{ "cells": [ { "cell_type": "markdown", "id": "e06d909a", "metadata": {}, "source": [ "# Plasmonic Yagi-Uda nanoantenna" ] }, { "cell_type": "markdown", "id": "7d61adb8", "metadata": {}, "source": [ "Note: the cost of running the entire notebook is larger than 1 FlexCredit.\n", "\n", "Antennas are the fundamental building blocks for high-speed communication networks. The concept of an antenna is well-established, particularly in RF and microwave engineering, dating back over one century ago. An antenna transforms propagating electromagnetic waves to localized electromagnetic field and vice versa, depending on whether it is in the transmitting mode or receiving mode. Thus, it enables wireless communication and information transmission over long distances. \n", "\n", "Recent rapid developments in nanotechnology have sparked vast interest in constructing the optical counterpart of antennas by utilizing the plasmonic nature of metal at optical frequencies. The size of these antennas is usually in the order of 100 nm. Therefore, they are often termed plasmonic nanoantennas. As the demand for higher bandwidth information transmission keeps growing, plasmonic nanoantennas potentially be the technological cornerstone for future communication systems.\n", "\n", "In this example notebook, we demonstrate the modeling of a plasmonic Yagi-Uda nanoantenna made of aluminum nanorods excited by a point dipole source. The far-field radiation pattern is calculated. We show that the simulated plasmonic Yagi-Uda nanoantenna can achieve a high directivity, which is desirable in many applications. The model is based on [Tim H. Taminiau, Fernando D. Stefani, and Niek F. van Hulst, \"Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,\" Opt. Express 16, 10858-10866 (2008)](https://opg.optica.org/oe/fulltext.cfm?uri=oe-16-14-10858&id=167282).\n", "\n", "" ] }, { "cell_type": "markdown", "id": "8c4e33ec", "metadata": {}, "source": [ "## Simulation Setup " ] }, { "cell_type": "markdown", "id": "39e69ef7", "metadata": {}, "source": [ "In this model, we are going to fit the refractive index of aluminum using data from the literature. Thus, we import the [DispersionFitter](../_autosummary/tidy3d.plugins.DispersionFitter.html) from the Tidy3D plugins." ] }, { "cell_type": "code", "execution_count": 1, "id": "1cd3ac66", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:13:37.464583Z", "iopub.status.busy": "2023-03-27T21:13:37.464385Z", "iopub.status.idle": "2023-03-27T21:13:38.779281Z", "shell.execute_reply": "2023-03-27T21:13:38.778655Z" } }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import tidy3d as td\n", "import tidy3d.web as web\n", "from tidy3d.plugins.dispersion import DispersionFitter\n" ] }, { "cell_type": "markdown", "id": "d1868111", "metadata": {}, "source": [ "As schematically shown above, a typical Yagi-Uda antenna consists of three components: a feed element that is excited by a source, a reflector element that suppresses the radiation in the backward direction, and an array of director elements that enhances the radiation in the forward direction. Usually, having a large number of director elements is beneficial for achieving a high directivity. In practice, we need to consider the footprint, fabrication constraints, costs, and so on. In this particular example, our Yagi-Uda antenna has three director elements. All elements are made of aluminum nanorods with rounded ends. \n", "\n", "The lengths and spacings of the elements are designed to achieve optimal performance at 570 nm wavelength. An initial design can be obtained by following the classical design principle of RF/microwave Yagi-Uda antennas. Since metals behave very differently in lower frequencies compared to optical frequencies, the parameters need to be optimized to account for the finite skin depth and ohmic loss. In this notebook, we skip the optimization process and only present the optimized design from the referenced paper. " ] }, { "cell_type": "code", "execution_count": 2, "id": "f76b62d9", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:13:38.781571Z", "iopub.status.busy": "2023-03-27T21:13:38.781309Z", "iopub.status.idle": "2023-03-27T21:13:38.799699Z", "shell.execute_reply": "2023-03-27T21:13:38.799093Z" } }, "outputs": [], "source": [ "lda0 = 0.57 # operation wavelength\n", "freq0 = td.C_0 / lda0 # operation frequency\n" ] }, { "cell_type": "markdown", "id": "7bfd9947", "metadata": {}, "source": [ "The nanorods are made of aluminum. Before constructing the model, we first need to use the [DispersionFitter](../_autosummary/tidy3d.plugins.DispersionFitter.html) to fit the refractive index data of aluminum, which can be found in the [refractive index database](https://refractiveindex.info/). In particular, we use the data from [McPeak et al. 2015](https://pubs.acs.org/doi/10.1021/ph5004237). Since we are only interested in the antenna response at 570 nm, we only need to fit the refractive index in the vicinity of the operation wavelength.\n", "\n", "The fitting results in a RMS error about of 0.01, which is reasonably good." ] }, { "cell_type": "code", "execution_count": 3, "id": "0c4d1567", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:13:38.801844Z", "iopub.status.busy": "2023-03-27T21:13:38.801702Z", "iopub.status.idle": "2023-03-27T21:13:52.849376Z", "shell.execute_reply": "2023-03-27T21:13:52.849011Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "782b365d38dc4bf2991673ed8ffcc13b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fname = \"misc/McPeak.csv\" # read the refractive index data from a csv file\n", "fitter = DispersionFitter.from_file(fname, delimiter=\",\") # construct a fitter\n", "al, rms_error = fitter.fit(num_poles=6, tolerance_rms=2e-2, num_tries=50)\n" ] }, { "cell_type": "markdown", "id": "c1f03abd", "metadata": {}, "source": [ "Next, we construct the Yagi-Uda antenna by individually constructing the feed, reflector, and three directors. Each element consists of a cylinder and two spheres that represent the rounded caps on each end. For convenience, we define a function to build the antenna structures since it will be used repeatedly in the next section of this notebook." ] }, { "cell_type": "code", "execution_count": 4, "id": "db39d6c3", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:13:53.062058Z", "iopub.status.busy": "2023-03-27T21:13:53.061922Z", "iopub.status.idle": "2023-03-27T21:13:53.087474Z", "shell.execute_reply": "2023-03-27T21:13:53.086966Z" } }, "outputs": [], "source": [ "# L_f is the length of the feed element\n", "# r is the radius of the nanorods.\n", "# medium is the material of the nanorods\n", "def construct_antenna(L_f, r, lda0, medium):\n", " L_r = L_f * 1.25 # length of the reflector\n", " L_d = L_f * 0.9 # length of the directors\n", " a_r = lda0 / 4.4 # spacing between the feed and the reflector\n", " a_d = (\n", " lda0 / 4\n", " ) # spacing between the feed and the first director (also the spacing between directors)\n", "\n", " feed = [\n", " td.Structure(\n", " geometry=td.Cylinder(\n", " center=(0, 0, 0), radius=r, length=L_f - 2 * r, axis=1\n", " ),\n", " medium=medium,\n", " ),\n", " td.Structure(\n", " geometry=td.Sphere(center=(0, (L_f - 2 * r) / 2, 0), radius=r),\n", " medium=medium,\n", " ),\n", " td.Structure(\n", " geometry=td.Sphere(center=(0, -(L_f - 2 * r) / 2, 0), radius=r),\n", " medium=medium,\n", " ),\n", " ]\n", "\n", " reflector = [\n", " td.Structure(\n", " geometry=td.Cylinder(\n", " center=(-a_r, 0, 0), radius=r, length=L_r - 2 * r, axis=1\n", " ),\n", " medium=medium,\n", " ),\n", " td.Structure(\n", " geometry=td.Sphere(center=(-a_r, (L_r - 2 * r) / 2, 0), radius=r),\n", " medium=medium,\n", " ),\n", " td.Structure(\n", " geometry=td.Sphere(center=(-a_r, -(L_r - 2 * r) / 2, 0), radius=r),\n", " medium=medium,\n", " ),\n", " ]\n", "\n", " director_1 = [\n", " td.Structure(\n", " geometry=td.Cylinder(\n", " center=(a_d, 0, 0), radius=r, length=L_d - 2 * r, axis=1\n", " ),\n", " medium=medium,\n", " ),\n", " td.Structure(\n", " geometry=td.Sphere(center=(a_d, (L_d - 2 * r) / 2, 0), radius=r),\n", " medium=medium,\n", " ),\n", " td.Structure(\n", " geometry=td.Sphere(center=(a_d, -(L_d - 2 * r) / 2, 0), radius=r),\n", " medium=medium,\n", " ),\n", " ]\n", "\n", " director_2 = [\n", " td.Structure(\n", " geometry=td.Cylinder(\n", " center=(2 * a_d, 0, 0), radius=r, length=L_d - 2 * r, axis=1\n", " ),\n", " medium=medium,\n", " ),\n", " td.Structure(\n", " geometry=td.Sphere(center=(2 * a_d, (L_d - 2 * r) / 2, 0), radius=r),\n", " medium=medium,\n", " ),\n", " td.Structure(\n", " geometry=td.Sphere(center=(2 * a_d, -(L_d - 2 * r) / 2, 0), radius=r),\n", " medium=medium,\n", " ),\n", " ]\n", "\n", " director_3 = [\n", " td.Structure(\n", " geometry=td.Cylinder(\n", " center=(3 * a_d, 0, 0), radius=r, length=L_d - 2 * r, axis=1\n", " ),\n", " medium=medium,\n", " ),\n", " td.Structure(\n", " geometry=td.Sphere(center=(3 * a_d, (L_d - 2 * r) / 2, 0), radius=r),\n", " medium=medium,\n", " ),\n", " td.Structure(\n", " geometry=td.Sphere(center=(3 * a_d, -(L_d - 2 * r) / 2, 0), radius=r),\n", " medium=medium,\n", " ),\n", " ]\n", "\n", " antenna = feed + reflector + director_1 + director_2 + director_3\n", " return antenna\n", "\n", "\n", "L_f = 0.16 # length of the feed\n", "r = 0.02 # radius of the nanorods\n", "medium = al # material of the antenna\n", "\n", "antenna = construct_antenna(L_f, r, lda0, medium)\n" ] }, { "cell_type": "markdown", "id": "94620334", "metadata": {}, "source": [ "The Yagi-Uda antenna is usually fed by a small quantum emitter such as a laser-excited quantum dot. In the simulation, the source can be well approximated as a [PointDipole](../_autosummary/tidy3d.PointDipole.html), which is what we are going to use.\n", "\n", "To calculate the far-field radiation pattern and directivity, we will use the [FieldProjectionAngleMonitor](../_autosummary/tidy3d.FieldProjectionAngleMonitor.html) as well as a [FluxMonitor](../_autosummary/tidy3d.FluxMonitor.html). The [FieldProjectionAngleMonitor](../_autosummary/tidy3d.FieldProjectionAngleMonitor.html) yields the angular radiation power and the [FluxMonitor](../_autosummary/tidy3d.FluxMonitor.html) helps to calculate the total radiated power. Both are required in the calculation of directivity." ] }, { "cell_type": "code", "execution_count": 5, "id": "79a4c9d5", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:13:53.089863Z", "iopub.status.busy": "2023-03-27T21:13:53.089722Z", "iopub.status.idle": "2023-03-27T21:13:53.483183Z", "shell.execute_reply": "2023-03-27T21:13:53.482597Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHaCAYAAABmVb/yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAByGklEQVR4nO3deXxU5d028Gv2yTaZkI1EUASVRVAUhGK12JoKSl2ebmqtIqXYqtRaWltpLSi2YqtVu7g8WtG+rbtPq75qcUF5XEpBEa0K4oaCQICZLJNMklnv9495z5xMMsuZs81Jcn0/n3yUyZkzJ/O7z7mvOXPOfduEEAJERERENKTZS70BRERERKQdQx0RERHRMMBQR0RERDQMMNQRERERDQMMdURERETDAEMdERER0TDAUEdEREQ0DDDUEREREQ0DDHVEREREwwBDHRFRDuvXr4fNZsP69etLvSlERAUx1BHRiHfbbbfh3nvvLfVmqHL//ffjlltuKfVmAACSySR++9vf4tBDD4XX68VRRx2FBx54QPHzOzo6cNFFF6G+vh4VFRX44he/iDfeeCPrsk888QSOPfZYeL1eHHzwwVi5ciXi8bhefwrRkGTj3K9ENNJNnToVdXV1g87IJZNJRKNRuN1u2O3W/Az8la98Be+88w4++eSTUm8Kli9fjuuvvx5LlizBcccdh8cffxxPPfUUHnjgAZxzzjl5n5tMJnHiiSfirbfewhVXXIG6ujrcdttt2LVrFzZv3ozDDz88vew///lPLFiwACeddBLOPfdcvP3227j11ltx0UUX4fbbbzf6zySyLIY6IgIAhMNhVFRUlHozSiJXqBsKrBLqdu/ejUMPPRQXXXQR/vSnPwEAhBCYO3cuduzYgU8++QQOhyPn8x9++GGcffbZeOSRR/D1r38dAHDgwAEcccQROPXUU3H//fenlz3yyCPhcrnw+uuvw+l0AgCuuuoqXHfdddi6dSsmTZpk4F9KZF3W/OhJRJrs3r0bixcvRnNzMzweDw499FBcfPHFiEajAIB7770XNpsN//u//4tLLrkEDQ0NGDNmTPr5t912G4488kh4PB40Nzfj0ksvRUdHR8ZrfPDBB/ja176G0aNHw+v1YsyYMTjnnHPQ2dmZXua5557DCSecAL/fj8rKSkycOBE///nPC26/kudFIhGsXLkShx12GDweD8aOHYuf/vSniEQig9b3t7/9DbNmzUJ5eTlqamrwhS98Ac8++ywAYNy4cXj33Xfxv//7v7DZbLDZbDjppJMA5L6m7pFHHsGMGTNQVlaGuro6fPvb38bu3bszlrnwwgtRWVmJ3bt346yzzkJlZSXq6+vxk5/8BIlEouB78Pjjj2PBggXpGk6YMAHXXnttxnNPOukkPPXUU/j000/T2z5u3Lic67zwwgvTyw38ufrqqwtuU6HtjcViuOSSS9KP2Ww2XHzxxfjss8+wYcOGvM9/9NFH0djYiK9+9avpx+rr6/HNb34Tjz/+eLquW7duxdatW3HRRRelAx0AXHLJJRBC4NFHH9X0dxANZc7CixDRULJnzx7MmjUrfX3SpEmTsHv3bjz66KPo6emB2+1OL3vJJZegvr4eK1asQDgcBgBcffXVuOaaa9DS0oKLL74Y27dvx+23347XXnsNr776KlwuF6LRKObNm4dIJIIf/OAHGD16NHbv3o0nn3wSHR0dqK6uxrvvvouvfOUrOOqoo7Bq1Sp4PB58+OGHePXVV/Nuv5LnJZNJnHHGGXjllVdw0UUXYfLkyXj77bdx88034/3338djjz2WXvaaa67B1VdfjeOPPx6rVq2C2+3Gxo0b8cILL+CUU07BLbfcgh/84AeorKzEL37xCwBAY2Njzu279957sWjRIhx33HFYvXo19u3bh9///vd49dVXsWXLFvj9/vSyiUQC8+bNw+zZs3HjjTfi+eefx+9+9ztMmDABF198cd734d5770VlZSWWLVuGyspKvPDCC1ixYgVCoRBuuOEGAMAvfvELdHZ24rPPPsPNN98MAKisrMy5zu9973toaWnJeGzt2rW477770NDQkH4sEAjk3TZJVVUVPB4PAGDLli2oqKjA5MmTM5aZNWtW+vcnnHBCznVt2bIFxx577KCvuWfNmoU777wT77//PqZNm4YtW7YAAGbOnJmxXHNzM8aMGZP+PdGIJIhoWLnggguE3W4Xr7322qDfJZNJIYQQ99xzjwAgTjjhBBGPx9O/379/v3C73eKUU04RiUQi/fif/vQnAUCsWbNGCCHEli1bBADxyCOP5NyOm2++WQAQBw4cKGr7lTzvr3/9q7Db7eLll1/OePyOO+4QAMSrr74qhBDigw8+EHa7XfzXf/1Xxt8jhPxeCCHEkUceKebOnTvodV588UUBQLz44otCCCGi0ahoaGgQU6dOFb29venlnnzySQFArFixIv3YwoULBQCxatWqjHUec8wxYsaMGfnfBCFET0/PoMe+973vifLyctHX15d+bMGCBeKQQw4puL5sPvjgA1FdXS2+/OUvZ7QDAIp+7rnnnoztGD9+/KDXCIfDAoC48sor825LRUWF+M53vjPo8aeeekoAEGvXrhVCCHHDDTcIAGLnzp2Dlj3uuOPE5z73OaV/PtGww69fiYaRZDKJxx57DKeffvqgMxlA6uuw/pYsWZJxndPzzz+PaDSKyy+/POOMyZIlS+Dz+fDUU08BAKqrqwEAzzzzDHp6erJui3TG6vHHH0cymVT8Nyh53iOPPILJkydj0qRJCAQC6Z8vfelLAIAXX3wRAPDYY48hmUxixYoVg84ADXwvlHj99dexf/9+XHLJJfB6venHFyxYgEmTJqXfn/6+//3vZ/z7xBNPxMcff1zwtcrKytL/39XVhUAggBNPPBE9PT147733it72gcLhMP7rv/4LNTU1eOCBBzLawXPPPafoZ968eenn9Pb2ps/a9Se9T729vXm3R+nzpf/mWrbQ6xANZ/z6lWgYOXDgAEKhEKZOnapo+UMPPTTj359++ikAYOLEiRmPu91ujB8/Pv37Qw89FMuWLcNNN92E++67DyeeeCLOOOMMfPvb304HvrPPPht//vOf8d3vfhdXXnklTj75ZHz1q1/F17/+9bx3kip53gcffIBt27ahvr4+6zr2798PAPjoo49gt9sxZcoURe9HIbneHwCYNGkSXnnllYzHvF7voG2sqalBe3t7wdd69913cdVVV+GFF15AKBTK+F3/6xbVWrJkCT766CP861//Qm1tbcbvBn5Fq0RZWVnW6xn7+vrSv9fj+dJ/cy1b6HWIhjOGOqIRTEsH+Lvf/Q4XXnghHn/8cTz77LO47LLLsHr1avz73//GmDFjUFZWhpdeegkvvvginnrqKaxduxYPPfQQvvSlL+HZZ5/NeSekkuclk0lMmzYNN910U9Z1jB07VvXfpad8d3vm09HRgblz58Ln82HVqlWYMGECvF4v3njjDfzsZz8r6sxnNr///e/xwAMP4G9/+xumT58+6Petra2K1lNdXZ1uQ01NTXjxxRchhMg4C7p3714AqWve8mlqakov29/A5zc1NaUfH1jnvXv3pq/hIxqJ+PUr0TBSX18Pn8+Hd955R9XzDznkEADA9u3bMx6PRqPYsWNH+veSadOm4aqrrsJLL72El19+Gbt378Ydd9yR/r3dbsfJJ5+Mm266CVu3bsWvf/1rvPDCC+mvR3Mp9LwJEyagra0NJ598MlpaWgb9SGfSJkyYgGQyia1bt+Z9PaVfxeZ6f6THBr4/aq1fvx7BYBD33nsvfvjDH+IrX/kKWlpaUFNTM2jZYr9Gfvnll/GTn/wEl19+Oc4777ysyzQ1NSn6eeihh9LPmT59Onp6erBt27aMdW3cuDH9+3ymT5+ON954Y1Bg3bhxI8rLy3HEEUdkrOf111/PWG7Pnj347LPPCr4O0XDGUEc0jNjtdpx11ln4v//3/w7q9IDUuGH5tLS0wO124w9/+EPGsnfffTc6OzuxYMECAEAoFBo0ev+0adNgt9vTX4u1tbUNWr/U4Wb76kyi5Hnf/OY3sXv3btx1112Dlu3t7U3fyXvWWWfBbrdj1apVg8JC/7+voqJi0JAt2cycORMNDQ244447Mv6Gf/7zn9i2bVv6/dFKOsPXfxuj0Shuu+22QctWVFQo/jp27969+OY3v4kTTjghfQdtNmquqTvzzDPhcrkytlEIgTvuuAMHHXQQjj/++IzteO+99xCLxdKPff3rX8e+ffvw97//Pf1YIBDAI488gtNPPz19Dd2RRx6JSZMm4c4778wY3uX222+HzWZLj3FHNBLx61eiYea6667Ds88+i7lz56aH+9i7dy8eeeQRvPLKKxlDbgxUX1+P5cuX45prrsH8+fNxxhlnYPv27bjttttw3HHH4dvf/jYA4IUXXsDSpUvxjW98A0cccQTi8Tj++te/wuFw4Gtf+xoAYNWqVXjppZewYMECHHLIIdi/fz9uu+02jBkzJu/QFkqed/755+Phhx/G97//fbz44ov4/Oc/j0Qigffeew8PP/wwnnnmGcycOROHHXYYfvGLX+Daa6/FiSeeiK9+9avweDx47bXX0NzcjNWrVwMAZsyYgdtvvx2/+tWvcNhhh6GhoSF900V/LpcLv/nNb7Bo0SLMnTsX5557bnpIk3HjxuFHP/qR2rJlOP7441FTU4OFCxfisssug81mw1//+tesoXzGjBl46KGHsGzZMhx33HGorKzE6aefnnW9l112GQ4cOICf/vSnePDBBzN+d9RRR+Goo44CoO6aujFjxuDyyy/HDTfcgFgshuOOOw6PPfYYXn75Zdx3330ZX0UvX74cf/nLX7Bjx470uHpf//rX8bnPfQ6LFi3C1q1b0zNKJBIJXHPNNRmvdcMNN+CMM87AKaecgnPOOQfvvPMO/vSnP+G73/3uoCFViEaUEt55S0QG+fTTT8UFF1wg6uvrhcfjEePHjxeXXnqpiEQiQgh5SJNsw54IkRrCZNKkScLlconGxkZx8cUXi/b29vTvP/74Y/Gd73xHTJgwQXi9XjFq1CjxxS9+UTz//PPpZdatWyfOPPNM0dzcLNxut2hubhbnnnuueP/99/Nuu9LnRaNR8Zvf/EYceeSRwuPxiJqaGjFjxgxxzTXXiM7Ozoxl16xZI4455pj0cnPnzhXPPfdc+vetra1iwYIFoqqqSgBID28ycEgTyUMPPZRe36hRo8R5550nPvvss4xlFi5cKCoqKgb9fStXrhRKDr2vvvqq+NznPifKyspEc3Oz+OlPfyqeeeaZQdvT3d0tvvWtbwm/3y8A5B3eZO7cuTmHJ1m5cmXBbSokkUiI6667ThxyyCHC7XaLI488Uvztb38btJw03MuOHTsyHm9raxOLFy8WtbW1ory8XMydOzdnG/3HP/4hpk+fLjwejxgzZoy46qqrRDQa1fw3EA1lnCaMiIiIaBjgNXVEREREwwBDHREREdEwwFBHRERENAww1BERERENAwx1RERERMMAQx0RERHRMMDBhwtIJpPYs2cPqqqqip6Oh4iIiCgfIQS6urrQ3NwMu13buTaGugL27NljmcnBiYiIaHjatWsXxowZo2kdDHUFVFVVAQB++tOfoqyszLDXSSQS6bk0nU5nxpQ6xZLGk66rq4PL5SrqeQcOHAAAeDweVFdXq94GLTo7O9PzatbX15fkDGk0Gk3PBer3++F2u03fBtZDxnrIWI8U1kPGesja2trQ1dUFAHC73SWpR7H9eW9vL37729+m84YWDHUFSA2irKwMlZWVhrxGPB5HNBrNCGButxtOp7ryJJNJJJNJ+Hw+xTt3MplEMBhERUUFPB4P+vr6YLfbdWlkxejq6oLD4cCoUaMQiUQQi8VQW1ur+ZR0MaLRKMLhcPqgFIvFUF1dbeqBkvWQsR4y1iOF9ZCxHrKuri44nU6Ul5cjmUzCbrfD4/GYWg8t/bkeAZQ3SpSY1ABsNhu8Xi+8Xi9sNhui0Wg66RtN2iFjsRjq6upQW1sLn8+HUCiU/sRjhq6uLoRCIfh8PtTW1qKurg6xWAzBYBDJZNKUbYhGowgEAnC5XKirq0uf7QwEAohGo6ZsA+shYz1krEcK6yFjPWRSPSorK+FyueB2uyGEQCQSMa0eVujPGepKqH8DkD5NSJ8szGoIA3dI6dNdVVWVqTtm/wOk9OnO7XabeqDsf4CUPm3b7XbU1taadqBkPWSsh4z1SGE9ZKyHrH89KioqAAAOh8PUYGeF/hxgqCuZbA1AYlZDyLVDSszaMbMdICVmHSizHSAlZh0oWQ8Z6yFjPVJYDxnrIctXD6fTaUqws0J/nn49Q9dOWeVrABKjG0KhHVJi9I6Zb4eUGH2gzHeAlBh9oGQ9ZKyHjPVIYT1krIdMST2MDnZW6M8zXsuwNQ8z0h2lWilpABKjGoLSHVJi1I6pZIeUGHWgVHKAlBh1oGQ9ZKyHjPVIYT1krIesmHoYFeys0J8Peh1D1joMRaNRzQ2hmAYg0bshFLtDSvTeMYvZISV6HyiLOUBK9D5Qsh4y1kPGeqSwHjLWQ6amHnoHOyv051lfQ/c1DmNaGoKaBiDRqyGo3SEleu2YanZIiV4HSjUHSIleB0rWQ8Z6yFiPFNZDxnrItNRDr2Bnhf485/p1Xdsw5nK5VDcELQ1AorUhaN0hJVp3TC07pETrgVLLAVKi9UDJeshYDxnrkcJ6yFgPmR710BrsjOjP9bzOj6FOIbvdrqoh6NEA+m+DmmCn1w4pUbtj6rFDStQeKPU4QErUHihZDxnrIWM9UlgPGesh07MeaoOdUf15LBZTvZ5B69VtTSNAsQ1BzwYgKTbY6b1DSordMfXcISXFHij1PEBKij1Qsh4y1kPGeqSwHjLWQ2ZEPazUn+uJoa5IShuCEQ1AojTYGbVDSpTumEbskBKlB0ojDpASpQdK1kPGeshYjxTWQ8Z6yIysh1X6cz3fW4Y6FQo1BCMbgKRQsEsmk+jo6DBsh5QU2jGN3CElhQ6URh4gJYUOlEYfICWsRwrrIWM9ZKxHCushs0J/rsecrxKGOpVyNQQzGoAkV7ATQiCRSCAejxu6Q0py7Zhm7JCSXAdKMw6QklwHSrMOkBLWI4X1kLEeMtYjhfWQWaE/14uz1BswlDmdqbcvGo0iEonA5XKZ3gCkYBeJRNI7pfTfmpoaw3dIibTThUKh9GNm7ZAS6UAZCAQQDAbh8/kQDAZNOUBKpANlMBhEIBBAbW0tQqGQaQdICeuRwnrIWA8Z65HCesis0J/rgaFOI6khRCIRRCKRkjQAKdj19fUhEokASA3B4nK5TNsGYPCOaeYOKZEOlAcOHDDtE+9A0oEyEAggEAgAAOrr6007QEpYjxTWQ8Z6yFiPFNZDZoX+XKuhs6VERERElBNDnUbSd+79b002YtLgfJLJZPoMnXSNXTwe13XsGyX6XwNh5CTO+UjXpEifgOPxuCGTaucjXZPS/5pGIybVLoT1SGE9ZKyHjPVIYT1kVujPtWKo02DgRZRGTRqcjxTohBBwu91wOp3pYNfe3m7ajjnwolajJnHOZ+BFxh6Px5BJtfMZeJGxx+MxZFLtQliPFNZDxnrIWI8U1kNmhf5cDwx1KuW6K8bMhpAt0AGp26MdDgecTqcpO2auu5TM3DFz3TWm96Ta+eS6a0zvSbULYT1SWA8Z6yFjPVJYD5kV+nO9MNSpUOg2ZzMaQq5AJ7Hb7fD7/YbvmIVuOzdjxyw0DIAZB8pCwwCYdaBkPVJYDxnrIWM9UlgPmRX6cyGEbutiqCuS0nFrjGwIhQKdxOgdU+k4QkbumErHdTLyQKl0XCfWQ8Z6yFiPFNZDxnrIjKyHVfpzPd9bhroiFDsQoRENQWmgkxi1YxY7MKQRO2axA3UacaAsdqBO1kPGeshYjxTWQ8Z6yIyoh5X6cz0x1Ckkpelix63RsyEUG+gkeu+Yakf61nPHVDvyup4HSrUjr7MeMtZDxnqksB4y1kOmZz3UzhRhVH+u55iyDHUKxWIx1QMR6tEQ1AY6iV47ptapW/TYMbVOpaPHgVLrVDqsh4z1kLEeKayHjPWQ6VEPrVN/GdGf6zm4MUNdEbSMLK2lIWgNdBKtO6Zec/Fp2TH1mhtRy4FSr7kRWQ8Z6yFjPVJYDxnrIdNSD73mcrVCf54LQ51CeqRpNQ1B7wagdsfUe3JlNTum3pNdqzlQ6j3ZNeshYz1krEcK6yFjPWRq6qFXoJNYoT/PhqFOIZvNpst6imkIRjWAYndMvXdISTE7pt4HSEkxB0q9D5AS1kPGeshYjxTWQ8Z6yIqph96BTmKF/nwghroSUNIQDD9Fq3DHNGqHlCjZMY06QEqUHCiNOkBKWA8Z6yFjPVJYDxnrIVNSD6MCncQK/Xl/DHUlkq8hmJboC+yYRu+Qknw7ptEHSEm+A6XRB0gJ6yFjPWSsRwrrIWM9ZPnqYXSgk1ihP5cw1JVQtoZgegPIsWOatUNKsu2YZh0gJdkOlGYdICWsh4z1kLEeKayHjPWQ9a9HOBwGACQSCVMCncQK/TkwBEPdrbfeinHjxsHr9WL27NnYtGlT3uU7Ojpw6aWXoqmpCR6PB0cccQSefvppk7a2sP4Noa+vD319faY2AGDwjhkMBk3dISX9d8xgMGjqAVLS/0AZCAQQCARMO0BKWA8Z6yFjPVJYDxnrIZPq0d3djVgsZmqgk1iiPzflVXTy0EMPYdmyZVi5ciXeeOMNHH300Zg3bx7279+fdfloNIovf/nL+OSTT/Doo49i+/btuOuuu3DQQQeZvOX59W8IZjcAibRjSo3R6/WaukNKqqqq4PV60zuDmQdIidvtRm1tLWKxGGKxGGpra007QEpYDxnrIWM9UlgPGeshq6qqgsfjSc+lamagk5S6Px9Soe6mm27CkiVLsGjRIkyZMgV33HEHysvLsWbNmqzLr1mzBm1tbXjsscfw+c9/HuPGjcPcuXNx9NFHm7zl+SWTScRisfS/Y7GYIZMGFyKdtgaASCRi2CTO+USj0YxpU/pvk1mSySRCoVD636FQiPXIsk1mYT1krIeM9UhhPWTRaDTjdfv3q2YpdX8+ZEJdNBrF5s2b0dLSkn7MbrejpaUFGzZsyPqcJ554AnPmzMGll16KxsZGTJ06Fddddx0SiUTO14lEIgiFQhk/Rur/nbvH40l/ytB70uBC+l8D0dTUZNgkzvn0vyalqanJsEmc8+l/TUp9fT3q6+sNmVS7ENYjhfWQsR4y1iOF9ZBJ9XA6nXA6nXA4HIjH47rPrZqPFfrzIRPqAoEAEokEGhsbMx5vbGxEa2tr1ud8/PHHePTRR5FIJPD000/jl7/8JX73u9/hV7/6Vc7XWb16Naqrq9M/Y8eO1fXv6C/bRZRGTBpcyMCLWo2axDmfbBcZGzGJcz7ZLjI2YlLtQliPFNZDxnrIWI8U1kPWvx5+vx92uz3dp5oV7KzSnw+ZUKdGMplEQ0MD7rzzTsyYMQNnn302fvGLX+COO+7I+Zzly5ejs7Mz/bNr1y7Dti3XXTFmNoRcdymZuWPmu2vMrANlvrvGzDxQsh4prIeM9ZCxHimshyxfPTwejynBzir9OTCEQl1dXR0cDgf27duX8fi+ffswevTorM9pamrCEUccAYfDkX5s8uTJaG1tzdnIPB4PfD5fxo/elNzmbEZDKHTbuRk7ppJhAIw+UCoZBsCMAyXrkcJ6yFgPGeuRwnrIlNTD6GBnlf5cMmRCndvtxowZM7Bu3br0Y8lkEuvWrcOcOXOyPufzn/88Pvzww4w38P3330dTU5PpdwdJihm3xsiGoHQcISN3zGLGdTLqQFnMuE5GHihZjxTWQ8Z6yFiPFNZDVkw9jAp2VunP+xsyoQ4Ali1bhrvuugt/+ctfsG3bNlx88cUIh8NYtGgRAOCCCy7A8uXL08tffPHFaGtrww9/+EO8//77eOqpp3Ddddfh0ksvLfq19biLRs1AhEY0hGIHhjRix1QzUKfeB0o1A3UacaBkPVJYDxnrIWM9UlgPmZp66B3srNKfDzSkQt3ZZ5+NG2+8EStWrMD06dPx5ptvYu3atembJ3bu3Im9e/emlx87diyeeeYZvPbaazjqqKNw2WWX4Yc//CGuvPLKol9bKqBaWkaW1rMhqB3pW88dU8vI63odKLWMvK7ngZL1SGE9ZKyHjPVIYT1kWuqhV7CzSn+ejU1Io/RRVqFQCNXV1fj5z3+eLp7H4ylqHXpNFaJ0HjtpepKBXzPrMXWL1mlo9JpKR8vfotdUOlr/FtYjhfWQsR4y1iOF9ZAp+Rui0Sj27t0Lu92e82+MRCKIx+OW6c/j8ThWrVqFzs5OzdfxmzttwRDWf9wbqZhKJJNJRKPR9HPsdrvqZG632+FyuRCNRtHX15deX7bXFEJkfGUcDofR3d2NyspKeDweTZ+UfD4f2tvbsX//ftTU1MDlcil6XiwWQ3t7O5xOJ3w+H+LxuOpt8Hg8KC8vR0dHB+LxOCoqKhQ9TwiB9vZ2xONx1NTUAICm96K6ujrjvbDZbIqex3qksB4y1kPGeqSwHjKl9YjFYhBC5O1nXS4XhBCW6c/1vNaQZ+oKkM7U/fKXv0R5eTni8TiSySTsdnvBhN6/0TidTt2mK0kmk4jH47DZbHA6nYN2TCnU+f3+9KnmWCwGl8ul23QlQohBjbvQNkufStxut+KDSSHF/G3FbrNSxf5trIe6bVaK9ZCxHimsh2y41yMej6OjowM2m63geq3Sn3d3d2P16tU8U2em+vr69Jvd/1NLrk9cAz9hKf00olT/Ty0DP3HFYjFEIhGcdtppqK6u1vV1iYiIrKqzsxNPP/00PB6Pon7XCv15W1ubbutiqFPI5XKlT9FK36OHQiE4nc5B1xdI1w1Igx8bMXyK2+1OX3QaCoUGXV+QSCRQXV2NUaNG6f7aREREVuV0OjP67Hys0J+XlZXptq4hdferleS6q0mvi1qVyHdXk5brP4iIiEYKK/TneuGZOg2kRB8KhQAAFRUVpjcAKdgFAgEEg0HU1tYiHA7rMq4eERHRSGCF/lwPDHUa9W8IoVAINpvN9AbQP9jt3bsXyWRS8d1VREREZI3+XCt+/aqD/gHK4/GUpAG43e6M8Xb6z3dLREREhVmhP9eCoU4j6Tt3m80Gr9eLvr4+QyZxLqSrqwt9fX3wer2w2WyGTJ5MREQ0XFmlP9eCX79qkO0iSmnUbQCqR90u1sCRvsPhMMLhsCmvTURENNRZpT/XiqFOpVx3xQy82NLohpBt6halt3ITERGNdFbpz/XAUKdCoduczWoI+ebi02u0ayIiouHKKv25XhjqiqR03BqjG4IekysTERGNVFbpz/W8XIqhrgjFDkRoVEMwPdAJASQjxr8OERGNPHYPoNP8ukpZqT9nqCsBIYSqgQj1bgglOUOXjAA7/o85r0VERCPLoRcADq9pL6d2pgij+nM9x5VlqFOoo6MjPchvsTch6NUQ+JUrERGRelqn/jKiP+8/xadWDHUKxeNxNDc3q76rVGtDsEyg2/9S6V6biIiGj4YvmPpyes3lqnd/3tnZqWo7smGoU8jv92seJkRtQ7BMoCMiIhqC9Ap0Eqv25wx1CrlcLl3WU2xDsGygGzUTsOvznhAR0QiRjAFtr5v7kjoHOokV+3OGuhJQ2hAsG+iAVKBjqCMiIgszKtBJrNafM9SVSKGGYOlAR0REZHFGBzqJlfpzhroSytUQGOiIiIjUUzsMmVpW6c8Z6kpsYEOQ/p+BjoiIqHjJZBLt7e1IJpOmBDqJFfpzhjoLGNgQGOiIiIjUiUQiiMViaGxsNC3QSUrdn3PWdyIiIqJhgGfqLKD/d+6AcZMGExERDXcejwdCCAQCAVO/fgVK358z1JVYrosoGeyIiIiKZ7fbUVNTg1AoZGqws0J/zq9fSyhXA6iqqoLP50MoFEJXV1cJt5CIiGjosdlsqK2thcvlQiAQQDQaNfT1rNKfM9SVSKHbnBnsiIiI1LPb7aYEOyv15wx1JaB03BoGOyIiIvWMDnZW688Z6hSKxWK6rKfYgQgZ7IiIiNQzKthZsT9nqFOoo6NDc0NQO7I0gx0REZF6egc7q/bnDHUKOZ1OTQ1B61QhDHZERETq6RXsrNyfM9Qp5Pf7VTcEveZ+Y7AjIiJST2uwM6I/D4fDqtczEEOdQmpvj9Z7Ml8GOyIiIvXUBjuj+nOGuhIptiHo3QAkDHZERETqWak/r6io0G19DHVFUtoQjGoAEgY7IiIi9azSnzPUlVihhmB0A5DkC3bJZNKw1yUiIhoOrNKf64WhTqVcDcHsBpAt2MViMcOnRCEiIhoOrNKf68FZ6g0YyqSGEAwGEQgE4PF40NfXZ3oDkF4rFAohGo2it7cXHo/HtNcnIiIayqzSn2vFM3UaSQ1BCIG+vj54vd6SNICqqip4vV709fVBCAG32236NhAREQ1VVunPtRhyoe7WW2/FuHHj4PV6MXv2bGzatEnR8x588EHYbDacddZZum9T/9uRI5FISb76jEajiEQi6X8nEgnTt4GIiGgos0J/rsWQCnUPPfQQli1bhpUrV+KNN97A0UcfjXnz5mH//v15n/fJJ5/gJz/5CU488UTdt6n/d+5NTU2GTRqcTzQaRSAQgMvlQlNTEyorK3Wbq5aIiGgksEJ/rtWQCnU33XQTlixZgkWLFmHKlCm44447UF5ejjVr1uR8TiKRwHnnnYdrrrkG48eP13V7Bl5EadSkwfn0D3S1tbWw2+2oqKiAy+Uy/LWJiIiGAyv053oYMqEuGo1i8+bNaGlpST9mt9vR0tKCDRs25HzeqlWr0NDQgMWLF+u6PbnuijGzIWQLdBKnk/fAEBERFWKF/lwvQ6bnDwQCSCQSaGxszHi8sbER7733XtbnvPLKK7j77rvx5ptvKn6dSCSScW1aKBQatEyh25wH3kVTV1en+40L+QIdERERFWaF/lzPy6WGbRLo6urC+eefj7vuugt1dXWKn7d69WpUV1enf8aOHTtovUrGrTEy4TPQERERaWOV/ryjo0O39Q2ZNFBXVweHw4F9+/ZlPL5v3z6MHj160PIfffQRPvnkE5x++ulwOp1wOp34P//n/+CJJ56A0+nERx99lPV1li9fjs7OzvTPrl270r8rdiBCIxoCAx0REZE2VurP9bxcasgkArfbjRkzZmDdunXpx5LJJNatW4c5c+YMWn7SpEl4++238eabb6Z/zjjjDHzxi1/Em2++OegMnMTj8cDn82X8AKnbnNWMLK1nQ2CgIyIi0kbtTBFG9ed+v1/1egYaMtfUAcCyZcuwcOFCzJw5E7NmzcItt9yCcDiMRYsWAQAuuOACHHTQQVi9ejW8Xi+mTp2a8XzpjRv4uBLhcBijR49WNRChHt/JM9ARERFpo3XqLyP684Fzt2sxpELd2WefjQMHDmDFihVobW3F9OnTsXbt2vTNEzt37jQs7FRUVGgaWVpLQ2CgIyIi0kavuVyt3J8PqVAHAEuXLsXSpUuz/m79+vV5n3vvvfeqft2KigrVz5WoaQgMdERERNroFegkVu3PmRBMVsx38gx0RERE2ugd6CRW7M+ZEkpASUNgoCMiItLGqEAnsVp/zqRQIvkaAgMdERGRNkYHOomV+nOmhRLK1hAY6IiIiNQTQqgehkwtq/TnQ+5GieGm/8WWBw4cAJAak4+BjoiIqHh9fX2IRqPw+/2mBDqJFfpzpgYLsNvt6UGOAcDn8zHQERERaaDHqBXFKnV/zuRgAdFoFMFgEC6XCy6XC8FgUNe55YiIiEYKh8MBm82GYDCIZDJp6muXuj9nqCux/t+519XVoa6uzpBJg4mIiEYCt9uNmpoaxGIxU4OdFfpzhroSynYRpRGTBhMREY0kUrAyK9hZpT9nqCuRfHfFMNgRERFp43a7TQl2VurPGepKQMltzgx2RERE2hgd7KzWnzPUKSSE0GU9xYxbw2BHRESkjVHBzor9OUOdQh0dHZobgpqBCBnsiIiItNE72Fm1P2eoUygej2tqCFpGlmawIyIi0kavYGfl/pyhTiG/36+6IegxVQiDHRERkTZag50R/XksFit6HTnXrduahjm1t0frOfcbgx0REZE2aoOdUf15R0eH6vUMWq9uaxoBim0IRkzmy2BHRESkjZX6c6fTqXld6XXqtqYRQmlDMKIBSBjsiIiItLFKf+73+/Vbn25rGkEKNQQjG4CkULDTawgWIiKi4coK/bnNZtNtXQx1KuVqCGY0AEmuYCeE4Nk7IiIiBazQn+vF+ltoYQMbQiQSMb0BDAx2kUgE7e3tPFNHRESkkBX6cz3od3XeCCU1hAMHDpSsAUjBLhAIIBAIIJlMoqqqyrTXH3KEAES81FtBRFQ8mxPQ8es6klmhP9eKoY5GHhEHAhtKvRVERMWrmwPYXKXeCrKooRM/LUr6zl1K+FpnnlAjmUwiGAwiHo+jrq4OLpeL19QREREVwQr9uVY8U6dBtoso6+rqEAgEEAwGTTltKwW6WCyGuro6uN1u1NTUIBQKGfq6w0bXB6XeAiKiwqoOL/UWDGtW6M/1YP0ttKhcd8XoPWlwPtkCHZC6PVr6fyIiIsrNCv25XnimToVCtzlLDcHIhJ8r0En0HPdmRKg4BLA5Sr0VREQykQDCn5Z6K4Y1K/Tneo5WwVBXJKXj1hjZEAoFOlLB5mCoIyIaQazSn3Pu1xIpdiBCI07dMtARERFpY6X+PB7Xb4gthjqFYrGYqnFr9GwIDHRERETaqJ0pwqj+nHO/lkBHR4fqgQj1aAgMdERERNponfrLiP7c5dJv3EGGOoWcTqem79G1NAQGOiIiIm30msvVyv05Q51Cfr9f84WRahoCAx0REZE2egU6iVX7c4Y6hfQaIqSYhsBAR0REpI3egU5ixf6coa4ElDQEBjoiIiJtjAp0Eqv15wx1JZKvITDQERERaWN0oJNYqT9nqCuhbA2BgY6IiEgbtcOQqWWV/pwzSpRY/5GqA4EAACAejzPQERERqRCNRtHX1wePx2NKoJNYoT/nmToLcLvdqK2tRSwWQywWQ21tLQMdERGRColEAkIIUwOdpNT9OUOdBSSTSYRCofS/Q6GQLlOQEBERjVThcNj01yx1f85QV2L9v3Ovr69HfX29rnPLERERjSRerxeVlZUIhULo6uoy7XWt0J8z1JVQtosojZg0mIiIaKSw2WyoqKiAz+czLdhZpT8fcqHu1ltvxbhx4+D1ejF79mxs2rQp57J33XUXTjzxRNTU1KCmpgYtLS15lzdTvrtiGOyIiIi0qaqqMiXYWak/H1Kh7qGHHsKyZcuwcuVKvPHGGzj66KMxb9487N+/P+vy69evx7nnnosXX3wRGzZswNixY3HKKadg9+7dJm95JiW3OTPYERERaWN0sLNafz6kQt1NN92EJUuWYNGiRZgyZQruuOMOlJeXY82aNVmXv++++3DJJZdg+vTpmDRpEv785z8jmUxi3bp1Jm+5rJhxaxjsiIiItDEq2FmxPx8yoS4ajWLz5s1oaWlJP2a329HS0oINGzYoWkdPTw9isRhGjRqVc5lIJIJQKJTxA+hzF42agQgZ7IiIiLTRO9hZtT8fMqEuEAggkUigsbEx4/HGxka0trYqWsfPfvYzNDc3ZwTDgVavXo3q6ur0z9ixYwGkQp2WhqBlZGkGOyIiIm30CnZW7s+HTKjT6vrrr8eDDz6If/zjH/B6vTmXW758OTo7O9M/u3btAgBUVFSobgh6TBXCYEdERKSN1mBnRH8uhCh6HbkMmWnC6urq4HA4sG/fvozH9+3bh9GjR+d97o033ojrr78ezz//PI466qi8y3o8Hng8nkGPV1RUwG63p7+OraqqUrTdes791n8KkmAwWJLRsokov+COMNwVTlQ1DD6OEFHpSf23VfpzPQdJHjKJwO12Y8aMGRk3OUg3PcyZMyfn837729/i2muvxdq1azFz5kxN21BswjdiMl+esSOyrkQ8idcf+AzvPKnskhAiKg0r9efxeFzzuiRD5kwdACxbtgwLFy7EzJkzMWvWLNxyyy0Ih8NYtGgRAOCCCy7AQQcdhNWrVwMAfvOb32DFihW4//77MW7cuPS1d5WVlaisrFS1DUoTvhENQMIzdkTWdOCDMHraY4h0xxFui6JiFOdwJrIqq/Tnfr9ft/UNqVB39tln48CBA1ixYgVaW1sxffp0rF27Nn3zxM6dOzPCze23345oNIqvf/3rGetZuXIlrr76atXbUaghGNkAJAx2RNbz2ZsdSCYERFJgz39COPykulJvEhHlYYX+3OVy6bauIRXqAGDp0qVYunRp1t+tX78+49+ffPKJYduRqyGY0QAk+YKdnqdziaiwSHcce9/tgstjRyKexM7N7TjsC7Ww2W2l3jQiysMK/bleeGpHg4HfyZeiAWS7xi4cDiMWixn+2kQk2/NOCLHeBFxldrjKHOjaH0Hbpz2l3iwiUsAK/bkehtyZOqvpn/BDoRBsNpvpDaD/Gbu9e/cimUyioqLCtNcnGumEENi5uR2wATa7DQ4XEAkLfPZWJ2oP5b5INBRYoT/XimfqdNA/QHk8npI0ALfbnTEUi8PhMH0biEaqUGsEHbv64PKmDqk2mw1Olw273+xEPJIo8dYRkVJW6M+1YKjTSDpFa7PZ4PV60dfXZ8ikwYV0dXWhr68PXq8XNpsN0WjU9G0gGqk+e7MDiVgSTo98SHWVOdDXHUfrtu4SbhkRKWWV/lwLhjoNBn7nXltba8ikwYV0dXUhFArB5/OhtrYWNTU1uo5QTUS5JeJJfPZGJ+wOG2w2+aYIu8MGCGDXGx2l2zgiUsQq/blWvKZOpVwXUaodqVqt/oFOei2XyzXkThkTDVUHPgijpyMGd/ngz8hOrx0HPuzmmHVEFmaV/lwPPFOnQqG7YvSaNLiQbIFOwjHriMzx2ZsdEEkBh2vwPufy2hGPJLHnP6ESbBkRFWKV/lwv7PmLpPQ2Z6MbQr5AR0TmkMamc7qzH0ptNhtsdmDn5naIJC+JILISq/Tnes79yq9fi1DsuDVGnbploCOyBmlsurLq3IfS/mPWcXgTImuwUn/OUFcCQghVAxHq3RAY6IisYeDYdLk4XDaOWUdkIWoHFjaqP9dzXFl+/apQR0eH6pGl9Tp1y0BHZB0Dx6bLhWPWEVmH1pkijOjPGepKIB6PaxpZWmtDYKAjspZsY9PlwjHriEpPr6m/rNyf8+tXhfx+v+ZhQtSeumWgI7Ke3f8JIZkQ6OuMA0h9Bev1yYdUIeTfAUAyLrDnnU6MmV5t+rYSjXR6z+Vq1f6coU4hl8uly3qKbQgMdETWNPFL9ehpjwEA2j7twf7tgz+xCwGMPdaPyvrUFH41Y8tM3UYi0j/QSazYnzPUlYDShsBAR2RdhxxXk/7/bc/syxrqAKDpSB/PzhGViFGBTmK1/pyhrkQKNQQGOiIiIvWMDnQSK/XnDHUllKshMNARERGpp3YYMrWs0p8z1JXYwIYg/T8DHRERUfGSySTa29uRTCZNCXQSK/TnDHUWMLAhMNARERGpE4lEEIvF0NjYaFqgk5S6P2eoI6IhLRyJ40BXD3oicdhsQIXHhQZfObwuh6nbIQDO70pEJcVQZwH9v3MH9J9bjmi42tPejV3BzAF9Qz1RtHb0YFy9Dw0+c4YQsTlssNlt6A3FMx53uO2wO3NPIUZE+vN4PBBCIBAImPr1K1D6/pyhrsRyXUTJYEeU34Gu3kGBTiKEwI79nXA7HfCXG39AH3/8KPibvYMetzlsqBvP+V6JzGS321FTU4NQKGRqsLNCf85QV0K5GoDekwYTDTdJIXIGuv4+a+uCv7zW8O1xlzsxeorP8NchImVsNhtqa2sRDAZNCXZW6c8592uJFLrNWa9Jg4mGo55oHLF4ouBy4b4YovGkCVtERFZjt9tRW1sLl8uFQCCAaDRqyOtYqT/nmboSUDpuDc/YEWUXKyKoxRJJuJ3Gf35NJAU6eiLoiaZu2Kj0uOAr88DOS+qISkYKdkadsbNaf85Qp1AsFtNlPcUORMhgRzSY26n8ztZillWroyeCj/d3DgqbZR4nDmvwo9zDQy1RqRgV7KzYn/NIo1BHRwd8Pp+mhqB2ZGkGO6JMZW7lhy6Xw9hTZaHeKLbvac/6u95IHNv2tmHqQbXwmDzEiqQvlkCoN4pkUsDrdqCqzA2HrbSnD+NJgVBvFNFYAk6HDVVlbnhMCN/5CAF0R2LoiaY+wFd4XKhwu1Dit4p0onews2p/zlCnkNPp1NQQtE4VwmBHJLPKV5pCAJ8cCOVdJh5PYmdbFw5v9JuzUdLrJgU+PRBCoKs343GX045x9dUYVeExdXsk+0O92BnoQiKZeVaz0V+Bg2srYS9BiuqJxvHx/k6E+zK/kan0ujC+0Y+yEgVy0pdewU7v/lxPvFFCIb/fr/piS73mfuPNE0TW0hONozcaL7hce3cECRMHJk4Kge172wYFOiB1PeIHe9sR7O4zbXskrR092LG/c1CgA4B9HWF82NoJYfL4zX2xBLbubhsU6ACguy+GrbuD6IsVvimHhgatN08Y0Z+Hw2HV6xmIoU4h6fboYhuC3pP5MtgRWUdfrHCgA1Lj5sUS5t2Fu6+zF929+a8D/iQQQtzEoBmJJ7AzmP+Y1R7uQ1vY3LD5SSCERJ7axONJ7Azof0aFSkdtsDOqP2eoK5FiG4LeDUDCYEdkDY4ivgc28zq2bGfoBorHk+gMR0zYmpS27giEgtNwSrZdL1GF70F7OIJYglPADSdW6s8rKvQboJyhrkhKG4JRDUDCYEdUepVe5dfjuEwYVkWi9Axir8Ll9KDka+piltOD0vep2GVpaLBKf85QV2KFGoLRDUCSL9gls1yzQkT6clrljo0Bkgq/Vt3dVnhWDr0cCPUoWi5i4vVr9iLqV4obOMh4VunP9cJQp1KuhmB2A8gW7GKxmGEjZxMRDRfFDI1T5uYdsMOVVfpzPXBIEw0G3h7t8XjQ19dnegPof3t0NBpFb28vPJ7SDFdARDRUFHOdI8/UDW9W6c+14pk6jaSGIIRAX18fvF5vSRpAVVUVvF4v+vr6IIQwdOJiIiKi4cYq/bkWDHU66H87ciQSKclXn9FoFJGIfBdXIsFxlYiIiIphhf5cC4Y6jfp/597U1KR6QEMtotEoAoEAXC4XmpqaUFlZqdtctURERCOBFfpzrRjqNBh4EaXWkarV6B/oamtrYbfbUVFRAZfLZfhrExERDQdW6M/1wFCnUq67YsxsCNkCncTp5D0wREREhVihP9cLQ50KhW5zNqMh5At0REREVJgV+nM9L5cackng1ltvxbhx4+D1ejF79mxs2rQp7/KPPPIIJk2aBK/Xi2nTpuHpp5/W9PpKx60xsiEw0BEREWljlf68o6NDt/UNqTTw0EMPYdmyZVi5ciXeeOMNHH300Zg3bx7279+fdfl//etfOPfcc7F48WJs2bIFZ511Fs466yy88847ql6/2IEIjWgIDHRERETaWKk/1/NyqaITwcKFC/HSSy/ptgHFuOmmm7BkyRIsWrQIU6ZMwR133IHy8nKsWbMm6/K///3vMX/+fFxxxRWYPHkyrr32Whx77LH405/+VPRrh8NhVSNL69kQGOiIiIi0UTtThFH9ud/vV72eQdtY7BM6OzvR0tKCww8/HNdddx12796t28bkE41GsXnzZrS0tKQfs9vtaGlpwYYNG7I+Z8OGDRnLA8C8efNyLg+kxqUJhUIZP0Aq1KkdWVqPhsBAR0REpI3Wqb+M6M9tOs5WUnQyeOyxx7B7925cfPHFeOihhzBu3DiceuqpePTRRw0dGy0QCCCRSKCxsTHj8cbGRrS2tmZ9Tmtra1HLA8Dq1atRXV2d/hk7diwAoKKiQtPI0loaAgMdERGRNnrN5Wrl/lzV2urr67Fs2TK89dZb2LhxIw477DCcf/75aG5uxo9+9CN88MEHum6kmZYvX47Ozs70z65duwCkQp1WahoCAx0REZE2egU6iVX7c01r3Lt3L5577jk899xzcDgcOO200/D2229jypQpuPnmm/XaRgBAXV0dHA4H9u3bl/H4vn37MHr06KzPGT16dFHLA4DH44HP58v40VMxDYGBjoiISBu9A53Eiv150WuNxWL4n//5H3zlK1/BIYccgkceeQSXX3459uzZg7/85S94/vnn8fDDD2PVqlW6bqjb7caMGTOwbt269GPJZBLr1q3DnDlzsj5nzpw5GcsDwHPPPZdzebMoaQgMdERERNoYFegkVuvPi76PtqmpCclkEueeey42bdqE6dOnD1rmi1/8oq53c0iWLVuGhQsXYubMmZg1axZuueUWhMNhLFq0CABwwQUX4KCDDsLq1asBAD/84Q8xd+5c/O53v8OCBQvw4IMP4vXXX8edd96p+7YVS2oIwWAQgUAAdXV1cLvdABjoiIiItDI60Ems1J8XHepuvvlmfOMb34DX6825jN/vx44dOzRtWDZnn302Dhw4gBUrVqC1tRXTp0/H2rVr0zdD7Ny5M+MNO/7443H//ffjqquuws9//nMcfvjheOyxxzB16lTdt02NbA0BAAMdERGRSkIIhMNh9PT0GB7oJFbpz4sOdeeff74R26HY0qVLsXTp0qy/W79+/aDHvvGNb+Ab3/iGwVulXv+GcODAAQCpr5oZ6IiIiIrX19eHaDQKv99vSqCTWKE/Z2qwALvdnnFDhs/nY6AjIiLSQI9RK4pV6v6cycECotEogsEgXC4XXC4XgsGgIZMGExERDXcOhwM2mw3BYBDJZNLU1y51f85QV2L9L6Ksq6tDXV2dIZMGExERjQRutxs1NTWIxWKmBjsr9OcMdSWU7a4YIyYNJiIiGkmkYGVWsLNKf85QVyL5bnNmsCMiItLG7XabEuys1J8z1JWAknFrGOyIiIyVSApDliXrMDrYWa0/Z6hTSAh9duhiBiJksCMiMk5PNK542b5YwsAtISMZFeys2J8z1CnU0dGhuSGoGVmawY7IumIJ5R/2dPpcqIjdblO03JjaSoO3RNZQXa5oOa/bYfCWyASUFyVpZgFJd3oHO6v25wx1CsXjcU0NQctUIQx2RNbU3ad8X4wmzDvTU+5WNq58udtl8Jb0ey2P9bapzKXstWw2oEzhe0rWpVews3J/zlCnkN/vV90Q9Jj7jcGOyHqKuSzDzBM9Db7CZ8XcTgd85W4TtiZlVEUZHAqOffUKtl0vLocNtVW5p7yU1FaWwanw7CdZm9ZgZ0R/HovFil5HznXrtqZhTu3t0XpO5stgR2QtXoVnb+x2G9xO8w63tVVlqKnIHVZsNhsmNFbDYTMvqLgcNhza4Mu7TGN1OfwmBk0AOLi2Cm5X7q98PS4HDq4zb6opMp7aYGdUf97R0aF6PYPWq9uaRoBiG4KeDUDCYEdkHWUuJyq9hb/Cq60qg93EAGW3AYeNrkZzTeWg6+vKPS5MPmgUfGXmhicAqK30YmJzDbwDQpTDbsfBdVU4uC5/6DOC2+nAlINGZQ3Boyq9mHLQKLgc7CqHGyv1506nfl/t8yKBIkkNIRAIIBgM5iyuEQ1A0n/S4EAggLq6Orjd5h+giUrFKhet22zAuPpqbN0dRDLHkBdulwNjR5l/psdus2FsbSWaairQE4khnhTwuhwoczlhYr4cxF/uge/gevRG44jEE3DabajwuOAo4debHqcDRzT5EYkn0BOJp6+h8zjNu2mDzGeV/tzv9+u3Pt3WNIIUSvhGNgBJoTN2eg3BQmRF4YjyoSgicWNvUKjwODHloFqUewafsasu9/z/Mz2lCyxOuw2+MjdGVXhQ7i5toJPYban3bVSFB74yd0kDXX8epwM1FR74yz0MdCOEFfpzm447Jc/UqZQr4ZvRACS5ztgJIfi1LA1r8YTyi5vjCQGFN16qVuFx4sgxtQhHYuiJxmCDDZVel+K7UImodKzQn+vF+ltoYQMTfiQSMb0BDDxjF4lE0N7ezjN1NKy5iziLUsyyWthtQJXXhUZfORp8ZQx0REOIFfpzPQyNrbQwqSFIid7pdJreAPpfbCndHs1r7Gg4K3M74clzx6LEV+4u6VefRDR0WKE/12robCkR0f9ntwGHFLhT0mYDxtZyKAoiGjkY6jSSEr2U8LXOPKFGMplEMBhEPB5HXV0dXC4Xr6mjYa+mwoPxjdVZp8RyOOw4oqkGlVluXiAiysYK/blWvOhDg2wXUSq5PVpPUqCLxWLpGyVqamoQCoUMfV0iK6ivKoOvzI227gh6IjHABlR6XBhVWcavXYlIMSv053qw/hZaVK67YvSeNDifbIEOSN0ezWvqaKTwOB1o8pdjQmM1JjRUo7G6nIGOiBSzQn+uF4Y6FQrd5mxGQ8gV6CR6jntDREQ0HFmhP9dztAqGuiIpHbfGyIZQKNARERFRflbpzzn3a4kUOxChEQ2BgY6IiEgbK/Xn8bjyGXIKYahTKBaLqRqIUM+GwEBHRESkjdqZIozqzzn3awl0dHSoHllaj4bAQEdERKSN1qm/jOjPXS79hl5iqFNI68jSWhoCAx0REZE2es3lauX+nKFOIb/fr3mMGjUNgYGOiIhIG70CncSq/TlDnUJ6DRFSTENgoCMiItJG70AnsWJ/zlBXAkoaAgMdERGRNkYFOonV+nOGuhLJ1xAY6IiIiLQxOtBJrNSfM9SVULaGwEBHRESkjdphyNSySn/uNPwVKC+pIQQCAQQCAQBAPB5noCMiIlIhGo2ir68PHo/HlEAnsUJ/zjN1FuB2u1FbW4tYLIZYLIba2loGOiIiIhUSiQSEEKYGOkmp+3OGOgtIJpMIhULpf4dCIUMmDSYiIhopwuGw6a9Z6v6coa7E+n/nXl9fj/r6ekMmDSYiIhoJvF4vKisrEQqF0NXVZdrrWqE/Z6groWwXURoxaTAREdFIYbPZUFFRAZ/PZ1qws0p/zlBXIvnuimGwIyIi0qaqqsqUYGel/pyhrgSU3ObMYEdERKSN0cHOav05Q53Jihm3hsGOiIhIG6OCnRX7c4Y6hfS4i0bNQIQMdkRERNroHeys2p8z1CkUDoc1NQQtI0sz2BEREWmjV7Czcn8+ZEJdW1sbzjvvPPh8Pvj9fixevBjd3d15l//BD36AiRMnoqysDAcffDAuu+wydHZ2qnr9iooK1Q1Bj6lCGOyIiIi00RrsjOjPhRBFryOXIRPqzjvvPLz77rt47rnn8OSTT+Kll17CRRddlHP5PXv2YM+ePbjxxhvxzjvv4N5778XatWuxePFiVa+v9vZoPed+Y7AjIiLSRm2wM6o/7+joUL2egYbE3K/btm3D2rVr8dprr2HmzJkAgD/+8Y847bTTcOONN6K5uXnQc6ZOnYr/+Z//Sf97woQJ+PWvf41vf/vbiMfjcDqL/9OrqqoAID1atPTvXIyYzLf/3HLBYLAk06AQERENZVbqz3fu3Kl5XZIhkQY2bNgAv9+fDnQA0NLSArvdjo0bNypeT2dnJ3w+X95AF4lEEAqFMn76U5rwjWgAEp6xIyIi0sYq/bnf79dtfUMi1LW2tqKhoSHjMafTiVGjRqG1tVXROgKBAK699tq8X9kCwOrVq1FdXZ3+GTt27KBlCjUEIxuAhMGOiIhIGyv05y6XS7d1lTTUXXnllbDZbHl/3nvvPc2vEwqFsGDBAkyZMgVXX3113mWXL1+Ozs7O9M+uXbuyLperIZjRACT5gl08HjfsdYmIiIYLK/TneinpNXU//vGPceGFF+ZdZvz48Rg9ejT279+f8Xg8HkdbWxtGjx6d9/ldXV2YP38+qqqq8I9//KNgIvZ4PPB4PIq2f+B38hUVFaY3gGzX2IXDYcRiMcNfm4iIaDiwQn+uh5KGuvr6etTX1xdcbs6cOejo6MDmzZsxY8YMAMALL7yAZDKJ2bNn53xeKBTCvHnz4PF48MQTT8Dr9eq27ZL+DSEUCsFms5neAPoHu7179yKZTKKiosK01yciIhrqrNCfazUkrqmbPHky5s+fjyVLlmDTpk149dVXsXTpUpxzzjnpO193796NSZMmYdOmTQBSRTnllFMQDodx9913IxQKobW1Fa2trUgkErpuX/8A5fF4StIA3G53xhlGh8Nh+jYQERENZVboz7UYEkOaAMB9992HpUuX4uSTT4bdbsfXvvY1/OEPf0j/PhaLYfv27ejp6QEAvPHGG+k7Yw877LCMde3YsQPjxo3TZbuk79xtNhs8Hg/6+vrQ1dVV8PZovXV1daGvrw9erxe9vb2IRqOmvj4REdFQZpX+XIshE+pGjRqF+++/P+fvx40blzEq80knnaTrKM3ZZLuIsqurS/G4N3qRXtPn86GqqgrhcFiXuWqJiIhGAqv051oNmVBnNbnuiil2QEOtBgY6IHV79FA7ZUxERFQKVunP9cBQp0Kh25zNagjZAp2Es0wQERHlZ5X+XC8MdUVSOm6N0Q0hX6AjIiKi/KzSn+t5uRRDXRGKHYjQqIbAQEdERKSelfpzhroSEEKoGohQ74bAQEdERKSe2pkijOrP9RxXlqFOoY6OjvQgv8XehKBXQ2CgIyIiUk/r1F9G9Od6zt3OUKdQPB5Hc3Oz6rtKtTYEBjoiIiL19JrLVe/+vLOzU9V2ZMNQp5Df79c8TIjahsBAR0REpJ5egU5i1f6coU4hl8uly3qKbQgMdEREROrpHegkVuzPGepKQGlDYKAjIiJSz6hAJ7Faf85QVyKFGgIDHRERkXpGBzqJlfpzhroSytUQGOiIiIjUUzsMmVpW6c8Z6kpsYEOQ/p+BzmQiUeotICLKxOOSKslkEu3t7Ugmk6YEOokV+nOGOgsY2BAY6Eog/Gmpt4CIiHQQiUQQi8XQ2NhoWqCTlLo/56zvRERERMMAz9RZQP/v3AHjJg2mLKoOL/UWEBEV1vCFUm/BkOHxeCCEQCAQMPXrV6D0/TlDXYnluoiSwY6IiKh4drsdNTU1CIVCpgY7K/TnDHUllKsB6D1pMA1gcwJ1c0q9FUREZBCbzYba2loEg0FTgp1V+nOGuhIpdJszg52BbDbAps8MIUREZE12u92UYGel/pw3SpSA0nFrqqqq4PP5EAqF0NXVZeIWEhERDX1SsHO5XAgEAohGo7qu32r9OUOdQrFYTJf1FDsQIYMdERGRekYFOyv25wx1CnV0dGhuCGpHlmawIyIiUk/vYGfV/pyhTiGn06mpIWidKoTBjoiISD29gp2V+3OGOoX8fr/qhqDX3G8MdkREROppDXZG9OfhcFj1egZiqFNIuj262Iag92S+DHZERETqqQ12RvXnDHUlUmxD0LsBSBjsiIiI1LNSf15RUaHb+hjqiqS0IRjVACQMdkREROpZpT9nqCuxQg3B6AYgyRfsksmkYa9LREQ0HFilP9cLQ51KuRqC2Q0gW7CLxWK6D7BIREQ0HFmlP9cDpwnTYOAUJB6PB319faY3gP5TkESjUfT29sLj8Zj2+kREREOZVfpzrXimTiOpIQgh0NfXB6/XW5IGUFVVBa/Xi76+PgghDJ24mIiIaLixSn+uBUOdDvrfjhyJREry1Wc0GkUkEkn/O5FImL4NREREQ5kV+nMtGOo06v+de1NTk2GTBucTjUYRCATgcrnQ1NSEyspK3eaqJSIiGgms0J9rxVCnwcCLKI2aNDif/oGutrYWdrsdFRUVcLlchr82ERHRcGCF/lwPDHUq5borxsyGkC3QSZxO3gNDRERUiBX6c70w1KlQ6DZnMxpCvkBHREREhVmhP9fzcikmgSIpHbfGyIbAQEdERKSNVfrzjo4O3dbHNFCEYgciNKIhMNARERFpY6X+XM/LpZgIFAqHw6pGltazITDQERERaaN2pgij+nO/3696PYO2Ubc1DXPhcFj1yNJ6NAQGOiIiIm20Tv1lRH9us9mKXkfO7dNtTcNcRUWFppGltTQEBjoiIiJt9JrL1cr9+ZBJB21tbTjvvPPg8/ng9/uxePFidHd3K3quEAKnnnoqbDYbHnvsMVWvX1FRoep5/alpCAx0RERE2ugV6CRW7c+HTEI477zz8O677+K5557Dk08+iZdeegkXXXSRoufecsstup7e1KKYhsBAR0REpI3egU5ixf58SKSEbdu2Ye3atfjzn/+M2bNn44QTTsAf//hHPPjgg9izZ0/e57755pv43e9+hzVr1pi0tYUpaQgMdERERNoYFegkVuvPh0RS2LBhA/x+P2bOnJl+rKWlBXa7HRs3bsz5vJ6eHnzrW9/CrbfeitGjRyt6rUgkglAolPFjhHwNgYGOiIhIG6MDncRK/fmQSAutra1oaGjIeMzpdGLUqFFobW3N+bwf/ehHOP7443HmmWcqfq3Vq1ejuro6/TN27FjV211ItobAQEdERKSeEEL1MGRqWaU/L2liuPLKK2Gz2fL+vPfee6rW/cQTT+CFF17ALbfcUtTzli9fjs7OzvTPrl27VL2+Uv0bwoEDB3DgwAEGOiIiIpX6+vrQ3d1tWqCTWKE/L+ms7z/+8Y9x4YUX5l1m/PjxGD16NPbv35/xeDweR1tbW86vVV944QV89NFHgwb1+9rXvoYTTzwR69evz/o8j8cDj8ej9E/Qhd1uh8/nQyAQAAD4fD4GOiIiIg30GLWiWKXuz0sa6urr61FfX19wuTlz5qCjowObN2/GjBkzAKRCWzKZxOzZs7M+58orr8R3v/vdjMemTZuGm2++Gaeffrr2jddRNBpFMBiEy+UCAASDQdTV1cHtdpd4y4iIiIYWh8MBm82GYDBo+rdepe7Ph8TpoMmTJ2P+/PlYsmQJNm3ahFdffRVLly7FOeecg+bmZgDA7t27MWnSJGzatAkAMHr0aEydOjXjBwAOPvhgHHrooSX7Wwbq/517XV0d6urqDJk0mIiIaCRwu92oqalBLBZDMBhEMpk05XWt0J8PiVAHAPfddx8mTZqEk08+GaeddhpOOOEE3Hnnnenfx2IxbN++HT09PSXcyuJku4jSiEmDiYiIRhIpWJkV7KzSn5f069dijBo1Cvfff3/O348bNw5CiLzrKPR7M+W7K0ZqCMFgEIFAgF/FEhERFcntdqOurg6BQMDQr2Kt1J8PmTN1w4mS25x5xo6IiEgbKdgZdcbOav05Q51Cep3lK2bcGgY7IiIibYwKdlbszxnqFOro6NDcENQMRMhgR0REpI3ewc6q/TlDnULxeFxTQ9AysjSDHRERkTZ6BTsr9+cMdQr5/X7VDUGPqUIY7IiIiLTRGuyM6M9jsVjR68i5bt3WNMypvT1az7nfGOyIiIi0URvsjOrPOzo6VK9n0Hp1W9MIUGxDMGIyXwY7IiIibazUnzud+o0ux1BXJKUNwYgGIGGwIyIi0sYq/fnAOeo1rU+3NY0ghRqCkQ1AUijYWWmgZSIiIiuyQn9us9l0WxdDnUq5GoIZDUCSK9gJIXj2joiISAEr9Od6sf4WWtjAhhCJRExvAAODXSQSQXt7O8/UERERKWSF/lwPQ2MrLUxqCFKidzqdpjeA/hdbSrdHc65YIiIi5azQn2s1dLaUiIiIiHJiqNNISvRSwtc684QayWQSwWAQ8XgcdXV1cLlcvKaOiIioCFboz7ViqNNg4EWUHo/HkEmD85ECXSwWQ11dHTweD2pqanS9m4aIiGg4s0J/rgeGOpVy3RWj96TB+QwMdNJ1dDabjdfUERERKWCF/lwvDHUqFLrN2YyGkCvQSXimjoiIKD8r9Od6jlbBUFckpePWGNkQCgU6IiIiys8q/Tnnfi2RYgciNKIhMNARERFpY6X+PB6Pa16XhKFOoVgspmogQj0bAgMdERGRNmpnijCqP9dz7lenbmsa5jo6OlBdXa1qIEKpIQQCAQSDQVXrsFygS8ZK+/pERDT0JEs73JbWqb+M6M97e3uLen4+DHUKaR1ZWktDsFygA4C210u9BURERIrpNZer3v25nqGOX78q5Pf7NU8VoubUrSUDHRER0RCiV6CTWLU/55k6hfQaIqSYhG/JQNfwhVJvARERDQeHXWTKy+gd6CRW7M95pq4ElCR8SwY6IiKiIcSoQCexWn/OM3Ulki/hWy7Q2T3AoReUdhuIiIiKYHSgk1ipP2eoK6FsDQGAtQIdANhsgMNb6q0gIiJSJBaLobOz0/BAJ7FKf85QV2L9G0IgEAAAxONx6wQ6IiKiISQajaKvrw8ej8eUQCexQn/Oa+oswO12o7a2FrFYDLFYDLW1tQx0REREKiQSCQghTA10klL35wx1FpBMJhEKhdL/DoVChkwaTERENFKEw2HTX7PU/TlDXYn1v4iyvr4e9fX1hkwaTERENBJ4vV5UVlYiFAqhq6vLtNe1Qn/OUFdC2e6KMWLSYCIiopHCZrOhoqICPp/PtGBnlf6coa5E8t3mzGBHRESkTVVVlSnBzkr9OUNdCSgZt4bBjoiISBujg53V+nOGOpMVMxAhgx0REZE2RgU7K/bnDHUK6XEXjZqRpRnsiIiItNE72Fm1P2eoUygcDmtqCFqmCmGwIyIi0kavYGfl/pwzSijk9XrR0dGBeDyOioqKop4rhEB7ezvi8ThqamoApEa8LlZ1dTXa29uxf/9+1NTUwGazZV0uFoshHo+js7Oz6NcgIiIaqjo7OxGPxxGLxbL+3uPxoLy83FL9ucPhKPr5uTDUKdTd3Q23241AIIC2tjY4ncreOiEE4vE4hBBwOp3pqUPUSiaT6O3tRXd3N5xOZ9Zgl0wmIYTA008/nd5OqZG7XC7F256LEALRaBRCCLjdbsUjdieTSUSjUdhsNrjd7pyhVCk1f5Pabc9F7d/EeqSwHjLWQ8Z6pLAeMqXbHo/H0dHRAZvNlnfd8XjcMv15X1+fpvX0x1CnkNSQotEoEokEABQ85ZpMJhGLxdKNV480brfbYbPZEI1GEYvFcu4UQgh4PB64XC6Ew2GEw2FUVlYW/akkF6/Xi/b2dnR3d6OmpgYulyvv8rFYDKFQCE6nM+9ZxmKFw2F0d3cr+tsGfsIqtM1KuVwutLe3I5FIKPrbWI8U1kPGemRuM+vBevRXTD1isVi6n8wX6qzUn/f29mpel4ShTiGpgXi9XkQikfQnF4/Hk3V5qQEAqdO9Wj/d9Dcw2Hk8nkGNN5lMwuVyIRKJoKenB36/H1VVVbptAwA0NDQgGAyis7Mz73UF0WgUnZ2dhkyu7Ha74XQ60zt8rr9RugYimUyioaFB17n43G43XC4XAoEAQqFQ3r+xq6uL9QDr0R/rIWM9UlgPmZp6SP11oWWt0p/rFdiBIXSjRFtbG8477zz4fD74/X4sXrwY3d3dBZ+3YcMGfOlLX0qPLv2FL3xBcyqWihqPxxGJRAb9PplMIhKJpBO9ng1A4nQ64Xa7IYRAJBLJerFlOBxGKBSCz+fTfYcEUo2xtrY2fYDIdl1BNBpFIBCAy+UybHLlQhe/armoVSklF792dXWxHmA9+mM9ZKxHCushM6MeVujP9fy7hkyoO++88/Duu+/iueeew5NPPomXXnoJF110Ud7nbNiwAfPnz8cpp5yCTZs24bXXXsPSpUt1eQNzNQQzGoAkX7CLx+Po7u42bIeU5NsxzdghJbkOlGYcICX5DpRGHyAlrIeM9ZCxHimsh4z1kFmhP9eLTQghSr0RhWzbtg1TpkzBa6+9hpkzZwIA1q5di9NOOw2fffYZmpubsz7vc5/7HL785S/j2muvVf3aoVAI1dXVWLlyJSorKwf9Xjp163Q60193mt0A4vF4+gJSj8eDaDSKZDKJurq69N05Rht4MAJg2g7ZX/+DUUVFhWkHyP4GHoyMPmOaDeshYz1krEcK6yEbbvWIRqPYu3evoq9fBypVf97d3Y1rrrkGnZ2d8Pl8mtY1JM7UbdiwAX6/Px3oAKClpQV2ux0bN27M+pz9+/dj48aNaGhowPHHH4/GxkbMnTsXr7zyiq7b1j/h9/b2liTR9z9j19vbi0QiAbvdrttFrUr0/8R14MABHDhwwPQDJJD5CXjv3r2mHyCBzE/Ae/fuNf0ACbAe/bEeMtYjhfWQsR4yK/TnWg2JUNfa2oqGhoaMx5xOJ0aNGoXW1tasz/n4448BAFdffTWWLFmCtWvX4thjj8XJJ5+MDz74IOdrRSIRhEKhjJ9C+l/kaLPZStIABg5vYuaO0P81+3/K8Pl8JdmO/mHW4/GYeoCUuN3ujItuzQzYEtZDxnrIWI8U1kPGesis0J9rUdJQd+WVV8Jms+X9ee+991StW7o+4Hvf+x4WLVqEY445BjfffDMmTpyINWvW5Hze6tWrUV1dnf4ZO3ZswdeJRCLpu22kf5tNuqZO2gkSiYTpM09Eo1EEg0G4XC64XC4Eg0FVgzJqIZ3Gt9ls8Hq96OvrM2QS50K6urrQ19cHr9cLm81WkplAWA8Z65HCeshYDxnrkWKV/lyLkkbQH//4x7jwwgvzLjN+/HiMHj0a+/fvz3g8Ho+jra0No0ePzvq8pqYmAMCUKVMyHp88eTJ27tyZ8/WWL1+OZcuWpf8dCoVyBrtsF1FK38kDyHl7tN76Xwfg8XgQi8UQi8XQ0dGBhoYGUz7tDLwuAwCCwSACgYBpXydku8hYumYFgGlfJwy8yFh6b4LBoGlfJ7AeMtYjhfWQsR4y1iPFKv25ViUNdfX19aivry+43Jw5c9DR0YHNmzdjxowZAIAXXngByWQSs2fPzvqccePGobm5Gdu3b894/P3338epp56a87U8Ho+i4uW6K0Z6rlkNYWCgAwCHw5Ee+dqMHTPXXUq1tbWm7Zi57hqTDoxmHSiz3TUmXbNi1oGS9ZCxHimsh4z1kLEeKVbpz/UwJK6pmzx5MubPn48lS5Zg06ZNePXVV7F06VKcc8456Ttfd+/ejUmTJmHTpk0AUt+FX3HFFfjDH/6ARx99FB9++CF++ctf4r333sPixYs1bU+h25wLjXujl2yBTmK321FTU2PYpMGSfLedKxmHSA+FhgHQaxLnQvINA2D0JM4S1kPGeqSwHjLWQ8Z6pFilP9fLkAh1AHDfffdh0qRJOPnkk3HaaafhhBNOwJ133pn+fSwWw/bt29HT05N+7PLLL8fy5cvxox/9CEcffTTWrVuH5557DhMmTFC9HUrHrTG6IeQLdBKXy2XojqlkHCGjd0yl4zoZfaBUMq6T0QdK1kPGeqSwHjLWQ8Z6pFilP5dmq9DDkBinrpT6j1NXXl5e9Lg1SsJXsQqtM5lMIplMoqmpKT2/nd5jMBW7TiMG1VSzTiMG1Sx2nayHjPVIYT1krIeM9Ugp5r1TOk6dmoGFjerPu7u7cf3114+cceqsQJq1odhxa/RO+Goald6fuNTs5Hp/4lJ70NX7E7Cagy7rIWM9UlgPGeshYz1SjKiHlfrzETlNWKlFo1HVAxHq1RC0fErQa8fU8qlNrx1T66dovQ6UWj5Fsx4y1iOF9ZCxHjLWI0XPemiZKcKI/rz/2HhaMdQVQcvI0lobgh6nfbXumHqchte6Y+r1tYjWA6UeX4uwHjLWI4X1kLEeMtYjRY966DH1lxX681wY6hRyuVyaR5ZW2xD0bABqd0w9r6tQu2PqfZ2L2gOlnte5sB4y1iOF9ZCxHjLWI0VLPfScy9UK/Xk2DHUK6fWdd7ENwYgGUOyOacSFssXumEZcuAwUf6A04sJl1kPGeqSwHjLWQ8Z6pKiph56BTmKF/nwghroSUNoQjGwASndMI3ZIidId06gDpETpgdKIA6SE9ZCxHimsh4z1kLEeKcXUw4hAJ7FCf94fQ12JFGoIZjSAQjumkTukpNCOafQBUlLoQGnkAVLCeshYjxTWQ8Z6yFiPFCX1MDLQSazQn0sY6kooV0MwswHk2jHN2CEluXZMsw6QklwHSjMOkBLWQ8Z6pLAeMtZDxnqkDKyHNJCv2mHI1LJCfw4w1JXcwIZgdgMABu+YkUjEtB1SMnDHjEQiph4gJQMPlGYeICWsh4z1SGE9ZKyHjPVI6V+P9vZ2JBIJUwOdxAr9OUOdBfRvCGY3AIm0Y0qfsJxOp2k7pETaMZ1OZ/oTsJkHSEn/A6XZB0gJ6yFjPVJYDxnrIWM9UqR6OBwOJBIJ0wOdpNT9OUMdERER0TDAUGcB/U/RGjlpcD7SJyzpE1c8HjdkEud8pGtS4vF4+hOvEZM4F9L/KwwjJ9XOh/WQsR4prIeM9ZCxHilSPRKJBBwOB2w2G6LRKOLxuGnbAJS+P2eoK7GB37nrPbecEgMvavV4PLrO9afEwIuMPR6PrnP9KTXwmhS9515UgvWQsR4prIeM9ZCxHin961FTUwOHwwGPx2N6sLNCf85QV0K5LqI0syHkuktJ70mc88l115jekzgXkusiYzMPlKyHjPVIYT1krIeM9UgZWA9pHlWbzWZqsLNCfw4w1JVMobtizGgIhW47N2PHLDQMgFkHykJ3jZlxoGQ9ZKxHCushYz1krEeKknqYEeys0J9LGOpKQOltzkY2BKXjCBm5Yyod18noA6XSYQCMPFCyHjLWI4X1kLEeMtYjpZh6GBnsrNCf98dQp5BejbHYcWuMaAjFDgxpxI5Z7ECdRh0oix3XyYgDJeshYz1SWA8Z6yFjPVLU1MOIYGeF/nwghjqFYrGY5oagdiBCPRuC2pG+9dwx1Y68rveBUu1AnXoeKFkPGeuRwnrIWA8Z65GipR56Bjsr9OfZMNQVQUtD0DqytB4NQevULXrsmFqn0tHrQKl15HU9DpSsh4z1SGE9ZKyHjPVI0aMeegQ7K/TnuTDUKeR2u1U3BL2mCtHSEPSai0/LjqnX3IhaD5R6TaWj5UDJeshYjxTWQ8Z6yFiPFD3roSXYGdGfS/PV6oGhTiG1t0frPfebmmCn9+TKanZMvSe7Vnug1HtuRDUHStZDxnqksB4y1kPGeqQYUQ8r9ed63kDCUFeEYhuCUZP5FhPs9N4hJcXsmHrvkJJiD5RGTXZdzIGS9ZCxHimsh4z1kLEeKUbWwyr9uZ5z5DLUFUlpQzCqAUiUBLtYLGbIDilRsmMatUNKlB4ojTpASpQcKI06QEpYDxnrkcJ6yFgPGeuRYpX+XBowWQ8MdSoUaghGNwBJvmCXTCbR3t5u2A4pybdjGr1DSgodKI0+QEryHSiNPkBKWA8Z65HCeshYDxnrkWKV/lwvDHUq5WoIZjeAbMEukUikt8HIHVKSbcc0a4eU5DpQmnWAlGQ7UJp1gJSwHjLWI4X1kLEeMtYjxSr9uR6cpd6AoUxqCJFIBNFoFLFYDMlk0vQGIL1WPB5P7xB2ux1+v9/wHVIi7ZiBQACBQCC9PWbskBLpQBkMBhEIBODxeNDX12faAVIivVYoFEI0GkUkEjHtAClhPWSsRwrrIWM9ZKxHilX6c614pk4jqSEIIdJhqhQNQLrYUjp97XA4TNshJW63G7W1tYjFYojFYqitrTVth5RIB0ohBPr6+uD1ek09QEqqqqrg9XrR19cHIYSpB0gJ6yFjPVJYDxnrIWM9UqzSn2vBUKeD/mPMCCEMmzQ4n3g8DiFE+t9GTJ5cSDKZRCgUSv87FAqVZDvC4XD6/6VPXWaTPvFm2yazsB4y1kPGeqSwHjLWQ2aF/lwLhjqN+n/nXlZWZtikwfnE43FEo1HYbDaUlZXB4XAgmUyaumP2vwaivr4e9fX1hkziXEj/a1KampoMm1Q7n/7XpDQ1NRk2qXY+rIeM9ZCxHimsh4z1kFmhP9eKoU6DgRdRGjVpcD79A520DW63G3a7Hd3d3absmNkuajViEudCBl5kbNSk2vlku8jYiEm182E9ZKyHjPVIYT1krIfMCv25HnijRAHSV5q9vb0Zj0sXUdrtdgghBp2yjUaj6O3thcvlMuzahGQymX5dt9uNRCKRsc1utxutra3o6upCRUWFIdsghEBHRwfi8Tj8fj96e3sz3iu3242Ojg6Ew2H4/X7YbDZDtiMcDiMcDqOiogLJZBKdnZ3p37lcLoTDYezcuRN+v1/XMYH6i8Vi6OjogNPpRHl5+aADos1mYz3AerAerAfrkWJEPWKxWHodSutX6v5c2t7+l1CpZRN6rGUY++yzzzB27NhSbwYRERENY7t27cKYMWM0rYOhroBkMok9e/agqqpqUOoPhUIYO3Ysdu3aBZ/PV6ItLC2+Byl8H/geSPg+8D2Q8H1I4fuQ/z0QQqCrqwvNzc2azwTy69cC7HZ7weTs8/lGbEOV8D1I4fvA90DC94HvgYTvQwrfh9zvQXV1tS7r540SRERERMMAQx0RERHRMMBQp4HH48HKlSuH3IjTeuJ7kML3ge+BhO8D3wMJ34cUvg/mvQe8UYKIiIhoGOCZOiIiIqJhgKGOiIiIaBhgqCMiIiIaBhjqiIiIiIYBhro8fv3rX+P4449HeXk5/H6/oucIIbBixQo0NTWhrKwMLS0t+OCDDzKWaWtrw3nnnQefzwe/34/Fixeju7vbgL9AH8Vu7yeffAKbzZb155FHHkkvl+33Dz74oBl/UtHU1Oykk04a9Pd9//vfz1hm586dWLBgAcrLy9HQ0IArrrjC0hNHF/s+tLW14Qc/+AEmTpyIsrIyHHzwwbjssssy5roErN0Wbr31VowbNw5erxezZ8/Gpk2b8i7/yCOPYNKkSfB6vZg2bRqefvrpjN8rOUZYUTHvw1133YUTTzwRNTU1qKmpQUtLy6DlL7zwwkE1nz9/vtF/hmbFvA/33nvvoL/R6/VmLDMU20Mx70G246DNZsOCBQvSywy1tvDSSy/h9NNPR3NzM2w2Gx577LGCz1m/fj2OPfZYeDweHHbYYbj33nsHLVPssSYrQTmtWLFC3HTTTWLZsmWiurpa0XOuv/56UV1dLR577DHx1ltviTPOOEMceuihore3N73M/PnzxdFHHy3+/e9/i5dfflkcdthh4txzzzXor9Cu2O2Nx+Ni7969GT/XXHONqKysFF1dXenlAIh77rknY7n+75OVqKnZ3LlzxZIlSzL+vs7OzvTv4/G4mDp1qmhpaRFbtmwRTz/9tKirqxPLly83+s9Rrdj34e233xZf/epXxRNPPCE+/PBDsW7dOnH44YeLr33taxnLWbUtPPjgg8Ltdos1a9aId999VyxZskT4/X6xb9++rMu/+uqrwuFwiN/+9rdi69at4qqrrhIul0u8/fbb6WWUHCOsptj34Vvf+pa49dZbxZYtW8S2bdvEhRdeKKqrq8Vnn32WXmbhwoVi/vz5GTVva2sz609Spdj34Z577hE+ny/jb2xtbc1YZqi1h2Lfg2AwmPH3v/POO8LhcIh77rknvcxQawtPP/20+MUvfiH+/ve/CwDiH//4R97lP/74Y1FeXi6WLVsmtm7dKv74xz8Kh8Mh1q5dm16m2Pc1F4Y6Be655x5FoS6ZTIrRo0eLG264If1YR0eH8Hg84oEHHhBCCLF161YBQLz22mvpZf75z38Km80mdu/erfu2a6XX9k6fPl185zvfyXhMyc5gBWrfg7lz54of/vCHOX//9NNPC7vdnnGQv/3224XP5xORSESXbdeTXm3h4YcfFm63W8RisfRjVm0Ls2bNEpdeemn634lEQjQ3N4vVq1dnXf6b3/ymWLBgQcZjs2fPFt/73veEEMqOEVZU7PswUDweF1VVVeIvf/lL+rGFCxeKM888U+9NNVSx70OhvmMotgetbeHmm28WVVVVoru7O/3YUGwLEiXHrp/+9KfiyCOPzHjs7LPPFvPmzUv/W+v7KuHXrzrasWMHWltb0dLSkn6suroas2fPxoYNGwAAGzZsgN/vx8yZM9PLtLS0wG63Y+PGjaZvcyF6bO/mzZvx5ptvYvHixYN+d+mll6Kurg6zZs3CmjVrICw4bKKW9+C+++5DXV0dpk6diuXLl6OnpydjvdOmTUNjY2P6sXnz5iEUCuHdd9/V/w/RSK+229nZCZ/PB6czc+ppq7WFaDSKzZs3Z+zPdrsdLS0t6f15oA0bNmQsD6RqKi2v5BhhNWreh4F6enoQi8UwatSojMfXr1+PhoYGTJw4ERdffDGCwaCu264nte9Dd3c3DjnkEIwdOxZnnnlmxr491NqDHm3h7rvvxjnnnIOKioqMx4dSWyhWoeOCHu+rxFl4EVKqtbUVADI6aenf0u9aW1vR0NCQ8Xun04lRo0all7ESPbb37rvvxuTJk3H88cdnPL5q1Sp86UtfQnl5OZ599llccskl6O7uxmWXXabb9utB7XvwrW99C4cccgiam5vxn//8Bz/72c+wfft2/P3vf0+vN1tbkX5nNXq0hUAggGuvvRYXXXRRxuNWbAuBQACJRCJrjd57772sz8lV0/77v/RYrmWsRs37MNDPfvYzNDc3Z3Ra8+fPx1e/+lUceuih+Oijj/Dzn/8cp556KjZs2ACHw6Hr36AHNe/DxIkTsWbNGhx11FHo7OzEjTfeiOOPPx7vvvsuxowZM+Tag9a2sGnTJrzzzju4++67Mx4fam2hWLmOC6FQCL29vWhvb9e8j0lGXKi78sor8Zvf/CbvMtu2bcOkSZNM2qLSUPo+aNXb24v7778fv/zlLwf9rv9jxxxzDMLhMG644QbTOnKj34P+wWXatGloamrCySefjI8++ggTJkxQvV69mdUWQqEQFixYgClTpuDqq6/O+F2p2wIZ5/rrr8eDDz6I9evXZ9wkcM4556T/f9q0aTjqqKMwYcIErF+/HieffHIpNlV3c+bMwZw5c9L/Pv744zF58mT893//N6699toSbllp3H333Zg2bRpmzZqV8fhIaAtmGXGh7sc//jEuvPDCvMuMHz9e1bpHjx4NANi3bx+amprSj+/btw/Tp09PL7N///6M58XjcbS1taWfbwal74PW7X300UfR09ODCy64oOCys2fPxrXXXotIJGLKHIFmvQeS2bNnAwA+/PBDTJgwAaNHjx50d9O+ffsAYNi1ha6uLsyfPx9VVVX4xz/+AZfLlXd5s9tCNnV1dXA4HOmaSPbt25fz7x09enTe5ZUcI6xGzfsgufHGG3H99dfj+eefx1FHHZV32fHjx6Ourg4ffvihJTtyLe+DxOVy4ZhjjsGHH34IYOi1By3vQTgcxoMPPohVq1YVfB2rt4Vi5Tou+Hw+lJWVweFwaG5baUVdgTdCFXujxI033ph+rLOzM+uNEq+//np6mWeeecbyN0qo3d65c+cOutMxl1/96leipqZG9bYaRa+avfLKKwKAeOutt4QQ8o0S/e9u+u///m/h8/lEX1+ffn+ATtS+D52dneJzn/ucmDt3rgiHw4peyyptYdasWWLp0qXpfycSCXHQQQflvVHiK1/5SsZjc+bMGXSjRL5jhBUV+z4IIcRvfvMb4fP5xIYNGxS9xq5du4TNZhOPP/645u01ipr3ob94PC4mTpwofvSjHwkhhmZ7UPse3HPPPcLj8YhAIFDwNYZCW5BA4Y0SU6dOzXjs3HPPHXSjhJa2ld6eopYeYT799FOxZcuW9HAcW7ZsEVu2bMkYlmPixIni73//e/rf119/vfD7/eLxxx8X//nPf8SZZ56ZdUiTY445RmzcuFG88sor4vDDD7f8kCb5tvezzz4TEydOFBs3bsx43gcffCBsNpv45z//OWidTzzxhLjrrrvE22+/LT744ANx2223ifLycrFixQrD/x41in0PPvzwQ7Fq1Srx+uuvix07dojHH39cjB8/XnzhC19IP0ca0uSUU04Rb775pli7dq2or6+3/JAmxbwPnZ2dYvbs2WLatGniww8/zBiyIB6PCyGs3RYefPBB4fF4xL333iu2bt0qLrroIuH3+9N3LJ9//vniyiuvTC//6quvCqfTKW688Uaxbds2sXLlyqxDmhQ6RlhNse/D9ddfL9xut3j00Uczai4dO7u6usRPfvITsWHDBrFjxw7x/PPPi2OPPVYcfvjhlvxAIyn2fbjmmmvEM888Iz766COxefNmcc455wiv1yvefffd9DJDrT0U+x5ITjjhBHH22WcPenwotoWurq50HgAgbrrpJrFlyxbx6aefCiGEuPLKK8X555+fXl4a0uSKK64Q27ZtE7feemvWIU3yva9KMdTlsXDhQgFg0M+LL76YXgb/f3wtSTKZFL/85S9FY2Oj8Hg84uSTTxbbt2/PWG8wGBTnnnuuqKysFD6fTyxatCgjKFpNoe3dsWPHoPdFCCGWL18uxo4dKxKJxKB1/vOf/xTTp08XlZWVoqKiQhx99NHijjvuyLqsFRT7HuzcuVN84QtfEKNGjRIej0ccdthh4oorrsgYp04IIT755BNx6qmnirKyMlFXVyd+/OMfZwz1YTXFvg8vvvhi1n0IgNixY4cQwvpt4Y9//KM4+OCDhdvtFrNmzRL//ve/07+bO3euWLhwYcbyDz/8sDjiiCOE2+0WRx55pHjqqacyfq/kGGFFxbwPhxxySNaar1y5UgghRE9PjzjllFNEfX29cLlc4pBDDhFLliwpugMrhWLeh8svvzy9bGNjozjttNPEG2+8kbG+odgeit0n3nvvPQFAPPvss4PWNRTbQq7jmvR3L1y4UMydO3fQc6ZPny7cbrcYP358Rm6Q5HtflbIJYcExJIiIiIioKBynjoiIiGgYYKgjIiIiGgYY6oiIiIiGAYY6IiIiomGAoY6IiIhoGGCoIyIiIhoGGOqIiIiIhgGGOiIiIqJhgKGOiIiIaBhgqCMiIiIaBhjqiIg0OnDgAEaPHo3rrrsu/di//vUvuN1urFu3roRbRkQjCed+JSLSwdNPP42zzjoL//rXvzBx4kRMnz4dZ555Jm666aZSbxoRjRAMdUREOrn00kvx/PPPY+bMmXj77bfx2muvwePxlHqziGiEYKgjItJJb28vpk6dil27dmHz5s2YNm1aqTeJiEYQXlNHRKSTjz76CHv27EEymcQnn3xS6s0hohGGZ+qIiHQQjUYxa9YsTJ8+HRMnTsQtt9yCt99+Gw0NDaXeNCIaIRjqiIh0cMUVV+DRRx/FW2+9hcrKSsydOxfV1dV48sknS71pRDRC8OtXIiKN1q9fj1tuuQV//etf4fP5YLfb8de//hUvv/wybr/99lJvHhGNEDxTR0RERDQM8EwdERER0TDAUEdEREQ0DDDUEREREQ0DDHVEREREwwBDHREREdEwwFBHRERENAww1BERERENAwx1RERERMMAQx0RERHRMMBQR0RERDQMMNQRERERDQMMdURERETDwP8DzCIIw3hnMdoAAAAASUVORK5CYII=\n", "text/plain": [ "