{
"cells": [
{
"cell_type": "markdown",
"id": "f524391f",
"metadata": {},
"source": [
"# Microwave frequency selective surface (FSS)"
]
},
{
"cell_type": "markdown",
"id": "73a4ff08",
"metadata": {},
"source": [
"A Frequency Selective Surface (FSS) is a type of electromagnetic structure that allows certain frequencies to pass through while reflecting or blocking other frequencies. It is composed of a periodic array of conductive or dielectric elements that are spaced apart at a distance that is much smaller than the wavelength of the electromagnetic radiation. The FSS can be designed to selectively filter and manipulate the electromagnetic waves that pass through it based on the geometry, spacing, and material properties of its constituent elements. It is often used as a passive component in microwave and millimeter-wave devices, such as antennas, radars, filters, and absorbers.\n",
"\n",
"This notebook provides a demonstration of a microwave FSS composed of copper cross structures. Due to its very thin copper layer (0.1 mm) compared to the wavelength (~2.5 cm), we model the copper layer as a 2D surface conductivity to ensure computational efficiency. The FSS has been designed to exhibit a stop band at 12 GHz, where the transmission (S21) reaches as low as -50 dB. By visualizing the field distribution at the resonant frequency, we can observe the dipolar resonance feature of the copper structure. This simulation showcases the effectiveness of FSSs as passive components in microwave devices, and their ability to manipulate electromagnetic waves with high precision.\n",
"\n",
""
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "5cb1ff77",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-28T01:00:31.077388Z",
"iopub.status.busy": "2023-03-28T01:00:31.076753Z",
"iopub.status.idle": "2023-03-28T01:00:32.348158Z",
"shell.execute_reply": "2023-03-28T01:00:32.347508Z"
}
},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"import tidy3d as td\n",
"import tidy3d.web as web\n"
]
},
{
"cell_type": "markdown",
"id": "3f913f7e",
"metadata": {},
"source": [
"## Simulation Setup"
]
},
{
"cell_type": "markdown",
"id": "4911bc70",
"metadata": {},
"source": [
"The default frequency unit in `Tidy3D` is Hz. For convenience, we prefer to work with GHz in this example. A frequency range from 10 GHz to 14 GHz is studied while the FSS is designed to resonate at 12 GHz."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "7cdf5e48",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-28T01:00:32.351051Z",
"iopub.status.busy": "2023-03-28T01:00:32.350738Z",
"iopub.status.idle": "2023-03-28T01:00:32.369990Z",
"shell.execute_reply": "2023-03-28T01:00:32.368526Z"
}
},
"outputs": [],
"source": [
"GHz = 1e9 # 1 GHz = 1e9 Hz\n",
"\n",
"freq0 = 12 * GHz # central frequency\n",
"freqs = np.linspace(10, 14, 500) * GHz # frequency range of interest\n",
"\n",
"fwidth = 0.5 * (np.max(freqs) - np.min(freqs)) # width of the source spectrum\n",
"\n",
"lda0 = td.C_0 / freq0 # central wavelength\n"
]
},
{
"cell_type": "markdown",
"id": "a4eebf85",
"metadata": {},
"source": [
"The default length unit in Tidy3D is $\\mu m$. For convenience, we prefer to work with mm in this example. Here we define the geometric parameters such as the length and width of the cross structure."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "17b42904",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-28T01:00:32.375569Z",
"iopub.status.busy": "2023-03-28T01:00:32.375219Z",
"iopub.status.idle": "2023-03-28T01:00:32.401550Z",
"shell.execute_reply": "2023-03-28T01:00:32.400960Z"
}
},
"outputs": [],
"source": [
"mm = 1e3 # 1 mm = 1e3 um\n",
"P = 15 * mm # periodicity of the unit cell\n",
"L = 9.4 * mm # length of the cross\n",
"W = 2 * mm # width of the cross\n",
"t_sub = 2.2 * mm # thickness of the substrate\n",
"t_copper = 0.1 * mm # thickness of the copper layer\n"
]
},
{
"cell_type": "markdown",
"id": "2eb43d28",
"metadata": {},
"source": [
"Since the copper layer is very thin, we model it as a [Medium2D](../_autosummary/tidy3d.Medium2D.html) instead of a regular [Medium](../_autosummary/tidy3d.Medium.html). This way, we do not need to use a very fine grid to resolve the actual thickness of the copper layer. The conductivity of copper is about $5\\times 10^7$ S/m, which is 50 S/$\\mu m$. We use the `from_medium` method to construct a [Medium2D](../_autosummary/tidy3d.Medium2D.html) from a regular [Medium](../_autosummary/tidy3d.Medium.html)."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "fbce46a3",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-28T01:00:32.404097Z",
"iopub.status.busy": "2023-03-28T01:00:32.403953Z",
"iopub.status.idle": "2023-03-28T01:00:32.421598Z",
"shell.execute_reply": "2023-03-28T01:00:32.421041Z"
}
},
"outputs": [],
"source": [
"sigma_copper = 50 # copper conductivity in S/um\n",
"copper = td.Medium2D.from_medium(\n",
" td.Medium(conductivity=sigma_copper), thickness=t_copper\n",
") # define copper as a Medium2D\n",
"\n",
"eps_sub = 2.5 # permittivity of the substrate\n",
"sub_medium = td.Medium(permittivity=eps_sub) # define substrate medium\n"
]
},
{
"cell_type": "markdown",
"id": "7f28b280",
"metadata": {},
"source": [
"Next, we define the [Structures](../_autosummary/tidy3d.Structure.html). [Medium2D](../_autosummary/tidy3d.Medium2D.html) can only be applied to geometry with zero thickness in one of the dimensions."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "c49e7a95",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-28T01:00:32.423985Z",
"iopub.status.busy": "2023-03-28T01:00:32.423849Z",
"iopub.status.idle": "2023-03-28T01:00:32.442326Z",
"shell.execute_reply": "2023-03-28T01:00:32.441782Z"
}
},
"outputs": [],
"source": [
"cross = []\n",
"cross.append(\n",
" td.Structure(\n",
" geometry=td.Box.from_bounds(\n",
" rmin=(-L / 2, -W / 2, t_sub), rmax=(L / 2, W / 2, t_sub)\n",
" ),\n",
" medium=copper,\n",
" )\n",
")\n",
"cross.append(\n",
" td.Structure(\n",
" geometry=td.Box.from_bounds(\n",
" rmin=(-W / 2, -L / 2, t_sub), rmax=(W / 2, L / 2, t_sub)\n",
" ),\n",
" medium=copper,\n",
" )\n",
")\n",
"\n",
"substrate = td.Structure(\n",
" geometry=td.Box(center=(0, 0, t_sub / 2), size=(td.inf, td.inf, t_sub)),\n",
" medium=sub_medium,\n",
")\n"
]
},
{
"cell_type": "markdown",
"id": "acf9173e",
"metadata": {},
"source": [
"A [PlaneWave](../_autosummary/tidy3d.PlaneWave.html) source polarized in the x direction is added as the incident wave from the top of the FSS. To measure reflection (S11) and transmission (S21), two [FluxMonitors](../_autosummary/tidy3d.FluxMonitor.html) are added on the top and bottom of the simulation domain. Lastly, to visualize the resonant mode field, a [FieldMonitor](../_autosummary/tidy3d.FieldMonitor.html) is added to the copper layer plane."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "d0fb135b",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-28T01:00:32.444643Z",
"iopub.status.busy": "2023-03-28T01:00:32.444507Z",
"iopub.status.idle": "2023-03-28T01:00:32.465022Z",
"shell.execute_reply": "2023-03-28T01:00:32.463557Z"
}
},
"outputs": [],
"source": [
"offset = lda0 / 2 # extra spacing added in the positive and negative z directions\n",
"\n",
"# define a plane wave source\n",
"plane_wave = td.PlaneWave(\n",
" center=(0, 0, t_sub + 0.1 * offset),\n",
" size=(td.inf, td.inf, 0),\n",
" source_time=td.GaussianPulse(freq0=freq0, fwidth=fwidth),\n",
" direction=\"-\",\n",
")\n",
"\n",
"# define a flux monitor to measure reflection\n",
"S11_monitor = td.FluxMonitor(\n",
" center=(0, 0, t_sub + offset),\n",
" size=(td.inf, td.inf, 0),\n",
" freqs=freqs,\n",
" name=\"S11\",\n",
")\n",
"\n",
"# define a flux monitor to measure reflection\n",
"S21_monitor = td.FluxMonitor(\n",
" center=(0, 0, -t_sub - offset),\n",
" size=(td.inf, td.inf, 0),\n",
" freqs=freqs,\n",
" name=\"S21\",\n",
" normal_dir=\"-\",\n",
")\n",
"\n",
"# define a field monitor to visualize field distribution\n",
"field_monitor = td.FieldMonitor(\n",
" center=(0, 0, t_sub), size=(td.inf, td.inf, 0), freqs=[freq0], name=\"field\"\n",
")\n"
]
},
{
"cell_type": "markdown",
"id": "c69509c7",
"metadata": {},
"source": [
"With the previously defined structures, source, and monitors, we are ready to define a `Tidy3D` [Simulation](../_autosummary/tidy3d.Simulation.html). Periodic boundary condition is applied in the $x$ and $y$ directions while [PML](../_autosummary/tidy3d.PML.html) is applied in the $z$ direction. \n",
"\n",
"We also set up automatic nonuniform grids. In addition, we use a mesh override structure around the FFS unit cell to further refine the grids."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "1a42e3b2",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-28T01:00:32.470524Z",
"iopub.status.busy": "2023-03-28T01:00:32.470174Z",
"iopub.status.idle": "2023-03-28T01:00:32.503002Z",
"shell.execute_reply": "2023-03-28T01:00:32.502431Z"
}
},
"outputs": [],
"source": [
"# simulation domain size in z\n",
"Lz = t_sub + 2.2 * offset\n",
"\n",
"# define a BoundarySpec\n",
"boundary_spec = td.BoundarySpec(\n",
" x=td.Boundary.periodic(),\n",
" y=td.Boundary.periodic(),\n",
" z=td.Boundary(minus=td.PML(), plus=td.PML()),\n",
")\n",
"\n",
"# define a mesh override structure\n",
"refine_box = td.Structure(\n",
" geometry=td.Box(center=(0, 0, t_sub / 2), size=(td.inf, td.inf, 2 * t_sub)),\n",
" medium=td.Medium(permittivity=5**2),\n",
")\n",
"\n",
"# define a GridSpec\n",
"grid_spec = td.GridSpec.auto(\n",
" min_steps_per_wvl=100, wavelength=lda0, override_structures=[refine_box]\n",
")\n",
"\n",
"run_time = 1e-8 # simulation run time\n",
"\n",
"# define simulation\n",
"sim = td.Simulation(\n",
" size=(P, P, Lz),\n",
" grid_spec=grid_spec,\n",
" structures=[substrate] + cross,\n",
" sources=[plane_wave],\n",
" monitors=[S11_monitor, S21_monitor, field_monitor],\n",
" run_time=run_time,\n",
" boundary_spec=boundary_spec,\n",
" symmetry=(-1, 1, 0), # symmetry is used to reduce the computational load\n",
")\n"
]
},
{
"cell_type": "markdown",
"id": "93cc2c38",
"metadata": {},
"source": [
"Before submitting the simulation job to the server, we can validate the simulation setup by plotting it. Here we overlay the grids on top to make sure the grid is sufficiently fine compared to the structure sizes."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "21d5ee79",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-28T01:00:32.505317Z",
"iopub.status.busy": "2023-03-28T01:00:32.505179Z",
"iopub.status.idle": "2023-03-28T01:00:32.999576Z",
"shell.execute_reply": "2023-03-28T01:00:32.999079Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA6gAAAHqCAYAAAAJTmNmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7nklEQVR4nO3deXhU9fn//xdJmAQISQhkAVkaBNkEQVSIS0WNRExbKehXrQUUlA8xUCFWlIoIWERRWVQWRQW14IJXtZVQIIZFkaiIUNnELYILSUDIwpZA8v79wS9TJgswk5nMOZPn47q4nNfMyZ0771onh/O+zzQwxhgBAAAAAOBnQf5uAAAAAAAAiRNUAAAAAIBFcIIKAAAAALAETlABAAAAAJbACSoAAAAAwBI4QQUAAAAAWAInqAAAAAAAS+AEFQAAAABgCZygAgAAAAAsgRNUIECtW7dODRo00Lp16/zdCgAA8ALe21EfcIIK2Ny8efO0ePFif7fhkaVLl2r27Nn+bkNfffWVxo8fr549e6pp06Zq2bKlUlJS9Pnnn1c59p///KduvfVWtW/fXo0bN1anTp10//33q6CgoNra//73v3XxxRcrLCxMbdu21aOPPqqTJ09WOa6goEAjR45UTEyMmjRpomuuuUZffPHFOf8Mu3bt0g033KDw8HBFR0dryJAh2r9/f5XjysvLNWPGDCUkJCgsLEw9evTQG2+8cc7fBwDge7y3e9fLL7+sLl26KCwsTB07dtRzzz13zl9bUlKiBx98UK1atVKjRo3Up08fZWZmVnvsxo0bdeWVV6px48aKj4/XX/7yFx0+fNhbP0b9YQDYWrdu3czVV19d5fmysjJz7NgxU1ZWVvdNnaOUlBTTrl07f7dh7r//fhMVFWVGjBhhXnjhBTNjxgxz/vnnm+DgYJOZmelybPPmzU337t3NI488YhYuXGj+8pe/GIfDYTp37myOHj3qcuyKFStMgwYNzDXXXGNefPFFM2bMGBMUFGRGjRrlclxZWZm5/PLLTZMmTczkyZPN888/b7p27WqaNm1qvv7667P2/+OPP5oWLVqY888/38yZM8dMmzbNNGvWzFx00UWmpKTE5diHHnrISDL33HOPefHFF01KSoqRZN544w0PVw8A4G28t3vPggULjCQzePBg8+KLL5ohQ4YYSeaJJ544p6+/7bbbTEhIiPnrX/9qXnjhBZOYmGhCQkLMRx995HLcli1bTFhYmOnVq5eZP3++efjhh01oaKi54YYbfPFjBTROUBEQDh8+7O8W/KamNzE7sMqb2Oeff26Ki4tdnjtw4ICJiYkxV1xxhcvza9eurfL1r776qpFkFi5c6PJ8165dzUUXXWROnDjhfO7hhx82DRo0MLt27XI+99ZbbxlJZtmyZc7n8vPzTVRUlLn99tvP2n9qaqpp1KiR2bNnj/O5zMxMI8m88MILzud++ukn07BhQ5OWluZ8rry83Fx11VWmdevW5uTJk2f9XgBQV3hvv9rfbXjEKu/txhhz9OhR07x5c5OSkuLy/B133GGaNGliDh48eMav//TTT40k89RTTzmfO3bsmDn//PNNYmKiy7EDBgwwLVu2NIWFhc7nFi5caCSZVatWeeGnqT84QYXl/PTTT2b48OGmZcuWxuFwmN/85jdm1KhRzitBixYtMpLMunXrTGpqqomJiTFRUVHOr587d67p2rWrcTgcpmXLlubee+81hw4dcvkeX3/9tRk0aJCJi4szoaGh5rzzzjO33nqrKSgocB6zevVqc8UVV5jIyEjTpEkTc8EFF5gJEyactf9z+brjx4+bSZMmmfPPP984HA7TunVr88ADD5jjx49Xqff666+bSy+91DRq1MhERUWZq666yvkfunbt2hlJLn8q3tDWrl1rJFU5oXr77bfNxRdfbMLCwkzz5s3NHXfcYX766SeXY4YNG2aaNGlifvrpJ3PTTTeZJk2amBYtWpj777//nE5i3nvvPXPjjTc6/zds3769mTp1qsvXXn311VV6P9Mb2rBhw6ocX/Hn0UcfPWtPnhg0aJCJjo4+63FFRUVGkklPT3c+t2PHDiPJzJ071+XYn3/+2Ugyjz32mPO5W265xcTFxVX5G/GRI0eaxo0bV/vvxeliY2PNLbfcUuX5Cy64wFx33XXOPHfuXCPJ7Nixw+W4pUuXGklV/jYYALyF93ZXvLef8sorrxhJ5uWXX3Z5ftq0aUaSycjIOGtfZ5KRkVFtnY0bNxpJ5vXXXz/j1z/wwAMmODjY5aTTGGMef/xxI8ns3bvXGGNMYWGhCQkJMQ888IDLcSUlJSY8PNyMGDGiVj9HfRPik33DgId++eUXXXbZZc55vM6dO+vnn3/WO++8o6NHj8rhcDiPvffeexUTE6NJkybpyJEjkqTJkydrypQpSkpKUmpqqnbv3q358+dr06ZN+vjjj9WwYUOVlpYqOTlZJSUlGjNmjOLj4/Xzzz9r+fLlKigoUGRkpHbs2KHf/e536tGjh6ZOnarQ0FB9++23+vjjj8/Y/7l8XXl5uf7whz9ow4YNGjlypLp06aJt27Zp1qxZ+vrrr/Xee+85j50yZYomT56syy+/XFOnTpXD4dCnn36qNWvWqH///po9e7bGjBmj8PBwPfzww5KkuLi4GvtbvHix7rrrLl166aWaPn268vLyNGfOHH388cfasmWLoqKinMeWlZUpOTlZffr00dNPP60PPvhAzzzzjM4//3ylpqaecR0WL16s8PBwpaenKzw8XGvWrNGkSZNUVFSkp556SpL08MMPq7CwUD/99JNmzZolSQoPD6+x5v/93/8pKSnJ5bmVK1dqyZIlio2NdT534MCBM/ZWoWnTpgoNDT3jMbm5uWrRosVZa+Xm5kqSy7FbtmyRJF1yySUux7Zq1UqtW7d2vl5x7MUXX6ygINfbAlx22WV68cUX9fXXX6t79+7Vfu+ff/5Z+fn5Vb5PxdevWLHC5fs0adJEXbp0qXJcxetXXnnlWX9eAHAH7+28t9fkrrvu0j//+U+lp6fr+uuvV5s2bbRt2zZNmTJFI0aM0I033ug89tChQyorKztjj5LUuHFjNW7cWFLN78W9e/dWUFCQtmzZoj//+c811tqyZYsuuOACRUREuDxf8b65detWZ88nT56s8n0cDod69uzp8p6Pc+DvM2TgdEOHDjVBQUFm06ZNVV4rLy83xvzvb1mvvPJKl7+1y8/PNw6Hw/Tv39/lStTzzz9vJJlXXnnFGHNqRkCVtlNWNmvWLCPJ7N+/363+z+XrXn/9dRMUFFTlalXFjMTHH39sjDHmm2++MUFBQeaPf/xjlStrFWthTM3bgCr/LWtpaamJjY01F154oTl27JjzuOXLlxtJZtKkSc7nKq5WTp061aVmr169TO/evc+8CMZUmcU0xpj/+7//q3I1sDbbgL755hsTGRlprr/+epd/D1TDVdbKfxYtWnTG+h9++KFp0KCBeeSRR87ay4gRI0xwcLDLvOhTTz3l8rerp7v00ktN3759nblJkyZm+PDhVY6r+JvflStX1vi9N23aZCSZ1157rcprDzzwgJHkXPOUlBTTvn37KscdOXLESDIPPfTQmX9QAPAA7+28t5/Jvn37THR0tLn++utNSUmJ6dWrl2nbtm2Vq5bVXVmu7s/pu6rS0tJMcHBwtd83JibG3HbbbWfsrVu3bubaa6+t8nzFLqkFCxYYY4xZtmyZkWQ+/PDDKsfecsstJj4+/mzLgNNwF19YRnl5ud577z39/ve/r/ZqUIMGDVzyPffco+DgYGf+4IMPVFpaqrFjx7pcibrnnnsUERGhjIwMSVJkZKQkadWqVTp69Gi1vVT8beO//vUvlZeXn/PPcC5ft2zZMnXp0kWdO3fWgQMHnH+uvfZaSdLatWslSe+9957Ky8s1adKkKlfWKq/Fufj888+Vn5+ve++9V2FhYc7nU1JS1LlzZ+f6nG7UqFEu+aqrrtL3339/1u/VqFEj5+Pi4mIdOHBAV111lY4ePaqvvvrK7d4rO3LkiP74xz+qWbNmeuONN1z+PcjMzDynP8nJyTXWz8/P15/+9CclJCRo/PjxZ+xl6dKlevnll3X//ferY8eOzuePHTsmSdVepQ0LC3O+XnFsTcedXqs6Z/s+px9Tm+8DAJ7gvZ339rOJj4/X3LlzlZmZqauuukpbt27VK6+8UuWq5ZIlS87p/X3o0KHOrzl27JjLFfrTVX4vrs65vm+6856Ps2OLLyxj//79Kioq0oUXXnhOxyckJLjkPXv2SJI6derk8rzD4VD79u2dryckJCg9PV0zZ87UkiVLdNVVV+kPf/iD/vznPzvf4G699Va99NJLuvvuu/XQQw/puuuu06BBg3TzzTdXeUM53bl83TfffKNdu3YpJiam2hr5+fmSpO+++05BQUHq2rXrOa3H2dS0PpLUuXNnbdiwweW5sLCwKj02a9ZMhw4dOuv32rFjhyZOnKg1a9aoqKjI5bXCwkJ3W6/innvu0XfffaeNGzeqefPmLq9V3gbsriNHjuh3v/udiouLtWHDhjNuTfroo480YsQIJScna9q0aS6vVbyRl5SUVPm648ePu7zRN2rUqMbjTq9VnbN9n9OPqc33AQBP8N5+Cu/tZ3bbbbfpH//4hzIyMjRy5Ehdd911VY654oor3K7bqFEjlZaWVvta5ffimr7+XN9fpXN7z8fZcYIK26rN/9mfeeYZ3XnnnfrXv/6l1atX6y9/+YumT5+uTz75RK1bt1ajRo304Ycfau3atcrIyNDKlSv11ltv6dprr9Xq1atd/na3ck9n+7ry8nJ1795dM2fOrLZGmzZtPP65vKmmn/FsCgoKdPXVVysiIkJTp07V+eefr7CwMH3xxRd68MEH3fpb6+rMmTNHb7zxhv7xj3+oZ8+eVV6vmAc9m8jIyCr/DpWWlmrQoEH68ssvtWrVqjP+QvXf//5Xf/jDH3ThhRfqnXfeUUiI639OW7ZsKUnat29flf9N9+3b55xfqTh23759Vb5HxXOtWrWqsY/Tv091Xx8dHe38G92WLVtq7dq1Msa4/E39uXwfAKgLvLf7llXf23/99VfnZ4/v3LlT5eXlVf7SYP/+/ec0gxoeHu78y+WWLVuqrKxM+fn5LverKC0t1a+//nrW972WLVvq559/rvJ85ffNs70X8/7qHrb4wjJiYmIUERGh7du3e/T17dq1kyTt3r3b5fnS0lLl5OQ4X6/QvXt3TZw4UR9++KE++ugj/fzzz1qwYIHz9aCgIF133XWaOXOmdu7cqWnTpmnNmjXObTo1OdvXnX/++Tp48KCuu+46JSUlVflT8beg559/vsrLy7Vz584zfr9z3RJU0/pUPFd5fTy1bt06/frrr1q8eLHuu+8+/e53v1NSUpKaNWtW5Vh3tzN99NFH+utf/6qxY8fqjjvuqPaYli1bntOft956y+XrysvLNXToUGVlZWnp0qW6+uqra+zju+++0w033KDY2FitWLGi2qusFSfPFW+4FX755Rf99NNPLifXPXv21BdffFHlDf7TTz9V48aNdcEFF9TYy3nnnaeYmJgq30eSPvvssyrf5+jRo9q1a1eV73N6zwDgLby3895+LtLS0lRcXKzp06drw4YNmj17dpVjLr300nN6f3/66aedX1PTe/Hnn3+u8vLys77v9ezZU19//XWVK8aV3zcvvPBChYSEVPk+paWl2rp1K++vbuIEFZYRFBSkgQMH6v3336/2l21jzBm/PikpSQ6HQ88++6zLsS+//LIKCwuVkpIiSSoqKtLJkyddvrZ79+4KCgpybs04ePBglfoV/3GpbvtGhXP5uv/3//6ffv75Zy1cuLDKsceOHXPetXDgwIEKCgrS1KlTq5y4nP7zNWnSRAUFBTX2VOGSSy5RbGysFixY4PIz/Oc//9GuXbuc61NbFX87e3qPpaWlmjdvXpVjmzRpcs7bgvbt26f/9//+n6688krn3QKr4+kM6pgxY/TWW29p3rx5GjRoUI31c3Nz1b9/fwUFBWnVqlU1bufq1q2bOnfurBdffNHlb3znz5+vBg0a6Oabb3Y+d/PNNysvL0///Oc/nc8dOHBAy5Yt0+9//3uXmZbvvvtO3333ncv3Gjx4sJYvX64ff/zR+VxWVpa+/vpr3XLLLc7nbrrpJjVs2NDlfwtjjBYsWKDzzjtPl19+eY0/NwB4gvd23tvP5p133tFbb72lJ554Qg899JBuu+02TZw4UV9//bXLcZ7MoF577bWKjo7W/PnzXWrNnz9fjRs3dlmfAwcO6KuvvnKZYb755ptVVlamF1980flcSUmJFi1apD59+jivjEdGRiopKUn/+Mc/VFxc7Dz29ddf1+HDh13ei3EO/HV3JqA6P/30k4mPjzeNGzc2Y8eONS+88IKZPHmy6datm/Pzziru9Ffd3QAfffRRI8n079/fPP/882bMmDEmODjYXHrppaa0tNQYY8y7775rzjvvPDN27Fgzb9488+yzz5pLL73UNGzY0GRnZxtjjLnvvvtMr169zMSJE83ChQvNtGnTzHnnnWdat27t8nlqlZ3L15WVlZkbb7zRNGjQwNx2223mueeeM7NnzzajRo0y0dHRLj/XI488YiSZyy+/3Dz99NPmueeeM0OHDnW52+q9995rGjRoYB577DHzxhtvmKysLGNM9Z+VVrF2ffr0MbNnzzYTJkwwjRs3Nr/5zW9cPk+u4rPSalrfMzlw4IBp1qyZadeunXnmmWfMzJkzTa9evcxFF11UpZ8ZM2YYSWbcuHFm6dKl5t///neNdW+++WYTHBxsZs6caV5//XWXP//973/P2NPZVNyhMTExsUrt119/3eXD4it+jvHjx1c5bvXq1S5133//fdOgQQNz7bXXmhdffNH85S9/MUFBQeaee+5xOe7kyZOmb9++Jjw83EyZMsXMnTvXdOvWzTRt2tR89dVXLse2a9euyt0R9+7da5o3b27OP/988+yzz5rHH3/cNGvWzHTv3r3K5+9V3Nl35MiRZuHChSYlJcVIMkuWLKnVGgJATXhv5729Jnl5eaZFixbmmmuucd7F+MCBAyYuLs4kJiZWudOxJyo+A/zmm282CxcuNEOHDjWSzLRp01yOq1iHyp8xe8sttzg/4/SFF14wl19+uQkJCTHr1693OW7z5s0mNDTU9OrVy8yfP988/PDDJiwszPTv37/WP0N9wwkqLGfPnj1m6NChJiYmxoSGhpr27dubtLS0Kh/mXd2bmDGnbj3fuXNn07BhQxMXF2dSU1Nd/gP9/fffm+HDh5vzzz/fhIWFmejoaHPNNdeYDz74wHlMVlaWuemmm0yrVq2Mw+EwrVq1MrfffrvLx4hU51y/rrS01Dz55JOmW7duJjQ01DRr1sz07t3bTJkypcpt1V955RXTq1cv53FXX321yczMdL6em5trUlJSTNOmTc/pw7zfeustZ73o6Ogzfph3ZefyJmaMMR9//LHp27evadSokWnVqpUZP368WbVqVZV+Dh8+bP70pz+ZqKios36Yd3Uf/l3x5/Rbynui4tb7Nf3JyclxHnum46r7SIB3333X9OzZ04SGhprWrVubiRMnOn+hOt3BgwfNiBEjTPPmzU3jxo3N1VdfXe2/49WdoBpjzPbt203//v1N48aNTVRUlLnjjjtMbm5ulePKysrM448/btq1a2ccDofp1q2b+cc//uHWegGAu3hv5729OoMGDTJNmzY1P/zwg8vz//rXv4wk8+STT561r3Px4osvmk6dOhmHw2HOP/98M2vWLJeP9TGm5hPUY8eOmb/+9a8mPj7ehIaGmksvvbTGj3/76KOPzOWXX27CwsJMTEyMSUtLM0VFRV75GeqTBsacZW8FAAAAAAB1gBlUAAAAAIAlcIIKAAAAALAETlABAAAAAJbg1xPUyZMnq0GDBi5/Onfu7Hz9+PHjSktLU/PmzRUeHq7BgwcrLy/PpcbevXuVkpKixo0bKzY2Vg888ECV24yvW7dOF198sUJDQ9WhQwctXry4Ln48AABgUfwOAgDW5PcrqN26ddO+ffucfzZs2OB8bdy4cXr//fe1bNkyrV+/Xr/88ovL5xOWlZUpJSVFpaWl2rhxo1599VUtXrxYkyZNch6Tk5OjlJQUXXPNNdq6davGjh2ru+++W6tWrarTnxMAAFgLv4MAgPX49S6+kydP1nvvvaetW7dWea2wsFAxMTFaunSp8wPtv/rqK3Xp0kXZ2dnq27ev/vOf/+h3v/udfvnlF8XFxUmSFixYoAcffFD79++Xw+HQgw8+qIyMDG3fvt1Z+7bbblNBQYFWrlxZJz8nAACwFn4HAQBrCvF3A998841atWqlsLAwJSYmavr06Wrbtq02b96sEydOKCkpyXls586d1bZtW+ebQ3Z2trp37+58Y5Ck5ORkpaamaseOHerVq5eys7NdalQcM3bs2Bp7KikpUUlJiTOXl5fr4MGDat68uRo0aOC9Hx4AUO8YY1RcXKxWrVopKMjvG5nqNSv+DiLxewgAa6nr9y2/nqD26dNHixcvVqdOnbRv3z5NmTJFV111lbZv367c3Fw5HA5FRUW5fE1cXJxyc3MlSbm5uS5vDBWvV7x2pmOKiop07NgxNWrUqEpf06dP15QpU7z1YwIAUMWPP/6o1q1b+7uNesuqv4NI/B4CwJrq6n3LryeoAwYMcD7u0aOH+vTpo3bt2untt9+u8T/adWHChAlKT0935sLCQrVt21bzZ/5JwY0ilZ9fKEmKjY2UpFpnb9Qgk8l1l63QA9m++dixUt2X/rKaNm0q+I9VfweRav495OvvcnS48JAk6fzzz9d3331X5XGFml5397G369m1tp16ZR1YB2/XjomJUZs2bersfcvvW3xPFxUVpQsuuEDffvutrr/+epWWlqqgoMDlbzDz8vIUHx8vSYqPj9dnn33mUqPiDnunH1P5rnt5eXmKiIio8Q0oNDRUoaGhVZ4vKj6u4BMOHT58XJIUFuaQpFpnb9Qgk8l1l63QA9m++fjxUkliq6bFWOV3EKnm30OaNo1Qg/JTdwmOiIhw/rJ4+uMKNb3u7mNv17NrbTv1yjqwDr6oLdXd+5alhl8OHz6s7777Ti1btlTv3r3VsGFDZWVlOV/fvXu39u7dq8TERElSYmKitm3bpvz8fOcxmZmZioiIUNeuXZ3HnF6j4piKGgAAAPwOAgDW4NcrqH/961/1+9//Xu3atdMvv/yiRx99VMHBwbr99tsVGRmpESNGKD09XdHR0YqIiNCYMWOUmJiovn37SpL69++vrl27asiQIZoxY4Zyc3M1ceJEpaWlOf/mcdSoUXr++ec1fvx4DR8+XGvWrNHbb7+tjIwMt/uNi41QSKMoZ46Pi3J5vbbZFzXJZLLvshV6INsvHz1WIvif3X4HAYD6wq8nqD/99JNuv/12/frrr4qJidGVV16pTz75RDExMZKkWbNmKSgoSIMHD1ZJSYmSk5M1b94859cHBwdr+fLlSk1NVWJiopo0aaJhw4Zp6tSpzmMSEhKUkZGhcePGac6cOWrdurVeeuklJScn1/nPCwAArIHfQQDAmvx6gvrmm2+e8fWwsDDNnTtXc+fOrfGYdu3aacWKFWes069fP23ZssWjHk+Xl1+k4DDpwIEil+drm71Rg0wm1122Qg9k++aKGVT4l91+B5GknJzvdbS40Jn37NlT7eOzve7uY2/Xs2ttO/XKOvi+tp16rW3t4uLiKl/vS5aaQQUAAAAA1F+Wuouv1TGDSiaTK/N3D2T7ZWZQ4amEhPY6XHhQktShQwfn86c/ru652jz2dj271rZTr6yD72vbqVdv1I6Nja1Sw5e4ggoAAAAAsASuoLqBGVQymWyVHsj2zcygAgBQM66gAgAAAAAsgSuobmAGlUwmV+bvHsj2y8ygAgBQM66gAgAAAAAsgSuobmAGlUwmW6UHsn0zM6gAANSMK6gAAAAAAEvgCqobmEElk8mV+bsHsv0yM6gAANSMK6gAAAAAAEvgCqobmEElk8lW6YFs38wMKgAANeMKKgAAAADAEriC6gZmUMlkcmX+7oFsv8wMKjyVk/O9jhYXOvOePXuqfXy219197O16dq1tp15ZB9/XtlOvta1dXFxc5et9iSuoAAAAAABL4AqqG5hBJZPJVumBbN/MDCo8lZDQXocLD0qSOnTo4Hz+9MfVPVebx96uZ9faduqVdfB9bTv16o3asbGxVWr4EldQAQAAAACWwBVUN4Q7TioopFRHQk5IkpqEnPpb8Npmb9SwQw5xhFli/otM9la2Qg9k+2VmUAEAqBknqG7YuW65SkvLVXj0VP6p8al/1jZ7o4YdclBIsOJuv1Nh4U0FAAAAAJVxguqGk7+5SuUNGssUHpEklUc2kaRaZ2/UsHouy8tT8fdf6Oef89UkqsxS82BkMjOoZGZQAQCwBk5Q3RDUuJlCQsIVfNIhSQppeupKYG2zN2pYPQf9/yesAAAAAFATTlDdEN28qcoaRjpzsxZRLq/XNvuiplXyyeJf1SBMim3RVE2b/+8YK8yDkcmeZiv0QLZfZgYVAICacRdfAAAAAIAlcAXVDQd/LVZ5iFHhoWKX52ubvVHD6rmo8IgOH5fyDxTryEmHpebByGRmUMnMoAIAYA1cQQUAAAAAWAJXUN3ADCozqGRyZf7ugWy/zAwqAAA14woqAAAAAMASuILqBmZQPc/MoJIDKVuhB7J9MzOo8FROzvc6WlzozHv27Kn28dled/ext+vZtbademUdfF/bTr3WtnZxcdVzF1/iCioAAAAAwBK4guoGZlCZQSWTK/N3D2T7ZWZQ4amEhPY6XHhQktShQwfn86c/ru652jz2dj271rZTr6yD72vbqVdv1I6Nja1Sw5e4ggoAAAAAsASuoLqBGVTPMzOo5EDKVuiBbN/MDCoAADXjCioAAAAAwBK4guoGZlCZQSWTK/N3D2T7ZWZQAQCoGVdQAQAAAACWwBVUNzCD6nlmBpUcSNkKPZDtm5lBBQCgZlxBBQAAAABYAldQ3cAMKjOoZHJl/u6BbL/MDCoAADXjCioAAAAAwBK4guoGZlA9z8ygkgMpW6EHsn0zM6gAANSMK6gAAAAAAEvgCqobmEFlBpVMrszfPZDtl5lBBQCgZpygAgAA2EBOzvc6WlzozHv27Kn28dled/ext+vZtbademUdfF/bTr3WtnZxcdXxRF/iBNUNzKB6nplBJQdStkIPZPtmZlABAKgZJ6gAAAA2kJDQXocLD0qSOnTo4Hz+9MfVPVebx96uZ9faduqVdfB9bTv16o3asbGxVWr4EieobmAGlRlUMrkyf/dAtl9mBhUAgJpxF18AAAAAgCVwBdUNzKB6nplBJQdStkIPZPtmZlCt6YknntCECRN03333afbs2ZKk48eP6/7779ebb76pkpISJScna968eYqLi3N+3d69e5Wamqq1a9cqPDxcw4YN0/Tp0xUS8r9fsdatW6f09HTt2LFDbdq00cSJE3XnnXfW8U8IAPbAFVQAAFCvbdq0SS+88IJ69Ojh8vy4ceP0/vvva9myZVq/fr1++eUXDRo0yPl6WVmZUlJSVFpaqo0bN+rVV1/V4sWLNWnSJOcxOTk5SklJ0TXXXKOtW7dq7Nixuvvuu7Vq1ao6+/kAwE64guoGZlCZQSWTK/N3D2T7ZWZQreXw4cO64447tHDhQv397393Pl9YWKiXX35ZS5cu1bXXXitJWrRokbp06aJPPvlEffv21erVq7Vz50598MEHiouLU8+ePfXYY4/pwQcf1OTJk+VwOLRgwQIlJCTomWeekSR16dJFGzZs0KxZs5ScnOyXnxkArIwrqAAAoN5KS0tTSkqKkpKSXJ7fvHmzTpw44fJ8586d1bZtW2VnZ0uSsrOz1b17d5ctv8nJySoqKtKOHTucx1SunZyc7KxRnZKSEhUVFbn8AYD6giuobmAG1fPMDCo5kLIVeiDbNzODah1vvvmmvvjiC23atKnKa7m5uXI4HIqKinJ5Pi4uTrm5uc5jTj85rXi94rUzHVNUVKRjx46pUaNGVb739OnTNWXKFI9/LgCwM66gAgCAeufHH3/UfffdpyVLligsLMzf7biYMGGCCgsLnX9+/PFHf7cEAHWGK6huYAaVGVQyuTJ/90C2X2YG1Ro2b96s/Px8XXzxxc7nysrK9OGHH+r555/XqlWrVFpaqoKCAperqHl5eYqPj5ckxcfH67PPPnOpm5eX53yt4p8Vz51+TERERLVXTyUpNDRUoaGhtf4ZAcCOuIIKAADqneuuu07btm3T1q1bnX8uueQS3XHHHc7HDRs2VFZWlvNrdu/erb179yoxMVGSlJiYqG3btik/P995TGZmpiIiItS1a1fnMafXqDimogYAwBVXUN3ADKrnmRlUciBlK/RAtm9mBtUamjZtqgsvvNDluSZNmqh58+bO50eMGKH09HRFR0crIiJCY8aMUWJiovr27StJ6t+/v7p27aohQ4ZoxowZys3N1cSJE5WWlua8Ajpq1Cg9//zzGj9+vIYPH641a9bo7bffVkZGRt3+wABgE5ygAgAAVGPWrFkKCgrS4MGDVVJSouTkZM2bN8/5enBwsJYvX67U1FQlJiaqSZMmGjZsmKZOneo8JiEhQRkZGRo3bpzmzJmj1q1b66WXXvLoI2Zycr7X0eJCZ96zZ0+1j8/2uruPvV3PrrXt1Cvr4Pvaduq1trWLi6teXPMlTlDdwAwqM6hkcmX+7oFsv8wMqnWtW7fOJYeFhWnu3LmaO3dujV/Trl07rVix4ox1+/Xrpy1btnijRQAIeJygAgAA2EBCQnsdLjwoSerQoYPz+dMfV/dcbR57u55da9upV9bB97Xt1Ks3asfGxlap4UucoLqBGVTPMzOo5EDKVuiBbN/MDCoAADUL8ncDAAAAAABIXEF1CzOozKCSyZX5uwey/TIzqAAA1IwrqAAAAAAAS+AKqhuYQfU8M4NKDqRshR7I9s3MoAIAUDOuoAIAAAAALIErqG5gBpUZVDK5Mn/3QLZfZgYVAICacQUVAAAAAGAJXEF1AzOonmdmUMmBlK3QA9m+mRlUeCon53sdLS505j179lT7+Gyvu/vY2/XsWttOvbIOvq9tp15rW7u4uOq5iy9xBRUAAAAAYAlcQXUDM6jMoJLJlfm7B7L9MjOo8FRCQnsdLjwoSerQoYPz+dMfV/dcbR57u55da9upV9bB97Xt1Ks3asfGxlap4UuWuYL6xBNPqEGDBho7dqzzuePHjystLU3NmzdXeHi4Bg8erLy8PJev27t3r1JSUtS4cWPFxsbqgQce0MmTJ12OWbdunS6++GKFhoaqQ4cOWrx4cR38RAAAAAAAd1jiCuqmTZv0wgsvqEePHi7Pjxs3ThkZGVq2bJkiIyM1evRoDRo0SB9//LEkqaysTCkpKYqPj9fGjRu1b98+DR06VA0bNtTjjz8uScrJyVFKSopGjRqlJUuWKCsrS3fffbdatmyp5ORkt/pkBtXzzAwqOZCyFXog2zczgwoAQM38fgX18OHDuuOOO7Rw4UI1a9bM+XxhYaFefvllzZw5U9dee6169+6tRYsWaePGjfrkk08kSatXr9bOnTv1j3/8Qz179tSAAQP02GOPae7cuSotPfULwIIFC5SQkKBnnnlGXbp00ejRo3XzzTdr1qxZfvl5AQAAAADV8/sV1LS0NKWkpCgpKUl///vfnc9v3rxZJ06cUFJSkvO5zp07q23btsrOzlbfvn2VnZ2t7t27Ky4uznlMcnKyUlNTtWPHDvXq1UvZ2dkuNSqOOX0rcWUlJSUqKfnfjFBR0am/+WYGlRlUMrkyf/dAtl9mBhUAgJr59QT1zTff1BdffKFNmzZVeS03N1cOh0NRUVEuz8fFxSk3N9d5zOknpxWvV7x2pmOKiop07NgxNWrUqMr3nj59uqZMmeLxzwUAAAAAcJ/fTlB//PFH3XfffcrMzFRYWJi/2qjWhAkTlJ6e7sxFRUVq06YNM6i1yMygkgMpW6EHsn0zM6jwFJ+DyudeWqG2nXplHbxTu958DurmzZuVn5+viy++WCEhIQoJCdH69ev17LPPKiQkRHFxcSotLVVBQYHL1+Xl5Sk+Pl6SFB8fX+WuvhX5bMdERERUe/VUkkJDQxUREeHyBwAAAADgW367gnrddddp27ZtLs/ddddd6ty5sx588EG1adNGDRs2VFZWlgYPHixJ2r17t/bu3avExERJUmJioqZNm6b8/Hzn5/NkZmYqIiJCXbt2dR6zYsUKl++TmZnprOEOZlCZQSWTK/N3D2T7ZWZQ4Sk+B9V/te3UK+vg+9p26tWOn4PqtxPUpk2b6sILL3R5rkmTJmrevLnz+REjRig9PV3R0dGKiIjQmDFjlJiYqL59+0qS+vfvr65du2rIkCGaMWOGcnNzNXHiRKWlpSk0NFSSNGrUKD3//PMaP368hg8frjVr1ujtt99WRkZG3f7AAAAAAIAz8vtdfM9k1qxZCgoK0uDBg1VSUqLk5GTNmzfP+XpwcLCWL1+u1NRUJSYmqkmTJho2bJimTp3qPCYhIUEZGRkaN26c5syZo9atW+ull15y+zNQJT4HtTaZGVRyIGUr9EC2b2YGFQCAmlnqBHXdunUuOSwsTHPnztXcuXNr/Jp27dpV2cJbWb9+/bRlyxZvtAgAAOAXR04Wq/jkqb8ALjpZVO3jCjW97u5jb9eza2079co6sA7erh12sm5vaGupE1SrYwaVGVQyuTJ/90C2X2YGFZ56d/u7OlxUIEmKKYrR/h/3V3lcoabX3X3s7Xp2rW2nXlkH1sHbtcN/CVdd8ttdfAEAAAAAOB1XUN3ADKrnmRlUciBlK/RAtm9mBhWeim/XUoUFDSVJLdu3dD5/+uPqnqvNY2/Xs2ttO/XKOvi+tp169UbtyJj/7SCtC1xBBQAAAABYAldQ3cAMKjOoZHJl/u6BbL/MDCo8kiY9/K/xClKQ7m1/rxIiEhR8KFiS1PZAW+fjCqc/V5vH3q5n19p26pV1YB28XTs6KFp1iRNUAAAAqwuWykyZik4W6VjZMTUNaarwkFM3Ljn9cYWaXnf3sbfr2bW2nXplHVgHb9cOD67bmyRxguoGZlA9z8ygkgMpW6EHsn0zM6jwyHGpeXgLHS8+rpiYGHXo0MH50umPq3uuNo+9Xc+ute3UK+vg+9p26tUbtWNjY6vU8CVOUAEAAGygtKRUZWVl2r9/v7799lvt2bPH+drpj6t7rjaPvV3PrrXt1Cvr4Pvaduq1trWLi6teXPMlTlDdwAwqM6hkcmX+7oFsv8wMKgAANeMEFQAAwAYcoQ4FlwazxZctnX6rbadeWQfv1WaLr4Uxg+p5ZgaVHEjZCj2Q7ZuZQYWn2OLLlk4r1LZTr6yDd2qzxRcAAACusqW83Xk6dvKY3m36rrb8a4uOHDmiRkGN1DyquYqKXP9SJCIiwvlcbR57u55da9upV9aBdfB27bCwMNUlTlDdwAwqM6hkcmX+7oFsv8wMKjySKMV1jtMvR3/WL8G/KC84T2VlZeoZ2VN/u/5vVa6QtGvXzvlcbR57u55da9upV9aBdfB27ejoaC1ZskR1JajOvhMAAABqJSY0Ro2DG6tJSBOVlJXogvAL/N0SAHgVV1DdwAyq55kZVHIgZSv0QLZvZgYVnnKEOhRSFixJKlGJIsIiNLj7YG4GUwe17dQr6+D72nbqlZskAQAAwCdKS0pVXl4mSTp08pB6NO2hsl/LqtwwqUKg3rDFX7Xt1Cvr4Pvaduq1trW5SZKFMYPKDCqZXJm/eyDbLzODitoqM2VqoAa6qvlV/m4FALyOE1QAAAAbcIQ6VF5WpkMlhxQXEaeBPQYqvGE4WxnroLademUdfF/bTr2yxTfAMYPqeWYGlRxI2Qo9kO2bmUGFp059DupJHS09qpR2Kfr1l1/1q36VxFbGuqhtp15ZB9/XtlOvdtviG1Sn3w0AAAAeKzWlCmkQoqTWSf5uBQB8giuobmAGlRlUMrkyf/dAtl9mBhWecoQ6dOjEQf0m6jca3Hewvv/ue0lsZayL2nbqlXXwfW079coWXwAAAPhEyfESlZ4sVZ/wPvr+u+/ZyljHte3UK+vg+9p26tVuW3w5QXUDM6ieZ2ZQyYGUrdAD2b6ZGVR46mjZUYUFhykxOtHfrQCAz3CCCgAA6p358+dr/vz5+uGHHyRJ3bp106RJkzRgwABJ0vHjx3X//ffrzTffVElJiZKTkzVv3jzFxcU5a+zdu1epqalau3atwsPDNWzYME2fPl0hIf/79WrdunVKT0/Xjh071KZNG02cOFF33nmnRz2XmOPqG99Xl3W6jK2MdVzbTr2yDr6vbade2eIb4JhBZQaVTK7M3z2Q7ZeZQbWG1q1b64knnlDHjh1ljNGrr76qm266SVu2bFG3bt00btw4ZWRkaNmyZYqMjNTo0aM1aNAgffzxx5KksrIypaSkKD4+Xhs3btS+ffs0dOhQNWzYUI8//rgkKScnRykpKRo1apSWLFmirKws3X333WrZsqWSk5PdazhIKisvU6+wXs5td2xlrNvaduqVdfB9bTv1yhZfAAAAi/v973/vkqdNm6b58+frk08+UevWrfXyyy9r6dKluvbaayVJixYtUpcuXfTJJ5+ob9++Wr16tXbu3KkPPvhAcXFx6tmzpx577DE9+OCDmjx5shwOhxYsWKCEhAQ988wzkqQuXbpow4YNmjVrlvsnqKFSZMMo9Y7q7ZWfHwCsihNUNzCD6nlmBpUcSNkKPZDtm5lBtZ6ysjItW7ZMR44cUWJiojZv3qwTJ04oKSnJeUznzp3Vtm1bZWdnq2/fvsrOzlb37t1dtvwmJycrNTVVO3bsUK9evZSdne1So+KYsWPHut9kiJTS8ffqcn4XSWxlrOvaduqVdfB9bTv1yhZfAAAAm9i2bZsSExN1/PhxhYeH691331XXrl21detWORwORUVFuRwfFxen3NxcSVJubq7LyWnF6xWvnemYoqIiHTt2TI0aNaq2r5KSEpWU/G8reFFRkVQudQ/twVZGP9a2U6+sg+9r26lXtvgGMGZQmUElkyvzdw9k+2VmUK2jU6dO2rp1qwoLC/XOO+9o2LBhWr9+vb/b0vTp0zVlyhTXJ++UukZ10/HDdfuLIgDUNU5QAQBAveRwOJzb2Hr37q1NmzZpzpw5uvXWW1VaWqqCggKXq6h5eXmKj4+XJMXHx+uzzz5zqZeXl+d8reKfFc+dfkxERESNV08lacKECUpPT3fmoqIitenfRufP6KDDhQclsZWxrmvbqVfWwfe17dQrW3wBAABsqry8XCUlJerdu7caNmyorKwsDR48WJK0e/du7d27V4mJpz6DNDExUdOmTVN+fr7zl7fMzExFRESoa9euzmNWrFjh8j0yMzOdNWoSGhqq0NBQ1yd3STk53+tocaHzKbYy1m1tO/XKOvi+tp16ZYtvAOMmSZ5nbpJEDqRshR7I9s3cJMkaJkyYoAEDBqht27YqLi7W0qVLtW7dOq1atUqRkZEaMWKE0tPTFR0drYiICI0ZM0aJiYnq27evJKl///7q2rWrhgwZohkzZig3N1cTJ05UWlqa8+Ry1KhRev755zV+/HgNHz5ca9as0dtvv62MjAx//ugAYGmcoAIAgHonPz9fQ4cO1b59+xQZGakePXpo1apVuv766yVJs2bNUlBQkAYPHqySkhIlJydr3rx5zq8PDg7W8uXLlZqaqsTERDVp0kTDhg3T1KlTncckJCQoIyND48aN05w5c9S6dWu99NJL7n/EDADUI5yguoGbJHGTJDK5Mn/3QLZf5iZJ1vDyyy+f8fWwsDDNnTtXc+fOrfGYdu3aVdnCW1m/fv20ZcsWj3oEgPqIE1QAAAAbSEhoz02S/FTbTr2yDr6vbadeuUlSgGMG1fPMDCo5kLIVeiDbNzODCk9xkyRuimOF2nbqlXXwTu26vklSUJ1+NwAAAAAAasAVVDcwg8oMKplcmb97INsvM4MKT7HF13+17dQr6+D72nbqlS2+AAAA8Am2+LKl0wq17dQr6+Cd2nwOqoUxg+p5ZgaVHEjZCj2Q7ZuZQQUAoGacoAIAANgAW3z9V9tOvbIOvq9tp17Z4hvgmEFlBpVMrszfPZDtl5lBhafY4suWTivUtlOvrIN3anMXXwAAAABAvcQVVDcwg+p5ZgaVHEjZCj2Q7ZuZQYWn2OLrv9p26pV18H1tO/XKFl8AAAD4BFt82dJphdp26pV18E5t7uJrYcygMoNKJlfm7x7I9svMoAIAUDNOUAEAAGyALb7+q22nXlkH39e2U69s8Q1wzKB6nplBJQdStkIPZPtmZlDhKbb4sqXTCrXt1Cvr4J3a3MUXAAAAAFAvcQXVDcygMoNKJlfm7x7I9svMoMJTbPH1X2079co6+L62nXpliy8AAAB8gi2+bOm0Qm079co6eKc2d/G1MGZQPc/MoJIDKVuhB7J9MzOoAADUjBlUAAAAAIAlcAXVDcygMoNKJlfm7x7I9svMoAIAUDNOUAEAAGyAmyT5r7ademUdfF/bTr1yk6QAxwyq55kZVHIgZSv0QLZvZgYVnuImSdwUxwq17dQr6+Cd2nwOKgAAAACgXuIKqhuYQWUGlUyuzN89kO2XmUGFp9ji67/aduqVdfB9bTv1yhZfAAAA+ARbfNnSaYXaduqVdfBObT4H1cKYQfU8M4NKDqRshR7I9s3MoAIAUDNOUAEAAGyALb7+q22nXlkH39e2U69s8Q1wzKAyg0omV+bvHsj2y8ygwlNs8WVLpxVq26lX1sE7tbmLLwAAAACgXuIKqhuYQfU8M4NKDqRshR7I9s3MoMJTbPH1X2079co6+L62nXpliy8AAAB8gi2+bOm0Qm079co6eKc2d/G1MGZQmUElkyvzdw9k+2VmUAEAqBknqAAAADbAFl//1bZTr6yD72vbqVe2+AY4ZlA9z8ygkgMpW6EHsn0zM6jwFFt82dJphdp26pV18E5t7uILAAAAAKiXuILqBmZQmUElkyvzdw9k+2VmUOEptvj6r7ademUdfF/bTr2yxddN8+fP1/z58/XDDz9Ikrp166ZJkyZpwIABkqTjx4/r/vvv15tvvqmSkhIlJydr3rx5iouLc9bYu3evUlNTtXbtWoWHh2vYsGGaPn26QkL+96OtW7dO6enp2rFjh9q0aaOJEyfqzjvvrMsfFQAAoFbY4suWTivUtlOvrIN3ateru/i2bt1aTzzxhDp27ChjjF599VXddNNN2rJli7p166Zx48YpIyNDy5YtU2RkpEaPHq1Bgwbp448/liSVlZUpJSVF8fHx2rhxo/bt26ehQ4eqYcOGevzxxyVJOTk5SklJ0ahRo7RkyRJlZWXp7rvvVsuWLZWcnOxWv8ygep6ZQSUHUrZCD2T7ZmZQ4bHS4lN/JKm0sPrHzmNreN3dx96uZ9faduqVdWAdvF37RN2eMvr1BPX3v/+9S542bZrmz5+vTz75RK1bt9bLL7+spUuX6tprr5UkLVq0SF26dNEnn3yivn37avXq1dq5c6c++OADxcXFqWfPnnrsscf04IMPavLkyXI4HFqwYIESEhL0zDPPSJK6dOmiDRs2aNasWW6foAIAAPjN/g1S8aktvnI0l/b/WvVxhZped/ext+vZtbademUdWAdv1z7RRHXJMjOoZWVlWrZsmY4cOaLExERt3rxZJ06cUFJSkvOYzp07q23btsrOzlbfvn2VnZ2t7t27u2z5TU5OVmpqqnbs2KFevXopOzvbpUbFMWPHjq2xl5KSEpWU/G9GqKjo1N98M4PKDCqZXJm/eyDbLzODCk9lrl6tosJTvzC2iAzVgcKSKo8r1PS6u4+9Xe9stTu0i9Wx//9qTf4v4co9cNijxxVqU8OX9exa2069sg6nHoc0uEBSqOzE7yeo27ZtU2Jioo4fP67w8HC9++676tq1q7Zu3SqHw6GoqCiX4+Pi4pSbmytJys3NdTk5rXi94rUzHVNUVKRjx46pUaNGVXqaPn26pkyZ4q0fEQAAoNZ++fFbHTpw6vebosZS4VFVeVyhptfdfeztemetnbvL+TjytOfdfVyhNjV8Wc+ute3UK+tw6vGuL7LU6YY7XWrnGik3r+CcH0ccrdu/WPX7CWqnTp20detWFRYW6p133tGwYcO0fv16v/Y0YcIEpaenO3NRUZHatGnDDGotMjOo5EDKVuiBbN/MDCo81SCilRqWOyRJDcMbquHhE1UeV6jpdXcfe7ve2Wo3iY1Sg9JgSVKzyEZqUHjMo8cValPDl/XsWttOvbIOpx6f95vWZ/095myP6/p9y+8nqA6Hw3kb4969e2vTpk2aM2eObr31VpWWlqqgoMDlKmpeXp7i4+MlSfHx8frss89c6uXl5Tlfq/hnxXOnHxMREVHt1VNJCg0NVWiovS6FAwCAwFbSZZiOFx6SJDmax+r4r/lVHleo6XV3H3u73tlqFzaPVdH///hELR5XqE0NX9aza2079co6/P+Pm1atnVcWq6Ly/HN+HFbWVNJS1RW/n6BWVl5erpKSEvXu3VsNGzZUVlaWBg8eLEnavXu39u7dq8TERElSYmKipk2bpvz8fOfn82RmZioiIkJdu3Z1HrNixQqX75GZmems4Q5mUJlBJZMr83cPZPtlZlDhqbDY83U85NQMamjceXKoSZXHFWp63d3H3q5n19p26pV1YB28XjsiSnXJryeoEyZM0IABA9S2bVsVFxdr6dKlWrdunVatWqXIyEiNGDFC6enpio6OVkREhMaMGaPExET17dtXktS/f3917dpVQ4YM0YwZM5Sbm6uJEycqLS3NeQV01KhRev755zV+/HgNHz5ca9as0dtvv62MjAx//ugAAABuKcz/RcWFBc5c/GtetY/P9rq7j71dz6617dQr6+D72nbqtba1Txx33X7sa349Qc3Pz9fQoUO1b98+RUZGqkePHlq1apWuv/56SdKsWbMUFBSkwYMHq6SkRMnJyZo3b57z64ODg7V8+XKlpqYqMTFRTZo00bBhwzR16lTnMQkJCcrIyNC4ceM0Z84ctW7dWi+99JJHHzHDDKrnmRlUciBlK/RAtm9mBhUAgJr59QT15ZdfPuPrYWFhmjt3rubOnVvjMe3atauyhbeyfv36acuWLR71CAAAYAWRsa1kQk7tEIuMO+9/z5/2uLrnavPY2/XsWttOvbIOvq9tp169UbtRfdriazfMoDKDSiZX5u8eyPbLzKBaw/Tp0/XPf/5TX331lRo1aqTLL79cTz75pDp16uQ85vjx47r//vv15ptvuuzkOv3j6/bu3avU1FStXbtW4eHhGjZsmKZPn66QkP/9irVu3Tqlp6drx44datOmjSZOnKg777zT7Z7Z4suWTivUtlOvrIN3atf1Ft+gOv1uAAAAFrB+/XqlpaXpk08+UWZmpk6cOKH+/fvryJEjzmPGjRun999/X8uWLdP69ev1yy+/aNCgQc7Xy8rKlJKSotLSUm3cuFGvvvqqFi9erEmTJjmPycnJUUpKiq655hpt3bpVY8eO1d13361Vq1bV6c8LAHbBFVQ3MIPqeWYGlRxI2Qo9kO2bmUG1hpUrV7rkxYsXKzY2Vps3b9Zvf/tbFRYW6uWXX9bSpUt17bXXSpIWLVqkLl266JNPPlHfvn21evVq7dy5Ux988IHi4uLUs2dPPfbYY3rwwQc1efJkORwOLViwQAkJCXrmmWckSV26dNGGDRs0a9Yst++HwRZf/9W2U6+sg+9r26lXtvgCAADYUGFhoSQpOjpakrR582adOHFCSUlJzmM6d+6stm3bKjs7W3379lV2dra6d+/usuU3OTlZqamp2rFjh3r16qXs7GyXGhXHjB071v0e2eLr19p26pV18H1tO/Vqty2+nKC6gRlUZlDJ5Mr83QPZfpkZVOspLy/X2LFjdcUVV+jCCy+UJOXm5srhcCgqKsrl2Li4OOXm5jqPOf3ktOL1itfOdExRUZGOHTumRo0aVemnpKREJSX/+/ekqKjqLg4ACFScoAIAgHotLS1N27dv14YNG/zdiqRTN3CaMmVKlefZ4uu/2nbqlXXwfW079coW3wDHDKrnmRlUciBlK/RAtm9mBtVaRo8ereXLl+vDDz9U69atnc/Hx8ertLRUBQUFLldR8/LyFB8f7zzms88+c6mXl5fnfK3inxXPnX5MREREtVdPJWnChAlKT0935qKiIrVp04YtvmzptERtO/XKOninNnfxBQAA8DFjjEaPHq13331Xa9asUUJCgsvrvXv3VsOGDZWVleV8bvfu3dq7d68SExMlSYmJidq2bZvy8/Odx2RmZioiIkJdu3Z1HnN6jYpjKmpUJzQ0VBERES5/AKC+4AqqG5hBZQaVTK7M3z2Q7ZeZQbWGtLQ0LV26VP/617/UtGlT58xoZGSkGjVqpMjISI0YMULp6emKjo5WRESExowZo8TERPXt21eS1L9/f3Xt2lVDhgzRjBkzlJubq4kTJyotLU2hoae24o4aNUrPP/+8xo8fr+HDh2vNmjV6++23lZGR4XbPbPH1X2079co6+L62nXpliy8AAIANzJ8/X5LUr18/l+cXLVqkO++8U5I0a9YsBQUFafDgwSopKVFycrLmzZvnPDY4OFjLly9XamqqEhMT1aRJEw0bNkxTp051HpOQkKCMjAyNGzdOc+bMUevWrfXSSy+5/REzEnfx9XdtO/XKOvi+tp16tdsWX05Q3cAMqueZGVRyIGUr9EC2b2YG1RqMMWc9JiwsTHPnztXcuXNrPKZdu3ZasWLFGev069dPW7ZscbtHAKiPmEEFAAAAAFgCV1DdwAwqM6hkcmX+7oFsv8wMKgAANeMEFQAAwAa4SZL/atupV9bB97Xt1Cs3SQpwzKB6nplBJQdStkIPZPtmZlDhKW6SxE1xrFDbTr2yDt6pzeegAgAAAADqJa6guoEZVGZQyeTK/N0D2X6ZGVR4ii2+/qttp15ZB9/XtlOvbPEFAACAT7DFly2dVqhtp15ZB+/U5nNQLYwZVM8zM6jkQMpW6IFs38wMKgAANeMEFQAAwAbY4uu/2nbqlXXwfW079coW3wDHDCozqGRyZf7ugWy/zAwqPMUWX7Z0WqG2nXplHbxTm7v4AgAAAADqJa6guoEZVM8zM6jkQMpW6IFs38wMKjzFFl//1bZTr6yD72vbqVe2+AIAAMAn2OLLlk4r1LZTr6yDd2pzF18LYwaVGVQyuTJ/90C2X2YGFQCAmnGCCgAAYANs8fVfbTv1yjr4vrademWLb4BjBtXzzAwqOZCyFXog2zczgwpPscWXLZ1WqG2nXlkH79TmLr4AAAAAgHqJK6huYAaVGVQyuTJ/90C2X2YGFZ5ii6//atupV9bB97Xt1CtbfAEAAOATbPFlS6cVatupV9bBO7W5i6+FMYPqeWYGlRxI2Qo9kO2bmUEFAKBmbs+gDhs2TB9++KEvegEAAPXQtddeqylTplR5/tChQ7r22mv90BEAwF/cvoJaWFiopKQktWvXTnfddZeGDRum886rurc5EDGDygwqmVyZv3sg2y8zg1rVunXrtG3bNm3ZskVLlixRkyZNJEmlpaVav369n7sDANQlt09Q33vvPe3fv1+vv/66Xn31VT366KNKSkrSiBEjdNNNN6lhw4a+6BMAAASwDz74QP/3f/+nvn376v3339dvfvMbf7dkOdwkyX+17dQr6+D72nbqtd7cJCkmJkbp6elKT0/XF198oUWLFmnIkCEKDw/Xn//8Z917773q2LGjt3v1O2ZQPc/MoJIDKVuhB7J9MzOo1WvZsqXWr1+vu+66S5deeqmWLVumLl26+LstS+EmSdwUxwq17dQr6+Cd2rb6HNR9+/YpMzNTmZmZCg4O1o033qht27apa9eumjVrlrd6BAAAAaxBgwaSpNDQUC1dulT33XefbrjhBs2bN8/PnQEA6prbV1BPnDihf//731q0aJFWr16tHj16aOzYsfrTn/6kiIgISdK7776r4cOHa9y4cV5v2J+YQWUGlUyuzN89kO2XmUGtyhjjkidOnKguXbpo2LBhfurImtji67/aduqVdfB9bTv1Wi+2+LZs2VLl5eW6/fbb9dlnn6lnz55VjrnmmmsUFRXlhfYAAECgy8nJUUxMjMtzgwcPVufOnfX555/7qSvrYYsvWzqtUNtOvbIO3qlt+c9BnTVrlm655RaFhYXVeExUVJRycnJq1ZgVMYPqeWYGlRxI2Qo9kO2bmUGtql27dtU+361bN3Xr1q2OuwEA+JPbJ6hDhgzxRR8AAAA4A7b4+q+2nXplHXxf20691ostvvUZM6jMoJLJlfm7B7L9MjOo8BRbfNnSaYXaduqVdfBObVvdxRcAAAAAAG/hCqobmEH1PDODSg6kbIUeyPbNzKDCU2zx9V9tO/XKOvi+tp16ZYsvAAAAfIItvmzptEJtO/XKOnintuXv4lufMYPKDCqZXJm/eyDbLzODCgBAzThBBQAAsAG2+Pqvtp16ZR18X9tOvbLFN8Axg+p5ZgaVHEjZCj2Q7ZuZQYWn2OLLlk4r1LZTr6yDd2pzF18AAAAAQL3EFVQ3MIPKDCqZXJm/eyDbLzODCgBAzbiCCgAAAACwBK6guoEZVM8zM6jkQMpW6IFs38wMKjzFTZL8V9tOvbIOvq9tp165SRIAAAB8gpskcVMcK9S2U6+sg3dq8zmoFsYMKjOoZHJl/u6BbL/MDCoAADXjBBUAAMAG2OLrv9p26pV18H1tO/XKFt8Axwyq55kZVHIgZSv0QLZvZgYVnmKLL1s6rVDbTr2yDt6pzeegAgAAAADqJa6guoEZVGZQyeTK/N0D2X6ZGVR4ii2+/qttp15ZB9/XtlOvbPEFAACAT7DFly2dVqhtp15ZB+/U5i6+FsYMqueZGVRyIGUr9EC2b2YG1To+/PBDPfXUU9q8ebP27dund999VwMHDnS+bozRo48+qoULF6qgoEBXXHGF5s+fr44dOzqPOXjwoMaMGaP3339fQUFBGjx4sObMmaPw8HDnMV9++aXS0tK0adMmxcTEaMyYMRo/fnxd/qgAYBucoAIAgHrpyJEjuuiiizR8+HANGjSoyuszZszQs88+q1dffVUJCQl65JFHlJycrJ07dyosLEySdMcdd2jfvn3KzMzUiRMndNddd2nkyJFaunSpJKmoqEj9+/dXUlKSFixYoG3btmn48OGKiorSyJEj3eqXLb7+q22nXlkH39e2U69s8Q1wzKAyg0omV+bvHsj2y8ygWseAAQM0YMCAal8zxmj27NmaOHGibrrpJknSa6+9pri4OL333nu67bbbtGvXLq1cuVKbNm3SJZdcIkl67rnndOONN+rpp59Wq1attGTJEpWWluqVV16Rw+FQt27dtHXrVs2cOdPtE1S2+LKl0wq17dQr6+Cd2tzFFwAAwM9ycnKUm5urpKQk53ORkZHq06ePsrOzJUnZ2dmKiopynpxKUlJSkoKCgvTpp586j/ntb38rh8PhPCY5OVm7d+/WoUOHqv3eJSUlKioqcvkDAPUFV1DdwAyq55kZVHIgZSv0QLZvZgbVHnJzcyVJcXFxLs/HxcU5X8vNzVVsbKzL6yEhIYqOjnY5JiEhoUqNiteaNWtW5XtPnz5dU6ZMqfI8W3z9V9tOvbIOvq9tp17Z4gsAAIBamTBhgtLT0525qKhIbdq0YYsvWzotUdtOvbIO3qnNXXwtjBlUZlDJ5Mr83QPZfpkZVHuIj4+XJOXl5ally5bO5/Py8tSzZ0/nMfn5+S5fd/LkSR08eND59fHx8crLc/3lsCJXHFNZaGioQkNDvfJzAIDdcIIKAABQSUJCguLj45WVleU8IS0qKtKnn36q1NRUSVJiYqIKCgq0efNm9e7dW5K0Zs0alZeXq0+fPs5jHn74YZ04cUINGzaUJGVmZqpTp07Vbu89E7b4+q+2nXplHXxf2069ssU3wDGD6nlmBpUcSNkKPZDtm5lBtY7Dhw/r22+/deacnBxt3bpV0dHRatu2rcaOHau///3v6tixo/NjZlq1auX8rNQuXbrohhtu0D333KMFCxboxIkTGj16tG677Ta1atVKkvSnP/1JU6ZM0YgRI/Tggw9q+/btmjNnjmbNmuV2v2zxZUunFWrbqVfWwTu12eILAABQBz7//HNdc801zlwx9zls2DAtXrxY48eP15EjRzRy5EgVFBToyiuv1MqVK52fgSpJS5Ys0ejRo3XdddcpKChIgwcP1rPPPut8PTIyUqtXr1ZaWpp69+6tFi1aaNKkSW5/xAwA1BecoLqBGVRmUMnkyvzdA9l+mRlU6+jXr5+MMTW+3qBBA02dOlVTp06t8Zjo6GgtXbr0jN+nR48e+uijjzzuEwDqkyB/fvPp06fr0ksvVdOmTRUbG6uBAwdq9+7dLsccP35caWlpat68ucLDwzV48OAqNxvYu3evUlJS1LhxY8XGxuqBBx7QyZMnXY5Zt26dLr74YoWGhqpDhw5avHixr388AAAAAIAb/HoFdf369UpLS9Oll16qkydP6m9/+5v69++vnTt3qkmTJpKkcePGKSMjQ8uWLVNkZKRGjx6tQYMG6eOPP5YklZWVKSUlRfHx8dq4caP27dunoUOHqmHDhnr88cclnZopSUlJ0ahRo7RkyRJlZWXp7rvvVsuWLZWcnHzO/TKD6nlmBpUcSNkKPZDtm5lBhae4SZL/atupV9bB97Xt1Cs3SXLTypUrXfLixYsVGxurzZs367e//a0KCwv18ssva+nSpbr22mslSYsWLVKXLl30ySefqG/fvlq9erV27typDz74QHFxcerZs6cee+wxPfjgg5o8ebIcDocWLFighIQEPfPMM5JO3dRgw4YNmjVrllsnqAAAAP7CTZK4KY4VatupV9bBO7Xr9U2SCgsLJZ2a55CkzZs368SJE0pKSnIe07lzZ7Vt21bZ2dnq27evsrOz1b17d8XFxTmPSU5OVmpqqnbs2KFevXopOzvbpUbFMWPHjnWrP2ZQmUElkyvzdw9k+2VmUAEAqJllTlDLy8s1duxYXXHFFbrwwgslSbm5uXI4HIqKinI5Ni4uTrm5uc5jTj85rXi94rUzHVNUVKRjx46pUaNGLq+VlJSopOR/v0AUFVXd3gcAAFCX2OLrv9p26pV18H1tO/XKFt9aSEtL0/bt27VhwwZ/t6Lp06drypQpVZ5nBtXzzAwqOZCyFXog2zczgwpPscWXLZ1WqG2nXlkH79Su6y2+QXX63WowevRoLV++XGvXrlXr1q2dz8fHx6u0tFQFBQUux+fl5Sk+Pt55TOW7+lbksx0TERFR5eqpJE2YMEGFhYXOPz/++GOtf0YAAAAAwJn59QqqMUZjxozRu+++q3Xr1ikhIcHl9d69e6thw4bKysrS4MGDJUm7d+/W3r17lZiYKElKTEzUtGnTlJ+fr9jYWElSZmamIiIi1LVrV+cxK1ascKmdmZnprFFZaGioQkNDqzzPDCozqGRyZf7ugWy/zAwqPMUWX//VtlOvrIPva9upV7b4uiktLU1Lly7Vv/71LzVt2tQ5MxoZGalGjRopMjJSI0aMUHp6uqKjoxUREaExY8YoMTFRffv2lST1799fXbt21ZAhQzRjxgzl5uZq4sSJSktLc55kjho1Ss8//7zGjx+v4cOHa82aNXr77beVkZHht58dAADAHWzxZUunFWrbqVfWwTu169VdfOfPny9J6tevn8vzixYt0p133ilJmjVrloKCgjR48GCVlJQoOTlZ8+bNcx4bHBys5cuXKzU1VYmJiWrSpImGDRumqVOnOo9JSEhQRkaGxo0bpzlz5qh169Z66aWX3P6IGWZQPc/MoJIDKVuhB7J9MzOoAADUzO9bfM8mLCxMc+fO1dy5c2s8pl27dlW28FbWr18/bdmyxe0eAQAArIAtvv6rbadeWQff17ZTr2zxDXDMoDKDSiZX5u8eyPbLzKDCU2zxZUunFWrbqVfWwTu16+VdfAEAAAAA4AqqG5hB9Twzg0oOpGyFHsj2zcygwlNs8fVfbTv1yjr4vrademWLLwAAAHyCLb5s6bRCbTv1yjp4p3a9uouv3TCDygwqmVyZv3sg2y8zgwoAQM04QQUAALABtvj6r7ademUdfF/bTr2yxTfAMYPqeWYGlRxI2Qo9kO2bmUGFp9jiy5ZOK9S2U6+sg3dqcxdfAAAAAEC9xBVUNzCDygwqmVyZv3sg2y8zgwoAQM24ggoAAAAAsASuoLqBGVTPMzOo5EDKVuiBbN/MDCo8xU2S/FfbTr2yDr6vbadeuUkSAAAAfIKbJHFTHCvUtlOvrIN3avM5qBbGDCozqGRyZf7ugWy/zAwqAAA14wQVAADABtji67/aduqVdfB9bTv1yhbfAMcMqueZGVRyIGUr9EC2b2YGFZ5iiy9bOq1Q2069sg7eqc3noAIAAAAA6iWuoLqBGVRmUMnkyvzdA9l+mRlUeIotvv6rbadeWQff17ZTr2zxBQAAgE+wxZctnVaobadeWQfv1OYuvhbGDKrnmRlUciBlK/RAtm9mBhUAgJpxggoAAGADbPH1X2079co6+L62nXpli2+AYwaVGVQyuTJ/90C2X2YGFZ5iiy9bOq1Q2069sg7eqc1dfAEAAAAA9RJXUN3ADKrnmRlUciBlK/RAtm9mBhWeYouv/2rbqVfWwfe17dQrW3wBAADgE2zxZUunFWrbqVfWwTu1uYuvhTGDygwqmVyZv3sg2y8zgwoAQM04QQUAALABtvj6r7ademUdfF/bTr2yxTfAMYPqeWYGlRxI2Qo9kO2bmUGFp9jiy5ZOK9S2U6+sg3dqcxdfAAAAAEC9xBVUNzCDygwqmVyZv3sg2y8zgwoAQM24ggoAAAAAsASuoLqBGVTPMzOo5EDKVuiBbN/MDCo8xU2S/FfbTr2yDr6vbadeuUkSAAAAfIKbJHFTHCvUtlOvrIN3avM5qBbGDCozqGRyZf7ugWy/zAwqAAA14wQVAADABtji67/aduqVdfB9bTv1yhbfAMcMqueZGVRyIGUr9EC2b2YGFZ5iiy9bOq1Q2069sg7eqc3noAIAAAAA6iWuoLqBGVRmUMnkyvzdA9l+mRnU+mnu3Ll66qmnlJubq4suukjPPfecLrvsMrdqsMXXf7Xt1Cvr4PvaduqVLb4AAABw8dZbbyk9PV0LFixQnz59NHv2bCUnJ2v37t2KjY095zps8WVLpxVq26lX1sE7tbmLr4Uxg+p5ZgaVHEjZCj2Q7ZuZQa1/Zs6cqXvuuUd33XWXJGnBggXKyMjQK6+8ooceesjP3QGAtXCCCgAA4COlpaXavHmzJkyY4HwuKChISUlJys7OrvZrSkpKVFLyv63gRUWn/oKDLb7+q22nXlkH39e2U69s8Q1wzKAyg0omV+bvHsj2y8yg1i8HDhxQWVmZ4uLiXJ6Pi4vTV199Ve3XTJ8+XVOmTKny/JBecTpaHCZJateunfbsUZXHFWp63d3H3q5n19p26pV1YB28XTs6OlqvqO5wF18AAAALmTBhggoLC51/fvzxR3+3BAB1hiuobmAG1fPMDCo5kLIVeiDbNzODWr+0aNFCwcHBystzvUlJXl6e4uPjq/2a0NBQhYaGVnk+IaG9DhcelCR16NDB+fzpj6t7rjaPvV3PrrXt1Cvr4PvadurVG7XduZmbN3CCCgAA4CMOh0O9e/dWVlaWBg4cKEkqLy9XVlaWRo8e7VatnJzvdbS40Jn3nLZvb0/lPXxneN3dx96uZ9faduqVdfB9bTv1WtvaxcVVL675EieobmAGlRlUMrkyf/dAtl9mBrX+SU9P17Bhw3TJJZfosssu0+zZs3XkyBHnXX0BAP/DCSoAAIAP3Xrrrdq/f78mTZqk3Nxc9ezZUytXrqxy46SzYYuv/2rbqVfWwfe17dQrW3wDHDOonmdmUMmBlK3QA9m+mRnU+mn06NFub+mtjC2+bOm0Qm079co6eKd2XW/xDarT7wYAAAAAQA24guoGZlCZQSWTK/N3D2T7ZWZQAQCoGVdQAQAAAACWwBVUNzCD6nlmBpUcSNkKPZDtm5lBhae4SZL/atupV9bB97Xt1Cs3SQIAAIBPcJMkbopjhdp26pV18E5tPgfVwphBZQaVTK7M3z2Q7ZeZQQUAoGacoAIAANgAW3z9V9tOvbIOvq9tp17Z4hvgmEH1PDODSg6kbIUeyPbNzKDCU2zxZUunFWrbqVfWwTu1+RxUAAAAAEC9xBVUNzCDygwqmVyZv3sg2y8zgwpPscXXf7Xt1Cvr4PvaduqVLb4AAADwCbb4sqXTCrXt1Cvr4J3a3MXXwphB9Twzg0oOpGyFHsj2zcygAgBQM05QAQAAbIAtvv6rbadeWQff17ZTr2zxDXDMoDKDSiZX5u8eyPbLzKDCU2zxZUunFWrbqVfWwTu1uYsvAAAAAKBe4gqqG5hB9Twzg0oOpGyFHsj2zcygwlNs8fVfbTv1yjr4vrademWLLwAAAHyCLb5s6bRCbTv1yjp4pzZ38bUwZlCZQSWTK/N3D2T7ZWZQAQCoGSeoAAAANsAWX//VtlOvrIPva9upV7b4BjhmUD3PzKCSAylboQeyfTMzqPAUW3zZ0mmF2nbqlXXwTm3u4gsAAAAAqJe4guoGZlCZQSWTK/N3D2T7ZWZQAQCoGVdQAQAAAACW4NcrqB9++KGeeuopbd68Wfv27dO7776rgQMHOl83xujRRx/VwoULVVBQoCuuuELz589Xx44dncccPHhQY8aM0fvvv6+goCANHjxYc+bMUXh4uPOYL7/8Umlpadq0aZNiYmI0ZswYjR8/3u1+mUH1PDODSg6kbIUeyPbNzKDCU9wkyX+17dQr6+D72nbqlZskuenIkSO66KKLNHz4cA0aNKjK6zNmzNCzzz6rV199VQkJCXrkkUeUnJysnTt3KiwsTJJ0xx13aN++fcrMzNSJEyd01113aeTIkVq6dKkkqaioSP3791dSUpIWLFigbdu2afjw4YqKitLIkSPr9OcFAADwFDdJ4qY4Vqhtp15ZB+/UrlefgzpgwAANGDCg2teMMZo9e7YmTpyom266SZL02muvKS4uTu+9955uu+027dq1SytXrtSmTZt0ySWXSJKee+453XjjjXr66afVqlUrLVmyRKWlpXrllVfkcDjUrVs3bd26VTNnznT7BJUZVGZQyeTK/N0D2X6ZGVQAAGpm2Zsk5eTkKDc3V0lJSc7nIiMj1adPH2VnZ+u2225Tdna2oqKinCenkpSUlKSgoCB9+umn+uMf/6js7Gz99re/lcPhcB6TnJysJ598UocOHVKzZs3q9OcCAADwBFt8/VfbTr2yDr6vbade2eLrRbm5uZKkuLg4l+fj4uKcr+Xm5lZZsJCQEEVHR7sck5CQUKVGxWvVnaCWlJSopOR/f8NdVHRqdogZVM9zxQzq3pwfFXagWL8ePCJJOlLwqySRybbKVuiB7NtcePikHGGNVIEZVFgBW3zZ0mmF2nbqlXXwTu16tcXXqqZPn64pU6b4u42A9N2mjyRJxcdP5dxTo8Rksq2yFXog+zYfORGkTlckS4oQAACoO5Y9QY2Pj5ck5eXlqWXLls7n8/Ly1LNnT+cx+fn5Ll938uRJHTx40Pn18fHxysvLczmmIlccU9mECROUnp7uzEVFRWrTpg0zqLXIFTOo5/W9XsFNmunQwVN/E9Msuqkkkcm2ylbogey7XHbkkH7+JFOR4SHMoMJS2OLrv9p26pV18H1tO/XKFl8vSkhIUHx8vLKyspwnpEVFRfr000+VmpoqSUpMTFRBQYE2b96s3r17S5LWrFmj8vJy9enTx3nMww8/rBMnTqhhw4aSpMzMTHXq1KnG+dPQ0FCFhob6+Cesn4KbNFNIZKxCTpyaCQ6JjDr1TzLZRtkKPZB9/78xYDVs8WVLpxVq26lX1sE7tevVFt/Dhw/r22+/deacnBxt3bpV0dHRatu2rcaOHau///3v6tixo/NjZlq1auX8rNQuXbrohhtu0D333KMFCxboxIkTGj16tG677Ta1atVKkvSnP/1JU6ZM0YgRI/Tggw9q+/btmjNnjmbNmuV2v8ygep4rZlAPHSxWyAmH3/shk2uTrdAD2Xf5ZHGxio+fmkttklcgiRlUAADqil9PUD///HNdc801zlyxrXbYsGFavHixxo8fryNHjmjkyJEqKCjQlVdeqZUrVzo/A1WSlixZotGjR+u6665TUFCQBg8erGeffdb5emRkpFavXq20tDT17t1bLVq00KRJk/gMVAAAYCts8fVfbTv1yjr4vrademWLr5v69esnY0yNrzdo0EBTp07V1KlTazwmOjpaS5cuPeP36dGjhz766COP+3R+L2ZQaz2D2iy6qcsWOqv0RyZ7kq3QA9n7+WTDUhWHSc2jmzCDCkthiy9bOq1Q2069sg7eqV3XW3yD6vS7AQAAAABQA8veJMmKmEH1PDODSg6kbIUeyMygov5hi6//atupV9bB97Xt1CtbfAEAAOATbPFlS6cVatupV9bBO7Xr1V187YYZVGZQyeTK/N0D2fuZGVQAAPyHE1QAAAAbYIuv/2rbqVfWwfe17dQrW3wDHDOonmdmUMmBlK3QA5kZVNQ/bPFlS6cVatupV9bBO7W5iy8AAAAAoF7iCqobmEFlBpVMrszfPZC9n5lBBQDAf7iCCgAAAACwBK6guoEZVM8zM6jkQMpW6IHMDCrqH26S5L/aduqVdfB9bTv1yk2SAAAA4BPcJImb4lihtp16ZR28U5vPQbUwZlCZQSWTK/N3D2TvZ2ZQAQDwH05QAQBAvTNt2jRlZGRo69atcjgcKigoqHLM3r17lZqaqrVr1yo8PFzDhg3T9OnTFRLyv1+f1q1bp/T0dO3YsUNt2rTRxIkTdeedd7rUmTt3rp566inl5ubqoosu0nPPPafLLrvM7Z7Z4uu/2nbqlXXwfW079coW3wDHDKrnmRlUciBlK/RAZgYVtVNaWqpbbrlFiYmJevnll6u8XlZWppSUFMXHx2vjxo3at2+fhg4dqoYNG+rxxx+XJOXk5CglJUWjRo3SkiVLlJWVpbvvvlstW7ZUcnKyJOmtt95Senq6FixYoD59+mj27NlKTk7W7t273f6ljy2+bOm0Qm079co6eKc2n4MKAADgY1OmTNG4cePUvXv3al9fvXq1du7cqX/84x/q2bOnBgwYoMcee0xz585Vaempv2RYsGCBEhIS9Mwzz6hLly4aPXq0br75Zs2aNctZZ+bMmbrnnnt01113qWvXrlqwYIEaN26sV155pU5+TgCwG66guoEZVGZQyeTK/N0D2fuZGVRIUnZ2trp37664uDjnc8nJyUpNTdWOHTvUq1cvZWdnKykpyeXrkpOTNXbsWEmnrtJu3rxZEyZMcL4eFBSkpKQkZWdnu90TW3z9V9tOvbIOvq9tp17Z4gsAABAAcnNzXU5OJTlzbm7uGY8pKirSsWPHdOjQIZWVlVV7zFdffVXj9y4pKVFJyf/+IqOo6NQWcbb4sqXTCrXt1Cvr4J3a3MXXwphB9Twzg0oOpGyFHsjMoKKqhx56SE8++eQZj9m1a5c6d+5cRx15Zvr06ZoyZYq/2wAAv+AEFQAABIT777+/yh10K2vfvv051YqPj9dnn33m8lxeXp7ztYp/Vjx3+jERERFq1KiRgoODFRwcXO0xFTWqM2HCBKWnpztzUVGR2rRpwxZfP9a2U6+sg+9r26lXtvgGOGZQmUElkyvzdw9k72dmUO0rJiZGMTExXqmVmJioadOmKT8/3/nLWWZmpiIiItS1a1fnMStWrHD5uszMTCUmJkqSHA6HevfuraysLA0cOFCSVF5erqysLI0ePbrG7x0aGqrQ0NAqz7PFly2dVqhtp15ZB+/U5i6+AAAAPrZ3715t3bpVe/fuVVlZmbZu3aqtW7fq8OHDkqT+/fura9euGjJkiP773/9q1apVmjhxotLS0pwnj6NGjdL333+v8ePH66uvvtK8efP09ttva9y4cc7vk56eroULF+rVV1/Vrl27lJqaqiNHjuiuu+7yy88NAFbHFVQ3MIPqeWYGlRxI2Qo9kJlBRe1MmjRJr776qjP36tVLkrR27Vr169dPwcHBWr58uVJTU5WYmKgmTZpo2LBhmjp1qvNrEhISlJGRoXHjxmnOnDlq3bq1XnrpJednoErSrbfeqv3792vSpEnKzc1Vz549tXLlyio3TjoXbPH1X2079co6+L62nXpliy8AAIANLF68WIsXLz7jMe3atauyhbeyfv36acuWLWc8ZvTo0Wfc0nuu2OLLlk4r1LZTr6yDd2pzF18LYwaVGVQyuTJ/90D2fmYGFVY1Z/YsnSw99e9PRESE8+NnTn9coabX3X3s7Xp2rW2nXlkH1sHbtcPCwlSXOEEFAACwgdlznnPZ4vvtt99WeVyhptfdfeztenatbadeWQfWwdu1Y2NjtWTJEtUVTlABAABsgC2+bOm0Qm079co6eKc2W3wtjJskeZ65SRI5kLIVeiBzkyQAAAIRJ6gAAAA2wF18/VfbTr2yDr6vbadevVGbu/haGDdJ4iZJZHJl/u6B7P3MTZIAAPAfTlABAABsgBlUZg6tUNtOvbIO3qnNDKqFMYPqeWYGlRxI2Qo9kJlBBQAgEHGCCgAAYAPMoPqvtp16ZR18X9tOvTKDGuCYQWUGlUyuzN89kL2fmUEFAMB/gvzdAAAAAAAAEldQ3cIMqueZGVRyIGUr9EBmBhX1DzdJ4qY4Vqhtp15ZB+/UruubJHEFFQAAAABgCVxBdQMzqMygksmV+bsHsvczM6iwKm6S5L/aduqVdfB9bTv1asebJHEFFQAAAABgCVxBdQMzqJ5nZlDJgZSt0AOZGVQAAAIRV1ABAAAAAJbAFVQ3MIPKDCqZXJm/eyB7PzODCgCA/3AFFQAAAABgCVxBdQMzqJ5nZlDJgZSt0AOZGVTUP3wOKp97aYXaduqVdfBObT4HFQAAAABQL3EF1Q3MoDKDSiZX5u8eyN7PzKDCqvgcVP/VtlOvrIPva9upVz4HFQAAAAAAD3EF1Q3MoHqemUElB1K2Qg9kZlABAAhEXEEFAAAAAFgCV1DdwAwqM6hkcmX+7oHs/cwMKgAA/sMVVAAAAACAJXAF1Q3MoHqemUElB1K2Qg9kZlABAAhEXEEFAAAAAFgCV1DdwAwqM6hkcmX+7oHs/cwMKgAA/sMJKgAAgA3k5Hyvo8WFzrxnz55qH5/tdXcfe7ueXWvbqVfWwfe17dRrbWsXF1cddfIlTlDdwAyq55kZVHIgZSv0QGYGFQCAQMQJKgAAgA0kJLTX4cKDkqQOHTo4nz/9cXXP1eaxt+vZtbademUdfF/bTr16o3ZsbGyVGr7ECaobmEFlBpVMrszfPZC9n5lBBQDAf7iLLwAAAADAEriC6gZmUD3PzKCSAylboQcyM6gAAAQirqACAAAAACyBK6huYAaVGVQyuTJ/90D2fmYGFQAA/+EKKgAAAADAEriC6gZmUD3PzKCSAylboQcyM6gAAAQirqACAAAAACyBK6huYAaVGVQyuTJ/90D2fmYGFQAA/+EEFQAAwAZycr7X0eJCZ96zZ0+1j8/2uruPvV3PrrXt1Cvr4Pvaduq1trWLi6uOOvkSJ6huYAbV88wMKjmQshV6IDODCgBAIOIEFQAAwAYSEtrrcOFBSVKHDh2cz5/+uLrnavPY2/XsWttOvbIOvq9tp169UTs2NrZKDV/iBNUNzKAyg0omV+bvHsjez8ygAgDgP9zFFwAAAABgCfXqCurcuXP11FNPKTc3VxdddJGee+45XXbZZef89cygep6ZQSUHUrZCD2RmUOG5H374QY899pjWrFmj3NxctWrVSn/+85/18MMPy+FwOI/78ssvlZaWpk2bNikmJkZjxozR+PHjXWotW7ZMjzzyiH744Qd17NhRTz75pG688Ubn68YYPfroo1q4cKEKCgp0xRVXaP78+erYsWOd/bwAYCf15grqW2+9pfT0dD366KP64osvdNFFFyk5OVn5+fn+bg0AANShr776SuXl5XrhhRe0Y8cOzZo1SwsWLNDf/vY35zFFRUXq37+/2rVrp82bN+upp57S5MmT9eKLLzqP2bhxo26//XaNGDFCW7Zs0cCBAzVw4EBt377decyMGTP07LPPasGCBfr000/VpEkTJScn6/jx43X6MwOAXdSbK6gzZ87UPffco7vuukuStGDBAmVkZOiVV17RQw89dE41mEFlBpVMrszfPZC9n5lBDXw33HCDbrjhBmdu3769du/erfnz5+vpp5+WJC1ZskSlpaV65ZVX5HA41K1bN23dulUzZ87UyJEjJUlz5szRDTfcoAceeECS9NhjjykzM1PPP/+8FixYIGOMZs+erYkTJ+qmm26SJL322muKi4vTe++9p9tuu62Of3IAsL56cQW1tLRUmzdvVlJSkvO5oKAgJSUlKTs724+dAQAAKygsLFR0dLQzZ2dn67e//a3Llt/k5GTt3r1bhw4dch5z+u8WFcdU/G6Rk5Oj3Nxcl2MiIyPVp08ffv8AgBrUiyuoBw4cUFlZmeLi4lyej4uL01dffVXl+JKSEpWU/O9vuAsLT30o9oH9JTIhR1Rw6JgkyZQ3lKRaZ2/UsHouKjyhI6aZDh08oeAS768hmVyX2Qo9kH2Xy46c0GHTTLm/nlDIT4clSb/+elSSVHIipNa5YgbVGCNYw7fffqvnnnvOefVUknJzc5WQkOByXMXvEbm5uWrWrJlyc3Or/d0iNzfXedzpX1fdMdWp6feQ4uIiHS4+NS9dVFSk4moeV6jpdXcfe7ueXWvbqVfWgXXwdu2wsDBJdfe+VS9OUN01ffp0TZkypcrzL8x52w/dBJjP3vV3BwBwbj5b6dPyv/76qyIjI89+IM7ZQw89pCeffPKMx+zatUudO3d25p9//lk33HCDbrnlFt1zzz2+bvGc1PR7yAXnJ1RzNADUjbp636oXJ6gtWrRQcHCw8vLyXJ7Py8tTfHx8leMnTJig9PR0Zy4oKFC7du20d+9efpnwUFFRkdq0aaMff/xRERER/m7HlljD2mMNa481rL3CwkK1bdvWZTspvOP+++/XnXfeecZj2rdv73z8yy+/6JprrtHll1/ucvMjSYqPj6/294aK1850zOmvVzzXsmVLl2N69uxZY4/19feQ+vDfl/rwM0r8nIGmrt+36sUJqsPhUO/evZWVlaWBAwdKksrLy5WVlaXRo0dXOT40NFShoaFVno+MjAzof/nqQkREBGtYS6xh7bGGtcca1l5QUL24DUSdiomJUUxMzDkd+/PPP+uaa65R7969tWjRoir/eyQmJurhhx/WiRMn1LDhqa3gmZmZ6tSpk5o1a+Y8JisrS2PHjnV+XWZmphITEyVJCQkJio+PV1ZWlvOEtKioSJ9++qlSU1Nr7K2+/x5SH/77Uh9+RomfM9DU1ftWvXl3TE9P18KFC/Xqq69q165dSk1N1ZEjR5x39QUAAPXDzz//rH79+qlt27Z6+umntX//fuXm5rrMhf7pT3+Sw+HQiBEjtGPHDr311luaM2eOy5XN++67TytXrtQzzzyjr776SpMnT9bnn3/u/MvvBg0aaOzYsfr73/+uf//739q2bZuGDh2qVq1aOf/CHADgql5cQZWkW2+9Vfv379ekSZOUm5urnj17auXKlVVuXAAAAAJbZmamvv32W3377bdq3bq1y2sVNwGJjIzU6tWrlZaWpt69e6tFixaaNGmS8yNmJOnyyy/X0qVLNXHiRP3tb39Tx44d9d577+nCCy90HjN+/HgdOXJEI0eOVEFBga688kqtXLnSedMRAICrenOCKkmjR4+udkvv2YSGhurRRx+tdrsNzg1rWHusYe2xhrXHGtYea+h/d95551lnVSWpR48e+uijj854zC233KJbbrmlxtcbNGigqVOnaurUqe626VRf/p2pDz9nffgZJX7OQFPXP2cDw33uAQAAAAAWUG9mUAEAAAAA1sYJKgAAAADAEjhBBQAAAABYAieo52Du3Ln6zW9+o7CwMPXp00efffaZv1vyiw8//FC///3v1apVKzVo0EDvvfeey+vGGE2aNEktW7ZUo0aNlJSUpG+++cblmIMHD+qOO+5QRESEoqKiNGLECB0+fNjlmC+//FJXXXWVwsLC1KZNG82YMcPXP1qdmT59ui699FI1bdpUsbGxGjhwoHbv3u1yzPHjx5WWlqbmzZsrPDxcgwcPrvJB8Hv37lVKSooaN26s2NhYPfDAAzp58qTLMevWrdPFF1+s0NBQdejQQYsXL/b1j1cn5s+frx49ejg/cywxMVH/+c9/nK+zfu554oknnB+FUYE1PLPJkyerQYMGLn86d+7sfJ31gzfZ7XeQ+vC7Qn15L6+P77eB+p5ou/ctgzN68803jcPhMK+88orZsWOHueeee0xUVJTJy8vzd2t1bsWKFebhhx82//znP40k8+6777q8/sQTT5jIyEjz3nvvmf/+97/mD3/4g0lISDDHjh1zHnPDDTeYiy66yHzyySfmo48+Mh06dDC333678/XCwkITFxdn7rjjDrN9+3bzxhtvmEaNGpkXXnihrn5Mn0pOTjaLFi0y27dvN1u3bjU33nijadu2rTl8+LDzmFGjRpk2bdqYrKws8/nnn5u+ffuayy+/3Pn6yZMnzYUXXmiSkpLMli1bzIoVK0yLFi3MhAkTnMd8//33pnHjxiY9Pd3s3LnTPPfccyY4ONisXLmyTn9eX/j3v/9tMjIyzNdff212795t/va3v5mGDRua7du3G2NYP3d89tln5je/+Y3p0aOHue+++5zPs4Zn9uijj5pu3bqZffv2Of/s37/f+TrrB2+x4+8g9eF3hfryXl7f3m8D+T3Rbu9bnKCexWWXXWbS0tKcuayszLRq1cpMnz7dj135X+U3nfLychMfH2+eeuop53MFBQUmNDTUvPHGG8YYY3bu3GkkmU2bNjmP+c9//mMaNGhgfv75Z2OMMfPmzTPNmjUzJSUlzmMefPBB06lTJx//RP6Rn59vJJn169cbY06tWcOGDc2yZcucx+zatctIMtnZ2caYU2/+QUFBJjc313nM/PnzTUREhHPdxo8fb7p16+byvW699VaTnJzs6x/JL5o1a2Zeeukl1s8NxcXFpmPHjiYzM9NcffXVzjdj1vDsHn30UXPRRRdV+xrrB2+y++8g9eV3hfr0Xh6o77eB/p5ot/cttvieQWlpqTZv3qykpCTnc0FBQUpKSlJ2drYfO7OenJwc5ebmuqxVZGSk+vTp41yr7OxsRUVF6ZJLLnEek5SUpKCgIH366afOY37729/K4XA4j0lOTtbu3bt16NChOvpp6k5hYaEkKTo6WpK0efNmnThxwmUdO3furLZt27qsY/fu3RUXF+c8Jjk5WUVFRdqxY4fzmNNrVBwTaP/elpWV6c0339SRI0eUmJjI+rkhLS1NKSkpVX5O1vDcfPPNN2rVqpXat2+vO+64Q3v37pXE+sF7AvF3kED9XaE+vJcH+vttfXhPtNP7FieoZ3DgwAGVlZW5/I8hSXFxccrNzfVTV9ZUsR5nWqvc3FzFxsa6vB4SEqLo6GiXY6qrcfr3CBTl5eUaO3asrrjiCl144YWSTv2MDodDUVFRLsdWXsezrVFNxxQVFenYsWO++HHq1LZt2xQeHq7Q0FCNGjVK7777rrp27cr6naM333xTX3zxhaZPn17lNdbw7Pr06aPFixdr5cqVmj9/vnJycnTVVVepuLiY9YPXBOLvIIH4u0Kgv5fXh/fb+vCeaLf3rRC3jgbgNWlpadq+fbs2bNjg71Zsp1OnTtq6dasKCwv1zjvvaNiwYVq/fr2/27KFH3/8Uffdd58yMzMVFhbm73ZsacCAAc7HPXr0UJ8+fdSuXTu9/fbbatSokR87A1DXAv29PNDfb+vLe6Ld3re4gnoGLVq0UHBwcJW7WOXl5Sk+Pt5PXVlTxXqcaa3i4+OVn5/v8vrJkyd18OBBl2Oqq3H69wgEo0eP1vLly7V27Vq1bt3a+Xx8fLxKS0tVUFDgcnzldTzbGtV0TEREhCX/Q+Quh8OhDh06qHfv3po+fbouuugizZkzh/U7B5s3b1Z+fr4uvvhihYSEKCQkROvXr9ezzz6rkJAQxcXFsYZuioqK0gUXXKBvv/2WfwfhNYH4O0ig/a5QH97LA/39tr6+J1r9fYsT1DNwOBzq3bu3srKynM+Vl5crKytLiYmJfuzMehISEhQfH++yVkVFRfr000+da5WYmKiCggJt3rzZecyaNWtUXl6uPn36OI/58MMPdeLECecxmZmZ6tSpk5o1a1ZHP43vGGM0evRovfvuu1qzZo0SEhJcXu/du7caNmzoso67d+/W3r17XdZx27ZtLm/gmZmZioiIUNeuXZ3HnF6j4phA/fe2vLxcJSUlrN85uO6667Rt2zZt3brV+eeSSy7RHXfc4XzMGrrn8OHD+u6779SyZUv+HYTXBOLvIIHyu0J9fi8PtPfb+vqeaPn3Lbdvq1TPvPnmmyY0NNQsXrzY7Ny504wcOdJERUW53MWqviguLjZbtmwxW7ZsMZLMzJkzzZYtW8yePXuMMaduHR8VFWX+9a9/mS+//NLcdNNN1d46vlevXubTTz81GzZsMB07dnS5dXxBQYGJi4szQ4YMMdu3bzdvvvmmady4ccB8zExqaqqJjIw069atc7nV99GjR53HjBo1yrRt29asWbPGfP755yYxMdEkJiY6X6+41Xf//v3N1q1bzcqVK01MTEy1t/p+4IEHzK5du8zcuXMD5iMqHnroIbN+/XqTk5NjvvzyS/PQQw+ZBg0amNWrVxtjWD9PnH7HQmNYw7O5//77zbp160xOTo75+OOPTVJSkmnRooXJz883xrB+8B47/g5SH35XqC/v5fX1/TYQ3xPt9r7FCeo5eO6550zbtm2Nw+Ewl112mfnkk0/83ZJfrF271kiq8mfYsGHGmFO3j3/kkUdMXFycCQ0NNdddd53ZvXu3S41ff/3V3H777SY8PNxERESYu+66yxQXF7sc89///tdceeWVJjQ01Jx33nnmiSeeqKsf0eeqWz9JZtGiRc5jjh07Zu69917TrFkz07hxY/PHP/7R7Nu3z6XODz/8YAYMGGAaNWpkWrRoYe6//35z4sQJl2PWrl1revbsaRwOh2nfvr3L97Cz4cOHm3bt2hmHw2FiYmLMdddd53yzNIb180TlN2PW8MxuvfVW07JlS+NwOMx5551nbr31VvPtt986X2f94E12+x2kPvyuUF/ey+vr+20gvifa7X2rgTHGuH/dFQAAAAAA72IGFQAAAABgCZygAgAAAAAsgRNUAAAAAIAlcIIKAAAAALAETlABAAAAAJbACSoAAAAAwBI4QQUAAAAAWAInqAAAAAAAS+AEFQAAAABgCZygAgAAAAAsgRNUAAAAAIAlcIIKoFb279+v+Ph4Pf74487nNm7cKIfDoaysLD92BgBA/fXaa6+pefPmKikpcXl+4MCBGjJkiJ+6As6ugTHG+LsJAPa2YsUKDRw4UBs3blSnTp3Us2dP3XTTTZo5c6a/WwMAoF46duyYWrZsqYULF+qWW26RJOXn5+u8887T6tWrdc011/i5Q6B6nKAC8Iq0tDR98MEHuuSSS7Rt2zZt2rRJoaGh/m4LAIB6695779UPP/ygFStWSJJmzpypuXPn6ttvv1WDBg383B1QPU5QAXjFsWPHdOGFF+rHH3/U5s2b1b17d3+3BABAvbZlyxZdeuml2rNnj8477zz16NFDt9xyix555BF/twbUiBlUAF7x3Xff6ZdfflF5ebl++OEHf7cDAEC916tXL1100UV67bXXtHnzZu3YsUN33nmnv9sCzogrqABqrbS0VJdddpl69uypTp06afbs2dq2bZtiY2P93RoAAPXa/PnzNXv2bF1//fX65ptvtGrVKn+3BJwRJ6gAau2BBx7QO++8o//+978KDw/X1VdfrcjISC1fvtzfrQEAUK8VFhaqVatWOnnypF577TXdeuut/m4JOCO2+AKolXXr1mn27Nl6/fXXFRERoaCgIL3++uv66KOPNH/+fH+3BwBAvRYZGanBgwcrPDxcAwcO9Hc7wFlxBRUAAAAIYNddd526deumZ5991t+tAGfFCSoAAAAQgA4dOqR169bp5ptv1s6dO9WpUyd/twScVYi/GwAAAADgfb169dKhQ4f05JNPcnIK2+AKKgAAAADAErhJEgAAAADAEjhBBQAAAABYAieoAAAAAABL4AQVAAAAAGAJnKACAAAAACyBE1QAAAAAgCVwggoAAAAAsAROUAEAAAAAlsAJKgAAAADAEv4/cB/i20BOwioAAAAASUVORK5CYII=\n",
"text/plain": [
"