{ "cells": [ { "cell_type": "markdown", "id": "e06d909a", "metadata": {}, "source": [ "# Plasmonic Yagi-Uda nanoantenna" ] }, { "cell_type": "markdown", "id": "7d61adb8", "metadata": {}, "source": [ "Note: the cost of running the entire notebook is larger than 1 FlexCredit.\n", "\n", "Antennas are the fundamental building blocks for high-speed communication networks. The concept of an antenna is well-established, particularly in RF and microwave engineering, dating back over one century ago. An antenna transforms propagating electromagnetic waves to localized electromagnetic field and vice versa, depending on whether it is in the transmitting mode or receiving mode. Thus, it enables wireless communication and information transmission over long distances. \n", "\n", "Recent rapid developments in nanotechnology have sparked vast interest in constructing the optical counterpart of antennas by utilizing the plasmonic nature of metal at optical frequencies. The size of these antennas is usually in the order of 100 nm. Therefore, they are often termed plasmonic nanoantennas. As the demand for higher bandwidth information transmission keeps growing, plasmonic nanoantennas potentially be the technological cornerstone for future communication systems.\n", "\n", "In this example notebook, we demonstrate the modeling of a plasmonic Yagi-Uda nanoantenna made of aluminum nanorods excited by a point dipole source. The far-field radiation pattern is calculated. We show that the simulated plasmonic Yagi-Uda nanoantenna can achieve a high directivity, which is desirable in many applications. The model is based on [Tim H. Taminiau, Fernando D. Stefani, and Niek F. van Hulst, \"Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,\" Opt. Express 16, 10858-10866 (2008)](https://opg.optica.org/oe/fulltext.cfm?uri=oe-16-14-10858&id=167282).\n", "\n", "" ] }, { "cell_type": "markdown", "id": "8c4e33ec", "metadata": {}, "source": [ "## Simulation Setup " ] }, { "cell_type": "markdown", "id": "39e69ef7", "metadata": {}, "source": [ "In this model, we are going to fit the refractive index of aluminum using data from the literature. Thus, we import the [DispersionFitter](../_autosummary/tidy3d.plugins.DispersionFitter.html) from the Tidy3D plugins." ] }, { "cell_type": "code", "execution_count": 1, "id": "1cd3ac66", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:13:37.464583Z", "iopub.status.busy": "2023-03-27T21:13:37.464385Z", "iopub.status.idle": "2023-03-27T21:13:38.779281Z", "shell.execute_reply": "2023-03-27T21:13:38.778655Z" } }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import tidy3d as td\n", "import tidy3d.web as web\n", "from tidy3d.plugins.dispersion import DispersionFitter\n" ] }, { "cell_type": "markdown", "id": "d1868111", "metadata": {}, "source": [ "As schematically shown above, a typical Yagi-Uda antenna consists of three components: a feed element that is excited by a source, a reflector element that suppresses the radiation in the backward direction, and an array of director elements that enhances the radiation in the forward direction. Usually, having a large number of director elements is beneficial for achieving a high directivity. In practice, we need to consider the footprint, fabrication constraints, costs, and so on. In this particular example, our Yagi-Uda antenna has three director elements. All elements are made of aluminum nanorods with rounded ends. \n", "\n", "The lengths and spacings of the elements are designed to achieve optimal performance at 570 nm wavelength. An initial design can be obtained by following the classical design principle of RF/microwave Yagi-Uda antennas. Since metals behave very differently in lower frequencies compared to optical frequencies, the parameters need to be optimized to account for the finite skin depth and ohmic loss. In this notebook, we skip the optimization process and only present the optimized design from the referenced paper. " ] }, { "cell_type": "code", "execution_count": 2, "id": "f76b62d9", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:13:38.781571Z", "iopub.status.busy": "2023-03-27T21:13:38.781309Z", "iopub.status.idle": "2023-03-27T21:13:38.799699Z", "shell.execute_reply": "2023-03-27T21:13:38.799093Z" } }, "outputs": [], "source": [ "lda0 = 0.57 # operation wavelength\n", "freq0 = td.C_0 / lda0 # operation frequency\n" ] }, { "cell_type": "markdown", "id": "7bfd9947", "metadata": {}, "source": [ "The nanorods are made of aluminum. Before constructing the model, we first need to use the [DispersionFitter](../_autosummary/tidy3d.plugins.DispersionFitter.html) to fit the refractive index data of aluminum, which can be found in the [refractive index database](https://refractiveindex.info/). In particular, we use the data from [McPeak et al. 2015](https://pubs.acs.org/doi/10.1021/ph5004237). Since we are only interested in the antenna response at 570 nm, we only need to fit the refractive index in the vicinity of the operation wavelength.\n", "\n", "The fitting results in a RMS error about of 0.01, which is reasonably good." ] }, { "cell_type": "code", "execution_count": 3, "id": "0c4d1567", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:13:38.801844Z", "iopub.status.busy": "2023-03-27T21:13:38.801702Z", "iopub.status.idle": "2023-03-27T21:13:52.849376Z", "shell.execute_reply": "2023-03-27T21:13:52.849011Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "782b365d38dc4bf2991673ed8ffcc13b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fname = \"misc/McPeak.csv\" # read the refractive index data from a csv file\n", "fitter = DispersionFitter.from_file(fname, delimiter=\",\") # construct a fitter\n", "al, rms_error = fitter.fit(num_poles=6, tolerance_rms=2e-2, num_tries=50)\n" ] }, { "cell_type": "markdown", "id": "c1f03abd", "metadata": {}, "source": [ "Next, we construct the Yagi-Uda antenna by individually constructing the feed, reflector, and three directors. Each element consists of a cylinder and two spheres that represent the rounded caps on each end. For convenience, we define a function to build the antenna structures since it will be used repeatedly in the next section of this notebook." ] }, { "cell_type": "code", "execution_count": 4, "id": "db39d6c3", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:13:53.062058Z", "iopub.status.busy": "2023-03-27T21:13:53.061922Z", "iopub.status.idle": "2023-03-27T21:13:53.087474Z", "shell.execute_reply": "2023-03-27T21:13:53.086966Z" } }, "outputs": [], "source": [ "# L_f is the length of the feed element\n", "# r is the radius of the nanorods.\n", "# medium is the material of the nanorods\n", "def construct_antenna(L_f, r, lda0, medium):\n", " L_r = L_f * 1.25 # length of the reflector\n", " L_d = L_f * 0.9 # length of the directors\n", " a_r = lda0 / 4.4 # spacing between the feed and the reflector\n", " a_d = (\n", " lda0 / 4\n", " ) # spacing between the feed and the first director (also the spacing between directors)\n", "\n", " feed = [\n", " td.Structure(\n", " geometry=td.Cylinder(\n", " center=(0, 0, 0), radius=r, length=L_f - 2 * r, axis=1\n", " ),\n", " medium=medium,\n", " ),\n", " td.Structure(\n", " geometry=td.Sphere(center=(0, (L_f - 2 * r) / 2, 0), radius=r),\n", " medium=medium,\n", " ),\n", " td.Structure(\n", " geometry=td.Sphere(center=(0, -(L_f - 2 * r) / 2, 0), radius=r),\n", " medium=medium,\n", " ),\n", " ]\n", "\n", " reflector = [\n", " td.Structure(\n", " geometry=td.Cylinder(\n", " center=(-a_r, 0, 0), radius=r, length=L_r - 2 * r, axis=1\n", " ),\n", " medium=medium,\n", " ),\n", " td.Structure(\n", " geometry=td.Sphere(center=(-a_r, (L_r - 2 * r) / 2, 0), radius=r),\n", " medium=medium,\n", " ),\n", " td.Structure(\n", " geometry=td.Sphere(center=(-a_r, -(L_r - 2 * r) / 2, 0), radius=r),\n", " medium=medium,\n", " ),\n", " ]\n", "\n", " director_1 = [\n", " td.Structure(\n", " geometry=td.Cylinder(\n", " center=(a_d, 0, 0), radius=r, length=L_d - 2 * r, axis=1\n", " ),\n", " medium=medium,\n", " ),\n", " td.Structure(\n", " geometry=td.Sphere(center=(a_d, (L_d - 2 * r) / 2, 0), radius=r),\n", " medium=medium,\n", " ),\n", " td.Structure(\n", " geometry=td.Sphere(center=(a_d, -(L_d - 2 * r) / 2, 0), radius=r),\n", " medium=medium,\n", " ),\n", " ]\n", "\n", " director_2 = [\n", " td.Structure(\n", " geometry=td.Cylinder(\n", " center=(2 * a_d, 0, 0), radius=r, length=L_d - 2 * r, axis=1\n", " ),\n", " medium=medium,\n", " ),\n", " td.Structure(\n", " geometry=td.Sphere(center=(2 * a_d, (L_d - 2 * r) / 2, 0), radius=r),\n", " medium=medium,\n", " ),\n", " td.Structure(\n", " geometry=td.Sphere(center=(2 * a_d, -(L_d - 2 * r) / 2, 0), radius=r),\n", " medium=medium,\n", " ),\n", " ]\n", "\n", " director_3 = [\n", " td.Structure(\n", " geometry=td.Cylinder(\n", " center=(3 * a_d, 0, 0), radius=r, length=L_d - 2 * r, axis=1\n", " ),\n", " medium=medium,\n", " ),\n", " td.Structure(\n", " geometry=td.Sphere(center=(3 * a_d, (L_d - 2 * r) / 2, 0), radius=r),\n", " medium=medium,\n", " ),\n", " td.Structure(\n", " geometry=td.Sphere(center=(3 * a_d, -(L_d - 2 * r) / 2, 0), radius=r),\n", " medium=medium,\n", " ),\n", " ]\n", "\n", " antenna = feed + reflector + director_1 + director_2 + director_3\n", " return antenna\n", "\n", "\n", "L_f = 0.16 # length of the feed\n", "r = 0.02 # radius of the nanorods\n", "medium = al # material of the antenna\n", "\n", "antenna = construct_antenna(L_f, r, lda0, medium)\n" ] }, { "cell_type": "markdown", "id": "94620334", "metadata": {}, "source": [ "The Yagi-Uda antenna is usually fed by a small quantum emitter such as a laser-excited quantum dot. In the simulation, the source can be well approximated as a [PointDipole](../_autosummary/tidy3d.PointDipole.html), which is what we are going to use.\n", "\n", "To calculate the far-field radiation pattern and directivity, we will use the [FieldProjectionAngleMonitor](../_autosummary/tidy3d.FieldProjectionAngleMonitor.html) as well as a [FluxMonitor](../_autosummary/tidy3d.FluxMonitor.html). The [FieldProjectionAngleMonitor](../_autosummary/tidy3d.FieldProjectionAngleMonitor.html) yields the angular radiation power and the [FluxMonitor](../_autosummary/tidy3d.FluxMonitor.html) helps to calculate the total radiated power. Both are required in the calculation of directivity." ] }, { "cell_type": "code", "execution_count": 5, "id": "79a4c9d5", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:13:53.089863Z", "iopub.status.busy": "2023-03-27T21:13:53.089722Z", "iopub.status.idle": "2023-03-27T21:13:53.483183Z", "shell.execute_reply": "2023-03-27T21:13:53.482597Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHaCAYAAABmVb/yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAByGklEQVR4nO3deXxU5d028Gv2yTaZkI1EUASVRVAUhGK12JoKSl2ebmqtIqXYqtRaWltpLSi2YqtVu7g8WtG+rbtPq75qcUF5XEpBEa0K4oaCQICZLJNMklnv9495z5xMMsuZs81Jcn0/n3yUyZkzJ/O7z7mvOXPOfduEEAJERERENKTZS70BRERERKQdQx0RERHRMMBQR0RERDQMMNQRERERDQMMdURERETDAEMdERER0TDAUEdEREQ0DDDUEREREQ0DDHVEREREwwBDHRFRDuvXr4fNZsP69etLvSlERAUx1BHRiHfbbbfh3nvvLfVmqHL//ffjlltuKfVmAACSySR++9vf4tBDD4XX68VRRx2FBx54QPHzOzo6cNFFF6G+vh4VFRX44he/iDfeeCPrsk888QSOPfZYeL1eHHzwwVi5ciXi8bhefwrRkGTj3K9ENNJNnToVdXV1g87IJZNJRKNRuN1u2O3W/Az8la98Be+88w4++eSTUm8Kli9fjuuvvx5LlizBcccdh8cffxxPPfUUHnjgAZxzzjl5n5tMJnHiiSfirbfewhVXXIG6ujrcdttt2LVrFzZv3ozDDz88vew///lPLFiwACeddBLOPfdcvP3227j11ltx0UUX4fbbbzf6zySyLIY6IgIAhMNhVFRUlHozSiJXqBsKrBLqdu/ejUMPPRQXXXQR/vSnPwEAhBCYO3cuduzYgU8++QQOhyPn8x9++GGcffbZeOSRR/D1r38dAHDgwAEcccQROPXUU3H//fenlz3yyCPhcrnw+uuvw+l0AgCuuuoqXHfdddi6dSsmTZpk4F9KZF3W/OhJRJrs3r0bixcvRnNzMzweDw499FBcfPHFiEajAIB7770XNpsN//u//4tLLrkEDQ0NGDNmTPr5t912G4488kh4PB40Nzfj0ksvRUdHR8ZrfPDBB/ja176G0aNHw+v1YsyYMTjnnHPQ2dmZXua5557DCSecAL/fj8rKSkycOBE///nPC26/kudFIhGsXLkShx12GDweD8aOHYuf/vSniEQig9b3t7/9DbNmzUJ5eTlqamrwhS98Ac8++ywAYNy4cXj33Xfxv//7v7DZbLDZbDjppJMA5L6m7pFHHsGMGTNQVlaGuro6fPvb38bu3bszlrnwwgtRWVmJ3bt346yzzkJlZSXq6+vxk5/8BIlEouB78Pjjj2PBggXpGk6YMAHXXnttxnNPOukkPPXUU/j000/T2z5u3Lic67zwwgvTyw38ufrqqwtuU6HtjcViuOSSS9KP2Ww2XHzxxfjss8+wYcOGvM9/9NFH0djYiK9+9avpx+rr6/HNb34Tjz/+eLquW7duxdatW3HRRRelAx0AXHLJJRBC4NFHH9X0dxANZc7CixDRULJnzx7MmjUrfX3SpEmTsHv3bjz66KPo6emB2+1OL3vJJZegvr4eK1asQDgcBgBcffXVuOaaa9DS0oKLL74Y27dvx+23347XXnsNr776KlwuF6LRKObNm4dIJIIf/OAHGD16NHbv3o0nn3wSHR0dqK6uxrvvvouvfOUrOOqoo7Bq1Sp4PB58+OGHePXVV/Nuv5LnJZNJnHHGGXjllVdw0UUXYfLkyXj77bdx88034/3338djjz2WXvaaa67B1VdfjeOPPx6rVq2C2+3Gxo0b8cILL+CUU07BLbfcgh/84AeorKzEL37xCwBAY2Njzu279957sWjRIhx33HFYvXo19u3bh9///vd49dVXsWXLFvj9/vSyiUQC8+bNw+zZs3HjjTfi+eefx+9+9ztMmDABF198cd734d5770VlZSWWLVuGyspKvPDCC1ixYgVCoRBuuOEGAMAvfvELdHZ24rPPPsPNN98MAKisrMy5zu9973toaWnJeGzt2rW477770NDQkH4sEAjk3TZJVVUVPB4PAGDLli2oqKjA5MmTM5aZNWtW+vcnnHBCznVt2bIFxx577KCvuWfNmoU777wT77//PqZNm4YtW7YAAGbOnJmxXHNzM8aMGZP+PdGIJIhoWLnggguE3W4Xr7322qDfJZNJIYQQ99xzjwAgTjjhBBGPx9O/379/v3C73eKUU04RiUQi/fif/vQnAUCsWbNGCCHEli1bBADxyCOP5NyOm2++WQAQBw4cKGr7lTzvr3/9q7Db7eLll1/OePyOO+4QAMSrr74qhBDigw8+EHa7XfzXf/1Xxt8jhPxeCCHEkUceKebOnTvodV588UUBQLz44otCCCGi0ahoaGgQU6dOFb29venlnnzySQFArFixIv3YwoULBQCxatWqjHUec8wxYsaMGfnfBCFET0/PoMe+973vifLyctHX15d+bMGCBeKQQw4puL5sPvjgA1FdXS2+/OUvZ7QDAIp+7rnnnoztGD9+/KDXCIfDAoC48sor825LRUWF+M53vjPo8aeeekoAEGvXrhVCCHHDDTcIAGLnzp2Dlj3uuOPE5z73OaV/PtGww69fiYaRZDKJxx57DKeffvqgMxlA6uuw/pYsWZJxndPzzz+PaDSKyy+/POOMyZIlS+Dz+fDUU08BAKqrqwEAzzzzDHp6erJui3TG6vHHH0cymVT8Nyh53iOPPILJkydj0qRJCAQC6Z8vfelLAIAXX3wRAPDYY48hmUxixYoVg84ADXwvlHj99dexf/9+XHLJJfB6venHFyxYgEmTJqXfn/6+//3vZ/z7xBNPxMcff1zwtcrKytL/39XVhUAggBNPPBE9PT147733it72gcLhMP7rv/4LNTU1eOCBBzLawXPPPafoZ968eenn9Pb2ps/a9Se9T729vXm3R+nzpf/mWrbQ6xANZ/z6lWgYOXDgAEKhEKZOnapo+UMPPTTj359++ikAYOLEiRmPu91ujB8/Pv37Qw89FMuWLcNNN92E++67DyeeeCLOOOMMfPvb304HvrPPPht//vOf8d3vfhdXXnklTj75ZHz1q1/F17/+9bx3kip53gcffIBt27ahvr4+6zr2798PAPjoo49gt9sxZcoURe9HIbneHwCYNGkSXnnllYzHvF7voG2sqalBe3t7wdd69913cdVVV+GFF15AKBTK+F3/6xbVWrJkCT766CP861//Qm1tbcbvBn5Fq0RZWVnW6xn7+vrSv9fj+dJ/cy1b6HWIhjOGOqIRTEsH+Lvf/Q4XXnghHn/8cTz77LO47LLLsHr1avz73//GmDFjUFZWhpdeegkvvvginnrqKaxduxYPPfQQvvSlL+HZZ5/NeSekkuclk0lMmzYNN910U9Z1jB07VvXfpad8d3vm09HRgblz58Ln82HVqlWYMGECvF4v3njjDfzsZz8r6sxnNr///e/xwAMP4G9/+xumT58+6Petra2K1lNdXZ1uQ01NTXjxxRchhMg4C7p3714AqWve8mlqakov29/A5zc1NaUfH1jnvXv3pq/hIxqJ+PUr0TBSX18Pn8+Hd955R9XzDznkEADA9u3bMx6PRqPYsWNH+veSadOm4aqrrsJLL72El19+Gbt378Ydd9yR/r3dbsfJJ5+Mm266CVu3bsWvf/1rvPDCC+mvR3Mp9LwJEyagra0NJ598MlpaWgb9SGfSJkyYgGQyia1bt+Z9PaVfxeZ6f6THBr4/aq1fvx7BYBD33nsvfvjDH+IrX/kKWlpaUFNTM2jZYr9Gfvnll/GTn/wEl19+Oc4777ysyzQ1NSn6eeihh9LPmT59Onp6erBt27aMdW3cuDH9+3ymT5+ON954Y1Bg3bhxI8rLy3HEEUdkrOf111/PWG7Pnj347LPPCr4O0XDGUEc0jNjtdpx11ln4v//3/w7q9IDUuGH5tLS0wO124w9/+EPGsnfffTc6OzuxYMECAEAoFBo0ev+0adNgt9vTX4u1tbUNWr/U4Wb76kyi5Hnf/OY3sXv3btx1112Dlu3t7U3fyXvWWWfBbrdj1apVg8JC/7+voqJi0JAt2cycORMNDQ244447Mv6Gf/7zn9i2bVv6/dFKOsPXfxuj0Shuu+22QctWVFQo/jp27969+OY3v4kTTjghfQdtNmquqTvzzDPhcrkytlEIgTvuuAMHHXQQjj/++IzteO+99xCLxdKPff3rX8e+ffvw97//Pf1YIBDAI488gtNPPz19Dd2RRx6JSZMm4c4778wY3uX222+HzWZLj3FHNBLx61eiYea6667Ds88+i7lz56aH+9i7dy8eeeQRvPLKKxlDbgxUX1+P5cuX45prrsH8+fNxxhlnYPv27bjttttw3HHH4dvf/jYA4IUXXsDSpUvxjW98A0cccQTi8Tj++te/wuFw4Gtf+xoAYNWqVXjppZewYMECHHLIIdi/fz9uu+02jBkzJu/QFkqed/755+Phhx/G97//fbz44ov4/Oc/j0Qigffeew8PP/wwnnnmGcycOROHHXYYfvGLX+Daa6/FiSeeiK9+9avweDx47bXX0NzcjNWrVwMAZsyYgdtvvx2/+tWvcNhhh6GhoSF900V/LpcLv/nNb7Bo0SLMnTsX5557bnpIk3HjxuFHP/qR2rJlOP7441FTU4OFCxfisssug81mw1//+tesoXzGjBl46KGHsGzZMhx33HGorKzE6aefnnW9l112GQ4cOICf/vSnePDBBzN+d9RRR+Goo44CoO6aujFjxuDyyy/HDTfcgFgshuOOOw6PPfYYXn75Zdx3330ZX0UvX74cf/nLX7Bjx470uHpf//rX8bnPfQ6LFi3C1q1b0zNKJBIJXHPNNRmvdcMNN+CMM87AKaecgnPOOQfvvPMO/vSnP+G73/3uoCFViEaUEt55S0QG+fTTT8UFF1wg6uvrhcfjEePHjxeXXnqpiEQiQgh5SJNsw54IkRrCZNKkScLlconGxkZx8cUXi/b29vTvP/74Y/Gd73xHTJgwQXi9XjFq1CjxxS9+UTz//PPpZdatWyfOPPNM0dzcLNxut2hubhbnnnuueP/99/Nuu9LnRaNR8Zvf/EYceeSRwuPxiJqaGjFjxgxxzTXXiM7Ozoxl16xZI4455pj0cnPnzhXPPfdc+vetra1iwYIFoqqqSgBID28ycEgTyUMPPZRe36hRo8R5550nPvvss4xlFi5cKCoqKgb9fStXrhRKDr2vvvqq+NznPifKyspEc3Oz+OlPfyqeeeaZQdvT3d0tvvWtbwm/3y8A5B3eZO7cuTmHJ1m5cmXBbSokkUiI6667ThxyyCHC7XaLI488Uvztb38btJw03MuOHTsyHm9raxOLFy8WtbW1ory8XMydOzdnG/3HP/4hpk+fLjwejxgzZoy46qqrRDQa1fw3EA1lnCaMiIiIaBjgNXVEREREwwBDHREREdEwwFBHRERENAww1BERERENAwx1RERERMMAQx0RERHRMMDBhwtIJpPYs2cPqqqqip6Oh4iIiCgfIQS6urrQ3NwMu13buTaGugL27NljmcnBiYiIaHjatWsXxowZo2kdDHUFVFVVAQB++tOfoqyszLDXSSQS6bk0nU5nxpQ6xZLGk66rq4PL5SrqeQcOHAAAeDweVFdXq94GLTo7O9PzatbX15fkDGk0Gk3PBer3++F2u03fBtZDxnrIWI8U1kPGesja2trQ1dUFAHC73SWpR7H9eW9vL37729+m84YWDHUFSA2irKwMlZWVhrxGPB5HNBrNCGButxtOp7ryJJNJJJNJ+Hw+xTt3MplEMBhERUUFPB4P+vr6YLfbdWlkxejq6oLD4cCoUaMQiUQQi8VQW1ur+ZR0MaLRKMLhcPqgFIvFUF1dbeqBkvWQsR4y1iOF9ZCxHrKuri44nU6Ul5cjmUzCbrfD4/GYWg8t/bkeAZQ3SpSY1ABsNhu8Xi+8Xi9sNhui0Wg66RtN2iFjsRjq6upQW1sLn8+HUCiU/sRjhq6uLoRCIfh8PtTW1qKurg6xWAzBYBDJZNKUbYhGowgEAnC5XKirq0uf7QwEAohGo6ZsA+shYz1krEcK6yFjPWRSPSorK+FyueB2uyGEQCQSMa0eVujPGepKqH8DkD5NSJ8szGoIA3dI6dNdVVWVqTtm/wOk9OnO7XabeqDsf4CUPm3b7XbU1taadqBkPWSsh4z1SGE9ZKyHrH89KioqAAAOh8PUYGeF/hxgqCuZbA1AYlZDyLVDSszaMbMdICVmHSizHSAlZh0oWQ8Z6yFjPVJYDxnrIctXD6fTaUqws0J/nn49Q9dOWeVrABKjG0KhHVJi9I6Zb4eUGH2gzHeAlBh9oGQ9ZKyHjPVIYT1krIdMST2MDnZW6M8zXsuwNQ8z0h2lWilpABKjGoLSHVJi1I6pZIeUGHWgVHKAlBh1oGQ9ZKyHjPVIYT1krIesmHoYFeys0J8Peh1D1joMRaNRzQ2hmAYg0bshFLtDSvTeMYvZISV6HyiLOUBK9D5Qsh4y1kPGeqSwHjLWQ6amHnoHOyv051lfQ/c1DmNaGoKaBiDRqyGo3SEleu2YanZIiV4HSjUHSIleB0rWQ8Z6yFiPFNZDxnrItNRDr2Bnhf485/p1Xdsw5nK5VDcELQ1AorUhaN0hJVp3TC07pETrgVLLAVKi9UDJeshYDxnrkcJ6yFgPmR710BrsjOjP9bzOj6FOIbvdrqoh6NEA+m+DmmCn1w4pUbtj6rFDStQeKPU4QErUHihZDxnrIWM9UlgPGesh07MeaoOdUf15LBZTvZ5B69VtTSNAsQ1BzwYgKTbY6b1DSordMfXcISXFHij1PEBKij1Qsh4y1kPGeqSwHjLWQ2ZEPazUn+uJoa5IShuCEQ1AojTYGbVDSpTumEbskBKlB0ojDpASpQdK1kPGeshYjxTWQ8Z6yIysh1X6cz3fW4Y6FQo1BCMbgKRQsEsmk+jo6DBsh5QU2jGN3CElhQ6URh4gJYUOlEYfICWsRwrrIWM9ZKxHCushs0J/rsecrxKGOpVyNQQzGoAkV7ATQiCRSCAejxu6Q0py7Zhm7JCSXAdKMw6QklwHSrMOkBLWI4X1kLEeMtYjhfWQWaE/14uz1BswlDmdqbcvGo0iEonA5XKZ3gCkYBeJRNI7pfTfmpoaw3dIibTThUKh9GNm7ZAS6UAZCAQQDAbh8/kQDAZNOUBKpANlMBhEIBBAbW0tQqGQaQdICeuRwnrIWA8Z65HCesis0J/rgaFOI6khRCIRRCKRkjQAKdj19fUhEokASA3B4nK5TNsGYPCOaeYOKZEOlAcOHDDtE+9A0oEyEAggEAgAAOrr6007QEpYjxTWQ8Z6yFiPFNZDZoX+XKuhs6VERERElBNDnUbSd+79b002YtLgfJLJZPoMnXSNXTwe13XsGyX6XwNh5CTO+UjXpEifgOPxuCGTaucjXZPS/5pGIybVLoT1SGE9ZKyHjPVIYT1kVujPtWKo02DgRZRGTRqcjxTohBBwu91wOp3pYNfe3m7ajjnwolajJnHOZ+BFxh6Px5BJtfMZeJGxx+MxZFLtQliPFNZDxnrIWI8U1kNmhf5cDwx1KuW6K8bMhpAt0AGp26MdDgecTqcpO2auu5TM3DFz3TWm96Ta+eS6a0zvSbULYT1SWA8Z6yFjPVJYD5kV+nO9MNSpUOg2ZzMaQq5AJ7Hb7fD7/YbvmIVuOzdjxyw0DIAZB8pCwwCYdaBkPVJYDxnrIWM9UlgPmRX6cyGEbutiqCuS0nFrjGwIhQKdxOgdU+k4QkbumErHdTLyQKl0XCfWQ8Z6yFiPFNZDxnrIjKyHVfpzPd9bhroiFDsQoRENQWmgkxi1YxY7MKQRO2axA3UacaAsdqBO1kPGeshYjxTWQ8Z6yIyoh5X6cz0x1Ckkpelix63RsyEUG+gkeu+Yakf61nPHVDvyup4HSrUjr7MeMtZDxnqksB4y1kOmZz3UzhRhVH+u55iyDHUKxWIx1QMR6tEQ1AY6iV47ptapW/TYMbVOpaPHgVLrVDqsh4z1kLEeKayHjPWQ6VEPrVN/GdGf6zm4MUNdEbSMLK2lIWgNdBKtO6Zec/Fp2TH1mhtRy4FSr7kRWQ8Z6yFjPVJYDxnrIdNSD73mcrVCf54LQ51CeqRpNQ1B7wagdsfUe3JlNTum3pNdqzlQ6j3ZNeshYz1krEcK6yFjPWRq6qFXoJNYoT/PhqFOIZvNpst6imkIRjWAYndMvXdISTE7pt4HSEkxB0q9D5AS1kPGeshYjxTWQ8Z6yIqph96BTmKF/nwghroSUNIQDD9Fq3DHNGqHlCjZMY06QEqUHCiNOkBKWA8Z6yFjPVJYDxnrIVNSD6MCncQK/Xl/DHUlkq8hmJboC+yYRu+Qknw7ptEHSEm+A6XRB0gJ6yFjPWSsRwrrIWM9ZPnqYXSgk1ihP5cw1JVQtoZgegPIsWOatUNKsu2YZh0gJdkOlGYdICWsh4z1kLEeKayHjPWQ9a9HOBwGACQSCVMCncQK/TkwBEPdrbfeinHjxsHr9WL27NnYtGlT3uU7Ojpw6aWXoqmpCR6PB0cccQSefvppk7a2sP4Noa+vD319faY2AGDwjhkMBk3dISX9d8xgMGjqAVLS/0AZCAQQCARMO0BKWA8Z6yFjPVJYDxnrIZPq0d3djVgsZmqgk1iiPzflVXTy0EMPYdmyZVi5ciXeeOMNHH300Zg3bx7279+fdfloNIovf/nL+OSTT/Doo49i+/btuOuuu3DQQQeZvOX59W8IZjcAibRjSo3R6/WaukNKqqqq4PV60zuDmQdIidvtRm1tLWKxGGKxGGpra007QEpYDxnrIWM9UlgPGeshq6qqgsfjSc+lamagk5S6Px9Soe6mm27CkiVLsGjRIkyZMgV33HEHysvLsWbNmqzLr1mzBm1tbXjsscfw+c9/HuPGjcPcuXNx9NFHm7zl+SWTScRisfS/Y7GYIZMGFyKdtgaASCRi2CTO+USj0YxpU/pvk1mSySRCoVD636FQiPXIsk1mYT1krIeM9UhhPWTRaDTjdfv3q2YpdX8+ZEJdNBrF5s2b0dLSkn7MbrejpaUFGzZsyPqcJ554AnPmzMGll16KxsZGTJ06Fddddx0SiUTO14lEIgiFQhk/Rur/nbvH40l/ytB70uBC+l8D0dTUZNgkzvn0vyalqanJsEmc8+l/TUp9fT3q6+sNmVS7ENYjhfWQsR4y1iOF9ZBJ9XA6nXA6nXA4HIjH47rPrZqPFfrzIRPqAoEAEokEGhsbMx5vbGxEa2tr1ud8/PHHePTRR5FIJPD000/jl7/8JX73u9/hV7/6Vc7XWb16Naqrq9M/Y8eO1fXv6C/bRZRGTBpcyMCLWo2axDmfbBcZGzGJcz7ZLjI2YlLtQliPFNZDxnrIWI8U1kPWvx5+vx92uz3dp5oV7KzSnw+ZUKdGMplEQ0MD7rzzTsyYMQNnn302fvGLX+COO+7I+Zzly5ejs7Mz/bNr1y7Dti3XXTFmNoRcdymZuWPmu2vMrANlvrvGzDxQsh4prIeM9ZCxHimshyxfPTwejynBzir9OTCEQl1dXR0cDgf27duX8fi+ffswevTorM9pamrCEUccAYfDkX5s8uTJaG1tzdnIPB4PfD5fxo/elNzmbEZDKHTbuRk7ppJhAIw+UCoZBsCMAyXrkcJ6yFgPGeuRwnrIlNTD6GBnlf5cMmRCndvtxowZM7Bu3br0Y8lkEuvWrcOcOXOyPufzn/88Pvzww4w38P3330dTU5PpdwdJihm3xsiGoHQcISN3zGLGdTLqQFnMuE5GHihZjxTWQ8Z6yFiPFNZDVkw9jAp2VunP+xsyoQ4Ali1bhrvuugt/+ctfsG3bNlx88cUIh8NYtGgRAOCCCy7A8uXL08tffPHFaGtrww9/+EO8//77eOqpp3Ddddfh0ksvLfq19biLRs1AhEY0hGIHhjRix1QzUKfeB0o1A3UacaBkPVJYDxnrIWM9UlgPmZp66B3srNKfDzSkQt3ZZ5+NG2+8EStWrMD06dPx5ptvYu3atembJ3bu3Im9e/emlx87diyeeeYZvPbaazjqqKNw2WWX4Yc//CGuvPLKol9bKqBaWkaW1rMhqB3pW88dU8vI63odKLWMvK7ngZL1SGE9ZKyHjPVIYT1kWuqhV7CzSn+ejU1Io/RRVqFQCNXV1fj5z3+eLp7H4ylqHXpNFaJ0HjtpepKBXzPrMXWL1mlo9JpKR8vfotdUOlr/FtYjhfWQsR4y1iOF9ZAp+Rui0Sj27t0Lu92e82+MRCKIx+OW6c/j8ThWrVqFzs5OzdfxmzttwRDWf9wbqZhKJJNJRKPR9HPsdrvqZG632+FyuRCNRtHX15deX7bXFEJkfGUcDofR3d2NyspKeDweTZ+UfD4f2tvbsX//ftTU1MDlcil6XiwWQ3t7O5xOJ3w+H+LxuOpt8Hg8KC8vR0dHB+LxOCoqKhQ9TwiB9vZ2xONx1NTUAICm96K6ujrjvbDZbIqex3qksB4y1kPGeqSwHjKl9YjFYhBC5O1nXS4XhBCW6c/1vNaQZ+oKkM7U/fKXv0R5eTni8TiSySTsdnvBhN6/0TidTt2mK0kmk4jH47DZbHA6nYN2TCnU+f3+9KnmWCwGl8ul23QlQohBjbvQNkufStxut+KDSSHF/G3FbrNSxf5trIe6bVaK9ZCxHimsh2y41yMej6OjowM2m63geq3Sn3d3d2P16tU8U2em+vr69Jvd/1NLrk9cAz9hKf00olT/Ty0DP3HFYjFEIhGcdtppqK6u1vV1iYiIrKqzsxNPP/00PB6Pon7XCv15W1ubbutiqFPI5XKlT9FK36OHQiE4nc5B1xdI1w1Igx8bMXyK2+1OX3QaCoUGXV+QSCRQXV2NUaNG6f7aREREVuV0OjP67Hys0J+XlZXptq4hdferleS6q0mvi1qVyHdXk5brP4iIiEYKK/TneuGZOg2kRB8KhQAAFRUVpjcAKdgFAgEEg0HU1tYiHA7rMq4eERHRSGCF/lwPDHUa9W8IoVAINpvN9AbQP9jt3bsXyWRS8d1VREREZI3+XCt+/aqD/gHK4/GUpAG43e6M8Xb6z3dLREREhVmhP9eCoU4j6Tt3m80Gr9eLvr4+QyZxLqSrqwt9fX3wer2w2WyGTJ5MREQ0XFmlP9eCX79qkO0iSmnUbQCqR90u1sCRvsPhMMLhsCmvTURENNRZpT/XiqFOpVx3xQy82NLohpBt6halt3ITERGNdFbpz/XAUKdCoduczWoI+ebi02u0ayIiouHKKv25XhjqiqR03BqjG4IekysTERGNVFbpz/W8XIqhrgjFDkRoVEMwPdAJASQjxr8OERGNPHYPoNP8ukpZqT9nqCsBIYSqgQj1bgglOUOXjAA7/o85r0VERCPLoRcADq9pL6d2pgij+nM9x5VlqFOoo6MjPchvsTch6NUQ+JUrERGRelqn/jKiP+8/xadWDHUKxeNxNDc3q76rVGtDsEyg2/9S6V6biIiGj4YvmPpyes3lqnd/3tnZqWo7smGoU8jv92seJkRtQ7BMoCMiIhqC9Ap0Eqv25wx1CrlcLl3WU2xDsGygGzUTsOvznhAR0QiRjAFtr5v7kjoHOokV+3OGuhJQ2hAsG+iAVKBjqCMiIgszKtBJrNafM9SVSKGGYOlAR0REZHFGBzqJlfpzhroSytUQGOiIiIjUUzsMmVpW6c8Z6kpsYEOQ/p+BjoiIqHjJZBLt7e1IJpOmBDqJFfpzhjoLGNgQGOiIiIjUiUQiiMViaGxsNC3QSUrdn3PWdyIiIqJhgGfqLKD/d+6AcZMGExERDXcejwdCCAQCAVO/fgVK358z1JVYrosoGeyIiIiKZ7fbUVNTg1AoZGqws0J/zq9fSyhXA6iqqoLP50MoFEJXV1cJt5CIiGjosdlsqK2thcvlQiAQQDQaNfT1rNKfM9SVSKHbnBnsiIiI1LPb7aYEOyv15wx1JaB03BoGOyIiIvWMDnZW688Z6hSKxWK6rKfYgQgZ7IiIiNQzKthZsT9nqFOoo6NDc0NQO7I0gx0REZF6egc7q/bnDHUKOZ1OTQ1B61QhDHZERETq6RXsrNyfM9Qp5Pf7VTcEveZ+Y7AjIiJST2uwM6I/D4fDqtczEEOdQmpvj9Z7Ml8GOyIiIvXUBjuj+nOGuhIptiHo3QAkDHZERETqWak/r6io0G19DHVFUtoQjGoAEgY7IiIi9azSnzPUlVihhmB0A5DkC3bJZNKw1yUiIhoOrNKf64WhTqVcDcHsBpAt2MViMcOnRCEiIhoOrNKf68FZ6g0YyqSGEAwGEQgE4PF40NfXZ3oDkF4rFAohGo2it7cXHo/HtNcnIiIayqzSn2vFM3UaSQ1BCIG+vj54vd6SNICqqip4vV709fVBCAG32236NhAREQ1VVunPtRhyoe7WW2/FuHHj4PV6MXv2bGzatEnR8x588EHYbDacddZZum9T/9uRI5FISb76jEajiEQi6X8nEgnTt4GIiGgos0J/rsWQCnUPPfQQli1bhpUrV+KNN97A0UcfjXnz5mH//v15n/fJJ5/gJz/5CU488UTdt6n/d+5NTU2GTRqcTzQaRSAQgMvlQlNTEyorK3Wbq5aIiGgksEJ/rtWQCnU33XQTlixZgkWLFmHKlCm44447UF5ejjVr1uR8TiKRwHnnnYdrrrkG48eP13V7Bl5EadSkwfn0D3S1tbWw2+2oqKiAy+Uy/LWJiIiGAyv053oYMqEuGo1i8+bNaGlpST9mt9vR0tKCDRs25HzeqlWr0NDQgMWLF+u6PbnuijGzIWQLdBKnk/fAEBERFWKF/lwvQ6bnDwQCSCQSaGxszHi8sbER7733XtbnvPLKK7j77rvx5ptvKn6dSCSScW1aKBQatEyh25wH3kVTV1en+40L+QIdERERFWaF/lzPy6WGbRLo6urC+eefj7vuugt1dXWKn7d69WpUV1enf8aOHTtovUrGrTEy4TPQERERaWOV/ryjo0O39Q2ZNFBXVweHw4F9+/ZlPL5v3z6MHj160PIfffQRPvnkE5x++ulwOp1wOp34P//n/+CJJ56A0+nERx99lPV1li9fjs7OzvTPrl270r8rdiBCIxoCAx0REZE2VurP9bxcasgkArfbjRkzZmDdunXpx5LJJNatW4c5c+YMWn7SpEl4++238eabb6Z/zjjjDHzxi1/Em2++OegMnMTj8cDn82X8AKnbnNWMLK1nQ2CgIyIi0kbtTBFG9ed+v1/1egYaMtfUAcCyZcuwcOFCzJw5E7NmzcItt9yCcDiMRYsWAQAuuOACHHTQQVi9ejW8Xi+mTp2a8XzpjRv4uBLhcBijR49WNRChHt/JM9ARERFpo3XqLyP684Fzt2sxpELd2WefjQMHDmDFihVobW3F9OnTsXbt2vTNEzt37jQs7FRUVGgaWVpLQ2CgIyIi0kavuVyt3J8PqVAHAEuXLsXSpUuz/m79+vV5n3vvvfeqft2KigrVz5WoaQgMdERERNroFegkVu3PmRBMVsx38gx0RERE2ugd6CRW7M+ZEkpASUNgoCMiItLGqEAnsVp/zqRQIvkaAgMdERGRNkYHOomV+nOmhRLK1hAY6IiIiNQTQqgehkwtq/TnQ+5GieGm/8WWBw4cAJAak4+BjoiIqHh9fX2IRqPw+/2mBDqJFfpzpgYLsNvt6UGOAcDn8zHQERERaaDHqBXFKnV/zuRgAdFoFMFgEC6XCy6XC8FgUNe55YiIiEYKh8MBm82GYDCIZDJp6muXuj9nqCux/t+519XVoa6uzpBJg4mIiEYCt9uNmpoaxGIxU4OdFfpzhroSynYRpRGTBhMREY0kUrAyK9hZpT9nqCuRfHfFMNgRERFp43a7TQl2VurPGepKQMltzgx2RERE2hgd7KzWnzPUKSSE0GU9xYxbw2BHRESkjVHBzor9OUOdQh0dHZobgpqBCBnsiIiItNE72Fm1P2eoUygej2tqCFpGlmawIyIi0kavYGfl/pyhTiG/36+6IegxVQiDHRERkTZag50R/XksFit6HTnXrduahjm1t0frOfcbgx0REZE2aoOdUf15R0eH6vUMWq9uaxoBim0IRkzmy2BHRESkjZX6c6fTqXld6XXqtqYRQmlDMKIBSBjsiIiItLFKf+73+/Vbn25rGkEKNQQjG4CkULDTawgWIiKi4coK/bnNZtNtXQx1KuVqCGY0AEmuYCeE4Nk7IiIiBazQn+vF+ltoYQMbQiQSMb0BDAx2kUgE7e3tPFNHRESkkBX6cz3od3XeCCU1hAMHDpSsAUjBLhAIIBAIIJlMoqqqyrTXH3KEAES81FtBRFQ8mxPQ8es6klmhP9eKoY5GHhEHAhtKvRVERMWrmwPYXKXeCrKooRM/LUr6zl1K+FpnnlAjmUwiGAwiHo+jrq4OLpeL19QREREVwQr9uVY8U6dBtoso6+rqEAgEEAwGTTltKwW6WCyGuro6uN1u1NTUIBQKGfq6w0bXB6XeAiKiwqoOL/UWDGtW6M/1YP0ttKhcd8XoPWlwPtkCHZC6PVr6fyIiIsrNCv25XnimToVCtzlLDcHIhJ8r0En0HPdmRKg4BLA5Sr0VREQykQDCn5Z6K4Y1K/Tneo5WwVBXJKXj1hjZEAoFOlLB5mCoIyIaQazSn3Pu1xIpdiBCI07dMtARERFpY6X+PB7Xb4gthjqFYrGYqnFr9GwIDHRERETaqJ0pwqj+nHO/lkBHR4fqgQj1aAgMdERERNponfrLiP7c5dJv3EGGOoWcTqem79G1NAQGOiIiIm30msvVyv05Q51Cfr9f84WRahoCAx0REZE2egU6iVX7c4Y6hfQaIqSYhsBAR0REpI3egU5ixf6coa4ElDQEBjoiIiJtjAp0Eqv15wx1JZKvITDQERERaWN0oJNYqT9nqCuhbA2BgY6IiEgbtcOQqWWV/pwzSpRY/5GqA4EAACAejzPQERERqRCNRtHX1wePx2NKoJNYoT/nmToLcLvdqK2tRSwWQywWQ21tLQMdERGRColEAkIIUwOdpNT9OUOdBSSTSYRCofS/Q6GQLlOQEBERjVThcNj01yx1f85QV2L9v3Ovr69HfX29rnPLERERjSRerxeVlZUIhULo6uoy7XWt0J8z1JVQtosojZg0mIiIaKSw2WyoqKiAz+czLdhZpT8fcqHu1ltvxbhx4+D1ejF79mxs2rQp57J33XUXTjzxRNTU1KCmpgYtLS15lzdTvrtiGOyIiIi0qaqqMiXYWak/H1Kh7qGHHsKyZcuwcuVKvPHGGzj66KMxb9487N+/P+vy69evx7nnnosXX3wRGzZswNixY3HKKadg9+7dJm95JiW3OTPYERERaWN0sLNafz6kQt1NN92EJUuWYNGiRZgyZQruuOMOlJeXY82aNVmXv++++3DJJZdg+vTpmDRpEv785z8jmUxi3bp1Jm+5rJhxaxjsiIiItDEq2FmxPx8yoS4ajWLz5s1oaWlJP2a329HS0oINGzYoWkdPTw9isRhGjRqVc5lIJIJQKJTxA+hzF42agQgZ7IiIiLTRO9hZtT8fMqEuEAggkUigsbEx4/HGxka0trYqWsfPfvYzNDc3ZwTDgVavXo3q6ur0z9ixYwGkQp2WhqBlZGkGOyIiIm30CnZW7s+HTKjT6vrrr8eDDz6If/zjH/B6vTmXW758OTo7O9M/u3btAgBUVFSobgh6TBXCYEdERKSN1mBnRH8uhCh6HbkMmWnC6urq4HA4sG/fvozH9+3bh9GjR+d97o033ojrr78ezz//PI466qi8y3o8Hng8nkGPV1RUwG63p7+OraqqUrTdes791n8KkmAwWJLRsokov+COMNwVTlQ1DD6OEFHpSf23VfpzPQdJHjKJwO12Y8aMGRk3OUg3PcyZMyfn837729/i2muvxdq1azFz5kxN21BswjdiMl+esSOyrkQ8idcf+AzvPKnskhAiKg0r9efxeFzzuiRD5kwdACxbtgwLFy7EzJkzMWvWLNxyyy0Ih8NYtGgRAOCCCy7AQQcdhNWrVwMAfvOb32DFihW4//77MW7cuPS1d5WVlaisrFS1DUoTvhENQMIzdkTWdOCDMHraY4h0xxFui6JiFOdwJrIqq/Tnfr9ft/UNqVB39tln48CBA1ixYgVaW1sxffp0rF27Nn3zxM6dOzPCze23345oNIqvf/3rGetZuXIlrr76atXbUaghGNkAJAx2RNbz2ZsdSCYERFJgz39COPykulJvEhHlYYX+3OVy6bauIRXqAGDp0qVYunRp1t+tX78+49+ffPKJYduRqyGY0QAk+YKdnqdziaiwSHcce9/tgstjRyKexM7N7TjsC7Ww2W2l3jQiysMK/bleeGpHg4HfyZeiAWS7xi4cDiMWixn+2kQk2/NOCLHeBFxldrjKHOjaH0Hbpz2l3iwiUsAK/bkehtyZOqvpn/BDoRBsNpvpDaD/Gbu9e/cimUyioqLCtNcnGumEENi5uR2wATa7DQ4XEAkLfPZWJ2oP5b5INBRYoT/XimfqdNA/QHk8npI0ALfbnTEUi8PhMH0biEaqUGsEHbv64PKmDqk2mw1Olw273+xEPJIo8dYRkVJW6M+1YKjTSDpFa7PZ4PV60dfXZ8ikwYV0dXWhr68PXq8XNpsN0WjU9G0gGqk+e7MDiVgSTo98SHWVOdDXHUfrtu4SbhkRKWWV/lwLhjoNBn7nXltba8ikwYV0dXUhFArB5/OhtrYWNTU1uo5QTUS5JeJJfPZGJ+wOG2w2+aYIu8MGCGDXGx2l2zgiUsQq/blWvKZOpVwXUaodqVqt/oFOei2XyzXkThkTDVUHPgijpyMGd/ngz8hOrx0HPuzmmHVEFmaV/lwPPFOnQqG7YvSaNLiQbIFOwjHriMzx2ZsdEEkBh2vwPufy2hGPJLHnP6ESbBkRFWKV/lwv7PmLpPQ2Z6MbQr5AR0TmkMamc7qzH0ptNhtsdmDn5naIJC+JILISq/Tnes79yq9fi1DsuDVGnbploCOyBmlsurLq3IfS/mPWcXgTImuwUn/OUFcCQghVAxHq3RAY6IisYeDYdLk4XDaOWUdkIWoHFjaqP9dzXFl+/apQR0eH6pGl9Tp1y0BHZB0Dx6bLhWPWEVmH1pkijOjPGepKIB6PaxpZWmtDYKAjspZsY9PlwjHriEpPr6m/rNyf8+tXhfx+v+ZhQtSeumWgI7Ke3f8JIZkQ6OuMA0h9Bev1yYdUIeTfAUAyLrDnnU6MmV5t+rYSjXR6z+Vq1f6coU4hl8uly3qKbQgMdETWNPFL9ehpjwEA2j7twf7tgz+xCwGMPdaPyvrUFH41Y8tM3UYi0j/QSazYnzPUlYDShsBAR2RdhxxXk/7/bc/syxrqAKDpSB/PzhGViFGBTmK1/pyhrkQKNQQGOiIiIvWMDnQSK/XnDHUllKshMNARERGpp3YYMrWs0p8z1JXYwIYg/T8DHRERUfGSySTa29uRTCZNCXQSK/TnDHUWMLAhMNARERGpE4lEEIvF0NjYaFqgk5S6P2eoI6IhLRyJ40BXD3oicdhsQIXHhQZfObwuh6nbIQDO70pEJcVQZwH9v3MH9J9bjmi42tPejV3BzAF9Qz1RtHb0YFy9Dw0+c4YQsTlssNlt6A3FMx53uO2wO3NPIUZE+vN4PBBCIBAImPr1K1D6/pyhrsRyXUTJYEeU34Gu3kGBTiKEwI79nXA7HfCXG39AH3/8KPibvYMetzlsqBvP+V6JzGS321FTU4NQKGRqsLNCf85QV0K5GoDekwYTDTdJIXIGuv4+a+uCv7zW8O1xlzsxeorP8NchImVsNhtqa2sRDAZNCXZW6c8592uJFLrNWa9Jg4mGo55oHLF4ouBy4b4YovGkCVtERFZjt9tRW1sLl8uFQCCAaDRqyOtYqT/nmboSUDpuDc/YEWUXKyKoxRJJuJ3Gf35NJAU6eiLoiaZu2Kj0uOAr88DOS+qISkYKdkadsbNaf85Qp1AsFtNlPcUORMhgRzSY26n8ztZillWroyeCj/d3DgqbZR4nDmvwo9zDQy1RqRgV7KzYn/NIo1BHRwd8Pp+mhqB2ZGkGO6JMZW7lhy6Xw9hTZaHeKLbvac/6u95IHNv2tmHqQbXwmDzEiqQvlkCoN4pkUsDrdqCqzA2HrbSnD+NJgVBvFNFYAk6HDVVlbnhMCN/5CAF0R2LoiaY+wFd4XKhwu1Dit4p0onews2p/zlCnkNPp1NQQtE4VwmBHJLPKV5pCAJ8cCOVdJh5PYmdbFw5v9JuzUdLrJgU+PRBCoKs343GX045x9dUYVeExdXsk+0O92BnoQiKZeVaz0V+Bg2srYS9BiuqJxvHx/k6E+zK/kan0ujC+0Y+yEgVy0pdewU7v/lxPvFFCIb/fr/piS73mfuPNE0TW0hONozcaL7hce3cECRMHJk4Kge172wYFOiB1PeIHe9sR7O4zbXskrR092LG/c1CgA4B9HWF82NoJYfL4zX2xBLbubhsU6ACguy+GrbuD6IsVvimHhgatN08Y0Z+Hw2HV6xmIoU4h6fboYhuC3pP5MtgRWUdfrHCgA1Lj5sUS5t2Fu6+zF929+a8D/iQQQtzEoBmJJ7AzmP+Y1R7uQ1vY3LD5SSCERJ7axONJ7Azof0aFSkdtsDOqP2eoK5FiG4LeDUDCYEdkDY4ivgc28zq2bGfoBorHk+gMR0zYmpS27giEgtNwSrZdL1GF70F7OIJYglPADSdW6s8rKvQboJyhrkhKG4JRDUDCYEdUepVe5dfjuEwYVkWi9Axir8Ll9KDka+piltOD0vep2GVpaLBKf85QV2KFGoLRDUCSL9gls1yzQkT6clrljo0Bkgq/Vt3dVnhWDr0cCPUoWi5i4vVr9iLqV4obOMh4VunP9cJQp1KuhmB2A8gW7GKxmGEjZxMRDRfFDI1T5uYdsMOVVfpzPXBIEw0G3h7t8XjQ19dnegPof3t0NBpFb28vPJ7SDFdARDRUFHOdI8/UDW9W6c+14pk6jaSGIIRAX18fvF5vSRpAVVUVvF4v+vr6IIQwdOJiIiKi4cYq/bkWDHU66H87ciQSKclXn9FoFJGIfBdXIsFxlYiIiIphhf5cC4Y6jfp/597U1KR6QEMtotEoAoEAXC4XmpqaUFlZqdtctURERCOBFfpzrRjqNBh4EaXWkarV6B/oamtrYbfbUVFRAZfLZfhrExERDQdW6M/1wFCnUq67YsxsCNkCncTp5D0wREREhVihP9cLQ50KhW5zNqMh5At0REREVJgV+nM9L5cackng1ltvxbhx4+D1ejF79mxs2rQp7/KPPPIIJk2aBK/Xi2nTpuHpp5/W9PpKx60xsiEw0BEREWljlf68o6NDt/UNqTTw0EMPYdmyZVi5ciXeeOMNHH300Zg3bx7279+fdfl//etfOPfcc7F48WJs2bIFZ511Fs466yy88847ql6/2IEIjWgIDHRERETaWKk/1/NyqaITwcKFC/HSSy/ptgHFuOmmm7BkyRIsWrQIU6ZMwR133IHy8nKsWbMm6/K///3vMX/+fFxxxRWYPHkyrr32Whx77LH405/+VPRrh8NhVSNL69kQGOiIiIi0UTtThFH9ud/vV72eQdtY7BM6OzvR0tKCww8/HNdddx12796t28bkE41GsXnzZrS0tKQfs9vtaGlpwYYNG7I+Z8OGDRnLA8C8efNyLg+kxqUJhUIZP0Aq1KkdWVqPhsBAR0REpI3Wqb+M6M9tOs5WUnQyeOyxx7B7925cfPHFeOihhzBu3DiceuqpePTRRw0dGy0QCCCRSKCxsTHj8cbGRrS2tmZ9Tmtra1HLA8Dq1atRXV2d/hk7diwAoKKiQtPI0loaAgMdERGRNnrN5Wrl/lzV2urr67Fs2TK89dZb2LhxIw477DCcf/75aG5uxo9+9CN88MEHum6kmZYvX47Ozs70z65duwCkQp1WahoCAx0REZE2egU6iVX7c01r3Lt3L5577jk899xzcDgcOO200/D2229jypQpuPnmm/XaRgBAXV0dHA4H9u3bl/H4vn37MHr06KzPGT16dFHLA4DH44HP58v40VMxDYGBjoiISBu9A53Eiv150WuNxWL4n//5H3zlK1/BIYccgkceeQSXX3459uzZg7/85S94/vnn8fDDD2PVqlW6bqjb7caMGTOwbt269GPJZBLr1q3DnDlzsj5nzpw5GcsDwHPPPZdzebMoaQgMdERERNoYFegkVuvPi76PtqmpCclkEueeey42bdqE6dOnD1rmi1/8oq53c0iWLVuGhQsXYubMmZg1axZuueUWhMNhLFq0CABwwQUX4KCDDsLq1asBAD/84Q8xd+5c/O53v8OCBQvw4IMP4vXXX8edd96p+7YVS2oIwWAQgUAAdXV1cLvdABjoiIiItDI60Ems1J8XHepuvvlmfOMb34DX6825jN/vx44dOzRtWDZnn302Dhw4gBUrVqC1tRXTp0/H2rVr0zdD7Ny5M+MNO/7443H//ffjqquuws9//nMcfvjheOyxxzB16lTdt02NbA0BAAMdERGRSkIIhMNh9PT0GB7oJFbpz4sOdeeff74R26HY0qVLsXTp0qy/W79+/aDHvvGNb+Ab3/iGwVulXv+GcODAAQCpr5oZ6IiIiIrX19eHaDQKv99vSqCTWKE/Z2qwALvdnnFDhs/nY6AjIiLSQI9RK4pV6v6cycECotEogsEgXC4XXC4XgsGgIZMGExERDXcOhwM2mw3BYBDJZNLU1y51f85QV2L9L6Ksq6tDXV2dIZMGExERjQRutxs1NTWIxWKmBjsr9OcMdSWU7a4YIyYNJiIiGkmkYGVWsLNKf85QVyL5bnNmsCMiItLG7XabEuys1J8z1JWAknFrGOyIiIyVSApDliXrMDrYWa0/Z6hTSAh9duhiBiJksCMiMk5PNK542b5YwsAtISMZFeys2J8z1CnU0dGhuSGoGVmawY7IumIJ5R/2dPpcqIjdblO03JjaSoO3RNZQXa5oOa/bYfCWyASUFyVpZgFJd3oHO6v25wx1CsXjcU0NQctUIQx2RNbU3ad8X4wmzDvTU+5WNq58udtl8Jb0ey2P9bapzKXstWw2oEzhe0rWpVews3J/zlCnkN/vV90Q9Jj7jcGOyHqKuSzDzBM9Db7CZ8XcTgd85W4TtiZlVEUZHAqOffUKtl0vLocNtVW5p7yU1FaWwanw7CdZm9ZgZ0R/HovFil5HznXrtqZhTu3t0XpO5stgR2QtXoVnb+x2G9xO8w63tVVlqKnIHVZsNhsmNFbDYTMvqLgcNhza4Mu7TGN1OfwmBk0AOLi2Cm5X7q98PS4HDq4zb6opMp7aYGdUf97R0aF6PYPWq9uaRoBiG4KeDUDCYEdkHWUuJyq9hb/Cq60qg93EAGW3AYeNrkZzTeWg6+vKPS5MPmgUfGXmhicAqK30YmJzDbwDQpTDbsfBdVU4uC5/6DOC2+nAlINGZQ3Boyq9mHLQKLgc7CqHGyv1506nfl/t8yKBIkkNIRAIIBgM5iyuEQ1A0n/S4EAggLq6Orjd5h+giUrFKhet22zAuPpqbN0dRDLHkBdulwNjR5l/psdus2FsbSWaairQE4khnhTwuhwoczlhYr4cxF/uge/gevRG44jEE3DabajwuOAo4debHqcDRzT5EYkn0BOJp6+h8zjNu2mDzGeV/tzv9+u3Pt3WNIIUSvhGNgBJoTN2eg3BQmRF4YjyoSgicWNvUKjwODHloFqUewafsasu9/z/Mz2lCyxOuw2+MjdGVXhQ7i5toJPYban3bVSFB74yd0kDXX8epwM1FR74yz0MdCOEFfpzm447Jc/UqZQr4ZvRACS5ztgJIfi1LA1r8YTyi5vjCQGFN16qVuFx4sgxtQhHYuiJxmCDDZVel+K7UImodKzQn+vF+ltoYQMTfiQSMb0BDDxjF4lE0N7ezjN1NKy5iziLUsyyWthtQJXXhUZfORp8ZQx0REOIFfpzPQyNrbQwqSFIid7pdJreAPpfbCndHs1r7Gg4K3M74clzx6LEV+4u6VefRDR0WKE/12robCkR0f9ntwGHFLhT0mYDxtZyKAoiGjkY6jSSEr2U8LXOPKFGMplEMBhEPB5HXV0dXC4Xr6mjYa+mwoPxjdVZp8RyOOw4oqkGlVluXiAiysYK/blWvOhDg2wXUSq5PVpPUqCLxWLpGyVqamoQCoUMfV0iK6ivKoOvzI227gh6IjHABlR6XBhVWcavXYlIMSv053qw/hZaVK67YvSeNDifbIEOSN0ezWvqaKTwOB1o8pdjQmM1JjRUo7G6nIGOiBSzQn+uF4Y6FQrd5mxGQ8gV6CR6jntDREQ0HFmhP9dztAqGuiIpHbfGyIZQKNARERFRflbpzzn3a4kUOxChEQ2BgY6IiEgbK/Xn8bjyGXIKYahTKBaLqRqIUM+GwEBHRESkjdqZIozqzzn3awl0dHSoHllaj4bAQEdERKSN1qm/jOjPXS79hl5iqFNI68jSWhoCAx0REZE2es3lauX+nKFOIb/fr3mMGjUNgYGOiIhIG70CncSq/TlDnUJ6DRFSTENgoCMiItJG70AnsWJ/zlBXAkoaAgMdERGRNkYFOonV+nOGuhLJ1xAY6IiIiLQxOtBJrNSfM9SVULaGwEBHRESkjdphyNSySn/uNPwVKC+pIQQCAQQCAQBAPB5noCMiIlIhGo2ir68PHo/HlEAnsUJ/zjN1FuB2u1FbW4tYLIZYLIba2loGOiIiIhUSiQSEEKYGOkmp+3OGOgtIJpMIhULpf4dCIUMmDSYiIhopwuGw6a9Z6v6coa7E+n/nXl9fj/r6ekMmDSYiIhoJvF4vKisrEQqF0NXVZdrrWqE/Z6groWwXURoxaTAREdFIYbPZUFFRAZ/PZ1qws0p/zlBXIvnuimGwIyIi0qaqqsqUYGel/pyhrgSU3ObMYEdERKSN0cHOav05Q53Jihm3hsGOiIhIG6OCnRX7c4Y6hfS4i0bNQIQMdkRERNroHeys2p8z1CkUDoc1NQQtI0sz2BEREWmjV7Czcn8+ZEJdW1sbzjvvPPh8Pvj9fixevBjd3d15l//BD36AiRMnoqysDAcffDAuu+wydHZ2qnr9iooK1Q1Bj6lCGOyIiIi00RrsjOjPhRBFryOXIRPqzjvvPLz77rt47rnn8OSTT+Kll17CRRddlHP5PXv2YM+ePbjxxhvxzjvv4N5778XatWuxePFiVa+v9vZoPed+Y7AjIiLSRm2wM6o/7+joUL2egYbE3K/btm3D2rVr8dprr2HmzJkAgD/+8Y847bTTcOONN6K5uXnQc6ZOnYr/+Z//Sf97woQJ+PWvf41vf/vbiMfjcDqL/9OrqqoAID1atPTvXIyYzLf/3HLBYLAk06AQERENZVbqz3fu3Kl5XZIhkQY2bNgAv9+fDnQA0NLSArvdjo0bNypeT2dnJ3w+X95AF4lEEAqFMn76U5rwjWgAEp6xIyIi0sYq/bnf79dtfUMi1LW2tqKhoSHjMafTiVGjRqG1tVXROgKBAK699tq8X9kCwOrVq1FdXZ3+GTt27KBlCjUEIxuAhMGOiIhIGyv05y6XS7d1lTTUXXnllbDZbHl/3nvvPc2vEwqFsGDBAkyZMgVXX3113mWXL1+Ozs7O9M+uXbuyLperIZjRACT5gl08HjfsdYmIiIYLK/TneinpNXU//vGPceGFF+ZdZvz48Rg9ejT279+f8Xg8HkdbWxtGjx6d9/ldXV2YP38+qqqq8I9//KNgIvZ4PPB4PIq2f+B38hUVFaY3gGzX2IXDYcRiMcNfm4iIaDiwQn+uh5KGuvr6etTX1xdcbs6cOejo6MDmzZsxY8YMAMALL7yAZDKJ2bNn53xeKBTCvHnz4PF48MQTT8Dr9eq27ZL+DSEUCsFms5neAPoHu7179yKZTKKiosK01yciIhrqrNCfazUkrqmbPHky5s+fjyVLlmDTpk149dVXsXTpUpxzzjnpO193796NSZMmYdOmTQBSRTnllFMQDodx9913IxQKobW1Fa2trUgkErpuX/8A5fF4StIA3G53xhlGh8Nh+jYQERENZVboz7UYEkOaAMB9992HpUuX4uSTT4bdbsfXvvY1/OEPf0j/PhaLYfv27ejp6QEAvPHGG+k7Yw877LCMde3YsQPjxo3TZbuk79xtNhs8Hg/6+vrQ1dVV8PZovXV1daGvrw9erxe9vb2IRqOmvj4REdFQZpX+XIshE+pGjRqF+++/P+fvx40blzEq80knnaTrKM3ZZLuIsqurS/G4N3qRXtPn86GqqgrhcFiXuWqJiIhGAqv051oNmVBnNbnuiil2QEOtBgY6IHV79FA7ZUxERFQKVunP9cBQp0Kh25zNagjZAp2Es0wQERHlZ5X+XC8MdUVSOm6N0Q0hX6AjIiKi/KzSn+t5uRRDXRGKHYjQqIbAQEdERKSelfpzhroSEEKoGohQ74bAQEdERKSe2pkijOrP9RxXlqFOoY6OjvQgv8XehKBXQ2CgIyIiUk/r1F9G9Od6zt3OUKdQPB5Hc3Oz6rtKtTYEBjoiIiL19JrLVe/+vLOzU9V2ZMNQp5Df79c8TIjahsBAR0REpJ5egU5i1f6coU4hl8uly3qKbQgMdEREROrpHegkVuzPGepKQGlDYKAjIiJSz6hAJ7Faf85QVyKFGgIDHRERkXpGBzqJlfpzhroSytUQGOiIiIjUUzsMmVpW6c8Z6kpsYEOQ/p+BzmQiUeotICLKxOOSKslkEu3t7Ugmk6YEOokV+nOGOgsY2BAY6Eog/Gmpt4CIiHQQiUQQi8XQ2NhoWqCTlLo/56zvRERERMMAz9RZQP/v3AHjJg2mLKoOL/UWEBEV1vCFUm/BkOHxeCCEQCAQMPXrV6D0/TlDXYnluoiSwY6IiKh4drsdNTU1CIVCpgY7K/TnDHUllKsB6D1pMA1gcwJ1c0q9FUREZBCbzYba2loEg0FTgp1V+nOGuhIpdJszg52BbDbAps8MIUREZE12u92UYGel/pw3SpSA0nFrqqqq4PP5EAqF0NXVZeIWEhERDX1SsHO5XAgEAohGo7qu32r9OUOdQrFYTJf1FDsQIYMdERGRekYFOyv25wx1CnV0dGhuCGpHlmawIyIiUk/vYGfV/pyhTiGn06mpIWidKoTBjoiISD29gp2V+3OGOoX8fr/qhqDX3G8MdkREROppDXZG9OfhcFj1egZiqFNIuj262Iag92S+DHZERETqqQ12RvXnDHUlUmxD0LsBSBjsiIiI1LNSf15RUaHb+hjqiqS0IRjVACQMdkREROpZpT9nqCuxQg3B6AYgyRfsksmkYa9LREQ0HFilP9cLQ51KuRqC2Q0gW7CLxWK6D7BIREQ0HFmlP9cDpwnTYOAUJB6PB319faY3gP5TkESjUfT29sLj8Zj2+kREREOZVfpzrXimTiOpIQgh0NfXB6/XW5IGUFVVBa/Xi76+PgghDJ24mIiIaLixSn+uBUOdDvrfjhyJREry1Wc0GkUkEkn/O5FImL4NREREQ5kV+nMtGOo06v+de1NTk2GTBucTjUYRCATgcrnQ1NSEyspK3eaqJSIiGgms0J9rxVCnwcCLKI2aNDif/oGutrYWdrsdFRUVcLlchr82ERHRcGCF/lwPDHUq5borxsyGkC3QSZxO3gNDRERUiBX6c70w1KlQ6DZnMxpCvkBHREREhVmhP9fzcikmgSIpHbfGyIbAQEdERKSNVfrzjo4O3dbHNFCEYgciNKIhMNARERFpY6X+XM/LpZgIFAqHw6pGltazITDQERERaaN2pgij+nO/3696PYO2Ubc1DXPhcFj1yNJ6NAQGOiIiIm20Tv1lRH9us9mKXkfO7dNtTcNcRUWFppGltTQEBjoiIiJt9JrL1cr9+ZBJB21tbTjvvPPg8/ng9/uxePFidHd3K3quEAKnnnoqbDYbHnvsMVWvX1FRoep5/alpCAx0RERE2ugV6CRW7c+HTEI477zz8O677+K5557Dk08+iZdeegkXXXSRoufecsstup7e1KKYhsBAR0REpI3egU5ixf58SKSEbdu2Ye3atfjzn/+M2bNn44QTTsAf//hHPPjgg9izZ0/e57755pv43e9+hzVr1pi0tYUpaQgMdERERNoYFegkVuvPh0RS2LBhA/x+P2bOnJl+rKWlBXa7HRs3bsz5vJ6eHnzrW9/CrbfeitGjRyt6rUgkglAolPFjhHwNgYGOiIhIG6MDncRK/fmQSAutra1oaGjIeMzpdGLUqFFobW3N+bwf/ehHOP7443HmmWcqfq3Vq1ejuro6/TN27FjV211ItobAQEdERKSeEEL1MGRqWaU/L2liuPLKK2Gz2fL+vPfee6rW/cQTT+CFF17ALbfcUtTzli9fjs7OzvTPrl27VL2+Uv0bwoEDB3DgwAEGOiIiIpX6+vrQ3d1tWqCTWKE/L+ms7z/+8Y9x4YUX5l1m/PjxGD16NPbv35/xeDweR1tbW86vVV944QV89NFHgwb1+9rXvoYTTzwR69evz/o8j8cDj8ej9E/Qhd1uh8/nQyAQAAD4fD4GOiIiIg30GLWiWKXuz0sa6urr61FfX19wuTlz5qCjowObN2/GjBkzAKRCWzKZxOzZs7M+58orr8R3v/vdjMemTZuGm2++Gaeffrr2jddRNBpFMBiEy+UCAASDQdTV1cHtdpd4y4iIiIYWh8MBm82GYDBo+rdepe7Ph8TpoMmTJ2P+/PlYsmQJNm3ahFdffRVLly7FOeecg+bmZgDA7t27MWnSJGzatAkAMHr0aEydOjXjBwAOPvhgHHrooSX7Wwbq/517XV0d6urqDJk0mIiIaCRwu92oqalBLBZDMBhEMpk05XWt0J8PiVAHAPfddx8mTZqEk08+GaeddhpOOOEE3Hnnnenfx2IxbN++HT09PSXcyuJku4jSiEmDiYiIRhIpWJkV7KzSn5f069dijBo1Cvfff3/O348bNw5CiLzrKPR7M+W7K0ZqCMFgEIFAgF/FEhERFcntdqOurg6BQMDQr2Kt1J8PmTN1w4mS25x5xo6IiEgbKdgZdcbOav05Q51Cep3lK2bcGgY7IiIibYwKdlbszxnqFOro6NDcENQMRMhgR0REpI3ewc6q/TlDnULxeFxTQ9AysjSDHRERkTZ6BTsr9+cMdQr5/X7VDUGPqUIY7IiIiLTRGuyM6M9jsVjR68i5bt3WNMypvT1az7nfGOyIiIi0URvsjOrPOzo6VK9n0Hp1W9MIUGxDMGIyXwY7IiIibazUnzud+o0ux1BXJKUNwYgGIGGwIyIi0sYq/fnAOeo1rU+3NY0ghRqCkQ1AUijYWWmgZSIiIiuyQn9us9l0WxdDnUq5GoIZDUCSK9gJIXj2joiISAEr9Od6sf4WWtjAhhCJRExvAAODXSQSQXt7O8/UERERKWSF/lwPQ2MrLUxqCFKidzqdpjeA/hdbSrdHc65YIiIi5azQn2s1dLaUiIiIiHJiqNNISvRSwtc684QayWQSwWAQ8XgcdXV1cLlcvKaOiIioCFboz7ViqNNg4EWUHo/HkEmD85ECXSwWQ11dHTweD2pqanS9m4aIiGg4s0J/rgeGOpVy3RWj96TB+QwMdNJ1dDabjdfUERERKWCF/lwvDHUqFLrN2YyGkCvQSXimjoiIKD8r9Od6jlbBUFckpePWGNkQCgU6IiIiys8q/Tnnfi2RYgciNKIhMNARERFpY6X+PB6Pa16XhKFOoVgspmogQj0bAgMdERGRNmpnijCqP9dz7lenbmsa5jo6OlBdXa1qIEKpIQQCAQSDQVXrsFygS8ZK+/pERDT0JEs73JbWqb+M6M97e3uLen4+DHUKaR1ZWktDsFygA4C210u9BURERIrpNZer3v25nqGOX78q5Pf7NU8VoubUrSUDHRER0RCiV6CTWLU/55k6hfQaIqSYhG/JQNfwhVJvARERDQeHXWTKy+gd6CRW7M95pq4ElCR8SwY6IiKiIcSoQCexWn/OM3Ulki/hWy7Q2T3AoReUdhuIiIiKYHSgk1ipP2eoK6FsDQGAtQIdANhsgMNb6q0gIiJSJBaLobOz0/BAJ7FKf85QV2L9G0IgEAAAxONx6wQ6IiKiISQajaKvrw8ej8eUQCexQn/Oa+oswO12o7a2FrFYDLFYDLW1tQx0REREKiQSCQghTA10klL35wx1FpBMJhEKhdL/DoVChkwaTERENFKEw2HTX7PU/TlDXYn1v4iyvr4e9fX1hkwaTERENBJ4vV5UVlYiFAqhq6vLtNe1Qn/OUFdC2e6KMWLSYCIiopHCZrOhoqICPp/PtGBnlf6coa5E8t3mzGBHRESkTVVVlSnBzkr9OUNdCSgZt4bBjoiISBujg53V+nOGOpMVMxAhgx0REZE2RgU7K/bnDHUK6XEXjZqRpRnsiIiItNE72Fm1P2eoUygcDmtqCFqmCmGwIyIi0kavYGfl/pwzSijk9XrR0dGBeDyOioqKop4rhEB7ezvi8ThqamoApEa8LlZ1dTXa29uxf/9+1NTUwGazZV0uFoshHo+js7Oz6NcgIiIaqjo7OxGPxxGLxbL+3uPxoLy83FL9ucPhKPr5uTDUKdTd3Q23241AIIC2tjY4ncreOiEE4vE4hBBwOp3pqUPUSiaT6O3tRXd3N5xOZ9Zgl0wmIYTA008/nd5OqZG7XC7F256LEALRaBRCCLjdbsUjdieTSUSjUdhsNrjd7pyhVCk1f5Pabc9F7d/EeqSwHjLWQ8Z6pLAeMqXbHo/H0dHRAZvNlnfd8XjcMv15X1+fpvX0x1CnkNSQotEoEokEABQ85ZpMJhGLxdKNV480brfbYbPZEI1GEYvFcu4UQgh4PB64XC6Ew2GEw2FUVlYW/akkF6/Xi/b2dnR3d6OmpgYulyvv8rFYDKFQCE6nM+9ZxmKFw2F0d3cr+tsGfsIqtM1KuVwutLe3I5FIKPrbWI8U1kPGemRuM+vBevRXTD1isVi6n8wX6qzUn/f29mpel4ShTiGpgXi9XkQikfQnF4/Hk3V5qQEAqdO9Wj/d9Dcw2Hk8nkGNN5lMwuVyIRKJoKenB36/H1VVVbptAwA0NDQgGAyis7Mz73UF0WgUnZ2dhkyu7Ha74XQ60zt8rr9RugYimUyioaFB17n43G43XC4XAoEAQqFQ3r+xq6uL9QDr0R/rIWM9UlgPmZp6SP11oWWt0p/rFdiBIXSjRFtbG8477zz4fD74/X4sXrwY3d3dBZ+3YcMGfOlLX0qPLv2FL3xBcyqWihqPxxGJRAb9PplMIhKJpBO9ng1A4nQ64Xa7IYRAJBLJerFlOBxGKBSCz+fTfYcEUo2xtrY2fYDIdl1BNBpFIBCAy+UybHLlQhe/armoVSklF792dXWxHmA9+mM9ZKxHCushM6MeVujP9fy7hkyoO++88/Duu+/iueeew5NPPomXXnoJF110Ud7nbNiwAfPnz8cpp5yCTZs24bXXXsPSpUt1eQNzNQQzGoAkX7CLx+Po7u42bIeU5NsxzdghJbkOlGYcICX5DpRGHyAlrIeM9ZCxHimsh4z1kFmhP9eLTQghSr0RhWzbtg1TpkzBa6+9hpkzZwIA1q5di9NOOw2fffYZmpubsz7vc5/7HL785S/j2muvVf3aoVAI1dXVWLlyJSorKwf9Xjp163Q60193mt0A4vF4+gJSj8eDaDSKZDKJurq69N05Rht4MAJg2g7ZX/+DUUVFhWkHyP4GHoyMPmOaDeshYz1krEcK6yEbbvWIRqPYu3evoq9fBypVf97d3Y1rrrkGnZ2d8Pl8mtY1JM7UbdiwAX6/Px3oAKClpQV2ux0bN27M+pz9+/dj48aNaGhowPHHH4/GxkbMnTsXr7zyiq7b1j/h9/b2liTR9z9j19vbi0QiAbvdrttFrUr0/8R14MABHDhwwPQDJJD5CXjv3r2mHyCBzE/Ae/fuNf0ACbAe/bEeMtYjhfWQsR4yK/TnWg2JUNfa2oqGhoaMx5xOJ0aNGoXW1tasz/n4448BAFdffTWWLFmCtWvX4thjj8XJJ5+MDz74IOdrRSIRhEKhjJ9C+l/kaLPZStIABg5vYuaO0P81+3/K8Pl8JdmO/mHW4/GYeoCUuN3ujItuzQzYEtZDxnrIWI8U1kPGesis0J9rUdJQd+WVV8Jms+X9ee+991StW7o+4Hvf+x4WLVqEY445BjfffDMmTpyINWvW5Hze6tWrUV1dnf4ZO3ZswdeJRCLpu22kf5tNuqZO2gkSiYTpM09Eo1EEg0G4XC64XC4Eg0FVgzJqIZ3Gt9ls8Hq96OvrM2QS50K6urrQ19cHr9cLm81WkplAWA8Z65HCeshYDxnrkWKV/lyLkkbQH//4x7jwwgvzLjN+/HiMHj0a+/fvz3g8Ho+jra0No0ePzvq8pqYmAMCUKVMyHp88eTJ27tyZ8/WWL1+OZcuWpf8dCoVyBrtsF1FK38kDyHl7tN76Xwfg8XgQi8UQi8XQ0dGBhoYGUz7tDLwuAwCCwSACgYBpXydku8hYumYFgGlfJwy8yFh6b4LBoGlfJ7AeMtYjhfWQsR4y1iPFKv25ViUNdfX19aivry+43Jw5c9DR0YHNmzdjxowZAIAXXngByWQSs2fPzvqccePGobm5Gdu3b894/P3338epp56a87U8Ho+i4uW6K0Z6rlkNYWCgAwCHw5Ee+dqMHTPXXUq1tbWm7Zi57hqTDoxmHSiz3TUmXbNi1oGS9ZCxHimsh4z1kLEeKVbpz/UwJK6pmzx5MubPn48lS5Zg06ZNePXVV7F06VKcc8456Ttfd+/ejUmTJmHTpk0AUt+FX3HFFfjDH/6ARx99FB9++CF++ctf4r333sPixYs1bU+h25wLjXujl2yBTmK321FTU2PYpMGSfLedKxmHSA+FhgHQaxLnQvINA2D0JM4S1kPGeqSwHjLWQ8Z6pFilP9fLkAh1AHDfffdh0qRJOPnkk3HaaafhhBNOwJ133pn+fSwWw/bt29HT05N+7PLLL8fy5cvxox/9CEcffTTWrVuH5557DhMmTFC9HUrHrTG6IeQLdBKXy2XojqlkHCGjd0yl4zoZfaBUMq6T0QdK1kPGeqSwHjLWQ8Z6pFilP5dmq9DDkBinrpT6j1NXXl5e9Lg1SsJXsQqtM5lMIplMoqmpKT2/nd5jMBW7TiMG1VSzTiMG1Sx2nayHjPVIYT1krIeM9Ugp5r1TOk6dmoGFjerPu7u7cf3114+cceqsQJq1odhxa/RO+Goald6fuNTs5Hp/4lJ70NX7E7Cagy7rIWM9UlgPGeshYz1SjKiHlfrzETlNWKlFo1HVAxHq1RC0fErQa8fU8qlNrx1T66dovQ6UWj5Fsx4y1iOF9ZCxHjLWI0XPemiZKcKI/rz/2HhaMdQVQcvI0lobgh6nfbXumHqchte6Y+r1tYjWA6UeX4uwHjLWI4X1kLEeMtYjRY966DH1lxX681wY6hRyuVyaR5ZW2xD0bABqd0w9r6tQu2PqfZ2L2gOlnte5sB4y1iOF9ZCxHjLWI0VLPfScy9UK/Xk2DHUK6fWdd7ENwYgGUOyOacSFssXumEZcuAwUf6A04sJl1kPGeqSwHjLWQ8Z6pKiph56BTmKF/nwghroSUNoQjGwASndMI3ZIidId06gDpETpgdKIA6SE9ZCxHimsh4z1kLEeKcXUw4hAJ7FCf94fQ12JFGoIZjSAQjumkTukpNCOafQBUlLoQGnkAVLCeshYjxTWQ8Z6yFiPFCX1MDLQSazQn0sY6kooV0MwswHk2jHN2CEluXZMsw6QklwHSjMOkBLWQ8Z6pLAeMtZDxnqkDKyHNJCv2mHI1LJCfw4w1JXcwIZgdgMABu+YkUjEtB1SMnDHjEQiph4gJQMPlGYeICWsh4z1SGE9ZKyHjPVI6V+P9vZ2JBIJUwOdxAr9OUOdBfRvCGY3AIm0Y0qfsJxOp2k7pETaMZ1OZ/oTsJkHSEn/A6XZB0gJ6yFjPVJYDxnrIWM9UqR6OBwOJBIJ0wOdpNT9OUMdERER0TDAUGcB/U/RGjlpcD7SJyzpE1c8HjdkEud8pGtS4vF4+hOvEZM4F9L/KwwjJ9XOh/WQsR4prIeM9ZCxHilSPRKJBBwOB2w2G6LRKOLxuGnbAJS+P2eoK7GB37nrPbecEgMvavV4PLrO9afEwIuMPR6PrnP9KTXwmhS9515UgvWQsR4prIeM9ZCxHin961FTUwOHwwGPx2N6sLNCf85QV0K5LqI0syHkuktJ70mc88l115jekzgXkusiYzMPlKyHjPVIYT1krIeM9UgZWA9pHlWbzWZqsLNCfw4w1JVMobtizGgIhW47N2PHLDQMgFkHykJ3jZlxoGQ9ZKxHCushYz1krEeKknqYEeys0J9LGOpKQOltzkY2BKXjCBm5Yyod18noA6XSYQCMPFCyHjLWI4X1kLEeMtYjpZh6GBnsrNCf98dQp5BejbHYcWuMaAjFDgxpxI5Z7ECdRh0oix3XyYgDJeshYz1SWA8Z6yFjPVLU1MOIYGeF/nwghjqFYrGY5oagdiBCPRuC2pG+9dwx1Y68rveBUu1AnXoeKFkPGeuRwnrIWA8Z65GipR56Bjsr9OfZMNQVQUtD0DqytB4NQevULXrsmFqn0tHrQKl15HU9DpSsh4z1SGE9ZKyHjPVI0aMeegQ7K/TnuTDUKeR2u1U3BL2mCtHSEPSai0/LjqnX3IhaD5R6TaWj5UDJeshYjxTWQ8Z6yFiPFD3roSXYGdGfS/PV6oGhTiG1t0frPfebmmCn9+TKanZMvSe7Vnug1HtuRDUHStZDxnqksB4y1kPGeqQYUQ8r9ed63kDCUFeEYhuCUZP5FhPs9N4hJcXsmHrvkJJiD5RGTXZdzIGS9ZCxHimsh4z1kLEeKUbWwyr9uZ5z5DLUFUlpQzCqAUiUBLtYLGbIDilRsmMatUNKlB4ojTpASpQcKI06QEpYDxnrkcJ6yFgPGeuRYpX+XBowWQ8MdSoUaghGNwBJvmCXTCbR3t5u2A4pybdjGr1DSgodKI0+QEryHSiNPkBKWA8Z65HCeshYDxnrkWKV/lwvDHUq5WoIZjeAbMEukUikt8HIHVKSbcc0a4eU5DpQmnWAlGQ7UJp1gJSwHjLWI4X1kLEeMtYjxSr9uR6cpd6AoUxqCJFIBNFoFLFYDMlk0vQGIL1WPB5P7xB2ux1+v9/wHVIi7ZiBQACBQCC9PWbskBLpQBkMBhEIBODxeNDX12faAVIivVYoFEI0GkUkEjHtAClhPWSsRwrrIWM9ZKxHilX6c614pk4jqSEIIdJhqhQNQLrYUjp97XA4TNshJW63G7W1tYjFYojFYqitrTVth5RIB0ohBPr6+uD1ek09QEqqqqrg9XrR19cHIYSpB0gJ6yFjPVJYDxnrIWM9UqzSn2vBUKeD/mPMCCEMmzQ4n3g8DiFE+t9GTJ5cSDKZRCgUSv87FAqVZDvC4XD6/6VPXWaTPvFm2yazsB4y1kPGeqSwHjLWQ2aF/lwLhjqN+n/nXlZWZtikwfnE43FEo1HYbDaUlZXB4XAgmUyaumP2vwaivr4e9fX1hkziXEj/a1KampoMm1Q7n/7XpDQ1NRk2qXY+rIeM9ZCxHimsh4z1kFmhP9eKoU6DgRdRGjVpcD79A520DW63G3a7Hd3d3absmNkuajViEudCBl5kbNSk2vlku8jYiEm182E9ZKyHjPVIYT1krIfMCv25HnijRAHSV5q9vb0Zj0sXUdrtdgghBp2yjUaj6O3thcvlMuzahGQymX5dt9uNRCKRsc1utxutra3o6upCRUWFIdsghEBHRwfi8Tj8fj96e3sz3iu3242Ojg6Ew2H4/X7YbDZDtiMcDiMcDqOiogLJZBKdnZ3p37lcLoTDYezcuRN+v1/XMYH6i8Vi6OjogNPpRHl5+aADos1mYz3AerAerAfrkWJEPWKxWHodSutX6v5c2t7+l1CpZRN6rGUY++yzzzB27NhSbwYRERENY7t27cKYMWM0rYOhroBkMok9e/agqqpqUOoPhUIYO3Ysdu3aBZ/PV6ItLC2+Byl8H/geSPg+8D2Q8H1I4fuQ/z0QQqCrqwvNzc2azwTy69cC7HZ7weTs8/lGbEOV8D1I4fvA90DC94HvgYTvQwrfh9zvQXV1tS7r540SRERERMMAQx0RERHRMMBQp4HH48HKlSuH3IjTeuJ7kML3ge+BhO8D3wMJ34cUvg/mvQe8UYKIiIhoGOCZOiIiIqJhgKGOiIiIaBhgqCMiIiIaBhjqiIiIiIYBhro8fv3rX+P4449HeXk5/H6/oucIIbBixQo0NTWhrKwMLS0t+OCDDzKWaWtrw3nnnQefzwe/34/Fixeju7vbgL9AH8Vu7yeffAKbzZb155FHHkkvl+33Dz74oBl/UtHU1Oykk04a9Pd9//vfz1hm586dWLBgAcrLy9HQ0IArrrjC0hNHF/s+tLW14Qc/+AEmTpyIsrIyHHzwwbjssssy5roErN0Wbr31VowbNw5erxezZ8/Gpk2b8i7/yCOPYNKkSfB6vZg2bRqefvrpjN8rOUZYUTHvw1133YUTTzwRNTU1qKmpQUtLy6DlL7zwwkE1nz9/vtF/hmbFvA/33nvvoL/R6/VmLDMU20Mx70G246DNZsOCBQvSywy1tvDSSy/h9NNPR3NzM2w2Gx577LGCz1m/fj2OPfZYeDweHHbYYbj33nsHLVPssSYrQTmtWLFC3HTTTWLZsmWiurpa0XOuv/56UV1dLR577DHx1ltviTPOOEMceuihore3N73M/PnzxdFHHy3+/e9/i5dfflkcdthh4txzzzXor9Cu2O2Nx+Ni7969GT/XXHONqKysFF1dXenlAIh77rknY7n+75OVqKnZ3LlzxZIlSzL+vs7OzvTv4/G4mDp1qmhpaRFbtmwRTz/9tKirqxPLly83+s9Rrdj34e233xZf/epXxRNPPCE+/PBDsW7dOnH44YeLr33taxnLWbUtPPjgg8Ltdos1a9aId999VyxZskT4/X6xb9++rMu/+uqrwuFwiN/+9rdi69at4qqrrhIul0u8/fbb6WWUHCOsptj34Vvf+pa49dZbxZYtW8S2bdvEhRdeKKqrq8Vnn32WXmbhwoVi/vz5GTVva2sz609Spdj34Z577hE+ny/jb2xtbc1YZqi1h2Lfg2AwmPH3v/POO8LhcIh77rknvcxQawtPP/20+MUvfiH+/ve/CwDiH//4R97lP/74Y1FeXi6WLVsmtm7dKv74xz8Kh8Mh1q5dm16m2Pc1F4Y6Be655x5FoS6ZTIrRo0eLG264If1YR0eH8Hg84oEHHhBCCLF161YBQLz22mvpZf75z38Km80mdu/erfu2a6XX9k6fPl185zvfyXhMyc5gBWrfg7lz54of/vCHOX//9NNPC7vdnnGQv/3224XP5xORSESXbdeTXm3h4YcfFm63W8RisfRjVm0Ls2bNEpdeemn634lEQjQ3N4vVq1dnXf6b3/ymWLBgQcZjs2fPFt/73veEEMqOEVZU7PswUDweF1VVVeIvf/lL+rGFCxeKM888U+9NNVSx70OhvmMotgetbeHmm28WVVVVoru7O/3YUGwLEiXHrp/+9KfiyCOPzHjs7LPPFvPmzUv/W+v7KuHXrzrasWMHWltb0dLSkn6suroas2fPxoYNGwAAGzZsgN/vx8yZM9PLtLS0wG63Y+PGjaZvcyF6bO/mzZvx5ptvYvHixYN+d+mll6Kurg6zZs3CmjVrICw4bKKW9+C+++5DXV0dpk6diuXLl6OnpydjvdOmTUNjY2P6sXnz5iEUCuHdd9/V/w/RSK+229nZCZ/PB6czc+ppq7WFaDSKzZs3Z+zPdrsdLS0t6f15oA0bNmQsD6RqKi2v5BhhNWreh4F6enoQi8UwatSojMfXr1+PhoYGTJw4ERdffDGCwaCu264nte9Dd3c3DjnkEIwdOxZnnnlmxr491NqDHm3h7rvvxjnnnIOKioqMx4dSWyhWoeOCHu+rxFl4EVKqtbUVADI6aenf0u9aW1vR0NCQ8Xun04lRo0all7ESPbb37rvvxuTJk3H88cdnPL5q1Sp86UtfQnl5OZ599llccskl6O7uxmWXXabb9utB7XvwrW99C4cccgiam5vxn//8Bz/72c+wfft2/P3vf0+vN1tbkX5nNXq0hUAggGuvvRYXXXRRxuNWbAuBQACJRCJrjd57772sz8lV0/77v/RYrmWsRs37MNDPfvYzNDc3Z3Ra8+fPx1e/+lUceuih+Oijj/Dzn/8cp556KjZs2ACHw6Hr36AHNe/DxIkTsWbNGhx11FHo7OzEjTfeiOOPPx7vvvsuxowZM+Tag9a2sGnTJrzzzju4++67Mx4fam2hWLmOC6FQCL29vWhvb9e8j0lGXKi78sor8Zvf/CbvMtu2bcOkSZNM2qLSUPo+aNXb24v7778fv/zlLwf9rv9jxxxzDMLhMG644QbTOnKj34P+wWXatGloamrCySefjI8++ggTJkxQvV69mdUWQqEQFixYgClTpuDqq6/O+F2p2wIZ5/rrr8eDDz6I9evXZ9wkcM4556T/f9q0aTjqqKMwYcIErF+/HieffHIpNlV3c+bMwZw5c9L/Pv744zF58mT893//N6699toSbllp3H333Zg2bRpmzZqV8fhIaAtmGXGh7sc//jEuvPDCvMuMHz9e1bpHjx4NANi3bx+amprSj+/btw/Tp09PL7N///6M58XjcbS1taWfbwal74PW7X300UfR09ODCy64oOCys2fPxrXXXotIJGLKHIFmvQeS2bNnAwA+/PBDTJgwAaNHjx50d9O+ffsAYNi1ha6uLsyfPx9VVVX4xz/+AZfLlXd5s9tCNnV1dXA4HOmaSPbt25fz7x09enTe5ZUcI6xGzfsgufHGG3H99dfj+eefx1FHHZV32fHjx6Ourg4ffvihJTtyLe+DxOVy4ZhjjsGHH34IYOi1By3vQTgcxoMPPohVq1YVfB2rt4Vi5Tou+Hw+lJWVweFwaG5baUVdgTdCFXujxI033ph+rLOzM+uNEq+//np6mWeeecbyN0qo3d65c+cOutMxl1/96leipqZG9bYaRa+avfLKKwKAeOutt4QQ8o0S/e9u+u///m/h8/lEX1+ffn+ATtS+D52dneJzn/ucmDt3rgiHw4peyyptYdasWWLp0qXpfycSCXHQQQflvVHiK1/5SsZjc+bMGXSjRL5jhBUV+z4IIcRvfvMb4fP5xIYNGxS9xq5du4TNZhOPP/645u01ipr3ob94PC4mTpwofvSjHwkhhmZ7UPse3HPPPcLj8YhAIFDwNYZCW5BA4Y0SU6dOzXjs3HPPHXSjhJa2ld6eopYeYT799FOxZcuW9HAcW7ZsEVu2bMkYlmPixIni73//e/rf119/vfD7/eLxxx8X//nPf8SZZ56ZdUiTY445RmzcuFG88sor4vDDD7f8kCb5tvezzz4TEydOFBs3bsx43gcffCBsNpv45z//OWidTzzxhLjrrrvE22+/LT744ANx2223ifLycrFixQrD/x41in0PPvzwQ7Fq1Srx+uuvix07dojHH39cjB8/XnzhC19IP0ca0uSUU04Rb775pli7dq2or6+3/JAmxbwPnZ2dYvbs2WLatGniww8/zBiyIB6PCyGs3RYefPBB4fF4xL333iu2bt0qLrroIuH3+9N3LJ9//vniyiuvTC//6quvCqfTKW688Uaxbds2sXLlyqxDmhQ6RlhNse/D9ddfL9xut3j00Uczai4dO7u6usRPfvITsWHDBrFjxw7x/PPPi2OPPVYcfvjhlvxAIyn2fbjmmmvEM888Iz766COxefNmcc455wiv1yvefffd9DJDrT0U+x5ITjjhBHH22WcPenwotoWurq50HgAgbrrpJrFlyxbx6aefCiGEuPLKK8X555+fXl4a0uSKK64Q27ZtE7feemvWIU3yva9KMdTlsXDhQgFg0M+LL76YXgb/f3wtSTKZFL/85S9FY2Oj8Hg84uSTTxbbt2/PWG8wGBTnnnuuqKysFD6fTyxatCgjKFpNoe3dsWPHoPdFCCGWL18uxo4dKxKJxKB1/vOf/xTTp08XlZWVoqKiQhx99NHijjvuyLqsFRT7HuzcuVN84QtfEKNGjRIej0ccdthh4oorrsgYp04IIT755BNx6qmnirKyMlFXVyd+/OMfZwz1YTXFvg8vvvhi1n0IgNixY4cQwvpt4Y9//KM4+OCDhdvtFrNmzRL//ve/07+bO3euWLhwYcbyDz/8sDjiiCOE2+0WRx55pHjqqacyfq/kGGFFxbwPhxxySNaar1y5UgghRE9PjzjllFNEfX29cLlc4pBDDhFLliwpugMrhWLeh8svvzy9bGNjozjttNPEG2+8kbG+odgeit0n3nvvPQFAPPvss4PWNRTbQq7jmvR3L1y4UMydO3fQc6ZPny7cbrcYP358Rm6Q5HtflbIJYcExJIiIiIioKBynjoiIiGgYYKgjIiIiGgYY6oiIiIiGAYY6IiIiomGAoY6IiIhoGGCoIyIiIhoGGOqIiIiIhgGGOiIiIqJhgKGOiIiIaBhgqCMiIiIaBhjqiIg0OnDgAEaPHo3rrrsu/di//vUvuN1urFu3roRbRkQjCed+JSLSwdNPP42zzjoL//rXvzBx4kRMnz4dZ555Jm666aZSbxoRjRAMdUREOrn00kvx/PPPY+bMmXj77bfx2muvwePxlHqziGiEYKgjItJJb28vpk6dil27dmHz5s2YNm1aqTeJiEYQXlNHRKSTjz76CHv27EEymcQnn3xS6s0hohGGZ+qIiHQQjUYxa9YsTJ8+HRMnTsQtt9yCt99+Gw0NDaXeNCIaIRjqiIh0cMUVV+DRRx/FW2+9hcrKSsydOxfV1dV48sknS71pRDRC8OtXIiKN1q9fj1tuuQV//etf4fP5YLfb8de//hUvv/wybr/99lJvHhGNEDxTR0RERDQM8EwdERER0TDAUEdEREQ0DDDUEREREQ0DDHVEREREwwBDHREREdEwwFBHRERENAww1BERERENAwx1RERERMMAQx0RERHRMMBQR0RERDQMMNQRERERDQMMdURERETDwP8DzCIIw3hnMdoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# define simulation domain size\n", "Lx = 3 * lda0\n", "Ly = 2 * lda0\n", "Lz = 2 * lda0\n", "sim_size = (Lx, Ly, Lz)\n", "\n", "# create an electrical point dipole source polarized in the y direction to excite the feed element\n", "d_dp = 0.004 # distance between the dipole and the feed element\n", "pulse = td.GaussianPulse(freq0=freq0, fwidth=freq0 / 20)\n", "pt_dipole = td.PointDipole(\n", " center=(0, L_f / 2 + d_dp, 0), source_time=pulse, polarization=\"Ey\"\n", ")\n", "\n", "# create a FieldProjectionAngleMonitor to perform the near field to far field transformation in spherical coordinates\n", "theta_array = np.linspace(0, 2 * np.pi, 200)\n", "phi_array = np.linspace(0, np.pi, 100)\n", "n2f_monitor = td.FieldProjectionAngleMonitor(\n", " center=(0, 0, 0),\n", " size=(2 * lda0, 1 * lda0, 1 * lda0),\n", " freqs=[freq0],\n", " name=\"n2f_monitor\",\n", " custom_origin=(0, 0, 0),\n", " phi=phi_array,\n", " theta=theta_array,\n", ")\n", "\n", "# create a flux monitor to calculate the total radiated power\n", "flux_monitor = td.FluxMonitor(\n", " center=(0, 0, 0),\n", " size=(Lx * 0.9, Ly * 0.9, Lz * 0.9),\n", " freqs=[freq0],\n", " name=\"power\",\n", ")\n", "\n", "# create the simulation with the above defined elements\n", "sim = td.Simulation(\n", " center=(0, 0, 0),\n", " size=sim_size,\n", " grid_spec=td.GridSpec.auto(min_steps_per_wvl=40, wavelength=lda0),\n", " structures=antenna,\n", " sources=[pt_dipole],\n", " monitors=[n2f_monitor, flux_monitor],\n", " run_time=1e-13,\n", " boundary_spec=td.BoundarySpec.all_sides(boundary=td.PML()),\n", ")\n", "\n", "# visualize the simulation setup\n", "sim.plot(z=0)\n", "plt.show()\n" ] }, { "cell_type": "markdown", "id": "820025da", "metadata": {}, "source": [ "For comparison, define an empty simulation with only the [PointDipole](../_autosummary/tidy3d.PointDipole.html). We will use this to show that the Yagi-Uda antenna exhibits a much higher directivity compared to a dipole radiation source." ] }, { "cell_type": "code", "execution_count": 6, "id": "4d0836a6", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:13:53.485339Z", "iopub.status.busy": "2023-03-27T21:13:53.485164Z", "iopub.status.idle": "2023-03-27T21:13:53.511323Z", "shell.execute_reply": "2023-03-27T21:13:53.509464Z" } }, "outputs": [], "source": [ "sim_empty = td.Simulation(\n", " center=(0, 0, 0),\n", " size=sim_size,\n", " grid_spec=td.GridSpec.auto(min_steps_per_wvl=40, wavelength=lda0),\n", " structures=[], # this simulation is identical to the previous one besides the structures is set to an empty list\n", " sources=[pt_dipole],\n", " monitors=[n2f_monitor, flux_monitor],\n", " run_time=1e-13,\n", " boundary_spec=td.BoundarySpec.all_sides(boundary=td.PML()),\n", ")\n" ] }, { "cell_type": "markdown", "id": "38a3a87d", "metadata": {}, "source": [ "Submit both the antenna simulation and empty simulation to the server." ] }, { "cell_type": "code", "execution_count": 7, "id": "f25b9b66", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:13:53.517315Z", "iopub.status.busy": "2023-03-27T21:13:53.516901Z", "iopub.status.idle": "2023-03-27T21:15:51.918290Z", "shell.execute_reply": "2023-03-27T21:15:51.917726Z" } }, "outputs": [ { "data": { "text/html": [ "
[08:56:24] Created task 'plasmonic_yagi_uda' with task_id                                             webapi.py:139\n",
       "           'fdve-514e0455-e2c9-4846-9fcf-0ccca2ccb881v1'.                                                          \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:56:24]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'plasmonic_yagi_uda'\u001b[0m with task_id \u001b]8;id=909651;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=262153;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-514e0455-e2c9-4846-9fcf-0ccca2ccb881v1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7be8c95fbd794704807fd3f588813ed1", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:56:30] status = queued                                                                            webapi.py:269\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:56:30]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=47162;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=20354;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:56:35] status = preprocess                                                                        webapi.py:263\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:56:35]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=36261;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=801761;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
[08:56:39] Maximum FlexCredit cost: 0.058. Use 'web.real_cost(task_id)' to get the billed FlexCredit cost webapi.py:286\n",
       "           after a simulation run.                                                                                 \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:56:39]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.058\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit cost \u001b]8;id=152461;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=547875;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mafter a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           starting up solver                                                                         webapi.py:290\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=364003;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=339454;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:56:40] running solver                                                                             webapi.py:300\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:56:40]\u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=224770;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=526880;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1dfca6121c594da7ad26af9788123978", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:57:18] early shutoff detected, exiting.                                                           webapi.py:313\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:57:18]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=68795;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=530497;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#313\u001b\\\u001b[2m313\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           status = postprocess                                                                       webapi.py:330\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=631856;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=490536;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#330\u001b\\\u001b[2m330\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:57:21] status = success                                                                           webapi.py:337\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:57:21]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=705298;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=893360;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#337\u001b\\\u001b[2m337\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "b92630795efc49b6a6966d0b87d0deb5",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:57:23] loading SimulationData from data/optical_yagi_uda.hdf5                                     webapi.py:512\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:57:23]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/optical_yagi_uda.hdf5 \u001b]8;id=626777;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=502913;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:57:23] Created task 'empty' with task_id 'fdve-d3f62060-e0f7-40a0-8299-d8a6ff7f2d42v1'.           webapi.py:139\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:57:23]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'empty'\u001b[0m with task_id \u001b[32m'fdve-d3f62060-e0f7-40a0-8299-d8a6ff7f2d42v1'\u001b[0m. \u001b]8;id=100147;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=68818;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f7dcb462702c4751b954918975b3f965", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:57:25] status = queued                                                                            webapi.py:269\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:57:25]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=154430;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=161620;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:57:27] status = preprocess                                                                        webapi.py:263\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:57:27]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=285224;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=496901;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
[08:57:32] Maximum FlexCredit cost: 0.025. Use 'web.real_cost(task_id)' to get the billed FlexCredit cost webapi.py:286\n",
       "           after a simulation run.                                                                                 \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:57:32]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.025\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit cost \u001b]8;id=998816;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=25899;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mafter a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           starting up solver                                                                         webapi.py:290\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=614201;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=377562;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:57:33] running solver                                                                             webapi.py:300\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:57:33]\u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=696029;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=248921;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "af5078ad6cf34111a680b223686bbc4f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:57:40] early shutoff detected, exiting.                                                           webapi.py:313\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:57:40]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=685527;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=672444;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#313\u001b\\\u001b[2m313\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:57:41] status = postprocess                                                                       webapi.py:330\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:57:41]\u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=532661;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=589662;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#330\u001b\\\u001b[2m330\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:57:43] status = success                                                                           webapi.py:337\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:57:43]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=163264;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=721813;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#337\u001b\\\u001b[2m337\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "cda8dadec2b14eb6a61a947b49764ce3",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:57:45] loading SimulationData from data/optical_yagi_uda.hdf5                                     webapi.py:512\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:57:45]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/optical_yagi_uda.hdf5 \u001b]8;id=720802;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=325795;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim_data = web.run(\n", " sim, task_name=\"plasmonic_yagi_uda\", path=\"data/optical_yagi_uda.hdf5\", verbose=True\n", ")\n", "sim_empty_data = web.run(\n", " sim_empty, task_name=\"empty\", path=\"data/optical_yagi_uda.hdf5\", verbose=True\n", ")\n" ] }, { "cell_type": "markdown", "id": "7a334ffc", "metadata": {}, "source": [ "## Postprocessing" ] }, { "cell_type": "markdown", "id": "d002725e", "metadata": {}, "source": [ "After the simulations are complete, we calculate the directivity of the Yagi-Uda antenna and the single point dipole. The directivity is given by\n", "\n", "
$D(\\phi,\\theta)=\\frac{4\\pi P(\\phi,\\theta)}{P_0}$,
\n", "\n", "where $P$ is the angular radiated power and $P_0= \\iint P(\\phi,\\theta) d\\Omega$ is the total radiated power.\n", "\n", "The result shows that the dipole has a directivity of around 1.5, which is expected for a dipole radiator. On the other hand, the Yagi-Uda antenna has a much higher forward directivity above 6. " ] }, { "cell_type": "code", "execution_count": 8, "id": "ff1fb3b0", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:15:54.167811Z", "iopub.status.busy": "2023-03-27T21:15:54.167680Z", "iopub.status.idle": "2023-03-27T21:15:54.502533Z", "shell.execute_reply": "2023-03-27T21:15:54.501552Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAHQCAYAAADK5pEiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hb5dmHb3lKXpK3vO14xSMecRJnLwJhQ0vLapmBUggU6EcZbaGhzNKyCpRV9iiUGSg7ZG87y45n4r0tb8vW1vn+cKXaiZ146Mh2cu7r0mVZ1nnfV7J0fud53mfIBEEQkJCQkJCQkDgOl8legISEhISExFRFEkkJCQkJCYkRkERSQkJCQkJiBCSRlJCQkJCQGAFJJCUkJCQkJEZAEkkJCQkJCYkRkERSQkJCQkJiBCSRlJCQkJCQGAFJJCUkJCQkJEZAEkkJiVGwbt06ZDLZZC9jCBNZk0wmY926dY5dkITEKYgkkhKnJW+++SYymcx+k8vlhIeHs3r1av7+97/T29s72UsEoL+/n3Xr1rF582ZR59m5cyfr1q2jq6tL1HkkJKYbMql2q8TpyJtvvsl1113Hn//8Z+Li4jCZTDQ3N7N582Z++OEHoqOj+eKLL8jIyADAbDZjNpuRy+VOXWdbWxvBwcH86U9/Os7ym8ia9Ho9bm5uuLm5AfC3v/2N3/3ud1RVVREbG+uAlUtInBq4TfYCJCQmk3POOYc5c+bYf7/vvvvYuHEj559/PhdeeCElJSUoFIohgjISVqsVo9HoNCEdzZpGwtliLyExXZHcrRISx7By5Uruv/9+ampqePfdd4Hh9/9kMhm33nor7733HmlpaXh6evLtt98C0NDQwPXXX09oaCienp6kpaXx+uuvHzeXXq9n3bp1JCUlIZfLCQsL46c//SkVFRVUV1cTHBwMwIMPPmh3DdssymPXlJ6ezooVK46bw2q1EhERwc9+9rMhax88zu9+9zsA4uLi7PNUV1ezbNkyMjMzh32fkpOTWb169WjeUgmJaYskkhISw3DVVVcB8P3335/weRs3buTOO+/ksssu49lnnyU2NpaWlhbmz5/Phg0buPXWW3n22WdJSEhgzZo1PPPMM/ZjLRYL559/Pg8++CA5OTk8+eST3H777XR3d3P48GGCg4N58cUXAfjJT37CO++8wzvvvMNPf/rTYddy2WWXsXXrVpqbm4c8vn37dhobG7n88suHPe6nP/0pV1xxBQBPP/20fZ7g4GCuuuoqCgoKOHz48JBj8vLyKC8v55e//OUJ3x8JiWmPICFxGvLGG28IgJCXlzfic5RKpZCdnS0IgiD86U9/Eo79ugCCi4uLUFRUNOTxNWvWCGFhYUJbW9uQxy+//HJBqVQK/f39giAIwuuvvy4AwlNPPXXc3FarVRAEQdBoNAIg/OlPfzruOceuqaysTACE5557bsjzbrnlFsHHx8c+r23tg8f861//KgBCVVXVkGO7uroEuVwu3HPPPUMe/81vfiN4e3sLWq32uHVJSJxKSJakhMQI+Pj4nDTKddmyZaSmptp/FwSBTz75hAsuuABBEGhra7PfVq9eTXd3N/v37wfgk08+ISgoiNtuu+24cceT2pGUlERWVhYffvih/TGLxcLHH3/MBRdcgEKhGPOYSqWSiy66iH/9618I/43xs1gsfPjhh1x88cV4e3uPeUwJiemEJJISEiOg1Wrx9fU94XPi4uKG/K7RaOjq6uKVV14hODh4yO26664DoLW1FYCKigqSk5PHHXwzHJdddhk7duygoaEBgM2bN9Pa2spll1027jGvvvpqamtr2bZtGwAbNmygpaXF7pKWkDiVkaJbJSSGob6+nu7ubhISEk74vGOtM6vVCsAvf/lLrrnmmmGPsaWViMFll13Gfffdx0cffcQdd9zBv//9b5RKJWefffa4x1y9ejWhoaG8++67LF26lHfffRe1Ws2qVascuHIJiamJJJISEsPwzjvvAIw5ejM4OBhfX18sFstJRSQ+Pp49e/ZgMplwd3cf9jljdbvGxcUxb948PvzwQ2699VY+/fRTLr74Yjw9PU943InmcXV15corr+TNN9/kL3/5C59//jk33ngjrq6uY1qbhMR0RHK3Skgcw8aNG3nooYeIi4vjF7/4xZiOdXV15ZJLLuGTTz45LiIUBtyxNi655BLa2tp4/vnnj3uebf/Py8sLYEyVcC677DJ2797N66+/Tltb26hcrba9xZHmueqqq+js7OSmm25Cq9VKUa0Spw2SJSlxWvPNN99QWlqK2WympaWFjRs38sMPPxATE8MXX3wxrqT7xx9/nE2bNpGbm8uNN95IamoqHR0d7N+/nw0bNtDR0QEM7PW9/fbb/Pa3v2Xv3r0sWbKEvr4+NmzYwC233MJFF12EQqEgNTWVDz/8kKSkJAICAkhPTyc9PX3E+S+99FLuuusu7rrrLgICAkblFs3JyQHgD3/4A5dffjnu7u5ccMEFdvHMzs4mPT2djz76iJSUFGbPnj3m90VCYloyucG1EhKTgy0FxHbz8PAQ1Gq1cOaZZwrPPvus0NPTM+T5I6WArF27dtjxW1pahLVr1wpRUVGCu7u7oFarhTPOOEN45ZVXhjyvv79f+MMf/iDExcXZn/ezn/1MqKiosD9n586dQk5OjuDh4TEkdWO4NdlYtGiRAAg33HDDsH9nmLSShx56SIiIiBBcXFyGTQd54oknBEB49NFHhx1TQuJURKrdKiEhMSqeffZZ7rzzTqqrq4mOjp7s5UhIOAVJJCUkJE6KIAhkZmYSGBjIpk2bJns5EhJOQ9qTlJCQGJG+vj6++OILNm3aRGFhIevXr5/sJUlIOBXJkpSQkBiR6upq4uLiUKlU3HLLLTzyyCOTvSQJCaciiaSEhISEhMQISHmSEhISEhISIyCJpISEhISExAhIIikhISEhITECkkhKSEhISEiMgCSSEhJTgBdeeIHY2Fjkcjm5ubns3bvX/reysjIWLVpEZGQkDz/88CSuUkLi9EMSSQmJSebDDz/kt7/9LX/605/Yv38/mZmZrF692t538tZbb+WXv/wl69evZ/369ezcuXOSVywhcfogiaSExCTz1FNPceONN3LdddeRmprKSy+9hJeXF6+//joAnZ2d5OTkkJGRQXh4+Jg6gkhISEwMSSQlJCYRo9HIvn37hnTqcHFxYdWqVezatQuAP//5z6xatQovLy9cXFzG3ONSQkJi/Ehl6SQkJpG2tjYsFguhoaFDHg8NDaW0tBSAc889F41GQ09PD8HBwZOxTAmJ0xbJkpSQmAZ4enpKAikhMQlIIikhMYkEBQXh6upKS0vLkMdbWlpQq9WTtCoJCQkbkkhKSEwiHh4e5OTk8OOPP9ofs1qt/PjjjyxYsGASVyYhIQHSnqSExKTz29/+lmuuuYY5c+Ywb948nnnmGfr6+rjuuusme2kSEqc9kkhKSEwyl112GRqNhgceeIDm5maysrL49ttvjwvmkZCQcD5SqywJCQkJCYkRkPYkJSQkJCQkRkASSQkJCQkJiRGQRFJCQkJCQmIEJJGUkJCQkJAYAUkkJSQkJCQkRkASSQkJCQkJiRGQRFJCQkJCQmIEJJGUkJCQkJAYAUkkJSQkJCQkRkASSQkJCQkJiRGQRFJCQkJCQmIEJJGUkJCQkJAYAUkkJSQkJCQkRkBqlSUhISJarRaNRkNvby+9vb1otdph7/f19WG1Wu23l19+mYSEBM444wxcXFxwcXHBzc0NX19ffHx88PX1Hfa+n58fISEheHp6TvZLl5A4JZBEUkJiHFgsFurq6qisrKSxsZGmpiYaGxuH3FpaWujr68PV1RUvLy+8vb3x8vIacvP29sbb2xu5XI6bm5tdEMPCwvDy8sJisWA2m7FarZjNZurr6+nr66O/v5/+/v4h9203QRDw9/dHrVYTFhZGeHg4kZGRhIWFERYWRkREBAkJCQQHByOTySb7rZSQmNJI/SQlJEZAEAQ0Gg3l5eWUl5dTVlZmv1VWVmK1WlGr1QQFBRESEkJISAhqtdouStHR0cTExBASEoKLy9h2NkwmE19//TXnnnsu7u7uoz7ObDZTV1dHbW0tdXV1NDQ02EVco9HQ1tZGS0sLGo0GPz8/EhISSE5OZubMmSQlJZGUlERiYiK+vr5jfbskJE5JJJGUkGDAMiwvL2ffvn3k5+eTl5fH4cOH6enpITQ0lOjoaGJjY0lMTCQlJYX09HRSUlJEc2uOVyRHS3d3N4WFhRQVFVFaWsrRo0epqamhpqaGnp4e1Go1WVlZzJ07l5ycHHJycoiIiJhSlqfFYmHdunW8++67NDc3Ex4ezrXXXssf//jHKbVOiemNJJISpx1Wq5XS0lLy8/PtglhQUIDVaiUpKYnU1FRmz55Nbm4umZmZKJVKp69RbJE8EU1NTezfv589e/Zw4MABSkpKqKqqIiAggNmzZ9uFc+7cuURGRjp1bYN59NFHeeqpp3jrrbdIS0sjPz+f6667jkceeYTf/OY3k7YuiVMLSSQlTnmsViuHDx9m8+bNbNy4kS1btqDX60lOTiYtLY2cnBwWLlzI7Nmz8fDwmOzlApMrksPR3d3Nrl272LVrl104KysriY6OZsWKFaxYsYLly5cTFRXltDWdf/75hIaG8tprr9kfu+SSS1AoFLz77rtOW4fEqY0UuCNxymG1WikqKjpOFLOysli4cCE333wzy5cvlyJAx4BSqeTss8/m7LPPtj/W3t7Od999x48//shf/vIXrrvuOqKioli5ciUrVqxg2bJloormwoULeeWVVygvLycpKYlDhw6xfft2nnrqKdHmlDj9kCxJiVOC3t5evv/+e9avX89XX31Ff3+/XRTPOuusaSeKJ7MkLRYLJpNpElY2Mp2dnezYsYOdO3dSWFhIRUUFkZGRnHHGGaxcuZLs7Gzc3Bx3XW61Wnn66af55z//iaurKxaLhTvuuIObbrrJYXNIjB93d3dcXV0nexkTRhJJiWlLXV0dX375JevXr2fz5s2Eh4ezYsUKfvrTn3LmmWdOK1E8lpFEUhAEmpub6erqmrzFjRKLxYJOp6O/vx+DwQCAQqGw38Ya8XssfX19dHZ24u/vj7u7O0aj0f67j4+PI16CxARRqVSo1eppHUgluVslpg2CIFBQUMAnn3zC+vXrKSoqIisrizPPPJPHH3+c7OzsyV6i6NgEMiQkBC8vr2lz8hEEAa1WS09PD319fej1ery8vPDz88PX13dce8FlZWWkpqYSGBhof6y1tZWuri7i4uIcuXyJMSIIAv39/bS2tgIQFhY2ySsaP5JISkx5ampqeO+993jnnXeoqalh8eLFrFmzhksvvRS1Wj3Zy3MaFovFLpCDhWG6oFAoCA4OBqC/v5/Ozk66u7tpbm7Gx8eHwMBA/P39R+2iEwQBd3d35HK5/TF3d3dkMtmQxyQmB4VCAQxcuISEhExb16skkhJTks7OTj766CPeeecddu/eTW5uLrfccgtXX331pKRkTAVse5BeXl6TvJKJY6s4FBERgV6vp62tjebmZmpqalCpVAQGBuLn53dCl6xSqaSpqQkPDw8UCgX9/f20tLQQFBTkxFcicSJsn1WTySSJpITERDEajXz55Ze8/fbbfPPNNyQlJXHJJZfw/vvvOzW1YKozXVyso0UulxMZGUlkZCR9fX20tbVRU1OD1WolICCAwMBAvL29j3vd0dHRNDQ0UFtbi8lkwsPDg+Dg4Gnt2jvVOBU+q5JISkw6lZWVvPzyy7z22mvI5XIuvvhi9u7dS1ZW1mQvTcLJ2GrZRkdH093dTXt7O+Xl5XYBDAwMtEfIurq6Eh0dTXR09CSvWuJURmqVJTEpWCwW1q9fz5lnnsnMmTPZv38/L774IjU1NTz//POSQJ7myGQyVCoV8fHxZGZmEhQURFtbG4cOHaKqqoq+vr4hz1++fDl33HGHaOuJjY3lmWeeEW18iamLJJISTqW9vZ3HH3+cuLg4brrpJtLT0ykvL+eHH37g5z//+bTdt5AYGUEQWLVqFatXrz7ub//4xz9QqVTU19ePeLyrqytqtZq0tDSSkpKwWq2UlZVRUlJCe3s7VquVTz/9lIceeuiE65DJZHz++efHPX7ttddy8cUXj/VlTQrTaa2nCpJISjiFI0eOcOONNxIREcHHH3/M/fffT21tLU8//TSxsbGTvTwJEZHJZLzxxhvs2bOHl19+2f54VVUVd999N88999yoa8D6+voSHx/PrFmz8PPzo6GhgYKCAvR6vT2aUkLCkUgiKSEqBw8e5NJLLyU9PZ3m5mY2bdpEfn4+N95445SpkyohPlFRUTz77LPcddddVFVVIQgCa9as4cwzz2Tz5s3ExcWhUChITk7m2WefHXKs2WzmN7/5jT3q9Z577uGGG25g7dq1zJo1i6ioKC6++GKuvvpq6uvrJ1yJqLW1lQsuuACFQkFcXBzvvffecc956qmnmDVrFt7e3kRFRXHLLbeg1WpPOO7JjnnzzTdRqVR89913pKSk4OPjw9lnn01TUxMA69at46233mL9+vXIZDJkMhmbN28GBgprXHrppahUKgICArjooouorq62j22zQP/2t78RFhZGYGAga9euHfJexcbG8uijj3L99dfj6+tLdHQ0r7zyypDXcM8995CUlISXlxczZszg/vvvn3KVnxyNJJISorBt2zbOPvtsFixYgJubG4cOHeLLL79kwYIFk720UwpBEOg3miflNtZiXddccw1nnHEG119/Pc8//zyHDx/mlVdeITIyko8++oji4mIeeOABfv/73/Pvf//bftxf/vIX3nvvPd544w127NhBT0+P3W0qk8kIDAzEy8sLpVKJVquloKCAmpoae5WfsXLttddSV1fHpk2b+Pjjj/nHP/5hT4q34eLiwt///neKiop466232LhxI3ffffcJxx3NMf39/fztb3/jnXfeYevWrdTW1nLXXXcBcNddd3HppZfahbOpqYmFCxdiMplYvXo1vr6+bNu2jR07dtgF1mg02sfetGkTFRUVbNq0ibfeeos333yTN998c8j8Tz75JHPmzOHAgQPccsst3HzzzZSVldn/7uvry5tvvklxcTHPPvssr776Kk8//fR43uZpgxTdKuEwBEHg66+/5pFHHqGwsJArr7yS8vJyKX1DRHQmC6kPfDcpcxf/eTVeHmM7hbzyyiukpaWxdetWPvnkE4KDg3nwwQftf4+Li2PXrl38+9//5tJLLwXgueee47777uMnP/kJAM8//zxff/31cWN7enoyc+ZMtFotjY2NHD58GH9/f8LCwkbtii0vL+ebb75h7969zJ07F4DXXnuNlJSUIc8bHCQUGxvLww8/zK9//Wv+8Y9/jDj2aI4xmUy89NJLxMfHA3Drrbfy5z//GQAfHx8UCgUGg2FIEY13330Xq9XKP//5T3vKxRtvvIFKpWLz5s2cddZZAPj7+/P888/j6urKzJkzOe+88/jxxx+58cYb7WOde+653HLLLcCA1fj000+zadMmkpOTAfjjH/845DXcddddfPDBBye9QJjOSCIpMWEEQeDbb7/l3nvvpb6+nuuuu44vvvhCSuqWOI6QkBBuuukmPv/8c3sAygsvvMDrr79ObW0tOp0Oo9Foj27u7u6mpaWFefPm2cdwdXUlJycHq9U67Bx///vfefTRR4GBz+a///1v+0n+ZJSUlODm5kZOTo79sZkzZ6JSqYY8b8OGDTz22GOUlpbS09OD2WxGr9fT398/YrGH0Rzj5eVlF0gYKOd2rBV7LIcOHeLo0aP4+voOeVyv11NRUWH/PS0tbUhgXFhYGIWFhUOOycjIsN+XyWSo1eoh83/44Yf8/e9/p6KiAq1Wi9lsxs/P74Trm+5IIikxIXbv3s3dd99NQUEBt9xyC7///e+l4tJOROHuSvGfj48addbc48HNzc2e6/jBBx9w11138eSTT7JgwQJ8fX3561//yp49e8a9rl//+td2KxRArVbT0tKCt7c3FRUVGI3GIfvhXV1dY6riVF1dzfnnn8/NN9/MI488QkBAANu3b2fNmjUYjcZhRXK0xxzb8UUmk53Ura3VasnJyRl279RWBnCksY+90DjRc3bt2sUvfvELHnzwQVavXo1SqeSDDz7gySefPOH6pjuSSEqMi5KSEu677z6+//57rr76aj799FPJcpwEZDLZmF2eU4kdO3awcOFCu4sPGGL9KJVKQkNDycvLY+nSpcBAju3+/ftHzKUNCAggICBgyGM+Pj4kJydz6NAhCgsLCQkJISwsDJlMxqFDh7jhhhuAAavRbDazb98+u7u1rKxsSNeVffv2YbVaefLJJ+1l8wbvoQ7HeI4ZDg8PDywWy5DHZs+ezYcffkhISIioVt3OnTuJiYnhD3/4g/2xmpoa0eabKkzfb5fEpFBXV8e6det47733uOiiiygqKpI6LowCi8WC0WjEbDYfd7NYLJjNZqxWq91qqKurAwZSZ1xdXe17TWazGaPRaHeb2aIcB9+mE4mJibz99tt89913xMXF8c4775CXlzfkM3Xbbbfx2GOPkZCQwMyZM3nuuefo7Owc82u96667WLNmDVlZWaSkpLBjxw7Wr19PZ2enXSSTk5M5++yzuemmm3jxxRdxc3PjjjvuGLKnmZCQgMlk4rnnnuOCCy5gx44dvPTSSyecezzHDEdsbCzfffcdZWVlBAYGolQq+cUvfsFf//pXLrroIv785z8TGRlJTU0Nn376KXffffeo02tORmJiIrW1tXzwwQfMnTuXr776is8++8whY09lJJGUGBW9vb089NBDPPfccyxdupQ9e/aQmZk52cuaEhiNRrRaLf39/ej1egwGA3q9fsjNbDYDA/tpNnejm5vbkN9dXFzsJ35bRZn+/n77YxaLBQ8PjyEh94IgDHHH2YTSxcXFPt7gn4MFdypw0003ceDAAS677DJkMhlXXHEFt9xyC5999hn5+fkAnHHGGRQUFPCLX/wCNzc3fv3rX7N69eoxF5644oorEASBp556ivLycnvKyauvvoqrqyuCINhzOm+44QaWLVtGaGgoDz/8MPfff799nMzMTJ566in+8pe/cN9997F06VIee+wxrr766hHnHs8xw3HjjTeyefNm5syZg1arZdOmTSxfvpytW7dyzz338NOf/pTe3l4iIiI444wzHGpZXnjhhdx5553ceuutGAwGzjvvPO6//37WrVvnsDmmIlLTZYkTIggCH374IXfeeSdhYWE89dRTLF++fLKX5XQsFgtardZ+6+vrs983mUx4enri5eWFXC4/7ubp6YlcLsfDw2PUAjVc02W9Xk9VVRVxcXHHtYKyiaXVarVbpMf+tLnpZDIZrq6udiEdfH+qCOixuXc6nY7y8nKSk5Px9vYmJSWFSy+99KRVdk6GIAhoNBp7N5Ho6Gi8vb0nNKbE/zjRZ3a6IFmSEiNSVFTE2rVrOXz4MA888AC33nrrhLvJTwcsFgs9PT10dXXR1dVFd3c3PT09uLq64uPjY7+FhITg4+ODt7f3cQEPzmawBTkSg4XUYrHYfxqNRntwhs2ydXV1tYvnZAjn4PezpqaGDz74gNTUVDw8PHjhhReoqqriyiuvnPA8MpnM3p+zvr6e0tJSgoKCiIiIsAcXSZzeSJ8CiePo7e1l3bp1vPDCC1x22WV88skn07LJ72jp7++nra2N9vZ2urq66O3txc3NDZVKhUqlIikpCaVSiZeX15SxtMbDYCE9VgBslqbtZjAY7JbnYOG0uYWdzb/+9S8qKysBSE9PZ8OGDcflLk4EV1dXYmJiCA4OpqamhsOHDxMREUFQUNC0/p9LTBxJJCXsCILABx98wG9/+1vCwsLYtGnTKVkhxyaKNmHU6XT2kmfJycmoVCoUCsVpdXKUyWRDUjMAu9VpCy7S6/VYrVani6avry///Oc/ycjIEL2UoZeXFzNnzqStrY3Gxkba2tokF+xpjiSSEsCAS2vNmjUcPHjwlHOtms1mNBoNzc3NtLW12UUxKCiIzMxMAgICJNfaMNj2LgcHyNhE05YIP1g03d3dRQkMamtrQ6lUOq3Wr0wmIzg4mICAALsLNjg4mIiICKlLzWmIdGY4zREEgVdffZX/+7//48wzz7TvyUx3dDodLS0tNDc3o9FoUCgUqNVqSRQniIuLCx4eHnbBsommyWSyR+TaBNPd3X3CgmkwGOjp6SEhIWHCax8rNhdsUFAQ1dXVFBcXExcXJxXLOM2QzhSnMbW1tVx//fX2QtNXXHHFZC9pQvT29tLY2EhzczPd3d34+/vb+xD6+PicVu5TZzFYNG37miaTyV5ubbBgjscz0d7ejru7+5gq4jgab29vUlNTaWhooLy83G5VniqeFokTI4nkaYggCPzzn//k//7v/zjjjDM4fPjwtLUedTodDQ0N1NfX09vbS2hoKHFxcYSGhuLp6TnZyzutGLyvqVAo7IJpNBrR6XS4ubnh4eExagtTEATa2toIDAyc9AscmUxGZGQk/v7+VFdX09XVJVmVpwmSSJ5m1NXVsWbNGg4dOsRLL73kkDB6Z2MymWhqaqK+vt5+Eo2LiyM8PHzSUzEk/odtP1Mulx9nYbq7u+Ph4YGbm9uIAtjT04PRaJxSF3CSVXn6IYnkacQHH3zAr371K7v1OLj48VTHZlXU1NTQ1NSEr68vkZGRZGdnSx3ppwE2wfT09LQLZn9/P4DdXXtsUIxSqWTOnDmTsdwTcqxV2d3dzYwZM0bs/iExvZFE8jRAp9Nx++238+GHH/Lss89y3XXXTfaSRo3RaKS2tpbq6mpMJhPR0dEsW7bslG/Pc6oy2CUrl8vttWhtuam+vr58+umn9t6RjmD58uVkZWXxzDPPOGxM+J9VWVdXR2lpKZGRkQQHB0+6a1jCsUg+ghPw4osvkpGRgZ+fH35+fixYsIBvvvnG/vdXXnmF5cuX4+fnh0wmG9IpwEZsbOxxBagff/zxIc959dVXiYmJITs7e0ItgoajpKSEOXPmsGfPHvbu3TttBLK7u5sDBw7w/fff09TUxMyZMznrrLNIS0uTBHIacu2119o//+7u7oSGhnLWWWfxzjvvoFAo8PPzw83NjfLychYtWoROpxuxX+RUQiaTER0dTVxcHI2NjVRWVtrr9DqDpqYm8vPzqa2ttT9WVlZGfn7+kNux3Tq6urooLCzk8OHDw563JP6HZEmegMjISB5//HESExMRBIG33nqLiy66iAMHDpCWlkZ/fz9nn302Z599Nvfdd9+I4/z5z38e0v17cHPU2tpannjiCT744AMaGhq47rrrKC4udsj633rrLdauXcsVV1zB888/P+UDWQRBoLm5maNHj9Ld3U1kZCRLliyZ1MhGCcdx9tln88Ybb2CxWGhpaeHbb7/l9ttv5+OPP+aLL75ALpeTkJCA2Wy2p364u7vj6ek55VN2/P397f0qi4uLiY+PF70AQV9fnz296VhspfVsDN4ztVqt1NbWEhsbCwz0uvTz85P2VUdAeldOwAUXXMC5555LYmIiSUlJPPLII/j4+LB7924A7rjjDu69917mz59/wnF8fX1Rq9X22+AvT09PDyqVioyMDHJyctDpdBNet1ar5Ze//CV33nknr732Gq+++uqUFkjbl3bTpk0cOnQItVrNWWedRVZWliSQpxCenp6o1WoiIiKYPXs2v//971m/fj3ffPMNb775JjBwMv/qq6/w8fGhvb0dHx8f3nrrLXJzc5HL5aSnp7Nly5Yh427ZsoV58+bh6elJWFgY99577wmtOYPBwF133UVERATe3t7k5uayefPmCb8+Dw8PZs6cib+/P2VlZbS0tJy0YfJ4sVgsVFZWEhsbO+wFhIuLiz31xlbkwYZtTQqFwi6wUp+LkZnal2dTCIvFwkcffURfX9+YS7U9/vjjPPTQQ0RHR3PllVdy55132j/Y6enpZGRk2CuKvPrqqxNa5+HDh/npT3+KUqkkLy+P+Pj4CY0nJhaLhZqaGo4ePYqLiwsJCQlERUVJVU3GgiCAqX9y5nb3ggnuv61cuZLMzEw+/fRTe09HG7bPwbp163jiiSeYMWMGL774IhdccAGVlZUEBQXR0NDAueeey7XXXsvbb79NaWkpN954I3K5fMQWTrfeeivFxcV88MEHhIeH89lnn3H22WdTWFhIYmLihF6PTCYjKioKPz8/qqur6enpIS4uzuGWcG1tLSqVCj8/P5qamo77e0dHBx0dHfYc07CwMPv76erqSlBQEAUFBQBSJaGTIInkSSgsLGTBggXo9Xp8fHz47LPPSE1NHfXxv/nNb5g9ezYBAQHs3LmT++67j6amJp566in7c1577TWeeOIJvLy8JhSp+fnnn3PVVVdx9dVX8+yzz05ZF5XJZKKqqorKyko8PT1JS0sjPDxcCngYD6Z+eDR8cub+fSN4TNylOHPmTPsJezhuvfVWrrjiCqxWK2lpaWzYsIF//OMf3HvvvbzwwgtERUXx/PPPI5PJmDlzJo2Njdxzzz088MADx7kQa2treeONN6itrSU8fOB9u+uuu/j222954403ePTRRyf8emAgMjc1NZWKigpKSkpITEx0WKuojo4O+vv7RyzwHhAQYM9H1el01NfXo9frh1QtCg8PJyQkxF56UGJkpuZZdAqRnJzMwYMH6e7u5uOPP+aaa65hy5YtoxbK3/72t/b7tgLNN910E4899tgQF+hEumwIgsDDDz/M448/zrPPPnvcFflUwWKxUF1dTXl5OT4+PmRnZ9u/qBKnL7ZmxyNh89y4uLjg4+PD3LlzOXr0KDqdjsLCQnJzc4c8f9GiRWi1Wurr64mOjh7yt8LCQiwWC0lJSUMeNxgMDu904+7uTnJyMjU1NZSUlDBjxowJbx/Yor2TkpJG3EMcnNrl5eWFu7s75eXl6PX6IUI9VS+ipxrSu3QSPDw87FdgOTk55OXl8eyzz/Lyyy+Pa7zc3FzMZjPV1dUkJydPeH39/f1cc8017Nixg++++47FixdPeExHIwiCPUze3d2d2bNnS+LoKNy9Biy6yZrbAZSUlBAXFzemY1xdXe3BJmazGa1Wi0KhOOmJX6vV4urqyr59+46zoMSoniOTyYiNjUWhUFBRUUF4eDihoaHj/uz39fVhNpuPC+7r7e2ltbWVnJyc48a2xUAYDIZp2/h4MpFEcoxYrVYMBsO4jz948CAuLi6EhIRMeC11dXVccMEFuLi4sHfvXiIjIyc8piMRBIGWlhaKi4uxWCykpKQQGRkpiaMjkckc4vKcLDZu3EhhYSF33nnniM/ZvXs3S5cuBQY6uuzbt49bb70VmUxGeno6n3zyCa6urmi1Wtzc3Ni2bZu92MSxZGdnY7FYaG1tZcmSJaK9rmMJDQ1FoVBQWVmJTqcjJiZmXNGkfn5+pKWlDXmsqqoKuVxOWFjYsN8tWzCgVI1qfEgieQLuu+8+zjnnHKKjo+nt7eX9999n8+bNfPfddwA0NzfbUxZgwJXj6+tLdHQ0AQEB7Nq1iz179rBixQp8fX3ZtWsXd955J7/85S/x9/ef0Np27tzJRRddxLJly3j33Xen3BViZ2cnhw8fRqvVkpycTGxsrBRifppjMBhobm4ekgLy2GOPcf7553P11VePeNwLL7xAYmIiKSkpPP3003R2dnL99dcDcMstt/DMM89w9913c8stt3D48GHWrVvHrbfeOuxYSUlJ/OIXv+Dqq6/mySefJDs7G41Gw48//khGRgbnnXeeKK8dBgRu5syZVFRUUFZWRnx8/Jjbf7m6uh4Xt2BrVaZQKNDr9XR0dKBUKnFzc0On01FXV4ePj49UEWi8CBIjcv311wsxMTGCh4eHEBwcLJxxxhnC999/b//7n/70JwE47vbGG28IgiAI+/btE3JzcwWlUinI5XIhJSVFePTRRwW9Xj+hdb377ruCQqEQ1q1bJ1gslgmN5Wj0er1w4MAB4csvvxRKSkoEo9E42UualhiNRuHzzz8f8v7pdDqhuLhY0Ol0k7iy8XHNNdfYvx9ubm5CcHCwsGrVKuH1118f8hkGhM8++0wQBEGoqqoSAOH9998X5s2bJ3h4eAipqanCxo0bh4y9efNmYe7cuYKHh4egVquF3/3ud0JXV5fQ2dkp6HQ6YdmyZcLtt99uf77RaBQeeOABITY2VnB3dxfCwsKEn/zkJ0JBQYEz3grBbDYL5eXlwsGDB4W+vr4Jj1daWirU1NQIgiAIBoNBKCkpEQ4cOCDk5+cLBQUFQl1dnWA2myc8z3iYzp9ZGzJBkBJkphN/+9vfWLduHa+//jqXXnrpZC/HjiAIVFdXU1JSQmBgIOnp6VI39xGwNSzW6/WYzWasViuCINhvVquVpqYmWlpayMjIsBcBt1qt9PT0EBMTg0KhQCaT4eLiMi3d10ajkfr6enp6erBYLMjlcmJjY4d8Zqqrq4mLi+PAgQNkZWWNeQ6TyWR3NSoUiinlbhT+u0/f3t5OQkLCkAIjpxJ6vZ6qqiri4uKmnLdrtEju1mmC1Wrl7rvv5vXXX+c///kPy5cvn+wl2eno6KCgoACz2UxOTg6hoaGTvSSnIwjCEPEzGAz2+7bfdTodBoMBs9mMTCZDLpfb20bZxM52a2trA6ChocE+viAI+Pr6YjAY7MIK2I+xjeHi4jLk/lQTU7PZTGlpKb6+viQmJuLm5oZer3d4KoK7uztubm4YDAb6+vpwd3dHoVBMCbe/rZydu7s7R44cIS4ubsJbMBLiIInkNMBkMnHdddexadMmNm7cOK6rajEwGo0UFRXR0NBAYmIiCQkJp0XOlSAI9Pb20tXVRXd3N11dXfT09GA2m3FxcUEul9tvnp6e+Pn5HfeYh4fHCUXLZDLx9ddfk5uba7eAbFflPj4+yOXyIZan7aftvslkGvI3wJ4TN/g2GeLZ3NyMh4fHkIhWsSpC2S5GPDw80Ol09PT02P8HU+GiISwsDHd3d6qqqjCbzdOqM8/pgiSSU5y+vj4uueQSKisr2bFjh73e4mTT1NTEoUOHUKlUrFy58pQNCrBarWi1Wrq6uuy3np4eYCBhXKlUEhMTg1KpxMvL64T9ER3NYAvyRAwWU4vFgtlsxmQyYbVaJ0U4u7q6UCqVVFRU0Nvbi4eHB8HBwccJRGxsrMPKpbm4uODt7W13wZpMJry8vKbERV1QUBBubm5UVlZiMplGjFKVmBwkkZzCtLW1ce6552K1Wtm5c+eUaD5rNBopLCykpaWF9PR0oqKiTqkvdH9/PxqNZoiFCAOCqFKpiIuLQ6lU4uvrO21e92AxdXNzs1ttgiBgsVjsN71eP6xwurm5OdRFaTAYaG1tJTQ0lLCwMPr6+qitrUUmk4n+Gbe5YPV6Pb29vVPGqlSpVCQlJXH06FF7S7jJXpPEAJJITlHq6+s544wziI6O5vPPP58SQTDNzc0cPHgQlUrFihUrTolmx4Ig0NXVZU/n6e3txd/f3y6IKpUKHx+fKXXCcpR1Nbi34+CxhxNO2/OOLZY9Xry8vOx5jF5eXuh0OjQajVMuBGUymT2Qp7+/f8pYlT4+PiQnJ3PkyBEqKiqYMWPGlNg/nQinQlyoJJJTkNraWpYtW0Z2djb//ve/J7181KlmPZrNZtra2uzCaLVaCQkJITExkdDQ0CkVBTkY27r6+/tFu0AZTjgHu2j1ev2QDhOurq5j/izYAmgGI5fL6ezsdMhrGC22Js9TyapUKBTMnDmT8vJyKioqiI+Pn9ZC2d8/UHx/qn6nRoMkklOM6upqli1bRm5uLv/6178m/eq2vb2d/Px8lErltLYe9Xo9LS0tNDc3o9FokMvlqNVqcnJyCAwMnBYnIldXV1QqFa2trcCABebME7rN7Wo2m9HpdGi1Wvvjrq6u9kjdk6FQKOjv70ev19sf6+vrs7tBnY3twkCr1dLX1zclImBjYmKoqqqivLyc6OjoSV/PWBEEgf7+flpbW1GpVJN+HpsIkkhOIaqqqliyZAlLlizhvffem9QvhiAIlJeXc+TIEdLS0oiNjZ121qNWq6WhoYHm5ma6u7vx9/dHrVaTkpIyrfYUB6NWqwHsQjmZDA4GskXWDt7LHOn9tVXe6enpwcvLC6PRSHt7O4GBgVRVVTn5VfwPW1SwxWLBw8Nj0k/sLi4u9s/vdK11rFKp7J/Z6YokklOE6upqli5dyuzZs3n44YcnVSD1ej379u1Dp9OxZMmSadX42GKx0NTURE1NDR0dHYSEhBAXF0doaOiUbjw9WmQyGWFhYYSEhGAymSZ7OUPo6+ujra2N1tZWtFotISEhhIeHo1KpjjvBNzU18cADD1BdXU1kZCTXXnsty5Ytm6SVD6WpqYmysjLCw8NJSEiYtO+i1Wqlra2NBx98kIiICP7xj3+MuYzdZOKo/evJRqq4MwWora1l6dKlzJ8/n+eff549e/aQmpo65s4IjqC1tZX9+/cTHBxMRkbGtNlL6O3tpaamhrq6Otzd3YmJiSE6OnraCqMtT/Lcc8+dNv+DwfT09Nj/H56ensTExBAVFTVt/h9arZb8/HxkMhlz5sxxeuCc1Wpl//799PT0kJyczFlnnUVsbCyfffbZtBLKUwFJJCeZ+vp6li5dypw5c+x7kB0dHezatcupQmm1WiktLaWyspJZs2ZNixB0q9VKc3MzlZWVdHZ2Eh4eTkxMDIGBgVN+7SdjuoukjWMt+7CwMGbMmEFAQMBkL+2kWCwWioqKqKurIzs7296kWWwGC+SiRYvw9PSkpaWF5cuXk5iYyCeffDKtPxPTDUkkJ5H29nYWLVpESkoKH3/88RDXhDOF0mg0kp+fj06nY+7cufj5+Yk630QxGo3U1NTY969mzJhBdHT0KXWFfaqI5GC0Wi1VVVXU1NTg5+fHjBkzCA8Pn/JBKY2NjRw4cIC4uDhSUlJEvQAbTiBtNDc3s3TpUubOncs777wz5d+3UwVJJCeJvr4+Vq5cibe3N99///2waR7OEMre3l727NmDr68vs2fPntIn5N7eXiorK6mrq0OlUjFjxgzUavUpebI4FUXShslkora2lqqqKiwWC7GxscTGxk5pV6wzvicnEkgb1dXVLFq0iMsvv5wnn3zS4WuQOB5JJCcBk8nERRddRHNzM9u2bTvhfoeYQtnS0kJ+fr5TrpAnQl9fH6WlpTQ2NhIREUF8fPy0CiYaD6eySNoQ/tuUu6Kigs7OThISEoiPj5+yr9fmcdHr9eTm5jp0n3I0Amnj0KFDrFixgvvuu4/f/e53DluDxPBIIulkBEHg2muvZefOnezcuXNUBY0dLZSCIFBRUUFpaSlZWVnDdnCfCuj1esrLy6mpqSEyMpLk5ORTtkbssZwOIjmY9vZ2iouL0Wq1JCUlERsbOyUjI61Wq32fcu7cuQ4pSD4WgbSxefNmzj//fF588UWuuuqqCa9BYmQkkXQy9957L++88w5bt24lPj5+1Mc5SigtFgsHDx6kra2NefPmTcn2PCaTiYqKCo4ePUpwcDApKSlTfp/U0ZxuIgn/syyLi4uxWCzMnDmTyMjIKenhqKmpobCwkNTUVGbMmDHuccYjkDY++ugjrrnmGj755BPOOeecca9B4sRIeZJO5Omnn+bll19m48aNYxJIgICAABYsWMCuXbsAxiWUJpOJPXv2YLFYWLZs2ZRrgmqxWKiurqa8vBxfX18WLlw4LaIgJRyDTCZDrVYTGhpKfX09JSUlHD16lJSUFEJDQ6eUWMbExODj48PevXvR6XSkpqaOeX0TEUiAn//857S3t/Pzn/+cH3/8kdzc3DEdLzE6JJF0Eh988AH3338/69evJzs7e1xjTEQo9Xo9u3btQqFQMH/+/EmvBzsYQRCor6+ntLQUNzc3srOzp9xJUcJ5yGQyoqKiCA8Pp7q6mgMHDuDr60tqauqUumgKDAxkyZIl7Nq1C71eT3Z29qiDyCYqkDZ+/etf09TUxDnnnMOuXbtITk4e1zgSIyO5W53A3r17WbFiBf/85z+54oorJjzeWF2vWq2WXbt2ERgYSFZW1pSJBrW510pKSjCZTKSkpExZ95qzOR3drSMx1d3vtgtQuVzO3LlzT3oB6iiBHMyNN97I5s2b2bt375TcQpnOSCIpMo2NjcyePZsbbriBhx9+2GHjjlYoOzs72b17N9HR0eNyCYlFb28vhw4dore3d0oHakwWkkgez+BArqioKNLS0qbMe2PbyrBarcyfP3/EnF0xBBIGtipWrlyJp6cnX3/99ZTyFE13poZJcYqi0+m48MILmT9/Pn/+858dOrbN9VpcXDxiUejW1lZ27txJYmIiaWlpU0IgBUHg6NGjbNmyBZVKxapVq4iPj5cE8hRh3bp19ibPttvMmTMdMrZcLicjI4OVK1fS39/Pxo0bp0ShdxioU7pgwQLkcjnbtm2zt4gajFgCCQMdYj799FOOHj0qpYU4GOlyQyQEQWDNmjUYjUbef/99UVycJ9qjbGxsZP/+/WRmZhIVFeXwucdDb28vBw4cwGg0smDBAgIDAyd7SRIikJaWxoYNG+y/O9qq8fb2ZsGCBdTU1JCXl0dERMSUsCpdXV2ZO3cuBQUFbNu2jUWLFuHj4wOIK5A2AgMDWb9+PUuWLCEjI4PrrrvO4XOcjkgiKRJPPPEEGzduZPfu3aLm9g0nlA0NDRw4cIA5c+ZMiTY1g/MyY2NjmTlzpuQOYqD5s16vx2g0IgiC/Wbr/gCg0WjsfRpdXFyQyWR4enri6ek5Za1vNzc30T93MpmM2NhYQkJCOHjwIJs2bSIrK4uQkBBR5x3NujIyMnBzc2P79u0sWrQIb29v0QXSxqxZs3jttde46qqrSE5OZuHChaLNdbognalE4KuvvuLBBx/km2++ITY2VvT5BgtlZ2cnjY2NzJ07l9DQUNHnPhlarZYDBw5gMBhOG+vR1pRYr9ej1+sxGAz2+4NvFosFFxcX3N3d7QJoE8Pe3l4ASkpKhgioxWLBaDQC4OHhgaenJ3K53H7z9PREoVDYH5+MBsJHjhwhPDwcuVzOggULeOyxx4iOjhZlLi8vrylnVcpkMlJTU3FxcWHHjh0olUp0Op3oAmnjkksuobCwkIsvvph9+/ZNGU/SdEUK3HEwpaWlzJs3j7/85S/cfPPNTp+7rKyMuLg4MjIynDr3sQiCQGVlJSUlJcTExJCSknJKWo9ms5nu7m66urrsP3t7e3F1dT1OwGwiNvh3m5V4LCcK3BEE4TjhHU6IDQYDLi4u+Pn5oVKpUCqVqFQqfH19RRPOb775Bq1WS3JyMk1NTTz44IM0NDRw+PBhfH19RZnTRn9/PwcOHKCvr29KWJUWi4UtW7ag1WpZtGiRUy8QrVYrl156KRUVFezcuROFQuG0uU81JJF0IP39/cydO5eFCxfy6quvOnVum4s1JSWF0tLSSetHCUOtx+zs7FPGehwsiLabVqvF09NziAipVCrkcvmEAqUcEd0qCAJarda+VtvaBUFAqVQOWa9YwtnV1UVMTAxPPfUUa9ascfj4xyIIAtXV1RQVFREZGTlpVuXgPciQkBDq6+tZtGiR6BcKg9Hr9cybN48FCxbw8ssvO23eU41T79J+Ern99ttxd3fnhRdecOq8tlY+Nherv7//hCrzjJdTzXoUBIHOzk6am5tpaWmhp6fHLogqlYqIiAiUSuWUvUqXyWT4+vri6+trd7kNFs7u7m7q6uo4fPgwVquVgIAA1Go1arXaYcW7VSoVSUlJHD161CHjnQyZTEZcXByhoaEcOHBgUvYqjw3S8fDwsLteFy9ebA/mERu5XM6///1vcnNzWblyJZdddplT5j3VmL5nsCnGv/71Lz766CPy8vKc2tewtbWV/fv3k5OTY9+DdEQJu7FiMpnsJ4b58+cTFBQk+pxiYDab0Wg0dmG0Wq2EhoaSmJhIUFDQlCvlN1ZOJJy2111UVISPjw+hoaGEhYXh7+8/bqtYq9VSUVHh9CLcXl5eLFy4kOrqavbu3UtiYiJJSUmip0GNFMWakpKC1Wpl586dLFmyxGkXVjNnzuSZZ57hxhtvZM6cOWMuhykhuVsdwpEjR5g9ezYvvPACV199tdPm7erqYseOHcyaNWvYwAhnNW7u6+tjz549yOVy5syZM+2aH+t0OlpaWmhubkaj0aBQKOwWVUBAwKRUKJrMYgImk4nW1lb7hYJMJiM0NBS1Wk1ISMgJvQN33XUXF1xwATExMTQ2NvKnP/2JgwcPUlxc7JCOGeOhu7ubPXv24O/vT3Z2tmjejZOleQiCwIEDB+ju7mbx4sVO/b9eddVVFBUVsWvXrindt3MqIonkBDEYDMyfP5+MjAzeeustp82r1WrZvn07CQkJJCQkjPg8sYVSo9GQl5dnr4AyVUrenQy9Xk9dXR2NjY10d3fj7+9vF0YfH59JL7wwVSruWK1WOjo6aGlpoampCZ1OR1BQEJGRkYSHhx+XhnL55ZezdetW2tvbCQ4OZvHixTzyyCOTbsEYDAby8vIwm83k5uY63JIbbR6k1Wpl7969mM1mFixY4LQ0nv7+fnJycjjrrLN49tlnnTLnqYIkkhPkN7/5DRs2bGD//v1Oc8Xp9Xq2bdtGWFgY6enpJ32+GEIpCAJVVVUUFxcza9YsYmJiHDKumAiCgEajobq6mpaWFgICAoiMjEStVk+5q+upIpLH0tvbS3NzM7W1tRgMBqKiooiJiZlStVRHwmq1UlBQQHNzM/PmzXNYsfSxFgowm83s3LkTT09P5s2b57QLssLCQhYuXMh7773HhRde6JQ5TwUkkZwAn3/+OVdddRU7d+5k1qxZTpnTZDKxY8cOfH19mT179qi/YI4UysEnm7lz50756FWDwUB1dTU1NTVYrVaio6OJjo52WgDFeJiqImlDEAQ6Ojqorq6msbERpVJJbGwsERERU7bIATj+4m68lXSMRiPbtm0jMDCQzMxMpwnlCy+8wB//+EcOHTokWu7qqYYkkuOkubmZlJQUHn30UaflQ1osFnbv3o2Liwu5ubljdm06QigHu63mzZsnajWhidLd3U1FRQUNDQ0EBgYSGxuLWq2eFi7hqS6SgzEajdTX11NVVYXJZCImJoa4uLgpHeTkiG2CiZaa0+l0bN26lZiYGIfVtx0NP/vZz2htbWXz5s3T4rsw2UgiOQ4EQeCiiy7CaDTy7bffOm3OgwcP2jf9xxt8MBGhdFYAxEQQBIGmpiYqKyvp6uoiKiqKuLi4aeEOHMx0EkkbNnd2ZWUlGo2G8PBw4uPjUalUk720YZlIwJmjarH29PSwbds2MjMziYyMHNcYY6Wrq4u0tDTuvfdebrvtNqfMOZ2RRHIcvPfee/zmN7+hoKCAiIgIp8xZUVHBkSNHWLZs2YSDDsYjlLaC6c4KpR8rgiDQ2tpKSUkJBoOBGTNmEBMTM+0ibW1MR5EcjFarpbKyktraWkJCQkhJSXFqIv1osaUu9fb2kpubO6o1OrpYeUtLC3l5eSxatMhpvSA/++wzfvnLX1JQUDDpQVVTHUkkx0hTUxOpqan87W9/c0oFERjIhdy7dy8LFy50WLDBaIVSEATKy8s5evQos2fPJiwszCHzO5KOjg5KSkro7u4mKSmJuLi4Kb0vNhqmu0ja0Ov1lJWVUVtbS1RUFMnJyVOu+IIgCJSWllJZWcncuXNPWHhArG4eR48epaKigmXLljnNTX355ZfT0NDAli1bJLfrCZBEcgwIgsCFF16I2Wzmm2++ccqcWq2WrVu3kp6e7vCN9pMJpSAIFBcXU1dXx8KFC6ecy7K3t5eSkhJaW1uJj48nISFhWgvKYE4VkbSh1WopLS2lubmZuLg4EhMTp5yVX1dXx6FDh8jJyRn2YlDMdle2HEpbnVdnXOTZ3K733HMPv/nNb0Sfb7oiieQYePfdd7njjjsoLCx0ikVlMpnYunUrarWatLQ0UeYYSSgFQaCwsJDm5mYWLlw4pSJBdTodZWVl1NXVER0dTXJy8pQOEhkPp5pI2ujq6qK4uJiuri4SExOJi4ubUnvbtm2F7OzsIVspzugHabFY2LFjB97e3mOKXJ8I69ev58orr5TcridAEslR0tTUREpKCk899RTXX3+96PMJgsCePXsQBIH58+eL+oU5VigFQeDQoUNoNBoWLVo0ZSJYjUYjR44coaqqCrVazcyZM6eUeDuSU1UkbWg0GoqLi9Hr9SQnJxMdHT1lXH62PUJbw3JnCKQNvV7Pli1b7J4RZ3DFFVdQX18vuV1HQBLJUWJzs3799ddOmc9mKS1btswpJ0mbUKakpNDZ2UlnZyeLFi2aEvtHgiDYC3GrVCpSU1OnbMSkozjVRRIG/q+NjY2UlJTg4uJCVlaWw/bcJ4otDiA9PZ22tjanCKSNzs5OduzY4bT+q5Lb9cRIIjkKvvzyS3vtQ2dEs7a1tbF7926WLFmCUqkUfT4b7e3t7NixAw8PD5YvXz4lXJg6nY5Dhw7R1dVFVlaW6B3vpwqng0jasFqtHD16lPLycuLi4pg5c+aUCLzSaDTs2rULDw8PVqxY4dSqTJWVlRw5coTly5c7Zd6PPvqINWvWUF5eftp8x0aLZFufBJ1Ox2233cbdd9/tFIE0GAzs27ePtLQ0pwqkIAjU1NSgUCgwm800NTU5be6R1lNbW8vGjRvx8PBg5cqV0pd3ivH4448jk8m44447JjSOi4sLSUlJLF26lLa2NjZv3kxnZ6djFjlOrFbrkO9Dc3OzU+ePi4vD39+fAwcO4Aw75uc//znz58/nrrvuEn2u6YYkkifh8ccfx8vLi7vvvlv0uQRBYP/+/fj7+xMbGyv6fIPnPXToEB0dHSxZsoSFCxdSXFxMVVWV09YwGJ1Ox549eyguLiYnJ4fZs2dPuUjI0528vDxefvllMjIyHDamn58fS5YsISoqih07dlBcXIzFYnHY+KNl8B7k0qVLmT9/PoWFhdTX1zttDTKZjOzsbHp7e6moqHDKnC+88AKffvop27Ztc8p80wVJJE9AZWUlTzzxBH//+9+dEoFXUVGBVqslOzvbacn6tihWW5COXC6396N0tlDarMdNmzbh7u4uWY9TFK1Wyy9+8QteffVVhye/D7YqW1tb2bJli1OtyuGCdIKCgpg3bx4HDx6ksbHRaWtxd3cnJyeH0tJSp7wHiYmJ3HLLLdx8882YzWbR55suSCJ5Am677TbOO+88Vq1aJfpcHR0dlJaWMmfOHKftQdnyIJubm48L0nG2UA62HrOzs8nJyZGsxynK2rVrRf9e+Pn5sXTpUiIjI51mVZ4oijUkJIQ5c+awf/9+p7peAwICmDlzJvn5+ZhMJtHne/jhh9FqtTz//POizzVdmDoJSlOML7/8kh07dlBUVCT6XCaTiX379jFz5kynlaWCgWbRdXV1LF68eNg0D5tQ7tq1C0C0xs2NjY0cPHiQ0NBQVq5cedqJo8lkwmg0IggCVqsVQRDo6uoCBmp7enh4IJPJcHV1xcPDY1KDWj744AP2799PXl6e6HPZrEq1Wm0Xpzlz5ohS1GI0aR5qtZrZs2eTn5/vtMhTgPj4eNra2jh06BBz5swRdS65XM5f//pX1qxZw+WXXy55cpCiW4dFp9ORkpLCr371K37/+9+LPt+hQ4fQarUsXLjQaW7WpqYm9u3bN6oIWrEaNw8uB5adnU14eLjDxp4q6PV6ent70ev19pvBYBjyu81CcnFxQSaT4eLiYrca3NzcEATBLqAw4IaTy+XI5XI8PT3t9+VyOQqFAj8/P1G2B+rq6pgzZw4//PCDfS9y+fLlZGVl8cwzzzh8vsFYrVbKysqorKx0eHnEseZBVlVVUVpayrJly5yWQ6zX69m0aROZmZlO+Z6ceeaZhIaG8u6774o+11RHEslheOihh3j//fcpLCwUfS/Slo+1YsUKvL29RZ3Lhq3zwFiEydFCObiw9Lx586ZcybvxoNfr6erqoquri+7ubrq6utDr9Xh5eaFQKI4TtMG/u7u7D7lAGi4FRBCEIQJ7rNjq9Xp0Oh0GgwEfHx9UKhUqlQqlUolSqZywG//zzz/nJz/5yRBL1mKx2IXdYDCIbuXaKuIkJSWRmJg44YvK8RYKGBzo5qyKQQ0NDRQUFLBy5UrR00KOHDlCZmYmP/74IwsWLBB1rqmOJJLHoNFomDFjhlO6d5tMJjZt2mQvz+UMjEYjW7ZsISoqasw97BwllLYWRZ6ensydO3daulcFQaCzs5PW1la7MDpSnCaSJzmSWA9eW2ho6JirFfX29lJTUzPkseuuu46ZM2dyzz33kJ6ePqbxxoutZVtAQABZWVnjFqmJVNKxWq3s2rULd3d35s6d6xQPkCAI5OXlIZPJmDt3rujz3XLLLRQUFLBt27Yp1/XHmUgieQx33HEH+fn5bN++XfS5Dh48SF9fn9PcrI74Yk9UKNva2sjLyyMiIoL09PRpVQbLbDaj0Whobm6mpaUFq9VKSEgI/v7+qFQq/Pz8HBZ05ehiAnq93i6Y7e3ttLe34+XlhVqtRq1WExAQMK7Pg7PcrcdiMBjYu3cvFouF3NzcMVeGckSpOYPBwNatW+31g52BwWBg48aNZGRkiJ633d7eTkJCAu+++y7nnXeeqHNNZaTAnUHU1NTw0ksvsWHDBtHnam1tpaGhgRUrVjjtKu3w4cMYjUZyc3PHPedEgnmqqqooKioiPT3dqXmgE0Gn09HS0kJzczMajQaFQoFarWbOnDkEBARMG5G3uXVDQ0OBARG2Cf7evXsBCA0NRa1WExISMqWKjg+Hp6cnixYt4tChQ2zZsoV58+aNuqSdo2qxenp6kpuby7Zt2/D19XXKXqGnpycZGRkUFBQQFBQkqts1MDCQtWvXcs8993D22WdPiSpIk4FkSQ7i6quvpr29na+++krUeWxu1qSkJKeJRXV1NSUlJQ4LNhiLRWm1WiksLKSxsZF58+Y5LSpwvJhMJhoaGqitraWrqwt/f3+7xeXj4+OUixpnlqUTBIGOjg6am5tpbm6mv7+fkJAQYmNjCQkJmdKuNkEQqKqqori4mIyMjJO2kxOjWPlYguAcRV5eHoIgMG/ePFHn6e/vJyEhgSeeeIJf/vKXos41VZFE8r8cPnyYOXPm2EvCiUlhYSE9PT1Oc7PaasHOnz+foKAgh407GqE0Go3k5eVhMpmYN2/elOkoMhydnZ3U1NRQX1+Pj48PMTExhIeHO7Vmp43JrN2q1Wqpq6ujtrYWmUxGdHQ0MTExU6LY/Ui0traSn59PdHQ0aWlpw36vxOzmUVZWRk1NDcuWLXPK58VgMPDjjz8ye/Zs0dM0nn76aZ555hnKy8sn5bsw2Ugi+V/OP/98lEol7733nqjzdHd3s23bNpYtW4avr6+oc8HAleCWLVtISUkRxWo9kVAaDAZ27tyJl5cXOTk5U9KFZ7VaaWxspLKykp6eHqKiooiJiZn0LiNTocC51WqlpaWFmpoaNBoNarWaGTNmjHv/Umy0Wi27d+8mICDguKpVYre7EgSB/Px8DAYDCxcudIobvrq6miNHjrBy5UpRXaFms5mZM2dy2223cfvtt4s2z1RFEklg+/btrF69mtLSUqKiokSbRxAEtm/fTkBAgOjWKgx8uLdt20ZgYKBDa2wey3BCqdPp2LlzJ0qlktmzZ0+5vTuTyURVVRVVVVW4uroSFxdHdHT0lOm4MRVEcjD9/f1UVlZSU1ODt7c38fHxRERETLn/q16vZ8eOHUM+d87qB2k2m9m+fTsqlYrMzEzRLyQEQWDr1q2EhoaOOVJ9rLzzzjvceeedVFVVOeXifioxtT7hk8R9993HtddeK6pAAtTX19Pf3++USDhbsXQPDw/RQ/OPLWGn0+nYsWMH/v7+5OTkTKkTqcVi4ejRo/zwww+0traSmZnJGWecQXx8/JQQo6mKl5cX6enprF69mpiYGEpLS9m0aRNNTU1O6VIxWuRyOYsXL6a3t5f8/HzMZrPTGia7ubkxb948mpubqa6uFm0eGzKZjIyMDI4ePUpfX5+oc/3iF78gKiqKp59+WtR5piKnvSW5Y8cOVq9eTVVVFcHBwaLNYzKZ+PHHH5k1a5ZTWm5VV1dTVlbGihUrnJaH2NHRwc6dO3FxcSEiIoKMjIwp45azWq3U1dVRWlqKp6cnqampBAcHT5n1HctUsySPxdZKqqysDC8vL1JTUx263z1RjEYjO3fuRK/X4+7uzuLFi522n9be3s6uXbtYunSpU4pkHDx4EIPBQG5urqjzfPTRR9x0003U1dU5rfDJVGDqXOJPEo888giXX365qAIJUFpa6rQw8f7+foqKisjOznZqor5CocDNzQ2z2Yyvr++UECBBEGhsbGTTpk0cOXKEtLQ0li1bNuWjNqc6Li4uxMXFsWrVKkJDQ9mzZw+7d++mu7t7spcGDFh1Xl5emEwmFAqFUy80AgMDiYuL48CBA/ZSgmKSmppKe3u76IXXL7nkEtRqNa+++qqo80w1TmuRLCgoYOPGjfzxj38UdZ6enh5qamqcYlkJgsCBAweIiIggJCRE1LkGY9sLCgsLY9GiRZSUlExaP0obbW1tbNu2jYKCAmbMmMHKlSuJjIyUxNGBuLm5kZyczKpVq/Dx8WHbtm3s27dPdPffibDtQWq1WlasWIHRaGTfvn1OESwbM2fOxGw2c/ToUdHn8vDwIDU1lcLCQlE7pbi4uPDb3/6WJ554AoPBINo8U43TWiQfffRRLr74YtFzFYuKioiNjXXKhnd1dTV9fX1OCQyyYYtiDQgIICMjg8DAwEnpR2nDdlLcs2cPoaGhrFq1iri4uCm1N3qq4enpSXp6OitXrkQmk9ktd2fv5hwbpOPj48PChQvp7e3lwIEDTluPq6sr2dnZlJeX09PTI/p8MTExuLu7i/59u+666/D09DytCp+ftmeNiooKPvvsM/70pz+JOk9bWxsdHR0kJSWJOg/8z82alZXlNPeSbe/Hz89vSNj9ZDVubm5uZuPGjZhMJlauXElycvKUTD05VfHy8mL27NksXLiQmpoatm3bRm9vr1PmHimK1cPDg4ULF9LV1cXBgwedJpQBAQFOc7vKZDJSU1MpLy8Xte+kq6srt956K4899pjo/T2nCqetSD7xxBOceeaZpKSkiDaHralxQkKC6HuDNjdrZGSk09ysVquV/Px8FAoFs2fPPs6N6UyhtFmP+/fvJzU1dVz1PCUcR0BAACtWrCAgIIAtW7aIblWeLM1DLpezcOFCNBoN5eXloq3jWGbOnGmPqBab4OBglEql6HOtXbsWrVbLp59+Kuo8U4XTUiSbmpp46623uP/++0Wfp7+/n/j4eFHngclxsxYVFaHX60+Y5uEMoRxsPa5YsYLo6Ghp33EK4OrqSnp6uuhW5WjzIBUKBbm5uRw5coSmpiaHr2M4nOl2lclkpKSkUFFRgV6vF20euVzOr371Kx555JEplf4jFqelSD799NPMnz9f1JBpq9VKSUmJU9x9fX19Tnez2sq35ebmnnROsYTSaDSyf/9+9u3bJ1mPE+TFF18kIyMDPz8//Pz8WLBgAd98841Dxj7Wqjx69KjDTq5jLRRgKzJgO8YZ+Pv7M2PGDPbv3y+62zUgIICQkBDKyspEneeuu+6ipqaG77//XtR5pgKnnUj29/fzyiuvcNddd4k6T11dHYIgEBMTI+o8giBw8OBBoqKinOZmbW9vp7CwkLlz5446X8rRQtnd3c3mzZsxGAysXLlSsh4nSGRkJI8//jj79u0jPz+flStXctFFF1FUVOSQ8W1W5YIFC6iurmbnzp0YjcYJjTneSjrh4eHEx8ezZ88ep0VpJicnY7VaOXLkiOhzpaSkUFtbi1arFW0OPz8/rrzySqe3SJsMTjuRfO+99wgNDeXcc88VbQ6LxUJpaSkpKSmiR1Ta3KypqamizmOjv7+fvXv3kpaWNubkcUcJZWNjI9u2bSM2Npb58+dL1qMDuOCCCzj33HNJTEwkKSmJRx55BB8fH3bv3u3QeQIDA1m2bBlubm5s3bp13NbcREvNJScno1Qqyc/Pd0pqiM3teuTIEdEtWF9fX6KioigtLRV1nt/+9rf8+OOPTtlvnUxOK5EUBIG///3vXH/99aKKV21tLR4eHqIXDrC5WbOzs53iZjWbzezdu5fw8PBxNVyGiQmlIAiUlpZy4MABcnJySEpKkqxHEbBYLHzwwQf09fWxYMECh4/v7u7OvHnziIiIYNu2bWNOgndELVaZTMbs2bMxGo0UFhaO+fjx4Ey3a3JyMk1NTaJGFsfHx7NixQpeeOEF0eaYCpxWIrl9+3Zqa2u5+eabRZvDarVy9OhREhMTRT+BFxYWEhUVJXq1IPhf9KybmxuzZs2a0FjjEUqz2UxeXh51dXUsWbKEsLCwCa1B4ngKCwvx8fHB09OTX//613z22WeieShsQSZZWVnk5+ePOvrVkcXK3dzcyM3NpbGx0WlpSja3q9jzKRQKIiMjRXfv3n777bz++uuiunYnm9NKJJ9//nl+8pOfiFpPsaGhAUB0K7KtrY329nbRq//bKC8vp6uri7lz5zrECh+LUPb397Nt2zZMJhPLli1zSj1MZyMIAmazGZPJhMFgsFsARqMRk8nklJy05ORkDh48yJ49e7j55pu55pprKC4uFnXOiIgIFi9eTGVlJfv37z/h6xSjm4eXlxfz5s2jqKiItra2CY93MlxdXUlLSxM9nxEgISGBhoYG+vv7RZvj7LPPRq1W88EHH4g2x2Rz2hQ4b21tJTIykj179pCdnS3KHIIgsGnTJmbMmCFqFR9BENi2bRuhoaFO6SjS1NTE/v37WbJkicMF6mSNm9va2sjLyyMiIoL09PRpWzVHEAS0Wi3d3d3odDr0ej16vR6DwWC/fzIhdHd3Ry6X4+npiVwut9+8vb1RKpUO35tdtWoV8fHxvPzyyw4ddzj0ej15eXlYrVbmzZt33GsRu91VTU0NxcXFLFu2TPTG4IIgsGPHDgIDA0XN0wbIy8tDLpdP2PtzIh5++GE+/fRT9u/fL9ock8lpU4rkjTfeICsrSzSBhIF8PaPRKHrLrebmZqflXxoMBg4ePEhmZqYoFpzNoty1axfAEKFsaWkhLy+PtLS0ce+BTgY2Qezq6qKrq4vu7m66uroQBAE/Pz+8vb3x9PREpVLZhc7T0xNPT09cXV2RyWSYzWa+/fZbVq9ejaurKxaL5ThR1ev1tLW1UV1djVartY+pUqlQKpWoVKoJCafVanVa9Kct2f/QoUNs376dRYsW2cXKGf0gY2Ji6Ojo4ODBgyxYsEDUrRJbdZydO3cSFxeHXC4Xba7ExES2b99OUlKSaF1Qbr75Zh599FH27dtHTk6OKHNMJqeFSFqtVl566SXuvfde0eYQBIEjR44QHx8vapdwQRAoKSkhKSnJKeXWCgoKCAwMFLW913BC2dTUxL59+8jOznZKa7GJYjab0Wg0NDc309LSgslksgtVVFQUs2bNwtfXd9SWsC2ww9XVFXd3d7sVeaL5bWLc1dVFY2Mjvb29+Pj4oFarUavVBAQEjHjyv++++zjnnHOIjo6mt7eX999/n82bN/Pdd9+N/c0YJ7YI0MLCQrZv387ChQvx8vJyWj/I9PR0Nm7cSE1Njej1nAMCAggODqa8vFzUhugqlYqAgAAqKytFs1oDAwM599xzeemll07JDiGnhUhu3bqV7u5urrnmGtHmaG9vR6vViv7lqq2txWKxiD4PDOyvtrW1sWLFCtGDkAYLZVdXFw0NDeTk5EzpAB2dTkdLSwvNzc1oNBoUCgVqtZo5c+YQEBDgVNewm5sbgYGBBAYG2h8zmUx24d67dy8AoaGhqNVqQkJChlxktba2cvXVV9PU1IRSqSQjI4PvvvuOM88802mvAQasrFmzZuHq6sr27dtRKpXodDrRBRIG3NnZ2dnk5eUREhIiuts1NTWVzZs3Ex8fL2p/xqSkJPbu3UtCQoJoUfC33nor559/Ps8++6zo75uzOS1E8p133uGcc84R1a1x9OhRYmNjRU3FsFgslJWVkZqaKvoJ2GAwUFBQQEZGhqjv22ACAgJISEigtLSUuLi4KSmQVquV5uZmampq0Gg0+Pv7o1arSUtLc0qXl7Hg7u5OeHg44eHhCIJAR0cHzc3NlJSUsH//fiIiIoiJicHf35/XXnttspdrRyaTMXPmTFpaWtBoNE4RSBshISFEREQ4xe3q6+tLZGQkJSUlzJkzR7R5AgMD8fHxoba2VrQtmqVLlxISEsIXX3zB5ZdfLsock8X0jIIYA3q9no8++khUK7Kvrw+NRiP6vllVVRUeHh5OcT/a3KzOaBJto6mpyd4Yua6ubtL7UQ5Gp9NRUlLC999/T1FREYGBgZx55pksWbKExMTEKSeQxyKTyQgMDCQtLY0zzjiDJUuW4OLiwq5du9i8eTPV1dWYzebJXiYwcCFia2sVFxdHfn6+U/tTpqWlodVqqampEX2umTNn0tzcTFdXl2hzyGQy4uLiqKqqEq3WqouLCxdddBFvv/22KONPJqe8JfnVV1+hUqlYtWqVaHNUV1ejVqtFrfxiMpkoLy9nzpw5ors+bW5WW29AZ9DS0mLf+A8LCyMgIGDYYB5n09PTw5EjR2hsbCQ4OJjZs2cTHBw87YsYKJVKMjMzSUtLo6GhgcrKSoqLi4mNjSU+Pt5pltuxDA7SWbx4MR4eHshkMnbs2MHixYud4spzd3cnKyvLKW5XhUJBXFwcJSUlohRusBEREUFRUREajUa08pU33HAD2dnZaDQap+RuO4tT3pJ8++23ufDCC0VzT5rNZmpqakQ/kR85cgSlUin6h2+wm9VZJ8qOjg7y8vLIzs62u1gnqx+ljf7+fvbv38+WLVtwc3NjxYoVzJ8/n5CQkGkvkINxc3MjJiaG5cuXM3fuXLq7u9mwYQNlZWVOtyyHi2KVyWSkpaURGhrqkHqvo8XmdnVGo+bExEQ6OjrQaDSizeHi4kJMTAyVlZWizZGWlkZqair//ve/RZtjMjilRbKjo4NvvvmGG264QbQ5GhsbkcvlQwImHI1er7dHp4l5ghYEgUOHDhEUFOS0iFKdTsfevXtJTU09bs7JEEqDwUBhYSE//vgjgiCwcuVKMjMz8fHxccr8k4VMJiM4OJgFCxaQm5tLS0sLGzZsoLKy0im1TU+U5iGTyewdSmy5lM4gLS2Nvr4+qqurRZ3Hw8ODxMREiouLRRXk2NhYWltbRS0u8LOf/eyUc7me0iL58ccfk5SURFZWlmhzVFdXExsbK6p4lZWVERISQkBAgGhzwIDgt7e3ixqSPhiz2cyePXtQq9UjWuLOEkqz2UxZWRkbNmygr6+PpUuXkpOTI2rU4VQlKCiIJUuWkJmZSVVVFT/++CP19fWincBHkwc5uNbq4cOHRVnHsdjcrsXFxaIKC8CMGTPQ6XSi9rlUKBSEhoaKute6Zs0a9u/fT0VFhWhzOJtTWiTfeecdLrnkEtHG7+7upqenR9TiATqdjtraWtErc5jNZgoLC53mZrW1+HJzcyMjI+OEFxliC2V7ezubN2+mpaWF+fPnM3/+fJRKpcPnmU7IZDLCwsJYuXIlSUlJFBUVsXv3bnQ6nUPnGUuhAFut1YaGBtGtOxs2t6vYRdDd3NxITk6mtLRUdGuypqZGNGs8LCyMRYsW8d5774ky/mRwyopkbW0tu3fvFtXVWl1dTUREhKhpH5WVlYSEhIgePVlRUYGXl5fTolmPHDlCR0fHqGvBiiGUtguDXbt2ERcXx5IlS0R1m09HZDIZMTExrFy5Erlcbk+2d8SJfDyVdLy8vJg7dy6HDx92Sq1VGIhA1Wg0dHR0iDpPdHQ0BoNB1L3JkJAQXF1dx9x5ZSxcccUVvPPOO6Lv5TqLU1Ykv/jiC7Kzs0Wz8qxWK42NjURHR4syPvwvKGjGjBmizQED+3BHjx4lNTXVKUEpTU1NlJeXk5ubOyar1ZFCabMeu7q6WL58OfHx8adUQI6jsSXaz5kzh9LS0glblRMpNRcUFER6ejp5eXmiu0FhoGRefHy86HuGrq6uxMbGihpcI5PJiIqKor6+XrQ5Lr/8curq6igrKxNtDmdyyork559/zllnnSXa+K2trbi6uoq6T1hfX49CoRhzc+OxcuTIEQIDA0WfBwZSKvbv38/s2bPH5dKcqFBarVYOHz7Mrl27iI2NZfHixad8UI4jCQ0NZcWKFXh6erJx40bq6urGPIYjarHGxsYSHh7Onj17nBKFm5CQQG9vL62traLOExsbi0ajEbX1VGRkJC0tLaJFCiuVSubOncsXX3whyvjO5pQUyZ6eHrZu3cpll10m2hx1dXVERkaKZn0IgkBlZSUzZswQ1cLp7++nqqpK9D1PGMj13LNnD/Hx8RNy645XKA0GAzt37qStrY1ly5aRkJAgWY/jwMPDg9mzZ5OTk0NhYSGHDx8e9R6XI4uVz5o1Cw8PDw4ePDjuMUaLu7s7SUlJoluTCoWCsLAwUYPUfHx88PPzo7GxUbQ5zjnnHD777DPRxncmp6RIfvfdd0RHR4vWHsZkMtHc3ExkZKQo4wNoNBoMBoOocwCUlpYSHh7ulECV4uJivLy8HNLea6xC2d3dzZYtW/D09GTx4sVTvkKOo3nssceYO3cuvr6+hISEcPHFF0/YHaZWq1m2bBmtra3s3r37pJaJo7t5uLi4kJOTQ2trq6gnfBuxsbGYTCZRXZUwEOlaW1srar/JyMhIUV/HZZddRl5enqj7q87ilBTJzz//nBUrVog2flNTE76+vqI2/62qqiImJkbUjiI9PT00NDQ4pXGzRqOhrq6OrKwsh1lvoxXKxsZGtm3bRkxMDHPmzHFK95SpxpYtW1i7di27d+/mhx9+wGQycdZZZ0243Ju3t7e9xN3WrVvtzaKPRax2V3K5nIyMDA4dOiR6Wy9XV1dmzpxJaWmpqLmaAQEB9lqrYhEREUFHR4doe7rx8fEkJyfz9ddfizK+MznlRNJsNvP111/zs5/9TLQ56uvrRbXwbN0lxO70UVJSQkxMjOi5gCaTiQMHDpCWlubwuU4klIIgUFZWxoEDB5g9ezbJycmnrXv122+/5dprryUtLY3MzEzefPNNamtr2bdv34THdnd3Jzc3l/DwcLZu3UpLS8uQv4vdDzIiIoLAwEAKCgocOu5wREVF4erqKnoKSlxcnMOiiIdDLpcTHBxMQ0ODKOPDQNPuzz//XLTxncUpJ5I7d+5EJpNxxhlniDK+Tqejra1N1Io0tbW1BAcHi1ozsr29HY1G4xDX58koLi7G29tbNNEfTiht1YNqampYvHixUwu1Twe6u7sBHBZ4ZmsknJmZSV5enj2gxxkNk20Vedra2kR3u9peZ1lZmaju0PDwcHQ6HZ2dnaLNERkZOa7Aq9Hys5/9jO+//x69Xi/aHM7glBPJL774gqVLl4rmUmtubiYgIEC0YuaCIFBTU0NMTIwo49vmKC4uJiEhQfTCAa2trdTX15OdnS2qFTdYKCsrK9m/fz9tbW0sWbLktC8McCxWq5U77riDRYsWkZ6e7tCxIyMjmTdvHocOHaK6utppDZOd6XYNDQ3Fx8dH1Koybm5uREZGilodJywsjL6+PtEiaRctWoSvry+bN28WZXxnccqJ5Jdffsn5558v2vjNzc2o1WrRxtdoNFitVlHnaGtro7e3V7TecjZMJhMHDx4kNTXVKd0bAgICmD9/PocPH0aj0bB48WJRO7NMV9auXcvhw4f54IMPRBk/JCSE3NxcCgoKaGtrc1o/yPDwcKe4XW3WZEVFhajWZGxsLA0NDaLN4ebmRlBQkGiFBVxcXFi2bBn/+c9/RBnfWZxSItnc3MzRo0dFE0mTyURbW5uoAlZdXU10dLSoTZUrKytFbxANUFRUJKqb9VhsVrhcLsdsNotaB3O6cuutt/Kf//yHTZs2ibavbrVaqampQaFQYDabRa3uMhiZTEZmZiZtbW2i7rXB/4JrxHRXKpVKfH19RY1CVavVov5/Vq1axcaNG0Ub3xmcUmF+W7ZsITExUTQR02g0eHl5iZZ8bjAYaGlpIS0tTZTxYaBBdGtrq+hFzLu6uqivr3daT0rbHmRHRwdLly6lv79/SvSjHC+ODtgQBIHbbruNzz77jM2bN4v2ngzeg1y6dCm9vb3s3r0bV1dXh4uy3mRB02ugtdeApteARmtA06OnSqPi1Q8OoQpowGgRMJqtGCxWjGYrJosVD1cXvDxcUXi4Dvx0d0Xh4UaAtzthSgURKgXhKgVhKjl+8uEvJGUyGTNmzKCsrIy4uDjRPuMxMTFUV1eL9v9Sq9UUFhZiNBrx8PBw+PjnnnsuN91007TuMXlKieSmTZvIzc0VbXyxXa1NTU2oVCpRo02rqqoICwsT3Q1ZXFxMXFycU9ysMFA1qLW1lSVLliCXy5HL5SxYsGBKCqXFYqG7u5uuri76+vrQ6/Xo9XoMBgN6vR6r1WoXyW+//RZXV1c8PT3tr0sul+Pn52e3NEZzgl67di3vv/8+69evx9fX1249KJVKh30WhgvS8fT0ZN68eezduxeFQjGu2ridfUaOarQcbdVS0arlqEZLhUZLfaeOE15LOCBHz9fTjehAL9LC/UiPUJIWriQlzBcvDzd7I+PW1lZCQ0MnPNdw2Iqra7VaUS7OFQoFfn5+tLS0iFLCMyIigvj4eLZs2SJqxoGYnFIiuXHjRn7/+9+LMrYgCLS0tDBv3jxRxgfxRdhkMlFTUyNqB3QYsLi7urqYM2eOqPPYaG5upry8/Lg9SFswz2QLpdlsprW1ldbWVjo7O+nt7cXd3d0uciqVyi5+np6euLq6otPp2LFjB0uWLEEmk9mF1Harqqqip6cHGBC6gIAA1Go1AQEBw4rmiy++CMDy5cuHPP7GG29w7bXXTvg1niiKNSQkhLS0NPbu3cuyZctOeOFkNFspburhQG0n+2u7OFDbSX3nyDViPd1cCPb1JMTXk2DbzUeOu9VAY30NWbPS8ZJ74OHqgoebC+6uLhgtVnRGM/1GC/1GC7r//mzvM9DYpaOxS09jt46ufhO9BjNFjT0UNfbw7/wBt6eLDGYE+5AZqSLRNwiKj3C2SCLp7u5OUFAQLS0tonmwbC5Xsepcz5s3j02bNkkiOdk0NzdTUVHBOeecI8r4tg4AYtVqNZvNaDQaUV2t9fX1+Pj44O/vL9octsjZxMREUdw3x9LT08O+ffvIzs5GpVId9/fJEkqDwUBjYyPNzc20tbWhUChQq9UkJyejUqlQKBQntABt7523t7ddUI/FarWi1Wrp6uqira2NvXv3AgPRl2q1mtDQUHsxCjFLqY0mzSM2Npaenh727t3L4sWL7dHnJouV/TWdbCnXsKeqg8KGbozm4xP1I1QKZgR7kxDiQ3ywj/1nkI/HiO/jzp09KL204/5O9RvNNHbpqND0UdTQzeHGHg43dNPaa+Bo64BlCyBDIK1gKytTQlmWHExmpAo3V8fFFISGhtLU1CRaoJ1araaiogKr1SpKLMSKFSt48sknHT6uszhlRHLz5s0kJiaK5vZoaWkhJCREtL0HjUaDQqEQrVyaIAhUV1eLXgu2sbERvV7vFDEyGo3s2bOHGTNmnDBv1VlCKQgCHR0dVFVV2V3nYWFhpKeni/J/dXFxwc/PDz8/P6Kjo+3zNzc3U1xczKFDh4iKiiIuLk40F/5o8yBlMhmzZs1i586dfL8jn055GFvLNew42o7WMLRAucrLnewoFbOj/cmO9icjSjni3uCJSE1NZfv27cyYMWNcLmUvDzcSQnxJCPFlddr/PDytvXqKGnrYXdXOljINpc29HG4auP1941GCfT35aXYEl+REkhQ68f+7Wq3m8OHDou0bKpVK3NzcaGtrIyQkxOHjn3POOfzqV7+itbVVlPHF5pQRSbH3I9va2kQ98YvtarXtf4lZBMFqtVJSUkJycrLopd+sVit5eXn4+fmNqqyemEIpCAKNjY0cOXKE/v5+oqOjWb58udPrw8pkMgIDAwkMDCQ1NZW2tjaqq6vZuHEjISEhdivWUYylUEB1Wx//KWjky0MWylq6gXb73wK8PViSGMTihCByYvyJC/J2yIWcSqUiNDSUsrIysrKyJjyejRBfOSEz5ayYGcJ956RQXNXAB5sP0e4Ryvaj7Wh6Dby8tZKXt1aSEankZzmRXJgZjsprfALn5eWFn58fra2tokQky2QygoODRRNJ277k1q1bp6XL9ZQRyY0bN/KHP/xBlLFNJhNdXV2iNeQVBIHm5mbmzp0ryvgANTU1REVFiSpetlqTYvbYtFFWVobBYCA3N3fUJ1QxhLK1tZXi4mIMBgNJSUmiv8ejxXbiCw4ORqfTUVlZyfbt2wkNDSUlJWXC+1ujEci6jn6+KmziPwWNHG7osT/uIoNYX4GzZkVybnYs6eFKXFzE8W6kpKSwadMm4uPjRbtoSYkNZ2lUCSkpaoIvy2ZzWSsf76tnY2krBfXdFNR38/BXJVw6J5KblsYTFTD2YLbQ0FBRmyoEBgaKWit2Ou9LTv632QG0tbVx9OhRzj77bFHG7+joQKFQiBap2dnZiSAIou132joXLF68WJTxYWBPtaysjFmzZoma4wkD71dFRQVLliwZsyA5Sih7eno4fPgwXV1dJCYmMmPGDFGL0U8EhUJBWlqaPWVh06ZNREdHk5KSMi733YkEUm+y8O3hZv61t5Y9VR32x11dZCyMD+SCjHDOSgulo7meiooKUtXpogkkDLSFio6OprS0VLSLUJlMRkxMDDU1NURERHBWmpqz0tS0aw2sP9jIR/vqKWnq4d3dtXywt46LsyO4eXk88cGjv1BRq9Xs3LlTtH3DoKAgDh06hNlsFuUib9myZTz33HMOH9cZnBIiuW/fPiIjI0VzV7a1tYnakLi5uZnQ0FDRxKWxsREfHx+HutqOpba2Fk9PT8LCwkSbAwbSJw4cOEBiYuK4y81NRCitVitHjhzhyJEjxMXFMWfOHKcEKDkChUJBVlYW8fHxFBUVsXHjRjIzM8f0PxtJII+09PKvvXV8eqCerv6BCjEyGeTGBXB+RjjnpKsJ9PmfmCrj4mhqaqKoqIjMzEzHvtBjSEpKYsOGDfT29opmTUZFRVFSUkJfX599/zfQx5PrF8dx3aJYdld28MKmo2w/2sbH++r5ZH89584K4+7VycQEnny/WKVS4erqSnt7uyj5ht7e3sjlcjo6OkRxuS5ZsoS1a9ei1+uRy+UOH19MThmRFLNpcFtbGzNmzBBt/ObmZlELjTc2NoratcTWINoZXTbKyspwcXEhMTFxQuOMRyh7enrYv38/VquVRYsWiRolLCa+vr7k5uZSX1/PgQMHaGxstDcwPhHHCqSbuwffFTXz2rYq9lb/z2qMUCm4dE4Ul86NJEw5fMCMTCYjKyuLTZs2ER4eLmqiuUKhICIigsrKStEE2dZVo6mpiYSEhCF/k8lkLIgPZEF8IAdqO3lhUwUbSlr4qqCJH4pbuHlZPDcvj0fuPrInQiaT2VM1xHqvgoKCRNuXTE5OxsvLi4KCAlHT6MTglChLl5+fL9qH32Qy0d3dLdp+pK3AsFhRX2azWfRSeq2trZjNZtE7bXR2dlJZWcns2bMdYnWPpXFzdXU1W7duJSQkhGXLlk1bgbQhk8mIiopixYoVmEwmNm7caE9zGo7BApkzbz4fHWhm1VNbuOmdfeyt7sDVRcZZqaG8cd1ctt69gttXJY4okDa8vb1JS0vjwIEDotZAhYFGxnV1dSdtDD0RRlPiLTvan39eM4dvbl/CksQgjGYrz/54hDOf3sKPJS0nPNY2vljpPEFBQbS3t5/8iePAxcWFlJQU9u/fL8r4YnJKWJL5+flcccUVoowt9n5kc3MzQUFBotVRbW1tRaFQiJaIDP+rBSvmntxgN6sjm12fzKK0Wq0UFhbS2NjI/PnzxXO7CwL0aaCnAbStuJR8RWpDG7IGNXirQBEA3kEDPkwHolAoyM3NpbKykp07d5KRkXFc4JVNIBvbuzkihHPX0zvo6BsQG6XCnV/Oj+bqBbGE+o3djRYbG0tjYyPFxcWiul1VKhVKpZLa2trjLD1HERoaOuoSbylhfrx9/Ty+OdzMQ/8ppq5Dx5q38jkzNZTHfzpriGvaRnBwMAaDgd7eXlEavgcFBXHw4EHR9iXT09PJz893+LhiM+1Fsr29nbq6OpYsWSLa+GJZkTAgkmLu44k9vlarpa2tjezsbNHmAOxNbifqZh2OkYTSYDCQn5+P0Wg8aaWYMWE2QtNBqNsL9XnQXAjd9WD5X4snVyAR4M2v/necpxKCEiAoGaJzIW4p+MdNWDhlMpk9+jM/P5/e3l5SU1ORyWRYrVa27cnn08Od/FgvoDVUAhDpr+CGxXH8fE4U3p7jP43Y3K4bN24kNjZW1LZmM2bMoLi4mPj4eFG2BWypGqMt8SaTyTh3VhjLkoJ5buNR/rmtkh+KWyio7+Lvl2eTO2PoecfV1ZXg4GCam5tFEUkvLy/kcjmdnZ2iuHTnzp3LP/7xD4ePKzbTXiT3799PRESEaO7Erq4u0cY2mUy0t7eLJjDOKKVXU1ODWq0WdTPeZDJRXl5Odna2aMFNxwqlWq1mx44d+Pn5kZubO/Era5MeKjZC8Xoo+wYM3cM8SQY+oaBtAQZcaoIyCpmhF/TdA8c07Bu4HXp/4BBlFMw8HzIvh7DMCQlmSEgIS5cuZc+ePfT19ZGUlsFfPt3N+rI++v+b7z9T7cvaFQmck652WFUZW6eYkpIS5s+f75AxhyMsLIzCwkI0Go1o2xvjKfHm7enGvefM5KKscG59fz8Vmj6ueHU3d65K4pYVCbgOiv5Vq9XU1NSQlJQkxvJRqVR0dXWJIpKLFi3itttuw2AwOKV1mqOY9iIpZtCOIAh0d3ePKll9PHR0dODl5SV6aolY+2dWq5W6ujpmz54tyvg2Kioq8PHxEa2akg2bUO7cuZPS0lLCwsLIzMycmNXR2wx7X4X810E3aM/PKxCiciFyDkTkgH8s+IaD24Cb7sO91bz+YyFp4ZGEqRScnxJAimcbtB+B5sNQvX3ACu2ugz0vwp4XKeuQ8fyefs68510u/Oml41quj48PCxYu4rGPtvHZlz+i/e9WYUKID3euSuKcdLUoKRu2CFQxPTcuLi5ERUVRU1MjmkiGhoaOu8RbSpgfX9y6mPvXH+bT/Q08+UM5u6vaef6K2fh7D3wugoODRXWJKpVKuruHu4CbOKmpqSgUCgoLC51W19kRTHuRzMvLE20vQ6fTYTKZRHMBdXV1iZqWIXZqSXNzs90FJBZ6vZ6jR4+ycOFCp7TcUigUuLu7YzAY8PPzG/+c3Q2w+VE49CFY/6s0vuGQetHALSoXhvm/WKwC5z67jbKWXsCFsgONAPxjcwU3LpnBvWdfiEvqRQNPNvZB1TYav3uG4Pa9JAdYeO4cBfri/4OQRph7A3iOfi9aEAQ2l2l45KtijmoG9hzV3i7cfV46F2VFDrFoHI2npycJCQkUFRXZi7qLQUxMDJs2bRLNmlGpVBMq8ebt6cZTl2axMD6I+z8/zI6j7fz85V28ff08wlUKFAoFHh4e9PT0iJJXrVKpROuR6eLiwsyZM9m3b9+0EslpH91aWFgomiXT1dWFr6+vaAEpzhBJMaNaa2triY6OFlW8ysvLCQ4OFq3QwmCMRiM7duwgNDSURYsWUVJSctKo1+MH6YNNj8FzOXDg3QGBjF4Al74Ddx6Gcx6HmAXDCqQgCPzu40P/FcgB1iyK4azUUAQBXtlayZ//U/y/Azy8Iflswn/zLe73VcG5f6Oq04rc3AMb/gTPz4HDn3LiflIDHG3t5erX93Ldm3kc1fTh4w5/ODuBhxfJiRFaEVEf7cTHx9Pf3y9qE2AfHx8CAgJEEwKZTGavjjMRfpYTyedrF6H2k3O0VcvPXtzJ0VYtMpnM7hIVA5VKRV9fn2jRxikpKRQUFIgytlhMa5E0m81UV1eL1kC4u7tb1EACMUXSGaklGo1G1FqwfX191NTUiJoDa8NqtZKfn4+vry+ZmZkEBgaOOj3ETvUO+Md82PI4mHUQNR/W/ADXfwupF4LLiS+2/rmtik/3N+DqIuPRi9N4doGZe89O5pWr5/DMZVkAvLmzmo2lw6QKyJUw70aSnteyL/rGAfdtbxN8fB28czF0DP8adEYLf/m2lHOe3ca2I224ucDZMW5s+r9l3Lg8mSWLFtLe3s6RI0dG9x5MADc3N5KSkigpKRG1a0l4eLioQqxWq2lpaZnwa0hW+/LJLQuZEexNY7een7+0k4N1XaKKpKenJwqFQjSXa1JSEmVlZaKMLRbTWiSrq6sRBEG0PUMxRczWYFcsEXZGaomXl5eoqSUVFRWEh4eLEsl3LEVFRej1embPnm23jEedR2k2wA8PwJvnQVftQDDNz98cEMeo0QVN1bb389fvBk4e6y5I5ec5Qy8+Ls6O4IbFA1G3j3xVgsU6/AnYbIW6gMVwyx5Yfh+4ekLlZnh5KRR9PuS5G4pbWPXUFl7cXIHJIpAT5sHDCz159vrlBKsG/q+enp7k5uZSXl5OU1PTqF7LRIiNjcVkMokuYh0dHaLlTA5O1ZgoESoFH920gIxIJZ39Jq58dTeNenfRRAwG9iXFEuG0tDTKy8tFGVssprVIlpeXi1ZQWhAEUUWyq6vL3itQDFpaWkR1tTqjQXRtba2olY5s1NTUUFdXR25u7nH/j5MKpVYDb10AO54FBMi+Cm7ZBWk/GVOk6V+/L8NosbIoIZBfzo8Z9jm3r0pE5eVOhaaPH4pPIiLuclh+L6zdPbD/aeiBj66B//yWtu5e1r6/nxvezqehS0e4Ss7dC5WsneXKT85cctxenVKpJDs7215MQExcXFyIi4ujsrJStDkUCoU9VUMMBqdqOIJAH0/ev3E+C2YE0m+0cPd/KqnS9GKxWBwy/rGIaammp6dTX1+PTjdyI+2pxrQXyZiY4U8oE8VoNGI0GkWzYsQUYEEQ6OzsFG0fz5ZaIqZI1tTUoFQqRa9s09vbS2FhIXPnzh2x5+KIQtlSBK+uhLo9A+7Oy96Di54Hz7HVB63r6OergoEAnd+fmzLiHq+v3J0r5g0k+v87v350gwfMgGu/gsV3Dvye/xpHnj6XLQUVuLrI+NXSOJ5Y7sdMH+MJ211FREQQFxdHfn6+aCdnG7GxsXR2dopqLY2mOs5ECAgIoLOz02Hj+Xi68crVOaSE+dHeZ+KlEldqmtscNv5glEqlaBdDcXFxyOVyKioqRBlfDKa1SJaVlYnW41Gr1SKXy0VreyTmfmdfXx9Wq1U0gbeVLxNLwGwNosVu3CwIAgcOHCAmJuakEbrHCWXtHnhtNXTXQkA83PAjpJw/rnX8O78OqwCLE4JICz/xZ+In2QNu2O1H29AZRylWru60z7+P59SP0Cd4soAC1ns/ypfXxHNWSD/G/t6T9oMEmDlzJi4uLqK7yzw8PIiMjLQXkBADtVpNa2srVqtVlPFVKpXDRd5X7s6b180lQqWgVQe3/bsIvcnxFyze3t709fWJsi/s4uJCTEzMtHK5TmuRLC0tFa0wuFarFXW/TWxXrp+fn6ipH2KmlrS1tWEymUTvKFJRUYHRaBx1YJBNKJv2fI717YvB2Asxi+CGDRA0vkpAgiCw/uCAFXnp3JMnoCeG+BCmlGM0W+1FxbVaLQcPHuTgwYMAVFVVcfDgQXt/wE2lrax+ZhtPVsfxS8v99LsHEG+pJO7Ln6Frqx2VQMLACS47O5uKigqHWknDERMTQ319PWazWZTxlUqlPVVDDFQqFTqdDoPBcPInj4FQPzlvXjcXHw8Xilp0rPuiyKHjw4BICoIgmks0OjpaEklnceTIEdEiH8UUSYPBgE6nE00ku7u7p3Vqia1BtJi1YLVaLaWlpWRnZ4/JWxDQX8WCir/iYu5Hp54Lv/gYvMbv1q7QaKnt6MfDzYVVKSePRJbJZCxNHLB6t5ZrgIHaxdnZ2fbKTb/97W/Jzs7mDw88yB8/L+S6N/No0xpICvXh4VuuRn7TBgzyEBTaWhZVPYmndfQnQ6VSSWJiIgcOHBDNCoMBkfHy8qKhoUGU8Qd31RADd3d3vL29RXEZJ4b68uh5M5ABH+TV8V2RY1+Di4sLXl5eaLVah45rIyEhYVpFuE5bkezv76ehoUG09I++vj7RRLK7u1vUoJ2uri7RXLlarZb+/n7RCgiYTCaamppE22u2UVxcTFRU1Niqu3TVwb8uR2bqwxS5gM3ht1DVMLHgj23/FbpZoQpKDxewefNmNmzYwNdffw3Ali1b2LZtGwUFBdTW1tLT08PC+AFR3lM10LFh+fLlCIIw5HawtpOG9Kt4d/eANXn9oji+uHUxKWpf9ld3sj/9AQSvIFxaDsO/Lh+oJztKEhMTEQSBmpqaCb32E2FrZCxWPiOI31VDzCjRVbOiWBk+cJFy7ycFtPboHTq+j48PfX19Dh3TRnJyMqWlpaKMLQbTViRtTX6P7VjgKLRa7YiBHBNFTBETOypXo9EQEBAgmsBrNBq8vLxEa44LA3uqra2tY3PVG3oHxKSvFULScL/qI3IXLx9bHuV/sVgs1NXVsWPHDr7dO+Aui/GxoFAoSEpKIjMz015FKi0tjZiYGGQyGTU1NWzdupXeyoMAFDf20KMbKm4mi5Wnfyjnpy/upLKtD7WfnHfX5PLABal4uMrsEaqzz7wU2dXrB4qm1+6Cb+8d9fptbY/KyspEc4fCQK1VMVM1goKCMBgMoomBmFGiCoWCC2e4kBziTWe/ibs+LnCo2Ht7e4tmSSYlJYm63+xopq1INjY2EhQUJMq+mCAIolqSYhcREDNoZ7q7cgVBoKSkhPj4+LEVZf/PndByGLxD4MoPwNN3TP0oYcDNXlpayvfff8+RI0cIDQ2lSzbwfzp7XhopKSn2BsS2Ig1BQUFER0cza9YslixZwnnnncf5Zywm1McNqwBvfrmFmpoarFYrR1t7+ek/dvLsj0ewWAXOzwjj2zuWsDgx6LiGyZ6enqBOh0teBWSQ/9pAhaBREhYWhpeXl6hRis5I1fDz8xO1eo1YY8tkMoID/LlvuRpPNxe2lmv4ZL/jXNM+Pj6iiWRUVBQajUb0KGlHMW1FsqmpSTSXn06nQxAE0QqP9/T0iGZJdnd34+vrK1pQjdipK2Knlmg0Gnp6esbWU7DgIyj8CGSucNm7oPqf92I0QikIAvX19fbGxnPmzGHFihXExM2gQjNgxaRFjO7zYCtLtihpoNh7o8WPorIj/N/rGzj32W0UNnSjVLjz9yuyef7K2ai8PIYXSBtJq2HF7wfuf3UXtI9O9GQyGampqRw9enTSGxlPBDGiUG0olUp0Op1o749SqcTf1cAdqwY6gjz5fZnDol3FFMnY2FgsFotoQVOOZlqLpFgNcPv7+5HL5aIJjV6vF621lJgiZrFY6OnpEW18W2qJmHVajxw5Qnx8/OjdxV118NX/DdxfdvdAH8djOJFQ6vV68vLyKCwsJDMzk4ULFxIcHIxMJqOz34jZKiCTgXqMDYvPSh24kPjgUBt3bjXx2VETRovA3Agvvr19MRdmhgOcWCBtLLkLZiwfKKW3/lYYZUBOUFAQKpVqWqdqiLlv6OHhgZeXl2jjy+Vy9Ho91y2KJUKloKlbz+s7xlhreAQUCoXdWHA03t7e+Pn5OaWCkyOYtiLZ2NgoWl1SMUXMZDJhsVimpUj29PTg5uYmmoVtSy0Rq2B6T08PHR0dYwsK+u6+gT6OEXMGxGQEhhPK1tZWNm3ahEwmY+XKlYSHhw85pqt/oIi0UuE+5g4bZ6WGcu6sAaE0mK3EBHrx2IVJ3JwmUHZwL/39/aMTSBgotn7B38HdG2p3Qt6ro17HjBkzqKqqElXExE7V6OrqEi14R0yXq00k5e6u/N9ZA9bki5sq6OibuOUql8sRBEHU/WBJJEWmsbFRNLecwWAQTcT0ej0uLi6iBL7Y+l+KmVqiVCpFEzGx9yOrqqqIiIgYfYukqq1Q8iXIXODC58D1xKkig4XywIED7N27l7S0NObOnTvsnJ3/PZn5e3mM+bW4uMh44crZfHP7Er7+zRI2/d9yrliYyPLly/H392fbtm3s2bPn5AJpwz8Gznxw4P6mR0A3ujxItVqNTCYTzSUqdqqGn58fFotF1OAdsdy5NpEEuDgrgtQwP3oNZl7aMvF9Yjc3N9zc3Bye52lDEkkn0NjYKFoHCjEtSZsAiyE0ZrMZk8kkalSuWAJsNBrRarWiudDNZjP19fXExsaO7gCrBb69b+D+nDUQmjqqwwICAkhMTKS2tpaoqKgTRl936QYsSZXX+C6YZDIZKWF+pIb72Rshu7i4kJ6ejpubGxqNhqysrNFfFMy5HkJSQd8N258e9RpiYmJETQcJCgqyu+IdjYuLC35+fqIJmbe3N/39/aKMLZfLMRgMCIKAi4vMbk1+mFfnkL3JwSLsaEJCQiSRFJvGxkYiIyNFGVuv14vSkNU2tthWqlil9MSuEuTl5YWHx9itqtHQ2tqKXC4ffSm90q8Golnlyv8FtowCjUZDeXk5qamp1NfXnzDqtat/wJJUKRznVbBarRw4cAAYqFqTn58/+hOdiyusWjdwf/dLA42jR0F0dDQajUY0q0OlUtHT0zMtC3p7enqKJjSenp5DXKLLk0OI9FfQrTPxn4KJC5DYIilWoQhHM21FsqWlhaiok5fxGg9iC5nYAiyGlSp20I6zUktG9d4IAux4ZuD+3BtHXVHHaDSyb98+0tPTSUxMPGnUa+d/9yTH424djsF7kIsXLyYjI4OAgAAOHjw4+j23xLMGmkRbDJD3z1EdYkvVaG1tncDqR8bLyws3NzeHtJ4aDrH3DW3WnqOxuURtQubqIrMXwH9vz8QtezFFMiwsjMbGRlHGdjTTUiRtrjmxans6w9063cbu7++3l6sSA7ELLIwptaR2FzTsG+jFmHvTqOcpLCxEpVLZA4NOlh7SabMkHSCSwwXpyGQyMjIy6OrqGn3lGpkMFqwduL//LTCN7iQp5r6hTCYTNQrV19dXtHQHsQNgjhWyS+dE4eYi40BtF0WNE3Mhi2kFh4SEoNFoRBnb0UxLkbRdUYrVhULswJ3pOrbtxCsGYrpyx5xaYkuqz7wMfEYXQd3U1ERLSwuZmZlD3qMTCWVXn82SnJi79URRrB4eHmRlZVFYWDj6gtVJ54BfJPS3Q9GnozrElqoxHV2iYlp7rq6uuLu7iyY2x4pksK8nZ6YO5NB+Uzixixbb+yIGfn5+onkGHM20FEmtVotMJhOldJkgCJhMJtHKrontbp2Oe6lGo5H+/n7RRLKlpWX0qSUm/UBEK0DmFaMa32QycejQIWbNmoVCoTju7yMJZWP3gGgF+47/fzaaNA+1Wk1YWBgFBQWjG9TVDXKuHbhf+NGoDrGlaogVYCO2SAqCIJogiGmRDSdkZ6QMiOS2IxOz1Nzd3UWzgP38/ESz3h3NtBTJ3t5evLy8REn2t10JixX8otfrhz2ROmrs6ejK7enpQaFQiBa009XVNXqvw5HvwdAzYElFzR/VIbW1tXh5eZ0wkMwmlEVFxRSXV1BY383+moE0iyT1+C72Rp0HyUANWI1GM/oozrSLB35WbRuIdj0JMpkMf39/0YTM1gj4VLD2xB57SeJAhHhBQ/eEcibd3d1F8wwolcppI5LiKIHIaLVa0fbGbAWbxRRJsay96eom1ul0ol042Aq+j7ql2pHvBn6mXTyQZH8SrFYrFRUVpKenD7FUq9v62FXZTkF9F/WdOhq6dHT2GenRgWX7/zogJIf6khWpGsMr+t+8oxVIGLBmoqKiqKioYPbs2SefICgRgpKgrRyO/ACzfnbSQ8Qu6G2z9sT4HIrpWhRTJD09PY+z3kP95MxU+1La3MuOo21ckBk+wtEnxtXVVbQC9iqVSrTcVEczLUXSZkmKgdlsxsXFRRQr1Ww2YzabRRUbMUVSrMAasQXYbDaPvuB7zc6BnzOWj+rpGo0GQRAICwvDZLHy2YEG3t5VzeGGnhMe5yaDedE+/O2KufYcx9EyVoG0ERcXx5YtW5g1a9bothOSzxkQyYpNoxZJsfIlB1t7YonkqWJJwoA1OVGRdHNzE00k/fz87FWhxCr/6SgkkTwGs9ksmhVpMBiQyWSiuRXFtiSnYxnArq4ufH19R9fAuacJOioHKuxEzRvV+LaiAftru/jdR4eobBu4OnZ1kTEnxp+cGH9mBPsQrpQT6OOJUuGOn8INXW83u3fvxtDZDKq4Ub+e8QokDJyY/Pz8aGhoGF1Rhaj/1qlt3D+q8ZVKJf39/RiNRlE+42JbZGIKWXt7u2hjD7fuzCgVAOUt4w+OEVMkbdsfWq1WtI5FjmJaiqTY7laxRNI2tljVdsxm87QM3DEYDKJZqWNqedaQP/AzNG2giMBJEAQBjUZDgdaXR77fiVWAIB8Pblwyg5/lRBLoM/L/wiswkAULFrBr1y5gwMo7GRMRSBthYWFoNJrRiWREzsBPTSkYtOB54vfR09MTDw8P+vv7RRPJ6egSFXNsNze3YfcN44IGqm5VtY3fpWkTSUEQHH7OsgnjdBDJqW3njkBvb69opdfEFMmB8lHivOUm00A6gZhRudNxv3NMY9vaRAWPbv+yv7+fnY0WHvquAqsAF2WF8+P/LeemZfEnFEgbY+lH6QiBhDHuG/qqwTcMBCu0Fo/qELEtsuk4tru7u/376WhcXFyGLS5vE8nOfpO9RvBYcXNzQxAEUYrXe3h4IJfLp0UayJjO2I899hhz587F19eXkJAQLr74YsrKyux/r66uRiaTDXv76KP/hZLX1tZy3nnn4eXlRUhICL/73e+OM+sffPBBIiMjWbx4MeXl5UP+ptPpRLOYLBbL6Fxz48BqtYqWZ2iL+hNjfKvVisViEc1NPGVSVzoqB34GjM79ebi6hY+qBr5CNyyO45nLslCOscTcaITSUQIJAyJpc4mOCv/YgZ/d9aN6+nR1iXp4eIgmZDKZTLQuIyON7eXhRphy4HNfOU5r0mYsiOVylcvlo6pr29vbyx133EFMTAwKhYKFCxeSl5dn/7sgCDzwwAOEhYWhUChYtWoVR44cGTLGrl27yMrKIjY2ltdee21M6xyTSG7ZsoW1a9eye/dufvjhB0wmE2eddZY9SikqKoqmpqYhtwcffBAfHx/OOeccYECEzjvvPIxGIzt37uStt97izTff5IEHHrDPs2PHDr766ivWr1/PlVdeya233jpkHVarVVQhE8vaE8NtcezYYoxv+xKK9b4YjcapEfHbWT3w0390IvnKjjoMFlgwI5Dfn5sy7vf+RELpSIGEcfQ49Ptv0EfP6EqIiekS9fT0FC1vz8XFxelCJvbYUf4DW1KNXaMsIjHM2MCkvy833HADP/zwA++88w6FhYWcddZZrFq1yl779YknnuDvf/87L730Env27MHb25vVq1cPuaBas2YN999/P++//z6PPfbY6CtQMUaR/Pbbb7n22mtJS0sjMzOTN998k9raWvbt2wcMRKCp1eoht88++4xLL73Uvi/0/fffU1xczLvvvktWVhbnnHMODz30EC+88IL9C9DZ2Ul4eDgZGRnk5OQc94UW2yITc2yxhEZMcbe5W8R6X8Rcu8FgGL2w2PIBvQJP+lStwcyW6oE8r3vOmTnmCNVjGUkoDx065DCBtDGmaie+/y392Du6gtmenp6iieRIrkVHIJPJRBtbzHWfSNwVHgOGhME8vrnFFkkXF5eT5mHqdDo++eQTnnjiCZYuXUpCQgLr1q0jISGBF198EUEQeOaZZ/jjH//IRRddREZGBm+//TaNjY18/vnn9nH6+vqYPXs2mZmZ+Pv7j8nNO6Ezky0xeaRyX/v27ePgwYOsWbPG/tiuXbuYNWsWoaGh9sdWr15NT08PRUVF9t/1ej1eXl6cffbZPPbYY0PGFdOSFOsDAdNb3EE8kRRz7WMSYNN/XT8eJw8KK2roxmyFEB93sv4bSThRhhPK3t5ehwokjDFq0fO/hQ5Mo7NGxBayybZqpurYw43v6TbwuTeYx1cQQKzvpI3RfFbMZvOwTeoVCgXbt2+nqqqK5uZmVq1aZf+bUqkkNzfXHhQH8MADD5CSkoJSqWT+/Pmkpo6u9R1MILrVarVyxx13sGjRItLT04d9zmuvvUZKSgoLFy60P2brPj8Y2++2Asnu7u58++23tLa2olKpjtsLs72xYuwhWCwWe2k6R2M7MYkxtm1MMca2Wfi2SDdHIwgCFotFlLXb9lNHM7absQ8ZYJa5I5zk+fUdA1sMEUrH7mX5+vqSk5PDnj17AMjOzsbFxcWhc8hkMnvv0ZPhYhVwBSwWM9ZRPF8QhFGPPVbG8r8cz9hWq1W0c4qYY8PAd/TYi0F31wGR0xlME5rbaDSKEswok8lOakn6+vqyYMECHnroIVJSUggNDeVf//oXu3btIiEhwa4Zw2nK4IL7a9as4fLLL8doNI655ve4X/natWs5fPgw27dvH/bv/9/ee8e3Vd3//0/Je894xXvbcRxnOLYznAWBsmkLdEApdDfMtpSWfvorbSmlg9VSOqEtUPhCB4UQSEhI4iR2EtsZthPHew95L8nWvr8/hNQE4kR2dGTZuc/HQw870dU558rSfd33+7zH1NQUr776Kj/84Q9nO8W0eXkKhQKNRsO7774767Evhjz2x9m1a5ewsffv3y9s7CNHjth13JVaHb5AWWkpI34XLg59akgBuDE0qhb6nh88eFDY2E1NTRc9Jl3VRBbQ2dFO1QzOU2SvwPn6/RE59s6dOz/2fwMqJaCk+lQt746cnvXYor6bJpPJLi/Pyy+/zN13383ixYtxc3NjxYoVfPazn7Vt89mLn5/frLIiZiWS99xzD++88w4HDhyYtl7lv/71LyYnJ/nCF75wzv9HRUVRXl5+zv/19fXZnrMHpVKJj48P11xzzSxWf2G6urro7u6moKDA4WMPDg5y6tQpNm7c6PCx1Wo1paWlXHXVVQ4f22AwsHv3brZu3SrkjnLXrl2sXbvW/nzGGbB//35ycnIIDw+/6LHu3b+A/kHWrMxBSt50wWOzhzT8taGU3iklG6/Ygq/npb8vZrOZqqoqJiYmWL58OQcPHkSpVJKVlWVrv+UITpw4QWBgICkpKRc9Vrn/JPRCXGIKi6+++Petvr4evV7P0qVLHbDSc2lra2NwcJBVq1Y5fGyVSkVzczNr1651+NgjIyMcP36cLVu2OHzsqakp9u3bd95r4buvnYSBfvKWLuGawvgZjy1JEu+99x6bNm0SUjZSoVDYJZIpKSmUlJSg0WgYHx8nOjqa2267jeTkZJtm9PX1ndM6sa+vj7y8PIesc0bfbEmSuPfee3nzzTfZv3//BROgX3jhBW644QYWLVp0zv8XFRXxs5/9jP7+fpuluHv3bgIDA+32E1t92SJyAq3J/iLGto4pamxJkoSMbd2bsJYGEzG+qLFn9J57W5Ka3Y0auMjxqZFBRPu70as28caxXr5SnHxJ67QKpFqtZt26dbaLR0FBARUVFbi5udlVcMAedDodvr6+9r0nU4MAuAVG4WbH8WazGS8vLyF/S6VSKexzYi1FKWJsNzc3YWPr9fppr1fDHzb1jgyy82/9EaxbKx4eHkLWPtOAPaslODIywq5du/jlL39JUlISUVFRfPDBBzZRHB8f5+jRo3zjG99wyDpnFLizbds2XnnlFV599VUCAgJQqVSoVKqP9alramriwIEDfPnLX/7YGFu3biU7O5s77riDqqoqdu3axf/93/+xbds2u4MTRIZrg9horvkYnSc6yk1kIeUZ5dZZo1rVF28xpFAo+Nxyyw3g03saaLyE8l8XSvMICQmxu+CAPUiSxNjYmP1tyazvhd+iCx/3ISJzXo1Go9CAvYUWmDaotsQShPvPLr/ZGQF79vw9d+3axc6dO2ltbWX37t1s2rSJzMxM7rrrLhQKBQ888ACPPfYYb7/9NjU1NXzhC18gJiaGm266ySHrnJFI/v73v2dsbIyNGzcSHR1te7z++uvnHPfiiy8SGxvL1q1bPzaGm5sb77zzDm5ubhQVFXH77bfzhS98gZ/85Cd2r8Pd3V1Y4q/IC7bIKDfrF0XE+NaxRbXNcZlyY2Efuh+HGi983IfcujqBjGCY1Ju444Vy6lQXLmp+PuzJg5xJZZ6LYQ19t7sX69iH+WQB0Rc+7kPma7u2+VxEZLqxBycs36nwWfYrtX7fRb0vBoPBru2bsbExtm3bRmZmJl/4whdYt24du3btslm33/3ud7n33nv56le/Sn5+Pmq1mp07dzrsszJjd6s9PP744zz++OPTPp+QkHBJm9j+/v72d1mfIdPVQnQEzhBJEekxCoXCZpGJqJnrMuXGwtMtPwfqL3zch4SFBHNHqpG/tQfRNKDhxudKuf+KNO5ak2TLUbsQMykUYBXKmdR6PR9jY2MEBQXZd9E26ix1WwEi7dsKEV1iMCzs4jmssx1blAUsOmXtfH/LsSkDEzrLzf5sm3qLbBtoNpuZmpqyKw7h1ltv5dZbb532eYVCwU9+8pMZGVozYV7Wbg0ICBDWi0xk5XuR7lZrmoxLWGQzRHS9T7tvqMIzLD/7ToMdNzPu7u7EhAbw25uSWJ8Wjs5o5pc761n7i7089k4tR1uG0BrOf8M1m0o6jrAoh4aG7He19teC2QjewRAUd9HDzWaz8E40LlG+cIbMqKDFDJnO3VrTZclhjw/1JdB7dvuJVve2CCt4cnISk8lkv0djDpmXXUD8/f3tqvk3G0SKpJeXly05VoS1ZxWyBW3tzZCgoCDq6+vt2xeKzgV3H5gctFhQERcvdL548WJGBnp56e4C/n28m2f2NNA1MsVfDrXyl0OtuCkVLA72IcTXg0AfD4J9PQnydkfSDJMWYOCzV6+f0QX0UixKk8lEd3c3RUVF9r2g+8MQ++hcsONCqVarUSgUwpoPiLZS7YmAnu3YIgX4fDWVT3aOAP9rmTUbRDZ7sFZRExHR7mjmpUgGBAQIF0kRm+2enp4oFAq0Wq2QC4loi0yklSqqo31gYCA6nQ6tVnvxMHZ3L4gvhJZ90HrALpGMj4+nvr6eqakpPr0ylpvyYthzpp+dp3o52DjIkEZPx/AkHcPnf70hpHvGkbGzFcqenh68vb3tT6Zu3GP5mVRs1+Gjo6P2u3JniCRJQq3UhWYBn+y0WJKXUg1KtEi6u7sLe18cybwVSZF7kmC563b0B8S6t6fT6YSIpGhrT9R7LrrfXkBAAKOjo/bleiUVW0SyaQ8UfO2ih/v4+BAVFUVLSws5OTm4uym5OieKq3OikCSJ3jEtPaNTjE1ZWhadamxhcELLhFsQJY1D/GJnHZ9eGUuI38wiEGcqlJIk0dTURHJysn0iZpiClv2W39OvtmtNo6Oj9rtyZ4jBYMBsNs9bIRNlpZ5P3CVJ4mTnKAB5cbPv0ypSJMfGxvDz8xNe+s4RzMs9SX9/f6F7kiC2Pcx8dFuKtFL9/PzQaDTC9mtn1EMx81rLz+a9oBm06yWpqam0t7d/7P1RKBTEBPuwKjGUTRmLSKSP4kgTT965kb9/qZC0CH+MZomKtmnMzIswkz1KlUqFVqslLu7ie4uARSCNUxC4GCLPX3byo1iDgkQwMTGBl5eXkIu2JEmu09PUAWOf7BxlUK3D19ONJTGuK5LzwdUK81QkAwIC0Ov1Qtx/1qTi+SqS8zFwx7p5r1arhYwfFhbG4KB9gseiDIhZbglYOfVvu14SGhpKZGQkVVVV541eni5IJzbEYtmOTs4+nckeodTr9VRXV5OdnW3/Re/Y3y0/l9xs136kwWBgZGREWPSpSCtVr9cjSdKCceW+U23p2HJFViTeHrOPfRCZlyqLpGCsF1VR+1ienp7zUmzmqwArFAqCgoKE/T0jIyMZGRmxf/3LPmv5efxlu6JcAXJzcxkZGaGr69zmxBeKYrU2aB6burSc34sJ5alTpwgMDCQ+3s7SZGNd0Phhnd6VX7TrJf39/fj7+wsL2hEpkjqdDnd39wVhpZrNEjs+FMnrcu3LbZ0OkVG5ExMT8yKyFeapSPr6+uLm5ma/dTBD5qvbUuTYPj4+6HQ6YRZ2cHCwrfWao/H29iYoKOicrgAXZOkt4OEHfTWWvUk78PT0ZNmyZdTU1Nj+BhdL83CUSML0QqlSqejt7SUvL8/+/Z+KF0AyQ+J6CE+z6yUqlcru2suzYUZVgmbI5OSkkNqk8D8r1VmBO5XtI6jGtQR4ubMhw74qSdMh0gIeGRkhMDBQyNiOZl6KpFKpJDw8/GN37Y5ivlpkotft5eUlTMhEWpJgKZ5vLaR/UXxDYdVdlt8PPmn3HNHR0URGRlJRUYFer79oHqQjRRI+LpQTExOcOHGCpUuX2i8C6gE4+kfL7wVft+slZrOZvr4+YSJpNBqZmJgQtt9pjcoVgVarFWqlflTIXivvAODKJZF4uV+aq1SkBdzb23tOQXJXZl6KJFguSB0dHULGns9CptfrXSMAZhZjj42NCatIFB0dTX9/v/3lDIvuATdP6DgMTR/YPY/VYtu7dy9jY2MXLBQQ7GuJaB2Z1Ns9/sWwCuXp06c5ePAgiYmJ9rtZAUqfAYPGsi9rDWK6CAMDAyiVyhn36bOXsbExvLy8hFl7ol25ooTmo3upHUOTvF3VA8Bday69GL5okZyug5SrMW9FMiYmRljPuvm6b2i9GIsaX6RIWvcnxsdnXv/UHgIDAwkICLDf+xAYDfkfFuh/72Ew2idkCoUCT09LI2ZPT88LdjkI+7Dw9JDacSIJlq4N1hrEM3LzDTVD+Z8tv2/+P7sCdgDa29uJj48XFs4/MjIiTMRAbFTu1NSU0P1Id3d3W3DNHw80YzJLFKcvYmnspZ+PSJEcGBiQLUnRxMTE0NvbK2Rs0fuGoqw9pVKJv7+/MKEJCgoS5m5VKBQsWrTIfpfoLEhMTKStrc1+a3Xj9yzdL4Ya4cjzFz3cugepVqvZvHkzbm5uHDp0aNr3LPTD3MhhzexEsqpzlG/+4xjb/nGct6t6MJrMdHd32yzItWvXcubMGftK2EkSbL8fTDpI3gQp9vU+nJqaoq+vz6H9Lj9KX1/ftA3YLxWtVotWqxUmkuPj48ICVM4Wsf5xLf+stNwAbtt48T6hF8PqyhW1lyqLpBOIiYkRdkF1hrUnyp0r2iU6MTEhLHgnKirK/uCaWbB48WKmpqYYGhqy7wXeQXDlh0WT9z8B/XXTHvrRIB0/Pz8KCwuJiori4MGD1NfXf+zGyCqSQ5qZfxZUY1o+/5ejvFujYkdNL/e9doIrf7WbXYerWLZsGVlZWYSFhdlf6/XEK9B20FKW77qn7bYi29raiIiIEBbVajAYGBoaErbfOTo6ir+/v5B+idbxRVnBZ4vksx80ojeZyU8MoSD50tNwdDqd0LSYwcFBWSRFY91jEoFIkVQqlXh5eQmrXiM6SlRk8E5kZCSjo6PCbiDc3d1JTEyksdG+VlgA5H7GYlkZp+Bfd4Ph45+L6aJYlUolWVlZrF27lu7ubg4cOMDw8P8KB8QEWfbYBtV61LqZ3Xj8v4oO1DojqRH+3LEyAl93aB018sQJBe+16DCbLdayXQUHBhpg5/csv296BELt288yGAy0tbWRnHxpDacvRF9fHwEBAULqEYPYqNkZ9+6cIVaRPN4xwqsfBux868oMh41tdds7GrPZLIukM4iJiRGWAuLn54fBYECvd+xekRVfX19hFYNERokqFAqhlqq3tzfBwcFCrcmUlBSGh4ft/+wolXDzH8E3HPpPw65Hznnanm4eISEhbNiwgcjISMrKyjh06BA9PT0E+bjb2hjNtGnzvjrLDeK6sCnWB43w6u3ZbExfhN5k5rEdZ/jsn4/QOWypb3xBodSp4Y07QK+2pHwUftPuNTQ1NREQECCs5BogNGoWxEa2WotjiEqa12g0eHr78Mh/apAk+NSKWIpSHFPMQaPRCPMO9Pb2YjQaZZEUTXR0tDCR9PDwwMvLS1gFGJFCExQUZNtnETW+KEsSxLtcvby8SE1Npba21v69yYBIuPkPlt8rX4Ajlt9n0u7Kzc2NrKwstm7dSmRkJKdPn2bXrl3E+FrWcLyl74J9TA0GAwMDAzQ2NlJSeoSa7lEArstP54orriAvM4m/3pXP4zcvxdfTjaOtw1z9zAFer+hAkqTzC6XZDG9ts3Q88Y+CT70AbvalKmi1Wpqbm8nOzhYWsCM6tQTEukNHR0cJDAy8YPDWpY6/s1VPnWqCEF8PfnDtxQvy24tarRYm7h0dHQQEBAgTYUczLwucw4ctikZGhN3x+Pv7o1arCQ0NdfjYQUFBdHZ2OnxcsAi8v78/o6OjQi4uoaGhVFdXC+mSAhaRbGhoENopPiUlhdbWVlQqlf13s2lXwhWPwp5HYef3MAfFclwTNaN+kGApOpCWlkZqaipDQ0PsGThDVZ+ePSeaWTTeQEBAAB4eHrYL6+HDh9Hr9Wg0Gnx8fCyWtsEbs6QgJsibVdn/c3UqFAo+VxDP2tQwvvPPKiraRnj43zW8f7qPn39qKRFnF0WXJJLqfg+1/wWlO9zyV8vNgJ00NDSwaNEiId8PK0NDQyiVSmEiptFo0Ol0QvMvRa3daDRS3zfBC6ctWxOPXJNl2+N2BCJFsrW1dd5YkTDPLUkfHx9OnTolZHxr0W0RWC1JUTmBIvclw8PD0el0TEzMzD1oLwEBAXh7ewuLXAbL3mRGRganT5++oPX2MdY+8GGZNgn+eRfubftnJJBno1AoCA8P56aiTACaJ73YvHkzmZmZJCQkEBlpEaz4+Hhyc3O5+uqr2bp1K6tXr6bHYNmfy086v0AlhPnx/75axPc/kYmnm5IP6vq56ukD7KjutVmUhj2PQfmfAIXFnZywxu61j4+P09HRQVaW4yyX89HV1UV0dLQwS1WlUhEeHi4saEdkakl3/zAvNrijNZpZnxbOp1c6NudQpLu1rq6O9PR0IWOLYN6KpEKhIDU1VZhIWi1JEQQEBCBJkrDxRe5Lurm5sWjRImEuUYVCQUJCAu3t7ULGt5KYmIinpydnzpyx/0UKBeZP/IqRyDUozXqWnfkFXq32Fxo4H6uTQvHxcKN/Qkf7uIno6Gji4uJsBQAWL15MRETEOUJs7RqyehqRBHBTKvjahhTevnct2dGBjEwa2Pbqcb7+UiVeZb8ivcdSvH1w9cOw9NN2r9fqYk5OThZaVsxgMNDd3S00tURkKT1JkoRZkmazxHffrGVgChYH+/DsZ5Y79EbCem0SZUk2NjaSkeGYACNnMG9FEiAjI4O6uunD8i8FkSKpVCqFCpnIPU8Qv28YHx/P8PCwsPcfLGK8fPly2tra7E4JMZvNHD9Zzcm0BzBlXo/CpLcEvVg7ZswCL3c31qZagi2shakvhNZg4niHpev86sSLuzozowL577a13Lc5FS+lmS0NP8av0pLzqVn7PY5KufblUX5IY2MjZrNZ+EWuu7sbf39/of0pRaaWqNVqJEkSkiP57AeNHO3U4Omm4I93rHSomxUslXwMBoMwS7KtrU0WSWeRmZlJU1OTkLGt7lZRLlGRATCig3esqRoic0mjoqJoa2sTMr6VgIAAMjMzOXHixEVzP88O0lmzfiNut/wNcm+ztNTafh/s+A6YZleD9VMrLK6yNyq70Bou7P7dV9eP1mBmcbAPqRH23el7uiv5VmEgx+N/wy3uBzBKSh4yfJVvdm4hcckK+/IosbgPGxsbWb58ubD9YrBYMm1tbSQmJgqbwxmpJSKCdt6o6OTZDywpTN/dHEfOYse7czUaDV5eXsLc0O3t7bK71Vmkp6cLu5D6+flhNpuF5jOKsvY8PDzw8/MTnqohsjpOcnIy7e3twgoXWElJScHLy2vaXpAwTRSrm7tlL2/TDywHVfwZ/nadpbTbDLkiO5KYIG8G1TpePXrhesT/+PD565fF2O9iaymBP67HT1WO5BnA+0uf5C3FZkoaBrj1xSq6vJM4dfrCQmkwGKisrCQlJUVYjVYrQ0NDTE5OCq3tKbpriQhX67+OdfHwf6oB2Bxj5nNFl15Z53yIbGOlVqtRqVSySDqL9PR0YUXO3dzcCAgImLcFvRctWiSs2AKId7mGhobi5+cnLArYikKhID8/n8HBwfN6JS6Y5qFQwIbvwmdeBU9/6DwCf1gHR/9kSa+wEw83JfdstrSkenpPA6qx81voFW3DHGoaxE2p4PZCO4qWT43A2/fBSzeAZgAic1B8rYRrPn03792/nlUJIWj0Jn6+u5U/tfjz3tHzC6UkSVRWVuLn50dmZqbd5zVbWlpaSEhIENI5A5yTWtLX1+fQ/NE3T3Tx0L+qkCS4dXkkn051E1rwXVTA0alTp/D19RX63juaeS2SaWlpM0sMnyGiC3qbzWZhEbTW1lCiRDgqKoqBgYGZRYfOAIVCQUpKCk1NTcK6mljx9vamoKCA+vr6c6xju/MgM6+Fb5RZkvENk/DeQ/CXzdB6wO413LoqlmWxQUxojXzzH8eY0p/7vo5rDXzv39W2Y2NDLuAmNBnh5Kvw3Go4/uF+6covwpd2Q5jF+khZ5M8bXyvi0euz8fN0o6ZHza9Owg/+W8vx2nMrEtXW1jI5OcnKlSuFRZpamZiYoK+vj6SkS+9iMR1DQ0O4ubkJ2+9Uq9VoNBqH1Zt980QX337DIpCfL4jn6/mhBAcHC/tbiKwSdOrUKVJTU4V/jhzJvBbJ0NBQW96eCETuGyqVSgIDA4WJsDNSNby8vBgYGBAyPlgiO5VKpfC9SbDcEOXl5VFZWcnY2NiMCgUAEJIAX3gbPvEri1XZcwL+fj288mlot+QlXgh3NyVP35ZHkI8HxztG+fyLFXSqLVZcU/8Ed7xQTvOAhshALx66ahprzmyCqtfhd6vhv98ATT+EpcEX34XrnwXPc4VVqVTwxbVJ7P3ORj65fDESUNYHn/9HA0/8twKtwUR7ezvt7e0UFBQI26M6m9raWuLj44XtFcL/XK2iLtRWK/JS3y+zWeLXu+p58PUqzBJ8Jj+On96YI1TEzGaz0NSVurq6eRW0A/NcJMES4Xry5EkhYzsjn1F0qoaofEOFQsHixYuFubvBciORnZ1NQ0OD8L1JgNjYWNLS0igrK+Po0aMzLhSAUgkFX4X7TkD+VyxJ+k274a9Xwx/Xw/GXQDv9TVfyIn9e/OIqQnw9qOke59c17iz9yQdc8dQBqjpHCfLx4C9fyP94NONwK+x9DJ5ZCm9+FYabwSfUUvzgG6WQuPaCy44M9Oap2/L419eLyFkcyJQJ/nCkn3U/f58/7alh5ap8YekA55zG8DADAwNCL6Jms5muri5iYmKEzeGI/U6NzsjXXznGc/ssWwBfK07m8ZuXolQqhBYpmJiYQKFQCPt719fXC8+vdTTzXiRXrlzJ8ePHhYwdGBiIXq+fl8XI4X8uV1EkJCTQ19cnLMoVLOfg6+tLc/PMA2JmQ2pqqs1Czs3NnV2rIP8IuPbXsK0cVnzB0llDVQNv3wu/TIGXb7b0beyvs1h/Z7EyIZTt967j+twolAoJndGMQgFXZkey/Z51lj6BJgN0HIF9j8Oft8Bv8uDAr2C82yKOW/4/eKAa1j0I7vavf1ViKG9tW8cvP53LIj93BifN/KNRwe2v1PL+aZWwm0WwWMy1tbWkpKQI6zwBlrqh7u7uLFq0SMj4er3+klNLOocn+dTvy3i/tg9PNyVP3rKM71+ThVKpwGQyMTExIbSUnkhXbm1tLStWrBAytijmbVk6K6tWreKZZ54RMra7u7steEeE+yc4OJiamhrMZrOQ+o5RUVFUVVUJa57q5+dHaGgonZ2dpKWlOXx8sFis2dnZHD16lMTERGH97eB/e5BgiXqtqKigsLBw9tGcYSlww2/hih9bWlGdeBkGG6B5r+UBFtds9DJYlAlBsRAQRaynP08v9+AzhkqS09IJUU7irT0F+/8A/WcsY5jOLr6vgJRNsPx2yLgWPGb/t3ZTKlgdbuKRZQbqTBG8fGyAxn41X335GFnRgWzblMIncqJxUzr2Itrf38/ExAQFBQUOHfejtLe3k5CQIEwE+vv7Z51aIkkSr1d08tiOM6h1RsL9vfjTF1ayIv5/n7/R0VE8PDyEBe2IdLWOjY3R1tbGypUrhYwvinkvkitXrqSurg6j0SgkGs5q7YlwzwQGBuLh4cHg4KCQprJeXl62VA1RlUsSEhKoq6sTuhkfHh5OWFgYjY2N5OTkCJnjfHuQ3t7elJaWkpeXd2npCL6hsPY+y2OwEep2QOP7ln1LvRraSy2Ps3AH1gJMl5XhE/Jhc+TNkLoFAi/982k2mzl9+jSdnZ0Ury3i5rAwPlfQz+NvVnBApeRM7zj3vHqC5EUNfHNjKjfmxeDhduk3d1YrMj09Xei+p0ajYXBwUKglM1tXa+/YFA//u4YDDZY9/hXxwTz3uRXEBJ8rhiqVisjISGHftdHRUWFBU6WlpYSFhQl1dYtg3oukNST9+PHjrF692uHjh4SE0NPT4/BxwWIlWVMpRHVet44vSiSjo6M5deoUAwMDws4BICsri4MHDxIfH+/wcmjTBemkpKTg7+9PZWUl4+PjZGVlXfrFKTwN1j1geZhNFquw5wQMt8BopyVVQ69GMkwxOq4mKHQRSr8w8A2D0GSIyLJYncEJlj1QB6HX66msrESr1bJhwwZbtZWEmAh+/tki9hw4zGlDOG+eHqVlQMN3/lnF07sb+EJRArflxxHsO/uqL21tbRgMBqHFA6zzREVFCXPnWlNL1qyxvw6u2Szxr2Nd/PSdWiZ0RjzdlTy0NYO71yWd11pXqVTC9vRMJhNjY2PC8mCPHDnilAhpRzPvRdLd3Z3c3FzKysqEiGRYWJitELaIKiNWl+jSpUvnZVcNNzc3EhISaGlpESqSQUFBJCUlcfz4cYqLix3mnr5YFGtkZCTFxcW2QJ68vDzHXWSVbhbRi/j4Rc9oMHDg3Xe55pprUAqOKh0ZGeHYsWMEBASwfv36j1lzoaGhXFFchN/hw9zy2QwO9ip44VAL3aNT/Py9Op7e08DNyxdz55pEMqNmdgMzOTlJbW0t+fn5Qqv4GI1G2tvbhVwjrMw0teRQ4yBP7DzDqe5xAPLigvn1LcumraSkVquZnJwUtp86MjJiK0QighMnTpCfny9kbJHM+8AdgPz8fI4dOyZk7ICAANzc3ISmauj1esbHx4WM74xUjaSkJAYGBoTWWgWL18BsNtPY2Hjxg+3A3jSPgIAANmzYgLu7O3v37qWrq0toEIuzMJlM1NbWUlpaSnx8PKtXr57W3WntHtLeVM/VCUoOPbyZX3xqKVnRgWgNZl4r7+TqZw5y2x8P8+aJLib1F49GliSJEydO2Iq4i6SzsxNfX1/CwhzTlPh82Jtacqp7jDteOMrtLxzlVPc4/l7ufP8Tmfz7G2suWGrQUakl0zE4OEh4eLgwS6+urm7e7UfCArAkwbIv+dvf/lbI2NaWRoODg0K+YG5ubkRERKBSqYRsmFtdur29vcKqXHh7exMTE0NLSwu5ublC5gDLe7V8+XJKS0uJjo6+JLfrTPMgPTw8WLVqFT09PVRVVdHT00Nubq7QSEyRjIyMcOLECZRKJcXFxXa9l6Fn96MEbstP4tZVcVS0jfC3slZ2ne7jaOswR1uH8fM8xSeWRvPJFYspTApDeR7XYVtbGxqNRqh1BxYxbmlpIS0tTZgASJJEb2/vBT//JzpGeOFQK+98WMjew03B7YUJ3LMplTD/iwekqVQqoft5g4ODwkoBjo+P09LSMu8iW2EBiWR9fb0wl2J4eDg9PT3C8rciIyOFVsaPi4vj0KFD5OTkCLsLTUlJ4dChQ6SnpwsVjpCQEJKTky/J7TrjQgFnERMTQ1hYGNXV1XzwwQekpqaSkpIirISao5mcnOTMmTP09PSQnp5OWlrajN7DjwplUlISq5NCWZ0USs/oFG9UdvKf4910DE/yr2Nd/OtYF4uDfbgxL4arc6JYujgIhUKBRqPh9OnTF7ReHUVvby8Gg4HFixcLm8NafeqjFrHOaGJHdS9/L2ujqut/6V435cXw7a0ZxIXaFwVrTS1Zvny5Q9dtxWQyMTIyQl5enpDxDx8+TEhIiNB6vKKYH9/si5CdnQ1YNobXrr1w4vRsCA8Pd8q+pKhUjeDgYPz9/enu7hYWHBEcHExERAT19fUsW7ZMyBxWMjIyUKlUs+pLdykCacXLy4v8/HyGhoY4ffo0ra2tpKenk5iYKCSVxxHodDoaGhpoa2sjJiaGLVu2zDqt6XxCCRAT7MMDV6Rz/5Y0jrWP8O/jXbxT1Uv36BTP72/m+f3NRAV6c0V2BIulIfITYoW7Wc1mM2fOnCEjI0Ponmd7ezvx8fG2v39Tv5q3TnbzWnkHg2pLuo6nm5LrlkXz5XXJZMfMzAvS399PYGCgsEpEovcjDxw4QH5+/rwL2oEFIpLu7u6sWbOG999/X4hI+vv74+7uzujoqBCXq5eXFyEhIcJTNdrb24VGEGZlZbF//35bVKgo3NzcWLFiBYcOHSI4OJjIyEi7XucIgTybsLAw1q9fj0ql4syZMzQ2NpKUlGRr6OwKTExM0NLSQmdnJ+Hh4RQXFzvErT+dUILFxb8qMZRViaH86Pol7K7t471TveyvH0A1ruWVI5YqTf4ndWyoO05RchiFyWGkLPJz+EW0s7MTSZKENm/W6XT09qqIzcnnqd0NvFfTS2P///bnowK9ub0wns+sjifcDrfq+RDdtUT0fmRpaSnXXnutkLFFsyBEEmDLli3s3r1byNgKhYKwsDBh+5JgcbmKTNWIjY3l9OnTQpOFAwICiIuL48yZM8Kj2M6utVpcXHzR1j6OFkgrCoWC6OhoW6pNS0sL9fX1xMTEEB8fT1hYmNOtS4PBgEqlor29nZGREWJiYli3bp3Dq7RcSCiteHu4cf2yGK5fFoPWYOLtI3W8dayNugkPhjQGdlT32ppNLwrwojA5jMLkUAqSQkkK97+kogUmk4m6ujpycnKE/A1GNHoq2obZfbKFgy3uqMr+Fzzo4aZgTUo4t6yK5aolUZeUT2pNLUlJEdMaC8TuRxqNRo4fP86vfvUrIeOLZsGI5MaNG/nFL34hzCUaERFBe3u7sH3DqKgo6uvrhRVF8PDwYPHixbS1tQl1h2ZkZPDBBx8IrS9pJTY2lvHxcY4ePUpxcfG01psogTwbq1hGR0czPj5OR0cHx44dw2w2ExkZSVRUFBEREcL23yYnJ1GpVKhUKgYHB/H39yc+Pp78/HyhVYrsEUorU+pxfMdaefpzqwkPX8SJzlEONQ5ypGWIYx0jDEzo2F7Vw/YqS16yr6cbmVEBLIkJIjsmkCUxgaRHBuDtYd/3u6WlBS8vL4cEu+iNZjqGNdR0j1HeOkJF2zBN/edGc3u6KylOW8Q1S6PYkhVJkI9j/tZDQ0O4u7sL+z7p9XqGh4eFBdWUlZUhSZKw/VTRLBiRXLlyJXq9nvLycoqKihw+fmRkpNB9w4CAALy9vRkcHBTmVklMTKS0tJTs7GxhF2sfHx+SkpKora2dUVL1bMnKymJ8fJxjx45RUFDwMYvBGQL5UQIDA8nJyWHJkiWMjIygUqmor6/n2LFjBAYGEhQURHBwMEFBQQQGBs7opkiSJPR6PWNjY4yNjTE6Osro6ChTU1OEhYURFRVFbm6uUwqSW7FHKKempjh69CiZmZm2fciVCSGsTAjhftLQGkxUdY5ypGWYIy1DnOgcYVJv4njHKMc7Rm3juCkVRAd5ExviQ1yIL7EhvpbfQ32JDPQiwNuDAG93MJtobGxk1apVdrkQtQYTI5N6hjV6RjQGukcnaR7Q0DKgpnlAQ8fwJCbzx9N+kkK9Weyl5dPFy7giOwp/L8dfUkVX2bmUUnr2sGvXLtavXz9vgts+ikJaCAlfH3LllVdSVFTET37yEyHjHzhwgISEBGEu0ZqaGkwmk7AIM7Ccw+LFi4W6bvR6PXv27CE/P19Y4vPZGAwGDh48SERExDll6+ZCIC/E5OSkTdSsD4PBgJubG97e3raHUqlEkiS6urpYvHgxZrMZrVaLVqtFp9NhNpvx9fW1iW1wcDAhISFOaWV1IYaHhzl8+DDZ2dnnCKXJZOLQoUMEBASwfPlyuy72JrNE66Ca0z3j1PaMc7pnnNM9Y4xMGuxai7e7Ah93CA/0w8/LHYUCzJLlJsMsSUiSZQ61zsiwRs+k/uJ9Uf083UiLDCA/MYT8D/dcG2qOExQUJKwKjiRJ7Nmzh6VLlwq7ebY21BZ1Dhs2bOD666/nO9/5jpDxRTM/pX0aRO5LgnNKvFVUVJCbmytsHys5OZkzZ86QnJws7M7U09OTtLQ0amtrKS4uFh7R5uHhQUFBAQcOHMDLy4u0tDSXE0gAX19ffH19be4/SZIwGAw2ATxbBK2twfz8/PD09LTVkrU+XPGu/HwWpdlspqKiAqVSybJly+z+LLgpFaRGBJAaEcCNeZbUDUmS6J/Q0Tk8SdfIFF0jk3QOT9E1avk5pNah+VDstEYJrRFGtPYXuHBXKgjx8yTU15OIQC9SFvmTssjP8jPCn4gAr3PWr1arGRgYELp9MTY2hk6nE3azOZtSejPBuh/55JNPChnfGbjeN+0S2LRpE0888YTQVA2RJd7CwsJwd3cXmjQcExPD6dOn6evrExotl5SURGtrq/CIWit+fn4UFRVRVlaGUqlkZGTEpQTyfCgUCjw9PfH09PxYMr/BYKCpqYnU1NQ5txBnwtlCKUkSg4ODaLVa1q5de8nfGYVCQWSgN5GB3qxKPP8xRpOZA0cqmDJIJKRlMa41oNFZhFOpAKVCAR/+VAD+3u6E+XkS4udJgJf7jG7oWltbiYmJEdaRAyypJYsXLxaWvjLTUnozpbS0FIVCIdQ7JpoFJZIrVqzAaDRy+PBh1q1b5/Dxzy7xJkJgFAoF8fHxtLe3CxNJpVJJUlISzc3NQkXS3d2dvLw8KioqiIiIENpp3kpwcDAFBQWUlpbi6enJpk2bXFYgFzKhoaEUFBRQVlaGl5cXmzZtcprQ96l60Y0Ps2XTJqFFLQwGAx0dHUL33Y1GI11dXUJiLKzYW0pvtuzatYt169a5pOfDXlwz83mWeHh4sGHDBt566y0h41tLvIlsZBwfH8/AwACTk5PC5khISGBkZIShoSFhc4AlInjx4sWcPHnSKbVOzWYzra2t+Pj4YDKZ6OrqEj6nzMcxm820tLTg4+ODwWCgu7vbKfPqdDqqq6udUi6wpaWFwMBAYR0zALq7u/H19RU2hyRJwj1Ke/fuZevWrcLGdwYLSiQBbrrpJuH7kr29vcIu+j4+PkRGRtLe3i5kfLAUL0hNTaW2tla4eC1ZsgS1Wi30fODcIJ3i4mLWrFlDfX09DQ0NC6IY+XzBaDRSXl7O5OQkGzZsYM2aNdTW1tLaOl1jTMdRXV3tlH6FOp2OpqYmW6UvUYhuED0+Po5WqyU8PFzI+IODgxw7dozrr79eyPjOYsGJ5HXXXcepU6eEWRHWD5TIrhoJCQl0dHRgNpuFzZGSkoJarRZqFYPFus/Ly+P06dPCrOPzBemEhISwdu1aWlpaOHHiBCbTxaMXZS6NqakpDh06hNFoZO3atXh6etr2KEULZXd3N4ODgzMKDpotDQ0NhIWFCe0oMj4+ztjYmNBap11dXURFRQlzhf7rX/+y1Taezyw4kYyOjmbZsmW88cYbQsZXKBTExsYKdeVZy6yJFDAPDw/S09OdYk1a3a4nTpxw+FwXimINCgpiw4YNTExMUFpailardejcMv9jeHiYkpISgoODWbNmzTl7kKKFUqvV2tysovegJycnaWtrc4oVGRMTI6y8oTXFKC4uTsj4AO+88w433nijsPGdxYITSYAbb7yRHTt2CBs/NjaWnp4eW5i+o1EoFCQmJgp3USUmJmIymejs7BQ6D1jcrhqNhra2NoeNaU+ah4+PD+vWrcPPz4+SkhJhfUEvZ9rb2ykrKyM9PZ1ly5adN31JlFBKkkR1dTXh4eFCu3xYOXPmDDExMZfUpu1iWIOCLlS96FIZGhrCbDYLSy3R6/UcPHhQFklX5cYbb+Tw4cNoNBoh4wcFBeHj4yPU0ktMTGRoaEhYM2awFArPzMykrq5OuDvybLerI5ozzyQP0loQPTk5mUOHDskBPQ7CbDZz6tQpTp8+TUFBwUVzb0UIZVdXF0NDQ0L7mFoZHx+np6dHWNK9lY6ODvz9/QkNDRU2h7VQhah87J07d+Lp6Sm8V6gzWJAimZubS2hoKG+//baQ8a0uV5EWmJeXF7GxsbS0tAibAyxWsYeHh0MtvOmIiIggKSmJo0ePYjDYVznlfMymUIBCoSAtLY38/Hyqqqo4ceLEJa3hcmdiYoJDhw7R39/Phg0b7LZIHCmUIyMjVFVVsWLFCqek+tTW1pKYmCg0nUmSJFpbW4Xu45lMJrq7u4Xud/7nP//huuuuE9qezFksSJFUKBTceOONwlJBwCIu/f396HQ6YXMkJyfT1dWFXq8XNodCoSArK4uGhganiEZ2dja+vr5UVlbOan/yUivpREZGsmnTJqampti7dy/9/f0zXsPljCRJNDU1UVJSQmhoKMXFxTPuQegIodRqtZSXl5ORkWF3q7RLYWhoiKGhIdLT04XO09fXh9FoFBqh29fXZwtuE8X+/fsXhKsVFqhIgsXlum/fPmFuRD8/P0JCQoTmgFlrc4pOn4iMjCQgIIDm5mah88CHvQZXrWJycpLa2toZvdZRpeZ8fX0pKioiIyODiooKTp48KVuVdmC1Htva2igqKiInJ2fWkZGXIpQmk4ny8nLCw8NJTU2d1fwzQZIkamtrSU1NFW6xtrS0kJSUJLS9WldXF7GxscKigCsrK+nt7eXKK68UMr6zWbAiuWnTJgwGg9AAnri4ODo6OoRGhyYnJ9PS0iI0HUShUJCdnU1TU5NTIkCttVbb29vtdlk7uharNThq06ZNaDQa9u3bJzwdZr5iNptt1mNwcDAbN250SPrDbIRSkiSqqqqQJIm8vDyndLpXqVRoNBrhqQzj4+MMDQ0JLeOo1Wrp6+sTGtX64osvcu21187Yw+CqLFiR9PDw4DOf+QwvvfSSsDliY2PRaDRCIyajo6Nxc3Ojo6ND2BxguWBFRkZy6tQpofNY8ff3Z9WqVVRVVTE8PHzBY0UWK/f19WXNmjWkpaVx7NgxSktLGRkZcdj48xlJkuju7mbv3r20t7dTVFTE0qVLHZpXN1OhbG5upr+/n9WrVztlv8tgMFBTU0NmZqbw0mr19fXEx8cLtVY7OjoICwsTJmBms5m3336bO+64Q8j4c8GCFUmAO+64g/fff19YEru7uzuxsbFCg16sVl5dXZ2wlBMrS5cuZWBggJ6eHqHzWImIiCArK4vy8nKmpqbOe4yzGiYnJSVxxRVXEBwcTGlpKRUVFQ6Jwp2v9Pf3U1JSwqlTp0hLS2PTpk3CkuftFcq+vj7q6uooKCgQWlT8bGpra/Hz8xPW+cfKyMgIfX19Qvc8JUmira1NqKW6e/du1Go111xzjbA5nM2CFsnCwkLCwsJ47bXXhM2RmJhId3e30OCa6OhofHx8hEe6ent7s3TpUqqqqoQGJJ1NcnIykZGR5414dXa7K09PT5YsWcKWLVvw8PBg3759VFVVTSvgC5GRkRFKS0uprKxk8eLFXHHFFSQkJAjdI4OLC+X4+DiVlZUsW7ZMaMDJ2fT399PZ2ekUt25tbS3JyclCxb+vrw+z2Sy0Vutf//pXbrnllgXVWGBBi6RCoeD2228XKpJBQUEEBQUJdYdarcnGxkahYgywePFiwsLCqK6uFjqPFYVCQW5uLp6enhw9etRmLc9lP0gfHx/y8vLYuHEjOp2OPXv2cOzYsQVbiECSJHp7eyktLaW0tJTg4GCuuOIK0tLSnBrCP51QTkxMUFZWRmpqqtC9tLMxGAycPHmSJUuWCN9b6+/vZ2xsjLS0NKHztLa2kpiYKOyGR6fTsWvXrgXlaoUFLpIAt99+OwcPHhRaazU5OZnW1lahATyLFi0iJCSExsZGYXPA/0RrcHDQad0b3NzcWL16NQqFwmZRukLD5ICAAFavXs3GjRtxd3fn0KFDHDx4kI6OjgVRC1ar1dLQ0MCePXuorq5m0aJFXHnllSxZskRYObSL8VGh1Gg0lJWVER8fLzz94mxOnz6Nn5+f8F6o1sjZtLQ0oe3E1Go1g4ODQs/njTfewN/fX0ibwrlkwYtkRkYGS5Ys4cUXXxQ2R3R0NCaTSXh0ZHZ2Nq2trcLdf97e3uTm5lJdXe00t6u7uzsFBQWYTCY++OADxsbGXKZhckBAAMuWLWPr1q3ExMTQ1NTEzp07qa6uZmBgQGjksaOxtq4qLy/n/fffZ3BwkOzsbK688krS09Nd4v22CuXp06cpKSlh8eLFZGVlOSWSFSyWXXd3N8uXLxc+Z09PDzqdjuTkZKHztLa2Eh0dLbSF2CuvvMLnP/954a55ZzN/O2HOgDvvvJOXX36Zhx9+WMj4zmpkHBwcTFRUFHV1dSxfvlzYPAAxMTF0d3dTXV1Nfn6+0LmsKJVKvL29GRsbIyAgwOWqdXh6epKSkkJycjIjIyN0dHRw7NgxzGYzkZGRREVFERER4bQGw/YyOTmJSqVCpVIxODiIv78/0dHRTnElzhZPT0/c3d3R6/X4+vo6TSCtblZr0QuRmM1mzpw5Q2ZmptDPurUWrMjmzUNDQxw4cICnnnpK2BxzxWUhkp/5zGd46KGHqKmpYenSpULmSEpKorGxkeHhYaE1FzMzM9m3bx+pqakEBAQIm0ehULBs2TL27t1Ld3e38OLR1j1ItVrN5s2bOX78OEePHqWgoMDluporFApCQ0MJDQ1FkiRbZGJDQwPHjh0jLCyMRYsWERwcTHBwsFNdl5IkMTU1xejoKKOjo/T19TExMUFYWBhRUVEsW7bMZYXRirVrS2xsLNHR0Rw5csQWgSwaZ7lZwVIYXqFQCN9nbWlpISgoSOh16S9/+Qvp6eksWbJE2BxzhWtdfQQRGRnJ9ddfz7PPPstf/vIXIXN4enqSmJhIY2MjBQUFQuYAS35hfHw8Z86cEV482MvLy+Z2DQ8PF+aKO1+QTlFREUePHuXw4cMUFha6nHVm5WzBzMrKslltQ0NDtLe3Mzk5ia+vr616UnBwML6+vnh5eV3SOUmShF6vR6fToVarbaI4NjaGwWAgICCA4OBg0tLSiIiImLM9xpkyPj5OWVkZCQkJZGZmolAoKCoq4vDhwwBChdLqZt20aZNwy9VoNFJfX09ubq5Q96TRaKSlpYUVK1YImwPg73//O/fdd5/QOeYKhXSZtG3fs2cPt956Kz09PcL88lNTU+zZs4cNGzYIbaWj1WrZs2cPa9asEXp3aKWiogKj0UhhYaHDLx4XimI1mUxUVFSg0WgoKCjA39/foXM7A71ebxMv68+pqSnMZjNubm54e3vbHl5eXiiVShQKha1GanJyMkqlEqPRiFarRafTodVq0Wq1SJKEu7s7fn5+54hwYGCgy7mq7UGlUnHs2DHS0tI+FqQzPDzM4cOHyc7OFiKUWq2WkpISMjIynGJFNjQ0oFKpWL9+vVBBbmlpoaOjgw0bNgibZ+/evdxwww309vYK9W7NFZeNSJrNZtLS0vjOd77DN77xDWHznDx5EpPJxMqVK4XNAZa+dsPDw6xZs0b4Xa/BYKCkpMS2j+Uo7EnzkCSJ06dP09HRwapVq4iIiHDY/HOFJEkYDAab2FmFT6fTYTabkSTJ1uczPj4ed3d3236tVUytv7uaK3o2WG8I6uvrWb58+bSufVFCaTKZKC0txc/PjxUrVgj/Pun1enbv3k1BQQHh4eHC5jGbzezZs4clS5YI3S751Kc+RVhYGH/605+EzTGXzP9vmJ0olUq+/vWv85e//EWoSKamprJv3z6ysrKEbvynpqayZ88e+vv7hXdBsNZaPXjwIIGBgQ7ZQ7E3D1KhUJCTk0NgYCDl5eVkZWVdtG+hq6NQKPD09MTT03Naj4PBYKCzs5OcnByXdTU7ApPJxMmTJxkaGmLdunUEBwdPe6w16tWRrte5qAXb0NBAaGioUIEESyFzpVIptKPIwMAA7733HocOHRI2x1yzsGJ1L8Ldd99NbW2t7UsmAmvkYFNTk7A5wCJcmZmZVFdXCy9XB5Y0CGut1UutbTqbQgHx8fGsWbOGxsZGm7UuM7+Zmpri0KFDTE5OUlxcfEGBtOLoxs0tLS1OrQU7OjpKW1ub8AAXSZJobGwkLS1NqPA/++yz5ObmCt/znEsuK5EMCwvjc5/7HE8++aTQedLS0ujo6BCez2htAHv69Gmh81iJiIggMzPzgrVWL8alVNIJDQ1lw4YNjI2NUVZW5rQcThnHMzw8TElJCYGBgaxZs2ZGcQKOEsr+/n5bAJwzasGaTCaOHz9OWlqa0JgFsORfGo1GoY2VTSYTL730Evfff7+wOVyBy0okAe6991527NghNPE/KCiIyMhI6uvrhc0BFrddXl4enZ2dQisKnU1KSgqLFi2ivLx8xtacI0rN+fj4sH79enx8fCgpKbloBxEZ10KSJNrb2ykrKyMtLY28vLxZWXCXKpRqtdpWC9YZwW9gcbMqlUrh5ees+ZcZGRlCrePXX38dnU7Hpz71KWFzuAKXnUjm5eWxYsUKnn76aaHzZGVl0dnZycTEhNB5/Pz8yM7O5sSJE05pHGzNn1QoFJw8edLuUnyOrMXq5ubGypUrSU5OpqysjNOnT8vu13nA1NQUR44csVlvKSkpl+QKnK1QGgwGjh49SkJCgtNqwY6MjNDc3MyKFSuEV6Tp6OhAoVAQHx8vdJ7nnnuOr3/96/MmvWi2XHYiCfDd736XF198UVgLLTg3n1E0SUlJ+Pn5UVtbK3wu+F+t1cHBQZqbmy96vIhi5QqFgtTUVIqLixkcHGT//v1yH0gXRZIkOjo62Lt3L15eXmzevNlhUcozFUpJkjh27Bi+vr5kZ2c7ZA0Xw2QyceLECae4WY1GI3V1dWRlZQkV4wMHDnDixAm2bdsmbA5X4bIUyeuvv56wsDCeffZZofNkZGTQ398v/OI9F25Xb29vVq9eTV1d3QVd16K7eQQGBrJ+/Xri4uIoLS2VrUoXY2pqiqNHj1JbW8vKlStZsWKFwy2PmQhlbW0tGo2GVatWOS1Cur6+3iluVrAEIvn4+BAdHS10nscee4wvfelLCyIl62JcliKpVCp55JFH+P3vfy80MtTb25vk5GRqa2uFdggBi9t1yZIlTnO7AoSEhJCXl0dlZeV59wad1e5KqVSSnp5OcXExAwMDlJSUyFblHGO1Hvft24eHhwebN28WWtfYHqFsbm6mvb2dgoICp6XVjIyM2CreiHaz6vV6Ghsbyc7OFnoDcPLkSUpKSnjooYeEzeFKXJYiCZZ6rgB//vOfhc6TlpbG2NiYUyy8xMREp7pdAWJjY8nOzubw4cPnCNNc9IMMDAykuLiY2NhYm1XprBsGmf+h0Whs1uOKFStYuXKlU/atLiSUra2t1NXVUVRU5LTKTc50swI0NjYSEhLCokWLhM7z05/+lFtvvZWEhASh87gKl61Ienh48PDDD/P0008LbXXk4eFBeno6p0+fFt5S6Wy3a39/v9C5ziYpKYnMzEwOHz7M2NjYnDZMPtuqHBkZYc+ePTQ3N8suWCeg1Wqprq4+Z+9RpPV4Ps4nlO3t7dTW1lJUVERISIjT1uJMN6tGo6G1tVX4PmtTUxPvvPMO3//+94XO40pcNmXpzsfU1BTx8fE888wzfP7znxc2j9lsZt++fSQlJQnvGweWu+bGxkY2bdrk1GotDQ0NNDc3ExwczNTU1Jz3g5Qkif7+fmprazEYDGRmZhIXFzcvqvUYDAbeffddrrnmGpevuGMwGGhqaqK5uZmIiAiysrLmvIantYRddHQ0PT09FBYWCq9wczYjIyOUlpZSXFzsFCvy6NGjeHl5kZeXJ3SeL37xi4yOjvLf//5X6DyuxGVrSYIl5+7BBx/k17/+tdB5lEolS5cu5cyZM2i1WqFzwf/crs4qMmAlNTUVLy8vBgYGyM3NnfMGvgqFgsjISDZu3EhWVhb19fXs27cPlUolfI/4csBkMtHc3MyePXsYGhpizZo1rF69es4FEiwWZUpKiq3+rTMF0lo0ID093SkCae06k5WVJXSe3t5e3njjDX7wgx8IncfVuKxFEmDbtm00Nzfz9ttvC50nIiKCiIgIp+wXKhQKli9fTnd3N11dXcLng//tQUqSREpKChUVFYyNjTll7oth7dm3ZcsWEhMTOXHiBIcOHWJoaEgWy1lgNpvp6Ojggw8+oKOjgxUrVrB27VqnJeXbQ3t7O01NTeTk5NDZ2emQEnb2IEkSNTU1uLu7k5qaKnw+k8lETU0N2dnZwm9Kf/azn1FYWOi0JuyuwmVT4Hw6goKCeOCBB/jRj37EddddJzQCLScnhw8++ICEhATCwsKEzQPg6+vLqlWrqKiowN/f3666mLPl7D3IdevW4eXlhaenJ6WlpU7fB7oQSqWS5ORk4uLiaGlp4ciRI/j7+5OcnMzixYuFRx/Od/R6PW1tbbS2tuLm5kZWVhaxsbEu575ubW2ltrbW5mINCQlxSj9K69wqlYoNGzY45fPU1NSEh4eH8CCarq4u/va3v/Hee+8JnccVuaz3JK2Mj4+TlJTEM888wx133CF0roaGBrq7u532JWpsbKSlpYUNGzYI6aN5oSCd5uZm6urqKCwsFH5TMBusnTZaWlowGo0kJSURHx/vlDqe9qzNVfYkrUW5u7q6CAkJITk5maioKJcTR/jfZ66oqOgcy1Z0P0qw1IItLy93Wp9XjUbDvn37WLt2rfAb0S984QsMDg7y7rvvCp3HFZFF8kOeeeYZnnvuOerq6oT26DObzezdu5ekpCRSUlKEzWNFkiSOHz+ORqNh7dq1Dq3laE8Ua1tbG6dOnSIvL09oseVLQZIk+vr6aG1tZWBggMjISBISEoiMjJwzIZhrkTQYDHR3d9PW1oZarWbx4sUkJycTFBTk9LXYg9ls5vTp03R1dVFUVHRez4lIoVSr1Rw4cICcnBzh5eCsOCtYp66ujry8PMrLy8nNzRU6lysii+SH6HQ60tLSePDBB3nwwQeFztXf309FRQWbNm0S2nPSislk4tChQwQEBLB8+XKHXPhnkubR19dHZWUlSUlJZGVluaQFYmVycpL29nY6OjoAiImJISoqirCwMKe6Y+dCJA0GA/39/ahUKnp7e/H39ycxMZHFixfPuTV7IfR6PZWVlWi1WgoKCvDz85v2WBFCaTAYOHDgAJGRkeTk5DhkzIvR09NDVVUVmzdvFr4Xef311xMYGMg//vEPofO4KrJInsVLL73E9773PZqamoSL14kTJ5iamqKoqMgpojE1NUVJSQlpaWmXbMHOJg9yYmKCo0ePEhAQwIoVK1z6oguWcxwYGKC3txeVSoXZbCYiIoKoqCgiIyOFr99ZIjk5OYlKpUKlUjE4OIi/vz9RUVHExMQI3cd2FLP5XDlSKCVJ4ujRo0iSREFBgVNupHQ6HXv37mXp0qXCvTOHDx9m06ZNnDlzRvh+rqsii+RZmEwmcnNz+eQnP8lPf/pToXMZDAb27t1LRkYGiYmJQueyYs3dWr169axrLl5KoYCZ3PG7EpIkMTo6ahOTiYkJwsLCbILp5+fn8BsdUSJpNptt59LX13fOuURFRc2bvwn8z0ORnJxMZmbmjP4GjhLK2tpaenp62LBhg9Nu/CoqKpAkifz8fOE32MXFxeTl5fGb3/xG6DyujCySH+Gdd97hjjvuoKmpSXiwibPdrgCdnZ3U1NRQXFw84/JcjqikYzabqa2tpaOjg/z8fOEltETwUevL3d2doKAggoODbQ9fX99LuoA5QiTNZjMTExOMjo7aHuPj47i5uTnVKnY0kiTR1NREfX39Je11X6pQdnV1UVVVRXFxsdNyQ7u7u6murmbTpk1CAvHOZseOHdx22220tLRcFoXMp0MWyY8gSRLr1q0jNzeX3//+98LnO3nyJBqNhjVr1jhtr+706dOoVCqKi4vtvkA6utRce3u7Lb8rKSnJpfcpL4TJZGJ8fJyxsbFzhOhs4QwMDMTHxwcvLy+8vb1xd3e/6PnaK5KSJKHX69Fqteh0OiYnJ21rGR8fR6lUniPgQUFB+Pv7z+v3++TJkwwODlJQUHDJLuHZCqXVK5Ofn09kZOQlrcFerG7W3NxcFi9eLHQus9nM8uXLufnmm3n00UeFzuXqyCJ5HsrLy9mwYQMVFRXCN+INBgP79u0jLS3NaT7/s/dRCgsLL3rBFFWLdXh4mPLycqKiosjNzV0weYomk+kcC25iYgKtVotWq8VsNuPm5oa3tzfe3t424fTy8kKhUKBUKlEoFLZoTWtHB0mSMJvNtnGsoqjVapEkCXd3d7y9vfHx8SEoKMgmjCJcwXPF1NQU5eXlKBQKVq9e7TBLaqZCqdVqKSkpISUlxSkFA6w40836zDPP8Mtf/pKGhganFYR3VWSRnIYvf/nLNDY2UlJSInwua37Vpk2bnLYnZI3Ii4iIICcnZ9ovnehi5dZ+g9YqQc4o4zVXSJKE0WhkamrKJnDWh16vtwmhJEmYTCZbOoqbm5tNQK2ievbDy8tLaNqSK9Db20tVVRUREREsW7bMoalMYL9QGo1GSktLHRopbg9dXV3U1NQ4JZp1cHCQzMxMfve733HbbbcJnWs+IIvkNAwODpKWlsZvfvMb4QUGAKqrqxkZGWH9+vVOs6g0Gg0HDx4kISHhvHUfndXNw2QyUVdXR2trKxkZGaSkpCwYq3K2zHWepKug1+upqamhr6/PFs0pSpguJpRGo5GjR48CUFhY6HChng6NRsP+/ftZsWKF8GbKAHfccQddXV3s3bt3wXghLoXL+0p0AcLDw/n5z3/O9773PdRqtfD5lixZgiRJTu0F6efnx9q1a2lvb6e+vv6c55zZ7srNzY0lS5awZs0a2tvbOXToEBMTE8Lmk5kfqFQq9u7di8FgYNOmTcI7uFyoH6XJZKK8vByz2UxBQYHTBNJsNlNZWUl8fLxTBLK0tJR//vOfPP/887JAfogskhfgK1/5CpGRkU7pnebm5saqVatob29HpVIJn89KQEAAa9asoaWlhaamJmBuGiaD5SK1adMmQkNDKSkpobGxUS5Afhmi1+s5duwYx48fJzs7m4KCAqeVCjyfUFqFymg0UlhY6FTXdm1tLZIkCe8TCZbzvOeee7j33nuFdxSZT8ju1otw9OhRNm3aRHl5uVOqaXR1ddlCvJ1ZQ3R0dJSysjIyMjIYGRmZk4bJZzM8PMzx48fx9PRk+fLlLtF+yZlcru5WlUrFyZMnCQ4OZtmyZXNWR9fqes3KymJwcJDJyUnWrl3r1L9Fb28vx48fZ8OGDU4Jnnn22Wd54oknaGhouOy+bxdCFkk7cGYQD1iq8ajVatauXevUvbmhoSFKS0vx9PRk06ZNc94P0mQycebMGdra2sjMzCQlJeWycQFdbiKp1+s5deoUvb29LF261CWaY1u/D15eXmzatAlPT0+nzT05Ocn+/fvJzc11Ss1jOVhnemR3qx088cQTVFdX8+KLLzplvqVLl2IwGKirq3PKfGBxtbS2tuLj44PJZHJaH8oL4ebmRk5ODkVFRbS1tXHw4EGGh4fnelkyDkSSJDo7O9m3bx86nY7NmzcTHx8/5wJpNptpbm7Gx8fHVuzdmXMfO3aMmJgYpzUFuO+++8jJyeHWW291ynzziYUdN+4gwsPDeeaZZ/j2t7/NNddcQ1RUlND53N3dWbVqFQcOHCA4OJiYmBih8529B1lcXMzk5CSHDx/GbDaTlpYmdG57CAsLY+PGjTQ2NlJWVsaiRYvIzs6WXULzGEmS6O/vp7a2FoPBQHZ2tsv0pjSZTFRUVKDVatmwYQNqtdpp/SgBTp06hdFodFqx9Lfeeou33nqLkydPusT772rI7lY7kSSJa6+9FoVCwY4dO5wyZ09PDydOnGD9+vXC8genC9IZGxujrKyMpKQkMjIyXObLo9VqaWhooL29ndjYWDIzM12i/6OjWcju1uHhYWpra5mYmCA9PZ3ExESnRYteDKPRSHl5OUajkaKiItt774x+lGBpLXfmzBmKi4udkjM9NjbGkiVL+Pa3vy28+9F8RRbJGdDT00N2djZPP/00d911l1PmrK+vp6Ojg+LiYofvEV4sinV8fJyysjLi4+NdrsWVWq2mrq4OlUpFUlISaWlpTt0zEs1CFMmJiQlqa2sZGBiwVatxpXOz5kFaO3p8dG2ihXJoaIjDhw9TWFhIeHi4w8c/H5/73Ofo6OjgwIEDl31u8nTIIjlDXn75ZR588EFqamqckrckSRKVlZXodDrWrFnjsA+yvWkearWa0tJSIiIiyM3NdZk7fiujo6OcOXOG4eFh0tLSSE5OXhDVZxaSSE5NTVFXV0dXVxcJCQmkp6cLL849U6yVnzw8PCgoKJj2MyRKKCcnJykpKSEzM9Np5SnfeustPve5z1FVVeXU8nrzDVkkZ4gkSVx//fWYzWbeffddp8xpNBo5dOgQISEhLFu27JLHm2kepLVmplKpJD8/3+UucAADAwPU1tYyNTVFRkYG8fHxLifoM2EhiKRWq6WpqYm2tjaioqLIyspyyVZc1hrCkZGRdt0IOloojUYjBw8eJDQ01CHfb3sYHR1lyZIlfPe73+X+++93ypzzFVkkZ0Fvby/Z2dk8+eST3H333U6Z01F3mrMtFODo7gsikCSJ3t5e6urq0Ol0JCQkkJSUNC/3LOezSI6OjtLc3ExPTw+LFi0iMzPTJT8vAB0dHVRXV8+4G42jhFKSJCoqKjAYDBQVFTnN5fnZz36Wrq4uSkpKZDfrRZBFcpa88sor3H///VRXVwtvW2PFumexatWqWUXYXmolnbP7+C1fvtxp5z1TJElicHCQlpYW+vv7iY6OJjk5mZCQEJfaV70Q800kzWYzvb29tLS0MDY2RlxcHMnJyS4bgXx2X9NVq1bNql+iI4Ty9OnT9PT0CIk5mI4333yT22+/nerqalJSUpwy53xGFslZIkkSN998MyMjI+zbt89pd2Pd3d2cOHGCNWvWEBoaavfrHFlqTqVScezYsVl1hHc2arWa1tZWOjo68PPzIyEhgdjYWJcXnvkikhqNhvb2djo6OnBzcyMpKYmEhASXXrPBYKCyspLJyUkKCgouqZrNpQhlU1MTjY2NrF+/3mntqLq7u1mxYgU//OEPueeee5wy53xHFslLYHh4mGXLlnHnnXfy2GOPOW3e1tZWzpw5w/r16+26UxdRi3V8fJzy8nICAgJYsWKFS18UwbLv093dTVtbGxMTE8TExJCQkEBoaKhLirwri6TVamxvb2dwcJCoqCgSEhKIiIhwyffybCYmJjh69Cj+/v6sXLnSIe/tbISys7OT6upq1qxZQ0hIyCWvwR7MZjMbN24kNDSUN9980+X/Vq6CLJKXSFlZGVdccQXvvPMOmzdvdtq8Z86cobOzk/Xr119wz01ksXK9Xk9FRQU6nY6CggKXDMo4H2NjY7S3t9PZ2YmnpydRUVFERUURFhbmMvszriaSBoOB/v5+VCoVfX19eHh4kJCQQHx8vEsGcp2Pvr4+KisrSUxMtDWzdhQzEUpr/9jVq1fPys07W37wgx/w8ssvU1VV5TRhXgjIIukAnnjiCZ577jlOnjzptPwmSZKoqqpieHiYdevWnTdH0BndPMxmM6dOnaK7u5v8/Hynnb8jsDY2VqlUqFQqTCYTkZGRREVFERERMad5l64gkhqNxvbeDA0N4e/vb7uhmE/7u5Ik0dzcTF1dHcuWLSMuLk7IPPYI5cjICKWlpeTl5Tmt5BzAnj17uOGGG9i7dy+FhYVOm3chIIukAzCbzVx99dUA7Ny502nWiNlspqKiAr1eT1FR0Tm5Xc5ud9XW1sapU6dmHCXoKkiSxOjoqE0UJiYmCAsLs4mCs63kuRBJSZIYGRmxvQdqtXpO3wNHYDQaqa6uZmBggNWrVwu3oC4klBMTExw6dIj09HSnBswMDAyQl5fH/fffz3e/+12nzbtQkEXSQfT395Obm8t9993HI4884rR5TSYThw8fRqlU2prBzlU/yKGhISorKwkICCAvLw9fX1+nzCuCyclJm1gMDg7i5+dHeHg4wcHBBAUFERgYKPRmyBkiaTAYGBsbY3R0lLGxMQYGBjCbzedY067g6p0tg4ODnDhxAm9vb1atWuW0VKDzCaVGo+HQoUPExcU5pTekFbPZzFVXXYWbmxvvvvuuy2wnzCdkkXQg+/fv55prrmH37t2sXbvWafMaDAYOHz6Mh4cHq1atoqqqas76QRoMBk6dOkVPTw85OTku0dHhUjEYDAwMDDA8PGwTFbPZTGBgoE00g4ODHSqcjhbJswXR+tBoNHh7e9vOITw8nNDQ0Hl/ITUajZw5c4b29naysrJITk52+mfwbKGMiIigtLSUmJgYlixZ4tS1/PSnP+X555+nurqaRYsWOW3ehYQskg7m0Ucf5cUXX6SiooLIyEinzWswGCgrK0Or1eLu7s66devmtB9kX18fJ0+eJDAwkLy8vHmZ0D8dkiSh0WhsFphVdEwmk004/f398fLywtvb2/Zwd3e3+wI5U5GUJAm9Xo9Wqz3nMTEx8TFBtD6CgoLmTdCNvQwNDXHixAm8vLxYvny501Irzsfw8DBlZWUolUpiY2NZunSpUwXy/fff56abbuK9995jw4YNTpt3oSGLpIMxm83ccMMNDA4OcuDAAacFf5jNZiorK+nr6yMsLMzmep1LFqJVOR2SJDE5OWkTzMnJSZtQ6XQ6TCYTbm5uHxNOLy8vPD09USqVKBQKFAoFSqXS1lNw+fLlKJVKJEnCbDZjNpvR6XTodLpzxFCn0yFJEu7u7ueM7+/vbxPFuW6iLRJXsB4/ikaj4eDBg+j1enJyckhOTnba3E1NTRQVFfGDH/yABx54wGnzLkRkkRTA+Pg4hYWFrFq1ipdeekn4fGfvQa5evZrjx4/j4eHB6tWr51woYWFblfYgSRJGo/FjVp5V6PR6PZIk2YTQ+nN8fJygoCDc3NzOEVCr0H5UcL29vV3i7+1sXMl6tKLRaCgtLSU6OpqYmBiOHDkivM2WFbVazerVqyksLOSFF16Y85uF+Y4skoJobm5m1apVPPLIIzz00EPC5jlfkI7BYODIkSMolUpWr17tEsEXer2eU6dO0dvbu+CtSkfgCikgrs7Z1mNmZiYpKSku8ZmamJigrKyMxYsX2/YgndWP0mw2c9111zEyMsL+/fsXtPfAWczvHXoXJiUlhX//+9/86Ec/EtYtZLooVg8PD1suVFlZGTqdTsj8M8HT05MVK1awcuVKzpw5w9GjR5mamprrZcnMU4aGhti/fz8jIyNs2LCB1NRUlxDI4eFhDh06RHx8/DlBOqGhoRQVFVFbW0tra6uw+R9++GGqqqr473//Kwukg5BFUiCbN2/ml7/8JXfccQf19fUOHftiaR5WofT19eXgwYNoNBqHzj9boqKi2Lx5M56enuzdu5fGxkZMJtNcL0tmnjA1NcXJkyc5fPgwiYmJdpdmdAZ9fX2UlZWRkZFx3iblooXy5Zdf5vnnn2f79u1ODRpc6MjuVsFIksTXvvY1Dhw4QHl5OYGBgZc85kzyICVJoqamhp6eHoqKiggKCrrk+R3FwMAAp0+fRqfTkZmZSVxc3LxPP3AUsrv1XPR6PY2NjbS2thIZGUlWVpZL7D1asbbcsqc7jgjXa3l5OVu2bOGFF17g1ltvdciYMhZkkXQCer2eLVu24Obmxvvvv39JEa+zKRQgSRKNjY00NjZSUFDgUqXjJEmip6eHM2fOoFAoyMrKIjo62iVcZ3OJLJIWTCYTLS0tNDY2EhwcTHZ2tsv1prS2j8vPz7e7FqsjhbK1tZV169Zx1113ObXRwuWCLJJOYnh4mLVr17JkyRLeeOONWVlMl1pJp729nZqaGlasWEFMTMyM5xeJ2Wymvb2d+vp6fHx8yM7OvqyTny93kTSbzXR0dFBfX4+Xl5ctKd+VkCSJ06dP09XVRWFh4YzF2xFCOTg4yJo1aygoKODvf/+77IkRgCySTsT6Zbrhhht4/vnnZ/RaR5WaU6lUVFZWkp6eTlpamstZbEaj0WY5hIaGkpWV5XKWgzO4XEVSkiR6e3s5c+YMkiSRlZVFTEyMy31ODQYDx48fZ2JigsLCwlm7fi9FKDUaDRs2bCA8PJzt27dfVp8TZyKLpJM5c+YMa9as4YEHHuBHP/qRXa9xdC3WsbExjh49SmhoKHl5eecURncV9Ho9DQ0NtLW1ERUVRVZW1rwssD1bLkeRHBgYoLa2lqmpKTIyMkhISHBJy0ij0XD06FFbTdhLLRgyG6E0Go1cffXVjI+Ps2/fvsvqu+FsZJGcAw4fPsyVV17Jk08+yde+9rULHiuqWLlOp6O8vByTyURBQYHLJvhPTk5SX19PV1cX8fHxpKamXhYXhMtFJCVJYnh4mPr6ekZGRkhLSyM5Odklb9zAIuSVlZXExsayZMkSh4n4TITSbDbzmc98hqqqKsrKyggLC3PIGmTOjyySc8SOHTu45ZZbeOWVV/jkJz953mNEd/Mwm81UV1ejUqlYvXo1oaGhDh3fkYyPj1NfX49KpSIiIoKUlBTCwsJczg3nKBa6SJpMJnp6emhubkaj0ZCYmEhaWtqc9vC8GK2trZw+fZqlS5eSkJDg8PHtFcr77ruPf/3rXxw5coT4+HiHr0PmXFzzdu0y4Nprr+X3v/89d955J2FhYR8rQOyMdldKpZJly5YRGBhIWVmZsC+/IwgMDCQ/P5/JyUlaW1spLy/Hx8eH5ORkYmNjL8tybPMRrVZLW1sbbW1tuLu7k5ycTFxcnEvfCJjNZmpqaujt7aWoqEiY5WbNozx8+DDAeYXy8ccf56WXXrIVLJARjyySc8idd95Jf38/N910E++++y5FRUWAcxsmKxQKkpOTCQgIoLKykuHhYZYuXeqy7i5fX1+WLFlCRkYGXV1dNDU1UVtbS3x8PAkJCS6VOydjwepSbWtro6enh7CwMJYvX05ERITLewI0Gg2VlZVIkkRxcbHwHqkXEsqnnnqKxx9/nJ07d5KTkyN0HTL/Q3a3ugCPPfYYTz31FO+99x75+flz0jAZLNVMjh07hl6vZ9WqVQ4pfCAaSZIYGBigvb0dlUpFaGgoCQkJREdHz2vrciG4W3U6HZ2dnbS3t6PT6YiLiyMxMdFlKuRcjO7ubk6ePElcXBxLlixx6ufpo67XZ599lkceeYTt27ezefNmp61DRhZJl+HRRx/lt7/9Lc899xyRkZFz0jAZLFZsfX09zc3NLF26dF4VItdqtbaLssFgIC4ujri4OAIDA+fNOViZryJpNpsZHBy03bSEhISQkJBATEzMvLlpMZlMnDp1iu7ubvLy8uYsp9gqlDU1Nfz0pz/lv//9L1deeeWcrOVyxjV9apchP/rRjzAYDGzbto0dO3bMWXFipVJJVlYW4eHhHDt2jIGBAZYtWzYvLtTe3t6kpaWRmprK0NAQ7e3tHDx4EC8vL6KiooiKiiIsLMwl0wrmMwaDgb6+PlQqFf39/SiVSuLi4ti0adO8c39PTExQWVmJm5sbGzduFO5evRChoaHU1dXx4x//mDfffFMWyDlCtiRdCEmS+OEPf8jvf/97duzYYevkMVdotVqOHz/O5OQkK1ascOno1+kwmUwMDAygUqlQqVSYTCYiIyOJiooiIiLCZaMpXd2S1Gg0tvd0aGiIgIAAoqKiiIyMJCQkZN5Z7pIk0dHRQU1NDUlJSWRlZc35zZTVxfrvf/+bq6++ek7Xcjkji6QL8uMf/5hnnnmGd955h7Vr187pWiRJstWmTEpKIjMzc964zT6KJEmMjo6iUqno6+tjfHycsLAwm2i6ktXjaiIpSRIjIyM2YVSr1YSHh9ss9Lm0uC6VqakpqqqqGB0dZfny5S7RQeOpp57ihz/8oexidQFkkXRRHnvsMX7961/zxhtvsHXr1rleDuPj4xw/fhyz2czy5csJCQmZ6yVdMpOTkzY34eDgIL6+vjYLMzg4eE7FyRVEcmpqipGREfr6+ujr68NsNp9jhbuCeF8KkiTR2dnJqVOniIyMZOnSpS7hWfjpT3/KL37xC95++205SMcFkEXShfnNb37D97//ff785z/zuc99bq6Xg9lspqmpiYaGBpKTk8nIyJi3VuVHMRgMNrfswMAAWq0WPz8/goODCQ4OJigoyKnC6UyRlCQJrVbL6Ogoo6OjjI2NMTo6ik6nIyAggIiICKKioggNDZ1zF6SjONt6zMvLIyoqaq6XhNls5t577+XVV19lx44drFmzZq6XJIMcuOPS3HfffURGRnLXXXfR39/PAw88MKfrUSqVpKenExUVxfHjx1GpVAvGqvTw8CAmJsYWyajVam1iMTQ0REtLC1NTUzbhtIpmUFCQS1gf9vJRQbSKolUQg4ODWbRoEWlpaQQFBblsvuxs+aj1aG0APtcYjUY+85nPcPjwYUpLS8nOzp7rJcl8yML6BixAbrvtNsLCwrj55ptRqVQ88cQTc70kAgMDKS4uprGxkdLSUuLj48nMzHSJi42j8Pb2xtvb+5z9KZ1OZxPOkZERWltbmZqawtfXl6CgIHx9ffHy8rK91vpwd3d3WiCLJEnodDp0Oh1arfacx+TkJKOjo+j1epsgRkZGkpGRQWBg4IITxI8yMTFBdXU1ExMTLF++nOjo6LleEmAJgrr++uvp6enhyJEjxMXFzfWSZM5CdrfOE44dO8bVV1/NtddeywsvvOAybk61Wk1NTQ2jo6NkZ2fPq7xKR2AVzrGxsXMEySpSJpMJpVJ5jmieLaQeHh4oFAqUSiUKhcL2u8lkoqysjMLCQtzc3JAkCUmSMJvNmM1m9Hr9x+ay/i5JEh4eHh+byyrml4Mgno3BYKChoYGWlhYSExPJzMx0mf3UgYEBrrrqKjw9PXn33XfnZQT5QkcWyXlEU1MTV155JUuWLOHf//73nOVSfhRrD8BTp07h7e1Nbm7uZdkD8qNIkoTRaDyvmFn/bTAYbOJ3PiH09va2CejZQurl5XVeq9X6f65yEzWXSJJET08Pp06dws/Pj9zcXJeqItXc3MzVV19NWloa//rXv+Z1hPCCRpKZlscff1xatWqV5O/vLy1atEi68cYbpbq6OtvzQ0ND0j333COlp6dL3t7eUlxcnHTvvfdKo6Oj54wDfOzx2muvnXPMo48+Ki1evFhau3atVF9fP+2aent7pdzcXKmwsFDq7+937AlfIgaDQaqtrZW2b98unTx5UtLpdHO9pHmLXq+X/vvf/0p6vX6ulzIvGR8flw4dOiS99957UkdHh2Q2m+d6SedQVlYmRUdHS3feeecF/8YlJSXSddddJ0VHR0uA9Oabb57z/I9+9CMpIyND8vX1lYKDg6UtW7ZIR44cOeeYhISEj11/fv7zn59zzJ/+9CcpPj5eysvL+9jrL3cWRqiaIEpKSti2bRtHjhxh9+7dGAwGtm7dikajAaCnp4eenh5+/etfc+rUKf72t7+xc+dOvvSlL31srL/+9a/09vbaHjfddJPtudLSUnbs2MFbb73F5z73Oe65555p1xQVFcXBgwcJCQlh1apVHD9+3OHnPVvc3d3Jyspi48aNTE5OsmfPHpqamjCZTHO9NJnLBGvU6v79+wkMDGTLli3ExcW51BbAiy++yJVXXsnXvvY1/vrXv17Q9avRaFi2bBm/+93vzvt8eno6zz33HDU1NRw6dIjExES2bt3KwMDAOcf95Cc/Oef6c++999qe6+jo4Je//CX/7//9P37wgx9w1113OeZEFwpzrdLzif7+fgmQSkpKpj3mjTfekDw9PSWDwWD7P85zB3g227dvl2688UZJr9dLR44ckfLz8y+6FqPRKD388MOSv7+/9Oqrr87oPJyB2WyW+vr6pH379kk7d+6U2traJJPJNNfLmjfIluTM0Ov10unTp6Xt27dL5eXl0vj4+Fwv6WOYTCbp/vvvl/z8/KT//Oc/M379xa4jkiRJY2NjEiDt2bPH9n8JCQnS008/Pe1rampqpFWrVklqtVpqaWmREhMTZ7y2hYxsSc6AsbExgAturo+NjZ03MGLbtm2Eh4ezevVqXnzxRaSztoKvuuoqtFotvr6+XH311fz85z+/6Frc3Nx44okn+OMf/8iXv/xlvv/972M2m2d5Zo5HoVAQERHBhg0bWLJkCY2Njezbt4+enp5zzl1G5lIwmUw0Njaye/duRkZGWLt2Lfn5+S7XaWRsbIyrr76a//znP5SVlXHzzTc7fA69Xs+f/vQngoKCWLZs2TnPPfHEE7YWZb/61a8wGo2253JycsjNzSUoKIglS5bw2GOPOXxt85q5Vun5gslkkq699lpp7dq10x4zMDAgxcfHS4888sg5//+Tn/xEOnTokHT8+HHpiSeekLy8vKRnn332Y6/v6+ub1T5eeXm5FBUVJV1//fWSWq2e8eudgclkklpaWqT33ntPKikpkfr7+11un8iVkC3JC2MymaS2tjZp586d0r59+6S+vj6X/TzV1dVJGRkZ0rp16y4pjoBpLMnt27dLfn5+kkKhkGJiYqTy8vJznn/yySelffv2SVVVVdLvf/97KTg4WHrwwQc/Ns7g4KA0OTk56/UtVGSRtJOvf/3rUkJCgtTZ2Xne58fGxqTVq1dLV1999UUvbD/84Q+l2NhYh66vp6dHys/Pl3JycqSWlhaHju1IDAaDVFdXJ+3YsUMqKSmRenp6XPbiNpfIInl+DAaD1NTUJO3atUvavXu31NXV5dKfnx07dkihoaHSV7/61UsOZJtOJNVqtdTY2CgdPnxYuvvuu6XExESpr69v2nFeeOEFyd3dXdJqtZe0nssF2d1qB/fccw/vvPMO+/btIzY29mPPT0xMcPXVVxMQEMCbb7550RysgoICurq60Ol0DltjdHQ0Bw4cIC8vj/z8fN58802Hje1I3N3dycjI4MorryQmJoaqqir27dtHZ2enS7mLZVwLvV5PfX09u3fvprOzk5ycHLZs2cLixYtdKijHitls5gc/+AGf/vSn+clPfsIf//hHYcU2/Pz8SE1NpbCwkBdeeAF3d3deeOGFaY8vKCjAaDTS1tYmZD0Ljcsno3gWSJLEvffey5tvvsn+/ftJSkr62DHj4+NcddVVeHl58fbbb+Pt7X3RcU+ePElISIjD8xy9vb156aWX+NOf/sTtt9/OXXfdxTPPPOOSieMeHh6kpqaSlJREZ2cn9fX11NXVkZqaSnx8vJznJwNYygM2NzfT1tZGcHAwK1euZNGiRS4pjFZ6e3v5zGc+Q0tLCx988AFFRUVOnd9sNl/wBvzkyZMolUoiIiKcuKr5i+tdPV2Ibdu28eqrr/LWW28REBCASqUCICgoCB8fH8bHx9m6dSuTk5O88sorjI+PMz4+DsCiRYtwc3Nj+/bt9PX1UVhYiLe3N7t37+bxxx/nO9/5jpA1KxQKvva1r1FUVMQtt9xCYWEhr7/+OikpKULmu1Tc3NxITEwkPj6enp4eGhsbqaurIzExkcTERHx8fOZ6iTJzgLXsX3d3NxERERQVFc2LajTvvvsud999NwUFBVRVVV3ymtVqNU1NTbZ/t7a2cvLkSUJDQwkLC+NnP/sZN9xwA9HR0QwODvK73/2O7u5ubrnlFgAOHz7M0aNH2bRpEwEBARw+fJgHH3yQ22+/fUHUXHYKc+3vdWU4TxEAQPrrX/8qSZIk7du3b9pjWltbJUmSpPfee0/Ky8uT/P39JT8/P2nZsmXSH/7wB6ekQ0xMTEh33HGHFBwc7JJpIufDmjpy5MgR6e2335bKy8ulgYEBl953EsHluCdpNBqljo4OqaSkxFaQYmxsbK6XZRdGo1H61re+Jfn4+EjPPvuswz6v011j7rzzTmlqakq6+eabpZiYGMnT01OKjo6WbrjhhnMCd44dOyYVFBRIQUFBkre3t5SVlSU9/vjj8n7kDJDL0l0GvPTSS3zzm9/ktttu4/nnn3eZcnYXQ6PR0NbWRnt7O15eXiQmJhIXF7egCqlPhyv0k3QWarWatrY2Ojs78fT0tHkW5st5t7e3c9ttt9Hf388///lPVq5cOddLknEgskheJtTV1XHLLbegUCj4+9//zvLly+d6SXZjMpno6emhra2N0dFRoqOjiY2NJSIiYsH0N/woC10k9Xo9PT09dHV1MTIyQnR0NImJiYSFhbn0fuNHefXVV7nvvvvYsmULf/7zn12qNqyMY5D3JC8TMjMzKS8v53vf+x5r167lwQcf5Mc//rFLBvV8FDc3N+Li4oiLi2N8fJyuri6qq6sxmUzExMQQFxdHSEjIvLq4Xo6YTCb6+vro6uqir6+PwMBAYmNjyc/PnzfeDSsDAwN85StfYe/evTzzzDPcdddd8udvgSJbkpchBw4c4M477yQ4OJi//e1vH6vOMR+QJInh4WE6Ozvp6enBw8OD2NhYFi9eTEBAwLy/YC0US9JsNjM0NER3dzfd3d14eXkRGxtLbGws/v7+c728WfHaa6/xwAMPkJuby4svvij3f1zgyCJ5maLRaPje977HCy+8wLe//W0effTReZt2YTKZ6O/vp7Ozk/7+fluz5KioKMLCwualS3Y+i6TBYKC/vx+VSkVfXx9KpZKYmBhiY2PntcU/ODjIV77yFT744AOeeuopvvSlL83bc5GxH1kkL3NKSkr44he/OK+tyrMxGo0MDg6iUqlQqVSYzWYiIiKIiooiMjJy3gjOfBPJyclJ23s+ODiIv78/UVFRREVFzWthtPL6669z//33k5OTw4svvkh8fPxcL0nGScgiKYNGo+Hhhx/mxRdf5L777uPHP/7xvNsjOh+SJDE6Omq7eE9MTBASEkJYWBjh4eGEhoa67J6sq4ukVqtlaGiIwcFBBgcH0Wg0hIWF2YTRz89vrpfoELq7u7nnnnvYs2cPTz75JF/5ylfmveDLzAxZJGVslJSU8LWvfQ29Xs/TTz/NjTfeONdLciiTk5O2i/rg4CBardZlRdPVRPKjoqhWqwkKCrK9d+Hh4S6xTkdhNBp54okn+NWvfsX69ev53e9+R0JCwlwvS2YOkEVS5hz0ej3PPvssP/7xj1m/fj3PPfecy1bruRQkSbKJpvXir9VqCQgIIDg4mKCgINvPudirnUuR1Ov1jI6O2h5jY2NMTk4SGBhoE8SwsLAFm6/6/vvvc//996PVavntb3/LddddN9dLkplDZJGUOS/d3d1861vf4p133uG+++7j0UcfXRAu2OmQJImpqalzhGF0dBSDwUBAQABBQUEEBQXh7++Pv78/vr6+Qt1uzhBJk8mERqNBrVYzMTFhO+epqSl8fX0JDg4+54ZhoYqile7ubu677z7ee+89Hn74YR5++GG7ajHLLGxkkZS5IPv27eMb3/gGer2eJ598UkizWFfFKpxW8RgfH0etVqPRaFAoFPj6+tpE0yqcXl5eeHt74+HhcUki6giRlCQJnU6HVqtFq9Wi0WhsoqhWq5mamsLNzc22/rOt54UuiGdztmu1uLiY3/zmN+dtZiBzeSKLpMxFMRgMPPvsszz66KPk5+fzq1/9ilWrVs31suYMs9nM1NSUTWzOFh2tVovJZEKpVOLt7W0TTW9vbzw9PXF3d8fd3R03Nzfb79aHUqlEoVCgUCgwGo3s3buXTZs24e7ujiRJmEwmjEbjOY+z/+9sQdTpdOh0OiRJwsPDA29vb/z8/PD397f99Pf3x8vL67INRDGbzbz22ms8+uijGI1GnnvuOa699tq5XpaMiyGLpIzdqFQqfvzjH/Piiy9yzTXX8Mtf/pK0tLS5XpbLYTAYbEJlFS2tVovBYJhW4IxGI2azmem+jgqFwias5xNYd3d3PD09bYJsfXh5ec3b/FeR7Nq1i+9///u0tbXxf//3f3zzm9+UXasy50UWSZkZ09TUxA9+8APefvttPvvZz/Kzn/2M6OjouV7WgkGSJAwGA++9957LRLcuFMrLy/nud79LRUUFDz74IA899BBBQUFzvSwZF2b+lSKRmXNSU1N5/fXXKS0tpbOzk/T0dL797W/bemnKXBpWl6uM42hsbOSmm25i/fr1ZGdn09zczGOPPSYLpMxFkUVSZtasWLGC3bt389Zbb1FSUkJKSgr/93//x9jY2FwvTUYGsIjjHXfcQW5uLl5eXpw+fZrnn3+eqKiouV6azDxBFkmZS2bz5s1UVFTwxz/+kR07dpCYmMj9999PX1/fXC9N5jLlxIkT3HzzzeTk5KBWqykrK+P1118nNTV1rpcmM8+QRVLGISgUCj75yU9y/PhxXn/9dU6ePElycjJ33303ra2tc708mcuEkpISrrzySgoLCwkMDKSqqoo333xzXvVPlXEtZJGUcSgKhYKtW7dSUlLCBx98wMDAAFlZWdx6663U1NTM9fJkFiBms5m33nqLoqIiPvGJT5CVlUVjYyN///vfyczMnOvlycxzZJGUEUZhYSHbt2+nsrISDw8PVq1axdatW3nnnXcwm81zvTyZeY61bNyyZcu488472bJlC+3t7fzmN7+Ru3TIOAxZJGWEk5OTwz/+8Q/q6+vJzc3l9ttvJysri1/84hdyRKzMjGlubmbbtm3Exsby7LPP8pWvfIWOjg4ee+wxFi1aNNfLk1lgyCIp4zQSExP59a9/TU9PDw899BCvvPIKsbGx3H777ZSXl8/18mRcGJPJxD//+U+uuOIKsrKyaG1t5R//+AcNDQ3cd999BAYGzvUSZRYoskjKOB1fX1++/OUvU11dzc6dOwEoLi5mxYoV/OY3v5GtSxkbra2tfPe73yUxMZFvfvObrFq1irq6Ot59912uuuoqlEr5EiYjFvkTJjNnKBQK1qxZwyuvvEJ3dzd33HGHLYft+uuv54033kCv18/1MmWczPDwME899RSFhYWkp6dTWVnJk08+SXd3N0888QTJyclzvUSZywi5LJ2MSyFJEidPnuSVV17hH//4B0ajkWuuuYYvfvGLbNy48bKxHFyt6bJodDodb7zxBq+88goHDhwgNTWVO++8k89+9rMsXrx4rpcncxkji6SMy2Iymdi3bx8vv/wy//nPfwgLC+PGG2/kzjvvZMWKFXO9PKFcDiJpNBrZtWsXL7/8Mrt27cLf35/Pf/7z3H777eTk5Mz18mRkAFkkZeYJU1NTbN++nZdeeondu3cTHR3Nxo0b+eQnP8nVV1+94PofLlSRHB4e5t///jfbt2/n4MGDKBQKPvWpT3HHHXewbt26y8ZTIDN/kEVSZt6hVqvZs2cPb731Ftu3b8doNLJu3Tquu+46brnlFsLCwuZ6iZfMQhLJxsZGXnvtNXbu3EllZSWJiYncdNNN3HDDDRQVFcmtvGRcGlkkZeY1JpOJ8vJy3nrrLd566y2amppYuXIl69ev58orr2Tjxo3z0sqczyI5PDzMrl27+OCDDzh06BBNTU2sXbuWG2+8keuvv17uQSozr5BFUmZB0dLSwo4dO/jggw8oKSlBxaUmMAAABxhJREFUr9ezfPly1qxZw9atWykuLp4XojmfRHJ0dJRdu3axZ88ejh49Sm1tLbGxsWzevJktW7bwiU98gtDQ0LlepozMrJBFUmbBYjabqampYf/+/ezdu5eSkhIMBgPLly+nsLCQoqIi1q1bR2Rk5Fwv9WO4qkiazWYaGxs5dOgQR44csYni4sWL2bRpE5s3b2bDhg0kJCTM9VJlZByCLJIylw1ms5nq6mr2799PSUkJx44do7Ozk9jYWLKysli2bBmrV69m/fr1c95v0BVE0mw209DQwKFDh6ioqKCmpoYzZ84wMTFBRkYGq1evZuPGjWzYsIHExMQ5WaOMjGhkkZS5rBkcHOT48eMcP36ciooKKisr6ejoICYmhszMTJKTk0lPT2fJkiXk5uYSExPjlAhMZ4qkyWSisbGRmpoaamtraWxspLm5mbq6OiYmJsjMzCQ/P59Vq1axcuVKcnNz8fX1FbomGRlXQRZJGZmPMDw8zPHjx6mqqqKhoYG6ujoaGxvp7e3F39+fhIQEEhISSElJITU1lbi4OOLj40lISCA0NNQhIupIkTSZTPT09NDe3k5nZyednZ00NDTQ2tpKR0cHHR0dmEwmEhISSE9PJzMzk4yMDJYvX05ubi4+Pj6XfD4yMvMVWSRlZOxErVbT1NREQ0ODTTybmpro7e2lr68PnU6Ht7c34eHhhIeHs2jRIhYtWkRERAQBAQEEBAQQFBRk+xkYGEhwcDDBwcEEBATg7u6Om5sbSqUSSZJ499132bp1K25ubhiNRvR6PWNjY+c8xsfHGRsbQ61WMz4+zvj4OH19ffT39zM4OMjg4CBDQ0MYjUYCAwOJjIwkJiaGjIwMMjIySE9PJz09naSkJJfa+5SRcRVkkZSRcQCSJDE2NkZvby+9vb309PTYfvb39zM+Ps7ExARqtdr2U6PRoFarMZlMM5rL09MTPz8//P398ff3twlwQEAAgYGBxMTEEB0d/bGH7CKVkZk5skjKyMwhkiSh1WqZnJzEbDbbHiaTCaVSec7Dzc0NPz+/eZHCIiOzUJBFUkZGRkZGZhrkQokyMjIyMjLTIIukjIyMjIzMNMgiKSMjIyMjMw2ySMrIyMjIyEyDLJIyMjIyMjLTIIukjIyMjIzMNMgiKSMjIyMjMw2ySMrIyMjIyEyDLJIyMjIyMjLTIIukjIyMjIzMNMgiKSMjIyMjMw2ySMrIyMjIyEyDLJIyMgI5cOAA119/PTExMSgUCv773/+e87xareaee+4hNjYWHx8fsrOz+cMf/nDOMVqtlm3bthEWFoa/vz+f+tSn6OvrO+eYt99+m/T0dDIyMnjnnXdEn5aMzGWDLJIyMgLRaDQsW7aM3/3ud+d9/lvf+hY7d+7klVde4cyZMzzwwAPcc889vP3227ZjHnzwQbZv384///lPSkpK6Onp4ZOf/KTteZ1Ox7Zt23j++ed57rnn+MY3voFerxd+bjIylwPuc70AGZmFzCc+8Qk+8YlPTPt8WVkZd955Jxs3bgTgq1/9Kn/84x8pLy/nhhtuYGxsjBdeeIFXX32VzZs3A/DXv/6VrKwsjhw5QmFhITqdDjc3N/Ly8gBwd3dHp9PJfSdlZByAbEnKyMwha9as4e2336a7uxtJkti3bx8NDQ1s3boVgGPHjmEwGLjiiitsr8nMzCQ+Pp7Dhw8DEBgYyF133UV0dDQxMTF84xvfICAgYE7OR0ZmoSFbkjIyc8hvf/tbvvrVrxIbG4u7uztKpZI///nPFBcXA6BSqfD09CQ4OPic10VGRqJSqWz//tGPfsQDDzyAUqmUBVJGxoHIIikjM4f89re/5ciRI7z99tskJCRw4MABtm3bRkxMzDnWoz0EBQUJWqWMzOWLLJIyMnPE1NQUjzzyCG+++SbXXnstALm5uZw8eZJf//rXXHHFFURFRaHX6xkdHT3Hmuzr6yMqKmqOVi4jc/kg70nKyMwRBoMBg8GAUnnu19DNzQ2z2QzAypUr8fDw4IMPPrA9X19fT0dHB0VFRU5dr4zM5YhsScrICEStVtPU1GT7d2trKydPniQ0NJT4+Hg2bNjAQw89hI+PDwkJCZSUlPDSSy/x1FNPARYX6pe+9CW+9a1vERoaSmBgIPfeey9FRUUUFhbO1WnJyFw2KCRJkuZ6ETIyC5X9+/ezadOmj/3/nXfeyd/+9jdUKhXf//73ef/99xkeHiYhIYGvfvWrPPjggygUCsBSTODb3/42r732Gjqdjquuuornn39edrfKyDgBWSRlZGRkZGSmQd6TlJGRkZGRmQZZJGVkZGRkZKZBFkkZGRkZGZlpkEVSRkZGRkZmGmSRlJGRkZGRmQZZJGVkZGRkZKZBFkkZGRkZGZlpkEVSRkZGRkZmGmSRlJGRkZGRmQZZJGVkZGRkZKZBFkkZGRkZGZlp+P8BS1F3LdGqJ4QAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "P0 = np.array(sim_data[\"power\"].flux) # total radiated power of the yagi-uda antenna\n", "\n", "# angular radiated power of the yagi-uda antenna\n", "# by default, the power is calculated at 1 meter away from the antenna. The 1e12 factor normalizes the power to unit distance (1 um)\n", "P = 1e12 * sim_data[\"n2f_monitor\"].power.sel(f=freq0, phi=0, method=\"nearest\").values\n", "P = np.squeeze(P)\n", "D = 4 * np.pi * P / P0 # directivity of the yagi-uda antenna\n", "\n", "P0_dp = np.array(\n", " sim_empty_data[\"power\"].flux\n", ") # total radiated power of the point dipole\n", "P_dp = (\n", " 1e12\n", " * sim_empty_data[\"n2f_monitor\"].power.sel(f=freq0, phi=0, method=\"nearest\").values\n", ") # angular radiated power of the point dipole\n", "P_dp = np.squeeze(P_dp)\n", "D_dp = 4 * np.pi * P_dp / P0_dp # directivity of the point dipole\n", "\n", "# comparison of the directivity\n", "fig, ax = plt.subplots(subplot_kw={\"projection\": \"polar\"})\n", "ax.set_theta_direction(-1)\n", "ax.set_theta_offset(np.pi / 2.0)\n", "ax.plot(theta_array, D, theta_array, D_dp)\n", "ax.set_rlim(0, 8)\n", "ax.set_title(\"Directivity\")\n", "ax.legend((\"Yagi-Uda antenna\", \"Dipole\"))\n", "plt.show()\n" ] }, { "cell_type": "markdown", "id": "4fef9a61", "metadata": {}, "source": [ "When studying antennas, very often we want to plot the full 3D radiation pattern. Here we show how to do so. This requires us to convert the spherical coordinates representation of the radiation pattern to Cartesian coordinates representation. " ] }, { "cell_type": "code", "execution_count": 9, "id": "c1d1e015", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:15:54.506363Z", "iopub.status.busy": "2023-03-27T21:15:54.505992Z", "iopub.status.idle": "2023-03-27T21:15:57.054166Z", "shell.execute_reply": "2023-03-27T21:15:57.053680Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAGRCAYAAACg1F5qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADMIklEQVR4nOz9eXwk613mC37fyH2RlFpr3/dTdWqvU6fki7EBr9CMB9twgQZMg2n62r7mwgB2M9cM0/ChmQbaQHuAhmmgWdo0TRsYjI2xwcbLOV6qtNWmWlWl2rSmltwzI977R8QbGZlKSZnKTClVJ57PR0enUpkRkZGR7xO/7XmElFLiwoULFy5c1AFtow/AhQsXLlxsfrhk4sKFCxcu6oZLJi5cuHDhom64ZOLChQsXLuqGSyYuXLhw4aJuuGTiwoULFy7qhksmLly4cOGibrhk4sKFCxcu6oZLJi5cuHDhom64ZOLChQsXLuqGSyYuXLhw4aJuuGTiwoULFy7qhksmLly4cOGibrhk4sKFCxcu6oZLJi5cuHDhom64ZOLChQsXLuqGSyYuXLhw4aJuuGTiwoULFy7qhksmLly4cOGibrhk4sKFCxcu6oZLJi5cuHDhom64ZOLChQsXLuqGSyYuXLhw4aJuuGTiwoULFy7qhksmLly4cOGibrhk4sKFCxcu6oZLJi5cuHDhom64ZOLChQsXLuqGSyYuXLhw4aJuuGTiwoULFy7qhksmLly4cOGibrhk4sKFCxcu6oZLJi5cuHDhom64ZOLChQsXLuqGSyYuXLhw4aJuuGTiYkMgpdzoQ3DhwkUD4d3oA3Dx2oKUknw+TyaTwePx4PV68Xg8eDwehBAbfXguXLhYI4R0bxFdrBMMwyCfz6PrOtlsFjDJJZ1Ok81m2bJli0suLlxsUriRiYumQ0qJrusUCgUMw0AIgaZpaJqGlJLFxUUmJyfp7Owkm83af/d6vS65uHCxSeCSiYumQqW1dF0HsAlEEYMQwv5/r9eLlNL+yWaz5HI5+3Uuubhw0bpwycRF06DrOvl8HsMw0DTNXvxVZlWRihDCfsxJLh6PZwm5OCMXn89n112c23fhwsX6wyUTFw2HlJJCoUChUEBKWXGhL49OlsNK5JLJZOznKHJRkYtLLi5crC9cMnHRUBiGQaFQKElrVbOoV9sHUi25qIjFJRcXLtYHLpm4aAiklHa3ljN9VQ2caa5asRy5GIbhkosLF+sIl0xc1A1nWguoiUjU8xuFlcglm82SyWTsTjKXXFy4aBxcMnFRF5yzI6p2sRY0a9ypnNgUuei6bs+7VCro10qILly81uGSiYs1QS3IDx48oLe3F7/fX1Naq/zf6zU7q0hCkZ6TXAqFgv338rSYSy4uXKwMV5vLRc1QsyP5fJ6rV6/aUUktcD5/Ixdp54CkikyEEBQKBW7cuMHt27dZWFggkUiQTqftVmcXLlyUwo1MXNQEwzDI5XIlsyONiCpaRdXHGbnk83k75VUoFMjn8yWRiyIfVXNx4eK1DJdMXFQFlQpS3VqKSNREez1YzzRXrXBKv0AxLabIBSpP57vk4uK1BpdMXKyKSpIozoHDRpDJZsFyNZd8Pr+i9ItLLi6ed7hk4mJFOKORSkXo5y3NVSsqkYvqcFORixCihFxU6syFi+cJLpm4qIhqZ0caFZlsVjIph6qnKDjJJZfL2edRkYuzW8yFi80Ml0xcLIFa/FTX0kopmrUSQTabtduJnycyKUc15KJp2pKCvksuLjYbXDJxYcO50JUr/S6HWolA13Vu3LjBo0eP8Hq9dHZ2EgwGMQyjRPzxeUW15OLK7bvYbHDJxAWwcpF9JdRCJolEgsHBQbxeLy+//DL5fJ54PM7U1BT5fJ4vf/nLdHZ22j+hUKiu97QZ4CQXdR5V+7VrFOZiM8ElExclkii1alRVSyaPHz/m+vXr7NmzhwMHDlAoFAiFQnR0dNDV1cXg4CDHjx8nHo/z9OlTRkdHCQQCJeQSCATqeZstD6emGCxPLup5oVDIJRcXLQOXTF7DKLfTXYvYoRBixYnwQqHA9evXmZ6e5vTp0/T29i4hH7VAKtIAMx02NzdHPB5nfHyc69evEw6HS8jF5/PV/qY3EZYjl2Qyyde//nW+6Zu+CXBdKF20BlwyeY1irWmtcqwUmSwuLjI4OEggEKC/v59gMLjs68q34fF46O7upru7G4B8Pm+Ty/3797l69SrRaNQmllgshtf7fF/O6vNRn5VTFbnc4th1oXSx3ni+v30uKmI5O921oNIEvJSS8fFxRkdH2bdvHwcOHFjVTXG1VJnP56O3t5fe3l4Acrkc8XiceDzO7du3yWQytLW12eTS0dFRUuh+nlCNxbHrQuliveGSyWsI5bMjjVhUyomgUChw9epV4vE4Z8+etSOL1bZRK/x+P1u2bGHLli0AZDIZm1xu3LhBLpejo6PDJpf29vbnZgp9ua4314XSxUbCJZPXCMpnRxolqe4kk/n5eYaGhgiHw/T399dUMK93ziQYDLJt2za2bduGlJJ0Om2Ty6NHjzAMo4Rc2traNvUCWm2nnetC6WK94JLJc4567HSrgSrAj42Ncfv2bQ4cOMC+ffua0hFWy/bC4TDhcJgdO3YgpSSZTNrkMjY2VlLw7+zsJBwOb5oFtBkWx64LpYt64ZLJcwwpJQsLC8zNzdHX19cUgycpJQ8ePCCXy3H+/Hm7G6sWNHuhEkIQjUaJRqPs2rULwzBIJBLE43Gmp6e5c+eOPUCpfpzNAq2GRg131uJC6ZKLi9XgkslzChWNzM/Pc/v2bbZu3drwfcTjcRYWFohEIvT39+P3+9e8rfWUU9E0jfb2dtrb29mzZw+GYbCwsEA8HufZs2f2jIsQwl5UW2nGpVlKAa4LpYt64JLJc4by2RGVzmj0Pu7fv8/du3cJhULs3LmzLiJRC9FGyalomkYsFiMWi7Fv3z50XbdJeGFhgS9/+cslMy6xWKyu99sIrMd5Wo5cKhmFueTiwiWT5wiVZkc0TWuozWwul2N4eJhkMslLL73EnTt36t7mRpNJOTweD11dXbS1tREOh9m5cydzc3PMzs5y//59ksnkhs64bJQoZrXkks/niUQi9qzL89JF52JluGTynGC52ZFGOCEqzM7OMjQ0RCwWo7+/H5/PV9f2m9EQ0Ax4vV56enro6ekBNn7GpVVIdzly+cY3vsGxY8fo6OhY4uXiksvzC5dMNjmcsyNOO12FRkQmUkru3r3L/fv3OXLkCLt27VpSuG0ENosM/UbPuLQKmZTDaSfg9/vtFKvrQvnagEsmmxiGYVAoFFaURKm37TabzTI8PEw6nebixYu0t7c3dPtqG7B5yKQcGzHj0opkomAYhk0s5ZHLSkZhLrlsbrhksglRy+xIPZHJ9PQ0w8PDdHd3c+bMmYp1gUak0Vp5YawVq824PHjwAIBYLGaTSyQSqekctDrprjShv5yXi2txvPnhkskmQ7V2ugpriRwMw+DOnTs8ePCAY8eOsWPHjmX30ciBw1ZfJNeC8hkXKSWLi4vE43FmZma4e/cuHo9niY/LSp9pq6a5FFS6dTWsRC6uC+Xmg0smmwhO3xFn+mAlqMih2gUok8kwNDREPp/n5Zdfpq2tbcXnu2mu2iCEWHbGZWJiglu3buH3+21i6erqqjjj0qoLai3XWjlcctnccMlkE6Ae3xFnvnq110xOTjIyMsKWLVs4duxYVR1JjSST1yKWm3GJx+M8fvyYGzduLJlxaWXSVSnVRtQ9nOTiNApzLY5bEy6ZtDjq9R1Rz1UkVAmGYXDr1i3Gx8c5fvw427dvr2n7bpqrcVAzLl1dXYCpwqx8XMbGxkgkEgSDQXRdZ3p6uuV8XJzy+I2EU1PMuR/X4rh10DpXoYslUF+UenxHFIEsV4RPpVIMDQ1hGAb9/f1EIpGatq+EHmt9jfO9vJbSXLWi0ozLgwcPePbsGXfu3CGdTreUj4v6DJvdkbUSuZQbhbnksj5wyaQFodJaqlurHmG9lRbqZ8+ecfXqVbZv386RI0fWtAithUxqOUYXpfD7/bS3tzM/P8/58+dbzsfFaXGwnnCSS7mXi+tCuT5wyaTF0Cg7XQVnmktB13VGR0d58uQJJ06cqEsEslFpLvcLXT2c9a/VZlx0XS9pQ262j0uz0ly1Yjm5fSklX/ziFzly5AgdHR2uC2UD4ZJJC6GRdroKzqlkgGQyydDQEEII+vv7CYfDdW2/kXItbmRSHVaa42j2jMtqcA4sthKcx6TreokUkGtx3Bi4ZNICaIadrhNqcPHJkydcu3aNXbt2cfjw4YZ13KyFBBo9qe9iKZox47IaWn0GBorNKOr6dy2OGwOXTDYY5Xa6zchvCyG4desW8XicU6dO0dfX19Btu2mu9UU9cxy1zLisxSRspa7BVkGlY1wuLea0OHZdKFeGSyYbBHWhPn78mKmpKY4fP96UizKRSKDrOul0mv7+fkKhUEO3v1YyqfQaNzKpDo26+19txuXmzZsEg8ESclnNx6XVIxPDMJBSrtpsshy5KBdK1+J4KVwy2QA4i+z5fJ5kMtnwC1BKaQ+9aZrGsWPHGk4ksHYycXaq1bOd1yqasWCtNOPy4MEDrl27RiQSoaura1kfl2qlVDYKa80ALCe3X25xrNJiTl2x1wq5uGSyznBKoqi7mkaaV4G5CFy/fp3p6WlOnz7N9evXG7p9J9ZCAs+ePWNkZMRW0+3q6rK/nC5Wx3qdp0ozLopclptxUQX4VkWj0snLkctr2YXSJZN1wnKSKI12QlxYWGBoaIhAIEB/fz/BYLDh+3CiFjIxDIPR0VEeP37MCy+8QCgUshcnXdcZGBiw73q7urrqLgY/r9ioVJLf76evr8+uuWWz2SUzLuFwGF3XmZubW/cZl2rQrNpkLeTi1BVrtfNTD1wyWQesNDvSqIVeSsn4+Dijo6Ps27ePAwcO2PtoxGDhcqiWTNLpNIODgxiGwaVLl/D7/ei6TjQaZefOnXzxi1/kwIED5HI5pqamuHPnDj6fzyaWzs7OioKHr0W0Sl0iEAiwdetWtm7dandBPXz40B6GLRQK6zrjUg0a2Xa/Eqoll+fJy8UlkyZjtdmRRpBJPp/n2rVrxONxzp49S3d395J9NCs1Ug1RTU1NMTw8XCIgqfwrnMcYiUTYvn07e/futYvBs7OzjI+Pc/369VXz9a8lbPSiXA4hBKFQiK6uLubn57lw4QKpVGpdZ1yqwUZ1my1HLs+TC+Vr99vYZFQ7O1IvmczPzzM4OEgkEqG/v39ZufKNiEyklNy5c4exsTFeeOEFduzYUfK6Ss9XKC8G5/N54vE4s7Oztu96e3u7TS6tmFJpFlq5tuSU/4lEIkQiEXbu3ImUkkQiYc+43Lt3D03TGjrjUg1apXV5JXJJp9PcuXOHI0eO4Pf78Xq9xONxYrFYU5poGgWXTJqA8tmRlYpuayUTKSUPHjzg9u3bHDhwgH379q24j2YtQMtt22n32whfFJ/PV5KvV7Ihs7OztjVuLBazyWUj7nrXC62S5qqE5QrwQgja2tpoa2tj9+7dTZlxqQaq8aXV4CQXXdeZnJzk6NGjtgvlO9/5Tn7sx36M97znPRt9qMvCJZMGohY7XYW1kEkul+Pq1assLCxw/vx5Ojs7G76PalGJBOLxOIODg3R2di5r91tpO7UgFAoRCoXYvn37krveu3fv4vV6S+otzViYNgqtTibVmrY1esalkce3kXB2eiokk0mi0egGHtXqcMmkQSgvslfbAljrQh+PxxkaGqK9vZ3+/v6qvmDrleaSUjI2NsadO3c4fPgwu3fvXvYcNFJOpdJdb/nCFAqFbHKJxWL4fL417cvFylgr0VU74+I0CVvLZ7hZyKTccTKVStVsD7HecMmkASifHanly6TSRKtd5FJK7t+/z927dzl06BB79uypej/NLsArIr169apdfI3FYjVvq1HH6MzF79+/n0KhYBeC7969SyqVor293SYXpR67WdDKkUmjhhZXmnFRn6FzxiUWi1VlobBZyKT8GBOJxKqp4o2GSyZ1oB47XQWnedVyF3kul2N4eJhkMslLL71ER0dHTftodmRSKBR45ZVXCIfDVUdLlbbTLHi9Xnp7e+nt7QXMes7s7CzxeJxr166VtLB2dXURjUZbdrGG1iaTZg0trjTjMjo6SjabtW8Q1ABlpe9T+V1/K6LSMbpprucYjfIdWc0JcXZ2lqGhIWKxGP39/WsK7ZsVmUgpmZmZIZVKcejQIfbv31/TOXAe03rKqQQCgRIPkFQqZZPL2NiYHdlkMpmWTYe1KpmsF9E5Z1yAEh+XJ0+eUCgUbJMwdYOgUsqbITKplOZyyeQ5RCN9R5YjEykld+/e5f79+xw5coRdu3ateT/NiEx0XefatWtMTk4SDAY5cOBATa9vFaFHZwvrrl27MAyDxcVFm1wWFhaYmpqyC/mNKgTXg1ZuDd6oxbq8IcM54/Lw4UOklHajihJ7bFVCLieTTCZjD/i2MlwyqQHO2ZF67XQVKpFJJpNheHiYTCbDxYsXaW9vr3sfjVyAEokEg4OD+Hw+jh8/zu3bt+veZqt8sTVNo6Ojg46ODtLpNMFgkI6ODmZnZ+1CcDQaLRmeXO+0SSsvhK1wbCvNuDx+/JhMJsOXvvSldZ9xqRblZJJMJgFcMnleYBgGhUKhYXa6Tng8HptMpqenGR4epqenh7NnzzZkyruRrcFPnz7l6tWr7N69m0OHDjE/P9+QbbeqarCmaXR3d9uqArlczp5vuXnzpu25rsilra1tXe7MW2XhK0crppGc3X6FQoFMJsOOHTuYnZ1lYmKC27dv29I9zZxxqRblZJJIJNA0raUHFsElk1WxltmRWqEGlW7dusWDBw84duwYO3bsaNh+GpHmMgyDmzdv8uTJkyUGW68l216/38+WLVvYsmVLief67OwsDx8+BCgZngyHw02xF2hVMmnlYwPzOvZ6vXb0uZ4zLtWinExUW3Arn1dwyWRFlEuiNEs+WgjB1atXkVJy6dKlhoeziqzWCiXSKKVc4hvfqBRaq0YmK0GIpZ7rqt7STLHKVvYMaeVjg8qR03rNuFSLSpGJSyabGIZhMDMzw8TEBAcOHGjaF2RyctJOlZw+fbop+fd6IhMl0rh161aOHj265PgaRQKt/kWpBkIUbXGdYpXxeLxErNI5PLnWNGarni/DMFq69VbX9VXPefmMi9KFq3fGpZZjdJJVMpls+YFFcMlkCZyzI6lUiomJCQ4dOtTw/RiGwa1btxgfHycQCLBnz56mfQnXEj04RRqPHz/O9u3bKz5vrWSymtDj8wDnHe+BAwdKFiWnWKUil2rFKlv5PG2GNFetN4blunBrnXGpFrqul9RsFJm08nkFl0xKUD470gwXRDBzoENDQxiGQX9/v+3z0SzUWoDPZrMMDQ2RzWZXFWlsZGTSyotkI7CSWOXjx4+rFqts5QW7FQvwTjTi+GqZcVlLU0albi43MtlEMAyDXC5XMjvi8XjqqjVUgjIO2r59O0eOHLE9C5pJJrUs1GpIsrOzs6puMjfNtXaUz0Ykk0lmZ2eZnZ0tEatUkYu6W21lMmnlY4PmkF01My5OH5fVFBaWq5m0Ol7zZKLSWqpby9ny20gy0XWd0dFRnjx5wokTJ+y7Gmiuqm+123eKNNYyJOmmuRoDIQTRaJRoNLpErPLJkyeMjo7aYpWZTGbDByeXw2YowDezprPSjEs8Huf+/fu2YvJy9tSVIpNWnzGB1ziZrCaJ4pz/qAfJZJKhoSGEEEu6odR+NzIyyefzjIyMsLCwULP2l9p2vXekr4U0Vy1YSaxycXGRubk55ubmSvL0rVD4bpY2V6Ow3n4mlRStFxcXicfjSzr+1E+l1mCXTFoY1UiiqEW+noXyyZMnXLt2jV27dnH48OGKF3K9rburYSWyUk6N0Wh0TSKN9RJII7bzWoBTrDKXyxEKhQiHw8Tjca5fv27n6VXBf6PEKl8LNZN64FRYUB1/yiTsyZMn3Lx5E4DHjx+zsLCAz+dz01ytimrtdAH77mAtobGu69y4cYOJiYklQ37l2Ig0l5SS8fFxRkdHV3VqXG3banv1Ll5uZFI9fD5fVWKVzlTKeuC1WDOpBx6Px/6cwJxx+cpXvoLX6+Xv/u7v+Lmf+zm2b99OX18fn/jEJ3jDG96wqhlevfj3//7f8+EPf5gPfvCDfPSjH636da8pMim3013tolJ/r1W2WmlXeb1e+vv7V/0ir3eaq1AocP36daanpzl79qwtFbLWbUP9X1I3zVU9ys/TSmKVyhI3EAisi1ilSyb1wev1IqVk7969vP/97+fd7343P/ETP8Hk5CQ/93M/x+joKC+99BJf+tKXmpLW/PrXv87v/u7vcvLkydqPveFH04JwSqLUovSrPqxqU1BSSh4/fsyNGzfYs2cPBw8erNrCdL0iE6dIY39/f90aROo81ksErbwAtRpWW7CdqRQlFzI3N7cuYpWtvli3+lClaghS53DLli1omsa73vUufuZnfoanT58yNDTUlPeQSCT4/u//fn7v936PX/zFX6z59c89mdTjOyKEqHqhd97tnzlzxp6erQbrFZmo+o0SaWzEl75RZNKobbwWUOvdv8fjWTexSjcyqQ9qHVium0ulNpuB973vfXz7t3873/Zt3+aSSTnqsdNVqKY4vrCwwODgIMFgcE13+80mEzAHq27cuLFq/aZWNDIyccmketSzYDdTrLLVW4PXu5urVqi1Zr1bgz/+8Y9z5coVvv71r695G88lmTTCTldhpfZgZxF73759HDhwYM2EpRoCGo1UKsXNmzfRdZ1v+qZvWtKWXC/WSibT09NMT0/baRaXTKpHI8/TcmKVlVpXqxGrbOXWYNXCvhnIxHmMzW4NHh8f54Mf/CD/8A//UFfa+7kjk0bZ6SosN7iYz+e5du0a8Xi87iK2x+Mhl8ut+fXLYXJykpGREbt3vdFEArWTiVPzq7u7m5s3b5LP5/F6vUQiERYXF1veg32j0cxUklOscs+ePTWLVbbyYl1t481GQjX7OL9XzY5MLl++zOTkJGfPni05jn/+53/mP/2n/0Q2m62qRvNckUkj7XQVKqW51GxGJBKhv7+/blnxRqe5DMPgzp07PHjwgOPHjxOJRLh8+XLDtl+OaqOKfD7P8PAwyWSSl156iUAggBCCdDrN9evXyWQyXLlyxW6XVDMTjZBtf56wnnWJWsUqdV1v2RuBzUQmTjSbTL71W7+VkZGRksd++Id/mKNHj/KzP/uzVRf7nwsyqWV2pFY401xSSh48eMDt27frms0oRyPJJJvNMjg4SC6Xs71RFhYWmppCqkbifmFhgYGBAaLRKJcuXbKjMZVmiUaj+Hw+9u3bx8LCgi1+eOPGDSKRiL2gbYRNrosilhOrjMfjjIyMkM/nuXPnDr29vXR1dbWU2q1LJpXR1tbGiRMnSh6LRCJ0d3cveXwlbHoyKZ8dabSBlYpMcrkcV69eZWFhgfPnzzd0cKhRZKJEGru6ujh37pydfthouRbVRbZ//372799fkXzUZ6Z0i2KxGPv377fvhFXnUT6fb4lJ741EK3VMlYscfuELX6C9vd3WoXIO5TnFKjcCKmraTGSi0lzuBHwTsR52umBGJolEgtu3b9Pe3r4myZHVUO9iL6Xk/v373L17t6JIYyNse1fCcn4pyur36dOnnD59mt7e3hW3U2kbzjth1XmklHXVpLciltdKSqyVyMQJdUzbt28nEolgGIYdZT59+pTR0VGCwWDJ8GQzHQvL0eptwVDZsldKuaINRDPw+c9/vubXbEoyKS+yN4tIpJRkMhlmZmY4cuQIe/bsacp+6iGTXC7HyMgIiURiWZFGtdg3axGqFJlkMhkGBwfRdZ1Lly6tWvyvpu7i7DzauXNnyWL1WkuJtSKZQGkB3hllQtEOd3Z2lvv373P16lXa2tpscmm2WOVmJJNkMgngCj02A4ZhkEgkGBgY4OLFi037UmWzWUZGRkin0+zcuZO9e/c2ZT+wdqHH+fl5BgYGaGtro7+/f9m7PGdnyHqQyezsLIODg/T09HD8+PGqFoi1tlQvlxJTDnhqXuJ5Som1agv1aq235Xa42WzW1hNbD7HKzUomXq93U0Tcm4ZMnLMjSh6iWYvjzMwMw8PDdHZ2smXLlqZ7R9QamdQq0ugUY2wGnDL0qkGhFk8UhXqP77WSEmvVNJf6/Ko9tkAgsESsUt0MjI2NIYQomW8p9/2oFa0upQKVySQcDrc8CcImIZPytJa6A2/0NKuUkrt373L//n17Mbxx40ZT5eGhNjIpFApcu3aN2dlZzp07R1dXV1Xbh+Z9mYQQFAoFhoeHmZ2dXVODQqPrOs97SqwVycTZBFMryk2llhOrdJJLrTd5mzEySSQSmyLFBZuATCrNjqiLVdf1hhXwMpkMw8PDZDIZLl68SHt7O9BYt8XlUC2ZqPReIBCoab6lkfpZlSCl5Pr167aczFru+Ju9OK4lJdaqaOU0FzSm9XY5scp4PF4iVukcnlztZqDVpVRg6Q3fZunkghYmE+fsSLmdrmrva5QEyfT0NMPDw/T09CzxPdc0rSnT6U5UQyaqvbYWNWLn9oGmdHRNTk6SyWTYsmULp06dquvLup6LZDUpMXUjkc1mWyol1qpprnoik9Wwkliluhno6OiwyaWSWOVmiEwKhUKJZUUqlWqpWZ2V0JJkYhiGXRuBykOIjYgYnJPix44dY8eOHU3Zz2pYSf9L13Vu3rzJs2fP1izS6PQcaRScsiiBQICdO3duWj+T5VJio6OjLCws8JWvfIVwONxSKbFWXFxqrZnUg5XEKsfHx5FSlqTEwuHwpiCT8shks7gsQouRSS2zI/Uu8ul0mqGhIQqFgj0pXgnroei7XL0glUoxODhoe8fX45a33CzIWpDL5RgeHiaVSvHyyy8zMjLyXKkGq5RYW1ubLYBY6S64q6uL7u7ude8Sa5XzVA4l8rjeRFdJrDKRSDA7O1siVun3+5FStlyk6USlArxLJjWiXBJltYvS6/WumUyUAOKWLVs4duzYineZ61kzcaYvJicnGR4eZvv27Rw9erTuO6pGFbiVLEpbWxuXLl3C5/M1fShyo1EuIaIscpXZlLLIVZFLs6e8WzXN1Soij0II2traaGtrKxGrHBsbI5FI8OUvf3lFscqNRHldxy3A1win70i1cgdrWeQNw+DWrVuMj49z/Phxtm/fXtV+mr1QKjJT7bW3b9/m4cOHnDhxomFGOI2ITB4/fsz169dLZFEU1rLt8in9Vr3jLkd5SmxxcZGZmRmePHnC6OgooVDIJpbOzs6Gp8RamUxa8biUWOXc3ByhUIiDBw+uKFbZ3t6+YaSo63oJsamayWbAhpJJPb4jtZJJKpViaGgIwzDo7++v+gNa60BhLVAXbjqd5urVq+Tz+RVTb2vdx1pJ0SmLUslFsh6icqYzNwuZOOHsOlJdYmrK+9atWyUpMVUYbsSC24qLdit7mUCxAF8eaWYyGXt4cmRkBMMwiMViNrmsZwG8PDJZD2OsRmHDyKRe35FayOTZs2dcvXqV7du3c+TIkZruFNcjMlEXz1e/+lV6enpKRBobhbUu1koWxTCMZWVR1rpt551sKy9CtcDn89Hb22vrkDkH8RqVEmtV0m2VNNdyWK4AHwwG2b59uy1WmUwmbXK5f/++Pey6HmKVleZMarEA30hsCJlIKcnlcnXZ6VZDJrquMzo6ypMnTzhx4gRbt26teT/NjkyklIyNjQGwd+/ehsnal2MtkYmSRent7eWFF15YloQbFVW06iJZD5yFYecgnhI+dKbEqs3dt2o6aTNEJqvNpQkhiEajRKNRdu/eve5ilZWEHtdb5HGt2BAyUXWRer4UHo9nxTmTZDLJ4OAgmqbR39+/ZpfBZkYmTpFGgK1btzbVQa/a91GrLEojyGSzprlqQfkgnjMlpnL31abEWnHR3qyRyUpYb7HKSmTSDIfUZmDD0lz1thCuFJmoAb9du3Zx+PDhui7wZnVzzc3NMTg4aMvaf/7zn98QmfhyFAoFrl69Sjwe58KFC/aXaCU0ikxea1gpJfbw4cMSbSpnesWNTNaGRsgJVRKrVJ/ZjRs3Svx2Ojs7a6qRqY5OV05lnVEpMtF1nRs3bjAxMbHmAb9yNDrNJaXk4cOH3Lp1i4MHD7J37147UmtmOq2ayCSZTDIwMIDf769ZrsVNc9WPalNihmE0vSlkLWhVklNoxtBiIBBg69atbN26tW6xSvWZls+ZuGTSZHi9XrLZrP3vxcVFhoaG8Pl8dQ/4OeHxeBrmBeK86y8XQ2z2cORqkcnExAQjIyPs3Lmz5mhuLWRSfi5fC2muWlCeEisUCvYiZRgGV65caUqXWD1o9TRXs7W5lhOrjMfjVYlVViITtzW4CtR74av0k5TSVoFdi27ValDbKu//rhWLi4sMDg4uK4a4Hta6lbav5loePHjAiy++uKYmhbUSQfmciYvl4fV67ZTY06dPOXnypK0n9vDhQ4ASef2NsMfdDGmu9SQ75w3B3r17VxWr9Pl8JQ1JqrPMLcA3GR6Ph3w+z8jICNPT0xXnHxq1H6hP10oN++3du5eDBw9W/MJtRGSSy+UYGhoik8nUNdfSqGN3I5PqIKW0O4oa2SXWiONq5chko7W5lhOrjMfjtkwPwP379zEMg507dzY1zfXLv/zL/M//+T+5efMmoVCI/v5+fuVXfoUjR46saXublkxyuRxzc3PEYjH6+/ubdifmjExqhbOGs5oH+nqQiXP7yqWxo6ODS5cu1bXYuN1c64vylOtKKbFau8TqwWaITDZaoNMJp1glmPNwt27dIplM8rM/+7NcvnyZzs5O/vqv/5qOjg6OHj3a0PP7hS98gfe9731cuHCBQqHAv/23/5Y3v/nNXL9+fU2ptU2X5lIug3fv3sXn83HhwoWmXsBrLY7XKtK4nmmuR48ecePGjapcGqvdttvNtT6oRpnXmRIDSuT1y1NiqijcqGNr5cik1f1MlD3viRMn+Ju/+Ru+8pWv8AM/8AN86Utf4qMf/ShdXV185CMf4V//63/dkP19+tOfLvn3H/7hH9LX18fly5d5/etfX/vxN+So1gn5fJ5r164Rj8c5ePAgjx49WpdFqNZZE1XM3rFjB0eOHKnqAl6PyETXda5du8azZ88amhZ0u7nWH7Vc96FQiB07dtiKuuVDeI1KiW2GyKSVycQZOXk8Hk6dOsXs7Cyf+MQniEajvPLKK7ZpXzMwPz8PUJV7ayVsGjKZn59ncHCQSCTC6173OpLJJA8ePFiXfVcbmSghyUePHtU8cd9sMlERnWr7bdTdKKyNTHK5HA8fPiQajRKLxdw0V5VoRARYTUqss7OT7u7umlJir8XW4EaiUCgsaQsGiEQiBINB3vjGNzZt34Zh8BM/8RO87nWv48SJE2vaRsunuZzT2M60TDabXbde+2oik0wmw9DQkC3SWGvOsZmT9jMzM0xNTRGNRrl48WLD88a1EsHi4iJXrlzB6/Xy6NEj8vk84XCYfD5PKpVasRf/tY5GG1CtlBIbHx8HKNGlWukmpNUX681wfOVtwX6/f128V973vvdx9epVvvSlL615Gy0dmeRyOa5evcrCwsKSuYz18Bmpdl8zMzMMDQ2tqmG1EpoRmSjdrzt37th3m80oQNZCJs+ePWNkZIS9e/eya9cuwPzSPHz4kKmpKb761a8SCATo7u62F7FW8ZpoJTSLbJdLianisEqJKV0q52fTypGJMt5rZTIpj0wSiQThcLjp5/T9738/f/u3f8s///M/s3PnzjVvp2W/pfF4nKGhIVtuxDncA8VhwvW4QJZLc0kpuXfvHvfu3ePYsWN1fRCNJhM1IDk3N8eFCxd48uRJ0yKfaqbrnTa/J0+epK+vj1wuB0A0GqW3t5dEIsG5c+fstMvdu3dJp9Mb6mrYaljPVOByKbF4PG5/Nu3t7Xa9pZUXa3XeWqmbqxzl56/Zlr1SSj7wgQ/wiU98gs9//vPs27evru21XJpLSsn9+/e5e/cuhw4dYs+ePRWfqy6K9ejQqJSCclrXXrx4se7CWCPJJJFIMDAwQCAQsIn42bNnTVuIViOTfD7P8PAwyWTSnmcpPxb1GXs8nhLtI5V2mZmZsSXcVdTS1dW15Cbjecd6+qyXo1JKzOm7bhgGgUCAx48fr5oSW2+o67NVyQ6WDkarGZNmfdbve9/7+LM/+zP++q//mra2Np49ewZAR0fHmj67lopMstksIyMjJJNJXnrpJTo6OpZ9rpNMGikBXQnlkYkSaVQzGo3Yf6PIRHWS7dq1i0OHDtlfHiFE09KCK13sithCodCK52q5VJkz7WIYBvPz83aL6/Xr123F1u7u7g11yFtvtEJ0FgqFCIVCtg/ItWvXyGaztnSIGqxshXSl0zepVVG+ljVbMfi3f/u3AXjDG95Q8vgf/MEf8J73vKfm7W0omTgXkJmZGYaHh+ns7KS/v78q3wFN01aUoW8UVGTibAZYKWpaC+olEyklt27d4uHDhxVlURph27scljt25WOv1JtX0+Na7fiUsVRnZycHDhwgl8sxMzPD7OwsIyMjSCntQnF3d/eGSIo0G63a8SaEwOv1EgqFOHDgQIlUe6WUWHt7+7oSoro+W4GEl4Ou6yXXbLMVgxt9LW14ZCKl5O7du9y/f78q7wwn1qsI7/F4bOmRSiKNjYCmaXYNoVZUI4vSzNbjSqSgaknV+tiv5Uvu9/vZtm0b27ZtQ0ppS4o4i8UqJRaLxVo6X14tNjLNtRqcBfhyqfbylBhQIq/f7JRYrbbgG4FyL5NkMrlpRB5hg8lEtdNms9k11R3Wi0x0XWd8fJz29nZe97rXNSVPv9bFvlpZlFrMsWqFk0wKhQIjIyMsLCzU9JnWO2cihKC9vZ329nb27t1LoVCwW1xv3rxJPp8nFovZUct6dMk0E6147CsV4MtTYor41ysl1mpSKpVQiUw2i/w8bLAH/OXLl4lGo5w9e3ZNF4/X6206mTx+/JjJyUk6Ojo4f/58077EayETJYvi9EVZafvNLMArL4crV67g9/u5dOlSzaTbyOPzer309fXR19dnH5sq5N+7dw+fz1dSyN8s7cetmuaC6uVUKhH/Simxtra2umsdrdxppuBGJmuEEIILFy7g9Xrrsu5tFpk4RRr7+vrw+/1NvRushUwMw+D69etMTExw9uxZW4V0JTQqMgn+sAY+LwhAAjqc6u7lN77rGa+88grbt2+vWkKm/PiaSXbKZ2LXrl22FPjs7Cz37t3j2rVrtLe32+TSCt4gy2GzpLlqQXlKLJPJLBmcrDcl1uq6XOCSSV0IBAJ1LXDNIhPlH+/xeHjd617Ho0ePSKfTDd+PE9WSSTqdZnBwEKAmWZR6I5Pgv/JBQIMQJokA6IAGQ1NdvOE3X8+n/vf7HDu2Y03bX8/F0SkFfujQITKZjF3IV+3HXV1dZDKZlms9buXBwEZpcwWDQbZv397QlNhmjUyUovBmwIZ3c9WDZpDJs2fPuHr1aolI43rUZqohk5mZGQYHB9myZQsvvPBCzW6IayHuo/8bjGUDoBQdBCCl9T+AARQATfC2X9vPrd/Isnt7zbvZUG2uYDBY0n6spr5nZmbsVmQVtXR0dGz4otSqZNIM1eBGpcQ2K5m4NZN1QiMX+ZVEGpvtz672sdxi7xzkXOuk/Voik7bvE+QDfnB2aRuAIYokkseMUCwcfq+fzCfX1pXWCvUATdOIxWLEYjEymQyBQIBIJMLs7CzXrl1D13VbBHEjBvNa4Rwth/VQDV4pJfbo0aOS9nDn57MZyWQzWfbCc0AmjZgzyWQyDA4Oout6RZHGZoowrrYP1R01Pz+/6iDnSqi1wP/2fwt5aaV4JCZxeLDrJOiYhKJbj2WtvwvBhX8JX/+T2o6vVe+2PR4PW7duZevWrUgpSSQSzMzM2CkXp3x7s7TPnGjlNNdGHFu1KTFo3WsMitph5dpcbmRSJVohzTU9Pc3Q0BBbtmzh2LFjFReDjYpM1PS48o2vJ39faxrpH0cDZn0ETCJRvz0UoxHD8VMAcubjI2N+6x+rQy1A9aS5rmTg3+Ulg8EChJIEfGl8WgGflqeDecKk8ZEHQCDxk6ODOQJk7W1ESeIng488HinR0PGfzxMq+NgtjnA8d4ad7KatrY22tjY75aJmJ27dukUul6Ojo8OOWiKRSFMWsFZdFDf67n+llNjk5CS5XM52L1Ty+q0Sraj1pTwy2Sz+7/Aajkycw5KrpY7WIzIpJxOlrrtnzx4OHTpU9wJSS2QSfKsf2jBJIl/2R2dkon4K1u+s9ffC2l00l8MfjXn46SdBMu3CJDm/hKBOILZIW2cCj8fAJww0dLqYoY2k45AFURaIkLIe0RBIoiTs5xmAxEOMOSIiYz7m0ZAeSZx/ZMD/1wygyCiPnxxSCoLt3Rza+h4OFy6RTqftQr5qP1ZzLZ2dnQ2R3Wn1yKRVFmcoTYkFAgHm5ubo7e1ldnaWx48fYxhGSVTZTOmS1aC+m+U1k408plqxqcnE6/WSzWZXf2IZ1MR4Op3m5ZdfXpX91zMyMQyD27dvMz4+zsmTJxvWzVFtAf7VIcBrLVaKOJwoWI+rFFeBYu0kB2hA7R9JyQL5C1/08ms3g9AO9AroADQJHRLvrgSBcAZNM/AInY7gLL3eWQQSYR3YViYIksVAQ6IhEfTxjCA5dDQMPOhoeCkQJomOB4m5CGYJ080sPnR0x+v95ImxQAENAy8GEBPzhD2PmQr/LBMIQu1pfFvyRI0w29LvxTv9nczOznL//n2uXbtGW1ubHbWsVU6klWsmrUx0hmHg8/lWTIkp6wMl2dNszT8nCoWCLREF5rlMJpNuZFItNiLNFY/HGRwcJBaL0d/fX1Vb4Xp1c+m6zje+8Q1yuRwvv/xyQ/Ol1Rbg3/A+v7mIlwd8qoFL8ZEzasljEkgem1wKBah2DvANHw1wJRmF0HfAI2A3cAaIFPDsTSOEedxd0VnaQsWIo505upiz/y3Q2c5jfDhJ06CPCcJkSvbpIc9eHqqeNApo5PAjkPQyjY6HPD6y+DHw4CdPmJSDsjzW4zmCLFok5cWDTo/2AD3y/8KI/AJbd+XZYUj07DuZf/TTxGfnS0ynFLlUa4DU6gt2Kx+bM2oqT4npum7L6zvJ36kl1syoq9KEvtvNtY6oZZGvR6RxPdJcyWSSfD6P3+9fsyLASqi+NViYxOFMb5k5IJNMBKX1ElUryWESikUq9+7B4cOV9/D//Wv4yY8HYFcQYsABzCuxDejC3Fl3DhErYBgaXk+eLd0TaBrk8eIjyzaeoSHJ4wUM2ligh1mL78zPNUCabTyz5yutd0eIJNuYsIlBIPFg0EaC7TzBQ+l5KuAhygIBcmQJkiVg7VcQJkXQqg/peDDQ0AteurOzFLxedI8HCbTn/5ienj/E0wnZYxFmU3/C9FSYx48fc+PGDaLRaIkP+0oLV6su2K2W5nJiNTmVcusD1SUWj8cZGRnBMIySLrFGp5/KO7nA7eZaV1RLJvl8nqtXrzI/P78mkcZmp7nGx8e5ceMGAKdOnWrKYlFNZPJ//AJFggAzZaXIQ0H9W/3kKKa48thRSvlb2PV2L1MeDQ5ZNY9zQBiLPIAt1raFhK0G4EXkoL13Fn8wS44AXgr0MG0v6gKDKIv0MoNAkiMASHzk6WOSIFkK+OwUmIcCvUwSJEMBj0U5EgFESNDHFGCSkbDoRyDZwjPaSJS8Hx2NnPTRkUqiez3k/F40YZh70gSerMCfLSA9BQwNpAbaAogCBH1JdiT/72z3gbEPUr5fYCL9fczOznL9+nV0XScWi9lRi3PhauU0V6tHJrXcoJV3iakuvqmpKW7fvk0gECipt9SbEisnE13XSafTbmSyXqiGTBYWFhgcHCQcDq+5I6pZkYmSbJmcnOTEiRMMDw83fB8K1RTgf/tPfNBNkUwMTEJR17hqEVa1EtXVpYgkCxQk5AUvfrMPegRsEdAJbAWimJGID/MxgRmNBK19bZcmC+UhumMWj183l/qCpMs7ixcDA40MftpI0I1ZK8kQQEMSIEMncwTJItHIEkAgCZCmgzmr2C4tgjHsv/UxjZ88Oh5H7QW8FNjGYwJLuhDAI3V2TMzjzxv2qckGfGSDPgo+DV9Wmu9PA48GUpg8SdL67QORBc8MtPl/njbt55G6RuLs50kYB0sWLtXeqmRzWnXBbuXIRNf1NXdDCiFKuviccjyNSomVk0kiYd68uDWTKtGImslK3VxKCHHfvn0cOHBgzftTd/WNbH1Mp9MMDAwghKC/v98+tmblxIUQvHq5k+/4X32Q0Rw1EcUQedjpL6atDIrDiupmuECx8K5TGpHkrL8jzGijTTNrL+2YBfR2x08IiGASScT6ewDwGWjRLN5QDo+/gE/L0eFN4CdjVSgKBEnbdZKCleLqIEmYFF50DDTSBPGgE2WBdhJErI4tk3TMjq8ISTqJE7S6BQp4EXbJ3rA6whbRMOxIRX0qnlyBzpkU3kIxShBAMJsnmMnDUyBtvdeo9R418zyJDLYMjf3tmwSCIDwGbVdeT5sBfeF9pM5cpiBNM7aZmRlu375NJpNBCMGDBw/o6upqKRvjVo9MGvXddcrxgGnqpwYnK6XEQqHQquelXDssmTSvWTcyWScsF5nous7169eZmprizJkzdh60nv1A4y5INduydetWjh07hqZp5PN5+9gbfXf3h38OP/6TXZDtL3Zf2VAFkDwUQsWOLNWxpa4Q1dnlbA12kkkGM4IJYpJEp/W7w/rdhkkiIYrRSBSTRDQgICFaAE3i8RQI+zNo9g7BT5Z2EpiRhYaPPB0s4CdfMi8iMIgxT8QiF4AMITR0vOToIEGMBetvZtFds8vn0EGcdotEVA3E6q9BMwp0LiYJp3ImsXhNZRlhWAozBohHFLvZ5qwfASIMLFrnyGM+Zs/tGI6/ASTBM3uftqkuZAG83/wVeo6cAODp06fcuXOH+fl5xsbG8Hg8JYX89exAKkerNwc0K2oKBAIlvjqJRILZ2dmaUmKVpt8DgcCmUbOGTU4mlSTonSKN/f39DXHbc1oE1/PhriSLoi70RqfT3vh9Hl75krdYMC9p21VhRtb8ncFc5FVdRKW4nORSqSVYLYphihFHEJM4wtb/q3/7MQkkYG0ziHkVes33HWpLI4RBvqDR7knhEbrdiZXFT4QkIbL4yFtpL4/9eIQkAXKESdkSYkJIgqQJkyZEGgFkCaBTwEsBIQVhUaCTOCEyeKzoRiIQ1si/x8jTmUkQTaXxSkpIBMx6iEiDfGyeH2exX2KmteRjEHHrwSjFCA2KpCwoEk0cMxUWgLZP9oMBmQu/hL/7+/D5fJw8edK2MZ6ZmeHBgwe2+rEil/UeymvlNNd6DVQ6U2J79uypOiVWKc3VrKHXZmHTp7mcZKJEGnfu3Mnhw4cbdvGo46ynCL+aLEozyOT+Q3jlVW9x4c9RXOmAYphh/TGNubhbOX281mvUNe5McTmJRMdcGH3W6xVh+K3X+q2/KTIJWv/2Y+WHAK+Bx5Mnn/XQ3bWIWRg3J0JyeOkijhcdjxWtSAQ5vHQSx4eOT+bMNJfwsCgjRESSiEgRIEsbiRJ9Sl168IgCfnLERBwfBTwY1n818vgR6ISMFB2FBaKFJBqgh8AogFel+zSzoC6fguo8lgKEtxipYABxEPMOYlkEoSIRYb02QJFM1E8ak+dNBiT4Tz/HXvFzyL53AS+X2BhDMd0yMzPD48ePbZ0qFbU008ZYStnyZLIR5ljVpsRUVKd+KzLZTNjUkYnH40FKSaFQ4Pbt2zx+/JgXX3yx4bLNQoi6ivDVyKIoSZFGksmxN/tLU1IlXKgeVLfFOcgakPIUo5ACtjjwki6uguP//WU/XqwaiON3kOLi6XU8R0gI6+CR+EM5EJJc1kPEl0ITBmFhSv/n8OGRBYQwrOZckxmlFEgkBeFFkwXaZAKfKBAhiZ88IEgSwUueIBkCZK1aidnOK9HI4yOPHzAIkqaDeaKkCGg58ElyHj/ego5H15FeyPtApMA7AaQACVIRgCJcQOognlHSZl3C5VnMuRoDZAjotNJhiqhVFKm2OwlEYF/yf8B/+B+kv+2XKZx5n7258nTL4uIiMzMzPH36lNHRUcLhsB21dHR0NHRxbWWfFdh4qReF5VJijx49IpvN8pWvfIU//uM/Ztu2bXR0dDT9fH7sYx/jP/yH/8CzZ884deoUv/Vbv8VLL720pm1tOJnUo8mkvgxf+9rXANPfo1nyA2ttD65FFqXhPu26KC2al5xmZ9FDhS6PILXH/JNKPzkPVxGMdLxcEYNGKUk4CcXj+Jv6UfUVIUEzQIDm0fH6dLyajlcUMIRGQXoICDOtFbGJxY+QBQIij4GHIAk8GHjJ4aOAAJIyTE7kiJLCT5YOFggIk0AK+ChIHa8wP08N3U6DBcha5QyvWUcRBXTNgxHwgG4Qns7jmzPQMlaqKwDSMCMUDItUJObCnzAJBQHCelxI87fMgph0nNu0lSrzgmjHrLWo1mx1fgPmNlWkEvpvH4ZPfpjE9/0Fcv9bSj5651Devn37yOfzxONxZmZmuHHjBvl83i4Sd3d3V1UkXgnqum1VMmlFcyxnSkw1VqjU1l/8xV8wPj7OxYsXefOb38yb3/xmXn755YbWxP78z/+cn/zJn+R3fud3uHjxIh/96Ed5y1vewujoKH19fTVvb8PJpB7Mzs4CEIlEOHHiRFPD2FojE6ekfbWyKA1vQVbkodItJX8oF9jSgQwUDNA185/qblujGNU4xR1VVOKhSBoaRWJRr1dXmb9smwbgE+AxV1lpaAiRt8jEnJT0kTNTXdJLRvgJkMVLgahQE+0SA4EHSR4fGeEnTJqAyNHJHD6r28AkIAMfBfJ4EcKPlyRhMoRJEabU/EzHQ4YQQhq0pxIEE1n8Kaujy2/VSRQPa9ZjWRBTIBPWKVbEqU4vVvprzvyR1mdSsvzmgTuYEY/qglMDoynM1JdKHerADEQ/9m5k0Efi/z0BnspfaZ/PV2JjnEwmmZ2dZXp6mrt37+L3++102Fo82NUNYast2AqtEpksB13XCYVC7Nixg9/+7d/mv/7X/8qf/Mmf8G/+zb/hM5/5DO9617v4yle+woEDBxq2z1//9V/nve99Lz/8wz8MwO/8zu/wyU9+kv/yX/4LH/rQh2re3qYkEykld+7cYWxsDCEEBw4caHo+tJbIJJvNMjQ0RC6Xqyhpv9I+GkomhjST+GqC3Ua55K96Qh6YALnFbB+GYh5fsnQ7KnJRhXofxVqIx/E3H8UVU11xqqjvV3e0kmA4gxDmQGBBavhEwVLRMiOVsFVAL+AlTYCQTFt1FQOvLKAJs5NLsw5ykSghmSZIBh2BJgy8Mo9f5ImSsNuCc/gt/S0zskHqtOUyBHJ5Qvli5xYhizAM7IYDWQAxbdVBrLSUCFmP5833KBWxLgDTJglJDYRmEYoq5EvMyMMSzJRzZq3FbqlOOj469dt6rsjkafvXXWTf/H3kvvt3VrwshBBEo1Gi0Si7d++2i8QzMzO24VRHR4cdtVTTftzqkclmIJNykceuri5+8Ad/kB/8wR9s+PErBeUPf/jD9mOapvFt3/ZtvPLKK2va5oaTSa1prmw2y/DwMJlMhpdffpmvfe1rTdfNguqjhrm5OQYGBujs7KxZFqXRZPK2Nxf41N9UCoudfb4qd6VWp4eYK30n4CtTAXZ+Tpbsirpr1hy/1eIZohiZBKzdRK1dBRzb0wWBUA5pCITHICqSaEJiSGHNeABSkhM+/OSIkCTGgpk+kgY+8mjCrJ/MiQ6r4ytDQGaIkMKDjhCSiEzhEQZSQlJEKOAlKNP4RAGBYVVOsvikTiyZLI0YBEgfCD8YGbMzSy6atROw0lg+sMo0ZseX13zPIm4Rg9V2Lf3FtJgdyeUxiSZT2g2GBDlvRjxkMEnFKO6DBEXClhD4mz/D/zd/RuJjd6CjulRFeZE4nU7bhXxlY6yilq6uroo1v81QM9mIAny1WM0Yq9FEOD09ja7rSzImW7Zs4ebNm2va5oaTSS1QIo2dnZ2cOXMGr9e7LiKMsPq0vZSS8fFxRkdHa9b+Umg0mXzidwyCf2ut9iqtZEM1rio2cMoBX8dUW2ynGGZ4Hc8V5uNSFCMXzfEjrZepwUdJsXU4TzF1AxAyoycpwZACr26Q9fjxUSAmZu3p85DI2C3CefxkpN+qgVgkI3P4RY5eptGQSIk9gGh+DIK46CRImghJvNKMTvyYXWABMoSs7UtNMNcRJpTJE8jmzTv/glnTIGNGIAKKKTurLiKtyEzkrecuYkYjhjnYb59ylRYzrOhl0WobllbEoiIVdbYLwIT19wUQaoZHtRM727PnQfig7d8cJPut30fuR1aOUipBpVuUjbGyLh4fH+f69et2a2t3d7fd2qoGFluZTDZTZLLZjLFgk5CJlJKxsTHu3LnD4cOH2b17t33RVpo1aQZWSnM5hyTPnTtnO7utZR+NIhOVCvzjj47zAz/+tjJfErWqOSWAZdn/38LUPunGDCOceasw4C+mt5zzEar4XqBIKKrdWN1NqzvyNgE5L/6OBL5QHr3gw+tL4dNMYssSwE8OjyygC3OexEeOmJzHI8yhwjaRJErKWt3Nzq2INFuBDeEhSYgQGXzk6JGz5myJAE0WCJJBsxSJzdkTD0HSeKWOlBLdEOR1D/6sbqabCsW3AVakErNSXykr8khhRguW8KU0rLOtojWV/jIwI42Zsu0Kk1BUsV7mrKhEfXIGyBlM0mg3fyMophjDmOmwPAT++5/h//uPk/jjCahSlbgczvbjAwcOkMvl7KhFtba22iR+JWw2Mkkmk01tDe7p6cHj8TAxMVHy+MTERIlleS3YcDJZ7QLM5/OMjIywsLDAhQsXiMViJX9fz8ik0kKfSqUYHBy0ZVHq6eVvFJkUCgWGh4dJJBK89S0XuHkly9ETzsVEhQoA5V8wJ6k8Be5h3gb3YDJFBDtK0R2pLjWbouDDXFDbrd9tjk2rq84ALZI1SwAFQXt4Ec1jCjZ2W4KOBj6C5IhYBXJpTa0HySClJC2CCCQh0oRkGh85JBpCGHQyiwczrQWSPB58omBGQcLLND1ESJhSLDJPUGbxygI+CgQXCwQSjs8iAjJt1TsoxmdkrNTUghmxSKtVGA2TRAPWc6w2aynM7TBvPR9Kmhzs54FJTItWi7Hj1ApA5oG71r7UvYtqKU5hF+nFjEHbd/SS+O0vIA+eoV74/f4SG2PlCTI1NYVhGLz66qt2SiwWi7VEaskwjJaegYGlabhUKsX27dubtj+/38+5c+f43Oc+xzve8Q77GD73uc/x/ve/f03b3HAyWQkLCwsMDAwQjUaXnc9YLzKpFJkoWZRt27Zx9OjRui/WRqgTJ5NJrly5QigU4tKlS/h8PtraILOQJRj0USxuqDBBTSWW9wCrf6vc1CPr9yFsZnAm9xWR5DEjEom5kKq0VhYz0FHP90vzLl3T0Xzme9YNDZ/X7OBKE8BHnqA0J+JTBAmSISYXrCl1L21iwVbzlVIzSUDkzJZdYJ4O2uWCKZciJGnCGGiERYaQTNLGIl50hICgzBGWxY6ubJsHKQSBRfPYhAdzBkR1VS1aBGK9VQRIa1BTpLCHDaU1lCnnMKfa1S48IENWNKPSZFbaTCxYz80Xn6sCRpvIkha5gcn5Mcx6lOryVmUxSwss+q++mcy7f5T8B359yTWzVjjbj7u6uhgcHOTAgQPMzMwwOjpKLpcjFovZKbFwOLwh0Yu6QWtlMikUCusamQD85E/+JD/0Qz/E+fPneemll/joRz9KMpm0u7tqRUuSiZSSR48ecfPmTfbv38/+/fuXvQg3IjKRUnLv3j3u3bvHCy+8wI4dOxqyj3ojk6mpKYaGhti1axeHDx9ecs7+/u8/i8/3It/yLVspVsqdvbx5lrZmqeI8mMSTwp6A1DxFblIdRuolzsBHEUsS6KOoDRYFPRvEH8kQjmbMCochiGhmVTsjA7QzR4A8UoIuTFVfzRrWSBLGJ3OmtIookCaIRBAUGaIygQ9zDgUh6LIiHbC6psDU57JOUUYLYUiNiJE0RR0Nie6FbFjDnzTMBb7oy2WmogQ2cQFF8oiaxCCmzNMlM9ZzfBQ7sJxEo5vRjciYxXZyxZSXsBryFKEIHTO1lcJxMJjkkzAb+DTrtXZ2MmO+NvhHv4/vG18i9Udfo9GQUuLxeOjt7aW3txcpJalUyk6JKRtjZ/vxeumIbQYyKY9M1sMY63u+53uYmpriIx/5CM+ePeP06dN8+tOfXvPQ94aTSfmCVygUuH79OtPT05w9e9buMFkO612AV2m3xcVFLl68SHt7e8P2sVYycZLbiRMn2LZtW8XnCSE4fNggk8mh64KODg+FghpYcE4TKv0TZwVdDU5UnIBc2pnkxVw0uygGPxrmIthrPZY38HWlKOS95HMa0UACTUqSMkhMLBAgS4owGkk6mMcrdbL4EZbUvIbEEB5yCHqZsiVTdEsIMiCKhaIF2umUcauzyxR/nMZDB3N4ZYGwnsYn80gp8coCoUkDT8HxLv1WesqqgeAHujFnStJWbUQRQsZa9K0wooRsHNGLsOZPRAqTIJTJGBZZ+cznCHV5FzAjohxUurUyFkFfANkOWsQ8FqR1zq2hR883bhJ5226Sn3pY8RpZK8oVg9UAXiQSYdeuXRU1qsp1xJoVtbQ6mUgpN6wA//73v3/Naa1ybDiZOJFIJBgcHMTn81Vdf1hNhr5R0DSNdDrNK6+8Qjgc5tKlS2v2R1hpH7WSiVPzazVycxpkeTyQSCh7wzYuXJhkZEQNPfgpNTVRv9WdpGMKT/2v4pq8tcny3ylgG+aiVsAsvmfN4oAnUCCf84FP4PEUkHjI4SMizAJEhgBRPDY55PCTkQHC1mopEczQRZc0/U18QmeBdiIySUBkicgkXlEgK8yCfow5IhRbfz1S0qYvlizQuQ5BIC4RRjGqEF1mOzAZa0HPADmzfiGSmAs9peRB0GoFTpjnSQgzEsGwohAV7agJd595roSVaZQeKzqZN7evNouj6wtMzTDd2paxYDYFeGIUW5AlZootB9qtOaLnYiQuzy29SNaI1WoS5e3HyslwZmaG8fFxhBB263EtNsbVQBXfW7VBQOmalddM3G6uNeLp06dcvXqV3bt3c+jQoarvItYrMkmn00xNTbF//34OHjzYNDfEWsgklUpx5coV/H5/VcZfK23/6183ZxKCwQeUkIW9Eql5FAe5qCjEmdZStf0cJiepGoqaog9g1U8keAWFuSChPUmEgJQeplebtEhDkCZADzNoFqGYTokzCEuxMYePXqbwWceaE0G6mCn6vQuQUtDOoh21CGGSUYRksSla8zHr6yaWj5utxIDhg2wX+BfAYxXY7fcqQcxhRxECzJkaHTOtRZFQhCq6+0AsmpGMUBGPB4hakYmDPGTUIqokZmeYqo2oNmSsFmIrvWikzYjECZmFwpSZifSo8MoHWR1kAQJzBtHjMRLX5ipeD7WiVi8Tp5OhYRgsLCzYGlXKxlilxDo6OuqKKlpRSsUJtX6td82k0dhwMjEMg+vXr/PkyRNOnTpVsyZMsyMTwzAYHR1lenqazs5ODh061LR91UImqvi/fft2jhw5UtWXpboB0SDFCq56rqrmququKD6sDlcRS4RicAPmApjHlAZRhlEaZh6/z3RSTM9H6OqeRghJ0ojg10wlX114SREiShKPMEz1LBm0NLoEOj6SRIkxbx2ORpxOvHLK1OgSZnvwJL10y2kEEi86eXzEidlzJiEyeDSdtD+IT+bpmMjhcRhfqc6qkqWy0yyqq6l3BNAGwm9GEbJgRiMya54yO5oIYbotViKPnJXSymDOp+Sw1YjBilKUyRYWOaZLn+NENgczSYiFoS0IWt6MYNJp0HUIFgyCRzvJ3IxX3kANqKdbStM0YrEYsViM/fv32+3Hs7OzXLt2DV3Xl+iI1YLN0BYMxTSckrvZTC6L0AJkMjk5ydzc3JpFGr1eL9lsdvUnrgHZbJbBwUHy+Tx79uwhnU6v/qI6UA2ZOGduyj1RGrH9ooduuaCXIpMsdrrLyTdQHKLLYXYWpSnOPXRTjE7CanMG3mgOw9AwdI2A3+y7zeGnXZg5mwJ+BAk6rBxPXvgpkCUmFYEIUoToFjP4pJkGyxDEKxbpkAtmMV1AWkSJsmhvR227nUXCpM1oQgBCIxf2EFooFDun/MBWkFPmcdvFcSVxkrJqJ07iUJEFpSQkTQcuM+1lkYI6tXIRULpeYH47o+b2VYrMnsRPmF1fqgHA4zEJwv60DJhPW7X5FOR16I6Yz5FAJguGAaR1vIe3ULhVOm9QKxppjFXefqyUdScnJ20bY2chf7X2481AJh6Pp+T8uZHJGrBt2za6urrW/GE3K82lZFG6uro4d+4cT548sX2Zm4XVFntd17l69Sqzs7MVZ25WQ3US92rC0Cm3IiiSier2orjoqdZVVYTPUayfKP2uAqXE4hGItIYWM6VOFpJt7PQ9seRONNLSTweLCCFJESYiU/jImdELYVNiXigRxwApQnRaqsAgSBIlQqqkCG9uJ4lP5O0FPk4nIEuEHjPtXqQGofmCGWFY3mEijFlsn8WcHbGeL4X5uLOGQdg6PwsV0l6GdV4WrPZivdheTNSqv6jIRWBGexnrJ22lxaxZFrs4L8BrEUq2ADMps7NLIZE1CcWwgnhNgJ6DnAD/szTht7we+ff/zFrRLMvecrOpQqFAPB5ndnaWW7dukc1micViNrlUMpTaDFIq5eufWzNZA4QQdd01NJpMlpNFabgIYwWslLJTnvGaptHf37+mAqWzAF8JZoDnjEwUqSgob16BuZJZD9vDFpS6M6q24KD1UhW1Z4F2kNKLJg0C0SxSQiIfptM/jxCSDEG6ZByvNXS4KNrYwSM8VrSUEmGCzBKRZo+sjpckITrFHF6reSAhomgsEpUJvBbxJEWYKAnaWbSeJyngJUWY7vkFgrki0RAAps3jLVElK/vWCA3otUhGRRuKGDwg41bBPm0V69Vl5DOfw4JZZLeHGqNW+ipvPa66vApA0kFOXvP5woqGDEwiWcyUEonCfMEMcroBrzSfs2gdhv7KIKF/93/i+T//3dIXVoH1Ggr0er0l7cdOHTHVfqzSYar9eLNEJgr5fJ5sNuuSyXqjkWSi6zrXrl1jenp6iSzKehT6lyOs2dlZBgcH2bJli+0ZvxasFpn88i9DyXh6iVSwcPwbzKk7x4uVkq7ztxI+jFq/1cxkCugyX5ybjxJsT+PxGGSNAB5ZwGfdbi+IdvqYRMNAojFHB92YHVsSwSIRe2hRCFOzy5ACv8jbsyRpgnQya8+qYBXgNXTLPKuInM9HKFf6GL2YTorOKfR26+3PW+fV4l7RZqW7EsWCvVBzKJZr4pJ7dz/ITqugr6RXFLGkMOsr1nuREoSKXJzk7YNsGuYSUNCLDzs/6QJYlSWYMt+WfSwqO5n8D79B13e+C9+pU+VHuSqaFZmsBCEE4XCYcDjMzp07MQyjokVuIBCwp+BbsaOrUlsw4NZM1huNWuRTqRQDAwPLesc3Yjp9NZSTiZSShw8fcuvWLY4cOcLu3bvr3v5Kkclf/60KJ6BY4LCTORTFthypLgWVDStQlFJRZk691nOymNGJYb0gKDEMgSxoeEN58AjmZYw+JhFIDDzk8RERaaQ0KOBHFx7arGKElDBHB31iCg9mMX9BtOOTpquiRxhIBNP00MckXlGw5eln6KaHafwyj6ainZAfzTBoS2eKjWsGiG6z2C7TVsrLsFJVIYsE1CqtzpQEO+Om0E7pQKIFu9srBGLGmmWx+EwoA7F08bloVuSSNFuM8znIpEAvlNZM1KdjWB/FPEWC0TG9u8LWR+L8xBe+6ZvoXihrDasCrSBXomma3Vp88OBBstmsbWGcSqX44he/aP+9u7u7oe3H9aCSYjDg1kzWG43o5pqammJ4eHhFWZSGG1dVgJNMDMPg2rVrTE1Ncf78edvnux6sFpkUVHrKLqyX55nVnIkjQtEpvQVWXKWIwzG8RxKzq0vD7FYKm+3Fybl2oqEn9pS7ITU7ulgQHbSxiI88Umgs0EZYptGs4cMcQfL4CJK1o5EEUTrEvN0ybD7WxlaelUQjGUJEjCTRgmO03Qe5PPjL69E+zCnzbNksSdCKQqwIRECxoy3ueK5VsFdzKmSAvJn2sqOeAMU2YHU6fVYaTR2iMCMhqUFyHnKOnpCAx2r9LT6VgnXY5dCBZ5hBowogvdZz87t3sfXheIVXLY+NiExWQyAQsFuPp6en2bdvHzMzMzx58oSbN28SjUZtconFYhtGhpVEHkOhUEvXeSphw8mk3guwnshESsndu3e5f/8+x48fX1FYbT3TXJlMhoGBAYC6xSPLt79SZPKd32nwa7co3r5WGHQ3IbDTXGGKwQoU50xUeUXxjpovUd+PtDDteoGC9JDPewj6cuhSMi862MYTa3MaScJ0izmkNM//omhjJ49AgoFggTaCwrLcFWaH1xQ9bJMmIwgBBh5m6GIrE+bCL8xtz2pdZhSDbi/i+bCGiBn45krfMd0gJynOc2K+L9FnPi6llZJS8zTtmLMlSWxVGpWyWjLgiFVsj1GchreOXWpWR9mcdV6tGknEB0aumNpCmISS081TvUAxUHQm76y+ALLWjwocdSwjx7l5kv/8z0Re/3qqRStEJstBFeA7Ojro6Ohg//795PN5u/34+vXrFAoFOjs77UJ+s+y/K6FSmqtSI0GrY8PJBKjLB36tEvT5fN5W1q1GFmU9CvCappHNZnnllVfo7u7m+PHjDb07We09/PxPw6/9FsX6u9Mzy1kLoex3oexvqryibtXzFHWibIUWDZGXiKBZYM+kQ7T5UviE6WtSwGt2b0mDpIjSyRx+ckihmQVzGSIi0ngwp4cXZBs7SJQszouijS1MoEkDKQRSmmmwLjGLz1pepRDEfZ1056bx5CWadRkabVDIg2fRkbKSVjuwVRMRWTPVpLTHxALmgu+AVMSKgzh8mERTlk0SWCmvdkx/E0tKXjk24qFUQVhAWwQWkyahqK7srICELHKe4nd1qGnHR6VjquD3UGy3WATS3/EdvFBDuqsVIxOFSt1cPp+PLVu2sGXLFnuuY2ZmhqmpKbv9WKXDYrFYzTbGtWC95eebhZYgk3qwlohhcXGRgYEBIpEI/f39VQnOrUdkEo/HWVxc5NixYyWeLY3Camkuv5+iSLC0fjubupxXi3OO0dkarL4TzkPPYuZT1P9b3ccyoeHvyCANjWQmTG90CqFJNDSShNguzL5aXWokRIQekUNaxunzIkaMOTzSwEDYKbB2uWC6LiJIEyInfbbsCgLy+DCkICiyxaBLg5Q3Ql+8VFKFAGbeJ1UWoPkwF/oCS54vhb0r8zR4gS6z06skElHnY8FxHlX0oux+C5TWWDTM4r8jrSYFRMMwm4B4vkggSn/TuU8NO1NXAsvkkSjFUtc8cP/1r2ffP1fXLtyqxW1Yfc7EaWO8Z88edF23249v375NJpOho6PDjloa7d2yHJm06vlcDs8FmUgpq27/e/LkCdeuXWPfvn0cOHCg6g9MFeCb8aUxDIObN2/y7NkzwuEwe/bsaej2FVZLcwHFCAKKCsCKKKwCsA2V3lLRiRIfLlB6Zal2IUmxbiKAtBdNAzQDzQM53UdIy4LQyckgOgIvOh4kWRkEYRAiiyE0DDQSROkU86a8ijTIEKRHTBPElKE30JgTHQTIEpBZEAKJYFaYqS0/xTbggtfPfFuY2KJDjlcAW8y23vLCOVtBPqaEOPCD6AE55VjEpXkeRTtmaittkoW0CEQofc08RXVhrJbfdkpSXvb5bwdjHnJZyOTMSfdyCIqZRWl9JErvsRJywCzmvYTa3MzgIHsKBbQq7spbPc1Vy7F5PB56enro6ekBzLb8mZkZZmdnGRsbw+Px2FFLV1dX3erHbmTSQNST5lIfwmr6O0oW5fHjx5w+fZre3t5ln7vSfhpNJmrKvlAocPToUcbGxhq27XKsFplIKSGsm5V4FYmo+olzpgTsoTm7yuuUUoHSuoKKXlSORb1e99h6WUJAOh8h6jOn0aUQZGSQDrGIlIqHIoRFBiF1POhW+iuOD91MYyGYI8ZWJhEC2xgrLULEynJKCdrYZjzFL3NmZIPACEI2q+FfMGy5EwDRBTzDdFSUxeMXncB08XH7Eu4AMY3td1L8AMzUlrNAbiNqtRini3+TwtrWHPacibDOtRQw75ihlZj9DvOOjwBsJ9+SaMQh8VWiupbF/Mj9FEdbbnzLt3C8iuikldNc5Yt1rQiFQuzcudNuP56fn2dmZoYHDx5UVD+ulVR1XS/pLNuMlr3QImRSD5xkstwdgnPBXqtsS7WkVQvm5+cZGBigs7OTEydOMDc319RU2krtzcqd8VO/muBtH35TMcGuUl5QKjOvIg3L0Ik0Ra8tQdHn3TnQqP7fMQQhsxoiaLXmFsImUQiJjocFESPGPJqQ6FJjUUbpE5N40ZFWdJIiTEwsWCQPeQJk8dEuF5FCYAiNDCGSMkxYpOwFXMdLggjd5PCo9jUBmXYPvlmjOJWuEAXmyx6zbv9FYmkxHV+FmZJlaiUKss0iFMvQShSsCCaPPSmPOoUSOtpg3qEkLK3TrsjDqtUviUaUqYCzm1uRzRzmUGMak1SeDA5yJJvFu0obbatHJo3yTnHaGIO5tqhC/vDwMFLKkkJ+Nc0zlVqD3chkA6Cm05drD47H4wwODtZd0FZflEYV4R8/fsz169c5ePAge/fuXZcp++UiE6U+HAgE+F/+l0sQMiCvlarOq9qJIhJnysuL2YWUMSCtmeTSjklIimzsg6DEplZmNESogJQCiYY0BF5PwXJTNHfgQzcJBNPj3SQPA48wSNBGjHm8wvy7gVk7UeKPHmm2ECdElA7ieNExpIYUgoSIEJFJgkYWTUqkECAgvc1D+JFeSgZhzFV2puzktVtpsMUKj2eBRBmptFm1kBRFeXg1z2JFgTJhpcLUazzW+Z2lmFYTEPCZ9ZJEqpjKUvZmTuEfK9NW0tGlPs48pVGLAUxgpshy1nOufs/3cPqv/oqV0MqSJc2cgA8EAmzbto1t27bZNsYzMzM8ffqU0dFRwuGwHbV0dHRUPEeVjLFcMtkgVCqOOwf+Dh8+XHdBW/kh1Bs5qHTbkydPlqTbmk0mlWoms7OzDAwMlKgPZ/4pT/DN/lKPd3VYTjJRpOAFrS3FnV+bYP+/2QvtorhSgbkyld+6C/N1Rs6L5kkjpYaUgqweJODJW5s3SBEmIOMmEUrBomyjV0wDZk3EQCOLn3bH8mlILwnCtMtFsFqAdTy2wrA5zGgew5zWwb7k49IWXcCIgjaBffsurChE+oFFSnS4RBhkyvyxH5cgIpjF+0WKq7e06iSO2RHnJyI8VlptyrEtgTlrEqNkaERK8HlB88NMrnQ7EUpGU+yMpaVLaT+30i1Y0nqNsk2b+sd/rPCsUrR6AX49iM5pY7xv3z7y+TzxeJyZmRlu3LhBPp+31Y9V+7EQoqJlr5vmWiMaPWuiZFFmZmYaNvAH9U/B53I5hoaGyGazvPzyy0vuPtaDTJzbHx8f5+bNmxw9epRdu3aVPHf+/5+j47stQgFrMbQYQUUbGuCRvO5Mjl9+02Wk3MGD30+x5ycjZseWuhmMYK5KzgF7C0Zew+M1kIbEMDQWjTDtjtv8FGG6RRww7Xql1MhJHwGyeKTEK3QWZRvtYsF0XkRDCNNZsYt4scQjYUG00cYCfvJIVScRHuL+drpyxdyTwEw5YZGJM1NHG2adpLzEF8EcUix7XLRh5o5kWYQSwpyIN5bWVdCATpZGQQL0EKRnIF8o7kt9HGXjL3b6Slq/c5RmLe33qs4RJtEUMBvGuq3X6UB2dpaAQ16oHK2sf7VRx+bz+ejr66Ovr8+2MZ6ZmWFmZoa7d+/i9/vp6upaonq+WWsmrfnp1wjnrEkqleLVV18lnU5z6dKlhhEJ1DcFv7CwwCuvvILX661IJNB8MlGNDspD5tatW5w7d24JkQAEApD56xy0GcqMEaLCXDQjEsIS2g2Sf57js//WXI5SqRSxdp0PfEumWOHtsH6reZUyLpYF845MaBLNo5ue7Y7lLkfAvKF3rNJpwngwzCl4DAxh/str6W0p7/ckYaQVDpgZLEFGhgiQJ0iOEFlCZEj7g+hSILLmTInIm/UJfXtp34HAihy2OP6tfrxmJ1f543iLzy+BB0S380RQrISr+R6BGSYsWD9J8Fh1KydpSSDmYUl0pVJVVndziYeZghI8gCLZYB3KHMXS2Ve+7dvK30EJWrlm0grmWMrGePfu3Zw+fZpv+qZvKmYCMhlu3LjBJz7xCX7u536Oubm5mj1b6sHY2Bg/8iM/wr59+wiFQhw4cICf//mfJ5er0Ca4AloiMqkXKjKZmppiaGiIHTt2VG0YVQvWGpkoF8n9+/ezf//+ZSMx1ebcrJSBqi1dvnyZbDbLpUuXVm1GyPw3c3n53FX4iY9rRHyS//LDkhcsmTBFTl1dXYyNjfHw4UP+5dke/uBrp0hogaLrIph5kzAlrcPSmS4SUBA+hDSsqXUzp5bDjETMyXXBvGynR8xYaSMzYpmXMULimdoSGrAo2+gScwB2x9a86KCTOXviXYA1ZxKmM1V0X7ThBxm3N1tM7wUw013OF/hABilNg6k6UwTTTKtQ9r47gKeYasLlJz9MkQUcm4u0Q2HG8iOxdq8JaNNg2jAJQdU7KnlvOusnap9KEswpEJnCvIfIAnN37lTYkuO4WjzNtdFkUg6njfH09DT79+9nZGSEoaEhvv71r6NpGo8ePeItb3kLb37zm2s2DawFN2/exDAMfvd3f5eDBw9y9epV3vve95JMJvnVX/3VqrfTEmRS70WoaRpPnjxhZmZmVVmUelBrZCKl5NatW4yPj1flIuks8jcjx5vL5YjH43R3d/Pyyy/XNNX7rSdg5BdL37uU0p692bNnD3v27GF+fp7bt2/zJ/+3T/OOf/gXkNBK49/dFI0cvSA8ZXkhBJp1OXgwrMKyh7DQrSK9OR1vSGGpCZtPThHCgynkaN7kC/LCjFN85C2BR/PZi0TpY9JOdUkEiXCASDKDr/xmoRuYs0hD/QCyHZgt6+4Cs+trClMM0vl4ANv2t7w1WGoViEShE1OVURZfI4FoB8zNQl5CQf1Yf3cmTSSmo7DqyBYUx4dU0V6p2ytojseUFVoaMFaYOWnl1uBWJBMndF0nEonwpje9iTe96U1813d9F8ePHycSifDRj36U3/zN3+RrX/ta0/b/1re+lbe+9a32v/fv38/o6Ci//du/XROZtO4ZrhL5fJ5kMkk8Hufll19uGpFAbVPw+Xyey5cvMzExwcsvv1zVnUWjO8acmJqa4t69e/j9fs6ePVu3PIQiErWIqBTdgwcPyOfz9Pf3M/0LVhHBh3k3r3TPJWb+JA+aX0fXtdK0jeP/BaaYowcDTRhoVhdXkqBNBeqZCRmxIwsNac6iEMEn83gpWNGIwQJtSCnQkOb20PEJnWTUj7AK6dKSjEeaBXGp0lBqUfcV01QlqS0NRG+Fx8XSx+332FWBlNS5EGBEQM9DPmsKO2aTkE+bhfeEARlZJINA+bYxy1eV0lspitIq6u/qOFTkkqZILM+++MVljrK101yt3GkGS9NwmUyGkydP8ku/9Et84xvf4IsrnPdmYX5+vsSCoxq0RGSyViwuLnLlyhWEEOzevbvp+v/VprkSiQRXrlwhEolw6dKlqnvcm0EmUkoePHjA7du32bFjB4uLi3XfQTojEtXlpsQpfT4fL730kv2ek//PNJFfC0GHKFaCwc6/eNqyIDUMXSA0A01buqxmCFjZJYmBREqBjtcqyJvPl0KQJWB1dZmUIoAEEfrEpE06ApMYFjH1vhACw1p+s0EvuibQdHNKUqWiRAjbbRFr62qVFpgtwKpdF8zHpR9TAdj5drwgIxTTYM4ByDaQs2atRglGKkteYakBG2U6KEEBHgF6GflGWdqpHMGcP1Htw2WuLTbBFcDhOWkZbmGSzav/7t+xp73dTs84ZUXcyGRtUGnicqFHZwF+vaXy79y5w2/91m/VFJVAi0Qma7kInzx5wquvvsqOHTvo7u5e8wR9LagmzTUxMcErr7zCtm3bOHv2bE3DUs4vZiNgGAZXr17l/v37XLhwge7u7rq2rS58Z0QihGB+fp6vfvWrdHR0VHzPc/972lyhFjFvhzNYRho6BLAiE4E0POgFD+WXg+G4TDUBHiFJizAaOpowqyEakgRteNDR7IhFUsBHBvPLaBfThTlN70PHR4EAefwyj1fTSXX57JkP29hKdVep12P9TWL6kBTM2RGZL/6INhDqfTp+bGLKmvMpMmc+Hx92g4IiGmcnmq/STaKAmH/JQ4Qwudo5a6rqKGmK6TDnp6QCr3SFx9Q4THJoiK1bt7KwsMCVK1f48pe/zI0bN5icnHTJZI1QN6fNmDP50Ic+ZH9Hl/u5efNmyWseP37MW9/6Vt797nfz3ve+t6b9bbrIROlYPX361J7TuH79etNFGGHlyMQpZ//iiy+ydevWmrffyMFFNfWv6zqXLl0iGAwyOTm5ZtJVRKKOTUUkz5494/r16xw4cGDZWR6fDya+N8WWvw2bt7g+IChhm4FudXNJD3g8Bl4tv6QIblS458lLn9WhJe3KiWFVRjRH+ksCGfyEyKBybBJBToTISj9+craci4Yk36bBI4q1EcyXiXZMNUTVZWUdoIhZLb7lBfQAyChLhxbVvMjs0pZg0Y3ZjlwGYQ2KeKKgJ0peQsgL4QIkHWrCVjnKjkTUJx6itJ6i5k+yFDU9nVIrap4S6/FcPs+OHTvYsWPHElfDZDLJ2NgY2WyW7u7ulhIqbIVuruVQTiZKwbgRWZaf+qmf4j3vec+Kz9m/f7/9/0+ePOGNb3wj/f39/Of//J9r3t+mIpNMJlOyQKpOpEYYZFWD5SITJUWyuLjIyy+/XNeF0AgyUXeOsViMF1980b5QV9PmWg7OtJY6Rikl9+7dY2xsjBdffHFVrbNoCMbemmLv58LmXX4EyHvQhR/Dn8PrM+/Au0IL5qyIg0I8LD1mQ3jsRVK1t3qQZAgQIYVa8QWCRTrotqb9pGICaaoKB8gipbCICdAE2ZiHQNzR7SWtBVnJzDvPDZgSKU8prtrWC0UHZjRWfvgRYMGMSkrSYMpZMVP5HPo6oZAsfY2UENJgTl9qQeNs+1X/dhg32lGHU0fSS6nrgIIaE7K3VeZq+Oqrr9LZ2cn8/DxjY2N4vd4SMcRmSrivhlaPTNRNpEIqlWqIn0pvb2/VGoSPHz/mjW98I+fOneMP/uAP1nS+WoJMqrmDWUkWxev1Lhn8aQYqRSbJZJIrV64QDAa5dOkSfn+lZsza9lEPmUxMTDA8PFyxDbkq1eAyOCMSpwrA9evXmZub48KFC1WTZ28bjH1bir2vhrFzWWEv0hAUZI5AoEDEn6KABw3T6V3DwEu+xH/LhFjaxguYAvZm/CEt6ihYl7mZnjIfR8C8jNIp4wj7mYAQ5Dq9BOOln7MA0/SjggcJYUwNLaPC3wSVySEAVtdyKaxai2pUsA23rJyTxw+ZBBiytFHBIyBbNnsSpRiJqHPlw+Q3562X0+tEUDoO5GhgWxFCCHp6euxU6tzcHDMzM9y7d49r167ZEu7rHbWoVvtWLcBXEqFsVGRSLR4/fswb3vAG9uzZw6/+6q8yNTVl/62WDEtLkMlKcBaQjxw5wq5du5ZciOvhNVJpP2quZefOnRw+fLghdz9rnWVRkcK9e/c4efIkW7ZsWfKcWiMTZ8eWIpJsNsvQ0BAAL730Us3Fwd4oPHl9iu0DVsqLAkIzCAay9HZNUcBnraMFiw4gRMqRwjJsAlGRg3OCO02YdodJlvqdx0sQU4bekGYzQJ4AUgoz8pGyWGMIWNtUnVvWRqQPW9d9SYqqC+R0hRbfLoq6Jk6EKc0pKXit3SZLu77Ub38YkouUrPASiGmQKtuWUgBWHVtOwih/nvqbmk9R21V1E+d5rgRnzcQZtRw6dKhEwv3+/fv4fD6bWDo7O5satTjTsq2IcjLJ5XLk8/l1JZN/+Id/4M6dO9y5c4edO3eW/K2Wm8+WJpNCocC1a9eYnZ1dURZlPcnEMAyklNy/f5+7d+82fK5lLZGJruuMjIwwNze3omtkLZGJikacRLK4uMjg4CCxWIwXXnhhzXd7HX6YPZuiayQEOzV80SSRWJICXmtOROBFWHMmBTttZXYUa1brb/HzdtYKipUSUfJ3iceOWDyi+Kyc4SUkzPt3UyHAfH6+XcMXN0oWXqGq22mzZdd5TyM7MGXnKVusg5iDjJmlBESMpZIpmMV7UksfBxAaBCNmdOLMqvmFeWgpiikqVd4pn2MOsrSbK0eR15yDi+q3TmnBvhwrtQY7Jdx1Xbcl3O/evUs6nW5q1LLZyCSRMIti6ymn8p73vGfV2ko1aAkyqXTxJJNJu9W0v79/xTvg9SITJX0wNDTE3NwcL730Eh0dHQ3fRy1kkslkuHLlCh6Ph0uXLq14nqqJTFRaQJ1PRSRTU1OMjIywd+9e9u3bV/cXPuCD5Nk0kdEgOT3CPIK2Ng3Dq+EXWQzAi0EfM4BAx2PJpwgrQjFVhZ2RirmSm8OMgPUX8ydFkCiL5uul+QoBpESYiJ5SJ8j2RdGDVkeUxQ6qdkIn8MxBDKo+IkBaEvyy7NSICJVTXW1UJBP8VI5arOMRwhxSNKxajiGL7cHlu1FeZ85N+azDdtZGNMdzVBRSvvuVqpLVdnMpY6nyqGVmZqYpUctmI5Nk0gxj19ODvlFoCTIpx+TkJMPDw1XLoqwXmRiGweTkJO3t7fT399ddH6mEWshkbm6OgYEBenp6OH78+KrnabVtL1dof/DgAXfv3uWFF15YU5faSkgeyRB54MPjMafdDUNQ0Dz4RIEYccKkyeGzHBdVp5ZBGwlwlOk1lASLWWQXSHsuBWvmREUmwo5MBAYe06lRCKRhdoFpAvSIOQkoivV6ANsZUVorqyiGQ4h2kJMVUl1RkE/KCEjBh6k2XP6aELbkvHWw9ktDPpjXIFMWXihtzWXq/TZB6JSShSq8KxHI8uK7gn+FdtW1Di2WRy2q1qKillgsZpOLUtmtBarA3SqdZeVYzmWxVclvJbQMmai75jt37jA2NsaJEyfYtm1bVa9dj26umZkZHj58SCAQ4Pz58037sKslE2U/fOjQIfbs2VPVl2WlNFelQrtqw56amuLcuXMNj8IUknvy9DwLo/uztAUzRESKCCn8lmBjDj+GOaaIBx0PBaIsOmii2D4cIGuV7aXdIiyQ5B1FeFUPEUiyIoDHMBlBCjCEWU8RXoGhydJ5E4VwsXhuk4zAdEucLEYzan9omD4mynnR+RG0gXCajyiEWLb6LaXZHVdOJoKi26LajbR2nynblFOfy+yEq6jDWYK+F19c9m+NmDNx6lWB2dU0OztrF/L9fr/dHVZt1NLKnVxQOc3VSm3VtaBlyETJs6dSqZrba5sZmTgbALZu3Uo+n2/qxbnaYKRT76tW++Hl0lyVCu35fJ7h4WFyuRwXL16syjGuHkxvNXhbvI2hLokRtL0PMRA2Qeh48JGnk1mzroHP1uNSpBK0+pcEwpEAk0vai9V31UkySPDahXiJ9ILIlNZH7FbgWYqvc0CC6YgorMVcZdoCFaIPsPVPpFFag0FgTstbA/3OvwkBASWU6divIg7nbAkUlf+d3xBP2euMstdUKrgffNe7Kr0DcztNkFMJh8OEw+ElUcudO3fIZDJVRS2tLqVSfnyb1WURWoRMDMPgq1/9KuFwuCb5EQWnBH0j4fRFuXDhAslkksePHzd8P06sFJmoeZZEIsHLL79cc5FOfdmdCq+VCu3JZJLBwUEikQgXLlxYtxmBT8U0Pp0N8795MqR9IXzkEdZIop8cYVJ0EKeNhDXnLpH4rJRWAQ8GfnIlRXBzURR4yu657edoouy5xd/Sj+mISPEJQoAsK0uVjJeEMNWBKSOPMJVv+wXgB1Gh4C4DZgrMEky2dyYlFAzQNMiWXSrLfVIhSt0X1bE5D6lSisyJkz/2Y8v+rdmqwZWiFtUh5oxaVK1FLdCtHpmUG2MlEok1pfNaAS1BJpqmcfr06TWHd82ITNLpNAMDA2iaZk+Qp9PpptdmliMTp7XuWggXKCEQlfIqL7TPzs7aMv6HDh1a94v6rT4/N7O9vKiNo3kMoqQJkSJAljBJQlYNxUBYdZSCNSfio50ZK8UFqiKi4KVgt7iWw0kg5a24zk4xrJkPoVV+rgTTp6Rs26jHy71z1ROctogOCB/o6aWPgzlXEvJB+XiVFQTZoypqF5Wqe84lVmIuBipZXH6eVlqOVdPGei7aKmrZtWtXSdRy+/ZtO2rp6enB4/G09MJcybJ3MxpjQYuQCUB7e/uah/WUD0ij7kJmZ2cZHBykr6+PF154wd5mPeZY1aISmVSy1l3rtgG7vVnVT1SB8tGjR4yOjnL06FF27NhR3xupA37Nw2h2L+f8Y0x6fXTZDcNmlBIgh58sBgU8ePCSx0eaDubJ48O02DKbiFXNJEzKSnYVaykAmtSXj0wCxX87F2aBRSgOPxH7d1mHVknbskap/4mCI4OourWw9qHmWsohBPgd2RtFWirFZZQ9Xg5FHjnH81eqOp7+V/9q2b85r6ONwHJRy8zMDPF4HIDR0dElUUsrQNf1kshf1Uw2I1qGTOqBujjq1eCRUjI+Ps7o6ChHjhxh9+7dJX+v17a3GtRirbuWbYMpj+/1eu1oRErJ6OgoT58+5cyZMzVLTzcLl3N7+f8VpvlvwQUSRMnjo4CPAmkKeAiQJUCGKBl6mcTAQ95KaRnWDL2XAkFSCKTVWFyMWQSSkMyzXGQichVIRP3bgynwKOyOZPNxX+XoR4BpkJWs8HdHOFFeoNfCYCjnRQd0y+63EgH4WRroqC96+Xt01lcqRlSY9ZU3fPSjFfZkQl2vrRIBOKOWp0+fMjY2BsCtW7fI5XJLai0bCV3XS7pC3ZpJA1DPhegkk7WkfwDbynZycnLZAcn1jEycgpbnzp1r6AI/Pj7O1q1biUajFAoFRkZGSKfTvPTSSxv+5SrHjxg9/FCqkzeHXiUmMoStluB2FmgjQYgMATIY+MihZOqF7Wcige3MUsBruyvqVtswQESm0C03Lk1Kq8vLWkxFKYmUBBVW5VqU3fpbzWDFfzv+X3oqEw2SpVVzJyrcv3g0U5OrkgR9pW+AOn5VaJcs9YOvdBsmgPAyQ7D24TtayVsRgUCAI0eO2D7sqkPszp07BIPBkg6x9Y5ayiMTN821wVBCaWttD1YCkoZh0N/fv2zn0nrMs2iaRi6Xq8latxqo1NaxY8eYnJxkbGyMQCCArusEg0HOnTu37r4J1cKLh39Mv46f9F3hgW+CduatRFcADcNqafXgs1uHzel5A9jGFD50dLzmTImVAjOs8n2QNIYwIxZDWHpfUiIkaGm5JDJxwnlHb/+/Yx6kHKKsA6vkOcqwvfw1q9wblZOJIolKKJ8fcS79lbq3PNbj7/rKV+wuxnJRQmi9yMQJZ01C+bBHIhG71hKPx5mZmdmwqKU8m1LuZbKZ8FyQCax9oVeDf5UEJMvRKHn4lVAoFJiYmKCzs7Nma91KKJ9o37FjBzt37mRmZobh4WH8fj+ZTIavfOUr9PT02D9rjfCaiV/PnyWZz/Pjob9hUUSRaGTxESJDkCw+vFY9BQKk2MZTQmSsPi9zWl6z4hIwiJDELwpIrxdDSjMyMcweXYk0W3w92Lfy0hm1GCDU33BEKGUzKSUkZF1aFZfcZdZhqYH0LjXGAsg5JYIdm6m2iVujSBiCIpc5qaJnzx7aLcl55/dL0zT7Z6NrJithpTqqx+Oxr3cVtczMzDA9PV0StXR3dxOLxZoStZTPmaRSKZdMNhprIZNHjx5x48aNqgf/1D6a1QY5NTXF06dPiUQinD17tiGOiGoRcBriPH36lOvXr3Po0CG7DjM/P8/09DRjY2Ncu3aNWCxGb28vPT09LZXDjeDjj9Pv5P/jfYVH/mum5S4FS1lY0MMMATJWgV4jjxfDilTMorxZS/GRYwuT5DUfmjTMCEdIs99WSrxJ3ewSc8yY2FGHtYirWolKiQlYkpIqIZaVvN6XgZCgLydJr5nprpX2qeDU3VJ/L7A0teW3/p61/v97BwfxWjl9pzGalNLOBORyObv21mqEUm0d1Rm17N69m0KhYHeIjY6Oksvl6OzstFNijYpaKk3AVxJp3QxoGTKp9yKsZdbEWY84e/as3QWyGirNaTQCzsHI3t5eO51Q7zbLPdqVgdfDhw85deoUPT099vNjsRixWIyDBw+STqeZmppienqa27dvEw6H6enpobe3l46Ojg3PjedyOd74dS8FeZz/9s038QodD3naWSBNwG4JVoOOXgr2j2altrbyDAONgvDiEWb/l5QSjzSjl+CUYRYfrEKDMKzBQkAmzKhEOKMS9WPd3ldKiwmno6Jz2hBMiRbN3E/Ja1a5GTbKIhNls1sOFYWUPxeKkYmXYuQVBN76p39qEwkUoxEozifpus7ExAR+v98mF2fUstFYa4en1+utGLVMTU1x+/ZtQqGQ7ddST9SynJzKZkTLkEm9qDYyUQ6EhUKh5npEo7rGnDAMg2vXrjE9Pc2FCxeIx+PMzc3Vtc1KE+1qAHN+fp4LFy6sGEqHQiF2795t36GpL5GSnldfsu7u7nVPh6VSKQYGBohGo5w9cZZL6UvcYpw/Df85CaLkCJDHR5AsQTL4yOMjj5ccHnxsYYJuZpFoFPAiUSKSBprQQQi88waePMUpPo9ZPLcJI1UajdiSKmCSiUZJ2suGUwO+nGkyS4kEQOZND5NKRXhdLiWTSqShdr1k247nKoVhpdHVvWsX+97xjgqvsvZjXVd3795lYmKC06dP4/V6l0Qt6kamUq1lPdCIcYFKUYuqtdy8eZN8Pm9HLd3d3YRCoaq3XYlM3DTXBqMaMpmfn2dgYIBYLMa5c+dqrkc0omvMiUrWuvPz83X7tFfyIBkcHETTNC5evFiTQKXX62XLli1s2bIFKSXz8/NMTU1x7949rl69Smdnp50Oa3bBUn1+27Zt4/Dhw3b0dphd/ELq/8Ef+/6KCd8Va1E0U18SSTsLGAjaWcRLwdL60kq6vsyoxUMgnaZtLlucCdGwDaqkAbIAImnWMZyRiZo5IYfZBSYcfGE9TxqY0+5WG1VJIX6ZS1cWLJKpEKh6y4rvalflbSgqYHKmuFQx3tkmHLRe2+b18t1l3uBLjktKbty4YatDOD97FbE406wK6x21NENOxev12i6GymZ3dna2JGpx1lpWeq+VaiZuZFInGiEStxKZKGHEAwcOrFlCXdUcGlGEX85ad61F/uWk4xcXFxkYGKCrq6tkAHMtEELY6bBDhw6RSqWYnp5mamqKW7duEQ6H7S9ZR0dHQ1OBk5OTXL16lYMHDy6Z/1H4gfw7IP8OPhb8j+jaHRaJEmOeLD6CpNDRyFsC7D7yePDitYhEx0tbJkH3fMocFgxbaa2CuaCjhK+emESCM+0lrL/lMXNMXrOuogr2dovxAiX+t/ZMScH6R7nPLmYJx3COpltPNYCU1bblcTyuW4fhXD4F5tyJ85NX5OJ8nmYeOt9nDfotB8MwuHr1KolEggsXLizpfixPhznVqFV6TD1PfaeaRS6GYTRVDkgIQTQaJRqNLolabty4sWLUos6LG5m0GJYjE8MwuHXrFo8ePapZGLGW/dSC1ax1ayWT8i+p+oKqBXjfvn3s3bu34cXRcDhcMR02ODgIYNdZuru76/pCP3z4kDt37nDixAn6+vpWff77Mv8HBga/H/wIurZImrDVrSQJkcZHgSAZPOiESVKQHrbkn4HuwdK5N+skauH3Y9ryzllRQlnaS0jz7zJtRh0lsioqekljGmWlymZTBKb2SZ4lhltIYNGaGyk7fVKCp2B2FDvho8hNzs1YAZPdnKbmJKFYbPcA3zU1teqd9PDwMNlslvPnz68a5TrVI2BpEd95zTYjHbbe2lyVopaZmRkmJyeXRC1KzFadG/V8l0w2GJVk6JUSsZrXaET4WE97cDXWurUORi7nQTI2Nsa9e/c4fvz4unSHlKfD5ubmmJ6e5u7du4yMjNjpsN7e3qpzykohWQ1u1iKBr6HxY5lfREfnfwR/Cp/2mE7m0ZC0sYjAoJ1FPBRoY5G85iPozZBqE3jy4MtLNN1c+EUO83Z/yiySE7IiD+tHgGnlGy/+DcPxN4A4yKyjoO6oqcgCiKAj/eUo6JcPRSoIAamyuRSJKTWvOprVvi0es4vrSo7eORXvEYJ3JSpp4RdRKBQYHBxESsm5c+fWlOpdLmqplA5rRNTSyPpmrXBGLXv27KFQKNgDkypqAfPmsqOjg7a2NhKJxLpa9ipks1kuXrzI0NAQAwMDnD59uuZttAyZNDrNtbi4yJUrV2hra2vIvMZy+6kWtVjrVksmleojhmHYuezz588vu59mQghBZ2cnnZ2ddjpsamrKTodFIpGS7rBKn72u63YqpZ7JfA8evifzUQA+HfwgHm2MAGkEgiQ6QbKkhIHPm0d6BB6p4/UUKPh1tIJBcBK0HDANBC2isHpqhc9a+JMgUpge8QVsIUjA/J85wGc9Xy+rgWTMGgxgj67bg5LPqDjOLiXk8+aP86oWmCZYKumkjkFFJSoNJoGo4/97Dhzg9cPDK57HXC5nO5+eOnWqIXWI9YhaWkk12Ov10tfXR19fH1JKe9ZramqKD37wg/Z34+rVq7z00ktNMd9bDj/zMz/D9u3b7SabtaA1znID4Fzknz17xquvvsqOHTs4c+ZMQ3OmayGTTCbDV7/6VTtCWmmBr7YmU4lIcrkcV65cYXFxkZdeemlDiKQSwuEwe/bs4dy5c3zzN38z+/btI5PJMDAwwBe+8AWuXbvGxMREydzC5cuXyeVyS4q79eCtmd/gTam/xp/7X8lZovUCSYIwHnTSBIkmcyA9RJ4a+BYwjavSmBruAcx8UAhkGFOiPo/pRpXGXNmt5wgvZvEeTDIpmM8XIUw5+jAmUWQwPeKt6rgKSjCsiEgs/REaJFJL/5Q1N2eXXzTrsYC1u4j1N5XS8gNHf/qnVyWSTCbDN77xDYLBIKdPn26a5Iimafh8PgKBAH6/H7/fX9L0UigUyOVyFAqFqm+4WolMnBBCEAwG8Xg8nD17lt///d/np3/6p5mfn+fnf/7n6e7u5h3veAef//znm34sn/rUp/jMZz7Dr/7qr9a1nZaJTOqF1+slk8lw69Yte46imvx6rag1zVWrtW415liVXBGTySQDAwO0tbVx5syZllJGdcLn87F161a2bt2KYRh2d9idO3cYGRmho6ODZDJJR0cHJ0+ebMr7OFF4PxTezwLDjId+FL/IkiZISKTJBHxEUlmMKHhzQDtmJJK3fix5XTFrPT6BmZpypL5UkV2kQD42IxYhrJSVUxxrgaK4ozMqKQBTmASm7lusMMOQkEubqbGQilqE2QywWDBFi1U6KwukML/kqm4SsP7f7/Nx/sEDfKukDtPpNJcvX6azs5Njx46t28JcSam70sDkalFLq5IJlHaadXV18e53v5sPfOADPHnyhMnJST71qU81XXFjYmKC9773vfzVX/1V3TdtLUMmjSgOz8zM4PV612QcVS1qiUzWaq273AW0XDeMCpd37tzJwYMHW24KeTlommanww4fPsyzZ8+4du0afr+fmZkZvva1r9l1lvb29oa/r3ZOcjz9NQDGfT+G8P0DuseDN5Qn7/XQNplDC1q1jhzmrfy49XsRkxjaMMmlYP2WgG6mqIQ0ayHSVKAErOK3ATyiOB2o+nQrKTCWr4M65JPgK+PY2UKx4UxJo2QwIxINs5tLFdwzP/qjBH7oh3g6P0+v379sDSuRSHDlyhW2bNlS0oq93lBkUD4w6RycdD63vC7TqjdW5cZYqZTpkNbW1sa2bds4depUU/cvpeQ973kPP/7jP8758+dtdeW1omXIpB4kEgkePHiAlHLNxlHVoprIpB5r3eW2X6nQDqYC8K1btzh27Bjbt2+v4Z20FiYmJrh+/TqHDx9m165d5PN5pqenmZ6e5sqVK2iaVtId1ugFYlf+P0MeCswxE/g2ovoYuTD4F0HTzeFBkcckjwzFiEVFLQVMQhjHbA1Wxut+EH6wJ+kXgbTZDSYUyTjfiqqMZ1gyKW/kwZiHkN/xXAFzKfAa5qGBSSRJijbyKkvX+zM/w5af/3mSyeSSlu5yhQPVur5r164lHYcbjZVaj8ujlmYLs9aDcqJLJBIIIWoaeqyED33oQ/zKr/zKis+5ceMGn/nMZ1hcXOTDH/5wXftTaCkyUfo+tWBycpLh4WG6urrI5XJNn8heLTJphLVuOZksV2i/desWz5494+zZsxUl8zcDlJTMvXv3ePHFF23i9fl8bNu2jW3btmEYBnNzc/bil81mS7rDGulP7yVGT/YbAOS9MxQ6XyaUfmKmvEKYK7OOGVFMUdQkmcUMAYLYJIKfouvUnPW8RfPfImg91yIZaUm2MG89V7Uoq9RYDrR50KwxdQnoOiymwNAh6DUjkpRhep3ErMPwAtv//b+n7QMfsN+jmubes2cP+Xye2dlZpqenGR4exjAM2tramJ+fZ9++fezfv79h57YZWK6IL6UkkUiQzWZtJe5WknmB5aff6yXun/qpn+I973nPis/Zv38///iP/8grr7yyRC38/PnzfP/3fz9/9Ed/VNN+W4pMaoHSmbp//z4vvviiLe3QbKxkkNUIa91yMnHedSkiyefzjIyMkMlkWtKDpFoYhsHo6KjtIbNSh1tXVxddXV0cPnzY7g579uwZo6OjRKNR+866kekwr+gGbpMLQzaoQ+5fEXr2PxARa24kgrlig7l665jfKJVrWqBYEVcdWxEsJqCY3tLN+or9fCc3Skzz9jxmC5YFPQ35rEkiAS/kCuYQY0CDgABt+xZ6/uff4n3hhRXfo8/nK2npfvjwIbdv3yYQCHDv3j2mp6dthYNGLHTNhiKLRCLByMgIO3fupKOjY0MGJldDJfn5tVqXO6FuslbDb/7mb/KLv/iL9r+fPHnCW97yFv78z/+cixcv1rzfTUkmytBpYWGBl19+mba2Nqanp9fsZ1ILliuQN9Ja19kWWV5oV970wWCQCxcutKRUfDVQw2/KlKva0N6pk7R3715yuZw9LKnSYerL1NXV1bB0mNA8EPwjMnutuzU9j//Zu/A8+ywigxmxSMxC+hzFdJXS9+qlmApTRfosJoEkKU4OqpSYyk/NWa+x7hekbqa6NAOCEchloaBDMAienu3w6S/jWWPjyeTkpD0cunXrVjKZjJ1qvH//vi1+2Ohz22gsLi5y+fLlJSm69R6YXA3lxlipVGpdbwzLlSRUFuXAgQPs3Lmz5u21FJlUk+ZSXUvq7l/1Yq+HcdVy+2mGtW6hULC/BOpCn5ubY3BwkK1bt3L48OGWCddrRTabZWBgAK/XWzch+v3+knRYPB5nenqa0dFRstksXV1d9p11I9NheHxktn2CG3M3mE3NcvZbzhKV1/GN/BSe8CBC6qYXvCpkzFCMYpKYbVY6JnkodUVVf1HtyGDWZlR0kjJrMZ4ISCEovHAS/Qd+CvHWdyo9yjXj8ePHjI6OcvLkSfuuNhgMsnPnTnbu3Gmf26mpKfvcOnXZ6s3zNwqKSHbv3r0kRVfLwGR50b8ZaFZkslFoKTJZDUq5dufOnUsW01ok6OuBMw3VDGtddSGpSVj1Hp88ecKNGzfsAvVmRSKRYGBggM7Ozrq1wsqhaZotVXH48GGSyaTtEXPz5k2i0agdtbS1tdX1pVWRVSaTsfWpJBfIXfrnpU82DIhfw3vz99Fufg7NO40IZ80R9kWzViKVNP0cZttV1I8MtSPDWzAOvY78d/xr2HN0zce7ElTN6vTp08tew85zqyTZp6ammJiYYHR01NZl6+np2TCbgoWFBS5fvmzLB62E1QYm10P1uNV0ufbu3VtzzdqJTUEmUkru37/P3bt3OX78eMWupfWMTLLZLPl8nsHBwYZa6yqflN7eXr7+9a/bXTa5XI7JyUlOnz5dtfdKK2J2dpahoSF27drFgQMHmnoH5pSy2LdvH7lczu5gevDgQV0pm3w+z8DAAEIIzp8/v3pkpWnQ/SKF1/0GvK7ON9ZAKHmf8fFxzp49W7VcTXmqURXx1c2elLLEpmA9Jrnn5+e5cuUK+/fvZ8+ePTW/vpJXSzWtx/Wg1cikXrQUmVRaXAqFAlevXmVubo6XXnpp2Qve4/HYedBm3hVpmkY2m+WVV14hEok0TKrFGXKfOnUKXdftYb5MJoPP5+PZs2cYhtHS+erloNwdjx49yo4dO9Z9/36/n+3bt7N9+/aSlM3NmzfJ5XJ0d3fb5FLe3eJEJpPhypUrhMPhErXnzQbVvv7s2TPOnz9f1yJWXsRfWFiwSfvatWt0dHTY5NKMIr4aDD548GBDovZK6TBFLI2MWnRdL7nWksnkpm2mgRYjk3IoIySv18ulS5dW/JI3w7iqEtLpNNPT0+zbt49Dhw415IvhvAtSF2ehUODBgwcEg0FeeuklO2Wj8tXd3d12ymY9NXxqhRKdHBsbW+LuuFFwpmyOHDlin9snT55w8+ZN2tra7HPrXPzUEF9PTw9Hjx7dtDUrKSXXr19ndna2oXI1YC6wHR0ddHR0cPDgwZIi/r179/D7/TaxNOKmKB6PMzAwwOHDh9dUNF4NldJhjYpa3MhknTAzM8Pg4CDbtm2r6ovbaOOqcqh5iMePHxOJRDh8+HBDtlnJg2RhYYHBwUG6u7ttCYtAIGC3xiaTSSYnJ20P+46ODnvxayVjHVVTmp6e5vz58xuihroaVkqHjY2N4fP57ALzvXv32LNnT8sN8dWC1bxIGg1nEV/X9YoNEopcai3iz87OMjg4yJEjR9Yt2q1lYHK1qKWcTBKJhEsmjYLq5lJ+6MeOHav6bkN9aM1oD3Za6+7fv5/4KuZB1WC5ifaJiQmuXbtm537LFy3n4rd//377zk+1dTbToKoWqOHNbDbLSy+91PRFq1EoT4fNzs4yPj7Oo0ePbLOxJ0+e0NPTs2Kk3IrQdZ2hoSFyuVxVXiSNhsfjKfFVV5P4qoiv1KSrKeLPzMwwNDTE0aNHN0z5YaWByWqilkoui7XYLLQaWopMlEy7sgKNxWI1vb4ZRfhya13l01EPKgk1qnTQ/fv3qzaBgtI7v3KDKiEEPT099PX1rWudJZPJMDg4iM/nq65A3aJQ9bHZ2VlefPFFIpEIU1NTPH78mBs3btDe3m7XWVp9oK9QKDAwMACwZi+SRsJ5U6SK+DMzM0xPT9sy6KqO1dPTU3K8U1NTjIyMcOzYMbZt27ZRb2EJVmo9rjQwWYlMNqKe2Ci0FJk8ePCAZDJp+6HXikaTSSVr3ZUm4KvBctIoKoddjweJ06DKKUGynnUWZRPsTNFtRjhrPWfOnLFbZtva2ti/fz/ZbNZOh92/fx+/32+3xnZ1dbXU+26GF0mj4VSTllIyPz/P9PT0kiK+pmn2YOV6mL6tFdW0HudyOXs9EELYcyabFS1FJnv37mXnzp1r/iI2ctZkOWvdWp0QnahUaFdukIZhcPHixYalTsolSFSRuZl1FqVevGfPHvbt29fSd+orQUrJ6OgoExMTy9Z6AoEAO3bsYMeOHXYtYGpqiuvXr1MoFGzi7unp2dAGCdV9Fo1GOXHiREuR3HIQQhCLxYjFYiVF/EePHrG4uIjP52N2dta+xluRHMvhjFoKhQKjo6N4vV7a29vtNevu3bucP39+Iw+zLrQUmdSzUKvX10smq1nrriUyWa7QnkgkGBwcpL29nePHjzftS1FeZFZfzqmpKe7evUswGKSvr6+uOosaqtzs6sWqQL2wsFC1zIuzFnD06FESiQRTU1OMj49z/fp12tvbS4h7vUhWacWpAdHNSu7BYBCv10sqlbI9bqanp+22blXEb7ToZzMgpeTmzZskk0m7bmUYBn/8x3/MnTt3ak7ttxKErGfkscEwDMP2RV4Lvva1r9l3i2uB01r37NmzFdNNCwsLfP3rX+dbv/Vbq9pmeaFdictNT08zMjJiyz5sZKFc1Vmmp6ftOku1Uu+KfJUhWSNUADYKhUKBoaEh8vk8Z8+ebUhEkc1m7XM7MzNDIBCwz29nZ2fTIoVW8SJpBJ4+fcqNGzc4efJkSWu5s4g/NTXF/Px8VZbQGwXVkj03N8f58+cJBAJIKfn4xz/OBz/4QT7xiU/wpje9aaMPc814rsjk8uXL9Pb2LhEwqwYqHeDxeDh9+vSy6aZkMsmXv/xl3vzmN6+6zUr1EcBWZn3hhRdaqoDorLNMTU2tWmdRtZ54PM6ZM2c2dVujsjxWdYVGWj0r6LpuT4pPT0+j63pJkblR6bBW9iKpFWr259SpU6uqPziL+KpJRl2/3d3dG9p0IKXkxo0bdl1URVB/+Zd/yY//+I/z3//7f+fbv/3bN+z4GoGWIhMpJblcbs2vHxwcpKOjg3379tX0ulqsddPpNF/4whd4y1vesuKXdLlCu5JcP3XqVEuHtOqub2pqisnJSRYXF0vqLH6/n+HhYfL5PGfOnNl0bbJOqHRQR0dHVdbKjYCUksXFRZu4E4mEfX57enrWnA6Lx+MMDg6uWVaklaDEJ1fSDFsOziL+1NSUbQVd7/ldC1Rqa2ZmpoRI/uZv/oYf+ZEf4U//9E95xzvesS7H0kw8V2QyMjJCMBjk0KFDVb+mVmvdXC7HP/7jP/KmN71p2RRQpUK78iDJZrOcPn26ZVRWq4WzzjIzMwOYuexjx47R1dW1ae9+FxYWGBgYsJWYN+p9OM/v7OwsgUDAJu5YLFYVwSmDq/Uc4msWxsfHuX37NmfOnGmI8Vv5+XV233V2djatXqlka5Rnj/re/93f/R0/9EM/xB/+4R/y7ne/uyn7Xm+0VAG+XtRSgF+rta76Upf3iKttViq0p1IpBgcHCYVCXLhwoSkplGZDzbO0t7czPz9PW1sbfr+fkZGRmussrQIlPLlv376qbiSaifJJcZWuGRkZwTCMku6wSumaiYkJrl69yvHjx9m6desGvIPG4eHDh9y9e5ezZ882LHovP7/KXfLGjRt2Eb/RVgVSSm7fvm13BSoi+exnP8t73vMefu/3fu+5IRJoMTKp98vs8XiqmoCvx1rX2TfuRLmTmyq0x+NxhoaG2LZt26YvhKo7X+d0fiVL3c2gG6YW31bsPvN4PPT19dHX17escKKzO6ySF8lmhZLDr0XFuFZ4PB77/DnTucqqIBKJlMjpr+U7q5xgnz59yvnz5239sy984Qt83/d9Hx/72Mf43u/93ka/tQ1FS6W5wOx+WSvu3r1LMpnk5MmTyz7Haa17+vTpNRXlPvOZz/C6173Ons9w1kecWjyqXfbIkSNNEaFbTzx69IjR0dEV73ydX8ypqSkWFhZob2+3245bZSBLpVCcnvObBZlMxj6/8XjcvoE6dOgQu3bt2hRzJMvh/v37PHjwYNlOyvVAPp+3C/gqneuU0692vbh79y6PHj3i/Pnz9nX/pS99iXe+8538+q//Oj/6oz+6qW8sK6HlyERNha4FY2NjdmdRJTTKWvezn/0sFy9epK2trWKhXUrJnTt3ePTo0aZvl3W+l9OnT9eUv1ZtsSpPHQwG6e3tpa+vb0PaNtXdonovrdwAsRrU5zI+Pk5nZycLCwsYhmEvfMulw1oVqr383LlzLSMIahiGXcSfnp4mmUwSi8Xs87tcEV+RolPa/6tf/SrveMc7+KVf+iXe9773PXdEAs8ZmYyPj9v5yUp/a5S17j/90z9x5swZOjo6lhCJ8l9JJpOcPn26Ze7G1wIlcDk/P8+ZM2fqei/l8yyAnWpYjzqLUjCemZnZ9G3MTi+Sc+fOEY1GS9JhqnspFouVdC+1ItSc0qNHj+z30qpQ9hPT09N2k4QiFlXEVxI8TlK8fPky3/md38lHPvIRfuInfuK5JBJ4zsjkyZMnjI+Pc/HiRfsxp7WuU2OpHnzhC1/g+PHjxGKxEiJRAoder5dTp05tqjvDcignScMwVpy7WQvUHd/k5GRV8yz1Qg2jplIpzp492/JT0itBDb7F43HOnj27rBeJWvhUVBgKhUrUpFshHaaiqydPnrQ8kZTDWcSfnp4ml8sRCoVIp9Mlvj1DQ0O8/e1v50Mf+hA/8zM/89wSCbQgmeTz+TVLqkxMTHD37l36+/vtbSlr3ZW+eLVASsmXv/xltm7dyq5du/B4PAghmJ+fZ3BwkN7e3k1tnATmQjQwMLAuboLNrrOoawBYc42sVeD0IqmFFFVUqMgFNn6YT3U6qeiqVSOnaqBI8eHDh4TDYW7cuMFv/MZvcPHiRT796U/zgQ98gI985CPPNZHAc0Ym09PTXL9+nde//vW2nEQkEmnYRLOqj4yPjzM2Noau6/bk8qNHjzh48CC7d+/e1BeNIsUtW7Zw5MiRdX8vjayzZDIZBgYGCAaDtqbTZoXTi6QeqRc1zKfSjclkks7OTru1ez1sY52zF+fOndvUVrVgNqfcunXLbmWenp7m93//9/mLv/gLxsbGiEajvP3tb+c7vuM7eNe73rWp14eV8FyRiZr+PXHiBENDQ+zevbth1rrlhXYwB95u3brF3NwcQgj7bq+vr69lW2JXwuTkJFevXuXAgQMtQYr11FmSySRXrlyhq6trU0vhQ6kXSaOjq3Q6XdIdpszVenp6iMViDb8G1DS4ct/cbMO75VBt2c7hytu3b/O2t72Nf/kv/yW/+Iu/yFe/+lU++clPMjY2xsc//vENPuLmoeXIpFAorFn5d2FhgVdffRUhBMePH2/Y/IBTrFHNj+i6bou2nT59Gk3TbOmRhYUFOjo67FTNZrjzUu2yx48fb0mfiEp1lq6uLvr6+pa4Hs7NzTE4OMjOnTs5cODAhpNiPVCaYX6/v+leJJXI2zmMWm9079SnOnfu3KYnEiVA6ZR7uX//Pm9961v5ru/6Lv7jf/yPm/omplY8N2RiGAZDQ0NMTEzw8ssvN6TtU020l0ujZLNZ2w3u1KlTS4rT2WzWXvRmZ2eJRCL2EFqrOfKp3PWTJ082TbvscnWW3t5evF4vt2/ftlOOmxkb6UXiTIdNTU2RSqXo7Oy0I8NaicCpmHvu3LlN3QQB8OzZM65fv14iQPnw4UPe8pa38Pa3v52PfexjrykigeeETJS1bqFQYHFxkTe/+c11f5DLTbQvLi4yODhILBbjhRdeWPVOUQ1Bqbs9n89nE0sz0gi1QNd1rl69yuLiYsMaFDYCqs4yPj5OIpHA7/ezbds2W9eqlci7WrSaF0kqlbKv43g8XpPUu2oxV9fZZicSpZ7g7Np68uQJb3nLW3jjG9/I7/7u727q+txa0XJkout6VZIoCk5r3WPHjvFP//RPfOu3fmtdeeVyDxJFTFNTU1y9enXNToKqnVBFLYBdY1lvx7hcLlfS5bQZazwKUkoePHjA/fv3OX78OGDWfzZinqURSCQSXL58ecPFJ5eDknp3euCoOkt5OszZgXbu3LlNrS4N5nU1MjJSIl3z7Nkz3va2t3Hx4kX+4A/+YFNcY83ApiaTcmtdgL//+7/nDW94w5rvflREout6yUS7Ep974YUXGiKkJ6Vkbm7OJpZcLkd3d7ddA2hmu6a6621ra+PEiROb+uJ3DvCdOXOmRIZD1VlULWulOkurYH5+noGBgU3jReI8x1NTU6TTaVs0sbu7m9u3b5NKpTh37tymvmEB82ZyeHiYF198kb6+PsAkl7e//e2cPHmSP/mTP9mUIq6NwqYkk5WsdT/zmc/Q39+/pgGo5TxIbt68ydTUFKdPn26K+JyUkkQiYRNLIpGgs7PTLuA3Mi2gitPbt29vWKfbRsE5ob9amm6lOktfX19LzDk8D14kyvlwcnKSubk5NE1j586dbN26lfb29k17vc3MzDA0NFTSoDIzM8O3f/u3c+jQIT7+8Y9v6hmmRqDlyGQ1t8XVrHU/97nPcf78+ZoX/eU8SIaHh8nlcpw5c2bdcr3pdJrJyUkmJyeZn59v2KI3MTFhe7fUKymz0VDKz+qzqTXKWG6eZaPqLFNTU4yMjDwXXiS6rjM8PEw2m2Xnzp3E43Gmp6fRNG3TWhUMDg5y7Ngx2xk1Ho/zL/7Fv2DHjh385V/+5aaPuhqBTUUm1Vjrfv7zn+fkyZNVy6aUe5CoQnsymWRwcJBIJMKJEyc2LHzN5XJ2msYpi9HX11f1nZ4zTXfixAk7RN+syOVyDAwM2LI19X42yj9ko+osz54949q1a5w4caIl27JrgRquLBQKnDlzxr5bd1oVTE9Pk8lkSrrDWrUoH4/HGRgY4OjRo/aowcLCAt/5nd9JV1cXf/VXf9Wyx77e2DRkUq217pe+9CWOHDlSlbT4coV2ZZq0Y8eOlkoFqTkAtegpX4a+vj46OzsrnhMpJaOjo0xMTDQtTbeeSKfTJfWeRrdfqlpWeZ1FLXqNrrOo6emTJ0/anUGbFbqu23puZ86cWZHknSnH+fl5otGoHbW0Sjpsbm6OK1eulESLiUSCd7zjHYRCIf72b/9208/KNBKbgkxqsdZ95ZVX2Ldv36pF8kqFdij6dhw9erSl0w2GYRCPx+10mGEY9oLX09Nju04qgcMzZ85s+gt/cXGRK1eurJvUy0p1FqUbVs8xKCOoWqX9WxFqSl8IwenTp2uKFp3t8zMzM2iaVtIdthHpsPn5ea5cucLBgwftlHAymeSd73wnQgg++clPbiphyvVAy5GJ0wfeaa176tSpqqKNr33ta+zYsWNFIljOg0QN79WSJmsFKPlxRSwqhZBMJvH7/Zw9e3bTFwdVtLh371727t27IXeujaqzqAaS8fFx28pgM0MRiaZpnD59uq7F35kOcyodNNpSdyUoIlGyQmBGxN/93d9NJpPhU5/61IaZd7UyWpZMnNa6Z8+erfou4PLly/T29i47/Vyp0F4oFEru4Dfr8J6CmodR7y0Wi9mdYZsxOlFDYq0ULao6i1r0oLo6SyUvks2MfD5fUr9qZBShIkMVtah0mDrPbW1tDb+pWFxc5Bvf+EZJR102m+V7v/d7mZ2d5TOf+cymUInYCLQkmahc5VqsdQcHB+no6GDfvn1Ltlup0J5OpxkcHMTv93Py5MlNfwev2kt37drFgQMH7LvpyclJ4vE40WjUJpZWk3aphM1gseuss0xNTZHJZCrWWar1ItksyOfztm7Yeqgy53I52z9kenoar9dr11kaMfS7uLjI5cuX7aFktc8f+IEf4PHjx3z2s5/dVBmL9UbLkUk2m+Vzn/vcmq11R0ZGCAaDHDp0yH6svND+f7V33nFRXvkafygqRVCkiZViQVHaoFiSiNGsqNS4Ka666m68G4mabHJjNMa4uTGJfvTeeKOx7NUb3WRjYqgaRUEFIjGJ0kWKFBFhlAFkkD7tvX+459wZFKTMzPvOcL7/ZST6G2DO855fe4iQSKVS5ObmwsnJqV82vkKBdAV15Tkvl8vpgVdXV4chQ4bQ1S582Oh2B0kFVVZWws/Pz2CeBruqszg4OKChoQHt7e1GsZuKLKAk6/31/dkhNUPyu9zfRonm5mZkZGRg3LhxdABaLpdj7dq1KC0txeXLlw2+QULXCE5MgEdpjb4eHgUFBTA1NYWnpyeArgvtZFEbKbAJ6SDtLRzHoaKiArdv3+5xV1DnNA1ZiUHSNHwKK9kuW1dX16sUpxAhSz/Lysogl8thaWlJb4aGujdMJpMhMzOTmqfx/RD2JAG3sbGhv89Pu4G3tLQgIyMDo0ePxoQJEwA8qgOtW7cON27cQEpKisG3bOsDQYpJf6x7i4uLoVAo4OXl1WWhnTzxTp8+3eCfNtQn9DuvE+nN36HeDiuXy+Hg4EDXjuhzxoYsn2xpaTGKpYDqTo/e3t4aq0cAw9sb1tHRgczMTF42GfcUkg4j3WGDBg2i6TDi1U5obW1FRkYGXFxcMGHCBGovERUVhd9++w2pqalas7IwdoxOTMrKytDS0oJp06Y9VmhXKpV0/Yafn59BP/ECoI0DbW1tWmv95TgOTU1NdLVLS0sL3WelizkLdcjBy3GcxsCbodKdF0lP6yxCor29HZmZmRg2bBimTp0qSCHpjHo6rLa2FnK5nH6fhw4diry8PDg5OdGFmiqVCps2bUJaWhpSUlIM3sZAnxidmNy+fRsNDQ2YPn06gP+vj5A19aampvDx8TH49Qft7e3IycnBoEGDdNo40NraSoWFrHYhdRZtFpCNyWIX6J0XCcdxGt9nbc+zaIP29nZkZGQIZiV+XyA78Orq6lBTU4OmpiYMHjwYtra2kMlkEIlE2Lx5M86fP4+UlJTHmnj4YteuXdi6dSvefPNN7Nu3j+9wukSQKy5JOqq3cBwHc3NzSKVSVFRUUDMq4kFCPgiG8ETVHc3NzcjOztbL+7GysqKzHeqdYaWlpbCysqLC0p82TWOy2AV670ViYmICa2truLm5wc3NDR0dHXRZYnl5OW2U4KvO0tbWhszMTPrzMUQhAR59n21sbDBo0CBUV1fDxcUFdnZ2OHv2LLZu3Qpra2t0dHTgiy++EExq6/r16zhy5Ai8vb35DuWpCPJm0hcfeFIfUSgUdHjvwYMHGDRoEGQyGcaMGYNJkyYZ/EFFhvdI1wlfH2yFQkEPPGL6RVa7DB8+vMffZ7JynRQ/DfWgImjbi+RJ8yyknqWPOktraysyMzPh4OAAT09Pg//5dHR0ICMjg5rbkdTW9u3bce7cOYhEIqSnp6OhoQGvvPIKjh49ylusZMbu4MGD2LlzJ3x9fQV9MzEKMemq0H779m2Ul5fD1taWOvAJtRW2J4jFYhQWFmLKlCmCeXICHuWl1U2/OI7r0YFXV1eHvLw8o7DYBXTvRaLvOgspTjs7OwvSpKu3kOYBW1tbeHl50XPi008/xdGjR3H58mXauJOXl4eysjK8+OKLvMW7evVqjBgxAp9//jmCgoIELyaCTXP1lK48SAoLC1FfX4+ZM2fC1tZWYzNsdnY2zMzMNOxzhXxjIcJ4584d+Pr6Us9poUBWizs4OFDvcIlEglu3bqGjo4N20jg6OtLazr1791BQUAAvLy+tmI3xDbkxqq/g0DYmJiaws7ODnZ0dJk2ahJaWFkgkEojFYhQVFWm1ztLS0kJvWEJadtpXSDOEjY2NhpDs3bsXR44cwaVLl6hLp4mJCXx8fODj48NbvN999x2ysrJw/fp13mLoLYK8mfTEB76riXaZTIa8vDwoFAr4+vo+sbWUdHjU1NTQJ2mSouF7xqIz6sLo5+cHGxsbvkPqMaT/n6QdiemXmZkZ6uvrBSmMfUEIXiTqdZYHDx5o1FmGDRvWq99pkqobPXo0PDw8DF5I5HI5MjIyqJ2EqakpOI7DF198gT179iA5ORkikYjvMCl3795FQEAAkpOTaa3EEG4mBikmZBCRpMLUPUiys7N7ZUerbp9LZiyIsJDtu3yhUCiQm5urd3MuXdHW1oabN29CKpUCAGxsbOiBJ4SOpb4gRC+S/tRZyEoRQ7ENfhpyuRyZmZkak/ocx+HQoUPYuXMnLly4gMDAQL7D1CA+Ph6RkZEaPyelUgkTExOYmpqio6NDkN2OghST7qx7u/Igqa+vR15eHsaMGdPnQu6Ttu/a29vD2dlZ577snSGtskOGDIG3t7fBe0urVCoUFBRAKpXSGRLyJF1fXw8LCwuNJ2lDOMQMwYtEPe34tDoLERL1lSKGjPruMB8fHyokx44dw/bt23H27Fk888wzfIf5GE1NTbhz547Ga2vXroWnpyfee+89TJs2jafIusegxORJ9RHg0bXw1q1bWi1MkxRNTU0NJBKJxvCek5OTTudUmpqaqBGYp6enoNJufeFpFrvq9aza2lqYmppSYRkxYoQg3z9ZX2NoXiRk7YhEItGYZ7G0tERBQQHc3d3h6urKd5j9RqFQICsrC+bm5vD19aVC8vXXX+Pdd9/FmTNnEBQUxHeYPcYQ0lwG87jbVaGdrPP29/fX6ofaxMQEQ4cOxdChQ+Hh4UGHykixk6x1d3Jy0mr6qa6uDjdu3ODVt0ObEItdMzMzBAQEPPGGpd4MoT6xXFBQAKVSqZGi4fuGxnEcysrKUFVVBZFIZHC+FtbW1rC2tqZzQ3V1dRCLxZBKpRg0aBA6OjrQ0NDQ6zqLkFAqlfR3Tv1GcvLkSfz7v/874uPjDUpIDAVB3kzU3RZJof1JHiR5eXlob2+Hr6+vXtd5t7e301SYVCqFjY0NnJ2d+z0VXl1djaKiIkydOhUuLi5ajJgfiMXu0KFD+7QQkKQdyZN0W1sbTdHo+nbYVTzFxcWQSCQGv4CSQOyw3dzcYGVl9VidhewN41vEewoREgDw8/OjtYXo6GhERUXh1KlTWLJkCZ8hGi2CFpOuCu1tbW109cb06dN53eEkk8lQW1uLmpoaPHjwANbW1vQpu6d+IeRplzhKGoNnAknVkfX+2rhhdU7RDBs2jH6vdW36RbrqGhoaIBKJDNJkrDMNDQ3Izs7GxIkTqTUt0Ls6i5DoyoM+ISEBr732Gk6ePImwsDCeozReBCsmMpnsiYV2qVSKnJwcOmEspKs48bImU+GkqOzk5ARbW9snHqikMN3Q0GAUyyeB/zfoIiZDukjVkdXuxEK3LyLeU1QqFW7cuGE0m4yBR3MxOTk5PWpn7qrOIqQuPJVKhZycHCgUCvj7+1MhOXv2LNasWYMTJ07g97//Pc9RGjeCFJOamhpYWFjA1NRUo9BOBt0mTZqk8SQlRJRKpYawmJubawxJmpiYQC6XIzc3FwqF4omFaUNEIpEgPz8fkyZNeqJBly4gIk6MkgYNGvTY97qvKJVK5ObmQi6Xw8/Pz+AXhAKPOh9zc3Ph6enZ64YVUmch692HDBlC04581VlUKhVtoff396eZiuTkZKxYsQL/8z//g+XLl+s9roGGIMXkD3/4Ay5evIilS5ciMjISc+fOxdatW2Fvb4+oqCiDG3Qj60bIkKSJiQlGjBhBbXS17Z3NF6RVdtq0aXBycuIlBqVSqbHaBQA97Hpr7aruRaKeNjFkyIDllClT+l2X62qeRZ91FnJrbGtrg0gkokKSmpqKl19+GQcPHsSqVasEcXsydgQpJgqFAqmpqYiOjkZ8fDwUCgXMzMzw/vvvY9WqVQadZlCpVBCLxSguLgbwKH2nPn1viKKibjgmpFbZJw2k2tvb04HU7mptZP0GmfMxxJ9LZ2pra5GXl6eTAUtSZyHpMH3UWVQqFTVSE4lE9NaYnp6OZcuW4fPPP8ef//xnJiR6QpBiQhCLxQgLC4NcLsesWbNw7tw5PHz4EIsXL0ZERAQWLlyo1y4ubUCeDN3d3TFu3DiNIUmZTMabw2Ff4TiOOj0KucOJeFmQ73VLSwvs7OzoPIv6A0pvvEgMhZqaGuTn5+ttUl/dRrexsVHr2w44jkN+fj6ampoQEBBAheTXX39FZGQkPv30U0RFRTEh0SOCFROO4+Dv7w9fX18cPnwYQ4YMgUqlwq+//oqYmBjExcVBIpFg0aJFiIiIwKJFiwR7kBHu3r2LkpISeHl5PfaBVj/sampq0NraSp+iHR0dBZmrJxa7ZFW2IXU4tbW1UWEhpl+Ojo6wsbFBYWEh7O3tDdq7Qx2y8sXb2xuOjo56//dJx2PnOgvxZ+lLyzjZphAQEEBvPZmZmQgNDcXf/vY3vPnmm0bxszMkBCsmwKPDd8yYMV12QWVlZSE6OhqxsbGoqqrCwoULER4ejiVLlnTZPcUHHMehpKQEYrEYvr6+GD58+FP/H/UFiU1NTfQp2snJSRCFetI8oFKp4OvrK0ix6ynksLt37x4aGhowaNAgjB49utsuPEPh3r17KCwsFMzKl/7WWTiOQ2FhIR48eICAgAB6o8zNzcXSpUuxZcsWvPvuuwb9MzNUBC0mPYUU4YiwlJaWYsGCBQgLC0NISAjs7Ox4++UivvMPHz6En58frK2te/13POkpmgxJ8nEb6OjooPUEY2keIF4kY8aMwdChQ2lnGJnOd3R0hJ2dnUGlvMi2Bh8fH0E2rfS2zkJSqvX19RpCkp+fjyVLluCtt97Ctm3bmJDwhFGIiTrkySU6OhpxcXG4efMmnnvuOURERCA0NBQODg56+2WTyWTIzc0Fx3Fae3on1rk1NTW0G0x9vkLXEItdY7FABrr2IiGrXYiQq1QqetDxvVH6aVRXV6O4uBi+vr4GMwTbXZ3FysoKJSUlkEgkCAgIoA9RhYWFWLJkCf7t3/4N//Ef/8GEhEeMTkzU4TgOpaWlVFiys7MxZ84cREREICwsDCNHjtTZL19rayuys7NpEVcXB49cLqdPdfX19bC0tNSKJ3tXGJvFLtBzL5KuNkqTZgkhpflIbc7Pz08wnXW9pXOdhezXmjJlCu3EKykpQXBwMP74xz/is88+4+3B5rPPPkNsbCyKiopgaWmJOXPmYPfu3Zg8eTIv8fCFUYuJOhzH4c6dO4iJiUFsbCx+++03BAYGIjw8HOHh4V3WZvoCOXRdXFz0Znfa2ZNd2xbFZNDNw8MD48eP11LU/NIfL5Lm5mYq5E1NTXTxJ9nAyxeVlZUoKyuDn59fj2pzQofjONy6dQtisRgjRoxAaWkpNmzYgJkzZ6K4uBghISE4cOAArzfk4OBgvPrqq5gxYwYUCgXef/995Ofno6CgoE9pbUNlwIiJOhzHobq6GrGxsYiJicHVq1fh5+eHiIgIhIeH92tbL5kA59PXXH1wTyKR0JXuTk5Ofcr7k80DxrKAEtCuF0l7ezsVFvXUo6Ojo9ZXu3THnTt3UF5eDn9/fwwbNkwv/6auIRuaAwICYG1tDYVCgZiYGBw4cAC3b99Ga2srnn/+eYSHh2PFihWC6Oisra2Fk5MT0tLS8Nxzz/Edjt4YkGKiDsdxqKmpQVxcHGJiYpCWloZp06YhPDwcERERvfK/rqysRGlpKa8T4J3pnPfvrUXxnTt3UFZWJtgibl/QpRcJST2SAj6xz9XWDbErbt++jYqKCqMSEjIIGxAQQEVCLBbjd7/7HRYsWIAjR46gtLQUCQkJOHfuHE6fPi0IW+vS0lJMnDgRN27cEKyRlS4Y8GKiDsdxqK+vR0JCAqKjo3H58mVMmjQJYWFhiIyM7HLugFzF7927Bz8/P8F+mJ80Ee7g4ABnZ+fH2jJJvam6ulrQ76k3qHuR+Pv769yLpHMbrImJicZqF22lZsihKxKJBHGYaoOKigpUVFRovKf79+8jODgYs2fPxv/+7/8KsgFCpVIhLCwMUqkU6enpfIejV5iYdAE5eE+fPo3Y2FgkJSVh3LhxCA8PR2RkJPXnaG5uxqVLl+Dg4AA/Pz+DmcjnOA5NTU10SFK9oGxvb4+SkhI0NDTA39/fKPK+fHuRqFQqSKVSmg4jQt6fbQdkjc3du3eNSkhIuk7dfEwikWDJkiXw8fHB119/LdjtEOvXr0diYiLS09P1tuhUKDAx6SEPHz7Ejz/+iNjYWJw/fx5OTk4IDg7G5cuX4eTkhDNnzvDqq9IfiEUxEZbm5maYmZnB3d0do0aNElSnUl8QmheJupDX1tZqWEL3dI8VuTmKxWKIRCJB1Aq0wd27d1FaWqqRrquvr8fSpUsxceJEfPfdd4L9nG3YsAEJCQn46aef4Obmxnc4eoeJSR9oaWnBsWPHsG3bNgwbNgyDBg1CSEgIwsPDERgYKMjrd0+QyWTIyckBx3FwcHBAfX09NaEiQ5KGtmTTELxIiCU0ma+wtbWldZYn3XTJRoX79+9DJBIZxc0ReNQUQVqaSSdaQ0MDQkNDMWbMGERHRwvywYbjOGzcuBFxcXFITU3FxIkT+Q6JF5iY9IGff/4ZYWFheO211/Dhhx/i4sWLiImJwY8//ggLCwuEhYUhIiICc+bMEex1vDPEvdLa2lpjLqZzpxIZJHN2dhZ8Ss8QvUjIUKpEIqGmX6TOQtJYt27dQk1NDQICAgT/M+gpZMhSfTamsbER4eHhsLe3R3x8vCDWCD2JqKgofPvtt0hISNCYLRk2bBjvt2B9wsSkD3z77bd4+PAhXn/9dY3XZTIZFZaEhASYmpoiJCQEkZGReO655wR7PW9ubkZWVhYcHR3h6enZZccRGSQjQ5K6dDfsL8SLxMTEBL6+vgYj6up0nh0aNGgQzM3N0dHRgZkzZxqNkJC1L+rT+k1NTYiMjISVlRXOnDkj6EO5q9/7r776CmvWrNFvMDzCxERHyOVypKWlUU8WuVyOpUuXIiIiAvPnzxfMUxax2B03bhzc3d17LAidLYqHDBlCU2F8L0c0Ri8ScsuSSqW0C4wU8A3VBwd41KFVUFCg0Xre0tKCZcuWwcTEBOfOnTOaNJ6xw8REDyiVSly5coWuzm9ubtbwZOHrqUtbFrukBZbk/clyRDIkqU9hMUYvErJyvaGhga5cb2xspC3eHR0ddPOuo6OjYG/AnSEeKz4+PnRwtK2tDS+99BJkMhkSExONpkNtIMDERM8olUoNT5a6ujosWrQI4eHhevVk0ZXFLrEoJgcdACos2pyteBKtra3IzMw0Ki8SlUqFgoICNDY2QiQSPdZAoN6JJ5FI0NzcDDs7O1pnEWLDAfDoQebGjRsaHivt7e1Yvnw5pFIpkpKSjGK2aSDBxIRHVCoVMjMz6SLKqqoqvPDCCwgPD8fixYt18mHiOA63b9/GnTt3dG6xS2YryEGnVCp1ZlHc3NyMzMxMuLi49GprgZAhtrTNzc0QiUQ9So22tbXRupZUKtW6w6E2IPbB06dPpw8yMpkMK1euxL1795CcnGwwm44Z/w8TE4GgUqmQl5dHPVnKy8vpzqGQkBAMHz5cK1anxcXFqKmpgb+/v15TCOpbd2tqamhqhhx0/SmQk8Wa48aNg5ubmyAOzP5CWppbW1s1/M17g0wmo3Wt+vp6WFhY0O+3Lle7dEddXR1yc3M1lmvK5XKsWbMG5eXldACYYXgwMREgJEdObiwFBQWYN28eIiIiEBIS0idPFvKU29TUxLvF7pP82PtqUfzgwQPk5OTwulhT25AHi/b2dvj7+2ulpblzXau/yz/7Atk8PWXKFLowVKFQYN26dcjPz0dKSopgdtoxeg8TE4FDBtSIsOTk5GDu3LnUk8XZ2fmpwqJQKJCbmwuFQiHIeYuuLIodHR27zfkTLxJPT0+MGjVKjxHrDqVSiby8PMhkMvj7++ukmE6Wf5J0mFKp1OgM00UbNRF99Z+VUqnE+vXrcf36daSmphrNRuqBChMTA4LjOFRUVFBPlmvXrmHWrFnUk2X06NGPCUtHRweys7MxePBgeHt7C37eguT8a2pqNKbBnZ2dNW5TZC1+X7xIhApp/yWir4+uLJJ+JMLS1tamsdpFGw8eUqkUWVlZGgZkKpUKGzduxJUrV5CSkoKxY8f2+99h8AsTEwOF4zhUVVUhNjYWsbGx+PnnnyESiaiwuLq64ubNm4iJicGyZcsM0mK38zQ48QkhRmfa8CIRCkqlEjk5OVCpVPDz8+NN9Mktsba2lq7SIemwvqRGpVIpsrOzMXHiRNp+rlKp8M477yApKQkpKSlwdXXV8rtg8IEgxKSiogIff/wxLl++jPv372PUqFFYuXIltm3bJriUjBDhOA7379+nniw//fQTJk+ejKqqKgQHB+Po0aMGJySdIT4hFRUVaGlpgYWFBVxcXHRmUaxPFAoF3YnGp5B0hqzSqa2tpatderPxoLGxEVlZWfDw8KD1LJVKha1btyI+Ph6pqanw8PDQx1th6AFBiMn58+fx/fffY/ny5ZgwYQLy8/Oxbt06rFq1Cnv37uU7PIOC4zjExMRg1apV8PT0xM2bNzF58mRq9mWo8xfqXiQ+Pj6QyWSoqamha0ZIKoyvLqW+olAokJ2dDVNTU/j6+gp2kp1sPCCmX4MHD6Zt3k/qNHz48CEyMzPh7u5ObZ5VKhV27NiBkydPIiUlZcB5pBs7ghCTJ7Fnzx4cOnQI5eXlfIdiUMTHx2PFihU4fPgwVq5ciYaGBg1PFldXV+rJYigT4t15kahbFBMDKn13KfUVuVyO7OxsmJubw8fHR7BC0pnO33MAGqZfZHh0/PjxdBU7x3H45JNPcOzYMaSkpGDq1Kl8vgWGDhCsmHzwwQc4f/48MjIy+A7FoCgqKkJFRQWCg4Mf+7PGxkYNT5aRI0fSG4u/v78gD14yAS6VSp/qRdKdRfGIESMEdVjL5XJkZWXRxgghxdYbOrt3ymQy+n2fMmUKBg8eDI7jsGfPHhw4cACXL1+Gt7c332EDAL788kvs2bMH9+/fh4+PD/bv34+ZM2fyHZbBIkgxKS0thUgkwt69e7Fu3Tq+wzFKmpubkZiYiJiYGJw7dw52dnZ0df7MmTMFcbipe5H0dAKcwHEcGhsbUVNT81SLYn1DFlFaWFjA29tbkCLeF5qbm3H9+nXY2NhALpdj7969qK+vh5ubGy5cuIBLly5BJBLxHSYA4Pvvv8cf//hHHD58GIGBgdi3bx9++OEHFBcXs1mXPqJTMdmyZQt2797d7dcUFhbC09OT/nd1dTXmzZuHoKAgHD16VFehMdRobW1FUlIS9WSxsrJCaGgor54s2vQiUXc2JO2v6kOS+lyMKJPJkJmZCSsrK2r9bAy0trYiIyMDLi4umDBhAkxMTFBUVIRdu3bh8uXLkEqlCAgIQGRkJJYtW4YJEybwGm9gYCBmzJiBAwcOAHj04DJ27Fhs3LgRW7Zs4TU2Q0WnYlJbW4v6+vpuv8bd3Z0eFGKxGEFBQZg1axaOHz9uNB80Q6K9vR2XLl1CTEwMTp8+DTMzM+rJ8uyzz+rl4NW1F4n69H1zc3OvLXP7SkdHBzIzM41qozHwaDYoIyMDzs7OdC8ax3E4duwYtm/fjnPnzmHixIk4c+YM4uLiMHHiRHz++ee8xSuTyWBlZYXo6GhERETQ11evXg2pVIqEhATeYjNkBJPmqq6uxvz58yESifDNN98IIs0y0JHL5UhNTUV0dDQSEhIgl8sREhKCiIgIBAUF6eTg1bcXCbHMlUgkOrUobm9vR2ZmJmxtbeHl5WV0QuLo6IjJkydTIfnHP/6B9957D6dPn0ZQUBDfYWogFosxevRoXL16FbNnz6avb968GWlpafjtt994jM5wEYSYVFdXIygoCOPHj8eJEyc0DpCRI0fyGBmDoFAokJ6eTs2+mpubsWTJEkRERGDBggVa2fVFDlwbGxtenty7sih2cnLql0ETeV/Dhw/H1KlTDap1uTva29uRkZEBe3t76tDJcRxOnjyJt956CwkJCViwYAHfYT4GExPdIAgxOX78ONauXfvEPxNAeIxOKJVK/PLLL9STpb6+HsHBwdSTpS8Hr9C8SLRlUdzW1obMzEyMGDFCEO9LWxCBtLOz03hf0dHRiIqKwg8//IDFixfzHOWTYWku3SAIMWEYLiqVChkZGXQRpVgs1vBksbW1ferf0dTUhKysLMF6kSgUCiosvbEoJikgBwcH+uRuDJDaD0nZkfeVkJCA1157DSdPnkRYWBjPUXZPYGAgZs6cif379wN49Hs8btw4bNiwgRXg+wgTE4bWUKlUyM3NpcJSXl6OBQsWIDw8HEuXLn3ipDRZuUEG3IR+4PbUoph0Nzk5OdFagjEgk8mQkZFBU5HkfZ09exZr1qzBP/7xDyxbtoznKJ/O999/j9WrV+PIkSOYOXMm9u3bh1OnTqGoqMhoFofqGyYmnWCDTNqB4zjcvHmTCkthYSGCgoKoJ4u9vT3Onj2LkpISLFu2zCC9SLqyKLa1tUVZWZlgb1p9hbQ1W1tba9S0kpKSsHLlShw9ehSvvvoqz1H2nAMHDtDPuq+vL7744gsEBgbyHZbBwsREDTbIpBs4jsOtW7fo6vzc3FyIRCLk5uZi69ateOeddwz+wOU4Dg0NDaiursb9+/dhYmICZ2dnOiRp6N2JcrkcmZmZsLS01JiPSUlJwSuvvIKDBw9i1apVBv9zZPQdJiZqsEEm3cNxHP77v/8bmzdvho+PD7KzszF79myEh4cjLCzsiZ4shkJTUxMyMzMxZswYODg4UF8WbVoU84H66hcfHx8qJFeuXMHvf/977Nu3D3/6058M9ufG0A5MTP4F6/DQD0ePHsVf//pXxMTE4IUXXsDdu3epJ8vVq1cREBBAPVnGjx9vMAcUEZJx48bB3d2dvq5Ni2I+UCgUyMrKgrm5OXx9famQ/PLLL4iMjMSuXbuwfv16g/k5MXQHE5N/wXrP9cPFixdhaWmJuXPnarzOcRzu3buHuLg4xMbG4qeffoK3tzcVFrKiQ4iQdeuurq50S25X9NWimA+USiWysrIeW4+fkZGBsLAwfPTRR9i0aZNgfy4M/WIcY7gMg2HhwoWPCQkAmJiYYNSoUXjjjTdw8eJFiMVi/OUvf8HVq1cxY8YMzJ49G5999hkKCgoENXvU2NhIfTueJiQAYG1tDTc3NwQGBuKZZ56Bo6Mj7t+/j/T0dFy7dg0VFRVobW3VQ+Tdo1QqkZ2dTVfaECHJyclBeHg4tm3bxoQEjx6CFi5ciEWLFj32ZwcPHsTw4cNRVVXFQ2T6h91M/gVLcwkTUthOSEhAbGwskpOT4ebmRlfn87njiljSqjsJ9pWuLIrJkKQ+UbcQ9vf3p0KSn5+PJUuW4K9//Svef//9AS8khLt372L69OnYvXs3/vKXvwAAbt++jenTp+PQoUNYtWoVzxHqByYmarBBJuHT2NiIM2fOIDY2FhcuXICLiwsVFj8/P70JS0NDA/U2Hzt2rFb/bmJRTKbvLS0tqbDo2qJYpVIhJycHCoUC/v7+tFmgsLAQixcvxuuvv46PPvqICUknTpw4gQ0bNiAvLw+urq5YsGABhg8fjtjYWL5D0xtMTNRgg0yGRXNzM86dO0c9Wezt7akny4wZM3TWjvvgwQPk5ORg0qRJGDNmjE7+DYJCodAYktSlRTEZOpXJZPD396cbom/duoXFixdj9erV+PTTT41mSaW2iYiIQGNjI1588UV8/PHHuHnzJhwdHfkOS28wMekEG2QyTFpbW3HhwgXExMTg7NmzsLa2pp4ss2fP1lo7bn19PXJzc+Hp6YlRo0Zp5e/sKbq0KCZGZG1tbRCJRFRIysvLERwcjJdeegn/+Z//yYSkGyQSCby8vPDgwQPExMRopMsHAkxMGEZHe3s7Ll68SD1ZzM3NERoaisjISDzzzDN99mSpq6tDXl4epkyZAhcXFy1H3TtUKhWkUil1kuyPRbFKpUJ+fj51tCTtynfu3EFwcDBCQkKwf/9+JiQ94IMPPkB8fDzy8/P5DkXvMDFhGDVyuRwpKSnUk0WpVCIkJATh4eG98mSpra1FXl4evLy8BGeLQCyKJRIJampqqEWxk5MTHBwcur2VcRyH/Px8NDU1ISAggApJdXU1Fi1ahIULF+Lw4cNMSHrI3/72N8THxyMnJ4fvUPQOExPGgEGhUODKlSvUk6WlpQVLly5FeHh4t54sEokEN27cwLRp0wRfO+uNRTHZn/bw4UOIRCIqrPfv30dwcDDmzJmDY8eOGfwqGH0ykMWEPW4YAJ999hlmzJhBzZoiIiJQXFzMd1gGh7m5OebPn48vv/wSlZWVOHPmDBwdHfHuu+/Czc0Na9asQVxcHFpaWuj/k5SUhNzcXEyfPl3wQgI8mtextbXFhAkTMGfOHAQGBsLW1haVlZVIS0tDZmYmqqqq0N7ejsLCQjQ2NmoIiUQiwdKlSzFjxgwcPXpUcEJSUVGBP//5z3Bzc4OlpSU8PDywY8cOyGQyvkMb8DAxMQDS0tLwxhtv4Ndff0VycjLkcjl+97vfaRx6jN5hZmaGZ599Fvv27cPt27eRnJyM8ePHY8eOHXB1dcWKFSvw7rvv4tVXX4WFhYXBLvocOnQo3N3dMWvWLMydOxcODg4Qi8W4cuUK7t27h5EjR6KhoQHAo5pQaGgovLy8cPz4cUHuECsqKoJKpcKRI0dw8+ZNfP755zh8+DDef/99vkMb8LA0lwFSW1sLJycnpKWl4bnnnuM7HKOCzFns2LEDiYmJmDBhAiZMmEA9WbTdjqtvOI5DcXExJBIJxowZg7q6OkRERMDZ2Rnm5uYYOXIkEhMTBb8zTJ09e/bg0KFDKC8v5zuUAQ27mRggjY2NAIARI0bwHInxYWpqipycHKSmpuL8+fP44YcfIBKJsH//fri6uuLFF1/EiRMnUFdXJ6i1Lj2B4ziUlJRAIpEgICAA7u7umDlzJtLS0uDs7AypVIr09HT4+/vjww8/RFlZGd8h94jGxkb2WRAA7GZiYKhUKoSFhdEPPkO7KBQKBAcHY/v27Zg3bx59nTzRE0+WvLw8PPvss3R1vpOTk6BvLBzHobS0FGKxGDNmzICVlRWAR9uOIyMjYW1tjdOnT0MulyMxMRExMTFYuXKl4O13S0tLIRKJsHfvXqxbt47vcAY0TEwMjPXr1yMxMRHp6ek6n74eqHAc160wcByH8vJyKiwZGRmYM2cOwsLCEB4ejlGjRglOWMrKylBVVYWAgABYW1sDeLTBeNmyZTA1NaWDnnyxZcsW7N69u9uvKSwshKenJ/3v6upqzJs3D0FBQTh69KiuQ2Q8BSYmBsSGDRuQkJCAn376qUcbahm6h+M4VFZWUk+WX375BTNmzKBrXcaNG8e7sJSXl6OyshIBAQF0aWRbWxteeuklyGQyJCYmwsbGhtcYa2trUV9f3+3XuLu701qOWCxGUFAQZs2ahePHj7M5GAHAxMQA4DgOGzduRFxcHFJTUzFx4kS+Q2I8AY7jIBaLqSfLlStX4O3tjYiICISHh8PDw0PvwlJRUYGKigqIRCIqGO3t7Vi+fDkaGxtx4cIFDBs2TK8x9Zfq6mrMnz8fIpEI33zzjeDalwcqTEwMgKioKHz77bdISEjA5MmT6evDhg3rctCOwS8cx0EikSA+Ph6xsbFISUmBp6cnFRZPT0+dC8udO3dQXl4OkUgEW1tbAI+sFlauXIl79+7h4sWLsLOz02kM2qa6uhpBQUEYP348Tpw4oSEkQttMMNBgYmIAdHXofPXVV1izZo1+g2H0Go7j8ODBA+rJcvHiRbi7u9PV+V5eXlpP01RWVqKsrAz+/v705iGXy7F69Wrcvn0bly9fhr29vVb/TX1w/PhxrF279ol/xo4yfmFiwmDoGalUquHJMnr0aCos6j7rfaWqqgolJSXw8/PD8OHDATzqUnvttddw8+ZNpKSkGOwQJkO4MDFhMHikqamJerIkJibCwcGBbjieMWNGr4WluroaxcXF8Pf3p0KiVCqxfv16ZGRkIDU1laWDGDqBiQmDIRBaW1tx/vx56skydOhQ2hU2e/bspxaaxWIxioqK4OvrS4f4lEolNm3ahPT0dKSkpLB2cobOYGLCYAiQ9vZ2JCcnIzY2FgkJCRg8eDC9scydO/cxT5Z79+6hsLAQPj4+tBaiUqnw9ttvIzk5GampqRg/fjwfb4UxQGDN2Qyts2vXLpiYmOCtt97iOxSDxcLCAqGhofjqq69w//59nDhxAiYmJlizZg08PDwQFRWFpKQkyGQyfPXVV9i2bRu8vb01hGTr1q04f/48Ll68yISEoXOYmDC0yvXr13HkyBF4e3vzHYrRMHjwYCxatAh///vfIRaLcerUKVhZWSEqKgru7u5455134ObmRgcSVSoVPvzwQ9o55uHhwfM7YAwEWJqLoTWam5vh7++PgwcPYufOnfD19cW+ffv4DstoOX36NF555RW88MILyMnJQWNjIxYtWgSFQoGff/4ZKSkpmDp1Kt9hMgYI7GbC0BpvvPEGli5dioULF/IditGTmpqKP/zhD/j6669x+vRpVFRU4MKFC3B0dMS5c+cQFxfHhIShV4TnfsMwSL777jtkZWXh+vXrfIcyIJg6dSpOnjyJ0NBQAI9W58+aNQuzZs3C/v372a4qht5hYsLoN3fv3sWbb76J5ORkWFhY8B3OgMDJyYkKSWeYkDD4gNVMGP0mPj4ekZGRGnMQSqUSJiYmMDU1RUdHB1vGx2AYOUxMGP2mqakJd+7c0Xht7dq18PT0xHvvvYdp06bxFBmDwdAXLM3F6Dc2NjaPCYa1tTXs7e2ZkDAYAwSWXGUwGAxGv2FpLgaDoVM6OjoQGBiI3NxcZGdnw9fXl++QGDqA3UwYDIZO2bx5M0aNGsV3GAwdw8TEwFEqlZgzZw5efPFFjdcbGxsxduxYbNu2jafIGAwgMTERSUlJ2Lt3L9+hMHQMExMDx8zMDMePH8f58+fxz3/+k76+ceNGjBgxAjt27OAxOmFRXV2NlStXwt7eHpaWlpg+fToyMjL4Dstoqampwbp16/D111/DysqK73AYOoZ1cxkBkyZNwq5du7Bx40Y8//zzuHbtGr777jtcv34dgwcP5js8QdDQ0IC5c+di/vz5SExMhKOjI0pKSgzOA91Q4DgOa9asweuvv46AgABUVFTwHRJDx7ACvJHAcRyef/55mJmZ4caNG9i4cSM++OADvsMSDFu2bMHPP/+MK1eu8B2KQbNlyxbs3r27268pLCxEUlISTp06hbS0NJiZmaGiogJubm6sAG/EMDExIoqKijBlyhRMnz4dWVlZMDdnF0/C1KlTsWjRIlRVVSEtLQ2jR49GVFQU1q1bx3doBkVtbS3q6+u7/Rp3d3e8/PLLOHPmDExMTOjrSqUSZmZmWLFiBU6cOKHrUBl6homJEbF582Z8+eWXMDU1xY0bN+Dq6sp3SIKB7Ax7++238dJLL+H69et48803cfjwYaxevZrn6IyPyspKPHz4kP63WCzGokWLEB0djcDAQGYfbIQwMTESrl69innz5iEpKQk7d+4EAFy8eFHjyXAgM3jwYAQEBODq1av0tU2bNuH69ev45ZdfeIxsYMDSXMYP6+YyAlpbW7FmzRqsX78e8+fPx7Fjx3Dt2jUcPnyY79AEg4uLy2P+HlOmTEFlZSVPETEYxgUTEyNg69at4DgOu3btAgC4urpi79692Lx5M+ui+Rdz585FcXGxxmu3bt1i3uh6wtXVFRzHsVuJEcPSXAZOWloaFixYgNTUVDzzzDMaf0YsXFm665E3/Zw5c/DRRx/h5ZdfxrVr17Bu3Tr8/e9/x4oVK/gOj8EweJiYMAYMP/74I7Zu3YqSkhK4ubnh7bffZt1cDIaWYGLCYDAYjH7DaiYMBoPB6DdMTBgMBoPRb5iYMBgMBqPfMDFhMASCUqnE9u3b4ebmBktLS3h4eODjjz8GK2syDAG2vInBEAi7d+/GoUOHcOLECXh5eSEjIwNr167FsGHDsGnTJr7DYzC6hXVzMRgCISQkBM7Ozjh27Bh9bdmyZbC0tMQ333zDY2QMxtNhaS4GQyDMmTMHly5dwq1btwAAubm5SE9Px+LFi3mOjMF4OizNxWAIhC1btuDhw4fw9PSEmZkZlEolPvnkEzahzzAImJgwGALh1KlT+Oc//4lvv/0WXl5eyMnJwVtvvYVRo0axNfkMwcNqJgyGQBg7diy2bNmCN954g762c+dOfPPNNygqKuIxMgbj6bCaCYMhEFpbW2FqqvmRNDMzg0ql4ikiBqPnsDQXgyEQQkND8cknn2DcuHHw8vJCdnY2/uu//gt/+tOf+A6NwXgqLM3FYAiEpqYmbN++HXFxcZBIJBg1ahSWL1+ODz/8EIMHD+Y7PAajW5iYMBgMBqPfsJoJg8FgMPoNExMGg8Fg9BsmJgwGg8HoN0xMGAwGg9FvmJgwGAwGo98wMWEwGAxGv2FiwmAwGIx+w8SEwWAwGP2GiQmDwWAw+g0TEwaDwWD0GyYmDAaDweg3/wd/efXozukuEwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "P = 1e12 * sim_data[\"n2f_monitor\"].power.sel(f=freq0).values # angular radiated power\n", "D = 4 * np.pi * np.squeeze(P) / P0 # directivity\n", "\n", "# convert the spherical coordinates representation to cartesian coordinates\n", "phi, theta = np.meshgrid(phi_array, theta_array)\n", "X = D * np.cos(phi) * np.sin(theta)\n", "Y = D * np.sin(phi) * np.sin(theta)\n", "Z = D * np.cos(theta)\n", "\n", "R = np.sqrt(\n", " X**2 + Y**2 + Z**2\n", ") # distance to the center will be used to plot the color on top of the radiation pattern\n", "R = R / np.max(R) # normalize it to 1\n", "\n", "color = plt.cm.jet(R) # define colormap using the distance\n", "\n", "# plotting the radiation pattern in 3d\n", "fig = plt.figure()\n", "ax = fig.add_subplot(1, 1, 1, projection=\"3d\")\n", "ax.set_xlim((-2, 8))\n", "ax.set_ylim((-5, 5))\n", "ax.set_zlim((-5, 5))\n", "ax.set_xlabel(\"X\")\n", "ax.set_ylabel(\"Y\")\n", "ax.set_zlabel(\"Z\")\n", "surf = ax.plot_surface(\n", " X, Y, Z, cstride=1, rstride=1, facecolors=color, antialiased=True, shade=False\n", ")\n" ] }, { "cell_type": "markdown", "id": "62475fa2", "metadata": {}, "source": [ "## Alternative Approach: Extending the Simulation Domain into the Far-Field Zone" ] }, { "cell_type": "markdown", "id": "9e95638d", "metadata": {}, "source": [ "Performing the near field to far field transformation using the [FieldProjectionAngleMonitor](../_autosummary/tidy3d.FieldProjectionAngleMonitor.html) is a great way to reduce the computational cost by limiting the simulation domain only to the vicinity of the antenna. However, there are certain limitations. For example, the transformation assumes a homogenous background medium. In practice, we often encounter inhomogeneous background such as when the antenna is placed on a dielectric substrate. \n", "\n", "Alternative to using the near field to far field transformation to obtain the far-field quantities, we can simply extend the simulation domain sufficiently far into the far-field zone. Here we harness the power of the highly optimized Tidy3D solver such that the simulation is still fast even when the domain size is large.\n", "\n", "Next, we demonstrate this alternative approach and compare the result to the previous simulation to verify the accuracy." ] }, { "cell_type": "code", "execution_count": 10, "id": "89dad19a", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:15:57.056696Z", "iopub.status.busy": "2023-03-27T21:15:57.056549Z", "iopub.status.idle": "2023-03-27T21:15:57.324188Z", "shell.execute_reply": "2023-03-27T21:15:57.323709Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAACwCAYAAACCeiN5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAyg0lEQVR4nO3deXwT5boH8F/2rmlLF9qeslmUKotooQgHBaRXVFxwwV0RtQiCir1HBOWA4DnUFXAD9JwreBEU4R7gHFEEWdxAZFMREAFBoFBouqVNl5lk3vtHTNLQtE0gS5v+vp9PPtCZd2aeyZNpn8y8845KCCFARERERK2eOtQBEBEREZF/sLAjIiIiChMs7IiIiIjCBAs7IiIiojDBwo6IiIgoTLCwIyIiIgoTLOyIiIiIwgQLOyIiIqIwwcKOiIiIKEywsCMi8sHmzZuhUqmwefPmUIdCRNQACzsiIg/mzZuHRYsWhTqMc7J06VLMnTs31GEAABRFwcsvv4wuXbogIiICvXr1wocffuj18uXl5RgzZgySk5MRHR2NIUOGYNeuXR7b/vvf/8bll1+OiIgIdOzYEdOnT4fVavXXrhC1Cio+K5aIqKEePXogKSmpwZk5RVEgSRL0ej3U6pb53fiGG27Azz//jKNHj4Y6FEyZMgUvvvgi8vLy0LdvX6xevRpr1qzBhx9+iLvuuqvJZRVFwZVXXokff/wRTz/9NJKSkjBv3jwcP34cO3fuxIUXXuhs+9lnn2H48OEYPHgw7r77buzZswdvv/02xowZg/nz5wd6N4laDBZ2RNQoi8WC6OjoUIcREo0Vdq1BSynsCgsL0aVLF4wZMwZvvfUWAEAIgUGDBuHIkSM4evQoNBpNo8t//PHHuPPOO7F8+XLcfvvtAIDi4mJcdNFFuO6667B06VJn2+7du0On02HHjh3QarUAgKlTp2LWrFnYt28fsrKyArinRC1Hy/y6SUR+V1hYiIcffhjp6ekwGAzo0qULxo0bB0mSAACLFi2CSqXCl19+icceewwpKSnIyMhwLj9v3jx0794dBoMB6enpGD9+PMrLy922cfDgQdx2221ITU1FREQEMjIycNddd6GiosLZZv369Rg4cCDi4+MRExODbt264dlnn202fm+Wq6urw/Tp09G1a1cYDAZ06NABkyZNQl1dXYP1ffDBB8jJyUFUVBQSEhJw1VVXYd26dQCAzp07Y+/evfjyyy+hUqmgUqkwePBgAI33sVu+fDmys7MRGRmJpKQk3HfffSgsLHRr8+CDDyImJgaFhYUYMWIEYmJikJycjL/85S+w2WzNvgerV6/G8OHDnTnMzMzECy+84Lbs4MGDsWbNGvz+++/O2Dt37tzoOh988EFnu7Nfzz//fLMxNRevLMt47LHHnNNUKhXGjRuHEydOYOvWrU0uv2LFCrRv3x633nqrc1pycjLuuOMOrF692pnXffv2Yd++fRgzZoyzqAOAxx57DEIIrFix4rz2g6g10TbfhIhau5MnTyInJ8fZXykrKwuFhYVYsWIFqqurodfrnW0fe+wxJCcnY9q0abBYLACA559/HjNmzEBubi7GjRuHAwcOYP78+di+fTu+/fZb6HQ6SJKEYcOGoa6uDo8//jhSU1NRWFiITz75BOXl5YiLi8PevXtxww03oFevXpg5cyYMBgMOHTqEb7/9tsn4vVlOURTcdNNN+OabbzBmzBhcfPHF2LNnD+bMmYNff/0Vq1atcradMWMGnn/+eQwYMAAzZ86EXq/Htm3bsHHjRlxzzTWYO3cuHn/8ccTExOC5554DALRv377R+BYtWoTRo0ejb9++KCgowOnTp/H666/j22+/xe7duxEfH+9sa7PZMGzYMPTr1w+vvvoqvvjiC7z22mvIzMzEuHHjmnwfFi1ahJiYGOTn5yMmJgYbN27EtGnTYDab8corrwAAnnvuOVRUVODEiROYM2cOACAmJqbRdT766KPIzc11m7Z27VosWbIEKSkpzmkmk6nJ2BxiY2NhMBgAALt370Z0dDQuvvhitzY5OTnO+QMHDmx0Xbt378bll1/e4JJ3Tk4O3n33Xfz666/o2bMndu/eDQDo06ePW7v09HRkZGQ45xO1CYKIwt4DDzwg1Gq12L59e4N5iqIIIYRYuHChACAGDhworFarc/6ZM2eEXq8X11xzjbDZbM7pb731lgAg3nvvPSGEELt37xYAxPLlyxuNY86cOQKAKC4u9il+b5ZbvHixUKvV4uuvv3abvmDBAgFAfPvtt0IIIQ4ePCjUarW45ZZb3PZHCNd7IYQQ3bt3F4MGDWqwnU2bNgkAYtOmTUIIISRJEikpKaJHjx6ipqbG2e6TTz4RAMS0adOc00aNGiUAiJkzZ7qt87LLLhPZ2dlNvwlCiOrq6gbTHn30UREVFSVqa2ud04YPHy46derU7Po8OXjwoIiLixP/9V//5fY5AODVa+HChW5xXHDBBQ22YbFYBAAxefLkJmOJjo4WDz30UIPpa9asEQDE2rVrhRBCvPLKKwKAOHbsWIO2ffv2FVdccYW3u0/U6vFSLFGYUxQFq1atwo033tjgjAZgvzRWX15enlu/py+++AKSJGHixIluZ07y8vJgNBqxZs0aAEBcXBwA4PPPP0d1dbXHWBxnrlavXg1FUbzeB2+WW758OS6++GJkZWXBZDI5X1dffTUAYNOmTQCAVatWQVEUTJs2rcGZoLPfC2/s2LEDZ86cwWOPPYaIiAjn9OHDhyMrK8v5/tQ3duxYt5+vvPJK/Pbbb81uKzIy0vn/yspKmEwmXHnllaiursYvv/zic+xns1gsuOWWW5CQkIAPP/zQ7XOwfv16r17Dhg1zLlNTU+M8e1ef432qqalpMh5vl3f821jb5rZDFE54KZYozBUXF8NsNqNHjx5ete/SpYvbz7///jsAoFu3bm7T9Xo9LrjgAuf8Ll26ID8/H7Nnz8aSJUtw5ZVX4qabbsJ9993nLPruvPNO/POf/8QjjzyCyZMnY+jQobj11ltx++23N3mHqTfLHTx4EPv370dycrLHdZw5cwYAcPjwYajValxyySVevR/Naez9AYCsrCx88803btMiIiIaxJiQkICysrJmt7V3715MnToVGzduhNlsdptXvx/jucrLy8Phw4exZcsWJCYmus07+3KtNyIjIz32b6ytrXXO98fyjn8ba9vcdojCCQs7InJzPn8EX3vtNTz44INYvXo11q1bhyeeeAIFBQX47rvvkJGRgcjISHz11VfYtGkT1qxZg7Vr12LZsmW4+uqrsW7dukbvkPRmOUVR0LNnT8yePdvjOjp06HDO++VPTd0F2pTy8nIMGjQIRqMRM2fORGZmJiIiIrBr1y4888wzPp0B9eT111/Hhx9+iA8++AC9e/duML+oqMir9cTFxTk/Q2lpadi0aROEEG5nQ0+dOgXA3geuKWlpac629Z29fFpamnP62Xk+deqUs08fUVvAS7FEYS45ORlGoxE///zzOS3fqVMnAMCBAwfcpkuShCNHjjjnO/Ts2RNTp07FV199ha+//hqFhYVYsGCBc75arcbQoUMxe/Zs7Nu3D3//+9+xceNG56XSxjS3XGZmJkpLSzF06FDk5uY2eDnOqGVmZkJRFOzbt6/J7Xl7Wbax98cx7ez351xt3rwZJSUlWLRoEZ588knccMMNyM3NRUJCQoO2vl5S/vrrr/GXv/wFEydOxL333uuxTVpamlevZcuWOZfp3bs3qqursX//frd1bdu2zTm/Kb1798auXbsaFK3btm1DVFQULrroIrf17Nixw63dyZMnceLEiWa3QxROWNgRhTm1Wo0RI0bgP//5T4M/fIB9XLGm5ObmQq/X44033nBr+z//8z+oqKjA8OHDAQBms7nBKP89e/aEWq12XiIrLS1tsH7HH11Pl9EcvFnujjvuQGFhIf7xj380aFtTU+O8w3fEiBFQq9WYOXNmg4Kh/v5FR0c3GM7Fkz59+iAlJQULFixw24fPPvsM+/fvd74/58txpq9+jJIkYd68eQ3aRkdHe31p9tSpU7jjjjswcOBA5521npxLH7ubb74ZOp3OLUYhBBYsWIA//elPGDBggFscv/zyC2RZdk67/fbbcfr0afzrX/9yTjOZTFi+fDluvPFGZ5+67t27IysrC++++67b0C/z58+HSqVyjoFH1BbwUixRGzBr1iysW7cOgwYNcg4FcurUKSxfvhzffPON23AcZ0tOTsaUKVMwY8YMXHvttbjppptw4MABzJs3D3379sV9990HANi4cSMmTJiAkSNH4qKLLoLVasXixYuh0Whw2223AQBmzpyJr776CsOHD0enTp1w5swZzJs3DxkZGU0Oe+HNcvfffz8+/vhjjB07Fps2bcKf//xn2Gw2/PLLL/j444/x+eefo0+fPujatSuee+45vPDCC7jyyitx6623wmAwYPv27UhPT0dBQQEAIDs7G/Pnz8ff/vY3dO3aFSkpKc4bMerT6XR46aWXMHr0aAwaNAh33323c7iTzp0746mnnjrXtLkZMGAAEhISMGrUKDzxxBNQqVRYvHixx8I8Ozsby5YtQ35+Pvr27YuYmBjceOONHtf7xBNPoLi4GJMmTcJHH33kNq9Xr17o1asXgHPrY5eRkYGJEyfilVdegSzL6Nu3L1atWoWvv/4aS5YscbssPWXKFLz//vs4cuSIc9y922+/HVdccQVGjx6Nffv2OZ88YbPZMGPGDLdtvfLKK7jppptwzTXX4K677sLPP/+Mt956C4888kiD4VaIwloI78gloiD6/fffxQMPPCCSk5OFwWAQF1xwgRg/fryoq6sTQriGO/E0JIoQ9uFNsrKyhE6nE+3btxfjxo0TZWVlzvm//fabeOihh0RmZqaIiIgQ7dq1E0OGDBFffPGFs82GDRvEzTffLNLT04Verxfp6eni7rvvFr/++muTsXu7nCRJ4qWXXhLdu3cXBoNBJCQkiOzsbDFjxgxRUVHh1va9994Tl112mbPdoEGDxPr1653zi4qKxPDhw0VsbKwA4Bz65OzhThyWLVvmXF+7du3EvffeK06cOOHWZtSoUSI6OrrB/k2fPl148+v422+/FVdccYWIjIwU6enpYtKkSeLzzz9vEE9VVZW45557RHx8vADQ5NAngwYNanTokunTpzcbU3NsNpuYNWuW6NSpk9Dr9aJ79+7igw8+aNDOMRTMkSNH3KaXlpaKhx9+WCQmJoqoqCgxaNCgRj+jK1euFL179xYGg0FkZGSIqVOnCkmSznsfiFoTPlKMiIiIKEywjx0RERFRmGBhR0RERBQmWNgRERERhQkWdkRERERhgoUdERERUZhgYUdEREQUJjhAcTMURcHJkycRGxvr82N6iIiIiM6XEAKVlZVIT0+HWt30OTkWds04efJki3l4OBEREbVdx48fR0ZGRpNtWNg1IzY2FgAwadIkREZGNtrOMc5zUlISdDqdz9uRJMn5XMr4+Hjo9Xrfgz1PQggUFxcDAAwGA+Li4oIeAwBUVFQ4n7mZnJwckjOlzIcL82HHfLgwHy7Mhx3z4eJtPmRZhslkAoBm46ypqcHLL7/srEmawsKuGY43OzIyEjExMY22UxQFiqLAaDT6fFBJkgSLxeI8EGRZRlxcXFAPTkVRUFJSgujoaBgMBtTW1kKtVnv1IfKnyspKaDQatGvXDnV1dZBlGYmJic2eevYn5sOF+bBjPlyYDxfmw475cPElH462arXa6xi9KVR580SISZIEk8kEnU6HpKQk5xk/k8kESZKCEoPjoJRlGUlJSUhMTITRaITZbEZlZWVQYgDsB6XZbIbRaERiYiKSkpIgyzJKSkqgKEpQYmA+XJgPO+bDhflwYT7smA+XlpAPgIVdSNX/EDi+VajVaiQmJgbtw3D2Qen4VhEbGxvUg7P+Qen4lqfX64N6cDIfLsyHHfPhwny4MB92zIdLS8iHAwu7EPH0IXAI1oehsYPSIVgHp6eD0iFYByfz4cJ82DEfLsyHC/Nhx3y4tIR81MfCLgSa+hA4BPrD0NxB6RDog7Opg9Ih0Acn8+HCfNgxHy7MhwvzYcd8uLSEfDTYXkDXHkYcd72eL28+BA6B+jB4e1A6BOrg9OagdAjUwcl8uDAfdsyHC/PhwnzYMR8uLSEfHrcVsDWHGUmSzvvD4MuHwMHfHwZfD0oHfx+cvhyUDv4+OJkPF+bDjvlwYT5cmA875sPFH/mQZfm8YmiMSvjrVFSYMpvNiIuLw+TJkxEZGQm9Xu8xgYqiQAiB5ORkj+PYybKMsrIyaLVaJCQk+Dy2jhACZWVlsFqtSEhIOKex8vyxDovFgqqqKsTExCA6Otrn5f2xjvN9L/2xDubDhflwYT7smA8X5sOF+bBzvJeSJMFqtUKj0TRbGFosFsycORMVFRUwGo1NtmVh1wxHYTd16lTodDqoVCpotdoGiXQUdvHx8dBqtQ3mSZIElUoFvV5/zgMmCiEgSRKEEI0WmIFY9mxWqxWyLEOn0zXY10AuW9/5vKfMh3+WrY/5cGE+7JgPF+bDhfmwE0KgtrYWZrMZGo0GGo2myfbV1dV44YUXvCrsWt0AxW+//TZeeeUVFBUV4dJLL8Wbb76JnJwcj20XLVqE0aNHu01zDJ7oq5SUFERGRjZapcuyjLq6Olx//fWBG3FbCEAJ3lg4REREbZpaDwTo6RUVFRVYtWoVJElyXqJtjNls9nq9raqwW7ZsGfLz87FgwQL069cPc+fOxbBhw3DgwAGkpKR4XMZoNOLAgQPOn8+1utbpdIiOjnZeGzebzQ2uq9tsNsTFxaFdu3bntI1m2WqBI/8XmHUTUUCUHS3GT0u+Q/+J10AfbQh1OETkiy4PAJqIgK3e8ajSioqKJvst+nLpu1XdPDF79mzk5eVh9OjRuOSSS7BgwQJERUXhvffea3QZlUqF1NRU56t9+/ZNbqOurg5ms9ntVV+wBz0kotbt2NcHUXr4NE7t/j3UoRBRC6NSqZx9Fpu6wcWXXnOt5oydJEnYuXMnpkyZ4pymVquRm5uLrVu3NrpcVVUVOnXqBEVRcPnll2PWrFno3r17o+0LCgowY8aMJmNxFHcmkwklJSVITEz0fYfO15mvgr9NIvKJXGvDia2/Qq6ScHzTVnS6qCjUIRGRN1KuCtqmVCoVEhMTUVJSApPJ1ODMnaIoKC8v93p9reaMnclkgs1ma3DGrX379igq8vzLslu3bnjvvfewevVqfPDBB1AUBQMGDMCJEyca3c6UKVNQUVHhfB0/ftxju7PP3PEeFCI6W9G+StRVWWGI1aDkaDUqz9SFOiQiaoEaG5rGMcSM1Wr1el2t5ozduejfvz/69+/v/HnAgAG4+OKL8c477+CFF17wuIzBYIDB4F0/mPpn7srKyhAREbjr8I1q1wdQ+37bOREF3vF9XwAqHfTGaNSUWlB4OAFZl1wa6rCIyBNFBkp3hGzzjuLOceYuMTERZrMZsiwjPj7e6/W0msIuKSkJGo0Gp0+fdpt++vRppKamerUOnU6Hyy67DIcOHfJbXI7i7vTp0+d8Y8Z5UetY2BG1QJZiM0wHTkMXqYdKpYZKo8GxLb/hohsuh1rTai6WEFEQOYo7k8kEk8kEAEhOTkZNTY336whUcP6m1+uRnZ2NDRs2OKcpioINGza4nZVris1mw549e5CWlhaoMImIAACF24/AWitDG2nvK6OP0sNSXAnTgVMhjoyIwlmrKewAID8/H//4xz/w/vvvY//+/Rg3bhwsFotzrLoHHnjA7eaKmTNnYt26dfjtt9+wa9cu3Hffffj999/xyCOP+C2m+o8V8fYSLhGFN6EIHPv2IFRqlfNMvkavhbApOLHttxBHR0QtVf0+dY6bKHx9/FiruRQLAHfeeSeKi4sxbdo0FBUVoXfv3li7dq3zhopjx465jStXVlaGvLw8FBUVISEhAdnZ2diyZQsuueQSv8RTv6gzGo2oq2PHaCICSg6eRlVRBXRR7l/2NHotTu08CumOHI5pR0RuPD2L19Hnzpe7YltVYQcAEyZMwIQJEzzO27x5s9vPc+bMwZw5cwISx9kPAPbljhUiCm+F3/8GxapAo3d/TJAuSo/aimqc2v07Og28KETREVFL46moA1x97iwWi9fralWXYluKs4u683luHhGFF7lGwonvf4NGp2lwQ5VaowYEcHyr/27gIqLWTQjhsahzUKvVPt0Vy4rERyzqiKgpRT8cQ11lTYPLsA66KD1KDp5G5any4AZGRC2OEAJlZWWNFnUOvoy6warEByzqiKg5x7ceBgSg1nr+/aCN0MFWZ0XhjiNBjoyIWhpJktxulPAHViZekmWZRR0RNck+dt0p6CIbH1tSpVJBpVHj2DcHodj4rGmitkwIgYSEBL8VdQALO6+Vl5ezqCOiJp09dl1jOKYdEQH2MXp1Ov8+ZIAVipe0Wi2LOiJqlKex6xqj1mk4ph0RBaSmYJXipfj4eBZ1RNQox9h1Ko0aco0Ea60MIYRbG6EoznkA7GPaWTj+JRH5DysVL4XkObBE1GpYzpih0Wuh1qghFAGpug62OvfxLeuq6mCTbRCKgDbCfvmluqQqFOESUZhqdQMUExG1RB0HXoi0yzpCCEC21GHj9JUNzthBCMSmxWPgM8MB2Me100X5r9M0ERELOyIiP1CpVNDHRPzx/ybaqVUwxEYEKSoiamt4KZaIiIgoTLCwIyIiIgoTLOyIiIiIwgQLOyIiIqIwwZsniIgCRK6WYJNcQ55Yzxr+hIjI31jYERH5mTZCh6RuqagpszSYl3RxeggiIqK2goUdEdF5UhTF7ck0aq0GA/KvDWFERNRWsY8dEdF52H30DD7a+isOny4PdShERCzsiIjOx77CEggIfHfolMf5h09XYN2eozCZaxpdR1WthOIm5gNASVUNKmoaf66sIgROlVtQI7EfH1Fb1uoKu7fffhudO3dGREQE+vXrh++//77J9suXL0dWVhYiIiLQs2dPfPrpp+e0XYulYV8ZIqLmfHfoJIrNNfh8z1GP862Kgs9+OIp1e47iZJnn58aWVtVi7Y9H8dnuo6iVPRduB0+VYePeY9i077i/QieiVqhV9bFbtmwZ8vPzsWDBAvTr1w9z587FsGHDcODAAaSkpDRov2XLFtx9990oKCjADTfcgKVLl2LEiBHYtWsXevTo4dO2LVWVqKwoQ2xstOcGQgaEDZArAKmJ5wmdD1stYP2jwLT98c3dWg2oW1UaicKKHrWuH6wNvwA2N1+tKIDNAj0Ag6oOsDb8/aGFbF+PANS2GkDV8Dv5T0d+hx6AxVLrcTtE1AzFWu9v6x/HkFQGaAL0CEC5AkKx2usHpZm2QvZ6tT5XBKNGjcLDDz+Mq666ytdFz9vs2bORl5eH0aNHAwAWLFiANWvW4L333sPkyZMbtH/99ddx7bXX4umnnwYAvPDCC1i/fj3eeustLFiwwKdtR+utMFeUAFIZYqM0DRtYBSApwMnPgMoAFVqKDJTutP+/+pj9X7UWUHmIh4iCoqOqyPVDaaXP89X12iRKlUBpw20Y67XRmxuuw5vtEFEzhM31t7XUYP9XrQfUusBsr9IKqboMEVAD1mYuoNY23VWjPp8vxVZUVCA3NxcXXnghZs2ahcLCQl9XcU4kScLOnTuRm5vrnKZWq5Gbm4utW7d6XGbr1q1u7QFg2LBhjbYHgLq6OpjNZrcXAERHaGCMVMNco6Cy2uaHPSIiIqK2TAiBsiobFCH8tk6fC7tVq1ahsLAQ48aNw7Jly9C5c2dcd911WLFiBWTZ+1OFvjKZTLDZbGjfvr3b9Pbt26OoqMjjMkVFRT61B4CCggLExcU5Xx06dHDOi41icUdERET+odeqYbUJlJj9V9yd080TycnJyM/Px48//oht27aha9euuP/++5Geno6nnnoKBw8e9EtwoTBlyhRUVFQ4X8ePu3dEZnFHRERE/qBWAwnRGsh+LO7OqzPYqVOnsH79eqxfvx4ajQbXX3899uzZg0suuQQvv/wynnrqqfMO0CEpKQkajQanT592m3769GmkpqZ6XCY1NdWn9gBgMBhgMBgazohIAiKNAIDYSACVFpgrqwB9jP2GClkGIAHp1wEJ8b7smvdstYAi/fH/Pzp4JlzOmyeIQuiY+NX5/37tLvJ5vhACx4T9y3D3qC6IiWjYn6dWtuGYOAwA6Bvf1W0wZG+3Q0TNUKz2FwC0y7b/2+HWwN08UVYO6D+DLkKPpBjAVFqGkmotEtvFNzjGLWWnPa/DA58rAlmW8e9//xsLFy7EunXr0KtXL0ycOBH33HMPjEZ74bNy5Uo89NBDfi3s9Ho9srOzsWHDBowYMQKAfbT3DRs2YMKECR6X6d+/PzZs2ICJEyc6p61fvx79+/f3PQCVzt6J8g+xcXpArbX3wVNr7cWgygbo4gB9gu/r94atFtD+cVeu5o/iUxsVuI6dRNQsCfV+6Wsb3jXf3HybTYGMSAgImGrUiIlp2KbcYnGup0aJQLS+4TGf1bEDfjpWbJ/nYTtE1AxFrve39Y9jSJ8QuMJOJ+w3P6p00Bv0SErSwWQyoaSsEomJic7irrKyEpaa2mZW5uJzYZeWlgZFUXD33Xfj+++/R+/evRu0GTJkCOLj431ddbPy8/MxatQo9OnTBzk5OZg7dy4sFovzLtkHHngAf/rTn1BQUAAAePLJJzFo0CC89tprGD58OD766CPs2LED7777rl/iiY2NBQCYzWZERUV5/BZNRG1bt7R2+PVUGfpflOZxvlajxpVZf4K5pg4dEmM8tkkxRiG7S3votRpEezijBwAXpSZACIHUOBZ1RK2RXq9HUlKSvbgrKUFiYiIsFgvMZjOio70/rn0u7ObMmYORI0ciIqLxCjY+Ph5HjhzxddXNuvPOO1FcXIxp06ahqKgIvXv3xtq1a503SBw7dsytuBowYACWLl2KqVOn4tlnn8WFF16IVatW+TyGXVMcxV15eTn0en0zrYko3GS0i8WJ0kp0z0jyOL/PBe1xeefkJr/4dUiMBRDb6Hy1SoWs9HZNxmHQadCrY7JXMRNRy1S/uDt1yv40G6PRCEVpbqA7F58Lu/vvv9/XRfxqwoQJjV563bx5c4NpI0eOxMiRIwMaU3R0NMrLywO6DSJqmQZclI7Sqhokx0Y22oZn84nIW3q9HgaDAbW19suv0dHRqKz0fmxK/rY5T4qioKSkBCqVChoNBwomamt0GjXax0WzeCMiv6isrERtbS0iIiKgUqlQUlIC4cPdsryd8jw4ijpZlpGQkACbjcOfEBER0bmprKyE2WyG0WhEbGwsJEmCyWTy6Xn1/Ip5juoXdUlJSdDpeGcqERERnZuzizrA1efOarV6vR4Wdufg7KKON00QERHRufJU1Dno9XqfRhrhpVgfsagjIiIif7FYLKiurvZY1Dn4clWQZ+x8wKKOiIiI/MVqtaKqqqrJos5XLOy8JIRgUUdERER+I8syYmJi/FbUASzsvFZeXs6ijoiIiPxGp9P59FQJb7Cw85LVamVRR0RERH6j1fr/VgcWdl6Kj49nUUdEREQtGgs7L3GcOiIiImrpWNgRERERhQkWdkRERERhgoUdERERUZhgYUdEREQUJljYEREREYUJFnZEREREYYKFHREREVGYYGFHREREFCZY2BERERGFiVZT2JWWluLee++F0WhEfHw8Hn74YVRVVTW5zODBg6FSqdxeY8eODVLERERERMHl/6fPBsi9996LU6dOYf369ZBlGaNHj8aYMWOwdOnSJpfLy8vDzJkznT9HRUUFOlQiIiKikGgVhd3+/fuxdu1abN++HX369AEAvPnmm7j++uvx6quvIj09vdFlo6KikJqaet4xyLJ83usICKWFxkVERNSaKFKoI/CLVlHYbd26FfHx8c6iDgByc3OhVquxbds23HLLLY0uu2TJEnzwwQdITU3FjTfeiL/+9a9NnrWrq6tDXV2d82ez2QwAKC8vh9FohF6v98Me+VHpjlBHQERERC1EqyjsioqKkJKS4jZNq9WiXbt2KCoqanS5e+65B506dUJ6ejp++uknPPPMMzhw4AD+9a9/NbpMQUEBZsyY0WC6VquFyWRCUlJSyyvuiIiIqNWxWq1+X2dIC7vJkyfjpZdearLN/v37z3n9Y8aMcf6/Z8+eSEtLw9ChQ3H48GFkZmZ6XGbKlCnIz893/mw2m9GhQwfEx8dDluWWU9ylXBXa7RMREYWrrmOab+MHsizDYrH4taYIaWH33//933jwwQebbHPBBRcgNTUVZ86ccZtutVpRWlrqU/+5fv36AQAOHTrUaGFnMBhgMBgaTFepVEhMTERJSUnLKe6IiIio1dLpdKiqqoJWq0VsbKxf1hnSwi45ORnJycnNtuvfvz/Ky8uxc+dOZGdnAwA2btwIRVGcxZo3fvjhBwBAWlqaz7HKsgyr1Qqj0YiysjKcOXMGCQkJ0Ol0bvMrKip8XrfXhADibgzc+omIiAgoLQ34Jhz1QmRkJMrLy2G1WhEdHe2xrS83cLaKPnYXX3wxrr32WuTl5WHBggWQZRkTJkzAXXfd5bwjtrCwEEOHDsX//u//IicnB4cPH8bSpUtx/fXXIzExET/99BOeeuopXHXVVejVq5fPMRQXF8NisQAAhBCwWq04efIktFot1Go1FEWBEAKffvoptFotrFYrZFmGTqeDVhuYt7m5bSiKAkmSoFKpoNfroVKp/B5Dc9sQQkCSJAghoNfroVb7f+hEb7bBfNgxHy7MhwvzYcd8uDAfLoHKh9VqRXl5OVQqFRRFgclkQmlpqcdtOOoPb7SKwg6w3906YcIEDB06FGq1GrfddhveeOMN53xZlnHgwAFUV1cDAPR6Pb744gvMnTsXFosFHTp0wG233YapU6ee0/ZVKpVbwlUqFSRJgizLzg+DEAIGgwGSJMFisSAmJqbR6ttfLBYLqqqqGmxLlmWYzWZotVokJCQE5KB00Ol0KCsrg81mc9uWEAJlZWWwWq1uZzcDISIiAmVlZaiqqmqwLYvFwnyA+WA+mA+A+aiP+bALVT5kWYZarYZKpYJWq4UkSbDZbADg1tXLZrP5dJOFSggh/BppmDGbzYiLi8P06dMRExPjNk9RFNTV1UEIAZ1OB5VKBaPRiOrqahiNRr9dL29OZWUlzGazc5uSJMFkMkGn0yExMTEg33LOdvY2AaCkpASyLAetP6KiKA22efZ7EwzMhx3z4cJ8uDAfdsyHS1vNhyRJOHXqFNRqtfN9rqurg9VqhVarhcFggNVqhSRJqKmpwYsvvoiKigoYjcYm19tqzti1RGq1GgaDAXV1dZAkCWq1GlVVVYiPjw/aQQnAuS2z2QxJklBXVxfUgxKwf7tISkqCyWSCyWQCYD/NHMybTNRqtdsNLgaDAbW1tUH9JQkwHw7Mhwvz4cJ82DEfLsyHi+PmTavV6uzi5bhU7a1W86zYlspR3AFwXooN5ofAITY2FhEREaitrYUQIqgHpYNer0diYiJkWYYsy0hMTAz6ncOOg1MIgdraWkRERDAfzAfz8Qfmw4X5cGE+7FpKPgwGg1vffYPB4NPlcBZ2flD/bhVJkiBJwX8sieObloMvHS39RVEU55M6APs3QEVRgh5H/X13nE0NNubDhfmwYz5cmA8X5sOO+XCxWq2o30vO10easrA7T47r4RqNBlqt1vmEimB+GOr3T0hLS4PRaITZbEZlZWXQYqjfP8ExjI0syygpKQnqwVm/T0RaWhp0Oh3zwXwwH39gPuyYDxfmw6Ul5MPRp06lUiEyMtJtlA1vsbA7D/U7OTrujI2Pjw/qh8FTR9fY2NigHpyeOp06+kwE8+A8u6Or47Q688F8MB/MhwPz4cJ8uLSEfNQv6hyXYw0GA7RarU/vAQu7c3T2nSsOwfwwNHX3UrAOTk8HpUMwD87G7l5iPpgP5oP5cGA+XJgPl5aQD09FncPZPzeHhd05aKyocwjGh8GbW9IDfXA2dVA6BOPgbO6WdObDhflwYT7smA8X5sOF+bALRj5sNlujRZ2DL+P4cRy7ZlRUVCA+Ph6TJk1CZGQkZFmGoihQq9Vub7TjbUxKSnJOF0I4HxPiuETrD7Iso7y8HFqtFvHx8c3eLeMYYDE6OtpvAyz6um++xuwtX/aN+Tj3mL3FfNgxHy7MhwvzYcd82MmyjDNnzjgHH27qCR81NTV4+eWXUV5ejri4uCbXy8KuGSdOnECHDh1CHQYRERG1ccePH0dGRkaTbVjYNUNRFJw8eRKxsbEBfawKYL+9u0OHDjh+/HizI0uHk7a4321xn4G2ud9tcZ+BtrnfbXGfAe53MPZbCIHKykqkp6c329+OT55ohlqtbrY69jej0dimDg6HtrjfbXGfgba5321xn4G2ud9tcZ8B7negNXcJ1oE3TxARERGFCRZ2RERERGGChV0LYjAYMH36dI9DqISztrjfbXGfgba5321xn4G2ud9tcZ8B7ndL22/ePEFEREQUJnjGjoiIiChMsLAjIiIiChMs7IiIiIjCBAs7IiIiojDBwq4VqKurQ+/evaFSqfDDDz+EOpyAuummm9CxY0dEREQgLS0N999/P06ePBnqsALq6NGjePjhh9GlSxdERkYiMzMT06dPD8jDpluSv//97xgwYACioqIQHx8f6nAC5u2330bnzp0RERGBfv364fvvvw91SAH11Vdf4cYbb0R6ejpUKhVWrVoV6pACrqCgAH379kVsbCxSUlIwYsQIHDhwINRhBdz8+fPRq1cv5wC9/fv3x2effRbqsILqxRdfhEqlwsSJE0MdihMLu1Zg0qRJSE9PD3UYQTFkyBB8/PHHOHDgAP7v//4Phw8fxu233x7qsALql19+gaIoeOedd7B3717MmTMHCxYswLPPPhvq0AJKkiSMHDkS48aNC3UoAbNs2TLk5+dj+vTp2LVrFy699FIMGzYMZ86cCXVoAWOxWHDppZfi7bffDnUoQfPll19i/Pjx+O6777B+/XrIsoxrrrkGFosl1KEFVEZGBl588UXs3LkTO3bswNVXX42bb74Ze/fuDXVoQbF9+3a888476NWrV6hDcSeoRfv0009FVlaW2Lt3rwAgdu/eHeqQgmr16tVCpVIJSZJCHUpQvfzyy6JLly6hDiMoFi5cKOLi4kIdRkDk5OSI8ePHO3+22WwiPT1dFBQUhDCq4AEgVq5cGeowgu7MmTMCgPjyyy9DHUrQJSQkiH/+85+hDiPgKisrxYUXXijWr18vBg0aJJ588slQh+TEM3Yt2OnTp5GXl4fFixcjKioq1OEEXWlpKZYsWYIBAwZAp9OFOpygqqioQLt27UIdBp0HSZKwc+dO5ObmOqep1Wrk5uZi69atIYyMAq2iogIA2tQxbLPZ8NFHH8FisaB///6hDifgxo8fj+HDh7sd3y0FC7sWSgiBBx98EGPHjkWfPn1CHU5QPfPMM4iOjkZiYiKOHTuG1atXhzqkoDp06BDefPNNPProo6EOhc6DyWSCzWZD+/bt3aa3b98eRUVFIYqKAk1RFEycOBF//vOf0aNHj1CHE3B79uxBTEwMDAYDxo4di5UrV+KSSy4JdVgB9dFHH2HXrl0oKCgIdSgesbALssmTJ0OlUjX5+uWXX/Dmm2+isrISU6ZMCXXI583bfXZ4+umnsXv3bqxbtw4ajQYPPPAARCt8QIqv+w0AhYWFuPbaazFy5Ejk5eWFKPJzdy77TBROxo8fj59//hkfffRRqEMJim7duuGHH37Atm3bMG7cOIwaNQr79u0LdVgBc/z4cTz55JNYsmQJIiIiQh2OR3ykWJAVFxejpKSkyTYXXHAB7rjjDvznP/+BSqVyTrfZbNBoNLj33nvx/vvvBzpUv/F2n/V6fYPpJ06cQIcOHbBly5ZWd3rf1/0+efIkBg8ejCuuuAKLFi2CWt36vnedS64XLVqEiRMnory8PMDRBZckSYiKisKKFSswYsQI5/RRo0ahvLy8TZyJVqlUWLlypdv+h7MJEyZg9erV+Oqrr9ClS5dQhxMSubm5yMzMxDvvvBPqUAJi1apVuOWWW6DRaJzTbDYbVCoV1Go16urq3OaFgjakW2+DkpOTkZyc3Gy7N954A3/729+cP588eRLDhg3DsmXL0K9fv0CG6Hfe7rMniqIAsA/50tr4st+FhYUYMmQIsrOzsXDhwlZZ1AHnl+two9frkZ2djQ0bNjgLG0VRsGHDBkyYMCG0wZFfCSHw+OOPY+XKldi8eXObLeoA+2e8Nf6+9tbQoUOxZ88et2mjR49GVlYWnnnmmZAXdQALuxarY8eObj/HxMQAADIzM5GRkRGKkAJu27Zt2L59OwYOHIiEhAQcPnwYf/3rX5GZmdnqztb5orCwEIMHD0anTp3w6quvori42DkvNTU1hJEF1rFjx1BaWopjx47BZrM5x2js2rWr8/Pe2uXn52PUqFHo06cPcnJyMHfuXFgsFowePTrUoQVMVVUVDh065Pz5yJEj+OGHH9CuXbsGv9fCxfjx47F06VKsXr0asbGxzj6UcXFxiIyMDHF0gTNlyhRcd9116NixIyorK7F06VJs3rwZn3/+eahDC5jY2NgGfScdfcJbTJ/KkN6TS147cuRI2A938tNPP4khQ4aIdu3aCYPBIDp37izGjh0rTpw4EerQAmrhwoUCgMdXOBs1apTHfd60aVOoQ/OrN998U3Ts2FHo9XqRk5Mjvvvuu1CHFFCbNm3ymNdRo0aFOrSAaez4XbhwYahDC6iHHnpIdOrUSej1epGcnCyGDh0q1q1bF+qwgq6lDXfCPnZEREREYaJ1duQhIiIiogZY2BERERGFCRZ2RERERGGChR0RERFRmGBhR0RERBQmWNgRERERhQkWdkRERERhgoUdERERUZhgYUdEREQUJljYEREREYUJFnZEREREYYKFHRFRABQXFyM1NRWzZs1yTtuyZQv0ej02bNgQwsiIKJyphBAi1EEQEYWjTz/9FCNGjMCWLVvQrVs39O7dGzfffDNmz54d6tCIKEyxsCMiCqDx48fjiy++QJ8+fbBnzx5s374dBoMh1GERUZhiYUdEFEA1NTXo0aMHjh8/jp07d6Jnz56hDomIwhj72BERBdDhw4dx8uRJKIqCo0ePhjocIgpzPGNHRBQgkiQhJycHvXv3Rrdu3TB37lzs2bMHKSkpoQ6NiMIUCzsiogB5+umnsWLFCvz444+IiYnBoEGDEBcXh08++STUoRFRmOKlWCKiANi8eTPmzp2LxYsXw2g0Qq1WY/Hixfj6668xf/78UIdHRGGKZ+yIiIiIwgTP2BERERGFCRZ2RERERGGChR0RERFRmGBhR0RERBQmWNgRERERhQkWdkRERERhgoUdERERUZhgYUdEREQUJljYEREREYUJFnZEREREYYKFHREREVGY+H+UvcjXQBu/nAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# compared to the previous simulation, this simulation uses a much larger simulation domain size\n", "Lx = 15 * lda0\n", "Ly = 2 * lda0\n", "Lz = 15 * lda0\n", "sim_size = (Lx, Ly, Lz)\n", "\n", "# add a point dipole source\n", "pulse = td.GaussianPulse(freq0=freq0, fwidth=freq0 / 20)\n", "pt_dipole = td.PointDipole(\n", " center=(0, L_f / 2 + d_dp, 0), source_time=pulse, polarization=\"Ey\"\n", ")\n", "\n", "# add a flux monitor to compute the total radiated power\n", "flux_monitor = td.FluxMonitor(\n", " center=(0, 0, 0),\n", " size=(Lx * 0.9, Ly * 0.9, Lz * 0.9),\n", " freqs=[freq0],\n", " name=\"power\",\n", ")\n", "\n", "# add a field monitor to compute the field far away from the antenna to calculate the directivity\n", "field_monitor = td.FieldMonitor(\n", " center=(0, 0, 0),\n", " size=(td.inf, 0, td.inf),\n", " freqs=[freq0],\n", " name=\"field\",\n", ")\n", "\n", "# create the simulation with the above defined elements\n", "sim = td.Simulation(\n", " center=(0, 0, 0),\n", " size=sim_size,\n", " grid_spec=td.GridSpec.auto(min_steps_per_wvl=40, wavelength=lda0),\n", " structures=antenna,\n", " sources=[pt_dipole],\n", " monitors=[flux_monitor, field_monitor],\n", " run_time=1e-13,\n", " boundary_spec=td.BoundarySpec.all_sides(boundary=td.PML()),\n", ")\n", "\n", "# visualize the simulation setup\n", "sim.plot(z=0)\n", "plt.show()\n" ] }, { "cell_type": "markdown", "id": "df2c4a9d", "metadata": {}, "source": [ "Submit the simulation to the server." ] }, { "cell_type": "code", "execution_count": 11, "id": "7ce54de3", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:15:57.326641Z", "iopub.status.busy": "2023-03-27T21:15:57.326478Z", "iopub.status.idle": "2023-03-27T21:16:53.707007Z", "shell.execute_reply": "2023-03-27T21:16:53.706433Z" } }, "outputs": [ { "data": { "text/html": [ "
[08:57:47] Created task 'plasmonic_yagi_uda' with task_id                                             webapi.py:139\n",
       "           'fdve-6cb09279-3da2-4a2b-b5a6-8bf93b6ea112v1'.                                                          \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:57:47]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'plasmonic_yagi_uda'\u001b[0m with task_id \u001b]8;id=237107;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=147732;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-6cb09279-3da2-4a2b-b5a6-8bf93b6ea112v1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c0aecb4d074b4d2983eae55e362a5d37", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:57:48] status = queued                                                                            webapi.py:269\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:57:48]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=315281;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=903057;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:57:50] status = preprocess                                                                        webapi.py:263\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:57:50]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=972057;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=689622;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
[08:57:55] Maximum FlexCredit cost: 0.746. Use 'web.real_cost(task_id)' to get the billed FlexCredit cost webapi.py:286\n",
       "           after a simulation run.                                                                                 \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:57:55]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.746\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit cost \u001b]8;id=552198;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=602653;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mafter a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           starting up solver                                                                         webapi.py:290\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=606271;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=582208;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           running solver                                                                             webapi.py:300\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=494431;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=453472;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "842bf193845844a79bac5776fc8b2b3f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:58:28] early shutoff detected, exiting.                                                           webapi.py:313\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:58:28]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=172615;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=494846;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#313\u001b\\\u001b[2m313\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           status = postprocess                                                                       webapi.py:330\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=274107;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=3042;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#330\u001b\\\u001b[2m330\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:58:33] status = success                                                                           webapi.py:337\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:58:33]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=303546;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=31086;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#337\u001b\\\u001b[2m337\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "f790cd48736f418ebc4fb3665d825f37",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:58:35] loading SimulationData from data/optical_yagi_uda.hdf5                                     webapi.py:512\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:58:35]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/optical_yagi_uda.hdf5 \u001b]8;id=567189;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=432443;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim_data = web.run(\n", " sim, task_name=\"plasmonic_yagi_uda\", path=\"data/optical_yagi_uda.hdf5\", verbose=True\n", ")\n" ] }, { "cell_type": "markdown", "id": "9fb88e64", "metadata": {}, "source": [ "In this simulation, the way to calculate the directivity is a little different. The simulation domain size is 15$\\lambda$. We can evaluate the radiated field at a circle 7$\\lambda$ away from the antenna. At this distance, the near field should completely decay away so the field is purely radiated field. Therefore, the power is directly given by\n", "\n", "
$P = \\frac{E^2}{2\\eta}$,
\n", "\n", "where $E$ is the peak-to-peak electric field strength and $\\eta=\\eta_0/n$ is the intrinsic impedance of the medium. $\\eta_0=377$ $\\Omega$ is the free space impedance and $n$ is the refractive index.\n", "\n", "As expected, the directivity pattern from this approach is practically identical to that from the near field to far field transformation, which verifies the validity of both methods." ] }, { "cell_type": "code", "execution_count": 12, "id": "f5f98fd5", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:16:54.525442Z", "iopub.status.busy": "2023-03-27T21:16:54.525307Z", "iopub.status.idle": "2023-03-27T21:17:02.417398Z", "shell.execute_reply": "2023-03-27T21:17:02.416873Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAHQCAYAAADK5pEiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD2CUlEQVR4nOydd1ib5/X3vxqgAUJiSuy9MRtjg7GNZ5zpTGcnjpM0ibObNkmb3SRN0zajad6sX7ad2cTZthMbD2xj9t57CyRAIIG2nvcPKtXYYDN0Cwk/n+vSlVjAuW+E9Hyfc+4zGBRFUaChoaGhoaE5A+Zib4CGhoaGhsZeoUWShoaGhoZmBmiRpKGhoaGhmQFaJGloaGhoaGaAFkkaGhoaGpoZoEWShoaGhoZmBmiRpKGhoaGhmQFaJGloaGhoaGaAFkkaGhoaGpoZoEWShmYWPPPMM2AwGIu9jSksZE8MBgPPPPOMdTdEQ7MEoUWS5rzko48+AoPBsDy4XC78/PywefNm/Otf/4JSqVzsLQIAJiYm8Mwzz+Dw4cNE1zlx4gSeeeYZKBQKouvQ0DgaDLp3K835yEcffYTt27fjueeeQ2hoKPR6PaRSKQ4fPozffvsNQUFB+OGHH5CYmAgAMBgMMBgM4HK5Nt2nXC6Ht7c3nn766TM8v4XsSaPRgM1mg81mAwD+8Y9/4A9/+APa29sREhJihZ3T0CwN2Iu9ARqaxWTLli1IT0+3/Pvxxx9HXl4eLr74Ylx66aWor68Hj8ebIigzYTKZoNPpbCaks9nTTNha7GloHBU63EpDcxrr1q3Dk08+ic7OTuzatQvA9Od/DAYD9957L3bv3o34+HhwOBzs27cPANDb24vbbrsNYrEYHA4H8fHx+OCDD85YS6PR4JlnnkFUVBS4XC58fX1xxRVXoLW1FR0dHfD29gYAPPvss5bQsNmjPH1PCQkJyM3NPWMNk8kEf39/XHXVVVP2fqqdP/zhDwCA0NBQyzodHR1Ys2YNkpKSpn2doqOjsXnz5tm8pDQ0DgstkjQ003DTTTcBAH799dezfl9eXh4eeughbNu2Da+//jpCQkIwMDCAFStW4MCBA7j33nvx+uuvIyIiAjt27MBrr71m+Vmj0YiLL74Yzz77LNLS0vDPf/4TDzzwAEZHR1FTUwNvb2+89dZbAIDLL78cn376KT799FNcccUV0+5l27ZtOHr0KKRS6ZTnjx07hr6+Plx77bXT/twVV1yB6667DgDw6quvWtbx9vbGTTfdhKqqKtTU1Ez5meLiYjQ1NeHGG2886+tDQ+PwUDQ05yEffvghBYAqLi6e8XuEQiGVkpJCURRFPf3009TpHxcAFJPJpGpra6c8v2PHDsrX15eSy+VTnr/22mspoVBITUxMUBRFUR988AEFgHrllVfOWNtkMlEURVEymYwCQD399NNnfM/pe2psbKQAUG+88caU77vnnnsoV1dXy7rmvZ9q8+9//zsFgGpvb5/yswqFguJyudSjjz465fn777+fcnFxoVQq1Rn7oqFZStCeJA3NDLi6up4zy3XNmjWIi4uz/JuiKHzzzTe45JJLQFEU5HK55bF582aMjo6irKwMAPDNN9/Ay8sL99133xl251PaERUVheTkZHz55ZeW54xGI/7zn//gkksuAY/Hm7NNoVCIyy67DJ9//jmo/+b4GY1GfPnll9i6dStcXFzmbJOGxpGgRZKGZgZUKhUEAsFZvyc0NHTKv2UyGRQKBd599114e3tPeWzfvh0AMDg4CABobW1FdHT0vJNvpmPbtm04fvw4ent7AQCHDx/G4OAgtm3bNm+bN998M7q6upCfnw8AOHDgAAYGBiwhaRqapQyd3UpDMw09PT0YHR1FRETEWb/vdO/MZDIBAG688Ubccsst0/6MuayEBNu2bcPjjz+Or7/+Gg8++CC++uorCIVCXHDBBfO2uXnzZojFYuzatQurV6/Grl27IJFIsGHDBivunIbGPqFFkoZmGj799FMAmHP2pre3NwQCAYxG4zlFJDw8HIWFhdDr9XBycpr2e+Yadg0NDcXy5cvx5Zdf4t5778W3336LrVu3gsPhnPXnzrYOi8XC9ddfj48++gh/+9vf8N133+GOO+4Ai8Wa095oaBwROtxKQ3MaeXl5+Mtf/oLQ0FDccMMNc/pZFouFK6+8Et98880ZGaHAZDjWzJVXXgm5XI5///vfZ3yf+fyPz+cDwJw64Wzbtg0nT57EBx98ALlcPqtQq/lscaZ1brrpJoyMjOB3v/sdVCoVndVKc95Ae5I05zV79+5FQ0MDDAYDBgYGkJeXh99++w3BwcH44Ycf5lV0/9JLL+HQoUPIzMzEHXfcgbi4OAwPD6OsrAwHDhzA8PAwgMmzvk8++QQPP/wwioqKkJOTg/HxcRw4cAD33HMPLrvsMvB4PMTFxeHLL79EVFQUPDw8kJCQgISEhBnXv+aaa/DII4/gkUcegYeHx6zComlpaQCAP//5z7j22mvh5OSESy65xCKeKSkpSEhIwNdff43Y2FikpqbO+XWhoXFIFje5loZmcTCXgJgfzs7OlEQioTZu3Ei9/vrr1NjY2JTvn6kEZOfOndPaHxgYoHbu3EkFBgZSTk5OlEQiodavX0+9++67U75vYmKC+vOf/0yFhoZavu+qq66iWltbLd9z4sQJKi0tjXJ2dp5SujHdnsxkZ2dTAKjbb7992q9jmrKSv/zlL5S/vz/FZDKnLQd5+eWXKQDUiy++OK1NGpqlCN27lYaGZla8/vrreOihh9DR0YGgoKDF3g4NjU2gRZKGhuacUBSFpKQkeHp64tChQ4u9HRoam0GfSdLQ0MzI+Pg4fvjhBxw6dAjV1dX4/vvvF3tLNDQ2hfYkaWhoZqSjowOhoaEQiUS455578MILLyz2lmhobAotkjQ0NDQ0NDNA10nS0NDQ0NDMAC2SNDQ0NDQ0M0CLJA0NDQ0NzQzQIklDQ0NDQzMDtEjS0NgBb775JkJCQsDlcpGZmYmioiLL1xobG5GdnY2AgAA8//zzi7hLGprzD1okaWgWmS+//BIPP/wwnn76aZSVlSEpKQmbN2+2zJ289957ceONN+L777/H999/jxMnTizyjmlozh9okaShWWReeeUV3HHHHdi+fTvi4uLw9ttvg8/n44MPPgAAjIyMIC0tDYmJifDz85vTRBAaGpqFQYskDc0iotPpUFpaOmVSB5PJxIYNG1BQUAAAeO6557Bhwwbw+Xwwmcw5z7ikoaGZP3RbOhqaRUQul8NoNEIsFk95XiwWo6GhAQBw4YUXQiaTYWxsDN7e3ouxTRqa8xbak6ShcQA4HA4tkDQ0iwAtkjQ0i4iXlxdYLBYGBgamPD8wMACJRLJIu6KhoTFDiyQNzSLi7OyMtLQ0HDx40PKcyWTCwYMHsXLlykXcGQ0NDUCfSdLQLDoPP/wwbrnlFqSnp2P58uV47bXXMD4+ju3bty/21mhozntokaShWWS2bdsGmUyGp556ClKpFMnJydi3b98ZyTw0NDS2hx6VRUNDQ0NDMwP0mSQNDQ0NDc0M0CJJQ0NDQ0MzA7RI0tDQ0NDQzAAtkjQ0NDQ0NDNAiyQNDQ0NDc0M0CJJQ0NDQ0MzA7RI0tDQ0NDQzAAtkjQ0NDQ0NDNAiyQNDQ0NDc0M0CJJQ0NDQ0MzA7RI0tDQ0NDQzAAtkjQ0NDQ0NDNAiyQNDQ0NDc0M0KOyaGgIolKpIJPJoFQqoVQqoVKppv3/8fFxmEwmy+Odd95BREQE1q9fDyaTCSaTCTabDYFAAFdXVwgEgmn/383NDT4+PuBwOIv9q9PQLAlokaShmQdGoxHd3d1oa2tDX18f+vv70dfXN+UxMDCA8fFxsFgs8Pl8uLi4gM/nT3m4uLjAxcUFXC4XbDbbIoi+vr7g8/kwGo0wGAwwmUwwGAzo6enB+Pg4JiYmMDExMeX/zQ+KouDu7g6JRAJfX1/4+fkhICAAvr6+8PX1hb+/PyIiIuDt7Q0Gg7HYLyUNjV1Dz5OkoZkBiqIgk8nQ1NSEpqYmNDY2Wh5tbW0wmUyQSCTw8vKCj48PfHx8IJFILKIUFBSE4OBg+Pj4gMmc28mGXq/HL7/8ggsvvBBOTk6z/jmDwYDu7m50dXWhu7sbvb29FhGXyWSQy+UYGBiATCaDm5sbIiIiEB0djZiYGERFRSEqKgqRkZEQCARzfbloaJYktEjS0GDSM2xqakJpaSlKSkpQXFyMmpoajI2NQSwWIygoCCEhIYiMjERsbCwSEhIQGxtLLKw5X5GcLaOjo6iurkZtbS0aGhrQ0tKCzs5OdHZ2YmxsDBKJBMnJycjIyEBaWhrS0tLg7+9vV56n0WjEM888g127dkEqlcLPzw+33nornnjiCbvaJ41jQ4skzXmHyWRCQ0MDSkpKLIJYVVUFk8mEqKgoxMXFITU1FZmZmUhKSoJQKLT5HkmL5Nno7+9HWVkZCgsLUV5ejvr6erS3t8PDwwOpqakW4czIyEBAQIBN93YqL774Il555RV8/PHHiI+PR0lJCbZv344XXngB999//6Lti2ZpQYskzZLHZDKhpqYGhw8fRl5eHo4cOQKNRoPo6GjEx8cjLS0NWVlZSE1NhbOz82JvF8DiiuR0jI6OoqCgAAUFBRbhbGtrQ1BQEHJzc5Gbm4u1a9ciMDDQZnu6+OKLIRaL8f7771ueu/LKK8Hj8bBr1y6b7YNmaUMn7tAsOUwmE2pra88QxeTkZGRlZeHuu+/G2rVr6QzQOSAUCnHBBRfgggsusDw3NDSE/fv34+DBg/jb3/6G7du3IzAwEOvWrUNubi7WrFlDVDSzsrLw7rvvoqmpCVFRUaisrMSxY8fwyiuvEFuT5vyD9iRplgRKpRK//vorvv/+e/z888+YmJiwiOKmTZscThTtzZOcDWbRPHDgAIqKilBfX4/Q0FBcdtlluOyyy5CVlQU223r35SaTCX/605/w8ssvg8ViwWg04oUXXsDjjz9utTVoaGhPksZh6e7uxo8//ojvv/8ehw8fhp+fH3Jzc/Hxxx9j48aNDiWKSwFPT09cf/31uP766wFMiuZ3332HH3/8EVu3bgVFUbjwwguxdetWbN68GW5ubgta76uvvsLu3bvx2WefIT4+HhUVFXjwwQfh5+eHW265xRq/Eg0N7UnSOA4URaGqqgrffPMNvv/+e9TW1iI5ORkbN27ENddcg5SUlMXeotVwRE/ybBgMBhw4cADffPMN8vLy0N3djdWrV2Pr1q244oor4OfnN2ebgYGBeOyxx7Bz507Lc88//zx27dqFhoYGa26f5jyG9iRp7J7Ozk7s3r0bn376KTo7O7Fq1Srs2LED11xzDSQSyWJvj2YWsNnsKWea1dXV+PLLL/HRRx/hoYceQk5ODm6++WZcccUVs/YwJyYmzqg/ZbFYMJlMVt8/zfkL7UnS2CUjIyP4+uuv8emnn+LkyZPIzMzEtm3bcPPNNy9KSYatWWqe5NloaWnB+++/jz179qCjowOXXHIJbrrpJlxwwQVnzTa+9dZbceDAAbzzzjuIj49HeXk57rzzTtx2223429/+ZsPfgGYpQ4skjd2g0+nw448/4pNPPsHevXsRFRWFK6+8ErfffrtNSwvsgfNJJE+lqKgI77//Pn788Ueo1WrLjdHKlSvPaBCgVCrx5JNPYs+ePRgcHISfnx+uu+46PPXUU3ZTykPj+NAiSbPotLW14Z133sH7778PLpeLrVu34vbbb0dycvJib23ROF9F0ozRaMTevXvxySefYN++ffD398c999yDm266CSKRaLG3R3MeQY/KolkUjEYjvv/+e2zcuBExMTEoKyvDW2+9hc7OTvz73/8+rwWSZvJs8eKLL8ZXX32Fnp4e3HHHHXjvvffg6+uL7du3o7S0dLG3SHOeQIskjU0ZGhrCSy+9hNDQUPzud79DQkICmpqa8Ntvv+Hqq68Gi8Va7C3S2Blubm54+OGHUVVVhd9++w3j4+PIycnBihUr8Nlnn0Gn0y32FmmWMLRI0tiE5uZm3HHHHfD398d//vMfPPnkk+jq6sKrr76KkJCQxd4ejYOwatUqfPXVV+js7MSGDRvw2GOPISAgAM8//zwUCsVib49mCUKLJA1RKioqcM011yAhIQFSqRSHDh1CSUkJ7rjjDjq5gmbeeHt74/nnn0d7ezteffVV7NmzB4GBgXj00UchlUoXe3s0SwhaJGmIkJ+fjwsuuAArV64Em81GZWUlfvzxR6xcuXKxt0azhGCxWLjhhhtQWlqKr7/+GgUFBQgJCcHdd9+N9vb2xd4ezRKAFkkaq0FRFH7++WdkZWXhwgsvRHBwMJqamvDZZ58hJiZmsbdHs8S54IILcPToURw8eBAdHR2IiYnB9ddfj5qamsXeGo0DQ4skzYKhKAp79+5FcnIybr75ZmRlZaG9vR3vvPPOeVffSLP4ZGdnY+/evSgpKYHBYEB6ejouv/xyulUdzbygRZJmQZw8eRJr1qzBddddh4suugidnZ34xz/+AS8vr8XeGs15zrJly/DVV1+htrYWzs7OSE5Oxu23346enp7F3hqNA0GLJM28qK+vx9atW7Fu3TrExcWhpaUFL774IlxdXRd7azQ0UwgPD8eXX36JwsJCdHd3IzIyEn/4wx8wPDy82FujcQDojjs0c6K7uxvPPPMMdu/ejcsuu8xS80hzdoxGI3Q6HQwGwxkPo9EIg8EAk8kE88exu7sb4+PjiIyMBIvFAoPBAIvFApvNBpvNnvL/5oezs/MZDb9pzuTw4cN47LHH0NDQgEcffRQPPPAA+Hz+Ym+Lxk6hRZJmViiVSvzlL3/BG2+8gdWrV+Pll19GUlLSYm/LLtDpdFCpVJiYmIBGo4FWq4VGo5nyMBgMAHCGuJ36byaTaelP2t3dDQDw9/e3PGcW09PF1SywAODs7Awul2t5cDgcy/+7uLjAxcXFqoOPSRESEoLOzs4znr/nnnvw5ptvWmWNb775Bk8++SSGh4fx4osv4tZbb6VvMmjOgBZJmrNCURS+/PJLPPTQQ/D19cUrr7yCtWvXLva2bI7RaIRKpbI8xsfHLf+v1+vB4XDA5/OnCNTpQuXs7HxGk+6ZmGvvVpPJNEWcpxPq8fFxGAwGcLlcuLq6Wh4uLi6W/852f6SRyWQwGo2Wf9fU1GDjxo04dOiQVd9/JpMJ7777Lp599lkEBgbi7bffRmpqqtXs0zg+tEjSzEhtbS127tyJmpoaPPXUU7j33nvPiztto9GIsbExKBQKKBQKjI6OYmxsDCwWa0ZxsXYTchINzimKsni9p4v9+Pg4mEwmhEIhRCKR5b+urq52IZwPPvggfvrpJzQ3NxPZz9jYGP74xz/io48+wvbt2/HCCy/Aw8PD6uvQOB72H3ehsTlKpRLPPPMM3nzzTWzbtg3ffPMNPD09F3tbxJiYmIBcLsfQ0BAUCgWUSiXYbDZEIhFEIhGioqIgFArB5/PtQjDmC4PBAIfDAYfDOePvaTKZoFQqLTcF7e3tGB0dBYPBgFAohLu7Ozw9PeHp6WnzTkk6nQ67du3Cww8/TOz1d3Nzw9tvv4277roL99xzDyIjI/Hyyy9j+/bt58WNIc3M0J4kjQWKovDFF1/g4Ycfhq+vL958880l2SHHLIpmYVSr1RCJRPD09IS7uztEIhF4PN6iCqI9jMoymUxQqVRQKBQYGRmBXC6HSqWCUCiEl5eXzUTzq6++wvXXX4+uri74+fkRXQuY/L0//PBDPPHEEwgMDMRbb72FtLQ04uvS2Ce0SNIAADo7O7Fjxw5UVFQsudCqwWCATCaDVCqFXC63iKKXlxe8vLzg4eFhd8ks9iCS06HRaDA0NGS5yTCLpre3NyQSCTw8PKx+c7F582Y4Ozvjxx9/tKrdczE2NoZHH30UH330EX73u9/hxRdfpLNgz0NokTzPoSgK7733Hn7/+99j48aNePfdd5dEIwC1Wo2BgQFIpVLIZDLweDxIJBL4+PjYpSiejr2K5OloNBrI5XIMDg5iYGAAACAWiy2v9UJf587OToSFheHbb7/FZZddZo0tz5mysjLceuutmJiYwMcff4zs7OxF2QfN4mDfVwoaonR1deG2225DTU0N3n33XVx33XWLvaUFoVQq0dfXB6lUitHRUbi7u0MikSA+Pt5uElCWGlwuFwEBAQgICIDJZMLIyAikUinq6+tRWloKLy8vSCQS+Pn5gcPhzNn+hx9+CB8fH1x00UUEdj87UlNTUVZWhieeeAIbN27EXXfdhRdeeAE8Hm/R9kRjO2hP8jyEoij83//9H37/+99j/fr1eO+99xzWe1Sr1ejt7UVPTw+USqXFixGLxfO6KNsLjuJJng2VSgWpVIr+/n6MjIzA29sbgYGBkEgks/IwTSYTQkNDcd111+Gll16ywY7PTWlpKbZv3w61Wo2PP/4YWVlZi70lGsLQInme0d3djR07dqCyshKvvvoqrr/++sXe0pzR6/Xo7+9HT08P5HI5PD09ERAQAD8/P4cVlNNZCiJ5KhMTE+jp6UFPTw8mJibg6+uLgIAAeHt7z3j2/euvv2Lz5s1obGxEVFSUjXc8MwaDAX/+85/xxhtv4O6778bzzz9Pe5VLGFokzyO++OIL3HnnnVi/fj3effddeHt7L/aWZg1FUZDL5ejs7ER/fz8EAgECAgLg7++/JC9QS00kzVAUhbGxMXR3d6O3txcURSEgIADBwcEQCASLvb05UVJSgu3bt0On0+Hrr79GYmLiYm+JhgC0SJ4HqNVqPPDAA/jyyy/x2muvYfv27Yu9pVmj0+nQ1dWFjo4O6PV6BAUFITAwEG5ubou9NaIsVZE8ldNvfDw8PBASEgJfX1+Hyaw2GAx46KGH8P777+OVV17B7373O/rse4nhGO/EReKtt95CYmIi3Nzc4ObmhpUrV2Lv3r2Wr7/77rtYu3Yt3NzcwGAwoFAozrAREhICBoMx5XH6+cp7772H4OBgpKSkoLCw0Kq/Q319PdLT01FYWIiioiKHEcjR0VGUl5fj119/RX9/P2JiYrBp0ybEx8cveYE8X2AwGPD29kZ6ejo2bdoEHx8f1NXV4ddff0VDQwM0Gs1ib/GcsNlsvPHGG9i9ezeefPJJXHPNNRgdHbXZ+i+99BIYDAYefPBBy3Nr164945pz1113Tfm5H374AVFRUYiOjsZPP/1ks/06IrQneRZ+/PFHsFgsREZGgqIofPzxx/j73/+O8vJyxMfH47XXXrN8kB9//HGMjIxAJBJNsRESEoIdO3bgjjvusDwnEAjg4uICYDLDdP369fjkk0/Q29uLp556CnV1dVbZ/8cff4ydO3fiuuuuw7///W+7T2ShKApSqRQtLS0YHR1FQEAAQkNDIRQKF3trNud88CSng6IoDA4Ooq2tDXK5HL6+voiMjHSI90B3dze2bduG/v5+fP3110hPTye6XnFxMa655hq4ubkhNzcXr732GoBJkYyKisJzzz1n+V4+n2+5udRqtYiIiMCHH34IiqJw2223obW11eadlBwFugTkLFxyySVT/v3CCy/grbfewsmTJxEfH2+5ezt8+PBZ7QgEAkgkkmm/NjY2BpFIhMTEREgkEqjV6gXvW6VS4a677sIvv/yC999/H9u2bVuwTZKYTCb09PSgpaUFOp0O4eHhyMzMpD+05yEMBgNisRhisRgqlQptbW3Iz8+Hp6cnoqKi7Lo9YmBgIPLz8/HYY49h9erVePHFF/HAAw8QCb+qVCrccMMNeO+99/D888+f8XU+nz/jNUer1YLFYiE5ORnApDes1Wrpz9sM0OHWWWI0GvHFF19gfHx8zq3aXnrpJXh6eiIlJQV///vfLWOTACAhIQGJiYkQCoWIj4+f9g0/F2pqapCamorGxkYUFxfbtUAajUa0tbXhwIEDaGpqQlhYGDZu3IjIyEj6A0sDV1dXJCYmYuPGjRAKhTh58iTy8/MhlUphrwEwFouFv//97/j222/xt7/9DZdeeum0xzALZefOnbjooouwYcOGab++e/dueHl5ISEhAY8//jgmJiYsX3Nzc8P27dvh6+sLPz8/3H333Q6XNGVTKJqzUlVVRbm4uFAsFosSCoXUzz//fMb3HDp0iAJAjYyMnPG1f/7zn9ShQ4eoyspK6q233qJEIhH10EMPnfF9crmcmpiYWNBe9+zZQ7m6ulL33HMPpdfrF2SLJDqdjmpsbKT27t1L5eXlUT09PZTJZFrsbdkVOp2O+u677yidTrfYW7EbdDod1dTUZHnfdHd32/X7pr+/n8rOzqYiIiKohoYGq9n9/PPPqYSEBEqtVlMURVFr1qyhHnjgAcvX33nnHWrfvn1UVVUVtWvXLsrf35+6/PLLz7CjUCiosbExq+1rqUKL5DnQarVUc3MzVVJSQj322GOUl5cXVVtbO+V7ziaSp/P+++9TbDab0mg0VtujyWSinnvuOYrP51Pvvfee1exaG4PBQLW0tFC//PILdfToUUoqldr1RW4xoUVyZgwGA9XW1kbt37+fOnjwINXf32+37yO9Xk/dfvvtlFAopPbt27dge11dXZSPjw9VWVlpee50kTydgwcPUgColpaWBa9/PkKL5BxZv349deedd055bi4iWVNTQwGw2p3l+Pg4ddVVV1G+vr5Ufn6+VWxaG5PJRHV2dlL79++n8vLyaHGcBbRInpvTb7rkcvlib2lGXn/9dYrH41H/+Mc/FvTe37NnDwWAYrFYlgcAisFgUCwWizIYDGf8jEqlogBYRaTPR+jEnTlingA/XyoqKsBkMuHj47PgvXR3d+OSSy4Bk8lEUVERAgICFmzTmlAUhYGBAdTV1cFoNCI2NhYBAQF0HRmNVWCxWAgPD0dQUBBaW1tRUFAAb29vxMbG2l2Z0P3334/4+Hhcd911qKysxLvvvgsulztnO+vXr0d1dfWU57Zv346YmBg8+uijYLFYZ/xMRUUFAMDX13deez/foUXyLDz++OPYsmULgoKCoFQq8dlnn+Hw4cPYv38/AEAqlVpKFgCguroaAoEAQUFB8PDwQEFBAQoLC5GbmwuBQICCggI89NBDuPHGG+Hu7r6gvZ04cQKXXXYZ1qxZg127ds3rA0eSkZER1NTUQKVSITo6GiEhIQ5TIE7jWDg5OSEmJgahoaFoamrCkSNH4O/vj9jYWLvqxrR+/XoUFBRYPrfffffdnIVLIBAgISFhynMuLi7w9PREQkICWltb8dlnn+HCCy+Ep6cnqqqq8NBDD2H16tV0R6D5stiurD1z2223UcHBwZSzszPl7e1NrV+/nvr1118tX3/66acpAGc8PvzwQ4qiKKq0tJTKzMykhEIhxeVyqdjYWOrFF19c8Hnkrl27KB6PRz3zzDOU0WhckC1ro9FoqPLycurHH3+k6uvr6XDhPKHDrfNHpVJRxcXF1E8//UQ1Nzfb3WdEqVRSF110EeXr6zvlbHG+nHom2dXVRa1evZry8PCgOBwOFRERQf3hD3+gRkdHF7zO+QrdTMDB+Mc//oFnnnkGH3zwAa655prF3o4FiqLQ0dGB+vp6y12tuWECzVQMBgM0Gg00Gg0MBgNMJhOoyfwAUBQFk8mE/v5+DAwMIDExEWw2GwwGA0wm09JBxdnZGVwuF1wu1yE99N7eXjz66KPYu3cvJiYmLMXt1izAl8vlqKqqAgAsW7bMrnoVm0wmPPzww/joo4/www8/YPXq1Yu9JZoZoMOtDoLJZMIf//hHfPDBB/jpp5+wdu3axd6SheHhYVRVVcFgMCAtLQ1isXixt2RzKIqaIn5ardby/+Z/q9VqaLVaGAwGMBgMcLlcODk5nSGADAYDcrkcwKSYmO2bxdRkMkGn01nOxs2CyeFwLMJ56sP8/HTnVYvByMgIsrOzkZubi71798Lb2xvNzc0LPoI4HS8vL6xduxZtbW0oKiqCWCxGfHy8XYRgmUwmXnvtNfj6+mLLli3YvXs3tm7dutjbopkG2pN0APR6PbZv345Dhw7h559/tnTKWGx0Oh1qa2vR29uLyMhIRERE2M2FmCQURUGpVEKhUGB0dBQKhQJjY2MwGAxgMpnTCtTpzzk7O581gWk2benMSWQzifKp/09RFDgcDoRCIUQikeW/PB7P5olUjz32GI4fP478/HybralWq1FXVwepVIro6GiEhYXZjQf+4YcfYufOnXj11Vfxu9/9brG3Q3MatEjaOePj47jyyivR1taGX3/9FSEhIYu9JQBAf38/KisrLS31+Hz+Ym+JCCaTCSqVCgqFwvIYGxsDAAiFwimiw+fzLaHRhWLN3q0URUGr1WJiYsLyO4yOjkKpVMLJyWmKaNpCOOPi4rB582b09PRYkmzuueeeKf2NSSGXy1FZWQk2m43U1FS76TTz008/4frrr8fvf/97PPXUU3QGuB1Bi6QdI5fLceGFF8JkMmHfvn3w8vJa7C1Bp9OhuroaAwMDSEhIQGBg4JL6QE9MTEAmk03xEAFMERGhUAiBQED097ZFg3Oj0Wj5Pc3/NQvnqb+vt7e3VfdgzsR++OGHcfXVV6O4uBgPPPAA3n77bdxyyy1WW2cmjEYjGhoa0N7ejujoaERERNjFe9ic+XrVVVfhjTfeOC+iMo4ALZJ2Sk9PD9avX4+goCB89913dpEEI5VKUVFRAZFIhKSkJLs421koFEVBoVBYynmUSiXc3d0tAiESieDq6mrzi+hiTQExC6dZNEdGRqBSqeDp6QmJRAKJRLLg96KzszPS09Nx4sQJy3P3338/iouLUVBQsNBfYdYMDw+jrKwMzs7OSElJsQuvsqGhARdccAHS0tLw+eef0z2M7QA6cccO6erqwpo1a5CSkoKvvvoKbPbi/pmWmvdoMBggl8stwmgymeDj44PIyEiIxeLzajTV6bBYLHh4eMDDw8Py3MTEhOW1qq2thaurq0Uw3d3d5/xe8PX1RVxc3JTnYmNj8c0331jld5gtHh4eyM3NRX19PY4cOWIXXmVMTAyOHz+O9evX48orr8R//vMfux9xt9ShRdLO6OjowJo1a5CZmYnPP/980UMuQ0NDKCkpgVAoRG5ursN6jxqNBgMDA5BKpZDJZOByuZBIJEhLS4Onp6fdJHHYI3w+H2FhYQgLC4Ner8fg4CCkUilOnjwJJpMJsVgMiUQCb2/vWd3QZWdno7GxccpzTU1NCA4OJvUrzAiLxUJCQgL8/PxQVlaGgYEBpKWlLer73N/fH4cPH0Zubi4uv/xyfPvtt3bXLOR8gg632hHt7e3IyclBTk4Odu/evagXboqi0NTUhObmZsTHxyMkJMThvEeVSoXe3l5IpVKMjo7C3d0dEokEYrGY+JniQnGEocsmkwnDw8MWL1OtVsPb2xsSiQR+fn4zhgqLi4uRlZWFZ599Ftdccw2Kiopwxx134N1338UNN9xg49/ifxgMBlRXV0MqlSIlJWXGeYy2QiaTITc3F35+fvjhhx9ooVwkaJG0Ezo6OpCTk4OUlBS8+uqrCA8PX7S9aDQalJaWQq1WIyMjwyGmwpsxGo3o7+9HZ2cnhoeH4ePjA19fX4jFYocKWzmCSJ6OUqnEwMAA+vr6MDo6Cj8/PwQHB8PT0/OMG5KffvoJjz/+OJqbmxEaGoqHH37YJtmts6G7uxtVVVUIDg5GXFzcot2smkwmHD58GPfccw9CQkLw/fffO9R7eKlAi6Qd0NXVhdWrV2PFihX497//jcLCQsTFxSE0NNTmexkcHERZWRm8vb2RmJjoUBfozs5OdHd3w8nJCcHBwQgKCnLYi4ojiuSpjI2NWf4eHA4HwcHBCAwMdJi/h0qlQklJCRgMBtLT022eOGcymVBWVoaxsTFER0dj06ZNCAkJwZ49e+hkHhtDi+Qi09PTg9WrVyM9Pd1yBjk8PIyCggKbCqXJZEJDQwPa2tqwbNkyBAUF2XU4Epjcs1QqRVtbG0ZGRs7quTgaji6SZk737H19fREWFjYlMcheMRqNqK2tRXd3N1JSUuDn52eTdU8VyOzsbHA4HAwMDGDt2rWIjIzEN99849DvCUeDFslFZGhoCNnZ2YiNjcV//vOfKUk6thRKnU6HkpISS3jV3sYMnY5Op0NnZyfa29sBAGFhYQgKClpSd9hLRSRPRaVSob29HZ2dnXBzc0NYWBj8/PzsPmmqr68P5eXlCA0NRWxsLNEbsOkE0oxUKsXq1auRkZGBTz/91O5ft6UCLZKLxPj4ONatWwcXFxf8+uuv02YF2kIolUolCgsLIRAIkJqaatcXZKVSiba2NnR3d0MkEiEsLAwSiWRJXiyWokia0ev16OrqQnt7O4xGI0JCQhASEmLXoVhbfE7OJpBmOjo6kJ2djWuvvRb//Oc/rb4HmjOhRXIR0Ov1uOyyyyCVSpGfn3/W8w6SQjkwMICSkhKb3CEvhPHxcTQ0NKCvrw/+/v4IDw93qGSi+bCURdIM9d+h3K2trRgZGUFERATCw8Pt9vc1R1w0Gg0yMzOtek45G4E0U1lZidzcXDz++OP4wx/+YLU90EwPLZI2hqIo3HrrrThx4gROnDgxq/E91hZKiqLQ2tqKhoYGJCcnIyAgYME2SaDRaNDU1ITOzk4EBAQgOjp6yfaIPZ3zQSRPZWhoCHV1dVCpVIiKikJISMii1whPh8lkspxTZmRkWGX81lwE0szhw4dx8cUX46233sJNN9204D3QzAwtkjbmsccew6effoqjR4/OqczDWkJpNBpRUVEBuVyO5cuXW308kTXQ6/VobW1FS0sLvL29ERsba/fnpNbmfBNJ4H+eZV1dHYxGI2JiYhAQEGCXEY7Ozk5UV1cjLi4OYWFh87YzH4E08/XXX+OWW27BN998gy1btsx7DzRnh+64Y0NeffVVvPPOO8jLy5tzHaSHhwdWrlxp6W05H6HU6/UoLCyE0WjEmjVr7K442Wg0oqOjA01NTRAIBMjKynKILEga68BgMCzNHnp6elBfX4+WlhbExsZCLBbblVgGBwfD1dUVRUVFUKvViIuLm/P+FiKQAHD11VdjaGgIV199NQ4ePIjMzMw5/TzN7KBF0kZ88cUXePLJJ/H9998jJSVlXjYWIpQajQYFBQXg8XhYsWLFoveDPRWKotDT04OGhgaw2WykpKTY3UWRxnYwGAwEBgbCz88PHR0dKC8vh0AgQFxcnF3dNHl6eiInJwcFBQXQaDRISUmZdRLZQgXSzF133YX+/n5s2bIFBQUFiI6Onpcdmpmhw602oKioCLm5ufi///s/XHfddQu2N9fQq0qlQkFBATw9PZGcnGw32aDm8Fp9fT30ej1iY2PtNrxma87HcOtM2Hv43XwDyuVykZGRcc4bUGsJ5KnccccdOHz4MIqKiuzyCMWRoUWSMH19fUhNTcXtt9+O559/3mp2ZyuUIyMjOHnyJIKCguYVEiKFUqlEZWUllEqlXSdqLBa0SJ7JqYlcgYGBiI+Pt5vXxnyUYTKZsGLFihlrdkkIJDB5VLFu3TpwOBz88ssvdhUpcnTsw6VYoqjValx66aVYsWIFnnvuOavaNode6+rqLEX1pzM4OIgTJ04gMjIS8fHxdiGQFEWhpaUFR44cgUgkwoYNGxAeHk4L5BLhmWeeAYPBmPKIiYmxim0ul4vExESsW7cOExMTyMvLw+DgoFVsLxQnJyesXLkSXC4X+fn5mJiYOON7SAkkMDnN5Ntvv0VLSwtdFmJl6NsNQlAUhR07dkCn0+Gzzz4jEuI82xllX18fysrKkJSUhMDAQKuvPR+USiXKy8uh0+mwcuVKeHp6LvaWaAgQHx+PAwcOWP5tba/GxcUFK1euRGdnJ4qLi+Hv728XXiWLxUJGRgaqqqqQn5+P7OxsuLq6AiArkGY8PT3x/fffIycnB4mJidi+fbvV1zgfoUWSEC+//DLy8vJw8uRJorV90wllb28vysvLkZ6evujjfoCpdZkhISGIiYmhw0GYHM2k0Wig0+lAUZTlYTKZIJfLAUyOS3JycgKDwQCTyQSDwQCHwwGHw7Fb75vNZhN/3zEYDISEhMDHxwcVFRU4dOgQkpOT4ePjQ3Td2ewrMTERbDYbx44dQ3Z2NlxcXIgLpJlly5bh/fffx0033YTo6GhkZWURW+t8gb5SEeDnn3/Gs88+i7179yIkJIT4eqcK5cjICPr6+pCRkQGxWEx87XOhUqlQXl4OrVZ73niPBoMBarUaGo0GGo0GWq3W8v+nPoxGI5hMJpycnCwCaBZDpVIJAKivr58ioEajETqdDgDg7OwMDocDLpdreXA4HPB4PMvzPB7P5olazc3N8PPzA5fLxcqVK/HXv/4VQUFBRNbi8/l251UyGAzLiK3jx49DKBRCrVYTF0gzV155Jaqrq7F161aUlpbaTSTJUaETd6xMQ0MDli9fjr/97W+4++67bb52Y2MjQkNDkZiYaNO1T4eiKLS1taG+vh7BwcGIjY1dkt6jwWDA6OgoFAqF5b9KpRIsFusMATOL2Kn/NnuJp3O2xB2Kos4Q3umEWKvVgslkws3NDSKRCEKhECKRCAKBgJhw7t27FyqVCtHR0ejv78ezzz6L3t5e1NTUQCAQEFnTzMTEBMrLyzE+Pm4XXqXRaMSRI0egUqmQnZ1t0xtEk8mEa665Bq2trThx4gR4PJ7N1l5q0CJpRSYmJpCRkYGsrCy89957Nl3bHGKNjY1FQ0PDos2jBKZ6jykpKUvGezxVEM0PlUoFDoczRYREIhG4XO6CEqWskd1KURRUKpVlr+a9UxQFoVA4Zb+khFOhUCA4OBivvPIKduzYYXX7p0NRFDo6OlBbW4uAgIBF8ypPPYP08fFBT08PsrOzid8onIpGo8Hy5cuxcuVKvPPOOzZbd6mx9G7tF5EHHngATk5OePPNN226rnmUjznE6u7uvqDOPPNlqXmPFEVhZGQEUqkUAwMDGBsbswiiSCSCv78/hEKh3d6lMxgMCAQCCAQCS8jtVOEcHR1Fd3c3ampqYDKZ4OHhAYlEAolEYrXm3SKRCFFRUWhpabGKvXPBYDAQGhoKsViM8vLyRTmrPD1Jx9nZ2RJ6XbVqlSWZhzRcLhdfffUVMjMzsW7dOmzbts0m6y41HPcKZmd8/vnn+Prrr1FcXGzTuYaDg4MoKytDWlqa5QzSGi3s5oper7dcGFasWAEvLy/ia5LAYDBAJpNZhNFkMkEsFiMyMhJeXl5218pvrpxNOM2/d21tLVxdXSEWi+Hr6wt3d/d5e8UqlQqtra02b8LN5/ORlZWFjo4OFBUVITIyElFRUcTLoGbKYo2NjYXJZMKJEyeQk5NjsxurmJgYvPbaa7jjjjuQnp4+53aYNHS41So0NzcjNTUVb775Jm6++WabratQKHD8+HEsW7Zs2sQIWw1uHh8fR2FhIbhcLtLT0x1u+LFarcbAwACkUilkMhl4PJ7Fo/Lw8FiUDkWL2UxAr9djcHDQcqPAYDAgFoshkUjg4+Nz1ujAI488gksuuQTBwcHo6+vD008/jYqKCtTV1VllYsZ8GB0dRWFhIdzd3ZGSkkIsunGuMg+KolBeXo7R0VGsWrXKpn/Xm266CbW1tSgoKLDruZ32CC2SC0Sr1WLFihVITEzExx9/bLN1VSoVjh07hoiICERERMz4faSFUiaTobi42NIBxV5a3p0LjUaD7u5u9PX1YXR0FO7u7hZhdHV1XfTGC/bSccdkMmF4eBgDAwPo7++HWq2Gl5cXAgIC4Ofnd0YZyrXXXoujR49iaGgI3t7eWLVqFV544YVF92C0Wi2Ki4thMBiQmZlpdU9utnWQJpMJRUVFMBgMWLlypc3KeCYmJpCWloZNmzbh9ddft8maSwVaJBfI/fffjwMHDqCsrMxmoTiNRoP8/Hz4+voiISHhnN9PQigpikJ7ezvq6uqwbNkyBAcHW8UuSSiKgkwmQ0dHBwYGBuDh4YGAgABIJBK7u7u2F5E8HaVSCalUiq6uLmi1WgQGBiI4ONiueqnOhMlkQlVVFaRSKZYvX261ZulzbRRgMBhw4sQJcDgcLF++3GY3ZNXV1cjKysLu3btx6aWX2mTNpQAtkgvgu+++w0033YQTJ05g2bJlNllTr9fj+PHjEAgESE1NnfUHzJpCeerFJiMjw+6zV7VaLTo6OtDZ2QmTyYSgoCAEBQXZLIFiPtirSJqhKArDw8Po6OhAX18fhEIhQkJC4O/vb7dNDgDr39zNt5OOTqdDfn4+PD09kZSUZDOhfPPNN/HEE0+gsrKSWO3qUoMWyXkilUoRGxuLF1980Wb1kEajESdPngSTyURmZuacQ5vWEMpTw1bLly8n2k1ooYyOjqK1tRW9vb3w9PRESEgIJBKJQ4SE7V0kT0Wn06Gnpwft7e3Q6/UIDg5GaGioXSc5WeOYYKGt5tRqNY4ePYrg4GCr9bedDVdddRUGBwdx+PBhh/gsLDa0SM4DiqJw2WWXQafTYd++fTZbs6KiwnLoP9/kg4UIpa0SIBYCRVHo7+9HW1sbFAoFAgMDERoa6hDhwFNxJJE0Yw5nt7W1QSaTwc/PD+Hh4RCJRIu9tWlZSMKZtXqxjo2NIT8/H0lJSQgICJiXjbmiUCgQHx+Pxx57DPfdd59N1nRkaJGcB7t378b999+Pqqoq+Pv722TN1tZWNDc3Y82aNQtOOpiPUJobptsqlX6uUBSFwcFB1NfXQ6vVIiwsDMHBwQ6XaWvGEUXyVFQqFdra2tDV1QUfHx/ExsbatJB+tphLl5RKJTIzM2e1R2s3Kx8YGEBxcTGys7NtNgtyz549uPHGG1FVVbXoSVX2Di2Sc6S/vx9xcXH4xz/+YZMOIsBkLWRRURGysrKslmwwW6GkKApNTU1oaWlBamoqfH19rbK+NRkeHkZ9fT1GR0cRFRWF0NBQuz4Xmw2OLpJmNBoNGhsb0dXVhcDAQERHR9td8wWKotDQ0IC2tjZkZGSctfEAqWkeLS0taG1txZo1a2wWpr722mvR29uLI0eO0GHXs0CL5BygKAqXXnopDAYD9u7da5M1VSoVjh49ioSEBKsftJ9LKCmKQl1dHbq7u5GVlWV3IUulUon6+noMDg4iPDwcERERDi0op7JURNKMSqVCQ0MDpFIpQkNDERkZaXdefnd3NyorK5GWljbtzSDJcVfmGkpzn1db3OSZw66PPvoo7r//fuLrOSq0SM6BXbt24cEHH0R1dbVNPCq9Xo+jR49CIpEgPj6eyBozCSVFUaiuroZUKkVWVpZdZYKq1Wo0Njaiu7sbQUFBiI6Otuskkfmw1ETSjEKhQF1dHRQKBSIjIxEaGmpXZ9vmY4WUlJQpRym2mAdpNBpx/PhxuLi4zClzfSF8//33uP766+mw61mgRXKW9Pf3IzY2Fq+88gpuu+024utRFIXCwkJQFIUVK1YQ/cCcLpQURaGyshIymQzZ2dl2k8Gq0+nQ3NyM9vZ2SCQSxMTE2JV4W5OlKpJmZDIZ6urqoNFoEB0djaCgILsJ+ZnPCM0Dy20hkGY0Gg2OHDliiYzYguuuuw49PT102HUGaJGcJeYw6y+//GKT9cye0po1a2xykTQLZWxsLEZGRjAyMoLs7Gy7OD+iKMrSiFskEiEuLs5uMyatxVIXSWDy79rX14f6+nowmUwkJydb7cx9oZjzABISEiCXy20ikGZGRkZw/Phxm81fpcOuZ4cWyVnw448/Wnof2iKbVS6X4+TJk8jJyYFQKCS+npmhoSEcP34czs7OWLt2rV2EMNVqNSorK6FQKJCcnEx84r29cD6IpBmTyYSWlhY0NTUhNDQUMTExdpF4JZPJUFBQAGdnZ+Tm5tq0K1NbWxuam5uxdu1am6z79ddfY8eOHWhqajpvPmOzhfatz4FarcZ9992HP/7xjzYRSK1Wi9LSUsTHx9tUICmKQmdnJ3g8HgwGA/r7+2229kz76erqQl5eHpydnbFu3Tr6w2tnvPTSS2AwGHjwwQcXZIfJZCIqKgqrV6+GXC7H4cOHMTIyYp1NzhOTyTTl8yCVSm26fmhoKNzd3VFeXg5b+DFXX301VqxYgUceeYT4Wo4GLZLn4KWXXgKfz8cf//hH4mtRFIWysjK4u7sjJCSE+HqnrltZWYnh4WHk5OQgKysLdXV1aG9vt9keTkWtVqOwsBB1dXVIS0tDamqq3WVCnu8UFxfjnXfeQWJiotVsurm5IScnB4GBgTh+/Djq6upgNBqtZn+2nHoGuXr1aqxYsQLV1dXo6emx2R4YDAZSUlKgVCrR2tpqkzXffPNNfPvtt8jPz7fJeo4CLZJnoa2tDS+//DL+9a9/2SQDr7W1FSqVCikpKTYr1jdnsZqTdLhcrmUepa2F0uw9Hjp0CE5OTrT3aKeoVCrccMMNeO+996xe/H6qVzk4OIgjR47Y1KucLknHy8sLy5cvR0VFBfr6+my2FycnJ6SlpaGhocEmr0FkZCTuuece3H333TAYDMTXcxRokTwL9913Hy666CJs2LCB+FrDw8NoaGhAenq6zc6gzHWQUqn0jCQdWwvlqd5jSkoK0tLSaO/RTtm5cyfxz4WbmxtWr16NgIAAm3mVZ8ti9fHxQXp6OsrKymwaevXw8EBMTAxKSkqg1+uJr/f8889DpVLh3//+N/G1HAX7KVCyM3788UccP34ctbW1xNfS6/UoLS1FTEyMzdpSAZPDoru7u7Fq1appyzzMQllQUAAAxAY39/X1oaKiAmKxGOvWrTvvxFGv10On04GiKJhMJlAUBYVCAWCyt6ezszMYDAZYLBacnZ0XNanliy++QFlZGYqLi4mvZfYqJRKJRZzS09OJNLWYTZmHRCJBamoqSkpKbJZ5CgDh4eGQy+WorKxEeno60bW4XC7+/ve/Y8eOHbj22mvpSA7o7NZpUavViI2NxZ133ok//elPxNerrKyESqVCVlaWzcKs/f39KC0tnVUGLanBzae2A0tJSYGfn5/VbNsLGo0GSqUSGo3G8tBqtVP+bfaQmEwmGAwGmEymxWtgs9mgKMoioMBkGI7L5YLL5YLD4Vj+n8vlgsfjwc3NjcjxQHd3N9LT0/Hbb79ZziLXrl2L5ORkvPbaa1Zf71RMJhMaGxvR1tZm9faIc62DbG9vR0NDA9asWWOzGmKNRoNDhw4hKSnJJp+TjRs3QiwWY9euXcTXsndokZyGv/zlL/jss89QXV1N/CzSXI+Vm5sLFxcXomuZMU8emIswWVsoT20svXz5crtreTcfNBoNFAoFFAoFRkdHoVAooNFowOfzwePxzhC0U//t5OQ05QZpuhIQiqKmCOzpYqvRaKBWq6HVauHq6gqRSASRSAShUAihULjgMP53332Hyy+/fIonazQaLcKu1WqJe7nmjjhRUVGIjIxc8E3lfBsFnJroZquOQb29vaiqqsK6deuIl4U0NzcjKSkJBw8exMqVK4muZe/QInkaMpkMYWFhNpnerdfrcejQIUt7Llug0+lw5MgRBAYGznmGnbWE0jyiiMPhICMjwyHDqxRFYWRkBIODgxZhtKY4LaROciaxPnVvYrF4zt2KlEolOjs7pzy3fft2xMTE4NFHH0VCQsKc7M0X88g2Dw8PJCcnz1ukFtJJx2QyoaCgAE5OTsjIyLBJBIiiKBQXF4PBYCAjI4P4evfccw+qqqqQn59vd1N/bAktkqfx4IMPoqSkBMeOHSO+VkVFBcbHx20WZrXGB3uhQimXy1FcXAx/f38kJCQ4VBssg8EAmUwGqVSKgYEBmEwm+Pj4wN3dHSKRCG5ublZLurJ2MwGNRmMRzKGhIQwNDYHP50MikUAikcDDw2Ne7wdbhVtPR6vVoqioCEajEZmZmXPuDGWNVnNarRZHjx619A+2BVqtFnl5eUhMTCRetz00NISIiAjs2rULF110EdG17Bk6cecUOjs78fbbb+PAgQPE1xocHERvby9yc3NtdpdWU1MDnU6HzMzMea+5kGSe9vZ21NbWIiEhwaZ1oAtBrVZjYGAAUqkUMpkMPB4PEokE6enp8PDwcBiRN4d1xWIxgEkRNgt+UVERAEAsFkMikcDHx8eumo5PB4fDQXZ2NiorK3HkyBEsX7581i3trNWLlcPhIDMzE/n5+RAIBDY5K+RwOEhMTERVVRW8vLyIhl09PT2xc+dOPProo7jgggvsogvSYkB7kqdw8803Y2hoCD///DPRdcxh1qioKJuJRUdHB+rr662WbDAXj9JkMqG6uhp9fX1Yvny5zbIC54ter0dvby+6urqgUCjg7u5u8bhcXV1tclNjy7Z0FEVheHgYUqkUUqkUExMT8PHxQUhICHx8fOw61EZRFNrb21FXV4fExMRzjpMj0ax8Lklw1qK4uBgURWH58uVE15mYmEBERARefvll3HjjjUTXsldokfwvNTU1SE9Pt7SEI0l1dTXGxsZsFmY194JdsWIFvLy8rGZ3NkKp0+lQXFwMvV6P5cuX281EkekYGRlBZ2cnenp64OrqiuDgYPj5+dm0Z6eZxezdqlKp0N3dja6uLjAYDAQFBSE4ONgumt3PxODgIEpKShAUFIT4+PhpP1ckp3k0Njais7MTa9asscn7RavV4uDBg0hNTSVepvHqq6/itddeQ1NT06J8FhYbWiT/y8UXXwyhUIjdu3cTXWd0dBT5+flYs2YNBAIB0bWAyTvBI0eOIDY2lojXejah1Gq1OHHiBPh8PtLS0uwyhGcymdDX14e2tjaMjY0hMDAQwcHBiz5lxB4anJtMJgwMDKCzsxMymQwSiQRhYWHzPr8kjUqlwsmTJ+Hh4XFG1yrS464oikJJSQm0Wi2ysrJsEobv6OhAc3Mz1q1bRzQUajAYEBMTg/vuuw8PPPAAsXXsFVokARw7dgybN29GQ0MDAgMDia1DURSOHTsGDw8P4t4qMPnmzs/Ph6enp1V7bJ7OdEKpVqtx4sQJCIVCpKam2t3ZnV6vR3t7O9rb28FisRAaGoqgoCC7mbhhDyJ5KhMTE2hra0NnZydcXFwQHh4Of39/u/u7ajQaHD9+fMr7zlbzIA0GA44dOwaRSISkpCTiNxIUReHo0aMQi8VzzlSfK59++ikeeughtLe32+Tm3p6wr3f4IvH444/j1ltvJSqQANDT04OJiQmbZMKZm6U7OzsTT80/vYWdWq3G8ePH4e7ujrS0NLu6kBqNRrS0tOC3337D4OAgkpKSsH79eoSHh9uFGNkrfD4fCQkJ2Lx5M4KDg9HQ0IBDhw6hv7/fJlMqZguXy8WqVaugVCpRUlICg8Fgs4HJbDYby5cvh1QqRUdHB7F1zDAYDCQmJqKlpQXj4+NE17rhhhsQGBiIV199leg69sh570keP34cmzdvRnt7O7y9vYmto9frcfDgQSxbtswmI7c6OjrQ2NiI3Nxcm9UhDg8P48SJE2AymfD390diYqLdhOVMJhO6u7vR0NAADoeDuLg4eHt7283+TsfePMnTMY+SamxsBJ/PR1xcnFXPuxeKTqfDiRMnoNFo4OTkhFWrVtnsPG1oaAgFBQVYvXq1TZpkVFRUQKvVIjMzk+g6X3/9NX73u9+hu7vbZo1P7AH7ucVfJF544QVce+21RAUSABoaGmyWJj4xMYHa2lqkpKTYtFCfx+OBzWbDYDBAIBDYhQBRFIW+vj4cOnQIzc3NiI+Px5o1a+w+a9PeYTKZCA0NxYYNGyAWi1FYWIiTJ09idHR0sbcGYNKr4/P50Ov14PF4Nr3R8PT0RGhoKMrLyy2tBEkSFxeHoaEh4o3Xr7zySkgkErz33ntE17E3zmuRrKqqQl5eHp544gmi64yNjaGzs9MmnhVFUSgvL4e/vz98fHyIrnUq5rMgX19fZGdno76+ftHmUZqRy+XIz89HVVUVwsLCsG7dOgQEBNDiaEXYbDaio6OxYcMGuLq6Ij8/H6WlpcTDf2fDfAapUqmQm5sLnU6H0tJSmwiWmZiYGBgMBrS0tBBfy9nZGXFxcaiuriY6KYXJZOLhhx/Gyy+/DK1WS2wde+O8FskXX3wRW7duJV6rWFtbi5CQEJsceHd0dGB8fNwmiUFmzFmsHh4eSExMhKen56LMozRjvigWFhZCLBZjw4YNCA0Ntauz0aUGh8NBQkIC1q1bBwaDYfHcbX2ac3qSjqurK7KysqBUKlFeXm6z/bBYLKSkpKCpqQljY2PE1wsODoaTkxPxz9v27dvB4XDOq8bn5+1Vo7W1FXv27MHTTz9NdB25XI7h4WFERUURXQf4X5g1OTnZZuEl89mPm5vblLT7xRrcLJVKkZeXB71ej3Xr1iE6OtouS0+WKnw+H6mpqcjKykJnZyfy8/OhVCptsvZMWazOzs7IysqCQqFARUWFzYTSw8PDZmFXBoOBuLg4NDU1EZ07yWKxcO+99+Kvf/0r8fme9sJ5K5Ivv/wyNm7ciNjYWGJrmIcaR0REED8bNIdZAwICbBZmNZlMKCkpAY/HQ2pq6hlhTFsKpdl7LCsrQ1xc3Lz6edJYDw8PD+Tm5sLDwwNHjhwh7lWeq8yDy+UiKysLMpkMTU1NxPZxOjExMZaMatJ4e3tDKBQSX2vnzp1QqVT49ttvia5jL5yXItnf34+PP/4YTz75JPF1JiYmEB4eTnQdYHHCrLW1tdBoNGct87CFUJ7qPebm5iIoKIg+d7QDWCwWEhISiHuVs62D5PF4yMzMRHNzM/r7+62+j+mwZdiVwWAgNjYWra2t0Gg0xNbhcrm488478cILL9hV+Q8pzkuRfPXVV7FixQqiKdMmkwn19fU2CfeNj4/bPMxqbt+WmZl5zjVJCaVOp0NZWRlKS0tp73GBvPXWW0hMTISbmxvc3NywcuVK7N271yq2T/cqW1parHZxnWujAHOTAfPP2AJ3d3eEhYWhrKyMeNjVw8MDPj4+aGxsJLrOI488gs7OTvz6669E17EHzjuRnJiYwLvvvotHHnmE6Drd3d2gKArBwcFE16EoChUVFQgMDLRZmHVoaAjV1dXIyMiYdb2UtYVydHQUhw8fhlarxbp162jvcYEEBATgpZdeQmlpKUpKSrBu3TpcdtllqK2ttYp9s1e5cuVKdHR04MSJE9DpdAuyOd9OOn5+fggPD0dhYaHNsjSjo6NhMpnQ3NxMfK3Y2Fh0dXVBpVIRW8PNzQ3XX3+9zUekLQbnnUju3r0bYrEYF154IbE1jEYjGhoaEBsbSzyj0hxmjYuLI7qOmYmJCRQVFSE+Pn7OxePWEsq+vj7k5+cjJCQEK1asoL1HK3DJJZfgwgsvRGRkJKKiovDCCy/A1dUVJ0+etOo6np6eWLNmDdhsNo4ePTpvb26hreaio6MhFApRUlJik9IQc9i1ubmZuAcrEAgQGBiIhoYGous8/PDDOHjwoE3OWxeT80okKYrCv/71L9x2221ExaurqwvOzs7EGweYw6wpKSk2CbMaDAYUFRXBz89vXgOXgYUJJUVRaGhoQHl5OdLS0hAVFUV7jwQwGo344osvMD4+jpUrV1rdvpOTE5YvXw5/f3/k5+fPuQjeGr1YGQwGUlNTodPpUF1dPeefnw+2DLtGR0ejv7+faGZxeHg4cnNz8eabbxJbwx44r0Ty2LFj6Orqwt13301sDZPJhJaWFkRGRhK/gFdXVyMwMJB4tyDgf9mzbDYby5YtW5Ct+QilwWBAcXExuru7kZOTA19f3wXtgeZMqqur4erqCg6Hg7vuugt79uwhFqEwJ5kkJyejpKRk1tmv1mxWzmazkZmZib6+PpuVKZnDrqTX4/F4CAgIIB7efeCBB/DBBx8QDe0uNueVSP773//G5ZdfTrSfYm9vLwAQ9yLlcjmGhoaId/8309TUBIVCgYyMDKt44XMRyomJCeTn50Ov12PNmjU26YdpayiKgsFggF6vh1artXgAOp0Oer3eJjVp0dHRqKioQGFhIe6++27ccsstqKurI7qmv78/Vq1ahba2NpSVlZ319yQxzYPP52P58uWora2FXC5fsL1zwWKxEB8fT7yeEQAiIiLQ29uLiYkJYmtccMEFkEgk+OKLL4itsdicNw3OBwcHERAQgMLCQqSkpBBZg6IoHDp0CGFhYUS7+FAUhfz8fIjFYptMFOnv70dZWRlycnKsLlDnGtwsl8tRXFwMf39/JCQkOGzXHIqioFKpMDo6CrVaDY1GA41GA61Wa/n/cwmhk5MTuFwuOBwOuFyu5eHi4gKhUGj1s9kNGzYgPDwc77zzjlXtTodGo0FxcTFMJhOWL19+xu9CetxVZ2cn6urqsGbNGuKDwSmKwvHjx+Hp6Um0ThsAiouLweVyFxz9ORvPP/88vv32W5SVlRFbYzE5b1qRfPjhh0hOTiYmkMBkvZ5OpyM+cksqldqs/lKr1aKiogJJSUlEPDizR1lQUAAAU4RyYGAAxcXFiI+Pn/cZ6GJgFkSFQgGFQoHR0VEoFApQFAU3Nze4uLiAw+FAJBJZhI7D4YDD4YDFYoHBYMBgMGDfvn3YvHkzWCwWjEbjGaKq0Wggl8vR0dEBlUplsSkSiSAUCiESiRYknCaTyWbZn+Zi/8rKShw7dgzZ2dkWsbLFPMjg4GAMDw+joqICK1euJHpUYu6Oc+LECYSGhoLL5RJbKzIyEseOHUNUVBSxKSh33303XnzxRZSWliItLY3IGovJeSGSJpMJb7/9Nh577DFia1AUhebmZoSHhxOdEk5RFOrr6xEVFWWTdmtVVVXw9PQkOt5rOqHs7+9HaWkpUlJSbDJabKEYDAbIZDJIpVIMDAxAr9dbhCowMBDLli2DQCCYtSdsTuxgsVhwcnKyeJFnW98sxgqFAn19fVAqlXB1dYVEIoFEIoGHh8eMF//HH38cW7ZsQVBQEJRKJT777DMcPnwY+/fvn/uLMU/MGaDV1dU4duwYsrKywOfzbTYPMiEhAXl5eejs7CTez9nDwwPe3t5oamoiOhBdJBLBw8MDbW1txLxWT09PXHjhhXj77beX5ISQ80Ikjx49itHRUdxyyy3E1hgaGoJKpSL+4erq6oLRaCS+DjB5viqXy5Gbm0s8CelUoVQoFOjt7UVaWppdJ+io1WoMDAxAKpVCJpOBx+NBIpEgPT0dHh4eNg0Ns9lseHp6wtPT0/KcXq+3CHdRUREAQCwWQyKRwMfHZ8pN1uDgIG6++Wb09/dDKBQiMTER+/fvx8aNG232OwCTXtayZcvAYrFw7NgxCIVCqNVq4gIJTIazU1JSUFxcDB8fH+Jh17i4OBw+fBjh4eFE5zNGRUWhqKgIERERxLLg7733Xlx88cV4/fXXib9utua8EMlPP/0UW7ZsIRrWaGlpQUhICNFSDKPRiMbGRsTFxRG/AGu1WlRVVSExMZHo63YqHh4eiIiIQENDA0JDQ+1SIE0mE6RSKTo7OyGTyeDu7g6JRIL4+HibTHmZC05OTvDz84Ofnx8oisLw8DCkUinq6+tRVlYGf39/BAcHw93dHe+///5ib9cCg8FATEwMBgYGIJPJbCKQZnx8fODv72+TsKtAIEBAQADq6+uRnp5ObB1PT0+4urqiq6uL2BHN6tWr4ePjgx9++AHXXnstkTUWC8fMgpgDGo0GX3/9NVEvcnx8HDKZjPi5WXt7O5ydnW0SfjSHWW0xJNpMf3+/ZTByd3f3os+jPBW1Wo36+nr8+uuvqK2thaenJzZu3IicnBxERkbanUCeDoPBgKenJ+Lj47F+/Xrk5OSAyWSioKAAhw8fRkdHBwwGw2JvE8DkjYh5rFVoaChKSkpsOp8yPj4eKpUKnZ2dxNeKiYmBVCqFQqEgtgaDwUBoaCja29uJ9VplMpm47LLL8MknnxCxv5gseU/y559/hkgkwoYNG4it0dHRAYlEQrTzi16vR1NTE9LT04mHPs1hVvNsQFswMDBgOfj39fWFh4fHtMk8tmZsbAzNzc3o6+uDt7c3UlNT4e3t7fBNDIRCIZKSkhAfH4/e3l60tbWhrq4OISEhCA8Pt5nndjqnJumsWrUKzs7OYDAYOH78OFatWmWTUJ6TkxOSk5NtEnbl8XgIDQ1FfX09kcYNZvz9/VFbWwuZTEasfeXtt9+OlJQUyGQym9Ru24ol70l+8sknuPTSS4mFJw0GAzo7O4lfyJubmyEUCom/+U4Ns9rqQjk8PIzi4mKkpKRYQqyLNY/SzMTEBMrKynDkyBGw2Wzk5uZixYoV8PHxcXiBPBU2m43g4GCsXbsWGRkZGB0dxYEDB9DY2Ghzz3K6LFYGg4H4+HiIxWKr9HudLeawqy0GNUdGRmJ4eBgymYzYGkwmE8HBwWhrayO2Rnx8POLi4vDVV18RW2MxWNIiOTw8jL179+L2228ntkZfXx+4XO6UhAlro9FoLNlpJC/QFEWhsrISXl5eNssoVavVKCoqQlxc3BlrLoZQarVaVFdX4+DBg6AoCuvWrUNSUhJcXV1tsv5iwWAw4O3tjZUrVyIzMxMDAwM4cOAA2trabNLb9GxlHgwGwzKhxFxLaQvi4+MxPj6Ojo4Oous4OzsjMjISdXV1RAU5JCQEg4ODRJsLXHXVVUsu5LqkRfI///kPoqKikJycTGyNjo4OhISEEBWvxsZG+Pj4wMPDg9gawKTgDw0NEU1JPxWDwYDCwkJIJJIZPXFbCaXBYEBjYyMOHDiA8fFxrF69GmlpaUSzDu0VLy8v5OTkICkpCe3t7Th48CB6enqIXcBnUwd5aq/VmpoaIvs4HXPYta6ujqiwAEBYWBjUajXROZc8Hg9isZjoWeuOHTtQVlaG1tZWYmvYmiUtkp9++imuvPJKYvZHR0cxNjZGtHmAWq1GV1cX8c4cBoMB1dXVNguzmkd8sdlsJCYmnvUmg7RQDg0N4fDhwxgYGMCKFSuwYsUKCIVCq6/jSDAYDPj6+mLdunWIiopCbW0tTp48CbVabdV15tIowNxrtbe3l7h3Z8YcdiXdBJ3NZiM6OhoNDQ3EvcnOzk5i3rivry+ys7Oxe/duIvYXgyUrkl1dXTh58iTRUGtHRwf8/f2Jln20tbXBx8eHePZka2sr+Hy+zbJZm5ubMTw8POtesCSE0nxjUFBQgNDQUOTk5BANmzsiDAYDwcHBWLduHbhcrqXY3hoX8vl00uHz+cjIyEBNTY1Neq0CkxmoMpkMw8PDRNcJCgqCVqslejbp4+MDFos158krc+G6667Dp59+Svws11YsWZH84YcfkJKSQszLM5lM6OvrQ1BQEBH7wP+SgsLCwoitAUyew7W0tCAuLs4mSSn9/f1oampCZmbmnLxWawql2XtUKBRYu3YtwsPDl1RCjrUxF9qnp6ejoaFhwV7lQlrNeXl5ISEhAcXFxcTDoMBky7zw8HDiZ4YsFgshISFEk2sYDAYCAwPR09NDbI1rr70W3d3daGxsJLaGLVmyIvndd99h06ZNxOwPDg6CxWIRPSfs6ekBj8eb83DjudLc3AxPT0/i6wCTJRVlZWVITU2dV0hzoUJpMplQU1ODgoIChISEYNWqVUs+KceaiMVi5ObmgsPhIC8vD93d3XO2YY1erCEhIfDz80NhYaFNsnAjIiKgVCoxODhIdJ2QkBDIZDKio6cCAgIwMDBALFNYKBQiIyMDP/zwAxH7tmZJiuTY2BiOHj2Kbdu2EVuju7sbAQEBxLwPiqLQ1taGsLAwoh7OxMQE2tvbiZ95ApO1noWFhQgPD19QWHe+QqnVanHixAnI5XKsWbMGERERtPc4D5ydnZGamoq0tDRUV1ejpqZm1mdc1mxWvmzZMjg7O6OiomLeNmaLk5MToqKiiHuTPB4Pvr6+RJPUXF1d4ebmhr6+PmJrbNmyBXv27CFm35YsSZHcv38/goKCiI2H0ev1kEqlCAgIIGIfAGQyGbRaLdE1AKChoQF+fn42SVSpq6sDn8+3ynivuQrl6Ogojhw5Ag6Hg1WrVtl9hxxr89e//hUZGRkQCATw8fHB1q1bFxwOk0gkWLNmDQYHB3Hy5MlzeibWnubBZDKRlpaGwcFBohd8MyEhIdDr9URDlcBkpmtXVxfReZMBAQFEf49t27ahuLiY6PmqrViSIvndd98hNzeXmP3+/n4IBAKiw3/b29sRHBxMdKLI2NgYent7bTK4WSaTobu7G8nJyVbz3mYrlH19fcjPz0dwcDDS09NtMj3F3jhy5Ah27tyJkydP4rfffoNer8emTZsW3O7NxcXF0uLu6NGjlmHRp0Nq3BWXy0ViYiIqKyuJj/VisViIiYlBQ0MD0VpNDw8PS69VUvj7+2N4eJjYmW54eDiio6Pxyy+/ELFvS5acSBoMBvzyyy+46qqriK3R09ND1MMzT5cgPemjvr4ewcHBxGsB9Xo9ysvLER8fb/W1ziaUFEWhsbER5eXlSE1NRXR09HkbXt23bx9uvfVWxMfHIykpCR999BG6urpQWlq6YNtOTk7IzMyEn58fjh49ioGBgSlfJz0P0t/fH56enqiqqrKq3ekIDAwEi8UiXoISGhpqtSzi6eByufD29kZvby8R+8Dk0O7vvvuOmH1bseRE8sSJE2AwGFi/fj0R+2q1GnK5nGhHmq6uLnh7exPtGTk0NASZTGaV0Oe5qKurg4uLCzHRn04ozd2DOjs7sWrVKps2ancERkdHAcBqiWfmQcJJSUkoLi62JPTYYmCyuSOPXC4nHnY1/56NjY1Ew6F+fn5Qq9UYGRkhtkZAQMC8Eq9my1VXXYVff/0VGo2G2Bq2YMmJ5A8//IDVq1cTC6lJpVJ4eHgQa2ZOURQ6OzsRHBxMxL55jbq6OkRERBBvHDA4OIienh6kpKQQ9eJOFcq2tjaUlZVBLpcjJyfnvG8McDomkwkPPvggsrOzkZCQYFXbAQEBWL58OSorK9HR0WGzgcm2DLuKxWK4uroS7SrDZrMREBBAtDuOr68vxsfHiWXSZmdnQyAQ4PDhw0Ts24olJ5I//vgjLr74YmL2pVIpJBIJMfsymQwmk4noGnK5HEqlkthsOTN6vR4VFRWIi4uzyfQGDw8PrFixAjU1NZDJZFi1ahXRySyOys6dO1FTU4MvvviCiH0fHx9kZmaiqqoKcrncZvMg/fz8bBJ2NXuTra2tRL3JkJAQ9Pb2EluDzWbDy8uLWGMBJpOJNWvW4KeffiJi31YsKZGUSqVoaWkhJpJ6vR5yuZyogHV0dCAoKIjoUOW2tjbiA6IBoLa2lmiY9XTMXjiXy4XBYCDaB9NRuffee/HTTz/h0KFDxM7VTSYTOjs7wePxYDAYiHZ3ORUGg4GkpCTI5XKiZ23A/5JrSIYrhUIhBAIB0SxUiURC9O+zYcMG5OXlEbNvC5aUSB45cgSRkZHEREwmk4HP5xMrPtdqtRgYGCAaah0fH8fg4CDx0V4KhcImYVYz5jPI4eFhrF69GllZWYs2ZssaWDthg6Io3HvvvdizZw/y8vKI/f1PPYNcvXo1VqxYgerqauJlE2Y4HA6WLVuGmpoaGI1GYuswGAyEhYWhra2NaN1kcHAw0ZCrRCLB8PAwscYCF154IRoaGhy6FGRJ5cIfOnQImZmZxOyTDrX29/dDJBIRzTZtb2+Hr68v8TBkXV0dQkNDbRJmBSa7Bg0ODiInJwdcLhdcLhcrV660i8HNp2M0GjE6OgqFQoHx8XFoNBpoNBpotVpoNBqYTCbLhXffvn1gsVjgcDiW34vL5cLNzc3iaczmJmTnzp347LPP8P3330MgEFi8B6FQaLX3wnRJOhwOB8uXL0dRURF4PJ5NeuP6+/ujpaUFra2tCAuPgM5ogt5AQWc0/ff/J/+rM0yWcQh5ThDxneDKYc/phs48yHhwcBBisZjY71JdXQ2VSkXk5pzH48HNzQ0DAwNEWnj6+/sjPDwcR44cIVpxQJIlJZJ5eXn405/+RMQ2RVEYGBjA8uXLidgHyIuwXq9HZ2cn0QnowKTHrVAokJ6eTnQdM1KpFE1NTWecQZqTeRZbKA0GAwYHBzE4OIiRkREolUo4OTlZRE4kElnEj8PhgMViQa1W4/jx48jJyQGDwbAIqfnR3t6OsbExAJNC5+HhAYlEAg8Pj2kv9G+99RYAYO3atVOe//DDD3Hrrbcu+Hc8Wxarj48P4uPjUVRUhDVr1iz4xklrMKJzaAKtgyq0ylRolY2jTabCwJgW+v+Kn85ghM7YDArNs7bLZjIg4jv9VzSdEezBR7REgGiJADESN4jdOFNeWyaTidDQULS2thITSScnJ3h5eWFgYIBYBMscciXV53r58uU4dOgQLZKLjVQqRWtrK7Zs2ULEvnkCAKlerQaDATKZDPHx8UTsA5P1na6urnB3dye2hjlzNjIyEs7OzsTWMTM2NobS0lKkpKRAJBKd8fXFEkqtVou+vj5IpVLI5XLweDxIJBJER0dDJBKBx+Od1Wsxv3YuLi4WQT0dk8kElUoFhUIBuVyOoqIiAJPZlxKJBGKx2NKMgmRIcDZlHiEhIRgbG0NRURFWrVo1q+xzncGENrkKjVIlGqVKNA0o0TyoQvfwBEzz/HWc2UxwWEw4sZlwZjFhoigo1HroDCYYTBTkKh3kKh2AcZR2Ti2/EPKcEC0WIMFfiOQgEVICRQgODkZTUxOUSiWxLk5isRj9/f3EEu0kEglaW1thMpmI5ELk5ubin//8p9Xt2oolI5KHDx9GZGQksTu6gYEB+Pj4EDtfk8lk4PF4xD5oFEWho6ODeC/Yvr4+aDQam4iRTqdDYWEhwsLCzlq3aiuhpCgKw8PDaG9vt4TOfX19kZCQQOTvymQy4ebmBjc3NwQFBVnWl0qlqKurQ2VlJQIDAxEaGkoshD/bOkgGg4Fly5bhxIkTKC8vR3p6+hnvwzGNHkebZDjUIENVjwLt8nEYZlBDAYeNMB9XhHu7INx78r9+Ih44bBac2Uw4sRjQjKtQWlyEDevWws2VDzaTMeN7X6M3QjGhx8iEDooJPYbHdWiTqdAwMCnQ7fJxjKr1KOoYRlHHMHB88ue8XJ0RIuCheLwKWzJikBIkAtfJul2yJBIJampqoNPpiNx4CoVCsNlsyOVy+Pj4WN3+li1bcOedd2JwcJCIfdIsGZEkfR4pl8uJXvhJh1rN518kmyCYTCbU19cjOjqaeOs3k8mE4uJiuLm5zaqtHkmhpCgKfX19aG5uxsTEBIKCgrB27Vqb94dlMBjw9PSEp6cn4uLiIJfL0dHRgby8PPj4+Fi8WGsx10YBTCYTGRkZOHLkCJqamhAdHY02mQp5DYM4WD+I4o7hM0RRwGUjWixAlESAGIkAET6uiPBxhbcr59w3e+58jPSL0d3eguTk5LN+K9eJBYmQBYmQO+3XtQYjWgfH0SAdQ1XPKMq7RlDbN/ZfzxMo6dfik4qTcGYxkRwoQmaYBzJDPZEaLALfeWGfBT6fDzc3NwwODhLJSGYwGPD29iYmkuZzyaNHjzpkyHXJiGReXh7+/Oc/E7Gt1+uhUCiIJR1QFAWpVIqMjAwi9gGgs7MTgYGBRMXL3GuS5IxNM42NjdBqtcjMzJy1Z0xCKAcHB1FXVwetVouoqCjir/FsMV/4vL29oVar0dbWhmPHjkEsFiM2NnbB51vz7aTDdnIG2zcGL+2vQsuebnQrphb+h3u7YH2sGCvDPBEtEcBXyF1Q5CM2NhaHDh1CeHj4gm5aOGwW4vzcEOfnhitSJ4VKozeitm8U5V0K7CtuRPs4E0PjBou3+QZawGYykBQowvXLg3BZsh/YrPmFM8ViMdGhCp6enkR7xTryueTif5qtgFwuR0tLCy644AIi9oeHh8Hj8Yhlao6MjICiKGLnnebJBatWrSJiH5g8U21sbMSyZcuI1ngCk69Xa2srcnJy5ixI1hLKsbEx1NTUQKFQIDIyEmFhYUSb0S8EHo+H+Ph4hIWFobGxEYcOHUJQUBBiY2PnFb6bq0Bq9EYca5bj1zopDtQPYnhcB4ABQAsnFgOZoZ5YF+ODdTE+CPGybljY1dUVQUFBaGhosPpNKNeJhbRgD6QFe2CNxIjBwUH4RSejsG0Ihe3DKGwbQt+oBqWdIyjtHMHrB5txz9pwXJEaAGf23D4jEokEJ06cIHZu6OXlhcrKShgMBiI3eWvWrMEbb7xhdbu2YEmIZGlpKQICAoiFK+VyOdGBxFKpFGKxmJi49PX1wdXV1aqhttPp6uoCh8OBr68vsTWAyfKJ8vJyREZGzrvd3EKE0mQyobm5Gc3NzQgNDUV6erpNEpSsAY/HQ3JyMsLDw1FbW4u8vDwkJSXN6W82W4E0migcbZbhPyU9yGsYhFr/v5pFIc8J62J8EMgcwcpQEVampyz4dzsbUVFROHDgANHkmsDAQNTX1yOZB1y7PAjXLp88I+4ZUePHqj68n9+OruEJPPZtNf51sBl3rQ3HVWkBsw7FikQisFgsDA0Nwdvb2+r7d3FxAZfLxfDwMJGQa05ODnbu3AmNRgMud/qQtr2yZESS5NBguVyOsLAwYvalUinRRuN9fX1Ep5aYB0TbYspGY2MjmEwmIiMjF2RnPkI5NjaGsrIymEwmZGdnE80SJolAIEBmZiZ6enpQXl6Ovr4+ywDjszEbgWyXj+Prkm58W9YL6dj/Glv7CbnYFC/BpjgxMkI94MRiYnx8HIcOHYJMFkDkwm+Gx+PB398fbW1tSEpKIrKGeapGf38/IiIiAEyGvAM9+LhnbQRuzQrBZ4VdePdoG/pGNXjq+1r8fX8jrkwNwA2ZQYgUn128GQyGpVSD1Gvl5eVF7FwyOjoafD4fVVVVRMvoSLAkRLKkpITYm1+v12N0dJTYeaS5wTCprC+DwQC5XE5sADUweS5nMBiIT9oYGRlBW1sbVq9ebRWvey5C2dHRgZqaGoSFhSE6OtpuQ6uzhcFgIDAw0BJmy8vLw/Lly2cM+Z9NIMe1BvxS3Y+vS3omMz//izvfCVtT/HF5ij+W+QvPuIFycXFBfHw8ysvLkZubS7RNYlhYGI4dOzbvEPNskEgk6O3ttYjkqfCd2bg9Jww3rgjG1yXdeO+/nuVHJzrw0YkOZIZ64IYVwbggXjJjKFYikaC6uhoJCQlEbka9vLyIdfdhMpmIjY1FWVkZLZKLQUlJCa677joitkmfR0qlUnh5eRG7QAwODoLH4xErRAb+1wuWpHCcGma15rDrcwmlyWRCdXU1+vr6sGLFCqJh98WAx+MhMzMTbW1tOHHiBBITE89IvJpOICmKQmnnCL4q6cZPVf2Y0E2GU5kMYE2UN65OD8T6WB9w2Gd/T4SEhKCvrw91dXXEbnSByXClUChEV1fXtCJmDcRiMaqrq89aqsF1YuGmlSG4ITMY+S1y7D7ZiQP1A5NnmO3D8HLl4LVtyVgVeeb7zNvbG1qtFkqlksjAdy8vL1RUVBA7l0xISEBJSYnV7ZLG4UVyaGgI3d3dyMnJIWafZCstqVRK9ByPtH2VSgW5XI6UFLLnSuYhtwsNs07HTEKp1WpRUlICnU5nlU4x9gqDwbBkf5aUlECpVCIuLg4MBuMMgaSYbHx4vB2fFnSiTT5usRHiycfV6YG4MjVgxjKKmdZOTk5GXl4eQkJCiI41CwsLQ11dHcLDw4l4YuZSjdm0eGMyGVgT5Y01Ud7oH1Xj86JufFHUhUGlFrd9XIx3b0rD2uip0SUWiwVvb29IpVIiIsnn88HlcjEyMkIkpJuRkYH/9//+n9XtksbhG5yXlZXB39+fWNKOQqEglvCi1+sxNDREbO/mVnok6y87OzshkUiIHsbr9Xo0NTUhLi6OWHLT6YOb1Wo18vPz4eTkhJycnEURyEE1cNfucmS8cAApz/2Ky/59DP8p7YFpvu1mzoGPjw9Wr14NqVSK4uJiGAwGi0CmL1+Bz0r6sPrlQ3j2xzq0ycfBd2bh6rQAfH3XShx6ZC125kbMSSDNmCfF1NfXE/it/oevry+MRiPRZtvzmarhK+Th4Y1RyH80FxvjxNAZTLjzk1LkNQxYxf5cEIlEUCgURGxnZ2ejvr6e+LxPa+PwIkkyaYeiKIyOjhITyeHhYfD5fOKlJaQSTEwmE7q7u4lOLQGA1tZWuLq6EuumZMYslLW1tTh8+DC8vLyQkZGxKHWPV7x9Ei9UsHGwQQaZUouRCT0qe0bxyNeVuP7/TmJ04n8zBo8ePYpLLrkEfn5+YDAY+O677+a9rqurK3JycjAxMYGDBw9CPqxAOzsIG/91As/+WIdBpRb+Ih6e35qAoj9vwN+vTkJGyPT9YudCVFQUhoaGMDQ0tCA7Z4PJZCIwMJDoVA2xWIzBwUGYTKY5/yyHzcL/uyEVWxIk0BlN+N2npdhXM1UQvb29MTIyAoPBYK0tT0EoFGJ0dJSI7bi4OPB4PFRXVxOxTwqHF8ni4mJiZxlqtRp6vZ5YCIiklwqQLy2RSqWWEBApNBoNWlpaEB8fb5ORWzweD05OTtDr9XBzc7PJmqdzywdFqO6dbF4e7MHHN3dnYf+Dq/HHC6LBd2bhZNswbv6gEAbj5IV4fHwcSUlJePPNN62yPpvNhhOHhwOdOvzphA5/+aURA2Na+Am5eOHyBBx6ZC1uXBEMV471bh44HA4iIiJQW1tLfPSUVCol5s2IRCJLi7f54MRi4l/XpeCiRF/ojRTu3l2K1w80W6IHPB4Pzs7Olub21oakJ8lkMhETE4PS0lIi9knh8GeS1dXVuPLKK4nYVigUEAgExBJSSHbxAciXlnR1dSEoKIiokDQ1NcHb25tYo4VT0el0OH78OMRiMQIDA3Hy5EkwGAybTg8p7RzBkab/hQP3P5ANLmcyCSRaIsD6GDGueacAlT2j+KK4GzeuCMaWLVus1thfozPgn3tO4Jt6FYY1TAAUPHlMPLgpFtdkBJ4zEWchhIeHo729neg5uqurKzw8PNDd3U0kgYfBYFi648w3Y92JxcTr25LhznfCrpNdePVAEyp7FHj1mmQI+U4WISPxmRCJRBgfH4deryeSTBgbG4uqqiqr2yWJQ3uSBoMBHR0dSExMJGJ/dHSUaCIBSU/SFqUlMpmMaC/Y8fFxdHZ2Eq2BNWMymVBSUgKBQICkpCR4enpOOaO0BWqdEQ98UQ4A2Bjrg1dXGMBiTr0BiZYI8NCGyeSlNw+1WGYiLhSTicK3Zd1Y9dJveK9ciWENBbEbB09dGI3nMpnI9NQRFUhg0oONiopCfX09UW/Sz8+P6LmeRCLBwMDAgn4HNouJ57cuw9+vSgSHzURewyAuffMY6vvHiHp7HA4HPB6PWMg1KioKjY2NRGyTwqFFsqOjAxRFzarB9XwgKWLmAbukRNgWpSV8Pp9oaUlrayv8/PyIZPKdTm1tLTQaDVJTUy2e8enJPKR592gbekbU8Bfx8Lcr4sGcwUG/dnkQvAUc9I9q8Gvdwi/2ZV0juOKt43j4qyrIJ0zwFjjjmUvicOQPubhtdQRWrVyBpqYm9Pf3L3itcxESEgK9Xk9cxIaHh6HT6YjYP7VUY6FcnR6Ib+7OQoA7D51DE7j8/x1HzTCIiRgweS5JSoTj4+PR1NRExDYpHFokm5qaiDWUpiiKqEgqFArLrEASkM5qtcWA6K6uLqKdjsx0dnaiu7sbmZmZZ/w9bCWUSo0e/5ffBgB4bEsMBNyZ3xdcJxauSJ304A/UnZkBOVukoxo88EU5rvh/J1DRPQoOC3hofTjy/7gOt2aHWkY+CYVCpKSkWDJdSWIeZNzW1kZsDR6PZynVIMGppRrWIMFfiB/vXYWcSC9o9CY89lM79reoYDQaz/3D84Ckp5qQkICenh6o1Woi9kng8CJJKrNSp9NBp9MR82JICjBFURgZGSF2jmer0hKhUEi89ZtSqUR1dTUyMjJmnLloC6H8qqQHSq0BET6uuGjZuc/j1v23hu5IkwzGOZaE6I0mvHe0Dev/eRjfV/SBAWCVPwsHHsrBAxtjpp2H6O/vj9DQUJSUlBC7OJsJCQnByMgIUW+JdCmFh4cHRkZGzv2Ns8TdxRkf3JqBq9ICYKQofNHKxN9/qSESlhYKhcRuhkJDQ8HlctHa2krEPgkcWiQbGxuJJVWoVCpwuVxi6f8kzzvHx8dhMpmICfzw8GTrMVICZh4QTTphhqIolJeXIzg4+JwZuqSF8oeKXgDALSuDwZwpznoKacHuEHDZGJnQo7p39mJS0jGMi/6Vjxd+qce4zogoDyc8tYKD9+/MRaDX2d8vMTExYDKZxMNlzs7OCAgIsDSQIIFEIpl3qcZsEIlEVhd5JxYTf78qEffmTiYcvX28B3/aU2P1ulkXFxeMj48TEWAmk4ng4GCHCrk6tEg2NDQQy95UqVREz9tIh3Ld3NyIln6QLC2Ry+XQ6/XEJ4q0trZCp9PNOjGIlFD2KtSo7BkFgwFsTpidd85mMZESNHmTUtkhQ0VFBSoqKgAA7e3tqKiomDIfcEJnwDM/1OLqdwrQNKCCO98Jd6e54Y9pLFy/JWdW8yCZTCZSUlLQ2tpqVS9pOoKDg9HT00O0HnAhpRrnQiQSQa1WW73UhMFg4JHN0diZ6QkGgM+LurC70Lp1ny4uLqAoilhINCgoiBZJW9Hc3Ews85GkSGq1WqjVamIiSbIBAkD+PNI8IJpkL1iVSoWGhgakpKTMKVpAQijNBeMZwR7wEcy+Y03Yf2cvFta1IyUlxdIa8OGHH0ZKSgqeeuopAMCJVjk2v3YUH53oAEUBV6X545X1ImR46pGzatWsByYDk+ISGRmJ8vJyYl4YMCkyfD4fvb29ROyfOlWDBE5OTnBxcSEWMr4hMwjXxkyeW7+8rxGDp0xcWShMJhN8Ph8qlcpqNk8lIiLCoTJcHVYkJyYm0NvbS6z8Y3x8nJhIjo6OEk3aUSgUxEK5KpUKExMTxBoI6PV69Pf3E+/iU1dXh8DAwHnVqVpTKA0GA36s6AYAJIgMOHz4MA4cOIBffvkFAHDkyBHk5+ejqqoKXV1dGBsbs4hT6H9FUs/zAEVRZzz+/c7/4c97qnH9e4XoHlbDT8jFR7em49pQAyitalYDk6cjMjISFEUR7VzDYDAQHByM7u5uYmuYRZJUuQnJLFGRSIRMdw2W+btBqTXguZ/qrGrf1dUV4+Pj5/7GeRAdHY2GhgYitkngsCJpHvJ7+sQCa6FSqWZM5FgoJEWMdFauTCaDh4cHMYGXyWTg8/nEhuMCk2eqg4ODCwrVL0QojUYjuru7cfz4cXz1/S+o7JksFVgbIUJUVBSSkpIsXaTi4+MRHBwMBoOBzs5OHD16FL/88gtKS0sh5k4m0FR0K6Zc6CmKwk9Vfdj86lHsLpwMud6QGYS9D6yCq6r7nAOTz4V57FFjYyOxcCgw2WuVZKmGl5cXtFotMTEgmSXK4/Hg7MTG4xtCwGQAP1X143DjoNXsu7i4EPMko6KiiJ43WxuH7bjT19cHLy8vIudiFEUR9SQVCgWxpBfSSTuOHsqlKAr19fUIDw9fcFP2uQ5u1mq1aG9vR3t7u+UGb1wQBKq4CmFeLlid/r+ZnyKRCJWVlWfUupr7Cff09EDX2QgnJiBTatE8oESUxA2lncN4/ud6lHcpAACBHjz87YpErAjzOOfA5Lng6+uLlpYWtLa2EssLOLVU41xTNeYDi8WCm5sbFAoFkc+6SCQilg3NYDAgEongyzXg1qxQfHC8HX/eU4P9D622SrtAV1dXYqHowMBAyGQyGI1Gh5jL6rCeZH9/P7GQn1qtBkVRxBqPj42NEfMkR0dHIRAIiCXVkC5dIV1aIpPJMDY2ZrWWZLPxKCmKQk9PD/Ly8jA8PIz09HTk5uYiIiICLcOTiR1xfrO7qTFfHBMSEnDRBZuR7D95cb/rw+O4+q1juPKtApR3KcB3ZuGhDVHY/+BqqwukeR9xcXFoaWkh5ukBtpl6QercUCgUQq1WE3t9zKUav98UhQB3HnoVarz4i3Umqbi6uhLzJENCQmA0GoklTVkbhxZJUgNwJyYmwOVyiQmNRqMhNlqKpIgZjUaMjY0RnYoCgGif1ubmZoSHh1s1XHw2odRoNCguLkZ1dTWSkpKQlZUFb29vS1ef2r7JerR4v7nfNLFYLDy4OR4MBtA2akJx5yiYDODajEAcfmQtHtgQCS6baXWBNOPl5QWRSOTQpRokzw2dnZ3B5/OJ2edyudBoNHDhsPHylZO5GZ8VduFY88LFh8fjWZwFa+Pi4gI3NzebdHCyBg4rkn19fcT6kpIUMb1eD6PR6JAiOTY2BjabTczDNpeWkGqYPjY2huHhYSJJQdMJ5eDgIA4dOgQGg4F169bBz8/vjJ/rGZ4AAIR7z+/8OzvCC5/fsQI7VoXigbXB+FsOFxd4DsOVbTpjYLI1BdJMWFgY2tvbiYoY6VINhUJBLHmH5LmkWSQBICvCCzetmHxfP/pNFZQa/dl+dFa2KYoieh7sKCLp0GeSpJpra7VaYiKm0WjAZDKJJL6Yz6vi4+Otbhv4XwMEUiImlUqJNjNvb2+Hv78/EbEApp5RKhQKS/b12ZLLehWTFzk/EW/e664I88SKsMksXZMpDtXV1cjPz4ebmxvUajUxgQQmPb3q6mpIpdJpbwIWyqmlGiRuit3c3GA0GonlINhKJIHJdoaHmwbRPazGv/Na8PiF8/8ssdlssNlsaLVaIu8dRxJJh/YkSYkkSU/SLMAkhMZgMECv1xPNyiXlpep0OqhUKmIhdIPBgJ6eHoSEhBCxb8bDwwORkZHo6upCYGDgWQVSazBCrpo8k1yISJ4Kk8lEQkIC2Gw2ZDIZkpOTiQkk8L9SDZLlIF5eXpZQvLVhMplwc3Mjdi7p4uKCiYkJIra5XC60Wq3FC3bhsPHkRXEAgC+Ku6HRL6x94OkibE18fHxokSRNX18fAgICiNjWaDTELiwkBdjspZJqpUe6SxCfz4ezszMR+4ODg+ByucR7wcpkMjQ1NSEuLg49PT1nzW6Ujk5egDhsJtz51oksmEwmlJdPjtsKDg5GSUkJsQudmaCgIMhkMqKDjMfGxhyyoTeHwyH2+nM4nDNCoutjxfAX8TCq1uPHyr4F2SctkqQaRVgbhxVJUmnhAHkhIy3AJLxU0kk7tiotITkgWqfTobS0FAkJCYiMjDxn1mvvyGTbLz8Rzyr7OvUMctWqVUhMTISHhwcqKiqIzmc0l2oMDlqvTu9U+Hw+2Gy2VUZPTQfpkOip3p41MYdETxUyFpOBG1ZMRi92nVyYd09SJH19fdHXtzARtxUOKZLm0Byp3p62CLc6mu2JiQlLuyoSkG6wQLq0BACqq6shEoksiUHnKg9plU2m2Js75yyE6ZJ0GAwGEhMToVAoiHauAciWajAYDKJZqAKBgFi5A+kEmOmE7Jr0QDizmKjsGUVVj2Letkl6wT4+PpDJZERsWxuHFEnzHSWp0BnpxB1HtW2+8JKAZCjXFqUl/f39GBgYQFJS0pTX6GxC2TQweWGOFC8sYeRsWazOzs5ITk5GdXU10Rl+5lINRwyJkvT2WCwWnJyciInNdCLp5crB+tjJJKf8BZSDmF8XEri5uRGLDFgbhxRJlUoFBoNBpHUZRVHQ6/XE2q6RDrc64lmqTqfDxMQEMZEcGBggWlqi1+tRWVmJZcuWgcc7MwFnOqFUavT4tW7S80oOEM177dmUeUgkEvj6+qKqqmre65wLc6kGqQQb0iJJURQxQSDpkc0kZEmBIgBAXf/850I6OTkR84Dd3NyIee/WxiFFUqlUgs/nEyn2N98Jk0p+0Wg0015IrWXbEUO5Y2Njk70oCSXtkGwDCEz2Eebz+WdNJOO6usEzPBGfHqnDw7sKsOnVoxgY00LixkVuzPxKG+ZSBxkfHw+ZTEYsi5PBYMDd3Z2YkJm7yywVb4+07VjfyQ5O9QsUSVKRAaFQ6DAi6ZB1kiqVitjZmLlhM0mRJOXtOWqYWK1WE7txMDd8J1V/aTKZ0NraioSEhCmeqslEoaxrBL/VD+BA3QBaZac20Z70tsRuHLxzUxq4TnPvXznXRgEcDgeBgYFobW1FamrqnNebDaQbepu9PRLvQ5KhRZIiyeFwpvXeY30no2zt8nFM6AzgO8/9esZisYg1sBeJRMQay1sbhxRJsydJAoPBACaTScRLNRgMMBgMRMWGpEiSSqwhLcAGg4FYw3eZTAaKoixJZCYThX21Urz6WxOaB6feKQt5TgjzdkGYOwceugFcvjIUcf8Ni82F+XbSCQ0NxZEjR7Bs2TIixwkikYhYveSp3h4pkVxKnqSPgAsvVw7kKi3q+5VIC557JIXNZhMTSTc3N0xMTMBkMhFr/2ktaJE8DYPBQMyL1Gq1YDAYxMKKpD1JR2wDqFAoIBAIiE0bMDcNYDAY6BmZwO+/qkRh++SdvYDDxrpYH2yME2NlmCc8Xf8nZsPDwygoKADPiXnO6SGnspBWc25ubnBzc0Nvby+RpgpCoRATExPQ6XRE3uOkPTKSQjY0NETM9kz7TgkS4be6AZR0DNudSJqPP1QqFbEbWGth3xI+A6TDraRE0mybVLcdg8HgkIk7JMWd5MgziqIgk8ng6+uLY81ybHktH4Xtw+A7s/DA+kgcf3wdXr82BRcn+k0RSGB+8yit0YvV19eXWOo9h8OBs7Mz8Q4zpGw7oifJZrNnPDfMDJ3M5i5qn18ylVkkSZwDm4XREc4lHVIklUolsdZrJEWSoihioQW9frKhMcmsXEc87yRpe2JiAgaDAaMGNu7ZXQql1oDUIBH2PpCDhzZGwY179r/FXITSWs3KSZ4bAuQ9Mke07eTkZPl8Whsmkzljc/nlZpHsGIbRNHehY7PZoCiKSPN6Z2dncLlchygDmdMV+69//SsyMjIgEAjg4+ODrVu3orGx0fL1jo4OMBiMaR9ff/215fu6urpw0UUXgc/nw8fHB3/4wx/OcOufffZZBAQEYNWqVWhqapryNbVaTcxjIjkI1GQyEStDMN/tkbBvMplgNBqJhYkdtXTFHMp9+OsqjGkMSA4U4Ys7VyLYc/Y3cLMRSmtO8xCJRJaQKAkcNSTq7OxMTMgYDAaxjkdnsx3n6wYXZxaUGgMapXMXI7OzQCrkyuVyZxV1UCqVePDBBxEcHAwej4esrCwUFxdbvk5RFJ566in4+vqCx+Nhw4YNaG5unmKjoKAAycnJCAkJwfvvvz+nfc5JJI8cOYKdO3fi5MmT+O2336DX67Fp0yZLllJgYCD6+/unPJ599lm4urpiy5YtACZF6KKLLoJOp8OJEyfw8ccf46OPPsJTTz1lWef48eP4+eef8f333+P666/HvffeO2UfJpOJqJCR8vYoiiIqkuYbEhK2ARB7XXQ6nUNm/I6OjqJDw0NZlwI8Jxb+3w2pcGbP/TU6m1Bae9yVLWYckqw3JCXuTCZzUYSMpG02i4llAZPJdo0Dcy8FMV9LFvt1uf322/Hbb7/h008/RXV1NTZt2oQNGzZYer++/PLL+Ne//oW3334bhYWFcHFxwebNm6fcUO3YsQNPPvkkPvvsM/z1r3+dUweqOX2i9+3bh1tvvRXx8fFISkrCRx99hK6uLpSWlgKYzECTSCRTHnv27ME111xjORf69ddfUVdXh127diE5ORlbtmzBX/7yF7z55puWD8DIyAj8/PyQmJiItLS0Mz7QpD0ykrZJCQ1JcTeHW0i9LiT3TmrUDzBZ31kumzwPuiLVf0GTPGYSysrKSqvPgyTZ7YTD4RATybOFFhcKg8EgZpvkvs8l7u78yeiPUjN3b5C0SDKZzHPWYarVanzzzTd4+eWXsXr1akREROCZZ55BREQE3nrrLVAUhddeew1PPPEELrvsMiQmJuKTTz5BX18fvvvuO4ud8fFxpKamIikpCe7u7nN6/y/oymQuTJ6p3VdpaSkqKiqwY8cOy3MFBQVYtmwZxGKx5bnNmzdjbGwMtbW1ln9rNBrw+XxccMEF+Otf/zrFLklPkmQjaEcWd4CcSJLcO0kBNhqNaJD9d+ht+MJHfE3bmUeptPo8SJJZi6SFbLG9Gnu1PZN987n4mHruoWSSwwCA2b1XDAbDtEPqeTwejh07hvb2dkilUmzYsMHyNaFQiMzMTBQUFFiee+qppxAbGwuhUIgVK1YgLi5u1vucd4aKyWTCgw8+iOzsbCQkJEz7Pe+//z5iY2ORlZVlec48ff5UzP82N0h2cnLCvn37MDg4CJFIdMZZmPmFJXGGYDQaLa3prI35wkTCttkmCdtmD59UphtFUTAajUT2bj5PJfX3HFBO2g1y51hlDYFAgLS0NBQWFgIAUlJSwGQyrbp/BoNhmT1qbSiKImab5N/SZDLBZDIRu6aQtA1Mfkanuxl0cZ58TjGhm/f6Op2OSDIjg8E4pycpEAiwcuVK/OUvf0FsbCzEYjE+//xzFBQUICIiwqIZ02nKqQ33d+zYgWuvvRY6nW7O3bfm/Zvv3LkTNTU1OHbs2LRfV6vV+Oyzz/Dkk0/Od4kZ6/IYDAbGx8fxyy+/zNv2uaBtn8n+/fuJ2T58+DAx2ydPniRmm0WxADCQdyQfbdZvJYz8/HzrG/0vLS0txGyTnBXoqJ8fkrb37ds37fP93QwALNQ1teEX4/z+3qQ+m0ajcVZRnk8//RS33XYb/P39wWKxkJqaiuuuu85yzDdbXFxc5lUVMS+RvPfee/HTTz/h6NGjM/ar/M9//oOJiQncfPPNU56XSCQoKiqa8tzAwIDla7OByWSCx+PhwgsvnMfuz05PTw96e3uRmZlpddtyuRw1NTVYu3at1W2rVCocP34cmzdvtrptvV6P3377DZs2bSJyR7l//35kZ2cTqWc8fPgwEhIS4OW18HDo6RQWFkIi0mF4QA1+UDwuXBm8IHsmkwmVlZVQKpVISUlBfn4+mEwmYmNjLeO3rEF5eTnc3NwQHh5uNZtmGhsbodPpsGzZMqvb7ujogFwuR3p6utVtS6VStLa2Ijs72+q2R0ZGUFZWhvXr11vdtlqtxqFDh2a8Fpb+3AD0dCE2MhQXXhA9J9sURWHv3r3Izc0l0jaSwWDMSiTDw8Nx5MgRjI+PY2xsDL6+vti2bRvCwsIsmjEwMDBldOLAwACSk5Otss85XfEoisJ9992HPXv24PDhw2ftFPL+++/j0ksvhbe395TnV65ciRdeeAGDg4MWT/G3336Dm5vbrOPE5lg2iZpAc7E/Cdtmm6RsUxRFxLb5bMLcGoyEfVK2Sb7mfD4fy/1ZqBtQ49e6QexYFQ4mc37nOGaBVKlUWLVqleXikZmZieLiYrBYrDl15jkbWq0WfD6fyGtiMpnA4XCI2GYymcTeJ+ZWlCRss1gsYrZ1Ot1Zr1ftQ5MlFtES4ZzXNx+tODk5EXuvzCVfwOwJjoyMYP/+/Xj55ZcRGhoKiUSCgwcPWkRxbGwMhYWFuPvuu62yzzllNOzcuRO7du3CZ599BoFAAKlUCqlUesacupaWFhw9ehS33377GTY2bdqEuLg43HTTTaisrMT+/fvxxBNPYOfOnbNOTiCZrg2QzeZyxOw80lluJBspk6ytEwqFSPU0wZnNRHHHCN460jovO2cr83B3d59zZ56zQVEURkdHiY0lI1nzajAYiCbsLcXEtNb/9g8O95l7mNEWCXuz+Xvu378f+/btQ3t7O3777Tfk5uYiJiYG27dvB4PBwIMPPojnn38eP/zwA6qrq3HzzTfDz88PW7dutco+5ySSb731FkZHR7F27Vr4+vpaHl9++eWU7/vggw8QEBCATZs2nWGDxWLhp59+AovFwsqVK3HjjTfi5ptvxnPPPTfrfbDZbGKFvyQv2CSz3MwfFBL2zbZJjc1x1HZjIpEIznolnrs0HgDwj18b8Ut1/5xszKYOcj4t7GbCnPpOYhYr4LjtCx25ichMtse1BvSNTr73w73nfpRh/ryTel30ev2sjm9GR0exc+dOxMTE4Oabb8aqVauwf/9+i3f7xz/+Effddx/uvPNOZGRkQKVSYd++fVZ7r8w53DobXnzxRbz44oszfj04OHhBh9iurq7EpqyfrRfiQrGFSJIoj2EwGBaPjETPXEdtNyYUCqHVarE10QfVvUHYXdiF+z4vR03vKO7JjYAr5+wfr7k0CjALpTmtfb6h19HRUQiFQmIXbdItBj09PYnZJuUBky5Zm+lv2TE02eTFw8UZIv7cu2WRHBtoMpmgVqtnlYdwzTXX4Jprrpnx6wwGA88999ycHK254JC9WwUCAbFZZI5aQ2Yuk3FEj4x0v0+SN1QCgQBDQ0N47rIEXJ0WAKOJwv873Io1Lx/C6wea0Tk0/ft0Pp10rOFRDg0NEQu1mkwm4pNoHLF9IcmGFmcLt8pVk6VbYrf5/V7m8DaJG6qJiQkYjUZiEQ1r4pCjslxdXYlNGiApkhwOx1IcS8LbMwsZ7e39D6FQiMbGRmLnQv7+/uju7oa/vz9evioRG+LE+Osv9egYmsCrB5rw6oEmBHrwkB3uhRiJAFFiAeL9BGiuq55XJ52FeJRGoxG9vb1YuXLlnH/P2aBSqcBgMIgNHyDtpZLIgDbbJinAM/VUlisnb5i9XOfXc5nksAdzFzVSE3qsiUOKpEAgIC6SJC6qzs7OYDAY0Gg0RC4kpD0ykl4qqV6ibm5u0Gq10Gg0RNLYg4KC0NjYiImJCfD5fGyOl2BdjA9+qe7H50VdKO0cQfewGl8M/69XJAOAnysDt+ZEYo3T3C9g8xXKvr4+cLncORdTzxaFQkEslEtRFFEvdSl6wEPjZpGc39qkRZLNZhN7XayJw4okyRAaMHnXbe03iPlsT6vVEhFJ0t4eqdec9Lw9gUAAhUJBRCR5PB4kEgna2tosnaecWExcluyPy5L9Ma41oLB9CCUdI2gZVKGiQ4bBCRN6VRRe2NuExsEJ/OPqpDmvO1ehpCgKLS0tCAsLI3YeqVAoiIVy9Xo9TCaTwwoZKS/1bOI+MDYpkp4u9udJjo6OwsXFhXjrO2vgkGeSrq6uRM8kAbLjYRwxbEnSS3VxccH4+Dix81rSMxQjIiLQ2dk57evjwmFjXYwYj2yKwp1xwEurODj+hxw8fclkTfA3ZT3oGZlfVGQuZ5RSqRQajQaBgYHzWms2mJOCSKBUKsHhcIhctCmKctiZpjPZHlJp8Z/SHgBAtGR+536kRdIRQq2Ag4qkQCCATqcjEv4zFxU7qkg6YuKO+fCe1JRyT09PyOVyIraBSbESi8WorKycNnv59CQdf083bM8ORVqwOygKKGgdWtDa5xJKnU6HqqoqxMXFEbvo6fV6jIyMEMs+Jeml6nQ6UBS1pEK5L/7SgFG1HnG+brg8xX9etknWpdIiSRjzRZWUd+Ds7OyQYuOoAsxgMCAUCon9PcViMUZGRojtHwASExMxMjKCnp6eKc+fLYvVfIffMUMG7Gw5l1DW1NTAzc0NQUFBC1rnbAwODsLV1ZVY0g5JkdRqtWCz2UvGSz3ZNoRvynrAYADPX54ANmt+l3mSWblKpdIhMlsBBxVJPp8PFotFzDtw1LAlSds8Hg9arZaYhy0SiSyj16wNl8uFUCicMhXA2jg7OyMpKQnV1dWWv8G5yjxCPScFpUO+8CS0mYRSKpWiv78fycnJRM9/pFLprHsvzweSXYImJiaInFcD//NSbZW4ozOY8MR3NQCAazOCkBo0/yQtkh7wyMgI3NzciNi2Ng4pkkwmE15eXmfctVsLR/XISO+bw+EQEzKSniQw2Tzf3EifFL6+vhCLxSguLoZOpztnHWSI16RItsutc75+ulAqlUqUl5dj2bJlxEQAmLwZGBgYICaSBoMBSqWS2HmnOSuXBBqNhqiXerqQFbQNoWVQBXe+Ex6dY0Pz0yHpAff3909pSG7POKRIApMXpK6uLiK2HVnIdDqdQybAmD1JUh2JfH19MTg4SKydoRmzx5aXl4fR0dGz1kGG/lckO4bGrfZ7m4WytrYW+fn5CAkJIRpmBQCZTAYmk0mstGR0dBQcDoeY0JMO5ZISmunOUpsHJtsOrgz3nFeXnVMhLZIzTZCyNxxWJP38/IjNrHPUc0PzxZhkr1JSImk+nxgbGyNi383NDQKBgFj0wQyDwYCzszP0ej2cnZ3P2nw6yIMPJgOY0BkhU1rvpszJycnSg9gWdWidnZ0ICgoiFs4dGRkhJmIA2axctVpN9DySzWZPSa5plU1GJcK8Fp4UQ1IkZTIZ7UmSxs/PD/39c2smPVtInxuS8vaYTCZcXV2JCY1QKCQWbmUwGPD29iYaEg0JCUFHRwcxb9V8BqlSqbBu3TqwWCwcO3ZsxtfMmc2Ev/ukd9S2wJCryUSBoij09vZaPMjs7GzU19dbZXrITKjVagwMDFh13uXpDAwMzDiAfaFoNBpoNBpiIjk2NmbTZvKtsvlP/TgVcyiX1E0WLZI2wM/Pj9gF1RbeHqlwLumQqFKpJJa8I5FIiCbX+Pv7Q61WY2ho/iUXM3F6ko6LiwtWrFgBiUSC/Px8NDY2TntjFPHf6QxN/w2TzRW1zoidn5Uh+sm9iHliL+7/ogI8v0jExsbC09PTqmO2pqOjowM+Pj7Eslr1ej2GhoaInXcqFAq4uroSmZdotk9yLNmpIjmm0aNROvk+ms/Uj1PRarVEy2LkcjktkqQxnzGRgKRIMplMcDgcYt1rSGeJkkzeEYvFUCgUxG4g2Gw2QkJC0NzcbFW7M2WxMplMxMbGIjs7G729vTh69CiGh4en/Gys72SGX33//Lz/N/Ka8XNVP/RGClojhVIZcNuXTXjuxzqMaw1WHbN1Onq9Hh0dHQgLC7Oq3VMZGBiAQCAg0o8YIJs1a4vZnWYRM5koPPxlJUbVevgJufNuIHCqbXPY3tqYTCZaJG2Bn58fsRIQFxcX6PV66HQ6Ivb5fD6xjkEks0QZDAZRT5XL5UIkEhH1JsPDwzE8PGy1985spnm4u7tjzZo1EIvFOHHiBI4dO4a+vj6YTCaLSNb1zU0kdTodWlpa8HnB5KDn36/xx3f3ZOGSJD9QFPDB8XZsevUoDjUOEhPKlpYWCAQCYi3XABDNmgXIZraam2OQKpofHx+33Dy8kdeCA/UDcGYz8daNaeCwFyZu4+PjxKID/f39MBgMtEiSxtfXl5hIOjk5gcPhEOsAQ1JohEKh5ZyFlH1SniRAPuTK4XAQERGBurq6BZ9NzmXcFYvFQmxsLDZt2gSxWIza2lrs378fzsrJ5LPavjEo1TN70Hq9HjKZDM3NzSgsLMT+/ftR0dKLES3gzGLgjg3LkBzkjjeuS8Enty1HgDsPvQo1tn9YjAe+KAfl7GJVodRoNGhtbUVcXByxhB3SpSUA2XCoQqGAm5vbWZO3FmpfJBLhYP0AXj3QBAB4YWsCkgJFC7atUqmIiXtXVxcEAgExEbY2DtngHJg8XxoZGSF2x+Pq6gqVSgUPDw+r2xYKheju7j73N84DJycnuLq6QqFQELm4eHh4oKqqitjoKYlEgqam/9/eeYe3WZ77/6vhvWTLQ57y3vGKtxM7TkgIe/QwSslJaUtpGwhQDrv8gEJp2rLCLG0JNFA4QCkkISSQ4TjxiGe89x6ybMtDtmRrvs/vDx+JBOLEQ48k2+/nunQ5saT3fiRL7/e97+cebVQnxYeFhaG7uxtSqXTJV7NLmQcJzDUdiIiIQHh4OMbGxiCVSiF04GBsluDtz75BWqALbGxsjCfW0tJSaDQaKJVKODg4QCAQwN3dHXFxcTjVNQXgHGJ8XWFv8917lRvphW8eyMXLx9rwXnE3DtRIcLptFL+7JhabMjNx9uxZAEsf3AwAbW1t8PLyovL9MDA2NgYul0tNxJRKJdRqNdX6S1prN9SOdk9z8MD/1gAA/jtLjFtSTdObl6ZIdnd3rxgvEljhnqSDgwMaGhqoHN/QdJsGBk+SVpYlzX1JT09PqNVqTE8vLdHkcri4uMDe3p5a5jIwtzcZFRWFxsZG6PX6RT9/qQJ5PhwOB56enoiPj0dutB8AQOcegujoaIjFYvj4+ACYG8WVkJCA7du3Y9u2bUhPT0dkZCScnZ3RMjT3NzCEbM/HyY6Pp66NxRe/yUGMrysmZrR46LNa3Pefdogik5blUU5NTaGvrw8xMTFLev5CGRgYgK+vLzVPVSqVwtPTk1rSDs3SkqmpKbRM2eCu/ecwrdYhI8QDv7sm1mTHpxlubWlpQWRkJJVj02DFiiSHw0F4eDg1kTR4kjRwcXEBIYTa8WnuS/J4PHh5eVELiXI4HIjFYvT29lI5voHg4GDY2tqiubl5Uc8zhUB+nw3hc3t6x1rnsjgDAwONDQD8/f3h7e19UTuGZJ+LiaSBxEABDt6bg0e2R8GOz0VJ5xhuf78WVVp/1NQvXigNrz80NJRqWzGtVovBwUGqpSU0W+kRQqh6kh+d7cE7TQRqHYMt0d54/6502PJNczo3nJtoeZLt7e2IilpeNyBzsmJFEgCioqLQ0tJC5dg0RZLL5VIVMtqjoWjvGwYFBWF8fJza+w/MiXFycjJ6enoWXBJCQyABYHu8CI62PHTLlKjsnVjw8xYiksDcfMvfbArHsQfzkB/lBa2eYN/ZQfy5wQ7/e2ZxQtne3g6GYaif5AYHB+Hs7Ex1PiXN0hKFQgFCiMlrJAkheONkO148PQSGALesD8A7O9bDwdZ0WxMajQZarZaaJ9nT08OKpLmIjo5GR0cHlWMbwq20QqI0E2BoJ+8YSjVo1pKKRCL09PRQOb4BFxcXREdH49y5c5et/aQlkMBcaPTahLk9mk8qFrZXPTylgkSuAocDRPsu7EQcJHTEvp+m4Z0d6+HnZo+hKTXeaQLu+6wJJbWtl32+XC5He3s7kpOTqe0XA3NC0NPTg+DgYGo2zFFaYuqkHT1D8PTBRrz47VySzn+n+uDP/5Ww5Ckf86FUKmFnZ0ctDN3b28uGW81FZGQktROpk5MTGIahWs9Iy9uzsbGBk5MT9VINmt1xQkND0dvbS61xgYGwsDDY2dnNOwsSoCuQBm5Lm0u4OFgjwZD88p+5M+1zmd3r/N3gar/wkxmHw8GVcSIcfygPv94UBj6Xg4ZxYOcnHfh/n5ZhWnXx3rZarRaVlZUICwuj1qPVwNjYGGZmZqj29qQ9tcTUoVa1To/7Pq7G/tJecDjAj0IYPHY1ncximmOsFAoFpFIpK5LmIjIyklqTcx6PBxcXlxXb0NvLy4taswWAfsjVw8MDTk5O1LKADXA4HKSlpUEmk100KmEOgQSAlCB3pId4QKNn8Kcjl99COFgrAQDkRy2tXZujLR+Pbo/G0Qc2IitUCC0D7K+WYcOeE3i3qBtq3XcJTYQQVFZWwsnJCdHR0Uuytxi6urogFoupDYg2R2nJ8PCwyepHp1Ra7NxXjq/rpbDhcfDH6yJwRRCfasN3WglHDQ0NcHR0pPrem5oVLZIREREmLQz/PrQbejMMQy2D1jAaipYIi0QijI6OLik7dCFwOByEhYWho6OD2lQTA/b29sjIyEBra+sF3rG5BBKYe72PXRUNLgf4skaCr+vnvwBpkkzhTPsoACx56ryBcG8XfHR3Bt76SQrE7vaQq/R47qsmbH6xEJ9W9EOjY9DU1ISZmRmsX7+e6kxKYM6LGR4eXlZ5yuUYGxsDj8ejtt+pUCigVCpN0m9WMjmL2945i7Nd43C24+Ofd6Ujw9cGbm5u1P4WNLsENTQ0IDw8nPrnyJSsaJH08PAw1u3RgOa+IZfLhaurKzURNkephp2dHUZHR6kcH5jL7ORyudT3JoG5C6KkpCRUVlZCLpebVSANpAS5Y1d+OADg/x1qguwiW74MQ/DMoUYQAlyT4GucSbkcOBwOrl7nixP/k4/fXRkKN1tgcHIWj3xeh5w/HsP7JT1ISEmltkd1Pk1NTQgKCqK2Vwh8F2qldaI2eJHLfb8qesZx/RtFaB6agqezHf73l5nIDvekmjXLMAzV0pWWlpYVlbQDrHCRBOYyXGtqaqgc2xz1jLRLNWjVG3I4HPj7+1MLdwNzFxKxsbFoa2ujvjcJAAEBAYiIiEBJSQnKysrMKpAGdm+JQGKAG+SzOrzSwMOptu8uQnR6Br//qgnl3eNwtOXhse2mDX3yeVz8Ij8GX+9Kx00hgMCei1GlDp91Ale+UY43TrZDPktvHuf4+DhGR0epnkQZhsHAwAD8/Pyo2TDFfue/ynpxx9/PQqbQIMbXFV/8Jhvx/nPCRVMkp6enweFwqJV/tLa2Uq+vNTUrXiTXr1+P6upqKsd2dXWFRqNZkc3Ige9CrrQQi8UYHh6mluUKzL0GR0dHdHZ2UrNxPuHh4UYPOSEhwawCCcyVa/ztv1MRI3KBQsvB3R+cw61/LcUzBxuxfe8ZvF/SAwB49vo4BHrQ8bb8fbxwT14YfpeowW/S3BHo4YBxpQYvftuGnD0nsedIi0nnXwJz+55NTU0ICwujNnkCmOsbyufz4eXlReX4Go1mWaUlKq0eT3xRjye/aIBWT3BNgi8+/3WW8W+t1+sxPT1NtZWeQCCg5mU3NTUhJSWFyrFpseJFMjU1FY2NjVSOzefzqSfvTExMUNtzE4lEVEs1nJyc4OHhQTW5hsPhIDY2Fh0dHdSmgxgwhFiBuazXiooKTEwsvG7RVPi42uN/705Dvi8DGx4H5T3jeL+kBx0jCrg72uDNO1JM1n7sYvT09KCjowPJCfGIs5/Aez8Kxt7bkxDl4wKFWoe/FnZiw59O4v8daMDAxIxJbI6MjGB6ehrh4eEmOd589Pb2QiwWUxOBkZGRJZeWlHWN4aq9Z/BRWR84HODhK6Pwxo+T4Wj7XQLT5OQkbGxsqCXt0Ay1yuVy9PT0YP369VSOT4sV27vVwPr169HS0gKdTkclG87g7dEIz7i6usLGxgYymYzKUFk7OztjqQatziVisRgtLS1UN+M9PT0hFArR3t6O+Ph4KjYutgdpb2+P4uJiJCUlUS1HuBiOtnzcGMzg93duwjdNo5DKVYjwccb2OF+4OdLZG2QYBo2Njejv70dWVhaEQiHc3d1RWlqKhNhYHLl/I060jODNgg7U9E9if2kv/lXWh+3xItyZIUZmqMeSPgMGLzIyMpLqvqdSqYRMJqPqySwl1Dqt0uJPR1vw4dm5rQsfVzvs+VHCRTOXpVIpfHx8qH3XJicnqSVNFRcXQygUUg1102DFi6QhJb26uhrp6ekmP767uzskEonJjwvMeUmGUgpak9cNx6clkr6+vmhoaMDo6Ci11wAAMTExOHPmDIKCgkzeDm2+JJ2wsDA4OzujsrISU1NTiImJMXtWnsjVHr/YSG9eowGNRoPKykqoVCrk5eUZu60YxmyVlpYCALbGhuCKGG+Udo3h7VOdONMuw+G6IRyuG0KolxN+kiHGf6UELErIe3p6oNVqqTYPMNgRiUTUwrmG0pLs7OwFPZ4QguPNI/h/BxowJJ+L9vw4PRCPXRUDN4eLv39SqZTanp5er4dcLqdWB3v27FmzZEibmhUfbuXz+UhISEBJSQmV4wuFQkxMTFArdTCI2Eot1eDxeBCLxejq6qJyfANubm4ICQlBdXW1ScPTl8ti9fHxQW5uLiQSCcrKyqjuv1qKiYkJnD59GjweDxs3bvxBO7Lvz6PkcDjIDvPEBz/PwOHdG/CTjCA42fLQNarEc181If2F43jo01oUtcug01/6bzUzM4OmpiYkJSVR7eKj0+nQ29tLdUD0YkpLWqXT+O995bh7fyWG5CoEeTjio19k4I83J8wrkAqFAjMzM9T2UycmJoyNSGhw7tw5pKWlUTk2TVa8SAJAWloaqqqqqBzbxcUFPB6PaqmGRqPB1NTSJtNfDnOUaoSEhGB0dJRqr1VgLmrAMAza29tNcryFlnm4uLggLy8PfD4fJ0+exMDAALWLGnOi1+vR1NSE4uJiBAUFIT09fd5w53yDm+P83PCHm9ah7Mkr8PyN8YgWuUCtY/B59QDufLcMGS+cwFNfNqCsawwMc+F7RgjBuXPnjE3cadLf3w9HR0cIhUJqNhZSWjKu1OCpLxtw1d7TONMugy2Pi1/lheGbB3KRHX7p5gOmKi2ZD5lMBk9PT2qeXktLy4rbjwRWQbgVmNuXfP3116kc2zDSSCaTUfmC8Xg8eHt7QyqVUtkwN4R0h4aGqHW5sLe3h5+fH7q6upCQkEDFBjD3XiUnJ6O4uBi+vr7LCrsutg7SxsYGqampkEgkqK2thUQiQUJCAtVMTJpMTEzg3Llz4HK5yM3NXdB7+f3Q6/l7V852fNyZKcZPMoJQ3TeJz6sHcKR+CGNKDT4424sPzvZC5GqPq9aJsCnKGxkhHhga6INSqaSyTXI+hBB0dXUhIiKCmgAQQjA0NHTRz79Gx+Bs1xiONQ3jQM0gplRz5Uzb40R4/OpoiIUL89ykUinV/TyZTEZt731qagpdXV0rLrMVWEUi2draSm1Qr6enJyQSCbX6LR8fH6qd8QMDA1FUVIT4+HhqV6FhYWEoKipCZGQkVeFwd3dHaGgoqqurkZubu6QG0stpFODn5wehUIi6ujqcOHEC4eHhCAsLo9ZCzdTMzMygubkZEokEkZGRiIiIWNR7eCmhBOYuytaL3bFe7I5nr49DSecYvqqV4GijFNIpFd4r7sF7xT2w43MR6qzHlYlBCBlXIdybT03AhoaGoNVq4e+/vO5El8KwpWHwiOWzWpxqHcGxpmEUto5iWv1dnW+MryueujYG2WELb1tnKC1JTk42+dqBuajCxMQEkpKSqBy/tLQU7u7uZk+AMwUr45t9GWJj54aNnj17Fjk5OSY/vqenp3FALw0RFolEqK2thUqloiIwAoEAzs7OGBwcpJYcIRAI4O3tjdbWViQmJlKxYSAqKgpSqXRJc+lM0UnHzs4OaWlpGBsbQ2NjI7q7uxEZGYng4GCTTn0wJWq1Gm1tbejp6YGfnx+2bNmy5K42lxNKAzY8LvIivZAX6YXnb4rHmTYZjjUN43T7KIbkKjRPctBc2I9XC/shcrVHcpAACQECJAa6YZ2/G1wW0bh9PhiGQXNzM6KioqjueXZ292Da3huvnexASccYqvsmoDsvvOzpbIetsd7YGuuDvEhv8LiLuyAYGRmBq6srtU5EtPcjT58+jbS0tBWXtAOsEpHk8/nIzs7Gt99+S0UknZ2dwefzMTk5SSXkamdnB3d3d+qlGr29vVQzCGNiYnDq1CljVigteDweUlJSUFRUBIFAAB8fnwU9z9St5oRCITZu3AipVIrm5ma0t7cjJCTEONDZGpienkZXVxf6+/vh6emJ3Nxck4T1FyqUBuz4PFwR64MrYn3Q0NCA6g4JVO6hKOocR1nXGKRTKhxpkOJIw1zPWg4HCPV0QmKAAAkBbkgIFCDW1xX2NosTuv7+fhBCTP69mpzRoG1YgbqBSZxpG8HZThnUDAfAdz13I7ydcUWsD7bG+iApQADuIoXxfGhPLaG9H1lcXIxrrrmGyrFpsypEEgC2bNmCY8eOUTk2h8OBUCikti8JzIVcaZZqBAQEoLGxkWqxsIuLCwIDA9Hc3Ew9i+38Xqu5ubmXHe1Dqxcrh8OBr6+vMUu5q6sLra2t8PPzQ1BQEIRCodm9S61WC6lUit7eXkxMTMDPzw8bNmwweZeWxQolMCdafX19uGnLRri4uOCXeXNdZs71TaJuYBK1A5Oo7ZdjcHIWnaNKdI4q8Z9zgwAAPpeDKJHLnLcZ4IaEAAHCvJ1gx7+4cOr1erS0tCA+Pn5JfwONjoFUrsLA5Aw6R5XoGJ5G27AC7SMKyBTfb2zBgbujDbLDPZET5omccOGC9xovh6G0JCwszCTHuxg09yN1Oh2qq6vxl7/8hcrxabNqRHLTpk3405/+RC0k6u3tjd7eXmr7hiKRCK2trdSaItjY2MDf3x89PT1Uw6FRUVE4ceIE1f6SBgICAjA1NYWysjLk5ubO672Zo1m5QSx9fX0xNTWFvr4+VFVVgWEY+Pj4QCQSwdvbm9qe8MzMDKRSKaRSKWQyGZydnREUFIS0tDSqrfUWI5QTExOora1Fenr6BRc19jY8ZIUJkRX23QWoTKFG/YActQOTqBuQo7Z/EmNKDRolU2iUTOHj8u+O6+ViBz+BA/zc7Od+/t+/R0ekGJngQSMDKkYGodUz0DEEOuNPAi3DQK8n0DIEap0eQ5MqDE7OYnBiFsPTKlwqidlf4IAokQs89eO4KiUUeYnhy/IW52NsbAx8Pp/a90mj0WB8fJxaUk1JSQkIIdT2U2mzakRy/fr10Gg0KC8vR1ZWlsmP7+PjQ3Xf0MXFBfb29pDJZNTCKsHBwSguLkZsbCy1k7WDgwNCQkLQ1NS04KLq5RATE4OpqSlUVVUhIyPjBx6DJaZ5uLq6Ij4+HnFxcZiYmIBUKkVrayuqqqrg6uoKNzc3CAQCuLm5wdXVdVEXRYQQaDQayOVyyOVyTE5OYnJyErOzsxAKhRCJREhISKAa7v4+CxHK2dlZlJWVITo6ekHlHp7OdsiP9kZ+9NxjCSEYnJydE8yBSdT1y1E/KIdCrcPotBqj02rUztcdcRkDEOz4XPgLHBDs6YQIb2dE+LggwtsZ4d7OcLLjY2RkBFVVMuQmhFIRSIB+l53ltNJbCN988w02bty4YpLbvs/KXPVFsLGxQXZ2No4cOUJFJO3t7am2eDu/+w4tkXR3d4erqyv6+vqohm4iIiJw/PhxjI6OUit8NsDhcLB+/XqcOXMGTU1NF7Sts4RAfn9thnFusbGxmJmZMYra0NAQmpubodVqwePxYG9vb7xxuVxjHWZtbS0YhoFKpYJKpYJarQbDMHB0dDSKrVgshru7u1lGWc3HpYRSr9ejvLwc3t7eS/7ccTgcBLg7IsDdEVev8wUwJ5zjSg0kkypI5LOQTP7fTa5C19A4NFodBG6u4HM5sOFxwedxwOdywOfO/duGxwWPy4ENb+53NjwufFztEODuCH93B/gLHODpbHtJcerq6kJwcDC1pCBCCKRSKdatW0fl+AD9/c6ioiJcd9111I5Pm1UjkgDdfUnAPC3eKioqkJCQQG0fKzQ0FM3NzQgNDaV2ZWpra4uIiAg0NTUhNzeXekabjY0NMjIycPr0adjZ2SEiIsLiAnkxHB0d4ejoaKx1I4RAq9UaBfB8ETSMBnNycoKtra2xl6zhZo1X5RcTSoZhUFFRAS6Xi8TERJN+FjgcDoTOdhA622FdwHf77LOzszhx4gRycnKotVgD5jrgjI6OUt2+kMvlUKvV1C42F9tKb7EY9iNfeuklKsc3B9b3TVsG+fn52LNnD9VSjba2NmrHFwqF4PP5VIuG/fz80NjYiOHhYapXjyEhIeju7qaeUWvAyckJWVlZKCkpAZfLxcTEhFUJ5MXgcDiwtbWFra3tD4r5tVotOjo6EB4eblEPcbGcL5SEEMhkMqhUKuTk5FAtwTifhoYGiEQiqgIJAN3d3fDz86M2kQOYm1ri7+9P7b1bTCu9pVBcXAwOh0Ot/tIcWGdR1xJJSUmBTqczXsmaGtot3jgcDoKCgtDb20vl+MDcIOOQkBDq8xn5fD6SkpLQ2NiImRnTjFO6HAKBABkZGWhsbIRMJrNqgVzNeHh4ICMjAw0NDZiYmEB2drbZhH5wcBAymYzatBgDWq0WfX19VHvB6nQ6DAwMUItcAQtrpbccvvnmG2zYsMEqIx8LZVWJpI2NDfLy8nDgwAEqxzfsG9IcZBwUFITR0VGqwiIWizExMYGxsTFqNoC5jGB/f3/U1NSYpdcpwzDo7u6Gg4MD9Ho9BgYGqNtk+SEMw6CrqwsODg7QarUYHBw0i121Wo26ujqztAvs6uqCq6srVW91cHAQjo6O1GwQQqhHlE6ePIlt27ZRO745WFUiCQA33ngj9X3JoaEhaid9BwcH+Pj4UPUm7ezsEB4ejqamJuriFRcXB4VCQfX1ABcm6eTm5iI7Oxutra1oa2tbFc3IVwo6nQ7l5eWYmZlBXl4esrOzf9AUnRZ1dXVmmVeoVqvR0dFh7PRFC9oDoqempqBSqeDpufD2eItBJpOhqqpqRSftAKtQJK+99lo0NDRQ8yIMHyiaUzXEYjH6+vpMOhLq+4SFhUGhUFD1ioE575522PViSTru7u7IyclBV1cXzp07R21UGMt3zM7OoqioCDqdDjk5ObC1tZ13eoipMYRZTZ0cdDHa2togFAqpThSZmpqCXC6n2ut0YGAAIpGIWij03//+t7G38Upm1Ymkr68vEhMT8emnn1I5PofDQUBAANVQnqHNGk0Bs7GxQWRkpFm8SUPY9dy5cya3daksVjc3N+Tl5WF6ehrFxcWrchaktTA+Po7CwkIIBIIf7EHSFkqVSmUMs9Leg56ZmUFPT49ZvEg/Pz9q7Q0JIRgYGEBgYCCV4wPAV199hRtuuIHa8c3FqhNJALjhhhtw+PBhascPCAiARCIxpumbGg6Hg+DgYOohquDgYOj1evT3z1eFbTri4uKgVCrR09NjsmMupMzDwcEBGzZsgJOTEwoLC6nNBV3L9Pb2oqSkBJGRkUhMTLxo+RItoSSEoK6uDp6enlSnfBhobm6Gn5/fssa0XQ5DUtBC2vwtlbGxMTAMQ620RKPR4MyZM6xIWis33HADSktLoVQqqRzfzc0NDg4OVD294OBgjI2NURvGDMw1Co+OjkZLSwv1cOT5YVdTDGdeTB2koSF6aGgoioqK2IQeE8EwDBoaGtDY2IiMjIzL1t7SEMqBgQGMjY1RnWNqYGpqChKJBDExMVTt9PX1wdnZGR4eHtRsDAwMwN/fn1o99tGjR2Fra0t9Vqg5WJUimZCQAA8PDxw8eJDK8Q0hV5oemJ2dHQICAtDV1UXNBjDnFdvY2JjUw5sPb29vhISEoKysDFqtdsnHWUqjAA6Hg4iICKSlpaG2thbnzp1b1hrWOtPT0ygqKsLIyAjy8vIW7JGYUigNvWBTUlLMUurT1NSE4OBgau3bgDnPuLu7m+o+nl6vx+DgINX9zv/85z+49tprzVYbS5NVKZIcDgc33HADtVIQYE5cRkZGoFZ/fxqA6QgNDcXAwAA0Gg01GxwOBzExMWhrazOLaMTGxsLR0RGVlZVL2p9cbicdHx8f5OfnY3Z2FidPnsTIyMii17CWIYSgo6MDhYWF8PDwQG5u7qJnEJpCKFUqFcrLyxEVFbXgUWnLYWxsDGNjY4iMjKRqZ3h4GDqdjmqG7vDwsDG5jRanTp1aFaFWYJWKJDAXci0oKKAWRnRycoK7uzvVGjBDb07a5RM+Pj5wcXGh3mAAmBPl1NRUzMzMoKmpaVHPNVWrOUdHR2RlZSEqKgoVFRWoqalhvcoFYPAee3p6kJWVhfj4+CVnRi5HKA29YD09PREeHr4k+4uBEIKmpiaEh4dT91i7uroQEhJCdbzawMAAAgICqGUBV1ZWYmhoCFu3bqVyfHOzakUyPz8fWq2WagJPYGAg+vr6qGaHhoaGoquri2o5CIfDQWxsLDo6OsySAWrotdrb27vgkLWpe7EakqPy8/OhVCpRUFBAvRxmpcIwjNF7FAgE2LRpk0nKH5YilIQQ1NbWghCCpKQks0y6l0qlUCqV1EsZpqamMDY2RrWNo0qlwvDwMNWs1n379uGaa65ZdITBWlm1ImljY4Pbb78d+/fvp2YjICAASqWSasakr68veDwe+vr6qNkA5k5YPj5zU+PNgbOzM1JTU1FbW4vx8fFLPpZms3JHR0dkZ2cjIiICVVVVKC4uxsTEhMmOv5IhhGBwcBAnT55Eb28vsrKysG7dOpPW1S1WKDs7OzEyMoL09HSz7HdptVrU19cjOjqaemu11tZWBAUFUfVW+/r6IBQKqQkYwzA4ePAgduzYQeX4lmDViiQA7NixA99++y21InY+n4+AgACqSS8GL6+lpYVayYmBdevWYXR0FBKJhKodA97e3oiJiUF5eTlmZ2cv+hhzDUwOCQnBFVdcAYFAgOLiYlRUVJgkC3elMjIygsLCQjQ0NCAiIgL5+fnUiucXKpTDw8NoaWlBRkYG1abi59PU1AQnJyeq/VOBuSSk4eFhqnuehBD09PRQ9VSPHTsGhUKBq6++mpoNc7OqRTIzMxNCoRAff/wxNRvBwcEYHBykmlzj6+sLBwcH6pmu9vb2WLduHWpra6kmJJ1PaGgofHx8Lprxau5xV7a2toiLi8OWLVtgY2ODgoIC1NbWzivgq5GJiQkUFxejsrIS/v7+uOKKKyAWi6nukQGXF8qpqSlUVlYiMTGR+nQPAyMjI+jv7zdLWLepqQmhoaFUxX94eBgMw1Dt1free+/hlltuWVWDBVa1SHI4HNx5551URdLNzQ1ubm5Uw6EGb7K9vZ2qGAOAv78/hEIh6urqqNoxwOFwkJCQAFtbW5SVlRm9ZUvOg3RwcEBSUhI2bdoEtVqN48ePo6qqatU2IiCEYGhoCMXFxSguLoZAIMAVV1yBiIgIs6bwzyeU09PTKCkpQXh4ONW9tPPRarWoqalBXFwc9b21kZERyOVyREREULXT3d2N4OBgahc8arUa33zzzaoKtQKrXCQB4M4778SZM2eo9loNDQ1Fd3c31QQeLy8vuLu7o729nZoN4DvRkslkZpvewOPxkJ6eDg6HY/QorWFgsouLC9LT07Fp0ybw+XwUFRXhzJkz6OvrWxW9YFUqFdra2nD8+HHU1dXBy8sLW7duRVxcHLV2aJfj+0KpVCpRUlKCoKAg6uUX59PY2AgnJyfqs1ANmbMRERFUx4kpFArIZDKqr+fTTz+Fs7MzNmzYQM2GJVj1IhkVFYW4uDjs27ePmg1fX1/o9Xrq2ZGxsbHo7u6mHv6zt7dHQkIC6urqzBZ25fP5yMjIgF6vx4kTJyCXy61mHqSLiwsSExOxbds2+Pn5oaOjA0ePHkVdXR1GR0epZh6bGsPoqvLycnz77beQyWSIjY3F1q1bERkZaRXvt0EoGxsbUVhYCH9/f8TExJglkxWY8+wGBweRnJxM3aZEIoFaraY6lxKY8yJ9fX2pjhD78MMP8ZOf/IR6aN7crNxJmItg586d+OCDD/Doo49SOf75g4xpxvsFAgFEIhFaWlqQnJxMzQ4A+Pn5YXBwEHV1dUhLS6NqywCXy4W9vT3kcjlcXFysrluHra0twsLCEBoaiomJCfT19aGqqgoMw8DHxwcikQje3t5mGzC8UGZmZiCVSiGVSiGTyeDs7AxfX1+zhBKXiq2tLfh8PjQaDRwdHc0mkIYwq6HpBU0YhkFzczOio6OpftYNvWCzsrKo2RgbG8Pp06fx8ssvU7NhKdaESN5+++14+OGHUV9fj3Xr1lGxERISgvb2doyPj1PtuRgdHY2CggKEh4fDxcWFmh0Oh4PExEScPHkSg4OD1JtHG/YgFQoFNm/ejOrqapSVlSEjI8PqpppzOBx4eHjAw8MDhBBjZmJbWxuqqqogFArh5eUFgUAAgUBg1tAlIQSzs7OYnJzE5OQkhoeHMT09DaFQCJFIhMTERKsVRgOGqS0BAQHw9fXF2bNnjRnItDFXmBWYawzP4XCo77N2dXXBzc2N6nnpH//4ByIjIxEXF0fNhqWwrrMPJXx8fHDddddh7969+Mc//kHFhq2tLYKDg9He3o6MjAwqNoC5+sKgoCA0NzdTbx5sZ2dnDLt6enpSC8VdLEknKysLZWVlKC0tRWZmptV5ZwbOF8yYmBij1zY2Nobe3l7MzMzA0dHR2D1JIBDA0dERdnZ2y3pNhBBoNBqo1WooFAqjKMrlcmi1Wri4uEAgECAiIgLe3t4W22NcLFNTUygpKYFYLEZ0dDQ4HA6ysrJQWloKAFSF0hBmzc/Pp+656nQ6tLa2IiEhgWp4UqfToaurCykpKdRsAMA///lP7N69m6oNS8Eha2Rs+/Hjx3HrrbdCIpFQi8vPzs7i+PHjyMvLozpKR6VS4fjx48jOzqZ6dWigoqICOp0OmZmZJj95XCqLVa/Xo6KiAkqlEhkZGXB2djapbXOg0WiM4mX4OTs7C4ZhwOPxYG9vb7zZ2dmBy+WCw+EYe6SGhoaCy+VCp9NBpVJBrVZDpVJBpVKBEAI+nw8nJ6cLRNjV1dXqQtULQSqVoqqqChERET9I0hkfH0dpaSliY2OpCKVKpUJhYSGioqLM4kW2tbVBKpVi48aNVAW5q6sLfX19yMvLo2bn5MmTuP766zE0NEQ1umUp1oxIMgyDiIgI/M///A9+/etfU7NTU1MDvV6P9evXU7MBzM21Gx8fR3Z2NvWrXq1Wi8LCQuM+lqlYSJkHIQSNjY3o6+tDamoqvL29TWbfUhBCoNVqjWJnED61Wg2GYUAIMc75DAoKAp/PN+7XGsTU8G9rC0UvBcMFQWtrK5KTk+cN7dMSSr1ej+LiYjg5OSElJYX690mj0eDYsWPIyMiAp6cnNTsMw+D48eOIi4ujul3yox/9CEKhEH/729+o2bAkK/8btkC4XC5+9atf4R//+AdVkQwPD0dBQQFiYmKobvyHh4fj+PHjGBkZoT4FwdBr9cyZM3B1dTXJHspC6yA5HA7i4+Ph6uqK8vJyxMTEXHZuobXD4XBga2sLW1vbeSMOWq0W/f39iI+Pt9pQsynQ6/WoqanB2NgYNmzYAIFAMO9jDVmvpgy9WqIXbFtbGzw8PKgKJDDXyJzL5VKdKDI6OoojR46gqKiImg1Ls7pydS/Dz372MzQ1NRm/ZDQwZA52dHRQswHMCVd0dDTq6uqot6sD5sogDL1Wl9vbdCmNAoKCgpCdnY329najt86yspmdnUVRURFmZmaQm5t7SYE0YOrBzV1dXWbtBTs5OYmenh7qCS6EELS3tyMiIoKq8O/duxcJCQnU9zwtyZoSSaFQiDvuuAMvvfQSVTsRERHo6+ujXs9oGADb2NhI1Y4Bb29vREdHX7LX6uVYTicdDw8P5OXlQS6Xo6SkxGw1nCymZ3x8HIWFhXB1dUV2dvai8gRMJZQjIyPGBDhz9ILV6/Worq5GREQE1ZwFYK7+UqfTUR2srNfrsX//ftx///3UbFgDa0okAeC+++7D4cOHqRb+u7m5wcfHB62trdRsAHNhu6SkJPT391PtKHQ+YWFh8PLyQnl5+aK9OVO0mnNwcMDGjRvh4OCAwsLCy04QYbEuCCHo7e1FSUkJIiIikJSUtCQPbrlCqVAojL1gzZH8BsyFWblcLvX2c4b6y6ioKKre8SeffAK1Wo0f/ehH1GxYA2tOJJOSkpCSkoJXXnmFqp2YmBj09/djenqaqh0nJyfExsbi3LlzZhkcbKif5HA4qKmpWXArPlP2YuXxeFi/fj1CQ0NRUlKCxsZGNvy6ApidncXZs2eN3ltYWNiyQoFLFUqtVouysjKIxWKz9YKdmJhAZ2cnUlJSqHek6evrA4fDQVBQEFU7b7zxBn71q1+tmPKipbLmRBIAHnnkEezbt4/aCC3gwnpG2oSEhMDJyQlNTU3UbQHf9VqVyWTo7Oy87ONpNCvncDgIDw9Hbm4uZDIZTp06xc6BtFIIIejr68PJkydhZ2eHzZs3myxLebFCSQhBVVUVHB0dERsba5I1XA69Xo9z586ZJcyq0+nQ0tKCmJgYqmJ8+vRpnDt3Drt27aJmw1pYkyJ53XXXQSgUYu/evVTtREVFYWRkhPrJ2xJhV3t7e6Snp6OlpeWSoWva0zxcXV2xceNGBAYGori4mPUqrYzZ2VmUlZWhqakJ69evR0pKisk9j8UIZVNTE5RKJVJTU82WId3a2mqWMCswl4jk4OAAX19fqnaef/55/PznP18VJVmXY02KJJfLxRNPPIG3336bamaovb09QkND0dTURHVCCDAXdo2LizNb2BUA3N3dkZSUhMrKyovuDZpr3BWXy0VkZCRyc3MxOjqKwsJC1qu0MAbvsaCgADY2Nti8eTPVvsYLEcrOzk709vYiIyPDbGU1ExMTxo43tMOsGo0G7e3tiI2NpXoBUFNTg8LCQjz88MPUbFgTa1Ikgbl+rgDw97//naqdiIgIyOVys3h4wcHBZg27AkBAQABiY2NRWlp6gTBZYh6kq6srcnNzERAQYPQqzXXBwPIdSqXS6D2mpKRg/fr1Ztm3upRQdnd3o6WlBVlZWWbr3GTOMCsAtLe3w93dHV5eXlTtPPfcc7j11lshFoup2rEW1qxI2tjY4NFHH8Urr7xCddSRjY0NIiMj0djYSH2k0vlh15GREaq2zickJATR0dEoLS2FXC636MDk873KiYkJHD9+HJ2dnWwI1gyoVCrU1dVdsPdI03u8GBcTyt7eXjQ1NSErKwvu7u5mW4s5w6xKpRLd3d3U91k7Ojrw1Vdf4fHHH6dqx5pYM23pLsbs7CyCgoLw6quv4ic/+Qk1OwzDoKCgACEhIdTnxgFzV83t7e3Iz883a7eWtrY2dHZ2QiAQYHZ21uLzIAkhGBkZQVNTE7RaLaKjoxEYGLgiuvVotVp8/fXXuPrqq62+445Wq0VHRwc6Ozvh7e2NmJgYi/fwNLSw8/X1hUQiQWZmJvUON+czMTGB4uJi5ObmmsWLLCsrg52dHZKSkqja+elPf4rJyUl8+eWXVO1YE2vWkwTmau4efPBBvPjii1TtcLlcrFu3Ds3NzVCpVFRtAd+FXc3VZMBAeHg47OzsMDo6ioSEBIsP8OVwOPDx8cGmTZsQExOD1tZWFBQUQCqVUt8jXgvo9Xp0dnbi+PHjGBsbQ3Z2NtLT0y0ukMCcRxkWFmbsf2tOgTQ0DYiMjDSLQBqmzsTExFC1MzQ0hE8//RRPPvkkVTvWxpoWSQDYtWsXOjs7cfDgQap2vL294e3tbZb9Qg6Hg+TkZAwODmJgYIC6PeC7PUhCCMLCwlBRUQG5XG4W25fDMLNvy5YtCA4Oxrlz51BUVISxsTFWLJcAwzDo6+vDiRMn0NfXh5SUFOTk5JitKH8h9Pb2oqOjA/Hx8ejv7zdJC7uFQAhBfX09+Hw+wsPDqdvT6/Wor69HbGws9YvSP/zhD8jMzDTbEHZrYc00OJ8PNzc3PPDAA3j66adx7bXXUs1Ai4+Px4kTJyAWiyEUCqnZAQBHR0ekpqaioqICzs7OC+qLuVTO34PcsGED7OzsYGtri+LiYrPvA10KLpeL0NBQBAYGoqurC2fPnoWzszNCQ0Ph7+9PPftwpaPRaNDT04Pu7m7weDzExMQgICDA6sLX3d3daGpqMoZY3d3dzTKP0mBbKpUiLy/PLJ+njo4O2NjYUE+iGRgYwPvvv48jR45QtWONrOk9SQNTU1MICQnBq6++ih07dlC11dbWhsHBQbN9idrb29HV1YW8vDwqczQvlaTT2dmJlpYWZGZmUr8oWAqGSRtdXV3Q6XQICQlBUFCQWfp4LmRt1rInaWjKPTAwAHd3d4SGhkIkElmdOALffeaysrIu8Gxpz6ME5nrBlpeXm23Oq1KpREFBAXJycqhfiP73f/83ZDIZvv76a6p2rBFWJP+PV199FW+88QZaWlqozuhjGAYnT55ESEgIwsLCqNkxQAhBdXU1lEolcnJyTNrLcSFZrD09PWhoaEBSUhLVZsvLgRCC4eFhdHd3Y3R0FD4+PhCLxfDx8bGYEFhaJLVaLQYHB9HT0wOFQgF/f3+EhobCzc3N7GtZCAzDoLGxEQMDA8jKyrpo5ISmUCoUCpw+fRrx8fHU28EZMFeyTktLC5KSklBeXo6EhASqtqwRViT/D7VajYiICDz44IN48MEHqdoaGRlBRUUF8vPzqc6cNKDX61FUVAQXFxckJyeb5MS/mDKP4eFhVFZWIiQkBDExMVbpgRiYmZlBb28v+vr6AAB+fn4QiUQQCoVmDcdaQiS1Wi1GRkYglUoxNDQEZ2dnBAcHw9/f3+Le7KXQaDSorKyESqVCRkYGnJyc5n0sDaHUarU4ffo0fHx8EB8fb5JjXg6JRILa2lps3ryZ+l7kddddB1dXV/zrX/+iasdaYUXyPPbv34/HHnsMHR0d1MXr3LlzmJ2dRVZWlllEY3Z2FoWFhYiIiFi2B7uUOsjp6WmUlZXBxcUFKSkpVn3SBeZe4+joKIaGhiCVSsEwDLy9vSESieDj40N9/eYSyZmZGUilUkilUshkMjg7O0MkEsHPz4/qPrapWMrnypRCSQhBWVkZCCHIyMgwy4WUWq3GyZMnsW7dOurRmdLSUuTn56O5uZn6fq61workeej1eiQkJODmm2/Gc889R9WWVqvFyZMnERUVheDgYKq2DBhqt9LT05fcc3E5jQIWc8VvTRBCMDk5aRST6elpCIVCo2A6OTmZ/EKHlkgyDGN8LcPDwxe8FpFItGL+JsB3EYrQ0FBER0cv6m9gKqFsamqCRCJBXl6e2S78KioqQAhBWloa9Qvs3NxcJCUl4bXXXqNqx5phRfJ7fPXVV9ixYwc6OjqoJ5uYO+wKAP39/aivr0dubu6i23OZopMOwzBoampCX18f0tLSqLfQosH3vS8+nw83NzcIBALjzdHRcVknMFOIJMMwmJ6exuTkpPE2NTUFHo9nVq/Y1BBC0NHRgdbW1mXtdS9XKAcGBlBbW4vc3Fyz1YYODg6irq4O+fn5VBLxzufw4cO47bbb0NXVtSYamc8HK5LfgxCCDRs2ICEhAW+//TZ1ezU1NVAqlcjOzjbbXl1jYyOkUilyc3MXfII0dau53t5eY31XSEiIVe9TXgq9Xo+pqSnI5fILhOh84XR1dYWDgwPs7Oxgb28PPp9/2de7UJEkhECj0UClUkGtVmNmZsa4lqmpKXC53AsE3M3NDc7Oziv6/a6pqYFMJkNGRsayQ8JLFUpDVCYtLQ0+Pj7LWsNCMYRZExIS4O/vT9UWwzBITk7GTTfdhGeeeYaqLWuHFcmLUF5ejry8PFRUVFDfiNdqtSgoKEBERITZYv7n76NkZmZe9oRJqxfr+Pg4ysvLIRKJkJCQsGrqFPV6/QUe3PT0NFQqFVQqFRiGAY/Hg729Pezt7Y3CaWdnBw6HAy6XCw6HY8zWNEx0IISAYRjjcQyiqFKpQAgBn8+Hvb09HBwc4ObmZhRGGqFgSzE7O4vy8nJwOBykp6ebzJNarFCqVCoUFhYiLCzMLA0DDJgzzPrqq6/iz3/+M9ra2szWEN5aYUVyHn7xi1+gvb0dhYWF1G0Z6qvy8/PNtidkyMjz9vZGfHz8vF862s3KDfMGDV2CzNHGy1IQQqDT6TA7O2sUOMNNo9EYhZAQAr1ebyxH4fF4RgE1iOr5Nzs7O6plS9bA0NAQamtr4e3tjcTERJOWMgELF0qdTofi4mKTZoovhIGBAdTX15slm1UmkyE6OhpvvvkmbrvtNqq2VgKsSM6DTCZDREQEXnvtNeoNBgCgrq4OExMT2Lhxo9k8KqVSiTNnzkAsFl+076O5pnno9Xq0tLSgu7sbUVFRCAsLWzVe5VKxdJ2ktaDRaFBfX4/h4WFjNictYbqcUOp0OpSVlQEAMjMzTS7U86FUKnHq1CmkpKRQH6YMADt27MDAwABOnjy5aqIQy2Ftn4kugaenJ/74xz/iscceg0KhoG4vLi4OhBCzzoJ0cnJCTk4Oent70draesF95hx3xePxEBcXh+zsbPT29qKoqAjT09PU7LGsDKRSKU6ePAmtVov8/HzqE1wuNY9Sr9ejvLwcDMMgIyPDbALJMAwqKysRFBRkFoEsLi7GZ599hrfeeosVyP+DFclLcPfdd8PHx8css9N4PB5SU1PR29sLqVRK3Z4BFxcXZGdno6urCx0dHQAsMzAZmDtJ5efnw8PDA4WFhWhvb2cbkK9BNBoNqqqqUF1djdjYWGRkZJitVeDFhNIgVDqdDpmZmWYNbTc1NYEQQn1OJDD3Ou+9917cd9991CeKrCTYcOtlKCsrQ35+PsrLy83STWNgYMCY4m3OHqKTk5MoKSlBVFQUJiYmLDIw+XzGx8dRXV0NW1tbJCcnW8X4JXOyVsOtUqkUNTU1EAgESExMtFgfXUPoNSYmBjKZDDMzM8jJyTHr32JoaAjV1dXIy8szS/LM3r17sWfPHrS1ta2579ulYEVyAZgziQeY68ajUCiQk5Nj1r25sbExFBcXw9bWFvn5+RafB6nX69Hc3Iyenh5ER0cjLCxszYSA1ppIajQaNDQ0YGhoCOvWrbOK4diG74OdnR3y8/Nha2trNtszMzM4deoUEhISzNLzmE3WmR823LoA9uzZg7q6Ouzbt88s9tatWwetVouWlhaz2APmQi3d3d1wcHCAXq832xzKS8Hj8RAfH4+srCz09PTgzJkzGB8ft/SyWEwIIQT9/f0oKCiAWq3G5s2bERQUZHGBZBgGnZ2dcHBwMDZ7N6ftqqoq+Pn5mW0owO7duxEfH49bb73VLPZWEqs7b9xEeHp64tVXX8VDDz2Eq6++GiKRiKo9Pp+P1NRUnD59GgKBAH5+flTtnb8HmZubi5mZGZSWloJhGERERFC1vRCEQiE2bdqE9vZ2lJSUwMvLC7GxsWxIaAVDCMHIyAiampqg1WoRGxtrNbMp9Xo9KioqoFKpkJeXB4VCYbZ5lADQ0NAAnU5ntmbpBw4cwIEDB1BTU2MV77+1wYZbFwghBNdccw04HA4OHz5sFpsSiQTnzp3Dxo0bqdUPzpekI5fLUVJSgpCQEERFRVnNl0elUqGtrQ29vb0ICAhAdHS0Vcx/NDWrOdw6Pj6OpqYmTE9PIzIyEsHBwWbLFr0cOp0O5eXl0Ol0yMrKMr735phHCcyNlmtubkZubq5Zaqblcjni4uLw0EMPUZ9+tFJhRXIRSCQSxMbG4pVXXsFdd91lFputra3o6+tDbm6uyfcIL5fFOjU1hZKSEgQFBVndiCuFQoGWlhZIpVKEhIQgIiLCrHtGtFmNIjk9PY2mpiaMjo4au9VY02sz1EEaJnp8f220hXJsbAylpaXIzMyEp6enyY9/Me644w709fXh9OnTa742eT5YkVwkH3zwAR588EHU19ebpW6JEILKykqo1WpkZ2eb7IO80DIPhUKB4uJieHt7IyEhwWqu+A1MTk6iubkZ4+PjiIiIQGho6KroPrOaRHJ2dhYtLS0YGBiAWCxGZGQk9ebci8XQ+cnGxgYZGRnzfoZoCeXMzAwKCwsRHR1ttvaUBw4cwB133IHa2lqzttdbabAiuUgIIbjuuuvAMAy+/vprs9jU6XQoKiqCu7s7EhMTl328xdZBGnpmcrlcpKWlWd0JDgBGR0fR1NSE2dlZREVFISgoyOoEfTGsBpFUqVTo6OhAT08PRCIRYmJirHIUl6GHsI+Pz4IuBE0tlDqdDmfOnIGHh4dJvt8LYXJyEnFxcXjkkUdw//33m8XmSoUVySUwNDSE2NhYvPTSS/jZz35mFpumutJcaqMAU09foAEhBENDQ2hpaYFarYZYLEZISMiK3LNcySI5OTmJzs5OSCQSeHl5ITo62io/LwDQ19eHurq6RU+jMZVQEkJQUVEBrVaLrKwss4U8f/zjH2NgYACFhYVsmPUysCK5RD788EPcf//9qKuroz62xoBhzyI1NXVJGbbL7aRz/hy/5ORks73uxUIIgUwmQ1dXF0ZGRuDr64vQ0FC4u7tb1b7qpVhpIskwDIaGhtDV1QW5XI7AwECEhoZabQby+XNNU1NTlzQv0RRC2djYCIlEQiXnYD6++OIL3Hnnnairq0NYWJhZbK5kWJFcIoQQ3HTTTZiYmEBBQYHZrsYGBwdx7tw5ZGdnw8PDY8HPM2WrOalUiqqqqiVNhDc3CoUC3d3d6Ovrg5OTE8RiMQICAqxeeFaKSCqVSvT29qKvrw88Hg8hISEQi8VWvWatVovKykrMzMwgIyNjWd1sliOUHR0daG9vx8aNG802jmpwcBApKSl46qmncO+995rF5kqHFcllMD4+jsTEROzcuRPPP/+82ex2d3ejubkZGzduXNCVOo1erFNTUygvL4eLiwtSUlKs+qQIzO37DA4OoqenB9PT0/Dz84NYLIaHh4dVirw1i6TBa+zt7YVMJoNIJIJYLIa3t7dVvpfnMz09jbKyMjg7O2P9+vUmeW+XIpT9/f2oq6tDdnY23N3dl72GhcAwDDZt2gQPDw988cUXVv+3shZYkVwmJSUluOKKK/DVV19h8+bNZrPb3NyM/v5+bNy48ZJ7bjSblWs0GlRUVECtViMjI8MqkzIuhlwuR29vL/r7+2FrawuRSASRSAShUGg1+zPWJpJarRYjIyOQSqUYHh6GjY0NxGIxgoKCrDKR62IMDw+jsrISwcHBxmHWpmIxQmmYH5uenr6kMO9SefLJJ/HBBx+gtrbWbMK8GmBF0gTs2bMHb7zxBmpqasxW30QIQW1tLcbHx7Fhw4aL1giaY5oHwzBoaGjA4OAg0tLSzPb6TYFhsLFUKoVUKoVer4ePjw9EIhG8vb0tWndpDSKpVCqN783Y2BicnZ2NFxQraX+XEILOzk60tLQgMTERgYGBVOwsRCgnJiZQXFyMpKQks7WcA4Djx4/j+uuvx8mTJ5GZmWk2u6sBViRNAMMw2L59OwDg6NGjZvNGGIZBRUUFNBoNsrKyLqjtMve4q56eHjQ0NCw6S9BaIIRgcnLSKArT09MQCoVGUTC3l2wJkSSEYGJiwvgeKBQKi74HpkCn06Gurg6jo6NIT0+n7kFdSiinp6dRVFSEyMhIsybMjI6OIikpCffffz8eeeQRs9ldLbAiaSJGRkaQkJCA3bt344knnjCbXb1ej9LSUnC5XOMwWEvNgxwbG0NlZSVcXFyQlJQER0dHs9ilwczMjFEsZDIZnJyc4OnpCYFAADc3N7i6ulK9GDKHSGq1WsjlckxOTkIul2N0dBQMw1zgTVtDqHepyGQynDt3Dvb29khNTTVbKdDFhFKpVKKoqAiBgYFmmQ1pgGEYXHnlleDxePj666+tZjthJcGKpAk5deoUrr76ahw7dgw5OTlms6vValFaWgobGxukpqaitrbWYvMgtVotGhoaIJFIEB8fbxUTHZaLVqvF6OgoxsfHjaLCMAxcXV2NoikQCEwqnKYWyfMF0XBTKpWwt7c3vgZPT094eHis+BOpTqdDc3Mzent7ERMTg9DQULN/Bs8XSm9vbxQXF8PPzw9xcXFmXctzzz2Ht956C3V1dfDy8jKb3dUEK5Im5plnnsG+fftQUVEBHx8fs9nVarUoKSmBSqUCn8/Hhg0bLDoPcnh4GDU1NXB1dUVSUtKKLOifD0IIlEql0QMziI5erzcKp7OzM+zs7GBvb2+88fn8BZ8gFyuShBBoNBqoVKoLbtPT0z8QRMPNzc1txSTdLJSxsTGcO3cOdnZ2SE5ONltpxcUYHx9HSUkJuFwuAgICsG7dOrMK5Lfffosbb7wRR44cQV5entnsrjZYkTQxDMPg+uuvh0wmw+nTp82W/MEwDCorKzE8PAyhUGgMvVqS1ehVzgchBDMzM0bBnJmZMQqVWq2GXq8Hj8f7gXDa2dnB1tYWXC4XHA4HHA4HXC7XOFMwOTkZXC4XhBAwDAOGYaBWq6FWqy8QQ7VaDUII+Hz+Bcd3dnY2iqKlh2jTxBq8x++jVCpx5swZaDQaxMfHIzQ01Gy2Ozo6kJWVhSeffBIPPPCA2eyuRliRpMDU1BQyMzORmpqK/fv3U7d3/h5keno6qqurYWNjg/T0dIsLJbC6vcqFQAiBTqf7gZdnEDqNRgNCiFEIDT+npqbg5uYGHo93gYAahPb7gmtvb28Vf29zY03eowGlUoni4mL4+vrCz88PZ8+epT5my4BCoUB6ejoyMzPx7rvvWvxiYaXDiiQlOjs7kZqaiieeeAIPP/wwNTsXS9LRarU4e/YsuFwu0tPTrSL5QqPRoKGhAUNDQ6veqzQF1lACYu2c7z1GR0cjLCzMKj5T09PTKCkpgb+/v3EP0lzzKBmGwbXXXouJiQmcOnVqVUcPzMXK3qG3YsLCwvD555/j6aefpjYtZL4sVhsbG2MtVElJCdRqNRX7i8HW1hYpKSlYv349mpubUVZWhtnZWUsvi2WFMjY2hlOnTmFiYgJ5eXkIDw+3CoEcHx9HUVERgoKCLkjS8fDwQFZWFpqamtDd3U3N/qOPPora2lp8+eWXrECaCFYkKbJ582b8+c9/xo4dO9Da2mrSY1+uzMMglI6Ojjhz5gyUSqVJ7S8VkUiEzZs3w9bWFidPnkR7ezv0er2ll8WyQpidnUVNTQ1KS0sRHBy84NaM5mB4eBglJSWIioq66JBy2kL5wQcf4K233sKhQ4fMmjS42mHDrZQhhOCee+7B6dOnUV5eDldX12UfczF1kIQQ1NfXQyKRICsrC25ubsu2bypGR0fR2NgItVqN6OhoBAYGrvjyA1PBhlsvRKPRoL29Hd3d3fDx8UFMTIxV7D0aMIzcWsh0HBqh1/LycmzZsgXvvvsubr31VpMck2UOViTNgEajwZYtW8Dj8fDtt98uK+N1KY0CCCFob29He3s7MjIyrKp1HCEEEokEzc3N4HA4iImJga+vr1WEziwJK5Jz6PV6dHV1ob29HQKBALGxsVY3m9IwPi4tLW3BvVhNKZTd3d3YsGED7rrrLrMOWlgrsCJpJsbHx5GTk4O4uDh8+umnS/KYlttJp7e3F/X19UhJSYGfn9+i7dOEYRj09vaitbUVDg4OiI2NXdPFz2tdJBmGQV9fH1pbW2FnZ2csyrcmCCFobGzEwMAAMjMzFy3ephBKmUyG7OxsZGRk4J///CcbiaEAK5JmxPBluv766/HWW28t6rmmajUnlUpRWVmJyMhIREREWJ3HptPpjJ6Dh4cHYmJirM5zMAdrVSQJIRgaGkJzczMIIYiJiYGfn5/VfU61Wi2qq6sxPT2NzMzMJYd+lyOUSqUSeXl58PT0xKFDh9bU58ScsCJpZpqbm5GdnY0HHngATz/99IKeY+perHK5HGVlZfDw8EBSUtIFjdGtBY1Gg7a2NvT09EAkEiEmJmZFNtheKmtRJEdHR9HU1ITZ2VlERUVBLBZbpWekVCpRVlZm7Am73IYhSxFKnU6H7du3Y2pqCgUFBWvqu2FuWJG0AKWlpdi6dSteeukl3HPPPZd8LK1m5Wq1GuXl5dDr9cjIyLDaAv+ZmRm0trZiYGAAQUFBCA8PXxMnhLUikoQQjI+Po7W1FRMTE4iIiEBoaKhVXrgBc0JeWVmJgIAAxMXFmUzEFyOUDMPg9ttvR21tLUpKSiAUCk2yBpaLw4qkhTh8+DBuueUWfPjhh7j55psv+hja0zwYhkFdXR2kUinS09Ph4eFh0uObkqmpKbS2tkIqlcLb2xthYWEQCoVWF4YzFatdJPV6PSQSCTo7O6FUKhEcHIyIiAiLzvC8HN3d3WhsbMS6desgFotNfvyFCuXu3bvx73//G2fPnkVQUJDJ18FyIdZ5ubYGuOaaa/D2229j586dEAqFP2hAbI5xV1wuF4mJiXB1dUVJSQm1L78pcHV1RVpaGmZmZtDd3Y3y8nI4ODggNDQUAQEBa7Id20pEpVKhp6cHPT094PP5CA0NRWBgoFVfCDAMg/r6egwNDSErK4ua52aooywtLQWAiwrlCy+8gP379xsbFrDQhxVJC7Jz506MjIzgxhtvxNdff42srCwA5h2YzOFwEBoaChcXF1RWVmJ8fBzr1q2z2nCXo6Mj4uLiEBUVhYGBAXR0dKCpqQlBQUEQi8VWVTvHMochpNrT0wOJRAKhUIjk5GR4e3tbfSRAqVSisrIShBDk5uZSn5F6KaF8+eWX8cILL+Do0aOIj4+nug6W72DDrVbA888/j5dffhlHjhxBWlqaRQYmA3PdTKqqqqDRaJCammqSxge0IYRgdHQUvb29kEql8PDwgFgshq+v74r2LldDuFWtVqO/vx+9vb1Qq9UIDAxEcHCw1XTIuRyDg4OoqalBYGAg4uLizPp5+n7ode/evXjiiSdw6NAhbN682WzrYGFF0mp45pln8Prrr+ONN96Aj4+PRQYmA3NebGtrKzo7O7Fu3boV1YhcpVIZT8parRaBgYEIDAyEq6vrinkNBlaqSDIMA5lMZrxocXd3h1gshp+f34q5aNHr9WhoaMDg4CCSkpIsVlNsEMr6+no899xz+PLLL7F161aLrGUtY50xtTXI008/Da1Wi127duHw4cMWa07M5XIRExMDT09PVFVVYXR0FImJiSviRG1vb4+IiAiEh4djbGwMvb29OHPmDOzs7CASiSASiSAUCq2yrGAlo9VqMTw8DKlUipGREXC5XAQGBiI/P3/Fhb+np6dRWVkJHo+HTZs2UQ+vXgoPDw+0tLTg2WefxRdffMEKpIVgPUkrghCCp556Cm+//TYOHz5snORhKVQqFaqrqzEzM4OUlBSrzn6dD71ej9HRUUilUkilUuj1evj4+EAkEsHb29tqsymt3ZNUKpXG93RsbAwuLi4QiUTw8fGBu7v7ivPcCSHo6+tDfX09QkJCEBMTY/GLKUOI9fPPP8f27dstupa1DCuSVsizzz6LV199FV999RVycnIsuhZCiLE3ZUhICKKjo1dM2Oz7EEIwOTkJqVSK4eFhTE1NQSgUGkXTmrweaxNJQggmJiaMwqhQKODp6Wn00C3pcS2X2dlZ1NbWYnJyEsnJyVYxQePll1/GU089xYZYrQBWJK2U559/Hi+++CI+/fRTbNu2zdLLwdTUFKqrq8EwDJKTk+Hu7m7pJS2bmZkZY5hQJpPB0dHR6GEKBAKLipM1iOTs7CwmJiYwPDyM4eFhMAxzgRduDeK9HAgh6O/vR0NDA3x8fLBu3TqriCw899xz+NOf/oSDBw+ySTpWACuSVsxrr72Gxx9/HH//+99xxx13WHo5YBgGHR0daGtrQ2hoKKKiolasV/l9tFqtMSw7OjoKlUoFJycnCAQCCAQCuLm5mVU4zSmShBCoVCpMTk5icnIScrkck5OTUKvVcHFxgbe3N0QiETw8PCwegjQV53uPSUlJEIlEll4SGIbBfffdh48++giHDx9Gdna2pZfEAjZxx6rZvXs3fHx8cNddd2FkZAQPPPCARdfD5XIRGRkJkUiE6upqSKXSVeNV2tjYwM/Pz5jJqFKpjGIxNjaGrq4uzM7OGoXTIJpubm5W4X0slO8LokEUDYIoEAjg5eWFiIgIuLm5WW297FL5vvdoGABuaXQ6HW6//XaUlpaiuLgYsbGxll4Sy/+xur4Bq5DbbrsNQqEQN910E6RSKfbs2WPpJcHV1RW5ublob29HcXExgoKCEB0dbRUnG1Nhb28Pe3v7C/an1Gq1UTgnJibQ3d2N2dlZODo6ws3NDY6OjrCzszM+13Dj8/lmS2QhhECtVkOtVkOlUl1wm5mZweTkJDQajVEQfXx8EBUVBVdX11UniN9nenoadXV1mJ6eRnJyMnx9fS29JABzSVDXXXcdJBIJzp49i8DAQEsvieU82HDrCqGqqgrbt2/HNddcg3fffddqwpwKhQL19fWYnJxEbGzsiqqrNAUG4ZTL5RcIkkGk9Ho9uFzuBaJ5vpDa2NiAw+GAy+WCw+EY/63X61FSUoLMzEzweDwQQkAIAcMwYBgGGo3mB7YM/yaEwMbG5ge2DGK+FgTxfLRaLdra2tDV1YXg4GBER0dbzX7q6OgorrzyStja2uLrr79ekRnkqx1WJFcQHR0d2Lp1K+Li4vD5559brJby+xhmADY0NMDe3h4JCQlrcgbk9yGEQKfTXVTMDP/XarVG8buYENrb2xsF9HwhtbOzu6jXavidtVxEWRJCCCQSCRoaGuDk5ISEhASr6iLV2dmJ7du3IyIiAv/+979XdIbwqoawzMsLL7xAUlNTibOzM/Hy8iI33HADaWlpMd4/NjZG7r33XhIZGUns7e1JYGAgue+++8jk5OQFxwHwg9vHH398wWOeeeYZ4u/vT3Jyckhra+u8axoaGiIJCQkkMzOTjIyMmPYFLxOtVkuamprIoUOHSE1NDVGr1ZZe0opFo9GQL7/8kmg0GksvZUUyNTVFioqKyJEjR0hfXx9hGMbSS7qAkpIS4uvrS3bu3HnJv3FhYSG59tpria+vLwFAvvjiiwvuf/rpp0lUVBRxdHQkAoGAbNmyhZw9e/aCx4jF4h+cf/74xz9e8Ji//e1vJCgoiCQlJf3g+Wud1ZGqRonCwkLs2rULZ8+exbFjx6DVarFt2zYolUoAgEQigUQiwYsvvoiGhga8//77OHr0KH7+85//4FjvvfcehoaGjLcbb7zReF9xcTEOHz6MAwcO4I477sC9994775pEIhHOnDkDd3d3pKamorq62uSve6nw+XzExMRg06ZNmJmZwfHjx9HR0QG9Xm/ppbGsEQxZq6dOnYKrqyu2bNmCwMBAq9oC2LdvH7Zu3Yp77rkH77333iVDv0qlEomJiXjzzTcven9kZCTeeOMN1NfXo6ioCMHBwdi2bRtGR0cveNzvf//7C84/9913n/G+vr4+/PnPf8b//u//4sknn8Rdd91lmhe6WrC0Sq8kRkZGCABSWFg472M+/fRTYmtrS7RarfF3uMgV4PkcOnSI3HDDDUSj0ZCzZ8+StLS0y65Fp9ORRx99lDg7O5OPPvpoUa/DHDAMQ4aHh0lBQQE5evQo6enpIXq93tLLWjGwnuTi0Gg0pLGxkRw6dIiUl5eTqakpSy/pB+j1enL//fcTJycn8p///GfRz7/ceYQQQuRyOQFAjh8/bvydWCwmr7zyyrzPqa+vJ6mpqUShUJCuri4SHBy86LWtZlhPchHI5XIAuOTmulwuv2hixK5du+Dp6Yn09HTs27cP5Lyt4CuvvBIqlQqOjo7Yvn07/vjHP152LTweD3v27ME777yDX/ziF3j88cfBMMwSX5np4XA48Pb2Rl5eHuLi4tDe3o6CggJIJJILXjsLy3LQ6/Vob2/HsWPHMDExgZycHKSlpVndpBG5XI7t27fjP//5D0pKSnDTTTeZ3IZGo8Hf/vY3uLm5ITEx8YL79uzZYxxR9pe//AU6nc54X3x8PBISEuDm5oa4uDg8//zzJl/bisbSKr1S0Ov15JprriE5OTnzPmZ0dJQEBQWRJ5544oLf//73vydFRUWkurqa7Nmzh9jZ2ZG9e/f+4PnDw8NL2scrLy8nIpGIXHfddUShUCz6+eZAr9eTrq4ucuTIEVJYWEhGRkasbp/ImmA9yUuj1+tJT08POXr0KCkoKCDDw8NW+3lqaWkhUVFRZMOGDcvKI8A8nuShQ4eIk5MT4XA4xM/Pj5SXl19w/0svvUQKCgpIbW0tefvtt4lAICAPPvjgD44jk8nIzMzMkte3WmFFcoH86le/ImKxmPT391/0frlcTtLT08n27dsve2J76qmnSEBAgEnXJ5FISFpaGomPjyddXV0mPbYp0Wq1pKWlhRw+fJgUFhYSiURitSc3S8KK5MXRarWko6ODfPPNN+TYsWNkYGDAqj8/hw8fJh4eHuSXv/zlshPZ5hNJhUJB2tvbSWlpKfnZz35GgoODyfDw8LzHeffddwmfzycqlWpZ61krsOHWBXDvvffiq6++QkFBAQICAn5w//T0NLZv3w4XFxd88cUXl63BysjIwMDAANRqtcnW6Ovri9OnTyMpKQlpaWn44osvTHZsU8Ln8xEVFYWtW7fCz88PtbW1KCgoQH9/v1WFi1msC41Gg9bWVhw7dgz9/f2Ij4/Hli1b4O/vb1VJOQYYhsGTTz6J//qv/8Lvf/97vPPOO9SabTg5OSE8PByZmZl49913wefz8e677877+IyMDOh0OvT09FBZz2pj7VQULwFCCO677z588cUXOHXqFEJCQn7wmKmpKVx55ZWws7PDwYMHYW9vf9nj1tTUwN3d3eR1jvb29ti/fz/+9re/4c4778Rdd92FV1991SoLx21sbBAeHo6QkBD09/ejtbUVLS0tCA8PR1BQEFvnxwJgrj1gZ2cnenp6IBAIsH79enh5eVmlMBoYGhrC7bffjq6uLpw4cQJZWVlmtc8wzCUvwGtqasDlcuHt7W3GVa1crO/saUXs2rULH330EQ4cOAAXFxdIpVIAgJubGxwcHDA1NYVt27ZhZmYGH374IaampjA1NQUA8PLyAo/Hw6FDhzA8PIzMzEzY29vj2LFjeOGFF/A///M/VNbM4XBwzz33ICsrC7fccgsyMzPxySefICwsjIq95cLj8RAcHIygoCBIJBK0t7ejpaUFwcHBCA4OhoODg6WXyGIBDG3/BgcH4e3tjaysrBXRjebrr7/Gz372M2RkZKC2tnbZa1YoFOjo6DD+v7u7GzU1NfDw8IBQKMQf/vAHXH/99fD19YVMJsObb76JwcFB3HLLLQCA0tJSlJWVIT8/Hy4uLigtLcWDDz6IO++8c1X0XDYLlo73WjO4SBMAAOS9994jhBBSUFAw72O6u7sJIYQcOXKEJCUlEWdnZ+Lk5EQSExPJX//6V7OUQ0xPT5MdO3YQgUBglWUiF8NQOnL27Fly8OBBUl5eTkZHR61634kGa3FPUqfTkb6+PlJYWGhsSCGXyy29rAWh0+nIb3/7W+Lg4ED27t1rss/rfOeYnTt3ktnZWXLTTTcRPz8/YmtrS3x9fcn1119/QeJOVVUVycjIIG5ubsTe3p7ExMSQF154gd2PXARsW7o1wP79+/Gb3/wGt912G9566y2raWd3OZRKJXp6etDb2ws7OzsEBwcjMDBwVTVSnw9rmCdpLhQKBXp6etDf3w9bW1tjZGGlvO7e3l7cdtttGBkZwWeffYb169dbekksJoQVyTVCS0sLbrnlFnA4HPzzn/9EcnKypZe0YPR6PSQSCXp6ejA5OQlfX18EBATA29t71cw3/D6rXSQ1Gg0kEgkGBgYwMTEBX19fBAcHQygUWvV+4/f56KOPsHv3bmzZsgV///vfrao3LItpYPck1wjR0dEoLy/HY489hpycHDz44IN49tlnrTKp5/vweDwEBgYiMDAQU1NTGBgYQF1dHfR6Pfz8/BAYGAh3d/cVdXJdi+j1egwPD2NgYADDw8NwdXVFQEAA0tLSVkx0w8Do6CjuvvtunDx5Eq+++iruuusu9vO3SmE9yTXI6dOnsXPnTggEArz//vs/6M6xEiCEYHx8HP39/ZBIJLCxsUFAQAD8/f3h4uKy4k9Yq8WTZBgGY2NjGBwcxODgIOzs7BAQEICAgAA4OztbenlL4uOPP8YDDzyAhIQE7Nu3j53/uMphRXKNolQq8dhjj+Hdd9/FQw89hGeeeWbFll3o9XqMjIygv78fIyMjxmHJIpEIQqFwRYZkV7JIarVajIyMQCqVYnh4GFwuF35+fggICFjRHr9MJsPdd9+NEydO4OWXX8bPf/7zFftaWBYOK5JrnMLCQvz0pz9d0V7l+eh0OshkMkilUkilUjAMA29vb4hEIvj4+KwYwVlpIjkzM2N8z2UyGZydnSESiSASiVa0MBr45JNPcP/99yM+Ph779u1DUFCQpZfEYiZYkWSBUqnEo48+in379mH37t149tlnV9we0cUghGByctJ48p6enoa7uzuEQiE8PT3h4eFhtXuy1i6SKpUKY2NjkMlkkMlkUCqVEAqFRmF0cnKy9BJNwuDgIO69914cP34cL730Eu6+++4VL/gsi4MVSRYjhYWFuOeee6DRaPDKK6/ghhtusPSSTMrMzIzxpC6TyaBSqaxWNK1NJL8vigqFAm5ubsb3ztPT0yrWaSp0Oh327NmDv/zlL9i4cSPefPNNiMViSy+LxQKwIslyARqNBnv37sWzzz6LjRs34o033rDabj3LgRBiFE3DyV+lUsHFxQUCgQBubm7Gn5bYq7WkSGo0GkxOThpvcrkcMzMzcHV1NQqiUChctfWq3377Le6//36oVCq8/vrruPbaay29JBYLwooky0UZHBzEb3/7W3z11VfYvXs3nnnmmVURgp0PQghmZ2cvEIbJyUlotVq4uLjAzc0Nbm5ucHZ2hrOzMxwdHamG3cwhknq9HkqlEgqFAtPT08bXPDs7C0dHRwgEggsuGFarKBoYHBzE7t27ceTIETz66KN49NFHF9SLmWV1w4okyyUpKCjAr3/9a2g0Grz00ktUhsVaKwbhNIjH1NQUFAoFlEolOBwOHB0djaJpEE47OzvY29vDxsZmWSJqCpEkhECtVkOlUkGlUkGpVBpFUaFQYHZ2Fjwez7j+873n1S6I53N+aDU3NxevvfbaRYcZsKxNWJFkuSxarRZ79+7FM888g7S0NPzlL39BamqqpZdlMRiGwezsrFFszhcdlUoFvV4PLpcLe3t7o2ja29vD1tYWfD4ffD4fPB7P+G/DjcvlgsPhgMPhQKfT4eTJk8jPzwefzwchBHq9Hjqd7oLb+b87XxDVajXUajUIIbCxsYG9vT2cnJzg7Oxs/Ons7Aw7O7s1m4jCMAw+/vhjPPPMM9DpdHjjjTdwzTXXWHpZLFYGK5IsC0YqleLZZ5/Fvn37cPXVV+PPf/4zIiIiLL0sq0Or1RqFyiBaKpUKWq12XoHT6XRgGAbzfR05HI5RWC8msHw+H7a2tkZBNtzs7OxWbP0rTb755hs8/vjj6Onpwe9+9zv85je/YUOrLBeFFUmWRdPR0YEnn3wSBw8exI9//GP84Q9/gK+vr6WXtWoghECr1eLIkSNWk926WigvL8cjjzyCiooKPPjgg3j44Yfh5uZm6WWxWDErrxUJi8UJDw/HJ598guLiYvT39yMyMhIPPfSQcZYmy/IwhFxZTEd7eztuvPFGbNy4EbGxsejs7MTzzz/PCiTLZWFFkmXJpKSk4NixYzhw4AAKCwsRFhaG3/3ud5DL5ZZeGgsLgDlx3LFjBxISEmBnZ4fGxka89dZbEIlEll4aywqBFUmWZbN582ZUVFTgnXfeweHDhxEcHIz7778fw8PDll4ayxrl3LlzuOmmmxAfHw+FQoGSkhJ88sknCA8Pt/TSWFYYrEiymAQOh4Obb74Z1dXV+OSTT1BTU4PQ0FD87Gc/Q3d3t6WXx7JGKCwsxNatW5GZmQlXV1fU1tbiiy++WFHzU1msC1YkWUwKh8PBtm3bUFhYiBMnTmB0dBQxMTG49dZbUV9fb+nlsaxCGIbBgQMHkJWVhauuugoxMTFob2/HP//5T0RHR1t6eSwrHFYkWaiRmZmJQ4cOobKyEjY2NkhNTcW2bdvw1VdfgWEYSy+PZYVjaBuXmJiInTt3YsuWLejt7cVrr73GTulgMRmsSLJQJz4+Hv/617/Q2tqKhIQE3HnnnYiJicGf/vQnNiOWZdF0dnZi165dCAgIwN69e3H33Xejr68Pzz//PLy8vCy9PJZVBiuSLGYjODgYL774IiQSCR5++GF8+OGHCAgIwJ133ony8nJLL4/FitHr9fjss89wxRVXICYmBt3d3fjXv/6FtrY27N69G66urpZeIssqhRVJFrPj6OiIX/ziF6irq8PRo0cBALm5uUhJScFrr73GepcsRrq7u/HII48gODgYv/nNb5CamoqWlhZ8/fXXuPLKK8HlsqcwFrqwnzAWi8HhcJCdnY0PP/wQg4OD2LFjh7GG7brrrsOnn34KjUZj6WWymJnx8XG8/PLLyMzMRGRkJCorK/HSSy9hcHAQe/bsQWhoqKWXyLKGYNvSsVgVhBDU1NTgww8/xL/+9S/odDpcffXV+OlPf4pNmzatGc/B2oYu00atVuPTTz/Fhx9+iNOnTyM8PBw7d+7Ej3/8Y/j7+1t6eSxrGFYkWawWvV6PgoICfPDBB/jPf/4DoVCIG264ATt37kRKSoqll0eVtSCSOp0O33zzDT744AN88803cHZ2xk9+8hPceeediI+Pt/TyWFgAsCLJskKYnZ3FoUOHsH//fhw7dgy+vr7YtGkTbr75Zmzfvn3VzT9crSI5Pj6Ozz//HIcOHcKZM2fA4XDwox/9CDt27MCGDRvWTKSAZeXAiiTLikOhUOD48eM4cOAADh06BJ1Ohw0bNuDaa6/FLbfcAqFQaOklLpvVJJLt7e34+OOPcfToUVRWViI4OBg33ngjrr/+emRlZbGjvFisGlYkWVY0er0e5eXlOHDgAA4cOICOjg6sX78eGzduxNatW7Fp06YV6WWuZJEcHx/HN998gxMnTqCoqAgdHR3IycnBDTfcgOuuu46dQcqyomBFkmVV0dXVhcOHD+PEiRMoLCyERqNBcnIysrOzsW3bNuTm5q4I0VxJIjk5OYlvvvkGx48fR1lZGZqamhAQEIDNmzdjy5YtuOqqq+Dh4WHpZbKwLAlWJFlWLQzDoL6+HqdOncLJkydRWFgIrVaL5ORkZGZmIisrCxs2bICPj4+ll/oDrFUkGYZBe3s7ioqKcPbsWaMo+vv7Iz8/H5s3b0ZeXh7EYrGll8rCYhJYkWRZMzAMg7q6Opw6dQqFhYWoqqpCf38/AgICEBMTg8TERKSnp2Pjxo0WnzdoDSLJMAza2tpQVFSEiooK1NfXo7m5GdPT04iKikJ6ejo2bdqEvLw8BAcHW2SNLCy0YUWSZU0jk8lQXV2N6upqVFRUoLKyEn19ffDz80N0dDRCQ0MRGRmJuLg4JCQkwM/PzywZmOYUSb1ej/b2dtTX16OpqQnt7e3o7OxES0sLpqenER0djbS0NKSmpmL9+vVISEiAo6Mj1TWxsFgLrEiysHyP8fFxVFdXo7a2Fm1tbWhpaUF7ezuGhobg7OwMsVgMsViMsLAwhIeHIzAwEEFBQRCLxfDw8DCJiJpSJPV6PSQSCXp7e9Hf34/+/n60tbWhu7sbfX196Ovrg16vh1gsRmRkJKKjoxEVFYXk5GQkJCTAwcFh2a+HhWWlwookC8sCUSgU6OjoQFtbm1E8Ozo6MDQ0hOHhYajVatjb28PT0xOenp7w8vKCl5cXvL294eLiAhcXF7i5uRl/urq6QiAQQCAQwMXFBXw+HzweD1wuF4QQfP3119i2bRt4PB50Oh00Gg3kcvkFt6mpKcjlcigUCkxNTWFqagrDw8MYGRmBTCaDTCbD2NgYdDodXF1d4ePjAz8/P0RFRSEqKgqRkZGIjIxESEiIVe19srBYC6xIsrCYAEII5HI5hoaGMDQ0BIlEYvw5MjKCqakpTE9PQ6FQGH8qlUooFAro9fpF2bK1tYWTkxOcnZ3h7OxsFGAXFxe4urrCz88Pvr6+P7ixIVIWlsXDiiQLiwUhhEClUmFmZgYMwxhver0eXC73ghuPx4OTk9OKKGFhYVktsCLJwsLCwsIyD2yjRBYWFhYWlnlgRZKFhYWFhWUeWJFkYWFhYWGZB1YkWVhYWFhY5oEVSRYWFhYWlnlgRZKFhYWFhWUeWJFkYWFhYWGZB1YkWVhYWFhY5oEVSRYWFhYWlnlgRZKFhYWFhWUeWJFkYWFhYWGZB1YkWVhYWFhY5oEVSRYWipw+fRrXXXcd/Pz8wOFw8OWXX15wv0KhwL333ouAgAA4ODggNjYWf/3rXy94jEqlwq5duyAUCuHs7Iwf/ehHGB4evuAxBw8eRGRkJKKiovDVV1/RflksLGsGViRZWCiiVCqRmJiIN99886L3//a3v8XRo0fx4Ycform5GQ888ADuvfdeHDx40PiYBx98EIcOHcJnn32GwsJCSCQS3Hzzzcb71Wo1du3ahbfeegtvvPEGfv3rX0Oj0VB/bSwsawG+pRfAwrKaueqqq3DVVVfNe39JSQl27tyJTZs2AQB++ctf4p133kF5eTmuv/56yOVyvPvuu/joo4+wefNmAMB7772HmJgYnD17FpmZmVCr1eDxeEhKSgIA8Pl8qNVqdu4kC4sJYD1JFhYLkp2djYMHD2JwcBCEEBQUFKCtrQ3btm0DAFRVVUGr1eKKK64wPic6OhpBQUEoLS0FALi6uuKuu+6Cr68v/Pz88Otf/xouLi4WeT0sLKsN1pNkYbEgr7/+On75y18iICAAfD4fXC4Xf//735GbmwsAkEqlsLW1hUAguOB5Pj4+kEqlxv8//fTTeOCBB8DlclmBZGExIaxIsrBYkNdffx1nz57FwYMHIRaLcfr0aezatQt+fn4XeI8Lwc3NjdIqWVjWLqxIsrBYiNnZWTzxxBP44osvcM011wAAEhISUFNTgxdffBFXXHEFRCIRNBoNJicnL/Amh4eHIRKJLLRyFpa1A7snycJiIbRaLbRaLbjcC7+GPB4PDMMAANavXw8bGxucOHHCeH9rayv6+vqQlZVl1vWysKxFWE+ShYUiCoUCHR0dxv93d3ejpqYGHh4eCAoKQl5eHh5++GE4ODhALBajsLAQ+/fvx8svvwxgLoT685//HL/97W/h4eEBV1dX3HfffcjKykJmZqalXhYLy5qBQwghll4EC8tq5dSpU8jPz//B73fu3In3338fUqkUjz/+OL799luMj49DLBbjl7/8JR588EFwOBwAc80EHnroIXz88cdQq9W48sor8dZbb7HhVhYWM8CKJAsLCwsLyzywe5IsLCwsLCzzwIokCwsLCwvLPLAiycLCwsLCMg+sSLKwsLCwsMwDK5IsLCwsLCzzwIokCwsLCwvLPLAiycLCwsLCMg+sSLKwsLCwsMwDK5IsLCwsLCzzwIokCwsLCwvLPLAiycLCwsLCMg//H1Ed18N5Vs6nAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "d = 7 * lda0 # distance at which the radiation pattern is evaluated\n", "Z0 = 377 # free space impedance\n", "P0 = np.array(sim_data[\"power\"].flux) # total radiated power\n", "\n", "# evaluate the radiated power at 7*lda0 away from the antenna\n", "P = np.zeros(len(theta_array))\n", "for i, theta in enumerate(theta_array):\n", " Ex = sim_data[\"field\"].Ex.sel(\n", " x=d * np.sin(theta), z=d * np.cos(theta), method=\"nearest\"\n", " )\n", " Ey = sim_data[\"field\"].Ey.sel(\n", " x=d * np.sin(theta), z=d * np.cos(theta), method=\"nearest\"\n", " )\n", " Ez = sim_data[\"field\"].Ez.sel(\n", " x=d * np.sin(theta), z=d * np.cos(theta), method=\"nearest\"\n", " )\n", " P[i] = (\n", " d**2 * (abs(Ex) ** 2 + abs(Ey) ** 2 + abs(Ez) ** 2) / (2 * Z0)\n", " ) # we multiple the power by d^2 to normalize it to the power at unit distance\n", "D = 4 * np.pi * P / P0 # directivity of the yagi-uda antenna\n", "\n", "fig, ax = plt.subplots(subplot_kw={\"projection\": \"polar\"})\n", "ax.set_theta_direction(-1)\n", "ax.set_theta_offset(np.pi / 2.0)\n", "ax.plot(theta_array, D)\n", "ax.set_rlim(0, 8)\n", "ax.set_title(\"Directivity\")\n", "plt.show()\n" ] }, { "cell_type": "markdown", "id": "dd2e1744", "metadata": {}, "source": [ "## Modeling Antenna on Substrate " ] }, { "cell_type": "markdown", "id": "c1b0f582", "metadata": {}, "source": [ "The approach of extending the simulation domain directly into the far-field zone really shows the benefit when the background medium is not uniform. Here we investigate such a case where a Yagi-Uda is placed on a glass substrate. It was predicted in the referenced paper that a lossless Yagi-Uda antenna on a glass substrate can achieve a directivity above 20, much higher than suspended in free space. \n", "\n", "For the lossless antenna, we will use PEC as the medium for the antenna structure. To make sure the mesh around the PEC domains is not excessively fine, we will utilize a mesh override structure and set the refractive index to 10. \n", "\n", "" ] }, { "cell_type": "code", "execution_count": 13, "id": "d40ee38b", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:17:02.420358Z", "iopub.status.busy": "2023-03-27T21:17:02.420106Z", "iopub.status.idle": "2023-03-27T21:17:02.448250Z", "shell.execute_reply": "2023-03-27T21:17:02.447655Z" } }, "outputs": [], "source": [ "pec = td.PECMedium() # pec medium\n", "\n", "n_glass = 1.5 # glass has a refractive index of 1.5\n", "glass = td.Medium(permittivity=n_glass**2)\n", "\n", "L_f = 0.187 # length of the feed element\n", "antenna_pec = construct_antenna(\n", " L_f, r, lda0, pec\n", ") # construct the lossless yagi-uda antenna with pec\n", "\n", "inf_eff = 100 # effective infinity\n", "# construct the substrate\n", "sub = td.Structure(\n", " geometry=td.Box.from_bounds(\n", " rmin=(-inf_eff, -inf_eff, -inf_eff), rmax=(inf_eff, inf_eff, -r)\n", " ),\n", " medium=glass,\n", ")\n", "\n", "# the whole structure is the antenna plus the substrate\n", "antenna_pec.append(sub)\n", "\n", "# to control the mesh around the antenna area, we construct a mesh override structure\n", "# refractive index of the override structure is set to 10 to ensure sufficiently but not excessively fine mesh\n", "refine_medium = td.Medium(permittivity=10**2)\n", "antenna_refine = construct_antenna(\n", " L_f, r, lda0, refine_medium\n", ") # construct the mesh override structure\n" ] }, { "cell_type": "markdown", "id": "c3ae09b0", "metadata": {}, "source": [ "Construct the source, monitors, and simulation in a similar way to the previous simulation." ] }, { "cell_type": "code", "execution_count": 14, "id": "f9960aea", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:17:02.451320Z", "iopub.status.busy": "2023-03-27T21:17:02.451061Z", "iopub.status.idle": "2023-03-27T21:17:02.738770Z", "shell.execute_reply": "2023-03-27T21:17:02.738255Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcMAAAHWCAYAAAALneL2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA86ElEQVR4nO3de3gU5b0H8O/MXrOb7CZAuJWAECsoiFhuBa9cjmCpSltpba2A9dCC0YpYhZxaUE9pPC1VKlVE20IfKhUvB6ha5X6xKhQQehALFhQJUCRAsptskr3MvOePTRaW3GZDksnO+/08zz66szOzv51Z8t33ncurCCEEiIiIJKaaXQAREZHZGIZERCQ9hiEREUmPYUhERNJjGBIRkfQYhkREJD2GIRERSY9hSERE0mMYEhGR9BiGRGlmy5YtUBQFW7ZsMbsUIstgGBK1U8899xyWLVtmdhnNsmLFCixcuNDsMpL8/ve/x+WXXw63240vf/nLWLRokeFlw+EwZs+eje7duyMjIwPDhw/H+vXr6533/fffx7XXXguPx4OuXbvixz/+MSoqKlrqY1BrEUTULvXv31/ccMMNdaZrmiaqqqqEpmltX5RBEyZMEL169TK7jITnn39eABDf+ta3xAsvvCDuuusuAUA8+eSThpa/4447hN1uFz/5yU/EkiVLxIgRI4Tdbhfvvvtu0nx79uwRbrdbXH311WLx4sXipz/9qXC5XGL8+PGt8bGoBTEMqV2rqKgwuwTTNBSG6aA9hWFlZaXo2LGjmDBhQtL0O++8U3i9XnH27NlGl9+xY4cAIH71q18lplVVVYn8/HwxYsSIpHlvvvlm0a1bNxEIBBLTXnzxRQFArF27tgU+DbUWhiG1mWPHjokf/OAHolu3bsLpdIpLLrlETJ8+XYTDYSGEEEuXLhUAxJYtW8SMGTNEbm6uyM7OTiz/7LPPiiuuuEI4nU7RrVs3ce+994rS0tKk9/jkk0/EN7/5TdGlSxfhcrnEl770JfGd73xHlJWVJeZZt26duOaaa4Tf7xder1dcdtllorCwsMn6jSxXXV0t5s6dK/Lz84XT6RQ9evQQDz/8sKiurq6zvuXLl4uhQ4eKjIwMkZ2dLa677rrEH8xevXoJAEmP2mDcvHmzACA2b96ctL5XXnlFfOUrXxFut1t07NhR3HnnneLYsWNJ80yZMkV4vV5x7Ngxcdtttwmv1ys6deokHnroIRGLxZrcBqtXrxZf+9rXEvuwT58+4oknnkha9oYbbqhTe2PBeP3114uBAwfW+9pll10mbrrppibrasxbb70lAIi33norafr7778vAIjly5c3uvzDDz8sbDZbUsAJIcQvfvELAUAcPXpUCCFEIBAQdrtdPPzww0nzhcNhkZmZKe65556L+hzUuuxt3i9LUjpx4gSGDRuGsrIy/PCHP0S/fv1w/PhxvPbaa6isrITT6UzMe++99yI3Nxdz585FKBQCADz22GN4/PHHMXbsWMyYMQMHDx7E4sWLsXPnTrz33ntwOByIRCIYN24cwuEw7r//fnTt2hXHjx/Hm2++ibKyMvj9fuzfvx9f//rXMXDgQDzxxBNwuVw4dOgQ3nvvvUbrN7Kcruu49dZb8be//Q0//OEPcfnll2Pfvn14+umn8cknn2D16tWJeR9//HE89thjGDlyJJ544gk4nU7s2LEDmzZtwk033YSFCxfi/vvvR2ZmJn76058CALp06dJgfcuWLcPdd9+NoUOHoqioCF988QV+85vf4L333sOePXuQnZ2dmFfTNIwbNw7Dhw/HggULsGHDBvz6179Gfn4+ZsyY0eh2WLZsGTIzMzFr1ixkZmZi06ZNmDt3LoLBIH71q18BAH76058iEAjg2LFjePrppwEAmZmZDa7zrrvuwrRp0/DRRx9hwIABiek7d+7EJ598gkcffTQxrbS0FJqmNVojAHg8Hng8HgDAnj17AABDhgxJmmfw4MFQVRV79uzB97///QbXtWfPHlx22WXw+XxJ04cNGwYA2Lt3L/Ly8rBv3z7EYrE67+N0OjFo0KBEHdROmZ3GJIfJkycLVVXFzp0767ym67oQ4lzL8Nprr01qaZw6dUo4nU5x0003JR0n++1vfysAiD/84Q9CiPjxGgDi1VdfbbCOp59+WgAQJSUlKdVvZLnly5cLVVXrHEeqPV713nvvCSGE+Ne//iVUVRXf+MY36hz3q90WQjTcTXphyzASiYjOnTuLAQMGiKqqqsR8b775pgAg5s6dm5g2ZcoUAUA88cQTSeu8+uqrxeDBgxvfCCLe5XihH/3oR8Lj8SS1flPpJi0rKxNut1vMnj07afqPf/xj4fV6k7rK62sx1/eYN29eYpmCggJhs9nqfe/c3Fxxxx13NFpf//79xejRo+tM379/vwAgnn/+eSGEEK+++qoAILZt21Zn3kmTJomuXbs2+j5kLp5NSq1O13WsXr0at9xyS51fzQCgKErS82nTpsFmsyWeb9iwAZFIBDNnzoSqqknz+Xw+vPXWWwAAv98PAFi7di0qKyvrraW2hbRmzRroum74MxhZ7tVXX8Xll1+Ofv364fTp04nH6NGjAQCbN28GAKxevRq6rmPu3LlJnweouy2M2LVrF06dOoV7770Xbrc7MX3ChAno169fYvucb/r06UnPr7vuOnz66adNvldGRkbi/8vLy3H69Glcd911qKysxIEDB1KuHYjvt9tuuw1//vOfIWrGGtc0DStXrsTEiRPh9XoT87700ktYv359k4/JkycnlqmqqkrqeTif2+1GVVVVo/VVVVXB5XLVu2zt6+f/t6F5m3ofMhe7SanVlZSUIBgMJnWBNaZ3795Jzz///HMAQN++fZOmO51O9OnTJ/F67969MWvWLDz11FN46aWXcN111+HWW2/F97///URQfuc738Hvfvc7/Od//ifmzJmDMWPG4Jvf/CZuv/32OsF0PiPL/etf/8I///lP5Obm1ruOU6dOAQAOHz4MVVVxxRVXGNoeTWlo+wBAv3798Le//S1pmtvtrlNjTk4OSktLm3yv/fv349FHH8WmTZsQDAaTXgsEAqmWnjB58mSsXLkS7777Lq6//nps2LABX3zxBe66666k+a655pqU152RkYFIJFLva9XV1UkB39Dy4XC43mVrXz//vw3N29T7kLkYhtTuXMwfjV//+teYOnUq1qxZg3Xr1uHHP/4xioqKsH37dvTo0QMZGRnYtm0bNm/ejLfeegvvvPMOVq5cidGjR2PdunVJLdILa2pqOV3XceWVV+Kpp56qdx15eXnN/lwtqaHP2JSysjLccMMN8Pl8eOKJJ5Cfnw+3240PP/wQs2fPTqmlfaFx48ahS5cu+NOf/oTrr78ef/rTn9C1a1eMHTs2ab6SkhJDxwwzMzMTxym7desGTdNw6tQpdO7cOTFPJBLBmTNn0L1790bX1a1bNxw/frzO9H//+98AkFi+W7duSdMvnLep9yFzsZuUWl1ubi58Ph8++uijZi3fq1cvAMDBgweTpkciEXz22WeJ12tdeeWVePTRR7Ft2za8++67OH78OJ5//vnE66qqYsyYMXjqqafw8ccfY/78+di0aVOiG7MhTS2Xn5+Ps2fPYsyYMRg7dmydR23LLT8/H7qu4+OPP270/Yx2mTa0fWqnXbh9mmvLli04c+YMli1bhgceeABf//rXMXbsWOTk5NSZN9XuXpvNhu9973t47bXXUFpaitWrV+O73/1uneAeOnQounXr1uRjwYIFiWUGDRoEIN6dfL5du3ZB1/XE6w0ZNGgQPvnkkzot4R07diStf8CAAbDb7XXeJxKJYO/evU2+D5mLYUitTlVVTJw4EW+88UadPxQAEseJGjJ27Fg4nU4888wzSfP+/ve/RyAQwIQJEwAAwWAQsVgsadkrr7wSqqomuq7Onj1bZ/21f6Tq696qZWS5b3/72zh+/DhefPHFOvNWVVUlzoydOHEiVFXFE088Uac1df7n83q9KCsra7CmWkOGDEHnzp3x/PPPJ32Gt99+G//85z8T2+di1QbT+TVGIhE899xzdeb1er0pd5veddddKC0txY9+9CNUVFTUe4Znc44Zjh49Gh06dMDixYuT1rV48WJ4PJ6k7XP69GkcOHAg6Zjz7bffDk3T8MILLySmhcNhLF26FMOHD0+0+P1+P8aOHYs//elPKC8vT8y7fPlyVFRUYNKkSSltD2pjpp6+Q9I4duyY6Nq1q/B4PGLmzJliyZIl4rHHHhP9+/dPXCtYezZpfWeczps3TwAQN910k/jtb38r7r//fmGz2cTQoUNFJBIRQgixatUq8aUvfUnMnDlTPPfcc+KZZ54RQ4cOFQ6HQ3zwwQdCCCEeeOABcfXVV4tHH31UvPjii2L+/PniS1/6kujRo0fStYgXMrKcpmnia1/7mlAURdxxxx1i0aJFYuHChWL69OmiQ4cOSZ/rZz/7mQAgRo4cKRYsWCAWLVokJk+eLObMmZOY59577xWKooj//u//Fn/+85/Fxo0bhRD1X2dYu+2GDx8uFi5cKAoLC4XH4xGXXHJJ0rWYtdcZNrR9G3P69GmRk5MjevXqJX7961+Lp556Slx99dXiqquuqlPPL3/5SwFAPPjgg2LFihXiL3/5S6PrrjVgwAABQFx++eWG5jfq2WefFQDE7bffLl588UUxefJkAUDMnz8/ab7a7XDhNZyTJk1KXEO4ZMkSMXLkSGG328XWrVuT5tu9e7dwuVxJd6Bxu90Xfa0ktT6GIbWZzz//XEyePFnk5uYKl8sl+vTpIwoKCupcdF9fGAoRv5SiX79+wuFwiC5duogZM2Yk/aH/9NNPxQ9+8AORn58v3G636NChgxg1apTYsGFDYp6NGzeK2267TXTv3l04nU7RvXt38d3vfld88sknjdZudLlIJCL+53/+R/Tv31+4XC6Rk5MjBg8eLB5//PE6F23/4Q9/EFdffXVivhtuuEGsX78+8frJkyfFhAkTRFZWlqGL7leuXJlYX4cOHRq96P5CRsJQCCHee+898dWvflVkZGSI7t27i0ceeUSsXbu2Tj0VFRXie9/7nsjOzm7yovvz1YboL37xC0Pzp+KFF14Qffv2FU6nU+Tn54unn3466VIWIRoOw6qqKvGTn/xEdO3aVbhcLjF06FDxzjvv1Ps+7777rhg5cqRwu90iNzdXFBQUiGAw2OKfh1qWIkQTfVRERG3kN7/5DR588EEcOXIEPXv2NLsckgjDkIjaBSEErrrqKnTs2LHJk5mIWhovrSAiU4VCIfzlL3/B5s2bsW/fPqxZs8bskkhCbBkSkamOHDmC3r17Izs7G/feey/mz59vdkkkIYYhERFJj9cZEhGR9BiGREQkPalOoNF1HSdOnEBWVlazRgcgIqL0IoRAeXk5unfv3ujN+KUKwxMnTrSbmyUTEVHbKS4uRo8ePRp8XaowzMrKAgA88pMHkZERH3NMCCAaA5wOQFUU5PrtprQaI1EdZaH43fizvTY4HW3fgy2EQEkgfm9Pl0OB32vO1yMQiiEcjZ/Xxf3B/QFwf5yP+yOuvv0RjQmcDkYBALWbpaoqjF8ueDrx978hUoVh7ZcmI8OFTK8HAFAd0WGzA36vDTFdICoUdMyyQW3DL1gkqiMU1eCv2VdRHfC72/YLpguBM0ENXq8DLruC6qiAalOR5WnecD/NVV6pweawo4NHQTjG/cH9wf1xPu6PuIb2hy9DRShqh6oAqpq8TZr60SD1CTThqA5NB1QVyM60oVOWDVEtvpH1NrriJBLVcbpcg8OmoJPfjk5+Oxw2BafLNUSizR8fLhW1X6yoJtApy4aOPjt8GSqCVTrKK5seO66llFdqCFbp8GWo6Oizc39wf3B/nIf7I66x/RGqbv7+kDYMw1EdMQ2wqYDdFv/F4HSobfoFO/+L1dEX/3WnKvH/b6sv2IVfrNpfd1keW5v+gz//H3rtr23uD+4P7o847o+4pvZHRZWOmNa87SBlGEZjQEwD7DbAaU9uOrfVF6y+L1attvqCNfTFqtVW/+Dr+4dei/vjHO6POO6Pc7g/zsny2JCZoULXgUgs9e0gZRjqIh6Ergb6uFv7C9bYF6tWa3/Bmvpi1Wrtf/CN/UOvxf1xDvdHHPfHOdwf53jdNqgqoOnx3r9USHUCTS1VARw2BbouoAtRc0bpBV8gRYE/Q0VpSMOpMoGcTFuLnLUVjeooDWmw2xT4PCpiGgA0/OX1eVSUVmg4FYghx2uDowUOUgshUFqhIaYJ5HhtgKI0+kvK5VTh0QTKQvFlvBktc9JAqEpDRbWOTLcKl1Nt/Ncc90cC98c53B81uD/i9cYEbGr8KoGYBgihw+hvAynD0GaLtw6B+H+FqD2Zpu6XJ9NtQySmI1ipw2lXcDHfr3jzXYfLocJpV2pOj256T2XU/EMIhXU4tfgJP80lRLwLQVXin00TgBZp+heUzabA61YR0QRElZY4ztpcMU0gqgl43SpsNgXVBmoAuD9qcX+cw/1xjuz7I6YJ6CL+N17R458hZrCBKGUY5voc8GU5AMR/SYSjOr421A+/t21PkyYiopYTCGn4684AXA4VDruCUJWGU6XGlpUyDB12JenEGU1X4Pfa0CFLys1BRGQZdpuS+BvvzLKjqtpYI0fKE2iIiEgOXjfDkIiIyBCGIRERSY9hSERE0kvbMHzyySehKApmzpxpdilERJTm0jIMd+7ciSVLlmDgwIFml0JERBaQdmFYUVGBO++8Ey+++CJycnLMLoeIiCwg7cKwoKAAEyZMwNixY80uhYiILCKtrjJ/+eWX8eGHH2Lnzp2G5g+HwwiHw4nnwWCwtUojIqI0ljYtw+LiYjzwwAN46aWX4Ha7DS1TVFQEv9+feOTl5bVylURElI7SJgx3796NU6dO4Stf+Qrsdjvsdju2bt2KZ555Bna7HZpWd/iUwsJCBAKBxKO4uNiEyomIqL1Lm27SMWPGYN++fUnT7r77bvTr1w+zZ8+GzVb3ljsulwsul6utSiQiojSVNmGYlZWFAQMGJE3zer3o2LFjneltSghAxMx7fyIiq1DsuKhxpy5C2oRhuyViwOkPzK6CiCj9dRoBKA5T3jqtw3DLli1ml0BERO1YqLru+ST1SeswbHfK/2V2BURE6Sfry62y2vJKDaFqY0Pdp83ZpEREREaVV2oIVunwuo3FnJQtw1C1Bn9WK76BtxegGBtQkohISkIDQp+3yqpDVRoqIwK+DBW6ZuxvsaRhqKO8UkOWp5UCS7ExDImITBDTBELVOrK9NmR5bAiUG1tOyjD0ulUEq+L9yC4ne4qJiKwiqglkutWUGzuShqENqi0eiB5NwGYz57oWIiJqWQ6bAm9G6j1zUoYhgMSvhrKQZvgAKxERtW/2ZjZupA1DIB6IMU0gogmzSyEiIhNJ3yTyZthgM+n2P0RE1D5IH4bRqA5dsGVIRCQzqcMwEtVRGtKgsGVIRCQ1acMwEtVxulyD3abAaWcYEhFZgW7s7mt1SHkCTTSqIxTV4LAp8HlUhKPsJiUisoJITIcjCjjtqV1eIWXLsKwyHoQdfTZ2kRIRWYiiKCgNaYhEU2siShmG9pogVBmERESW4rQrsNsUnC5PLRClDMNsL4OQiMiKFAXIybTBUROIUYOBKGUYsmuUiMi6FCXe++ewKSirNDa4r5RhSERE1qbWBKLR27MxDImIyJJURUG219hZpQxDIiKyLKOHxRiGREQkPYYhERFJj2FIRETSYxgSEZH0GIZERCQ9hiEREUmPYUhERNJjGBIRkfQYhkREJD2GIRERSY9hSERE0mMYEhGR9BiGRERkWZYb3Hfx4sUYOHAgfD4ffD4fRowYgbffftvssoiIqJ2KRHXrDe7bo0cPPPnkk9i9ezd27dqF0aNH47bbbsP+/fvNLo2IiNqZSFTH6XLN8OC+9laup8XccsstSc/nz5+PxYsXY/v27ejfv39K6zLabCYiovQTjeoIVOlw2BR4DA7umzZheD5N0/Dqq68iFAphxIgRDc4XDocRDocTz4PBIACgrFKDL0uH05E2DWMiIjJA14FgtQaXQ0VHnw3lFRYc3Hffvn3IzMyEy+XC9OnTsWrVKlxxxRUNzl9UVAS/35945OXlAQDsNgWnyzVE2EIkIrKUSEyH3aago88G1eAo90CahWHfvn2xd+9e7NixAzNmzMCUKVPw8ccfNzh/YWEhAoFA4lFcXAwAyPba4KgJRHaZEhFZh6IoyMlMLQiBNOsmdTqduPTSSwEAgwcPxs6dO/Gb3/wGS5YsqXd+l8sFl8tVZ7qiKOiYZcOZoIbSkIZMt7E+ZSIiat+cdgVKikEIpFnL8EK6ricdE0yFqsSb0XabgkiMrUMiIitoRg4CSKOWYWFhIW6++Wb07NkT5eXlWLFiBbZs2YK1a9c2e51qTXM6WMkwJCKSWdqE4alTpzB58mT8+9//ht/vx8CBA7F27Vr8x3/8h9mlERFRmkubMPz973/f4uvUhUBphQa1mc1qIiKyhrQ+ZngxdCFwJqghpgk47dJuBiIiSxGiectJmQKiJgijmkCO1wZVyq1ARGQ9kZiAaEYiShkDZaF4EHbKssHBu9AQEVmGqDn8pacYiFImQawmCHk7NiIia3HaVcS0eO9fKoEoZRpkexiERERWpKpAjteGaE0gGu0ylTIR2DVKRGRdDoeKTlnxQCwLWWw8QyIiIqOcNYEY09gyJCIiiTkdKrI9xu49zTAkIiLLMnpYjGFIRETSYxgSEZH0GIZERCQ9hiEREUmPYUhERNJjGBIRkfQYhkREJD2GIRERSY9hSERE0mMYEhGR9BiGREQkPYYhERFJj2FIRESWxcF9iYhIarrg4L5ERCQxXQicCWqGB/e1t3I97ZLRZjMREaUfIQTOBHVENcHBfRtTFtKgMxCJiCxHCKC0QkNUE+iUZePgvo2JafHmMwORiMhaIjGBWE0QOg0GISBpGGZ7bIjWBCK7TImIrEMIgRxvakEISBqGDoeKTlnxQCyt0MA8JCKyBqddNdw1ej4pwxAAnDWBGNMEIjGmIRGRFajNTDVpwxCIB2KO18auUiIiyUkdhkC8y1RVFLPLICIiE6VNGBYVFWHo0KHIyspC586dMXHiRBw8ePCi1xuq0qCxZUhEJLW0CcOtW7eioKAA27dvx/r16xGNRnHTTTchFAo1e53llRoqqnU4bGwZEhHJLG3uQPPOO+8kPV+2bBk6d+6M3bt34/rrr095feWVGoJVOjLdKmwMQyIiSzB6+7ULpU3L8EKBQAAA0KFDh5SXDVXHg9CXocKbYexWPURE1P5FNYFQlbGbc58vbVqG59N1HTNnzsQ111yDAQMGNDhfOBxGOBxOPA8GgwCAULWOrh1VZHlsvKyCiMhCHDYFFdU67DYNWQbvSwqkacuwoKAAH330EV5++eVG5ysqKoLf70888vLyAABet5rSRiIiovRgtynIdKsIVukorzTeQky7MLzvvvvw5ptvYvPmzejRo0ej8xYWFiIQCCQexcXFAACvm0FIRGRV3gwbfBnxQAxVGwvEtOkmFULg/vvvx6pVq7Blyxb07t27yWVcLhdcLlcbVEdERO1Jbe/fyTO6ofnTJgwLCgqwYsUKrFmzBllZWTh58iQAwO/3IyMjw+TqiIiovcny2FAestgQTosXL0YgEMCNN96Ibt26JR4rV640uzQiImqnjB4WS5uWIe8fSkRErSVtWoZERESthWFIRETSYxgSEZH0GIZERCQ9hiEREUmPYUhERNJjGBIRkfQYhkREJD2GIRERSY9hSERE0mMYEhGR9BiGREQkPYYhERFZltHBfRmGRERkSeWVGkLVxgb3ZRgSEZHllFdqCFbp8LotNrhvSzLabCYiovQTqooHoS9DNTy4r6RhqKO8koFIRGQ1MU2gojoehFkeY0EIpNFI9y3J61YRrIr3I7ucUv4eICKypKgmkOlOLQgBacPQBtUWD0SPJmCzKWaXRERELcBhU+DNSC0IAUnDEEDiV0NZSDN8gJWIiNo3ezMbN9KGIRAPxJgmENGE2aUQEZGJpG8SeTNssCnsJiUikpn0YRiN6tAFW4ZERDKTOgwjUR2lIQ0KW4ZERFKTNgwjUR2nyzXYbQqcdoYhEZEV6MbuvlaHlCfQRKM6QlENDpsCn0dFOMpuUiIiK4jEdDiigNOe2uUVUrYMyyrjQdjRZ2MXKRGRhSiKgtKQhkg0tSailGForwlClUFIRGQpTrsCu03B6fLUAlHKMMz2MgiJiKxIUYCcTBscNYEYNRiIUoYhu0aJiKxLUeK9fw6bgjKDgzJIGYZERGRtak0gGr09G8OQiIgsSVUUZHs5niEREUnO6GGxtArDbdu24ZZbbkH37t2hKApWr15tdklERGQBaRWGoVAIV111FZ599lmzSyEiIgtJqzvQ3Hzzzbj55pvNLoOIiCwmrcIwVeFwGOFwOPE8GAyaWA0REbVXadVNmqqioiL4/f7EIy8vz+ySiIioHbJ0GBYWFiIQCCQexcXFZpdERETtkKW7SV0uF1wul9llEBFRO2fpliEREZERadUyrKiowKFDhxLPP/vsM+zduxcdOnRAz549TayMiIjSWVqF4a5duzBq1KjE81mzZgEApkyZgmXLlplUFRERpbu0CsMbb7wRQnBUeiIialk8ZkhERNJjGBIRkWVxcF8iIpJaJKpzcF8iIpJXJKrjdLlmeHDftDqBpqUYbTYTEVH6iUZ1BKp0OGwKPBzct2FllRoiDEQiIsvRdaA0pMFhU9DRZ7Pm4L4txW5TcLqcgUhEZDWRmA57TRCqBoMQkDQMs702OGoCkV2mRETWoSgKcjJTC0JA0jBUlPivBodNQWlIg848JCKyBKddMdw1ej4pwxAA1JpAtNsURGJMQyIiK2hGDgKQOAyBeCDmZBo/wEpERNYkdRgSEREBkoehLgRKKzTe/JuISHLShqEuBM4ENcQ0Aadd2s1ARGQpzW3bSJkCoiYIo5pAjtcGVcqtQERkPZGYaFZvn5QxUBaKB2GnLBscDik3ARGRJYmaw196ioEoZRLEaoLQySAkIrIUp11FTIv3/qUSiFKmQbaHQUhEZEWqCuR4bYjWBKLRLlMpE4Fdo0RE1uVwqOiUFQ/EshDHMyQiIkk5awIxprFlSEREEnM6VGR7OJ4hERFJzuhhMYYhERFJj2FIRETSYxgSEZH0GIZERCQ9hiEREUmPYUhERNJjGBIRkfQYhkREJD2GIRERSY9hSERE0ku7MHz22WdxySWXwO12Y/jw4fj73/9udklERJTmmhWGo0ePxuOPP15nemlpKUaPHn3RRTVk5cqVmDVrFubNm4cPP/wQV111FcaNG4dTp0612nsSEZH1NSsMt2zZgt/+9reYOHEiQqFQYnokEsHWrVtbrLgLPfXUU5g2bRruvvtuXHHFFXj++efh8Xjwhz/8odXek4iI0lerD+67YcMGnDx5El/96ldx5MiR5q7GsEgkgt27d2Ps2LGJaaqqYuzYsfjggw9a/f2J2rtINIp3//Y3bNy4EcHyisT0L06VYN26ddi1azf08/4wVIRC2LRpE7a9+y7CkUhiejQWw3vvv48NGzagLBhMTBcC2Lt3L9auXYsT//5323wooougizYY3Ldbt27YunUrrrzySgwdOhRbtmxp7qoMOX36NDRNQ5cuXZKmd+nSBSdPnqx3mXA4jGAwmPQgsqpPP/0Un3/+OUpKTuKfH3+cmP7h7l0IBErwz38ewOmS04np+/fvx+mSf+PzI0fx2aefJaZ/fuRzfHr4M5w+/QX2f7Q/Mb20rBT79u1HoOw0du/a2TYfiqiZdCFwJqi17uC+iqIAAFwuF1asWIEHHngA48ePx3PPPdec1bWaoqIi+P3+xCMvLw+A8WYzUTrxZ2dD6EA0Cvh8vqTp1dWA3a7C4/Ukpmf7cxCuaRBm+bIS031+HxS1Zj1Z56Z7PB44nXaEI4DP52/9D0TUTKImCKOaMDy4ryKakQyqquLkyZPo3LlzYtrrr7+OKVOmoKqqCppmrFmaikgkAo/Hg9deew0TJ05MTJ8yZQrKysqwZs2aOsuEw2GEw+HE82AwiLy8PPz3nIfQ1R3/JRCDgjBsGI1i+BBNuS5F0eDJ+hwA4Mooib9vdUdApN2JukREbUfR4XKfAQCEq3IBAJXlvSCEsfCqTxAObEIewrBBhwI/wqiuDmPmk4sQCASSfiReqFl/sT/77DPk5uYmTfvWt76FHTt2tNrJLE6nE4MHD8bGjRsT03Rdx8aNGzFixIh6l3G5XPD5fEkPIB6AQbigt0qlRERklihUxGqC0AHjbT17c96sV69e9U7v378/+vfv35xVGjJr1ixMmTIFQ4YMwbBhw7Bw4UKEQiHcfffdKa0nExHE4EIQLngQaXoBIiJKCwIKshBJKQiBZoahWb7zne+gpKQEc+fOxcmTJzFo0CC88847dU6qaYoDAm6EEYALFXDChZbv1iUiorbngJ5yEAJpFoYAcN999+G+++676PU4IOBHGKVwQU2/G/EQEVE9lGYEIZCGt2NrSQ4IZCECAcXsUoiIyERShyEQD0S1mb8kiIjIGqQPwyrYobFlSEQkNanDsBJ2VMIOOy+yICKSWtqdQNNSKmFHCA54EGM3KRGRRTS3p0/KlmF1TRB6EUUGYmaXQ0RELSQGFVXNaOdJGYaVsMOLKDwMQiIiS7FDTxwCS205CXkQg0fO3wFERJZmg4AHMYTgqJli7C5jUoahGzEATrPLICKiVpCBGGwQNYFoLOakDEMiIrK22sNgJQxDIiKSWfyQmLFL53jgjIiILMtt8ERJhiEREUmPYUhERNJjGBIRkfQYhkREJD2GIRERSY9hSERE0mMYEhGR9BiGREQkPYYhERFJj2FIRETSYxgSEZH0GIZERCQ9hiEREUmPYUhERJZVzfEMiYhIZpWwo5LjGRIRkawqYUcIjsSI902RMgyNNpuJiCj9VNUEoRdRDu7bmHjTmYFIRGQ1GhRUwg4vooZbhYCkYehBDCE4GIhERBYTgwoPYikFISDpCTRuxGBDFCE4oEGBCmF2SURE1ALs0JGRYhDGl5NU7a+GcjiateGIiKj9sTWzcZM23aTz58/HyJEj4fF4kJ2d3SLrrG1Kx9JnMxARUStImxSIRCKYNGkSZsyY0aLrzUCs2b8kiIjIGtKmm/Txxx8HACxbtqxF1xuFAh1Ki66TiIjSS9qEYXOEw2GEw+HE82AwmPR6FArK4YTT4B0KiIjImtKmm7Q5ioqK4Pf7E4+8vLzEa1EoCMAFOwQcDEMiIksQzezpMzUM58yZA0VRGn0cOHCg2esvLCxEIBBIPIqLiwEkB2EmIi31cYiIyGRRqIg2IxBN7SZ96KGHMHXq1Ebn6dOnT7PX73K54HK56kyvgBM+CPgQ5vFCIiILUSBQDifsCMORwsmRpoZhbm4ucnNz2/x97TVBqALsICUishAHdOg1vX9+hJteoEbanEBz9OhRnD17FkePHoWmadi7dy8A4NJLL0VmZmZK6/IiAhXOVqiSiIjMlokIKuFEAC6oBg+FpU0Yzp07F3/84x8Tz6+++moAwObNm3HjjTemtC5LnzVERCQ5FYAPYQThQtBgwydtcmHZsmUQQtR5pBqERERkfbWBaDd43DBtwpCIiCgVKuKHxYzOS0REZElGQ45hSERE0mMYEhGR9BiGREQkPYYhERFJj2FIRETSYxgSEZH0GIZERCQ9hiEREUmPYUhERNJjGBIRkfQYhkREJD2GIRERSY9hSERElhWFYmg+hiEREVlSFAoqrDa4LxERkVFRKAjAZXhwX3sr19MuGW02ExFR+olCQQhO2CHg4OC+DauAk4FIRGRBAgrKa4LQhzAH922MHQIBuBiIREQWE4WachACkoahFxEGIhGRBSkQyEQk5XCTMgxVAD6EYYdAOZwQDEQiIktwQG9WsEkZhkByIEbl3QxERASJwxCIf/hMRNguJCKSnNRhSEREBEgehjril1kYuySTiIisStow1AEE4UIMChzQzS6HiIhMJGUYnh+EWYhAYduQiMgSolCb1byRMgxDcCIGBX6E4WAQEhFZhqi5OXeqgShlGDIIiYisyQEdMSgIwpVSIEoZhpmIMAiJiCxIgUAWIikHopRhyCAkIrIuBwT8CCNWM3qFEWkRhkeOHME999yD3r17IyMjA/n5+Zg3bx4iEWNDcxARkVzOD0Qj0mI8wwMHDkDXdSxZsgSXXnopPvroI0ybNg2hUAgLFiwwuzwiImqHHBDIRNTQvGkRhuPHj8f48eMTz/v06YODBw9i8eLFDEMiImqQ0cNiadFNWp9AIIAOHTqYXQYREVlAWrQML3To0CEsWrSoyVZhOBxGOBxOPA8Gg61dGhERpSFTW4Zz5syBoiiNPg4cOJC0zPHjxzF+/HhMmjQJ06ZNa3T9RUVF8Pv9iUdeXl5rfhwiIkpTprYMH3roIUydOrXRefr06ZP4/xMnTmDUqFEYOXIkXnjhhSbXX1hYiFmzZiWeB4NBBiIREdVhahjm5uYiNzfX0LzHjx/HqFGjMHjwYCxduhSq2nSj1uVyweVyXWyZRERkcWlxzPD48eO48cYb0atXLyxYsAAlJSWJ17p27WpiZUREZAVpEYbr16/HoUOHcOjQIfTo0SPpNSF4NxkiIro4aXFpxdSpUyGEqPdBRER0sdIiDImIiFoTw5CIiKTHMCQiIukxDImISHoMQyIisiwO7ktERFLTAWsN7ktERJQKHUAQLmsN7tvSjDabiYgo/egAKmqCMBMRQ8tI2TIMwclAJCKyqAo4EYMCP8LWH9z3YsSgIAgXA5GIyGKiUFMOQkDSMMxEhIFIRGRBAgqyEEkpCAFJw9ABAT/CiEFBhcEzjYiIqP1zQE85CAFJwxBIDsSovJuBiMhSlGYEISBxGALxQMxCBMLgqbdERGRNUochEA9EtZm/JIiIyBqkD8Mq2KGxZUhEJDWpw7ASdlTCDjvPKSUikpqUd6AB4kEYggMexNhNSkRkEc3t6ZOyZVhdE4ReRJGBmNnlEBFRC4lBRVUz2nlShmEl7PAiCg+DkIjIUuzQE4fAUltOQh7E4JHzdwARkaXZIOBBDCE4aqYYu1G3lGHoRgzgnWeIiCwpAzHYIGoC0VjMSRmGRERkbbWHwUoYhkREJLP4ITFjl87xwBkREVmW2+CJkgxDIiKSHsOQiIikxzAkIiLpMQyJiEh6DEMiIpIew5CIiKTHMCQiIukxDImISHppE4a33norevbsCbfbjW7duuGuu+7CiRMnzC6LiIgsIG3CcNSoUXjllVdw8OBBvP766zh8+DBuv/12s8siIiILSJt7kz744IOJ/+/VqxfmzJmDiRMnIhqNwuFwNLIkERFR49ImDM939uxZvPTSSxg5cmSjQRgOhxEOhxPPg8FgW5RHRERpJm26SQFg9uzZ8Hq96NixI44ePYo1a9Y0On9RURH8fn/ikZeX10aVEhFROjE1DOfMmQNFURp9HDhwIDH/ww8/jD179mDdunWw2WyYPHkyhBANrr+wsBCBQCDxKC4ubouPRURE7UR1Ooxn+NBDD2Hq1KmNztOnT5/E/3fq1AmdOnXCZZddhssvvxx5eXnYvn07RowYUe+yLpcLLperJUsmIqI0UQk7Kg2OZ2hqGObm5iI3N7dZy+p6/AOef0yQiIgIiAdhCA54EDI0f1qcQLNjxw7s3LkT1157LXJycnD48GH87Gc/Q35+foOtwsZUw46sVqiTiIjMVwU7qmGHF1FoVhrc1+Px4H//938xZswY9O3bF/fccw8GDhyIrVu3NqsbNN50TovfAURElAINCiprgtBjMAiBNGkZXnnlldi0aVOLrc+DGELwAgCc0FpsvUREZK4YVHgQSykIgTQJw5bmRgw2RBGCAxoUqGj4jFQiIkofdujISDEI48tJqvZXQzkczdpwRETU/tia2biRNgyBeCBqUBBNj0OnRETUSqRPgQzEmv1LgoiIrEH6MIxCgQ7F7DKIiMhEUodhFArK4YTCliERkdSkDcMoFATggh0CDoO36yEiovZNNLOnT8owPD8IMxExuxwiImohUaiINiMQpQzDCjhhh4APYTk3ABGRRSkQKIcz5UCUMgsYhERE1uSADjsEAnClFIhS5oEXETk/OBGRBDIRSTkQpcwEKT80EZEkVAA+hGGHQAWchpchIiKylPMD0ej8RERElqMifljM6LxERESWZDTkGIZERCQ9hiEREUmPYUhERNJjGBIRkfQYhkREJD2GIRERSY9hSERE0mMYEhGR9BiGREQkPYYhERFJj2FIRETSYxgSEZH07GYXYEUKdAjjAywTEUlHgd4m72N0cF+GYStwukvNLoGISHpRKBzcl4iI5BWFggBchgf3lbJlaLTZnKpwVW6rrJeIyMpCwT4tur4oFITghB0CDg7u27AKOFstEImIyDwCCsprgtCHsOGQS7uWYTgcxvDhw/GPf/wDe/bswaBBg1Jehx0CAbjhR/iiI1EIFZXlvS5yLURE1BKiUFMOQiANw/CRRx5B9+7d8Y9//KPZ6/AiAgEXAnDBa7AJ3TAFQtguch1ERNQSFAh4EU252zOtuknffvttrFu3DgsWLLio9agAfAjDDoFyOCHYZUpEZAkO6M0KtrRpGX7xxReYNm0aVq9eDY/Hc9Hrqw3EMria8RuCiIisJC1SQAiBqVOnYvr06RgyZIjh5cLhMILBYNLjfCqATETYLiQikpypYThnzhwoitLo48CBA1i0aBHKy8tRWFiY0vqLiorg9/sTj7y8vFb6JERElM4UIYSxKxJbQUlJCc6cOdPoPH369MG3v/1tvPHGG1CUc204TdNgs9lw55134o9//GO9y4bDYYTD4cTzYDCIvLw8LJxzP7LcTugAyuCCAmA8jsCHaEt8LCIiMkEQDmxCHlzQEhfbl1dHMPPJRQgEAvD5fA0ua+oxw9zcXOTmNn2h+jPPPIOf//zniecnTpzAuHHjsHLlSgwfPrzB5VwuF1wuV72v6QCCcCEGBR5oKddORETWkRYn0PTs2TPpeWZmJgAgPz8fPXr0SHl95wdhFiLNPPeIiIjamyhUOJrRwJEyBUJwIgYFfoThMHjfOiIiav9Ezc25Ux0TIy1ahhe65JJLcDGHOmNQkFsThDGeS0pEZBkO6KiEDUG44EO46QVqSNkyzESELUIiIgtSIJCFCGJQEITLcAtRyjBkEBIRWZcDAn6EEasZvcIIKcOQiIis7fxANCItjxkSERE1xQGBTIPXj7NlSERElmX0sJiULcMYlETTOQYFGhRUwGFyVUREdDEq4IB23t93AOwmbUwZ3Agjfmcagfh1KdvRDWoKJ9ZEoUJAgQM6lHqWi+8QFXbosLXSCTtNvYeAgihUKBBwpHzVjTFG3qOpbdUSuD+Mvwf3Rxz3xzlW2R96zTWGynkD81UZ7ACVMgwVIPGFUBC/I43jvHvZGeGAhgo4UQkbsi64VKMKdlTBDg9iyECsZYu/QBXsqKznvaJQUA4n7M0c6DIVtpr30qEgE5HEe+kAKmpucHDhNmpp3B/ncH+cw/0RJ8v+iEGBApHUsDF6JbmkYSgSG1sgvrHsECmFIQBkI4wgXAjBmbibTSXsqIYdWYjC08pfLADIQhQ2CITggA0CHsQQrTmd2AkBH8KtfmA4vu3CCMCFSjgTF7pWwAUdCnLa6E4/3B9x3B/ncH+cI8v+UM57xJ/zmGGrqx0gOAgXAnDBAR0R2OBtoy9Wrdr3CsGBKFREocLeRv/Qa9Wexhyo2RZAvFukLW95x/1xDvfHOdwfcdwfjZMqDGtv4VYVjpybVvO7oRyRlFuGtRREEIIbAOBEGBqiKL/oalMVQQwOVMIGAMhGNUJtXgOgIIpgzUWumYigGjqq27wG7o9a3B+1uD/O1WDd/RGDgiqoSYfCav/eN3ULT1PHM2xrx44d4wC/REQSKi4ubnSUI6nCUNd1nDhxAllZWUkDBaeidoDg4uLiRgeKbA/SqVYgvepNp1qB9Ko3nWoF0qvedKoVaJl6hRAoLy9H9+7doaoNd8RK1U2qqmqzxj+sj8/nS4svE5BetQLpVW861QqkV73pVCuQXvWmU63Axdfr9/ubnId3oCEiIukxDImISHoMwxS5XC7MmzcPLpfL7FKalE61AulVbzrVCqRXvelUK5Be9aZTrUDb1ivVCTRERET1YcuQiIikxzAkIiLpMQyJiEh6DMMWEA6HMWjQICiKgr1795pdTr1uvfVW9OzZE263G926dcNdd92FEydOmF1WvY4cOYJ77rkHvXv3RkZGBvLz8zFv3jxEIpGmFzbB/PnzMXLkSHg8HmRnZ5tdTh3PPvssLrnkErjdbgwfPhx///vfzS6pXtu2bcMtt9yC7t27Q1EUrF692uySGlRUVIShQ4ciKysLnTt3xsSJE3Hw4EGzy2rQ4sWLMXDgwMT1eiNGjMDbb79tdlmGPPnkk1AUBTNnzmzV92EYtoBHHnkE3bt3N7uMRo0aNQqvvPIKDh48iNdffx2HDx/G7bffbnZZ9Tpw4AB0XceSJUuwf/9+PP3003j++efxX//1X2aXVq9IJIJJkyZhxowZZpdSx8qVKzFr1izMmzcPH374Ia666iqMGzcOp06dMru0OkKhEK666io8++yzZpfSpK1bt6KgoADbt2/H+vXrEY1GcdNNNyEUMuOOp03r0aMHnnzySezevRu7du3C6NGjcdttt2H//v1ml9aonTt3YsmSJRg4cGDrv5mgi/LXv/5V9OvXT+zfv18AEHv27DG7JEPWrFkjFEURkUjE7FIM+eUvfyl69+5tdhmNWrp0qfD7/WaXkWTYsGGioKAg8VzTNNG9e3dRVFRkYlVNAyBWrVpldhmGnTp1SgAQW7duNbsUw3JycsTvfvc7s8toUHl5ufjyl78s1q9fL2644QbxwAMPtOr7sWV4Eb744gtMmzYNy5cvh8fjMbscw86ePYuXXnoJI0eOhMPhMLscQwKBADp06GB2GWklEolg9+7dGDt2bGKaqqoYO3YsPvjgAxMrs55AIAAAafEd1TQNL7/8MkKhEEaMGGF2OQ0qKCjAhAkTkr6/rYlh2ExCCEydOhXTp0/HkCFDzC7HkNmzZ8Pr9aJjx444evQo1qxZY3ZJhhw6dAiLFi3Cj370I7NLSSunT5+Gpmno0qVL0vQuXbrg5MmTJlVlPbquY+bMmbjmmmswYMAAs8tp0L59+5CZmQmXy4Xp06dj1apVuOKKK8wuq14vv/wyPvzwQxQVFbXZezIMLzBnzhwoitLo48CBA1i0aBHKy8tRWFjY7mut9fDDD2PPnj1Yt24dbDYbJk+e3OQYX2bWCwDHjx/H+PHjMWnSJEybNq1d10pyKigowEcffYSXX37Z7FIa1bdvX+zduxc7duzAjBkzMGXKFHz88cdml1VHcXExHnjgAbz00ktwu91t9r68A80FSkpKcObMmUbn6dOnD7797W/jjTfeSBoKStM02Gw23HnnnfjjH//Y2qUartXpdNaZXju24/vvv99mXSWp1nvixAnceOON+OpXv4ply5Y1OvxKS2vOtl22bBlmzpyJsrKyVq7OmEgkAo/Hg9deew0TJ05MTJ8yZQrKysradc+AoihYtWpVUt3t0X333Yc1a9Zg27Zt6N27t9nlpGTs2LHIz8/HkiVLzC4lyerVq/GNb3wDNpstMU3TNCiKAlVVEQ6Hk15rKVIN4WREbm4ucnNzm5zvmWeewc9//vPE8xMnTmDcuHFYuXIlhg8f3polJhittT66rgOIXxbSVlKp9/jx4xg1ahQGDx6MpUuXtmkQAhe3bdsLp9OJwYMHY+PGjYlQ0XUdGzduxH333WducWlOCIH7778fq1atwpYtW9IuCIH4d6Et//0bNWbMGOzbty9p2t13341+/fph9uzZrRKEAMOw2Xr27Jn0PDMzEwCQn5/fYmMmtpQdO3Zg586duPbaa5GTk4PDhw/jZz/7GfLz89vlAfTjx4/jxhtvRK9evbBgwQKUlJQkXuvatauJldXv6NGjOHv2LI4ePQpN0xLXml566aWJ74VZZs2ahSlTpmDIkCEYNmwYFi5ciFAohLvvvtvUuupTUVGBQ4cOJZ5/9tln2Lt3Lzp06FDn35vZCgoKsGLFCqxZswZZWVmJY7B+vx8ZGRkmV1dXYWEhbr75ZvTs2RPl5eVYsWIFtmzZgrVr15pdWh1ZWVl1jr3WnuvQqsdkW/VcVYl89tln7fbSiv/7v/8To0aNEh06dBAul0tccsklYvr06eLYsWNml1avpUuXCgD1PtqjKVOm1Fvr5s2bzS5NCCHEokWLRM+ePYXT6RTDhg0T27dvN7ukem3evLne7ThlyhSzS6ujoe/n0qVLzS6tXj/4wQ9Er169hNPpFLm5uWLMmDFi3bp1ZpdlWFtcWsFjhkREJD2eTUpERNJjGBIRkfQYhkREJD2GIRERSY9hSERE0mMYEhGR9BiGREQkPYYhERFJj2FIRETSYxgSEZH0GIZERCQ9hiGRRZWUlKBr1674xS9+kZj2/vvvw+l0YuPGjSZWRtT+8EbdRBb217/+FRMnTsT777+Pvn37YtCgQbjtttvw1FNPmV0aUbvCMCSyuIKCAmzYsAFDhgzBvn37sHPnTrhcLrPLImpXGIZEFldVVYUBAwaguLgYu3fvxpVXXml2SUTtDo8ZElnc4cOHceLECei6jiNHjphdDlG7xJYhkYVFIhEMGzYMgwYNQt++fbFw4ULs27cPnTt3Nrs0onaFYUhkYQ8//DBee+01/OMf/0BmZiZuuOEG+P1+vPnmm2aXRtSusJuUyKK2bNmChQsXYvny5fD5fFBVFcuXL8e7776LxYsXm10eUbvCliEREUmPLUMiIpIew5CIiKTHMCQiIukxDImISHoMQyIikh7DkIiIpMcwJCIi6TEMiYhIegxDIiKSHsOQiIikxzAkIiLpMQyJiEh6/w8mnQYQ/nIZYwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "Lx = 15 * lda0\n", "Ly = 2 * lda0\n", "Lz = 15 * lda0\n", "sim_size = (Lx, Ly, Lz)\n", "\n", "pulse = td.GaussianPulse(freq0=freq0, fwidth=freq0 / 20)\n", "pt_dipole = td.PointDipole(\n", " center=(0, L_f / 2 + d_dp, 0), source_time=pulse, polarization=\"Ey\"\n", ")\n", "\n", "flux_monitor = td.FluxMonitor(\n", " center=(0, 0, 0),\n", " size=(Lx * 0.9, Ly * 0.9, Lz * 0.9),\n", " freqs=[freq0],\n", " name=\"power\",\n", ")\n", "\n", "field_monitor = td.FieldMonitor(\n", " center=(0, 0, 0),\n", " size=(td.inf, 0, td.inf),\n", " freqs=[freq0],\n", " name=\"field\",\n", ")\n", "\n", "sim = td.Simulation(\n", " center=(0, 0, 0),\n", " size=sim_size,\n", " grid_spec=td.GridSpec.auto(\n", " min_steps_per_wvl=40, wavelength=lda0, override_structures=antenna_refine\n", " ),\n", " structures=antenna_pec,\n", " sources=[pt_dipole],\n", " monitors=[flux_monitor, field_monitor],\n", " run_time=1e-13,\n", " boundary_spec=td.BoundarySpec.all_sides(boundary=td.PML()),\n", ")\n", "\n", "sim.plot(y=0)\n", "plt.show()\n" ] }, { "cell_type": "markdown", "id": "28a1aafb", "metadata": {}, "source": [ "Submit the simulation to the server." ] }, { "cell_type": "code", "execution_count": 15, "id": "632a8a6f", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:17:02.740711Z", "iopub.status.busy": "2023-03-27T21:17:02.740559Z", "iopub.status.idle": "2023-03-27T21:20:55.762846Z", "shell.execute_reply": "2023-03-27T21:20:55.762195Z" } }, "outputs": [ { "data": { "text/html": [ "
[08:58:41] Created task 'plasmonic_yagi_uda_on_glass' with task_id                                    webapi.py:139\n",
       "           'fdve-42ae19c6-f252-4bb2-b1ce-ef4b2f1a8df3v1'.                                                          \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:58:41]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'plasmonic_yagi_uda_on_glass'\u001b[0m with task_id \u001b]8;id=538042;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=363499;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-42ae19c6-f252-4bb2-b1ce-ef4b2f1a8df3v1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "0dd908b094bd4cfd8c8f676e9e7fc302", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:58:43] status = queued                                                                            webapi.py:269\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:58:43]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=249888;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=12613;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:59:45] status = preprocess                                                                        webapi.py:263\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:59:45]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=257297;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=185866;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
[08:59:49] Maximum FlexCredit cost: 3.070. Use 'web.real_cost(task_id)' to get the billed FlexCredit cost webapi.py:286\n",
       "           after a simulation run.                                                                                 \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:59:49]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m3.070\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit cost \u001b]8;id=749064;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=127433;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mafter a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           starting up solver                                                                         webapi.py:290\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=496052;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=340821;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           running solver                                                                             webapi.py:300\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=210320;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=31775;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c3d4ab49d9b44950b280f45fa7bd9225", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:01:50] early shutoff detected, exiting.                                                           webapi.py:313\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:01:50]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=240836;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=8723;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#313\u001b\\\u001b[2m313\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           status = postprocess                                                                       webapi.py:330\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=189600;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=517882;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#330\u001b\\\u001b[2m330\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:01:56] status = success                                                                           webapi.py:337\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:01:56]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=824990;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=98195;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#337\u001b\\\u001b[2m337\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "8488b2c005b74d79b997cdfe15240ba9",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[09:01:59] loading SimulationData from data/optical_yagi_uda.hdf5                                     webapi.py:512\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[09:01:59]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/optical_yagi_uda.hdf5 \u001b]8;id=883770;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=129146;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim_data = web.run(\n", " sim,\n", " task_name=\"plasmonic_yagi_uda_on_glass\",\n", " path=\"data/optical_yagi_uda.hdf5\",\n", " verbose=True,\n", ")\n" ] }, { "cell_type": "markdown", "id": "6918092c", "metadata": {}, "source": [ "After the simulation is complete, we calculate the directivity in the same way as previously. Note that the intrinsic impedance $\\eta=\\eta_0/n$ is different in the glass ($n=1.5$) compared to in the free space ($n=1$). \n", "\n", "From the directivity plot, we can see that a directivity close to 25 can be achieved in this case." ] }, { "cell_type": "code", "execution_count": 16, "id": "210e80f0", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:20:58.992212Z", "iopub.status.busy": "2023-03-27T21:20:58.992008Z", "iopub.status.idle": "2023-03-27T21:21:07.062476Z", "shell.execute_reply": "2023-03-27T21:21:07.061722Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAHQCAYAAADK5pEiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADGxklEQVR4nOydd1xT9/7/XxkQAgTCDjPsLVNFUEQctdqhrW3VbqtdV9vb9ttxe2+H3ePe23Fvh22v1dZWW23raq1WRUQFERkie2/CTliBrPP7g19SEVBGkvMJnOfjkUdrEs55EeC8zvv9eX/ebxZFURQYGBgYGBgYRsCmWwADAwMDAwOpMCbJwMDAwMAwBoxJMjAwMDAwjAFjkgwMDAwMDGPAmCQDAwMDA8MYMCbJwMDAwMAwBoxJMjAwMDAwjAFjkgwMDAwMDGPAmCQDAwMDA8MYMCbJwDAOtm7dChaLRbeMYUxFE4vFwtatW/UriIFhGsKYJMOMZOfOnWCxWLqHhYUF3NzcsHz5cvznP/9BT08P3RIBAP39/di6dStSU1MNep709HRs3boVUqnUoOdhYDA1WEzvVoaZyM6dO7Fhwwa8/vrr8PHxgVKphEQiQWpqKo4fPw4vLy8cOnQIERERAACVSgWVSgULCwuj6mxvb4eTkxNeffXVEZHfVDQNDAyAy+WCy+UCAP71r3/hueeeQ3V1Nby9vfWgnIFhesClWwADA52sWLECs2fP1v37xRdfREpKCm6++WbceuutKC4uBp/PH2YoY6HRaKBQKIxmpOPRNBbGNnsGBlOFSbcyMFzF4sWL8fLLL6O2thbfffcdgNHX/1gsFrZs2YLvv/8eYWFh4PF4OHr0KACgsbERDz30EFxcXMDj8RAWFoavv/56xLkGBgawdetWBAYGwsLCAq6urrj99ttRWVmJmpoaODk5AQBee+01XWpYG1FerSk8PBzJyckjzqHRaODu7o477rhjmPYrj/Pcc88BAHx8fHTnqampQVJSEiIjI0f9nIKCgrB8+fLxfKQMDCYLY5IMDKNw3333AQD++OOPa74vJSUFTz/9NNauXYuPP/4Y3t7eaGlpwbx583DixAls2bIFH3/8Mfz9/bFx40Z89NFHuq9Vq9W4+eab8dprryE2Nhb//ve/8de//hUymQwFBQVwcnLC559/DgC47bbbsGvXLuzatQu33377qFrWrl2LtLQ0SCSSYc+fPXsWTU1NWLdu3ahfd/vtt2P9+vUAgA8//FB3HicnJ9x3333Iz89HQUHBsK/JyspCWVkZ7r333mt+PgwMJg/FwDAD2bFjBwWAysrKGvM9tra2VHR0NEVRFPXqq69SV/+5AKDYbDZVWFg47PmNGzdSrq6uVHt7+7Dn161bR9na2lL9/f0URVHU119/TQGgPvjggxHn1mg0FEVRVFtbGwWAevXVV0e852pNpaWlFADqv//977D3/eUvf6Gsra1159Vqv/KY//znPykAVHV19bCvlUqllIWFBfXCCy8Me/7JJ5+krKysqN7e3hG6GBimE0wkycAwBtbW1tetck1KSkJoaKju3xRF4eeff8Ytt9wCiqLQ3t6ueyxfvhwymQw5OTkAgJ9//hmOjo544oknRhx3Mls7AgMDERUVhR9//FH3nFqtxk8//YRbbrkFfD5/wse0tbXFqlWrsGfPHlD/v8ZPrVbjxx9/xOrVq2FlZTXhYzIwmBKMSTIwjEFvby8EAsE13+Pj4zPs321tbZBKpfjyyy/h5OQ07LFhwwYAQGtrKwCgsrISQUFBky6+GY21a9fi3LlzaGxsBACkpqaitbUVa9eunfQx77//ftTV1eHMmTMAgBMnTqClpUWXkmZgmM4w1a0MDKPQ0NAAmUwGf3//a77v6uhMo9EAAO6991488MADo36NdluJIVi7di1efPFF7Nu3D0899RT27t0LW1tb3HjjjZM+5vLly+Hi4oLvvvsOCxcuxHfffQeRSISlS5fqUTkDA5kwJsnAMAq7du0CgAlXbzo5OUEgEECtVl/XRPz8/JCZmQmlUgkzM7NR3zPRtKuPjw/mzp2LH3/8EVu2bMEvv/yC1atXg8fjXfPrrnUeDoeDu+++Gzt37sR7772HAwcO4OGHHwaHw5mQNgYGU4RJtzIwXEVKSgreeOMN+Pj44J577pnQ13I4HKxZswY///zziIpQYCgdq2XNmjVob2/HJ598MuJ92vU/S0tLAJhQJ5y1a9fi/Pnz+Prrr9He3j6uVKt2bXGs89x3333o6urCo48+it7eXqaqlWHGwESSDDOa33//HSUlJVCpVGhpaUFKSgqOHz8OsViMQ4cOTWrT/bvvvotTp04hLi4ODz/8MEJDQ9HZ2YmcnBycOHECnZ2dAIbW+r799ls888wzuHDhAhITE9HX14cTJ07gL3/5C1atWgU+n4/Q0FD8+OOPCAwMhL29PcLDwxEeHj7m+e+66y48++yzePbZZ2Fvbz+utGhsbCwA4B//+AfWrVsHMzMz3HLLLTrzjI6ORnh4OPbt24eQkBDExMRM+HNhYDBJ6C2uZWCgB+0WEO3D3NycEolE1LJly6iPP/6Y6u7uHvb+sbaAbN68edTjt7S0UJs3b6Y8PT0pMzMzSiQSUUuWLKG+/PLLYe/r7++n/vGPf1A+Pj66991xxx1UZWWl7j3p6elUbGwsZW5uPmzrxmiatMyfP58CQG3atGnU1zHKtpI33niDcnd3p9hs9qjbQd5//30KAPX222+PekwGhukI07uVgYFhXHz88cd4+umnUVNTAy8vL7rlMDAYBcYkGRgYrgtFUYiMjISDgwNOnTpFtxwGBqPBrEkyMDCMSV9fHw4dOoRTp07h8uXLOHjwIN2SGBiMChNJMjAwjElNTQ18fHwgFArxl7/8BW+99RbdkhgYjApjkgwMDAwMDGPA7JNkYGBgYGAYA8YkGRgYGBgYxoAxSQYGBgYGhjFgTJKBgYGBgWEMGJNkYCCATz/9FN7e3rCwsEBcXBwuXLige620tBTz58+Hh4cH3nzzTRpVMjDMPBiTZGCgmR9//BHPPPMMXn31VeTk5CAyMhLLly/XzZ3csmUL7r33Xhw8eBAHDx5Eeno6zYoZGGYOjEkyMNDMBx98gIcffhgbNmxAaGgotm3bBktLS3z99dcAgK6uLsTGxiIiIgJubm4TmgjCwMAwNRiTZGCgEYVCgezs7GGTOthsNpYuXYqMjAwAwOuvv46lS5fC0tISbDZ7wjMuGRgYJg/Tlo6BgUba29uhVqvh4uIy7HkXFxeUlJQAAFauXIm2tjZ0d3fDycmJDpkMDDMWJpJkYDABeDweY5AMDDTAmCQDA404OjqCw+GgpaVl2PMtLS0QiUQ0qWJgYNDCmCQDA42Ym5sjNjYWJ0+e1D2n0Whw8uRJxMfH06iMgYEBYNYkGRho55lnnsEDDzyA2bNnY+7cufjoo4/Q19eHDRs20C2NgWHGw5gkAwPNrF27Fm1tbXjllVcgkUgQFRWFo0ePjijmYWBgMD7MqCwGBgYGBoYxYNYkGRgYGBgYxoAxSQYGBgYGhjFgTJKBgYGBgWEMGJNkYGBgYGAYA8YkGRgYGBgYxoAxSQYGBgYGhjFgTJKBgYGBgWEMGJNkYGBgYGAYA8YkGRgYGBgYxoAxSQYGBgYGhjFgTJKBgYGBgWEMGJNkYGBgYGAYA8YkGRgYGBgYxoAZlcXAYEB6e3vR1taGnp4e9PT0oLe3d9T/7+vrg0aj0T2++OIL+Pv7Y8mSJWCz2WCz2eByuRAIBLC2toZAIBj1/21sbODs7Awej0f3t87AMC1gTJKBYRKo1WrU19ejqqoKTU1NaG5uRlNT07BHS0sL+vr6wOFwYGlpCSsrK1haWg57WFlZwcrKChYWFuByuTpDdHV1haWlJdRqNVQqFTQaDVQqFRoaGtDX14f+/n709/cP+3/tg6Io2NnZQSQSwdXVFW5ubvDw8ICrqytcXV3h7u4Of39/ODk5gcVi0f1RMjAQDTNPkoFhDCiKQltbG8rKylBWVobS0lLdo6qqChqNBiKRCI6OjnB2doazszNEIpHOlLy8vCAWi+Hs7Aw2e2IrG0qlEkeOHMHKlSthZmY27q9TqVSor69HXV0d6uvr0djYqDPxtrY2tLe3o6WlBW1tbbCxsYG/vz+CgoIQHByMwMBABAYGIiAgAAKBYKIfFwPDtIQxSQYGDEWGZWVlyM7OxsWLF5GVlYWCggJ0d3fDxcUFXl5e8Pb2RkBAAEJCQhAeHo6QkBCDpTUna5LjRSaT4fLlyygsLERJSQkqKipQW1uL2tpadHd3QyQSISoqCnPmzEFsbCxiY2Ph7u5OVOT5zjvv4JdffkFJSQn4fD4SEhLw3nvvISgoSPeeRYsW4fTp08O+7tFHH8W2bduMLZfBRGFMkmHGodFoUFJSgosXL+oMMT8/HxqNBoGBgQgNDUVMTAzi4uIQGRkJW1tbo2s0tElei+bmZuTk5CAzMxO5ubkoLi5GdXU17O3tERMTozPOOXPmwMPDw6jaruTGG2/EunXrMGfOHKhUKvz9739HQUEBioqKYGVlBWDIJAMDA/H666/rvs7S0hI2NjZ0yWYwMRiTZJj2aDQaFBQUIDU1FSkpKTh9+jQGBgYQFBSEsLAwxMbGIiEhATExMTA3N6dbLgB6TXI0ZDIZMjIykJGRoTPOqqoqeHl5ITk5GcnJyVi0aBE8PT1p09jW1gZnZ2ecPn0aCxcuBDBkklFRUfjoo49o08Vg2jAmyTDt0Gg0KCwsHGGKUVFRSEhIwLJly7Bo0SKiK0BJM8nR6OjowLFjx3Dy5ElkZmaipKQEnp6eWLx4MZKTk5GUlGRU06yoqEBAQAAuX76M8PBwAEMmWVhYCIqiIBKJcMstt+Dll1+GpaWl0XQxmDaMSTJMC3p6evDHH3/g4MGD+O2339Df368zxRtuuIF4U7waUzDJq9Ga5okTJ3DhwgUUFxfDx8cHq1atwqpVq5CQkAAu1zAF9RqNBrfeeiukUinOnj2re/7LL7+EWCyGm5sb8vPz8cILL2Du3Ln45ZdfDKKDYfrBmCSDyVJfX4/Dhw/j4MGDSE1NhZubG5KTk3H77bdj2bJlJmWKV2OKJnk1HR0dOHDgAA4fPoy0tDRQFIWVK1di9erVWL58uV7XBR9//HH8/vvvOHv27DXXSVNSUrBkyRJUVFTAz89Pb+dnmL4wJslgMlAUhfz8fPz88884ePAgCgsLERUVhWXLluGuu+5CdHQ03RL1xnQwyStRqVQ4ceIEfv75Z6SkpKC+vh4LFy7E6tWrcfvtt8PNzW3Sx96yZQsOHjyItLQ0+Pj4XPO9fX19sLa2xtGjR7F8+fJJn5Nh5sA0E2AgntraWnz//ffYtWsXamtrsWDBAmzcuBF33XUXRCIR3fIYxgGXy8WNN96IG2+8EQBw+fJl/Pjjj9i5cyeefvppJCYm4v7778ftt98+7giToig88cQT2L9/P1JTU69rkACQl5cHAHB1dZ3098Iws2AiSQYi6erqwr59+7Br1y6cP38ecXFxWLt2Le6//35atmQYm+kWSV6LiooKbN++Hfv370dNTQ1uueUW3HfffbjxxhuvWW38l7/8Bbt378bBgweH7Y20tbUFn89HZWUldu/ejZUrV8LBwQH5+fl4+umn4eHhMWLvJAPDWDAmyUAMCoUChw8fxrfffovff/8dgYGBWLNmDTZt2kTr1gI6mEkmeSUXLlzA9u3bcfjwYcjlct2NUXx8/IhGBmM1NtixYwcefPBB1NfX495770VBQQH6+vrg6emJ2267DS+99BKzT5Jh3DAmyUA7VVVV+OKLL7B9+3ZYWFhg9erV2LRpE6KiouiWRhsz1SS1qNVq/P777/j2229x9OhRuLu74y9/+Qvuu+8+CIVCuuUxzCCYUVkMtKBWq3Hw4EEsW7YMwcHByMnJweeff47a2lp88sknM9ogGQAOh4Obb74Ze/fuRUNDAx5++GF89dVXcHV1xYYNG5CdnU23RIYZAmOSDEalo6MD7777Lnx8fPDoo48iPDwcZWVlOH78OO68805wOBy6JTIQho2NDZ555hnk5+fj+PHj6OvrQ2JiIubNm4fdu3dDoVDQLZFhGsOYJINRKC8vx8MPPwx3d3f89NNPePnll1FXV4cPP/wQ3t7edMtjMBEWLFiAvXv3ora2FkuXLsXf/vY3eHh44M0334RUKqVbHsM0hDFJBoOSl5eHu+66C+Hh4ZBIJDh16hQuXryIhx9+mJg+qQymh5OTE958801UV1fjww8/xP79++Hp6YkXXngBEomEbnkM0wjGJBkMwpkzZ3DjjTciPj4eXC4Xly5dwuHDhxEfH0+3NIZpBIfDwT333IPs7Gzs27cPGRkZ8Pb2xuOPP47q6mq65TFMAxiTZNAbFEXht99+Q0JCAlauXAmxWIyysjLs3r0bwcHBdMtjmObceOONSEtLw8mTJ1FTU4Pg4GDcfffdKCgooFsagwnDmCTDlKEoCr///juioqJw//33IyEhAdXV1fjiiy9m3P5GBvqZP38+fv/9d1y8eBEqlQqzZ8/GbbfdhpKSErqlMZggjEkyTInz588jKSkJ69evx0033YTa2lr861//gqOjI93SGGY4s2bNwt69e1FYWAhzc3NERUVh06ZNaGhooFsagwnBmCTDpCguLsbq1auxePFihIaGoqKiAm+//Tasra3plsbAMAw/Pz/8+OOPyMzMRH19PQICAvDcc8+hs7OTbmkMJgBjkgwTor6+Hhs3bkR0dDR4PB4KCwuxbds2JnJkIJ7IyEgcO3YMv//+O86cOQNfX1+888476O/vp1saA8EwJskwLnp6evD8888jMDAQDQ0NyMzMxI8//jiuyQsMDCSxaNEinD9/Htu3b8euXbvg6+uLr7/+GhqNhm5pDATCmCTDNaEoCj/88AMCAwNx4sQJ/P777zh27BgiIyPplsbAMCXWrFmDgoICbN26Ff/4xz8wb9485OTk0C2LgTAYk2QYk8LCQiQnJ2PLli148cUXcfHiRSxatIhuWQwMeoPNZuOxxx5DaWkpYmJikJCQgMcff5xZr2TQwZgkwwh6enrwf//3f4iNjYVYLEZpaSmefPJJsNnMrwvD9MTGxgbbtm3D+fPncenSJQQEBGD79u1MCpaBMUmGP6EoCnv27EFgYCBOnTqFU6dO4ZtvvoGDgwPd0hgYjEJUVBTOnj2L999/Hy+99BLmzZvHTByZ4TAmyQAAqK2txbJly/DEE0/oUqtMCzmGmQibzcbGjRtRWlqK2NhYLFiwAE899RRTBTtDYUxyhkNRFL788kuEh4fDxsYGJSUlTGqVgQFDKdjPP/8c586dQ0pKCiIiInDu3Dm6ZTEYGeZKOIOpq6vDsmXL8Morr+DLL7/EL7/8wux3ZGC4ipiYGOTk5OCOO+7AsmXL8Mwzz0Aul9Mti8FIMCY5A6EoCl999RXCw8MhEAhQUFCA9evX0y2LgYFYuFwu3n33XZw5cwYnTpxAREQE0tPT6ZbFYAQYk5xh1NfXY/ny5XjppZewbds27N+/n4keGRjGSWxsLHJycnD77bdj6dKl+L//+z8mqpzmMCY5g/jhhx8QFhYGKysrFBQU4O6776ZbEgODycHlcvHee+8hLS0Nf/zxB6KiopCfn0+3LAYDwZjkDEAul+ORRx7Bo48+io8//hj79++Hk5MT3bIYGEya2bNnIzc3FzfccAPmzZuHbdu2gaIoumUx6BnGJK/B559/joiICNjY2MDGxgbx8fH4/fffda9/+eWXWLRoEWxsbMBisSCVSkccw9vbGywWa9jj3XffHfaer776CmKxGNHR0cjMzNTr91BcXIzZs2cjMzMTFy5cwIYNG/R6fAaGmQyXy8V///tffP/993j55Zdx1113QSaTGe387777LlgsFp566indc4sWLRpxzXnssceGfd2hQ4cQGBiIoKAg/Prrr0bTa4qwKObWZ0wOHz4MDoeDgIAAUBSFb775Bv/85z+Rm5uLsLAwfPTRRxgYGAAAvPjii+jq6oJQKBx2DG9vb2zcuBEPP/yw7jmBQAArKysAQxWmS5YswbfffovGxka88sorKCoq0ov+b775Bps3b8b69evxySefgMfj6eW4DBNHrVZjcHAQAwMDusfg4CA0Gg0oitL9V/v/9fX1AAAPDw9wOBywWCyw2WzdRY/L5cLCwgI8Hg8WFha6/2exWDR/pxPjnXfewS+//IKSkhLw+XwkJCTgvffeQ1BQkO49AwMD+L//+z/88MMPGBwcxPLly/HZZ5/BxcWFRuUjqa+vx9q1a9Hc3Ix9+/Zh9uzZBj1fVlYW7rrrLtjY2CA5ORkfffQRgCGTDAwMxOuvv657r6WlJWxsbAAAg4OD8Pf3x44dO0BRFB566CFUVlbC3NzcoHpNFS7dAkjmlltuGfbvt956C59//jnOnz+PsLAw3d1bamrqNY8jEAggEolGfa27uxtCoRAREREQiUR6KQLo7e3FY489hiNHjmD79u1Yu3btlI/JMDoajQZyuXyY+WkN8Mp/K5VKABhhaloD1P5Xa4Y2Njbo7u4Gn88Hi8UaZqQajQaDg4Po6OjQnUuhUIw4/pXnufo5Usz09OnT2Lx5M+bMmQOVSoW///3vuOGGG1BUVKS7kXz66afx22+/Yd++fbC1tcWWLVtw++23E7dn0dPTE2fOnMHf/vY3LFy4EG+//Tb++te/GuSz7u3txT333IOvvvoKb7755ojXLS0tx7zmDA4OgsPhICoqCsBQNDw4OMiY5BgwJjlO1Go19u3bh76+vgl3onn33XfxxhtvwMvLC3fffTeefvppcLlDH314eDgiIiJga2sLc3NzfPXVV1PSWVBQgNtvvx22trbIysqCn5/flI7H8CcajQY9PT2QSqWQSqWQyWSQyWSgKGqEGVlZWcHBwWHSkZ6vry+OHDmCgIAAmJmZXff9Y0WqcrkcXV1dutcGBwdhZmYGoVAIW1tbCIVCCIVCWFpa0mKcR48eHfbvnTt3wtnZGdnZ2Vi4cCFkMhm2b9+O3bt3Y/HixQCAHTt2ICQkBOfPn8e8efOMrvlacDgc/POf/8SSJUuwYcMGnDx5Ert27RqRYZoqmzdvxk033YSlS5eOapLff/89vvvuO4hEItxyyy14+eWXYWlpCWCoScKGDRvg6uoKFouFN998EwKBQK/6phOMSV6Hy5cvIz4+HgMDA7C2tsb+/fsRGho67q9/8sknERMTA3t7e6Snp+PFF19Ec3MzPvjgA917tm/fjvfffx+Wlpbg8/mT1nrgwAHcd999uP/++/Hxxx/rjJhh4mg0GnR3d0Mmk+lMsbu7G2w2W2cuvr6+sLW1hbW1Ne2RGYfDgaWlpe5COBZqtRrd3d06ky8vL0d3dze4XO4w06TLOLXrefb29gCA7OxsKJVKLF26VPee4OBgeHl5ISMjgziT1HLjjTciNzcXd9xxB+bMmYNff/11WAp5Kvzwww/IyclBVlbWqK/ffffdEIvFcHNzQ35+Pl544QWUlpbil19+0b3n1VdfxVNPPQU2m80Y5HVgrqLXISgoCHl5eZDJZPjpp5/wwAMP4PTp0+M2ymeeeUb3/xERETA3N8ejjz6Kd955Z9ga4VSaiFMUhTfffBPvvvsuPv74Y2zatGnSx5qJUBSF3t5edHR06ExRa4jaiMvPzw9CoRBWVla0G+JU4HA4sLOzg52dne45tVo9LEIeyzgdHBxgYWFhMG0ajQZPPfUU5s+fj/DwcACARCKBubn5iEjMxcUFEonEYFr0gUgkQmpqKh5//HHExcXhxx9/xPLly6d0zPr6evz1r3/F8ePHx/xZPPLII7r/nzVrFlxdXbFkyRJUVlYOyyzZ2tpOSctMgTHJ62Bubg5/f38AQxuJs7Ky8PHHH+OLL76Y1PHi4uKgUqlQU1OjlzvL/v5+PPDAAzh37hyOHTuGBQsWTPmYMwGNRoOOjg5IJBK0tLRALpfD3t4eQqFw2hjieOFwODoj1KKNpK+MOLOzsyEUCiESiSASiSAQCPT6+WzevBkFBQU4e/as3o5JN1wuF1999RVmzZqF2267DW+88QaeeeaZSX9u2dnZaG1tRUxMjO45tVqNtLQ0fPLJJ7r1xiuJi4sDAFRUVDDLL5OAMckJoi2amCx5eXlgs9lwdnaespb6+nrccsstYLPZuHDhAjw8PKZ8zOmMUqlES0sLJBIJWltbwWazIRKJEB4eDkdHRyY9fQXaKPpK4xwYGNB9fmVlZeDxeDrDdHBwmFJT/C1btuDXX39FWlrasN9jkUgEhUIBqVQ6TEtLS8uYhSkk8uSTTyIsLAzr16/HpUuX8OWXX04qKl+yZAkuX7487LkNGzYgODgYL7zwwgiDBIauOQDg6uo6Ke0zHeaqcA1efPFFrFixAl5eXujp6cHu3buRmpqKY8eOARhKBUkkElRUVAAYWr8UCATw8vKCvb09MjIykJmZieTkZAgEAmRkZODpp5/GvffeOyzdNRnS09OxatUqJCUl4bvvvjNoGsyU6evr0/2cOjo6dJXG8fHxEAqFMyJS1BcWFhYQi8UQi8VQq9Voa2tDS0sLcnJyoFKp4OLiApFIBGdn53FXSlIUhSeeeAL79+9HamoqfHx8hr0eGxsLMzMznDx5EmvWrAEAlJaWoq6uzuRGuS1ZsgQZGRm6v9sDBw5M2LgEAoEuFa1FWyQWHh6OyspK7N69GytXroSDgwPy8/Px9NNPY+HChYiIiNDntzNzoBjG5KGHHqLEYjFlbm5OOTk5UUuWLKH++OMP3euvvvoqBWDEY8eOHRRFUVR2djYVFxdH2draUhYWFlRISAj19ttvUwMDA1PS9d1331F8Pp/aunUrpVarp3Ss6YZGo6E6OjqowsJC6uTJk9TBgwepc+fOUZWVlVRfXx/d8saNQqGgDhw4QCkUCrqlXBeNRkN1dnZSxcXF1KlTp6iDBw9SZ8+epcrLy6menp5rfu3jjz9O2draUqmpqVRzc7Pu0d/fr3vPY489Rnl5eVEpKSnUxYsXqfj4eCo+Pt7Q35bB6OnpoW666SbK1dWVunTp0pSPl5SURP31r3+lKIqi6urqqIULF1L29vYUj8ej/P39qeeee46SyWRTPs9MhWkmYGL861//wtatW/H111/jrrvuolsOMcjlctTV1aG2tnZEVDOeLRSkoVQqceTIEaxcudLk9Pf39+vSsu3t7bC1tYVYLIa7u/uIlPZYkfyOHTvw4IMPAvizmcCePXuGNRMwpXTr1Wg0GjzzzDPYuXMnDh06hIULF9ItiWEMGJM0ETQaDZ5//nl8/fXX+OWXX7Bo0SK6JdGORqNBS0sLamtr0draCmdnZ4jFYri4uJj80GhTNskrUSqVqK+vR21tLfr7++Hh4QGxWKz3fYOmynvvvYfXX38d33//PVavXk23HIZRYNYkTQClUokNGzbg1KlTSElJ0XXKmKnI5XLU1NSgrq4OACAWixEREXHdPYIMxsfMzAy+vr7w8fGBVCpFbW0tzp49C2tra4jFYnh6es7ogqkXXngBzs7OuPvuu/Hhhx/i0UcfpVsSw1XM3N9OE6Gvrw9r1qxBVVUVzp07B29vb7ol0QJFUejs7ERVVRUkEgmcnZ0RFRUFZ2dnpvjGBGCxWLr9mWFhYWhsbERNTQ2KioogFovh6+s7Y29yNmzYACcnJ9x9992QSCR45ZVXmN9pgmBMkmDa29uxcuVKaDQapKenz8jhyGq1Gk1NTaisrERfXx/EYjEWL16s6+vJYHqYmZnB29sbYrFYd+Nz8uRJuLi4wNfXFw4ODjPOJG6++WYcO3YMq1atQktLC/773/+Oup2DwfgwJkkoDQ0NWLJkCby8vHDgwIEZZwpKpRJVVVWorq4Gl8uFr68vvLy8ZnRqbrrBYrHg4OAABwcH9Pf3o7q6GhcuXACfz4e/vz88PDxmlFnGx8cjLS0NN954I1paWrBnzx6m6TgBMIU7BFJXV4ekpCRER0dj7969M8oY1Go1ampqUFZWBoFAgICAgBmZUp0uhTsTRaVSoaGhAeXl5eBwOAgNDYWLi8uM+vk3NjZiyZIlCAgIwE8//cSMuKMZxiQJo6amBklJSYiLi8OePXtmTMqFoijU19ejpKQEZmZmCA0NnZHmqGWmmqSWK2+WrK2tERYWpmt6PhOQSCRITk6Gj48PfvnlF6ZZCI0wJkkQ1dXVSExMRGJiIr7//nuT38YwHiiKQktLC4qKiqBWqxEcHDzj0myjMdNNUotSqURlZSUqKirg5OSEkJAQ3fDg6U5bWxuSk5Ph5uaGQ4cOMUZJE9P/Kmwi1NTUYOHChYiJicGbb745Iwyyo6MDZ8+eRW5uLry9vbF48WJ4enrOeINk+BMzMzMEBwdj2bJl4PP5OH36NHJyctDf30+3NIPj4OCA//znP6irq8Pq1aun1DOaYfJM/yuxCVBXV4dFixZh/vz5+Prrr1FSUoLq6mq6ZRmM7u5uZGZmIiMjA05OTli6dCl8fX1nTGqZYeLweDxERERg8eLFoCgKJ0+eREFBwbQ1Do1Gg5ycHADAyZMnUV9fj9tvvx0KhYJmZTMPJt1KMw0NDVi4cCFmz56tW4Ps7OxERkYGQkNDRzR8NmX6+/tRUlKCxsZGeHt7IzAwkClKGAMm3XptZDIZioqK0NnZCX9/f/j5+U2bAjetQXZ3d2P+/Png8XhoaWnBokWLEBAQgJ9//pn5nTAijEnSSEdHB+bPn4+QkBD89NNPwyKp6WSUKpUKpaWlqKqqgpubG4KDg2fclpaJwpjk+Ghvb0dRURH6+/sRGhpq8un60QxSi0QiwcKFCzFnzhzs2rVrRizJkABjkjTR19en2xT/xx9/jHoXPB2MsrOzEzk5OTA3N0dkZCQzDX2cMCY5fiiKQnNzM/Lz8yEUChEZGQk+n0+3rAlzLYPUUlNTg/nz52PdunX497//TYPKmcf0yE+YGEqlEnfeeSeUSiUOHz48ZprI3t4e8fHxyMjIAACTMkq1Wo3i4mLU1NQgKCgI/v7+Jn2Hz0AuLBYLbm5ucHR0xOXLl3Hq1CmEh4ebVFQ5HoMEAG9vbxw5cgTJyckQiUR47rnnjKx05sGYpJGhKAqbNm1CeXk50tPTr5t2NEWjvDJ6TEpKgkAgoFsSwwzA3NwcsbGxaG5uxqVLl9DU1GQSUeV4DVJLZGQkfvnlF9x8880QiUS47777jKR0ZsKYpJF58cUXceLECaSlpcHJyWlcX2MqRqlWq3WVuUFBQfDz82PWTRiMjqurKxwcHEwiqpyoQWpZtGgRduzYgQceeACOjo5YsWKFgZXOXBiTNCIffvghvvjiC6SkpMDPz29CX0u6UXZ2diI3NxdcLpeJHhloxxSiyskapJY777wTHR0duPPOO3Hy5EnExcUZSOnMhjFJI/HDDz/g5ZdfxsGDBxEdHT2pY5BolEz0yEAyV0eVs2bNIqKj01QNUstjjz2G5uZmrFixAhkZGQgKCtKzUgamutUIXLhwAcnJyfjf//6H9evXT/l4pFS9Xhk9RkdHz5h2YcaAqW7VP9qo0s7ODpGRkbS1edOXQV7Jww8/jNTUVFy4cAF2dnZ6UMmghTFJA9PU1ISYmBhs2rQJb775pt6OS6dRUhSF4uJiVFVVITAwEP7+/kz0qGcYkzQMCoUC+fn5aG1tRVRUFNzc3Ix6fkMYJDCU0Vm8eDF4PB6OHDkybRorkABjkgZELpcjMTERHh4e+OWXX/RuJHQYpVKpxMWLF9Hf3485c+Yw0aOBYEzSsDQ1NSE3Nxd+fn4ICgoySvrVUAappaOjA3PmzMGqVavw4Ycf6vXYMxnm9t9AUBSFjRs3QqFQYPfu3QaJtLRrlEVFRUbp9drb24u0tDSwWCwsXLiQMUgGk8XNzQ2JiYmor69HVlYWVCqVQc9naIMEhhqiHzx4EDt27MCOHTv0fvyZCmOSBuL9999HSkoKDh06BEtLS4Odx1hG2drairS0NIhEIsTFxTHRDYPJY2Njg6SkJCiVSpw5c8Zgk0WMYZBaZs2ahe3bt2Pz5s1IT0832HlmEoxJGoDffvsNr732Gn788Ud4e3sb/HyGNEqKolBZWYkLFy5g1qxZCAsLo70ykIFBX5ibmyM+Ph4ODg44ffo02tvb9Xp8YxqkljVr1uD555/H6tWrUV9fb/DzTXcYk9QzJSUlWL9+Pf79738jKSnJaOc1hFGq1Wrk5uaivLwc8+fPh6enp16OyzA9SUtLwy233AI3NzewWCwcOHBg2OsPPvggWCzWsMeNN95Ij9grYLPZiIiIQEhICM6fP4+amhq9HJcOg9TyyiuvYOHChbj11lshl8uNdt7pCGOSeqS/vx9r1qzB2rVr8fjjjxv9/Po0yoGBAZw7dw49PT1ISkpiysoZrktfXx8iIyPx6aefjvmeG2+8Ec3NzbrHnj17jKjw2nh7e2PevHkoLi7GpUuXoNFoJn0sOg0SGDL+7777Dmq1Gk899ZRRzz3dYOqE9chf//pXmJmZXfMiYWj00XBAKpUiMzMTjo6OiIqKYoYhM4yLFStWXLc9Go/Hg0gkMpKiiePo6IikpCTdUPDZs2dP2ODoNkgtFhYW2Lt3L+Li4rB48WKsXbuWFh2mDmOSemLPnj3Yt28fsrKyYG5uTquWqRhlQ0MD8vLymMkdBkCj0WBwcBADAwPDHgqFAhqNBhRFgaIoaDQaNDU1AQByc3PB4XDAYrHAZrPBZrPB4/FgYWEx7GFubm4SP6vU1FQ4OzvDzs4OixcvxptvvgkHBwe6ZQ3D0tISiYmJyMnJQVpaGuLi4sZdyU2KQWoJDg7GRx99hIcffhizZ8+ecDtMBmafpF4oLy9HTEwMPv30U9x///10y9ExkX2UFEWhpKQEVVVViI2NJfpun1QoioJcLodUKoVMJhvVDAHoTO7K/7LZbN06HZvNhkQiQUdHB4KDg8FisXQGqlarhx1zcHAQSqUSLBZrhHlaWlrC1tYWQqHQ6DduLBYL+/fvx+rVq3XP/fDDD7C0tISPjw8qKyvx97//HdbW1sjIyCAyW0FRFEpLS1FZWYmYmBi4urpe8/2kGeSV3HfffSgsLERGRgZRukwBxiSnyODgIObNm4eIiAh88803dMsZwXiMkqIo5Ofno6WlBfPmzWP2P44DiqLQ398PmUwGqVSqM0alUgmBQABbW1tYWlrqDOtqQ7weE2kmcKVxXhmp9vX1QSqVor+/f5hhah+GNM7RTPJqqqqq4OfnhxMnTmDJkiUG0zJVGhsbkZubi6ioKHh4eIz6HpINEhiql4iNjcUNN9yAjz/+mG45JgWTbp0izz33HAYHB/HFF1/QLWVUrpd6pSgKubm56OzsxIIFCwy6p9OUUalUaG9vR0dHh84YVSoVbGxsYGtrC1dXV4SEhMDGxsboURGHw4GVldWYs0kVCoXOxKVSKerq6tDX1wc+n68zTEdHR9jZ2Rk1Zevr6wtHR0dUVFQQbZLu7u4wMzPDhQsXoFarIRaLh71OukECQynkvXv3IiEhAUuWLMGtt95KtySTgTHJKXDgwAHs2LED6enptDVLHg9jGaX2j1smk2H+/PlEjREigYGBAbS0tEAikaCtrQ0WFhZwdHSk1RAng7m5OZydneHs7Kx7TqlU6iJgqVSKiooKsNlsuLi4QCQSwcnJyeD9PxsaGtDR0XHdNCYJODs7Y968ecjMzIRGoxnxN0SyQWqZNWsW3n33XTzwwAO4dOkSvLy86JZkEjDp1kkikUgQEhKCt99+m5btHpPhytSrWCzGxYsX0dfXh4SEBKL/uI0FRVHo7u6GRCKBRCKBTCaDnZ0dRCIRXFxcIBAIjBZpGbt3q0ajQWdnp+57l8vlcHJy0n3v47mB6u3tRUVFBQAgOjoaH3zwAZKTk2Fvbw97e3u89tprWLNmDUQiESorK/H888+jp6cHly9fNpnfP+3fUHBwMHx8fEzGIK/kjjvuQGtrK1JTU5nBBOOAMclJQFEUVq1aBYVCgaNHj9ItZ0J0dnYiPT0dlpaWYLPZSEhIoL0al04oikJbW5vOHBQKBZydnXXmQNeFj+4G5z09PbrPpKurCzY2NnB1dYWrq+uYa9apqalITk4e8fwDDzyAzz//HKtXr0Zubi6kUinc3Nxwww034I033oCLi4uhvx290tXVhYyMDPD5fFAUZVIGCQxt8QoLC8Pf/vY3PPHEE3TLIR4m3ToJdu/ejXPnziE/P59uKRNGKBTC1tYWnZ2dCAsLm7EGKZfLUVtbi7q6Omg0Gri6uiIyMhKOjo4mkUI1NAKBAAKBAAEBARgcHNSlncvLyyEQCODt7Q13d/dhKdlFixbhWvfcx44dM4Z0g2Nraws7Ozu0tbUhMDDQpAwSGLoGfPLJJ7j33nuxcuVKZlvIdWAiyQnS3NyM0NBQ/Otf/8LGjRvpljMhNBqNbsxVaGgosrKyaB/cbEw0Gg1aWlpQW1uL1tZWODs7QywWw8XFhbi0E92R5FgolUo0NDSgtrYWvb298PDwgFgsnjEdma5cgwwPD8fFixcRHBwMX19fuqVNmHXr1qGxsRGnT58m7vefJBiTnAAUReHWW2+FSqXC77//TrecCUFRFLKzs9HT04P58+fD3Nyc1sHNxkShUKC2tlbXqk8sFsPLy4voQiVSTVILRVG6Stn6+nrY2NjAz88Prq6u0/aCO1qRjvZvKCwszCjDDPSJNu36wgsv4Mknn6RbDrEw6dYJ8P333yMjIwOXL1+mW8qEoCgKeXl5uipWbYpVHy3sSKanpwdVVVWor6+HUChEeHg4RCLRtL2IGxMWiwU7OzvY2dkhNDQUdXV1KCoqQkFBAXx8fCAWi00uDXktxqpitbe3x7x585CRkQE2m21SFaNCoRCfffYZ7r77btx0001M2nUMmEhynDQ3NyMkJAQffPABHnroIbrljBtto4C2trYxt3lMt4iyr68PxcXFaG5uhru7O3x9fSEUCumWNSFIjyRHg6IoSCQSVFVVoaurC35+fvD39zcZ/WMxnm0ebW1tyMzMRHR0NNzd3WlQOXnWr1+PhoYGJu06BoxJjhNtmvXIkSN0S5kQJSUlqKuru26jgOlglAMDAygtLUVdXR08PDwQHBxMdEr1WpiiSV5JZ2cnioqK0NPTg8DAQHh7e5tkQdRE9kG2tLQgKysLcXFxcHJyMqLKqcGkXa8NY5Lj4PDhw7reh6Z0l9jU1ITc3FwkJiaOq9WcqRqlUqlERUUFKisr4eTkpNvob8qYukkCQ5Fla2srioqKoFQqERwcDE9PT5NoxA5MrlFAbW0tioqKsHDhwjE7IJHIvn37sHHjRpSVlTF9m6+CMcnrIJfLERISgkceeQR///vf6ZYzbmQyGc6cOYPY2NgJdTQxJaNUq9WoqalBWVkZBAIBQkNDYW9vT7csvTAdTFILRVFoaGhASUkJOBwOQkND4eLiQrRZTqWTTn5+Ptrb25GYmGhSP7sbbrgBzs7O+O677+iWQhSMSV6HV199Ffv27UN+fr7B23Tpi8HBQZw+fRpisRhBQUET/nrSjZKiKNTX16OkpARmZmYIDQ2Fs7Mz0RfdiTKdTFKLWq1GbW0tSktLYW1tjdDQUOLGZAFTbzWn0WiQkZEBLpeLuXPnmszvZXl5OSIjI3Hs2DEkJibSLYcYGJO8BlVVVQgLC8Phw4exdOlSuuWMC41Gg/T0dPB4PMyePXvSf6CkGqVMJkNubq4ufefh4WEyF6GJMB1NUotSqURlZSUqKiogEokwa9YsYiph9dWLVaFQIC0tDe7u7ggJCdGzSsPx7LPP4ujRo8jLyzOZoMDQMKVM1+CJJ57ATTfdZDIGqa1kValUiI6OnpJ5aLeHFBUV6fYX0olGo0FJSQnOnDkDFxcXLF682KTWtxj+xMzMDMHBwVi6dCnUajVOnTqlGzJNJ/psVm5ubo65c+eiqqoKjY2NelRpWN5880309vbik08+oVsKMTC3CmNw+PBhnDt3DoWFhXRLGTfV1dWQSCRISkrSy10gKfsotdEjRVFYsGCByW3nYBgdCwsLzJ07F42NjcjLy0NTUxMiIiJoaZVoiGkeNjY2iI2NxcWLF2FlZWUSv7cWFhb45z//iY0bN2LdunVMEQ+YSHJU5HI5nnjiCTz//PMmU83a1taGoqIizJ07V6/bHuiMKDUaDUpLS3XRY1JSkklcaBjGD4vFgoeHBxYvXgy1Wo2UlBSjR5WGHHclEokQFBSEzMxMDAwM6O24huTOO+9EXFwcnn32WbqlEAFjkqPwr3/9C3w+H88//zzdUsZFX18fsrKyMGvWLINUd9JhlDKZDGlpaWhsbMSCBQsQEhLCbHSexmijyrCwMOTl5SE7OxsKhcLg5zXGPEh/f384OjoiKysLarVa78c3BJ999hl++eUXXRZpJsNcda6ira0N77//Pt577z2TWLhWKpXIzMyEp6fniInp+sRYRslEjzMXFosFT09PLF68GCqVCikpKWhubjbY+Yw1MJnFYiEqKgoajQb5+fnXnJRCCgEBAXjwwQfx3HPPmYReQ8KY5FW89dZbiIyMxK233kq3lOtCURRycnJgYWGBsLAwg5/P0EYpl8tx5swZNDY2Yv78+QgJCTHJLi0MU+PKqDI3Nxd5eXnQaDR6PYexDFILh8PB3Llz0dLSgqqqKoOeS1+88cYbKCwsNLkuY/qGMckrqK2txbZt2/Duu+/SLWVclJWVoaenB7NnzzZaKtJQRtnZ2YnTp0/DxsYGSUlJM2b0EsPoaKPK5ORkSKVSnDt3DoODg3o5trENUgufz8fcuXNRXFyMjo4Oo5xzKjg4OGDz5s144YUXTCZNbAgYk7yCl19+GUuWLMGCBQvolnJdZDIZysvLMXv2bKNXA+rbKOvr65Geno6AgABERUUx0SODDj6fjwULFoDP5+P06dOQyWRTOh5dBqnF3t4eISEhyM3NhUqlMuq5J8Pf//53dHZ2Ys+ePXRLoQ3GJP8/BQUF2Lt3L95//326pVwX7R+6n58fbet1+jBKiqJQWFiIy5cvY+7cufDz82P2PTKMgMvlIjY2Ft7e3jhz5sykq1/pNkgtvr6+4PF4KC4upuX8E8HS0hLPPfcc/vGPf+gtkjc1GJP8//ztb3/DmjVrjLK2N1XKysoAYFIt5/TJVIxSqVTi/PnzkEgkWLhwIZydnQ2kkmE6wGKxEBgYiNjYWOTm5qKkpGRCBSWkGCQw9L1ER0ejtrYW7e3ttOkYL0888QTMzMywbds2uqXQAmOSAM6ePYtTp06ZxFqkVCpFRUUFoqOjidgSMRmj7O3tRVpaGgBg4cKFsLa2NqREhmmEq6srEhMTUV9fj6ysrHGlLEkySC3W1tYmk3blcrl49dVX8cYbb6Cnp4duOUaH/qssAbz44ot48MEH4enpSbeUa6LRaJCbmwt/f3+itkVMxChbW1uRlpYGkUiEefPmTbu+pAyGR1vcpVQqcebMGfT394/5XhINUouvry8sLCxQVFREt5Trcs8998DT0xMffvgh3VKMzow3yXPnziE3Nxdbt26lW8p1KS0tBQAEBgbSrGQk4zHKuro6XLhwAeHh4QgLC2PWHxkmjbm5OeLj42Fvbz9mQQ/JBgn8mXatq6sjPu3KZrPx97//HR999BH6+vrolmNUZrxJvvXWW1i3bh3xk8SlUikqKysRExNDRJp1NK5llDU1NcjPz0dcXBy8vLxoUsgwnWCz2YiMjISvry/OnTuHrq4u3WukG6QWU0q7rlmzBiKRCF999RXdUowKmVdbI5Gfn4+UlBS89NJLdEu5JlemWW1tbemWc01GM8rKykoUFhYiPj6e+JsRBiAtLQ233HIL3NzcwGKxcODAgWGvUxSFV155Ba6uruDz+Vi6dCnKy8vpEYuhArbAwECkp6ejs7PTZAxSi6+vL/h8PvFpVzabjWeeeQbvv//+jKp0ndEm+fbbb2P16tXw9vamW8o1ITnNOhpXGmVmZiZKS0uRkJBA5IBdhpH09fUhMjISn3766aivv//++/jPf/6Dbdu2ITMzE1ZWVli+fDmtDbz9/f0REhKCjIwMZGRkmIxBAn+2raurq0NbWxvdcq7Jhg0bwOPx8N1339EtxWjMWJOsrKzE/v378eqrr9It5ZqYQpp1NOzt7eHp6QmJRAKxWMx00DEhVqxYgTfffBO33XbbiNcoisJHH32El156CatWrUJERAS+/fZbNDU1jYg4jY23tzesra3R3t6OkJAQkzBILdq0a15eHtFpVw6Hgy1btuCdd96ZMV14TOeqq2fef/99LFu2jOip4Wq1Gjk5OSaRZr2aqqoqNDQ0IDo6GjU1NUQMbmaYOtqZpVcOIre1tUVcXBytEyO0KVa1Wo2wsDDk5OSgs7OTNj2TQZt2JX2G7ebNm9Hb24tffvmFbilGYUaaZHNzM7755hu8/PLLdEu5JhUVFWCz2SaTZtVSU1OD4uJizJs3D15eXrTNo2TQPxKJBADg4uIy7HkXFxfda8bm6jVIf39/BAcH4/z585BKpbRomgzaatf6+nqie7taWFjgkUcewVtvvTUjJoTMSJP88MMPMW/ePMTFxdEtZUwGBgZQXl6OiIgIk0qz1tfXo6CgAPPmzdPNtqRzcDPD9GasIh0/Pz8EBATo1idNBSsrKwQEBKCwsJBoA3r22WdRW1uLP/74g24pBof8gYl6pr+/H19++SXxC89lZWVwcnIyyBBlQ9HW1oZLly4hLi5uRJGO1ii1KTkfHx86JNKORqPB4OAgBgcHMTAwoHsMDg5CoVBAo9GAoii0tLQAAC5evAgOhwM2mw1zc3NYWFiMeJiZmRltz6lIJAIAtLS0wNXVVfd8S0sLoqKijKJBy/WqWAMCAqBWq5GRkYGkpCRYWFgYVd9k8fPz06W1r/yMScLGxgZ33303PvroIyxfvpxuOQZlxpnk999/DxcXF6xcuZJuKWPS19eH2tpaJCUl0S1l3PT19SErKwuzZs0ac5vHTDNKhUIBqVQKmUym+692I7bW8Hg8ns7srKyswGKxwGazwWKxIJFI4OTkBBaLpTPX7u5utLW1QS6XY3BwECqVCmw2GwKBALa2thAKhRAKhbCxsTHINBUfHx+IRCKcPHlSZ4rd3d3IzMzE448/rvfzjcV4t3kEBQWht7cXWVlZSEhIMIkJM1wuF4GBgSguLoZIJCK26cYzzzyDkJAQVFRUwN/fn245BmNGmSRFUfjPf/6Dhx56iOgUZklJCdzd3WFjY0O3lHGhVCqRmZkJT09PiMXia753OhtlX18fJBIJOjs7IZVK0d/fD0tLS515icViWFtbw8LC4rq/fx4eHjhy5AjEYvE1W/epVCoMDAygu7sbUqkUzc3NKCkpgVKphEAggFAohKOjI1xcXMY9Uq23txcVFRW6f1dXVyMvLw/29vbw8vLCU089hTfffBMBAQHw8fHByy+/DDc3N6xevXpcx58qE9kHqV3nO3PmDPLz8xEVFUWs6VyJt7c3KisrUV9fT2zzDT8/PyQnJ+PTTz+d1u3qWBTJiW89c+bMGdx8882or68n1oBkMhnS0tKwZMkSWFpa0i3nulAUhQsXLkCtVmPevHnjvvno7OxERkYGQkNDTdYoKYpCV1cXmpub0dLSgt7eXjg6OsLR0VEX0U121qdSqcSRI0ewcuXKCfe3pSgKcrkcUqkUUqkUra2t6O7uhr29PUQiEUQi0TWbyqempiI5OXnE8w888AB27twJiqLw6quv4ssvv4RUKsWCBQvw2WefGaXAbLKNAuRyOU6fPo2AgAD4+fkZWKV+aGhoQFFREZYsWUJsBHzkyBGsX78ejY2N03ZQwYwyybVr14LP52Pnzp10SxmTjIwMCAQChIeH0y1lXBQXF6OxsRELFy6csCGYolFSFIXW1lY0NjaipaUFFEXBxcUFrq6ucHJy0lvD9qmY5GjI5XJIJBJIJBK0t7fD0tISIpEIHh4eJrO9aKqddDo7O5Geno65c+eaxGg2iqJw+vRpeHh4EJvO1Gg0CAkJwXPPPYdNmzbRLccgzJh0a2trK/bv34/MzEy6pYxJe3s7Ojs7ERMTQ7eUcdHQ0ICqqqpJGSRgWqnX/v5+1NXVoba2FgDg7u6OuXPnws7OjujUvRY+nw8fHx/4+PhAqVSira0Nzc3NOHPmDAQCAcRiMdzd3YmdyqKPVnP29vaIiIjAxYsXTWJEG4vFQkhICLKzs6+bdqcLNpuN++67D5999tm0NckZE0m+9957+Pnnn3HhwgW6pYwKRVE4c+YMXFxcaB+mPB6kUinOnj2LOXPmjNgzN1FIjSgpikJHRweqqqogkUjg4uICsVgMZ2dngxujviPJa52noaEBtbW16Ovrg5eXF3x9fWFlZWWwc04UffdiLSws1A37JtF4roSiKKSnp8Pe3p7YxicdHR3w9PTEmTNnEBsbS7ccvUP+LbAe0Gg02LZtGzZu3Ei3lDFpbm5Gf3+/SayXDAwMIDMzE0FBQVM2SIC8fZQURaGpqQmnT5/GhQsXYGVlhaVLlyIuLg4ikcgkIsfxYmZmBh8fHyxatAjx8fEYHBxESkoKMjMzidiIb4hm5aGhobC0tER2djbRexGBP6PJyspKWnvjXgsHBwesXLkS27Zto1uKQZgRkWRqaipuv/12NDU1EblXSqPR4NSpU/D19SUqkhoNiqJw7tw58Pl8xMTE6LVSkISIsq2tDUVFRZDL5QgMDISXlxe4XOOvShgrkhwNuVyOyspK1NTUQCQSISQkhJbI0pDTPJRKJdLS0uDm5kZshHYlFy5cAI/HQ2RkJN1SRiU1NRU333wzWltbTaLgcCJMn1via7Br1y6sWLGCSIMEhrrUUBR13e0TJKC9o42MjNR7KT2dEaVUKkV6ejouXLgAV1dXLF26FL6+vrQYJN3w+XyEh4frqipTUlJw6dIlo0Yyhh53ZWZmhtmzZ6OysnLYHEpSCQkJQV1dHXp7e+mWMioLFy6Es7MzDh06RLcUvTPtTXJgYAD79u3DAw88QLeUUVGr1SgpKUFwcDDxabyenh6UlJQgOjraYOZhbKPs6+vDxYsXcfbsWdja2mLZsmUIDAyckeZ4NXw+H9HR0UhKSsLAwABOnDiB4uJiKJVKg57XWPMgbW1tERAQgNzcXOInWggEAnh4eKCkpIRuKaPCZrOxatUqfPvtt3RL0TtkX5X1wG+//QahUDhsagFJ1NbWgsfjwd3dnW4p14SiKOTm5sLb29vgcyGNYZQURaGyshKnTp0Ch8PBkiVLEBYWNul9jdMZGxsbxMXFISEhAe3t7Th16hRaW1sNci5jD0wOCAgAm83WzWwlmeDgYEgkEmJ70W7atAknTpwgfibmRJn2Jvntt9/i1ltvJTJKoygKVVVV8Pf3J74LSGVlJRQKBYKDg41yPkMaZW9vL86ePYvq6mrEx8cjOjoafD5fr+eYjtjb22PBggUICAjAhQsXkJeXp9eo0tgGCQxFQDExMaiqqiI+7crn8+Hu7o6qqiq6pYxKWFgYQkNDsXfvXrql6BXynEOPdHZ24vfffyd2/05LSwtUKhXc3NzolnJNjJFmHQ19G6U2ekxNTYVQKMSiRYsMHhVPN1gsFnx8fLB48WL09fXpLaqkwyC12NjYmEza1dfXFw0NDVAoFHRLGZU77rhj2qVcp7VJ/vTTTwgMDDT6dILxUlVVBR8fHyKjXC3GTLOOhr6MUhs9VlVVYd68eZg1axaz7jgFLC0tkZCQoIsqL126NOmokk6D1GIqaVdtH2BtUwvS2LhxI3JyclBZWUm3FL1B7tVZD+zatQtr1qyhW8aodHd3o6OjA97e3nRLuSYVFRVQKBS0lslP1SglEglOnz4NW1tbJCcnw9HR0QAqZx7aqDI5ORm9vb1IS0ubcPUlCQYJmFba1dfXF9XV1dBoNHRLGYGrqyvmz5+P77//nm4pemPammRdXR3Onz9PbKq1qqoKHh4etF0UxkNPTw9KS0sRExNDe4PlyRglRVEoLy/HxYsXERUVhYiICCZ6NABWVlaIj4+Hi4sL0tLSxl24QYpBajGVtKurqytYLBaam5vpljIq69evx65du4hv1DBepq1JHjp0CNHR0fD09KRbyggUCgUaGhrg6+tLt5QxoSgKeXl58Pb2Jmbw80SMUq1WIycnB1VVVViwYAHx1cOmDpvNRnh4OMLDw5GZmYmqqqprXiRJM0gt2rRreXk53VLGRBvBk1rAs27dOtTX1xOfuh4v09YkDxw4gBtuuIFuGaNSV1cHoVBI9PSF5uZm9PX1Ga2adbyMxyjlcjnOnj2Lvr4+JCUlQSgUGlfkDMbLywsJCQkoKyvDpUuXRk0JkmqQwJDZR0ZGoqKigtg2cAAgFoshk8kgk8noljICW1tbzJkzZ9o0FpiWJtnd3Y20tDSsXbuWbikjoCgKtbW1RHfX0Wg0KC4uRlBQEJHpyWsZpVQqxenTpyEQCDB//nxiuyxNZ+zt7ZGUlKTrYnRlJSbJBqnFzs4Ozs7OREdCZmZmcHNzI7aAZ8WKFdi/fz/dMvTCtDTJY8eOwcvLC7NmzaJbygg6OzsxODhI9LYPU2iTN5pRaucF+vn5ITo6mvZ11JkMn8/HggULYGZmhvT0dAwODpqEQWohvQ0cAHh7e6OhoYHI9dO1a9ciKytrWjQWmJYmeeDAgVEnq5NAbW0tPD09ib2Aa9vkhYSEEL01BRhulAUFBcjIyEBwcDACAgKIb84wE+ByuZgzZw6srKxw7tw5ZGVlmYRBAkNt4Dw9PYltAwcMRbwWFhZoamqiW8oI/Pz8EBQUhCNHjtAtZcqQfRWcBCqVCkeOHMEdd9xBt5QRKJVKNDU1ER2hVVVVgcfjER3pXom9vT1CQ0NRWVkJFxcXoouhZiJsNhvR0dFQqVRobW3F7NmziTdILUFBQZBIJESMDBsNFosFsVhMbMp16dKlOHDgAN0ypsy0M8n09HSwWCwsWbKEbikjqK+vh42NDWxsbOiWMipKpRLl5eUIDQ01mUiss7MTRUVF8Pf3R0tLCxHzKBn+RKPRIC8vDxwOBy4uLsjOzia2W8zV8Pl8+Pj4oKioiG4pY+Lp6Ymuri709PTQLWUEd9xxB/744w+iC6DGw7QzyUOHDmHhwoVEFpzU1dURHUWWl5fD1tYWzs7OdEsZFzKZDOfPn0dISAjCwsKIGtzMMLxIZ8GCBZg9ezasrKyQnp5u8Eki+iIgIABSqZTYtTVzc3O4uroSGU3Onz8fAoEAqampdEuZEtPOJA8fPoybb76Zbhkj6O3tRU9PD7FpTLlcjqqqKoSGhtItZVwMDAzg/Pnz8Pf316VY6ZxHyTCc0Yp02Gy2Lt2anZ1tEpvNzc3N4e/vj6KiImL1enp6oqmpiTh9bDYbSUlJ+PXXX+mWMiWmlUlKJBJUVFQQaZISiQSOjo5GnzI/XsrKyuDi4gI7Ozu6pVwXtVqNCxcuwNHREQEBAcNeY4ySfq5Vxao1yr6+PqLTmFfi6+uLgYEBIgtkAMDR0REKhYLIEVpLly5FSkoK3TKmxLQyydOnTyMgIAAikYhuKSNoaWkhUhcwFEXW1dUR1zhgNCiKwqVLl0BRFKKiokZdO2WMkj7Gs83DzMwMcXFxqK2tRX19PQ0qJwaXy0VgYCBKS0uJi9YAgMPhwNnZGRKJhG4pI1i5ciVKSkqITVePh2llkqdOnUJcXBzdMkagUCjQ0dFBrElWV1fD2dkZAoGAbinXpaqqCq2trZg7d+41t9HMdKPcunUrWCzWsIehb4Imsg/S2toas2fPxqVLl4hvKA4MdRIaHBxEe3s73VJGRSQSEWmS7u7u8PPzw+nTp+mWMmmmlUmmpKQQuT+ypaUFNjY2RA72VavVqK2tNYmtE62trSguLkZcXNy4PsuZbpRhYWFobm7WPc6ePWuwc02mUYCzszNCQkKQmZkJuVxuMG36gMPhQCwWE9sv1cXFBTKZjMhK0rlz5+LUqVN0y5g008YkJRIJKisrsWLFCrqljIDkVGtDQwN4PB7x46P6+/tx8eJFREZGTmjddCYbJZfLhUgk0j0M9TOeSicdX19fODs7Iysri8jRT1fi4+OD1tZW9PX10S1lBDweD3Z2dmhpaaFbygiSk5NNel1y2phkamoqAgIC4OLiQreUYWg0GmJNkqIoVFVVwc/Pj+h9kdqJJG5ubpOa6jJTjbK8vBxubm7w9fXFPffcg7q6Or2fY6qt5lgsFiIjI6FUKokf1Mvn8+Hq6kpsNElqynXFihUoLS1Fa2sr3VImxbQxSVLXI9vb28Hlcomc+NHZ2Qm5XA4PDw+6pVyT2tpa9Pb2IiwsbNLHmGlGGRcXh507d+Lo0aP4/PPPUV1djcTERL1uOtdXL1YOh4Po6GiUlpYSWaF5Jb6+vqirq4NKpaJbyghcXFzQ2tpKnDbtumRaWhrdUibFtDFJktcjRSIRkZFaTU0N0X1kgaE0a2FhIaKioqa8fWYmGeWKFStw5513IiIiAsuXL8eRI0cglUqxd+9evRxf383K7e3t4ePjg9zcXKLTrnZ2duDz+URuBxEIBODz+UQWF5nyuuS0MMn29nZUVFTgxhtvpFvKMCiKgkQiITLVqlAoiO8jS1EUcnNz4e7urrcuQDPJKK9EKBQiMDAQFRUVUz6WoaZ5BAcHQ6VS6UWjoSC5XyqLxSI25ZqUlMREknSSnZ0NDw8P4syop6cHg4ODRBbFNDQ0QCgUEttHFhiKdPv6+qaUZh2NmWiUvb29qKyshKur65SOY8hxV9q0a1lZGdFpV09PT0ilUiI1uri4QCKRELefMzExESUlJURW316PaWOSISEhdMsYgUQigZOTE3HpTFMY/CyXy1FUVKSXNOtoTHejfPbZZ3H69GnU1NQgPT0dt912GzgcDtavXz/pYxpjHuSVaVfSLvRazM3NiR147ODgAI1GQ9zkkqCgIFhaWiI/P59uKROGvC7gk0C7NYA0JBIJkUbU3d2Nvr4+YvvIAkBpaSmcnZ0N2mxda5QZGRkAhkr8jQlFURgYGIBUKoVUKkVfXx/UajU0Go2uEjArKwtcLhdcLhcCgQBCoRBCofC6Nw4NDQ1Yv349Ojo64OTkhAULFuD8+fNwcnKalFZjDkwOCgpCQ0MDmpqa4O7ubrDzTAUvLy9cvHgR4eHhRNUbsNlsXTRJUotJNpuNkJAQ5OTkYO7cuXTLmRDTxiSncodsCAYHByGVSomsuJVIJHBxcSFyUgowlKaur683SiGWMY1SqVSivb1dZ4oymQyDg4M687OxsQGHwwGHwwGPx0N9fb1uS5NSqURXVxeqq6shl8thZWUFW1tbnWk6ODgMG5L9ww8/6E23MQ0SGNrfGRQUhOLiYri6uhI5/NvBwQEA0NXVBXt7e5rVDMfFxQXl5eXEZdfCw8Nx8eJFumVMGDKvkhOgo6MD9fX1SExMpFvKMDo7O2FtbU3kgNnm5maiO+yUlJTAy8sL1tbWRjmfIY2Soii0traivr4ezc3NsLKyglAohIuLC4KCgmBjYzPqzYq7uzvq6+vh5eU1ImocHByETCaDVCpFV1cXqqqqoNFo4OnpCU9PT71uNzK2QWrx8vJCZWUl6urq4O3tbZRzTgQ2mw1nZ2c0NzcTZ5KOjo7Izs6GUqkkaqDCnDlz8Nlnn9EtY8KYvEnm5OTA3d2duKIdmUxG5N5IuVyO7u5u4pouaOnq6kJLS4vRh2br2yiVSiVqa2uHGdiiRYv00h+Xx+MNS0VTFIX29nbU1dXhzJkzsLGxgb+/P1xdXaeUCqTLIIE/03P5+fnw8PAgMuvh6uqK4uJivReWTRULCwvweDx0d3frIl4SmD9/Pp544gkMDg4SGTyMBXm/eROE1KIdqVQ66fUfQ9LS0gI7Ozsif0kpikJRURF8fX1p6XOrD6NUKpUoKytDTU0NBAIBwsPDIRKJDJoyZLFYcHJygpOTE5RKJerq6lBQUIDCwkIEBARALBZP2CzpNEgtrq6uKC8vR1VVFQIDA41+/uvh5OSE7Oxs9Pb2Gi3rMV6EQiGkUilRJhkaGgo+n4/Lly9j9uzZdMsZN+Ql+ydIVlYWkUU7UqkUQqGQbhkjIHXfJgC0tbVBJpONmBFpTKZS9drS0oKUlBTIZDLEx8dj4cKFcHNzM+qampmZGfz8/LB06VKEhISgoqICZ8+eRW9v77iPQYJBAkPmHxoaivLycigUClo0XAszMzM4ODgQ2S9Va5IkwWazERwcjOzsbLqlTAiTN8nLly8jJiaGbhnDGBgYwODgIHHpVpVKhba2NmJNsry8HP7+/rSvo0zUKJVKJXJzc3Hx4kUEBwcjPj6e9nUqNpsNDw8PLFq0CEKhEKmpqaisrLzutgpSDFKLk5MThEIhsdt0SN28LxQKIZPJ6JYxAm0K3ZQwaZNUqVSoqalBREQE3VKGIZVKYW1tTdw6SltbG/h8PnGpIWBoDberq4uYIo3xGqU2epTL5Vi8ePGkUpuGhMvlYtasWZg3bx6qqqquGVWSZpBa/Pz8UFNTQ2S7OpFIhI6ODuIiXVtbW/T09BDXx1U7vNqUMGmTrKmpAUVRBh8mO1FIT7WSdBHXUlVVBQ8PD5ibm9MtRce1jFKlUo2IHkmcF6rF0dERycnJuqiyqqpqWFRJqkECQ1saOBwOkf1SLS0tIRAIiJtwwefzwePxiIsmw8LCUFZWRreMCWHSJllWVgZPT0/iIjaZTEacSZLeR7ahoYHIbSmjGaVSqURGRgZ6e3uRnJxMXPQ4FldGlWVlZSgsLARFUUQbJDC0Nunj48OMqJogJK5LhoeHo6Ghgfgh21di8iZJYkcbEiPJrq4uUBRF+1rZaNTX1xPdR/ZKoywvL8e5c+dgZmaGhIQEWFpa0i1vwjg6OiIxMRHNzc3Izc1FdnY2sQapxdPTEzKZjMh+qSKRCC0tLcSlg0lcl/Tx8YGFhQXxs0OvxKRNsrS01OitxK7HwMAABgYGiLvgazuDkNa9xBT6yAJDRhkbG4uioiIAQ6N/SOvJOxGsrKyQkJCA5uZmtLa2IiEhgViDBMjulyoUCkFR1IQqiI2Bra0tcZEkm82GWCw2qZQrWVfMCVJSUoKgoCC6ZQxDW7RDd4Xm1ZAY3QJD5i2Xy4nuIwsMpVhLSkrg6OiI3t5eIi/WE0Gj0aC4uBg8Hg/m5uYoLS0ltqG4FrFYjPr6eqjVarqlDIPFYhFpSEKhkMjiHS8vL8YkjQWJ/QlJXI8EyDXJ5uZmuLq6EreufCVqtRqZmZng8XiIj49HQkKCSU8PuXINMjExEfPnz0dLSwuKi4vplnZNHBwcwOFw0NHRQbeUEZC4/ndl5x2S8Pf3N6kKV5M1yf7+fjQ2NhK5/YPE/ZG9vb3E6QLIbm6gpbCwEBqNBnPmzAGbzTbpMVujFelYWloiPj4eNTU1aG5uplvimJA8VJjE9T9SI9ygoCCUlJTQLWPcmKxJ1tXVgcfjwcvLi24pwyAxYpPJZODxeMRtUejt7UV/f79Bx2FNFW1P1JiYmGHRrika5bWqWAUCAWbNmoVLly4Rt+fvSrQmSVpq2NbWFjKZjDhdJEa4gYGBqKmpoVvGuDFZk2xqaoKjoyNRhShqtRoDAwN6aWKtT0g0bmAoinR0dCQ21ardCxkSEjJqAwZTMsrxbPPw8PCAnZ0dLl++TIPC8eHo6AiFQkFcClH7N9/T00OzkuEIBAL09fXRLWMYnp6eaGtrI25teSzIcZgJ0tzcTFwD8YGBAbBYLKI2xANkmyTJqdaioiLw+fxr7t80BaMc7z5IFouFyMhItLS0EJt25XA4cHZ2Ji7lSmpq08LCAgMDA3TLGIa3tzfUajXa29vpljIuTNokHR0d6ZYxjIGBAfB4POI2lpM4tkuhUKCzs5NYk2xra0NdXR2io6Ov+/Mk2Sgn2ijAwsKC+LQrsy45fng8HgYGBohKA1tZWcHGxobYG7GrMVmTbGpqIm4ta2BgABYWFnTLGIZKpUJPTw9xkWRLSwtsbGyIWycFhj6zvLw8hIaGwsrKalxfQ6JRTraTjjbtSmojahcXF8hkMuIiJFIjSY1GA6VSSbeUYTg6OjImaWiampqIi0JINElt0Q5purq6uoiadXclVVVV4PF4E25UQZJRTqXVnDbtKpFI0NnZaUCVk4PH48Ha2hpdXV10SxmGNpIkKWrjcrngcDjE3VAwJmkEmpqa4O7uTreMYQwODhJnRt3d3bC1tSUuBUzqOqlarUZVVRWCgoIm9ZmRYJT66MVqYWEBb29vYtuHkVi1aW1tDYqiiCqUYbFYsLCwwODgIN1ShuHs7MyYpKFpamqCh4cH3TKGQWIkOTAwQFxKU6PR6MybNBoaGmBubj6lVD6dRqnPZuW+vr6QSCREXfS1kLj+x2aziSyUIVGTs7MzGhsb6ZYxLkzWJFtaWuDp6Um3jGFoC3dIgkTj1va4JG2rDEVRqKyshJ+f35QjbzqMUt/TPCwtLeHq6krk9A1tJElSahMg05C0xTsk4erqSuTos9EwSZNUKBTo7e2Fq6sr3VKGQaIhkahJ25WIxBSwXC7XWxrfmEZpqHFX3t7eaGhoIG7ChY2NDQYHB4m7+JNokiRqcnZ2RltbG90yxoVJmqR2w66dnR3NSoZD4pokidEtqeuRdXV1cHd312tzA2MYpSHnQTo4OIDL5RK35YLL5UIgEBC3Lkli1EbimqSNjQ1xjRfGwiRNsre3FywWi6h0nUajgUKhIM4kSTRuEvdtqtVqNDY2GqTNoSGN0tADk1ksFry8vFBfX6/X4+oDEtclSTQkEiNJGxsb4kaLjYVJmmRPTw8sLS2Jakmn/SUkKWrTaDREmmRfX9+obd7oRCaTgc1mGyw7YQijNLRBanF1dUVbWxtx639WVlbEFRWRaEgkRre2traMSRqS3t5e4ibCk9htR3tHS5JxUxRFpHEbY51Un0ZpLIMEoLuhIe2iRqIhMZrGh1AoJO4GZyxM0iS1kSRJkFggozVukiJuEo0bMN46qT6M0pgGCQxtbbCxsSFu/Y9JbY4PCwsLqNVqorru2NjYoL+/n7iCsNEg5+o5AUg0SYVCQdyFn8SinYGBAZibm4PD4dAtZRjGHJY9FaM0tkFqIXX9jzRD4vF4UKlUUKlUdEvRYWZmBhaLRVQvXu2yBmnZidEwSZMkMd2q0WiIitgAMot2SDRutVqNnp4eoxYTTcYo6TJIgMy+pDweD0qlkqiRS+bm5mCxWERFuCwWC2w2m6iozcbGBgBjkgajp6dn3I2njQVFUUSaJGlju0hMS8tkMpiZmRm9M9G1jLJvUIUdpWzc/Ek6smo6aTVIgMy+pNoaAJKiSe2oPJJMEhhKmZP0szM3N4eFhYVJbAOZ0FX9nXfewZw5cyAQCODs7IzVq1ejtLRU93pNTQ1YLNaoj3379uneV1dXh5tuugmWlpZwdnbGc889NyI98dprr8HDwwMLFixAWVnZsNfkcjlx0YhGoyGqaAcg17hJM0nteiQdP7+xjPJfx8uR18lGaUsvPj1VQatBAkPdkTQaDVF3/iwWCzwejzGkccBisYiKJIGhdHl/f/9139fT04OnnnoKYrEYfD4fCQkJyMrK0r1OURReeeUVuLq6gs/nY+nSpSgvLx92jIyMDERFRcHb2xvbt2+fkM4JXUFPnz6NzZs34/z58zh+/DiUSiVuuOEGXZWSp6cnmpubhz1ee+01WFtbY8WKFQCGUls33XQTFAoF0tPT8c0332Dnzp145ZVXdOc5d+4cfvvtNxw8eBB33303tmzZMkyHRqMhbk2LoigiTZI0TUqlEmZmZnTLGIZcLqc1M3G1UUpkA/gu8899iamlbUiv6kLcvHjabg7ZbDYsLS0hl8tpOf9YmJmZEbXWBpBrkqaqadOmTTh+/Dh27dqFy5cv44YbbsDSpUt1vV/ff/99/Oc//8G2bduQmZkJKysrLF++fFiGYePGjXj55Zexe/duvPPOOxPa9zuh1iJHjx4d9u+dO3fC2dkZ2dnZWLhwITgczojxVfv378ddd92lKyP/448/UFRUhBMnTsDFxQVRUVF444038MILL2Dr1q0wNzdHV1cX3NzcEBERAZVKhZ07dw47JqlRG2maSPycSLzBUavVtGvSGmVGRgbOdLeMeP2DHAWaOOV4d00EDeqG4HA4RK3/AeQaEmlRG4kmyWazr/v7JJfL8fPPP+PgwYNYuHAhAGDr1q04fPgwPv/8c7zxxhv46KOP8NJLL2HVqlUAgG+//RYuLi44cOAA1q1bB2Bob3ZMTAycnZ1hZ2c3oTTvlHJx2mo3e3v7UV/Pzs5GXl4eNm7cqHsuIyMDs2bNgouLi+655cuXo7u7G4WFhbp/DwwMwNLSEjfeeCPeeeedYccl8UJLYuEOielWUm8mSPh90hplc1vHqK/3DNJbMUmiSZJ48SdRE2mFO8D4NKlUKqjV6hFLNHw+H2fPnh3KvEgkWLp0qe41W1tbxMXFISMjQ/fcK6+8gpCQENja2mLevHkIDQ0dt85JN6nUaDR46qmnMH/+fISHh4/6nu3btyMkJAQJCQm65yQSyTCDBKD7t7Y/pJmZGY4ePYrW1lYIhcIRxSfaD5akfT9qtZq4CeDaCxppmrhcLlGalEqlrlKSLrr6FTiQ14zfLktwaYzhCL9fbsYdn5+Dh5APDzs+/J2tEehsDW9HS5hxDH8zxGKxoFQqifrZAWA0jRPSNLFYrOvedAkEAsTHx+ONN95ASEgIXFxcsGfPHmRkZMDf31/nGaN5ypX9hjdu3Ih169ZBoVBMuKvWpE1y8+bNKCgowNmzZ0d9XS6XY/fu3Xj55Zcne4oxZ/qxWCz09fXhyJEjkz62oSCxx2VNTQ3dEkZQUVFBt4QRXF0gZgzqe4E0CRu57SwoqWtH2BoKuFgrxcVa6bDnOSwKzhaAqyUFV0sKXtaAj4ACzwDBcUdHB/Lz8/V/4CmQl5eHvLw8umUMIzs7m24JI7hw4QLdEoahVqvHlenatWsXHnroIbi7u4PD4SAmJgbr16+f8GdsZWU1qdqDSZnkli1b8OuvvyItLW3Mwcc//fQT+vv7cf/99w97XiQSjfhhtbS06F4bD2w2G3w+HytXrpyEesNQVlaGgYEBRETQt2Z0NSUlJVCr1QgLC6Nbio7CwkJwOBwEBwfTLUVHQUEBzMzMEBQUZLRzajQUXvutGLsvN+ieC3UVwIOvRErNADhsFp4JU8LNmo3g4GBYO7qioUuORukAGrrkqOvsR1lrL8pbetGnUKNZDjTLWcD/z9SacViI9LBFvK894n0dEOlhC3Pu1KLNc+fOwdfXl6gRdWfPnoW/v/+4rx3GIC0tDSEhIXBycqJbio6UlBRERUWNuTRGB9r9m9fDz88Pp0+fRl9fH7q7u+Hq6oq1a9fC19dX93NvaWkZ9nvZ0tKCqKgoveickElSFIUnnngC+/fvR2pqKnx8fMZ87/bt23HrrbeO+EWJj4/HW2+9hdbWVl2kePz4cdjY2Iw7T6zNZZNUJcnlcsFisYjSxOFwiPucOBwOcZ+TdjSWsTQpVBq8+msBfsgaMshbI93wQLwXmmvK8Y9TPVBpAJWGQlUPC7ctiUNWVhZCuVzM8fXBnKuORVEUGqVylLX0oFTSixJJN7KqO9EkG9BFnf89VQV7K3PcHu2OdXM94e88uek5FEXB3NycqJ8dMPRzI0kTRVHEaQLI+5wmWsehjQS7urpw7NgxvP/++/Dx8YFIJMLJkyd1ptjd3Y3MzEw8/vjjetE5IZPcvHkzdu/ejYMHD0IgEOhyvra2tsM2YldUVCAtLW3UdOgNN9yA0NBQ3HfffXj//fchkUjw0ksvYfPmzeMubye1oo3RdH3YbDZRLbuAoYvHePZr6YNmmRx/+T4HuXVSAMCHayOxKtINf5zNwqupnZBdseWvTzXUvktb9QpgxI0pi8WCh50lPOwssTh4aF2GoijUdfYjvbJj6FHRjo4+Bf53thr/O1uNWLEdVke54aYIN9hbjb/ZhEKhIOoiC4w/ZWdMSCxOI1XTeArmjh07BoqiEBQUhIqKCjz33HMIDg7Ghg0bwGKx8NRTT+HNN99EQEAAfHx88PLLL8PNzQ2rV6/Wi84JmeTnn38OAFi0aNGw53fs2IEHH3xQ9++vv/4aHh4euOGGG0Ycg8Ph4Ndff8Xjjz+O+Ph4WFlZ4YEHHsDrr78+ftGEFX4Apls9Zmx4PB5x3f9tbGzQ3Nxs8PNkVnVg8+4ctPcqYGPBxUfrorAo0Akn07PwamoHOgYo+DhaIdzdFocvNWFANXRRu3J7CDDSKK+GxWJB7GAFsYMV1s/1gkqtwemyNuy5UI9Tpa3Iru1Cdm0XXjtchMQAR6yOdsfSEBdY8ca+HAwODmJgYEDXTowUBgcHiWwsQppxk6hJqVSOa8C5TCbDiy++iIaGBtjb22PNmjV46623dDdszz//PPr6+vDII49AKpViwYIFOHr0qN6alkw43Toe3n77bbz99ttjvi4Wi6dUdGNtbU3cpmYSozYSS/ZJbEotFArR09NjsP2SFEXhu/O1eO1wEVQaCiGuNvji3lh42Fng8OkLeCOtE+1yCu5CPr7fFIcfsoaKv+RX/OgmapRXwuWwsSTEBUtCXNDSPYDDl5pwMK8JlxtlOFXahlOlbeCbcbAs1AWro92QGOA0olpWKpXCysqKqEhS20ictA5OJOy7vRrSIkmNRgO5XD6uubJ33XUX7rrrrjFfZ7FYeP311ycUaE2ESVe30olAICAuGiHRJEkctkrieCM+nw8zMzN0d3frfejyoEqNVw4U4seLQ8Z3a6Qb3lsTAR6Xhe+Oncd757rQpwLEDpbY9VAc3IR8OAuGIiPpVY1kpmKUWlxsLLAp0RebEn1R0dqLQ5eacDCvEbUd/Th0qQmHLjXBztIMK2e5YnW0O2K97MBms4w6JWW8DA4O6nqlkoJ2JBVp0S1pJtnf3w+1Wg2BYHLr48bEJE3S2traaGtI44XEFDCJhqSNJEn6o2WxWLopF/o0SWm/Aht2ZiG3Tgo2C/jbimA8nOgLtVqDl3efwQ+FvVBTQLSXEP+7fzYcrIcurL6OQ2XqrfKRn48+jFKLv7M1nlkWiKeXBuBSgwwH8xpx+FIz2nsH8X1mHb7PrIO7kI9bIt3gz+1EpDc51ZrAn83ySfk9Av40bpJMUqPR6PYnk4J2osx4Ikm6IedTmwACgYA4kyQxjUiiIfF4PF3TBZIiAKFQqNdRULJ+Je7dnomCxm7Y8s3wyd3RSAxwQrO0H498fQ6XW4fCxFsi3fDPOyJgYfZnes7HacgkOwaGKmGvznDq0yiBoZuEKE8hojyF+MfKEGRUdeBgXhOOFkjQKJVj2+lKAICf4wDWzGbh1kg3eNjRP6qOxLFrWk2k/L0B0F2XSPqspFIpuFwuUZrGwmRNkrQ1SVJNUq1WQ6VSEbOWZGZmBg6Hoxu+TApCoVBvzQRUag0e+iYLBY3dcLAyx55H5sHfyRp7Mmvx1m+F6FVQ4Jux8dqt4bhztseIC6rIxgJ2lmbo6leioKkbcX4jIzh9G6UWLoeNxAAnJAY44c3V4UgpacX+nAaklLSgsl2O94+W4v2jpZjjbYe7Znvi5gg38M3pWX8jcewaqZp4PB5RhTsymQxWVlZE3UyMhUmapLW1NXFrklcaEilpDS6XqzMkUkwS+POGgqRKSaFQiO7ubigUiimb9+eplciu7YLAgovdD89DY5ccz+zNQ0FjN4ChpgH/vTsGfk6jp5pYLBbmetvhWFErzld1jmqSgOGMUouFGQcrZ7ki2hG42VmKAccgHMhtwvnqDmTVdCGrpguvHy7Cqmg3rJvjhXB34w2tBsg1JNI0kTieTiaTmUSqFTBRkxQIBFAoFESVf5uZmYHNZmNgYICYH752bWRgYICoBXIbGxvIZLIx2w7SgaWlJYRCIRobG6dkNhRF4ZuMWgCAjYUZNu/OQUXr0AxGCw7w9LJAPJTod91eq3E+9jhW1IrMms5rvs/QRgkMtVoM9PZASIgX1s7xgkQ2gJ9zGvBjVj3qOvvx3fk6fHe+DuHuNlg3xwurotwgsDD8TZlMJiOq+w9AbgqYMcnJQ078PQG0F3x9riFNlSsNiSRITAPre/1PX3h5eaGurm7KxxlUDu3daJTKUdHaC3MOcKOYi1P/txCPLgoYVzPyeN+h9mFZNV2Q9Q8vCKvv7IdM/udzYw1u1geDg4NoaWmBp6en7jmRrQU2J/sj9dlF+H5THG6OcIU5h42Cxm68dKAAc986ief2XUJ2bafBKr4pitINyyYJEg2JROPu6ekh6sb9WphkJGlpaQkOh4P29vYR3d/phERDIrHCVSgUora2lm4ZI3B3d8fly5fR3d096VQwi8XCNxvn4uuz1TDnsOHC7kG4rQJLkxZM6ELl72wNVz6FZjnw6+Um3BMnBgD8mFWHF36+DL4ZB6+vCsOds4fMy1ARZUNDA4RC4ah3/Ww2C/P9HTHf3xGdfQr8ktOAH7LqUdHai33ZDdiX3YBAF2usneOF26PdYTeB7j7XQy6XQ6VSEZWyB4ZuKkjqjwqQadxdXV3E/ezGwiQjSTabDUdHRzQ0NFz/zUaEREMi0bhtbW3R399P3ER5MzMzeHh4oKqqakrHifGyw3/WReFuPxXmOCgnbJBa4pyHuiV9mVYFpVoDiqLw35Sh6SlypRrP/ZSPPRf+jHz1HVFSFIXq6mp4e3tf9732VubYlOiL408vxE+PxWNNjAcszNgoa+nFG78WIe7tk3hyTy7SK9r1El1KpVLY2NgQt2mfREMicU2yubmZuFT5WJikSQKAq6urXlJj+oREQyIxBczj8cDn83VDu0nCz88P9fX1U/rMNBoNcnJy0N3djfnz50861ZXgQsHByhy1Hf3Yea4G2bVdaOiSw9Kcg/VzhyLIF3+5jO/O/xmV69Mom5ubodFo4O7uPu6vYbFYmO1tj3/fFYnMvy/FG6vDEeZmA4Vag0OXmnD3/zJx83/P4nhRy5TMUiqVwtbWuIVC44HE1CaJxt3c3DzmBCnSMFmTdHNzQ2NjI90yhkGiIVlZWaG3t5duGSMgdV3SxsYGjo6OkzYYfRkkAPA4wP8t8wcAvH+sBE/vzQMArAh3xdu3zcLGBUMp1ZcOFGB3pn4jSoqiUFFRAV9f30lvHbDlm+G+eWL89mQiDm9ZgLvjvGBlzkFhUzce/vYiVn16DqdKWidlliSuRyoUCigUiknNLDQkJBp3W1sbE0kaGjc3N6M0pZ4IJEaS2q0NpPVwJdUkASAwMBCVlZUT3makT4PUsibaHTdHuEKpplDfObQ3eN1cT7BYLLx0UwgeWegLAHjpwGWcKGrRfd1UjbKxsRF9fX0Qi8VT/h4AYJaHLd6+bRbOvrAYf1nkB0tzDvIbZNiwMwu3fZaO02Vt4zZLiqIgk8mIiySlUiksLS2J2v+r0WgwODg4bEoTCTAmaQTc3Nx0w5pJgUSTtLS0BJfLRXd3N91ShuHk5ITW1lbippQAgIODAzw9PZGbmzvuC7chDBIYKo75aG0UXl8Vhttj3PHV/bMxx3uoMITFYuHFFcG4a7YHNBSwZU8O8uqluq+drFEODAwgPz8fkZGRet9fa2dljudvDMaZ55Px6EJfWJixkVcvxQNfX8Ad2zJwtvz6a5ZdXV2gKIq4SJLU/rYAWd12AKC9vZ0xSUPj6uqK1tZWumUMg8TCHW1fUtLW/4RCITgcDjo6OuiWMiphYWGQy+XjMhdDGaQWLoeN++O98cFdUVgWOryam8Vi4a3bZiEp0AkDSg027sxCTfufEfBEjZKiKFy6dAnOzs5wc3PT6/dxJQ7WPLy4MgRnnl+MjQt8wOOykV3bhXu3Z2LtF+eRUTn274VEIoGLiwtRHWQAMtdJBwcHYW5uTtRnpdFoGJM0Bm5ubmhvb6dbxjAsLCygVCqZ1OY4YLFYEIlEusHdpMHlchEVFYWioqJrpl0NbZDjwYzDxmf3xCDc3QYdfQrc//UFtHT/mdGYiFE2Njaiq6sLs2bNMrRsAICTgIeXbw7FmeeT8WCCN8y5bFyo6cT6r85j3ZcZqGjtGfE1LS0tEIlERtE3EUhcJyW1aEelUjEmaWhcXV2JM0ntHRtpzddJNEkAOpMkbcSYFicnp2umXUkwSC1WPC6+fnAOxA6WqOvsx33bM9HV9+cWm/EYpTbNGhERYfTvxdnGAltvDcPp5xbhvnlimHFYOF/Vids+HVqv1NLX14eenh6iujUBQ0U7/f39xJlkf38/cSZZV1cHgUBAXIHTWJisSbq7u6Orq4uoHq4sFkvXco0kSC3ecXR0xMDAAHp6RkYLpKBNu169d5Ikg9TiLLDAdxvj4GLDQ1lLLx7ccQG9gyrd69cySmOlWa+Hqy0fb6wOR+pzyZjrbY+eQRUe2pmFXRk1AIZSrQ4ODkT1IgaG1iNJK9oBQGSBU3V1tclEkYAJm6Srqyv4fD4KCgroljIMoVBInElqOxSRZkZcLhfOzs7EplyBIY3R0dEoLi7WFYqRaJBaPO0t8d3GONhZmuFSgwwPf3MRA8o/b47GMsri4mJIpVJERETQIXsE7kI+dm2aizUxHlBrKLx8sBBbDxWisamZ2FQraWYEkFlMVFJSgsDAQLpljBuTNUkWiwV/f3/iTFI7vJckWCwW0SlX0rbyXI2joyOioqKQlZWFtrY2Yg1SS4CLAN88NBfWPC4yqjrwl+9zMKga2yjLy8tRW1uLhIQEoiIhHpeDf90ZgRduDAYA7EyvwTvnpBDYOdKsbCQkrkeq1Wp0d3cTZ97l5eUICgqiW8a4MVmTBICgoCCUlJTQLWMY2kiStHU2Uk3S1dUV3d3dxG1RuRoPDw+EhYUhIyMDXV1dxBqklggPIf73wGxYmLGRUtKKLbtzoVT/ud1Ga5QFBQUoKSlBfHw8kQ2nWSwWHl/kh233xoDHYaFYysLW3yuI+/siMWLr7u4Gl8uFpSX9A7KvpKamhjFJYxEcHIyKigq6ZQzDxsYGarWaKd4ZJ+bm5nBzcyOy4fmVaDQadHR0wNzcHIODg8SbOgDM83XA/+6fA3MuG8eLWvDknuFG2d7eDhaLBRaLha6uLhqVXp/lYSI8E2MGLpuFI5cl2JleQ7ckHQqFAn19fcRFbFrjJm2wcW1tLZNuNRaBgYGoqamhW8Yw2Gw2BAIBcYbk6OiI7u5u4podAIBYLEZ9fT1xhUVarlyDTE5OxqxZs5CZmUl8mhgAFgQ44sv7YmHOYeP3Agme/jEPSpUahYWFqKysRGJiIhISEgwyZkufdHV1wcNCgRdXDEUgbx8pRm4dGcbe2toKW1tb4jILJK6T9vb2QiKRMCZpLAIDA4lrcg6QGbXxeDzY2dkRWSTj4OAACwsL4qa6AKMX6YjFYsTExCA7OxsFBQXEmruWRUHO+PzeGJhxWPg1vxkPfp6C+oYGJCYmwtbW1qDzKPVFdXU1PD098dACX6wIF0GpprBldy6apHK6pUEikRBbTERaCrigoACWlpZEfl5jYdImGRAQgM7OTuL2S5JokgDg4uJCXCs/YGjdydfXF1VVVUStNV2ritXNzQ1JSUno7OzEqVOn0NnZSaPS67M42BmvLPUAmwWca1TgmNQZfMs/96mRbJRyuRxNTU3w9fUFi8XCe3dEwMfRCo1SOdZ8nj5qwwFjodFo0NLSQtRcW+DPoh0STdLf35+4FPC1MGmTtLe3h729PfLz8+mWMgxSi3dEIhFaW1uhUqmu/2Yj4+HhAblcTkybuvFs8xAIBEhMTIS3tzfS09OJjSrlcjnOnz8PZ0Uz3rrJDxw2C/tzm/DM3jyoRinmIc0oa2pq4OTkpBv8bGNhhu82xcHPyQrNsgHcsS2DttRrR0cHuFwucWbU09NDZNFOSUmJSRXtACZuksBQhWteXh7dMoYhEAigUqmIK94RCASwsLAgLvIGhvYjent7o7y8nG4pE9oHqd2KpI0qU1NTiYkqKYpCbW0tUlJSYGFhgcWLF2P9gmD8d300uGwWDuY14Yk9uVCoyDVKpVKJ6upq+Pn5DXveXcjHvscSEOkphLRfibu/yhzWmcdYaPvIkhYZadcjSdNVWlqKkJAQumVMCJM3ydjYWOTk5NAtYxgcDgc2NjbEpVxJ75fq7+9Pe/p8so0CtFGll5cX0tPTkZGRgdbWyc1KnCpqtVpnjiUlJZg9ezaio6N1XWpWznLFtnv/LOb5y/fZ19xHSScVFRWwtbWFo+PIvZH2VubYvSkOiQGOkCvV2PRNFg7mGW/GLEVRzHrkBCkqKkJMTAzdMiaEyZvk7NmzUVhYSLeMEZC6Lklyv1Rzc3MEBASgsLCQFn1T7aTDYrEQEBCAZcuWwc7ODtnZ2UhNTUVNTQ2USqWBVP9JX18fSkpKcPz4cVRWVsLf3x9Lly4ddb1saagLvrw/FjwuGyeKW/Hwt9nj6sxjTAYGBlBZWYmQkJAxIyIrHhfbH5iDWyLdoFRTeOrHPPzvjHHWtnt6ejA4OAgnJyeDn2uikGiSMpkMNTU1iI2NpVvKhDB5k4yNjUVJSQlx62wkjqcChipJ1Wo1kQYOAL6+vpDL5UbfXqHPVnM8Hg/BwcFYtmwZfHx8UFtbi6NHj+LixYtoamqCXC7Xy0Wcoih0d3ejtrYWZ8+excmTJyGTyRAdHY3k5GSIxWJwOJwxv35RkDN2PDgHfDMO0srasGFHFvoV4+v1agxKS0vh7OwMe3v7a77PnMvGx2uj8EC8GBQFvPlbMR7/LgeyfsPemEgkEjg5OV3zM6YDjUaDnp4e4rZ/nDt3Dg4ODrT2Bp4MXLoFTJXg4KGWVTk5OZg7dy7Nav5EKBSiuLgYFEURtS7AZrPh4uICiUQCOzs7uuWMgMvlIigoCMXFxRCJREaZg2eoXqzadVZvb290d3ejvr4eJSUl6Onpgbm5OYRCIYRCIWxtbSEUCsHn88f8XdFoNOjt7YVUKoVUKoVMJtPdhNna2sLNzQ1z5syZsPYEf0d8u3EuNuzIQkZVBx74+gK+fnAOBBZDqVmtUWZkZAAAfHx8pvCJjJ/e3l7U1dVh0aJF43o/m83C1lvDIHawwju/F+NooQSXG2X4eF0UZntf22Qni0QigVgsNsixp4JMJgObzSZuysb58+cRGxtL1PVwPJi8SXK5XERERCA9PZ0ok9TexXV1dV33TtjYiEQilJeXE7uALhaLUVlZifr6eoNfhIzVrNzGxgZhYWEICwuDSqVCd3e3zuwkEgl6enrAZrPB4XDAZrN1NwcnT56ERqOBSqUCm83WGapYLIZQKIRAIJjyRWeOtz12bZyL+7++gKyaLty7/QJ2PjgHdlZDfVzpMMqSkhJ4enpOqFUei8XCQwt8MMfbHk/syUFNRz/WfnkeTy0JwF+S/cFh6+/iPDAwAKlUStQ1R0trayucnJyIM6Pc3FzMmTOHbhkTxuRNEgDmzJmD7OxsumUM48qIjTSTdHFxQV5eHrq7u2FjY0O3nBGw2WyEhISgoKAAbm5uBhuLRNc0Dy6Xq9u+pEXbylCtVkOj0WBwcBAXLlxAbGwszM3NdeX8hrrwRXvZYc/D83Dv9kxcqpfijm3p+HZjHNyFfADGNcrOzk5IJBIsWbJkUl8/y8MWvz6ZiJcPFGB/biP+fbwM6ZUd+GhdFFxs9DNbsbGxEfb29sTNagSGIlxjRfwToaSkBJs2baJbxoQx+TVJYGhdksTiHVdXVyIrSc3MzODm5kZcS78rcXNzg7W1NYqKigxyfNLGXXE4HAgEAgiFQtjb2+uqObXpWCsrK4NHBuHuttj3aDxcbS1Q2daHNZ+lo1Ty50Z9Y6xRqtVq5OXlISAgAHw+f9LHseZx8eHaKPz7zkhYmnOQUdWBFR+fQUrJ1JtpUBSFmpoaIlOtcrkcMpmMuOYG3d3dqKqqMrnKVmAamWRpaSlxG7mdnJzQ29tL1GBoLWKxGA0NDcR9ZlpYLBaioqJQX1+P1tZWvR6bNIMkiQAXAX5+PAEBztaQdA/gzm3pyKr5c9+noY2ytLQUbDYbAQEBejnemlgP/PrEAoS62qCzT4GHdl7EG78WDdvyMlE6OzsxODhIZAFKS0sL7OzsiPudzsjIgJ2dHTw8POiWMmGmhUmGhoYCGFoYJgkzMzM4OjoSGU3a29uDx+OhqamJbiljYmVlhbCwMOTl5eltCwVjkNfHTcjHvsfiESu2Q/eACvf+LxN/FP75O2woo+zq6tJFG/os2PJ1ssb+zQl4MMEbALD9bDXWfJ6O6vbJ3bzW1tbCw8ODuKpWgNw+smlpaZgzZw5x66TjYVqYJJfLRUJCAv744w+6pYyA1M37LBYL3t7exI+o8vb2hpWVlV7S6YxBjh+hpTm+2xiHpSHOGFRp8Nh32dhz4c9hAvo2SrVajZycHAQGBhpknZzH5WDrrWH43/2zYWdphoLGbtz8nzPYnzuxpvpKpRJNTU1EplpVKhXa2tqINMlz585h8eLFdMuYFNPCJAFgyZIlOHv2LN0yRiASidDR0QGFQkG3lBF4enqiq6uL6NmILBYL0dHRaGxsnFLalTHIicM352DbvbFYO9sTGgp48ZfL+M/Jct0eT30aZUlJCbhcLvz9/fUhfUyWhrrg978uRJyPPfoUajz94yU8szcPfYPj22ddV1cHGxsb4vYgAkBbWxv4fD5xw7NVKhVycnLGvZ2HNKaNSS5atAg5OTnErbFZWlpCIBDofV1NH5ibm8PDwwNVVVV0S7kmlpaWurTrZG42GIOcPFwOG++umYUtyUPm9cHxMrxysBBqjf6MsqOjA9XV1YiOjjbKvliRrQV2PzwPTy8NBJsF/JLTiJv/exYFjddu/kFRFKqrq+Hr62twjZOB1FRreno6KIpCdHQ03VImxbQxydjYWCgUCly4cIFuKSMgNeUKAH5+fmhoaCAy0r0S7b7ArKwsaDSa63/B/4cxyKnDYrHw7PIgvHZrGFgsYNf5WmzZnQO5YuiGdCpG2d/fj6ysLISFhRl1OxKHzcJflwZgz8Pz4Gprger2Ptz+WTq+Pls9ZjeklpYWqNVqIgt2KIpCS0sLkSZ57NgxJCYmgss1zR2H08YkzczMkJCQgN9//51uKSMQiURoaWmZ0MXdWNjY2MDOzo7o7SDA0IU6JiYGCoUCBQUF4/oaxiD1ywMJ3vhkfYyuMfqdX6Trhh5PxihVKhUuXLgAV1dXeHt7G1D52MT5OuDIk4lYFuoChVqD138twsPfXkRn38ibxsrKSnh7exsl2p0oXV1d0Gg0xO3JBoCzZ8+a7HokMI1MEhhalzx37hzdMkYgFArB4XCImZV4Nb6+vqiuribSxK+Ey+UiLi4OjY2N1zV1xiANw00Rrti1cS7srcxR0NiNWz85h+zaoS0iEzFKiqKQm5sLLpeLWbNm0Vr1aGdlji/vi8Xrq8Jgzhlq+L7i4zRkVP7599rd3Y3Ozk7azPx6aEd2kWbgpr4eCUwzk0xOTkZ2djZx65Kkj6gSiUTgcDioq6u7/ptpxtLSEnPmzEFBQcGYI7UYgzQscb4OOLh5PoJFArT3DmL9l5nYm1UPYPxGWVZWhq6uLsyZM4eICzuLxcL98d7YvzkBvk5WaOkexN3/O48P/iiFSq1BaWkpPD09if1dInU98ty5c7o9z6YK/b+deiQmJgYqlUrXOoskSB5RxWKxEBISgtLSUuKmqYyGo6MjwsPDkZWVNWKwNWOQxsHT3hI/P56AFeEiKNQaPP9zPl4/XASVWnNdo2xqakJ5eTni4uKI+/mEudni1ycW4M5YD1AU8J+UCtz5+TmU1LUgKCiIbnmj0tfXh97eXjg7O9MtZQTHjh3DggULTHY9EphmJmlmZoakpCQcPHiQbikjcHJywuDgILHbLdzc3MDj8WgfsjtevL294e7ujoyMDAwMDABgDNLYWPG4+PTuGDy1dKg7ztfnqrFhZxak/YoxjbKjowM5OTmIiYkhchsFAFiac/HPOyPx8booWPO4yG3oxnuXOEirIm/0HQA0NzfD0dHRYD2Op0JKSgpuuOEGumVMiWllkgCwevVqHD9+nG4ZI+BwOHBzcyN28z6LxUJoaCjKy8uJr3TVMmvWLAiFQqSnp0MulzMGSQNsNgtPLQ3E5/fEgG/GwZnydqz+9BwqWntGGGVnZyfOnz+PWbNmEVkhejWrotyx695QeFkDvQoNHt2VjVcOFgwbTk03FEWhtrYWnp6edEsZQXt7O7Kzs3HLLbfQLWVKTDuTvPnmm1FQUICGhol10jAG3t7eaGhoIDal6ezsDKFQiPLycrqljAttowFra2ucOnUKMpmMMUiaWDHLFT8/ngB3IR81Hf1Y/Wk6UkpadEZZWFiI9PR0hISEENmtZjQoikJ3UxW23RGAhxOHpmp8m1GruwkgAZL7yP7000/w9/eHn58f3VKmxLQzSVdXV0RGRmLv3r10SxmBnZ0dLCwsiO6XGhoaiurqasjlcrqljBsWi0XccOuZSKibDQ5tmY+5PvboHVRh4zcX8Xlqpe5nY2o/o6amJgwMDCDQ3xf/uCkUOzbMgYOVOUokPbjlv+ewN6ue9hqDmpoaeHp6EtlH9tdff8WqVavoljFlpp1JAsCqVavw22+/0S1jBCwWC2KxmNiUKzC0XcXFxQWlpaV0S7ku2jXInp4eLF68GAKBAOfOndOtUTIYHwdrHr7bGIe747xAUcB7R0uwacd5ePkFYv78+QYds6VPNBoNiouLERQUpCs6SQ5yxu9/TcR8fwfIlWo8/3M+nvwhD90D+mm+P1EUCgWxfWQVCgXOnDnDmCSprFq1ChkZGUSOqPL09IRUKkVPDxnpmtEICQlBfX090RqvLtLh8/mIjY2FUCjEmTNniC2QmgmYc9l4+7ZZeHaRB9gsCrntwF9/bUSbwszg8yj1RV1dHVgsFry8vIY972xjgV0PxeG55UHgsFk4fKkJN/3nDPLqpUbX2NDQAFtbWyIHpx89ehTm5uaYO3cu3VKmzLQ0yYiICNjb2+PQoUN0SxmBubk50QU8AGBtbQ0vLy8UFxfTLWVUxqpiZbPZiI6OhoeHB86cOUPsvtTpDkVRKCkpgY+6AV/cGQxXWwtUtfdh9afncLq2n3ijVKlUKCkpQUhIyKh7ONlsFjYn+2Pvo/PgLuSjvlOOu7Zl4Ods49VBaAt2SIwiAeCXX37BzTffTGQaeKJMS5NksVhYtWoVkVtBgKE+pHV1dcQW8ABAUFAQWltb0dnZef03G5HrbfPQ7vmMiorCxYsXUV5eTvu60UxCpVIhKysL9fX1SExMxLIYf/z6xAIkBjhCrhyauvHv042InRNHrFFWVlaCz+fD1dX1mu+LFdvjyF//bGn3f/su4Z3fi3XN3w1JV1cX+vv74e7ubvBzTYbU1NRpkWoFpqlJAkMp11OnThHXfQcAHBwcwOfziazA1WJhYYGgoCDk5uYS8xlOZB+ku7s7FixYgOrqaiKnw0xH+vv7cebMGSiVSiQlJenSgA7WPOzcMBdPLgkAiwV8n1mHR/aWQBwaTZxRdnd3o7y8fNyt8mz5Zvji3ljdlJQvTlfhkW8voneco7cmS2VlJcRiMZGb9C9evIjm5mYsW7aMbil6YdqaZHJyMpRKJbEFPL6+vqiqqiI6yvHz8wOXy0VJSQndUibVKEAoFGLhwoXo7+/H2bNnR3TnYdAfbW1tOH36NBwcHBAfHw9zc/Nhr3PYLDyzLBA7HpwDoaUZ8htkuOfbAqidg4kxSo1Gg9zcXPj4+EyoUTibPTQl5eN1UTDnsnGypBVrPktHfadhft/kcjkkEgl8fHwMcvyp8vXXX+Omm26ClZUV3VL0wrQ1STMzM6xbtw7ffvst3VJGxcPDA4ODg2hra6Nbypiw2WzExMToNoLTxVQ66VhYWCAhIQFCoRCnTp1CbW0t0TcmpoZKpcLly5eRmZmJkJAQREREXLMX66IgZ/z6xAJEethCJlfiyZ9LkKNyR0Eh/UZZUVEBtVqN4ODgSX39qih37H00Hk4CHkpberDq03PIrNL/UIPq6mo4OzsTaUIajQaHDh3CfffdR7cUvTFtTRIA7rvvPvzxxx9ERhAcDgdisZj4gccCgYDWtKs+Ws1xOBxERkZi9uzZKCkpwfnz501qHyiptLe3IzU1FVKpFIsWLRr3hAwPO0vsfSwe980bKjrZntGIXfW2yMyjzyi7u7tRVlaG6OjoKRWbRHkKcWjLfIS726CzT4F7t2fixyz9DQ5QqVSoqakhdvDz8ePH0dvbi5UrV9ItRW9Ma5OcN28eHBwcsGfPHrqljIqPjw/a2trQ29tLt5Rr4u/vDzMzM6NXu+q7F6uLiwsWL14MCwsLpKSkMFHlJNFGj+fPn4ePjw8WLFgAa2vrCR2Dx+XgjdXh+HhdFPhmHFyoleGDQnP8et74Rqn9PfP19YWdnd2Uj+dqy8e+RxNw0yxXKNUUXvj5Mt74tUgvBT0NDQ3g8/lwdHSc8rEMwY4dO3DnnXdOq65X09okWSwW7r33XmJNUltBR3o0qW3/VlNTY7S0q6GalZuZmSE6OnpYVEniflpSaWtrGxY9+vn5TamLzqoodxzcMh++TlZo7VXg48ssfHK8yKh/E+Xl5dBoNHqd8sE35+CTu6N1zd+3n63GQzuzptR4gKIoVFVVwdfXl8jORYODgzh27Ni0SrUC09wkAeDee+/FmTNniF378/f3R11dHfHpP23a1RiVosaY5qGNKvl8PlJSUpCfn4/BwUG9n2e6IJPJkJGRgQsXLkw6ehyLQBcBDm1ZgJsjXKHSUPi5Cnjyp2JkFxq+h7C2mnWqadbRYLGGmr9/encMLMzYOF3Whts+PYea9sndlDU1NUGpVMLDw0OvOvXF3r17YW1tjQULFtAtRa9Me5MMCgpCWFgYvv76a7qljIoptYHz9/eHubm5QdOuxhx3ZWZmhqioKCQlJUEul+P48eMoKSmBUklPmzES6evrQ3Z2NtLS0iAQCLB06dIpR4+jYc3j4r/ro7H1llCYc9go6ATu31OGnScv6fU8V6LvNOtY3BThin2PJkBkY4HKtj6s/uwc0itHHxg+Fle2ySN1g/53332He+65h4gh2vpken03Y/DAAw9g3759dMsYE1NoAwcMT7u2t0/sj3w80DUP0sbGBnFxcYiPj0dbWxtOnDiBqqqqGb23cnBwEPn5+UhJSQGLxcKSJUsQHh5u0J8Ji8XCg/N9cOiJ+QhxtUGfCth6vAEPbz8LmVz/Ny5lZWV6T7OOxSwPWxzaMh+RnkJI+5W4f/sFfJ85/q5bY7XJI4WOjg6kpaVNu1QrMENMct26dcjPz8fly5fpljIqpLeBuxKBQIDw8HBkZWXptWqYhIHJDg4OWLBgge5G4OTJkyY1X1Mf9Pb2Ij8/H8ePH4dcLkdSUhJiYmJgaWlpNA3BIhsc3Dwff1nkBzYLOF4uw7J/p+Bchf5uzJqbm1FRUYHY2FijRWbONhb48ZF5WBXlBpWGwj/2F2DroUKo1Jprft312uSRwP/+9z8EBgYiLCyMbil6h0XNkPK+NWvWwM7ODv/73//oljIqAwMDOHHiBBISEia0kZku8vPz0dHRgcTExCl3/SDBIK+Goig0NzejqqoKUqkUnp6e8Pb2hq2trVHOr1QqceTIEaxcudLgE+cpikJLSwuqq6vR3t4ONzc3g6cgx0t2bSf+uicHDdKh9eIHE7zxtxXBsDCbvLF1d3fjzJkziI6OpmUOI0VR+Cy1Ev88NrTEssDfEZ/eHQNby9F/zmVlZWhubsbChQuJLNgBhkbsPfnkk3jsscfolqJ3ZoxJnjhxAnfddReamppgYWFBt5xRKSoqQldXFxISEoj9Y9Ci0WiQkZEBMzMzzJkzZ9J6STTIq5HJZKiqqkJjYyMEAgHEYjHc3d0Nal7GMMn+/n7U1dXpmu2LxWJ4e3sT9/fRN6jCq/vz8FNeCwDAz8kKH9wVhUhP4YSPNTg4iLS0NHh5eRklzXotjhVK8PSPeehXqOHraIWdG+bCy2F4xK5QKHD8+HHMnTsXTk5ONCm9NikpKbj11lvR3NwMgUBAtxy9M2NMUqPRICAgAM8++ywef/xxuuWMilKpxPHjxxEbGwsXFxe65VwXhUKB06dPw9PTc1JdSkzBIK9EqVSioaEBtbW16O7uhoODA0QiEUQikd67nxjCJCmKglQqhUQigUQiQU9PD1xcXCAWi+Hs7ExsKk/L4YuVeOlQCWSKoTZ3W5L9sWWxP8w449Ot0WiQnp4OHo+H2bNnE3EjWtTUjYe/vYhGqRwiGwt8/3Ac/Jz+rBouLCxEd3c34uPjaVR5bdasWQMHBwd8+eWXdEsxCDPGJAHgn//8J3744QdkZ2fTLWVMKioq0NDQgKSkJCL+iK/HZFNXpmaQV9PX16czm46ODlhbW+sM087Obso/O32ZpEqlQnt7u06rWq2Gi4sLRCIRnJ2dR/RYJZ3qxhY8u+cisv//8mSEhy0+uCsK/s7X345y6dIldHZ26mWJQJ+09gzgnq8yUd7aC0drHr7fFIcgkQByuRwnT57EggULIBQK6ZY5Km1tbRCLxTh79ixiYmLolmMQZpRJdnR0wMPDAykpKcTemanVapw4cQJhYWHE7oe6mubmZmRnZyMxMXFca3ambpBXo1Qq0draColEgpaWFmg0Gtja2kIoFEIoFMLW1hYCgWBCxjkZk1Sr1ZDJZJBKpbr/9vT0gM/n6wzcwcGB+IjxenR2duK/BzOwr5qNXoUGPC4bL9wYjAcTvMFmj/4ZV1dXo6SkBElJSUYtQhovHb2DuG/7BRQ1d8PO0gy7NsZB2TpUYT179my65Y3JSy+9hBMnTuD8+fN0SzEYM8okAWDjxo2QyWT46aef6JYyJrW1tSgrK8OSJUtM5oJWVlaGmpoaJCUlXdP0pptBXo1Go0Fvby+kUqnu0d3dDQCwtbWFtbU1LCwsdA8ejwc+nw8ejzfsZ/3/2rvvsCivvP/j7xmkifSOKAhSRVBKpIioscbYkk0zcX10TbJGY2Lqk2RN02RN2WSNabs+2ewmxsTsZoliN2rAgmIBG9IEAaki0sswM/fvD8P8LKCgAzPDnNd1zYXAzNzfQZjPfc59SkchqVQqaWlpobW1lZaWlmtudXV11NfXY2pqqgnm9pC2tLQ0iF6J7qiurmbbr6kkllpx9MKVyfmxvo588EAYA+0sr7lvVVUVhw4dIiYmBkdHR12U2yW1TW38/h+HOXGhFmuLfjzhr2D+jHFaW7RB21QqFUOGDOG9997jkUce0XU5PcboQjIjI4OYmBjOnz+vt9f91Go1e/fuZciQIXq7kPH1JEni2LFjNDc3Exsb2+Gw+r4ekJ25OjgbGxtvCLr2lX769euHXC5HJpMhk8loaWnBzMwMSZJQq9WoVCpkMtkNIWthYYG1tXWfDcTOVFdXc/BgKnm48bfDF2luU2FlZsJzkwKYF+NFPxM5jY2NpKSkEBwcjJeXl65LvqX6ljbmf32Eo4WXsewn45uF0UR56+do9/Xr17Ns2TKKi4sNrtu+O4wuJAHi4uKIj49n1apVui6lU2VlZZw4cYIJEybo1fWTm1EqlRw4cABLS0siIyOvaRkZa0B2hVqtprW1lba2NtRqNZIk0dbWRmpqKrGxsZiZmSGTyTA3N9f8W7iiurqa1NRUbAb68tfUao4VXgZgmIcNr9/jT/35U7i6ujJ8+HAdV9p1F8ovsuDrw+TUyrA0NeH/5kUSN1T/FjSPjY1l4sSJvPXWW7oupUcZZUhu3LiRxx9/nPPnz+vl9Qm40jLbt28fLi4ut72/nS4oFAoOHDiAtbU1ERERyGQyEZC3oTfnSRq69qAMDAoiraofq7ZlUdvchgyYPLQ/782Jw7a/YbR0JEli//79WNs58PGRRpJzLmLWT87f5kYwLsBF1+VppKSkMHnyZAoLC3Fx0Z+6eoJhXPDSsunTp+Po6Mjq1at1XUqnZDIZw4cPJy8vj9raWl2X02VmZmbExsZSV1en2YNSBKTQkxwcHIiJiSHr7FminVVsWxJDjLsJErA9r4kJH6ew6USpQWyLVlBQQHNzM8MC/fn77yOYEOSKQqnmiW+OsuNMua7L01i5ciV/+MMf+nxAgpG2JAG+/fZbXnvtNfLz8/W6OzMzM5PKykrGjBljMIN44MoKQvv370eSJORyOaNHjxYB2Q2iJdl9V65RHsTU1BR7e3va7IewfNMZ8i9eGdgT7+fEipkheDtpd06rtjQ2NrJ3715GjRqlWTigTaXm2R8y2HKqDBO5jL8+NILpYb2/StDVMjIyGDVqFDk5OQZxnfdOGc67rpY9/PDDAKxdu1bHldxcQEAAarWa3Nye3zZIm8zMzLC2vjLXy87Ork9f2Bf0g5WVFRYWFrS2tuLo6EicnzPbnonnuYn+mPWTsy+3ikl/TWH1L7m0KvVr8XpJkkhPT2fQoEHXrKxjaiJn9cMjuG/kQFRqiWd+SOenYxd0WCmsWLGCBx980CgCEow4JE1NTXn55Zf5+OOPUatvvsCwLpmYmBAeHk5ubq7BdLu2X4NsbGwkISGBmpoajh8/rtc/Z8GwtbS0cODAAWxtbYmNjSUrK4uCggLM+5mw9G4/dj47hng/JxRKNR//ksPUv+7joBYXTL9Tmm7WDhYI72ci58MHwng4ahBqCV74zwnWHy7SQZVXFjvZvHkzr7zyik6OrwtGG5IACxYs4PLly3z//fe6LuWm7Ozs8PX1JT09Xe+D5vpBOra2tsTFxVFbW8uxY8f0vn7B8DQ3N2sCMiIiAicnJ2JiYsjMzKSgoAAAbycrvllwF588MhKnAebkVzUy5/8Os2xDBlUNut1su7GxkczMTEaMGNHppR+5XMa7s4czL8YLSYJXE0/xzwMFvVzplWuRU6dOJTg4uNePrStGHZKWlpYsW7aMDz/8UNel3JK/v7/ed7t2NorVwsKCuLg4GhsbOXLkCEqlUseVCn1FQ0MD+/fvx8HBgfDwcM11+/bBPFcHpUwmY0aYB7ufT2ButBcyGSSmlzD+w19Zf7gItbr3h2d01s3aEblcxpszhvHkmCtzp99MyuTL5HO9USZwZVrajz/+yGuvvdZrx9QHRh2SAIsXL+bcuXNs2rRJ16XclL53u95qmoe5uTmxsbG0tbWxb98+re5FKRinyspKUlJS8PDwYMSIETfMH+0oKAFsLU1ZMSuExKfiCHa3oa5FyauJp/jdlwc5U9q7f1v5+fmddrN2RCaT8b9TA1k6figAq7Zl8dnevJ4sUeOdd94hOjqaqKioXjmevjD6kLS1teXZZ5/ljTfe0PuuwPZuV327vtfVeZDt00McHBxITk7m0qVLvVyp0BdIksS5c+dIS0sjJCSEYcOGdbrAQmdBCTBikB2blsSx/N5grMxMOF5Uw71r9vPsD+kUXer5k7iGhgbOnj3LyJEjuzXCXiaT8dykAF6cfGWrrw93ZnOssLqnygTgwoUL/POf/+zzCwd0xOhDEuCFF16gqKiI7777Ttel3FL7Hng5OTk6ruSK7i4UIJfLCQsLIzAwkNTUVM1ehoLQFSqVioyMDHJzc4mNjWXw4MG3fMzNgrKfiZw/jB7CL88ncG+oO5IEP2eUMv4vv7L859NU1rX0yOuQJImMjAwGDx6Mk9PtraazeNxQfhfhiSTBS/85SUtbz43YffXVVxkzZgzx8fE9dgx9JUISsLGxYfny5bz11lt6f71MLpczcuRIvVhk4E5W0hkyZAjR0dFkZmZy8uRJvWoZC/qptbWVgwcPUltbS0JCAg4OXV/T9GZBCeBua8mnc8JJWjKaMf7OKNUS3x4qZMwHe3lvexa1TW3afCmabtY7HQDzp2lBOA0w59zFRj7d0zPdrllZWfz44496vYxnTxIh+ZtFixahUChYs2aNrku5JX3odtXGUnNOTk6MGTOGqqoqUlNTUSgUPVCp0BfU1taSnJyMpaUl8fHxWFpa3vpB17lVUAIM97TlmwV38f3j0YwcbEdLm5ovfj1H/Pt7+PzXPJoVd95au91u1o7Y9Tdj5awr1zO/TD7XI9dUX3zxRe6//35CQ0O1/tyGQITkb8zNzVm5ciUffPCBQQwqae92zcrK6vVja3MtVisrK80muCkpKZptpQShXUlJCfv27cPb25uIiIgOd5jpqq4EJUCMryP/XRTL2t9HEuBqTV2Lkve3ZzPmg718m3oehfL2Tk7VajXp6el31M16vSkh7kwNcUOplnj5p5MoVdo7cU5NTWXXrl2sXLlSa89paERIXuXRRx/F3t6eP//5z7ou5ZbkcjkREREUFBRQWlraa8fticXKTU1Nueuuuxg4cCD79u3jwoULBrHOptCzVCoVZ86cISMjg8jISPz9/bWyA0pXg1ImkzEx2JWtz8Tz8UNheNpbcrG+leUbzzDho2R+Ti/p9rSRU6dOoVQqtT7P8K2Zw7C1NOV0SR1r92lv/uTLL7/ME088wZAhQ7T2nIbGaNdu7czmzZuZO3cueXl5er1Ba7uysjKOHTtGfHw8tra2PXqs3tjNo6ysjIyMDBwdHQkNDcXCwkLrxzAExr526+XLl0lPT0culxMeHo6NjY3Wj9G+e0hwcHCXQkChVPPDkSI+2Z2nWYAg0M2aFycHMD7Q5ZYBXlBQQFZWFgkJCT2y+9B/jl3ghX+fwKyfnG3PxOPrfGebNW/ZsoWHHnqI/Px8o1jIvDMiJK8jSRKjR48mNDSUL774QtfldElOTg7nz58nISGhxxYR783trlpbWzl58iRVVVWEhobi4eFhdHsoGmtIqlQqsrOzyc/Px8/PDz8/vx5d2L+7QQnQpFDy9YHzfJl8jvqWKwP9IrzseWlyAKN8Oj6xrqqq4tChQ8TExPTYybckScz7+ggpOReJ8rZnwxMxyOW393ejVqsZOXIks2fP5s0339RuoQZGhGQH0tLSSEhI4MiRI4SEhOi6nFuSJIljx47R3NxMXFyc1t9UdLUfZGlpKSdOnMDR0ZGwsDCj2kXEGEOyfY3f9hHcPd0z0u52ghKgpknBl8n5fH2ggNbfrlHG+zkxP86bBH8XTH4LqMbGRlJSUggODu7xRcEvXG5i0scpNClUrJg5jLkx3rf1PH/96195//33ycnJYcCAO2uRGjoRkp1YuHAhubm5JCcn67qULlEqlezfvx87OzvCwsK01vLS9YbJ17cqBw4c2KvH1xVjCkm1Wk12djbnzp3rldZjR243KAEq6lr4ZHcuG44Uo/ztGuVAO0seihrEfSPcyDlxBCcnp14bHfqvg+d5Y9MZrMxM2LFsDJ723evaraqqIjAwkM8++4yHHnqoh6o0HCIkO1FVVYWfnx+ffPIJc+fO1XU5XdLc3ExycjL+/v74+Pjc8fPpOiCvVlJSwsmTJzVvNn29VWksIVlTU0N6ejoymaxXW48duZOgBCi81Mg3qYX8dPwCNb/Nq5TLINzVlCVTwhjj73Lb3Z/doVZLPPi3VI4WXuahyEG897vuhfPcuXO5cOECe/bsMbrLHB0RIXkTX375JStWrCA7O9tguhzaN569euPW26FPAdmutbWVEydOcOnSJYKDgxk0aJBBbUTdHX09JNva2sjJyaGgoEBnrceO3GlQArS0qdh2uoz/25vNmcr/v2LPIAdLHo4azIORg3C27tm/p7+nnOPdrVlMG+7OZ4+Gd/lxBw4c4O677yY9PZ2goKAerNBw6P63Uo89/vjjuLq6GtTeaQ4ODgwfPpwjR47Q2Nh4W8+hjwEJV+ayRkVFERYWRm5uLnv37qWsrExMFzEgKpWKvLw8du3aRU1NDfHx8QQEBOhFQELXp4fcjIWpCXe5yHgqoIX/Ph7O/8R6Y23Rj+LqZj7YkU3Mn3ez+LvjHMir6rGdR3IrGgDwc+36yb1arWbJkiU8/fTTIiCvIlqSt3D48GHGjRunWUzZUJw+fZrKykri4+O71RLR14C8nlqtprCwkOzsbPr3709wcLDWJmfrg77WklSr1RQXF5OVlYW5uTnBwcE4OzvrbXfenbQoa2pq2L9/P5GRkbi5uQHQrFCx+WQp69OKSC+q0dzX27E/j9w1mN9FeOI4QHt/azM/O8CJ4ho+fzSce4a7d+kxq1evZtWqVeTk5GBtba21WgydCMkuMLRBPHDlTenQoUPI5XJGjRrVpTcjQwnIqymVSs6dO0deXh4ODg4EBwfr9LqWtvSVkJQkibKyMs6ePYskSQQFBRnMlJ7bCcqWlhZSUlLw9vbG39+/w/tkltbxfVoRieklNLRemUJiZiIn3s+JSG8HIrzsCfW0xcL09lYWUqslhr+5g0aFil+eG8NQl1sHnhis0zkRkl3QPojnL3/5CwsWLNB1OV2mUChISUnB3d39lvvVGWJAXq21tZXc3FwKCgrw8PAgMDAQKysrXZd12/pCSFZVVZGZmUlTUxMBAQF4eXnpTbdqV3UnKFUqFQcPHsTS0pKIiIhbngg0tipJOnGldXnywrVrrvaTyxjmYUO4lz3hg+2J8LLHw65r69XmVTYw4aNkTE1kZL49BVOTW//M58yZQ2lpKXv37jWIE5jeJEKyi/71r3/x/PPPc/r0aU0XiiGor69n//79DB06FD8/vw7vY+gBebWmpiaysrIoKSnBy8sLX19fgwxLQw1JSZKorq4mJyeH6upqhg4diq+v7x0v5K1LXQlKtVpNWloaCoWCuLi4bq8ve6a0ltRzlzhWeJljhZeprG+94T5uNhZEeNn/Fpx2WJn3o6Cq8crt4pWP+VWNmtWAAlyt2bFszC2PvXHjRubMmUNGRkan7xHGTIRkF0mSxLRp05DJZGzZskXX5XRLbW0tBw4cICAgAF9f32u+15cC8mp1dXVkZ2dTXl6Oi4sLvr6+ODo6GsxZsqGFpEqloqSkhPz8fBobG/H29sbPzw8zMzNdl6YVNwtKtVrN0aNHaW5uJjY29o7/vyRJoqSmmWOFl0kvquFY4WUyy+pQdWOQj7O1OS9OCuDBqEE3vV9tbS3Dhg3j+eefZ9myZXdUd18lQrIbSktLCQ4O5uOPP2b+/Pm6LqdbLl++zMGDB6/5I++rAXm15uZmCgoKOH/+PJaWlvj4+DBw4EC9b9kYSkg2NzdTWFjI+fPnMTU1xcfHh0GDBun9z/d2dBSU7atd1dfXExcX12MnBU0KJScv1P4WnJc5XlRDm1LNEGcrhjj9/5uP0wC8nfpjbdG135k5c+ZQVFRESkqKwXWF9xYRkt307bffsmzZMk6dOoW7e9dGjemLS5cukZqaSmhoKJ6enn0+IK+mVCo1LZ2mpiY8PT3x8vLCzs5O16V1SJ9DUq1WU1lZSWFhIRUVFTg7O+Pj44OLy60X+TZ0Vwelt7c36enpXL58mdGjRxvc31B7N+uJEycYOnSorsvRWyIku0mSJKZPn45arWbr1q26LqfbLl68yOHDh7GxsUGpVBpFQF5NkiRqamooLCzkwoULDBgwAC8vL9zd3fVqxxF9C0lJkqivr6ekpISioiIAvLy8GDx4cI/saKHP2hfssLW1pbW1ldGjR+vV705X1NTUMGzYMF566SWeeeYZXZej1/pen0gPk8lkrF27luDgYP7xj38Y1GhXAEdHR+zs7Lh06ZJRLO92PZlMhr29Pfb29gwbNkzzpn/q1Cns7Oxwc3PDzc0Na2vrPt8quhW1Ws2lS5coLy+noqKC5uZmXFxcCAsLw9XV1Wh/Pvb29jg7O1NeXk5gYKDBBSTAokWL8PHx4emnn9Z1KXpPhORtcHd3Z82aNTzzzDNMnjzZYBbdbr8GqVAoiIyM1OzX19M7E+grU1NTvL298fb2pqWlhYqKCsrLy8nJycHc3Bw3NzdcXV1xcnIymus1bW1tmp9DZWUlcrkcV1dXhg0bhrOzc5+81tgdarWajIwM6uvrueuuuzh+/DhmZmYGtSlxYmIimzZt4uTJk0bze30nRHfrbZIkidmzZ3P58mX27t2r979sHQ3Sqaqq4vDhwwQFBWllQfS+QqVScfHiRcrLyykvL0elUuHi4oKbmxvOzs690nLore5WSZJoaGigsrKS8vJyLl26hLW1teYEwd7e3mhbjNdTq9WaQTqxsbFYWFhoZa3X3lRSUkJ4eDjLly9nyZIlui7HIIiQvAPV1dWEhYUxb948Vq5cqetyOnWzUaztf+QBAQHi4n0H2q9htnc51tbWYm5ujp2dneZma2uLpWXXJnp3VU+EZHsg1tTUUFtbq/moVqtxdHTUdDUb2zXGrlCpVBw9epSmpiZiY2M7/BvS96BUq9WMHTsWBwcHEhMTxclPF4mQvEMHDx5kwoQJbN68mfHjx+u6nBt0ZZpHTU0NBw8exNfXF39/f/HHcxNtbW3U1dVRU1OjuTU0NGiC09bWVhOeFhYWt/2zvNOQVKvVNDY2ampsD0VJkrC1tb2mTmtra73vCdEllUqlWSggJiamw2kehhCUr732Gt9++y0nTpzA3t5e1+UYDBGSWrBq1So+/fRTMjIy9GqR7e7Mg6ytrSU1NRV3d3eGDx8u3jS7QalUXtMyq6mpob6+HplMhrm5ORYWFlhYWFzz76s/Nzc3v+Hn3VFISpKEWq2mpaWFlpYWWltbNf++/msKhQK5XK4Jw/aPIhC7p7m5mbS0NORyOdHR0Tc9YdHnoPzll1+YMWMGe/bsITo6WtflGBQRklqgVquZMmUKANu3b9eLN6HbWSigqamJtLQ0+vXrR1RUlNGNfNUmlUrVYYhdH24KhULzGJlMhlwuRyaTIZPJaGtrw8TEBEmSNLf2+3UWuNd/LnoFbt/ly5dJS0vD2dmZsLCwLi01p49BefHiRUaMGMEzzzzDSy+9pOtyDI4ISS2prKwkNDSUpUuX8uqrr+q0ljtZSUepVGomSI8aNapP7Kihz9RqNQqFArVarWkpSpJEW1sb+/fvJz4+HjMzM02AyuVyzedCzykuLubEiRMEBgbi6+vbrZ+3PgWlWq1m8uTJmJiYsHXrVr04gTc0xj2eW4tcXFz44YcfuOeee0hISCAuLk4nddzpUnP9+vUjMjKSnJwc9u3bR3h4OB4eHj1UrSCXyzscLdvW1gaAtbW1XiwmYCwkSSIzM5Pz588TFRWFq6trt5+jfePm1NRUAJ0G5TvvvMPp06fFdI87IH5qWjR27FheeuklHnnkESoqKnr9+Npai1UmkxEQEEB4eDjp6elkZ2cjOhyEvq6trY3Dhw9TVlbGmDFjbisg27UHZWZmJgUFBVqssut27tzJn//8Z3744QecnZ11UkNfIEJSy15//XVCQ0OZOXPmNdebelpPLFbu4eFBfHw8RUVFHD16FKVSqYVKBUH/NDQ0kJKSgiRJjBkzBmvrW29UfCu6DMq8vDweffRR3n33XRISEnr12H2NCEktk8vlrF+/nrq6OhYuXNgrx+zJ3TxsbGwYM2YMra2t7Nu3j6amJq09tyDog8rKSlJSUnB1dWXUqFFa3clDF0HZ0NDAjBkzmD59uliXVQtESPYAGxsbkpKSSEpK4oMPPujRY/XGdlfm5ubExsbi4OBAcnIyly5d0voxBKG3SZLEuXPnSEtLIyQkhJCQkB65btebQalWq3nwwQextbXliy++EAO8tEAM3Okhvr6+/PTTT9x7770MGzaMe+65R+vH6M39IOVyOWFhYdjY2JCamsrw4cONds1XwfCp1WpOnjxJeXm55gSwJ/XWYJ6XX36ZEydOcPz4cTGFS0tES7IHjR8/nvfff5+5c+eSnZ2t1efW1YbJQ4YMITo6mszMTM1i6YJgSOrq6ti3bx81NTUkJCT0eEC26+kW5bfffsvnn39OUlLSHQ06Eq4lQrKHLV68mPvvv5+ZM2dSV1enlefUVUC2c3JyYuzYsbS2trJ3717Ky8t79fiCcDvUajU5OTmkpKTg5OREfHy81tfcvZWeCsq0tDSeeuopvv76a8LDw7X2vIJYTKBXKBQK7r77bkxMTNi5c+cdDQzQdUBeTZIkioqKOH36tGY5OzGnTzv0bdNlQ1dXV0d6ejpKpZKRI0f2WuuxM9pccKCgoIDRo0czf/58vd5owVCJlmQvMDMzY+PGjVRUVDBnzhzUavVtPY8+BSRcmU/p5eXF+PHjaW1tZc+ePTqZHyoInVGr1eTm5mpaj+27YOiatlqUVVVVTJ48mfHjx/P2229rsUKhnWhJ9qILFy4QHR3NjBkz+Pzzz7v1WH0LyOuJVqV2iZbknauvr+f48eN603rsyJ20KBsbG0lISMDJyYmkpCTxe9JDREuyF3l6erJr1y6+//573nrrrS4/Tt8DEkSrUtAf7a3H5ORkvWo9duR2W5RKpZKZM2cil8v56aefRED2IDEFpJcFBQWxdetWJk6ciJubG08++eRN728IAXk1S0tLoqOjNav0eHh4EBISIv6IhV5RX19Peno6CoWiV6Z2aEN3p4eo1WrmzJlDcXExBw8exMrKqjfKNFoiJHUgJiaGDRs28MADD+Ds7Mx9993X4f0MLSDbtbcqnZ2dycjIYM+ePYwYMUIMSxd6jCRJ5OXlkZ2djbe3N0FBQV3a2kpfdCcon332Wfbv38+hQ4dwdHTsrRKNlghJHZk2bRpffPEF8+bNw9HR8Yb1FQ01IK/Wv39/YmJiKCws5OjRo7i4uBAUFMSAAQN0XZrQR0iSxMWLF8nMzESpVBpM67EjXQnKd999l2+++Yb9+/czePDg3i7RKImQ1KF58+ZRWVnJrFmz2Lp1KzExMUDfCMh2MpkMb29vXF1dyc7OZu/evQwaNIiAgIBen6Mm9C2XL18mMzOT2tpa/Pz88PHxMajWY0duFpQfffQR7777Ltu3byckJERXJRodEZI69uKLL9La2sq0adPYtm0bUVFRfSYgr2ZpacmIESPw9fUlKyuL3bt34+Pjg5+fn7heKXRLQ0MDZ8+epaKiAh8fH6KiorS6KLmudRSUq1evZvny5SQlJTF69GgdV2hcxBQQPfHmm2+yZs0aPv30U1xdXftUQHakL7YCtElMAblRc3Mz2dnZFBcXG0VvRPv0kFOnTrFixQp+/vlnJk6cqOuyjI5oSeqJN954g7a2NhYvXsyWLVv6dEAC2NvbExsbq7melJ+fT2BgIIMGDRI7qAvXUCgU5ObmUlBQgKurK2PHjtXKfo/6zsHBgaysLN566y0SExNFQOqICEk9IZPJWLlyJTKZjHvvvZctW7YQHR2t67J6lEwmw8XFBWdnZ0pKSsjKyiIvL4+goCDc3d3FNj9GTqVSkZ+fT25uLra2tsTFxWFvb6/rsnrN6tWref3110lMTGTKlCm6LsdoiZDUI+1BaWpqytSpU9m8eTNxcXG6LqvHyWQyPD098fDwoLCwkJMnT5KXl0dwcDBOTk66Lk/oZWq1muLiYrKysjA3NycyMhJnZ2ejOmn66KOPWL58uehi1QMiJPXQG2+8gYmJCdOmTePHH39k0qRJui6pV8jlcoYMGcKgQYM4d+4chw8fxtraGh8fHzw8PEQ3bB+nUCgoLCykoKAAuVxOSEgIHh4eRhWOACtWrOC9994jKSmJ8ePH67ocoydCUk/96U9/wsbGhtmzZ7N27VrmzJmj65J6Tb9+/QgICMDHx4eioiLOnj3LmTNn8Pb2xtvbu89frzU2dXV1FBQUUFxcjJ2dHSEhIbi5uRndSZFarebpp59m/fr17Ny5k9jYWF2XJCBCUq8tXboUV1dX5s+fT2VlJc8++6yuS+pVpqam+Pr64uPjQ3l5Ofn5+eTk5ODp6YmPjw+2tra6LlG4TZIkUVFRQX5+PpcuXWLgwIGMHj0aOzs7XZemE0qlkocffpjU1FQOHDhAcHCwrksSfiNCUs899NBDODo6Mnv2bMrLy1m1apWuS+p1MpkMd3d33N3dqaurIz8/n3379mFjY4OXlxcDBw6kXz/xq2wImpubKSoqorCwELVazZAhQ4iIiDDq3oHGxkamT59OaWkphw4dYtCgQbouSbiKmCdpII4dO8aUKVOYNm0aX331ldHPKWxra+PChQsUFhbS2NiIp6cnXl5efaYl0pfmSarVaioqKigsLKSyshIXFxe8vLxwdXU1ui7V6128eJHJkydjZmbG1q1bDXZJvb5MhKQBycvLY+LEiQwbNoyffvrJqM++20mSRE1NDYWFhVy4cIEBAwYwaNAg3NzcDHp3BEMPyfb/l7KyMoqLi5HJZAwePBgvL68+vQBAd5w7d44pU6bg5+fHf/7zH/r376/rkoQOGPdp3C38+c9/JioqCmtra1xcXJg1axbZ2dma71dXV/P0009rVv4YPHgwS5cupba29prnkclkN9x++OGHa+7z1ltv4enpyejRo8nJyemwnqFDh5KamkpxcTFjx47l4sWL2n/RBkYmk2Fvb8+IESOYMmUKQ4YMoaKigt27d7Nnzx4yMzOprq5GnAv2PKVSSXl5ORkZGezYsYODBw/S1NTEiBEjmDhxIoGBgSIgf5Oamkp8fDxxcXFs3Lix04BMSUlh+vTpmlG+P//88zXff/PNNwkMDMTKygp7e3smTJjA4cOHr7mPt7f3De8/11+2Wbt2LV5eXowcOfKGxxs7cSHnJpKTk1m8eDFRUVEolUpeffVVJk2aRGZmJlZWVpSWllJaWsqHH35IcHAwhYWF/PGPf6S0tJT//Oc/1zzX119/fc2E4Ku7BQ8cOMCWLVvYuHEjhw8fZsmSJezcubPDmtzc3Ni3bx8PP/wwkZGRJCYmEh4e3iOv39D069cPLy8vvLy8aGtro7KykvLycg4dOoRcLsfV1RU3NzecnZ3FNUwtaWlpoaKigvLyci5evIi5uTlubm5ERETg6Oho9N2pHfnHP/7B0qVLefHFF3n99ddvOsWlsbGRsLAwFixY0OGWev7+/nz66af4+PjQ3NzMxx9/zKRJk8jLy8PZ2Vlzv7fffpvHH39c8/nVKxYVFRXx/vvv88MPP1BSUsL8+fPJzMzU0qvtAyShyyorKyVASk5O7vQ+P/74o2RmZia1tbVpvgZIiYmJnT4mKSlJmjlzpqRQKKRDhw5JUVFRt6xFqVRKL7/8sjRgwABp/fr13XodxkalUkkXL16UTp06Je3atUvatGmTlJqaKhUUFEhNTU26Lq9DCoVC+vnnnyWFQqHrUq6hVqul2tpaKSsrS/r111+ljRs3SikpKVJ2drZUW1srqdVqXZeot1QqlfTMM89IVlZW0n//+99uP/5W7yOSJEm1tbUSIP3yyy+ar3l5eUkff/xxp485deqUFBkZKTU0NEj5+fmSt7d3t2vry8TpdDe0d6Pe7OJ6bW0tNjY2N7RUFi9ezMKFC/Hx8eGPf/wj8+fP15xBTp48mU8//ZT+/fszYMCAG1qhHTExMWHVqlWEhoaycOFCTp48yTvvvCPO3Dsgl8txcnLCycmJkJAQ6uvrKS8vp7i4mJMnT2Jra4ubmxtOTk7Y2tqKVuZ1Wltbqamp0bQYFQoFLi4ueHt74+bmJq6Nd0FtbS0PPPAAWVlZHDx4kNDQUK0fQ6FQ8Pe//x1bW1vCwsKu+d6qVatYsWIFgwcPZs6cOSxbtkzzex4SEkJoaCi2traYmZmxdu1arddmyMS7QRep1WqeffZZ4uLiOt3LraqqihUrVvDEE09c8/W3336b8ePH079/f3bu3MlTTz1FQ0MDS5cuBa7MB9y+fTuVlZXY2dl1a9ufOXPm4Ofnx4wZMzhz5gzff/+9QQ9Y6Q3W1tZYW1vj5+dHa2ur5s2/oKCA1tZWBgwYgJ2dneZmTMHZ0tJCbW0tNTU1mltLSwtWVlY4OzsTFhaGk5OT0Y+u7o7s7GxmzpyJs7Mzx44du6YbVBs2b97Mww8/TFNTE+7u7uzateua5RyXLl1KeHg4Dg4OHDx4kFdeeYWysjI++ugjzX2++uor3n//ffr37y+uG19HjG7tokWLFrFt2zb279+Pp6fnDd+vq6tj4sSJODg4sGnTppuOSHz99df5+uuvKS4u1lp9ZWVlzJw5k+bmZjZt2tThrubCrTU3N98QEtcHp62tLba2tj066rQ3Rre2tLRoXmP7a25padG8VltbW81HQxxhqw+2bt3K3Llz+d3vfseaNWvuaN9LmUxGYmIis2bNuubrjY2NlJWVUVVVxdq1a9mzZw+HDx/GxcWlw+f5xz/+wZNPPklDQ4PoBegC4zg9vkNLlixh8+bNpKSkdBiQ9fX1TJkyBWtraxITE2/5hjJq1ChWrFhBa2ur1n5J3d3dSUlJ4fHHHycqKoq1a9cye/ZsrTy3MbG0tMTS0hI3NzfN19rDpLa2lqqqKvLy8jRhYmtri42NDRYWFlhYWGBubo6FhQVmZmY6X3NUrVbT2tpKS0uL5uPVJwFXh7+TkxO+vr4iELVErVazfPlyPv74Yz744AMWL17cY8eysrJi6NChDB06lOjoaPz8/Pjqq6945ZVXOrz/qFGjUCqVnD9/noCAgB6rq68QIXkTkiTx9NNPk5iYyK+//tph66yuro7Jkydjbm7Opk2bsLCwuOXzZmRkYG9vr/WzOAsLC7755hv+/ve/89hjjzF//nz++te/Gk1XYU+xsLDAzc3thuBsD5v6+nouXrxIS0sLLS0tKJVKZDLZNaF5/a3963K5HJlMpvnYfruaJElIkoRardb8W6lUao7XHoDXf97a2gqAmZnZNcd2dnbGz88PGxsbEYg9oKysjIcffpj8/Hx2795NTExMrx6//eSoMxkZGcjl8k5bmsK1xLvnTSxevJj169ezceNGrK2tKS8vB8DW1hZLS0vq6uqYNGkSTU1NrFu3jrq6Ourq6gBwdnbGxMSEpKQkKioqiI6OxsLCgl27dvHuu+/ywgsv9EjNMpmMJ598kpiYGB544AGio6PZsGEDvr6+PXI8Y9UeOK6urjd8T6lU3hBcLS0tNDY2cunSJc3nbW1tHT731UG5devWTmu4PoAtLS2xs7O7IYzFYK7es3XrVhYsWMCoUaM4ceLEHa+g09DQQF5enubzgoICMjIycHBwwNHRkXfeeYcZM2bg7u5OVVUVn332GSUlJTzwwAPAlfmYhw8fZty4cVhbW5OamsqyZct47LHHjGpvzjuiw5G1eg/o8Pb1119LkiRJe/fu7fQ+BQUFkiRJ0rZt26QRI0ZIAwYMkKysrKSwsDDpyy+/lFQqVY/XX19fL82dO1eys7MT00T0kEqlktra2iSFQiG1tLRIzc3NUlNTk9TQ0CBVV1dLP//8s1RTUyM1NTVJzc3NUmtrq6RQKKS2tjYx1ULPKJVK6bnnnpMsLS2l1atXa+3/p7P3mHnz5knNzc3S7NmzJQ8PD8nMzExyd3eXZsyYIaWlpWkef+zYMWnUqFGSra2tZGFhIQUFBUnvvvuu1NLSopX6jIEYuGMEvvnmG5566ikeeughPv/8c3Gx3gAY+rJ0xqSwsJCHHnqIyspK/v3vfxMREaHrkgQtEv0wRuD3v/89R48eJS0tjaioKNLT03VdkiD0CevXryciIgIvLy8yMjJEQPZBIiSNRGBgIGlpaYwbN464uDhee+01lEqlrssSBIN08eJFZs2axR//+EfNkm42Nja6LkvoASIkjYilpSWrV69m+/btrF+/nqioKE6cOKHrsgTBoHz//feEhITQ2NjImTNnWLBggc6n+wg9R4SkERozZgynT59m9OjRxMTEsHz5clQqla7LEgS9VlVVxezZs3nyySd555132Llzp9gg2QiIkDRSVlZWrFmzhm3btrFu3ToiIyNFq1IQOrFhwwbNur+nT59m4cKFovVoJERIGrmEhAROnz5NXFwcMTEx/O///u9NJyILgjEpKSlh9uzZLFy4kLfffptdu3YxePBgXZcl9CIRkgJWVlZ8+umnbNu2jZ9//pmgoCA2btyo67IEQWeUSiUrV64kODiYtrY2Tp8+zRNPPCFaj0ZIhKSgkZCQwMmTJ1m0aBGPPvooU6dO5dy5c7ouSxB61c6dOxk+fDhfffUV3333HZs3b8bLy0vXZQk6IkJSuIaZmRkvvvgi2dnZ2NjYEBoayiuvvCK6YIU+r6SkhPvvv59Zs2bx8MMPc/bsWe69915dlyXomAhJoUMDBw5kw4YNbN68mcTERIKCgkhMTNR1WYKgdVd3rSoUCs6cOcMbb7zRpc0KhL5PhKRwU+PGjePUqVM89dRTzJ07l3HjxnH06FFdlyUId0ytVvPdd98RFBTEV199xfr160lKShJ7sQrXECEp3JKpqSkvvPACeXl5BAYGEhcXx+zZs8nNzdV1aYJwW3bs2EFkZCRPP/00ixYt4uzZs0ybNk3XZQl6SISk0GVubm588cUXnDlzBjMzM0JDQ1mwYAFlZWW6Lk0QuiQtLY2xY8dy3333cc8991BQUMBzzz0nulaFTomQFLpt6NChbNiwgQMHDlBcXIy/vz/PP/+8Zi9NQdA3ubm5zJo1i/j4eIKDgzl37hwrV67E1tZW16UJek6EpHDbwsPD2bVrFxs3biQ5ORlfX1/+9Kc/UVtbq+vSBAG4Eo5z584lNDQUc3Nzzpw5w+eff46bm5uuSxMMhAhJ4Y6NHz+eI0eO8Le//Y0tW7bg7e3NM888Q0VFha5LE4xUeno6s2fPJiQkhIaGBg4ePMiGDRsYOnSorksTDIwISUErZDIZ9913H8ePH2fDhg1kZGTg4+PDggULKCgo0HV5gpFITk5m4sSJREdHY2Njw4kTJ0hMTGTkyJG6Lk0wUCIkBa2SyWRMmjSJ5ORkdu/ezcWLFwkKCuLBBx/k1KlTui5P6IPUajUbN24kJiaGqVOnEhQURG5uLv/6178IDAzUdXmCgRMhKfSY6OhokpKSOHr0KKampkRGRjJp0iQ2b96MWq3WdXmCgWtpaWHNmjWEhYUxb9487r77bgoLC/nkk0/EIuSC1oiQFHpcSEgI3333HdnZ2YSGhvLYY48RFBTEe++9J0bECt127tw5Fi9ejKenJ6tXr+bxxx+nqKiIlStX4uzsrOvyhD5GhKTQa7y9vfnwww8pLS3lxRdfZN26dXh6evLYY4+Rlpam6/IEPaZSqfj3v//NhAkTCAoKoqCggO+++46cnByWLl2KjY2NrksU+igRkkKv69+/PwsXLuTkyZNs374dgDFjxhAeHs4nn3wiWpeCRkFBAS+99BLe3t489dRTREZGkpWVxdatW5k8eTJyuXgLE3qW+A0TdEYmkxEbG8u6desoKSlh7ty5mjls06dP58cff0ShUOi6TKGXVVdX89FHHxEdHY2/vz9Hjx7lL3/5CyUlJaxatQofHx9dlygYEZkkSZKuixCEdpIkkZGRwbp16/juu+9QKpXcc889/M///A9jx441mpZDW1sbW7du5Z577sHU1FTX5fS41tZWfvzxR9atW0dKSgpDhw5l3rx5PPLIIwwcOFDX5QlGTISkoLdUKhV79+7l22+/5b///S+Ojo7MnDmTefPmER4eruvyepQxhKRSqWTHjh18++237NixgwEDBvDoo4/y2GOPERISouvyBAEQISkYiObmZpKSkvjmm2/YtWsX7u7umoWqp0yZgpmZma5L1Kq+GpLV1dX89NNPJCUlsW/fPmQyGffffz9z585l9OjRRtNTIBgOEZKCwWloaOCXX35h48aNJCUloVQqGT16NPfeey8PPPAAjo6Oui7xjvWlkMzNzeX7779n+/btHD16FG9vb2bNmsWMGTOIiYnBxMRE1yUKQqdESAoGTaVSkZaWxsaNG9m4cSN5eXlEREQQHx/PxIkTGTt2rEG2Mg05JKurq9mxYwe7d+9m//795OXlERcXx8yZM5k+fTp+fn66LlEQukyEpNCn5Ofns2XLFnbv3k1ycjIKhYKRI0cSGxvLpEmTGDNmjEGEpiGFZE1NDTt27OCXX37h8OHDZGZm4unpyfjx47n77ruZOnUqDg4Oui5TEG6LCEmhz1Kr1Zw6dYpff/2VPXv2kJycTFtbGyNHjiQ6OpqYmBhGjx6Nq6urrku9gb6GpFqtJjc3l/3793Po0CFNKA4cOJBx48Yxfvx4EhIS8PLy0nWpgqAVIiQFo6FWqzl58iS//vorycnJHDt2jOLiYjw9PQkKCiIsLIy77rqL+Ph4ne83qA8hqVarycnJYf/+/Rw5coRTp05x9uxZ6uvrCQgI4K677mLs2LEkJCTg7e2tkxoFoaeJkBSMWlVVFcePH+f48eMcOXKEo0ePUlRUhIeHB4GBgfj4+ODv78+wYcMIDQ3Fw8OjV0Zg9mZIqlQqcnNzOXXqFJmZmeTm5nLu3DmysrKor68nMDCQqKgoIiMjiYiIIDQ0lP79+/doTYKgL0RICsJ1qqurOX78OCdOnCAnJ4esrCxyc3MpKytjwIABeHl54eXlha+vL0OHDmXQoEEMHjwYLy8vHBwctBKi2gxJlUpFaWkphYWFFBcXU1xcTE5ODgUFBRQVFVFUVIRKpcLLywt/f38CAwMJCAhg5MiRhIaGYmlpecevRxAMlQhJQeiihoYG8vLyyMnJ0YRnXl4eZWVlVFRU0NraioWFBU5OTjg5OeHs7IyzszMuLi5YW1tjbW2Nra2t5qONjQ12dnbY2dlhbW1Nv379MDExQS6XI0kSW7duZdKkSZiYmKBUKlEoFNTW1l5zq6uro7a2loaGBurq6qirq6OiooLKykqqqqqoqqri0qVLKJVKbGxscHV1xcPDg4CAAAICAvD398ff358hQ4bo1bVPQdAXIiQFQQskSaK2tpaysjLKysooLS3VfKysrKSuro76+noaGho0HxsbG2loaEClUnXrWGZmZlhZWTFgwAAGDBigCWBra2tsbGzw8PDA3d39hpvoIhWE7hMhKQg6JEkSLS0tNDU1oVarNTeVSoVcLr/mZmJigpWVlUFMYRGEvkKEpCAIgiB0QiyUKAiCIAidECEpCIIgCJ0QISkIgiAInRAhKQiCIAidECEpCIIgCJ0QISkIgiAInRAhKQiCIAidECEpCIIgCJ0QISkIgiAInRAhKQiCIAidECEpCIIgCJ0QISkIgiAInRAhKQg9KCUlhenTp+Ph4YFMJuPnn3++5vsNDQ0sWbIET09PLC0tCQ4O5ssvv7zmPi0tLSxevBhHR0cGDBjA/fffT0VFxTX32bRpE/7+/gQEBLB58+aeflmCYDRESApCD2psbCQsLIzPPvusw+8/99xzbN++nXXr1nH27FmeffZZlixZwqZNmzT3WbZsGUlJSfz73/8mOTmZ0tJS7rvvPs33W1tbWbx4MZ9//jmffvopixYtQqFQ9PhrEwRj0E/XBQhCXzZ16lSmTp3a6fcPHjzIvHnzGDt2LABPPPEEf/vb30hLS2PGjBnU1tby1VdfsX79esaPHw/A119/TVBQEIcOHSI6OprW1lZMTEwYMWIEAP369aO1tVXsOykIWiBakoKgQ7GxsWzatImSkhIkSWLv3r3k5OQwadIkAI4dO0ZbWxsTJkzQPCYwMJDBgweTmpoKgI2NDfPnz8fd3R0PDw8WLVqEtbW1Tl6PIPQ1oiUpCDq0Zs0annjiCTw9PenXrx9yuZy1a9cyZswYAMrLyzEzM8POzu6ax7m6ulJeXq75/I033uDZZ59FLpeLgBQELRIhKQg6tGbNGg4dOsSmTZvw8vIiJSWFxYsX4+HhcU3rsStsbW17qEpBMF4iJAVBR5qbm3n11VdJTExk2rRpAISGhpKRkcGHH37IhAkTcHNzQ6FQUFNTc01rsqKiAjc3Nx1VLgjGQ1yTFAQdaWtro62tDbn82j9DExMT1Go1ABEREZiamrJ7927N97OzsykqKiImJqZX6xUEYyRakoLQgxoaGsjLy9N8XlBQQEZGBg4ODgwePJiEhARefPFFLC0t8fLyIjk5mW+++YaPPvoIuNKF+oc//IHnnnsOBwcHbGxsePrpp4mJiSE6OlpXL0sQjIZMkiRJ10UIQl/166+/Mm7cuBu+Pm/ePP75z39SXl7OK6+8ws6dO6mursbLy4snnniCZcuWIZPJgCuLCTz//PN8//33tLa2MnnyZD7//HPR3SoIvUCEpCAIgiB0QlyTFARBEIROiJAUBEEQhE6IkBQEQRCEToiQFARBEIROiJAUBEEQhE6IkBQEQRCEToiQFARBEIROiJAUBEEQhE6IkBQEQRCEToiQFARBEIROiJAUBEEQhE78P4jM8HLappiqAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "P0 = np.array(sim_data[\"power\"].flux) # total radiated power\n", "\n", "# evaluate the radiated power at 7*lda0 away from the antenna\n", "P = np.zeros(len(theta_array))\n", "for i, theta in enumerate(theta_array):\n", " Ex = sim_data[\"field\"].Ex.sel(\n", " x=d * np.sin(theta), z=d * np.cos(theta), method=\"nearest\"\n", " )\n", " Ey = sim_data[\"field\"].Ey.sel(\n", " x=d * np.sin(theta), z=d * np.cos(theta), method=\"nearest\"\n", " )\n", " Ez = sim_data[\"field\"].Ez.sel(\n", " x=d * np.sin(theta), z=d * np.cos(theta), method=\"nearest\"\n", " )\n", " if d * np.cos(theta) > 0:\n", " P[i] = d**2 * (abs(Ex) ** 2 + abs(Ey) ** 2 + abs(Ez) ** 2) / (2 * Z0)\n", " else:\n", " # inside the substrate, the impedance of the glass needs to be taken into account\n", " P[i] = (\n", " n_glass * d**2 * (abs(Ex) ** 2 + abs(Ey) ** 2 + abs(Ez) ** 2) / (2 * Z0)\n", " )\n", "\n", "D = 4 * np.pi * P / P0 # directivity\n", "\n", "# plotting the directivity pattern\n", "fig, ax = plt.subplots(subplot_kw={\"projection\": \"polar\"})\n", "ax.set_theta_direction(-1)\n", "ax.set_theta_offset(np.pi / 2.0)\n", "ax.plot(theta_array, D)\n", "ax.set_rlim(0, 25)\n", "ax.set_title(\"Directivity\")\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "id": "0fac2e64", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.9" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "050d4bbac6c74b1b8f177db26df9473e": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_9d2d085048764154870b567ee1bf2c5e", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83c\udfc3  Finishing 'plasmonic_yagi_uda_on_glass'...\n
\n", "text/plain": "\u001b[32m\ud83c\udfc3 \u001b[0m \u001b[1;32mFinishing 'plasmonic_yagi_uda_on_glass'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "0957eb54ab4d46e792a0e0107b22ebee": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_cb08da629b354078a68488c60721b5d6", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83c\udfc3  Finishing 'plasmonic_yagi_uda'...\n
\n", "text/plain": "\u001b[32m\ud83c\udfc3 \u001b[0m \u001b[1;32mFinishing 'plasmonic_yagi_uda'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "096c3b14f5ff44418bd4d1044a0ef752": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_f55086fc2c4849bf968f9478c524971f", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 4.63e-06) \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n
\n", "text/plain": "% done (field decay = 4.63e-06) \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "0ab235d78e38429b80e2979a6d703497": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_7a23f8b190dc4d33bed26a04c4958220", "msg_id": "", "outputs": [ { "data": { "text/html": "
best RMS error so far: 3.84e-02 \u2501\u2501\u2501\u257a\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501   8% 0:01:12\n
\n", "text/plain": "best RMS error so far: 3.84e-02 \u001b[38;2;249;38;114m\u2501\u2501\u2501\u001b[0m\u001b[38;5;237m\u257a\u001b[0m\u001b[38;5;237m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m 8%\u001b[0m \u001b[36m0:01:12\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "0d5b91c730954e898a608ed687f8955b": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_337bb19609634fbfa4ce6367b3d4ab31", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 0.00e+00) \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n
\n", "text/plain": "% done (field decay = 0.00e+00) \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "1a0943dbb38b41edb8ab394df296742a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1c162092f346448aa52e81970aa092b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "24cf8aeb2282458290c3e21212a234af": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "31508fb7f73241748f95a0a04f2e83de": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_9daeb294ff214676963694a4f8ff38bc", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 10.8/10.8 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m10.8/10.8 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "337bb19609634fbfa4ce6367b3d4ab31": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3e24f5c29cb844a8ac76df877530e808": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "442bfa3bfba344408c1cb6c7a3f733d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "451845c35f6b47a4ac1f65d72cc41673": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_83995eb6e1174839ab553beb2bdfbd44", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83c\udfc3  Finishing 'plasmonic_yagi_uda'...\n
\n", "text/plain": "\u001b[32m\ud83c\udfc3 \u001b[0m \u001b[1;32mFinishing 'plasmonic_yagi_uda'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "46f0eec361054993baa54848604285e7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "548091c6cf9b4f0fb156feb8da30b3e6": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_24cf8aeb2282458290c3e21212a234af", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 0.00e+00) \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n
\n", "text/plain": "% done (field decay = 0.00e+00) \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "55687f4e030a40dba4ceffc8d3b57a71": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "65dac6396879442d98ce5ebe733134c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6982a6dc08df4f908268748bfe7ceefb": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_be77fab4a88345ecb1e5f40254955ad5", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83c\udfc3  Starting 'plasmonic_yagi_uda'...\n
\n", "text/plain": "\u001b[32m\ud83c\udfc3 \u001b[0m \u001b[1;32mStarting 'plasmonic_yagi_uda'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "704b0aec4ffa458a8020ad986ac6822f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "76ae7691c8c642b7bbc67feaa5a327be": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_3e24f5c29cb844a8ac76df877530e808", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 9.3/9.3 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m9.3/9.3 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "7a23f8b190dc4d33bed26a04c4958220": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7eba46898f8e4aec8693ad3a10bb2989": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_55687f4e030a40dba4ceffc8d3b57a71", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83d\udeb6  Starting 'plasmonic_yagi_uda'...\n
\n", "text/plain": "\u001b[32m\ud83d\udeb6 \u001b[0m \u001b[1;32mStarting 'plasmonic_yagi_uda'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "83995eb6e1174839ab553beb2bdfbd44": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8442b25abe1e485ba62c059e6199fa53": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_aec8e758510b4d50ba75425a5f2ec3d9", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 18.5/18.5 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m18.5/18.5 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "92dab5b9719c4e0480b5d991096de3ee": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_704b0aec4ffa458a8020ad986ac6822f", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83c\udfc3  Starting 'empty'...\n
\n", "text/plain": "\u001b[32m\ud83c\udfc3 \u001b[0m \u001b[1;32mStarting 'empty'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "9d2d085048764154870b567ee1bf2c5e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9daeb294ff214676963694a4f8ff38bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a0e0c5dbd1774ab78676752e0c1ffae1": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_d398932ba7a54034a3fb1c3fd1ec23f7", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 1.84e-06) \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n
\n", "text/plain": "% done (field decay = 1.84e-06) \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "a5360d63a44043a8aec53981fa3a9293": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_65dac6396879442d98ce5ebe733134c9", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 23.1/23.1 MB \u2022 20.2 MB/s \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m23.1/23.1 MB\u001b[0m \u2022 \u001b[31m20.2 MB/s\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "a93cd65cc5714383a7d114bd3d2c43f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "aec8e758510b4d50ba75425a5f2ec3d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b031de5714f947019c3ddca66f88c365": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_46f0eec361054993baa54848604285e7", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83d\udeb6  Starting 'plasmonic_yagi_uda_on_glass'...\n
\n", "text/plain": "\u001b[32m\ud83d\udeb6 \u001b[0m \u001b[1;32mStarting 'plasmonic_yagi_uda_on_glass'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "b5df521949ea4f4692e757f927ac1986": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_a93cd65cc5714383a7d114bd3d2c43f1", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 1.1/1.1 MB \u2022 4.7 MB/s \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m1.1/1.1 MB\u001b[0m \u2022 \u001b[31m4.7 MB/s\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "be77fab4a88345ecb1e5f40254955ad5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "cb08da629b354078a68488c60721b5d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d398932ba7a54034a3fb1c3fd1ec23f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d9e4a4beee844c41b815c9f1d061f209": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_1a0943dbb38b41edb8ab394df296742a", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 24.3/24.3 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m24.3/24.3 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "dded8c47d67942b3b31aa6dd69a6e413": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_1c162092f346448aa52e81970aa092b3", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 42.5/42.5 MB \u2022 34.3 MB/s \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m42.5/42.5 MB\u001b[0m \u2022 \u001b[31m34.3 MB/s\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "e120463a3f504188801af60f011d2973": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "eb5072adf2e541c8b3c46e361701238b": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_e120463a3f504188801af60f011d2973", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83c\udfc3  Finishing 'empty'...\n
\n", "text/plain": "\u001b[32m\ud83c\udfc3 \u001b[0m \u001b[1;32mFinishing 'empty'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "f35034b34073452faadd6c156cf1f95a": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_442bfa3bfba344408c1cb6c7a3f733d7", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 1.0/1.0 MB \u2022 13.6 MB/s \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m1.0/1.0 MB\u001b[0m \u2022 \u001b[31m13.6 MB/s\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "f55086fc2c4849bf968f9478c524971f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }