{
"cells": [
{
"cell_type": "markdown",
"id": "bb6c9859",
"metadata": {},
"source": [
"# Graphene metamaterial absorber"
]
},
{
"cell_type": "markdown",
"id": "f286d274",
"metadata": {},
"source": [
"Graphene, a single atomic sheet of carbon atoms arranged in a hexagonal lattice, has shown great promise for functional optical and optoelectronic devices. Compared to devices made of conventional materials, graphene-based devices have a unique tunability advantage since graphene's conductivity can be drastically modulated by electrostatic gating. \n",
"\n",
"Due to its atomic thickness, it is usually very difficult to model graphene in an FDTD simulation without using a large number of grid points. Fortunately, Tidy3D natively supports a surface conductivity model such that thin material layers can be accurately simulated even with grids much larger than the actual layer thickness. More specifically, you can model graphene directly using Tidy3D's [Material Library](../material_library.html?highlight=material%20ibrary). The graphene's conductivity is described by the well established Kubo formula, which includes the contributions from the intraband and interband electronic transitions. To define graphene, a few parameters, namely the scattering rate, chemical potential, and temperature, are required as user inputs.\n",
"\n",
"This notebook demonstrates how to model a graphene fishnet metamaterial absorber in the THz frequency range. By forming a Fabry-Perot resonator between the graphene layer and a metal mirror, high absorption is achieved across a bandwidth of ~ 2 THz. The design is adapted from the seminal work [Andrei Andryieuski and Andrei V. Lavrinenko, \"Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,\" Opt. Express 21, 9144-9155 (2013)](https://opg.optica.org/oe/fulltext.cfm?uri=oe-21-7-9144&id=252404&ibsearch=false).\n",
"\n",
""
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "96ba5d2f",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T21:52:14.532436Z",
"iopub.status.busy": "2023-03-27T21:52:14.531799Z",
"iopub.status.idle": "2023-03-27T21:52:15.831334Z",
"shell.execute_reply": "2023-03-27T21:52:15.830773Z"
},
"scrolled": true
},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"import tidy3d as td\n",
"import tidy3d.web as web\n"
]
},
{
"cell_type": "markdown",
"id": "62959f4c",
"metadata": {},
"source": [
"The overall design of the absorber involves two layers of graphene sheets embedded in TOPAS polymer. The bottom of the device is a metallic mirror, which forms a Fabry-Perot resonator with graphene. This resonator greatly amplifies the absorption in graphene and achieves perfect absorption when the resonance condition is met. Two designs are explored in this notebook. The first one is a simple uniform graphene layer. When the chemical potential of graphene is tuned to 0.5 eV, perfect absorption is achieved but only within a narrow frequency band. Then, we test a fishnet structure, which shows a much wider absorption band. "
]
},
{
"cell_type": "markdown",
"id": "16b4ccfc",
"metadata": {},
"source": [
"## Uniform Graphene Sheet Absorber"
]
},
{
"cell_type": "markdown",
"id": "3a95e5d2",
"metadata": {},
"source": [
"We start with a simpler case where the absorber is made of two uniform graphene layers embedded in TOPAS polymer above a ground plate. \n",
"\n",
"First, define the basic simulation parameters."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d76a88bc",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T21:52:15.833735Z",
"iopub.status.busy": "2023-03-27T21:52:15.833458Z",
"iopub.status.idle": "2023-03-27T21:52:15.852081Z",
"shell.execute_reply": "2023-03-27T21:52:15.851515Z"
}
},
"outputs": [],
"source": [
"THz = 1e12 # 1 THz = 1e12 Hz\n",
"\n",
"freq0 = 2.5 * THz # central frequency\n",
"freqs = np.linspace(0.1, 5, 300) * THz # frequency range of interest\n",
"\n",
"lda0 = td.C_0 / freq0 # central wavelength\n"
]
},
{
"cell_type": "markdown",
"id": "a4ba8e8f",
"metadata": {},
"source": [
"The TOPAS polymer has a refractive index of 1.53 in the THz range with little absorption. "
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "cd1055cf",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T21:52:15.854088Z",
"iopub.status.busy": "2023-03-27T21:52:15.853942Z",
"iopub.status.idle": "2023-03-27T21:52:15.872860Z",
"shell.execute_reply": "2023-03-27T21:52:15.872282Z"
}
},
"outputs": [],
"source": [
"n_topas = 1.53 # refractive index of the polymer\n",
"topas = td.Medium(permittivity=n_topas**2)\n"
]
},
{
"cell_type": "markdown",
"id": "3ecca39e",
"metadata": {},
"source": [
"To define graphene conductivity, we need to specify a few parameters. Here, we consider a relaxation time of $\\tau$=0.1 ps, which translates to a scattering rate $\\Gamma=\\frac{1}{2\\tau}=\\frac{6.58e-16}{2 \\times 1e-13}=$0.0033 eV, where 6.58e-16 is $\\hbar$ in the unit of eV*s. The temperature is at room temperature. Since there are two layers of graphene, the scaling parameter is set to 2. Note that this only works for graphene layers separated by a small distance. For real bilayer graphene or few-layer graphene in general, the conductivity is more complex as interlayer coupling and stacking order play an important role."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "8f2e5355",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T21:52:15.875140Z",
"iopub.status.busy": "2023-03-27T21:52:15.874977Z",
"iopub.status.idle": "2023-03-27T21:52:15.893558Z",
"shell.execute_reply": "2023-03-27T21:52:15.892979Z"
}
},
"outputs": [],
"source": [
"gamma = 0.0033 # scattering rate\n",
"temp = 300 # temperature\n",
"scaling = 2 # number of layers.\n"
]
},
{
"cell_type": "markdown",
"id": "1f11672f",
"metadata": {},
"source": [
"Furthermore, we consider a unit cell size of 15 $\\mu m$. In the uniform graphene sheet absorber, the distance between the graphene and the mirror is 35.9 $\\mu m$."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "3dc8f7a7",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T21:52:15.895741Z",
"iopub.status.busy": "2023-03-27T21:52:15.895560Z",
"iopub.status.idle": "2023-03-27T21:52:15.913245Z",
"shell.execute_reply": "2023-03-27T21:52:15.912681Z"
}
},
"outputs": [],
"source": [
"a = 15 # unit cell size\n",
"h = 35.9 # distance between graphene and the ground plate\n",
"offset = lda0 / 2 # distance between the flux monitor and the graphene\n"
]
},
{
"cell_type": "markdown",
"id": "e8aff35b",
"metadata": {},
"source": [
"The periodic boundary condition is applied in both the $x$ and $y$ directions. In the $z$ direction, PML is applied in the plus direction and PEC is applied in the minus direction. The PEC mimics the metal mirror. For the grids, we use automatic nonuniform grids in all directions. The same [BoundarySpec](../_autosummary/tidy3d.BoundarySpec.html?highlight=BOUNDARYSPEC) and [GridSpec](../_autosummary/tidy3d.GridSpec.html?highlight=gridspec) will be used through the notebook."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "1ef2e4e2",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T21:52:15.915194Z",
"iopub.status.busy": "2023-03-27T21:52:15.915052Z",
"iopub.status.idle": "2023-03-27T21:52:15.933832Z",
"shell.execute_reply": "2023-03-27T21:52:15.933297Z"
}
},
"outputs": [],
"source": [
"# define a BoundarySpec\n",
"boundary_spec = td.BoundarySpec(\n",
" x=td.Boundary.periodic(),\n",
" y=td.Boundary.periodic(),\n",
" z=td.Boundary(minus=td.PECBoundary(), plus=td.PML()),\n",
")\n",
"\n",
"# define a GridSpec\n",
"grid_spec = td.GridSpec.auto(min_steps_per_wvl=200, wavelength=lda0)\n",
"\n",
"# simulation run time\n",
"run_time = 1e-11\n"
]
},
{
"cell_type": "markdown",
"id": "a5edb267",
"metadata": {},
"source": [
"Next we define a function that returns a simulation at a given graphene chemical potential. This function will later be called repeatedly to construct a simulation batch to investigate how the chemical potential affects the absorption spectrum."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "b85bd993",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T21:52:15.936127Z",
"iopub.status.busy": "2023-03-27T21:52:15.935966Z",
"iopub.status.idle": "2023-03-27T21:52:15.962206Z",
"shell.execute_reply": "2023-03-27T21:52:15.961684Z"
}
},
"outputs": [],
"source": [
"def make_sim_uniform(mu_c):\n",
"\n",
" # define graphene\n",
" graphene = td.material_library[\"graphene\"](\n",
" gamma=gamma, mu_c=mu_c, temp=temp, scaling=scaling\n",
" ).medium\n",
"\n",
" # define graphene structure\n",
" graphene_layer = td.Structure(\n",
" geometry=td.Box(center=(0, 0, h), size=(td.inf, td.inf, 0)), medium=graphene\n",
" )\n",
"\n",
" # define a plane wave source\n",
" plane_wave = td.PlaneWave(\n",
" center=(0, 0, h + 0.1 * offset),\n",
" size=(td.inf, td.inf, 0),\n",
" source_time=td.GaussianPulse(freq0=freq0, fwidth=freq0 / 2),\n",
" direction=\"-\",\n",
" )\n",
"\n",
" # define a flux monitor to measure reflection\n",
" flux_monitor = td.FluxMonitor(\n",
" center=(0, 0, h + offset),\n",
" size=(td.inf, td.inf, 0),\n",
" freqs=freqs,\n",
" name=\"R\",\n",
" )\n",
"\n",
" # simulation domain size in z\n",
" Lz = h + 1.1 * offset\n",
"\n",
" # define simulation\n",
" sim = td.Simulation(\n",
" center=(0, 0, Lz / 2),\n",
" size=(a, a, Lz),\n",
" grid_spec=grid_spec,\n",
" structures=[graphene_layer],\n",
" sources=[plane_wave],\n",
" monitors=[flux_monitor],\n",
" run_time=run_time,\n",
" medium=topas,\n",
" boundary_spec=boundary_spec,\n",
" shutoff=1e-7,\n",
" symmetry=(-1, 1, 0), # symmetry is used to reduce the computational load\n",
" )\n",
"\n",
" return sim\n"
]
},
{
"cell_type": "markdown",
"id": "a1bbea24",
"metadata": {},
"source": [
"Specifically, we study $\\mu_c=$0, 0.1, 0.2, and 0.5 eV. "
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "9f32c260",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T21:52:15.964300Z",
"iopub.status.busy": "2023-03-27T21:52:15.964154Z",
"iopub.status.idle": "2023-03-27T21:52:16.101029Z",
"shell.execute_reply": "2023-03-27T21:52:16.100496Z"
}
},
"outputs": [],
"source": [
"mu_cs = [0, 0.1, 0.2, 0.5] # values of mu_c to be simulated\n",
"\n",
"# define a simulation batch\n",
"sims = {f\"mu_c={mu_c:.2f}\": make_sim_uniform(mu_c) for mu_c in mu_cs}\n"
]
},
{
"cell_type": "markdown",
"id": "f4b6fb5c",
"metadata": {},
"source": [
"Submit the simulation batch to the server."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "5a706f2c",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T21:52:16.103153Z",
"iopub.status.busy": "2023-03-27T21:52:16.103003Z",
"iopub.status.idle": "2023-03-27T21:52:39.391295Z",
"shell.execute_reply": "2023-03-27T21:52:39.390720Z"
}
},
"outputs": [],
"source": [
"batch = web.Batch(simulations=sims, folder_name=\"default\")\n",
"batch_results = batch.run(path_dir=\"data\")\n"
]
},
{
"cell_type": "markdown",
"id": "b14e5299",
"metadata": {},
"source": [
"After the batch of jobs is complete, we want to plot the absorption spectra. Since the bottom ground plane is a perfect mirror, absorption is simply $A=1-R$, where $R$ is the reflection. A function `plot_absorption` is defined to do this plotting. "
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "75eb91f2",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T21:52:39.720153Z",
"iopub.status.busy": "2023-03-27T21:52:39.720023Z",
"iopub.status.idle": "2023-03-27T21:52:39.738653Z",
"shell.execute_reply": "2023-03-27T21:52:39.738131Z"
}
},
"outputs": [],
"source": [
"def plot_absorption(batch_results):\n",
" for i, mu_c in enumerate(mu_cs):\n",
" sim_data = batch_results[f\"mu_c={mu_c:.2f}\"]\n",
" A = 1 - sim_data[\"R\"].flux\n",
" plt.plot(freqs / THz, A, label=f\"{mu_c:.2f} eV\")\n",
" plt.xlim(0, 5)\n",
" plt.ylim(0, 1)\n",
" plt.xlabel(\"Frequency (THz)\")\n",
" plt.ylabel(\"Absorption\")\n",
" plt.legend()\n"
]
},
{
"cell_type": "markdown",
"id": "6516c046",
"metadata": {},
"source": [
"At 0.5 eV chemical potential, perfect absorption is observed around 2.3 THz. However, the bandwidth is rather small."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "77f7b725",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T21:52:39.740832Z",
"iopub.status.busy": "2023-03-27T21:52:39.740433Z",
"iopub.status.idle": "2023-03-27T21:52:41.739726Z",
"shell.execute_reply": "2023-03-27T21:52:41.739249Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAG2CAYAAACZEEfAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADvUklEQVR4nOzdZ3TURRfA4d+WbHrvCYSE3rs0QZBqF7HhK1IFpYiAiqICigpSRIogSBGwgSJWEClSRJoQeockpPdedrPl/37YJBAJkGRbyjzn5CRkd2duRJKbmTt3ZJIkSQiCIAiCINRQclsHIAiCIAiCYEki2REEQRAEoUYTyY4gCIIgCDWaSHYEQRAEQajRRLIjCIIgCEKNJpIdQRAEQRBqNJHsCIIgCIJQo4lkRxAEQRCEGk0kO4IgCIIg1Ggi2REEQRAEoUazabKzf/9+Hn30UYKCgpDJZPz88893fc3evXtp37499vb2NGzYkHXr1lk8TkEQBEEQqi+bJjt5eXm0adOGZcuWlev5kZGRPPzww9x///2cPHmSSZMm8eKLL/Lnn39aOFJBEARBEKorWVW5CFQmk/HTTz8xcODA2z7nzTffZOvWrZw9e7bkc4MHDyYzM5Pt27dbIUpBEARBEKobpa0DqIhDhw7Rt2/fUp8bMGAAkyZNuu1rNBoNGo2m5M8Gg4H09HS8vb2RyWSWClUQBEEQBDOSJImcnByCgoKQyyu2MVWtkp3ExET8/f1Lfc7f35/s7GwKCgpwdHS85TVz5szh/ffft1aIgiAIgiBYUExMDHXq1KnQa6pVslMZ06ZNY8qUKSV/zsrKIiQkhJiYGNzc3GwYmSBUf9k7d5L43vtIajVyFxc8nn0Gp44dMRQUkPXzL+Tt3w+Az7ixeI8aZeNoBUGozrKzs6lbty6urq4Vfm21SnYCAgJISkoq9bmkpCTc3NzKXNUBsLe3x97e/pbPu7m5iWRHEEyQ8cMP5EyfgTPgfH8vgubMQentXfJ48KOPkr5hA0mz56Be+QVS48a4P/ywzeIVBKFmqEwJSrXqs9O1a1d2795d6nM7d+6ka9euNopIEGqnrN+3kjhjJgCezz9P3c8/L5XoFPMaOhSvUSMBSJrzMfrcXKvGKQiCADZOdnJzczl58iQnT54EjEfLT548SXR0NGDcgho6dGjJ819++WUiIiKYOnUqFy9eZPny5Xz//fdMnjzZFuELQq2UH36ChGnTQJLweG4w/u++g0yhuO3z/V59FVVoKPrUVFI//9yKkQqCIBjZNNk5duwY7dq1o127dgBMmTKFdu3aMWPGDAASEhJKEh+AsLAwtm7dys6dO2nTpg2ffPIJq1evZsCAATaJXxBqG21iIrETJyJptbj260fA9Ol3XVKWqVT4T3sLgPQNX6GNi7NGqIIgCCWqTJ8da8nOzsbd3Z2srCxRsyMIFSDp9UQPH0H+v/9i37gxod99i9zZudyvvz5sOPlHjuA9Zgx+U8RqrFA16PV6tFqtrcMQiqhUqtseKzfl53e1KlAWBMF20r/8kvx//0Xm5ESdJYsrlOgAeA55nvwjR8jcvBmfCeORq1QWilQQ7k6SJBITE8nMzLR1KMJN5HI5YWFhqMz8/UEkO4Ig3JX6/HmSFy8BIODtaahCQys8huv996P090eXlETOjp24PyJOZgm2U5zo+Pn54eTkJJrMVgEGg4H4+HgSEhIICQkx69+JSHYEQbgjg1pN3BtTQavFpW8f3J98slLjyJRKPJ55mtSln5G5aZNIdgSb0ev1JYmOdxmnCAXb8fX1JT4+Hp1Oh52dndnGrVZHzwVBsL7khQspvHYNha8PgR98YNJvWx5PPAFA/rFj6NLSzBWiIFRIcY2Ok5OTjSMR/qt4+0qv15t1XJHsCIJwWwUnT5Lx1dcABM2ejdLT06Tx7IKCcGjeHCSJ3L17zRChIFSe2Lqqeiz1dyKSHUEQyiRptSTMmAmShPvjj+PSo4dZxnXp0xuAnN1/mWU8QRCEuxHJjiAIZUr7ch2ay5dReHjg99abZhvXtU8fAPIOHsRQUGC2cQVBEG5HJDuCINyi8Pp1UpctA8B/2lsmb1/dzL5JE+yCg5HUavIOHjTbuIJQWyxbtozQ0FAcHBzo3LkzR48evetrfvjhB5o2bYqDgwOtWrVi27ZtpR6XJIkZM2YQGBiIo6Mjffv25cqVK5WO8fjx48hkMg4fPlzm43369GHQoEGVHr+iRLIjCEIpkiSR+P77SBoNTl274PbYY2YdXyaT4dKrFwB5Bw+ZdWxBqOk2bdrElClTmDlzJuHh4bRp04YBAwaQnJx829ccPHiQ5557jlGjRnHixAkGDhzIwIEDOXv2bMlz5s2bx5IlS1ixYgVHjhzB2dmZAQMGoFarKxVnhw4daNOmDWvXrr3lsaioKPbs2cOoUaMqNXalSLVMVlaWBEhZWVm2DkUQqqSsbduk802aShdat5E0UVGWmWP7n9L5Jk2la489bpHxBeFOCgoKpPPnz0sFBQW2DqXCOnXqJI0fP77kz3q9XgoKCpLmzJlz29c888wz0sMPP1zqc507d5ZeeuklSZIkyWAwSAEBAdL8+fNLHs/MzJTs7e2l77777rbj6vV6afbs2VJoaKjk4OAgtW7dWvrhhx9KHl+yZInk5uYm5eXllXrdzJkzpaCgIEmn090y5p3+bkz5+S1WdgRBKGHIyyNp7jwAvEePRlWvnkXmcerQHgDN5cvoRQdboQqQJIn8Qp1N3qRy3tpUWFjI8ePH6du3b8nn5HI5ffv25dCh26+SHjp0qNRrAAYMGFDymsjISBITE0s9x93dnc6dO99x3Dlz5rBhwwZWrFjBuXPnmDx5MkOGDGHfvn0APP/882g0GjZv3lzqv/P69esZPnw4ijtcIGxuoqmgIAglUld+gS4xEbvgYLxftNwSs9LHB1VYGIWRkeSHn8C19/0Wm0sQyqNAq6f5jD9tMvf5WQNwUt39x3Fqaip6vR5/f/9Sn/f39+fixYu3fV1iYmKZr0lMTCx5vPhzt3vOf2k0GmbPns2uXbvo2rUrAPXr1+fAgQOsXLmSnj174uXlxRNPPMHatWsZOnQoAHv27CEqKooRI0bc9es1J7GyIwgCAIVRUaR9+SUA/m9PQ+7gYNH5nDp2BIwNBgVBqF6uXr1Kfn4+/fr1w8XFpeRtw4YNXLt2reR5I0eOZP/+/SWfW7t2LT179qRhw4ZWjVes7AiCYCxKnj0btFqce/TApXdvi8/pdE9HMn/4QSQ7QpXgaKfg/KwBNpu7PHx8fFAoFCQlJZX6fFJSEgEBAbd9XUBAwB1fU/w+KSmJwMDAUs9p27ZtmWPm5uYCsHXrVoKDg0s9Zm9vX/Jxnz59CAkJYd26dbzxxhts2bKFlStX3uUrNT+R7AiCQO6eveTt/xvs7PB/e5pVOssWr+yoz53DkJ+PXLTuF2xIJpOVayvJllQqFR06dGD37t0MHDgQMF6euXv3biZMmHDb13Xt2pXdu3czadKkks/t3LmzZPspLCyMgIAAdu/eXZLcZGdnc+TIEcaOHVvmmM2bN8fe3p7o6Gh69ux527nlcjkjRoxgzZo1BAcHo1KpeOqppyr2hZtB1f6bFQTB4gwaDUmzZwPgPXw49mFhVpnXLigIpZ8fuuRk1Bcv4dS+nVXmFYTqbMqUKQwbNoyOHTvSqVMnFi1aRF5eXqkamKFDhxIcHMycOXMAePXVV+nZsyeffPIJDz/8MBs3buTYsWN88cUXgDHRmzRpEh9++CGNGjUiLCyM6dOnExQUVJJU/Zerqyuvv/46kydPxmAw0L17d7Kysvjnn39wc3Nj2LBhJc8dMWIEs2bN4u233+a5557D0dHRcv+BbkMkO4JQy6WtWYM2Nhalvz8+L79k1bkdmjcnNzkZ9fnzItkRhHJ49tlnSUlJYcaMGSQmJtK2bVu2b99eqrg4OjoaufxGSW63bt349ttveffdd3n77bdp1KgRP//8My1btix5ztSpU8nLy2PMmDFkZmbSvXt3tm/fjsMdavc++OADfH19mTNnDhEREXh4eNC+fXvefvvtUs8LCQmhb9++7Nixg5EjR5rxv0b5yaTynnmrIbKzs3F3dycrKws3NzdbhyMINlUYG0fEww8jaTQEL/wEt4cesur8KUuWkrp8Oe6DBhE0+yOrzi3UXmq1msjISMLCwu74w1ywvjv93Zjy81ucxhKEWix57lxjp+ROnXB98EGrz+/QojkA6vPnrT63IAi1h0h2BKGWyj3wDzk7d4JCgf+771ilKPm/HJobkx3N1asYNBqrzy8IQu0gkh1BqIWkwkKSPjJuG3kNeR6Hxo1tEocyIACFpyfodGguV/7SQUEQhDsRyY4g1ELpX31FYWQkCm9vfO5wZNXSZDJZyeqO2MoSBMFSRLIjCLWMNimJ1GXLAfB7/XUUrq42jack2Tl3zqZxCIJQc4lkRxBqmeT5CzDk5+PYpg3ujz9m63BwaNYUMF4KKgiCYAki2RGEWiTv6FGyf/8dZDL8Z0xHJrf9twBVgwYAaCIiyn37syAIQkXY/judIAhWIel0JH3wIQAezz6DY4sWNo7ISBUaCnI5huxs9Kmptg5HEIQaSCQ7glBLZHz7HZorV1C4u+P76qu2DqeE3N4eu7p1ANDcdFuyIAiCuYhkRxBqAV1qKilLlgDgO2UKSk9PG0dUmn39oq0skewIgmABItkRhCpCrVMTmRXJ6ZTThCeFcy71HDHZMRTqC00eO/mThRhyc3Fo0QKPp540Q7TmZd/QmOwUXouwcSSCUPUtW7aM0NBQHBwc6Ny5M0ePHr3j88+dO8eTTz5JaGgoMpmMRYsWmWXcO0lKSsLOzo6NGzeW+fioUaNo3759pcevKHERqCDYQJYmixPJJwhPCudUyimic6JJLSi7XkWGjBC3EFr6tOTeoHvpEdwDDwePcs+Vf+IEWT/9BEDA9HeRKRTm+BLMSiVWdgShXDZt2sSUKVNYsWIFnTt3ZtGiRQwYMIBLly7h5+dX5mvy8/OpX78+Tz/9NJMnTzbbuHfi7+/Pww8/zNq1axk8eHCpx/Ly8vj+++/5+OOPKzxuZYmVHUGwkuT8ZL658A3D/hhGj409eOWvV/jy3JeEJ4eXJDqOSkeCXYKp51YPfyd/7BX2SEhcz77O1oitvH3gbXr/0Jup+6dyJuXMXeeU9PqSomT3QYNwbNvWkl9ipdk3qA+AJkIkO4JwJwsXLmT06NGMGDGC5s2bs2LFCpycnFi7du1tX3PPPfcwf/58Bg8ejL29vdnGBVi9ejXNmjXDwcGBpk2bsnz58pLHRo0axe7du4mOji71mh9++AGdTsfzzz9fga/cNGJlRxAsSG/Qsy92H99d/I4jCUeQuHG0OtQtlA7+HWjn146GHg0JdgnG3d691B1VkiSRpk7jUvoljicdZ2/sXq5kXOGPyD/4I/IPetbpyRv3vEE9t3plzp/5w2bU588jd3XF77UpFv96K6t4ZUefkoo+OxtFBW80FgSTSRJo820zt50TlONuusLCQo4fP860adNKPieXy+nbty+HDh2q9PSVHfebb75hxowZfPbZZ7Rr144TJ04wevRonJ2dGTZsGA899BD+/v6sW7eOGTNmlLzuyy+/ZNCgQXh4eFQ65ooSyY4gWECeNo8fLv3Adxe/Iz4vvuTzbXzbMCB0AP3q9SPAOeCu48hkMnwcffAJ9uHe4HuZ2H4i59LO8e2Fb/k94nf2xe7jUPwhxrYdy4gWI1DIb2xR6TIySPn0UwB8J05E6e1t/i/UTBQuzigDAtAlJqK5dg2ndu1sHZJQ22jzYXaQbeZ+Ox5Uznd9WmpqKnq9Hn9//1Kf9/f35+LFi5WevrLjzpw5k08++YRBgwYBEBYWxvnz51m5ciXDhg1DoVAwbNgw1q1bx/Tp05HJZFy7do2///6bnTt3VjreyhDJjiCYUW5hLt9d/I4N5zeQqckEwN3enScbPcnTjZ+mjmsdk+do4d2Cj7p/xIutXuTjox9zMP4gi8MXczThKB/f9zFeDl4ApHy6CH1WFvaNG+P53OC7jGp79vXD0CUmUhgZJZIdQaji8vLyuHbtGqNGjWL06NEln9fpdLi7u5f8eeTIkXz88cfs2bOH3r178+WXXxIaGkrv3r2tGq9IdgTBDLR6LRsvbWTl6ZVkabIAqOdWj5EtR/JQ2EM4KB3MPmeYexgr+q7g56s/M/vIbA4lHGLItiGs6LsCn6upZH7/PQABM6YjU1b9f+p2dUOAQxTGRN/1uYJgdnZOxhUWW81dDj4+PigUCpKSkkp9PikpiYCAu68Um3Pc3NxcAFatWkXnzp1LPaa46RBEo0aN6NGjB19++SW9evViw4YNjB49utR2vTVU/e+AglCFSZLEnpg9LDy+kOvZ1wFjLc6Y1mN4MOxBlHLL/hOTyWQ80egJWvq05JW/XiEmJ4bhvw1h2TeOALg/9SROHTtaNAZzUYXUBUAbHWPjSIRaSSYr11aSLalUKjp06MDu3bsZOHAgAAaDgd27dzNhwgSrjuvv709QUBARERF3LTQeNWoUY8eO5bHHHiMuLo7hw4dXOtbKEsmOIFRSXG4cHxz+gH/i/gHAy8GLV9q9wsCGAy2e5PxXI89GfP3Q14zbNY4mv5+DCAN4uuP/+utWjcMUdnWNyU5hjEh2BOF2pkyZwrBhw+jYsSOdOnVi0aJF5OXlMWLEiJLnDB06lODgYObMmQMYC5DPnz9f8nFcXBwnT57ExcWFhg0blnvc/3r//feZOHEi7u7uPPDAA2g0Go4dO0ZGRgZTptw4EPH0008zceJEXnrpJfr370/don/r1iSSHUGoIJ1BxzcXvmHZyWUU6ApQyVUMbTGUF1u9iLOd7X4z9HH04fNmM4mb9jQAX/dVMsVeT9UtSy5NFRICgDZabGMJwu08++yzpKSkMGPGDBITE2nbti3bt28vVVwcHR2N/KZLfuPj42l3Ux3cggULWLBgAT179mTv3r3lHve/XnzxRZycnJg/fz5vvPEGzs7OtGrVikmTJpV6npOTE4MHD+aLL75g5MiR5vkPUUEyqZZdM5ydnY27uztZWVm4ieOtQgVdTL/IzIMzOZ9m/C2po39HZnadSah7qG0Dw7ilFvPiaPL++YfLDRx492kt7fzbs7r/alQKla3Duyt9bh6Xi7bcGv97FIWrq40jEmoqtVpNZGQkYWFhODiYv55OqLw7/d2Y8vNbNBUUhHLQGrQsO7mMwb8P5nzaeVxVrrzX9T3WDFhTJRIdgOyt28j75x9kKhUtPl6Cq8qNE8knmPfvPFuHVi4KF2cURcfjC8XqjiAIZiSSHUG4i+jsaIb/MZwVp1agl/T0q9ePXwf+ypONn0Quqxr/hPRZWSQV7c/7jH2Zhq16MPe+uQBsurSJ3dd32zK8clMV7eVrRd2OIAhmVDW+UwtCFSRJEj9d+YmnfnuK06mncbVzZd5981jYayE+jj62Dq+UpLnz0KeloWrQAK9RowDoUacHI1oYiwtnHJxx27u3qhK7ohNZheJEliAIZiSSHUEoQ5Ymi9f2vcaMgzMo0BXQwb8DPz72Iw+GPWjr0G6Rs3cvWVu2gExG4Kz3katu1Oe80u4Vmnk1I7swm48Of2TDKMtHVbeoSFn02hEEwYxEsiMI/3Eu9RzP/v4sO6/vRClT8mr7V1nTfw2BLoG2Du0W+qwsEmfMBMBr2DCcOnQo9bidwo4P7v0ApUzJruhd7IjaYYswy00lVnYEQbAAkewIQhFJkvj+0ve88McLxOXGEewSzNcPfc2LrV4sdedUVZI0ew665GRUoaH4Tnq1zOc08WrCyFbG457z/p1Hvq0uOywHu6KVHdFFWRAEcxLJjiAA+dp8ph2YxgeHP0Br0NKrbi82PbKJFj4tbB3abeX8tYesX34BuZzAObOR3+EI7ehWowlyDiIpP4l159ZZL8gKUtU13h2mS0xC0mptHI0gCDWFSHaEWi8iM4Lntj7H1oitKGQKpnSYwpL7l+Bu7373F9uIPjOThJkzAPAaMfyuF2c6KB2Y0tHY0fTLs1+SmJdo8RgrQ+HtjczODgwGtEnJtg5HEIQaQiQ7Qq32R+QfDN46mIisCHwdfVkzYA0jWo6w+iV1FZX40Wz0Kamo6tfHd+LEcr2mf73+tPdrj1qvZsWpFRaOsHJkcjnKIGNtlC7BRpcyCoJQ44hkR6iVdAYdnxz7hKn7p1KgK6BzQGe+f/R7Ovh3uPuLbSx7xw6yf/sN5HKCPp6D3N6+XK+TyWRM6jAJgJ+v/kx0dtWsi7ELDAJAm5Bg40gEQagpRLIj1DpZmizG7RpXUrvyYqsXWdlvZZXrnVMWbUICCdON21feL76IY+vWFXp9O792dA/ujl7S8/mpzy0RosnsAo0rO9p4kewIQlmWLVtGaGgoDg4OdO7cmaNHj97x+atWraJHjx54enri6elJ3759b3mNJEnMmDGDwMBAHB0d6du3L1euXKl0jMePH0cmk3H48OEyH+/Tpw+DBg2q9PgVJZIdoVa5nHGZwb8P5lDCIRyVjizouYBX279aZU9b3UzS64mf+iaGrCwcWrXC95UJlRpnQjvj67ZFbiMmu+od8b6R7IhtLEH4r02bNjFlyhRmzpxJeHg4bdq0YcCAASQn377Gbe/evTz33HPs2bOHQ4cOUbduXfr3709cXFzJc+bNm8eSJUtYsWIFR44cwdnZmQEDBqBWqysVZ4cOHWjTpg1r16695bGoqCj27NnDqKIGqNYgkh2h1tgRtYMh24YQmxtLsEswXz34FQNCB9g6rHJLW7WK/H//Re7kRPCC+cZC3kpo4d2Ce4PvxSAZWH9+vZmjNJ1dsNjGEoTbWbhwIaNHj2bEiBE0b96cFStW4OTkVGZSUeybb75h3LhxtG3blqZNm7J69WoMBgO7dxuvkZEkiUWLFvHuu+/y+OOP07p1azZs2EB8fDw///zzbcc1GAzMmTOHsLAwHB0dadOmDZs3by55fNSoUWzatIn8/NLtLtatW0dgYCAPPPCAaf8xKkAkO0KNpzfoWRK+hNf2vUaBroAugV3Y+PBGmng1sXVo5VZw8iQpSz8DwH/GdFT16pk03qiWxt+ofr76M2kFaSbHZ04lKzuiQFmwIkmSyNfm2+RNkqRyxVhYWMjx48fp27dvyefkcjl9+/bl0KFD5f5a8/Pz0Wq1eHl5ARAZGUliYmKpcd3d3encufMdx50zZw4bNmxgxYoVnDt3jsmTJzNkyBD27dsHwPPPP49GoymVAEmSxPr16xk+fDgKhfVW1JVWm0kQbCC7MJtpf09jf+x+AIY1H8akDpNQyqvP//r63FziXn8D9HrcHn4Y98cfN3nMjv4daeXTijOpZ/ju4nclW1tVgbIo2dHFJyBJUpU/GSfUDAW6Ajp/29kmcx/53xGc7Jzu+rzU1FT0ej3+/v6lPu/v78/FixfLPd+bb75JUFBQSXKTmJhYMs5/xy1+7L80Gg2zZ89m165ddO3aFYD69etz4MABVq5cSc+ePfHy8uKJJ55g7dq1DB06FIA9e/YQFRXFiBEjyh2vOYiVHaHGisiM4Pmtz7M/dj/2Cnvm9JjD6/e8Xq0SHYDE92ehjY3FLjiYgPdmmuWHv0wmY1iLYQBsvrwZrb7qNPArXtkx5OdjyMqycTSCULN8/PHHbNy4kZ9++gmHOzQivZurV6+Sn59Pv379cHFxKXnbsGED165dK3neyJEj2b9/f8nn1q5dS8+ePWnYsKHJX0tFVK/v+oJQTntj9vLW32+Rp80jwDmAxfcvprl3c1uHVWGZP24xHjNXKAhaMB+Fq6vZxu4d0hs/Rz+SC5LZeX0nD9V/yGxjm0Lu4IDC2xt9WhrahAQUHh62DkmoBRyVjhz53xGbzV0ePj4+KBQKkpKSSn0+KSmJgICAu75+wYIFfPzxx+zatYvWN53kLH5tUlISgYE37gBMSkqibdu2ZY6Vm5sLwNatWwkODi71mP1N7TD69OlDSEgI69at44033mDLli2sXLnyrrGam0h2hBpFkiTWn1vPwuMLkZDo4N+BT3p+grejt61DqzD1pUskzpoFgO8rE+7aJbmi7OR2PNXkKZafXM7GSxurTLIDxtWd4mTHoVkzW4cj1AIymaxcW0m2pFKp6NChA7t372bgwIEAJYXGEybceSt63rx5fPTRR/z555907Nix1GNhYWEEBASwe/fukuQmOzubI0eOMHbs2DLHa968Ofb29kRHR9OzZ8/bziuXyxkxYgRr1qwhODgYlUrFU089Vf4v2kzENpZQY2j1WmYenMknxz9BQuLpxk+zqv+qapno6HNziZv4KpJGg/N9PfAeM8Yi8zzV6CmUMiUnkk9wKf2SReaoDNFrRxDKNmXKFFatWsX69eu5cOECY8eOJS8vr1QNzNChQ5k2bVrJn+fOncv06dNZu3YtoaGhJCYmkpiYWLI6I5PJmDRpEh9++CG//vorZ86cYejQoQQFBZUkVf/l6urK66+/zuTJk1m/fj3Xrl0jPDycpUuXsn596VOeI0aMIC4ujrfffpvnnnsOR8fyrWSZk1jZEWqEDHUGk/dO5njSceQyOVPvmcr/mv6vWha3SpJEwrvTKbx+HWVgIEFz5yKTW+b3El8nX+4PuZ+d13fy89WfebPTmxaZp6LsgkSvHUEoy7PPPktKSgozZswgMTGRtm3bsn379lLFxdHR0chv+p7x+eefU1hYeMuKysyZM3nvvfcAmDp1Knl5eYwZM4bMzEy6d+/O9u3b71jX88EHH+Dr68ucOXOIiIjAw8OD9u3b8/bbb5d6XkhICH379mXHjh2MHDnSDP8VKk4mlffMWw2RnZ2Nu7s7WVlZuLm52TocwQwiMiMYv3s8sbmxONs5M/+++fSo08PWYVVa+ldfk/TRR2BnR+hXG3C8zZ65ufwd+zfjdo/Dw96Dv57+CztF5fr3mFPal+tInjsXt4cfJviTBbYOR6hh1Go1kZGRhIWFmVSkK5jfnf5uTPn5LbaxhGrtYNzBUo0Cv37w62qd6BScOkXSvHkA+L/xusUTHYBuQd3wc/IjU5PJ3ti9Fp+vPJR+vgDo/lOIKQiCUBki2RGqrS1XtjBu9zhytDm092vPtw9/S0NP6x5nNCddRgaxkyeDVotr//54vvCCVeZVyBU83sDYu+enKz9ZZc67sStaktfeoQW+IAhCeYlkR6h2JEli+cnlzDw4E72k57EGj7Gq/yq8HLxsHVqlSVotca9OQhefgF29EAI/+tCq9UaPNXgMgIPxB0lXp1tt3ttRFiU7uuTkcneXFQRBuB2bJzsVvb110aJFNGnSBEdHR+rWrcvkyZMrfVGZUP1oDcYTV8U3do9pPYYP7/0QlUJl48hMk/TxXPKPHkXu5ETdZcvM2k+nPELdQ2nu3Ry9pGdn1E6rzl0Wpa9xG0tSqzFkZ9s4GkEQqjubJjsVvb3122+/5a233mLmzJlcuHCBNWvWsGnTplsqv4WaKV+bzyt/vcJPV39CLpMzvct0Xmn3SrU8cXWzzB9/JOObbwAImj8Peyt3Fi32UJixz862yG02mf9mcgcHFO7uAGhF3Y4gCCayabJT0dtbDx48yL333sv//vc/QkND6d+/P88999xdV4OE6i9DncHIP0fyT9w/OCgcWHz/Yp5p8oytwzJZ/okTJL73PgA+E1/BtU8fm8XyQOgDyJARnhxOQq7t+9vc2MpKsXEkgiBUdzZLdipze2u3bt04fvx4SXITERHBtm3beOih23d+1Wg0ZGdnl3oTqpeU/BRGbB/BubRzeNp7smbAGnrV7WXrsEymTUoiduJEJK0W13798Hn5ZZvG4+/sTwf/DgD8GfWnTWMBUPr5AeJEliAIprNZsnOn21tvd8vq//73P2bNmkX37t2xs7OjQYMG9OrV647bWHPmzMHd3b3krW7dumb9OgTLis+NZ9j2YVzLuoafox/rHlxHa9/Wd39hFWcoKCD2lYnoU1Kxb9SIoI/nWKxxYEUMCB0AwK7oXTaOBJT+RclOskh2BEEwje2/u1bA3r17mT17NsuXLyc8PJwtW7awdetWPvjgg9u+Ztq0aWRlZZW8xcTEWDFiwRRRWVEM2z6MmJwYgl2CWffgOuq717d1WCaT9Hrip05Fffo0Cnd36ixfhtzZ2dZhAcbLQQFOpZwiOd+2x77F8XNBEMzFZtdFVOb21unTp/PCCy/w4osvAtCqVauS9tbvvPNOqfbYxezt7UvdwCpUD5czLjNmxxjS1GmEuoWyqv8qApzvfqtvdZA8fwE5O3chs7OjzrLPUFWh1UY/Jz/a+LbhVMop/or+i8FNB9ssFqVfUc1Okkh2BEEwjc1Wdm6+vbVY8e2tXbt2LfM1+fn5tyQ0CoUCQPTiqEGuZFxh1J+jSFOn0cSzCeseWFdjEp30r78hfd06AAI/noPTf24frgr6hhjr6Gy9lSVqdgShbBVt2bJu3TpkMlmpt/9exSBJEjNmzCAwMBBHR0f69u3LlStXKh3j8ePHkclkHD58uMzH+/Tpw6BBgyo9fkXZdBvrbre3/vfm1kcffZTPP/+cjRs3EhkZyc6dO5k+fTqPPvpoSdIjVG+RWZG8uONFMjWZtPBuwZoBa6rlreVlyd6xg6TZswHwnTIF94cftnFEZesTYjwRdizxGFmaLJvFcaNmR6zsCEKxirZsKebm5kZCQkLJ2/Xr10s9Pm/ePJYsWcKKFSs4cuQIzs7ODBgwoNJ97Dp06ECbNm3KPF0dFRXFnj17GDVqVKXGrhTJxpYuXSqFhIRIKpVK6tSpk3T48OGSx3r27CkNGzas5M9arVZ67733pAYNGkgODg5S3bp1pXHjxkkZGRnlni8rK0sCpKysLDN+FYI5RGdFS7039ZZarmspPfXrU1KmOtPWIZlN7sGD0oWWraTzTZpK8dNnSAaDwdYh3dHAnwdKLde1lLZe22qzGLQpKdL5Jk2l882aSwat1mZxCDVPQUGBdP78eamgoMDWoVRYp06dpPHjx5f8Wa/XS0FBQdKcOXNu+5ovv/xScnd3v+3jBoNBCggIkObPn1/yuczMTMne3l767rvvbvs6vV4vzZ49WwoNDZUcHByk1q1bSz/88EPJ40uWLJHc3NykvLy8Uq+bOXOmFBQUJOl0ulvGvNPfjSk/v21eoDxhwgSuX7+ORqPhyJEjdO7cueSxvXv3sq5oyR9AqVQyc+ZMrl69SkFBAdHR0SxbtgwPDw/rBy6YVXxuPKN2jCK5IJmGHg1Z2W8l7vbutg7LLArOnCF2/ATjEfP+/QmYOaPKN0K8r859AOyL3WezGBReXqBUgsGALi3NZnEItYMkSRjy823yJpWzDKMyLVuK5ebmUq9ePerWrcvjjz/OuXPnSh6LjIwkMTGx1Lju7u507tz5juPOmTOHDRs2sGLFCs6dO8fkyZMZMmQI+/YZv288//zzaDQaNm/eXOq/8/r16xk+fLhVd2RsVqAsCMWS8pJ4cceLJOQllBQjV+d7rm6muXqVmNFjMOTn49S1C0EL5iOrBluuPev0ZO3ZtRyIO4DOoEMpt/63CplcjtLXF11CArqkpJLTWYJgCVJBAZfad7DJ3E3CjyNzcrrr8+7UsuXixYu3H79JE9auXUvr1q3JyspiwYIFdOvWjXPnzlGnTp2Sdi8VaQWj0WiYPXs2u3btKqmzrV+/PgcOHGDlypX07NkTLy8vnnjiCdauXcvQoUMB2LNnD1FRUSXlKtYikh3BprI0WYzZOYaYnBjquNRhdf/V+Dj62Doss9BERHB9+Aj0mZk4tGpFnaWfIVdVjzu8Wvu2xt3enSxNFqdTTtPev71N4ihJdlJTbTK/INQEXbt2LXXwp1u3bjRr1oyVK1fesXXLnVy9epX8/Hz69etX6vOFhYW0a9eu5M8jR45kwIABXLt2jQYNGrB27Vp69uxJQytfiyOSHcFmCnQFTNg9gYisCPyd/FkzYA3+zjXjt3dNZCTRw4ajT03FvmlT6n6xEoVL1eilUx5KuZJ7g+5lW+Q29sbutV2y42NMfHUpItkRLEvm6EiT8OM2m7s8KtOypSx2dna0a9eOq1evApS8NikpicDAwFLjtm3btswxcnNzAdi6dSvBwcGlHru53UufPn0ICQlh3bp1vPHGG2zZsoWVK1eWO1ZzsXnNjlA76Qw6pu6fysmUk7iqXFnRdwVBLkG2DsssCq9fJ3rYcHQpKdg3bkzIl2tRenraOqwKK67bORh30GYxlCQ7qeJ+LMGyZDIZcicnm7yVt4avMi1byqLX6zlz5kxJYhMWFkZAQECpcbOzszly5Mhtx23evDn29vZER0fTsGHDUm8331Qgl8sZMWIE69ev59tvv0WlUvHUU0+VO1ZzESs7gtVJksSHhz9kb8xe7BX2fNb7Mxp62uamb3MrjI7m+rDh6JKTUTVsUG0THYCuQV2RIeNSxiVSC1Jtsr14I9kRKzuCAMaWLcOGDaNjx4506tSJRYsWlWrZAsa2LcHBwcyZMweAWbNm0aVLFxo2bEhmZibz58/n+vXrJQ16ZTIZkyZN4sMPP6RRo0aEhYUxffp0goKCGDhwYJlxuLq68vrrrzN58mQMBgPdu3cnKyuLf/75Bzc3N4YNG1by3BEjRjBr1izefvttnnvuORzLuZJlTiLZEaxu+anl/HjlR+QyOXPvm2uzLRJzK4yJMSY6iYmoGjSg3rp1KL2rb48gLwcvmnk343zaeQ7FH+LRBo9aPQalrzHZ0YtkRxAAePbZZ0lJSWHGjBkkJibStm1btm/fXqq4ODo6ulQD3oyMDEaPHk1iYiKenp506NCBgwcP0rx585LnTJ06teRGgszMTLp378727dtvaT54sw8++ABfX1/mzJlDREQEHh4etG/f/pb7KkNCQujbty87duxg5MiRZvyvUX4yqbxn3mqI7Oxs3N3dycrKws3Nzdbh1Do/XP6BWYdmATC9y3SeafKMjSMyD01EBNHDRxhXdMLCqLdhPUpfX1uHZbLF4YtZfWY1j9R/hDk95lh9/uydO4l7ZSKObdsSuvE7q88v1ExqtZrIyEjCwsLu+MNcsL47/d2Y8vNb1OwIVnMw/iAfHf4IgLFtxtaYREd98SLXh7yALjkZ+0YNCVm/rkYkOgDdgroBcCj+EAbJYPX5xTaWIAjmIJIdwSoiMiN4fe/r6CU9j9Z/lLFtxto6JLMoOHWK60OHoU9Px6F5c0I2bMCu6E6nmqCtb1sclY6kqdO4nHHZ6vMXJ4261FRx/50gCJUmkh3B4jLUGYzfPZ4cbQ7t/drzXrf3qnwH4fLI//dfokeMxJCdjWO7dsYVnWpajHw7dgo7OvobLys9mnDnywYtobjmSVKrMeTlWX1+QRBqBpHsCBZVqC9k0p5JxObGUselDovuX4RKUT0a691J7t8HiC7ujNylCyGrV6FwdbV1WBbRMcCY7BxLOmb1ueWOjshdXADQpYjj54IgVI5IdgSLkSSJ9w+9T3hyOK52rizrswxPh+q/8pGzaxex48YhqdW49OxJ3RWfI3euPg0DK6p4Zed40nGb1u2IE1mCuYmt0arHUn8nItkRLGbN2TX8eu1XFDIFC3ouoL5HfVuHZLKM778nduKrxks9H3iAOkuXIK/hpzmaeTfDSelEdmE2VzKuWH1+UaQsmJudnR0A+fn5No5E+K/CwkIAs18SKvrsCBax8/pOFocvBmBap2l0C+5m44hMI0kSqcuXk7r0MwDcnxxE4PvvI1PW/H9CdnI72vm145/4fziWdIwmXk2sOr/CV1wZIZiXQqHAw8OD5ORkAJwq0MVYsByDwUBKSgpOTk4ozfy9teZ/pxas7kLaBd7+29hU6vlmz/Ns02dtHJFpJL2exFkfkLlpEwDeY1/Gd+LEWvXNsWNAR2Oyk3iM55s9b9W5lT43TmQJgrkU3wdVnPAIVYNcLickJMTs319FsiOYVYY6g0l7JqHWq7k3+F5e7/i6rUMyiUGtJu6118ndvRtkMgJmTMfzuedsHZbV3Vy3I0mSVRM9sY0lWIJMJiMwMBA/Pz+0Wq2twxGKqFSqUt2fzUUkO4LZ6Aw63tj3BvF58YS4hjDvvnko5dX3fzFtcjJxr0yk4NQpZCoVQQvm49a/v63DsokW3i1wUDiQocngWuY1q95lJi4DFSxJoVCYvT5EqHpEgbJgNouOL+JI4hEclY4sun8Rbqrqex1HwdlzRD39DAWnTiF3dydk7Zpam+iAsd9OG782gPWPoCtFzY4gCCYSyY5gFlsjtrL+/HoAPur+EY08G9k4osrL2rqV688/jy4pCVWDBoRt2ohTx462DsvmireyrJ3sKLyMjQX1aWlWnVcQhJqj+u4xCFXGxfSLvHfwPQBebPUi/er1s21AlSQZDKQsXkLaypUAOPe8j+AFC2pss8CKKkl2Eo9ZtW5H6WXszaTLyLB6vZAgCDWDWNkRTJKpzixVkDyh7QRbh1QpuowMYseOK0l0vEcOp+6CD1E4KEE0HgOglW8rVHIVaeo0orKjrDavwsvL+IFWiyE312rzCoJQc4iVHaHSdAYdb+x/g7jcOOq61mVuj7ko5NWo0E+TC9GHKfhnB7Gf70CXpUGmkAjslIt7/mz4ZLbxeXIl2LuCex3wbQZ+TSGwDdS7F+wcbfs1WJG9wp7Wvq05lnSMY0nHCHMPs8q8cgcH5E5OGPLz0aeni5U2QRAqTCQ7QqUtPbGUwwmHcVQ6svj+xbjbu9s6pLtLuQRnt8C1v5Diwsm4aE/SSTeQZKhcdQR3S8fBU1f6NQYdFGQY3xLP3Pi80hHC7oPG/aHlk+BY/a/CuJuOAR05lnSM8KRwnm78tNXmVXh5YcjPR5eWjqpePavNKwhCzSCSHaFS9sfuZ+3ZtQDMundW1S5IzkuDk1/DmR9KkhV9oYyEox7kxBpXZlw7hhE4aRiKOs3BwcO4kqNyBp0a1NmgzoKMKEi5AMkX4PpByI6DK38a3/58F1o9BZ1GG1d9aqjWPq0BOJN65i7PNC+Flxfa2Fj0GelWnVcQhJpBJDtChSXmJfL2AWOH5P81/R8PhD5g44huI/kCHP4cTm8yJi0AciX5qi7E70pDm5qFzM4Ov2lv4fncc2UXvirsirawgsG/OTR9yPh5SYLk83BlB5zZDEln4cRXxreGfaHfB8bn1zCtfFoBcD37OpnqTDwcPKwyr7KobkeXLpIdQRAqTiQ7QoVoDVre2PcGWZosmns357WOr9k6pFslX4C/PoSLv9/4XGBbpHYvkHY4m5SVa0Gvxy4khOBPPsGxVcuKzyGTgX8L49u9kyD6MPy7Cs7/Ald3wbW/oN0QuP8dcA0w25dmax4OHoS6hRKVHcWZ1DP0qNPDKvMWFynr00SyIwhCxYnTWEKFLD2xlJMpJ3Gxc2FBzwWoFCpbh3RDxnX46WVY3rUo0ZFB00dgxHa0j20keul+UpavAr0et8ceJWzLj5VLdP5LJoN6XeGptTD+KDR7DCQDhG+AZZ3g7I+mz1GFFK/unE49bbU5i4+fi20sQRAqQyQ7Qrntj93Pl2e/BIx1OnVd69o4oiI6Deyfb0wsTn0HSNDsURh/BAZ/Q86VPCIHPkH+v/8id3IiaO7HBM+bh8LFxfyxeDeAZ7+CkX9CYFtjrc/mkfDjaCjINP98NtDat6huJ8V6dTvFjQV16RlWm1MQhJpDbGMJ5ZKYl8g7B94BjHU6VaZxYOR++H0KpF0x/jm0B/R7H4I7YFCrSZ41i4xvvwPAoWVLgj9ZYJ3TPCFd4MVdxiRs/3w4871xq+u57yDADKtJNlSc7JxOPY1BMiCXWf53JkXxyo6o2REEqyuMjqbgzBm0sXFg0CN3dsGhZQscWrRAbm9v6/DKRSQ7wl0ZJAPT/p5Gpiaz6tTpFObDrplw9Avjn519YcBsaPU0yGSoL18m/rXX0VwxJkFeo0bi9+qryFRW3HZT2MH9bxsLlreMNp7mWvsAPL0OGvW1Xhxm1sizEfYKe3IKc4jKjqK+e32LzykKlAXBunQZGWT+sJmsn36iMDKyzOfI3dzwfOZpvEaMQOntbeUIK0YkO8JdfXX+K44lHcNR6cj8++bbvk4n7jhseenGak7HkdBnJjh6IEkSmRs3kjTnYySNBoWPD0Eff4xL93ttF2/dTjBmL2x6AaL+hm+fhofmwz0v2i4mE9jJ7Wjh3YLw5HBOp5y2SrJTcj+WSHYEwaIMeXmkrf2StC+/RMrPN35SqcSxRQtUoaHIVCp0aWkUnDqFPi2NtNVryNz8IwHvzcTtgSp6MheR7Ah3cTnjMovDFwMw9Z6phLiF2C4YSYJDn8HOmSDpwSUABi4zrpwA2qRkEqa/S97+vwFw7tGDoI/nVI3fOBw9YcgW+H2ysefP1teM/X96vWnryCqltW9rwpPDOZNyhoENB1p8PuVN21jifixBsIzcvw+QMHMGuvgEAOybN8NryAu49u93S42jpNeTu28fKYuXoLl0ibhJk9GMu4LPKxOq5L9PkewIt1WoL2Ta39PQGrT0rNOTJxs9abtg1Nnwy3i48Kvxz80HwiOfgpMXkiSR/ftWEj/8EENWFjKVCt/Jk/EaNhSZvArV4CtV8Phn4BkKez6EvbONW109ptg6sgqz9oms4qPnUtH9WOLKCEEwH0mnI3nhp6SvNTaKtQsOxu+NN3Ad0P+2iYtMocC1d29cuncnZelS0latJnX5cgxqNf5T37Bm+OUikh3htpadXMbljMt4OXjxXrf3bJetJ1+ETc9D2lWQ28GDH0PHUSCToUtPJ/G998nZsQMAhxYtCJr7MfYNG9om1ruRyaDnGyCXw+5ZsPt9UKigW/W6QLW4SPlyxmXytfk42TlZdD65gwMyJyckcT+WIJiVLiODuClTyD90GADPIUPwmzIZuVP5/k3LVCr8XnsNpZ8/SR99RPratahCQvAc/Kwlw66wKvRrr1CVnEs7x7pz6wCY2XUmPo4+tgnk6m5Y08+Y6LjVgZHb4Z4XkYCs334j4pFHjYmOUonPxFcI3fhd1U10btbjNeg1zfjxjnfg3zW2jaeCApwD8HPywyAZOJ923ipziiJlQTAv9aVLRD35FPmHDiNzciJ40SIC3n2n3InOzbxeGILvpEkAJH74Ifnh4WaO1jQi2RFuoTVoee/gexgkAw+GPUjvkN62CeTYWvjmadBkQ0g3eGkf1OlI4fXrxIwaRfwbU9Gnp2PfqBFh32/Cd9w4ZHZ2tom1Mnq+aUx6ALa9Yey6XI0U35Nl7a0sUaQsCKYrOHmS6y8MRRsfj11ICKEbv8PtgQEmjen90hjcHnoQdDri35qGoaDATNGaTiQ7wi2+Ov8VF9Mv4m7vzpv32KCAVpJgx3RjMa+kh9aDYejPSHZupH7+ORGPPkbewUPI7O3xnTSJsB8349C8Gt5DJZNB7+nQ5jnj1/n9cEi9Yuuoyq2k306KdZIdpaexSFms7AiCafKOHiV65CgM2dk4tmtH2A/f49C4scnjymQyAmbNQhkQgDY6mpTFS8wQrXmIZEcoJTo7muUnlwPwRsc38Ha08kkmvQ5+mQAHi/6R3P8OPLGCvOOniHhiECmLlyAVFuLcrRv1f/0Fn5dfsm7vHHOTyeDRxVC3M2iy4NtnIb96/DAvLlK21g3oCu/i4+eii7IgVFbu3weIGT0GQ34+Tl27ELJmNQp3d7ONr3BxIfD99wBI37AB9cWLZhvbFCLZEUpIksSsQ7PQ6DV0CezCYw0es24AOg1sHm48mi2Tw+PL0TUfQdzUN4keNozCa9dQeHsTtGABddestk4nZGtQ2sOz34B7XUi/BptHgEFv66juqpl3MwCS85NJK0iz+HxK0UVZEEySd/QosePHI2k0uPTqRd0VKypVn3M3Lj174vrgA2AwkLxwodnHrwyR7Agl/oz6kyOJR3BQODCj6wzrnr4qzDeualz4DRQqpEFrST8rce3Bh8j+7TeQyfD833M02LYV90cerpJ9HEzi4gvPbQQ7J4jYe2NlqwpztnMm1C0UgIvplv/tTeEpCpQFobIKzp0jduw4pMJCXHr3ps6SxRa96sFv0iRQKsnb/zd5h49YbJ7yEsmOAECBroBPjn8CwMhWI617yae2ADY+BxF7wM6ZgvZziZz5FUkffYQhNxeHVq0I/f57AmbMMOtya5UT0BIenGf8+K8PIfa4beMph2ZextWdC+kXLD6XwlsUKAtCZWgiI41bV3l5ON1zD8GfLrT49r+qXj08n3kGgJRFiyw6V3mIZEcA4MuzX5KYl0igcyAjWoyw3sRaNWx8HiL2ojO4kJD6KFGvzUdz/gJyNzcC3ptJ6MbvcGxVvS/PLLd2Q4wNEw06+HEUaHJsHdEdFW9lWeP4ecnR8wyR7AhCeWmTk4keNQp9ejoOzZtT5/PlVru802fsy8hUKgpOniQ//IRV5rwdkewIJOQmsPassXPmax1fw0HpYJ2JdRr4fijS1d1kRHkQsT2IzD/2A+D+xBM0+GMbnoMHI1MorBNPVSCTwaOLjPU7GZGwbaqtI7qj4mTnQpoVVnaKtrH0aSLZEYTyMOTnEzt2HLr4BFT16lF31Re3XPtgSUpfX9wfN9Z+pn+51mrzlkUkOwKfHP8EjV5DR/+O9K/X3zqTGvSwZQwFR/4iarcfiYed0GfnYt+oEfW++ZqgObOrxp1WtuDoCYO+MBZpn/oWLm6zdUS3VbyNFZsbS5Ymy6Jz/fd+LEEQbk/S64mbOhX1uXMoPDyou+oLm3xP9Ro+HICcXbspjIqy+vzFRLJTy51IPsGfUX8il8l5s9Ob1in8lST0P04hccMeonb4oE5VInd2xn/aW4Rt+RGnDh0sH0NVV68bdJto/Hjb61V2O8vd3p1gl2AALqVfsuhcpe7Hysuz6FyCUN0lf7KQ3F27kdnZUWfZZ6hCbHOJs32DBrj07AmSRMZ3G20SA4hkp1aTJIlFxxcB8ETDJ2jq1dTycxoMZH48hmsf/kHGVWdAhtsjj1D/j214DRtWvTogW1rPN8GjHmTHwV8f2Tqa27JWkbLc0RFZ0TFZUaQsCLeXuXlzyaWegbNn2/wXSI/nBgOQ9csvGAoLbRKDSHZqsYPxBwlPDkclV/Fym5ctPp/6/HmuP96fhPUH0GsUqIK8CFm/nuAF87Hz87P4/NWOysl4szvAkRUQVzVPZ1m1SLm4i3Ka5fv6CEJ1lH/iBInvzwLAZ/x43B99xMYRgUv37ij9/dFnZpK7e7dNYhDJTi0lSRJLTywF4JkmzxDgHGCxufTZ2SR+8CGRTz1FwZU45EoDfk+0pf6fe3Hu3Mli89YIDftAq2cACX571dhhuoqx7vHzoi7KGaKLsiD8lzYpmbiJryJptbj264vP+HG2DgkAmVKJ+6AnAMj8YbNNYhDJTi31V/RfnEs7h6PSkRdbvWiROSRJIvOnn7n24ENkfPMNGCTcQgqoP6Uj3rO/FVtW5TVgtrFoOfEM/LvK1tHconhlJyorinxtvkXnKl7ZEdtYglCaobCQuIkT0aWkYN+oIYFzPkYmrzo/4j2efBKAvIMH0SYmWn3+qvNfQrAavUHPZyc/A2BIsyEWuf9KfekS14e8QMK0aejT0lB5ygjplUrw0w2we2G18Yi1UD4uvtBnpvHjfXOhoGqtavg4+uDn6IeExKUM6xQp68Txc0EoIUkSibNmUXDqFHI3N+p89hkKF2dbh1WKqk4dHItqh7K3b7f6/CLZqYX+iPqDq5lXcVW5MrzlcLOOrc/JIXH2bCIHPUnB8ePIHB3x6+1L/b5xODf2g8Hfgp2jWeesFdq9AL7NjInO/gW2juYW1qrbUYouyoJwi4zvviNr848glxP8ySdV9t5AtwcfBCD7jz+sPrdIdmoZg2Rg9enVAAxvMRw3lZtZxpUkiaxffzVuWW34CvR6XB94gAbv9Mfb7xQyByd47jtw9TfLfLWOQgn9PzR+fPQLSI+0bTz/Ya3mgiX3Y4kuyoIAQP6//5I0ew4Afq9NwaVHdxtHdHtuA/qDXI761GkKY+OsOrdIdmqZ/bH7uZZ1DWc7ZwY3HWyWMdWXL3P9hReIn/om+tRUVKGh1F2zmjpjB2B39nPjkx5dAoGtzTJfrdWwD9S/H/SFsPt9W0dTSnOv5oDli5SLt7H06VVrK08QbEEbH0/sq5NAp8Pt4YfxGjnS1iHdkdLXF6dOxkMpOdutu7ojkp1aZs2ZNYDxBJapqzoGjYbkRYuMW1bHjiNzcMB38mTCfv0Fl2ZB8NMY4xM7jYHWT5sauiCTFa3uyODcTxBz1NYRlShe2bmWeQ2NXmOxeYq3sXTp4ui5ULsZNBpiX5mIPj0d+2bNCPzwA+s0hTVRyVbWjp1WnVckO7VIeFI4J1NOYie344VmL5g0Vv7x40Q+MYi0FStBp8Olbx8abNuKz0tjkMsM8P1QUGdBnXugf9VtiFftBLQ0XhYKsOs9m4ZyM38nfzzsPdBLeq5lXrPYPCX3Y4mVHaEWKy5ILrkK4rOlyB2rRy2ky/29AFCfPo0uJcVq84pkpxZZc9a4qvNYg8fwdfKt1Bj63FwSZ83i+vNDKIyIQOHrQ/DixdT97DPsgoKMT9o1ExJPg5M3PL0elCpzfQkCQK9poFDB9X8g8m9bRwOATCajsWdjAC5nXLbYPOJ+LEGAzO9/IOvHLcaC5E8XYhccbOuQys3Ozw+HVq0AyN23z2rzimSnlriccZn9sfuRIWNEyxGVGiM/PJzIxx4n49vvAHB/chANfv/dWHRW7MpOY7dfgIErwL36/COsNtyDof1Q48f75to2lptYI9kpuR+rsFDcjyXUSgWnT5P0ofGwgu+kSTh37WrjiCqueHUn5689VptTJDu1xJdnvwSgb72+1HOr2LFESacjZelnXB/yAtr4eOzq1CHky7UEffQRCnf3G0/MTYafxxo/7vQSNLbSDeq1UffJILeDqL8h6h9bRwNAI89GAFzJuGKxOeSOjsiKlutFF2WhttGlpxN7U4dk79GWaQhraa733w8YGwwa1GqrzCmSnVogtSCV7VHGJk4jW1asWr8wNpbrLwwlddkyMBhwf/xxwn7+6dbfJiQJfh4HeSng1xz6zTJX+EJZ3OtA+6K6q30f2zaWItZY2QFQeHgAoM/MtOg8glCVSDodcVNeQ5eYiCo0lMA5c6pFQXJZ7Js2RRkYiKRWk3f4sFXmFMlOLbD58mZ0Bh1tfNvQ0qdluV+X9dvvRA58goITJ5C7uBC0YAFBcz9G4eJy65OPrYGrO0FhD0+uATsHM34FQpm6TzGu7kTuh+sHbR0NDTwaIENGujqd1IJUi80jkh2hNkpZtIj8w4eROTlR57OlZX8friZkMhkuPXoAxtUdaxDJTg2nNWj54dIPADzX9LlyvUafm0vc1KnEv/EGhtxcHNu1I+znn3F/5OGyX5BxHXbMMH7c733wb26O0IW78ah742TWXtuv7jgqHUu2SC1apOzpAYhkR6g9sv/cQdpq4wGToNkfYd+woY0jMp1zt24A5P0jkh3BDP6K/ovkgmS8HbzpX+/uNTQFJ08SOfAJsn/9DeRyfCZMoN5XG1DVuU2hsSTBr6+ANg9CuhlrdQTr6TEF5EqI3AcJp2wdjVXqdkpWdkTNjlALaK5dI2HaNAC8RozA7YEHbByReTh36QxyOYXXrlnlYlCR7NRw3100npx6qvFT2Cluf8u4pNeTsnw5Uc8PQRsbi11QEPW+/grfCeORKZW3n+D4OuMPWqUDPP4ZVKFbdmsFjxBo8YTx44Of2TYWbiQ7Fj2RJbaxhFpCn5tH7CsTMeTn43TPPfi9NsXWIZmNwsMDh5bGsgprrO7Y/CfTsmXLCA0NxcHBgc6dO3P06J27wmZmZjJ+/HgCAwOxt7encePGbNu2zUrRVi+XMy5zPOk4CpmCpxvfvoOxNimZ6OEjSF2yFPR63B5+mLCff8Kpffs7T5AZAzumGz/uPR28G5gxeqHcuo43vj+3BbKse9/MfxUXKVtlZUckO0INJkkSCW+/TWFEBEp/f4I/XXjnXzyrIed7i7ayrFC3Y9NkZ9OmTUyZMoWZM2cSHh5OmzZtGDBgAMnJyWU+v7CwkH79+hEVFcXmzZu5dOkSq1atIrgaNVSypo0XNwLQJ6QP/s5lX8CZ+/cBIgcOJP/ff5E7ORE092OCFsxH4XaXqyQkCba+BoU5UKcTdBlr7vCF8gpqB/W6g0EHR1faNJTiZOdq5lV0Bp1F5lB4GBsL6sQ2llCDpa9dS86OHWBnR53Fi1D6+Ng6JLNzKa7bOXTI4k1CbZrsLFy4kNGjRzNixAiaN2/OihUrcHJyYu3atWU+f+3ataSnp/Pzzz9z7733EhoaSs+ePWnTpo2VI6/6cgpz+D3id6DswmRJpyP5k4XEjB6NPiMD+6ZNCf1xM+6PP16+44wXf4crfxpPAz3+GcgV5v4ShIroNsH4/tg60OTYLIxgl2CclE5oDVquZ1+3yBwKUaAs1HB5hw+T/MlCAALenoZj27a2DchCHNu0QebggD49ncJrlrtmBmyY7BQWFnL8+HH69u17Ixi5nL59+3Lo0KEyX/Prr7/StWtXxo8fj7+/Py1btmT27Nno9frbzqPRaMjOzi71Vhv8EfkHBboCGrg3oIN/h1KPaZOSuD5sOGmrVgHg8dxgQjdtxD4srHyDa3Lhj7eMH987EXybmDN0oTIaDQDvhqDJghNf2ywMuUxu8bqdG9tYWRYZXxBsSZuQQNzkKSV9zTwGD7Z1SBYjU6lKErn8f/+16Fw2S3ZSU1PR6/X4+5feXvH39yfxNpXZERERbN68Gb1ez7Zt25g+fTqffPIJHxa1zi7LnDlzcHd3L3mrW7euWb+Oqurnqz8D8ESjJ0qt1BScOUvUU09TcPw4chcXgj9dSODMmcjt7cs/+L65kB1rLI7t8bqZIxcqRS6HLuOMHx9eDnrLbCGVh+WTnaL7scQ2llDDGAoLiX11knG1vVkzAt5/r9o2Diwvp3s6AjU42akMg8GAn58fX3zxBR06dODZZ5/lnXfeYcWKFbd9zbRp08jKyip5i4mJsWLEtnEl4wpnUs+glCl5pP4jJZ/P3v4n1194AV1KCvaNGhK25UfcHnywYoMnnTf+MAV4cD6onMwYuWCSNs+BoxdkRhu3GG3E0kXKYhtLqKmSZs9Gffo0cnd36ixZjNyh5jdndbrnHgDyjv5r0bqdSpd2FxYWkpycjMFgKPX5kJCQcr3ex8cHhUJBUlJSqc8nJSUREBBQ5msCAwOxs7NDobhRH9KsWTMSExMpLCxEpbr1dm17e3vsK7JqUQNsubIFgF51e+Ht6A1A6qpVpBTtATvf14PghQsr3oFTkmDb68ZC2CYPQ5Oa0e+hxlA5GZsMHlwCx9ZC09s0gbQwS18bUbyNJanVGNTqWvEDQaj5Mn/+mcyNm0AmI3j+PFS1ZBfCsU0bZCoV+tRUCiOjsK9fznKKCqrwys6VK1fo0aMHjo6O1KtXj7CwMMLCwggNDSWsvDUfgEqlokOHDuzevbvkcwaDgd27d9P1Nre43nvvvVy9erVUgnX58mUCAwPLTHRqI61eW1KY/ESjJ5AkieTFi0sSHa9hQ6m7fHnlWo2f/wWu/wNKR3jQ9h17hTJ0GG58f3U3pEfaJITibayEvASyC81fIyd3doaiI7hidUeoCdQXL5I48z0AfMaNw+W++2wbkBXJ7e1xLDpkZMmtrAonO8OHD0cul/P7779z/PhxwsPDCQ8P58SJE4SHh1dorClTprBq1SrWr1/PhQsXGDt2LHl5eYwYMQKAoUOHMq2ocyTA2LFjSU9P59VXX+Xy5cts3bqV2bNnM378+Ip+GTXWnpg9ZGoy8XP0o2tgV5IXLCDtc+M2n98br+M/bVrlejXoNLCz6EqIeyca63WEqse7ATToDUgQvt4mIbip3Ah0DgTgcrr5V3dkMtmNrSxRtyNUc/rsbONN5hoNzj164DN+nK1DsrqSup3jxyw2R4V/6p08eZLjx4/TtGlTkyd/9tlnSUlJYcaMGSQmJtK2bVu2b99eUrQcHR2N/KaOvHXr1uXPP/9k8uTJtG7dmuDgYF599VXefPNNk2OpKbZcNW5hPd7gMdLmzidjw1cA+L/zDl4vDKn8wEdWQuZ1cAmAbhPNEapgKR1HwrW/IPwr6PU2KK2/6tnQoyEJeQlcy7xGx4COZh9f6eGBPiVVrOwI1ZpkMBD/5ltoo6OxCwoiaN5cZLWwC71jO2MD24KTlrvypsLJTvPmzUlNNd+NxhMmTGDChAllPrZ3795bPte1a1cOW+lK+OomMS+Rg3HGTpQP7c0zJjoyGQHvvYfns89UfuC8VNg/3/hxnxlgX31v260VGj8AroGQkwAXfoVWT1k9hIYeDfk77m+uZl61yPgKdw9AbGMJ1VvaF6vI3bMHmUpF8JIlKD09bR2STTi2aQ0yGdroaHSpqRZpoFjhFHLu3LlMnTqVvXv3kpaWVit72FRVv0f8joTEyKt10K4yrugEzJhuWqIDsHcOaLIhoLXxxI9QtSnsoP1Q48fHvrRJCA08jFeHXMuyTKMwhafooixUb3kHD5KyZAkA/tPfxbFlCxtHZDsKNzfsGxq/ZxScPGmROSqc7PTt25fDhw/Tp08f/Pz88PT0xNPTEw8PDzxraVZaFUiSxNaIrdxz2cCAH42da33GjcPzOROTk5TLN35gPjBHXPRZXbQfBjI5XD8AKZesPn1Dj4YAXMu0ULIj7scSqjFtQgJxr71ubBz45CA8n7793YW1hWPbdgDknzhhkfErvI21Z88eS8QhmOhyxmU4d4VXfzEgM4DH00/h80rZ24MVsucjkPTQ5CEI7W76eIJ1uAdD4wfh0lYI3wADPrLq9GHuxpOZ6ep00tXpeDl4mXV8kewI1VWpxoHNmxEwfbqtQ6oSHNu1I/OHHyxWt1PhZKdnz56WiEMw0a7j3/P6Fj0qHbj06kXAzJmmd96MPwnnfwZk0PtdM0QpWFW7IcZk5/T30Pd9UFjvxmQnOyeCXYKJy43jWuY1vAIslOxkZJp1XEGwtKQ5c25qHLhE9Ikq4tiuLQDqM2eQCguRmbmdTKW++2VmZrJmzRouXLgAQIsWLRg5ciTu7u5mDU4oH21BPmFzf8ArF7T1AglasKByx8v/66+iazhaPQ3+tXc/udpq1A+cfCAvGa7thsYDrDp9A48GJcnOPQH3mHXs4podsbIjVCdZv/xC5ncbAQieNxdVnTo2jqjqUIWGovDwQJ+ZifriRRxbtzbr+BUuwDh27BgNGjTg008/JT09nfT0dBYuXEiDBg0q3GdHMJ0kSVx461XCYrXkOchosGIVChdn0we+fhCu7gS5Enq9Zfp4gvUp7KB1UXH6yW+sPn1xkbIlTmSJbSyhulFfukRCSePAsbiIXZJSZDIZDq1aAVBw9qzZx69wsjN58mQee+wxoqKi2LJlC1u2bCEyMpJHHnmESZMmmT1A4c4yvv4Guz8PYJDBv+PvwzmsgemDShLsnmX8uN0LxkZ1QvXU9n/G95f+gPx0q05tySJlkewI1Yk+K4vYVyYiqdU433svPqIRbpkcik6kqc+dM/vYlVrZefPNN1HetE2iVCqZOnUqx45ZrvuhcKuC06dJmjsXgK96y+n46CjzDHx1N0QfAoU99JxqnjEF2whoZXzTF8LZH606dcnxc0skO6KDslBNSHo9cVNeu9E4cMF8ZDfd7yjc4NiyJQDqs1Ug2XFzcyM6OvqWz8fExODq6mqWoIS702dlETdpMuh0HG4i43ivQDr4dzB9YEmCfcYEinteBLcg08cUbKtN0erOyW+tOm199/rIkJGhySCtIM2sYxev7Bhyc5G0WrOOLQjmlLxwIXn//IPMwYE6yz6rtY0Dy8OhKNnRXL2KoaDArGNXONl59tlnGTVqFJs2bSImJoaYmBg2btzIiy++yHOm9nQRykWSJOLffgdtfDzZPo58/pCcB+s/hFxmhh44kfsh9qhxVedecS1EjdDqaWPtVXw4JF+02rSOSkeCXIzJsrlXdxRublB02lCflWXWsQXBXLJ++430NWsBCJr9EQ7Nmtk4oqpN6eeHwtcH9HrUF837varCPx0XLFjAoEGDGDp0KKGhoYSGhjJ8+HCeeuop5hZtqQiWlbFhA7m7d4OdHfMflyhwkPFg6IPmGbz4WogOw8A1wDxjCrbl4guNik5iWblQuaRux8ydlGUKhTHhQWxlCVVTwdlzJLxr7KHjPWYMbg89ZOOIqj6ZTIZjC8tsZVU42VGpVCxevJiMjAxOnjzJyZMnSU9P59NPP8Xe3t6swQm3Ul+6RPKCTwBIG/0Yl/x01HWtS1Mv0y9mJfowRP0Ncjtx2WdN07Zo1fXsj2AwWG1ay9btiOPnQtWkS00ldsIE403mPe/D91Xx/bS8HErqdsx7IqvSzVicnJxoVXRMTLAOQ2Eh8VPfRNJqcbn/fr5omQsxMCB0gOkNBOHGqk7b58CjrunjCVVHw35g7wbZcRBzBOp1tc60RSs7ljx+rhPJjlCFSIWFxE58FV1iIqqwMIIXLBAFyRVQfCKr4JwNkp1Bgwaxbt063NzcGDRo0B2fu2XLFrMEJtwqdelnaC5dQuHpiceMafy9+wkA+tfrb/rgceFwdRfIFNB9iunjCVWLnQM0fQROfQtnN1st2bl5ZUeSJPMk5UXE8XOhKkr8aDYF4eHIXVyos2wZCnFwp0IcWxiTncJrERjy8pA7m6FvHOXcxnJ3dy/5JuXm5oa7u/tt3wTLyA8PJ23NGgACZr3PAfVZNHoNIa4h5tnCOrDQ+L7V0+AVZvp4QtXT6knj+3M/g15nlSnD3MOQISNTk0ma2jInssSVEUJVkbFxI5mbNoFMRvAnC7CvL76XVpTS1xdlQABIEuqiWxrMMm55nvTll1+WfLxu3TqzTS6Uj6GggPg33zLekPv447j168eOPZMB6B/a3/TfltOuwYXfjR93n2xitEKVFdYLnLwhPxUi90HDPhaf0lHpSLBLMLG5sVzLvIaPo4/ZxhY1O0JVkn/sGIkfGi/c9Z08WXRINoFDixbkJiaiPncOp44dzTJmhQuUe/fuTWYZ31yys7Pp3bu3OWIS/iP1iy/QxsSgDAjA/913yNfm83fc34CZtrAOLwck44kdPzOsEglVk0IJzQcaP7Zig0FLdVIW21hCVaGNiyN24qug0+H20IN4j37R1iFVa47FdTtmPJFV4WRn7969FBYW3vJ5tVrN33//bZaghBsKo6JIX23cvvKfNg2Fqyv7YveZbwsrLw1OFB1H7jbBxGiFKq/VU8b3F34DncYqU1rqRNaNbSxx9FywHUNeHjHjJ6BPT8e+WTMCP/zQrLVptZElTmSV+zTW6dOnSz4+f/48iYmJJX/W6/Vs376d4OBgswUmGJsHJn74EZJWi3P37rj27wfAn1F/Ambawjq2BnQFENgGQnuYGrJQ1dXtAm7BxlNZV3ZCs0csPmV9j/oARGZHmnXckisjxMqOYCOSwUD8W2+huXgRhbc3dZd9htzJydZhVXsOxUXKkZHoc3NRuLiYPGa5k522bdsik8mQyWRlblc5OjqydOlSkwMSbsjZtYu8AweQ2dkR8O47yGQyCnQF/BP3D2CGLSytGo5+Yfy428SSjrRCDSaXQ4sn4NBnxq0sayQ77sZkJyIzwqzjim0swdZSli4lZ+cuZHZ21Fm6FLsgcb2OOSi9vLALCkIbH4/63HmcO3cyfczyPjEyMhJJkqhfvz5Hjx7F19e35DGVSoWfnx8K0UvAbAz5+STNmQOA16iRqEJDATgYdxC1Xk2Qc5DpW1inN0FeCrjXheaPmxixUG20esqY7Fz6AwrzQWXZ30RD3UIBSFOnkaXJwt3ePKc2xTaWYEtZv28l7fMVAATMmoVT+3Y2jqhmcWjZsijZOWfdZKdevXoAGKzYfbU2S9+wAV18AsqgQHxeeqnk83/F/AVA75Depm1hSRIcWmb8uMtYUNiZEq5QnQS2BY8QyIw29lZq/phFp3NRueDn5EdyfjKRWZG09WtrlnFLkp3sbCSDAZncDHfDCUI5FJw5Q8I77wDGX0Y9nhho24BqIIdmTcnZsQPNJfPckVWp7w6XLl1iwoQJ9OnThz59+jBhwgQumvnSrtpMn5lJWtHlcX6TpyB3dARAa9CyN2YvYEx2TBKxF1IvgcoV2r1g2lhC9SKTQbOiBOfCr1aZMszd2G8kMst8dTvKomQHgwFDdrbZxhWEO9EmJRE7bjySRoNLr174TRFNWC3BvkkTANSXLptlvAonOz/++CMtW7bk+PHjtGnThjZt2hAeHk6rVq348UfrHWetydJWr8aQk4N9kya4PXzj8rjjScfJLszG096T9n7tTZvk6Crj+7bPgYObaWMJ1U/xtuXlP61yKqu4bsecyY5MpSrprirqdgRrMBQUEDt+ArqUFOwbNSRowXxxFYSFOBQlO5pr15C0WpPHq/DdWFOnTmXatGnMmjWr1OdnzpzJ1KlTefLJJ00OqjbTpaeT/rXxKLjvpFdLLc3/FW3cwupVtxcKuQn/wDKuw+U/jB/fM7ry4wjVV3BHcA2EnASI2AeNzdCv6Q4skeyAcSvLkJeHLiOjpK5NECxBkiQS3nkH9dmzKDw8qLN8uVlOCQllUwYFIXdxwZCbiyYiEocmjU0ar8IrOwkJCQwdOvSWzw8ZMoSEhASTghGMtTqSWo1Dy5a49OpV8nlJkkqSHZO3sI6tBckA9e8HX9P+BxKqKbnceFcWwIVfLD5d8TZWRJaZT2SJLsqClaStWEH2tj9AqSR4yWJUdcVlyZYkk8lKtrI0ly+ZPF6Fk51evXqV2TzwwIED9Ogh+rSYQp+TQ8Y33wLg/dKYUgXI59POk5SfhKPSkS6BXSo/ibYAwjcYP+40xpRwhequuDD54jaL35VVvLITmxtLof7WpqSVdeP4eZbZxhSE/8resYOUxUsACJgxHedOpp8OEu6ueCtLbYaa4ApvYz322GO8+eabHD9+nC5djD90Dx8+zA8//MD777/Pr7/+Wuq5QvllbNyIIScHVYMGuPYpfW/R7ujdAHQP7o6D0qHyk5zdAgXp4B4CjQeYEq5Q3YV0A0cv4/8P1w9A/V4Wm8rH0QcXOxdytblcz75OI89GZhlXHD8XLE194YLxbkLA84UX8HzmGRtHVHuUrOyYoUi5wsnOuHHjAFi+fDnLly8v8zEwLkHp9XoTw6s9JJ3uxqrOqFG3HKMtTnZM2sKSJDi60vjxPaPAlLofofpTKKHpw3DiK+P1ERZMdmQyGfXd63M69TSRWZHmT3bENpZgAbrUVGLGjUcqKMC5Wzf835xq65BqleI6HbUZjp9XeBvLYDCU600kOhWTs2s3usREFF5epU5gAURnRxORFYFSpqRHsAlbhXHHIeEUKB2g/a11V0ItVHwq68LvYOEeWqHuoYB563bElRGCpRgKC4md8Aq6hARUoaEEf7oQmbLC6wOCCewbNQKZDH1KKrq0NJPGqlCyo9Vq6dOnD1euXDFpUuFW6V9/BYDn4GeR29uXemxf7D4AOvh3MK377PF1xvfNB4KTV+XHEWqOsPvA3g1yEyH2X4tOVXJthDmTHbGNJViAJEkkTp9BwcmTyN3cqPP5chTu5un8LZSf3NkZuxBjIbjmkmlFyhVKduzs7EpdCCqYh/rSJQqOHQelEo9nB9/yeHGyc1+d+0yYJNt4FxJAh+GVH0eoWZT20Mh4wWxJOwILKU52orKizDam2MYSLCF97Zdk/fILKBQEf7oQ+7AwW4dUazk0Nk9zwQpvYw0ZMoQ1a9aYNKlQWuYPmwFw7dMHO3+/Uo/lFuZyPPE4YGKyc3YzaPPBpwmEmHCaS6h5mhRtm17cZtFpbu6ibJDMs2WmFEfPBTPL2b2b5AULAPB/6y1c7r3XxhHVbvZNi4uUTVvZqfAGpE6nY+3atezatYsOHTrgXNTBtNjChQtNCqi2MajVZBWdYPN4+ulbHj+UcAidpKOeW72SmodKOb7e+L79UHG7uVBaw74gVxqvD0m7Bt4NLDJNHdc6KOVK1Ho1iXmJBLmYfkO0WNkRzKngzFniXn8DJAmPZ5/Fc8jztg6p1is5fn7pEqa0cKxwsnP27FnatzdeVXD5cullJZMupqylcnbuwpCdjTIoEOduXW95fF+MGbaw4k9CwklQqKDNc5UfR6iZHD2g3r0Quc94E3q3CRaZRilXUs+1HteyrhGRFWHWZEeXmYkkSeJ7kFBp2rg4YsaNNZ686t6dgOnviv+fqgD7pk0BKLx61aRrIyqc7OzZs6fSkwm3yiy6T8xj0JO3HDc3SAb+jjM2cOxZp2flJwkvWtVp+gg4e1d+HKHmavKQxZMdgPoe9bmWdY3IrEi6B3c3ebziZAetFkNePgoX5zs+XxDKos/JIebll9GnpGLfuDHBiz4VJ6+qCLugIOTOzhjy8tBcv17pcSp163mx2NhYYmNjTRmiVtMmJZF/5AgA7gMH3vL42dSzpKvTcbFzqfzFn4V5cPoH48eiMFm4nSYPGN9HH4L8dItNE+oWCpjvRJbM0RFZ0elFsZUlVIak1RL36iQ0V66i9PWl7soV4s6rKkQml2Pf2NhvR3PlaqXHqVSfnVmzZuHu7k69evWoV68eHh4efPDBBxgs3Kejpsneug0kCccOHVDVCb7l8f2x+wHoFtQNO4Vd5SY59zMU5oBnGISK6zyE2/AMBb8WIOnhyk6LTVPfw7wXgspkMnH8XKg0SZJInDWLvIMHkTk6UmfF59gFBto6LOE/iouUC69U/kRWhdfp3nnnHdasWcPHH3/MvUVV6gcOHOC9995DrVbz0UcfVTqY2ibr998AcH/0kTIfL052TKrXOWnsyky7IcbLHwXhdpo8CMnn4NI2aPOsRaawxO3nCg8PdElJYmVHqLC01auNp2HlcoI/+QTHFi1sHZJQhpIiZRNWdiqc7Kxfv57Vq1eXuveqdevWBAcHM27cOJHslJPm2jU05y+AUonrgFvvqErKS+JC+gVkyCpf25ARZbzzCBm0ubV/jyCU0uQh+HsBXN0NOo2xB4+ZFW9jpavTyVRn4uHgYfKY4uZzoTKyt28n5RPj6WH/adNw7X2/jSMSbse+kfF6mcKIym9/V/hX/fT0dJoWVUffrGnTpqSnW26vv6bJ3mrsaeJy770lvUJudiDuAACtfFrh7VjJouJTG43v6/cE9zqVG0OoPYLagYu/cdsz6m+LTOFk50Sgs3GbIDLbPKs74vi5UFH5J04QP/VNwHi5p9cLQ2wckXAn9g0bAqBLTKz0GBVOdtq0acNnn312y+c/++wz2rRpU+lAapucnTsAcHvowTIf/yf+H4DKr+pIEpz6zvhxm/9VbgyhdpHLoXHRKuPlHRab5ubmguag8DC28Rc1O0J5FMbEEDtuPFJhIS7334//W2/aOiThLhTu7ij9/O7+xDuo8DbWvHnzePjhh9m1axdduxr7whw6dIiYmBi2bbNsB9aaQhMRYawqt7PD5f5bl051Bh2HEw4D0DXo1t475RJ9yLiNpXKBZmXXBAnCLRoNgPANcGUHMM8iU9R3r8/B+INEZJrnRJZY2RHKS5+ZScyYl9BnZODQvDnBC+YjUyhsHZZQDvaNGkFCQqVfX+GVnZ49e3L58mWeeOIJMjMzyczMZNCgQVy6dIkePcRpn/LI2WH8rdm5SxcUbm63PH4u7Rw5hTm4qlxp6dOycpMUFyY3Hwgq0XtEKKf6PUFuBxmRxm7KFlCysmOmbSxxZYRQHlJhIbGvTKQwMhJlYCB1Pv8cubP43lhdFNftVFaluiYFBQWJQmQTZP9ZtIU1oH+Zjx+MOwhAl8AuKOWV+CsqzDceOQdoKzomCxVg7wr1ukLkfuPqjvdYs09RnOyYf2VHbGMJZZMkiYTp08n/91/kzs7UXbHilnsIharNvlFDk15f4ZWd7du3c+DAgZI/L1u2jLZt2/K///2PDLFnflfauDg0Fy6AXI5Lnz5lPqe4XqdbULfKTXJxq7HI1CMEQio5hlB7NSpKwi3Ub6c42YnLjUOj15g83s1XRghCWVKXLyfrl1+Nt5gvXoxDk8a2DkmoIFNXdiqc7LzxxhtkZ2cDcObMGaZMmcJDDz1EZGQkU6ZMMSmY2iB3v7F3jmP7dmWewsouzOZM6hkA7g2q5G27p4tOYbV5TvTWESquYT/j+6gDxg7cZubt4I2byg0JiaisKJPHE0fPhTvJ+u13UpcaD9UEzJiBS3dxi3l1ZN/AtAuKK/yTMDIykubNmwPw448/8uijjzJ79myWLVvGH3/8YVIwtUHuXuPFni73lX3X1ZGEIxgkA2HuYQS6VKKTZ24KXCu6v6y1ZRrDCTWcbxNwDwG9BiLNfwRdJpPdaC5ohrqdGx2UM00eS6hZ8sPDSXj7bQC8Ro7E89lnbByRUFlyZ2eUQZW/PLjCyY5KpSI/Px+AXbt20b+/ccnby8urZMVHKJtBrSav6C4sl55ld0X+J864hVXpVZ3zPxtb/ge1A2/TMmGhlpLJoFHR6s5Vy25lRWaaIdkpWtmRCgowqNUmjyfUDIXR0cSOn4Ck1eLStw9+r79m65AEE5myulPhZKd79+5MmTKFDz74gKNHj/Lwww8DcPnyZerUEY3r7iT/33+R1GqUAQElF5vdTJIkDsYbi5MrfeT8zGbj+1ZPVzZMQbiR7FzZYezZZGbmPJEld3GBohuqxVaWAKDPyiLmpZeNR8xbtCB43jxkYku/2vMvWqWrjAr/7X/22WcolUo2b97M559/TnCw8QLLP/74gwceeKDSgdQGufuM9Tou992HTCa75fGo7CgS8hKwk9vR0b9jxSfIuA4xhwEZtBhkYrRCrRZ2HyhUkBkNqVfMP3xRsmOOmp1Sl4GKZKfWkwoLiZ34qvGIeUAAdZYvR+7kZOuwBDOw8/Ot9GsrfK45JCSE33///ZbPf/rpp5UOojaQJIncfUX1OrfZwipe1Wnv3x4nu0r84zz7o/F9aHdwEzf3CiZQORv/P7r2l3F1x9e8p1dKkp3sKAySAbnMtN+6FR7u6FNTRRflWk6SJBJmzSL/yBHkTk7UXfG5OGIuAJXss6PX6/npp5+4cOECAM2aNWPgwIEolZUarlYojIxCGxODzM4O5y5dynzO4fiirsmBldzCKk52xBaWYA4N+91IdrpNMOvQwS7BKOVKCnQFJOUlVa4Y/yZKD08KESs7tV3a6tVkbf7ReIv5pwtxKOMeR6F2qvCvU+fOnaNRo0YMGzaMn376iZ9++onhw4fTqFEjzp49a4kYa4Tc/cZVHad77imza6feoOd40nEAOgd2rvgEyRcg6ayx+23zx+7+fEG4m+J+O9cPgibXrEMr5UrqudYDzHNHVnGRsk6s7NRa2dv/vHGL+dtv49Kz7BOvQu1U4WTnxRdfpGXLlsTGxhIeHk54eDgxMTG0bt2aMWPGWCLGGiGvqL/O7bawLqZfJEebg4udC029KvHbSHFhcqN+4Hhr/x5BqDDvBuAZBgYtRO4z+/DmLFK+cfxcJDu1UcHp08S/WXSL+ZAheA153sYRCVVNhZOdkydPMmfOHDxvaojn6enJRx99xIkTJ8waXE2hz80j799jADjfV3ayczTxKAAd/DtU/IoISYKzxaewnqp0nIJQys1H0C3QTdmct5/faCyYZfJYQvWijYsjZtx4JI0G5573iVvMhTJVONlp3LgxSUlJt3w+OTmZhg1Nu7uipso/chi0WuxCQlCFhpb5nOJk556Aeyo+QcJJ4w3ndk7QWJyIE8zo5qsjzHwE3SLJjljZqVX0OTnEvDwWfWoq9k2aEPzJQmSidlQoQ7mSnezs7JK3OXPmMHHiRDZv3kxsbCyxsbFs3ryZSZMmMXfuXEvHWy0VNxJ07ta1zCPnWoOW8KRwoJL1OsWXfjbqL244F8wrtDsoHSA71lgXZkZmTXbE0fNaR9LpiJs8Bc2VKyh9fam74nMULuL7n1C2cqXAHh4epX5IS5LEM888U/I5qeg3vkcffRS9Xm+BMKu3/KP/AuDcuexE5nzaefJ1+bjbu9PYs4JHfCXJ2DUZoPnjJkQpCGWwc4TQHsZOytd2g39zsw0d6hYKQEpBCjmFObiqXCs9lsLTAxArO7WFJEkkfvQReQcOIHN0pM7nn2MXKNptCLdXrmRnz5495RrszJkzJgVTE+kyMtBcvAgYT2KV5d9EYzLU0b9jxfuNJJ42bmEpHW9sOQiCOTXoXZTs/AXdXjHbsC4qF/wc/UguSCYqK4pWvq0qPZZSFCjXKhkbNpD53UaQyQiePw/Hli1sHVKFaPQaYnNiSS1IJaUghQx1BgbJULJw4Gbvho+jD76OvtRxrWPSLwKCUbmSnZ53OMKXk5PDd999x+rVqzl+/DgTJpi3H0d1l3/MWJisatgApY9Pmc85kmDc5qpUvU7JFlZfsHepTIiCcGcNehvfXz8I2gLjao+ZhLmHkVyQTGR2pEnJjrj5vPbI+WsPSR8bSyb83ngD1759bRzRnUmSxNXMqxxOOMyZ1DNcTr9MVHYUeqn8uyD13OrRwrsFbXzb0KtuL4JcKn8hZm1V6Uqu/fv3s2bNGn788UeCgoIYNGgQy5YtM2dsNULJFlanTmU+Xqgv5GTySQA6BZT9nNsqtYU1sHIBCsLd+DYB1yDIiYfoQzeSHzMIdQ/lSOIRk+t2ipMdQ34+hsJC5CqVOcITqhj1+fPEvf46SBIezzyD14jhtg6pTFq9ln/i/2FH1A4Oxh8kTZ12y3Nc7Fzwc/LDx9EHLwcvlHIlMmRISGRpskgtSCU5P5k0dRrXs69zPfs62yK3MefoHFp4t6Bvvb4MbDgQH8eyf4kWSqtQspOYmMi6detYs2YN2dnZPPPMM2g0Gn7++WeaNzffXn5Nkl9UnOx0m2TnTOoZ1Ho1Xg5eNPSo4Gm2pLOQHmEsIG08wNRQBaFsMpkxwTn5tXEry4zJjrmKlOWurqBQgF6PPiMTubgioMbRJiUR8/JYpPx8nLt1I2D6u2Ue+LAVSZI4lXKKn67+xM7rO8kpzCl5zEHhQAf/DrT3b09Tr6Y09myMv5N/ueLPUGdwLu0cZ1PPcjjhMOFJ4ZxLO8e5tHMsP7mch+s/zNDmQ2nk2ciSX161V+4CkUcffZQmTZpw+vRpFi1aRHx8PEuXLjVLEMuWLSM0NBQHBwc6d+7M0aNHy/W6jRs3IpPJGDhwoFniMDddRgaay5eB29frFB857+jfseL/cIu3sBr2BXuxpytYUMOiBOda+er3ystcyU7py0BF3U5NY8jLI2bsWHTJyagaNiB40afI7OxsHRYAap2aLVe28Ozvz/LCHy+w5coWcgpz8HX0ZUizIazpv4Z/nvuHFf1WMKb1GO6rcx8BzgHl/n7v6eBJ9+DuvNzmZdY9sI6/nvmLGV1n0Ma3DVqDlp+v/sygXwcxec9kYnNiLfzVVl/lXtn5448/mDhxImPHjqVRI/NlkJs2bWLKlCmsWLGCzp07s2jRIgYMGMClS5fw87v9b2dRUVG8/vrr9OjRw2yxmFv+v8YtLPtGDVF6e5f5nGOJxpoesYUlVGlhvQCZcTUxJxFcA8wzrJsx2YnOiUZn0FW8oeZNFB4e6NPSRJFyDSPp9cS9/gaa8xdQeHlRd8UKFG5utg6LPG0emy5tYv259aSr0wGwV9jzQOgDPN7wcdr7tUchV5h9Xh9HH55u/DRPN36ak8kn2XB+A7ujd7Mrehd/x/3N8BbDGdVqFI5K89XW1QTlXtk5cOAAOTk5dOjQgc6dO/PZZ5+RmppqcgALFy5k9OjRjBgxgubNm7NixQqcnJxYu3btbV+j1+t5/vnnef/996lfv77JMVhKcb2O0z1lJzJavZbTKacB6BjQsWKDJ5+HtKugsBdbWILlOXtDUFvjx2Zc3fF39sdR6YjOoCMuN86ksUqOn4si5Roled58cvfsQaZSUXf5MlR16tg0nnxtPl+c/oIBPw7g0+Ofkq5OJ8g5iCkdprDrqV182P1D7gm4xyKJzn+19WvLwl4L2fzoZjoHdEaj17Dy9Eqe+OUJTqWcsvj81Um5k50uXbqwatUqEhISeOmll9i4cSNBQUEYDAZ27txJTk7O3Qf5j8LCQo4fP07fm6rp5XI5ffv25dChQ7d93axZs/Dz82PUqFF3nUOj0ZRqipidnV3hOCvrbvU6F9IvoNarcbd3L1nOL7eLW43vG9wPDrb/LUeoBYprda79ZbYh5TJ5Sb8dU7eylKKLco2T8d13pK9fD0DQx3NwbNvWZrHoDXp+uvITj/70KEtPLCVLk0WoWygf3vshvw/6nREtR+Dh4GGT2Bp5NmJV/1Us7LWQQOdA4nLjGPbHMFafWY1BMtgkpqqmwtdFODs7M3LkSA4cOMCZM2d47bXX+Pjjj/Hz8+Oxxyp223Zqaip6vR5/f/9Sn/f39ycxMbHM1xw4cIA1a9awatWqcs0xZ84c3N3dS97q1q1boRgrS5eejubKFQCcOpVdr3Mi2XiXWFvfthXvr3Pxd+P7po9UOkZBqJDiZCdiDxjM9w001D0UMD3ZEV2Ua5bcv/8m8cOPAPCd9CpuDz1ks1iOJx3nmd+fYcbBGSQXJBPsEsycHnP4+fGfebzh49jJbV8/JJPJ6FevHz8+9iMPhj6IXtKzOHwxY3aOIUMtfgGocLJzsyZNmjBv3jxiY2P57rvvzBXTbeXk5PDCCy+watUqfG7Ts+a/pk2bRlZWVslbTEyMhaM0yi+6+NO+USOUXl5lPqf4yHlbv7YVGzwzBhJOgUwOTR40IUpBqIA6ncDOGfJSjLU7ZmKuImWFh3FlRydWdqo99aXLxE2aDHo97gMH4v3SSzaJI12dzjsH3mH49uFczriMq8qV1zu+zq8Df+WR+o9YZauqolxVrsy9by6zus3CUenIkYQjDP1jKDE51vnZV1WZ5cY0hULBwIEDK3wqysfHB4VCccvFoklJSQQE3FoAee3aNaKionj00UdLPmco+g1TqVRy6dIlGjRoUOo19vb22NvbVyguc8gvOlF2uy0sSZJKVnba+bWr2OCXthnf1+0CzqLHQnKOmtMxWZyOyyIiJZfELDWJ2WrS8woxSBKGovsrPRzt8HOzx9fFnlAfZ1oGudOqjjsNfF1QyKvOEdYqS6mCsB5webtxKyuwtVmGNVuyU7KNlWlqSIIN6VJSiBn7Moa8PJzuuYfAWe9b/Yi5JEn8cu0X5v87n+zCbGTIeKrxU0xsN9FmW1UVIZPJeKLRE7TyacW43eOIyo5iyLYhLO+znBY+1avbtLnY9HpYlUpFhw4d2L17d0miZDAY2L17d5mdmJs2bXrLlRTvvvsuOTk5LF682GpbVOVRcMKYyDh1aF/m47E5saSp01DKlbTwruD/fCVbWA+bEmK1pdHpORyRzu4LSey+kExcZkG5XpecoyE5R2P8w6WUks+7Oijp2diXvs386dXEFw8n0ZDuthr0vpHsdJ9kliGLT2RFZEUgSVKlf7CJbazqz6DREDNhArr4BFT16lFn6RJkVm4QmVqQyvsH32dv7F4Amno15d0u79LGt41V4zCHhp4N+fqhrxm/ezwX0y8y4s8RLLp/Ed2Cutk6NKuzabIDMGXKFIYNG0bHjh3p1KkTixYtIi8vjxEjRgAwdOhQgoODmTNnDg4ODrRs2bLU6z2KvsH99/O2ZMjPR33pEgCO7cpetTmRYkyGmns3x0HpUP7B89Mh6h/jx01tt4dtbZIkcTo2i43/RvPbqQRyNbqSx2QyaOTnQqtgD5oFuhLg7kCguwPezvYoFTLkMhkGSSIzX0tyjpqkbA2Xk3I4G5fFufhsctQ6fj+dwO+nE1DKZfRr7s/znevRrYE3crHiU1px3U70ISjMB5WTyUPWc6uHDBnZhdlkaDLwcih72/duxGWg1ZskSSTOmIH61Gnk7u7UXbmiJIG1lu2R2/nwyIdkabKwk9sxvu14hrUYZlJLBFvzc/Jj3QPrmLJ3CgfjD/LqX6+yvO/yyl1PVI3Z/G/w2WefJSUlhRkzZpCYmEjbtm3Zvn17SdFydHQ0crlJpUVWV3DmLOj1KP39b3sTb8kWlm8Ft7Cu7ABJD34twKvqHrs3F63ewC8n41l7IJLzCTdO0vm52tOnmR99mvrTpYE3LvZ3/1+5jieAe6nP6Q0Sp2Iz2XXeuEp0KSmHP84m8sfZREK9nRjVoz7PdKyDvbLq7c3bhHdDcK8LWTHGu7IamX4vkYPSgSCXIOJy44jMiqx8siNWdqq19LVryfrlV1AoqLPoU1ShoVabO0uTxaxDs9hxfQcAzbya8VH3j2pMV2JnO2c+6/0Zk/ZOYn/sfsbvHs8X/b6oeL1oNWbzZAdgwoQJt71AdO/evXd87bp168wfkIkKTp4Ebr+qAzeKkytcr1NLtrA0Oj0/Ho/j831XiUk3blOplHIeahnA4E4hdAr1Msuqi0Iuo32IJ+1DPJn6QFMuJmbz7ZFofgqPIyotn+k/n2XF3mtM6N2QpzrUwU5RvRJvs5PJjO0OwjcYt7LMkOyAsW6nONnp4N+hUmOIo+fVV+6+fSQv+AQA/7fewrlrV6vNfTL5JFP3TyUhLwGFTMGY1mMY3Xp0lThhZU52CjsW9lrIhN0TOJxwmLG7xrJ6wOqKl1FUU7X8O7dllCQ7bcve483SZHE18yoAbfwqsA+sLYCru40fN6uZR84lSeKPMwn0XbiPt386Q0x6AT4uKt56sClH3+7DosHt6FLfcttLTQPcmPV4S46804f3H2uBn6s9cZkFTNtyhv6f7ufvKyl3H6Sms0C/HXMUKZdcBpqXh1RYaJa4BMvTXLtG3GtFl3s+/TSeQ563yrwGycC6s+sYsX0ECXkJhLiG8M1D3zCu7bgal+gUs1fYs/j+xbT3a0+uNpdxu8YRnxtv67CsQiQ7ZiZJUkmy43SblZ3izpYhriEVu7H22h7Q5hu3EQLMcxKmKjkfn83gLw4z9ptwYtIL8HO1Z8Yjzfl7am9e7tnAqoXDTiolw7qFsn/q/cx4pDk+LvZEpubxwpqjTPg2nKRstdViqXLCegIySLkAWaZ1PS4Z0gzJjtzVFYq2vHViK6ta0GdmEjN2HIbcXJw6drTa5Z6Z6kwm/jWRT45/gk7S8UDoA2x6ZFOtOKnkZOfEsj7LaOLZhHR1Oq/89Qr52nxbh2VxItkxM+316+gzMpCpVDg0a1bmcyrdX+fyH8b3TR4ybifUEBqdnrnbL/LI0r85EpmOvVLOxD6N2PtGL0Z2D8NRZbt6GQc7BSO7h/HX6z0ZcW8ochn8fjqBvp/s4+cT5vlBX+04eUFQUSIfsdcsQxafyDIl2ZHJ5TfqdsTx8ypP0umInTwZbXQ0dkFBBC9ZbJWTV+dSz/H070+zL3YfKrmK6V2mM+++ebioXCw+d1XhonJhae+leDl4cTnjMm/9/VaN77Qskh0zKyg6Gu/QvPlt/+FWqr+OwQCXjcVzNHnApBirkpMxmTyy5ACf772GQYKHWgWw+7WeTOnXGCdVlSgpA8DNwY6Zj7bgt1e607auBzkaHZM2nWTidyfIKtDaOjzra3C/8X2Eee7JKl7ZicuNQ6PXVHqckl47YmWnykv6eC75hw4jc3KizufLb9t81Zx+u/YbQ/8YSmJeIvXc6vHNw9/wTJNnrN7HpyoIdAlk8f2LUclV7InZw5LwJbYOyaJEsmNmJclOq1ZlPq41aDmbauw+296v7B48ZUo8BbmJoHKBeveaHKet6Q0SS3ZfYdDyf7iSnIuPiz0rhnRg+fMdqONp+nFmS2kR5M7ml7sypV9jFHIZv56K56HFf3MyJtPWoVlX/eJkZ69Zro7wcvDCTeWGhMT17OuVHufGyo4oUq7KMrf8RMbXXwMQNPdjHJo0seh8OoOO+f/O5+0Db1NoKKRXnV5sfHgjTb2aWnTeqq6tX1vev/d9ANacXcOeaPNd8lvViGTHzNRnjImMY6uy+/5cybiCWq/GVeVacidQuVz+0/i+wf2gtH5HaHNKydEwdO0RFu68jEGCx9sGsXPyfTzQ8tau2VWRUmHcZvvh5a7U83YiLrOAZ1YeYvPxWFuHZj11O4Gdk/HqiORzJg8nk8nMVKTsAYA+UyQ7VVXBuXMkvvceAD4TJuDWr59F58vSZDF211g2nN8AwEutX2Jx78W1atvqTh6p/wgvNH8BgOkHp5OYV/a9lNWdSHbMSNLpUF+4AIBDy7JXdopXdVp6t6zY5Z+XtxvfN67eW1iHI9J4aMnf/HM1DUc7BZ883YbFg9vh6Vz9uha3D/Hk91e606+5P4U6A6//cIr3fzuHTl+z974BY8JdvMJ4zbxbWSYlO6LXTpWmy8gg7pWJSIWFuPTqhc+4sRadLyIrgsG/D+ZwwmEclY580vMTJrSbUPGLl2u4ye0n08K7BVmaLKbun4rOoLv7i6oZ8TduRpqrV5HUauQuLqhC65X5nJJkx6cCHZ+zEyDeWOdDo/6mhmkz3x2NZsjqI6TkaGjs78Jvr9zLkx3q2Dosk7g62LFySAde7WNsPvblP1GMWn+MPE3N+2ZxiwY3bWWZQahbKGBasiN67VRdkl5P/OtvoI2Pxy4khKB5c5FZsGHsscRjvLDtBWJzYwl2CearB7+if2j1/f5pSXYKO+bfNx9nO2dOJJ9g+cnltg7J7ESyY0Yl9TotWtz2H/HZNGOyU6EjjleKCpODO4CLn0kx2oJOb+C9X88xbcsZdAaJR9sE8cv47jT0c7V1aGYhl8uY3K8xK4Z0wNFOwb7LKfxv9RHS82p4r5fiup3rB0Fr+lF886zsiALlqipl6VLy/vkHmYMDdZYuQeHmZrG5tkZsZczOMWQXZtPatzXfPvwtTbwsWxdU3dV1q8t7Xd8DYPWZ1fyb+K9tAzIzkeyY0d3qdfK1+VzLvAZAK5+yt7nKVFyvUw23sPILdby44RjrDkYB8Fq/xiwZ3Namx8kt5YGWAXwzujMeTnacisnkqc8PEpNeg/tX+DUDF3/QFUDMEZOHK052orKjkCSpUmMUb2PpxMpOlZKzezdpK1YCEPjBLIsVJEuSxMpTK3nr77fQGrT0q9ePNf3XVPoKktrmgbAHGNRoEBISMw/OrFH9d0SyY0bqs8Zk53b1OhfTL2KQDPg5+uHnVM4VGq36xvHexgPMEabVZOQV8r9VR9h7KQUHOzmfP9+eV/o0qtHHPNuHeLL55W4EezgSkZrH0ysOEZmaZ+uwLEMmg/q9jB+b4Qh6Hdc6KGVKCnQFJOUnVWqMkqPnos9OlaGJjCT+zbcA8BwyBPdHH7XIPDqDjpkHZ/LZyc8AGN5iOAt6LqjYRcsCr3d8HX8nf2JyYlh6YqmtwzEbkeyYiVRYiPrKFQAcWpa9RVVcr1OhLayoA8auya6B1aprcnxmAU+vPMTJmEw8nOz4bnQXHmxV9qWoNU1DPxd+HNuNRn4uJGarGfxFDU54ireyzFCkbCe3o65bXaDyW1miQLlqMeTlETdxIobcXBzbt8d/6hsWmUetUzN572R+uvoTcpmcdzq/w2sdXxOFyJXgqnLlvW7vAfDNhW9K+sJVd+L/BDPRRESAVovc1RW74OAyn1Op4uSSU1gDqk3X5KjUPJ76/CBXk3MJdHdg88tdaRfiaeuwrCrA3YHvxnShkZ8LSdkaBn9xiIiUXFuHZX7FKzsJpyA/3eThTO2kXHL0XGxj2ZwkSSRMn47mylUUvj4EL/rUIh2ScwpzGLtrLHtj9qKSq1jUaxGDmw42+zy1Sffg7gxsOBAJien/TEetq/7X44hkx0zUFy4C4NC06W23aYqLk8ud7EjSjeLkanIKKzI1j2e/OER8lpr6vs5sHtutxhQiV5SPiz3fjelCY39jwvPcqsNEp9WcPXAA3ALBtxkgmeVUlqlFysWnsQy5uUjaWtjZugpJX7+e7G1/gFJJnUWLsPMz/+GK1IJURv45kmNJx3Cxc2FFvxXcH3K/2eepjd645w38HP24nn2dz099butwTCaSHTNRXzgPgH2zsjtyZmmyiMmJAaCFdzm3sdIjIPM6yO0g7D6zxGlJESm5DP7iEEnZGhr5ubBpTFeCPRxtHZZN+bjY8+3oGwnPC2uPkJxT/X9LKsWMR9BLkp3syiU7cje3kstAxVaW7eQfO0by/AUA+E+dilOHDmafIy43jmF/DONi+kW8HLxYO2At9wTcY/Z5ais3lRvvdnkXgA3nNhCRGWHjiEwjkh0z0RSv7DRrXubj51KNXWZDXENwt3cv36BXdxvfh3QB+6q9OhKZmsfgLw6TlG3sofPdmC74ulbvTs/m4uNiz1ejOlPXy5HrafkMW/tvzbpPq+TqiD3G1UgTmLqyI5PLUbgb/32JE1m2oUtNJW7yFNDrcXvkETxfGGL2OaKyohj6x1Cic6IJcg5iw4MbaOZd9sXLQuXdH3I/ver0QifpmH1kdqVPSVYFItkxA0mSUF8sTnbKXtk5k2rswVOh4uSru4zvG/YxKT5LS8gqYMjqIyTnaGji78q3o7vg4yISnZv5uznw1cjO+LjYcyEhm9Hrj6HW6m0dlnmE3mtcfcyMNq5GmjJU0RUqyfnJ5GkrV9QtTmTZjqTXE/fa6+hSUlA1bEDg+++Z/fRlRGYEI/8cSXJ+Mg3cG7DhwQ3Ucyu7iatgujc7vYm9wp4jiUf4M+pPW4dTaSLZMQNtXByGnBxkdnbY169f5nNK6nW8y1mvo9NA1N/Gjxv2NUeYFpGeV8gLa44Sl1lAmI8zX7/YWSQ6txHq48z6kffgaq/kaFQ6U74/icFQfX9TKqFyhrqdjR+beATdTeWGj6MPYPztvTIUXsXJjukF00LFpCxdSv6RI8abzBcvRu7sbNbxr2RcYcSfI0gpSKGRZyPWPrAWf2d/s84hlFbHtQ6jWo0CYP6/8yv9S4itiWTHDIrvw1I1anjb0wbF21itfMvZTDD6kPHIuYs/+Ffg9JYV5ai1DP/yaMmpq69GdRJbV3fRIsidVcM6YqeQse1MIvN3XLJ1SObRoJfxvRmOoBdvZUVkVW6VSOlpbCCnSxfJjjXl7tt3o3HgrFnYN2hg1vEvpV9i1J+jSFen08yrGWv7rxXNAq1kZMuR1HWtS3JBMp+frJ7FyiLZMQPNReMPLIcmZW9hJeUlkVKQgkKmoKlX2c+5RXG9ToM+VfLIuVZvYOzX4ZyOzcLLWcVXozpTx9PJ1mFVC13qe/PxIGPPpM/3XmPTv9E2jsgMiut2Iv8GvWn3gpl8/NzL+ANQny5qdqxFGxdH/NQ3AfD833O4P/KwWcc/n3aeUTtGkaHJoIV3C1b1X4WHg4dZ5xBuz15hz1udjI0hv7n4DdHZ1e97lkh2zEBT1EzQvknjMh8v3sJq4NEAR2U5TycVJztVsF5HkiTe+ekMB66m4qRSsG7EPTT0c7F1WNXKkx3qMLF3QwDe+eks/1xNtXFEJgpqBw7uoMm6cWltJd18bURllGxjiZUdqzAUFhI7eQr6rCwcWrbE7623zDr+pfRLjN4xmixNFq19W7Oq/6ryH/IQzOa+Ovdxb9C96Aw6FoUvsnU4FSaSHTMoSXYaNSrz8UvpxpWf5t5ln9S6RXY8JJ8DZDd+Y65Clu+9xvfHYpHL4LP/taN1HQ9bh1QtTe7XmMfaBKEzSIz/Nrx636MlV9xoj2Bi3Y7pvXaKtrFEzY5VJM+dh/r0aeTu7gQvWoTcjI0DI7IiSl3oubLvSlxVVftkak1W3JV65/Wd1a6zskh2TGTQaCi8fh24fbJzMd14UqvcW1jX/jK+D24Pzt4mx2hOv5yMY/6fxuTt/cda0LupKA6sLJlMxrynWtOmjjuZ+VpGbzhGfqFpW0A2Vd88/XaKk53r2dfRGSr+30NsY1lP9rZtZHzzDQBBcz9GVafs7vGVEZMdw+g/R5fU6Hze93NcVGIF2ZYaeTbiiYZPALDg3wXV6ii6SHZMVBgRAQYDCnd3lL6+ZT6neGWniWc5b/otPnLeoGptYZ2KyeSNzacBeLF7GC90DbVtQDWAg52CFS90wMdFxcXEHKZuPl2tvoGUUtxcMOYoaCp/NUaAcwAOCge0Bi3xufEVfr1SbGNZRWF0NAnTZwDgPWYMrr16mW3shNwERu0YRXJBMg09GvJFvy9wU7mZbXyh8sa3HY+j0pHTqaer1VF0keyY6OYtrLL6SWRpsojPM37DbuJVjmTHoL9xoqUKHTlPzlHz0lfHKdQZ6NvMj7cfEg28zCXQ3ZHlz3dAKZfx++kEvthfTTuVetUHj3pg0ML1fyo9jFwmL+mbUpmtrOKVHXEay3KkwkLiXnsdQ14ejh064DvxFbONnZyfzKgdo0jISyDULVQUI1cxvk6+jGg5AoBF4Yso1BfaOKLyEcmOiUqSncZlb2FdzrgMQLBLcPn2muPCQZ0J9u4QbP4W65VRqDMw7utwErPVNPB15tNn2yKXV70TYtVZpzAvZjxqrOma9+cl/o2qpj+oi1d3TDyCbkrdjqKoZkefmYlkMJgUh1C2lKVLUZ85g9zNjeD585AplWYZN0uTxUs7XyImJ4Zgl2BW9V9V0ndJqDqGNR+Gr6MvcblxbL682dbhlItIdkykuXzn4uSK1+sUHznvBQrzfAMx1Xu/nePY9QxcHZSsGtoRVwc7W4dUI73QpR5PtAtGb5B45dsTpOdVj9+YSrn56ggTmNJrR1l08zl6PfqsLJPiEG6V+88/pK1aDUDghx9gFxRklnHVOjWv/PUKVzOv4uvoy+r+qwlwDjDL2IJ5Odk58VLrlwD44vQX5Gur/uEKkeyY6G4nsYqTnXJtYUGVq9f54VgM3x6JRiaDJYPbUd9XFAhaikwm48OBLanv60xitprXqmOH5bD7ABmkXDSeKqyk+h7GTuSVSXZkKhVyV+Mq6v/bO+v4qur/jz9vrrvHEkbXyNElgooKKoiglGJifTEQA7F+2GIrooAopQiYoNLd3RuMdXfeOr8/DhvM1b3b3e5gn+fjscfu7jnn83mv7n2ddxrFfCyrYsjMJGmWXFrufs94XEeMsM66JgPPbX2Ow2mHcdG48NWNXxHkEmSVtQUNw52t76SFcwsySzJZfma5rc2pFSF26oGxoBB9kvyCbhcRUeU5ZcnJ7TzM8OwUZUHiQflxE+ivczYln1fWyT2CZg5vw9B2vja26PrHyU7N5xO7Y6dWsvlsOgu2X2P5O46eEBgpP65HVVYrN7n7bkxOTJ0StkWvHesjmUwkvTAbY0YGdq0j8LNSPx1Jknh99+tsSdiCVqnl0xs+pY1H1T3LBE0HjUrDY5GPAfDdie/I1+Xb2KKaEWKnHuguxACg8vFG5e5e6bjeqCcmVz7HrDDWhS0gmcCnPbjZ9q6msNTAYz8epERvYlAbH2YMrVrMCaxP+wBXXr1NHhj73oazHLx0jb1ht6x/3k6YaxgqhYoCfQFpRWkWXy9GRlif7KVLKdy+HYWdHYEffIDS3t4q635y+BPWRK9BqVDy3uD36OHXNHIVBbUzKnwULd1akqfLY8nJJbY2p0aE2KkHpRfku267llXPgInJjcFgMuCqdTUv9hzTNLomS5LEi2uOE5NeiL+rPR/d3VUkJDcyE3oHc1vXwPL8nexrKX+n1VX9dupYRq9RaQhxDQEov2GwBNFrx7qUnj9P2gcfAuA763ns21jH87Ls9DIWHpfzf+b0mcOwkGFWWVfQOKiUKh7v9jgAS08tJauk6d5cCLFTD3QX5EoRbcvwKo9fnZxcVVl6BSQJLmyTH9u4a/KqA/GsO5KESqng04nd8BJTzBsdhULB/93RiXBvJ5JyS3juWuq/ExwFGkcoTIO0U3VepiyUdSHH8lCemHxuPSS9nqRZLyDpdDgNGojHhAlWWXdL/Bbe2f8OAI9HPs5dbe6yyrqCxmV4yHDae7anyFDE9ye/t7U51SLETj3QXazZs1PeTNCc5OTsi5AbB0oNhPa1mo2WciG9gLm/ym9Qz4xoQ68wMVXYVrjYa/hsYje0KiX/nk5l5f54W5tkHmo7CO0nP65HKKssSbkunp0rYSzh2akvGV99TcmpUyjd3Ah4483ab9zM4GTmSZ7f9jwmycRdre/ioS4PWcFSgS1QKBQ82vVRAJafWU5uadOsgBRipx6UxshixxzPTq1c2Cp/DuoFWier2GcpeqOJp1ceoVhvpG9LLx4ZVLWIEzQeHQPdeHakHDJ4/fdTXMostLFFZmKFEvT6eXbKwljCs1Mfio+fIOOrrwDwn/MKGr/6FymkFKbwxMYnKDYU0zegLy/1eckqAkpgO4YED6GtR1uKDEUsPbXU1uZUiRA7dUTS69HFyWPu7Vq2rHxckiwbE1FWudJysLVMtJj5/57jWEIubg4aPhB5Ok2GBwa0JCrckyKdkf+tPILBeA00yivL24ndCYbSui3hLoud6Jxoi0N4ahHGqjemkhKSXngBjEZcbr4Jt1Gj6r1mga6AxzY+RnpxOhHuEXww5AM0StG361pHoVCUe+eWnV7WJCuzhNipI7r4BDAYUDg6ovavnHycVJhEvj4fjVJDS7fKYqgCJhNcvJyvE24bsbP3QiZfbJHDBf93R2cC3R1sYoegMiqlgg/u7oqLnZpDcTl8tdXysE6j49sBnHzBUAzxe+u0RKhrKEqFkjxdHpklmRZde2VkhAhj1ZX0j+aji4lB5eON/5w59V5Pb9LzzNZnOJ99Hm8Hb7644Qsxwfw6YnjocFq5tSJfn8+y08tsbU4lhNipI2Vl53bh4VW6YMtCWBHuEWhUtdy5pJ6A4izQOkNQT6vbWhuFpQae+ekokgTjegQxqktAo9sgqJkgD0deGy2Xo8//9zzHEnJsa1BtKBTQcoj8uI55O/Zqe4Kc5RYMMTmWCbzyMFamZSJJIFO4bx9Z38vJpoFvvonaw6Pea7677112Je3CQe3AZzd8RoCzeJ25nlAqlDzY5UEAlp5eSqG+aYXchdipI6XllVhVe20sSk6+eDlfJ7Qf1CaMGoB31p8hIbuYFu4O5fOZBE2PO7q1YFTnAAwmif+tPEKxzmhrk2qmlRXydtyvNBe0BLW3PE/JkJUl5mNZiKm4mOSXXwFJwn3cWJwH19/b/PO5n1lxdgUA8wbOo6NXx3qvKWh63BR2E6GuoeSW5rLy7Epbm1MBIXbqiK6sx06rqsVOdE40AK3dqx4jUYGy5GQbhLB2xWTw/e5LALxzVxcx96oJUzZOwtfFjpj0Qt5Zf8bWJtVMmWcn6YjcHbwOlIkdS8dGlHsixHwsi0n/9DP0cXGo/f3xnTWr3usdSj3EW3vfAuQS8xtCbN8dXtAwqJQqHuwse3eWnFzSpGZmCbFTR3SxsQBow8KqPF52JxrhXkvnYYMOLu2UHzdycnJhqYHnfz4GwMSoEAa0FtOFmzoeTlreG9cVgMW7Ytl7oQmHaVwDwacdIF3JSbOQsny3spsHc1FotSjd3AARyrKE4uPHyVq8GAD/ua+icq7fLLzkgmT+t+V/GEwGRoSOECXmzYBbWt5CC+cWZJVkNamJ6ELs1JGySixtaGilY3qjnrg8+XhZr5BqSTwA+iJw9ALfxnXtXh2+mn2zmVPZBTZncBsfxvcMBuD51ceadjirniXo5Z6dOpSfq728ADBkCLFjDpJOR/JLL4PJhOutt+IyZEi91ivSF/Hk5ifJKsminWc73uj/higxbwZolBqmd54OwKKTiyg11q0a09oIsVMHjPn55f07NMEhlY7H5cdhkAw4aZzwc/SrebHyENYgUDber+PgpSwRvrqGeenW9gS42XMps4j3/z5ra3Oqp1X95mSFu4WjQEF2abbFrejLxU5mRp32bm5kLFxI6blzqDw88Htxdr3WkiSJV3a+wpmsM3jae/Lx0I9x1DhayVJBU2d0q9H4O/mTUZzBuuh1tjYHEGKnTpR5dVTe3qicKzcALAthtXJrVfudTFlycll+QyOgM5iY/ctxQK6+EuGraw9Xew3/d2dnAL7bebHpDgsN7Q9KNeRcgizLvTMOagcCnQOBOlRkXRY7xswm+rNpQpRGR5Pxpdw80O+ll1B71q9z+jfHv+HvS3+jVqr5cMiH5b9DQfNAo9IwucNkQM7dMZps730WYqcO6MtCWMHBVR4va29fawirtAAS9suPGzE5+ZvtFziXWoCnk5YXb2nfaPsKrMvQtr7c1T0ISYLnfjpGid72LyiVsHOGoN7y4zp6d+oayrri2RFhrJqQjEY5fKXX4zxkCK6jbqnXepvjNvPp4U8BeDHqRTHFvJlyV+u7cNW6Epcfx79x/9raHCF26oIuTp5RpA2pHMKCKy/KZe3uq+XSLjAZwD0EPKseOWFtYjMK+XjjeQBeubU9Hk7aRtlX0DDMubUDvi52XMgo5KN/ztnanKqpZwl6efm5hTOy1N4ijGUO2T/+SPHRoyidnPCf+2q98mou5l5k9g45BDa+7XjGtRlnLTMF1xiOGkcmtJOHxn534jubDzIWYqcO6OLkXBdNaNVix2zPzsXGLTmXJImX1h5HZzAxsLU3YyJbNMq+gobDzVHD/90hh7O+2X6Bw3FNsGNwWZLyxW1QB3d22U2D5Y0FRRirNnTx8aR9NB8A3+eeQ1NFN3hzKdIXMXPLTAr1hXT37c6s3vUvWxdc20xsPxF7lT2nMk+xL2WfTW0RYqcO6C9dDmOFVK7EMpgMxObGAlfuSKvlQuPm6/x2LJmd0ZnYqZW8OaaTqIy4ThjewY8xkYGYJHhh9XH0TW12VmA3sHODkly5546FXD0jyxKueHZEGKsqJEki5dVXkYqLcezVC/e76+6FkSSJubvnEp0TjbeDN+8Pfl/MvBLgae/JmIgxgOzdsSVqm+5+jXKl7LyyZychPwG9SY+D2oEApxraoRdmQKqcJEz4oIYws+J2pQbe+uMUADOGRhDqZZvJ6oKGYc5tHdl2PoOzqfks2HaBGUNr6e/UmKjUED4QzvwOFzZBkGU5HK3cW6FAQVZJFhnFGXg7mJdQX5azY8wQYayqyPv1Vwp37UZhZ0fAG6+jqEc16PIzy/nr4l+oFCreH/w+Po4+VrTURkgS5MZD2hnIvgi5CZCXCPmpUJoHugI57xIJUIBCCRoHcPAAB3dw8gH3UPAIk9MU/DqCvZttvycbMKXjFFadW8WupF2czjxNey/b5IkKsWMhpuJiDGlpQNUJymUhrHC3cJSKGl48ypqs+XYEZ1+r2/lfPt0UTWpeKSGejjw0qJbwmuCaw9NJyyu3tud/K4/y8cbz3NI5gHDvJiRoWw2VxU7MFhj0nEWXOqgdCHYJJi4/rnyIpDmUVWMZsrKQJEl4Mq/CkJ1N6tvvAOD92GPVNkc1hyNpR3jvwHsAzOwx89pNSM5PlYfWxu+VC0dST0FdpndnX6z+mEc4BHSVRwOFD5Kbbl7nf5dBLkGMDB3JX7F/sejEIt4d/K5N7BBix0J08XJystLNDZW7e6XjZicnx26XPzeCV+dCegHf7pDtmnNrB+w1qgbfU9D4jIlswS+HEtl+PoOX1hznx+lRTecNvixvJ36vfDdsZ1ln3jYebcrFTt/AvmZdU+bZkUpKMBUWVdkmormS9sEHGLOz0Ua0wmva1Dqvk1mcyTNbn8FgMjAybCSTOkyynpENTVn3+piNEL0R0k5VPkepBq/W4B0BbsHg2gJc/GUPjZ0LaJ1kj44kgWSSG8QWZ0NxDhSkQPYlue1CRjTkxslCKPsinForr+/kCxE3QIfR8v+Ixr4xfwKNxrRO0/gr9i82XNrAE/lPEOxSdSVzQyLEjoWUl51XU4lldnJy7A75c/hAq9lWFZIkMfe3U+iNEkPb+nBD+4b3Iglsg0Kh4K0xnRkxfyu7YjJZfSiRsT2CbG2WjGdLueowJ06uQmwzwqLLW3u05t+4fzmXbX7FmdLREYWjI1JREcbMDCF2LlN04AC5P68GIOC111Bo61aRaTAZmLVtFmlFaYS7hfNav9eajriuDoMOLmyBk2vg7B9yHlk5CjnUFNQLgqMgMBI8W4HaShWrRVmQcgwSD8LF7RC3BwrT4Ohy+UPrAm1vhm73QdjARm0y29C092pPv8B+7EraxZKTS3i5z8uNboMQOxaiu1Sz2DHLs5OfChnnAAWEmHeXWlf+PZ3GtnPpaFVK5tzWsem/GAnqRYiXI08Pb8Pbf53hzT9OMaStD97OdrY2S3bVtxwCh76XS9DrIHYAzuect+g6tacn+qIiDJlZVY52aW5IOh3Jc+cC4D5uLI496h5y+uzwZ+xN2Yuj2pH5Q+bjpGnCYjL1JBz+AY6ugOKrqvOcfKH1jbJ3peVQcKxfM8UacfSU/wdaDoGBz4ChVPZ0nvkDTv8m5wMdXyV/eIRD90nQY1rD2tSI3N/pfnYl7WJt9Foei3wMT/vG/b6uH+nYSNSUnGw0GcunM9dYiXXpslfHv1OD/iHrDCb+78/TADwwMLxp5XAIGowHBoTTPsCVnCI9b/5ehWveVpSFsurQXLC1uyx2YnJiLOrGKkZGVCRz0WJ00TGoPD3xfeaZOq+zJX4L3574FoDX+79euyfbFhj1cPxn+GYYfNkP9nwhCx1nP+j9EEz9E545A2O+gE53Nb6oUNvJaQw3vwNPn4AH/oWe98senuyLsPF1+Kgj/Pm8HA67xunt35uOXh0pNZay4syKRt9fiB0LKe+xU8VMrKTCJEqNpWiVWlo419DDpiyEFdawIawf917iYkYh3s5aHhtSSw6R4LpBo1Ly9p2dUShg7ZEktp5Lt7VJMi2HAApIPw15yRZdGuwSjL3KnlJjKfH58WZfp/KWk5nF5HM53zDjiy8A8HthVpU5h+aQXJDMSzteAuC+9vcxMmyktUy0DiW5sOtT+DgSVj8gh42Uamh/G0z8Cf53Cm55D8L6g7KJ5C8qlRDcC279CJ49C6M/B/8ucg7Qvq/hk0hY8+g1LXoUCgVTO04F5Oq9YkNxo+4vxI6F6Mu6J1fh2SkLYYW7haOq6Z+oXOwMsLp9ZeQW6cs7Jf/vxjZi0Gczo2uwO1P7hQHw0prjFOkMtjUI5DvngK7y47KGmmaiUqrKvQeWhLLKPTvpzduzI0kSKa+/gVRaimPfPrjedlud1tGb9Dy/7XnydHl09u7MzB4zrWxpPSjMgL9fhg87yp/zEuTy7yEvwswzMP4HOXyqauLZG1onOW/n4W0waa3sEZVMcHQZfNpD9vQUpNnayjoxPHQ4LZxbkFOa0+gDQoXYsQCTToc+Wb4jrSpnx6zk5EbK1/l003lyivS08XNmfM/Gz3wX2J5nRrQl0M2ehOxiPv7XslyXBqMeU9DbeLQB4Hy2BWLHR+73YkhvIt4tG1GwaROF27ej0GjwnzOnzrl7nx/+nCPpR3DRuPDuoHfRqJrATVRJLmx6Cz7uKnt0dPlySfftn8rhoSGzwPka7PujUMj/L5PXwvRNcqd9k1729HzaA3Z/LofqriHUSnX5gNDvT33fqANChdixAH1CIphMKB0dy3t4XM3V086rpRHydS5lFrJkdywAL97SHrVK/JqbI852at68oxMAC3dc5GRSbi1XNALleTubwGRZp+eyvB1LKrKE2AFTSQmp894GwPP++7ELr9scvp2JO8vzdOb2m0uQi40r/XSFsP1DmN8Ftr0rN/kLiISJq+CxPdB98vVTyh3UA6b8CpPXyd9jaR5seBG+GnClE/81wpiIMbjZuRGfH8/GuI2Ntq94F7SAKzOxQqu8MyqvxKopObkR8nXe3XAWvVFiYGtvhrQVpebNmWHt/BjVOQCjSeKlNScwmmw7jI+QvqB1lktuU45adGl5RZYlnh1fIXayFi1Cn5CA2s8P74cerNMaaUVpvLjjRUAe8DkizLJqOqsiSXDsJ9m7sfE1KMmRPTl3L4WHtkCbkddvo76WQ+DBzXDbJ+DoBeln4PvbYd0MubfPNYCjxpF72t4DwOKTixttQKgQOxZQU48dSZLMC2M1cL7OicRc/jiWjEIhe3UEgjm3dcDFTs2R+ByW7bVxgqNae2UW3Pl/LLq0TOzE58dTpC8yb7tm7tnRJyWR8fUCAHyffw6lk+UVmUaTkRe2v0BWSRZtPdryXC/LOmBbleRjsOhm+GU65CfL4xju+Boe3QUdbr9+Rc7VKJXQYwo8cRB6TQcUcln9F33g7F+2ts4sJrSbgJ3KjuMZxzmYerBR9hRixwJ0ZcnJIZVzYJILkyk2FKNWqqvvDtkI+Trv/30WgNFdA2kf4NogewiuLfxc7Xl2ZFsA3l1/lrS8Etsa1PqyV+DcBosu83bwxtPeEwmpvMVDbZSLncxMJAvDZtcDqe++h1RSgmPPnrjeckud1lhwbAH7U/bjoHbg/cHvY6eyQd+moiz4fSYsGAxxu0HjCMNegRn7oOs9TaeqqjFx8IBRH8C0v8ArQhZ/y++RvTylBba2rka8HLy4vdXtgOzdaQyE2LGA8jBWVcnJl/N1wlzDqp/228D5OvsuZrHlbDpqpYKnh7ex+vqCa5f7+oTSNciN/FIDr9u6907rG+XPiQflChpLLrUwlKX28pLv9g0GjNnZFu11rVO4Zy/569eDUonfyy/VKSl5X/I+vjz6JQBz+s4hzC3Mylaawcm18HlvOPCtXJXU8U54fD8Mevb6ycmpD6F94ZEd0O9Jyr08CwZD0mFbW1YjUzpOQYGCrQlby98/GxIhdixAX949uXIn1rI7zZZu5oSwrJ+vI0kS7204A8DdvYIJEw0EBVehUip4647OKBXw+7Fktpy1YemqayD4dQYkeSaRBViapKzQaFB5eADNK5QlGQykvvUWAB733IN9u3YWr5FTksML219AQuKOiDu4teWt1jazZvJTYeV98NMUKEyX83Km/A7jFoFbExmD0lTQOMCIN2DKb+ASCJnRsPBG2P2FnOPUBAl1DWVYyDAAlpxc0uD7CbFjJpLRiC4pCag6jFVeiWVWcrL183W2nktnf2w2WrWSJ4e1tvr6gmufTi3cmNZfrsR5Zd0JinWNV/ZZiTLvzvm/LbpMlJ+bR/byFZSeP4/K3R2fJ5+w+HpJkpi7ey7pxemEu4XzQu8XGsDKajeHI8tlb87p3+SGgIOel/vONPAswWue8IHw6E65gaJJDxtmwy8PypVrTZCyJoO/XfiNtKKGvQFrEmLn888/JywsDHt7e6Kioti3b1+1537zzTcMHDgQDw8PPDw8GD58eI3nWwtDWhro9aDRoPatXOFUa3JyA+brmEwS722Qc3Wm9A3F3024dgVVM/PGNgS62ROfVcynm2zYe6fN5a670f+CBb026jIjq1zspDUPsWPMzSX9s88A8Hn66Tp1Sv7l/C9sjNuIWqnmnYHv4KhxtLKV1VCYCSsmwtpH5Cor/y5y9dGwl+TxCoLacfSUK9NuekcWisd/gm9HQJZ5eW6NSaRvJN18u2EwGfjx9I8NupfNxc7KlSuZOXMmr776KocOHaJr166MHDmStLSqVd6WLVuYMGECmzdvZvfu3QQHBzNixAgSExMb1E59QgIAmsAAFKqKyXCSJNU+ALQB83XWn0zhZFIeTloVjw6JsOragusLJzs1c2/vCMCCbRc4m5JvG0Na9AR7d/kNLeGA2Ze1cm+FAgVZJVlkFJuX79PcPDsZCxZgys3FrnUE7uPGWnx9bG4s7+x/B4Anuz1Je69GquqM2SzPsDr7J6i0cgLyg5sgoEvj7H89oVBAn0dg8q/ysNPUE7BgiMUVkI1BmXfnp7M/UahvOA+UzcXOhx9+yIMPPsi0adPo0KEDX331FY6Ojnz33XdVnv/jjz/y2GOPERkZSbt27Vi4cCEmk4mNGxu2OZHuspjStqg88yqtKI0CfQEqhYpQ12omKzdQvo7BaOKDyxVY0we2xNNJa9X1BdcfIzr6c2MHPwwmiZfWHMdki947KrU8aRrgvPlVWQ5qh/Ik2dOZp826pjmJHX1iItlLfwDA99lnK92Y1Xq9Sc/s7bMpNhTT2783UzpOaQgzK2LQyeMdlo6BghTwbgvTN8oJyE2hQ/O1TFh/eHgrBPWSO03/OA52zG9SeTxDgocQ5hpGvj6fn8/93GD72FTs6HQ6Dh48yPDhw8ufUyqVDB8+nN27d5u1RlFREXq9Hk/Pqr0lpaWl5OXlVfioC/oEWexoqhA7ZSGsYJdgtKpqxEYD5eusOZxITHoh7o4apg+sW2dUQfPjtds74qhVceBSNqsOmD9Y06qUlaBbmLfT3lP2NJzOEmLnv6R/8gmSTodjVBROgwZZfP2XR77kROYJXLWuvDXgLZSKBn6LyIyBb4fLYx4Aej4gNwYU3hzr4RoIU/+QJ6ojwb+vwh8zwdgE5uUBSoWyXFT/cPoH9KaGGYFhU7GTkZGB0WjEz8+vwvN+fn6kpKSYtcasWbMIDAysIJiuZt68ebi5uZV/BAfXbU6UPrFM7FSuAqi1c3ID5esYjCY+3xwNwKODW4lhnwKzCXR3YOaNcrLvvL/OkFFQ2vhGRAwHFJByHPKSzL6sg1cHQHh2/kvJqVPk/vobcNmrY2Gp+cHUgyw8vhCQy8z9nfytbmMFTv0KXw+G5KPg4An3LIdbPwRtI+UHNSfUdvJE9ZveBhRw4Du5J0+pjcLY/+G2VrfhZe9FSmEK6y+ub5A9bB7Gqg9vv/02K1asYM2aNdjbV52UO3v2bHJzc8s/4uPrdhdbnrNTg2en2rLzBsrX+f1YMrGZRXg4apjUt5rwmUBQDVP7hdEhwJXcYj1v/WGecLAqTt7Qoof8OPpfsy9r5ymXUZvt2WkmIyPS3v8AJAnXW27BoXMni67N0+Uxe/tsJCRGtxrNyLCRDWQlskfh75dh1SR5aGdof7kDcru6NT0UWECfR+Xp72oHiP5H7kadl2xrq7BT2TGx/USg4UZI2FTseHt7o1KpSE1NrfB8amoq/v4131W8//77vP322/z999906VK9y9POzg5XV9cKH3Wh3LMTVFns1OrZaYB8HZNJ4rPLXp3pA1viqFVbbW1B80CtUjLvzs4oFHI4dGe0ZQ3+rEIdQlllYiexIJHc0tqHm17t2WmsOTyNTcGOnRTu2gUaDT7/e9ri69/a8xbJhckEOQcxO2q29Q0sIz9FnuVUFrbq94ScROsa0HB7CirS/lY5rOXkI3tVF94AaTa42fkP49uOx0HtwLnsc+xOMi+NxRJsKna0Wi09evSokFxclmzct2/14Z53332XN954g/Xr19OzZ88Gt1MyGNBfFmT/9exIkkR0jiw6ahc71svXWX8yhei0Alzt1UwWXh1BHeka7M7kPvLfz8trT1Cib+TeO2X9dmK2yImqZuBm50YLZ/n/8EzWmVrPLxM7Umkppvym4ba3JpLJRNr77wPgOXECWgtD9X9e+JM/L/6JSqFi3sB5OGkaqCFp3F74ehBc2glaF7k8esSbcrK6oHEJ6gHT/wXvNpCXKHt4EhtnRlV1uNm5cVfruwBYdHKR1de3eRhr5syZfPPNNyxZsoTTp0/z6KOPUlhYyLRp0wCYPHkys2dfudN45513eOWVV/juu+8ICwsjJSWFlJQUCgoabhaIPiUFjEYUWi1qb+8KxzJLMsnT5aFAQZhrWOWLr87XCe1nFXskSeLTTbLAmto/XOTqCOrFMyPb4utix8WMQr7Y0vBt2ysQECnfYery5ZlHZlKWt2OO2FHa26N0cwMu98u6zsj77TdKz5xB6eKC1yOPWHRtWlEab+2VOy0/1OUhIn0jG8BC4PCPsORWKEgF3w5yEnKH2xtmL4F5eITB/RvkNhDF2bDkdri4zaYmTeowCZVCxZ7kPWbn5JmLzcXO+PHjef/995kzZw6RkZEcOXKE9evXlyctx8XFkZx8Jab45ZdfotPpGDt2LAEBAeUf71++s2kIrq7EUigr/sjKQlhBLkHYq6vIGyrP1+ksD26zAhtPp3E6We6rc3//MKusKWi+uNprynvvfLUlhui0RhwiqFRChOXdlMtCWacyzZvzpbn8eqJPNq/w4VpB0ulI//gTALwefBC1h/mvMZIk8dru18jT5dHBqwMPdnnQ+gaajHJ+zrrHwKiTO/tO/xe8RT+wJoGjJ0xeB+GDQVcAP4y16eT0QOdARoTJoW1rDwi1udgBePzxx7l06RKlpaXs3buXqKio8mNbtmxh8eLF5V/HxsYiSVKlj7lz5zaYffrE2pOTq20maOV8HdmrI3ePndQ3DHdH0VdHUH9u7uTP0LY+6IwmXlpzvHFzW9pczts5+5fZ/T8sLj8PkHMADanXl9jJ+eUX9ElJqHy88Zx0n0XXro1ey7aEbWiUGt7q/1b1A4zrSkmeXPFTlp8zeBaM+x60Ym5fk8LOGSaugrajwFgKK+6FoyttZs60jnJUZ0PsBpIKzK/SrI0mIXaaOjUlJ5fNxKp2TISV83W2n8/gaEIu9hql6KsjsBoKhYLXR3fCXqNk78UsVh9q2I7kFWh1g9wxNyvmcsi3dsq6+sbmxlKkL6r1fI2fLHb0Kam1nHntYCotJePLrwDwfvAhlA4OZl+bUpjCu/vfBWBG5AwiPKzsacm+BN/eKHvr1PYw9jsY+qLsyRM0PTT2cPf30HUCSEZY8xAc+t4mprT3ak9UQBRGycjSU0uttq74yzODKz12qqjEyq2hEqtCvk79++tc7dWZ2DsUb2cxK0ZgPYI9HXl6uNx7560/TpFVaF7CcL2xd4Xwyw3wzvxh1iXeDt74OvgiIZk1AV3tL4exrifPTs7KVRhSU1H7++M+/m6zr5MkiTk751CgL6CLT5fydv1WI+kwLBwO6WfAJQCm/QWd7rLuHgLro1LD6C+g90Py178+AQcX28SUMu/O6vOrzaq4NAchdsxAl1D9qIjyaedVhbGsnK+z92KWPNlcpeShQdV4kgSCevDAgHDa+buQXaRn3p+NWI7abpT82UyxA9DOy/y8nevNs2MqLiZjwQIAvB95BKWd+Tc+P537id3Ju7FT2fFm/zdRKS0bKVEj5/6GRbdAYRr4dZZnW7Xobr31BQ2LUgk3vwtRj8pf//YUHLB+ZVRt9AvsRxuPNhQbivnp3E9WWVOIHTO4Esaq2D05uySbrJIsAMLdqggpWTlf56utsrAa1zNITDYXNAgalZK37ugMwE8HE9hzIbNxNm5zs/w58YDci8UMLMnbKffspNi+gZo1yF62HGNGBpoWLXC/8w6zr4vPj+f9A3Ixx1Pdn6r6dauuHFgk5+joi6DlUJj2pzyqQHBtoVDATfOgz2Py178/LXdcblQTFOUexx9P/4jOWH8vsxA7tWDS6TBU02OnLIQV6BSIo6aKFudWzNc5m5LPlrPpKBTw4EDh1RE0HD1CPZgYFQLAS2uOU2pohN47rgFyCSzIU6/NoCxvx5zyc43/9ePZMRYUkrlQHuvg/dhjKLTmFSmYJBNzds6h2FBMT7+e3Nv+XusYJEmw8Q35TVEyQteJcO9PcnhScG2iUMDI/4M+M+Svf/8f7P+2UU24Kfwm/Bz9yCjO4PcLv9d7PSF2asGQnAyShMLBAdV/ho3WmJxs5Xydb7bLwuqmjv6EeYtqBkHDMmtkO7ydtcSkF7Jg64XG2bQ8lGWe2OngKffaic6OrvXOT305jGXKz8dYUFh3G5sA2T/8gDE7G21oKG6jze9Vs+z0Mg6kHsBB7cDr/V+3zpBPk1EOdWy/3Ppj8CwY84WYVn49oFDAyLeg7+Py13/MhP0LG217jVLDpA6TALkM3SSZ6rWeEDu1cCU5ObDSYL3y5OQGztdJyS1h3RHZDpGrI2gM3Bw1vHKrLCY+3RxNbEYjCIQysXNxq1kDCv2d/HGzc8MgGTifc77Gc1XOTiidnQEwpF273h1jXh6Z38khBe/HZ6BQm9d9OC4vjo8PfQzAsz2fJdilbgORK2DQweoH4NASQAG3fSxXXFk4gFTQhFEo5C7X5YLnmUYVPHe1vgtnjTMXcy+yLaF+DQ+F2KkFXU0DQMuSk6uqxLq4Xf5shRDWol0X0Rsleod50i3EOo0JBYLauL1rIANbe6MzmHh57YmG773j3Qa8IuTmc2YMBlUoFOXenZMZJ2s9/0rezrVbkZW1eAmmvDy0Ea1wvcW8wZmSJDF391xKjCVE+Ucxrs24+huiK4IVE+DkGlBqYNwi6DG1/usKmh5VCZ7DPzbK1s5aZ8a1lf9eF52oX6K0EDu1oE+UmxppWwRVOlbWPbnKMJaVkpPzS/Qs2xMHCK+OoHFRKBS8MboTWrWSHdEZ/HrUeg2+qtkQ2l5+AzezKquzj5xMfTT9aK3navzlYZPXat6OITubrCVLAPB5/AkUKvOqqFafX83+lP3Yq+x5td+rlTzUFlOcA0vvkAWp2gEmrICO5idJC65BygRPWZXWr4/D8Z8bZev72t+HWqnmUNohTmScqPM6QuzUgr4az06eLo+0YnnOTku3/4iQvGTIPI815mGt2BdPfqmBVj5ODGvnW6+1BAJLCfN24slhcsO5N34/RW6RvmE3bHer/Pnc32YNBu3q0xWAY+nHaj23zLOjv0YrsrK+W4SpsBC7du1wGXGjWdekFqbywYEPAHii2xP1D18VpMszruL3gJ0bTF4LrYfXb03BtUFZlVaPqSCZ4JeH4HT9E4drw9fRl1Hhcoi7Pk0GhdipheoaCpZ5dXwdfXHRulS8qMyrE9AFHNzrvrfRxHc7LwJyBZZSKWLhgsbnoUGtiPB1JqNAx9vra698qhdBvcDZH0pz4cLmWk/v4t0FgNi82Fqbj5X12jFcg54dQ1YWWT/KoQOfJ5+oNKOvKiRJ4s09b8rNA7271L/6KiceFt0EKcfl4a1Tf4eQPvVbU3BtoVDAqI+gyz1y5d3P0+B87SHn+nJ/p/tRoGBrwtY6ryHETi1U12OnxuTk2MuJVPUMYf1+LInk3BK8ne0Y061yzpBA0Bho1UreGtMJgOX74jh4KavhNlMqocNo+fHJtbWe7m7vTqhrKFC7d+da9uxkffcdUlER9p064Tx0qFnXrI9dz5aELaiVal7r91r9mgdmX5KbBWZGg1swTFsv38wJmh9KJYz+XP4/Nepg5b1XclQbiJbuLRkeWj8PohA7NWAqKcGQng7I1VhXU2Nycplnp6wFfh2QJImvL5f8Tusfhr3Gil1OBQILiWrpxd09ZcH/4i8n0BvrVwZaI2X5H2f+AENpraeXh7IyahY7mkD5f1if1MC5R1bGkJ1N1rLlAHjPeMysnJvskmzm7Z0HwENdHqrf7Kusi7B4FOTGgWcruH+9mFre3FGp4c6F0HokGEpg2XiI39egWz7Y+cF6XS/ETg3ok+Q7QKWTEyp39wrHyqadV0pOzk2ErAugUNbLxbsjOoMzKfk4alXcFxVa53UEAmsx++b2eDppOZuaz8LtFxtuo+AoeaZSaS7EmB/Kqs2zo73sndUnJjXuVPd6krV4iezV6dAB5yFDzLrmnf3vkF2aTYR7BNM7Ta/H5hdg8a2QGy9Xyk39A9wqF2sImiFqrTw8tOUQ0BfCD3dB0pEG2669V3v6BtS9Z50QOzWgT7ySnFypx05ONWGs2MvuvIBIsHer896Ld8YCMK5HEG6OokGXwPZ4OGl58Ra5a/HHG88Rn1X7tPE6cXUo69TaWk/v6it7do6nH6+x8Zg6IAAUCqTiYoxZDRiKsyLGnByyf/gBMN+rsy1hG39c+AOlQskb/d9AU9cGf5kxsGgU5CXIbQGm/iF3uhYIytDYwz3LIKQvlObJVXqptc+qqyuPRz5e52uF2KmB6pKTC/WFJBfKXp9KlVhlscvwuufrXMosZNNZudJrSr+wOq8jEFibu7q3oE9LT0r0Juasa8DeOx3GyJ/NCGVFuEfgoHYgX5/PxdzqPU5KrRa13+W8nctVlk2drO+/L6/Ach42rNbzC3QFvLb7NQAmd5hMJ+9Odds4I1oOXeUngU87mPI7uPjXbS3B9Y3WCSaugsDuUJwF34+W/34agFYeVaSNmIkQOzVQXnb+n+TkshdUL3sv3O3dK15U5tkJq3u+zve7LyFJMLiNDy19nOu8jkBgbRQKBW/d0RmtSsnms+n8ebyBGvSVh7LyIGZTjaeqlWo6enUEag9lld24lN3INGWMeXlkfS+X2no/+qhZXp35h+aTVpRGsEswj0U+VreN089dFjrJ4NMepvwGLn51W0vQPLB3hftWy5PuC9Pg+9vlpPYmhBA7NaC7alTE1VSbnJwTBzmXQKGCkKg67VlYamDVgXgApvYPq9MaAkFD0srHmUeGyH/7r/12krySBui9Y2FVVlmScm3NBcv+l3UJTV/sZC1diqmgALvWEbjcWHslyuG0w6w8uxKAuX3n4qB2sHzTzBi5j05BCvh2lIWOs+jvJTADR0+YtEYOeeYlwpLbIK/pFAMIsVMD5d2T/+PZKU9Ori6E1aI72P2n946Z/HI4kfwSA+HeTgxu7VOnNQSChuaxIa0I93YiLb+U9zecbZhNyqqyzv4J+pIaT+3iIycp1yZ2riQpN22xYywoIGvJ98Blr04tfXV0Rh2v7noVgDsi7qB3QG/LN82JgyW3Q0Eq+HWCKb+Cs3gNEliAsw9M/hU8wuUb/yW3Q0Gara0ChNipkeq6J5cnJ//Xs1Mewqpbvo4kSSzZFQvA5L6hoomgoMlir1GV9975fvcl9lzItP4mQb3BJVAOZZ3/u8ZTy8ROTE4M+brqh4heK2Gs7B9+kGdgtWyJy8iRtZ6/8PhCLuZexNPek2d6PmP5hvkpcq5FWTLypLXg5G35OgKBa4AslF2D5EkC34+BItsXBAixUw2moqLyio3/ip0qw1iSdFV/nbqJnZ3RmUSnFeCkVTG2hyjvFDRt+kV4M6F3CADP/XyUwlKDdTdQKqHzWPnxsZU1nurt4E0L5xZISDXOz9FcnnHXlBOUjQWFZC1aDFz26tQyAysmJ4Zvjn8DwOyo2bjZWVgFWpgpvyFlXQD3EFnoCI+OoD64h1z2DPpB2kn44U4oqbnDeUMjxE41lN35KV1dUbm6lj9fbCgmsUA+ViGMlR0r96JQauTkyjqw+LJXZ2yPIFzsRbm5oOnz0qj2tHB3ID6rmLf/aoBREl0nyJ/Pbaj17tCcUJYm6LJnJykJydSAjRHrQfbyZRhzc9GGheF6y801nmuSTMzdNReDycDgoMGMDK3dC1SBklz5jSj9tJwQPvlXcBPd2gVWwKsVTF4HDp6QdBh+vBt0hTYzR4idatBVU3YemxuLhIS7nTue9p5XHSjL1+khl+JZSFxmERvPyDN7Jotyc8E1grOdmnfHyiJj6Z5L7IzOsO4Gfh3AvwuY9HBidY2nRvpEAnKibnVo/P1BpULS6TCkW9lWK2AqKiLru0UAeD3ycK1enVVnV3Ek/QiOakde7vOyZRPNdYVy59vkI+DoJb8xeYbXw3qB4D/4tpeHxdq5ycNjl0+oNf+uoVDbZNdrgDLPjjboPyGsq5KTK7yw1LO/ztI9sUgSDGrjQytRbi64hugf4c2kPqEs3XOJ538+xvqnB1rXM9n1Hkg5BkdXQO/qW8b39O8JyGJHb9KjUVa2QaFWo/HzQ5+UhD4xEY1f06o0yl6+AmN2NprgYNxuvbXGc1MKU5h/aD4AT3Z/En8nC/rgGEphxb0Qt1t+I5q0Bnza1sPypo/JJJFVpCMlt4Tk3BKyi3TkFevljxIDeSV6dAYTRpOEwSRhvPyhUSmx0yixU8sf9hoV7g5aPJ00uDtq8XTS4uWsJdDdAVfhka9MQFe5LH3pGLi4FVZNhvE/yB2YGxEhdqpBf7k0VRNoRnLy1fk6YQMs3qtIZ2Dl/svl5v3EaAjBtccLN7djy7k04rOK+b8/TzPvTisOiew0Fv5+BRIPyM3KqpnLFOEegZudG7mluZzKPFVejv5fNEFBstiJj4Pu3axnZz0xlZaSuUj26ng//BAKdfUvz5Ik8dbetyjUF9LFpwv3tL3H/I2Mevj5fnmqvMYJ7vtZfkO6DjCZJJLzSohJKyA6rYCYdPkjMaeY1NxSdA050w1wsVfTwt2BIA8Hgjwcae3nTGtfF1r7OuPh1Lhv7k2K4F4wcaU8UuL8BvhlOtz1nTxjq5EQYqcaquueXGVyctYFudOoSlunfJ01hxPJKzEQ6uXIkDZN605TIDAHJzs1743tyj0L9rB8XzwjO/ozpK2V/pZd/CDiBrki69gKGPZylacpFUp6+PZgU/wmDqQcqFbsaMPCKNq3D92lptX0LPeXXzBmZKAOCMDt9ttrPPefS/+wJV6eaD6371zzJ5qbTLD2MTjzO6jsYMJyCK5DmXoTwGSSuJRVxPHEXI4n5HA8MZeTiXnk15Aor1CAj7Md/m72eDppcXPQ4Gqvwc1Bg4u9Gq1aiVqpQKWUPysUoDdK6AxGSg0mdAYThTojucU6sgv1ZBXpyCnSkZZfSk6RnvwSA2dS8jmTUrki0NtZS1t/Fzq3cKdLkBudW7gR5OFgWejxWiZsANzzoxzKOrUO1DNgzJdyIUIjIMRONVTXPflCruzZqZCcfHGb/DmoF2gsa+RVsdw8TJSbC65Z+rT0Ymq/MBbvir0czhqEp7XuZruMvyx2VsKQF6t9gezp31MWO6kHeKDzA1Weow0LA6D0YgMOM7UQyWAgc+G3AHjdfz8KbfU/t9zSXObtkyea39/pflp7tDZzEwn++B8cXwVK9eUhjoPrbXtjYTRJnE7OY+/FLPZeyGR/bBbZRZUbWqqVCsK8nWjl40SErzMtvZ0J9XLE380eP1d7NKqGeXMtLDWQlFNMQk4xidnFXMos5HxaAedTZc9SRoGOjOhMdkZfadPg4aihW4gHUeGeRLX0olOgK+oGsq9JEDEcxi2GlZPkGxeNPdw6X1ahDYwQO9UgGY2gUFTw7OiMOuLy44D/eHYubJE/h1s+ImJ3TCbnUgtw1KoY11OUmwuubWbd1I4d0RlEpxUwa/UxFkzqYZ0713ajwM5VbnwXt6vacHFPPzlv51DqIQwmA2pl5Ze4MrGji206np28P/9En5iIytMT97F31XjuRwc/IqM4gzDXMB7q8pB5G0gS/P0yHFwMCiXcuQDa3lR/wxuYpJxitpxNZ8vZNHZfyCS/pKLXRqtW0iHAlc4t3Oh82VsS4evcYIKmJpzs1LT2c6G1X+WGsoWlBqLTCjiVnMexhFyOJ+ZwJjmf7CI9m86ksemM3HjPSauiR5gnUeGe9GnpRdcgt+tP/LQbBXd9A6unX/57VMEt7ze4h0eInWpouW4tkk4HV1VDxObFYpJMuGhc8HG43IfCZJSTrgBaDrV4n0WXvTp3dQ8SyW2Cax4HrYqP74lkzOc7+edUKsv3xTMxKqT+C2sc5PERh5fCoaXVip02Hm1w0bqQr8vnVOap8nL0q9GGhwGgi41FkiSbhxEkk4nMb+Q+OZ6TJ6N0qN47vD9lP6vPy1Vpc/vNxU5lZ94mW96G3Z/Jj2/7BDrVLKhshckkcTAum39PpbL5bBrnUgsqHHe2U9MzzIOocC96h3vSuYUbWnXTFwNOdmq6BrvTNdidCZejhiV6I6eT8zgQm83ei5nsu5hFXomBbefS2XYuHQA3Bw2D2vgwtK0Pg9r44O1s5u+7qdPpLjlJfu1jcOBbkIww6qMGFTxC7NTAf13JZcnJLd2vqsRKOQbF2aB1kcdEWEB8VhEbT8vl5lNEYrLgOqFjoBvPj2zHW3+e5vXfT9I73JMIXytUGPaYJoudk2vgpnnyLJ7/oFKq6OXXi03xm9iTvKdqsRMUJJefFxdjSE2Vy9FtSMHmzZSej0bp7IzHxAnVnldqLOX13a8DMLbNWHr49TBvg12fwta35cc3vwvdJ9XXZKtiMJrYF5vFX8dT2HAyhbT8K1PulQroFuLBkDbym33H6yjMY69R0S3Eg24hHjw4qCVGk8SZlDz2Xshi78VM9lzIIrdYz29Hk/jtaBIKBXRp4caQtr4Mb+9HpxauNhfq9SJyIqCAtY/KHh7JBLd+3GCCR4gdCygrO68QworZLH8OHwgqyzwzS/dcwiTBwNbeRPjWbZaWQNAUeWBAOFvPpbMjOoOnVhzml8f6Yac2M4m2Olp0l6uGko/CkWXQ7/EqT+sb2JdN8ZvYnbS7yjCPQqNBGxSE7tIldLGxNhU7kiSR8fUCADwmTKjQwPS/fH30a2LzYvFx8OF/Pf5n3gYHvpPDVwDDXoGoh+trslWQJIljCbn8ciiB348lk1moKz/mYq/mhna+DGvvx6DW3rg7No8qJpVSQcdANzoGunH/gHAMRhNH4nPYfDaNLWfTOZmUx9GEXI4m5PLxxvO0cHfgpk7+3NzJn+4hHtdmvmfkBFCqYM3DcOh7OYH+9k/k56yMEDsWUFaJVSE5+cJlsWNhCKtIZ2DFPjn/Z6poIii4zlAqFXxwd1dumr+Nk0l5fPj3OWbf0r5+iyoU0PN++O0p+U2874wqExv7BvYF4Ej6EYr0RThqHCudow0Pl8XOxYs49elTP7vqQdHevZQcO4bCzg7PKZOrPe9s1lkWnZDL0l+MehFXbfWiqJyjK+H3mfLjAf+DQc9aw+R6kZxbzJrDifxyKJHotCshKg9HDSM6+HNTZ3/6t/K+JkJTDY1apaRnmCc9wzx5bmQ7UvNK2Ho2nU1n0th6Lp3EnGK+3XGRb3dcxMfFjpEd/bi5UwB9WnqhupaET5e75TyyXx6EIz/IIa3Rn1td8AixYwGVeuzoiiBuj/y4lWViZ+3hJPJKDIR4OlqvRFcgaEL4udrz9l1deHjpQb7edoGBrX0Y0LqewyU7jYUNL0NWjFwFWUU1UYhLCIFOgSQVJnEg9QCDgioXDlxJUo6tnz31JOPrrwFwHzsWtXfVPxujychru1/DIBkYFjyM4aHDa1/49G9yeAAJej8EN7xqRasto0RvZP2JFH4+mMDOmAwkSX7eXqNkZEd/7ujWggER3tdNeKqh8HO15+5ewdzdK5hinZFt59NZfyKFf0+nkp5fyg974vhhTxzeznbc2iWA0ZGBRAa7Xxuhrs5jZcGzejocXS6HtMZ8aVXBI8SOmehNei7ly9Ub5Z6duN1g1MnTXb2qbnRWFf+dbn5NqXCBwAJGdvRnQu8Qlu+L46kVh/njyYH4u9nXfUE7Z+g6HvYvlBMbqxA7CoWCvoF9WX1+NXuS99QodmxZfl587BhFu/eAWo3X/dOqPW/F2RUczziOs8aZF6NerH3h6H/hp2nyHXLkvXDTO41S2vtf4rOK+HFvHKsOxJN1VZiqd7gnY7sHcXNnfzEDsI44aFWM7OjPyI7+6AwmdsVksP6EnPOUUVDK4l2xLN4VS4inI6MjAxkdGdj0UyU63XlZ8Dwgt5gw6uGOr63WaVmIHTOJzY3FYDLgrHEmwClAfrI8hDXEoheT3RcyOZuaj4NGxbiewdY3ViBoQsy5tQNH4nM4nZzHjGWHWPFQn/qVBveYJoudM39Afgq4VM656RPYh9XnV7MrcRf0qryENlyeAWXL8vOMBXKujtutt1ZqXlpGfH48Hx/6GICnuz+Nn5NfzYvG7oQV98mzxDqMliuvGqlpG8i9cLadS2fpnktsPptW7sUJcLPn7p7B3NU9iBCvymFFQd3RqpUMaevLkLa+vDGmEzvOZ7DuSCJ/n0olLquITzdF8+mmaNoHuDI6MpAxkS3qd8PRkHQcI3tzfpoKJ3+B0jy5H1Qd5k3+FyF2zCQ6JxqQW9KXuwVjtsifLQxhLd4ZC8BdPVrg5iDubATXNw5aFV/e253bPt3BwUvZzPvzDHNu61D3Bf07yZ3K4/fKZeiDn6t0St+AvqgUKmJyY0jITyDIpWIPq7Lyc31CAqbi4hrLvRuC0vPnKfh3IygUeD04vcpzyiaaFxuK6eHXg3Ftx9W8aOJBebCnoRhaj4A7FzZaO/6CUnnkzeJdF4nPKi5/fmBrb+7rE8oN7XxFmKoR0KiUDG3ny9B2vhTpDPx7Oo1fjySy9Vw6p5PzOJ2cxzvrzzAgwpuxPYIY0cEfB631k4HrRfvbYMJKWDVJ9lIuvUMeNeHgUa9lxV+fmZzPPg9AhMflcFVBGqQelx+Hm9+FND6riH/Lys37hlnTRIGgyRLm7cQHd8vjG77beZE/jiXXb8Gel7sj718o9+v4D252bnTzledebUvYVum42scHlYcHmEyURsfUz5Y6kLlwIQAuw4dj16pVlef8fO5n9qXsw15lz+v9XkepqOHlOvWUPHdIlw9hA+W74UYYtJiaV8Lbf52h77yNvPH7KeKzinG1V/PAgHA2PTOYpQ9EMbKjvxA6NsBRq+b2roEsnNKL/S8NZ96dnekd7okkwfbzGTy14gi93vqXWT8fY9/FLKQyN1xToPVwmLQW7N3km5pFt8he3Hog/gLN5HzOZbHjflnslI2I8O8Mzj5mr/PD5XLzARHeVXbaFAiuV0Z09OfhwXK+2/M/HyUmvaCWK2qg4x3g2gIKUuT4fhUMDpJvQqoSOwqFAru28pTv0rNn6m5HHdAlJJD7+x8AeD1UdQfkpIIkPjjwASBPNA9xraExY2YMfD9a7vfVoqc878rCsTWWcjYln2d/OsqAdzbx1dYY8ksMtPRx4v/u6MzeF4fzyq0daOljhd5KAqvg7qhlQu8QVj3cl23PDeWpG1oT7Okge+QOxHP317sZ/N4W5v97jvisIlubKxMSBdP+Amd/SDsF346ArLrn2AmxYyZlnp02Hm3kJ2Kuytcxk2KdkRWXp5tPEeXmgmbIcyPaEhXuSaHOyCNLD1JYw9DGGlFroc9j8uOdn8j9Of7DoGA5MXlfyj4K9YWVjttfFjslZ8/VzYY6kvntt2A04tSvHw6dO1U6LkkSc3fNpchQRKRPJBPbTax+sexLsOR2KEwDv87yBHO7hruJOngpi6mL9jFy/jZ+PpiA3ijRO8yTbyb35N//DWZiVEjTC4sIKhDi5cj/bmzD1meHsvKhPtzdMwhnOzVxWUXM//c8A9/dzN1f72bV/ngK6vr/aS38OsL968EjHHIuwfdj6ryUEDtmUKQvIrFAnoIe4R4hv7BG/yMfbDXM7HXWHkkkt1hPsKcDw9qJcnNB80OtUvLpxG74uthxPq2AZ386islUR/d5jylg5waZ5+Hsn5UOh7uGE+wSjN6kZ3fS7krH7dq1A6D0TON5dgzp6eSu/gUAr4erbvD3y/lf2J28GzuVHa/3f736ieZ5SfD97ZCXAN5tYNKaeuc1VMeeC5ncu3APd325my1n01EqYFTnANY81o9Vj/Tlxg5+12ZTu2aMUqkgqqUX747tyv6XhjN/fCQDIrxRKGDfxSyeX32Mnm/+w9MrDrP9fDrGuv6f1hfPcLh/A/h3geLM2s+vBiF2zKAsOdnbwRsPew9IOQoFqaB1htD+Zq1Rody8T5goNxc0W3xd7Pni3u5oVAr+OpHC/H/r6Fmxc4Fel3N3ds6H/+QcKBSK8lDWxriNlS63byt7aUvOnWu0fIWsJUuQdDocIiNx7F25TCylMIX3D7wPwOORjxPuFl71QgVpskcnOxY8wmDyOovC6eYgSRI7zmdw91e7uWfBHnZGZ6JWKrinVzCbnx3C5/d2p1tIw4grQePioFUxplsLfpgexc5Zw3huZFta+jhRojex9kgSk77dx4B3NvHu+jMVmkE2Gi5+MO1PiyIp/0WIHTO4uhILgHMb5M8th4DavMFsey5kcSZFLje/W5SbC5o5PcM8+b87OgPwyaZo1h1JrNtCUY+Ayg4S9st9r/7DiLARAGyJ34LOqKtwTBsRASoVptxcDCn1S340B2NuLtnLlgPg9fBDlZq9lVVfFegL6OLdhUkdqplhVZQlu/Mzz8s9vib/Cq6BVrNTkiQ2n0njzi93cd+3e9kXm4VWpeS+PiFseW4Ib9/VhVCv+pcCC5omge4OzBgawcaZg1nzWD/u6xOCq72a5NwSvtgSw/APt3L7ZztYvPMimQWViwMaDDsXGLuozpeL0nMzKMvXae3RWn6iTOy0ucnsNcq8Ond0b4Gboyg3FwjG9QwmOr2Ar7de4LmfjxHi6Wi5p8DFT56vc3Ax7JgPof0qHO7q0xVfR1/SitLYlbSLIcFDyo8ptVrsWoZTej6akrNn0QQE1Pt7qomsH3/EVFSEXdu2OA8ZUun48jPL2Zm0EzuVHW/0f6Pq8FVJrlyKm3YSnP1gyq/gYZ0hwpIksfVcOh/+c45jCbkA2KmVTOgdwiODWzXd3iyCBkGhUJQPKn15VAc2nk5j9aEEtp5L51hCLscScnnzj9MMbuPDHd1bMLy9H/aaBs7XsnD+5NUIz44ZlFVitXZvDfmpkHRIPtB6hFnXJ+YU8/cp+c5RzMESCK7w/Mh2DG/vh85gYvqSA1zMqJxIXCv9npQ7r57fAImHKhxSKpTcGHojAH/H/l3pUru2ZXk7Zy3f1wJMhYVkL/keAK+HHqzk1YnOjuajgx8BMLPHTFq6t6y0BqUF8OM4SD4Cjl6yR8er6rJ1S9l3MYvxX+9h6qL9HEvIxUGj4qFBLdk+ayhzb+8ohE4zx16jYlSXAL6b2ou9L97Aq7d1oEuQGwaTxMYzaTy+7DC93vyXF1YfY++FzLrn4TUgQuyYQXS2HMZq7dH6SmJyQKR8V2kG3++OxSRBv1ZetBHl5gJBOSqlgo/viaRzCzcyC3VM/m4vafklli3i1Qo63y0/3vxWpcMjQuWbks3xmyuFsuzby8NJi08ct9x4C8j+6SeMubloQkNwvamiR1hn1DF7x2xKjaX0b9GfCe0mVF5AVwTL75F7jti7yT1IfNvV267jCblM+W4fd3+9Ww5XqZVMHxDOjllDefGW9vi6CJEjqIi3sx3T+ofz6+MD+HfmIGYMbUULdwfySw2s2B/P+AV7GPjuZt7fcNY2+T3VIMROLWSVZJFZkokChTwTy8IQVpHOwPK98nTzaf2rSTYUCJoxTnZqvpvaixBPR+Kzipm2aL/lJa9DZoFCJXdcvVQxdyfSNxI/Rz8K9AVsid9S4ZhDt0gAio8cbbAkZZNOR9Z3cq6B1/TpKFQVXf2fHfmMM1lncLdz541+b1Qe3KgrhOXjIXY7aF3gvjUQ0KVeNp1PzefRHw5y22c72HouHbVSwb1RIWx7bigv39oBL2fzchEFzZsIXxeeG9mO7c8PZfmDchm7i52axJxiPtsczfAPt3Lzx9v5fHM0lzLr4LW1IkLs1EKZVyfIJQhHhfpKf5025oWwfjmUSF6JgVAvR1FuLhBUg4+LHd/f3xsvJy0nk/J4eOkBSvRG8xfwbAnd7pMf//tqhcospULJ7a1uB2BdzLoKl9l37AgaDcaMDPTx8fX+Pqoid+1aDGlpqP38cBs9usKx/Sn7WXxiMQBz+83Fx/E/FVW6QnkExMVtcvXnvT9BUI862xKXWcTMVUcYOX8bf51IQaGAO7u1YOMzg3nrjs4iXCWoE0qlgr6tLpexvzycTyd0Y1g7X9RKBaeT83hvw1kGv7eF2z7dwVdbY2zSuFCInVqo0Dk5bpfcjt3JFwK61XqtySSxaKfc8XFKX1FuLhDURJi3E4um9cJJq2JndCaP/HCQUoMFgmfIC6BxlEM9p9ZWOFQmdnYm7iS9KL38eaWdHQ4d5DldxYcP1/t7+C+SwUDmwm8B8Lp/GkrtlREOebo8XtzxIhISd7W+ixtCbqh4cWkB/DD2Ko/OLxDat052pOaV8PLa4wz7YAu/HErEJMHIjn5seHoQH46PFNVVAqthr1FxW9dAvpsqj6l4567ODGztjUqp4HhiLm//dYaB725m9Oc7Wbj9Akk5xbUvagWE2KmFCpVYZSGs1iPMmiS8PTqDmPRCnO3UjOsZVOv5AkFzp0uQO99N7YW9RsmWs+nM+PEQOkPl7shV4hooJysD/PNqhZlZYW5hRPpEYpSM/H7h9wqXOXTvDkBRA4id3F9/Qx8Xh8rdHfdxVwZ5lnVJTilMIdglmOd7PV/xwtJ8+HGsfINl5yo3DAyJsnj/rEId//fnaQa9u5kf9sRhMEkMbO3Nuhn9+XpST5FDKGhQPJy0jO8VwtIHotj34g28dUcn+rb0QqmAo/E5vPnHafq9vYkxn+/k883RRKflN1g4WYidWiivxHKLuCpfx7wQVplXZ1zPIFzsRbm5QGAOUS29+HZKL+zUSv49ncYTyy0QPP2flGfp5FySx0hcxegIOYT087mfMUlX1ivP2zlkXbEj6XRkfP45AF4PPojS0bH82LIzy/jn0j+oFWreHvg2jporxyjOkYd6xu2WO0RPWgvBlRsQ1kR+iZ6P/jnHoHc3s2DbBUoNJnqGerDioT4sfSCKrsHu9f8GBQIL8HK2496oUJY/1Ic9L97A66M70jvME4UCjsTn8N6Gswz/cBvDPtjK//15mv2xWVbt2izETg1IknSlEktSQVYMqLTQcmit10anFbDlbDoKhSg3FwgspX+ENwsm90SrUrLhZCoPLT1Asc6MkJbWCUa8KT/e/n6FwYG3hN+Ci8aFuPw4dibuLH/esZscki49fx5jfr7VvoecX35Bn5iIyscbj4lXKqyOph/l/f1yl+Rnez1LF5+rko3zU+QJz2VVV5PXWpSjU6wz8tXWGAa+u5mPN56noNRAx0BXFk3rxU+P9KVPSy9rfXsCQZ3xdbFnct8wVj3Slz2zb+DNMZ0Y3MYHrUrJxYxCFmy7wLivdtP7rX957qejbDiZUu85XULs1EByYTJFhiLUSjUhcQfkJ1sNA3vXWq8tayJ4Qzs/EQ8XCOrA4DY+fDOlZ3lIa9K3e8kt1td+YeexED4YDCXwxzPlycqOGkfGtB4DwI9nfiw/Xe3jgyYkBCSJov37rWK7qaSEjC++BMD74UdQOshTyHNKcnh267MYJAMjQkdUHPKZGSNPdi5rGDj1T2jR3az9dAYT3++OZdB7m3n7rzPkFOlp5ePEF/d257fHBzC0rW/lKi+BoAng52rPfX1CWXJ/bw7NuZHPJ3ZnTGQgrvZqMgt1/HQwgYeXHqTb638zfUnd/z+F2KmBM1nygMCWbi3RnL4c5+8wuoYrZHKL9Px8MAGA+/uHNZR5AsF1z+A2PvzwQBSu9moOXMpm/Ne7ScurpQ+PQgGjPpDHSMRshMNLyw9NaDsBBQp2Ju7kYu4Vr4/zgAEAFGzZahW7c1aulCuwAgJwv1vO1TGYDMzaPouUwhRCXUN5rd9rVwRI8jH47iY5/OZRNviw8kT0/2Iwmlh1IJ6h729hzrqTpOeXEuThwPvjurLh6UHc0jlADOgUXDM426kZ1SWA+fd04+ArN7JsehRT+4UR6uWI3iix50JWndcWYqcGysROe6cg+W5LqYa2N9d63coDcRTrjbT1c6FvK+E2FgjqQ88wT1Y+3BdvZzvOpORz+2c7OZGYW/NF3q1h2Mvy4/UvQo7c6yrYNZjBwfJw0IXHF5af7jx0CAAFW7fWO0HSVFhIxoJvZDMee7S8Auu9/e+xK2kX9ip7Phj8Ac5aZ/mC2J2weBQUpoFfZ1noeNbck8tkkvj9WBIj5m/j+Z+PkZhTjK+LHW+M7simZ4YwtkcQapV4eRdcu2hUSvpFeDP39o5sfW4om58dwqyb2tZ5PfHfUAOnM08D0L74cjOk8MHgUPPsHoPRxJJdlwC4f0CYcB0LBFagfYArqx/tSysfJ1LyShj71S7+PJ5c80V9Z0BQb7ldxOrpYJRDYA93eRiAPy78QVyeLIIce/dG4eCAITWV0jNn6mVr5qLFGDMz0YSE4D5mDAArz6xk2ZllAMwbOI+2npdftI+ugKVjoDQPQvvDtD9q7MxuMkn8eTyZUZ/u4PFlh7mQXoi7o4YXb2nH1ueGMqlvGFq1eFkXXH+EezsxqW9Yna8X/xU1cCrrFADtE47JT5gRwlp/MoXEnGI8HDWMjmzRkOYJBM2KUC8n1szoz+A2PpToTTz24yHe23AGg7GaSi2lCu5cIJdux++FTW8A0Mm7E4OCBmGUjHx97Gv5VDs7nPrKPWwKtmyps4365GQyF8oeI9+Z/0Oh0bA7aTfz9s0D4MluTzI8dDiYTPDva7DmYTDqoP1tcN9qOSm5CowmiXVHEhk5fxuP/XiI08l5ONupeXp4a7Y/P5SHBrXCQdvAQxgFgmsYIXaqIbM4k7SiNBQoaJt6Tq7CqkXsSJLE11svADC5b1jDT4AVCJoZrvYavpvaiwcGyGGezzfHcM+CPSRW15jMMxxGfyY/3vkxnPgFgEe7PgrAbzG/lXtwnYfI4a38jZvqbF/aBx8ilZTg0LMHLiNHcibrDM9seQajZOTWlrcyvfN0uYfOT5Nhx4fyRQOfgXHfg8ah0noGo4mfDyZw44dbeWrFEc6nFeBir+bJG1qzY9ZQnh7eRrS1EAjMQIidaijL1wlVO+EkSdBmJDi413jN7phMjifmYq9RMrlvaCNYKRA0P1RKBa/c2oFPJnTD2U5OXL7l4+38VV1Yq8No6Pu4/Hjto5BwgE7enbg57GYkJP5v7/8hSRIuN9wAGg0lJ05QUodQVuHu3eT9/jsoFPjNns2F3As89PdD5Ovz6e7bnbn95qJIPQkLhsDp3+QbqDu+hhvmVGpSWqQz8P3uWIZ9sJVnfzrKhQw5XPXMjW3Y+cIwZt7YBndHbdWGCASCSgixUw2nsy7n6xTmyU+UTVWuga+2yV6du3sGi0F6AkEDc3vXQP58ciBdg9zILdbz6I+HeHjpAVJyq6jWuvF1eXivoUTuTJx6ipk9Z+KgduBI+hHWxaxD7eUlCx4ge+VKi2wxlZSQ/OpcADwmTCA92IUH/36Q7NJsOnh14LNhn2J3dBUsvAEyo8G1BUz9A7reU2GdtLwS3ttwhn5vb2LOupPEZRXh5aTlhZvbsWPWMJ64oTWuwpMjEFiMEDvVcCrzcr5OYa7cxbR1zV2TTyXlse1cOkoFTB/QsjFMFAiaPSFejvz0SD8eHxqBWqlgw8lUbvxwK9/vjq2Yy6NUwV0LoUUPKM6G70fjX5jDI10fAeDtfW8Tnx+Px3j5pibv198wFZo/pTn9o/no4+JQ+/mhe3Ac0/+eTnpxOq09WvN13zdxWTsDfn1cFlsRw+Hh7RDcG5DD30fic3hm1VH6v7OJzzfHkFOkJ9TLkddu78j2WUN5ZHArnO3U1vvBCQTNDCF2qqG87LxUJzcp09Q8DXjBthgARnUJJMTLscZzBQKB9dCqlTw7si2/PTGAyGB38ksNzFl3khHzt/HX8eQrpeR2LnISsF9nucz7u5FMdm5Ld9/uFOoLeWHbC2h6dkcbGoqpsJCcNWvN2j9/yxayliwBwPDsA0ze9gjJhcmEuYaxIOh23BeOgNO/gkIFw16BiT+Bkxd5JXqW7o7llk92MObznaw+lIDeKNEz1IOv7uvBpmeGMKVfGI5aIXIEgvqikBpq6lYTJS8vDzc3N3Jzc3F1rboTsiRJfH/4S07v/pDZmZm4PbgVArpUeS5AfFYRQ97fgtEk8fsTA+jUouqKCoFA0LAYTRI/7r3E/H/Pk1WoA6BrkBuPDongxg5+qJQKKMqCZXdDwn5QaUm+4SXuurSKfF0+N4fdzKyErqS98SYqd3darf8Llbt7tfvpEhKIHTsOY04O+WMG83jnQxQbimnrEspXBUq8L1xuUujXGcZ8jt63M7tiMvn1SBJ/HE+iRC97n+zUSkZ1CWBSn1C6hdTc3kIgaK6Y8/5dHULsVMfOj+GfORDYHR7aXOOar6w9wdI9l+gf4cWP0/tY2WKBQGAp+SV6vtl+kYXbL1B0eaZWkIcDU/uFcVf3IDw0evjlITgjd0bf1WYwMwzxGCQDY1vewX3vHUF37jweEyfgP2dOlXsYMjOJnTgR/aU4csK9eGxsDga1giiVOx/FnMBFMoFSg3Hgs+wOmMTvJzNZfzKFnKIrIy9a+zozMSqEO7q1EAnHAkEt1EfsNIkw1ueff05YWBj29vZERUWxb9++Gs//6aefaNeuHfb29nTu3Jk///zTugZJEhyU3dL0mFrjqcm5xazcHw/A40NbW9cOgUBQJ1zsNcy8sQ1bnxvKjKGt8HDUkJBdzJt/nKbXW/8y5YeT/NRqHsWDXwWlmn7ntvJWZg4K4OcLa/hhpBy2zl6+ospwli4ujktTpqK/FEeWh5pZo2ShMym3gK+ij+EimYgLGMmrwYvovq079y0+wor98eQU6fF21nJfnxB+fqQvf/9vENP6hwuhIxA0MDb37KxcuZLJkyfz1VdfERUVxfz58/npp584e/Ysvr6+lc7ftWsXgwYNYt68edx6660sW7aMd955h0OHDtGpU+2zZMxShvpi2PoOnFonJxLaOVe73px1J/h+9yWiwuWW9gKBoOlRojey9nAiS/dc4mRSXvnzCgWM9M7kZeOXBBWdYqOjA7N9vChWKnlgI4zcZwCFAu/HZ+Bxj1w5lfLLKnK+XoCqoIQsZ3htogq9m4nXMjIZVFzCAUUn3iy5myNSRPk+nk5aburkz62dA+gd7ilGOQgEdeCaDmNFRUXRq1cvPvtMbvxlMpkIDg7miSee4IUXXqh0/vjx4yksLOT3338vf65Pnz5ERkby1Vdf1bqfRT8sSZJfDashObeYwe9uQWc0sfzBPmIOlkBwDRCTXsAfx5L541gyZ1PzAVBg4iblfp5U/4LSLoW5Pp6c0GqZvsHEiMNVv0SeC4SP71AyylTAhJxS/tUP4AfjcM5JwaiUCiKD3RnY2puBrX3oGuQmBI5AUE/qI3Zsmuav0+k4ePAgs2fPLn9OqVQyfPhwdu/eXeU1u3fvZubMmRWeGzlyJGvXrq3y/NLSUkpLS8u/zs2VBwjm5eVVeb4lzP/zFCVFBfQI9aCjj8YqawoEgobFxw6m9vJjai8/0vNLOHgpmwOx2ZxMGsBdmV0JL4jm5pw99HM5zf5eek54q7npoERIunx9oiccjDShDlYwLimUY8buPOQRRUALH0a1cGV2kDsdAtwqjG8oKiyw0XcrEFw/lL3H1sVHY1Oxk5GRgdFoxM+v4uA7Pz8/zlTTwTQlJaXK81NSUqo8f968ebz22muVng8ODq6j1ZWJB9z+Z7XlBAKBDTkN/DcLcOF/TypPK4wGNjawRQKB4GoyMzNxc7Os6vm6b+Awe/bsCp6gnJwcQkNDiYuLs/iHJbAueXl5BAcHEx8fb7FLUmB9xO+j6SB+F00H8btoOuTm5hISEoKnp6fF19pU7Hh7e6NSqUhNTa3wfGpqKv7+/lVe4+/vb9H5dnZ22NlVHt3g5uYm/nCbCK6uruJ30YQQv4+mg/hdNB3E76LpoFRanv9m04w5rVZLjx492LjxihvYZDKxceNG+vaturKpb9++Fc4H+Oeff6o9XyAQCAQCQfPG5mGsmTNnMmXKFHr27Env3r2ZP38+hYWFTJs2DYDJkyfTokUL5s2bB8BTTz3F4MGD+eCDDxg1ahQrVqzgwIEDLFiwwJbfhkAgEAgEgiaKzcXO+PHjSU9PZ86cOaSkpBAZGcn69evLk5Dj4uIquKz69evHsmXLePnll3nxxRdp3bo1a9euNavHDshhrVdffbXK0JagcRG/i6aF+H00HcTvoukgfhdNh/r8LmzeZ0cgEAgEAoGgIRFdrgQCgUAgEFzXCLEjEAgEAoHgukaIHYFAIBAIBNc1QuwIBAKBQCC4rml2Yufzzz8nLCwMe3t7oqKi2LdvX+0XCazOtm3buO222wgMDEShUFQ720zQsMybN49evXrh4uKCr68vY8aM4ezZs7Y2q9ny5Zdf0qVLl/IGdn379uWvv/6ytVnNnrfffhuFQsHTTz9ta1OaJXPnzkWhUFT4aNeunUVrNCuxs3LlSmbOnMmrr77KoUOH6Nq1KyNHjiQtLc3WpjU7CgsL6dq1K59//rmtTWnWbN26lRkzZrBnzx7++ecf9Ho9I0aMoLCw0NamNUuCgoJ4++23OXjwIAcOHGDYsGGMHj2akydP2tq0Zsv+/fv5+uuv6dKli61NadZ07NiR5OTk8o8dO3ZYdH2zKj2PioqiV69efPbZZ4DcrTk4OJgnnniCF154wcbWNV8UCgVr1qxhzJgxtjal2ZOeno6vry9bt25l0KBBtjZHAHh6evLee+/xwAMP2NqUZkdBQQHdu3fniy++4M033yQyMpL58+fb2qxmx9y5c1m7di1Hjhyp8xrNxrOj0+k4ePAgw4cPL39OqVQyfPhwdu/ebUPLBIKmQ25uLkCdBu0JrIvRaGTFihUUFhaKcTg2YsaMGYwaNarC+4bANpw/f57AwEBatmzJvffeS1xcnEXX27yDcmORkZGB0Wgs78xchp+fH2fOnLGRVQJB08FkMvH000/Tv39/szuSC6zP8ePH6du3LyUlJTg7O7NmzRo6dOhga7OaHStWrODQoUPs37/f1qY0e6Kioli8eDFt27YlOTmZ1157jYEDB3LixAlcXFzMWqPZiB2BQFAzM2bM4MSJExbHwgXWpW3bthw5coTc3Fx+/vlnpkyZwtatW4XgaUTi4+N56qmn+Oeff7C3t7e1Oc2em2++ufxxly5diIqKIjQ0lFWrVpkd3m02Ysfb2xuVSkVqamqF51NTU/H397eRVQJB0+Dxxx/n999/Z9u2bQQFBdnanGaNVqslIiICgB49erB//34+/vhjvv76axtb1nw4ePAgaWlpdO/evfw5o9HItm3b+OyzzygtLUWlUtnQwuaNu7s7bdq0ITo62uxrmk3OjlarpUePHmzcuLH8OZPJxMaNG0U8XNBskSSJxx9/nDVr1rBp0ybCw8NtbZLgP5hMJkpLS21tRrPihhtu4Pjx4xw5cqT8o2fPntx7770cOXJECB0bU1BQQExMDAEBAWZf02w8OwAzZ85kypQp9OzZk969ezN//nwKCwuZNm2arU1rdhQUFFRQ5RcvXuTIkSN4enoSEhJiQ8uaFzNmzGDZsmWsW7cOFxcXUlJSAHBzc8PBwcHG1jU/Zs+ezc0330xISAj5+fksW7aMLVu2sGHDBlub1qxwcXGplLfm5OSEl5eXyGezAc8++yy33XYboaGhJCUl8eqrr6JSqZgwYYLZazQrsTN+/HjS09OZM2cOKSkpREZGsn79+kpJy4KG58CBAwwdOrT865kzZwIwZcoUFi9ebCOrmh9ffvklAEOGDKnw/KJFi5g6dWrjG9TMSUtLY/LkySQnJ+Pm5kaXLl3YsGEDN954o61NEwhsRkJCAhMmTCAzMxMfHx8GDBjAnj178PHxMXuNZtVnRyAQCAQCQfOj2eTsCAQCgUAgaJ4IsSMQCAQCgeC6RogdgUAgEAgE1zVC7AgEAoFAILiuEWJHIBAIBALBdY0QOwKBQCAQCK5rhNgRCAQCgUBwXSPEjkAgEJiBTqcjIiKCXbt2Nfreffr0YfXq1Y2+r0BwvSDEjkDQDJk6dSoKhaLShyWD9ZobX331FeHh4fTr14/FixdX+fO7+iM2Npa5c+cSGRlZaa3Y2FgUCgVHjhwxa++XX36ZF154AZPJZN1vSiBoJgixIxA0U2666SaSk5MrfFQ1CFSn09nAuqaFJEl89tlnPPDAA4A8eubqn1vfvn158MEHKzwXHBxstf1vvvlm8vPz+euvv6y2pkDQnBBiRyBoptjZ2eHv71/hQ6VSMWTIEB5//HGefvppvL29GTlyJAAnTpzg5ptvxtnZGT8/PyZNmkRGRkb5eoWFhUyePBlnZ2cCAgL44IMPGDJkCE8//XT5OQqFgrVr11aww93dvcI8tPj4eO6++27c3d3x9PRk9OjRxMbGlh+fOnUqY8aM4f333ycgIAAvLy9mzJiBXq8vP6e0tJRZs2YRHByMnZ0dERERfPvtt0iSREREBO+//34FG44cOVKjZ+vgwYPExMQwatQoABwcHCr83LRaLY6OjpV+luZSnadty5YtAKhUKm655RZWrFhh9poCgeAKQuwIBIJKLFmyBK1Wy86dO/nqq6/Iyclh2LBhdOvWjQMHDrB+/XpSU1O5++67y6957rnn2Lp1K+vWrePvv/9my5YtHDp0yKJ99Xo9I0eOxMXFhe3bt7Nz506cnZ256aabKniYNm/eTExMDJs3b2bJkiUsXry4gmCaPHkyy5cv55NPPuH06dN8/fXXODs7o1AouP/++1m0aFGFfRctWsSgQYOIiIio0q7t27fTpk0bXFxcLPp+zOXjjz+u4BV66qmn8PX1pV27duXn9O7dm+3btzfI/gLBdY8kEAiaHVOmTJFUKpXk5ORU/jF27FhJkiRp8ODBUrdu3Sqc/8Ybb0gjRoyo8Fx8fLwESGfPnpXy8/MlrVYrrVq1qvx4Zmam5ODgID311FPlzwHSmjVrKqzj5uYmLVq0SJIkSVq6dKnUtm1byWQylR8vLS2VHBwcpA0bNpTbHhoaKhkMhvJzxo0bJ40fP16SJEk6e/asBEj//PNPld97YmKipFKppL1790qSJEk6nU7y9vaWFi9eXO3P66mnnpKGDRtW7fHBgwdX+D7LePXVVyWlUlnh5+zk5CQ5OjpKgHT48OFK16xevVqyt7eXduzYUeH5devWSUqlUjIajdXaIRAIqkZtW6klEAhsxdChQ/nyyy/Lv3Zycip/3KNHjwrnHj16lM2bN+Ps7FxpnZiYGIqLi9HpdERFRZU/7+npSdu2bS2y6ejRo0RHR1fyoJSUlBATE1P+dceOHSuEiQICAjh+/Dggh6RUKhWDBw+uco/AwEBGjRrFd999R+/evfntt98oLS1l3Lhx1dpVXFyMvb29Rd9LGW3btuXXX3+t8FxiYiJDhgypdO7hw4eZNGkSn332Gf37969wzMHBAZPJRGlpKQ4ODnWyRSBorgixIxA0U5ycnKoN21wtfAAKCgq47bbbeOeddyqdGxAQYHYVl0KhQJKkCs9dnWtTUFBAjx49+PHHHytd6+PjU/5Yo9FUWresUskcITB9+nQmTZrERx99xKJFixg/fjyOjo7Vnu/t7V0upixFq9VW+jmr1ZVfelNSUrj99tuZPn16eSL01WRlZeHk5CSEjkBQB4TYEQgEtdK9e3dWr15NWFhYlW/UrVq1QqPRsHfvXkJCQgDIzs7m3LlzFTwsPj4+JCcnl399/vx5ioqKKuyzcuVKfH19cXV1rZOtnTt3xmQysXXrVoYPH17lObfccgtOTk58+eWXrF+/nm3bttW4Zrdu3fjyyy+RJAmFQlEnu2qipKSE0aNH065dOz788MMqzzlx4gTdunWz+t4CQXNAJCgLBIJamTFjBllZWUyYMIH9+/cTExPDhg0bmDZtGkajEWdnZx544AGee+45Nm3axIkTJ5g6dSpKZcWXmGHDhvHZZ59x+PBhDhw4wCOPPFLBS3Pvvffi7e3N6NGj2b59OxcvXmTLli08+eSTJCQkmGVrWFgYU6ZM4f7772ft2rXla6xatar8HJVKxdSpU5k9ezatW7emb9++Na45dOhQCgoKOHnypAU/NfN5+OGHiY+P55NPPiE9PZ2UlBRSUlIqJGVv376dESNGNMj+AsH1jhA7AoGgVgIDA9m5cydGo5ERI0bQuXNnnn76adzd3csFzXvvvcfAgQO57bbbGD58OAMGDKiU+/PBBx8QHBzMwIEDmThxIs8++2yF8JGjoyPbtm0jJCSEO++8k/bt2/PAAw9QUlJikafnyy+/ZOzYsTz22GO0a9eOBx98kMLCwgrnPPDAA+h0OqZNm1brel5eXtxxxx1VhteswdatW0lOTqZDhw4EBASUf5R1a05MTGTXrl1m2SoQCCqjkP4bQBcIBAIrMWTIECIjI5k/f76tTanE9u3bueGGG4iPj8fPz6/W848dO8aNN95ITExMlYnaDcmsWbPIzs5mwYIFjbqvQHC9IDw7AoGgWVFaWkpCQgJz585l3LhxZgkdgC5duvDOO+9w8eLFBrawMr6+vrzxxhuNvq9AcL0gxI5AIGhWLF++nNDQUHJycnj33Xctunbq1Kl07ty5gSyrnmeeecZsUSYQCCojwlgCgUAgEAiua4RnRyAQCAQCwXWNEDsCgUAgEAiua4TYEQgEAoFAcF0jxI5AIBAIBILrGiF2BAKBQCAQXNcIsSMQCAQCgeC6RogdgUAgEAgE1zVC7AgEAoFAILiuEWJHIBAIBALBdc3/A0sgu6a4wnpTAAAAAElFTkSuQmCC\n",
"text/plain": [
"