQTUS5RBrxTR8gsXUPRFYr6lyuPqeJwq1I6E7rcCkawgH+schJdgN0E4N0IiIiImdVan5lJ0A3ORmkM92yqTOhIRIWkCVppIdCVDUlrUoHoKVUdL32HuJvb0fwkGkIHToDLm7zQjQhZLu6Edv4AVLb2yCKWXkOGKvP581EZPEcrj6nCcGlSAj5ZMRSOgAwSHdIsQG6iUE6ERERkbOcnl8VE6CbnArSGaLblNMEojENDRE2NzSxmKvSkzv3oeu1LcjFU7bP1dUc4m9tR/c7OxCc24LQ/Jlwh/wVHC0RjZRMexfib29Havd+oIQ3b3kn1aJmySHw1kecHxzRKBb0K3Apej5Ip/KUGqCbnGr0crlcSecRERERjTdOza9KCdBNTgTpDNFtqg0oUHuC9EiAez3TxBOYPgm+lkZ0v7sTsbe2Qaj2m0Oh6eh+dxe639sF/9QmBGZPgX9qIyQHro5MRCNHV7NI7tiHxPt7oO7vKuk5XGE/ao44CIEZzQ6PjmjsMFegx1I6JL247Y/Gs2zW3nZypnIDdFO5jV4ikSh67ERERETjWbnzq3ICdFO5QTpDdJvcbhkRn4L2uIaObg1+D8M/mnhkRUZk/kwEZ09B7M330f3eLqCYhXM6kNq5H6md+yH73AjMmIzAnMnwNnDfY6KxQug60q0HkNzWitSu/RBaaatnJY8LkQWzEDp0Bi9ETAQrSG+LckW6qbOzE5FIxFYY7lSAbiq10YvH4+ju7kYwGCzr9YmIiIjGm3LmV+UG6KZCQbpdDNGL4HHLaAwD+7pyUHO80ChNXIrPg7ql8xA6ZBo6X92C9J5o0c+hp7Pofncnut/dCVdNEME5UxCY0QwXt3shGpUyB2JIbW9DcnsbtJRa+hPJQOigaYgsmgOF10og6iMcUBBP8I9KJpfLhfb29mFDcacDdFOxjZ7Z4IVCISi8rgMRERHRAKXOr5wI0E39g3S3223rPIboRfK4ZdQFFSQyXCVE5K4JoelDRyK9J4qut94veTuHXFcCXa+9h67X3oMrEoCvpQG+KQ3wTqqD7GITSjQStLSKdNsBpFujyLRGywvOAUAG/NOaUbN4Ntw1IWcGSTQOBX38vWeqra1FNpsdMkivVIBustvo9W7wvF4v0um0o+MgIiIiGi9KmV85fcH33kF6IpGwdQ5D9BK43TI83K6SKM/X0gBfSwPS+zoQ3/gB0nvaS7qwIADkYkl0x5Lo3rQTkiLDM6kW/imN8E6ug7smyH3UiSpEz2nIdsSQbjWCczUaK/n/494kRUZwzhSE5s2EOxIo/wmJaMKQJAkNDQ2IRqMFg/RKB+im4Rq9/g2eqpb5R0ciIiKica7Y+VUlmEH6jh07bB3PEL1EzPGIBvJNqoNvUh3Uzm7EN25H8oO9gF56Cic0HZnWA8i0HgAASC4Znrow3A018DRE4KmPMJQjKoHQdWQ7u6EeiEONdkGNxpDtSpT1/2t/kltB6JBpCB06Ay6/17HnJaKJRZblgkF6tQJ002CNXjUaPCIiIqLxaDTMrzweD2pra20dyxCdiBznqQ2h4YSFqFk8F/FNO5DYuhsiV/4WSCKnI7O/C5le28bIXjfcdSG4I0G4wgG4Ij23gB+SLJX9mkRjma5p0OIpZONJ5OJJZGNJ5LoSyHbES74g6HAUvweheTMQOmgqZI+9veWIiIbSP0hvaGhALBarWoBu6t/omZ8zQCciIiIqzWiYX3FPdCIaca6QH3VHH4qaxXOQ3LEPyW2tyOzvdGSLCJOeySLT1oFMW0efxyVFhhLywx0OQPF7IPuMm+L3QvF5IPs9ULxeyG7uPUtjk65moaVUaGkVejoDLa1CS6nQ0yq0VAa5WAK5RNrR/98GIykyfFMbEJjdAn9LA7ddIiLHmUF6e3s72tvbAQBNTU1VC9BN/Rs9BuhERERE5Rkr8yuG6ERUcbLHjdBBUxE6aCqy3Ukkt7Uiua0NuXiqYq8pNB25rgRyXUNfIEJyK0ao7vNA6bnJfg8UnxeS2wXZrUByGTfZpUByuXruy5AVBvBUHj2nQfTcCn2uZ3pCcjMcT5uhuVqxleTF8DRGEJg9BYGZk6F4ueqciIiIiIiIxieG6ERUVe5QADWL5qJm0Vyk93Ugua0V6V37oaWzIzIekdWQy6aAUgJ9WeoVrlsfJZcCSZIAWQIkydhWRpIAWYYkoedrsvE1CT2P9z5OgiTJgIye8+WecwBIsnVczzn51wK3rxmeAHQBIQSELgBdB4SAEAB0HUII475ufDSPHfix51gdgNCt5ytwvq7r+XC8f0hejVXiTnOF/fDPaEZwzhS4I8GRHg4RTRDmHui5XA6NjY2IxWIFLzZaab336AQGvxgWEREREdkzVuZXDNGJaMSYFyIVxwioB2LItB5Aak871GiXEU6OdrqAUHPQ1NxIj4SoYiS3Au+kOvimNMA3pYEX8yWiqit0EdFCFxuttMEucjVaGz0iIiKi0W40zK+yWXuLOhmil0gfCwEf0RghSRK8DTXwNtQgsnA2dDWLdNsBpPdEkW47AC2RHukhEk0cEuCuCRqheUsDPE213LqIiEZMoQAdGHix0UoH6YM1eP338GSQTkRERGTPaJhfqaqKzs5OW8cyRC9BNqtDzTFFJ6oU2eNGYEYzAjOaAQC5VBpqNA41GoMa7UL2QBx6ZmS2fyEab5SgD576MDyNNfDUR+CpD0P2cH9zIhp5QoiCAbqpWkH6YA2eqX+j5/V6HR8DERER0XhS7PyqEkG6qqpob2+Hy2UvHmeIXiQ1q6MjocHrlkd6KEQThsvvg2uaD4FpTfnHsvEk1GgM2c5u5GIJ5GJJ5LpTo+Jii0SjkeRW4A4H4IoE4YoE4KkPw10fgcvPsIdoNEmktZEewqjR2dkJj8czZDhe6SB9uAbP1LvRCwQCUPgOHiIiIqKCSplf9b7vBDNAd7vdCATsbVk65kL0X/7yl7jpppvQ1taGww8/HD//+c9xzDHHDHr8Aw88gO9973vYvn07Dj74YNx44434+Mc/XtJrq1kd7XENLkWCx8UL+BGNJHc4AHe47z90QhfIJdNGqB5PIhdLQUuloaVV6GkVWlqFyDKcoPFJ9rgg+71QfB4ofg8Uv9cIzMMBuCIBhuVEY0A8qSGR5h+DTblcDi0tLcOG4pUK0u02eCbzmM7OTgSDvPAyERERUX+lzq+cDNJ7B+gNDQ2Ix+O2zhtTIfp9992HVatW4fbbb8exxx6LW265Baeffjo2b96MSZMmDTj+b3/7G84//3ysW7cOZ511Fu69916cffbZePXVV7Fw4cKiXjub1ZHIanArEiIBGZmscOrbIiKHSLIEd8gPd8g/6DF6ToOWzkBPGaG6lspAz6i97vcE7hkVIqcB/F+dRooEyG4XZJ8RiMvennDc5+l5rOejzwvZ54Gs8B1SRGNZPKkhltIR9PH/ZVNtba3tMNzpIL3YBs8UDoeRy+WgqmrJr01EREQ0HpUzvwKcCdL7B+iybH/uXXSIfsEFF+DCCy/EKaecUuypZfvpT3+Kiy66CCtXrgQA3H777XjkkUdwxx134Kqrrhpw/M9+9jOcccYZ+Na3vgUAuOGGG7Bhwwb84he/wO23317Ua3cmNdSEJTREFOQ0gMka0dgkuxTIoQAQGv7tOkIIiJwOPZeD0DSIrAaR0yA0Dbr5ec9N7/25phtXHxYCQheAEIAujOfL39chBHoeN48FIHTrmJ7jhej9HDrARYrOkyVIkjTwoyRBko2PkGRIcu/7Az83z+39NUmWIbkUSC4Fcs/H3jd5kK/JLm4FQDRRmAF6xC9D15z7f//DH/4wli1bhuuuu67P4x0dHTjnnHPw5JNPOvZaleB2F3d9BqeC9FIbPFMwGDR+dxMRERERgPLnV04E6eUE6EAJIXpXVxeWL1+OmTNnYuXKlbjgggswderUYp+maKqq4pVXXsHq1avzj8myjOXLl+OFF14oeM4LL7yAVatW9Xns9NNPx0MPPTTo62QyGWQymfx9szguxQjQZUkCA3SiiUGSJEhuBbJ79IWZQteNBt0M2XXBf5lskAAr+O4JvaUif3ESETkpkdKQVAUifhnhgIIue+8mteXpp5/Gm2++iddeew333HNPfosRVVXxzDPPOPdCo0i5QXq5DZ7J7gWqxqN/XnZz1V7r8Fu/UbXXIiKisalav5f4O2lwTs2vygnSyw3QgRJC9Iceegj79+/HXXfdhf/5n//Bddddh+XLl+PCCy/Epz71qaJXjNjV3t4OTdPQ3Nzc5/Hm5mZs2rSp4DltbW0Fj29raxv0ddatW4c1a9YMeLw2aAboRDSR6ZoGkdMhcjlj1XnWWJne53NNN0Jt3fgI0W8Veq/P8wG4rgMCPR8LrFwv8LnoWdFuPA+Mr9HQJAmShJ7V4vLA1eN9PpchyeizCt0K3vsG8b3Pl2S5J63v+VyWICsKJHfPKvOezwesQGeYTzTh5DSBRFpHbVBBOFCZP9g+/vjj+MpXvoLjjjsOf/jDHzBr1qyKvM5oUmqQ7lSDR0REREQGp+dXpQTpTgToQIl7ojc1NWHVqlVYtWoVXn31Vdx555344he/iFAohC984Qu47LLLcPDBB5c0oJG2evXqPqvXY7EYpk+fboQkRDRu6Jpm7YPec+FRvWePdC2tQs9kIbI5Y5uWbA66pht7pOsMqqkyJEU2bm4XJKUnXPcovfZA90LxeiDn90I3bgzficaurCYQ8skVC9ABYMqUKXjmmWewcuVKLF26FA888ADmz59fsdcbLYoN0hmgExERETmrUvOrYoJ0pwJ0oMwLi7a2tmLDhg3YsGEDFEXBxz/+cbz55ps47LDD8KMf/Qjf+IZzb2VobGyEoijYu3dvn8f37t2LyZMnFzxn8uTJRR0PAF6vF16vt/wBE9GIyaVV5GIJaPGUEYqnVONiomkrNBdqbqSHSdSH0HTjXQzF/LcpAbLXnQ/XzYuMKn4PlIAPrrAf7kgQsnvibitANJq5FQlBf+UCdHMRiNfrxb333ovvf//7OOOMM/Cd73ynYq/pKJEF9NIv0CkDaKgLI3qgE+3t+9BYXwePZ+C7ZuPxBGLxbkTCIYSD3rJeE4AxbqEB2S5AnXgLcRQlWb0XUzuq91pERDQmVe330kT+nZTtMuY+Ipu/hpvj86t+jOcMINbVCeg5hMPBAceoahbtBzrgdrnQUBeGjFzha8yJrK3XLLqrzmaz+L//+z/ceeedeOyxx7B48WJceeWV+PznP49IJAIA+P3vf48vf/nLjoboHo8HS5YswRNPPIGzzz4bAKDrOp544glcccUVBc85/vjj8cQTT+DKK6/MP7ZhwwYcf/zxjo2LiEaGEAK5eBLZzm7kYklkYwnk4knkYknoDMhpohCAns5CT2eBrsSghyl+D1yRIFxhP1yRINyRANx1YbgCvioOloj6cymVDVj7X9zymmuuwfz583HBBRdU9HUdk24H3IP/22aHDKAhIBCNaWjf34rGsAKP21qB1PuirmFXDEjFyhw0gJwAVB3Y82cgPvH+iFnT+M/qvdiOB6r3WkRENCZV7ffSRP6dFM/1/BFBBnJSZeZXBYRdALwaYl1RQO3o8+5ONaujPa7BrUhoCOQgZ/YO/kTplK3XK3pWN2XKFOi6jvPPPx//+Mc/cMQRRww45kMf+hBqa2uLfephrVq1ChdccAGOPvpoHHPMMbjllluQSCSwcuVKAMCXvvQlTJ06FevWrQMAfP3rX8eyZcvwk5/8BGeeeSZ+97vf4eWXX8avf/1rx8dGRJWVS6ShRrugHohDjXYheyDOsJzIJi2lQkupyOztuzpC8XvgaaiBpyECT0ME7oYIlAKrNIlobNq2bRuampr6PHbOOedg3rx5ePnll0doVNUnSxIaIooRpMc1NIYBj1vu2+BVcEsdIiIiovFON1egV3l+Zb5GLKXn7/cJ0CPOXeOy6BD95ptvxrnnngufb/DVa7W1tdi2bVtZAyvkc5/7HPbv349rr70WbW1tOOKII/Doo4/mLx66Y8eOPnvbnHDCCbj33ntxzTXX4Lvf/S4OPvhgPPTQQ1i4cKHjYyMiZ2W7U0jvaUem7QDU9i5oKWff+kNERrie2rUfqV3784+5wn54Gmvga2mEb3I9FN/wF+MjotFp5syZBR9fsGABFixYUOXRjKz+QbrXpSOdFQzQiYiIiByg5nSo3TqyGqo+v+odpKs5gUxOOB6gAyWE6F/84hcde/FSXHHFFYNu3/L0008PeOzcc8/FueeeW+FREVG59JyGzN4OpFujSLe2Ixez93YaInJWLp5CLp5CclsbIAGe+gh8Uxrga2mApyHCC5kS0ZhlBumtB3JIZwV8bokBOhEREZEDBAA1KxDwjswChXBAgZoTSGeN7QydDtCBMi8sSkRUDk3NIvXBXiR37IO6v9O4qOJYJgGSS4GsKIAsAZIEyfwoSYBsfTS+JhvnyBIgydaxPR/NzyXJ+DrknovEyXLP1wBJkq3nG+nvfwwQACAEoAsIoUPootd94yOEgOh/X+iA3rO/sHmeeUyv8wc+n248ntXG5n/fAlCjMajRGGJvbYPsccE7uQGBmZPgm9oEWWGgTkSF/fKXv8RNN92EtrY2HH744fj5z3+OY445prgn8TUC/oij40rEE4DcDQDICAmqUvhio2XJZgGoQMvHgLpaZ597DOhq3z/8QQ6ZPoOLpYiIaGjV+r00oX8ndXQCyu8BTUVGKJWZXw1DVbPIiA5ANkL0hBYqeLHRgrL29mxniE5EVSV0Hak9USS3tSK9u33UBIuSIkP2eaD4PVB8Hsg+D2SPG7JLgeRSILkVSIrxuZz/3AXJLUNyuSArCiSXbITcRAUIXUBoGvRcDiKrQ+Ryxv2sBpEzbnrO+lzkNGiZLPS0Cj2tQktloGWyRrA/QnQ1h9SOvUjt2AvZ60ZgxiQE5rTA21gzYmMiotHnvvvuw6pVq3D77bfj2GOPxS233ILTTz8dmzdvxqRJk+w/keQGZOe2lIrH44h1JxGpqUUwGEQ0GkX7gS40NjbC43Fw6yoJgKQB7hrAU+fc844Rmhao3otNwJ8vEREVp2q/lyby7yS3gNvjRW1dPWKxWGXmV0NQVRXtB7rgdnvR0NCARCKBWCwGyC6Ew+Hhn0CyF/gzRCeiqsgciCG5rRWp7Xuhpau0v7kEKAGfEYx7PZD9Hsg+L5SesFz2GYG50hOYE1WSJEuQZBdktwvwl/YcQgjoPcG61nPTUyq0TAZaSrUC92QaWjrr7DfQj57JonvLbnRv2Q1XJIDg7CkIzJ4CV3Dwa6YQ0cTw05/+FBdddBFWrlwJALj99tvxyCOP4I477sBVV101ImOKx+OIxWKIRCL5ZqqhocEI0tvbq9roEREREY03LpcLkiRVfX6lqira29vhdrvR0NAAWZbzc71YzFhhbitIt4EhOhFVjNB1JLe1Ib55B7Id3RV7HdnjgisShCvshzsShCsSgCts3GQX9zql8UOSpPwffob7s4+uZpGNJZGLJ5CNpZDr+TwXSzr+DpBcLImuf25F1xtb4W2uR+SwmfBNaXD0NYjGI310vBnLUaqq4pVXXsHq1avzj8myjOXLl+OFF14oeE4mk0Emk8nfNxsepxQK0M1xMUgnIiIick4151eFAnRTJYJ0huhE5Dg9qyHx3m7EN++Alkg7+tySW4GnPgJPfRiehgjcDTVwh0pc1ks0jskeN7yNNQO2WhG6jmxXEuqBLmR79jvPdnYb+7mXSwCZtgPY33YAnvowwofNhH96s7HPPxENoOZ0uLOAZxz9wbe9vR2apqG5ubnP483Nzdi0aVPBc9atW4c1a9YMeHxLawc8XeW9e03WVCiaCk3xINqRBjoKzEuEgCuXRdeO3ci5/BByefWQdA2y0HDtg3+D5pqAc5SjF1fvte54onqvRUREY1O1fi9N4N9JSi6F2mgcupS05lEOz6/6k3QNrlwKQpKRy7rQmooWPE7WgNjedmjtMehK4TBfTSZsvSZDdCJyjJZW0f3uTnS/uwt6xpmtJBSfB94p9fA118PTGIErHGQgR1QGSZbhqQvBUxcC5k4FAOiahmxHN9RoFzKtB5De1wGR1cp6HfVAHNHn3oIrshXh+TMRmD3FuOguEeVJkoSOhAa3S4LHPXEv1Lt69WqsWrUqfz8Wi2H69OllP2/vAH2wpgkAIEnIufxw5VJw5VIVafSIiIiIJpQKzq/6BOguPzDEtenMOaCiqX3ul4Ihuk2JtIYaZ7bQIRp3cok04u98gMTW3RC5Mt+bLkvwNtbAN6UB3pYGeOrCvFgnUYXJipJftR4+dAZ0TYe6vxPpPe1It0aR7bT3l/lCcrEUOl7chNgb7yM0bwZCB08z9oUnInhcEjRdQntcQ2MY4yJIb2xshKIo2Lt3b5/H9+7di8mTJxc8x+v1wuv1OjoO2wG6iUE6ERERkbMqML8qJkA3ORWks4u1KZHWEU9qCAc4mSYy6dkcYhu3o/udHWXtsSwpMnxTmxCYOQm+yfW8yCfRCJMVGb7J9fBNrgcA5JJppPdEkdzehsy+DqCEnV+0lIqu195D96YdiCyei+CcFr6rhCY8SQLqQgpiST0fpI91Ho8HS5YswRNPPIGzzz4bAKDrOp544glcccUVVRlD0QG6yclGTziwRRYRERHRWOfg/KqUAN3kRJDOEN2moE9GLGWEhF7P2F8lRFQOoQsk3t+D2BtboaVK36vU01SD4JwpCMxoZnBONIq5Aj6EDpqK0EFTkUukkNzWhsS2VuRiyaKfS0up6HjxHXS/uxO1Rx2SD+qJJipJktAQURCNaWiPa/Bg7F9tdNWqVbjgggtw9NFH45hjjsEtt9yCRCKBlStXFvlMxQfRJQfoJicaPaFDEuVtiUVEREQ0bjgwvyonQDeVG6QzRLcp6FMgK0aQHtAEFIWr52hiSrcdQOer7yLb0V3S+a6QD4HZUxCYNQXuSMDh0RFRpbmCfkQWzkZk4Wxk2ruQfH8Pkh/sha7minqebEc39j/xKvzTGlFz5MFwR4IVGjHR6Cf3CtI742M/fP3c5z6H/fv349prr0VbWxuOOOIIPProowMuNjocJZcBRNB2k1R2gG4qo9EzGrw0hMw2i4iIiCiv7PlVeQG6qZwgnbO7IphbuXQmNAR9XI1OE0s2lkDXa+8htWt/Sed7GmsQPmwW/NMaucc50Thh7qNes+QQJLbuQfc7HyDXnS7qOVK72pHeE0XwkGmILJoDhe9KoQnKDNITyfHxO/KKK64oe/sWSej5Jmu4ZsmxAD3/4sU3er0bPO6nTkRERNRPmfOrcgN0U/8g3S6G6EUKBxTkNAFV4z6HNDEIXUfs7e2Iv729pH3PfS0NCB82C77mugqMjohGA1lRED5kOkIHTUVyxz7EN24v6t0qQhfo3rQTye1tqF1yKIKzCl98kGi8kyUJtUGGr6acywevjSDd8QDdVESj17vB0xQPZDH2t+UhIiIiclyJ8yunAnRT7yBd0u29q5ohegmCfgUiNfbfaks0HLWjGx1/fxvqgXhxJ8pAYEYzwofNgqduHFwljYhskWQZwVmTEZw1Gak97Yi/vR2ZfZ22z9fTWRx4/i2kdu5F3dL5UHwOhmFEYwTfrdWLJCPn8vVpsvo3TxUL0PNjGL7R69/gSQzQiYiIiAZXwvzKyQDdZAXpKVvHM0QvkYt7otM4JnQd8Y0fIPbWtuJWn0tAYOZkRA6fA3eI+50TTWT+lkb4WxqR2d+Jzte2QN3fZfvc1I79yOzrRN3RhyIwk6vSiSYyISsDmiyziap4gG4aotEr2ODxDatEREREQyt2flUhuuKBptjbUpQhOhH1oXZ2o+OF4lefe5pqUHvUIfA21lRoZEQ0FnmbatH80aVI7tiLrte22N4zXU9nEX3uLSR37EPd0nlclU40gRUK0mU9W50A3VSg0QNQtQaPiIiIaNwZJfMrITNEJ6IilLr63BXyoeaIg7halIiGFJjRDN/URnRv3mn8O5O1ty1aasc+qPs6ULt0HgIzmis8SiIarXoH6e5sAgCqF6Cb+jV6ABigExEREZVjDM2vGKITEbKd3TjwwkaoB2K2z5HcCiILZiE0bwZkhRdBI6LhyYqCyGGzEJjTgvgbW9G9dTdg4292WjqL6F/fRHLGPtQtPZSr0okmKCEr0GUFsm78EU63uWrIUZIETfHAlTPeVaMpnlHX4BERERGNKWNkfsUQnWgCK3X1eWBWM2qOOgQuv7eCoyOi8crl86DumPkIHjwdHf/YCLXd3h/wUjv29qxKP5Sr0okmIFlTIetaPkgf7GKjlWTs0ZmGkGQAgCuXLngxLCIiIiKyZ6zMrxiiE01Q2a6e1edR+6vPFZ8HtcfMQ2D6pAqOjIgmCk9dCJNOOxrxdz5A7E17f8zT0iqif30TqVn7ULuEq9KJJor+FxHVe0L0agbpAy5yBRS8GBYRERER2TM65lf2rgrPEL1Ewt7Pl2jUEbqO+KYdiL3xftGrzxlYEZHTJFlGZMFs+Kc2FbWtVHL7XmT29uyVzj/sEY1r/QN0oPDFRisZpA9o8Hpeq/8YGKQTERER2TMq5ldCQMllbB0qV24U45cQAmqOKTqNPdmubuzb8DK6XnvPdoCu+DxoOHkRGk5cxACdiCrGXRvCpNOPRs3hcyEp9qYnWkpF9Nk3EH3+TWiZbIVHSEQjoVCAbjKDdEnoxoWoKrTKZbAGz/iicTEsIclw5VKQdHsXTSYiIiKayEbF/EoI4/mFvXyMK9GLpAuBjm4N8ujb355oUKWuPvfPmIS6pfMYnhNRVUiyjMjC2fBNa0LHC29DPRC3dZ61Kn0+AtObKjxKosrKZu3/nh7vJD0LRRMFA3RTpVekD9ng5Q+S+o5B4TVjiIiIiAZT0vzK6RXpvQL0nMtn6xSuRC+CLgSiMQ05TcDj4o+OxoZsLIF9G14pcvW5Gw0nL0LjyYsZoBNR1XlqQ5h0+tISVqX/E9Hn3+KqdBqz1KyOziRXMpsULTtkgG6q1Ip0Ww1e/uDeK6bS3PuRiIiIqIDS51cOrkjvE6D7Aclez8mV6DaJngA9qwnUBRVonBfTKCd0gfimD7j6nIjGpPyq9KlN6Ph7MavS25DZewC1x8xHYBpXpdPYoWZ1tMc1uBS+3dGkKW7IwwToJqdXpBfV4OVP6lkxlU1CEvxjCBEREVFvZc2vnFqR3i9AL+a5uJzaps6EEaA3hhW43fyx0eiWjSWw7/Hi9j6XfW40nLSQq8+JaFTx1PWsSl88B5LNvdS0lIroM/9E9G9vQVO5Kp1GPzNAdysSaoO8MKVJyO4ij3dmRXpJDV7+ZAmaywuAfwwhIiIiMpU7v3JkRXoZATrAlei25TSBlrACj1vmRUVp1BK6QPfmHej659biVp9Pb0LtMfPhYnhORKOQJMuILJpj7JX+9432V6Vva0Om7QDqjp0P/1SuSqfRKZvV0ZXS4VYkNEQUxLsZvpaj3BXpZTV41rM4u2cnERER0RjmyPyq3BXpZQbowBhZib59+3ZceOGFmD17Nvx+P+bOnYvrrrsOqqoOed6pp54KSZL63C655JKSxlAbMAJ0otHKXH3e+eoW+6vPvW7Un7gQjacczgCdiEY9T10Yk05fisji2UWtSm9/+p+IvvA2dK5Kp1FG14GOhJYP0GUHL4g5kZW6It2ZAJ2IiIiITI7Or0pdke5AgA6MkZXomzZtgq7r+NWvfoWDDjoIb731Fi666CIkEgn8+Mc/HvLciy66CGvXrs3fDwQCJY2BW7jQaCV0ge53d6LrdftbtwA9q8+XzoPL763g6IiInCXJMmoWzYV/2iQceOFtZDu6bZ2XfL/VWpXe0ljhURLZo+Z0uBigV0SxK9IZoBMRERE5qyLzq2JXpDsUoANjJEQ/44wzcMYZZ+Tvz5kzB5s3b8Ztt902bIgeCAQwefJk26+VyWSQyWTy92OxWPEDJqqSbDyJjr9vRGZfp+1zZK8btUcfiuAs+/9fEBGNNp66MJrPOAaxt7Yh/vZ2CH34laZaMoP2p15HYG4L6o46GLKnuP2WiZwmSRLqgjID9AqxG6QzQCciIiJyVkXnV3aDdAcDdGCMbOdSSFdXF+rr64c97p577kFjYyMWLlyI1atXI5lMDnn8unXrUFNTk79Nnz7dqSETOUYIgfjmHdj7p78XFaD7pzWh+czjGKAT0bggyTJqFs9F0+lL4a4L2T4vuXUP2h75O1J72is4OqLheVzGdoNUOcNt7cIAnYiIiMhZVZlfDbe1i8MBOjBGVqL399577+HnP//5sKvQP//5z2PmzJloaWnBG2+8ge985zvYvHkz/vd//3fQc1avXo1Vq1bl78diMQbpNKpkYwl0/GMTMns7bJ8je92oXXIIgrOnVHBkREQjw1sfMValv7kNsY3bgSJWpQfntqDmqIOhcFU6jQDmtdUx2Ip0BuhEREREzqrq/GqwFekVCNCBEQ7Rr7rqKtx4441DHvPOO+9g3rx5+fu7d+/GGWecgXPPPRcXXXTRkOdefPHF+c8XLVqEKVOm4CMf+Qi2bt2KuXPnFjzH6/XC6+Ue0TT6aGoWsTffR+LdXba2LTD5pzWi9pj53PuciMY1SZZRc/hc+KY3oeOFjch22tsrPbF1D1K79iOyaDZCB0+DJI/ZN+kR0RD6B+ma4oErl2aATkREROQASdcAGXBpanXnVwOCdB8UTXU8QAdGOET/93//d6xYsWLIY+bMmZP/fM+ePfjQhz6EE044Ab/+9a+Lfr1jjz0WgLGSfbAQnWi0EbqO7i27EHtzG/RM1vZ5sseF2qMPQXB2SwVHR0Q0unjrI5hk7pVuc1W6nsmi8+V30f3uLtQedTD8U5sqP1Aiqrq+QToDdCIiIiLnCLhymfx8q6rzqz5BehoAHA/QgREO0ZuamtDUZK9R3b17Nz70oQ9hyZIluPPOOyGXsFLs9ddfBwBMmcItLWhsSO3ej85XtyAXG3ov//78UxtRe+w8uPy+Co2MiGj0khUZtYfPhX96EzpeeBvZzoSt83KxJNqf/ie8k+tRe9TB8NSFKzxSIiIiIiIiGgvGxHuWd+/ejVNPPRUzZszAj3/8Y+zfvx9tbW1oa2vrc8y8efPwj3/8AwCwdetW3HDDDXjllVewfft2/N///R++9KUv4ZRTTsHixYtH6lshskU9EMO+J15F+9P/LCpAlz0u1B9/GBpPPYIBOhFNeMaq9GMRXjCrqBlPpu0A9v75RRx4cSNyyXTFxkdE1dV3j07foBcbJSIiIqJiSci5vCMzv+qzB7pv8IuNlmlMXFh0w4YNeO+99/Dee+9h2rRpfb4meoqSzWaxefNmJJNG4OjxePD444/jlltuQSKRwPTp03HOOefgmmuuqfr4iexK7z2A+MYPkN4TLfpcX0sj6o6dB1eA4TkRkUlWZNQecRD805pw4O8bkeuytyodAki8twfJbW0IzJqM8GEz4Y4EKztYIqqYQhe5KnSxUSIiIiIqnpAVQCp8MffKvvDAi4jmJGXgxUYdMCZC9BUrVgy7d/qsWbPygToATJ8+Hc8880yFR0ZUPiEEUrv2I77xA6jtXUWfL3lcqDvqEATncu9zIqLBeBtr0PyxYxB7cxvi72wHdHvnCU1HYuseJN7fA/+0JoQXzIK3oaaiY6WJgwugq6NQgA4MvNgog3QiIiKi8lR1flUgQAdQcLGEE0H6mAjRicYjoetIbmtD7J0P7K+M7E0GgnOnIrJ4Llw+j/MDJCIaZ2RFQe0RByEwazI6X3kXmbYD9k8WQGrnfqR27od3ch0ih82Cb0pD5QZLE4KaE/B5BAAGt5UyWIBuYpBORERE5KyqzK8GC9BNFQjSGaITVZnaEUdyWyuS29ugpdSSnsO46N0h8NSFHB4dEdH456kNYdJHjkJqd3vPxZuL+0Nmpq0D+9s64KoJIjh7MgKzp3ArLSqJEAId3Rom1UqQGdw6brgA3cQgnYiIiMhZFZ1fDRegmxwO0hmi25TN2nzfN1EBuVQGqe1tSGxrRbaju+TncUWCqD3qIPinNjk4OiKiick/tRG+KfXo3rIbsTffh57JFnV+riuBrte3ouufW+FtrkdwzmT4pzdDdjmz5x6Nfx6XjO60hmhMQ0NEYZDuILsBuolBOhEREZGzKjK/shugmxwM0hmi29SZ1BAJ6/C45ZEeCo0RWiaLdGsUyW1tSLdFAb30jU9lrxuRRXMQOngqJJn/DRIROUWSZYQPnY7g7MmIvbUN3e/ugtCK/MO5ADJtB5BpOwDJvRn+6ZMQmNkMb3MdZIWBOg1OloG6oIKulJ4P0ql8xQboJgbpRERERM5ydH5VbIBucihIZ4huk0uR0B7X0BgGJ9NUkNAF1GgX0q1RpFujUKMxoMwLhsleN0KHTENo3gwoHrczAyUiogFkjxu1Rx2C4MHTEN+4HcltbcWH6QBEVkPy/VYk32+FpMjwNtfCN8VY8e6u4RZcNJDbLaPRZcwzozENbolXGy1HqQG6yZlGT0DStSLPISIiIhqfHJlflRqgmxwI0hmi21QbVJAVRoNT4+dKYDJC82wsAbW9C+nWA8jsPVD0VgCDUYI+hOfNQHDuVMhurkojIqoWdziA+mMPQ2TRHHRv2oHu93ZDZEsLw4SmI73nANJ7jAuYKkEffC0N8E2uh6c+AlfI7+TQaQzzuGU0hoH2uIZEhuGrSdKLm1eVG6Cbymr0hICSy3DRDREREVEv5c6vygrQTWUG6QzRbZIkCQ1hBdGYho6EhpCPweZEk+1OQm2PIXsgBjUag9oRLzlYGYyrJojIYTMRmDWZ27YQEY0gV8CH2qMOQWThbHS/uwvdm3dCS5d2MWiTlkgjsWU3Elt2AwAUnxvu+gg8DcbN3VADl8/jxPBpDDKD9B1JrkQ3KVoWsqZCV4b//8KpAN1UUqPXq8HTZf6/TERERNRbufOrci8MCqBgkG4XQ/QiyJKEhoiCfZ0Cao4XGh2PdE1DLp5CLpZALp5ENpZELp5ELpZ0bJV5IZ6mGoTnz4J/WiMkrlwiIho1ZI8bkYWzEZo/A4mte9C9aQdy8ZQjz62ls9D2RJHeE80/pgS8cEUCcIcDcEWCcEUCcIUDcAV9/OPqBOBxy6gNcKGGSVPc8GrGH6+GCtKdDtBNRTV6fRo8H+Ry9/QjIiIiGodKn185EKCb+gXpGWFv3sYQvUiyJKEupCCWZIg+lug5DXpahZZWoaVU6JmM8TGtQkv3fJ7KIJdIl72PuV1K0IfArMkIzpkCdyRYnRclIqKSyIqC8CHTET5kOjL7O5B4vxXJHfsg1Jyjr6MlM9CSGWTaOvo8LikylKAfit8Dxe+B7PNA8Xmg+LyQfR7IfvO+h2H7GOfmRezzhOyGprihDBGkVypAt8Zgo9Hr1+AZj3FbHiIiIqJCSplfORagm/oE6QlbpzBEL4EkSfC4uFq4WoQuIHI56JoGkdUgchr0nPHRvPW+r2ey0NIZ6CkVWsYIzZ3edqVUkluBf/okBGdPgbe5jqvOiYjGIG9THbxNdag9+lCkdu5Hclsr0m1RoIJ/XxeabrxLKjbMBE8yVs/nQ/aewF32uCG5FMguBVLPrffnkluBpCiQXS5ILpm/n2jUMIPzQkF6pQN005CNXoEGjxcVJSIiIhpasfOriugJ0oVk753GDNFt0lIqcrJRTE0zFpckP2iDxzfCA6sGYQTZEAJC1wHzcyHyj6PX50IIQO85Nn+ucd5g55ifC2EcKzQBYYbm2the9S+5ZHib6xGYMQn+6c28UCgR0TghKwqCsyYjOGsycqkMktvbkNq5D2q0q6KB+pAEoGey0DNZ5LrsragYQIIRsisKJJcMyDIgSZBkyQjXZcm43+dzGZIMY+IryZBk42tSz3mQrPu9z5dkGZDQ8/zW62ACZPjJNKBnZGg5INdraqClytt7fzwqFKRXK0A3FWz0gOo0eERERETj0KiYX0kSNJfX1qEM0W3KxRPIZo09sXOQkIOCrn/uhEDl9smmsctdE4SvpQG+lgZ4mmohK2yqiIjGM5ffi8j8mYjMnwldzSLddgDpPVGkW6PQkpmRHl5xBCCyGrRR8i6u8SoGN3KYDgUaeu8llyvzArbjVe8gXRIaZF2rWoBu6t/oAWCATkRERFSG0TG/sjeXZIhO5ADF74GnqRa+KQ3wTWmAKzgR3qJARESFyB43AjOaEZjRDABQO7uR3tOOdOsBqAdiju+jTjRR6IonH6ADqGqAbjIaPR9cuXTPGHwM0ImIiIjKMFbmVwzRiYoke1xw10fgabBurgBDcyIiKsxTG4KnNoTIYbMghEAunoQajeVv2Y74mN+6jKgaJN0K0AFA1rMFLzZaUULkt5UBjJXxOUmpephPRERENG6MkfkVQ3SiQUhuBe5wEK5IwLiFA/DUh+EKB3jBNSIiKokkSXBHgnBHggjOngIAELoOtbMbuY5uZONJ4wKi8SRy8RTDdaIe/fdAl/VswYuNVlS/i1wBKHwxLCIiIiKyZwzNrxii04QkKTIUvweyzwvF5+n53AMl4IMr3BOa++1dWICIiKgckizDWx+Btz7S53GhC2jJNLKxBHLxFLRUBnpahZZSoacz0NIq9LRqXKSbaBwrdBHRQhcbrah+DZ75FuMBF8MaRY0eERER0ag2SuZXkm7vepcM0Uuk2dx0nipPUmRILiV/k90KFJ8Hst8LxeuB7PcY930eKD6vEZi7+Z8+ERGNbpIswRXywxXyD3qMEAK6mjNC9ZSaD9a1npveE7zrOQ0ip+U/gsE7Vch//Md/4JFHHsHrr78Oj8eDzs7Osp6vUIBuqlqQPkiDBwy8GJa5goqIiIiIhlDs/KpCQbqsqVA0hugOk/IFSwk3NEiQ3S7I0gRoQiXJ2L5EAiDLkGTJeky2PkKSIMmy8aOSJUCSe74GSJJs/Px6jjefY8D55nPIEiRFgexSILl7AnLF+Fw2w3IzOJflkf4JERERjQhJkqB43VC8brhr7J+naxpETofI5YxwPatBaJr1ec66D2FsOSOEMMJ3IYzV70LkHxO63nOcAITecwwgej6H3nNsr8/N58h/Te85T8B4fJyThQtSVoIxcbIe18f4Qg1VVXHuuefi+OOPx29+85vynkzogwbopooH6UM0ePlD+jV6WrX3aSciIiIaS0qYX1UiSDcCdBUZxW3reIboNnkn1cIf9iOe1JBJaAj6ZDSfeizqw/wREhER0dgiKwqgKIDX3oSRnOeP5+D+awe8Hhkel9EQ6EIg3dY9wiMrz5o1awAA69evt31OJpNBJpPJ34/FYgAAVy4N4QkO2zRVLEi30eDlD+3V6Cm5DITNZoyIiIhoQilxfuV0kG4G6JrigZDtPSeX8BYhntQQS+kI+WS4lLG9SoiIiIiIRg9dCERjGnLa+F+F39+6detQU1OTv02fPh0AhlyB3p+ueKApHiiaCrknTC9LEQ1e/pSeRk8SOiRdK38MRERERONJmfMrVy7lyDtWewfoxSy+YIhuUyJtBOgRv4ygf/giExERERHZYQboWU2gNjDx5pmrV69GV1dX/rZz504AgObyFrXayLEgvYQGL3+qrCDn8gGYeH8MISIiIhpU2fMrZ4L0UgN0gCG6bYm0EaCHJ2BjQ0RERESVIXoF6I1hBW736JueX3XVVcZ1a4a4bdq0qeTn93q9iEQifW6G4t/5WXaQXkaDlyfJEBJ7BiIiIiIAjsyvnAjSywnQAe6JblvQxwCdiIiIiJwjBNDRrUEXQGNYgcctI5Ue6VEN9O///u9YsWLFkMfMmTOnOoOxoeQ90p0I0E0OX/iKiIiIaExycH5Vzh7p5QboAEN024I+BuhERERE5Bw1J5DTBCbVuOAZhSvQTU1NTWhqahrpYRSl6CDdyQCdiIiIiCoyvyolSHciQAcYohMRERERjQghBOqCyqgO0Iu1Y8cOHDhwADt27ICmaXj99dcBAAcddBBCoVBVx2I7SGeATkREROSsCs6vignSnQrQgTG0J/qsWbMG7L34wx/+cMhz0uk0Lr/8cjQ0NCAUCuGcc87B3r17qzRiIiIiIqLBeVzyqNwDvRzXXnstjjzySFx33XXo7u7GkUceiSOPPBIvv/zyiIxn2D3SGaATEREROasK8ys7e6Q7GaADYyhEB4C1a9eitbU1f/vqV7865PHf+MY38Ic//AEPPPAAnnnmGezZswef+cxnqjRaIiIiIqLByWNqJm7P+vXrIYQYcDv11FNHbEyDBukM0ImIiIicVcX51VBButMBOjDGtnMJh8OYPHmyrWO7urrwm9/8Bvfeey8+/OEPAwDuvPNOzJ8/H3//+99x3HHHVXKoREREREQ0SgzY2kV2M0AnIiIicorQAUmu+vyq0NYusp51PEAHxthK9B/+8IdoaGjAkUceiZtuugm5XG7QY1955RVks1ksX748/9i8efMwY8YMvPDCC4Oel8lkEIvF+tyIiIiIiGhs670i3Z1NMEAnIiIicogkdLiyI7NAofeKdHc2UZEAHRhDK9G/9rWv4aijjkJ9fT3+9re/YfXq1WhtbcVPf/rTgse3tbXB4/Ggtra2z+PNzc1oa2sb9HXWrVuHNWvWODl0IiIiIiIaBXTZ3Ws1usIAnYiIiOj/t3f/QVLU+f3HX90zu8sCu3ugIFIsCN4dntETBVzBiwUlBaZMqqggMaVS4nFErYUEITnwNOKlPDXilZyIIKkKqInRurK8u3hfLyEY4OoOfxzGnHgFCfEIZMkCRtnFZX/MdPf3j+kfM8vM7szsTPfs7vNRtRWYnen+7L76TL/ffPrzKaGo7q8cMybbjMm0LXccVSU/R6Qz0Tds2HDBZqG9vw4fPixJWrt2rebNm6evf/3ruu+++/T9739fW7ZsUXd3d0nH9OCDD6qtrc3/OnHiREmPDwAAACAC7hqdkvwiK+tmowAAACiYbZqR3V+ZVo9M25LtNvBzbTY6EJHORF+3bp2WL1/e53umTZuW9fWmpiYlk0kdO3ZM06dPv+D7EyZMUE9Pj86ePZsxG/3UqVN9rqteU1OjmpqavMYPAAAAYBDIssmV4244Jankj/sCAAAMJ44Rk23G5ThW6PdXvTcRtW0rY410GUZJzhNpE33cuHEaN25cUZ/98MMPZZqmxo8fn/X7M2fOVFVVlfbs2aMlS5ZIko4cOaLjx49rzpw5RY8ZAAAAwCCSpYEuZdlslEY6AABAcdxGddj3V70b6FL2zUZL0UgfFGuiHzhwQO+++67mz5+vuro6HThwQA888IDuuusujRkzRpLU0tKim2++WS+99JKuv/56NTQ0aMWKFVq7dq3Gjh2r+vp6rV69WnPmzNENN9wQ8U8EAACA4S5plfYRU2SRo4HuoZEOAABQWmHdX2VroHvK0UgfFE30mpoavfrqq3r00UfV3d2tqVOn6oEHHtDatWv99yQSCR05ckTnz5/3X3vmmWdkmqaWLFmi7u5uLVq0SM8//3wUPwIAAACQIWE56ui0VF03KG7JB59+GugeGukAAAClVe77q74a6J5SN9IHxR37ddddp3feeafP91x22WVyei0YP2LECG3dulVbt24d8Bh6ErZ6kqnjJ5KOkpajtg5rwMcFAADA8NPWYck0pPbO1P3kqNpUgzeRZHa6z7Fl2MXebzuKJbvdBvoISerzWI4Rk2XGFUt2S44tx6wq8rySHFtybJnJ7uKPAQAAMEiY7v2TZMiwg9dLen+VxrATilkJWbEqOUas3/vFZKxG8WSX4onzsuI1kno10h076+d6GxRN9ErQejapjkSPDMOQ7ThyHOn/vd+meCz/f8GwbaknacswDFXHjbz/8cNxpJ6kI8dxVB03ZZpF/hADPFbScpSwHFXFjIJ+7lIeq9jfYSmPRR4B8giQRwp5BMgjQB4p5BEgj9Tv7lynLduRPm239NkXluIxQ+c7E8UPZIipSpxXVbyIf1RwHBlKFUOOTFUlOwv4rK2qZFKOuiSjyIvCndjT8NlRSY4cwyzsWI4jw7EkGTlnz4dxrFRB6sgxYgN+/LnoYzm2DMcu/HdYymORR4A8fOThfY48fOThIw/vc8MoD8dWLNmtmJT9HKW4v0o7liFHjgzFLUdyZ7r3/zlHppNUrKdHjsyMcdqJ/O4VaaLnyXGkRFKqrnJkGpIjqabKVFU8vwswkbDV3pUqjsaMMmUUeOGOqHb0+ReWvuiyNGZUTFVVhV90jpM6RtJyij5GR6elL7psjR5h+jOmijlGxwCOUZWQPu+wZNmGxoyOFfy7lMij9zHIgzzSkUfmMciDPNKRR+YxyKP4PBJJR6ZhKWZKSUmWLUlO73kxw5qjIn4jji3TbaDbKqJwNmKSk0wVZ44lxyiuXDJkybATsmLVhc+6MiQ5puLJLsmxs8+YyodjK251yzFMWfHqwo8RMxVLdsu0e1Kz+Ysqens9EVBEHhmzzYqcwTagY5BHgDwC5OF+WOThIY8Aebgf1vDJwzAUk3fflmV8pbq/cpKpX6tSs9wL+7Ahx5FM2TJky3aC+8R8p2zQRM9TlZtNIilVxyUZhqriqRlP/elJ2GrrtFVTZeqi+pjMov7lx9D4Lxn6v3ZLbZ22Lo4bqi6g0LMdR//XnprtNL4hXtBn01XXxRWPWWrvtBWP2aobWdhFe+68pfM9jr40KlbwZ/0xxGOqihv69Jyl9vN2wb9T8giQRwp5BMgjQB4p5BEgjwB5pAw0D8MwZBrSiGpD3QlbSUtKslpgGqfgWWdBAz2mYh8vcIwqyU4VenIsOWZhJZPhWDKk1Bqd7lIyhYspaZiKJzsVs3oKXsPTsK1Uwe2uBVrszLNkVSy1jqjV3ee68ll5a9LLUbJqZNGz8BwzJhlmat1Twyx4TVXT6lHMTsqK1wxgPVby8A9DHj7y8JCHfxjy8JGHZ3jkYTiGOzYj5xgHfH9lew10o+DPBgeJybYNmbJkypYtw22k5/d7HeAc+uHDNKXqqtSM9O6EZNv5/TtFT8LWp+csVcWMARR47hiM1DGqYqmCsyeR35o9qQLPUsJydHFdrOiC21M3Mqb6WlPtnbbOnc+/0jt3PlWs19eaRRfcnuoqUxfXxZSwUj+b7ZAHeZCHhzwC5JFCHgHyCJBHSqXkUVNlKh6T8rzFHBZMOan1evLh2DKd1HU8kAa6fzgzLkeGDDky7GTenzPc4tCRMeANtLyC2XBsxZOd/jIx/Y/BUjzZKccwB7yBlgwjVWy7DYC816jPc1PXfNmxalmxasWsHpn5Prat/DYdyxd5BMjDOxh5eMgjQB7ewcjDQx5phyvB/VXRDXSPaabuFaXUvWOe66FLNNELEo+ZqUa6Uo/c9lfolbLA8xRa6JW6wPMUWniXsuD2FFp4k0eAPFLII0AeAfJIIY8AeQTII6VcedRUmTJZzyWDKav/RnqJG+j+YQss9NILvAGv9+mPobDCu6QFt3/QAgvvEhfcnkIbIaVsgHjII0Ae3kHJw0MeAfLwDkoeHvJIO+wA7q8G3ED39G6kK79GOk30AsVjpqrjqUb62S9yF3rlKPA8+RZ65SrwPPkW3uUouD35Ft7kESCPFPIIkEeAPFLII0AeAfJIKXceVSy26LPdR2v7bKSXqYHuHz7PQi+jwCt0jc5+x5Bf4V2Wgts/eJ6Fd5kKbk++jZByNEA85BEgD+/g5OEhjwB5eAcnDw95pB2+mPurUjXQPemN9DxXRaeJXoSYaShuptaszFbolbPA8/RX6JW7wPP0V3iXs+D29Fd4k0eAPFLII0AeAfJIIY8AeQTIIyWsPOAxZRtecZOlkV7mBrp/mn4KvbIWeP4Y+i68y1pw+yfpp/Auc8Ht6a8RUs4GiIc8AuThnYQ8POQRIA/vJOThIY+001TA/VV6Iz2vt5dnFEOfaRoaM/rCQi+MAs8fQ45CL+wCL1fhHUbB7clVeJMHeZAHeaQjjxTyCJBHgDxSKiUPuIwcjfSQGuieXIVeKAWeP4bshXcoBbcnV+EdUsHtydUICaMB4iGPAHm4yMNHHgHycJGHjzwClXB/lWqks7Fo2VXFjYxCrzvEAs/Tu9DrTtiRFHi9C+8wC25P78KbPMiDPALkESCPFPIIkEeAPFIqJQ+4LmikW6E20D29C71QCzx/DJmFt2Enwyu4PRcU3slQC25P70ZImA0QD3kEyMNFHj7yCJCHizx85BGohPurfNvjVAAD5BV6PUlHn7ZbipsKrcDzeIVe3JQ+bbfUk4ymwEsvvMMuuD3kESCPFPIIkEeAPFLII0AeAfJIqZQ84MpopLtPB4TYQPdkFHqhF3jeGNIL765wC25PRuHdFXrB7UlvhITdAPGQR4A8XOThI48AebjIw0cegUq4v8oHVQAAAAAAAAAAADnQRB8gb43O6rihi+tjStrZNxstJ2+NzqQtXVwfU3U8+2ZY5Zb+yHdfm5OVE3kEyCOFPALkESCPFPIIkEeAPFIqJQ+4MtZAT5UwWTcbLbOMR4z72AyrvGNIXzN1RM7NycoqY83UEbk3Jyuz9Efw+9osrpzII0AeLvLwkUeAPFzk4SOPQCXcX+Wj8ubGVxjHvXg7O7vTXkv938/aEvqi01I8ZmjkqJi6ugxVy9bZc5Y6zhv60qiYjDI/huE4js52WEpajr40MqauLlNVhqOObkvHz6deqwrhseOOLksdXbZGjTBlW6nHPgzbUuv/2TrXYWrUiPI/CpJI2Dp7njwk8vCQR4A8AuSRQh4B8giQR0oYeSSSjjo7E5Iyn9r17jmdMAuoSpdlE1HbMWQ6lkxZqT56CMu6ZF2j031NdjKUx46zbTqWjNcqnuxUPNkZzmPgWTYdSxqxjDGE8Rh4rjVsY24TJIzH8skjQB4u8vCRR4A8XOThI49AJdxfSflNyqCJ3o9z585Jkp56+pmIRwIAAIDh4ty5c2poaIh6GNHL0kCXlFojXQqtkZ5rkyvHjIdW6GUruFNjiIVXeGcpuFODu7D4L2fhnasB4v05jEYIeQTIw0UePvIIkIeLPHzkEaiE+yvZtkzlN3mFJno/Jk6cqBMnTqiurq7ss54Gor29XY2NjTpx4oTq6+ujHg4GMa4llALXEUqFawmlMliuJcdxdO7cOU2cODHqoVSAHA10T0iN9FwFnueCQs8ofbGZq+AOxhBC4Z2r4PYHGU7hnasB4gmjEUIeAfLwTkIeHvIIkId3EvLwkEfaaQq9vypHI922U8sD5okmej9M09SkSZOiHkbe6uvrK7owxODBtYRS4DpCqXAtoVQGw7XEDPQUb1ZQ1ga6p8yN9P4KPE9GoedYklHKMfRdcAdjKGPh3V/B7Q+2vIV3fw0QTzkbIeQRIA/v4OThIY8AeXgHJw8PeaQdvpj7q1I30tMa6Lby+/2ysSgAAACAitRnA91jmLLd2d+l3Gw03wLP45hxfzMsOaUaQ34FdzCGVOFd0s3J8i24/UGnCu9Sb06WbwPEY5dhszjyCJCHd1Dy8JBHgDy8g5KHhzzSDjuA+6uSbTaa3kA3Ysq3PU4THQAAAEDFsWXkP6u8xI30Qgs8T3qhN9DCu9CCOxhDCQvvQgtuf/ClLbwLbYB4StkIIY8AeXgHIw8PeQTIwzsYeXjII+1wJbi/GnAjvXcDvYCnB2miDxE1NTXauHGjampqoh4KBjmuJZQC1xFKhWsJpcK1NBgVWKqUqJFebIHncYyYHBky7UTRhXexBbc/hlIU3sUW3J4SFd7FNkA8pWiEkEeAPLyDkIeHPALk4R2EPDzkkXaYgd5flaKRPoAGuiQZjlOKZwIAAAAAYODa29vV0NCgb294SDUjRxZ+AKefDUn7MNACL3V+R4YcWbFqmXay4OJ9oAV3SY410IK7RMcaaAOkFMcijwB5uMjDRx4B8nCRh2845WE4tqp6vpAjI+vYSnJ/NdBj9dFA7z5/Xk89+T21tbX1uXcSM9EBAAAADB1FzkgvZYEnFTeDrZQFt1TkDLZSFtxS0TPYStkAkcjDRx4+8giQh4s8fOQRIA9XkXmU+v6qqBnpA5yB7qGJDgAAAGBoKbCRXuoCz1NI4V3qgttTUOFd6oLbU2DhXeoGiIc8XOThI48AebjIw0ceAfJwFZhHue6vCmqkl6iBLtFEBwAAADAU5dlIL1eB58mn8C5Xwe3Jq/AuV8HtybPwLlcDxEMeLvLwkUeAPFzk4SOPAHm48syj3PdXeTXSS9hAl2iiAwAAABiq+mmkl7vA8/RVeJe74Pb0WXiXu+D29FN4l7sB4iEPF3n4yCNAHi7y8JFHgDxc/eQR1v1Vn430EjfQJZroAAAAAIayHI30sAo8T7bCO6yC25O18A6r4PbkKLzDaoB4yMNFHj7yCJCHizx85BEgD1daHjGrW3Kiub/K2kgvQwNdook+6B07dkwrVqzQ1KlTVVtbq8svv1wbN25UT0/mv4j9+te/1u/+7u9qxIgRamxs1FNPPRXRiFHJvve972nu3LkaOXKkvvSlL2V9z/Hjx3Xrrbdq5MiRGj9+vP7iL/5CyWSemzlg2Ni6dasuu+wyjRgxQk1NTXrvvfeiHhIq3P79+/UHf/AHmjhxogzD0I9+9KOM7zuOo0ceeUSXXnqpamtrtWDBAv3nf/5nNINFxXriiSc0e/Zs1dXVafz48Vq8eLGOHDmS8Z6uri41Nzfroosu0ujRo7VkyRKdOnUqohEjNL0a6WEXeJ70wjuW7Ay14Pb0LrxDLbg9vRohsWRnqA0QD3m4yMNHHgHycJGHjzwC5OHy83Cb2E4091e9G+nlaKBLNNEHvcOHD8u2bb3wwgv6+OOP9cwzz2j79u36zne+47+nvb1dCxcu1JQpU3Tw4EFt2rRJjz76qHbs2BHhyFGJenp6tHTpUt1///1Zv29Zlm699Vb19PTol7/8pV588UXt2rVLjzzySMgjRSV77bXXtHbtWm3cuFEffPCBrrnmGi1atEinT5+OemioYB0dHbrmmmu0devWrN9/6qmn9Oyzz2r79u169913NWrUKC1atEhdXV0hjxSVbN++fWpubtY777yj3bt3K5FIaOHChero6PDf88ADD+gf//Ef9cMf/lD79u3TyZMn9Yd/+IcRjhqhSWukR1HgeexYtWwzJtOdQRdmwe1JFd4jZDi2W3CPCK/g9riFtySZtiXbjIXaAPGQh4s8fOQRIA8XefjII0AeLsOQFRuR+qMU2f1VeiNdKn0DXZIMx+lrO1cMRps2bdK2bdv0ySefSJK2bdumhx56SK2traquTv2HZcOGDfrRj36kw4cPRzlUVKhdu3ZpzZo1Onv2bMbrb731ln7/939fJ0+e1CWXXCJJ2r59u9avX68zZ8741xeGt6amJs2ePVvPPfecJMm2bTU2Nmr16tXasGFDxKPDYGAYht544w0tXrxYUmoW+sSJE7Vu3Tr9+Z//uSSpra1Nl1xyiXbt2qU//uM/jnC0qGRnzpzR+PHjtW/fPt10001qa2vTuHHj9Morr+i2226TlJqQ8LWvfU0HDhzQDTfcEPGIIaUmgDQ0NOjbGx5SzciRJT22NwPdYysmmSWeV+Q4MuQoUT1aTpbizXvk2xP27DlJGY98Swp99pzHewTfE+rsORd5BMjDRR4+8giQh4s8fOQRiCW7Mn4XZbm/6k/aEi5SYc387vPn9dST31NbW5vq6+tzvo+Z6ENQW1ubxo4d6//9wIEDuummmzIanIsWLdKRI0f0+eefRzFEDFIHDhzQ1Vdf7TfQpdS11N7ero8//jjCkaFS9PT06ODBg1qwYIH/mmmaWrBggQ4cOBDhyDCY/fa3v1Vra2vGddXQ0KCmpiauK/Spra1Nkvz7ooMHDyqRSGRcS1dccYUmT57MtTQMpC/h0tdmo+UdQ7BmaqJqVM7Nycqq15qpOTcnK7P0NWwTVaNybk5WTuQRIA8XefjII0AeLvLwkUfAtHpk2onU/ZXbZg77/qr3Gug5NxsdIJroQ8zRo0e1ZcsW3Xvvvf5rra2tGU1PSf7fW1tbQx0fBjeuJfTn008/lWVZWa8TrhEUy7t2uK5QCNu2tWbNGt1444266qqrJMl/Kq/3vh9cS0PfBWug59hstLxjuHDTsWybk5VVlk3Hsm5OVmYXbAKXY7O4ciKPAHm4yMNHHgHycJGHjzwCXh62WZVaOiWC+6tsm4hm3Wy0BGiiV6gNGzbIMIw+v3ovxdLS0qJbbrlFS5cu1cqVKyMaOSpNMdcSAACDXXNzsw4dOqRXX3016qEgYjk3EQ2x0MtWcHtCK7yzFNz+t0IsvC9ogHhCbISQR4A8XOQRnIo8fOThIo/gVOThy51HiI30LA10Tzka6eGv9I68rFu3TsuXL+/zPdOmTfP/fPLkSc2fP19z5869YMPQCRMm6NSpUxmveX+fMGFCaQaMilXotdSXCRMm6L333st4jWsJ6S6++GLFYrGs/83hGkGxvGvn1KlTuvTSS/3XT506pRkzZkQ0KlSyVatW6c0339T+/fs1adIk//UJEyaop6dHZ8+ezZiNzn+jhq6cDXT/DaZsSaZjyZSVqvNKvIZnXwW3xys+vfVdS76mah8Ft/8Wt/COJzsVT3aWZU3VnAW3x22EpI+h1GvckkeAPFzkEZyCPHzk4SKP4BTk4eudh7cmuy+E+6u+Gugex4xL3n44dnLAG54yE71CjRs3TldccUWfX94a5y0tLZo3b55mzpypnTt3yux1Yc6ZM0f79+9XIpHwX9u9e7emT5+uMWPGhPpzIXyFXEv9mTNnjj766COdPn3af2337t2qr6/XlVdeWa4fAYNIdXW1Zs6cqT179viv2batPXv2aM6cORGODIPZ1KlTNWHChIzrqr29Xe+++y7XFTI4jqNVq1bpjTfe0Ntvv62pU6dmfH/mzJmqqqrKuJaOHDmi48ePcy2VwLFjx7RixQpNnTpVtbW1uvzyy7Vx40b19IS4Pmiafhvo/hvLN2Mqn4LbU7YZbHkU3P5byziDrd8GiKeMMwrJI0AeLvIIDk0ePvJwkUdwaPLw5Z9HGWek59FA95RyRjoz0Qc5r4E+ZcoUPf300zpz5oz/PW9G1R133KHvfve7WrFihdavX69Dhw7pBz/4gZ555pmoho0Kdfz4cX322Wc6fvy4LMvShx9+KEn68pe/rNGjR2vhwoW68sortWzZMj311FNqbW3Vww8/rObmZtXU1EQ7eFSMtWvX6u6779asWbN0/fXXa/Pmzero6NA999wT9dBQwb744gsdPXrU//tvf/tbffjhhxo7dqwmT56sNWvW6LHHHtNXvvIVTZ06VX/5l3+piRMnavHixdENGhWnublZr7zyin784x+rrq7OX+e8oaFBtbW1amho0IoVK7R27VqNHTtW9fX1Wr16tebMmaMbbrgh4tEPfocPH5Zt23rhhRf05S9/WYcOHdLKlSvV0dGhp59+OtSx5N1A9z9Q+hlThm0pZnXnVXB7Sj6DrYCC2/9IGWaw5V1we8owo7CQBoiHPFzkEXyEPHzk4SKP4CPk4SMPVzlmpBfQQPeUaka64TghbtmKktu1a1fOxlR6tL/+9a/V3Nys999/XxdffLFWr16t9evXhzVMDBLLly/Xiy++eMHr//qv/6p58+ZJkv77v/9b999/v/bu3atRo0bp7rvv1pNPPql4nH+TQ+C5557Tpk2b1NraqhkzZujZZ59VU1NT1MNCBdu7d6/mz59/wet33323du3aJcdxtHHjRu3YsUNnz57VN77xDT3//PP66le/GsFoUamMHIXBzp07/aXNurq6tG7dOv3DP/yDuru7tWjRIj3//PMs51ImmzZt0rZt2/TJJ5/k/Zn29nY1NDTo2xseUs3IkQWfs+AGejrHlum4hZlixRV6jiPDsVIznwoouNMVXKTmGEehBXe6YpoG2QzoZxngz+AZ6M9CHi7y8JFHgDxc5OEjj8BwycNwbFX1fCFHRvbjl+L+SiqqgZ4xzhz3iN3nz+upJ7+ntrY21dfX5/48TXQAAAAA5fDwww/rZz/7mX71q1/lfE93d7e6u7v9v7e3t6uxsVHf3vCgakaOLuh8A2qgewZa6NmWTNmyYtVKxkfSPBgGzYN+kYePPALk4SIPH3kEyMM1SPLot4kuleD+amANdH+sWe4V822isyY6AAAAgJI7evSotmzZonvvvbfP9z3xxBNqaGjwvxobGyVJphyp90ZVfShJA10a2Bqetq3Ug8uSFRsxoMemi15TtUQFtzSwNVVL0gCRBrTGbakaIBJ5+MgjOBR5+MjDRR7BocjDRx6uAd9fDbyBLg1sjXSa6AAAAABy2rBhgwzD6PPr8OHDGZ9paWnRLbfcoqVLl2rlypV9Hv/BBx9UW1ub/3XixAn/e6Zj5dVIL1kD3T9gEYVeWoHnyBzwuqNSEYV3CQtu/5BFFN4lK7g9RTRCStkA8ZCHizyCQ5KHjzxc5BEckjx85OEa4P3VQBvonmIb6SxiDAAAACCndevW+WvK5zJt2jT/zydPntT8+fM1d+5c7dixo9/j19TUZN2g3FaqaDUdKzW3O0fRVPIGun/gAjbDSi/wZOZcn78YeW9OVoaC2z90AZuTlbzg9hSwWVw5GiAe8nCRR3Bo8vCRh4s8gkOTh488XMXeX5Woge5J32zUUH5PKdBEBwAAAJDTuHHjNG7cuLze29LSovnz52vmzJnauXOnzGI3jpIkmbIVkykrZyO9bA10/wR5FHq9CzwZkkq77VS/hXcZC27/FHkU3mUruD15NELK2QDxkIeLPIJTkIePPFzkEZyCPHzk4Srm/qqEDXRP0EjPD8u5AAAAABiwlpYWzZs3T5MnT9bTTz+tM2fOqLW1Va2trcUf1Ew10qULl3YpewPdP1Efjx6HUOD5p8r1KHgIBbd/qj4eBS97we3p49H8MBogHvJwkUdwKvLwkYeLPIJTkYePPFwVcn+VWtolP8xEBwAAADBgu3fv1tGjR3X06FFNmjQp43tOARtYXcA0ZdvKmJFuOHY4DXRPthlTUmgFnueCGWxmVWgFtyfbDDbTToRTcHuyzCiUFFoDxEMeLvLwkUeAPFzk4SOPAHm4KuT+ylF+v29mogMAAAAYsOXLl8txnKxfA9ZrRnqoDXRPrxlTYRd4nvQZbFWJjlALbk/6DLaqREe4Bben14zCsBsgHvJwkYePPALk4SIPH3kEyMNVIfdX+ais0QAAAABANqYpJ23VSieKwsowZaeVULbMSAo826xK+3Ms1ILb45gx2WnnTR9TaAxDVlqhb8WqQ22AeMjDRR4+8giQh4s8fOQRIA9Xhdxf9afyRgQAAAAAvaSvgS5duEZ6KGxbqQePU0zZmWt4hsFdM1VKFdymbWWuqRoS0+qRaVt+4d17TdUwpNaw7ZJjmO6Mwq6MNW5DQR4+8giQh4s8fOQRIA8XeQQq4f4qDzTRAQAAAFS03puI5tpstKx6bXKVczOscuq16ZgVr82+OVmZpW86ZsVrc25OVk69N4HLtVlcWZGHjzwC5OEiDx95BMjDRR6BSri/Un7noYkOACiZM2fOaMKECXr88cf91375y1+qurpae/bsiXBkAIDBqncDXdIFa6SXvZHeq8CTYV6whmfZC71eBbf3yHf6mqphFN7pBbe3Zmr6mqphFN69GyAyjAvWuC17I4Q8fOQRIA8XefjII0AeLvIIVMT9lS1T+f2cIe7EAwAY6saNG6e//du/1eLFi7Vw4UJNnz5dy5Yt06pVq3TzzTdHPTwAwCDgbUTa090lQ5YMSY4kRzFJvYvKoPCxZag8c4T6O0fm9w13uZmEVcrxOIolu2U7tpLxEVKy64J3GHZSMatTVqxKTpnWMzXshGJWQt2xKjmmISmR8f1ux1E82SHH6JQVr5FUhvVlHVvxZJeShpk6R+J8xrd73N+V4XSmfldlWVOVPHzkkXYO8nAHQR4e8kg7B3m4gxiiediye1JL0zh5Z1fY/VU57/G6u7slBfeguRhOf+8AAKBAzc3N+pd/+RfNmjVLH330kd5//33V1NREPSwAwCDwP//zP2psbIx6GAAAABhGTpw4oUmTJuX8Pk10AEDJdXZ26qqrrtKJEyd08OBBXX311VEPCQAwSNi2rZMnT6qurk6GMbCZaO3t7WpsbNSJEydUX19fohGi1Mip8pFR5SOjwYGcKh8ZDQ6lzMlxHJ07d04TJ06Uaeae8c5yLgCAkvuv//ovnTx5UrZt69ixYzTRAQB5M02zz1lAxaivr6cQHgTIqfKRUeUjo8GBnCofGQ0OpcqpoaGh3/fQRAcAlFRPT4/uuusu3X777Zo+fbq+9a1v6aOPPtL48eOjHhoAAAAAAEDByrEqOwBgGHvooYfU1tamZ599VuvXr9dXv/pVffOb34x6WAAAAAAAAEWhiQ4AKJm9e/dq8+bNevnll1VfXy/TNPXyyy/r5z//ubZt2xb18AAAw0xNTY02btzI5tYVjpwqHxlVPjIaHMip8pHR4BBFTmwsCgAAAAAAAABADsxEBwAAAAAAAAAgB5roAAAAAAAAAADkQBMdAAAAAAAAAIAcaKIDAAAAAAAAAJADTXQAAAAAw8JPf/pTNTU1qba2VmPGjNHixYujHhJy6O7u1owZM2QYhj788MOohwPXsWPHtGLFCk2dOlW1tbW6/PLLtXHjRvX09EQ9tGFv69atuuyyyzRixAg1NTXpvffei3pIcD3xxBOaPXu26urqNH78eC1evFhHjhyJeljox5NPPinDMLRmzZqoh4I0LS0tuuuuu3TRRReptrZWV199tX71q1+Fcm6a6AAAAACGvNdff13Lli3TPffco3//93/XL37xC91xxx1RDws5fPvb39bEiROjHgZ6OXz4sGzb1gsvvKCPP/5YzzzzjLZv367vfOc7UQ9tWHvttde0du1abdy4UR988IGuueYaLVq0SKdPn456aJC0b98+NTc365133tHu3buVSCS0cOFCdXR0RD005PD+++/rhRde0Ne//vWoh4I0n3/+uW688UZVVVXprbfe0m9+8xt9//vf15gxY0I5v+E4jhPKmQAAAAAgAslkUpdddpm++93vasWKFVEPB/146623tHbtWr3++uv6nd/5Hf3bv/2bZsyYEfWwkMOmTZu0bds2ffLJJ1EPZdhqamrS7Nmz9dxzz0mSbNtWY2OjVq9erQ0bNkQ8OvR25swZjR8/Xvv27dNNN90U9XDQyxdffKHrrrtOzz//vB577DHNmDFDmzdvjnpYkLRhwwb94he/0M9//vNIzs9MdAAAAABD2gcffKCWlhaZpqlrr71Wl156qX7v935Phw4dinpo6OXUqVNauXKlXn75ZY0cOTLq4SAPbW1tGjt2bNTDGLZ6enp08OBBLViwwH/NNE0tWLBABw4ciHBkyKWtrU2S+N9NhWpubtatt96a8b8pVIaf/OQnmjVrlpYuXarx48fr2muv1d/8zd+Edn6a6AAAAACGNG+G7KOPPqqHH35Yb775psaMGaN58+bps88+i3h08DiOo+XLl+u+++7TrFmzoh4O8nD06FFt2bJF9957b9RDGbY+/fRTWZalSy65JOP1Sy65RK2trRGNCrnYtq01a9boxhtv1FVXXRX1cNDLq6++qg8++EBPPPFE1ENBFp988om2bdumr3zlK/qnf/on3X///frTP/1Tvfjii6GcnyY6AAAAgEFpw4YNMgyjzy9vDWdJeuihh7RkyRLNnDlTO3fulGEY+uEPfxjxTzH05ZvTli1bdO7cOT344INRD3nYyTejdC0tLbrlllu0dOlSrVy5MqKRA4NLc3OzDh06pFdffTXqoaCXEydO6M/+7M/093//9xoxYkTUw0EWtm3ruuuu0+OPP65rr71Wf/Inf6KVK1dq+/btoZw/HspZAAAAAKDE1q1bp+XLl/f5nmnTpul///d/JUlXXnml/3pNTY2mTZum48ePl3OIUP45vf322zpw4IBqamoyvjdr1izdeeedoc00G47yzchz8uRJzZ8/X3PnztWOHTvKPDr05eKLL1YsFtOpU6cyXj916pQmTJgQ0aiQzapVq/Tmm29q//79mjRpUtTDQS8HDx7U6dOndd111/mvWZal/fv367nnnlN3d7disViEI8Sll16acS8nSV/72tf0+uuvh3J+mugAAAAABqVx48Zp3Lhx/b5v5syZqqmp0ZEjR/SNb3xDkpRIJHTs2DFNmTKl3MMc9vLN6dlnn9Vjjz3m//3kyZNatGiRXnvtNTU1NZVziMNevhlJqRno8+fP95/oME0ecI9SdXW1Zs6cqT179mjx4sWSUrM19+zZo1WrVkU7OEhKLVW1evVqvfHGG9q7d6+mTp0a9ZCQxc0336yPPvoo47V77rlHV1xxhdavX08DvQLceOONOnLkSMZr//Ef/xHavRxNdAAAAABDWn19ve677z5t3LhRjY2NmjJlijZt2iRJWrp0acSjg2fy5MkZfx89erQk6fLLL2fWZoVoaWnRvHnzNGXKFD399NM6c+aM/z1mPUdn7dq1uvvuuzVr1ixdf/312rx5szo6OnTPPfdEPTQotYTLK6+8oh//+Meqq6vz16pvaGhQbW1txKODp66u7oJ16keNGqWLLrqI9esrxAMPPKC5c+fq8ccf1x/90R/pvffe044dO0J7IoomOgAAAIAhb9OmTYrH41q2bJk6OzvV1NSkt99+W2PGjIl6aMCgsXv3bh09elRHjx694B82HMeJaFS4/fbbdebMGT3yyCNqbW3VjBkz9LOf/eyCzUYRjW3btkmS5s2bl/H6zp07+11GCUBg9uzZeuONN/Tggw/qr/7qrzR16lRt3rxZd955ZyjnNxz+Px0AAAAAAAAAAFmxeBkAAAAAAAAAADnQRAcAAAAAAAAAIAea6AAAAAAAAAAA5EATHQAAAAAAAACAHGiiAwAAAAAAAACQA010AAAAAAAAAAByoIkOAAAAAAAAAEAONNEBAAAAAAAAAMiBJjoAAAAAAAAAADnQRAcAAAAAAAAAIAea6AAAAAAAAAAA5EATHQAAAAAAYBB66aWXdNFFF6m7uzvj9cWLF2vZsmURjQoAhh6a6AAAAAAAAIPQ0qVLZVmWfvKTn/ivnT59Wj/96U/1zW9+M8KRAcDQQhMdAAAAAABgEKqtrdUdd9yhnTt3+q/93d/9nSZPnqx58+ZFNzAAGGJoogMAAAAAAAxSK1eu1D//8z+rpaVFkrRr1y4tX75chmFEPDIAGDoMx3GcqAcBAAAAAACA4sycOVO33XabFi5cqOuvv17Hjh1TY2Nj1MMCgCEjHvUAAAAAAAAAULxvfetb2rx5s1paWrRgwQIa6ABQYsxEBwAAAAAAGMTa2to0ceJEJZNJvfTSS7r99tujHhIADCmsiQ4AAAAAADCINTQ0aMmSJRo9erQWL14c9XAAYMihiQ4AAAAAADDItbS06M4771RNTU3UQwGAIYflXAAAAAAAAAapzz//XHv37tVtt92m3/zmN5o+fXrUQwKAIYeNRQEAAAAAAAapa6+9Vp9//rn++q//mgY6AJQJM9EBAAAAAAAAAMiBNdEBAAAAAAAAAMiBJjoAAAAAAAAAADnQRAcAAAAAAAAAIAea6AAAAAAAAAAA5EATHQAAAAAAAACAHGiiAwAAAAAAAACQA010AAAAAAAAAAByoIkOAAAAAAAAAEAO/x8rFElG0B1/YgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f, (ax1, ax2) = plt.subplots(1, 2, tight_layout=True, figsize=(15, 10))\n", "ax1 = sim.plot(z=wg_height / 2, ax=ax1)\n", "ax2 = sim.plot(x=src_pos, ax=ax2)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Setting up Scattering Matrix Tool\n", "Now, to use the S matrix tool, we need to defing the spatial extent of the \"ports\" of our system using [Port](../_autosummary/tidy3d.plugins.Port.html) objects.\n", "\n", "These ports will be converted into modal sources and monitors later, so they require both some mode specification and a definition of the direction that points into the system.\n", "\n", "We'll also give them names to refer to later." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "tags": [] }, "outputs": [], "source": [ "from tidy3d.plugins.smatrix.smatrix import Port\n", "\n", "num_modes = 1\n", "\n", "port_right_top = Port(\n", " center=[src_pos, wg_spacing_in / 2, wg_height / 2],\n", " size=[0, 4, 2],\n", " mode_spec=td.ModeSpec(num_modes=num_modes),\n", " direction=\"-\",\n", " name=\"right_top\",\n", ")\n", "\n", "port_right_bot = Port(\n", " center=[src_pos, -wg_spacing_in / 2, wg_height / 2],\n", " size=[0, 4, 2],\n", " mode_spec=td.ModeSpec(num_modes=num_modes),\n", " direction=\"-\",\n", " name=\"right_bot\",\n", ")\n", "\n", "port_left_top = Port(\n", " center=[-src_pos, wg_spacing_in / 2, wg_height / 2],\n", " size=[0, 4, 2],\n", " mode_spec=td.ModeSpec(num_modes=num_modes),\n", " direction=\"+\",\n", " name=\"left_top\",\n", ")\n", "\n", "port_left_bot = Port(\n", " center=[-src_pos, -wg_spacing_in / 2, wg_height / 2],\n", " size=[0, 4, 2],\n", " mode_spec=td.ModeSpec(num_modes=num_modes),\n", " direction=\"+\",\n", " name=\"left_bot\",\n", ")\n", "\n", "ports = [port_right_top, port_right_bot, port_left_top, port_left_bot]\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, we will add the base simulation and ports to the [ComponentModeler](../_autosummary/tidy3d.plugins.ComponentModeler.html), along with the frequency of interest and a name for saving the batch of simulations that will get created later." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
[10:07:30] Created task 'smatrix_right_top_0' with task_id                                            webapi.py:139\n",
       "           'fdve-66a24c26-5b4b-45e0-a624-a96e208956bcv1'.                                                          \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:07:30]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'smatrix_right_top_0'\u001b[0m with task_id \u001b]8;id=986363;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=919131;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-66a24c26-5b4b-45e0-a624-a96e208956bcv1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a951efa7feeb4ccd947794a327a6411f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:07:32] Created task 'smatrix_right_bot_0' with task_id                                            webapi.py:139\n",
       "           'fdve-6a8242e7-d5cd-4a4d-a80e-66993245af21v1'.                                                          \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:07:32]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'smatrix_right_bot_0'\u001b[0m with task_id \u001b]8;id=446541;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=924463;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-6a8242e7-d5cd-4a4d-a80e-66993245af21v1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9aef843e075a498aab66f9ed807cd772", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:07:34] Created task 'smatrix_left_top_0' with task_id                                             webapi.py:139\n",
       "           'fdve-631780ac-8d4f-48c9-8dc2-d4efd3238406v1'.                                                          \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:07:34]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'smatrix_left_top_0'\u001b[0m with task_id \u001b]8;id=686396;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=484321;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-631780ac-8d4f-48c9-8dc2-d4efd3238406v1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3d984be8cf524a3ba15eac96729dae6b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:07:35] Created task 'smatrix_left_bot_0' with task_id                                             webapi.py:139\n",
       "           'fdve-83bc1d2f-0dc4-402e-82cb-c59b8a6edef0v1'.                                                          \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:07:35]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'smatrix_left_bot_0'\u001b[0m with task_id \u001b]8;id=910278;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=729304;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-83bc1d2f-0dc4-402e-82cb-c59b8a6edef0v1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e77696c98752458eb598beb4313965d4", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from tidy3d.plugins.smatrix.smatrix import ComponentModeler\n", "\n", "modeler = ComponentModeler(simulation=sim, ports=ports, freqs=[freq0], verbose=True)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can plot the simulation with all of the ports as sources to check things are set up correctly." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAFVCAYAAAAAO6bXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADKl0lEQVR4nOzdeZwcZZ0/8E9V9X3NnUkmdwIhIQdHSJAzKMGgQQ26KLgqiWyQS8WsF4JAgktEVGBVQHcXssuhHL8VVlEgQABB5FYgIYGEHGQyk2QmM9M9fVV11fP7o6a65p4+qntmMp/36zWvzHRXdT/T3yTzfD/z9FOSEEKAiIiIiIiIiIiIiIj6kId7AEREREREREREREREIxVDdCIiIiIiIiIiIiKiATBEJyIiIiIiIiIiIiIaAEN0IiIiIiIiIiIiIqIBMEQnIiIiIiIiIiIiIhoAQ3QiIiIiIiIiIiIiogEwRCciIiIiIiIiIiIiGgBDdCIiIiIiIiIiIiKiATBEJyIiIiIiIiIiIiIaAEN0IiIiIiIiIqJh8Oyzz0KSJDz77LPDPRQiIhoEQ3QiIiIiIiIiohK6/fbbsWHDhuEeRkHuv/9+3HrrrcM9DADAhx9+iLVr12Lx4sWoqqpCbW0tzjjjDDz11FP9Ht/e3o6LL74YdXV1CAaD+OhHP4o33ngjp+dauXIlJEnq8zF79uw+xxqGgZ/85CeYPn06fD4fFixYgN/+9rdFfa9ENLK4hnsARERERERERESHs9tvvx21tbVYuXJlj9tPP/10JJNJeDye4RlYDu6//3688847uPLKK4d7KHj00Udx0003YcWKFbjwwguRyWTwP//zPzjrrLNw1113YdWqVdljDcPA8uXL8Y9//APf+c53UFtbi9tvvx1nnHEGXn/9dRx55JFDPp/X68V//ud/9ritoqKiz3FXX301fvzjH2P16tVYtGgRHn30UXzxi1+EJEk4//zzi//GiWjYSUIIMdyDICIiIiIiIqLDWzweRzAYHO5hDIt58+ahtrZ2VG7bcs455+Cdd97Brl27hnso2Lx5M+rr61FbW5u9LZ1O49hjj0VnZyc+/PDD7O0PPvggvvCFL+Chhx7CP/3TPwEADh48iFmzZuETn/gE7r///kGfa+XKlXj44YfR2dk56HGNjY2YPn06Lr74Yvzyl78EAAghsGTJEuzcuRO7du2CoiiFfstENEJwOxciIiIiIiIiyktjYyMuuugiNDQ0wOv1Yvr06bj00kuhqioAYMOGDZAkCc899xwuu+wyjBs3DpMmTcqef/vtt2Pu3Lnwer1oaGjA5Zdfjvb29h7P8f777+Nzn/scxo8fD5/Ph0mTJuH8889HR0dH9piNGzfi1FNPRWVlJUKhEI466ij84Ac/GHL8uZyXTqdx3XXX4YgjjoDX68XkyZPx3e9+F+l0us/j3XvvvVi8eDECgQCqqqpw+umn48knnwQATJs2DZs3b8Zzzz2X3RLkjDPOADDwnugPPfQQFi5cCL/fj9raWnzpS19CY2Njj2NWrlyJUCiExsZGrFixAqFQCHV1dfj2t78NXdeHfA0effRRLF++PFvDmTNn4oYbbuhx7hlnnIHHHnsMu3fvzo592rRpAz7m3XffDUmScNddd/W4/cYbb4QkSfjTn/405LgGM3fu3B4BOmCuFv/kJz+JvXv3IhaLZW9/+OGHUV9fj89+9rPZ2+rq6vD5z38ejz76aL917I+u64hGowPe/+ijj0LTNFx22WXZ2yRJwqWXXoq9e/fipZdeyvXbI6IRjNu5EBEREREREVHO9u3bh8WLF2f3m549ezYaGxvx8MMPI5FI9Nia5LLLLkNdXR2uvfZaxONxAMD111+PtWvXYunSpbj00kuxbds23HHHHXj11Vfx4osvwu12Q1VVLFu2DOl0Gl//+tcxfvx4NDY24o9//CPa29tRUVGBzZs345xzzsGCBQuwbt06eL1ebN++HS+++OKg48/lPMMw8OlPfxovvPACLr74YsyZMwdvv/02brnlFrz33nt45JFHsseuXbsW119/PU4++WSsW7cOHo8HL7/8Mp555hl8/OMfx6233oqvf/3rCIVCuPrqqwEA9fX1A45vw4YNWLVqFRYtWoT169dj//79uO222/Diiy/izTffRGVlZfZYXdexbNkynHjiifjpT3+Kp556Cj/72c8wc+ZMXHrppYO+Dhs2bEAoFMKaNWsQCoXwzDPP4Nprr0U0GsXNN98MwNympKOjA3v37sUtt9wCAAiFQgM+5qpVq/C///u/WLNmDc466yxMnjwZb7/9NtauXYuLLroIn/zkJ7PHtrW15RT2BwIBBAKBQY9pbm7uc9ybb76J448/HrLcc/3o4sWL8Zvf/Abvvfce5s+fP+jjJhIJRCIRJBIJVFVV4YILLsBNN93U4zV48803EQwGMWfOnD7PY91/6qmnDvl9EtEIJ4iIiIiIiIiIcvSVr3xFyLIsXn311T73GYYhhBDi7rvvFgDEqaeeKjKZTPb+AwcOCI/HIz7+8Y8LXdezt//yl78UAMRdd90lhBDizTffFADEQw89NOA4brnlFgFAHDx4MK/x53LePffcI2RZFn/5y1963H7nnXcKAOLFF18UQgjx/vvvC1mWxbnnntvj+xHCfi2EEGLu3LliyZIlfZ5n06ZNAoDYtGmTEEIIVVXFuHHjxLx580Qymcwe98c//lEAENdee232tgsvvFAAEOvWrevxmMcdd5xYuHDh4C+CECKRSPS57Wtf+5oIBAIilUplb1u+fLmYOnXqkI9naWpqEtXV1eKss84S6XRaHHfccWLKlCmio6Ojx3FTp04VAIb8uO666wZ9vvfff1/4fD7x5S9/ucftwWBQfPWrX+1z/GOPPSYAiMcff3zQx/3+978vvve974kHHnhA/Pa3v82+3qeccorQNC173PLly8WMGTP6nB+PxwUA8f3vf3/Q5yGi0YEr0YmIiIiIiIgoJ4Zh4JFHHsGnPvUpnHDCCX3ulySpx9erV6/usR/0U089BVVVceWVV/ZYIbx69Wr84Ac/wGOPPYZVq1ZlL974xBNP4JOf/GS/K5GtFdmPPvooVq1a1WfF8UByOe+hhx7CnDlzMHv2bLS0tGRv/9jHPgYA2LRpE04++WQ88sgjMAwD1157bZ/H6f1a5OK1117DgQMHcP3118Pn82VvX758OWbPno3HHnsMa9eu7XHOJZdc0uPr0047Dffcc8+Qz+X3+7Ofx2IxpNNpnHbaafj1r3+NrVu34phjjsl7/AAwfvx4/OpXv8IFF1yA0047DX//+9+xceNGRCKRHsfdd999SCaTQz7ejBkzBrwvkUjgvPPOg9/vx49//OMe9yWTSXi93j7nWK/rUM+9fv36Hl+ff/75mDVrFq6++mo8/PDD2QuGFvs8RDQ6cE90IiIiIiIiIsrJwYMHEY1GMW/evJyOnz59eo+vd+/eDQA46qijetzu8XgwY8aM7P3Tp0/HmjVr8J//+Z+ora3FsmXL8Ktf/arHfuhf+MIXcMopp+Bf/uVfUF9fj/PPPx8PPvggDMMYdEy5nPf+++9j8+bNqKur6/Exa9YsAMCBAwcAADt27IAsyzj66KNzej2GMtDrAwCzZ8/O3m/x+Xyoq6vrcVtVVRXa2tqGfK7Nmzfj3HPPRUVFBSKRCOrq6vClL30JAHq8zoU4//zzsXz5crzyyitYvXo1zjzzzD7HnHLKKVi6dOmQHwOF6Lqu4/zzz8eWLVvw8MMPo6Ghocf9fr+/333PU6lU9v58fetb34Isy3jqqadK+jxENPJwJToRERERERERlUQxAeLPfvYzrFy5Eo8++iiefPJJfOMb38D69evxt7/9DZMmTYLf78fzzz+PTZs24bHHHsPjjz+OBx54AB/72Mfw5JNP9lgB33tMQ51nGAbmz5+Pn//85/0+xuTJkwv+vpw00Pc4lPb2dixZsgSRSATr1q3DzJkz4fP58MYbb+B73/vekL+IGEpraytee+01AMCWLVtgGEaflfoHDx7MaU/0UCjU7z7sq1evxh//+Efcd9992XcIdDdhwgQ0NTX1ud26rXfongu/34+amhocOnSox/Ns2rQJQoge7z4o5nmIaOThSnQiIiIiIiIiykldXR0ikQjeeeedgs6fOnUqAGDbtm09bldVFTt37szeb5k/fz6uueYaPP/88/jLX/6CxsZG3Hnnndn7ZVnGmWeeiZ///OfYsmUL/u3f/g3PPPMMNm3aNOg4hjpv5syZOHToEM4888x+V0dbK8VnzpwJwzCwZcuWQZ8v161dBnp9rNt6vz6FevbZZ9Ha2ooNGzbgm9/8Js455xwsXboUVVVVfY4tZFuayy+/HLFYDOvXr8cLL7yAW2+9tc8xixYtwoQJE4b8+OlPf9rn3O985zu4++67ccstt+CCCy7odwzHHnss3njjjT6/EHj55ZcRCASy7yrIRywWQ0tLS4/V/8ceeywSiQTefffdPs9j3U9Eox9DdCIiIiIiIiLKiSzLWLFiBf7whz9kVxp3J4QY9PylS5fC4/Hg3//933sc+1//9V/o6OjA8uXLAQDRaBSZTKbHufPnz4csy9mtM7qvBrZYgWV/22tYcjnv85//PBobG/Ef//EffY5NJpOIx+MAgBUrVkCWZaxbt65PWNv9+wsGg2hvbx9wTJYTTjgB48aNw5133tnje/jzn/+Md999N/v6FMtawd59jKqq4vbbb+9zbDAYzGt7l4cffhgPPPAAfvzjH+P73/8+zj//fFxzzTV47733ehx33333YePGjUN+fOUrX+lx3s0334yf/vSn+MEPfoBvfvObA47jn/7pn7B//3787//+b/a2lpYWPPTQQ/jUpz7VYx/zHTt2YMeOHdmvU6kUYrFYn8e84YYbIITA2Wefnb3tM5/5DNxud4/XTgiBO++8ExMnTsTJJ5+cw6tGRCMdt3MhIiIiIiIiopzdeOONePLJJ7FkyRJcfPHFmDNnDpqamvDQQw/hhRdeyF64sz91dXW46qqrsHbtWpx99tn49Kc/jW3btuH222/HokWLsntyP/PMM7jiiitw3nnnYdasWchkMrjnnnugKAo+97nPAQDWrVuH559/HsuXL8fUqVNx4MAB3H777Zg0aRJOPfXUAceQy3lf/vKX8eCDD+KSSy7Bpk2bcMopp0DXdWzduhUPPvggnnjiCZxwwgk44ogjcPXVV+OGG27Aaaedhs9+9rPwer149dVX0dDQkL045cKFC3HHHXfgRz/6EY444giMGzeu3y1I3G43brrpJqxatQpLlizBBRdcgP379+O2227DtGnT8K1vfavQsvVw8skno6qqChdeeCG+8Y1vQJIk3HPPPf3+EmThwoV44IEHsGbNGixatAihUAif+tSn+n3cAwcO4NJLL8VHP/pRXHHFFQCAX/7yl9i0aRNWrlyJF154IbutyymnnJL3uH//+9/ju9/9Lo488kjMmTMH9957b4/7zzrrLNTX1wMwQ/SPfOQjWLVqFbZs2YLa2lrcfvvt0HW9z8VZrT3bd+3aBQBobm7GcccdhwsuuACzZ88GYF7k9k9/+hPOPvtsfOYzn8meO2nSJFx55ZW4+eaboWkaFi1ahEceeQR/+ctfcN999xW85Q4RjTCCiIiIiIiIiCgPu3fvFl/5yldEXV2d8Hq9YsaMGeLyyy8X6XRaCCHE3XffLQCIV199td/zf/nLX4rZs2cLt9st6uvrxaWXXira2tqy93/wwQfiq1/9qpg5c6bw+XyiurpafPSjHxVPPfVU9pinn35afOYznxENDQ3C4/GIhoYGccEFF4j33ntv0LHnep6qquKmm24Sc+fOFV6vV1RVVYmFCxeKtWvXio6Ojh7H3nXXXeK4447LHrdkyRKxcePG7P3Nzc1i+fLlIhwOCwBiyZIlQgghNm3aJACITZs29Xi8Bx54IPt41dXV4p//+Z/F3r17exxz4YUXimAw2Of7u+6660Qucc+LL74oPvKRjwi/3y8aGhrEd7/7XfHEE0/0GU9nZ6f44he/KCorKwUAMXXq1AEf87Of/awIh8Ni165dPW5/9NFHBQBx0003DTmuwVjf20AfvV/HQ4cOiYsuukjU1NSIQCAglixZ0u/fyalTp/b4vtra2sSXvvQlccQRR4hAICC8Xq+YO3euuPHGG4Wqqn3O13Vd3HjjjWLq1KnC4/GIuXPninvvvbeo75WIRhZJiCHea0VERERERERERERENEZxT3QiIiIiIiIiIiIiogEwRCciIiIiIiIiIiIiGgBDdCIiIiIiIiIiIiKiATBEJyIiIiIiIiIiIiIaAEN0IiIiIiIiIiIiIqIBuIZ7AERERERERBbDMLBv3z6Ew2FIkjTcwyEiIiKiw5gQArFYDA0NDZDlgdebM0QnIiIiIqIRY9++fZg8efJwD4OIiIiIxpAPP/wQkyZNGvB+huhERERERDRihMNhAMB3v/td+P1+Rx9b0zQYhpH92u12D7riqBBCCABAbW0t3G53v2Nob2/PHhcMBhEMBh0dQy5jbG9vh6ZpAMzXobKysuwr/+PxOOLxOABAkiRUVlb2+5qVEuthYz1MrIeN9bCxHibWw8Z62KLRKNra2rJfl2J+NRTDMLKvAwDIspzz34lkMomf/OQn2TnoQBiiExERERHRiGE1fn6/H6FQyNHHNgwDyWQSgNlcOR3SW89hGAYikQg8Hk+/x0iShFQqBQAYP3582RtNwHx9W1paAJiBv9frLfsYwuEwmpqaAAA+nw81NTVlHwPAelhYDxvrYWM9TKyHjfWwsR4mr9eLVCoFIUTJ5le5SCaT2cUSfr8/73oM9csHXliUiIiIiIgOe4ZhIJ1OQ5IkyLKc/brcYrEYUqkUfD4fJElCa2trj9Xx5aCqKlpbW+F2u+F2u9Ha2gpVVcs6BsMw0NraCkmS4PP5kEqlEIvFyjoGgPWwsB421sPGephYDxvrYWM9TIZhoL29HQCGdX6VTqdhGAZkWYYkSdmvncQQnYiIiIiIDmtWQyeEgMfjgd/vh8vlQiaTKWujF4vFEI1GEYlEUFNTg9raWmiaVtbGW1VVtLS0wO12o7a2NrvtTEtLS9kabysA0TQNtbW1qKmpQSQSQTQaLWsQwnqYWA8b62FjPUysh431sLEeJqsemUwGLpcLXq93WOZX6XQ6Owa/3w+PxwMhhONBOkN0IiIiIiI6bPUO0F0uc0fLcjd63Rtua89Nj8dT1sa7e8NdU1MDWZYhyzJqamrK1nj3DkCsLW/C4XBZgxDWw8R62FgPG+thYj1srIeN9TB1r0dVVVV265Ryz6+6B+jWVjYul6skQTpDdCIiIiIiOiwNFKBbytXo9ddwW8rVePfXcFvK1XgPFIBYyhWEsB4m1sPGethYDxPrYWM9bKyHqXc9el/As1zzq/4CdEspgnSG6EREREREdNgZKkC3lLrRG6zhtpS68R6s4baUuvEeKgCxlDoIYT1MrIeN9bCxHibWw8Z62FgPU671KPX8arAA3eJ0kM4QnYiIiIiIDiu5BuiWUjV6uTTcllI13rk03JZSNd65NtyWUgUhrIeJ9bCxHjbWw8R62FgPG+thyrcepZpf5RKgW5wM0hmiExERERHRYSPfAN3idKMXj8dzbrgtTjfe+TTcFqcb73wbbovTQUg+AYiF9bCxHibWw8Z62FgPE+thYz1sTs+v8gnQLU4F6QzRiYiIiIjosFBogG5xqtHLZDLo7OzMq+G2ONV4F9JwW5xqvAttuC1OBSGFBCAW1sPGephYDxvrYWM9TKyHjfWwOTW/KiRAtzgRpDNEJyIiIiKiESff5qbYAN1SbKOnqioMw0AoFMq74bYU23gX03Bbim28i224LcUGIcUEIBbWw8Z6mFgPG+thYz1MrIeN9bAVO78qJkC3FBukM0QnIiIiIqIRR9M0ZDKZnI51KkC3FNropdNp6LoOWZYRDAaLGkOhjbcTDbel0MbbqYbbUmgQ4kQAYmE9bKyHifWwsR421sPEethYD1sx86tiA3RLMUE6Q3QiIiIiIhqRVFUdMkh3OkC35NvoWQ2eoiiOjSHfxtvJhtuSb+PtdMNtyTcIcTIAsbAeNtbDxHrYWA8b62FiPWysh63Q+ZUTAbqld5AuhMjpPIboREQ0pGeffRaSJOHZZ58d7qEQEdEY4fF4IEnSoEF6qQJ0S66NXvcGz6km05Jr412KhtuSa+NdqobbkmsQUooAxMJ62FgPE+thYz1srIeJ9bCxHrZC5ldOBeiW7kF6rivzGaITEVHW7bffjg0bNgz3MApy//3349Zbbx3uYQAwJx0/+clPMH36dPh8PixYsAC//e1vczq3qakJ3//+9/HRj34U4XB40F9ePPnkk7joooswb948KIqCadOmOfdNEBENM0mS4PV6BwzSSx2gW4Zq9ErZ4FmGarxL2XBbhmq8S91wW4YKQkoZgFhYDxvrYWI9bKyHjfUwsR421sM2EuZX+S5+YIhORERZA4Xop59+OpLJJE4//fTyDypHIylEv/rqq/G9730PZ511Fn7xi19gypQp+OIXv4jf/e53Q567bds23HTTTWhsbMT8+fMHPfb+++/H/fffj4qKCjQ0NDg1fCKiEUOW5X6D9HIF6JaBGr1yNHiWgRrvcjTcloEa73I13JaBgpByBCAW1sPGephYDxvrYWM9TKyHjfWwjYT5lcvlgtvtzulYhuhERL3E4/HhHsKII8syfD5fSX+QHy4aGxvxs5/9DJdffjl+85vfYPXq1fjDH/6A0047Dd/5zneg6/qg5y9cuBCtra147733sGbNmkGPvfHGGxGNRvHiiy/imGOOcfLbICIaMfoL0ssZoFt6N3rlbPAsvRvvdDpdtobb0rvxTqfTZW24Lb2DkHIGIBbWw8Z6mFgPG+thYz1MrIeN9bCNhPlVrq830xAiOqw1NjbioosuQkNDA7xeL6ZPn45LL700+5vWDRs2QJIkPPfcc7jsssswbtw4TJo0KXv+7bffjrlz58Lr9aKhoQGXX3452tvbezzH+++/j8997nMYP348fD4fJk2ahPPPPx8dHR3ZYzZu3IhTTz0VlZWVCIVCOOqoo/CDH/xgyPHncl46ncZ1112HI444Al6vF5MnT8Z3v/vdft8Sde+992Lx4sUIBAKoqqrC6aefjieffBIAMG3aNGzevBnPPfccJEmCJEk444wzAAy8J/pDDz2EhQsXwu/3o7a2Fl/60pfQ2NjY45iVK1ciFAqhsbERK1asQCgUQl1dHb797W8PGSgDwKOPPorly5dnazhz5kzccMMNPc4944wz8Nhjj2H37t3ZsQ+2tcnKlSuzx/X+uP7664cc01Dj1TQNl112WfY2SZJw6aWXYu/evXjppZcGPT8cDqO6ujqn52poaMj5t+ZERKOZFaQD5s89wzDKGqBbujd65W7wLFbjba1Yc7lcZWu4LVbj7XK5sivYytlwW7oHIeUOQCysh431MLEeNtbDxnqYWA8b62EbCfOrXJR31klEVEb79u3D4sWL0d7ejosvvhizZ89GY2MjHn74YSQSiR4/GC677DLU1dXh2muvza5Ev/7667F27VosXboUl156KbZt24Y77rgDr776Kl588UW43W6oqoply5YhnU7j61//OsaPH4/Gxkb88Y9/RHt7OyoqKrB582acc845WLBgAdatWwev14vt27fjxRdfHHT8uZxnGAY+/elP44UXXsDFF1+MOXPm4O2338Ytt9yC9957D4888kj22LVr1+L666/HySefjHXr1sHj8eDll1/GM888g49//OO49dZb8fWvfx2hUAhXX301AKC+vn7A8W3YsAGrVq3CokWLsH79euzfvx+33XYbXnzxRbz55puorKzMHqvrOpYtW4YTTzwRP/3pT/HUU0/hZz/7GWbOnIlLL7100Ndhw4YNCIVCWLNmDUKhEJ555hlce+21iEajuPnmmwGY26d0dHRg7969uOWWWwAAoVBowMf82te+hqVLl/a47fHHH8d9992HcePGZW9raWkZdGyWcDic/SH/5ptvIhgMYs6cOT2OWbx4cfb+U089NafHJSIiIiIiIqLhxxCdiA5bV111FZqbm/Hyyy/jhBNOyN6+bt06CCF6HFtdXY2nn34aiqIAAA4ePIj169fj4x//OP785z9nfxs8e/ZsXHHFFbj33nuxatUqbNmyBTt37sRDDz2Ef/qnf8o+3rXXXpv9fOPGjVBVFX/+859RW1ub8/hzOe/+++/HU089heeee65HMDtv3jxccskl+Otf/4qTTz4Z27dvx7p163Duuefi4Ycf7vHbbeu1WLFiBa655prsivLBaJqG733ve5g3bx6ef/55+Hw+AMCpp56Kc845B7fccgvWrl2bPT6VSuELX/gCfvjDHwIALrnkEhx//PH4r//6ryFD9Pvvvx9+vz/79SWXXIJLLrkEt99+O370ox/B6/XirLPOwsSJE9HW1jbk2AHgpJNOwkknnZT9evv27bjiiitw1lln4Wtf+1r29rq6uiEfCwDuvvturFy5EoB5YdD6+npIktTjmAkTJgAwf7lDRET5sfZAB8zVSpqmZd9VVs7V6N3fYgwgu0d7OVdLWSvWPB4PIpEIWltb0draWtbVa9aeqZlMBrW1tYhGo2hpaSn76rXub8EHgGg0CgBlXU3IethYDxPrYWM9bKyHifWwsR62kTC/ygW3cyGiw5JhGHjkkUfwqU99qkeAbukdcK5evToboAPAU089BVVVceWVV/b4AbZ69WpEIhE89thjAICKigoAwBNPPIFEItHvWKwV2Y8++mifq28PJpfzHnroIcyZMwezZ89GS0tL9uNjH/sYAGDTpk0AgEceeQSGYeDaa6/t8wO592uRi9deew0HDhzAZZddlg3QAWD58uWYPXt29vXp7pJLLunx9WmnnYYPPvhgyOfqHqDHYjG0tLTgtNNOQyKRwNatW/Mee2/xeBznnnsuqqqq8Nvf/rbH34ONGzfm9LFs2bLsOclkst8f9tbrlEwmix4zEdFY0t9FRPu72Gip9d6jc6CLYZVS74uOeb3efi9OVkq9Lzrm9Xr7vThZqfXew3agi8WVEuthYz1MrIeN9bCxHibWw8Z62EbC/CrX15shOhEdlg4ePIhoNIp58+bldPz06dN7fL17924AwFFHHdXjdo/HgxkzZmTvnz59OtasWYP//M//RG1tLZYtW4Zf/epXPfZD/8IXvoBTTjkF//Iv/4L6+nqcf/75ePDBB4f8jzqX895//31s3rwZdXV1PT5mzZoFADhw4AAAYMeOHZBlGUcffXROr8dQBnp9AHO1vnW/xefz9VnVXVVVhba2tiGfa/PmzTj33HNRUVGBSCSCurq67Grz7q9zoVavXo0dO3bg97//PWpqanrct3Tp0pw+rFXmgBn69/fDPpVKZe8nIqLc9BegA/1fbLSUBrrIVTkbvd4Nt/VL8d4XJytl49274bZWqfW+OFmpG++BLgJXziCE9bCxHibWw8Z62FgPE+thYz1sI2F+lclkoGlaTscyRCciQnHB5s9+9jO89dZb+MEPfoBkMolvfOMbmDt3Lvbu3Zt97Oeffx5PPfUUvvzlL+Ott97CF77wBZx11lmDXlgzl/MMw8D8+fMHXCHd/eKWw6n76u58tLe3Y8mSJfjHP/6BdevW4Q9/+AM2btyIm266CUDuvzEeyG233Ybf/va3+I//+A8ce+yxfe5vbm7O6aP76vIJEyagubm5z5ZBTU1NAMyLgRIR0dCEEP0G6JZyBekDNXiWcjR6AzXclnI03gM13JZyNd4DBSCWcgQhrIeN9TCxHjbWw8Z6mFgPG+thGwnzq0wmk9f3xxCdiA5LdXV1iEQieOeddwo6f+rUqQCAbdu29bhdVVXs3Lkze79l/vz5uOaaa/D888/jL3/5CxobG3HnnXdm75dlGWeeeSZ+/vOfY8uWLfi3f/s3PPPMM9ntVgYy1HkzZ87EoUOHcOaZZ/a7QtpaKT5z5kwYhoEtW7YM+ny5bu0y0Otj3db79SnUs88+i9bWVmzYsAHf/OY3cc4552Dp0qWoqqrqc2y+29L85S9/wbe//W1ceeWV+Od//ud+j5kwYUJOHw888ED2nGOPPRaJRALvvvtuj8d6+eWXs/cTEdHQVFUdMEC3lDpIH6rBs3Rv9JxuNodquC2lbLyHargtpW68hwpALKUMQlgPG+thYj1srIeN9TCxHjbWw1bI/MrpIN2as0mSlPP+7wzRieiwJMsyVqxYgT/84Q947bXX+tzfe5Vwb0uXLoXH48G///u/9zj2v/7rv9DR0YHly5cDMC9A0rthnz9/PmRZzv4nf+jQoT6PbwWpg/0gyOW8z3/+82hsbMR//Md/9Dk2mUwiHo8DMC8aKssy1q1b1+eHcPfvLxgMor29fcAxWU444QSMGzcOd955Z4/v4c9//jPefffd7OtTLGsFe/cxqqqK22+/vc+xwWAw5+1dmpqa8PnPfx6nnnoqbr755gGPK2RP9M985jNwu909xiiEwJ133omJEyfi5JNP7jGOrVu35vz2MSKisWawAN1SqiA91wbPYjV6uq47NoZcG25LKRrvXBtuS6ka71wDEEspghDWw8Z6mFgPG+thYz1MrIeN9bAVOr9yMkjvHqBbc8hclO9S9kREZXbjjTfiySefxJIlS3DxxRdjzpw5aGpqwkMPPYQXXnghe+HO/tTV1eGqq67C2rVrcfbZZ+PTn/40tm3bhttvvx2LFi3K7sn9zDPP4IorrsB5552HWbNmIZPJ4J577oGiKPjc5z4HAFi3bh2ef/55LF++HFOnTsWBAwdw++23Y9KkSTj11FMHHEMu5335y1/Ggw8+iEsuuQSbNm3CKaecAl3XsXXrVjz44IN44okncMIJJ+CII47A1VdfjRtuuAGnnXYaPvvZz8Lr9eLVV19FQ0MD1q9fDwBYuHAh7rjjDvzoRz/CEUccgXHjxmUvUtqd2+3GTTfdhFWrVmHJkiW44IILsH//ftx2222YNm0avvWtbxVath5OPvlkVFVV4cILL8Q3vvENSJKEe+65p99fgixcuBAPPPAA1qxZg0WLFiEUCuFTn/pUv4/7jW98AwcPHsR3v/td/O53v+tx34IFC7BgwQIA5i9T8jVp0iRceeWVuPnmm6FpGhYtWoRHHnkEf/nLX3Dffff12Nrmqquuwn//939j586dmDZtWvb2H/3oRwDM/eAB4J577sELL7wAALjmmmuyx7311lv4v//7PwDA9u3b0dHRkT33mGOOGfD7JyIaDdxu95ABusUK0tPpdLbJy/Xc/uTb4Fm8Xi+EEDAMA/F4POeVTf3Jt+G2WI13S0sLWltb8zq3t3wbbovVeLe2tqKlpSWvc/uTbwBisY6NRqM9vi4E62FjPUysh431sLEeJtbDxnrYiplfAcguUsjn3N56B+j5vKYM0YnosDVx4kS8/PLL+OEPf4j77rsP0WgUEydOxCc+8QkEAoEhz7/++utRV1eHX/7yl/jWt76F6upqXHzxxbjxxhvhdrsBmEHlsmXL8Ic//AGNjY0IBAI45phj8Oc//xkf+chHAACf/vSnsWvXLtx1113ZHzxLlizB2rVrUVFRMeDz53KeLMt45JFHcMstt+B//ud/8Pvf/x6BQAAzZszAN7/5zewFRgEzlJ8+fTp+8Ytf4Oqrr0YgEMCCBQvw5S9/OXvMtddei927d+MnP/kJYrEYlixZ0m+IDgArV65EIBDAj3/8Y3zve99DMBjEueeei5tuumnQX1Dko6amBn/84x/xr//6r7jmmmtQVVWFL33pSzjzzDN7rP4GgMsuuwx///vfcffdd+OWW27B1KlTBwyRDx48CF3XsWbNmj73XXfdddkQvVA//vGPUVVVhV//+tfYsGEDjjzySNx777344he/mNP5P/zhD3t8fdddd2U/7x6iv/HGG32Otb6+8MILGaIT0aiWb6PoVJBeaINn8Xg8UFUVnZ2dcLlcBTXehTbc3cdQbONdaMNtcarxLjQAsTgRhLAeNtbDxHrYWA8b62FiPWysh63Y+ZUTQXoxAToASGKoPQ2IiIiIiIjKJBqNoqKiAtdddx1CoVDe5xuGMegFSQdTbINnPb9hGIhEIkgkEnk378U23E48VrENt1OPVWwA4sRjsR421sPEethYDxvrYWI9bGOpHqqqoqmpCbIs9zs2J+ZXxT7WYAF6Z2cn1q5di46ODkQikQEfg3uiExERERHRYaPQPdKdbPAA81od+e6p6mTDDRS2p6qTDTdQ+J6qTgYgQGF73LIeNtbDxHrYWA8b62FiPWysh83p+VUhe6QXuwLdwhCdiIiIiIgcsX79eixatAjhcBjjxo3DihUrsG3btrKPI98g3ekGz5JP4+10w23Jp/F2uuG25Nt4Ox2AWFgPE+thYz1srIeJ9bCxHjbWw5RvPUo1v8onSHcqQAcYohMRERERkUOee+45XH755fjb3/6GjRs3QtM0fPzjH0c8Hi/7WHIN0kvV4FlyabxL1XBbcmm8S9VwW3JtvEsVgFhYDxPrYWM9bKyHifWwsR421sOUaz1KPb/KJUh3MkAHGKITEREREZFDHn/8caxcuRJz587FMcccgw0bNmDPnj14/fXXh2U8QwXppW7wLIM13qVuuC2DNd6lbrgtQzXepQ5ALKyHifWwsR421sPEethYDxvrYepdD03TetxfrvnVYEG60wE6wBCdiIiIiIhKpKOjAwBQXV094DHpdBrRaLTHh5MGCtLL1eBZ+mu8y9VwW/prvMvVcFsGCkLKFYBYWA8T62FjPWysh4n1sLEeNtbD1L0ebW1t2TC/3POr/oL0UgToACAJIYQjj3SYMgwD+/btQzgchiRJwz0cIiIiIjqMCSEQi8XQ0NBQ8gas1AzDwKc//Wm0t7fjhRdeGPC466+/HmvXru1z+3XXXYdQKOToeNLpNIQQkCQJhmGUpMGzGtkJEyb028Bazb7P50M6nS5bw92d1ey7XC4AZrNZjoa7u+7NvtfrRSqVKlsA0h3rYWI9bKyHjfUwsR421sPGepgMw8CBAwcQi8VKOr8aihXey7KcnevlGqB3dnZi7dq16OjoQCQSGfA4l5MDPhzt27cPkydPHu5hEBEREdEY8uGHH2LSpEnDPYyiXH755XjnnXcGDdAB4KqrrsKaNWuyX0ej0ZLMv60V6clkEkKI7NflFg6HoaoqUqkUAJS94QbMFWw1NTVoaWkBgLI33IC9gq2pqQmpVAo+n6/sAQjAelhYDxvrYWM9TKyHjfWwsR4mWZZRWVmJWCwGwzCGbX7l9XqzCxkAwOfzOV4PhuhDsP4hfvfb34Lfb/4lsNbu10bccLuKX50uhEB7XIeWMR/Y7ZJQGVTKvvI9ntIRT5l/2SQJqAwocLvL+x+AphloT+jZ1zjokxH0KWUdA+thYz1srIeJ9bCxHjbWw8R62FgP20D10DICLVEte7slmUzjJz+9ZViaQSddccUV+OMf/4jnn39+yF8GeL3esjVb3ffsFEJk325cTqqq9ti3Mx6Pl73ehmH02DYnGo0OS/Pf/YKz6XQaqqqWvflnPWysh4n1sLEeNtbDxHrYWA9bMpnMfj5c86tMJoPum61Y71RwEkP0IViNlt/vRSgYAAAYhoAhgEjYDU+RIbohBFqjOjxegYZas7lsienQhISasAK5TI1eLKFDyAbG18gI+mW0RnWoukDEp8BTpsZb1QzENR0VYQk1EQXxpIFo0oCsyAgHytN4sx421sPGephYDxvrYWM9TKyHjfWwDVYPvyQhrrkgS4As9x3PaN1GUAiBr3/96/j973+PZ599FtOnTx/uIWV136PT7XZnm24AZWv0eu+ZGo/Hs81vuRrv7m+Dr6urAwC0tLSgtbW1rI139z1sg8EgWltb0dLSUtZVdKyHjfUwsR421sPGephYDxvrYYvFYujs7IQsy3C73VBVtezzq+57oPt8Pmialr0GjpNB+ujeaHGUsxo8TReoDZvNrcctozasQNPN+4wybFkfS+iIJg1E/GZzK0tm0+tWJLTEdKiaMfSDFEnVDLTEdLgV87llSUI4oCDilxFNGogl9JKPgfWwsR421sPEethYDxvrYWI9bKyHbah6WCvkDzeXX3457r33Xtx///0Ih8Nobm5Gc3NzjxVKw6H3Ra4GuthoKfV30bH+Lk5WSv1ddKy/i5OVWu+LwA10sbhSYj1srIeJ9bCxHjbWw8R62FgPm1WPUCgEl8uV3Ye8nPOr/i4i2t/FRp3AEH2Y9NfgWcrZ6PVu8CzlbLz7a7gt5Wq8WQ8b62FjPUysh431sLEeJtbDxnrYcqlHW6cOwzj8gvQ77rgDHR0dOOOMMzBhwoTsxwMPPDBsY+odoFvKGaT313BbytV499dwW8rZePcOQCzlDEJYDxvrYWI9bKyHjfUwsR421sPW+x0BlnLOr/oL0C2lCNIZog+DwRo8SzkavYEaPEs5Gu/BGm5LqRtv1sPGethYDxPrYWM9bKyHifWwsR62XOvhUoCMAeiHWZAuhOj3Y+XKlcMynoECdEs5Gr3BGm5LqRvvwRpuSzka74ECEEs5ghDWw8Z6mFgPG+thYz1MrIeN9bDlUo9Sz68GC9AtTgfpDNHLLJcGz2I1emrGwL72BNq1DnRkzA9dFNd8DtXgWUrZeOfScFtK1XgXUo9SNN6sh4n1sLEeNtbDxHrYWA8b62EqtB4tHVqP+VWxc6x86lEZUiABUDNARi/9223HoqECdEspG71cGm5LqRrvXBpuSykb76EabkspgxDWw8Z6mFgPG+thYz1MrIeN9bDlU49Sza9yCdAtTgbpDNFzpDlQ63waPIvHLaM6IkPXJXR2uuBE351rg2cpReOdT8NtcbrxLrQeTgchrIeJ9bCxHjbWw8R62FgPG+thKq4eGNb5lSLDDNI1BulOyzVAt5Si0dM0LeeG2+J0451Pw20pReOda8NtKUUQkk8AYmE9TKyHjfWwsR4m1sPGethYD1Mp5lf5BOgWp4J0hug5MgSQLqLZLKTBs3hcEkKhjCNBer4NnsXJxruQhtviVONdVD0cDEJYDxPrYWM9bKyHifWwsR421sNUbD2cWqhQcD1kCV43IEkM0p2Ub4BucbLRMwwDbW1teTXcFqca70IabouTjXe+DbfFySCkkADEwnqYWA8b62FjPUysh431sLEeJifnV4UE6BYngnSG6DmSJSCjFxakF9PgWVwu0SNIL6TxLrTBszjReBfTcFuKbbydqIcTQQjrYWI9bKyHjfUwsR421sPGepgcqYcDCxWKrYck9QzSS3j9p1FHFFCQQgN0ixONnq7r2THk23Bbim28i2m4LU403oU23BYngpBiAhAL62FiPWysh431MLEeNtbDxnqYnJhfFROgW4oN0hmi58jtgnkBKB1QM7lP6J1o8Czdg/S2qJFX411sg2cppvF2ouG2FNp4O1mPYoIQ1sPEethYDxvrYWI9bKyHjfUwlWp+le9CBcfqIcvZIF1z/pqro5aqqnk1esUG6JZiGr3uDV5lZWVBDZ6l0MbbiYbbUkzjXWzDbSkmCHEiALGwHibWw8Z62FgPE+thYz1srIfJqflVoQG6pZggnSF6HrxuGS4F0A0gow/dYDnZ4FmsRk/TkXPj7VSDZymk8Xay4bbk23iXoh6FBCGsh4n1sLEeNtbDxHrYWA8b62Eq5fwqn4UKjtejK0inntLpdE6NnlMBuqWQRq97g6coSlENniXfxtvJhttSSOPtVMNtKSQIcTIAsbAeJtbDxnrYWA8T62FjPWysh6nY+VWxAbql0CCdIXqevG4Zimy+1TaeGrjRK0WDZ3G5BKojck6Nt9MNniWfxrsUDbcl18a7lPXIJwhhPUysh431sLEeJtbDxnrYWA9TqedXuS5UKFk9ZBkel2MPN+q53W4IIYYM0p0O0C35NHqlaPAsuTbepWi4Lfk03k433JZ8gpBSBCAW1sPEethYDxvrYWI9bKyHjfUwjZT5VfcgXdO0nM7hND1HQgCGYTZTLgXQBBBN6IAAgn6l17ECbZ06MrpAVVABJCmvLWB6M4RARu/ZqHoVoMIvoy2u40C7QFVIgdSrmY0ndXSmDIR8MrweuagxDCQSkNHWqeNARwZVQQXuXs2sphloi+twKRIiARkZHQCcHYfXIyOgC7THzde81PXolySxHl1YDxvr0YX1yGI9bKxHF9Yjazjq0d8cKxKQ0BE3Sl4PLSMghIABANwHvV+yLMPj8UBVVaTT6X6bp1IF6N3H4PV6kU6ns023y9Wzherd4AGF7ec+GKt5jUajPb62lLLhtliNd0tLC1pbW/sNF0rVcFusIKS1tRUtLS39fq+lDEAsrIeJ9bCxHjbWw8R62FgPG+thKmR+VYp6WPO2VCqV0/EM0XMkAHRl6DAEIMtAwCtD1QVE0mwqATNsVzMCsgSEfAp0AehqcZ2RIQQ00bOBS+kCsiQh5FOgZgxEEwY8LglWn5fRBTRdIOiToSgSUkWOYTD+rgYynjbg0c3XBjBX66sZA163DI9LQloTcLrhtiiKhKCvPPUYDOthYj1srIeN9TCxHjbWw8Z6mMpdj/7mWIpUnnpkdAFDAL3X85fmlR29rIaqvyC91AG6ZbBGr78Gr5ALduVioMa7HA23ZbDGu9QNt2WwIKQcAYiF9TCxHjbWw8Z6mFgPG+thYz1M+c6vSsXr9SKRSOR0LEP0HNVF3IiEzY0qtYxAWjPwyUUVqAg69xbegaT0FHakm3vcNtM7Ez7FV/LnJiIiIjpcDeccqyOu40+vdsDrluF22VF6NJb7RZbGiv6CdE3TyhKgW/pr9KwxlaPBs/RuvIPBYNkabkt/jXc8Hi9Lw23pLwgBULYAxMJ6mFgPG+thYz1MrIeN9bCxHqaRMr9yu3O7MBFD9By5XRI83Roc3ZBQEVRQHS79S5jUFQRdPfcHrfIr8CssHxEREVGhhnuO5VKkPnPM7oE62boH6clkMntbOQJ0S/dGz7oIlXVbORo8S/fGOxqNQpKksjXclu6Nd1NTEwCUreG2dA9CDh48mB1XuQIQC+thYj1srIeN9TCxHjbWw8Z6mEbK/CoXI2s0g7j++ushSVKPj9mzZw96zkMPPYTZs2fD5/Nh/vz5+NOf/lSm0RIRERERkZNcLlePPepzXTXkJFmWezyv2+0elgYvGAxmP/d6vWVtuC0ej6fHLzG6j6lcZFlGJBLJfh2JRFiPfsZULqyHjfWwsR4m1sPGethYD9NImV8NZeSNaBBz585FU1NT9uOFF14Y8Ni//vWvuOCCC3DRRRfhzTffxIoVK7BixQq88847ZRwxERERERE5IZ1OwzAMyLIMSZKyX5dT9z06JUmCqqrIZMq7BY+1Z6okSfD5fEilUojFYmUdA2DumZpKpeDz+SBJElpbW8teD1VV0draCrfbDbfbjdbW1h5vBy8H1sPGethYDxPrYWM9bKyHifWwjYT5VS5GVYjucrkwfvz47Ie1d1F/brvtNpx99tn4zne+gzlz5uCGG27A8ccfj1/+8peDPkc6nc6+lcL6ICIiIiKi4dP9IqJ+vx8ejwdCiLIG6d0bPJ/Pl202y9no9b7oWE1NDSKRCKLRaFkb7+4XHaupqUFtbS00TStr4939InC1tbWora2F2+1GS0tL2YIQ1sPGethYDxPrYWM9bKyHifWwjYT5lRAip+NGVYj+/vvvo6GhATNmzMA///M/Y8+ePQMe+9JLL2Hp0qU9blu2bBleeumlQZ9j/fr1qKioyH5Mnjy53+NyfH2JiIiIiKgI3QN06+3GLperrEF69wbP2qPT2q+zXI1e74bbest3OBwua+PdveG29ky19lQtV+PdPQCx9rC19rgtVxDCethYDxvrYWI9bKyHjfUwsR62kTK/yrXmoyZEP/HEE7FhwwY8/vjjuOOOO7Bz506cdtppA/7Fam5uRn19fY/b6uvr0dzcPOjzXHXVVejo6Mh+fPjhh32OEUJAzTBFJyIiIiIqpf4CdEu5gvT+GjxLuRq9gRpuS7ka7/4abku5Gu/+AhBLuYIQ1sPGethYDxPrYWM9bKyHifWwjZT5lXUx01yMmhD9E5/4BM477zwsWLAAy5Ytw5/+9Ce0t7fjwQcfdPR5vF4vIpFIj4/uDCHQ1qnnvNSfiIiIiChXmlbePShHMk3TBgzQLaUO0gdr8Cy9Gz1d1x0dw1ANt6XUjfdgDbel1I33YAGIpdRBCOthYz1srIeJ9bCxHjbWw8R62AqZXzkdpFsBuhAi54vVj5oQvbfKykrMmjUL27dv7/f+8ePHY//+/T1u279/P8aPH1/wcxpCoDWqI6MLeFyj9qUjIiIiohFI1Qy0J5wNYEczwzAGDdAtpQrSc2nwLL0bPafGkGvDbSlV451Lw20pVeOdSwBiKVUQwnrYWA8b62FiPWysh431MLEetmLmV04F6d0DdI/HM+gYeozHkWcfBp2dndixYwcmTJjQ7/0nnXQSnn766R63bdy4ESeddFJBzye6AnRNF6gKKsjx9SUiIiIiGpKqGWiJ6XAp0nAPZcSwGqdcOB2k59Pg9R6vJEnIZDLQNK2oMeTbcFucbrzzabgtTjfe+QQgFqeDENbDxnrYWA8T62FjPWysh4n1sBU7v3IiSO8doLtcrpzPHTVR8Le//W0899xz2LVrF/7617/i3HPPhaIouOCCCwAAX/nKV3DVVVdlj//mN7+Jxx9/HD/72c+wdetWXH/99XjttddwxRVXFPT87XEzQK8NK3C7R83LRkREREQjnBWguxUJlUFluIczYuT61lqLU0F6IQ2epXuj19bWVnDjXWjDbXGq8S6k4bY41XgXEoBYnApCWA8b62FjPUysh431sLEeJtbD5tT8qpggvZgAHRhFIfrevXtxwQUX4KijjsLnP/951NTU4G9/+xvq6uoAAHv27EFTU1P2+JNPPhn3338/fvOb3+CYY47Bww8/jEceeQTz5s0r6PkzXQG6hwE6ERERETlE6xag10QUSBJXohej2CC9mAbPIkkSFEWBy+UqqPEutuG2FNt4F9NwW4ptvIsJQCzFBiGsh431sLEeJtbDxnrYWA8T62FzYn5VbJBebIAOAPmfMUx+97vfDXr/s88+2+e28847D+edd54jz18ZYIBORERERM4xDCCa0uF1y6iJKJAZoDvCaopUVUU6nc65WXOiwbPIsozKykrEYjG0tLTk3Dw71XBbrGY5Go32+HooTjTcFqvxbmlpQWtra85hhhMBiMUKQlpbW1kP1iOL9TCxHjbWw8Z6mFgPW6H1cHp+5fV6kU6ns7/UyCUMdyJAB0bRSvThNpq2cLl5yxM4+5nb8B/b/4J9ifbhHg4RERFR2Qgh8G5HE27a/DiWbPwp/tT49nAPaUBqxoCrawU6A3Rn5bsi3ckGz5LvCjanG25LvivYnGy4LfmuYHMyALGwHjbWw8Z6mFgPG+thYz1MrIct33qUan6Vz4p0pwJ0gCH6YWlXZyv+enAHfviP/8OSjT/Fv/ztf/BY49tIZpy5qjARERHRSNOa7sS9O/+Gc5+/A5/c9AvcsvVpbOlowt5E23APbUCSJKEqxAC9VHIN0kvR4FlybbxL1XBbcm28S9FwW3JtvEsRgFhYDxvrYWM9TKyHjfWwsR4m1sOWaz1KPb/KJUh3MkAHGKIftgIuDxr8EQDAY41vY/XL9+CUJ3+CtW/9AW8c2gMhxDCPkIiIiKg4qp7BM81b8Y1Xf4dTnvgJvvPG/8MrrbvglV2Y6K+AWx7ZF+n0uCTugV5iQwXppWzwLEM13qVuuC1DNd6lbLgtQzXepQxALKyHjfWwsR4m1sPGethYDxPrYRuqHuWaXw0WpDsdoAOjaE/04aa2dyKdNv+BaEJCxpDQ+tdGZFx6yZ87LWvoDDVnv9aEgdsOvI2M0X8Q/l56LwwtAyOTQhBAEB5oQsfBdBt+1fE0/nPzszjCVYlzfNPxce9U1CuBIUYgQZIBSZIBWQIkCVLXn9bnkiQBkgzI5qoqyHLP+7r92f1861hJgvl4sgxJkiApEiRFgeSyP2TrczabREREjhKGAZHRYWT0Hn9CNyAMYf7y3TA/hzA/rM/N+7r+zH7e7VjDPsY6r8fXwgAMcxsWYRjmOYONVQi8r7fjidRuPJbaiSYjDh0CAbhQK7mhSDKg6dCRhGFo2PT2qzjw7gf9PtY4lw+z63w9bmvpVOE13I69tgPpyCjQO6ugJgSEZH/PapLvHHTaQHukl6PBswy0p2q5Gm7LQHuqlqPhtgy0p2o5AhAL62FjPWysh4n1sLEeNtbDxHrYutejvb0dhmEMy/yqvz3SSxGgAwzRcyZUDYZshrcCEgwoUFs6kIZW8udWXRloRiL79e5MHL/q2II0dMjoP1D2QYGRsQN+BUAV3BBwIQUdW9QWbFYP4hd4AydhHM7GRJyMcfBhZK/YggRIigzZ5YLkkiG5XH1CdtnjguxzQ/F5Ifs8UHweyH6v+adrhH9/REREBTJUDXpKhZ5UYaTNP/VUGkZag9AyEFpXOK7rMDQzJM9+6IPvZzgStCGNTWjGn7AXW9COFHS4IaMCbniy8xcBA/b8R4bApuQebMKePo+XgUA1PLjDe3yP29WWdiBT+imyCjcMRCCgw4Adogu19HPLsah3kO52u8vW4Fl6N941NTWIRqNla7gtvRtv6/NyNNyW3kFIJBJBa2trWQIQC+thYz1srIeJ9bCxHjbWw8R62Kx6HDhwALpuzsEzmUzZ51e9g3RN0xwP0AGG6KOSEIAOgSp44c0z9JYgwQ8X/HDBgEAnMngaTXgGTaiDDx9HA5aiAfNQCWmAgH5YCUBkDOgF7u8uuRUzTPd5oPg9dtDu90D2eqEEvXCHA5Dd/KdBREQjg55SkYkloCfTdkieSsNIqtDT1tfqqAjC86XCwKtowRNoxPPYjxg0SABCcKMSniHnKrXwDXhfB9Qe4TUd/qwmKp1OI51Ol7XBs1iNd0tLC1paWgAAdXV1ZWu4Lb0b73I23Bar8T548GDZVhD2xnrYWA8b62FiPWysh431MLEeNo/Hg6qqKuzbtw+apg3b/Mrr9SKVSiGdTgMAvF6vowE6wBB9TJMhIQI3InBDg4F2qLgHO/AgduEIhPETnIAJGGqrl9FFaDoyWhKIJQc9TvF74IoE4YoE4A4H4IoE4AoH4Qr7uZ0MERE5ztANZKIJZGJxZKIJaNE4MrEEMtEEDHXwK84frl5FC27AP9CMJDIwEIALdfBBGYm/5CciIiIiosMaQ3SCgIAGAxoMSJDggYxJCOa9yv1woifNlX3p/W09bpc8Lniqw/DUROCpjsBTE4Er6B+mURIR0WgkDIFMLA61NWp+HIpCa+s8LFeSFyMMNybAj1akkemap2RgQBnD85OxRgjR50JVxdB1PbuFi7WdSyqVgsfjcXS1lGEYEEJA0/puzSOEQFtbGzKZDCorK9HZ2YkDBw6gqqoKbnfp9+K3xONxdHZ2IhQKAQDa29uRyWQQDAbLNgZN09DW1gaXy4VQKIT29vbsa1GuRSush431sLEeJtbDxnrYWA8T62GzLi4KmO/6y2QyJZlfDcYwDKiqmt3CRdO07J7oijJ07yCGuCaThSH6GKbCQAwaNOjwQsFcVOKTmISPYQLqBnn781gm1AzSzW1IN9vhuuL3mIF6bQW8DTXwVIW5Wp2IiLIM3YB6sB2p5kNQWzqgHopCaKW/MPloNxsV+DVOxgeI4Snsw5/QiH1IIIM0/HAhDBcUlO9tolR+TobohmEgk8lAlmW4XK5skJ7JZKBpWvY2p55LCIF0Op3dHxQwvx9VVSHLMkKhEAzDgN/vh6qqiMfjZWs2re85GAxmG8tgMJhtPp1+63N/rGbX6/VmL8gWCoWgqiqi0Sg8Hk/J59Osh431sLEeJtbDxnrYWA8T62HrXg9rK5dSza8GIoRAJmO+c9ftdvcZgxBiyHowRD+MyZK5WvwQ0gMe44GMmn6CcHMfdA0JZCBDwjj4sAwTcRYaMBsVI3Mf9BFOT6pINrYg2dgC/GMHFL8H3vHV8DXUwje+GoqvvHtiERHR8NM6E0jta0V6XytSB9oYmhdhBsK4GEdhFY7E62jFE2jEs2jGQaQBCIThRgCufucwzUhCDLLveS28JRw5Fauurg6RSKTox7FWrPn9/j6r1LqvZnNqBZu1+umTn/wkKioqin48IiIiopGso6MDf/rTn+D1euF2u0syv+pP93cE9H4XwGD39db94qyDYYieI9nvhRIwGy3DAGRdQmDCeAQ9pX/rtUtS4fHZzzNDVODfvOOQMfr/S/j/Ylvxt+Q+yC7zL4gQAkmRQdRQISAQkj34pH8Glodm4hT/JPjkIf4aCAEhYH7jQkAYwry6qSEgenxtdB0nIIR1LABh2Md0HS9E98cwgMPoHex6UkViZzMSO5sBCfBUReBrqEFgaj3claHhHh4REZWAEALpA21I7jmIVFMLMkNce2NUkyVzItz7T0mCJJt/QpIhyd2/7vu5dW6P+2QZkgTz836cick4E8eiXU/h6cQu/CG2Hf9IH8ABocIFGRHFA69kz2vkjIpzw7PwEf/Efh+v2uWBp6rnLzgCkQnwitL/AjyjytAbPYDLQPd3mcp8N1uW2+0u+gJdqqqio6MDXq+334uOeTweuN1utLS0IBqNOnZhMl3XUVFRgerq6qIfi4iIiGikc7lc2blbqeZX3RmGgdbWVhiGgXHjxvU7Zxw3bhxaW1vR0dGB2traAeeVuW7BwxA9R+5wAJ5w197XGQFdNVBxzARUh0v/Eib1JILJng3eZ+fOgV/pfy/uV16J4ZUP98PwudChJpE2dPgUN46vmI5/mnI8ljfMR72/+FU9ThNdb32F0RW0Z3SITAZGRu/63PzIfq3pMPSe9wlNh65qMJIq9LQ6/Cv/BKAeMve7jb6zE57qMAIzJiAwdTxXqBMRHQa0aBzxnU1I7GyGHk8N93B6kD0uyD4vFL8HsscFSVEguxVIrp4fsmvg22SXAkgyIAOSJEEq076GQ6kGMAPHYTWA96L78Ye9b+H/ffgGPowfQptIIqB4EHH7IafTOG7W0bjwyNP7fZyknsS7yXd73FbpnzXgHMtRsQykllbEBRCscGXDc3cO+zZSblRVRUtLC9xu96DNm8fjQW1tLVpaWtDa2lqSRo+IiIhoLCnl/MoK0DVNGzQcl2UZNTU1aG1tRUtLy6DH5oIheo40bXQtlU5kNLSm45jgr8CKScfi05OOwfzKiSN6r25Jls03Ylu9o7f4izEYmg49lYaRUqEn09BTKoyuDz1lXjzUSJm3i0zpa6weikE9FEPHG++bq9OnT4BvYh1khY0aEdFooasaErvMdxypLR1lfW7J44Li80DxeSD7PFCskNznMf/0erJfy2MkjJ0Vqce/Hn0WvjH7Y/jrwR14dO/f8ed9m7E/FYVmjOxtdDwuGZ0pHa1RHTURhavQHZRrgG5hkE5ERETkrFLMr3IN0C1OBukM0XPUntARCRvwuEf+ZPqEmqkQAD49aQHOqD8KPqV8VwYeaWS3AtkdAMKBIY/VVQ2ZaAKZaBxaLGF+3vWn0J0N2IUhkNzbguTeFsheNwLTxiM8ewpcoTKsfCMiooKkWzoQe3cPUo0HHf+50J3sccEVCcAVDsAdCWY/d4UD5spw6pdbVrCkfhaW1M/CD+fF8XjTZjyxbwvmVjQM99AGJMtAVVBBR9LIBulUvHwDdIuTjV6uF6giIiIiOpw5Ob/KN0C3OBWkM0TPkUuR0BLTURvGgPt0jhSrZp6CVTNPGe5hjDqKxw2ltgLe2p4XgBJCQI+nzG1ZWrs+DkUd2yrGSGvo3PYhOt/fi8CUeoSPngZPFfdOJyIaKZL7WhDbshvp/W2OP7bi98BTHYGnJgJ3TQTu6ghc3O6raFXeIC6YthgXTFs83EMZktsto9ZlzjNbozrcEsPXYhQaoFucaPSEEFBVNa9ziIiIiA5XTsyvCg3QLU4E6QzRc1QZVKAJs8Gp8I/81ejkHEmS4Ar54Qr5EZhSD8BcSZ6JxbOheqqptfiLyBnC3B5gVzN8DTUIHz0NvvoqB74DIiLKlzAMJPYcQGzLLmhtnc48aNfFpr0TqrqC8wq4gj5nHptGNY9bRm0YaInpiKdH9hY05RSPx1FRUTH0gV26B+jV1dUQkoAu8n89FbeCqpoqHGo9hJbWFlRVV+Xc6BmGgUNthyBLMlRDRdpI5/38RCOdR/KM6G1CiUYiIQRUwV+w0uFJNVQIIWAIY8C5V7Hzq7ZDbdA0DdU11VDcSo/nkSHn9HOp2CCdIXqOJElCTVhBa1RHW1xHyMe3245lkizBXRGCuyKE4AzzbeJaLIFUUyvS+1qROtBW1Er11L5WpPa1wlNXgfDR0+CfWMuJKhFRGRi6jviOfeh8dw8ynUX+chSA4vPAO6Eavgk18E2o4UWlaUBWkL4nwZXolng8jlgshnA4POSxvVegC0nggHag8CeXAFQAnW2diB+Mw1vphSQPPhcThkC6PQ1DNeAKuLCpYxO88BY+BqIRann1cngl/t0myocqVDx26LHhHgZRSaQ70ujQO6BkFMjSIMF4EfMrkRHwVnnRLrUDWs9jxrnHQUFuOW1/QXquGKLnQZYk1EQUHGgXUMtwEUoaXdzhANzhAMKzJsPQDagH25Ha14LE7v3QE4WtQlIPdqD1uX/AUxtB5fFHwlvHlelERKUghPluoI5/7IAeTxX1WO7KEAJT6+FtqIGnKsxfglLOPG4ZlQEu1LAEg0FEo1EAGDRI728Ll0JWoPcmu2V4q7xIt6WRbk8P2uh1b/A8FR4Inb8MISIiIuqt0PmVt8oL2aHrVPYO0nNdjc4QPU+yJKEqpCCaYIhOA5MVGb7x1fCNr0bFsUcivf8Q4h80Ibn3AEQBv4BRW6I48OTr8E8Zh8rjjuQFSImIHJQ+2I72N96D2hIt+DEUnwf+aeMRnD4enuqIg6OjscY9Ci5iXy7BYBCyLA8apOeyB3pHpqPwQUgAwoAUlaAeUiEqhHlbdwKQOiRAB0REQJVUwAA2xzcjx0VRRKPC8aHjh3sIRIeFNzrfGO4hEDkrDiiGAujoO0/qT6Hzq0zPQypcuW/711v3IL29vT2ncxiiF0CSJHhcXFVGuZFkKfs2fkPLILnnAOI7m5A+0AbkuUgpuecAUo0tCM2ejMjR0yB73KUZNBHRGJDpTKL9ze1I7tlf0PmSIsM3sRbBGRPgm1ADqcCrzBPRwKzgvL8gvdiLiObMbTZvUlSC1CH1bPR6NXhwo0+DR0RERES95Du/KgErSI/H4zkdzxC9QHxnNhVCdrsQnNmA4MwGaJ1JdG7dg/iOxrxWpwvdQGzzbiR2NCGyYAaCMxsY3BAR5cHQMohu3oXOrXsg9PzfHaT4PQjNnoLgEROh8JeZRH08//zzuPnmm/H666+jqakJv//977FixYqCH6+/IL2QAD2shCHltDyqHwpgKAbUdhVSTIKnwnzbrxpVIQwBT5Un+xZjwzCgyzomBSbBE+R1EGh0y4gMtiS2DPcwiA5LRweOhktiLEejn5pRsVfeC0VWICt55FN5zK8sAgIxPebY2GVZRmVlZU7H8l8r0TBxh/yoOuEoROZNR+e2D9H5/l4YaW3oE7voKRVtr2xF5/t7UfWRo+Hl9gFERENK7NmP9te2QU+qeZ/rCvsRnjMVgRkTICvco4FoIPF4HMcccwy++tWv4rOf/awjj9k9SFdVFel0Ou8V6BKkoq5RoHiU7B6earv5f4jQ++7RKUkSJEhQJIXhCBERDcglufhzgg4LuqRn51n5zrVynV9lleCyM7mOmf9aiYaZ4vOg4piZCB89FfHtjYht3ZPXhUi1tk4ceOJVhI+ehor507kqnYioH3pKRdurW5HccyDvcz3VYYSPngr/5HH8P5YoB5/4xCfwiU98wvHHtVagp1LmxX9LuoXLAGS3DE+lB+k2c67m5EWuiIiIiMai0TK/YohONELIbhfCc6YidNRkxHc2IfrWB7mH6YZA7J2dSDUe5Kp0IqJeEnv2o/3VbdBT+a0+91RHUHHMTPgaako0MiICgHQ6jXTanvNY27b0Zq1At8Tj8X4vNlpKwhDQOu13DmqdGuRKGZLMvR6JiIiICjFa5lcM0YlGGEmWEZo5EYGp4xF7dzdi7+6G0PSczrVWpUfmTkNkHlelE9HYpqdUtL+2DYnd+V04VAl4UXHsTASmTShq6wciys369euxdu3aQY/pvQd6PB7v92KjpSQMgXR7GiIj4Kv2AQDSbWmk29PwVnpHXKNHRERENNKNpvnVqEnY1q9fj0WLFiEcDmPcuHFYsWIFtm3bNug5GzZsyO7HY334fL4yjZioOLJLQcX8GRh/zkkIzJiAnK+DZQhE396J/Y+/AvVQ/yu5iIgOd4k9+7H/sb/lFaBLbgWRBTMw/lMnIzi9gQE6UZlcddVV6OjoyH58+OGHPe7v7yKi4XAYkUgE0WgUsZhzF5caSPcGz3qLseyW4a3yQmS67jNKsEknERER0WFqpMyv4vF4TseNmpXozz33HC6//HIsWrQImUwGP/jBD/Dxj38cW7ZsQTAYHPC8SCTSI2x3qiHO6JwkU3m4Aj7UnDQXoaMmo+ON95He35bTedm90rkqnYjGED2lov31bUjsymP1uQQEpk9AxTEz4Qrwl+1E5eb1euH1evu9r78A3dL9YqPdv3Zafw2exWr0uq+YIiIiIqLB5Tu/KtWK9FgsdviF6I8//niPrzds2IBx48bh9ddfx+mnnz7geZIkYfz48Y6OJZ7UoTFEpzLzVkcwbulCc2/f19/Lab900bUqPbn3IKpPmgtPVXn3DSUiKqfEhwfQ/upW6Mnc9z731ERQuXg2ryVBI4YQnGNaNE1DPB7vN0C3lDpIH6zBs/Ru9NxBt6NjICIiIjqcFDK/KkWQHovFEI1GB12c3d2oCdF76+joAABUV1cPelxnZyemTp0KwzBw/PHH48Ybb8TcuXMHPH6oCxvFEjo6UwaCPq7qpeERmFIP3/hqtL3+HhIfNOV0jtbWiQOPv4LwvOmIzJ3GVelEdFjR05q59/mu5pzPkRQZkXnTET56Kv9PpBHDEALt8dyugzKSdXZ2Yvv27dmvd+7cib///e+orq7GlClTcn6c9vZ2VFRUDBigW0oVpOfS4Fm6N3pqTIXLN2rbLCIiIqKSKXR+lX3Hn0M5uhWgRyIRGIaR0zmjsms0DANXXnklTjnlFMybN2/A44466ijcddddePTRR3HvvffCMAycfPLJ2Lt374DnrF+/HhUVFdmPyZMnZ++LJXREkwZCPhkuhfuk0vCRPW7UnDQXtWccA8XvyekcYQhE3/oAB554FWpbZ4lHSERUHom9B7H/sZfyCtA91RHUn72YW13RiGIIgdaoflhsGfjaa6/huOOOw3HHHQcAWLNmDY477jhce+21eT2Oy+UaMkC3OL1Hej4NnqX7Hp6GmlszRkRERDRWFDu/cmqP9O4Bej6LL0blEonLL78c77zzDl544YVBjzvppJNw0kknZb8++eSTMWfOHPz617/GDTfc0O85V111FdasWZP9OhqNYvLkyYindAjZQMQvw+uRkeLEmEYA/8Q6eM6pNFdg7swtQFIPxXDgiVe4ApOIRjVd1fL6vw/g6nMauawAXdMFKgPKcA+naGeccYYj29JUVlbmFKBbuq9IN4QBFHiJg0IaPIvsluGp8CCTyBT25ERERESHoWLnV9l3/HWoQBgFr0gvNEAHRmGIfsUVV+CPf/wjnn/+eUyaNCmvc91uN4477rgeby/tbaALG8VTBsbXyAgHFKiZ0b9CiA4fiseNmpPnwT+lHu2vvJvTXsBCN9Dxjx1IfngAVSfNhacyVIaREhE5I9l4EG0v5/b/ncVTHUbVR+bCU8X/72hkEUKgNWpA0wVqwwqSKf6CxyJJ+XdHVjPUEe2AoRt5709eTINnkV1yQecRERERHY4cmV91C9KlDgmiIv9stpgAHRhF27kIIXDFFVfg97//PZ555hlMnz4978fQdR1vv/02JkyYkPe5QZ8ZoBONVIFJdag/5yQEpud+IV31UAwHHn8F0Xd2QuS4BxQR0XAxVA2tf30HLc/+I+cAXZIlVCyYgXHLFjFApxFHCKCtU88G6B4Gr44Ih8MIh8PQOjVocS3n85xo8CxOX/iKiIiIaDRycn4lu2V4Kj2ADjNIz2Nrl2IDdGAUrUS//PLLcf/99+PRRx9FOBxGc7P59u2Kigr4/X4AwFe+8hVMnDgR69evBwCsW7cOH/nIR3DEEUegvb0dN998M3bv3o1/+Zd/yfv5gz4G6DTyZVelT65H+6v5rko/iOqTjoabq9KJaAQqZPW5uyqE6pPmwlPlzEUGiZymZgQyusC4ChcDdIeFwiF06B3QOjVABxAY/HgnGzwiIiIiKs38SnbLEBEBKSrZFxsdghMBOjCKQvQ77rgDgLnHYnd33303Vq5cCQDYs2dPj30T29rasHr1ajQ3N6OqqgoLFy7EX//6Vxx99NHlGjbRsAhMroN3XNde6TlebE89FMX+x7lXOhGNLIaqoe3195D4oCnncyRZQnjeNETm8sKhNLIJIVAV5Ar0UrG2csnEMhAQ5v6Z/WCATkREROSsks6v3ICICIiY+RxGnQFF6X/xs1MBOjCKQvRcLk707LPP9vj6lltuwS233FKiERGNbIrXjZpT5sE/ZRzaX9kKPZXHqvS9XavSK7gqnYiGT3Jfi7n6PJHO+Rx3VQjVHzkanupICUdG5AyPS4abgW1JuYNuJPQEpIQETdbgCXl63M8AnYiIiMhZZZlfuZHdI73tUBtqa2r7XJDeyQAdGEUh+ljmV/w4PnT8cA+DRqnA5HHw1lWi/fVtSOzan9M5amsU+//8CiILZiA8ewpXchJRWRmqhrY33kdix77cT5IlROZOQ2QeV59T7oZ7jsW/qmUSAAQEMvEMJEnKrlBngE5ERETkrHLOr6yLjWodGlpbW1FTU5MN0p0O0AGG6ERjguLzoOaU+fBPHof2V7flvir9ze1IfngA1R/hqnQiKo+CVp9XhlB10tHwcvU5EQ0kALhkl7lHOgCX38UAnYiIiMghhm5ANmSoMbWs8yvZLaOyphJtrW3ZID0ejzseoAMM0YnGlMCUenjHVaHt1a1I7jmQ0zlqS/dV6VMhyVKJR0lEY5Ghamh/433E81x9Hj7aXH0uKwzAiGhw7qAbkiRB69SgdWqQJIkBOhEREZEDREYgdSgFWZHLPr/yeDyora1FS0sLmprMa2k5HaADDNGJxhzF50HtaQuQ2LMf7a9uhZ7ShjzHXpXetVd6JFiGkRLRWJHa14pDr7wLPZ7K+Rx3ZRBVJ83l6nMiyovLb69Glz0yA3QiIiIiBw3X/Mrj8cDr9SKVMnvKYND53IqzRqIxKjClHvXLT4J/yricz1FbOrD/Ty8jumUXhGGUcHRENBYYqoZDL2/BwU1v5h6gy0B47jSMO/tEBuhElBdrj05JkqB4FehpHVp86MUERERERDQ0xTN886tYLIZUKgWfzwdJktDa2grD4dyKK9GJxrDsqvTdzWh7bRuMPFalJ3Y2ofK4WfA11JRhpER0OBGGgfiOfYi+9UFO12iwuCuC5t7nNRUlHB0RHZYEoEZ77tGpxbXsqnTrYqNERERElD/ZLcPld0FX9bLPrzpjneiMdWa3cFFVFS0tLX0uNloshuhEhMDU8fDUV6P9lXeR/PBgTudo7XEc3PQmfA21qDz+SLgruMULEQ0t1dSK9jfeh9bemftJMhCeMw2R+dMhK0rpBkdEhycBSB0ShNHzIldWY8cgnYiIiKg41vXzyj2/0uIaYokYKiIV2T3Qu++R7mSQzhCdiAAALp8Htacfg/iuZrS/tg1GOre336T2taC5uRWhIyYhMn86FJ+nxCMlotFI64ij/c33kWpsyes8V0UQ1R85Gt5arj6nw09GF8M9hMOeMASkDgnQAU+Vp88enQzSiYiIiJxVrvmV9a7C2oraPhcRLUWQzhCdiHoIThsPb30V2l/dmvOqdBgCne99iMSuJkTmTUdw1mTICi+5QESAnlIRfWcnOt/fCxh5BIZcfU5jgKYLxJM6PGFOyUvB2gMdOiAiYsCLXDFIJyIiInJWyedXCUBLanCH3AiFQ/0e4nSQzhl7joTgSiEaO1x+b0Gr0g01g/Y33kfs3d0IzZ6C0JGTILv53wzRWJSJpxDbuhvxHfsgND2vc7n6nMYKtyKhM2XApegIB/jLIicZhoF0exoiIyAiAhiib2OQTkREROSsks2vEoCUkOAOu4d8TCeDdKZbOWqP64iEBWRJGu6hEJVNQavSAehJFR1vbkds8y4EZ01C6KgpcHGbF6IxQevoRHTLbiR3NUPks/IcMFefz56KyIIZXH1OY4JLkRDyyYgmDQBgkO4QwzDQdqgtexFRVcrtAsYM0omIiIic5fT8SotrkBISREDk/FhOBekM0XOU0QVaozpqImxuaGyxVqUnPjyAjjffRyaWzPlcQ80g9s4udL67B8GZDQjNmQp3yF/C0RLRcEm3dCC2eReSjQeBAt685R1XiYqFs+Ctjjg/OKIRLOhX4FKMbJBOxTEMA62trdA0zb6IaCb3851q9Ayd9SQiIiICnJtfaXENmXgGIiCAQH7nOhGkM0TPUWVAgdoVpEcC3OuZxp7A5HHwNdSi870PEX1nJ4Sae0cqdAOd7+1F5/a98E+sQ2D6BPgn1kJy4OrIRDR8DFVDYs8BxD/YB/VgR0GP4Qr7UXHsEQhMqXd4dESjh7UCPZo0IBn5bX90ONO03LaTs3QP0KtrqtEutRf0vMU2elpSg8hwK0giIiIiS9Hzq66LiLqCLmi+/OaIlmKDdIboOXK7ZUR8ClpiOto6dfg9DP9o7JEVGZE5UxGcPgHRtz9A5/a9QD4LrQwg+eFBJD88CNnnRmDKeARmjIe3hvseE40WwjCQajqExM4mJPcehChwtaXkcSEydxpCR03hhYiJYAfpza1cwWxpb29HJBKBxzP0lnDdA/Ta2loobgUorL8CUHijZ62QcgXYZhERERF1V8z8Sus0LyLqCriQ1HPfIaG3/oL0XHF2lwePW0ZtGDjQkYHK1SU0hik+D6oWzUZo1iS0v/E+Uvta834MI6Wh870P0fneh3BVBBGcMQGBKfVwcbsXohEpfSiK5K5mJHY1Q0/mtr9wv2QgdMQkRObPgMJrJRD1EA4oiMX5SyWLy+VCS0sLamtrBw3SewfoHo8Huih+RX++jV73FVKFXrCKiIiI6HBW6PzKHTIvIipE8Xls7yDd7c4tzGeIniePW0ZVUEE8zVVCRO6KEOo+ehxS+1rR8c4HBW/nkOmIo+PN7eh4cztckQB8DTXwTaiBd1wVZBevQ0A0HPSUilTzIaSaWpFuai0uOAcAGfBPqkfFgulwV4ScGSTRYSjo4889S2VlJTRNGzRI7y9Ad1KujV73Bk/xKNDT3JaHiIiIqD+FzK+cvuB79yA9Ho/ndA5D9AK43TI8nBcTZfkaauBrqEHqQBtiW3Yjta+loAsLAkAmmkBnNIHOrR9CUmR4xlXCP6EW3vFVcFcEuY86UYkYGR1aWxSpJjM4V1ujBf877k5SZARnTEBo9lS4I3le/YWIxjRJklBTU4PW1tZ+g/RSB+iWoRq93g2eoXGxDREREdFg8p1flYIVpO/Zsyen4xmiF4g5HlFfvnFV8I2rgtreidiWXUjs3g8YhadwQjeQbjqEdNMhAIDkkuGpCsNdUwFPTQSe6ghDOaICCMOA1t4J9VAMamsH1NYotI54Uf9ee5PcCkKzJiF01BS4/F7HHpeIxhZZlvsN0ssVoFsGavTK0eARERERHY5GwvzK4/GgsrIyp2MZohOR4zyVIdScPA8VC2YitnUP4jsaITLFr8oSGQPpgx1Id9s2Rva64a4KwR0JwhUOwBXp+gj4IclS0c9JNJoZug49loQWSyATS0CLJpDpiENrixV8QdChKH4PQrOnIHTERMgeBkpEVLzeQXpNTQ2i0WjZAnRL70bP+pwBOhEREVFhRsL8inuiE9Gwc4X8qDrhKFQsmIHEngNI7GxC+mC7I1tEWIy0hnRzG9LNbT1ulxQZSsgPdzgAxe+B7DM/FL8Xis8D2e+B4vVCdnPvWRqdDFWDnlShp1QYqTT0lAo9qcJIqdCTaWSicWTiKUf/vQ1EUmT4JtYgML0B/oYabrtERI6zgvSWlha0tLQAAOrq6soWoFv6rJhigE5ERERUlNEyv2KITkQlJ3vcCB0xEaEjJkLrTCCxswmJnc3IxJIle06hG8h0xJHpGPwCEZJbMUN1nwdK14fs90DxeSG5XZDdCiSX+SG7FEguV9fXMmSFATwVx8joEF0f/X1upLtCciscT1mhuVqyleT58NRGEJg+AYGp46F4R94kh4iIiIiIiMgJDNGJqKzcoQAq5s9ExfyZSB1oQ2JnE1J7D0JPaUOfXAJC05HRkkAhgb4sdQvX7T8llwJJkgBZAiTJ3FZGkgBZhiSh6z7ZvE9C1+3dj5MgSTIgo+t8uescAJJsH9d1Tva5wO1rhiYAQ0AIAWEIwDAAISAEAMOAEML82jD/tI7t+2fXsQYAYdiP18/5hmFkw/HeIXk5Vok7zRX2wz+lHsEZE+COBId7OEQ0Rlh7oGcyGdTW1iIajfZ7sdFS675HJzDwxbCIiIiIKDejZX7FEJ2Iho11IVKxWEA9FEW66RCS+1qgtnaY4eRIZwgINQNdzQz3SIhKRnIr8I6rgm9CDXwTangxXyIqu/4uItrfxUZLbaCLXI3URo+IiIhopBsJ8ytNy21RJ0P0AhmjIeAjGiUkSYK3pgLemgpE5k2HoWpINR9Cal8rUs2HoMdTwz1EorFDAtwVQTM0b6iBp66SWxcR0bDpL0AH+l5stNRB+kANXp89PBmkExEREeVkJMyvVFVFe3t7TscyRC+AphlQM0zRiUpF9rgRmFKPwJR6AEAmmYLaGoPaGoXa2gHtUAxGeni2fyE63ChBHzzVYXhqK+CpjsBTHYbsYQhERMNPCNFvgG4pV5A+UINn6d3oKR7+4pGIiIhoMPnOr0oRpKuqipaWFrhcucXjDNHzpGoG2uI6vG55uIdCNGa4/D64JvkQmFSXvU2LJaC2RqG1dyITjSMTTSDTmRwRF1skGokktwJ3OABXJAhXJABPdRju6ghcfu9wD42Iuomn9OEewojR3t4Oj8czaDhe6iB9qAbP0r3RM/wGZJm9AhEREVF/Cplfdf/aCVaA7na7EQjktmXpqAvRf/WrX+Hmm29Gc3MzjjnmGPziF7/A4sWLBzz+oYcewg9/+EPs2rULRx55JG666SZ88pOfLOi5Vc1AS0yHS5HgcfECfkTDyR0OwB3u+R+dMAQyiZQZqscSyEST0JMp6CkVRkqFnlIhNIYTdHiSPS7Ifi8UnweK3wPF7zUD83AArkiAYTnRKBBL6Iin+MtgSyaTQUNDw5CheH9BuuIufjV4rg2exTpGjapwBUZdm0VERERUcoXOr6wg3Yk5VvcAvaamBrFYLKfzRtXs7oEHHsCaNWtw55134sQTT8Stt96KZcuWYdu2bRg3blyf4//617/iggsuwPr163HOOefg/vvvx4oVK/DGG29g3rx5eT23phmIazrcioRIQEZaE059W0TkEEmW4A754Q75BzzGyOjQU2kYSTNU15NpGGm129ddgXtahcjoAP+p03CRANntguwzA3HZ2xWO+zxdt3X96fNC9nkgK1z1SDSaxRI6okkDQR//LVsqKytzXlXeO0ivqqkCiljzkm+DZ3EH3TB0A4K9AhEREVEPxcyvADNIF0IAvsLH0DtAz+fdg3mH6BdeeCEuuuginH766fmeWrSf//znWL16NVatWgUAuPPOO/HYY4/hrrvuwve///0+x9922204++yz8Z3vfAcAcMMNN2Djxo345S9/iTvvvDOv525P6KgIS6iJKMjoAJM1otFJdimQQwEgNPTbdYQQEBkDRiYDoesQmg6R0SF0HYb1edeH0f1z3TCvPiwEhCEAIQBDmI+X/dqAEOi63ToWgDDsY7qOF6L7YxgAFyk6T5YgSVLfPyUJkmz+CUmGJHf/uu/n1rnd75NkGZJLgeRSIHf92f1DHuA+2cU9dYnGCitAj/hlGLpz//Y/9rGPYcmSJbjuuut63N7W1obPfe5zeOaZZxx7rlJwu/N7y273IP1Q6yGgApAL2IKx0AbP4va7oQleu4WIiIjIUvT8qvuKdANAbjuw9FBMgA4UEKJ3dHRg6dKlmDp1KlatWoULL7wQEydOzPdh8qaqKl5//XVcddVV2dtkWcbSpUvx0ksv9XvOSy+9hDVr1vS4bdmyZXjkkUcGfJ50Oo10Op39OhqNAgBcihmgy5IEBuhEY4MkSZDcCmQH3hLuNGEYZrhuheyG4P9MOZAAO/juCr0l7ltLRMMontSRUAUifhnhgIKO3N5NmpNnn30Wb7/9Nt58803cd999CAaDAMx59XPPPefcE40gVpDe0tqCzrZOeKu8ea1IL7bBy45jDL876MP7nirbc03+56Vley4iIhqdyvVziT+TBubU/ModdEMIgUxnBgICiOR+brEBOlBAiP7II4/g4MGDuOeee/Df//3fuO6667B06VJcdNFF+MxnPpP3ipFctbS0QNd11NfX97i9vr4eW7du7fec5ubmfo9vbm4e8HnWr1+PtWvX9rm9MmgF6EQ0lhm6DpExIDIZc9W5Zq5M7/G5bpihtmH+CdFrFXq3z7MBuGEAAl1/9rNyvZ/PRdeKdvNxYN5Hg5MkSBK6VovLfVeP9/hchiSjxyp0O3jvGcR3P1+S5a60vutzWYKsKJDcXavMuz7vswKdYT7RmJPRBeIpA5VBBeFAaX5h+9RTT+FrX/saPvKRj+APf/gDpk2bVpLnGUlkWUZVdRXiB+NIt6WBMIAcWhSnGjwiIiIiMjk9v3IH3UgaSUgJCZqi5fSYTgToQIF7otfV1WHNmjVYs2YN3njjDdx999348pe/jFAohC996Uu47LLLcOSRRxY0oOF21VVX9Vi9Ho1GMXnyZDMkIaLDhqHr9j7oXRceNbr2SNdTKoy0BqFlzG1atIy5v2lGN0NxohKQFNn8cLsgKV3hukfptge6F4rXAzm7F7r5wfCdaPTSdIGQTy5ZgA4AEyZMwHPPPYdVq1Zh0aJFeOihhzBnzpySPd9IIcsyvJVepNvTkKISREQAg7zMDNCJiIiInFWy+VUAEBDZi42icuBDnQrQgSIvLNrU1ISNGzdi48aNUBQFn/zkJ/H222/j6KOPxk9+8hN861vfKubhe6itrYWiKNi/f3+P2/fv34/x48f3e8748ePzOh4AvF4vvF5v8QMmomGTSanIROPQY0kzFE+q5sVEU3ZoLtTMcA+TqAehG+a7GPL5uykBstedDdeti4wqfg+UgA+usB/uSBCye1RdR5xozHArEoL+0gXo1iIQr9eL+++/Hz/60Y9w9tln43vf+17JntNRQgMMtcBzDcjQ4Yso0NoNM0iX1X63aNPiGWTiOjxBBW6/BBjFzREkw4AkBNyZBNza2Nsb3Sulhz7IIW6ts2zPNVZJIgNfJgmg2+uttgEye2aivBjp7L+h7v+mXBLn6aVWrp9LY/lnkpHRIAkDkiEgGWZI7fT8yiYgCx3wAx7JCy2molNuR0U43OdIVdXQcqgNbpcLNVVhyMj0f425HK9lk/e/Vk3T8H//93+4++678eSTT2LBggW48sor8cUvfhGRiLkZze9//3t89atfdTRE93g8WLhwIZ5++mmsWLECAGAYBp5++mlcccUV/Z5z0kkn4emnn8aVV16ZvW3jxo046aSTHBsXEQ0PIQQysQS09k5koglo0TgysQQy0QQMBuQ0VgjASGkwUhrQER/wMMXvgSsShCvshysShDsSgLsqDFegiMuaE1HRXEpp3+koem3zdc0112DOnDm48MILS/q8jkm1AO6B/28bjCQM+PWuDeZ9SaTjfmQOGfCFdLhc9uuSSsnQkwqCfh0+lwE40GdnMhK0jIT6lr0IJvXiH3CUCXh3lO25qvbzXQOlZggDUnovAGBip/nvUY7FAJmvPVE+ZEPDxMTbAAA9tQcAMMkbgyzxXaWlVq6fS2P5Z1I8ruDDTCXcEHAZoiTzK4uAgGSkAAB+l46UV0as/RBktaPHuztVzUBLTIdbkVATyEBO7x/oIYFUMqfnzjtEnzBhAgzDwAUXXIBXXnkFxx57bJ9jPvrRj6KysjLfhx7SmjVrcOGFF+KEE07A4sWLceuttyIej2PVqlUAgK985SuYOHEi1q9fDwD45je/iSVLluBnP/sZli9fjt/97nd47bXX8Jvf/MbxsRFRaWXiKaitHVAPxaC2dkA7FGNYTpQjPalCT6pI72/rcbvi98BTUwFPTQSemgjcNREonrE7+SM63OzcuRN1dXU9bvvc5z6H2bNn47XXXhumUZWfJAHeYBJ6IoTOThdCoQxcLrPBSyYV+P06fL7+liURERERUS6EkACUf37l8xnwyTKiSfO5wgGlZ4Aece4al3mH6LfccgvOO+88+HwDr16rrKzEzp07ixpYf77whS/g4MGDuPbaa9Hc3Ixjjz0Wjz/+ePbioXv27Omxt83JJ5+M+++/H9dccw1+8IMf4Mgjj8QjjzyCefPmOT42InKW1plEal8L0s2HoLZ0QE8W+HZuIhqQnlSR3HsQyb0Hs7e5wn54aivga6iFb3w1FJ9nGEdIRMWYOnVqv7fPnTsXc+fOLfNohpckAcFQBvFONzo7XXC5DGiazACdiIiIyAGZjISMJkPXyz+/CvtlyBCIJg2oGYF0RjgeoAMFhOhf/vKXHXvyQlxxxRUDbt/y7LPP9rntvPPOw3nnnVfiURFRsYyMjvT+NqSaWpFqakEmmtvbaYjIWZlYEplYEomdzYAEeKoj8E2oga+hBp6aCC9kSkSjliQBoVAG7e1uaJoMt9tggE5ERETkBAFkMjI8nuGZX4UDCtSMQEozt+1zOkAHirywKBFRMXRVQ3L3fiT2HIB6sN28qOJoJgGSS4GsKIAsAZIEyfpTkgDZ/tO8TzbPkSVAku1ju/60Ppck837IXReJk+Wu+wBJku3HG+7vfxQQACAEYAgIYUAYotvX5p8QAqL318IAjK79ha3zrGO6nd/38Qzzdk0fnX+/BaC2RqG2RhF9Zydkjwve8TUITB0H38Q6yAoDdSLq369+9SvcfPPNaG5uxjHHHINf/OIXWLx4cX4P4qsF/JGCnl8IA0nNbHWiurk/plDCyMR1GLK5T3laSIDsguJ29v8yQzagQ2B/7Qx4I2Nvi6zGdPkupjqx/uSyPddYlREZbE5sBgAowWMAAHOrPs4LixLlyTDSaGwzL3z4TjwIABCBubywaBmU6+fSWP6ZlI5qyChNMHQDaSGXZH5lERCIWde9Ucx5YshdB1XTkRZtgGyG6HE9hHA4mNuDatGcDuO/ViIqK2EYSO5rRWJnE1KNLSMmWJQUGbLPA8XvgeLzQPZ5IHvckF0KJJcCya1AUszP5eznLkhuGZLLBVlRILlkM+Qm6ocwBISuw8hkIDQDIpMxv9Z0iIz5YWTsz0VGh57WYKRUGCkVejINPa2Zwf4wMdQMknv2I7lnP2SvG4Ep4xCY0QBvbcWwjYmIRp4HHngAa9aswZ133okTTzwRt956K5YtW4Zt27Zh3LhxuT+Q5AbkAreUEjqEbLY6hmGG6GpCIJMw4A574PK7kG5PI92hw1vlguxgoydkA0LSobkCkN1jL2hMi/J9z5o7VLbnGqsyIoOUyw+g2+vtqWKITpQvI539N9T935RgiF5y5fq5NJZ/JmmuNCS3Am/YCy2ulWR+ZRFCwJC6Fkh0zfXUjEDboQ643V7U1NQgHo8jGo0CsgvhcHjoB5VyW/TAf61EVBbpQ1EkdjYhuWs/9FSZ9jeXACXgM4Nxrwey3wPZ54XSFZbLPjMwV7oCc6JSkmQJkuyC7HYB/sIeQwgBoytY17s+jKQKPZ2GnlTtwD2Rgp4q7YoLI62h8/1GdL7fCFckgOD0CQhMnwBXcOBrphDR2PDzn/8cq1evxqpVqwAAd955Jx577DHcdddd+P73vz88g0oAmWQG7pAb7qD5M99b6TWD9LY0vFXekjR6RERERGOBrJjvri/3/MrQDBzqOASP24OamhrIspwNzqNRc4V5TkF6DhiiE1HJCMNAYmczYtv2QGvrLNnzyB4XXJEgXGE/3JEgXJEAXGHzQ3YpJXteonKTJCn7i5+hfu1jqBq0aAKZWBxaNIlM1+eZaMLxd4Bkogl0/GMHOt7aAW99NSJHT4VvQo2jz0F0ODJGxpuxHKWqKl5//XVcddVV2dtkWcbSpUvx0ksv9XtOOp1GOp3Ofm01PI5JAFJCgivkygboAIal0SMiIiI6nJVzfmVoBtJtaYS8oWyAbilFkM4QnYgcZ2g64tsbEdu2B3o85ehjS24FnuoIPNVheGoicNdUwB0qcFkv0WFM9rjhra3os9WKMAxoHQmohzqgde13rrV3mvu5F0sA6eZDONh8CJ7qMMJHT4V/cr25zz8R9aFmDLg1wHMY/cK3paUFuq6jvr6+x+319fXYunVrv+esX78ea9eu7XP7+01t8HQU+u41AdXTCZcm4MoIqJ4MoqoE6VA/jycEvBkguT+DtBcwlOL+z5IMAZcO/P31HVC9Y/D/v2kTy/dcL75bvucaowzoiAebAQDvxs3X+4lDAciC7+IkyochaWipNv8Nxbr+TW2OeyDj8JkDjFjl+rk0hn8medICU+M6MilAWL2fw/Mri4CArqQh6xL0RByGDHTqAs3J1n6Pl3Ugur8FeksUhtL/NoFqIp7TczNEJyLH6CkVne99iM739sJw6OIdis8D74Rq+Oqr4amNwBUOMpAjKoIky/BUheCpCgEzzQmloevQ2jqhtnYg3XQIqQNtEJpe1POoh2JofeEduCI7EJ4zFYHpE8yL7hJRliRJaIvrcLskeMbwCuirrroKa9asyX4djUYxefLkoh/XpQm4NSDt1aF6dCgD/bcmSUh7BbxpwJsG0l7hWKNHRERENCaVcH4l6xL8SRcMGUh7AY828ONawbmiqz2+LgRD9BzFUzoqnNlCh+iwk4mnEHt3N+I7GiEyRb43XZbgra2Ab0INvA018FSFebFOohKTFSW7aj181BQYugH1YDtS+1qQamqF1p7bb+b7k4km0fbyVkTf+gCh2VMQOnKSuS88EcHjkqAbElpiOmrDOCyC9NraWiiKgv379/e4ff/+/Rg/fny/53i9Xni9zl70S9ZVKALQ3IDqyeGXggzSiYiIiJxVgvmVrAMe1QVDFtA85nMMxakgnV1sjuIpA7GEjnCAq+iILIaWQXTLLnS+u6eoPZYlRYZvYh0CU8fBN76aF/kkGmayIsM3vhq+8dUAgEwihdS+ViR2NSN9oA0oYOcXPami483t6Ny6B5EFMxGc0cB3ldCYJ0lAVUhBNGFkg/TRzuPxYOHChXj66aexYsUKAIBhGHj66adxxRVXlGUMsq5C0VWkvUDGncf/M042eg7skEVEREQ06jk4v5J1AU8a0BWBpD8Dl5F7GO5EkM4QPUdBn4xo0gwJvZ7Rv0qIqBjCEIh/sA/Rt3ZATxa6VyngqatAcMYEBKbUMzgnGsFcAR9CR0xE6IiJyMSTSOxsRnxnEzLRRN6PpSdVtL38Ljrf+xCVx8/KBvVEY5UkSaiJKGiN6miJ6fBg9F9tdM2aNbjwwgtxwgknYPHixbj11lsRj8exatWqPB8p/yTaCtB1xYOMu4BtqRxo9GTd/CAiIiIiODS/Ms83ZCDpzwAF5PDFBukM0XMU9CmQFTNID+gCCt/eSWNUqvkQ2t94D1pbZ0Hnu0I+BKZPQGDaBLgjAYdHR0Sl5gr6EZk3HZF505Fu6UDig31I7N4PQ83k9ThaWycOPv0G/JNqUXHckXBHgiUaMdHIJ3cL0ttjoz99/cIXvoCDBw/i2muvRXNzM4499lg8/vjjfS42OhQlkwZEMKe36QI9A3RDcQNIFjB6FNXoybqARwUMvnmViIiIyFbk/MoK0FNeFBSgW4oJ0hmi58HayqU9riPo42p0Glu0aBwdb25Hcu/Bgs731FYgfPQ0+CfVco9zosOEtY96xcJZiO/Yh853dyPTmcrrMZJ7W5Da14rgrEmIzJ8Bhe9KoTHKCtLjicPjZ+QVV1xR9PYtkjDgyiSRcfmHDNJ7BugeFL2fSgGNXvcGz2CrQERERNRTkfOrdJEBuqV3kJ4rhuh5CgcUZHQBVedGhzQ2CMNAdPMuxDbvKmjfc19DDcJHT4OvvqoEoyOikUBWFIRnTUboiIlI7DmA2JZdeb1bRRgCnVs/RGJXMyoXHoXgtP4vPkh0uJMlCZVBLmG2ZFw+eHMI0vsG6A7Jo9Hr3uCpbsA1+nflISIiInJegfMrM0CX4NSFZ7oH6ZKR27uqGaIXIOhXIJKj/622RENR2zrR9rfNUA/F8jtRBgJT6hE+eho8VYfBVdKIKCeSLCM4bTyC08Yjua8Fsc27kD7QnvP5RkrDoRffQfLD/ahaNAeKz8EwjGiU4Lu1upFkZFw+uDLJAYP0kgXo2TEM3ej1bvAkrrUhIiIiGlgB86tct/fLhx2k57YFIEP0Arm4JzodxoRhILZlN6Lv7Mxv9bkEBKaOR+SYGXCHuN850Vjmb6iFv6EW6YPtaH/zfagHO3I+N7nnINIH2lF1wlEITOWqdKKxTMgKMi5/v0F6yQN0yyCNXr8NnmCKTkRERDSofOdXJWIoHuhKbluKMkQnoh7U9k60vZT/6nNPXQUqj58Fb21FiUZGRKORt64S9R9fhMSe/eh48/2c90w3UhpaX3gHiT0HULVoNlelE41h/QXpsqGVJ0C39NPoAShbg0dERER02Bkh8yshM0QnojwUuvrcFfKh4tgjuFqUiAYVmFIP38RadG770Px/RsttW7TkngNQD7ShctFsBKbUl3iURDRSdQ/S3VocAMoXoFt6NXoAA3QiIiKiooyi+RVDdCKC1t6JQy9tgXoomvM5kltBZO40hGZPgazwImhENDRZURA5ehoCMxoQe2sHOnc0Ajn8zk5PaWj9y9tITDmAqkVHcVU60RglZAWGrEA2zF/CGTmuGnKUJEFzi2yTp7kx4ho8IiIiolFllMyvGKITjWGFrj4PTKtHxfGz4PJ7Szg6IjpcuXweVC2eg+CRk9H2yhaoLbn9Ai+5Z3/XqvSjuCqdaAySdRWyoWeD9IEuNlraMZgNnuh6yoEuhkVEREREuRkt8yuG6ERjlNbRtfq8NffV54rPg8rFsxGYPK6EIyOiscJTFcK4s05A7N3diL6d2y/z9JSK1r+8jeS0A6hcyFXpRGNF74uIGl0hejmD9D4XuQL6vRgWEREREeVmZMyvcrsoPEP0AoncXl+iEUcYBmJb9yD61gd5rz5nYEVETpNkGZG50+GfWJfXtlKJXfuR3t+1Vzp/sUd0WOsdoAP9X2y0lEF6nwav67l6XwyLQToRERFRbkbE/EoIKJl0buMt3SgOX0IIqBmm6DT6aB2dOLDxNXS8uT3nAF3xeVBz2nzUnDKfAToRlYy7MoRxy05AxTEzISm5TU/0pIrW599C64tvQ09rJR4hEQ2H/gJ0ixWkS8KAK5Ms2SqXgRo8AF0XwzLv86bNY4mIiIhocCNifiUEXJkkJJFbPsaV6HkyhEBbpw6Zi0xoFCl09bl/yjhULZrN8JyIykKSZUTmTYdvUh3aXtoM9VAsp/PsVelzEJhcV+JREpWWpuX+c/pwJxkaFF30G6BbSr0ifdAGLztQqceKKXUYrndKRERENFoUMr9yfEV6twA94/LldApD9DwYQqA1qiOjC4R8StmeN6kn8W7y3R63zfHPgV/xl20MNHpp0bi5RUJLR87nKD63uUUCL9xHRMPAUxnCuGWL8rrwsbkq/R9IThuPyhOOguJlikVDG2lzLFUz0J7Qh+W5RyJF16ArgQEDdEv/QXrxz59Tg2fp1uh5VCDD/4KIiIiI+ih0fmUF6boTcWyPAN0PZFI5ncYQPUeiK0DXdIGqoAK+U5NGOmEIxLbu5upzIhqVsqvSJ9ah7W/5rEpvRnr/IVQunoPAJK5Kp9FD1Qy0xHS4uKd2lq64IQ8RoFv6Bum5rSgaSF4NnsVq9FKAzN+FEBEREfVQ1PyqK0hPeVFckN4rQBdy7g/GPdFz1B43A/TasAK3my8bjWxaNI4DT+W397nsc6Pm1HmoPW0BA3QiGjE8Veaq9IoFMyDluJeanlTR+tw/0PrXd6Cr3CudRj4rQHcrEiqD5Xu340gn5PyWc/fcIz1V8B7pBTV4FkmC6oEjK+GJiIiIDhfFzq967pFe4ESriAAd4Er0nGV0gYawAo9b5kVFacQShkDntj3o+MeO/FafT65D5eI5cDE8J6IRSJJlRObPMPdK/9uW3Fel72xGuvkQqk6cA/9ErkqnkUnTDHQkDbgVCTURBbFOpq/F6L4i3Xrbbz6KavAsknk+ERERETk1v7JXpPuTLiT9mfzOLzJAB0bJSvRdu3bhoosuwvTp0+H3+zFz5kxcd911UFV10PPOOOMMSJLU4+OSSy4paAyVATNAJxqprNXn7W+8n/vqc68b1afMQ+3pxzBAJ6IRz1MVxrhlixBZMD2vVektz/4DrS9thsFV6TTCGAbQFtezAbrs4AUxxzIzSPdBNszVSsgxR3ekwbOwlEREREQOz68kpLyAIQv4ky7Iue617UCADoySlehbt26FYRj49a9/jSOOOALvvPMOVq9ejXg8jp/+9KeDnrt69WqsW7cu+3UgEChoDNzChUYqYQh0vvchOv6e+9YtQNfq80Wz4fJ7Szg6IiJnSbKMivkz4Z80Dode2gytrTOn8xIfNNmr0htqSzxKotyoGQMuBuglIWQFaTdyXq3kaINHRERERKWZX0lA0p+BP+nK7V2HDgXowCgJ0c8++2ycffbZ2a9nzJiBbdu24Y477hgyRA8EAhg/fnzOz5VOp5FOp7NfR6PR/AdMVCZaLIG2v21B+kB7zufIXjcqTzgKwWm5/7sgIhppPFVh1J+9GNF3diK2eReEMfQqBD2RRsumvyMwswFVxx8J2ZPffstETpMkCVVBmQF6iRiK+bZftyrBn3QNuFc5A3QiIiIiZ5V0ftUVpAcT7q7n0CHkfiJuBwN0YJRs59Kfjo4OVFdXD3ncfffdh9raWsybNw9XXXUVEonEoMevX78eFRUV2Y/Jkyc7NWQixwghENu2B/v/9Le8AnT/pDrUL/8IA3QiOixIsoyKBTNRt2wR3FWhnM9L7NiH5sf+huS+lhKOjmhoHpe53SCVjqFISPozkA0JvjT6XGyUAToRERGRs8oyv5KQvdioK5OCZOg973c4QAdGyUr03rZv345f/OIXQ65C/+IXv4ipU6eioaEBb731Fr73ve9h27Zt+N///d8Bz7nqqquwZs2a7NfRaJRBOo0oWjSOtle2Ir2/LedzZK8blQtnITh9QglHRkQ0PLzVEXNV+ts7Ed2yC8hjVXpwZgMqjj8SClel0zBgXlsehiKQ9GcQSHR7268kMUAnIiIickpXC1bW+VXXxUYVXYYrk7TD8hIE6MAwh+jf//73cdNNNw16zLvvvovZs2dnv25sbMTZZ5+N8847D6tXrx703Isvvjj7+fz58zFhwgSceeaZ2LFjB2bOnNnvOV6vF14v94imkUdXNUTf/gDx9/bmtG2BxT+pFpWL53DvcyI6rEmyjIpjZsI3uQ5tL22B1p7bXunxHfuQ3HsQkfnTETpyEiR51L5Jj4gGYSgCaS/gS5v7pGtuBuhERERETpENQNYBj1bm+ZUkIePywZVJdQXpPii66niADgxziP6v//qvWLly5aDHzJgxI/v5vn378NGPfhQnn3wyfvOb3+T9fCeeeCIAcyX7QCE60UgjDAOd7+9F9O2dMNJazufJHhcqT5iF4PSGEo6OiGhk8VZHMM7aKz3HVelGWkP7a++h8729qDz+SPgn1pV+oERUdoZiNnTeriBdSAzQiYiIiJwgCcCjAmI4FihIEjIuP1yZJFyZFAA4HqADwxyi19XVoa4ut0a1sbERH/3oR7Fw4ULcfffdkAtYKfb3v/8dADBhAre0oNEh2XgQ7W+8j0x08L38e/NPrEXlibPh8vtKNDIiopFLVmRUHjMT/sl1aHtpM7T2eE7nZaIJtDz7D3jHV6Py+CPhqQqXeKREREREREQ0GoyK9yw3NjbijDPOwJQpU/DTn/4UBw8eRHNzM5qbm3scM3v2bLzyyisAgB07duCGG27A66+/jl27duH//u//8JWvfAWnn346FixYMFzfClFO1ENRHHj6DbQ8+4+8AnTZ40L1SUej9oxjGaAT0Zhnrko/EeG50/Ka8aSbD2H/n1/GoZe3IJNIlWx8RFReso4eW7hIwvy698VGiYiIiCg/QgJUzzDNr3rsge6DkMw90vtcbLRIo+LCohs3bsT27duxfft2TJo0qcd9oqsomqZh27ZtSCTMwNHj8eCpp57Crbfeing8jsmTJ+Nzn/scrrnmmrKPnyhXqf2HENuyG6l9rXmf62uoRdWJs+EKMDwnIrLIiozKY4+Af1IdDv1tCzIdua1KhwDi2/chsbMZgWnjET56KtyRYGkHS0QlI+tSnz3Q016R3drFutgoEREREeXPkLu2zpNR3vmVEHBlUj32QM9IStfWLsnD58KiuVq5cuWQe6dPmzYtG6gDwOTJk/Hcc8+VeGRExRNCILn3IGJbdkNt6cj7fMnjQtXxsxCcyb3PiYgG4q2tQP0nFiP69k7E3t0FGLmdJ3QD8R37EP9gH/yT6hCeOw3emoqSjpXGDi6ALg9Zl+BPuvrs0WkoDNKJiIiIHNE1hSrr/EqYz9PnIqI99kh3LkgfFSE60eFIGAYSO5sRfXd37isju5OB4MyJiCyYCZfP4/wAiYgOM7KioPLYIxCYNh7tr7+HdPOh3E8WQPLDg0h+eBDe8VWIHD0Nvgk1pRssjQlqRsDnEch2HeQ4WRfwqi4YsjDfYtyriWOQTkREROSsssyvuraNkQ2YW7j0DslLEKQzRCcqM7UthsTOJiR2NUNPqgU9hnnRu1nwVIUcHh0R0eHPUxnCuDOPR7Kxpevizfn9IjPd3IaDzW1wVQQRnD4egekTuJUWFUQIgbZOHeMqJcgMbh0n62bzllEEkv4MFMPd73EM0omIiIicVdL5lQD8SRdkw3yXoUsfIBx3OEhniJ4jTcvxfd9E/cgk00juakZ8ZxO0ts6CH8cVCaLy+CPgn1jn4OiIiMYm/8Ra+CZUo/P9RkTf/gBGWsvr/ExHHB1/34GOf+yAt74awRnj4Z9cD9nlzJ57dPjzuGR0pnS0RnXURBQG6Q6SDB3ejLk/Z9KfGXKxP4N0IiIiImeVZH6VDdAlpL3mc2Cw64c6GKQzRM9Re0JHJGzA45aHeyg0SuhpDammViR2NiPV3AoYhW98KnvdiMyfgdCREyHJ/DtIROQUSZYRPmoygtPHI/rOTnS+txdCz/MX5wJINx9CuvkQJPc2+CePQ2BqPbz1VZAVBuo0MFkGqoIKOpJGNkin4kmGDlcmhYzL2gM9t/McbfS43z0RERGRw/MrAV8agJCQ9Gcgo/93GfbhUJDOED1HLkVCS0xHbRhclUL9EoaA2tqBVFMrUk2tUFujRTdQsteN0KxJCM2eAsWT438ORESUN9njRuXxsxA8chJiW3YhsbM5/zAdgNB0JD5oQuKDJkiKjP/f3p1HWVXd+QL/7nPuVDMUVFEQCiicjQMIimjigpYH5tn9Fi9I28vhiSG0+pC0QneEaItmqRgxLe2E2i8Naretz+czg7bppjFiXsQJmzhESIgiWGUxU+Odzjn7/XGme4t7q+5w7lT1/axVy6pb9567q76XZP9+te/ewXGjEBpvrnj3N3ALLjqR369grM+cZx7p1uEX7L7mw2yghyGFknSIaKY8KfSkuT8nEREREXk1v7IOETWA/moNhiqhDLYCfSAPGulsomdoVI2KuDQLnIYqrgQms2ke7+5D7HAXIl8dRfTA0ay3AkhHrQmh7vRJqDnpa1D8XJVGRFQs/rpqNM46E/VnT0Xvrn3o3dMOGc9mduaSuoFIx1FEOswDTNWaEEITxiDU0ohAYz18tVVeDp0qWMCvYGwdcLhHR180t9fbcCSM7OZViQ10zRcCRG5nz+RV6EmJQG5PS0RERDRs5Tu/sg8RjQQBQ81x0UmejXQ20TMkhMCYOhVHunUc69NRG2Jjc6SJ9/Yjdrgb8aPdiB3pRuxYT86NlXR8DTWoP3Myqqe0cNsWIqIS8lWHMOq8U1F/Vht6f/8lenfvhx7JrzOm90XQ94d29P2hHQCghvzwN9YjMMb88I9pgC8U8GL4VIHsRvq+fq5Et6l6HIoeg6EO/e8iuYFelfEWLunkVOglFHga30BIRERElCTf+ZW5B3qeg0jRSM8Um+hZUITAmHoVB49LxLTyfY/m6527sKu7E/91wlmYUju21MOpKIauQ+sJQ+vug9bTj3h3P7Sefmjd/Z6tMk8l0NSAujOmoGriWAhuF0REVDaUgB/1Z7Wh9oxJ6PtjB3p37YPWE/bk2nokDr3jCCIdR5zb1OogfPXV8NdVw1dfA199NXx11fDVhPjH1SxIKbHz2H5s7dyFP5t4Dk6rbyn1kDIS8CsYVc2FGjZd9SOom3+8GqyRfmIDXcCLTcmzKvQSCrxYAOC/ViIiIqIT5Tq/cg4R9eLgmQGN9KjM7JpsomdJEQKja1V095dvE/2lfR/ghS/ex48/3YILx7bh263n4b+MPwP1/pH7tnFD02FEYtAjMejhGIxo1PxvJAY9Yn0ejkLrixTtICi1JoTqKS2omToe/vqa4jwpERHlRFFV1J3airpTWxE9dAx9n32F/n0HIWOap8+j90eh90cR7TyWdLtQFag1VVCrAlCrAlBCAaihANRQEEooAKXK/jowopvtX4W78Gr7R/g/+3bg065ORA0N9f5QxTTRAXOPdDJJxQ9d9UMdpJGeuoHunYwKvQEFnhTIbo9OIiIiohEkl/mV2UD3UFIjvS+jh7CJngMhBAK+8l4trAoFqlDweudu/Krz9xgTrMHlXzsb/23iubhwbBsUUTkFmjQkpKbB0HXIuA6p6TA087/2R+LXRjQOPRKFEY5Bj5pNc6+3XcmV8Kuoam1GTdt4BMeN5qpzIqIKFGwajWDTaIyaeRrC+w+h//OvEOk8AhTw7+tSN8x3SXUPMcET5up5p8luNdyVgB/Cp0LxqRDWR+Lnwq9CqCoUnw/Cp1TU/z+FtRh+dWA3Xt6/E28c2I1eLQohBEb5qxD3+I8cVHx24zxVI73QDXR3DIMUeikKPGFwSx4iIiKiwWQ7vyoIq5EuRWbvNGYTPUN6OAZNMUPTdUDqQP8XnQiECv/cEUQRFcedr6WU+DT6KQw99Yvo2LFjgGGg1lBRq9ZAkwa6w33Y9If/h3/asx1TgqOwsPEMfGv0qZgcHDX0AKTZyIaUkIYB2J9L6dyOhM+llIBh3dd5rPm4dI+xP5fSvK/UJaTdNNfLd9V/JoRPQXBcI6onNaOqdRwPCiUiGiYUVUXNlBbUTGmBFo6if28nwvsPInakq6AN9UFJwIjGYUTj0LoyW1FxAgGzya6qED4FUBRACAhFmM11RZhfJ32uQCgwJ75CgVDM7wnrcRDu14mPF4pi7l3tfG7ff4gfU0p82N+Jfz32e7x67Pc4EO+FAYlaJYBxajUUIQDd/ONDe0c73g//Z8rrVPtVRAPHk27rkx3QEcztd5eF/ghgRBXoGqAlTA30ME+lHChVIz23BrrM+Q2HumoeZGUXepGgeaVQFBDOIVfmc9hvNDagw8h3c3aiEpOiPBYjEQ1HUujg311pODAS5ljZzLaymV+5PP5HIwR0X2ZzfzbRM6T19CEeN/fE1iCgQUXXb/dDonD7ZNtiPg39Y486X3doYdx9+F8RTluhSwASWjzi3FIPBXXwIwoDf4wdwgM9B/DIF/8P09GIb2EivolxqANPQPKKv6EGoQljEJowBoGmUVBUNs6JiIYzX1UQ9WdMRv0Zk2HE4oh0HkWk4wgiXx2B3h8t9fCyIwEZ16GXybu4Eh1AGK/jK7yKL/FH9CAKHUGoGAU//NYu1AaizgxJQxz/68t38b++fDfl9ZoQxI9bzkm6retwDGGt8FPkbvihoRUqdCQWA1qeB9gOV4mNdCF1KIae9Qp0XY0MfadBHw/oqkBV2IegHZME+qs1GKqboYSAkArCVYcRqSq/f0dERFQe+qvbSz0EIk/oigpDGQtdMZLmRBk9NsP5VWFlNpdkE70CxaSBfugIQXUKxoFS3S4gEIKKEFQYkOiHhu04hO04hNEI4FKMx3/B1zAdjVC4aiYralUAgaZRCI0fg9D4MfDVFOEtCkREVJaUgB/Vk8ahetI4AEDseC8iHYcR+eooYke7Pd9HfbiLQMdbOIhfoh3bcRD90CEA1MOP0QhADDJnaUYIWprVKr2Io7cIiyHIO4YacBroAAq6hUv6MUhEQhqqIubik3AoXsQCj4iIiGj4qZT5FZvoFcwPBUHktsJZgUAt/KiFHxoM9CCOF7EXL2MfJqEGl6MVf4E2hHK8/nCmBHzwN9YjMMb98FWzaU5ERKkFRtUiMKoW9WdOgZQSWk8/Yke6nY/4sZ6K37qsEA4gjOfwGf4dHTiECCSAaqhoRijjP/arUNLOZCLgCuFKIwy3gQ4AihFPedjoQD692rtBWHt0CquuC0VVRIGkZr4wJFQDqAm3wm9wYQoNH81HLiz1EIiGhbq+tlIPgchTgaiEaujm4eq5LMrNYH6V8nljo7J/rjywiU7wQcEoBNAPDUcQxR/Rg+fxOb6JcTgJdaUeXskIvwp/XQ189dXmR101Ao118NVVV9SBa0REVD6EEPDX18BfX4OatvEAAGkYiB3vhXasF/GefvMA0Z5+aD3hEd1c34mj+Dn24yiiUCDQiCCCUAZdeU7D18A90BUjnvKw0YIacMgVgNSHYRERERFRZipofsUm+ggXhY4exBGHgSqouAjN+BYmYg5aMApFKkhKQKgK1KoAlFAQaihgfR6AWh2Cr85qmlcV/lAxIiIioSgINtYj2FifdLs0JPT+COLdfdB6wtDDURiRGPRwDEYkCj0SgxGJmYd0D0ML8DWchdHYig68gi+xD704DgNBqKiDH740W9rR8JPqENFUh40OeBQCsQbvBiElfFoEQhrQfCH4dPM9Doaiw6dFoOoKNF/IPBzX0CGkjtHHT4Hu57sViYgIENKHsUdnlHoYRAWhxiNQtT9A0VVIJYsdLbKYXxWSMDLb4pFN9BzpZbAK6oi1MiuVOvhQk+agUB0SPYgjAg0qFExAFf4rJmIeJmBqBa48F6oC4VOdD8WvQg0FoFQFoQYDUKoC5tehANRQ0GyY+/nSJyKi8iYUAV9tFXy1VWnvI6WEEdPMpno45jTWdevDsBrvhqZDarrzX1RI4/1rqMb/wMm4BifhtziKLejAFnTgCKKQAGrgQw18aedDxxFLu21LHAbGDOMFA6Vy77334tVXX8XOnTsRCARw/PjxvK6XqoFuy6SR7omkAq8qqTiUig+arwo+LQyfFjHHCAEBAQU+SJl6Pk5ERCOLgIDg/yfQMKVAg4CAhEDG869s51cFaqQregyqzia6x4QTWFj6oUNA8fugiMIXoUI1G8W2ZlGF+erXEJWp3+L9uezBZ7IHtcItJKQ0DxLtRtw5jGu+MhkLlIk4XzTBLwZZzSWEuX2JAKAoEIpwb1Pc/0IICEUxf1WKAIRifQ8QQjF/f9b97Wuc8Hj7GoqAUFUoPhXCbzXIVfNzxW6W241zhSvRiIhoZBJCQA36oQb98Gex6NbQdUjNgNQ0s7ke1yF13f1cc7+GNLeckVKazXcpzdXvUjq3ScOw7icBaVj3AaT1OQzrvgmf29dwvmdYj5Mwb0+gAJiBcZiBcVghz8KbshOv6V/ifXkYBxGBCoF6+BGEmrTlWlTqOFuMRrNI/YeI8UpV0hwLAITfB0Up/BRZkT6IuFVoJNQERhks1MhHLBbD4sWLMXv2bPzkJz/J72LSSNtAtw3dSM+TlPBp4ZQFnnMXRU0o9MLQi7W9DBEREVElymF+VYhGutlAjyGqZvYHLjbRMxRsHoWquir09OuI9umoCSkYN2cWGusK/ysM62EcD3/qfD0KwMaqRahSUxeEy999Dnv3fwB/dS2iehzH42HEDR3VagCXNJ6Mb7eeh8smfB2NwZqCj52IiIjKj6KqgKoCwcpcEXUqgO8C2Nd3FK+0f4j//cUOfNZ7CF2GhirVj3p/FfyKCjWs48qz/wR/ecolKa8T1sP4NGGOBQDjq85IO8fyUlWPBv+vjyEYUBDwmQWBISUinb0Ff+5CuvvuuwEAmzdvzvgx0WgU0WjU+bq7uxsA4NMikIGaIYumgjXSMyjwnLsmFHqqFoXMsBgjIiIiGlFynF953Ui3G+i6GoBUMrsmm+hZ6OnX0R02UBtSoKrlvUooqmv4sv84fEJBa00jFrVOx3+beC5OrR9X6qEREREReWJSTSP+56lzcOMpl+C9I1/gZ1/uxC++/BCHor2QUkKXlbFtDWA20I9069D0yhmzV9atW+c03xMNtgJ9IM8b6VkUeM5D7EIv3g8YqbcRIiIiIhqx8plfedhIT2ygm3NGbufiqb6IDqkYqK9SEAwoiMRSb6VSDmp9IbRUNWDB+DOxsHUaLm46Gf5sNvYnIiIiqiCKUDBrbBtmjW3DD77+LWzp/BT/d98HeO/IF6j1lf/BjnYDPa5LjKoeeXO2NWvWYOXKlc7X3d3daG1the4LQs2iSPKskZ5Dgec8VFGh+UJQMzygioiIiGhEyHt+5U0j/cQGeubYRM9QX8RAyxgFddUqYlp5rxBae86f4gdnfQsNgcK/FZmIiIionNT6Q/jvrdPx31un41CkB6MC1aUe0qCklDjSbSCuS4ytUxGOlN9ZL6tXr8aPfvSjQe/z6aef4vTTT8/p+sFgEMFgMMV3si+O8m6k51HgOYQCKUbeH0OIiIiIUvJgfuVFIz2fBjrAJnrGakJmA70SVPt4mBERERFRU6iu1EMYlJTAsV4dhgTG1qkI+BWEI6Ue1YlWrVqFJUuWDHqfqVOnFmcwGci5ke5FA93m8cFXRERERBXJw/lVPo30fBvoAJvoGasJVUYDnYiIiIgqQ0yT0HSJ5gYfAv7yW4Fua2pqQlNTU6mHkZWsG+leNtCJiIiIqCDzq1wa6V400AE20YmIiIiISkJKidE1alk30LO1b98+HD16FPv27YOu69i5cycA4OSTT0ZtbW1Rx5JxI50NdCIiIiJvFXB+lU0j3asGOgBUzIx9ypQpEEIkfdx///2DPiYSiWD58uUYM2YMamtrsWjRIhw4cKBIIyYiIiIiSi/gU+AfRg10ALjzzjsxffp0rF27Fr29vZg+fTqmT5+O999/vyTjMdQAdDUAVY9BsZrpSdhAJyIiIvJWEeZXdiNdSAM+LWzukziAlw10oIKa6ADwwx/+EF999ZXzsWLFikHvf+utt+IXv/gFXnzxRWzbtg0dHR349re/XaTREhERERGlp1TUTDwzmzdvhpTyhI85c+aUbExpG+lsoBMRERF5q4jzq8Ea6V430IEK286lrq4OLS0tGd23q6sLP/nJT/Dcc8/hT/7kTwAAmzZtwhlnnIG3334bF154YSGHSkREREREZeKErV0UPxvoRERERF6RBiCUos+vUm3tohhxzxvoQIWtRL///vsxZswYTJ8+HevXr4emaWnvu2PHDsTjccybN8+57fTTT8ekSZOwffv2tI+LRqPo7u5O+iAiIiIiosqWuCLdH+9jA52IiIjII0Ia8MVLs0AhcUW6P95XkAY6UEEr0b/3ve/hvPPOQ2NjI9566y2sWbMGX331Ff7u7/4u5f07OzsRCAQwatSopNvHjRuHzs7OtM+zbt063H333V4OnYiIiIiIyoCh+BNWo6tsoBMRERF5qFTzK6moMBQViqFb4/B7/hwlXYm+evXqEw4LHfixa9cuAMDKlSsxZ84cnHPOObjxxhvx4x//GI888gii0ainY1qzZg26urqcj/3793t6fSIiIiIiKgFrj04ATpGV8rBRIiIiIsqaoSglm18pegyKocOwGvjpDhvNR0lXoq9atQpLliwZ9D5Tp05NefusWbOgaRr27t2L00477YTvt7S0IBaL4fjx40mr0Q8cODDovurBYBDBYDCj8RMRERERUQVIcciVtA6cAuD5232JiIiIRhIpVBiKD1LqRZ9fDTxE1DD0pD3SIYQnz1PSJnpTUxOamppyeuzOnTuhKAqam5tTfn/GjBnw+/3YunUrFi1aBADYvXs39u3bh9mzZ+c8ZiIiIiIiqiApGuhAisNG2UgnIiIiyo3VqC72/GpgAx1IfdioF430itgTffv27XjnnXcwd+5c1NXVYfv27bj11ltxzTXXYPTo0QCA9vZ2XHrppXjmmWdwwQUXoKGhAUuXLsXKlSvR2NiI+vp6rFixArNnz8aFF15Y4p+IiIiIiEY6Tff2LaaUQpoGuo2NdCIiIiJvFWt+laqBbitEI70imujBYBDPP/887rrrLkSjUbS1teHWW2/FypUrnfvE43Hs3r0b/f39zm0PPfQQFEXBokWLEI1GsWDBAjz++OOl+BGIiIiIiJLEdYm+sI5AXUVMySvPEA10GxvpRERERN4q9PxqsAa6zetGekXM2M877zy8/fbbg95nypQpkAM2jA+FQnjsscfw2GOP5T2GWNxATDOvH9ckNF2iq0/P+7qZiOg6+qLJk/5jmo6wqhXl+YmIiIiGo1LOsbr6dCgC6A6b88maKnMccY2r0x3SgDBynW9LqFrUaqCHAGDQa0mhQld8ULUoIA1IxZ/j8wKQBiANKFo092sQERERVQjFmj8BAsJwb/d0fpVAGHGoehy66ocU6pDzRU0NwqdF4Iv3Q/cFAQxopEsj5eMGqogmejnoPK6hLx6DEAKGlJAS+Nf3uuBTM/8LhmEAMc2AEAIBn8j4jx+GNNAbb4SUgM8nIYTEx6IPighn/XNICcQ0CSklAj4FipL5YzVdIq5L+FWR1c/t5bVy/R16ea18fodeXot5mJiHi3m4mIeJebiYh4t5mKQEonEDUdnozK8A5DTHyiUPTZfoCRswJHC4W8fRXh0+VaA/HM/quYczf7wffl8Of1SQEgJmMSShwK9lkac04Nc0SEQAkeM/UmthT8PRPQAkpFCyu5aUEFIHINKuni/GtcyCVEIKNe+3P+d8LWlASCP736GX12IeLubhYB7245iHg3k4mIf9uBGUhzSgalGoQOrn8GJ+lXAtAQkJAZ8uAWul+9CPk1CkBjUWg4SSNE4jntlckU30DEkJxDUg4JdQBCABBP0K/L7MXoDxuIHuiFkcja5RILJ44RpSQlN09PeriEYUVFdrCAUElCxfeFJKHOvVoekSo2tU+P3Zv3D7wjp6IwZqQ4qzYiqXa/TlcQ1/HDjWp0M3BEbXqln9Lm355AEAoYD5u+yN6Dn/LpmHi3kkX4N5MI9EzCP5GsyDeSTKNw+/30CkB878SlWBkJrdHCvXPOKahCJ0qAqgAdANAJAD18WMaBI5/EakAcVqoBvIoXAWKiA1sziTOqTIrVwS0CGMOHQ1kP2qKwFAKvBpEUAaqVdMZUIa8OlRSKFA9wWyv4aqQNWiUIyYuZo/p6J3wDsCcsgjabVZjivY8roG83AxDxfzsB4M5mFjHi7mYT0YIycPIaDCnrelGJ9X8yupmb9WmKvcs3uwgJSAAgMCBgzpzhMzXbLBJnqG/FY2cQ0I+AAIAb/PXPE0lFjcQFfYQNCvYEy9CiXLAk+XAn4hUV+vobfXh3DYh7oAMnpumyEljnSbq52aG3wI5FBwA0CgzgefqqM7bMCnGqirzu5F29Ovoz8mMapGzfqxzhh8Kvw+gcM9Orr7jax/p/nmYRJoHiVwpFtHV9jAWJ/I6nfKPFzMw8U8TMzDxTxczMPEPFxe5KFKJWl+VVurwe8TUDO8Vr55CCGgCCAUEIjGDWg6oBVnt8AKIbNedeY20FXk+nYPKfyAYRZ6kDqkkl3JJKQOAZh7dFpbyWRPhSYU+LQwVD2W9R6ewtDNgtvaCzTXlWeaXzX3EdWjg+4rn5K9Jz0kNH91zqvwpKICQjH3PRVK1nuqKnoMqqFB9wXz2I+VeTiXYR4O5mFjHs5lmIeDedhGRh5CCmtsIu0Y855fGXYDXWT9WPciKgxDQIEOBQYMCKuRntnvNc819COHogABv/3WX8AwMvs7RSxu4HCPDr8q8ii4TUIAtbUaVFXiaLeBWDyzPXvMAk9HXJcYW6fmXHDb6qpV1Fcp6A4b6OnPvNLr6TeL9foqJeeC2xbwKxhbpyKumz+bIYufhyLMa/hVswHAPJgHwDxszMPFPFzMw8Q8XOWQR+L8qrfX55yBMxSv8wj6FfhUIMMp5oigQJr79WRCGlCk+TrOp4HuXE7xQUJAQEIYme+RL6ziUELkfYCWXTALacCnhZ1tYoYegw6fFoYUSt4HaEEIs9i2GgAZ71Gf4aGumTLUAHQ1AFWPQcn0bdvI7NCxTDEPF/OwL8Y8bMzDxTzsizEPG/NIuJwH86ucG+g2RTHnioA5d8xwP3SATfSs+FTFbKTDfMvtUIWelwWezS70/CoyKry9LvBs2RbeXhbctmwL70LkkW0jhHm4mIeLeZiYh4t5uJiHiXm4Cjm/ynShQqHyCPoVKNzPJYkCfehGuscNdOeyWRZ6iQVe3vt9OmPIrvD2tOB2Lppl4e1xwW3LthHiZQPExjxczMO+KPOwMQ8X87AvyjxszCPhsnnMr/JuoNsGNtKRWSOdTfQs+VQFAZ/ZSD/em77QK0SBZxMCGF2vDFl4F6rAs2VaeBei4LZlWngXMo9MGyHMw8U8XMzDxDxczMPFPEzMw1Xo+VUmCxUKnYefmy06DOuttYM20gvUQHcun2Ghl1TgZbtH55BjyKzwLkjB7Vw8w8K7QAW3LdNGSCEaIDbm4WIe9sWZh415uJiHfXHmYWMeCZfPZX7lVQPdlthIz3BXdDbRc6AqAj7F3LMyVaFXyALPNlThXegCzzZU4V3Igts2VOHNPFzMw8Q8XMzDxTxMzMPFPFwjJY+hFioUKw+yKTCEXdykaKQXuIHuPM0QhV5BCzxnDIMX3gUtuJ0nGaLwLnDBbRuqEVLIBoiNebiYh/0kzMPGPFzMw34S5mFjHglPUwbzq8RGekZ3L8wohj9FERhde2KhV4wCzxlDmsK72AVeusK7GAW3LV3hzTyYB/NgHomYh4l5uJiHi3mYyiUPsog0jfQiNdBt6Qq9ohR4zhhSF95FKbht6QrvIhXctnSNkGI0QGzMw8U8LMzDwTxczMPCPBzMw1UO8yuzkZ7Z75pvGM2D3ycwtk7F4R4dR7p11FcrOFKAAk8VKhp8DSm/Zxd6R7p1HO7RMaYO6O43il7g2UV1d9hdIVSsgttmFt4oeB6DYR4u5uFiHibm4WIeLuZhYh6uYuYx2ByrHPIgi1BgwNyzUoEOw5BQrL0ri9FAt0nFB1hFHaxCr2gFnjMGs/D2aWH4tDB0NQCfFilOwW2zCm97DJovBFWPFa3gttlNDjWhCVKsBoiNebiYh4V5OJiHi3lYmIeDebjKYX6V6RpzVgB5sldMxTSJw906fAqKVnDb7MLbpwCHu3XEtNIUeIkr2IpdcNuYh4t5mJiHi3m4mIeJebiYh4t5mMolD7IkrUgvfgPdlrRiqugFnj2GxBVsRS64bUkr2CJFL7htiSsKi90AsTEPF/OwMA8H83AxDwvzcDAPVznMrzLBKoCIiIiIiIiIiIiIKA020fNk79EZ8AmMrVehGakPGy0ke49OzQDG1qsI+FIfhlVoiXumDnY4WSExDxfzMDEPF/NwMQ8T83AxDxfzMJVLHmRJ2gPdLGFSHjZaYEl7dA5yGFZhx5C4Z2oo7eFkBZW0Z2oo/eFkBZa4h+1gh8UVEvNwMQ8L83AwDxfzsDAPB/NwlcP8KhPltza+zEjrxRsORxNuM/97tCuO3rAOnypQXaMiEhEIwMDxHh19/QKjalSIAr8NQ0qJ4306NF1iVLWKSESBX0j0RXXs6zdv8xfhbcd9ER19EQM1IQWGbr7tQxg6Oo8Y6OlTUBMq/FtB4nEDx/uZB8A8bMzDxTxczMPEPFzMw8U8TMXII65JhMNxAMnv2rXnnLKYBVS5S3GIqCFFwh7pKMq2LikPuUrYw7MYbztOdehY8n6mRXgbeIpDxzShJo2hGG8DT3cInL3HbTHels88XMzDwjwczMPFPCzMw8E8XOUwvwIyW5TBJvoQenp6AAAPPPhQiUdCRERERCNFT08PGhpSH3o6oqRooANIcdgoCtpIT1ng4cTDsApZ6KUquM0xqMUrvFMU3ObgTiz+C1l4p2uADDwsrpCNEObhYh4W5uFgHi7mYWEeDubhKof5FQwDCjJbvMIm+hAmTJiA/fv3o66uruCrnvLR3d2N1tZW7N+/H/X19aUeDlUwvpbIC3wdkVf4WiKvVMprSUqJnp4eTJgwodRDKQNpGui2IjXS0xV4thMKPeF9sZmu4HbHUITCO13B7QyyOIV3ugaIrRiNEObhYh72kzAPG/NwMQ/7SZiHjXkkPE2286tCNNINw9weMENsog9BURRMnDix1MPIWH19fVkXhlQ5+FoiL/B1RF7ha4m8UgmvJa5AN9mrglI20G0FbqQPVeDZkgo9qQPCyzEMXnC7Yyhg4T1Uwe0MtrCF91ANEFshGyHMw8U87IszDxvzcDEP++LMw8Y8Ei6fy/zK60Z6QgPdQGa/Xx4sSkREREREZWnQBrpNKDCs1d9eHjaaaYFnk4rPOQwL0qsxZFZwu2MwC29PDyfLtOB2Bm0W3l4fTpZpA8RmFOCwOObhYh72RZmHjXm4mId9UeZhYx4Jl81jfuXZYaOJDXShItP2OJvoRERERERUdgyIzFeVe9xIz7bAsyUWevkW3tkW3O4YPCy8sy24ncF7W3hn2wCxedkIYR4u5mFfjHnYmIeLedgXYx425pFwOQ/mV3k30gc20LN49yCb6MNEMBjE2rVrEQwGSz0UqnB8LZEX+Doir/C1RF7ha6kSZVmqeNRIz7XAs0mhQkJAMeI5F965FtzOGLwovHMtuG0eFd65NkBsXjRCmIeLedgXYR425uFiHvZFmIeNeSRcJt/5lReN9Dwa6AAgpPTiPQFERERERET56+7uRkNDA76/+nYEq6uzv4Ac4kDSQeRb4JnPLyEgoasBKIaWdfGeb8HtybXyLbg9ula+DRAvrsU8XMzDwjwczMPFPCzMwzGS8hDSgD/WCwmRcmyezK/yvdYgDfRofz8euP9edHV1DXp2EleiExERERHR8JHjinQvCzwgtxVsXhbcQI4r2LwsuIGcV7B52QABmIeDeTiYh4t5WJiHg3m4mIclxzy8nl/ltCI9zxXoNjbRiYiIiIhoeMmyke51gWfLpvD2uuC2ZVV4e11w27IsvL1ugNiYh4V5OJiHi3lYmIeDebiYhyXLPAo1v8qqke5RAx1gE52IiIiIiIajDBvphSrwbJkU3oUquG0ZFd6FKrhtGRbehWqA2JiHhXk4mIeLeViYh4N5uJiHJcM8Cj2/yqiR7mEDHWATnYiIiIiIhqshGumFLvBsgxXehS64bYMW3oUuuG1DFN6FboDYmIeFeTiYh4t5WJiHg3m4mIdliDyKNb8atJHucQMdYBOdiIiIiIiGszSN9GIVeLZUhXexCm5bysK7WAW3LU3hXawGiI15WJiHg3m4mIeFeTiYh4t5WBLyUPUoIEszv0rZSC9AAx1gE73i7d27F0uXLkVbWxuqqqpw0kknYe3atYjFkv8i9uGHH+Kb3/wmQqEQWltb8cADD5RoxFTO7r33Xlx00UWorq7GqFGjUt5n3759uPzyy1FdXY3m5mb8zd/8DTQtw8McaMR47LHHMGXKFIRCIcyaNQvvvvtuqYdEZe7NN9/En/3Zn2HChAkQQuCnP/1p0vellLjzzjsxfvx4VFVVYd68efjDH/5QmsFS2Vq3bh3OP/981NXVobm5GQsXLsTu3buT7hOJRLB8+XKMGTMGtbW1WLRoEQ4cOFCiEVPRDGikF7vAsyUW3qoWLmrBbRtYeBe14LYNaISoWrioDRAb87AwDwfzcDEPC/NwMA8X87A4eVhNbFma+dXARnohGugAm+gVb9euXTAMA08++SQ++eQTPPTQQ3jiiSfwgx/8wLlPd3c35s+fj8mTJ2PHjh1Yv3497rrrLjz11FMlHDmVo1gshsWLF+Omm25K+X1d13H55ZcjFovhrbfewtNPP43NmzfjzjvvLPJIqZy98MILWLlyJdauXYsPPvgA5557LhYsWICDBw+WemhUxvr6+nDuuefiscceS/n9Bx54AA8//DCeeOIJvPPOO6ipqcGCBQsQiUSKPFIqZ9u2bcPy5cvx9ttvY8uWLYjH45g/fz76+vqc+9x66634xS9+gRdffBHbtm1DR0cHvv3tb5dw1FQ0CY30UhR4NkMNwFBUKNYKumIW3Daz8A5BSMMquEPFK7htVuENAIqhw1DUojZAbMzDwjwczMPFPCzMw8E8XMzDIgR0NWR+CpRsfpXYSAe8b6ADgJBysONcqRKtX78eGzduxGeffQYA2LhxI26//XZ0dnYiEDD/h2X16tX46U9/il27dpVyqFSmNm/ejFtuuQXHjx9Puv21117Dn/7pn6KjowPjxo0DADzxxBO47bbbcOjQIef1RSPbrFmzcP755+PRRx8FABiGgdbWVqxYsQKrV68u8eioEggh8PLLL2PhwoUAzFXoEyZMwKpVq/DXf/3XAICuri6MGzcOmzdvxl/8xV+UcLRUzg4dOoTm5mZs27YNl1xyCbq6utDU1ITnnnsOV1xxBQBzQcIZZ5yB7du348ILLyzxiAkwF4A0NDTg+6tvR7C62tNr2yvQbQZUQPF4XZGUEJCIB2ohUxRv9lu+bcVePQcg6S3fAIq+es5mvwXfVtTVcxbm4WIeFubhYB4u5mFhHg7m4VK1SNLvoiDzq6EkbOECZNfMj/b344H770VXVxfq6+vT3o8r0Yehrq4uNDY2Ol9v374dl1xySVKDc8GCBdi9ezeOHTtWiiFShdq+fTvOPvtsp4EOmK+l7u5ufPLJJyUcGZWLWCyGHTt2YN68ec5tiqJg3rx52L59ewlHRpXs888/R2dnZ9LrqqGhAbNmzeLrigbV1dUFAM68aMeOHYjH40mvpdNPPx2TJk3ia2kESNzCZbDDRgs7BnfP1Li/Ju3hZAU1YM/UtIeTFVjiHrZxf03aw8kKiXm4mIeFeTiYh4t5WJiHg3m4FD0GxYib8yurzVzs+dXAPdDTHjaaJzbRh5k9e/bgkUcewQ033ODc1tnZmdT0BOB83dnZWdTxUWXja4mGcvjwYei6nvJ1wtcI5cp+7fB1RdkwDAO33HILLr74Ypx11lkA4Lwrb+C5H3wtDX8n7IGe5rDRwo7hxEPHUh1OVlApDh1LeThZgZ1wCFyaw+IKiXm4mIeFeTiYh4t5WJiHg3m47DwMxW9unVKC+VWqQ0RTHjbqATbRy9Tq1ashhBj0Y+BWLO3t7bjsssuwePFiLFu2rEQjp3KTy2uJiIio0i1fvhwff/wxnn/++VIPhUos7SGiRSz0UhXctqIV3ikKbudbRSy8T2iA2IrYCGEeLuZhYR7uUzEPB/OwMA/3qZiHI30eRWykp2ig2wrRSC/+Tu+UkVWrVmHJkiWD3mfq1KnO5x0dHZg7dy4uuuiiEw4MbWlpwYEDB5Jus79uaWnxZsBUtrJ9LQ2mpaUF7777btJtfC1RorFjx0JV1ZT/m8PXCOXKfu0cOHAA48ePd24/cOAApk2bVqJRUTm7+eab8corr+DNN9/ExIkTndtbWloQi8Vw/PjxpNXo/N+o4SttA925gwIDgCJ1KNDNOs/jPTwHK7htdvFp7+/q+Z6qgxTczl2swtunheHTwgXZUzVtwW2zGiGJY/B6j1vm4WIeFubhPgXzcDAPC/Nwn4J5OAbmYe/J7ijC/GqwBrpNKj7APg/H0PI+8JQr0ctUU1MTTj/99EE/7D3O29vbMWfOHMyYMQObNm2CMuCFOXv2bLz55puIx+PObVu2bMFpp52G0aNHF/XnouLL5rU0lNmzZ+Ojjz7CwYMHndu2bNmC+vp6nHnmmYX6EaiCBAIBzJgxA1u3bnVuMwwDW7duxezZs0s4MqpkbW1taGlpSXpddXd345133uHripJIKXHzzTfj5Zdfxuuvv462trak78+YMQN+vz/ptbR7927s27ePryUP7N27F0uXLkVbWxuqqqpw0kknYe3atYjFirg/aIIhG+jOHQu3YiqTgttWsBVsGRTczl0LuIJtyAaIrYArCpmHi3lYmId7aebhYB4W5uFemnk4Ms+jgCvSM2ig27xckc6V6BXObqBPnjwZDz74IA4dOuR8z15RddVVV+Huu+/G0qVLcdttt+Hjjz/G3//93+Ohhx4q1bCpTO3btw9Hjx7Fvn37oOs6du7cCQA4+eSTUVtbi/nz5+PMM8/EtddeiwceeACdnZ244447sHz5cgSDwdIOnsrGypUrcd1112HmzJm44IILsGHDBvT19eH6668v9dCojPX29mLPnj3O159//jl27tyJxsZGTJo0CbfccgvuuecenHLKKWhra8Pf/u3fYsKECVi4cGHpBk1lZ/ny5Xjuuefws5/9DHV1dc4+5w0NDaiqqkJDQwOWLl2KlStXorGxEfX19VixYgVmz56NCy+8sMSjr3y7du2CYRh48skncfLJJ+Pjjz/GsmXL0NfXhwcffLCoY8m4ge48wPsVU8LQoerRjApum+cr2LIouJ2HFGAFW8YFt60AKwqzaYDYmIeFebgPYR4O5mFhHu5DmIeDeVgKsSI9iwa6zasV6ULKIh7ZSp7bvHlz2sZUYrQffvghli9fjvfeew9jx47FihUrcNtttxVrmFQhlixZgqeffvqE23/1q19hzpw5AIAvvvgCN910E9544w3U1NTguuuuw/333w+fj3+TI9ejjz6K9evXo7OzE9OmTcPDDz+MWbNmlXpYVMbeeOMNzJ0794Tbr7vuOmzevBlSSqxduxZPPfUUjh8/jm984xt4/PHHceqpp5ZgtFSuRJrCYNOmTc7WZpFIBKtWrcK//Mu/IBqNYsGCBXj88ce5nUuBrF+/Hhs3bsRnn32W8WO6u7vR0NCA76++HcHq6qyfM+sGeiJpQJFWYQY1t0JPSgipmyufsii4E2VdpKYZR7YFd6Jcmgap5PWz5Pkz2PL9WZiHhXk4mIeLeViYh4N5uEZKHkIa8Md6ISFSX9+L+RWQUwM9aZxp5ojR/n48cP+96OrqQn19ffrHs4lORERERESFcMcdd+CXv/wl3n///bT3iUajiEajztfd3d1obW3F91evQbC6Nqvny6uBbsu30DN0KDCgqwFovmo2D0ZA82BIzMPBPFzMw8I8HMzDxTwsFZLHkE10wIP5VX4NdGesKeaKmTbRuSc6ERERERF5bs+ePXjkkUdwww03DHq/devWoaGhwflobW0FACiQwMCDqgbhSQMdyG8PT8OA+cZlQFdDeb1tOuc9VT0quIH89lT1pAEC5LXHrVcNEIB5OJiHeynm4WAeFubhXop5OJiHJe/5Vf4NdCC/PdLZRCciIiIiorRWr14NIcSgH7t27Up6THt7Oy677DIsXrwYy5YtG/T6a9asQVdXl/Oxf/9+53uK1DNqpHvWQHcumEOhl1DgSSh57zsK5FB4e1hwO5fMofD2rOC25dAI8bIBYmMeFubhXpJ5OJiHhXm4l2QeDuZhyXN+lW8D3ZZrI52bGBMRERERUVqrVq1y9pRPZ+rUqc7nHR0dmDt3Li666CI89dRTQ14/GAymPKDcgFm0KlI313anKZo8b6A7F87iMKzEAg9K2v35c5Hx4WQFKLidS2dxOJnnBbcti8PiCtEAsTEPC/NwL808HMzDwjzcSzMPB/Ow5Dq/8qiBbks8bFQgs3cpsIlORERERERpNTU1oampKaP7tre3Y+7cuZgxYwY2bdoEJdeDowAACgyoUKCnbaQXrIHuPEEGhd7AAg8CgLfHTg1ZeBew4HaeIoPCu2AFty2DRkghGyA25mFhHu5TMA8H87AwD/cpmIeDeVhymV952EC3uY30zHA7FyIiIiIiylt7ezvmzJmDSZMm4cEHH8ShQ4fQ2dmJzs7O3C+qmI104MStXQreQHeeaJC3HhehwHOeKt1bwYtQcDtPNchbwQtecNsGeWt+MRogNuZhYR7uUzEPB/OwMA/3qZiHg3lYymR+ZW7tkhmuRCciIiIiorxt2bIFe/bswZ49ezBx4sSk78ksDrA6gaLAMJC0Il1IozgNdFuqFVNA0Qo82wkr2BR/0QpuW6oVbIoRL07BbUuxohBA0RogNuZhYR4O5uFiHhbm4WAeLuZhKZP5lURmv2+uRCciIiIiorwtWbIEUsqUH3kbsCK9qA1024AVU8Uu8GyJK9j88b6iFty2xBVs/nhfcQtu24AVhcVugNiYh4V5OJiHi3lYmIeDebiYh6VM5leZKK/REBERERERpaIokAm7VspSFFZCgZFQQhlQSlLgGYo/4XO1qAW3TSoqjITnTRxT0QgBPaHQ19VAURsgNuZhYR4O5uFiHhbm4WAeLuZhKZP51VDKb0REREREREQDJO6BDpy4R3pRGAbMNx6bFBjJe3gWg7VnKmAW3IqhJ++pWiSKHoNi6E7hPXBP1WIw97CNQArFWlEYSdrjtiiYh4N5uJiHhXk4mIeLeViYh6sc5lcZYBOdiIiIiIjK2sBDRNMdNlpQAw65SnsYViENOHRM91WlPpyswBIPHdN9VWkPJyukgYfApTssrqCYh4N5uJiHhXk4mIeLeViYh6sc5lfI7HnYRCciIs8cOnQILS0tuO+++5zb3nrrLQQCAWzdurWEIyMioko1sIEO4IQ90gveSB9Q4EEoJ+zhWfBCb0DBbb/lO3FP1WIU3okFt71nauKeqsUovAc2QCDECXvcFrwRwjwczMPFPCzMw8E8XMzDwjxcZTG/MqAgs5+ziCfxEBHRcNfU1IR//Md/xMKFCzF//nycdtppuPbaa3HzzTfj0ksvLfXwiIioAtgHkcaiEQjoEAAkAAkVwMCi0i18DAgUZo3QUM+R/H1hbTcT170cj4SqRWFIA5ovBGiRE+4hDA2qHoau+iELtJ+pMOJQ9Tiiqh9SEQDiSd+PSgmf1gcpwtB9QQAF2F9WGvBpEWhCMZ8j3p/07Zj1uxIybP6uCrKnKvNwMI+E52Ae1iCYh415JDwH87AGMUzzMGDEzK1pZMbZZTe/KuQcLxqNAnDnoOkIOdQ9iIiIsrR8+XL8x3/8B2bOnImPPvoI7733HoLBYKmHRUREFeDLL79Ea2trqYdBRERERCPI/v37MXHixLTfZxOdiIg8Fw6HcdZZZ2H//v3YsWMHzj777FIPiYiIKoRhGOjo6EBdXR2EyG8lWnd3N1pbW7F//37U19d7NELyGnMqf8yo/DGjysCcyh8zqgxe5iSlRE9PDyZMmABFSb/indu5EBGR5/74xz+io6MDhmFg7969bKITEVHGFEUZdBVQLurr61kIVwDmVP6YUfljRpWBOZU/ZlQZvMqpoaFhyPuwiU5ERJ6KxWK45pprcOWVV+K0007Dd7/7XXz00Udobm4u9dCIiIiIiIiIiLJWiF3ZiYhoBLv99tvR1dWFhx9+GLfddhtOPfVUfOc73yn1sIiIiIiIiIiIcsImOhEReeaNN97Ahg0b8Oyzz6K+vh6KouDZZ5/Fr3/9a2zcuLHUwyMiohEmGAxi7dq1PNy6zDGn8seMyh8zqgzMqfwxo8pQipx4sCgRERERERERERERURpciU5ERERERERERERElAab6EREREREREREREREabCJTkRERERERERERESUBpvoRERERERERERERERpsIlOREREREQjwquvvopZs2ahqqoKo0ePxsKFC0s9JEojGo1i2rRpEEJg586dpR4OWfbu3YulS5eira0NVVVVOOmkk7B27VrEYrFSD23Ee+yxxzBlyhSEQiHMmjUL7777bqmHRJZ169bh/PPPR11dHZqbm7Fw4ULs3r271MOiIdx///0QQuCWW24p9VAoQXt7O6655hqMGTMGVVVVOPvss/H+++8X5bnZRCciIiIiomHvpZdewrXXXovrr78ev/3tb/Gb3/wGV111VamHRWl8//vfx4QJE0o9DBpg165dMAwDTz75JD755BM89NBDeOKJJ/CDH/yg1EMb0V544QWsXLkSa9euxQcffIBzzz0XCxYswMGDB0s9NAKwbds2LF++HG+//Ta2bNmCeDyO+fPno6+vr9RDozTee+89PPnkkzjnnHNKPRRKcOzYMVx88cXw+/147bXX8Lvf/Q4//vGPMXr06KI8v5BSyqI8ExERERERUQlomoYpU6bg7rvvxtKlS0s9HBrCa6+9hpUrV+Kll17C17/+dfznf/4npk2bVuphURrr16/Hxo0b8dlnn5V6KCPWrFmzcP755+PRRx8FABiGgdbWVqxYsQKrV68u8ehooEOHDqG5uRnbtm3DJZdcUurh0AC9vb0477zz8Pjjj+Oee+7BtGnTsGHDhlIPiwCsXr0av/nNb/DrX/+6JM/PlehERERERDSsffDBB2hvb4eiKJg+fTrGjx+Pb33rW/j4449LPTQa4MCBA1i2bBmeffZZVFdXl3o4lIGuri40NjaWehgjViwWw44dOzBv3jznNkVRMG/ePGzfvr2EI6N0urq6AID/bsrU8uXLcfnllyf9m6Ly8POf/xwzZ87E4sWL0dzcjOnTp+Mf/uEfivb8bKITEREREdGwZq+Qveuuu3DHHXfglVdewejRozFnzhwcPXq0xKMjm5QSS5YswY033oiZM2eWejiUgT179uCRRx7BDTfcUOqhjFiHDx+GrusYN25c0u3jxo1DZ2dniUZF6RiGgVtuuQUXX3wxzjrrrFIPhwZ4/vnn8cEHH2DdunWlHgql8Nlnn2Hjxo045ZRT8G//9m+46aab8L3vfQ9PP/10UZ6fTXQiIiIiIqpIq1evhhBi0A97D2cAuP3227Fo0SLMmDEDmzZtghACL774Yol/iuEv05weeeQR9PT0YM2aNaUe8oiTaUaJ2tvbcdlll2Hx4sVYtmxZiUZOVFmWL1+Ojz/+GM8//3yph0ID7N+/H3/1V3+Ff/7nf0YoFCr1cCgFwzBw3nnn4b777sP06dPxl3/5l1i2bBmeeOKJojy/ryjPQkRERERE5LFVq1ZhyZIlg95n6tSp+OqrrwAAZ555pnN7MBjE1KlTsW/fvkIOkZB5Tq+//jq2b9+OYDCY9L2ZM2fi6quvLtpKs5Eo04xsHR0dmDt3Li666CI89dRTBR4dDWbs2LFQVRUHDhxIuv3AgQNoaWkp0agolZtvvhmvvPIK3nzzTUycOLHUw6EBduzYgYMHD+K8885zbtN1HW+++SYeffRRRKNRqKpawhHS+PHjk+ZyAHDGGWfgpZdeKsrzs4lOREREREQVqampCU1NTUPeb8aMGQgGg9i9eze+8Y1vAADi8Tj27t2LyZMnF3qYI16mOT388MO45557nK87OjqwYMECvPDCC5g1a1YhhzjiZZoRYK5Anzt3rvOODkXhG9xLKRAIYMaMGdi6dSsWLlwIwFytuXXrVtx8882lHRwBMLeqWrFiBV5++WW88cYbaGtrK/WQKIVLL70UH330UdJt119/PU4//XTcdtttbKCXgYsvvhi7d+9Ouu33v/990eZybKITEREREdGwVl9fjxtvvBFr165Fa2srJk+ejPXr1wMAFi9eXOLRkW3SpElJX9fW1gIATjrpJK7aLBPt7e2YM2cOJk+ejAcffBCHDh1yvsdVz6WzcuVKXHfddZg5cyYuuOACbNiwAX19fbj++utLPTSCuYXLc889h5/97Geoq6tz9qpvaGhAVVVViUdHtrq6uhP2qa+pqcGYMWO4f32ZuPXWW3HRRRfhvvvuw5//+Z/j3XffxVNPPVW0d0SxiU5ERERERMPe+vXr4fP5cO211yIcDmPWrFl4/fXXMXr06FIPjahibNmyBXv27MGePXtO+MOGlLJEo6Irr7wShw4dwp133onOzk5MmzYNv/zlL084bJRKY+PGjQCAOXPmJN2+adOmIbdRIiLX+eefj5dffhlr1qzBD3/4Q7S1tWHDhg24+uqri/L8QvL/6YiIiIiIiIiIiIiIUuLmZUREREREREREREREabCJTkRERERERERERESUBpvoRERERERERERERERpsIlORERERERERERERJQGm+hERERERERERERERGmwiU5ERERERERERERElAab6EREREREREREREREabCJTkRERERERERERESUBpvoRERERERERERERERpsIlORERERERERERERJQGm+hERERERERERERERGmwiU5EREREREREVIGeeeYZjBkzBtFoNOn2hQsX4tprry3RqIiIhh820YmIiIiIiIiIKtDixYuh6zp+/vOfO7cdPHgQr776Kr7zne+UcGRERMMLm+hERERERERERBWoqqoKV111FTZt2uTc9k//9E+YNGkS5syZU7qBERENM2yiExERERERERFVqGXLluHf//3f0d7eDgDYvHkzlixZAiFEiUdGRDR8CCmlLPUgiIiIiIiIiIgoNzNmzMAVV1yB+fPn44ILLsDevXvR2tpa6mEREQ0bvlIPgIiIiIiIiIiIcvfd734XGzZsQHt7O+bNm8cGOhGRx7gSnYiIiIiIiIiognV1dWHChAnQNA3PPPMMrrzyylIPiYhoWOGe6EREREREREREFayhoQGLFi1CbW0tFi5cWOrhEBENO2yiExERERERERFVuPb2dlx99dUIBoOlHgoR0bDD7VyIiIiIiIiIiCrUsWPH8MYbb+CKK67A7373O5x22mmlHhIR0bDDg0WJiIiIiIiIiCrU9OnTcezYMfzoRz9iA52IqEC4Ep2IiIiIiIiIiIiIKA3uiU5ERERERERERERElAab6EREREREREREREREabCJTkRERERERERERESUBpvoRERERERERERERERpsIlORERERERERERERJQGm+hERERERERERERERGmwiU5ERERERERERERElAab6EREREREREREREREafx/6Youy4kQSMUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f, (ax1, ax2) = plt.subplots(1, 2, tight_layout=True, figsize=(15, 10))\n", "ax1 = modeler.plot_sim(z=wg_height / 2, ax=ax1)\n", "ax2 = modeler.plot_sim(x=src_pos, ax=ax2)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Solving for the S matrix\n", "\n", "With the component modeler defined, we may call it's `.solve()` method to run a batch of simulations to compute the S matrix.\n", "The tool will loop through each port and create one simulation per mode index (as defined by the mode specifications) where a unique modal source is injected.\n", "Each of the ports will also be converted to mode monitors to measure the mode amplitudes and normalization." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
[10:07:42] Started working on Batch.                                                               container.py:402\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:07:42]\u001b[0m\u001b[2;36m \u001b[0mStarted working on Batch. \u001b]8;id=99996;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py\u001b\\\u001b[2mcontainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=187438;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py#402\u001b\\\u001b[2m402\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "46cee5ee9e694c2f8e5cebafc8575bde", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:10:53] Batch complete.                                                                         container.py:436\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:10:53]\u001b[0m\u001b[2;36m \u001b[0mBatch complete. \u001b]8;id=993094;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py\u001b\\\u001b[2mcontainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=417433;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py#436\u001b\\\u001b[2m436\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "aa70a9e292f04a018baa27f5a210823c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:10:57] loading SimulationData from data/fdve-66a24c26-5b4b-45e0-a624-a96e208956bcv1.hdf5          webapi.py:512\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:10:57]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/fdve-\u001b[93m66a24c26-5b4b-45e0-a624-a96e208956bc\u001b[0mv1.hdf5 \u001b]8;id=659385;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=182622;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2a1a23898db74124996d598cc57898ac", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:11:00] loading SimulationData from data/fdve-6a8242e7-d5cd-4a4d-a80e-66993245af21v1.hdf5          webapi.py:512\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:11:00]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/fdve-\u001b[93m6a8242e7-d5cd-4a4d-a80e-66993245af21\u001b[0mv1.hdf5 \u001b]8;id=576468;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=452131;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4d6258a3e0a2475e9b6b2609d8648131", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:11:14] loading SimulationData from data/fdve-631780ac-8d4f-48c9-8dc2-d4efd3238406v1.hdf5          webapi.py:512\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:11:14]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/fdve-\u001b[93m631780ac-8d4f-48c9-8dc2-d4efd3238406\u001b[0mv1.hdf5 \u001b]8;id=475154;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=697605;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "cb4489fc04fd44ecafc9d95e2b2ca675", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:11:26] loading SimulationData from data/fdve-83bc1d2f-0dc4-402e-82cb-c59b8a6edef0v1.hdf5          webapi.py:512\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:11:26]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/fdve-\u001b[93m83bc1d2f-0dc4-402e-82cb-c59b8a6edef0\u001b[0mv1.hdf5 \u001b]8;id=943318;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=600678;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "smatrix = modeler.run(path_dir=\"data\")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Working with Scattering Matrix\n", "\n", "The scattering matrix returned by the solve is an xr.DataArray relating the port names and mode_indices.\n", "For example `smatrix.loc[dict(port_in=name1, mode_index_in=mode_index1, port_out=name2, mode_index_out=mode_index_2)]` gives the complex scattering matrix element.\n", "\n", "For example:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.SMatrixDataArray (f: 1)>\n",
       "array([0.54510946+0.44524725j])\n",
       "Coordinates:\n",
       "    port_out        <U9 'right_bot'\n",
       "    port_in         <U9 'left_top'\n",
       "    mode_index_out  int64 0\n",
       "    mode_index_in   int64 0\n",
       "  * f               (f) float64 1.934e+14
" ], "text/plain": [ "\n", "array([0.54510946+0.44524725j])\n", "Coordinates:\n", " port_out " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f, (ax1, ax2, ax3) = plt.subplots(1, 3, tight_layout=True, figsize=(10, 3.5))\n", "imabs = ax1.matshow(abs(mat))\n", "vmax = np.abs(mat.real).max()\n", "imreal = ax2.matshow(mat.real, cmap=\"RdBu\", vmin=-vmax, vmax=vmax)\n", "vmax = np.abs(mat.imag).max()\n", "imimag = ax3.matshow(mat.imag, cmap=\"RdBu\", vmin=-vmax, vmax=vmax)\n", "ax1.set_title(\"$|S^\\dagger S|$\")\n", "ax2.set_title(\"$\\Re\\{S^\\dagger S\\}$\")\n", "ax3.set_title(\"$\\Im\\{S^\\dagger S\\}$\")\n", "plt.colorbar(imabs, ax=ax1)\n", "plt.colorbar(imreal, ax=ax2)\n", "plt.colorbar(imimag, ax=ax3)\n", "ax1.grid(False)\n", "ax2.grid(False)\n", "ax3.grid(False)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It looks pretty close, but there seems to indeed be a bit of loss (expected)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Viewing individual Simulation Data\n", "To verify, we may want to take a look the individual simulation data.\n", "For that, we can load up the batch and inspect the [SimulationData](../_autosummary/tidy3d.Simulation.html) for each task." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
[10:11:26] loading SimulationData from data/fdve-631780ac-8d4f-48c9-8dc2-d4efd3238406v1.hdf5          webapi.py:512\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:11:26]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/fdve-\u001b[93m631780ac-8d4f-48c9-8dc2-d4efd3238406\u001b[0mv1.hdf5 \u001b]8;id=30450;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=334010;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:11:27] WARNING: 'int' field name is deprecated and will be removed in the future. Plese use           log.py:57\n",
       "           field_name='E' and val='abs^2' for the same effect.                                                     \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:11:27]\u001b[0m\u001b[2;36m \u001b[0mWARNING: \u001b[32m'int'\u001b[0m field name is deprecated and will be removed in the future. Plese use \u001b]8;id=493223;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/log.py\u001b\\\u001b[2mlog.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=137056;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/log.py#57\u001b\\\u001b[2m57\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[33mfield_name\u001b[0m=\u001b[32m'E'\u001b[0m and \u001b[33mval\u001b[0m=\u001b[32m'abs^2'\u001b[0m for the same effect. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:11:27] loading SimulationData from data/fdve-6a8242e7-d5cd-4a4d-a80e-66993245af21v1.hdf5          webapi.py:512\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:11:27]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/fdve-\u001b[93m6a8242e7-d5cd-4a4d-a80e-66993245af21\u001b[0mv1.hdf5 \u001b]8;id=748916;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=692937;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           WARNING: 'int' field name is deprecated and will be removed in the future. Plese use           log.py:57\n",
       "           field_name='E' and val='abs^2' for the same effect.                                                     \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mWARNING: \u001b[32m'int'\u001b[0m field name is deprecated and will be removed in the future. Plese use \u001b]8;id=436908;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/log.py\u001b\\\u001b[2mlog.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=686221;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/log.py#57\u001b\\\u001b[2m57\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[33mfield_name\u001b[0m=\u001b[32m'E'\u001b[0m and \u001b[33mval\u001b[0m=\u001b[32m'abs^2'\u001b[0m for the same effect. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABVUAAAPeCAYAAAAMPfqeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd7ykZX3//9d13/fUM6eXPdsbvSxIUUFFEAQUNQrG2PK1ExQ0yjfREA0RYsQSW0yUmKj4jWDLL0qUiKJIURFBRfrCwvbd0+ucaXe5fn/cM3PKtrPlsHuW95PHeZyZuds1c5aZ+37P57ouY621iIiIiIiIiIiIiMisOAe7ASIiIiIiIiIiIiLziUJVERERERERERERkb2gUFVERERERERERERkLyhUFREREREREREREdkLClVFRERERERERERE9oJCVREREREREREREZG9oFBVREREREREREREZC8oVBURERERERERERHZCwpVRUREREREREREDkMPPvggGzZsONjNOCwZa6092I0QERERERERERGRA2dwcJDVq5ezatUi7r//cRxHtZUHkl5NERERERERERGRw8y1/3AZp512DIODY9x4440HuzmHHVWqioiIiIiIiIiIHEaeeuopTjjhOH5z7/X88YF1fOQj/8HatRvIZDIHu2mHDVWqioiIiIiIiIiIHEauuuqdvPGN53HCCSt5wxvPpaOjmc9/4f0Hu1mHFVWqioiIiIiIiIiIHCbuvfdeXvKSs3ns8f/H4sWdAPz857/jdX/696xbt4GOjo6D3MLDg0JVERERERERERGRw4C1lrNefDJnnXUS11779mnLXnHR33DUUUv4whf+6yC17vCiUFVEREREREREROQwcPPNN3PppW9j7RPfpLExO23Zww+v5/nPu4yHH36U1atXH6QWHj4UqoqIiIiIiIiIiMxzvu9z4omree97L+Gyd//JTte59F2fZmxsgu99745ntnGHIU1UJSIiIiIiIiIiMs995SsfxFp4xzsv2uU6H73mbfzv/97Lb37zm2ewZYcnVaqKiIiIiIiIiIjMY+Pj4xxxxHK+/OUr+ZNXv3C361599de4884HuPuuP2KMeYZaePhRpaqIiIiIiIiIiMg89slPXc6RRy3hVX/ygj2u+9d//XqefGILN9988zPQssOXKlVFRERERERERETmqW3btnHkkau57Wef4XnPO25W21z/5Zv553/+/3j44adIJBJz3MLDkypVRURERERERERE5qm/+7t38fKXP2/WgSrE464aA//2lb+ew5Yd3lSpKiIiIiIiIiIiMg89/PDDnH76qfzxwa+xevXivdr2f27+JX/xF59h3bqNNDU1zVELD1+qVBUREREREREREZmHPvjBd3Lppa/c60AV4JWvegFHH7OMT37qijlo2eFPlaoiIiIiIiIiIiLzzO23387FF7+KJ568kfb25n3ax733PspLz/u/PPHEOhYv3vtg9tlMoaqIiIiIiIiIiMg8EkURp512DH/6unP44AffsF/7esPrryGXy/C1r/3vAWrds4O6/4uIiIiIiIiIiMwjN910EwMDo7z3vRfv977+8ePv4lvf+jkPPfTQAWjZs4cqVUVEREREREREROaJUqnE0Uev4Npr386b//z8A7LPK6/8V9Y+volbb733gOzv2UCVqiIiIiIiIiIiIvPEF/75/bS1NfLGN513wPb54Q+/md/85hF+9rOfHbB9Hu5UqSoiIiIiIiIiIjIPDA4Osnr1cr7z3Ws477xTD+i+P/3pb/Hd7/yC++9/HMdRHeae6BUSERERERERERGZBz7/hSt57nOPPeCBKsB733sJAwOj/M///M8B3/fhSKGqiIiIiIiIiIjIPDDQn+WUU4+ak32n00mOO24FfX19c7L/w413sBsgIiIiIiIiIiIis2QtRNFc7XyO9nv4UaWqiIiIiIiIiIiIyF5QpaqIiIiIiIiIiMh8MZeVqipUnTVVqoqIiIiIiIiIiIjsBVWqioiIiIiIiIiIzBcaU/WQoFBVRERERERERERkvrDEwepc7VtmRd3/RURERERERERERPaCKlVFRERERERERETmDXX/PxSoUlVERERERERERERkL6hSVUREREREREREZL6Yy4mqVKg6a6pUFREREREREREREdkLqlQVERERERERERGZL+ayUlWlqrOmUFVERERERERERGS+UPf/Q4K6/4uIiIiIiIiIiIjsBVWqioiIiIiIiIiIzBfq/n9IUKWqiIiIiIiIiIiIyF5QpaqIiIiIiIiIiMg8YazF2LkaU1WVqrOlUFVERERERERERGS+mNPu/zJb6v4vIiIiIiIiIiIie+26667j9NNPp7Gxka6uLl796lezdu3aaeuUSiUuv/xy2tvbyeVyXHLJJfT29k5bZ9OmTVx00UVks1m6urr467/+a4IgmLbOHXfcwSmnnEIqleKII47ghhtumOunt1sKVUVEREREREREROYLC0R2bn72svf/nXfeyeWXX85vfvMbbrvtNnzf5/zzz2diYqK+zgc+8AF++MMf8r3vfY8777yTbdu2cfHFF9eXh2HIRRddRKVS4de//jXf+MY3uOGGG7j66qvr66xfv56LLrqIc845hwceeID3v//9vPOd7+QnP/nJ/r6a+8xYq8ESREREREREREREDnXvfve7aUn08I9/+4Y52f/L33gdF7/+3Vx66aX7tH1/fz9dXV3ceeednHXWWYyOjtLZ2clNN93Ea1/7WgAef/xxjj32WO655x6e//zn8+Mf/5hXvOIVbNu2jQULFgBw/fXX86EPfYj+/n6SySQf+tCHuOWWW3j44Yfrx3r961/PyMgIt9566/4/8X2gSlUREREREREREZH5ojam6lz87G2p6gyjo6MAtLW1AfC73/0O3/c577zz6uscc8wxLFu2jHvuuQeAe+65hxNPPLEeqAJccMEFjI2N8cgjj9TXmbqP2jq1fRwMmqhKRERERERERERkvpjLiaqsxfd9xsbGpj2cSqVIpVK73TSKIt7//vfzghe8gBNOOAGAnp4ekskkLS0t09ZdsGABPT099XWmBqq15bVlu1tnbGyMYrFIJpPZu+d5AKhSVURERERERERERAC49dZbaW5unvZz3XXX7XG7yy+/nIcffphvf/vbz0ArDz5VqoqIiIiIiIiIiMwbFuwcVaoCF154ITfeeOO0x/ZUpXrFFVfwox/9iLvuuoslS5bUH+/u7qZSqTAyMjKtWrW3t5fu7u76Or/97W+n7a+3t7e+rPa79tjUdZqamg5KlSqoUlVERERERERERESqEokETU1N0352Fapaa7niiiv4/ve/z+23387KlSunLT/11FNJJBL8/Oc/rz+2du1aNm3axBlnnAHAGWecwUMPPURfX199ndtuu42mpiaOO+64+jpT91Fbp7aPg0GVqiIiIiIiIiIiIvPFHI+pujcuv/xybrrpJm6++WYaGxvrY6A2NzeTyWRobm7mHe94B1deeSVtbW00NTXx3ve+lzPOOIPnP//5AJx//vkcd9xx/Pmf/zmf+tSn6Onp4SMf+QiXX355Pcy97LLL+Jd/+Rc++MEP8va3v53bb7+d7373u9xyyy0H9vnvBVWqioiIiIiIiIiIyF778pe/zOjoKGeffTYLFy6s/3znO9+pr/O5z32OV7ziFVxyySWcddZZdHd389///d/15a7r8qMf/QjXdTnjjDN485vfzP/5P/+Ha6+9tr7OypUrueWWW7jttts46aST+MxnPsN//Md/cMEFFzyjz3cqVaqKiIiIiIiIiIjMFxaI9q6idK7YWVS2ptNp/vVf/5V//dd/3eU6y5cv53//9393u5+zzz6bP/zhD3vdxrmiUFVERERERERERGS+OIS6/z+bqfu/iIiIiIiIiIiIyF5QpaqIiIiIiIiIiMh8MaeVqnOz28ORKlVFRERERERERERE9oIqVUVEREREREREROYLazFzVKlqVKo6awpVRURERERERERE5g2rCaUOAer+LyIiIiIiIiIiIrIXFKqKiIiIHCLuuOMOjDHccccdB7spIiIiInKoqk1UNRc/qoCdNYWqIiIiIs+wL33pS9xwww0Huxn75KabbuLzn//8wW4GAFEU8alPfYqVK1eSTqdZs2YN3/rWt2a17fbt2/mbv/kbzjnnHBobG3cbZv/0pz/lHe94ByeccAKu67JixYoD9yREREREZF5SqCoiIiLyDNtVqHrWWWdRLBY566yznvlGzdKhFKp++MMf5kMf+hAvfelL+eIXv8iyZct44xvfyLe//e09brt27Vo++clPsnXrVk488cTdrnvTTTdx00030dzczKJFiw5U80VERET2zZxWqh7sJzd/KFQVERGRg2JiYuJgN+GQ4zgO6XQax9Ep2p5s3bqVz3zmM1x++eV85Stf4V3vehc//OEPedGLXsRf//VfE4bhbrc/9dRTGRwc5IknnuDKK6/c7bof//jHGRsb41e/+hUnnXTSgXwaIiIiInvPApGdmx+ZNZ2xi4iIyH7bunUr73jHO1i0aBGpVIqVK1fy7ne/m0qlAsANN9yAMYY777yT97znPXR1dbFkyZL69l/60pc4/vjjSaVSLFq0iMsvv5yRkZFpx3jyySe55JJL6O7uJp1Os2TJEl7/+tczOjpaX+e2227jhS98IS0tLeRyOY4++mj+9m//do/tn8125XKZv//7v+eII44glUqxdOlSPvjBD1Iul3fY3ze/+U2e+9znks1maW1t5ayzzuKnP/0pACtWrOCRRx7hzjvvxBiDMYazzz4b2PWYqt/73vc49dRTyWQydHR08OY3v5mtW7dOW+etb30ruVyOrVu38upXv5pcLkdnZyd/9Vd/tceAEeDmm2/moosuqv8NV69ezT/8wz9M2/bss8/mlltuYePGjfW2764r/Fvf+tb6ejN/PvrRj+6xTXtqr+/7vOc976k/Zozh3e9+N1u2bOGee+7Z7faNjY20tbXN6liLFi0ikUjsV3tFRERE5PDiHewGiIiIyPy2bds2nvvc5zIyMsKll17KMcccw9atW/mv//ovCoUCyWSyvu573vMeOjs7ufrqq+uVqh/96Ee55pprOO+883j3u9/N2rVr+fKXv8x9993Hr371KxKJBJVKhQsuuIByucx73/teuru72bp1Kz/60Y8YGRmhubmZRx55hFe84hWsWbOGa6+9llQqxbp16/jVr3612/bPZrsoinjVq17FL3/5Sy699FKOPfZYHnroIT73uc/xxBNP8IMf/KC+7jXXXMNHP/pRzjzzTK699lqSyST33nsvt99+O+effz6f//znee9730sul+PDH/4wAAsWLNhl+2644Qbe9ra3cfrpp3PdddfR29vLF77wBX71q1/xhz/8gZaWlvq6YRhywQUX8LznPY9/+qd/4mc/+xmf+cxnWL16Ne9+97t3+zrccMMN5HI5rrzySnK5HLfffjtXX301Y2NjfPrTnwbi7vajo6Ns2bKFz33ucwDkcrld7vMv/uIvOO+886Y9duutt3LjjTfS1dVVf2xgYGC3batpbGwklUoB8Ic//IGGhgaOPfbYaes897nPrS9/4QtfOKv9ioiIiMwrte7/c7VvmRWFqiIiIrJfrrrqKnp6erj33ns57bTT6o9fe+212BknZW1tbfz85z/HdV0A+vv7ue666zj//PP58Y9/XO/2fswxx3DFFVfwzW9+k7e97W08+uijrF+/nu9973u89rWvre/v6quvrt++7bbbqFQq/PjHP6ajo2PW7Z/NdjfddBM/+9nPuPPOO6cFdSeccAKXXXYZv/71rznzzDNZt24d1157La95zWv4r//6r2nd+Guvxatf/Wo+8pGP1CtOd8f3fT70oQ9xwgkncNddd5FOpwF44QtfyCte8Qo+97nPcc0119TXL5VK/Nmf/Rl/93d/B8Bll13GKaecwle/+tU9hqo33XQTmUymfv+yyy7jsssu40tf+hIf+9jHSKVSvPSlL2Xx4sUMDw/vse0AZ5xxBmeccUb9/rp167jiiit46Utfyl/8xV/UH+/s7NzjvgC+/vWv89a3vhWIJ5pasGABxphp6yxcuBCIw34RERERkbmi7v8iIiKyz6Io4gc/+AGvfOUrpwWqNTMDr3e96131QBXgZz/7GZVKhfe///3TAsh3vetdNDU1ccsttwDQ3NwMwE9+8hMKhcJO21Kr2Lz55puJ9uKb+9ls973vfY9jjz2WY445hoGBgfrPS17yEgB+8YtfAPCDH/yAKIq4+uqrdxgXdeZrMRv3338/fX19vOc976kHqgAXXXQRxxxzTP31meqyyy6bdv9FL3oRTz/99B6PNTVQHR8fZ2BggBe96EUUCgUef/zxvW77TBMTE7zmNa+htbWVb33rW9P+Hdx2222z+rngggvq2xSLxXrV6lS116lYLO53m0VEREQOSXM5UZVmqpo1VaqKiIjIPuvv72dsbIwTTjhhVuuvXLly2v2NGzcCcPTRR097PJlMsmrVqvrylStXcuWVV/LZz36WG2+8kRe96EW86lWv4s1vfnM9cP2zP/sz/uM//oN3vvOd/M3f/A3nnnsuF198Ma997Wt3O/HTbLZ78skneeyxx3ZZUdnX1wfAU089heM4HHfccbN6PfZkV68PxNW8v/zlL6c9lk6nd2hja2srw8PDezzWI488wkc+8hFuv/12xsbGpi2bOm7tvnrXu97FU089xa9//Wva29unLZs5RMBsZDKZnY5nWyqV6stFREREDlvqpn/QKVQVERGRZ8z+BF2f+cxneOtb38rNN9/MT3/6U973vvdx3XXX8Zvf/IYlS5aQyWS46667+MUvfsEtt9zCrbfeyne+8x1e8pKX8NOf/nRaZeTMNu1puyiKOPHEE/nsZz+7030sXbp0n5/XgbSr57gnIyMjvPjFL6apqYlrr72W1atXk06n+f3vf8+HPvShvar83ZkvfOELfOtb3+Kb3/wmJ5988g7Le3p6ZrWf5ubm+r+hhQsX8otf/AJr7bQq4O3btwPx5FIiIiIiInNF3f9FRERkn3V2dtLU1MTDDz+8T9svX74cgLVr1057vFKpsH79+vrymhNPPJGPfOQj3HXXXdx9991s3bqV66+/vr7ccRzOPfdcPvvZz/Loo4/yj//4j9x+++317vm7sqftVq9ezdDQEOeeey7nnXfeDj+1StLVq1cTRRGPPvrobo8326EAdvX61B6b+frsqzvuuIPBwUFuuOEG/vIv/5JXvOIVnHfeebS2tu6w7t4OY3D33XfzV3/1V7z//e/nTW96007XWbhw4ax+vvOd79S3OfnkkykUCjz22GPT9nXvvffWl4uIiIgcluay+78KYGdNoaqIiIjsM8dxePWrX80Pf/hD7r///h2Wz5yoaqbzzjuPZDLJP//zP09b96tf/Sqjo6NcdNFFAIyNjREEwbRtTzzxRBzHqXcBHxoa2mH/tWBtZ93Ea2az3ete9zq2bt3Kv//7v++wbrFYZGJiAognoXIch2uvvXaH6s6pz6+hoYGRkZFdtqnmtNNOo6uri+uvv37ac/jxj3/MY489Vn999letwnVqGyuVCl/60pd2WLehoWHWwwFs376d173udbzwhS/k05/+9C7X25cxVf/kT/6ERCIxrY3WWq6//noWL17MmWeeOa0djz/+OL7vz6rdIiIiIiJ7ou7/IiIisl8+/vGP89Of/pQXv/jFXHrppRx77LFs376d733ve/zyl7+sTwS1M52dnVx11VVcc801XHjhhbzqVa9i7dq1fOlLX+L000+vzzB/++23c8UVV/Cnf/qnHHXUUQRBwH/+53/iui6XXHIJANdeey133XUXF110EcuXL6evr48vfelLLFmyhBe+8IW7bMNstvvzP/9zvvvd73LZZZfxi1/8ghe84AWEYcjjjz/Od7/7XX7yk59w2mmnccQRR/DhD3+Yf/iHf+BFL3oRF198MalUivvuu49FixZx3XXXAXDqqafy5S9/mY997GMcccQRdHV11Se9miqRSPDJT36St73tbbz4xS/mDW94A729vXzhC19gxYoVfOADH9jXP9s0Z555Jq2trbzlLW/hfe97H8YY/vM//3Onofipp57Kd77zHa688kpOP/10crkcr3zlK3e63/e973309/fzwQ9+kG9/+9vTlq1Zs4Y1a9YA+zam6pIlS3j/+9/Ppz/9aXzf5/TTT+cHP/gBd999NzfeeOO0oRCuuuoqvvGNb7B+/XpWrFhRf/xjH/sYEI8nC/Cf//mf9XFqP/KRj9TXe/DBB/mf//kfANatW8fo6Gh925NOOmmXz19ERERkTlgL0RyVlGqs1llTqCoiIiL7ZfHixdx777383d/9HTfeeCNjY2MsXryYl73sZWSz2T1u/9GPfpTOzk7+5V/+hQ984AO0tbVx6aWX8vGPf5xEIgHEwdUFF1zAD3/4Q7Zu3Uo2m+Wkk07ixz/+Mc9//vMBeNWrXsWGDRv42te+xsDAAB0dHbz4xS/mmmuuqU9mtTOz2c5xHH7wgx/wuc99jv/3//4f3//+98lms6xatYq//Mu/5Kijjqrv79prr2XlypV88Ytf5MMf/jDZbJY1a9bw53/+5/V1rr76ajZu3MinPvUpxsfHefGLX7zTUBXgrW99K9lslk984hN86EMfoqGhgde85jV88pOf3G1gvTfa29v50Y9+xP/9v/+Xj3zkI7S2tvLmN7+Zc889d1p1KMB73vMeHnjgAb7+9a/zuc99juXLl+8yVOzv7ycMQ6688sodlv393/99PVTdV5/4xCdobW3l3/7t37jhhhs48sgj+eY3v8kb3/jGWW3/d3/3d9Puf+1rX6vfnhqq/v73v99h3dr9t7zlLQpVRURERJ6FjN1TvzwRERERERERERE56N797nfTUljLxy972Zzs/+VXfpXXvO1KLr300jnZ/+FElaoiIiIiIiIiIiLzRW2iqrnat8yKJqoSERERERERERER2QuqVBUREREREREREZkvLHM3UZXMmipVRURERERERERERPaCKlVFRERERERERETmC2vBakzVg02hqoiIiIiIiIiIyHxhrbr/HwLU/V9ERERERERERERkLzyrKlWjKGLbtm00NjZijDnYzRERERERERERkRmstYyPj7No0SIcR/WAO7AWInX/P9ieVaHqtm3bWLp06cFuhoiIiIiIiIiI7MHmzZtZsmTJwW6GyE49q0LVxsbG6i0HUKWqiIiIiIiIiMihxwLRlBxHprFoTNVDwLMqVJ3s8m9QqCoiIiIiIiIicujS0I27MKfd/+dmt4ejeTUwxdatW3nzm99Me3s7mUyGE088kfvvv/9gN0tERERERERERESeReZNperw8DAveMELOOecc/jxj39MZ2cnTz75JK2trQe7aSIiIiIiIiIiIs8QO4fd/1WqOlvzJlT95Cc/ydKlS/n6179ef2zlypUHsUUiIiIiIiIiIiLybDRvuv//z//8D6eddhp/+qd/SldXF895znP493//94PdLBERERERERERkWeOtWCjOfo52E9u/pg3oerTTz/Nl7/8ZY488kh+8pOf8O53v5v3ve99fOMb39jlNuVymbGxsWk/IiIiIiIiIiIiIvtj3nT/j6KI0047jY9//OMAPOc5z+Hhhx/m+uuv5y1vectOt7nuuuu45pprnslmioiIiIiIiIiIzB2LxlQ9BMybStWFCxdy3HHHTXvs2GOPZdOmTbvc5qqrrmJ0dLT+s3nz5rlupoiIiIiIiIiIyNyphapz8aNMddbmTaj6ghe8gLVr10577IknnmD58uW73CaVStHU1DTtR0RERERERERERPbfXXfdxStf+UoWLVqEMYYf/OAH05YbY3b68+lPf7q+zooVK3ZY/olPfGLafh588EFe9KIXkU6nWbp0KZ/61Keeiae3W/Om+/8HPvABzjzzTD7+8Y/zute9jt/+9rd85Stf4Stf+crBbpqIiIiIiIiIiMgzw1qIooPdCgAmJiY46aSTePvb387FF1+8w/Lt27dPu//jH/+Yd7zjHVxyySXTHr/22mt517veVb/f2NhYvz02Nsb555/Peeedx/XXX89DDz3E29/+dlpaWrj00ksP8DOavXkTqp5++ul8//vf56qrruLaa69l5cqVfP7zn+dNb3rTwW6aiIiIiIiIiIjIs87LXvYyXvayl+1yeXd397T7N998M+eccw6rVq2a9nhjY+MO69bceOONVCoVvva1r5FMJjn++ON54IEH+OxnP3tQQ9V50/0f4BWveAUPPfQQpVKJxx57bFqCLSIiIiIiIiIictizczSeamTjfc+R3t5ebrnlFt7xjnfssOwTn/gE7e3tPOc5z+HTn/40QRDUl91zzz2cddZZJJPJ+mMXXHABa9euZXh4eM7auyfzplJVRERERERERETkWa82UdUc7dv3fcbGxqY9nEqlSKVS+7Xrb3zjGzQ2Nu4wTMD73vc+TjnlFNra2vj1r3/NVVddxfbt2/nsZz8LQE9PDytXrpy2zYIFC+rLWltb96td+2peVaqKiIiIiIiIiIjI3Ln11ltpbm6e9nPdddft936/9rWv8aY3vYl0Oj3t8SuvvJKzzz6bNWvWcNlll/GZz3yGL37xi5TL5f0+5lxSpaqIiIiIiIiIiMh8MacTVVkuvPBCbrzxxmmP7m+V6t13383atWv5zne+s8d1n/e85xEEARs2bODoo4+mu7ub3t7eaevU7u9qHNZngipVRUREREREREREBIBEIkFTU9O0n/0NVb/61a9y6qmnctJJJ+1x3QceeADHcejq6gLgjDPO4K677sL3/fo6t912G0cfffRB6/oPClVFRERERERERETmkeqEUnPxs5fy+TwPPPAADzzwAADr16/ngQceYNOmTfV1xsbG+N73vsc73/nOHba/5557+PznP88f//hHnn76aW688UY+8IEP8OY3v7kemL7xjW8kmUzyjne8g0ceeYTvfOc7fOELX+DKK6/ct5fvAFH3fxERERERERERkflijieq2hv3338/55xzTv1+Leh8y1vewg033ADAt7/9bay1vOENb9hh+1Qqxbe//W0++tGPUi6XWblyJR/4wAemBabNzc389Kc/5fLLL+fUU0+lo6ODq6++mksvvXTvn98BpFBVRERERERERERE9trZZ5+N3UOF66WXXrrLAPSUU07hN7/5zR6Ps2bNGu6+++59auNcUagqIiIiIiIiIiIyX1h7yFSqPptpTFURERERERERERGRvaBKVRERERERERERkfnCWoiiudr5HO338KNQVUREREREREREZL44hCaqejZT938RERERERERERGRvaBKVRERERERERERkfliLieqUqnqrKlSVURERERERERERGQvqFJVRERERERERERkvtCYqocEVaqKiIiIiIiIiIiI7AVVqoqIiIiIiIiIiMwX1mLnqFJVhaqzp1BVRERERERERERkPrHq/n+wqfu/iIiIiIiIiIiIyF5QpaqIiIiIiIiIiMh8Ye3cTVSlUtVZU6WqiIiIiIiIiIiIyF5QpaqIiIiIiIiIiMh8YZm7SlUVqs6aQlUREREREREREZH5Yk67/8tsqfu/iIiIiIiIiIiIyF5QpaqIiIiIiIiIiMh8oe7/hwRVqoqIiIiIiIiIiIjsBVWqioiIiIiIiIiIzBPWgp2zSlWVqs6WQlUREREREREREZH5QhNVHRLU/V9ERERERERERERkL6hSVUREREREREREZL7QRFWHBIWqhxmDAWMOdjMOnnk49ofVO5aIiIiIiMg+MRy469/9uTY7UO3Y1zYcCq/D3rZB18Iy3ylUFRERERERERERmS/mdExVhd2zpVD1MGOcJMaknrnjmXhYXmujA7q/vbXj8cNZrDPLNu/rc9vdc5m2z9ob1oF5DeNd7vlNUN8KioiIiIjMfweyQnHnBziYPSF3fU016+c987psN9d3M/e4u2umuXrdD4V+p89cGywQHbA8QeSZplBVRERERERERERkPpmr4Q9VfzVrClUPM7nMCtqSKw52M/aLwZ1yu1oJu4sqTjulIjUkwNr4fkSEJax/4xURYW1Y34+1EZH1J29PeXyHY9gdq1736vmYyedTa4O11R8ioiioLp18bHL9vfnGLpzcxsT7m6a6r9q3rWbq8n14M1alq4iIiIjIvtnrKsedVotOr8DcYZ971Qtwxr6mbevuZtn+MTupRJ2+f2fa41OXGWbcn7FsNnZ37bWna7FdvQ4HrvflvtmX4x/oStHZtiGMKvhBnijKq1p1b9l971QrB45C1cPMOalX85KFSQAc7LTP3r3NzYyZvk1U/ZB2aqHcTvY9c52p683m+MZMfmw6ZmfdL6rHqR+vOpQIhkoEYQSBhdBCJTJEFkIbx3/lMH48iCyhhXJoCW18uxLGMWy8L0tkLXbKR2xYD2enPwlnRgunLq8tM9UXwFpLhMUnICAkNCG+qVBiAt+UCa2PbwvTAuHJsLcamLLzD3pLSBQF1fA4DpAjG9TXmQxvJ4PbeNtaEFsNdmcErzsXrzPtpE3DDYiIiIjIs9wug9Jddp/fRSg3dT/1cMqp7qp2341DxmnB4uTt+u89hJaT+4j351TXdxyvur07bb34tls92t6HimZGQOtUj11rq0uiftsxLi4JHBsf28HFxcPBwbFO9bbB2Ljd8T2n9krscK02Ve26rfbbVq/Cao9FM6+7zOR9Y6c/P2fKMaf+nnzOO74eM6/rpl5HzrzmnI2Zx9zdc59p5vF2dvyZr8fO/vb70oYRZ5Rt4SMMTTxGGE7MprkihxSFqoeZa07Kc+LXTwHHAbf653UciKL4Bya/ztjdt0fOlGVRtONXIK43fZ0g2HEd4+y4n10dv7ae48RpavW+NQ543uT21X2Y2j6CMD52uYwZHYNiCcqV+CdfgrIPlRBbDoiGS0SFkKhoicpQGnYJKi6Vist4MUUQuviRQxgZKpFLEBkshtAa/MglsAZr4/rOWsuNmfzAsTb+0Ki9CjtbJ7SGQpCmEjmUIkMpNAyUDYXAUghhrBISRJbAxgGvbyMia8FQD3mnfshZawmICAkpuiXKpkRAmcD4BLYch63EVbkVWySMykTWJ7QBYVSuV8xGNqiGrJP3qy2ecqypf9+pVa4R1tidL5vceIeTTIWsIiIiIjJf7LGydFpwupsK0l2GpDXTQ0xjvGlBqVO9b3DwnBSO42FwcYyHaxLVZW49rJwa6NWCMIM7LbR0rUeKDK718HCrv+MIM97O4Jp4a4PBMdPDw6lPfXePOab2UsWtMgZcY3CNwTHgGki6BteAZ8B1IOnE911jcQ2k3eoyY0m7tr7MAVKuxWDj+9Vindq12MzruIi4UMdipv2edpvJa7ydqe3boVYQZOvPs/5c93DNY6uvTb1oyE4+NvXxnXGm/rOacuyZy2a2w874t1x73rtq07R12fGrgJnPdeqx99SOp/PN/KK3k18mBygUC7pG3BtzOVGV/gyz9qwMVY8++hhc193zivPQslMaKHzlMcLA4Jdd4lpPi+tFJFIRxokzzSgyVIqTyxOpENez9eV+2SEMHGq1oolUEC/3LEQGvxQvt9YQRYZkKsBNWBzXYiMIA0MYOEShUz++41pcL/6/MwwMUWiqxwDXi3ATFi8ZR4Y2MIS+wa+4GGNxnQjHi3CTETaEsAKh71AsJrCRwZiIVMLHOBawRKGhVEwSRUlsBI6JSKd9XDfCOBZjIpwWS8aLaEhautoinKyDSYPJuJhcMg5zk278O5OMP9UTifh3Jo1NJMCrhteuN+XTpfoO5DhY42BCf8rtADM0DKPjMDwGI3mCRwcobY8Y7cuwZbiJQuBRiRz8yKEcOVgMQTT9wx3iD3jfgh8ZKpGht2TI+5ZiaCmHlnIYEVWD2RDLqC3Wg9eKKVK0o3HAik8QlYlssNPAdbKqdUplrA2mDaVgpgy1ANNDeIudUnJcC9YnQ1Z9cIqIiIjIoWinQepuuuHX1zcO00PTKcObTasudaZUhE6uX1vHcRIknEw1SI2DUs+kMCau2MzSSooMKZvCtR4Zkrg4cWRaCytnhJwOcYDpOYaEY0i7hoxnaEoYEo4l6UDCgbQTB5aOsWAMSSe+DHKcONQ0U37iQzj1c/7QGqyJC1QiE/cgtBjC6vVM2TrxdQpQjhwCa4mqg5P5IUQmvka1GCqmmhsZEx+PuDuj60w+L2MMjjMZULsGjBM/T2NMPcc21edeMz1InFEasjeXKDP+Sezr4Ag77cm9p3bsIvPd2zbssRf51HbsxcgVe2rHUCYk2baJIwqLCPyGadeGYRiydu0jsz+YyEHwrAxV0+n0YRuqJpsdsi/qrvZ/r1aPmuonX8KbrFqduTzpxZ8+teV+EPejr4VjCQ8S7mRFadmPP4XCcHK558aftLX9B+HkJ5VnwHHjY0C8PArjY9SWe9V9QLzfWhth8us+z61Wp0ZQCWguVOr7MKls/XWwfkiUD8C32MjGXUqSyfiz3oANISpE2IB4LJIEWMdgQ2DCwKglCkKsH2JtBeMUcBJgvOq3dr4lqhD/BA7GWBzP4iTBuNX9V4PfcsGLl7sRjokwNiIKIPQhCtN43kKSXT5dR1gWH5mD5ixkUvFPNh030Jj49YrCeIyDKIxfh/FxmCjCaIHSPf0MbMwyOJ5l3E9QCt1qla1DKXLZVmxhoGwYrVjGfctoJcAnwrcRBVOm7FTiwJUiEwwTWb8+FEFog/qQApYQPyxNGx82jCr1Stepww5AWP03VAtTzZSQtVZ1PPnvVwGriIiIiBwsuw9RnR3X26Hb/dQu+d60gHTqeKCuk8I1Ho5J4DqpalXpZIWpYxJ4pEiRpdm2kbAJEni4xiFR7eaedBwWZj2akoYGz5J2oTlpSXmQ9AyeE1+iGcdgqtdSvnUJjUuAw2joULIOFetQsVCM4gCzUl3fdR1cx+C4cZu9GRWQO4RlM5bXXrWpGfTMWt4UkNzt32M6h+n7rQ0XZ6q/6/enttPMaOsuxpeb1idvPy5JZlZm7ilUnBlm7m/h4czj76sD+RrsTqbkMTjWyUAmR8UtTbsaDMP9m9vksGeZu0pVmbV5G6p+4hOf4KqrruIv//Iv+fznP3+wm3PIsKEhOuuMg92MZ1YYQhRha8MDVMNet1yKS+J39mYchngVv1oyH1H9arP6SexUQ91w+rAJzpSP8SCIlwfVkBPiT0x3Sijsh1DxyRX96UMehPFwBLYUEBUCojEHGyXib2Y3heCMQzRO5ENYjCt6sfGhHbc6zk9gCHxDuZTAmDSem6D55BxLXp5jycJ2bGsTtr01bo9fxoyNYO79I5XfbqPn0Qw9Yzl6imkqkUs59Bjx04wHhnE/Dl17ij5BZPFtSASUCfBNgO/4+KbCeGKI0PoExGPBVqJ8HMJGQb3qdXIs18r0ilfrE1ez1gLWqeMTTf8zKWQVERERkbkymxB1ZvXp1MrTyYrS5JTbHq6TwnOSOCYRB6SmFpzGFaYp00jSZsjYLDmbrXatr/YQNA4J45DxHNobEqxqcWhIOWQShkTCxXgOoePiOy6jkUcZg3UMFQx9dvpTqHVLd+InssOcFcbEoWYSaGYyoHSr67pTwspp+5kxd8fM2Dnej63fnhm07vHvMuWiYHJItdo+bH3ogMkgNV7fNfG2hriNTq17/k6OP3P+kJlXHfuSVe0sTNzTc97ZYfY1JztQgeq+tmNfjp90UmyZaMBzMlRm/lFkt+xcTlSlP8OszctQ9b777uPf/u3fWLNmzcFuyiFnoD/H0oPdiGea606GmVNYGne72aHwPjHZMWhHLlSHad+NYhFTLoEfYCYmqhXEIWZ4ArN1ECo+lAMo+UQTGZwVK1i4MGRBMeK4sQC/YAnLYMOQVLJEujPASVq8o1rjitl0Mq4O9n0YHifaMIG/qciv7zmCQuhSiRwKgcOTeY/hclwBO+YHlMKQgvUpmCKjziAVW8C3BSq2SCkYicd2jQIiGxBGpXpVq7WTY/PGHX4mhwuoUdAqIiIiIntr+rimOwlOZ4SmcZd7D8fxcIyH52ZwTRyYJp0crkng4pEwWbrCxaRIkDIuCePSlkqwuMGhJWlp8iw5L8JUz24Dx2XUehStQ+B4TFiDcR3chIvrOXhefDvpObgOZL24StQaqADJarf8JNDqWDzH4pmoOg5pHCTWAsVa932nGjS6tWKG6rq1gNQxFs+N4ttOVO3mH8UBZS2kdOMg1ThRtcv9ZLBqptSeGGMnC3hrwerMwt6ZJatT/yTT/2gzh6CN13Pibv3V9HRygTf1T2viIQNmprI7/BvYhf0N9/a0/7k45p7srk0HKcxc/oDDQGkBD4ctFMrbmDqnh8h8MO9C1Xw+z5ve9Cb+/d//nY997GMHuzmHnJFS6tkXqj6bZTLYTAYA29m521XNyDBufgIzUYRSidRoPh7moRxgiwE2CLHFgCgfUnjUEFZCwqBE5Fsc6+M6AV46S/r4Zs75025sVxukk5ixMSpfv5stDzbSP5FloJxi3PcYrKToLTWxeaKDCT9iIvQZo0RvajMVW6AS5fGjIuVgrBquVoiiSnX4gOqwAbWhBEx1lKMZE14pYBURERGRXdmhEtVMpnDxjPMzQ9S4275jPBJeA56TxHOyeCZF1mklY5vIRY20kCWBi+cYsq7L8xbGXfAznsUmEgySJPQ8CsZj0HEY8RxMwp3sSu9A1kDSgcXOjK7qpjopE5aEEweyCSfCrYafCcdWJ22KSLoRrhPhOfH9RCKMhx0z8VwXjjs9ADVu7WWwGNfiVKfYMC7VYcyqQaU7JaCsjV0al4HGK1fHAjD1nn5TXmeHKSWL1fV2NnORmXG//jdydly3/pCZMsHxlLLbab0O6+nu9EmTZ1ay7G7SZjgwJYB7OsZcHXdvTG3jM31soKV/Ey1bwHPSz/ix5725nKhK19mzNu9C1csvv5yLLrqI8847b4+harlcplwu1++PjY3NdfMOuvFg3v1J5RliW1qhpXXnb4+RhWIRZyKPm58gMTgSV7lWgsmxcW2ELYdEgwUqPxsk9IexocXBp+H5R7Hqte2sXLwA29iA6evBPPEU+f/ayANruxn1EwyWU2wpZnh8pJkxP2CMMuPuOIPeFiq2iB8VKAWjcRWrDYiiuIp16rislpCpIw9puAARERERqdl5iAo7C1Idk5oWonpuphqiZvCcFDmni5xtoSlqJEuSFjdJW9pldSMsylkSaQ/fTVL2EuSNRx8ettp7LuFAxoWFXnzbq5+0xuFmohqOJk08cW4tMK0HqtWJepNORDZZIeHF4anrVedpcCzGBTcRYRLgeGASYFJOXMXpmjgEdWYEoK4z+XI4DsarTi7lunHS67nV6s/qrFQzA0qHOITbXXg59XWvh6I7CxdnrLOr9Wbua2oIaOKhDybvOzP2N2PZzsys3lT382eU19VDzo1wSWLqAzmIzB/zKoH79re/ze9//3vuu+++Wa1/3XXXcc0118xxqw4tfrSvcw3Ks5pjoCGLbchiu4BVu17VEA8qP83T66FQxPSMYraNwHiBqM/DWbyQNY0BifQEmZMaIJfEPu8kGB3D9PQz/rVe7nzkZAYqHv1lhwcGQ0Z9n3FbYswZY9BupBzl8cMJgqhMJchjbVCvZt3lcAGgIQNEREREDmO76s4/dQzUeLKoRH3c04SbJeFm8JwMObeLDE00R200kKYzmaYz43JMkyXrWsqRoYCDk0ow5iQpJxJk0x6pBg9SlqA6xmgOWJgISbshCePjOZBxAxJOSMKL8JyQdDKoB6KuZ/HSEaYahDppJ64K9Zw4DE3HSaxxnDiRTTXEEwZ71SHPkt5kkFmbiLgaglrPmwwWnWqoCtPDSjMZrFrjYOv3dxFO7jQQPcCMc2CqJKO92Icm+DkkmKyH59gdvxCRPat25pyzfcuszJtQdfPmzfzlX/4lt912G+n07ErDr7rqKq688sr6/bGxMZYuPbw7x2ccjUEiz7xo1codHjP9/WT7BmB4LD7xG8pTeXIMHr4fYyokjmmk8fwFXPSR1ZihYdjUy08+7dJbStJfSbO90MJjo52MmAKjySEKDDMe9OJHRYKwGA8ZEJaqE2D51aEC3LiiduoEWNUhAxSsioiIiMx/O4apU8dF9aZ153fdNK6TjMdBdRtodLvJ0U5T1EyXydGR9jih1dDgRlhjmPAShOkk25wEXjpBKu3RmoRu12ItJAxkvJDWRByeuibCMxGNKZ900ieZDPESIW4qwnGZDE6zThyeJj1M0sVkEnGQ6BnwvLgq1HPj8DSdjm9jqkGqA44bV8F6DnjVbatVo9NC0ZkB6Z4C0dr6tUBzZig5c/va8mjGDDlTAkozm3B0d+vMXDRz3WjnRRSTz8Hu0KZZH3s/mP0Mae0BmmVqf9uxK3vTvr1pQzhWoRwaIoJ9adazmwU7V39vXTrP2rwJVX/3u9/R19fHKaecUn8sDEPuuusu/uVf/oVyuYw7Y7KiVCpFKrVDTd1hrSVVOdhNEAHiMV6njfM6USB5Yh8MjULFJ3qqn8KThuCPG0ilCmROauCCf0xD5EPvIGM/G+a/H1hJXynDhol2+oo+G91+xhJDlOwY5ShP0R8isj5hVCEMS3EFq5kcj3VquDp1qAAFrCIiIiLzx26rUqcEqa6Trk8s5TopGhIdJJ0cGdNMa9TBIqeFZbkEKxog1+BSTqRoyHoMOynKnocDNCZgRSKeECrpRDR4ERknJOOFpNyQlBfSmCnhehbjRLiuJdUa4TQ5OFkPk05jkt7UxkMuDalkPAlsOgWJGdPRum5cZZrwsOnM9KrRWmhSC00TiekTPdVHFoh2DEWjaHq4aCfv18NPG8VBZhhMJik7Cx4jWw9TTRjtGGLWto1mPL5TU5bt0OYZ+5u6jrVTjjOjrVF1PTtl+521YWf7rdmfqty9qZLdifqfdH8rg/ezHbti9qZde9GGytaA8cAhtL6u0WRemjeh6rnnnstDDz007bG3ve1tHHPMMXzoQx/aIVB9tmrOlPe8ksjB0JAlalgBK+K75shBciduh/4R8BsJNo5TebgAxpJe0kTjBY289Q0ejIzwxFfLPDrczH1Di9lW6Gaw7DNKke3pTZRtvh6whlF5yoRX5Z2Gq6pcFREREZkfdhamGtxqhaWD46TqXfsd45FONJNwcyRNhrTTzJJwJU2kaEsmOGWBS64pRSmVhmyasRAwcQ/6BYl4LFMPyHohOS+i0fNJehFpLyCdCMg1lfHSEU4G3Ma4u72pdrF3OhqgKQPZdFxp6pg4WAqqvQgzaWwmHf9OpOIK1CDEBD6EUdwV3/Hi4LVWFBTZOOicMkcINoofqwlDTFgtKAgjqN2eEoBCtXLQ2upyOyVsnXI7CCaDyFrQWhNFk+tZC35YDc5qASfTQ85dVonW9jdlmK5p6+6kyjRiWpBqp4altWXV5TacXGando2e+lyeiRK8vck1n8nR+3bXroMximAEgz0NDFfAt8ox9tpcdv+XWZs3oWpjYyMnnHDCtMcaGhpob2/f4fFns+aOQjzBkJ3ywVf7ptOd8uee+U2m4+w4899sltc+0Dx3z9vDzruYTG2j4+z8G0NTHSxd4flhw7a3Y9vb6/cdoDawhxkcxGzdDtuHKG8o0X5MknPNGK8+MwOdOfCSUEpw+0ePZGsxydaiy/0DPkNBiUFnkDyDjAabqQQTcRVrVCGMJrA2isNVGwHVk9zaSZhCVhEREZGDanI81JnVqPH4qODiuVlcJ4nnZsglFpB1WmmJumixjRzR2MDJrRbPWKwxDDkpyuk0JpvCZj3SKWhyLA1eQHsyIO0GpL2QbNKnqbWEl43wsgaTMZiGBMZ1IOFichnoXAS5hjgcdd040PTjINLmGrDZLGQyk0+m4kOphPEr8XiniVRcpeq64PsQVqBSwUxMxE95ahf/IIq3K1cgPxGHmPXA08YBahBCyccG1esuP8JW4vVq4aL1gdDG3YRDS+RTvV39sYA1cR1CZIhCsNbEOWXkxIcM48mDwtAlikyc9UbuZIGsNdVmmer9+C9pdzFGZjTz8an5aXUf0ZRltcdsdRKjyE7uO5qSr1prCKdMdGStIawtm7L+ztTnwNrH64FdPtfd7G53vekPdDsOhD21aV+PvbXosW6sRDEYjP9Riswz8yZUlVmyBvPDO7BBiC3Fb0qmNrtjtvrnjoAwwpaDerZp0i7Gc+vfUNlSAEE0fbnrgGsml4fVD2zAJB1Mwo2XhxYbVj/YQxsf35uyvHZ8P4pPAohnqCThxG2wU7YPIjDx7JX18YccE58kVL9drQ/ink3FXzUbM3myAfF914FM9SSmdpIWVt+0a4O818YzgskTllrAm/DisYxq3W6mfusL2IQ3ORj8jADapqpdfDxv95+eUlcPXI8PSR25iVTfIJR9Cr/sg8dLeKkiyVPaeclXFsDwKNFv1/Hf31rExkIj68cb6Sku5nGvibw3SCkaoxKMUfQdrA0Io0o8REBUqVawAjasn8QrXBURERF5Zu1snNTJMDWFYzwcJ4nrJMkmO0g7TWScVlZEq+hwUxzd7tGdjig6LqYxxWAijZNJsjBjSDoWx0DGDVmQ8kl7AQ2JgKaGEolkQCIT4eXAW5zFNKUhk4wrRt3ahE8OpJLx0FYN2biSNLLgV6BUgkqlep4/pcAkDONAtTiBKfvxY26xfq1iiiUolqBYhHxx8qm7TrVqNIRKACWfaKwcXxPVwlLfYoM4MA2LEAWmHoiGgRuHnKFDZA1h6MaXRNYQWgc/jINSiyGy1R+oh5dTg8uwGpZG1bAyiOLHLLWc1kwWkFbbXw9WZ/l332nv/J3sK5qyzNrJYHZqqEq1XfVt7OT6u2tT7V+eMTt/fFd2tr/9LYKd2YZ9dSi0Y7ZtGCzDMHnCUMMY7pND5NL1rrvu4tOf/jS/+93v2L59O9///vd59atfXV/+1re+lW984xvTtrngggu49dZb6/eHhoZ473vfyw9/+EMcx+GSSy7hC1/4Arlcrr7Ogw8+yOWXX859991HZ2cn733ve/ngBz84589vd+Z1qHrHHXfs03YDAwM4z8QshgfB2MYKxe1FwsChXIk/VB3H4rkRyVSAMTb+1i50KJU8rDUYY0lVB1U31YEnK2UPP4i/jTTGkkyEuF6E48TL/YpLEDlEYfyOO3W5tYbAd+rLjYGEFy933ah+/MB3CML47+C58XhEXiKMlwcOYWio+PGJh+tEeImIVDoAY7CRQ2QdgsDguOB5llRDgEkAGLAQlJ34tgNuArwGi5OszoRpISyaemjsZky8LFmdxtO32IqNv8GNwEmA8Uw8Or0DBMThcWQhqi5LxeEvxsShcRivY5LVQDjtYVJePKaSWz1BMwaSiXhQ+kQCMmnwvPhbasdAKh2Pr5RKQiL57AtlXTeeBKs6EVa2+4n42/qST/B4L+VfbyfZXCGxdCGv/WwDdu0mHv+uy6PDzfxk+xH0FZfTZ0YZTg0w6D5NJZwgCIsEYYkQl/jr+6j6WTQ59qqCVREREZFnRhyeTqlMNW71t4MxCRJuDs/NkHQbSLlNLORIOmil3UtyRqdDoiEJuQx+KkPZOCQ9WJoE17F0JAOybkDGDckmAjpaJkhmQ9yMxW1xcFIuJpPGNCRgSRc05uJKVC8BgT9ZhOG62FwuPm+HyfFNbQRRCPkJTLkcLzdOfL9QgEIRShWIIszUpGq8iC1UsCUfO+FPD6Cq1yFRBcIyVApufO0TOXFBqu8RhA5+5FAMvLh6tBqShtYQRpMVm7UgNLLUg9Fa4FirAK2p98yv3g4jQ2Anw0k/Ysq2k+tO3ba+rz2cSu8stIuqB7JTxkSNsNVRBmy9l39kbbX+xU4ZraB6Gxvvp7o/W12vVidjsNN6S09NBMyMdpk9JIt2xpPc2XPe0xXFzo6wP4Hmnl732uLZHGJf2rEvYe5wJWST3URfvgc/GJm2LJqj8WEPF9Za5mqiqr29HJ6YmOCkk07i7W9/OxdffPFO17nwwgv5+te/Xr8/c/6jN73pTWzfvp3bbrsN3/d529vexqWXXspNN90ExBPPn3/++Zx33nlcf/31PPTQQ7z97W+npaWFSy+9dO8afADN61B1X23duoXZvZXMP08/EXHmP3XHd6oVncDkODgQh3nOlG9ea13wd7VOTW2dml3NBll7vLbtzO3q+9/Jvn1/8jHjTD9xgbjSdGb7q+GkrT8+ZdnUtlXifZvqAOaJIIi/BQ5DKJTiY1fCuJvNWAFbDOo/4XBAVDFEgSHyoZxPTAbDkQcmPnFz4kJbgsAjiBx865L2QjCGRDIimbIkc1H9G3hrDW7KYBLgZhzcFhfjxZWu1sbhLw44SQeT8jBN1Wrb2lOLqq9Nwo0D2VQCGrLYbAbb1jY5JtNhIjr6qPptd9V2Gp7cgB2eYOz+IrlSGef0UzjmwkaOLYyx9NLHeWq8gYdHu9gy0c6jUTPDbi+FaJByOEbRH66OvRoQRcW461N17NXapFYKV0VERETmxvSu/pOVqY6TmVaZ2phcSMZppYlOumwHz2nNcmKnQ6Y5zWA6x3jkElnoSsMCz9LgRjQlQjJuSHumRDZdJpUOSOYiksuSOLkMpBNxRarnxufR2Qx2wYLpwWm5jCmV4rFGIR7LNKz2SCsWMYWJuOv+RDGuWDXO5PXXeAHyJWzRx5aCuFs+1dDJtwTjlqhsCMoGv+LF3e+JqzMrvksQufiBgx+5lEK3GpjGQWg5cvCj+HepGpLWqjeDKXNERUAQ1QLS6m/isDGKLGEYxWFkZImiCGMtYbVoJAotfmgJIksYRITVdUJbmwtqegBqak/OxsGla+K/rmMsLvGkXw6GhAMOUbWOJR7DNulYXBOPaesYSBhbvw3x41PttOs/1eC4Wnk7GQSb6UOyTqmurYWGDhZjwKsPAVBtt5m85KoVHk29BIPJatqpx4S4HbU2Tl1/ptr+nBnHrr+msNuamsnnX7tvZtzf9bYz9z312LM9/s7asLftMAWDHcywvTRMqbx1xvWXrsXmi5e97GW87GUv2+06qVSK7u7unS577LHHuPXWW7nvvvs47bTTAPjiF7/Iy1/+cv7pn/6JRYsWceONN1KpVPja175GMpnk+OOP54EHHuCzn/2sQlU5cN78yKMceaGDMyU0jnbxZnSg1tmX7ZwZoXZtnZnf+NXM/Kawtv30bxerjxkzbZ3aaAC12zXujPUmPzA8XNOMMfEy14GEY6of9vHvZHUkg9r9lFs7GYBUtQDVNRYHSDi2+iFF/X7tRME18ayinrEkHEtLskRjqkJLU5HcggrpoxswHTloboBGD1oaq12RaultVP9tH91AsL1EWHQojqYYLzTguAbPi0gkQtINPm7K4iTByTq4rUlIuXH1bHMDJKtDIHgetqUZGjLY7JQTy0OMXbgQu3AhALk/IQ7Nt2zBDE7AxkGe8yfw3Oc2gRtBQ5YNf9PLA/3H8/h4kqfHLQ8Uehky2ylEg4xXtsfVq1EJa31sdWgAQ7WrlT7QRURERPbbzoJUUw1RXTeN56RpTC2kwemgLeqmgyYuWJymwY0IHQe3MUOP10CxOUEyaTkiGZJ1S2TckMaUT2dHnkRjhNvk4GQ9nJY0pBuhIQ2NDdjF3USZbHzOWyrHE0VVQ1ObScdJUhhCGGEGBjH5ibiLfqmCqfhxxhME2JE4MA3zAeGEpTzixBWjYdzbLl9MU/Q9KlEyLrSIDIF1CKyhEkEhcKsd3+IiilooF1koR1CJqAeY9bmWquv5foQThSStT6OJyBDgVUNRqkFpFEEURlQC8ENLObBUAst4xVIKoBRaRishgbWE1Z9oF9dhtfPggHiSqICIkJAIS2iC+DcBgQmI4lpRfFMmIsQSEdmQiLi4Jao+G7vLmHHP7JRxN6Mp+7HUguto+rGmrD/1uGbGzEzGuDhTHjNThnMz7Hxej9oxpx53Zrt21va4GntHzow2zWzHzve547F2dfzd2Zdj764Ns22HH+YpVAbx/UFdc+0ty9xNVGXB933GxsamPZxKpXaoMJ2tO+64g66uLlpbW3nJS17Cxz72Mdqrc6zcc889tLS01ANVgPPOOw/Hcbj33nt5zWtewz333MNZZ51FMpmsr3PBBRfwyU9+kuHhYVpbW/epXftLoephpr+0lnIqf7Cbsc92+QFbD0V38mY/5UPOwZmyrjtt25m3jXUmt9kJg1v/sHVNAgcXxzoYHFwSOLX/rIOLF58WWgcPdzLQxZkSABuMMXjx6SOOMdVQNl7HMZByU6RcQ8o1pF1o/xmk3fgb3JRTJOkU6t+ixvuPn5DnQHsyZGGuwtIVIzQtc2k9vR0aMpPju0742LEy4WhANOQw9McMOC5uyiHTOoyTcjAOGA+ctINJMDlsQWs2/hY/mYBsmmjVCpgytskhIZmIhwoAWLWCRPNDlH7Vhz8KqcatLP+XM1lRmiD47j3c9/Mu/ntLNxvHO+iN8jyV+iPFYJBKOIEfFOLTIxvEYbwqV0VERET2y8wxUw0uGC/u3u/lSLgNpLxGsm47R0Un0uakOLI1wZG5EJNLMpDMEWaSeI7hqKyl2QtoSgR0ZUtkkj7pTIV0U0hqdQbTmoFsOh4+K5WMA9R0Ku7J1TLlojtR7eIf+OAHmGI8tqmJbNyDrW8QxorYfBlbqBBNhNiKJSxDedQl8F0qlQwl32OsnMSPHILIEGAY9V3KoUOl2vU+iCCwcVBaiaAYTH99wiAiCEJ8P8KEESlCvMiSIaTJBHG6GoSEQcR44FAMYMg33DfmUwojAhtHmKGNpgxsZfGJg87QhIQElE2JEJ/A+Pi2UA9B7U4mCJoZWE4NK62NA9O4WjWqL6+tE9pqUF3dr60HnAc2AZq5v5nXklOXz1x35nXlDvd3cY2403bs5Bp2b57rnsLLnbVlNsH0bNow2+B0ajv2NhTfXTusDQjCiWkBtRwabr31Vq644oppj/393/89H/3oR/d6XxdeeCEXX3wxK1eu5KmnnuJv//ZvednLXsY999yD67r09PTQ1dU1bRvP82hra6OnpweAnp4eVq5cOW2dBQsW1JcpVJUDolQZIoqCHR6f+cY3mzfmXX2Q7O5NdLZv+Pv6wTCb/cz2g2FvPrxqAW1tG6c6zlPtMYM7eR9n2jY1tcDXiQd+rQa0LsY69WDXCRO4JoFnE3ikyNgsCZvAw8HFJWHcnVbnesYh46XIuBma1nbS4BnaUpaEAc+xeAbakvHP8qYyS44fpuuiZdDRDI0N8VAJpXLcfal/DP/hfvJbPQqlDNb1aO4YIsIDL4mXsaRXbAbPYDwXk/Fg2QJsZxu2qXn6rKcHSy5HdNYZpJesJ907AEN5Kt9/gsSKNN5Zx3HGy5Ms+8fH+M3WBTw61oLbdwq9iW2Mej0U3UEmyhDZClFUpnZKCihcFREREdlLu6pOdZ0kjpOkMbWInNtFu11Ml23hNcuTJDIJaMxCLstw6LAgFff2yjgRy7JFmtIVGtJlGtsruFlwmj2clgbM6kXTx0UNg7hXlzEwpboJwOTzmPHx6nj9JShW4n7y1Qmigr4JorEIf9zglx2KhQzlwKXke4z7CSr1bviGscCNq1GrlaUTQRyc+n5EUAmoVEIqlSCuMg0jGt2INBEpG5G0Yb1oIrCQ9w3jgWGgFDFWiRgPgmpYCqGNKFLBNz5FUyDPIAFlQvw42CSaVqEZB6a16tCQKKpWk9qIyPq7DLt29vjUa7X6PuvrTb+/u3Bzbuw8kDtwwebOK0t3ddy9acPehJr7Y2o7nqljzoa1QRy+7+/sWs9GFubyf60LL7yQG2+8cdpj+1ql+vrXv75++8QTT2TNmjWsXr2aO+64g3PPPXe/2nmwKVQ9zERRnnKluNNltSBo2jfFu1hnT+vtrdnud1/CqgPZzl0fZHcfPLv/lnPnJj+Yd/WtaPz4zPB2F1W1xqkvd5y4itZ1UvXHjHFJmgyeSZEwWdK/zdHy1SIJfBJmiLTjknIckk4czi5pWERjAhpcS8qxNHgeCcfSlixxzLJhske2QXNjtftTgXDdEOURj+J4klI5geNYUqmA5mU+7pIGTC4FHc3YRd3Yzs5ZvD4HxtRJrryLwObzmK3bYGiU3BGtvHJNL5ec0saHnxzkjh8s44GRo3l42PLbxDpG7DaKwSDlYJxKMBYPC2CD6ifX9A9+hawiIiIik3acfCqBMQlcJ4nrpGlMLybndLIgWsaFXe20JOMOZaOZLGNtDSxs9kg7EY1exGmZAk2pMrlcmXRrQOqoBkwuDdnGuCK1VomayxItmD5enxmsduEvleJq1A2b4u7+JR+7dZhgtEI4GuHnHfJjKcq+RzHwKAUpxv0chdBQCFzKUdxtvxzBcAWKQXzu5xrIuJCOQhKBjxcERGWf8YmIzSMBvRMVimFA0QaEhPjGx8dnzBnCtwUCWyaw5WnVn7WwM7RB/DsqA7WK0GhKAU1EVF0ntvOu6JOmPLYPScyez3cPkUmF9jGcq2+1PzNF7cPxd1h7Lmeq2tUxD2Qb9qId9dV1LXVISiQSNDU1zcm+V61aRUdHB+vWrePcc8+lu7ubvr6+aesEQcDQ0FB9HNbu7m56e3unrVO7v6uxWp8JClUPN9Zize6/MZvtW9ZcvbXNar+7eyOe8Sb/jLwF76RLTMxh5jeUe5ztkt20f4dAdmrAWrOrb0qnB6/GeJOPGQfHeNXfCVzj0eM2VIc1SODZFG6YwI0SJPwUjYVWEjZBAo+EcUkZl6TjkHWzNG3Msez3kPEiUo4l4zq8/OgemlaFZJY3YBrSRBOWMG8obsuQXxfheeM0tAySOXIbTkMS0h50tGCXLMJWx1F5RuRy9cmumks+0bYc4/cWaHzpUbxk9TDn9GzjrptacNYfwabCInoSvYx4WxkubyAIS9WJrcoQVbBmchAbY3UyICIiIjJZlerWJ54CB89txHWSpLxG0l4LqzmVhU4jp3R5tKZhON2I05JlYcahMxXRlvRpSvjkkhU62/KkWiK8Dg+3swlWL8E2ZOLK01o46Lg7VKIyUcAMDMLwWNwbq+AT5cvYcoidiJjY7lAqJsmXkkxUEowFCYqBQz5wmQgNQbXb/pgP5TCeK8H1fRKVgMbQh0pAqRJQKEXcNxQwHviUbUhIyJgzTsGMU7bjVCgSUI7D0igOTYOoUg9Ppwaj8e/J21MrTWPh9OrQqd3bn8nQ8xCvKtzX83KDOSDPbb8KhQ7Qa7u3bZh2jXoA/766RppDczym6lzasmULg4ODLKzOkXLGGWcwMjLC7373O0499VQAbr/9dqIo4nnPe159nQ9/+MP4vk8iEff+ve222zj66KMPWtd/UKh62LFYzOH+vnVIfYjv/dgvdnff/O0Q3lbHramNE7uHqlwLM4LZqaHs5BAGccA6PKW61atXtLrGo89JVdeJx5H1SOFECbwoRcrP0phvJWWTJPBIG49f9q2g6V5Dg2foTkcsSAc8d1EvC54zRG55A+FQiGlIU3p4guGhVkzCo6l1PZlVm3EWNEJLDrukuz7x1DMhOudMTG8Pjas2M3HbdlLtLt4pR/Pi7l6Sn8/z++EcD4+sZMPEQh5NuxSCQcrBGH5YIGA8Pom1QXyioHFXRURE5Flsehf/eBgsUx0z1TFJGlKdpL0WmpyFdIeLeMWiZtJJh5bOLH3JHAvThqxnafIClmZLNKVL5BoqpHIBqaVx137actDRQrRsCaTS8Syw+Xw8gVQYQKWCGRmOu/CXyph8Hp7aSjRcIhr3CfOW4rBLpexRLCfpL2SYCF0KgUM+dCgGBt/CaAUmfEtQ9nH9gHQQEBUqeIFPITT0FS2Pj+fxCfCNT9mUGaEXn0LcFd/6BH6xHpxGUTCjojQOUqEWok6fYKm2Tt0O44baHdeJd7D/f8i9cDie8x7M53SwX8+DfXzZe3YOu//v7b+GfD7PunXr6vfXr1/PAw88QFtbG21tbVxzzTVccskldHd389RTT/HBD36QI444ggsuuACAY489lgsvvJB3vetdXH/99fi+zxVXXMHrX/96Fi1aBMAb3/hGrrnmGt7xjnfwoQ99iIcffpgvfOELfO5znztQT3ufKFQ9DOkN8eDYVeA58++xd6H3lJDVmNn9ZacFs5OhbK191jjVUzCnHrZOHQ926rAD9TFkq1WuteEFErVZWquVrk+UWkkWM6TI0Bq10OgmuWXrYtofMqxssCzNVjjruM00HOuxcGmJYGsRk0ox8ussgSmRbhkid8w2nEVNkMtiVyzGLpj7En67oBu7oJuG1B+hb5jC7UMkOzzOuKqRM0p5/vjFEvcPNXPz5lPZ6vUz7G0jH/aTL/cQhqX4hNj6WOuDicBaDEb/D4qIiMizxo5d/V0cJ4NjkiS8LCmvkW7veLqjhSzyspy53CPbkSOfaaA3hJUNlqZEQEsyoDlZZmH3GMk2i9Po4TRlMZ1N8fiqzY07jN9vwhDKJUwx7t5PqQSlCuSL2LEilacKlEfjitRiOclAMUMxjKtRB8ouoY3HPh2cCCgXfYKiTzbwKRd8WpOWUgh9ZVg/7rM9GqFoihTMGOP0ENYDU59KODGt6tTaYEYFqj/lFZtNhelukpLdhKc6BxWRg+H+++/nnHPOqd+/8sorAXjLW97Cl7/8ZR588EG+8Y1vMDIywqJFizj//PP5h3/4h2ljtN54441cccUVnHvuuTiOwyWXXMI///M/15c3Nzfz05/+lMsvv5xTTz2Vjo4Orr76ai699NJn7onuhEJVkQNkticx+3yys0/fPk89Iat1KZmyyx2qZncy8dfMsLgausLksASmOvlWHLomcYyHU/RwnRRZr42kkyOzrpncD7IsNK20Jrvozjq0J+G4pgqnLOqh6bQOGKwQbYiYuGUrhYkUrUtKJI9ugkwKchmiU0+OqxIOsOiUkwBIXwgUi3D7bxi9L8mqk4usOaKPdyxqYusN8PONp/HQqMMdI9sYNFvIh/2U/BHK/giRLVcHWvendR3Sya2IiIgcbnaYfGrKmKmem6UtvYoWs5juaAErG7Ic1WxIZBIUcjnyuTQdOcvSZEBrssKy9lGyLT5ep4PbkcEcdRS2MReHp64zmT86xOehY+MYvxKPlbphK3YoTzhaJhwNKfR6FApJxsop8pUcveVWJgKHShS3d/OExRiDE0U0+kVsoUx5osz6gZCnCmNMmCIFM06BYSbCQUJbJogqhFEZPyjE53pE1bH2J7vq1xq5r1WkOl8Ukb12CHX/P/vss7G7eZ/7yU9+ssd9tLW1cdNNN+12nTVr1nD33XfvXePmmEJVkWeJHSpmdzpmULXKdUrYusNbow3ZcViCSvWGQxgV6xWwjvGoBOM4xsNzM3hOkl63nWQlR0OllQbbwP0Drdy6fSnLHofntRc448ytNJ7YTmNnG7YvoHDfIJVKGmOgacsAJpOA7jaiI1ZBLncgXprpMhmilzyf5oVPYDcPUHwwT8opsehPMvx52M/gz4r4v1nB0+PtbHZ7GXa3MciT+EGByFaIoni2VYzGWxUREZHDyw5hanXcVM9twHXSpLxGMok2juVUjmzIsqwBUrkkfnMO05BiSTKeCHVVrkhrukRTY4ncygi3LYtpa4D2JqKlSyDbMPlF+tg4plyCQhkTBJh8IR4jdaxA8OQwlWFLaTxBfiJDbyFLPvAYrrjkA8NEACMVC1go+yRKFdKVEvm8z8/6fYbDEnkzwagzwCjbCMJCPUQNwlL1C/NaBapPrcp0l+Ep7DRA1bmgiMjhSaGqyLPUzk7uZj9A+ozJuWohbDVwrQ03EBonntgJFz/IY4xHyR3FMR4JN4PrpOgxnWQnWmnKt/DgcBs/3n4k3f8LSzIBl7xjhOzKBJmohC1Yen6So+Q20da6icbjt+Ict4Ro5Qpoatzfl2O6TCauXj3RJ7v6SYJfrqO4NY0bFeh4eZLLhvu5u6eDPwwvY2O+k4dSPhNuP+VgnLIfAf7keKuEk0Mv6IRaRERE5qmpgarBBeNgjIdjUqST7aS9FprdRSwKl/KyxVmidJKwtQmbTrAkCw1uREsipDVZZnn3COmOCLfVw1nSDk0ZyOWwLY07fGluSkXM6BiMT0C+gO0bjytThyMGt2QZK6UY9xOM+R69ZY9SCENlGCkEeKUKyXIFUyxhrOWB4ZD+SplxJthmnqJCnkqYx6+UqATjOw9RYUqQWruvLvgicpDZQ2y6mWcphaoiUrfPM1VOezevDrZvDNgQa8N6wAoOYVTCGIdK4GGMR9EdIuFk6HMz9PmLaBxpp2WomRY3w6OfW0RHKmJZxueFR22m++yQ4OnNOB05Rn6VJfl4mexxW3HaGojOei5MGZPlgEgkiE44Di+TxtvUQ7hpmMqAz1GvKXJMeojf3pDg/qFG/M2nsDWxhRFvKyM2IoxKhFElHm8ViKsaNN6qiIiIzD87q041ThLHpHCcJEmvkY7kkSyIlrHYNHP6shRRZwtkkjS60JKEJZkKLckKLekSLa0lGk5IYVqz0NQALY2QSmHTKWw6M/3gEwVMTx8MjmGHJghHShQ3QrGQYKyQZstEllHfZTxwqESwadgnypfIlEqYYkjCtfQWYX2+zHBUYLuzgRJjVKI8RX+IMKoQRRUiGxBFZXYMUWFnQarO50TkoJvDiar0Fjd7ClVFZL/s8qTSTj0RNfU3ZmvKAITVIQR831CsBq6jzoa44sHxcJ0kv+xpIeFkSDtNZNY1s+SWHJ3JdpblXBZm4N0XP4Xd0kBlU4bBW4qE1tB9XAm3PQVnnYzt6jogzzFavQpWr8IQv2k6t91N/u4hnvPSIZ778qVc9rON3P79ZdzVfwy3Dm5nwGyqj7da8oeq424F1U+9UOOtioiIyCFv5gRUjpOqjpuapiHVSYPXRRtLWGG6uWBRgmTC0J9tImrMckQTtKV82pNlWtJlOpZOkGh3cBfkoGsJ0dFHYBuy4LpxcFoqQqmMUxiEzVviCafGitjBPPlHyuRHU4wU0oyUG9lcSlIITDyJVNGSMhbyBcLxIo9vK9DrTzDmjDNCL2PBNvyoSBAWCaMKYVSqTiQ1tVcR1L4An0rnaSIisicKVUVkzk09KTX1m1MrWuNu8mEUAQ4mcghMAj8o1ANW10kxkthK2m/mkeFOWgdb2frN1axosJy9cIAjX7wO62UZfrSVQuSxtHQ/TkcWlncTrVp5QKtYo7OeS67lUaKnU4x9u5emVx7Heed6nPypBxn7zQqeHm9ls9vLkLuFIaIp462W4+dqVLkqIiIih67JQLU2bqqH6zTgufG4qYu8NSy2C1mdy/CctojeVI5Ee46OjEOjZ1mdK9CWLdLYWCbdGpJcMTlmqm1vmzZ0k/HL8aRTo2MwXsD2jBKNlwmHQ4qDLht62xjxE4xU4orUniIUgghbqJAplhgdLrG9ELGhmGeD8xgFRvD9PH5YpBLksTYgsgEQ1r/k3llXfp2Tici8MpcTVcmsKVQVkWfUtICVyUA1XhaHqliDpUJkyvWA1eBQCcZxnSTDTobtXhPDI8fQOdTOvQPtnNffxkXHbyDXMkoukWDol61UEg6dR67FW7oZXnDSAatcJZUiOv05mBX9NHWvo3R3H4mWCu3nNPD2/iHuHWjlD8PLeCrfwSMpn4ITj7caGo8gHI+fn4k/BTWRlYiIiBxK6t39cTDGrY+bmk22k0m00WIW85zkCp7bYfCzacodTXSlXHIJaE0EdKQCVnQPk+mMcNuTOC0N0N0CuQZsLodtnDIWfmQxg8PQPwSD40RDBYrrQwrjCUYncgyXUzyVTzMRwkQA/SMVmsolikMFotDym+EiAwwzbHopMMh4afvOu/TvZkxUnYeJiMi+UqgqIgfNrgLWyYmvbD1gpTrplY9LxXgU/WH8ZJ5et4mny+0MbjyOewZWsygLJ7WUOf+lm7HlPoItaUbXttM6fC9udw6OWRFXrh6I9nd2Yl/cSZp7CJ4YIEpkWPO3DawZGeC3Xwz5zUATla0nszW1kVF3K6VgtH6Cb2yAxaE2kZVO6EVERORg2mHsVJPAcVK4TpqEm6UjdRQLw2UsTTZy5pIEue5mxt24J9DiTEhrIqA9XaK9uUDuOA+nqxFaG6Ehi23IQMKDRAocA+Uy+D5mfBw29RD1jBL0VSgNOGzrb2G4nGTI9xiuuKwbCZkYLsB4CTcIGHMMjw2V6bEjbOExSuEwlWCCICoRhIVpwy7tbnIpnXuJyHxm0ZiqhwKFqiJySJh2Yls96Z0WNVqq4aqJT41DBz8YxhgPYxL0eA/iVTKkxhrJ9LdyxNoTWJrJckSTw4nNFS5auY2o0sjgz4uUg3UseXkKjlgSj5e6n6IXn4HzYiAMsT+6g4kHk5x0zjDPfWknf/6lQW597Hh+1b+GJ8YneDDxK4r+EJVgnDAqEYUTWCymOpaXTvBFRETkmVbr7m9wwXg4Top0oo1sspNWdynLouW8dnEGL2EYyrWQ7siQ8SxLUj7tqTLLF4yQ7ohwF6Rwuluxxx1B1NICiUR8gHweM5HHDA9jJgrQO4wdLhAOlOl7IsNQMa5KHfFdekoOAyWL8UNS+VGCgSJrh0r02GGGzHaGKk9RCScIwhJhNIG10ZTxUSNVoYrIs4Pd4buiA7lrmSWFqiJyyNrZifDUMVktEdaGGCqUbYQf5Ck7oxTcASrJPJsqXaztW8gfB1sZ/9YiXn3607StHMG0tTL88xyNW0bx1m0hOucMSCb2v8GuCy8+hVz7E4TrXMZ+OEbTc7K84U8mWPFFwy/6GhnuO4G+1AbyTg8lf5RKbaIEGz8nVa2KiIjIM2VqdarBxThJHJPCc7O0pVfTZVewyung9AUefZkc2Y4cLSnDkkxAe6pCR6ZIU3ORhqNcnLYctDVCewt2aqAKcaA6NAKDozA8QWXdOKUhh7GxDOtGmhmueIwHhokA8hM+qbE8w0Nltlcsd+Q3MMI2CuEg5WCMsj9CZIMZk01pfFQREXnmKVQVkXllx0mvqsMFREVC4xBGRYKwQBhVmHAHGPE202M6qWw8mQdGjuTYpohXH7eR1jMnKD3lMPFESFPhDsySDqKjj5g2ccI+ta+lFfvC5+Eu3UTTwg0EWzzs807gjMXrWfONh9j24yN5fLyJzckmRpzNjFZnooVyPKasJrASERGRZ8AO3f2dDK6TJunlyCTaONaexPHNGY7rclmwtJktYYrmBLQkQ1Y15WltniDbFeJ1JXFWdEBjA2Qz2FwDuNXLzMhCYQKzvQ96Rwh7xgn6A7ZvbGSomGa4kmBjwWOsAsOjJYLhCZySz2DZ8tj4KP1OH9v9hygH4wRhqTrxZ3F6135VporIs5E1EJk9r7dP+56b3R6OFKqKyLxVP3G2lur4APFdU6ZcKVAxLhM4jDhP059Yy6+CFrKj7Xxx8xLO+tUijm+xnLe4l9zCEaKNo4z9Vw8A7Rd3ER1/NORy+9y2aPkyWL4Md3QU88TTRBtKZE5p51/e0UD+K+u4+ffHclff8fzM/T2jwWZK/ihlfxAbVerDAdg5GyRHREREnq0mw1S3PhGV62RoyiyjxVvKinA1xzU3cGpbSE+mkaArR8GzPK+lQGu6TEtzgaZTU5hFC6GzDdvSQpRJQxhiKj74ZZynnoJCEcYL2MFx8n8oMjKUYaDYwmA5yeaiR28xPnXLlMv4g+Ns7q2wvjjGE+Z3FP2heJLPqEQQTuy0e78CVBEROdgUqorIYWGHClZTCyUdojCgDPhBgZI3QsEb5K48rBvv5MHhbi4tD7HmzRO0JvLQ0MzYj7bR2DOCWd5JdPSRkMnse7uam7GnPwenqx0ee5rCzVvJHpviTeeMsuhLabY/fgJPe00MOOvjscFwwZaxNh5TduZzExEREdlX07r7T5mIKpVoZrF7IqtYyPMXJvATCTa1dbC4JUF7MqIj6bO4ZYxca4Vkt4NZuQC7oBPb1gapVL0ilWIRk8/Dll7scJFwoES5D57e2kZ/OcWw75IPDMMlS0OpyFhfnvv6K2wuj9PnbmeUrYwWNxNGJcKoUp10ykdhqojIdNbO4URVMmsKVUXksGOx08deNYYoKmKNT+RXCMISmwkZ8rrYMrEIf+1yTvis4dTWPGe8ZZSmkxspP1IgfDhPeu02uPjcaeOC7Yto+TJMcyOJJ0YJ/AzJ4xZxzkf7efKvDL/qW83acjNPJMcoBaMEoUMUaTgAEREROXBqk1GBgzEurpMh4eVIJ5pp9pby/OxSTmiB9u4G+jKNtKUMC1IBXekKnQ0FWpZXcDtTOB0N0wNVAL+CGR/HDA5B/wjB2mHKAzA+kmZoIsMT+SwjFcNIBSqjBbzRcXw/4oGBgAfso+Tpo1Aewg8mqARj08dLtSGgMFVERA49ClVF5LBUO/E2GLAWix9PamXiiQ0mylAOxpnw+vhV0eepiYX8fjDLPZ/N8YG3biDq8QmjBvp7F9LJz3HWrCA69pj9a1NLK4mzVxM9uInh7wziheO8850TdH+zgzv6uhgeP4ZhdyNFfwg/yBOEEZYQiDBWFxMiIiKyb2oVqgYXjIMxKdLJdhoSHXQ4q1jBYrqbk0wsaKaYStCagJUNFRZkinS0TJBdEJA4ohmaG6ClEdvYCInk5P4HBjG9/dAzRLA9z9DTSUYmMvSX0gyUPbZMGAZGSpT7xnGCgHWjPtujEXrNJgbKT+KHE0RRJa5OjYrTuvrr/EdEZOesnaMxVWXWFKqKyGFt6rirBou1Idb4+FEFP3AoVfrJO9tZ76S5P2jgJ8U2fvTx01mZaeK0DnjNEVswfhtjNz5BsbiRzlMizCvOxDY371N7ojUnwJoTaI4szoMPkf/vp3nJcwe4IDHB8+86hrv6TuDR8XE2pdfRU3wQP8gT2TI2qgChur6JiIjIrM2sTvXcZpJejmyyk1PNizi9I0sptCTbcyxdkqM1CR0pn85MidXHD+MtbcB0d8djp7a1gHHi/RaLMDqGKRRgZJzggS2UtsHIYIa+QjtPTaQZ9w19JXD9AGdohJG+Mo+Oj7PV3UhP6WEqwXg1SJ3Y6cRTOtcREdm1uez+b/X2O2sKVUXkWaNevWrBmjigtDbE2ogwqhBGJfxggrVp6CsvZeuWpTw2upR/bH6KzBJD7rguKpuSpG7/Lc6qbqJjjprs9ra3HEN08hpyvSNUHjdQyPK6K0Y55j8N/7utjfsHTuDXqUEmnAHK/mg81mpUrLdbQwKIiIjI7tQC1bg61cNxUmST7TQmF7HYHslLFmZoyjqMtLSSyiZYmAnpSvt0Zgq0tRdIHNkKizuwXR3xl8mJZNzNf6KAGRiE0TyM5In6Jxh8PEn/eJb+cpqBisvGvMGxEdmRcQb6ivxmIM82ZxvDZjMT5QFKlcH4S2MbVMdMRWGqiIjMOwpVReRZZ3LM1RCMqY/bFVifMKowWtpMyRthNNHD9vxSrr1jNWtaIi4+9WmCKEmpv53M0wWST27HHLUorj7dR9FLziDZ8TDhw9sYejhi1Qk9XHnqk3znZ6voX38am1NPMOZuo1gZphKE1fHFNCSAiIiI7NzMyaiM8erjp3amjmFFtIrT2hoYzDRQ7migLeXQnrYsbyjS2ZSnsaNCcpEHy7qwXZ3Y1jZwqvssx2OnsqmPqD+P3+sz0Z/gicFW+ssegxXDeMVSHMwz2JMnYSwPjhR43PyeCb+fkj9anYSqVp2qXjgiIvtkLieq0tvxrClUFZFnJYutj7dam8wq7kMRUAkgjEpUwgmK3iC/GEvy1HgXa8eP5Iz2Mhecv4nRhxopr+uiY8NTpJqbiJYv27eGJBJEpz4Ht7WFxFMPQ66b5JlZ3rxyI+s/v5DfD5zMOq+VIWcjw8WAMCoRReU4XDVhfUIuXYiIiIjItEAVF8fJ4LlZkl4jTYmFnOIey+lLUixc3sz2KElLErpSEd3pCksXjJBZYHEXZDBdjdj2Nmxj02Sgms/jDA1CzwDBuhEKPYbhkUb6CxmezCcYq8DW/gITfeN0uJYNY2U208eA2cRQ8WmCsEQYlbA2HudeY6aKiMh8p1BVRJ61pp3E2+o4XhhslCeKHIJglFKln0e9QZ50s/w6aON7I4s55+sn8pw2eP1JT2NKDeS/9nus/SMNxyfgzy7cp7ZEq1bScO1KnLVPYh9aT7Gvhau/5GIf6+fuby/i9r6j+O/Bpxi0G5jw4yEB/GAUCKqVt5oZV0RE5NloZpBa6+rvOmnas0exkCNZ6XZxSodH2JzD6cxRSRhe1FRiQbZAW0eBzFJwT1oCTY3YbBabTEAyiSnkYTTATEzA4xsINo9T3AyPbO6it5xgsOIwVIZsFDCydZTicIVHxkd43N4TT7wZFqpfCBenBamgcxYRkf1hrZnDiao0AdZsKVQVEZli6tAAterVIIwnUgiiEuVwnF/ZDJu2LOGJ8dWseTjiklPWU0osoHhfgq7ue7AnHYNtad2n40dHHwlLFpNd8ijj/7sdCjlOObaHU4+P2HbLETw50c7m5NOMOlsYtwFhVAFbxhL3/VDlqoiIyLPH1EAVHIyTrHf1zyTaOMaeysktOUzSI1jUwoLmBC1JS0cyYHnrKM3dZZLL0pjFrdhlS7CZTDwZVRhixsfjiagmCjA4RvmRUcZ6kvSO5thQSDFYgeFixFjvOJWRAg+OjtPrbGOQjYyVtkypStW4qSIiB5wFGyn8PNgUqoqIzDB1QisIiaIy1gREtkwYltjGHxlL9NAztpz1490ckVvAma8awDkiQf7nRbLbRnDWrCA6/th9a0BDluj5p9HYfzulRyLoWEz6pCRvfWyCX/Q184fBE3jKa2d9skglGCcMPcJoIq4AMZMVICIiInL4qk1EBU71tkfCaybpNZJLLGCBWc1LOnN0dDcwlmsEDAvTEZ2pCl3ZEm0rK7hLcpglbdjuBdjOznjHYYjJ5zGDQzA8jh3IE/YW6dnQSM9Ehu2lJFsKUMqXaRwZJShE3Da+iX6znkKln1IwShCOV8NUVaeKiMjhS6GqiMguTIarIdaGWOMTUWasWCRf3k6feZSnvBxPPHoaKx5ZxintaT76tqdxsisY+/Y6YB1N/+dYoiOP2KfjR698CclXgrP2SaLfr2PN8wLOfFEJRie4599b+dxjF/NU1EO/Xc9gcR1BWKjPpIv1p4WruogRERE5PEwNUx0nhWNSeG6WlNfI6sSZLHc7Oa0jQVPWZbi5Bbc1yZHJiO50mWMXD5DttridKcwxq7BtLUQtLZDLxTsvlzEDg5jefoLfbKSw3TA80kB/oZOHx9IMlSGMLGZwjIefHuXJsIce+wRDhacIwgLWluMJqGxQb6/OQUREDjzL3NXSqEZn9hSqiojswczKVQtEYUBk4gBzu/MQ+eQgw4NHsuw7K3jTC9dhgyyF5GKydz2GNzJOdPIJkEjs0/Gjo4/EdHeRHr2TkV9ZkkGR55wyxMUTK7mrfwlPjLfwUCpP0R+iEuSJbIUojLCmOk6sPhVFRETmvcmu/m69MtVzG0m4WbLJTprdRZzdtAiAcmMDE52NrM4ZOpIB3ZkSC5ry5I7xcLpz0JLDtrdBrbt/xccU8piRUegZwG4ZYmR9goHxBnpLaQbLHj1FKE9UyG8f4Q99o2xyn2Y42EjRH4orU6NK9ZwpUpAqIiLPCgpVRURmaVrlanW81TCKKFT6CaIy5WSeW7acTd/Pj+QVi4ZZc8k2ShvTRGMRycFR7ElHYxcu3LdjNzfjnXsczY9uoPjwApxEntdfVWTVv1ju6G1itPck+tIbyPs9lPxRKtYHG8R5qokwVpUiIiIi85GZOmGIMRjjYoyH62TIJttpTCxikV3NcreN1a0OE22tuOkkrSlYkSmzoKFIR1uezFJwjl0GLU3YhgykUvEuy2WYyGO298LACOGWMcpbAjYOd9FXSjBYcRkuWxZMjLC9p0jvaMQT5g+MlbdT9kerE1GV0Re5IiLPoDmdqEpmS6GqiMheqk9mZSKsjQjCCaLqpFEPZR9itPcIthZaecFXm7jkhU9T6C1SHrLkJh6GS/YtVAXiYQQWLSLb/RjR031UNhZ5znkDPKfYx+ZvHsET4y1sSm5k2N3MaDGYvMixAdaEmsRKRERkvpoydqrjZHCdNEmvke7E8aywyzi5LUuuo4Hx9hwtKUNzwtKeDFnROkZLV5Hk0iTO0hbs8iXYbBZcD1PIQ7GEyU/ARAG7rodgW5GJHo++4RY2TqQY9g3bhiqMbB0hFYX8bqjAJmcjw+UN+EGeMCpWu/rHgarOMUREnhl2Lieq0lv5rClUFRHZBxY7pRqjTBj6ROEEW6Pf0us+zCO2g58VlnLf/6zhxV0+f/K6bQTrm5n421toOs7gnLCE6OQ1e3/ghizR806F50HynvsIH0sw8dA4n/+L9djQ8sMfHsEdvcfyU/cxhsPNFCr9VII8QTgOBHEgrAsfERGRQ9pkV3+DwQXj4TgpXCdNa2Ylrc5SVtrlnNaeIfIcUt0ttDQlOaoxYEGmRGeuQGNbieyaRuheBl3tRO1tk2On+j5m01boHSbqGaPSE7Dp6Rb6Ss3V6lTDYNESDo1iR4qsHShyv71rynnF6LRJqHROISIiz0YKVUVE9pe1QDwkQK1qNbIBQVjk11EXA6VOtv+/ZVxy1GYWvK+b0q9GML3rSW0bJHr5Oft82OiM03G7nqaxaR3ldSnSZzTymudMsPSfRhl47CiejFrpTT9N3u8hXwqIbHlySABCDEYXQSIiIoeYmYGqcTK4ThLPzZJJtLGS57DCa+HMLofRbJZERyOdGUN7MuKI5nHaWifILLC4CzKwtCPu7t/YWO/uT7mMGRmGLf0Em/OUtsPIUAPr81n6yx4jPhTyFTIDIzw+GPBofpTNzhOMF7dOmRRzMlAVEZGDY84mqpqb3R6WFKqKiOynqRNZWXyiKMK3EVEUsMl7kAl/OSNblrOlsIx/fGIjXlhgoredwkCC1pWPEx17zD4fO1q9Cjo7SeTvpHR/kURzhVNeOcprC1lu7+1m7VgjG5NN+GGRSpAnjEpAGVu9EFKwKiIicuiIJ6Ca7OqP8Uh4OZJeIw2JDlrNUl7a3kE67WAWt7Agm6TRs3SmAjrTJbpXjJNYlMTpaoTWRmxHG6RSWM+LJ6Maz2PGRqF3EH/dGPntCfpHGugvpekpefQVLGN945jRAr8eKrOebQyYp8mX+6gEY9jqmO3YENCQQiIi8uymUFVE5ACpda23FrBFQkLGS1sJkgWK3ijDg6v5xr92cvHJ62m+JAWdjQR3P47XN4w98RhsW+u+HbipEffsE3AfXU/hD5BsXcBrPuqy9FOj/KKvmd8PHsuvUsPknV5KwShB6BCFEdbEM/RqEisREZGDb3JCKmfaZFQNyS6avEUsilaxMtnMysUZJpqaqUSwMh3SkfLpzBZpb50gdXwzdLdBaws2m4GEBxGYcikOVfsHYHCUaNsYA+uz9OWz9JWSDFY8Rsd8OkeGSJUinqzAwzzCaLCFoj9EEBawUytU0bmDiMjBZOd0oipNgDVbClVFRA4ga6N67aeNQsp+QCUYJu9sp99by8c2ncA3NqziqNuSvLBrhD//mIG2DOF378Zb2YI9+Sjsgu69Pm60YgWsWEH65eBs2szYvz/AiS8OOe2kAkQhn/i7F/H7gYAno2302XUMFZ6qT2RlKccXchoTTURE5Bk3szrVdRvjrv7JVpq8RZzhncoLFjgYz2WirRVakixPhXSlfI5cMER2QUBiYRqzeAHRicdCU+Pkvvv6MINDMDiK7R9j4qEio0MZ+idaeGg0y4gPUWhpy4+yYUOBB0fybHKfZiTYzFhxE2FUmQxTVZ0qInLIsECkiaoOOudgN2C2rrvuOk4//XQaGxvp6uri1a9+NWvXrj3YzRIR2UH9YsNarA2xUYUgnKDijzFUeYonzQP8triZmzdH3PlxH/74EI4dYehno9jbfo/zx4f26/jRsqU0vbQDd3EzhT86hJsnuPJPnuQ1ywzPzSzlCHsKuVQ3Sa8Jz23AmATgVMdu07eSIiIiz5RpgaqJx09NJVpoTC+mM3E0x9oTObndJWhsoLK4i8bGJMuyAcsbiixvHSW3OiK5qhGzrB26OyYnogIIwzhQ3TZAtGGQ8roCW7c3s360ifUTabYUYGy8QmFjP719Be4e3cYT5g8MlJ8gX+4hCCewUVHVqSIiIrswbypV77zzTi6//HJOP/10giDgb//2bzn//PN59NFHaWhoONjNExGZZnKc1XgCK2MhjCYoVAbxoyKVRJ4JM8JNG05ky+dSvOZ5T9P2qhaKvxrB7fdJbh3Yv0mszjoDb+E63D8+zdB9Gdpf0M0bjh1kwVey3NXfyvDg8Qw4TzPhD8QTa0XVSaxMqOEAREREngG1LzINLhgPx0nhuVla0ytZYFexyungBUtTBB2tVFIJulLQloxY1VSdjKrb4q3qgNYcNDViG6uBamTBr2BGR2FTH8GWUUpbYGQoy8Z8lv6Kx0gFFhRGKQxMsKlgeGC4wKbojxT9ofoY7Nb6TJ2MSucGIiKHEKuJqg4F8yZUvfXWW6fdv+GGG+jq6uJ3v/sdZ5111kFqlYjI7llsNaQMAEMQDBOE45QqQ4w5W/h+sJlflJbyH+uX8/Z7DRef3k/mtCzkUkRf/SHeilbsiUdhu7r2+tjRkUfAkUfQ+lrgll8w9niOF5zdx0uOynDG9Yv45cBqHhoq89vEXeQrvZMXUVERCKtPQEMCiIiIHEgzq1MTXiupRDO5xAIWmNX8WdcSjIFSLkupo4njWiM6kiW6siXaW/M0nZGDRcuhrZWopQUcgwl8qPg4T66DfB4Gxgl7xul7IElvvo3e2ripFWi1ZdgyyrfXj7PBeZrRcBuFSj/FykB9IipLqHMAERGRPZg3oepMo6OjALS1te1ynXK5TLlcrt8fGxub83aJiMw0WbUK1oTVrxQjwiisdq8rUkgM84NNZ/JU/ijOfLDIS9/8GP72DBPrDU0jf8Q5ejHRCcftexteeApNzY8TrU9S3jDMS98wyAseLvCd366mb9NJbEs/xbi/jZI/SiUIIarE7TaayEpERORAmVmd6joZGlKdNHtLWR4dxcnNjUSei7Ogha7GJM1JWJ4t0pEr0tReJLXEg5ULsV2d2KYmSCSgWIRiETOeh009RAN5gr4KhV6Pp0aa6C8lGPINA0VLemycTYMT/HbA53HzAPlKDyV/dMeJqBSoiogc0ixzOVGVzNa8DFWjKOL9738/L3jBCzjhhBN2ud51113HNddc8wy2TERk12pVq5gozlVthB/kiaIAPyryx3QTff0r2JRvYfO/L+DtV/ST6QwpP57H2fokXmsLdvGifTt2czP2hc/DWbCOZHY9478bJ3eix9tO2MZT/7yEB4caWZ9oZdDdyEihQogL9WqVAFOffktERET2xbQKVSeD66RJejkWeWtYZhfx3K4MDW0Zik2NLMo5tCcjFqR8lnSMke0M8BalcLqbsQsWYKsVqkQWUyxhRkahb4jgqWFKvYaRoSwDhSxP55OM+lCcqJAeHGHjSMjDIxNscJ9iuLR+Wlf/qYGqiIiI7Nm8DFUvv/xyHn74YX75y1/udr2rrrqKK6+8sn5/bGyMpUuXznXzRER2z1ogHmsVWyaMQqwfMOA8STExzGh5BQObF9P9Hy287HXb8QyMP91K422/xz15gOjkNft86OjIIzBtraS3/JLCYAfZJUU+eObTfPuBlfy670ieqLTyZCpfr1qJbBkbxZW1qlgVERHZN7VAtVahmvD+f/b+PFqSq77zRT977xgy8+SZq86pKpVUKo2ISRJiMI2NwZYZ3K9tMN1uTNsXA8vydQNu0LsPm2sbcC+v5YFeeH5mrX7tod349ozni8Fgm/ZFxiAhgUBoVs11Tp0p54yIPbw/duR0zqlSlVSFpv3RKmVm7IgdOyIjT2Z+87u/vzqVaJbp5ADfPnUVy9MRS5fP0I9TrqzAcqpZrmQsTXepX21Re+qIpRlYmMPV615QBUSriVhfh1NnsCe22Ho4Zq09xVo/5Uw/5mjb0l1rU2l10cLxd83jnBGP0s5WyIot/z7vtBdUnY/+Ce/1gUAg8AzAcemcqsEBe94840TV97znPfz5n/85n//85zl48OA5103TlDRNv0UjCwQCgcdn4ouKc+BynCiwZLR7PbrZChvyYY5E0zzy4C38zi9czosXKnzbYs4/vXyVxn+xFJ84weIrFO6fv+6JjWFxkejffD/xymnEV75J7cWK//2NbW47tcn6Pzje//nv56F8nVPiIdrFaVr9E76QFRpCxlogEAgEAufFYKo/QiBEipQpSlZI41meF7+GF1b3sr8mieeq7D0wSz2Bw6nmxr2bzC31SC5PkAdm4fB1uGoFF8UgJKLVhDxHtDu4bxxBH+/QPqFY3azzjUadjVyy2geXFbDS4N6TbY6xwhn3KBu9hzCmj3VZ+d4eClEFAoHAMxEH2EskfoZ3g/PnGSOqOud473vfyyc/+Un+9m//lsOHDz/VQwoEAoGLw8C5io83ca7A2pzT6uu0o3U2Nq7meHuRb7+rx9wtpxD79pEfgfSzf4978fW4vXuf2G6X9+HesI84+2saX+oT6ZyFW9q85THLF9aWuHdrmkeSh8lNh0K3MbZXxgEUPsaA8AUsEAgEAoHtjIupg2JUkZoiUjVqyR7mo0N8x8wSSSJRy3NctidlMbHsSTVLlT6LV/WILp9CHFiEpUXsUvk+X2hE1kdsbMJWCzZb9L/eZutMjZV2jdP9lBM9ibGOaqNF40yXz65uclw+TFOfpFdsUOg2zmXgLEFQDQQCgUDgyfGMEVXf/e5380d/9Ef8yZ/8CdPT05w+fRqA2dlZqtXqUzy6QCAQeGIMi1ghgFHWqhGWTnaGXHfoJ00axSF++YvX820PFfyzf3qUeM8sm38lmdv8CvKGy7EvuOGJD+Kf3Mhs/Zvohxz5Wo3vf/sm3/53Pf7zfYf4wuoNdNJ12nKFrGhgbB9rrC+4BSESIBAIBAKBkqGYCiBUOeU/QsqUSrJIPV7mANfzgmSJvUtTuIVp0khwWdWwlOYs1brMLfaIr5mFA3tw+5Zwc/OQxGCMF1Q7HTi6MixGdfzYLCv9Kqv9mPVc0GgV2NUGWV9z13qXB/kynWyNXLd8dqrtle/boRhVIBAIPKNxAmfDNP2nmmeMqPo7v/M7ALzmNa+ZWP57v/d7/OiP/ui3fkCBQCBwERkWsRpmrTq0aWFtjrE5RdzmbzZnOd7ey/H/fjVvveEIi6/K6N09RXy6R7R3Ebe09MT2vXcv7rv3Ei1/A3n3Y2zcU2P25jV+4vmPsPfPruDMI7fwWPIgDXmcXrFBNihg5QwIG1yrgUAgEHjOs9OdGiNEjJIV4qjGcvp8LjOHeNneWeYPztFNYpYTwZ6K48p6l70zHab25CT7Yzi4hFvag5ufhzj2/fZ6iEYLVtbRj2zRPw3NzRoPt+us9hVbuePMqRZsdVjPHF9rbXJM3k+jd2yUke40rozxgfC+HQgEAoHAk+UZI6q6UIUyEAg8yxl+uXEOgcPaHpYMY1pkxTr3xps8VMzy9ycP8IcnruJHv7nMv7r5EdKFPp3f/gKVZUl0/QLulhd4Z8sFYl/4fHjh89lzzZfR92hO37OH77rhNG95Q4v/8akX8Y8bN/P1Rpd70r+nV2wMXS/W9nDOIMI0wkAgEAg8h5jITEX5vFMRIUXKVLpMLd7LojjEQbfMi2ar6KkK9f2zzFUl189o9lc7LM21mX9phNg7B3N1qE/hFudxcQrWQqeLPH4CVtawRzfJjhY88OgeVvsJZ/KI1R6oQrN+bIv1VsFfdv6BVnFyWHDSmFZwpgYCgcCzEOeGX70uQecXtvrnP/95PvrRj3LnnXdy6tQpPvnJT/KmN70JgKIo+Nmf/Vn+8i//kkceeYTZ2VluvfVWfumXfokDBw4M+7jyyis5cuTIRL+/+Iu/yE//9E8PH3/1q1/l3e9+N1/60pfYu3cv733ve/nABz7whA/zYvCMEVUDgUDgucRuztVCt7FWU9ge/bjBXxx/Dce7V/NPvpnzT390g97xCu3jirnuV3D/7Lue8L7tt72UaOlRLtvzENkjC8TP38cPzh/hdXcZ/vO9V9I/9nJOpI/SjE7SL7boFxvDYheOohSFRfjiFggEAoFnLX5q/2DapUTIBClSlKoQqymW0xdwubmCF89OsacusXvmqM+kzMSwJ7FcPdNkcW+HyiGFuO4AzM7galWII7Aguh3IC0S3Cw8fRx9r0z0OZzZmONqtsJ5LVrqOSqvN6ukOd613OSKOs9F/mFy3/VR/lwVnaiAQCDxLeToVqup0Otx44428853v5Ad+4Acm2rrdLnfddRc/93M/x4033sjm5ib/5t/8G77v+76PL3/5yxPr/tt/+2/5sR/7seHj6enp4f1ms8nrXvc6br31Vj7+8Y/zta99jXe+853Mzc1x2223XfAxXiyCqBoIBAJPUxxenMQ5EBZne2hX4JzG2Jyv1+5hc+NqTnUXec1XWtSu7VOpaYqHp4n//ou4Fz0PNzv7hPZtrzoMBw9S+dq9bP73U8TxMvOvz/jxG4/Q/P0ruXv9RTzmLmO18hhnuJ9Cd7EuL/NWvSMm5K0GAoFA4NnISFCVw9zUSE0TqxqVeI4ZdYBXJs/jujnB7N467ak6ixXBfOLYm2r2phnLV7ZJDlURBxdwhy7HVWugJGiNWFtHtNvQ7MBGi/7Xm7RWE1YadU71KpzoSlqdArPS4MGtgnvKqf6t4iRZsTVWWNIFQTUQCAQCl5w3vvGNvPGNb9y1bXZ2ls985jMTy37rt36Ll7/85Rw9epQrrrhiuHx6epp9+/bt2s8nPvEJ8jznd3/3d0mShBe84AXcfffdfOxjH3tKRVX5lO05EAgEAo+LK//zU/YMzhUY26HQbTb6D/OI+wpfyh7ml//mOv76f+5DqIL4spzGJx+Dv/0S8sGHnvjOkxh7y83Mf0eVeEZy7Et7WTlyOf/vtx7jXxxyfPfCMjeKm1ioXE29skwSzSBkFSFUOQ1SMPgvEAgEAoFnOsP3tHK6vxAxQlaJ1DT1dB8Llau5Ut7Ci8QLuOpADXtwibVqnTQWXF4zXDXV5+qZJlfs3yK9bhpx1TLu8gP+B9AkBqVAG8T6Bpxcwz26SvHgJqePTvPw2jwPt2sc7SpWTrZwx9cwWcHnO4/wMHey0X+YTnYGYzs4V5QOVTP6HBEIBAKBZxdO4C7RPxAURUGz2Zz4l2XZRRl6o9FACMHc3NzE8l/6pV9icXGRm2++mY9+9KNorYdtd9xxB69+9atJkmS47PWvfz33338/m5ubF2VcT4TgVA0EAoFnAANhVeBwzuBEQTcr6BcbNOQR/oM9wp9sXMXVP3uQmxdTPvR/ngHTpvdfvka39SCLt12PvfqqJ7Rv+72vJf5eONhsIb/6DVb/OOYN37PBW27ooB9Z5/f+5yu5awMebHe4N/3CZN6q6ZSO25C3GggEAoFnHhM/DArlfzgUEXE0SxJNMxXvYV5czj+du5b5BBZmYrpzc8xNR8xEjoVEs1TJuOqaDZL9MXJPDeYP4A7ux01Pw1TN951liI0NxMoZ9Bceo3NSstmocaY7w33NCqf7IPOCZH2Lrx3tccSc4RQPst59AG26fqq/80IqhPfaQCAQCDw5PvWpT/Ge97xnYtmHP/xhPvKRjzypfvv9Pj/1Uz/FD/3QDzEzMzNc/pM/+ZO85CUvYWFhgS984Qt88IMf5NSpU3zsYx8D4PTp0xw+fHiir+Xl5WHb/PyF1xS5GARRNRAIBJ5BjEcCOAqstThX0MxOUMQ9OtEmG6tXc+1vzPOW73mEZLFCPD2H+fv7UKvr2JteCNXqE9v5zDT221/BUvEF7AnL5r2OitS860eO8h2fqfGXx/fSPXUzp9NHaakV+nqLDMbyVg2DWIDBsQQCgUAg8HRlvBAVSISIkTJFyQrT6QGm1T4ut1fxvKkZDs0qWrMzNKcq7KnAwapmT5qzp9ZlYW+PyotmYe8szEzjqhWYKt+L+xmi20E0W3BmA3d8g61HY1abdVb7KWt5xFbuiBodemdaNIzga+5+Nu0ResUG2rRwTntBFRveWwOBQOA5wiXNVHXwhje8gU984hMTy9M0fVL9FkXBD/7gD+Kc43d+53cm2m6//fbh/Re/+MUkScKP//iP84u/+ItPer+XkiCqBgKBwDOMwRcmgfXmT2fJdRNjcwrbI4vbfPLoq3j0j6/lNUtt/sl7LdlXT5EdKag1OrgXXoM7ePAJ79++9p8gjh9nfv+j6McszQfnuOqVZ/hJ8TCb/+kavrE5x1F1htXoMTZ4eJi36lyBs/lE5ur48QQCgUAg8HRgh5g6lpsaqQqVeJZD8maukIvcspwQL06zVa+ykErmEphPNIen2yzOdpnap4kur8F1h3CzM7g0BSERWYbIe4h+BmfWYK2FOdUkO245srmXM1nMWqY4tVWw2Nyk19V8adNypNhgTT9Ar9j0DlWbTxSjCgQCgcBzg9FU/UtDHMcTTtIny0BQPXLkCJ/73Ocet+9XvOIVaK157LHHuP7669m3bx8rKysT6wweny2H9VtBEFUDgUDgGYpz1scBAMa0saZDoRv0sjP8dXqGf1hd5n+cOcy1797H+2+AV/wfDhaqmD+5i+iKB+DF12APXfG4+9l13wcP4g4eRAJzX/oK5huK9TsN//b/WMOsNugfM/z3L30bf3z0pZxwa6yL47TNGdrZaYzpY102dNYMogGCuBoIBAKBp5LtBaikmkKKhEhVSKNpDsYvYZ9b4qb5GntSaFRrmMU6e+qKa+sFeypdFmt9puf61J4XI5fmYWket3cRu7Q02lGvhzh6DNYb2LUO3fsKtjYrrHXnWeknfL0RkUpY7DaZW23ze0e3OCEfpKlP0ss3yfVmKaa6YW5qIBAIBAJPVwaC6oMPPsjf/M3fsLi4+Ljb3H333UgpWSrfP1/5ylfyMz/zMxRFQRzHAHzmM5/h+uuvf8qm/kMQVQOBQOAZzdC16gxOCIQDYzt08/Wha7UttvjDR1/I8X9b8P3/r39E1Ot07rRU1r+Ket4q9tte+qTGYF92M/LKgywdvJ+Vv0yZmYmovyHmf7v2KOr/upz7mgd4oLGX426TR9M76esGhelgTH9UoVg4RMiBCwQCgcBTwMiZqoauVCFikmiGSjxLTS0yLy7ne2auZDaBvQspq7VpDs3GTEewmGium28wM9+nssch9yTIQ3tgfgY3N+OzUwf0eoj1dTixjj7dplixnFyZ40y/wpksYiOXVIymf3yTo33NF89oHhFfoZOvkRUNjO1PuFPDe2YgEAg8N/Fz/y5d3xdCu93moYdGBZIfffRR7r77bhYWFti/fz///J//c+666y7+/M//HGMMp0+fBmBhYYEkSbjjjjv44he/yGtf+1qmp6e54447eP/7388P//APDwXTt73tbfz8z/8873rXu/ipn/op7r33Xn7913+dX/3VX71Yh/2ECKJqIBAIPFtwDif8lyxjO7hCY62mMB2+aBdYz5Z57L9ezXctb3Hzh6pkn9+gf9RSO3QKt3//k9v13r24797Lsv1fmBMFG1+UJCzytretoE93+LO/O8w3msv81erLOVM5QdOcpq+36OfrGJuDK8o37xALEAgEAoFvDbtlpgoRo2SFOKqxULmaBQ6y5PZw01yN5b1VsvoUm0nENXXBQmLYkxTsrfVYuq6HWq4i9tRhugYLsz47dZADl2WIXhexsQWr6xQPN+msKBrNaY52amzkitU+ZOtt9nYa3H1G8FCnzXH1qM9N122MzX1BqjDdPxAIBAJPI7785S/z2te+dvh4kI/69re/nY985CP86Z/+KQA33XTTxHZ/8zd/w2te8xrSNOU//+f/zEc+8hGyLOPw4cO8//3vn8hZnZ2d5dOf/jTvfve7ueWWW9izZw8f+tCHuO222y79AZ6DIKoGAoHAs4DxAlYIi7M5Rlis0xibc1TdQ9tcycapQxzrzHHjlx4mih2i6MIdX0Net4m94XpQ6kmNw37PdyCPH2fh8scwRwyth+rM3JDx5n1neHPRJ/qDw3xja45j5gpOp8dZ4RsUuoOxfbTpDF2r4+Lq4PgCgUAgEHiyDIVU2DUzNY5qpNE0U9ESL3Q3c/NijdpCjYWlOiuFYKkimI7h6qk+i5WMhZku9eWC6IVLsDiHm532QmoceQuRsYh2G9HpQKMFq1uYk002jlQ4066xmaWc7kdstDWdk5uoXPPna5aH7WnOiEdpZyvkRXM0swM3FFTDe2MgEAg8t7mUmaoXwmte8xrcOX7sO1cbwEte8hL+4R/+4XH38+IXv5j/9b/+1wWP71ISRNVAIBB4ljD8cuWrVwGmLA7VY6PTpyGPciKqc09jL/f/4nfwgtkqr13OeEP6CKxsUfzFg6TX1HCvfyXU6098HGXeqgDmjh6D+x7FyIQzd8JPv/sMZrWBrCm+/Kkr+A8Pv4DHOl1OyxVO6a+T6Sba9rE29yIrFpxlOMFl7A05fJkMBAKBwOMx6UYFgQIhAYmSVaRMiFWNSjzHIXkzB+Uerp9NEEoQzU6RztfYW1dUFdy0mLFQyZivd5m/RqP2VBB75mHPHPbaayCJR/s9c8a7UreasNmieKhBf1XS2Kqy1pvjm60a7QKauUM223RXW9y1XvCwPcXR4sv0iwbadLEuw9qM8ffA8P4XCAQCgcDTgyCqBgKBwLMQhyudnj5rFZdhrCErvHP1vto9bDauYrW3h6s+W+OGn6qjanX0l9eJPv8luGIZ+/wbQD65Xz/tFZfDFZcjV06z7/CjdP7OYu0MFbvFLd+9xmwl47Mn9/BA8yruaNVYj07QsevkukmviLA2xzoNrphwseK8Mzd8sQwEAoHAOBNOVNjmRpUIkSJFhBARtWSRJJphRu1jwe7jO+aWULGktlgnmq2xryaoKZhLDPNxwTV7t5hayIn3StThRZidgukp3Ex9QlClKBBr67C6iVtpolf7rD1cY71bYT1LWc8ijnZA5QXTjS3uOJbzWK/FCXWELXOMTnYG63IvpjpNEFQDgUAgsB3nBPYSOVXd9vfSwFkJomogEAg8SxmPBPD5axYjLA7LZvYYedymXRzidx+6lu/6mYzX/+BRomuW0PcfJ7+rQe34Klx3CHvV4Sc/luV9uOV9TNW+gju5Qf6gpH16L9e8boNri6Ns3u34rbsO82BjLyfzNuvJOqfVfeSmgzY9tOljbMe7VkNEQCAQCAS2sXNaP/icVMUgL1WKiDiqE6kqiZpin7qBebvAteksyzMRdnaKdLZKJZYspnB5VTOXaObTjLmpHnPPt6i9M7AwDUuLuCSGJPGCapb5Xff70GrBkdOYky2yU5bWRoVHtmbYyCMaheRE07Cn06CxmXGyENyZPcaGOEY3O0OmWz4X3WmcMwRBNRAIBAK74biE0//D2815E0TVQCAQeBYz+AIm3MCx6rDWkhWbGJuRx23+n605VrqL3PcfruCViy2+7YcLqjMN+l/sEh1pob6v8qQLWQ2wL7sZ2m3SQ4+QPLzCib87QL3eY+G7e3zoO1b42z+a5itbsxzrzPKPzWk2ozVadpXMNOnkq0Pnqo81yEfOVQgCayAQCDzHOKuQWrpSB1P8hYiIVIVIVZmJ9zMtlph287xucZnKdIX6fJVumiIFzMYwnzgWEsOV9Q5zUz2m5nPiZYl6/kGfm1qfwlWqCKvBWMgLRPsMIi+g3YHNFvl9DTqrMeuNadb7KUe6CVsZrJ1uIRptVoA71wpO2E1Oma/T11sUuouxff/+NhZ7E97TAoFAIBB4ehJE1UAgEHgOMChsIXA4ZyjcFtq0yIotvho3eMDM8nenl/jE6Sv4rl86yKv25LzuliNE33sF+o//H3QjpvLiGTiwiL3pxU9uMPW67+MmOPAWkI88Cg8fp/F3DV7wEsHL1BpTVxe4Zo9jX5jjcyeu57GO4u/XmqzLdVqs0jHrdIs1jM2xNi8rIhfsyGCFkMMaCAQCzxK256NuF1CFiFGygpIJSiYk0RQL8VUs2H3MM82VUxUO1wU2jelXq9TmquypSSoKZiLLVfUuC1M96rMZ6bwlOjSFqE/D3BTMzWKvPDQq6NjrwUYLsbkFGw3skQ30pibbkLQaFb65cYC1XNEqBBsZ7Ncd7Ok2pzcsD7U63MsddPUGuW5R6AbOaXC2fL82QHjPCgQCgcDZcQ5seJt4ygmiaiAQCDyHGEYCYMt6Vj1yLTE2pzB9+lGD/2cr5Xhnga81ruVVX13huz5SIbrsIObvH6P/5RZT1Qr2+usu2pjsVYfhqsPMLnyF2dNb2C3J2lcEtaTFZa9s8aPV4+Acv/X7hzjWneZI6yArts2Ryjfp2yaFadMvGqWDVWOdHivqYc/qZh2cj0AgEAg8vdnpSB2IqdFwWr+UCVJEVJN5UjVDVcwz75a5IdrHC+clMpbY+hTdakqURFxWFcwnjrlYMxtr5pKMyw81iJckcrGGmKvB/DSkKVQruKnaSFAFxMYm4swarGxhV1u0H7B02jU2uxU28oSj3YiVPkRZzlxji29sWO7Z6HFUnGRDHKPRO4axff+jYHCmBgKBQCDwjCSIqoFAIPAcY1jESlgcEmt7OGdxTqNNj0cqX2HdHODk6kEeas4Q/XyPV//YV5HKMXXDDPmff53k4RPwgquxh664aOOyt9wMgDh+nKWDx8jvzjj10CGqScb85Q1+4q3HsVs9Pvf3V3Bfa45/WH0pa7ZHI26wEj1Mbtto06OwPQrdHQqsAjP6wipg6GAliKyBQCDwdOVcU/uFTIZiaqRqw4zURNbZz7XMuhn2xlVesBCRzlSpz1doRSm5cVxRFp+ajQ2XVfvMVnKmp/rU5gsqN87C4izMTeNqNaikozEoCe02WIfo9xBHT+BOb2FO9eivCk6emWUzS9gqItZzxVpbo9abdJoZHeDTGydZFY/R0av0iwa5bvoZFk6Xuefh/ScQCAQCF4K4ZJmq4R3p/AmiaiAQCDwHmYgDwOJcgbUSLRSFabMlHuWEqnCvmeYr993E5e/fzzXTVV61V/ODvzkNqkr+P79C3ryH+j+7AnfVFbi5+YsztoMHcQcPEn0nHATE1ibikaPYB0/R/JLmZTe2+c7aCu87JBD1BNe0/Kc//A5O9iWrfTjZ0Tyi12jINfquSd806BUbPiqgdLMamwMG5yxDR+uwzuXO2IBdz18gEAgEzhtxrkrCYrxNjtYvp/VLmQ7dqJGsUEv2UpNzTLPE5W4fB2opz58TxMLRMYJukuKmqkQzFS6fFlSVZTYumI4NB2ebTE3nJLOW+LIKop7A7B6YrWOvvALq9dFQsgzRbCJabWi1EatbuGYfs9Wn8UDEZqvKZlZnK4842Y/YzCDCMdtu8NBDHR5sdzimHqNhTtLoHfF5qa4oi1AVoQBVIBAIBJ4wZdneS9T7per32UcQVQOBQOA5zNC1Ct656sDaHpYM63K06XNSfJVmtMpq6wpOdZeYu32T7/6+b5C89CqS2UX6n32MyuomYmke+5IbL/4Y5+ZxL5lHHNzP4qGjsNHCbszw6N+npEWLpSvX+ZF3r2HXuxSnCv7ui5dzx/p+TnaXWe0VrIsOpyqP0XdNCttF2x656WDtICogHzlanQWn/X6HJ8ZuG5DbIQ6EL8SBQCDgOX/xdIAcy0odZaMKIZEiQoiIJJomVhUSWacmF7ncXsWCqPG8uYS9FUdXKMRMhc0oRU0lXFEVVBRUpOPyWp+pSDOTZtTrGfWrLWqhgpipwp5Z70ZNE1y1AtXq5HAbDZ+ZurYFG22KIy3yDUG3FfPI+hybRUyzkHSNoF04Fvod1lfafLMLX+geYV0coZudIdMttGmVYqphMM0fwvtHIBAIBALPZIKoGggEAs9xhjmrzgGm/HpnsNbiREEnO0OuO/TiTTbFPv7Tozdy9388zEv/vMtr3nKEyiuvxdy7SnFPg0qrC1dedlFjAYbjXFrCLS0BIFZXuWrqHlwnIT+xh80HY6q1DpUb4XuubvA95gyPfTrmH1f2cKI/zz3rs6znGU3Rpxt32IxPkrk22mb0dQPrirLolca6HOfsSGQdOlf97W5i6/YYgR1jD1+aA4HAs5gdQuoO8VTuXFfIYdu4iAqSSFVQMiWSCZGsskddRc1NM+tmuCyp8cIFhasm1GYqtKMUFSvSGOYjqEeO2VgzE2um44K9sx0qUwXxrCNaiJDX7of5GZ+RWpuaHGKeg5RgLaLXRxw/BWca2DNt9JmC9aM1Gr2UrSzhkW5Kq4BG32KbHdJ2h8f6jrvWMk66DU6Yu8l0i0J3vUM15KYGAoFA4GLiLmFyTHiLOm+CqBoIBAKB4Zc7L64aEKIsZGXRtLA2R9s+WdTiS6LC8dMHua8xxZ3/vyu4vXcf6oZl1CFB448fYeraVaJrj8CV+7HXXnNpxru0BG/+Hmi2qJw4QeXIaVyW0PlKj257mtl9PS7/7oyrDhS41gb/8J+qPNSusZ5X2cgWeKCxj4YuaIs+a5XT9FyD3LYpbI9MN72D1elh1qxztoxJsOCKchR2F6G1XL6NxxNddz3G8GkmEAg8zTirC3Us83RiXSHHVpKI4WNVulAlQkREqoIUMZFMUDJlWu2jQp0KU9TsFK+am6dWi5meTTGVlG4U+cCWSHBFDSLhmIos9ciyXOkzU8moTWVUpg3xPoWsl9P85+o+rmZ62rtSrYMiR/T7kOeI9jpCa8hyaHewD61gVjL6a5JWs8aRxjQbRUSrUBxpGMxWh9leF5zjc6dyVmyDFXGUlj1NJzuDsX1fOHFbbmr4+x4IBAKBwLODIKoGAoFAYMjwi54r3TQInDVYMoxpkRebPJpvcjyqcY+Z4jP9Rf7vf/cSDqZVrp+TvP+1a0QvWoJ2F3fPw+g//zrJLUuwvIi95uqJyskXhZlp7Mzz4IbnAVD7fqgB8v4H4fhpXDuHeIbrX9bj6l6B0k2qtTaVgxZ52Sxoy/H/PsOXT13N6X7MViF4oOFo5Jq2Lei7nKZs0hcdctelcF0y28a4DGs1uelMCK5uEB0wLsJiRufXbRdcxx6Pte3Idx11cLHO3AUTRIBA4OnJOafbP6EOz8NlCmNT9csM1LJwlM9AjXwGqogQQqFERKymUCL24qlImecAqauQuoQrKzPsr0kSKZAC2k7g0hibRKTVmD1zKfMVifI6KvsrmillqMcFe+o90lSTTmniGUd83SzMzcNsHaoVXJyAFDilIIkn87/bbeTWFmxu+WiZ45uYpqFoOLJ2xPG1GbaKeTbziJ4RrGeCOhqzuUXzRI8HtgpO2S1WxXHW8gfJtf8R0tgcZ3vBmRoIBAKBS4ZDYEOhqqecIKoGAoFA4KwMM1eF9W+uzmFsB1vkFLpLbjrcnxpO6f0cWdlP8dnruPHOLq+++jiL738RyYJCf30F/YVVKi9bxb7sRpiZvuTjttdfC9df6x+02ywsfx06GeQac6bDyburuIc0ieuw71WG76tvIedTXKvH/f9Dcd/mHJt5hZ6pcro/z3rm2MwMHa1piB492acfdWmyinaZjw9wBcZlOGcxTmNtMXK7luLoQFQd3ZYi7FCABTCI4Tpnix7YccQX+QxuY5cc2V1X2/YR7KKLPefY14VyMcd2scSSJzOmSy3YPJHn/7nEE33unug5e/zp9uPIc7Sdo9+x6fl+FxJQw/sDAXVwX8mESKao8l8iqkQiJRIVqm6GOTtHTESMoiIUL1lMSCVEsaAhYuJqQl9FUImZSxSzic9FlQLmY8d0pKlGlqqy7K+3qVYLkqom3QOiJpG1FDFbhasO4OZmcfU6RBFojchzMNb/qWy3QUiELhAnT8F6A7fewqz16D4GvW5Kq5fSzBOOdlP6RnK6D1GhmW03iLo9vrKh+EJjlTPiGG27SmZa9PN1L6a6IjhTA4FAIHDJuZSFqsK71vkTRNVAIBAInJMdxaxsjhMaJwpskdNwlp7aoBGdQJ+5mW9szvKljcPc9K+3+MH/7yzR9QlRXEXfs4JqfxGxOI27+grc/v3fmgOo17Hf/gp/vyiQq2c4uO9+XObAztC6O6FYi1DHDMIkXPt9Bc9bNFCXICz2vqOc+QfB10/tZaWfcCabo6WhWcDDzcvpGU2BpRCajuxRiJyCjFz06NsGFostIwOMK0auVgza5qXD1UwIsNtjBwCcKyY+Nk26Xrc7Wi+OyDoUAiY+r5297x2a7zmFnifHE4lU2L2jJzFGNxabcbE533FdyjFcIE+HMTwRziZ4XfDxXOi1dJ4/Vjz+vuRZxNDdmGwTO9YdiaZi6EIduVGVTEoRNSYup+xLEaNEREXMUmWGupul5qrURUIsJFORYqkquWraUasoSCLyKKYpEjpSIeOImhLMxJCWkxlqCqrKMhVZKsoyl+TUk4JamlOpFtSuADkTIypTvuBUrCBNoF7FLi9P/njnANeHrI/ICy+wag29DHfsDGa1h1639BoxpzamaRURLR3RLBSPdQRxlrPYaeK6Gf+4ITnWNpxwKxy199DXDQrT8RE5plOKqSN3qt99+GoaCAQCgcCzlSCqBgKBQOBxGWauOnCidN84ixOaXIM2fTLd4uGKZcXu5ejGZdy/NU/2vzd56Z5Nbrh9luhqRf/vHqXd38vCyzaQVx7DftstFz8S4FzEMe6yA7jLDvjHWcbMFd+AZge0hVyz+YU+vQdirBVI6dhz5X4Wv8vwmppAzkuIwZ3eQD+2yV/91eU0ioTMCnIr2Cpm6WhBq3A0cstmpsmcwQqHcRYjDBpLIQsKkdMWWxhXYCnQLsNQYMrq0Nr2ho5Xh8VafVbHK9uXTzhfL5RRXMFApjmrgLttH9udtOctGO0mAp1l/Bcq9I44u9B0ocLW7mO40PHAhTgIz8quY3gyovpFGNOldk5fTM4lbD6uSLr7uTpvV+8T1VO3FXoSYvBxfiSITq4/Nn1/m0i6ff3tU/aljBCooZCaiCqxqJGIGrN2kdQlQ/fprIrZU4m4el4yX1PM1CS5ismiGBNFNKyijcA6MNYxkwjmI1ACaspRU46qsiTSMRMX1KKCalKQJpqp2QJVdagZiZpNEFcsQr3mhdS4PH6pcGkM1crk8bfbiGYDmm3o9KDRwfUKXDun+4il24ppdCq0ioSTvZTcCloFHFntc6VuQb8A4fiHdcUXO8fZ5CRte4Z2dno01d8V3qE6nF0QpvsHAoFA4NLieEqTwQIlQVQNBAKBwHnjyjKTYvB10YFxBgNooch1ky35MCdlwn1qijuPXMn8kQMceNsUB2sVvu/gHl578xHk/uthLoH/6/+mWDGoqiD6tkO4g/t9EapvFWmKfdnNE4tm/xnMjj0Wp04h1jeh0YZuhmv2sXIeOz3Nq14tETZH2IJeS5J1BbW0R22mRzJniV+0CLXEf/FPIsi1/0K/lpE/0OOeL19BM4/pGkVXS3IryaygZwQnetDMHa3CkhtH12gMXpz1Plcv0FosuciwwlKQYyjI6GIp8Gt6J+y5sGMimMMMRdRxl+3AXWut3+vAYTsu9J5LyN0h9JzTTbczf3bctbtzfzvX3X0fcsfycwlQE33uIhTuFLd3juXxubDzshuPdx4uhLOds8dn8rmZGMc52s5vDOXyJyD4bn/edu7/3K+NgVA5HMNAyJwQJievq/F1zmdcF3JOBvtVMh2KnpGsIfGi5/itX18hkEihUMTELqXupoldjEIhx5RdiWAmSlhMI2YSQVUJpmOHLFexDnIpyZEYqWg7AVJSSRVTqSJOI6rViFoskBJyCVI4pgWkynJdXBALixIQS8tcJSONNXFsSFKNSi1RDWRNEh2YgnoFqnXvQo1jL56mKW6qit27zHBgeYHodaHfg0IjT54CY6AooNfHPbqC2eyjNyx5U7KxOUUrr9DOpznWT8iMYLNMB7g8yhCtLmz1KRqC/7jWYlWu0uA0Xb1OJ1/FmL6fWTCemeqfyCCkBgKBQCDwHCOIqoFAIBC4YIbOVQQ4A0J4YcBZtCsQNseYPhvO0InOsBEtcqy3j85jh/iH9eu47osFN87fy4v/P9OkSzHMzLH1349Sv/oo0ZVzsHce++IXPrUHWeL275+MKjAGubVFurZBevIMWAOFYSbTmNUetp2gu7P0M0n2NbwbzeTYvEfRBayjUo9I9szy8p+agYVpqKZeOMhzaHVgbYveZ09w/MFZVjo1WkVMo4gonKCwAgdkVqCtQDvoaMitILeOzEAj90JsYR3GOYpzCH12bIqqT3F15X0v3OZC44RFYzBCU5BjB/ddf7jmuAALk0KtnHDKjUSq8xEwB4KwYSTuWiYF3XHhdzdGgtTk1Obx8chdBNfRGEb92m1jmxCVz1mU7PzGNWx7HAFxh8Bc7ns3odc+jtArdzgZd47x8dguqlt2jmP8fJ2L3Y59/Lp5vHHtFOTLc7PrmM49nt2EUiFK52YpcPrrSY1NmVfDNr+NKvc/KeCO/3jxeAz6U/jp9lUxS+KqpK5C3U0RC0WMJBKSSAokYqg5KiEQAhIpqUWCq6ahohxx2e6UREtFIRUNKzFSooWiLwSZkqSJIk0kUaRIBaRAJOGg9Ldx+a8iHbF0VKShohxTkUYJh5KWRFqmKzlxpIkSQ5zaYRaqiBUiTiCWiGoMtRT278XValBJvSNXF969LhUkyUhQBUS3De0OotWGXgatLvQLXD/HtXL6j2l6rZhON6GdJ6z2U7YKRd9KjrQhsob5vEe+1eFYZvnqhmO1n7FGk+PiPvp6k1x30LZPoduTman+iSyf3yCoBgKBQOBbh3OXrlBV4PwJomogEAgEnjC+Sr0YfakcRgNojJBkBRSmS19v0YlWyUSXR9aX+drGLHesLfC6D+W8/LJjHPjIPHM3dTCn+rT/uoeLt5jWBhbnsZdfPvEF+ilHKdziIm5xcVQMa9C0sUnUbpN0OtDtQadfpsg7sAbXznH9AtuuYtuW7p0FsAGALSQ6F9jCIZyifuU+rr5Zce2BGdg7611axnjh1WjodKGXQ6eHPd3CNnJM05BvCY4fn6OZJXR0TM9I+kaWFUL9OLefTuv8P+MEmRUYJzAOCifoGygsaCcoLPS0o7BQOOhpi7FgXCneWi+xOufF2e0MXHHjs6rHnXLj2wz7EF74NaV863BofJSC965ajDRDVy6AFWOCrhsJqKUMhnByeN+nUcrhOKQbjFGU43ATY7ND+Rm0GIliTnrhebcxnI3dxgYg3GjZxPO03XVZ7mOwXzt8rEfr+DM08XjAaN+TQrdk9/1Lt208YlIUNOV+7bbxDB+Pi9DbBEax3RE6GEMppm4XWiVnjw3Zfrzb9zsY50Bs3U3UHInsanhOBAol4vKxInYpisg/chGx8w7RqLyyIicRQkxc435/O0U4e5b7fiwCJSQRglgoKkqytxoxFcF0DIupYyoRVCNHEjlqsb9+hRRIBVYoMhQdl9B2ERtGsikUVgiE8qNT0ocK1IQXSpXwfyeS8v7gXyQhEo5IOKaUJVGORFgi6agqTaIsaWSoJAW1qRyhQEYWqUDVQVQlshYh6zXYOwOVxP9BcM7fJn76vt27BNXq6I9Vs4Uo8tHfwGbLPz9aI86cgc0mNLq4doY508N0HLojyLoRq1tztIuYjlG0CkVTS1a6jn6zR73fJc0ynHDcsy74RrvBmlyhLdbpm4Z3ptoca/Od7tQgpgYCgUDgKcZdskJVT6PvXk9zgqgaCAQCgSfFxBfKbdEA2hmEERRa0s/P0JanOCYTIlkh0VP8dfcqZh/aw9JrT/KKvbNcV6/x/LkmL3xzC/J52AT71/fQPwb175jzrqXpGu7Q5bjZ2bOM6KnDLczjFuYfdz1Z/tv1Tdg66HaQK6teOC0Kr2q2cyiMz37VDteLcIXA5TGuMoWLHGIOkmXLlVc5MA5nLc7qUuh2oP2t1Q5bOKwGqwFnEViyvqLIVRlnOnAj459XacGBlH5dASRJQZRYVGpRiSOaBpFKRCIQqULOViBRkMZePJmullEIsZ/Omya4KAIpIRoTyawFbcBahDGQ+2m85AVkuT8nrZ6PU8gtrlPgcgPG4rTD5WMimRSIyP9DeWudqESgJCKSUIn9DO+oHEMkJzNenR2pztpAof1sX21wfT18TlxucD2N087rLdqBA2d3F1yEFKDw45ICkUi/W1EqV6WYJMrbYT9DBdz650lbbN/iCofT4DTYzA/bGeGHb6R/7ATORsP8LSFASIcQDiFBKoeITLncX6SDU7FbvKg1gPW3TguKvsJagTUK5wRFobBOYI2gMIrcKIwV3lmBmMgBmxTa/ZikoLwtHzN6rKQdbuOGp0YMXRt+H2CsHO63sBLjBH2jMOV6hRPlfSZ+eBge41n0ModAI6C8dcK7xU15bIWDvpUY/1LECX+MFgHCv6T7xl9KshRA40iilCCSAiEETsmhOBopQRT5NqUESaSQUhCpUviUYIVDC+hsyzaWfpdUhWMKOKTKcygsanAU5flOpCWWlkQZEmVIE12+5j1RYohiR1S1RHskMpH+9StBxApihagnMDUD87P+NWXt6ESmMa5awU7VoV4fDbLdRuSlG1VJ//fBWX+ien3kqVM++7pdvu67GS432J4mO2HI2jG9Xkw7S9joT9PSipZW9K3gdA8y45iKBfMmY2ujx/paxgObOffb47RYpW+bZKZJr9gcCaiuwDnt88O3Can+GghiaiAQCAQCz3WCqBoIBAKBi8r2aAA3cCE5i3bWRwOIPrluo23OlppiVc2ztXo9X1mfZt/qPId/W/CmKx7munfXiRYFU1OC7B9XyHspAPUbTyGv2YdbnMcdPPhUHu7FRwqo17HjgsNuWAdFjigKZKcNhfaiRKEhy/w5N7YUBfHCxkBc9dXFfB/9AqeNF2Ezg8s0zuCVIDsu5g1NyF7Ms6UgW+IAPRDjLNAr/w1ECOdwtgt0y2VurBaVG/ZrNV6Y014QNEbgrMMOxLhSpM/1DNoKjBWYUgSWpXdaWzk8RYNTKnAo6UV/JdxIuJMj8Q682L3TuejdhhaJsQnWCoyTpUi3zb3pvLhnHRRWTsguSrhdTdcCv1yes33Uk3GS3IihMLidwkm08+tpO3IbDPYzGKfDO5IHWq7AeU15u1PSK+vD+4NjLKzYsd6wzQkyWwqKAxew8Dtz5bK+8d3a8rwP3JGDS8hOauPDccKEtoUVYuikRHhXtcVHY1gEVoGMSjemAFP+LOCPwbuhpRQoIYiV8Mcv8BdzuV9Zat2xEkORMi73n5bnNRp7jpzzwqpFMDydw8pv/veN3I6aIjF5/OPrIvy1I/D6vxSOVFlU+XxVpCGS/roeTLeXg/MtQDHIGAYlHbHSxJFFSksUueG1DxAlFhlbVAVURSCm5MhJah0iUYhKhKjFsHfOx5YM2gGiCKoVXL2Gm1/0x2EtZDki64OKcEnsXahjCF1Ar4fQ5R+Vdqdcrn1xqWMr2EYf2y5wPUuxJdCZIOtHnGnO0tURPeNdqB0taWvBWvlncMbm6K2MTrtLV1s+fbpFQzbYYoWGPjac2m+txthOGctgSzF1zFEdnKmBQCAQeBoxmAx3yToPnBdBVA0EAoHAJWEyGmBcXPXRAEJE9HNLLlv05AZZ0uaEm2Gmu8Q32gsc6+7l6v8TDlY1L17Y5LoPHyStVuHYOq7dpftnD5MsSKIbT3r36v5l3N69T/Vhf+uQAtLUF24pBdgn9fmnKEBrZK/v4wWsd2AKXaqdxpYOUl06JQdRD4+z1/FPewOBd9g2JvSawT58VAKZHrptsc47UbUDa3GFxfU0Vo/cmYOD99G+gvGoTO8AdSMHZqkDIUBE5X05mvIPo2n/23GFwxmHMxZbiKED1DeW+3elMGzkqA2QclLA8oNzY22TJtnROtsHAboQOCvL0zdws/pmbRTaCKx1pSN0EGkwKfpZ58VqMXSEMiHejnbvdiw3Tg5NsxNDKwVlbQV5KTpvP5WDLwGFk0NH6UA0HJeh7Zi8q7ZNRNs+yoHbEkpRuxRNB6LuuFA8EJONAzsmistSlBztx4wE+fLcRMIORVU5cNHuco6sE7hyrwPh25Xu3MHxD8Ypy2MbunPP1vdA4JWOSqSJpCFSjjTViNK5K4RDRqXrWDqE8tf48DxJkKmAuHRHV8Yd4g4Rx95tWksgjWCq4tt0+fqX0rvOa1UfgxJFCFf+XehnXnmuVH0eahyP+o6i8hcTEMbg8txno1rvRBVn1n1kSj8HbbxDvTCQFbhuQXGsR9ES5L2IPE/Y7FbJtKKnFSf7CXl53a1noLUh7mUknQzVy9jIHV/b0KwWPdqiwwnxDTLdJNcdct3Gurx0pdoyK7V0pfoLeuy6Cd8wA4FAIBAITBJE1UAgEAhcMiZdqw5EmRY44VztoUWMsTldWaGlTrKmZthqX8PXm4vsiar83epevvPfdLiqvsKLXrlG/AM3UdvbhLSK/scH6K5UqL/gCPLALFQS7E0vhKnaU3rszzhiPyXfbXOQPS1kBOsg64MxCF0gjIVej8iUYo4unbdezZycbgyjXEZRzsFWqrQEllOXwd8KMRk4a8dEYzsm+A5EZW1GYvPQGVyOweHbdz2DYrTPwfjE2OPBWMcZH8eg72EUgPGCrrZ+f4XFGeNFLONF4Il+ynOz6/R7KXaf678dV/ZbmvoAH0vhnHc6W7A5I6HZjgnQg9NohZ8XPxzEdvX1HG3nGto2sdmOCd/OCawdCb3bReHJS8WhlBmaVqEUv0sBU8Wj6AS/33OMyQlMUUYeDI6rFPpH64yNQzqkAhm5HesJCapWRm2kAlGNhoW8nHMI5StHiUhBEvl/trwucV7gHCyvlKLp4EcS8O2VFFepeEeps75QVKER1uEqKa5ShZlpv0+AokCItnciKzV5LYN/jXZ6wx9phoXGtPbRHqfWcd0M1y1wucW1DabvsBnovmRzs05Xx2RakVvJahaTGUnuBEfajqKdIfsZcyYjzgv6VvBoC460c46xyhYr9EWD3HTo5msYm+OcxtgeI1dqKaYGITUQCAQCzwAuZaGq8O53/gRRNRAIBAKXnOEXUzcQWQdLTLkow5oOeRnkKETMhnwYJRMiVSXOK/xF+wA15pm5Z475j5/hmukqh+oZ+yuzfN9LH0Fe9QKYrsBGh+K3/wpTSC9KVCF5xWV+31LC3DT2+uuekvMQeIJIMZwuPP4hL3zgOz/O9nH7yX4Mf8Lb71YxzZQCtSmd0FKAikY70dqvM9g2LrN4hfSCni5Kcb0oBye9eD6oHF9oRJaVjmzjsz6l9G7JgRM7z31uL3hhcTCVXQqEdb7/QvuxxRFuasqPEbxQ2OmWQbOAVLhqxbf7HAtEozlyeksBU1O4OPKZur2+zwvOci9+xrHPkI5jv44xXpAsRXxX9YKnq1Qhib2jO8t9MSfAxYkXRZMxt+jYjxMoBWll8jkoyuziwflNEr/eIGqk38dlGQiBsBrX6/lTnefQ7SLWN0H7jFak9H0UGnoZtHvYtTa2b3zmce7QLYfOfIG+djulX8T0TYq2kkYR0yoUufUxDj0jaBbDNAT2RQW23SXNemwdNzzWMmwVOQ3aHOebZLZNYToUtkeh22VGqsW5YtKNus1GHUTUQCAQCAQCF0IQVQOBQCDwLWfoYB1+fx2LB8D4iAAMxvbRpksuE3LdIVZVzsgqqaxzvH05c805ZmWVrzWu5Yo7Mg5Uj3P1TIsXvH8arjwIjS5sdMn+9lGKXorWkqR6gtqr18sq0yn2+c+bnKYaCAQuLbsFxyrl/3GW1+K5XqNJfF5S2HnJZcaMxnOB27rFxXO3Ly150dZoL7aOCZ4OIC8Qva4vQpbEPt5j7LhdUZTbG6hWdp6TNPUOZWMnxdQBUnghNevvdJKCLwyX9f3f4cyL2i6KvJhbZIh+7rNOnfPCahT5kWc5dPuw3sLl3h3t+3O4wmK7Gtu19NckRiu0jtA6otFPybRCO0lbK3pGkhnvuukYwWYOmfHu22Uy5vKcapER532OtyT3bsF63/CoWaUh1+jToG+bE05U6zTWZgQ3aiAQCASebTjYFo4UeCoIomogEAgEnjLGv8x6gdWA8DmEzmYIBEZIrMuwNifXbaSM6IiIbrzOiqyRUufUxpXMr88yF6UsVhZ4yQdhuXKMg7UuN7zwDNX3fAdJHCOOrcBqi95nHsHJCiKNqK41fEagMd59dt1VjyuOBAKBZynbxNSLThJzVuE4iXHJ7MjJup0yooOiOLvIPKgUt1sf1kG3g+h2yxiMCJem3mWbl4WithqjKAAhEFL6x/3SRdvqj2ImwEc+aIPrafS6wWZgCokzvsic0Yo8r9DNI9p5gi6LpxVOspZF5FaU2bLQzCG3jqJXMGUL6nnOsu4zR5+ukXy9mXC07WgWcDpvsiE36bBJ054kLzpo08PYHG26+FkQelJIhSCmBgKBQOBZwyCj/VL1HTg/gqgaCAQCgacFO9yr2/JXjdCARFgfD6BNHykjlEzoRuucVFOktk6tO88jncuYVQlz6SzLx+d50R3HWUgKLqt3uPZVDar/27f7fh87if36A2QnJf1+DStT5m9eRR6YgVrFu7nqNdzstBdat+WNBgKBwLeULPPiptaj6fkDej3vNM0LUAoXJ34KPvjlvT6i3YFO138LU9K7TZ3z2/Qy2Gj7onBmFBDrjPU5p32Lblpc4TNyrRZlsoEXTzvdKrlR5EahrSCzPv+0byQ9I+lZMdQ0tROsdB2trkb3C2asZsb2qecFe1JNbiVHuhF3taGZJ6xnOQ23SVM26IkmbVbJdZvC9Ml1a+hKda7A2XxMMA2u1EAgEAgEAnDXXXfx3/7bf+MDH/gA8/Pz/OzP/iy/8Au/8KT7DaJqIBAIBJ5WnDV/1eFdrA6gh0H6AlhAX54BFEJIpIh4TNVQMkX1I6J2lerGPDFVKtSpf3mWfb9xhHqsmE8VN80vsZAYZmPNUrXF4vfUYU+MW5zzlaq/8RjiQY050ad7OsIaiYos8bSl8qJZqFdBlVNpB0WQygIwdv8+qNd3d50FAoFnH0XhM1Gl3Okmbbd9rusg9zVNRxWw2h1Evw/9bDKCIFK+v24PeqVbNCtzXQcF1wC0xfULKAyur4dOU/AFzGzfYjOH7YPuyWH0q7UCZyVaC4oiop0laBujrcAh0E5iHWgrMAg6WlJYiXZQOIEZFB7zQyC30Cs12cyCdY7YGCJTUHcFkda4XNPtGx7bsKz1DX1jaZmcHjlN2aAv2vTsJrnrYWyGsRmF7WHtQDjVGJvj3ah2MiMVhu8dQUANBAKBwLMbcQmn/z/7vrvcdtttvPnNb+bNb34zf/Inf8LnPve5i9JvEFUDgUAg8LRm6GBFTDiOhk5WRlEBTkgsEmNzpIgQQiJERE9tIEWMEhGRqnJKzZPqOpWizgOtfdRkxFSUMJNUed4HYCZeox6tUlWGGxY2ufK1faJvu4aZ1y15EWR1E/fYGv0vniyFDQVOYZ0C4at2ixjigw8jKjEiLQvmRMKvqwSkCSwv4qancfW6F1gCgcBTgzHQzxDdMjNUKYgiXBT76fG6gCxDtLte5FRlIaoxUVO0274wk/ExJqQJwy8lWvvc0UEmqmP0Y4y10Csg10OXqBv/W6cdtqshd9jcYbVfLITv3lnAgNUCkwt0obBW4qzfjdYpxggKqyiMJDcS4yQOKKzEWIFGUFhJ1wh0OSXf4MVUize2WueFUm3xoqoFYx1WW4z2BbSmsOhME5uCWV3Q7Vt6Bk5mcH+jR+EsGkuBpiE36Ys22vXJRBttM4zO0DZHm95YcSk9vD8upAJBTA0EAoFAIHBeVCoVfuZnfobXve51vOtd75r8rPUkeMaJqr/927/NRz/6UU6fPs2NN97Ib/7mb/Lyl7/8qR5WIBAIBC4x278oi/GHw6gAA0hf6EpIQCKExNg+orw/LrJGMmE9miN2NRJdo1LU+XprgYpISIWiIhXLp/ax9DAs/mHBfHyMvWnOXJJzxd4tln5kCQ4u4+ZmvShaFIhOD9Y24cQm+QNr5BsRWic4pUBJZKQQsULGgnTxOLKukLUYUS+n6kal07Ve9dW/KxVctYKbnt453TcQCIwoSuEzyyaX6wIK7XNDi8K7PSfajRdDtRdWh0iFkMKrieU6rjfmAo0kQgqcdWAttq+9Y9QylknK8LHrW1+Hz7nRrHRfPwmb7ZxSjxNYK7BGkBcVtJFYBMYKnCtdqA4M0q/nwDhJPiaUGicorMA4vFDqBNqBK0XTfLidF0pzgxdTC4PRln5m0YXBaot0lj2RIXGGGWeooHHGlhmpglM9xWohON4xbOYFLdsnEzmZyOjTocUqmgyLxboCnfcwTuOc8YWlsFirAbtTRB2cKLYJqYOTMLgbBNVAIBAIPEdw7hJmqj4L306rZYzby172Mt74xjfyEz/xExel32eUqPpf/st/4fbbb+fjH/84r3jFK/i1X/s1Xv/613P//feztLT0VA8vEAgEAt9Cdha5GmBwYuBqNeAEjrycZuudYSORNaJfNFAyQUrvZF1VdRQRERWUjai391Br1am5KlURMRcnVKMKc0dmOfxNx1S0RU1tEEtHTRmqyjCb5OydbXPgB6dJ9s3D7LR3rQ2qZLc7cKZB8UCT/gOSfruCFREyFkSpRFYk8bRAVhSyHiOqEbIaeWdbVBaPSSKIJMTK9x1H3jUn5WhasJSAgDQGqXBx5N13tSk/NXm3CuGBwLkoirLcbDnFXY65LUsXpnAjAcy3lesbM5raPo4xpeCp8XPJrXd0j8dmDHJEi7E+RHmNDyrea+PX6evJYkqF9bmguhQ/c+vHZPGFlpzDGW9+dHq0GeWwnQNnBM4KjBY7v2g4L3IaLXBI7xItlw3Wtc6vZ52fqucAY71oOhRF8fs2zk+x90KnxDpBbssCfuVUe4fve1wkLf/ieUG1FEm19Y5S68Aah9Eaoy26sBSFoZtZTOGfmwqOg2nBkiqYjgy1SBNLi1WCPoqOjrhvK+HhHjRzx1ZuMM5RWEuBpUGbnujSE00y2vRdA2u1n8LvNNr0cNjSfeqfAOfscJkfPWcRUQcX0uCcByE1EAgEAs9tfKGqZ980/UvFL/zCL6C1Jooi3vWud7F4kQoTX7Co+va3v513vetdvPrVr74oA7gQPvaxj/FjP/ZjvOMd7wDg4x//OH/xF3/B7/7u7/LTP/3T3/LxBAKBQODpwY4v1W4gW4zpI2OrGJcxEFg1YpRrWLpZwbtBBxmtIJEyQiCJ8ipKREgZEW3VUCJCESOEIiJFiZjYpUSkzPytI6ZJRBslJBJQQhILSaLmODi1yEwM0zHMRJZIgBKOWDr2VTIum25x4Jom6aEEcfMhmK/jZmdw9Rnc0l781OLBh6nRrVhbR2xuwpl1OL1Fdl+TvBWRZzHaKC/gShBSoCKHs6Aih1QWFbmJ7qQaPHaIwakS/vRJf2r8NGQJYpDhOFSSdjwt41qJ73Z06gcRkH65En4/SkAEMilXEMKvq+RIZI5UOaaxDgY/3bvRY+eVrZHKNBzXmPJlnHcV2rHxDfY7OIix9vNdZ+IkWOfPhWZCHCrVsqHIt/38wcD1WJqyh+dqcGdsnTFNcbwN/LZuIPKZbR/GHVjDUBB0Vk42lwKetWDLNlH+qjG4HQiKxoy29adnvB20kTuywAZD1kb6fSGwE4Mv2+2kQAmUjyO0jYZipCn7GMeUT7N1Au3E8FKQ5SXnGG9nuH+Jfw24sm2ozY5tP76PopzlP3ga/et7tI72xtXh9kJQvj4c1voIAGEdEZY9saUmNDVpSTHEwoA1OAvdQpJpR18LMi1oFYKssGjjKIwjKyC3jq72Ymi7GF08AyOucY7CWT5nu2QioxA5FosmQ4sC4wo0GX3bxNgM6wqKbSKpzzm1Y9P2i8Ezs4tAup3d/ljsThBRA4FAIBAIXCiveMUrJh6/6U1vuij9XrCo2mg0uPXWWzl06BDveMc7ePvb385ll112UQZzLvI858477+SDH/zgcJmUkltvvZU77rjjku8/EAgEAs8szvbFe5TNWrqihBjFBpTO1mEfZUYrgLBebNWmWwqvI6HVxwrI8r5ClXmukayiRFyuDwKFdBKBItIp32gskroKqUupkiCEIEKghGQmrjAd15h9YJmZGJYrlorcIFXrRMJSjwyxdMTSUlHa18gSFikgUYY01lQqBdXpgvoLIpL9VcRMBaYqsG8e6lO42Vnc7CwTipvW/nEc+7iBbWdvtzM6JC8QnTZ0u4huD1bXoZtBJ8M1+xTHO9ieoOgoTCEpcoV1AmslxqpSFJPlr+5+6rQsdWOljF+mysfSIcr8WhW5Ml9ym0A30FUHz2kpCGojvSPQ+FzJ8a2s8y5DO+YyFALkmHA46M86MVwupR0KciBwTmKsnNhuMBZbCnna7h7lYG0p9rFtDGPXtHGjKeCiFLwH7YPtztZunMA6P0V80OPgHHjXg+/DOIEeE04HEqkd9jEpSMoxy7hzvsL7AAFE0g3bHF6UHAieAjcUJa1j6NQ044Lm2DkyCC9KOkZKrHOlA9SL1sY6jPP3hXMo6V/lwrnSOeoQzv+QEQlHLBwVaZFYYuFQQCoNqpRVhb+Ayl05JK4cV7k/5587iSWWlukkpxIVpElBnGjSeoGM/Y8RQjnUlECkEhEJSKT/IcE6XG7Qqxm6Ad3NmEajyldXFziVRWzlgpYWbOWO3DgKCz2jKaxFW0fmDH2XU/o/y+fLYoTBoMlFTi56oxPpwGJwWAwFmWhjXYF1trwtvGDqNNYWGJtPZJ2OXKaUIuog39Tu7jA9F0FIDQQCgUDgggjvjufH5z//+Se03ZVXXskVV1xxznUuWFT94z/+Y86cOcMf/uEf8gd/8Ad8+MMf5tZbb+Vd73oX3//930+8vdLpRWJtbQ1jDMvLyxPLl5eX+eY3v7nrNlmWkY3lajWbzUsytkAgEAg8czh7Nmspsk6uPKqg7QAkllKYhUmb5aC/4TI1FFq3M1hHymRYUEuKeKI91lVUlpKIKpFIScV0KchKFDGJS1BEKKdIScpRROWtQAhBjCSWktpfKiIpSieeIJYNEtUklaeoRWLoVnN4Rxt4ESyRgrnEUVGOqHTxmbETVFGOVHpnbVQKuoOzoYRjKtJUIuOFKemIlPBOXJWRppqFK/tEyzFysYrYM11uLCCJcNddhTt0aDS9/FtFliE6bZyQMDv7rd//M4FBdfunAq19BEGZi3VR2dxE3nkPnN7ErrQpTuesPDDFZrvKmX6FjTzmWC+ib7zoW1j/92RgcM7NQD5UxBLqUYWKclQUpNKRSC88C7xrNZGWSEIkLLH0Yr0FCivYKhRdI2kV0CzgWNvQ0QVtm9Mjoys7GLQXQuliKTBoHAYjCkTptpflDz2Azy51BWZQ6apcBgzF0cL2cKWg6m/HBNTy8W45p76P8b+eu9msL/yrXxBTA4FAIBAIPFne/va3X/A2Qgje97738ZM/+ZPnXO8JZaru3buX22+/ndtvv5277rqL3/u93+NHfuRHqNfr/PAP/zD/+l//a6699ton0vVF5Rd/8Rf5+Z//+ad6GIFAIBB4GrPbl3Yx7ombEAJ8VW+3o80MtxkuEhLnzi48CSGxTg+drmwTX3PZQsmEXllQS8l0KNAO3LCKGCljIlKkmHQ9CiSRi1EuplLUkGP9K6dIiIiJmFIxEoHFu/qyUmSRCFKhmE0iYimIy839tGh/v6Kkj3WVflrz+PRngaAWeSEplV5kHRhJYwGVyHForc9CJWdmqs/U1NrgxCAjqF95kujQVxGHl3BXHMRdeeVuZ/Gs5/ecNJuIopyaLKV32LZasL6Ju/8ELtMIJRHTCTzvSl+IrFIBW1Z4d84XD7uYM3XyArF+BrG2Cd2ez7udrns3ca0GziI6Xe8CzjPcwiJu756Lt/8B2njRUsqyev0YvT5iddW31aq4i5RFdUEMYxvO9RF2NyHuPJbNzsFUDapdSHrIRKCk9S7d8vqOBRgBSIf09mjv7HUQy8EPEv71Mpc4aspRKX94qCg7dORKvKgaS1tGflgcAm0FuZUU1l/bhZX0jSCSonSjSyKnkHgXvUCiRAzOO+GdMESkCBQCiRT+1nm/KhY/jR+8gxUBrhRJDQVKRBg0wslRFgLgR3yejtOzrS/O8Xp9NlbECAQCgUDgEjKY/XRJ+r4kvT51PProo5es7ydVqOrUqVN85jOf4TOf+QxKKb73e7+Xr33tazz/+c/nV37lV3j/+99/scbJnj17UEqxsrIysXxlZYV9+/btus0HP/hBbr/99uHjZrPJ5ZdfftHGFAgEAoFnJ+d0R419+R+TV3duMeZy3W1bJwSQTQi4E8W3ECAihIiHbtZxhIiQZbbrwOXqnCkdZ6Y00VqUEljXQwpb1v4RCCWQUqKUQkmFlBIpB4Ktt6QK4d2uchBdIKVfNliH0TpCisllpVN20DZaVzEhtPSAnkRs7vKB8N7hgeKzbsfOkxtMqR/0XYa7DinzKAftw487pfDNKFPSC9Vi4vy6MfedlF/164jdBXIhBJKodCUP+t/mhkYMoyJ8+2C6tB1FQ4ho12vBn001FMe2I8uCa4rorPuXg/aJaIuxa80JL8ARDcV3O/Y8Sb8XZCnmjY9TODFcFrF7nIFEIIWX+cZzd8ePUQnpc1fPcgyR8H1Iv8HgJJXHJ3xG8ODZHOSeToyBoTA6cGU7B2ZsP358czg3V2al+h8ahBRQdcgaqHm/rrWujBfwcQICQUX6MAlRRg5sOMd6eR/niKUo1/X718ZhjO/Hn0ufoTro2xqLdQ4ZwZWLipjER3xYh3Rzo+dy7FQJMfqRw8calHEKTtA3sJ7BZuYmHOfG+SiBvrGcNk26skNOj0JkZK6Ndn2M8wWnMt3EOu3/Wc34WR4UnRrcL3ufaC/P3mjng+iAiWqDgwgBd9brIRAIBAKB5zrjue2Xou/A+XHBompRFPzpn/4pv/d7v8enP/1pXvziF/O+972Pt73tbczMzADwyU9+kne+850XVVRNkoRbbrmFz372s8NAWWstn/3sZ3nPe96z6zZpmpKm6UUbQyAQCAQC45zri/4ou5WRyjO2jXCAsLhtYqBSikgp4iQhjmMipVBKIZUcip9KqV3vDx5fCNvlTLdb27g4vN1Rdjb3mXNjbePHOO5ge5wp5LsIqn7x4LEqRdzRxxkv6gwEup2CKTAhTvrtt41j4PoVcvf2sg8p1ESe7s6V5EgU3c1VOxCyS9ly8hjL3N5ye7/emJgp1FAoVWwXlcvuy+0jG0+6r8E7G8cE0cH4xLZbNcwDHvTJUDRXQwF9cu/DZ0f6fscFz8lj9OvKgYg/tnywr+GxDPZRtikxtv22/Q63L9sHj8e12NFlLCa2EWPtjp1FrAb73N7PxLGMtY8zEHYHGDcqijU+PvC11Arni1kNnLDjWHxBK218lqozzouyDrrWYqxDa38rnSMWMCMdh6XmO5OMKhmJ0yRCY5ygqyMaRcSXNvawmS/Szi19Y+nYgsJZMgp6qs9WvErm2hS266MCBrEpZe6qjwrwP+7YMmZgVMxKD9cFfJSAAJ9lPaiuBjjh/06K0VfFcc01CKyBQCAQCAQulP/6X/8rb3rTm0jKmhHHjx/nwIEDQ2NJt9vlt37rt/jABz5wQf1esKi6f/9+rLX80A/9EP/4j//ITTfdtGOd1772tczNzV1o14/L7bffztvf/nZe+tKX8vKXv5xf+7Vfo9Pp8I53vOOi7ysQCAQCgSeDY+SykkIQJwlRHBFFEXEcD/+NP46iaIeAeDE4m8hzfhufYzw7RFN7jrZxBkLd4/U9EFQHQvFYyXsUYujeHB2hGJPYxDlEUb+KHMYmuG2/9XvRNJqIVXBl8R1R9u0jGUaCqR07wxKBEknpomUYsTDe7h2uCoHY6cx08S5i6WiMsU1RZeEzhfLZnmW7RKJKSVUJOeEftYyEUSWldy6LwfExFEgFoIRAyVGsxWD8Er88VWIoNMKk8CcFVJS/VWP7HqZj4GMhBu7R4ficfxyJnULq+MaJcEjhvLjKTnFy5NT00+0HAqgfgz/j4+7Vwb63v0bOdoV68XRybePEsM3futI5OyhuJXY4SobF1AbXUDmGwpaFwpwviGa2bWMR4ATaqR2CKwyKiVEWRBst18ARRu6WXDtMYcBaKs5yw5ymIgyx0WAs3Tyln1vamaOVw2PtZc70CzoUtFW3LIjl/5+J/jDjVZOhXeYzXp3GugJjswnhdeB4dc5ibT4qeiUMOM2gaOCEwOrcrq+XQCAQCASea/jPNhf/e8OzlR/6oR/i1KlTLC0tAfD85z+fu+++m6uuugqAVqvFBz/4wUsvqv7qr/4q/+Jf/AsqlcpZ15mbm7skmQX/8l/+S86cOcOHPvQhTp8+zU033cSnPvWpHcWrAoFAIBD4VpAkCUmS7BBGt9+/FELpxea8xKQduYePV6xoJJ6eVQQZV/S2bTsQVIUQwyn/o828oCq2iZ5l7gJSlu1yvH0UGzAQTcenFw8cdKIUW33sghpr1+Xx+P0mojaWh+uden7k3r0ai1opjHoMowJBiojEVZHlh2GNYdzBW3GVoWDqtzVYYbFYJJKKS4mEIipjFqyzQ9FSAZFQKCnKafO+wZbnQAi/XElBUj6F425IISCSgkhANHiKHV7gK482UVBVI2emdd5d6c+P364W+ZzRoehpR6JiJBxVNRA9nRcOx74YVJQlEo6o3N63j8THqjTEyqGEReAFTeMExgqU9BmlkbQk0iKFn4JvnEQ7r7BKgW+PzPBat06gzci5qqTv3x++GB6DF2IdsTKjqAEHhYmG51BJR6IMUrqhqFpoibVyeAxKWChFX2t9LprFH4O1wjtl8ePVVmCcHL6KrBPDfrT1X6pMOcaBeOuPeSTM2nK7UfyBoHBgXYR2XoRta2iUz6exkFkfgwAgHTwPw3WFRTlHZDVOW5yx6MLQ7Fu6meFUs6BdmLHSWZaeyNiK19CiwLgCS+GjBWyGcRmF6ZfCa461Guvy8vVYulidnhBXg3M1EAgEAoHAhbD9u8T2x0+UCxZVf+RHfuSi7PiJ8p73vOes0/0DgUAgELjYRFFEpVIhTVMqlcrwfpqmT3ux9FyjO6+Rn8e0/7MLpmX2Zqk6bV/Pt417KMe8eEL4jFExPrl7m0sVNRROXZmhOuhZyRghlc8IFWoomFrhRU0lEi+aygRJVBbqMWVlc0qHaoISMUpEZREfjS3XVSIhEgmJmEIORU8N9IcO1EikVG19QhQtRFaemYjIRUy52nB6feYKDAYnHMoppkRCrFRZDAlyYzDlGRTAVBSRSDl0khrr0M5hnSORkkQJ/0/4DbQdOBd9tmeiIBFQiUaCamH9WY7womkioaa8h1c7gbZeWB2IqrORISrVLe0EPSOxeME0lo6FWA+LNxkHPaO8l1g4EmGZT3MiaVHSkRmFNl44FDhmKjlpZIgijZRQFAqtJbos/jZVyYgTQ5R40dIUAqMVWguUcsSJIa5ZZAoiBleAzcEWAoRDpaBqAjkTgRBeHNQW17P+uksEsqp8sTIAbXG5xvU0SIGIJHK2wrCCW2GxzT6u8NepiCRyoQppxMBL67b6uDwfKtNypgJJ5BXeQuMy42+NRShfAU5ECgS+38L6dawdhqcKJXHG+rbc4HKH02WesCpfp8ZhC4ftg8kERX/sdScczkq0Fmgd0e7HFFahrRd0CysxVqDL+x0tfTuQGR+xNRBp58tr6KB2ZD1NP9PoTFOxhhmhOahmmFGaRBpyq/jKVpVTXWgVjs3M0DIFm7RoiwZNd5rc9dC2S2H6FKaDtfnQ2epcBkPnuJ3Mqw4iayAQCASeA1zKTNXA+fOkClUFAoFAIPBsoVKpUK1Wd4inF5pR+nRl16zUs/C4guuYoHo+640yZQc+x8HiwdTy8xFBzMSj7TmpnnHRVg7zTr34sn1ooyxRi8JhEEKW04/Lwkx+grjPy3S+3rodTmb3k+yFE8MiO8NcUqHKrFM/Pd+JQRSEHK6nUBNT8xXSi0GuzB8Vfmp+VJ4jMzwO39fAaRqVU9ut8E5CyqJNA6ep2h44indaKgGx8tPsEV4sLWN+iaRfnpRV620ppHpLZdlWCqcDUVU4SlHX9z1oj2UZSeDEsF0KR6IcaWSIpXdzDs6otiBLl2eSaKJ45PYUQiHLOf5xbIlTi6o6H1mQO2QOUglU5IgqFlUDUZWIWOAKh8gssnAI5ZfLWoSc9zOvXGGhMLikACkRlQgxFcPslD9thUZkGtfNAIFIFcxPQxr76zvXyEobCu1PZBLBQh3S1D8JxiLSFiIrvAoZKZivQ7Xis3WzHJFlkGuEsZAmvu80gShC9DMoCkQ/B2389kkMSeyf2ryAXgb93CvokYA48v8A+r7ddQtsO/fPmRK+H+Nw2uD6BfNbXUwucFZgjXfQnk10LcroAWO9S7ZvJLkVZFagpyK0jbF4obWn4ZjDi9OFgaJgeangKpczY7sIYzjRS7i3scR6fy+ne5fToEcj2qQbNWiZ02jbozA9jM3Rpot1GoHB2Xys0JWdcLGO/jIEoTUQCAQCgcDFJ4iqgUAgEHjOkSQJU1NT1Gq14e0gpPzZwkX10A6LbI33u/182bHiVPIcgmsprF6Qy3fn7/DO2dHUfDeaur/beq5MHD0bbptgO9rrSEIdJEfu2FY47MDpOsgcdQaIh+2D/wbHYQcC6sQY3Ng+VXlMk2LQ4ChU2ZN1Dstoqvdgej/4uAQ/RdwzmN7thn1Nmo8H09bd2D+LwLqxkbvBeRlldg6eZ+NGmaZurH0Qb2Cd8FPvGcUFGOuLXWHLaIBB5qgtp6iXl5T/J/y09sE+nBf+MA5XavZu0rA4Nlg3eQnJ0iQdCSh/NBEOnFd0GeYexJEXNaWAKAL6iMI7VYkjqCRQSf0RRRqy3IuU1npBtFaFJBmKqmSZvz8QVWemcWkKcSma9mIoCjAG6lO4WhWqFVwUI/ICej0vvBYa0hhXrUCa4mSEKHLf3ut7gTWKoJLiKgkICXmO6PQQvR6q3fPnIVL+GACyArIctdktbc2jE+aK0sXb7zPf7GJzcEZgtY8psEZitKDTT8m0IrcSYyWFlWgryJykb7yT2T//CusiTvdrrJUvvbnIMmsyXrXUp657bLVjHm5WeKg5x2ZmWLGH2Yq3aJWFsjrFGroUWI3o41xR/g2wY6/n3QtdDY8rCK2BQCAQeAYziB+6VH1fCJ///Of56Ec/yp133smpU6f45Cc/OSww7/tzfPjDH+bf//t/z9bWFq961av4nd/5Ha699trhOhsbG7z3ve/lz/7sz5BS8pa3vIVf//Vfp16vD9f56le/yrvf/W6+9KUvsXfvXt773vdeUAbqX/3VXzE7OwuMCt/fe++9AGxtbV3YQZcEUTUQCAQCz2qiKNohoEbRc+vt70l93jrrpypblvrx93drGwqrzu0UMCaWDXIrS0encyBMuWsFmAk3qxDGJzXagcw7KZpaZ7zGK+1kPMCg6rjUvl1YnBhVKh+Ox+ZoYQGf/+jKifeDTFVLhHUGJ/TQ3Wopq5sLiUP7qAHBaP/CoV2GEApFhEUjnEAMMlWFxopy6riT4EAZX3AKfOaqKY9RINDaESFQQvoyQc4Oz0BuFX0pvFtVijJb0w1zVWMpSKSgr8QwM9W60q1aOk0jP/uctPyxwZTtttTNIwSdKEKVT7Fxo0xVX2hK0tEKOVakqShPbyR81mpHK2LpkDhy5wU4h99/R0ck0hJLi5QObQTaSZ8r6qDS175d2VEmaynMqnK7JDZEyqAi58W/Mns0imwZD5ARTXvXpjMOW/j6SCICVckRUz1ku++vMWtx/XL6PyBiiewX5fR9QDtcO8NpA9YhYoXoZKPp/drg2pkXXAGRRD4Wo5p6AbQoSpdpKQgq5af2K+VfRUZPqMYuiiBOcdWaF1aLwrti0x5oDVGEq1ahWh0Kxy7LEL2uF12V8oJubaqMHyggyxDdrt+PVBBHXtA1BpHnkGVEna4/Bin9uLV3ndLpsWet6eMNBuq6dbjCYvsa17FkmxJTeBFWa0GzW6Ew3vXaKmI6JqZvUlpulv6CJG4bLmvl7O0V/BNqZL15Iq5ECTjVg/u3cjZtlxPyUXpuk9x0KGyPXLf869np8rU/ElwHbm//OtqpwgehNRAIBALPJNzFtVGMcWH9djodbrzxRt75znfyAz/wAzvaf+VXfoXf+I3f4A/+4A84fPgwP/dzP8frX/96vvGNbwzrNf2rf/WvOHXqFJ/5zGcoioJ3vOMd3HbbbfzRH/0RAM1mk9e97nXceuutfPzjH+drX/sa73znO5mbm+O22247r3G+/e1vn3j84z/+45NH/QSi3Z5b3yoDgUAg8KwnTVNmZmaYnp5mamqKOI6f6iE97Zh0nJ6j/WyC6tCRCudMcxo6XHdxeA6yEMv1BusMhFXnDKVatW0/shRYTVm0Ru4YgysFRmG9qOr73Sa6DtYTo/uDdQbLpVBY8rH20okqLE74EjyDQ3OjO1iMz2AVbhgJ4Jc7cAWWCFPmu1LGGFj0cP9CSJywiG2FqpwYHYN2CcqpoSjrSi8tQOFiIqdQBh8jgMDihsJ0LBW5gJ4RxFKOth8UmhIQCS+4DjJbS00WY11ZqEnQNZN+ZV2eAt8OXS2G24M3PwoxEG0FPVMWffLP5vByEwI6WhJLiyrXHzhhbXm8cRFNFLLyzlsxzHSNhC1jDCxKWn/+y22TyJIqQ9zQVDf98+DsqF0KR5QY4tQSb3ZAerHVaZ9JKiQIqYkaTUQ0yg22PYcde1rVVN8PvrxEXc8OXzoiEshm38cMRMqLscb5PFUhEL0cam3EVAXi2LtXiwJy7UXbXg+qPeiWwqkx3o2a5V5UjWMvnuaFF0+NQWgNReadqELstLeoMlJASFySlC5b5a9sY6CflSIsuCj2Iq4Dci/Givq638egLyURxiJ7GbR7RGdaPvdVW1zhmGk2cQXoTNJupPSLiL6OyLWkUSTMxpLeTAXtqnQ0kEO/r+n2c/bXM2YrAmkT7m/cyMl+n4Zq043arEWPUNgexmZom1GYrhdYnfW5ya4on5BBdMfo79B44bpAIBAIBALnxxvf+Ebe+MY37trmnOPXfu3X+Nmf/Vm+//u/H4D/+B//I8vLy/zxH/8xb33rW7nvvvv41Kc+xZe+9CVe+tKXAvCbv/mbfO/3fi//7t/9Ow4cOMAnPvEJ8jznd3/3d0mShBe84AXcfffdfOxjHzsvUdXac3xneRIEUTUQCAQCz2iklExPTzMzM8Ps7CxJkjzVQ3paMPJwnt+6F74DN6zEPXy8o9/xZXbbfXlW0dXhyum6ZiTeDoXcgfCp2SkNl5P1hfFCrWNinVEOq8aW2am7H7xBIMrp7XJHdIAtiyVJUUwsF4hSENVYJzEi9wW1xscpJAaJdBIjMgS7Z/YWIhv+Wi5R2G0RBYpoeDxyWxRDn8gLrogJ4XWwbmSUH5UQRNvOoRA+Z1YIfzxq2ykeSdteWJXb2gaPZZn5KhmL1sWLrUJ4MTWRvv/x9kHfsfS5skpMXsdubJ2BeLvdL+0zYx2KUiAdRvu6sm83LKaVtu3QTUu5vsSRKEskLZU1PZo77nwhLT9WR7JmkNIihMM5gTFqOGveJwYYnwVbjtsYNRqHtKSnNCouEMqNYofxJtFoOkNMSUSqvKsVwFhflMqCqMeIWoqoJlBN/MFr7aMBCgOxQiQxVBJEmgy3x5SvqTRFVFJckZevAwt6kPca+WVRNHS5+scK52Iv2MZlLAJAEnvhVgiwxq+bxN5Fqw0iyxDtNmJ2w8cYGO8QjbLCF+bqFVRO9dAdh+kJdC7ptFN6RUSmI/pGsZHHdBJJMaXQrsbpbo1oD5h+wQ0LGS/up7TbNXK7zB1rS7RVl3bUoMsmbXMGbXpom/m4ANsvC16V1mRXFtET5VUUxNVAIBAIPANwXMLp/xexr0cffZTTp09z6623DpfNzs7yile8gjvuuIO3vvWt3HHHHczNzQ0FVYBbb70VKSVf/OIXefOb38wdd9zBq1/96onveq9//ev55V/+ZTY3N5mfn7+Ioz5/gqgaCAQCgWcc1WqVmZkZZmZmqNfrT2iqxnOBc30gerwPS+f1YeqcgUuP92vwbgmlA8YyR91gqq6Y3J+wYw9LoWvoOmWYqyiGGa+ydL+KcrtB+6QgObiW7Fk+pY5fa4Zs6IRFeJFSDEU3Oex7ILZKEY3Giq8wNRBVZZkPO+xvl91vF09HY5LDfn3oghqOcxA3IJwoS29JJNGoqJYbFOwqt7SDcex8Tcldlg3HUP63fV0hRiW6IqGGYu2oOL0/YiUHywaC7kiz8+dn0N9o2bizFcYFXT8iWTZG0ven8JGmA/frIOZAlcKnAiLpkML5drzwKsaEWzEmwKptT5JFTCwZicRu2D54LIeFvny8QVTGIAgckXJUk4I4NqjIEMUaIb1wOyCq5MhKB5kKRGWU4eAM/qUX+UJUIla+qNY4sUJUYqjEiHplJKqCF1HjGFGt4KaquKm6d8baUrB1zgum4J2qw5MReWcreJdrWvFPRApuqoabqiGUQpjyNSqFf81ojej3iebWiNp9XK/A5YapZg+bOWwGRVeyuVmjW8R0dURuJFUZk1lBXo05lkTYuTpTWJaLjMuXK7RaGUe3ljjRLThlmzSSDbpskrk27XwVMyawenG1zGN1jH4sCuJqIBAIBJ7DFEVBs9mcWJamKen4+/95cPr0aQCWl5cnli8vLw/bTp8+zdLS0kR7FEUsLCxMrHP48OEdfQzaziWqHj58+Al9X3zf+97HT/7kT55znSCqBgKBQOBpj1JqKKLOzMyEKf1PIbtJCxMfUc4ltO6miO3avkvWoRhIc4P28f2XmZHDkZiRC3Ygqgovmw0+UA0jBMrc1uEHLefnao8yXAcO0XIdx7Y2NSbcjotX4xmwfh0p44k4gvGcWCVihBjl0Frns14HLlk55kz14x+1DQTcgXg7aB8gZYQQkRdTS/GW8cJeQpbO1wglonJ8powM0GOOWDV2rk1ZoGsUWbCzvYxLQCCJiKkgnJd17bbxp7pKNOaw9XEHo1iIyEWlXFxmvPrRYYQZRkYIJyaE50EcgsI7cyPhwxTGxV8lJFKIMudVkijB4IoeF22V8MJvMnYJ52XG7OB5lGPXtwO0dROXcSS3ifJllIIQgoo3ghIxyrNVAyeugIq0vq6WcEP37UB0joQbOmLlLulqSg5+mPBO3FqkiaQlVj0qSdO7bQGpHEnFEFUsqgaiKpEzMWJQXAsglog08rEEi7NepZbSZ6sa47NgqxVcfQo3P1+2aR9dUElxQnpXa7UKckyE3r8f0e/5CAP833wFiEJT6fWYPrqCa/SwzQzXc+RbDt2XZP2IM806XR3RMYq2TuiaCqkW5I2CuVbGa+wUeXeRaeVQwvGpE5YN3WddbrDqHiIzTQrT925W0x25WIUtf4ixEz/qBIE1EAgEAk8H/E+xl85Y8qlPfYr3vOc9E8s+/OEP85GPfOSS7fNS8fu///tPaLsrr7zycdcJomogEAgEnpYIIZibm2NxcZGZmZmnejjPSqy1GGOw1mKtLSvODwoLuYl/51o2EBqHyy5w+8dbNlouRo+HRlYvqfl1fN6qEF50HzlFR0LbuKtzfJ1xxgXJx2N8ey9syuF9KaJSUPXLBoKlX08N2weczYkKI4HwXAy2lyL2ztOyb+VLWnk/qlDELkUgUcREREgn8Se0QPhwgrI/gXDJWJarw1JMjGUkMBkYiygYuWIHYqcjIivlTV9gKy2dq0oItMgwIh/GBcRldIAcEw+t83uwo6e/vNbKjQQU43ECQnihUwqcACt8HmoaSZQsC3Ypv38lBVJCqkZippJiKHoOvrNo54VAXRYZc87PZtcOMj8z3/9zkFkvi7tB5IEfFEL4LE/LQLCVpJEkVpIkUkRqFLswiEqoKklcOmsH52TcTD2ISditbZxIQFo6YyPhqCh/K8sc2qoyVCJDGhnSWFOp5sjSrSskyNiiUlDVFnJhCxGrCauwiBTUEsRUBTHf8EqxtWWBLgFxBFNV/xobq+ZLHIFLvQtWRr5NCpx1kPWRUiJaHVS3D1mOaudQGKY6BfUTG2TtiF4vod2P2chS2jpiNlbkC1Os9OuYwtHp9VnK2/zAFX22iinu3arzjdY869E67Widjl2nk69gbI61OdZprO2NxQOMogGCsBoIBAKBpxrnLu30/ze84Q184hOfmFh+oS5VgH379gGwsrLC/v37h8tXVla46aabhuusrq5ObKe1ZmNjY7j9vn37WFlZmVhn8Hiwztn4zu/8zgse9/kSRNVAIBAIPK2YmppicXGR+fl5lNo9b/K5xkD4HBdAz3b/fNqcHRdAL96nsd2mjF8ydkzhGRM3Gcs63UU05Rzi5eMzniq6fUjjy9QOUXfUPnq8m6h7Ns5H7N1tn+PLBiKvHLhbx0XhMaft2cY1GIPblvG661i29TfYvyy9q8rFfjyl/DrYZiD++uWTfwMG2bIOOyo4NiHyTo5rMIbxPiMXT4jKykVDATh2cek5VighiZFldqwoYwBGt3JcLMWLs0N9UYxeDwNReCDWDraplAJuLAf5so64dKnWYohVWSws8v5TKwRaCHIUHSPInCBHeIFXCqQSREoi/U78FHs/EC9KSi/oJlIQST+6gVDri3pBTflYgkRaUumYiozPpxUOJSyJssTKEitNrVqgolJ0lSCkQyUOWQVZk6j5DX8wgyiIscgBUZ/C7d2Li8ofGrK+z2OVCtJodNKkgGoVt3cRajVElvmiW9aBNagsp7p3nXSzT73RY77ZZW49oddPhnEBU1FCZiR2psJ6VqXiDPt7La6ea3JobZoHm3XW+5dxmibHK/fTM5vkpoM2PXLNKB7AaVyZ1xyE1UAgEAg824nj+KIYWw4fPsy+ffv47Gc/OxRRm80mX/ziF/mJn/gJAF75yleytbXFnXfeyS233ALA5z73Oay1vOIVrxiu8zM/8zMURTGctfiZz3yG66+//inLU4UgqgYCgUDgaUCSJCwuLrKwsPCEfgF9JmKMQWtNURQURXHO++PTxJ/OfCtFBrFjVyMxzU3EDIyLbHLHuhfGdlFzUniciHwd5GvuECfP7ZJ9PC5EWPXsFEonRd5z5bQ+3r7Px9G783iHcQIi2tk2HJs65xjc2PO6vZDY+HqTonG5XxmP3LgyGgmvuwm/xKP2QYEydxYhepdzKcWkKDwcA6oUc0uht3QMqzICISUhFt5jHAtFRUkiKUikpBIJliqCqcgxqxwzsSUWjti4oUvVOIFxgsIK+lbQNYK2EbSdpGMFmRCISBFHkkqqSBNFEiumUkUllcQyIpJQVTFRGTeghCMpHa6RhGrTjGXQOpS0JNKSlE7Xai1DSodUICNHNO2QFYmcUojpBLHR8EW01CCXWECaIKpVbLXiC2INns+0ggBctepr3KUV31Bo5HQdudVAbnVQ7YxorctcJ0e3IesopjfqdHVMVytmI0VLK44zh6rOcc1ixk29BraV8/mVPdy9UeO0WqehztC167SERJt+6VzNwOY44QCLcCEKIBAIBAJPHZeyUNWFvr21220eeuih4eNHH32Uu+++m4WFBa644gre97738Qu/8Atce+21HD58mJ/7uZ/jwIEDvOlNbwLghhtu4A1veAM/9mM/xsc//nGKouA973kPb33rWzlw4AAAb3vb2/j5n/953vWud/FTP/VT3Hvvvfz6r/86v/qrv3qxjvoJEUTVQCAQCDwlSCmZn59ncXGR+vg00Gcw1trHFUmfaULp05VzihlnPbeDDM9zO2rPXyg5l6g4yGg9x37ONzD/Aq+VibXPuY8n49iF8xNVz76vsz4P5ys2X0BMw9n7316obKcg/UTE7wsazi5OZi/2jtzE213GSqbD+IhIpCOnr1BDwXkQ0zAs2oZCiZiKmCFyMYqY1FVKUVcRu5jlqM5SNWJvTTJXFcxMQZpAFCuEkvRERI+IXCjWdYRTEiUFsfQxCAioSIgHMQp4F2wiHXOxKYtzOVJpmUs7VOIt0kRTqWqf5ToFsi6JLpuG6RpUUx8hEEcQRZCmuKmaz2QFqIKdmYZeD9Hrgy5Qxue7xnlBtdtj7sgKdmMLs6kpmoKttSqdLKZVJBzrpmwme1mrCGbjHu+8TBL3Fbndx/2tiL9b6XBSnqTpTtM167T7K1iXY22Go0CM5T8HgTUQCAQCz1W+/OUv89rXvnb4+Pbbbwfg7W9/O7//+7/PBz7wATqdDrfddhtbW1t8+7d/O5/61KeoVCrDbT7xiU/wnve8h+/+7u9GSslb3vIWfuM3fmPYPjs7y6c//Wne/e53c8stt7Bnzx4+9KEPcdttt33rDnQXhHsOfatrNpvMzs5S1pt9qocTCAQCz0mmp6fZs2cPc3NzT6gK41NNlmX0+/3hbb/fJ89ziqIIQmngvLnQqIQnKth8SyMZLpTzev1vFzTPU0jd/lo8677OU+w9l7D6RMXds/Y/HstwthiJ7YLrOVy9YwXBAJRMhgKtEtFExm9VzVMVs9TcNBVbZUbUSIVCCUEsBbOJYi4V7K/C5dWCirJECmSkOGWqNEkwcUzDKWwkUZEqC28J5tPRp28lYDa2TClLRTmm44JKZKhFBZW0YGZPhqqDrCtEqpAzFajEUK/CzBTuwH5crebdrHnhC2GZ0r1crYCK/PPSz5DHT8BmA7bauGaGPt33LtZ2xOmNaRp5zFYR0TeS4z2JMA7R6uDaPWRe8MU1x+l+xglxihPF3WS6hTZ9tGn5SADvFQLngrAaCAQCFxVfVLTRaIT6Ctv4iZ/4CU5+8mv8ywPffUn6/+WHPsG7/90HnnLB8plAcKoGAoFA4FvCwsIC+/btm/hF8umK1noomI6Lp1mWPdVDCzxL+FaJL+eznwsRXi/WuMerqZ+bC49q2HWMZQ7m4/YvxO5H6J5oZMR5si2mwrnR87IzRmK7s/Xxsqe3j31SqB0XaTtyFSVTIpkgRUyipoio+KgCE1PrzZJ2K9Q2aszKqi/yVWbEJqrPTFJwsAYzkR9lzwkyGdGLFKtSQRShUkWcRsxVFDUliRVMRTFTylJTllRZ5lo59aSgluYkiaEy3ySaEsiZCDlbQeQFolb1zlWlRhW60hQ3jA1QMFXD7t+HmKoiZtuIbo94sU3cLUjbGckjm/SaCc1OhVYWk8gKfSNppXVW63UOiR6vmWpjevD3q4exGLaik/T0Op3MYmwOrhjmrY7HkgSBNRAIBAKXkktZqCpw/gRRNRAIBAKXDCEEe/bsYXl5mSRJnurh7IrWmm63S6fTodPp0O120Vo/1cMKBL5lPBXiz9Nxn+cv9F5qzE5x1xm2ZwKPC6/nYvtxD/N+YYdYq0XsIwZEBMjS1SpHUQOl2KpkSuKqvrCY85EEkauQFFWq7SliYlKXIJBURcR8knDZlCIpC1Dl1nEyUvRVRFqLma4nLM2m1GI/nqkopq4s9chSUYb5rYx6JadSzUmnWqSNvs9lraWIWgpJDGkMUzVcre4fD5iZ9kW70hTyArE477NYe31q9VXS9S5TZ5rMb0YkG5ZWEdMoImqR4rF2lanlKosu49un2vDoNRzvHeBEfJxTzpYFrbpeXLW9Yd4qEDJXA4FAIBB4DhBE1UAgEAhcdJRSLC0tsXfvXqLo6fNWY63dIaDmef5UDysQCDwNeFoJYLuKu3aHiHohIx4c3/g2wm3rT3g3vpdtJXqwv7G8192iCYBtMQTb4gn6EtVOh5EDSqbMqANUqFN1U1yfLJPXFdNTEbVazHqS4tIIE0U4ETMXV5hLQeKLZu1/MKdWxgXM19dJKppkyhLNCaJrT8Bc3Yup1QokiY9/kBI3PY2bmR4d8LU95MYmlc0tKhsNZo5sYJuGouHot2KOrc2wWSRs5jG1yxZ50bTmxkabbGuKR9vX8WC7w6pcZcMdo5EdpdBdrMtxrsDazGeuQshdDQQCgcBFZ/Qz3qXpO3B+PH2+6QYCgUDgGU8cxywvL7Nnzx6kvLTFXc6HoihoNpu0Wi263S79fv+pHlIgEAg8YS62KLfDxTrx0IyKqQ1FXgNjQuzOaAIYz6mdEF2Fd4968TWiF20gRUysKqwXB7h7c57axjR1N8VL5qY5UIPZ2BFVYqJqzAlZxaYJVgi6JiWRjqqqsC9PSaWhFmvqqznz7Q2ihS0fEzBT8QJrEkGlAvWpSVG1WsUtAHGEqFaQSYzs9FHtjLTZRz2wyUKzwlavwmaeAjFrlTnczDTXt9pcvilY6da5r7nMN1NJN1ofZa4Czmlw1jtYnRmLdAhfVwOBQCAQeDYQRNVAIBAIPGkqlQrLy8ssLCw8pcWnnHO0222azSaNRiOIqIFAIHABnF1kLXNZd8ucHebBTsYTwKThVlDOCiiFVmP7CCHJRERfNYhUlVj6f6vNQ8w05qi7GlMq5o2XxSzKDhJoRJX/P3t/HmZZWd/73+97rbXnXXvXXNVNDzSTgKIgILQagwmHRknO8Uj8mUGFaPDIr/E5ijFoJGI0SqKeozFBTZ4k4BP1SvQk6gkKETGiCRgTBGWQlgaaHqu6xj0Pa7ifP3bV7qqeqGpqd3VVf1597atrDXute1f1ru769Pf+3jzpJohnE2TSMepRAhdIexGZasRALUlud4NMtkEiWyW2poiTjWOyCUx3BuIxbC7XagcA4HrYZApcF5JJTBBg6g1MpUrW20tyf5XceJ3uQgpjush4HoWYyy43R7y7i9PLFQbGDWbkQvZ740x6u6kGE5QbrddoZ3uuzqlabbVgULAqIiLPh8HaTv3cdQIvdHqCUagqIiLHLJ1OMzw8THd397KNodFoUCwW2xWpUdSpiTAiIieXQ4K/o/acPfr33tlnzrYcsDTBGEIgCAozYWurZcCE2YYxHq4Tx3Xi3P9sLwknS9LJk4/62eAM0JPweGG/S7M7RjmeIpZNMOnH8COPgWQXcQdSnmX9tibZmE8u0SSbGSV3+l7c3iSmOwX9eUgmIBHHppLYNWta/Vdnx7p+LfHJKeLj0+Qmyww9M0Jz2lApxnl6opsp36OQ7SLdl+UXe6vkKlmq9Q1MNOHu6R1M2V1UgjEaQYlmUCSKGkCAxbZaA6gtgIiIHCNN/z8xKFQVEZFFi8fjnHLKKfT09Bz3e1tr2yFqoVBQT1QRkRVkboA4WwlrTdhejMtasCYAHMKotXCWH1ZxnTiem2LKSTFhhkjV8zy+q5c1e7pZk25wVo5W5WoiwWQzgR9rtRtohAnSbpxcPUlXJWBDo0wmWyeRrxLfUMFk45DPYPJZbDYHmfSBsea7wXEwiTh0pYmlY3jFOonJVmuAqVKKqUaCyaZHzM0wWU9jp6qcVinyCv9UnioPsju2i2lvD9O1ZwmN11rUyvqtClajRa1ERERWMoWqIiKyYI7jsGbNGgYHB4/7NP9KpcLExASTk5OqRhURWQVmg8R5bQaMmSngDFvT5o2DtT5B6OIHZerGo+EV8ZwEY26KETPAtkoPPy53k7YpLuzN0hMv43kuse40TzaTdKU8uuMeccejGnp0FQPy4w2GCiUS3XW8vgpuXxknlcT29WAzWYjFwICdbROQSmKyGUyjgVes0O2NkBkp0D0ep7ucwiFD2nMpJTJMVZOckSpxdgn+c/xMdjfW8kQyohpM4gcVwqhOEFZm2gJYMNGBgFnhqoiILIC1EOmvjGWnUFVERBakv7+ftWvX4nnH76+OZrPJxMQEExMTqkgVEVmlDq1ebfVltca0Klht6z/SQtNa5KruN3GM1/rYncZzEux3U3gmwf7p08jaLnrp4vRiiOuUsNkY4+kUsa4kjcgj5Xp0x+JUgxj56Qa5sTrpnhLJ2E7MdAHTncdm0xCb7bvqYGMZbC4PkcXUa7iA0z2Nt69Car+P3WfINeJMeTHSrst4optUX4aLUkXOrzqEey9iX2InRW+Emj+JtRGRDcA2WiGyidRvVUREZIVRqCoiIkfV1dXFunXrSKVSx+V+URQxNTXFxMQE5XL5uNxTRERODPMCxXYP13YZJ9b4QKO9HJYfuDMfHdqP9fuNOLnEOrpKg+SjPjZ6fXjrMqR70uxKxHmskKYvkSbpQncs4oxnKvRk9pPN7yLRB96GLORSrfYAPd1EGze0hpFJY3M5zNQU3tQ03mSBM3aME00VaE5CeTrOzyd6GKvHSKT62D1W5//NGZqNLn5WfDE/m27yUOLHVIIx6sE0DX96fr9VO2exLwWsIiJyGBb1Pj0RKFQVEZHDSiQSrFu3jnw+f1zuVywWmZiYYHp6GnvUxVBERORk0m4TgJkJWmdCR2OwNgIcIDyoH6uDMTGCqE7J3ce4m2Gf6WPkmXM5czRPJumydiDN3kwSJ+6Rjzs0oyy9tSS9xSa943X6qyW83gpufwVTa2C6urD5HLguxGKtNgGAScRxPA+nXMOdrhAfr3P640Vy5RSTzTjp4QS7q0M0p2usjYqc1eVRf/Yl7PH2MenuYioK5vRbbWBnlx5R5aqIiMgJTaGqiIjM47oua9eupb+/v+N9U8MwZGxsjLGxMXzf7+i9RERkZZsXrsKcStZDQ1ZrwdDEtz5BWKVhCtTcSerxArvrg+TqA2xhA854mUw6xnhXhkZPiqlEjPGmR18zQWgdcpN1UpMV4sUGTjqJKXdjc1lsItkaQjIF8Rik05h6A1Or4U0WGGjuIzNSJz+dIVdLEpGkEEtTz6eoTRf5b+sMD4ydyq76AI8nG9T8SZpBiTByiMKo3WsV/SejiIgchgUi25mf1fRXz8IpVBURkbbBwUHWrFmD67rPffLz4Ps++/fvZ2xsTItOiYjIohypcnPegle0erLaqIGhSWQahFGFMGpSdceZdjPcOd2gLxrgBfU8A9WAnaMl9vemGR7MUEl6GLJ01xP0lBvkp6vkvN04g9OYnhwM9kE8DvEYNpaAXHdrVI06pqcbr9ogmy8S31ciO94gtIbJpseU57HfyXPqUJJfzpWYnHYo7X0R+xM7KDsjNIISDeu3FrGa6bVqrNoAiIjIofQ3w/JTqCoiIqTTaU499VSSyWRH79NoNBgZGWFyclJT/EVEZEkdEjxaC0SAaYWUQDNq4PuGmnEoO/t42k3ysJ8hFevlTC5mUzlPf61CoSfDw7k0ATEGk2lS492cNtqgL1Wju2s3XWftwu1LQ38Xpr+H6MwzWvdMpbCpFFyUwJmaIjlZIDlVIr99nOaYpTiZZLyS4ufFDNFwP41YnV93HNxoLf8+FrLdH+Vp74fU/QJBWCWyDaKogaFVtapwVURE5MShUFVE5CRmjGHNmjUMDw939D7VapWRkRGmp6c7eh8REZGDzQ0ijQ2xxoANCaMKkW0QhnX8sMKTSdgfrOXZ3etYt9/ngoEy2d4041GGpnEJbZLJhkdvLcVpdop0X4lYoY5TrWPyOWx3T6sVAGCTSejOQyyO6crgeS7uYJn4vhqZkQaN0GOy4ZEeTFDrGaCvOMFAPORfx9ZQqJ3BtLOLmj+JH5SxqloVEZGDWAtRh/460N8yC6dQVUTkJHU8qlNLpRIjIyOUSqWO3UNERGShLLbdJsDiY22INQGRbVCsQ92bpuSNMBIOE42dwyVUsJMV8vkU25tZKjmPKd/F0E1vuU7PdJX09CSx9LOY/iI2l4VkCuu6WC8GXR5kM5BKYvpLeL3TZHqm2VibJlPOkK3HedYm2NM1QGjqnBEUGKufw5NujnHnaSrOOJV6E2goWBURETnBKFQVETkJrV27tqPVqVNTU4yMjFCr1Tp2DxERkWPRDiStxWBnglWfZrNJ05+iYvYx6TzJaPxx/mVPN1lngKE9G9gy2E+zL4EZzPCdSoq+RIqusW76doa88Okpcr37iPeD25/E2TQAuS5sbw82l4N8HrsO8H3M5AT9PU/QM1LEHw3p35FnvJ5kNBlnPD3AxYkiLynGsGziR2M1/sP9F6r+OH5QJoxqagcgIiLMNriR5aVQVUTkJNLp6tRyuczu3bupVqsdub6IiMhSmg0ljQVrwtZ8ShsQWJ96E/yg0qpedUfwxy5g7XgvLx5rsGYwwVRXjnHXpZjw8JxuBioNeidrdO2vk2YMM1jHRBEYB9vb07phLIbt6cOsG8RNxHGyZdY2imQmfdKVNCk3zvRQN6muJLnpaa6IJdm/9wJGEk9SdPbR8Av4Nmr1iDWhqlZFRE5SlpnW4R26tiyMQlURkZPE2rVrGRoawhiz5NduNBrs2bNHPVNFRGRFarcFMFHrh0lrCcIKYdQkCKs03RI7EhHj7gB7JzZwJWvwR/eT6c+yvzuD58SYbrr0N+P01ZJs9KaIFxu4NR/jB9h8Dly3dbN4DNvXg4nFMNkUqXCU+GiV9EiT9FSGYpCjEE9STA3i7y/y6p5hHpzMsiOepeDsphg1iWwDoqaCVRERkWWkUFVEZJVLpVKceuqppFKpJb92GIaMjIywf/9+bKf+q1REROQ4mNtvFRNhrQ82IDQekW1QshF1d5pybIxvT1zMOreHC7wyteka2/IZNqzJUAriFH2X2J6QvnKVTHkKr9rAyaax3XlsIgmOA+k0Nh6HbAYn5uL0FujKF4nvLlD0E+x3YyRdl/3D3Zzbn6R3l+GHIy9kh9fH0/EKDb9AiIuNqu0+q7OvQUREVj+LIWLpi2VkcRSqioisYp2sTh0bG2Pv3r2EYbjk1xYREVkOh/RbhZmp9gY/auIHU9Sao/zUG+Fnbob7R/vJu6dwRe0cxqs1Euu7eLKZYE+tm9xEnr7dIUOP1Tlj+0+Ir4nhDGShtwu7YQ02k4W+Puwpa6Hp40xNkB4Z4yX/9gyVvQ6T0xn2V5P8rJQkOGWQs50CFzfj3L9/kJ2JvYxHTzNZfYowqmNtA2tDjA3nvw4RERHpGIWqIiKrUCerU4vFIrt376Zery/5tUVERE4U7X6rmNaiUCYEG4KN8IMCYVjHDytUvUnutR7DxTW8qOSTyiXIDOWYTngUfI+CnyH5TEj/VIX00BTeYAUnlWjdI56AeKzVEqB/AIyDd/oU2XSR+N4i6YkmpcDDMx7TqR7GJ2q8OCqwqXEaDxd7aCSK1P0CQVglsg2iqAGoclVEZNWzHeypqr86FkyhqojIKrNmzRqGh4eXvDq1Xq+ze/duisXikl5XRETkRDZ3MSuYWdAqahKagMgGRFGTvfyE6dhe9pfWs6Y4zDnFBm53mkJ/lkrKJeVmKTQTDJUrdE/VyOZGMUHQut7QcOvCrovN5zGn9OMmYyTTRbxcndMbZTJuitFGjORAislsgr6JAj3xXgqT5zPuPk3FH6cZlOYsYtVaF1r9VkVEVqfWd3lZbgpVRURWiU5Vp4ZhyN69exkbG1vS64qIiKwkc8PVVtWqBVsjsA2qTWiGFWreBNPeAD3VzZwZq5Fo1hjLdZHyMpRDh5LvMthIcMbPJ4nVA0zDb7UBSKXAOGCc1iJWiTgmmyTWU2ZNbZLMaINMIUvKTeBHHo2hHnqydS4LTueh6R72JJ6k6O6lbAPCqNYKVi1A2Kq0ReGqiIjIUlOoKiKyCnSqOrVYLPLss8/i+/6SXldERGSlsu05lxFgwIJvpwmCAvXmGCVnD9+K7STtD9DjrueUfeuxpR72r8nzhOcxkIyxv55g7c9rDPaMkN87iRnIQXcXZNNEvX3Y3t7WglZRRPK0PST3jdH/7CRn7Zpg+Kl+9tfjjKWSRMlB1u5PUi/2Mt203Fl6iGK4l5o/iR9UCcIC2Ki1CBdRq42BwlURkRXPAlGnpv935rKrkkJVEZEVrJPVqbt372ZiCXEVBgABAABJREFUYmJJrysiIrKaHKheDbGm1Xs1CgPqQBDVaXpFSrH9nDL5C6xrjjO4NkfRy/B0JUYldCj7Mc5+fIz4cB1vsAL9XZh0GpuIQywGQLR2DU4shhPzSCQn2VAokJ5Ok66nqIVxRgbyOKkEg5MFziu/kJ3uAGPOM5SdUSqNgMg2VLkqIiLSAQpVRURWKFWnioiInBgsdqbnaitcjaIavvWJoibNsMIDTg/rxjdxYQjxdI3SQB6/O0YjTNK1O09/uUqmWMIrN3C6u1r9VWNxcAykUkQD/RjHYDyHrsndxPcVyUz6lINuEo7HdCJFvSvBK9PTjEzE+clUD88mniGIGjSDMpFtEkWNmRg10iokIiKrgL6TL78VEaru2LGDj3zkI3z3u99lZGSEtWvX8qY3vYkPfOADxOPx5R6eiMhxlUwm2bRpk6pTRURETiDtyk9rwTaxxieKGgRBgZ1hlX3eT3hssp/+wmlc3TybUpijlEtTDvL0FrvoH/EZ2F5jY+HneOv3YU7pww70YwcHwPOwfX2QzeDluvCKJTKTZXp/vJfC/iSjxQyj9QRPJ3oZytS5qssQBi/inn2nsyO1g6lwFzV/klpzjChqAAEQtsNVVa2KiIgs3ooIVZ944gmiKOIv/uIvOOOMM3j00Ue57rrrqFQqfPKTn1zu4YmIHDfDw8OsWbNG1akiIiInsIMrV4OwQmQDwqhJEKtx39gQL25YNvbXKAx104xcqmGcWuSSe6pOrlIkXmliyjWwUWshK8/DOh4MDkB3HtNXIdkM8HaVSO72yUxlaEQ5Jt0k+5KD1Eam2bIWfrj/THZG/YwknmF/1CAIq4RRDRs1wLSqVg1GwaqIyAqinqonhhURql555ZVceeWV7e3TTjuNbdu28bnPfU6hqoicFJLJJKeeeirpdHpJrxtFEbt27VJ1qoiIyBI70G8VLD5RFOHbiCgK2J75MdPl09hUXsvLa00qfTmm8xnqoUd2spvBeo2+UoXk1H48YyCfha4sZDPY7u5We4B8N07Dx0uP0ZWZIr6rSKUZI+UmiLsepXQv8WqNV3oFRiuDPDTRRTUxTc2fpBl4+DZq9Vo1rUW3WuPUj9IiIiuBterkciJYEaHq4RQKBXp7e496TqPRoNFotLeLxWKnhyUisuQ6VZ1aKpXYsWOHqlNFREQ6qFW1GmKJwEaEhBTqu2jGKlS8KV7QuIDBySLJRp2p/m6ecpOUA49KM8ZApUxvcgx3oAJ9NcxAiO2Z+RkoHiM6ZQ1OzMOJeyQTU6wvFUkX0mRqScbdGI81Unhr4gxMFtiStEzuuYC9iacouyOUouZhF7FSsCoiIrIwKzJU3b59O3/2Z3/2nFWqt956K3/4h394nEYlIrK0Olmdunv3bsbHx5f0uiIiInJ4ltmSIouNQurNURr+NCVnL1+Ixuhx13N6tImLiwHpdVnGsxmermTJFzOcW6zQ31UhN7Cb+CmjOGGIHRzA5vOQzRIlEpjubswpBXoG9tI9UebU0SLVEUP/7gHGmjEmM708O1rj14zBiwa4f3/AD73/pOTvpe4XWi0BwlIrAJ5ZyErhqojIias1x0CWm7OcN3/f+96HMeaojyeeeGLec/bs2cOVV17JG97wBq677rqjXv/9738/hUKh/di1a1cnX46IyJIZHh7mnHPOWfJAtVQq8fjjjytQFRERWQaz4aq1ITaqEUYVSvU9jPnbeNz8lG+PjuHvLxDfN06tHrGzYthVTbJzKs/o7i6q20N4ei/m2V2YPXuhVoMgwMZj2FweNq7BnLkG7+xesud6nNY3zaZMlXWpgLPXJkltHKS7O8arhl3OsS+hP34W2cQwiVg3xklhjAs4YAyGpZ0hIyIistosa6Xqe97zHq699tqjnnPaaae1P967dy+vfvWrefnLX85f/uVfPuf1E4kEiUTi+Q5TROS4UXWqiIjI6tZuB2AMRE38sEzUCPDDOvVYkW/veRUv7Xfoqe0nP9TFvkSGUuBSDlxqvsdpj08RK9UxgyVMEGBTSYjHWsHq0FCrarWnG6dnkt7CsyR2B2SmA7LVJM0oyf6efppOlStskX8beQHPOr2MJp4iiOoEoUMUzbQEIFA7ABGRE1RHF6rSt/0FW9ZQdWBggIGBgQWdu2fPHl796ldz4YUXcvvtt+M4y1pkKyKy5IaGhli7dm1Heqc+++yzNJvNJb2uiIiIPA/WYk1IFNWwNsLagDBq8EjqESb2n8bGRI6XU2BqvIE3mKeei1EJHdJP+/QWqyQnGniOg+nuglwX5LLY7h5sJo3N5zDZLN5UiWyqQGx3kdSETznw8ByPaTdNz2CcyzNFto/GeHg6Ry3eWsQqCKuEUQ0baQErEZETmb4zL78V0VN1z549XHbZZWzcuJFPfvKTjI2NtY8NDw8v48hERJ6/RCLBqaeeSiaTWdLrRlHEnj175n3PFBERkeU3G1K2Aksfa31s5BKEJfaEVUbdR3ki6uWBPWvZHDufV9gGgc3zVCrNeKOX/qk8gzt9ztw5RmZoBO+UNOaUHuxLXgipFLgutrcHLngh7oYJ0hPTpMeK5B/ZS3EiyVgpzcPTWYLhXgbiVd6Qh7Mmf5XHStPscn5OMdhLqbaHMKoBAWDBhgpXRURE5lgRoeo999zD9u3b2b59O+vWrZt3zKouWURWsE5Vp5bLZXbs2KHqVBERkRNYqxXAzMcmBGsJwgqRDYhsgB/VeJgcxV0beGm1SC5XY3ygGz9yqYYOqfE8A/Uq+VqVeD3AGRzB9vViu3LgmFZrgN4eTMyDdJJkEBLbVyO1r0nJjzHaiDE5kGYslWCtKTKY7OE/xs/jWa+HZqxCM/AIozrYBnamanV23CIisnys7eD0/85cdlVaEaHqtdde+5y9V0VEVhJVp4qIiAjMBKuY1k/IJgIbEEURvo2IoiYjzmNUvSkmxk5nQ6GbV/g+k/kcxXyatJuiFngMNGP01ypk+3dhyhXo7YZ0ptVnNRaH7jyk0xjHwestkO2ZZlOlSLqUIePGSbseE6kecrUKqRg8OX0GZSYo+Xup+VOEoUcYlrBGLQFERERmrYhQVURkNRkcHOSUU05RdaqIiIgAB7UDmKlYxdYIrE+lMYYf1qnGppkM17OxfA7xapF4qcHu9TlKQZKi71Ftxjjj8UlihRpmqAQ9XTDUD4kENpGEdBabTGG6czhdafonnyW5xyc9lSFdT1GP4uyLZYhOSbLWm+YFu17MznieSWcHVX+cug1aFasWINQiViIiy8gClqX9eVIWT6GqiMhxoupUERERORqLBWvnxJUhvj+BHxSoNkaZdp7hb4Kn6fbWs2H8NC4qN8gN53g2lyYby7KvlmToiTqDXQW6eveTOn8MhnthsA87MAC5LmyuC7tuHV4qQffecXIjJTbsKzDwVDf760lG6jEmMn1clEry4rEMMXMO/zlR4Sex71P1x/GDKkFYwNoQQ9RacEvhqojIcWXR9P8TgUJVEZHjYHBwkLVr1+I4zpJet1wu8+yzz9JoNJb0uiIiIrJ85rYEaFeuEhFGIeXGCM2wQjU2RdfUZi52C6SbdSo9eZ51PWphmorvMVivsy5XxPNDTBiBcbCnrD1wj75ejOPgJOPEsyXW1Qtkx5uk3QwpN05tMEPYkyQ7NU3KheLYhexNbKPsjFJpBK1FrGyANRajRaxEROQktLQ/3YuIyDyJRIKzzjqLdevWLWmgGkURu3fv5uc//7kCVRERkVXIzvyaDVSt9bFREz8oU29OUGjs5BH7GN8ZLfHM/gZjT47x7EiVPTWHZ6sJdpSyTO1I0Ph5hejpUczOPZhCAXwfIotNp7E93XDKIGbTEKlzUgycUeW0wSnO7KqwLm3Jp1wK/X34fXku6xvibPtSBhJnk4h147ldGCeFMS4Yw+wvERHpvNmFqjrxWOz/kZ166qkYYw55bN26FYDLLrvskGPveMc75l1j586dXHXVVaTTaQYHB3nve99LEARL9NnqHFWqioh0SKeqUyuVCjt27FCYKiIichI4EKzObEVlosghCEvsDsqMuD/lkclect5afjW8EL9Up3xKnp2ux1hjkIGxkKHtdYa6x+ndNYkz0AW9XdjhAWwqg+3ugQ0enHYqsckpukfHye8ep++Ho4wVMozVk4xlUzyeTfCiWIwX1zI8Ep3GjtTTTAe7Wv1Wm5NY21BLABGRk9B//Md/EIZhe/vRRx/lv/yX/8Ib3vCG9r7rrruOD3/4w+3tdDrd/jgMQ6666iqGh4e5//772bdvH295y1uIxWJ87GMfOz4v4hgpVBURWWLxeJxTTz2VbDa7pNe11rJnzx7279+/pNcVERGRlcFiMRYwEdZGBGGFyAaEUZNmWOE+Bji1PMzLgiZr1ufYWUlTDjzKQZpq4JF4fJzk8DjuUAXjedBrsTEP4jHIZokSCUwihom55Ed3EN9bID3lk/bSlIIk2dP7KE5WuCxleGzyHLZHg+xNbGM8ahKEDlHUmGkJELbGCQpXRUQ6pFPfXRd73YGBgXnbf/zHf8zpp5/OL/7iL7b3pdNphoeHD/v8b3/72zz++ON85zvfYWhoiPPPP5+PfOQj3HTTTXzoQx8iHo8v9iUcNwpVRUSW0MDAAKeccoqqU0VERKQj2sEqYPGJopnWADZgt/sTSt4EhX1ncGHd4qTrNNbmaYQutTBBdiRPX6VCV6FKMjuOCUNwXWw8Dq4LsRi2tw8A7/QC6VSR2EiZ1HiTkt9HyvVIuBnG0wnWOwXW1QZ5aCrLw4kyNX+SZlAmjOoQ1bCm1bbAWAWrIiJLrZMLVQH4vk+xWJy3L5FIkEgkjvq8ZrPJF7/4RW688UaMOdAS5ktf+hJf/OIXGR4e5ld/9Vf5gz/4g3a16gMPPMB5553H0NBQ+/wtW7Zw/fXX89hjj3HBBRcs4StbWgpVRUSWgKpTRURE5HiZDSlbC0RFYCMCG1FujOBHNeqxIqXpM/l/kmvJ7N/PVFc3te4UXV6aShBjoF5lbX4KrxlgrAUbYYdmKohiMWw2h1nbj5uK43SX8EZqnFYvka2mSblxKoFH16Y+euplevdAYeRCRpJPUw5GqPsFGj5gG2BNeyGrueMWEZET2913380NN9wwb98tt9zChz70oaM+7+tf/zrT09Nce+217X2/+Zu/ycaNG1m7di0//elPuemmm9i2bRv/+I//CMDIyMi8QBVob4+MjDz/F9NBClVFRJ4HYwyDg4OsWbNG1akiIiJyXB3ot2rBBvh+gB8UqDZGmXS38+ej53CKPZMz4hEv35TiKdvNU5Uk3bEk59ZSDP6sQu/g0yTW7cR9yXrozmFTSYgliDauh/UWEwS41QobTnuGU3aNc/YuGN7Zz2g9zkQii+ul+I1sgmJhkHIAD09VeSRxP9VgkmZQIgzrhFFF/VZFRJZYJ7+XXnnllXzpS1+at++5qlQB/vqv/5rXvOY1rF27tr3v7W9/e/vj8847jzVr1vDLv/zLPPXUU5x++ulLN+hloFBVROQYdXd3s27duiXv8WKtZe/evYyOji7pdUVERGR1slgMBksI1hJFEb6NmKo/QyNepuBvZHLbRi4c9EkN5WjmUqTdJJXAo9qMM1Cu0J3ah+krYvpykOvCDg1BNoV1DORzmKaPm06QzkxyanmarlKGrnqSjOfxM9uDTTUZLhX5xVia5ujF7Ek8S8HdQ82fpO5Hc/qtqnJVROREF4vFyOVyi3rOs88+y3e+8512BeqRXHLJJQBs376d008/neHhYX70ox/NO2f2Z+Ej9WE9UShUFRFZpHQ6zbp165Z8qj+oOlVERESOzfxFrABbo+FPE0ZNgniVmldguHQxL41P0WOr7Ix6KAcxyoFD2Y9x1s8mSA41cIs1zGAdk89hkwnABdclWjOMicdw4jF6pnaRGimQnWqQr6apBmkKiQSTqX78Yo3XxBz+cyTDTmeY/ckdjLENP6i2+q1av9WyANRvVUTkGFnbuZ6qx3rZ22+/ncHBQa666qqjnvfwww8DsGbNGgA2b97MRz/6Ufbv38/g4CAA99xzD7lcjnPPPfcYR3N8KFQVEVmgWCzGKaecQm9v75JfW9WpIiIi8nwdWMQqxBpDGFWIbEBkA/ywzn8wyMTetWz2DeN79zM9nKc5mKIeJsmO5OirVsmWq8SqAU5/D7gOtrundfFUCtvT+jeQd2aFdE+ZxGiV7GiDWuAy2oiR8RyK8TROX4oXpcucPRXjx+M5HkkGlP0RGkGJIKwShBHWhmCiOYtuKVwVEVmpoiji9ttv55prrsHzDkSNTz31FF/+8pd57WtfS19fHz/96U9597vfzate9Spe/OIXA3DFFVdw7rnn8uY3v5mPf/zjjIyMcPPNN7N169YFtRxYTgpVRUSegzGG4eFhhoaGlrxvKkC1WmXHjh3U6/Ulv7aIiIicXNrhpLWAj7UhflTDDwo8Gd7LLi/Pg6NDvMy9lM2JaSbrNYpD3RSDHN2FLP37AwafqrFp+md4G7KYtT3Q30fU1wvGwXZ3wwUvxPgNYrU63dNFXvbwThp7QgrjacbKKbaX0+TXd7E3n+aibJFX1l7Onio8Viyx232Gkdoj+GGrcjWKagf6rc6MWwGriMjRzXTTPmF85zvfYefOnbz1rW+dtz8ej/Od73yHT3/601QqFdavX8/VV1/NzTff3D7HdV3uvPNOrr/+ejZv3kwmk+Gaa67hwx/+8PF+GYumUFVE5Ch6e3s55ZRTiMViS35tVaeKiIhIR1nLbNUq1uIHZaIowI9qPJLqobh3Ey/IwUuiUaZ7eqh2JamEccqBQ9dTTbrLJeKFOs6aMk6z2VrEKpHA5nLgZLEWTE8PbsMnlZ8ktqdKeqRBYB0mGjESrkch08P+6SbrC0VOSXfxk8kX8u/JOqVglEZQpO5PYq2PtQHYCGtCVa+KiDwHy4k1/f+KK67A2kOfuX79eu67777nfP7GjRv51re+dQx3Xl4KVUVEDiObzbJu3TrS6XRHrq/qVBEREem02QWsWulnhI1qhIRYP2DMeYJabIqJ8iZGq8OcV5nCTyUprclTT3tkp/IMN2L0lyqkpyeJRWByaejOYbNZmJmSaeN52LQek0oQS0+S7Sqx0S+QK6XoqiUZd2PUwjjlZB+2XGejLVEbO5+97iTj3k7GeRI/rBJFTSLbgKiJNRaI1HNVREROaApVRUTmyGazDA8PL3qlw4Wy1rJv3z5GRkY6cn0RERGRuea3A7DYKCSiQaneoNIYZdz9Oc94eZ4Zezmb3EE2Rw0qg3n+rZFiMBmnbzrHwB6fM56dIts3SWzYxW00sMOD2J4eiMWwg4PYri7M8CBuqUzfhhF6pyucOlmiORJx6s5exusJJvNJCoNJ0iNVXlZI0WyuYVvhQnY2pxlz91AMRyjV9xBGdcKoibU+WB+IZsavkFVEBADb/rbYkWvLwihUFREB8vk8w8PDZDKZjt1D1akiIiKy7NpVq01CE7UWsooCdro/oeisp7D7NF5YsrxsfZVJ04sfOdTCOMnpHL31Ot2VKl09o5iGj6nVsd15bDoNjoNNpsB1Ma6DqdTwimW8wRKbwil6J1OMV1JMNBPY4Qz7uzNEhRoviFc4x+/nqWIPT4freSrpUA0m8YMKYVQnCCtgg3nVq6BwVURElp9CVRE5qfX29jI8PEwymezYPVSdKiIiIieC2SDSWLAmnClzigijkHJjhCCqUY8VmSycyinptTQmRnEH8tTyKVJuknLgUfVjnPrEFPFSA6dYwfTnYbAf4nFwHWwsjh0agjDE1GqY/gLp4BkSe2tkR+p0T6cJbY6s51JMpBjpSmJqTc5IVdhQcXHGL2J/Yh8Fbw/1YJpqE8Ko2a5YtYTMDVfnvi4RkZNF67t3564tC6NQVUROOsYYBgYGGBwcJB6Pd/Reqk4VERGRE43FtkJJE2FtBDaiGRQJoyZ+WKMeK/DPe/Ock8vwAneKPlthV9RHJRWn5LskdoX0liqkJydwh8o4zQCyKchkIJvF5rpa98lmsflunEYTLzdBtrtMYqSM3WGYqieYaMQxxqPkJaik4mR8n1/Oxtk3nueJ8lrG4vvZZx6hGVbwgyqRbRJFNbCmXbmKnekbi8JVETl5dHKhKlk4haoictJwXZfBwUEGBwdxXbej9wqCgL179zI+Pt7R+4iIiIgcCzvTkM9gsATYqIyNagRhiVpznB/GJ3m40E13ZT3rdm3i1zb4hENdPJXKsL/RTddEnoHdAX2JBhue2E2y3+IOpzDDeXjhmdjuntaN4jGiM0/HrBnCKVdIVKts3DvOhukq4dgE525LMVFNMt2MM9302JfrxfQFdI+l6WrkqYVn8chkg/22wIQzynjz5zTDCkFYJwirrb6rtIJhCGdenPqviohI5ylUFZFVLx6PMzg4SH9/P47jdPRe1lpGR0cZGRkhijo1IUNERERkaRypJUDDnyaI6gRhjWpsim/v3sz5tTJrchUm892MpRLUoxjFwMEZsfSWquRKVWLlJm4+C7U6tqsL4gmIImwsDnkHshlMJoOpVPCmSwywj67ROqXpJFPVJMakSLke5Ww3I+Usa5tVelNQaw7wdKmfh2w3U7G9VMIJKs39hFGTKGoS2QCiWuv1GFCLABFZzWwHF6rSd8uFU6gqIquS4zj09vbS19fX0cWn5pqammLPnj00m83jcj8RERGRJTW7iJWNCKNaexErP6rx02SK/eObWDfVw6WDk2QycSb68hQTHq5JU2rG6K3V6StWyWd2YwYLmO4uyGaw2Qx4MaznQSqO7e6GZhNTLuM1A9I9BRKjVbLjdZwxy3Q9zpTvkY157Ch3YdJZnFqTTekaGyvr+MnkEPuiIrtT26iFUzSCEkFYww8drPWxNpjfIgAUsIqIyJJTqCoiq0oul6Ovr4/u7m6MMcflntVqlV27dlGpVI7L/URERESW2tyK1dZ2a1p9GIVEfpMJ8zTV2DTjdhh3/IVcRJNqYYxYPs2uNVmKyQQF36PUjHPGY5Mk99dx+4uYnjRmsBuyGejKYmMeuC6kUthUCnNqDSedxMkXcPtqbIhPM1CKUawkmawn8Zwk9dBQTiaZTicYilsunapTnUrzoz0Zxp0iU8n9lKP9lBr7CKJ6u3I1ihpgg9brUcAqIqtIJxeqkoVTqCoiK14qlaKvr4/e3l487/h9W/N9nz179jA5OXnc7ikiIiLSSQfC1RBrQ6zxgQaVeoNqY5Rp5ykmEtv5wb4+es16Noyt5bWNKuFghidSOeqRx7OVJP07AnriTXrSdfo2PI3X7+EMdmGGe4jOOgNSKQCiNWsw3Xmo13AaPumLaqRrdfqKFU6dKHPOY2OUp+NMV1IUm3F2VROk42nq/Wku6s9hK32Y0hriNuSxqZB9zSoFp8A0oxSCXfhhnTBqEEZNwqg+U8kagQ1aC3a1RnHIPFqFrSJyouvU9H99+1s4haoisiJ5ntee3p+a+Uf58RJFESMjI4yOjmI79jeZiIiIyPJpBY5mTksAH2xAYH0qjTGaYYW6N0XR209iz4Vc2KiQTtboH8qxs5qiEsYp+i6FZgyArkKdZHEat9zASSawuS5IJbHOzI+kyRRRKgN9fRCGmHoNM1Ug5TxLfH+NrrEGtWKM5FQXpWaMQuDhOXFq+TiTjS6CapMXZWucV3UJoy4emRzmKbuGcqxAJRqnHhWpz/SJjaKAMKpjCA/bKgDmV7POfj5ERETmUqgqIitGKpUil8uRz+fJZrPLMoaJiQn27NlDEATLcn8RERGR42VeSwATtbasJQhLRLZJENZpBhUeTsYYGT2VU7w8FzenqXtVaoNdVHJxSoGDY7Lk6wl6SjW6pmqkvJ2YngzkMpjuXGsRq2QC0ul2BavNdWHzeZwgwOuZxh2sEJ+qk9g5Ra0Uo1RLknEzFHyXnrhDI5NgbyZOzMmTazQ4P9fgvGqckdJani7VmDZVRpI7qNsCzbBCzZ8kjJpYGxxoFTAbqtpoJmSFw7UMmPu5ERFZDp2c/q/vbgunUFVETliu65LL5dqPWCy2bGOZnJxkZGSEer2+bGMQERERWQ4WeyBUnKlajaLZ35uMmyepxCYYt2sZ37eRq9dlqe9rsm8iQbE/i2MSTDZjTNXj9FSarI+mSfRVcXqncdbXMNkU5Lpa95o7AymRwA4PYlJJTL6M218jnS+QLDbJTRdJ72xSrCYo+glKvkvCidGIYIwktZ44XYN5XhCFnFmp0Sg3eGhPD/sbVcpulX3edhpRGT8sE0RNmkEJawOsjbBEB9oEEC0oZD348yUiIqufQlUROaFkMpl2iJrJZJZ1LFEUMTExwejoKM1mc1nHIiIiIrKc2kGhtRhsu99qRINKvTbTb/UZ9rgP8tTeM+llHWvtAKdNNsgMxaj2Z3kqnqQZJjitmKEvHpKPNdkwME6yJyA24OL2pTFnrcfmsq3WAF6sVcXa14vt728tcAU4fgOnUmNox26GJstE05NExZDKPodaNU6pFqfkxxmttyplm5ksDGbxByLqlQZhpUkuWIMXhkQWthUsT1WLVEyNuqlSYYpKNDHTi7VBEDXww2o7dI1sY+ZTcSB0nft5MgfXjx2lXZQCWBE5FtZataI7AShUFZFlY4whlUqRyWTIZrPkcjncmX8sL6cwDBkbG2P//v2a5i8iIiJykHltAQhn2gK0+q1GtslU/Rmq3gRT3gB7y2sJ7QYu9SdIeDFyfVmeLqepphwmmy4WQ3epQW6yTqq3RCLaielJQzaNScQhm8Em45hkChtLQjyGJQ3dPWAjTHcJp1TBqdTJDVTIlhv0Fmo0iw49Y1lKjRjVwKMWuXiORzObohamGKlZ3Cii269zdpfPBb5HqRZSCQzbiwEjzTI1t0HVK1NhinK4n9A2CKImflDBEhFFARARzYStEGKg1acVWhWuWGZWw+Jwk3WPVvG6kK+BiIgsH4WqInLcJJNJMpkM6XSaTCZDKpXCGPPcTzxOfN9ndHSU8fFxoqhTHWpEREREVof2YlYc6LcaRRENfxo/rNIIilS8Mf6tEvFseYhT0oZL/SnyXonRTBd0pbAkyTfj5GtJekoNhhol4j0VnLyH6YpjBvOYrsyB9gDx/IH79/RCIoHpyoLvY4YbuPU6bqVOvFAjvr1IY8qhXvOo1ePkaymqoUs5cMl4LqF1qQUZwjSUACeKGAwDclWfvM1QKjeZqEQ8XQzYF5WpOXUqXoFCbITANoisT2R9mkGlHay2fg/a263FsGb/XXmgZ2v7NRwxVT3Kv0Xt7Of90K+HiJw8og695fWdZOEUqopIR8Tj8XkBajqdxnGc5R7WYTUaDUZGRpiYmFjuoYiIiIisKBbbnt4+2xYgsCEmNPjBFLXmKGV3hKfdJPEgw7eqfZxlX8pQ3OfiIY/KYJo96S4a1iMXSzE0laM7FpKL+WTjTQb7Rkj0RHj9Hs5ABnP6Omw2A/F4awCOg81msYkEZNIHBtb0iZ/9LPFiia5yHWoN1hdLRLUAWwmp7jPUazEq9QSVpkfBj1MLHcqBR707TiPK4FqgFpEoNzmz1k3MD/D8BnnnLGIO+BFUAsNPJkMKvk/ThvgEFJ0SVVOiZgsEtoEfVVshKyFRFBBEjXbo2urf2gpQ2+0E2h8z73jLQSHtvGPHENAeixUw5fhYAubDBdXHawyr6d4HU9jfGRaFnycChaoicswcxyGZTJJIJEgmk/M+PlED1Lmq1SojIyNMT08v91BEREREVrx25aoNsca0wjcbEVAijOr4QZVGUGJbMmRPOMjeXevY0rT0JCt0d6cpZ7LsCF0Gkg4TTZd8M04j8MhNN8iO10mNFog3Qkx3GpJxyKQg5kEyCWGAnRuqxmPYwQFIpzH1OgQBxg9wgwDqTbr2TJGerpOfbuCXHaqlGPVGjHrgUQs8SoFHPXTojzs0uhI0oySNCKYaMNEM8RsBthkQD0NekglIhAGxsDXtf6KRZ18NRqs+VRtQN02aJiA0Ib7XpGQmadoqgW0QtPuzhq2WAjMLZIXtyld/Xuh6oNVA6+PZ/QCG8MDXYl7YOudj+/wC1vntDOY6gWZ5HaGSd0GWYhZd+z8ZjuFaz+f+c8Lu437v5zEWha6ykilUFZGjcl2XWCxGIpE4JDyNxWLLPbxFC8OQqakpJiYmqFQqyz0cERERkVXlQLBqgZlwNWpiTUBEg8g2ma49S82bpOSNEIxewLCb49xKjeFkBSeXYk8yTSyboDfuUAnSdDUSdFXT5KaarKkWiXeXcbIOTl8ak45DNonJZbHpzLxqVRuPY7JgkwkwDtZr/fhrggCTH8WbLuEVa8TLDZLTdag3CWuWsG6oFGLU6nGqfox66FIOPGqBQ2/MpRK2WgdAgsC2gtYGULPgN3ySNuI0P+Qs3ycZBbhhQL1pqQeWWmh4prSWYjOkbgNqzASjJiLC0nCa+KZJnQq+adC0VSwRofWxhARRo7UdNfDDWruSdbbqtf3abXRI24G559hFh6utwHY2Hjv0+UsX3B6rdji3BNngsYayRw6dOzOGeYHkEmaix/L6j20sEcYqWD0W1mr6/4lAoarISWg2KPU8j1gsdsjHs9ue551QPU+fj2KxyMTEBNPT01olUURERKSD2gtZzYSr1oRgQ8AhiiKaNiKM6jSCEk8lI0btAHsmTqGfHP/dtcQrVZqTLqWuNCPJFGu7Y8Qcj1QtQT1w6RrzySQbZPvLeFmDk3Nxess4jsHmcpBKYT0PEwWtrM91sLED7QEstI7nSphyBVOr4dUaEEZ4DR8aPon9FaJiGb8EQd2hVo3TaHrUA4+SH8cPDb51aESGfMwlsIYggigVoxJAJYCGhaZpBR9BZImsxYQRLyIijiVuQxJRgI0ibBAR+iHFuqVYt4zVIorNkEoQElpLhCXEtqpeCajHahRiY0T4hATt0HU27Ixmql5hNkwNCaLmTNgaHqatwGG+jgcdP1wgO7dlwYF7HfS8RYasxhx5xtvRrjW3Unex9z3yPReyiO6B+x7uJ6cjjeNor3OhFvKT2sH3P7b7zv08hIc941h+arQzbTGMDRWsyoqkUFVklXiuoHT249UUlD6XWq3GxMQEk5OTBEGw3MMREREROam0Q5KDeq5a4xNFDgGGZlBk2nmKvU4cz0ny0M41pEwPvXYNA+T5L2tT1Asufi5FkM/wrWKW3jjk45aB/QEZLyTlBmQTPgMDPyeWt7hdDiYTa7UJSMUgk8Rks0SnrIFUClwXkkms60I20xpiOg2zs7AiizM+hlsqE6tUoeGTCwIIIwgj7HQVW20SlQOiakRz2iEKIAodwtChVE1QDzwagUtgHfzQEGDwI4dmBNUgRti6DREGbCuWjCyYENIR9IUWfyZoDf2IIIzwmyG+H+FFEXEiep2NpExAjAgHCK1pXye0hnpk8CMIImhEUA6gHkA9tBSaIX40E9baVuA7y5nzs8Ls/pkYltBGhIQErdgWayJ8fCITERBgifBNg4jZdgYhET7RbCD7HG0CDEcP/OZX4x4I96KZ2Lm1/0CwPHvOke47ez9jWqGh096e+X0Boao9SpgbPcfrnXvPeeNaYPB5uMB2Ifc80r0Pd9+jfQ6O9toXMh4/LFNtTtD0x8Hq57XFsHSuUlX59sIpVBU5zowxOI6D67o4jnPIx8d67GQJSp9LEARMTk4yMTFBrVZb7uGIiIiIyIx2BasFTNTaimoE1sdENUJTJ7IBFXecoruXESdHec959Dhp1mZCLu0rkkukCLtSjKaThFEM1/GImTj5RkS5GSM7U8WaSPok+6dwsg5uVxyTK+AEAWRSrUWtZjkGvBi43rx9tqcHEgnIpluppGNaD8CUq5hyBadcg3KdWKkOkW3NhvIjctMlwkqrwjX0DYHvEkUQRQ5+4FBtxmlGDsHMYzYciayhHrk0I/Ajp1X9amNYWiEpthWO+jMhaSNstR0w1uKHljC0RJElCCOiMCKILDayhEErNPWwZKylB8uZniVhbKtiloikCSGyuDbCYDH2wAJkkYVGZPAjMy+sDVsvl3poCC0E1hJGUA/BjyyhhdBammEr0gxnQtzZ/DY6KLlx5tQ6zv3RZu4ks7nPsXO2I2vbwW+rQNoSzIS+7XOOcD8Hg8E5aNvgzIl4Dzcd3ravO3989jD3O/jeB7/e+a/98Pvnal9v5rUe7h6Hu+fR7n2k+x4p3j34dR9tPEcaSyFWYLfzCJNhiTBUqLpYqu5dfidlqOo4rgKoFWL262SMmfdY6L4T5VxjTDsAlaVnrWV6eprJyUkKhcJyD0dEREREjsJiW8EqzLQGsGANoQmI/AA/KNNwCtTcSZrxGmm6eaYyyPbSABf0OpzTqNHlwr5YlkYmRTwVZzDpMNXMkPFCcl6atBfSV6ySSgYk0k1i2TrxchOTjWMScUjFWxWr8dZCVzYWh2y2HZziOFgvhknOjDOVhnirktX2+JhqGVMsQ63eWgjLHIjdnGKFWKWBrTaw9QDbnImfbIj1LWGxSliHsOHMBK6tZ9oI/MDDDxyaoUsQOTRCt1WBalvBZTNyaUaGZmSohw4hM+0MrCGwzkw429oXWNrbkW1N2rb2QIVbCNSAhoHSnK9P+/zIEs4Gs5ElCFtfNGtnglHbinQM4FjLzKeKrG2Foo61uIDnWFwMrrG4xhIz4GDxDMRNhDuz7WCJ0drGRjgG3NmQcuZ+AFHUGkNoDbPZbzhTkdsKb1vnBDOhr40sEYYoOlCv2g5LZ+7tzmTmhtbvrTGBMRaHA38sDhbZA+GinVMpbOccP1rs1f4zYw6//VyB5myl4sFVi/ag43Md7l4H39c1B574XGOw1szbDmdD8zljO9JYdlVz3D+R4z8TY9QbjXkhobWWKDp8qwGRE8VJGaqed955uO5CeqOIyImq0WhQLBYpFAqUSiX1SRURERFZQQ5btWot2Bqh8YhsgzCqE0ZNqs4YRW8v426OqamzeXiqm4F4gs0DFeLlCr7jsieRpB6PM9CTpD/t4hmY9mNkyiFJLyATC+ibLhPP1HDT4OQ9TNzBpGOYbAIHi82kW+0BPG9mqn/QGpMXa+2bFY9hve5W6Fqrtc+xngeOwVRblaymWsM0GjOVrk4rnYrAK9eg2sDWfKKKP29hJ+sH0LRETUvUgGbFIYoMNmr9HgStatcgcqn7HoE1RJEhwhBEDqFthVwhrcpSi5mpGIXAGqw1M5WvM/ez89PCVvVn69yo/TgQ0M6Gd/bgwOygaxzNbD1iE6ge6c/HQddn5r6zO2bDy7n3ng2MWx/bQwJNw4Fs1hwhxJxbfHW0MqyDX+PBP4ssdFr24cLaYy0AO9zPQ881jiOFxccyhuf6eexwY2n6Id3ryrywcjpB0Dfv8xqGIT/5yYOLHsfJQgtVnRhOylBVRFaeKIoolUoUCgWKxSLNZnO5hyQiIiIiz1OrCnEmYJ2NWm2ANQaoEYUVmsah2nAwJsak+xSuE8fzU3y/uYaU00NPNEieLGd3pdlYiYhSHlE2wZNemlosSSOElAcD43nijqXLi+hLNIk7EalYQDpRpavnCdyUxc0YTMrFycQg5mBiLqQSmOFeSKexqWQrZA188GfiwUwKm8m2e7LabBbbb6FRxzSbrd6t8US70rU1n76OqdVxqpXWPuNAzGulfVGI6weYRpNkqQxh2ApmoVWCGVkIQqj7EATYoFWmaZszC3NFETa0WH+mjDJspYtR07byW9tqX2mjmU+9NURhq73A7L4oMq39USuIDUNDFDkHPp4JYy2mXSk7+9IOCWoPSmjsnLgyOji6bFc5zql+nLNv9n7tj+cFvTPH5oxpbuB68L1n/8zB/HYDcOTqzAPjPtSRMsUj3fNwDpdlHm0sR+ue+nxqTpZqYu9zjWF3LUZzfD1j3jaCYHppbipyHK24ULXRaHDJJZfwk5/8hIceeojzzz9/uYckIh1Sq9Xa1ajlcnm5hyMiIiIiHdSuXm01Zmztm20PQAg2ICAkCF38oEwQ1vDcFFPus8SdLPvLm3ik2EPOSZCPB/ziUIW+mKEcT5HMxnmmlsSNufQnHQq+S8yxpNyIrBuSLfsknJBULCCZ8ElmGrjxCCcBbsbgTlcw6QQmk2i1Dpg7j7w7D02/tdjVbL/Wpo/xG62K14MX/3EMpFKtytbZCljXbYWus4tl+T626WNyFYjCAyVpjmnPzzd+E/wAE0UQhJjZxbTszDz4IDhQVhpF4M80C4hoBcIzaaSNbCu0nSl9s7MlcBEz5Z8zIW04+9xWktk6b05wFs0pup07Ff3gYO1w50SHOdeaOfvnh75Au20CMxW4c9sozIaqswHv3KD34NDXmEOTv8Ptm+vgayz02OEc7V7PNY7F3Pe5ji/mXkslNpXnmVKcWJiibsxh/rDIkczpiCHLaMWFqr/3e7/H2rVr+clPfrLcQxGRJVav16lWq5RKJYrFIr7vL/eQREREROQ4m9tXsZXzhGBmqg+jBgZDaBxsEBGEVRqmgOvEqcemGHWyxMmS8vPse3YDOS/OQLLGBb01Bsw0JSfOZCrBSDxOMh0jl/ToirmYepyYsWS8iIwb0lXwibsRSa8VsqZH63jJKm4GnC4P45pWOZ9ncPrLmGwak01DMgGuM9Pks9UP0qSS2FQSm0hCMnnguO9jbIQ1zsxCWHPC11grYLWe2wpEYaaFwIFz7GxoGoYYG82EqHPSSRsdaJBqI0w4J/WcbTwazdR++sFss9LWIlUwf25x+/zowMezJaLRQSlpdNBz2wOerbadm6bOOT6z38577pw5zrMh7+x59qBjM+Owh5w39x6HDuuwjrU8dDH3eK77LOT4sd73BBE9VqRnuh+vnqb1YtVDdaHs7MJsHbq2LMyKClXvuusuvv3tb/MP//AP3HXXXcs9HBF5HprNJtVqlUqlQqVSoVqtEkUr8F8CIiIiItIx7R/uD2kRAKH1CWfWaveBenMMY2IY4+AYj51OEteJE2uk+MdSirx3Cl22l1zUxYCXoT/lcV6fIdkVwyRjFLwE08kYhdAjihJ4LnTHIOG2FmaKGUh5EX1xv73okutEdCcaJBJlYvEQL27xEhG44HhgYuBkXUzMxSQ9TNyFZOxAiBpzMZ4LMbdVtZpMtPa7LjimVc1qHPAccFyIeVhnTnUrtPYBpNLMfJJaDlok96gxyZH+HT57jXZYy7wesPOe91wNHu0R7nHQ88yRzmuHsjPnHbI/mnn+UQLdhY511tymo51qYLnQ+y/EcozxeRhOPcTGsYhUMc/0URsjiJyYVkyoOjo6ynXXXcfXv/510un0gp7TaDRoNBrt7WKx2KnhichRBEFwSIAaBMFzP1FEREREZI5DWwSEM/1XmanODLDGIcIhjJoY49AMPBwnTj0oMOkm8Zw0u6IB0pU8j5R6SJsEvbEEQymXs3KWXMLBJOM04wmayRgTToxaZPAMZD2XYsJpZaKAYyz5epKkExJzLJ4TkXRDPCci7obEvIhEwsdxQ1w3wPEsbsq2A1eTcjCuwXgOuKYVvHpua/n5mIdJxVuVrZ7X+j0eay0i5LkHwlfXbVXyxryZsHbmmHHmLHM/p8J1tjJ2dt/BVbKz5xtaQeVBFbJHLJ88OJg9+JoLtKjw9+DQ93ldXI43J58k6UQ4ZsVEUycOS+em/+t9smAr4k+utZZrr72Wd7zjHVx00UXs2LFjQc+79dZb+cM//MPODk5E2nzfp16v02g0qNfr7YcWlRIRERGRpXS4/quYmcmwNgSceQGriWqEYZ2G8XAcj5o7iefEGXVSeCZBJuwnVcrxYCFPijgD8SRrMw02ZS1djiXhxai7MfyEx1N4eAmPWMLFcR1yMQfPeHgGMJB0IpKuJelEJJyIuGtxTWtJJtdExN2ImBsRc8JW4OqA41iME+LFAoxjceMW44GbNZi4wcRawaZJuO22AybWqlzFaYWsJhGbOTYTqM4Gr9DaP1P1aGZDUsdp7XddrDsbws4E1LNVsLOBdfs6s0HsnC/GwT1jmQluZx1xifnDnDO3d2z72BHCWTPTRmHevsOfeqwB7zGZ265BjiyKwDFLtiiWyHJY1lD1fe97H3/yJ39y1HN+9rOf8e1vf5tSqcT73//+RV3//e9/PzfeeGN7u1gssn79+mMaq4i0RFHUDkvnhqeNRkPT90VERETkuDq0/+qsmQrWdsBqCE0AOJjIIQzrGONgjIdjPMrufjwnjuskiDkpMmE/mUI32aku0iZBjxfRmwzZlIUNyRCnAo3IUDcuY3gU8SDWClszqZmH5xJ3wZszMAeIObb1MJa0G+IY2yocBTwnwsESdyM8JyId9/G8EM+LcJwI1wtaRaSOxU20glcnBsYzmKQB12lllY4zE8TO9H5tldUymzq2j7kuOGBi3pyQdeZ356BK19lrzR6DeWFt6wW29pu56ebBoeqRnjuXmXPO7Nd67rlzA+DZ3+eGtAeHwUe6viwfGxGVGzSiLqxVL9XFsnSuja4KVRduWUPV97znPVx77bVHPee0007ju9/9Lg888ACJ2ZUUZ1x00UX81m/9Fl/4whcO+9xEInHIc0Tk8MIwxPd9fN8nCILDfjy7LSIiIiJyojlkcZXD9GHFmNYaRhxoE2cwNFpJZGvbODgmMS909dwUbs3DLSSIuxlcYngmQcykGQxPIUWcuHFJOC79SY91GYPNuHQnDalkhPEcjOcROi7TUYw6Lr7jUrbx1nT+OZyZrNFzID3TCcCd3TcTwLrQCl6NxTPgmlZQ62DbIe1s31czZ1/r+q1tg8WYENexuKbZCm2d1irwrhtimOkCYCyOY8HYmTx15vPaLl6dvz17Xntfu8frzL65L/cweehhz21vz6TPDgfC4pnj7cXD2vc1c8LVg6//HOWRx9qbdLE9UJfy3gdbirEc7Fh60R7lOpM/ht1Vl3pU0OJIi2SZWaxNltWyhqoDAwMMDAw853mf+cxn+KM/+qP29t69e9myZQt///d/zyWXXNLJIYqsaLNB6ZFC0rkfi4iIiIisRoevZp2pjDNmfssAmF/VahzAJQirMx87uE58JnB1cJ0EU+6zeCaBRwLHxsjW+khXu0jtT5I0cVLGwzVmZta+oSfh0pMwDCZhOB4Sd8H1HKzrUTcuDeNRNw4NPKasIXId3JhLzHNwnVZvV8eBmHFb61fNhq7ML96cDWBnc01n5sXPVsW2Xr7FoXWumbmOweI5dia7tDMVtK3jswFt+/kz2zMbwJzK3NlOAnPq6eYGqsYcGgg5hzl++HtZXOfAea3gN5oXBLcy1ah9/uHGMNe8fMouIpA8zOtY7JT2I2Zjz3Mc8w4f5VLLlc3tnOplqgmBbdC5ukuRzlkRPVU3bNgwbzubzQJw+umns27duuUYkkjHhWFIFEXtx9ztwx0Lw/CQwFT/cyUiIiIicsC8gHVuP1ZgNmid2zbA2tZ54ZxK1jBqBa3GOBgcGk5hprrVwxiHorMb10m0KlxNAo8kxjo41sEhRrKaJVXJELcJsiaFh5mZLt/AMYa445B0HXoSLhsykHYtcadVeYpjiJxWletU6NHAEM2Zlm/cVvDqOAbPM7iOwXUNruvgOAYzc2yu2dB1dja+0w5XZ8NY2v1iHeZUoc55/rztOeEt7WvPb4GwUAfuZQ+M1RwYl5kZjzNzj7lBsOvMCX8Pus5cB8468MdhMT9FHZxVHi68nHtfe8gz5ozl4GLrYxzDkcbxXI73j487qwkm6gF+WDu+N14FLEtX1Hy4a8vCrIhQVWSpzYaN1tp5j8PtW4pzrbXPGY7O/VhhqIiIiIhIZx1uuvH8oDU8YiVr6/mAcQijWrui1RgH35SZrXKdG7YaHIxxcWcWy3JMDI+ZNgO0FoZyiWEiBy9KkPDTdJV6iNkYMTw8HFzjEJt5rM3EyMUMGc+S9iDnRSRm+7XO9GydG2b6kSGwDo3QMB041KxLzTo0IqhFhsi0AmVnNph1nXYIG5tZUMhxwJ1JNQ0zv5vWtPxWS1ZzYFa+MThmJsSdDTVnp+fPXmNOQmuZWbRobjvWeV+bObP5zYHt2dNng+C51brO7BNpha2HE7VuPmd7zsdH+bHskFaxczcWE2gedI9jrdc8alh9pPE8x4+dCx3LsXao3d+AqbBKENWWr1xW5HlYkaHqqaee+rxCpx07npn5S09WgsUGm4fbN3e/iIiIiIjI4RypL2tLhDm41nG2snFOWWA4J2Kat2BT+2fQOcfb+9x5tz0QwrYqZGcDWjPnY7eRaAW0JoYxDp45ENA6ODgmNnO32cWj3JnfHRzjYnDwbAyXGAmbxMXDta3nxvCYuVtrdMaZqWidCUpnF7xqB5YHtp05r9mZG5xyoNJ09jnuTEg7Wx3rOabdP9Y1kHBb1bae06o8TXmt58QMJGb6zcZci+cY4k6E4xjcmbYHrdYItp28Rta0q2gje+DraK0hsK1QN7SGyLbCVItpf/mjmfMOfH3sIa+pXU1r5lbp2kPC17lmQ9vZ6tXZ7YPD3Nnjc//0HbJO15z7H3zuwSxm3j1CO//+s6999k/lweHqvLD7KK99dt+RxjJRjVMeqbOruZ9KfSfWHrjT3I/lUBZLpJrSZbciQ9Xnq1AosLj/OhIREREREZGT3ZEW05nfzvLASuZzw1bmrXDeiqUOV/MxL7idVwzkzAthZ0NWYF74OrttDhveHro9W0FrjIMzJ7RtHXMPuZ4x7sxojnz9uc892PznHQh6W68q1t6eDX4dXBzbun+MRCswtg7uTPBrbGvcszHwbBg8P8w1hwRQswU30ZxwyhLN224dP3q4N/t6ZsNk56CsYe7X4WD2oGsfPMYjhWYH32Pu9tHud7T7z3/Nz/36nYPus5DXf/CxKWea3eEjTFaeJgyLh4xO5ER3UoaqIiIiIiIiIkvliCuXHyY1bVWvhoee277WETaMOehyBwWlBxcOLWp25pFD1xb3KMcOuu0xTwY/3PUPDW4PBL7OUfe39h0+2LV2/ud/brh4cIXk0SomDxsmP49ZscdanbkUM3GXqjJ0MWMJoyZ+UCaKykty75OKVceEE4FCVRERERERERERkRXCcuRK5ud/baW1C6VQVUREREREROQ4OebA4pCytFZl4WyF6iFXfR65yLynHssy8kvqyJWPh1Tnzju4gIrJBVRnHrHlg1oKPm92NhpU/1RZobRak4iIiIiIiIiIyApibWcei/0PmQ996EMYY+Y9zj777Pbxer3O1q1b6evrI5vNcvXVVzM6OjrvGjt37uSqq64inU4zODjIe9/7XoIgWILPUmepUlVERERERERkher4VN1lb9x45CpGy1EqRp9Xpe5zP/ngM5aycvVYvqbLff9jGYOmma8eL3zhC/nOd77T3va8A3Hju9/9br75zW/y1a9+lXw+zw033MDrX/96/u3f/g2AMAy56qqrGB4e5v7772ffvn285S1vIRaL8bGPfey4v5bFUKgqIiIiIiIiIivSiRLMLfc4lvv+J8oYThad7am6eJ7nMTw8fMj+QqHAX//1X/PlL3+ZX/qlXwLg9ttv55xzzuGHP/whl156Kd/+9rd5/PHH+c53vsPQ0BDnn38+H/nIR7jpppv40Ic+RDwef56vqHM0/V9ERERERERERGSFsNYSdegB4Ps+xWJx3qPRaBxxPE8++SRr167ltNNO47d+67fYuXMnAA8++CC+73P55Ze3zz377LPZsGEDDzzwAAAPPPAA5513HkNDQ+1ztmzZQrFY5LHHHuvEp2/JKFQVERERERERERERAO6++27y+fy8x6233nrYcy+55BLuuOMO7r77bj73uc/xzDPP8Au/8AuUSiVGRkaIx+N0d3fPe87Q0BAjIyMAjIyMzAtUZ4/PHjuRafq/iIiIiIiIiIjICtFaT6pz0/+vvPJKvvSlL83bn0gkDnv+a17zmvbHL37xi7nkkkvYuHEjX/nKV0ilUh0Z44lClaoiIiIiIiIiIiICQCwWI5fLzXscKVQ9WHd3N2eddRbbt29neHiYZrPJ9PT0vHNGR0fbPViHh4cZHR095PjssROZQlUREREREREREZEVorVQVWcez1e5XOapp55izZo1XHjhhcRiMe6999728W3btrFz5042b94MwObNm3nkkUfYv39/+5x77rmHXC7HueeeuwQj6hxN/xcREREREREREVkhLJaoY9P/F3fd3/3d3+VXf/VX2bhxI3v37uWWW27BdV1+4zd+g3w+z9ve9jZuvPFGent7yeVyvPOd72Tz5s1ceumlAFxxxRWce+65vPnNb+bjH/84IyMj3HzzzWzdunXB1bHLRaGqiIiIiIiIiIiILNru3bv5jd/4DSYmJhgYGOCVr3wlP/zhDxkYGADgU5/6FI7jcPXVV9NoNNiyZQuf/exn2893XZc777yT66+/ns2bN5PJZLjmmmv48Ic/vFwvacEUqoqIiIiIiIiIiKwg1namUnWx/u7v/u6ox5PJJLfddhu33XbbEc/ZuHEj3/rWt5Z6aB2nnqoiIiIiIiIiIiIii6BKVRERERERERERkRWisz1VZaFUqSoiIiIiIiIiIiKyCKpUFRERERERERERWSEsdKxSVbWqC6dQVUREREREREREZIWwMw0AOnNtWShN/xcRERERERERERFZBFWqioiIiIiIiIiIrBidW6hKFk6VqiIiIiIiIiIiIiKLoEpVERERERERERGRFaKTC1VZVcAumEJVERERERERERGRFaK1TFVnFqqShdP0fxEREREREREREZFFUKWqiIiIiIiIiIjICmGxWNOZSlVN/184VaqKiIiIiIiIiIiILIIqVUVERERERERERFaIVk9VVZQuN4WqIiIiIiIiIiIiK0QnF6rS9P+F0/R/ERERERERERERkUVQpaqIiIiIiIiIiMiK0apVleWlSlURERERERERERGRRVClqoiIiIiIiIiIyAphDURGPVWXm0JVERERERERERGRFaKTC1XJwmn6v4iIiIiIiIiIiMgiqFJVRERERERERERkhehkpaqm/y+cKlVFREREREREREREFmFFharf/OY3ueSSS0ilUvT09PC6171uuYckIiIiIiIiIiJy3NiZWtVOPGThVsz0/3/4h3/guuuu42Mf+xi/9Eu/RBAEPProo8s9LBERERERERERETnJrIhQNQgC/uf//J984hOf4G1ve1t7/7nnnruMoxIRERERERERETm+Wh1Vww5dWz1VF2pFTP//8Y9/zJ49e3AchwsuuIA1a9bwmte8RpWqIiIiIiIiIiJykunk9H+Fqgu1IkLVp59+GoAPfehD3Hzzzdx555309PRw2WWXMTk5ecTnNRoNisXivIeIiIiIiIiIiIjI87Gsoer73vc+jDFHfTzxxBNEUatR7gc+8AGuvvpqLrzwQm6//XaMMXz1q1894vVvvfVW8vl8+7F+/frj9dJERERERERERESWnMUSmagjD8xyv7qVY1l7qr7nPe/h2muvPeo5p512Gvv27QPm91BNJBKcdtpp7Ny584jPff/738+NN97Y3i4WiwpWRURERERERERE5HlZ1lB1YGCAgYGB5zzvwgsvJJFIsG3bNl75ylcC4Ps+O3bsYOPGjUd8XiKRIJFILNl4RUREREREREREllOro6oWqlpuyxqqLlQul+Md73gHt9xyC+vXr2fjxo184hOfAOANb3jDMo9ORERERERERETkeLEzi0p15tqyMCsiVAX4xCc+ged5vPnNb6ZWq3HJJZfw3e9+l56enuUemoiIiIiIiIiIiJxEVkyoGovF+OQnP8knP/nJ5R6KiIiIiIiIiIjIsrBYItuh6f9WlaoL5Sz3AERERERERERERERWkhVTqboUDqTtSt1FRERERERERE5MrdxGVZOHZzvaU1UW6qQKVUul0sxH+oMnIiIiIiIiInIiK5VK5PP55R7GCSjC0pnp/ypEXLiTKlRdu3Ytu3btoqurC2PMcg/nhFIsFlm/fj27du0il8st93BEZAnp/S2yuuk9LrJ66f0tsrrpPX5k1lpKpRJr165d7qGIHNFJFao6jsO6deuWexgntFwup2/mIquU3t8iq5ve4yKrl97fIqub3uOHpwrVI2tN/u/MLGyrStUF00JVIiIiIiIiIiIiIougUFVERERERERERGSFmF2oqhOPxbr11lu5+OKL6erqYnBwkNe97nVs27Zt3jmXXXYZxph5j3e84x3zztm5cydXXXUV6XSawcFB3vve9xIEwfP6PHXaSTX9X44skUhwyy23kEgklnsoIrLE9P4WWd30HhdZvfT+Flnd9B6X1eC+++5j69atXHzxxQRBwO///u9zxRVX8Pjjj5PJZNrnXXfddXz4wx9ub6fT6fbHYRhy1VVXMTw8zP3338++fft4y1veQiwW42Mf+9hxfT2LYay1apYgIiIiIiIiIiJygrv++uv50u13k0+d0ZHrj5Uf4jO3fYy3v/3tx/b8sTEGBwe57777eNWrXgW0KlXPP/98Pv3pTx/2OXfddRe/8iu/wt69exkaGgLg85//PDfddBNjY2PE4/FjGkunafq/iIiIiIiIiIjICjG7UFUnfvE8F6oqFAoA9Pb2ztv/pS99if7+fl70ohfx/ve/n2q12j72wAMPcN5557UDVYAtW7ZQLBZ57LHHntd4OknT/0VERERERERERAQA3/cpFovz9iUSiedsVRFFEe9617t4xStewYte9KL2/t/8zd9k48aNrF27lp/+9KfcdNNNbNu2jX/8x38EYGRkZF6gCrS3R0ZGluIldYRCVRERERERERERkRWitahU2LGr33333dxwww3z9t5yyy186EMfOuozt27dyqOPPsq//uu/zts/t5XAeeedx5o1a/jlX/5lnnrqKU4//fQlG/nxplBVREREREREREREALjyyiv50pe+NG/fc1Wp3nDDDdx55518//vfZ926dUc995JLLgFg+/btnH766QwPD/OjH/1o3jmjo6MADA8PL3b4x416qp7kduzYwdve9jY2bdpEKpXi9NNP55ZbbqHZbM4776c//Sm/8Au/QDKZZP369Xz84x9fphGLyGJ89KMf5eUvfznpdJru7u7DnrNz506uuuoq0uk0g4ODvPe97yUIguM7UBE5JrfddhunnnoqyWSSSy655JB/jIrIyvD973+fX/3VX2Xt2rUYY/j6178+77i1lg9+8IOsWbOGVCrF5ZdfzpNPPrk8gxWRRbn11lu5+OKL6erqYnBwkNe97nVs27Zt3jn1ep2tW7fS19dHNpvl6quvbgdKIkdibdSZBxCLxcjlcvMeRwpVrbXccMMNfO1rX+O73/0umzZtes6xP/zwwwCsWbMGgM2bN/PII4+wf//+9jn33HMPuVyOc88993l/rjpFoepJ7oknniCKIv7iL/6Cxx57jE996lN8/vOf5/d///fb5xSLRa644go2btzIgw8+yCc+8Qk+9KEP8Zd/+ZfLOHIRWYhms8kb3vAGrr/++sMeD8OQq666imazyf33388XvvAF7rjjDj74wQ8e55GKyGL9/d//PTfeeCO33HILP/7xj3nJS17Cli1b5v1jVERWhkqlwkte8hJuu+22wx7/+Mc/zmc+8xk+//nP8+///u9kMhm2bNlCvV4/ziMVkcW677772Lp1Kz/84Q+555578H2fK664gkql0j7n3e9+N//0T//EV7/6Ve677z727t3L61//+mUctZzoTqSFqrZu3coXv/hFvvzlL9PV1cXIyAgjIyPUajUAnnrqKT7ykY/w4IMPsmPHDv7v//2/vOUtb+FVr3oVL37xiwG44oorOPfcc3nzm9/MT37yE/75n/+Zm2++ma1btz5nhexyMtba57esl6w6n/jEJ/jc5z7H008/DcDnPvc5PvCBDzAyMkI8Hgfgfe97H1//+td54oknlnOoIrJAd9xxB+9617uYnp6et/+uu+7iV37lV9i7d2+7EfjnP/95brrpJsbGxtrveRE58VxyySVcfPHF/Pmf/znQWhhg/fr1vPOd7+R973vfMo9ORI6VMYavfe1rvO51rwNaFUBr167lPe95D7/7u78LtFZWHhoa4o477uDXf/3Xl3G0IrJYY2NjDA4Oct999/GqV72KQqHAwMAAX/7yl/m1X/s1oFX8dM455/DAAw9w6aWXLvOI5URz/fXX8/+7/U6yyY0duf505TH+7LY/mdcH9WiMMYfdf/vtt3Pttdeya9cu3vSmN/Hoo49SqVRYv349//2//3duvvlmcrlc+/xnn32W66+/nu9973tkMhmuueYa/viP/xjPO3E7l564I5NlUygU6O3tbW8/8MADvOpVr5oXrmzZsoU/+ZM/YWpqip6enuUYpogsgQceeIDzzjtv3kqLW7Zs4frrr+exxx7jggsuWMbRiciRNJtNHnzwQd7//ve39zmOw+WXX84DDzywjCMTkaX2zDPPMDIywuWXX97el8/nueSSS3jggQcUqoqsMIVCAaD9M/eDDz6I7/vz3uNnn302GzZsUKgqR9Saqt+ZhaoWW3v5XOevX7+e++677zmvs3HjRr71rW8t6t7LTdP/ZZ7t27fzZ3/2Z/yP//E/2vtGRkbmBS5Ae3tkZOS4jk9Elpbe3yIr0/j4OGEYHvb9q/euyOoy+57W+11k5YuiiHe961284hWv4EUvehFAe0bowesf6D0ucuJTqLpKve9978MYc9THwVP39+zZw5VXXskb3vAGrrvuumUauYg8l2N5f4uIiIiIyPLaunUrjz76KH/3d3+33EORFa/VVbUTD1k4Tf9fpd7znvdw7bXXHvWc0047rf3x3r17efWrX83LX/7yQxagGh4ePmTlwdnt4eHhpRmwiCzYYt/fRzM8PHzIauF6f4uc+Pr7+3Fd97B/P+u9K7K6zL6nR0dH26skz26ff/75yzQqEVmsG264gTvvvJPvf//7rFu3rr1/eHiYZrPJ9PT0vGpV/Z0uR2extlMBqJZeWiiFqqvUwMAAAwMDCzp3z549vPrVr+bCCy/k9ttvx3HmFzBv3ryZD3zgA/i+TywWA+Cee+7hBS94gfqpiiyDxby/n8vmzZv56Ec/yv79+xkcHARa7+9cLse55567JPcQkaUXj8e58MILuffee9uL2URRxL333ssNN9ywvIMTkSW1adMmhoeHuffee9sharFY5N///d+5/vrrl3dwIvKcrLW8853v5Gtf+xrf+9732LRp07zjF154IbFYjHvvvZerr74agG3btrFz5042b968HEMWkQVSqHqS27NnD5dddhkbN27kk5/8JGNjY+1js/8r9pu/+Zv84R/+IW9729u46aabePTRR/nTP/1TPvWpTy3XsEVkgXbu3Mnk5CQ7d+4kDEMefvhhAM444wyy2SxXXHEF5557Lm9+85v5+Mc/zsjICDfffDNbt24lkUgs7+BF5KhuvPFGrrnmGi666CJe9rKX8elPf5pKpcJv//ZvL/fQRGSRyuUy27dvb28/88wzPPzww/T29rJhwwbe9a538Ud/9EeceeaZbNq0iT/4gz9g7dq17f9UEZET19atW/nyl7/MN77xDbq6utp9UvP5PKlUinw+z9ve9jZuvPFGent7yeVyvPOd72Tz5s1apEqOyGKxdGahKlWqLpxC1ZPcPffcw/bt29m+ffu8KQhwYAW3fD7Pt7/9bbZu3cqFF15If38/H/zgB3n729++HEMWkUX44Ac/yBe+8IX29gUXXADAv/zLv3DZZZfhui533nkn119/PZs3byaTyXDNNdfw4Q9/eLmGLCIL9MY3vpGxsTE++MEPMjIywvnnn8/dd999yGI2InLi+8///E9e/epXt7dvvPFGAK655hruuOMOfu/3fo9KpcLb3/52pqeneeUrX8ndd99NMplcriGLyAJ97nOfA+Cyyy6bt//2229vt/T61Kc+heM4XH311TQaDbZs2cJnP/vZ4zxSEVksY2eTMxERERERERERETlhXX/99dzx1/9IKrHmuU8+BqXa09z22U+qkG4BVKkqIiIiIiIiIiKyQlgtVHVCcJ77FBERERERERERERGZpUpVERERERERERGRFcJiiehMparqVBdOlaoiIiIiIiIiIiIii6BKVRERERERERERkZXCdrCnqtazXzBVqoqIiIiIiIiIiIgsgipVRUREREREREREVgiLxdqwY1eXhVGoKiIiIiIiIiIismK0lqqS5aXp/yIiIiIiIiIiIiKLoEpVERERERERERGRFcJ2cKEqq+n/C6ZKVREREZEVZmxsjOHhYT72sY+1991///3E43HuvffeZRyZiIiIiMjJQZWqIiIiIivMwMAAf/M3f8PrXvc6rrjiCl7wghfw5je/mRtuuIFf/uVfXu7hiYiIiEhHda5SVYWqC6dQVURERGQFeu1rX8t1113Hb/3Wb3HRRReRyWS49dZbl3tYIiIiItJhtqMLVSlVXShN/xcRERFZoT75yU8SBAFf/epX+dKXvkQikVjuIYmIiIiInBQUqoqIiIisUE899RR79+4liiJ27Nix3MMRERERkeNhZqGqjjxUqbpgmv4vIiIisgI1m03e9KY38cY3vpEXvOAF/M7v/A6PPPIIg4ODyz00EREREZFVT6GqiIiIyAr0gQ98gEKhwGc+8xmy2Szf+ta3eOtb38qdd9653EMTERERkQ6ynVyoShZM0/9FREREVpjvfe97fPrTn+Zv//ZvyeVyOI7D3/7t3/KDH/yAz33uc8s9PBERERHpKAtEHXpo+v9CqVJVREREZIW57LLL8H1/3r5TTz2VQqGwTCMSERERETm5KFQVERERERERERFZKaym/58INP1fREREREREREREZBFUqSoiIiIiIiIiIrJCWCyWTlWqqqfqQqlSVURERERERERERGQRVKkqIiIiIiIiIiKyYnSup6pVoeqCKVQVERERERERERFZMSwQdvDashCa/i8iIiIiIiIiIiKyCKpUFRERERERERERWSGs7dz0f1WqLpwqVUVEREREREREREQWQZWqIiIiIiIiIiIiK4YFOlWpKgulUFVERERERERERGTFsKDp/8tO0/9FREREREREREREFkGVqiIiIiIiIiIiIiuGxaqidNmpUlVERERERERERERkERSqioiIiIiIiIiIrBizC1V14rH4CtjbbruNU089lWQyySWXXMKPfvSj5/PiVgyFqiIiIiIiIiIiIiuJtZ15LNLf//3fc+ONN3LLLbfw4x//mJe85CVs2bKF/fv3d+BFn1gUqoqIiIiIiIiIiMii/e///b+57rrr+O3f/m3OPfdcPv/5z5NOp/mbv/mb5R5axylUFRERERERERERWTFsx34tRrPZ5MEHH+Tyyy9v73Mch8svv5wHHnhgqV/0Ccdb7gGIiIiIiIiIiIjIicDi+z7FYnHe3kQiQSKRmLdvfHycMAwZGhqat39oaIgnnnii4yNdbqpUFRERERERERERWQH+63/9r7QWk1p8/9Pn1rrmk08+ST6fn/e49dZbO3C/lc1YewxdaEVEREREREREROS4stbiOO7MlnvUcxd5ZSACoF6v0Wg05h09XKVqs9kknU7zf/7P/+F1r3tde/8111zD9PQ03/jGN5ZwfCceVaqKiIiIiIiIiIisAMYYfvzjB1n6atXW9aamJkkkEuRyuXmPgwNVgHg8zoUXXsi9997b3hdFEffeey+bN29ewrGdmNRTVUREREREREREZIW44IILAEOrsnQpqlVnq1Qduru7F/XMG2+8kWuuuYaLLrqIl73sZXz605+mUqnw27/920swrhObQlUREREREREREZEV5Nlnd7Bx40Zagah5nldrVbw2GrVFP/ONb3wjY2NjfPCDH2RkZITzzz+fu++++5DFq1Yj9VQVERERERERERFZYYyZ7erpcOzBqgVC/u7v/o43vvGNSzOwk4RCVRERERERERERkRVmenqanp4eWqHqsS6bFAERURRhzPOteD25aKEqERERERERERGRFabV/9ShFYweS81kq5fq97//fQWqx0CVqiIiIiIiIiIiIitQs9kkkUhwbNWqIQDWRks9rJOCKlVFRERERERERERWoHg8zle+8hUWX61qAcvPfvZ4ZwZ2ElClqoiIiIiIiIiIyAplrcVxZitVF1o/qSrV50uVqiIiIiIiIiIiIiuUMYYf/OAHLLxatVWlOjKyr7MDW+VUqSoiIiIiIiIiIrLCGTNbO+ke5SxLq0rVwdqw84NaxVSpKiIiIiIiIiIissI98cTPmK1CPbLWsXK5eDyGtKopVBUREREREREREVnhXvCCFwCGVhuAw7FAxF/91V+RyWSO38BWKU3/FxERERERERERWQVGR0cZHh6m1QLAHHQ0AiKCIMB1j9YiQBZClaoiIiIiIiIiIiKrwNDQEK24L2R+G4BWleo3v/lNBapLRJWqIiIiIiIiIiIiq0S1Wp2Z3u9woJ6ytShVFIUYc3AFqxwLVaqKiIiIiIiIiIisEul0mr/+67+mNd3fth8PPvifClSXkCpVRUREREREREREVpEwDPE8j1Y9ZSv6s/ZIC1jJsVClqoiIiIiIiIiIyCriui7f+ta3mK1W3bHjmeUe0qqjSlUREREREREREZFVxlqL47iAwdpwuYez6ihUFREREREREREREVkETf8XERERERERERERWQSFqiIiIiIiIiIiIiKLoFBVREREREREREREZBEUqoqIiIiIiIiIiIgsgkJVERERERERERERkUVQqCoiIiIiIiIiIiKyCApVRURERERERERERBZBoaqIiIiIiIiIiIjIIihUFREREREREREREVkEhaoiIiIiIiIiIiIii6BQVURERERERERERGQRFKqKiIiIiIiIiIiILIJCVREREREREREREZFFUKgqIiIiIiIiIiKyylhreetbX8utf/w/lnsoq5Kx1trlHoSIiIiIiIiIiIgsnbvuuos3vvHXCIKQn/1sGxs3blzuIa0qClVFRERERERERERWkTAMOf/8M/ntt76WHz/4cwC++MVvL/OoVhdvuQcgIiIiIiIiIiIiS+f2299Ptdrg+uv/G/v2TfCiF17Lj3/8Y1760pcu99BWDVWqioiIiIiIiIiIrBKVSoWzzjqV//W//l/e8P+8GoD3ve8vePDBbdz7nQcxxizzCFcHLVQlIiIiIiIiIiKySvyv//3/4ZR1/fzaGy5r73vf+36Ln/7kKe66667lG9gqo0pVERERERERERGRVWB0dJQzztjEP935x/zCL7x43rHPfOb/8Nd/9U0efvhJPE8dQZ8vVaqKiIiIiIiIiIisAn/4h/+DX/qllx4SqAK84x3/jVqtye23v38ZRrb6qFJVRERERERERERkhdu2bRvnn/9iHvzx/5cXvGDDYc/56lf+hRtvvI0nn3yWTCZznEe4uqhSVUREREREREREZIW76abf4dprrzxioArwa2+4jPUbBvnk/3rncRzZ6qRKVRERERERERERkRXsBz/4Aa997Ra2/fyLDA31HvXcf/3XR/iVq25i+/ZnGBoaOk4jXH0UqoqIiIiIiIiIiKxQ1lou3fxCXvvaS7n55rcs6DlXv/4PGB7u5fOf/0aHR7d6KVQVERERERERERFZob761a/yP//n9Tyx7W/JZFILes62bTu58KXX8dBDP+Hss8/u8AhXJ4WqIiIiIiIiIiIiK1Cz2eTcczdx002/yVvfdtWinnvD1k+xd+8E3/jGv3ZodKubFqoSERERERERERFZgW777I0kk3GuufbKRT/3Dz54Df/yLw/xgx/8oAMjW/1UqSoiIiIiIiIiIrLCTE9Pc/rpG7njC+/nta+99Jiu8dGP/i133nk///7DxzHGLPEIVzdVqoqIiIiIiIiIiKwwH/3Y9bzk/NN5zWsuOeZrvPvdb2DP7nG+8pWvLOHITg6qVBUREREREREREVlBdu7cydlnn8V93/8ML33pWc/rWrf/zbf42Me+yM9+9gyJRGKJRrj6qVJVRERERERERERkBfnAB36H17/+Vc87UAV4yzVbyGSS3PbZ9yzByE4eqlQVERERERERERFZIR566CFe8YrNPPrYHWzcOLwk17zrrn/nmrd8jKeeepbu7u4lueZqp1BVRERERERERERkBbDWcvl/uYgLLjiTP/mTdyzpdbds+V0uuOBMPvmJv1uy665mClVFRERERERERERWgLvuuos3venX+fmTX6K7O7uk137ooSd51S+8k5/9bBsbN25c0muvRuqpKiIiIiIiIiIisgJ84xuf501vvmLJA1WACy44k4tfdjb//M//vOTXXo0UqoqIiIiIiIiIiKwAxqwllYp37PqpZKJj115tvOUegIiIiIiIiIiIiCyQtRBFnbp4h667+qhSVURERERERERERGQRVKkqIiIiIiIiIiKyUnSyUlWFqgumUFVERERERERERGSl0PT/E4Km/4uIiIiIiIiIiIgsgipVRUREREREREREVgpLq1q1U9eWBVGlqoiIiIiIiIiIiMgiqFJVRERERERERERkxVBP1ROBQlUREREREREREZGVopMLVSlTXTBN/xcRERERERERERFZBFWqioiIiIiIiIiIrBSdrFRVqeqCqVJVREREREREREREZBFUqSoiIiIiIiIiIrJSqKfqCUGhqoiIiIiIiIiIyEqh6f8nBE3/FxEREREREREREVkEVaqKiIiIiIiIiIisEMZajO3U9H9Vqi6UKlVFREREREREREREFkGVqiIiIiIiIiIiIitFR3uqykKpUlVEREREREREREQW7dZbb+Xiiy+mq6uLwcFBXve617Ft27Z559TrdbZu3UpfXx/ZbJarr76a0dHReefs3LmTq666inQ6zeDgIO9973sJgmDeOd/73vd46UtfSiKR4IwzzuCOO+7o9Ms7KoWqIiIiIiIiIiIiK4UFItuZxyJbqt53331s3bqVH/7wh9xzzz34vs8VV1xBpVJpn/Pud7+bf/qnf+KrX/0q9913H3v37uX1r399+3gYhlx11VU0m03uv/9+vvCFL3DHHXfwwQ9+sH3OM888w1VXXcWrX/1qHn74Yd71rnfxO7/zO/zzP//z8/1sHjNjrTrQioiIiIiIiIiInOiuv/56ur19fPT9v96R67/2TX/M63/9/+Xtb3/7MT1/bGyMwcFB7rvvPl71qldRKBQYGBjgy1/+Mr/2a78GwBNPPME555zDAw88wKWXXspdd93Fr/zKr7B3716GhoYA+PznP89NN93E2NgY8Xicm266iW9+85s8+uij7Xv9+q//OtPT09x9993P/4UfA1WqioiIiIiIiIiICAC+71MsFuc9Go3Ggp5bKBQA6O3tBeDBBx/E930uv/zy9jlnn302GzZs4IEHHgDggQce4LzzzmsHqgBbtmyhWCzy2GOPtc+Ze43Zc2avsRwUqoqIiIiIiIiIiKwUswtVdeJhLXfffTf5fH7e49Zbb33OYUVRxLve9S5e8YpX8KIXvQiAkZER4vE43d3d884dGhpiZGSkfc7cQHX2+Oyxo51TLBap1WrH9Gl8vrxluauIiIiIiIiIiIiccK688kq+9KUvzduXSCSe83lbt27l0Ucf5V//9V87NbQTikJVERERERERERGRFcOCjTp29VgsRi6XW9RzbrjhBu68806+//3vs27duvb+4eFhms0m09PT86pVR0dHGR4ebp/zox/9aN71RkdH28dmf5/dN/ecXC5HKpVa1FiXiqb/i4iIiIiIiIiIrBQdnv6/uKFYbrjhBr72ta/x3e9+l02bNs07fuGFFxKLxbj33nvb+7Zt28bOnTvZvHkzAJs3b+aRRx5h//797XPuuececrkc5557bvucudeYPWf2GstBlaoiIiIiIiIiIiKyaFu3buXLX/4y3/jGN+jq6mr3QM3n86RSKfL5PG9729u48cYb6e3tJZfL8c53vpPNmzdz6aWXAnDFFVdw7rnn8uY3v5mPf/zjjIyMcPPNN7N169Z224F3vOMd/Pmf/zm/93u/x1vf+la++93v8pWvfIVvfvOby/baFaqKiIiIiIiIiIisFBaIFldR2imf+9znALjsssvm7b/99tu59tprAfjUpz6F4zhcffXVNBoNtmzZwmc/+9n2ua7rcuedd3L99dezefNmMpkM11xzDR/+8Ifb52zatIlvfvObvPvd7+ZP//RPWbduHX/1V3/Fli1bOv4aj0ShqoiIiIiIiIiIiCyaXUC7gGQyyW233cZtt912xHM2btzIt771raNe57LLLuOhhx5a9Bg7RaGqiIiIiIiIiIjISjHbU7VT15YFUagqIiIiIiIiIiKyUnQ0VO3MZVcjZ7kHICIiIiIiIiIiIrKSqFJVRERERERERERkpbAW06FKVaNS1QVTpaqIiIiIiIiIiIjIIqhSVUREREREREREZMWwWlDqBKBKVREREfn/s/ffcZJd9Z3//zo31K1c1XF6kmZGAUkogYTISZassIQlOAJekiWCRNJ60cqAkGQWAbIJthewvQaxRjIY7wIGfgjJK4EIQl8JkCVQQGGkiZ27K1fdcM7vj1tV3dXTM9MTemZ65vPUox5ddcO5p2pGM9Pv/tzPEUIIIYQQQgixDyRUFUIIIYQ4Qvzwhz9EKcUPf/jDwz0VIYQQQghxpDIGtF6eh1TALpmEqkIIIYQQh9jnP/95brrppsM9jf1yyy238NnPfvZwTwMArTWf+tSn2LRpE8lkkjPPPJN//ud/XtK5O3fu5L//9//OeeedRy6X22OYfdttt/H2t7+d008/Hdu22bhx48F7E0IIIYQQ+2pZQ9XD/eZWDglVhRBCCCEOsd2Fqi996UtpNBq89KUvPfSTWqIjKVT90Ic+xFVXXcXv/u7v8jd/8zccd9xxvOENb+BrX/vaXs999NFH+eQnP8n27ds544wz9njsLbfcwi233EKhUGDNmjUHa/pCCCGEEGIFk1BVCCGEEIdFrVY73FM44liWRTKZxLLkn2h7s337dv7qr/6Kyy+/nL//+7/n0ksv5Tvf+Q4veclL+G//7b8RRdEezz/nnHOYmprit7/9LVdeeeUej/34xz9OuVzmpz/9KWedddbBfBtCCCGEEPvOANosz0MsmfyLXQghhBAHbPv27bz97W9nzZo1eJ7Hpk2beNe73oXv+wDcdNNNKKX40Y9+xLvf/W6Gh4dZt25d9/zPf/7znHbaaXiex5o1a7j88suZnZ3tucZjjz3G61//ekZGRkgmk6xbt44/+qM/olQqdY+5/fbbefGLX0yxWCSbzXLyySfz53/+53ud/1LOa7VafPSjH+XEE0/E8zzWr1/PBz/4QVqt1i7jffWrX+W5z30u6XSavr4+XvrSl3LbbbcBsHHjRn7zm9/wox/9CKUUSile/vKXA7vvqfqNb3yDc845h1QqxeDgIG9605vYvn17zzFvectbyGazbN++nde85jVks1mGhob4sz/7s70GjADf/va3ecUrXtH9NTzhhBP4i7/4i55zX/7yl/O9732Pp59+ujv3Pd0K/5a3vKV73MLHtddeu9c57W2+QRDw7ne/u7tNKcW73vUutm3bxt13373H83O5HP39/Uu61po1a3Bd94DmK4QQQgghji7O4Z6AEEIIIVa2HTt28NznPpfZ2Vkuu+wyTjnlFLZv386//uu/Uq/XSSQS3WPf/e53MzQ0xDXXXNOtVL322mu57rrruOCCC3jXu97Fo48+yhe+8AXuvfdefvrTn+K6Lr7vc9FFF9FqtXjPe97DyMgI27dv57vf/S6zs7MUCgV+85vf8MpXvpIzzzyT66+/Hs/zePzxx/npT3+6x/kv5TytNa9+9av5yU9+wmWXXcapp57Kgw8+yGc+8xl++9vf8q1vfat77HXXXce1117LC1/4Qq6//noSiQT33HMPd9xxBxdeeCGf/exnec973kM2m+VDH/oQAKtWrdrt/G666Sbe+ta3cu6553LDDTcwNjbG5z73OX7605/yq1/9imKx2D02iiIuuuginve85/GXf/mX/Pu//zt/9Vd/xQknnMC73vWuPX4ON910E9lsliuvvJJsNssdd9zBNddcQ7lc5sYbbwTi2+1LpRLbtm3jM5/5DADZbHa3Y77jHe/gggsu6Nl26623cvPNNzM8PNzdNjk5uce5deRyOTzPA+BXv/oVmUyGU089teeY5z73ud39L37xi5c0rhBCCCHEitLpqbpcY4slkVBVCCGEEAfk6quvZnR0lHvuuYfnPOc53e3XX389ZsE/yvr7+/l//+//Yds2ABMTE9xwww1ceOGFfP/73+/e9n7KKadwxRVX8NWvfpW3vvWtPPTQQ2zevJlvfOMb/N7v/V53vGuuuab7/Pbbb8f3fb7//e8zODi45Pkv5bxbbrmFf//3f+dHP/pRT1B3+umn8853vpOf/exnvPCFL+Txxx/n+uuv57WvfS3/+q//2nMbf+ezeM1rXsOHP/zhbsXpngRBwFVXXcXpp5/OXXfdRTKZBODFL34xr3zlK/nMZz7Ddddd1z2+2Wzyh3/4h3zkIx8B4J3vfCdnn302//iP/7jXUPWWW24hlUp1X7/zne/kne98J5///Of52Mc+hud5/O7v/i5r165lZmZmr3MHeMELXsALXvCC7uvHH3+cK664gt/93d/lHe94R3f70NDQXscC+PKXv8xb3vIWIF5oatWqVSileo5ZvXo1EIf9QgghhBBHpeUMVWWlqiWT2/+FEEIIsd+01nzrW9/iVa96VU+g2rEw8Lr00ku7gSrAv//7v+P7Pu9///t7AshLL72UfD7P9773PQAKhQIAP/jBD6jX64vOpVOx+e1vfxu9D//IXMp53/jGNzj11FM55ZRTmJyc7D5+53d+B4A777wTgG9961torbnmmmt26Yu68LNYivvuu4/x8XHe/e53dwNVgFe84hWccsop3c9nvne+8509r1/ykpfw5JNP7vVa8wPVSqXC5OQkL3nJS6jX6zzyyCP7PPeFarUar33ta+nr6+Of//mfe34f3H777Ut6XHTRRd1zGo1Gt2p1vs7n1Gg0DnjOQgghhBBC7I5UqgohhBBiv01MTFAulzn99NOXdPymTZt6Xj/99NMAnHzyyT3bE4kExx9/fHf/pk2buPLKK/n0pz/NzTffzEte8hJe/epX86Y3vakbuP7hH/4h/+t//S/+9E//lP/+3/87559/Pq973ev4vd/7vT0u/LSU8x577DEefvjh3VZUjo+PA/DEE09gWRbPfOYzl/R57M3uPh+Iq3l/8pOf9GxLJpO7zLGvr4+ZmZm9Xus3v/kNH/7wh7njjjsol8s9++b3rd1fl156KU888QQ/+9nPGBgY6Nm3sEXAUqRSqUX72Tabze5+IYQQQoijltymf9hJqCqEEEKIQ+ZAgq6/+qu/4i1veQvf/va3ue2223jve9/LDTfcwM9//nPWrVtHKpXirrvu4s477+R73/set956K1//+tf5nd/5HW677baeysiFc9rbeVprzjjjDD796U8vOsb69ev3+30dTLt7j3szOzvLy172MvL5PNdffz0nnHACyWSSX/7yl1x11VX7VPm7mM997nP88z//M1/96ld51rOetcv+0dHRJY1TKBS6v4dWr17NnXfeiTGmpwp4586dQLy4lBBCCCGEEMtFbv8XQgghxH4bGhoin8/z61//er/O37BhAwCPPvpoz3bf99m8eXN3f8cZZ5zBhz/8Ye666y5+/OMfs337dr74xS9291uWxfnnn8+nP/1pHnroIf7H//gf3HHHHd3b83dnb+edcMIJTE9Pc/7553PBBRfs8uhUkp5wwglorXnooYf2eL2ltgLY3efT2bbw89lfP/zhD5mamuKmm27ife97H6985Su54IIL6Ovr2+XYfW1j8OMf/5g/+7M/4/3vfz9vfOMbFz1m9erVS3p8/etf757zrGc9i3q9zsMPP9wz1j333NPdL4QQQghxVOr0VF2OhxTALpmEqkIIIYTYb5Zl8ZrXvIbvfOc73HfffbvsX7hQ1UIXXHABiUSCv/7rv+459h//8R8plUq84hWvAKBcLhOGYc+5Z5xxBpZldW8Bn56e3mX8TrC22G3iHUs57w/+4A/Yvn07//AP/7DLsY1Gg1qtBsSLUFmWxfXXX79Ldef895fJZJidnd3tnDqe85znMDw8zBe/+MWe9/D973+fhx9+uPv5HKhOhev8Ofq+z+c///ldjs1kMktuB7Bz507+4A/+gBe/+MXceOONuz1uf3qq/uf//J9xXbdnjsYYvvjFL7J27Vpe+MIX9szjkUceIQiCJc1bCCGEEOKIZgzoZXpIW4Elk9v/hRBCCHFAPv7xj3Pbbbfxspe9jMsuu4xTTz2VnTt38o1vfIOf/OQn3YWgFjM0NMTVV1/Nddddx8UXX8yrX/1qHn30UT7/+c9z7rnndleYv+OOO7jiiiv4/d//fZ7xjGcQhiH/9E//hG3bvP71rwfg+uuv56677uIVr3gFGzZsYHx8nM9//vOsW7eOF7/4xbudw1LO+5M/+RP+5V/+hXe+853ceeedvOhFLyKKIh555BH+5V/+hR/84Ac85znP4cQTT+RDH/oQf/EXf8FLXvISXve61+F5Hvfeey9r1qzhhhtuAOCcc87hC1/4Ah/72Mc48cQTGR4e7i56NZ/runzyk5/krW99Ky972cv44z/+Y8bGxvjc5z7Hxo0b+cAHPrC/v2w9XvjCF9LX18eb3/xm3vve96KU4p/+6Z8WDcXPOeccvv71r3PllVdy7rnnks1medWrXrXouO9973uZmJjggx/8IF/72td69p155pmceeaZwP71VF23bh3vf//7ufHGGwmCgHPPPZdvfetb/PjHP+bmm2/uaYVw9dVX85WvfIXNmzezcePG7vaPfexjQNxPFuCf/umfun1qP/zhD3ePe+CBB/i3f/s3AB5//HFKpVL33LPOOmu3718IIYQQQhy9JFQVQgghxAFZu3Yt99xzDx/5yEe4+eabKZfLrF27lksuuYR0Or3X86+99lqGhob427/9Wz7wgQ/Q39/PZZddxsc//nFc1wXi4Oqiiy7iO9/5Dtu3byedTnPWWWfx/e9/n+c///kAvPrVr+app57iS1/6EpOTkwwODvKyl72M6667rruY1WKWcp5lWXzrW9/iM5/5DP/7f/9vvvnNb5JOpzn++ON53/vexzOe8YzueNdffz2bNm3ib/7mb/jQhz5EOp3mzDPP5E/+5E+6x1xzzTU8/fTTfOpTn6JSqfCyl71s0VAV4C1veQvpdJpPfOITXHXVVWQyGV772tfyyU9+co+B9b4YGBjgu9/9Lv/1v/5XPvzhD9PX18eb3vQmzj///J7qUIB3v/vd3H///Xz5y1/mM5/5DBs2bNhtqDgxMUEURVx55ZW77PvoRz/aDVX31yc+8Qn6+vr4u7/7O2666SZOOukkvvrVr/KGN7xhSed/5CMf6Xn9pS99qft8fqj6y1/+cpdjO6/f/OY3S6gqhBBCiEOrc/u/OKyU2dt9eUIIIYQQQgghhBBCiMPuXe96F8X6o3z8nZcsy/j/6cp/5LVvvZLLLrtsWcY/mkilqhBCCCGEEEIIIYQQK8VyVqpK7eWSSagqhBBCCCGEEEIIIcRKYYgXlRKHlXW4JyCEEEIIIYQQQgghhBAriVSqCiGEEEIIIYQQQgixUhgDRm7/P9ykUlUIIYQQQgghhBBCCCH2gVSqCiGEEEIIIYQQQgixUhgjPVWPAMdUqKq1ZseOHeRyOZRSh3s6QgghhBBCCCGEEGIBYwyVSoU1a9ZgWXKTtTgyHVOh6o4dO1i/fv3hnoYQQgghhBBCCCGE2IutW7eybt26wz2NI48xoKWn6uF2TIWquVyu/cwCpFJVCCGEEEIIIYQQ4shjAD0vxxE9DHL7/xHgmApV5275V0ioKoQQQgghhBBCCHHkktaN4kh2TIWqQgghhBBCCCGEEEKsaMt6+//yDHs0WlHdfrdv386b3vQmBgYGSKVSnHHGGdx3332He1pCCCGEEEIIIYQQQohjyIqpVJ2ZmeFFL3oR5513Ht///vcZGhriscceo6+v73BPTQghhBBCCCGEEEKIQ8QsY09VKVVdqhUTqn7yk59k/fr1fPnLX+5u27Rp02GckRBCCCGEEEIIIYQQh5gxYOT2/8Ntxdz+/2//9m885znP4fd///cZHh7m2c9+Nv/wD/+wx3NarRblcrnnIYQQQgghhBBCCCGEEAdixYSqTz75JF/4whc46aST+MEPfsC73vUu3vve9/KVr3xlt+fccMMNFAqF7mP9+vWHcMZCCCGEEEIIIYQQQhxkhvj2/+V4SKnqkq2YUFVrzdlnn83HP/5xnv3sZ3PZZZdx6aWX8sUvfnG351x99dWUSqXuY+vWrYdwxkIIIYQQQgghhBBCiKPRiumpunr1ap75zGf2bDv11FP5P//n/+z2HM/z8DxvuacmhBBCCCGEEEIIIcSh0alUXa6xxZKsmErVF73oRTz66KM9237729+yYcOGwzQjIYQQQgghhBBCCCEOMWNA6+V57KO77rqLV73qVaxZswalFN/61rd69iulFn3ceOON3WM2bty4y/5PfOITPeM88MADvOQlLyGZTLJ+/Xo+9alP7ddHdzCtmFD1Ax/4AD//+c/5+Mc/zuOPP84tt9zC3//933P55Zcf7qkJIYQQQgghhBBCCHHMqdVqnHXWWfzP//k/F92/c+fOnseXvvQllFK8/vWv7znu+uuv7znuPe95T3dfuVzmwgsvZMOGDfziF7/gxhtv5Nprr+Xv//7vl/W97c2Kuf3/3HPP5Zvf/CZXX301119/PZs2beKzn/0sb3zjGw/31IQQQgghhBBCCCGEODSMWcbb//dt3EsuuYRLLrlkt/tHRkZ6Xn/729/mvPPO4/jjj+/Znsvldjm24+abb8b3fb70pS+RSCQ47bTTuP/++/n0pz/NZZddtk/zPZhWTKUqwCtf+UoefPBBms0mDz/8MJdeeunhnpIQQgghhBBCCCGEEEeNIAgol8s9j1ardcDjjo2N8b3vfY+3v/3tu+z7xCc+wcDAAM9+9rO58cYbCcOwu+/uu+/mpS99KYlEorvtoosu4tFHH2VmZuaA57W/VlSoKoQQQgghhBBCCCHEMa2zUNVyPAzceuutFAqFnscNN9xwwNP+yle+Qi6X43Wve13P9ve+97187Wtf48477+Qd73gHH//4x/ngBz/Y3T86OsqqVat6zum8Hh0dPeB57a8Vc/u/EEIIIYQQQgghhBBieV188cXcfPPNPds8zzvgcb/0pS/xxje+kWQy2bP9yiuv7D4/88wzSSQSvOMd7+CGG244KNddLhKqCiGEEEIIIYQQQgixUhgDWi/X4LiuSz6fP6ij/vjHP+bRRx/l61//+l6Pfd7znkcYhjz11FOcfPLJjIyMMDY21nNM5/Xu+rAeCnL7vxBCCCGEEEIIIYQQK4aJg9XleCyTf/zHf+Scc87hrLPO2uux999/P5ZlMTw8DMALXvAC7rrrLoIg6B5z++23c/LJJ9PX17dsc94bCVWFEEIIIYQQQgghhBD7rFqtcv/993P//fcDsHnzZu6//362bNnSPaZcLvONb3yDP/3TP93l/LvvvpvPfvaz/Md//AdPPvkkN998Mx/4wAd405ve1A1M3/CGN5BIJHj729/Ob37zG77+9a/zuc99rqdtwOEgt/8LIYQQQgghhBBCCLFSdBaqWq6x98F9993Heeed133dCTrf/OY3c9NNNwHwta99DWMMf/zHf7zL+Z7n8bWvfY1rr72WVqvFpk2b+MAHPtATmBYKBW677TYuv/xyzjnnHAYHB7nmmmu47LLL9v39HUQSqgohhBBCCCGEEEIIIfbZy1/+csxe2gZcdtlluw1Azz77bH7+85/v9TpnnnkmP/7xj/drjstFQlUhhBBCCCGEEEIIIVYKY46YStVjmYSqQgghhBBCCCGEEEKsFMaA1ss1+DKNe/SRhaqEEEIIIYQQQgghhBBiH0ilqhBCCCGEEEIIIYQQK8URtFDVsUwqVYUQQgghhBBCCCGEEGIfSKWqEEIIIYQQQgghhBArxXIuVCWlqksmoaoQQgghhBBCCCGEECuF3P5/RJDb/4UQQgghhBBCCCGEEGIfSKWqEEIIIYQQQgghhBArhTGYZapUlULVpZNKVSGEEEIIIYQQQgghhNgHUqkqhBBCCCGEEEIIIcRKYqSn6uEmoaoQQgghhBBCCCGEECuFMcu3UJWkqksmt/8LIYQQQgghhBBCCCHEPpBKVSGEEEIIIYQQQgghVgrD8lWqSqHqkkmlqhBCCCGEEEIIIYQQQuwDqVQVQgghhBBCCCGEEGKlWNaeqmKppFJVCCGEEEIIIYQQQggh9oFUqgohhBBCCCGEEEIIsVJIT9UjgoSqQgghhBBCCCGEEEKsEMaAWbZQVVLVpZLb/4UQQgghhBBCCCGEEGIfSKWqEEIIIYQQQgghhBArhSxUdUSQSlUhhBBCCCGEEEIIIYTYB1KpKoQQQgghhBBCCCHESiELVR0RJFRtU6j9Os/sx++2/b3WwZrHwb7+SvwMhBBCCCGEEEIIIVakZb39X7KVpZJQFVDKQmHv37kHeS7763DOY+G1Fws3lxyiqiV0pDB6dzv2cuLuzjtElnkFPQmVhRBCCCGEEEIIIQ4NCVWFEEIIIYQQQgghhFhJlqtwS+q1luyYD1WVsrCsLMlE/z6dZ3ZbLbl/czhQ+zOfA7nu7q63u+2LXWv+NrVgzTSlFq8cNiaae96uPO1cs/t1N9sXVqoeyK+hWULVa+/40R72wT5V0S44t1OhqnY3zn7+QSuVr0IIIYQQQgghhBCLO+ZDVSGEEEIIIYQQQgghVgyzh86I4pA55kNVy8rSn3kGz1Qv3KVacr6FlYm6XcWn51Xz6SVUG1rzrmG1awutef1G9zSH3c1HL6goXPi69/pqj693N4fdXW/uc1ja/80W1i7v2273s+28VmrXOXauY8zc564xRETt55pIRejOK6UJ8NFE3dcRQXyuibpnd+Zt0D1VsHt7P2YPlafdMdvjxWPP22+C7jm6vc+057RwrIXjL16F2x6j5zrR3HPV/rqbCtfF6cX74O6m6lWqWoUQQgghhBBCiENkOReqkm/vl+yYDFULhUJ7cSpFJrWBFyQu5g2bXBy1SJjVuana7Pp6/rZO1rSnKK4TVXYyQ4XBUmDNew1zr+dvm3/tvc1nseMXjtW5xsJrz9+/u/EWvndo///cOc4suK5qvy/i9z7/fSsMtmq/Biy1cB5m7n9oY9BGERlDpBXagB8pIqMItaEZKiIDgVaExuCH4Ov42FCDH2lCDZGBSENg4pA2PsegTed9mF1+Pbthbnd7J+Td9bXGoI0BFYeNIaYnDI6ICNHdILilmkSERAQEqoWeF8bGX6P2uZ3gtBMeR0QmRJsAYzSBbsRBbfu1NmF7Tp3gNuyOa4xe8LtjXluFdlA7t2Huuen++vT+Tl/wyzZ3vPxpLIQQQgghhNhPSqmex4FuEyuHMZpSafpwT0OIPTomQ9WNGzdh2zYKSCQGySWyVAbyOAfw5+xS6jQ7sdUea1EXm8MecqkDqfbumce+vvd5c9qlO+ge5js/MO5evxPwLvJGe6K/dnDbDTYXeQ3gAraBRDf43c1c2yGqYi64Nca0ty+ojNW0Q934pPZLjDFoHX/tZI+GTkAb74uDXIPR8SMMInT7tTIGF0gog2fBgBPiKUNSaTzbkLR0N5QGiEwcIgc6fpRCi2akaEawswGllqYWRgRG0zIRxhhCNAEhdatGkxot6vEW0+pW1WoTxDGvCdAmINR+TwWt1mH7uLAb0M5VxkZzQWy3onY3fV4XVLpK6CqEEEIIIcShZ1lW92Hb9m5fd57vKaw80LBzse1CRFHEf/yHhKq7ZVi+SlWxZCs2VP3EJz7B1Vdfzfve9z4++9nP7t8gSuFYKfrsNCdmWjiWYW9/fh/MxdX29++K3c1hb1Nb7HK7m8PCytWFVa+LzWOpH838keZX7S5mfiUsxFWmxsRHaxTazMV22qh5FbQLqmcXjLMUet5sO9eE+M8tw1xFrqE3rJ1XWIsmrpKdf15k5v78m1/1q9vnNtsPrQ1RpDHatJ8bgjB+3t3ndsprDWvzhuOJ8IzGiUIco8EYIqPwNUy0+plqGWZaEc1I04zmqlMDpQlMRKBCmlaDsjtNZAI0cdgamhaGiFC30CbEj2o9FbG6E8KiMSZAMa+NQbdC1rQ/zs52s0uLAQlZhRBCCCGE2D3LsnBdF8dxul87wediYejuXgshhDhwKzJUvffee/m7v/s7zjzzzAMey7VTDCQdThycxElEez9hGSwlXF1SGGj2MtBu7tHen3B30fns7fqLzGNJIfa8cbWeF3LqOEg1PY92SGnmAtduoNodc9c2Cr3XVPOe0x2jWzVr2gFu9yB6rjUXvipMO1RdGATHwWr8NezMGxYJbxXGWN3gNmwHx515dwLayIAfQWjAbz9CA2GoCSNNFGjSRGS14RlEJE1ElhBbR1hRRCOI2yfUIsV4s49t1RF8rQlN3AqhZSICNE3l07CazLrj+KYeV7WaFq2oTGRCIt1C63BedavuVreqTkVrJ2RdpJXAwt+iErIKIYQQQoijnWVZ3ZB0fmC62HMJRIUQ0L5zdrkWqpJvw5dsxYWq1WqVN77xjfzDP/wDH/vYxw5wNAtHefQloO/UEJVyeu9PP5IdaJn3wX6f+zqfpVx/fglnR/v2e9NNFXUcfHbagM5vhjrvNn70giB4wR8+Zq6ktXuZnmNN73Hzw17TDk3nH2M6FbUGjLbmXreDYK0tjFFEGkJtt5+rdlg7N1bYHrcb0BprXoVr/DoycVuAplaE7TEiiJ9jodvHNKO4j2yooWKgtOCXzEHjGcPxJuI5VohHgBVFmDDCDwwN3zDdgOm65qHZIfwobjHgEzHhTlFXZQJTp2Wq3YA10i0C3UDrsB2uhkTaB6J5H+ZuKlnpDVklYBVCCCGEECtJIpGQoFQIIY5iKy5Uvfzyy3nFK17BBRdccMChqkKRtAqsS0fYFzwLk0mDkr/Qjgi7+5GLbt+Ub8yuxy1crau9T+lFktLFxl94nNaL748P6j1m/rl6XoLbKZ3tXE8ztz9qfw0i0FG8Lwghmhca63nnGYOJdFyCqnUc3jbjlbdMaIgaoEMwkcJoRRTGX7VWhKFFo5UgiCxCbeFHFoGxabeQJdRxQOtrRWBsGqFLixTzs2ZlFLkIrADOqAb4fkjYCsEPGbSLeFFASmlcZahHFrOBYnMVttVatExE3bSoWhWm2Uag64QmDl39qNYNXbX2uy0E4vYBc4GrYn6iPf9XQsJWIYQQQghxeDiOQzKZxPM8kslk97nnedIbVAixfIzZ9+K2pQ++TOMefVZUqPq1r32NX/7yl9x7771LOr7VatFqtbqvy+XyLscoZeNZBpPPYjJZONJ/StgJ2Q7HPBeGjPPnsXDfgc5vsWstZuH/64uEpd1D9IIAtsNSi4axvfPpvZBa7Jj5weku2+YFgnG5andcFUXtkDWKH7rdREDrXYJeFUXtMFbH1/EDCCMII9xW0A5k4+DVhNFcABsE6GoL7RM/QkUUxIGr0RZhqAhDhyhSBNqmEThoA1G79UCgLUKtaGmLprYYTDlExoV2m4FSEFfBNsOIoBWhWyFpE3JSNuT5KEI/oqlTbK728WhpFU1CGsqn7JaYdXcQmiahbtEMS3ELAROidUikm8xVtcYLZ+2uL6uEq0IIIYQQYrkkk0lSqdQu4alt24d7akKIY9HCxV0O9thiSVZMqLp161be9773cfvtt5NMJpd0zg033MB111231+OMoR1Utb+uBEfKPHc3j4M1v739cLezvxvuztu3XMGz1r1/xiz1Ot1glZ7g1syvdp0XuHaD255q3PbrTrVrEM6Fsr4/F8iGESoM41+HSEMYYjfbAWynGrYVYoIIIoNuhRAEmNBgAtpVryoOXyNF4NuEoUMQWviRTTO0CU1c9RpoxXTgEGiFNhZh1sLXCaoBVEMYBxyjyZmAE+s+52qHWj2k4ad5tNTH09U1NAipqxY7vafwTRXfNAh1nWZQ6lawxu0DOhWscbAc92XtVC/PfUwSsAohhBBCiP3leR7pdJpMJkMmkyGVSskt+kIIIXaxYkLVX/ziF4yPj3P22Wd3t0VRxF133cXf/u3f0mq1dvkp4dVXX82VV17ZfV0ul1m/fn3PMdqENLWFmp6JQylxZFis5+rC1gxK9QaaC/dbu9neZnY5fjcJ7t5aQsw/rzOfzjlq3jbLisNQtWBMZ/H/DXcbCy4IZ3cbyoYhRGHcWiDU8evO/ihC+UG8LQyxGn48btSukA1CCDTGjzDNEF0NMYGPCeIWA3G1q0Xox4HrbDVFS9tE2sLXFs3IphZZNEKLwIBSilbk0Uh47NA5rD7IEXFGK+A83aBWjyhVAn64I0ctCqjjM+uUmLKfpqWrhLpBEDUIojrGdPqzajCtud62qr3QXLt6VYJVIYQQQgixN67r9gSo6XRaqk+FEEc+w1zbwIM9tHwrvWQrJlQ9//zzefDBB3u2vfWtb+WUU07hqquuWvQvvk4vm90xGBq6xNN1i+D7v0GlDsct9XvZvy9T2t2xSyka3Z/C0kPxcc3PTBVzAaZScS6pVDtcndvX7V1kzdvXeT2v9NWy5h3XvQiLbFvkjVrzxmVeuGspsK32ddvbHat3jHnvAaXAddrnK3DsuXMBLBtjqfh8q71dtccHsB2wrTggdh2wve57MJ2K2HboahwHXLf3fUQR+D7K9+MxbDs+xrbiCtdmE9Vq4pQrcZUrxHN0HAhDaLagWmdwdAbTbLbbDmiMrzEtTVSDZsnB922aLZdm6FANXFqRRS2yqYUJAuOR6IdkoHjuSEjQCHD9FnazjwLrCI3iV9Mw0QzZFs1QsqZomBK+rlILJtsLYvlEutmuZG2Hx/Pvh2j/rSBBqxBCCCHEsS2ZTFIoFMhms6TTadyF/z4WQgghlmjFhKq5XI7TTz+9Z1smk2FgYGCX7UunCXWdmaZh52NZEm504BPdB8YsvXG5UnsOg/a2f0/X25d57Mt1d7dvsevtbg6dMeZ/Vcp0iz27r5UBZdo5ZXys1cnZ29u6uWZ3rHnXmZ+bdoPV+fNYOLF558zLOLFAdQJXO/6qHGvRAFh1wlM3DlSVpeJzbHsutLVslN0OZ1U7sLXteJ+y4oDTtlGODV4iDmG758/rFWsp8DyM60HCjYNTPde3tRuodvZB97Xxk3OhsW3FY6RScRVsq4Wq11EpDxUEcYZpAWFc7erWWiTGK+iaT1RroVvQqtmE7ZC1EThUggR+ZFF1bYquTVi0qUcpJpswEwQMRE2elfLJBoYnq8M8Xh6k5IdU8XnKe4ymKePrKnV/kkj73VYBnSpWg+n2YZUWAUIIIYQQxxbbtsnn892HhKhCiKPCcvZUFUu2YkLVZWEMgW4w1fL5bSmPs4RgsuNAFnI80FLqpVzbYu//f+1pHmaRZqZqDyHUYnNarJB1sTmZnqCrd6DONbuFmZ1AFLAwWJ0AtVPESed1O3iddww9RavzLjr/7v1573Hh++0JYeddt/O653rKtAtWDY4ddQNgy9IoqxMEt4Nhqx34KhMHwQpU+6vlEoeqCrAVyo0v2glalWvFQatjoZJu/NWx22HrvLTXsSCZRCU9jJdoV8fa3b6sGB1vcz1MKhmHpvO1WxSYRAK8ZPsDjwNY43nx+WH7V7dzbhigGk2s4gRWvYXTaGGCCK8exJWsjTpRzdCYtmk1XeqtBKVWgmZoU4tsiq5FM3KZ8l1aKWhhOF43OaXZJKw2afkOt24/g5nQp2RV2ZF8lKYu40c1wqhBEFbb4WpAvMgVoGSBKyGEEEKIo106naZQKJDP58lkMod7OkIIsTyOkG9l77rrLm688UZ+8YtfsHPnTr75zW/ymte8prv/LW95C1/5yld6zrnooou49dZbu6+np6d5z3vew3e+8x0sy+L1r389n/vc58hms91jHnjgAS6//HLuvfdehoaGeM973sMHP/jBZX9/e7KiQ9Uf/vCHBzxGGDbY4m3l55Mn7HFNpN2124R5t5svkdlNmrmUdhi7bft5gHPY11YcC+ex8PoLZ7PY8J05dBe4726fP27vOXY3xFTd63Tv9p83N2veJLrBZ898F5nQPlh4ujVve0/3AeJC1E7ngrgw1bRD4V3H6YSznXNtFYe0druI1em8Jg5mXSt+bWFI2BpbhbiOj2NFeIkQywLLMihL43oaO2GwPLASCpVS81PhuKLWs7FSLvRn4yC1k85rHQe2ngfpFGagP66I1SbuywpxVWsqBfP+0DMAg4OoVgvCIL5OIhG/7zDEbjTwto9BtY6pttCzs5hmu3VAHcqTHrWmRy1waIYOo00PP5fEDEK1ojk93cRu+Hh+Gk8NMe0rHi1FTPk+j6lHaJgZWlEZP6zhh+Wexa6MCdq/ZlraAwghhBBCrGCO45DP57tBqvREFUKIQ6dWq3HWWWfxtre9jde97nWLHnPxxRfz5S9/uft6YavON77xjezcuZPbb7+dIAh461vfymWXXcYtt9wCxGskXXjhhVxwwQV88Ytf5MEHH+Rtb3sbxWKRyy67bPne3F6s6FB1fz344IMopVAokt5aUskzKK4bw91NperCUK4TeFnzwrz5t7rvrbWpMar7XJu5MHH+887r3c2lM5/F5ra7ecyvEl0YZC689kILx7cXvHdrwf6e65q56xujCNvX6lwzNHGmpVHtr3Nspdp3zBuUpUhY7bvqOwWaaq6NqaUMlhUvUaSUigNFAKXQKr62USqej7IIjSJEoVEE7XlpLDTQ0vGvUWQUkVEExqCNIgK0UkQm/vSUio9TKq5rVe3rxXf6xx9G0lYYS2HZFralcFT8G2jhZxV/Tqr7OXaDWOYHsu3gtr0tfv9x1atD/DxhxY+0HXUD2Xh7hGMZHEuTsCOSXhCf2w1eI2w7xPYaJIoVSCiUq+b61zoWKumg0h5qZhbVuXXKmDhJ9jzItDCJdouBDqPbbQs8jONCJt37pm0bVa6imk3sRivu5eqHuC0fZ3uFwmyLoGrRqjvky2kaoUM9tCm4NqVcGl9nGG8YVKvF+kaN4zMNAuPx/9t2BrNhizFngoozzqy/hUA3CKNmu0WA1e6/qrqLXKnu/xcSrgohhBBCHMksy6K/v5+BgQGpRl0mxhi01t2HMaZbGNN5vqdt+3LsgZ6/1GPFyiG/XntmjFm2har29dvhSy65hEsuuWSPx3iex8jIyKL7Hn74YW699VbuvfdenvOc5wDwN3/zN/yn//Sf+Mu//EvWrFnDzTffjO/7fOlLXyKRSHDaaadx//338+lPf1pC1UNN64hOeNVoTfIb56eYp1+I2sPKS9b8BY7az+dXZ/bu3811e57P/S7tVmxidtm31LksnM/CfYuNO/8PqYX75r/e03vvvO5tSdp7XdN9X3NjG2O614iIutsXe+9z11DY2Fio7vUd4nDcUmre3Had98LK1Pl/Pi/2XuMgN35uWwpXqTgXVApbxUFp9857pUjacXjpWpC04wpTV8Vf07buhqKdwU37oZWFj0WEha8syqHCNxYBKn4YMErFYbGlcGyFY1vdgNa2FLajcKx4PEvF8/IsSNoOTjuBtZXBJg5XHQWupUnbBkfpbvCqFNhK41ia7GiAY0W4jsayNI5jsOwI2w1xknXcoRIqYYNrxb8Wno1KJlDZJKrlz7UYgLm2AI6FSi7489lSmHwBEom4klWbbi9Y1WrhFCdxZqskyi2SFZ/02CxBw6LVdKg1PSbqKaqhQ9axaKaTjKeTUNS4tQavStYwTYufT21kR20NjyUKVMx4t0VA05/BmBBtWqD9du/VeK7KSLAqhBBCCHEkyufzDAwMUCwW9/luvaOVMYYoirrh5+6e72nfYscJcXjJ92NHkx/+8IcMDw/T19fH7/zO7/Cxj32MgYEBAO6++26KxWI3UAW44IILsCyLe+65h9e+9rXcfffdvPSlLyWRSHSPueiii/jkJz/JzMwMfX19h/w9wTEaqs6ndYtycxsPJX+GUnu+TcRaGJcaUIusDK9YfBzDrn8xGdPbZVTvQ6fhhfPZUyh8sK7bveaC976797zLddufgWlfT6MxJpq3f/F5dN6bUnY8h/b1O9e1zNz+zp+9PZ/Hbv483t31esbQYOOisLCUjcLCNR4W8XMHB9s4ONgoY5HAiY8lDnpdZXWDZqv9Dz89L9XtbLOVwrMsEpZFylEkbUU+oUhYBi9um0ra7rQCMHGF7rwq4enIoaItItvBRxFaFgnXxklYOLaF49rYroXjWLiWQ8qZq/Sdq7qOx01aBtfSJKw4gPUs3a6M1XhORHGsietG2HaEZWvclMbO1LDSFvZkBZVOQMJpp87xYlp4cZWqcdy47+r8Ul3HAcfBpNLdKlcTRahUEjVbQVWrOLUm9mAdrxmQqQUUKj7ZbS2qTY9qy2Wy5ZFxbJpaUUpkmAozDKmA5xXrBGXFT3eexHjzOCasEtP2Tmatp/HDGqFuEoTVuPeqCbvhqlStCiGEEEIcGVKpFAMDA/T39+M4x8a3sFprwjAkCAKCINjjc61ltRohjjnLuVCVgSAIKJfLPZs9z9vltv2luPjii3nd617Hpk2beOKJJ/jzP/9zLrnkEu6++25s22Z0dJTh4eGecxzHob+/n9HRUQBGR0fZtGlTzzGrVq3q7pNQ9XAxEX4wyVRYQimrGzYuFpbum/kh4/79lG9h8Hngc1rOay+1b9Heg+W92XUui197b3Pe1+vOH3Mu5O02Pug5pjdwXhB+72Fe88dXysZWDpbloLDbIbI1FywzFyzbysUlhUeaJBmSOkWGJLZqR79KkbAskrZFPmEznLYYyFgkXYXjWBjHxlg2oWURWA5VrfBV3FfBUjZJW7XbN8TtF/q9XDeQdSzI2pqkrfEsQ9qJcFVE0vFJOiHZTAvHjXCSGjcHzprHUWk3Dlk9F7wEuDakUpjVI+1ergpsGzM4hMnmUUEr/gvDtkBZWGGI1WgwuGU7g5MV9GwZf0dIULNoNeIq1q3VDLO+QyOVJxgqcFafj1uvQTVJ0hrmvqlnsbXWYpIyT5n7aYazBGGNSDcJoxqoOPCf33MVJGQVQgghhDgUOt9QDwwMkFq4iOoKJUGpEOKgMXGnveVy6623csUVV/Rs++hHP8q11167z2P90R/9Uff5GWecwZlnnskJJ5zAD3/4Q84///wDnephdcyHqgaDMhGGBavQ70NusvB296Ved5/P2cspS53Hwb72oXr/i81lT9dejuirO+YuwWhvqLqrfWuW3xuuzgW33e2LhLu25cVflYNteTjKa9fK2ti42NrBMUncwCNZy5AcS+F02ilg4WDhKouk5XB83iXnKlK2Iekq0l4ctrZsh9BxebqscJMOjutgKUg7FinbwlFgKxdHgWcZsk5EsR7iWpqkHZF2AwrjDdxkEztpsFMKq+CgUi4q62HpCJPLQjqDcRyUDtvNeHVcyZrLxy0DAIh/EqXyJaxyFS9fJtEMSNcCClWf9NYWpVqKsp+gEjokB13qUR8T9QL1SotnujVOb8JocxV3TJ7DhLedqjNOM5yl7oM2IVq3iBtERNAOV+OuvRKsCiGEEEIsh76+PgYGBsjn84d7Kvul1WrRbDa7X5vNZjcslaBUCLFSXHzxxdx888092/anSnUxxx9/PIODgzz++OOcf/75jIyMMD4+3nNMGIZMT093+7COjIwwNjbWc0zn9e56tR4Kx3yoCnPB6j6Z17/ngOOVA2nAfKDz2N9rH6z3f4Dv/bBFW7v8fpkLUpca+u5x+O4A8wPa3QW3dnfbXAhrtStc54JYSzkoZXeDV0u5u1S/Wrg4xuPR0gAeKVyTwDY2KTxsZZG1XFalXU7MQdKOFw8LbIe67TJj2bQsGyvhkEw6JByLPs9hwndwlMGzDBlHU6inSVialBOSdELyuSaO18TN1klUW6hiEjIpVDIBrhu3D3AcTDIJ2SzzA2ozOAAJF5XNoHIZVBhCK8Bu+vTnp8hPlmjM2FQrSdK1zFz/1WyKp6spEmHAhmqFV9gD3D9VYIzjGPW2MQH4US1e1Mr4aN1oL2gV32MhrQGEEEIIIQ4ey7IYHBxk1apVuK679xMOszAMu4Hp/PC01Wod7qkJIY4Vy3z7v+u6y/bDrW3btjE1NcXq1asBeMELXsDs7Cy/+MUvOOeccwC444470FrzvOc9r3vMhz70IYIg6P49cfvtt3PyyScftlv/QULVrqWEIz0B2TKsRLcvAU13LgdpHvt87YP4/vcnmDrYczhwC0LWduh84IF7Z1yr5xqLBbdmQSsCpS3mB5CdALXznPktBBZUxs7aqThkbbcesC0PBw/HeKTqBe6vDuKZBC4OCWVzel+SAQ/6bYNS0IgUgWWzM5GgaTsk0glyWZe85+Aqh4QFSVuTdTTFepqkHZJJhAzMVknk6zgZhcrYWEUP5TmQ8lDZJCRcTKHY7buK42DSGbAdyGbiENpo8H3sdBJ7qoQ7USM9WSOxPaTS8Kj6CcqBizYu9dClnOjnGSMBayaqTE053DeZ44GES8mM0gin8KMafmDFC1qZsB2uRlK1KoQQQghxgBzHYXh4mKGhIWx73+7sOlTCMKRWq1Gr1ajX69RqNVnESQgh5qlWqzz++OPd15s3b+b++++nv7+f/v5+rrvuOl7/+tczMjLCE088wQc/+EFOPPFELrroIgBOPfVULr74Yi699FK++MUvEgQBV1xxBX/0R3/EmjVrAHjDG97Addddx9vf/nauuuoqfv3rX/O5z32Oz3zmM4flPXdIqLoPjqTw5HDO5Uj4HI6EOezRQQ98d7eA17xq3QWXNHtcDXXxvq49PzhYpO0A7d6ulkq0vzooZfGz8QyWFVe/JqwsCZUiRYGMKdBHnj4nwfF5B3IOXsql4STwMgkalk1obCyVpOBCdrxIwjLkXU3WiRj0WqTdgFRylmQqJH3CDuz+FBRSkGlXrjo2uC56YAAy6bn3v3o1qlTCKpVJlCsMj00xVG1hKiV0KeTUp1xK9SSllseWukdipA+VjTg7X+f85slY5iR+PqnYXm/y6+SvqIdTtMIyQVQnjCoYE+7Sc/WI/30phBBCCHEESCQSrFq1ioGBASzr0K0bsTdRFHWD087XIAgO97SEEGIXZhl7qu7rd7X33Xcf5513Xvf1lVdeCcCb3/xmvvCFL/DAAw/wla98hdnZWdasWcOFF17IX/zFX/S0E7j55pu54oorOP/887Esi9e//vX89V//dXd/oVDgtttu4/LLL+ecc85hcHCQa665hssuu+yA3uuBklBViBVsdyHe3it5F//pek8QO69KtjOUQmGUhabVE7QGYbVb/WpbCSyr3dfVSpC0+/CiLA/N9JGeztJHjqKb4MS8Q8YxZDIugeOiswkeUwkSjsVg0iZl28z4DllHk6pGpJ2Q1Y0KqWyNRL6CXbCwV2Uh6UImibIUJoogn5t7C6l2yOq5qFQS1WyhWj5WtU5fapLsVJn+aRd7ssBs4JKxbWrZHNONLNl6ledYNV5sPNTTZ7PdGWfG2UEtnKDagkg3456rJpTKVSGEEEKIJUgmk4yMjNDf33+4pwLE/U/L5XK3ElVu3xdCrBjLfPv/vnj5y1+O2UP+8IMf/GCvY/T393PLLbfs8ZgzzzyTH//4x/s2uWUmoaoQR6H9DfbUoqe1w9VOD1sT0QlaO5Wt0byq1qjddqBTxdqwZrCtBDOWh215eHYeL8zym+k+0ibLIHlGUh4nF+p4GqJEgm3JBHY6wWDRo+hagEPCSlAKEmRmQnKuTy7lUxwv4+QUVt7GijSqv4qp5CGTwnhJ0AajLFQyhc5k47cRBtBoYidc7Iky7kSNDWqWvkqS2aZHKUigjcs4ORLZLG69zmvtKvdPHMeTlSF2OBNsJaIZlAijJpFugm709FuVYFUIIYQQYk42m2VkZOSwLz6ltaZSqVAulymVSvi+f1jnI4QQYmWTUFUI0bXHMLDnJ096t60HOtWu8Q/NLMJOS4F2JavqWSDLwraSOH4Kp5Ig646QZYCc6SNr0rxsdZ5WLoGX9VCpJA+XHLSxybkphpLQP6bJORE5N2Ld/TNkcmMk+jR20cFek4e0B9kU5LKY9evAdeOpFsEMDqLKZexSmeIzximW66wrVdDTASc9kWS2nmSmlWA2m2RHPsO6TIO+SYffIcVvZtbzVKPKdvtpStEOys2tRFETbVpo3YpbArQ/MwlYhRBCCHGsKhQKjIyMkMlkDtscms0mpVKJcrlMtVrdYzWVEEKsGOYIW2bmGCWhqhBiv+y29UDP5miupUC7whUTxme2q1sj7RNEVSzl0AorlOxtuFaKhJ1hauxE0jszFFWa43Mpjh9w8L0kmaLHVCtBKbAouBae5VIPbXLlgMKkTy7VJD87jV2wsfqSqL4qKpPCFPug07fFdTHpuD2AshS0AqxGA6tcY9CZJD/RpG/GY6aeQqk0uZEkpYEUExN1NpoqpxZz3DtxCttZzWNeQDOYJYjqBEYDGmMiULr7eUi4KoQQQohjRTqdZv369YclTNVadytRy+Wy9EQVQgixbCRUFUIcVAvDwz2HrIDRcTsYZcUBa1ilqRwsy6HhTOPYKZIqz5O1QVaX1zHspjij38F1LUwuzbZ0ElyHpnZJ2i7FpkehlmJts0Y20yKVr+EONXBcB9VfwfQVMMkU2DZEETgOun8gnqsOodHEsW3s0RKJ0QaZCR8MzLQS5ByH3Oo0k31pkuUKz7eqNMMBvjV+DuPJp6iGo1SNRhu/t9/qvM9BwlUhhBBCHK1c12Xt2rWHpWdquVxmamqK2dlZqUYVQhz9lnGhKvmWdekkVBVCLKs9h6x0Q8d4+cJGuz+rhdIWWvso5VBT45Ts7ZTc7Twd9fHYxCoKusD5qzRqukrouDyc8sj2pVmdtZm0beqRTaEeki/5FKcb9OtR7OFZ1EAWlc/EC1o5DsZzoW8AEnOtAdAGlU3hZGdI5yusiUoUqklKDY+ploevE4xnc3iZDMPVWS4IR3hgusgWZwfbvftphRXCqE6k/bjfKgaUlvszhBBCCHFUsiyLkZERhoeHsSxr7yccJI1Gg6mpKaanpwnD8JBdVwghhAAJVYUQh9gulZrdoFEDqvtTMaMUWjcAC4WiBdRbO1DKZbtysKwED+wcwLPzZK1hTtIncmoxiSokSRZTbE97BNqm6CXJOnnWjoX0eyH9ySb5zCyF4wKsoos1kEKdejx6oB+y8WJWZu0aTH8fanUFq1Ilf+IU+WqTkZk60eQsGx5NMVlPM9lKMJ3tY8ALeX6mzPOaSR6a3cAOv8JOewvlaJRS42ki3cSYAGNCMEH3PUvVqhBCCCFWuoGBAdasWYPruofkemEYMj09zdTUFI1G45BcUwghjjjxOsniMJNQVQhxxJgfMs5VtM61DDC6hcJHKwulHao6pGHNULXHaXplnioNUZjpZ7WT56xBDyubpJZPUUq4BNphrOUw0HTpq6XY4FfI5pokB0u4qe1YzSamvw+TzUIiAZYVtwlwXEgmUa0WqlrDma2wKhwnO+qTK6UpNJNoksymB2iUmzw/Vcb3i9w7kWWbWs1jXotmOEsQ1ol0M253MK8lgASrQgghhFiJstks69evJ5VKLfu1jDHMzs4yNTVFuVxe9usJIcSRziC3/x8JJFQVQhyR9hiwGoMxEcZoIu0SRnWmdIuKvYMJO8NOPcD06Kkcn444vlInm7TZkszgFlJUUzZTrk2Eoq+epK/SZCgxgT1bQw2XUMUcZqA/7rlqWxjHgaGheDZ+C1Wp4LZCcoUyyZ1lcpMtQq3IOQ6lRJLZfJJV9QrZRJWx+jC1qTOYsp+mbk3QDEsEYRT3Wp23kJUEq0IIIYRYKTzPY+3atRSLxWW/lu/7jI+PMzU1RRRFy349IYQQYl9IqCqEOOJ1QkeFat86H4FSGBOACYmUhQ5CgrCKZSWo25M0E2W2tYZ5qLGaYVXg7EGNW6mwPZMh2ZfBUglmfIein4BHIT9exxuuYw/Noo5rQDYF6TRkM5h8Lp5IwsVks6hqDTvtYWVL9OcaaF2mUEsx1fIItMu2RI7EugzHV8s8v76Bx2oDbPM2M2tvpazDuGKVoLuQlSxiJYQQQogjnW3brF69mqGhIVRn4dFl0mw2GR0dZXp6elmvI4QQK5ZZviU75LvSpZNQVQixYvSEjqbTRCbuw2pUELeUiSyCQNH0J5hULltUAtdJc9/EcRTVGob0MKfm8nhrs2wvZPCVy6OVQfKjhv7HIwY8n43D20n1R7gjCayRLJx+Eqa9mBWA3rABNTCAWl/FqdUYOWWC4cka0dg0636bZ7KRZLLlUkoXOSud5WUzFrO1M3i0dCa3Or9mNtxKI5jGD6uEUQUIMUi4KoQQQogjU19fH+vXr8dxlvfbx1qtxujoKKVSaVmvI4QQQhwMEqoKIVa0bhXrghYBRrdQKkTTItJNtA6pOxNMO0VG62vxt5zC6nSdVDHF1lyadNqllHCY8m0A+stNirN10rMzOOmtqMEqpljApFKg2m0B8lnIpFGpJNZgBWuwxOrGFNnJJrlKhsmWR2gSTDqrKJsqw36Vs+qnsNnqZzz5FNVglGozRJtWXLVKvIiVQkmwKoQQQojDzrZtNmzYsOy3+pfLZUZHR6lWq8t6HSGEOGoYBXqZ7hqQb0WXTEJVIcRRYZcerEpjjAYsMCF+CJFu0gor1J1pfkzEcH0tx1cLrMs0qGcTNPqyTKYTKJVi0E8w0PQYrDQYTozijFRQgzlUPovpL0IigXETkEpgcnlUXx1VLOFVWzjbanijJdKzaVpRnoRlk1qTo1lMcXF+ml9PrOE3pSJPJZ4kiBr4YXXeIlZxBa70WhVCCCHE4VQsFjnuuOOWtTp1enqasbExGo3Gsl1DCCGORsYs40JVYskkVBVCHHUMZtfFrXSD0ARE2ifSTcZ4iJKzg7FghHMqp3G6Ywi2+6isy8PVLMcNecz4NtN+AvsRTW68QmK4hj2YRG3woZCDXBbjOpDyMIkCJp3GKpVxktNkMmUSo1VaoU3GTjJhu0xZDpPOEOsTVdal4efjp9DwZqhaY7TCCn53EStkESshhBBCHBa2bXPcccfR19e3LOMbY5icnGRsbAzf95flGkIIIcShIKGqEOKotGv/VdNeGKqF1hZhVKGmHGbUY4y6D/L/WkWy9hCDk8fxyqHVPD7tklmVJ3Idnq4PMzCqGXw8YDDVZN2Gp3BHHOyRHGp1P/rUk8F1wXXRJ52AWjWIvbGCPVvmhKcm2DhRoj5qMzmT4cGZPNNejrFkkhP0LM+zXsI94yFP6FE2+z+nGZaIoibatNC6hUJ3O5BLwCqEEEKI5bTc1akzMzNs27aNIAiWZXwhhDiWGLO8iwaKvZNQVQhxTOjtvRrFr4wmUiHNQBNEdZr2LBVnjFsnns8Gt5+zQp90IcXTYZZm1qEaeVRCG3ebplipk67M4DR9rEK+3W81DZaFSWXAsiGTwnIdrMEyuWIFb3uZqp8gZSdI2i6z2SFWN2YpujXun1lHtXYKs/ZW6sEkQVjHzKtaXbalHYUQQghxzFvu6tRarca2bduo1WrLMr4QQghxOEioKoQ4psyFq+22ACZCa9A6XtAqiOo8kbyPyWgtY6ObOK0OJ9UaTGazzPZlaaUdnHKOgWaCoVqDQqlGOv00aqiAKuYx+QLYVrygVToDqRRqoIZVnCJZmGFDaZb0TIZsM0XGdngiKhINZVijZzmjfjKb7SIT1maq1hjVlo/W7UWslInnLNWqQgghhDiIlrM61fd9tm/fzszMzEEfWwghjmXL2VNV6nmWTkJVIcQxyWDm/rYwcT+vyLSIoirTUYWS9RQ77F/xHzM5Nlafy2ozyHNGGuwYzDGWT5GwHPIzGfrHNGfsKDNQ3EJmVYR72gAMFmCgD9PXjxkYwAwMwIbjUCfMUMw+TH5HieN2lqhOJBgY72ei6TKZHeSMZIXTZxOk7XXcMxHwc/fHVP1x/LBCGNUxugFE0g5ACCGEEAfMtm3Wr19Pf3//QR9ba83o6ChjY2MY+e5cCCEOvuVcqEr+2F4yCVWFEMc8g0Gh4rBSaYz2CY0m0j5h1GSL+hUzziomRzdy3ESLZ69NUy7mKCVdaqFF0s5R8RMMVuuMJKaxqy2UH8ZjZ9Jz18nlUWuGsBIOiXSJQrbBxmaZtJ0haSdorM4TFZMMlWb4XddhcuvZbPV+S9neQcOfoRUE8eJVygDSEkAIIYQQ+6dQKLBhw4ZlqU6dmppi+/bthGF40McWQgghjiQSqgohBL09V41qV4OakNAEVFujtMIyNXeKaWstg9Nnsq45RbaYpJLPs822qYYpSoGL90RIvlrFbQZYfgC5HCabBdsGZWH6CijXQWWSOPkyw60pMqMB2dkMjSjHjJNgPDFMbaLC+cMW/9/EmWx2CkxZTxNpn0g3wbTi/BepWBVCCCHE0i1ndWqlUmHbtm00Go2DPrYQQohexqhlXKhKFsBaKglVhRBiHoOZW8xKxdWrYVRBa59QN2lFFe4yKdZW1/KsALKzTUYLGSpDOWqhS9ouMtxsMFCrkaqNYefS0F+EdAbjOJhkChwXMilUMU9CG+xiGW/bLNXAJd1K4Fk2s6vzrF7tMZCxuGfHSTzu9/NIokwzLBFGFlq3MO1qVYWSYFUIIYQQe1QoFDjuuONwXfegjuv7Plu3bqVUKh3UcYUQQogjnYSqQgixQDegNAaFQesGmhZRVMEPpnjcn+IpO80vJgtknRFePHsuz240cTYU+NF4kn4vydB0gdVbfE7ZupnkCNgjKayBHGbTekyxCP198VXWrsWaniI9OsGZd2+msUMxM5NmopHmN6UkrTVDnOBUeF5D8aPR17A5Gmcnj1ENxqi3xroLWWHC3rkLIYQQQrC81akTExNs27ZN+qYKIcShZsBoqSg93CRUFUKIPVi8crXW7bfqOzXuVVkmth3Ps2sROpeisSpPK7JoRB7ZnQUGqjVyszXckRZ2PgOOhUm44MYPMzgEysI5YZZ0qow7WiU16VMJBkjaDlNr8oyXkmwMZtngr+EXMzm2JB5nNGoQRnUi3cDouM+qMnPzFkIIIcSxbTmrU5966imq1epBHVcIIYRYSSRUFUKIvZjfbxWi+FW736o2PhPWIzTcGUozJ/Nqd5jCuM9sf5FWlCDnpKmFLkPNOn21OrnBCZSOl2k0/QNxsGrbmFwOtWYQ23Ow8lWcQoPjmxWy9TQpO4FnJyhnh8hWKvQl4N7J02gkZ6j64/ihQ2A0mDDuB9ueqwSrQgghxLFpuatTt2/fjtbLtey0EEKIvTEs37rFcvPB0kmoKoQQSzQXrs5VrWqtqfsTBLpBy63yo/GX8ey+NOHsFHYxTXZjnmbkUQ9t6oHL8Y/P4PohKohQrQC9dg0oC2wHM9iHSiVRhSpOscJIa4LMDp/0bJask+S32mE2m8dZl+QkZpkdO4ct3uOU7R1UTEikG3GwaiIgkl6rQgghxDEon8+zYcMGqU4VQoij2bIuVCWWSkJVIYTYRwbT7bdqTERgZgmjCk1/mrsT09w/1U/RWc+G2U2oRoudq4t4mQT9CZexZpLVjzQY7ttBZs0W3DO3QTEH+Sx6cDCuXrUdiEISm7YzsHOCvi1THL9lmqHH+5loJploueSzw3jZJI2pAppz+LfyryiF22iGswRhlTCqgNFA1J60kYBVCCGEOIpZlsX69esZGBg46GNLdaoQQgixKwlVhRBiPxkMCgXo+BYJ06AVzBLqJkFUo+HOMDL7Ik4yU/SvzlDJ5niq5lINLaqBy0i9xrA3iT1cRw3WUek0JuGBpcBy0atXo9wEluPgJadYN1siUwpJ20nSdoLSqjypfJLk9CxnVE5jizPEmP0EVWuMRkujTWuXytXOvIUQQghx9FjO6tSnn36aSqVyUMcVQghxYMxyLlQl3y4umYSqQghxABYuZBXpGtqEaB0S6Ab3WH2Mjm/iORFop8nsqgLNfo9GlKQe2SSfCMiUqrhVH6s/H/dX7VSYeB5mcACMRtkWuZmteDvKZKZbZCoZqmGWKTdBxRvibK/CCeMJ7p8tssV7klEd4IdVIt0Egvbfi7pdYSttAYQQQoijwXJWp05OTrJt2zapThVCCCF2Q0JVIYQ4QN2A0hgwPkYFaF0njEo8HdbZ4fyK/5gcpN/ZyOvCZzLeTDM7kOPJaoKp1ioGx0KGn2iwafa3OMftQK0dwAwPYIZXgbLikDWbwS7mSVVrpGYqDI2VGbm3yng5y85Gks2pPKlckhfvdND+WdyrT+Kp1FPMRFtpBNM0/Am0bgFhOwiOeucuhBBCiBVFqlOFEOLYtmwLVS3PsEclCVWFEOJgMwZU3BIgjCpo4xNpn1A3+OHUMKc2+jm52WTtxgI7Gx6NKEE9tMg94VOsVkhUW1iVOirSmFQSEi7GcjDDQ6hiEfprqL5ZipXNJLfOkp7K0NR5knaCseQgzYkyF3mGeyaewdN6kFFvM+O6RRjVibQPpoUhrjpRRoJVIYQQYiWxLIt169YxODh40MeW6lQhhFgZzLIuVCULYC2VhKpCCHEQdQLKbksAQGtNYDRahzyR/gWl5iZ2bl3HuQ2NKaapDOWoRw7ZmTzDLZehapX0zASOAtVexIpcDjMwEI9eLEIuh1OukU5OM5KqUPVd0nYSz7YpJQo0amnOtmY4uTnML6fy/CJZpRZM4ocVwshCRzqeq9ISrAohhBArRC6XY8OGDSQSiYM6bhAEPP3005TL5YM6rhBCCHE0WzGh6g033MD//b//l0ceeYRUKsULX/hCPvnJT3LyyScf7qkJIcQuuuHqvEWsQhNQaW4ncKvU3RmqE8/glY4hrxvM9PXxhOVRDW1qvsuqeo0BbxJnuAFDTVQQYvr624tYKUyhgFq/Gsux8ZIzrCuXyJYDsvUU47bLr1suyQ1D9JXLDHmamW3PZkfiScrWDhrBNC2jwbTAKIyK2iGwhKtCCCHEkWg5q1OnpqbYunWrVKcKIcQKEhfvyEJVh9uKCVV/9KMfcfnll3PuuecShiF//ud/zoUXXshDDz1EJpM53NMTQohFGaMBTXwLRUTLH8MPZ6i1xhi3H2b72Jls1CfxrKJmYGOaR/N5nqhmKFYynF6pMphtkB/YjrduDFtrzNAQphAvaKVXr0YVcqjVFYqrdlKYqrBudJLmKKzaMshYy2UmWWDMSvInCZswKPKz8WfxtFXmEfcnNIJpwqhOGFUwRIBUrQohhBBHGqlOFUIIIY5MKyZUvfXWW3te33TTTQwPD/OLX/yCl770pYdpVkIIsTTx4lBgVATaJzQabUKm/Sfw3Sql0gmsGV+DnvExQ0XqkUvOSVELHYZ9l/5GjcLgdlStgRrsx2SzGM/DOC4UcihA9eVxBspkBkpsqs+SLWUYbSRJrkowWViFPVXiubrOM4J+ZiZPYdp6mlowiTZhvIiVCbtVqxKsCiGEEIeXVKcKIYTYLSMLVR0JVkyoulCpVAKgv7//MM9ECCGWpidYNQatNXV/ilC3aLlVbt/Zx1l9KY7TExSHMuxw8tRCj2roUPMdvIemSZSbWDMV1GABhgfBS2ISLmZ4CPr6UMUKKp+hUNqMt7VEaiokW08R6iQ7igWsZIqhqRmeVTqeza1+dnpPMBY1CLHQpgXal2BVCCGEOMykOlUIIcSeGJZzoSqxVCsyVNVa8/73v58XvehFnH766bs9rtVq0Wq1uq/lHw9CiCOCiReIMgYiXaMVhETa5+H0fzAzczwbK/28UNcZ3+mTWVOkUXSpR2kyT4cMlKukp6exV9XjNRkLOcgXMP1ZSIHJ5yCbwZmpkPZmcFIVUhM+tcjGsRxKiQT11DAvy5Q5cczhvskM9eQsdX8CP6wSYWN0vbuAFUi4KoQQQhwqlmWxdu1ahoaGDvrYUp0qhBBCHFwrMlS9/PLL+fWvf81PfvKTPR53ww03cN111x2iWQkhxN51A0pjUBi0bqBpEekaOyt1JuyHeTzRx893jvAC51xeaE9SC7JM57JM+UUGZ/IMbgsYTDU5buuTuGuTqLV9mLOeCdlsPHShAGedgrV+luTENMmpMvkHd1KZTDBRzjLWTPJbu0DeS3JhRnFa+UJ+NV3jyeRvKYXbKDe2oE0Lo/12dW0kwaoQQgixzLLZLBs3blyW6tQtW7Z07/QTQghxFDAsX6WqVMAu2YoLVa+44gq++93vctddd7Fu3bo9Hnv11Vdz5ZVXdl+Xy2XWr1+/3FMUQogl6bQDmKtabWDQ6FZIEDV5gD4q2zfw7KZidaHJzECRIONSjTxqkU1mS0CxUcdrTWAN7sQMDWKyWUi4GC8JhTzKtiGTwgs0zmid1M5ZMlMZ6lGeKdtjLDHMulSZggvpidPY7PThJ2q0ghIRNpgWRhawEkIIIZaNUop169YtS3Xq9PQ0W7duJYqigz62EEIIcaxbMaGqMYb3vOc9fPOb3+SHP/whmzZt2us5nufhed4hmJ0QQuyfbrBKhCFub2JMgDEhY/bDNJwS01ObOK7Ux7mNScZzWWYHsvgph/RsjmHfYbBeo9C/DVWtogb6MJkMxkti3AQUHchmULaFM1Ai0zeLu7VCxXdJ20mSts1UosBIMcnz3VnWlzdSYpSKtYNGMEMYWfE3YtIOQAghhDjostksGzZsOOjfs0h1qhBCHN0MoJepolS+21u6FROqXn755dxyyy18+9vfJpfLMTo6CkChUCCVSh3m2QkhxP4zGBQKiCtWMZrQaGqtCYKoSd2dZUav5/jWqQxSxQuaTA/2sdnyqIY2Nd/lGb+eIjHTwFpVRfVnYWQVZFJxxWo6jfE8VD6PyqbwMlOsnymRmglJWSmakcfOwMNeP8TayQqnVs5ii9vHpPUk9WCSpgniVgDKAHr5lpkUQgghjhFKKdauXcvw8PBBH1uqU4UQ4hhgFEbLbfqH24oJVb/whS8A8PKXv7xn+5e//GXe8pa3HPoJCSHEQWTipjiobh1oRBBMEYQlGv4Es2oz/xg+RdFZz4ZoE2fNhFhrs4wWsjzqZNjZ9Bh53GcoU6fQP0Pm2TOwpg9WDWEGBiCbxWSzmNWrUeunKaQfJTdaYv1omYHfFhhrphhvukx4BZ7jeZw1niEKTuYXMxV+7d5F3Z8kjOpEuoHWLeaHq1K5KoQQQixdJpNh48aNB706NQxDnn76aalOFUIIIQ4R63BPYKmMMYs+JFAVQhxN5i9kZYgwJkDrBpGuUW2NMtF6hEfUL7mjtI3qRJVg2ySVasC2hsNTtSSbS3l27MzjP1nBPDWJ2j6GNTE5dwFLxX1X1wxibRwkcWKOtetKnFAsszHTZF06YqCYpHj8EKuGUzx/IMcG69kUkxtJJ4ZwnQJKuShsUDYo1a6yFUIIIcSedHqnnnzyyQc9UJ2enuY3v/mNBKpCCHGMMGb5HvtaM3PXXXfxqle9ijVr1qCU4lvf+lZ3XxAEXHXVVZxxxhlkMhnWrFnDf/kv/4UdO3b0jLFx40aUUj2PT3ziEz3HPPDAA7zkJS8hmUyyfv16PvWpT+3np3fwrJhKVSGEOFZ0gtX5i1hhNH5YJtI+gW7QdMv8+1iBMws5+htTbK9k8FfnqEUJ6qFF9qmAvkadRDPECkJUNovJpMGKf5Zm+oooLwG5DKkwIrGjQWq7T3YmSz3KMdW0mCgWcBNJzrct7hvPs93byoyzlZLRRLoZV6yaEKMi6bcqhBBC7IFUpwohhDha1Wo1zjrrLN72trfxute9rmdfvV7nl7/8JR/5yEc466yzmJmZ4X3vex+vfvWrue+++3qOvf7667n00ku7r3O5XPd5uVzmwgsv5IILLuCLX/wiDz74IG9729soFotcdtlly/sG90BCVSGEOEItbAlgdBWt64RRiaY/wf/nTvLATIG8s4b/1HguutYiXF9k3HEYaw0yNBmy+okWI4UZBp/+OdZwFvqzkM+hV63CFPvAcWDjcTjTMxR3jlPYNk3/z8cYL2cZb3pM+B6PpAY5J53kZfUsvn4mt05tZ4wnqIUTtMIKrWAWY1pgNBBJWwAhhBCizbZt1qxZw9DQ0EEfe2Zmhi1btkjvVCGEOAYdSQtVXXLJJVxyySWL7isUCtx+++092/72b/+W5z73uWzZsoXjjjuuuz2XyzEyMrLoODfffDO+7/OlL32JRCLBaaedxv3338+nP/3pwxqqrpjb/4UQ4lhl2v/FYaXGmAijffywTK01wVTrSe6qPcm9O8pMPD6JKlV4qqLZWnd4spbiiakilYcjgkenMU+Mw44JVK0ah6CWgmwWvXoEs3Et6oRVFE8MOW71LCcWyhyfaXFczmb1ugKN1QOUHZfz+9ZwKuew1n0WxeRGEk4ex86hrJS0BRBCCCHahoeHOf300w96oBqGIU8++SSbN2+WQFUIIcSKUyqVUEpRLBZ7tn/iE59gYGCAZz/72dx4442EYdjdd/fdd/PSl76URCLR3XbRRRfx6KOPMjMzc6imvgupVBVCiBXCYNq32UcYpdBRrd1z1WeH/QBlZ5zy5Mk8yzcUs03GVhdpZl2qoUduvMBgvUGh3CBRD7D7cmDb8SJWtg2ui+kbAMA5sUw6XyExXiM71qIRDTLuuGTcBKXsAKbR4kzH4dRWml+Xhnk4FVELJvHDCkEYgQnj1SjntQXozF8IIYQ42hUKBdatW3fQb/UHqU4VQgjRZhRmmSpVQREEAeVyuWer53kH/Hdbs9nkqquu4o//+I/J5/Pd7e9973s5++yz6e/v52c/+xlXX301O3fu5NOf/jQAo6OjbNq0qWesVatWdff19fUd0Lz2l4SqQgixgszvt2pUhNEtjAqpNsfwnRp+okqpejy/lzwBtW2S8XyWymCWopumFjoM+y799RqFoQmUMWA0ZlX7FouEi8lkUetWYeUzJPorOANVTg6mKZazjDWSTLk2m43H+lOGSNZqFLdZ6LFz2elto+RsZ7b5NFHURJt2v1UiQLfbGCgJVoUQQhy1UqkU69at6+kBd7CEYciWLVuYnZ096GMLIYRYeZb19n8Dt956K1dccUXP9o9+9KNce+21+z1uEAT8wR/8AcYYvvCFL/Tsu/LKK7vPzzzzTBKJBO94xzu44YYbluWHlAeLhKpCCLEC9fRbNRGBmSaMSjT8SWbszfydeYphdSIbJ0d4UdDkcV3kt26S4WSSgdkcZ1Rm6B9+Em/dFuyz1kMui0kmIemhj1sXL2ilNarVZOikJxncMc3JW6ep7nT57Vgf077LVCLDUDrNuekkbiVPyj6V74yPM66eohpN0AxmaQWzaNPCGB1XsNKurJG+q0IIIY4SjuOwdu1aBgYGlmV8qU4VQghxqF188cXcfPPNPdsOJNzsBKpPP/00d9xxR0+V6mKe97znEYYhTz31FCeffDIjIyOMjY31HNN5vbs+rIeChKpCCLGCdStX0XFOaRqERJSaW/HdGhVnispTJ/GCakRxJMdkMU0zskmXCjR8l6FajXxyB9ZgBpXPQj6LWetBKhWPn0rB8cehMinc9CT5bIlNQYlCLU2+6THpOLTWFqg10gRTVS4cWMX90wVGrRkmk1uYUk8SRLV29WoIuhHPWel43kaCVSGEECuTUopVq1YxMjKCZR38pSqkOlUIIcTumGW9/R9c191r8LlUnUD1scce484771zSDyHvv/9+LMtieHgYgBe84AV86EMfIggCXNcF4Pbbb+fkk08+bLf+g4SqQghxdDCGTq9V2otYRdon0A18t0r/7At4sVcm3apRHehnq+3SjDLUQ5cTH53Cm/GxBxuogQaqmMMkPEjEf1mZoSGwHZTrYKdc+psTZCZ9irNJ+mopIpNh2nWZ8voYUT59O8rMVJI8MN3Pg55NNRqnFVUIwhp+CJig3RognrO0BRBCCLHS9PX1sXbt2p4FMw6m2dlZtmzZ0rNIhxBCCHEkqlarPP74493Xmzdv5v7776e/v5/Vq1fze7/3e/zyl7/ku9/9LlEUMTo6CkB/fz+JRIK7776be+65h/POO49cLsfdd9/NBz7wAd70pjd1A9M3vOENXHfddbz97W/nqquu4te//jWf+9zn+MxnPnNY3nOHhKpCCHEUWNhrVesGxgQYExLpFg+mBqnv2MRzh1Ko0gSV/hz+miyNyCK9M09/rUGm1MCt+tj9cS840z8A7Z8CmlwWjEZZFk4QYg838Cab5Ceb6C0w1kySd22eqiXIHTfIM/06wxN11OYzGFcVxhJbqDoTVJoQ6SaR9sEE7VlrqVgVQgixIhSLRUZGRkin08syfhiGbN269bCuZCyEEOLIZwC9jGPvi/vuu4/zzjuv+7rTH/XNb34z1157Lf/2b/8GwLOe9aye8+68805e/vKX43keX/va17j22mtptVps2rSJD3zgAz19VguFArfddhuXX34555xzDoODg1xzzTVcdtll+/UeDxYJVYUQ4ijS6bWK8TEqQOsWYVThqegn7HQf5FcTgwyq43mTvZGy3yRcXaQZFchVsvSPh/Q95bNp8knctduw1hRhsIgZGQbHwbgJzOoRWD2CiiLsZoN0ucppv97MydunqY/aPD46wIzvMO2nSKXSPC+XI1vN0qoNYCv49vYSO+ytVKJR6uE0jdZEu+dqGFewgvRbFUIIcURRStHf38/IyMiyLpYh1alCCCH2xXLe/r8vXv7yl2PM7r9329M+gLPPPpuf//zne73OmWeeyY9//ON9nt9yklBVCCGOVibuXWoMhFGlW7UauA1+sHOQEzIZXsoYM7kClf4stdCiGtqknw7oK9dJzUxgr66iggAyaUinIZPCFPviuLNQwPQFWC0fNz9Frljh+GiG2UqKvmaS6ZYDeEykPNxigFup8p/Xwr0TWbZF6xj1tjHGQ/hhhShqEukaGI1R8UIcUr0qhBDicLIsi6GhIYaHh7v925ZDFEVs2bJFqlOFEEKIFUZCVSGEOArNbweA0hjtEwEm0Ggd8lj6AUr1jZS2DnPOYAVKTSqritSzDolKjrKfYLDaID/dIBWNovrSqL4c9BcwxXmNwBMuZs1qlJfASifJh2OkJ8v0TdcZqKRQKkfetWmELuOJPvqHQs7JVTmjZPPQdJ57gJKzg0YwTdMHbVpgwm64qsyu70kIIYRYTo7jMDw8zNDQELZtL+u1pDpVCCHE/jBGoZepUtVwZFTArgQSqgohxFGs2w4Ag9ERmhaRrjFWbTJlP8aTTo4nRp/PCc4wzw8CEsMpHgkLtIzLcDJL30TICTtq9OUqZAanSKx2sWoNzNAAJpcDL4nJZjGehxoawFq/Gq/RxKvUKM5UWPPADuqTNqVympmmx+ZqCnttkfFijsFEld+rnwH6DCaamp81HmfW7KARTuFHNfyg3G4NoOOglaj9psyu71EIIYQ4QIlEglWrVjE4OIhSy/sNZbPZZNu2bZTL5WW9jhBCCCGWj4SqQghxrOhpB1BDm5BI+2y1f01Zr2F8+wbWTWrOWdUkPZRjWmWohQ62ylD2EwzUm/SVa+Ry21HlKqq/gMmkIZUC28JYDgwMYADVaqLKVRKhxhmvkBytkJ9uooBpP0HGselPF9hSzhKWGqyv1XmldxL/MbOOUXeCsjvBlPUEYdQgjJpo46N1o13BOq8tuzGoRX6SKkGrEEKIpUqn0wwPD9Pf37/s1wrDkJ07dzIxMbHs1xJCCHH0MixjT1X5VmrJJFQVQohjgKEdPraDVUyI1hpjNJXmdgK3Ss2ZYjxYQ2rqRF5gzRLM1Kj0FdiuPMqBTTlwqLRcjn9whsSqBvZwCZVPw3AfZFKQTmPyw/H1UilMLo/VamHlZ/DyJZzJBhusGQYqSQYaSab9BAqXeibLbCvDSBDg5OuUZ1LUg/X8nDwVJqi3K1dbwQzahBgTdKtXTbc/wLy1LxcErRKwCiGEWMhxHAYGBhgYGCCZTC779YwxjI+Ps3PnTrRervWahRBCHCuMAS3f5hx2EqoKIcQxYn6walQU/01sGgSRRaT9OLh0ytzXSDG+dZhTixanmgm2TadxB3PUCy4zvoOzzdA/Wyc7VifRX8dptKAvG1eu9vVBZzEP28YMD6ESCVTKwynWyHszZEt1+qbqrCp5uFaRGd9h1rXYXk/grnIZWZXHrjfpnzyNpybqbLGnKblTTNiP4oc1Iu23H00UURywouMqVgxxnrprJauEq0IIcWxTSlEsFhkYGCCfzx+y687OzrJt2zZ83z9k1xRCCCHE8pNQVQghjiE9C1gRYYAoqqJRhFGJpj9NzRnncTvD3VP95GdHOMc+jXNbLcr1NOFQjjvHcvTN5CiORfS5ARufKJMt7MRbNYozW4Ghfkwhj0mmMI6L6etDFXKgQZ2uscOATLVOZrbE4K93EIyG1Gdctk4VKAcupcBmNpfGK6ZxV+XZUC7g1VfTbJ5KoOGJSpNpKoyqzTR1mUA3aIVlIu23K1njtgYQYTqLXmFQ84LWhZ+HEEKIo1c2m6W/v5++vr5lX3hqvnq9zrZt26hWq4fsmkIIIY4Vatlu/5fvkJZOQlUhhDgGdcNVFKDjV53K1RC09gmjBk1nll96FmM7NrBmKuJ55QaVbJZmf4Z6ZFMJLSyVp1hv0Vdp0JccxZ6poPpyqHwGk8uC64DjYjwPstn4+v0BaqAPO4iw+8u4U3WcJ6Zp1BOU6x4l32Or7dGfcPH7XGb9PI2aj9doMpJRKJPkvskis7pF3W4w6mymZaoEukEYNWiFFSLtY0yINiGYgG4167yerJ3uARKuCiHE0SWRSHRv708kEof02kEQsGPHDqampg7pdYUQQghxaEmoKoQQxzCD6QaLqHa4qhuEJujeYj/BI1TdccaCtUxsW8+r12rcVo3pfIFyNgl45H2Hft9DPTRLZrSEM1jB7k+iVvdBOgn5dpjaDlVxXUyxD9avQWXT2P1VcukZ0hWf4kyTVskiO1mg1HKphA7lhM10IsFY0sUUs1hNn/MGWqhGi7CV5UejRSrap2rVKdnTzLrb8aNaN2QNo3q7ilXHAasJe1oFKNP7mQghhFh5MpkM+XyefD5PJpM55NfXWjM2NsbY2Jj0TRVCCLGs4jKRZVqoatnGPfpIqCqEEMe43pYAzOu3GhKagLpv4Uc1ms4sFWccd/u5nNaXZKA+QyLr8kgqy5qhJDO+Q6T76C+3KE40yOQbpKo+VjEF/XXUoI/J5+d6rgKmkAfHQmXTqGwKp9HCqTVJzDbY+NgM9VmXas2j3EqwvZGkkLBphBZ+OslowyNZVBStkD9Y16RRbTFdyvLQ9CBb6uuYsUuU3EmaukQ1GCPUrW4/Vm38RRa86q1enf/ZCCGEOPI4jkOhUOgGqYfy1v75tNZMTk4yNjZGEASHZQ5CCCGEOPQkVBVCCAHMCxCNQXVfRQRhQBjZtIIpKmo7M+5T3DNZJO0M0D++jvPzx2HP2BSGszxZSZL3PIpunoKr2bStTjHZIl8YIzm4k8TpY9CXh0wakh4mmQDHRfdnYOPGucm0WiSf2kJytkz/bA1TbXLK6AxhxdCq2tSqHjurWeqhTS2yqIQZEvksVp9hw4DP6WEWq16gaEbQwN0TislmSCXyqao6O9QT+DpuF9AIpntaBWjdYi5g1XsJVpdQiWR2PV/CWiGE2D/ZbLYbpKZSqcM6lzAMmZiYYHx8nCiKDutchBBCHGPMot9mHLSxxdJIqCqEEGIX8cJOKv6bWun4L2yjMSqkFUAYNWmGs9SccW4va1bNDnFqOWIkX6FSyNIopJl1LbRJ0+979DU9iuUmw0zj9JdR+SQq66EGC5DNQDaNyefmJuB56NUjqGwGVayhmk2cVXWcho9XbpItNck82aJRT1BtJphpedQjm5xj00gnmPE9Zn1ohBFW0+ecTItE0CJoOlTCDD8dKzJDk6pdY9LZQl3PEuo6QdQkiGpoHS94ZdBxNStz3yzHrzsWhKqm9/Vci4F5x5r2Z4uEq0IIsSdKKdLpNOl0mnw+Ty6Xw7Kswz0tfN9nbGyMyclJzLJ9RyuEEELsnkGhZaGqw05CVSGEEIvqbQsQYVQcsmrdwJiASDcJwjrbk/czZfcxWl3Pi/QmTtRl9GwF059hcy5DI+My5dv0+R76cYtctkUyV8Ut1LDXtVB9aVR/AZMvwPyqo1QynkHSA61BRxCEqEYTu1whlxkjM9OkONugOJWg6Ts0fJd66DLaTFDzbEJjoUmxrZYiNIA2WEHAiwcCbN+nWi3y0OQQO1p1KnaFhlNj1uzA11Ui3SIyIZFuYYyOF7wCtA7bE4wDVzMvWJ0LXNshrNHMhamqp4/r3Ge7+Oc+nzqAvkYS3AohVopUKkU6nSaTyZDJZEgmkyh15PR1azabjI6OMj09fbinIoQQQogjgISqQggh9mh+WwDQYCKMCoAGERaztQpKuUxaD7HNHyJV66eo1rJ2+zr+aGOaViGNM5jloYbL1no/yUlD0Y0ouCGrf1slm5km2TdO8pRR6M9CLg2pJCQSGMeBhItJpaC9yFV3Xa3jJnDKFZxanWSlDmEEfoipNzht2xRBydCq2TQbCSarKRqRQzOyqUU2k60EkcmQB3Q5Yn0toFn38RsBXngyCaOxlcJSUPYNU62IKd+nZUICQiIVEhBQsiaJTIAhQqPRJiAi6IaxnWDWmChuLWDCdiir2wtntfu6doPXuXbzC8PQpQaru54Hu1bUHllBqwS/Qhx7PM8jk8l0Q9RUKnVEVKEuplarMTo6SqlUOtxTEUIIIYDlXahK/mW+dBKqCiGE2CcGM6/CMor/0u0uakV3UauSM8rXnz6XtUl48WyNXCHFTKZAy7IZTjqUAxtfW+TqAblywCq/TKKvitXnYmU96MugUglIpyCXxbRD1e488nlwHcimYaBd+RlFqFYLp28Cp9TAKzXJlptkJ1qELQvft6m3EkzWU7S0RTOySNoOrbxNaJIEEUw0Da0gImiFaD+in4h8K+SkKIkXBeQcQ2AU9RB+M7OKQBt0+58ezSgiQNPEp27XKbvTRCZAExAR0tLVOHjVLULtE0S1uNrVaEy7ErZT+bqw7UBsT4uwxMcq5lfMdr7aPa0JTPcX8AhYnXpeO4TdHnKQq3eX4mAFvfsbhgtxNLAsi2Qyied5JJPJnudHaoA6X6lUYnR0lFqtdrinIoQQQogjkISqQggh9tn8AEiZudYAYVQj0j5h1KQVVng4abGztZadW1YzkoQXDjVJpDwa2TS1TAqNy6RySDY9WqFNdrxFNuPjZSskRmpY2QQq76GK2bhyNZON2wEoC7TGWA6kHEgmwXEwloIgQKWSqEoVq1zDqjbIrG5gmiGmFdJXbdE3WqfVdGi2XAaaSZqhTWAsmpEin3AItENk4r8iWxHUQgi0IdAw7odYoaagIi4e8cnTIhn5EEVUA5tamGDSTzPWLLKzNoKvNYE2RMZQxaehWjTdBnVVoax3EupWu4o1rlrV7bYCnbYD8eetUcwFEEr1hhHzj+uEtHT7wS4MagHTWZ16XqhqDkLAqvYQkiwyfm/P2Y5dj+v29+3ZuC+h6vx5Le19LtaaYTktZ/i6PwG0hLxiqWzbxnGcRcNT13UP9/T2WRAETE9PMzU1RbPZPNzTEUIIIRZlOOJuPjsmSagqhBDigMxVrvZWrWrjM9N6irozxay9na2tEfzR43lmn8/JUZ1EzbCZPEEmTSaboBllyLspCrWA3IzPYKWOl2nh5pvYfTWsSKMKWUinMAkXbDt+OG78usN1MUNDkEqhMhlotVB+gIoiCCPsRov89hmiio+utuibqhMGNmGoaPkOqxtJmpFDS1uERlENLRqRha8VoQaNS2TAj2AqSjNjxblgoEEZg6s1RRUxbCJeagVYUYiONFGgmWmmKDdhuq6ZbBoer2ykrloEVkBAQKhCNJqQFk2qhLS67QU6FDYWFkrFVavGzLUe6LYg6PSBbQeruh2idgLXuPVAb/Aa/1oub+Vq7yJf0YKqWogDz3Y17sIQtp0LdhdR25M9hbvzq313EyQvHvZ25rcnB7PybvFrHVDYu5Qguv2v86UEsQcavO7pGhLqHl6WZeG6Lq7r4jjOHp8fST1P95cxhtnZWaampiiXy4d7OkIIIcReGbN8C1WJpZNQVQghxAGbW9SqHawSEUUBDd2g6U9QUduZsB5hZ+JB7vTzpCcGKDDEaa7N+myTs9b4zCaLbEmlaagUESk2lHN4librRKSdiFW/miWZGsfLRDhZsAcSqGwClfVQG9dgcllMMhW3BAhCsK24ZUA+i8kXwZr7R4eansGpVqHRINFszb2RSLNupowpVzG1AF2LCGc1OlDoUMVrZfkOvu/QCm2qvovWCoMiMgo/sgiMRWgsQm3R0h6+gcioeKGsSJE2kNDQHxnWNiJagablh9RaEb4fEYUaIk3OAtdEZJQm50DO0bgKbGVwrfgB8diNSOFrRTNS1CPFWAPqETRDg681jVATGUNgIkIMTeMTEhGpiED5cRhLvOhWRIBWGt0OcucHrdosbEfQu98saFeg6a2U7QTEc4FvNFdd297eCVk7vWjnn28WhKALK3Y71bydwHmxYzrjLBx7bvuu1b27Br97s2Beu5nDrhbMZdFF0KDT6mHxMXotdu092XXMhf14579evuCz91uE3bzP3ZRnSCC7uE5QureQ9GgJSpeiWq0yNTXFzMwMWh8B7VCEEEIIsaJIqCqEEOKg6VYRGsNc5aomUhptWtRampZdoW5PU7Z30KTGE1ODPFrK87yhGmcWpnBSCWrpHNtqOZTlMODZWEA5cMk4IWknJO0GFCfqJDI+Tr6G0wpQhQwqkwQvAZYdh6i2jfE8yGTBmqtmNbksxnFQqWS8wXXiVgKAKpdQtTqqWsOqNnGqTUyo595hNUDXm+i6JigpjI7DB6Mh8G3C0MIPbIIoDl5Do9BaERqLVmTR0hYtrfC1RS3lEGoITYJmGEdl2sRRVTNqPzeGWqSpGhPnWdpgGQPGEEWaSBt0ZDDa4GBIKMP6oiGhNC4axxgcozHGEEWGUEPdTxPouLq2GSkiQxy66rgCNzJxjGWMiZ+3M6p4bmbuuQGN6WZbkTFzx7a3z/8aoQnbXyMifBViVBznzg93IwIiFRIRtK/VDl936TEbV+7OPY8DRKsdqnZfzztGE4+1cMxOqNyp/O2EvHEQ3BvqLjaP3c5pD6Fmb5XwXFA6v8p4fvjbvf68wHVvwer+hKoLe/IurGbuvFb7EO7un3k9gbsT6PwazK8mXhC2H+JMdTn67ypLYVkWlmVh2/aiz/dnnwDf95mammJqagrf9w/3dIQQQoj9ZpZtoapj44erB4OEqkIIIQ6qbtUqCjpLOBkDRrVDQ58wquNbFSK3xZSdZVQPML3zGfxiMsVg0uL0YpVCooLKpNiRyOJ7CZraxVEOCcuQczRDTY+UE5JNBhRny7iFClbeRqVcVNoFzwEvgUon49A0lwMvGYetnYok18F4ybntgMlmMfUaqlZF1Rpx+wDLgvZD1epY9SbUmrizjfi9tau6jB9iGgGm4RM1DEHNAhPnQMbEVa5BYNMK4sC1EiTaoaqFr632c0XYrj7V7edgd8PKTsGtpeJgUxsIzVzNoFqwr6njqtXuce3g0wBhZGgEIX6gCU0c0FrxTfnYRmGMQZlOaBq3eXAtCwuDoxSuAkspHAyOgqSjcNDYgKPibaozs3nXjnT81dfx80gr/EjH4a6O+9e2QtPeF4e1ke6cbzDtFNe0m0mpzlzjqWOpubzNUj1FymgTh8ndoLc9r7D9PgOjiUwc/hoMgQo7cWsc+Kq5EHZPrLhJQ/xrYubCLKN0+3zTM0bUbv3QCXcD1eoJgDVBT/DbCZw7Aeze5rI3nTF6WkUQoXXY3d8JeTvBqm4vrtY5frHn8y0l4N1doLtr1W4ceiulUKrzZ46JKywV3UrLzv746/xtvY/Ftu9127zn7Qns15hKqZ4wVMLPg09rzczMDFNTU1Sr1cM9HSGEEEIcJSRUFUIIsSzmeq0Cqh2uah+jQjQWSvtoHWJbJRr2NM1EiS1RH7naAI9U+jk1n+WcqEFKN4mMxW9tDyvjkcx6rMo6lAIbz9ZkG5qhepJMIiCdbOElW3iFBnZKoVIKK++hghBVzEEqhXGddpllO6SxnPh+/E41nKUgncEoC1wvfi8JF1wXHAcaDVQ9rmRVlWocqNo2ODYqCKHRgnoTp9YkUQ/ia3UC22aIbrQwjQZRHZoVGx1ZGKMIQ4sosggimyCyqAcOobHQJo4l48rQ3p8aG0ATh6+Rmfupclx5Snu7oqnjcFa3t/m6HbJqRTNKEHaPb4dT82797QSgHZYC25qrqYtzzXb1qqUIAVRcddsgDnLja5n5+TOqvS/ShkBrfG2IFoRxVjui74SKRsUBqmIuKNRotNJxwIVCGYWL0636i9BxRey8sN9tL0JmMPjKJ1QhNnGo6aGwmKtqDpVFaFqY9lhxVDpXORnX3ca/Ep1ZW6juMfF+3bPfnvfPr4gQY0KibmsFBcpF4cVBotFEhD0LlwFYljPXKkEHPaGjpXr/eTc//Ozs73w+cxW7uh1Mt4O/zudrIowJMca0rzc/vu98ip3+vPMWsJv3e2huewTY8/ZZzIWn8+c4d4zpVL13Pp/OWPNvTzem8ztl/ruc/wnsfqGz3a3wsGD8pZCmA0eWRqNBuVymXC5TrVZ7fn8KIYQQK13n+4NlG1wsiYSqQgghlk33tlgTtwUwhPFf0kphTAujG4TKohVYNPyJOOxRDraV4D9m+/m/lQyeypKmj7VmLTnbZW3axe13mM14ZPIeFStBUzv0JRRZFxKWYciLSFkRCVuTdkIGc+N4qR24aY3lgV2wUAkblbCxhnKQT0E2A8kkxnHAaFSk43lm///s/Xe4ZUd95ot/qlba6eTYOSmgLJFkMEMwMgg8Y2BsrjG2RwYu+GJjP1h3fthcB5x+43EYJ8Zj7LnjMDPYd8yMjT3hYpITRgYhkISy1OpudTqnT9pnx5Wq6v5Ra6fTrZbU6qZbUn366efsvUJVrbXjevdb77dmBdXICqzUaphKFTM2hphJMWE44nQFrLu124EksVEEgY/xA0Se4SUJot0l6MaUtlaWzhQkGcQZptUdFXO0wWQakylMVszPlyA8QAqMMpAZdGLIW6DzLW43A3kmULlHuxOijCRXAoV10/ZiClLt9QVZXQhnsjflf+A7BYbcoENLh7cZFoE1VsTVxpaoUqZ3X6DwhkRfK/Bm2j5VlLZSXD+GoDj04S+R6kn0suKpNzSeoeiCYl3PoaqN6Uce9OQ5u14Xy4r1w+0ULZstf3uCpRk5L6d/OzWFW9UIgxJq0I7oeVI1COtEzb10sN4MbbtF1D2TS/RsTtaecNsb43C0gSls1v3cW2O3GHaPmmEx9Qyu0n5bZxDsR9aJ6Izjty7UACPykXbYMk7Re0HYjbYco3zywmNPJzv0ybbZ0s+ZtnLXJN84lFJ9EbXRaJBl2cUeksPhcDgcF4wLWajKfX95+jhR1eFwOBzfEEYEp970baHo5a9qra2DVUiUDlA6RRYCa+CVqfsnCHWZh1pTjDcn2e5NctVkSOSDKEe0axGb5QgReKTax5c+vjAEwrCRhESepuQpIj9nshbjBwo/zIlWE+S4j6gGNjqgHIEnCweqREy0EdWqjQUohFWRJZBmdhshwc9HMlsJQnu0fuFwDUIrfAJkGaYcI5IY8tyKsX6xb54h4hTiBNHtDlywngRtEFkGcWr7zhQEVrAl9CHXtkBXO8Gvd6wNVILwJATSmvVyhenm1NZamAy0GtWLdC5Iuz55LtDaOmil1Hb6NIXIqTx0IY56ksF6YfrrciX7rllPaBAGKei7cHMtyQsBt9934bbNjSTTgljLvlhq+k7cYjtAaXFGqbAnyg77KQeeSvsYZLYWWN/pCwORNdOjbSht+uvBirBaFyLp6abNEWGW01f3xVor4m4R/4yxE/61IS/E0n6GbSG+9oTYvIgL2JonqoVG9yMK7N/TM2XNiDDbd4ViUOTQm96PtnEFRvcPwjpri1iCIhqgt24g+g4CEwbnYCgCoS8A9/pnFKNHiqIZoxGFe7g31d8ghva3DthB+6OuVWGGOum992A4raAYYkgI3/rs2jolf8v6szhbn47YetopOMM+ve3chc6ATqfD5uYmjUaDdrt9sYfjcDgcDofjBYYTVR0Oh8PxDeV0cVUVzlXsbSMwIseYDPCQwifNG8TZJp4M8WXEsoxYEgs8sj5LxdS4MprlwHhCKA3K9zhYivArEUE5IAw8uioCYXM+y55mMSkRCEXoaybrMaVShh/F+FEHf0xAKBCBQPgSOdGAWglRKw8EV6VBKfB9RLWMqVQwlYp1s2oNWYbIi2xKIcEfjheQVgg1oc1zDXwbK+D5kOeYuBBc0yr4NoLA+D5IgUgSK7jGhSDr+5gohHLZ9lu4YOXGph2jFFZwLdmCXCLLoB0jpxqQKDvdu+TbzFis6FraTDAdjcmtg1MGAhueihVmuyk6szqb9EEEIHxhH8MsRcegU2wBL2HsNsV/HYNKBFkiyVMPpSVCGKQwCAlKiX6Rr3bmo4siYLIQ0pSR5MZmz8aFICuH1hus+zXRg1/upTCEhR7Wy5XtKklexCqIoo2eWBVrQaYHsQWj5YMg0Vbg1cU2I5mtRfs9QbY3nV4OTp/NiTUDcVaIQjtHFIKqXZcoPSK6esVrpJf3muis/1ryhgQ/W/QrQ6EwQiOMxBsRVTWpSNE2qKGIUbAJsLZIWNovEtZ3rYpB8S1FijI2siD3ssFrefj1XeStaqP664SwP5j0C3EZ1c+XFcWPKVAIskLb51ohXArh9UXZnjPW5qn2hM3e19neWc4x/RxbXdi56R8LaIQ53VmMEEPLB9EEPUH1TA7k3n4j/QtxmrB6PhBDf1+owmocx7Tb7b4bVamzF41zOBwOh+P5ip3A5QpKXWycqOpwOByOi8KTiqtQzNku8iKFFX2UTq0wg0QIn9ivsy4PE8gyq+lO7l2dYVyPMyUr3DijqXY7KAOplNwrA2QUUCqHjNUCsvEQAXgCZmLrYg2lwpeGWpQQhTm+b5CeJqo18SpNRFUiSz4iGqrsXg6gEiEqEaJahnLJqm29/2EIUWjF1jDECInQuXWUaoUIIowUVlTtIcVAeA0DTLnSjx4w5TJ0uxAG1q0aBnZZrVZUYEqh0kH0KlX5nhVda1XbdprZPFjfgyy3X8NqZdu/EIg8x1tvQifBpFZ0E5XIiru+ZyMIGl3IFCZTiNBHhJ4Vbn0Bca9QV4bJNHgeomRjFpASkhzdyYjaGhUrTG7FVhmA8AQ6N+guZB1JreujC9HV86wTVitBrjzSzCPO/eL5Ywj9XpElYfNoc59cSytWCutQRoDWgkxLmrlPpiXa2LgIKQxe8Yxs5R6JlqRa0PM/SmHwilOaaEGqRV889URP2B2Itj1R1hRSpC+H1mtBou3f3v6+KLR6I6zhWFtnb085k0LgFcptL4PWVwNXpS+8vq6njCHWns2aLYS9EL/vRlVG4+GhUGihkMbDw8Mz9nmdiISMrC+uAnjGRxTCaypiFBlKpGB6YqPEK3Jclckx5CjhIUxmxVAhkcVXTiNsPqooRFd7fF4/B7YnxmqhhjKZJVL0Mmo1RqvCLUu//94t+lP988LJKociBzxsPmtv64GYWpxpEKOCa/+1jniaYulZhNUht+wzFUZfiJdMaZrSbrdpt9t0Oh06nQ66V2TQ4XA4HA6H4xLAiaoOh8PhuKiMiBe96bzDS3tTwEUytJckzzfs1Hskm/LwSB7rPyxPE3o2j7XGLLvMNqpewGTkcfm4oDKb4ZdD2l6ZByjT9cvkRT+zpTGqnhXaDFb0CqWm5BkioQk9jScMntSMhRmh3ybwN/F8gx8ohGenKAvP4NdAliSiJBG+RARDU4g9iahFVpiNQogC637NFOTKipilEFEuY6rlwgWr+vEA5LkVV5MEU0xRt4JtMggcLeIJjCycroBRhQCslI0WGB/DRIE9l1luBahKgsiVVQLHqlYsLhy6or4J3RSRZHbM5dA6YX0f4hjRTRDt2ArHngeRb/cPPIhTvHaMaSXI2BbxEqGPKPn2eNMc3UnxWxlhPbWPdAAikogAG1kQp6g2JG0rsnmeIahqq2UpyGNJuxmSFZmyga+JShlSGhtNkHrU22UbQWAEZT8nkBopNRhBPYmIc59E2yJhgdAEnrExBkAr9+nmkqSIJ/ClIRQGX9oEhp4g2xNefQmRMPjSOlRTLYiVLRaW60KvlhDKnmgLsRJ40usX9gqFPT3G2NiDWEu8zEYwSCDyJFIUTl1j8DNJplWRNSooeR6yEPRyY5C5IEehjMbHwxcefrHeNx4JKZnwyI1CIvGNj4eHMAJfBqQkZMKnV3RLCr9ffEuJnMzECJOi8GzRLuEXoqu0RblIyYWE3g8lwscvpvf3xFhtcsxQ0SxPBAghreAqC0G2/zS3ha0EEoNGaesMF6LnYuwVvrKeZJvhurV4lRVfjZFb1smBoFq8pqzoWjzhhgTZQXyAFVZfqG7ScyHP8xEBtd1uOxeqw+FwOBxnwcZiXbi2n2989atf5ROf+AQf+tCHmJqa4id/8if5hV/4hWfdrhNVHQ6Hw3HJcUaX2IgAoqzgYhQg0SpHF+JMrjxyFePJEE+GbHrHqPvHCXWNSneCB9tT3LU6Ri3QzJQ6vHFxjZKniL2Ihqiw0Qo5Jm0Wqgg8jBQEQlL2bTSpX+SD+sIw5mt8afALp2NPfJNYEa0aZoS+wvd7ztfMTnf3QEhDMNZBloUVXSOvqMCkMcpYEbbkIypFzms5LEI/C6drodiJUoiYaAyccWkGnaIAlu8hwgDR6VinaJ5DkkKzY7f1CqdhEBRWSg3tLsSZFXZ78QEwiD3opvZ/mg++yWnsdnFqC21lOSZRCL/3mMWQ+3afLLdqYk/FNgaTazv83pz6woxWaOYDK6g0/RhbGETaCg8QRfSntK5WT1KIkqY/xb63vSeNPX2YYvq+/asxxeNrkBiMsNt6QuMLjTZWmLZtGTyEdar22xB4whQiXG/og+dtb185NJ7e8t5kczF0yLpoA2E9llqAEgPXYm/dcASBMaJoeyhztLdt8VcIMRAkt8QbAAgjCoepQhYeVWF6fwdFn2Sxt0AgzOBgJIJhOUz2j+jcGI4HOOP6QlA92/pn1P+QoHqmdf3M1pFp/8MMZ8n2B/H0+3+q4Z23lr7xZFlGkiTEcUwcxyRJQqfTcUWlHA6Hw+F4xogLOP3/+TdH5n3vex9ve9vbeNvb3sZf/MVf8PnPf/68tOtEVYfD4XBc8pyWYQiDqcFDAqspMhxzk6G0dbaluU+SN/FkhC9DTnk1Tqo5SqpGrTvBocY0ZT+i5AnGgoxXzbXZEyjCVJFpyaGkQlcGnCSgKz2CyCeKfKKSRy3w8YaFMWFdh54w+EDFV4QSAqnxn0J0DcJChjICEEhP4QU5XtRFlqzj1a43NnrWGIQvEKFAVNdtQSptrJCWFm1JK9aKctAPYjS5wsTF1H5PImpt6yJFFNP7Yzv1vyimLuMMSj69Bkw9ttP7cz0QfqNCcc40JskxcY7JregkQonoxQNkGtPN0LGG1Ngmo9y24wlMrjEdjeoY8o5ASJCBQWYaGQp0atCJjQfIUutU9ZWxQqrExgOkNpc1LzJXtRb9zFajIct9EuWRqyJ3tZiW7xljXaDKI1U2u1UZm3UKsoihgEwLMi3Ii9xWgz1PRkNurEM1M1Y3Vga0sGKwKQprZYWDtacr99yoFNv3ogP6xbaGYgVUbz9t0MY+BzysY9UUT43cGJQ2aGPLVAlMEUXQy6W1EQC6KHil0Xa9kAhAodFC9/NOweawCiFQKJRQRa6pOu21aYQtgGWLYekik9VHo/EKobEofwVFtqo9RI3u5+Ka/vKR9wCj+38NvX3P7xd+K0I/yfTy/gP1tBs76+iez1P/tdYjounwbTd93+FwOBwOx8WgVCrxEz/xE7zhDW/gPe95T9988GxxoqrD4XA4npOcNTbA5P24AIUkV027XviAR10eBCRS+jzoVfGEj5Q+noj4RGPCTmkmwBMBFTNORVcpExEIDw+BLyS1wGPfdEgl8ogCiR9IjCcRnof2PJQQaM8jlxJtPKSAQIp+fqYUEEmrRdqIAeuW9CjclQw5IIFAmiIH1hRZoQMXoi803ojz0fSLNwnAk9p6BaWxyZjCL9ycBl/kILJ+5qfWEkPUbyfwc6RMi9MsyHNJbkooLfrj86RC9irOa4kypX6hqN6x2MfGR5sApUVfo/LkIGpBaYHSkrzIO+0VF/OEdbJqI0iL9XFeTP+XhlBqBAaNINeSrvLIe/0XAnYvw1IZYQtVFUWwPDE4V9oIYiXJjL2tGTiTKfbv5gPR1Jp97XkQFLG2mv76npHXFwIpe5mqPXHUCqP2sbRuSlUsy40hK3buu1ERaGPIi/+JVv1CW6EqBGQMudF0TVqIn9Y1GysfWUhzCm1zU0UGaCR2nSjyUTOZoMhRIsdgSBH9qf1GGDITo7CFqjQaiUQVRa8wmtykdoq+SYeE1az/eBij+rmpxmgo8lOlyAvB1PTX99D9dUWeKpqBLGkdub2iWqb4cYUhr6wtGKaLL88KWwVr6xdp3dv4tB9xeudxIPYOC4NyZLsztj2UpfpUnG2Li+1Q1VqTZRlZlpHnef/28P00Tcnz/CKP1OFwOByO5z/GXMDp/xf7S8cFoFwuA/Cyl72MN73pTbz//e8/L+0+50TV3/7t3+ZXfuVXWFpa4oYbbuCjH/0oL3/5yy/2sBwOh8NxCXB68StA9Fxtsl/8KjcZQkiU9lAqRgi/X528I1eL6cYeQkh8GeKJCCE8PHw8AiQBfhZx7/IEASHS2EnSPh6e8SkTUvUCrpwIGQ9gPBSMlQS1CDxfguehPI9NHdDAIxUSIyVhKK1IVwhgxaiLYxqIsb3iSMP0hD+/EDrh9OnlUhh8YZ2znhi4a+02o/v028UKo2BFVeugFP0vcVZQ3CpCDdyTvf7t8lH6k6cLQbfntlQMBFHJqCaVG2ELOplBG96Q6NnLLdWIMw7AukUHOVRy6Hh7oqgutjP0nKrFeiBRdn3PSdqf0s9ALM0NaGMGT8Gh8WuscKqN6Utzvan/pr/cOk0H58lK0hrIjfV6ZoWQKZHEPcESgxKKRCZomyVRnN/B1z1NTi6ywk1qhoo12T/KZBhUv8iVRPQkU7QxqEIspXC7Wrk6L/ZNC6dpIYL2nKiFy7cnmvYF0mJ8wkiboUpP+KT/WrXHJTEm668fdbIO3++dpdOzOHuCqjHmzFcKZuCUPROD5WdzWp5h3RncrcM9iCdZfrZ9zidPJpT2budZ3r9tnuIcORwOh8PhcFyq/MIv/AJ5nuP7Pu95z3uYmZk5L+0+Y1H1tttu4z3veQ+vfvWrz8sAngn/5b/8F26//XY+9rGPcfPNN/Mbv/EbvPGNb+Thhx9mfn7+Gz4eh8PhcFyaPKm42t/A2Gn2QqIKgdXikQvZz2cURahnT3AVW25LGdicyf4yW8XcEwGBqXCwvkjJVIhMRERATYaEUlLyJNVAcMMU7CplTAQ5Y0GGjgW58MnwWcrKbJqAhvZoKEFirJtRSoHvSzwpEVJgBBhpl3tS4Pse3hmEHOsqFfgSSlKOuC97DFey79Gfhj6EOMO64dnRwyKqMaNB+j1XpxD9RIL+/iN9iNPb6d3WW3SxYbmrt77/y30hkA7/kt+X4EbGb0b3Y3R7KwZi3aTA8JSh3i01JIqaIcdj399oevdHxSlTSIymmJK/FSMMqhBBjRxM3d86So1GC1U4SUeFRdt64SY2wy7OwbR8u50eCJq910V/G4MmHxE8tZA2ixdQuieqbhmb6cUBFKLplvV9l+mwqFpg81+HxdSecFqsRw4tO31/S8/FWjhJtzIiFp7ZhVoc7dD7iRgs29LO0ODPMJah1WddO9Tsky03Bq01Sim01qfd7t032m6X5zlZXoikaUqW5xizZRRbYh0Govtgu0FBLofD4XA4HBcL+533uRYSdPG4+eabR+6/9a1vPS/tPmNRdXNzk1tuuYU9e/bwrne9i9tuu40dO3acl8E8Fb/2a7/Ge9/7Xt71rncB8LGPfYz/+T//J7//+7/Pj//4j39DxuBwOByO5w5nFFdhILD2pgMPfSExfYF1IKiMFsnx+stGxVe7T09glcKn6Z3AkxFS+PgyIqKG1AGRrhBmZR5vz1KTASUvIvLKI2Jm2VdUfcVMBHMelKQ9GputaavH98TFYe3GFlyyWZ5aCJSRtLQgM8IWPvIEfiHISk/aydDCFlzypCD0BEKKvuCZF9POEaKYqi6Qxe2eF1IZK7KIYp2UIKV1tUIxzkLUFcXf3hnryWSDs9vrZ7BvzznaP0bo1+XS9ITOM1tjrbvT9AXN/vOh1/8WEVQgisJGRRPGFHJmIWIxcHD2hFBV3FLidCGz5+c0QpMX6+XQc6vnKM3FoFBPv1AUhdAoTF8oPU3ssntb56nRxTHrfh8aXUzVH4iqWzFYofM0sbIvZOu+8/RM/feEVE0+Imr2zmNPSO2Jucbo0wpPDTJaezmrEju1v9dHMW1/BLlFTB0WTzntcTzztP+zYb3iNlKgeI70cov7xz34j2Hk/rBgb7QuhPthN+5ge601Sg8Joqr4awxaAaIMRqI1aG0Q+EM/9BTxDyZD6xyl09POlTHauoFNhjG959rpZcpMcc76mdXDby5DluvTy5sNteEEV4fD4XA4HJcQf/d3f3dO++3du5fdu3efdZtnLKp+8pOfZGVlhf/0n/4Tf/RHf8RHPvIRbrnlFt7znvfwlre8hSAIzmmwT0Waptx11118+MMf7i+TUnLLLbdwxx13nHGfJElIkqR/v9FoXJCxORwOh+PSZvgif1RgLUSYYeHAnGnq8PC90yuCD9xco+JqmjeG3K0+sshu7blcj8kyUvt4KkCKYKgHiRTWBdvLdrXHYYWpQVYlNvFSRPgmQCDxCCibCpEJKYmQivTZXQ2ZCAWToWFMGraVMkqeIpQaX9qDy7UgN5JESVQu+u7O3EhyDamWxFqwngpiJYop9FZc8cSgAr3Nc4VAwEykmQg002HGTBSzf+8apUXwFkvI7ZOYb7oBs2PnGR6xMwk2T3dZQZKC54HvPfk2FwixsQGtNoQhZnwcyqXTx6b16cvPV/+HDiOUwkQRVMqYiUlQCtFpQ30TsbxiBbJKGX3F5RCF56/z+iZicxORJphSGcIQpIQ0QTz+BKxsYloJ5BqxbQLmpzDTU5iZabu/NgijMVNTz2IQW0S9dhuxvIx44jjm8CnadzbIOhKVW2lc5ZI49ml0Ih5r1GhmHnGRnQv29a+Mvd/MBs/9YZSBdgaZNv0fE3qvC7CxEq1MEStNYhTKaDwhCYTEE6KIttCkRpGRk4jUCvgC8CETKRkpioxcZCMCeO89QZGhTUZukkJM7zmTc7tcp/avire4iQdFwLTJoSfQnxFdWMy3uo2H32PP4t59kn0cDofD4XA8c9wn6dPjtttue8b7CCH44Ac/yI/8yI+cdbtzylSdm5vj9ttv5/bbb+erX/0qf/AHf8D3fd/3UavV+N7v/V5+8Ad/kMsvv/xcmn5SVldXUUqxsLAwsnxhYYGHHnrojPv84i/+Ij/7sz97XsfhcDgcjuchZ3OvnTaFdzgJ85l0YcWI3l+tM3SRdWnQCJP1HWcA0iQIYUVSUbhj+yJJLyuzl/1qpC3qZAJ6Nd1zrHCjjCHVhlRDV9miSZuZR6IFgTT9o8gLAbWrbGZpL+M009ZxmmhBrGCzEI4ybc+AJ411uQ67WAE8Yyvd9zNKBVoJdKrxkhy6CaLZxGzWYWJi69l6Ruf2NHIrDNmD+8Z/3TRTYzBRtWKiHdDoBpGNlTht+fnqf9/OLUdtwJeYaAymxjD7tgrZ53Eck1XMZPWMZ93sKL7DNZugNea0x70/2vM7pmoJs38PZv8eyHNql3/Fit5pXgTp5phGjF7dZNcD67QbIXESDBVNE+RKkmiPRhqQaWlfI0XzvR8fWrnsv15gEHVhX0ewmfnESpBqKyfaPGDRd2XnxpAqSDR0c1O8Bu3fbq7JjCbT9q8ajmDAxkPkqCJTN6YXEqHIyERCbmJyk5CaLplqoYrcW6BwQFsnstIpxuTF8jNEURTbIUaF10EKNH3nv+mJwk8isp7mknWXhg6Hw+FwPG2MERds+v/z7RP50KFDF6ztZ1Wo6uTJk3zmM5/hM5/5DJ7n8eY3v5mvf/3rXH311fzyL/8yP/qjP3q+xnlOfPjDH+b222/v3280GuzatesijsjhcDgcF4snna76FLmHA+RoO0N5qxabpzqcw+p7pb4r1RM+UgRFNIB1oYayhlc4UT1GZ3p4xhbFCk1IYAI84w+NRBAR4AlJhEfZ9wiEwJeCQMJYICj7gjHfMBkarptoMV/tMDHRpTyRUdrtIco+IvQw2hQF0Q0mN+iWRqcGowQ6h7zrkSWSLA1IEp96XCZRHgor5FonXi8OoCgQhbBxAQAiABHSZoy7VudRqwL1oK07n/xxm9wcJDOCREurxRQRAb3HxjpmRT+hwRMCT4LvDR5RU/QvpEBiCKXpF+GyhyeK82aXR57pO2p7Gaqm2MYXpijiZfoRA8OFt4bXweh6Oz5TxBeYoQJUxZTqYpkUBk8Y/F4BMAZFs0SxXeCNClpaD2VaFn3Yye/W5WiMKHzDZmQ9WJflYF97jHJou95xAEhp8IQuCqPZbXrj731xl6K3bzF+I874xb5XME0bMfK7hY2AMEh5umgnACENnleMoXceRmahnz5unRdxEAq0lvbxMNZ4bqfYC4wuHkcNIIv8Y42QEk/4CFHBL2sqY5rxUOFXNMGihxwLEeMlqEYwP2Xdv5UyZm4ewq0ztM4oJ4/eTZJC+Dfg+4Nt0hTRbiOaTTh5CtpdaMfQSkjur5OsSbrNgDgO6KRW9NUGci0LR7lPpiWdfIKk7zwXrGcezQwaGWymhlPdvC/MZsaGR1h3bMKmXCU3CTkJxqhCnB3ENmS6izYZxmhynfQds4N4gV6BssH9gfN11OU6KqLq02NaTtvG4XA4HA6H49LiGYuqWZbxl3/5l/zBH/wBn/70p7n++uv54Ac/yDvf+U7Gx8cB+PM//3Pe/e53n1dRdXZ2Fs/zWF5eHlm+vLzM4uLiGfeJoogois7bGBwOh8Px3OLpC6lP7jo9s4jqFeJoOJKhaqf3W8HUkxGRN26n5hMVxasiJB4ePoEJmdRjlKRPgCSQPeHKdhd4grIvGQ8FZU9QCQxSCkJPEviCWgiRLyh5holIE/jgSfA8K2wq4ZHh0dEeD+YzfE0L8rpEb4J3zGaqCin6xZ16IqQ/lGcKkOtBLXUJ+JHdbnib3ph9MWhDioEYootz6AmDR09UhAD7RSQ0MCZ6zj2DFIbwDA+JwO7nC00gdVHMyoz0ZcVA3Rcs+1ZB0TsGgye1FTCF2dI+eEIjpRXteoLiVkGwJyj2RMGe6GiM6K8TgPTMaU81IQyiECtlz5i8VTD0inVD2bAjtaMEDJmaOa3+kiye4mIokQLbRvE0tsfhFSd9JDJYDPa3J2moE3sCRC/Utr/OZpUOGxtP38ZglBldL+VIZbThDFS8wD6RsM/T/jx6Mdi+jzKYXNtIBQ0mV4MgXmPXGWV6gcT2h4SeqdIUB6+9/qEMj1Er0HWgroEuPNwdrB/OjNWFgKsGj0cvScQYwIjiNPXOh+1La4FWEq1F/75RBq0NEg/fKxFGksplFaJXVBhfnIS5KfSePYWg209uHdzudhHtJjRbiHodHj2KPrpBciTlxGPj3L8+Raw8Mu2TaEGqBbEWNDM42l6gmWlSpcmwwqvNTbbia8trk4iYnISYVt8ja4wiNVZw7WW7ZrqL1rl1z+scY/KB0xUQw2Jr7zXUf03qs2a3OrHV4XA4HC90tn79O99tP9/40z/9U9761rcShjb26tixY2zfvh1ZzCzrdDr823/7b/nQhz70jNp9xqLqtm3b0Frz3d/93Xz5y1/mxhtvPG2b173udUxOTj7Tps9KGIa85CUv4XOf+1y/SpfWms997nN84AMfOK99ORwOh+O5hxhVprasPZvL1Ou7TW3+qT+4LySeDJHCOk09GRF6VXxRIhI1pvUiZRMRioAAScnziKTsi6E3TSkmAsWYn1PyrMKijKCT+zRzj8NpRFP7dI1A+JIw9AgDSRhI/MBD+hLf9xCe6IudvrRaU9gT/oBW3105ECV7R10WsK/nThQaX2iingtQ6CIL1U7T9dD43kAU7AuWwgw0rSFR0ZO6LxyKYruRsy6tOCjkkFA4jGcfCuGD9IWtASYKUS8QVvST9oBF6A2JaQIReRB41ukXhTY/tahCj9a2Hc+zSnM5AukNrKt6KDc3DMH3MZ4cVSChUI+9oq0tX5kkGD8o+vAHAqge+nrr+3b9C4Qn+Qnjaa9/si/wz/aLvXgafV9SpBmi04IshzxHZDlkGeQKMJBr5CNHChFZQ5LZv1kOmbL3VVEcKzeYbAIzWyOo5OzanbGtEaNig0o0eQd0rvFERqkaU9rj4S1WYG4camMwZQ0TJClsNsk+u8zKAxErm/MsdfeQaUlmBJkWrCQem5lgPYF6athIcmKd0zU5HdFlXS6RmxhFTm5iUtVGmwxlcrK8PeR0zdEmGYoX0Ke5W8WWomNOZHU4HA6Hw3E2vvu7v5uTJ08yPz8PwNVXX83dd9/N/v37AWg2m3z4wx++8KLqr//6r/P2t7+dUunJiytMTk5ekMyC22+/ndtuu42XvvSlvPzlL+c3fuM3aLfbvOtd7zrvfTkcDofjucGZxdStIqpfrLYi6vA0fU+GI8Wj/EJE7QmpkahRZoISVSITUTMVSsJn0g+4ekoyGRgqnimKPoGWkkT6xHic1D6HjEApD09asTQMPTxf4vmSmoDJQiQNZM/lOermtMKndW72p41jCD1tnZ/CCqF2avvAGWlFT7s8CvO+ACqldUpKaRAeeIG2M/R7mqIcnEbhCSgV4mbhUDSF+w8hEKFEBH7hbuw5/nTfIUggEb4HoW8LRm0VNeXQulI4Kob3ikwFASYMoFweedyNJzFBZN16F6hIpsNxUQgDTDjVv/us5EKlEK0WIkkQ3RjimLDetAJtarONTaYhydGdjGxJ0T0o0Q9qTNZE53VQOUJrfD+lctkk268psX3HFNfv2WF/5RESkgRx3yOYYxus/HXGEyuTnOiWaechG1mJtWSMxxqzdHNNrBUJig2vQSw6xKJFO1gl1wm57pLrlEy1+wLrcAEthpyt1tVauF63nCQnsjocDofj+Y5haAaM4ykxWyOGzlZT4xnwjEXV7/u+7zsvHZ8L3/Vd38XKygo//dM/zdLSEjfeeCOf+tSnTite5XA4HI7nP6eLqUNC6hYnak9EFcUUfSukWgHVTtEv4eHjixLTepHABAT4+EYy7Udsr/rMRFAJBFHkoQKfzA/o4LHmSzZ8K5T6vuxPjfcFzPuD2c09wVQWhkwpNCVPE0oIpCaSuu8yFdhlvtQEniaQiiBQSFkklkrwfIXnGewqvcgAALH1SURBVLzQICMzMFkWOZJIkD7IUCBqHsKXVgDpnzIBnkTUIits9oRRrQfT5T0PamUrXPZsplnhijMGShFEISYIbdvaWFddnoNSEIaYUghRZF2dgFBqaH1ghdFS9IJydDoc3zA8r18Q7KyXDkmCbLUoHT8J3cQ6U5Wx4msRRGsShVrqkJ3QmCMd9N89hpD2DUcIBUoR7phg7q2C+b2zmP27Ec1NOHkK/eWDfOEv5mjmPl3l0coDDraqrCWGRqpYSRNaoksz2CQWLVrqlM12VV2UyclVt3Cy9kTWpC+wGqNGC2JtiQ1wAqvD4XA4no9cyOn/jqfPsypUdTH4wAc+4Kb7OxwOxwucgQO1yGLszSMvhFQhgkJItSKq75X70/c9GVGRkwSiQsnUWDTzRHgEQlLyJDfOe4yVJaWSjwh9miJAeT6575FIDyUGztLdwUAwldjCPj2XqS+g6ttsT19ofGkKZ6l1lPrSUAkzQk8RBDlBqAbT6AEvMHiRQZZARgJZ9UbzLaXXnwIvatFAENXGOtAEEBVT4yfH7DR4Ka1Ikuf96fFmcsKKmr2COWk6cJL6AWZ8/HQnaE9YPUNu+VPJF07ecDguQaIIE0WYmZkn30YbvJMn8VttiGMrvg67PDbb6NUOyfGM7KEmefYQnq+oLKT4B/by6n+3iBmv2diP1TW6v/9lDj44w6lumUPtEitJheOdGTYSxZLaT0t2aHmbxLTo6LURkTVTbbROC6E1w5h8Sy7r4DJz2MXqBFaHw+FwOBznk+ecqOpwOByOFxZbBdS+I1V4Rf5pgCdLeDLEkxGBV6Lqz9tp+2accT3BjmCMyJOMh5J9NbhqLCEzgrUsYJkSXd9HRCFe5DM97lH2Rb/Q0ViRX1r2NCUvpeypvkhaC1PCwLpIPV/hBzabVHp2ir1fAxFJREnaqfLeUGanJ21F8UoNSgGUSlagUAqUtu7QKMRUKlAtYyo1UDlkOSJLB07PqIQZnhqvFLQ79nYUnlH47FeW2lrw5+nipts7HC88pMDs2P6UsmRY/O/T7WLW1hCn1hBLTfuDTCeHhT1s82CHjnntFR3kvgn7i9XeHbCyTv65ZR79hymOt3byWKvE8a5kuaupJ4pjaoOGqNOlQSM/Qaa7KJ2gdIpScVEQKytyWXPACqoui9XhcDgczxeMGXylvxBtPx/5q7/6KyaKGTy9Gk333XcfAPV6/ZzadKKqw+FwOC45niwntTe13zpQI6QM8WRIJZwllDUiUaPGDLvMImN+wHgg2V0TvGwqBiHYFCU6QYkHxRQi8vEin91FNXuMdZhOBYqyrwmEzUgtezmRn1MJc8IwJwjzonI6BDWNVxaIikSUfUTJHz2KSmjdouVSMcXeG0ydB6hVMaUSlMuYKLL5h3kOeWZdpFEEleqQ+BlAGVu9PM+tu3SrMOp5tj9w4qfD4bj4lMuYnTsxO3eOLl58kHKj1S+wlT+6TrauMH9/kGiHwr9qO1e9dpwX7VrklqVTdP/kPh68b45jnQr3bc5xtD3LWqw45G2jEawTmwaJbtHN1lE6QZscrXOUjrF5rPmTZrE6cdXhcDgcjnPn7/7u7/iVX/kV7rrrLk6ePMmf//mf9wvMg80v/chHPsK///f/nnq9zjd/8zfzO7/zO1x++eX9bdbX1/nhH/5h/vt//+9IKfmO7/gOfvM3f5Nardbf5t577+WHfuiHuPPOO5mbm+OHf/iHn1Fhqdtuu23k/g/8wA+M3BenFTt+apyo6nA4HI5LghEhFfo5qcNC6vC0/iiYIPSqlOQ4CxxgmknGZMBcyeeVc5qJqiAPS3T8iK+bWUzoA4LQg71lm1sqhWYyVERCE3h2mv5EKSHyFb6f4/uGqJbh10BWJLLiI4acn6IcWJdptQSVUuEKLXIIjbGiZinq54oipHWhqtyujyIrqg61abSBLLV3gvDMbtLeMqOxCa1bSDPrWE2z0ws5ZRmi2bK3PdnPWzx9/9xWtQ8vkDCrlMtRdThewOhrrhrcyTL8y5fwN+q2eNaxdToPxaR3J/j+49ReWaP8xit48TurvHiiwj/7m7t54M8jDjbG+Me17ZzsLLKWZGzS5Xh0iNS0SHSLXHeJs81CYLVxAZjEiqsYEE5cdTgcDsdzF7P1+um88czabbfb3HDDDbz73e/mn//zf37a+l/+5V/mt37rt/ijP/oj9u3bx0/91E/xxje+kQceeIBSyZpBvud7voeTJ0/ymc98hizLeNe73sX73vc+/viP/xiARqPBG97wBm655RY+9rGP8fWvf513v/vdTE5O8r73ve8px6j1hUmgdaKqw+FwOC4qT+pKFV7xN0AIie9V8GRIIMsEXpVJfxczeoEJatwwVebaGUNtLCQtlVnzKtSF6Ndb2lWyF8q+MITSsFBK+4WgJksxpTDHDxV+aAjHNTIUENrq9nKyZjNLa2UoFwWVlLKOU9+6UE2lDJUKJgwLt2lm3VdQFGsqDQRSpWxuaZbbtuRQJABYoVRru15riEqjwmqaQRwjkhiktEWiyiUbVppliLiL2GzYfqS0wmkh2oost3morXaRyyoR4xujhaZa7aKQlLY5rNUqJgrAD4oq37FtRyuQ3mCdJ+2Y08zGE/SOP/DtdlJYF26S2fZ7ua6Bb89jce765zZX4HsQBJgwsI7d3vnpbSeFzX0tle22Qtr1WTYacRBGg++GBisYa2PXbT2/8OzjERwOxzMjCNC7d8HuXfZ+o0nlupNU6kVcwGqT9PEU/fUUrTaovHg/13xYcM10ldd/7B+554FFjrTLnIwnuWv1eupZyoZs0fDqrHtHSHWLTMXkqkuuOoW4moHJC3EVQLv8VYfD4XA8ZzBcwOn/z3D7N73pTbzpTW86c1vG8Bu/8Rv85E/+JG95y1sA+I//8T+ysLDAJz/5Sd7xjnfw4IMP8qlPfYo777yTl770pQB89KMf5c1vfjO/+qu/yvbt2/n4xz9Omqb8/u//PmEYcs0113D33Xfza7/2a09LVL1QOFHV4XA4HN8wzu5GPbMTNfSqlMQEu/VlTMgye2oh+8bsl4hKLaTuR6hyRDwe4AcQCsPVUU7FUwRSU/IVs7U2UTnHL2lkBN54kXEaSuRsDcbKUKtYcTIIrOBoNAiJqVXRtdpoNqlS0O0i0swKflE0cINmGUYbhMkQ3RiTJIi4a4VHra3oGMcQJ1b8g0L8LMTaLLOFpjoJ9GThLUWoTK4wcV6cQoExBnKDyTU61qimtjNdh36QNQYwAp0L8mzwOGyd5WK0wBhhC2YJg+cZhDcooHXaYzqkCWslMAq0FjbnScmib2G1YmPb1lqeNQdKCpDS9PsUwiB7t2VxX5rRCjRnOJb+cT8VppfbaxC9viVQFA6zt+06UWjLwgfpCyvGyKJzf2gcUjz1gIoTYHqzkYfOZb+N4o7o9SFspTThezZ/EoHwZTEOUQj1ohCZi8a2CvfDaD345qyNvW9H9SQ7FM9HKayQLnqV2qQV5j2vXwSNwLrD7RjEYBzDBdd6Y9DG9tm7bcwgKuNMT5Z+33LQT2AjNkwptK8338d4nn19emeIynBcuoyPocfHRhaNXLQ8+BCsN2A1Qc/t5cbXdHn5xDr+y7bDtm3QaJL92XG+fsccX1i5nEebcLKTsZ7HHJYPEusGiWrQzTbOUPBKu/xVh8PhcLzgybKMRqMxsiyKIqIz1Ws4C4cOHWJpaYlbbrmlv2xiYoKbb76ZO+64g3e84x3ccccdTE5O9gVVgFtuuQUpJV/60pd429vexh133MGrX/1qwnCQ3P7GN76RX/qlX2JjY4OpqaknHcO+ffvOaWr/Bz/4QX7kR37krNs4UdXhcDgcF5zTi03BVjfqoNhUSOhXmfT3MGUWGDNjzPtlXrboE4USVS4RVCPaYUTmC3ZHUJKGMT9nzFeUfcVkKaEUZoShIiznlHYK5HiEqAQQFf9FITxNT2DGa5hydZBFmueINAWlrcvT3/JxqbV1o3a7iCyBJLHbKG2XdTrQ6UIntkfeE5xyDUkKSY7ppJhOMc2/J/YUwqhJNaarMWpIGDXY+wp0bsVRqzcJtJKoXKC0T5ZL4iwgNxKtBRorctomrHtXGStqGkBpMdDUEHiYQsS0cljvIRNYYVMM3e6fDiMwCFTxd7hthUAbgTK2f71FU9TF/j1NUQqDJ+gXCuuNuzcGT9htfKGRoqe/iRG5w467J1jaMQzjFVsbQGGF3h623cHxDyMEBELhSyvq+kJvWW/3s+dpcI5652crpje+QoTu9SGEwZOD8Y+0j0FKTRgoK/gO918Izp6vR4ThfmdnQKvi/PXWm9Fxaj16fmy72uqm/lCjRYE2hEF6VnQWwZl15WHxuFekvf9cN0Mis7HjoxDl+2I/ILxC5O4do7S3ZVAUhwtABNK6sSOP4omDkNLmG/sCpAeBNxCGe6L1sAjdu9n79eBswmz/xVKIyr3M48IxjvSsyOsXt6PSwKnt8o+fEfqqF/Vvj83dZx3waUZ+zxLqS4cItwuCl+/hxd85y4tPnOKRjza4d32KY90x/n7pJlZpsxGsc8p7jDRvFIWuUnLVwRQO1pH8VWMQCCesOhwOh+OSwX7bvHA/GH/qU5/iAx/4wMiyj3zkI/zMz/zMM2pnaWkJgIWFhZHlCwsL/XVLS0vMz8+PrPd9n+np6ZFt9u3bd1obvXVnE1X/8A//8BmNucfevXufchsnqjocDofjgnG6mDrISAWJlBFShEjpUwlnCGWNspxikgWu8Ldxw7SHLAXIsQpZFJKHPkLAWATzgaEkNWOBYi5KqIYZlVJCVMoJxzVeGURZImshcs8sjFWhWsb4PqLnhAPMxBimUhvNDpUSoxRCaUSSYJSCKLTiSDdGdNuIVgearcE0ciGsw7QbQyvGdDJ0Kx06GQKTakgNKjaoGLKuh+kJnoWwpZREqYAk860YqXsipUAjrNBkrDipjEQZQaIkuZHkRljdVktUsZ0CcnOGL1yFoJlpCsHT4gsKUZPTBblC7PTYKloWAuWWfnINShv715iBOGesO1IVfStj0Nr0TZ++gKAQLJW204a0HoiqfjEOaQzGGPJCyJWm52wF0RdORXEuiodWDHSy3vEP6yRBob8JrGjXO/f28A2h7I3P9BIT+v30zaICpBAjJ05vaYfifPWWKzMwvNp27LZb9/MleEISSdn/Kj308CCFIZAGXw6E3ScTde1jNOindxxb15v+8Rk8Yf/3xONhjVFgxWBPaDwMga9HHM5bBeLhZf3nubHP82GB3oryQ8KuGPQlMGgEQggrdgtDFFjh2/NypGf6rmchBZ5nrBgsrUDsFc5jG00s7FuVKM5m8Rj0XcIM/WXwg8ew+bhXxA4J0rd/RU/07T+4gGfjRYRvRV8R+faJExRCbBQM3Lg9oVcWg/Gkfb+S1g1sqmUIIuuaD4JRV/0LAH39tf3b3p5j+EdPYk7Uad4Vw13rjH3zOJf/C80VpRSCjJ0/H/B4a5JDrQnubU1QD1dpsUZXbdBJV8lVjDH5aP5qIa667FWHw+FwvFC49dZb+fjHPz6y7Jm6VC8VXvOa11ywtp2o6nA4HI7zzpOLqT5CyP40/9AfJ/DKRN44c/Iy5vQs07LEi2YjdsyXqU2VWTM+7cywvSIIZM+VqpgrpVT8nFqUMjnXIZgAWfMQ5QBZCa0bLfShVsbsXMRUa9aJKiWmmLqPyjG9PNAe2li3abuF6MaQpHbsPcdZuwOdGNpdzEYXo3TfcqnjHNPVqDbksSTtemjVc4lCnodkuSRVHqny6Crf7toTSvtOUkGqBPmQmKS2XMPbHCVBbqCr7F9tIMsNShlyrclzQ65NsUzbIljGIIzBaEOuDEmmUdqKBdoYQinwhSEQgLGimSlm2gugJDWBhKAQPn0BspDiAqGtNmWs2OVjv2hs/fo1LMT1BTJh8AuXps2+1QRS4wlDIDWhp6xgJ7XVpGRRYGbI1SmkweieEN0TCwfn0BjRF6r79wuhqy+M6ULDKhy7oa+skCg1njT4vrJinKfxA430NNK3Lk0Zmb6hcdih2WvbaAbOTA1GCRuZoIvohCHHav+1JOxxeUFPGASkQRaamvBBlgXCKs0IXxQOTTE4wWfKjC3+G2Ug18XYDCa1Crs5QzaDGLLvCl8gQgG+tP35ElEJEF7hypbCvv56cQS9SILeWHpjyJX9m2T2dq7tayrOMXnx2lKFe7sYY++4escqSj6EHiLwisJxkf0RpCcyVstFbm9QOEWHHKQwiBzQ9kcU8iKGI06g2bH5wHECSYZpJjZ6I1OoTYVODDoVqFSQNP3iRxGvcCF7aFM8v3TxKuk/FKJ4/hiiksIgEVIgPIH0wQspYh0KlV4ULtvir4iK7UOBjAQENgZChMXj4Hv2fPsSKtHALR8EmIVZ+35YqT7vIhHMzp2YnTsRm5uMXX4Umh3SL58k3Qwp7QL/xTv4zl+po79+kPs+WeaTx2Y53JxmOY45JTc4UXqIRDVI8za5jsmV3OJcVc616nA4HI5LgrNFaT3rtoEgCBgfH3/WbS0uLgKwvLzMtm3b+suXl5e58cYb+9ucOnVqZL88z1lfX+/vv7i4yPLy8sg2vfu9bS4GTlR1OBwOx3lDDLm7BkWmrIAqZUgUTBB5Y5S8CWrMcDn72FYJeOmMYVN5qEoZXSsRVSLmqrao1M4go+opFqttKpWUqJLjVw3+rI+shbaI1N49mFoNytaJavLcFiMyxjpEJyYHTlRtEN0uot2GdheRZaMZj2sN6KToVoLq5Ki6xmR2GrLOJVnskaYecRrQTMrWIaolmRa0lUeiBZm2gmiqe45S+z9VoKC/LB9yieaF4KmVRmrDtK8oG8WYyKmKlCr2Yt4ojTGGTFljrM4FcSJoZ9DNoZ3DyY6mm2tipcmMIjMajUFvEQFkofDIgdIzkjc0vBxAY1BFWwZNSo4SCo1GiZyMFI1Cidz+NVnRq93GoDFGFW2NTp2XQ3PChfAQSCQSYWVaPBEUzzE5tI832oaR6KEp+RrVv22G+tPFGIaXmaFtbT+n9yvxkEaO3Bd4/bFLZH/9yHnbEhPQO/beORkeq9lyXkS/bY+eItc7N70+PeMP3ReILWMYPrfD590I3X9O9JYb9GnjPRPSyP44es8TO47Bc8r+uKKHlm09D6b/1zqxPXQxVlWo0/YMDZ2nobH1zrWH3z9uicEnRZDbpULgs4lA9N2/sudI5czP8f75McP3w+J/tb+fJ0QRcWtvh54gkAJfCgIBZR8CaX8M8oWh0jOjFhEXkRw4f/0tT5vhiyTrfrY/NJQ9TdnL2T+/QWU8JZw0yJ0lRBAhosgKyGM+RKJwtIZWYO4msLKGPtEkPnQ/SSfCCI+wakV74dkOpQ+yBLImkbUAOVGy9m3pDYTy0IdKGbOwYN93w0svusBMTGCunwDA/+bigkcbOHoUTrVoL8+z78UdfvoHu7BtAqrTnPiZVf6fR76Fx5pwop1yymzyBA8Qqw2SvEmuYnLV7Oeu0nvP6M16cCKrw+FwOBynsW/fPhYXF/nc5z7XF1EbjQZf+tKXeP/73w/AK17xCur1OnfddRcveclLAPj85z+P1pqbb765v81P/MRPkGUZQRGb9JnPfIYrr7zyrFP/LzROVHU4HA7Hs2bUmTpwpXqyjOeV8GWJ0K8yHexnWi8ya8aZL0V80xxQDvEnq6SixExZMBZAWWp2lAsnaphSraRM7M6QEz5irIIohTBetmJBOcIszFnnVfEBa4tDxZCmoBWi2aBfGT5OEMsr0OpAJ8E0ksJtCiZT5KuKvCPIEkme+rTjiCT3SLVEaUmsJKn2iJWgmXvkxk6vz7QVNXOsWKoN5IXjL8sVSaJJMoXJNT6GwGhqQlPSCt9oIpMjtEYbQWZgqStZTwztXJNpY8VXY/piizIGZQy50XRMRkJKJjISEdNmg5wEbTIUWSFLPQ2hDAkGxFD1KTEkXBrUkAio0SYrMjAL4VTnA3HOWAHVDN0f/nvW51PRf/9vP3/3zNs9GVv76gm6g+N5GmOhNxbvtD4l8rSxPhXDYxq+/VSPz7AwOtyfEAPheesYBGceU/+4zZbx9ITdZ/IYDfW99VxtHffW8W09fjMsdg+N7WzjGh5H77YshHAr98qB8N3PrfXs8/wM52frc2L4OTP8GA1eK4MfAGQe4IkAiYdnfAKivujt4xGYoBiNV4iyg7MzLPqeid72nvAIZMj4oRqRJ4g8qPlY93jhIC95KYK0cHkbKp6m4mnGgoyFaofL3qqoLHowW4OZSUBCpqAbY75+lHwtIzkpidslZNjCCyUytDmwOi/Ms5EmnH8UWfERtcDGF0QhlEOYmsDMTmNmZp70eC4KUqD37Ib5Oca2HYSVDeqf36Q8uUn0zRHbf2AHt59c4d7/7HHPxgSPNOf5h9USq/4Km/4SnXyNdipRKrbRALprhdRC6HfRAA6Hw+H4RmJnrV3Axp8BrVaLxx57rH//0KFD3H333UxPT7N7924++MEP8gu/8Atcfvnl7Nu3j5/6qZ9i+/btvPWtbwXgqquu4tZbb+W9730vH/vYx8iyjA984AO84x3vYPv27QC8853v5Gd/9md5z3vew4/92I9x33338Zu/+Zv8+q//+vk66nPCiaoOh8PheFYMu1MFXjHF37pTS+EMoVel4s8wwSJXy91cPhVwxbRgbKrEUjBGjCSRcFnZFpua8BW1MGNxvEVUtvmo/rTEOzAHE0UxqSCwVb49W/nbVGqjhV6yDOIuot21RaSSFJQqhIMUvbSJbuTojibZkCglULlHloXUOyUS5ZEVuaSt3CfWvdxShnJLYTPWqCQnSRXtOCdLNb7RhGik0owJhWcMAVABYgWxEnSVYT013NWJ+y5SGLjiFIqWbJHQRYkcRYYyGTAQmBQ5xlgHaE9A1TpD65xMdwtRU58map71sRwRU59CkIN+HwP0kBB2ZvGQLY7Q0xkVT5+uUHg2ziaePtV5Ods5OV1Ifaqxnd7X03lcnmpcnEW4fCpO7/+ZjOfJz8eZxrH1/J0uYD7Zc+bpjGmLED8kyD+dsW3ldEH+zGMYFbfliPju9eJOCsG3t74npfYEXzt6edYLmL4QbCRSSwJVwTcBHgGRKeHh4xnbdlA4d3tCbCQ8QukRej5Vv8ruw4IxH8pewph/Al9CKDUVT3HFbIeFK9pUrhijOluC+Un7Y1SuoJtgntggX0pIVyXH7ptAeB5R2VAe0ygiZMmjPH0cf87Hmy7bOIZKBBM19IF9UC4/5bm/4JTL/RzWyal7oNkhv3sF1TVE33oj179Ucf3Jk7T/2yP87hcu5+HNGsc62zjhr3BcfJ0kb5KpNlkOmAx6PwiIQUErcOKqw+FwOC48F6pQ1TP9BPvKV77C6173uv7922+/HYDbbruNP/zDP+RDH/oQ7Xab973vfdTrdV71qlfxqU99ilKp1N/n4x//OB/4wAd4/etfj5SS7/iO7+C3fuu3+usnJib49Kc/zQ/90A/xkpe8hNnZWX76p3+a973vfc/qWJ8twpit6V3PXxqNBhMTEzA0hc7hcDgcz4yteanDQmrg1wi8KpE/Rs2b43puZHs15BWzCmMER2UVJirsnA4Z8w1zUc5YkFELMhYXmkRTGm/KR9RCxGS1yEcsw3gNvWPHiHAqNjetcJr05uYbK5wmKZxcw2x0UJspqqHprntkqUeS+nTTgPUkItUeqRaspfZvXkzJX4ltcSVPCqSAKd9AnhPkOSWV4eUZra6m3lZ8aTkjVprEKDKjaIkOiYhJ6RLTIjabKFOInyZHmwxjdH+Z0umTip7G5CPLzyZAgSruDwV28uwu6sXT+Jw8c/tPQwB7sq8eZ3HqXZo8c4F3lHMTVM9P32fj6Y7r7GN4Os+hHk/9XH2qMZ15LE86hicTVp9C5N46zjO2/7QF79Pd10+XUWewPGM/A+eu399eyoBAlotlHqEoI4RXRCgElKgRUSYwIYEJ+gKtJyQ+gqoXUAs8xkPBYhlKns25DqVhPsrZN97kilc28PdOInbNQSdHbyTojqF+sEya+WgtkNIwf0UXf1fNxglMj8HCLHph/qIW2pIPPwqrG+jDq6zf0WH228ugMpCCB39tk//w6CyHmhnH9QaHzd3EeZ0sb6N0itLtfjSAwUDfef2CudRyOByO84wBFJubm+cl2/P5xPvf/35O/PnX+a7tr78g7f/SYx/nh371QxddsHwu4JyqDofD4XjanJaZikDIMp4MkTJkLNpO1ZthxuxkB7N8735JRxm8iSr1yjh7Kh4VzzAe5Iz5OduqHcZqCeWJjOiqqhVSxypQjmwWoO/bitY9d+owzSai2YJW1/5Pc0ycYeKM7GhCsimJuwGdJGSlUyYppu63c8lGJvvTZVZiyLRBG4OKc6bIKauMMM/QaU49NpzswFJX0c01HZ2TmJyO6LIqjpPRJSdGkZOrDlrnqEJAVTrdMu194B41w5l8BWd2wz2JyDMybducedtz+d1UDAprPS3OoY8ziQxipFrUc4Wnct1ehL6frjB9Xs71GcYw1P859XDO49oylqd6HptzfOy2jM+c6Xz325Yj4+rt+kzE5icdBjypeAtbBVxvxLkb9wsGyhHBVQgPT/hI6ffdtVIEfRetFAGhLuOnJcKkTK0xgWc8QnwCfMb9kPFgmrnHZxgPYD7KqPmahZLmmm0rLLylauMGjIBWhlpNaHxRoUWI9Dap7D6GN10CCWL7NGbnNsz83Onv/RcQfeXlcCWI/SeZ3fMErc+eIppKCW6c5qofC/iR3zzBP56Y5+76PH+79hJWo5M0/SXivE4nBW3SfmGr3vwDFwvgcDgcjgvBhSxU5Xj6OFHV4XA4HE+LgRAwyEwVIiD0xwn8KpE3xh55EzvENPvGQ14+q4nHarSrYyRCsliCxVLGeJAzHqaMlRMmFmM7tX+2irhiJ2ZyAioVjB8g8gxUIRIKaaf0A+Q5otVCHF+Gehuz2UWtJqiOIe8I0q7PSn2SZhbSVZJuLllOfJIi5zRWsBprVKLQcUpZ5/hpTjlPUQruaxjWkoxYD9ynXdGhKxrkJiahhSJHqYQkb6BN3hdKdSGiDtynxZT9vgD6bJykZ3HQnUGIOtcLeHGOX86erWDwXBccnkoou5DHN9L3MxQlz+e4zqcw/qxd1hdQoB8e29lfL89Q6H3GAxluf2te7VC3iC0irBwSXUcF12HX65miFKzgah2vvgyRIkAg8URAqGuEaYVSUqNkKkyaMUrSp+qHTB3dzd77oeobyp5hKpR8+9vWGNtfRoxXyB9vopcD1r42Tiqq1MaXGb/8BHKmgigFsHcRvWM71Grn6+ydFbNtG2bbNmpjX4fVTeI71vBrGbt/ZBe7x0u8/tfvI7xrP49uTnJM7eRUdJJT4kFS1SbLO2iTonXXPg5DmavP9fc5h8PhcDgcozhR1eFwOBxn5bQiVMJDiGjgTi3toCbnmDc7efXUHFdNg5yooSarbOaSuchQ9jRTYc7esSa1WkJUywkmBN7OKmK8AtNjdnr/+Fi/X9PtIpIY0gwShWg2EXkO3Rg2W+jHTqHWM7KGoLFeopsGtFOfVhawlAS0ctmf0v9EPafbTkm7GSLNifKMkrAi66NNxXIaE5uURKRsyFMkpmVzSsnIVBelk9Om7GudF66kgeO0N2Xf3tFnuIA+D07SJ+F8Xay7i/5z42Ket0vlMXshjuPp9NV/D72gTuwnd9723bRDDlpjBuPaKrgOc6bIgoGz1Qqww65XKXx8GSGlTyhr+CYiyCuEqsJEa4bIhJRESE0GfOn/3sdkCJOB4Z/ua7L9NTELr/TAj8ke2iC5P6TbqaG8EuO71oguOwK+RNRC9Ctf+g3JZ9U3XAdKUdp5EJbXSO48RbhbM/M9+/jQ1KN8/q7d3LM5ycP1ce4ykk1/ia63RqraJBlonRSuVTuF1Qrcl8brxOFwOBzPbQzPLkjqqdp2PD2cqOpwOByOMzIQU72+M1XKiFIwTSmYZMxbZMHs5ta5eaZCg/Q9lss1OvMVpkIYCxQ3TbeYLMeMjceUZjXBNdMwOQO1KkQhJoowvm+n+g87kLpd5BNHYaMB9RamlZIvdVEtiJsenXbEieYUbeXRyiWbmUeq4VQM3dww5hmyTozfTWg2Eu5Z7rKm23Rkm5g2dXOcTFuxNFXtQiDNMSbvO08ZqTg+9JVlRCwdXn7mrx/uAtrheGFz0d8Dtrw3Fb7V0VE9yRBHFp8WdbC1iFzvM2Mgto6KsKOxA3+dVPFkRCDL/OaJHVS+MEZFS2oi4kBtH9ORYDoyzISK79l3DOpVRK1G9nhO46/+GqUllVpG7ZvGIAphcfq0H+fOC56HvvIKuBKCV4N49DE4fBI1uZs3vnWTf3rdBKQZn/6VPdyzeSUP1DVHum0eCr9EJ18nzZsoFaN0u5ilUFwGm97j4D4jHA6Hw3EuCIy5UPUInmt1Di4eTlR1OBwOxwinO1MDhAjwZInArzBdOsC82ct2pnnxXMTCuKRRG0NUy7yoAhOBYibImYxSts9tUprW+HMBcm4CLtuDGRvDlEsgJSQpQuegNKJeB5VDkiDaHTh4HL3WIV/PyTYFG6tVWmlIMwtoZD7LiU+uoZNDKweTZJSSBN2MaXVyDjYUx+MOm6LBMget+zTrkuuUrBBSeyLqSKGnM2aVwlO5TN2FscPheC5w/qJBtmRCjzhiB27YgRN2OE7AI8tbiCLDte2t4ssQX5bxRcThzjYq7TEqusq4KPHgx/YwE8GOUs7LF+rs/99idNsgajXWP9sg1SUmt60QbnscuXcGc8U+zPz8OR3nU6Evvwwuv4yx8A70Uon4612CWsobPlTilkNP8Df/bY6vrI+RLb2Ek+Fhmt4S3WydONODvNVeLIAxzr3qcDgcDsdzGCeqOhwOh6PPaYWohIcny/hehcgfoxLMca25kRumyyyMe8xsH2NZlJiLbBXofZWY6ShhstalMpZR3uchJ6swXYPZSfS2bRAOFR1JUiuidmPYbEKcQquLaXRJHukQb/q0WlUaScTJbonNzCPWgljB8aZCd1LG84QwTugkmuVM8FA95bBZZpMVOqyRqhbddGOLEzUbEVHPtdCTuxB2OBwvFJ7q/W5UdFUgxGCPQmgF+mKr6jlatUSpuHCx2giBlneqL7IGosKxjT2M6wlmZJXPLy/w4mOwr5rwmpuPMnX1GNkTMaRlTvzdDP5X68y/+CvI6bKNlvmml57/kwHo17wCsbJC6egJOLVBfnAT/5U38C3XrvOauw7R+v39PFQf45BZYKX0BGvoobzVIhZAWNeqK2blcDgcjmeKm/5/aeBEVYfD4XBsKbLTy021hahK4QzlYJoJbzu71F6+bW+ZiYUxNkpVVhTsqhomfcVkmLN/tk51OsWflXiTZcT2SaiUYKyGGauNCqqAaGwi6g2oNzEn6qhmim5o0k3JyeUJGllEM/PYzDzqmeR4Q9Gud5GdmBkyAmHIjODTJ2I2TZeG3KTJKTazY2SqS65jtE5Runt2EfUs4qm7yHU4HI6nZut75dmcrUaIEUerETnDTtZMtZDC74us3WANX5YpMUEpHufw0X1MBxF/tXQ5N/6t5iWzG1z1pjY7bl5Dr8XEd3t0upOIaoeZ9b+GxWnM/t2Yyanze8xzc5i5OUR9Ay+5i9anVglrOeHrbuT2B77Kpx/cwz+sbOex5hT3RAldb40kb5KrmFw1EWjnWnU4HA6H4zmME1UdDofjBcpp0/yL3FTfq+J7FUrBBFV/npt4KS+bC0FAbaZKPj2GjgT7Q8VkkLN3ssnYRExp3uDftA1mpzAT45hSGXutaKf3A4iVFUgzRKcD9Sbq/uNky4rORsCxtXGa+SSNQkRdTaGeGAIBtTQmqXdQzZTH64qVtMth+SixaZDqFp101RaQKpyoo8VB2FIl2wmlDofDcaE56/usGfywJRAYs0VwpVtIsFZoTbIVhPABDyl8jnpfwktDgm6ZyuYclaNTjH11mgld4cbJBXZX4cpawrf8k4Okd1WRkyts/MkJunHIrtcoxNwY5sAuzM6d5+dYJ6fgLbdQeQvIw4fhgUOUrtrO//bmhLd31hG+5N/88mu4d11zOG6w5B1jOXmALG+jtBVYwf7gJ4q8Vfc55XA4HI6zYYwtuuu4uDhR1eFwOF6ADAuqAg8KV6onQyrhHJVgjhmxh11mkVdvC5maimiMT5BIjyurmpkoYzpMmarEzOzu4M/6yPkxzO4dmMlJqFZs+90udFKbkdqNodGCToypt9FrXTYe9Nlo1ainEUc6EZ1ckGhY7hpEnOK3Y2S7S1sbPr3UYlM02BDLdMUGreQUueqiTU6uOvRzUftiqisE4nA4HJc6Z3e4FjECRmOM6scGaJOQi4BMtEjyJg0ZsuaVCbwaq43LmKpPs+DX+Pypy3jLjhavfMsaM9vrqCRi5QvT4Gtmb6ojX7SCObD3vDpY9d69sHcvJfPXtO9qUpoXeDfv40ff+xX+5hOz/MPqJA/Ux7gzzGh6S8T5Zj+WBp1ikIByrlWHw+FwnBWDm6Z/KeBEVYfD4XiBMchNte5UIUOkiPC8EqE/xkJ0DbvUbq6oVbl6ISCZGmctDJmOYHtgOFDrMFONGZuIiaY1/p4aYqoC0xOY6Skolwd9dTqI+ibUN6HeRh3bRG/mJBuS1mbEYxsT1FOfRi450YF2NyNvxJS6MTrLOdYxHG7HbNDkqLiPRDVI8zZKp+SqM7gQHXalDomp4ARVh8PheC7x5CKrGsQGGI0hRQuJ0ilCSNLcR8oNUr/BslflqJ7h4c15TnZ28enf3cvequJbdiyz59uWMdqj/bUQfX/G2DVLyPkaHNiJ3r/vvB2H/tZXUd3xIJxYI/7vxyi99Zv5lles8U1/eDefvmsP8ePX8IQ3x6r3BEon5KqDwgOTYHBxAA6Hw+FwPBdwoqrD4XC8ADhtqr8ICmdqibHSdsb8BebNXnbIKW6YCfECgZweR0yXeVFVMR3GzJQSZiY6TN7kIRbGYWob1KqYcgnjeeB5kOWIdNMWn2q14cHD5EstsmVNeyPkyMY0G6nPeuqxkQpOdDSRFJS7XbobHb52rMWSqdMUG6yox0hVm1x1yVWM0rEVUPu5qENT+p2I6nA4HM9LRt7T++/1/cpOGJEB9OMC0mwNIXw2RIAUPoeDKcJulcgb51eOzfOiLx1gTy1kVxV+9L3HEN0q+liXxt9sUhq/l+iyCuLAAvqy/VCrnfvAwwB94/VwI4RvBv76i+QP1xHTE7zlf9/grVNl7vjoBHesvZL/evJylsQhGvkJ4myTJFvDmLxw57o4AIfD4XCcjgG0EU+53Tm17T5ynjZOVHU4HI7nOacLqh6eLON7FSJ/jG3+NexnJy+ei6gFhmS8ij9VY1tFMBFo9tU6TFW7jE3HRNsk4oqdmNlpGBvDlEqQK0SWQJohN1ftNP9mG9abxPc1aK2G1NtlNpKIQ+2IZi5YS6AV5/jNLs2NNo+3NV+OD7HJEl29QaraJNkmWqdncKOeXlzKXWw6HA7HC4fh9/ytcQGGXlRAihY+xmgSsUnXW6flLdMJNzjYXGRmc4bmv9vFgVrOm644ytSLPdonx2mvBdQOHSI8sgKvefF5iwbQr3sl/p5D+I8cofPldSov3cEr/uUxbn7sCU7+2908UK9xxJ9iXR5hQ6coHQ/ywYXqH6f7vHM4HA6H49LBiaoOh8PxPGYgqHr9QlRSRkTBJKVgkkl/Fy8J93LzrCCYiGiMj7Ot7DHuG2aijJkoYefiJtGsxp8vIRbGMTu22dzUILBt5x3rTG204NgpTKODXuuSrWiOHp5gPYnYyALqqcexDsSpIl1vEW90ONpSHMrWWJdLrKaPFM7UGGNylO4ycKWOZqSCu7B0OBwOx5PFBfSiAgxKa0CidEyWt8hVl6Z3glP+OO3V61lcm+Ira3u54n7DD3zn4+BtYNQY7a9CNbsTOTeGedE+zMLisx6r3r8P9u6lsvNBOn/xKEHNENx8Je/+1FE+e3KWO1cO8Eg6QRq16KYb5Nj8WKMTEC4SwOFwOByjuE+Di48TVR0Oh+N5ykgxKuEhhI8UEb5XYTLazYzYwwGxjcumfNL5STrliPEAdpZzZqOU2XKXickulSt95FQZpsZgchwzMTkQVAHRaiBWN2C1Tv7IGumqpl0P2WhVeLRZZSP16Co4WU8Jml2a6x0E8Ohmyj3mblp6hTipk2T1gSu1cBptdaW6C0mHw+FwnA2DFR7t54Z1roIEk9siV5ktbhjnmxwKE5a8SQ63dvBgY4H4Tw/wqtkGL711jUhssvm3EySeYvbGr+BtG0e/8dXPfoBSoK+9mko3wTyxSvz3m1zxzzyujA/z//63bfz18jzNxlWsySN00hXSvDUowijsD4zCuM9Dh8PheKFjDOgL9FHgPmGePk5UdTgcjucZWwtRIXzCYIqSP0EtWGBO7OMdCzsxBuR4mYWd40xGMBlkTEUJB/asE+7w8baPw9w8ZmEO4/sgJQiJaLVA5dadutlE33eE7ERCazng0VOzrKcBa6lHM4PNDMZUxtpSi6SV8BcbR1nlCdr5KZK8SZyuD03tLzJSnYDqcDgcjmfB6TmsGhD9DFatweavblAXAafkfRyUJe47sYvfW15k8d6d7IrG+O69Obe+5RDUq2gUyz/6Geavi/H2TKFf/6pnNUb9spvgZRAqhfjLzxPfH/Kt37rErRXNqz+5j88vX8mDjQ5PlI9wvPtV0rzVzxY3JH3h2H1WOhwOh8Nx8XCiqsPhcDyP6LtTi+xUISI8GVKLFpn0d7FT7eOySo1tNcP6+AyyFrGtkjMdZsyUYybGO5SurCC2T8LCLGZ6ElOtQZ4jktgKqfUGtLvQ7GBWW7Tvz1jfGGOlU+Zgu0Q7h7UEsmaM2GxztJVyz0aXJbHC0fyrJHmTLO/Yi0PdHZna7y4OHQ6Hw3Eh6H2+DDJYlV1icnKToXTKZnyUjr/Opn+Ck/ki6tA13PWH+7h6POOfveYQi9fN0X48In2kwbT+e8xV+zA7dz67gXkefNO1lKOHaH8lRHc2+faf89j1S3U+vzzJV1avoB2t0pLLJHmTXHVQupjNIZxr1eFwOF6oDFWacFxEnKjqcDgczxNGp/sHSBnhyRJRMMGidxWXs4ubFwNKk2VWpseZKEmmQ83uaoepWofqZEq4KBF7Z607dWYGymXbZp4PBNXDS+h6B72aEq8KHj85zak4ZC31OdIy+HHC2GaT9VbO351qsyxX2OAonXyNVryMNumg+AbKOVMdDofD8Q1jtMjVIHsVk5PmkKsOad6k661zZ6Q4tLKDe9en+OrG5fxfjUepXB5Qu3w7S3+5yezhr+HvP4y5/krM3Ny5j2nbNszMLNXpe1APeWQPx1z/xhbXxWv8xf/YzcpjN3E0OkzdO0onWyVOcyABIzDkLmfV4XA4HI6LhBNVHQ6H43nA1in/nizjexXK4RTj/nZuCvfyT7Z7TGwb55RfYTqAuShnoZSyfaFBac4gZyPkbPV0QVUpRLNpc1NPbZA9ukGyJmnWy6x1SjzaKrORCk7WUyaaTRqNlNUc7t7o8ID4Ct1srXDXxOSqWYipzp3qcDgcjouLwYwWttJdm7tqEpSKWeFhGv4JTok5jqzvJPvs5Vxzp+Y7X3aQhesr1O+KyB6UzBz7MuIdt0AUnftgwgD9TS/F2/YE8R/dTTSzgP/qWb7jhpMc/HCNr669iEe9SVbkIVZ1ilJ+UdBxkLPaOyaHw+FwPP8xjNTwPe9tO54eTlR1OByO5zA9d6oQPggfKW0hqrnKVewwl7MnmOaV8x6tqExjYZxSWXIgUlw7VWd6vkO0U+JdtxNqNSiXMKUIUyrb1PNWC5EkiEcPYY5vkB3v0F7yeXR5nvXUZyP1qaew0dWIjQZ+o8PHTy1xShymlS8RZ5skWX0oM9WAUf2xuws/h8PhcFxs+p9FxmBDV4vcVRLacZuO8KmLxzkhvsYhtUB1c57fPrKXW/96BzdPJ9z6bYdQx8dp/fRnGb9C4++dxFx57rEAes9uyj+9G3HsGNz3GJ274EO/pqHV4YsfneRvTv0TPrGyhxVziFa2TCdZtrM/yAuRWLnPV4fD4XA4vkE4UdXhcDieo4y4U2WIJ8sEfo1yMM3V5iZePF2hVhKwMMnCRMR4YJgNM+ZLCXN72oR7yoid05jdOzFRyea6KTXITu3G0GiiHjhJcsKwvlJhtVPhcCeinQtWuoZ0o03UaHFwU/NQq8ER8zW62Tpp3kKb9LTMVHBiqsPhcDguTUZzVxUGm10qRI4moRVD4jfp+Gt8bi3gUHOaR/7Lft68c4UX/e9tuvcqmo95TJy8F/GGEDM/f+5j2bkTMzNDZeI+Op89QVjJuPnbmrx04yRH/vNlPNQe51h4kFx1i5zVbvEDpnOtOhwOxwsBg0D362k4LhZOVHU4HI7nICOCqvDwvTGiYIJasMCCOMAti2XKExHx1ARdIdlfUsxHGXOVLlMTHaIrxmBXkZ3ay4FTCtodxPoG1Juw0USvdlh/0GelUeNUHLGa+hxpCWjHVOqbqFjzueUuR8UxNsRRmvEJlIrRJsFsyUwFd4HncDgcjkufM4mrIMlVE21SchXzePlrrOXbWTqxl0cbs/ziXz5O7TIov0jSeVgSpV/Cu2Ieff3VMD52bgMpl9GveBnl459m/c6QcqVE5cXwXX8f84XVKb62dh1fijZoZ6ukuY/SMVppjLCfvS5r1eFwOJ7HmAs4/d99dDxtnKjqcDgczxGGC1GBRMoKniwR+jX2ll7BbrOdm+dKlENJfWKcyYUyO0LNQpRw1Y5VKosKf76EmJvGXLEXMzkJ1YptM0kQq2uI5RXyLx8hXhLU18uc6kxy32aZegabiUEnGVG9wZeOtjmu1zklDrOWPEqWd1A6Ps2Z6i7mHA6Hw/FcZTgawMqTGqUStGqzpjrU5UGOe3fxNTXGl//Xy9kt5rl6MuLFUylvfOUKzXt8sv/yZRb2tAi/+2WYHdvPbRzf+QamvhPko49h7j/Mq950nG+5PMVsdPjpf/Ot3LMe83j0BKv6EPXOIft5bBLrsi1id9znscPhcDgc5x8nqjocDsdzgK2FqBA+oT9OKZhgLNjOq6v7mQgF0UQJOTfOVVXJXJizrRyzMNFi7EUSOTcO02MwXoVqGfxiun+rhdjYgKVVzLF16gcDTjVqrCQRK4nP8Y5B5JrJZoN2Peb/XapzTB6kqZeIszpJVrd5blucqe4CzuFwOBzPFwZFrbBOUN0lNxna5OQq5gnxNTb8BU6u7+VgY5r9YyWuf+Nh5I552o/6BH9zD/JFy+jrroUwOKcx6MsvQ8zP4bczsqMtvBB+7HWP8Cdfuowvrhzg4XiSh6MW3WyjX8jKDtlFAjgcDsfzjcLG4rjIOFHV4XA4LnH6DtViqr8QEZ4sMVHaxbTcwy6zk+1jAjE7iamVmC7DvkrCfKXL3HSLyk6QV+6EyTFMpdK/mBPdDmQ54uQyrGygjjWIjygOrc+xHIesppJGBjNxi9WTTY7EcG+9zaN8hXaySqbadqq/7mKMwuWmOhwOh+P5zHAsQG+Kvdba5q0mSyR5g1awwqrazm8/fCMvXp3gHdceZvKlAcmj44gTKdHhVcRNl6H37zu3MUxMIL/5KuTXH6d+R5mJV47xnquPse1PFvji2hwb9atYl4fpZKtkuU+uNu1Hs9BuPqfD4XA4HOcZJ6o6HA7HJcrp0/0jpIjwvQqlYIIDvITrqlNsmy0TLY5TDSXjIcyFOXsnm0zOdYh2B8jdU5i9OzGVqnWn5grR2ER0utBqYx49SX6iS/NEwKn6JIfaEeuJ4GQjY/N4napS3L3e5ZhYZk0cYbN7lFx1BrmpQ4KqE1MdDofD8Xyn71oVGmMGeatKx2SqQ+I3uYMKR4/t4rHmPl7+cM7bXneIzSdmSJ8os7h6H/LdOyE4R8fq3r2IyQkmK/fT+oKhtODxpn++zD95IOWJv7qCR/QUy6XHaaYnaCf5oIiVMC4OwOFwOJ4nGEBfqEzVC9Ps8xInqjocDsclxkBM9Qpnqo8UEWPlHdT8RXbpK7lubIr5ip3SPzFd5ooxxWKpw3y1w/hUTPXGCmJxJyzOoWemoVazbWYZor2JeOAx9Mkm6cmMw49Psdyd5FTisxoL1hKDqbfoLDe5d6PJ/eYLhePF5aY6HA6HwwGFKFk4PwUGrbtAF6VaZPkGB7MNjngVvqqm+cvGTv7xv97EN83kfOdbHsM0p1n+0N+w8JIMeeNe9LVXP/P+J6cwr38V1etOIb5yP9lBj2Chzh/+0BE2vu7x/zz4Sv7xlOIL4ZdoZUvE2Sa56qB022atus9wh8PheM7j3sEvPs8JUfXw4cP8/M//PJ///OdZWlpi+/btfO/3fi8/8RM/QRiGF3t4DofDcV7Y6kwVIkDKqChGNcZ2/3p2mW28eLZCdaJEOj3GtprHTGg4UGsxN9WmspDjz4eIXbMwPYGZGINy2babZoj6BmLpFPnjdeITUF+rcrhV4VTssZ5Cp5uTL9c5sppwf3yKE+JhmvEJ60w9Q26qw+FwOBwvdIbzVnvu1Vy10SZH6ZRMd/mHxgLL3QVWPrGXd1x1hMVv90iOBvjtg3gLc5i5uXPre34e8+Z5gvsfxH/wKPEDm8y8qsH7rznI9v+xm/rBmzgcPMGad4ROukKc6cHnuVAua9XhcDgcjmfBc0JUfeihh9Ba87u/+7tcdtll3Hfffbz3ve+l3W7zq7/6qxd7eA6Hw/GsGRSiAoEHQuJ7VXyvQjmYZty3xagWapKZ7ePk1TI7Q5iNFIulhJ27Ngl3+HgLEzA1BrPTmHIJI31IU0QSIzabcGoNc2KN5uMeK/Uqp+ISx7seSx1DZ72DXmtw51qLo95hNvQROukqWb552jR/cBdgDofD4XD0GM5btfcztNYYk2FMzhPePTTULurHD/BEew+/eN3jBKWA+PgklS/eg7xiJ/qqF51z//qaqxDzswSb/0hWDwj3jfO27zrB8n/czT+eupzH0mlOlA6yolNypI3w0Uk/a1Ug3Oe6w+FwPIdw0/8vDZ4Touqtt97Krbfe2r+/f/9+Hn74YX7nd37HiaoOh+M5z0ghKgRChkgRUQpnqAULzIl97GKB3QtlmB2nISXzPuytpsyXYuanWpSuqSEWJ607tVaFcgk0iCyFbhuxvAprDfSJTdKjKU+szrIUh6wkPpudnHC5TtzMWe4aHhFfo5GcJMk2i+n+6Yg71V10ORwOh8NxZgbiqsKgwWhyo2kmJ8h1lzhosFG/jN/903181zVHmH75BuldbbwTbfwjS5ibXoRZWDy3vufm8F95Od79T7D2JUWAxw/cdoKdfzrHP67Nce/6GF8ttWhnq6R5k8zoftYqaFuAy33GOxwOh8PxtHlOiKpnYnNzk+np6Ys9DIfD4ThnBu5UiRAenrTO1MgfoxYs8BJ5My+bDVFSombGmZ4rMxMa5kops6WEfQc2CHaEyB3TmBuuRk9MDNpeWUGs12G9jjnVoHNfi8ZamVPNMU7GEY+1fDIFXrPNwUMN7m6scUw+TDM9QSs5edpUf3eR5XA4HA7H02eQuWoARZqukOWbtOKTrHoP88snruQ/Hb+MK/5mlt/61kOMTyv0sqHzsTup3TyGedl1mJmZZ9yvvupFcNWLmP5OkHffy8k/rPFPXrzMt+1tIgLJT/27b+XrGzGHo+M8kX6FNG+iVIw2CVon/azV/jE4HA6H45LEGJfIdinwnBRVH3vsMT760Y8+pUs1SRKSJOnfbzQaF3poDofD8ZQMZ6faqf4+QgREwSTlYJpJfxd71D5etRBSGouIpycJA8nOip3qP1vpMDkdEx6oIOYnYH4aMzY+6EAbK6guraKXNslPJJw8Mc5Kp8xyErCWSlqdHFY3Sdspf996nFUepxUvk+YttO6OTPV3F1UOh8PhcJwbvbxVIxToFCU02uRsxIdIwhbNbA+/fMeVvPKRlDd/zykqCxVWPuMx2/4q8vp96MsvO+e+9Y3Xs+31q2SHxslbJaLLJR/65sf4r/fs4x9O7aPDJg3vBN1snSzvYJxz1eFwOJ4zFGWDHReZiyqq/viP/zi/9Eu/dNZtHnzwQV70okG+0PHjx7n11lt5+9vfznvf+96z7vuLv/iL/OzP/ux5GavD4XCcD04rRlVM9fe9ClOlfSyY/ewWM9y8IySZmiAfLzNbgungDMWods/C5ARmfAxk0W6WIRoNOLaMOrZJciynsVbmcLPGSuqzmcLKqTZivcFGDF+tNzmh76WbbhRVgbsYkzmXisPhcDgc54kRYdUYMDlJVrdFrIIWf7M+zcnODMu/v53vevlBZm/MSB+uEHRS5PIa+lU3n3Pf+p99C8F9D2AePs7mVxLGvnmWd7/sJLs+PsPmo9fyuDfDijxER67QTnK0KWaqGADlslYdDofD4TgLF1VU/T//z/+T7//+7z/rNvv37+/fPnHiBK973et45Stfye/93u89Zfsf/vCHuf322/v3G40Gu3btOufxOhwOx7NmpBiVjyerhH6NSjjH1eYmrp0sc9lixNT2cdZzn/EQZsKchVI6KEa1OAWzY5iFOQhDCHxoNBF5jmi1YH2D/LENOsdgbWOcU50SJ2OfY5uKzlKdCZXyxZWMw2aZZXGQdrJCrjoYk1iHqhNUHQ6Hw+E4/xgDQttAAN1GmxylUw5799BI9rBxdA+H21fwczceJ9qZkDzeIX0kZ2zb4+gD+5+y+SdDX3s1Yn6WiclHyO5XBDfs5A3/cpnl/3/AF07t4pH2BMejI2S6S5Z3UDoGsuJbgB4qvuW+FzgcDselwgUtVOXe7p82F1VUnZubY25u7mlte/z4cV73utfxkpe8hD/4gz9ASvmU+0RRRBRFz3aYDofD8awYme4vAoSI8GSJ0K+xrXwD+/UBrp8qs3ccGuOT6KkyuYRvmu30p/qXdoJ/8+WY+VmbnRqE0O0iOm3Eeh1x5CRmvU2+3KW7JHjo+CzLcch6KjkVw1zSorTU5O7lnMP5Oo9kf0ecb5KrDlq1XSEqh8PhcDguIP3P1t6VqkkxIsPoLqvtB9mQhzjqj/Hl1Vnu++lXc8N0xKvnOnzL/9Gm+/E76bQfZvolEnHTgXOKBDDz85jXz+NfuwR3PUh6xOf7fqXM9zXrdP7qFH/+pWv4vw/t4Xj5CPX8KN1snThdx5gE0BiUiwNwOBwOh2MLz4lM1ePHj/Pa176WPXv28Ku/+qusrKz01y0unlt1TIfD4fhGMFKMCoGUZXyvQsmfoBYscJ24kldsCzCViPWpCRbHPGZCzVyUs2u6QXU2JdwWILeNY7YtYCYnwfNs21mCaDRhZZ388TWyZU1zPeJUs8rBdonNFDqJQp6qc6iR8ZXVmIPyEBvmKJ10DaVj6051gqrD4XA4HN94jMEIVWSZZxiTo3TCveWvs75ygJOdCZZ/I+S7bjtJOJ3SfXiccPNB5LZFqNXOrcuFRcybFwl3fJ31PzlK5BnKV9f4nlfWOfgLs9y7XuGgN8mKPITSKUr5KN3txxc416rD4XBcOrh34ovPc0JU/cxnPsNjjz3GY489xs6dO0fWGedLdjgclygjgqrwECIaKUa1Vx3gtdtDZraPsRpWWQxhLspZLKXMVTtM7M/x5iuIuXGYmbDFqApBFegXozLHN2gdlGw0aqx2S5xKAo60QDfaTDQaYAz/bWWdk/IgjewE3XQDpdsYnQ5VJ3YXSA6Hw+FwfKPofeZa92cGRpMbW8RqLT1IHGzS6F7GxhPb2fNfJ3nljxgquxTJfTH+390J116G3n3usWb6huuYXtogP5SjzSzyuh3c/pp/4M+/sr8fCXBf2CDO62S5tJnrOgGh3bxQh8PhcDgKnhOi6vd///c/Zfaqw+FwXApsLUQlZYRXuFPLwTTXyddyzfgYl4/B5GRAe2oaUZa8KMy5drbO5FyHaJeP3D4Oew9gSiVMGIDnIzot2MwRnS5s1MnvPEL3KKxtVHlwY4a11GM1Bl9rptdX+ftDCYeSTU7Ix1lO7hsqRJW7YlQOh8PhcFwC9ItYkQMKpTJa3YROssyGd4gj/gSH7nsll/3QAi+e8XjdfMJLX+uR/6+vkq59lcr33IDeu/ec+tZvfDUSEOsb8PWHiK7azve9a4zv26jT+MQqt3/6n/Jwp87x0qM08hM0u8fRJsHoFIpZLu47hMPhcFwcjLmAmaoXptnnJc8JUdXhcDieUwjRL0Tle2OE/hi1cJ5ZsZ9b5sZIjKQ+OUY6WeHymmY2Spkrxczu6+DvqiC2T8PCDHpu3ranFCKJEWub0GzDRhN9qkn9EZ+lRo3lbokTsUcnB9nq0Fxu8OnlmMd5gg1xlHa6Spo30Lqo6OvcqQ6Hw+FwXDIMu1ZBAQKtNZnRaJ3zhHcPDbWLtZP7eKI9wY2fuwc5WSZamEb9zX14+0+ib7wWxsfOrf/pKcxrXoG//Fds/Hkb0Wowdpng7Q8l/O3KFPeuX88hf4I0aJPmLRQeRndAaJez6nA4HBcJA5ieocdx0XCiqsPhcJwHBg5VD4FAyBApIqrRHOP+dnbpK7i6OsH8dEhjcpIg8JgKYU81ZrbcZXK6S3DZOOyYxSzOYSanIIogyxDNBNFuw7FTmLUWajmmuyw4uDbLqSRkLZW0uorx+gadZsp9a5r7uIdmvkw3W7fFqHQXjO7np7oLIIfD4XA4Li0MBoEYyjpPUFrRSpbIdZc4aFBv7uc3//QAr5nb5KX/UtD94grJI4aJU3cgbroMfWD/uQ/gNTcwVXuQ5MGcrBvxxn+puPFPnuC/PbKLL566jBZrNNMTxPkmaZbZH2qFK2DlcDgcjhcuTlR1OByOZ8nwlP9edqonS4R+jUX/GvaaXdy8WCGaH2OlWma2JJgJDfOlbFCMatGHnXOYxXnM1BQEgW0zSRDNJqxskD++Rrqkaa6XWGlVONQusZHC8qkOYr3JmjJ8dS3hkDjCWvI4ad5E6RitE4xRgMtBczgcDofjUqYXB4DQ9iPbaDLVQumUTHVJwhafPjnOE60Jjv5cxre/pY1sdmneOU+1cT9icRGqlXPruyhiFW2/F33fMdpfz5h+acT/cfMRtn1iB6cevYHDUY26d5SGTlG6CzrFCIMwygmrDofD8Q3E4Kb/Xwo4UdXhcDieBbYYlVeIqT6lcI5KMMu0v5fdeg83TlagHOLvmGS66nHlWMZCucv8VIvqYk5w3RxM1aBawczNYKKS/RTrdpHHjsPJFfTROunRlMcen2Y5LrGWemxmgs2OorO0SdZK+eTGQ2zoo7SzVdK8SZZvDqb6F2Kqu9hxOBwOh+PSpxfTI4pPbqVaaAS5ahJn69wRrHCPmePT7V18/veu4rXzGd/+hiPolXHUb32acG+E3D+PvvaqcxJY9Y3Xw43XU73vAczDx2ndWed115zg274l5ROfvoZ/WL2ev/LuYjM/SjfdIFMttGpjowtw3zkcDofjBcbevXs5cuTIact/8Ad/kN/+7d/mta99LX/7t387su4HfuAH+NjHPta//8QTT/D+97+fv/7rv6ZWq3Hbbbfxi7/4i/j+pS1bXtqjczgcjkuUUXdqUBSkKjEV7WWRy3mRP89V0x7e7DiV6QqTAcyEin0Tm0zPd4h2+ng7p2Hfdky5BH4AGkSnA3mGaHfh4DHyo026R2F1fZxD7QrrqWQjgbjeIaw3ePBUzqFsjaX8fuJsE6XjohhVxrAz1V3cOBwOh8Px3GKQtaowQoAxaK1Jsrp1rgYt/lFPsBovcPDPLuO1Cw1e/vM1si+vEz+eUl7awLzllnPuX197NWJmirHqw6QPBIRXRbxz5zGu/bMKJ+65jsf8cVblITrpCl1TxAEY5bJWHQ6H4xvAhSxU9Uzfvu+8806UUv379913H9/6rd/K29/+9v6y9773vfzcz/1c/36lMvjRTynFt33bt7G4uMgXv/hFTp48yb/4F/+CIAj4V//qX537cXwDcKKqw+FwPEOsO1UAEoHAk2UCv0Y5mOYKcxMvma4hKyFq2yRzNY/p0DAT5SyUYub3dgh2lRE7p2FxFr1tGwhps1PrdUSrDa0W1Fsk923SWA5ZbtRY6pY40ZXUO4rmyU2SVsK99Q6H5eNsmhN00rX+VH9MjhNUHQ6Hw+F4HmFMPxJA6S4GjdIpT0hbxGplaS+H2+Pc8Bf3Y3IQ0QSbX/KYHP8i5sXXYCYmzq3bbdsws7OEM/dx8o9XMckie/cd49vWJrlj5TIeiic5XnqUXMcoZX/YHc5aBfc9xOFwOC4Ul4imytzc3Mj9f/2v/zUHDhzgNa95TX9ZpVJhcXHxjPt/+tOf5oEHHuCzn/0sCwsL3Hjjjfz8z/88P/ZjP8bP/MzPEIbhMz2EbxjyYg/A4XA4niuI4l9fUBUeQpYphTNMlHax27+J1yyOc9n+CWb2zFCJPLaVFbsrCXvHWmyf2yTYX0PsX8Ds2m4F1SiCMACjEWvrcGIFc2iF/KENTh4Z4/G1SQ42Kxzp+KyudqgurVDLEg41Mx7kLlaSh2jGx8lVE104VIeLUbkLGYfD4XA4ntv0P8uNAaMwJkPrLkq3aSVLrCQP8Yj4Gl9qH+Pf/I/L+dpXFylf6zH5zYr6/zyJ+V9fRD786LkPIAjQL7uJhZfn1GZALO7g3d+/yrsPtHn9zDzXmpsYL+0iCibxvTGELCPwQHh2Ro+rTu1wOBwvGNI05T//5//Mu9/9boQYvP9//OMfZ3Z2lmuvvZYPf/jDdDqd/ro77riD6667joWFhf6yN77xjTQaDe6///5v6PifKc6p6nA4HGdhIKJCT0j1ZBXPK1HyJ6gEc3yT90qunQqZnQxoTU4iah6XRZptpZSrd65SXjR4C2XE7Czs24mZGMfUauB50O0i1tYQyyvk/3iU9knJer3Kqc4YDzZLrMagc0Wtvs7XDrY4pJdZNgdpZct0kuW+M3VQKdg5QhwOh8PheL4x/NkujMIYhREZSZaT5hu0k2VWvUf4d6cu4xMr+zhw+zZumgn4v/7lOmKmRvwX92PyByi/8wb03r3nNojvfhM1QN7/IK3/+hg3vbrLq17cQj22ws//hzdyz3rCYbPEmjnCWvcxctVBmwRjcjCZ+57icDgc55ELWagKIMsyGo3GyLIoioii6Kz7ffKTn6Rer/P93//9/WXvfOc72bNnD9u3b+fee+/lx37sx3j44Yf5sz/7MwCWlpZGBFWgf39paek8HM2Fw4mqDofDcQaGM1P7rlThI0RAKZyhHEwzI/ewoLezaywknxlnc7LMgTHBbJSzWIpZmGhRvSZAztZgZtwWo6pWMEJCnIDRyJNLcGodc3yD9UMhp5pVVuISq6nHchfaGx2aSw08Y7hb30dDnaCbrZPlrcKZqnBT/R0Oh8PheOFgMPZ7ijEYMjAaJXK0ydlMniDxGzT9NdaW97Pjt+d4+8sfwsgQMzmH/sIDyKVV9HVXn1MRKwB9zVXUVuvkD65w6gsBbCb8/173CJ/48gHure/mwc057ikldPJ10rxZxAK07Q/AuLxVh8PheC7wqU99ig984AMjyz7ykY/wMz/zM2fd7z/8h//Am970JrZv395f9r73va9/+7rrrmPbtm28/vWv5+DBgxw4cOC8jvsbjRNVHQ6HYwunC6qDQlSBV2GhdDXb1G6uq06ybbFCaXYMIyXTEeytJCxUu8xOtyjvAnnlHpgcx1SrEPi2GFUSQ5rZolQHj6FO2GJURzZmWY5D1lLJWkcxU6+j1lMeauYcUqdYzR4lKYpRaZ2MCKru4sThcDgcjhcOgyJWYEQxW8V0SbI6uYrJdJdusMEnn3gVh9tX8C3zLf7JOzZIHmmhj6SUj61jvvMN59y/fs0r8BcfYXbqcdr3T1DaU+WdC8d566GUP75nP/HRl3E8OsKmd5xutk6c6cHsGmEQRo0ch8PhcDieORfyPfTWW2/l4x//+Miyp3KpHjlyhM9+9rN9B+qTcfPNNwPw2GOPceDAARYXF/nyl788ss3y8jLAk+awXio4UdXhcDgYFVJtDph1pXqyRK20QNWfZ5bd7GKeqydDWn5AdWGc6njIZWOaxVLMXKXLjhe18LaXEdu22UJUw1Ps0gx58CCsbGBONcmXY048VOVUZ5alOOSRpkQKmEnbqKNNfu/kSZZ4lEZ2kjRvkmYbI1P93YWIw+FwOBwvbAwGjEEU3wqUaqFVmyzfpJP8f+3deZxcV33n/c+5S229S+rWZkm2DN6wjYkNthjCGHDsgJPXMHHIBo4hxDzxGGbAJAECwYQkeAYzIUNiIDOvic0QeIXhSWCG9TE2YAIYCAbv2Fi2ZclqtdTqvWu7yznPH7equrrVkrrlbrVa+r79KnfXvbfuPVVSqe791u+cs59v5Q7wo+F1/L8j23jezdt41wvqXPb6CUxvH9Pv/xKd5+cwl5yF3X7Goo9tzz4Lzj6LDsB84RskYx7TOXjd+YNc/++qfO3Oc/jhyAt5dLzOTwo/Zjoeop5MkaQVknQKnAWycWIPeU4iInJEzi1f938HhGFId3f3oh53++23MzAwwNVXX33E7e6//34ANm7cCMCOHTv4y7/8Sw4cOMDAwAAA3/jGN+ju7ua8885bdPuPJ4WqInLKax831eBjvBy+V8T3ChTCHjYHF7HBDXBhbwkb+ATruzi9t0hXCGtzjrO6p1nXU6ajPyZ4Xh/098DaPmxf38xB0hQzNQmDw9jBSaLBhKmDOZ6e6uJAPWCkZqjVU6r7JxguR/x4tMwz9qdU4oPEyXQ206+Lae/qLyIiIgLtlaspzmRDA1hrqUUjJGmVKDdNJRjj9qdezM6/K/Ebr7yf+kQ/9WoffdVH8cfGsRe/6NiP/+9/ifyDD7P59EGiZ/pJxib5xbP28sp8yj/ft534mV9gdzjIaLCHSjxMJYLURuDiRsttY0fZ0AYKVkVEVhdrLbfffjvXXXcdQTATNT755JN89rOf5TWveQ1r167lwQcf5B3veAcvf/nLufDCCwG48sorOe+887j22mv58Ic/zNDQEO973/u48cYbj1odu9IUqorIKWnWTLRzxk0Ngx5yQRcd4Tr6zBZ+qft0OvMeA5s6iTpKdOUM3aFjXS6lP19j6+nj5DYFeP09sHUAOjqyiajyuWz/9TpmYgJz4CDJU+PU9sLoSCfD1RJ7KiGjEZTHqhTGJ3h8OOWJ+gh7zRNM1QezSR4a3eVQVzkRERE5AofDOIAUhyW1ZaxLSG1EHNb4IQOM7tnM3q88n3f/8TCc7hP96zTpd3cTbliP27zpaIc4LHvh+fD8M8n/fCeVLz1N8ewucv1Vfnv9U8Rf2c79Y9v5+dQGns3tYS8PECdlUlsjScuAzYY1MoBLFayKiByFa9xOFHfddRe7d+/m937v92Ytz+Vy3HXXXfz1X/815XKZLVu2cM011/C+972vtY3v+3z5y1/mhhtuYMeOHXR0dHDdddfxwQ9+8Hg/jUVTqCoip5zDTULlmTyel6O7sIVufwOnpWdwXmcXz9vSQaWrk0k8BnKwtZSwJhczUKrQu7ZK4YJu6O+F3i5cbw/4AXhgajWYmMBMl2F4FDc0xtRTPvvHOxmuFjhYD9g7mTK+bwJXrvPQWJVdZjcj7hkq9WHiZBrn2sZORYGqiIiIHNnsiaxScFVSUmpRwqD/EOVgjNGh53H63/ZxzWsew5Udiekl+JcH8c45iL3wAvDM0Q80n2IR+8ILKNUi7M4DDP+kRDEs8MY3DnPgOxFf2HkaPz54Ft8zMVPBEJVklFoE1iU4F+Nc0qpcNW7m+YiIyIntyiuvxM3To3LLli3cc889R338tm3b+OpXv7ocTVtWClVF5JQw3+RT2ZipOfJhH4Wgh05/gPVuK6/u72c6Aa8jT76/i1xvyMacZV0+or9Q47TTxslt8Ag2dsKGrdhzz4JiMdv/5BRmagozOQnjU9inDhIfjKjsDzg43sFDY2sYjQ1jdYgmqjA6wSNDNXaxl2eiHxE1xhrLwtS41dVfFxQiIiKyULOGAwCcTbHUGa88wZT3LPuDh9n7zIu4/bbtvKCnxOUDEa/ufprKQ9PEn3uWnhcAb3jNMR/fXnoxXAr9rwfvZ49R+efHMQNwbf9u3pSL+N59Z/LAxPk8PGb51/qTTLohKukI9WSKejw+E7C6tDWpVfvzEhE51TmWd0xVWRiFqiJy0psZM9Vr/B4Q+B34XoEw6GAgfw796WY2ez1csi6g0BGS6+nCL+bpzcGZnTH9+TprOqp09dYoPr+AWdsB/b24/rUzgSpgytOYkVEYHsMeLFN5ImFyvMRwucSBWo5nqwabWDZMjjExXuf/HZxkt7eTiWQPtWgE6+qtiwgFqiIiIvJczISrACnORiTOYl3CsPcYtdwkExPPY6S2jssehoG3FGBgPdHde8jd/V3cxS/A9fYd8RhHY889h9Kr6xSe2Edt5ya8dIpX/X6ZV7kp7v1UidxTz2NXZTNDwQHGg0FGeZIkrZHaGs7F2TBIjTHlNSyAiEiDW8apNvTP7IIpVBWRk1Z7darBBxO0qlNLuX4KQS89/mYuDs7iwn4fV8zRNdDJVJBnfQE6A0dfmHJW3wTdfVXyA+CvK2C2rM26+nd24rq6Zg5Yr2P2D8PgCMm+aeL9lsH9vYzU8hyMQkYij7HRKmZkkgjLDw4kPGHuZzraTz2eILVVcEmjq57TRYOIiIgsieaQAM1zDGstlWiExNap56aZjs7gb+4/i1d+oMwr/sPPCLw6lXsSSnGCOXc7dtvW53R8+wsvhHPPovT4E7hnhqk8ME1xc8Rl10zQ+X8jvjvcx6Pjp/P09HoeLkAlGaGWjBMnFZyz2fmRcWhYABEROZEoVBWRk84hXf0xGK+I7+XwvQL5oIuNuQsYsBs4I9fN2ZtL5NZ2UPNDJoHtnY41YcrafMS6YpX+s6v4G0uYtV3QVYK+Xlw+hLAxE2G5gqnXMePjuKf3k+ytUBnyGZ/oYk+5xEjkM1aDkT1jbEyrPFIxPDpRZpf/JBP13cTJNKmtZt39G5UYIiIiIkupNYmVsTgHqS1TjxOsS0jCCt852M+Bag+D/zXPv/uFp+n4wL/B/n8PwHgN78AI9sUvem4NKBaxF10Iz5umVP8eo/flgE5e8OtTXOCP8PQXE+7aux6z5xfYGxxgNHiWSjLCVG0Q66JWxaojG2te4aqInMqyr5mWb9+yMApVRWRVmx2gwkyImsOYEM/kCPwCPYUt9Jkt9NsBzu3qYWMJko4SQV+JdT0h3aFjTZjQl4s5o3+c0tqYoD/A39CFe8E5uN5eXKkjm7ihXMm6+Y+PYypV2HsQO1omPhCx94luDlYHGIlCxiOf6QQGkjL+s5OMjsGnpx5jNNlFNR4lSqZJ0omZiahUnSoiIiLLyDX6ixoc1lax1Bvh6jg/yX2Jx9w6vl3bwu1Pn85b7v85V188RMebNuA2rsXe9n8JntcL55z+3CpXOztxv3EVfb9BNhb93T8g3l1hzTkx175gL29eEzPxEHzx0cv42aTHt8cHGTHPMp0ON8ZcHSO1UWPs+YRWtKBhk0RE5DhTqCoiq9LcMDXr3u/RnIQqDDoJvAL5oJtSsJaz7Qs5t6uDnoLH2v4ilY5O1hU9OgLYWopZk4tYU6zR3VOl43ke/pou6OuAtT24/n7I52eOXatiJiZhZBxGp4iemKR20GNyooMnJzsZi30mY8NYOSUZnmSiVuNfhxOeSg5yIPkZtXiCJK00xk9VoCoiIiLH19yqVagTxZNYm5DYKrVwkn/e/RJ2Tj+fV/xsiB1v20e8p0Z1yFHaN4n32q7nPNYqAN1duKsvJ/fkk+R2HyB5Nk/16YjeX6xw3QXPUNuV8J+/eRaPjw/wrBvjYGEfI95OorRMktZI0go0wtW5wwM0n6eIyMloOSeqkoVTqCoiq0YrSG0t8FvLjVfEMwHGBAR+gc78Rjq9fta4jWygj0s2luhdV6LWUaJiDFs6DD2hpTdMObN3gu6+GoV+h78uj9myBjqK0FHCdZYgzM0cM44xB4bhwBh2aIJ0f52DT5cYrRYYqefZWw0YrlrS0Wn6a1P8dNTw86kKu71nGHN7qEQjpLaWdWFzCQpURUREZMU41zYcQBVHNolVYiMeKPQxun8rg5Uudv3nlN/+m34wHtE3B/Hu+Qne6QPY888D339ubciF2HPPgXPPIXjyKQrxwwz+bAN5r5e1F4xz8+Yn+epXTuOhiX52Tq7lJ66biXCIajpGOTpAktawLqtcdTZqhavArIAVFLKKiMjSUqgqIiecQ8PT2V37MR7GBPheEc/LEXgFuvOn0eUN0GPXssH0csGaPLF1uGIO01mkf0OJrhD6cilrwphtPVN0dtUorLPkLuyHgdNwa3pxXV24MMzC0yiGuI63+xmox1CuwNgU9ftHKA+HjEyUGKn1squSZzzKWliqlCkOT3Pvvpg99Skec/dSjUeJ00oWpqblxgm9wlQRERFZOa1zkMZwAA5LmsbYtEycTLArmWIw6OKByR7urGzmG79+ARetMVy2zuclv1CF6Sncp7+Gix3BVRdht255zm2yZ27HO3M7mwDvqafhsV0c3LmWHS+c4pc6B/GDGBMY7vzmi3hgPM8PhusMuTFGzT4qdoSpaF8WstoI65K28eqbIw+2jULYNoa9zsdEZLVxbvmm4tC/iAunUFVEThizwtTGJFOt5Y0gNRsnNcDzchTDPvJ+N53+AGfa53NWR5FCAEHOJ+kqUegusKYjoCOA04oJa3IJffk6PR1VerdE+H0B3ppO2LoBt7YP192bjZlqHdQjqFYx09OwfwSmatjxGulIxNCuLg5WixysB4zFAUM18KoR0fAE9+6P2FursM/by7jZy3RtqK2rf9KadRd0Ai8iIiInhlnDAeBhXEKSVnAuIUmrxGmZH7kiewc389hkN6X/Osr5b4/xXBVLkfSbD+Cf8SzuvOdlwyYtAbv9DNh+BgPdP8QNhyR7Cgw/FtC/7QCvvPRZXmkt//y97Tw+tZE95QH2VqvsLDxCxY4TJZPEtkqcVBrnX3ZmDFaXnW86kzaevJt1DqrzMxFZDZZzoipZOIWqIrKiFhKkgo9nAny/QOAVCP0iod/JZu88emwPp+c6OaPXJ9dVJOooQi5gU4ch70FXYOnNpZzRNUVPT5Xi2hS/z8ff2AedBegqzQ5UAeo1zNQUZmQURiZJnhohHbPUxn2mpkrsnOhiJPKZSgzDkwkbKhOk5Ro/H/X4abSLcbOXcpxNphAlk62T+ObkEKATdhERETkBOQekOGPAVklcjHUJqY0Y8h5hKhjmQPk0cju3ctnNCVc8f5x1f7yV+hefoLzT0jk0gbd9PfbFL1qyJtmXXQr1OuFTT7PprCHGvzPARLKVopvgt14/TDI0zdMP9vDtfeu4Z//F7I8qjOXGmGSYyWSQ2FZJbZ3URqRpbU7AahvDBUCzF5ECVhERWSiFqiJyXC2ka39zsinfyzW6+ecI/CKlYA1Fr49e1tNtu3jFul7yXXmC7hLlXEiEYaBoKPiwqZDQFaT05iN6inX6n1/FHyhg1nZCdxE6OyEf4sIcLsw3uoX5kKZ4B4bhwAgcGCfdP830kx7T00XGa3lGojx7qgH7pix2fJIN9WmeKvs8NJawyw0xmDxIPZkiSWuktoZrn4yqQSfoIiIicqJpnp8YTDZEkUkxDqy1OBNTrg8TJWWq4Rjfn8wxWF7Ho5Nn8PK37ueKvzqdfD5PfOfTVB6N6FzTgz1z+9I1Lp9vjbva2/Ov9OwdIx0JOfDYFrq6Kmx/xRTP9/Zy/pd6+el4F/uqXeye3sxOt4WpYIwqE9TsJJVkdFbAal2STXSFBWdmB6ygSa9E5IS2XN3/9c/dwilUFZEld6TgtLXeNH43eYzx8ExAGHQSekUCv0jO62S9OZOS7aDPK3FGZ57TOmAyNnR2hdQKBTp6i/QVPXIenFaM6QpTenJ1uks1ejbU8fs8/J48Zm0n7qwX4Hp7cR2lrClxDNUaplbFGxyEKIZKDSbLJI+NUhs2jI8VGK/1smu6xHTiMR5BJXHYyQre6CQ/3R/z9WSKn7sfUEsmiJIpknQK16x8wIFLWy+DTsZFRETkRNcKVx04EnDgTExsI+Jkgmp0kHJwgJ8HHXxvZB3/NLqZl/16gReuqXDJGp+X/N4U6d0/If2/D+GvCfC39mFf8dIla5/d8WIgO6tcX6/j7doNu4ewo2W2nGc4zxyk5/kV7GgVvy9k8oGA7/78InZXQ+4fheFazHhaZY/3FDU3SWSnSdIq9WSqMQ5r0hqP1TnLzJis84/HOt9rJyIipwaFqiJyzA4JT1sr2pd7c0LUme78xngEfgnfyxP6BTqDDXQzQKfroosOXt5fwjdgAh9XKnDQC8l35vDzPlvysCZn6QoSOoOELd3TdHTWKfSm+H0eweYeKOWhswRdHbg1fVAszjQrSTDVMmZ8CgaHcZNV3GSNdCxh/5MlxqsFxqI847HPYNWjmkBtqkY4NslDB2J216YY9PcwwSBT9cFGtUM9m3W2bSIq0Am2iIiIrD7zVa5mM6MkRAmktkaSVqkF4/yAPM8+u56Hx7t54L86rr+5gt9Ro/6MR31PSin6Dmxehz37+RCGS9fIfD7b59nPh8kptnX9GDuxhqlHehgdybPBO0D3SxKufsUkxodH/sHws/Eenq328OODFzISRUx400z644yFe4htlSStktg6ia1h7UzIStukV1lF65zRDOcMHbBQOk8UkWOxnGOq6l+lhVOoKiJHtbDwtMmb2X7OmKjGePheAc8L8L08gZej5K+l6PXRY9exxaxle3fI2gJ0d+dxxTzlXJ7U9wE4q2gIDXQGjr5cyvpCjc5cRGdHne6tCf66PKavB7pLsKYHwgAXBJDPQ9D2z511mJERzOh4NmbqzhGScUttLGByqpOnJrsYiwLKqWG07vDLFezINF495eky/Dh6gnGzl2p9lHoyRZxM41y9UZ2aotlkRURE5GTRXrmaTWQFuDpJmo23mqQ1Bs1DTARDDJY38Wx5PaW/KHDVWXtYe0URwoTpb9fwOsYpXrAPc9oa7MVLN+ZqS3cX9jWvgOlpes59ip6hUezBPiZ/lsUOuaDCuf8+5gVneHBwhHv+rsiT0wUO1ovsLvfzxPRmprwyZb9MmTGm7TCJrZDYKAta09qhASs0qlhpGzoAjhp1tJ0rzj3P1rmjiCyEcw63bP3/ZaEUqorIwr5Vn1N9Ouuxpu1+I0Q1xsPg4fsFfC/XClHzfjd500mJPkquiwF62ZDPc/5AgNdRgGKBKB8y6QydIWxqFDPkPMf6QkyHn9KZi+nO1+ntrxB0gt/j45/RD31d0NON6+zAhTmMa3TXsmDK09mOUgvVKuaZQdzBSdIDVSaf9JksdzBeyzMW5dhTCdhfcdTHp+molDGp5Ylxx5PTFYa8/QzFjzTGTa2Q2ghnq6pOFRERkZOaw7XGGHXEGPzWeKvT9SHqySSVcIQJfwh/90XcP346FzxuedW2QTb9SghJlfL3q6RhlR7fzypM23sRLZXOTuxFFwJg9g7Se/Z+mK5CtYOhu2LMTkep2MW/fUfAvy16UC0z+A+jfO3pzYzUS4xE/QxVtrK7NsW0X2Y6nKDqJignw61Jr7KA1eJc0pj4ymLIhnxqDRkArcC1/TXMGta+dPY2Zs4ppM4pRUROXApVRVa5xVWRtvNm3Zu1n1ZI2uyy7wF+63fP5LLQtDEWauAX8U2AZ0JCr0jolSiYbkqumz7bR59f4IyukL48hAamnE+hGFINA/xCSKGYo1D06Ayz8LQ7tHQGKWtyER25mGI+olCM6TgDvL4CprsInWug8zQIfAhD3No1uM5OaFS1EscwNY2ZnICJKRgaw1Xq2MkIO5Uw/kyOiXKRiWgdu8t5yqnhQA3yOArTU3SMTfPQkGWwXuExcx+1dKxRlVohteXsJLo5AZWCVBERETkFLGS81Qmzi5HcU3wv6aJzop//tnsTL/3pei7qs1yyZoIX/scYpiew//ANogOO0qtPx23fiuvtW/r2bt6E27ypdX/gNdlPs38IHn4CEoctOzrPDviV9XUCV6Xn9AquWic8swd7IKL8s5DvPPoiHhjPMxHDSM2xq1KmYqrUTZ06VaYZIXF1rItJXUxiq6QuwdoYh82GEWiEp1kYmwWvztlWKJtJ5wll555fHkOH32OsZpt7bnu46w6dA4usDLtMbz29oxdOoarIEjuWsZSe+0HnHnNOJWnrjjf/Nq3lMxWm2bJsuecFGDw8LwtOc34HngnwTUhg8nSZAQp0kHd5Sq5IJzk2lXJsKBqKAcS5HLliSDUImQ4CcjmfYmjYkIO8B3nf0emn9OdjCkFCVyNI7eiOCEoOv9PgdYV4Z/ZDX3cWnhby2fNJEwCc74O1WahqHWZsDDM2DgfHYXSa+JkpkkmoTwdMl0s8O9nFROIzmfjsLRtCa1lXmWRipMpd+1OGommG/EEmzT4mantI0hrWRTgXY22d9okKdCIpIiIip5IjjbeamoBaNEKUTFHzx5kK9pNMJ+ycWs+PR3o5/0/hxpueIujvIjh/gPKXdlE6/wDepl7c9i249RuWv/3rN7SOY/bto/ucIboGR3BTRapPdTM5WSR3f5lSh0/phSlXbT/Aa9b4pPur7H8gz/95ajPlpJNyYignjj3TZzCdJNRIiE3CZDhJRJU6FRLqrcDVYnEuJXV1rE2y4LUxIVYzYLU2AWxjsqy5FbAwK1R1Rw9YHe6IlbGHf+DCx4hdkesf0TWIyAlAoeoiLdcHxmL/QVzqdqzk8Y/lw2BVfHAftVJ0Mbwjrm0fw7S5fXtQmjWnUXU6JzBtVpw2lxvjEXrFRhVqmE0mZfJZmGqK5E0XfXYdeZfDxyePz7ndRfry0FH0CfMBiR/g8jlsLqDu+RjA8w0bQwg98A10+I7OIKU3l5D3UjpyMev6yuQ7U4Iug+nw8LqKmJwPpRA6irhtm3HdPdBRyp5avY6p1SCKsu79lUq2PIowe/fDyCTpcIXkYML4YIHpWo7pKMdkHLKnGlJJYHgqZkN1iqnxOs8m8JORmAfdz5jmALX6OFFaJkomZ4LU1iywqk4VERGRU9v84606Umuxro61EXFaYS8pY/5a9lY28+T0euL/2s+Leiu8/Hceo+OlG4l+uJf6/WU6zjmId9nZ2DO3H7/nsHEjbuPG7HmMjNDx7CAdB8eh4mMrBWo765TH+0mGfTqLk/S/pMYNr50Gz+HGp0mHKtzz7c3sq+Wopnnq1jBc62MsckzULZU0pZomJMYRu5TYJEz7U0RUiU2dyFVagat1cWuIgWbgmtqoFai2V7gC2fiuR5S2rppmKmD9tid/+IDVzR2HYMGWa+qcY3C4Ct0lvU5bQRpP85TmUEXpiUChasMxh3TP5R/kIwxQfkocv9GG5xSQnjAfiIcPPZ/b85u/shTaq0vh0ArTbGzTuWFpMyT1TTZRlGns028up1F5ygA5lyPn8gT45AkJ8Sh6ARu68py9NqBU9PFyATYMqJqQyPOYTiF1WWia8w19ORjwITCQ9xylIKUnSCk0bsUgoaujRq6QEnZaclsLmJ5u6CxAIcxmh/U8CAMoFHBr1mSTTjXFMdSqmOkKTJchSSBKoFInfWaMeCSbfGp6uoN95Q6mk4CJ2KNmPXbur2MnyqxJ6jwbw/0jMUPpJPu93RyMniBOyqS21jiRrc909QdVp4qIiIi0aR9vFdJGuGpJTYJ1daZrlpo/QTkYZjRYi917MQ+OdvDj20q84427yF0wQI6U6IF9eAcrBC8ZgTU92M2boLPz+D2PtWtxa9c2nkaKGR2ldM4QpYMTuJEy6XCOid0dVPeF+L4jDHoodkb829+ICdalmJ7sxNc+OcTo92r8fO9aDtZzVJKQyHrUraGaGnaX+5iKHdXEUU5SYiyxs8SkTPrT1IMaNTNN7CrU3TRpY9gphyW1dZyz2Lbfob2Ste35MHuda4SwzarYQ7Zv20ezQvawr9W8geyc0La18fEJWg85Pz/KZdiRrtMWOvTBsWjf90LacPhhF06gAFuOO+fU/f9EcMqHqtkkOz6mESqdKOZ+SB2Pts3/wTjbwtoxzwcpwBE+mBdy7KO34XDHXRrtxzXzdp33Zt1vrww92v7al2UhqN8KP7Nl2XPzTNDYrnG/GZjikzedBCZPwXVSdCVKrkiAh288PKDgBRR8j+6cx7qCx9q8I+c5AgOJy/7hTLyAuvEYtx4xHtbzCEOPjkKACX2CXEDgG0r5LDj1yLrvr/MtBT8l7zmKfkq+cb8QJnQW6gS5lDBvCbscwaY8XimXhaa5IuS6INcITTduwHZ2Qq4xO1VbJSrOYaanoVyBJMZUa/DMXtxYmXS8TrwvISp71GsB5VqeZ6cHGI8CqtYQW8NEBCWX4KamYbLCvv2WPeU6BxjnGftT6ukUUTKFtRFJWgaXaPIpERERkQWadZ7kEsC0xly1tk6S+tSiYaa8vYwHu/hp2sWdtbV85UO/wGn5As/v8TivO+Ca23rBi2BoEPOzZ6g8WKXjki7o64T167Dbzzg+T8j3cf39uP7+1iIP6GvcgGzy08kJzONPw3QNV01w5RTrr6X0Asf5ZwBJRFSGetXDpAmlYoXuC328jZ3Q3w1re7MigiSBqTLuwWmin8c8+0g/z0x2s7uSJ7KGxEFiDVMJVBrDDuyvpkSpJXWOxNlDzlUTHKmzpKQkWGqmSmQiEurUqWTjuTau0SzN8V3Txu/pTEXsnPAuKzaYHdq2b98MfZu/tz+m/XGHs9BrwyMFyQt1uGu1ufs53HaHO+ZCt38ux6/Wnz3sMUTk+DjlQ1WMwZiQMOg5ymbHJ3BdqmBzvn90j/QBs5hQc742HOlD42jtmHvsowXKhws3D7f9czU3HG0Gnt4h3ef9WaEozA4923nzttvHJ8AjzMYqdSE5igQuwCfAdz45glY7PEwjMDX4GDr9gO6cT3/Boyd09OUcoQ+B70HgEXk+NXwqBKSeYdR5+IFPGGbBqfGa+4UNfqPatNFVv9BovmcgZxw9YRacBjgCz9EZxuSDLEQtddQJCxYv7/DzZN34cx6mVMR05mHjmqz7fhjiPIOxDucZCINsrNRmoAqQpFlX/koVanWo17Nl9QgqNZKnxklGLbVJn7GJbspRQDkJmIwD9tcDDtYhTizedJXNyRS1asKT0z5PTMQ8mu5m0hygko4wXR/C2qhRlRrjXIzCVBEREZFjd8jQAM4CHtZaogSStEaUlvl5HvYlAzxzYCMPjXYy9f9McXZXmRe/6gDBb+ygY32O6LuD1Kc6yHUPkn91Dbtty3GtYD2sYhFXLB4yDqz/7LOURsehUoMohqkarhrjagkuKpFOW5JnwD1ZJq2VSauOuApJHYqFIvk1AduugO09dcxA2KgdcZAmuKEJ7HCF2u6UHz28makkILIeifVwcyoa69aQuuxnZA2j9TXUraOSwGRkSawjdQ7ryH5m0SjWNX4ah2ssbwzukI37aprLLM5YkmxrrGlU0JJg25alxNi2INYdptimFcQe8bp15rGHhL1z9rt0RUMnJoWqpzbH8lWq6vJ34U75UNXgEwY9dBdOawVhRzNfINba31H+UT7cP+xzPxCOpR0L+UCY7/jzHbv9wyrb95FDwdlB5/yvY/uHXHs7Zr7FnP2NZ7avuceZCSvbj9uq5DzM9sdiJrxsxpYensl+hi6P11yGR+hyjd8MoQvxMBi8rFK00arDddvwGkMY+MaQ9zxynkcxMBR8Q0/ekAsgFxjygUcxzLbzfUPgG4xn8D2D8wwTLqDqfJzvERuPEc/DC7Jje41De8wEpf2NbvmeyX42m+cbR9FzhJ4l50FgHDkvxTcQeJacZ+kt1gjDBN93eL4lV7T4RYffYfD7i5hiAPkAggB8DwIfCrnsxHPDAK5YypZbm42DmjTGg4rjrB2Nb+vN2ChmYgqmylCu4caruFqCrSSkk5bJoRzT1QJT9ZCRKM9k7BE5w3gdRsZrrIsq2OkagXHcecBwoBZxkElGvSFGk6eIkjKJrREn01mQ2qxOnfVNuj5RRERERI7VrKEBGuGqtY0K1jhiAqj6I0z4e9lr11J55lw2lTq5Z7iLc77yLK/9AORevZ1cuQrWp/bFhylcuA+2DWDPOXv2F/InCHfaabjTTjt0RRTjVabxR8aygoEkyYLXWgz1CFdPcJMhtmKxFUtyEKJdhjgKiGOfJPHwXAeFXI3SaXUuvzzErO+Cvq7sfNv3suHRPAM2hWoVKlWYqsDENMkTI8QHUqb359gz3EMlCYisT2wNdeuROkPqPGwjiHXOYKERumYBrSWrmE1cNuxX6sgqaW3zviOykLbdr6fZ34PUkkWqDlyjeKE9FLK4rEtzM8Cd7zTczKy3cwog5l7V2jnjwro5OzSN6zBvnus0O+caoH2bueuOZO6+53vsQraZb7t9fG/B7RCR5XFKh6oGQz63npcUfo1fP60b/wjDpHhz1pnWcjfr/nzbwuwPCzdruZm17GjfNLTv27Qdf3ab5n/s3Da0H7u57kjRbquTu5n9/E1jWXO9Ocyg5q5xvGZX8+bxmx/O2QeomfXhaQx4zW+5DYRm9jF941qhocHNhIeN+7OOj2k9z9Q1TwSyk4O48S1uiiHFZCcCgMUjcRC5xolBo92JcxhjWoNDO7IXxZiZF8cYg+dB3vNwjfDT8w25oPG7Z/B8D+Nl4agx2XrTWOf7Xut1NWTnSL5pe61NY0hZAz6OdSYLQLPxSy3FIMHH4RmHbyD0bOOWEgaWQpjgeRZjHJ4Hnufwg5Qg7wi7HSaXveCm8WKbwMMUAkwxhHVrsnFOPZP95fFMNv5pRxHbP4Ar5LPxYJ3Nuuw3Q9MgwPW0VYWnFjMxCeUyVKqYapS90FECtZhk7zTJhCOazrr1j0x1UEk6qKY+k7HPROITpXCgBn156EojvKkyhYka9+9OGEsiDpiDTDLMePwMUVomtVGjKrWajSvl2r4tV2WqiIiIyJJrnVs15lNwLsKZGKhTtVVqJsCYEM8EHAgeJUyK5MvdlA6s5e/ecA4D+WFO6/A5vyfhmlcNwrln40od8I9fZ/qJbNddlxQxW/pxGwdaE0+dcHIhLteH6+074mYzU8pCbs46MzEBlUrWk2t0IquEnUwgrjfOyxsbWnCVCOoJru5ho05Y30m4AdYYR1+cQt2SVps3cKlrXMtZbOxIah5R3RBHhnrs44DQpORzces61KaQJB7GOHyTEuZSCh0xXmDxQvACh9cBXtHHFIPs1lfMwvB8DjoKWSCcC8Fv/PS81twZLgiy+57JfkJWmJGkYC3Gzsx5gLWNW+P3NJ3ZvrksSbMxXptFQYGf7TfwD9121h+KN3OhfbSL9uZjm+1tv0C3be2ErAildRHrzT6+tW378A7Zj3fZkZshJz9dt668UzJU3bz5NLzGP05h0IvrrPBM/rTnNCLnYuZLOtIkfUd6SxzpEMcyX9N87VjoW3Lu4eY7vpln4dxvB5t3W6HynO09ZgJLv/EhYgx4Xhb2mcZ4oaa5vrGORvDomcZ2nml9Hhmaj50JQptNbZ7ABEd5IeY+tVmheuN+80tiv3FrBsGBl4XBhrYgeta+m6GxJTAue26NwDjwXOuxfqPrfRaaOnzPEnguC009Sz6XhabNwDTMp3ihxc+DlwNT9FoNMAZM6EEuxBRCTF9p9rf+zmUf5IUclIq4NX3ZCYCz2YlcFGUhaz6fde1vabyr0jS7RRGmGbCmaTYu6uB+mCjjyjHpeA1qjrTmSKuGiZEi5XpIJQ6opj5DtRyRM6TWMBZBNYUwTuisVYmHqjw+lfL4RMpIFPGk9wQVxqgnk0RpmXo8gXXN7v1WY6aKiIiIrABHY6Ja5xqVq2RfcpsEi4dzliiZpu5PUfFHicJpdsXreGJ0HY+M9fDU/30+53zrac7rm+Dc966ne4sHozWS3ZNU76tS3Lab4Jz1UAixz38edHet9FNeUq6nB3p6srPWMxfwAOsgjvDqEaZWzc7JrcPU6xAnBEnSmPy1UdzQDCfrWZGDqydZT7Fymq3zDSbXuIhwDhc7XN1mF3Jedt1Fvhk+ArEjrWZ9EU0CpgZmtHEdYh12uoxNgCSrUvVy4IUuu0CyjmTaYWND2hidywuynnIYcDEksSGNPOI4+zvl+9l1lPEsaWJIYo8k9kith++l+J7F9x1BmOKcIU080tQQJz7GOALfEoSWMExxDtLUI008orjRM9J3FPLZdRZk6+tRgE3NvOut9ajVZ6/P5xJ8P1ufJH7WxtTDOUMuTPEDi+9nxS9p6pHEfmM9BH7Wfj+wbNmy5bn9ZTrBWWvZu/eZlW6GyBGdkqHqunXr8H0fA4ThWrYWtnJmb+cRK1Xn81wmnj9SsHq82rBU7ThcGw7XtLmHnBusHmlfsytRZ4LK5jKv7QEeWSDZemzbfrJvYJujDs0c+XBVvodrT3Nf7YMOeI37zWPnvOwb32bVaOA1q2ob4aixrZ0Gxs20HUfgN0NTC8YRBo3KUuPwGl3vPc/h+eDnLCYELwATgslnJyvGz0pavY48Jh80JogKshtkJ08wu4t+bxd4fvaHEyeYOALPx+VDXLFj9slpvY6ZnGw8B2+mcrW5bmIy63pUj2a+eU1tdr9cJ903iZ1MSaahMpEjigJqcUA5Dhip55lOPKpp1g1psGJIUktartGb1Fhbr1GNHAfqHt8bLjPBNGPeAaqMMVnfR5JWZ1WmZgGqVZgqIiIisoJmjbdKijONkJWU1FqMCUhtjSStkNo6095+xoJuBk03Y/vP4acjHWzYv47L/7DOWd2TnH/1NMFLnkfXvjHo6yW+9yniWoHis6OY3hLkQ+hfgz1z+0o+7ZXhmazwIZ/HtZ3DL/js1zpIEvxqZea6oTmUm7VZqWqcYBrVm84zM1WgzmKsI4jj2dWbvtfq1UY9znq1NcPctipVnCOs1yFOZwLfZuUKQJxk6+IEYouzFsh6/uEZXJJCPcXFFpdYIMiujUIPE2TXOi61WaCb2KzZnpcVm+T95rgHuDjFRVn7jW+ynnvNC8DUZWPlpm5mfSGgFS5YcNU4O5adZ31scXFWleosWe/A0IOwUZlaTxttnLPe9+j/0cwkaiejNE0Vqh6Bc8s3pqqujhdu1YWq9XqdSy+9lAceeICf/vSnXHTRRc9pf76fo49OtnckBEswRvXcLucwE90txHxvioUHfQv7q3+09ixmCIJjbcN87TjccZvHM42QNAsss439xl6yoHGmQhRmwkrDTIjZfsiZ4QzaxxuYc+zDPJ/m82weq3n85v4MLqsSNeD7NutmT/bNpOc5aFSgGuOyENQ4jAfGy35iwPiNcNQ0g1Gy7vh+9qIY30DgY/zsQ9fkg6zLTNDovhK0zS5lDJQKWRebfA4X5rLtEptVjjqbda3J53H5wkxomqbZeE+1avZnFuagUJj9YlibhaephWotm0zKmGxM1GoN9h/MZkOtRBCnjQH6U1zVkVQclZGQWi1PJQoZr+epWY9y4lFOfCqpYbTumJiKcZU669IaXUmEARJn+NJgwmQSMW6mGORxIjtNFJdJ0ipxMo11CZDiXNI2TnBbFyEUqIqIiIislFlVq6RgTKtyFeORpDHWJcSmQj2ZouINE+Wmedb20Vley9CuzQwU17D1f6xh8z9UueL0UTbeUCS8bA1hkpL+ZBeVwQKR7aRz017ylw1Ddwdu80bc2rUr/fRXB880hi3oOeJmhzujXokz7VnHTLNA1ri2LveA89ou/q2duQz0PJzxsmuv5o5c2zADgPODmetGB6TJrMtI58+JWRrHbj3E82YFz7Pa0Dz+nMcCh67/z188/IsgJz3H0hXrybFbdaHqH//xH7Np0yYeeOCB574z41MM1vK87gL/9hd24+XN4bddjkkBFz83VeZEactStqP9+O37NfOloG2Lfa/1eTQz3kzzfjZO6Uwqa5hTUto8SPb/9rR47uC1c7X22TZOTuu4fqPfv9ccl6A5ZsHs52LaxgbyG49pPrb5fJrf4hoz+1vfxrev2fbZdjYIZ/YJWUrd+pB2Wff8IAC/MW5PmkKS4OptXfL9RlvqdUjSrFtQvYaZnMruQyOwDbLxiGo1qNRwg+PYWpJ9wxpbXAy2ZrFVqE6E1OtZ9WktKVCOQ2qpx3TiUUl84sZYutMxTMfZX4WCs1Ctkq/XMJMRTx+0jNZj9nCAKTNKzU4QuSqVaDirRHUJqa3N37UfZn3aKEQVEREROXHMOjdzWXGCy1aAMaRpTAokGDAB1eggngnwvBy7gi6Ceo5wqpO818lfPXMa3d+apMcrsjYf8uJ1G9hUiDmvb5y1Ly1CPI177ADu/qep7sqOm19vCLZ1QWdRgevJyPez27I68SZLE5HjY1WFql/72te48847+ad/+ie+9rWvLck+Q5OnLwe5c3uglF+Sfa4YbwEp59wBt0/EdrQ/fu7YAu0BKcx8QDZDyvbtzJxtD7ffWWHqrET3CG2cs8/WMcyhIejhSqCb7fX9Rhg6s8y1h6dzn9esdjSP7x3aXGshYSZYjZPGYO317CFRDEmcddep11vdaQxkvydJo0o1gslK9vjW4LcOl2RVp7aSEA1Z0no2HlESBcRJFqLWE5/pOCSxhqr1KSceVZuNiToRw1TcqCKux/S5GmvqMXE1plyz7C7Dg+Nlpk2FMe8gVSaYToaI0xqprWdBalqbqUa1Ufbazena36QwVUREROTE1xoaYG4FKzTuW1IXY10dayOMCfC8MXwvRzk4QOCVyNNJIepmz57T6Q3yDAz1c/r74ZI141xy1iDdV/TR8dJ1uAPTmI4i1X8dplYuERYOUHr+Hrwz+6GzBJ0lbP/AnDkDRERWnsNhl+kaV9fOC7dqQtX9+/dz/fXX88UvfpFSaWk+1AwG34R0BRa2bYCOjiXZ70pzh+mfb5ZrwI0FHn+u+dpzyGPNYQLJ9oFU525nDhOSzrevI+W/hzt2Gzdf4NkeiM5tA8w/k+Ri2Lbq0zRu/W6a4alrDBSfxNnvicU0qlKzsDQFXBaYJo1xiOrxzPLEQZRkoWmUQpRiJ1Ns4nAxuATSyGATQxL7RFGOiUqBKPVInEc99ahZn2rqUU084sbQR/VGV/5aJSGtR3SlMWEtZsDUqaaGqdTjnqGYqTSm4upMehMcNE8R2ypRXCa1deKkgnPJrG79s8ZIBVWlioiIiJwEDg1XmZnYihScITUJ4GGsR2JC4qSC5wV4JiDwi0wFQxRsN6VyHw9MreHBsV6+OngmG38E53dXOLd/nK1vdBRfs56idfD0fiiWiL/7c9I4j1cKyG3vgjWd2bl9dyduYB2u/+Qey1JERBZmVYSqzjne+MY38gd/8Adccskl7Nq1a0GPq9fr1Ov11v3J5mQ6bTwC8r7DrenFdXYvVZNPSCdavHTU9iwknF1sILnSmhM1wUwFaWMGTgBjG93wm7lr+yDwkJ1QusY+rGuNh0pqs4DUNn63NgtJU9vo5p9mE0PFaWsQd1drDOieOlwtG6C9GZymtSw0TRODTT2iKE+ceCTWJ048KklI4jwSC7HzGI8CYmtIyZoWWcNUBOPlmKga48UxPTbG1mO25hIi61FJDTsnDd+aSqm6hGlXZcjbRZ1pYlchiavU4gmsS7A2wmGxtk5zsilAYaqIiIjISe7olatZwOqIsKaOsR7gEyfTxEmZaS9H4OUZ9jsYTjbTMdlL93g3PznYxbrBTWz9U+jPTXJezxRnbx+m6/fOI/j3WwjLFdizHyojVL+6m2q5g2KfIb+9iPeC02auVYIAt2UzrufIY46KiCwpt4xjqupyesFWNFR997vfzX/5L//liNv87Gc/484772Rqaor3vOc9i9r/Lbfcwp/92Z8dcRuHI7EGU64uqDJRltDcrv0w/78Kbk5lZ3uFa9u4oa3KV+cOfdzcdTD/EAStfc9ph13gvpybPQ1fs2rUtnVHb85caW12mCTJqkPTbGZKaDze0tqXa+4zdY1ZKrMbdYezjSC0Cs4abGpwKaSpwVmPNDGk1qMahUSJT2RDUusR22waLuuyYDSxhtgaImeopx5p21O0mGw7C5UEphpFr83K1zVeRC6NKaQJfhwRVy31GgxOwbPliMimVFzEpDfFCM9moamtk9gqUVrG2qQVns5UobaPjZq1Ql36RURERE5Nc8dehZnJY1trXIJrXGNYIE2nGtd4HsZ4jJunGsMFBNwfdxBUcwQTRUKvRI/ZQOnBLrq+MEK3N82Wzhwbizm2lHzW5AK2d0+xZes43o4zsGdvgiCHGZvA7B3C/dPdVJ8xWBdgfAg7LUGfh7e2mE0m25z3IPAhF0BPJ5SKuM4O3Lr+hc9MLCLS0FZetCz7loVZ0VD1ne98J2984xuPuM327dv55je/yb333ks+P3vM00suuYTXv/71fOpTn5r3se95z3u46aabWvcnJyfZsmVL677DkRIxnXrw7BCmozDfbpbXQoLcuaHi8Tz24TyXNi32Obcfys6pSkzb7jdDSmiEkq1yz9n7mVspypzlzYe03XezhipoC01bh2jebwtAG6GoS93s9WnjcelMIOrS7GYTsm/aLThnsm+fbDOrzapGmz+tM6SpT5oaUudRT3wS6zWy1yw0TR1YZ0hcVhkaWa9VURpbM/NSNZqbWKjbrKDVNp6XTSw2saSNyteSTdjoxQRxjIljatbjkQmP/RVLJU2ppgl1l1KlzrQ3xRQHiKiSUCdJsplbmyGqcxbroixAPaQ7f+MFVpAqIiIiIvOY77zQtJ/Sm8ZJNt4hwwWkaQ1jAozx8L0cFX8Y38sTekVydPL09Aa6J3voNgU6/JCB4jrWPN3Phh9ZtpW+S8lPKQUJ/R0Vtv/RRjpeth7X3Q21CPOjn+GqKbX7JknqIXGSw/g+JjT4viPs2odfBK/Tx+vKQ+BhQg/yQTaWayEHhQKuo4hbvx5CTYQkInIiWtFQtb+/n/4FjEfzsY99jL/4i79o3R8cHOSqq67ic5/7HJdeeulhH5fP5w8JYudKbI3xOiSPH8QrLvesgPOYr1rzcJajtnsxx2/3XNuykOO2Kk7bw01mVYK2AkrXDDGbD3Gz87iZHuOHfO0y66nMs42bk+M2Q89smWltP9NT37S2d9bDWi8LRhsPT1Mf50yjl75H6jxSa7Cu7dbYp3UG1/gO3jpD6rJJnrJvpQxJY/vUQS3NQtTUZaFpag1JM3t2UEshspCkjjixRLEljVNsanGxxbMpOecISVnrJYQ2JcBicMTOUE09JmLDwdjwvfGYyFpil1J3KSPeKBUzSewqRFSxxCSuThrXidNqVoXqkkaY2h6iZtWo2dOd812buvOLiIiIyCK1nzfOBKxpVsHaNlxAK2A1Hknqk6SVrIq1Uck6HQyx3yuRo0hoS3SW11KcLlFyRdYEBfJeQN4v0hV2c/Z/snQFe+kM9pDzLNu7y2y/cIz81iLFrWtgU19W8BHHUE9wT46SjkWkIx6je4qkJiDIefh5KPQ5vHyAV/AweQ9/bT6rdi2EM6Fr4EMYQLGAC3OQCyEMcF3dx2GmexE5EWQdR3WdvNJWxZiqW7dunXW/s7MTgDPPPJPTTjvtOezZUk3G2TkV86/f7yfwjv0v5ELngFqOnh3HMv/UfO1YSNMOd6jFtqH9+O3Hbc9anZt9PNuo1mwGio4sQGwVrTrT2n4mYzWz7s96Lu7oz7i98LX9vms71twctr3LfHPep1b7ye67mZ78pPM8tv341mW/WGYqSpvbNl8v4xwl4yi4lLB5sylebIkSSxRZDpYdB8opI5WEamKp2aS1r9ilxCTUTUTVVCgzhiUmJcG5lJSY1CVYF2NdTJSUG2OcJo2fWVDqsK3ANGuj5bBjoM7zhBWeioiIiMhSOXTIAItpDhrQPL9vDhdgs950BgPGoxYNAz7GeBi81rABhqyy1Rgfv7EsmCwRmDy+CQnIU6CT3H1F8i5H6OoUOYAxhgBDaHy6w7V05zx6coYNRUfJtxQ8R9539IYx3bk6G7qn2XBejeDSS3AD/bjuHgjzmGoVylXM6ATp3Y9Rf9ZRq+RIUh/POIJcShA6vMDN6v2GgaBgMQHZrZExN+ob8AsGCgavFGAKAabUVpzkbBbihn4W4BZyM+vSNOvu5nnge1ngm88xc5XX1oPQ87Jb2BgSoTk3RPv6IMD53vzhsJ8d33lB9nvgZ/sxjccqUBaR42xVhKrLxjkSW2U0LfPEdC/BYidhf475z1IErM+lDYc7/pFehrnB5FIcf9bx5rbpMD33mwFl2hZ2zlrXFsgeEqYepj2H++OY1fF/Trg63xCss0YraIanZN8i2dSS2Kzbv22kqjnAx5Iz0Bta8mS3AEveJBiXbY9zpIklacw9FaUwWYdaaqil8PMKjEeWamKJrKXuUiyO1FliEqa9aWqUqVPJuuJTbzQ9bYWnWSVpTGIjrIsbz9k2xjnNfm922W/eb1WctiaMag9Q57wi83yTpiBVRERERI6XWZWsrcmv4JAJsJrntI2hy4wJGiOPtQet2XitnpdVuDaXB16+EcD6eCbAN2G2PT6e88jFneTjErlyke6RbkICQuMTGo+OIEfRL9AVdtPzM8P2/+8gncEBCp4l9Cy5xs+uMObsCw9SOL1A6ewu6CnBml7I5bKw0QsaoaMBTPYzSiBOoBbB0Ch2tEY6GhNPGKYm8uB5eH6KH9TxcmWc87DOw6YefmDxQ4cfWvxi47VMwUaQRlmw6QUWLwdByWQXVw5c6kgbc80aH0wIXqFxBegctu6yYLcR/PpFA6HB+I0/mnp2MeWcw3gG0+Fjch7G9xq7mKliMYUAk2uMWxs0AtzmRMHWzYxr65ssgHVuZsLfOM0C2sCA52cBsrXZxZxNZ9Z7JqsYbk6YnFqoxTPdFv3G8Rvtw1qoJ9kFHGT7KIQzQXCcZvtPGn/nQj87vm/mX98Mk32Nw3uqa89AlmPfsjCrMlQ9/fTTn1OZc61Ww/d9DIYknWbEDLNnvHNhpZqHs5jmHOE4iwk0j+nYh2nHYkdXndUWd4R1bQ45xpxQ1XBo0JuFp67xBadrGw7VNSo9bdvcUDMfuNnwqtnGzQmVTONOdgxDQPa7jyPvmezz01gCIPQcYdv6wDh8HMbNLHPO4ZEdx9A8dvOz12Vjnzqop81qU4d1hshC7Ayxzbrjl5Ns8qd66piKbeN5uUZVattzINuvxWGdI8VRdwkpKbGJmTTjxKZO4rLANCWrKrVYnEtJ4mpWbWrjVpXpzB+hbQWmNH9vVZ3C7MrTxp/ykcLT1o4VooqIiIjIielIAWuzgnW+SXBda46IRuBqPZphK4Bngpl1xmstbwax2RADIb4JCLxiK3T1XUgu6SRMC+TqRfKuQN9IN/lG4OqbgNAzBJ4h7xvW71lDR+Ao+ZDzHAV/Gg8wjXEPgmavtsZ1Tc6zBAZCz9Kbi+jMxfR2VOkZqLL2whJmbQes6YK+btym9ZDP4/wA42zjORuMa6ssbV7QWSBNsltiMZVqYzLeFJKEsBrNhJdRCtU6rp7iqgmuWsdVIa2ATQy1xMuurpyHs4Z6LSRJPSwexkA+X8cPHJ7vsqHUUo/U+jjnEQRVcnmbBb85MMaQpgYbZ+Gwc4Ygl2aPDxp96GKPNDYkcbZ/z2+ExzkL1pAmBpsYktgHHH5gyRUtxpt5fFT1W70gjXHkSwkmaFb8GKKqR5o0Xj/jyBVTPN+B50ij7PjZ3BkQhBYvcPjBfOsNfpBm7QsctVrt2P7irxJpM4iWebnsin2lm3HKW5Wh6nP1+OOPkX1sGkrFbWzI+5x++hB5//B/IedOOA8zXcsPWT/nsXPDRK/tw639/tzfF9KOY2nDfMef3R1//tdh7rHajz+7W3rbdnOObUwWRLa3IfBmPujnfU3aHt9esZq6bLb6tDEG6cyYotm6us1mq2/ejxpBbGKzL/oiC2ljWWxdY4iA5s+Z8Ulm5qSaeV3cnGVu1mufhZ7Nk7SkEcA2t41JsgpSk5CQUje1rHu9SYhdDUczrEwb+2s7gWsEpDbbw6wK09TWSV12v71rfjMIdY2JoeYLS7P1s2psGwvbj+0OXT/3BZmHQlQREREROdEdsYKVmWECsjuNya+a59KN659m2GrnXAGaWRP1zq50NW0VrtmkWfnspwnwTMhevwPfhXiEeM4jcAVM6hFEIR2VHkIXEuDj4xPgYdrame218XyAwGTBoW98Cn4HOc+jEBhKPqz7Fyj4UPIdBW+KrnAc3zh8034N1Lj2a+2/+fxmb9O+3hhHaByBl+3L4Ag9i+85Qg+KoUfOT8nnEnK5lGJ3jF90+CXwih5eXy6rQG2OK9uRz4YXyAXQ2w2lIi6fzybzyoUzFaTNP4+2+yadKSppVbA2f29f3s6bvY/scY0Ck8afa0fQiFU8Q2vC5Lb9FJuPb/6ce4x2c9cFwaHrG8d/9C8+cvj9nBR0HSknvlMyVG1yOGrRMPeF32T66ZcSHKVec+63AIf7VsAeEmmCN8++vTklq3PvH2sb5jv+fG1oP958xzaN7d08+2set/34s8I/c+hjjPMOaUfj9KF1vKO9JnOPm5J1cbdYUtMMGy3WWBKS5hoclsQ0KjQboaNjZnvnDg0ws+d++G/HZoeQ87wGjX3OCjYbXeWb9y0Wa+NDtjvc/luBq2v/2dhXWxf9mS75My3DzX1uh/uQWljF6dH3IyIiIiKy+sw9v50dsja1FSe0qlrnXjs0u6jPXmrar3EaQwjMBK9HDl1nfs/GdJ1Z1qiUPeRYzYpZH1x2LWaMh5+GGOMT1LOxYAuTnYTkCF0O3/nkybWu1Ywxs3qKtl8DHu56rX29Mc1rvsb+8PEay3zTuHkG30DO8wi8rHd74BnyjaFafZO9bqFHK+zN+xP4ZiLrKY+b1SN+vjk8ZpWIuNlXPYe73JlvfuVD/jzNkdcvdD8LOb7mJZIWp78PJ4JTOlQFsLbKWHknPw0PzvkG8fDmC7uei4Ued7nasdTHP1K75jtW+zIzT/g87zE4NHycCS5n35/5fU6oeEjIuLR/roe+DnO70Dct4rjzBq1z/yVdXCg672EUlIqIiIiIAAs4N3bzhLAAhynQcHPvGNO2i/Zro2b3vln9DmfWtwWxCzHfdZdpC3Xbw9tsCINGGNts6iGh8eK072tum7xZbWgfSiFsrW9ub/Ab2/uNwpzm8AoLn6jqSMUzIiILdcqHqs5ZrJ2mVq+udFNOGoc76TAcvRL30Ae1nUAsIEQ+8gnP0oami7bMXyMpCBURERERWXmLPi+fdZ1gW9dNraXz7W5WEPtcNUPJuRW0h/FcinsWVNBzpOETmvwFbHNkS10sJXI8OQ7fe/q571vZwkIdW4miiIiIiIiIiIiIrIjmpN1LfVtspvqBD3wAY8ys2znnnNNaX6vVuPHGG1m7di2dnZ1cc8017N+/f9Y+du/ezdVXX02pVGJgYIA/+qM/IkmSuYc64ZzylarQ/Ibq2JL4Y0nwj6licwmPv9TtWGgb5m61oOMv4unp2xQREREREVntFnRds6S94JoVm+2TcS3h7tsdw34P+5D5BioVkRXxghe8gLvuuqt1P2ibZO0d73gHX/nKV/j85z9PT08Pb33rW/m1X/s1vve97wGQpilXX301GzZs4Pvf/z779u3jd3/3dwnDkA996EPH/bkshkJVERERERERERGRVWJ5u/8vXhAEbNiw4ZDlExMT/M//+T/57Gc/yytf+UoAbr/9ds4991x+8IMfcNlll3HnnXfy6KOPctddd7F+/Xouuugi/vzP/5x3vetdfOADHyCXyz3HZ7R81P2/wR3jf8fzWEt1/KVux0offyleCxERERERkVPZUl+fLft/zp7SN5ETyRNPPMGmTZvYvn07r3/969m9ezcA9913H3Ecc8UVV7S2Peecc9i6dSv33nsvAPfeey8XXHAB69evb21z1VVXMTk5ySOPPHJ8n8giqVJVRERERERERERklXDOYZdxMuw4jpmcnJy1LJ/Pk8/nD9n20ksv5Y477uDss89m3759/Nmf/Rm/+Iu/yMMPP8zQ0BC5XI7e3t5Zj1m/fj1DQ0MADA0NzQpUm+ub605kqlQVERERERERERERAL7+9a/T09Mz63bLLbfMu+2rX/1qXve613HhhRdy1VVX8dWvfpXx8XH+9//+38e51cefKlVFRERERERERERWCcfyTdbtgF/+5V/mM5/5zKzl81Wpzqe3t5ezzjqLnTt38ku/9EtEUcT4+PisatX9+/e3xmDdsGEDP/rRj2btY//+/a11JzJVqoqIiIiIiIiIiKwS2URVy3MDCMOQ7u7uWbeFhqrT09M8+eSTbNy4kYsvvpgwDLn77rtb6x9//HF2797Njh07ANixYwcPPfQQBw4caG3zjW98g+7ubs4777xjeHWOH1WqioiIiIiIiIiIyKL94R/+Ib/6q7/Ktm3bGBwc5Oabb8b3fX77t3+bnp4e3vzmN3PTTTexZs0auru7edvb3saOHTu47LLLALjyyis577zzuPbaa/nwhz/M0NAQ73vf+7jxxhsXHOSuFIWqIiIiIiIiIiIiq4TDYZet+//i9vvss8/y27/924yMjNDf38/LXvYyfvCDH9Df3w/ARz/6UTzP45prrqFer3PVVVfx8Y9/vPV43/f58pe/zA033MCOHTvo6Ojguuuu44Mf/OCSPq/loFBVREREREREREREFu0f//Efj7i+UChw2223cdtttx12m23btvHVr351qZu27BSqioiIiIiIiIiIrCLOLU+lqiycQlUREREREREREZFVYnm7/8tCeSvdABEREREREREREZHVRJWqIiIiIiIiIiIiq4SDZatUVa3qwqlSVURERERERERERGQRVKkqIiIiIiIiIiKySrjGqKrLs29ZKIWqIiIiIiIiIiIiq8byTVQlC6fu/yIiIiIiIiIiIiKLoEpVERERERERERGRVWI5J6pyqoBdMFWqioiIiIiIiIiIiCyCKlVFRERERERERERWiWyaquWZqEoWTpWqIiIiIiIiIiIiIougSlUREREREREREZFVwuFwZnkqVTWm6sIpVBUREREREREREVklsu7/Cj9Xmrr/i4iIiIiIiIiIiCyCKlVFRERERERERERWieWcqErd/xdOlaoiIiIiIiIiIiIii6BKVRERERERERERkVUjq1WVlaVQVUREREREREREZJVwBqxR9/+Vpu7/IiIiIiIiIiIiIougSlUREREREREREZFVYjknqpKFU6WqiIiIiIiIiIiIyCKoUlVERERERERERGSVWM5KVY2punAKVUVERERERERERFYJ14hVZWWtqu7/X/nKV7j00kspFov09fXx2te+dqWbJCIiIiIiIiIiIqeYVVOp+k//9E9cf/31fOhDH+KVr3wlSZLw8MMPr3SzREREREREREREjpus83+6TPtW9/+FWhWhapIk/Kf/9J+49dZbefOb39xaft55561gq0RERERERERERORUtCq6///kJz9h7969eJ7Hi170IjZu3MirX/3qo1aq1ut1JicnZ91ERERERERERERWr2xM1eW4oUrVBVsVoepTTz0FwAc+8AHe97738eUvf5m+vj4uv/xyRkdHD/u4W265hZ6entZty5Ytx6vJIiIiIiIiIiIiS87hsMYuyw2z0s9u9VjRUPXd7343xpgj3h577DGszWY0e+9738s111zDxRdfzO23344xhs9//vOH3f973vMeJiYmWrc9e/Ycr6cmIiIiIiIiIiIiJ6kVHVP1ne98J2984xuPuM327dvZt28fMHsM1Xw+z/bt29m9e/dhH5vP58nn80vSVhERERERERERkZWWdf7XRFUrbUVD1f7+fvr7+4+63cUXX0w+n+fxxx/nZS97GQBxHLNr1y62bdu23M0UERERERERERERaVnRUHWhuru7+YM/+ANuvvlmtmzZwrZt27j11lsBeN3rXrfCrRMRERERERERETleXGNSqeXZtyzMqghVAW699VaCIODaa6+lWq1y6aWX8s1vfpO+vr6VbpqIiIiIiIiIiIicQlZNqBqGIR/5yEf4yEc+stJNERERERERERERWREOh3XLNKaqU6XqQq2aUHUpzPzF0F8QEREREREREZETU5bbKOCbn1vW7v+yUKdUqDo1NdX4TX/xREREREREREROZFNTU/T09Kx0M0TmdUqFqps2bWLPnj10dXVhjFnp5pxQJicn2bJlC3v27KG7u3ulmyMiS0jvb5GTm97jIicvvb9FTm56jx+ec46pqSk2bdq00k05QVkcy9P9X727F+6UClU9z+O0005b6Wac0Lq7u/WPuchJSu9vkZOb3uMiJy+9v0VObnqPz08VqnKiO6VCVRERERERERERkdUsG1F1eYa2dKpUXTCFqiIiIiIiIiIiIquEJqo6MXgr3QA5MeTzeW6++Wby+fxKN0VElpje3yInN73HRU5een+LnNz0HpeTwS233MKLX/xiurq6GBgY4LWvfS2PP/74rG0uv/xyjDGzbn/wB38wa5vdu3dz9dVXUyqVGBgY4I/+6I9IkuR4PpVFM8451fWKiIiIiIiIiIic4G644QY+c/vX6Sk+b1n2Pzz9Uz5224d4y1vesqDtf/mXf5nf+q3f4sUvfjFJkvAnf/InPPzwwzz66KN0dHQAWah61lln8cEPfrD1uFKp1BpLOE1TLrroIjZs2MCtt97Kvn37+N3f/V2uv/56PvShDy39k1wi6v4vIiIiIiIiIiIii/b1r3991v077riDgYEB7rvvPl7+8pe3lpdKJTZs2DDvPu68804effRR7rrrLtavX89FF13En//5n/Oud72LD3zgA+RyuWV9DsdK3f9FRERERERERERWieZEVcvxHzjiOGZycnLWrV6vL6htExMTAKxZs2bW8s985jOsW7eO888/n/e85z1UKpXWunvvvZcLLriA9evXt5ZdddVVTE5O8sgjjzz3F2yZKFQVERERERERERFZJRwWR7osN3B8/etfp6enZ9btlltuOWq7rLW8/e1v59/8m3/D+eef31r+O7/zO/zDP/wD3/rWt3jPe97Dpz/9ad7whje01g8NDc0KVIHW/aGhoaV50ZaBuv+LiIiIiIiIiIgIkI2T+pnPfGbWsoVMqHbjjTfy8MMP893vfnfW8vbxWS+44AI2btzIq171Kp588knOPPPMpWn0ClCl6ilu165dvPnNb+aMM86gWCxy5plncvPNNxNF0aztHnzwQX7xF3+RQqHAli1b+PCHP7xCLRaRxfjLv/xLXvrSl1Iqlejt7Z13m9U4y6KIZG677TZOP/10CoUCl156KT/60Y9Wukkicgy+853v8Ku/+qts2rQJYwxf/OIXZ613zvH+97+fjRs3UiwWueKKK3jiiSdWprEisigLmRm9Vqtx4403snbtWjo7O7nmmmvYv3//CrVYVgvn7PLcgDAM6e7unnU7Wqj61re+lS9/+ct861vf4rTTTjvitpdeeikAO3fuBGDDhg2H/J1v3j/cOKwnAoWqp7jHHnsMay1/93d/xyOPPMJHP/pRPvnJT/Inf/InrW0mJye58sor2bZtG/fddx+33norH/jAB/jv//2/r2DLRWQhoijida97HTfccMO869M05eqrryaKIr7//e/zqU99ijvuuIP3v//9x7mlIrJYn/vc57jpppu4+eab+clPfsILX/hCrrrqKg4cOLDSTRORRSqXy7zwhS/ktttum3f9hz/8YT72sY/xyU9+kh/+8Id0dHRw1VVXUavVjnNLRWSx7rnnHm688UZ+8IMf8I1vfIM4jrnyyispl8utbd7xjnfwpS99ic9//vPcc889DA4O8mu/9msr2GqRhXPO8da3vpUvfOELfPOb3+SMM8446mPuv/9+ADZu3AjAjh07eOihh2adx37jG9+gu7ub8847b1navRSMc86tdCPkxHLrrbfyiU98gqeeegqAT3ziE7z3ve9laGioNePau9/9br74xS/y2GOPrWRTRWSB7rjjDt7+9rczPj4+a/nXvvY1fuVXfoXBwcHWmDWf/OQnede73sXw8PAJO8uiiGTf8L/4xS/mb//2b4FsDKstW7bwtre9jXe/+90r3DoROVbGGL7whS/w2te+FsguVjdt2sQ73/lO/vAP/xDIJgFZv349d9xxB7/1W7+1gq0VkcUaHh5mYGCAe+65h5e//OVMTEzQ39/PZz/7WX79138dyIqfzj33XO69914uu+yyFW6xnGhuuOEG/tftX6azsG1Z9j9efoS/ue2/zOqyfyT/4T/8Bz772c/yf/7P/+Hss89uLe/p6aFYLPLkk0/y2c9+lte85jWsXbuWBx98kHe84x2cdtpp3HPPPUBW7HPRRRexadMmPvzhDzM0NMS1117L7//+7/OhD31oWZ7nUlClqhxiYmJi1ixt9957Ly9/+ctnhStXXXUVjz/+OGNjYyvRRBFZIqt1lkWRU10URdx3331cccUVrWWe53HFFVdw7733rmDLRGSpPf300wwNDc16v/f09HDppZfq/S6yCs2dGf2+++4jjuNZ7/FzzjmHrVu36j0uq8InPvEJJiYmuPzyy9m4cWPr9rnPfQ6AXC7HXXfdxZVXXsk555zDO9/5Tq655hq+9KUvtfbh+z5f/vKX8X2fHTt28IY3vIHf/d3f5YMf/OBKPa0F0URVMsvOnTv5m7/5Gz7ykY+0lg0NDR1Svt0+C1tfX99xbaOILJ3VOsuiyKnu4MGDpGk67/tXvUhETi7Nz+P53u/6rBZZXeabGb3ZI3Tu/Ad6j8uRZOOfpsu078V1aD/a9lu2bGlVpB7Jtm3b+OpXv7qoY680VaqepN797ndjjDnibe5F1969e/nlX/5lXve613H99devUMtF5GiO5f0tIiIiIiIrqzkz+j/+4z+udFNk1XM47LLcZOFUqXqSeuc738kb3/jGI26zffv21u+Dg4O84hWv4KUvfekhE1Ct1lnYRE5Wi31/H8mGDRsOmS1c72+RE9+6devwfX/ez2e9d0VOLs339P79+1sTejTvX3TRRSvUKhFZrObM6N/5zndmzYy+YcMGoihifHx8VrWqPtNFTnwKVU9S/f399Pf3L2jbvXv38opXvIKLL76Y22+/Hc+bXcC8Y8cO3vve9xLHMWEYAtksbGeffba6/ousgMW8v49mx44d/OVf/iUHDhxgYGAAWB2zLIqc6nK5HBdffDF33313azIbay133303b33rW1e2cSKypM444ww2bNjA3Xff3QpRJycn+eEPf8gNN9ywso0TkaNyzvG2t72NL3zhC3z7298+ZGi9iy++mDAMufvuu7nmmmsAePzxx9m9ezc7duxYiSbLquBwbrmqSjWf/UIpVD3F7d27l8svv5xt27bxkY98hOHh4da65rdiv/M7v8Of/dmf8eY3v5l3vetdPPzww/y3//bf+OhHP7pSzRaRBdq9ezejo6Ps3r2bNE25//77AXje855HZ2cnV155Jeeddx7XXntta5bF973vfdx4443k8/mVbbyIHNFNN93EddddxyWXXMJLXvIS/vqv/5pyucyb3vSmlW6aiCzS9PQ0O3fubN1/+umnuf/++1mzZg1bt27l7W9/O3/xF3/B85//fM444wz+9E//lE2bNrW+VBGRE9eNN97Ymhm9q6urNU5qc2b0np4e3vzmN3PTTTexZs0auru7edvb3saOHTu47LLLVrj1InIkClVPcd/4xjfYuXMnO3funNUFAWYGG+7p6eHOO+/kxhtv5OKLL2bdunW8//3v5y1vectKNFlEFuH9738/n/rUp1r3X/SiFwHwrW99i8svv7w1y+INN9zAjh076Ojo4LrrrjvhZ1kUEfjN3/xNhoeHef/738/Q0BAXXXQRX//61w+ZzEZETnw//vGPecUrXtG6f9NNNwFw3XXXcccdd/DHf/zHlMtl3vKWtzA+Ps7LXvYyvv71r1MoFFaqySKyQJ/4xCcAuPzyy2ctv/3221tDen30ox/F8zyuueYa6vU6V111FR//+MePc0tlNXE4HMszUZUqVRfOuMVO6yUiIiIiIiIiIiLH3Q033MAd//OfKeY3Hn3jYzBVfYrbPv4RFdItgHf0TURERERERERERESkSd3/RUREREREREREVgmniapOCKpUFREREREREREREVkEVaqKiIiIiIiIiIisEg6HZXkqVVWnunAKVUVERERERERERFYLt4zd/zWf/YKp+7+IiIiIiIiIiIjIIqhSVUREREREREREZJXIJqpKl23vsjCqVBURERERERERERFZBFWqioiIiIiIiIiIrBrZVFWyshSqioiIiIiIiIiIrBJuGSeqcur+v2Dq/i8iIiIiIiIiIiKyCApVRURERFaZ4eFhNmzYwIc+9KHWsu9///vkcjnuvvvuFWyZiIiIiCy/rFJ1OW4qVF04df8XERERWWX6+/v5+7//e1772tdy5ZVXcvbZZ3Pttdfy1re+lVe96lUr3TwRERERkZOeQlURERGRVeg1r3kN119/Pa9//eu55JJL6Ojo4JZbblnpZomIiIjIMnPLOlGVSlUXSt3/RURERFapj3zkIyRJwuc//3k+85nPkM/nV7pJIiIiIiKnBIWqIiIiIqvUk08+yeDgINZadu3atdLNEREREZHjwS3fmKpOlaoLpu7/IiIiIqtQFEW84Q1v4Dd/8zc5++yz+f3f/30eeughBgYGVrppIiIiIrKMXGOiKllZqlQVERERWYXe+973MjExwcc+9jHe9a53cdZZZ/F7v/d7K90sEREREZFTgkJVERERkVXm29/+Nn/913/Npz/9abq7u/E8j09/+tP8y7/8C5/4xCdWunkiIiIisqwcYJfppu7/C6Xu/yIiIiKrzOWXX04cx7OWnX766UxMTKxQi0RERERETi0KVUVERERERERERFYLpzFVTwQKVUVERERERERERFYJh8OxXKGquv8vlMZUFREREREREREREVkEVaqKiIiIiIiIiIisGsvX/d+pUHXBVKkqIiIiIiIiIiIisgiqVBUREREREREREVk1HJAu475lIRSqioiIiIiIiIiIrBLOLV/3f4WqC6fu/yIiIiIiIiIiIiKLoEpVERERERERERGRVcMBy1WpKgulSlURERERERERERGRRVClqoiIiIiIiIiIyKrhQGOqrjhVqoqIiIiIiIiIiIgsgipVRUREREREREREVg2HU0XpilOoKiIiIiIiIiIismos50RVCmsXSt3/RURERERERERE5JjcdtttnH766RQKBS699FJ+9KMfrXSTjguFqiIiIiIiIiIiIquJc8tzW6TPfe5z3HTTTdx888385Cc/4YUvfCFXXXUVBw4cWIYnfWJRqCoiIiIiIiIiIiKL9ld/9Vdcf/31vOlNb+K8887jk5/8JKVSib//+79f6aYtO4WqIiIiIiIiIiIiq4Zbtv8A4jhmcnJy1q1erx/SiiiKuO+++7jiiitayzzP44orruDee+89bq/GSlGoKiIiIiIiIiIisgoMDAws494d4PiXf/kXenp6Zt1uueWWQ7Y+ePAgaZqyfv36WcvXr1/P0NDQMrbzxKBQVUREREREREREZBX4j//xP5KFn3YZ9p5Vqt5+++1MTEzMur3nPe9ZhuOtbsFKN0BERERERERERESObu3atWQ1khYwjdtSyILau+66i2KxSLFYPOoj1q1bh+/77N+/f9by/fv3s2HDhiVq14lLlaoiIiIiIiIiIiKrRLVabvzmlnCvWUj7qle9asGPyOVyXHzxxdx9990ze7GWu+++mx07dixh205MClVFRERERERERERWiUKhwKc//WmyIHQpgtVsLNUHH3xg0Y+86aab+B//43/wqU99ip/97GfccMMNlMtl3vSmNy1Bu05sxjm3lLG2iIiIiIiIiIiILCNrLb7vk9VLPteayRQA545tnNa//du/5dZbb2VoaIiLLrqIj33sY1x66aXPsU0nPoWqIiIiIiIiIiIiq8w3v/nNRnd9n2MfW9UBKc8++yybN29eusadAhSqioiIiIiIiIiIrELGNKtU/WN4dBaogjnmKtVTmcZUFRERERERERERWYUeeuhBmmOiLl72mImJ8SVs0alDoaqIiIiIiIiIiMgqdP7555N1/V9spakDLLfddhvd3d1L37BTgLr/i4iIiIiIiIiIrFKDg4ON8VAXM7aqBSxRFBGG4fI17iSmSlUREREREREREZFVatOmTWRhasrChgHIqlS/8IUvKFB9DlSpKiIiIiIiIiIisopNTU01uvF7HL2GMgtfrbUYs9DKVplLlaoiIiIiIiIiIiKrWFdXFx//+MfJuvUfqX4ym9Tq3nvvVaD6HKlSVUREREREREREZJWL45hcLseRq1VTAJxb7MRWMpcqVUVERERERERERFa5MAz54he/yOGrVbMq1Z07nziu7TpZqVJVRERERERERETkJOCcw/M8somr/DlrVaW6lFSpKiIiIiIiIiIichIwxvDDH/6QZlXqjKx69eDB4ZVp2ElIlaoiIiIiIiIiIiInEWOadZQ+WbiaAh7OpSvXqJOMKlVFREREREREREROIk8+uZOZatWsnrJSmV7JJp10gpVugIiIiIiIiIiIiCyd7du3k42rmnX7/1//639RLBZXuFUnF3X/FxEREREREREROcmMjIywbt06ANI0bUxgJUtFlaoiIiIiIiIiIiInmbVr1/LAAw/Q3d2tQHUZqFJVREREREREREREZBEUU4uIiIiIiIiIiIgsgkJVERERERERERERkUVQqCoiIiIiIiIiIiKyCApVRURERERERERERBZBoaqIiIiIiIiIiIjIIihUFREREREREREREVkEhaoiIiIiIiIiIiIii6BQVURERERERERERGQR/n/njYSe1gkU+gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f, (ax1, ax2) = plt.subplots(2, 1, tight_layout=True, figsize=(15, 10))\n", "ax1 = modeler.batch.load(path_dir=\"data\")[\"smatrix_left_top_0\"].plot_field(\n", " \"field\", \"int\", z=wg_height / 2, ax=ax1\n", ")\n", "ax2 = modeler.batch.load(path_dir=\"data\")[\"smatrix_right_bot_0\"].plot_field(\n", " \"field\", \"int\", z=wg_height / 2, ax=ax2\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Saving and Loading Results\n", "\n", "Finally, we can save and load the component modeler from file to save the results." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
[10:11:29] WARNING: No sources in simulation.                                                             log.py:57\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:11:29]\u001b[0m\u001b[2;36m \u001b[0mWARNING: No sources in simulation. \u001b]8;id=205174;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/log.py\u001b\\\u001b[2mlog.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=308239;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/log.py#57\u001b\\\u001b[2m57\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:11:29] loading SimulationData from data/fdve-631780ac-8d4f-48c9-8dc2-d4efd3238406v1.hdf5          webapi.py:512\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:11:29]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/fdve-\u001b[93m631780ac-8d4f-48c9-8dc2-d4efd3238406\u001b[0mv1.hdf5 \u001b]8;id=758967;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=724800;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           WARNING: 'int' field name is deprecated and will be removed in the future. Plese use           log.py:57\n",
       "           field_name='E' and val='abs^2' for the same effect.                                                     \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mWARNING: \u001b[32m'int'\u001b[0m field name is deprecated and will be removed in the future. Plese use \u001b]8;id=677974;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/log.py\u001b\\\u001b[2mlog.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=847689;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/log.py#57\u001b\\\u001b[2m57\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[33mfield_name\u001b[0m=\u001b[32m'E'\u001b[0m and \u001b[33mval\u001b[0m=\u001b[32m'abs^2'\u001b[0m for the same effect. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:11:30] loading SimulationData from data/fdve-6a8242e7-d5cd-4a4d-a80e-66993245af21v1.hdf5          webapi.py:512\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:11:30]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/fdve-\u001b[93m6a8242e7-d5cd-4a4d-a80e-66993245af21\u001b[0mv1.hdf5 \u001b]8;id=752515;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=431249;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:11:30] WARNING: 'int' field name is deprecated and will be removed in the future. Plese use           log.py:57\n",
       "           field_name='E' and val='abs^2' for the same effect.                                                     \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:11:30]\u001b[0m\u001b[2;36m \u001b[0mWARNING: \u001b[32m'int'\u001b[0m field name is deprecated and will be removed in the future. Plese use \u001b]8;id=687;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/log.py\u001b\\\u001b[2mlog.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=588745;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/log.py#57\u001b\\\u001b[2m57\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[33mfield_name\u001b[0m=\u001b[32m'E'\u001b[0m and \u001b[33mval\u001b[0m=\u001b[32m'abs^2'\u001b[0m for the same effect. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABVUAAAPeCAYAAAAMPfqeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd7ykZX3//9d13/fUM6eXPdsbvSxIUUFFEAQUNQrG2PK1ExQ0yjfREA0RYsQSW0yUmKj4jWDLL0qUiKJIURFBRfrCwvbd0+ucaXe5fn/cM3PKtrPlsHuW95PHeZyZuds1c5aZ+37P57ouY621iIiIiIiIiIiIiMisOAe7ASIiIiIiIiIiIiLziUJVERERERERERERkb2gUFVERERERERERERkLyhUFREREREREREREdkLClVFRERERERERERE9oJCVREREREREREREZG9oFBVREREREREREREZC8oVBURERERERERERHZCwpVRUREREREREREDkMPPvggGzZsONjNOCwZa6092I0QERERERERERGRA2dwcJDVq5ezatUi7r//cRxHtZUHkl5NERERERERERGRw8y1/3AZp512DIODY9x4440HuzmHHVWqioiIiIiIiIiIHEaeeuopTjjhOH5z7/X88YF1fOQj/8HatRvIZDIHu2mHDVWqioiIiIiIiIiIHEauuuqdvPGN53HCCSt5wxvPpaOjmc9/4f0Hu1mHFVWqioiIiIiIiIiIHCbuvfdeXvKSs3ns8f/H4sWdAPz857/jdX/696xbt4GOjo6D3MLDg0JVERERERERERGRw4C1lrNefDJnnXUS11779mnLXnHR33DUUUv4whf+6yC17vCiUFVEREREREREROQwcPPNN3PppW9j7RPfpLExO23Zww+v5/nPu4yHH36U1atXH6QWHj4UqoqIiIiIiIiIiMxzvu9z4omree97L+Gyd//JTte59F2fZmxsgu99745ntnGHIU1UJSIiIiIiIiIiMs995SsfxFp4xzsv2uU6H73mbfzv/97Lb37zm2ewZYcnVaqKiIiIiIiIiIjMY+Pj4xxxxHK+/OUr+ZNXv3C361599de4884HuPuuP2KMeYZaePhRpaqIiIiIiIiIiMg89slPXc6RRy3hVX/ygj2u+9d//XqefGILN9988zPQssOXKlVFRERERERERETmqW3btnHkkau57Wef4XnPO25W21z/5Zv553/+/3j44adIJBJz3MLDkypVRURERERERERE5qm/+7t38fKXP2/WgSrE464aA//2lb+ew5Yd3lSpKiIiIiIiIiIiMg89/PDDnH76qfzxwa+xevXivdr2f27+JX/xF59h3bqNNDU1zVELD1+qVBUREREREREREZmHPvjBd3Lppa/c60AV4JWvegFHH7OMT37qijlo2eFPlaoiIiIiIiIiIiLzzO23387FF7+KJ568kfb25n3ax733PspLz/u/PPHEOhYv3vtg9tlMoaqIiIiIiIiIiMg8EkURp512DH/6unP44AffsF/7esPrryGXy/C1r/3vAWrds4O6/4uIiIiIiIiIiMwjN910EwMDo7z3vRfv977+8ePv4lvf+jkPPfTQAWjZs4cqVUVEREREREREROaJUqnE0Uev4Npr386b//z8A7LPK6/8V9Y+volbb733gOzv2UCVqiIiIiIiIiIiIvPEF/75/bS1NfLGN513wPb54Q+/md/85hF+9rOfHbB9Hu5UqSoiIiIiIiIiIjIPDA4Osnr1cr7z3Ws477xTD+i+P/3pb/Hd7/yC++9/HMdRHeae6BUSERERERERERGZBz7/hSt57nOPPeCBKsB733sJAwOj/M///M8B3/fhSKGqiIiIiIiIiIjIPDDQn+WUU4+ak32n00mOO24FfX19c7L/w413sBsgIiIiIiIiIiIis2QtRNFc7XyO9nv4UaWqiIiIiIiIiIiIyF5QpaqIiIiIiIiIiMh8MZeVqipUnTVVqoqIiIiIiIiIiIjsBVWqioiIiIiIiIiIzBcaU/WQoFBVRERERERERERkvrDEwepc7VtmRd3/RURERERERERERPaCKlVFRERERERERETmDXX/PxSoUlVERERERERERERkL6hSVUREREREREREZL6Yy4mqVKg6a6pUFREREREREREREdkLqlQVERERERERERGZL+ayUlWlqrOmUFVERERERERERGS+UPf/Q4K6/4uIiIiIiIiIiIjsBVWqioiIiIiIiIiIzBfq/n9IUKWqiIiIiIiIiIiIyF5QpaqIiIiIiIiIiMg8YazF2LkaU1WVqrOlUFVERERERERERGS+mNPu/zJb6v4vIiIiIiIiIiIie+26667j9NNPp7Gxka6uLl796lezdu3aaeuUSiUuv/xy2tvbyeVyXHLJJfT29k5bZ9OmTVx00UVks1m6urr467/+a4IgmLbOHXfcwSmnnEIqleKII47ghhtumOunt1sKVUVEREREREREROYLC0R2bn72svf/nXfeyeWXX85vfvMbbrvtNnzf5/zzz2diYqK+zgc+8AF++MMf8r3vfY8777yTbdu2cfHFF9eXh2HIRRddRKVS4de//jXf+MY3uOGGG7j66qvr66xfv56LLrqIc845hwceeID3v//9vPOd7+QnP/nJ/r6a+8xYq8ESREREREREREREDnXvfve7aUn08I9/+4Y52f/L33gdF7/+3Vx66aX7tH1/fz9dXV3ceeednHXWWYyOjtLZ2clNN93Ea1/7WgAef/xxjj32WO655x6e//zn8+Mf/5hXvOIVbNu2jQULFgBw/fXX86EPfYj+/n6SySQf+tCHuOWWW3j44Yfrx3r961/PyMgIt9566/4/8X2gSlUREREREREREZH5ojam6lz87G2p6gyjo6MAtLW1AfC73/0O3/c577zz6uscc8wxLFu2jHvuuQeAe+65hxNPPLEeqAJccMEFjI2N8cgjj9TXmbqP2jq1fRwMmqhKRERERERERERkvpjLiaqsxfd9xsbGpj2cSqVIpVK73TSKIt7//vfzghe8gBNOOAGAnp4ekskkLS0t09ZdsGABPT099XWmBqq15bVlu1tnbGyMYrFIJpPZu+d5AKhSVURERERERERERAC49dZbaW5unvZz3XXX7XG7yy+/nIcffphvf/vbz0ArDz5VqoqIiIiIiIiIiMwbFuwcVaoCF154ITfeeOO0x/ZUpXrFFVfwox/9iLvuuoslS5bUH+/u7qZSqTAyMjKtWrW3t5fu7u76Or/97W+n7a+3t7e+rPa79tjUdZqamg5KlSqoUlVERERERERERESqEokETU1N0352Fapaa7niiiv4/ve/z+23387KlSunLT/11FNJJBL8/Oc/rz+2du1aNm3axBlnnAHAGWecwUMPPURfX199ndtuu42mpiaOO+64+jpT91Fbp7aPg0GVqiIiIiIiIiIiIvPFHI+pujcuv/xybrrpJm6++WYaGxvrY6A2NzeTyWRobm7mHe94B1deeSVtbW00NTXx3ve+lzPOOIPnP//5AJx//vkcd9xx/Pmf/zmf+tSn6Onp4SMf+QiXX355Pcy97LLL+Jd/+Rc++MEP8va3v53bb7+d7373u9xyyy0H9vnvBVWqioiIiIiIiIiIyF778pe/zOjoKGeffTYLFy6s/3znO9+pr/O5z32OV7ziFVxyySWcddZZdHd389///d/15a7r8qMf/QjXdTnjjDN485vfzP/5P/+Ha6+9tr7OypUrueWWW7jttts46aST+MxnPsN//Md/cMEFFzyjz3cqVaqKiIiIiIiIiIjMFxaI9q6idK7YWVS2ptNp/vVf/5V//dd/3eU6y5cv53//9393u5+zzz6bP/zhD3vdxrmiUFVERERERERERGS+OIS6/z+bqfu/iIiIiIiIiIiIyF5QpaqIiIiIiIiIiMh8MaeVqnOz28ORKlVFRERERERERERE9oIqVUVEREREREREROYLazFzVKlqVKo6awpVRURERERERERE5g2rCaUOAer+LyIiIiIiIiIiIrIXFKqKiIiIHCLuuOMOjDHccccdB7spIiIiInKoqk1UNRc/qoCdNYWqIiIiIs+wL33pS9xwww0Huxn75KabbuLzn//8wW4GAFEU8alPfYqVK1eSTqdZs2YN3/rWt2a17fbt2/mbv/kbzjnnHBobG3cbZv/0pz/lHe94ByeccAKu67JixYoD9yREREREZF5SqCoiIiLyDNtVqHrWWWdRLBY566yznvlGzdKhFKp++MMf5kMf+hAvfelL+eIXv8iyZct44xvfyLe//e09brt27Vo++clPsnXrVk488cTdrnvTTTdx00030dzczKJFiw5U80VERET2zZxWqh7sJzd/KFQVERGRg2JiYuJgN+GQ4zgO6XQax9Ep2p5s3bqVz3zmM1x++eV85Stf4V3vehc//OEPedGLXsRf//VfE4bhbrc/9dRTGRwc5IknnuDKK6/c7bof//jHGRsb41e/+hUnnXTSgXwaIiIiInvPApGdmx+ZNZ2xi4iIyH7bunUr73jHO1i0aBGpVIqVK1fy7ne/m0qlAsANN9yAMYY777yT97znPXR1dbFkyZL69l/60pc4/vjjSaVSLFq0iMsvv5yRkZFpx3jyySe55JJL6O7uJp1Os2TJEl7/+tczOjpaX+e2227jhS98IS0tLeRyOY4++mj+9m//do/tn8125XKZv//7v+eII44glUqxdOlSPvjBD1Iul3fY3ze/+U2e+9znks1maW1t5ayzzuKnP/0pACtWrOCRRx7hzjvvxBiDMYazzz4b2PWYqt/73vc49dRTyWQydHR08OY3v5mtW7dOW+etb30ruVyOrVu38upXv5pcLkdnZyd/9Vd/tceAEeDmm2/moosuqv8NV69ezT/8wz9M2/bss8/mlltuYePGjfW2764r/Fvf+tb6ejN/PvrRj+6xTXtqr+/7vOc976k/Zozh3e9+N1u2bOGee+7Z7faNjY20tbXN6liLFi0ikUjsV3tFRERE5PDiHewGiIiIyPy2bds2nvvc5zIyMsKll17KMcccw9atW/mv//ovCoUCyWSyvu573vMeOjs7ufrqq+uVqh/96Ee55pprOO+883j3u9/N2rVr+fKXv8x9993Hr371KxKJBJVKhQsuuIByucx73/teuru72bp1Kz/60Y8YGRmhubmZRx55hFe84hWsWbOGa6+9llQqxbp16/jVr3612/bPZrsoinjVq17FL3/5Sy699FKOPfZYHnroIT73uc/xxBNP8IMf/KC+7jXXXMNHP/pRzjzzTK699lqSyST33nsvt99+O+effz6f//znee9730sul+PDH/4wAAsWLNhl+2644Qbe9ra3cfrpp3PdddfR29vLF77wBX71q1/xhz/8gZaWlvq6YRhywQUX8LznPY9/+qd/4mc/+xmf+cxnWL16Ne9+97t3+zrccMMN5HI5rrzySnK5HLfffjtXX301Y2NjfPrTnwbi7vajo6Ns2bKFz33ucwDkcrld7vMv/uIvOO+886Y9duutt3LjjTfS1dVVf2xgYGC3batpbGwklUoB8Ic//IGGhgaOPfbYaes897nPrS9/4QtfOKv9ioiIiMwrte7/c7VvmRWFqiIiIrJfrrrqKnp6erj33ns57bTT6o9fe+212BknZW1tbfz85z/HdV0A+vv7ue666zj//PP58Y9/XO/2fswxx3DFFVfwzW9+k7e97W08+uijrF+/nu9973u89rWvre/v6quvrt++7bbbqFQq/PjHP6ajo2PW7Z/NdjfddBM/+9nPuPPOO6cFdSeccAKXXXYZv/71rznzzDNZt24d1157La95zWv4r//6r2nd+Guvxatf/Wo+8pGP1CtOd8f3fT70oQ9xwgkncNddd5FOpwF44QtfyCte8Qo+97nPcc0119TXL5VK/Nmf/Rl/93d/B8Bll13GKaecwle/+tU9hqo33XQTmUymfv+yyy7jsssu40tf+hIf+9jHSKVSvPSlL2Xx4sUMDw/vse0AZ5xxBmeccUb9/rp167jiiit46Utfyl/8xV/UH+/s7NzjvgC+/vWv89a3vhWIJ5pasGABxphp6yxcuBCIw34RERERkbmi7v8iIiKyz6Io4gc/+AGvfOUrpwWqNTMDr3e96131QBXgZz/7GZVKhfe///3TAsh3vetdNDU1ccsttwDQ3NwMwE9+8hMKhcJO21Kr2Lz55puJ9uKb+9ls973vfY9jjz2WY445hoGBgfrPS17yEgB+8YtfAPCDH/yAKIq4+uqrdxgXdeZrMRv3338/fX19vOc976kHqgAXXXQRxxxzTP31meqyyy6bdv9FL3oRTz/99B6PNTVQHR8fZ2BggBe96EUUCgUef/zxvW77TBMTE7zmNa+htbWVb33rW9P+Hdx2222z+rngggvq2xSLxXrV6lS116lYLO53m0VEREQOSXM5UZVmqpo1VaqKiIjIPuvv72dsbIwTTjhhVuuvXLly2v2NGzcCcPTRR097PJlMsmrVqvrylStXcuWVV/LZz36WG2+8kRe96EW86lWv4s1vfnM9cP2zP/sz/uM//oN3vvOd/M3f/A3nnnsuF198Ma997Wt3O/HTbLZ78skneeyxx3ZZUdnX1wfAU089heM4HHfccbN6PfZkV68PxNW8v/zlL6c9lk6nd2hja2srw8PDezzWI488wkc+8hFuv/12xsbGpi2bOm7tvnrXu97FU089xa9//Wva29unLZs5RMBsZDKZnY5nWyqV6stFREREDlvqpn/QKVQVERGRZ8z+BF2f+cxneOtb38rNN9/MT3/6U973vvdx3XXX8Zvf/IYlS5aQyWS46667+MUvfsEtt9zCrbfeyne+8x1e8pKX8NOf/nRaZeTMNu1puyiKOPHEE/nsZz+7030sXbp0n5/XgbSr57gnIyMjvPjFL6apqYlrr72W1atXk06n+f3vf8+HPvShvar83ZkvfOELfOtb3+Kb3/wmJ5988g7Le3p6ZrWf5ubm+r+hhQsX8otf/AJr7bQq4O3btwPx5FIiIiIiInNF3f9FRERkn3V2dtLU1MTDDz+8T9svX74cgLVr1057vFKpsH79+vrymhNPPJGPfOQj3HXXXdx9991s3bqV66+/vr7ccRzOPfdcPvvZz/Loo4/yj//4j9x+++317vm7sqftVq9ezdDQEOeeey7nnXfeDj+1StLVq1cTRRGPPvrobo8326EAdvX61B6b+frsqzvuuIPBwUFuuOEG/vIv/5JXvOIVnHfeebS2tu6w7t4OY3D33XfzV3/1V7z//e/nTW96007XWbhw4ax+vvOd79S3OfnkkykUCjz22GPT9nXvvffWl4uIiIgcluay+78KYGdNoaqIiIjsM8dxePWrX80Pf/hD7r///h2Wz5yoaqbzzjuPZDLJP//zP09b96tf/Sqjo6NcdNFFAIyNjREEwbRtTzzxRBzHqXcBHxoa2mH/tWBtZ93Ea2az3ete9zq2bt3Kv//7v++wbrFYZGJiAognoXIch2uvvXaH6s6pz6+hoYGRkZFdtqnmtNNOo6uri+uvv37ac/jxj3/MY489Vn999letwnVqGyuVCl/60pd2WLehoWHWwwFs376d173udbzwhS/k05/+9C7X25cxVf/kT/6ERCIxrY3WWq6//noWL17MmWeeOa0djz/+OL7vz6rdIiIiIiJ7ou7/IiIisl8+/vGP89Of/pQXv/jFXHrppRx77LFs376d733ve/zyl7+sTwS1M52dnVx11VVcc801XHjhhbzqVa9i7dq1fOlLX+L000+vzzB/++23c8UVV/Cnf/qnHHXUUQRBwH/+53/iui6XXHIJANdeey133XUXF110EcuXL6evr48vfelLLFmyhBe+8IW7bMNstvvzP/9zvvvd73LZZZfxi1/8ghe84AWEYcjjjz/Od7/7XX7yk59w2mmnccQRR/DhD3+Yf/iHf+BFL3oRF198MalUivvuu49FixZx3XXXAXDqqafy5S9/mY997GMcccQRdHV11Se9miqRSPDJT36St73tbbz4xS/mDW94A729vXzhC19gxYoVfOADH9jXP9s0Z555Jq2trbzlLW/hfe97H8YY/vM//3Onofipp57Kd77zHa688kpOP/10crkcr3zlK3e63/e973309/fzwQ9+kG9/+9vTlq1Zs4Y1a9YA+zam6pIlS3j/+9/Ppz/9aXzf5/TTT+cHP/gBd999NzfeeOO0oRCuuuoqvvGNb7B+/XpWrFhRf/xjH/sYEI8nC/Cf//mf9XFqP/KRj9TXe/DBB/mf//kfANatW8fo6Gh925NOOmmXz19ERERkTlgL0RyVlGqs1llTqCoiIiL7ZfHixdx777383d/9HTfeeCNjY2MsXryYl73sZWSz2T1u/9GPfpTOzk7+5V/+hQ984AO0tbVx6aWX8vGPf5xEIgHEwdUFF1zAD3/4Q7Zu3Uo2m+Wkk07ixz/+Mc9//vMBeNWrXsWGDRv42te+xsDAAB0dHbz4xS/mmmuuqU9mtTOz2c5xHH7wgx/wuc99jv/3//4f3//+98lms6xatYq//Mu/5Kijjqrv79prr2XlypV88Ytf5MMf/jDZbJY1a9bw53/+5/V1rr76ajZu3MinPvUpxsfHefGLX7zTUBXgrW99K9lslk984hN86EMfoqGhgde85jV88pOf3G1gvTfa29v50Y9+xP/9v/+Xj3zkI7S2tvLmN7+Zc889d1p1KMB73vMeHnjgAb7+9a/zuc99juXLl+8yVOzv7ycMQ6688sodlv393/99PVTdV5/4xCdobW3l3/7t37jhhhs48sgj+eY3v8kb3/jGWW3/d3/3d9Puf+1rX6vfnhqq/v73v99h3dr9t7zlLQpVRURERJ6FjN1TvzwRERERERERERE56N797nfTUljLxy972Zzs/+VXfpXXvO1KLr300jnZ/+FElaoiIiIiIiIiIiLzRW2iqrnat8yKJqoSERERERERERER2QuqVBUREREREREREZkvLHM3UZXMmipVRURERERERERERPaCKlVFRERERERERETmC2vBakzVg02hqoiIiIiIiIiIyHxhrbr/HwLU/V9ERERERERERERkLzyrKlWjKGLbtm00NjZijDnYzRERERERERERkRmstYyPj7No0SIcR/WAO7AWInX/P9ieVaHqtm3bWLp06cFuhoiIiIiIiIiI7MHmzZtZsmTJwW6GyE49q0LVxsbG6i0HUKWqiIiIiIiIiMihxwLRlBxHprFoTNVDwLMqVJ3s8m9QqCoiIiIiIiIicujS0I27MKfd/+dmt4ejeTUwxdatW3nzm99Me3s7mUyGE088kfvvv/9gN0tERERERERERESeReZNperw8DAveMELOOecc/jxj39MZ2cnTz75JK2trQe7aSIiIiIiIiIiIs8QO4fd/1WqOlvzJlT95Cc/ydKlS/n6179ef2zlypUHsUUiIiIiIiIiIiLybDRvuv//z//8D6eddhp/+qd/SldXF895znP493//94PdLBERERERERERkWeOtWCjOfo52E9u/pg3oerTTz/Nl7/8ZY488kh+8pOf8O53v5v3ve99fOMb39jlNuVymbGxsWk/IiIiIiIiIiIiIvtj3nT/j6KI0047jY9//OMAPOc5z+Hhhx/m+uuv5y1vectOt7nuuuu45pprnslmioiIiIiIiIiIzB2LxlQ9BMybStWFCxdy3HHHTXvs2GOPZdOmTbvc5qqrrmJ0dLT+s3nz5rlupoiIiIiIiIiIyNyphapz8aNMddbmTaj6ghe8gLVr10577IknnmD58uW73CaVStHU1DTtR0RERERERERERPbfXXfdxStf+UoWLVqEMYYf/OAH05YbY3b68+lPf7q+zooVK3ZY/olPfGLafh588EFe9KIXkU6nWbp0KZ/61Keeiae3W/Om+/8HPvABzjzzTD7+8Y/zute9jt/+9rd85Stf4Stf+crBbpqIiIiIiIiIiMgzw1qIooPdCgAmJiY46aSTePvb387FF1+8w/Lt27dPu//jH/+Yd7zjHVxyySXTHr/22mt517veVb/f2NhYvz02Nsb555/Peeedx/XXX89DDz3E29/+dlpaWrj00ksP8DOavXkTqp5++ul8//vf56qrruLaa69l5cqVfP7zn+dNb3rTwW6aiIiIiIiIiIjIs87LXvYyXvayl+1yeXd397T7N998M+eccw6rVq2a9nhjY+MO69bceOONVCoVvva1r5FMJjn++ON54IEH+OxnP3tQQ9V50/0f4BWveAUPPfQQpVKJxx57bFqCLSIiIiIiIiIictizczSeamTjfc+R3t5ebrnlFt7xjnfssOwTn/gE7e3tPOc5z+HTn/40QRDUl91zzz2cddZZJJPJ+mMXXHABa9euZXh4eM7auyfzplJVRERERERERETkWa82UdUc7dv3fcbGxqY9nEqlSKVS+7Xrb3zjGzQ2Nu4wTMD73vc+TjnlFNra2vj1r3/NVVddxfbt2/nsZz8LQE9PDytXrpy2zYIFC+rLWltb96td+2peVaqKiIiIiIiIiIjI3Ln11ltpbm6e9nPdddft936/9rWv8aY3vYl0Oj3t8SuvvJKzzz6bNWvWcNlll/GZz3yGL37xi5TL5f0+5lxSpaqIiIiIiIiIiMh8MacTVVkuvPBCbrzxxmmP7m+V6t13383atWv5zne+s8d1n/e85xEEARs2bODoo4+mu7ub3t7eaevU7u9qHNZngipVRUREREREREREBIBEIkFTU9O0n/0NVb/61a9y6qmnctJJJ+1x3QceeADHcejq6gLgjDPO4K677sL3/fo6t912G0cfffRB6/oPClVFRERERERERETmkeqEUnPxs5fy+TwPPPAADzzwAADr16/ngQceYNOmTfV1xsbG+N73vsc73/nOHba/5557+PznP88f//hHnn76aW688UY+8IEP8OY3v7kemL7xjW8kmUzyjne8g0ceeYTvfOc7fOELX+DKK6/ct5fvAFH3fxERERERERERkflijieq2hv3338/55xzTv1+Leh8y1vewg033ADAt7/9bay1vOENb9hh+1Qqxbe//W0++tGPUi6XWblyJR/4wAemBabNzc389Kc/5fLLL+fUU0+lo6ODq6++mksvvXTvn98BpFBVRERERERERERE9trZZ5+N3UOF66WXXrrLAPSUU07hN7/5zR6Ps2bNGu6+++59auNcUagqIiIiIiIiIiIyX1h7yFSqPptpTFURERERERERERGRvaBKVRERERERERERkfnCWoiiudr5HO338KNQVUREREREREREZL44hCaqejZT938RERERERERERGRvaBKVRERERERERERkfliLieqUqnqrKlSVURERERERERERGQvqFJVRERERERERERkvtCYqocEVaqKiIiIiIiIiIiI7AVVqoqIiIiIiIiIiMwX1mLnqFJVhaqzp1BVRERERERERERkPrHq/n+wqfu/iIiIiIiIiIiIyF5QpaqIiIiIiIiIiMh8Ye3cTVSlUtVZU6WqiIiIiIiIiIiIyF5QpaqIiIiIiIiIiMh8YZm7SlUVqs6aQlUREREREREREZH5Yk67/8tsqfu/iIiIiIiIiIiIyF5QpaqIiIiIiIiIiMh8oe7/hwRVqoqIiIiIiIiIiIjsBVWqioiIiIiIiIiIzBPWgp2zSlWVqs6WQlUREREREREREZH5QhNVHRLU/V9ERERERERERERkL6hSVUREREREREREZL7QRFWHBIWqhxmDAWMOdjMOnnk49ofVO5aIiIiIiMg+MRy469/9uTY7UO3Y1zYcCq/D3rZB18Iy3ylUFRERERERERERmS/mdExVhd2zpVD1MGOcJMaknrnjmXhYXmujA7q/vbXj8cNZrDPLNu/rc9vdc5m2z9ob1oF5DeNd7vlNUN8KioiIiIjMfweyQnHnBziYPSF3fU016+c987psN9d3M/e4u2umuXrdD4V+p89cGywQHbA8QeSZplBVRERERERERERkPpmr4Q9VfzVrClUPM7nMCtqSKw52M/aLwZ1yu1oJu4sqTjulIjUkwNr4fkSEJax/4xURYW1Y34+1EZH1J29PeXyHY9gdq1736vmYyedTa4O11R8ioiioLp18bHL9vfnGLpzcxsT7m6a6r9q3rWbq8n14M1alq4iIiIjIvtnrKsedVotOr8DcYZ971Qtwxr6mbevuZtn+MTupRJ2+f2fa41OXGWbcn7FsNnZ37bWna7FdvQ4HrvflvtmX4x/oStHZtiGMKvhBnijKq1p1b9l971QrB45C1cPMOalX85KFSQAc7LTP3r3NzYyZvk1U/ZB2aqHcTvY9c52p683m+MZMfmw6ZmfdL6rHqR+vOpQIhkoEYQSBhdBCJTJEFkIbx3/lMH48iCyhhXJoCW18uxLGMWy8L0tkLXbKR2xYD2enPwlnRgunLq8tM9UXwFpLhMUnICAkNCG+qVBiAt+UCa2PbwvTAuHJsLcamLLzD3pLSBQF1fA4DpAjG9TXmQxvJ4PbeNtaEFsNdmcErzsXrzPtpE3DDYiIiIjIs9wug9Jddp/fRSg3dT/1cMqp7qp2341DxmnB4uTt+u89hJaT+4j351TXdxyvur07bb34tls92t6HimZGQOtUj11rq0uiftsxLi4JHBsf28HFxcPBwbFO9bbB2Ljd8T2n9krscK02Ve26rfbbVq/Cao9FM6+7zOR9Y6c/P2fKMaf+nnzOO74eM6/rpl5HzrzmnI2Zx9zdc59p5vF2dvyZr8fO/vb70oYRZ5Rt4SMMTTxGGE7MprkihxSFqoeZa07Kc+LXTwHHAbf653UciKL4Bya/ztjdt0fOlGVRtONXIK43fZ0g2HEd4+y4n10dv7ae48RpavW+NQ543uT21X2Y2j6CMD52uYwZHYNiCcqV+CdfgrIPlRBbDoiGS0SFkKhoicpQGnYJKi6Vist4MUUQuviRQxgZKpFLEBkshtAa/MglsAZr4/rOWsuNmfzAsTb+0Ki9CjtbJ7SGQpCmEjmUIkMpNAyUDYXAUghhrBISRJbAxgGvbyMia8FQD3mnfshZawmICAkpuiXKpkRAmcD4BLYch63EVbkVWySMykTWJ7QBYVSuV8xGNqiGrJP3qy2ecqypf9+pVa4R1tidL5vceIeTTIWsIiIiIjJf7LGydFpwupsK0l2GpDXTQ0xjvGlBqVO9b3DwnBSO42FwcYyHaxLVZW49rJwa6NWCMIM7LbR0rUeKDK718HCrv+MIM97O4Jp4a4PBMdPDw6lPfXePOab2UsWtMgZcY3CNwTHgGki6BteAZ8B1IOnE911jcQ2k3eoyY0m7tr7MAVKuxWDj+9Vindq12MzruIi4UMdipv2edpvJa7ydqe3boVYQZOvPs/5c93DNY6uvTb1oyE4+NvXxnXGm/rOacuyZy2a2w874t1x73rtq07R12fGrgJnPdeqx99SOp/PN/KK3k18mBygUC7pG3BtzOVGV/gyz9qwMVY8++hhc193zivPQslMaKHzlMcLA4Jdd4lpPi+tFJFIRxokzzSgyVIqTyxOpENez9eV+2SEMHGq1oolUEC/3LEQGvxQvt9YQRYZkKsBNWBzXYiMIA0MYOEShUz++41pcL/6/MwwMUWiqxwDXi3ATFi8ZR4Y2MIS+wa+4GGNxnQjHi3CTETaEsAKh71AsJrCRwZiIVMLHOBawRKGhVEwSRUlsBI6JSKd9XDfCOBZjIpwWS8aLaEhautoinKyDSYPJuJhcMg5zk278O5OMP9UTifh3Jo1NJMCrhteuN+XTpfoO5DhY42BCf8rtADM0DKPjMDwGI3mCRwcobY8Y7cuwZbiJQuBRiRz8yKEcOVgMQTT9wx3iD3jfgh8ZKpGht2TI+5ZiaCmHlnIYEVWD2RDLqC3Wg9eKKVK0o3HAik8QlYlssNPAdbKqdUplrA2mDaVgpgy1ANNDeIudUnJcC9YnQ1Z9cIqIiIjIoWinQepuuuHX1zcO00PTKcObTasudaZUhE6uX1vHcRIknEw1SI2DUs+kMCau2MzSSooMKZvCtR4Zkrg4cWRaCytnhJwOcYDpOYaEY0i7hoxnaEoYEo4l6UDCgbQTB5aOsWAMSSe+DHKcONQ0U37iQzj1c/7QGqyJC1QiE/cgtBjC6vVM2TrxdQpQjhwCa4mqg5P5IUQmvka1GCqmmhsZEx+PuDuj60w+L2MMjjMZULsGjBM/T2NMPcc21edeMz1InFEasjeXKDP+Sezr4Ag77cm9p3bsIvPd2zbssRf51HbsxcgVe2rHUCYk2baJIwqLCPyGadeGYRiydu0jsz+YyEHwrAxV0+n0YRuqJpsdsi/qrvZ/r1aPmuonX8KbrFqduTzpxZ8+teV+EPejr4VjCQ8S7mRFadmPP4XCcHK558aftLX9B+HkJ5VnwHHjY0C8PArjY9SWe9V9QLzfWhth8us+z61Wp0ZQCWguVOr7MKls/XWwfkiUD8C32MjGXUqSyfiz3oANISpE2IB4LJIEWMdgQ2DCwKglCkKsH2JtBeMUcBJgvOq3dr4lqhD/BA7GWBzP4iTBuNX9V4PfcsGLl7sRjokwNiIKIPQhCtN43kKSXT5dR1gWH5mD5ixkUvFPNh030Jj49YrCeIyDKIxfh/FxmCjCaIHSPf0MbMwyOJ5l3E9QCt1qla1DKXLZVmxhoGwYrVjGfctoJcAnwrcRBVOm7FTiwJUiEwwTWb8+FEFog/qQApYQPyxNGx82jCr1Stepww5AWP03VAtTzZSQtVZ1PPnvVwGriIiIiBwsuw9RnR3X26Hb/dQu+d60gHTqeKCuk8I1Ho5J4DqpalXpZIWpYxJ4pEiRpdm2kbAJEni4xiFR7eaedBwWZj2akoYGz5J2oTlpSXmQ9AyeE1+iGcdgqtdSvnUJjUuAw2joULIOFetQsVCM4gCzUl3fdR1cx+C4cZu9GRWQO4RlM5bXXrWpGfTMWt4UkNzt32M6h+n7rQ0XZ6q/6/enttPMaOsuxpeb1idvPy5JZlZm7ilUnBlm7m/h4czj76sD+RrsTqbkMTjWyUAmR8UtTbsaDMP9m9vksGeZu0pVmbV5G6p+4hOf4KqrruIv//Iv+fznP3+wm3PIsKEhOuuMg92MZ1YYQhRha8MDVMNet1yKS+J39mYchngVv1oyH1H9arP6SexUQ91w+rAJzpSP8SCIlwfVkBPiT0x3Sijsh1DxyRX96UMehPFwBLYUEBUCojEHGyXib2Y3heCMQzRO5ENYjCt6sfGhHbc6zk9gCHxDuZTAmDSem6D55BxLXp5jycJ2bGsTtr01bo9fxoyNYO79I5XfbqPn0Qw9Yzl6imkqkUs59Bjx04wHhnE/Dl17ij5BZPFtSASUCfBNgO/4+KbCeGKI0PoExGPBVqJ8HMJGQb3qdXIs18r0ilfrE1ez1gLWqeMTTf8zKWQVERERkbkymxB1ZvXp1MrTyYrS5JTbHq6TwnOSOCYRB6SmFpzGFaYp00jSZsjYLDmbrXatr/YQNA4J45DxHNobEqxqcWhIOWQShkTCxXgOoePiOy6jkUcZg3UMFQx9dvpTqHVLd+InssOcFcbEoWYSaGYyoHSr67pTwspp+5kxd8fM2Dnej63fnhm07vHvMuWiYHJItdo+bH3ogMkgNV7fNfG2hriNTq17/k6OP3P+kJlXHfuSVe0sTNzTc97ZYfY1JztQgeq+tmNfjp90UmyZaMBzMlRm/lFkt+xcTlSlP8OszctQ9b777uPf/u3fWLNmzcFuyiFnoD/H0oPdiGea606GmVNYGne72aHwPjHZMWhHLlSHad+NYhFTLoEfYCYmqhXEIWZ4ArN1ECo+lAMo+UQTGZwVK1i4MGRBMeK4sQC/YAnLYMOQVLJEujPASVq8o1rjitl0Mq4O9n0YHifaMIG/qciv7zmCQuhSiRwKgcOTeY/hclwBO+YHlMKQgvUpmCKjziAVW8C3BSq2SCkYicd2jQIiGxBGpXpVq7WTY/PGHX4mhwuoUdAqIiIiIntr+rimOwlOZ4SmcZd7D8fxcIyH52ZwTRyYJp0crkng4pEwWbrCxaRIkDIuCePSlkqwuMGhJWlp8iw5L8JUz24Dx2XUehStQ+B4TFiDcR3chIvrOXhefDvpObgOZL24StQaqADJarf8JNDqWDzH4pmoOg5pHCTWAsVa932nGjS6tWKG6rq1gNQxFs+N4ttOVO3mH8UBZS2kdOMg1ThRtcv9ZLBqptSeGGMnC3hrwerMwt6ZJatT/yTT/2gzh6CN13Pibv3V9HRygTf1T2viIQNmprI7/BvYhf0N9/a0/7k45p7srk0HKcxc/oDDQGkBD4ctFMrbmDqnh8h8MO9C1Xw+z5ve9Cb+/d//nY997GMHuzmHnJFS6tkXqj6bZTLYTAYA29m521XNyDBufgIzUYRSidRoPh7moRxgiwE2CLHFgCgfUnjUEFZCwqBE5Fsc6+M6AV46S/r4Zs75025sVxukk5ixMSpfv5stDzbSP5FloJxi3PcYrKToLTWxeaKDCT9iIvQZo0RvajMVW6AS5fGjIuVgrBquVoiiSnX4gOqwAbWhBEx1lKMZE14pYBURERGRXdmhEtVMpnDxjPMzQ9S4275jPBJeA56TxHOyeCZF1mklY5vIRY20kCWBi+cYsq7L8xbGXfAznsUmEgySJPQ8CsZj0HEY8RxMwp3sSu9A1kDSgcXOjK7qpjopE5aEEweyCSfCrYafCcdWJ22KSLoRrhPhOfH9RCKMhx0z8VwXjjs9ADVu7WWwGNfiVKfYMC7VYcyqQaU7JaCsjV0al4HGK1fHAjD1nn5TXmeHKSWL1fV2NnORmXG//jdydly3/pCZMsHxlLLbab0O6+nu9EmTZ1ay7G7SZjgwJYB7OsZcHXdvTG3jM31soKV/Ey1bwHPSz/ix5725nKhK19mzNu9C1csvv5yLLrqI8847b4+harlcplwu1++PjY3NdfMOuvFg3v1J5RliW1qhpXXnb4+RhWIRZyKPm58gMTgSV7lWgsmxcW2ELYdEgwUqPxsk9IexocXBp+H5R7Hqte2sXLwA29iA6evBPPEU+f/ayANruxn1EwyWU2wpZnh8pJkxP2CMMuPuOIPeFiq2iB8VKAWjcRWrDYiiuIp16rislpCpIw9puAARERERqdl5iAo7C1Idk5oWonpuphqiZvCcFDmni5xtoSlqJEuSFjdJW9pldSMsylkSaQ/fTVL2EuSNRx8ettp7LuFAxoWFXnzbq5+0xuFmohqOJk08cW4tMK0HqtWJepNORDZZIeHF4anrVedpcCzGBTcRYRLgeGASYFJOXMXpmjgEdWYEoK4z+XI4DsarTi7lunHS67nV6s/qrFQzA0qHOITbXXg59XWvh6I7CxdnrLOr9Wbua2oIaOKhDybvOzP2N2PZzsys3lT382eU19VDzo1wSWLqAzmIzB/zKoH79re/ze9//3vuu+++Wa1/3XXXcc0118xxqw4tfrSvcw3Ks5pjoCGLbchiu4BVu17VEA8qP83T66FQxPSMYraNwHiBqM/DWbyQNY0BifQEmZMaIJfEPu8kGB3D9PQz/rVe7nzkZAYqHv1lhwcGQ0Z9n3FbYswZY9BupBzl8cMJgqhMJchjbVCvZt3lcAGgIQNEREREDmO76s4/dQzUeLKoRH3c04SbJeFm8JwMObeLDE00R200kKYzmaYz43JMkyXrWsqRoYCDk0ow5iQpJxJk0x6pBg9SlqA6xmgOWJgISbshCePjOZBxAxJOSMKL8JyQdDKoB6KuZ/HSEaYahDppJ64K9Zw4DE3HSaxxnDiRTTXEEwZ71SHPkt5kkFmbiLgaglrPmwwWnWqoCtPDSjMZrFrjYOv3dxFO7jQQPcCMc2CqJKO92Icm+DkkmKyH59gdvxCRPat25pyzfcuszJtQdfPmzfzlX/4lt912G+n07ErDr7rqKq688sr6/bGxMZYuPbw7x2ccjUEiz7xo1codHjP9/WT7BmB4LD7xG8pTeXIMHr4fYyokjmmk8fwFXPSR1ZihYdjUy08+7dJbStJfSbO90MJjo52MmAKjySEKDDMe9OJHRYKwGA8ZEJaqE2D51aEC3LiiduoEWNUhAxSsioiIiMx/O4apU8dF9aZ153fdNK6TjMdBdRtodLvJ0U5T1EyXydGR9jih1dDgRlhjmPAShOkk25wEXjpBKu3RmoRu12ItJAxkvJDWRByeuibCMxGNKZ900ieZDPESIW4qwnGZDE6zThyeJj1M0sVkEnGQ6BnwvLgq1HPj8DSdjm9jqkGqA44bV8F6DnjVbatVo9NC0ZkB6Z4C0dr6tUBzZig5c/va8mjGDDlTAkozm3B0d+vMXDRz3WjnRRSTz8Hu0KZZH3s/mP0Mae0BmmVqf9uxK3vTvr1pQzhWoRwaIoJ9adazmwU7V39vXTrP2rwJVX/3u9/R19fHKaecUn8sDEPuuusu/uVf/oVyuYw7Y7KiVCpFKrVDTd1hrSVVOdhNEAHiMV6njfM6USB5Yh8MjULFJ3qqn8KThuCPG0ilCmROauCCf0xD5EPvIGM/G+a/H1hJXynDhol2+oo+G91+xhJDlOwY5ShP0R8isj5hVCEMS3EFq5kcj3VquDp1qAAFrCIiIiLzx26rUqcEqa6Trk8s5TopGhIdJJ0cGdNMa9TBIqeFZbkEKxog1+BSTqRoyHoMOynKnocDNCZgRSKeECrpRDR4ERknJOOFpNyQlBfSmCnhehbjRLiuJdUa4TQ5OFkPk05jkt7UxkMuDalkPAlsOgWJGdPRum5cZZrwsOnM9KrRWmhSC00TiekTPdVHFoh2DEWjaHq4aCfv18NPG8VBZhhMJik7Cx4jWw9TTRjtGGLWto1mPL5TU5bt0OYZ+5u6jrVTjjOjrVF1PTtl+521YWf7rdmfqty9qZLdifqfdH8rg/ezHbti9qZde9GGytaA8cAhtL6u0WRemjeh6rnnnstDDz007bG3ve1tHHPMMXzoQx/aIVB9tmrOlPe8ksjB0JAlalgBK+K75shBciduh/4R8BsJNo5TebgAxpJe0kTjBY289Q0ejIzwxFfLPDrczH1Di9lW6Gaw7DNKke3pTZRtvh6whlF5yoRX5Z2Gq6pcFREREZkfdhamGtxqhaWD46TqXfsd45FONJNwcyRNhrTTzJJwJU2kaEsmOGWBS64pRSmVhmyasRAwcQ/6BYl4LFMPyHohOS+i0fNJehFpLyCdCMg1lfHSEU4G3Ma4u72pdrF3OhqgKQPZdFxp6pg4WAqqvQgzaWwmHf9OpOIK1CDEBD6EUdwV3/Hi4LVWFBTZOOicMkcINoofqwlDTFgtKAgjqN2eEoBCtXLQ2upyOyVsnXI7CCaDyFrQWhNFk+tZC35YDc5qASfTQ85dVonW9jdlmK5p6+6kyjRiWpBqp4altWXV5TacXGando2e+lyeiRK8vck1n8nR+3bXroMximAEgz0NDFfAt8ox9tpcdv+XWZs3oWpjYyMnnHDCtMcaGhpob2/f4fFns+aOQjzBkJ3ywVf7ptOd8uee+U2m4+w4899sltc+0Dx3z9vDzruYTG2j4+z8G0NTHSxd4flhw7a3Y9vb6/cdoDawhxkcxGzdDtuHKG8o0X5MknPNGK8+MwOdOfCSUEpw+0ePZGsxydaiy/0DPkNBiUFnkDyDjAabqQQTcRVrVCGMJrA2isNVGwHVk9zaSZhCVhEREZGDanI81JnVqPH4qODiuVlcJ4nnZsglFpB1WmmJumixjRzR2MDJrRbPWKwxDDkpyuk0JpvCZj3SKWhyLA1eQHsyIO0GpL2QbNKnqbWEl43wsgaTMZiGBMZ1IOFichnoXAS5hjgcdd040PTjINLmGrDZLGQyk0+m4kOphPEr8XiniVRcpeq64PsQVqBSwUxMxE95ahf/IIq3K1cgPxGHmPXA08YBahBCyccG1esuP8JW4vVq4aL1gdDG3YRDS+RTvV39sYA1cR1CZIhCsNbEOWXkxIcM48mDwtAlikyc9UbuZIGsNdVmmer9+C9pdzFGZjTz8an5aXUf0ZRltcdsdRKjyE7uO5qSr1prCKdMdGStIawtm7L+ztTnwNrH64FdPtfd7G53vekPdDsOhD21aV+PvbXosW6sRDEYjP9Riswz8yZUlVmyBvPDO7BBiC3Fb0qmNrtjtvrnjoAwwpaDerZp0i7Gc+vfUNlSAEE0fbnrgGsml4fVD2zAJB1Mwo2XhxYbVj/YQxsf35uyvHZ8P4pPAohnqCThxG2wU7YPIjDx7JX18YccE58kVL9drQ/ink3FXzUbM3myAfF914FM9SSmdpIWVt+0a4O818YzgskTllrAm/DisYxq3W6mfusL2IQ3ORj8jADapqpdfDxv95+eUlcPXI8PSR25iVTfIJR9Cr/sg8dLeKkiyVPaeclXFsDwKNFv1/Hf31rExkIj68cb6Sku5nGvibw3SCkaoxKMUfQdrA0Io0o8REBUqVawAjasn8QrXBURERF5Zu1snNTJMDWFYzwcJ4nrJMkmO0g7TWScVlZEq+hwUxzd7tGdjig6LqYxxWAijZNJsjBjSDoWx0DGDVmQ8kl7AQ2JgKaGEolkQCIT4eXAW5zFNKUhk4wrRt3ahE8OpJLx0FYN2biSNLLgV6BUgkqlep4/pcAkDONAtTiBKfvxY26xfq1iiiUolqBYhHxx8qm7TrVqNIRKACWfaKwcXxPVwlLfYoM4MA2LEAWmHoiGgRuHnKFDZA1h6MaXRNYQWgc/jINSiyGy1R+oh5dTg8uwGpZG1bAyiOLHLLWc1kwWkFbbXw9WZ/l332nv/J3sK5qyzNrJYHZqqEq1XfVt7OT6u2tT7V+eMTt/fFd2tr/9LYKd2YZ9dSi0Y7ZtGCzDMHnCUMMY7pND5NL1rrvu4tOf/jS/+93v2L59O9///vd59atfXV/+1re+lW984xvTtrngggu49dZb6/eHhoZ473vfyw9/+EMcx+GSSy7hC1/4Arlcrr7Ogw8+yOWXX859991HZ2cn733ve/ngBz84589vd+Z1qHrHHXfs03YDAwM4z8QshgfB2MYKxe1FwsChXIk/VB3H4rkRyVSAMTb+1i50KJU8rDUYY0lVB1U31YEnK2UPP4i/jTTGkkyEuF6E48TL/YpLEDlEYfyOO3W5tYbAd+rLjYGEFy933ah+/MB3CML47+C58XhEXiKMlwcOYWio+PGJh+tEeImIVDoAY7CRQ2QdgsDguOB5llRDgEkAGLAQlJ34tgNuArwGi5OszoRpISyaemjsZky8LFmdxtO32IqNv8GNwEmA8Uw8Or0DBMThcWQhqi5LxeEvxsShcRivY5LVQDjtYVJePKaSWz1BMwaSiXhQ+kQCMmnwvPhbasdAKh2Pr5RKQiL57AtlXTeeBKs6EVa2+4n42/qST/B4L+VfbyfZXCGxdCGv/WwDdu0mHv+uy6PDzfxk+xH0FZfTZ0YZTg0w6D5NJZwgCIsEYYkQl/jr+6j6WTQ59qqCVREREZFnRhyeTqlMNW71t4MxCRJuDs/NkHQbSLlNLORIOmil3UtyRqdDoiEJuQx+KkPZOCQ9WJoE17F0JAOybkDGDckmAjpaJkhmQ9yMxW1xcFIuJpPGNCRgSRc05uJKVC8BgT9ZhOG62FwuPm+HyfFNbQRRCPkJTLkcLzdOfL9QgEIRShWIIszUpGq8iC1UsCUfO+FPD6Cq1yFRBcIyVApufO0TOXFBqu8RhA5+5FAMvLh6tBqShtYQRpMVm7UgNLLUg9Fa4FirAK2p98yv3g4jQ2Anw0k/Ysq2k+tO3ba+rz2cSu8stIuqB7JTxkSNsNVRBmy9l39kbbX+xU4ZraB6Gxvvp7o/W12vVidjsNN6S09NBMyMdpk9JIt2xpPc2XPe0xXFzo6wP4Hmnl732uLZHGJf2rEvYe5wJWST3URfvgc/GJm2LJqj8WEPF9Za5mqiqr29HJ6YmOCkk07i7W9/OxdffPFO17nwwgv5+te/Xr8/c/6jN73pTWzfvp3bbrsN3/d529vexqWXXspNN90ExBPPn3/++Zx33nlcf/31PPTQQ7z97W+npaWFSy+9dO8afADN61B1X23duoXZvZXMP08/EXHmP3XHd6oVncDkODgQh3nOlG9ea13wd7VOTW2dml3NBll7vLbtzO3q+9/Jvn1/8jHjTD9xgbjSdGb7q+GkrT8+ZdnUtlXifZvqAOaJIIi/BQ5DKJTiY1fCuJvNWAFbDOo/4XBAVDFEgSHyoZxPTAbDkQcmPnFz4kJbgsAjiBx865L2QjCGRDIimbIkc1H9G3hrDW7KYBLgZhzcFhfjxZWu1sbhLw44SQeT8jBN1Wrb2lOLqq9Nwo0D2VQCGrLYbAbb1jY5JtNhIjr6qPptd9V2Gp7cgB2eYOz+IrlSGef0UzjmwkaOLYyx9NLHeWq8gYdHu9gy0c6jUTPDbi+FaJByOEbRH66OvRoQRcW461N17NXapFYKV0VERETmxvSu/pOVqY6TmVaZ2phcSMZppYlOumwHz2nNcmKnQ6Y5zWA6x3jkElnoSsMCz9LgRjQlQjJuSHumRDZdJpUOSOYiksuSOLkMpBNxRarnxufR2Qx2wYLpwWm5jCmV4rFGIR7LNKz2SCsWMYWJuOv+RDGuWDXO5PXXeAHyJWzRx5aCuFs+1dDJtwTjlqhsCMoGv+LF3e+JqzMrvksQufiBgx+5lEK3GpjGQWg5cvCj+HepGpLWqjeDKXNERUAQ1QLS6m/isDGKLGEYxWFkZImiCGMtYbVoJAotfmgJIksYRITVdUJbmwtqegBqak/OxsGla+K/rmMsLvGkXw6GhAMOUbWOJR7DNulYXBOPaesYSBhbvw3x41PttOs/1eC4Wnk7GQSb6UOyTqmurYWGDhZjwKsPAVBtt5m85KoVHk29BIPJatqpx4S4HbU2Tl1/ptr+nBnHrr+msNuamsnnX7tvZtzf9bYz9z312LM9/s7asLftMAWDHcywvTRMqbx1xvWXrsXmi5e97GW87GUv2+06qVSK7u7unS577LHHuPXWW7nvvvs47bTTAPjiF7/Iy1/+cv7pn/6JRYsWceONN1KpVPja175GMpnk+OOP54EHHuCzn/2sQlU5cN78yKMceaGDMyU0jnbxZnSg1tmX7ZwZoXZtnZnf+NXM/Kawtv30bxerjxkzbZ3aaAC12zXujPUmPzA8XNOMMfEy14GEY6of9vHvZHUkg9r9lFs7GYBUtQDVNRYHSDi2+iFF/X7tRME18ayinrEkHEtLskRjqkJLU5HcggrpoxswHTloboBGD1oaq12RaultVP9tH91AsL1EWHQojqYYLzTguAbPi0gkQtINPm7K4iTByTq4rUlIuXH1bHMDJKtDIHgetqUZGjLY7JQTy0OMXbgQu3AhALk/IQ7Nt2zBDE7AxkGe8yfw3Oc2gRtBQ5YNf9PLA/3H8/h4kqfHLQ8Uehky2ylEg4xXtsfVq1EJa31sdWgAQ7WrlT7QRURERPbbzoJUUw1RXTeN56RpTC2kwemgLeqmgyYuWJymwY0IHQe3MUOP10CxOUEyaTkiGZJ1S2TckMaUT2dHnkRjhNvk4GQ9nJY0pBuhIQ2NDdjF3USZbHzOWyrHE0VVQ1ObScdJUhhCGGEGBjH5ibiLfqmCqfhxxhME2JE4MA3zAeGEpTzixBWjYdzbLl9MU/Q9KlEyLrSIDIF1CKyhEkEhcKsd3+IiilooF1koR1CJqAeY9bmWquv5foQThSStT6OJyBDgVUNRqkFpFEEURlQC8ENLObBUAst4xVIKoBRaRishgbWE1Z9oF9dhtfPggHiSqICIkJAIS2iC+DcBgQmI4lpRfFMmIsQSEdmQiLi4Jao+G7vLmHHP7JRxN6Mp+7HUguto+rGmrD/1uGbGzEzGuDhTHjNThnMz7Hxej9oxpx53Zrt21va4GntHzow2zWzHzve547F2dfzd2Zdj764Ns22HH+YpVAbx/UFdc+0ty9xNVGXB933GxsamPZxKpXaoMJ2tO+64g66uLlpbW3nJS17Cxz72Mdqrc6zcc889tLS01ANVgPPOOw/Hcbj33nt5zWtewz333MNZZ51FMpmsr3PBBRfwyU9+kuHhYVpbW/epXftLoephpr+0lnIqf7Cbsc92+QFbD0V38mY/5UPOwZmyrjtt25m3jXUmt9kJg1v/sHVNAgcXxzoYHFwSOLX/rIOLF58WWgcPdzLQxZkSABuMMXjx6SOOMdVQNl7HMZByU6RcQ8o1pF1o/xmk3fgb3JRTJOkU6t+ixvuPn5DnQHsyZGGuwtIVIzQtc2k9vR0aMpPju0742LEy4WhANOQw9McMOC5uyiHTOoyTcjAOGA+ctINJMDlsQWs2/hY/mYBsmmjVCpgytskhIZmIhwoAWLWCRPNDlH7Vhz8KqcatLP+XM1lRmiD47j3c9/Mu/ntLNxvHO+iN8jyV+iPFYJBKOIEfFOLTIxvEYbwqV0VERET2y8wxUw0uGC/u3u/lSLgNpLxGsm47R0Un0uakOLI1wZG5EJNLMpDMEWaSeI7hqKyl2QtoSgR0ZUtkkj7pTIV0U0hqdQbTmoFsOh4+K5WMA9R0Ku7J1TLlojtR7eIf+OAHmGI8tqmJbNyDrW8QxorYfBlbqBBNhNiKJSxDedQl8F0qlQwl32OsnMSPHILIEGAY9V3KoUOl2vU+iCCwcVBaiaAYTH99wiAiCEJ8P8KEESlCvMiSIaTJBHG6GoSEQcR44FAMYMg33DfmUwojAhtHmKGNpgxsZfGJg87QhIQElE2JEJ/A+Pi2UA9B7U4mCJoZWE4NK62NA9O4WjWqL6+tE9pqUF3dr60HnAc2AZq5v5nXklOXz1x35nXlDvd3cY2403bs5Bp2b57rnsLLnbVlNsH0bNow2+B0ajv2NhTfXTusDQjCiWkBtRwabr31Vq644oppj/393/89H/3oR/d6XxdeeCEXX3wxK1eu5KmnnuJv//ZvednLXsY999yD67r09PTQ1dU1bRvP82hra6OnpweAnp4eVq5cOW2dBQsW1JcpVJUDolQZIoqCHR6f+cY3mzfmXX2Q7O5NdLZv+Pv6wTCb/cz2g2FvPrxqAW1tG6c6zlPtMYM7eR9n2jY1tcDXiQd+rQa0LsY69WDXCRO4JoFnE3ikyNgsCZvAw8HFJWHcnVbnesYh46XIuBma1nbS4BnaUpaEAc+xeAbakvHP8qYyS44fpuuiZdDRDI0N8VAJpXLcfal/DP/hfvJbPQqlDNb1aO4YIsIDL4mXsaRXbAbPYDwXk/Fg2QJsZxu2qXn6rKcHSy5HdNYZpJesJ907AEN5Kt9/gsSKNN5Zx3HGy5Ms+8fH+M3WBTw61oLbdwq9iW2Mej0U3UEmyhDZClFUpnZKCihcFREREdlLu6pOdZ0kjpOkMbWInNtFu11Ml23hNcuTJDIJaMxCLstw6LAgFff2yjgRy7JFmtIVGtJlGtsruFlwmj2clgbM6kXTx0UNg7hXlzEwpboJwOTzmPHx6nj9JShW4n7y1Qmigr4JorEIf9zglx2KhQzlwKXke4z7CSr1bviGscCNq1GrlaUTQRyc+n5EUAmoVEIqlSCuMg0jGt2INBEpG5G0Yb1oIrCQ9w3jgWGgFDFWiRgPgmpYCqGNKFLBNz5FUyDPIAFlQvw42CSaVqEZB6a16tCQKKpWk9qIyPq7DLt29vjUa7X6PuvrTb+/u3Bzbuw8kDtwwebOK0t3ddy9acPehJr7Y2o7nqljzoa1QRy+7+/sWs9GFubyf60LL7yQG2+8cdpj+1ql+vrXv75++8QTT2TNmjWsXr2aO+64g3PPPXe/2nmwKVQ9zERRnnKluNNltSBo2jfFu1hnT+vtrdnud1/CqgPZzl0fZHcfPLv/lnPnJj+Yd/WtaPz4zPB2F1W1xqkvd5y4itZ1UvXHjHFJmgyeSZEwWdK/zdHy1SIJfBJmiLTjknIckk4czi5pWERjAhpcS8qxNHgeCcfSlixxzLJhske2QXNjtftTgXDdEOURj+J4klI5geNYUqmA5mU+7pIGTC4FHc3YRd3Yzs5ZvD4HxtRJrryLwObzmK3bYGiU3BGtvHJNL5ec0saHnxzkjh8s44GRo3l42PLbxDpG7DaKwSDlYJxKMBYPC2CD6ifX9A9+hawiIiIik3acfCqBMQlcJ4nrpGlMLybndLIgWsaFXe20JOMOZaOZLGNtDSxs9kg7EY1exGmZAk2pMrlcmXRrQOqoBkwuDdnGuCK1VomayxItmD5enxmsduEvleJq1A2b4u7+JR+7dZhgtEI4GuHnHfJjKcq+RzHwKAUpxv0chdBQCFzKUdxtvxzBcAWKQXzu5xrIuJCOQhKBjxcERGWf8YmIzSMBvRMVimFA0QaEhPjGx8dnzBnCtwUCWyaw5WnVn7WwM7RB/DsqA7WK0GhKAU1EVF0ntvOu6JOmPLYPScyez3cPkUmF9jGcq2+1PzNF7cPxd1h7Lmeq2tUxD2Qb9qId9dV1LXVISiQSNDU1zcm+V61aRUdHB+vWrePcc8+lu7ubvr6+aesEQcDQ0FB9HNbu7m56e3unrVO7v6uxWp8JClUPN9Zize6/MZvtW9ZcvbXNar+7eyOe8Sb/jLwF76RLTMxh5jeUe5ztkt20f4dAdmrAWrOrb0qnB6/GeJOPGQfHeNXfCVzj0eM2VIc1SODZFG6YwI0SJPwUjYVWEjZBAo+EcUkZl6TjkHWzNG3Msez3kPEiUo4l4zq8/OgemlaFZJY3YBrSRBOWMG8obsuQXxfheeM0tAySOXIbTkMS0h50tGCXLMJWx1F5RuRy9cmumks+0bYc4/cWaHzpUbxk9TDn9GzjrptacNYfwabCInoSvYx4WxkubyAIS9WJrcoQVbBmchAbY3UyICIiIjJZlerWJ54CB89txHWSpLxG0l4LqzmVhU4jp3R5tKZhON2I05JlYcahMxXRlvRpSvjkkhU62/KkWiK8Dg+3swlWL8E2ZOLK01o46Lg7VKIyUcAMDMLwWNwbq+AT5cvYcoidiJjY7lAqJsmXkkxUEowFCYqBQz5wmQgNQbXb/pgP5TCeK8H1fRKVgMbQh0pAqRJQKEXcNxQwHviUbUhIyJgzTsGMU7bjVCgSUI7D0igOTYOoUg9Ppwaj8e/J21MrTWPh9OrQqd3bn8nQ8xCvKtzX83KDOSDPbb8KhQ7Qa7u3bZh2jXoA/766RppDczym6lzasmULg4ODLKzOkXLGGWcwMjLC7373O0499VQAbr/9dqIo4nnPe159nQ9/+MP4vk8iEff+ve222zj66KMPWtd/UKh62LFYzOH+vnVIfYjv/dgvdnff/O0Q3lbHramNE7uHqlwLM4LZqaHs5BAGccA6PKW61atXtLrGo89JVdeJx5H1SOFECbwoRcrP0phvJWWTJPBIG49f9q2g6V5Dg2foTkcsSAc8d1EvC54zRG55A+FQiGlIU3p4guGhVkzCo6l1PZlVm3EWNEJLDrukuz7x1DMhOudMTG8Pjas2M3HbdlLtLt4pR/Pi7l6Sn8/z++EcD4+sZMPEQh5NuxSCQcrBGH5YIGA8Pom1QXyioHFXRURE5Flsehf/eBgsUx0z1TFJGlKdpL0WmpyFdIeLeMWiZtJJh5bOLH3JHAvThqxnafIClmZLNKVL5BoqpHIBqaVx137actDRQrRsCaTS8Syw+Xw8gVQYQKWCGRmOu/CXyph8Hp7aSjRcIhr3CfOW4rBLpexRLCfpL2SYCF0KgUM+dCgGBt/CaAUmfEtQ9nH9gHQQEBUqeIFPITT0FS2Pj+fxCfCNT9mUGaEXn0LcFd/6BH6xHpxGUTCjojQOUqEWok6fYKm2Tt0O44baHdeJd7D/f8i9cDie8x7M53SwX8+DfXzZe3YOu//v7b+GfD7PunXr6vfXr1/PAw88QFtbG21tbVxzzTVccskldHd389RTT/HBD36QI444ggsuuACAY489lgsvvJB3vetdXH/99fi+zxVXXMHrX/96Fi1aBMAb3/hGrrnmGt7xjnfwoQ99iIcffpgvfOELfO5znztQT3ufKFQ9DOkN8eDYVeA58++xd6H3lJDVmNn9ZacFs5OhbK191jjVUzCnHrZOHQ926rAD9TFkq1WuteEFErVZWquVrk+UWkkWM6TI0Bq10OgmuWXrYtofMqxssCzNVjjruM00HOuxcGmJYGsRk0ox8ussgSmRbhkid8w2nEVNkMtiVyzGLpj7En67oBu7oJuG1B+hb5jC7UMkOzzOuKqRM0p5/vjFEvcPNXPz5lPZ6vUz7G0jH/aTL/cQhqX4hNj6WOuDicBaDEb/D4qIiMizxo5d/V0cJ4NjkiS8LCmvkW7veLqjhSzyspy53CPbkSOfaaA3hJUNlqZEQEsyoDlZZmH3GMk2i9Po4TRlMZ1N8fiqzY07jN9vwhDKJUwx7t5PqQSlCuSL2LEilacKlEfjitRiOclAMUMxjKtRB8ouoY3HPh2cCCgXfYKiTzbwKRd8WpOWUgh9ZVg/7rM9GqFoihTMGOP0ENYDU59KODGt6tTaYEYFqj/lFZtNhelukpLdhKc6BxWRg+H+++/nnHPOqd+/8sorAXjLW97Cl7/8ZR588EG+8Y1vMDIywqJFizj//PP5h3/4h2ljtN54441cccUVnHvuuTiOwyWXXMI///M/15c3Nzfz05/+lMsvv5xTTz2Vjo4Orr76ai699NJn7onuhEJVkQNkticx+3yys0/fPk89Iat1KZmyyx2qZncy8dfMsLgausLksASmOvlWHLomcYyHU/RwnRRZr42kkyOzrpncD7IsNK20Jrvozjq0J+G4pgqnLOqh6bQOGKwQbYiYuGUrhYkUrUtKJI9ugkwKchmiU0+OqxIOsOiUkwBIXwgUi3D7bxi9L8mqk4usOaKPdyxqYusN8PONp/HQqMMdI9sYNFvIh/2U/BHK/giRLVcHWvendR3Sya2IiIgcbnaYfGrKmKmem6UtvYoWs5juaAErG7Ic1WxIZBIUcjnyuTQdOcvSZEBrssKy9lGyLT5ep4PbkcEcdRS2MReHp64zmT86xOehY+MYvxKPlbphK3YoTzhaJhwNKfR6FApJxsop8pUcveVWJgKHShS3d/OExRiDE0U0+kVsoUx5osz6gZCnCmNMmCIFM06BYSbCQUJbJogqhFEZPyjE53pE1bH2J7vq1xq5r1WkOl8Ukb12CHX/P/vss7G7eZ/7yU9+ssd9tLW1cdNNN+12nTVr1nD33XfvXePmmEJVkWeJHSpmdzpmULXKdUrYusNbow3ZcViCSvWGQxgV6xWwjvGoBOM4xsNzM3hOkl63nWQlR0OllQbbwP0Drdy6fSnLHofntRc448ytNJ7YTmNnG7YvoHDfIJVKGmOgacsAJpOA7jaiI1ZBLncgXprpMhmilzyf5oVPYDcPUHwwT8opsehPMvx52M/gz4r4v1nB0+PtbHZ7GXa3MciT+EGByFaIoni2VYzGWxUREZHDyw5hanXcVM9twHXSpLxGMok2juVUjmzIsqwBUrkkfnMO05BiSTKeCHVVrkhrukRTY4ncygi3LYtpa4D2JqKlSyDbMPlF+tg4plyCQhkTBJh8IR4jdaxA8OQwlWFLaTxBfiJDbyFLPvAYrrjkA8NEACMVC1go+yRKFdKVEvm8z8/6fYbDEnkzwagzwCjbCMJCPUQNwlL1C/NaBapPrcp0l+Ep7DRA1bmgiMjhSaGqyLPUzk7uZj9A+ozJuWohbDVwrQ03EBonntgJFz/IY4xHyR3FMR4JN4PrpOgxnWQnWmnKt/DgcBs/3n4k3f8LSzIBl7xjhOzKBJmohC1Yen6So+Q20da6icbjt+Ict4Ro5Qpoatzfl2O6TCauXj3RJ7v6SYJfrqO4NY0bFeh4eZLLhvu5u6eDPwwvY2O+k4dSPhNuP+VgnLIfAf7keKuEk0Mv6IRaRERE5qmpgarBBeNgjIdjUqST7aS9FprdRSwKl/KyxVmidJKwtQmbTrAkCw1uREsipDVZZnn3COmOCLfVw1nSDk0ZyOWwLY07fGluSkXM6BiMT0C+gO0bjytThyMGt2QZK6UY9xOM+R69ZY9SCENlGCkEeKUKyXIFUyxhrOWB4ZD+SplxJthmnqJCnkqYx6+UqATjOw9RYUqQWruvLvgicpDZQ2y6mWcphaoiUrfPM1VOezevDrZvDNgQa8N6wAoOYVTCGIdK4GGMR9EdIuFk6HMz9PmLaBxpp2WomRY3w6OfW0RHKmJZxueFR22m++yQ4OnNOB05Rn6VJfl4mexxW3HaGojOei5MGZPlgEgkiE44Di+TxtvUQ7hpmMqAz1GvKXJMeojf3pDg/qFG/M2nsDWxhRFvKyM2IoxKhFElHm8ViKsaNN6qiIiIzD87q041ThLHpHCcJEmvkY7kkSyIlrHYNHP6shRRZwtkkjS60JKEJZkKLckKLekSLa0lGk5IYVqz0NQALY2QSmHTKWw6M/3gEwVMTx8MjmGHJghHShQ3QrGQYKyQZstEllHfZTxwqESwadgnypfIlEqYYkjCtfQWYX2+zHBUYLuzgRJjVKI8RX+IMKoQRRUiGxBFZXYMUWFnQarO50TkoJvDiar0Fjd7ClVFZL/s8qTSTj0RNfU3ZmvKAITVIQR831CsBq6jzoa44sHxcJ0kv+xpIeFkSDtNZNY1s+SWHJ3JdpblXBZm4N0XP4Xd0kBlU4bBW4qE1tB9XAm3PQVnnYzt6jogzzFavQpWr8IQv2k6t91N/u4hnvPSIZ778qVc9rON3P79ZdzVfwy3Dm5nwGyqj7da8oeq424F1U+9UOOtioiIyCFv5gRUjpOqjpuapiHVSYPXRRtLWGG6uWBRgmTC0J9tImrMckQTtKV82pNlWtJlOpZOkGh3cBfkoGsJ0dFHYBuy4LpxcFoqQqmMUxiEzVviCafGitjBPPlHyuRHU4wU0oyUG9lcSlIITDyJVNGSMhbyBcLxIo9vK9DrTzDmjDNCL2PBNvyoSBAWCaMKYVSqTiQ1tVcR1L4An0rnaSIisicKVUVkzk09KTX1m1MrWuNu8mEUAQ4mcghMAj8o1ANW10kxkthK2m/mkeFOWgdb2frN1axosJy9cIAjX7wO62UZfrSVQuSxtHQ/TkcWlncTrVp5QKtYo7OeS67lUaKnU4x9u5emVx7Heed6nPypBxn7zQqeHm9ls9vLkLuFIaIp462W4+dqVLkqIiIih67JQLU2bqqH6zTgufG4qYu8NSy2C1mdy/CctojeVI5Ee46OjEOjZ1mdK9CWLdLYWCbdGpJcMTlmqm1vmzZ0k/HL8aRTo2MwXsD2jBKNlwmHQ4qDLht62xjxE4xU4orUniIUgghbqJAplhgdLrG9ELGhmGeD8xgFRvD9PH5YpBLksTYgsgEQ1r/k3llXfp2Tici8MpcTVcmsKVQVkWfUtICVyUA1XhaHqliDpUJkyvWA1eBQCcZxnSTDTobtXhPDI8fQOdTOvQPtnNffxkXHbyDXMkoukWDol61UEg6dR67FW7oZXnDSAatcJZUiOv05mBX9NHWvo3R3H4mWCu3nNPD2/iHuHWjlD8PLeCrfwSMpn4ITj7caGo8gHI+fn4k/BTWRlYiIiBxK6t39cTDGrY+bmk22k0m00WIW85zkCp7bYfCzacodTXSlXHIJaE0EdKQCVnQPk+mMcNuTOC0N0N0CuQZsLodtnDIWfmQxg8PQPwSD40RDBYrrQwrjCUYncgyXUzyVTzMRwkQA/SMVmsolikMFotDym+EiAwwzbHopMMh4afvOu/TvZkxUnYeJiMi+UqgqIgfNrgLWyYmvbD1gpTrplY9LxXgU/WH8ZJ5et4mny+0MbjyOewZWsygLJ7WUOf+lm7HlPoItaUbXttM6fC9udw6OWRFXrh6I9nd2Yl/cSZp7CJ4YIEpkWPO3DawZGeC3Xwz5zUATla0nszW1kVF3K6VgtH6Cb2yAxaE2kZVO6EVERORg2mHsVJPAcVK4TpqEm6UjdRQLw2UsTTZy5pIEue5mxt24J9DiTEhrIqA9XaK9uUDuOA+nqxFaG6Ehi23IQMKDRAocA+Uy+D5mfBw29RD1jBL0VSgNOGzrb2G4nGTI9xiuuKwbCZkYLsB4CTcIGHMMjw2V6bEjbOExSuEwlWCCICoRhIVpwy7tbnIpnXuJyHxm0ZiqhwKFqiJySJh2Yls96Z0WNVqq4aqJT41DBz8YxhgPYxL0eA/iVTKkxhrJ9LdyxNoTWJrJckSTw4nNFS5auY2o0sjgz4uUg3UseXkKjlgSj5e6n6IXn4HzYiAMsT+6g4kHk5x0zjDPfWknf/6lQW597Hh+1b+GJ8YneDDxK4r+EJVgnDAqEYUTWCymOpaXTvBFRETkmVbr7m9wwXg4Top0oo1sspNWdynLouW8dnEGL2EYyrWQ7siQ8SxLUj7tqTLLF4yQ7ohwF6Rwuluxxx1B1NICiUR8gHweM5HHDA9jJgrQO4wdLhAOlOl7IsNQMa5KHfFdekoOAyWL8UNS+VGCgSJrh0r02GGGzHaGKk9RCScIwhJhNIG10ZTxUSNVoYrIs4Pd4buiA7lrmSWFqiJyyNrZifDUMVktEdaGGCqUbYQf5Ck7oxTcASrJPJsqXaztW8gfB1sZ/9YiXn3607StHMG0tTL88xyNW0bx1m0hOucMSCb2v8GuCy8+hVz7E4TrXMZ+OEbTc7K84U8mWPFFwy/6GhnuO4G+1AbyTg8lf5RKbaIEGz8nVa2KiIjIM2VqdarBxThJHJPCc7O0pVfTZVewyung9AUefZkc2Y4cLSnDkkxAe6pCR6ZIU3ORhqNcnLYctDVCewt2aqAKcaA6NAKDozA8QWXdOKUhh7GxDOtGmhmueIwHhokA8hM+qbE8w0Nltlcsd+Q3MMI2CuEg5WCMsj9CZIMZk01pfFQREXnmKVQVkXllx0mvqsMFREVC4xBGRYKwQBhVmHAHGPE202M6qWw8mQdGjuTYpohXH7eR1jMnKD3lMPFESFPhDsySDqKjj5g2ccI+ta+lFfvC5+Eu3UTTwg0EWzzs807gjMXrWfONh9j24yN5fLyJzckmRpzNjFZnooVyPKasJrASERGRZ8AO3f2dDK6TJunlyCTaONaexPHNGY7rclmwtJktYYrmBLQkQ1Y15WltniDbFeJ1JXFWdEBjA2Qz2FwDuNXLzMhCYQKzvQ96Rwh7xgn6A7ZvbGSomGa4kmBjwWOsAsOjJYLhCZySz2DZ8tj4KP1OH9v9hygH4wRhqTrxZ3F6135VporIs5E1EJk9r7dP+56b3R6OFKqKyLxVP3G2lur4APFdU6ZcKVAxLhM4jDhP059Yy6+CFrKj7Xxx8xLO+tUijm+xnLe4l9zCEaKNo4z9Vw8A7Rd3ER1/NORy+9y2aPkyWL4Md3QU88TTRBtKZE5p51/e0UD+K+u4+ffHclff8fzM/T2jwWZK/ihlfxAbVerDAdg5GyRHREREnq0mw1S3PhGV62RoyiyjxVvKinA1xzU3cGpbSE+mkaArR8GzPK+lQGu6TEtzgaZTU5hFC6GzDdvSQpRJQxhiKj74ZZynnoJCEcYL2MFx8n8oMjKUYaDYwmA5yeaiR28xPnXLlMv4g+Ns7q2wvjjGE+Z3FP2heJLPqEQQTuy0e78CVBEROdgUqorIYWGHClZTCyUdojCgDPhBgZI3QsEb5K48rBvv5MHhbi4tD7HmzRO0JvLQ0MzYj7bR2DOCWd5JdPSRkMnse7uam7GnPwenqx0ee5rCzVvJHpviTeeMsuhLabY/fgJPe00MOOvjscFwwZaxNh5TduZzExEREdlX07r7T5mIKpVoZrF7IqtYyPMXJvATCTa1dbC4JUF7MqIj6bO4ZYxca4Vkt4NZuQC7oBPb1gapVL0ilWIRk8/Dll7scJFwoES5D57e2kZ/OcWw75IPDMMlS0OpyFhfnvv6K2wuj9PnbmeUrYwWNxNGJcKoUp10ykdhqojIdNbO4URVMmsKVUXksGOx08deNYYoKmKNT+RXCMISmwkZ8rrYMrEIf+1yTvis4dTWPGe8ZZSmkxspP1IgfDhPeu02uPjcaeOC7Yto+TJMcyOJJ0YJ/AzJ4xZxzkf7efKvDL/qW83acjNPJMcoBaMEoUMUaTgAEREROXBqk1GBgzEurpMh4eVIJ5pp9pby/OxSTmiB9u4G+jKNtKUMC1IBXekKnQ0FWpZXcDtTOB0N0wNVAL+CGR/HDA5B/wjB2mHKAzA+kmZoIsMT+SwjFcNIBSqjBbzRcXw/4oGBgAfso+Tpo1Aewg8mqARj08dLtSGgMFVERA49ClVF5LBUO/E2GLAWix9PamXiiQ0mylAOxpnw+vhV0eepiYX8fjDLPZ/N8YG3biDq8QmjBvp7F9LJz3HWrCA69pj9a1NLK4mzVxM9uInh7wziheO8850TdH+zgzv6uhgeP4ZhdyNFfwg/yBOEEZYQiDBWFxMiIiKyb2oVqgYXjIMxKdLJdhoSHXQ4q1jBYrqbk0wsaKaYStCagJUNFRZkinS0TJBdEJA4ohmaG6ClEdvYCInk5P4HBjG9/dAzRLA9z9DTSUYmMvSX0gyUPbZMGAZGSpT7xnGCgHWjPtujEXrNJgbKT+KHE0RRJa5OjYrTuvrr/EdEZOesnaMxVWXWFKqKyGFt6rirBou1Idb4+FEFP3AoVfrJO9tZ76S5P2jgJ8U2fvTx01mZaeK0DnjNEVswfhtjNz5BsbiRzlMizCvOxDY371N7ojUnwJoTaI4szoMPkf/vp3nJcwe4IDHB8+86hrv6TuDR8XE2pdfRU3wQP8gT2TI2qgChur6JiIjIrM2sTvXcZpJejmyyk1PNizi9I0sptCTbcyxdkqM1CR0pn85MidXHD+MtbcB0d8djp7a1gHHi/RaLMDqGKRRgZJzggS2UtsHIYIa+QjtPTaQZ9w19JXD9AGdohJG+Mo+Oj7PV3UhP6WEqwXg1SJ3Y6cRTOtcREdm1uez+b/X2O2sKVUXkWaNevWrBmjigtDbE2ogwqhBGJfxggrVp6CsvZeuWpTw2upR/bH6KzBJD7rguKpuSpG7/Lc6qbqJjjprs9ra3HEN08hpyvSNUHjdQyPK6K0Y55j8N/7utjfsHTuDXqUEmnAHK/mg81mpUrLdbQwKIiIjI7tQC1bg61cNxUmST7TQmF7HYHslLFmZoyjqMtLSSyiZYmAnpSvt0Zgq0tRdIHNkKizuwXR3xl8mJZNzNf6KAGRiE0TyM5In6Jxh8PEn/eJb+cpqBisvGvMGxEdmRcQb6ivxmIM82ZxvDZjMT5QFKlcH4S2MbVMdMRWGqiIjMOwpVReRZZ3LM1RCMqY/bFVifMKowWtpMyRthNNHD9vxSrr1jNWtaIi4+9WmCKEmpv53M0wWST27HHLUorj7dR9FLziDZ8TDhw9sYejhi1Qk9XHnqk3znZ6voX38am1NPMOZuo1gZphKE1fHFNCSAiIiI7NzMyaiM8erjp3amjmFFtIrT2hoYzDRQ7migLeXQnrYsbyjS2ZSnsaNCcpEHy7qwXZ3Y1jZwqvssx2OnsqmPqD+P3+sz0Z/gicFW+ssegxXDeMVSHMwz2JMnYSwPjhR43PyeCb+fkj9anYSqVp2qXjgiIvtkLieq0tvxrClUFZFnJYutj7dam8wq7kMRUAkgjEpUwgmK3iC/GEvy1HgXa8eP5Iz2Mhecv4nRhxopr+uiY8NTpJqbiJYv27eGJBJEpz4Ht7WFxFMPQ66b5JlZ3rxyI+s/v5DfD5zMOq+VIWcjw8WAMCoRReU4XDVhfUIuXYiIiIjItEAVF8fJ4LlZkl4jTYmFnOIey+lLUixc3sz2KElLErpSEd3pCksXjJBZYHEXZDBdjdj2Nmxj02Sgms/jDA1CzwDBuhEKPYbhkUb6CxmezCcYq8DW/gITfeN0uJYNY2U208eA2cRQ8WmCsEQYlbA2HudeY6aKiMh8p1BVRJ61pp3E2+o4XhhslCeKHIJglFKln0e9QZ50s/w6aON7I4s55+sn8pw2eP1JT2NKDeS/9nus/SMNxyfgzy7cp7ZEq1bScO1KnLVPYh9aT7Gvhau/5GIf6+fuby/i9r6j+O/Bpxi0G5jw4yEB/GAUCKqVt5oZV0RE5NloZpBa6+rvOmnas0exkCNZ6XZxSodH2JzD6cxRSRhe1FRiQbZAW0eBzFJwT1oCTY3YbBabTEAyiSnkYTTATEzA4xsINo9T3AyPbO6it5xgsOIwVIZsFDCydZTicIVHxkd43N4TT7wZFqpfCBenBamgcxYRkf1hrZnDiao0AdZsKVQVEZli6tAAterVIIwnUgiiEuVwnF/ZDJu2LOGJ8dWseTjiklPWU0osoHhfgq7ue7AnHYNtad2n40dHHwlLFpNd8ijj/7sdCjlOObaHU4+P2HbLETw50c7m5NOMOlsYtwFhVAFbxhL3/VDlqoiIyLPH1EAVHIyTrHf1zyTaOMaeysktOUzSI1jUwoLmBC1JS0cyYHnrKM3dZZLL0pjFrdhlS7CZTDwZVRhixsfjiagmCjA4RvmRUcZ6kvSO5thQSDFYgeFixFjvOJWRAg+OjtPrbGOQjYyVtkypStW4qSIiB5wFGyn8PNgUqoqIzDB1QisIiaIy1gREtkwYltjGHxlL9NAztpz1490ckVvAma8awDkiQf7nRbLbRnDWrCA6/th9a0BDluj5p9HYfzulRyLoWEz6pCRvfWyCX/Q184fBE3jKa2d9skglGCcMPcJoIq4AMZMVICIiInL4qk1EBU71tkfCaybpNZJLLGCBWc1LOnN0dDcwlmsEDAvTEZ2pCl3ZEm0rK7hLcpglbdjuBdjOznjHYYjJ5zGDQzA8jh3IE/YW6dnQSM9Ehu2lJFsKUMqXaRwZJShE3Da+iX6znkKln1IwShCOV8NUVaeKiMjhS6GqiMguTIarIdaGWOMTUWasWCRf3k6feZSnvBxPPHoaKx5ZxintaT76tqdxsisY+/Y6YB1N/+dYoiOP2KfjR698CclXgrP2SaLfr2PN8wLOfFEJRie4599b+dxjF/NU1EO/Xc9gcR1BWKjPpIv1p4WruogRERE5PEwNUx0nhWNSeG6WlNfI6sSZLHc7Oa0jQVPWZbi5Bbc1yZHJiO50mWMXD5DttridKcwxq7BtLUQtLZDLxTsvlzEDg5jefoLfbKSw3TA80kB/oZOHx9IMlSGMLGZwjIefHuXJsIce+wRDhacIwgLWluMJqGxQb6/OQUREDjzL3NXSqEZn9hSqiojswczKVQtEYUBk4gBzu/MQ+eQgw4NHsuw7K3jTC9dhgyyF5GKydz2GNzJOdPIJkEjs0/Gjo4/EdHeRHr2TkV9ZkkGR55wyxMUTK7mrfwlPjLfwUCpP0R+iEuSJbIUojLCmOk6sPhVFRETmvcmu/m69MtVzG0m4WbLJTprdRZzdtAiAcmMDE52NrM4ZOpIB3ZkSC5ry5I7xcLpz0JLDtrdBrbt/xccU8piRUegZwG4ZYmR9goHxBnpLaQbLHj1FKE9UyG8f4Q99o2xyn2Y42EjRH4orU6NK9ZwpUpAqIiLPCgpVRURmaVrlanW81TCKKFT6CaIy5WSeW7acTd/Pj+QVi4ZZc8k2ShvTRGMRycFR7ElHYxcu3LdjNzfjnXsczY9uoPjwApxEntdfVWTVv1ju6G1itPck+tIbyPs9lPxRKtYHG8R5qokwVpUiIiIi85GZOmGIMRjjYoyH62TIJttpTCxikV3NcreN1a0OE22tuOkkrSlYkSmzoKFIR1uezFJwjl0GLU3YhgykUvEuy2WYyGO298LACOGWMcpbAjYOd9FXSjBYcRkuWxZMjLC9p0jvaMQT5g+MlbdT9kerE1GV0Re5IiLPoDmdqEpmS6GqiMheqk9mZSKsjQjCCaLqpFEPZR9itPcIthZaecFXm7jkhU9T6C1SHrLkJh6GS/YtVAXiYQQWLSLb/RjR031UNhZ5znkDPKfYx+ZvHsET4y1sSm5k2N3MaDGYvMixAdaEmsRKRERkvpoydqrjZHCdNEmvke7E8aywyzi5LUuuo4Hx9hwtKUNzwtKeDFnROkZLV5Hk0iTO0hbs8iXYbBZcD1PIQ7GEyU/ARAG7rodgW5GJHo++4RY2TqQY9g3bhiqMbB0hFYX8bqjAJmcjw+UN+EGeMCpWu/rHgarOMUREnhl2Lieq0lv5rClUFRHZBxY7pRqjTBj6ROEEW6Pf0us+zCO2g58VlnLf/6zhxV0+f/K6bQTrm5n421toOs7gnLCE6OQ1e3/ghizR806F50HynvsIH0sw8dA4n/+L9djQ8sMfHsEdvcfyU/cxhsPNFCr9VII8QTgOBHEgrAsfERGRQ9pkV3+DwQXj4TgpXCdNa2Ylrc5SVtrlnNaeIfIcUt0ttDQlOaoxYEGmRGeuQGNbieyaRuheBl3tRO1tk2On+j5m01boHSbqGaPSE7Dp6Rb6Ss3V6lTDYNESDo1iR4qsHShyv71rynnF6LRJqHROISIiz0YKVUVE9pe1QDwkQK1qNbIBQVjk11EXA6VOtv+/ZVxy1GYWvK+b0q9GML3rSW0bJHr5Oft82OiM03G7nqaxaR3ldSnSZzTymudMsPSfRhl47CiejFrpTT9N3u8hXwqIbHlySABCDEYXQSIiIoeYmYGqcTK4ThLPzZJJtLGS57DCa+HMLofRbJZERyOdGUN7MuKI5nHaWifILLC4CzKwtCPu7t/YWO/uT7mMGRmGLf0Em/OUtsPIUAPr81n6yx4jPhTyFTIDIzw+GPBofpTNzhOMF7dOmRRzMlAVEZGDY84mqpqb3R6WFKqKiOynqRNZWXyiKMK3EVEUsMl7kAl/OSNblrOlsIx/fGIjXlhgoredwkCC1pWPEx17zD4fO1q9Cjo7SeTvpHR/kURzhVNeOcprC1lu7+1m7VgjG5NN+GGRSpAnjEpAGVu9EFKwKiIicuiIJ6Ca7OqP8Uh4OZJeIw2JDlrNUl7a3kE67WAWt7Agm6TRs3SmAjrTJbpXjJNYlMTpaoTWRmxHG6RSWM+LJ6Maz2PGRqF3EH/dGPntCfpHGugvpekpefQVLGN945jRAr8eKrOebQyYp8mX+6gEY9jqmO3YENCQQiIi8uymUFVE5ACpda23FrBFQkLGS1sJkgWK3ijDg6v5xr92cvHJ62m+JAWdjQR3P47XN4w98RhsW+u+HbipEffsE3AfXU/hD5BsXcBrPuqy9FOj/KKvmd8PHsuvUsPknV5KwShB6BCFEdbEM/RqEisREZGDb3JCKmfaZFQNyS6avEUsilaxMtnMysUZJpqaqUSwMh3SkfLpzBZpb50gdXwzdLdBaws2m4GEBxGYcikOVfsHYHCUaNsYA+uz9OWz9JWSDFY8Rsd8OkeGSJUinqzAwzzCaLCFoj9EEBawUytU0bmDiMjBZOd0oipNgDVbClVFRA4ga6N67aeNQsp+QCUYJu9sp99by8c2ncA3NqziqNuSvLBrhD//mIG2DOF378Zb2YI9+Sjsgu69Pm60YgWsWEH65eBs2szYvz/AiS8OOe2kAkQhn/i7F/H7gYAno2302XUMFZ6qT2RlKccXchoTTURE5Bk3szrVdRvjrv7JVpq8RZzhncoLFjgYz2WirRVakixPhXSlfI5cMER2QUBiYRqzeAHRicdCU+Pkvvv6MINDMDiK7R9j4qEio0MZ+idaeGg0y4gPUWhpy4+yYUOBB0fybHKfZiTYzFhxE2FUmQxTVZ0qInLIsECkiaoOOudgN2C2rrvuOk4//XQaGxvp6uri1a9+NWvXrj3YzRIR2UH9YsNarA2xUYUgnKDijzFUeYonzQP8triZmzdH3PlxH/74EI4dYehno9jbfo/zx4f26/jRsqU0vbQDd3EzhT86hJsnuPJPnuQ1ywzPzSzlCHsKuVQ3Sa8Jz23AmATgVMdu07eSIiIiz5RpgaqJx09NJVpoTC+mM3E0x9oTObndJWhsoLK4i8bGJMuyAcsbiixvHSW3OiK5qhGzrB26OyYnogIIwzhQ3TZAtGGQ8roCW7c3s360ifUTabYUYGy8QmFjP719Be4e3cYT5g8MlJ8gX+4hCCewUVHVqSIiIrswbypV77zzTi6//HJOP/10giDgb//2bzn//PN59NFHaWhoONjNExGZZnKc1XgCK2MhjCYoVAbxoyKVRJ4JM8JNG05ky+dSvOZ5T9P2qhaKvxrB7fdJbh3Yv0mszjoDb+E63D8+zdB9Gdpf0M0bjh1kwVey3NXfyvDg8Qw4TzPhD8QTa0XVSaxMqOEAREREngG1LzINLhgPx0nhuVla0ytZYFexyungBUtTBB2tVFIJulLQloxY1VSdjKrb4q3qgNYcNDViG6uBamTBr2BGR2FTH8GWUUpbYGQoy8Z8lv6Kx0gFFhRGKQxMsKlgeGC4wKbojxT9ofoY7Nb6TJ2MSucGIiKHEKuJqg4F8yZUvfXWW6fdv+GGG+jq6uJ3v/sdZ5111kFqlYjI7llsNaQMAEMQDBOE45QqQ4w5W/h+sJlflJbyH+uX8/Z7DRef3k/mtCzkUkRf/SHeilbsiUdhu7r2+tjRkUfAkUfQ+lrgll8w9niOF5zdx0uOynDG9Yv45cBqHhoq89vEXeQrvZMXUVERCKtPQEMCiIiIHEgzq1MTXiupRDO5xAIWmNX8WdcSjIFSLkupo4njWiM6kiW6siXaW/M0nZGDRcuhrZWopQUcgwl8qPg4T66DfB4Gxgl7xul7IElvvo3e2ripFWi1ZdgyyrfXj7PBeZrRcBuFSj/FykB9IipLqHMAERGRPZg3oepMo6OjALS1te1ynXK5TLlcrt8fGxub83aJiMw0WbUK1oTVrxQjwiisdq8rUkgM84NNZ/JU/ijOfLDIS9/8GP72DBPrDU0jf8Q5ejHRCcftexteeApNzY8TrU9S3jDMS98wyAseLvCd366mb9NJbEs/xbi/jZI/SiUIIarE7TaayEpERORAmVmd6joZGlKdNHtLWR4dxcnNjUSei7Ogha7GJM1JWJ4t0pEr0tReJLXEg5ULsV2d2KYmSCSgWIRiETOeh009RAN5gr4KhV6Pp0aa6C8lGPINA0VLemycTYMT/HbA53HzAPlKDyV/dMeJqBSoiogc0ixzOVGVzNa8DFWjKOL9738/L3jBCzjhhBN2ud51113HNddc8wy2TERk12pVq5gozlVthB/kiaIAPyryx3QTff0r2JRvYfO/L+DtV/ST6QwpP57H2fokXmsLdvGifTt2czP2hc/DWbCOZHY9478bJ3eix9tO2MZT/7yEB4caWZ9oZdDdyEihQogL9WqVAFOffktERET2xbQKVSeD66RJejkWeWtYZhfx3K4MDW0Zik2NLMo5tCcjFqR8lnSMke0M8BalcLqbsQsWYKsVqkQWUyxhRkahb4jgqWFKvYaRoSwDhSxP55OM+lCcqJAeHGHjSMjDIxNscJ9iuLR+Wlf/qYGqiIiI7Nm8DFUvv/xyHn74YX75y1/udr2rrrqKK6+8sn5/bGyMpUuXznXzRER2z1ogHmsVWyaMQqwfMOA8STExzGh5BQObF9P9Hy287HXb8QyMP91K422/xz15gOjkNft86OjIIzBtraS3/JLCYAfZJUU+eObTfPuBlfy670ieqLTyZCpfr1qJbBkbxZW1qlgVERHZN7VAtVahmvD+f/b+PFqSq77zRT977xgy8+SZq86pKpVUKo2ISRJiMI2NwZYZ3K9tMN1uTNsXA8vydQNu0LsPm2sbcC+v5YFeeH5mrX7tod349ozni8Fgm/ZFxiAhgUBoVs11Tp0p54yIPbw/duR0zqlSlVSFpv3RKmVm7IgdOyIjT2Z+87u/vzqVaJbp5ADfPnUVy9MRS5fP0I9TrqzAcqpZrmQsTXepX21Re+qIpRlYmMPV615QBUSriVhfh1NnsCe22Ho4Zq09xVo/5Uw/5mjb0l1rU2l10cLxd83jnBGP0s5WyIot/z7vtBdUnY/+Ce/1gUAg8AzAcemcqsEBe94840TV97znPfz5n/85n//85zl48OA5103TlDRNv0UjCwQCgcdn4ouKc+BynCiwZLR7PbrZChvyYY5E0zzy4C38zi9czosXKnzbYs4/vXyVxn+xFJ84weIrFO6fv+6JjWFxkejffD/xymnEV75J7cWK//2NbW47tcn6Pzje//nv56F8nVPiIdrFaVr9E76QFRpCxlogEAgEAufFYKo/QiBEipQpSlZI41meF7+GF1b3sr8mieeq7D0wSz2Bw6nmxr2bzC31SC5PkAdm4fB1uGoFF8UgJKLVhDxHtDu4bxxBH+/QPqFY3azzjUadjVyy2geXFbDS4N6TbY6xwhn3KBu9hzCmj3VZ+d4eClEFAoHAMxEH2EskfoZ3g/PnGSOqOud473vfyyc/+Un+9m//lsOHDz/VQwoEAoGLw8C5io83ca7A2pzT6uu0o3U2Nq7meHuRb7+rx9wtpxD79pEfgfSzf4978fW4vXuf2G6X9+HesI84+2saX+oT6ZyFW9q85THLF9aWuHdrmkeSh8lNh0K3MbZXxgEUPsaA8AUsEAgEAoHtjIupg2JUkZoiUjVqyR7mo0N8x8wSSSJRy3NctidlMbHsSTVLlT6LV/WILp9CHFiEpUXsUvk+X2hE1kdsbMJWCzZb9L/eZutMjZV2jdP9lBM9ibGOaqNF40yXz65uclw+TFOfpFdsUOg2zmXgLEFQDQQCgUDgyfGMEVXf/e5380d/9Ef8yZ/8CdPT05w+fRqA2dlZqtXqUzy6QCAQeGIMi1ghgFHWqhGWTnaGXHfoJ00axSF++YvX820PFfyzf3qUeM8sm38lmdv8CvKGy7EvuOGJD+Kf3Mhs/Zvohxz5Wo3vf/sm3/53Pf7zfYf4wuoNdNJ12nKFrGhgbB9rrC+4BSESIBAIBAKBkqGYCiBUOeU/QsqUSrJIPV7mANfzgmSJvUtTuIVp0khwWdWwlOYs1brMLfaIr5mFA3tw+5Zwc/OQxGCMF1Q7HTi6MixGdfzYLCv9Kqv9mPVc0GgV2NUGWV9z13qXB/kynWyNXLd8dqrtle/boRhVIBAIPKNxAmfDNP2nmmeMqPo7v/M7ALzmNa+ZWP57v/d7/OiP/ui3fkCBQCBwERkWsRpmrTq0aWFtjrE5RdzmbzZnOd7ey/H/fjVvveEIi6/K6N09RXy6R7R3Ebe09MT2vXcv7rv3Ei1/A3n3Y2zcU2P25jV+4vmPsPfPruDMI7fwWPIgDXmcXrFBNihg5QwIG1yrgUAgEHjOs9OdGiNEjJIV4qjGcvp8LjOHeNneWeYPztFNYpYTwZ6K48p6l70zHab25CT7Yzi4hFvag5ufhzj2/fZ6iEYLVtbRj2zRPw3NzRoPt+us9hVbuePMqRZsdVjPHF9rbXJM3k+jd2yUke40rozxgfC+HQgEAoHAk+UZI6q6UIUyEAg8yxl+uXEOgcPaHpYMY1pkxTr3xps8VMzy9ycP8IcnruJHv7nMv7r5EdKFPp3f/gKVZUl0/QLulhd4Z8sFYl/4fHjh89lzzZfR92hO37OH77rhNG95Q4v/8akX8Y8bN/P1Rpd70r+nV2wMXS/W9nDOIMI0wkAgEAg8h5jITEX5vFMRIUXKVLpMLd7LojjEQbfMi2ar6KkK9f2zzFUl189o9lc7LM21mX9phNg7B3N1qE/hFudxcQrWQqeLPH4CVtawRzfJjhY88OgeVvsJZ/KI1R6oQrN+bIv1VsFfdv6BVnFyWHDSmFZwpgYCgcCzEOeGX70uQecXtvrnP/95PvrRj3LnnXdy6tQpPvnJT/KmN70JgKIo+Nmf/Vn+8i//kkceeYTZ2VluvfVWfumXfokDBw4M+7jyyis5cuTIRL+/+Iu/yE//9E8PH3/1q1/l3e9+N1/60pfYu3cv733ve/nABz7whA/zYvCMEVUDgUDgucRuztVCt7FWU9ge/bjBXxx/Dce7V/NPvpnzT390g97xCu3jirnuV3D/7Lue8L7tt72UaOlRLtvzENkjC8TP38cPzh/hdXcZ/vO9V9I/9nJOpI/SjE7SL7boFxvDYheOohSFRfjiFggEAoFnLX5q/2DapUTIBClSlKoQqymW0xdwubmCF89OsacusXvmqM+kzMSwJ7FcPdNkcW+HyiGFuO4AzM7galWII7Aguh3IC0S3Cw8fRx9r0z0OZzZmONqtsJ5LVrqOSqvN6ukOd613OSKOs9F/mFy3/VR/lwVnaiAQCDxLeToVqup0Otx44428853v5Ad+4Acm2rrdLnfddRc/93M/x4033sjm5ib/5t/8G77v+76PL3/5yxPr/tt/+2/5sR/7seHj6enp4f1ms8nrXvc6br31Vj7+8Y/zta99jXe+853Mzc1x2223XfAxXiyCqBoIBAJPUxxenMQ5EBZne2hX4JzG2Jyv1+5hc+NqTnUXec1XWtSu7VOpaYqHp4n//ou4Fz0PNzv7hPZtrzoMBw9S+dq9bP73U8TxMvOvz/jxG4/Q/P0ruXv9RTzmLmO18hhnuJ9Cd7EuL/NWvSMm5K0GAoFA4NnISFCVw9zUSE0TqxqVeI4ZdYBXJs/jujnB7N467ak6ixXBfOLYm2r2phnLV7ZJDlURBxdwhy7HVWugJGiNWFtHtNvQ7MBGi/7Xm7RWE1YadU71KpzoSlqdArPS4MGtgnvKqf6t4iRZsTVWWNIFQTUQCAQCl5w3vvGNvPGNb9y1bXZ2ls985jMTy37rt36Ll7/85Rw9epQrrrhiuHx6epp9+/bt2s8nPvEJ8jznd3/3d0mShBe84AXcfffdfOxjH3tKRVX5lO05EAgEAo+LK//zU/YMzhUY26HQbTb6D/OI+wpfyh7ml//mOv76f+5DqIL4spzGJx+Dv/0S8sGHnvjOkxh7y83Mf0eVeEZy7Et7WTlyOf/vtx7jXxxyfPfCMjeKm1ioXE29skwSzSBkFSFUOQ1SMPgvEAgEAoFnOsP3tHK6vxAxQlaJ1DT1dB8Llau5Ut7Ci8QLuOpADXtwibVqnTQWXF4zXDXV5+qZJlfs3yK9bhpx1TLu8gP+B9AkBqVAG8T6Bpxcwz26SvHgJqePTvPw2jwPt2sc7SpWTrZwx9cwWcHnO4/wMHey0X+YTnYGYzs4V5QOVTP6HBEIBAKBZxdO4C7RPxAURUGz2Zz4l2XZRRl6o9FACMHc3NzE8l/6pV9icXGRm2++mY9+9KNorYdtd9xxB69+9atJkmS47PWvfz33338/m5ubF2VcT4TgVA0EAoFnAANhVeBwzuBEQTcr6BcbNOQR/oM9wp9sXMXVP3uQmxdTPvR/ngHTpvdfvka39SCLt12PvfqqJ7Rv+72vJf5eONhsIb/6DVb/OOYN37PBW27ooB9Z5/f+5yu5awMebHe4N/3CZN6q6ZSO25C3GggEAoFnHhM/DArlfzgUEXE0SxJNMxXvYV5czj+du5b5BBZmYrpzc8xNR8xEjoVEs1TJuOqaDZL9MXJPDeYP4A7ux01Pw1TN951liI0NxMoZ9Bceo3NSstmocaY7w33NCqf7IPOCZH2Lrx3tccSc4RQPst59AG26fqq/80IqhPfaQCAQCDw5PvWpT/Ge97xnYtmHP/xhPvKRjzypfvv9Pj/1Uz/FD/3QDzEzMzNc/pM/+ZO85CUvYWFhgS984Qt88IMf5NSpU3zsYx8D4PTp0xw+fHiir+Xl5WHb/PyF1xS5GARRNRAIBJ5BjEcCOAqstThX0MxOUMQ9OtEmG6tXc+1vzPOW73mEZLFCPD2H+fv7UKvr2JteCNXqE9v5zDT221/BUvEF7AnL5r2OitS860eO8h2fqfGXx/fSPXUzp9NHaakV+nqLDMbyVg2DWIDBsQQCgUAg8HRlvBAVSISIkTJFyQrT6QGm1T4ut1fxvKkZDs0qWrMzNKcq7KnAwapmT5qzp9ZlYW+PyotmYe8szEzjqhWYKt+L+xmi20E0W3BmA3d8g61HY1abdVb7KWt5xFbuiBodemdaNIzga+5+Nu0ResUG2rRwTntBFRveWwOBQOA5wiXNVHXwhje8gU984hMTy9M0fVL9FkXBD/7gD+Kc43d+53cm2m6//fbh/Re/+MUkScKP//iP84u/+ItPer+XkiCqBgKBwDOMwRcmgfXmT2fJdRNjcwrbI4vbfPLoq3j0j6/lNUtt/sl7LdlXT5EdKag1OrgXXoM7ePAJ79++9p8gjh9nfv+j6McszQfnuOqVZ/hJ8TCb/+kavrE5x1F1htXoMTZ4eJi36lyBs/lE5ur48QQCgUAg8HRgh5g6lpsaqQqVeJZD8maukIvcspwQL06zVa+ykErmEphPNIen2yzOdpnap4kur8F1h3CzM7g0BSERWYbIe4h+BmfWYK2FOdUkO245srmXM1nMWqY4tVWw2Nyk19V8adNypNhgTT9Ar9j0DlWbTxSjCgQCgcBzg9FU/UtDHMcTTtIny0BQPXLkCJ/73Ocet+9XvOIVaK157LHHuP7669m3bx8rKysT6wweny2H9VtBEFUDgUDgGYpz1scBAMa0saZDoRv0sjP8dXqGf1hd5n+cOcy1797H+2+AV/wfDhaqmD+5i+iKB+DF12APXfG4+9l13wcP4g4eRAJzX/oK5huK9TsN//b/WMOsNugfM/z3L30bf3z0pZxwa6yL47TNGdrZaYzpY102dNYMogGCuBoIBAKBp5LtBaikmkKKhEhVSKNpDsYvYZ9b4qb5GntSaFRrmMU6e+qKa+sFeypdFmt9puf61J4XI5fmYWket3cRu7Q02lGvhzh6DNYb2LUO3fsKtjYrrHXnWeknfL0RkUpY7DaZW23ze0e3OCEfpKlP0ss3yfVmKaa6YW5qIBAIBAJPVwaC6oMPPsjf/M3fsLi4+Ljb3H333UgpWSrfP1/5ylfyMz/zMxRFQRzHAHzmM5/h+uuvf8qm/kMQVQOBQOAZzdC16gxOCIQDYzt08/Wha7UttvjDR1/I8X9b8P3/r39E1Ot07rRU1r+Ket4q9tte+qTGYF92M/LKgywdvJ+Vv0yZmYmovyHmf7v2KOr/upz7mgd4oLGX426TR9M76esGhelgTH9UoVg4RMiBCwQCgcBTwMiZqoauVCFikmiGSjxLTS0yLy7ne2auZDaBvQspq7VpDs3GTEewmGium28wM9+nssch9yTIQ3tgfgY3N+OzUwf0eoj1dTixjj7dplixnFyZ40y/wpksYiOXVIymf3yTo33NF89oHhFfoZOvkRUNjO1PuFPDe2YgEAg8N/Fz/y5d3xdCu93moYdGBZIfffRR7r77bhYWFti/fz///J//c+666y7+/M//HGMMp0+fBmBhYYEkSbjjjjv44he/yGtf+1qmp6e54447eP/7388P//APDwXTt73tbfz8z/8873rXu/ipn/op7r33Xn7913+dX/3VX71Yh/2ECKJqIBAIPFtwDif8lyxjO7hCY62mMB2+aBdYz5Z57L9ezXctb3Hzh6pkn9+gf9RSO3QKt3//k9v13r24797Lsv1fmBMFG1+UJCzytretoE93+LO/O8w3msv81erLOVM5QdOcpq+36OfrGJuDK8o37xALEAgEAoFvDbtlpgoRo2SFOKqxULmaBQ6y5PZw01yN5b1VsvoUm0nENXXBQmLYkxTsrfVYuq6HWq4i9tRhugYLsz47dZADl2WIXhexsQWr6xQPN+msKBrNaY52amzkitU+ZOtt9nYa3H1G8FCnzXH1qM9N122MzX1BqjDdPxAIBAJPI7785S/z2te+dvh4kI/69re/nY985CP86Z/+KQA33XTTxHZ/8zd/w2te8xrSNOU//+f/zEc+8hGyLOPw4cO8//3vn8hZnZ2d5dOf/jTvfve7ueWWW9izZw8f+tCHuO222y79AZ6DIKoGAoHAs4DxAlYIi7M5Rlis0xibc1TdQ9tcycapQxzrzHHjlx4mih2i6MIdX0Net4m94XpQ6kmNw37PdyCPH2fh8scwRwyth+rM3JDx5n1neHPRJ/qDw3xja45j5gpOp8dZ4RsUuoOxfbTpDF2r4+Lq4PgCgUAgEHiyDIVU2DUzNY5qpNE0U9ESL3Q3c/NijdpCjYWlOiuFYKkimI7h6qk+i5WMhZku9eWC6IVLsDiHm532QmoceQuRsYh2G9HpQKMFq1uYk002jlQ4066xmaWc7kdstDWdk5uoXPPna5aH7WnOiEdpZyvkRXM0swM3FFTDe2MgEAg8t7mUmaoXwmte8xrcOX7sO1cbwEte8hL+4R/+4XH38+IXv5j/9b/+1wWP71ISRNVAIBB4ljD8cuWrVwGmLA7VY6PTpyGPciKqc09jL/f/4nfwgtkqr13OeEP6CKxsUfzFg6TX1HCvfyXU6098HGXeqgDmjh6D+x7FyIQzd8JPv/sMZrWBrCm+/Kkr+A8Pv4DHOl1OyxVO6a+T6Sba9rE29yIrFpxlOMFl7A05fJkMBAKBwOMx6UYFgQIhAYmSVaRMiFWNSjzHIXkzB+Uerp9NEEoQzU6RztfYW1dUFdy0mLFQyZivd5m/RqP2VBB75mHPHPbaayCJR/s9c8a7UreasNmieKhBf1XS2Kqy1pvjm60a7QKauUM223RXW9y1XvCwPcXR4sv0iwbadLEuw9qM8ffA8P4XCAQCgcDTgyCqBgKBwLMQhyudnj5rFZdhrCErvHP1vto9bDauYrW3h6s+W+OGn6qjanX0l9eJPv8luGIZ+/wbQD65Xz/tFZfDFZcjV06z7/CjdP7OYu0MFbvFLd+9xmwl47Mn9/BA8yruaNVYj07QsevkukmviLA2xzoNrphwseK8Mzd8sQwEAoHAOBNOVNjmRpUIkSJFhBARtWSRJJphRu1jwe7jO+aWULGktlgnmq2xryaoKZhLDPNxwTV7t5hayIn3StThRZidgukp3Ex9QlClKBBr67C6iVtpolf7rD1cY71bYT1LWc8ijnZA5QXTjS3uOJbzWK/FCXWELXOMTnYG63IvpjpNEFQDgUAgsB3nBPYSOVXd9vfSwFkJomogEAg8SxmPBPD5axYjLA7LZvYYedymXRzidx+6lu/6mYzX/+BRomuW0PcfJ7+rQe34Klx3CHvV4Sc/luV9uOV9TNW+gju5Qf6gpH16L9e8boNri6Ns3u34rbsO82BjLyfzNuvJOqfVfeSmgzY9tOljbMe7VkNEQCAQCAS2sXNaP/icVMUgL1WKiDiqE6kqiZpin7qBebvAteksyzMRdnaKdLZKJZYspnB5VTOXaObTjLmpHnPPt6i9M7AwDUuLuCSGJPGCapb5Xff70GrBkdOYky2yU5bWRoVHtmbYyCMaheRE07Cn06CxmXGyENyZPcaGOEY3O0OmWz4X3WmcMwRBNRAIBAK74biE0//D2815E0TVQCAQeBYz+AIm3MCx6rDWkhWbGJuRx23+n605VrqL3PcfruCViy2+7YcLqjMN+l/sEh1pob6v8qQLWQ2wL7sZ2m3SQ4+QPLzCib87QL3eY+G7e3zoO1b42z+a5itbsxzrzPKPzWk2ozVadpXMNOnkq0Pnqo81yEfOVQgCayAQCDzHOKuQWrpSB1P8hYiIVIVIVZmJ9zMtlph287xucZnKdIX6fJVumiIFzMYwnzgWEsOV9Q5zUz2m5nPiZYl6/kGfm1qfwlWqCKvBWMgLRPsMIi+g3YHNFvl9DTqrMeuNadb7KUe6CVsZrJ1uIRptVoA71wpO2E1Oma/T11sUuouxff/+NhZ7E97TAoFAIBB4ehJE1UAgEHgOMChsIXA4ZyjcFtq0yIotvho3eMDM8nenl/jE6Sv4rl86yKv25LzuliNE33sF+o//H3QjpvLiGTiwiL3pxU9uMPW67+MmOPAWkI88Cg8fp/F3DV7wEsHL1BpTVxe4Zo9jX5jjcyeu57GO4u/XmqzLdVqs0jHrdIs1jM2xNi8rIhfsyGCFkMMaCAQCzxK256NuF1CFiFGygpIJSiYk0RQL8VUs2H3MM82VUxUO1wU2jelXq9TmquypSSoKZiLLVfUuC1M96rMZ6bwlOjSFqE/D3BTMzWKvPDQq6NjrwUYLsbkFGw3skQ30pibbkLQaFb65cYC1XNEqBBsZ7Ncd7Ok2pzcsD7U63MsddPUGuW5R6AbOaXC2fL82QHjPCgQCgcDZcQ5seJt4ygmiaiAQCDyHGEYCYMt6Vj1yLTE2pzB9+lGD/2cr5Xhnga81ruVVX13huz5SIbrsIObvH6P/5RZT1Qr2+usu2pjsVYfhqsPMLnyF2dNb2C3J2lcEtaTFZa9s8aPV4+Acv/X7hzjWneZI6yArts2Ryjfp2yaFadMvGqWDVWOdHivqYc/qZh2cj0AgEAg8vdnpSB2IqdFwWr+UCVJEVJN5UjVDVcwz75a5IdrHC+clMpbY+hTdakqURFxWFcwnjrlYMxtr5pKMyw81iJckcrGGmKvB/DSkKVQruKnaSFAFxMYm4swarGxhV1u0H7B02jU2uxU28oSj3YiVPkRZzlxji29sWO7Z6HFUnGRDHKPRO4axff+jYHCmBgKBQCDwjCSIqoFAIPAcY1jESlgcEmt7OGdxTqNNj0cqX2HdHODk6kEeas4Q/XyPV//YV5HKMXXDDPmff53k4RPwgquxh664aOOyt9wMgDh+nKWDx8jvzjj10CGqScb85Q1+4q3HsVs9Pvf3V3Bfa45/WH0pa7ZHI26wEj1Mbtto06OwPQrdHQqsAjP6wipg6GAliKyBQCDwdOVcU/uFTIZiaqRqw4zURNbZz7XMuhn2xlVesBCRzlSpz1doRSm5cVxRFp+ajQ2XVfvMVnKmp/rU5gsqN87C4izMTeNqNaikozEoCe02WIfo9xBHT+BOb2FO9eivCk6emWUzS9gqItZzxVpbo9abdJoZHeDTGydZFY/R0av0iwa5bvoZFk6Xuefh/ScQCAQCF4K4ZJmq4R3p/AmiaiAQCDwHmYgDwOJcgbUSLRSFabMlHuWEqnCvmeYr993E5e/fzzXTVV61V/ODvzkNqkr+P79C3ryH+j+7AnfVFbi5+YsztoMHcQcPEn0nHATE1ibikaPYB0/R/JLmZTe2+c7aCu87JBD1BNe0/Kc//A5O9iWrfTjZ0Tyi12jINfquSd806BUbPiqgdLMamwMG5yxDR+uwzuXO2IBdz18gEAgEzhtxrkrCYrxNjtYvp/VLmQ7dqJGsUEv2UpNzTLPE5W4fB2opz58TxMLRMYJukuKmqkQzFS6fFlSVZTYumI4NB2ebTE3nJLOW+LIKop7A7B6YrWOvvALq9dFQsgzRbCJabWi1EatbuGYfs9Wn8UDEZqvKZlZnK4842Y/YzCDCMdtu8NBDHR5sdzimHqNhTtLoHfF5qa4oi1AVoQBVIBAIBJ4wZdneS9T7per32UcQVQOBQOA5zNC1Ct656sDaHpYM63K06XNSfJVmtMpq6wpOdZeYu32T7/6+b5C89CqS2UX6n32MyuomYmke+5IbL/4Y5+ZxL5lHHNzP4qGjsNHCbszw6N+npEWLpSvX+ZF3r2HXuxSnCv7ui5dzx/p+TnaXWe0VrIsOpyqP0XdNCttF2x656WDtICogHzlanQWn/X6HJ8ZuG5DbIQ6EL8SBQCDgOX/xdIAcy0odZaMKIZEiQoiIJJomVhUSWacmF7ncXsWCqPG8uYS9FUdXKMRMhc0oRU0lXFEVVBRUpOPyWp+pSDOTZtTrGfWrLWqhgpipwp5Z70ZNE1y1AtXq5HAbDZ+ZurYFG22KIy3yDUG3FfPI+hybRUyzkHSNoF04Fvod1lfafLMLX+geYV0coZudIdMttGmVYqphMM0fwvtHIBAIBALPZIKoGggEAs9xhjmrzgGm/HpnsNbiREEnO0OuO/TiTTbFPv7Tozdy9388zEv/vMtr3nKEyiuvxdy7SnFPg0qrC1dedlFjAYbjXFrCLS0BIFZXuWrqHlwnIT+xh80HY6q1DpUb4XuubvA95gyPfTrmH1f2cKI/zz3rs6znGU3Rpxt32IxPkrk22mb0dQPrirLolca6HOfsSGQdOlf97W5i6/YYgR1jD1+aA4HAs5gdQuoO8VTuXFfIYdu4iAqSSFVQMiWSCZGsskddRc1NM+tmuCyp8cIFhasm1GYqtKMUFSvSGOYjqEeO2VgzE2um44K9sx0qUwXxrCNaiJDX7of5GZ+RWpuaHGKeg5RgLaLXRxw/BWca2DNt9JmC9aM1Gr2UrSzhkW5Kq4BG32KbHdJ2h8f6jrvWMk66DU6Yu8l0i0J3vUM15KYGAoFA4GLiLmFyTHiLOm+CqBoIBAKB4Zc7L64aEKIsZGXRtLA2R9s+WdTiS6LC8dMHua8xxZ3/vyu4vXcf6oZl1CFB448fYeraVaJrj8CV+7HXXnNpxru0BG/+Hmi2qJw4QeXIaVyW0PlKj257mtl9PS7/7oyrDhS41gb/8J+qPNSusZ5X2cgWeKCxj4YuaIs+a5XT9FyD3LYpbI9MN72D1elh1qxztoxJsOCKchR2F6G1XL6NxxNddz3G8GkmEAg8zTirC3Us83RiXSHHVpKI4WNVulAlQkREqoIUMZFMUDJlWu2jQp0KU9TsFK+am6dWi5meTTGVlG4U+cCWSHBFDSLhmIos9ciyXOkzU8moTWVUpg3xPoWsl9P85+o+rmZ62rtSrYMiR/T7kOeI9jpCa8hyaHewD61gVjL6a5JWs8aRxjQbRUSrUBxpGMxWh9leF5zjc6dyVmyDFXGUlj1NJzuDsX1fOHFbbmr4+x4IBAKBwLODIKoGAoFAYMjwi54r3TQInDVYMoxpkRebPJpvcjyqcY+Z4jP9Rf7vf/cSDqZVrp+TvP+1a0QvWoJ2F3fPw+g//zrJLUuwvIi95uqJyskXhZlp7Mzz4IbnAVD7fqgB8v4H4fhpXDuHeIbrX9bj6l6B0k2qtTaVgxZ52Sxoy/H/PsOXT13N6X7MViF4oOFo5Jq2Lei7nKZs0hcdctelcF0y28a4DGs1uelMCK5uEB0wLsJiRufXbRdcxx6Pte3Idx11cLHO3AUTRIBA4OnJOafbP6EOz8NlCmNT9csM1LJwlM9AjXwGqogQQqFERKymUCL24qlImecAqauQuoQrKzPsr0kSKZAC2k7g0hibRKTVmD1zKfMVifI6KvsrmillqMcFe+o90lSTTmniGUd83SzMzcNsHaoVXJyAFDilIIkn87/bbeTWFmxu+WiZ45uYpqFoOLJ2xPG1GbaKeTbziJ4RrGeCOhqzuUXzRI8HtgpO2S1WxXHW8gfJtf8R0tgcZ3vBmRoIBAKBS4ZDYEOhqqecIKoGAoFA4KwMM1eF9W+uzmFsB1vkFLpLbjrcnxpO6f0cWdlP8dnruPHOLq+++jiL738RyYJCf30F/YVVKi9bxb7sRpiZvuTjttdfC9df6x+02ywsfx06GeQac6bDyburuIc0ieuw71WG76tvIedTXKvH/f9Dcd/mHJt5hZ6pcro/z3rm2MwMHa1piB492acfdWmyinaZjw9wBcZlOGcxTmNtMXK7luLoQFQd3ZYi7FCABTCI4Tpnix7YccQX+QxuY5cc2V1X2/YR7KKLPefY14VyMcd2scSSJzOmSy3YPJHn/7nEE33unug5e/zp9uPIc7Sdo9+x6fl+FxJQw/sDAXVwX8mESKao8l8iqkQiJRIVqm6GOTtHTESMoiIUL1lMSCVEsaAhYuJqQl9FUImZSxSzic9FlQLmY8d0pKlGlqqy7K+3qVYLkqom3QOiJpG1FDFbhasO4OZmcfU6RBFojchzMNb/qWy3QUiELhAnT8F6A7fewqz16D4GvW5Kq5fSzBOOdlP6RnK6D1GhmW03iLo9vrKh+EJjlTPiGG27SmZa9PN1L6a6IjhTA4FAIHDJuZSFqsK71vkTRNVAIBAInJMdxaxsjhMaJwpskdNwlp7aoBGdQJ+5mW9szvKljcPc9K+3+MH/7yzR9QlRXEXfs4JqfxGxOI27+grc/v3fmgOo17Hf/gp/vyiQq2c4uO9+XObAztC6O6FYi1DHDMIkXPt9Bc9bNFCXICz2vqOc+QfB10/tZaWfcCabo6WhWcDDzcvpGU2BpRCajuxRiJyCjFz06NsGFostIwOMK0auVgza5qXD1UwIsNtjBwCcKyY+Nk26Xrc7Wi+OyDoUAiY+r5297x2a7zmFnifHE4lU2L2jJzFGNxabcbE533FdyjFcIE+HMTwRziZ4XfDxXOi1dJ4/Vjz+vuRZxNDdmGwTO9YdiaZi6EIduVGVTEoRNSYup+xLEaNEREXMUmWGupul5qrURUIsJFORYqkquWraUasoSCLyKKYpEjpSIeOImhLMxJCWkxlqCqrKMhVZKsoyl+TUk4JamlOpFtSuADkTIypTvuBUrCBNoF7FLi9P/njnANeHrI/ICy+wag29DHfsDGa1h1639BoxpzamaRURLR3RLBSPdQRxlrPYaeK6Gf+4ITnWNpxwKxy199DXDQrT8RE5plOKqSN3qt99+GoaCAQCgcCzlSCqBgKBQOBxGWauOnCidN84ixOaXIM2fTLd4uGKZcXu5ejGZdy/NU/2vzd56Z5Nbrh9luhqRf/vHqXd38vCyzaQVx7DftstFz8S4FzEMe6yA7jLDvjHWcbMFd+AZge0hVyz+YU+vQdirBVI6dhz5X4Wv8vwmppAzkuIwZ3eQD+2yV/91eU0ioTMCnIr2Cpm6WhBq3A0cstmpsmcwQqHcRYjDBpLIQsKkdMWWxhXYCnQLsNQYMrq0Nr2ho5Xh8VafVbHK9uXTzhfL5RRXMFApjmrgLttH9udtOctGO0mAp1l/Bcq9I44u9B0ocLW7mO40PHAhTgIz8quY3gyovpFGNOldk5fTM4lbD6uSLr7uTpvV+8T1VO3FXoSYvBxfiSITq4/Nn1/m0i6ff3tU/aljBCooZCaiCqxqJGIGrN2kdQlQ/fprIrZU4m4el4yX1PM1CS5ismiGBNFNKyijcA6MNYxkwjmI1ACaspRU46qsiTSMRMX1KKCalKQJpqp2QJVdagZiZpNEFcsQr3mhdS4PH6pcGkM1crk8bfbiGYDmm3o9KDRwfUKXDun+4il24ppdCq0ioSTvZTcCloFHFntc6VuQb8A4fiHdcUXO8fZ5CRte4Z2dno01d8V3qE6nF0QpvsHAoFA4NLieEqTwQIlQVQNBAKBwHnjyjKTYvB10YFxBgNooch1ky35MCdlwn1qijuPXMn8kQMceNsUB2sVvu/gHl578xHk/uthLoH/6/+mWDGoqiD6tkO4g/t9EapvFWmKfdnNE4tm/xnMjj0Wp04h1jeh0YZuhmv2sXIeOz3Nq14tETZH2IJeS5J1BbW0R22mRzJniV+0CLXEf/FPIsi1/0K/lpE/0OOeL19BM4/pGkVXS3IryaygZwQnetDMHa3CkhtH12gMXpz1Plcv0FosuciwwlKQYyjI6GIp8Gt6J+y5sGMimMMMRdRxl+3AXWut3+vAYTsu9J5LyN0h9JzTTbczf3bctbtzfzvX3X0fcsfycwlQE33uIhTuFLd3juXxubDzshuPdx4uhLOds8dn8rmZGMc52s5vDOXyJyD4bn/edu7/3K+NgVA5HMNAyJwQJievq/F1zmdcF3JOBvtVMh2KnpGsIfGi5/itX18hkEihUMTELqXupoldjEIhx5RdiWAmSlhMI2YSQVUJpmOHLFexDnIpyZEYqWg7AVJSSRVTqSJOI6rViFoskBJyCVI4pgWkynJdXBALixIQS8tcJSONNXFsSFKNSi1RDWRNEh2YgnoFqnXvQo1jL56mKW6qit27zHBgeYHodaHfg0IjT54CY6AooNfHPbqC2eyjNyx5U7KxOUUrr9DOpznWT8iMYLNMB7g8yhCtLmz1KRqC/7jWYlWu0uA0Xb1OJ1/FmL6fWTCemeqfyCCkBgKBQCDwHCOIqoFAIBC4YIbOVQQ4A0J4YcBZtCsQNseYPhvO0InOsBEtcqy3j85jh/iH9eu47osFN87fy4v/P9OkSzHMzLH1349Sv/oo0ZVzsHce++IXPrUHWeL275+MKjAGubVFurZBevIMWAOFYSbTmNUetp2gu7P0M0n2NbwbzeTYvEfRBayjUo9I9szy8p+agYVpqKZeOMhzaHVgbYveZ09w/MFZVjo1WkVMo4gonKCwAgdkVqCtQDvoaMitILeOzEAj90JsYR3GOYpzCH12bIqqT3F15X0v3OZC44RFYzBCU5BjB/ddf7jmuAALk0KtnHDKjUSq8xEwB4KwYSTuWiYF3XHhdzdGgtTk1Obx8chdBNfRGEb92m1jmxCVz1mU7PzGNWx7HAFxh8Bc7ns3odc+jtArdzgZd47x8dguqlt2jmP8fJ2L3Y59/Lp5vHHtFOTLc7PrmM49nt2EUiFK52YpcPrrSY1NmVfDNr+NKvc/KeCO/3jxeAz6U/jp9lUxS+KqpK5C3U0RC0WMJBKSSAokYqg5KiEQAhIpqUWCq6ahohxx2e6UREtFIRUNKzFSooWiLwSZkqSJIk0kUaRIBaRAJOGg9Ldx+a8iHbF0VKShohxTkUYJh5KWRFqmKzlxpIkSQ5zaYRaqiBUiTiCWiGoMtRT278XValBJvSNXF969LhUkyUhQBUS3De0OotWGXgatLvQLXD/HtXL6j2l6rZhON6GdJ6z2U7YKRd9KjrQhsob5vEe+1eFYZvnqhmO1n7FGk+PiPvp6k1x30LZPoduTman+iSyf3yCoBgKBQOBbh3OXrlBV4PwJomogEAgEnjC+Sr0YfakcRgNojJBkBRSmS19v0YlWyUSXR9aX+drGLHesLfC6D+W8/LJjHPjIPHM3dTCn+rT/uoeLt5jWBhbnsZdfPvEF+ilHKdziIm5xcVQMa9C0sUnUbpN0OtDtQadfpsg7sAbXznH9AtuuYtuW7p0FsAGALSQ6F9jCIZyifuU+rr5Zce2BGdg7611axnjh1WjodKGXQ6eHPd3CNnJM05BvCY4fn6OZJXR0TM9I+kaWFUL9OLefTuv8P+MEmRUYJzAOCifoGygsaCcoLPS0o7BQOOhpi7FgXCneWi+xOufF2e0MXHHjs6rHnXLj2wz7EF74NaV863BofJSC965ajDRDVy6AFWOCrhsJqKUMhnByeN+nUcrhOKQbjFGU43ATY7ND+Rm0GIliTnrhebcxnI3dxgYg3GjZxPO03XVZ7mOwXzt8rEfr+DM08XjAaN+TQrdk9/1Lt208YlIUNOV+7bbxDB+Pi9DbBEax3RE6GEMppm4XWiVnjw3Zfrzb9zsY50Bs3U3UHInsanhOBAol4vKxInYpisg/chGx8w7RqLyyIicRQkxc435/O0U4e5b7fiwCJSQRglgoKkqytxoxFcF0DIupYyoRVCNHEjlqsb9+hRRIBVYoMhQdl9B2ERtGsikUVgiE8qNT0ocK1IQXSpXwfyeS8v7gXyQhEo5IOKaUJVGORFgi6agqTaIsaWSoJAW1qRyhQEYWqUDVQVQlshYh6zXYOwOVxP9BcM7fJn76vt27BNXq6I9Vs4Uo8tHfwGbLPz9aI86cgc0mNLq4doY508N0HLojyLoRq1tztIuYjlG0CkVTS1a6jn6zR73fJc0ynHDcsy74RrvBmlyhLdbpm4Z3ptoca/Od7tQgpgYCgUDgKcZdskJVT6PvXk9zgqgaCAQCgSfFxBfKbdEA2hmEERRa0s/P0JanOCYTIlkh0VP8dfcqZh/aw9JrT/KKvbNcV6/x/LkmL3xzC/J52AT71/fQPwb175jzrqXpGu7Q5bjZ2bOM6KnDLczjFuYfdz1Z/tv1Tdg66HaQK6teOC0Kr2q2cyiMz37VDteLcIXA5TGuMoWLHGIOkmXLlVc5MA5nLc7qUuh2oP2t1Q5bOKwGqwFnEViyvqLIVRlnOnAj459XacGBlH5dASRJQZRYVGpRiSOaBpFKRCIQqULOViBRkMZePJmullEIsZ/Omya4KAIpIRoTyawFbcBahDGQ+2m85AVkuT8nrZ6PU8gtrlPgcgPG4rTD5WMimRSIyP9DeWudqESgJCKSUIn9DO+oHEMkJzNenR2pztpAof1sX21wfT18TlxucD2N087rLdqBA2d3F1yEFKDw45ICkUi/W1EqV6WYJMrbYT9DBdz650lbbN/iCofT4DTYzA/bGeGHb6R/7ATORsP8LSFASIcQDiFBKoeITLncX6SDU7FbvKg1gPW3TguKvsJagTUK5wRFobBOYI2gMIrcKIwV3lmBmMgBmxTa/ZikoLwtHzN6rKQdbuOGp0YMXRt+H2CsHO63sBLjBH2jMOV6hRPlfSZ+eBge41n0ModAI6C8dcK7xU15bIWDvpUY/1LECX+MFgHCv6T7xl9KshRA40iilCCSAiEETsmhOBopQRT5NqUESaSQUhCpUviUYIVDC+hsyzaWfpdUhWMKOKTKcygsanAU5flOpCWWlkQZEmVIE12+5j1RYohiR1S1RHskMpH+9StBxApihagnMDUD87P+NWXt6ESmMa5awU7VoV4fDbLdRuSlG1VJ//fBWX+ien3kqVM++7pdvu67GS432J4mO2HI2jG9Xkw7S9joT9PSipZW9K3gdA8y45iKBfMmY2ujx/paxgObOffb47RYpW+bZKZJr9gcCaiuwDnt88O3Can+GghiaiAQCAQCz3WCqBoIBAKBi8r2aAA3cCE5i3bWRwOIPrluo23OlppiVc2ztXo9X1mfZt/qPId/W/CmKx7munfXiRYFU1OC7B9XyHspAPUbTyGv2YdbnMcdPPhUHu7FRwqo17HjgsNuWAdFjigKZKcNhfaiRKEhy/w5N7YUBfHCxkBc9dXFfB/9AqeNF2Ezg8s0zuCVIDsu5g1NyF7Ms6UgW+IAPRDjLNAr/w1ECOdwtgt0y2VurBaVG/ZrNV6Y014QNEbgrMMOxLhSpM/1DNoKjBWYUgSWpXdaWzk8RYNTKnAo6UV/JdxIuJMj8Q682L3TuejdhhaJsQnWCoyTpUi3zb3pvLhnHRRWTsguSrhdTdcCv1yes33Uk3GS3IihMLidwkm08+tpO3IbDPYzGKfDO5IHWq7AeU15u1PSK+vD+4NjLKzYsd6wzQkyWwqKAxew8Dtz5bK+8d3a8rwP3JGDS8hOauPDccKEtoUVYuikRHhXtcVHY1gEVoGMSjemAFP+LOCPwbuhpRQoIYiV8Mcv8BdzuV9Zat2xEkORMi73n5bnNRp7jpzzwqpFMDydw8pv/veN3I6aIjF5/OPrIvy1I/D6vxSOVFlU+XxVpCGS/roeTLeXg/MtQDHIGAYlHbHSxJFFSksUueG1DxAlFhlbVAVURSCm5MhJah0iUYhKhKjFsHfOx5YM2gGiCKoVXL2Gm1/0x2EtZDki64OKcEnsXahjCF1Ar4fQ5R+Vdqdcrn1xqWMr2EYf2y5wPUuxJdCZIOtHnGnO0tURPeNdqB0taWvBWvlncMbm6K2MTrtLV1s+fbpFQzbYYoWGPjac2m+txthOGctgSzF1zFEdnKmBQCAQeBoxmAx3yToPnBdBVA0EAoHAJWEyGmBcXPXRAEJE9HNLLlv05AZZ0uaEm2Gmu8Q32gsc6+7l6v8TDlY1L17Y5LoPHyStVuHYOq7dpftnD5MsSKIbT3r36v5l3N69T/Vhf+uQAtLUF24pBdgn9fmnKEBrZK/v4wWsd2AKXaqdxpYOUl06JQdRD4+z1/FPewOBd9g2JvSawT58VAKZHrptsc47UbUDa3GFxfU0Vo/cmYOD99G+gvGoTO8AdSMHZqkDIUBE5X05mvIPo2n/23GFwxmHMxZbiKED1DeW+3elMGzkqA2QclLA8oNzY22TJtnROtsHAboQOCvL0zdws/pmbRTaCKx1pSN0EGkwKfpZ58VqMXSEMiHejnbvdiw3Tg5NsxNDKwVlbQV5KTpvP5WDLwGFk0NH6UA0HJeh7Zi8q7ZNRNs+yoHbEkpRuxRNB6LuuFA8EJONAzsmistSlBztx4wE+fLcRMIORVU5cNHuco6sE7hyrwPh25Xu3MHxD8Ypy2MbunPP1vdA4JWOSqSJpCFSjjTViNK5K4RDRqXrWDqE8tf48DxJkKmAuHRHV8Yd4g4Rx95tWksgjWCq4tt0+fqX0rvOa1UfgxJFCFf+XehnXnmuVH0eahyP+o6i8hcTEMbg8txno1rvRBVn1n1kSj8HbbxDvTCQFbhuQXGsR9ES5L2IPE/Y7FbJtKKnFSf7CXl53a1noLUh7mUknQzVy9jIHV/b0KwWPdqiwwnxDTLdJNcdct3Gurx0pdoyK7V0pfoLeuy6Cd8wA4FAIBAITBJE1UAgEAhcMiZdqw5EmRY44VztoUWMsTldWaGlTrKmZthqX8PXm4vsiar83epevvPfdLiqvsKLXrlG/AM3UdvbhLSK/scH6K5UqL/gCPLALFQS7E0vhKnaU3rszzhiPyXfbXOQPS1kBOsg64MxCF0gjIVej8iUYo4unbdezZycbgyjXEZRzsFWqrQEllOXwd8KMRk4a8dEYzsm+A5EZW1GYvPQGVyOweHbdz2DYrTPwfjE2OPBWMcZH8eg72EUgPGCrrZ+f4XFGeNFLONF4Il+ynOz6/R7KXaf678dV/ZbmvoAH0vhnHc6W7A5I6HZjgnQg9NohZ8XPxzEdvX1HG3nGto2sdmOCd/OCawdCb3bReHJS8WhlBmaVqEUv0sBU8Wj6AS/33OMyQlMUUYeDI6rFPpH64yNQzqkAhm5HesJCapWRm2kAlGNhoW8nHMI5StHiUhBEvl/trwucV7gHCyvlKLp4EcS8O2VFFepeEeps75QVKER1uEqKa5ShZlpv0+AokCItnciKzV5LYN/jXZ6wx9phoXGtPbRHqfWcd0M1y1wucW1DabvsBnovmRzs05Xx2RakVvJahaTGUnuBEfajqKdIfsZcyYjzgv6VvBoC460c46xyhYr9EWD3HTo5msYm+OcxtgeI1dqKaYGITUQCAQCzwAuZaGq8O53/gRRNRAIBAKXnOEXUzcQWQdLTLkow5oOeRnkKETMhnwYJRMiVSXOK/xF+wA15pm5Z475j5/hmukqh+oZ+yuzfN9LH0Fe9QKYrsBGh+K3/wpTSC9KVCF5xWV+31LC3DT2+uuekvMQeIJIMZwuPP4hL3zgOz/O9nH7yX4Mf8Lb71YxzZQCtSmd0FKAikY70dqvM9g2LrN4hfSCni5Kcb0oBye9eD6oHF9oRJaVjmzjsz6l9G7JgRM7z31uL3hhcTCVXQqEdb7/QvuxxRFuasqPEbxQ2OmWQbOAVLhqxbf7HAtEozlyeksBU1O4OPKZur2+zwvOci9+xrHPkI5jv44xXpAsRXxX9YKnq1Qhib2jO8t9MSfAxYkXRZMxt+jYjxMoBWll8jkoyuziwflNEr/eIGqk38dlGQiBsBrX6/lTnefQ7SLWN0H7jFak9H0UGnoZtHvYtTa2b3zmce7QLYfOfIG+djulX8T0TYq2kkYR0yoUufUxDj0jaBbDNAT2RQW23SXNemwdNzzWMmwVOQ3aHOebZLZNYToUtkeh22VGqsW5YtKNus1GHUTUQCAQCAQCF0IQVQOBQCDwLWfoYB1+fx2LB8D4iAAMxvbRpksuE3LdIVZVzsgqqaxzvH05c805ZmWVrzWu5Yo7Mg5Uj3P1TIsXvH8arjwIjS5sdMn+9lGKXorWkqR6gtqr18sq0yn2+c+bnKYaCAQuLbsFxyrl/3GW1+K5XqNJfF5S2HnJZcaMxnOB27rFxXO3Ly150dZoL7aOCZ4OIC8Qva4vQpbEPt5j7LhdUZTbG6hWdp6TNPUOZWMnxdQBUnghNevvdJKCLwyX9f3f4cyL2i6KvJhbZIh+7rNOnfPCahT5kWc5dPuw3sLl3h3t+3O4wmK7Gtu19NckRiu0jtA6otFPybRCO0lbK3pGkhnvuukYwWYOmfHu22Uy5vKcapER532OtyT3bsF63/CoWaUh1+jToG+bE05U6zTWZgQ3aiAQCASebTjYFo4UeCoIomogEAgEnjLGv8x6gdWA8DmEzmYIBEZIrMuwNifXbaSM6IiIbrzOiqyRUufUxpXMr88yF6UsVhZ4yQdhuXKMg7UuN7zwDNX3fAdJHCOOrcBqi95nHsHJCiKNqK41fEagMd59dt1VjyuOBAKBZynbxNSLThJzVuE4iXHJ7MjJup0yooOiOLvIPKgUt1sf1kG3g+h2yxiMCJem3mWbl4WithqjKAAhEFL6x/3SRdvqj2ImwEc+aIPrafS6wWZgCokzvsic0Yo8r9DNI9p5gi6LpxVOspZF5FaU2bLQzCG3jqJXMGUL6nnOsu4zR5+ukXy9mXC07WgWcDpvsiE36bBJ054kLzpo08PYHG26+FkQelJIhSCmBgKBQOBZwyCj/VL1HTg/gqgaCAQCgacFO9yr2/JXjdCARFgfD6BNHykjlEzoRuucVFOktk6tO88jncuYVQlz6SzLx+d50R3HWUgKLqt3uPZVDar/27f7fh87if36A2QnJf1+DStT5m9eRR6YgVrFu7nqNdzstBdat+WNBgKBwLeULPPiptaj6fkDej3vNM0LUAoXJ34KPvjlvT6i3YFO138LU9K7TZ3z2/Qy2Gj7onBmFBDrjPU5p32Lblpc4TNyrRZlsoEXTzvdKrlR5EahrSCzPv+0byQ9I+lZMdQ0tROsdB2trkb3C2asZsb2qecFe1JNbiVHuhF3taGZJ6xnOQ23SVM26IkmbVbJdZvC9Ml1a+hKda7A2XxMMA2u1EAgEAgEAnDXXXfx3/7bf+MDH/gA8/Pz/OzP/iy/8Au/8KT7DaJqIBAIBJ5WnDV/1eFdrA6gh0H6AlhAX54BFEJIpIh4TNVQMkX1I6J2lerGPDFVKtSpf3mWfb9xhHqsmE8VN80vsZAYZmPNUrXF4vfUYU+MW5zzlaq/8RjiQY050ad7OsIaiYos8bSl8qJZqFdBlVNpB0WQygIwdv8+qNd3d50FAoFnH0XhM1Gl3Okmbbd9rusg9zVNRxWw2h1Evw/9bDKCIFK+v24PeqVbNCtzXQcF1wC0xfULKAyur4dOU/AFzGzfYjOH7YPuyWH0q7UCZyVaC4oiop0laBujrcAh0E5iHWgrMAg6WlJYiXZQOIEZFB7zQyC30Cs12cyCdY7YGCJTUHcFkda4XNPtGx7bsKz1DX1jaZmcHjlN2aAv2vTsJrnrYWyGsRmF7WHtQDjVGJvj3ah2MiMVhu8dQUANBAKBwLMbcQmn/z/7vrvcdtttvPnNb+bNb34zf/Inf8LnPve5i9JvEFUDgUAg8LRm6GBFTDiOhk5WRlEBTkgsEmNzpIgQQiJERE9tIEWMEhGRqnJKzZPqOpWizgOtfdRkxFSUMJNUed4HYCZeox6tUlWGGxY2ufK1faJvu4aZ1y15EWR1E/fYGv0vniyFDQVOYZ0C4at2ixjigw8jKjEiLQvmRMKvqwSkCSwv4qancfW6F1gCgcBTgzHQzxDdMjNUKYgiXBT76fG6gCxDtLte5FRlIaoxUVO0274wk/ExJqQJwy8lWvvc0UEmqmP0Y4y10Csg10OXqBv/W6cdtqshd9jcYbVfLITv3lnAgNUCkwt0obBW4qzfjdYpxggKqyiMJDcS4yQOKKzEWIFGUFhJ1wh0OSXf4MVUize2WueFUm3xoqoFYx1WW4z2BbSmsOhME5uCWV3Q7Vt6Bk5mcH+jR+EsGkuBpiE36Ys22vXJRBttM4zO0DZHm95YcSk9vD8upAJBTA0EAoFAIHBeVCoVfuZnfobXve51vOtd75r8rPUkeMaJqr/927/NRz/6UU6fPs2NN97Ib/7mb/Lyl7/8qR5WIBAIBC4x278oi/GHw6gAA0hf6EpIQCKExNg+orw/LrJGMmE9miN2NRJdo1LU+XprgYpISIWiIhXLp/ax9DAs/mHBfHyMvWnOXJJzxd4tln5kCQ4u4+ZmvShaFIhOD9Y24cQm+QNr5BsRWic4pUBJZKQQsULGgnTxOLKukLUYUS+n6kal07Ve9dW/KxVctYKbnt453TcQCIwoSuEzyyaX6wIK7XNDi8K7PSfajRdDtRdWh0iFkMKrieU6rjfmAo0kQgqcdWAttq+9Y9QylknK8LHrW1+Hz7nRrHRfPwmb7ZxSjxNYK7BGkBcVtJFYBMYKnCtdqA4M0q/nwDhJPiaUGicorMA4vFDqBNqBK0XTfLidF0pzgxdTC4PRln5m0YXBaot0lj2RIXGGGWeooHHGlhmpglM9xWohON4xbOYFLdsnEzmZyOjTocUqmgyLxboCnfcwTuOc8YWlsFirAbtTRB2cKLYJqYOTMLgbBNVAIBAIPEdw7hJmqj4L306rZYzby172Mt74xjfyEz/xExel32eUqPpf/st/4fbbb+fjH/84r3jFK/i1X/s1Xv/613P//feztLT0VA8vEAgEAt9Cdha5GmBwYuBqNeAEjrycZuudYSORNaJfNFAyQUrvZF1VdRQRERWUjai391Br1am5KlURMRcnVKMKc0dmOfxNx1S0RU1tEEtHTRmqyjCb5OydbXPgB6dJ9s3D7LR3rQ2qZLc7cKZB8UCT/gOSfruCFREyFkSpRFYk8bRAVhSyHiOqEbIaeWdbVBaPSSKIJMTK9x1H3jUn5WhasJSAgDQGqXBx5N13tSk/NXm3CuGBwLkoirLcbDnFXY65LUsXpnAjAcy3lesbM5raPo4xpeCp8XPJrXd0j8dmDHJEi7E+RHmNDyrea+PX6evJYkqF9bmguhQ/c+vHZPGFlpzDGW9+dHq0GeWwnQNnBM4KjBY7v2g4L3IaLXBI7xItlw3Wtc6vZ52fqucAY71oOhRF8fs2zk+x90KnxDpBbssCfuVUe4fve1wkLf/ieUG1FEm19Y5S68Aah9Eaoy26sBSFoZtZTOGfmwqOg2nBkiqYjgy1SBNLi1WCPoqOjrhvK+HhHjRzx1ZuMM5RWEuBpUGbnujSE00y2vRdA2u1n8LvNNr0cNjSfeqfAOfscJkfPWcRUQcX0uCcByE1EAgEAs9tfKGqZ980/UvFL/zCL6C1Jooi3vWud7F4kQoTX7Co+va3v513vetdvPrVr74oA7gQPvaxj/FjP/ZjvOMd7wDg4x//OH/xF3/B7/7u7/LTP/3T3/LxBAKBQODpwY4v1W4gW4zpI2OrGJcxEFg1YpRrWLpZwbtBBxmtIJEyQiCJ8ipKREgZEW3VUCJCESOEIiJFiZjYpUSkzPytI6ZJRBslJBJQQhILSaLmODi1yEwM0zHMRJZIgBKOWDr2VTIum25x4Jom6aEEcfMhmK/jZmdw9Rnc0l781OLBh6nRrVhbR2xuwpl1OL1Fdl+TvBWRZzHaKC/gShBSoCKHs6Aih1QWFbmJ7qQaPHaIwakS/vRJf2r8NGQJYpDhOFSSdjwt41qJ73Z06gcRkH65En4/SkAEMilXEMKvq+RIZI5UOaaxDgY/3bvRY+eVrZHKNBzXmPJlnHcV2rHxDfY7OIix9vNdZ+IkWOfPhWZCHCrVsqHIt/38wcD1WJqyh+dqcGdsnTFNcbwN/LZuIPKZbR/GHVjDUBB0Vk42lwKetWDLNlH+qjG4HQiKxoy29adnvB20kTuywAZD1kb6fSGwE4Mv2+2kQAmUjyO0jYZipCn7GMeUT7N1Au3E8FKQ5SXnGG9nuH+Jfw24sm2ozY5tP76PopzlP3ga/et7tI72xtXh9kJQvj4c1voIAGEdEZY9saUmNDVpSTHEwoA1OAvdQpJpR18LMi1oFYKssGjjKIwjKyC3jq72Ymi7GF08AyOucY7CWT5nu2QioxA5FosmQ4sC4wo0GX3bxNgM6wqKbSKpzzm1Y9P2i8Ezs4tAup3d/ljsThBRA4FAIBAIXCiveMUrJh6/6U1vuij9XrCo2mg0uPXWWzl06BDveMc7ePvb385ll112UQZzLvI858477+SDH/zgcJmUkltvvZU77rjjku8/EAgEAs8szvbFe5TNWrqihBjFBpTO1mEfZUYrgLBebNWmWwqvI6HVxwrI8r5ClXmukayiRFyuDwKFdBKBItIp32gskroKqUupkiCEIEKghGQmrjAd15h9YJmZGJYrlorcIFXrRMJSjwyxdMTSUlHa18gSFikgUYY01lQqBdXpgvoLIpL9VcRMBaYqsG8e6lO42Vnc7CwTipvW/nEc+7iBbWdvtzM6JC8QnTZ0u4huD1bXoZtBJ8M1+xTHO9ieoOgoTCEpcoV1AmslxqpSFJPlr+5+6rQsdWOljF+mysfSIcr8WhW5Ml9ym0A30FUHz2kpCGojvSPQ+FzJ8a2s8y5DO+YyFALkmHA46M86MVwupR0KciBwTmKsnNhuMBZbCnna7h7lYG0p9rFtDGPXtHGjKeCiFLwH7YPtztZunMA6P0V80OPgHHjXg+/DOIEeE04HEqkd9jEpSMoxy7hzvsL7AAFE0g3bHF6UHAieAjcUJa1j6NQ044Lm2DkyCC9KOkZKrHOlA9SL1sY6jPP3hXMo6V/lwrnSOeoQzv+QEQlHLBwVaZFYYuFQQCoNqpRVhb+Ayl05JK4cV7k/5587iSWWlukkpxIVpElBnGjSeoGM/Y8RQjnUlECkEhEJSKT/IcE6XG7Qqxm6Ad3NmEajyldXFziVRWzlgpYWbOWO3DgKCz2jKaxFW0fmDH2XU/o/y+fLYoTBoMlFTi56oxPpwGJwWAwFmWhjXYF1trwtvGDqNNYWGJtPZJ2OXKaUIuog39Tu7jA9F0FIDQQCgUDgggjvjufH5z//+Se03ZVXXskVV1xxznUuWFT94z/+Y86cOcMf/uEf8gd/8Ad8+MMf5tZbb+Vd73oX3//930+8vdLpRWJtbQ1jDMvLyxPLl5eX+eY3v7nrNlmWkY3lajWbzUsytkAgEAg8czh7Nmspsk6uPKqg7QAkllKYhUmb5aC/4TI1FFq3M1hHymRYUEuKeKI91lVUlpKIKpFIScV0KchKFDGJS1BEKKdIScpRROWtQAhBjCSWktpfKiIpSieeIJYNEtUklaeoRWLoVnN4Rxt4ESyRgrnEUVGOqHTxmbETVFGOVHpnbVQKuoOzoYRjKtJUIuOFKemIlPBOXJWRppqFK/tEyzFysYrYM11uLCCJcNddhTt0aDS9/FtFliE6bZyQMDv7rd//M4FBdfunAq19BEGZi3VR2dxE3nkPnN7ErrQpTuesPDDFZrvKmX6FjTzmWC+ib7zoW1j/92RgcM7NQD5UxBLqUYWKclQUpNKRSC88C7xrNZGWSEIkLLH0Yr0FCivYKhRdI2kV0CzgWNvQ0QVtm9Mjoys7GLQXQuliKTBoHAYjCkTptpflDz2Azy51BWZQ6apcBgzF0cL2cKWg6m/HBNTy8W45p76P8b+eu9msL/yrXxBTA4FAIBAIPFne/va3X/A2Qgje97738ZM/+ZPnXO8JZaru3buX22+/ndtvv5277rqL3/u93+NHfuRHqNfr/PAP/zD/+l//a6699ton0vVF5Rd/8Rf5+Z//+ad6GIFAIBB4GrPbl3Yx7ombEAJ8VW+3o80MtxkuEhLnzi48CSGxTg+drmwTX3PZQsmEXllQS8l0KNAO3LCKGCljIlKkmHQ9CiSRi1EuplLUkGP9K6dIiIiJmFIxEoHFu/qyUmSRCFKhmE0iYimIy839tGh/v6Kkj3WVflrz+PRngaAWeSEplV5kHRhJYwGVyHForc9CJWdmqs/U1NrgxCAjqF95kujQVxGHl3BXHMRdeeVuZ/Gs5/ecNJuIopyaLKV32LZasL6Ju/8ELtMIJRHTCTzvSl+IrFIBW1Z4d84XD7uYM3XyArF+BrG2Cd2ez7udrns3ca0GziI6Xe8CzjPcwiJu756Lt/8B2njRUsqyev0YvT5iddW31aq4i5RFdUEMYxvO9RF2NyHuPJbNzsFUDapdSHrIRKCk9S7d8vqOBRgBSIf09mjv7HUQy8EPEv71Mpc4aspRKX94qCg7dORKvKgaS1tGflgcAm0FuZUU1l/bhZX0jSCSonSjSyKnkHgXvUCiRAzOO+GdMESkCBQCiRT+1nm/KhY/jR+8gxUBrhRJDQVKRBg0wslRFgLgR3yejtOzrS/O8Xp9NlbECAQCgUDgEjKY/XRJ+r4kvT51PProo5es7ydVqOrUqVN85jOf4TOf+QxKKb73e7+Xr33tazz/+c/nV37lV3j/+99/scbJnj17UEqxsrIysXxlZYV9+/btus0HP/hBbr/99uHjZrPJ5ZdfftHGFAgEAoFnJ+d0R419+R+TV3duMeZy3W1bJwSQTQi4E8W3ECAihIiHbtZxhIiQZbbrwOXqnCkdZ6Y00VqUEljXQwpb1v4RCCWQUqKUQkmFlBIpB4Ktt6QK4d2uchBdIKVfNliH0TpCisllpVN20DZaVzEhtPSAnkRs7vKB8N7hgeKzbsfOkxtMqR/0XYa7DinzKAftw487pfDNKFPSC9Vi4vy6MfedlF/164jdBXIhBJKodCUP+t/mhkYMoyJ8+2C6tB1FQ4ho12vBn001FMe2I8uCa4rorPuXg/aJaIuxa80JL8ARDcV3O/Y8Sb8XZCnmjY9TODFcFrF7nIFEIIWX+cZzd8ePUQnpc1fPcgyR8H1Iv8HgJJXHJ3xG8ODZHOSeToyBoTA6cGU7B2ZsP358czg3V2al+h8ahBRQdcgaqHm/rrWujBfwcQICQUX6MAlRRg5sOMd6eR/niKUo1/X718ZhjO/Hn0ufoTro2xqLdQ4ZwZWLipjER3xYh3Rzo+dy7FQJMfqRw8calHEKTtA3sJ7BZuYmHOfG+SiBvrGcNk26skNOj0JkZK6Ndn2M8wWnMt3EOu3/Wc34WR4UnRrcL3ufaC/P3mjng+iAiWqDgwgBd9brIRAIBAKB5zrjue2Xou/A+XHBompRFPzpn/4pv/d7v8enP/1pXvziF/O+972Pt73tbczMzADwyU9+kne+850XVVRNkoRbbrmFz372s8NAWWstn/3sZ3nPe96z6zZpmpKm6UUbQyAQCAQC45zri/4ou5WRyjO2jXCAsLhtYqBSikgp4iQhjmMipVBKIZUcip9KqV3vDx5fCNvlTLdb27g4vN1Rdjb3mXNjbePHOO5ge5wp5LsIqn7x4LEqRdzRxxkv6gwEup2CKTAhTvrtt41j4PoVcvf2sg8p1ESe7s6V5EgU3c1VOxCyS9ly8hjL3N5ye7/emJgp1FAoVWwXlcvuy+0jG0+6r8E7G8cE0cH4xLZbNcwDHvTJUDRXQwF9cu/DZ0f6fscFz8lj9OvKgYg/tnywr+GxDPZRtikxtv22/Q63L9sHj8e12NFlLCa2EWPtjp1FrAb73N7PxLGMtY8zEHYHGDcqijU+PvC11Arni1kNnLDjWHxBK218lqozzouyDrrWYqxDa38rnSMWMCMdh6XmO5OMKhmJ0yRCY5ygqyMaRcSXNvawmS/Szi19Y+nYgsJZMgp6qs9WvErm2hS266MCBrEpZe6qjwrwP+7YMmZgVMxKD9cFfJSAAJ9lPaiuBjjh/06K0VfFcc01CKyBQCAQCAQulP/6X/8rb3rTm0jKmhHHjx/nwIEDQ2NJt9vlt37rt/jABz5wQf1esKi6f/9+rLX80A/9EP/4j//ITTfdtGOd1772tczNzV1o14/L7bffztvf/nZe+tKX8vKXv5xf+7Vfo9Pp8I53vOOi7ysQCAQCgSeDY+SykkIQJwlRHBFFEXEcD/+NP46iaIeAeDE4m8hzfhufYzw7RFN7jrZxBkLd4/U9EFQHQvFYyXsUYujeHB2hGJPYxDlEUb+KHMYmuG2/9XvRNJqIVXBl8R1R9u0jGUaCqR07wxKBEknpomUYsTDe7h2uCoHY6cx08S5i6WiMsU1RZeEzhfLZnmW7RKJKSVUJOeEftYyEUSWldy6LwfExFEgFoIRAyVGsxWD8Er88VWIoNMKk8CcFVJS/VWP7HqZj4GMhBu7R4ficfxyJnULq+MaJcEjhvLjKTnFy5NT00+0HAqgfgz/j4+7Vwb63v0bOdoV68XRybePEsM3futI5OyhuJXY4SobF1AbXUDmGwpaFwpwviGa2bWMR4ATaqR2CKwyKiVEWRBst18ARRu6WXDtMYcBaKs5yw5ymIgyx0WAs3Tyln1vamaOVw2PtZc70CzoUtFW3LIjl/5+J/jDjVZOhXeYzXp3GugJjswnhdeB4dc5ibT4qeiUMOM2gaOCEwOrcrq+XQCAQCASea/jPNhf/e8OzlR/6oR/i1KlTLC0tAfD85z+fu+++m6uuugqAVqvFBz/4wUsvqv7qr/4q/+Jf/AsqlcpZ15mbm7skmQX/8l/+S86cOcOHPvQhTp8+zU033cSnPvWpHcWrAoFAIBD4VpAkCUmS7BBGt9+/FELpxea8xKQduYePV6xoJJ6eVQQZV/S2bTsQVIUQwyn/o828oCq2iZ5l7gJSlu1yvH0UGzAQTcenFw8cdKIUW33sghpr1+Xx+P0mojaWh+uden7k3r0ai1opjHoMowJBiojEVZHlh2GNYdzBW3GVoWDqtzVYYbFYJJKKS4mEIipjFqyzQ9FSAZFQKCnKafO+wZbnQAi/XElBUj6F425IISCSgkhANHiKHV7gK482UVBVI2emdd5d6c+P364W+ZzRoehpR6JiJBxVNRA9nRcOx74YVJQlEo6o3N63j8THqjTEyqGEReAFTeMExgqU9BmlkbQk0iKFn4JvnEQ7r7BKgW+PzPBat06gzci5qqTv3x++GB6DF2IdsTKjqAEHhYmG51BJR6IMUrqhqFpoibVyeAxKWChFX2t9LprFH4O1wjtl8ePVVmCcHL6KrBPDfrT1X6pMOcaBeOuPeSTM2nK7UfyBoHBgXYR2XoRta2iUz6exkFkfgwAgHTwPw3WFRTlHZDVOW5yx6MLQ7Fu6meFUs6BdmLHSWZaeyNiK19CiwLgCS+GjBWyGcRmF6ZfCa461Guvy8vVYulidnhBXg3M1EAgEAoHAhbD9u8T2x0+UCxZVf+RHfuSi7PiJ8p73vOes0/0DgUAgELjYRFFEpVIhTVMqlcrwfpqmT3ux9FyjO6+Rn8e0/7MLpmX2Zqk6bV/Pt417KMe8eEL4jFExPrl7m0sVNRROXZmhOuhZyRghlc8IFWoomFrhRU0lEi+aygRJVBbqMWVlc0qHaoISMUpEZREfjS3XVSIhEgmJmEIORU8N9IcO1EikVG19QhQtRFaemYjIRUy52nB6feYKDAYnHMoppkRCrFRZDAlyYzDlGRTAVBSRSDl0khrr0M5hnSORkkQJ/0/4DbQdOBd9tmeiIBFQiUaCamH9WY7womkioaa8h1c7gbZeWB2IqrORISrVLe0EPSOxeME0lo6FWA+LNxkHPaO8l1g4EmGZT3MiaVHSkRmFNl44FDhmKjlpZIgijZRQFAqtJbos/jZVyYgTQ5R40dIUAqMVWguUcsSJIa5ZZAoiBleAzcEWAoRDpaBqAjkTgRBeHNQW17P+uksEsqp8sTIAbXG5xvU0SIGIJHK2wrCCW2GxzT6u8NepiCRyoQppxMBL67b6uDwfKtNypgJJ5BXeQuMy42+NRShfAU5ECgS+38L6dawdhqcKJXHG+rbc4HKH02WesCpfp8ZhC4ftg8kERX/sdScczkq0Fmgd0e7HFFahrRd0CysxVqDL+x0tfTuQGR+xNRBp58tr6KB2ZD1NP9PoTFOxhhmhOahmmFGaRBpyq/jKVpVTXWgVjs3M0DIFm7RoiwZNd5rc9dC2S2H6FKaDtfnQ2epcBkPnuJ3Mqw4iayAQCASeA1zKTNXA+fOkClUFAoFAIPBsoVKpUK1Wd4inF5pR+nRl16zUs/C4guuYoHo+640yZQc+x8HiwdTy8xFBzMSj7TmpnnHRVg7zTr34sn1ooyxRi8JhEEKW04/Lwkx+grjPy3S+3rodTmb3k+yFE8MiO8NcUqHKrFM/Pd+JQRSEHK6nUBNT8xXSi0GuzB8Vfmp+VJ4jMzwO39fAaRqVU9ut8E5CyqJNA6ep2h44indaKgGx8tPsEV4sLWN+iaRfnpRV620ppHpLZdlWCqcDUVU4SlHX9z1oj2UZSeDEsF0KR6IcaWSIpXdzDs6otiBLl2eSaKJ45PYUQiHLOf5xbIlTi6o6H1mQO2QOUglU5IgqFlUDUZWIWOAKh8gssnAI5ZfLWoSc9zOvXGGhMLikACkRlQgxFcPslD9thUZkGtfNAIFIFcxPQxr76zvXyEobCu1PZBLBQh3S1D8JxiLSFiIrvAoZKZivQ7Xis3WzHJFlkGuEsZAmvu80gShC9DMoCkQ/B2389kkMSeyf2ryAXgb93CvokYA48v8A+r7ddQtsO/fPmRK+H+Nw2uD6BfNbXUwucFZgjXfQnk10LcroAWO9S7ZvJLkVZFagpyK0jbF4obWn4ZjDi9OFgaJgeangKpczY7sIYzjRS7i3scR6fy+ne5fToEcj2qQbNWiZ02jbozA9jM3Rpot1GoHB2Xys0JWdcLGO/jIEoTUQCAQCgcDFJ4iqgUAgEHjOkSQJU1NT1Gq14e0gpPzZwkX10A6LbI33u/182bHiVPIcgmsprF6Qy3fn7/DO2dHUfDeaur/beq5MHD0bbptgO9rrSEIdJEfu2FY47MDpOsgcdQaIh+2D/wbHYQcC6sQY3Ng+VXlMk2LQ4ChU2ZN1Dstoqvdgej/4uAQ/RdwzmN7thn1Nmo8H09bd2D+LwLqxkbvBeRlldg6eZ+NGmaZurH0Qb2Cd8FPvGcUFGOuLXWHLaIBB5qgtp6iXl5T/J/y09sE+nBf+MA5XavZu0rA4Nlg3eQnJ0iQdCSh/NBEOnFd0GeYexJEXNaWAKAL6iMI7VYkjqCRQSf0RRRqy3IuU1npBtFaFJBmKqmSZvz8QVWemcWkKcSma9mIoCjAG6lO4WhWqFVwUI/ICej0vvBYa0hhXrUCa4mSEKHLf3ut7gTWKoJLiKgkICXmO6PQQvR6q3fPnIVL+GACyArIctdktbc2jE+aK0sXb7zPf7GJzcEZgtY8psEZitKDTT8m0IrcSYyWFlWgryJykb7yT2T//CusiTvdrrJUvvbnIMmsyXrXUp657bLVjHm5WeKg5x2ZmWLGH2Yq3aJWFsjrFGroUWI3o41xR/g2wY6/n3QtdDY8rCK2BQCAQeAYziB+6VH1fCJ///Of56Ec/yp133smpU6f45Cc/OSww7/tzfPjDH+bf//t/z9bWFq961av4nd/5Ha699trhOhsbG7z3ve/lz/7sz5BS8pa3vIVf//Vfp16vD9f56le/yrvf/W6+9KUvsXfvXt773vdeUAbqX/3VXzE7OwuMCt/fe++9AGxtbV3YQZcEUTUQCAQCz2qiKNohoEbRc+vt70l93jrrpypblvrx93drGwqrzu0UMCaWDXIrS0encyBMuWsFmAk3qxDGJzXagcw7KZpaZ7zGK+1kPMCg6rjUvl1YnBhVKh+Ox+ZoYQGf/+jKifeDTFVLhHUGJ/TQ3Wopq5sLiUP7qAHBaP/CoV2GEApFhEUjnEAMMlWFxopy6riT4EAZX3AKfOaqKY9RINDaESFQQvoyQc4Oz0BuFX0pvFtVijJb0w1zVWMpSKSgr8QwM9W60q1aOk0jP/uctPyxwZTtttTNIwSdKEKVT7Fxo0xVX2hK0tEKOVakqShPbyR81mpHK2LpkDhy5wU4h99/R0ck0hJLi5QObQTaSZ8r6qDS175d2VEmaynMqnK7JDZEyqAi58W/Mns0imwZD5ARTXvXpjMOW/j6SCICVckRUz1ku++vMWtx/XL6PyBiiewX5fR9QDtcO8NpA9YhYoXoZKPp/drg2pkXXAGRRD4Wo5p6AbQoSpdpKQgq5af2K+VfRUZPqMYuiiBOcdWaF1aLwrti0x5oDVGEq1ahWh0Kxy7LEL2uF12V8oJubaqMHyggyxDdrt+PVBBHXtA1BpHnkGVEna4/Bin9uLV3ndLpsWet6eMNBuq6dbjCYvsa17FkmxJTeBFWa0GzW6Ew3vXaKmI6JqZvUlpulv6CJG4bLmvl7O0V/BNqZL15Iq5ECTjVg/u3cjZtlxPyUXpuk9x0KGyPXLf869np8rU/ElwHbm//OtqpwgehNRAIBALPJNzFtVGMcWH9djodbrzxRt75znfyAz/wAzvaf+VXfoXf+I3f4A/+4A84fPgwP/dzP8frX/96vvGNbwzrNf2rf/WvOHXqFJ/5zGcoioJ3vOMd3HbbbfzRH/0RAM1mk9e97nXceuutfPzjH+drX/sa73znO5mbm+O22247r3G+/e1vn3j84z/+45NH/QSi3Z5b3yoDgUAg8KwnTVNmZmaYnp5mamqKOI6f6iE97Zh0nJ6j/WyC6tCRCudMcxo6XHdxeA6yEMv1BusMhFXnDKVatW0/shRYTVm0Ru4YgysFRmG9qOr73Sa6DtYTo/uDdQbLpVBY8rH20okqLE74EjyDQ3OjO1iMz2AVbhgJ4Jc7cAWWCFPmu1LGGFj0cP9CSJywiG2FqpwYHYN2CcqpoSjrSi8tQOFiIqdQBh8jgMDihsJ0LBW5gJ4RxFKOth8UmhIQCS+4DjJbS00WY11ZqEnQNZN+ZV2eAt8OXS2G24M3PwoxEG0FPVMWffLP5vByEwI6WhJLiyrXHzhhbXm8cRFNFLLyzlsxzHSNhC1jDCxKWn/+y22TyJIqQ9zQVDf98+DsqF0KR5QY4tQSb3ZAerHVaZ9JKiQIqYkaTUQ0yg22PYcde1rVVN8PvrxEXc8OXzoiEshm38cMRMqLscb5PFUhEL0cam3EVAXi2LtXiwJy7UXbXg+qPeiWwqkx3o2a5V5UjWMvnuaFF0+NQWgNReadqELstLeoMlJASFySlC5b5a9sY6CflSIsuCj2Iq4Dci/Givq638egLyURxiJ7GbR7RGdaPvdVW1zhmGk2cQXoTNJupPSLiL6OyLWkUSTMxpLeTAXtqnQ0kEO/r+n2c/bXM2YrAmkT7m/cyMl+n4Zq043arEWPUNgexmZom1GYrhdYnfW5ya4on5BBdMfo79B44bpAIBAIBALnxxvf+Ebe+MY37trmnOPXfu3X+Nmf/Vm+//u/H4D/+B//I8vLy/zxH/8xb33rW7nvvvv41Kc+xZe+9CVe+tKXAvCbv/mbfO/3fi//7t/9Ow4cOMAnPvEJ8jznd3/3d0mShBe84AXcfffdfOxjHzsvUdXac3xneRIEUTUQCAQCz2iklExPTzMzM8Ps7CxJkjzVQ3paMPJwnt+6F74DN6zEPXy8o9/xZXbbfXlW0dXhyum6ZiTeDoXcgfCp2SkNl5P1hfFCrWNinVEOq8aW2am7H7xBIMrp7XJHdIAtiyVJUUwsF4hSENVYJzEi9wW1xscpJAaJdBIjMgS7Z/YWIhv+Wi5R2G0RBYpoeDxyWxRDn8gLrogJ4XWwbmSUH5UQRNvOoRA+Z1YIfzxq2ykeSdteWJXb2gaPZZn5KhmL1sWLrUJ4MTWRvv/x9kHfsfS5skpMXsdubJ2BeLvdL+0zYx2KUiAdRvu6sm83LKaVtu3QTUu5vsSRKEskLZU1PZo77nwhLT9WR7JmkNIihMM5gTFqOGveJwYYnwVbjtsYNRqHtKSnNCouEMqNYofxJtFoOkNMSUSqvKsVwFhflMqCqMeIWoqoJlBN/MFr7aMBCgOxQiQxVBJEmgy3x5SvqTRFVFJckZevAwt6kPca+WVRNHS5+scK52Iv2MZlLAJAEnvhVgiwxq+bxN5Fqw0iyxDtNmJ2w8cYGO8QjbLCF+bqFVRO9dAdh+kJdC7ptFN6RUSmI/pGsZHHdBJJMaXQrsbpbo1oD5h+wQ0LGS/up7TbNXK7zB1rS7RVl3bUoMsmbXMGbXpom/m4ANsvC16V1mRXFtET5VUUxNVAIBAIPANwXMLp/xexr0cffZTTp09z6623DpfNzs7yile8gjvuuIO3vvWt3HHHHczNzQ0FVYBbb70VKSVf/OIXefOb38wdd9zBq1/96onveq9//ev55V/+ZTY3N5mfn7+Ioz5/gqgaCAQCgWcc1WqVmZkZZmZmqNfrT2iqxnOBc30gerwPS+f1YeqcgUuP92vwbgmlA8YyR91gqq6Y3J+wYw9LoWvoOmWYqyiGGa+ydL+KcrtB+6QgObiW7Fk+pY5fa4Zs6IRFeJFSDEU3Oex7ILZKEY3Giq8wNRBVZZkPO+xvl91vF09HY5LDfn3oghqOcxA3IJwoS29JJNGoqJYbFOwqt7SDcex8Tcldlg3HUP63fV0hRiW6IqGGYu2oOL0/YiUHywaC7kiz8+dn0N9o2bizFcYFXT8iWTZG0ven8JGmA/frIOZAlcKnAiLpkML5drzwKsaEWzEmwKptT5JFTCwZicRu2D54LIeFvny8QVTGIAgckXJUk4I4NqjIEMUaIb1wOyCq5MhKB5kKRGWU4eAM/qUX+UJUIla+qNY4sUJUYqjEiHplJKqCF1HjGFGt4KaquKm6d8baUrB1zgum4J2qw5MReWcreJdrWvFPRApuqoabqiGUQpjyNSqFf81ojej3iebWiNp9XK/A5YapZg+bOWwGRVeyuVmjW8R0dURuJFUZk1lBXo05lkTYuTpTWJaLjMuXK7RaGUe3ljjRLThlmzSSDbpskrk27XwVMyawenG1zGN1jH4sCuJqIBAIBJ7DFEVBs9mcWJamKen4+/95cPr0aQCWl5cnli8vLw/bTp8+zdLS0kR7FEUsLCxMrHP48OEdfQzaziWqHj58+Al9X3zf+97HT/7kT55znSCqBgKBQOBpj1JqKKLOzMyEKf1PIbtJCxMfUc4ltO6miO3avkvWoRhIc4P28f2XmZHDkZiRC3Ygqgovmw0+UA0jBMrc1uEHLefnao8yXAcO0XIdx7Y2NSbcjotX4xmwfh0p44k4gvGcWCVihBjl0Frns14HLlk55kz14x+1DQTcgXg7aB8gZYQQkRdTS/GW8cJeQpbO1wglonJ8powM0GOOWDV2rk1ZoGsUWbCzvYxLQCCJiKkgnJd17bbxp7pKNOaw9XEHo1iIyEWlXFxmvPrRYYQZRkYIJyaE50EcgsI7cyPhwxTGxV8lJFKIMudVkijB4IoeF22V8MJvMnYJ52XG7OB5lGPXtwO0dROXcSS3ifJllIIQgoo3ghIxyrNVAyeugIq0vq6WcEP37UB0joQbOmLlLulqSg5+mPBO3FqkiaQlVj0qSdO7bQGpHEnFEFUsqgaiKpEzMWJQXAsglog08rEEi7NepZbSZ6sa47NgqxVcfQo3P1+2aR9dUElxQnpXa7UKckyE3r8f0e/5CAP833wFiEJT6fWYPrqCa/SwzQzXc+RbDt2XZP2IM806XR3RMYq2TuiaCqkW5I2CuVbGa+wUeXeRaeVQwvGpE5YN3WddbrDqHiIzTQrT925W0x25WIUtf4ixEz/qBIE1EAgEAk8H/E+xl85Y8qlPfYr3vOc9E8s+/OEP85GPfOSS7fNS8fu///tPaLsrr7zycdcJomogEAgEnpYIIZibm2NxcZGZmZmnejjPSqy1GGOw1mKtLSvODwoLuYl/51o2EBqHyy5w+8dbNlouRo+HRlYvqfl1fN6qEF50HzlFR0LbuKtzfJ1xxgXJx2N8ey9syuF9KaJSUPXLBoKlX08N2weczYkKI4HwXAy2lyL2ztOyb+VLWnk/qlDELkUgUcREREgn8Se0QPhwgrI/gXDJWJarw1JMjGUkMBkYiygYuWIHYqcjIivlTV9gKy2dq0oItMgwIh/GBcRldIAcEw+t83uwo6e/vNbKjQQU43ECQnihUwqcACt8HmoaSZQsC3Ypv38lBVJCqkZippJiKHoOvrNo54VAXRYZc87PZtcOMj8z3/9zkFkvi7tB5IEfFEL4LE/LQLCVpJEkVpIkUkRqFLswiEqoKklcOmsH52TcTD2ISditbZxIQFo6YyPhqCh/K8sc2qoyVCJDGhnSWFOp5sjSrSskyNiiUlDVFnJhCxGrCauwiBTUEsRUBTHf8EqxtWWBLgFxBFNV/xobq+ZLHIFLvQtWRr5NCpx1kPWRUiJaHVS3D1mOaudQGKY6BfUTG2TtiF4vod2P2chS2jpiNlbkC1Os9OuYwtHp9VnK2/zAFX22iinu3arzjdY869E67Widjl2nk69gbI61OdZprO2NxQOMogGCsBoIBAKBpxrnLu30/ze84Q184hOfmFh+oS5VgH379gGwsrLC/v37h8tXVla46aabhuusrq5ObKe1ZmNjY7j9vn37WFlZmVhn8Hiwztn4zu/8zgse9/kSRNVAIBAIPK2YmppicXGR+fl5lNo9b/K5xkD4HBdAz3b/fNqcHRdAL96nsd2mjF8ydkzhGRM3Gcs63UU05Rzi5eMzniq6fUjjy9QOUXfUPnq8m6h7Ns5H7N1tn+PLBiKvHLhbx0XhMaft2cY1GIPblvG661i29TfYvyy9q8rFfjyl/DrYZiD++uWTfwMG2bIOOyo4NiHyTo5rMIbxPiMXT4jKykVDATh2cek5VighiZFldqwoYwBGt3JcLMWLs0N9UYxeDwNReCDWDraplAJuLAf5so64dKnWYohVWSws8v5TKwRaCHIUHSPInCBHeIFXCqQSREoi/U78FHs/EC9KSi/oJlIQST+6gVDri3pBTflYgkRaUumYiozPpxUOJSyJssTKEitNrVqgolJ0lSCkQyUOWQVZk6j5DX8wgyiIscgBUZ/C7d2Li8ofGrK+z2OVCtJodNKkgGoVt3cRajVElvmiW9aBNagsp7p3nXSzT73RY77ZZW49oddPhnEBU1FCZiR2psJ6VqXiDPt7La6ea3JobZoHm3XW+5dxmibHK/fTM5vkpoM2PXLNKB7AaVyZ1xyE1UAgEAg824nj+KIYWw4fPsy+ffv47Gc/OxRRm80mX/ziF/mJn/gJAF75yleytbXFnXfeyS233ALA5z73Oay1vOIVrxiu8zM/8zMURTGctfiZz3yG66+//inLU4UgqgYCgUDgaUCSJCwuLrKwsPCEfgF9JmKMQWtNURQURXHO++PTxJ/OfCtFBrFjVyMxzU3EDIyLbHLHuhfGdlFzUniciHwd5GvuECfP7ZJ9PC5EWPXsFEonRd5z5bQ+3r7Px9G783iHcQIi2tk2HJs65xjc2PO6vZDY+HqTonG5XxmP3LgyGgmvuwm/xKP2QYEydxYhepdzKcWkKDwcA6oUc0uht3QMqzICISUhFt5jHAtFRUkiKUikpBIJliqCqcgxqxwzsSUWjti4oUvVOIFxgsIK+lbQNYK2EbSdpGMFmRCISBFHkkqqSBNFEiumUkUllcQyIpJQVTFRGTeghCMpHa6RhGrTjGXQOpS0JNKSlE7Xai1DSodUICNHNO2QFYmcUojpBLHR8EW01CCXWECaIKpVbLXiC2INns+0ggBctepr3KUV31Bo5HQdudVAbnVQ7YxorctcJ0e3IesopjfqdHVMVytmI0VLK44zh6rOcc1ixk29BraV8/mVPdy9UeO0WqehztC167SERJt+6VzNwOY44QCLcCEKIBAIBAJPHZeyUNWFvr21220eeuih4eNHH32Uu+++m4WFBa644gre97738Qu/8Atce+21HD58mJ/7uZ/jwIEDvOlNbwLghhtu4A1veAM/9mM/xsc//nGKouA973kPb33rWzlw4AAAb3vb2/j5n/953vWud/FTP/VT3Hvvvfz6r/86v/qrv3qxjvoJEUTVQCAQCDwlSCmZn59ncXGR+vg00Gcw1trHFUmfaULp05VzihlnPbeDDM9zO2rPXyg5l6g4yGg9x37ONzD/Aq+VibXPuY8n49iF8xNVz76vsz4P5ys2X0BMw9n7316obKcg/UTE7wsazi5OZi/2jtzE213GSqbD+IhIpCOnr1BDwXkQ0zAs2oZCiZiKmCFyMYqY1FVKUVcRu5jlqM5SNWJvTTJXFcxMQZpAFCuEkvRERI+IXCjWdYRTEiUFsfQxCAioSIgHMQp4F2wiHXOxKYtzOVJpmUs7VOIt0kRTqWqf5ToFsi6JLpuG6RpUUx8hEEcQRZCmuKmaz2QFqIKdmYZeD9Hrgy5Qxue7xnlBtdtj7sgKdmMLs6kpmoKttSqdLKZVJBzrpmwme1mrCGbjHu+8TBL3Fbndx/2tiL9b6XBSnqTpTtM167T7K1iXY22Go0CM5T8HgTUQCAQCz1W+/OUv89rXvnb4+Pbbbwfg7W9/O7//+7/PBz7wATqdDrfddhtbW1t8+7d/O5/61KeoVCrDbT7xiU/wnve8h+/+7u9GSslb3vIWfuM3fmPYPjs7y6c//Wne/e53c8stt7Bnzx4+9KEPcdttt33rDnQXhHsOfatrNpvMzs5S1pt9qocTCAQCz0mmp6fZs2cPc3NzT6gK41NNlmX0+/3hbb/fJ89ziqIIQmngvLnQqIQnKth8SyMZLpTzev1vFzTPU0jd/lo8677OU+w9l7D6RMXds/Y/HstwthiJ7YLrOVy9YwXBAJRMhgKtEtFExm9VzVMVs9TcNBVbZUbUSIVCCUEsBbOJYi4V7K/C5dWCirJECmSkOGWqNEkwcUzDKWwkUZEqC28J5tPRp28lYDa2TClLRTmm44JKZKhFBZW0YGZPhqqDrCtEqpAzFajEUK/CzBTuwH5crebdrHnhC2GZ0r1crYCK/PPSz5DHT8BmA7bauGaGPt33LtZ2xOmNaRp5zFYR0TeS4z2JMA7R6uDaPWRe8MU1x+l+xglxihPF3WS6hTZ9tGn5SADvFQLngrAaCAQCFxVfVLTRaIT6Ctv4iZ/4CU5+8mv8ywPffUn6/+WHPsG7/90HnnLB8plAcKoGAoFA4FvCwsIC+/btm/hF8umK1noomI6Lp1mWPdVDCzxL+FaJL+eznwsRXi/WuMerqZ+bC49q2HWMZQ7m4/YvxO5H6J5oZMR5si2mwrnR87IzRmK7s/Xxsqe3j31SqB0XaTtyFSVTIpkgRUyipoio+KgCE1PrzZJ2K9Q2aszKqi/yVWbEJqrPTFJwsAYzkR9lzwkyGdGLFKtSQRShUkWcRsxVFDUliRVMRTFTylJTllRZ5lo59aSgluYkiaEy3ySaEsiZCDlbQeQFolb1zlWlRhW60hQ3jA1QMFXD7t+HmKoiZtuIbo94sU3cLUjbGckjm/SaCc1OhVYWk8gKfSNppXVW63UOiR6vmWpjevD3q4exGLaik/T0Op3MYmwOrhjmrY7HkgSBNRAIBAKXkktZqCpw/gRRNRAIBAKXDCEEe/bsYXl5mSRJnurh7IrWmm63S6fTodPp0O120Vo/1cMKBL5lPBXiz9Nxn+cv9F5qzE5x1xm2ZwKPC6/nYvtxD/N+YYdYq0XsIwZEBMjS1SpHUQOl2KpkSuKqvrCY85EEkauQFFWq7SliYlKXIJBURcR8knDZlCIpC1Dl1nEyUvRVRFqLma4nLM2m1GI/nqkopq4s9chSUYb5rYx6JadSzUmnWqSNvs9lraWIWgpJDGkMUzVcre4fD5iZ9kW70hTyArE477NYe31q9VXS9S5TZ5rMb0YkG5ZWEdMoImqR4rF2lanlKosu49un2vDoNRzvHeBEfJxTzpYFrbpeXLW9Yd4qEDJXA4FAIBB4DhBE1UAgEAhcdJRSLC0tsXfvXqLo6fNWY63dIaDmef5UDysQCDwNeFoJYLuKu3aHiHohIx4c3/g2wm3rT3g3vpdtJXqwv7G8192iCYBtMQTb4gn6EtVOh5EDSqbMqANUqFN1U1yfLJPXFdNTEbVazHqS4tIIE0U4ETMXV5hLQeKLZu1/MKdWxgXM19dJKppkyhLNCaJrT8Bc3Yup1QokiY9/kBI3PY2bmR4d8LU95MYmlc0tKhsNZo5sYJuGouHot2KOrc2wWSRs5jG1yxZ50bTmxkabbGuKR9vX8WC7w6pcZcMdo5EdpdBdrMtxrsDazGeuQshdDQQCgcBFZ/Qz3qXpO3B+PH2+6QYCgUDgGU8cxywvL7Nnzx6kvLTFXc6HoihoNpu0Wi263S79fv+pHlIgEAg8YS62KLfDxTrx0IyKqQ1FXgNjQuzOaAIYz6mdEF2Fd4968TWiF20gRUysKqwXB7h7c57axjR1N8VL5qY5UIPZ2BFVYqJqzAlZxaYJVgi6JiWRjqqqsC9PSaWhFmvqqznz7Q2ihS0fEzBT8QJrEkGlAvWpSVG1WsUtAHGEqFaQSYzs9FHtjLTZRz2wyUKzwlavwmaeAjFrlTnczDTXt9pcvilY6da5r7nMN1NJN1ofZa4Czmlw1jtYnRmLdAhfVwOBQCAQeDYQRNVAIBAIPGkqlQrLy8ssLCw8pcWnnHO0222azSaNRiOIqIFAIHABnF1kLXNZd8ucHebBTsYTwKThVlDOCiiFVmP7CCHJRERfNYhUlVj6f6vNQ8w05qi7GlMq5o2XxSzKDhJoRJX/P3t/HmZZWd/73+97rbXnXXvXXNVNDzSTgKIgILQagwmHRknO8Uj8mUGFaPDIr/E5ijFoJGI0SqKeozFBTZ4k4BP1SvQk6gkKETGiCRgTBGWQlgaaHqu6xj0Pa7ifP3bV7qqeqGpqd3VVf1597atrDXute1f1ru769Pf+3jzpJohnE2TSMepRAhdIexGZasRALUlud4NMtkEiWyW2poiTjWOyCUx3BuIxbC7XagcA4HrYZApcF5JJTBBg6g1MpUrW20tyf5XceJ3uQgpjush4HoWYyy43R7y7i9PLFQbGDWbkQvZ740x6u6kGE5QbrddoZ3uuzqlabbVgULAqIiLPh8HaTv3cdQIvdHqCUagqIiLHLJ1OMzw8THd397KNodFoUCwW2xWpUdSpiTAiIieXQ4K/o/acPfr33tlnzrYcsDTBGEIgCAozYWurZcCE2YYxHq4Tx3Xi3P9sLwknS9LJk4/62eAM0JPweGG/S7M7RjmeIpZNMOnH8COPgWQXcQdSnmX9tibZmE8u0SSbGSV3+l7c3iSmOwX9eUgmIBHHppLYNWta/Vdnx7p+LfHJKeLj0+Qmyww9M0Jz2lApxnl6opsp36OQ7SLdl+UXe6vkKlmq9Q1MNOHu6R1M2V1UgjEaQYlmUCSKGkCAxbZaA6gtgIiIHCNN/z8xKFQVEZFFi8fjnHLKKfT09Bz3e1tr2yFqoVBQT1QRkRVkboA4WwlrTdhejMtasCYAHMKotXCWH1ZxnTiem2LKSTFhhkjV8zy+q5c1e7pZk25wVo5W5WoiwWQzgR9rtRtohAnSbpxcPUlXJWBDo0wmWyeRrxLfUMFk45DPYPJZbDYHmfSBsea7wXEwiTh0pYmlY3jFOonJVmuAqVKKqUaCyaZHzM0wWU9jp6qcVinyCv9UnioPsju2i2lvD9O1ZwmN11rUyvqtClajRa1ERERWMoWqIiKyYI7jsGbNGgYHB4/7NP9KpcLExASTk5OqRhURWQVmg8R5bQaMmSngDFvT5o2DtT5B6OIHZerGo+EV8ZwEY26KETPAtkoPPy53k7YpLuzN0hMv43kuse40TzaTdKU8uuMeccejGnp0FQPy4w2GCiUS3XW8vgpuXxknlcT29WAzWYjFwICdbROQSmKyGUyjgVes0O2NkBkp0D0ep7ucwiFD2nMpJTJMVZOckSpxdgn+c/xMdjfW8kQyohpM4gcVwqhOEFZm2gJYMNGBgFnhqoiILIC1EOmvjGWnUFVERBakv7+ftWvX4nnH76+OZrPJxMQEExMTqkgVEVmlDq1ebfVltca0Klht6z/SQtNa5KruN3GM1/rYncZzEux3U3gmwf7p08jaLnrp4vRiiOuUsNkY4+kUsa4kjcgj5Xp0x+JUgxj56Qa5sTrpnhLJ2E7MdAHTncdm0xCb7bvqYGMZbC4PkcXUa7iA0z2Nt69Car+P3WfINeJMeTHSrst4optUX4aLUkXOrzqEey9iX2InRW+Emj+JtRGRDcA2WiGyidRvVUREZIVRqCoiIkfV1dXFunXrSKVSx+V+URQxNTXFxMQE5XL5uNxTRERODPMCxXYP13YZJ9b4QKO9HJYfuDMfHdqP9fuNOLnEOrpKg+SjPjZ6fXjrMqR70uxKxHmskKYvkSbpQncs4oxnKvRk9pPN7yLRB96GLORSrfYAPd1EGze0hpFJY3M5zNQU3tQ03mSBM3aME00VaE5CeTrOzyd6GKvHSKT62D1W5//NGZqNLn5WfDE/m27yUOLHVIIx6sE0DX96fr9VO2exLwWsIiJyGBb1Pj0RKFQVEZHDSiQSrFu3jnw+f1zuVywWmZiYYHp6GnvUxVBERORk0m4TgJkJWmdCR2OwNgIcIDyoH6uDMTGCqE7J3ce4m2Gf6WPkmXM5czRPJumydiDN3kwSJ+6Rjzs0oyy9tSS9xSa943X6qyW83gpufwVTa2C6urD5HLguxGKtNgGAScRxPA+nXMOdrhAfr3P640Vy5RSTzTjp4QS7q0M0p2usjYqc1eVRf/Yl7PH2MenuYioK5vRbbWBnlx5R5aqIiMgJTaGqiIjM47oua9eupb+/v+N9U8MwZGxsjLGxMXzf7+i9RERkZZsXrsKcStZDQ1ZrwdDEtz5BWKVhCtTcSerxArvrg+TqA2xhA854mUw6xnhXhkZPiqlEjPGmR18zQWgdcpN1UpMV4sUGTjqJKXdjc1lsItkaQjIF8Rik05h6A1Or4U0WGGjuIzNSJz+dIVdLEpGkEEtTz6eoTRf5b+sMD4ydyq76AI8nG9T8SZpBiTByiMKo3WsV/SejiIgchgUi25mf1fRXz8IpVBURkbbBwUHWrFmD67rPffLz4Ps++/fvZ2xsTItOiYjIohypcnPegle0erLaqIGhSWQahFGFMGpSdceZdjPcOd2gLxrgBfU8A9WAnaMl9vemGR7MUEl6GLJ01xP0lBvkp6vkvN04g9OYnhwM9kE8DvEYNpaAXHdrVI06pqcbr9ogmy8S31ciO94gtIbJpseU57HfyXPqUJJfzpWYnHYo7X0R+xM7KDsjNIISDeu3FrGa6bVqrNoAiIjIofQ3w/JTqCoiIqTTaU499VSSyWRH79NoNBgZGWFyclJT/EVEZEkdEjxaC0SAaYWUQDNq4PuGmnEoO/t42k3ysJ8hFevlTC5mUzlPf61CoSfDw7k0ATEGk2lS492cNtqgL1Wju2s3XWftwu1LQ38Xpr+H6MwzWvdMpbCpFFyUwJmaIjlZIDlVIr99nOaYpTiZZLyS4ufFDNFwP41YnV93HNxoLf8+FrLdH+Vp74fU/QJBWCWyDaKogaFVtapwVURE5MShUFVE5CRmjGHNmjUMDw939D7VapWRkRGmp6c7eh8REZGDzQ0ijQ2xxoANCaMKkW0QhnX8sMKTSdgfrOXZ3etYt9/ngoEy2d4041GGpnEJbZLJhkdvLcVpdop0X4lYoY5TrWPyOWx3T6sVAGCTSejOQyyO6crgeS7uYJn4vhqZkQaN0GOy4ZEeTFDrGaCvOMFAPORfx9ZQqJ3BtLOLmj+JH5SxqloVEZGDWAtRh/460N8yC6dQVUTkJHU8qlNLpRIjIyOUSqWO3UNERGShLLbdJsDiY22INQGRbVCsQ92bpuSNMBIOE42dwyVUsJMV8vkU25tZKjmPKd/F0E1vuU7PdJX09CSx9LOY/iI2l4VkCuu6WC8GXR5kM5BKYvpLeL3TZHqm2VibJlPOkK3HedYm2NM1QGjqnBEUGKufw5NujnHnaSrOOJV6E2goWBURETnBKFQVETkJrV27tqPVqVNTU4yMjFCr1Tp2DxERkWPRDiStxWBnglWfZrNJ05+iYvYx6TzJaPxx/mVPN1lngKE9G9gy2E+zL4EZzPCdSoq+RIqusW76doa88Okpcr37iPeD25/E2TQAuS5sbw82l4N8HrsO8H3M5AT9PU/QM1LEHw3p35FnvJ5kNBlnPD3AxYkiLynGsGziR2M1/sP9F6r+OH5QJoxqagcgIiLMNriR5aVQVUTkJNLp6tRyuczu3bupVqsdub6IiMhSmg0ljQVrwtZ8ShsQWJ96E/yg0qpedUfwxy5g7XgvLx5rsGYwwVRXjnHXpZjw8JxuBioNeidrdO2vk2YMM1jHRBEYB9vb07phLIbt6cOsG8RNxHGyZdY2imQmfdKVNCk3zvRQN6muJLnpaa6IJdm/9wJGEk9SdPbR8Av4Nmr1iDWhqlZFRE5SlpnW4R26tiyMQlURkZPE2rVrGRoawhiz5NduNBrs2bNHPVNFRGRFarcFMFHrh0lrCcIKYdQkCKs03RI7EhHj7gB7JzZwJWvwR/eT6c+yvzuD58SYbrr0N+P01ZJs9KaIFxu4NR/jB9h8Dly3dbN4DNvXg4nFMNkUqXCU+GiV9EiT9FSGYpCjEE9STA3i7y/y6p5hHpzMsiOepeDsphg1iWwDoqaCVRERkWWkUFVEZJVLpVKceuqppFKpJb92GIaMjIywf/9+bKf+q1REROQ4mNtvFRNhrQ82IDQekW1QshF1d5pybIxvT1zMOreHC7wyteka2/IZNqzJUAriFH2X2J6QvnKVTHkKr9rAyaax3XlsIgmOA+k0Nh6HbAYn5uL0FujKF4nvLlD0E+x3YyRdl/3D3Zzbn6R3l+GHIy9kh9fH0/EKDb9AiIuNqu0+q7OvQUREVj+LIWLpi2VkcRSqioisYp2sTh0bG2Pv3r2EYbjk1xYREVkOh/RbhZmp9gY/auIHU9Sao/zUG+Fnbob7R/vJu6dwRe0cxqs1Euu7eLKZYE+tm9xEnr7dIUOP1Tlj+0+Ir4nhDGShtwu7YQ02k4W+Puwpa6Hp40xNkB4Z4yX/9gyVvQ6T0xn2V5P8rJQkOGWQs50CFzfj3L9/kJ2JvYxHTzNZfYowqmNtA2tDjA3nvw4RERHpGIWqIiKrUCerU4vFIrt376Zery/5tUVERE4U7X6rmNaiUCYEG4KN8IMCYVjHDytUvUnutR7DxTW8qOSTyiXIDOWYTngUfI+CnyH5TEj/VIX00BTeYAUnlWjdI56AeKzVEqB/AIyDd/oU2XSR+N4i6YkmpcDDMx7TqR7GJ2q8OCqwqXEaDxd7aCSK1P0CQVglsg2iqAGoclVEZNWzHeypqr86FkyhqojIKrNmzRqGh4eXvDq1Xq+ze/duisXikl5XRETkRDZ3MSuYWdAqahKagMgGRFGTvfyE6dhe9pfWs6Y4zDnFBm53mkJ/lkrKJeVmKTQTDJUrdE/VyOZGMUHQut7QcOvCrovN5zGn9OMmYyTTRbxcndMbZTJuitFGjORAislsgr6JAj3xXgqT5zPuPk3FH6cZlOYsYtVaF1r9VkVEVqfWd3lZbgpVRURWiU5Vp4ZhyN69exkbG1vS64qIiKwkc8PVVtWqBVsjsA2qTWiGFWreBNPeAD3VzZwZq5Fo1hjLdZHyMpRDh5LvMthIcMbPJ4nVA0zDb7UBSKXAOGCc1iJWiTgmmyTWU2ZNbZLMaINMIUvKTeBHHo2hHnqydS4LTueh6R72JJ6k6O6lbAPCqNYKVi1A2Kq0ReGqiIjIUlOoKiKyCnSqOrVYLPLss8/i+/6SXldERGSlsu05lxFgwIJvpwmCAvXmGCVnD9+K7STtD9DjrueUfeuxpR72r8nzhOcxkIyxv55g7c9rDPaMkN87iRnIQXcXZNNEvX3Y3t7WglZRRPK0PST3jdH/7CRn7Zpg+Kl+9tfjjKWSRMlB1u5PUi/2Mt203Fl6iGK4l5o/iR9UCcIC2Ki1CBdRq42BwlURkRXPAlGnpv935rKrkkJVEZEVrJPVqbt372ZiCXEVBgABAABJREFUYmJJrysiIrKaHKheDbGm1Xs1CgPqQBDVaXpFSrH9nDL5C6xrjjO4NkfRy/B0JUYldCj7Mc5+fIz4cB1vsAL9XZh0GpuIQywGQLR2DU4shhPzSCQn2VAokJ5Ok66nqIVxRgbyOKkEg5MFziu/kJ3uAGPOM5SdUSqNgMg2VLkqIiLSAQpVRURWKFWnioiInBgsdqbnaitcjaIavvWJoibNsMIDTg/rxjdxYQjxdI3SQB6/O0YjTNK1O09/uUqmWMIrN3C6u1r9VWNxcAykUkQD/RjHYDyHrsndxPcVyUz6lINuEo7HdCJFvSvBK9PTjEzE+clUD88mniGIGjSDMpFtEkWNmRg10iokIiKrgL6TL78VEaru2LGDj3zkI3z3u99lZGSEtWvX8qY3vYkPfOADxOPx5R6eiMhxlUwm2bRpk6pTRURETiDtyk9rwTaxxieKGgRBgZ1hlX3eT3hssp/+wmlc3TybUpijlEtTDvL0FrvoH/EZ2F5jY+HneOv3YU7pww70YwcHwPOwfX2QzeDluvCKJTKTZXp/vJfC/iSjxQyj9QRPJ3oZytS5qssQBi/inn2nsyO1g6lwFzV/klpzjChqAAEQtsNVVa2KiIgs3ooIVZ944gmiKOIv/uIvOOOMM3j00Ue57rrrqFQqfPKTn1zu4YmIHDfDw8OsWbNG1akiIiInsIMrV4OwQmQDwqhJEKtx39gQL25YNvbXKAx104xcqmGcWuSSe6pOrlIkXmliyjWwUWshK8/DOh4MDkB3HtNXIdkM8HaVSO72yUxlaEQ5Jt0k+5KD1Eam2bIWfrj/THZG/YwknmF/1CAIq4RRDRs1wLSqVg1GwaqIyAqinqonhhURql555ZVceeWV7e3TTjuNbdu28bnPfU6hqoicFJLJJKeeeirpdHpJrxtFEbt27VJ1qoiIyBI70G8VLD5RFOHbiCgK2J75MdPl09hUXsvLa00qfTmm8xnqoUd2spvBeo2+UoXk1H48YyCfha4sZDPY7u5We4B8N07Dx0uP0ZWZIr6rSKUZI+UmiLsepXQv8WqNV3oFRiuDPDTRRTUxTc2fpBl4+DZq9Vo1rUW3WuPUj9IiIiuBterkciJYEaHq4RQKBXp7e496TqPRoNFotLeLxWKnhyUisuQ6VZ1aKpXYsWOHqlNFREQ6qFW1GmKJwEaEhBTqu2jGKlS8KV7QuIDBySLJRp2p/m6ecpOUA49KM8ZApUxvcgx3oAJ9NcxAiO2Z+RkoHiM6ZQ1OzMOJeyQTU6wvFUkX0mRqScbdGI81Unhr4gxMFtiStEzuuYC9iacouyOUouZhF7FSsCoiIrIwKzJU3b59O3/2Z3/2nFWqt956K3/4h394nEYlIrK0Olmdunv3bsbHx5f0uiIiInJ4ltmSIouNQurNURr+NCVnL1+Ixuhx13N6tImLiwHpdVnGsxmermTJFzOcW6zQ31UhN7Cb+CmjOGGIHRzA5vOQzRIlEpjubswpBXoG9tI9UebU0SLVEUP/7gHGmjEmM708O1rj14zBiwa4f3/AD73/pOTvpe4XWi0BwlIrAJ5ZyErhqojIias1x0CWm7OcN3/f+96HMeaojyeeeGLec/bs2cOVV17JG97wBq677rqjXv/9738/hUKh/di1a1cnX46IyJIZHh7mnHPOWfJAtVQq8fjjjytQFRERWQaz4aq1ITaqEUYVSvU9jPnbeNz8lG+PjuHvLxDfN06tHrGzYthVTbJzKs/o7i6q20N4ei/m2V2YPXuhVoMgwMZj2FweNq7BnLkG7+xesud6nNY3zaZMlXWpgLPXJkltHKS7O8arhl3OsS+hP34W2cQwiVg3xklhjAs4YAyGpZ0hIyIistosa6Xqe97zHq699tqjnnPaaae1P967dy+vfvWrefnLX85f/uVfPuf1E4kEiUTi+Q5TROS4UXWqiIjI6tZuB2AMRE38sEzUCPDDOvVYkW/veRUv7Xfoqe0nP9TFvkSGUuBSDlxqvsdpj08RK9UxgyVMEGBTSYjHWsHq0FCrarWnG6dnkt7CsyR2B2SmA7LVJM0oyf6efppOlStskX8beQHPOr2MJp4iiOoEoUMUzbQEIFA7ABGRE1RHF6rSt/0FW9ZQdWBggIGBgQWdu2fPHl796ldz4YUXcvvtt+M4y1pkKyKy5IaGhli7dm1Heqc+++yzNJvNJb2uiIiIPA/WYk1IFNWwNsLagDBq8EjqESb2n8bGRI6XU2BqvIE3mKeei1EJHdJP+/QWqyQnGniOg+nuglwX5LLY7h5sJo3N5zDZLN5UiWyqQGx3kdSETznw8ByPaTdNz2CcyzNFto/GeHg6Ry3eWsQqCKuEUQ0baQErEZETmb4zL78V0VN1z549XHbZZWzcuJFPfvKTjI2NtY8NDw8v48hERJ6/RCLBqaeeSiaTWdLrRlHEnj175n3PFBERkeU3G1K2Aksfa31s5BKEJfaEVUbdR3ki6uWBPWvZHDufV9gGgc3zVCrNeKOX/qk8gzt9ztw5RmZoBO+UNOaUHuxLXgipFLgutrcHLngh7oYJ0hPTpMeK5B/ZS3EiyVgpzcPTWYLhXgbiVd6Qh7Mmf5XHStPscn5OMdhLqbaHMKoBAWDBhgpXRURE5lgRoeo999zD9u3b2b59O+vWrZt3zKouWURWsE5Vp5bLZXbs2KHqVBERkRNYqxXAzMcmBGsJwgqRDYhsgB/VeJgcxV0beGm1SC5XY3ygGz9yqYYOqfE8A/Uq+VqVeD3AGRzB9vViu3LgmFZrgN4eTMyDdJJkEBLbVyO1r0nJjzHaiDE5kGYslWCtKTKY7OE/xs/jWa+HZqxCM/AIozrYBnamanV23CIisnys7eD0/85cdlVaEaHqtdde+5y9V0VEVhJVp4qIiAjMBKuY1k/IJgIbEEURvo2IoiYjzmNUvSkmxk5nQ6GbV/g+k/kcxXyatJuiFngMNGP01ypk+3dhyhXo7YZ0ptVnNRaH7jyk0xjHwestkO2ZZlOlSLqUIePGSbseE6kecrUKqRg8OX0GZSYo+Xup+VOEoUcYlrBGLQFERERmrYhQVURkNRkcHOSUU05RdaqIiIgAB7UDmKlYxdYIrE+lMYYf1qnGppkM17OxfA7xapF4qcHu9TlKQZKi71Ftxjjj8UlihRpmqAQ9XTDUD4kENpGEdBabTGG6czhdafonnyW5xyc9lSFdT1GP4uyLZYhOSbLWm+YFu17MznieSWcHVX+cug1aFasWINQiViIiy8gClqX9eVIWT6GqiMhxoupUERERORqLBWvnxJUhvj+BHxSoNkaZdp7hb4Kn6fbWs2H8NC4qN8gN53g2lyYby7KvlmToiTqDXQW6eveTOn8MhnthsA87MAC5LmyuC7tuHV4qQffecXIjJTbsKzDwVDf760lG6jEmMn1clEry4rEMMXMO/zlR4Sex71P1x/GDKkFYwNoQQ9RacEvhqojIcWXR9P8TgUJVEZHjYHBwkLVr1+I4zpJet1wu8+yzz9JoNJb0uiIiIrJ85rYEaFeuEhFGIeXGCM2wQjU2RdfUZi52C6SbdSo9eZ51PWphmorvMVivsy5XxPNDTBiBcbCnrD1wj75ejOPgJOPEsyXW1Qtkx5uk3QwpN05tMEPYkyQ7NU3KheLYhexNbKPsjFJpBK1FrGyANRajRaxEROQktLQ/3YuIyDyJRIKzzjqLdevWLWmgGkURu3fv5uc//7kCVRERkVXIzvyaDVSt9bFREz8oU29OUGjs5BH7GN8ZLfHM/gZjT47x7EiVPTWHZ6sJdpSyTO1I0Ph5hejpUczOPZhCAXwfIotNp7E93XDKIGbTEKlzUgycUeW0wSnO7KqwLm3Jp1wK/X34fXku6xvibPtSBhJnk4h147ldGCeFMS4Yw+wvERHpvNmFqjrxWOz/kZ166qkYYw55bN26FYDLLrvskGPveMc75l1j586dXHXVVaTTaQYHB3nve99LEARL9NnqHFWqioh0SKeqUyuVCjt27FCYKiIichI4EKzObEVlosghCEvsDsqMuD/lkclect5afjW8EL9Up3xKnp2ux1hjkIGxkKHtdYa6x+ndNYkz0AW9XdjhAWwqg+3ugQ0enHYqsckpukfHye8ep++Ho4wVMozVk4xlUzyeTfCiWIwX1zI8Ep3GjtTTTAe7Wv1Wm5NY21BLABGRk9B//Md/EIZhe/vRRx/lv/yX/8Ib3vCG9r7rrruOD3/4w+3tdDrd/jgMQ6666iqGh4e5//772bdvH295y1uIxWJ87GMfOz4v4hgpVBURWWLxeJxTTz2VbDa7pNe11rJnzx7279+/pNcVERGRlcFiMRYwEdZGBGGFyAaEUZNmWOE+Bji1PMzLgiZr1ufYWUlTDjzKQZpq4JF4fJzk8DjuUAXjedBrsTEP4jHIZokSCUwihom55Ed3EN9bID3lk/bSlIIk2dP7KE5WuCxleGzyHLZHg+xNbGM8ahKEDlHUmGkJELbGCQpXRUQ6pFPfXRd73YGBgXnbf/zHf8zpp5/OL/7iL7b3pdNphoeHD/v8b3/72zz++ON85zvfYWhoiPPPP5+PfOQj3HTTTXzoQx8iHo8v9iUcNwpVRUSW0MDAAKeccoqqU0VERKQj2sEqYPGJopnWADZgt/sTSt4EhX1ncGHd4qTrNNbmaYQutTBBdiRPX6VCV6FKMjuOCUNwXWw8Dq4LsRi2tw8A7/QC6VSR2EiZ1HiTkt9HyvVIuBnG0wnWOwXW1QZ5aCrLw4kyNX+SZlAmjOoQ1bCm1bbAWAWrIiJLrZMLVQH4vk+xWJy3L5FIkEgkjvq8ZrPJF7/4RW688UaMOdAS5ktf+hJf/OIXGR4e5ld/9Vf5gz/4g3a16gMPPMB5553H0NBQ+/wtW7Zw/fXX89hjj3HBBRcs4StbWgpVRUSWgKpTRURE5HiZDSlbC0RFYCMCG1FujOBHNeqxIqXpM/l/kmvJ7N/PVFc3te4UXV6aShBjoF5lbX4KrxlgrAUbYYdmKohiMWw2h1nbj5uK43SX8EZqnFYvka2mSblxKoFH16Y+euplevdAYeRCRpJPUw5GqPsFGj5gG2BNeyGrueMWEZET2913380NN9wwb98tt9zChz70oaM+7+tf/zrT09Nce+217X2/+Zu/ycaNG1m7di0//elPuemmm9i2bRv/+I//CMDIyMi8QBVob4+MjDz/F9NBClVFRJ4HYwyDg4OsWbNG1akiIiJyXB3ot2rBBvh+gB8UqDZGmXS38+ej53CKPZMz4hEv35TiKdvNU5Uk3bEk59ZSDP6sQu/g0yTW7cR9yXrozmFTSYgliDauh/UWEwS41QobTnuGU3aNc/YuGN7Zz2g9zkQii+ul+I1sgmJhkHIAD09VeSRxP9VgkmZQIgzrhFFF/VZFRJZYJ7+XXnnllXzpS1+at++5qlQB/vqv/5rXvOY1rF27tr3v7W9/e/vj8847jzVr1vDLv/zLPPXUU5x++ulLN+hloFBVROQYdXd3s27duiXv8WKtZe/evYyOji7pdUVERGR1slgMBksI1hJFEb6NmKo/QyNepuBvZHLbRi4c9EkN5WjmUqTdJJXAo9qMM1Cu0J3ah+krYvpykOvCDg1BNoV1DORzmKaPm06QzkxyanmarlKGrnqSjOfxM9uDTTUZLhX5xVia5ujF7Ek8S8HdQ82fpO5Hc/qtqnJVROREF4vFyOVyi3rOs88+y3e+8512BeqRXHLJJQBs376d008/neHhYX70ox/NO2f2Z+Ej9WE9UShUFRFZpHQ6zbp165Z8qj+oOlVERESOzfxFrABbo+FPE0ZNgniVmldguHQxL41P0WOr7Ix6KAcxyoFD2Y9x1s8mSA41cIs1zGAdk89hkwnABdclWjOMicdw4jF6pnaRGimQnWqQr6apBmkKiQSTqX78Yo3XxBz+cyTDTmeY/ckdjLENP6i2+q1av9WyANRvVUTkGFnbuZ6qx3rZ22+/ncHBQa666qqjnvfwww8DsGbNGgA2b97MRz/6Ufbv38/g4CAA99xzD7lcjnPPPfcYR3N8KFQVEVmgWCzGKaecQm9v75JfW9WpIiIi8nwdWMQqxBpDGFWIbEBkA/ywzn8wyMTetWz2DeN79zM9nKc5mKIeJsmO5OirVsmWq8SqAU5/D7gOtrundfFUCtvT+jeQd2aFdE+ZxGiV7GiDWuAy2oiR8RyK8TROX4oXpcucPRXjx+M5HkkGlP0RGkGJIKwShBHWhmCiOYtuKVwVEVmpoiji9ttv55prrsHzDkSNTz31FF/+8pd57WtfS19fHz/96U9597vfzate9Spe/OIXA3DFFVdw7rnn8uY3v5mPf/zjjIyMcPPNN7N169YFtRxYTgpVRUSegzGG4eFhhoaGlrxvKkC1WmXHjh3U6/Ulv7aIiIicXNrhpLWAj7UhflTDDwo8Gd7LLi/Pg6NDvMy9lM2JaSbrNYpD3RSDHN2FLP37AwafqrFp+md4G7KYtT3Q30fU1wvGwXZ3wwUvxPgNYrU63dNFXvbwThp7QgrjacbKKbaX0+TXd7E3n+aibJFX1l7Onio8Viyx232Gkdoj+GGrcjWKagf6rc6MWwGriMjRzXTTPmF85zvfYefOnbz1rW+dtz8ej/Od73yHT3/601QqFdavX8/VV1/NzTff3D7HdV3uvPNOrr/+ejZv3kwmk+Gaa67hwx/+8PF+GYumUFVE5Ch6e3s55ZRTiMViS35tVaeKiIhIR1nLbNUq1uIHZaIowI9qPJLqobh3Ey/IwUuiUaZ7eqh2JamEccqBQ9dTTbrLJeKFOs6aMk6z2VrEKpHA5nLgZLEWTE8PbsMnlZ8ktqdKeqRBYB0mGjESrkch08P+6SbrC0VOSXfxk8kX8u/JOqVglEZQpO5PYq2PtQHYCGtCVa+KiDwHy4k1/f+KK67A2kOfuX79eu67777nfP7GjRv51re+dQx3Xl4KVUVEDiObzbJu3TrS6XRHrq/qVBEREem02QWsWulnhI1qhIRYP2DMeYJabIqJ8iZGq8OcV5nCTyUprclTT3tkp/IMN2L0lyqkpyeJRWByaejOYbNZmJmSaeN52LQek0oQS0+S7Sqx0S+QK6XoqiUZd2PUwjjlZB+2XGejLVEbO5+97iTj3k7GeRI/rBJFTSLbgKiJNRaI1HNVREROaApVRUTmyGazDA8PL3qlw4Wy1rJv3z5GRkY6cn0RERGRuea3A7DYKCSiQaneoNIYZdz9Oc94eZ4Zezmb3EE2Rw0qg3n+rZFiMBmnbzrHwB6fM56dIts3SWzYxW00sMOD2J4eiMWwg4PYri7M8CBuqUzfhhF6pyucOlmiORJx6s5exusJJvNJCoNJ0iNVXlZI0WyuYVvhQnY2pxlz91AMRyjV9xBGdcKoibU+WB+IZsavkFVEBADb/rbYkWvLwihUFREB8vk8w8PDZDKZjt1D1akiIiKy7NpVq01CE7UWsooCdro/oeisp7D7NF5YsrxsfZVJ04sfOdTCOMnpHL31Ot2VKl09o5iGj6nVsd15bDoNjoNNpsB1Ma6DqdTwimW8wRKbwil6J1OMV1JMNBPY4Qz7uzNEhRoviFc4x+/nqWIPT4freSrpUA0m8YMKYVQnCCtgg3nVq6BwVURElp9CVRE5qfX29jI8PEwymezYPVSdKiIiIieC2SDSWLAmnClzigijkHJjhCCqUY8VmSycyinptTQmRnEH8tTyKVJuknLgUfVjnPrEFPFSA6dYwfTnYbAf4nFwHWwsjh0agjDE1GqY/gLp4BkSe2tkR+p0T6cJbY6s51JMpBjpSmJqTc5IVdhQcXHGL2J/Yh8Fbw/1YJpqE8Ko2a5YtYTMDVfnvi4RkZNF67t3564tC6NQVUROOsYYBgYGGBwcJB6Pd/Reqk4VERGRE43FtkJJE2FtBDaiGRQJoyZ+WKMeK/DPe/Ock8vwAneKPlthV9RHJRWn5LskdoX0liqkJydwh8o4zQCyKchkIJvF5rpa98lmsflunEYTLzdBtrtMYqSM3WGYqieYaMQxxqPkJaik4mR8n1/Oxtk3nueJ8lrG4vvZZx6hGVbwgyqRbRJFNbCmXbmKnekbi8JVETl5dHKhKlk4haoictJwXZfBwUEGBwdxXbej9wqCgL179zI+Pt7R+4iIiIgcCzvTkM9gsATYqIyNagRhiVpznB/GJ3m40E13ZT3rdm3i1zb4hENdPJXKsL/RTddEnoHdAX2JBhue2E2y3+IOpzDDeXjhmdjuntaN4jGiM0/HrBnCKVdIVKts3DvOhukq4dgE525LMVFNMt2MM9302JfrxfQFdI+l6WrkqYVn8chkg/22wIQzynjz5zTDCkFYJwirrb6rtIJhCGdenPqviohI5ylUFZFVLx6PMzg4SH9/P47jdPRe1lpGR0cZGRkhijo1IUNERERkaRypJUDDnyaI6gRhjWpsim/v3sz5tTJrchUm892MpRLUoxjFwMEZsfSWquRKVWLlJm4+C7U6tqsL4gmIImwsDnkHshlMJoOpVPCmSwywj67ROqXpJFPVJMakSLke5Ww3I+Usa5tVelNQaw7wdKmfh2w3U7G9VMIJKs39hFGTKGoS2QCiWuv1GFCLABFZzWwHF6rSd8uFU6gqIquS4zj09vbS19fX0cWn5pqammLPnj00m83jcj8RERGRJTW7iJWNCKNaexErP6rx02SK/eObWDfVw6WDk2QycSb68hQTHq5JU2rG6K3V6StWyWd2YwYLmO4uyGaw2Qx4MaznQSqO7e6GZhNTLuM1A9I9BRKjVbLjdZwxy3Q9zpTvkY157Ch3YdJZnFqTTekaGyvr+MnkEPuiIrtT26iFUzSCEkFYww8drPWxNpjfIgAUsIqIyJJTqCoiq0oul6Ovr4/u7m6MMcflntVqlV27dlGpVI7L/URERESW2tyK1dZ2a1p9GIVEfpMJ8zTV2DTjdhh3/IVcRJNqYYxYPs2uNVmKyQQF36PUjHPGY5Mk99dx+4uYnjRmsBuyGejKYmMeuC6kUthUCnNqDSedxMkXcPtqbIhPM1CKUawkmawn8Zwk9dBQTiaZTicYilsunapTnUrzoz0Zxp0iU8n9lKP9lBr7CKJ6u3I1ihpgg9brUcAqIqtIJxeqkoVTqCoiK14qlaKvr4/e3l487/h9W/N9nz179jA5OXnc7ikiIiLSSQfC1RBrQ6zxgQaVeoNqY5Rp5ykmEtv5wb4+es16Noyt5bWNKuFghidSOeqRx7OVJP07AnriTXrSdfo2PI3X7+EMdmGGe4jOOgNSKQCiNWsw3Xmo13AaPumLaqRrdfqKFU6dKHPOY2OUp+NMV1IUm3F2VROk42nq/Wku6s9hK32Y0hriNuSxqZB9zSoFp8A0oxSCXfhhnTBqEEZNwqg+U8kagQ1aC3a1RnHIPFqFrSJyouvU9H99+1s4haoisiJ5ntee3p+a+Uf58RJFESMjI4yOjmI79jeZiIiIyPJpBY5mTksAH2xAYH0qjTGaYYW6N0XR209iz4Vc2KiQTtboH8qxs5qiEsYp+i6FZgyArkKdZHEat9zASSawuS5IJbHOzI+kyRRRKgN9fRCGmHoNM1Ug5TxLfH+NrrEGtWKM5FQXpWaMQuDhOXFq+TiTjS6CapMXZWucV3UJoy4emRzmKbuGcqxAJRqnHhWpz/SJjaKAMKpjCA/bKgDmV7POfj5ERETmUqgqIitGKpUil8uRz+fJZrPLMoaJiQn27NlDEATLcn8RERGR42VeSwATtbasJQhLRLZJENZpBhUeTsYYGT2VU7w8FzenqXtVaoNdVHJxSoGDY7Lk6wl6SjW6pmqkvJ2YngzkMpjuXGsRq2QC0ul2BavNdWHzeZwgwOuZxh2sEJ+qk9g5Ra0Uo1RLknEzFHyXnrhDI5NgbyZOzMmTazQ4P9fgvGqckdJani7VmDZVRpI7qNsCzbBCzZ8kjJpYGxxoFTAbqtpoJmSFw7UMmPu5ERFZDp2c/q/vbgunUFVETliu65LL5dqPWCy2bGOZnJxkZGSEer2+bGMQERERWQ4WeyBUnKlajaLZ35uMmyepxCYYt2sZ37eRq9dlqe9rsm8iQbE/i2MSTDZjTNXj9FSarI+mSfRVcXqncdbXMNkU5Lpa95o7AymRwA4PYlJJTL6M218jnS+QLDbJTRdJ72xSrCYo+glKvkvCidGIYIwktZ44XYN5XhCFnFmp0Sg3eGhPD/sbVcpulX3edhpRGT8sE0RNmkEJawOsjbBEB9oEEC0oZD348yUiIqufQlUROaFkMpl2iJrJZJZ1LFEUMTExwejoKM1mc1nHIiIiIrKc2kGhtRhsu99qRINKvTbTb/UZ9rgP8tTeM+llHWvtAKdNNsgMxaj2Z3kqnqQZJjitmKEvHpKPNdkwME6yJyA24OL2pTFnrcfmsq3WAF6sVcXa14vt728tcAU4fgOnUmNox26GJstE05NExZDKPodaNU6pFqfkxxmttyplm5ksDGbxByLqlQZhpUkuWIMXhkQWthUsT1WLVEyNuqlSYYpKNDHTi7VBEDXww2o7dI1sY+ZTcSB0nft5MgfXjx2lXZQCWBE5FtZataI7AShUFZFlY4whlUqRyWTIZrPkcjncmX8sL6cwDBkbG2P//v2a5i8iIiJykHltAQhn2gK0+q1GtslU/Rmq3gRT3gB7y2sJ7QYu9SdIeDFyfVmeLqepphwmmy4WQ3epQW6yTqq3RCLaielJQzaNScQhm8Em45hkChtLQjyGJQ3dPWAjTHcJp1TBqdTJDVTIlhv0Fmo0iw49Y1lKjRjVwKMWuXiORzObohamGKlZ3Cii269zdpfPBb5HqRZSCQzbiwEjzTI1t0HVK1NhinK4n9A2CKImflDBEhFFARARzYStEGKg1acVWhWuWGZWw+Jwk3WPVvG6kK+BiIgsH4WqInLcJJNJMpkM6XSaTCZDKpXCGPPcTzxOfN9ndHSU8fFxoqhTHWpEREREVof2YlYc6LcaRRENfxo/rNIIilS8Mf6tEvFseYhT0oZL/SnyXonRTBd0pbAkyTfj5GtJekoNhhol4j0VnLyH6YpjBvOYrsyB9gDx/IH79/RCIoHpyoLvY4YbuPU6bqVOvFAjvr1IY8qhXvOo1ePkaymqoUs5cMl4LqF1qQUZwjSUACeKGAwDclWfvM1QKjeZqEQ8XQzYF5WpOXUqXoFCbITANoisT2R9mkGlHay2fg/a263FsGb/XXmgZ2v7NRwxVT3Kv0Xt7Of90K+HiJw8og695fWdZOEUqopIR8Tj8XkBajqdxnGc5R7WYTUaDUZGRpiYmFjuoYiIiIisKBbbnt4+2xYgsCEmNPjBFLXmKGV3hKfdJPEgw7eqfZxlX8pQ3OfiIY/KYJo96S4a1iMXSzE0laM7FpKL+WTjTQb7Rkj0RHj9Hs5ABnP6Omw2A/F4awCOg81msYkEZNIHBtb0iZ/9LPFiia5yHWoN1hdLRLUAWwmp7jPUazEq9QSVpkfBj1MLHcqBR707TiPK4FqgFpEoNzmz1k3MD/D8BnnnLGIO+BFUAsNPJkMKvk/ThvgEFJ0SVVOiZgsEtoEfVVshKyFRFBBEjXbo2urf2gpQ2+0E2h8z73jLQSHtvGPHENAeixUw5fhYAubDBdXHawyr6d4HU9jfGRaFnycChaoicswcxyGZTJJIJEgmk/M+PlED1Lmq1SojIyNMT08v91BEREREVrx25aoNsca0wjcbEVAijOr4QZVGUGJbMmRPOMjeXevY0rT0JCt0d6cpZ7LsCF0Gkg4TTZd8M04j8MhNN8iO10mNFog3Qkx3GpJxyKQg5kEyCWGAnRuqxmPYwQFIpzH1OgQBxg9wgwDqTbr2TJGerpOfbuCXHaqlGPVGjHrgUQs8SoFHPXTojzs0uhI0oySNCKYaMNEM8RsBthkQD0NekglIhAGxsDXtf6KRZ18NRqs+VRtQN02aJiA0Ib7XpGQmadoqgW0QtPuzhq2WAjMLZIXtyld/Xuh6oNVA6+PZ/QCG8MDXYl7YOudj+/wC1vntDOY6gWZ5HaGSd0GWYhZd+z8ZjuFaz+f+c8Lu437v5zEWha6ykilUFZGjcl2XWCxGIpE4JDyNxWLLPbxFC8OQqakpJiYmqFQqyz0cERERkVXlQLBqgZlwNWpiTUBEg8g2ma49S82bpOSNEIxewLCb49xKjeFkBSeXYk8yTSyboDfuUAnSdDUSdFXT5KaarKkWiXeXcbIOTl8ak45DNonJZbHpzLxqVRuPY7JgkwkwDtZr/fhrggCTH8WbLuEVa8TLDZLTdag3CWuWsG6oFGLU6nGqfox66FIOPGqBQ2/MpRK2WgdAgsC2gtYGULPgN3ySNuI0P+Qs3ycZBbhhQL1pqQeWWmh4prSWYjOkbgNqzASjJiLC0nCa+KZJnQq+adC0VSwRofWxhARRo7UdNfDDWruSdbbqtf3abXRI24G559hFh6utwHY2Hjv0+UsX3B6rdji3BNngsYayRw6dOzOGeYHkEmaix/L6j20sEcYqWD0W1mr6/4lAoarISWg2KPU8j1gsdsjHs9ue551QPU+fj2KxyMTEBNPT01olUURERKSD2gtZzYSr1oRgQ8AhiiKaNiKM6jSCEk8lI0btAHsmTqGfHP/dtcQrVZqTLqWuNCPJFGu7Y8Qcj1QtQT1w6RrzySQbZPvLeFmDk3Nxess4jsHmcpBKYT0PEwWtrM91sLED7QEstI7nSphyBVOr4dUaEEZ4DR8aPon9FaJiGb8EQd2hVo3TaHrUA4+SH8cPDb51aESGfMwlsIYggigVoxJAJYCGhaZpBR9BZImsxYQRLyIijiVuQxJRgI0ibBAR+iHFuqVYt4zVIorNkEoQElpLhCXEtqpeCajHahRiY0T4hATt0HU27Ixmql5hNkwNCaLmTNgaHqatwGG+jgcdP1wgO7dlwYF7HfS8RYasxhx5xtvRrjW3Unex9z3yPReyiO6B+x7uJ6cjjeNor3OhFvKT2sH3P7b7zv08hIc941h+arQzbTGMDRWsyoqkUFVklXiuoHT249UUlD6XWq3GxMQEk5OTBEGw3MMREREROam0Q5KDeq5a4xNFDgGGZlBk2nmKvU4cz0ny0M41pEwPvXYNA+T5L2tT1Asufi5FkM/wrWKW3jjk45aB/QEZLyTlBmQTPgMDPyeWt7hdDiYTa7UJSMUgk8Rks0SnrIFUClwXkkms60I20xpiOg2zs7AiizM+hlsqE6tUoeGTCwIIIwgj7HQVW20SlQOiakRz2iEKIAodwtChVE1QDzwagUtgHfzQEGDwI4dmBNUgRti6DREGbCuWjCyYENIR9IUWfyZoDf2IIIzwmyG+H+FFEXEiep2NpExAjAgHCK1pXye0hnpk8CMIImhEUA6gHkA9tBSaIX40E9baVuA7y5nzs8Ls/pkYltBGhIQErdgWayJ8fCITERBgifBNg4jZdgYhET7RbCD7HG0CDEcP/OZX4x4I96KZ2Lm1/0CwPHvOke47ez9jWqGh096e+X0Boao9SpgbPcfrnXvPeeNaYPB5uMB2Ifc80r0Pd9+jfQ6O9toXMh4/LFNtTtD0x8Hq57XFsHSuUlX59sIpVBU5zowxOI6D67o4jnPIx8d67GQJSp9LEARMTk4yMTFBrVZb7uGIiIiIyIx2BasFTNTaimoE1sdENUJTJ7IBFXecoruXESdHec959Dhp1mZCLu0rkkukCLtSjKaThFEM1/GImTj5RkS5GSM7U8WaSPok+6dwsg5uVxyTK+AEAWRSrUWtZjkGvBi43rx9tqcHEgnIpluppGNaD8CUq5hyBadcg3KdWKkOkW3NhvIjctMlwkqrwjX0DYHvEkUQRQ5+4FBtxmlGDsHMYzYciayhHrk0I/Ajp1X9amNYWiEpthWO+jMhaSNstR0w1uKHljC0RJElCCOiMCKILDayhEErNPWwZKylB8uZniVhbKtiloikCSGyuDbCYDH2wAJkkYVGZPAjMy+sDVsvl3poCC0E1hJGUA/BjyyhhdBammEr0gxnQtzZ/DY6KLlx5tQ6zv3RZu4ks7nPsXO2I2vbwW+rQNoSzIS+7XOOcD8Hg8E5aNvgzIl4Dzcd3ravO3989jD3O/jeB7/e+a/98Pvnal9v5rUe7h6Hu+fR7n2k+x4p3j34dR9tPEcaSyFWYLfzCJNhiTBUqLpYqu5dfidlqOo4rgKoFWL262SMmfdY6L4T5VxjTDsAlaVnrWV6eprJyUkKhcJyD0dEREREjsJiW8EqzLQGsGANoQmI/AA/KNNwCtTcSZrxGmm6eaYyyPbSABf0OpzTqNHlwr5YlkYmRTwVZzDpMNXMkPFCcl6atBfSV6ySSgYk0k1i2TrxchOTjWMScUjFWxWr8dZCVzYWh2y2HZziOFgvhknOjDOVhnirktX2+JhqGVMsQ63eWgjLHIjdnGKFWKWBrTaw9QDbnImfbIj1LWGxSliHsOHMBK6tZ9oI/MDDDxyaoUsQOTRCt1WBalvBZTNyaUaGZmSohw4hM+0MrCGwzkw429oXWNrbkW1N2rb2QIVbCNSAhoHSnK9P+/zIEs4Gs5ElCFtfNGtnglHbinQM4FjLzKeKrG2Foo61uIDnWFwMrrG4xhIz4GDxDMRNhDuz7WCJ0drGRjgG3NmQcuZ+AFHUGkNoDbPZbzhTkdsKb1vnBDOhr40sEYYoOlCv2g5LZ+7tzmTmhtbvrTGBMRaHA38sDhbZA+GinVMpbOccP1rs1f4zYw6//VyB5myl4sFVi/ag43Md7l4H39c1B574XGOw1szbDmdD8zljO9JYdlVz3D+R4z8TY9QbjXkhobWWKDp8qwGRE8VJGaqed955uO5CeqOIyImq0WhQLBYpFAqUSiX1SRURERFZQQ5btWot2Bqh8YhsgzCqE0ZNqs4YRW8v426OqamzeXiqm4F4gs0DFeLlCr7jsieRpB6PM9CTpD/t4hmY9mNkyiFJLyATC+ibLhPP1HDT4OQ9TNzBpGOYbAIHi82kW+0BPG9mqn/QGpMXa+2bFY9hve5W6Fqrtc+xngeOwVRblaymWsM0GjOVrk4rnYrAK9eg2sDWfKKKP29hJ+sH0LRETUvUgGbFIYoMNmr9HgStatcgcqn7HoE1RJEhwhBEDqFthVwhrcpSi5mpGIXAGqw1M5WvM/ez89PCVvVn69yo/TgQ0M6Gd/bgwOygaxzNbD1iE6ge6c/HQddn5r6zO2bDy7n3ng2MWx/bQwJNw4Fs1hwhxJxbfHW0MqyDX+PBP4ssdFr24cLaYy0AO9zPQ881jiOFxccyhuf6eexwY2n6Id3ryrywcjpB0Dfv8xqGIT/5yYOLHsfJQgtVnRhOylBVRFaeKIoolUoUCgWKxSLNZnO5hyQiIiIiz1OrCnEmYJ2NWm2ANQaoEYUVmsah2nAwJsak+xSuE8fzU3y/uYaU00NPNEieLGd3pdlYiYhSHlE2wZNemlosSSOElAcD43nijqXLi+hLNIk7EalYQDpRpavnCdyUxc0YTMrFycQg5mBiLqQSmOFeSKexqWQrZA188GfiwUwKm8m2e7LabBbbb6FRxzSbrd6t8US70rU1n76OqdVxqpXWPuNAzGulfVGI6weYRpNkqQxh2ApmoVWCGVkIQqj7EATYoFWmaZszC3NFETa0WH+mjDJspYtR07byW9tqX2mjmU+9NURhq73A7L4oMq39USuIDUNDFDkHPp4JYy2mXSk7+9IOCWoPSmjsnLgyOji6bFc5zql+nLNv9n7tj+cFvTPH5oxpbuB68L1n/8zB/HYDcOTqzAPjPtSRMsUj3fNwDpdlHm0sR+ue+nxqTpZqYu9zjWF3LUZzfD1j3jaCYHppbipyHK24ULXRaHDJJZfwk5/8hIceeojzzz9/uYckIh1Sq9Xa1ajlcnm5hyMiIiIiHdSuXm01Zmztm20PQAg2ICAkCF38oEwQ1vDcFFPus8SdLPvLm3ik2EPOSZCPB/ziUIW+mKEcT5HMxnmmlsSNufQnHQq+S8yxpNyIrBuSLfsknJBULCCZ8ElmGrjxCCcBbsbgTlcw6QQmk2i1Dpg7j7w7D02/tdjVbL/Wpo/xG62K14MX/3EMpFKtytbZCljXbYWus4tl+T626WNyFYjCAyVpjmnPzzd+E/wAE0UQhJjZxbTszDz4IDhQVhpF4M80C4hoBcIzaaSNbCu0nSl9s7MlcBEz5Z8zIW04+9xWktk6b05wFs0pup07Ff3gYO1w50SHOdeaOfvnh75Au20CMxW4c9sozIaqswHv3KD34NDXmEOTv8Ptm+vgayz02OEc7V7PNY7F3Pe5ji/mXkslNpXnmVKcWJiibsxh/rDIkczpiCHLaMWFqr/3e7/H2rVr+clPfrLcQxGRJVav16lWq5RKJYrFIr7vL/eQREREROQ4m9tXsZXzhGBmqg+jBgZDaBxsEBGEVRqmgOvEqcemGHWyxMmS8vPse3YDOS/OQLLGBb01Bsw0JSfOZCrBSDxOMh0jl/ToirmYepyYsWS8iIwb0lXwibsRSa8VsqZH63jJKm4GnC4P45pWOZ9ncPrLmGwak01DMgGuM9Pks9UP0qSS2FQSm0hCMnnguO9jbIQ1zsxCWHPC11grYLWe2wpEYaaFwIFz7GxoGoYYG82EqHPSSRsdaJBqI0w4J/WcbTwazdR++sFss9LWIlUwf25x+/zowMezJaLRQSlpdNBz2wOerbadm6bOOT6z38577pw5zrMh7+x59qBjM+Owh5w39x6HDuuwjrU8dDH3eK77LOT4sd73BBE9VqRnuh+vnqb1YtVDdaHs7MJsHbq2LMyKClXvuusuvv3tb/MP//AP3HXXXcs9HBF5HprNJtVqlUqlQqVSoVqtEkUr8F8CIiIiItIx7R/uD2kRAKH1CWfWaveBenMMY2IY4+AYj51OEteJE2uk+MdSirx3Cl22l1zUxYCXoT/lcV6fIdkVwyRjFLwE08kYhdAjihJ4LnTHIOG2FmaKGUh5EX1xv73okutEdCcaJBJlYvEQL27xEhG44HhgYuBkXUzMxSQ9TNyFZOxAiBpzMZ4LMbdVtZpMtPa7LjimVc1qHPAccFyIeVhnTnUrtPYBpNLMfJJaDlok96gxyZH+HT57jXZYy7wesPOe91wNHu0R7nHQ88yRzmuHsjPnHbI/mnn+UQLdhY511tymo51qYLnQ+y/EcozxeRhOPcTGsYhUMc/0URsjiJyYVkyoOjo6ynXXXcfXv/510un0gp7TaDRoNBrt7WKx2KnhichRBEFwSIAaBMFzP1FEREREZI5DWwSEM/1XmanODLDGIcIhjJoY49AMPBwnTj0oMOkm8Zw0u6IB0pU8j5R6SJsEvbEEQymXs3KWXMLBJOM04wmayRgTToxaZPAMZD2XYsJpZaKAYyz5epKkExJzLJ4TkXRDPCci7obEvIhEwsdxQ1w3wPEsbsq2A1eTcjCuwXgOuKYVvHpua/n5mIdJxVuVrZ7X+j0eay0i5LkHwlfXbVXyxryZsHbmmHHmLHM/p8J1tjJ2dt/BVbKz5xtaQeVBFbJHLJ88OJg9+JoLtKjw9+DQ93ldXI43J58k6UQ4ZsVEUycOS+em/+t9smAr4k+utZZrr72Wd7zjHVx00UXs2LFjQc+79dZb+cM//MPODk5E2nzfp16v02g0qNfr7YcWlRIRERGRpXS4/quYmcmwNgSceQGriWqEYZ2G8XAcj5o7iefEGXVSeCZBJuwnVcrxYCFPijgD8SRrMw02ZS1djiXhxai7MfyEx1N4eAmPWMLFcR1yMQfPeHgGMJB0IpKuJelEJJyIuGtxTWtJJtdExN2ImBsRc8JW4OqA41iME+LFAoxjceMW44GbNZi4wcRawaZJuO22AybWqlzFaYWsJhGbOTYTqM4Gr9DaP1P1aGZDUsdp7XddrDsbws4E1LNVsLOBdfs6s0HsnC/GwT1jmQluZx1xifnDnDO3d2z72BHCWTPTRmHevsOfeqwB7zGZ265BjiyKwDFLtiiWyHJY1lD1fe97H3/yJ39y1HN+9rOf8e1vf5tSqcT73//+RV3//e9/PzfeeGN7u1gssn79+mMaq4i0RFHUDkvnhqeNRkPT90VERETkuDq0/+qsmQrWdsBqCE0AOJjIIQzrGONgjIdjPMrufjwnjuskiDkpMmE/mUI32aku0iZBjxfRmwzZlIUNyRCnAo3IUDcuY3gU8SDWClszqZmH5xJ3wZszMAeIObb1MJa0G+IY2yocBTwnwsESdyM8JyId9/G8EM+LcJwI1wtaRaSOxU20glcnBsYzmKQB12lllY4zE8TO9H5tldUymzq2j7kuOGBi3pyQdeZ356BK19lrzR6DeWFt6wW29pu56ebBoeqRnjuXmXPO7Nd67rlzA+DZ3+eGtAeHwUe6viwfGxGVGzSiLqxVL9XFsnSuja4KVRduWUPV97znPVx77bVHPee0007ju9/9Lg888ACJ2ZUUZ1x00UX81m/9Fl/4whcO+9xEInHIc0Tk8MIwxPd9fN8nCILDfjy7LSIiIiJyojlkcZXD9GHFmNYaRhxoE2cwNFpJZGvbODgmMS909dwUbs3DLSSIuxlcYngmQcykGQxPIUWcuHFJOC79SY91GYPNuHQnDalkhPEcjOcROi7TUYw6Lr7jUrbx1nT+OZyZrNFzID3TCcCd3TcTwLrQCl6NxTPgmlZQ62DbIe1s31czZ1/r+q1tg8WYENexuKbZCm2d1irwrhtimOkCYCyOY8HYmTx15vPaLl6dvz17Xntfu8frzL65L/cweehhz21vz6TPDgfC4pnj7cXD2vc1c8LVg6//HOWRx9qbdLE9UJfy3gdbirEc7Fh60R7lOpM/ht1Vl3pU0OJIi2SZWaxNltWyhqoDAwMMDAw853mf+cxn+KM/+qP29t69e9myZQt///d/zyWXXNLJIYqsaLNB6ZFC0rkfi4iIiIisRoevZp2pjDNmfssAmF/VahzAJQirMx87uE58JnB1cJ0EU+6zeCaBRwLHxsjW+khXu0jtT5I0cVLGwzVmZta+oSfh0pMwDCZhOB4Sd8H1HKzrUTcuDeNRNw4NPKasIXId3JhLzHNwnVZvV8eBmHFb61fNhq7ML96cDWBnc01n5sXPVsW2Xr7FoXWumbmOweI5dia7tDMVtK3jswFt+/kz2zMbwJzK3NlOAnPq6eYGqsYcGgg5hzl++HtZXOfAea3gN5oXBLcy1ah9/uHGMNe8fMouIpA8zOtY7JT2I2Zjz3Mc8w4f5VLLlc3tnOplqgmBbdC5ukuRzlkRPVU3bNgwbzubzQJw+umns27duuUYkkjHhWFIFEXtx9ztwx0Lw/CQwFT/cyUiIiIicsC8gHVuP1ZgNmid2zbA2tZ54ZxK1jBqBa3GOBgcGk5hprrVwxiHorMb10m0KlxNAo8kxjo41sEhRrKaJVXJELcJsiaFh5mZLt/AMYa445B0HXoSLhsykHYtcadVeYpjiJxWletU6NHAEM2Zlm/cVvDqOAbPM7iOwXUNruvgOAYzc2yu2dB1dja+0w5XZ8NY2v1iHeZUoc55/rztOeEt7WvPb4GwUAfuZQ+M1RwYl5kZjzNzj7lBsOvMCX8Pus5cB8468MdhMT9FHZxVHi68nHtfe8gz5ozl4GLrYxzDkcbxXI73j487qwkm6gF+WDu+N14FLEtX1Hy4a8vCrIhQVWSpzYaN1tp5j8PtW4pzrbXPGY7O/VhhqIiIiIhIZx1uuvH8oDU8YiVr6/mAcQijWrui1RgH35SZrXKdG7YaHIxxcWcWy3JMDI+ZNgO0FoZyiWEiBy9KkPDTdJV6iNkYMTw8HFzjEJt5rM3EyMUMGc+S9iDnRSRm+7XO9GydG2b6kSGwDo3QMB041KxLzTo0IqhFhsi0AmVnNph1nXYIG5tZUMhxwJ1JNQ0zv5vWtPxWS1ZzYFa+MThmJsSdDTVnp+fPXmNOQmuZWbRobjvWeV+bObP5zYHt2dNng+C51brO7BNpha2HE7VuPmd7zsdH+bHskFaxczcWE2gedI9jrdc8alh9pPE8x4+dCx3LsXao3d+AqbBKENWWr1xW5HlYkaHqqaee+rxCpx07npn5S09WgsUGm4fbN3e/iIiIiIjI4RypL2tLhDm41nG2snFOWWA4J2Kat2BT+2fQOcfb+9x5tz0QwrYqZGcDWjPnY7eRaAW0JoYxDp45ENA6ODgmNnO32cWj3JnfHRzjYnDwbAyXGAmbxMXDta3nxvCYuVtrdMaZqWidCUpnF7xqB5YHtp05r9mZG5xyoNJ09jnuTEg7Wx3rOabdP9Y1kHBb1bae06o8TXmt58QMJGb6zcZci+cY4k6E4xjcmbYHrdYItp28Rta0q2gje+DraK0hsK1QN7SGyLbCVItpf/mjmfMOfH3sIa+pXU1r5lbp2kPC17lmQ9vZ6tXZ7YPD3Nnjc//0HbJO15z7H3zuwSxm3j1CO//+s6999k/lweHqvLD7KK99dt+RxjJRjVMeqbOruZ9KfSfWHrjT3I/lUBZLpJrSZbciQ9Xnq1AosLj/OhIREREREZGT3ZEW05nfzvLASuZzw1bmrXDeiqUOV/MxL7idVwzkzAthZ0NWYF74OrttDhveHro9W0FrjIMzJ7RtHXMPuZ4x7sxojnz9uc892PznHQh6W68q1t6eDX4dXBzbun+MRCswtg7uTPBrbGvcszHwbBg8P8w1hwRQswU30ZxwyhLN224dP3q4N/t6ZsNk56CsYe7X4WD2oGsfPMYjhWYH32Pu9tHud7T7z3/Nz/36nYPus5DXf/CxKWea3eEjTFaeJgyLh4xO5ER3UoaqIiIiIiIiIkvliCuXHyY1bVWvhoee277WETaMOehyBwWlBxcOLWp25pFD1xb3KMcOuu0xTwY/3PUPDW4PBL7OUfe39h0+2LV2/ud/brh4cIXk0SomDxsmP49ZscdanbkUM3GXqjJ0MWMJoyZ+UCaKykty75OKVceEE4FCVRERERERERERkRXCcuRK5ud/baW1C6VQVUREREREROQ4OebA4pCytFZl4WyF6iFXfR65yLynHssy8kvqyJWPh1Tnzju4gIrJBVRnHrHlg1oKPm92NhpU/1RZobRak4iIiIiIiIiIyApibWcei/0PmQ996EMYY+Y9zj777Pbxer3O1q1b6evrI5vNcvXVVzM6OjrvGjt37uSqq64inU4zODjIe9/7XoIgWILPUmepUlVERERERERkher4VN1lb9x45CpGy1EqRp9Xpe5zP/ngM5aycvVYvqbLff9jGYOmma8eL3zhC/nOd77T3va8A3Hju9/9br75zW/y1a9+lXw+zw033MDrX/96/u3f/g2AMAy56qqrGB4e5v7772ffvn285S1vIRaL8bGPfey4v5bFUKgqIiIiIiIiIivSiRLMLfc4lvv+J8oYThad7am6eJ7nMTw8fMj+QqHAX//1X/PlL3+ZX/qlXwLg9ttv55xzzuGHP/whl156Kd/+9rd5/PHH+c53vsPQ0BDnn38+H/nIR7jpppv40Ic+RDwef56vqHM0/V9ERERERERERGSFsNYSdegB4Ps+xWJx3qPRaBxxPE8++SRr167ltNNO47d+67fYuXMnAA8++CC+73P55Ze3zz377LPZsGEDDzzwAAAPPPAA5513HkNDQ+1ztmzZQrFY5LHHHuvEp2/JKFQVERERERERERERAO6++27y+fy8x6233nrYcy+55BLuuOMO7r77bj73uc/xzDPP8Au/8AuUSiVGRkaIx+N0d3fPe87Q0BAjIyMAjIyMzAtUZ4/PHjuRafq/iIiIiIiIiIjICtFaT6pz0/+vvPJKvvSlL83bn0gkDnv+a17zmvbHL37xi7nkkkvYuHEjX/nKV0ilUh0Z44lClaoiIiIiIiIiIiICQCwWI5fLzXscKVQ9WHd3N2eddRbbt29neHiYZrPJ9PT0vHNGR0fbPViHh4cZHR095PjssROZQlUREREREREREZEVorVQVWcez1e5XOapp55izZo1XHjhhcRiMe6999728W3btrFz5042b94MwObNm3nkkUfYv39/+5x77rmHXC7HueeeuwQj6hxN/xcREREREREREVkhLJaoY9P/F3fd3/3d3+VXf/VX2bhxI3v37uWWW27BdV1+4zd+g3w+z9ve9jZuvPFGent7yeVyvPOd72Tz5s1ceumlAFxxxRWce+65vPnNb+bjH/84IyMj3HzzzWzdunXB1bHLRaGqiIiIiIiIiIiILNru3bv5jd/4DSYmJhgYGOCVr3wlP/zhDxkYGADgU5/6FI7jcPXVV9NoNNiyZQuf/exn2893XZc777yT66+/ns2bN5PJZLjmmmv48Ic/vFwvacEUqoqIiIiIiIiIiKwg1namUnWx/u7v/u6ox5PJJLfddhu33XbbEc/ZuHEj3/rWt5Z6aB2nnqoiIiIiIiIiIiIii6BKVRERERERERERkRWisz1VZaFUqSoiIiIiIiIiIiKyCKpUFRERERERERERWSEsdKxSVbWqC6dQVUREREREREREZIWwMw0AOnNtWShN/xcRERERERERERFZBFWqioiIiIiIiIiIrBidW6hKFk6VqiIiIiIiIiIiIiKLoEpVERERERERERGRFaKTC1VZVcAumEJVERERERERERGRFaK1TFVnFqqShdP0fxEREREREREREZFFUKWqiIiIiIiIiIjICmGxWNOZSlVN/184VaqKiIiIiIiIiIiILIIqVUVERERERERERFaIVk9VVZQuN4WqIiIiIiIiIiIiK0QnF6rS9P+F0/R/ERERERERERERkUVQpaqIiIiIiIiIiMiK0apVleWlSlURERERERERERGRRVClqoiIiIiIiIiIyAphDURGPVWXm0JVERERERERERGRFaKTC1XJwmn6v4iIiIiIiIiIiMgiqFJVRERERERERERkhehkpaqm/y+cKlVFREREREREREREFmFFharf/OY3ueSSS0ilUvT09PC6171uuYckIiIiIiIiIiJy3NiZWtVOPGThVsz0/3/4h3/guuuu42Mf+xi/9Eu/RBAEPProo8s9LBERERERERERETnJrIhQNQgC/uf//J984hOf4G1ve1t7/7nnnruMoxIRERERERERETm+Wh1Vww5dWz1VF2pFTP//8Y9/zJ49e3AchwsuuIA1a9bwmte8RpWqIiIiIiIiIiJykunk9H+Fqgu1IkLVp59+GoAPfehD3Hzzzdx555309PRw2WWXMTk5ecTnNRoNisXivIeIiIiIiIiIiIjI87Gsoer73vc+jDFHfTzxxBNEUatR7gc+8AGuvvpqLrzwQm6//XaMMXz1q1894vVvvfVW8vl8+7F+/frj9dJERERERERERESWnMUSmagjD8xyv7qVY1l7qr7nPe/h2muvPeo5p512Gvv27QPm91BNJBKcdtpp7Ny584jPff/738+NN97Y3i4WiwpWRURERERERERE5HlZ1lB1YGCAgYGB5zzvwgsvJJFIsG3bNl75ylcC4Ps+O3bsYOPGjUd8XiKRIJFILNl4RUREREREREREllOro6oWqlpuyxqqLlQul+Md73gHt9xyC+vXr2fjxo184hOfAOANb3jDMo9ORERERERERETkeLEzi0p15tqyMCsiVAX4xCc+ged5vPnNb6ZWq3HJJZfw3e9+l56enuUemoiIiIiIiIiIiJxEVkyoGovF+OQnP8knP/nJ5R6KiIiIiIiIiIjIsrBYItuh6f9WlaoL5Sz3AERERERERERERERWkhVTqboUDqTtSt1FRERERERERE5MrdxGVZOHZzvaU1UW6qQKVUul0sxH+oMnIiIiIiIiInIiK5VK5PP55R7GCSjC0pnp/ypEXLiTKlRdu3Ytu3btoqurC2PMcg/nhFIsFlm/fj27du0il8st93BEZAnp/S2yuuk9LrJ66f0tsrrpPX5k1lpKpRJr165d7qGIHNFJFao6jsO6deuWexgntFwup2/mIquU3t8iq5ve4yKrl97fIqub3uOHpwrVI2tN/u/MLGyrStUF00JVIiIiIiIiIiIiIougUFVERERERERERGSFmF2oqhOPxbr11lu5+OKL6erqYnBwkNe97nVs27Zt3jmXXXYZxph5j3e84x3zztm5cydXXXUV6XSawcFB3vve9xIEwfP6PHXaSTX9X44skUhwyy23kEgklnsoIrLE9P4WWd30HhdZvfT+Flnd9B6X1eC+++5j69atXHzxxQRBwO///u9zxRVX8Pjjj5PJZNrnXXfddXz4wx9ub6fT6fbHYRhy1VVXMTw8zP3338++fft4y1veQiwW42Mf+9hxfT2LYay1apYgIiIiIiIiIiJygrv++uv50u13k0+d0ZHrj5Uf4jO3fYy3v/3tx/b8sTEGBwe57777eNWrXgW0KlXPP/98Pv3pTx/2OXfddRe/8iu/wt69exkaGgLg85//PDfddBNjY2PE4/FjGkunafq/iIiIiIiIiIjICjG7UFUnfvE8F6oqFAoA9Pb2ztv/pS99if7+fl70ohfx/ve/n2q12j72wAMPcN5557UDVYAtW7ZQLBZ57LHHntd4OknT/0VERERERERERAQA3/cpFovz9iUSiedsVRFFEe9617t4xStewYte9KL2/t/8zd9k48aNrF27lp/+9KfcdNNNbNu2jX/8x38EYGRkZF6gCrS3R0ZGluIldYRCVRERERERERERkRWitahU2LGr33333dxwww3z9t5yyy186EMfOuozt27dyqOPPsq//uu/zts/t5XAeeedx5o1a/jlX/5lnnrqKU4//fQlG/nxplBVREREREREREREALjyyiv50pe+NG/fc1Wp3nDDDdx55518//vfZ926dUc995JLLgFg+/btnH766QwPD/OjH/1o3jmjo6MADA8PL3b4x416qp7kduzYwdve9jY2bdpEKpXi9NNP55ZbbqHZbM4776c//Sm/8Au/QDKZZP369Xz84x9fphGLyGJ89KMf5eUvfznpdJru7u7DnrNz506uuuoq0uk0g4ODvPe97yUIguM7UBE5JrfddhunnnoqyWSSSy655JB/jIrIyvD973+fX/3VX2Xt2rUYY/j6178+77i1lg9+8IOsWbOGVCrF5ZdfzpNPPrk8gxWRRbn11lu5+OKL6erqYnBwkNe97nVs27Zt3jn1ep2tW7fS19dHNpvl6quvbgdKIkdibdSZBxCLxcjlcvMeRwpVrbXccMMNfO1rX+O73/0umzZtes6xP/zwwwCsWbMGgM2bN/PII4+wf//+9jn33HMPuVyOc88993l/rjpFoepJ7oknniCKIv7iL/6Cxx57jE996lN8/vOf5/d///fb5xSLRa644go2btzIgw8+yCc+8Qk+9KEP8Zd/+ZfLOHIRWYhms8kb3vAGrr/++sMeD8OQq666imazyf33388XvvAF7rjjDj74wQ8e55GKyGL9/d//PTfeeCO33HILP/7xj3nJS17Cli1b5v1jVERWhkqlwkte8hJuu+22wx7/+Mc/zmc+8xk+//nP8+///u9kMhm2bNlCvV4/ziMVkcW677772Lp1Kz/84Q+555578H2fK664gkql0j7n3e9+N//0T//EV7/6Ve677z727t3L61//+mUctZzoTqSFqrZu3coXv/hFvvzlL9PV1cXIyAgjIyPUajUAnnrqKT7ykY/w4IMPsmPHDv7v//2/vOUtb+FVr3oVL37xiwG44oorOPfcc3nzm9/MT37yE/75n/+Zm2++ma1btz5nhexyMtba57esl6w6n/jEJ/jc5z7H008/DcDnPvc5PvCBDzAyMkI8Hgfgfe97H1//+td54oknlnOoIrJAd9xxB+9617uYnp6et/+uu+7iV37lV9i7d2+7EfjnP/95brrpJsbGxtrveRE58VxyySVcfPHF/Pmf/znQWhhg/fr1vPOd7+R973vfMo9ORI6VMYavfe1rvO51rwNaFUBr167lPe95D7/7u78LtFZWHhoa4o477uDXf/3Xl3G0IrJYY2NjDA4Oct999/GqV72KQqHAwMAAX/7yl/m1X/s1oFX8dM455/DAAw9w6aWXLvOI5URz/fXX8/+7/U6yyY0duf505TH+7LY/mdcH9WiMMYfdf/vtt3Pttdeya9cu3vSmN/Hoo49SqVRYv349//2//3duvvlmcrlc+/xnn32W66+/nu9973tkMhmuueYa/viP/xjPO3E7l564I5NlUygU6O3tbW8/8MADvOpVr5oXrmzZsoU/+ZM/YWpqip6enuUYpogsgQceeIDzzjtv3kqLW7Zs4frrr+exxx7jggsuWMbRiciRNJtNHnzwQd7//ve39zmOw+WXX84DDzywjCMTkaX2zDPPMDIywuWXX97el8/nueSSS3jggQcUqoqsMIVCAaD9M/eDDz6I7/vz3uNnn302GzZsUKgqR9Saqt+ZhaoWW3v5XOevX7+e++677zmvs3HjRr71rW8t6t7LTdP/ZZ7t27fzZ3/2Z/yP//E/2vtGRkbmBS5Ae3tkZOS4jk9Elpbe3yIr0/j4OGEYHvb9q/euyOoy+57W+11k5YuiiHe961284hWv4EUvehFAe0bowesf6D0ucuJTqLpKve9978MYc9THwVP39+zZw5VXXskb3vAGrrvuumUauYg8l2N5f4uIiIiIyPLaunUrjz76KH/3d3+33EORFa/VVbUTD1k4Tf9fpd7znvdw7bXXHvWc0047rf3x3r17efWrX83LX/7yQxagGh4ePmTlwdnt4eHhpRmwiCzYYt/fRzM8PHzIauF6f4uc+Pr7+3Fd97B/P+u9K7K6zL6nR0dH26skz26ff/75yzQqEVmsG264gTvvvJPvf//7rFu3rr1/eHiYZrPJ9PT0vGpV/Z0uR2extlMBqJZeWiiFqqvUwMAAAwMDCzp3z549vPrVr+bCCy/k9ttvx3HmFzBv3ryZD3zgA/i+TywWA+Cee+7hBS94gfqpiiyDxby/n8vmzZv56Ec/yv79+xkcHARa7+9cLse55567JPcQkaUXj8e58MILuffee9uL2URRxL333ssNN9ywvIMTkSW1adMmhoeHuffee9sharFY5N///d+5/vrrl3dwIvKcrLW8853v5Gtf+xrf+9732LRp07zjF154IbFYjHvvvZerr74agG3btrFz5042b968HEMWkQVSqHqS27NnD5dddhkbN27kk5/8JGNjY+1js/8r9pu/+Zv84R/+IW9729u46aabePTRR/nTP/1TPvWpTy3XsEVkgXbu3Mnk5CQ7d+4kDEMefvhhAM444wyy2SxXXHEF5557Lm9+85v5+Mc/zsjICDfffDNbt24lkUgs7+BF5KhuvPFGrrnmGi666CJe9rKX8elPf5pKpcJv//ZvL/fQRGSRyuUy27dvb28/88wzPPzww/T29rJhwwbe9a538Ud/9EeceeaZbNq0iT/4gz9g7dq17f9UEZET19atW/nyl7/MN77xDbq6utp9UvP5PKlUinw+z9ve9jZuvPFGent7yeVyvPOd72Tz5s1apEqOyGKxdGahKlWqLpxC1ZPcPffcw/bt29m+ffu8KQhwYAW3fD7Pt7/9bbZu3cqFF15If38/H/zgB3n729++HEMWkUX44Ac/yBe+8IX29gUXXADAv/zLv3DZZZfhui533nkn119/PZs3byaTyXDNNdfw4Q9/eLmGLCIL9MY3vpGxsTE++MEPMjIywvnnn8/dd999yGI2InLi+8///E9e/epXt7dvvPFGAK655hruuOMOfu/3fo9KpcLb3/52pqeneeUrX8ndd99NMplcriGLyAJ97nOfA+Cyyy6bt//2229vt/T61Kc+heM4XH311TQaDbZs2cJnP/vZ4zxSEVksY2eTMxERERERERERETlhXX/99dzx1/9IKrHmuU8+BqXa09z22U+qkG4BVKkqIiIiIiIiIiKyQlgtVHVCcJ77FBERERERERERERGZpUpVERERERERERGRFcJiiehMparqVBdOlaoiIiIiIiIiIiIii6BKVRERERERERERkZXCdrCnqtazXzBVqoqIiIiIiIiIiIgsgipVRUREREREREREVgiLxdqwY1eXhVGoKiIiIiIiIiIismK0lqqS5aXp/yIiIiIiIiIiIiKLoEpVERERERERERGRFcJ2cKEqq+n/C6ZKVREREZEVZmxsjOHhYT72sY+1991///3E43HuvffeZRyZiIiIiMjJQZWqIiIiIivMwMAAf/M3f8PrXvc6rrjiCl7wghfw5je/mRtuuIFf/uVfXu7hiYiIiEhHda5SVYWqC6dQVURERGQFeu1rX8t1113Hb/3Wb3HRRReRyWS49dZbl3tYIiIiItJhtqMLVSlVXShN/xcRERFZoT75yU8SBAFf/epX+dKXvkQikVjuIYmIiIiInBQUqoqIiIisUE899RR79+4liiJ27Nix3MMRERERkeNhZqGqjjxUqbpgmv4vIiIisgI1m03e9KY38cY3vpEXvOAF/M7v/A6PPPIIg4ODyz00EREREZFVT6GqiIiIyAr0gQ98gEKhwGc+8xmy2Szf+ta3eOtb38qdd9653EMTERERkQ6ynVyoShZM0/9FREREVpjvfe97fPrTn+Zv//ZvyeVyOI7D3/7t3/KDH/yAz33uc8s9PBERERHpKAtEHXpo+v9CqVJVREREZIW57LLL8H1/3r5TTz2VQqGwTCMSERERETm5KFQVERERERERERFZKaym/58INP1fREREREREREREZBFUqSoiIiIiIiIiIrJCWCyWTlWqqqfqQqlSVURERERERERERGQRVKkqIiIiIiIiIiKyYnSup6pVoeqCKVQVERERERERERFZMSwQdvDashCa/i8iIiIiIiIiIiKyCKpUFRERERERERERWSGs7dz0f1WqLpwqVUVEREREREREREQWQZWqIiIiIiIiIiIiK4YFOlWpKgulUFVERERERERERGTFsKDp/8tO0/9FREREREREREREFkGVqiIiIiIiIiIiIiuGxaqidNmpUlVERERERERERERkERSqioiIiIiIiIiIrBizC1V14rH4CtjbbruNU089lWQyySWXXMKPfvSj5/PiVgyFqiIiIiIiIiIiIiuJtZ15LNLf//3fc+ONN3LLLbfw4x//mJe85CVs2bKF/fv3d+BFn1gUqoqIiIiIiIiIiMii/e///b+57rrr+O3f/m3OPfdcPv/5z5NOp/mbv/mb5R5axylUFRERERERERERWTFsx34tRrPZ5MEHH+Tyyy9v73Mch8svv5wHHnhgqV/0Ccdb7gGIiIiIiIiIiIjIicDi+z7FYnHe3kQiQSKRmLdvfHycMAwZGhqat39oaIgnnnii4yNdbqpUFRERERERERERWQH+63/9r7QWk1p8/9Pn1rrmk08+ST6fn/e49dZbO3C/lc1YewxdaEVEREREREREROS4stbiOO7MlnvUcxd5ZSACoF6v0Wg05h09XKVqs9kknU7zf/7P/+F1r3tde/8111zD9PQ03/jGN5ZwfCceVaqKiIiIiIiIiIisAMYYfvzjB1n6atXW9aamJkkkEuRyuXmPgwNVgHg8zoUXXsi9997b3hdFEffeey+bN29ewrGdmNRTVUREREREREREZIW44IILAEOrsnQpqlVnq1Qduru7F/XMG2+8kWuuuYaLLrqIl73sZXz605+mUqnw27/920swrhObQlUREREREREREZEV5Nlnd7Bx40Zagah5nldrVbw2GrVFP/ONb3wjY2NjfPCDH2RkZITzzz+fu++++5DFq1Yj9VQVERERERERERFZYYyZ7erpcOzBqgVC/u7v/o43vvGNSzOwk4RCVRERERERERERkRVmenqanp4eWqHqsS6bFAERURRhzPOteD25aKEqERERERERERGRFabV/9ShFYweS81kq5fq97//fQWqx0CVqiIiIiIiIiIiIitQs9kkkUhwbNWqIQDWRks9rJOCKlVFRERERERERERWoHg8zle+8hUWX61qAcvPfvZ4ZwZ2ElClqoiIiIiIiIiIyAplrcVxZitVF1o/qSrV50uVqiIiIiIiIiIiIiuUMYYf/OAHLLxatVWlOjKyr7MDW+VUqSoiIiIiIiIiIrLCGTNbO+ke5SxLq0rVwdqw84NaxVSpKiIiIiIiIiIissI98cTPmK1CPbLWsXK5eDyGtKopVBUREREREREREVnhXvCCFwCGVhuAw7FAxF/91V+RyWSO38BWKU3/FxERERERERERWQVGR0cZHh6m1QLAHHQ0AiKCIMB1j9YiQBZClaoiIiIiIiIiIiKrwNDQEK24L2R+G4BWleo3v/lNBapLRJWqIiIiIiIiIiIiq0S1Wp2Z3u9woJ6ytShVFIUYc3AFqxwLVaqKiIiIiIiIiIisEul0mr/+67+mNd3fth8PPvifClSXkCpVRUREREREREREVpEwDPE8j1Y9ZSv6s/ZIC1jJsVClqoiIiIiIiIiIyCriui7f+ta3mK1W3bHjmeUe0qqjSlUREREREREREZFVxlqL47iAwdpwuYez6ihUFREREREREREREVkETf8XERERERERERERWQSFqiIiIiIiIiIiIiKLoFBVREREREREREREZBEUqoqIiIiIiIiIiIgsgkJVERERERERERERkUVQqCoiIiIiIiIiIiKyCApVRURERERERERERBZBoaqIiIiIiIiIiIjIIihUFREREREREREREVkEhaoiIiIiIiIiIiIii6BQVURERERERERERGQRFKqKiIiIiIiIiIiILIJCVREREREREREREZFFUKgqIiIiIiIiIiKyylhreetbX8utf/w/lnsoq5Kx1trlHoSIiIiIiIiIiIgsnbvuuos3vvHXCIKQn/1sGxs3blzuIa0qClVFRERERERERERWkTAMOf/8M/ntt76WHz/4cwC++MVvL/OoVhdvuQcgIiIiIiIiIiIiS+f2299Ptdrg+uv/G/v2TfCiF17Lj3/8Y1760pcu99BWDVWqioiIiIiIiIiIrBKVSoWzzjqV//W//l/e8P+8GoD3ve8vePDBbdz7nQcxxizzCFcHLVQlIiIiIiIiIiKySvyv//3/4ZR1/fzaGy5r73vf+36Ln/7kKe66667lG9gqo0pVERERERERERGRVWB0dJQzztjEP935x/zCL7x43rHPfOb/8Nd/9U0efvhJPE8dQZ8vVaqKiIiIiIiIiIisAn/4h/+DX/qllx4SqAK84x3/jVqtye23v38ZRrb6qFJVRERERERERERkhdu2bRvnn/9iHvzx/5cXvGDDYc/56lf+hRtvvI0nn3yWTCZznEe4uqhSVUREREREREREZIW76abf4dprrzxioArwa2+4jPUbBvnk/3rncRzZ6qRKVRERERERERERkRXsBz/4Aa997Ra2/fyLDA31HvXcf/3XR/iVq25i+/ZnGBoaOk4jXH0UqoqIiIiIiIiIiKxQ1lou3fxCXvvaS7n55rcs6DlXv/4PGB7u5fOf/0aHR7d6KVQVERERERERERFZob761a/yP//n9Tyx7W/JZFILes62bTu58KXX8dBDP+Hss8/u8AhXJ4WqIiIiIiIiIiIiK1Cz2eTcczdx002/yVvfdtWinnvD1k+xd+8E3/jGv3ZodKubFqoSERERERERERFZgW777I0kk3GuufbKRT/3Dz54Df/yLw/xgx/8oAMjW/1UqSoiIiIiIiIiIrLCTE9Pc/rpG7njC+/nta+99Jiu8dGP/i133nk///7DxzHGLPEIVzdVqoqIiIiIiIiIiKwwH/3Y9bzk/NN5zWsuOeZrvPvdb2DP7nG+8pWvLOHITg6qVBUREREREREREVlBdu7cydlnn8V93/8ML33pWc/rWrf/zbf42Me+yM9+9gyJRGKJRrj6qVJVRERERERERERkBfnAB36H17/+Vc87UAV4yzVbyGSS3PbZ9yzByE4eqlQVERERERERERFZIR566CFe8YrNPPrYHWzcOLwk17zrrn/nmrd8jKeeepbu7u4lueZqp1BVRERERERERERkBbDWcvl/uYgLLjiTP/mTdyzpdbds+V0uuOBMPvmJv1uy665mClVFRERERERERERWgLvuuos3venX+fmTX6K7O7uk137ooSd51S+8k5/9bBsbN25c0muvRuqpKiIiIiIiIiIisgJ84xuf501vvmLJA1WACy44k4tfdjb//M//vOTXXo0UqoqIiIiIiIiIiKwAxqwllYp37PqpZKJj115tvOUegIiIiIiIiIiIiCyQtRBFnbp4h667+qhSVURERERERERERGQRVKkqIiIiIiIiIiKyUnSyUlWFqgumUFVERERERERERGSl0PT/E4Km/4uIiIiIiIiIiIgsgipVRUREREREREREVgpLq1q1U9eWBVGlqoiIiIiIiIiIiMgiqFJVRERERERERERkxVBP1ROBQlUREREREREREZGVopMLVSlTXTBN/xcRERERERERERFZBFWqioiIiIiIiIiIrBSdrFRVqeqCqVJVREREREREREREZBFUqSoiIiIiIiIiIrJSqKfqCUGhqoiIiIiIiIiIyEqh6f8nBE3/FxEREREREREREVkEVaqKiIiIiIiIiIisEMZajO3U9H9Vqi6UKlVFREREREREREREFkGVqiIiIiIiIiIiIitFR3uqykKpUlVEREREREREREQW7dZbb+Xiiy+mq6uLwcFBXve617Ft27Z559TrdbZu3UpfXx/ZbJarr76a0dHReefs3LmTq666inQ6zeDgIO9973sJgmDeOd/73vd46UtfSiKR4IwzzuCOO+7o9Ms7KoWqIiIiIiIiIiIiK4UFItuZxyJbqt53331s3bqVH/7wh9xzzz34vs8VV1xBpVJpn/Pud7+bf/qnf+KrX/0q9913H3v37uX1r399+3gYhlx11VU0m03uv/9+vvCFL3DHHXfwwQ9+sH3OM888w1VXXcWrX/1qHn74Yd71rnfxO7/zO/zzP//z8/1sHjNjrTrQioiIiIiIiIiInOiuv/56ur19fPT9v96R67/2TX/M63/9/+Xtb3/7MT1/bGyMwcFB7rvvPl71qldRKBQYGBjgy1/+Mr/2a78GwBNPPME555zDAw88wKWXXspdd93Fr/zKr7B3716GhoYA+PznP89NN93E2NgY8Xicm266iW9+85s8+uij7Xv9+q//OtPT09x9993P/4UfA1WqioiIiIiIiIiICAC+71MsFuc9Go3Ggp5bKBQA6O3tBeDBBx/E930uv/zy9jlnn302GzZs4IEHHgDggQce4LzzzmsHqgBbtmyhWCzy2GOPtc+Ze43Zc2avsRwUqoqIiIiIiIiIiKwUswtVdeJhLXfffTf5fH7e49Zbb33OYUVRxLve9S5e8YpX8KIXvQiAkZER4vE43d3d884dGhpiZGSkfc7cQHX2+Oyxo51TLBap1WrH9Gl8vrxluauIiIiIiIiIiIiccK688kq+9KUvzduXSCSe83lbt27l0Ucf5V//9V87NbQTikJVERERERERERGRFcOCjTp29VgsRi6XW9RzbrjhBu68806+//3vs27duvb+4eFhms0m09PT86pVR0dHGR4ebp/zox/9aN71RkdH28dmf5/dN/ecXC5HKpVa1FiXiqb/i4iIiIiIiIiIrBQdnv6/uKFYbrjhBr72ta/x3e9+l02bNs07fuGFFxKLxbj33nvb+7Zt28bOnTvZvHkzAJs3b+aRRx5h//797XPuuececrkc5557bvucudeYPWf2GstBlaoiIiIiIiIiIiKyaFu3buXLX/4y3/jGN+jq6mr3QM3n86RSKfL5PG9729u48cYb6e3tJZfL8c53vpPNmzdz6aWXAnDFFVdw7rnn8uY3v5mPf/zjjIyMcPPNN7N169Z224F3vOMd/Pmf/zm/93u/x1vf+la++93v8pWvfIVvfvOby/baFaqKiIiIiIiIiIisFBaIFldR2imf+9znALjsssvm7b/99tu59tprAfjUpz6F4zhcffXVNBoNtmzZwmc/+9n2ua7rcuedd3L99dezefNmMpkM11xzDR/+8Ifb52zatIlvfvObvPvd7+ZP//RPWbduHX/1V3/Fli1bOv4aj0ShqoiIiIiIiIiIiCyaXUC7gGQyyW233cZtt912xHM2btzIt771raNe57LLLuOhhx5a9Bg7RaGqiIiIiIiIiIjISjHbU7VT15YFUagqIiIiIiIiIiKyUnQ0VO3MZVcjZ7kHICIiIiIiIiIiIrKSqFJVRERERERERERkpbAW06FKVaNS1QVTpaqIiIiIiIiIiIjIIqhSVUREREREREREZMWwWlDqBKBKVREREfn/s/ffcZJd9Z3//zo31K1c1XF6kmZGAUkogYTISZassIQlOAJekiWCRNJ60cqAkGQWAbIJthewvQaxRjIY7wIGfgjJK4EIQl8JkCVQQGGkiZ27K1fdcM7vj1tV3dXTM9MTemZ65vPUox5ddcO5p2pGM9Pv/tzPEUIIIYQQQgixDyRUFUIIIYQ4Qvzwhz9EKcUPf/jDwz0VIYQQQghxpDIGtF6eh1TALpmEqkIIIYQQh9jnP/95brrppsM9jf1yyy238NnPfvZwTwMArTWf+tSn2LRpE8lkkjPPPJN//ud/XtK5O3fu5L//9//OeeedRy6X22OYfdttt/H2t7+d008/Hdu22bhx48F7E0IIIYQQ+2pZQ9XD/eZWDglVhRBCCCEOsd2Fqi996UtpNBq89KUvPfSTWqIjKVT90Ic+xFVXXcXv/u7v8jd/8zccd9xxvOENb+BrX/vaXs999NFH+eQnP8n27ds544wz9njsLbfcwi233EKhUGDNmjUHa/pCCCGEEGIFk1BVCCGEEIdFrVY73FM44liWRTKZxLLkn2h7s337dv7qr/6Kyy+/nL//+7/n0ksv5Tvf+Q4veclL+G//7b8RRdEezz/nnHOYmprit7/9LVdeeeUej/34xz9OuVzmpz/9KWedddbBfBtCCCGEEPvOANosz0MsmfyLXQghhBAHbPv27bz97W9nzZo1eJ7Hpk2beNe73oXv+wDcdNNNKKX40Y9+xLvf/W6Gh4dZt25d9/zPf/7znHbaaXiex5o1a7j88suZnZ3tucZjjz3G61//ekZGRkgmk6xbt44/+qM/olQqdY+5/fbbefGLX0yxWCSbzXLyySfz53/+53ud/1LOa7VafPSjH+XEE0/E8zzWr1/PBz/4QVqt1i7jffWrX+W5z30u6XSavr4+XvrSl3LbbbcBsHHjRn7zm9/wox/9CKUUSile/vKXA7vvqfqNb3yDc845h1QqxeDgIG9605vYvn17zzFvectbyGazbN++nde85jVks1mGhob4sz/7s70GjADf/va3ecUrXtH9NTzhhBP4i7/4i55zX/7yl/O9732Pp59+ujv3Pd0K/5a3vKV73MLHtddeu9c57W2+QRDw7ne/u7tNKcW73vUutm3bxt13373H83O5HP39/Uu61po1a3Bd94DmK4QQQgghji7O4Z6AEEIIIVa2HTt28NznPpfZ2Vkuu+wyTjnlFLZv386//uu/Uq/XSSQS3WPf/e53MzQ0xDXXXNOtVL322mu57rrruOCCC3jXu97Fo48+yhe+8AXuvfdefvrTn+K6Lr7vc9FFF9FqtXjPe97DyMgI27dv57vf/S6zs7MUCgV+85vf8MpXvpIzzzyT66+/Hs/zePzxx/npT3+6x/kv5TytNa9+9av5yU9+wmWXXcapp57Kgw8+yGc+8xl++9vf8q1vfat77HXXXce1117LC1/4Qq6//noSiQT33HMPd9xxBxdeeCGf/exnec973kM2m+VDH/oQAKtWrdrt/G666Sbe+ta3cu6553LDDTcwNjbG5z73OX7605/yq1/9imKx2D02iiIuuuginve85/GXf/mX/Pu//zt/9Vd/xQknnMC73vWuPX4ON910E9lsliuvvJJsNssdd9zBNddcQ7lc5sYbbwTi2+1LpRLbtm3jM5/5DADZbHa3Y77jHe/gggsu6Nl26623cvPNNzM8PNzdNjk5uce5deRyOTzPA+BXv/oVmUyGU089teeY5z73ud39L37xi5c0rhBCCCHEitLpqbpcY4slkVBVCCGEEAfk6quvZnR0lHvuuYfnPOc53e3XX389ZsE/yvr7+/l//+//Yds2ABMTE9xwww1ceOGFfP/73+/e9n7KKadwxRVX8NWvfpW3vvWtPPTQQ2zevJlvfOMb/N7v/V53vGuuuab7/Pbbb8f3fb7//e8zODi45Pkv5bxbbrmFf//3f+dHP/pRT1B3+umn8853vpOf/exnvPCFL+Txxx/n+uuv57WvfS3/+q//2nMbf+ezeM1rXsOHP/zhbsXpngRBwFVXXcXpp5/OXXfdRTKZBODFL34xr3zlK/nMZz7Ddddd1z2+2Wzyh3/4h3zkIx8B4J3vfCdnn302//iP/7jXUPWWW24hlUp1X7/zne/kne98J5///Of52Mc+hud5/O7v/i5r165lZmZmr3MHeMELXsALXvCC7uvHH3+cK664gt/93d/lHe94R3f70NDQXscC+PKXv8xb3vIWIF5oatWqVSileo5ZvXo1EIf9QgghhBBHpeUMVWWlqiWT2/+FEEIIsd+01nzrW9/iVa96VU+g2rEw8Lr00ku7gSrAv//7v+P7Pu9///t7AshLL72UfD7P9773PQAKhQIAP/jBD6jX64vOpVOx+e1vfxu9D//IXMp53/jGNzj11FM55ZRTmJyc7D5+53d+B4A777wTgG9961torbnmmmt26Yu68LNYivvuu4/x8XHe/e53dwNVgFe84hWccsop3c9nvne+8509r1/ykpfw5JNP7vVa8wPVSqXC5OQkL3nJS6jX6zzyyCP7PPeFarUar33ta+nr6+Of//mfe34f3H777Ut6XHTRRd1zGo1Gt2p1vs7n1Gg0DnjOQgghhBBC7I5UqgohhBBiv01MTFAulzn99NOXdPymTZt6Xj/99NMAnHzyyT3bE4kExx9/fHf/pk2buPLKK/n0pz/NzTffzEte8hJe/epX86Y3vakbuP7hH/4h/+t//S/+9E//lP/+3/87559/Pq973ev4vd/7vT0u/LSU8x577DEefvjh3VZUjo+PA/DEE09gWRbPfOYzl/R57M3uPh+Iq3l/8pOf9GxLJpO7zLGvr4+ZmZm9Xus3v/kNH/7wh7njjjsol8s9++b3rd1fl156KU888QQ/+9nPGBgY6Nm3sEXAUqRSqUX72Tabze5+IYQQQoijltymf9hJqCqEEEKIQ+ZAgq6/+qu/4i1veQvf/va3ue2223jve9/LDTfcwM9//nPWrVtHKpXirrvu4s477+R73/set956K1//+tf5nd/5HW677baeysiFc9rbeVprzjjjDD796U8vOsb69ev3+30dTLt7j3szOzvLy172MvL5PNdffz0nnHACyWSSX/7yl1x11VX7VPm7mM997nP88z//M1/96ld51rOetcv+0dHRJY1TKBS6v4dWr17NnXfeiTGmpwp4586dQLy4lBBCCCGEEMtFbv8XQgghxH4bGhoin8/z61//er/O37BhAwCPPvpoz3bf99m8eXN3f8cZZ5zBhz/8Ye666y5+/OMfs337dr74xS9291uWxfnnn8+nP/1pHnroIf7H//gf3HHHHd3b83dnb+edcMIJTE9Pc/7553PBBRfs8uhUkp5wwglorXnooYf2eL2ltgLY3efT2bbw89lfP/zhD5mamuKmm27ife97H6985Su54IIL6Ovr2+XYfW1j8OMf/5g/+7M/4/3vfz9vfOMbFz1m9erVS3p8/etf757zrGc9i3q9zsMPP9wz1j333NPdL4QQQghxVOr0VF2OhxTALpmEqkIIIYTYb5Zl8ZrXvIbvfOc73HfffbvsX7hQ1UIXXHABiUSCv/7rv+459h//8R8plUq84hWvAKBcLhOGYc+5Z5xxBpZldW8Bn56e3mX8TrC22G3iHUs57w/+4A/Yvn07//AP/7DLsY1Gg1qtBsSLUFmWxfXXX79Ldef895fJZJidnd3tnDqe85znMDw8zBe/+MWe9/D973+fhx9+uPv5HKhOhev8Ofq+z+c///ldjs1kMktuB7Bz507+4A/+gBe/+MXceOONuz1uf3qq/uf//J9xXbdnjsYYvvjFL7J27Vpe+MIX9szjkUceIQiCJc1bCCGEEOKIZgzoZXpIW4Elk9v/hRBCCHFAPv7xj3Pbbbfxspe9jMsuu4xTTz2VnTt38o1vfIOf/OQn3YWgFjM0NMTVV1/Nddddx8UXX8yrX/1qHn30UT7/+c9z7rnndleYv+OOO7jiiiv4/d//fZ7xjGcQhiH/9E//hG3bvP71rwfg+uuv56677uIVr3gFGzZsYHx8nM9//vOsW7eOF7/4xbudw1LO+5M/+RP+5V/+hXe+853ceeedvOhFLyKKIh555BH+5V/+hR/84Ac85znP4cQTT+RDH/oQf/EXf8FLXvISXve61+F5Hvfeey9r1qzhhhtuAOCcc87hC1/4Ah/72Mc48cQTGR4e7i56NZ/runzyk5/krW99Ky972cv44z/+Y8bGxvjc5z7Hxo0b+cAHPrC/v2w9XvjCF9LX18eb3/xm3vve96KU4p/+6Z8WDcXPOeccvv71r3PllVdy7rnnks1medWrXrXouO9973uZmJjggx/8IF/72td69p155pmceeaZwP71VF23bh3vf//7ufHGGwmCgHPPPZdvfetb/PjHP+bmm2/uaYVw9dVX85WvfIXNmzezcePG7vaPfexjQNxPFuCf/umfun1qP/zhD3ePe+CBB/i3f/s3AB5//HFKpVL33LPOOmu3718IIYQQQhy9JFQVQgghxAFZu3Yt99xzDx/5yEe4+eabKZfLrF27lksuuYR0Or3X86+99lqGhob427/9Wz7wgQ/Q39/PZZddxsc//nFc1wXi4Oqiiy7iO9/5Dtu3byedTnPWWWfx/e9/n+c///kAvPrVr+app57iS1/6EpOTkwwODvKyl72M6667rruY1WKWcp5lWXzrW9/iM5/5DP/7f/9vvvnNb5JOpzn++ON53/vexzOe8YzueNdffz2bNm3ib/7mb/jQhz5EOp3mzDPP5E/+5E+6x1xzzTU8/fTTfOpTn6JSqfCyl71s0VAV4C1veQvpdJpPfOITXHXVVWQyGV772tfyyU9+co+B9b4YGBjgu9/9Lv/1v/5XPvzhD9PX18eb3vQmzj///J7qUIB3v/vd3H///Xz5y1/mM5/5DBs2bNhtqDgxMUEURVx55ZW77PvoRz/aDVX31yc+8Qn6+vr4u7/7O2666SZOOukkvvrVr/KGN7xhSed/5CMf6Xn9pS99qft8fqj6y1/+cpdjO6/f/OY3S6gqhBBCiEOrc/u/OKyU2dt9eUIIIYQQQgghhBBCiMPuXe96F8X6o3z8nZcsy/j/6cp/5LVvvZLLLrtsWcY/mkilqhBCCCGEEEIIIYQQK8VyVqpK7eWSSagqhBBCCCGEEEIIIcRKYYgXlRKHlXW4JyCEEEIIIYQQQgghhBAriVSqCiGEEEIIIYQQQgixUhgDRm7/P9ykUlUIIYQQQgghhBBCCCH2gVSqCiGEEEIIIYQQQgixUhgjPVWPAMdUqKq1ZseOHeRyOZRSh3s6QgghhBBCCCGEEGIBYwyVSoU1a9ZgWXKTtTgyHVOh6o4dO1i/fv3hnoYQQgghhBBCCCGE2IutW7eybt26wz2NI48xoKWn6uF2TIWquVyu/cwCpFJVCCGEEEIIIYQQ4shjAD0vxxE9DHL7/xHgmApV5275V0ioKoQQQgghhBBCCHHkktaN4kh2TIWqQgghhBBCCCGEEEKsaMt6+//yDHs0WlHdfrdv386b3vQmBgYGSKVSnHHGGdx3332He1pCCCGEEEIIIYQQQohjyIqpVJ2ZmeFFL3oR5513Ht///vcZGhriscceo6+v73BPTQghhBBCCCGEEEKIQ8QsY09VKVVdqhUTqn7yk59k/fr1fPnLX+5u27Rp02GckRBCCCGEEEIIIYQQh5gxYOT2/8Ntxdz+/2//9m885znP4fd///cZHh7m2c9+Nv/wD/+wx3NarRblcrnnIYQQQgghhBBCCCGEEAdixYSqTz75JF/4whc46aST+MEPfsC73vUu3vve9/KVr3xlt+fccMMNFAqF7mP9+vWHcMZCCCGEEEIIIYQQQhxkhvj2/+V4SKnqkq2YUFVrzdlnn83HP/5xnv3sZ3PZZZdx6aWX8sUvfnG351x99dWUSqXuY+vWrYdwxkIIIYQQQgghhBBCiKPRiumpunr1ap75zGf2bDv11FP5P//n/+z2HM/z8DxvuacmhBBCCCGEEEIIIcSh0alUXa6xxZKsmErVF73oRTz66KM9237729+yYcOGwzQjIYQQQgghhBBCCCEOMWNA6+V57KO77rqLV73qVaxZswalFN/61rd69iulFn3ceOON3WM2bty4y/5PfOITPeM88MADvOQlLyGZTLJ+/Xo+9alP7ddHdzCtmFD1Ax/4AD//+c/5+Mc/zuOPP84tt9zC3//933P55Zcf7qkJIYQQQgghhBBCCHHMqdVqnHXWWfzP//k/F92/c+fOnseXvvQllFK8/vWv7znu+uuv7znuPe95T3dfuVzmwgsvZMOGDfziF7/gxhtv5Nprr+Xv//7vl/W97c2Kuf3/3HPP5Zvf/CZXX301119/PZs2beKzn/0sb3zjGw/31IQQQgghhBBCCCGEODSMWcbb//dt3EsuuYRLLrlkt/tHRkZ6Xn/729/mvPPO4/jjj+/Znsvldjm24+abb8b3fb70pS+RSCQ47bTTuP/++/n0pz/NZZddtk/zPZhWTKUqwCtf+UoefPBBms0mDz/8MJdeeunhnpIQQgghhBBCCCGEEEeNIAgol8s9j1ardcDjjo2N8b3vfY+3v/3tu+z7xCc+wcDAAM9+9rO58cYbCcOwu+/uu+/mpS99KYlEorvtoosu4tFHH2VmZuaA57W/VlSoKoQQQgghhBBCCCHEMa2zUNVyPAzceuutFAqFnscNN9xwwNP+yle+Qi6X43Wve13P9ve+97187Wtf48477+Qd73gHH//4x/ngBz/Y3T86OsqqVat6zum8Hh0dPeB57a8Vc/u/EEIIIYQQQgghhBBieV188cXcfPPNPds8zzvgcb/0pS/xxje+kWQy2bP9yiuv7D4/88wzSSQSvOMd7+CGG244KNddLhKqCiGEEEIIIYQQQgixUhgDWi/X4LiuSz6fP6ij/vjHP+bRRx/l61//+l6Pfd7znkcYhjz11FOcfPLJjIyMMDY21nNM5/Xu+rAeCnL7vxBCCCGEEEIIIYQQK4aJg9XleCyTf/zHf+Scc87hrLPO2uux999/P5ZlMTw8DMALXvAC7rrrLoIg6B5z++23c/LJJ9PX17dsc94bCVWFEEIIIYQQQgghhBD7rFqtcv/993P//fcDsHnzZu6//362bNnSPaZcLvONb3yDP/3TP93l/LvvvpvPfvaz/Md//AdPPvkkN998Mx/4wAd405ve1A1M3/CGN5BIJHj729/Ob37zG77+9a/zuc99rqdtwOEgt/8LIYQQQgghhBBCCLFSdBaqWq6x98F9993Heeed133dCTrf/OY3c9NNNwHwta99DWMMf/zHf7zL+Z7n8bWvfY1rr72WVqvFpk2b+MAHPtATmBYKBW677TYuv/xyzjnnHAYHB7nmmmu47LLL9v39HUQSqgohhBBCCCGEEEIIIfbZy1/+csxe2gZcdtlluw1Azz77bH7+85/v9TpnnnkmP/7xj/drjstFQlUhhBBCCCGEEEIIIVYKY46YStVjmYSqQgghhBBCCCGEEEKsFMaA1ss1+DKNe/SRhaqEEEIIIYQQQgghhBBiH0ilqhBCCCGEEEIIIYQQK8URtFDVsUwqVYUQQgghhBBCCCGEEGIfSKWqEEIIIYQQQgghhBArxXIuVCWlqksmoaoQQgghhBBCCCGEECuF3P5/RJDb/4UQQgghhBBCCCGEEGIfSKWqEEIIIYQQQgghhBArhTGYZapUlULVpZNKVSGEEEIIIYQQQgghhNgHUqkqhBBCCCGEEEIIIcRKYqSn6uEmoaoQQgghhBBCCCGEECuFMcu3UJWkqksmt/8LIYQQQgghhBBCCCHEPpBKVSGEEEIIIYQQQgghVgrD8lWqSqHqkkmlqhBCCCGEEEIIIYQQQuwDqVQVQgghhBBCCCGEEGKlWNaeqmKppFJVCCGEEEIIIYQQQggh9oFUqgohhBBCCCGEEEIIsVJIT9UjgoSqQgghhBBCCCGEEEKsEMaAWbZQVVLVpZLb/4UQQgghhBBCCCGEEGIfSKWqEEIIIYQQQgghhBArhSxUdUSQSlUhhBBCCCGEEEIIIYTYB1KpKoQQQgghhBBCCCHESiELVR0RJFRtU6j9Os/sx++2/b3WwZrHwb7+SvwMhBBCCCGEEEIIIVakZb39X7KVpZJQFVDKQmHv37kHeS7763DOY+G1Fws3lxyiqiV0pDB6dzv2cuLuzjtElnkFPQmVhRBCCCGEEEIIIQ4NCVWFEEIIIYQQQgghhFhJlqtwS+q1luyYD1WVsrCsLMlE/z6dZ3ZbLbl/czhQ+zOfA7nu7q63u+2LXWv+NrVgzTSlFq8cNiaae96uPO1cs/t1N9sXVqoeyK+hWULVa+/40R72wT5V0S44t1OhqnY3zn7+QSuVr0IIIYQQQgghhBCLO+ZDVSGEEEIIIYQQQgghVgyzh86I4pA55kNVy8rSn3kGz1Qv3KVacr6FlYm6XcWn51Xz6SVUG1rzrmG1awutef1G9zSH3c1HL6goXPi69/pqj693N4fdXW/uc1ja/80W1i7v2273s+28VmrXOXauY8zc564xRETt55pIRejOK6UJ8NFE3dcRQXyuibpnd+Zt0D1VsHt7P2YPlafdMdvjxWPP22+C7jm6vc+057RwrIXjL16F2x6j5zrR3HPV/rqbCtfF6cX74O6m6lWqWoUQQgghhBBCiENkOReqkm/vl+yYDFULhUJ7cSpFJrWBFyQu5g2bXBy1SJjVuana7Pp6/rZO1rSnKK4TVXYyQ4XBUmDNew1zr+dvm3/tvc1nseMXjtW5xsJrz9+/u/EWvndo///cOc4suK5qvy/i9z7/fSsMtmq/Biy1cB5m7n9oY9BGERlDpBXagB8pIqMItaEZKiIDgVaExuCH4Ov42FCDH2lCDZGBSENg4pA2PsegTed9mF1+Pbthbnd7J+Td9bXGoI0BFYeNIaYnDI6ICNHdILilmkSERAQEqoWeF8bGX6P2uZ3gtBMeR0QmRJsAYzSBbsRBbfu1NmF7Tp3gNuyOa4xe8LtjXluFdlA7t2Huuen++vT+Tl/wyzZ3vPxpLIQQQgghhNhPSqmex4FuEyuHMZpSafpwT0OIPTomQ9WNGzdh2zYKSCQGySWyVAbyOAfw5+xS6jQ7sdUea1EXm8MecqkDqfbumce+vvd5c9qlO+ge5js/MO5evxPwLvJGe6K/dnDbDTYXeQ3gAraBRDf43c1c2yGqYi64Nca0ty+ojNW0Q934pPZLjDFoHX/tZI+GTkAb74uDXIPR8SMMInT7tTIGF0gog2fBgBPiKUNSaTzbkLR0N5QGiEwcIgc6fpRCi2akaEawswGllqYWRgRG0zIRxhhCNAEhdatGkxot6vEW0+pW1WoTxDGvCdAmINR+TwWt1mH7uLAb0M5VxkZzQWy3onY3fV4XVLpK6CqEEEIIIcShZ1lW92Hb9m5fd57vKaw80LBzse1CRFHEf/yHhKq7ZVi+SlWxZCs2VP3EJz7B1Vdfzfve9z4++9nP7t8gSuFYKfrsNCdmWjiWYW9/fh/MxdX29++K3c1hb1Nb7HK7m8PCytWFVa+LzWOpH838keZX7S5mfiUsxFWmxsRHaxTazMV22qh5FbQLqmcXjLMUet5sO9eE+M8tw1xFrqE3rJ1XWIsmrpKdf15k5v78m1/1q9vnNtsPrQ1RpDHatJ8bgjB+3t3ndsprDWvzhuOJ8IzGiUIco8EYIqPwNUy0+plqGWZaEc1I04zmqlMDpQlMRKBCmlaDsjtNZAI0cdgamhaGiFC30CbEj2o9FbG6E8KiMSZAMa+NQbdC1rQ/zs52s0uLAQlZhRBCCCGE2D3LsnBdF8dxul87wediYejuXgshhDhwKzJUvffee/m7v/s7zjzzzAMey7VTDCQdThycxElEez9hGSwlXF1SGGj2MtBu7tHen3B30fns7fqLzGNJIfa8cbWeF3LqOEg1PY92SGnmAtduoNodc9c2Cr3XVPOe0x2jWzVr2gFu9yB6rjUXvipMO1RdGATHwWr8NezMGxYJbxXGWN3gNmwHx515dwLayIAfQWjAbz9CA2GoCSNNFGjSRGS14RlEJE1ElhBbR1hRRCOI2yfUIsV4s49t1RF8rQlN3AqhZSICNE3l07CazLrj+KYeV7WaFq2oTGRCIt1C63BedavuVreqTkVrJ2RdpJXAwt+iErIKIYQQQoijnWVZ3ZB0fmC62HMJRIUQ0L5zdrkWqpJvw5dsxYWq1WqVN77xjfzDP/wDH/vYxw5wNAtHefQloO/UEJVyeu9PP5IdaJn3wX6f+zqfpVx/fglnR/v2e9NNFXUcfHbagM5vhjrvNn70giB4wR8+Zq6ktXuZnmNN73Hzw17TDk3nH2M6FbUGjLbmXreDYK0tjFFEGkJtt5+rdlg7N1bYHrcb0BprXoVr/DoycVuAplaE7TEiiJ9jodvHNKO4j2yooWKgtOCXzEHjGcPxJuI5VohHgBVFmDDCDwwN3zDdgOm65qHZIfwobjHgEzHhTlFXZQJTp2Wq3YA10i0C3UDrsB2uhkTaB6J5H+ZuKlnpDVklYBVCCCGEECtJIpGQoFQIIY5iKy5Uvfzyy3nFK17BBRdccMChqkKRtAqsS0fYFzwLk0mDkr/Qjgi7+5GLbt+Ub8yuxy1crau9T+lFktLFxl94nNaL748P6j1m/rl6XoLbKZ3tXE8ztz9qfw0i0FG8Lwghmhca63nnGYOJdFyCqnUc3jbjlbdMaIgaoEMwkcJoRRTGX7VWhKFFo5UgiCxCbeFHFoGxabeQJdRxQOtrRWBsGqFLixTzs2ZlFLkIrADOqAb4fkjYCsEPGbSLeFFASmlcZahHFrOBYnMVttVatExE3bSoWhWm2Uag64QmDl39qNYNXbX2uy0E4vYBc4GrYn6iPf9XQsJWIYQQQghxeDiOQzKZxPM8kslk97nnedIbVAixfIzZ9+K2pQ++TOMefVZUqPq1r32NX/7yl9x7771LOr7VatFqtbqvy+XyLscoZeNZBpPPYjJZONJ/StgJ2Q7HPBeGjPPnsXDfgc5vsWstZuH/64uEpd1D9IIAtsNSi4axvfPpvZBa7Jj5weku2+YFgnG5andcFUXtkDWKH7rdREDrXYJeFUXtMFbH1/EDCCMII9xW0A5k4+DVhNFcABsE6GoL7RM/QkUUxIGr0RZhqAhDhyhSBNqmEThoA1G79UCgLUKtaGmLprYYTDlExoV2m4FSEFfBNsOIoBWhWyFpE3JSNuT5KEI/oqlTbK728WhpFU1CGsqn7JaYdXcQmiahbtEMS3ELAROidUikm8xVtcYLZ+2uL6uEq0IIIYQQYrkkk0lSqdQu4alt24d7akKIY9HCxV0O9thiSVZMqLp161be9773cfvtt5NMJpd0zg033MB111231+OMoR1Utb+uBEfKPHc3j4M1v739cLezvxvuztu3XMGz1r1/xiz1Ot1glZ7g1syvdp0XuHaD255q3PbrTrVrEM6Fsr4/F8iGESoM41+HSEMYYjfbAWynGrYVYoIIIoNuhRAEmNBgAtpVryoOXyNF4NuEoUMQWviRTTO0CU1c9RpoxXTgEGiFNhZh1sLXCaoBVEMYBxyjyZmAE+s+52qHWj2k4ad5tNTH09U1NAipqxY7vafwTRXfNAh1nWZQ6lawxu0DOhWscbAc92XtVC/PfUwSsAohhBBCiP3leR7pdJpMJkMmkyGVSskt+kIIIXaxYkLVX/ziF4yPj3P22Wd3t0VRxF133cXf/u3f0mq1dvkp4dVXX82VV17ZfV0ul1m/fn3PMdqENLWFmp6JQylxZFis5+rC1gxK9QaaC/dbu9neZnY5fjcJ7t5aQsw/rzOfzjlq3jbLisNQtWBMZ/H/DXcbCy4IZ3cbyoYhRGHcWiDU8evO/ihC+UG8LQyxGn48btSukA1CCDTGjzDNEF0NMYGPCeIWA3G1q0Xox4HrbDVFS9tE2sLXFs3IphZZNEKLwIBSilbk0Uh47NA5rD7IEXFGK+A83aBWjyhVAn64I0ctCqjjM+uUmLKfpqWrhLpBEDUIojrGdPqzajCtud62qr3QXLt6VYJVIYQQQgixN67r9gSo6XRaqk+FEEc+w1zbwIM9tHwrvWQrJlQ9//zzefDBB3u2vfWtb+WUU07hqquuWvQvvk4vm90xGBq6xNN1i+D7v0GlDsct9XvZvy9T2t2xSyka3Z/C0kPxcc3PTBVzAaZScS6pVDtcndvX7V1kzdvXeT2v9NWy5h3XvQiLbFvkjVrzxmVeuGspsK32ddvbHat3jHnvAaXAddrnK3DsuXMBLBtjqfh8q71dtccHsB2wrTggdh2wve57MJ2K2HboahwHXLf3fUQR+D7K9+MxbDs+xrbiCtdmE9Vq4pQrcZUrxHN0HAhDaLagWmdwdAbTbLbbDmiMrzEtTVSDZsnB922aLZdm6FANXFqRRS2yqYUJAuOR6IdkoHjuSEjQCHD9FnazjwLrCI3iV9Mw0QzZFs1QsqZomBK+rlILJtsLYvlEutmuZG2Hx/Pvh2j/rSBBqxBCCCHEsS2ZTFIoFMhms6TTadyF/z4WQgghlmjFhKq5XI7TTz+9Z1smk2FgYGCX7UunCXWdmaZh52NZEm504BPdB8YsvXG5UnsOg/a2f0/X25d57Mt1d7dvsevtbg6dMeZ/Vcp0iz27r5UBZdo5ZXys1cnZ29u6uWZ3rHnXmZ+bdoPV+fNYOLF558zLOLFAdQJXO/6qHGvRAFh1wlM3DlSVpeJzbHsutLVslN0OZ1U7sLXteJ+y4oDTtlGODV4iDmG758/rFWsp8DyM60HCjYNTPde3tRuodvZB97Xxk3OhsW3FY6RScRVsq4Wq11EpDxUEcYZpAWFc7erWWiTGK+iaT1RroVvQqtmE7ZC1EThUggR+ZFF1bYquTVi0qUcpJpswEwQMRE2elfLJBoYnq8M8Xh6k5IdU8XnKe4ymKePrKnV/kkj73VYBnSpWg+n2YZUWAUIIIYQQxxbbtsnn892HhKhCiKPCcvZUFUu2YkLVZWEMgW4w1fL5bSmPs4RgsuNAFnI80FLqpVzbYu//f+1pHmaRZqZqDyHUYnNarJB1sTmZnqCrd6DONbuFmZ1AFLAwWJ0AtVPESed1O3iddww9RavzLjr/7v1573Hh++0JYeddt/O653rKtAtWDY4ddQNgy9IoqxMEt4Nhqx34KhMHwQpU+6vlEoeqCrAVyo0v2glalWvFQatjoZJu/NWx22HrvLTXsSCZRCU9jJdoV8fa3b6sGB1vcz1MKhmHpvO1WxSYRAK8ZPsDjwNY43nx+WH7V7dzbhigGk2s4gRWvYXTaGGCCK8exJWsjTpRzdCYtmk1XeqtBKVWgmZoU4tsiq5FM3KZ8l1aKWhhOF43OaXZJKw2afkOt24/g5nQp2RV2ZF8lKYu40c1wqhBEFbb4WpAvMgVoGSBKyGEEEKIo106naZQKJDP58lkMod7OkIIsTyOkG9l77rrLm688UZ+8YtfsHPnTr75zW/ymte8prv/LW95C1/5yld6zrnooou49dZbu6+np6d5z3vew3e+8x0sy+L1r389n/vc58hms91jHnjgAS6//HLuvfdehoaGeM973sMHP/jBZX9/e7KiQ9Uf/vCHBzxGGDbY4m3l55Mn7HFNpN2124R5t5svkdlNmrmUdhi7bft5gHPY11YcC+ex8PoLZ7PY8J05dBe4726fP27vOXY3xFTd63Tv9p83N2veJLrBZ898F5nQPlh4ujVve0/3AeJC1E7ngrgw1bRD4V3H6YSznXNtFYe0druI1em8Jg5mXSt+bWFI2BpbhbiOj2NFeIkQywLLMihL43oaO2GwPLASCpVS81PhuKLWs7FSLvRn4yC1k85rHQe2ngfpFGagP66I1SbuywpxVWsqBfP+0DMAg4OoVgvCIL5OIhG/7zDEbjTwto9BtY6pttCzs5hmu3VAHcqTHrWmRy1waIYOo00PP5fEDEK1ojk93cRu+Hh+Gk8NMe0rHi1FTPk+j6lHaJgZWlEZP6zhh+Wexa6MCdq/ZlraAwghhBBCrGCO45DP57tBqvREFUKIQ6dWq3HWWWfxtre9jde97nWLHnPxxRfz5S9/uft6YavON77xjezcuZPbb7+dIAh461vfymWXXcYtt9wCxGskXXjhhVxwwQV88Ytf5MEHH+Rtb3sbxWKRyy67bPne3F6s6FB1fz344IMopVAokt5aUskzKK4bw91NperCUK4TeFnzwrz5t7rvrbWpMar7XJu5MHH+887r3c2lM5/F5ra7ecyvEl0YZC689kILx7cXvHdrwf6e65q56xujCNvX6lwzNHGmpVHtr3Nspdp3zBuUpUhY7bvqOwWaaq6NqaUMlhUvUaSUigNFAKXQKr62USqej7IIjSJEoVEE7XlpLDTQ0vGvUWQUkVEExqCNIgK0UkQm/vSUio9TKq5rVe3rxXf6xx9G0lYYS2HZFralcFT8G2jhZxV/Tqr7OXaDWOYHsu3gtr0tfv9x1atD/DxhxY+0HXUD2Xh7hGMZHEuTsCOSXhCf2w1eI2w7xPYaJIoVSCiUq+b61zoWKumg0h5qZhbVuXXKmDhJ9jzItDCJdouBDqPbbQs8jONCJt37pm0bVa6imk3sRivu5eqHuC0fZ3uFwmyLoGrRqjvky2kaoUM9tCm4NqVcGl9nGG8YVKvF+kaN4zMNAuPx/9t2BrNhizFngoozzqy/hUA3CKNmu0WA1e6/qrqLXKnu/xcSrgohhBBCHMksy6K/v5+BgQGpRl0mxhi01t2HMaZbGNN5vqdt+3LsgZ6/1GPFyiG/XntmjFm2har29dvhSy65hEsuuWSPx3iex8jIyKL7Hn74YW699VbuvfdenvOc5wDwN3/zN/yn//Sf+Mu//EvWrFnDzTffjO/7fOlLXyKRSHDaaadx//338+lPf1pC1UNN64hOeNVoTfIb56eYp1+I2sPKS9b8BY7az+dXZ/bu3811e57P/S7tVmxidtm31LksnM/CfYuNO/8PqYX75r/e03vvvO5tSdp7XdN9X3NjG2O614iIutsXe+9z11DY2Fio7vUd4nDcUmre3Had98LK1Pl/Pi/2XuMgN35uWwpXqTgXVApbxUFp9857pUjacXjpWpC04wpTV8Vf07buhqKdwU37oZWFj0WEha8syqHCNxYBKn4YMErFYbGlcGyFY1vdgNa2FLajcKx4PEvF8/IsSNoOTjuBtZXBJg5XHQWupUnbBkfpbvCqFNhK41ia7GiAY0W4jsayNI5jsOwI2w1xknXcoRIqYYNrxb8Wno1KJlDZJKrlz7UYgLm2AI6FSi7489lSmHwBEom4klWbbi9Y1WrhFCdxZqskyi2SFZ/02CxBw6LVdKg1PSbqKaqhQ9axaKaTjKeTUNS4tQavStYwTYufT21kR20NjyUKVMx4t0VA05/BmBBtWqD9du/VeK7KSLAqhBBCCHEkyufzDAwMUCwW9/luvaOVMYYoirrh5+6e72nfYscJcXjJ92NHkx/+8IcMDw/T19fH7/zO7/Cxj32MgYEBAO6++26KxWI3UAW44IILsCyLe+65h9e+9rXcfffdvPSlLyWRSHSPueiii/jkJz/JzMwMfX19h/w9wTEaqs6ndYtycxsPJX+GUnu+TcRaGJcaUIusDK9YfBzDrn8xGdPbZVTvQ6fhhfPZUyh8sK7bveaC976797zLddufgWlfT6MxJpq3f/F5dN6bUnY8h/b1O9e1zNz+zp+9PZ/Hbv483t31esbQYOOisLCUjcLCNR4W8XMHB9s4ONgoY5HAiY8lDnpdZXWDZqv9Dz89L9XtbLOVwrMsEpZFylEkbUU+oUhYBi9um0ra7rQCMHGF7rwq4enIoaItItvBRxFaFgnXxklYOLaF49rYroXjWLiWQ8qZq/Sdq7qOx01aBtfSJKw4gPUs3a6M1XhORHGsietG2HaEZWvclMbO1LDSFvZkBZVOQMJpp87xYlp4cZWqcdy47+r8Ul3HAcfBpNLdKlcTRahUEjVbQVWrOLUm9mAdrxmQqQUUKj7ZbS2qTY9qy2Wy5ZFxbJpaUUpkmAozDKmA5xXrBGXFT3eexHjzOCasEtP2Tmatp/HDGqFuEoTVuPeqCbvhqlStCiGEEEIcGVKpFAMDA/T39+M4x8a3sFprwjAkCAKCINjjc61ltRohjjnLuVCVgSAIKJfLPZs9z9vltv2luPjii3nd617Hpk2beOKJJ/jzP/9zLrnkEu6++25s22Z0dJTh4eGecxzHob+/n9HRUQBGR0fZtGlTzzGrVq3q7pNQ9XAxEX4wyVRYQimrGzYuFpbum/kh4/79lG9h8Hngc1rOay+1b9Heg+W92XUui197b3Pe1+vOH3Mu5O02Pug5pjdwXhB+72Fe88dXysZWDpbloLDbIbI1FywzFyzbysUlhUeaJBmSOkWGJLZqR79KkbAskrZFPmEznLYYyFgkXYXjWBjHxlg2oWURWA5VrfBV3FfBUjZJW7XbN8TtF/q9XDeQdSzI2pqkrfEsQ9qJcFVE0vFJOiHZTAvHjXCSGjcHzprHUWk3Dlk9F7wEuDakUpjVI+1ergpsGzM4hMnmUUEr/gvDtkBZWGGI1WgwuGU7g5MV9GwZf0dIULNoNeIq1q3VDLO+QyOVJxgqcFafj1uvQTVJ0hrmvqlnsbXWYpIyT5n7aYazBGGNSDcJoxqoOPCf33MVJGQVQgghhDgUOt9QDwwMkFq4iOoKJUGpEOKgMXGnveVy6623csUVV/Rs++hHP8q11167z2P90R/9Uff5GWecwZlnnskJJ5zAD3/4Q84///wDnephdcyHqgaDMhGGBavQ70NusvB296Ved5/P2cspS53Hwb72oXr/i81lT9dejuirO+YuwWhvqLqrfWuW3xuuzgW33e2LhLu25cVflYNteTjKa9fK2ti42NrBMUncwCNZy5AcS+F02ilg4WDhKouk5XB83iXnKlK2Iekq0l4ctrZsh9BxebqscJMOjutgKUg7FinbwlFgKxdHgWcZsk5EsR7iWpqkHZF2AwrjDdxkEztpsFMKq+CgUi4q62HpCJPLQjqDcRyUDtvNeHVcyZrLxy0DAIh/EqXyJaxyFS9fJtEMSNcCClWf9NYWpVqKsp+gEjokB13qUR8T9QL1SotnujVOb8JocxV3TJ7DhLedqjNOM5yl7oM2IVq3iBtERNAOV+OuvRKsCiGEEEIsh76+PgYGBsjn84d7Kvul1WrRbDa7X5vNZjcslaBUCLFSXHzxxdx888092/anSnUxxx9/PIODgzz++OOcf/75jIyMMD4+3nNMGIZMT093+7COjIwwNjbWc0zn9e56tR4Kx3yoCnPB6j6Z17/ngOOVA2nAfKDz2N9rH6z3f4Dv/bBFW7v8fpkLUpca+u5x+O4A8wPa3QW3dnfbXAhrtStc54JYSzkoZXeDV0u5u1S/Wrg4xuPR0gAeKVyTwDY2KTxsZZG1XFalXU7MQdKOFw8LbIe67TJj2bQsGyvhkEw6JByLPs9hwndwlMGzDBlHU6inSVialBOSdELyuSaO18TN1klUW6hiEjIpVDIBrhu3D3AcTDIJ2SzzA2ozOAAJF5XNoHIZVBhCK8Bu+vTnp8hPlmjM2FQrSdK1zFz/1WyKp6spEmHAhmqFV9gD3D9VYIzjGPW2MQH4US1e1Mr4aN1oL2gV32MhrQGEEEIIIQ4ey7IYHBxk1apVuK679xMOszAMu4Hp/PC01Wod7qkJIY4Vy3z7v+u6y/bDrW3btjE1NcXq1asBeMELXsDs7Cy/+MUvOOeccwC444470FrzvOc9r3vMhz70IYIg6P49cfvtt3PyyScftlv/QULVrqWEIz0B2TKsRLcvAU13LgdpHvt87YP4/vcnmDrYczhwC0LWduh84IF7Z1yr5xqLBbdmQSsCpS3mB5CdALXznPktBBZUxs7aqThkbbcesC0PBw/HeKTqBe6vDuKZBC4OCWVzel+SAQ/6bYNS0IgUgWWzM5GgaTsk0glyWZe85+Aqh4QFSVuTdTTFepqkHZJJhAzMVknk6zgZhcrYWEUP5TmQ8lDZJCRcTKHY7buK42DSGbAdyGbiENpo8H3sdBJ7qoQ7USM9WSOxPaTS8Kj6CcqBizYu9dClnOjnGSMBayaqTE053DeZ44GES8mM0gin8KMafmDFC1qZsB2uRlK1KoQQQghxgBzHYXh4mKGhIWx73+7sOlTCMKRWq1Gr1ajX69RqNVnESQgh5qlWqzz++OPd15s3b+b++++nv7+f/v5+rrvuOl7/+tczMjLCE088wQc/+EFOPPFELrroIgBOPfVULr74Yi699FK++MUvEgQBV1xxBX/0R3/EmjVrAHjDG97Addddx9vf/nauuuoqfv3rX/O5z32Oz3zmM4flPXdIqLoPjqTw5HDO5Uj4HI6EOezRQQ98d7eA17xq3QWXNHtcDXXxvq49PzhYpO0A7d6ulkq0vzooZfGz8QyWFVe/JqwsCZUiRYGMKdBHnj4nwfF5B3IOXsql4STwMgkalk1obCyVpOBCdrxIwjLkXU3WiRj0WqTdgFRylmQqJH3CDuz+FBRSkGlXrjo2uC56YAAy6bn3v3o1qlTCKpVJlCsMj00xVG1hKiV0KeTUp1xK9SSllseWukdipA+VjTg7X+f85slY5iR+PqnYXm/y6+SvqIdTtMIyQVQnjCoYE+7Sc/WI/30phBBCCHEESCQSrFq1ioGBASzr0K0bsTdRFHWD087XIAgO97SEEGIXZhl7qu7rd7X33Xcf5513Xvf1lVdeCcCb3/xmvvCFL/DAAw/wla98hdnZWdasWcOFF17IX/zFX/S0E7j55pu54oorOP/887Esi9e//vX89V//dXd/oVDgtttu4/LLL+ecc85hcHCQa665hssuu+yA3uuBklBViBVsdyHe3it5F//pek8QO69KtjOUQmGUhabVE7QGYbVb/WpbCSyr3dfVSpC0+/CiLA/N9JGeztJHjqKb4MS8Q8YxZDIugeOiswkeUwkSjsVg0iZl28z4DllHk6pGpJ2Q1Y0KqWyNRL6CXbCwV2Uh6UImibIUJoogn5t7C6l2yOq5qFQS1WyhWj5WtU5fapLsVJn+aRd7ssBs4JKxbWrZHNONLNl6ledYNV5sPNTTZ7PdGWfG2UEtnKDagkg3456rJpTKVSGEEEKIJUgmk4yMjNDf33+4pwLE/U/L5XK3ElVu3xdCrBjLfPv/vnj5y1+O2UP+8IMf/GCvY/T393PLLbfs8ZgzzzyTH//4x/s2uWUmoaoQR6H9DfbUoqe1w9VOD1sT0QlaO5Wt0byq1qjddqBTxdqwZrCtBDOWh215eHYeL8zym+k+0ibLIHlGUh4nF+p4GqJEgm3JBHY6wWDRo+hagEPCSlAKEmRmQnKuTy7lUxwv4+QUVt7GijSqv4qp5CGTwnhJ0AajLFQyhc5k47cRBtBoYidc7Iky7kSNDWqWvkqS2aZHKUigjcs4ORLZLG69zmvtKvdPHMeTlSF2OBNsJaIZlAijJpFugm709FuVYFUIIYQQYk42m2VkZOSwLz6ltaZSqVAulymVSvi+f1jnI4QQYmWTUFUI0bXHMLDnJ096t60HOtWu8Q/NLMJOS4F2JavqWSDLwraSOH4Kp5Ig646QZYCc6SNr0rxsdZ5WLoGX9VCpJA+XHLSxybkphpLQP6bJORE5N2Ld/TNkcmMk+jR20cFek4e0B9kU5LKY9evAdeOpFsEMDqLKZexSmeIzximW66wrVdDTASc9kWS2nmSmlWA2m2RHPsO6TIO+SYffIcVvZtbzVKPKdvtpStEOys2tRFETbVpo3YpbArQ/MwlYhRBCCHGsKhQKjIyMkMlkDtscms0mpVKJcrlMtVrdYzWVEEKsGOYIW2bmGCWhqhBiv+y29UDP5miupUC7whUTxme2q1sj7RNEVSzl0AorlOxtuFaKhJ1hauxE0jszFFWa43Mpjh9w8L0kmaLHVCtBKbAouBae5VIPbXLlgMKkTy7VJD87jV2wsfqSqL4qKpPCFPug07fFdTHpuD2AshS0AqxGA6tcY9CZJD/RpG/GY6aeQqk0uZEkpYEUExN1NpoqpxZz3DtxCttZzWNeQDOYJYjqBEYDGmMiULr7eUi4KoQQQohjRTqdZv369YclTNVadytRy+Wy9EQVQgixbCRUFUIcVAvDwz2HrIDRcTsYZcUBa1ilqRwsy6HhTOPYKZIqz5O1QVaX1zHspjij38F1LUwuzbZ0ElyHpnZJ2i7FpkehlmJts0Y20yKVr+EONXBcB9VfwfQVMMkU2DZEETgOun8gnqsOodHEsW3s0RKJ0QaZCR8MzLQS5ByH3Oo0k31pkuUKz7eqNMMBvjV+DuPJp6iGo1SNRhu/t9/qvM9BwlUhhBBCHK1c12Xt2rWHpWdquVxmamqK2dlZqUYVQhz9lnGhKvmWdekkVBVCLKs9h6x0Q8d4+cJGuz+rhdIWWvso5VBT45Ts7ZTc7Twd9fHYxCoKusD5qzRqukrouDyc8sj2pVmdtZm0beqRTaEeki/5FKcb9OtR7OFZ1EAWlc/EC1o5DsZzoW8AEnOtAdAGlU3hZGdI5yusiUoUqklKDY+ploevE4xnc3iZDMPVWS4IR3hgusgWZwfbvftphRXCqE6k/bjfKgaUlvszhBBCCHFUsiyLkZERhoeHsSxr7yccJI1Gg6mpKaanpwnD8JBdVwghhAAJVYUQh9gulZrdoFEDqvtTMaMUWjcAC4WiBdRbO1DKZbtysKwED+wcwLPzZK1hTtIncmoxiSokSRZTbE97BNqm6CXJOnnWjoX0eyH9ySb5zCyF4wKsoos1kEKdejx6oB+y8WJWZu0aTH8fanUFq1Ilf+IU+WqTkZk60eQsGx5NMVlPM9lKMJ3tY8ALeX6mzPOaSR6a3cAOv8JOewvlaJRS42ki3cSYAGNCMEH3PUvVqhBCCCFWuoGBAdasWYPruofkemEYMj09zdTUFI1G45BcUwghjjjxOsniMJNQVQhxxJgfMs5VtM61DDC6hcJHKwulHao6pGHNULXHaXplnioNUZjpZ7WT56xBDyubpJZPUUq4BNphrOUw0HTpq6XY4FfI5pokB0u4qe1YzSamvw+TzUIiAZYVtwlwXEgmUa0WqlrDma2wKhwnO+qTK6UpNJNoksymB2iUmzw/Vcb3i9w7kWWbWs1jXotmOEsQ1ol0M253MK8lgASrQgghhFiJstks69evJ5VKLfu1jDHMzs4yNTVFuVxe9usJIcSRziC3/x8JJFQVQhyR9hiwGoMxEcZoIu0SRnWmdIuKvYMJO8NOPcD06Kkcn444vlInm7TZkszgFlJUUzZTrk2Eoq+epK/SZCgxgT1bQw2XUMUcZqA/7rlqWxjHgaGheDZ+C1Wp4LZCcoUyyZ1lcpMtQq3IOQ6lRJLZfJJV9QrZRJWx+jC1qTOYsp+mbk3QDEsEYRT3Wp23kJUEq0IIIYRYKTzPY+3atRSLxWW/lu/7jI+PMzU1RRRFy349IYQQYl9IqCqEOOJ1QkeFat86H4FSGBOACYmUhQ5CgrCKZSWo25M0E2W2tYZ5qLGaYVXg7EGNW6mwPZMh2ZfBUglmfIein4BHIT9exxuuYw/Noo5rQDYF6TRkM5h8Lp5IwsVks6hqDTvtYWVL9OcaaF2mUEsx1fIItMu2RI7EugzHV8s8v76Bx2oDbPM2M2tvpazDuGKVoLuQlSxiJYQQQogjnW3brF69mqGhIVRn4dFl0mw2GR0dZXp6elmvI4QQK5ZZviU75LvSpZNQVQixYvSEjqbTRCbuw2pUELeUiSyCQNH0J5hULltUAtdJc9/EcRTVGob0MKfm8nhrs2wvZPCVy6OVQfKjhv7HIwY8n43D20n1R7gjCayRLJx+Eqa9mBWA3rABNTCAWl/FqdUYOWWC4cka0dg0636bZ7KRZLLlUkoXOSud5WUzFrO1M3i0dCa3Or9mNtxKI5jGD6uEUQUIMUi4KoQQQogjU19fH+vXr8dxlvfbx1qtxujoKKVSaVmvI4QQQhwMEqoKIVa0bhXrghYBRrdQKkTTItJNtA6pOxNMO0VG62vxt5zC6nSdVDHF1lyadNqllHCY8m0A+stNirN10rMzOOmtqMEqpljApFKg2m0B8lnIpFGpJNZgBWuwxOrGFNnJJrlKhsmWR2gSTDqrKJsqw36Vs+qnsNnqZzz5FNVglGozRJtWXLVKvIiVQkmwKoQQQojDzrZtNmzYsOy3+pfLZUZHR6lWq8t6HSGEOGoYBXqZ7hqQb0WXTEJVIcRRYZcerEpjjAYsMCF+CJFu0gor1J1pfkzEcH0tx1cLrMs0qGcTNPqyTKYTKJVi0E8w0PQYrDQYTozijFRQgzlUPovpL0IigXETkEpgcnlUXx1VLOFVWzjbanijJdKzaVpRnoRlk1qTo1lMcXF+ml9PrOE3pSJPJZ4kiBr4YXXeIlZxBa70WhVCCCHE4VQsFjnuuOOWtTp1enqasbExGo3Gsl1DCCGORsYs40JVYskkVBVCHHUMZtfFrXSD0ARE2ifSTcZ4iJKzg7FghHMqp3G6Ywi2+6isy8PVLMcNecz4NtN+AvsRTW68QmK4hj2YRG3woZCDXBbjOpDyMIkCJp3GKpVxktNkMmUSo1VaoU3GTjJhu0xZDpPOEOsTVdal4efjp9DwZqhaY7TCCn53EStkESshhBBCHBa2bXPcccfR19e3LOMbY5icnGRsbAzf95flGkIIIcShIKGqEOKotGv/VdNeGKqF1hZhVKGmHGbUY4y6D/L/WkWy9hCDk8fxyqHVPD7tklmVJ3Idnq4PMzCqGXw8YDDVZN2Gp3BHHOyRHGp1P/rUk8F1wXXRJ52AWjWIvbGCPVvmhKcm2DhRoj5qMzmT4cGZPNNejrFkkhP0LM+zXsI94yFP6FE2+z+nGZaIoibatNC6hUJ3O5BLwCqEEEKI5bTc1akzMzNs27aNIAiWZXwhhDiWGLO8iwaKvZNQVQhxTOjtvRrFr4wmUiHNQBNEdZr2LBVnjFsnns8Gt5+zQp90IcXTYZZm1qEaeVRCG3ebplipk67M4DR9rEK+3W81DZaFSWXAsiGTwnIdrMEyuWIFb3uZqp8gZSdI2i6z2SFWN2YpujXun1lHtXYKs/ZW6sEkQVjHzKtaXbalHYUQQghxzFvu6tRarca2bduo1WrLMr4QQghxOEioKoQ4psyFq+22ACZCa9A6XtAqiOo8kbyPyWgtY6ObOK0OJ9UaTGazzPZlaaUdnHKOgWaCoVqDQqlGOv00aqiAKuYx+QLYVrygVToDqRRqoIZVnCJZmGFDaZb0TIZsM0XGdngiKhINZVijZzmjfjKb7SIT1maq1hjVlo/W7UWslInnLNWqQgghhDiIlrM61fd9tm/fzszMzEEfWwghjmXL2VNV6nmWTkJVIcQxyWDm/rYwcT+vyLSIoirTUYWS9RQ77F/xHzM5Nlafy2ozyHNGGuwYzDGWT5GwHPIzGfrHNGfsKDNQ3EJmVYR72gAMFmCgD9PXjxkYwAwMwIbjUCfMUMw+TH5HieN2lqhOJBgY72ei6TKZHeSMZIXTZxOk7XXcMxHwc/fHVP1x/LBCGNUxugFE0g5ACCGEEAfMtm3Wr19Pf3//QR9ba83o6ChjY2MY+e5cCCEOvuVcqEr+2F4yCVWFEMc8g0Gh4rBSaYz2CY0m0j5h1GSL+hUzziomRzdy3ESLZ69NUy7mKCVdaqFF0s5R8RMMVuuMJKaxqy2UH8ZjZ9Jz18nlUWuGsBIOiXSJQrbBxmaZtJ0haSdorM4TFZMMlWb4XddhcuvZbPV+S9neQcOfoRUE8eJVygDSEkAIIYQQ+6dQKLBhw4ZlqU6dmppi+/bthGF40McWQgghjiQSqgohBL09V41qV4OakNAEVFujtMIyNXeKaWstg9Nnsq45RbaYpJLPs822qYYpSoGL90RIvlrFbQZYfgC5HCabBdsGZWH6CijXQWWSOPkyw60pMqMB2dkMjSjHjJNgPDFMbaLC+cMW/9/EmWx2CkxZTxNpn0g3wbTi/BepWBVCCCHE0i1ndWqlUmHbtm00Go2DPrYQQohexqhlXKhKFsBaKglVhRBiHoOZW8xKxdWrYVRBa59QN2lFFe4yKdZW1/KsALKzTUYLGSpDOWqhS9ouMtxsMFCrkaqNYefS0F+EdAbjOJhkChwXMilUMU9CG+xiGW/bLNXAJd1K4Fk2s6vzrF7tMZCxuGfHSTzu9/NIokwzLBFGFlq3MO1qVYWSYFUIIYQQe1QoFDjuuONwXfegjuv7Plu3bqVUKh3UcYUQQogjnYSqQgixQDegNAaFQesGmhZRVMEPpnjcn+IpO80vJgtknRFePHsuz240cTYU+NF4kn4vydB0gdVbfE7ZupnkCNgjKayBHGbTekyxCP198VXWrsWaniI9OsGZd2+msUMxM5NmopHmN6UkrTVDnOBUeF5D8aPR17A5Gmcnj1ENxqi3xroLWWHC3rkLIYQQQrC81akTExNs27ZN+qYKIcShZsBoqSg93CRUFUKIPVi8crXW7bfqOzXuVVkmth3Ps2sROpeisSpPK7JoRB7ZnQUGqjVyszXckRZ2PgOOhUm44MYPMzgEysI5YZZ0qow7WiU16VMJBkjaDlNr8oyXkmwMZtngr+EXMzm2JB5nNGoQRnUi3cDouM+qMnPzFkIIIcSxbTmrU5966imq1epBHVcIIYRYSSRUFUKIvZjfbxWi+FW736o2PhPWIzTcGUozJ/Nqd5jCuM9sf5FWlCDnpKmFLkPNOn21OrnBCZSOl2k0/QNxsGrbmFwOtWYQ23Ow8lWcQoPjmxWy9TQpO4FnJyhnh8hWKvQl4N7J02gkZ6j64/ihQ2A0mDDuB9ueqwSrQgghxLFpuatTt2/fjtbLtey0EEKIvTEs37rFcvPB0kmoKoQQSzQXrs5VrWqtqfsTBLpBy63yo/GX8ey+NOHsFHYxTXZjnmbkUQ9t6oHL8Y/P4PohKohQrQC9dg0oC2wHM9iHSiVRhSpOscJIa4LMDp/0bJask+S32mE2m8dZl+QkZpkdO4ct3uOU7R1UTEikG3GwaiIgkl6rQgghxDEon8+zYcMGqU4VQoij2bIuVCWWSkJVIYTYRwbT7bdqTERgZgmjCk1/mrsT09w/1U/RWc+G2U2oRoudq4t4mQT9CZexZpLVjzQY7ttBZs0W3DO3QTEH+Sx6cDCuXrUdiEISm7YzsHOCvi1THL9lmqHH+5loJploueSzw3jZJI2pAppz+LfyryiF22iGswRhlTCqgNFA1J60kYBVCCGEOIpZlsX69esZGBg46GNLdaoQQgixKwlVhRBiPxkMCgXo+BYJ06AVzBLqJkFUo+HOMDL7Ik4yU/SvzlDJ5niq5lINLaqBy0i9xrA3iT1cRw3WUek0JuGBpcBy0atXo9wEluPgJadYN1siUwpJ20nSdoLSqjypfJLk9CxnVE5jizPEmP0EVWuMRkujTWuXytXOvIUQQghx9FjO6tSnn36aSqVyUMcVQghxYMxyLlQl3y4umYSqQghxABYuZBXpGtqEaB0S6Ab3WH2Mjm/iORFop8nsqgLNfo9GlKQe2SSfCMiUqrhVH6s/H/dX7VSYeB5mcACMRtkWuZmteDvKZKZbZCoZqmGWKTdBxRvibK/CCeMJ7p8tssV7klEd4IdVIt0Egvbfi7pdYSttAYQQQoijwXJWp05OTrJt2zapThVCCCF2Q0JVIYQ4QN2A0hgwPkYFaF0njEo8HdbZ4fyK/5gcpN/ZyOvCZzLeTDM7kOPJaoKp1ioGx0KGn2iwafa3OMftQK0dwAwPYIZXgbLikDWbwS7mSVVrpGYqDI2VGbm3yng5y85Gks2pPKlckhfvdND+WdyrT+Kp1FPMRFtpBNM0/Am0bgFhOwiOeucuhBBCiBVFqlOFEOLYtmwLVS3PsEclCVWFEOJgMwZU3BIgjCpo4xNpn1A3+OHUMKc2+jm52WTtxgI7Gx6NKEE9tMg94VOsVkhUW1iVOirSmFQSEi7GcjDDQ6hiEfprqL5ZipXNJLfOkp7K0NR5knaCseQgzYkyF3mGeyaewdN6kFFvM+O6RRjVibQPpoUhrjpRRoJVIYQQYiWxLIt169YxODh40MeW6lQhhFgZzLIuVCULYC2VhKpCCHEQdQLKbksAQGtNYDRahzyR/gWl5iZ2bl3HuQ2NKaapDOWoRw7ZmTzDLZehapX0zASOAtVexIpcDjMwEI9eLEIuh1OukU5OM5KqUPVd0nYSz7YpJQo0amnOtmY4uTnML6fy/CJZpRZM4ocVwshCRzqeq9ISrAohhBArRC6XY8OGDSQSiYM6bhAEPP3005TL5YM6rhBCCHE0WzGh6g033MD//b//l0ceeYRUKsULX/hCPvnJT3LyyScf7qkJIcQuuuHqvEWsQhNQaW4ncKvU3RmqE8/glY4hrxvM9PXxhOVRDW1qvsuqeo0BbxJnuAFDTVQQYvr624tYKUyhgFq/Gsux8ZIzrCuXyJYDsvUU47bLr1suyQ1D9JXLDHmamW3PZkfiScrWDhrBNC2jwbTAKIyK2iGwhKtCCCHEkWg5q1OnpqbYunWrVKcKIcQKEhfvyEJVh9uKCVV/9KMfcfnll3PuuecShiF//ud/zoUXXshDDz1EJpM53NMTQohFGaMBTXwLRUTLH8MPZ6i1xhi3H2b72Jls1CfxrKJmYGOaR/N5nqhmKFYynF6pMphtkB/YjrduDFtrzNAQphAvaKVXr0YVcqjVFYqrdlKYqrBudJLmKKzaMshYy2UmWWDMSvInCZswKPKz8WfxtFXmEfcnNIJpwqhOGFUwRIBUrQohhBBHGqlOFUIIIY5MKyZUvfXWW3te33TTTQwPD/OLX/yCl770pYdpVkIIsTTx4lBgVATaJzQabUKm/Sfw3Sql0gmsGV+DnvExQ0XqkUvOSVELHYZ9l/5GjcLgdlStgRrsx2SzGM/DOC4UcihA9eVxBspkBkpsqs+SLWUYbSRJrkowWViFPVXiubrOM4J+ZiZPYdp6mlowiTZhvIiVCbtVqxKsCiGEEIeXVKcKIYTYLSMLVR0JVkyoulCpVAKgv7//MM9ECCGWpidYNQatNXV/ilC3aLlVbt/Zx1l9KY7TExSHMuxw8tRCj2roUPMdvIemSZSbWDMV1GABhgfBS2ISLmZ4CPr6UMUKKp+hUNqMt7VEaiokW08R6iQ7igWsZIqhqRmeVTqeza1+dnpPMBY1CLHQpgXal2BVCCGEOMykOlUIIcSeGJZzoSqxVCsyVNVa8/73v58XvehFnH766bs9rtVq0Wq1uq/lHw9CiCOCiReIMgYiXaMVhETa5+H0fzAzczwbK/28UNcZ3+mTWVOkUXSpR2kyT4cMlKukp6exV9XjNRkLOcgXMP1ZSIHJ5yCbwZmpkPZmcFIVUhM+tcjGsRxKiQT11DAvy5Q5cczhvskM9eQsdX8CP6wSYWN0vbuAFUi4KoQQQhwqlmWxdu1ahoaGDvrYUp0qhBBCHFwrMlS9/PLL+fWvf81PfvKTPR53ww03cN111x2iWQkhxN51A0pjUBi0bqBpEekaOyt1JuyHeTzRx893jvAC51xeaE9SC7JM57JM+UUGZ/IMbgsYTDU5buuTuGuTqLV9mLOeCdlsPHShAGedgrV+luTENMmpMvkHd1KZTDBRzjLWTPJbu0DeS3JhRnFa+UJ+NV3jyeRvKYXbKDe2oE0Lo/12dW0kwaoQQgixzLLZLBs3blyW6tQtW7Z07/QTQghxFDAsX6WqVMAu2YoLVa+44gq++93vctddd7Fu3bo9Hnv11Vdz5ZVXdl+Xy2XWr1+/3FMUQogl6bQDmKtabWDQ6FZIEDV5gD4q2zfw7KZidaHJzECRIONSjTxqkU1mS0CxUcdrTWAN7sQMDWKyWUi4GC8JhTzKtiGTwgs0zmid1M5ZMlMZ6lGeKdtjLDHMulSZggvpidPY7PThJ2q0ghIRNpgWRhawEkIIIZaNUop169YtS3Xq9PQ0W7duJYqigz62EEIIcaxbMaGqMYb3vOc9fPOb3+SHP/whmzZt2us5nufhed4hmJ0QQuyfbrBKhCFub2JMgDEhY/bDNJwS01ObOK7Ux7mNScZzWWYHsvgph/RsjmHfYbBeo9C/DVWtogb6MJkMxkti3AQUHchmULaFM1Ai0zeLu7VCxXdJ20mSts1UosBIMcnz3VnWlzdSYpSKtYNGMEMYWfE3YtIOQAghhDjostksGzZsOOjfs0h1qhBCHN0MoJepolS+21u6FROqXn755dxyyy18+9vfJpfLMTo6CkChUCCVSh3m2QkhxP4zGBQKiCtWMZrQaGqtCYKoSd2dZUav5/jWqQxSxQuaTA/2sdnyqIY2Nd/lGb+eIjHTwFpVRfVnYWQVZFJxxWo6jfE8VD6PyqbwMlOsnymRmglJWSmakcfOwMNeP8TayQqnVs5ii9vHpPUk9WCSpgniVgDKAHr5lpkUQgghjhFKKdauXcvw8PBBH1uqU4UQ4hhgFEbLbfqH24oJVb/whS8A8PKXv7xn+5e//GXe8pa3HPoJCSHEQWTipjiobh1oRBBMEYQlGv4Es2oz/xg+RdFZz4ZoE2fNhFhrs4wWsjzqZNjZ9Bh53GcoU6fQP0Pm2TOwpg9WDWEGBiCbxWSzmNWrUeunKaQfJTdaYv1omYHfFhhrphhvukx4BZ7jeZw1niEKTuYXMxV+7d5F3Z8kjOpEuoHWLeaHq1K5KoQQQixdJpNh48aNB706NQxDnn76aalOFUIIIQ4R63BPYKmMMYs+JFAVQhxN5i9kZYgwJkDrBpGuUW2NMtF6hEfUL7mjtI3qRJVg2ySVasC2hsNTtSSbS3l27MzjP1nBPDWJ2j6GNTE5dwFLxX1X1wxibRwkcWKOtetKnFAsszHTZF06YqCYpHj8EKuGUzx/IMcG69kUkxtJJ4ZwnQJKuShsUDYo1a6yFUIIIcSedHqnnnzyyQc9UJ2enuY3v/mNBKpCCHGMMGb5HvtaM3PXXXfxqle9ijVr1qCU4lvf+lZ3XxAEXHXVVZxxxhlkMhnWrFnDf/kv/4UdO3b0jLFx40aUUj2PT3ziEz3HPPDAA7zkJS8hmUyyfv16PvWpT+3np3fwrJhKVSGEOFZ0gtX5i1hhNH5YJtI+gW7QdMv8+1iBMws5+htTbK9k8FfnqEUJ6qFF9qmAvkadRDPECkJUNovJpMGKf5Zm+oooLwG5DKkwIrGjQWq7T3YmSz3KMdW0mCgWcBNJzrct7hvPs93byoyzlZLRRLoZV6yaEKMi6bcqhBBC7IFUpwohhDha1Wo1zjrrLN72trfxute9rmdfvV7nl7/8JR/5yEc466yzmJmZ4X3vex+vfvWrue+++3qOvf7667n00ku7r3O5XPd5uVzmwgsv5IILLuCLX/wiDz74IG9729soFotcdtlly/sG90BCVSGEOEItbAlgdBWt64RRiaY/wf/nTvLATIG8s4b/1HguutYiXF9k3HEYaw0yNBmy+okWI4UZBp/+OdZwFvqzkM+hV63CFPvAcWDjcTjTMxR3jlPYNk3/z8cYL2cZb3pM+B6PpAY5J53kZfUsvn4mt05tZ4wnqIUTtMIKrWAWY1pgNBBJWwAhhBCizbZt1qxZw9DQ0EEfe2Zmhi1btkjvVCGEOAYdSQtVXXLJJVxyySWL7isUCtx+++092/72b/+W5z73uWzZsoXjjjuuuz2XyzEyMrLoODfffDO+7/OlL32JRCLBaaedxv3338+nP/3pwxqqrpjb/4UQ4lhl2v/FYaXGmAijffywTK01wVTrSe6qPcm9O8pMPD6JKlV4qqLZWnd4spbiiakilYcjgkenMU+Mw44JVK0ah6CWgmwWvXoEs3Et6oRVFE8MOW71LCcWyhyfaXFczmb1ugKN1QOUHZfz+9ZwKuew1n0WxeRGEk4ex86hrJS0BRBCCCHahoeHOf300w96oBqGIU8++SSbN2+WQFUIIcSKUyqVUEpRLBZ7tn/iE59gYGCAZz/72dx4442EYdjdd/fdd/PSl76URCLR3XbRRRfx6KOPMjMzc6imvgupVBVCiBXCYNq32UcYpdBRrd1z1WeH/QBlZ5zy5Mk8yzcUs03GVhdpZl2qoUduvMBgvUGh3CBRD7D7cmDb8SJWtg2ui+kbAMA5sUw6XyExXiM71qIRDTLuuGTcBKXsAKbR4kzH4dRWml+Xhnk4FVELJvHDCkEYgQnj1SjntQXozF8IIYQ42hUKBdatW3fQb/UHqU4VQgjRZhRmmSpVQREEAeVyuWer53kH/Hdbs9nkqquu4o//+I/J5/Pd7e9973s5++yz6e/v52c/+xlXX301O3fu5NOf/jQAo6OjbNq0qWesVatWdff19fUd0Lz2l4SqQgixgszvt2pUhNEtjAqpNsfwnRp+okqpejy/lzwBtW2S8XyWymCWopumFjoM+y799RqFoQmUMWA0ZlX7FouEi8lkUetWYeUzJPorOANVTg6mKZazjDWSTLk2m43H+lOGSNZqFLdZ6LFz2elto+RsZ7b5NFHURJt2v1UiQLfbGCgJVoUQQhy1UqkU69at6+kBd7CEYciWLVuYnZ096GMLIYRYeZb19n8Dt956K1dccUXP9o9+9KNce+21+z1uEAT8wR/8AcYYvvCFL/Tsu/LKK7vPzzzzTBKJBO94xzu44YYbluWHlAeLhKpCCLEC9fRbNRGBmSaMSjT8SWbszfydeYphdSIbJ0d4UdDkcV3kt26S4WSSgdkcZ1Rm6B9+Em/dFuyz1kMui0kmIemhj1sXL2ilNarVZOikJxncMc3JW6ep7nT57Vgf077LVCLDUDrNuekkbiVPyj6V74yPM66eohpN0AxmaQWzaNPCGB1XsNKurJG+q0IIIY4SjuOwdu1aBgYGlmV8qU4VQghxqF188cXcfPPNPdsOJNzsBKpPP/00d9xxR0+V6mKe97znEYYhTz31FCeffDIjIyOMjY31HNN5vbs+rIeChKpCCLGCdStX0XFOaRqERJSaW/HdGhVnispTJ/GCakRxJMdkMU0zskmXCjR8l6FajXxyB9ZgBpXPQj6LWetBKhWPn0rB8cehMinc9CT5bIlNQYlCLU2+6THpOLTWFqg10gRTVS4cWMX90wVGrRkmk1uYUk8SRLV29WoIuhHPWel43kaCVSGEECuTUopVq1YxMjKCZR38pSqkOlUIIcTumGW9/R9c191r8LlUnUD1scce484771zSDyHvv/9+LMtieHgYgBe84AV86EMfIggCXNcF4Pbbb+fkk08+bLf+g4SqQghxdDCGTq9V2otYRdon0A18t0r/7At4sVcm3apRHehnq+3SjDLUQ5cTH53Cm/GxBxuogQaqmMMkPEjEf1mZoSGwHZTrYKdc+psTZCZ9irNJ+mopIpNh2nWZ8voYUT59O8rMVJI8MN3Pg55NNRqnFVUIwhp+CJig3RognrO0BRBCCLHS9PX1sXbt2p4FMw6m2dlZtmzZ0rNIhxBCCHEkqlarPP74493Xmzdv5v7776e/v5/Vq1fze7/3e/zyl7/ku9/9LlEUMTo6CkB/fz+JRIK7776be+65h/POO49cLsfdd9/NBz7wAd70pjd1A9M3vOENXHfddbz97W/nqquu4te//jWf+9zn+MxnPnNY3nOHhKpCCHEUWNhrVesGxgQYExLpFg+mBqnv2MRzh1Ko0gSV/hz+miyNyCK9M09/rUGm1MCt+tj9cS840z8A7Z8CmlwWjEZZFk4QYg838Cab5Ceb6C0w1kySd22eqiXIHTfIM/06wxN11OYzGFcVxhJbqDoTVJoQ6SaR9sEE7VlrqVgVQgixIhSLRUZGRkin08syfhiGbN269bCuZCyEEOLIZwC9jGPvi/vuu4/zzjuv+7rTH/XNb34z1157Lf/2b/8GwLOe9aye8+68805e/vKX43keX/va17j22mtptVps2rSJD3zgAz19VguFArfddhuXX34555xzDoODg1xzzTVcdtll+/UeDxYJVYUQ4ijS6bWK8TEqQOsWYVThqegn7HQf5FcTgwyq43mTvZGy3yRcXaQZFchVsvSPh/Q95bNp8knctduw1hRhsIgZGQbHwbgJzOoRWD2CiiLsZoN0ucppv97MydunqY/aPD46wIzvMO2nSKXSPC+XI1vN0qoNYCv49vYSO+ytVKJR6uE0jdZEu+dqGFewgvRbFUIIcURRStHf38/IyMiyLpYh1alCCCH2xXLe/r8vXv7yl2PM7r9329M+gLPPPpuf//zne73OmWeeyY9//ON9nt9yklBVCCGOVibuXWoMhFGlW7UauA1+sHOQEzIZXsoYM7kClf4stdCiGtqknw7oK9dJzUxgr66iggAyaUinIZPCFPviuLNQwPQFWC0fNz9Frljh+GiG2UqKvmaS6ZYDeEykPNxigFup8p/Xwr0TWbZF6xj1tjHGQ/hhhShqEukaGI1R8UIcUr0qhBDicLIsi6GhIYaHh7v925ZDFEVs2bJFqlOFEEKIFUZCVSGEOArNbweA0hjtEwEm0Ggd8lj6AUr1jZS2DnPOYAVKTSqritSzDolKjrKfYLDaID/dIBWNovrSqL4c9BcwxXmNwBMuZs1qlJfASifJh2OkJ8v0TdcZqKRQKkfetWmELuOJPvqHQs7JVTmjZPPQdJ57gJKzg0YwTdMHbVpgwm64qsyu70kIIYRYTo7jMDw8zNDQELZtL+u1pDpVCCHE/jBGoZepUtVwZFTArgQSqgohxFGs2w4Ag9ERmhaRrjFWbTJlP8aTTo4nRp/PCc4wzw8CEsMpHgkLtIzLcDJL30TICTtq9OUqZAanSKx2sWoNzNAAJpcDL4nJZjGehxoawFq/Gq/RxKvUKM5UWPPADuqTNqVympmmx+ZqCnttkfFijsFEld+rnwH6DCaamp81HmfW7KARTuFHNfyg3G4NoOOglaj9psyu71EIIYQ4QIlEglWrVjE4OIhSy/sNZbPZZNu2bZTL5WW9jhBCCCGWj4SqQghxrOhpB1BDm5BI+2y1f01Zr2F8+wbWTWrOWdUkPZRjWmWohQ62ylD2EwzUm/SVa+Ry21HlKqq/gMmkIZUC28JYDgwMYADVaqLKVRKhxhmvkBytkJ9uooBpP0HGselPF9hSzhKWGqyv1XmldxL/MbOOUXeCsjvBlPUEYdQgjJpo46N1o13BOq8tuzGoRX6SKkGrEEKIpUqn0wwPD9Pf37/s1wrDkJ07dzIxMbHs1xJCCHH0MixjT1X5VmrJJFQVQohjgKEdPraDVUyI1hpjNJXmdgK3Ss2ZYjxYQ2rqRF5gzRLM1Kj0FdiuPMqBTTlwqLRcjn9whsSqBvZwCZVPw3AfZFKQTmPyw/H1UilMLo/VamHlZ/DyJZzJBhusGQYqSQYaSab9BAqXeibLbCvDSBDg5OuUZ1LUg/X8nDwVJqi3K1dbwQzahBgTdKtXTbc/wLy1LxcErRKwCiGEWMhxHAYGBhgYGCCZTC779YwxjI+Ps3PnTrRervWahRBCHCuMAS3f5hx2EqoKIcQxYn6walQU/01sGgSRRaT9OLh0ytzXSDG+dZhTixanmgm2TadxB3PUCy4zvoOzzdA/Wyc7VifRX8dptKAvG1eu9vVBZzEP28YMD6ESCVTKwynWyHszZEt1+qbqrCp5uFaRGd9h1rXYXk/grnIZWZXHrjfpnzyNpybqbLGnKblTTNiP4oc1Iu23H00UURywouMqVgxxnrprJauEq0IIcWxTSlEsFhkYGCCfzx+y687OzrJt2zZ83z9k1xRCCCHE8pNQVQghjiE9C1gRYYAoqqJRhFGJpj9NzRnncTvD3VP95GdHOMc+jXNbLcr1NOFQjjvHcvTN5CiORfS5ARufKJMt7MRbNYozW4Ghfkwhj0mmMI6L6etDFXKgQZ2uscOATLVOZrbE4K93EIyG1Gdctk4VKAcupcBmNpfGK6ZxV+XZUC7g1VfTbJ5KoOGJSpNpKoyqzTR1mUA3aIVlIu23K1njtgYQYTqLXmFQ84LWhZ+HEEKIo1c2m6W/v5++vr5lX3hqvnq9zrZt26hWq4fsmkIIIY4Vatlu/5fvkJZOQlUhhDgGdcNVFKDjV53K1RC09gmjBk1nll96FmM7NrBmKuJ55QaVbJZmf4Z6ZFMJLSyVp1hv0Vdp0JccxZ6poPpyqHwGk8uC64DjYjwPstn4+v0BaqAPO4iw+8u4U3WcJ6Zp1BOU6x4l32Or7dGfcPH7XGb9PI2aj9doMpJRKJPkvskis7pF3W4w6mymZaoEukEYNWiFFSLtY0yINiGYgG4167yerJ3uARKuCiHE0SWRSHRv708kEof02kEQsGPHDqampg7pdYUQQghxaEmoKoQQxzCD6QaLqHa4qhuEJujeYj/BI1TdccaCtUxsW8+r12rcVo3pfIFyNgl45H2Hft9DPTRLZrSEM1jB7k+iVvdBOgn5dpjaDlVxXUyxD9avQWXT2P1VcukZ0hWf4kyTVskiO1mg1HKphA7lhM10IsFY0sUUs1hNn/MGWqhGi7CV5UejRSrap2rVKdnTzLrb8aNaN2QNo3q7ilXHAasJe1oFKNP7mQghhFh5MpkM+XyefD5PJpM55NfXWjM2NsbY2Jj0TRVCCLGs4jKRZVqoatnGPfpIqCqEEMe43pYAzOu3GhKagLpv4Uc1ms4sFWccd/u5nNaXZKA+QyLr8kgqy5qhJDO+Q6T76C+3KE40yOQbpKo+VjEF/XXUoI/J5+d6rgKmkAfHQmXTqGwKp9HCqTVJzDbY+NgM9VmXas2j3EqwvZGkkLBphBZ+OslowyNZVBStkD9Y16RRbTFdyvLQ9CBb6uuYsUuU3EmaukQ1GCPUrW4/Vm38RRa86q1enf/ZCCGEOPI4jkOhUOgGqYfy1v75tNZMTk4yNjZGEASHZQ5CCCGEOPQkVBVCCAHMCxCNQXVfRQRhQBjZtIIpKmo7M+5T3DNZJO0M0D++jvPzx2HP2BSGszxZSZL3PIpunoKr2bStTjHZIl8YIzm4k8TpY9CXh0wakh4mmQDHRfdnYOPGucm0WiSf2kJytkz/bA1TbXLK6AxhxdCq2tSqHjurWeqhTS2yqIQZEvksVp9hw4DP6WEWq16gaEbQwN0TislmSCXyqao6O9QT+DpuF9AIpntaBWjdYi5g1XsJVpdQiWR2PV/CWiGE2D/ZbLYbpKZSqcM6lzAMmZiYYHx8nCiKDutchBBCHGPMot9mHLSxxdJIqCqEEGIX8cJOKv6bWun4L2yjMSqkFUAYNWmGs9SccW4va1bNDnFqOWIkX6FSyNIopJl1LbRJ0+979DU9iuUmw0zj9JdR+SQq66EGC5DNQDaNyefmJuB56NUjqGwGVayhmk2cVXWcho9XbpItNck82aJRT1BtJphpedQjm5xj00gnmPE9Zn1ohBFW0+ecTItE0CJoOlTCDD8dKzJDk6pdY9LZQl3PEuo6QdQkiGpoHS94ZdBxNStz3yzHrzsWhKqm9/Vci4F5x5r2Z4uEq0IIsSdKKdLpNOl0mnw+Ty6Xw7Kswz0tfN9nbGyMyclJzLJ9RyuEEELsnkGhZaGqw05CVSGEEIvqbQsQYVQcsmrdwJiASDcJwjrbk/czZfcxWl3Pi/QmTtRl9GwF059hcy5DI+My5dv0+R76cYtctkUyV8Ut1LDXtVB9aVR/AZMvwPyqo1QynkHSA61BRxCEqEYTu1whlxkjM9OkONugOJWg6Ts0fJd66DLaTFDzbEJjoUmxrZYiNIA2WEHAiwcCbN+nWi3y0OQQO1p1KnaFhlNj1uzA11Ui3SIyIZFuYYyOF7wCtA7bE4wDVzMvWJ0LXNshrNHMhamqp4/r3Ge7+Oc+nzqAvkYS3AohVopUKkU6nSaTyZDJZEgmkyh15PR1azabjI6OMj09fbinIoQQQogjgISqQggh9mh+WwDQYCKMCoAGERaztQpKuUxaD7HNHyJV66eo1rJ2+zr+aGOaViGNM5jloYbL1no/yUlD0Y0ouCGrf1slm5km2TdO8pRR6M9CLg2pJCQSGMeBhItJpaC9yFV3Xa3jJnDKFZxanWSlDmEEfoipNzht2xRBydCq2TQbCSarKRqRQzOyqUU2k60EkcmQB3Q5Yn0toFn38RsBXngyCaOxlcJSUPYNU62IKd+nZUICQiIVEhBQsiaJTIAhQqPRJiAi6IaxnWDWmChuLWDCdiir2wtntfu6doPXuXbzC8PQpQaru54Hu1bUHllBqwS/Qhx7PM8jk8l0Q9RUKnVEVKEuplarMTo6SqlUOtxTEUIIIYDlXahK/mW+dBKqCiGE2CcGM6/CMor/0u0uakV3UauSM8rXnz6XtUl48WyNXCHFTKZAy7IZTjqUAxtfW+TqAblywCq/TKKvitXnYmU96MugUglIpyCXxbRD1e488nlwHcimYaBd+RlFqFYLp28Cp9TAKzXJlptkJ1qELQvft6m3EkzWU7S0RTOySNoOrbxNaJIEEUw0Da0gImiFaD+in4h8K+SkKIkXBeQcQ2AU9RB+M7OKQBt0+58ezSgiQNPEp27XKbvTRCZAExAR0tLVOHjVLULtE0S1uNrVaEy7ErZT+bqw7UBsT4uwxMcq5lfMdr7aPa0JTPcX8AhYnXpeO4TdHnKQq3eX4mAFvfsbhgtxNLAsi2Qyied5JJPJnudHaoA6X6lUYnR0lFqtdrinIoQQQogjkISqQggh9tn8AEiZudYAYVQj0j5h1KQVVng4abGztZadW1YzkoQXDjVJpDwa2TS1TAqNy6RySDY9WqFNdrxFNuPjZSskRmpY2QQq76GK2bhyNZON2wEoC7TGWA6kHEgmwXEwloIgQKWSqEoVq1zDqjbIrG5gmiGmFdJXbdE3WqfVdGi2XAaaSZqhTWAsmpEin3AItENk4r8iWxHUQgi0IdAw7odYoaagIi4e8cnTIhn5EEVUA5tamGDSTzPWLLKzNoKvNYE2RMZQxaehWjTdBnVVoax3EupWu4o1rlrV7bYCnbYD8eetUcwFEEr1hhHzj+uEtHT7wS4MagHTWZ16XqhqDkLAqvYQkiwyfm/P2Y5dj+v29+3ZuC+h6vx5Le19LtaaYTktZ/i6PwG0hLxiqWzbxnGcRcNT13UP9/T2WRAETE9PMzU1RbPZPNzTEUIIIRZlOOJuPjsmSagqhBDigMxVrvZWrWrjM9N6irozxay9na2tEfzR43lmn8/JUZ1EzbCZPEEmTSaboBllyLspCrWA3IzPYKWOl2nh5pvYfTWsSKMKWUinMAkXbDt+OG78usN1MUNDkEqhMhlotVB+gIoiCCPsRov89hmiio+utuibqhMGNmGoaPkOqxtJmpFDS1uERlENLRqRha8VoQaNS2TAj2AqSjNjxblgoEEZg6s1RRUxbCJeagVYUYiONFGgmWmmKDdhuq6ZbBoer2ykrloEVkBAQKhCNJqQFk2qhLS67QU6FDYWFkrFVavGzLUe6LYg6PSBbQeruh2idgLXuPVAb/Aa/1oub+Vq7yJf0YKqWogDz3Y17sIQtp0LdhdR25M9hbvzq313EyQvHvZ25rcnB7PybvFrHVDYu5Qguv2v86UEsQcavO7pGhLqHl6WZeG6Lq7r4jjOHp8fST1P95cxhtnZWaampiiXy4d7OkIIIcReGbN8C1WJpZNQVQghxAGbW9SqHawSEUUBDd2g6U9QUduZsB5hZ+JB7vTzpCcGKDDEaa7N+myTs9b4zCaLbEmlaagUESk2lHN4librRKSdiFW/miWZGsfLRDhZsAcSqGwClfVQG9dgcllMMhW3BAhCsK24ZUA+i8kXwZr7R4eansGpVqHRINFszb2RSLNupowpVzG1AF2LCGc1OlDoUMVrZfkOvu/QCm2qvovWCoMiMgo/sgiMRWgsQm3R0h6+gcioeKGsSJE2kNDQHxnWNiJagablh9RaEb4fEYUaIk3OAtdEZJQm50DO0bgKbGVwrfgB8diNSOFrRTNS1CPFWAPqETRDg681jVATGUNgIkIMTeMTEhGpiED5cRhLvOhWRIBWGt0OcucHrdosbEfQu98saFeg6a2U7QTEc4FvNFdd297eCVk7vWjnn28WhKALK3Y71bydwHmxYzrjLBx7bvuu1b27Br97s2Beu5nDrhbMZdFF0KDT6mHxMXotdu092XXMhf14579evuCz91uE3bzP3ZRnSCC7uE5QureQ9GgJSpeiWq0yNTXFzMwMWh8B7VCEEEIIsaJIqCqEEOKg6VYRGsNc5aomUhptWtRampZdoW5PU7Z30KTGE1ODPFrK87yhGmcWpnBSCWrpHNtqOZTlMODZWEA5cMk4IWknJO0GFCfqJDI+Tr6G0wpQhQwqkwQvAZYdh6i2jfE8yGTBmqtmNbksxnFQqWS8wXXiVgKAKpdQtTqqWsOqNnGqTUyo595hNUDXm+i6JigpjI7DB6Mh8G3C0MIPbIIoDl5Do9BaERqLVmTR0hYtrfC1RS3lEGoITYJmGEdl2sRRVTNqPzeGWqSpGhPnWdpgGQPGEEWaSBt0ZDDa4GBIKMP6oiGhNC4axxgcozHGEEWGUEPdTxPouLq2GSkiQxy66rgCNzJxjGWMiZ+3M6p4bmbuuQGN6WZbkTFzx7a3z/8aoQnbXyMifBViVBznzg93IwIiFRIRtK/VDl936TEbV+7OPY8DRKsdqnZfzztGE4+1cMxOqNyp/O2EvHEQ3BvqLjaP3c5pD6Fmb5XwXFA6v8p4fvjbvf68wHVvwer+hKoLe/IurGbuvFb7EO7un3k9gbsT6PwazK8mXhC2H+JMdTn67ypLYVkWlmVh2/aiz/dnnwDf95mammJqagrf9w/3dIQQQoj9ZpZtoapj44erB4OEqkIIIQ6qbtUqCjpLOBkDRrVDQ58wquNbFSK3xZSdZVQPML3zGfxiMsVg0uL0YpVCooLKpNiRyOJ7CZraxVEOCcuQczRDTY+UE5JNBhRny7iFClbeRqVcVNoFzwEvgUon49A0lwMvGYetnYok18F4ybntgMlmMfUaqlZF1Rpx+wDLgvZD1epY9SbUmrizjfi9tau6jB9iGgGm4RM1DEHNAhPnQMbEVa5BYNMK4sC1EiTaoaqFr632c0XYrj7V7edgd8PKTsGtpeJgUxsIzVzNoFqwr6njqtXuce3g0wBhZGgEIX6gCU0c0FrxTfnYRmGMQZlOaBq3eXAtCwuDoxSuAkspHAyOgqSjcNDYgKPibaozs3nXjnT81dfx80gr/EjH4a6O+9e2QtPeF4e1ke6cbzDtFNe0m0mpzlzjqWOpubzNUj1FymgTh8ndoLc9r7D9PgOjiUwc/hoMgQo7cWsc+Kq5EHZPrLhJQ/xrYubCLKN0+3zTM0bUbv3QCXcD1eoJgDVBT/DbCZw7Aeze5rI3nTF6WkUQoXXY3d8JeTvBqm4vrtY5frHn8y0l4N1doLtr1W4ceiulUKrzZ46JKywV3UrLzv746/xtvY/Ftu9127zn7Qns15hKqZ4wVMLPg09rzczMDFNTU1Sr1cM9HSGEEEIcJSRUFUIIsSzmeq0Cqh2uah+jQjQWSvtoHWJbJRr2NM1EiS1RH7naAI9U+jk1n+WcqEFKN4mMxW9tDyvjkcx6rMo6lAIbz9ZkG5qhepJMIiCdbOElW3iFBnZKoVIKK++hghBVzEEqhXGddpllO6SxnPh+/E41nKUgncEoC1wvfi8JF1wXHAcaDVQ9rmRVlWocqNo2ODYqCKHRgnoTp9YkUQ/ia3UC22aIbrQwjQZRHZoVGx1ZGKMIQ4sosggimyCyqAcOobHQJo4l48rQ3p8aG0ATh6+Rmfupclx5Snu7oqnjcFa3t/m6HbJqRTNKEHaPb4dT82797QSgHZYC25qrqYtzzXb1qqUIAVRcddsgDnLja5n5+TOqvS/ShkBrfG2IFoRxVjui74SKRsUBqmIuKNRotNJxwIVCGYWL0636i9BxRey8sN9tL0JmMPjKJ1QhNnGo6aGwmKtqDpVFaFqY9lhxVDpXORnX3ca/Ep1ZW6juMfF+3bPfnvfPr4gQY0KibmsFBcpF4cVBotFEhD0LlwFYljPXKkEHPaGjpXr/eTc//Ozs73w+cxW7uh1Mt4O/zudrIowJMca0rzc/vu98ip3+vPMWsJv3e2huewTY8/ZZzIWn8+c4d4zpVL13Pp/OWPNvTzem8ztl/ruc/wnsfqGz3a3wsGD8pZCmA0eWRqNBuVymXC5TrVZ7fn8KIYQQK13n+4NlG1wsiYSqQgghlk33tlgTtwUwhPFf0kphTAujG4TKohVYNPyJOOxRDraV4D9m+/m/lQyeypKmj7VmLTnbZW3axe13mM14ZPIeFStBUzv0JRRZFxKWYciLSFkRCVuTdkIGc+N4qR24aY3lgV2wUAkblbCxhnKQT0E2A8kkxnHAaFSk43lm///s/Xe4ZUd95ot/qlba6eTYOSmgLJFkMEMwMgg8Y2BsrjG2RwYu+GJjP1h3fthcB5x+43EYJ8Zj7LnjMDPYd8yMjT3hYpITRgYhkISy1OpudTqnT9pnx5Wq6v5Ra6fTrZbU6qZbUn366efsvUJVrbXjevdb77dmBdXICqzUaphKFTM2hphJMWE44nQFrLu124EksVEEgY/xA0Se4SUJot0l6MaUtlaWzhQkGcQZptUdFXO0wWQakylMVszPlyA8QAqMMpAZdGLIW6DzLW43A3kmULlHuxOijCRXAoV10/ZiClLt9QVZXQhnsjflf+A7BYbcoENLh7cZFoE1VsTVxpaoUqZ3X6DwhkRfK/Bm2j5VlLZSXD+GoDj04S+R6kn0suKpNzSeoeiCYl3PoaqN6Uce9OQ5u14Xy4r1w+0ULZstf3uCpRk5L6d/OzWFW9UIgxJq0I7oeVI1COtEzb10sN4MbbtF1D2TS/RsTtaecNsb43C0gSls1v3cW2O3GHaPmmEx9Qyu0n5bZxDsR9aJ6Izjty7UACPykXbYMk7Re0HYjbYco3zywmNPJzv0ybbZ0s+ZtnLXJN84lFJ9EbXRaJBl2cUeksPhcDgcF4wLWajKfX95+jhR1eFwOBzfEEYEp970baHo5a9qra2DVUiUDlA6RRYCa+CVqfsnCHWZh1pTjDcn2e5NctVkSOSDKEe0axGb5QgReKTax5c+vjAEwrCRhESepuQpIj9nshbjBwo/zIlWE+S4j6gGNjqgHIEnCweqREy0EdWqjQUohFWRJZBmdhshwc9HMlsJQnu0fuFwDUIrfAJkGaYcI5IY8tyKsX6xb54h4hTiBNHtDlywngRtEFkGcWr7zhQEVrAl9CHXtkBXO8Gvd6wNVILwJATSmvVyhenm1NZamAy0GtWLdC5Iuz55LtDaOmil1Hb6NIXIqTx0IY56ksF6YfrrciX7rllPaBAGKei7cHMtyQsBt9934bbNjSTTgljLvlhq+k7cYjtAaXFGqbAnyg77KQeeSvsYZLYWWN/pCwORNdOjbSht+uvBirBaFyLp6abNEWGW01f3xVor4m4R/4yxE/61IS/E0n6GbSG+9oTYvIgL2JonqoVG9yMK7N/TM2XNiDDbd4ViUOTQm96PtnEFRvcPwjpri1iCIhqgt24g+g4CEwbnYCgCoS8A9/pnFKNHiqIZoxGFe7g31d8ghva3DthB+6OuVWGGOum992A4raAYYkgI3/rs2jolf8v6szhbn47YetopOMM+ve3chc6ATqfD5uYmjUaDdrt9sYfjcDgcDofjBYYTVR0Oh8PxDeV0cVUVzlXsbSMwIseYDPCQwifNG8TZJp4M8WXEsoxYEgs8sj5LxdS4MprlwHhCKA3K9zhYivArEUE5IAw8uioCYXM+y55mMSkRCEXoaybrMaVShh/F+FEHf0xAKBCBQPgSOdGAWglRKw8EV6VBKfB9RLWMqVQwlYp1s2oNWYbIi2xKIcEfjheQVgg1oc1zDXwbK+D5kOeYuBBc0yr4NoLA+D5IgUgSK7jGhSDr+5gohHLZ9lu4YOXGph2jFFZwLdmCXCLLoB0jpxqQKDvdu+TbzFis6FraTDAdjcmtg1MGAhueihVmuyk6szqb9EEEIHxhH8MsRcegU2wBL2HsNsV/HYNKBFkiyVMPpSVCGKQwCAlKiX6Rr3bmo4siYLIQ0pSR5MZmz8aFICuH1hus+zXRg1/upTCEhR7Wy5XtKklexCqIoo2eWBVrQaYHsQWj5YMg0Vbg1cU2I5mtRfs9QbY3nV4OTp/NiTUDcVaIQjtHFIKqXZcoPSK6esVrpJf3muis/1ryhgQ/W/QrQ6EwQiOMxBsRVTWpSNE2qKGIUbAJsLZIWNovEtZ3rYpB8S1FijI2siD3ssFrefj1XeStaqP664SwP5j0C3EZ1c+XFcWPKVAIskLb51ohXArh9UXZnjPW5qn2hM3e19neWc4x/RxbXdi56R8LaIQ53VmMEEPLB9EEPUH1TA7k3n4j/QtxmrB6PhBDf1+owmocx7Tb7b4bVamzF41zOBwOh+P5ip3A5QpKXWycqOpwOByOi8KTiqtQzNku8iKFFX2UTq0wg0QIn9ivsy4PE8gyq+lO7l2dYVyPMyUr3DijqXY7KAOplNwrA2QUUCqHjNUCsvEQAXgCZmLrYg2lwpeGWpQQhTm+b5CeJqo18SpNRFUiSz4iGqrsXg6gEiEqEaJahnLJqm29/2EIUWjF1jDECInQuXWUaoUIIowUVlTtIcVAeA0DTLnSjx4w5TJ0uxAG1q0aBnZZrVZUYEqh0kH0KlX5nhVda1XbdprZPFjfgyy3X8NqZdu/EIg8x1tvQifBpFZ0E5XIiru+ZyMIGl3IFCZTiNBHhJ4Vbn0Bca9QV4bJNHgeomRjFpASkhzdyYjaGhUrTG7FVhmA8AQ6N+guZB1JreujC9HV86wTVitBrjzSzCPO/eL5Ywj9XpElYfNoc59cSytWCutQRoDWgkxLmrlPpiXa2LgIKQxe8Yxs5R6JlqRa0PM/SmHwilOaaEGqRV889URP2B2Itj1R1hRSpC+H1mtBou3f3v6+KLR6I6zhWFtnb085k0LgFcptL4PWVwNXpS+8vq6njCHWns2aLYS9EL/vRlVG4+GhUGihkMbDw8Mz9nmdiISMrC+uAnjGRxTCaypiFBlKpGB6YqPEK3Jclckx5CjhIUxmxVAhkcVXTiNsPqooRFd7fF4/B7YnxmqhhjKZJVL0Mmo1RqvCLUu//94t+lP988LJKociBzxsPmtv64GYWpxpEKOCa/+1jniaYulZhNUht+wzFUZfiJdMaZrSbrdpt9t0Oh06nQ66V2TQ4XA4HA6H4xLAiaoOh8PhuKiMiBe96bzDS3tTwEUytJckzzfs1Hskm/LwSB7rPyxPE3o2j7XGLLvMNqpewGTkcfm4oDKb4ZdD2l6ZByjT9cvkRT+zpTGqnhXaDFb0CqWm5BkioQk9jScMntSMhRmh3ybwN/F8gx8ohGenKAvP4NdAliSiJBG+RARDU4g9iahFVpiNQogC637NFOTKipilEFEuY6rlwgWr+vEA5LkVV5MEU0xRt4JtMggcLeIJjCycroBRhQCslI0WGB/DRIE9l1luBahKgsiVVQLHqlYsLhy6or4J3RSRZHbM5dA6YX0f4hjRTRDt2ArHngeRb/cPPIhTvHaMaSXI2BbxEqGPKPn2eNMc3UnxWxlhPbWPdAAikogAG1kQp6g2JG0rsnmeIahqq2UpyGNJuxmSFZmyga+JShlSGhtNkHrU22UbQWAEZT8nkBopNRhBPYmIc59E2yJhgdAEnrExBkAr9+nmkqSIJ/ClIRQGX9oEhp4g2xNefQmRMPjSOlRTLYiVLRaW60KvlhDKnmgLsRJ40usX9gqFPT3G2NiDWEu8zEYwSCDyJFIUTl1j8DNJplWRNSooeR6yEPRyY5C5IEehjMbHwxcefrHeNx4JKZnwyI1CIvGNj4eHMAJfBqQkZMKnV3RLCr9ffEuJnMzECJOi8GzRLuEXoqu0RblIyYWE3g8lwscvpvf3xFhtcsxQ0SxPBAghreAqC0G2/zS3ha0EEoNGaesMF6LnYuwVvrKeZJvhurV4lRVfjZFb1smBoFq8pqzoWjzhhgTZQXyAFVZfqG7ScyHP8xEBtd1uOxeqw+FwOBxnwcZiXbi2n2989atf5ROf+AQf+tCHmJqa4id/8if5hV/4hWfdrhNVHQ6Hw3HJcUaX2IgAoqzgYhQg0SpHF+JMrjxyFePJEE+GbHrHqPvHCXWNSneCB9tT3LU6Ri3QzJQ6vHFxjZKniL2Ihqiw0Qo5Jm0Wqgg8jBQEQlL2bTSpX+SD+sIw5mt8afALp2NPfJNYEa0aZoS+wvd7ztfMTnf3QEhDMNZBloUVXSOvqMCkMcpYEbbkIypFzms5LEI/C6drodiJUoiYaAyccWkGnaIAlu8hwgDR6VinaJ5DkkKzY7f1CqdhEBRWSg3tLsSZFXZ78QEwiD3opvZ/mg++yWnsdnFqC21lOSZRCL/3mMWQ+3afLLdqYk/FNgaTazv83pz6woxWaOYDK6g0/RhbGETaCg8QRfSntK5WT1KIkqY/xb63vSeNPX2YYvq+/asxxeNrkBiMsNt6QuMLjTZWmLZtGTyEdar22xB4whQiXG/og+dtb185NJ7e8t5kczF0yLpoA2E9llqAEgPXYm/dcASBMaJoeyhztLdt8VcIMRAkt8QbAAgjCoepQhYeVWF6fwdFn2Sxt0AgzOBgJIJhOUz2j+jcGI4HOOP6QlA92/pn1P+QoHqmdf3M1pFp/8MMZ8n2B/H0+3+q4Z23lr7xZFlGkiTEcUwcxyRJQqfTcUWlHA6Hw+F4xogLOP3/+TdH5n3vex9ve9vbeNvb3sZf/MVf8PnPf/68tOtEVYfD4XBc8pyWYQiDqcFDAqspMhxzk6G0dbaluU+SN/FkhC9DTnk1Tqo5SqpGrTvBocY0ZT+i5AnGgoxXzbXZEyjCVJFpyaGkQlcGnCSgKz2CyCeKfKKSRy3w8YaFMWFdh54w+EDFV4QSAqnxn0J0DcJChjICEEhP4QU5XtRFlqzj1a43NnrWGIQvEKFAVNdtQSptrJCWFm1JK9aKctAPYjS5wsTF1H5PImpt6yJFFNP7Yzv1vyimLuMMSj69Bkw9ttP7cz0QfqNCcc40JskxcY7JregkQonoxQNkGtPN0LGG1Ngmo9y24wlMrjEdjeoY8o5ASJCBQWYaGQp0atCJjQfIUutU9ZWxQqrExgOkNpc1LzJXtRb9zFajIct9EuWRqyJ3tZiW7xljXaDKI1U2u1UZm3UKsoihgEwLMi3Ii9xWgz1PRkNurEM1M1Y3Vga0sGKwKQprZYWDtacr99yoFNv3ogP6xbaGYgVUbz9t0MY+BzysY9UUT43cGJQ2aGPLVAlMEUXQy6W1EQC6KHil0Xa9kAhAodFC9/NOweawCiFQKJRQRa6pOu21aYQtgGWLYekik9VHo/EKobEofwVFtqo9RI3u5+Ka/vKR9wCj+38NvX3P7xd+K0I/yfTy/gP1tBs76+iez1P/tdYjounwbTd93+FwOBwOx8WgVCrxEz/xE7zhDW/gPe95T9988GxxoqrD4XA4npOcNTbA5P24AIUkV027XviAR10eBCRS+jzoVfGEj5Q+noj4RGPCTmkmwBMBFTNORVcpExEIDw+BLyS1wGPfdEgl8ogCiR9IjCcRnof2PJQQaM8jlxJtPKSAQIp+fqYUEEmrRdqIAeuW9CjclQw5IIFAmiIH1hRZoQMXoi803ojz0fSLNwnAk9p6BaWxyZjCL9ycBl/kILJ+5qfWEkPUbyfwc6RMi9MsyHNJbkooLfrj86RC9irOa4kypX6hqN6x2MfGR5sApUVfo/LkIGpBaYHSkrzIO+0VF/OEdbJqI0iL9XFeTP+XhlBqBAaNINeSrvLIe/0XAnYvw1IZYQtVFUWwPDE4V9oIYiXJjL2tGTiTKfbv5gPR1Jp97XkQFLG2mv76npHXFwIpe5mqPXHUCqP2sbRuSlUsy40hK3buu1ERaGPIi/+JVv1CW6EqBGQMudF0TVqIn9Y1GysfWUhzCm1zU0UGaCR2nSjyUTOZoMhRIsdgSBH9qf1GGDITo7CFqjQaiUQVRa8wmtykdoq+SYeE1az/eBij+rmpxmgo8lOlyAvB1PTX99D9dUWeKpqBLGkdub2iWqb4cYUhr6wtGKaLL88KWwVr6xdp3dv4tB9xeudxIPYOC4NyZLsztj2UpfpUnG2Li+1Q1VqTZRlZlpHnef/28P00Tcnz/CKP1OFwOByO5z/GXMDp/xf7S8cFoFwuA/Cyl72MN73pTbz//e8/L+0+50TV3/7t3+ZXfuVXWFpa4oYbbuCjH/0oL3/5yy/2sBwOh8NxCXB68StA9Fxtsl/8KjcZQkiU9lAqRgi/X528I1eL6cYeQkh8GeKJCCE8PHw8AiQBfhZx7/IEASHS2EnSPh6e8SkTUvUCrpwIGQ9gPBSMlQS1CDxfguehPI9NHdDAIxUSIyVhKK1IVwhgxaiLYxqIsb3iSMP0hD+/EDrh9OnlUhh8YZ2znhi4a+02o/v028UKo2BFVeugFP0vcVZQ3CpCDdyTvf7t8lH6k6cLQbfntlQMBFHJqCaVG2ELOplBG96Q6NnLLdWIMw7AukUHOVRy6Hh7oqgutjP0nKrFeiBRdn3PSdqf0s9ALM0NaGMGT8Gh8WuscKqN6Utzvan/pr/cOk0H58lK0hrIjfV6ZoWQKZHEPcESgxKKRCZomyVRnN/B1z1NTi6ywk1qhoo12T/KZBhUv8iVRPQkU7QxqEIspXC7Wrk6L/ZNC6dpIYL2nKiFy7cnmvYF0mJ8wkiboUpP+KT/WrXHJTEm668fdbIO3++dpdOzOHuCqjHmzFcKZuCUPROD5WdzWp5h3RncrcM9iCdZfrZ9zidPJpT2budZ3r9tnuIcORwOh8PhcFyq/MIv/AJ5nuP7Pu95z3uYmZk5L+0+Y1H1tttu4z3veQ+vfvWrz8sAngn/5b/8F26//XY+9rGPcfPNN/Mbv/EbvPGNb+Thhx9mfn7+Gz4eh8PhcFyaPKm42t/A2Gn2QqIKgdXikQvZz2cURahnT3AVW25LGdicyf4yW8XcEwGBqXCwvkjJVIhMRERATYaEUlLyJNVAcMMU7CplTAQ5Y0GGjgW58MnwWcrKbJqAhvZoKEFirJtRSoHvSzwpEVJgBBhpl3tS4Pse3hmEHOsqFfgSSlKOuC97DFey79Gfhj6EOMO64dnRwyKqMaNB+j1XpxD9RIL+/iN9iNPb6d3WW3SxYbmrt77/y30hkA7/kt+X4EbGb0b3Y3R7KwZi3aTA8JSh3i01JIqaIcdj399oevdHxSlTSIymmJK/FSMMqhBBjRxM3d86So1GC1U4SUeFRdt64SY2wy7OwbR8u50eCJq910V/G4MmHxE8tZA2ixdQuieqbhmb6cUBFKLplvV9l+mwqFpg81+HxdSecFqsRw4tO31/S8/FWjhJtzIiFp7ZhVoc7dD7iRgs29LO0ODPMJah1WddO9Tsky03Bq01Sim01qfd7t032m6X5zlZXoikaUqW5xizZRRbYh0Govtgu0FBLofD4XA4HBcL+533uRYSdPG4+eabR+6/9a1vPS/tPmNRdXNzk1tuuYU9e/bwrne9i9tuu40dO3acl8E8Fb/2a7/Ge9/7Xt71rncB8LGPfYz/+T//J7//+7/Pj//4j39DxuBwOByO5w5nFFdhILD2pgMPfSExfYF1IKiMFsnx+stGxVe7T09glcKn6Z3AkxFS+PgyIqKG1AGRrhBmZR5vz1KTASUvIvLKI2Jm2VdUfcVMBHMelKQ9GputaavH98TFYe3GFlyyWZ5aCJSRtLQgM8IWPvIEfiHISk/aydDCFlzypCD0BEKKvuCZF9POEaKYqi6Qxe2eF1IZK7KIYp2UIKV1tUIxzkLUFcXf3hnryWSDs9vrZ7BvzznaP0bo1+XS9ITOM1tjrbvT9AXN/vOh1/8WEVQgisJGRRPGFHJmIWIxcHD2hFBV3FLidCGz5+c0QpMX6+XQc6vnKM3FoFBPv1AUhdAoTF8oPU3ssntb56nRxTHrfh8aXUzVH4iqWzFYofM0sbIvZOu+8/RM/feEVE0+Imr2zmNPSO2Jucbo0wpPDTJaezmrEju1v9dHMW1/BLlFTB0WTzntcTzztP+zYb3iNlKgeI70cov7xz34j2Hk/rBgb7QuhPthN+5ge601Sg8Joqr4awxaAaIMRqI1aG0Q+EM/9BTxDyZD6xyl09POlTHauoFNhjG959rpZcpMcc76mdXDby5DluvTy5sNteEEV4fD4XA4HJcQf/d3f3dO++3du5fdu3efdZtnLKp+8pOfZGVlhf/0n/4Tf/RHf8RHPvIRbrnlFt7znvfwlre8hSAIzmmwT0Waptx11118+MMf7i+TUnLLLbdwxx13nHGfJElIkqR/v9FoXJCxORwOh+PSZvgif1RgLUSYYeHAnGnq8PC90yuCD9xco+JqmjeG3K0+sshu7blcj8kyUvt4KkCKYKgHiRTWBdvLdrXHYYWpQVYlNvFSRPgmQCDxCCibCpEJKYmQivTZXQ2ZCAWToWFMGraVMkqeIpQaX9qDy7UgN5JESVQu+u7O3EhyDamWxFqwngpiJYop9FZc8cSgAr3Nc4VAwEykmQg002HGTBSzf+8apUXwFkvI7ZOYb7oBs2PnGR6xMwk2T3dZQZKC54HvPfk2FwixsQGtNoQhZnwcyqXTx6b16cvPV/+HDiOUwkQRVMqYiUlQCtFpQ30TsbxiBbJKGX3F5RCF56/z+iZicxORJphSGcIQpIQ0QTz+BKxsYloJ5BqxbQLmpzDTU5iZabu/NgijMVNTz2IQW0S9dhuxvIx44jjm8CnadzbIOhKVW2lc5ZI49ml0Ih5r1GhmHnGRnQv29a+Mvd/MBs/9YZSBdgaZNv0fE3qvC7CxEq1MEStNYhTKaDwhCYTEE6KIttCkRpGRk4jUCvgC8CETKRkpioxcZCMCeO89QZGhTUZukkJM7zmTc7tcp/avire4iQdFwLTJoSfQnxFdWMy3uo2H32PP4t59kn0cDofD4XA8c9wn6dPjtttue8b7CCH44Ac/yI/8yI+cdbtzylSdm5vj9ttv5/bbb+erX/0qf/AHf8D3fd/3UavV+N7v/V5+8Ad/kMsvv/xcmn5SVldXUUqxsLAwsnxhYYGHHnrojPv84i/+Ij/7sz97XsfhcDgcjuchZ3OvnTaFdzgJ85l0YcWI3l+tM3SRdWnQCJP1HWcA0iQIYUVSUbhj+yJJLyuzl/1qpC3qZAJ6Nd1zrHCjjCHVhlRDV9miSZuZR6IFgTT9o8gLAbWrbGZpL+M009ZxmmhBrGCzEI4ybc+AJ411uQ67WAE8Yyvd9zNKBVoJdKrxkhy6CaLZxGzWYWJi69l6Ruf2NHIrDNmD+8Z/3TRTYzBRtWKiHdDoBpGNlTht+fnqf9/OLUdtwJeYaAymxjD7tgrZ53Eck1XMZPWMZ93sKL7DNZugNea0x70/2vM7pmoJs38PZv8eyHNql3/Fit5pXgTp5phGjF7dZNcD67QbIXESDBVNE+RKkmiPRhqQaWlfI0XzvR8fWrnsv15gEHVhX0ewmfnESpBqKyfaPGDRd2XnxpAqSDR0c1O8Bu3fbq7JjCbT9q8ajmDAxkPkqCJTN6YXEqHIyERCbmJyk5CaLplqoYrcW6BwQFsnstIpxuTF8jNEURTbIUaF10EKNH3nv+mJwk8isp7mknWXhg6Hw+FwPG2MERds+v/z7RP50KFDF6ztZ1Wo6uTJk3zmM5/hM5/5DJ7n8eY3v5mvf/3rXH311fzyL/8yP/qjP3q+xnlOfPjDH+b222/v3280GuzatesijsjhcDgcF4snna76FLmHA+RoO0N5qxabpzqcw+p7pb4r1RM+UgRFNIB1oYayhlc4UT1GZ3p4xhbFCk1IYAI84w+NRBAR4AlJhEfZ9wiEwJeCQMJYICj7gjHfMBkarptoMV/tMDHRpTyRUdrtIco+IvQw2hQF0Q0mN+iWRqcGowQ6h7zrkSWSLA1IEp96XCZRHgor5FonXi8OoCgQhbBxAQAiABHSZoy7VudRqwL1oK07n/xxm9wcJDOCREurxRQRAb3HxjpmRT+hwRMCT4LvDR5RU/QvpEBiCKXpF+GyhyeK82aXR57pO2p7Gaqm2MYXpijiZfoRA8OFt4bXweh6Oz5TxBeYoQJUxZTqYpkUBk8Y/F4BMAZFs0SxXeCNClpaD2VaFn3Yye/W5WiMKHzDZmQ9WJflYF97jHJou95xAEhp8IQuCqPZbXrj731xl6K3bzF+I874xb5XME0bMfK7hY2AMEh5umgnACENnleMoXceRmahnz5unRdxEAq0lvbxMNZ4bqfYC4wuHkcNIIv8Y42QEk/4CFHBL2sqY5rxUOFXNMGihxwLEeMlqEYwP2Xdv5UyZm4ewq0ztM4oJ4/eTZJC+Dfg+4Nt0hTRbiOaTTh5CtpdaMfQSkjur5OsSbrNgDgO6KRW9NUGci0LR7lPpiWdfIKk7zwXrGcezQwaGWymhlPdvC/MZsaGR1h3bMKmXCU3CTkJxqhCnB3ENmS6izYZxmhynfQds4N4gV6BssH9gfN11OU6KqLq02NaTtvG4XA4HA6H49LiGYuqWZbxl3/5l/zBH/wBn/70p7n++uv54Ac/yDvf+U7Gx8cB+PM//3Pe/e53n1dRdXZ2Fs/zWF5eHlm+vLzM4uLiGfeJoogois7bGBwOh8Px3OLpC6lP7jo9s4jqFeJoOJKhaqf3W8HUkxGRN26n5hMVxasiJB4ePoEJmdRjlKRPgCSQPeHKdhd4grIvGQ8FZU9QCQxSCkJPEviCWgiRLyh5holIE/jgSfA8K2wq4ZHh0dEeD+YzfE0L8rpEb4J3zGaqCin6xZ16IqQ/lGcKkOtBLXUJ+JHdbnib3ph9MWhDioEYootz6AmDR09UhAD7RSQ0MCZ6zj2DFIbwDA+JwO7nC00gdVHMyoz0ZcVA3Rcs+1ZB0TsGgye1FTCF2dI+eEIjpRXteoLiVkGwJyj2RMGe6GiM6K8TgPTMaU81IQyiECtlz5i8VTD0inVD2bAjtaMEDJmaOa3+kiye4mIokQLbRvE0tsfhFSd9JDJYDPa3J2moE3sCRC/Utr/OZpUOGxtP38ZglBldL+VIZbThDFS8wD6RsM/T/jx6Mdi+jzKYXNtIBQ0mV4MgXmPXGWV6gcT2h4SeqdIUB6+9/qEMj1Er0HWgroEuPNwdrB/OjNWFgKsGj0cvScQYwIjiNPXOh+1La4FWEq1F/75RBq0NEg/fKxFGksplFaJXVBhfnIS5KfSePYWg209uHdzudhHtJjRbiHodHj2KPrpBciTlxGPj3L8+Raw8Mu2TaEGqBbEWNDM42l6gmWlSpcmwwqvNTbbia8trk4iYnISYVt8ja4wiNVZw7WW7ZrqL1rl1z+scY/KB0xUQw2Jr7zXUf03qs2a3OrHV4XA4HC90tn79O99tP9/40z/9U9761rcShjb26tixY2zfvh1ZzCzrdDr823/7b/nQhz70jNp9xqLqtm3b0Frz3d/93Xz5y1/mxhtvPG2b173udUxOTj7Tps9KGIa85CUv4XOf+1y/SpfWms997nN84AMfOK99ORwOh+O5hxhVprasPZvL1Ou7TW3+qT+4LySeDJHCOk09GRF6VXxRIhI1pvUiZRMRioAAScnziKTsi6E3TSkmAsWYn1PyrMKijKCT+zRzj8NpRFP7dI1A+JIw9AgDSRhI/MBD+hLf9xCe6IudvrRaU9gT/oBW3105ECV7R10WsK/nThQaX2iingtQ6CIL1U7T9dD43kAU7AuWwgw0rSFR0ZO6LxyKYruRsy6tOCjkkFA4jGcfCuGD9IWtASYKUS8QVvST9oBF6A2JaQIReRB41ukXhTY/tahCj9a2Hc+zSnM5AukNrKt6KDc3DMH3MZ4cVSChUI+9oq0tX5kkGD8o+vAHAqge+nrr+3b9C4Qn+Qnjaa9/si/wz/aLvXgafV9SpBmi04IshzxHZDlkGeQKMJBr5CNHChFZQ5LZv1kOmbL3VVEcKzeYbAIzWyOo5OzanbGtEaNig0o0eQd0rvFERqkaU9rj4S1WYG4camMwZQ0TJClsNsk+u8zKAxErm/MsdfeQaUlmBJkWrCQem5lgPYF6athIcmKd0zU5HdFlXS6RmxhFTm5iUtVGmwxlcrK8PeR0zdEmGYoX0Ke5W8WWomNOZHU4HA6Hw3E2vvu7v5uTJ08yPz8PwNVXX83dd9/N/v37AWg2m3z4wx++8KLqr//6r/P2t7+dUunJiytMTk5ekMyC22+/ndtuu42XvvSlvPzlL+c3fuM3aLfbvOtd7zrvfTkcDofjucGZxdStIqpfrLYi6vA0fU+GI8Wj/EJE7QmpkahRZoISVSITUTMVSsJn0g+4ekoyGRgqnimKPoGWkkT6xHic1D6HjEApD09asTQMPTxf4vmSmoDJQiQNZM/lOermtMKndW72p41jCD1tnZ/CCqF2avvAGWlFT7s8CvO+ACqldUpKaRAeeIG2M/R7mqIcnEbhCSgV4mbhUDSF+w8hEKFEBH7hbuw5/nTfIUggEb4HoW8LRm0VNeXQulI4Kob3ikwFASYMoFweedyNJzFBZN16F6hIpsNxUQgDTDjVv/us5EKlEK0WIkkQ3RjimLDetAJtarONTaYhydGdjGxJ0T0o0Q9qTNZE53VQOUJrfD+lctkk268psX3HFNfv2WF/5RESkgRx3yOYYxus/HXGEyuTnOiWaechG1mJtWSMxxqzdHNNrBUJig2vQSw6xKJFO1gl1wm57pLrlEy1+wLrcAEthpyt1tVauF63nCQnsjocDofj+Y5haAaM4ykxWyOGzlZT4xnwjEXV7/u+7zsvHZ8L3/Vd38XKygo//dM/zdLSEjfeeCOf+tSnTite5XA4HI7nP6eLqUNC6hYnak9EFcUUfSukWgHVTtEv4eHjixLTepHABAT4+EYy7Udsr/rMRFAJBFHkoQKfzA/o4LHmSzZ8K5T6vuxPjfcFzPuD2c09wVQWhkwpNCVPE0oIpCaSuu8yFdhlvtQEniaQiiBQSFkklkrwfIXnGewqvcgAALH1SURBVLzQICMzMFkWOZJIkD7IUCBqHsKXVgDpnzIBnkTUIits9oRRrQfT5T0PamUrXPZsplnhijMGShFEISYIbdvaWFddnoNSEIaYUghRZF2dgFBqaH1ghdFS9IJydDoc3zA8r18Q7KyXDkmCbLUoHT8J3cQ6U5Wx4msRRGsShVrqkJ3QmCMd9N89hpD2DUcIBUoR7phg7q2C+b2zmP27Ec1NOHkK/eWDfOEv5mjmPl3l0coDDraqrCWGRqpYSRNaoksz2CQWLVrqlM12VV2UyclVt3Cy9kTWpC+wGqNGC2JtiQ1wAqvD4XA4no9cyOn/jqfPsypUdTH4wAc+4Kb7OxwOxwucgQO1yGLszSMvhFQhgkJItSKq75X70/c9GVGRkwSiQsnUWDTzRHgEQlLyJDfOe4yVJaWSjwh9miJAeT6575FIDyUGztLdwUAwldjCPj2XqS+g6ttsT19ofGkKZ6l1lPrSUAkzQk8RBDlBqAbT6AEvMHiRQZZARgJZ9UbzLaXXnwIvatFAENXGOtAEEBVT4yfH7DR4Ka1Ikuf96fFmcsKKmr2COWk6cJL6AWZ8/HQnaE9YPUNu+VPJF07ecDguQaIIE0WYmZkn30YbvJMn8VttiGMrvg67PDbb6NUOyfGM7KEmefYQnq+oLKT4B/by6n+3iBmv2diP1TW6v/9lDj44w6lumUPtEitJheOdGTYSxZLaT0t2aHmbxLTo6LURkTVTbbROC6E1w5h8Sy7r4DJz2MXqBFaHw+FwOBznk+ecqOpwOByOFxZbBdS+I1V4Rf5pgCdLeDLEkxGBV6Lqz9tp+2accT3BjmCMyJOMh5J9NbhqLCEzgrUsYJkSXd9HRCFe5DM97lH2Rb/Q0ViRX1r2NCUvpeypvkhaC1PCwLpIPV/hBzabVHp2ir1fAxFJREnaqfLeUGanJ21F8UoNSgGUSlagUAqUtu7QKMRUKlAtYyo1UDlkOSJLB07PqIQZnhqvFLQ79nYUnlH47FeW2lrw5+nipts7HC88pMDs2P6UsmRY/O/T7WLW1hCn1hBLTfuDTCeHhT1s82CHjnntFR3kvgn7i9XeHbCyTv65ZR79hymOt3byWKvE8a5kuaupJ4pjaoOGqNOlQSM/Qaa7KJ2gdIpScVEQKytyWXPACqoui9XhcDgczxeMGXylvxBtPx/5q7/6KyaKGTy9Gk333XcfAPV6/ZzadKKqw+FwOC45niwntTe13zpQI6QM8WRIJZwllDUiUaPGDLvMImN+wHgg2V0TvGwqBiHYFCU6QYkHxRQi8vEin91FNXuMdZhOBYqyrwmEzUgtezmRn1MJc8IwJwjzonI6BDWNVxaIikSUfUTJHz2KSmjdouVSMcXeG0ydB6hVMaUSlMuYKLL5h3kOeWZdpFEEleqQ+BlAGVu9PM+tu3SrMOp5tj9w4qfD4bj4lMuYnTsxO3eOLl58kHKj1S+wlT+6TrauMH9/kGiHwr9qO1e9dpwX7VrklqVTdP/kPh68b45jnQr3bc5xtD3LWqw45G2jEawTmwaJbtHN1lE6QZscrXOUjrF5rPmTZrE6cdXhcDgcjnPn7/7u7/iVX/kV7rrrLk6ePMmf//mf9wvMg80v/chHPsK///f/nnq9zjd/8zfzO7/zO1x++eX9bdbX1/nhH/5h/vt//+9IKfmO7/gOfvM3f5Nardbf5t577+WHfuiHuPPOO5mbm+OHf/iHn1Fhqdtuu23k/g/8wA+M3BenFTt+apyo6nA4HI5LghEhFfo5qcNC6vC0/iiYIPSqlOQ4CxxgmknGZMBcyeeVc5qJqiAPS3T8iK+bWUzoA4LQg71lm1sqhWYyVERCE3h2mv5EKSHyFb6f4/uGqJbh10BWJLLiI4acn6IcWJdptQSVUuEKLXIIjbGiZinq54oipHWhqtyujyIrqg61abSBLLV3gvDMbtLeMqOxCa1bSDPrWE2z0ws5ZRmi2bK3PdnPWzx9/9xWtQ8vkDCrlMtRdThewOhrrhrcyTL8y5fwN+q2eNaxdToPxaR3J/j+49ReWaP8xit48TurvHiiwj/7m7t54M8jDjbG+Me17ZzsLLKWZGzS5Xh0iNS0SHSLXHeJs81CYLVxAZjEiqsYEE5cdTgcDsdzF7P1+um88czabbfb3HDDDbz73e/mn//zf37a+l/+5V/mt37rt/ijP/oj9u3bx0/91E/xxje+kQceeIBSyZpBvud7voeTJ0/ymc98hizLeNe73sX73vc+/viP/xiARqPBG97wBm655RY+9rGP8fWvf513v/vdTE5O8r73ve8px6j1hUmgdaKqw+FwOC4qT+pKFV7xN0AIie9V8GRIIMsEXpVJfxczeoEJatwwVebaGUNtLCQtlVnzKtSF6Ndb2lWyF8q+MITSsFBK+4WgJksxpTDHDxV+aAjHNTIUENrq9nKyZjNLa2UoFwWVlLKOU9+6UE2lDJUKJgwLt2lm3VdQFGsqDQRSpWxuaZbbtuRQJABYoVRru15riEqjwmqaQRwjkhiktEWiyiUbVppliLiL2GzYfqS0wmkh2oost3morXaRyyoR4xujhaZa7aKQlLY5rNUqJgrAD4oq37FtRyuQ3mCdJ+2Y08zGE/SOP/DtdlJYF26S2fZ7ua6Bb89jce765zZX4HsQBJgwsI7d3vnpbSeFzX0tle22Qtr1WTYacRBGg++GBisYa2PXbT2/8OzjERwOxzMjCNC7d8HuXfZ+o0nlupNU6kVcwGqT9PEU/fUUrTaovHg/13xYcM10ldd/7B+554FFjrTLnIwnuWv1eupZyoZs0fDqrHtHSHWLTMXkqkuuOoW4moHJC3EVQLv8VYfD4XA8ZzBcwOn/z3D7N73pTbzpTW86c1vG8Bu/8Rv85E/+JG95y1sA+I//8T+ysLDAJz/5Sd7xjnfw4IMP8qlPfYo777yTl770pQB89KMf5c1vfjO/+qu/yvbt2/n4xz9Omqb8/u//PmEYcs0113D33Xfza7/2a09LVL1QOFHV4XA4HN8wzu5GPbMTNfSqlMQEu/VlTMgye2oh+8bsl4hKLaTuR6hyRDwe4AcQCsPVUU7FUwRSU/IVs7U2UTnHL2lkBN54kXEaSuRsDcbKUKtYcTIIrOBoNAiJqVXRtdpoNqlS0O0i0swKflE0cINmGUYbhMkQ3RiTJIi4a4VHra3oGMcQJ1b8g0L8LMTaLLOFpjoJ9GThLUWoTK4wcV6cQoExBnKDyTU61qimtjNdh36QNQYwAp0L8mzwOGyd5WK0wBhhC2YJg+cZhDcooHXaYzqkCWslMAq0FjbnScmib2G1YmPb1lqeNQdKCpDS9PsUwiB7t2VxX5rRCjRnOJb+cT8VppfbaxC9viVQFA6zt+06UWjLwgfpCyvGyKJzf2gcUjz1gIoTYHqzkYfOZb+N4o7o9SFspTThezZ/EoHwZTEOUQj1ohCZi8a2CvfDaD345qyNvW9H9SQ7FM9HKayQLnqV2qQV5j2vXwSNwLrD7RjEYBzDBdd6Y9DG9tm7bcwgKuNMT5Z+33LQT2AjNkwptK8338d4nn19emeIynBcuoyPocfHRhaNXLQ8+BCsN2A1Qc/t5cbXdHn5xDr+y7bDtm3QaJL92XG+fsccX1i5nEebcLKTsZ7HHJYPEusGiWrQzTbOUPBKu/xVh8PhcLzgybKMRqMxsiyKIqIz1Ws4C4cOHWJpaYlbbrmlv2xiYoKbb76ZO+64g3e84x3ccccdTE5O9gVVgFtuuQUpJV/60pd429vexh133MGrX/1qwnCQ3P7GN76RX/qlX2JjY4OpqaknHcO+ffvOaWr/Bz/4QX7kR37krNs4UdXhcDgcF5zTi03BVjfqoNhUSOhXmfT3MGUWGDNjzPtlXrboE4USVS4RVCPaYUTmC3ZHUJKGMT9nzFeUfcVkKaEUZoShIiznlHYK5HiEqAQQFf9FITxNT2DGa5hydZBFmueINAWlrcvT3/JxqbV1o3a7iCyBJLHbKG2XdTrQ6UIntkfeE5xyDUkKSY7ppJhOMc2/J/YUwqhJNaarMWpIGDXY+wp0bsVRqzcJtJKoXKC0T5ZL4iwgNxKtBRorctomrHtXGStqGkBpMdDUEHiYQsS0cljvIRNYYVMM3e6fDiMwCFTxd7hthUAbgTK2f71FU9TF/j1NUQqDJ+gXCuuNuzcGT9htfKGRoqe/iRG5w467J1jaMQzjFVsbQGGF3h623cHxDyMEBELhSyvq+kJvWW/3s+dpcI5652crpje+QoTu9SGEwZOD8Y+0j0FKTRgoK/gO918Izp6vR4ThfmdnQKvi/PXWm9Fxaj16fmy72uqm/lCjRYE2hEF6VnQWwZl15WHxuFekvf9cN0Mis7HjoxDl+2I/ILxC5O4do7S3ZVAUhwtABNK6sSOP4omDkNLmG/sCpAeBNxCGe6L1sAjdu9n79eBswmz/xVKIyr3M48IxjvSsyOsXt6PSwKnt8o+fEfqqF/Vvj83dZx3waUZ+zxLqS4cItwuCl+/hxd85y4tPnOKRjza4d32KY90x/n7pJlZpsxGsc8p7jDRvFIWuUnLVwRQO1pH8VWMQCCesOhwOh+OSwX7bvHA/GH/qU5/iAx/4wMiyj3zkI/zMz/zMM2pnaWkJgIWFhZHlCwsL/XVLS0vMz8+PrPd9n+np6ZFt9u3bd1obvXVnE1X/8A//8BmNucfevXufchsnqjocDofjgnG6mDrISAWJlBFShEjpUwlnCGWNspxikgWu8Ldxw7SHLAXIsQpZFJKHPkLAWATzgaEkNWOBYi5KqIYZlVJCVMoJxzVeGURZImshcs8sjFWhWsb4PqLnhAPMxBimUhvNDpUSoxRCaUSSYJSCKLTiSDdGdNuIVgearcE0ciGsw7QbQyvGdDJ0Kx06GQKTakgNKjaoGLKuh+kJnoWwpZREqYAk860YqXsipUAjrNBkrDipjEQZQaIkuZHkRljdVktUsZ0CcnOGL1yFoJlpCsHT4gsKUZPTBblC7PTYKloWAuWWfnINShv715iBOGesO1IVfStj0Nr0TZ++gKAQLJW204a0HoiqfjEOaQzGGPJCyJWm52wF0RdORXEuiodWDHSy3vEP6yRBob8JrGjXO/f28A2h7I3P9BIT+v30zaICpBAjJ05vaYfifPWWKzMwvNp27LZb9/MleEISSdn/Kj308CCFIZAGXw6E3ScTde1jNOindxxb15v+8Rk8Yf/3xONhjVFgxWBPaDwMga9HHM5bBeLhZf3nubHP82GB3oryQ8KuGPQlMGgEQggrdgtDFFjh2/NypGf6rmchBZ5nrBgsrUDsFc5jG00s7FuVKM5m8Rj0XcIM/WXwg8ew+bhXxA4J0rd/RU/07T+4gGfjRYRvRV8R+faJExRCbBQM3Lg9oVcWg/Gkfb+S1g1sqmUIIuuaD4JRV/0LAH39tf3b3p5j+EdPYk7Uad4Vw13rjH3zOJf/C80VpRSCjJ0/H/B4a5JDrQnubU1QD1dpsUZXbdBJV8lVjDH5aP5qIa667FWHw+FwvFC49dZb+fjHPz6y7Jm6VC8VXvOa11ywtp2o6nA4HI7zzpOLqT5CyP40/9AfJ/DKRN44c/Iy5vQs07LEi2YjdsyXqU2VWTM+7cywvSIIZM+VqpgrpVT8nFqUMjnXIZgAWfMQ5QBZCa0bLfShVsbsXMRUa9aJKiWmmLqPyjG9PNAe2li3abuF6MaQpHbsPcdZuwOdGNpdzEYXo3TfcqnjHNPVqDbksSTtemjVc4lCnodkuSRVHqny6Crf7toTSvtOUkGqBPmQmKS2XMPbHCVBbqCr7F9tIMsNShlyrclzQ65NsUzbIljGIIzBaEOuDEmmUdqKBdoYQinwhSEQgLGimSlm2gugJDWBhKAQPn0BspDiAqGtNmWs2OVjv2hs/fo1LMT1BTJh8AuXps2+1QRS4wlDIDWhp6xgJ7XVpGRRYGbI1SmkweieEN0TCwfn0BjRF6r79wuhqy+M6ULDKhy7oa+skCg1njT4vrJinKfxA430NNK3Lk0Zmb6hcdih2WvbaAbOTA1GCRuZoIvohCHHav+1JOxxeUFPGASkQRaamvBBlgXCKs0IXxQOTTE4wWfKjC3+G2Ug18XYDCa1Crs5QzaDGLLvCl8gQgG+tP35ElEJEF7hypbCvv56cQS9SILeWHpjyJX9m2T2dq7tayrOMXnx2lKFe7sYY++4escqSj6EHiLwisJxkf0RpCcyVstFbm9QOEWHHKQwiBzQ9kcU8iKGI06g2bH5wHECSYZpJjZ6I1OoTYVODDoVqFSQNP3iRxGvcCF7aFM8v3TxKuk/FKJ4/hiiksIgEVIgPIH0wQspYh0KlV4ULtvir4iK7UOBjAQENgZChMXj4Hv2fPsSKtHALR8EmIVZ+35YqT7vIhHMzp2YnTsRm5uMXX4Umh3SL58k3Qwp7QL/xTv4zl+po79+kPs+WeaTx2Y53JxmOY45JTc4UXqIRDVI8za5jsmV3OJcVc616nA4HI5LgrNFaT3rtoEgCBgfH3/WbS0uLgKwvLzMtm3b+suXl5e58cYb+9ucOnVqZL88z1lfX+/vv7i4yPLy8sg2vfu9bS4GTlR1OBwOx3lDDLm7BkWmrIAqZUgUTBB5Y5S8CWrMcDn72FYJeOmMYVN5qEoZXSsRVSLmqrao1M4go+opFqttKpWUqJLjVw3+rI+shbaI1N49mFoNytaJavLcFiMyxjpEJyYHTlRtEN0uot2GdheRZaMZj2sN6KToVoLq5Ki6xmR2GrLOJVnskaYecRrQTMrWIaolmRa0lUeiBZm2gmiqe45S+z9VoKC/LB9yieaF4KmVRmrDtK8oG8WYyKmKlCr2Yt4ojTGGTFljrM4FcSJoZ9DNoZ3DyY6mm2tipcmMIjMajUFvEQFkofDIgdIzkjc0vBxAY1BFWwZNSo4SCo1GiZyMFI1Cidz+NVnRq93GoDFGFW2NTp2XQ3PChfAQSCQSYWVaPBEUzzE5tI832oaR6KEp+RrVv22G+tPFGIaXmaFtbT+n9yvxkEaO3Bd4/bFLZH/9yHnbEhPQO/beORkeq9lyXkS/bY+eItc7N70+PeMP3ReILWMYPrfD590I3X9O9JYb9GnjPRPSyP44es8TO47Bc8r+uKKHlm09D6b/1zqxPXQxVlWo0/YMDZ2nobH1zrWH3z9uicEnRZDbpULgs4lA9N2/sudI5czP8f75McP3w+J/tb+fJ0QRcWtvh54gkAJfCgIBZR8CaX8M8oWh0jOjFhEXkRw4f/0tT5vhiyTrfrY/NJQ9TdnL2T+/QWU8JZw0yJ0lRBAhosgKyGM+RKJwtIZWYO4msLKGPtEkPnQ/SSfCCI+wakV74dkOpQ+yBLImkbUAOVGy9m3pDYTy0IdKGbOwYN93w0svusBMTGCunwDA/+bigkcbOHoUTrVoL8+z78UdfvoHu7BtAqrTnPiZVf6fR76Fx5pwop1yymzyBA8Qqw2SvEmuYnLV7Oeu0nvP6M16cCKrw+FwOBynsW/fPhYXF/nc5z7XF1EbjQZf+tKXeP/73w/AK17xCur1OnfddRcveclLAPj85z+P1pqbb765v81P/MRPkGUZQRGb9JnPfIYrr7zyrFP/LzROVHU4HA7Hs2bUmTpwpXqyjOeV8GWJ0K8yHexnWi8ya8aZL0V80xxQDvEnq6SixExZMBZAWWp2lAsnaphSraRM7M6QEz5irIIohTBetmJBOcIszFnnVfEBa4tDxZCmoBWi2aBfGT5OEMsr0OpAJ8E0ksJtCiZT5KuKvCPIEkme+rTjiCT3SLVEaUmsJKn2iJWgmXvkxk6vz7QVNXOsWKoN5IXjL8sVSaJJMoXJNT6GwGhqQlPSCt9oIpMjtEYbQWZgqStZTwztXJNpY8VXY/piizIGZQy50XRMRkJKJjISEdNmg5wEbTIUWSFLPQ2hDAkGxFD1KTEkXBrUkAio0SYrMjAL4VTnA3HOWAHVDN0f/nvW51PRf/9vP3/3zNs9GVv76gm6g+N5GmOhNxbvtD4l8rSxPhXDYxq+/VSPz7AwOtyfEAPheesYBGceU/+4zZbx9ITdZ/IYDfW99VxtHffW8W09fjMsdg+N7WzjGh5H77YshHAr98qB8N3PrfXs8/wM52frc2L4OTP8GA1eK4MfAGQe4IkAiYdnfAKivujt4xGYoBiNV4iyg7MzLPqeid72nvAIZMj4oRqRJ4g8qPlY93jhIC95KYK0cHkbKp6m4mnGgoyFaofL3qqoLHowW4OZSUBCpqAbY75+lHwtIzkpidslZNjCCyUytDmwOi/Ms5EmnH8UWfERtcDGF0QhlEOYmsDMTmNmZp70eC4KUqD37Ib5Oca2HYSVDeqf36Q8uUn0zRHbf2AHt59c4d7/7HHPxgSPNOf5h9USq/4Km/4SnXyNdipRKrbRALprhdRC6HfRAA6Hw+H4RmJnrV3Axp8BrVaLxx57rH//0KFD3H333UxPT7N7924++MEP8gu/8Atcfvnl7Nu3j5/6qZ9i+/btvPWtbwXgqquu4tZbb+W9730vH/vYx8iyjA984AO84x3vYPv27QC8853v5Gd/9md5z3vew4/92I9x33338Zu/+Zv8+q//+vk66nPCiaoOh8PheFYMu1MFXjHF37pTS+EMoVel4s8wwSJXy91cPhVwxbRgbKrEUjBGjCSRcFnZFpua8BW1MGNxvEVUtvmo/rTEOzAHE0UxqSCwVb49W/nbVGqjhV6yDOIuot21RaSSFJQqhIMUvbSJbuTojibZkCglULlHloXUOyUS5ZEVuaSt3CfWvdxShnJLYTPWqCQnSRXtOCdLNb7RhGik0owJhWcMAVABYgWxEnSVYT013NWJ+y5SGLjiFIqWbJHQRYkcRYYyGTAQmBQ5xlgHaE9A1TpD65xMdwtRU58map71sRwRU59CkIN+HwP0kBB2ZvGQLY7Q0xkVT5+uUHg2ziaePtV5Ods5OV1Ifaqxnd7X03lcnmpcnEW4fCpO7/+ZjOfJz8eZxrH1/J0uYD7Zc+bpjGmLED8kyD+dsW3ldEH+zGMYFbfliPju9eJOCsG3t74npfYEXzt6edYLmL4QbCRSSwJVwTcBHgGRKeHh4xnbdlA4d3tCbCQ8QukRej5Vv8ruw4IxH8pewph/Al9CKDUVT3HFbIeFK9pUrhijOluC+Un7Y1SuoJtgntggX0pIVyXH7ptAeB5R2VAe0ygiZMmjPH0cf87Hmy7bOIZKBBM19IF9UC4/5bm/4JTL/RzWyal7oNkhv3sF1TVE33oj179Ucf3Jk7T/2yP87hcu5+HNGsc62zjhr3BcfJ0kb5KpNlkOmAx6PwiIQUErcOKqw+FwOC48F6pQ1TP9BPvKV77C6173uv7922+/HYDbbruNP/zDP+RDH/oQ7Xab973vfdTrdV71qlfxqU99ilKp1N/n4x//OB/4wAd4/etfj5SS7/iO7+C3fuu3+usnJib49Kc/zQ/90A/xkpe8hNnZWX76p3+a973vfc/qWJ8twpit6V3PXxqNBhMTEzA0hc7hcDgcz4yteanDQmrg1wi8KpE/Rs2b43puZHs15BWzCmMER2UVJirsnA4Z8w1zUc5YkFELMhYXmkRTGm/KR9RCxGS1yEcsw3gNvWPHiHAqNjetcJr05uYbK5wmKZxcw2x0UJspqqHprntkqUeS+nTTgPUkItUeqRaspfZvXkzJX4ltcSVPCqSAKd9AnhPkOSWV4eUZra6m3lZ8aTkjVprEKDKjaIkOiYhJ6RLTIjabKFOInyZHmwxjdH+Z0umTip7G5CPLzyZAgSruDwV28uwu6sXT+Jw8c/tPQwB7sq8eZ3HqXZo8c4F3lHMTVM9P32fj6Y7r7GN4Os+hHk/9XH2qMZ15LE86hicTVp9C5N46zjO2/7QF79Pd10+XUWewPGM/A+eu399eyoBAlotlHqEoI4RXRCgElKgRUSYwIYEJ+gKtJyQ+gqoXUAs8xkPBYhlKns25DqVhPsrZN97kilc28PdOInbNQSdHbyTojqF+sEya+WgtkNIwf0UXf1fNxglMj8HCLHph/qIW2pIPPwqrG+jDq6zf0WH228ugMpCCB39tk//w6CyHmhnH9QaHzd3EeZ0sb6N0itLtfjSAwUDfef2CudRyOByO84wBFJubm+cl2/P5xPvf/35O/PnX+a7tr78g7f/SYx/nh371QxddsHwu4JyqDofD4XjanJaZikDIMp4MkTJkLNpO1ZthxuxkB7N8735JRxm8iSr1yjh7Kh4VzzAe5Iz5OduqHcZqCeWJjOiqqhVSxypQjmwWoO/bitY9d+owzSai2YJW1/5Pc0ycYeKM7GhCsimJuwGdJGSlUyYppu63c8lGJvvTZVZiyLRBG4OKc6bIKauMMM/QaU49NpzswFJX0c01HZ2TmJyO6LIqjpPRJSdGkZOrDlrnqEJAVTrdMu194B41w5l8BWd2wz2JyDMybducedtz+d1UDAprPS3OoY8ziQxipFrUc4Wnct1ehL6frjB9Xs71GcYw1P859XDO49oylqd6HptzfOy2jM+c6Xz325Yj4+rt+kzE5icdBjypeAtbBVxvxLkb9wsGyhHBVQgPT/hI6ffdtVIEfRetFAGhLuOnJcKkTK0xgWc8QnwCfMb9kPFgmrnHZxgPYD7KqPmahZLmmm0rLLylauMGjIBWhlpNaHxRoUWI9Dap7D6GN10CCWL7NGbnNsz83Onv/RcQfeXlcCWI/SeZ3fMErc+eIppKCW6c5qofC/iR3zzBP56Y5+76PH+79hJWo5M0/SXivE4nBW3SfmGr3vwDFwvgcDgcjgvBhSxU5Xj6OFHV4XA4HE+LgRAwyEwVIiD0xwn8KpE3xh55EzvENPvGQ14+q4nHarSrYyRCsliCxVLGeJAzHqaMlRMmFmM7tX+2irhiJ2ZyAioVjB8g8gxUIRIKaaf0A+Q5otVCHF+Gehuz2UWtJqiOIe8I0q7PSn2SZhbSVZJuLllOfJIi5zRWsBprVKLQcUpZ5/hpTjlPUQruaxjWkoxYD9ynXdGhKxrkJiahhSJHqYQkb6BN3hdKdSGiDtynxZT9vgD6bJykZ3HQnUGIOtcLeHGOX86erWDwXBccnkoou5DHN9L3MxQlz+e4zqcw/qxd1hdQoB8e29lfL89Q6H3GAxluf2te7VC3iC0irBwSXUcF12HX65miFKzgah2vvgyRIkAg8URAqGuEaYVSUqNkKkyaMUrSp+qHTB3dzd77oeobyp5hKpR8+9vWGNtfRoxXyB9vopcD1r42Tiqq1MaXGb/8BHKmgigFsHcRvWM71Grn6+ydFbNtG2bbNmpjX4fVTeI71vBrGbt/ZBe7x0u8/tfvI7xrP49uTnJM7eRUdJJT4kFS1SbLO2iTonXXPg5DmavP9fc5h8PhcDgcozhR1eFwOBxn5bQiVMJDiGjgTi3toCbnmDc7efXUHFdNg5yooSarbOaSuchQ9jRTYc7esSa1WkJUywkmBN7OKmK8AtNjdnr/+Fi/X9PtIpIY0gwShWg2EXkO3Rg2W+jHTqHWM7KGoLFeopsGtFOfVhawlAS0ctmf0v9EPafbTkm7GSLNifKMkrAi66NNxXIaE5uURKRsyFMkpmVzSsnIVBelk9Om7GudF66kgeO0N2Xf3tFnuIA+D07SJ+F8Xay7i/5z42Ket0vlMXshjuPp9NV/D72gTuwnd9723bRDDlpjBuPaKrgOc6bIgoGz1Qqww65XKXx8GSGlTyhr+CYiyCuEqsJEa4bIhJRESE0GfOn/3sdkCJOB4Z/ua7L9NTELr/TAj8ke2iC5P6TbqaG8EuO71oguOwK+RNRC9Ctf+g3JZ9U3XAdKUdp5EJbXSO48RbhbM/M9+/jQ1KN8/q7d3LM5ycP1ce4ykk1/ia63RqraJBlonRSuVTuF1Qrcl8brxOFwOBzPbQzPLkjqqdp2PD2cqOpwOByOMzIQU72+M1XKiFIwTSmYZMxbZMHs5ta5eaZCg/Q9lss1OvMVpkIYCxQ3TbeYLMeMjceUZjXBNdMwOQO1KkQhJoowvm+n+g87kLpd5BNHYaMB9RamlZIvdVEtiJsenXbEieYUbeXRyiWbmUeq4VQM3dww5hmyTozfTWg2Eu5Z7rKm23Rkm5g2dXOcTFuxNFXtQiDNMSbvO08ZqTg+9JVlRCwdXn7mrx/uAtrheGFz0d8Dtrw3Fb7V0VE9yRBHFp8WdbC1iFzvM2Mgto6KsKOxA3+dVPFkRCDL/OaJHVS+MEZFS2oi4kBtH9ORYDoyzISK79l3DOpVRK1G9nhO46/+GqUllVpG7ZvGIAphcfq0H+fOC56HvvIKuBKCV4N49DE4fBI1uZs3vnWTf3rdBKQZn/6VPdyzeSUP1DVHum0eCr9EJ18nzZsoFaN0u5ilUFwGm97j4D4jHA6Hw3EuCIy5UPUInmt1Di4eTlR1OBwOxwinO1MDhAjwZInArzBdOsC82ct2pnnxXMTCuKRRG0NUy7yoAhOBYibImYxSts9tUprW+HMBcm4CLtuDGRvDlEsgJSQpQuegNKJeB5VDkiDaHTh4HL3WIV/PyTYFG6tVWmlIMwtoZD7LiU+uoZNDKweTZJSSBN2MaXVyDjYUx+MOm6LBMget+zTrkuuUrBBSeyLqSKGnM2aVwlO5TN2FscPheC5w/qJBtmRCjzhiB27YgRN2OE7AI8tbiCLDte2t4ssQX5bxRcThzjYq7TEqusq4KPHgx/YwE8GOUs7LF+rs/99idNsgajXWP9sg1SUmt60QbnscuXcGc8U+zPz8OR3nU6Evvwwuv4yx8A70Uon4612CWsobPlTilkNP8Df/bY6vrI+RLb2Ek+Fhmt4S3WydONODvNVeLIAxzr3qcDgcDsdzGCeqOhwOh6PPaYWohIcny/hehcgfoxLMca25kRumyyyMe8xsH2NZlJiLbBXofZWY6ShhstalMpZR3uchJ6swXYPZSfS2bRAOFR1JUiuidmPYbEKcQquLaXRJHukQb/q0WlUaScTJbonNzCPWgljB8aZCd1LG84QwTugkmuVM8FA95bBZZpMVOqyRqhbddGOLEzUbEVHPtdCTuxB2OBwvFJ7q/W5UdFUgxGCPQmgF+mKr6jlatUSpuHCx2giBlneqL7IGosKxjT2M6wlmZJXPLy/w4mOwr5rwmpuPMnX1GNkTMaRlTvzdDP5X68y/+CvI6bKNlvmml57/kwHo17wCsbJC6egJOLVBfnAT/5U38C3XrvOauw7R+v39PFQf45BZYKX0BGvoobzVIhZAWNeqK2blcDgcjmeKm/5/aeBEVYfD4XBsKbLTy021hahK4QzlYJoJbzu71F6+bW+ZiYUxNkpVVhTsqhomfcVkmLN/tk51OsWflXiTZcT2SaiUYKyGGauNCqqAaGwi6g2oNzEn6qhmim5o0k3JyeUJGllEM/PYzDzqmeR4Q9Gud5GdmBkyAmHIjODTJ2I2TZeG3KTJKTazY2SqS65jtE5Runt2EfUs4qm7yHU4HI6nZut75dmcrUaIEUerETnDTtZMtZDC74us3WANX5YpMUEpHufw0X1MBxF/tXQ5N/6t5iWzG1z1pjY7bl5Dr8XEd3t0upOIaoeZ9b+GxWnM/t2Yyanze8xzc5i5OUR9Ay+5i9anVglrOeHrbuT2B77Kpx/cwz+sbOex5hT3RAldb40kb5KrmFw1EWjnWnU4HA6H4zmME1UdDofjBcpp0/yL3FTfq+J7FUrBBFV/npt4KS+bC0FAbaZKPj2GjgT7Q8VkkLN3ssnYRExp3uDftA1mpzAT45hSGXutaKf3A4iVFUgzRKcD9Sbq/uNky4rORsCxtXGa+SSNQkRdTaGeGAIBtTQmqXdQzZTH64qVtMth+SixaZDqFp101RaQKpyoo8VB2FIl2wmlDofDcaE56/usGfywJRAYs0VwpVtIsFZoTbIVhPABDyl8jnpfwktDgm6ZyuYclaNTjH11mgld4cbJBXZX4cpawrf8k4Okd1WRkyts/MkJunHIrtcoxNwY5sAuzM6d5+dYJ6fgLbdQeQvIw4fhgUOUrtrO//bmhLd31hG+5N/88mu4d11zOG6w5B1jOXmALG+jtBVYwf7gJ4q8Vfc55XA4HI6zYYwtuuu4uDhR1eFwOF6ADAuqAg8KV6onQyrhHJVgjhmxh11mkVdvC5maimiMT5BIjyurmpkoYzpMmarEzOzu4M/6yPkxzO4dmMlJqFZs+90udFKbkdqNodGCToypt9FrXTYe9Nlo1ainEUc6EZ1ckGhY7hpEnOK3Y2S7S1sbPr3UYlM02BDLdMUGreQUueqiTU6uOvRzUftiqisE4nA4HJc6Z3e4FjECRmOM6scGaJOQi4BMtEjyJg0ZsuaVCbwaq43LmKpPs+DX+Pypy3jLjhavfMsaM9vrqCRi5QvT4Gtmb6ojX7SCObD3vDpY9d69sHcvJfPXtO9qUpoXeDfv40ff+xX+5hOz/MPqJA/Ux7gzzGh6S8T5Zj+WBp1ikIByrlWHw+FwnBWDm6Z/KeBEVYfD4XiBMchNte5UIUOkiPC8EqE/xkJ0DbvUbq6oVbl6ISCZGmctDJmOYHtgOFDrMFONGZuIiaY1/p4aYqoC0xOY6Skolwd9dTqI+ibUN6HeRh3bRG/mJBuS1mbEYxsT1FOfRi450YF2NyNvxJS6MTrLOdYxHG7HbNDkqLiPRDVI8zZKp+SqM7gQHXalDomp4ARVh8PheC7x5CKrGsQGGI0hRQuJ0ilCSNLcR8oNUr/BslflqJ7h4c15TnZ28enf3cvequJbdiyz59uWMdqj/bUQfX/G2DVLyPkaHNiJ3r/vvB2H/tZXUd3xIJxYI/7vxyi99Zv5lles8U1/eDefvmsP8ePX8IQ3x6r3BEon5KqDwgOTYHBxAA6Hw+FwPBdwoqrD4XC8ADhtqr8ICmdqibHSdsb8BebNXnbIKW6YCfECgZweR0yXeVFVMR3GzJQSZiY6TN7kIRbGYWob1KqYcgnjeeB5kOWIdNMWn2q14cHD5EstsmVNeyPkyMY0G6nPeuqxkQpOdDSRFJS7XbobHb52rMWSqdMUG6yox0hVm1x1yVWM0rEVUPu5qENT+p2I6nA4HM9LRt7T++/1/cpOGJEB9OMC0mwNIXw2RIAUPoeDKcJulcgb51eOzfOiLx1gTy1kVxV+9L3HEN0q+liXxt9sUhq/l+iyCuLAAvqy/VCrnfvAwwB94/VwI4RvBv76i+QP1xHTE7zlf9/grVNl7vjoBHesvZL/evJylsQhGvkJ4myTJFvDmLxw57o4AIfD4XCcjgG0EU+53Tm17T5ynjZOVHU4HI7nOacLqh6eLON7FSJ/jG3+NexnJy+ei6gFhmS8ij9VY1tFMBFo9tU6TFW7jE3HRNsk4oqdmNlpGBvDlEqQK0SWQJohN1ftNP9mG9abxPc1aK2G1NtlNpKIQ+2IZi5YS6AV5/jNLs2NNo+3NV+OD7HJEl29QaraJNkmWqdncKOeXlzKXWw6HA7HC4fh9/ytcQGGXlRAihY+xmgSsUnXW6flLdMJNzjYXGRmc4bmv9vFgVrOm644ytSLPdonx2mvBdQOHSI8sgKvefF5iwbQr3sl/p5D+I8cofPldSov3cEr/uUxbn7sCU7+2908UK9xxJ9iXR5hQ6coHQ/ywYXqH6f7vHM4HA6H49LBiaoOh8PxPGYgqHr9QlRSRkTBJKVgkkl/Fy8J93LzrCCYiGiMj7Ot7DHuG2aijJkoYefiJtGsxp8vIRbGMTu22dzUILBt5x3rTG204NgpTKODXuuSrWiOHp5gPYnYyALqqcexDsSpIl1vEW90ONpSHMrWWJdLrKaPFM7UGGNylO4ycKWOZqSCu7B0OBwOx5PFBfSiAgxKa0CidEyWt8hVl6Z3glP+OO3V61lcm+Ira3u54n7DD3zn4+BtYNQY7a9CNbsTOTeGedE+zMLisx6r3r8P9u6lsvNBOn/xKEHNENx8Je/+1FE+e3KWO1cO8Eg6QRq16KYb5Nj8WKMTEC4SwOFwOByjuE+Di48TVR0Oh+N5ykgxKuEhhI8UEb5XYTLazYzYwwGxjcumfNL5STrliPEAdpZzZqOU2XKXickulSt95FQZpsZgchwzMTkQVAHRaiBWN2C1Tv7IGumqpl0P2WhVeLRZZSP16Co4WU8Jml2a6x0E8Ohmyj3mblp6hTipk2T1gSu1cBptdaW6C0mHw+FwnA2DFR7t54Z1roIEk9siV5ktbhjnmxwKE5a8SQ63dvBgY4H4Tw/wqtkGL711jUhssvm3EySeYvbGr+BtG0e/8dXPfoBSoK+9mko3wTyxSvz3m1zxzzyujA/z//63bfz18jzNxlWsySN00hXSvDUowijsD4zCuM9Dh8PheKFjDOgL9FHgPmGePk5UdTgcjucZWwtRIXzCYIqSP0EtWGBO7OMdCzsxBuR4mYWd40xGMBlkTEUJB/asE+7w8baPw9w8ZmEO4/sgJQiJaLVA5dadutlE33eE7ERCazng0VOzrKcBa6lHM4PNDMZUxtpSi6SV8BcbR1nlCdr5KZK8SZyuD03tLzJSnYDqcDgcjmfB6TmsGhD9DFatweavblAXAafkfRyUJe47sYvfW15k8d6d7IrG+O69Obe+5RDUq2gUyz/6Geavi/H2TKFf/6pnNUb9spvgZRAqhfjLzxPfH/Kt37rErRXNqz+5j88vX8mDjQ5PlI9wvPtV0rzVzxY3JH3h2H1WOhwOh8Nx8XCiqsPhcDyP6LtTi+xUISI8GVKLFpn0d7FT7eOySo1tNcP6+AyyFrGtkjMdZsyUYybGO5SurCC2T8LCLGZ6ElOtQZ4jktgKqfUGtLvQ7GBWW7Tvz1jfGGOlU+Zgu0Q7h7UEsmaM2GxztJVyz0aXJbHC0fyrJHmTLO/Yi0PdHZna7y4OHQ6Hw3Eh6H2+DDJYlV1icnKToXTKZnyUjr/Opn+Ck/ki6tA13PWH+7h6POOfveYQi9fN0X48In2kwbT+e8xV+zA7dz67gXkefNO1lKOHaH8lRHc2+faf89j1S3U+vzzJV1avoB2t0pLLJHmTXHVQupjNIZxr1eFwOF6oDFWacFxEnKjqcDgczxNGp/sHSBnhyRJRMMGidxWXs4ubFwNKk2VWpseZKEmmQ83uaoepWofqZEq4KBF7Z607dWYGymXbZp4PBNXDS+h6B72aEq8KHj85zak4ZC31OdIy+HHC2GaT9VbO351qsyxX2OAonXyNVryMNumg+AbKOVMdDofD8Q1jtMjVIHsVk5PmkKsOad6k661zZ6Q4tLKDe9en+OrG5fxfjUepXB5Qu3w7S3+5yezhr+HvP4y5/krM3Ny5j2nbNszMLNXpe1APeWQPx1z/xhbXxWv8xf/YzcpjN3E0OkzdO0onWyVOcyABIzDkLmfV4XA4HI6LhBNVHQ6H43nA1in/nizjexXK4RTj/nZuCvfyT7Z7TGwb55RfYTqAuShnoZSyfaFBac4gZyPkbPV0QVUpRLNpc1NPbZA9ukGyJmnWy6x1SjzaKrORCk7WUyaaTRqNlNUc7t7o8ID4Ct1srXDXxOSqWYipzp3qcDgcjouLwYwWttJdm7tqEpSKWeFhGv4JTok5jqzvJPvs5Vxzp+Y7X3aQhesr1O+KyB6UzBz7MuIdt0AUnftgwgD9TS/F2/YE8R/dTTSzgP/qWb7jhpMc/HCNr669iEe9SVbkIVZ1ilJ+UdBxkLPaOyaHw+FwPP8xjNTwPe9tO54eTlR1OByO5zA9d6oQPggfKW0hqrnKVewwl7MnmOaV8x6tqExjYZxSWXIgUlw7VWd6vkO0U+JdtxNqNSiXMKUIUyrb1PNWC5EkiEcPYY5vkB3v0F7yeXR5nvXUZyP1qaew0dWIjQZ+o8PHTy1xShymlS8RZ5skWX0oM9WAUf2xuws/h8PhcFxs+p9FxmBDV4vcVRLacZuO8KmLxzkhvsYhtUB1c57fPrKXW/96BzdPJ9z6bYdQx8dp/fRnGb9C4++dxFx57rEAes9uyj+9G3HsGNz3GJ274EO/pqHV4YsfneRvTv0TPrGyhxVziFa2TCdZtrM/yAuRWLnPV4fD4XA4vkE4UdXhcDieo4y4U2WIJ8sEfo1yMM3V5iZePF2hVhKwMMnCRMR4YJgNM+ZLCXN72oR7yoid05jdOzFRyea6KTXITu3G0GiiHjhJcsKwvlJhtVPhcCeinQtWuoZ0o03UaHFwU/NQq8ER8zW62Tpp3kKb9LTMVHBiqsPhcDguTUZzVxUGm10qRI4moRVD4jfp+Gt8bi3gUHOaR/7Lft68c4UX/e9tuvcqmo95TJy8F/GGEDM/f+5j2bkTMzNDZeI+Op89QVjJuPnbmrx04yRH/vNlPNQe51h4kFx1i5zVbvEDpnOtOhwOxwsBg0D362k4LhZOVHU4HI7nICOCqvDwvTGiYIJasMCCOMAti2XKExHx1ARdIdlfUsxHGXOVLlMTHaIrxmBXkZ3ay4FTCtodxPoG1Juw0USvdlh/0GelUeNUHLGa+hxpCWjHVOqbqFjzueUuR8UxNsRRmvEJlIrRJsFsyUwFd4HncDgcjkufM4mrIMlVE21SchXzePlrrOXbWTqxl0cbs/ziXz5O7TIov0jSeVgSpV/Cu2Ieff3VMD52bgMpl9GveBnl459m/c6QcqVE5cXwXX8f84XVKb62dh1fijZoZ6ukuY/SMVppjLCfvS5r1eFwOJ7HmAs4/d99dDxtnKjqcDgczxGGC1GBRMoKniwR+jX2ll7BbrOdm+dKlENJfWKcyYUyO0LNQpRw1Y5VKosKf76EmJvGXLEXMzkJ1YptM0kQq2uI5RXyLx8hXhLU18uc6kxy32aZegabiUEnGVG9wZeOtjmu1zklDrOWPEqWd1A6Ps2Z6i7mHA6Hw/FcZTgawMqTGqUStGqzpjrU5UGOe3fxNTXGl//Xy9kt5rl6MuLFUylvfOUKzXt8sv/yZRb2tAi/+2WYHdvPbRzf+QamvhPko49h7j/Mq950nG+5PMVsdPjpf/Ot3LMe83j0BKv6EPXOIft5bBLrsi1id9znscPhcDgc5x8nqjocDsdzgK2FqBA+oT9OKZhgLNjOq6v7mQgF0UQJOTfOVVXJXJizrRyzMNFi7EUSOTcO02MwXoVqGfxiun+rhdjYgKVVzLF16gcDTjVqrCQRK4nP8Y5B5JrJZoN2Peb/XapzTB6kqZeIszpJVrd5blucqe4CzuFwOBzPFwZFrbBOUN0lNxna5OQq5gnxNTb8BU6u7+VgY5r9YyWuf+Nh5I552o/6BH9zD/JFy+jrroUwOKcx6MsvQ8zP4bczsqMtvBB+7HWP8Cdfuowvrhzg4XiSh6MW3WyjX8jKDtlFAjgcDsfzjcLG4rjIOFHV4XA4LnH6DtViqr8QEZ4sMVHaxbTcwy6zk+1jAjE7iamVmC7DvkrCfKXL3HSLyk6QV+6EyTFMpdK/mBPdDmQ54uQyrGygjjWIjygOrc+xHIesppJGBjNxi9WTTY7EcG+9zaN8hXaySqbadqq/7mKMwuWmOhwOh+P5zHAsQG+Kvdba5q0mSyR5g1awwqrazm8/fCMvXp3gHdceZvKlAcmj44gTKdHhVcRNl6H37zu3MUxMIL/5KuTXH6d+R5mJV47xnquPse1PFvji2hwb9atYl4fpZKtkuU+uNu1Hs9BuPqfD4XA4HOcZJ6o6HA7HJcrp0/0jpIjwvQqlYIIDvITrqlNsmy0TLY5TDSXjIcyFOXsnm0zOdYh2B8jdU5i9OzGVqnWn5grR2ER0utBqYx49SX6iS/NEwKn6JIfaEeuJ4GQjY/N4napS3L3e5ZhYZk0cYbN7lFx1BrmpQ4KqE1MdDofD8Xyn71oVGmMGeatKx2SqQ+I3uYMKR4/t4rHmPl7+cM7bXneIzSdmSJ8os7h6H/LdOyE4R8fq3r2IyQkmK/fT+oKhtODxpn++zD95IOWJv7qCR/QUy6XHaaYnaCf5oIiVMC4OwOFwOJ4nGEBfqEzVC9Ps8xInqjocDsclxkBM9Qpnqo8UEWPlHdT8RXbpK7lubIr5ip3SPzFd5ooxxWKpw3y1w/hUTPXGCmJxJyzOoWemoVazbWYZor2JeOAx9Mkm6cmMw49Psdyd5FTisxoL1hKDqbfoLDe5d6PJ/eYLhePF5aY6HA6HwwGFKFk4PwUGrbtAF6VaZPkGB7MNjngVvqqm+cvGTv7xv97EN83kfOdbHsM0p1n+0N+w8JIMeeNe9LVXP/P+J6cwr38V1etOIb5yP9lBj2Chzh/+0BE2vu7x/zz4Sv7xlOIL4ZdoZUvE2Sa56qB022atus9wh8PheM7j3sEvPs8JUfXw4cP8/M//PJ///OdZWlpi+/btfO/3fi8/8RM/QRiGF3t4DofDcV7Y6kwVIkDKqChGNcZ2/3p2mW28eLZCdaJEOj3GtprHTGg4UGsxN9WmspDjz4eIXbMwPYGZGINy2babZoj6BmLpFPnjdeITUF+rcrhV4VTssZ5Cp5uTL9c5sppwf3yKE+JhmvEJ60w9Q26qw+FwOBwvdIbzVnvu1Vy10SZH6ZRMd/mHxgLL3QVWPrGXd1x1hMVv90iOBvjtg3gLc5i5uXPre34e8+Z5gvsfxH/wKPEDm8y8qsH7rznI9v+xm/rBmzgcPMGad4ROukKc6cHnuVAua9XhcDgcjmfBc0JUfeihh9Ba87u/+7tcdtll3Hfffbz3ve+l3W7zq7/6qxd7eA6Hw/GsGRSiAoEHQuJ7VXyvQjmYZty3xagWapKZ7ePk1TI7Q5iNFIulhJ27Ngl3+HgLEzA1BrPTmHIJI31IU0QSIzabcGoNc2KN5uMeK/Uqp+ISx7seSx1DZ72DXmtw51qLo95hNvQROukqWb552jR/cBdgDofD4XD0GM5btfcztNYYk2FMzhPePTTULurHD/BEew+/eN3jBKWA+PgklS/eg7xiJ/qqF51z//qaqxDzswSb/0hWDwj3jfO27zrB8n/czT+eupzH0mlOlA6yolNypI3w0Uk/a1Ug3Oe6w+FwPIdw0/8vDZ4Touqtt97Krbfe2r+/f/9+Hn74YX7nd37HiaoOh+M5z0ghKgRChkgRUQpnqAULzIl97GKB3QtlmB2nISXzPuytpsyXYuanWpSuqSEWJ607tVaFcgk0iCyFbhuxvAprDfSJTdKjKU+szrIUh6wkPpudnHC5TtzMWe4aHhFfo5GcJMk2i+n+6Yg71V10ORwOh8NxZgbiqsKgwWhyo2kmJ8h1lzhosFG/jN/903181zVHmH75BuldbbwTbfwjS5ibXoRZWDy3vufm8F95Od79T7D2JUWAxw/cdoKdfzrHP67Nce/6GF8ttWhnq6R5k8zoftYqaFuAy33GOxwOh8PxtHlOiKpnYnNzk+np6Ys9DIfD4ThnBu5UiRAenrTO1MgfoxYs8BJ5My+bDVFSombGmZ4rMxMa5kops6WEfQc2CHaEyB3TmBuuRk9MDNpeWUGs12G9jjnVoHNfi8ZamVPNMU7GEY+1fDIFXrPNwUMN7m6scUw+TDM9QSs5edpUf3eR5XA4HA7H02eQuWoARZqukOWbtOKTrHoP88snruQ/Hb+MK/5mlt/61kOMTyv0sqHzsTup3TyGedl1mJmZZ9yvvupFcNWLmP5OkHffy8k/rPFPXrzMt+1tIgLJT/27b+XrGzGHo+M8kX6FNG+iVIw2CVon/azV/jE4HA6H45LEGJfIdinwnBRVH3vsMT760Y8+pUs1SRKSJOnfbzQaF3poDofD8ZQMZ6faqf4+QgREwSTlYJpJfxd71D5etRBSGouIpycJA8nOip3qP1vpMDkdEx6oIOYnYH4aMzY+6EAbK6guraKXNslPJJw8Mc5Kp8xyErCWSlqdHFY3Sdspf996nFUepxUvk+YttO6OTPV3F1UOh8PhcJwbvbxVIxToFCU02uRsxIdIwhbNbA+/fMeVvPKRlDd/zykqCxVWPuMx2/4q8vp96MsvO+e+9Y3Xs+31q2SHxslbJaLLJR/65sf4r/fs4x9O7aPDJg3vBN1snSzvYJxz1eFwOJ4zFGWDHReZiyqq/viP/zi/9Eu/dNZtHnzwQV70okG+0PHjx7n11lt5+9vfznvf+96z7vuLv/iL/OzP/ux5GavD4XCcD04rRlVM9fe9ClOlfSyY/ewWM9y8IySZmiAfLzNbgungDMWods/C5ARmfAxk0W6WIRoNOLaMOrZJciynsVbmcLPGSuqzmcLKqTZivcFGDF+tNzmh76WbbhRVgbsYkzmXisPhcDgc54kRYdUYMDlJVrdFrIIWf7M+zcnODMu/v53vevlBZm/MSB+uEHRS5PIa+lU3n3Pf+p99C8F9D2AePs7mVxLGvnmWd7/sJLs+PsPmo9fyuDfDijxER67QTnK0KWaqGADlslYdDofD4TgLF1VU/T//z/+T7//+7z/rNvv37+/fPnHiBK973et45Stfye/93u89Zfsf/vCHuf322/v3G40Gu3btOufxOhwOx7NmpBiVjyerhH6NSjjH1eYmrp0sc9lixNT2cdZzn/EQZsKchVI6KEa1OAWzY5iFOQhDCHxoNBF5jmi1YH2D/LENOsdgbWOcU50SJ2OfY5uKzlKdCZXyxZWMw2aZZXGQdrJCrjoYk1iHqhNUHQ6Hw+E4/xgDQttAAN1GmxylUw5799BI9rBxdA+H21fwczceJ9qZkDzeIX0kZ2zb4+gD+5+y+SdDX3s1Yn6WiclHyO5XBDfs5A3/cpnl/3/AF07t4pH2BMejI2S6S5Z3UDoGsuJbgB4qvuW+FzgcDselwgUtVOXe7p82F1VUnZubY25u7mlte/z4cV73utfxkpe8hD/4gz9ASvmU+0RRRBRFz3aYDofD8awYme4vAoSI8GSJ0K+xrXwD+/UBrp8qs3ccGuOT6KkyuYRvmu30p/qXdoJ/8+WY+VmbnRqE0O0iOm3Eeh1x5CRmvU2+3KW7JHjo+CzLcch6KjkVw1zSorTU5O7lnMP5Oo9kf0ecb5KrDlq1XSEqh8PhcDguIP3P1t6VqkkxIsPoLqvtB9mQhzjqj/Hl1Vnu++lXc8N0xKvnOnzL/9Gm+/E76bQfZvolEnHTgXOKBDDz85jXz+NfuwR3PUh6xOf7fqXM9zXrdP7qFH/+pWv4vw/t4Xj5CPX8KN1snThdx5gE0BiUiwNwOBwOh2MLz4lM1ePHj/Pa176WPXv28Ku/+qusrKz01y0unlt1TIfD4fhGMFKMCoGUZXyvQsmfoBYscJ24kldsCzCViPWpCRbHPGZCzVyUs2u6QXU2JdwWILeNY7YtYCYnwfNs21mCaDRhZZ388TWyZU1zPeJUs8rBdonNFDqJQp6qc6iR8ZXVmIPyEBvmKJ10DaVj6051gqrD4XA4HN94jMEIVWSZZxiTo3TCveWvs75ygJOdCZZ/I+S7bjtJOJ3SfXiccPNB5LZFqNXOrcuFRcybFwl3fJ31PzlK5BnKV9f4nlfWOfgLs9y7XuGgN8mKPITSKUr5KN3txxc416rD4XBcOrh34ovPc0JU/cxnPsNjjz3GY489xs6dO0fWGedLdjgclygjgqrwECIaKUa1Vx3gtdtDZraPsRpWWQxhLspZLKXMVTtM7M/x5iuIuXGYmbDFqApBFegXozLHN2gdlGw0aqx2S5xKAo60QDfaTDQaYAz/bWWdk/IgjewE3XQDpdsYnQ5VJ3YXSA6Hw+FwfKPofeZa92cGRpMbW8RqLT1IHGzS6F7GxhPb2fNfJ3nljxgquxTJfTH+390J116G3n3usWb6huuYXtogP5SjzSzyuh3c/pp/4M+/sr8fCXBf2CDO62S5tJnrOgGh3bxQh8PhcDgKnhOi6vd///c/Zfaqw+FwXApsLUQlZYRXuFPLwTTXyddyzfgYl4/B5GRAe2oaUZa8KMy5drbO5FyHaJeP3D4Oew9gSiVMGIDnIzot2MwRnS5s1MnvPEL3KKxtVHlwY4a11GM1Bl9rptdX+ftDCYeSTU7Ix1lO7hsqRJW7YlQOh8PhcFwC9ItYkQMKpTJa3YROssyGd4gj/gSH7nsll/3QAi+e8XjdfMJLX+uR/6+vkq59lcr33IDeu/ec+tZvfDUSEOsb8PWHiK7azve9a4zv26jT+MQqt3/6n/Jwp87x0qM08hM0u8fRJsHoFIpZLu47hMPhcFwcjLmAmaoXptnnJc8JUdXhcDieUwjRL0Tle2OE/hi1cJ5ZsZ9b5sZIjKQ+OUY6WeHymmY2Spkrxczu6+DvqiC2T8PCDHpu3ranFCKJEWub0GzDRhN9qkn9EZ+lRo3lbokTsUcnB9nq0Fxu8OnlmMd5gg1xlHa6Spo30Lqo6OvcqQ6Hw+FwXDIMu1ZBAQKtNZnRaJ3zhHcPDbWLtZP7eKI9wY2fuwc5WSZamEb9zX14+0+ib7wWxsfOrf/pKcxrXoG//Fds/Hkb0Wowdpng7Q8l/O3KFPeuX88hf4I0aJPmLRQeRndAaJez6nA4HBcJA5ieocdx0XCiqsPhcJwHBg5VD4FAyBApIqrRHOP+dnbpK7i6OsH8dEhjcpIg8JgKYU81ZrbcZXK6S3DZOOyYxSzOYSanIIogyxDNBNFuw7FTmLUWajmmuyw4uDbLqSRkLZW0uorx+gadZsp9a5r7uIdmvkw3W7fFqHQXjO7np7oLIIfD4XA4Li0MBoEYyjpPUFrRSpbIdZc4aFBv7uc3//QAr5nb5KX/UtD94grJI4aJU3cgbroMfWD/uQ/gNTcwVXuQ5MGcrBvxxn+puPFPnuC/PbKLL566jBZrNNMTxPkmaZbZH2qFK2DlcDgcjhcuTlR1OByOZ8nwlP9edqonS4R+jUX/GvaaXdy8WCGaH2OlWma2JJgJDfOlbFCMatGHnXOYxXnM1BQEgW0zSRDNJqxskD++Rrqkaa6XWGlVONQusZHC8qkOYr3JmjJ8dS3hkDjCWvI4ad5E6RitE4xRgMtBczgcDofjUqYXB4DQ9iPbaDLVQumUTHVJwhafPjnOE60Jjv5cxre/pY1sdmneOU+1cT9icRGqlXPruyhiFW2/F33fMdpfz5h+acT/cfMRtn1iB6cevYHDUY26d5SGTlG6CzrFCIMwygmrDofD8Q3E4Kb/Xwo4UdXhcDieBbYYlVeIqT6lcI5KMMu0v5fdeg83TlagHOLvmGS66nHlWMZCucv8VIvqYk5w3RxM1aBawczNYKKS/RTrdpHHjsPJFfTROunRlMcen2Y5LrGWemxmgs2OorO0SdZK+eTGQ2zoo7SzVdK8SZZvDqb6F2Kqu9hxOBwOh+PSpxfTI4pPbqVaaAS5ahJn69wRrHCPmePT7V18/veu4rXzGd/+hiPolXHUb32acG+E3D+PvvaqcxJY9Y3Xw43XU73vAczDx2ndWed115zg274l5ROfvoZ/WL2ev/LuYjM/SjfdIFMttGpjowtw3zkcDofjBcbevXs5cuTIact/8Ad/kN/+7d/mta99LX/7t387su4HfuAH+NjHPta//8QTT/D+97+fv/7rv6ZWq3Hbbbfxi7/4i/j+pS1bXtqjczgcjkuUUXdqUBSkKjEV7WWRy3mRP89V0x7e7DiV6QqTAcyEin0Tm0zPd4h2+ng7p2Hfdky5BH4AGkSnA3mGaHfh4DHyo026R2F1fZxD7QrrqWQjgbjeIaw3ePBUzqFsjaX8fuJsE6XjohhVxrAz1V3cOBwOh8Px3GKQtaowQoAxaK1Jsrp1rgYt/lFPsBovcPDPLuO1Cw1e/vM1si+vEz+eUl7awLzllnPuX197NWJmirHqw6QPBIRXRbxz5zGu/bMKJ+65jsf8cVblITrpCl1TxAEY5bJWHQ6H4xvAhSxU9Uzfvu+8806UUv379913H9/6rd/K29/+9v6y9773vfzcz/1c/36lMvjRTynFt33bt7G4uMgXv/hFTp48yb/4F/+CIAj4V//qX537cXwDcKKqw+FwPEOsO1UAEoHAk2UCv0Y5mOYKcxMvma4hKyFq2yRzNY/p0DAT5SyUYub3dgh2lRE7p2FxFr1tGwhps1PrdUSrDa0W1Fsk923SWA5ZbtRY6pY40ZXUO4rmyU2SVsK99Q6H5eNsmhN00rX+VH9MjhNUHQ6Hw+F4HmFMPxJA6S4GjdIpT0hbxGplaS+H2+Pc8Bf3Y3IQ0QSbX/KYHP8i5sXXYCYmzq3bbdsws7OEM/dx8o9XMckie/cd49vWJrlj5TIeiic5XnqUXMcoZX/YHc5aBfc9xOFwOC4Ul4imytzc3Mj9f/2v/zUHDhzgNa95TX9ZpVJhcXHxjPt/+tOf5oEHHuCzn/0sCwsL3Hjjjfz8z/88P/ZjP8bP/MzPEIbhMz2EbxjyYg/A4XA4niuI4l9fUBUeQpYphTNMlHax27+J1yyOc9n+CWb2zFCJPLaVFbsrCXvHWmyf2yTYX0PsX8Ds2m4F1SiCMACjEWvrcGIFc2iF/KENTh4Z4/G1SQ42Kxzp+KyudqgurVDLEg41Mx7kLlaSh2jGx8lVE104VIeLUbkLGYfD4XA4ntv0P8uNAaMwJkPrLkq3aSVLrCQP8Yj4Gl9qH+Pf/I/L+dpXFylf6zH5zYr6/zyJ+V9fRD786LkPIAjQL7uJhZfn1GZALO7g3d+/yrsPtHn9zDzXmpsYL+0iCibxvTGELCPwQHh2Ro+rTu1wOBwvGNI05T//5//Mu9/9boQYvP9//OMfZ3Z2lmuvvZYPf/jDdDqd/ro77riD6667joWFhf6yN77xjTQaDe6///5v6PifKc6p6nA4HGdhIKJCT0j1ZBXPK1HyJ6gEc3yT90qunQqZnQxoTU4iah6XRZptpZSrd65SXjR4C2XE7Czs24mZGMfUauB50O0i1tYQyyvk/3iU9knJer3Kqc4YDzZLrMagc0Wtvs7XDrY4pJdZNgdpZct0kuW+M3VQKdg5QhwOh8PheL4x/NkujMIYhREZSZaT5hu0k2VWvUf4d6cu4xMr+zhw+zZumgn4v/7lOmKmRvwX92PyByi/8wb03r3nNojvfhM1QN7/IK3/+hg3vbrLq17cQj22ws//hzdyz3rCYbPEmjnCWvcxctVBmwRjcjCZ+57icDgc55ELWagKIMsyGo3GyLIoioii6Kz7ffKTn6Rer/P93//9/WXvfOc72bNnD9u3b+fee+/lx37sx3j44Yf5sz/7MwCWlpZGBFWgf39paek8HM2Fw4mqDofDcQaGM1P7rlThI0RAKZyhHEwzI/ewoLezaywknxlnc7LMgTHBbJSzWIpZmGhRvSZAztZgZtwWo6pWMEJCnIDRyJNLcGodc3yD9UMhp5pVVuISq6nHchfaGx2aSw08Y7hb30dDnaCbrZPlrcKZqnBT/R0Oh8PheOFgMPZ7ijEYMjAaJXK0ydlMniDxGzT9NdaW97Pjt+d4+8sfwsgQMzmH/sIDyKVV9HVXn1MRKwB9zVXUVuvkD65w6gsBbCb8/173CJ/48gHure/mwc057ikldPJ10rxZxAK07Q/AuLxVh8PheC7wqU99ig984AMjyz7ykY/wMz/zM2fd7z/8h//Am970JrZv395f9r73va9/+7rrrmPbtm28/vWv5+DBgxw4cOC8jvsbjRNVHQ6HYwunC6qDQlSBV2GhdDXb1G6uq06ybbFCaXYMIyXTEeytJCxUu8xOtyjvAnnlHpgcx1SrEPi2GFUSQ5rZolQHj6FO2GJURzZmWY5D1lLJWkcxU6+j1lMeauYcUqdYzR4lKYpRaZ2MCKru4sThcDgcjhcOgyJWYEQxW8V0SbI6uYrJdJdusMEnn3gVh9tX8C3zLf7JOzZIHmmhj6SUj61jvvMN59y/fs0r8BcfYXbqcdr3T1DaU+WdC8d566GUP75nP/HRl3E8OsKmd5xutk6c6cHsGmEQRo0ch8PhcDieORfyPfTWW2/l4x//+Miyp3KpHjlyhM9+9rN9B+qTcfPNNwPw2GOPceDAARYXF/nyl788ss3y8jLAk+awXio4UdXhcDgYFVJtDph1pXqyRK20QNWfZ5bd7GKeqydDWn5AdWGc6njIZWOaxVLMXKXLjhe18LaXEdu22UJUw1Ps0gx58CCsbGBONcmXY048VOVUZ5alOOSRpkQKmEnbqKNNfu/kSZZ4lEZ2kjRvkmYbI1P93YWIw+FwOBwvbAwGjEEU3wqUaqFVmyzfpJP8f+3deZxcV33n/c+5S229S+rWZkm2DN6wjYkNthjCGHDsgJPXMHHIBo4hxDzxGGbAJAECwYQkeAYzIUNiIDOvic0QeIXhSWCG9TE2YAIYCAbv2Fi2ZclqtdTqvWu7yznPH7equrrVkrrlbrVa+r79KnfXvbfuPVVSqe791u+cs59v5Q7wo+F1/L8j23jezdt41wvqXPb6CUxvH9Pv/xKd5+cwl5yF3X7Goo9tzz4Lzj6LDsB84RskYx7TOXjd+YNc/++qfO3Oc/jhyAt5dLzOTwo/Zjoeop5MkaQVknQKnAWycWIPeU4iInJEzi1f938HhGFId3f3oh53++23MzAwwNVXX33E7e6//34ANm7cCMCOHTv4y7/8Sw4cOMDAwAAA3/jGN+ju7ua8885bdPuPJ4WqInLKax831eBjvBy+V8T3ChTCHjYHF7HBDXBhbwkb+ATruzi9t0hXCGtzjrO6p1nXU6ajPyZ4Xh/098DaPmxf38xB0hQzNQmDw9jBSaLBhKmDOZ6e6uJAPWCkZqjVU6r7JxguR/x4tMwz9qdU4oPEyXQ206+Lae/qLyIiIgLtlaspzmRDA1hrqUUjJGmVKDdNJRjj9qdezM6/K/Ebr7yf+kQ/9WoffdVH8cfGsRe/6NiP/+9/ifyDD7P59EGiZ/pJxib5xbP28sp8yj/ft534mV9gdzjIaLCHSjxMJYLURuDiRsttY0fZ0AYKVkVEVhdrLbfffjvXXXcdQTATNT755JN89rOf5TWveQ1r167lwQcf5B3veAcvf/nLufDCCwG48sorOe+887j22mv58Ic/zNDQEO973/u48cYbj1odu9IUqorIKWnWTLRzxk0Ngx5yQRcd4Tr6zBZ+qft0OvMeA5s6iTpKdOUM3aFjXS6lP19j6+nj5DYFeP09sHUAOjqyiajyuWz/9TpmYgJz4CDJU+PU9sLoSCfD1RJ7KiGjEZTHqhTGJ3h8OOWJ+gh7zRNM1QezSR4a3eVQVzkRERE5AofDOIAUhyW1ZaxLSG1EHNb4IQOM7tnM3q88n3f/8TCc7hP96zTpd3cTbliP27zpaIc4LHvh+fD8M8n/fCeVLz1N8ewucv1Vfnv9U8Rf2c79Y9v5+dQGns3tYS8PECdlUlsjScuAzYY1MoBLFayKiByFa9xOFHfddRe7d+/m937v92Ytz+Vy3HXXXfz1X/815XKZLVu2cM011/C+972vtY3v+3z5y1/mhhtuYMeOHXR0dHDdddfxwQ9+8Hg/jUVTqCoip5zDTULlmTyel6O7sIVufwOnpWdwXmcXz9vSQaWrk0k8BnKwtZSwJhczUKrQu7ZK4YJu6O+F3i5cbw/4AXhgajWYmMBMl2F4FDc0xtRTPvvHOxmuFjhYD9g7mTK+bwJXrvPQWJVdZjcj7hkq9WHiZBrn2sZORYGqiIiIHNnsiaxScFVSUmpRwqD/EOVgjNGh53H63/ZxzWsew5Udiekl+JcH8c45iL3wAvDM0Q80n2IR+8ILKNUi7M4DDP+kRDEs8MY3DnPgOxFf2HkaPz54Ft8zMVPBEJVklFoE1iU4F+Nc0qpcNW7m+YiIyIntyiuvxM3To3LLli3cc889R338tm3b+OpXv7ocTVtWClVF5JQw3+RT2ZipOfJhH4Wgh05/gPVuK6/u72c6Aa8jT76/i1xvyMacZV0+or9Q47TTxslt8Ag2dsKGrdhzz4JiMdv/5BRmagozOQnjU9inDhIfjKjsDzg43sFDY2sYjQ1jdYgmqjA6wSNDNXaxl2eiHxE1xhrLwtS41dVfFxQiIiKyULOGAwCcTbHUGa88wZT3LPuDh9n7zIu4/bbtvKCnxOUDEa/ufprKQ9PEn3uWnhcAb3jNMR/fXnoxXAr9rwfvZ49R+efHMQNwbf9u3pSL+N59Z/LAxPk8PGb51/qTTLohKukI9WSKejw+E7C6tDWpVfvzEhE51TmWd0xVWRiFqiJy0psZM9Vr/B4Q+B34XoEw6GAgfw796WY2ez1csi6g0BGS6+nCL+bpzcGZnTH9+TprOqp09dYoPr+AWdsB/b24/rUzgSpgytOYkVEYHsMeLFN5ImFyvMRwucSBWo5nqwabWDZMjjExXuf/HZxkt7eTiWQPtWgE6+qtiwgFqiIiIvJczISrACnORiTOYl3CsPcYtdwkExPPY6S2jssehoG3FGBgPdHde8jd/V3cxS/A9fYd8RhHY889h9Kr6xSe2Edt5ya8dIpX/X6ZV7kp7v1UidxTz2NXZTNDwQHGg0FGeZIkrZHaGs7F2TBIjTHlNSyAiEiDW8apNvTP7IIpVBWRk1Z7darBBxO0qlNLuX4KQS89/mYuDs7iwn4fV8zRNdDJVJBnfQE6A0dfmHJW3wTdfVXyA+CvK2C2rM26+nd24rq6Zg5Yr2P2D8PgCMm+aeL9lsH9vYzU8hyMQkYij7HRKmZkkgjLDw4kPGHuZzraTz2eILVVcEmjq57TRYOIiIgsieaQAM1zDGstlWiExNap56aZjs7gb+4/i1d+oMwr/sPPCLw6lXsSSnGCOXc7dtvW53R8+wsvhHPPovT4E7hnhqk8ME1xc8Rl10zQ+X8jvjvcx6Pjp/P09HoeLkAlGaGWjBMnFZyz2fmRcWhYABEROZEoVBWRk84hXf0xGK+I7+XwvQL5oIuNuQsYsBs4I9fN2ZtL5NZ2UPNDJoHtnY41YcrafMS6YpX+s6v4G0uYtV3QVYK+Xlw+hLAxE2G5gqnXMePjuKf3k+ytUBnyGZ/oYk+5xEjkM1aDkT1jbEyrPFIxPDpRZpf/JBP13cTJNKmtZt39G5UYIiIiIkupNYmVsTgHqS1TjxOsS0jCCt852M+Bag+D/zXPv/uFp+n4wL/B/n8PwHgN78AI9sUvem4NKBaxF10Iz5umVP8eo/flgE5e8OtTXOCP8PQXE+7aux6z5xfYGxxgNHiWSjLCVG0Q66JWxaojG2te4aqInMqyr5mWb9+yMApVRWRVmx2gwkyImsOYEM/kCPwCPYUt9Jkt9NsBzu3qYWMJko4SQV+JdT0h3aFjTZjQl4s5o3+c0tqYoD/A39CFe8E5uN5eXKkjm7ihXMm6+Y+PYypV2HsQO1omPhCx94luDlYHGIlCxiOf6QQGkjL+s5OMjsGnpx5jNNlFNR4lSqZJ0omZiahUnSoiIiLLyDX6ixoc1lax1Bvh6jg/yX2Jx9w6vl3bwu1Pn85b7v85V188RMebNuA2rsXe9n8JntcL55z+3CpXOztxv3EVfb9BNhb93T8g3l1hzTkx175gL29eEzPxEHzx0cv42aTHt8cHGTHPMp0ON8ZcHSO1UWPs+YRWtKBhk0RE5DhTqCoiq9LcMDXr3u/RnIQqDDoJvAL5oJtSsJaz7Qs5t6uDnoLH2v4ilY5O1hU9OgLYWopZk4tYU6zR3VOl43ke/pou6OuAtT24/n7I52eOXatiJiZhZBxGp4iemKR20GNyooMnJzsZi30mY8NYOSUZnmSiVuNfhxOeSg5yIPkZtXiCJK00xk9VoCoiIiLH19yqVagTxZNYm5DYKrVwkn/e/RJ2Tj+fV/xsiB1v20e8p0Z1yFHaN4n32q7nPNYqAN1duKsvJ/fkk+R2HyB5Nk/16YjeX6xw3QXPUNuV8J+/eRaPjw/wrBvjYGEfI95OorRMktZI0go0wtW5wwM0n6eIyMloOSeqkoVTqCoiq0YrSG0t8FvLjVfEMwHGBAR+gc78Rjq9fta4jWygj0s2luhdV6LWUaJiDFs6DD2hpTdMObN3gu6+GoV+h78uj9myBjqK0FHCdZYgzM0cM44xB4bhwBh2aIJ0f52DT5cYrRYYqefZWw0YrlrS0Wn6a1P8dNTw86kKu71nGHN7qEQjpLaWdWFzCQpURUREZMU41zYcQBVHNolVYiMeKPQxun8rg5Uudv3nlN/+m34wHtE3B/Hu+Qne6QPY888D339ubciF2HPPgXPPIXjyKQrxwwz+bAN5r5e1F4xz8+Yn+epXTuOhiX52Tq7lJ66biXCIajpGOTpAktawLqtcdTZqhavArIAVFLKKiMjSUqgqIiecQ8PT2V37MR7GBPheEc/LEXgFuvOn0eUN0GPXssH0csGaPLF1uGIO01mkf0OJrhD6cilrwphtPVN0dtUorLPkLuyHgdNwa3pxXV24MMzC0yiGuI63+xmox1CuwNgU9ftHKA+HjEyUGKn1squSZzzKWliqlCkOT3Pvvpg99Skec/dSjUeJ00oWpqblxgm9wlQRERFZOa1zkMZwAA5LmsbYtEycTLArmWIw6OKByR7urGzmG79+ARetMVy2zuclv1CF6Sncp7+Gix3BVRdht255zm2yZ27HO3M7mwDvqafhsV0c3LmWHS+c4pc6B/GDGBMY7vzmi3hgPM8PhusMuTFGzT4qdoSpaF8WstoI65K28eqbIw+2jULYNoa9zsdEZLVxbvmm4tC/iAunUFVEThizwtTGJFOt5Y0gNRsnNcDzchTDPvJ+N53+AGfa53NWR5FCAEHOJ+kqUegusKYjoCOA04oJa3IJffk6PR1VerdE+H0B3ppO2LoBt7YP192bjZlqHdQjqFYx09OwfwSmatjxGulIxNCuLg5WixysB4zFAUM18KoR0fAE9+6P2FursM/by7jZy3RtqK2rf9KadRd0Ai8iIiInhlnDAeBhXEKSVnAuIUmrxGmZH7kiewc389hkN6X/Osr5b4/xXBVLkfSbD+Cf8SzuvOdlwyYtAbv9DNh+BgPdP8QNhyR7Cgw/FtC/7QCvvPRZXmkt//y97Tw+tZE95QH2VqvsLDxCxY4TJZPEtkqcVBrnX3ZmDFaXnW86kzaevJt1DqrzMxFZDZZzoipZOIWqIrKiFhKkgo9nAny/QOAVCP0iod/JZu88emwPp+c6OaPXJ9dVJOooQi5gU4ch70FXYOnNpZzRNUVPT5Xi2hS/z8ff2AedBegqzQ5UAeo1zNQUZmQURiZJnhohHbPUxn2mpkrsnOhiJPKZSgzDkwkbKhOk5Ro/H/X4abSLcbOXcpxNphAlk62T+ObkEKATdhERETkBOQekOGPAVklcjHUJqY0Y8h5hKhjmQPk0cju3ctnNCVc8f5x1f7yV+hefoLzT0jk0gbd9PfbFL1qyJtmXXQr1OuFTT7PprCHGvzPARLKVopvgt14/TDI0zdMP9vDtfeu4Z//F7I8qjOXGmGSYyWSQ2FZJbZ3URqRpbU7AahvDBUCzF5ECVhERWSiFqiJyXC2ka39zsinfyzW6+ecI/CKlYA1Fr49e1tNtu3jFul7yXXmC7hLlXEiEYaBoKPiwqZDQFaT05iN6inX6n1/FHyhg1nZCdxE6OyEf4sIcLsw3uoX5kKZ4B4bhwAgcGCfdP830kx7T00XGa3lGojx7qgH7pix2fJIN9WmeKvs8NJawyw0xmDxIPZkiSWuktoZrn4yqQSfoIiIicqJpnp8YTDZEkUkxDqy1OBNTrg8TJWWq4Rjfn8wxWF7Ho5Nn8PK37ueKvzqdfD5PfOfTVB6N6FzTgz1z+9I1Lp9vjbva2/Ov9OwdIx0JOfDYFrq6Kmx/xRTP9/Zy/pd6+el4F/uqXeye3sxOt4WpYIwqE9TsJJVkdFbAal2STXSFBWdmB6ygSa9E5IS2XN3/9c/dwilUFZEld6TgtLXeNH43eYzx8ExAGHQSekUCv0jO62S9OZOS7aDPK3FGZ57TOmAyNnR2hdQKBTp6i/QVPXIenFaM6QpTenJ1uks1ejbU8fs8/J48Zm0n7qwX4Hp7cR2lrClxDNUaplbFGxyEKIZKDSbLJI+NUhs2jI8VGK/1smu6xHTiMR5BJXHYyQre6CQ/3R/z9WSKn7sfUEsmiJIpknQK16x8wIFLWy+DTsZFRETkRNcKVx04EnDgTExsI+Jkgmp0kHJwgJ8HHXxvZB3/NLqZl/16gReuqXDJGp+X/N4U6d0/If2/D+GvCfC39mFf8dIla5/d8WIgO6tcX6/j7doNu4ewo2W2nGc4zxyk5/kV7GgVvy9k8oGA7/78InZXQ+4fheFazHhaZY/3FDU3SWSnSdIq9WSqMQ5r0hqP1TnLzJis84/HOt9rJyIipwaFqiJyzA4JT1sr2pd7c0LUme78xngEfgnfyxP6BTqDDXQzQKfroosOXt5fwjdgAh9XKnDQC8l35vDzPlvysCZn6QoSOoOELd3TdHTWKfSm+H0eweYeKOWhswRdHbg1fVAszjQrSTDVMmZ8CgaHcZNV3GSNdCxh/5MlxqsFxqI847HPYNWjmkBtqkY4NslDB2J216YY9PcwwSBT9cFGtUM9m3W2bSIq0Am2iIiIrD7zVa5mM6MkRAmktkaSVqkF4/yAPM8+u56Hx7t54L86rr+5gt9Ro/6MR31PSin6Dmxehz37+RCGS9fIfD7b59nPh8kptnX9GDuxhqlHehgdybPBO0D3SxKufsUkxodH/sHws/Eenq328OODFzISRUx400z644yFe4htlSStktg6ia1h7UzIStukV1lF65zRDOcMHbBQOk8UkWOxnGOq6l+lhVOoKiJHtbDwtMmb2X7OmKjGePheAc8L8L08gZej5K+l6PXRY9exxaxle3fI2gJ0d+dxxTzlXJ7U9wE4q2gIDXQGjr5cyvpCjc5cRGdHne6tCf66PKavB7pLsKYHwgAXBJDPQ9D2z511mJERzOh4NmbqzhGScUttLGByqpOnJrsYiwLKqWG07vDLFezINF495eky/Dh6gnGzl2p9lHoyRZxM41y9UZ2aotlkRURE5GTRXrmaTWQFuDpJmo23mqQ1Bs1DTARDDJY38Wx5PaW/KHDVWXtYe0URwoTpb9fwOsYpXrAPc9oa7MVLN+ZqS3cX9jWvgOlpes59ip6hUezBPiZ/lsUOuaDCuf8+5gVneHBwhHv+rsiT0wUO1ovsLvfzxPRmprwyZb9MmTGm7TCJrZDYKAta09qhASs0qlhpGzoAjhp1tJ0rzj3P1rmjiCyEcw63bP3/ZaEUqorIwr5Vn1N9Ouuxpu1+I0Q1xsPg4fsFfC/XClHzfjd500mJPkquiwF62ZDPc/5AgNdRgGKBKB8y6QydIWxqFDPkPMf6QkyHn9KZi+nO1+ntrxB0gt/j45/RD31d0NON6+zAhTmMa3TXsmDK09mOUgvVKuaZQdzBSdIDVSaf9JksdzBeyzMW5dhTCdhfcdTHp+molDGp5Ylxx5PTFYa8/QzFjzTGTa2Q2ghnq6pOFRERkZOaw7XGGHXEGPzWeKvT9SHqySSVcIQJfwh/90XcP346FzxuedW2QTb9SghJlfL3q6RhlR7fzypM23sRLZXOTuxFFwJg9g7Se/Z+mK5CtYOhu2LMTkep2MW/fUfAvy16UC0z+A+jfO3pzYzUS4xE/QxVtrK7NsW0X2Y6nKDqJignw61Jr7KA1eJc0pj4ymLIhnxqDRkArcC1/TXMGta+dPY2Zs4ppM4pRUROXApVRVa5xVWRtvNm3Zu1n1ZI2uyy7wF+63fP5LLQtDEWauAX8U2AZ0JCr0jolSiYbkqumz7bR59f4IyukL48hAamnE+hGFINA/xCSKGYo1D06Ayz8LQ7tHQGKWtyER25mGI+olCM6TgDvL4CprsInWug8zQIfAhD3No1uM5OaFS1EscwNY2ZnICJKRgaw1Xq2MkIO5Uw/kyOiXKRiWgdu8t5yqnhQA3yOArTU3SMTfPQkGWwXuExcx+1dKxRlVohteXsJLo5AZWCVBERETkFLGS81Qmzi5HcU3wv6aJzop//tnsTL/3pei7qs1yyZoIX/scYpiew//ANogOO0qtPx23fiuvtW/r2bt6E27ypdX/gNdlPs38IHn4CEoctOzrPDviV9XUCV6Xn9AquWic8swd7IKL8s5DvPPoiHhjPMxHDSM2xq1KmYqrUTZ06VaYZIXF1rItJXUxiq6QuwdoYh82GEWiEp1kYmwWvztlWKJtJ5wll555fHkOH32OsZpt7bnu46w6dA4usDLtMbz29oxdOoarIEjuWsZSe+0HnHnNOJWnrjjf/Nq3lMxWm2bJsuecFGDw8LwtOc34HngnwTUhg8nSZAQp0kHd5Sq5IJzk2lXJsKBqKAcS5HLliSDUImQ4CcjmfYmjYkIO8B3nf0emn9OdjCkFCVyNI7eiOCEoOv9PgdYV4Z/ZDX3cWnhby2fNJEwCc74O1WahqHWZsDDM2DgfHYXSa+JkpkkmoTwdMl0s8O9nFROIzmfjsLRtCa1lXmWRipMpd+1OGommG/EEmzT4mantI0hrWRTgXY22d9okKdCIpIiIip5IjjbeamoBaNEKUTFHzx5kK9pNMJ+ycWs+PR3o5/0/hxpueIujvIjh/gPKXdlE6/wDepl7c9i249RuWv/3rN7SOY/bto/ucIboGR3BTRapPdTM5WSR3f5lSh0/phSlXbT/Aa9b4pPur7H8gz/95ajPlpJNyYignjj3TZzCdJNRIiE3CZDhJRJU6FRLqrcDVYnEuJXV1rE2y4LUxIVYzYLU2AWxjsqy5FbAwK1R1Rw9YHe6IlbGHf+DCx4hdkesf0TWIyAlAoeoiLdcHxmL/QVzqdqzk8Y/lw2BVfHAftVJ0Mbwjrm0fw7S5fXtQmjWnUXU6JzBtVpw2lxvjEXrFRhVqmE0mZfJZmGqK5E0XfXYdeZfDxyePz7ndRfry0FH0CfMBiR/g8jlsLqDu+RjA8w0bQwg98A10+I7OIKU3l5D3UjpyMev6yuQ7U4Iug+nw8LqKmJwPpRA6irhtm3HdPdBRyp5avY6p1SCKsu79lUq2PIowe/fDyCTpcIXkYML4YIHpWo7pKMdkHLKnGlJJYHgqZkN1iqnxOs8m8JORmAfdz5jmALX6OFFaJkomZ4LU1iywqk4VERGRU9v84606Umuxro61EXFaYS8pY/5a9lY28+T0euL/2s+Leiu8/Hceo+OlG4l+uJf6/WU6zjmId9nZ2DO3H7/nsHEjbuPG7HmMjNDx7CAdB8eh4mMrBWo765TH+0mGfTqLk/S/pMYNr50Gz+HGp0mHKtzz7c3sq+Wopnnq1jBc62MsckzULZU0pZomJMYRu5TYJEz7U0RUiU2dyFVagat1cWuIgWbgmtqoFai2V7gC2fiuR5S2rppmKmD9tid/+IDVzR2HYMGWa+qcY3C4Ct0lvU5bQRpP85TmUEXpiUChasMxh3TP5R/kIwxQfkocv9GG5xSQnjAfiIcPPZ/b85u/shTaq0vh0ArTbGzTuWFpMyT1TTZRlGns028up1F5ygA5lyPn8gT45AkJ8Sh6ARu68py9NqBU9PFyATYMqJqQyPOYTiF1WWia8w19ORjwITCQ9xylIKUnSCk0bsUgoaujRq6QEnZaclsLmJ5u6CxAIcxmh/U8CAMoFHBr1mSTTjXFMdSqmOkKTJchSSBKoFInfWaMeCSbfGp6uoN95Q6mk4CJ2KNmPXbur2MnyqxJ6jwbw/0jMUPpJPu93RyMniBOyqS21jiRrc909QdVp4qIiIi0aR9vFdJGuGpJTYJ1daZrlpo/QTkYZjRYi917MQ+OdvDj20q84427yF0wQI6U6IF9eAcrBC8ZgTU92M2boLPz+D2PtWtxa9c2nkaKGR2ldM4QpYMTuJEy6XCOid0dVPeF+L4jDHoodkb829+ICdalmJ7sxNc+OcTo92r8fO9aDtZzVJKQyHrUraGaGnaX+5iKHdXEUU5SYiyxs8SkTPrT1IMaNTNN7CrU3TRpY9gphyW1dZyz2Lbfob2Ste35MHuda4SwzarYQ7Zv20ezQvawr9W8geyc0La18fEJWg85Pz/KZdiRrtMWOvTBsWjf90LacPhhF06gAFuOO+fU/f9EcMqHqtkkOz6mESqdKOZ+SB2Pts3/wTjbwtoxzwcpwBE+mBdy7KO34XDHXRrtxzXzdp33Zt1vrww92v7al2UhqN8KP7Nl2XPzTNDYrnG/GZjikzedBCZPwXVSdCVKrkiAh288PKDgBRR8j+6cx7qCx9q8I+c5AgOJy/7hTLyAuvEYtx4xHtbzCEOPjkKACX2CXEDgG0r5LDj1yLrvr/MtBT8l7zmKfkq+cb8QJnQW6gS5lDBvCbscwaY8XimXhaa5IuS6INcITTduwHZ2Qq4xO1VbJSrOYaanoVyBJMZUa/DMXtxYmXS8TrwvISp71GsB5VqeZ6cHGI8CqtYQW8NEBCWX4KamYbLCvv2WPeU6BxjnGftT6ukUUTKFtRFJWgaXaPIpERERkQWadZ7kEsC0xly1tk6S+tSiYaa8vYwHu/hp2sWdtbV85UO/wGn5As/v8TivO+Ca23rBi2BoEPOzZ6g8WKXjki7o64T167Dbzzg+T8j3cf39uP7+1iIP6GvcgGzy08kJzONPw3QNV01w5RTrr6X0Asf5ZwBJRFSGetXDpAmlYoXuC328jZ3Q3w1re7MigiSBqTLuwWmin8c8+0g/z0x2s7uSJ7KGxEFiDVMJVBrDDuyvpkSpJXWOxNlDzlUTHKmzpKQkWGqmSmQiEurUqWTjuTau0SzN8V3Txu/pTEXsnPAuKzaYHdq2b98MfZu/tz+m/XGHs9BrwyMFyQt1uGu1ufs53HaHO+ZCt38ux6/Wnz3sMUTk+DjlQ1WMwZiQMOg5ymbHJ3BdqmBzvn90j/QBs5hQc742HOlD42jtmHvsowXKhws3D7f9czU3HG0Gnt4h3ef9WaEozA4923nzttvHJ8AjzMYqdSE5igQuwCfAdz45glY7PEwjMDX4GDr9gO6cT3/Boyd09OUcoQ+B70HgEXk+NXwqBKSeYdR5+IFPGGbBqfGa+4UNfqPatNFVv9BovmcgZxw9YRacBjgCz9EZxuSDLEQtddQJCxYv7/DzZN34cx6mVMR05mHjmqz7fhjiPIOxDucZCINsrNRmoAqQpFlX/koVanWo17Nl9QgqNZKnxklGLbVJn7GJbspRQDkJmIwD9tcDDtYhTizedJXNyRS1asKT0z5PTMQ8mu5m0hygko4wXR/C2qhRlRrjXIzCVBEREZFjd8jQAM4CHtZaogSStEaUlvl5HvYlAzxzYCMPjXYy9f9McXZXmRe/6gDBb+ygY32O6LuD1Kc6yHUPkn91Dbtty3GtYD2sYhFXLB4yDqz/7LOURsehUoMohqkarhrjagkuKpFOW5JnwD1ZJq2VSauOuApJHYqFIvk1AduugO09dcxA2KgdcZAmuKEJ7HCF2u6UHz28makkILIeifVwcyoa69aQuuxnZA2j9TXUraOSwGRkSawjdQ7ryH5m0SjWNX4ah2ssbwzukI37aprLLM5YkmxrrGlU0JJg25alxNi2INYdptimFcQe8bp15rGHhL1z9rt0RUMnJoWqpzbH8lWq6vJ34U75UNXgEwY9dBdOawVhRzNfINba31H+UT7cP+xzPxCOpR0L+UCY7/jzHbv9wyrb95FDwdlB5/yvY/uHXHs7Zr7FnP2NZ7avuceZCSvbj9uq5DzM9sdiJrxsxpYensl+hi6P11yGR+hyjd8MoQvxMBi8rFK00arDddvwGkMY+MaQ9zxynkcxMBR8Q0/ekAsgFxjygUcxzLbzfUPgG4xn8D2D8wwTLqDqfJzvERuPEc/DC7Jje41De8wEpf2NbvmeyX42m+cbR9FzhJ4l50FgHDkvxTcQeJacZ+kt1gjDBN93eL4lV7T4RYffYfD7i5hiAPkAggB8DwIfCrnsxHPDAK5YypZbm42DmjTGg4rjrB2Nb+vN2ChmYgqmylCu4caruFqCrSSkk5bJoRzT1QJT9ZCRKM9k7BE5w3gdRsZrrIsq2OkagXHcecBwoBZxkElGvSFGk6eIkjKJrREn01mQ2qxOnfVNuj5RRERERI7VrKEBGuGqtY0K1jhiAqj6I0z4e9lr11J55lw2lTq5Z7iLc77yLK/9AORevZ1cuQrWp/bFhylcuA+2DWDPOXv2F/InCHfaabjTTjt0RRTjVabxR8aygoEkyYLXWgz1CFdPcJMhtmKxFUtyEKJdhjgKiGOfJPHwXAeFXI3SaXUuvzzErO+Cvq7sfNv3suHRPAM2hWoVKlWYqsDENMkTI8QHUqb359gz3EMlCYisT2wNdeuROkPqPGwjiHXOYKERumYBrSWrmE1cNuxX6sgqaW3zviOykLbdr6fZ34PUkkWqDlyjeKE9FLK4rEtzM8Cd7zTczKy3cwog5l7V2jnjwro5OzSN6zBvnus0O+caoH2bueuOZO6+53vsQraZb7t9fG/B7RCR5XFKh6oGQz63npcUfo1fP60b/wjDpHhz1pnWcjfr/nzbwuwPCzdruZm17GjfNLTv27Qdf3ab5n/s3Da0H7u57kjRbquTu5n9/E1jWXO9Ocyg5q5xvGZX8+bxmx/O2QeomfXhaQx4zW+5DYRm9jF941qhocHNhIeN+7OOj2k9z9Q1TwSyk4O48S1uiiHFZCcCgMUjcRC5xolBo92JcxhjWoNDO7IXxZiZF8cYg+dB3vNwjfDT8w25oPG7Z/B8D+Nl4agx2XrTWOf7Xut1NWTnSL5pe61NY0hZAz6OdSYLQLPxSy3FIMHH4RmHbyD0bOOWEgaWQpjgeRZjHJ4Hnufwg5Qg7wi7HSaXveCm8WKbwMMUAkwxhHVrsnFOPZP95fFMNv5pRxHbP4Ar5LPxYJ3Nuuw3Q9MgwPW0VYWnFjMxCeUyVKqYapS90FECtZhk7zTJhCOazrr1j0x1UEk6qKY+k7HPROITpXCgBn156EojvKkyhYka9+9OGEsiDpiDTDLMePwMUVomtVGjKrWajSvl2r4tV2WqiIiIyJJrnVs15lNwLsKZGKhTtVVqJsCYEM8EHAgeJUyK5MvdlA6s5e/ecA4D+WFO6/A5vyfhmlcNwrln40od8I9fZ/qJbNddlxQxW/pxGwdaE0+dcHIhLteH6+074mYzU8pCbs46MzEBlUrWk2t0IquEnUwgrjfOyxsbWnCVCOoJru5ho05Y30m4AdYYR1+cQt2SVps3cKlrXMtZbOxIah5R3RBHhnrs44DQpORzces61KaQJB7GOHyTEuZSCh0xXmDxQvACh9cBXtHHFIPs1lfMwvB8DjoKWSCcC8Fv/PS81twZLgiy+57JfkJWmJGkYC3Gzsx5gLWNW+P3NJ3ZvrksSbMxXptFQYGf7TfwD9121h+KN3OhfbSL9uZjm+1tv0C3be2ErAildRHrzT6+tW378A7Zj3fZkZshJz9dt668UzJU3bz5NLzGP05h0IvrrPBM/rTnNCLnYuZLOtIkfUd6SxzpEMcyX9N87VjoW3Lu4eY7vpln4dxvB5t3W6HynO09ZgJLv/EhYgx4Xhb2mcZ4oaa5vrGORvDomcZ2nml9Hhmaj50JQptNbZ7ABEd5IeY+tVmheuN+80tiv3FrBsGBl4XBhrYgeta+m6GxJTAue26NwDjwXOuxfqPrfRaaOnzPEnguC009Sz6XhabNwDTMp3ihxc+DlwNT9FoNMAZM6EEuxBRCTF9p9rf+zmUf5IUclIq4NX3ZCYCz2YlcFGUhaz6fde1vabyr0jS7RRGmGbCmaTYu6uB+mCjjyjHpeA1qjrTmSKuGiZEi5XpIJQ6opj5DtRyRM6TWMBZBNYUwTuisVYmHqjw+lfL4RMpIFPGk9wQVxqgnk0RpmXo8gXXN7v1WY6aKiIiIrABHY6Ja5xqVq2RfcpsEi4dzliiZpu5PUfFHicJpdsXreGJ0HY+M9fDU/30+53zrac7rm+Dc966ne4sHozWS3ZNU76tS3Lab4Jz1UAixz38edHet9FNeUq6nB3p6srPWMxfwAOsgjvDqEaZWzc7JrcPU6xAnBEnSmPy1UdzQDCfrWZGDqydZT7Fymq3zDSbXuIhwDhc7XN1mF3Jedt1Fvhk+ArEjrWZ9EU0CpgZmtHEdYh12uoxNgCSrUvVy4IUuu0CyjmTaYWND2hidywuynnIYcDEksSGNPOI4+zvl+9l1lPEsaWJIYo8k9kith++l+J7F9x1BmOKcIU080tQQJz7GOALfEoSWMExxDtLUI008orjRM9J3FPLZdRZk6+tRgE3NvOut9ajVZ6/P5xJ8P1ufJH7WxtTDOUMuTPEDi+9nxS9p6pHEfmM9BH7Wfj+wbNmy5bn9ZTrBWWvZu/eZlW6GyBGdkqHqunXr8H0fA4ThWrYWtnJmb+cRK1Xn81wmnj9SsHq82rBU7ThcGw7XtLmHnBusHmlfsytRZ4LK5jKv7QEeWSDZemzbfrJvYJujDs0c+XBVvodrT3Nf7YMOeI37zWPnvOwb32bVaOA1q2ob4aixrZ0Gxs20HUfgN0NTC8YRBo3KUuPwGl3vPc/h+eDnLCYELwATgslnJyvGz0pavY48Jh80JogKshtkJ08wu4t+bxd4fvaHEyeYOALPx+VDXLFj9slpvY6ZnGw8B2+mcrW5bmIy63pUj2a+eU1tdr9cJ903iZ1MSaahMpEjigJqcUA5Dhip55lOPKpp1g1psGJIUktartGb1Fhbr1GNHAfqHt8bLjPBNGPeAaqMMVnfR5JWZ1WmZgGqVZgqIiIisoJmjbdKijONkJWU1FqMCUhtjSStkNo6095+xoJuBk03Y/vP4acjHWzYv47L/7DOWd2TnH/1NMFLnkfXvjHo6yW+9yniWoHis6OY3hLkQ+hfgz1z+0o+7ZXhmazwIZ/HtZ3DL/js1zpIEvxqZea6oTmUm7VZqWqcYBrVm84zM1WgzmKsI4jj2dWbvtfq1UY9znq1NcPctipVnCOs1yFOZwLfZuUKQJxk6+IEYouzFsh6/uEZXJJCPcXFFpdYIMiujUIPE2TXOi61WaCb2KzZnpcVm+T95rgHuDjFRVn7jW+ynnvNC8DUZWPlpm5mfSGgFS5YcNU4O5adZ31scXFWleosWe/A0IOwUZlaTxttnLPe9+j/0cwkaiejNE0Vqh6Bc8s3pqqujhdu1YWq9XqdSy+9lAceeICf/vSnXHTRRc9pf76fo49OtnckBEswRvXcLucwE90txHxvioUHfQv7q3+09ixmCIJjbcN87TjccZvHM42QNAsss439xl6yoHGmQhRmwkrDTIjZfsiZ4QzaxxuYc+zDPJ/m82weq3n85v4MLqsSNeD7NutmT/bNpOc5aFSgGuOyENQ4jAfGy35iwPiNcNQ0g1Gy7vh+9qIY30DgY/zsQ9fkg6zLTNDovhK0zS5lDJQKWRebfA4X5rLtEptVjjqbda3J53H5wkxomqbZeE+1avZnFuagUJj9YlibhaephWotm0zKmGxM1GoN9h/MZkOtRBCnjQH6U1zVkVQclZGQWi1PJQoZr+epWY9y4lFOfCqpYbTumJiKcZU669IaXUmEARJn+NJgwmQSMW6mGORxIjtNFJdJ0ipxMo11CZDiXNI2TnBbFyEUqIqIiIislFlVq6RgTKtyFeORpDHWJcSmQj2ZouINE+Wmedb20Vley9CuzQwU17D1f6xh8z9UueL0UTbeUCS8bA1hkpL+ZBeVwQKR7aRz017ylw1Ddwdu80bc2rUr/fRXB880hi3oOeJmhzujXokz7VnHTLNA1ri2LveA89ou/q2duQz0PJzxsmuv5o5c2zADgPODmetGB6TJrMtI58+JWRrHbj3E82YFz7Pa0Dz+nMcCh67/z188/IsgJz3H0hXrybFbdaHqH//xH7Np0yYeeOCB574z41MM1vK87gL/9hd24+XN4bddjkkBFz83VeZEactStqP9+O37NfOloG2Lfa/1eTQz3kzzfjZO6Uwqa5hTUto8SPb/9rR47uC1c7X22TZOTuu4fqPfv9ccl6A5ZsHs52LaxgbyG49pPrb5fJrf4hoz+1vfxrev2fbZdjYIZ/YJWUrd+pB2Wff8IAC/MW5PmkKS4OptXfL9RlvqdUjSrFtQvYaZnMruQyOwDbLxiGo1qNRwg+PYWpJ9wxpbXAy2ZrFVqE6E1OtZ9WktKVCOQ2qpx3TiUUl84sZYutMxTMfZX4WCs1Ctkq/XMJMRTx+0jNZj9nCAKTNKzU4QuSqVaDirRHUJqa3N37UfZn3aKEQVEREROXHMOjdzWXGCy1aAMaRpTAokGDAB1eggngnwvBy7gi6Ceo5wqpO818lfPXMa3d+apMcrsjYf8uJ1G9hUiDmvb5y1Ly1CPI177ADu/qep7sqOm19vCLZ1QWdRgevJyPez27I68SZLE5HjY1WFql/72te48847+ad/+ie+9rWvLck+Q5OnLwe5c3uglF+Sfa4YbwEp59wBt0/EdrQ/fu7YAu0BKcx8QDZDyvbtzJxtD7ffWWHqrET3CG2cs8/WMcyhIejhSqCb7fX9Rhg6s8y1h6dzn9esdjSP7x3aXGshYSZYjZPGYO317CFRDEmcddep11vdaQxkvydJo0o1gslK9vjW4LcOl2RVp7aSEA1Z0no2HlESBcRJFqLWE5/pOCSxhqr1KSceVZuNiToRw1TcqCKux/S5GmvqMXE1plyz7C7Dg+Nlpk2FMe8gVSaYToaI0xqprWdBalqbqUa1Ufbazena36QwVUREROTE1xoaYG4FKzTuW1IXY10dayOMCfC8MXwvRzk4QOCVyNNJIepmz57T6Q3yDAz1c/r74ZI141xy1iDdV/TR8dJ1uAPTmI4i1X8dplYuERYOUHr+Hrwz+6GzBJ0lbP/AnDkDRERWnsNhl+kaV9fOC7dqQtX9+/dz/fXX88UvfpFSaWk+1AwG34R0BRa2bYCOjiXZ70pzh+mfb5ZrwI0FHn+u+dpzyGPNYQLJ9oFU525nDhOSzrevI+W/hzt2Gzdf4NkeiM5tA8w/k+Ri2Lbq0zRu/W6a4alrDBSfxNnvicU0qlKzsDQFXBaYJo1xiOrxzPLEQZRkoWmUQpRiJ1Ns4nAxuATSyGATQxL7RFGOiUqBKPVInEc99ahZn2rqUU084sbQR/VGV/5aJSGtR3SlMWEtZsDUqaaGqdTjnqGYqTSm4upMehMcNE8R2ypRXCa1deKkgnPJrG79s8ZIBVWlioiIiJwEDg1XmZnYihScITUJ4GGsR2JC4qSC5wV4JiDwi0wFQxRsN6VyHw9MreHBsV6+OngmG38E53dXOLd/nK1vdBRfs56idfD0fiiWiL/7c9I4j1cKyG3vgjWd2bl9dyduYB2u/+Qey1JERBZmVYSqzjne+MY38gd/8Adccskl7Nq1a0GPq9fr1Ov11v3J5mQ6bTwC8r7DrenFdXYvVZNPSCdavHTU9iwknF1sILnSmhM1wUwFaWMGTgBjG93wm7lr+yDwkJ1QusY+rGuNh0pqs4DUNn63NgtJU9vo5p9mE0PFaWsQd1drDOieOlwtG6C9GZymtSw0TRODTT2iKE+ceCTWJ048KklI4jwSC7HzGI8CYmtIyZoWWcNUBOPlmKga48UxPTbG1mO25hIi61FJDTsnDd+aSqm6hGlXZcjbRZ1pYlchiavU4gmsS7A2wmGxtk5zsilAYaqIiIjISe7olatZwOqIsKaOsR7gEyfTxEmZaS9H4OUZ9jsYTjbTMdlL93g3PznYxbrBTWz9U+jPTXJezxRnbx+m6/fOI/j3WwjLFdizHyojVL+6m2q5g2KfIb+9iPeC02auVYIAt2UzrufIY46KiCwpt4xjqupyesFWNFR997vfzX/5L//liNv87Gc/484772Rqaor3vOc9i9r/Lbfcwp/92Z8dcRuHI7EGU64uqDJRltDcrv0w/78Kbk5lZ3uFa9u4oa3KV+cOfdzcdTD/EAStfc9ph13gvpybPQ1fs2rUtnVHb85caW12mCTJqkPTbGZKaDze0tqXa+4zdY1ZKrMbdYezjSC0Cs4abGpwKaSpwVmPNDGk1qMahUSJT2RDUusR22waLuuyYDSxhtgaImeopx5p21O0mGw7C5UEphpFr83K1zVeRC6NKaQJfhwRVy31GgxOwbPliMimVFzEpDfFCM9moamtk9gqUVrG2qQVns5UobaPjZq1Ql36RURERE5Nc8dehZnJY1trXIJrXGNYIE2nGtd4HsZ4jJunGsMFBNwfdxBUcwQTRUKvRI/ZQOnBLrq+MEK3N82Wzhwbizm2lHzW5AK2d0+xZes43o4zsGdvgiCHGZvA7B3C/dPdVJ8xWBdgfAg7LUGfh7e2mE0m25z3IPAhF0BPJ5SKuM4O3Lr+hc9MLCLS0FZetCz7loVZ0VD1ne98J2984xuPuM327dv55je/yb333ks+P3vM00suuYTXv/71fOpTn5r3se95z3u46aabWvcnJyfZsmVL677DkRIxnXrw7BCmozDfbpbXQoLcuaHi8Tz24TyXNi32Obcfys6pSkzb7jdDSmiEkq1yz9n7mVspypzlzYe03XezhipoC01bh2jebwtAG6GoS93s9WnjcelMIOrS7GYTsm/aLThnsm+fbDOrzapGmz+tM6SpT5oaUudRT3wS6zWy1yw0TR1YZ0hcVhkaWa9VURpbM/NSNZqbWKjbrKDVNp6XTSw2saSNyteSTdjoxQRxjIljatbjkQmP/RVLJU2ppgl1l1KlzrQ3xRQHiKiSUCdJsplbmyGqcxbroixAPaQ7f+MFVpAqIiIiIvOY77zQtJ/Sm8ZJNt4hwwWkaQ1jAozx8L0cFX8Y38sTekVydPL09Aa6J3voNgU6/JCB4jrWPN3Phh9ZtpW+S8lPKQUJ/R0Vtv/RRjpeth7X3Q21CPOjn+GqKbX7JknqIXGSw/g+JjT4viPs2odfBK/Tx+vKQ+BhQg/yQTaWayEHhQKuo4hbvx5CTYQkInIiWtFQtb+/n/4FjEfzsY99jL/4i79o3R8cHOSqq67ic5/7HJdeeulhH5fP5w8JYudKbI3xOiSPH8QrLvesgPOYr1rzcJajtnsxx2/3XNuykOO2Kk7bw01mVYK2AkrXDDGbD3Gz87iZHuOHfO0y66nMs42bk+M2Q89smWltP9NT37S2d9bDWi8LRhsPT1Mf50yjl75H6jxSa7Cu7dbYp3UG1/gO3jpD6rJJnrJvpQxJY/vUQS3NQtTUZaFpag1JM3t2UEshspCkjjixRLEljVNsanGxxbMpOecISVnrJYQ2JcBicMTOUE09JmLDwdjwvfGYyFpil1J3KSPeKBUzSewqRFSxxCSuThrXidNqVoXqkkaY2h6iZtWo2dOd812buvOLiIiIyCK1nzfOBKxpVsHaNlxAK2A1Hknqk6SVrIq1Uck6HQyx3yuRo0hoS3SW11KcLlFyRdYEBfJeQN4v0hV2c/Z/snQFe+kM9pDzLNu7y2y/cIz81iLFrWtgU19W8BHHUE9wT46SjkWkIx6je4qkJiDIefh5KPQ5vHyAV/AweQ9/bT6rdi2EM6Fr4EMYQLGAC3OQCyEMcF3dx2GmexE5EWQdR3WdvNJWxZiqW7dunXW/s7MTgDPPPJPTTjvtOezZUk3G2TkV86/f7yfwjv0v5ELngFqOnh3HMv/UfO1YSNMOd6jFtqH9+O3Hbc9anZt9PNuo1mwGio4sQGwVrTrT2n4mYzWz7s96Lu7oz7i98LX9vms71twctr3LfHPep1b7ye67mZ78pPM8tv341mW/WGYqSpvbNl8v4xwl4yi4lLB5sylebIkSSxRZDpYdB8opI5WEamKp2aS1r9ilxCTUTUTVVCgzhiUmJcG5lJSY1CVYF2NdTJSUG2OcJo2fWVDqsK3ANGuj5bBjoM7zhBWeioiIiMhSOXTIAItpDhrQPL9vDhdgs950BgPGoxYNAz7GeBi81rABhqyy1Rgfv7EsmCwRmDy+CQnIU6CT3H1F8i5H6OoUOYAxhgBDaHy6w7V05zx6coYNRUfJtxQ8R9539IYx3bk6G7qn2XBejeDSS3AD/bjuHgjzmGoVylXM6ATp3Y9Rf9ZRq+RIUh/POIJcShA6vMDN6v2GgaBgMQHZrZExN+ob8AsGCgavFGAKAabUVpzkbBbihn4W4BZyM+vSNOvu5nnge1ngm88xc5XX1oPQ87Jb2BgSoTk3RPv6IMD53vzhsJ8d33lB9nvgZ/sxjccqUBaR42xVhKrLxjkSW2U0LfPEdC/BYidhf475z1IErM+lDYc7/pFehrnB5FIcf9bx5rbpMD33mwFl2hZ2zlrXFsgeEqYepj2H++OY1fF/Trg63xCss0YraIanZN8i2dSS2Kzbv22kqjnAx5Iz0Bta8mS3AEveJBiXbY9zpIklacw9FaUwWYdaaqil8PMKjEeWamKJrKXuUiyO1FliEqa9aWqUqVPJuuJTbzQ9bYWnWSVpTGIjrIsbz9k2xjnNfm922W/eb1WctiaMag9Q57wi83yTpiBVRERERI6XWZWsrcmv4JAJsJrntI2hy4wJGiOPtQet2XitnpdVuDaXB16+EcD6eCbAN2G2PT6e88jFneTjErlyke6RbkICQuMTGo+OIEfRL9AVdtPzM8P2/+8gncEBCp4l9Cy5xs+uMObsCw9SOL1A6ewu6CnBml7I5bKw0QsaoaMBTPYzSiBOoBbB0Ch2tEY6GhNPGKYm8uB5eH6KH9TxcmWc87DOw6YefmDxQ4cfWvxi47VMwUaQRlmw6QUWLwdByWQXVw5c6kgbc80aH0wIXqFxBegctu6yYLcR/PpFA6HB+I0/mnp2MeWcw3gG0+Fjch7G9xq7mKliMYUAk2uMWxs0AtzmRMHWzYxr65ssgHVuZsLfOM0C2sCA52cBsrXZxZxNZ9Z7JqsYbk6YnFqoxTPdFv3G8Rvtw1qoJ9kFHGT7KIQzQXCcZvtPGn/nQj87vm/mX98Mk32Nw3uqa89AlmPfsjCrMlQ9/fTTn1OZc61Ww/d9DIYknWbEDLNnvHNhpZqHs5jmHOE4iwk0j+nYh2nHYkdXndUWd4R1bQ45xpxQ1XBo0JuFp67xBadrGw7VNSo9bdvcUDMfuNnwqtnGzQmVTONOdgxDQPa7jyPvmezz01gCIPQcYdv6wDh8HMbNLHPO4ZEdx9A8dvOz12Vjnzqop81qU4d1hshC7Ayxzbrjl5Ns8qd66piKbeN5uUZVattzINuvxWGdI8VRdwkpKbGJmTTjxKZO4rLANCWrKrVYnEtJ4mpWbWrjVpXpzB+hbQWmNH9vVZ3C7MrTxp/ykcLT1o4VooqIiIjIielIAWuzgnW+SXBda46IRuBqPZphK4Bngpl1xmstbwax2RADIb4JCLxiK3T1XUgu6SRMC+TqRfKuQN9IN/lG4OqbgNAzBJ4h7xvW71lDR+Ao+ZDzHAV/Gg8wjXEPgmavtsZ1Tc6zBAZCz9Kbi+jMxfR2VOkZqLL2whJmbQes6YK+btym9ZDP4/wA42zjORuMa6ssbV7QWSBNsltiMZVqYzLeFJKEsBrNhJdRCtU6rp7iqgmuWsdVIa2ATQy1xMuurpyHs4Z6LSRJPSwexkA+X8cPHJ7vsqHUUo/U+jjnEQRVcnmbBb85MMaQpgYbZ+Gwc4Ygl2aPDxp96GKPNDYkcbZ/z2+ExzkL1pAmBpsYktgHHH5gyRUtxpt5fFT1W70gjXHkSwkmaFb8GKKqR5o0Xj/jyBVTPN+B50ij7PjZ3BkQhBYvcPjBfOsNfpBm7QsctVrt2P7irxJpM4iWebnsin2lm3HKW5Wh6nP1+OOPkX1sGkrFbWzI+5x++hB5//B/IedOOA8zXcsPWT/nsXPDRK/tw639/tzfF9KOY2nDfMef3R1//tdh7rHajz+7W3rbdnOObUwWRLa3IfBmPujnfU3aHt9esZq6bLb6tDEG6cyYotm6us1mq2/ejxpBbGKzL/oiC2ljWWxdY4iA5s+Z8Ulm5qSaeV3cnGVu1mufhZ7Nk7SkEcA2t41JsgpSk5CQUje1rHu9SYhdDUczrEwb+2s7gWsEpDbbw6wK09TWSV12v71rfjMIdY2JoeYLS7P1s2psGwvbj+0OXT/3BZmHQlQREREROdEdsYKVmWECsjuNya+a59KN659m2GrnXAGaWRP1zq50NW0VrtmkWfnspwnwTMhevwPfhXiEeM4jcAVM6hFEIR2VHkIXEuDj4xPgYdrame218XyAwGTBoW98Cn4HOc+jEBhKPqz7Fyj4UPIdBW+KrnAc3zh8034N1Lj2a+2/+fxmb9O+3hhHaByBl+3L4Ag9i+85Qg+KoUfOT8nnEnK5lGJ3jF90+CXwih5eXy6rQG2OK9uRz4YXyAXQ2w2lIi6fzybzyoUzFaTNP4+2+yadKSppVbA2f29f3s6bvY/scY0Ck8afa0fQiFU8Q2vC5Lb9FJuPb/6ce4x2c9cFwaHrG8d/9C8+cvj9nBR0HSknvlMyVG1yOGrRMPeF32T66ZcSHKVec+63AIf7VsAeEmmCN8++vTklq3PvH2sb5jv+fG1oP958xzaN7d08+2set/34s8I/c+hjjPMOaUfj9KF1vKO9JnOPm5J1cbdYUtMMGy3WWBKS5hoclsQ0KjQboaNjZnvnDg0ws+d++G/HZoeQ87wGjX3OCjYbXeWb9y0Wa+NDtjvc/luBq2v/2dhXWxf9mS75My3DzX1uh/uQWljF6dH3IyIiIiKy+sw9v50dsja1FSe0qlrnXjs0u6jPXmrar3EaQwjMBK9HDl1nfs/GdJ1Z1qiUPeRYzYpZH1x2LWaMh5+GGOMT1LOxYAuTnYTkCF0O3/nkybWu1Ywxs3qKtl8DHu56rX29Mc1rvsb+8PEay3zTuHkG30DO8wi8rHd74BnyjaFafZO9bqFHK+zN+xP4ZiLrKY+b1SN+vjk8ZpWIuNlXPYe73JlvfuVD/jzNkdcvdD8LOb7mJZIWp78PJ4JTOlQFsLbKWHknPw0PzvkG8fDmC7uei4Ued7nasdTHP1K75jtW+zIzT/g87zE4NHycCS5n35/5fU6oeEjIuLR/roe+DnO70Dct4rjzBq1z/yVdXCg672EUlIqIiIiIAAs4N3bzhLAAhynQcHPvGNO2i/Zro2b3vln9DmfWtwWxCzHfdZdpC3Xbw9tsCINGGNts6iGh8eK072tum7xZbWgfSiFsrW9ub/Ab2/uNwpzm8AoLn6jqSMUzIiILdcqHqs5ZrJ2mVq+udFNOGoc76TAcvRL30Ae1nUAsIEQ+8gnP0oami7bMXyMpCBURERERWXmLPi+fdZ1gW9dNraXz7W5WEPtcNUPJuRW0h/FcinsWVNBzpOETmvwFbHNkS10sJXI8OQ7fe/q571vZwkIdW4miiIiIiIiIiIiIrIjmpN1LfVtspvqBD3wAY8ys2znnnNNaX6vVuPHGG1m7di2dnZ1cc8017N+/f9Y+du/ezdVXX02pVGJgYIA/+qM/IkmSuYc64ZzylarQ/Ibq2JL4Y0nwj6licwmPv9TtWGgb5m61oOMv4unp2xQREREREVntFnRds6S94JoVm+2TcS3h7tsdw34P+5D5BioVkRXxghe8gLvuuqt1P2ibZO0d73gHX/nKV/j85z9PT08Pb33rW/m1X/s1vve97wGQpilXX301GzZs4Pvf/z779u3jd3/3dwnDkA996EPH/bkshkJVERERERERERGRVWJ5u/8vXhAEbNiw4ZDlExMT/M//+T/57Gc/yytf+UoAbr/9ds4991x+8IMfcNlll3HnnXfy6KOPctddd7F+/Xouuugi/vzP/5x3vetdfOADHyCXyz3HZ7R81P2/wR3jf8fzWEt1/KVux0offyleCxERERERkVPZUl+fLft/zp7SN5ETyRNPPMGmTZvYvn07r3/969m9ezcA9913H3Ecc8UVV7S2Peecc9i6dSv33nsvAPfeey8XXHAB69evb21z1VVXMTk5ySOPPHJ8n8giqVJVRERERERERERklXDOYZdxMuw4jpmcnJy1LJ/Pk8/nD9n20ksv5Y477uDss89m3759/Nmf/Rm/+Iu/yMMPP8zQ0BC5XI7e3t5Zj1m/fj1DQ0MADA0NzQpUm+ub605kqlQVERERERERERERAL7+9a/T09Mz63bLLbfMu+2rX/1qXve613HhhRdy1VVX8dWvfpXx8XH+9//+38e51cefKlVFRERERERERERWCcfyTdbtgF/+5V/mM5/5zKzl81Wpzqe3t5ezzjqLnTt38ku/9EtEUcT4+PisatX9+/e3xmDdsGEDP/rRj2btY//+/a11JzJVqoqIiIiIiIiIiKwS2URVy3MDCMOQ7u7uWbeFhqrT09M8+eSTbNy4kYsvvpgwDLn77rtb6x9//HF2797Njh07ANixYwcPPfQQBw4caG3zjW98g+7ubs4777xjeHWOH1WqioiIiIiIiIiIyKL94R/+Ib/6q7/Ktm3bGBwc5Oabb8b3fX77t3+bnp4e3vzmN3PTTTexZs0auru7edvb3saOHTu47LLLALjyyis577zzuPbaa/nwhz/M0NAQ73vf+7jxxhsXHOSuFIWqIiIiIiIiIiIiq4TDYZet+//i9vvss8/y27/924yMjNDf38/LXvYyfvCDH9Df3w/ARz/6UTzP45prrqFer3PVVVfx8Y9/vPV43/f58pe/zA033MCOHTvo6Ojguuuu44Mf/OCSPq/loFBVREREREREREREFu0f//Efj7i+UChw2223cdtttx12m23btvHVr351qZu27BSqioiIiIiIiIiIrCLOLU+lqiycQlUREREREREREZFVYnm7/8tCeSvdABEREREREREREZHVRJWqIiIiIiIiIiIiq4SDZatUVa3qwqlSVURERERERERERGQRVKkqIiIiIiIiIiKySrjGqKrLs29ZKIWqIiIiIiIiIiIiq8byTVQlC6fu/yIiIiIiIiIiIiKLoEpVERERERERERGRVWI5J6pyqoBdMFWqioiIiIiIiIiIiCyCKlVFRERERERERERWiWyaquWZqEoWTpWqIiIiIiIiIiIiIougSlUREREREREREZFVwuFwZnkqVTWm6sIpVBUREREREREREVklsu7/Cj9Xmrr/i4iIiIiIiIiIiCyCKlVFRERERERERERWieWcqErd/xdOlaoiIiIiIiIiIiIii6BKVRERERERERERkVUjq1WVlaVQVUREREREREREZJVwBqxR9/+Vpu7/IiIiIiIiIiIiIougSlUREREREREREZFVYjknqpKFU6WqiIiIiIiIiIiIyCKoUlVERERERERERGSVWM5KVY2punAKVUVERERERERERFYJ14hVZWWtqu7/X/nKV7j00kspFov09fXx2te+dqWbJCIiIiIiIiIiIqeYVVOp+k//9E9cf/31fOhDH+KVr3wlSZLw8MMPr3SzREREREREREREjpus83+6TPtW9/+FWhWhapIk/Kf/9J+49dZbefOb39xaft55561gq0RERERERERERORUtCq6///kJz9h7969eJ7Hi170IjZu3MirX/3qo1aq1ut1JicnZ91ERERERERERERWr2xM1eW4oUrVBVsVoepTTz0FwAc+8AHe97738eUvf5m+vj4uv/xyRkdHD/u4W265hZ6entZty5Ytx6vJIiIiIiIiIiIiS87hsMYuyw2z0s9u9VjRUPXd7343xpgj3h577DGszWY0e+9738s111zDxRdfzO23344xhs9//vOH3f973vMeJiYmWrc9e/Ycr6cmIiIiIiIiIiIiJ6kVHVP1ne98J2984xuPuM327dvZt28fMHsM1Xw+z/bt29m9e/dhH5vP58nn80vSVhERERERERERkZWWdf7XRFUrbUVD1f7+fvr7+4+63cUXX0w+n+fxxx/nZS97GQBxHLNr1y62bdu23M0UERERERERERERaVnRUHWhuru7+YM/+ANuvvlmtmzZwrZt27j11lsBeN3rXrfCrRMRERERERERETleXGNSqeXZtyzMqghVAW699VaCIODaa6+lWq1y6aWX8s1vfpO+vr6VbpqIiIiIiIiIiIicQlZNqBqGIR/5yEf4yEc+stJNERERERERERERWREOh3XLNKaqU6XqQq2aUHUpzPzF0F8QEREREREREZETU5bbKOCbn1vW7v+yUKdUqDo1NdX4TX/xREREREREREROZFNTU/T09Kx0M0TmdUqFqps2bWLPnj10dXVhjFnp5pxQJicn2bJlC3v27KG7u3ulmyMiS0jvb5GTm97jIicvvb9FTm56jx+ec46pqSk2bdq00k05QVkcy9P9X727F+6UClU9z+O0005b6Wac0Lq7u/WPuchJSu9vkZOb3uMiJy+9v0VObnqPz08VqnKiO6VCVRERERERERERkdUsG1F1eYa2dKpUXTCFqiIiIiIiIiIiIquEJqo6MXgr3QA5MeTzeW6++Wby+fxKN0VElpje3yInN73HRU5een+LnNz0HpeTwS233MKLX/xiurq6GBgY4LWvfS2PP/74rG0uv/xyjDGzbn/wB38wa5vdu3dz9dVXUyqVGBgY4I/+6I9IkuR4PpVFM8451fWKiIiIiIiIiIic4G644QY+c/vX6Sk+b1n2Pzz9Uz5224d4y1vesqDtf/mXf5nf+q3f4sUvfjFJkvAnf/InPPzwwzz66KN0dHQAWah61lln8cEPfrD1uFKp1BpLOE1TLrroIjZs2MCtt97Kvn37+N3f/V2uv/56PvShDy39k1wi6v4vIiIiIiIiIiIii/b1r3991v077riDgYEB7rvvPl7+8pe3lpdKJTZs2DDvPu68804effRR7rrrLtavX89FF13En//5n/Oud72LD3zgA+RyuWV9DsdK3f9FRERERERERERWieZEVcvxHzjiOGZycnLWrV6vL6htExMTAKxZs2bW8s985jOsW7eO888/n/e85z1UKpXWunvvvZcLLriA9evXt5ZdddVVTE5O8sgjjzz3F2yZKFQVERERERERERFZJRwWR7osN3B8/etfp6enZ9btlltuOWq7rLW8/e1v59/8m3/D+eef31r+O7/zO/zDP/wD3/rWt3jPe97Dpz/9ad7whje01g8NDc0KVIHW/aGhoaV50ZaBuv+LiIiIiIiIiIgIkI2T+pnPfGbWsoVMqHbjjTfy8MMP893vfnfW8vbxWS+44AI2btzIq171Kp588knOPPPMpWn0ClCl6ilu165dvPnNb+aMM86gWCxy5plncvPNNxNF0aztHnzwQX7xF3+RQqHAli1b+PCHP7xCLRaRxfjLv/xLXvrSl1Iqlejt7Z13m9U4y6KIZG677TZOP/10CoUCl156KT/60Y9Wukkicgy+853v8Ku/+qts2rQJYwxf/OIXZ613zvH+97+fjRs3UiwWueKKK3jiiSdWprEisigLmRm9Vqtx4403snbtWjo7O7nmmmvYv3//CrVYVgvn7PLcgDAM6e7unnU7Wqj61re+lS9/+ct861vf4rTTTjvitpdeeikAO3fuBGDDhg2H/J1v3j/cOKwnAoWqp7jHHnsMay1/93d/xyOPPMJHP/pRPvnJT/Inf/InrW0mJye58sor2bZtG/fddx+33norH/jAB/jv//2/r2DLRWQhoijida97HTfccMO869M05eqrryaKIr7//e/zqU99ijvuuIP3v//9x7mlIrJYn/vc57jpppu4+eab+clPfsILX/hCrrrqKg4cOLDSTRORRSqXy7zwhS/ktttum3f9hz/8YT72sY/xyU9+kh/+8Id0dHRw1VVXUavVjnNLRWSx7rnnHm688UZ+8IMf8I1vfIM4jrnyyispl8utbd7xjnfwpS99ic9//vPcc889DA4O8mu/9msr2GqRhXPO8da3vpUvfOELfPOb3+SMM8446mPuv/9+ADZu3AjAjh07eOihh2adx37jG9+gu7ub8847b1navRSMc86tdCPkxHLrrbfyiU98gqeeegqAT3ziE7z3ve9laGioNePau9/9br74xS/y2GOPrWRTRWSB7rjjDt7+9rczPj4+a/nXvvY1fuVXfoXBwcHWmDWf/OQnede73sXw8PAJO8uiiGTf8L/4xS/mb//2b4FsDKstW7bwtre9jXe/+90r3DoROVbGGL7whS/w2te+FsguVjdt2sQ73/lO/vAP/xDIJgFZv349d9xxB7/1W7+1gq0VkcUaHh5mYGCAe+65h5e//OVMTEzQ39/PZz/7WX79138dyIqfzj33XO69914uu+yyFW6xnGhuuOEG/tftX6azsG1Z9j9efoS/ue2/zOqyfyT/4T/8Bz772c/yf/7P/+Hss89uLe/p6aFYLPLkk0/y2c9+lte85jWsXbuWBx98kHe84x2cdtpp3HPPPUBW7HPRRRexadMmPvzhDzM0NMS1117L7//+7/OhD31oWZ7nUlClqhxiYmJi1ixt9957Ly9/+ctnhStXXXUVjz/+OGNjYyvRRBFZIqt1lkWRU10URdx3331cccUVrWWe53HFFVdw7733rmDLRGSpPf300wwNDc16v/f09HDppZfq/S6yCs2dGf2+++4jjuNZ7/FzzjmHrVu36j0uq8InPvEJJiYmuPzyy9m4cWPr9rnPfQ6AXC7HXXfdxZVXXsk555zDO9/5Tq655hq+9KUvtfbh+z5f/vKX8X2fHTt28IY3vIHf/d3f5YMf/OBKPa0F0URVMsvOnTv5m7/5Gz7ykY+0lg0NDR1Svt0+C1tfX99xbaOILJ3VOsuiyKnu4MGDpGk67/tXvUhETi7Nz+P53u/6rBZZXeabGb3ZI3Tu/Ad6j8uRZOOfpsu078V1aD/a9lu2bGlVpB7Jtm3b+OpXv7qoY680VaqepN797ndjjDnibe5F1969e/nlX/5lXve613H99devUMtF5GiO5f0tIiIiIiIrqzkz+j/+4z+udFNk1XM47LLcZOFUqXqSeuc738kb3/jGI26zffv21u+Dg4O84hWv4KUvfekhE1Ct1lnYRE5Wi31/H8mGDRsOmS1c72+RE9+6devwfX/ez2e9d0VOLs339P79+1sTejTvX3TRRSvUKhFZrObM6N/5zndmzYy+YcMGoihifHx8VrWqPtNFTnwKVU9S/f399Pf3L2jbvXv38opXvIKLL76Y22+/Hc+bXcC8Y8cO3vve9xLHMWEYAtksbGeffba6/ousgMW8v49mx44d/OVf/iUHDhxgYGAAWB2zLIqc6nK5HBdffDF33313azIbay133303b33rW1e2cSKypM444ww2bNjA3Xff3QpRJycn+eEPf8gNN9ywso0TkaNyzvG2t72NL3zhC3z7298+ZGi9iy++mDAMufvuu7nmmmsAePzxx9m9ezc7duxYiSbLquBwbrmqSjWf/UIpVD3F7d27l8svv5xt27bxkY98hOHh4da65rdiv/M7v8Of/dmf8eY3v5l3vetdPPzww/y3//bf+OhHP7pSzRaRBdq9ezejo6Ps3r2bNE25//77AXje855HZ2cnV155Jeeddx7XXntta5bF973vfdx4443k8/mVbbyIHNFNN93EddddxyWXXMJLXvIS/vqv/5pyucyb3vSmlW6aiCzS9PQ0O3fubN1/+umnuf/++1mzZg1bt27l7W9/O3/xF3/B85//fM444wz+9E//lE2bNrW+VBGRE9eNN97Ymhm9q6urNU5qc2b0np4e3vzmN3PTTTexZs0auru7edvb3saOHTu47LLLVrj1InIkClVPcd/4xjfYuXMnO3funNUFAWYGG+7p6eHOO+/kxhtv5OKLL2bdunW8//3v5y1vectKNFlEFuH9738/n/rUp1r3X/SiFwHwrW99i8svv7w1y+INN9zAjh076Ojo4LrrrjvhZ1kUEfjN3/xNhoeHef/738/Q0BAXXXQRX//61w+ZzEZETnw//vGPecUrXtG6f9NNNwFw3XXXcccdd/DHf/zHlMtl3vKWtzA+Ps7LXvYyvv71r1MoFFaqySKyQJ/4xCcAuPzyy2ctv/3221tDen30ox/F8zyuueYa6vU6V111FR//+MePc0tlNXE4HMszUZUqVRfOuMVO6yUiIiIiIiIiIiLH3Q033MAd//OfKeY3Hn3jYzBVfYrbPv4RFdItgHf0TURERERERERERESkSd3/RUREREREREREVgmniapOCKpUFREREREREREREVkEVaqKiIiIiIiIiIisEg6HZXkqVVWnunAKVUVERERERERERFYLt4zd/zWf/YKp+7+IiIiIiIiIiIjIIqhSVUREREREREREZJXIJqpKl23vsjCqVBURERERERERERFZBFWqioiIiIiIiIiIrBrZVFWyshSqioiIiIiIiIiIrBJuGSeqcur+v2Dq/i8iIiIiIiIiIiKyCApVRURERFaZ4eFhNmzYwIc+9KHWsu9///vkcjnuvvvuFWyZiIiIiCy/rFJ1OW4qVF04df8XERERWWX6+/v5+7//e1772tdy5ZVXcvbZZ3Pttdfy1re+lVe96lUr3TwRERERkZOeQlURERGRVeg1r3kN119/Pa9//eu55JJL6Ojo4JZbblnpZomIiIjIMnPLOlGVSlUXSt3/RURERFapj3zkIyRJwuc//3k+85nPkM/nV7pJIiIiIiKnBIWqIiIiIqvUk08+yeDgINZadu3atdLNEREREZHjwS3fmKpOlaoLpu7/IiIiIqtQFEW84Q1v4Dd/8zc5++yz+f3f/30eeughBgYGVrppIiIiIrKMXGOiKllZqlQVERERWYXe+973MjExwcc+9jHe9a53cdZZZ/F7v/d7K90sEREREZFTgkJVERERkVXm29/+Nn/913/Npz/9abq7u/E8j09/+tP8y7/8C5/4xCdWunkiIiIisqwcYJfppu7/C6Xu/yIiIiKrzOWXX04cx7OWnX766UxMTKxQi0RERERETi0KVUVERERERERERFYLpzFVTwQKVUVERERERERERFYJh8OxXKGquv8vlMZUFREREREREREREVkEVaqKiIiIiIiIiIisGsvX/d+pUHXBVKkqIiIiIiIiIiIisgiqVBUREREREREREVk1HJAu475lIRSqioiIiIiIiIiIrBLOLV/3f4WqC6fu/yIiIiIiIiIiIiKLoEpVERERERERERGRVcMBy1WpKgulSlURERERERERERGRRVClqoiIiIiIiIiIyKrhQGOqrjhVqoqIiIiIiIiIiIgsgipVRUREREREREREVg2HU0XpilOoKiIiIiIiIiIismos50RVCmsXSt3/RURERERERERE5JjcdtttnH766RQKBS699FJ+9KMfrXSTjguFqiIiIiIiIiIiIquJc8tzW6TPfe5z3HTTTdx888385Cc/4YUvfCFXXXUVBw4cWIYnfWJRqCoiIiIiIiIiIiKL9ld/9Vdcf/31vOlNb+K8887jk5/8JKVSib//+79f6aYtO4WqIiIiIiIiIiIiq4Zbtv8A4jhmcnJy1q1erx/SiiiKuO+++7jiiitayzzP44orruDee+89bq/GSlGoKiIiIiIiIiIisgoMDAws494d4PiXf/kXenp6Zt1uueWWQ7Y+ePAgaZqyfv36WcvXr1/P0NDQMrbzxKBQVUREREREREREZBX4j//xP5KFn3YZ9p5Vqt5+++1MTEzMur3nPe9ZhuOtbsFKN0BERERERERERESObu3atWQ1khYwjdtSyILau+66i2KxSLFYPOoj1q1bh+/77N+/f9by/fv3s2HDhiVq14lLlaoiIiIiIiIiIiKrRLVabvzmlnCvWUj7qle9asGPyOVyXHzxxdx9990ze7GWu+++mx07dixh205MClVFRERERERERERWiUKhwKc//WmyIHQpgtVsLNUHH3xg0Y+86aab+B//43/wqU99ip/97GfccMMNlMtl3vSmNy1Bu05sxjm3lLG2iIiIiIiIiIiILCNrLb7vk9VLPteayRQA545tnNa//du/5dZbb2VoaIiLLrqIj33sY1x66aXPsU0nPoWqIiIiIiIiIiIiq8w3v/nNRnd9n2MfW9UBKc8++yybN29eusadAhSqioiIiIiIiIiIrELGNKtU/WN4dBaogjnmKtVTmcZUFRERERERERERWYUeeuhBmmOiLl72mImJ8SVs0alDoaqIiIiIiIiIiMgqdP7555N1/V9spakDLLfddhvd3d1L37BTgLr/i4iIiIiIiIiIrFKDg4ON8VAXM7aqBSxRFBGG4fI17iSmSlUREREREREREZFVatOmTWRhasrChgHIqlS/8IUvKFB9DlSpKiIiIiIiIiIisopNTU01uvF7HL2GMgtfrbUYs9DKVplLlaoiIiIiIiIiIiKrWFdXFx//+MfJuvUfqX4ym9Tq3nvvVaD6HKlSVUREREREREREZJWL45hcLseRq1VTAJxb7MRWMpcqVUVERERERERERFa5MAz54he/yOGrVbMq1Z07nziu7TpZqVJVRERERERERETkJOCcw/M8somr/DlrVaW6lFSpKiIiIiIiIiIichIwxvDDH/6QZlXqjKx69eDB4ZVp2ElIlaoiIiIiIiIiIiInEWOadZQ+WbiaAh7OpSvXqJOMKlVFREREREREREROIk8+uZOZatWsnrJSmV7JJp10gpVugIiIiIiIiIiIiCyd7du3k42rmnX7/1//639RLBZXuFUnF3X/FxEREREREREROcmMjIywbt06ANI0bUxgJUtFlaoiIiIiIiIiIiInmbVr1/LAAw/Q3d2tQHUZqFJVREREREREREREZBEUU4uIiIiIiIiIiIgsgkJVERERERERERERkUVQqCoiIiIiIiIiIiKyCApVRURERERERERERBZBoaqIiIiIiIiIiIjIIihUFREREREREREREVkEhaoiIiIiIiIiIiIii6BQVURERERERERERGQR/n/njYSe1gkU+gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fname = \"data/modeler.json\"\n", "modeler.to_file(fname)\n", "modeler2 = ComponentModeler.from_file(fname)\n", "f, (ax1, ax2) = plt.subplots(2, 1, tight_layout=True, figsize=(15, 10))\n", "ax1 = modeler2.batch.load(path_dir=\"data\")[\"smatrix_left_top_0\"].plot_field(\n", " \"field\", \"int\", z=wg_height / 2, ax=ax1\n", ")\n", "ax2 = modeler2.batch.load(path_dir=\"data\")[\"smatrix_right_bot_0\"].plot_field(\n", " \"field\", \"int\", z=wg_height / 2, ax=ax2\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Element Mappings\n", "\n", "If we wish, we can specify mappings between scattering matrix elements that we want to be equal up to a multiplicative factor.\n", "We can define these as `element_mappings` in the `ComponentModeler`.\n", "\n", "\"Indices\" are defined as a tuple of `(port_name: str, mode_index: int)`\n", "\n", "\"Elements\" are defined as a tuple of output and input indices, respectively.\n", "\n", "The element mappings are therefore defined as a tuple of `(element, element, value)` where the first `element` is set by the value of the 2nd `element` times the supplied `value`.\n", "\n", "As an example, let's define this element mapping from the example above to enforce that the coupling between bottom left to bottom right should be equal to the coupling between top left to top right." ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "tags": [] }, "outputs": [], "source": [ "# these are the \"indices\" in our scattering matrix\n", "left_top = (\"left_top\", 0)\n", "right_top = (\"right_top\", 0)\n", "left_bot = (\"left_bot\", 0)\n", "right_bot = (\"right_bot\", 0)\n", "\n", "# we define the scattering matrix elements coupling the top ports and bottom ports as pairs of these indices\n", "top_coupling_r2l = (left_top, right_top)\n", "bot_coupling_r2l = (left_bot, right_bot)\n", "top_coupling_l2r = (right_top, left_top)\n", "bot_coupling_l2r = (right_bot, left_bot)\n", "\n", "# map the top coupling to the bottom coupling with a multiplicative factor of +1\n", "map_horizontal_l2r = (top_coupling_l2r, bot_coupling_l2r, +1)\n", "map_horizontal_r2l = (top_coupling_r2l, bot_coupling_r2l, +1)\n", "\n", "element_mappings = (map_horizontal_l2r, map_horizontal_r2l)\n" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
[10:11:32] Created task 'smatrix_right_top_0' with task_id                                            webapi.py:139\n",
       "           'fdve-d5538e12-a7d4-4bda-8525-453349cb1f5av1'.                                                          \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:11:32]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'smatrix_right_top_0'\u001b[0m with task_id \u001b]8;id=723337;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=587591;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-d5538e12-a7d4-4bda-8525-453349cb1f5av1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1e2dc4001e164ae2933f90dbf4a0afe1", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:11:33] Created task 'smatrix_right_bot_0' with task_id                                            webapi.py:139\n",
       "           'fdve-5a3a6047-5718-4773-8032-08f7ac7ee543v1'.                                                          \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:11:33]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'smatrix_right_bot_0'\u001b[0m with task_id \u001b]8;id=468865;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=502694;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-5a3a6047-5718-4773-8032-08f7ac7ee543v1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d0930b6404894be696a88da09dc7a545", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:11:35] Created task 'smatrix_left_top_0' with task_id                                             webapi.py:139\n",
       "           'fdve-091a0c4c-0628-4d2c-8b29-a436a4da81c2v1'.                                                          \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:11:35]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'smatrix_left_top_0'\u001b[0m with task_id \u001b]8;id=883515;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=801136;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-091a0c4c-0628-4d2c-8b29-a436a4da81c2v1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8872a437f7ae45e7983d1060dd550815", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:11:36] Created task 'smatrix_left_bot_0' with task_id                                             webapi.py:139\n",
       "           'fdve-452a540c-e12c-4af7-bc85-72c13097d8b9v1'.                                                          \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:11:36]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'smatrix_left_bot_0'\u001b[0m with task_id \u001b]8;id=673288;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=264340;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-452a540c-e12c-4af7-bc85-72c13097d8b9v1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b029a507028c48dc8470d64b7872e544", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:11:43] Started working on Batch.                                                               container.py:402\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:11:43]\u001b[0m\u001b[2;36m \u001b[0mStarted working on Batch. \u001b]8;id=903117;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py\u001b\\\u001b[2mcontainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=71449;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py#402\u001b\\\u001b[2m402\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "cbf609a412c643ca847cd8c7111de8a4", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:14:56] Batch complete.                                                                         container.py:436\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:14:56]\u001b[0m\u001b[2;36m \u001b[0mBatch complete. \u001b]8;id=847345;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py\u001b\\\u001b[2mcontainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=359429;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py#436\u001b\\\u001b[2m436\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1a08089f8659442da126c8b03dd3bc13", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:14:59] loading SimulationData from data/fdve-d5538e12-a7d4-4bda-8525-453349cb1f5av1.hdf5          webapi.py:512\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:14:59]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/fdve-\u001b[93md5538e12-a7d4-4bda-8525-453349cb1f5a\u001b[0mv1.hdf5 \u001b]8;id=857726;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=958533;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1de72c080f814ea5b0ad369c2cbde607", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:15:13] loading SimulationData from data/fdve-5a3a6047-5718-4773-8032-08f7ac7ee543v1.hdf5          webapi.py:512\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:15:13]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/fdve-\u001b[93m5a3a6047-5718-4773-8032-08f7ac7ee543\u001b[0mv1.hdf5 \u001b]8;id=768715;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=154939;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "70592ec576fd4897b30669b2394d8a95", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:15:15] loading SimulationData from data/fdve-091a0c4c-0628-4d2c-8b29-a436a4da81c2v1.hdf5          webapi.py:512\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:15:15]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/fdve-\u001b[93m091a0c4c-0628-4d2c-8b29-a436a4da81c2\u001b[0mv1.hdf5 \u001b]8;id=735990;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=762067;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "43c5475fd80e4630b93f3904e1810d4b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:15:27] loading SimulationData from data/fdve-452a540c-e12c-4af7-bc85-72c13097d8b9v1.hdf5          webapi.py:512\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:15:27]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/fdve-\u001b[93m452a540c-e12c-4af7-bc85-72c13097d8b9\u001b[0mv1.hdf5 \u001b]8;id=262541;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=290230;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# run the component modeler again\n", "modeler = ComponentModeler(\n", " simulation=sim,\n", " ports=ports,\n", " freqs=[freq0],\n", " element_mappings=element_mappings,\n", " verbose=True,\n", ")\n", "smatrix = modeler.run()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The resulting scattering matrix will have the element mappings applied, we can check this explicitly." ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "top to top coupling = 0.44007-0.54419j\n", "bottom to bottom coupling = 0.44007-0.54419j\n" ] } ], "source": [ "# assert that the horizontal couping elements are exactly equal\n", "LT_RT = np.squeeze(smatrix.loc[dict(port_in=\"left_top\", port_out=\"right_top\")])\n", "LB_RB = np.squeeze(smatrix.loc[dict(port_in=\"left_bot\", port_out=\"right_bot\")])\n", "print(f\"top to top coupling = {LT_RT:.5f}\")\n", "print(f\"bottom to bottom coupling = {LB_RB:.5f}\")\n", "\n", "assert np.isclose(LT_RT, LB_RB)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Incomplete Scattering Matrix\n", "Finally, to exclude some rows of the scattering matrix, one can supply a `run_only` paramteter to the `ComponentModeler`.\n", "\n", "`run_only` contains the scattering matrix indices that the user wants to run as a source. If any indices are excluded, they will not be run.\n", "\n", "For example, if one wants to compute scattering matrix elements from only the ports on the left hand side, the `run_only` could be defined as follows." ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
[10:15:28] Created task 'smatrix_left_top_0' with task_id                                             webapi.py:139\n",
       "           'fdve-1a1d4916-98f3-403f-b951-637957cbafe3v1'.                                                          \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:15:28]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'smatrix_left_top_0'\u001b[0m with task_id \u001b]8;id=906650;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=138023;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-1a1d4916-98f3-403f-b951-637957cbafe3v1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "dc590f6a1dbc4626bcec73385d9a8e68", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:15:30] Created task 'smatrix_left_bot_0' with task_id                                             webapi.py:139\n",
       "           'fdve-9a3a5587-249b-4290-8410-f87fd02ce9bfv1'.                                                          \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:15:30]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'smatrix_left_bot_0'\u001b[0m with task_id \u001b]8;id=163555;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=16020;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-9a3a5587-249b-4290-8410-f87fd02ce9bfv1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7190cde121f04f82bf2e827406e2a454", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:15:32] Started working on Batch.                                                               container.py:402\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:15:32]\u001b[0m\u001b[2;36m \u001b[0mStarted working on Batch. \u001b]8;id=392087;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py\u001b\\\u001b[2mcontainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=976411;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py#402\u001b\\\u001b[2m402\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7bfac9d226d545fcb284561835a65c79", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:18:40] Batch complete.                                                                         container.py:436\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:18:40]\u001b[0m\u001b[2;36m \u001b[0mBatch complete. \u001b]8;id=768118;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py\u001b\\\u001b[2mcontainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=51739;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py#436\u001b\\\u001b[2m436\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "98d86a1865464fc595bc3bfc1163c224", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:18:53] loading SimulationData from data/fdve-1a1d4916-98f3-403f-b951-637957cbafe3v1.hdf5          webapi.py:512\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:18:53]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/fdve-\u001b[93m1a1d4916-98f3-403f-b951-637957cbafe3\u001b[0mv1.hdf5 \u001b]8;id=828260;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=912648;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f19962b5df924711add1c7f848b5d7da", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[10:18:56] loading SimulationData from data/fdve-9a3a5587-249b-4290-8410-f87fd02ce9bfv1.hdf5          webapi.py:512\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[10:18:56]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/fdve-\u001b[93m9a3a5587-249b-4290-8410-f87fd02ce9bf\u001b[0mv1.hdf5 \u001b]8;id=46831;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=878686;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "run_only = (left_top, left_bot)\n", "modeler = ComponentModeler(\n", " simulation=sim, ports=ports, freqs=[freq0], run_only=run_only, verbose=True\n", ")\n", "smatrix = modeler.run()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The resulting scattering matrix will have all zeros for elements corresponding to ports not included in the in `run_only` inputs." ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "output from run_only port : \n", " [ 0.44006653-0.54419416j 0.54510946+0.44524725j 0.02118845+0.00283299j\n", " -0.01860748+0.00561448j]\n" ] } ], "source": [ "s_matrix_left_top = np.squeeze(smatrix.loc[dict(port_in=\"left_top\")].values)\n", "\n", "print(\"output from run_only port : \\n\", s_matrix_left_top)\n", "\n", "assert \"right_top\" not in smatrix.coords[\"port_in\"]\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.9" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "1447d4ccef8b4d4ca7ae917d3365f414": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_28b8624ea0774c4f89433c11df7ba1fc", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2578 99.0% \u2022 25.8/26.0 MB \u2022 8.2 MB/s \u2022 0:00:01\n\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2578 99.0% \u2022 25.8/26.0 MB \u2022 8.2 MB/s \u2022 0:00:01
\n", "text/plain": "\r\u001b[2K\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;2;249;38;114m\u2578\u001b[0m \u001b[35m99.0%\u001b[0m \u2022 \u001b[32m25.8/26.0 MB\u001b[0m \u2022 \u001b[31m8.2 MB/s\u001b[0m \u2022 \u001b[36m0:00:01\u001b[0m\n\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;2;249;38;114m\u2578\u001b[0m \u001b[35m99.0%\u001b[0m \u2022 \u001b[32m25.8/26.0 MB\u001b[0m \u2022 \u001b[31m8.2 MB/s\u001b[0m \u2022 \u001b[36m0:00:01\u001b[0m" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "1d2cf1b0041e4fd3a569d59aa2475c2c": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_345a35a5eff84d0e83ceb092a28740b9", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u257a 98.0% \u2022 25.5/26.0 MB \u2022 6.5 MB/s \u2022 0:00:01\n\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u257a 98.0% \u2022 25.5/26.0 MB \u2022 6.5 MB/s \u2022 0:00:01
\n", "text/plain": "\r\u001b[2K\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;5;237m\u257a\u001b[0m \u001b[35m98.0%\u001b[0m \u2022 \u001b[32m25.5/26.0 MB\u001b[0m \u2022 \u001b[31m6.5 MB/s\u001b[0m \u2022 \u001b[36m0:00:01\u001b[0m\n\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;5;237m\u257a\u001b[0m \u001b[35m98.0%\u001b[0m \u2022 \u001b[32m25.5/26.0 MB\u001b[0m \u2022 \u001b[31m6.5 MB/s\u001b[0m \u2022 \u001b[36m0:00:01\u001b[0m" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "23f0d520977c4475b7b2f6a966a68e7e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "28b8624ea0774c4f89433c11df7ba1fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "28bd9c0dcd5c4447ade78be3871614ab": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_45037cf8a1a14eaea19de936e4099a39", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 0.0% \u2022 0.0/13.9 kB \u2022 ? \u2022 -:--:--\n\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 0.0% \u2022 0.0/13.9 kB \u2022 ? \u2022 -:--:--
\n", "text/plain": "\r\u001b[2K\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m0.0%\u001b[0m \u2022 \u001b[32m0.0/13.9 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m-:--:--\u001b[0m\n\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m0.0%\u001b[0m \u2022 \u001b[32m0.0/13.9 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m-:--:--\u001b[0m" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "312278579c5b4107a8e39ea23d317b6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "345a35a5eff84d0e83ceb092a28740b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "348061f7f3fe43d985600981e3973523": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_a809f7a347674e88a706b8392970b56f", "msg_id": "", "outputs": [ { "data": { "text/html": "
smatrix_right_top_0: status = success     \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nsmatrix_right_bot_0: status = postprocess \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2578\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501  71% -:--:--\nsmatrix_left_top_0: status = success      \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nsmatrix_left_bot_0: status = success      \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nsmatrix_right_top_0: status = success     \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nsmatrix_right_bot_0: status = postprocess \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2578\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501  71% -:--:--\nsmatrix_left_top_0: status = success      \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nsmatrix_left_bot_0: status = success      \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00
\n", "text/plain": "\r\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2Ksmatrix_right_top_0: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nsmatrix_right_bot_0: status = postprocess \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;2;249;38;114m\u2578\u001b[0m\u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m 71%\u001b[0m \u001b[36m-:--:--\u001b[0m\nsmatrix_left_top_0: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nsmatrix_left_bot_0: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nsmatrix_right_top_0: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nsmatrix_right_bot_0: status = postprocess \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;2;249;38;114m\u2578\u001b[0m\u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m 71%\u001b[0m \u001b[36m-:--:--\u001b[0m\nsmatrix_left_top_0: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nsmatrix_left_bot_0: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "35450b8aedd7494b87943a462db0f147": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "36ad27c65d344d11b14aaa525a32e095": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_e0e63948dbef44618f768654a1326abb", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 0.0% \u2022 0.0/13.9 kB \u2022 ? \u2022 -:--:--\n\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 0.0% \u2022 0.0/13.9 kB \u2022 ? \u2022 -:--:--
\n", "text/plain": "\r\u001b[2K\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m0.0%\u001b[0m \u2022 \u001b[32m0.0/13.9 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m-:--:--\u001b[0m\n\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m0.0%\u001b[0m \u2022 \u001b[32m0.0/13.9 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m-:--:--\u001b[0m" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "376b06ce31eb4cbd9de1e71797464390": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "39cc0423783c4e3497ffbb20b8604194": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_3b54caddffd34b979c0e60024e1c832e", "msg_id": "", "outputs": [ { "data": { "text/html": "
smatrix_left_top_0: status = success     \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nsmatrix_left_bot_0: status = postprocess \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2578\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501  71% -:--:--\nsmatrix_left_top_0: status = success     \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nsmatrix_left_bot_0: status = postprocess \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2578\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501  71% -:--:--
\n", "text/plain": "\r\u001b[2K\u001b[1A\u001b[2Ksmatrix_left_top_0: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nsmatrix_left_bot_0: status = postprocess \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;2;249;38;114m\u2578\u001b[0m\u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m 71%\u001b[0m \u001b[36m-:--:--\u001b[0m\nsmatrix_left_top_0: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nsmatrix_left_bot_0: status = postprocess \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;2;249;38;114m\u2578\u001b[0m\u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m 71%\u001b[0m \u001b[36m-:--:--\u001b[0m" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "3a82e175c7204b9da3c2fdf1ef606cd2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3b54caddffd34b979c0e60024e1c832e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3baee5cf1d9d48b4897865c6a71b1626": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_ab84aa672aab4f76a30d4b21306e0c78", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2578 99.0% \u2022 25.8/26.0 MB \u2022 8.4 MB/s \u2022 0:00:01\n\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2578 99.0% \u2022 25.8/26.0 MB \u2022 8.4 MB/s \u2022 0:00:01
\n", "text/plain": "\r\u001b[2K\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;2;249;38;114m\u2578\u001b[0m \u001b[35m99.0%\u001b[0m \u2022 \u001b[32m25.8/26.0 MB\u001b[0m \u2022 \u001b[31m8.4 MB/s\u001b[0m \u2022 \u001b[36m0:00:01\u001b[0m\n\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;2;249;38;114m\u2578\u001b[0m \u001b[35m99.0%\u001b[0m \u2022 \u001b[32m25.8/26.0 MB\u001b[0m \u2022 \u001b[31m8.4 MB/s\u001b[0m \u2022 \u001b[36m0:00:01\u001b[0m" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "3c278b00990341f095330a4f5f9e800a": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_85d53d0c238e4811af61fe5f16968574", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 0.0% \u2022 0.0/13.9 kB \u2022 ? \u2022 -:--:--\n\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 0.0% \u2022 0.0/13.9 kB \u2022 ? \u2022 -:--:--
\n", "text/plain": "\r\u001b[2K\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m0.0%\u001b[0m \u2022 \u001b[32m0.0/13.9 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m-:--:--\u001b[0m\n\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m0.0%\u001b[0m \u2022 \u001b[32m0.0/13.9 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m-:--:--\u001b[0m" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "45037cf8a1a14eaea19de936e4099a39": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "52150248f051411c9dec5264a13ec1f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5b52570c947a4a93811c8b00a1e73512": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_3a82e175c7204b9da3c2fdf1ef606cd2", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 0.0% \u2022 0.0/13.9 kB \u2022 ? \u2022 -:--:--\n\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 0.0% \u2022 0.0/13.9 kB \u2022 ? \u2022 -:--:--
\n", "text/plain": "\r\u001b[2K\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m0.0%\u001b[0m \u2022 \u001b[32m0.0/13.9 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m-:--:--\u001b[0m\n\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m0.0%\u001b[0m \u2022 \u001b[32m0.0/13.9 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m-:--:--\u001b[0m" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "70ce5f07cf9f4e48a3384091fc8413b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "79027af9e3bf4b329e1c63d866de8af0": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_ce98cac750764f048577ec17aa5c5f1d", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 0.0% \u2022 0.0/13.9 kB \u2022 ? \u2022 -:--:--\n\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 0.0% \u2022 0.0/13.9 kB \u2022 ? \u2022 -:--:--
\n", "text/plain": "\r\u001b[2K\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m0.0%\u001b[0m \u2022 \u001b[32m0.0/13.9 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m-:--:--\u001b[0m\n\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m0.0%\u001b[0m \u2022 \u001b[32m0.0/13.9 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m-:--:--\u001b[0m" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "79fd14016e7740bda819395b4047d9ea": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_dfb4c78e76f94f44b893af35391cdf29", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 0.0% \u2022 0.0/13.9 kB \u2022 ? \u2022 -:--:--\n\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 0.0% \u2022 0.0/13.9 kB \u2022 ? \u2022 -:--:--
\n", "text/plain": "\r\u001b[2K\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m0.0%\u001b[0m \u2022 \u001b[32m0.0/13.9 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m-:--:--\u001b[0m\n\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m0.0%\u001b[0m \u2022 \u001b[32m0.0/13.9 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m-:--:--\u001b[0m" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "7bcccd336c5a4181aa7c5e6912a95279": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_a2c3020ff0354bcab9dc3528a094b315", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 0.0% \u2022 0.0/13.9 kB \u2022 ? \u2022 -:--:--\n\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 0.0% \u2022 0.0/13.9 kB \u2022 ? \u2022 -:--:--
\n", "text/plain": "\r\u001b[2K\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m0.0%\u001b[0m \u2022 \u001b[32m0.0/13.9 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m-:--:--\u001b[0m\n\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m0.0%\u001b[0m \u2022 \u001b[32m0.0/13.9 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m-:--:--\u001b[0m" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "7c9da5c106a548a797b506b579d5b55e": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_52150248f051411c9dec5264a13ec1f0", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 0.0% \u2022 0.0/13.9 kB \u2022 ? \u2022 -:--:--\n\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 0.0% \u2022 0.0/13.9 kB \u2022 ? \u2022 -:--:--
\n", "text/plain": "\r\u001b[2K\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m0.0%\u001b[0m \u2022 \u001b[32m0.0/13.9 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m-:--:--\u001b[0m\n\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m0.0%\u001b[0m \u2022 \u001b[32m0.0/13.9 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m-:--:--\u001b[0m" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "7ca8f07ca5d749ed9066f36177477647": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "85d53d0c238e4811af61fe5f16968574": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "86853135099e4ad8b4987a20ca0c6eab": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_35450b8aedd7494b87943a462db0f147", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 0.0% \u2022 0.0/13.9 kB \u2022 ? \u2022 -:--:--\n\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 0.0% \u2022 0.0/13.9 kB \u2022 ? \u2022 -:--:--
\n", "text/plain": "\r\u001b[2K\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m0.0%\u001b[0m \u2022 \u001b[32m0.0/13.9 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m-:--:--\u001b[0m\n\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m0.0%\u001b[0m \u2022 \u001b[32m0.0/13.9 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m-:--:--\u001b[0m" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "a1c329043f23469db165d92f25e215b1": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_ab9ea5c26ac549d8923173d9b7619345", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u257a 98.0% \u2022 25.5/26.0 MB \u2022 8.3 MB/s \u2022 0:00:01\n\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u257a 98.0% \u2022 25.5/26.0 MB \u2022 8.3 MB/s \u2022 0:00:01
\n", "text/plain": "\r\u001b[2K\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;5;237m\u257a\u001b[0m \u001b[35m98.0%\u001b[0m \u2022 \u001b[32m25.5/26.0 MB\u001b[0m \u2022 \u001b[31m8.3 MB/s\u001b[0m \u2022 \u001b[36m0:00:01\u001b[0m\n\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;5;237m\u257a\u001b[0m \u001b[35m98.0%\u001b[0m \u2022 \u001b[32m25.5/26.0 MB\u001b[0m \u2022 \u001b[31m8.3 MB/s\u001b[0m \u2022 \u001b[36m0:00:01\u001b[0m" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "a2c3020ff0354bcab9dc3528a094b315": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a67fcb002cc24e71a049445761148d1d": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_376b06ce31eb4cbd9de1e71797464390", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 0.0% \u2022 0.0/13.9 kB \u2022 ? \u2022 -:--:--\n\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 0.0% \u2022 0.0/13.9 kB \u2022 ? \u2022 -:--:--
\n", "text/plain": "\r\u001b[2K\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m0.0%\u001b[0m \u2022 \u001b[32m0.0/13.9 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m-:--:--\u001b[0m\n\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m0.0%\u001b[0m \u2022 \u001b[32m0.0/13.9 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m-:--:--\u001b[0m" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "a73e4c955f9b42fe8caca6d56b1f02be": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_312278579c5b4107a8e39ea23d317b6b", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2578 99.0% \u2022 25.8/26.0 MB \u2022 8.8 MB/s \u2022 0:00:01\n\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2578 99.0% \u2022 25.8/26.0 MB \u2022 8.8 MB/s \u2022 0:00:01
\n", "text/plain": "\r\u001b[2K\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;2;249;38;114m\u2578\u001b[0m \u001b[35m99.0%\u001b[0m \u2022 \u001b[32m25.8/26.0 MB\u001b[0m \u2022 \u001b[31m8.8 MB/s\u001b[0m \u2022 \u001b[36m0:00:01\u001b[0m\n\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;2;249;38;114m\u2578\u001b[0m \u001b[35m99.0%\u001b[0m \u2022 \u001b[32m25.8/26.0 MB\u001b[0m \u2022 \u001b[31m8.8 MB/s\u001b[0m \u2022 \u001b[36m0:00:01\u001b[0m" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "a809f7a347674e88a706b8392970b56f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a833a1e693884dc697ed14765380037b": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_f55dbb070334467db2ca187d2ce68203", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2578 99.0% \u2022 25.8/26.0 MB \u2022 9.6 MB/s \u2022 0:00:01\n\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2578 99.0% \u2022 25.8/26.0 MB \u2022 9.6 MB/s \u2022 0:00:01
\n", "text/plain": "\r\u001b[2K\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;2;249;38;114m\u2578\u001b[0m \u001b[35m99.0%\u001b[0m \u2022 \u001b[32m25.8/26.0 MB\u001b[0m \u2022 \u001b[31m9.6 MB/s\u001b[0m \u2022 \u001b[36m0:00:01\u001b[0m\n\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;2;249;38;114m\u2578\u001b[0m \u001b[35m99.0%\u001b[0m \u2022 \u001b[32m25.8/26.0 MB\u001b[0m \u2022 \u001b[31m9.6 MB/s\u001b[0m \u2022 \u001b[36m0:00:01\u001b[0m" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "ab84aa672aab4f76a30d4b21306e0c78": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ab9ea5c26ac549d8923173d9b7619345": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "addaa76b74434713b35cdba3c2489915": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c27c642db84e4f3493e5c9e0d44cd530": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_addaa76b74434713b35cdba3c2489915", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2578 99.0% \u2022 25.8/26.0 MB \u2022 6.3 MB/s \u2022 0:00:01\n\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2578 99.0% \u2022 25.8/26.0 MB \u2022 6.3 MB/s \u2022 0:00:01
\n", "text/plain": "\r\u001b[2K\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;2;249;38;114m\u2578\u001b[0m \u001b[35m99.0%\u001b[0m \u2022 \u001b[32m25.8/26.0 MB\u001b[0m \u2022 \u001b[31m6.3 MB/s\u001b[0m \u2022 \u001b[36m0:00:01\u001b[0m\n\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;2;249;38;114m\u2578\u001b[0m \u001b[35m99.0%\u001b[0m \u2022 \u001b[32m25.8/26.0 MB\u001b[0m \u2022 \u001b[31m6.3 MB/s\u001b[0m \u2022 \u001b[36m0:00:01\u001b[0m" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "c7a1bee7ffe4404097e6ccb4844e2425": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_e3d06782c06049a083ce920bcf042f82", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2578\u2501 97.0% \u2022 25.3/26.0 MB \u2022 7.5 MB/s \u2022 0:00:01\n\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2578\u2501 97.0% \u2022 25.3/26.0 MB \u2022 7.5 MB/s \u2022 0:00:01
\n", "text/plain": "\r\u001b[2K\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;2;249;38;114m\u2578\u001b[0m\u001b[38;5;237m\u2501\u001b[0m \u001b[35m97.0%\u001b[0m \u2022 \u001b[32m25.3/26.0 MB\u001b[0m \u2022 \u001b[31m7.5 MB/s\u001b[0m \u2022 \u001b[36m0:00:01\u001b[0m\n\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;2;249;38;114m\u2578\u001b[0m\u001b[38;5;237m\u2501\u001b[0m \u001b[35m97.0%\u001b[0m \u2022 \u001b[32m25.3/26.0 MB\u001b[0m \u2022 \u001b[31m7.5 MB/s\u001b[0m \u2022 \u001b[36m0:00:01\u001b[0m" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "ce98cac750764f048577ec17aa5c5f1d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "dfb4c78e76f94f44b893af35391cdf29": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e07cea0d683044509c75de9bc201d4dc": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_70ce5f07cf9f4e48a3384091fc8413b0", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2578\u2501 97.0% \u2022 25.3/26.0 MB \u2022 8.8 MB/s \u2022 0:00:01\n\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2578\u2501 97.0% \u2022 25.3/26.0 MB \u2022 8.8 MB/s \u2022 0:00:01
\n", "text/plain": "\r\u001b[2K\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;2;249;38;114m\u2578\u001b[0m\u001b[38;5;237m\u2501\u001b[0m \u001b[35m97.0%\u001b[0m \u2022 \u001b[32m25.3/26.0 MB\u001b[0m \u2022 \u001b[31m8.8 MB/s\u001b[0m \u2022 \u001b[36m0:00:01\u001b[0m\n\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;2;249;38;114m\u2578\u001b[0m\u001b[38;5;237m\u2501\u001b[0m \u001b[35m97.0%\u001b[0m \u2022 \u001b[32m25.3/26.0 MB\u001b[0m \u2022 \u001b[31m8.8 MB/s\u001b[0m \u2022 \u001b[36m0:00:01\u001b[0m" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "e0e63948dbef44618f768654a1326abb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e3d06782c06049a083ce920bcf042f82": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f55dbb070334467db2ca187d2ce68203": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "fd1f367bfb3845d5a1dfbf79708c378a": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_7ca8f07ca5d749ed9066f36177477647", "msg_id": "", "outputs": [ { "data": { "text/html": "
smatrix_right_top_0: status = success    \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nsmatrix_right_bot_0: status = success    \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nsmatrix_left_top_0: status = success     \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nsmatrix_left_bot_0: status = postprocess \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2578\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501  71% -:--:--\nsmatrix_right_top_0: status = success    \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nsmatrix_right_bot_0: status = success    \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nsmatrix_left_top_0: status = success     \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nsmatrix_left_bot_0: status = postprocess \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2578\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501  71% -:--:--
\n", "text/plain": "\r\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2Ksmatrix_right_top_0: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nsmatrix_right_bot_0: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nsmatrix_left_top_0: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nsmatrix_left_bot_0: status = postprocess \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;2;249;38;114m\u2578\u001b[0m\u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m 71%\u001b[0m \u001b[36m-:--:--\u001b[0m\nsmatrix_right_top_0: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nsmatrix_right_bot_0: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nsmatrix_left_top_0: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nsmatrix_left_bot_0: status = postprocess \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;2;249;38;114m\u2578\u001b[0m\u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m 71%\u001b[0m \u001b[36m-:--:--\u001b[0m" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "fdd1d4daa1014d528ea2f0820927129d": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_23f0d520977c4475b7b2f6a966a68e7e", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2578 99.0% \u2022 25.8/26.0 MB \u2022 8.4 MB/s \u2022 0:00:01\n\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2578 99.0% \u2022 25.8/26.0 MB \u2022 8.4 MB/s \u2022 0:00:01
\n", "text/plain": "\r\u001b[2K\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;2;249;38;114m\u2578\u001b[0m \u001b[35m99.0%\u001b[0m \u2022 \u001b[32m25.8/26.0 MB\u001b[0m \u2022 \u001b[31m8.4 MB/s\u001b[0m \u2022 \u001b[36m0:00:01\u001b[0m\n\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;249;38;114m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[38;2;249;38;114m\u2578\u001b[0m \u001b[35m99.0%\u001b[0m \u2022 \u001b[32m25.8/26.0 MB\u001b[0m \u2022 \u001b[31m8.4 MB/s\u001b[0m \u2022 \u001b[36m0:00:01\u001b[0m" }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 4 }