{ "cells": [ { "cell_type": "markdown", "id": "bb6c9859", "metadata": {}, "source": [ "# Graphene metamaterial absorber" ] }, { "cell_type": "markdown", "id": "f286d274", "metadata": {}, "source": [ "Graphene, a single atomic sheet of carbon atoms arranged in a hexagonal lattice, has shown great promise for functional optical and optoelectronic devices. Compared to devices made of conventional materials, graphene-based devices have a unique tunability advantage since graphene's conductivity can be drastically modulated by electrostatic gating. \n", "\n", "Due to its atomic thickness, it is usually very difficult to model graphene in an FDTD simulation without using a large number of grid points. Fortunately, Tidy3D natively supports a surface conductivity model such that thin material layers can be accurately simulated even with grids much larger than the actual layer thickness. More specifically, you can model graphene directly using Tidy3D's [Material Library](../material_library.html?highlight=material%20ibrary). The graphene's conductivity is described by the well established Kubo formula, which includes the contributions from the intraband and interband electronic transitions. To define graphene, a few parameters, namely the scattering rate, chemical potential, and temperature, are required as user inputs.\n", "\n", "This notebook demonstrates how to model a graphene fishnet metamaterial absorber in the THz frequency range. By forming a Fabry-Perot resonator between the graphene layer and a metal mirror, high absorption is achieved across a bandwidth of ~ 2 THz. The design is adapted from the seminal work [Andrei Andryieuski and Andrei V. Lavrinenko, \"Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,\" Opt. Express 21, 9144-9155 (2013)](https://opg.optica.org/oe/fulltext.cfm?uri=oe-21-7-9144&id=252404&ibsearch=false).\n", "\n", "" ] }, { "cell_type": "code", "execution_count": 1, "id": "96ba5d2f", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:14.532436Z", "iopub.status.busy": "2023-03-27T21:52:14.531799Z", "iopub.status.idle": "2023-03-27T21:52:15.831334Z", "shell.execute_reply": "2023-03-27T21:52:15.830773Z" }, "scrolled": true }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "import tidy3d as td\n", "import tidy3d.web as web\n" ] }, { "cell_type": "markdown", "id": "62959f4c", "metadata": {}, "source": [ "The overall design of the absorber involves two layers of graphene sheets embedded in TOPAS polymer. The bottom of the device is a metallic mirror, which forms a Fabry-Perot resonator with graphene. This resonator greatly amplifies the absorption in graphene and achieves perfect absorption when the resonance condition is met. Two designs are explored in this notebook. The first one is a simple uniform graphene layer. When the chemical potential of graphene is tuned to 0.5 eV, perfect absorption is achieved but only within a narrow frequency band. Then, we test a fishnet structure, which shows a much wider absorption band. " ] }, { "cell_type": "markdown", "id": "16b4ccfc", "metadata": {}, "source": [ "## Uniform Graphene Sheet Absorber" ] }, { "cell_type": "markdown", "id": "3a95e5d2", "metadata": {}, "source": [ "We start with a simpler case where the absorber is made of two uniform graphene layers embedded in TOPAS polymer above a ground plate. \n", "\n", "First, define the basic simulation parameters." ] }, { "cell_type": "code", "execution_count": 2, "id": "d76a88bc", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:15.833735Z", "iopub.status.busy": "2023-03-27T21:52:15.833458Z", "iopub.status.idle": "2023-03-27T21:52:15.852081Z", "shell.execute_reply": "2023-03-27T21:52:15.851515Z" } }, "outputs": [], "source": [ "THz = 1e12 # 1 THz = 1e12 Hz\n", "\n", "freq0 = 2.5 * THz # central frequency\n", "freqs = np.linspace(0.1, 5, 300) * THz # frequency range of interest\n", "\n", "lda0 = td.C_0 / freq0 # central wavelength\n" ] }, { "cell_type": "markdown", "id": "a4ba8e8f", "metadata": {}, "source": [ "The TOPAS polymer has a refractive index of 1.53 in the THz range with little absorption. " ] }, { "cell_type": "code", "execution_count": 3, "id": "cd1055cf", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:15.854088Z", "iopub.status.busy": "2023-03-27T21:52:15.853942Z", "iopub.status.idle": "2023-03-27T21:52:15.872860Z", "shell.execute_reply": "2023-03-27T21:52:15.872282Z" } }, "outputs": [], "source": [ "n_topas = 1.53 # refractive index of the polymer\n", "topas = td.Medium(permittivity=n_topas**2)\n" ] }, { "cell_type": "markdown", "id": "3ecca39e", "metadata": {}, "source": [ "To define graphene conductivity, we need to specify a few parameters. Here, we consider a relaxation time of $\\tau$=0.1 ps, which translates to a scattering rate $\\Gamma=\\frac{1}{2\\tau}=\\frac{6.58e-16}{2 \\times 1e-13}=$0.0033 eV, where 6.58e-16 is $\\hbar$ in the unit of eV*s. The temperature is at room temperature. Since there are two layers of graphene, the scaling parameter is set to 2. Note that this only works for graphene layers separated by a small distance. For real bilayer graphene or few-layer graphene in general, the conductivity is more complex as interlayer coupling and stacking order play an important role." ] }, { "cell_type": "code", "execution_count": 4, "id": "8f2e5355", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:15.875140Z", "iopub.status.busy": "2023-03-27T21:52:15.874977Z", "iopub.status.idle": "2023-03-27T21:52:15.893558Z", "shell.execute_reply": "2023-03-27T21:52:15.892979Z" } }, "outputs": [], "source": [ "gamma = 0.0033 # scattering rate\n", "temp = 300 # temperature\n", "scaling = 2 # number of layers.\n" ] }, { "cell_type": "markdown", "id": "1f11672f", "metadata": {}, "source": [ "Furthermore, we consider a unit cell size of 15 $\\mu m$. In the uniform graphene sheet absorber, the distance between the graphene and the mirror is 35.9 $\\mu m$." ] }, { "cell_type": "code", "execution_count": 5, "id": "3dc8f7a7", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:15.895741Z", "iopub.status.busy": "2023-03-27T21:52:15.895560Z", "iopub.status.idle": "2023-03-27T21:52:15.913245Z", "shell.execute_reply": "2023-03-27T21:52:15.912681Z" } }, "outputs": [], "source": [ "a = 15 # unit cell size\n", "h = 35.9 # distance between graphene and the ground plate\n", "offset = lda0 / 2 # distance between the flux monitor and the graphene\n" ] }, { "cell_type": "markdown", "id": "e8aff35b", "metadata": {}, "source": [ "The periodic boundary condition is applied in both the $x$ and $y$ directions. In the $z$ direction, PML is applied in the plus direction and PEC is applied in the minus direction. The PEC mimics the metal mirror. For the grids, we use automatic nonuniform grids in all directions. The same [BoundarySpec](../_autosummary/tidy3d.BoundarySpec.html?highlight=BOUNDARYSPEC) and [GridSpec](../_autosummary/tidy3d.GridSpec.html?highlight=gridspec) will be used through the notebook." ] }, { "cell_type": "code", "execution_count": 6, "id": "1ef2e4e2", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:15.915194Z", "iopub.status.busy": "2023-03-27T21:52:15.915052Z", "iopub.status.idle": "2023-03-27T21:52:15.933832Z", "shell.execute_reply": "2023-03-27T21:52:15.933297Z" } }, "outputs": [], "source": [ "# define a BoundarySpec\n", "boundary_spec = td.BoundarySpec(\n", " x=td.Boundary.periodic(),\n", " y=td.Boundary.periodic(),\n", " z=td.Boundary(minus=td.PECBoundary(), plus=td.PML()),\n", ")\n", "\n", "# define a GridSpec\n", "grid_spec = td.GridSpec.auto(min_steps_per_wvl=200, wavelength=lda0)\n", "\n", "# simulation run time\n", "run_time = 1e-11\n" ] }, { "cell_type": "markdown", "id": "a5edb267", "metadata": {}, "source": [ "Next we define a function that returns a simulation at a given graphene chemical potential. This function will later be called repeatedly to construct a simulation batch to investigate how the chemical potential affects the absorption spectrum." ] }, { "cell_type": "code", "execution_count": 7, "id": "b85bd993", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:15.936127Z", "iopub.status.busy": "2023-03-27T21:52:15.935966Z", "iopub.status.idle": "2023-03-27T21:52:15.962206Z", "shell.execute_reply": "2023-03-27T21:52:15.961684Z" } }, "outputs": [], "source": [ "def make_sim_uniform(mu_c):\n", "\n", " # define graphene\n", " graphene = td.material_library[\"graphene\"](\n", " gamma=gamma, mu_c=mu_c, temp=temp, scaling=scaling\n", " ).medium\n", "\n", " # define graphene structure\n", " graphene_layer = td.Structure(\n", " geometry=td.Box(center=(0, 0, h), size=(td.inf, td.inf, 0)), medium=graphene\n", " )\n", "\n", " # define a plane wave source\n", " plane_wave = td.PlaneWave(\n", " center=(0, 0, h + 0.1 * offset),\n", " size=(td.inf, td.inf, 0),\n", " source_time=td.GaussianPulse(freq0=freq0, fwidth=freq0 / 2),\n", " direction=\"-\",\n", " )\n", "\n", " # define a flux monitor to measure reflection\n", " flux_monitor = td.FluxMonitor(\n", " center=(0, 0, h + offset),\n", " size=(td.inf, td.inf, 0),\n", " freqs=freqs,\n", " name=\"R\",\n", " )\n", "\n", " # simulation domain size in z\n", " Lz = h + 1.1 * offset\n", "\n", " # define simulation\n", " sim = td.Simulation(\n", " center=(0, 0, Lz / 2),\n", " size=(a, a, Lz),\n", " grid_spec=grid_spec,\n", " structures=[graphene_layer],\n", " sources=[plane_wave],\n", " monitors=[flux_monitor],\n", " run_time=run_time,\n", " medium=topas,\n", " boundary_spec=boundary_spec,\n", " shutoff=1e-7,\n", " symmetry=(-1, 1, 0), # symmetry is used to reduce the computational load\n", " )\n", "\n", " return sim\n" ] }, { "cell_type": "markdown", "id": "a1bbea24", "metadata": {}, "source": [ "Specifically, we study $\\mu_c=$0, 0.1, 0.2, and 0.5 eV. " ] }, { "cell_type": "code", "execution_count": 8, "id": "9f32c260", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:15.964300Z", "iopub.status.busy": "2023-03-27T21:52:15.964154Z", "iopub.status.idle": "2023-03-27T21:52:16.101029Z", "shell.execute_reply": "2023-03-27T21:52:16.100496Z" } }, "outputs": [], "source": [ "mu_cs = [0, 0.1, 0.2, 0.5] # values of mu_c to be simulated\n", "\n", "# define a simulation batch\n", "sims = {f\"mu_c={mu_c:.2f}\": make_sim_uniform(mu_c) for mu_c in mu_cs}\n" ] }, { "cell_type": "markdown", "id": "f4b6fb5c", "metadata": {}, "source": [ "Submit the simulation batch to the server." ] }, { "cell_type": "code", "execution_count": 9, "id": "5a706f2c", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:16.103153Z", "iopub.status.busy": "2023-03-27T21:52:16.103003Z", "iopub.status.idle": "2023-03-27T21:52:39.391295Z", "shell.execute_reply": "2023-03-27T21:52:39.390720Z" } }, "outputs": [], "source": [ "batch = web.Batch(simulations=sims, folder_name=\"default\")\n", "batch_results = batch.run(path_dir=\"data\")\n" ] }, { "cell_type": "markdown", "id": "b14e5299", "metadata": {}, "source": [ "After the batch of jobs is complete, we want to plot the absorption spectra. Since the bottom ground plane is a perfect mirror, absorption is simply $A=1-R$, where $R$ is the reflection. A function `plot_absorption` is defined to do this plotting. " ] }, { "cell_type": "code", "execution_count": 10, "id": "75eb91f2", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:39.720153Z", "iopub.status.busy": "2023-03-27T21:52:39.720023Z", "iopub.status.idle": "2023-03-27T21:52:39.738653Z", "shell.execute_reply": "2023-03-27T21:52:39.738131Z" } }, "outputs": [], "source": [ "def plot_absorption(batch_results):\n", " for i, mu_c in enumerate(mu_cs):\n", " sim_data = batch_results[f\"mu_c={mu_c:.2f}\"]\n", " A = 1 - sim_data[\"R\"].flux\n", " plt.plot(freqs / THz, A, label=f\"{mu_c:.2f} eV\")\n", " plt.xlim(0, 5)\n", " plt.ylim(0, 1)\n", " plt.xlabel(\"Frequency (THz)\")\n", " plt.ylabel(\"Absorption\")\n", " plt.legend()\n" ] }, { "cell_type": "markdown", "id": "6516c046", "metadata": {}, "source": [ "At 0.5 eV chemical potential, perfect absorption is observed around 2.3 THz. However, the bandwidth is rather small." ] }, { "cell_type": "code", "execution_count": 11, "id": "77f7b725", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:39.740832Z", "iopub.status.busy": "2023-03-27T21:52:39.740433Z", "iopub.status.idle": "2023-03-27T21:52:41.739726Z", "shell.execute_reply": "2023-03-27T21:52:41.739249Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAG2CAYAAACZEEfAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADvUklEQVR4nOzdZ3TURRfA4d+WbHrvCYSE3rs0QZBqF7HhK1IFpYiAiqICigpSRIogSBGwgSJWEClSRJoQeockpPdedrPl/37YJBAJkGRbyjzn5CRkd2duRJKbmTt3ZJIkSQiCIAiCINRQclsHIAiCIAiCYEki2REEQRAEoUYTyY4gCIIgCDWaSHYEQRAEQajRRLIjCIIgCEKNJpIdQRAEQRBqNJHsCIIgCIJQo4lkRxAEQRCEGk0kO4IgCIIg1Ggi2REEQRAEoUazabKzf/9+Hn30UYKCgpDJZPz88893fc3evXtp37499vb2NGzYkHXr1lk8TkEQBEEQqi+bJjt5eXm0adOGZcuWlev5kZGRPPzww9x///2cPHmSSZMm8eKLL/Lnn39aOFJBEARBEKorWVW5CFQmk/HTTz8xcODA2z7nzTffZOvWrZw9e7bkc4MHDyYzM5Pt27dbIUpBEARBEKobpa0DqIhDhw7Rt2/fUp8bMGAAkyZNuu1rNBoNGo2m5M8Gg4H09HS8vb2RyWSWClUQBEEQBDOSJImcnByCgoKQyyu2MVWtkp3ExET8/f1Lfc7f35/s7GwKCgpwdHS85TVz5szh/ffft1aIgiAIgiBYUExMDHXq1KnQa6pVslMZ06ZNY8qUKSV/zsrKIiQkhJiYGNzc3GwYmSBUf9k7d5L43vtIajVyFxc8nn0Gp44dMRQUkPXzL+Tt3w+Az7ixeI8aZeNoBUGozrKzs6lbty6urq4Vfm21SnYCAgJISkoq9bmkpCTc3NzKXNUBsLe3x97e/pbPu7m5iWRHEEyQ8cMP5EyfgTPgfH8vgubMQentXfJ48KOPkr5hA0mz56Be+QVS48a4P/ywzeIVBKFmqEwJSrXqs9O1a1d2795d6nM7d+6ka9euNopIEGqnrN+3kjhjJgCezz9P3c8/L5XoFPMaOhSvUSMBSJrzMfrcXKvGKQiCADZOdnJzczl58iQnT54EjEfLT548SXR0NGDcgho6dGjJ819++WUiIiKYOnUqFy9eZPny5Xz//fdMnjzZFuELQq2UH36ChGnTQJLweG4w/u++g0yhuO3z/V59FVVoKPrUVFI//9yKkQqCIBjZNNk5duwY7dq1o127dgBMmTKFdu3aMWPGDAASEhJKEh+AsLAwtm7dys6dO2nTpg2ffPIJq1evZsCAATaJXxBqG21iIrETJyJptbj260fA9Ol3XVKWqVT4T3sLgPQNX6GNi7NGqIIgCCWqTJ8da8nOzsbd3Z2srCxRsyMIFSDp9UQPH0H+v/9i37gxod99i9zZudyvvz5sOPlHjuA9Zgx+U8RqrFA16PV6tFqtrcMQiqhUqtseKzfl53e1KlAWBMF20r/8kvx//0Xm5ESdJYsrlOgAeA55nvwjR8jcvBmfCeORq1QWilQQ7k6SJBITE8nMzLR1KMJN5HI5YWFhqMz8/UEkO4Ig3JX6/HmSFy8BIODtaahCQys8huv996P090eXlETOjp24PyJOZgm2U5zo+Pn54eTkJJrMVgEGg4H4+HgSEhIICQkx69+JSHYEQbgjg1pN3BtTQavFpW8f3J98slLjyJRKPJ55mtSln5G5aZNIdgSb0ev1JYmOdxmnCAXb8fX1JT4+Hp1Oh52dndnGrVZHzwVBsL7khQspvHYNha8PgR98YNJvWx5PPAFA/rFj6NLSzBWiIFRIcY2Ok5OTjSMR/qt4+0qv15t1XJHsCIJwWwUnT5Lx1dcABM2ejdLT06Tx7IKCcGjeHCSJ3L17zRChIFSe2Lqqeiz1dyKSHUEQyiRptSTMmAmShPvjj+PSo4dZxnXp0xuAnN1/mWU8QRCEuxHJjiAIZUr7ch2ay5dReHjg99abZhvXtU8fAPIOHsRQUGC2cQVBEG5HJDuCINyi8Pp1UpctA8B/2lsmb1/dzL5JE+yCg5HUavIOHjTbuIJQWyxbtozQ0FAcHBzo3LkzR48evetrfvjhB5o2bYqDgwOtWrVi27ZtpR6XJIkZM2YQGBiIo6Mjffv25cqVK5WO8fjx48hkMg4fPlzm43369GHQoEGVHr+iRLIjCEIpkiSR+P77SBoNTl274PbYY2YdXyaT4dKrFwB5Bw+ZdWxBqOk2bdrElClTmDlzJuHh4bRp04YBAwaQnJx829ccPHiQ5557jlGjRnHixAkGDhzIwIEDOXv2bMlz5s2bx5IlS1ixYgVHjhzB2dmZAQMGoFarKxVnhw4daNOmDWvXrr3lsaioKPbs2cOoUaMqNXalSLVMVlaWBEhZWVm2DkUQqqSsbduk802aShdat5E0UVGWmWP7n9L5Jk2la489bpHxBeFOCgoKpPPnz0sFBQW2DqXCOnXqJI0fP77kz3q9XgoKCpLmzJlz29c888wz0sMPP1zqc507d5ZeeuklSZIkyWAwSAEBAdL8+fNLHs/MzJTs7e2l77777rbj6vV6afbs2VJoaKjk4OAgtW7dWvrhhx9KHl+yZInk5uYm5eXllXrdzJkzpaCgIEmn090y5p3+bkz5+S1WdgRBKGHIyyNp7jwAvEePRlWvnkXmcerQHgDN5cvoRQdboQqQJIn8Qp1N3qRy3tpUWFjI8ePH6du3b8nn5HI5ffv25dCh26+SHjp0qNRrAAYMGFDymsjISBITE0s9x93dnc6dO99x3Dlz5rBhwwZWrFjBuXPnmDx5MkOGDGHfvn0APP/882g0GjZv3lzqv/P69esZPnw4ijtcIGxuoqmgIAglUld+gS4xEbvgYLxftNwSs9LHB1VYGIWRkeSHn8C19/0Wm0sQyqNAq6f5jD9tMvf5WQNwUt39x3Fqaip6vR5/f/9Sn/f39+fixYu3fV1iYmKZr0lMTCx5vPhzt3vOf2k0GmbPns2uXbvo2rUrAPXr1+fAgQOsXLmSnj174uXlxRNPPMHatWsZOnQoAHv27CEqKooRI0bc9es1J7GyIwgCAIVRUaR9+SUA/m9PQ+7gYNH5nDp2BIwNBgVBqF6uXr1Kfn4+/fr1w8XFpeRtw4YNXLt2reR5I0eOZP/+/SWfW7t2LT179qRhw4ZWjVes7AiCYCxKnj0btFqce/TApXdvi8/pdE9HMn/4QSQ7QpXgaKfg/KwBNpu7PHx8fFAoFCQlJZX6fFJSEgEBAbd9XUBAwB1fU/w+KSmJwMDAUs9p27ZtmWPm5uYCsHXrVoKDg0s9Zm9vX/Jxnz59CAkJYd26dbzxxhts2bKFlStX3uUrNT+R7AiCQO6eveTt/xvs7PB/e5pVOssWr+yoz53DkJ+PXLTuF2xIJpOVayvJllQqFR06dGD37t0MHDgQMF6euXv3biZMmHDb13Xt2pXdu3czadKkks/t3LmzZPspLCyMgIAAdu/eXZLcZGdnc+TIEcaOHVvmmM2bN8fe3p7o6Gh69ux527nlcjkjRoxgzZo1BAcHo1KpeOqppyr2hZtB1f6bFQTB4gwaDUmzZwPgPXw49mFhVpnXLigIpZ8fuuRk1Bcv4dS+nVXmFYTqbMqUKQwbNoyOHTvSqVMnFi1aRF5eXqkamKFDhxIcHMycOXMAePXVV+nZsyeffPIJDz/8MBs3buTYsWN88cUXgDHRmzRpEh9++CGNGjUiLCyM6dOnExQUVJJU/Zerqyuvv/46kydPxmAw0L17d7Kysvjnn39wc3Nj2LBhJc8dMWIEs2bN4u233+a5557D0dHRcv+BbkMkO4JQy6WtWYM2Nhalvz8+L79k1bkdmjcnNzkZ9fnzItkRhHJ49tlnSUlJYcaMGSQmJtK2bVu2b99eqrg4OjoaufxGSW63bt349ttveffdd3n77bdp1KgRP//8My1btix5ztSpU8nLy2PMmDFkZmbSvXt3tm/fjsMdavc++OADfH19mTNnDhEREXh4eNC+fXvefvvtUs8LCQmhb9++7Nixg5EjR5rxv0b5yaTynnmrIbKzs3F3dycrKws3NzdbhyMINlUYG0fEww8jaTQEL/wEt4cesur8KUuWkrp8Oe6DBhE0+yOrzi3UXmq1msjISMLCwu74w1ywvjv93Zjy81ucxhKEWix57lxjp+ROnXB98EGrz+/QojkA6vPnrT63IAi1h0h2BKGWyj3wDzk7d4JCgf+771ilKPm/HJobkx3N1asYNBqrzy8IQu0gkh1BqIWkwkKSPjJuG3kNeR6Hxo1tEocyIACFpyfodGguV/7SQUEQhDsRyY4g1ELpX31FYWQkCm9vfO5wZNXSZDJZyeqO2MoSBMFSRLIjCLWMNimJ1GXLAfB7/XUUrq42jack2Tl3zqZxCIJQc4lkRxBqmeT5CzDk5+PYpg3ujz9m63BwaNYUMF4KKgiCYAki2RGEWiTv6FGyf/8dZDL8Z0xHJrf9twBVgwYAaCIiyn37syAIQkXY/judIAhWIel0JH3wIQAezz6DY4sWNo7ISBUaCnI5huxs9Kmptg5HEIQaSCQ7glBLZHz7HZorV1C4u+P76qu2DqeE3N4eu7p1ANDcdFuyIAiCuYhkRxBqAV1qKilLlgDgO2UKSk9PG0dUmn39oq0skewIgmABItkRhCpCrVMTmRXJ6ZTThCeFcy71HDHZMRTqC00eO/mThRhyc3Fo0QKPp540Q7TmZd/QmOwUXouwcSSCUPUtW7aM0NBQHBwc6Ny5M0ePHr3j88+dO8eTTz5JaGgoMpmMRYsWmWXcO0lKSsLOzo6NGzeW+fioUaNo3759pcevKHERqCDYQJYmixPJJwhPCudUyimic6JJLSi7XkWGjBC3EFr6tOTeoHvpEdwDDwePcs+Vf+IEWT/9BEDA9HeRKRTm+BLMSiVWdgShXDZt2sSUKVNYsWIFnTt3ZtGiRQwYMIBLly7h5+dX5mvy8/OpX78+Tz/9NJMnTzbbuHfi7+/Pww8/zNq1axk8eHCpx/Ly8vj+++/5+OOPKzxuZYmVHUGwkuT8ZL658A3D/hhGj409eOWvV/jy3JeEJ4eXJDqOSkeCXYKp51YPfyd/7BX2SEhcz77O1oitvH3gbXr/0Jup+6dyJuXMXeeU9PqSomT3QYNwbNvWkl9ipdk3qA+AJkIkO4JwJwsXLmT06NGMGDGC5s2bs2LFCpycnFi7du1tX3PPPfcwf/58Bg8ejL29vdnGBVi9ejXNmjXDwcGBpk2bsnz58pLHRo0axe7du4mOji71mh9++AGdTsfzzz9fga/cNGJlRxAsSG/Qsy92H99d/I4jCUeQuHG0OtQtlA7+HWjn146GHg0JdgnG3d691B1VkiSRpk7jUvoljicdZ2/sXq5kXOGPyD/4I/IPetbpyRv3vEE9t3plzp/5w2bU588jd3XF77UpFv96K6t4ZUefkoo+OxtFBW80FgSTSRJo820zt50TlONuusLCQo4fP860adNKPieXy+nbty+HDh2q9PSVHfebb75hxowZfPbZZ7Rr144TJ04wevRonJ2dGTZsGA899BD+/v6sW7eOGTNmlLzuyy+/ZNCgQXh4eFQ65ooSyY4gWECeNo8fLv3Adxe/Iz4vvuTzbXzbMCB0AP3q9SPAOeCu48hkMnwcffAJ9uHe4HuZ2H4i59LO8e2Fb/k94nf2xe7jUPwhxrYdy4gWI1DIb2xR6TIySPn0UwB8J05E6e1t/i/UTBQuzigDAtAlJqK5dg2ndu1sHZJQ22jzYXaQbeZ+Ox5Uznd9WmpqKnq9Hn9//1Kf9/f35+LFi5WevrLjzpw5k08++YRBgwYBEBYWxvnz51m5ciXDhg1DoVAwbNgw1q1bx/Tp05HJZFy7do2///6bnTt3VjreyhDJjiCYUW5hLt9d/I4N5zeQqckEwN3enScbPcnTjZ+mjmsdk+do4d2Cj7p/xIutXuTjox9zMP4gi8MXczThKB/f9zFeDl4ApHy6CH1WFvaNG+P53OC7jGp79vXD0CUmUhgZJZIdQaji8vLyuHbtGqNGjWL06NEln9fpdLi7u5f8eeTIkXz88cfs2bOH3r178+WXXxIaGkrv3r2tGq9IdgTBDLR6LRsvbWTl6ZVkabIAqOdWj5EtR/JQ2EM4KB3MPmeYexgr+q7g56s/M/vIbA4lHGLItiGs6LsCn6upZH7/PQABM6YjU1b9f+p2dUOAQxTGRN/1uYJgdnZOxhUWW81dDj4+PigUCpKSkkp9PikpiYCAu68Um3Pc3NxcAFatWkXnzp1LPaa46RBEo0aN6NGjB19++SW9evViw4YNjB49utR2vTVU/e+AglCFSZLEnpg9LDy+kOvZ1wFjLc6Y1mN4MOxBlHLL/hOTyWQ80egJWvq05JW/XiEmJ4bhvw1h2TeOALg/9SROHTtaNAZzUYXUBUAbHWPjSIRaSSYr11aSLalUKjp06MDu3bsZOHAgAAaDgd27dzNhwgSrjuvv709QUBARERF3LTQeNWoUY8eO5bHHHiMuLo7hw4dXOtbKEsmOIFRSXG4cHxz+gH/i/gHAy8GLV9q9wsCGAy2e5PxXI89GfP3Q14zbNY4mv5+DCAN4uuP/+utWjcMUdnWNyU5hjEh2BOF2pkyZwrBhw+jYsSOdOnVi0aJF5OXlMWLEiJLnDB06lODgYObMmQMYC5DPnz9f8nFcXBwnT57ExcWFhg0blnvc/3r//feZOHEi7u7uPPDAA2g0Go4dO0ZGRgZTptw4EPH0008zceJEXnrpJfr370/don/r1iSSHUGoIJ1BxzcXvmHZyWUU6ApQyVUMbTGUF1u9iLOd7X4z9HH04fNmM4mb9jQAX/dVMsVeT9UtSy5NFRICgDZabGMJwu08++yzpKSkMGPGDBITE2nbti3bt28vVVwcHR2N/KZLfuPj42l3Ux3cggULWLBgAT179mTv3r3lHve/XnzxRZycnJg/fz5vvPEGzs7OtGrVikmTJpV6npOTE4MHD+aLL75g5MiR5vkPUUEyqZZdM5ydnY27uztZWVm4ieOtQgVdTL/IzIMzOZ9m/C2po39HZnadSah7qG0Dw7ilFvPiaPL++YfLDRx492kt7fzbs7r/alQKla3Duyt9bh6Xi7bcGv97FIWrq40jEmoqtVpNZGQkYWFhODiYv55OqLw7/d2Y8vNbNBUUhHLQGrQsO7mMwb8P5nzaeVxVrrzX9T3WDFhTJRIdgOyt28j75x9kKhUtPl6Cq8qNE8knmPfvPFuHVi4KF2cURcfjC8XqjiAIZiSSHUG4i+jsaIb/MZwVp1agl/T0q9ePXwf+ypONn0Quqxr/hPRZWSQV7c/7jH2Zhq16MPe+uQBsurSJ3dd32zK8clMV7eVrRd2OIAhmVDW+UwtCFSRJEj9d+YmnfnuK06mncbVzZd5981jYayE+jj62Dq+UpLnz0KeloWrQAK9RowDoUacHI1oYiwtnHJxx27u3qhK7ohNZheJEliAIZiSSHUEoQ5Ymi9f2vcaMgzMo0BXQwb8DPz72Iw+GPWjr0G6Rs3cvWVu2gExG4Kz3katu1Oe80u4Vmnk1I7swm48Of2TDKMtHVbeoSFn02hEEwYxEsiMI/3Eu9RzP/v4sO6/vRClT8mr7V1nTfw2BLoG2Du0W+qwsEmfMBMBr2DCcOnQo9bidwo4P7v0ApUzJruhd7IjaYYswy00lVnYEQbAAkewIQhFJkvj+0ve88McLxOXGEewSzNcPfc2LrV4sdedUVZI0ew665GRUoaH4Tnq1zOc08WrCyFbG457z/p1Hvq0uOywHu6KVHdFFWRAEcxLJjiAA+dp8ph2YxgeHP0Br0NKrbi82PbKJFj4tbB3abeX8tYesX34BuZzAObOR3+EI7ehWowlyDiIpP4l159ZZL8gKUtU13h2mS0xC0mptHI0gCDWFSHaEWi8iM4Lntj7H1oitKGQKpnSYwpL7l+Bu7373F9uIPjOThJkzAPAaMfyuF2c6KB2Y0tHY0fTLs1+SmJdo8RgrQ+HtjczODgwGtEnJtg5HEIQaQiQ7Qq32R+QfDN46mIisCHwdfVkzYA0jWo6w+iV1FZX40Wz0Kamo6tfHd+LEcr2mf73+tPdrj1qvZsWpFRaOsHJkcjnKIGNtlC7BRpcyCoJQ44hkR6iVdAYdnxz7hKn7p1KgK6BzQGe+f/R7Ovh3uPuLbSx7xw6yf/sN5HKCPp6D3N6+XK+TyWRM6jAJgJ+v/kx0dtWsi7ELDAJAm5Bg40gEQagpRLIj1DpZmizG7RpXUrvyYqsXWdlvZZXrnVMWbUICCdON21feL76IY+vWFXp9O792dA/ujl7S8/mpzy0RosnsAo0rO9p4kewIQlmWLVtGaGgoDg4OdO7cmaNHj97x+atWraJHjx54enri6elJ3759b3mNJEnMmDGDwMBAHB0d6du3L1euXKl0jMePH0cmk3H48OEyH+/Tpw+DBg2q9PgVJZIdoVa5nHGZwb8P5lDCIRyVjizouYBX279aZU9b3UzS64mf+iaGrCwcWrXC95UJlRpnQjvj67ZFbiMmu+od8b6R7IhtLEH4r02bNjFlyhRmzpxJeHg4bdq0YcCAASQn377Gbe/evTz33HPs2bOHQ4cOUbduXfr3709cXFzJc+bNm8eSJUtYsWIFR44cwdnZmQEDBqBWqysVZ4cOHWjTpg1r16695bGoqCj27NnDqKIGqNYgkh2h1tgRtYMh24YQmxtLsEswXz34FQNCB9g6rHJLW7WK/H//Re7kRPCC+cZC3kpo4d2Ce4PvxSAZWH9+vZmjNJ1dsNjGEoTbWbhwIaNHj2bEiBE0b96cFStW4OTkVGZSUeybb75h3LhxtG3blqZNm7J69WoMBgO7dxuvkZEkiUWLFvHuu+/y+OOP07p1azZs2EB8fDw///zzbcc1GAzMmTOHsLAwHB0dadOmDZs3by55fNSoUWzatIn8/NLtLtatW0dgYCAPPPCAaf8xKkAkO0KNpzfoWRK+hNf2vUaBroAugV3Y+PBGmng1sXVo5VZw8iQpSz8DwH/GdFT16pk03qiWxt+ofr76M2kFaSbHZ04lKzuiQFmwIkmSyNfm2+RNkqRyxVhYWMjx48fp27dvyefkcjl9+/bl0KFD5f5a8/Pz0Wq1eHl5ARAZGUliYmKpcd3d3encufMdx50zZw4bNmxgxYoVnDt3jsmTJzNkyBD27dsHwPPPP49GoymVAEmSxPr16xk+fDgKhfVW1JVWm0kQbCC7MJtpf09jf+x+AIY1H8akDpNQyqvP//r63FziXn8D9HrcHn4Y98cfN3nMjv4daeXTijOpZ/ju4nclW1tVgbIo2dHFJyBJUpU/GSfUDAW6Ajp/29kmcx/53xGc7Jzu+rzU1FT0ej3+/v6lPu/v78/FixfLPd+bb75JUFBQSXKTmJhYMs5/xy1+7L80Gg2zZ89m165ddO3aFYD69etz4MABVq5cSc+ePfHy8uKJJ55g7dq1DB06FIA9e/YQFRXFiBEjyh2vOYiVHaHGisiM4Pmtz7M/dj/2Cnvm9JjD6/e8Xq0SHYDE92ehjY3FLjiYgPdmmuWHv0wmY1iLYQBsvrwZrb7qNPArXtkx5OdjyMqycTSCULN8/PHHbNy4kZ9++gmHOzQivZurV6+Sn59Pv379cHFxKXnbsGED165dK3neyJEj2b9/f8nn1q5dS8+ePWnYsKHJX0tFVK/v+oJQTntj9vLW32+Rp80jwDmAxfcvprl3c1uHVWGZP24xHjNXKAhaMB+Fq6vZxu4d0hs/Rz+SC5LZeX0nD9V/yGxjm0Lu4IDC2xt9WhrahAQUHh62DkmoBRyVjhz53xGbzV0ePj4+KBQKkpKSSn0+KSmJgICAu75+wYIFfPzxx+zatYvWN53kLH5tUlISgYE37gBMSkqibdu2ZY6Vm5sLwNatWwkODi71mP1N7TD69OlDSEgI69at44033mDLli2sXLnyrrGam0h2hBpFkiTWn1vPwuMLkZDo4N+BT3p+grejt61DqzD1pUskzpoFgO8rE+7aJbmi7OR2PNXkKZafXM7GSxurTLIDxtWd4mTHoVkzW4cj1AIymaxcW0m2pFKp6NChA7t372bgwIEAJYXGEybceSt63rx5fPTRR/z555907Nix1GNhYWEEBASwe/fukuQmOzubI0eOMHbs2DLHa968Ofb29kRHR9OzZ8/bziuXyxkxYgRr1qwhODgYlUrFU089Vf4v2kzENpZQY2j1WmYenMknxz9BQuLpxk+zqv+qapno6HNziZv4KpJGg/N9PfAeM8Yi8zzV6CmUMiUnkk9wKf2SReaoDNFrRxDKNmXKFFatWsX69eu5cOECY8eOJS8vr1QNzNChQ5k2bVrJn+fOncv06dNZu3YtoaGhJCYmkpiYWLI6I5PJmDRpEh9++CG//vorZ86cYejQoQQFBZUkVf/l6urK66+/zuTJk1m/fj3Xrl0jPDycpUuXsn596VOeI0aMIC4ujrfffpvnnnsOR8fyrWSZk1jZEWqEDHUGk/dO5njSceQyOVPvmcr/mv6vWha3SpJEwrvTKbx+HWVgIEFz5yKTW+b3El8nX+4PuZ+d13fy89WfebPTmxaZp6LsgkSvHUEoy7PPPktKSgozZswgMTGRtm3bsn379lLFxdHR0chv+p7x+eefU1hYeMuKysyZM3nvvfcAmDp1Knl5eYwZM4bMzEy6d+/O9u3b71jX88EHH+Dr68ucOXOIiIjAw8OD9u3b8/bbb5d6XkhICH379mXHjh2MHDnSDP8VKk4mlffMWw2RnZ2Nu7s7WVlZuLm52TocwQwiMiMYv3s8sbmxONs5M/+++fSo08PWYVVa+ldfk/TRR2BnR+hXG3C8zZ65ufwd+zfjdo/Dw96Dv57+CztF5fr3mFPal+tInjsXt4cfJviTBbYOR6hh1Go1kZGRhIWFmVSkK5jfnf5uTPn5LbaxhGrtYNzBUo0Cv37w62qd6BScOkXSvHkA+L/xusUTHYBuQd3wc/IjU5PJ3ti9Fp+vPJR+vgDo/lOIKQiCUBki2RGqrS1XtjBu9zhytDm092vPtw9/S0NP6x5nNCddRgaxkyeDVotr//54vvCCVeZVyBU83sDYu+enKz9ZZc67sStaktfeoQW+IAhCeYlkR6h2JEli+cnlzDw4E72k57EGj7Gq/yq8HLxsHVqlSVotca9OQhefgF29EAI/+tCq9UaPNXgMgIPxB0lXp1tt3ttRFiU7uuTkcneXFQRBuB2bJzsVvb110aJFNGnSBEdHR+rWrcvkyZMrfVGZUP1oDcYTV8U3do9pPYYP7/0QlUJl48hMk/TxXPKPHkXu5ETdZcvM2k+nPELdQ2nu3Ry9pGdn1E6rzl0Wpa9xG0tSqzFkZ9s4GkEQqjubJjsVvb3122+/5a233mLmzJlcuHCBNWvWsGnTplsqv4WaKV+bzyt/vcJPV39CLpMzvct0Xmn3SrU8cXWzzB9/JOObbwAImj8Peyt3Fi32UJixz862yG02mf9mcgcHFO7uAGhF3Y4gCCayabJT0dtbDx48yL333sv//vc/QkND6d+/P88999xdV4OE6i9DncHIP0fyT9w/OCgcWHz/Yp5p8oytwzJZ/okTJL73PgA+E1/BtU8fm8XyQOgDyJARnhxOQq7t+9vc2MpKsXEkgiBUdzZLdipze2u3bt04fvx4SXITERHBtm3beOih23d+1Wg0ZGdnl3oTqpeU/BRGbB/BubRzeNp7smbAGnrV7WXrsEymTUoiduJEJK0W13798Hn5ZZvG4+/sTwf/DgD8GfWnTWMBUPr5AeJEliAIprNZsnOn21tvd8vq//73P2bNmkX37t2xs7OjQYMG9OrV647bWHPmzMHd3b3krW7dumb9OgTLis+NZ9j2YVzLuoafox/rHlxHa9/Wd39hFWcoKCD2lYnoU1Kxb9SIoI/nWKxxYEUMCB0AwK7oXTaOBJT+RclOskh2BEEwje2/u1bA3r17mT17NsuXLyc8PJwtW7awdetWPvjgg9u+Ztq0aWRlZZW8xcTEWDFiwRRRWVEM2z6MmJwYgl2CWffgOuq717d1WCaT9Hrip05Fffo0Cnd36ixfhtzZ2dZhAcbLQQFOpZwiOd+2x77F8XNBEMzFZtdFVOb21unTp/PCCy/w4osvAtCqVauS9tbvvPNOqfbYxezt7UvdwCpUD5czLjNmxxjS1GmEuoWyqv8qApzvfqtvdZA8fwE5O3chs7OjzrLPUFWh1UY/Jz/a+LbhVMop/or+i8FNB9ssFqVfUc1Okkh2BEEwjc1Wdm6+vbVY8e2tXbt2LfM1+fn5tyQ0CoUCQPTiqEGuZFxh1J+jSFOn0cSzCeseWFdjEp30r78hfd06AAI/noPTf24frgr6hhjr6Gy9lSVqdgShbBVt2bJu3TpkMlmpt/9exSBJEjNmzCAwMBBHR0f69u3LlStXKh3j8ePHkclkHD58uMzH+/Tpw6BBgyo9fkXZdBvrbre3/vfm1kcffZTPP/+cjRs3EhkZyc6dO5k+fTqPPvpoSdIjVG+RWZG8uONFMjWZtPBuwZoBa6rlreVlyd6xg6TZswHwnTIF94cftnFEZesTYjwRdizxGFmaLJvFcaNmR6zsCEKxirZsKebm5kZCQkLJ2/Xr10s9Pm/ePJYsWcKKFSs4cuQIzs7ODBgwoNJ97Dp06ECbNm3KPF0dFRXFnj17GDVqVKXGrhTJxpYuXSqFhIRIKpVK6tSpk3T48OGSx3r27CkNGzas5M9arVZ67733pAYNGkgODg5S3bp1pXHjxkkZGRnlni8rK0sCpKysLDN+FYI5RGdFS7039ZZarmspPfXrU1KmOtPWIZlN7sGD0oWWraTzTZpK8dNnSAaDwdYh3dHAnwdKLde1lLZe22qzGLQpKdL5Jk2l882aSwat1mZxCDVPQUGBdP78eamgoMDWoVRYp06dpPHjx5f8Wa/XS0FBQdKcOXNu+5ovv/xScnd3v+3jBoNBCggIkObPn1/yuczMTMne3l767rvvbvs6vV4vzZ49WwoNDZUcHByk1q1bSz/88EPJ40uWLJHc3NykvLy8Uq+bOXOmFBQUJOl0ulvGvNPfjSk/v21eoDxhwgSuX7+ORqPhyJEjdO7cueSxvXv3sq5oyR9AqVQyc+ZMrl69SkFBAdHR0SxbtgwPDw/rBy6YVXxuPKN2jCK5IJmGHg1Z2W8l7vbutg7LLArOnCF2/ATjEfP+/QmYOaPKN0K8r859AOyL3WezGBReXqBUgsGALi3NZnEItYMkSRjy823yJpWzDKMyLVuK5ebmUq9ePerWrcvjjz/OuXPnSh6LjIwkMTGx1Lju7u507tz5juPOmTOHDRs2sGLFCs6dO8fkyZMZMmQI+/YZv288//zzaDQaNm/eXOq/8/r16xk+fLhVd2RsVqAsCMWS8pJ4cceLJOQllBQjV+d7rm6muXqVmNFjMOTn49S1C0EL5iOrBluuPev0ZO3ZtRyIO4DOoEMpt/63CplcjtLXF11CArqkpJLTWYJgCVJBAZfad7DJ3E3CjyNzcrrr8+7UsuXixYu3H79JE9auXUvr1q3JyspiwYIFdOvWjXPnzlGnTp2Sdi8VaQWj0WiYPXs2u3btKqmzrV+/PgcOHGDlypX07NkTLy8vnnjiCdauXcvQoUMB2LNnD1FRUSXlKtYikh3BprI0WYzZOYaYnBjquNRhdf/V+Dj62Doss9BERHB9+Aj0mZk4tGpFnaWfIVdVjzu8Wvu2xt3enSxNFqdTTtPev71N4ihJdlJTbTK/INQEXbt2LXXwp1u3bjRr1oyVK1fesXXLnVy9epX8/Hz69etX6vOFhYW0a9eu5M8jR45kwIABXLt2jQYNGrB27Vp69uxJQytfiyOSHcFmCnQFTNg9gYisCPyd/FkzYA3+zjXjt3dNZCTRw4ajT03FvmlT6n6xEoVL1eilUx5KuZJ7g+5lW+Q29sbutV2y42NMfHUpItkRLEvm6EiT8OM2m7s8KtOypSx2dna0a9eOq1evApS8NikpicDAwFLjtm3btswxcnNzAdi6dSvBwcGlHru53UufPn0ICQlh3bp1vPHGG2zZsoWVK1eWO1ZzsXnNjlA76Qw6pu6fysmUk7iqXFnRdwVBLkG2DsssCq9fJ3rYcHQpKdg3bkzIl2tRenraOqwKK67bORh30GYxlCQ7qeJ+LMGyZDIZcicnm7yVt4avMi1byqLX6zlz5kxJYhMWFkZAQECpcbOzszly5Mhtx23evDn29vZER0fTsGHDUm8331Qgl8sZMWIE69ev59tvv0WlUvHUU0+VO1ZzESs7gtVJksSHhz9kb8xe7BX2fNb7Mxp62uamb3MrjI7m+rDh6JKTUTVsUG0THYCuQV2RIeNSxiVSC1Jtsr14I9kRKzuCAMaWLcOGDaNjx4506tSJRYsWlWrZAsa2LcHBwcyZMweAWbNm0aVLFxo2bEhmZibz58/n+vXrJQ16ZTIZkyZN4sMPP6RRo0aEhYUxffp0goKCGDhwYJlxuLq68vrrrzN58mQMBgPdu3cnKyuLf/75Bzc3N4YNG1by3BEjRjBr1izefvttnnvuORzLuZJlTiLZEaxu+anl/HjlR+QyOXPvm2uzLRJzK4yJMSY6iYmoGjSg3rp1KL2rb48gLwcvmnk343zaeQ7FH+LRBo9aPQalrzHZ0YtkRxAAePbZZ0lJSWHGjBkkJibStm1btm/fXqq4ODo6ulQD3oyMDEaPHk1iYiKenp506NCBgwcP0rx585LnTJ06teRGgszMTLp378727dtvaT54sw8++ABfX1/mzJlDREQEHh4etG/f/pb7KkNCQujbty87duxg5MiRZvyvUX4yqbxn3mqI7Oxs3N3dycrKws3Nzdbh1Do/XP6BWYdmATC9y3SeafKMjSMyD01EBNHDRxhXdMLCqLdhPUpfX1uHZbLF4YtZfWY1j9R/hDk95lh9/uydO4l7ZSKObdsSuvE7q88v1ExqtZrIyEjCwsLu+MNcsL47/d2Y8vNb1OwIVnMw/iAfHf4IgLFtxtaYREd98SLXh7yALjkZ+0YNCVm/rkYkOgDdgroBcCj+EAbJYPX5xTaWIAjmIJIdwSoiMiN4fe/r6CU9j9Z/lLFtxto6JLMoOHWK60OHoU9Px6F5c0I2bMCu6E6nmqCtb1sclY6kqdO4nHHZ6vMXJ4261FRx/50gCJUmkh3B4jLUGYzfPZ4cbQ7t/drzXrf3qnwH4fLI//dfokeMxJCdjWO7dsYVnWpajHw7dgo7OvobLys9mnDnywYtobjmSVKrMeTlWX1+QRBqBpHsCBZVqC9k0p5JxObGUselDovuX4RKUT0a691J7t8HiC7ujNylCyGrV6FwdbV1WBbRMcCY7BxLOmb1ueWOjshdXADQpYjj54IgVI5IdgSLkSSJ9w+9T3hyOK52rizrswxPh+q/8pGzaxex48YhqdW49OxJ3RWfI3euPg0DK6p4Zed40nGb1u2IE1mCuYmt0arHUn8nItkRLGbN2TX8eu1XFDIFC3ouoL5HfVuHZLKM778nduKrxks9H3iAOkuXIK/hpzmaeTfDSelEdmE2VzKuWH1+UaQsmJudnR0A+fn5No5E+K/CwkIAs18SKvrsCBax8/pOFocvBmBap2l0C+5m44hMI0kSqcuXk7r0MwDcnxxE4PvvI1PW/H9CdnI72vm145/4fziWdIwmXk2sOr/CV1wZIZiXQqHAw8OD5ORkAJwq0MVYsByDwUBKSgpOTk4ozfy9teZ/pxas7kLaBd7+29hU6vlmz/Ns02dtHJFpJL2exFkfkLlpEwDeY1/Gd+LEWvXNsWNAR2Oyk3iM55s9b9W5lT43TmQJgrkU3wdVnPAIVYNcLickJMTs319FsiOYVYY6g0l7JqHWq7k3+F5e7/i6rUMyiUGtJu6118ndvRtkMgJmTMfzuedsHZbV3Vy3I0mSVRM9sY0lWIJMJiMwMBA/Pz+0Wq2twxGKqFSqUt2fzUUkO4LZ6Aw63tj3BvF58YS4hjDvvnko5dX3fzFtcjJxr0yk4NQpZCoVQQvm49a/v63DsokW3i1wUDiQocngWuY1q95lJi4DFSxJoVCYvT5EqHpEgbJgNouOL+JI4hEclY4sun8Rbqrqex1HwdlzRD39DAWnTiF3dydk7Zpam+iAsd9OG782gPWPoCtFzY4gCCYSyY5gFlsjtrL+/HoAPur+EY08G9k4osrL2rqV688/jy4pCVWDBoRt2ohTx462DsvmireyrJ3sKLyMjQX1aWlWnVcQhJqj+u4xCFXGxfSLvHfwPQBebPUi/er1s21AlSQZDKQsXkLaypUAOPe8j+AFC2pss8CKKkl2Eo9ZtW5H6WXszaTLyLB6vZAgCDWDWNkRTJKpzixVkDyh7QRbh1QpuowMYseOK0l0vEcOp+6CD1E4KEE0HgOglW8rVHIVaeo0orKjrDavwsvL+IFWiyE312rzCoJQc4iVHaHSdAYdb+x/g7jcOOq61mVuj7ko5NWo0E+TC9GHKfhnB7Gf70CXpUGmkAjslIt7/mz4ZLbxeXIl2LuCex3wbQZ+TSGwDdS7F+wcbfs1WJG9wp7Wvq05lnSMY0nHCHMPs8q8cgcH5E5OGPLz0aeni5U2QRAqTCQ7QqUtPbGUwwmHcVQ6svj+xbjbu9s6pLtLuQRnt8C1v5Diwsm4aE/SSTeQZKhcdQR3S8fBU1f6NQYdFGQY3xLP3Pi80hHC7oPG/aHlk+BY/a/CuJuOAR05lnSM8KRwnm78tNXmVXh5YcjPR5eWjqpePavNKwhCzSCSHaFS9sfuZ+3ZtQDMundW1S5IzkuDk1/DmR9KkhV9oYyEox7kxBpXZlw7hhE4aRiKOs3BwcO4kqNyBp0a1NmgzoKMKEi5AMkX4PpByI6DK38a3/58F1o9BZ1GG1d9aqjWPq0BOJN65i7PNC+Flxfa2Fj0GelWnVcQhJpBJDtChSXmJfL2AWOH5P81/R8PhD5g44huI/kCHP4cTm8yJi0AciX5qi7E70pDm5qFzM4Ov2lv4fncc2UXvirsirawgsG/OTR9yPh5SYLk83BlB5zZDEln4cRXxreGfaHfB8bn1zCtfFoBcD37OpnqTDwcPKwyr7KobkeXLpIdQRAqTiQ7QoVoDVre2PcGWZosmns357WOr9k6pFslX4C/PoSLv9/4XGBbpHYvkHY4m5SVa0Gvxy4khOBPPsGxVcuKzyGTgX8L49u9kyD6MPy7Cs7/Ald3wbW/oN0QuP8dcA0w25dmax4OHoS6hRKVHcWZ1DP0qNPDKvMWFynr00SyIwhCxYnTWEKFLD2xlJMpJ3Gxc2FBzwWoFCpbh3RDxnX46WVY3rUo0ZFB00dgxHa0j20keul+UpavAr0et8ceJWzLj5VLdP5LJoN6XeGptTD+KDR7DCQDhG+AZZ3g7I+mz1GFFK/unE49bbU5i4+fi20sQRAqQyQ7Qrntj93Pl2e/BIx1OnVd69o4oiI6Deyfb0wsTn0HSNDsURh/BAZ/Q86VPCIHPkH+v/8id3IiaO7HBM+bh8LFxfyxeDeAZ7+CkX9CYFtjrc/mkfDjaCjINP98NtDat6huJ8V6dTvFjQV16RlWm1MQhJpDbGMJ5ZKYl8g7B94BjHU6VaZxYOR++H0KpF0x/jm0B/R7H4I7YFCrSZ41i4xvvwPAoWVLgj9ZYJ3TPCFd4MVdxiRs/3w4871xq+u57yDADKtJNlSc7JxOPY1BMiCXWf53JkXxyo6o2REEqyuMjqbgzBm0sXFg0CN3dsGhZQscWrRAbm9v6/DKRSQ7wl0ZJAPT/p5Gpiaz6tTpFObDrplw9Avjn519YcBsaPU0yGSoL18m/rXX0VwxJkFeo0bi9+qryFRW3HZT2MH9bxsLlreMNp7mWvsAPL0OGvW1Xhxm1sizEfYKe3IKc4jKjqK+e32LzykKlAXBunQZGWT+sJmsn36iMDKyzOfI3dzwfOZpvEaMQOntbeUIK0YkO8JdfXX+K44lHcNR6cj8++bbvk4n7jhseenGak7HkdBnJjh6IEkSmRs3kjTnYySNBoWPD0Eff4xL93ttF2/dTjBmL2x6AaL+hm+fhofmwz0v2i4mE9jJ7Wjh3YLw5HBOp5y2SrJTcj+WSHYEwaIMeXmkrf2StC+/RMrPN35SqcSxRQtUoaHIVCp0aWkUnDqFPi2NtNVryNz8IwHvzcTtgSp6MheR7Ah3cTnjMovDFwMw9Z6phLiF2C4YSYJDn8HOmSDpwSUABi4zrpwA2qRkEqa/S97+vwFw7tGDoI/nVI3fOBw9YcgW+H2ysefP1teM/X96vWnryCqltW9rwpPDOZNyhoENB1p8PuVN21jifixBsIzcvw+QMHMGuvgEAOybN8NryAu49u93S42jpNeTu28fKYuXoLl0ibhJk9GMu4LPKxOq5L9PkewIt1WoL2Ta39PQGrT0rNOTJxs9abtg1Nnwy3i48Kvxz80HwiOfgpMXkiSR/ftWEj/8EENWFjKVCt/Jk/EaNhSZvArV4CtV8Phn4BkKez6EvbONW109ptg6sgqz9oms4qPnUtH9WOLKCEEwH0mnI3nhp6SvNTaKtQsOxu+NN3Ad0P+2iYtMocC1d29cuncnZelS0latJnX5cgxqNf5T37Bm+OUikh3htpadXMbljMt4OXjxXrf3bJetJ1+ETc9D2lWQ28GDH0PHUSCToUtPJ/G998nZsQMAhxYtCJr7MfYNG9om1ruRyaDnGyCXw+5ZsPt9UKigW/W6QLW4SPlyxmXytfk42TlZdD65gwMyJyckcT+WIJiVLiODuClTyD90GADPIUPwmzIZuVP5/k3LVCr8XnsNpZ8/SR99RPratahCQvAc/Kwlw66wKvRrr1CVnEs7x7pz6wCY2XUmPo4+tgnk6m5Y08+Y6LjVgZHb4Z4XkYCs334j4pFHjYmOUonPxFcI3fhd1U10btbjNeg1zfjxjnfg3zW2jaeCApwD8HPywyAZOJ923ipziiJlQTAv9aVLRD35FPmHDiNzciJ40SIC3n2n3InOzbxeGILvpEkAJH74Ifnh4WaO1jQi2RFuoTVoee/gexgkAw+GPUjvkN62CeTYWvjmadBkQ0g3eGkf1OlI4fXrxIwaRfwbU9Gnp2PfqBFh32/Cd9w4ZHZ2tom1Mnq+aUx6ALa9Yey6XI0U35Nl7a0sUaQsCKYrOHmS6y8MRRsfj11ICKEbv8PtgQEmjen90hjcHnoQdDri35qGoaDATNGaTiQ7wi2+Ov8VF9Mv4m7vzpv32KCAVpJgx3RjMa+kh9aDYejPSHZupH7+ORGPPkbewUPI7O3xnTSJsB8349C8Gt5DJZNB7+nQ5jnj1/n9cEi9Yuuoyq2k306KdZIdpaexSFms7AiCafKOHiV65CgM2dk4tmtH2A/f49C4scnjymQyAmbNQhkQgDY6mpTFS8wQrXmIZEcoJTo7muUnlwPwRsc38Ha08kkmvQ5+mQAHi/6R3P8OPLGCvOOniHhiECmLlyAVFuLcrRv1f/0Fn5dfsm7vHHOTyeDRxVC3M2iy4NtnIb96/DAvLlK21g3oCu/i4+eii7IgVFbu3weIGT0GQ34+Tl27ELJmNQp3d7ONr3BxIfD99wBI37AB9cWLZhvbFCLZEUpIksSsQ7PQ6DV0CezCYw0es24AOg1sHm48mi2Tw+PL0TUfQdzUN4keNozCa9dQeHsTtGABddestk4nZGtQ2sOz34B7XUi/BptHgEFv66juqpl3MwCS85NJK0iz+HxK0UVZEEySd/QosePHI2k0uPTqRd0VKypVn3M3Lj174vrgA2AwkLxwodnHrwyR7Agl/oz6kyOJR3BQODCj6wzrnr4qzDeualz4DRQqpEFrST8rce3Bh8j+7TeQyfD833M02LYV90cerpJ9HEzi4gvPbQQ7J4jYe2NlqwpztnMm1C0UgIvplv/tTeEpCpQFobIKzp0jduw4pMJCXHr3ps6SxRa96sFv0iRQKsnb/zd5h49YbJ7yEsmOAECBroBPjn8CwMhWI617yae2ADY+BxF7wM6ZgvZziZz5FUkffYQhNxeHVq0I/f57AmbMMOtya5UT0BIenGf8+K8PIfa4beMph2ZextWdC+kXLD6XwlsUKAtCZWgiI41bV3l5ON1zD8GfLrT49r+qXj08n3kGgJRFiyw6V3mIZEcA4MuzX5KYl0igcyAjWoyw3sRaNWx8HiL2ojO4kJD6KFGvzUdz/gJyNzcC3ptJ6MbvcGxVvS/PLLd2Q4wNEw06+HEUaHJsHdEdFW9lWeP4ecnR8wyR7AhCeWmTk4keNQp9ejoOzZtT5/PlVru802fsy8hUKgpOniQ//IRV5rwdkewIJOQmsPassXPmax1fw0HpYJ2JdRr4fijS1d1kRHkQsT2IzD/2A+D+xBM0+GMbnoMHI1MorBNPVSCTwaOLjPU7GZGwbaqtI7qj4mTnQpoVVnaKtrH0aSLZEYTyMOTnEzt2HLr4BFT16lF31Re3XPtgSUpfX9wfN9Z+pn+51mrzlkUkOwKfHP8EjV5DR/+O9K/X3zqTGvSwZQwFR/4iarcfiYed0GfnYt+oEfW++ZqgObOrxp1WtuDoCYO+MBZpn/oWLm6zdUS3VbyNFZsbS5Ymy6Jz/fd+LEEQbk/S64mbOhX1uXMoPDyou+oLm3xP9Ro+HICcXbspjIqy+vzFRLJTy51IPsGfUX8il8l5s9Ob1in8lST0P04hccMeonb4oE5VInd2xn/aW4Rt+RGnDh0sH0NVV68bdJto/Hjb61V2O8vd3p1gl2AALqVfsuhcpe7Hysuz6FyCUN0lf7KQ3F27kdnZUWfZZ6hCbHOJs32DBrj07AmSRMZ3G20SA4hkp1aTJIlFxxcB8ETDJ2jq1dTycxoMZH48hmsf/kHGVWdAhtsjj1D/j214DRtWvTogW1rPN8GjHmTHwV8f2Tqa27JWkbLc0RFZ0TFZUaQsCLeXuXlzyaWegbNn2/wXSI/nBgOQ9csvGAoLbRKDSHZqsYPxBwlPDkclV/Fym5ctPp/6/HmuP96fhPUH0GsUqIK8CFm/nuAF87Hz87P4/NWOysl4szvAkRUQVzVPZ1m1SLm4i3Ka5fv6CEJ1lH/iBInvzwLAZ/x43B99xMYRgUv37ij9/dFnZpK7e7dNYhDJTi0lSRJLTywF4JkmzxDgHGCxufTZ2SR+8CGRTz1FwZU45EoDfk+0pf6fe3Hu3Mli89YIDftAq2cACX571dhhuoqx7vHzoi7KGaKLsiD8lzYpmbiJryJptbj264vP+HG2DgkAmVKJ+6AnAMj8YbNNYhDJTi31V/RfnEs7h6PSkRdbvWiROSRJIvOnn7n24ENkfPMNGCTcQgqoP6Uj3rO/FVtW5TVgtrFoOfEM/LvK1tHconhlJyorinxtvkXnKl7ZEdtYglCaobCQuIkT0aWkYN+oIYFzPkYmrzo/4j2efBKAvIMH0SYmWn3+qvNfQrAavUHPZyc/A2BIsyEWuf9KfekS14e8QMK0aejT0lB5ygjplUrw0w2we2G18Yi1UD4uvtBnpvHjfXOhoGqtavg4+uDn6IeExKUM6xQp68Txc0EoIUkSibNmUXDqFHI3N+p89hkKF2dbh1WKqk4dHItqh7K3b7f6/CLZqYX+iPqDq5lXcVW5MrzlcLOOrc/JIXH2bCIHPUnB8ePIHB3x6+1L/b5xODf2g8Hfgp2jWeesFdq9AL7NjInO/gW2juYW1qrbUYouyoJwi4zvviNr848glxP8ySdV9t5AtwcfBCD7jz+sPrdIdmoZg2Rg9enVAAxvMRw3lZtZxpUkiaxffzVuWW34CvR6XB94gAbv9Mfb7xQyByd47jtw9TfLfLWOQgn9PzR+fPQLSI+0bTz/Ya3mgiX3Y4kuyoIAQP6//5I0ew4Afq9NwaVHdxtHdHtuA/qDXI761GkKY+OsOrdIdmqZ/bH7uZZ1DWc7ZwY3HWyWMdWXL3P9hReIn/om+tRUVKGh1F2zmjpjB2B39nPjkx5dAoGtzTJfrdWwD9S/H/SFsPt9W0dTSnOv5oDli5SLt7H06VVrK08QbEEbH0/sq5NAp8Pt4YfxGjnS1iHdkdLXF6dOxkMpOdutu7ojkp1aZs2ZNYDxBJapqzoGjYbkRYuMW1bHjiNzcMB38mTCfv0Fl2ZB8NMY4xM7jYHWT5sauiCTFa3uyODcTxBz1NYRlShe2bmWeQ2NXmOxeYq3sXTp4ui5ULsZNBpiX5mIPj0d+2bNCPzwA+s0hTVRyVbWjp1WnVckO7VIeFI4J1NOYie344VmL5g0Vv7x40Q+MYi0FStBp8Olbx8abNuKz0tjkMsM8P1QUGdBnXugf9VtiFftBLQ0XhYKsOs9m4ZyM38nfzzsPdBLeq5lXrPYPCX3Y4mVHaEWKy5ILrkK4rOlyB2rRy2ky/29AFCfPo0uJcVq84pkpxZZc9a4qvNYg8fwdfKt1Bj63FwSZ83i+vNDKIyIQOHrQ/DixdT97DPsgoKMT9o1ExJPg5M3PL0elCpzfQkCQK9poFDB9X8g8m9bRwOATCajsWdjAC5nXLbYPOJ+LEGAzO9/IOvHLcaC5E8XYhccbOuQys3Ozw+HVq0AyN23z2rzimSnlriccZn9sfuRIWNEyxGVGiM/PJzIxx4n49vvAHB/chANfv/dWHRW7MpOY7dfgIErwL36/COsNtyDof1Q48f75to2lptYI9kpuR+rsFDcjyXUSgWnT5P0ofGwgu+kSTh37WrjiCqueHUn5689VptTJDu1xJdnvwSgb72+1HOr2LFESacjZelnXB/yAtr4eOzq1CHky7UEffQRCnf3G0/MTYafxxo/7vQSNLbSDeq1UffJILeDqL8h6h9bRwNAI89GAFzJuGKxOeSOjsiKlutFF2WhttGlpxN7U4dk79GWaQhraa733w8YGwwa1GqrzCmSnVogtSCV7VHGJk4jW1asWr8wNpbrLwwlddkyMBhwf/xxwn7+6dbfJiQJfh4HeSng1xz6zTJX+EJZ3OtA+6K6q30f2zaWItZY2QFQeHgAoM/MtOg8glCVSDodcVNeQ5eYiCo0lMA5c6pFQXJZ7Js2RRkYiKRWk3f4sFXmFMlOLbD58mZ0Bh1tfNvQ0qdluV+X9dvvRA58goITJ5C7uBC0YAFBcz9G4eJy65OPrYGrO0FhD0+uATsHM34FQpm6TzGu7kTuh+sHbR0NDTwaIENGujqd1IJUi80jkh2hNkpZtIj8w4eROTlR57OlZX8friZkMhkuPXoAxtUdaxDJTg2nNWj54dIPADzX9LlyvUafm0vc1KnEv/EGhtxcHNu1I+znn3F/5OGyX5BxHXbMMH7c733wb26O0IW78ah742TWXtuv7jgqHUu2SC1apOzpAYhkR6g9sv/cQdpq4wGToNkfYd+woY0jMp1zt24A5P0jkh3BDP6K/ovkgmS8HbzpX+/uNTQFJ08SOfAJsn/9DeRyfCZMoN5XG1DVuU2hsSTBr6+ANg9CuhlrdQTr6TEF5EqI3AcJp2wdjVXqdkpWdkTNjlALaK5dI2HaNAC8RozA7YEHbByReTh36QxyOYXXrlnlYlCR7NRw3100npx6qvFT2Cluf8u4pNeTsnw5Uc8PQRsbi11QEPW+/grfCeORKZW3n+D4OuMPWqUDPP4ZVKFbdmsFjxBo8YTx44Of2TYWbiQ7Fj2RJbaxhFpCn5tH7CsTMeTn43TPPfi9NsXWIZmNwsMDh5bGsgprrO7Y/CfTsmXLCA0NxcHBgc6dO3P06J27wmZmZjJ+/HgCAwOxt7encePGbNu2zUrRVi+XMy5zPOk4CpmCpxvfvoOxNimZ6OEjSF2yFPR63B5+mLCff8Kpffs7T5AZAzumGz/uPR28G5gxeqHcuo43vj+3BbKse9/MfxUXKVtlZUckO0INJkkSCW+/TWFEBEp/f4I/XXjnXzyrIed7i7ayrFC3Y9NkZ9OmTUyZMoWZM2cSHh5OmzZtGDBgAMnJyWU+v7CwkH79+hEVFcXmzZu5dOkSq1atIrgaNVSypo0XNwLQJ6QP/s5lX8CZ+/cBIgcOJP/ff5E7ORE092OCFsxH4XaXqyQkCba+BoU5UKcTdBlr7vCF8gpqB/W6g0EHR1faNJTiZOdq5lV0Bp1F5lB4GBsL6sQ2llCDpa9dS86OHWBnR53Fi1D6+Ng6JLNzKa7bOXTI4k1CbZrsLFy4kNGjRzNixAiaN2/OihUrcHJyYu3atWU+f+3ataSnp/Pzzz9z7733EhoaSs+ePWnTpo2VI6/6cgpz+D3id6DswmRJpyP5k4XEjB6NPiMD+6ZNCf1xM+6PP16+44wXf4crfxpPAz3+GcgV5v4ShIroNsH4/tg60OTYLIxgl2CclE5oDVquZ1+3yBwKUaAs1HB5hw+T/MlCAALenoZj27a2DchCHNu0QebggD49ncJrlrtmBmyY7BQWFnL8+HH69u17Ixi5nL59+3Lo0KEyX/Prr7/StWtXxo8fj7+/Py1btmT27Nno9frbzqPRaMjOzi71Vhv8EfkHBboCGrg3oIN/h1KPaZOSuD5sOGmrVgHg8dxgQjdtxD4srHyDa3Lhj7eMH987EXybmDN0oTIaDQDvhqDJghNf2ywMuUxu8bqdG9tYWRYZXxBsSZuQQNzkKSV9zTwGD7Z1SBYjU6lKErn8f/+16Fw2S3ZSU1PR6/X4+5feXvH39yfxNpXZERERbN68Gb1ez7Zt25g+fTqffPIJHxa1zi7LnDlzcHd3L3mrW7euWb+Oqurnqz8D8ESjJ0qt1BScOUvUU09TcPw4chcXgj9dSODMmcjt7cs/+L65kB1rLI7t8bqZIxcqRS6HLuOMHx9eDnrLbCGVh+WTnaL7scQ2llDDGAoLiX11knG1vVkzAt5/r9o2Diwvp3s6AjU42akMg8GAn58fX3zxBR06dODZZ5/lnXfeYcWKFbd9zbRp08jKyip5i4mJsWLEtnEl4wpnUs+glCl5pP4jJZ/P3v4n1194AV1KCvaNGhK25UfcHnywYoMnnTf+MAV4cD6onMwYuWCSNs+BoxdkRhu3GG3E0kXKYhtLqKmSZs9Gffo0cnd36ixZjNyh5jdndbrnHgDyjv5r0bqdSpd2FxYWkpycjMFgKPX5kJCQcr3ex8cHhUJBUlJSqc8nJSUREBBQ5msCAwOxs7NDobhRH9KsWTMSExMpLCxEpbr1dm17e3vsK7JqUQNsubIFgF51e+Ht6A1A6qpVpBTtATvf14PghQsr3oFTkmDb68ZC2CYPQ5Oa0e+hxlA5GZsMHlwCx9ZC09s0gbQwS18bUbyNJanVGNTqWvEDQaj5Mn/+mcyNm0AmI3j+PFS1ZBfCsU0bZCoV+tRUCiOjsK9fznKKCqrwys6VK1fo0aMHjo6O1KtXj7CwMMLCwggNDSWsvDUfgEqlokOHDuzevbvkcwaDgd27d9P1Nre43nvvvVy9erVUgnX58mUCAwPLTHRqI61eW1KY/ESjJ5AkieTFi0sSHa9hQ6m7fHnlWo2f/wWu/wNKR3jQ9h17hTJ0GG58f3U3pEfaJITibayEvASyC81fIyd3doaiI7hidUeoCdQXL5I48z0AfMaNw+W++2wbkBXJ7e1xLDpkZMmtrAonO8OHD0cul/P7779z/PhxwsPDCQ8P58SJE4SHh1dorClTprBq1SrWr1/PhQsXGDt2LHl5eYwYMQKAoUOHMq2ocyTA2LFjSU9P59VXX+Xy5cts3bqV2bNnM378+Ip+GTXWnpg9ZGoy8XP0o2tgV5IXLCDtc+M2n98br+M/bVrlejXoNLCz6EqIeyca63WEqse7ATToDUgQvt4mIbip3Ah0DgTgcrr5V3dkMtmNrSxRtyNUc/rsbONN5hoNzj164DN+nK1DsrqSup3jxyw2R4V/6p08eZLjx4/TtGlTkyd/9tlnSUlJYcaMGSQmJtK2bVu2b99eUrQcHR2N/KaOvHXr1uXPP/9k8uTJtG7dmuDgYF599VXefPNNk2OpKbZcNW5hPd7gMdLmzidjw1cA+L/zDl4vDKn8wEdWQuZ1cAmAbhPNEapgKR1HwrW/IPwr6PU2KK2/6tnQoyEJeQlcy7xGx4COZh9f6eGBPiVVrOwI1ZpkMBD/5ltoo6OxCwoiaN5cZLWwC71jO2MD24KTlrvypsLJTvPmzUlNNd+NxhMmTGDChAllPrZ3795bPte1a1cOW+lK+OomMS+Rg3HGTpQP7c0zJjoyGQHvvYfns89UfuC8VNg/3/hxnxlgX31v260VGj8AroGQkwAXfoVWT1k9hIYeDfk77m+uZl61yPgKdw9AbGMJ1VvaF6vI3bMHmUpF8JIlKD09bR2STTi2aQ0yGdroaHSpqRZpoFjhFHLu3LlMnTqVvXv3kpaWVit72FRVv0f8joTEyKt10K4yrugEzJhuWqIDsHcOaLIhoLXxxI9QtSnsoP1Q48fHvrRJCA08jFeHXMuyTKMwhafooixUb3kHD5KyZAkA/tPfxbFlCxtHZDsKNzfsGxq/ZxScPGmROSqc7PTt25fDhw/Tp08f/Pz88PT0xNPTEw8PDzxraVZaFUiSxNaIrdxz2cCAH42da33GjcPzOROTk5TLN35gPjBHXPRZXbQfBjI5XD8AKZesPn1Dj4YAXMu0ULIj7scSqjFtQgJxr71ubBz45CA8n7793YW1hWPbdgDknzhhkfErvI21Z88eS8QhmOhyxmU4d4VXfzEgM4DH00/h80rZ24MVsucjkPTQ5CEI7W76eIJ1uAdD4wfh0lYI3wADPrLq9GHuxpOZ6ep00tXpeDl4mXV8kewI1VWpxoHNmxEwfbqtQ6oSHNu1I/OHHyxWt1PhZKdnz56WiEMw0a7j3/P6Fj0qHbj06kXAzJmmd96MPwnnfwZk0PtdM0QpWFW7IcZk5/T30Pd9UFjvxmQnOyeCXYKJy43jWuY1vAIslOxkZJp1XEGwtKQ5c25qHLhE9Ikq4tiuLQDqM2eQCguRmbmdTKW++2VmZrJmzRouXLgAQIsWLRg5ciTu7u5mDU4oH21BPmFzf8ArF7T1AglasKByx8v/66+iazhaPQ3+tXc/udpq1A+cfCAvGa7thsYDrDp9A48GJcnOPQH3mHXs4podsbIjVCdZv/xC5ncbAQieNxdVnTo2jqjqUIWGovDwQJ+ZifriRRxbtzbr+BUuwDh27BgNGjTg008/JT09nfT0dBYuXEiDBg0q3GdHMJ0kSVx461XCYrXkOchosGIVChdn0we+fhCu7gS5Enq9Zfp4gvUp7KB1UXH6yW+sPn1xkbIlTmSJbSyhulFfukRCSePAsbiIXZJSZDIZDq1aAVBw9qzZx69wsjN58mQee+wxoqKi2LJlC1u2bCEyMpJHHnmESZMmmT1A4c4yvv4Guz8PYJDBv+PvwzmsgemDShLsnmX8uN0LxkZ1QvXU9n/G95f+gPx0q05tySJlkewI1Yk+K4vYVyYiqdU433svPqIRbpkcik6kqc+dM/vYlVrZefPNN1HetE2iVCqZOnUqx45ZrvuhcKuC06dJmjsXgK96y+n46CjzDHx1N0QfAoU99JxqnjEF2whoZXzTF8LZH606dcnxc0skO6KDslBNSHo9cVNeu9E4cMF8ZDfd7yjc4NiyJQDqs1Ug2XFzcyM6OvqWz8fExODq6mqWoIS702dlETdpMuh0HG4i43ivQDr4dzB9YEmCfcYEinteBLcg08cUbKtN0erOyW+tOm199/rIkJGhySCtIM2sYxev7Bhyc5G0WrOOLQjmlLxwIXn//IPMwYE6yz6rtY0Dy8OhKNnRXL2KoaDArGNXONl59tlnGTVqFJs2bSImJoaYmBg2btzIiy++yHOm9nQRykWSJOLffgdtfDzZPo58/pCcB+s/hFxmhh44kfsh9qhxVedecS1EjdDqaWPtVXw4JF+02rSOSkeCXIzJsrlXdxRublB02lCflWXWsQXBXLJ++430NWsBCJr9EQ7Nmtk4oqpN6eeHwtcH9HrUF837varCPx0XLFjAoEGDGDp0KKGhoYSGhjJ8+HCeeuop5hZtqQiWlbFhA7m7d4OdHfMflyhwkPFg6IPmGbz4WogOw8A1wDxjCrbl4guNik5iWblQuaRux8ydlGUKhTHhQWxlCVVTwdlzJLxr7KHjPWYMbg89ZOOIqj6ZTIZjC8tsZVU42VGpVCxevJiMjAxOnjzJyZMnSU9P59NPP8Xe3t6swQm3Ul+6RPKCTwBIG/0Yl/x01HWtS1Mv0y9mJfowRP0Ncjtx2WdN07Zo1fXsj2AwWG1ay9btiOPnQtWkS00ldsIE403mPe/D91Xx/bS8HErqdsx7IqvSzVicnJxoVXRMTLAOQ2Eh8VPfRNJqcbn/fr5omQsxMCB0gOkNBOHGqk7b58CjrunjCVVHw35g7wbZcRBzBOp1tc60RSs7ljx+rhPJjlCFSIWFxE58FV1iIqqwMIIXLBAFyRVQfCKr4JwNkp1Bgwaxbt063NzcGDRo0B2fu2XLFrMEJtwqdelnaC5dQuHpiceMafy9+wkA+tfrb/rgceFwdRfIFNB9iunjCVWLnQM0fQROfQtnN1st2bl5ZUeSJPMk5UXE8XOhKkr8aDYF4eHIXVyos2wZCnFwp0IcWxiTncJrERjy8pA7m6FvHOXcxnJ3dy/5JuXm5oa7u/tt3wTLyA8PJ23NGgACZr3PAfVZNHoNIa4h5tnCOrDQ+L7V0+AVZvp4QtXT6knj+3M/g15nlSnD3MOQISNTk0ma2jInssSVEUJVkbFxI5mbNoFMRvAnC7CvL76XVpTS1xdlQABIEuqiWxrMMm55nvTll1+WfLxu3TqzTS6Uj6GggPg33zLekPv447j168eOPZMB6B/a3/TfltOuwYXfjR93n2xitEKVFdYLnLwhPxUi90HDPhaf0lHpSLBLMLG5sVzLvIaPo4/ZxhY1O0JVkn/sGIkfGi/c9Z08WXRINoFDixbkJiaiPncOp44dzTJmhQuUe/fuTWYZ31yys7Pp3bu3OWIS/iP1iy/QxsSgDAjA/913yNfm83fc34CZtrAOLwck44kdPzOsEglVk0IJzQcaP7Zig0FLdVIW21hCVaGNiyN24qug0+H20IN4j37R1iFVa47FdTtmPJFV4WRn7969FBYW3vJ5tVrN33//bZaghBsKo6JIX23cvvKfNg2Fqyv7YveZbwsrLw1OFB1H7jbBxGiFKq/VU8b3F34DncYqU1rqRNaNbSxx9FywHUNeHjHjJ6BPT8e+WTMCP/zQrLVptZElTmSV+zTW6dOnSz4+f/48iYmJJX/W6/Vs376d4OBgswUmGJsHJn74EZJWi3P37rj27wfAn1F/Ambawjq2BnQFENgGQnuYGrJQ1dXtAm7BxlNZV3ZCs0csPmV9j/oARGZHmnXckisjxMqOYCOSwUD8W2+huXgRhbc3dZd9htzJydZhVXsOxUXKkZHoc3NRuLiYPGa5k522bdsik8mQyWRlblc5OjqydOlSkwMSbsjZtYu8AweQ2dkR8O47yGQyCnQF/BP3D2CGLSytGo5+Yfy428SSjrRCDSaXQ4sn4NBnxq0sayQ77sZkJyIzwqzjim0swdZSli4lZ+cuZHZ21Fm6FLsgcb2OOSi9vLALCkIbH4/63HmcO3cyfczyPjEyMhJJkqhfvz5Hjx7F19e35DGVSoWfnx8K0UvAbAz5+STNmQOA16iRqEJDATgYdxC1Xk2Qc5DpW1inN0FeCrjXheaPmxixUG20esqY7Fz6AwrzQWXZ30RD3UIBSFOnkaXJwt3ePKc2xTaWYEtZv28l7fMVAATMmoVT+3Y2jqhmcWjZsijZOWfdZKdevXoAGKzYfbU2S9+wAV18AsqgQHxeeqnk83/F/AVA75Depm1hSRIcWmb8uMtYUNiZEq5QnQS2BY8QyIw29lZq/phFp3NRueDn5EdyfjKRWZG09WtrlnFLkp3sbCSDAZncDHfDCUI5FJw5Q8I77wDGX0Y9nhho24BqIIdmTcnZsQPNJfPckVWp7w6XLl1iwoQJ9OnThz59+jBhwgQumvnSrtpMn5lJWtHlcX6TpyB3dARAa9CyN2YvYEx2TBKxF1IvgcoV2r1g2lhC9SKTQbOiBOfCr1aZMszd2G8kMst8dTvKomQHgwFDdrbZxhWEO9EmJRE7bjySRoNLr174TRFNWC3BvkkTANSXLptlvAonOz/++CMtW7bk+PHjtGnThjZt2hAeHk6rVq348UfrHWetydJWr8aQk4N9kya4PXzj8rjjScfJLszG096T9n7tTZvk6Crj+7bPgYObaWMJ1U/xtuXlP61yKqu4bsecyY5MpSrprirqdgRrMBQUEDt+ArqUFOwbNSRowXxxFYSFOBQlO5pr15C0WpPHq/DdWFOnTmXatGnMmjWr1OdnzpzJ1KlTefLJJ00OqjbTpaeT/rXxKLjvpFdLLc3/FW3cwupVtxcKuQn/wDKuw+U/jB/fM7ry4wjVV3BHcA2EnASI2AeNzdCv6Q4skeyAcSvLkJeHLiOjpK5NECxBkiQS3nkH9dmzKDw8qLN8uVlOCQllUwYFIXdxwZCbiyYiEocmjU0ar8IrOwkJCQwdOvSWzw8ZMoSEhASTghGMtTqSWo1Dy5a49OpV8nlJkkqSHZO3sI6tBckA9e8HX9P+BxKqKbnceFcWwIVfLD5d8TZWRJaZT2SJLsqClaStWEH2tj9AqSR4yWJUdcVlyZYkk8lKtrI0ly+ZPF6Fk51evXqV2TzwwIED9Ogh+rSYQp+TQ8Y33wLg/dKYUgXI59POk5SfhKPSkS6BXSo/ibYAwjcYP+40xpRwhequuDD54jaL35VVvLITmxtLof7WpqSVdeP4eZbZxhSE/8resYOUxUsACJgxHedOpp8OEu6ueCtLbYaa4ApvYz322GO8+eabHD9+nC5djD90Dx8+zA8//MD777/Pr7/+Wuq5QvllbNyIIScHVYMGuPYpfW/R7ujdAHQP7o6D0qHyk5zdAgXp4B4CjQeYEq5Q3YV0A0cv4/8P1w9A/V4Wm8rH0QcXOxdytblcz75OI89GZhlXHD8XLE194YLxbkLA84UX8HzmGRtHVHuUrOyYoUi5wsnOuHHjAFi+fDnLly8v8zEwLkHp9XoTw6s9JJ3uxqrOqFG3HKMtTnZM2sKSJDi60vjxPaPAlLofofpTKKHpw3DiK+P1ERZMdmQyGfXd63M69TSRWZHmT3bENpZgAbrUVGLGjUcqKMC5Wzf835xq65BqleI6HbUZjp9XeBvLYDCU600kOhWTs2s3usREFF5epU5gAURnRxORFYFSpqRHsAlbhXHHIeEUKB2g/a11V0ItVHwq68LvYOEeWqHuoYB563bElRGCpRgKC4md8Aq6hARUoaEEf7oQmbLC6wOCCewbNQKZDH1KKrq0NJPGqlCyo9Vq6dOnD1euXDFpUuFW6V9/BYDn4GeR29uXemxf7D4AOvh3MK377PF1xvfNB4KTV+XHEWqOsPvA3g1yEyH2X4tOVXJthDmTHbGNJViAJEkkTp9BwcmTyN3cqPP5chTu5un8LZSf3NkZuxBjIbjmkmlFyhVKduzs7EpdCCqYh/rSJQqOHQelEo9nB9/yeHGyc1+d+0yYJNt4FxJAh+GVH0eoWZT20Mh4wWxJOwILKU52orKizDam2MYSLCF97Zdk/fILKBQEf7oQ+7AwW4dUazk0Nk9zwQpvYw0ZMoQ1a9aYNKlQWuYPmwFw7dMHO3+/Uo/lFuZyPPE4YGKyc3YzaPPBpwmEmHCaS6h5mhRtm17cZtFpbu6ibJDMs2WmFEfPBTPL2b2b5AULAPB/6y1c7r3XxhHVbvZNi4uUTVvZqfAGpE6nY+3atezatYsOHTrgXNTBtNjChQtNCqi2MajVZBWdYPN4+ulbHj+UcAidpKOeW72SmodKOb7e+L79UHG7uVBaw74gVxqvD0m7Bt4NLDJNHdc6KOVK1Ho1iXmJBLmYfkO0WNkRzKngzFniXn8DJAmPZ5/Fc8jztg6p1is5fn7pEqa0cKxwsnP27FnatzdeVXD5cullJZMupqylcnbuwpCdjTIoEOduXW95fF+MGbaw4k9CwklQqKDNc5UfR6iZHD2g3r0Quc94E3q3CRaZRilXUs+1HteyrhGRFWHWZEeXmYkkSeJ7kFBp2rg4YsaNNZ686t6dgOnviv+fqgD7pk0BKLx61aRrIyqc7OzZs6fSkwm3yiy6T8xj0JO3HDc3SAb+jjM2cOxZp2flJwkvWtVp+gg4e1d+HKHmavKQxZMdgPoe9bmWdY3IrEi6B3c3ebziZAetFkNePgoX5zs+XxDKos/JIebll9GnpGLfuDHBiz4VJ6+qCLugIOTOzhjy8tBcv17pcSp163mx2NhYYmNjTRmiVtMmJZF/5AgA7gMH3vL42dSzpKvTcbFzqfzFn4V5cPoH48eiMFm4nSYPGN9HH4L8dItNE+oWCpjvRJbM0RFZ0elFsZUlVIak1RL36iQ0V66i9PWl7soV4s6rKkQml2Pf2NhvR3PlaqXHqVSfnVmzZuHu7k69evWoV68eHh4efPDBBxgs3Kejpsneug0kCccOHVDVCb7l8f2x+wHoFtQNO4Vd5SY59zMU5oBnGISK6zyE2/AMBb8WIOnhyk6LTVPfw7wXgspkMnH8XKg0SZJInDWLvIMHkTk6UmfF59gFBto6LOE/iouUC69U/kRWhdfp3nnnHdasWcPHH3/MvUVV6gcOHOC9995DrVbz0UcfVTqY2ibr998AcH/0kTIfL052TKrXOWnsyky7IcbLHwXhdpo8CMnn4NI2aPOsRaawxO3nCg8PdElJYmVHqLC01auNp2HlcoI/+QTHFi1sHZJQhpIiZRNWdiqc7Kxfv57Vq1eXuveqdevWBAcHM27cOJHslJPm2jU05y+AUonrgFvvqErKS+JC+gVkyCpf25ARZbzzCBm0ubV/jyCU0uQh+HsBXN0NOo2xB4+ZFW9jpavTyVRn4uHgYfKY4uZzoTKyt28n5RPj6WH/adNw7X2/jSMSbse+kfF6mcKIym9/V/hX/fT0dJoWVUffrGnTpqSnW26vv6bJ3mrsaeJy770lvUJudiDuAACtfFrh7VjJouJTG43v6/cE9zqVG0OoPYLagYu/cdsz6m+LTOFk50Sgs3GbIDLbPKs74vi5UFH5J04QP/VNwHi5p9cLQ2wckXAn9g0bAqBLTKz0GBVOdtq0acNnn312y+c/++wz2rRpU+lAapucnTsAcHvowTIf/yf+H4DKr+pIEpz6zvhxm/9VbgyhdpHLoXHRKuPlHRab5ubmguag8DC28Rc1O0J5FMbEEDtuPFJhIS7334//W2/aOiThLhTu7ij9/O7+xDuo8DbWvHnzePjhh9m1axdduxr7whw6dIiYmBi2bbNsB9aaQhMRYawqt7PD5f5bl051Bh2HEw4D0DXo1t475RJ9yLiNpXKBZmXXBAnCLRoNgPANcGUHMM8iU9R3r8/B+INEZJrnRJZY2RHKS5+ZScyYl9BnZODQvDnBC+YjUyhsHZZQDvaNGkFCQqVfX+GVnZ49e3L58mWeeOIJMjMzyczMZNCgQVy6dIkePcRpn/LI2WH8rdm5SxcUbm63PH4u7Rw5hTm4qlxp6dOycpMUFyY3Hwgq0XtEKKf6PUFuBxmRxm7KFlCysmOmbSxxZYRQHlJhIbGvTKQwMhJlYCB1Pv8cubP43lhdFNftVFaluiYFBQWJQmQTZP9ZtIU1oH+Zjx+MOwhAl8AuKOWV+CsqzDceOQdoKzomCxVg7wr1ukLkfuPqjvdYs09RnOyYf2VHbGMJZZMkiYTp08n/91/kzs7UXbHilnsIharNvlFDk15f4ZWd7du3c+DAgZI/L1u2jLZt2/K///2PDLFnflfauDg0Fy6AXI5Lnz5lPqe4XqdbULfKTXJxq7HI1CMEQio5hlB7NSpKwi3Ub6c42YnLjUOj15g83s1XRghCWVKXLyfrl1+Nt5gvXoxDk8a2DkmoIFNXdiqc7LzxxhtkZ2cDcObMGaZMmcJDDz1EZGQkU6ZMMSmY2iB3v7F3jmP7dmWewsouzOZM6hkA7g2q5G27p4tOYbV5TvTWESquYT/j+6gDxg7cZubt4I2byg0JiaisKJPHE0fPhTvJ+u13UpcaD9UEzJiBS3dxi3l1ZN/AtAuKK/yTMDIykubNmwPw448/8uijjzJ79myWLVvGH3/8YVIwtUHuXuPFni73lX3X1ZGEIxgkA2HuYQS6VKKTZ24KXCu6v6y1ZRrDCTWcbxNwDwG9BiLNfwRdJpPdaC5ohrqdGx2UM00eS6hZ8sPDSXj7bQC8Ro7E89lnbByRUFlyZ2eUQZW/PLjCyY5KpSI/Px+AXbt20b+/ccnby8urZMVHKJtBrSav6C4sl55ld0X+J864hVXpVZ3zPxtb/ge1A2/TMmGhlpLJoFHR6s5Vy25lRWaaIdkpWtmRCgowqNUmjyfUDIXR0cSOn4Ck1eLStw9+r79m65AEE5myulPhZKd79+5MmTKFDz74gKNHj/Lwww8DcPnyZerUEY3r7iT/33+R1GqUAQElF5vdTJIkDsYbi5MrfeT8zGbj+1ZPVzZMQbiR7FzZYezZZGbmPJEld3GBohuqxVaWAKDPyiLmpZeNR8xbtCB43jxkYku/2vMvWqWrjAr/7X/22WcolUo2b97M559/TnCw8QLLP/74gwceeKDSgdQGufuM9Tou992HTCa75fGo7CgS8hKwk9vR0b9jxSfIuA4xhwEZtBhkYrRCrRZ2HyhUkBkNqVfMP3xRsmOOmp1Sl4GKZKfWkwoLiZ34qvGIeUAAdZYvR+7kZOuwBDOw8/Ot9GsrfK45JCSE33///ZbPf/rpp5UOojaQJIncfUX1OrfZwipe1Wnv3x4nu0r84zz7o/F9aHdwEzf3CiZQORv/P7r2l3F1x9e8p1dKkp3sKAySAbnMtN+6FR7u6FNTRRflWk6SJBJmzSL/yBHkTk7UXfG5OGIuAJXss6PX6/npp5+4cOECAM2aNWPgwIEolZUarlYojIxCGxODzM4O5y5dynzO4fiirsmBldzCKk52xBaWYA4N+91IdrpNMOvQwS7BKOVKCnQFJOUlVa4Y/yZKD08KESs7tV3a6tVkbf7ReIv5pwtxKOMeR6F2qvCvU+fOnaNRo0YMGzaMn376iZ9++onhw4fTqFEjzp49a4kYa4Tc/cZVHad77imza6feoOd40nEAOgd2rvgEyRcg6ayx+23zx+7+fEG4m+J+O9cPgibXrEMr5UrqudYDzHNHVnGRsk6s7NRa2dv/vHGL+dtv49Kz7BOvQu1U4WTnxRdfpGXLlsTGxhIeHk54eDgxMTG0bt2aMWPGWCLGGiGvqL/O7bawLqZfJEebg4udC029KvHbSHFhcqN+4Hhr/x5BqDDvBuAZBgYtRO4z+/DmLFK+cfxcJDu1UcHp08S/WXSL+ZAheA153sYRCVVNhZOdkydPMmfOHDxvaojn6enJRx99xIkTJ8waXE2hz80j799jADjfV3ayczTxKAAd/DtU/IoISYKzxaewnqp0nIJQys1H0C3QTdmct5/faCyYZfJYQvWijYsjZtx4JI0G5573iVvMhTJVONlp3LgxSUlJt3w+OTmZhg1Nu7uipso/chi0WuxCQlCFhpb5nOJk556Aeyo+QcJJ4w3ndk7QWJyIE8zo5qsjzHwE3SLJjljZqVX0OTnEvDwWfWoq9k2aEPzJQmSidlQoQ7mSnezs7JK3OXPmMHHiRDZv3kxsbCyxsbFs3ryZSZMmMXfuXEvHWy0VNxJ07ta1zCPnWoOW8KRwoJL1OsWXfjbqL244F8wrtDsoHSA71lgXZkZmTXbE0fNaR9LpiJs8Bc2VKyh9fam74nMULuL7n1C2cqXAHh4epX5IS5LEM888U/I5qeg3vkcffRS9Xm+BMKu3/KP/AuDcuexE5nzaefJ1+bjbu9PYs4JHfCXJ2DUZoPnjJkQpCGWwc4TQHsZOytd2g39zsw0d6hYKQEpBCjmFObiqXCs9lsLTAxArO7WFJEkkfvQReQcOIHN0pM7nn2MXKNptCLdXrmRnz5495RrszJkzJgVTE+kyMtBcvAgYT2KV5d9EYzLU0b9jxfuNJJ42bmEpHW9sOQiCOTXoXZTs/AXdXjHbsC4qF/wc/UguSCYqK4pWvq0qPZZSFCjXKhkbNpD53UaQyQiePw/Hli1sHVKFaPQaYnNiSS1IJaUghQx1BgbJULJw4Gbvho+jD76OvtRxrWPSLwKCUbmSnZ53OMKXk5PDd999x+rVqzl+/DgTJpi3H0d1l3/MWJisatgApY9Pmc85kmDc5qpUvU7JFlZfsHepTIiCcGcNehvfXz8I2gLjao+ZhLmHkVyQTGR2pEnJjrj5vPbI+WsPSR8bSyb83ngD1759bRzRnUmSxNXMqxxOOMyZ1DNcTr9MVHYUeqn8uyD13OrRwrsFbXzb0KtuL4JcKn8hZm1V6Uqu/fv3s2bNGn788UeCgoIYNGgQy5YtM2dsNULJFlanTmU+Xqgv5GTySQA6BZT9nNsqtYU1sHIBCsLd+DYB1yDIiYfoQzeSHzMIdQ/lSOIRk+t2ipMdQ34+hsJC5CqVOcITqhj1+fPEvf46SBIezzyD14jhtg6pTFq9ln/i/2FH1A4Oxh8kTZ12y3Nc7Fzwc/LDx9EHLwcvlHIlMmRISGRpskgtSCU5P5k0dRrXs69zPfs62yK3MefoHFp4t6Bvvb4MbDgQH8eyf4kWSqtQspOYmMi6detYs2YN2dnZPPPMM2g0Gn7++WeaNzffXn5Nkl9UnOx0m2TnTOoZ1Ho1Xg5eNPSo4Gm2pLOQHmEsIG08wNRQBaFsMpkxwTn5tXEry4zJjrmKlOWurqBQgF6PPiMTubgioMbRJiUR8/JYpPx8nLt1I2D6u2Ue+LAVSZI4lXKKn67+xM7rO8kpzCl5zEHhQAf/DrT3b09Tr6Y09myMv5N/ueLPUGdwLu0cZ1PPcjjhMOFJ4ZxLO8e5tHMsP7mch+s/zNDmQ2nk2ciSX161V+4CkUcffZQmTZpw+vRpFi1aRHx8PEuXLjVLEMuWLSM0NBQHBwc6d+7M0aNHy/W6jRs3IpPJGDhwoFniMDddRgaay5eB29frFB857+jfseL/cIu3sBr2BXuxpytYUMOiBOda+er3ystcyU7py0BF3U5NY8jLI2bsWHTJyagaNiB40afI7OxsHRYAap2aLVe28Ozvz/LCHy+w5coWcgpz8HX0ZUizIazpv4Z/nvuHFf1WMKb1GO6rcx8BzgHl/n7v6eBJ9+DuvNzmZdY9sI6/nvmLGV1n0Ma3DVqDlp+v/sygXwcxec9kYnNiLfzVVl/lXtn5448/mDhxImPHjqVRI/NlkJs2bWLKlCmsWLGCzp07s2jRIgYMGMClS5fw87v9b2dRUVG8/vrr9OjRw2yxmFv+v8YtLPtGDVF6e5f5nGOJxpoesYUlVGlhvQCZcTUxJxFcA8wzrJsx2YnOiUZn0FW8oeZNFB4e6NPSRJFyDSPp9cS9/gaa8xdQeHlRd8UKFG5utg6LPG0emy5tYv259aSr0wGwV9jzQOgDPN7wcdr7tUchV5h9Xh9HH55u/DRPN36ak8kn2XB+A7ujd7Mrehd/x/3N8BbDGdVqFI5K89XW1QTlXtk5cOAAOTk5dOjQgc6dO/PZZ5+RmppqcgALFy5k9OjRjBgxgubNm7NixQqcnJxYu3btbV+j1+t5/vnnef/996lfv77JMVhKcb2O0z1lJzJavZbTKacB6BjQsWKDJ5+HtKugsBdbWILlOXtDUFvjx2Zc3fF39sdR6YjOoCMuN86ksUqOn4si5Roled58cvfsQaZSUXf5MlR16tg0nnxtPl+c/oIBPw7g0+Ofkq5OJ8g5iCkdprDrqV182P1D7gm4xyKJzn+19WvLwl4L2fzoZjoHdEaj17Dy9Eqe+OUJTqWcsvj81Um5k50uXbqwatUqEhISeOmll9i4cSNBQUEYDAZ27txJTk7O3Qf5j8LCQo4fP07fm6rp5XI5ffv25dChQ7d93axZs/Dz82PUqFF3nUOj0ZRqipidnV3hOCvrbvU6F9IvoNarcbd3L1nOL7eLW43vG9wPDrb/LUeoBYprda79ZbYh5TJ5Sb8dU7eylKKLco2T8d13pK9fD0DQx3NwbNvWZrHoDXp+uvITj/70KEtPLCVLk0WoWygf3vshvw/6nREtR+Dh4GGT2Bp5NmJV/1Us7LWQQOdA4nLjGPbHMFafWY1BMtgkpqqmwtdFODs7M3LkSA4cOMCZM2d47bXX+Pjjj/Hz8+Oxxyp223Zqaip6vR5/f/9Sn/f39ycxMbHM1xw4cIA1a9awatWqcs0xZ84c3N3dS97q1q1boRgrS5eejubKFQCcOpVdr3Mi2XiXWFvfthXvr3Pxd+P7po9UOkZBqJDiZCdiDxjM9w001D0UMD3ZEV2Ua5bcv/8m8cOPAPCd9CpuDz1ks1iOJx3nmd+fYcbBGSQXJBPsEsycHnP4+fGfebzh49jJbV8/JJPJ6FevHz8+9iMPhj6IXtKzOHwxY3aOIUMtfgGocLJzsyZNmjBv3jxiY2P57rvvzBXTbeXk5PDCCy+watUqfG7Ts+a/pk2bRlZWVslbTEyMhaM0yi+6+NO+USOUXl5lPqf4yHlbv7YVGzwzBhJOgUwOTR40IUpBqIA6ncDOGfJSjLU7ZmKuImWFh3FlRydWdqo99aXLxE2aDHo97gMH4v3SSzaJI12dzjsH3mH49uFczriMq8qV1zu+zq8Df+WR+o9YZauqolxVrsy9by6zus3CUenIkYQjDP1jKDE51vnZV1WZ5cY0hULBwIEDK3wqysfHB4VCccvFoklJSQQE3FoAee3aNaKionj00UdLPmco+g1TqVRy6dIlGjRoUOo19vb22NvbVyguc8gvOlF2uy0sSZJKVnba+bWr2OCXthnf1+0CzqLHQnKOmtMxWZyOyyIiJZfELDWJ2WrS8woxSBKGovsrPRzt8HOzx9fFnlAfZ1oGudOqjjsNfF1QyKvOEdYqS6mCsB5webtxKyuwtVmGNVuyU7KNlWlqSIIN6VJSiBn7Moa8PJzuuYfAWe9b/Yi5JEn8cu0X5v87n+zCbGTIeKrxU0xsN9FmW1UVIZPJeKLRE7TyacW43eOIyo5iyLYhLO+znBY+1avbtLnY9HpYlUpFhw4d2L17d0miZDAY2L17d5mdmJs2bXrLlRTvvvsuOTk5LF682GpbVOVRcMKYyDh1aF/m47E5saSp01DKlbTwruD/fCVbWA+bEmK1pdHpORyRzu4LSey+kExcZkG5XpecoyE5R2P8w6WUks+7Oijp2diXvs386dXEFw8n0ZDuthr0vpHsdJ9kliGLT2RFZEUgSVKlf7CJbazqz6DREDNhArr4BFT16lFn6RJkVm4QmVqQyvsH32dv7F4Amno15d0u79LGt41V4zCHhp4N+fqhrxm/ezwX0y8y4s8RLLp/Ed2Cutk6NKuzabIDMGXKFIYNG0bHjh3p1KkTixYtIi8vjxEjRgAwdOhQgoODmTNnDg4ODrRs2bLU6z2KvsH99/O2ZMjPR33pEgCO7cpetTmRYkyGmns3x0HpUP7B89Mh6h/jx01tt4dtbZIkcTo2i43/RvPbqQRyNbqSx2QyaOTnQqtgD5oFuhLg7kCguwPezvYoFTLkMhkGSSIzX0tyjpqkbA2Xk3I4G5fFufhsctQ6fj+dwO+nE1DKZfRr7s/znevRrYE3crHiU1px3U70ISjMB5WTyUPWc6uHDBnZhdlkaDLwcih72/duxGWg1ZskSSTOmIH61Gnk7u7UXbmiJIG1lu2R2/nwyIdkabKwk9sxvu14hrUYZlJLBFvzc/Jj3QPrmLJ3CgfjD/LqX6+yvO/yyl1PVI3Z/G/w2WefJSUlhRkzZpCYmEjbtm3Zvn17SdFydHQ0crlJpUVWV3DmLOj1KP39b3sTb8kWlm8Ft7Cu7ABJD34twKvqHrs3F63ewC8n41l7IJLzCTdO0vm52tOnmR99mvrTpYE3LvZ3/1+5jieAe6nP6Q0Sp2Iz2XXeuEp0KSmHP84m8sfZREK9nRjVoz7PdKyDvbLq7c3bhHdDcK8LWTHGu7IamX4vkYPSgSCXIOJy44jMiqx8siNWdqq19LVryfrlV1AoqLPoU1ShoVabO0uTxaxDs9hxfQcAzbya8VH3j2pMV2JnO2c+6/0Zk/ZOYn/sfsbvHs8X/b6oeL1oNWbzZAdgwoQJt71AdO/evXd87bp168wfkIkKTp4Ebr+qAzeKkytcr1NLtrA0Oj0/Ho/j831XiUk3blOplHIeahnA4E4hdAr1Msuqi0Iuo32IJ+1DPJn6QFMuJmbz7ZFofgqPIyotn+k/n2XF3mtM6N2QpzrUwU5RvRJvs5PJjO0OwjcYt7LMkOyAsW6nONnp4N+hUmOIo+fVV+6+fSQv+AQA/7fewrlrV6vNfTL5JFP3TyUhLwGFTMGY1mMY3Xp0lThhZU52CjsW9lrIhN0TOJxwmLG7xrJ6wOqKl1FUU7X8O7dllCQ7bcve483SZHE18yoAbfwqsA+sLYCru40fN6uZR84lSeKPMwn0XbiPt386Q0x6AT4uKt56sClH3+7DosHt6FLfcttLTQPcmPV4S46804f3H2uBn6s9cZkFTNtyhv6f7ufvKyl3H6Sms0C/HXMUKZdcBpqXh1RYaJa4BMvTXLtG3GtFl3s+/TSeQ563yrwGycC6s+sYsX0ECXkJhLiG8M1D3zCu7bgal+gUs1fYs/j+xbT3a0+uNpdxu8YRnxtv67CsQiQ7ZiZJUkmy43SblZ3izpYhriEVu7H22h7Q5hu3EQLMcxKmKjkfn83gLw4z9ptwYtIL8HO1Z8Yjzfl7am9e7tnAqoXDTiolw7qFsn/q/cx4pDk+LvZEpubxwpqjTPg2nKRstdViqXLCegIySLkAWaZ1PS4Z0gzJjtzVFYq2vHViK6ta0GdmEjN2HIbcXJw6drTa5Z6Z6kwm/jWRT45/gk7S8UDoA2x6ZFOtOKnkZOfEsj7LaOLZhHR1Oq/89Qr52nxbh2VxItkxM+316+gzMpCpVDg0a1bmcyrdX+fyH8b3TR4ybifUEBqdnrnbL/LI0r85EpmOvVLOxD6N2PtGL0Z2D8NRZbt6GQc7BSO7h/HX6z0ZcW8ochn8fjqBvp/s4+cT5vlBX+04eUFQUSIfsdcsQxafyDIl2ZHJ5TfqdsTx8ypP0umInTwZbXQ0dkFBBC9ZbJWTV+dSz/H070+zL3YfKrmK6V2mM+++ebioXCw+d1XhonJhae+leDl4cTnjMm/9/VaN77Qskh0zKyg6Gu/QvPlt/+FWqr+OwQCXjcVzNHnApBirkpMxmTyy5ACf772GQYKHWgWw+7WeTOnXGCdVlSgpA8DNwY6Zj7bgt1e607auBzkaHZM2nWTidyfIKtDaOjzra3C/8X2Eee7JKl7ZicuNQ6PXVHqckl47YmWnykv6eC75hw4jc3KizufLb9t81Zx+u/YbQ/8YSmJeIvXc6vHNw9/wTJNnrN7HpyoIdAlk8f2LUclV7InZw5LwJbYOyaJEsmNmJclOq1ZlPq41aDmbauw+296v7B48ZUo8BbmJoHKBeveaHKet6Q0SS3ZfYdDyf7iSnIuPiz0rhnRg+fMdqONp+nFmS2kR5M7ml7sypV9jFHIZv56K56HFf3MyJtPWoVlX/eJkZ69Zro7wcvDCTeWGhMT17OuVHufGyo4oUq7KMrf8RMbXXwMQNPdjHJo0seh8OoOO+f/O5+0Db1NoKKRXnV5sfHgjTb2aWnTeqq6tX1vev/d9ANacXcOeaPNd8lvViGTHzNRnjImMY6uy+/5cybiCWq/GVeVacidQuVz+0/i+wf2gtH5HaHNKydEwdO0RFu68jEGCx9sGsXPyfTzQ8tau2VWRUmHcZvvh5a7U83YiLrOAZ1YeYvPxWFuHZj11O4Gdk/HqiORzJg8nk8nMVKTsAYA+UyQ7VVXBuXMkvvceAD4TJuDWr59F58vSZDF211g2nN8AwEutX2Jx78W1atvqTh6p/wgvNH8BgOkHp5OYV/a9lNWdSHbMSNLpUF+4AIBDy7JXdopXdVp6t6zY5Z+XtxvfN67eW1iHI9J4aMnf/HM1DUc7BZ883YbFg9vh6Vz9uha3D/Hk91e606+5P4U6A6//cIr3fzuHTl+z974BY8JdvMJ4zbxbWSYlO6LXTpWmy8gg7pWJSIWFuPTqhc+4sRadLyIrgsG/D+ZwwmEclY580vMTJrSbUPGLl2u4ye0n08K7BVmaLKbun4rOoLv7i6oZ8TduRpqrV5HUauQuLqhC65X5nJJkx6cCHZ+zEyDeWOdDo/6mhmkz3x2NZsjqI6TkaGjs78Jvr9zLkx3q2Dosk7g62LFySAde7WNsPvblP1GMWn+MPE3N+2ZxiwY3bWWZQahbKGBasiN67VRdkl5P/OtvoI2Pxy4khKB5c5FZsGHsscRjvLDtBWJzYwl2CearB7+if2j1/f5pSXYKO+bfNx9nO2dOJJ9g+cnltg7J7ESyY0Yl9TotWtz2H/HZNGOyU6EjjleKCpODO4CLn0kx2oJOb+C9X88xbcsZdAaJR9sE8cv47jT0c7V1aGYhl8uY3K8xK4Z0wNFOwb7LKfxv9RHS82p4r5fiup3rB0Fr+lF886zsiALlqipl6VLy/vkHmYMDdZYuQeHmZrG5tkZsZczOMWQXZtPatzXfPvwtTbwsWxdU3dV1q8t7Xd8DYPWZ1fyb+K9tAzIzkeyY0d3qdfK1+VzLvAZAK5+yt7nKVFyvUw23sPILdby44RjrDkYB8Fq/xiwZ3Namx8kt5YGWAXwzujMeTnacisnkqc8PEpNeg/tX+DUDF3/QFUDMEZOHK052orKjkCSpUmMUb2PpxMpOlZKzezdpK1YCEPjBLIsVJEuSxMpTK3nr77fQGrT0q9ePNf3XVPoKktrmgbAHGNRoEBISMw/OrFH9d0SyY0bqs8Zk53b1OhfTL2KQDPg5+uHnVM4VGq36xvHexgPMEabVZOQV8r9VR9h7KQUHOzmfP9+eV/o0qtHHPNuHeLL55W4EezgSkZrH0ysOEZmaZ+uwLEMmg/q9jB+b4Qh6Hdc6KGVKCnQFJOUnVWqMkqPnos9OlaGJjCT+zbcA8BwyBPdHH7XIPDqDjpkHZ/LZyc8AGN5iOAt6LqjYRcsCr3d8HX8nf2JyYlh6YqmtwzEbkeyYiVRYiPrKFQAcWpa9RVVcr1OhLayoA8auya6B1aprcnxmAU+vPMTJmEw8nOz4bnQXHmxV9qWoNU1DPxd+HNuNRn4uJGarGfxFDU54ireyzFCkbCe3o65bXaDyW1miQLlqMeTlETdxIobcXBzbt8d/6hsWmUetUzN572R+uvoTcpmcdzq/w2sdXxOFyJXgqnLlvW7vAfDNhW9K+sJVd+L/BDPRRESAVovc1RW74OAyn1Op4uSSU1gDqk3X5KjUPJ76/CBXk3MJdHdg88tdaRfiaeuwrCrA3YHvxnShkZ8LSdkaBn9xiIiUXFuHZX7FKzsJpyA/3eThTO2kXHL0XGxj2ZwkSSRMn47mylUUvj4EL/rUIh2ScwpzGLtrLHtj9qKSq1jUaxGDmw42+zy1Sffg7gxsOBAJien/TEetq/7X44hkx0zUFy4C4NC06W23aYqLk8ud7EjSjeLkanIKKzI1j2e/OER8lpr6vs5sHtutxhQiV5SPiz3fjelCY39jwvPcqsNEp9WcPXAA3ALBtxkgmeVUlqlFysWnsQy5uUjaWtjZugpJX7+e7G1/gFJJnUWLsPMz/+GK1IJURv45kmNJx3Cxc2FFvxXcH3K/2eepjd645w38HP24nn2dz099butwTCaSHTNRXzgPgH2zsjtyZmmyiMmJAaCFdzm3sdIjIPM6yO0g7D6zxGlJESm5DP7iEEnZGhr5ubBpTFeCPRxtHZZN+bjY8+3oGwnPC2uPkJxT/X9LKsWMR9BLkp3syiU7cje3kstAxVaW7eQfO0by/AUA+E+dilOHDmafIy43jmF/DONi+kW8HLxYO2At9wTcY/Z5ais3lRvvdnkXgA3nNhCRGWHjiEwjkh0z0RSv7DRrXubj51KNXWZDXENwt3cv36BXdxvfh3QB+6q9OhKZmsfgLw6TlG3sofPdmC74ulbvTs/m4uNiz1ejOlPXy5HrafkMW/tvzbpPq+TqiD3G1UgTmLqyI5PLUbgb/32JE1m2oUtNJW7yFNDrcXvkETxfGGL2OaKyohj6x1Cic6IJcg5iw4MbaOZd9sXLQuXdH3I/ver0QifpmH1kdqVPSVYFItkxA0mSUF8sTnbKXtk5k2rswVOh4uSru4zvG/YxKT5LS8gqYMjqIyTnaGji78q3o7vg4yISnZv5uznw1cjO+LjYcyEhm9Hrj6HW6m0dlnmE3mtcfcyMNq5GmjJU0RUqyfnJ5GkrV9QtTmTZjqTXE/fa6+hSUlA1bEDg+++Z/fRlRGYEI/8cSXJ+Mg3cG7DhwQ3Ucyu7iatgujc7vYm9wp4jiUf4M+pPW4dTaSLZMQNtXByGnBxkdnbY169f5nNK6nW8y1mvo9NA1N/Gjxv2NUeYFpGeV8gLa44Sl1lAmI8zX7/YWSQ6txHq48z6kffgaq/kaFQ6U74/icFQfX9TKqFyhrqdjR+beATdTeWGj6MPYPztvTIUXsXJjukF00LFpCxdSv6RI8abzBcvRu7sbNbxr2RcYcSfI0gpSKGRZyPWPrAWf2d/s84hlFbHtQ6jWo0CYP6/8yv9S4itiWTHDIrvw1I1anjb0wbF21itfMvZTDD6kPHIuYs/+Ffg9JYV5ai1DP/yaMmpq69GdRJbV3fRIsidVcM6YqeQse1MIvN3XLJ1SObRoJfxvRmOoBdvZUVkVW6VSOlpbCCnSxfJjjXl7tt3o3HgrFnYN2hg1vEvpV9i1J+jSFen08yrGWv7rxXNAq1kZMuR1HWtS3JBMp+frJ7FyiLZMQPNReMPLIcmZW9hJeUlkVKQgkKmoKlX2c+5RXG9ToM+VfLIuVZvYOzX4ZyOzcLLWcVXozpTx9PJ1mFVC13qe/PxIGPPpM/3XmPTv9E2jsgMiut2Iv8GvWn3gpl8/NzL+ANQny5qdqxFGxdH/NQ3AfD833O4P/KwWcc/n3aeUTtGkaHJoIV3C1b1X4WHg4dZ5xBuz15hz1udjI0hv7n4DdHZ1e97lkh2zEBT1EzQvknjMh8v3sJq4NEAR2U5TycVJztVsF5HkiTe+ekMB66m4qRSsG7EPTT0c7F1WNXKkx3qMLF3QwDe+eks/1xNtXFEJgpqBw7uoMm6cWltJd18bURllGxjiZUdqzAUFhI7eQr6rCwcWrbE7623zDr+pfRLjN4xmixNFq19W7Oq/6ryH/IQzOa+Ovdxb9C96Aw6FoUvsnU4FSaSHTMoSXYaNSrz8UvpxpWf5t5ln9S6RXY8JJ8DZDd+Y65Clu+9xvfHYpHL4LP/taN1HQ9bh1QtTe7XmMfaBKEzSIz/Nrx636MlV9xoj2Bi3Y7pvXaKtrFEzY5VJM+dh/r0aeTu7gQvWoTcjI0DI7IiSl3oubLvSlxVVftkak1W3JV65/Wd1a6zskh2TGTQaCi8fh24fbJzMd14UqvcW1jX/jK+D24Pzt4mx2hOv5yMY/6fxuTt/cda0LupKA6sLJlMxrynWtOmjjuZ+VpGbzhGfqFpW0A2Vd88/XaKk53r2dfRGSr+30NsY1lP9rZtZHzzDQBBcz9GVafs7vGVEZMdw+g/R5fU6Hze93NcVGIF2ZYaeTbiiYZPALDg3wXV6ii6SHZMVBgRAQYDCnd3lL6+ZT6neGWniWc5b/otPnLeoGptYZ2KyeSNzacBeLF7GC90DbVtQDWAg52CFS90wMdFxcXEHKZuPl2tvoGUUtxcMOYoaCp/NUaAcwAOCge0Bi3xufEVfr1SbGNZRWF0NAnTZwDgPWYMrr16mW3shNwERu0YRXJBMg09GvJFvy9wU7mZbXyh8sa3HY+j0pHTqaer1VF0keyY6OYtrLL6SWRpsojPM37DbuJVjmTHoL9xoqUKHTlPzlHz0lfHKdQZ6NvMj7cfEg28zCXQ3ZHlz3dAKZfx++kEvthfTTuVetUHj3pg0ML1fyo9jFwmL+mbUpmtrOKVHXEay3KkwkLiXnsdQ14ejh064DvxFbONnZyfzKgdo0jISyDULVQUI1cxvk6+jGg5AoBF4Yso1BfaOKLyEcmOiUqSncZlb2FdzrgMQLBLcPn2muPCQZ0J9u4QbP4W65VRqDMw7utwErPVNPB15tNn2yKXV70TYtVZpzAvZjxqrOma9+cl/o2qpj+oi1d3TDyCbkrdjqKoZkefmYlkMJgUh1C2lKVLUZ85g9zNjeD585AplWYZN0uTxUs7XyImJ4Zgl2BW9V9V0ndJqDqGNR+Gr6MvcblxbL682dbhlItIdkykuXzn4uSK1+sUHznvBQrzfAMx1Xu/nePY9QxcHZSsGtoRVwc7W4dUI73QpR5PtAtGb5B45dsTpOdVj9+YSrn56ggTmNJrR1l08zl6PfqsLJPiEG6V+88/pK1aDUDghx9gFxRklnHVOjWv/PUKVzOv4uvoy+r+qwlwDjDL2IJ5Odk58VLrlwD44vQX5Gur/uEKkeyY6G4nsYqTnXJtYUGVq9f54VgM3x6JRiaDJYPbUd9XFAhaikwm48OBLanv60xitprXqmOH5bD7ABmkXDSeKqyk+h7GTuSVSXZkKhVyV+Mq6v/bO+v4qur/jz9vrrvHEkbXyNElgooKKoiglGJifTEQA7F+2GIrooAopQiYoNLd3RuMdXfeOr8/DhvM1b3b3e5gn+fjscfu7jnn83mv7n2ddxrFfCyrYsjMJGmWXFrufs94XEeMsM66JgPPbX2Ow2mHcdG48NWNXxHkEmSVtQUNw52t76SFcwsySzJZfma5rc2pFSF26oGxoBB9kvyCbhcRUeU5ZcnJ7TzM8OwUZUHiQflxE+ivczYln1fWyT2CZg5vw9B2vja26PrHyU7N5xO7Y6dWsvlsOgu2X2P5O46eEBgpP65HVVYrN7n7bkxOTJ0StkWvHesjmUwkvTAbY0YGdq0j8LNSPx1Jknh99+tsSdiCVqnl0xs+pY1H1T3LBE0HjUrDY5GPAfDdie/I1+Xb2KKaEWKnHuguxACg8vFG5e5e6bjeqCcmVz7HrDDWhS0gmcCnPbjZ9q6msNTAYz8epERvYlAbH2YMrVrMCaxP+wBXXr1NHhj73oazHLx0jb1ht6x/3k6YaxgqhYoCfQFpRWkWXy9GRlif7KVLKdy+HYWdHYEffIDS3t4q635y+BPWRK9BqVDy3uD36OHXNHIVBbUzKnwULd1akqfLY8nJJbY2p0aE2KkHpRfku267llXPgInJjcFgMuCqdTUv9hzTNLomS5LEi2uOE5NeiL+rPR/d3VUkJDcyE3oHc1vXwPL8nexrKX+n1VX9dupYRq9RaQhxDQEov2GwBNFrx7qUnj9P2gcfAuA763ns21jH87Ls9DIWHpfzf+b0mcOwkGFWWVfQOKiUKh7v9jgAS08tJauk6d5cCLFTD3QX5EoRbcvwKo9fnZxcVVl6BSQJLmyTH9u4a/KqA/GsO5KESqng04nd8BJTzBsdhULB/93RiXBvJ5JyS3juWuq/ExwFGkcoTIO0U3VepiyUdSHH8lCemHxuPSS9nqRZLyDpdDgNGojHhAlWWXdL/Bbe2f8OAI9HPs5dbe6yyrqCxmV4yHDae7anyFDE9ye/t7U51SLETj3QXazZs1PeTNCc5OTsi5AbB0oNhPa1mo2WciG9gLm/ym9Qz4xoQ68wMVXYVrjYa/hsYje0KiX/nk5l5f54W5tkHmo7CO0nP65HKKssSbkunp0rYSzh2akvGV99TcmpUyjd3Ah4483ab9zM4GTmSZ7f9jwmycRdre/ioS4PWcFSgS1QKBQ82vVRAJafWU5uadOsgBRipx6UxshixxzPTq1c2Cp/DuoFWier2GcpeqOJp1ceoVhvpG9LLx4ZVLWIEzQeHQPdeHakHDJ4/fdTXMostLFFZmKFEvT6eXbKwljCs1Mfio+fIOOrrwDwn/MKGr/6FymkFKbwxMYnKDYU0zegLy/1eckqAkpgO4YED6GtR1uKDEUsPbXU1uZUiRA7dUTS69HFyWPu7Vq2rHxckiwbE1FWudJysLVMtJj5/57jWEIubg4aPhB5Ok2GBwa0JCrckyKdkf+tPILBeA00yivL24ndCYbSui3hLoud6Jxoi0N4ahHGqjemkhKSXngBjEZcbr4Jt1Gj6r1mga6AxzY+RnpxOhHuEXww5AM0StG361pHoVCUe+eWnV7WJCuzhNipI7r4BDAYUDg6ovavnHycVJhEvj4fjVJDS7fKYqgCJhNcvJyvE24bsbP3QiZfbJHDBf93R2cC3R1sYoegMiqlgg/u7oqLnZpDcTl8tdXysE6j49sBnHzBUAzxe+u0RKhrKEqFkjxdHpklmRZde2VkhAhj1ZX0j+aji4lB5eON/5w59V5Pb9LzzNZnOJ99Hm8Hb7644Qsxwfw6YnjocFq5tSJfn8+y08tsbU4lhNipI2Vl53bh4VW6YMtCWBHuEWhUtdy5pJ6A4izQOkNQT6vbWhuFpQae+ekokgTjegQxqktAo9sgqJkgD0deGy2Xo8//9zzHEnJsa1BtKBTQcoj8uI55O/Zqe4Kc5RYMMTmWCbzyMFamZSJJIFO4bx9Z38vJpoFvvonaw6Pea7677112Je3CQe3AZzd8RoCzeJ25nlAqlDzY5UEAlp5eSqG+aYXchdipI6XllVhVe20sSk6+eDlfJ7Qf1CaMGoB31p8hIbuYFu4O5fOZBE2PO7q1YFTnAAwmif+tPEKxzmhrk2qmlRXydtyvNBe0BLW3PE/JkJUl5mNZiKm4mOSXXwFJwn3cWJwH19/b/PO5n1lxdgUA8wbOo6NXx3qvKWh63BR2E6GuoeSW5rLy7Epbm1MBIXbqiK6sx06rqsVOdE40AK3dqx4jUYGy5GQbhLB2xWTw/e5LALxzVxcx96oJUzZOwtfFjpj0Qt5Zf8bWJtVMmWcn6YjcHbwOlIkdS8dGlHsixHwsi0n/9DP0cXGo/f3xnTWr3usdSj3EW3vfAuQS8xtCbN8dXtAwqJQqHuwse3eWnFzSpGZmCbFTR3SxsQBow8KqPF52JxrhXkvnYYMOLu2UHzdycnJhqYHnfz4GwMSoEAa0FtOFmzoeTlreG9cVgMW7Ytl7oQmHaVwDwacdIF3JSbOQsny3spsHc1FotSjd3AARyrKE4uPHyVq8GAD/ua+icq7fLLzkgmT+t+V/GEwGRoSOECXmzYBbWt5CC+cWZJVkNamJ6ELs1JGySixtaGilY3qjnrg8+XhZr5BqSTwA+iJw9ALfxnXtXh2+mn2zmVPZBTZncBsfxvcMBuD51ceadjirniXo5Z6dOpSfq728ADBkCLFjDpJOR/JLL4PJhOutt+IyZEi91ivSF/Hk5ifJKsminWc73uj/higxbwZolBqmd54OwKKTiyg11q0a09oIsVMHjPn55f07NMEhlY7H5cdhkAw4aZzwc/SrebHyENYgUDber+PgpSwRvrqGeenW9gS42XMps4j3/z5ra3Oqp1X95mSFu4WjQEF2abbFrejLxU5mRp32bm5kLFxI6blzqDw88Htxdr3WkiSJV3a+wpmsM3jae/Lx0I9x1DhayVJBU2d0q9H4O/mTUZzBuuh1tjYHEGKnTpR5dVTe3qicKzcALAthtXJrVfudTFlycll+QyOgM5iY/ctxQK6+EuGraw9Xew3/d2dnAL7bebHpDgsN7Q9KNeRcgizLvTMOagcCnQOBOlRkXRY7xswm+rNpQpRGR5Pxpdw80O+ll1B71q9z+jfHv+HvS3+jVqr5cMiH5b9DQfNAo9IwucNkQM7dMZps730WYqcO6MtCWMHBVR4va29fawirtAAS9suPGzE5+ZvtFziXWoCnk5YXb2nfaPsKrMvQtr7c1T0ISYLnfjpGid72LyiVsHOGoN7y4zp6d+oayrri2RFhrJqQjEY5fKXX4zxkCK6jbqnXepvjNvPp4U8BeDHqRTHFvJlyV+u7cNW6Epcfx79x/9raHCF26oIuTp5RpA2pHMKCKy/KZe3uq+XSLjAZwD0EPKseOWFtYjMK+XjjeQBeubU9Hk7aRtlX0DDMubUDvi52XMgo5KN/ztnanKqpZwl6efm5hTOy1N4ijGUO2T/+SPHRoyidnPCf+2q98mou5l5k9g45BDa+7XjGtRlnLTMF1xiOGkcmtJOHxn534jubDzIWYqcO6OLkXBdNaNVix2zPzsXGLTmXJImX1h5HZzAxsLU3YyJbNMq+gobDzVHD/90hh7O+2X6Bw3FNsGNwWZLyxW1QB3d22U2D5Y0FRRirNnTx8aR9NB8A3+eeQ1NFN3hzKdIXMXPLTAr1hXT37c6s3vUvWxdc20xsPxF7lT2nMk+xL2WfTW0RYqcO6C9dDmOFVK7EMpgMxObGAlfuSKvlQuPm6/x2LJmd0ZnYqZW8OaaTqIy4ThjewY8xkYGYJHhh9XH0TW12VmA3sHODkly5546FXD0jyxKueHZEGKsqJEki5dVXkYqLcezVC/e76+6FkSSJubvnEp0TjbeDN+8Pfl/MvBLgae/JmIgxgOzdsSVqm+5+jXKl7LyyZychPwG9SY+D2oEApxraoRdmQKqcJEz4oIYws+J2pQbe+uMUADOGRhDqZZvJ6oKGYc5tHdl2PoOzqfks2HaBGUNr6e/UmKjUED4QzvwOFzZBkGU5HK3cW6FAQVZJFhnFGXg7mJdQX5azY8wQYayqyPv1Vwp37UZhZ0fAG6+jqEc16PIzy/nr4l+oFCreH/w+Po4+VrTURkgS5MZD2hnIvgi5CZCXCPmpUJoHugI57xIJUIBCCRoHcPAAB3dw8gH3UPAIk9MU/DqCvZttvycbMKXjFFadW8WupF2czjxNey/b5IkKsWMhpuJiDGlpQNUJymUhrHC3cJSKGl48ypqs+XYEZ1+r2/lfPt0UTWpeKSGejjw0qJbwmuCaw9NJyyu3tud/K4/y8cbz3NI5gHDvJiRoWw2VxU7MFhj0nEWXOqgdCHYJJi4/rnyIpDmUVWMZsrKQJEl4Mq/CkJ1N6tvvAOD92GPVNkc1hyNpR3jvwHsAzOwx89pNSM5PlYfWxu+VC0dST0FdpndnX6z+mEc4BHSVRwOFD5Kbbl7nf5dBLkGMDB3JX7F/sejEIt4d/K5N7BBix0J08XJystLNDZW7e6XjZicnx26XPzeCV+dCegHf7pDtmnNrB+w1qgbfU9D4jIlswS+HEtl+PoOX1hznx+lRTecNvixvJ36vfDdsZ1ln3jYebcrFTt/AvmZdU+bZkUpKMBUWVdkmormS9sEHGLOz0Ua0wmva1Dqvk1mcyTNbn8FgMjAybCSTOkyynpENTVn3+piNEL0R0k5VPkepBq/W4B0BbsHg2gJc/GUPjZ0LaJ1kj44kgWSSG8QWZ0NxDhSkQPYlue1CRjTkxslCKPsinForr+/kCxE3QIfR8v+Ixr4xfwKNxrRO0/gr9i82XNrAE/lPEOxSdSVzQyLEjoWUl51XU4lldnJy7A75c/hAq9lWFZIkMfe3U+iNEkPb+nBD+4b3Iglsg0Kh4K0xnRkxfyu7YjJZfSiRsT2CbG2WjGdLueowJ06uQmwzwqLLW3u05t+4fzmXbX7FmdLREYWjI1JREcbMDCF2LlN04AC5P68GIOC111Bo61aRaTAZmLVtFmlFaYS7hfNav9eajriuDoMOLmyBk2vg7B9yHlk5CjnUFNQLgqMgMBI8W4HaShWrRVmQcgwSD8LF7RC3BwrT4Ohy+UPrAm1vhm73QdjARm0y29C092pPv8B+7EraxZKTS3i5z8uNboMQOxaiu1Sz2DHLs5OfChnnAAWEmHeXWlf+PZ3GtnPpaFVK5tzWsem/GAnqRYiXI08Pb8Pbf53hzT9OMaStD97OdrY2S3bVtxwCh76XS9DrIHYAzuect+g6tacn+qIiDJlZVY52aW5IOh3Jc+cC4D5uLI496h5y+uzwZ+xN2Yuj2pH5Q+bjpGnCYjL1JBz+AY6ugOKrqvOcfKH1jbJ3peVQcKxfM8UacfSU/wdaDoGBz4ChVPZ0nvkDTv8m5wMdXyV/eIRD90nQY1rD2tSI3N/pfnYl7WJt9Foei3wMT/vG/b6uH+nYSNSUnGw0GcunM9dYiXXpslfHv1OD/iHrDCb+78/TADwwMLxp5XAIGowHBoTTPsCVnCI9b/5ehWveVpSFsurQXLC1uyx2YnJiLOrGKkZGVCRz0WJ00TGoPD3xfeaZOq+zJX4L3574FoDX+79euyfbFhj1cPxn+GYYfNkP9nwhCx1nP+j9EEz9E545A2O+gE53Nb6oUNvJaQw3vwNPn4AH/oWe98senuyLsPF1+Kgj/Pm8HA67xunt35uOXh0pNZay4syKRt9fiB0LKe+xU8VMrKTCJEqNpWiVWlo419DDpiyEFdawIawf917iYkYh3s5aHhtSSw6R4LpBo1Ly9p2dUShg7ZEktp5Lt7VJMi2HAApIPw15yRZdGuwSjL3KnlJjKfH58WZfp/KWk5nF5HM53zDjiy8A8HthVpU5h+aQXJDMSzteAuC+9vcxMmyktUy0DiW5sOtT+DgSVj8gh42Uamh/G0z8Cf53Cm55D8L6g7KJ5C8qlRDcC279CJ49C6M/B/8ucg7Qvq/hk0hY8+g1LXoUCgVTO04F5Oq9YkNxo+4vxI6F6Mu6J1fh2SkLYYW7haOq6Z+oXOwMsLp9ZeQW6cs7Jf/vxjZi0Gczo2uwO1P7hQHw0prjFOkMtjUI5DvngK7y47KGmmaiUqrKvQeWhLLKPTvpzduzI0kSKa+/gVRaimPfPrjedlud1tGb9Dy/7XnydHl09u7MzB4zrWxpPSjMgL9fhg87yp/zEuTy7yEvwswzMP4HOXyqauLZG1onOW/n4W0waa3sEZVMcHQZfNpD9vQUpNnayjoxPHQ4LZxbkFOa0+gDQoXYsQCTToc+Wb4jrSpnx6zk5EbK1/l003lyivS08XNmfM/Gz3wX2J5nRrQl0M2ehOxiPv7XslyXBqMeU9DbeLQB4Hy2BWLHR+73YkhvIt4tG1GwaROF27ej0GjwnzOnzrl7nx/+nCPpR3DRuPDuoHfRqJrATVRJLmx6Cz7uKnt0dPlySfftn8rhoSGzwPka7PujUMj/L5PXwvRNcqd9k1729HzaA3Z/LofqriHUSnX5gNDvT33fqANChdixAH1CIphMKB0dy3t4XM3V086rpRHydS5lFrJkdywAL97SHrVK/JqbI852at68oxMAC3dc5GRSbi1XNALleTubwGRZp+eyvB1LKrKE2AFTSQmp894GwPP++7ELr9scvp2JO8vzdOb2m0uQi40r/XSFsP1DmN8Ftr0rN/kLiISJq+CxPdB98vVTyh3UA6b8CpPXyd9jaR5seBG+GnClE/81wpiIMbjZuRGfH8/GuI2Ntq94F7SAKzOxQqu8MyqvxKopObkR8nXe3XAWvVFiYGtvhrQVpebNmWHt/BjVOQCjSeKlNScwmmw7jI+QvqB1lktuU45adGl5RZYlnh1fIXayFi1Cn5CA2s8P74cerNMaaUVpvLjjRUAe8DkizLJqOqsiSXDsJ9m7sfE1KMmRPTl3L4WHtkCbkddvo76WQ+DBzXDbJ+DoBeln4PvbYd0MubfPNYCjxpF72t4DwOKTixttQKgQOxZQU48dSZLMC2M1cL7OicRc/jiWjEIhe3UEgjm3dcDFTs2R+ByW7bVxgqNae2UW3Pl/LLq0TOzE58dTpC8yb7tm7tnRJyWR8fUCAHyffw6lk+UVmUaTkRe2v0BWSRZtPdryXC/LOmBbleRjsOhm+GU65CfL4xju+Boe3QUdbr9+Rc7VKJXQYwo8cRB6TQcUcln9F33g7F+2ts4sJrSbgJ3KjuMZxzmYerBR9hRixwJ0ZcnJIZVzYJILkyk2FKNWqqvvDtkI+Trv/30WgNFdA2kf4NogewiuLfxc7Xl2ZFsA3l1/lrS8Etsa1PqyV+DcBosu83bwxtPeEwmpvMVDbZSLncxMJAvDZtcDqe++h1RSgmPPnrjeckud1lhwbAH7U/bjoHbg/cHvY6eyQd+moiz4fSYsGAxxu0HjCMNegRn7oOs9TaeqqjFx8IBRH8C0v8ArQhZ/y++RvTylBba2rka8HLy4vdXtgOzdaQyE2LGA8jBWVcnJl/N1wlzDqp/228D5OvsuZrHlbDpqpYKnh7ex+vqCa5f7+oTSNciN/FIDr9u6907rG+XPiQflChpLLrUwlKX28pLv9g0GjNnZFu11rVO4Zy/569eDUonfyy/VKSl5X/I+vjz6JQBz+s4hzC3Mylaawcm18HlvOPCtXJXU8U54fD8Mevb6ycmpD6F94ZEd0O9Jyr08CwZD0mFbW1YjUzpOQYGCrQlby98/GxIhdixAX949uXIn1rI7zZZu5oSwrJ+vI0kS7204A8DdvYIJEw0EBVehUip4647OKBXw+7Fktpy1YemqayD4dQYkeSaRBViapKzQaFB5eADNK5QlGQykvvUWAB733IN9u3YWr5FTksML219AQuKOiDu4teWt1jazZvJTYeV98NMUKEyX83Km/A7jFoFbExmD0lTQOMCIN2DKb+ASCJnRsPBG2P2FnOPUBAl1DWVYyDAAlpxc0uD7CbFjJpLRiC4pCag6jFVeiWVWcrL183W2nktnf2w2WrWSJ4e1tvr6gmufTi3cmNZfrsR5Zd0JinWNV/ZZiTLvzvm/LbpMlJ+bR/byFZSeP4/K3R2fJ5+w+HpJkpi7ey7pxemEu4XzQu8XGsDKajeHI8tlb87p3+SGgIOel/vONPAswWue8IHw6E65gaJJDxtmwy8PypVrTZCyJoO/XfiNtKKGvQFrEmLn888/JywsDHt7e6Kioti3b1+1537zzTcMHDgQDw8PPDw8GD58eI3nWwtDWhro9aDRoPatXOFUa3JyA+brmEwS722Qc3Wm9A3F3024dgVVM/PGNgS62ROfVcynm2zYe6fN5a670f+CBb026jIjq1zspDUPsWPMzSX9s88A8Hn66Tp1Sv7l/C9sjNuIWqnmnYHv4KhxtLKV1VCYCSsmwtpH5Cor/y5y9dGwl+TxCoLacfSUK9NuekcWisd/gm9HQJZ5eW6NSaRvJN18u2EwGfjx9I8NupfNxc7KlSuZOXMmr776KocOHaJr166MHDmStLSqVd6WLVuYMGECmzdvZvfu3QQHBzNixAgSExMb1E59QgIAmsAAFKqKyXCSJNU+ALQB83XWn0zhZFIeTloVjw6JsOragusLJzs1c2/vCMCCbRc4m5JvG0Na9AR7d/kNLeGA2Ze1cm+FAgVZJVlkFJuX79PcPDsZCxZgys3FrnUE7uPGWnx9bG4s7+x/B4Anuz1Je69GquqM2SzPsDr7J6i0cgLyg5sgoEvj7H89oVBAn0dg8q/ysNPUE7BgiMUVkI1BmXfnp7M/UahvOA+UzcXOhx9+yIMPPsi0adPo0KEDX331FY6Ojnz33XdVnv/jjz/y2GOPERkZSbt27Vi4cCEmk4mNGxu2OZHuspjStqg88yqtKI0CfQEqhYpQ12omKzdQvo7BaOKDyxVY0we2xNNJa9X1BdcfIzr6c2MHPwwmiZfWHMdki947KrU8aRrgvPlVWQ5qh/Ik2dOZp826pjmJHX1iItlLfwDA99lnK92Y1Xq9Sc/s7bMpNhTT2783UzpOaQgzK2LQyeMdlo6BghTwbgvTN8oJyE2hQ/O1TFh/eHgrBPWSO03/OA52zG9SeTxDgocQ5hpGvj6fn8/93GD72FTs6HQ6Dh48yPDhw8ufUyqVDB8+nN27d5u1RlFREXq9Hk/Pqr0lpaWl5OXlVfioC/oEWexoqhA7ZSGsYJdgtKpqxEYD5eusOZxITHoh7o4apg+sW2dUQfPjtds74qhVceBSNqsOmD9Y06qUlaBbmLfT3lP2NJzOEmLnv6R/8gmSTodjVBROgwZZfP2XR77kROYJXLWuvDXgLZSKBn6LyIyBb4fLYx4Aej4gNwYU3hzr4RoIU/+QJ6ojwb+vwh8zwdgE5uUBSoWyXFT/cPoH9KaGGYFhU7GTkZGB0WjEz8+vwvN+fn6kpKSYtcasWbMIDAysIJiuZt68ebi5uZV/BAfXbU6UPrFM7FSuAqi1c3ID5esYjCY+3xwNwKODW4lhnwKzCXR3YOaNcrLvvL/OkFFQ2vhGRAwHFJByHPKSzL6sg1cHQHh2/kvJqVPk/vobcNmrY2Gp+cHUgyw8vhCQy8z9nfytbmMFTv0KXw+G5KPg4An3LIdbPwRtI+UHNSfUdvJE9ZveBhRw4Du5J0+pjcLY/+G2VrfhZe9FSmEK6y+ub5A9bB7Gqg9vv/02K1asYM2aNdjbV52UO3v2bHJzc8s/4uPrdhdbnrNTg2en2rLzBsrX+f1YMrGZRXg4apjUt5rwmUBQDVP7hdEhwJXcYj1v/WGecLAqTt7Qoof8OPpfsy9r5ymXUZvt2WkmIyPS3v8AJAnXW27BoXMni67N0+Uxe/tsJCRGtxrNyLCRDWQlskfh75dh1SR5aGdof7kDcru6NT0UWECfR+Xp72oHiP5H7kadl2xrq7BT2TGx/USg4UZI2FTseHt7o1KpSE1NrfB8amoq/v4131W8//77vP322/z999906VK9y9POzg5XV9cKH3Wh3LMTVFns1OrZaYB8HZNJ4rPLXp3pA1viqFVbbW1B80CtUjLvzs4oFHI4dGe0ZQ3+rEIdQlllYiexIJHc0tqHm17t2WmsOTyNTcGOnRTu2gUaDT7/e9ri69/a8xbJhckEOQcxO2q29Q0sIz9FnuVUFrbq94ScROsa0HB7CirS/lY5rOXkI3tVF94AaTa42fkP49uOx0HtwLnsc+xOMi+NxRJsKna0Wi09evSokFxclmzct2/14Z53332XN954g/Xr19OzZ88Gt1MyGNBfFmT/9exIkkR0jiw6ahc71svXWX8yhei0Alzt1UwWXh1BHeka7M7kPvLfz8trT1Cib+TeO2X9dmK2yImqZuBm50YLZ/n/8EzWmVrPLxM7Umkppvym4ba3JpLJRNr77wPgOXECWgtD9X9e+JM/L/6JSqFi3sB5OGkaqCFp3F74ehBc2glaF7k8esSbcrK6oHEJ6gHT/wXvNpCXKHt4EhtnRlV1uNm5cVfruwBYdHKR1de3eRhr5syZfPPNNyxZsoTTp0/z6KOPUlhYyLRp0wCYPHkys2dfudN45513eOWVV/juu+8ICwsjJSWFlJQUCgoabhaIPiUFjEYUWi1qb+8KxzJLMsnT5aFAQZhrWOWLr87XCe1nFXskSeLTTbLAmto/XOTqCOrFMyPb4utix8WMQr7Y0vBt2ysQECnfYery5ZlHZlKWt2OO2FHa26N0cwMu98u6zsj77TdKz5xB6eKC1yOPWHRtWlEab+2VOy0/1OUhIn0jG8BC4PCPsORWKEgF3w5yEnKH2xtmL4F5eITB/RvkNhDF2bDkdri4zaYmTeowCZVCxZ7kPWbn5JmLzcXO+PHjef/995kzZw6RkZEcOXKE9evXlyctx8XFkZx8Jab45ZdfotPpGDt2LAEBAeUf71++s2kIrq7EUigr/sjKQlhBLkHYq6vIGyrP1+ksD26zAhtPp3E6We6rc3//MKusKWi+uNprynvvfLUlhui0RhwiqFRChOXdlMtCWacyzZvzpbn8eqJPNq/w4VpB0ulI//gTALwefBC1h/mvMZIk8dru18jT5dHBqwMPdnnQ+gaajHJ+zrrHwKiTO/tO/xe8RT+wJoGjJ0xeB+GDQVcAP4y16eT0QOdARoTJoW1rDwi1udgBePzxx7l06RKlpaXs3buXqKio8mNbtmxh8eLF5V/HxsYiSVKlj7lz5zaYffrE2pOTq20maOV8HdmrI3ePndQ3DHdH0VdHUH9u7uTP0LY+6IwmXlpzvHFzW9pczts5+5fZ/T8sLj8PkHMADanXl9jJ+eUX9ElJqHy88Zx0n0XXro1ey7aEbWiUGt7q/1b1A4zrSkmeXPFTlp8zeBaM+x60Ym5fk8LOGSaugrajwFgKK+6FoyttZs60jnJUZ0PsBpIKzK/SrI0mIXaaOjUlJ5fNxKp2TISV83W2n8/gaEIu9hql6KsjsBoKhYLXR3fCXqNk78UsVh9q2I7kFWh1g9wxNyvmcsi3dsq6+sbmxlKkL6r1fI2fLHb0Kam1nHntYCotJePLrwDwfvAhlA4OZl+bUpjCu/vfBWBG5AwiPKzsacm+BN/eKHvr1PYw9jsY+qLsyRM0PTT2cPf30HUCSEZY8xAc+t4mprT3ak9UQBRGycjSU0uttq74yzODKz12qqjEyq2hEqtCvk79++tc7dWZ2DsUb2cxK0ZgPYI9HXl6uNx7560/TpFVaF7CcL2xd4Xwyw3wzvxh1iXeDt74OvgiIZk1AV3tL4exrifPTs7KVRhSU1H7++M+/m6zr5MkiTk751CgL6CLT5fydv1WI+kwLBwO6WfAJQCm/QWd7rLuHgLro1LD6C+g90Py178+AQcX28SUMu/O6vOrzaq4NAchdsxAl1D9qIjyaedVhbGsnK+z92KWPNlcpeShQdV4kgSCevDAgHDa+buQXaRn3p+NWI7abpT82UyxA9DOy/y8nevNs2MqLiZjwQIAvB95BKWd+Tc+P537id3Ju7FT2fFm/zdRKS0bKVEj5/6GRbdAYRr4dZZnW7Xobr31BQ2LUgk3vwtRj8pf//YUHLB+ZVRt9AvsRxuPNhQbivnp3E9WWVOIHTO4Esaq2D05uySbrJIsAMLdqggpWTlf56utsrAa1zNITDYXNAgalZK37ugMwE8HE9hzIbNxNm5zs/w58YDci8UMLMnbKffspNi+gZo1yF62HGNGBpoWLXC/8w6zr4vPj+f9A3Ixx1Pdn6r6dauuHFgk5+joi6DlUJj2pzyqQHBtoVDATfOgz2Py178/LXdcblQTFOUexx9P/4jOWH8vsxA7tWDS6TBU02OnLIQV6BSIo6aKFudWzNc5m5LPlrPpKBTw4EDh1RE0HD1CPZgYFQLAS2uOU2pohN47rgFyCSzIU6/NoCxvx5zyc43/9ePZMRYUkrlQHuvg/dhjKLTmFSmYJBNzds6h2FBMT7+e3Nv+XusYJEmw8Q35TVEyQteJcO9PcnhScG2iUMDI/4M+M+Svf/8f7P+2UU24Kfwm/Bz9yCjO4PcLv9d7PSF2asGQnAyShMLBAdV/ho3WmJxs5Xydb7bLwuqmjv6EeYtqBkHDMmtkO7ydtcSkF7Jg64XG2bQ8lGWe2OngKffaic6OrvXOT305jGXKz8dYUFh3G5sA2T/8gDE7G21oKG6jze9Vs+z0Mg6kHsBB7cDr/V+3zpBPk1EOdWy/3Ppj8CwY84WYVn49oFDAyLeg7+Py13/MhP0LG217jVLDpA6TALkM3SSZ6rWeEDu1cCU5ObDSYL3y5OQGztdJyS1h3RHZDpGrI2gM3Bw1vHKrLCY+3RxNbEYjCIQysXNxq1kDCv2d/HGzc8MgGTifc77Gc1XOTiidnQEwpF273h1jXh6Z38khBe/HZ6BQm9d9OC4vjo8PfQzAsz2fJdilbgORK2DQweoH4NASQAG3fSxXXFk4gFTQhFEo5C7X5YLnmUYVPHe1vgtnjTMXcy+yLaF+DQ+F2KkFXU0DQMuSk6uqxLq4Xf5shRDWol0X0Rsleod50i3EOo0JBYLauL1rIANbe6MzmHh57YmG773j3Qa8IuTmc2YMBlUoFOXenZMZJ2s9/0rezrVbkZW1eAmmvDy0Ea1wvcW8wZmSJDF391xKjCVE+Ucxrs24+huiK4IVE+DkGlBqYNwi6DG1/usKmh5VCZ7DPzbK1s5aZ8a1lf9eF52oX6K0EDu1oE+UmxppWwRVOlbWPbnKMJaVkpPzS/Qs2xMHCK+OoHFRKBS8MboTWrWSHdEZ/HrUeg2+qtkQ2l5+AzezKquzj5xMfTT9aK3navzlYZPXat6OITubrCVLAPB5/AkUKvOqqFafX83+lP3Yq+x5td+rlTzUFlOcA0vvkAWp2gEmrICO5idJC65BygRPWZXWr4/D8Z8bZev72t+HWqnmUNohTmScqPM6QuzUgr4az06eLo+0YnnOTku3/4iQvGTIPI815mGt2BdPfqmBVj5ODGvnW6+1BAJLCfN24slhcsO5N34/RW6RvmE3bHer/Pnc32YNBu3q0xWAY+nHaj23zLOjv0YrsrK+W4SpsBC7du1wGXGjWdekFqbywYEPAHii2xP1D18VpMszruL3gJ0bTF4LrYfXb03BtUFZlVaPqSCZ4JeH4HT9E4drw9fRl1Hhcoi7Pk0GhdipheoaCpZ5dXwdfXHRulS8qMyrE9AFHNzrvrfRxHc7LwJyBZZSKWLhgsbnoUGtiPB1JqNAx9vra698qhdBvcDZH0pz4cLmWk/v4t0FgNi82Fqbj5X12jFcg54dQ1YWWT/KoQOfJ5+oNKOvKiRJ4s09b8rNA7271L/6KiceFt0EKcfl4a1Tf4eQPvVbU3BtoVDAqI+gyz1y5d3P0+B87SHn+nJ/p/tRoGBrwtY6ryHETi1U12OnxuTk2MuJVPUMYf1+LInk3BK8ne0Y061yzpBA0Bho1UreGtMJgOX74jh4KavhNlMqocNo+fHJtbWe7m7vTqhrKFC7d+da9uxkffcdUlER9p064Tx0qFnXrI9dz5aELaiVal7r91r9mgdmX5KbBWZGg1swTFsv38wJmh9KJYz+XP4/Nepg5b1XclQbiJbuLRkeWj8PohA7NWAqKcGQng7I1VhXU2Nycplnp6wFfh2QJImvL5f8Tusfhr3Gil1OBQILiWrpxd09ZcH/4i8n0BvrVwZaI2X5H2f+AENpraeXh7IyahY7mkD5f1if1MC5R1bGkJ1N1rLlAHjPeMysnJvskmzm7Z0HwENdHqrf7Kusi7B4FOTGgWcruH+9mFre3FGp4c6F0HokGEpg2XiI39egWz7Y+cF6XS/ETg3ok+Q7QKWTEyp39wrHyqadV0pOzk2ErAugUNbLxbsjOoMzKfk4alXcFxVa53UEAmsx++b2eDppOZuaz8LtFxtuo+AoeaZSaS7EmB/Kqs2zo73sndUnJjXuVPd6krV4iezV6dAB5yFDzLrmnf3vkF2aTYR7BNM7Ta/H5hdg8a2QGy9Xyk39A9wqF2sImiFqrTw8tOUQ0BfCD3dB0pEG2669V3v6BtS9Z50QOzWgT7ySnFypx05ONWGs2MvuvIBIsHer896Ld8YCMK5HEG6OokGXwPZ4OGl58Ra5a/HHG88Rn1X7tPE6cXUo69TaWk/v6it7do6nH6+x8Zg6IAAUCqTiYoxZDRiKsyLGnByyf/gBMN+rsy1hG39c+AOlQskb/d9AU9cGf5kxsGgU5CXIbQGm/iF3uhYIytDYwz3LIKQvlObJVXqptc+qqyuPRz5e52uF2KmB6pKTC/WFJBfKXp9KlVhlscvwuufrXMosZNNZudJrSr+wOq8jEFibu7q3oE9LT0r0Juasa8DeOx3GyJ/NCGVFuEfgoHYgX5/PxdzqPU5KrRa13+W8nctVlk2drO+/L6/Ach42rNbzC3QFvLb7NQAmd5hMJ+9Odds4I1oOXeUngU87mPI7uPjXbS3B9Y3WCSaugsDuUJwF34+W/34agFYeVaSNmIkQOzVQXnb+n+TkshdUL3sv3O3dK15U5tkJq3u+zve7LyFJMLiNDy19nOu8jkBgbRQKBW/d0RmtSsnms+n8ebyBGvSVh7LyIGZTjaeqlWo6enUEag9lld24lN3INGWMeXlkfS+X2no/+qhZXp35h+aTVpRGsEswj0U+VreN089dFjrJ4NMepvwGLn51W0vQPLB3hftWy5PuC9Pg+9vlpPYmhBA7NaC7alTE1VSbnJwTBzmXQKGCkKg67VlYamDVgXgApvYPq9MaAkFD0srHmUeGyH/7r/12krySBui9Y2FVVlmScm3NBcv+l3UJTV/sZC1diqmgALvWEbjcWHslyuG0w6w8uxKAuX3n4qB2sHzTzBi5j05BCvh2lIWOs+jvJTADR0+YtEYOeeYlwpLbIK/pFAMIsVMD5d2T/+PZKU9Ori6E1aI72P2n946Z/HI4kfwSA+HeTgxu7VOnNQSChuaxIa0I93YiLb+U9zecbZhNyqqyzv4J+pIaT+3iIycp1yZ2riQpN22xYywoIGvJ98Blr04tfXV0Rh2v7noVgDsi7qB3QG/LN82JgyW3Q0Eq+HWCKb+Cs3gNEliAsw9M/hU8wuUb/yW3Q0Gara0ChNipkeq6J5cnJ//Xs1Mewqpbvo4kSSzZFQvA5L6hoomgoMlir1GV9975fvcl9lzItP4mQb3BJVAOZZ3/u8ZTy8ROTE4M+brqh4heK2Gs7B9+kGdgtWyJy8iRtZ6/8PhCLuZexNPek2d6PmP5hvkpcq5FWTLypLXg5G35OgKBa4AslF2D5EkC34+BItsXBAixUw2moqLyio3/ip0qw1iSdFV/nbqJnZ3RmUSnFeCkVTG2hyjvFDRt+kV4M6F3CADP/XyUwlKDdTdQKqHzWPnxsZU1nurt4E0L5xZISDXOz9FcnnHXlBOUjQWFZC1aDFz26tQyAysmJ4Zvjn8DwOyo2bjZWVgFWpgpvyFlXQD3EFnoCI+OoD64h1z2DPpB2kn44U4oqbnDeUMjxE41lN35KV1dUbm6lj9fbCgmsUA+ViGMlR0r96JQauTkyjqw+LJXZ2yPIFzsRbm5oOnz0qj2tHB3ID6rmLf/aoBREl0nyJ/Pbaj17tCcUJYm6LJnJykJydSAjRHrQfbyZRhzc9GGheF6y801nmuSTMzdNReDycDgoMGMDK3dC1SBklz5jSj9tJwQPvlXcBPd2gVWwKsVTF4HDp6QdBh+vBt0hTYzR4idatBVU3YemxuLhIS7nTue9p5XHSjL1+khl+JZSFxmERvPyDN7Jotyc8E1grOdmnfHyiJj6Z5L7IzOsO4Gfh3AvwuY9HBidY2nRvpEAnKibnVo/P1BpULS6TCkW9lWK2AqKiLru0UAeD3ycK1enVVnV3Ek/QiOakde7vOyZRPNdYVy59vkI+DoJb8xeYbXw3qB4D/4tpeHxdq5ycNjl0+oNf+uoVDbZNdrgDLPjjboPyGsq5KTK7yw1LO/ztI9sUgSDGrjQytRbi64hugf4c2kPqEs3XOJ538+xvqnB1rXM9n1Hkg5BkdXQO/qW8b39O8JyGJHb9KjUVa2QaFWo/HzQ5+UhD4xEY1f06o0yl6+AmN2NprgYNxuvbXGc1MKU5h/aD4AT3Z/En8nC/rgGEphxb0Qt1t+I5q0Bnza1sPypo/JJJFVpCMlt4Tk3BKyi3TkFevljxIDeSV6dAYTRpOEwSRhvPyhUSmx0yixU8sf9hoV7g5aPJ00uDtq8XTS4uWsJdDdAVfhka9MQFe5LH3pGLi4FVZNhvE/yB2YGxEhdqpBf7k0VRNoRnLy1fk6YQMs3qtIZ2Dl/svl5v3EaAjBtccLN7djy7k04rOK+b8/TzPvTisOiew0Fv5+BRIPyM3KqpnLFOEegZudG7mluZzKPFVejv5fNEFBstiJj4Pu3axnZz0xlZaSuUj26ng//BAKdfUvz5Ik8dbetyjUF9LFpwv3tL3H/I2Mevj5fnmqvMYJ7vtZfkO6DjCZJJLzSohJKyA6rYCYdPkjMaeY1NxSdA050w1wsVfTwt2BIA8Hgjwcae3nTGtfF1r7OuPh1Lhv7k2K4F4wcaU8UuL8BvhlOtz1nTxjq5EQYqcaquueXGVyctYFudOoSlunfJ01hxPJKzEQ6uXIkDZN605TIDAHJzs1743tyj0L9rB8XzwjO/ozpK2V/pZd/CDiBrki69gKGPZylacpFUp6+PZgU/wmDqQcqFbsaMPCKNq3D92lptX0LPeXXzBmZKAOCMDt9ttrPPefS/+wJV6eaD6371zzJ5qbTLD2MTjzO6jsYMJyCK5DmXoTwGSSuJRVxPHEXI4n5HA8MZeTiXnk15Aor1CAj7Md/m72eDppcXPQ4Gqvwc1Bg4u9Gq1aiVqpQKWUPysUoDdK6AxGSg0mdAYThTojucU6sgv1ZBXpyCnSkZZfSk6RnvwSA2dS8jmTUrki0NtZS1t/Fzq3cKdLkBudW7gR5OFgWejxWiZsANzzoxzKOrUO1DNgzJdyIUIjIMRONVTXPflCruzZqZCcfHGb/DmoF2gsa+RVsdw8TJSbC65Z+rT0Ymq/MBbvir0czhqEp7XuZruMvyx2VsKQF6t9gezp31MWO6kHeKDzA1Weow0LA6D0YgMOM7UQyWAgc+G3AHjdfz8KbfU/t9zSXObtkyea39/pflp7tDZzEwn++B8cXwVK9eUhjoPrbXtjYTRJnE7OY+/FLPZeyGR/bBbZRZUbWqqVCsK8nWjl40SErzMtvZ0J9XLE380eP1d7NKqGeXMtLDWQlFNMQk4xidnFXMos5HxaAedTZc9SRoGOjOhMdkZfadPg4aihW4gHUeGeRLX0olOgK+oGsq9JEDEcxi2GlZPkGxeNPdw6X1ahDYwQO9UgGY2gUFTw7OiMOuLy44D/eHYubJE/h1s+ImJ3TCbnUgtw1KoY11OUmwuubWbd1I4d0RlEpxUwa/UxFkzqYZ0713ajwM5VbnwXt6vacHFPPzlv51DqIQwmA2pl5Ze4MrGji206np28P/9En5iIytMT97F31XjuRwc/IqM4gzDXMB7q8pB5G0gS/P0yHFwMCiXcuQDa3lR/wxuYpJxitpxNZ8vZNHZfyCS/pKLXRqtW0iHAlc4t3Oh82VsS4evcYIKmJpzs1LT2c6G1X+WGsoWlBqLTCjiVnMexhFyOJ+ZwJjmf7CI9m86ksemM3HjPSauiR5gnUeGe9GnpRdcgt+tP/LQbBXd9A6unX/57VMEt7ze4h0eInWpouW4tkk4HV1VDxObFYpJMuGhc8HG43IfCZJSTrgBaDrV4n0WXvTp3dQ8SyW2Cax4HrYqP74lkzOc7+edUKsv3xTMxKqT+C2sc5PERh5fCoaXVip02Hm1w0bqQr8vnVOap8nL0q9GGhwGgi41FkiSbhxEkk4nMb+Q+OZ6TJ6N0qN47vD9lP6vPy1Vpc/vNxU5lZ94mW96G3Z/Jj2/7BDrVLKhshckkcTAum39PpbL5bBrnUgsqHHe2U9MzzIOocC96h3vSuYUbWnXTFwNOdmq6BrvTNdidCZejhiV6I6eT8zgQm83ei5nsu5hFXomBbefS2XYuHQA3Bw2D2vgwtK0Pg9r44O1s5u+7qdPpLjlJfu1jcOBbkIww6qMGFTxC7NTAf13JZcnJLd2vqsRKOQbF2aB1kcdEWEB8VhEbT8vl5lNEYrLgOqFjoBvPj2zHW3+e5vXfT9I73JMIXytUGPaYJoudk2vgpnnyLJ7/oFKq6OXXi03xm9iTvKdqsRMUJJefFxdjSE2Vy9FtSMHmzZSej0bp7IzHxAnVnldqLOX13a8DMLbNWHr49TBvg12fwta35cc3vwvdJ9XXZKtiMJrYF5vFX8dT2HAyhbT8K1PulQroFuLBkDbym33H6yjMY69R0S3Eg24hHjw4qCVGk8SZlDz2Xshi78VM9lzIIrdYz29Hk/jtaBIKBXRp4caQtr4Mb+9HpxauNhfq9SJyIqCAtY/KHh7JBLd+3GCCR4gdCygrO68QworZLH8OHwgqyzwzS/dcwiTBwNbeRPjWbZaWQNAUeWBAOFvPpbMjOoOnVhzml8f6Yac2M4m2Olp0l6uGko/CkWXQ7/EqT+sb2JdN8ZvYnbS7yjCPQqNBGxSE7tIldLGxNhU7kiSR8fUCADwmTKjQwPS/fH30a2LzYvFx8OF/Pf5n3gYHvpPDVwDDXoGoh+trslWQJIljCbn8ciiB348lk1moKz/mYq/mhna+DGvvx6DW3rg7No8qJpVSQcdANzoGunH/gHAMRhNH4nPYfDaNLWfTOZmUx9GEXI4m5PLxxvO0cHfgpk7+3NzJn+4hHtdmvmfkBFCqYM3DcOh7OYH+9k/k56yMEDsWUFaJVSE5+cJlsWNhCKtIZ2DFPjn/Z6poIii4zlAqFXxwd1dumr+Nk0l5fPj3OWbf0r5+iyoU0PN++O0p+U2874wqExv7BvYF4Ej6EYr0RThqHCudow0Pl8XOxYs49elTP7vqQdHevZQcO4bCzg7PKZOrPe9s1lkWnZDL0l+MehFXbfWiqJyjK+H3mfLjAf+DQc9aw+R6kZxbzJrDifxyKJHotCshKg9HDSM6+HNTZ3/6t/K+JkJTDY1apaRnmCc9wzx5bmQ7UvNK2Ho2nU1n0th6Lp3EnGK+3XGRb3dcxMfFjpEd/bi5UwB9WnqhupaET5e75TyyXx6EIz/IIa3Rn1td8AixYwGVeuzoiiBuj/y4lWViZ+3hJPJKDIR4OlqvRFcgaEL4udrz9l1deHjpQb7edoGBrX0Y0LqewyU7jYUNL0NWjFwFWUU1UYhLCIFOgSQVJnEg9QCDgioXDlxJUo6tnz31JOPrrwFwHzsWtXfVPxujychru1/DIBkYFjyM4aHDa1/49G9yeAAJej8EN7xqRasto0RvZP2JFH4+mMDOmAwkSX7eXqNkZEd/7ujWggER3tdNeKqh8HO15+5ewdzdK5hinZFt59NZfyKFf0+nkp5fyg974vhhTxzeznbc2iWA0ZGBRAa7Xxuhrs5jZcGzejocXS6HtMZ8aVXBI8SOmehNei7ly9Ub5Z6duN1g1MnTXb2qbnRWFf+dbn5NqXCBwAJGdvRnQu8Qlu+L46kVh/njyYH4u9nXfUE7Z+g6HvYvlBMbqxA7CoWCvoF9WX1+NXuS99QodmxZfl587BhFu/eAWo3X/dOqPW/F2RUczziOs8aZF6NerH3h6H/hp2nyHXLkvXDTO41S2vtf4rOK+HFvHKsOxJN1VZiqd7gnY7sHcXNnfzEDsI44aFWM7OjPyI7+6AwmdsVksP6EnPOUUVDK4l2xLN4VS4inI6MjAxkdGdj0UyU63XlZ8Dwgt5gw6uGOr63WaVmIHTOJzY3FYDLgrHEmwClAfrI8hDXEoheT3RcyOZuaj4NGxbiewdY3ViBoQsy5tQNH4nM4nZzHjGWHWPFQn/qVBveYJoudM39Afgq4VM656RPYh9XnV7MrcRf0qryENlyeAWXL8vOMBXKujtutt1ZqXlpGfH48Hx/6GICnuz+Nn5NfzYvG7oQV98mzxDqMliuvGqlpG8i9cLadS2fpnktsPptW7sUJcLPn7p7B3NU9iBCvymFFQd3RqpUMaevLkLa+vDGmEzvOZ7DuSCJ/n0olLquITzdF8+mmaNoHuDI6MpAxkS3qd8PRkHQcI3tzfpoKJ3+B0jy5H1Qd5k3+FyF2zCQ6JxqQW9KXuwVjtsifLQxhLd4ZC8BdPVrg5iDubATXNw5aFV/e253bPt3BwUvZzPvzDHNu61D3Bf07yZ3K4/fKZeiDn6t0St+AvqgUKmJyY0jITyDIpWIPq7Lyc31CAqbi4hrLvRuC0vPnKfh3IygUeD04vcpzyiaaFxuK6eHXg3Ftx9W8aOJBebCnoRhaj4A7FzZaO/6CUnnkzeJdF4nPKi5/fmBrb+7rE8oN7XxFmKoR0KiUDG3ny9B2vhTpDPx7Oo1fjySy9Vw6p5PzOJ2cxzvrzzAgwpuxPYIY0cEfB631k4HrRfvbYMJKWDVJ9lIuvUMeNeHgUa9lxV+fmZzPPg9AhMflcFVBGqQelx+Hm9+FND6riH/Lys37hlnTRIGgyRLm7cQHd8vjG77beZE/jiXXb8Gel7sj718o9+v4D252bnTzledebUvYVum42scHlYcHmEyURsfUz5Y6kLlwIQAuw4dj16pVlef8fO5n9qXsw15lz+v9XkepqOHlOvWUPHdIlw9hA+W74UYYtJiaV8Lbf52h77yNvPH7KeKzinG1V/PAgHA2PTOYpQ9EMbKjvxA6NsBRq+b2roEsnNKL/S8NZ96dnekd7okkwfbzGTy14gi93vqXWT8fY9/FLKQyN1xToPVwmLQW7N3km5pFt8he3Hog/gLN5HzOZbHjflnslI2I8O8Mzj5mr/PD5XLzARHeVXbaFAiuV0Z09OfhwXK+2/M/HyUmvaCWK2qg4x3g2gIKUuT4fhUMDpJvQqoSOwqFAru28pTv0rNn6m5HHdAlJJD7+x8AeD1UdQfkpIIkPjjwASBPNA9xraExY2YMfD9a7vfVoqc878rCsTWWcjYln2d/OsqAdzbx1dYY8ksMtPRx4v/u6MzeF4fzyq0daOljhd5KAqvg7qhlQu8QVj3cl23PDeWpG1oT7Okge+QOxHP317sZ/N4W5v97jvisIlubKxMSBdP+Amd/SDsF346ArLrn2AmxYyZlnp02Hm3kJ2Kuytcxk2KdkRWXp5tPEeXmgmbIcyPaEhXuSaHOyCNLD1JYw9DGGlFroc9j8uOdn8j9Of7DoGA5MXlfyj4K9YWVjttfFjslZ8/VzYY6kvntt2A04tSvHw6dO1U6LkkSc3fNpchQRKRPJBPbTax+sexLsOR2KEwDv87yBHO7hruJOngpi6mL9jFy/jZ+PpiA3ijRO8yTbyb35N//DWZiVEjTC4sIKhDi5cj/bmzD1meHsvKhPtzdMwhnOzVxWUXM//c8A9/dzN1f72bV/ngK6vr/aS38OsL968EjHHIuwfdj6ryUEDtmUKQvIrFAnoIe4R4hv7BG/yMfbDXM7HXWHkkkt1hPsKcDw9qJcnNB80OtUvLpxG74uthxPq2AZ386islUR/d5jylg5waZ5+Hsn5UOh7uGE+wSjN6kZ3fS7krH7dq1A6D0TON5dgzp6eSu/gUAr4erbvD3y/lf2J28GzuVHa/3f736ieZ5SfD97ZCXAN5tYNKaeuc1VMeeC5ncu3APd325my1n01EqYFTnANY81o9Vj/Tlxg5+12ZTu2aMUqkgqqUX747tyv6XhjN/fCQDIrxRKGDfxSyeX32Mnm/+w9MrDrP9fDrGuv6f1hfPcLh/A/h3geLM2s+vBiF2zKAsOdnbwRsPew9IOQoFqaB1htD+Zq1Rody8T5goNxc0W3xd7Pni3u5oVAr+OpHC/H/r6Fmxc4Fel3N3ds6H/+QcKBSK8lDWxriNlS63byt7aUvOnWu0fIWsJUuQdDocIiNx7F25TCylMIX3D7wPwOORjxPuFl71QgVpskcnOxY8wmDyOovC6eYgSRI7zmdw91e7uWfBHnZGZ6JWKrinVzCbnx3C5/d2p1tIw4grQePioFUxplsLfpgexc5Zw3huZFta+jhRojex9kgSk77dx4B3NvHu+jMVmkE2Gi5+MO1PiyIp/0WIHTO4uhILgHMb5M8th4DavMFsey5kcSZFLje/W5SbC5o5PcM8+b87OgPwyaZo1h1JrNtCUY+Ayg4S9st9r/7DiLARAGyJ34LOqKtwTBsRASoVptxcDCn1S340B2NuLtnLlgPg9fBDlZq9lVVfFegL6OLdhUkdqplhVZQlu/Mzz8s9vib/Cq6BVrNTkiQ2n0njzi93cd+3e9kXm4VWpeS+PiFseW4Ib9/VhVCv+pcCC5omge4OzBgawcaZg1nzWD/u6xOCq72a5NwSvtgSw/APt3L7ZztYvPMimQWViwMaDDsXGLuozpeL0nMzKMvXae3RWn6iTOy0ucnsNcq8Ond0b4Gboyg3FwjG9QwmOr2Ar7de4LmfjxHi6Wi5p8DFT56vc3Ax7JgPof0qHO7q0xVfR1/SitLYlbSLIcFDyo8ptVrsWoZTej6akrNn0QQE1Pt7qomsH3/EVFSEXdu2OA8ZUun48jPL2Zm0EzuVHW/0f6Pq8FVJrlyKm3YSnP1gyq/gYZ0hwpIksfVcOh/+c45jCbkA2KmVTOgdwiODWzXd3iyCBkGhUJQPKn15VAc2nk5j9aEEtp5L51hCLscScnnzj9MMbuPDHd1bMLy9H/aaBs7XsnD+5NUIz44ZlFVitXZvDfmpkHRIPtB6hFnXJ+YU8/cp+c5RzMESCK7w/Mh2DG/vh85gYvqSA1zMqJxIXCv9npQ7r57fAImHKhxSKpTcGHojAH/H/l3pUru2ZXk7Zy3f1wJMhYVkL/keAK+HHqzk1YnOjuajgx8BMLPHTFq6t6y0BqUF8OM4SD4Cjl6yR8er6rJ1S9l3MYvxX+9h6qL9HEvIxUGj4qFBLdk+ayhzb+8ohE4zx16jYlSXAL6b2ou9L97Aq7d1oEuQGwaTxMYzaTy+7DC93vyXF1YfY++FzLrn4TUgQuyYQXS2HMZq7dH6SmJyQKR8V2kG3++OxSRBv1ZetBHl5gJBOSqlgo/viaRzCzcyC3VM/m4vafklli3i1Qo63y0/3vxWpcMjQuWbks3xmyuFsuzby8NJi08ct9x4C8j+6SeMubloQkNwvamiR1hn1DF7x2xKjaX0b9GfCe0mVF5AVwTL75F7jti7yT1IfNvV267jCblM+W4fd3+9Ww5XqZVMHxDOjllDefGW9vi6CJEjqIi3sx3T+ofz6+MD+HfmIGYMbUULdwfySw2s2B/P+AV7GPjuZt7fcNY2+T3VIMROLWSVZJFZkokChTwTy8IQVpHOwPK98nTzaf2rSTYUCJoxTnZqvpvaixBPR+Kzipm2aL/lJa9DZoFCJXdcvVQxdyfSNxI/Rz8K9AVsid9S4ZhDt0gAio8cbbAkZZNOR9Z3cq6B1/TpKFQVXf2fHfmMM1lncLdz541+b1Qe3KgrhOXjIXY7aF3gvjUQ0KVeNp1PzefRHw5y22c72HouHbVSwb1RIWx7bigv39oBL2fzchEFzZsIXxeeG9mO7c8PZfmDchm7i52axJxiPtsczfAPt3Lzx9v5fHM0lzLr4LW1IkLs1EKZVyfIJQhHhfpKf5025oWwfjmUSF6JgVAvR1FuLhBUg4+LHd/f3xsvJy0nk/J4eOkBSvRG8xfwbAnd7pMf//tqhcospULJ7a1uB2BdzLoKl9l37AgaDcaMDPTx8fX+Pqoid+1aDGlpqP38cBs9usKx/Sn7WXxiMQBz+83Fx/E/FVW6QnkExMVtcvXnvT9BUI862xKXWcTMVUcYOX8bf51IQaGAO7u1YOMzg3nrjs4iXCWoE0qlgr6tLpexvzycTyd0Y1g7X9RKBaeT83hvw1kGv7eF2z7dwVdbY2zSuFCInVqo0Dk5bpfcjt3JFwK61XqtySSxaKfc8XFKX1FuLhDURJi3E4um9cJJq2JndCaP/HCQUoMFgmfIC6BxlEM9p9ZWOFQmdnYm7iS9KL38eaWdHQ4d5DldxYcP1/t7+C+SwUDmwm8B8Lp/GkrtlREOebo8XtzxIhISd7W+ixtCbqh4cWkB/DD2Ko/OLxDat052pOaV8PLa4wz7YAu/HErEJMHIjn5seHoQH46PFNVVAqthr1FxW9dAvpsqj6l4567ODGztjUqp4HhiLm//dYaB725m9Oc7Wbj9Akk5xbUvagWE2KmFCpVYZSGs1iPMmiS8PTqDmPRCnO3UjOsZVOv5AkFzp0uQO99N7YW9RsmWs+nM+PEQOkPl7shV4hooJysD/PNqhZlZYW5hRPpEYpSM/H7h9wqXOXTvDkBRA4id3F9/Qx8Xh8rdHfdxVwZ5lnVJTilMIdglmOd7PV/xwtJ8+HGsfINl5yo3DAyJsnj/rEId//fnaQa9u5kf9sRhMEkMbO3Nuhn9+XpST5FDKGhQPJy0jO8VwtIHotj34g28dUcn+rb0QqmAo/E5vPnHafq9vYkxn+/k883RRKflN1g4WYidWiivxHKLuCpfx7wQVplXZ1zPIFzsRbm5QGAOUS29+HZKL+zUSv49ncYTyy0QPP2flGfp5FySx0hcxegIOYT087mfMUlX1ivP2zlkXbEj6XRkfP45AF4PPojS0bH82LIzy/jn0j+oFWreHvg2jporxyjOkYd6xu2WO0RPWgvBlRsQ1kR+iZ6P/jnHoHc3s2DbBUoNJnqGerDioT4sfSCKrsHu9f8GBQIL8HK2496oUJY/1Ic9L97A66M70jvME4UCjsTn8N6Gswz/cBvDPtjK//15mv2xWVbt2izETg1IknSlEktSQVYMqLTQcmit10anFbDlbDoKhSg3FwgspX+ENwsm90SrUrLhZCoPLT1Asc6MkJbWCUa8KT/e/n6FwYG3hN+Ci8aFuPw4dibuLH/esZscki49fx5jfr7VvoecX35Bn5iIyscbj4lXKqyOph/l/f1yl+Rnez1LF5+rko3zU+QJz2VVV5PXWpSjU6wz8tXWGAa+u5mPN56noNRAx0BXFk3rxU+P9KVPSy9rfXsCQZ3xdbFnct8wVj3Slz2zb+DNMZ0Y3MYHrUrJxYxCFmy7wLivdtP7rX957qejbDiZUu85XULs1EByYTJFhiLUSjUhcQfkJ1sNA3vXWq8tayJ4Qzs/EQ8XCOrA4DY+fDOlZ3lIa9K3e8kt1td+YeexED4YDCXwxzPlycqOGkfGtB4DwI9nfiw/Xe3jgyYkBCSJov37rWK7qaSEjC++BMD74UdQOshTyHNKcnh267MYJAMjQkdUHPKZGSNPdi5rGDj1T2jR3az9dAYT3++OZdB7m3n7rzPkFOlp5ePEF/d257fHBzC0rW/lKi+BoAng52rPfX1CWXJ/bw7NuZHPJ3ZnTGQgrvZqMgt1/HQwgYeXHqTb638zfUnd/z+F2KmBM1nygMCWbi3RnL4c5+8wuoYrZHKL9Px8MAGA+/uHNZR5AsF1z+A2PvzwQBSu9moOXMpm/Ne7ScurpQ+PQgGjPpDHSMRshMNLyw9NaDsBBQp2Ju7kYu4Vr4/zgAEAFGzZahW7c1aulCuwAgJwv1vO1TGYDMzaPouUwhRCXUN5rd9rVwRI8jH47iY5/OZRNviw8kT0/2Iwmlh1IJ6h729hzrqTpOeXEuThwPvjurLh6UHc0jlADOgUXDM426kZ1SWA+fd04+ArN7JsehRT+4UR6uWI3iix50JWndcWYqcGysROe6cg+W5LqYa2N9d63coDcRTrjbT1c6FvK+E2FgjqQ88wT1Y+3BdvZzvOpORz+2c7OZGYW/NF3q1h2Mvy4/UvQo7c6yrYNZjBwfJw0IXHF5af7jx0CAAFW7fWO0HSVFhIxoJvZDMee7S8Auu9/e+xK2kX9ip7Phj8Ac5aZ/mC2J2weBQUpoFfZ1noeNbck8tkkvj9WBIj5m/j+Z+PkZhTjK+LHW+M7simZ4YwtkcQapV4eRdcu2hUSvpFeDP39o5sfW4om58dwqyb2tZ5PfHfUAOnM08D0L74cjOk8MHgUPPsHoPRxJJdlwC4f0CYcB0LBFagfYArqx/tSysfJ1LyShj71S7+PJ5c80V9Z0BQb7ldxOrpYJRDYA93eRiAPy78QVyeLIIce/dG4eCAITWV0jNn6mVr5qLFGDMz0YSE4D5mDAArz6xk2ZllAMwbOI+2npdftI+ugKVjoDQPQvvDtD9q7MxuMkn8eTyZUZ/u4PFlh7mQXoi7o4YXb2nH1ueGMqlvGFq1eFkXXH+EezsxqW9Yna8X/xU1cCrrFADtE47JT5gRwlp/MoXEnGI8HDWMjmzRkOYJBM2KUC8n1szoz+A2PpToTTz24yHe23AGg7GaSi2lCu5cIJdux++FTW8A0Mm7E4OCBmGUjHx97Gv5VDs7nPrKPWwKtmyps4365GQyF8oeI9+Z/0Oh0bA7aTfz9s0D4MluTzI8dDiYTPDva7DmYTDqoP1tcN9qOSm5CowmiXVHEhk5fxuP/XiI08l5ONupeXp4a7Y/P5SHBrXCQdvAQxgFgmsYIXaqIbM4k7SiNBQoaJt6Tq7CqkXsSJLE11svADC5b1jDT4AVCJoZrvYavpvaiwcGyGGezzfHcM+CPSRW15jMMxxGfyY/3vkxnPgFgEe7PgrAbzG/lXtwnYfI4a38jZvqbF/aBx8ilZTg0LMHLiNHcibrDM9seQajZOTWlrcyvfN0uYfOT5Nhx4fyRQOfgXHfg8ah0noGo4mfDyZw44dbeWrFEc6nFeBir+bJG1qzY9ZQnh7eRrS1EAjMQIidaijL1wlVO+EkSdBmJDi413jN7phMjifmYq9RMrlvaCNYKRA0P1RKBa/c2oFPJnTD2U5OXL7l4+38VV1Yq8No6Pu4/Hjto5BwgE7enbg57GYkJP5v7/8hSRIuN9wAGg0lJ05QUodQVuHu3eT9/jsoFPjNns2F3As89PdD5Ovz6e7bnbn95qJIPQkLhsDp3+QbqDu+hhvmVGpSWqQz8P3uWIZ9sJVnfzrKhQw5XPXMjW3Y+cIwZt7YBndHbdWGCASCSgixUw2nsy7n6xTmyU+UTVWuga+2yV6du3sGi0F6AkEDc3vXQP58ciBdg9zILdbz6I+HeHjpAVJyq6jWuvF1eXivoUTuTJx6ipk9Z+KgduBI+hHWxaxD7eUlCx4ge+VKi2wxlZSQ/OpcADwmTCA92IUH/36Q7NJsOnh14LNhn2J3dBUsvAEyo8G1BUz9A7reU2GdtLwS3ttwhn5vb2LOupPEZRXh5aTlhZvbsWPWMJ64oTWuwpMjEFiMEDvVcCrzcr5OYa7cxbR1zV2TTyXlse1cOkoFTB/QsjFMFAiaPSFejvz0SD8eHxqBWqlgw8lUbvxwK9/vjq2Yy6NUwV0LoUUPKM6G70fjX5jDI10fAeDtfW8Tnx+Px3j5pibv198wFZo/pTn9o/no4+JQ+/mhe3Ac0/+eTnpxOq09WvN13zdxWTsDfn1cFlsRw+Hh7RDcG5DD30fic3hm1VH6v7OJzzfHkFOkJ9TLkddu78j2WUN5ZHArnO3U1vvBCQTNDCF2qqG87LxUJzcp09Q8DXjBthgARnUJJMTLscZzBQKB9dCqlTw7si2/PTGAyGB38ksNzFl3khHzt/HX8eQrpeR2LnISsF9nucz7u5FMdm5Ld9/uFOoLeWHbC2h6dkcbGoqpsJCcNWvN2j9/yxayliwBwPDsA0ze9gjJhcmEuYaxIOh23BeOgNO/gkIFw16BiT+Bkxd5JXqW7o7llk92MObznaw+lIDeKNEz1IOv7uvBpmeGMKVfGI5aIXIEgvqikBpq6lYTJS8vDzc3N3Jzc3F1rboTsiRJfH/4S07v/pDZmZm4PbgVArpUeS5AfFYRQ97fgtEk8fsTA+jUouqKCoFA0LAYTRI/7r3E/H/Pk1WoA6BrkBuPDongxg5+qJQKKMqCZXdDwn5QaUm+4SXuurSKfF0+N4fdzKyErqS98SYqd3darf8Llbt7tfvpEhKIHTsOY04O+WMG83jnQxQbimnrEspXBUq8L1xuUujXGcZ8jt63M7tiMvn1SBJ/HE+iRC97n+zUSkZ1CWBSn1C6hdTc3kIgaK6Y8/5dHULsVMfOj+GfORDYHR7aXOOar6w9wdI9l+gf4cWP0/tY2WKBQGAp+SV6vtl+kYXbL1B0eaZWkIcDU/uFcVf3IDw0evjlITgjd0bf1WYwMwzxGCQDY1vewX3vHUF37jweEyfgP2dOlXsYMjOJnTgR/aU4csK9eGxsDga1giiVOx/FnMBFMoFSg3Hgs+wOmMTvJzNZfzKFnKIrIy9a+zozMSqEO7q1EAnHAkEt1EfsNIkw1ueff05YWBj29vZERUWxb9++Gs//6aefaNeuHfb29nTu3Jk///zTugZJEhyU3dL0mFrjqcm5xazcHw/A40NbW9cOgUBQJ1zsNcy8sQ1bnxvKjKGt8HDUkJBdzJt/nKbXW/8y5YeT/NRqHsWDXwWlmn7ntvJWZg4K4OcLa/hhpBy2zl6+ospwli4ujktTpqK/FEeWh5pZo2ShMym3gK+ij+EimYgLGMmrwYvovq079y0+wor98eQU6fF21nJfnxB+fqQvf/9vENP6hwuhIxA0MDb37KxcuZLJkyfz1VdfERUVxfz58/npp584e/Ysvr6+lc7ftWsXgwYNYt68edx6660sW7aMd955h0OHDtGpU+2zZMxShvpi2PoOnFonJxLaOVe73px1J/h+9yWiwuWW9gKBoOlRojey9nAiS/dc4mRSXvnzCgWM9M7kZeOXBBWdYqOjA7N9vChWKnlgI4zcZwCFAu/HZ+Bxj1w5lfLLKnK+XoCqoIQsZ3htogq9m4nXMjIZVFzCAUUn3iy5myNSRPk+nk5aburkz62dA+gd7ilGOQgEdeCaDmNFRUXRq1cvPvtMbvxlMpkIDg7miSee4IUXXqh0/vjx4yksLOT3338vf65Pnz5ERkby1Vdf1bqfRT8sSZJfDashObeYwe9uQWc0sfzBPmIOlkBwDRCTXsAfx5L541gyZ1PzAVBg4iblfp5U/4LSLoW5Pp6c0GqZvsHEiMNVv0SeC4SP71AyylTAhJxS/tUP4AfjcM5JwaiUCiKD3RnY2puBrX3oGuQmBI5AUE/qI3Zsmuav0+k4ePAgs2fPLn9OqVQyfPhwdu/eXeU1u3fvZubMmRWeGzlyJGvXrq3y/NLSUkpLS8u/zs2VBwjm5eVVeb4lzP/zFCVFBfQI9aCjj8YqawoEgobFxw6m9vJjai8/0vNLOHgpmwOx2ZxMGsBdmV0JL4jm5pw99HM5zf5eek54q7npoERIunx9oiccjDShDlYwLimUY8buPOQRRUALH0a1cGV2kDsdAtwqjG8oKiyw0XcrEFw/lL3H1sVHY1Oxk5GRgdFoxM+v4uA7Pz8/zlTTwTQlJaXK81NSUqo8f968ebz22muVng8ODq6j1ZWJB9z+Z7XlBAKBDTkN/DcLcOF/TypPK4wGNjawRQKB4GoyMzNxc7Os6vm6b+Awe/bsCp6gnJwcQkNDiYuLs/iHJbAueXl5BAcHEx8fb7FLUmB9xO+j6SB+F00H8btoOuTm5hISEoKnp6fF19pU7Hh7e6NSqUhNTa3wfGpqKv7+/lVe4+/vb9H5dnZ22NlVHt3g5uYm/nCbCK6uruJ30YQQv4+mg/hdNB3E76LpoFRanv9m04w5rVZLjx492LjxihvYZDKxceNG+vaturKpb9++Fc4H+Oeff6o9XyAQCAQCQfPG5mGsmTNnMmXKFHr27Env3r2ZP38+hYWFTJs2DYDJkyfTokUL5s2bB8BTTz3F4MGD+eCDDxg1ahQrVqzgwIEDLFiwwJbfhkAgEAgEgiaKzcXO+PHjSU9PZ86cOaSkpBAZGcn69evLk5Dj4uIquKz69evHsmXLePnll3nxxRdp3bo1a9euNavHDshhrVdffbXK0JagcRG/i6aF+H00HcTvoukgfhdNh/r8LmzeZ0cgEAgEAoGgIRFdrgQCgUAgEFzXCLEjEAgEAoHgukaIHYFAIBAIBNc1QuwIBAKBQCC4rml2Yufzzz8nLCwMe3t7oqKi2LdvX+0XCazOtm3buO222wgMDEShUFQ720zQsMybN49evXrh4uKCr68vY8aM4ezZs7Y2q9ny5Zdf0qVLl/IGdn379uWvv/6ytVnNnrfffhuFQsHTTz9ta1OaJXPnzkWhUFT4aNeunUVrNCuxs3LlSmbOnMmrr77KoUOH6Nq1KyNHjiQtLc3WpjU7CgsL6dq1K59//rmtTWnWbN26lRkzZrBnzx7++ecf9Ho9I0aMoLCw0NamNUuCgoJ4++23OXjwIAcOHGDYsGGMHj2akydP2tq0Zsv+/fv5+uuv6dKli61NadZ07NiR5OTk8o8dO3ZYdH2zKj2PioqiV69efPbZZ4DcrTk4OJgnnniCF154wcbWNV8UCgVr1qxhzJgxtjal2ZOeno6vry9bt25l0KBBtjZHAHh6evLee+/xwAMP2NqUZkdBQQHdu3fniy++4M033yQyMpL58+fb2qxmx9y5c1m7di1Hjhyp8xrNxrOj0+k4ePAgw4cPL39OqVQyfPhwdu/ebUPLBIKmQ25uLkCdBu0JrIvRaGTFihUUFhaKcTg2YsaMGYwaNarC+4bANpw/f57AwEBatmzJvffeS1xcnEXX27yDcmORkZGB0Wgs78xchp+fH2fOnLGRVQJB08FkMvH000/Tv39/szuSC6zP8ePH6du3LyUlJTg7O7NmzRo6dOhga7OaHStWrODQoUPs37/f1qY0e6Kioli8eDFt27YlOTmZ1157jYEDB3LixAlcXFzMWqPZiB2BQFAzM2bM4MSJExbHwgXWpW3bthw5coTc3Fx+/vlnpkyZwtatW4XgaUTi4+N56qmn+Oeff7C3t7e1Oc2em2++ufxxly5diIqKIjQ0lFWrVpkd3m02Ysfb2xuVSkVqamqF51NTU/H397eRVQJB0+Dxxx/n999/Z9u2bQQFBdnanGaNVqslIiICgB49erB//34+/vhjvv76axtb1nw4ePAgaWlpdO/evfw5o9HItm3b+OyzzygtLUWlUtnQwuaNu7s7bdq0ITo62uxrmk3OjlarpUePHmzcuLH8OZPJxMaNG0U8XNBskSSJxx9/nDVr1rBp0ybCw8NtbZLgP5hMJkpLS21tRrPihhtu4Pjx4xw5cqT8o2fPntx7770cOXJECB0bU1BQQExMDAEBAWZf02w8OwAzZ85kypQp9OzZk969ezN//nwKCwuZNm2arU1rdhQUFFRQ5RcvXuTIkSN4enoSEhJiQ8uaFzNmzGDZsmWsW7cOFxcXUlJSAHBzc8PBwcHG1jU/Zs+ezc0330xISAj5+fksW7aMLVu2sGHDBlub1qxwcXGplLfm5OSEl5eXyGezAc8++yy33XYboaGhJCUl8eqrr6JSqZgwYYLZazQrsTN+/HjS09OZM2cOKSkpREZGsn79+kpJy4KG58CBAwwdOrT865kzZwIwZcoUFi9ebCOrmh9ffvklAEOGDKnw/KJFi5g6dWrjG9TMSUtLY/LkySQnJ+Pm5kaXLl3YsGEDN954o61NEwhsRkJCAhMmTCAzMxMfHx8GDBjAnj178PHxMXuNZtVnRyAQCAQCQfOj2eTsCAQCgUAgaJ4IsSMQCAQCgeC6RogdgUAgEAgE1zVC7AgEAoFAILiuEWJHIBAIBALBdY0QOwKBQCAQCK5rhNgRCAQCgUBwXSPEjkAgEJiBTqcjIiKCXbt2Nfreffr0YfXq1Y2+r0BwvSDEjkDQDJk6dSoKhaLShyWD9ZobX331FeHh4fTr14/FixdX+fO7+iM2Npa5c+cSGRlZaa3Y2FgUCgVHjhwxa++XX36ZF154AZPJZN1vSiBoJgixIxA0U2666SaSk5MrfFQ1CFSn09nAuqaFJEl89tlnPPDAA4A8eubqn1vfvn158MEHKzwXHBxstf1vvvlm8vPz+euvv6y2pkDQnBBiRyBoptjZ2eHv71/hQ6VSMWTIEB5//HGefvppvL29GTlyJAAnTpzg5ptvxtnZGT8/PyZNmkRGRkb5eoWFhUyePBlnZ2cCAgL44IMPGDJkCE8//XT5OQqFgrVr11aww93dvcI8tPj4eO6++27c3d3x9PRk9OjRxMbGlh+fOnUqY8aM4f333ycgIAAvLy9mzJiBXq8vP6e0tJRZs2YRHByMnZ0dERERfPvtt0iSREREBO+//34FG44cOVKjZ+vgwYPExMQwatQoABwcHCr83LRaLY6OjpV+luZSnadty5YtAKhUKm655RZWrFhh9poCgeAKQuwIBIJKLFmyBK1Wy86dO/nqq6/Iyclh2LBhdOvWjQMHDrB+/XpSU1O5++67y6957rnn2Lp1K+vWrePvv/9my5YtHDp0yKJ99Xo9I0eOxMXFhe3bt7Nz506cnZ256aabKniYNm/eTExMDJs3b2bJkiUsXry4gmCaPHkyy5cv55NPPuH06dN8/fXXODs7o1AouP/++1m0aFGFfRctWsSgQYOIiIio0q7t27fTpk0bXFxcLPp+zOXjjz+u4BV66qmn8PX1pV27duXn9O7dm+3btzfI/gLBdY8kEAiaHVOmTJFUKpXk5ORU/jF27FhJkiRp8ODBUrdu3Sqc/8Ybb0gjRoyo8Fx8fLwESGfPnpXy8/MlrVYrrVq1qvx4Zmam5ODgID311FPlzwHSmjVrKqzj5uYmLVq0SJIkSVq6dKnUtm1byWQylR8vLS2VHBwcpA0bNpTbHhoaKhkMhvJzxo0bJ40fP16SJEk6e/asBEj//PNPld97YmKipFKppL1790qSJEk6nU7y9vaWFi9eXO3P66mnnpKGDRtW7fHBgwdX+D7LePXVVyWlUlnh5+zk5CQ5OjpKgHT48OFK16xevVqyt7eXduzYUeH5devWSUqlUjIajdXaIRAIqkZtW6klEAhsxdChQ/nyyy/Lv3Zycip/3KNHjwrnHj16lM2bN+Ps7FxpnZiYGIqLi9HpdERFRZU/7+npSdu2bS2y6ejRo0RHR1fyoJSUlBATE1P+dceOHSuEiQICAjh+/Dggh6RUKhWDBw+uco/AwEBGjRrFd999R+/evfntt98oLS1l3Lhx1dpVXFyMvb29Rd9LGW3btuXXX3+t8FxiYiJDhgypdO7hw4eZNGkSn332Gf37969wzMHBAZPJRGlpKQ4ODnWyRSBorgixIxA0U5ycnKoN21wtfAAKCgq47bbbeOeddyqdGxAQYHYVl0KhQJKkCs9dnWtTUFBAjx49+PHHHytd6+PjU/5Yo9FUWresUskcITB9+nQmTZrERx99xKJFixg/fjyOjo7Vnu/t7V0upixFq9VW+jmr1ZVfelNSUrj99tuZPn16eSL01WRlZeHk5CSEjkBQB4TYEQgEtdK9e3dWr15NWFhYlW/UrVq1QqPRsHfvXkJCQgDIzs7m3LlzFTwsPj4+JCcnl399/vx5ioqKKuyzcuVKfH19cXV1rZOtnTt3xmQysXXrVoYPH17lObfccgtOTk58+eWXrF+/nm3bttW4Zrdu3fjyyy+RJAmFQlEnu2qipKSE0aNH065dOz788MMqzzlx4gTdunWz+t4CQXNAJCgLBIJamTFjBllZWUyYMIH9+/cTExPDhg0bmDZtGkajEWdnZx544AGee+45Nm3axIkTJ5g6dSpKZcWXmGHDhvHZZ59x+PBhDhw4wCOPPFLBS3Pvvffi7e3N6NGj2b59OxcvXmTLli08+eSTJCQkmGVrWFgYU6ZM4f7772ft2rXla6xatar8HJVKxdSpU5k9ezatW7emb9++Na45dOhQCgoKOHnypAU/NfN5+OGHiY+P55NPPiE9PZ2UlBRSUlIqJGVv376dESNGNMj+AsH1jhA7AoGgVgIDA9m5cydGo5ERI0bQuXNnnn76adzd3csFzXvvvcfAgQO57bbbGD58OAMGDKiU+/PBBx8QHBzMwIEDmThxIs8++2yF8JGjoyPbtm0jJCSEO++8k/bt2/PAAw9QUlJikafnyy+/ZOzYsTz22GO0a9eOBx98kMLCwgrnPPDAA+h0OqZNm1brel5eXtxxxx1VhteswdatW0lOTqZDhw4EBASUf5R1a05MTGTXrl1m2SoQCCqjkP4bQBcIBAIrMWTIECIjI5k/f76tTanE9u3bueGGG4iPj8fPz6/W848dO8aNN95ITExMlYnaDcmsWbPIzs5mwYIFjbqvQHC9IDw7AoGgWVFaWkpCQgJz585l3LhxZgkdgC5duvDOO+9w8eLFBrawMr6+vrzxxhuNvq9AcL0gxI5AIGhWLF++nNDQUHJycnj33Xctunbq1Kl07ty5gSyrnmeeecZsUSYQCCojwlgCgUAgEAiua4RnRyAQCAQCwXWNEDsCgUAgEAiua4TYEQgEAoFAcF0jxI5AIBAIBILrGiF2BAKBQCAQXNcIsSMQCAQCgeC6RogdgUAgEAgE1zVC7AgEAoFAILiuEWJHIBAIBALBdc3/A0sgu6a4wnpTAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_absorption(batch_results)\n" ] }, { "cell_type": "markdown", "id": "f49c61a9", "metadata": {}, "source": [ "## Graphene Fishnet Absorber" ] }, { "cell_type": "markdown", "id": "e3ae8df1", "metadata": {}, "source": [ "To enhance the absorption bandwidth, a fishnet design is explored, as discussed in the [reference](https://opg.optica.org/oe/fulltext.cfm?uri=oe-21-7-9144&id=252404&ibsearch=false).\n", "\n", "Similarly, we define a function here that returns a simulation at a given graphene chemical potential. " ] }, { "cell_type": "code", "execution_count": 12, "id": "9fe6635e", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:41.768554Z", "iopub.status.busy": "2023-03-27T21:52:41.768427Z", "iopub.status.idle": "2023-03-27T21:52:41.789295Z", "shell.execute_reply": "2023-03-27T21:52:41.788741Z" } }, "outputs": [], "source": [ "# fishnet parameters\n", "b = 2\n", "w = 12\n", "\n", "h = 17.6 # distance between the graphene and the ground plate\n", "inf_eff = 1e3 # effective infinity\n", "\n", "\n", "def make_sim_fishnet(mu_c):\n", " # define graphene\n", " graphene = td.material_library[\"graphene\"](\n", " gamma=gamma, mu_c=mu_c, temp=temp, scaling=scaling\n", " ).medium\n", "\n", " # define the fishnet structure\n", " graphene_finishnet_center = td.Structure(\n", " geometry=td.Box.from_bounds(rmin=(0, 0, h), rmax=(w / 2, w / 2, h)),\n", " medium=graphene,\n", " )\n", " graphene_finishnet_right = td.Structure(\n", " geometry=td.Box.from_bounds(rmin=(w / 2, 0, h), rmax=(inf_eff, b / 2, h)),\n", " medium=graphene,\n", " )\n", " graphene_finishnet_top = td.Structure(\n", " geometry=td.Box.from_bounds(rmin=(0, w / 2, h), rmax=(b / 2, inf_eff, h)),\n", " medium=graphene,\n", " )\n", "\n", " # define a plane wave source\n", " plane_wave = td.PlaneWave(\n", " center=(0, 0, h + 0.1 * offset),\n", " size=(td.inf, td.inf, 0),\n", " source_time=td.GaussianPulse(freq0=freq0, fwidth=freq0 / 2),\n", " direction=\"-\",\n", " )\n", "\n", " # define a flux monitor to measure reflection\n", " flux_monitor = td.FluxMonitor(\n", " center=(0, 0, h + offset),\n", " size=(td.inf, td.inf, 0),\n", " freqs=freqs,\n", " name=\"R\",\n", " )\n", "\n", " # simulation domain size in z\n", " Lz = h + 1.1 * offset\n", "\n", " # define simulation\n", " sim = td.Simulation(\n", " center=(0, 0, Lz / 2),\n", " size=(a, a, Lz),\n", " grid_spec=grid_spec,\n", " structures=[\n", " graphene_finishnet_center,\n", " graphene_finishnet_right,\n", " graphene_finishnet_top,\n", " ],\n", " sources=[plane_wave],\n", " monitors=[flux_monitor],\n", " run_time=run_time,\n", " medium=topas,\n", " boundary_spec=boundary_spec,\n", " shutoff=1e-7,\n", " symmetry=(-1, 1, 0),\n", " )\n", "\n", " return sim\n" ] }, { "cell_type": "markdown", "id": "62d74707", "metadata": {}, "source": [ "To make sure the structures are defined correctly, use the `plot` method to visualize the fishnet. Due to symmetry, only a quarter of it needs to be defined." ] }, { "cell_type": "code", "execution_count": 13, "id": "cfc44984", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:41.791718Z", "iopub.status.busy": "2023-03-27T21:52:41.791570Z", "iopub.status.idle": "2023-03-27T21:52:42.032265Z", "shell.execute_reply": "2023-03-27T21:52:42.031802Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcYAAAHWCAYAAADttCmyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABF40lEQVR4nO3de3gU5d0//vfMHmZzTpQESInISVGBQjk9X0ERpWqLVWxL+1ixYn3whAeKPirqJaIWaj2htoraFryoClUftRVPCAIqWlFsf6IcpIrFAAJKsjnt7M7cn98fIetEZrIhQGaSfb+uK9fV7D0z788Gm09m97731kREQERERAAA3e8CiIiIgoSNkYiIyIGNkYiIyIGNkYiIyIGNkYiIyIGNkYiIyIGNkYiIyIGNkYiIyIGNkYiIyIGNkSjgVqxYAU3TsGLFCr9LIcoKbIxEAfHggw9iwYIFfpfRJk888QTmzp3rdxkAgN/85jc488wz0bVrV2iahltuucX1uCOPPBKaprl+9evXr1VZyWQSs2fPRv/+/RGLxdC1a1eMHz8eX3zxRbPjTNPEddddh/LycuTk5GDkyJFYunTpgT5VOkTCfhdARI0efPBBdOnSBZMnT272+IknnoiGhgZEo1F/CmuFJ554AuvWrcO0adP8LgU33XQTunXrhiFDhuCVV17xPG7u3Lmora1t9tjnn3+Om266CaeeemrGnFQqhfHjx2P16tWYMmUKBg0ahD179uAf//gHqqur0aNHj/SxkydPxtNPP41p06ahX79+WLBgAX74wx/i9ddfx+jRo9v+ZOmQYGOkQKmrq0NeXp7fZQSKruuIxWJ+l9FhfPbZZzjyyCOxe/dulJaWeh43YcKEfR67/fbbAQDnnntuxpx7770XK1euxJtvvokRI0Z4Hvfuu+9i0aJFuPPOO3HNNdcAAH75y19iwIABuPbaa7F69eqMWdS++FIqHTKVlZW48MILUV5eDsMw0KtXL1x66aVIJpMAgAULFkDTNKxcuRKXXXYZysrKmv2V/eCDD+K4446DYRgoLy/H1KlTUVVV1Szjk08+wU9+8hN069YNsVgMPXr0wH//93+juro6fczSpUsxevRoFBcXIz8/H0cffTRuuOGGjPW35jzTNDFz5kz07dsXhmGgoqIC1157LUzT3Od6f/nLXzBixAjk5uaipKQEJ554Il599VUAjS/rffTRR1i5cmX65byTTjoJgPd7jE899RSGDh2KnJwcdOnSBZMmTUJlZWWzYyZPnoz8/HxUVlZiwoQJyM/PR2lpKa655hrYtp3xZ/D8889j/Pjx6X/DPn364Lbbbmt27kknnYQlS5bg888/T9d+5JFHel5z8uTJni9her3suT9ays7kiSeeQK9evXD88ce3eJxSCvfddx/OPvtsjBgxApZlob6+3vXYp59+GqFQCBdddFH6sVgshgsvvBBvv/02tm7d2uZ66dDgHSMdEtu2bcOIESNQVVWFiy66CP3790dlZSWefvpp1NfXN3tZ8LLLLkNpaSluvvlm1NXVAQBuueUWzJo1C+PGjcOll16KjRs34qGHHsKaNWvw1ltvIRKJIJlM4rTTToNpmrjiiivQrVs3VFZW4oUXXkBVVRWKiorw0Ucf4YwzzsCgQYNw6623wjAMbN68GW+99VaL9bfmPKUUzjzzTLz55pu46KKLcMwxx+DDDz/Evffei02bNuG5555LHztr1izccsstOP7443HrrbciGo3iH//4B5YvX45TTz0Vc+fOxRVXXIH8/HzceOONAICuXbt61rdgwQJccMEFGD58OObMmYMvv/wS9913H9566y188MEHKC4uTh9r2zZOO+00jBw5EnfddRdee+013H333ejTpw8uvfTSFn8OCxYsQH5+PqZPn478/HwsX74cN998M+LxOO68804AwI033ojq6mp88cUXuPfeewEA+fn5nte8+OKLMW7cuGaPvfzyy3j88cdRVlaWfmz37t0t1takoKAAhmG06tiWfPDBB1i/fn3659+Sjz/+GNu2bcOgQYNw0UUX4bHHHkMymcTAgQNx3333YezYsc2ue9RRR6GwsLDZNZruMv/5z3+ioqLigOung0iIDoFf/vKXouu6rFmzZp8xpZSIiMyfP18AyOjRo8WyrPT4zp07JRqNyqmnniq2bacf//3vfy8A5M9//rOIiHzwwQcCQJ566inPOu69914BILt27dqv+ltz3sKFC0XXdXnjjTeaPT5v3jwBIG+99ZaIiHzyySei67qcffbZzZ6PyDc/CxGR4447TsaMGbNPzuuvvy4A5PXXXxcRkWQyKWVlZTJgwABpaGhIH/fCCy8IALn55pvTj51//vkCQG699dZm1xwyZIgMHTq05R+CiNTX1+/z2MUXXyy5ubmSSCTSj40fP1569uyZ8XpuPvnkEykqKpLvf//7zf47ANCqr/nz57ted9euXQJAZs6c2ao6rr76agEgH3/8ccZj/+///k8AyOGHHy79+vWT+fPny/z586Vfv34SjUblX//6V/rY4447Tk4++eR9rvHRRx8JAJk3b16r6qP2w5dS6aBTSuG5557Dj370IwwbNmyfcU3Tmn0/ZcoUhEKh9PevvfYakskkpk2bBl3Xmx1XWFiIJUuWAACKiooAAK+88orny1hNd07PP/88lFKtfg6tOe+pp57CMcccg/79+2P37t3pr5NPPhkA8PrrrwMAnnvuOSilcPPNNzd7PsC+P4vWeO+997Bz505cdtllzd57HD9+PPr375/++Thdcsklzb4/4YQT8Omnn2bMysnJSf/vmpoa7N69GyeccALq6+uxYcOG/a792+rq6nD22WejpKQETz75ZLP/DpYuXdqqr9NOO+2A61BKYdGiRRgyZAiOOeaYjMc3TdqpqanBsmXLMHnyZEyePBmvvfYaRAS/+93v0sc2NDS43tE2/ds1NDQccP10cPGlVDrodu3ahXg8jgEDBrTq+F69ejX7/vPPPwcAHH300c0ej0aj6N27d3q8V69emD59Ou655x48/vjjOOGEE3DmmWdi0qRJ6ab585//HH/84x/xP//zP7j++utxyimn4Mc//jF++tOf7tOknFpz3ieffIL169d7TvDYuXMnAODf//43dF3Hscce26qfRyZePx8A6N+/P958881mj8VisX1qLCkpwZ49ezJmffTRR7jpppuwfPlyxOPxZmPO93HbasqUKfj3v/+N1atX4/DDD2829u2XWw+llStXorKyEr/+9a9bdXzTHwyjRo1q9jLoEUccgdGjRzebUJOTk+P6nnMikWh2LQoONkby3YH8Yrj77rsxefJkPP/883j11Vdx5ZVXYs6cOXjnnXfQo0cP5OTkYNWqVXj99dexZMkSvPzyy1i8eDFOPvlkvPrqq83uUL5dU6bzlFIYOHAg7rnnHtdrBOV9I6/nmElVVRXGjBmDwsJC3HrrrejTpw9isRjWrl2L6667br/uwN3cd999ePLJJ/GXv/wFgwcP3md8x44drbpOUVHRATeXxx9/HLqu45xzzmnV8eXl5QDc3wcuKyvDBx98kP6+e/fu+0yKAoDt27c3uxYFB19KpYOutLQUhYWFWLduXZvO79mzJwBg48aNzR5PJpP47LPP0uNNBg4ciJtuugmrVq3CG2+8gcrKSsybNy89rus6TjnlFNxzzz34+OOP8Zvf/AbLly9Pv9TpJdN5ffr0wddff41TTjkF48aN2+er6Y6uT58+UErh448/bjGvtS+rev18mh779s+nrVasWIGvvvoKCxYswFVXXYUzzjgD48aNQ0lJyT7H7u9Lwm+88QauueYaTJs2zXNpRPfu3Vv1tXjx4jY9vyamaeKZZ57BSSed1OomNXDgQEQiEdeGt23btmZ36IMHD8amTZv2ueP+xz/+kR6nYGFjpINO13VMmDABf//73/Hee+/tMy4iLZ4/btw4RKNR3H///c2O/dOf/oTq6mqMHz8eABCPx2FZVrNzBw4cCF3X0y9dff311/tcv+kXkdvLW01ac97PfvYzVFZW4tFHH93n2IaGhvQM2wkTJkDXddx666373GU5n19eXt4+y1HcDBs2DGVlZZg3b16z5/DSSy9h/fr16Z/PgWq603TWmEwm8eCDD+5zbF5eXqtfWt2+fTt+9rOfYfTo0emZrW7a6z3GF198EVVVVS2uXdywYQP+85//pL8vKCjAD3/4Q6xevbrZe63r16/H6tWr8f3vfz/92E9/+lPYto1HHnkk/Zhpmpg/fz5GjhwZmFcW6Bt8KZUOidmzZ+PVV1/FmDFj0ksZtm/fjqeeegpvvvlms+UE31ZaWooZM2Zg1qxZOP3003HmmWdi48aNePDBBzF8+HBMmjQJALB8+XJcfvnlmDhxIo466ihYloWFCxciFArhJz/5CQDg1ltvxapVqzB+/Hj07NkTO3fuxIMPPogePXq0+IkjrTnvvPPOw1//+ldccskleP311zFq1CjYto0NGzbgr3/9K1555RUMGzYMffv2xY033ojbbrsNJ5xwAn784x/DMAysWbMG5eXlmDNnDgBg6NCheOihh3D77bejb9++KCsrS0/kcYpEIrjjjjtwwQUXYMyYMTjnnHPSyzWOPPLIVr9Plsnxxx+PkpISnH/++bjyyiuhaRoWLlzo+ofN0KFDsXjxYkyfPh3Dhw9Hfn4+fvSjH7le98orr8SuXbtw7bXXYtGiRc3GBg0ahEGDBgFo+3uMCxcuxOeff56ekLVq1ar0wv3zzjtvnzvqxx9/HIZhpP+bcXPMMcdgzJgxzdaSzp49G8uWLcPJJ5+MK6+8EgBw//3347DDDmu23nXkyJGYOHEiZsyYgZ07d6Jv37547LHHsGXLFvzpT39q03OkQ8zPKbHUuX3++efyy1/+UkpLS8UwDOndu7dMnTpVTNMUkW+Wa7gt6RBpXJ7Rv39/iUQi0rVrV7n00ktlz5496fFPP/1UfvWrX0mfPn0kFovJYYcdJmPHjpXXXnstfcyyZcvkrLPOkvLycolGo1JeXi7nnHOObNq0qcXaW3teMpmUO+64Q4477jgxDENKSkpk6NChMmvWLKmurm527J///GcZMmRI+rgxY8bI0qVL0+M7duyQ8ePHS0FBgQBIL9349nKNJosXL05f77DDDpNzzz1Xvvjii2bHnH/++ZKXl7fP85s5c6a05v/+b731lvzXf/2X5OTkSHl5uVx77bXyyiuv7FNPbW2t/OIXv5Di4mIB0OLSjTFjxnguvWjt0oqWtHT9b/8Mq6urJRaLyY9//OMWr+n893B6//33Zdy4cZKXlycFBQVy1llnuf631dDQINdcc41069ZNDMOQ4cOHy8svv3wgT5MOIU0kw+taREREWYTvMRIRETmwMRIRETmwMRIRETmwMRIRETmwMRIRETmwMRIRETlk1QJ/pRS2bduGgoKCNu1qQEREHZOIoKamBuXl5S1uIABkWWPctm0bP36JiCiLbd26FT169GjxmKxqjAUFBQCANU+fg8KCwgxHE3UuVV/vxLvvvIF58YsQLxp8yHLMLz/Fzievx8qVK/kB2RQY8XgcFRUV6T7QkqxqjE0vnxYWFKKo+DCfqyFqX6lkHXIMHaFoDLqRe8hy9GjjBrz5+fkoLOQfoBQsrXkbjZNviIiIHLLqjrGJshqgUnV+l0HUvlQCIZ2TzogyycrGmIxvhqkObMdvoo4mZNaiOF8H9vhdCVGwZWVjjBb2hVFU7HcZRO2qTm1DVe0Wv8sgCrysbIx6OAd6JM/vMojalx6DrbjLHFEmnHxDRETkwMZIRETkwMZIRETkwMZIRETkwMZIRETkkJWzUs3qTUjYh+4jsYiCKJSIN65jrPa7EqJgy8rGqEcKETIyf5AsUWeiGhSSKS7XIMokKxtjJLcbIvn8EHHKLlIP1JtsjESZ8D1GIiIiBzZGIiIiBzZGIiIiBzZGIiIiBzZGIiIih6yclZqq34FUmBsVU3bRkl8h1+BGxUSZZGVjVKk4bNPyuwyidqWrWkQjbIxEmWRlYzSKjkKsmOsYKbvU2ltRVbvR7zKIAo/vMRIRETmwMRIRETmwMRIRETmwMRIRETmwMRIRETlk5axUZTVApbiOkbKMSiCkc7kGUSZZ2RiT8c0wVY7fZRC1q5BZ27hR8R6/KyEKtqxsjNHCvjCKiv0ug6hd1altqKrd4ncZRIGXlY1RD+dAj+T5XQZR+9JjsBU3KibKhJNviIiIHDpUY6ysrMSkSZNw+OGHIycnBwMHDsR7773nd1lERNSJdJiXUvfs2YNRo0Zh7NixeOmll1BaWopPPvkEJSUlfpdGRESdSIdpjHfccQcqKiowf/789GO9evXysSIiIuqMOsxLqX/7298wbNgwTJw4EWVlZRgyZAgeffRRv8siIqJOpsPcMX766ad46KGHMH36dNxwww1Ys2YNrrzySkSjUZx//vmu55imCdM009/H4/HGx6s3IWHntkvdREERSsRRnK/D2rIdZmLzIctJfvlvAMD69esPWQYFW5cuXXDEEUf4XUabaSLSIeZvR6NRDBs2DKtXr04/duWVV2LNmjV4++23Xc+55ZZbMGvWrH0eX/fsWSgqLDhktRIFUdWeXfjw//sXrv7DLmz/yva7HOrEYjm52LhhfaCaYzweR1FREaqrq1FYWNjisR3mjrF79+449thjmz12zDHH4JlnnvE8Z8aMGZg+fXr6+3g8joqKCkRyuyGSz42KKbto9UB9QqFgxNlIhnoe0iw9pxCh3KJDmkHBlPpqK7564W7s3r07UI1xf3SYxjhq1Chs3Nh89/FNmzahZ0/v/4MbhgHDMA51aUQdSuyIQcgv/p7fZRAFVoeZfPPrX/8a77zzDmbPno3NmzfjiSeewCOPPIKpU6f6XRoREXUiHaYxDh8+HM8++yyefPJJDBgwALfddhvmzp2Lc8891+/SiIioE+kwL6UCwBlnnIEzzjjD7zKIiKgT6zB3jERERO2hQ90xHiyp+h1IhblRMWUXLfkVcg1uVEyUSVY2RpWKwzYtv8sgale6qkU0wsZIlElWNkaj6CjEirmOkbJLrb0VVbUbMx9IlOX4HiMREZEDGyMREZEDGyMREZEDGyMREZEDGyMREZFDVs5KVVYDVIrrGCnLqARCOpdrEGWSlY0xGd8MU+X4XQZRuwqZtSjO14E9fldCFGxZ2RijhX1hFBX7XQZRu6pT21BVu8XvMogCLysbox7OgR7J87sMovalx2Ar8bsKosDj5BsiIiIHNkYiIiIHNkYiIiIHNkYiIiIHNkYiIiKHrJyValZvQsLO9bsMonYVSsQb1zFW+10JUbBlZWPUI4UIGQV+l0HUrlSDQjLF5RpEmWRlY4zkdkMknxsVU3aReqDeZGMkyoTvMRIRETmwMRIRETmwMRIRETmwMRIRETmwMRIRETlk5azUVP0OpMLcqJiyi5b8CrkGNyomyiQrG6NKxWGblt9lELUrXdUiGmFjJMokKxujUXQUYsVcx0jZpdbeiqrajX6XQRR4fI+RiIjIgY2RiIjIgY2RiIjIgY2RiIjIgY2RiIjIIStnpSqrASrFdYyUZVQCIZ3LNYgyycrGmIxvhqly/C6DqF2FzNrGjYr3+F0JUbBlZWOMFvaFUVTsdxlE7apObUNV7Ra/yyAKvKxsjHo4B3okz+8yiNqXHoOtuFExUSacfENEROTAxkhEROTAxkhEROTQYRvjb3/7W2iahmnTpvldChERdSIdsjGuWbMGDz/8MAYNGuR3KURE1Ml0uFmptbW1OPfcc/Hoo4/i9ttvb9M1zOpNSNi5B7kyomALJeKN6xir/a6EKNg6XGOcOnUqxo8fj3HjxmVsjKZpwjTN9PfxeBwAoEcKETIKDmmdREGjGhSSKS7XIMqkQzXGRYsWYe3atVizZk2rjp8zZw5mzZq1z+OR3G6I5HOjYsouUg/Um2yMRJl0mPcYt27diquuugqPP/44YrFYq86ZMWMGqqur019bt249xFUSEVFH12HuGN9//33s3LkT3/ve99KP2baNVatW4fe//z1M00QoFGp2jmEYMAyjvUslIqIOrMM0xlNOOQUffvhhs8cuuOAC9O/fH9ddd90+TZGIiKgtOkxjLCgowIABA5o9lpeXh8MPP3yfx4mIiNqqw7zHSERE1B46zB2jmxUrVrTpvFT9DqTC3KiYsouW/Aq5BjcqJsqkQzfGtlKpOGzT8rsMonalq1pEI2yMRJlkZWM0io5CrJjrGCm71NpbUVW70e8yiAKP7zESERE5sDESERE5sDESERE5sDESERE5sDESERE5ZOWsVGU1QKW4jpGyjEogpHO5BlEmWdkYk/HNMFWO32UQtauQWdu4UfEevyshCrasbIzRwr4wior9LoOoXdWpbaiq3eJ3GUSBl5WNUQ/nQI/k+V0GUfvSY7AVNyomyoSTb4iIiBzYGImIiBzYGImIiBzYGImIiBzYGImIiByyclaqWb0JCTvX7zKI2lUoEW9cx1jtdyVEwZaVjVGPFCJkFPhdBlG7Ug0KyRSXaxBlkpWNMZLbDZF8blRM2UXqgXqTjZEoE77HSERE5MDGSERE5MDGSERE5MDGSERE5MDGSERE5JCVs1JT9TuQCnOjYsouWvIr5BrcqJgok6xsjCoVh21afpdB1K50VYtohI2RKJOsbIxG0VGIFXMdI2WXWnsrqmo3+l0GUeDxPUYiIiIHNkYiIiIHNkYiIiIHNkYiIiIHNkYiIiKHrJyVqqwGqBTXMVKWUQmEdC7XIMokKxtjMr4ZpsrxuwyidhUyaxs3Kt7jdyVEwZaVjTFa2BdGUbHfZRC1qzq1DVW1W/wugyjwsrIx6uEc6JE8v8sgal96DLbiRsVEmXDyDRERkQMbIxERkQMbIxERkQMbIxERkUOHaYxz5szB8OHDUVBQgLKyMkyYMAEbN3KnACIiOrg6zKzUlStXYurUqRg+fDgsy8INN9yAU089FR9//DHy8vZvhqlZvQkJO/cQVUoUTKFEvHEdY7XflRAFW4dpjC+//HKz7xcsWICysjK8//77OPHEE/frWnqkECGj4GCWRxR4qkEhmeJyDaJMOkxj/Lbq6sY/ew87zHvDYdM0YZpm+vt4PA4AiOR2QySfGxVTdpF6oN5kYyTKpMO8x+iklMK0adMwatQoDBgwwPO4OXPmoKioKP1VUVHRjlUSEVFH1CEb49SpU7Fu3TosWrSoxeNmzJiB6urq9NfWrVvbqUIiIuqoOtxLqZdffjleeOEFrFq1Cj169GjxWMMwYBhGO1VGRESdQYdpjCKCK664As8++yxWrFiBXr16+V0SERF1Qh2mMU6dOhVPPPEEnn/+eRQUFGDHjh0AgKKiIuTkcAspIiI6ODpMY3zooYcAACeddFKzx+fPn4/Jkyfv17VS9TuQCnOjYsouWvIr5BrcqJgokw7TGEUO3jRzlYrDNq2Ddj2ijkBXtYhG2BiJMukwjfFgMoqOQqyY6xgpu9TaW1FVy49RJMqkQy7XICIiOlTYGImIiBzYGImIiBzYGImIiBzYGImIiByyclaqshqgUlzHSFlGJRDSuVyDKJOsbIzJ+GaYip+WQ9klZNY2blS8x+9KiIItKxtjtLAvjKJiv8sgald1ahuqarf4XQZR4GVlY9TDOdAjeX6XQdS+9BhsxY2KiTLh5BsiIiIHNkYiIiIHNkYiIiIHNkYiIiIHNkYiIiKHrJyValZvQsLO9bsMonYVSsQb1zFW+10JUbBlZWPUI4UIGQV+l0HUrlSDQjLF5RpEmWRlY4zkdkMknxsVU3aReqDeZGMkyiQrGyMRER1a69ev97uEZmpra1t9LBsjEREdNHbtHkDTMGnSJL9LaTM2RiIiOmiUWQuI4PAzrkbk8Aq/y0lTyQR2Pnl9q45lYyQiooMucngFjG59/S4jTZn1rT6W6xiJiIgcsvKOMVW/A6kwNyqm7KIlv0KuwY2KiTLJysaoUnHYpuV3GUTtSle1iEbYGIkyycrGaBQdhVgx1zFSdqm1t6KqdqPfZRAFHt9jJCIicmBjJCIicmBjJCIicmBjJCIicmBjJCIicsjKWanKaoBKcR0jZRmVQEjncg2iTLKyMSbjm2GqHL/LIGpXIbO2caPiPX5XQhRsWdkYo4V9YRQV+10GUbuqU9tQVbvF7zKIAi8rG6MezoEeyfO7DKL2pcdgK25UTJQJJ98QERE5sDESERE5sDESERE5sDESERE5sDESERE5dLhZqX/4wx9w5513YseOHfjud7+LBx54ACNGjNiva5jVm5Cwcw9RhUTBFErEG9cxVvtdCVGwdajGuHjxYkyfPh3z5s3DyJEjMXfuXJx22mnYuHEjysrKWn0dPVKIkFFwCCslCh7VoJBMcbkGUSb73RjPP/98XHjhhTjxxBMPRT0tuueeezBlyhRccMEFAIB58+ZhyZIl+POf/4zrr7++1deJ5HZDJJ8bFVN2kXqg3mRjJMpkv99jrK6uxrhx49CvXz/Mnj0blZWVh6KufSSTSbz//vsYN25c+jFd1zFu3Di8/fbb7VIDERF1fvt9x/jcc89h165dWLhwIR577DHMnDkT48aNw4UXXoizzjoLkUjkUNSJ3bt3w7ZtdO3atdnjXbt2xYYNG1zPMU0Tpmmmv4/H442PowCm8JNvKLuktCLoOV2Rt7sWqZr2+YOWso9u10DrWo6C1B6EA/TfmZ1saPWxbXqPsbS0FNOnT8f06dOxdu1azJ8/H+eddx7y8/MxadIkXHbZZejXr19bLn1QzZkzB7Nmzdrn8S04CTGrFGEkoWnK9VxLDGiwEdIs13FbwhCEENZM13ERHRaizGBGYDLsgiTyvzsKPykPQ/QIauJVrueHQiHkFxSjtqYKtm27HlNQWIxUMolEot51PBbLRSQaZUY2ZvT5f8C4/xe452EmbNzheta+Dmjyzfbt27F06VIsXboUoVAIP/zhD/Hhhx/i2GOPxe9+9zv8+te/PpDLN9OlSxeEQiF8+eWXzR7/8ssv0a1bN9dzZsyYgenTp6e/j8fjqKiogAaBjQiiqEUI7r+gTOQhAhthJFzHFfJhIYyYxxQ/G2HYyGMGMwKTEQrZKC0yUFB2NGxEEdHdfzkpASwJI6xZ8NqlKqVC0DVByKM526JDicaMLM0QEWha8wv5/Txq61q/1eB+N8ZUKoW//e1vmD9/Pl599VUMGjQI06ZNwy9+8QsUFhYCAJ599ln86le/OqiNMRqNYujQoVi2bBkmTJgAAFBKYdmyZbj88stdzzEMA4Zh7PO4BgsaBCHN8vzLXRcFXfP+y16HDV2U5zgAaMIMZgQnQ8SCHrYRzs9DSiIoyd/3/xsAYNkK1XVJFOVFEQ65T0PYU2vCCOvIjbm/dVKfSMG0FDOYEZiMaLT1b/Ptd2Ps3r07lFI455xz8O6772Lw4MH7HDN27FgUFxfv76Uzmj59Os4//3wMGzYMI0aMwNy5c1FXV5eepdpapm0grFJIwIDuMUlPaQomolDi/iNKaVEACg22+7jSDADMYEZwMkR0aIhCpQSaLqhPpFzPt/buwFFvWgh7/GmvlKAh6f5XO4D0GDOYEZSMhOn9x+a37XdjvPfeezFx4kTEYjHPY4qLi/HZZ5/t76Uz+vnPf45du3bh5ptvxo4dOzB48GC8/PLL+0zIyUQQhYgNCxHPabkijf8AFtz/Msk0riQCgBnMCE6GANA0LX2eabm/XKX2/nJJWQq212teGa6RaZwZzGjvjGSGazppIpI1C5vi8TiKiorwwivPIpx3BPK03Z4vR9WqUkS0BAytxnXclAKkJIZ8fZfruC1h1EkXZjAjMBmiLIhtQoqG86VUZmRdRlV1NcYO64vq6ur0235e+FmpREREDmyMREREDmyMREREDmyMREREDmyMREREDh1q26mDRSkdgIItOkQ81tNAgyU6Qh7jFvTGY5TX+cxgRrAyRGmARCAKUCKwbI+PlNv7uNc40Dgt3lItXENJ4zHMYEZAMuwWcr8tK5drPL1kKfLyc/wuh6h9iQCajnBud2j6ofmwf6KgqonHcfbY41q1XCMr7xijej20UDFiqIIO909QqEcpQjBhIO46bqIQNgzkwn29mUIECTCDGcHJEGUByoaEymEJUJQXdT3fshXqEhbyYmHP9WbVdUlEwjpyDfdfIfWmhZSlmMGM4GRYh/Aj4ToDXVcAdIQ0hZDmfsOsK0FYUwh7jNuiICIIe3wuly0KEGYwIzgZAoFICqIDSjTPX05NwiHd8xhd1xDWva8R1jXYLYwzgxntnRHKcE6zOlp9JBERURZgYyQiInJgYyQiInJgYyQiInJgYyQiInLIznWML76GvLzGdYxeU94VIgdlnBnMCEqGyN79GHMroOkR6C1sFpvOyHDMgY4zgxntlVETj+OsMcdyHaMXDUloWj5CSEAX0/WYlNa4EXNYats0rjTARowZzAhMhkBBE6Dp8z+MsPsLRpYSpCyFSFj33Gm9aSd1r2tkGmcGM9o7w/Q4x01WNkYjZAJ6BDGt2nOzV1vpezd7dR/XJYmUxJCje5wvQJ0UMIMZgclIb1Qc0ZASzXMzWMtWqLaSyDW8F2KblmpxQ9mmY5jBjKBkJM3Wtzu+x0hEROTAxkhEROTAxkhEROTAxkhEROTAxkhEROSQlbNSTdtAWKWQgAGPTQygNAUTUShx/xGltCgAhQbbfVxpBgBmMCM4GSI6NEShUgJNF9Qn3NdBWnvXgtWblue0eqUkPXXeTdMYM5gRlIyE6T6L201WNkZBFCI2LEQ8b5lFGv8BLBhtGlcSAcAMZgQnQ7B3gf/e703LfUfzpkXSKUvB9vgF1sTrGpnGmcGM9s5IZrimU1Y2xlioBlqoBHnabs+1YLWqdO9asDrXcVMKkJIY8vUq13FbwqiTLsxgRmAyvlnHeARSoqEk3735WrZCdV0SRXlRz/Vme2rNFteb1SdSMC3FDGYEJkOz3Tc3dsP3GImIiBzYGImIiBzYGImIiBzYGImIiBzYGImIiByyclaqUjoABVt0iHisp4EGS3SEPMYt6I3HKK/zmcGMYGWI0gCJQBSgRGDZ7tPXmx73Ggcap8VbqoVrKGk8hhnMCEiG3ULut2XnRsVLliIvP8fvcojalwig6Qjndoeme2/rQ9QZ1cTjOHvscdyo2EtUr4cWKkYMVZ67oNejFCGYMBB3HTdRCBsGcrHLdVwhggSYwYzgZIiyAGVDQuWwBCjKc1/XZdkKdQkLeTHvffOq65KIhHXkGu6/QupNCylLMYMZwcmwWv/HYFY2Rl1XAHSENIWQ5n7DrCtBWFMIe4zboiAiCHt8LpctChBmMCM4GQKBSAqiA0o0z19OTcIh3fMYXdcQ1r2vEdY12C2MM4MZ7Z0RynBOszpafSQREVEWYGMkIiJyYGMkIiJyYGMkIiJyYGMkIiJyyM51jC++hry8xnWMXlPeFSIHZZwZzAhKhsje/RhzK6DpEegtbBabzshwzIGOM4MZ7ZVRE4/jrDHHdp51jFu2bMFtt92G5cuXY8eOHSgvL8ekSZNw4403Ihpt/R5bTTQkoWn5CCEBXUzXY1JaDAAQlto2jSsNsBFjBjMCkyFQ0ARo+vwPI+z+gpGlBClLIRLWPXdab9pJ3esamcaZwYz2zjA9znHTIRrjhg0boJTCww8/jL59+2LdunWYMmUK6urqcNddd+339YyQCegRxLRqz81ebaXv3ezVfVyXJFISQ47ucb4AdVLADGYEJuObjYo1pETz3AzWshWqrSRyDe+F2KalWtxQtukYZjAjKBlJs/XtrkM0xtNPPx2nn356+vvevXtj48aNeOihh9rUGImIiLx02Mk31dXVOOyww/wug4iIOpkOccf4bZs3b8YDDzyQ8W7RNE2Y5jfvw8Tj7p9PSURE1MTXO8brr78emqa1+LVhw4Zm51RWVuL000/HxIkTMWXKlBavP2fOHBQVFaW/KioqDuXTISKiTsDXO8arr74akydPbvGY3r17p//3tm3bMHbsWBx//PF45JFHMl5/xowZmD59evr7eDzO5khERC3ytTGWlpaitLS0VcdWVlZi7NixGDp0KObPnw9dz3yzaxgGDMPY53HTNhBWKSRgwGMTAyhNwUQUStx/RCktCkChwXYfV5oBgBnMCE6GiA4NUaiUQNMF9Qn3dZDW3rVg9ablOa1eKUlPnXfTNMYMZgQlI2G6z+J20yHeY6ysrMRJJ52Enj174q677sKuXd/sVdetW7f9vp4gChEbFiKeryWLNP4DWNi3sbZmXEkEADOYEZwMwd4F/nu/Ny33Hc2bFkmnLAXb4xdYE69rZBpnBjPaOyOZ4ZpOHaIxLl26FJs3b8bmzZvRo0ePZmNt+eCeWKgGWqgEedpuz7Vgtap071qwOtdxUwqQkhjy9SrXcVvCqJMuzGBGYDK+Wcd4BFKioSTfvflatkJ1XRJFeVHP9WZ7as0W15vVJ1IwLcUMZgQmQ7Nb/2EwHWK5xuTJkyEirl9EREQHU4dojERERO2FjZGIiMiBjZGIiMiBjZGIiMihQ8xKPdiU0gEo2KJDxGM9DTRYoiPkMW5BbzxGeZ3PDGYEK0OUBkgEogAlAst2n77e9LjXONA4Ld5SLVxDSeMxzGBGQDLsFnK/LTs3Kl6yFHn5OX6XQ9S+RABNRzi3OzTde1sfos6oJh7H2WOP6zwbFR9sUb0eWqgYMVR57oJej1KEYMKA+wePmyiEDQO52OU6rhBBAsxgRnAyRFmAsiGhclgCFOW5r+uybIW6hIW8mPe+edV1SUTCOnIN918h9aaFlKWYwYzgZFit/2MwKxujrisAOkKaQkhzv2HWlSCsKYQ9xm1REBGEPT6XyxYFCDOYEZwMgUAkBdEBJZrnL6cm4ZDueYyuawjr3tcI6xrsFsaZwYz2zghlOKdZHa0+koiIKAuwMRIRETmwMRIRETmwMRIRETmwMRIRETlk5zrGF19DXl7jOkavKe8KkYMyzgxmBCVDZO9+jLkV0PQI9BY2i01nZDjmQMeZwYz2yqiJx3HWmGO5jtGLhiQ0LR8hJKCL6XpMSosBAMJS26ZxpQE2YsxgRmAyBAqaAE2f/2GE3V8wspQgZSlEwrrnTutNO6l7XSPTODOY0d4Zpsc5brKyMRohE9AjiGnVnpu92krfu9mr+7guSaQkhhzd43wB6qSAGcwITMY3GxVrSInmuRmsZStUW0nkGt4LsU1LtbihbNMxzGBGUDKSZuvbHd9jJCIicmBjJCIicmBjJCIicmBjJCIicmBjJCIicsjKWammbSCsUkjAgMcmBlCagokolLj/iFJaFIBCg+0+rjQDADOYEZwMER0aolApgaYL6hPu6yCtvWvB6k3Lc1q9UpKeOu+maYwZzAhKRsJ0n8XtJisboyAKERsWIp63zCKN/wAWjDaNK4kAYAYzgpMh2LvAf+/3puW+o3nTIumUpWB7/AJr4nWNTOPMYEZ7ZyQzXNMpKxtjLFQDLVSCPG2351qwWlW6dy1Yneu4KQVISQz5epXruC1h1EkXZjAjMBnfrGM8AinRUJLv3nwtW6G6LomivKjnerM9tWaL683qEymYlmIGMwKTodnumxu74XuMREREDmyMREREDmyMREREDmyMREREDmyMREREDlk5K1UpHYCCLTpEPNbTQIMlOkIe4xb0xmOU1/nMYEawMkRpgEQgClAisGz36etNj3uNA43T4i3VwjWUNB7DDGYEJMNuIffbsnOj4iVLkZef43c5RO1LBNB0hHO7Q9O9t/Uh6oxq4nGcPfY4blTsJarXQwsVI4Yqz13Q61GKEEwYiLuOmyiEDQO52OU6rhBBAsxgRnAyRFmAsiGhclgCFOW5r+uybIW6hIW8mPe+edV1SUTCOnIN918h9aaFlKWYwYzgZFit/2MwKxujrisAOkKaQkhzv2HWlSCsKYQ9xm1REBGEPT6XyxYFCDOYEZwMgUAkBdEBJZrnL6cm4ZDueYyuawjr3tcI6xrsFsaZwYz2zghlOKdZHa0+koiIKAuwMRIRETmwMRIRETmwMRIRETmwMRIRETlk5zrGF19DXl7jOkavKe8KkYMyzgxmBCVDZO9+jLkV0PQI9BY2i01nZDjmQMeZwYz2yqiJx3HWmGO5jtGLhiQ0LR8hJKCL6XpMSosBAMJS26ZxpQE2YsxgRmAyBAqaAE2f/2GE3V8wspQgZSlEwrrnTutNO6l7XSPTODOY0d4Zpsc5brKyMRohE9AjiGnVnpu92krfu9mr+7guSaQkhhzd43wB6qSAGcwITMY3GxVrSInmuRmsZStUW0nkGt4LsU1LtbihbNMxzGBGUDKSZuvbXYd7j9E0TQwePBiapuGf//yn3+UQEVEn0+Ea47XXXovy8nK/yyAiok6qQzXGl156Ca+++iruuusuv0shIqJOqsO8x/jll19iypQpeO6555Cbm9uqc0zThGl+M0EhHnf/4GYiIqImHeKOUUQwefJkXHLJJRg2bFirz5szZw6KiorSXxUVFYewSiIi6gx8vWO8/vrrcccdd7R4zPr16/Hqq6+ipqYGM2bM2K/rz5gxA9OnT09/H4/HUVFRAdM2EFYpJGDAYxMDKE3BRBRK3H9EKS0KQKHBdh9XmgGAGcwIToaIDg1RqJRA0wX1Cfd1kNbetWD1puU5rV4pSU+dd9M0xgxmBCUjYbrP4nbj6wL/Xbt24auvvmrxmN69e+NnP/sZ/v73v0PTvnmitm0jFArh3HPPxWOPPdaqPC7wZ0Y2Z3CBPzOyOaPDLPAvLS1FaWlpxuPuv/9+3H777envt23bhtNOOw2LFy/GyJEj9zs3FqqBFipBnrbbcy1YrSrduxasznXclAKkJIZ8vcp13JYw6qQLM5gRmIxv1jEegZRoKMk3XM+3bIXquiSK8qKe68321JotrjerT6RgWooZzAhMhma7b27spkNMvjniiCOafZ+fnw8A6NOnD3r06OFHSURE1El1iMk3RERE7aVD3DF+25FHHoks+uxzIiJqR7xjJCIicmBjJCIicuiQL6UeKKV0AAq26BDxmPYLDZboCHmMW9Abj1Fe5zODGcHKEKUBEoEoQInAspXr+U2Pe40DjdPiLdXCNZQ0HsMMZgQkw24h99uyc6PiJUuRl5/jdzlE7UsE0HSEc7tD07239SHqjGricZw99rjgr2P0S1SvhxYqRgxVnouk61GKEEwYcP98VROFsGEgF7tcxxUiSIAZzAhOhigLUDYkVA5LgKI893Vdlq1Ql7CQF/PeN6+6LolIWEeu4f4rpN60kLIUM5gRnAyr9X8MZmVj1HUFQEdIUwhp7jfMuhKENYWwx7gtCiKCsMfnctmiAGEGM4KTIRCIpCA6oETz/OXUJBzSPY/RdQ1h3fsaYV2D3cI4M5jR3hmhDOc0q6PVRxIREWUBNkYiIiIHNkYiIiIHNkYiIiIHNkYiIiKH7FzHyP0YmZGFGdyPkRnZnNFh9mP0i4YkNC0fISSgi+l6TEqLAQDCUtumcaUBNmLMYEZgMgQKmgBNn/9hhN1fMLKUIGUpRMK6507rTTupe10j0zgzmNHeGabHOW6ysjEaIRPQI4hp1Z6bvdpK37vZq/u4LkmkJIYc3eN8AeqkgBnMCEzGNxsVa0iJ5rkZrGUrVFtJ5BreC7FNS7W4oWzTMcxgRlAykmbr2x3fYyQiInJgYyQiInJgYyQiInJgYyQiInJgYyQiInLIylmppm0grFJIwIDHJgZQmoKJKJS4/4hSWhSAQoPtPq40AwAzmBGcDBEdGqJQKYGmC+oT7usgrb1rwepNy3NavVKSnjrvpmmMGcwISkbCdJ/F7SYrG6MgChEbFiKet8wijf8AFow2jSuJAGAGM4KTIdi7wH/v96blvqN50yLplKVge/wCa+J1jUzjzGBGe2ckM1zTKSsbYyxUAy1Ugjxtt+dasFpVunctWJ3ruCkFSEkM+XqV67gtYdRJF2YwIzAZ36xjPAIp0VCS7958LVuhui6Joryo53qzPbVmi+vN6hMpmJZiBjMCk6HZ7psbu+F7jERERA5sjERERA5sjERERA5sjERERA5sjERERA5ZOStVKR2Agi06RDzW00CDJTpCHuMW9MZjlNf5zGBGsDJEaYBEIApQIrBs9+nrTY97jQON0+It1cI1lDQewwxmBCTDbiH327Jzo+IlS5GXn+N3OUTtSwTQdIRzu0PTvbf1IeqMauJxnD32OG5U7CWq10MLFSOGKs9d0OtRihBMGIi7jpsohA0DudjlOq4QQQLMYEZwMkRZgLIhoXJYAhTlua/rsmyFuoSFvJj3vnnVdUlEwjpyDfdfIfWmhZSlmMGM4GRYrf9jMCsbo64rADpCmkJIc79h1pUgrCmEPcZtURARhD0+l8sWBQgzmBGcDIFAJAXRASWa5y+nJuGQ7nmMrmsI697XCOsa7BbGmcGM9s4IZTinWR2tPpKIiCgLsDESERE5sDESERE5sDESERE5sDESERE5ZOc6xhdfQ15e4zpGrynvCpGDMs4MZgQlQ2Tvfoy5FdD0CPQWNotNZ2Q45kDHmcGM9sqoicdx1phjuY7Ri4YkNC0fISSgi+l6TEqLAQDCUtumcaUBNmLMYEZgMgQKmgBNn/9hhN1fMLKUIGUpRMK6507rTTupe10j0zgzmNHeGabHOW6ysjEaIRPQI4hp1Z6bvdpK37vZq/u4LkmkJIYc3eN8AeqkgBnMCEzGNxsVa0iJ5rkZrGUrVFtJ5BreC7FNS7W4oWzTMcxgRlAykmbr2x3fYyQiInLoUI1xyZIlGDlyJHJyclBSUoIJEyb4XRIREXUyHeal1GeeeQZTpkzB7NmzcfLJJ8OyLKxbt87vsoiIqJPpEI3RsixcddVVuPPOO3HhhRemHz/22GN9rIqIiDqjDvFS6tq1a1FZWQld1zFkyBB0794dP/jBDzLeMZqmiXg83uyLiIioJR3ijvHTTz8FANxyyy245557cOSRR+Luu+/GSSedhE2bNuGwww5zPW/OnDmYNWvWPo+btoGwSiEBAx6bGEBpCiaiUOL+I0ppUQAKDbb7uNIMAMxgRnAyRHRoiEKlBJouqE+4r4O09q4Fqzctz2n1Skl66rybpjFmMCMoGQnTfRa3G18X+F9//fW44447Wjxm/fr1WLt2Lc4991w8/PDDuOiiiwA03g326NEDt99+Oy6++GLXc03ThGl+s9YrHo+joqKCC/yZkZUZXODPjGzO6DAL/K+++mpMnjy5xWN69+6N7du3A2j+nqJhGOjduzf+85//eJ5rGAYMw9jn8VioBlqoBHnabs+1YLWqdO9asDrXcVMKkJIY8vUq13FbwqiTLsxgRmAyvlnHeARSoqEkf9//bwB714LVJVGUF/Vcb7an1mxxvVl9IgXTUsxgRmAyNNt9c2M3vjbG0tJSlJaWZjxu6NChMAwDGzduxOjRowEAqVQKW7ZsQc+ePQ91mURElEU6xHuMhYWFuOSSSzBz5kxUVFSgZ8+euPPOOwEAEydO9Lk6IiLqTDpEYwSAO++8E+FwGOeddx4aGhowcuRILF++HCUlJX6XRkREnUiHaYyRSAR33XUX7rrrLr9LISKiTqxDrGMkIiJqLx3mjvFgUkoHoGCLDhGPab/QYImOkMe4Bb3xGOV1PjOYEawMURogEYgClAgsW7me3/S41zjQOC3eUi1cQ0njMcxgRkAy7BZyvy07NypeshR5+Tl+l0PUvkQATUc4tzs03XtbH6LOqCYex9ljjwv+Oka/RPV6aKFixFDluUi6HqUIwYQB94+RM1EIGwZysct1XCGCBJjBjOBkiLIAZUNC5bAEKMpzX9dl2Qp1CQt5Me9986rrkoiEdeQa7r9C6k0LKUsxgxnBybBa/8dgVjZGXVcAdIQ0hZDmfsOsK0FYUwh7jNuiICIIe3wuly0KEGYwIzgZAoFICqIDSjTPX05NwiHd8xhd1xDWva8R1jXYLYwzgxntnRHKcE6zOlp9JBERURZgYyQiInJgYyQiInJgYyQiInJgYyQiInLIznWM3I+RGVmYwf0YmZHNGR1mP0a/aEhC0/IRQgK6mK7HpLQYACAstW0aVxpgI8YMZgQmQ6CgCdD0+R9G2P0FI0sJUpZCJKx77rTetJO61zUyjTODGe2dYXqc4yYrG6MRMgE9gphW7bnZq630vZu9uo/rkkRKYsjRPc4XoE4KmMGMwGR8s1GxhpRonpvBWrZCtZVEruG9ENu0VIsbyjYdwwxmBCUjaba+3fE9RiIiIgc2RiIiIgc2RiIiIgc2RiIiIgc2RiIiIoesnJVq2gbCKoUEDHhsYgClKZiIQon7jyilRQEoNNju40ozADCDGcHJENGhIQqVEmi6oD7hvg7S2rsWrN60PKfVKyXpqfNumsaYwYygZCRM91ncbrKyMQqiELFhIeJ5yyzS+A9gwWjTuJIIAGYwIzgZgr0L/Pd+b1ruO5o3LZJOWQq2xy+wJl7XyDTODGa0d0YywzWdsrIxxkI10EIlyNN2e64Fq1Wle9eC1bmOm1KAlMSQr1e5jtsSRp10YQYzApPxzTrGI5ASDSX57s3XshWq65Ioyot6rjfbU2u2uN6sPpGCaSlmMCMwGZrtvrmxG77HSERE5MDGSERE5MDGSERE5MDGSERE5MDGSERE5JCVs1KV0gEo2KJDxGM9DTRYoiPkMW5BbzxGeZ3PDGYEK0OUBkgEogAlAst2n77e9LjXONA4Ld5SLVxDSeMxzGBGQDLsFnK/LTs3Kl6yFHn5OX6XQ9S+RABNRzi3OzTde1sfos6oJh7H2WOP40bFXqJ6PbRQMWKo8twFvR6lCMGEgbjruIlC2DCQi12u4woRJMAMZgQnQ5QFKBsSKoclQFGe+7ouy1aoS1jIi3nvm1ddl0QkrCPXcP8VUm9aSFmKGcwITobV+j8Gs7Ix6roCoCOkKYQ09xtmXQnCmkLYY9wWBRFB2ONzuWxRgDCDGcHJEAhEUhAdUKJ5/nJqEg7pnsfouoaw7n2NsK7BbmGcGcxo74xQhnOa1dHqI4mIiLJAVt0xNr2dWlvTgDBqYaEeIbh/YG09ahGGiSgaXMeT0GHBgu0xbiOEBDOYEaAMURYgCqLFYUnE8yOybFuhpj4FWBHPv7Jr6pIwwzqSpvuvkIRpIWkpZjAjMBnx6sa3FlozrSarJt988cUXqKio8LsMIiLyydatW9GjR48Wj8mqxqiUwrZt21BQUABNa/nT3dtTPB5HRUUFtm7dmnG2VNB1pucCdK7nw+cSTJ3puQDBfT4igpqaGpSXl0PXM7xH2U41BYKu6xn/UvBTYWFhoP5DOhCd6bkAnev58LkEU2d6LkAwn09RUVGrjuPkGyIiIgc2RiIiIgc2xgAwDAMzZ86EYbhvvtmRdKbnAnSu58PnEkyd6bkAneP5ZNXkGyIiokx4x0hEROTAxkhEROTAxkhEROTAxhhAS5YswciRI5GTk4OSkhJMmDDB75IOmGmaGDx4MDRNwz//+U+/y9lvW7ZswYUXXohevXohJycHffr0wcyZM5FMJv0urVX+8Ic/4Mgjj0QsFsPIkSPx7rvv+l1Sm8yZMwfDhw9HQUEBysrKMGHCBGzcuNHvsg6K3/72t9A0DdOmTfO7lDaprKzEpEmTcPjhhyMnJwcDBw7Ee++953dZbcLGGDDPPPMMzjvvPFxwwQX417/+hbfeegu/+MUv/C7rgF177bUoLy/3u4w227BhA5RSePjhh/HRRx/h3nvvxbx583DDDTf4XVpGixcvxvTp0zFz5kysXbsW3/3ud3Haaadh586dfpe231auXImpU6finXfewdKlS5FKpXDqqaeirq7O79IOyJo1a/Dwww9j0KBBfpfSJnv27MGoUaMQiUTw0ksv4eOPP8bdd9+NkpISv0trG6HASKVS8p3vfEf++Mc/+l3KQfXiiy9K//795aOPPhIA8sEHH/hd0kHxu9/9Tnr16uV3GRmNGDFCpk6dmv7etm0pLy+XOXPm+FjVwbFz504BICtXrvS7lDarqamRfv36ydKlS2XMmDFy1VVX+V3Sfrvuuutk9OjRfpdx0PCOMUDWrl2LyspK6LqOIUOGoHv37vjBD36AdevW+V1am3355ZeYMmUKFi5ciNzcXL/LOaiqq6tx2GGH+V1Gi5LJJN5//32MGzcu/Ziu6xg3bhzefvttHys7OKqrqwEg8P8OLZk6dSrGjx/f7N+oo/nb3/6GYcOGYeLEiSgrK8OQIUPw6KOP+l1Wm7ExBsinn34KALjllltw00034YUXXkBJSQlOOukkfP311z5Xt/9EBJMnT8Yll1yCYcOG+V3OQbV582Y88MADuPjii/0upUW7d++Gbdvo2rVrs8e7du2KHTt2+FTVwaGUwrRp0zBq1CgMGDDA73LaZNGiRVi7di3mzJnjdykH5NNPP8VDDz2Efv364ZVXXsGll16KK6+8Eo899pjfpbUJG2M7uP7666FpWotfTe9hAcCNN96In/zkJxg6dCjmz58PTdPw1FNP+fwsvtHa5/PAAw+gpqYGM2bM8LtkT619Lk6VlZU4/fTTMXHiREyZMsWnymnq1KlYt24dFi1a5HcpbbJ161ZcddVVePzxxxGLxfwu54AopfC9730Ps2fPxpAhQ3DRRRdhypQpmDdvnt+ltUlW7a7hl6uvvhqTJ09u8ZjevXtj+/btAIBjjz02/bhhGOjduzf+85//HMoS90trn8/y5cvx9ttv7/PRUMOGDcO5554biL8mW/tcmmzbtg1jx47F8ccfj0ceeeQQV3fgunTpglAohC+//LLZ419++SW6devmU1UH7vLLL8cLL7yAVatWBXrHnJa8//772LlzJ773ve+lH7NtG6tWrcLvf/97mKaJUCjkY4Wt171792a/twDgmGOOwTPPPONTRQeGjbEdlJaWorS0NONxQ4cOhWEY2LhxI0aPHg0ASKVS2LJlC3r27Hmoy2y11j6f+++/H7fffnv6+23btuG0007D4sWLMXLkyENZYqu19rkAjXeKY8eOTd/JZ9rTLQii0SiGDh2KZcuWpZf9KKWwbNkyXH755f4W1wYigiuuuALPPvssVqxYgV69evldUpudcsop+PDDD5s9dsEFF6B///647rrrOkxTBIBRo0bts2xm06ZNgfq9tV/8nv1DzV111VXyne98R1555RXZsGGDXHjhhVJWViZff/2136UdsM8++6zDzkr94osvpG/fvnLKKafIF198Idu3b09/Bd2iRYvEMAxZsGCBfPzxx3LRRRdJcXGx7Nixw+/S9tull14qRUVFsmLFimb/BvX19X6XdlB01Fmp7777roTDYfnNb34jn3zyiTz++OOSm5srf/nLX/wurU3YGAMmmUzK1VdfLWVlZVJQUCDjxo2TdevW+V3WQdGRG+P8+fMFgOtXR/DAAw/IEUccIdFoVEaMGCHvvPOO3yW1ide/wfz58/0u7aDoqI1RROTvf/+7DBgwQAzDkP79+8sjjzzid0ltxt01iIiIHIL/JgkREVE7YmMkIiJyYGMkIiJyYGMkIiJyYGMkIiJyYGMkIiJyYGMkIiJyYGMkIiJyYGMkIiJyYGMkIiJyYGMkIiJyYGMk6sR27dqFbt26Yfbs2enHVq9ejWg0imXLlvlYGVFw8UPEiTq5F198ERMmTMDq1atx9NFHY/DgwTjrrLNwzz33+F0aUSCxMRJlgalTp+K1117DsGHD8OGHH2LNmjUwDMPvsogCiY2RKAs0NDRgwIAB2Lp1K95//30MHDjQ75KIAovvMRJlgX//+9/Ytm0blFLYsmWL3+UQBRrvGIk6uWQyiREjRmDw4ME4+uijMXfuXHz44YcoKyvzuzSiQGJjJOrk/vd//xdPP/00/vWvfyE/Px9jxoxBUVERXnjhBb9LIwokvpRK1ImtWLECc+fOxcKFC1FYWAhd17Fw4UK88cYbeOihh/wujyiQeMdIRETkwDtGIiIiBzZGIiIiBzZGIiIiBzZGIiIiBzZGIiIiBzZGIiIiBzZGIiIiBzZGIiIiBzZGIiIiBzZGIiIiBzZGIiIiBzZGIiIih/8fWRIijELoaZ8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim = make_sim_fishnet(0.5)\n", "ax = sim.plot(z=h)\n" ] }, { "cell_type": "markdown", "id": "24fe60ce", "metadata": {}, "source": [ "A batch of simulations at different chemical potentials is defined and submitted to the server. " ] }, { "cell_type": "code", "execution_count": 14, "id": "6c616915", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:42.034675Z", "iopub.status.busy": "2023-03-27T21:52:42.034450Z", "iopub.status.idle": "2023-03-27T21:53:05.817760Z", "shell.execute_reply": "2023-03-27T21:53:05.817167Z" } }, "outputs": [], "source": [ "mu_cs = [0, 0.1, 0.2, 0.5] # values of mu_c to be simulated\n", "\n", "# define a simulation batch\n", "sims = {f\"mu_c={mu_c:.2f}\": make_sim_fishnet(mu_c) for mu_c in mu_cs}\n", "\n", "# submit the batch to the server\n", "batch = web.Batch(simulations=sims, folder_name=\"default\")\n", "batch_results = batch.run(path_dir=\"data\")\n" ] }, { "cell_type": "markdown", "id": "9aea2ae0", "metadata": {}, "source": [ "At 0.5 eV, the absorber shows an absorption bandwidth (defined as absorption above 0.9) of ~2 THz, much better than the uniform graphene absorber case." ] }, { "cell_type": "code", "execution_count": 15, "id": "4c4965ac", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:53:06.146389Z", "iopub.status.busy": "2023-03-27T21:53:06.146210Z", "iopub.status.idle": "2023-03-27T21:53:08.207515Z", "shell.execute_reply": "2023-03-27T21:53:08.206975Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAG2CAYAAACZEEfAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADEIUlEQVR4nOzddXxV9R/H8detdcJYEqO7kdEdCoKALQICYoGSgrSEtIiEgCjlTwGVEASRFpAeIN2j2Uas8+7e8/vjwBQlVndn8Xk+HufB3b33nPPepttn39QpiqIghBBCCJFH6bUOIIQQQghhS1LsCCGEECJPk2JHCCGEEHmaFDtCCCGEyNOk2BFCCCFEnibFjhBCCCHyNCl2hBBCCJGnSbEjhBBCiDxNih0hhBBC5GlS7AghhBAiT9O02Nm5cyft2rXD398fnU7HmjVrnnrOjh07qFGjBvb29pQqVYrFixfbPKcQQgghci9Ni524uDiqVq3KnDlz0vT+kJAQ2rZtS9OmTTl69Cj9+vXj7bff5vfff7dxUiGEEELkVrqcshGoTqdj9erVdOjQ4bHvGTJkCOvXr+fEiROpz7322mtERkaycePGbEgphBBCiNzGqHWA9Ni7dy8tWrR46LnWrVvTr1+/x56TlJREUlJS6sdWq5V79+5RsGBBdDqdraIKIYQQIgspikJMTAz+/v7o9enrmMpVxU5oaCg+Pj4PPefj40N0dDQJCQk4Ojr+55yJEycyZsyY7IoohBBCCBu6du0ahQsXTtc5uarYyYihQ4cyYMCA1I+joqIoWrQo165dw83NTcNkQoicSklOJv7oUeL+3EPc3r0kX7z4yPfpnZ0x+vpi9PXB5O2Nwc0NvbMLOlcXDK6u6B0dQa8HnQ7d/X8ViwUlMQlrUiJKYiJKYhJKYgLWhAQs0TFYoiKxREZhiYrCGqX+qyQnp/tz0JlMGAoUQO/pgdHDE0MBz/v/FsDg6YHBswBGTw/1Yw9P9M5O0totcrTo6GiKFCmCq6trus/NVcWOr68vYWFhDz0XFhaGm5vbI1t1AOzt7bG3t//P825ublLsCCFSKWYzcXv2ELXuV2K3bcMaHw+AHWBnMGAqVhSnatVwqFgR+1KlsCtVCmOhQjYvEBRFQUlIwBIRQUpEJJZ7d0m5dw/LvYj7jyOw3L1LSsTf/yrx8WC1wp076gEogPn+8Sg6e3sMBQpg9PTE4OGO3sUVvYsLBlcX9M4u6F1d1ccuLuhd/vtY5+goxZLIFhn57yxXFTt169Zlw4YNDz23efNm6tatq1EiIURul3z1KhHf/0DU2rVYIiJSnzd4eeHSsCEujRriVLs2xoIFNcmn0+nQOTmhd3LCFBCQpnOsCQlY7t1TC6EHBdGDIunuPVIi1H/V99xTW5iSkki5dYuUW7cyFtRguF8cuaotXG5uGNzcMLi7oXd1u/+cKwY3dwzubur7ChbEWKgQegeHjN1TiDTStNiJjY3lwoULqR+HhIRw9OhRChQoQNGiRRk6dCg3btxg6dKlALz33nvMnj2bwYMH06NHD7Zt28aPP/7I+vXrtfoUhBC5kKIoxO8/wL0lS4jdsQPuT0o1FCyIW5s2uLdtg0OVKmrXUy6kd3REHxCQ9uIoPv6hgsgaHY0lNhZrTCzW2Jh/PI7FEhvzj8exWGNi1FYkiwXr/a63x7UePTavuzsm70IYC3lj9PbG6OODXbFi2AUWw65YMQwFCkirkcgUTYudQ4cO0bRp09SPH4yt6datG4sXL+bWrVtcvXo19fXixYuzfv16+vfvz5dffknhwoX55ptvaN26dbZnF0LkTnH7D3B71kwSDgWnPufcqCEFOnfGuX59dMZc1eCdJfROTtg5OUHhtBVH/5TazfagMIqOVoul6Bgs0VFYY2KwREVjiYnGGhWNJeb+81HRpNy9i5KYiDUqiqSoKJLOX3jkPfSurtiVKI5D+fI4VKyIY6VK2Jcqhc5kyuynLvKJHLPOTnaJjo7G3d2dqKioJ47ZsVgsmM3p/ftE2IqdnV26pxoK8U+Jp04RNnkK8fv3A6Czs8PjpRfxfLML9iWKa5wuf1IUBWtMDCnh4aSEh2MODycl/DbmWzcxX7lC8uUrmG/dSm15+yednR0O5cvjFBSEc50gHKtXVweEizwrrb+/H0WKnX9RFIXQ0FAiIyOzP5x4LL1eT/HixbGzs9M6ishlUiIiuP3ll0Su+FH9pWky4fnyyxR89x1M/1rKQuQ81qQkzFevknThAoknT5Jw4iSJp05hjY5+6H06Ozuc69bFpUVzXJs2xejlpVFiYStS7KTD075Yt27dIjIyEm9vb5ycZCpmTmC1Wrl58yYmk4miRYvK90SkiaIoRK1eQ/jkyViiogBwa9MG70EDMfn7a5xOZIaiKJivXiX+8BHi9+0jbt8+Uv45U1enw7luHdw7dsK1ZQsZAJ1HSLGTDk/6YlksFs6dO4e3tzcFNZp5IR4tKiqKmzdvUqpUKUzSTy+ewhwWTujo0ergY8C+TBl8RgzHuXZtbYMJm1AUhaTz54ndto2YLVtJ/MeWQnoXF9zbt6fAW92wK1pUw5Qis6TYSYcnfbESExMJCQkhMDDwsev2CG0kJCRw+fJlihcvjoP8lSaeIHrDBm6NGYs1KgqdyYTXRx9SsHv3fDnwOL9Kvn6dqNVriFq9GvPNm+qTOh2uLVpQsGcPHKtV0zSfyJjMFDsy4vMRpJsk55HviXgaa1ISt8aM4caAgVijonCoUIHAlT/j1auXFDr5jF3hwhT6sA8lt2ym6MJvcW7cCBSFmM2bufza61x7/wMSz53TOqbIRvITQAiR6yVfu8aNvv1IPHUKgILvvUuh3r1lanI+p9Prca5XD+d69Ui6cIG7CxcR9csvxG7fTuyOHbh36ID3gP4YCxXSOqqwMWnZEULkanF79xLy4ksknjqFwcODIgu+xrtfPyl0xEPsS5XCf8JnlFi3DtdWrUBRiFq9mottnyfip59QrFatIwobkmInD5kzZw6BgYE4ODgQFBTEgQMHnnrOTz/9RLly5XBwcKBy5cr/2Y5DURRGjRqFn58fjo6OtGjRgvPnz2c4Y3BwMDqdjn379j3y9ebNm9OpU6cMX1/kLxE//sjVXu9gjY7GoWoViq9ehUvDhlrHEjmYfYniFJ75JYErluNQsSLW6GhCR47iSteuJF++rHU8YSNS7OQRK1asYMCAAYwePZrDhw9TtWpVWrduTXh4+GPP2bNnD6+//jo9e/bkyJEjdOjQgQ4dOnDiHzMZpkyZwsyZM5k3bx779+/H2dmZ1q1bk5iYmKGcNWvWpGrVqixcuPA/r12+fJnt27fTs2fPDF1b5B+K1UrY5CmEjhoNKSm4Pf88xZYuxeTnp3U0kUs4Vq1K4IrleH8yBJ2jIwmHggnp9CJRa9dqHU3YgpLPREVFKYASFRX1n9cSEhKUU6dOKQkJCRoky5zatWsrvXv3Tv3YYrEo/v7+ysSJEx97ziuvvKK0bdv2oeeCgoKUd999V1EURbFarYqvr68yderU1NcjIyMVe3t7ZdmyZY+9rsViUSZMmKAEBgYqDg4OSpUqVZSffvop9fWZM2cqbm5uSlxc3EPnjR49WvH391dSUlL+c83c/L0RWcualKRc7z9AOVW2nHKqbDklfPZsxWq1ah1L5GLJ168rl9/skvrf1I2hwxTLv34+Ce096ff300jLzlMoikJ8coomh5LGVQGSk5MJDg6mRYsWqc/p9XpatGjB3r17H3ve3r17HzoHoHXr1qnnhISEEBoa+tB73N3dCQoKeuJ1J06cyNKlS5k3bx4nT56kf//+vPnmm/zxxx8AdO7cmaSkJH7++eeHvs5LlizhrbfewmAwpOnzFvmPNSGBa336EL1hAxiN+E+dqg5Eltl6IhNMAQEUXbwIr969Qa8natUqLr/62t/T1kWuJ7OxniLBbKHCqN81ufepsa1xsnv6t+jOnTtYLBZ8/rX0vY+PD2fOnHnseaGhoY88JzQ0NPX1B8897j3/lpSUxIQJE9iyZQt169YFoESJEuzevZv58+fTuHFjChQoQMeOHVm4cCFdu3YFYPv27Vy+fJnu3bs/9fMV+ZMlOppr739AQnAwOgcHCs+aKeNzRJbRGQwU+rAPTrVrc2PQQJLOnyfk1Vcp8tVcHCtX0jqeyCRp2RFZ6sKFC8THx9OyZUtcXFxSj6VLl3Lx4sXU9/Xo0YOdO3emPrdw4UIaN25MqVKltIoucjBLTAxXe75NQnAweldXii78VgodYRPOQbUpvmIF9mXKYLl9hytduhCzZYvWsUQmScvOUziaDJwa21qze6eFl5cXBoOBsH/uDQOEhYXh6+v72PN8fX2feM6Df8PCwvD7x8DPsLAwqj1mBdLY2FgA1q9fT0BAwEOv2dvbpz5u3rw5RYsWZfHixXz88cesWrWK+fPnP+UzFfmRJTaWa2/3IvH4cQweHhRdtBCH8uW1jiXyMJO/P8V++J4b/foTt3s31z/qi//ECbi/8ILW0UQGScvOU+h0OpzsjJocaR2HYGdnR82aNdm6dWvqc1arla1bt6Z2JT1K3bp1HzoHYPPmzannFC9eHF9f34feEx0dzf79+x973QoVKmBvb8/Vq1cpVarUQ0eRIkVS36fX6+nevTtLlizhhx9+wM7OjpdeeilNn6/IPyyxcVzr9Q4Jf/2Fwd1dCh2RbQwuLhSZNxf3l14Eq5WbnwwlcvUarWOJjMrq0dI5XV6djbV8+XLF3t5eWbx4sXLq1CnlnXfeUTw8PJTQ0NDU93Tp0kX55JNPUj/+888/FaPRqEybNk05ffq0Mnr0aMVkMinHjx9Pfc+kSZMUDw8P5ZdfflGOHTumvPDCC0rx4sWf+DUaPny4UrBgQWXx4sXKhQsXlODgYGXmzJnK4sWLH3rflStXFL1er3h6eirvvffeEz+/3Py9ERljSUhInSFz5pnaSvyJE1pHEvmQ1WJRbn76qTpTq1x5JeLnn7WOlG9lZjaWdGPlEa+++iq3b99m1KhRhIaGUq1aNTZu3PjQ4OKrV6+i1//dmFevXj1++OEHRowYwbBhwyhdujRr1qyhUqW/B+MNHjyYuLg43nnnHSIjI2nQoAEbN2584mac48aNo1ChQkycOJFLly7h4eFBjRo1GDZs2EPvK1q0KC1atGDTpk306NEjC78aIrdTUlK4MXAQ8QcPondxoei33+JYsaLWsUQ+pNPr8R01Cp1OT8QPP3Br+Ah0dna4t2undTSRDrLr+T882PVcdtbOeeR7k38oisKtESOIWrkKnZ0dRb5ZgHPt2lrHEvmcoiiEjf+MiO+/B5OJogu+xrlOHa1j5Suy67kQIs+4Pf0LolauAr2egOmfS6EjcgSdTofP8GG4PvcsmM1c7/MhiWdl5/TcQoodIUSOEbF8OXcXLADAd8ynuP5r0UshtKTT6/GfNAnHWjWxxsZy7d13MT9mzTGRs0ixI4TIEWJ37SZ03HgAvD7sg+fLL2ucSIj/0tvbU2T2bOxKliQlNJTrfT7EmpSkdSzxFFLsCCE0l3juHDf69QOLBfcXXsDrgw+0jiTEYxk8PCgyfz4Gd3cST5wgbMJErSOJp5BiRwihqZQ7d7j23ntY4+JwqlUL33FjZa8rkePZFQ7Af9o00OmIXLFC1uDJ4aTYEUJoRjGbud6vHyk3b2FXrBgBs2ait7PTOpYQaeLSsAFefXoDEPrppyQ+YS9CoS0pdoQQmgmbPIWEQ8HonZ0pPHcuRk9PrSMJkS5e77+Pc6OGKElJ3OjbD2t8vNaRxCNIsSOE0ETkmjVE/O9/APhPnYJ9ieIaJxIi/XR6PQFTpmD09SX5yhXCp32udSTxCFLsCCGyXcKJk4SO/hQArw8+wLVZM20DCZEJBg8P/D5TZxJG/PADsbv/1DiR+DcpdoQQ2Srl3j2uf/QhSlISLk2apI55ECI3c6lfH8833gDg1vDhWKKiNE4k/kmKnTxkzpw5BAYG4uDgQFBQEAcOHHji+0+ePMmLL75IYGAgOp2OGTNmZMl1nyQsLAyTycTy5csf+XrPnj2pUaNGhq8vcjYlJYUbAwamDkj2nzIZnV5+DIm8wXvQQOyKFSMlLIzQzz7TOo74B/kpk0esWLGCAQMGMHr0aA4fPkzVqlVp3bo14eHhjz0nPj6eEiVKMGnSJHx9fbPsuk/i4+ND27ZtWbhw4X9ei4uL48cff6Rnz54ZurbI+W7PmUP8vn3onJwoPHsWhnTubyNETqZ3csJ/8iTQ64leu47YP/7QOpK4T4qdPGL69On06tWL7t27U6FCBebNm4eTk9Mji4oHnnnmGaZOncprr72Gvb19ll0X4JtvvqF8+fI4ODhQrlw5vvrqq9TXevbsydatW7l69epD5/z000+kpKTQuXPndHzmIreI27OHu/PmA+A3biz2pUtrnEiIrOdYrRoFunUDIHT8Z1gTEzVOJECKnadTFEiO0+ZI44b0ycnJBAcH0+If+wjp9XpatGjB3r17M/ypZ/S633//PaNGjeKzzz7j9OnTTJgwgZEjR7JkyRIA2rRpg4+PD4sXL37ovEWLFtGpUyc8PDwynFnkTCm3b3Nj8BBQFDxeeQX3tm21jiSEzRTq0xujjw/ma9e4+/XXWscRgFHrADmeOR4m+Gtz72E3wc75qW+7c+cOFosFHx+fh5738fHhTCYWucrodUePHs3nn39Op06dAChevDinTp1i/vz5dOvWDYPBQLdu3Vi8eDEjR45Ep9Nx8eJFdu3axebNmzOcV+RMisXCjcGDsdy5g33p0vgMG6p1JCFsSu/sjM+wYdzo25e7C77BrV077IvL0gpakpYdkaXi4uK4ePEiPXv2xMXFJfUYP348Fy9eTH1fjx49CAkJYfv27YDaqhMYGEgzmYKc59xdsID4vfvQOToSMOML9A4OWkcSwuZcW7VUFxs0mwkbNw4ljS31wjakZedpTE5qC4tW904DLy8vDAYDYWFhDz0fFhb22IHHtrpubGwsAAsWLCAoKOih1wwGQ+rj0qVL07BhQxYtWkSTJk1YunQpvXr1kj2R8pj4Q4e4PXMWAL4jR2JfsqTGiYTIHjqdDt8RI7jUrj1xe/YS8/vvuD37rNax8i1p2XkanU7tStLiSOMvfjs7O2rWrMnWrVtTn7NarWzdupW6detm+FPPyHV9fHzw9/fn0qVLlCpV6qGj+L+acXv27MnKlStZuXIlN27c4K233spwVpHzWCIjuTFwEFituL/QHveOHbSOJES2sitalIJvvw1A+OfTUZKTNU6Uf0mxk0cMGDCABQsWsGTJEk6fPs37779PXFwc3bt3T31P165dGTr07/ESycnJHD16lKNHj5KcnMyNGzc4evQoFy5cSNd1/23MmDFMnDiRmTNncu7cOY4fP86iRYuYPn36Q+97+eWXMZlMvPvuu7Rq1YoiRYpk4VdEaElRFG6N/pSUsDDsihXDd9QoabUT+VLBHt0xFPLCfO0aEctXaB0n/1LymaioKAVQoqKi/vNaQkKCcurUKSUhIUGDZJk3a9YspWjRooqdnZ1Su3ZtZd++fQ+93rhxY6Vbt26pH4eEhCjAf47GjRun67qP8v333yvVqlVT7OzsFE9PT6VRo0bKqlWr/vO+d955RwGUH3/88YnXy+3fm/wmYvVq5VTZcsqpipWU+GPHtY4jhKbuLV+hnCpbTjkbVEdJecTvHpE2T/r9/TQ6Rclfo6aio6Nxd3cnKioKt38taJaYmEhISAjFixfHQQZR5ijyvck9kq9fJ+SFDljj4ijUry9e772ndSQhNKWkpHDphQ4kX7xIwV698B44QOtIudKTfn8/jXRjCSGyjGKxcHPwEKxxcTjWqEHBXr20jiSE5nRGI94DBwJwb+lSzLduaZwo/5FiRwiRZe5+8y0Jhw+jd3ZW9736xww8IfIzl6ZNcKpVCyUpiduzZ2sdJ9+RYkcIkSUSTpzk9ix1mrnPiBHYFS6scSIhcg6dTof3ILV1J2rNLyRfu6ZxovxFih0hRKZZExO5OXgwpKTg2ro17h1e0DqSEDmOY7VqODdoABaLbCORzaTYEUJk2u0vZ5J86RLGQoXw/XS0TDMX4jG8PvgAgMjVa0i+fkPjNPmHFDtCiEyJP3yYe/c3dfUdOwajp6e2gYTIwZxqVMe5Xl1ISZHWnWwkxY4QIsOsCQncHDoUFAX3jh1xbdpU60hC5HhevXsDELl6NeabGm1HlM9IsSOEyLDwL77AfOUqRh8ffIZ+onUcIXIFp5o1capTB8xm7kjrTraQYkcIkSHxBw8SsfQ7APzGj8OQzkW+hMjPCvVWx+5ErVxFyp07GqfJ+6TYEUKkmzU+npvDhgPg/tKLuDRsqHEiIXIXx1q1cKxaFcVsJuKHH7SOk+dJsZOHzJkzh8DAQBwcHAgKCuLAgQNPfP+CBQto2LAhnp6eeHp60qJFi/+coygKo0aNws/PD0dHR1q0aMH58+cznDE4OBidTse+ffse+Xrz5s3p1KlThq8vskf459MxX7uG0c8PnyFDtI4jRK6j0+kocH9D5YgflmFNSNA4Ud4mxU4esWLFCgYMGMDo0aM5fPgwVatWpXXr1oSHhz/2nB07dvD666+zfft29u7dS5EiRWjVqhU3bvw9HXLKlCnMnDmTefPmsX//fpydnWndujWJiYkZylmzZk2qVq3KwoUL//Pa5cuX2b59Oz179szQtUX2iNu3n4jvvwfud1+5umqcSIjcybVlC0yFC2OJjCTql1+0jpO3ZfWupDldXt31vHbt2krv3r1TP7ZYLIq/v78yceLENF8jJSVFcXV1VZYsWaIoiqJYrVbF19dXmTp1aup7IiMjFXt7e2XZsmWPvY7FYlEmTJigBAYGKg4ODkqVKlWUn376KfX1mTNnKm5ubkpcXNxD540ePVrx9/dXUlJS/nPN3Py9yUtSYmKV882aK6fKllNujhqtdRwhcr27S5Yqp8qWUy60aq1YLRat4+Romdn1XFp2nkJRFOLN8ZocSho3pE9OTiY4OJgWLVqkPqfX62nRogV79+5N8+caHx+P2WymQIECAISEhBAaGvrQdd3d3QkKCnridSdOnMjSpUuZN28eJ0+epH///rz55pv88ccfAHTu3JmkpCR+/vnnh77OS5Ys4a233sIg+ynlWLenT8d84wYmf3+8P/5Y6zhC5HoeL3ZC7+ZG8pUrxG7frnWcPMuodYCcLiElgaAfgjS59/439uNkcnrq++7cuYPFYsHHx+eh5318fDhz5kya7zdkyBD8/f1Ti5vQ0NDU6/z7ug9e+7ekpCQmTJjAli1bqFu3LgAlSpRg9+7dzJ8/n8aNG1OgQAE6duzIwoUL6dq1KwDbt2/n8uXLdL/fhy1ynvjg4NSBlH6fjcfg4qxxIiFyP72zM56vvsLdBd9wd9EiXJs31zpSniQtOwKASZMmsXz5clavXo2Dg0OGr3PhwgXi4+Np2bIlLi4uqcfSpUu5ePFi6vt69OjBzp07U59buHAhjRs3plSpUpn+XETWsyYlcWvESADcX+yE8/1CVgiReZ5vvglGIwmHgkk4cVLrOHmStOw8haPRkf1v7Nfs3mnh5eWFwWAgLCzsoefDwsLw9fV96vnTpk1j0qRJbNmyhSpVqqQ+/+DcsLAw/Pz8HrputWrVHnmt2NhYANavX09AQMBDr9nb26c+bt68OUWLFmXx4sV8/PHHrFq1ivnz5z81q9DGnblzSQ4JwVDIC5/Bg7WOI0SeYvLxwa11a6LXrydi+TIcx4/XOlKeI8XOU+h0ujR1JWnJzs6OmjVrsnXrVjp06ACA1Wpl69at9OnT54nnTpkyhc8++4zff/+dWrVqPfRa8eLF8fX1ZevWranFTXR0NPv37+f9999/5PUqVKiAvb09V69epXHjxo+9r16vp3v37nz77bcEBARgZ2fHSy+9lPZPWmSbxLNnufvNtwD4jhiJwd1d40RC5D2eb7xO9Pr1RP+6Hp/Bg2WRziwm3Vh5xIABA1iwYAFLlizh9OnTvP/++8TFxT00BqZr164MHTo09ePJkyczcuRIFi5cSGBgIKGhoYSGhqa2zuh0Ovr168f48eNZu3Ytx48fp2vXrvj7+6cWVf/m6urKoEGD6N+/P0uWLOHixYscPnyYWbNmsWTJkofe2717d27cuMGwYcN4/fXXcXRMW0uWyD5KSgq3ho+AlBRcW7bArXUrrSMJkSc51qiBfZkyKImJRK1Zo3WcvCerp4bldHl16rmiKMqsWbOUokWLKnZ2dkrt2rWVffv2PfR648aNlW7duqV+XKxYMQX4zzF69OjU91itVmXkyJGKj4+PYm9vrzRv3lw5e/bsE3NYrVZlxowZStmyZRWTyaQUKlRIad26tfLHH3/8572tWrVSAOXAgQNPvGZu/97kVne+XaicKltOOVPrGSU5NEzrOELkafd++EGdhv7sc4rVatU6To6TmannOkVJ4/zmPCI6Ohp3d3eioqJw+1czYWJiIiEhIRQvXjxTg3RF1pPvTfZLvnqVS+1fQElMxHfcWDxfflnrSELkaZbYOC40aoQ1Pp6iixfhXKeO1pFylCf9/n4a6cYSQvyHoijcGjUaJTERp6AgPGQ8lRA2Z3Bxxu2F9oC6hYTIOlLsCCH+I2rVKuL37UNnb4/f2DHodDqtIwmRL3i+9joAMVu3Yg57/HY/In2k2BFCPMQcHk7Y5CkAFProQ+yKFdM4kRD5h0PZMjjWqgkWC1GrVmodJ8/QvNhJ707dM2bMoGzZsjg6OlKkSBH69++f4U0phRD/FTb+M6zR0ThUrEiBbt20jiNEvvOg2zhy9Zo0bxsknkzTYie9O3X/8MMPfPLJJ4wePZrTp0/z7bffsmLFCoYNG5bNyYXIm6I3byZm0yYwGvH7bDw6oyzFJUR2c2vVCr2zM+arV0k4dEjrOHmCpsXO9OnT6dWrF927d6dChQrMmzcPJycnFi5c+Mj379mzh/r16/PGG28QGBhIq1ateP3115/aGiSEeDpLdDRhY8cBULBnTxzKldM4kRD5k97JCdfnngUgcuUqjdPkDZoVOxnZqbtevXoEBwenFjeXLl1iw4YNtGnT5rH3SUpKIjo6+qFDCPFf4VOnknL7NnbFi+P1waNXyBZCZA+PTi8CEP3771hi4zROk/tpVuw8aafux+2o/cYbbzB27FgaNGiAyWSiZMmSNGnS5IndWBMnTsTd3T31KFKkSJZ+HkLkBXH79hP5088A+I0bi/4f+5gJIbKfY/Vq2BUvjpKQQMzvG7WOk+tpPkA5PXbs2MGECRP46quvOHz4MKtWrWL9+vWMGzfusecMHTqUqKio1OPatWvZmFiInM+akMCtUaMA8Hj9NZz+tUeaECL76XQ63Dt2BCBy1WqN0+R+mo0+zMhO3SNHjqRLly68/fbbAFSuXJm4uDjeeecdhg8fjl7/39rN3t7+od22hRAPuz17NuarVzH6+uI9cKDWcYQQ97m/8AK3Z8wgITiY5MuXsQsM1DpSrqVZy84/d+p+4MFO3XXr1n3kOfHx8f8paAwGA4BMzyP90/gXL16MTqd76Pj3VgyKojBq1Cj8/PxwdHSkRYsWnD9/PsMZg4OD0el07Nu375GvN2/enE6dOmX4+iJ9Eo6f4N6ixQD4jh6FwcVF20BCiFQmH2+cGzYA1GnoIuM07cZ62k7d/96lu127dsydO5fly5cTEhLC5s2bGTlyJO3atUstevKr9E7jf8DNzY1bt26lHleuXHno9SlTpjBz5kzmzZvH/v37cXZ2pnXr1hle26hmzZpUrVr1kTPuLl++zPbt2+nZs2eGri3SRzGbuTViBFituLVpg2vTplpHEkL8i8f9rqzodetQrFaN0+RiWbolaQY8aafuf+/SbTablU8//VQpWbKk4uDgoBQpUkT54IMPlIiIiDTfL6/uel67dm2ld+/eqR9bLBbF399fmThx4mPPWbRokeLu7v7Y161Wq+Lr66tMnTo19bnIyEjF3t5eWbZs2WPPs1gsyoQJE5TAwEDFwcFBqVKlivLTTz+lvj5z5kzFzc1NiYuLe+i80aNHK/7+/kpKSsp/rpmbvzc51e2585RTZcspZ2sHKeY7d7SOI4R4BEtCgnKmRk3lVNlySlxwsNZxNJWZXc81H6Dcp08frly5QlJSEvv37ycoKCj1tR07drB48eLUj41GI6NHj+bChQskJCRw9epV5syZg4eHh83yKYqCNT5ek0NJY9dcRqbxPxAbG0uxYsUoUqQIL7zwAidPnkx9LSQkhNDQ0Ieu6+7uTlBQ0BOvO3HiRJYuXcq8efM4efIk/fv358033+SPP/4AoHPnziQlJfHzzz8/9HVesmQJb731Vr5vpcsOSZdCuPPVVwD4DBuKsWBBjRMJIR5F7+CAa8uWAEStW6dxmtxLlkd9CiUhgbM1ampy77KHg9E5OT31fU+axn/mzJnHX79sWRYuXEiVKlWIiopi2rRp1KtXj5MnT1K4cOHUJQDSszxAUlISEyZMYMuWLaljr0qUKMHu3buZP38+jRs3pkCBAnTs2JGFCxfStWtXALZv387ly5dTuzCF7ShWK7dGjkRJTsa5QQPc2rfXOpIQ4gnc2j1P1Jo1xPy2Ed9hw9CZTFpHynWk2MnH6tat+9Bg8Hr16lG+fHnmz5//xOn8T3LhwgXi4+Npef8vkQeSk5OpXr166sc9evSgdevWXLx4kZIlS7Jw4UIaN25MqVKlMvbJiDSLXLGChGC1kPYb86nsaC5EDuccFITBywvLnTvE/vknrk2aaB0p15Fi5yl0jo6UPRys2b3TIiPT+B/FZDJRvXp1Lly4AJB6blhYGH5+fg9dt1q1ao+8RmxsLADr168nICDgodf+uQRA8+bNKVq0KIsXL+bjjz9m1apVzJ8/P81ZRcaYQ0MJn/Y5AN79+mH61/fo3xRFITo5mjsJd0hMSSQhJQGz1YyD0QFHoyNORicKOhbE2eScHfGFyJd0RiNuzz1HxHffEf3reil2MkCKnafQ6XRp6krS0j+n8Xfo0AH4exp/nz590nwdi8XC8ePHU7ffKF68OL6+vmzdujW1uImOjmb//v28//6jtxOoUKEC9vb2XL16lcaNGz/2Xnq9nu7du/Ptt98SEBCAnZ0dL93f6VfYhqIohH46BmtcHI7VquHZ+Y2HXjdbzJy5d4ajt4/y1+2/uBR1iZuxN4kzP32pelc7V/yc/SjiWoQynmUo41mGsgXKUtilsLQcCZEF3Ns9T8R33xGzdSvW+Hj0Ofz3Uk4jxU4eMWDAALp160atWrWoXbs2M2bMeGgaP6hT+QMCApg4cSIAY8eOpU6dOpQqVYrIyEimTp3KlStXUhdt1Ol09OvXj/Hjx1O6dGmKFy/OyJEj8ff3Ty2q/s3V1ZVBgwbRv39/rFYrDRo0ICoqij///BM3Nze6deuW+t7u3bszduxYhg0bxuuvv45jGluyRMZEb9hA7I4dYDLhN34cOoOBhJQEdt/YzabLm/jj+h8kpCQ88lx3e3ccjY44GBww6o0kW5KJT4knzhxHQkoCMckxxCTHcC7iHFuv/r12lpejF9W9q1Pduzr1/etT3L24FD9CZIBD5cqYihbFfPUqMVu34d7uea0j5SpS7OQRr776Krdv32bUqFGEhoZSrVo1Nm7c+NDg4qtXrz60KGNERAS9evUiNDQUT09PatasyZ49e6hQoULqewYPHpy6SnVkZCQNGjRg48aN/1l88J/GjRtHoUKFmDhxIpcuXcLDw4MaNWr8Zw+zokWL0qJFCzZt2kSPHj2y8Ksh/i0lIoKw8Z8B4PX+e4R527F033jWXlz7UIHjYe9B1UJVqeZdjXIFyhHgEoCfsx8Oxsd/v+PMcYTGhXIz9iaXoy9zLuIc5yLOcT7iPHcS7rD5ymY2X9kMQIBLAI0KN6JR4UY84/sM9gZZ3VyItNDpdLg/35Y7X80l6td1Uuykk05J6/zmPCI6Ohp3d3eioqJwc3N76LXExERCQkIoXrz4E3+Zi+wn35vMufHxYHVRspJF+aZfWbbc3IGC+r++v7M/rQJb0TqwNRULVsyylpckSxIn75zkcPhhDoYe5GDoQcxWc+rrjkZHmhRpwvMlnqeuf11MeplhIsSTJF26xKU2bcFopMyfuzG4u2sdKVs96ff300jLjhB5XMyOHUSvW4dVByMa3ODCzZsANAxoSLeK3ajtW9smXUv2Bntq+NSghk8N3q78NvHmePbd2sfO6zvZdX0X4Qnh/BbyG7+F/IaHvQetirWibYm2VPeuLl1dQjyCfYkS2JcpQ9K5c8Rs3YZHp45aR8o1pNgRIg9Ljo7i4vDB2AO/1tZxwV9Hm+JteKfKO5T0KJmtWZxMTjQr2oxmRZuhKArH7xxPLXbuJt7lx3M/8uO5Hwl0C+SlMi/RvmR7PB08szWjEDmda+tWarHz++9S7KSDdGP9g3SV5FzyvUm/0LhQtn30GtX/DCPUAxYOrsLABkOp5l1N62gPSbGmcDD0IOsvrWfzlc3Ep8QDYNKbaFGsBS+XeZlaPrWktUcIIOniRS61fR5MJrUrK53dOblZZrqxNN8uQgiR9TZe3sgns9pR/U917aWEQd1Z0nFZjit0AIx6I3X96zK+wXi2vbKNUXVHUb5AecxWM7+F/EaP33vwyq+vsPbiWswW89MvKEQeZl+yJHalSoLZTOz27VrHyTWk2HmEfNbYlSvI9yRtrIqV6YemM2zLILr8oi7waOzwHG1eGoxel/P/d3c2OfNymZf5sd2PLH9+OS+WfhEHgwNn7p1h+O7htF7Zmq+PfU1kYqTWUYXQjFvrZwGI3vi7xklyj5z/0y8bme7vNxIfH69xEvFvycnJALJJ6BPEm+MZsGMAi04u4uXdVvwjwODtTYlhn2odLUMqFqzIp/U+ZfNLm+lboy+FHAtxO+E2s47MouXPLRm7dyxXoq9oHVOIbOfauhUAcbt3Y7m/ar14Mhmz8y+3bt0iMjISb29vnJycZJxADmC1Wrl58yYmk4miRYvK9+QR7iTcoffW3py6e4rSYQbGLzajs1op/NUcXJs10zpeljBbzGy8vJHvTn3H6XunAdDr9LQObE2vyr0o7Vla44RCZA9FUbjU9nmSL13Cf+oU3Nu10zpStsjMmB0pdv5FURRCQ0OJjIzM/nDisfR6PcWLF8fOzk7rKDlOeHw4PX/vyeXoyxQ0ejBnmTP6C1dwa/McAdOnax0vyymKwqGwQyw5uYQ/rv+R+nzzos3pVaUXFQtW1DCdENkj/MsvuTt3Hi4tmlNk9myt42QLKXbSIa1fLIvFgtksgyFzCjs7u4dWfxaqsLgwem7qyZXoK/g5+/HVjeaY5y7G4O5OiQ3rMRYsqHVEmzpz7wwLji1g85XNqYsk1g+oz7tV3qW6d3WN0wlhO4lnzxLyQgd0dnaU3rMHg0ve34xXip10yMwXS4ic5J+Fjr+zP1+XHU3CG++hmM34T5mMe/v2WkfMNpciL/HN8W/YELIBi2IB1KLnw+ofSkuPyJMUReHSs8+RfOUKATO+wO3ZZ7WOZHMy9VyIfCYqKYp3Nr/DlegrBLgE8G2rb1AmzkExm3Fu1BC3fNKH/0AJjxJMaDiBdR3W8WLpFzHqjPx5409e+/U1+m/vz8XIi1pHFCJL6XQ6XFo0ByBm6zaN0+R8UuwIkcskW5Lpu70vl6Iu4ePkw8LWC3Fau5OEw4fROznh9+mn+XYQdxG3Inxa71PWdljL8yWeR4eOLVe30PGXjgzbNYxrMde0jihElnFtrhY7sTt2oMiwiyeSYkeIXMSqWBmxewTBYcG4mFz4qsVXeN1LIfzzzwEoNHAAJn9/jVNqr4hbESY2nMjK9itpXrQ5CgrrLq2j/er2jNs7jrC4MK0jCpFpjlWrYihYEGtMDPEHD2odJ0eTYkeIXOTLw1/y2+XfMOqNfNH0C0q7l+LW8BEoCQk41a6N5+uvax0xRyntWZoZTWewvO1y6vvXJ0VJ4cdzP9J2dVtmBM8gNlnWKBG5l85gwKVpE0C6sp5Gih0hconfQn5j4YmFAIytN5Y6fnWI+GEZ8QcPonNywu+z8ehkxtojVfSqyLyW81jUehE1vGuQZEni2xPf0nZ1W5afWY7ZKl0AInd60JUVs22brDT/BPKTUYhc4GLkRUbvGQ3A25Xfpl3JdiRfu5bafeU9cAB2RYpoGTFXqOVbi8XPLmZm05kEugVyL/Een+3/jE6/dGL71e3yy0LkOs5166JzciLl1i0ST53SOk6OJcWOEDlcbHIs/bb3IyElgSC/IPpU64NitXJr2HDpvsoAnU5H06JNWfXCKoYHDcfT3pPL0Zf5aPtH9NzUk5N3T2odUYg00zs44FK/PgCxW7dqnCbnkmJHiBxMURRG7RnF5ejL+Dj5MKXRFAx6AxHLpPsqs0x6E6+Ve431ndbzduW3sTfYczD0IK/9+hqf7PqE0LhQrSMKkSauMgX9qeQnpBA52IqzK9h8ZTNGvZHpTaZTwKGA2n01TbqvsoqrnSt9a/RlXYd1tCuhrk+0/tJ62q9pz9fHvibJkqRxQiGezKVxYzAYSDp7luTr17WOkyNJsSNEDhUSFcLnh9SiZkDNAVQpVEW6r2zIz8WPCQ0nsPz55dTwrkFCSgKzjszihTUvsO2qDP4UOZfBwwOnWrUA6cp6HCl2hMiBzFYzQ3cNJdGSSB2/OnQu3xlAuq+yQcWCFVn87GImN5yMt5M3N2Jv0Hd7X97b8h6XIi9pHU+IR3owBT32jz+e+L78Sn5SCpEDzftrHifvnsTNzo3x9cej1+ml+yob6XQ62pRow7oO6+hVuRcmvYk9N/fw4toXmXpwKjHJMVpHFOIhrk2aABB38BCWWFk/6t+k2BEihzkafpRvjn8DwMi6I/Fx9lG7r2TxwGznZHLioxof8csLv9CkSBNSlBSWnlrK86ufZ+3FtdK1JXIMu8BA7IoVA7OZuD/3aB0nx5FiR4gcJNmSzOg9o7EqVp4v8TzPBqo7GUcsW0b8gQPSfaWRIm5FmNVsFnNbzE1dn2f47uH0+L2HdG2JHMPlfuuOdGX9l/zEFCIH+fb4t1yKukQBhwJ8UvsTAJJCQgifOg2Q7iutNQhowKr2q+hboy8OBgcOhR3ixXUvMvPwTBJSErSOJ/I5lyaNAbXYUaxWjdPkLFLsCJFDXIy8yNfHvwZgaO2huNu7o6SkcPOTT1ASE3GuV1e6r3IAk8HE25XfZk2HNTQu3JgUawoLji+g4y8d2Xl9p9bxRD7mVLMmemdnLHfvknhSFsf8Jyl2hMgBrIqVT/d8Soo1hcaFG9M6sDUAdxcsIPGvY+hdXfH77DPpvspBAlwCmNVsFjOazsDHyYcbsTfovbU3A3YMkF3VhSZ0dnY4P1hNefsObcPkMPKTU4gc4KezP3H09lGcjE6MqDMCnU5HwomT3J7zFQC+o0Zi8vPTOKX4N51OR/OizVnbYS3dKnTDoDOw+cpm2q9pz/env8ditWgdUeQzqeN2duzQNEdOI8WOEBq7l3iPL498CcBHNT7C19kXa2IiN4cMgZQUXFu3xu355zVOKZ7EyeTEoGcGseL5FVQpVIX4lHgmHZhEt43dZACzyFYujRoCkHjqFOawcI3T5BxS7AihsZmHZxKTHEP5AuV5rexrANz+YgbJFy9iKOSF76ej0el0GqcUaVG2QFm+e+47RgSNwNnkzF+3/+KldS8x/6/5mK1mreOJfMDo5YVDlSoAxO6UWVkPSLEjhIZO3jnJqvOrABgaNBSD3kDcvv3cW7IEAL9x4zB6emoZUaSTXqfn1XKvsuaFNTQMaIjZamb20dm89utrnLwjg0aF7bk0bgTIFPR/kmJHCI1YFSsTD0xEQaFtibZU966OJSaGm8OGAuDxyiupq6KK3MfX2Zc5zecwqeEkPOw9OBdxjjc2vMH0Q9NJTEnUOp7Iw1waqVPQ4/fuQzFLiyJIsSOEZn699Ct/3f4LR6Mj/Wv0ByDsswmk3LyFqUgRfIYM1jihyCydTkfbEm35pcMvPFf8OayKlUUnF/Hi2hc5FHpI63gij3KoWAGDpyfWuDgSjh7VOk6OIMWOEBqIN8fzRfAXALxb5V18nH2I3ryZqDVrQKfDf/Ik9M7O2oYUWaaAQwGmNJrCrGaz8Hby5mrMVXr83oMpB6dIK4/Icjq9/u8p6Lt2a5wmZ5BiRwgNLD65mDsJdyjiWoQuFbqQcucOoaNGA1Dw7Z441aihcUJhC02KNGHNC2t4sfSLKCh8d+o7Xvn1FU7cOaF1NJHHuDRsAEDcbil2QIodIbLd7fjbLD65GIC+Nfpi0pu4NXIUlogI7MuWxevDD7UNKGzK1c6VT+t9ypzmc/By9CIkKoQ3N7zJ7COzZcaWyDIPWnYST50i5c4djdNoT4odIbLZ3L/mkpCSQBWvKrQq1oqIZcuI3b4dncmE/5TJ6O3stI4oskGjwo1Y3X41zwY+i0WxMP/YfDqv78z5iPNaRxN5gNHLC/sK5QGI2yO7oEuxI0Q2uhR5KXWq+YBaA0i+cIHwyVMA8B40EIeyZbWMJ7KZh4MHUxtPZWqjqbjbu3P63mle/fVVFp1YJKsvi0xzaaAuMCjjdqTYESJbfXH4CyyKhaZFmlLdoxI3Bn2MkpSEc8OGeHbponU8oZFniz/L6varU9flmR48nR6/9+Bm7E2to4lczLmB2pUVt3t3vt8FXYodIbLJ4bDD7Li2A4POQL+a/Qj//HOSzp7FUKAA/hMnyCaf+Vwhp0LMaT6HMfXG4GR04nD4YV5a9xKbLm/SOprIpZyqVVN3QY+IIPHUaa3jaEp+ugqRDRRFYeaRmQB0LN0R77+uE7H0OwD8JnyG0ctLy3gih9DpdHQq3Ymf2/1MZa/KxCTHMPCPgYzeM5p4c7zW8UQuo7Ozw6luHQDidu/SOI22pNgRIhvsu7WP4LBg7PR29Ap4mZtDhwHg+eabskqy+I8ibkVY8twS3q78Njp0rDq/ild/fZXTd/P3X+ci/VwaqFPQY/P5FHQpdoSwMUVRmH1kNgCvlHmZlM++xHL3LvalS+P98SCN04mcyqQ30bdGXxa0WoC3ozeXoy/TeUNnlp5cilXJ3+MvRNo53y92Eo4cxRITo3Ea7UixI4SN/XH9D47dOYaj0ZE3TnoQ98dOdHZ2+H8+Db29vdbxRA4X5BfEyvYraVqkKWarmamHpvLB1g+4kyBrp4insytcGLvixcFiIW7vXq3jaEaKHSFsyKpYU1t1ejm1Jm7GXAC8Bw/GoUwZLaOJXMTDwYMvm37JiKAR2Bvs+fPGn7y09iUO3DqgdTSRCzxo3Ynb/afGSbQjxY4QNrT5ymbORpzFAyeafHMYJTkZl8aN8ez8htbRRC6j0+l4tdyrLGu7jFIepbibeJdem3vx9bGvpVtLPNGDrSNid+9CURSN02hDih0hbMSqWJl/bD4Ao4KLkXLxEgYvL/wmfIZOp9M4ncitSnuW5oe2P9ChVAesipVZR2bxwdYPiEiM0DqayKGcnnkGnZ0dKTdvkRwSonUcTUixI4SNbL+2nfMR52l40Y7Cm44D4D9xAsaCBTVOJnI7R6Mj4+qPY2y9sandWq/8+gp/3f5L62giB9I7OuJUqxYAcbvy5xR0KXaEsAFFUfj62NcUilR479cUAAr06IFLw4YaJxN5ScfSHfm+zfcEugUSGhfKW7+9xXenvsu3XRXi8R6M24nNp/tkSbEjhA3svrGbs+EnGfCLgik+GceqVfHu30/rWCIPKlugLMvaLqN1YGtSlBSmHJzCoD8GySKE4iHO9eoCEH/wEEpyssZpsp8UO0JkMUVRmH9sPq//YaXkTSt6Nzf8P/8cncmkdTSRR7nYuTC10VSG1h6KUW9k05VNdN7QmavRV7WOJnII+zJlMBQsiBIfT8KxY1rHyXZS7AiRxQ6EHkC/9wjt96tdCf4TPsOucIDGqURep9PpeKP8GyxqvQgvRy8uRF7gtfWvset6/hyjIR6m0+txrnN/64g9+W+9HSl2hMhiP+ycRZ916lRgzy5dcG3RQuNEIj+p5l2NFc+voGqhqsQkx9B7a28WHFsg43hEaldWXD4ctyPFjhBZ6MjNQzReEIxrIhjKl5HtIIQmvJ28Wdh6IS+XeRkFdRPaATsGEGeO0zqa0JBzXbXYSTh+PN9tHSHFjhBZ6Nik4ZS/DmYHI4FfzkJvZ6d1JJFP2RnsGFV3FKPrjsakN7Hl6hY6r+/MtehrWkcTGjH5+2NXrBhYLMQfPKh1nGwlxY4QWeTkhu+ptUkdEOoyagh2RYtqnEgIeKnMSyx6dhHejt5cjLrIGxve4FDoIa1jCY04pXZl5a9xO5oXO3PmzCEwMBAHBweCgoI4cODJe71ERkbSu3dv/Pz8sLe3p0yZMmzYsCGb0grxaObwcBJHT0EPnG1cnBKd3tQ6khCpqhaqyrLnl1GxYEUikyLptbkXq8+v1jqW0MCDrqz8timopsXOihUrGDBgAKNHj+bw4cNUrVqV1q1bEx4e/sj3Jycn07JlSy5fvszPP//M2bNnWbBgAQEBMtNFaEexWLg0oC9OMclc9oYKn07ROpIQ/+Ht5M2iZxfRqlgrUqwpjNozis8PfY7FatE6mshGzkFBoNeTfPEi5tBQreNkG02LnenTp9OrVy+6d+9OhQoVmDdvHk5OTixcuPCR71+4cCH37t1jzZo11K9fn8DAQBo3bkzVqlWzObkQf7s9axbWQ0dJNMHu94Io41dJ60hCPJKj0ZGpjafyftX3AVh8cjF9t/eVgcv5iMHdHYdK6s+ouL37NE6TfTQrdpKTkwkODqbFP6bl6vV6WrRowd7HNK+tXbuWunXr0rt3b3x8fKhUqRITJkzAYnn8XyZJSUlER0c/dAiRVWJ27ODuPHWzz3lt9HRs1kfjREI8mV6n54NqHzCl0RTs9Hb8cf0P3tzwJjdib2gdTWSTv7uy8s8UdM2KnTt37mCxWPDx8XnoeR8fH0If07R26dIlfv75ZywWCxs2bGDkyJF8/vnnjB8//rH3mThxIu7u7qlHkSJFsvTzEPlX8vUb3BzyCQC/1dQR26gaNX1qapxKiLR5rvhzLHr27wUIO6/vzMm7J7WOJbLBP8ft5Jf1lzQfoJweVqsVb29vvv76a2rWrMmrr77K8OHDmTdv3mPPGTp0KFFRUanHtWsy7VJknjU5mRt9+2KNiuJigIGlzfV0r9QdnU6ndTQh0qxKoSosa7uMMp5luJt4l+4bu7Pz+k6tYwkbc6xeDZ2DA5bbd0i+cEHrONkiw8VOcnIy169f5+rVqw8daeXl5YXBYCAsLOyh58PCwvD19X3kOX5+fpQpUwaDwZD6XPny5QkNDSX5MRub2dvb4+bm9tAhRGaFTZhA4smTmF0dmfYCFPYMpGmRplrHEiLdfJ19WfzsYur41SEhJYEPt33Ij2d/1DqWsCG9vT1ONdVW6PwyKyvdxc758+dp2LAhjo6OFCtWjOLFi1O8eHECAwMpXrx4mq9jZ2dHzZo12bp1a+pzVquVrVu3Uvd+E9u/1a9fnwsXLmC1WlOfO3fuHH5+ftjJ4m0im0StXUvk8hWg07GgkzN33XW8VfEtDHrD008WIgdytXPlqxZf8ULJF7AqVsbtG8eM4BlYFevTTxa5knO9egDE/Zk/xu0Y03vCW2+9hdFo5Ndff8XPzy9TzfYDBgygW7du1KpVi9q1azNjxgzi4uLo3r07AF27diUgIICJEycC8P777zN79mz69u3Lhx9+yPnz55kwYQIfffRRhjMIkR6J585xa9RoAO693pwd/jso6FCQdiXbaZxMiMwx6U2Mqz+OAJcAvvrrK7498S234m4xrv447Azyx2Rek7pP1sGDKGYzOpNJ40S2le5i5+jRowQHB1OuXLlM3/zVV1/l9u3bjBo1itDQUKpVq8bGjRtTBy1fvXoVvf7vxqciRYrw+++/079/f6pUqUJAQAB9+/ZlyJAhmc4ixNNYYmO58VFflMREnOvXZ0SV6xAFb1Z4E3uDvdbxhMg0nU7H+9Xex8/FjzF7xrAhZAPh8eHMbDYTVztXreOJLGRftiwGT08sEREkHDuW2q2VV+mUdA7FfuaZZ/jiiy9o0KCBrTLZVHR0NO7u7kRFRcn4HZFmiqJwo/8AYjZuxOjry+2vhvDuwY9xMjqx6aVNuNu7ax1RiCy19+Ze+u/oT5w5jrKeZZnXch5ejl5axxJZ6MaAAURv+A2v3r0p9GHOXzYjM7+/0z1mZ/LkyQwePJgdO3Zw9+5dWcNG5AsR331HzMaNYDJReMYXLL2xBoBOpTtJoSPypLr+dVn87GIKOhTkbMRZumzoIpuI5jFOQXUAiN+/X+Mktpfulp0H3Ur/HqujKAo6ne6JC/zlBNKyI9IrPjiYK93egpQUfIYPJ6JdXTr80gG9Ts/6jusp7FpY64hC2My16Gu8s/kdrsdep6BDQea1nEe5ApkfxiC0l3zlChdbPwsmE2UP7Efv6Kh1pCfKzO/vdI/Z2b59e3pPESLXMoeFc71fP0hJwa1NGzzf7MzMvWMAaFakmRQ6Is8r4laE79p8x3ub3+NsxFm6b+zOzGYzecb3Ga2jiUwyFS2K0c+PlFu3iD98GJf69bWOZDPpLnYaN25sixxC5DjK/YUDLbfvYF+mDH7jxxGZFMmvl34F1IHJQuQHXo5eLHp2ER9u+5DgsGDe2/weUxtPpVnRZlpHE5mg0+lwrl2bqF9+IX7/gTxd7GRoUcHIyEg+//xz3n77bd5++22++OILoqKisjqbEJoKnTCBhKNH0bu5UXj2LPROTvx07ieSLElUKFiBGt41tI4oRLZxtXNlfsv5NCvSjGRrMv139Gf1+dVaxxKZ5FRHHbcTtz9vbwqa7mLn0KFDlCxZki+++IJ79+5x7949pk+fTsmSJTl8+LAtMgqR7SJXrkxdODBg2lTsihbFbDGz/MxyALpU6CJbQ4h8x95gz+dNPqdT6U5YFSuj9ozih9M/aB1LZIJzUG0AEo+fwBITo3Ea20l3sdO/f3/at2/P5cuXWbVqFatWrSIkJITnn3+efv362SCiENkr4dgxQj9Vx+UU+uhDXBo1AmDj5Y3cTrhNIcdCtC7WWsuIQmjGqDfyad1P6VqhKwATD0zkm+PfaJxKZJTJ3x9TsaJgtRJ/6JDWcWwmQy07Q4YMwWj8e7iP0Whk8ODBHMrDXyiRP6Tcvcv1j/qimM24NG9OwXffBdTZht+d+g6A18u9jsmQt1cbFeJJdDodg2oN4r2q7wHw5eEvmXl4Zr7ZQTuvcX4wBX1f3p2Cnu5ix83N7ZEbfl67dg1XV1lhU+ReitnMjX79SQkNxa54cfwnT0J3f6mF4LBgTt87jYPBgZfLvKxxUiG0p9Pp6F2tNwNqDgBgwfEFTDk4RQqeXMi5ThAAcXl4vZ10FzuvvvoqPXv2ZMWKFVy7do1r166xfPly3n77bV5//XVbZBQiW4RPm0b8wYPonZwoPHsWBheX1NcetOq0K9kODwcPjRIKkfN0r9Sd4UHDAfjf6f8xZu8YLNacvd6aeJhTbXXcTtKZM6RERGicxjbSPfV82rRp6HQ6unbtSkpKCgAmk4n333+fSZMmZXlAIbJD1LpfubdkKQB+kydhX7Jk6mvXoq+x/Zq6vtSb5WW6uRD/9lq513A0OjJqzyhWnl9JfEo8ExpMwKhP968YoQGjlxf2pUuRdP4C8QcO4ta6ldaRsly6W3bs7Oz48ssviYiI4OjRoxw9epR79+7xxRdfYG8vmyGK3Cfx9GlujRwJQMF338WtZcuHXv/hzA8oKNQPqE8JjxJaRBQix3uh1AtMaTQFo87IbyG/8cmuT0ixpmgdS6TR31tH5M0p6BlaZwfAycmJypUrU7lyZZycnLIykxDZxhIZyfUPP1J3Mm/QgEIfffjQ6zHJMaw6vwqAruW7ahFRiFyjdWBrvmj6BUa9kd8v/86QnUMwW81axxJpkDpuJ48OUk5TG2OnTp1YvHgxbm5udOrU6YnvXbVqVZYEE8LWFIuFGwMHYb5+HVORIgRMm4rOYHjoPavOryI+JZ6S7iWp619Xo6RC5B5NijRhRpMZ9N/Rn01XNqHsVJjcaDImvcxgzMmcnnkGdDqSL13CHBaOycdb60hZKk0tO+7u7qkLqLm5ueHu7v7YQ4jc4vaXM4n78090jo7qgGQPj4deT7GmpC6Y9maFN2URQSHSqHGRxsxoOgOT3sTmK5ulhScXMLi741C+PADxBw5onCbrpallZ9GiRamPFy9ebKssQmSb6E2buPv11wD4jR+HQ9my/3nP9mvbuRl3E097T54v8Xx2RxQiV2tUuBEzms6g3/Z+bL6yGXYiLTw5nFOdOiSeOkXc/n24t8tbP/PSPWanWbNmREZG/uf56OhomjWTTeFEzpd04QK3PhkKQIG33sK9bdtHvu/BdPOXy76Mg9Eh2/IJkVc8KHgetPB8/MfHmC3SwpNTPRi3kxcXF0x3sbNjxw6Sk5P/83xiYiK7du3KklBC2IolJobrfT7EGh+PU1AQ3oMGPvJ9J+6c4Ej4EYx6I6+VfS2bUwqRdzQq3Igvm36Jnd6OrVe3MuiPQVLw5FCONWqC0Yj5+nWSr1/XOk6WSnOxc+zYMY4dOwbAqVOnUj8+duwYR44c4dtvvyUgIMBmQYXILMVq5eaQT0i+fBmjnx8BX0xHZ3x0T+6DVp3nAp+jkFOh7IwpRJ7TsHBDvmymFjzbrm1j4B8DpeDJgQwuzjhWrgxAfB5bTTnNKz5Vq1YNnU6HTqd7ZHeVo6Mjs2bNytJwQmSlO/PmEbttGzo7OwrPnImxQIFHvi8sLoxNlzcB6u7mQojMaxDQgJnNZvLRto/Yfm07n+z6hMmNJsvCgzmMU1BtEo4cIW7ffjxefFHrOFkmzS07ISEhXLx4EUVROHDgACEhIanHjRs3iI6OpkePHrbMKkSGxf7xB3dmzQbAd/RoHCtXeux7l51ZRoqSQi2fWpQvWD67IgqR59UPqM+Xzb7EqDey6comRv05Cqti1TqW+AfnOg8WF9yfp/Y5S3NJXaxYMQCsVvkPU+QuyVeucGPQx6AoeLz+Gh4vPn6tqHhzPD+d+wlQp5sLIbJWg4AGTGs8jYE7BrLu0jocjA6MrDNSlnbIIRyrVUNnZ0dKeDjJIZexL1Fc60hZIkMrKJ89e5Y+ffrQvHlzmjdvTp8+fThz5kxWZxMi06xxceqA5JgYHKtXx3fo0Ce+/9dLvxKdHE1hl8I0Kdwke0IKkc80L9qcCQ0moEPHT+d+YuqhqXmqFSE30zs44Fi9OpC3to5Id7GzcuVKKlWqRHBwMFWrVqVq1aocPnyYypUrs3LlSltkFCJDFEXh5ogRJJ0/j6GQFwEzZqCzs3vs+62KNXVg8psV3sSgNzz2vUKIzGlTog1j6o0B1AkBs4/O1jiReCAvbh2R7pFhgwcPZujQoYwdO/ah50ePHs3gwYN5MQ8NaBK5272Fi4j5bSMYjRT+8sunLn+++8ZuLkdfxsXkQodSHbInpBD5WMfSHUm0JDJh/wS+PvY1DgYHelXppXWsfM8p6P56O/v3o1it6PQZ3kYzx0j3Z3Dr1i26dv3vhohvvvkmt27dypJQQmRW3N69hH/+OQA+w4biVKPGU8950KrTqXQnnE3ONs0nhFC9Xu51BtQcAMDMIzNT/z8U2nGsVAmdkxOWyEiSzp3TOk6WSHex06RJk0cuHrh7924aNmyYJaGEyAzzjRvc6D8ArFbcO3bE8/XXn3rO+Yjz7Lu1D71Ozxvl38iGlEKIB7pX6s4HVT8AYMrBKamTBIQ2dHZ2ONWsCeSd9XbS3Y3Vvn17hgwZQnBwMHXuT1Hbt28fP/30E2PGjGHt2rUPvVeI7GRNTOT6hx9hiYzEoUIFfEePStMsj/+d/h+gDpwMcJHFMYXIbu9VfY+ElAQWnVzEuL3jcDI60bbEo7dyEbbnXCeIuF27iNu3nwLdumkdJ9N0SjqHwOvT2Hen0+mwWCwZCmVL0dHRuLu7ExUVhZubm9ZxRBZSFIVbQ4cRtWYNBk9Piv/8E6Y0rOp9L/EeLX9qSbI1maXPLaW6d/VsSCuE+DdFUZiwfwLLzy7HqDMyq/ksGgQ00DpWvpRw4iSXX3oJvYsLZfbtfexq89kpM7+/092NZbVa03TkxEJH5G0Ry5YRtWYN6PUEfDE9TYUOwIqzK0i2JlOpYCWqFapm04xCiMfT6XQMDRrKc8WfI0VJYcCOARwNP6p1rHzJoXw59G5uWGNjSTx1Sus4mZauYsdsNtO8eXPOnz9vqzxCZEj84cOETZgIgPfAgamrgD5NsiWZFWdWAOrWELKwmRDa0uv0fFb/M+r71ychJYHeW3tzIeKC1rHyHZ3BgNMzzwAQtzf3r7eTrmLHZDKlbgYqRE5hDgvnet++kJKCW5vnKNCje5rP3RCygbuJd/Fx8qFlYEsbphRCpJXJYGJ6k+lUKVSF6ORo3t3yLjdjb2odK99x/scU9Nwu3d1Yb775Jt9++60tsgiRbkpyMjf69cNy+w72pUvjN358mltnFEVh6amlALxR/g1MepMtowoh0sHJ5MRXzb+ipHtJwuPDeXfzu9xLvKd1rHzF6f7igvGHD2NNTtY4Teake8RRSkoKCxcuZMuWLdSsWRNn54fXI5k+fXqWhRPiaUInTiThyBH0bm4Unj0LvZNTms/dH7qf8xHncTQ68mJpWQxTiJzG3d6deS3n0fW3rlyOvsz7W95nYeuFsg5WNrEvXRpDgQJY7t0j8dgxnGrV0jpShqW7ZefEiRPUqFEDV1dXzp07x5EjR1KPo0eP2iCiEI8WuXIVkcuWg05HwNQp2N3frDatHixe9kLJF3C3d7dFRCFEJvk6+/J1y6/xtPfk1N1T9N3WlyRLktax8gWdTpdnto5Id8vO9u3bbZFDiHRJOH6C0DHqvjpeH/bBpXHjdJ0fEhXCzus70aGT3c2FyOEC3QOZ23IuPTb2YH/ofj7Z+QnTGk+T/euygVNQHaI3/Eb8vn3Qp7fWcTIsUxteXL9+nevXr2dVFiHSJCUigut9P0JJTsalWTO83nsv3df43yl1EcHGRRpTzC19LUJCiOxXsWBFZjabiUlvYsvVLUw8MFF2Ss8GD1p24v/6C2tCgsZpMi5D6+yMHTsWd3d3ihUrRrFixfDw8GDcuHFYrVZbZBQilWK1cnPwEFJu3sJUrCj+kyele5O6yMRI1l5UV/ruWuG/+7wJIXKmIL8gJjeajA4dK86uYNHJRVpHyvNMRYti9PMDs5n4w4e1jpNh6S52hg8fzuzZs5k0aVLqWJ0JEyYwa9YsRo4caYuMQqS6M3cucbt2oXNwoPDMmRhcXdN9jZ/P/0yiJZFyBcpRyyf3DrgTIj9qWawlg58ZDMAXwV+w4dIGjRPlbTqd7u8p6Ll43E66x+wsWbKEb7755qF9r6pUqUJAQAAffPABn332WZYGFOKB2N1/cmf2HAB8Px2NQ9my6b6G2WJm2ellgNqqI4sICpH7vFnhTW7G3eS7U98x4s8RFHIqxDO+z2gdK89yqhNE1Jo1xOXi9XbS3bJz7949ypUr95/ny5Urx717sgaCsA3zrVvcHDQIFAWPV17Bo0OHDF1n4+WNhCeEU8ixEM8GPpu1IYUQ2WZQrUG0LNYSs9VM3+19uRh5UetIedaDlp3EEyewxMRonCZj0l3sVK1aldmzZ//n+dmzZ1O1atUsCSXEPynJyVzv1y91J3Of4cMydh1FSZ1u/lq51zAZZBFBIXIrvU7PhAYTqFaoGjHJMby/5X1ux9/WOlaeZPLzU5f2sFqJP3hI6zgZku5urClTptC2bVu2bNlC3bp1Adi7dy/Xrl1jwwbpOxVZL2zyFBL/Oobe3Z2AmV+it7fP0HWCw4I5fe809gZ7Xi7zchantLHkOIi8CrFhEHtb/TcuHBIiwJwIKf84rBbQ6UFvvH8YwOgA9q5g73b/X1dwKgAu3uDiox5OBdX3CpFLOBgdmNlsJl1+68KV6Cv03tqbRc8ukkUHbcCpTh2Sr1whfv8+XJs11TpOuqW72GncuDHnzp1jzpw5nDlzBoBOnTrxwQcf4O/vn+UBRf4WtX49Ed9/D4D/5EnYFS6c4Ws9aNVpX7I9ng6eWZIvy1nMEH4abv2lHuGn4d5FiLll+3vr9ODkBa4+4FFMPTwDwfP+Y4+iYJf2FaqFyA6eDp7MbT6XN397k9P3TjPwj4HMbjYboz7dv97EEzjXCSJyxYpcu7igTslnCxVER0fj7u5OVFQUbm5uWscRT5B04QIhr7yKEh9PwXffxbt/vwxf62r0VZ5f/TwKCr90+IUS7iWyLmhmWC1w4zCE/AGXd8HV/ZDymLUsHDzA1RecC6ktMs7eauuMyVFtuXnwr96gXlexgjVFLaBSkiApGpJi7h/REH8XYsPVI+42kIYfBW4BUKgseJVV/y1UTv3XqUBWflWESLfjt4/T4/ceJFoSebH0i4yuO1omIGShlLt3OV+/AQCl9/yJsUD2/z+fmd/f6S59N27ciIuLCw0aqJ/0nDlzWLBgARUqVGDOnDl4eubQv5hFrmKNi+N6334o8fE41alDoY8+zNT1vj/9PQoKDQIaaF/oWMxwaQecXgdnN9wvNP7B3h38qoBfVfCtDAVLQYESti0oLCn3i58wtRUp8ipEXFaPyCsQcUUtkKJvqMfFbQ+f7+ytFj3e5cG3ipq/UHkw2tkusxD/ULlQZaY0mkK/Hf1YeX4lAS4B9KrSS+tYeYaxYEHsy5Qh6dw54g8cwO3Z3DXBI93Fzscff8zkyZMBOH78OAMGDGDgwIFs376dAQMGsGiRLPIkMkdRFG6NGk3yxYsYvb0J+HwaOkPGx5JEJ0ez+sJqALpU6JJVMdPv9lk4vBSOrXi4wLF3hxKNIbAhBDZQW0vSuVBiphmMaveVq49aqPyboqjjg+6ch9tn4M459d/bZyHqmjp+KC5cbZ16QG8C73LgW1W9pm9l9bBP/9pIQqRF06JN+aT2J0zYP4GZR2ZSzK0YrQJbaR0rz3CqE0TSuXPE7duX94udkJAQKlSoAMDKlStp164dEyZM4PDhw7Rp0ybLA4r8J/Knn4hevx6MRgJmfIGxYMFMXW/luZUkpCRQyqMUdf3qZlHKNLJa4cJm+PNLuPLn3887e0P5dlD+ebXIyekzw3Q6tWWpaJB6/FNS7N/FT9hJdaxR6DFIjILQ4+pxNPVCajFXuJZ6BNRSW4NkYLTIIq+Xe50r0Vf4/vT3DN89nACXACp6VdQ6Vp7gXKcOEUu/y5WLC6a72LGzsyM+Ph6ALVu20LWrutx+gQIFiI6Oztp0It9JPHuOsM8mAODdvx9ONWpk6npmizl1H6xsXUTQaoHjP8HuGXD7tPqczgBlnoUaXaBUS7U1JS+wd4GAGurxgKKoXWGhx+DWsb//jbmpfj1un4Yj6oBxTM7gXx0K11SLn8LPgJufNp+LyBMG1RrElegr7L6xmw+3fcgPbX/A19lX61i5nlOtWqDXk3z5MubQUEy+uedrmu6ftg0aNGDAgAHUr1+fAwcOsGLFCgDOnTtH4UzMlBHCGh/Pjf79UZKScG7UkALdu2f6mutD1hOeEI63ozfPl3g+C1I+haLAhS2weRSEn1Kfs3OFWt2hzvvglk9mLOp06iwuz2JqC9YDMWFw4xBcP6T+e+MIJMfAld3q8YB7EShaB4rWVQ8tuvZErmXUG5naaCpdfuvChcgLfLTtIxY/uxgnk8wmzAyDmxsOFSuSePw48fv34/7CC1pHSrN0FzuzZ8/mgw8+4Oeff2bu3LkEBAQA8Ntvv/FsLuvDEzlL6LjxJF+6hNHbG/9J6d/g89+sipUlJ5cA0LlCZ9svIhh+Bn77GEJ2qh87eED9vvBMT3Bwt+29cwtXHyjXVj1AbQG7c04tfq4fhBvBapEYdQ2OX1NbxwAcPaFIHbUAKlYP/KrJ4GfxRC52LsxqNovOGzpz+t5phu4ayhdNv0Cvk6I5M5zrBJF4/Dhx+3JXsSNTz0WOELlmDbc+GQp6PUUXL8K5du1MX3Pn9Z303tobZ5Mzm1/ajKudjQbGpiTBrs9h13SwmsFgD0HvQsMB6i9pkT5JsWqrz5W9cHWvWgSZ4x9+j9FB7fIKbADFG6njf4wZW2xS5G1Hwo/Q8/eemK1melTqQf+a/bWOlKvF7trNtV69MPr7UWrr1myd3p+tU88BLBYLq1ev5vRpdSxC+fLl6dChA0ZjHhmDILJV0qVLhI4dB4BXn95ZUugALDqhzgx8uczLtit0rh2EXz5QWycAyjwHz01Wu29Exti7QIkm6gHqVP1bx9TC58ERf/fvrq8/JoHRUW31Kd4IijdWp+3nlTFRIlOqe1dnTL0xDNs9jIUnFlLcvTgdSnXQOlau5VSzBhiNpNy8hfnaNeyKFtU6Upqk+6fByZMnadeuHWFhYZS9v+v05MmTKVSoEOvWraNSpUpZHlLkXdbERG70H5C6no7Xu+9myXWP3z7OobBDGHVGOpfvnCXXfIjVCn/OgG3jQbGo2y08NwUqvKCOVxFZx2BSBy8Xrgn1+qjjou6cV2e3Xd6ldhvG3YZL29UD1G0xitVXp/QXbwTeFeT7ko+1K9mOkKgQFhxfwJi9YyjmVozq3tW1jpUr6Z2ccKxalYTgYOL27cu7xc7bb79NpUqVCA4OTl1AMCIigrfeeot33nmHPXv2ZHlIkXeFTZpE0tmzGAoWxH/K5Eytp/NPi06qrTptSrTJ+lkYMWGw+h11YUCASi9B22nSZZVddDooVEY9anVXi5/bZ9SiJ2SnWgAlRsG539QDwMUXSrWAUs2hZFP5XuVDfar34XL0ZTZf2Uz/7f1Z/vxymaGVQc5BQSQEBxO/bz+er7yidZw0SfeYHUdHRw4dOkTFig+vW3DixAmeeeYZEhIes9R9DiFjdnKO6I2/c6NfP9DpKPLNAlzq18+S616Nvkq7Ne2wKlZWtV9Fac/SWXJdQB1Au+wNiA0FkxO0mQrVOkurQU5itahT3R8UP1f2PDzmR6dXp7eXaqkWP37VZKZXPhFvjqfLb104F3GOigUrsvjZxTgYHbSOlevEHTjA1a7dMHh5UXrXzmwbt5OZ39/p/j+8TJkyhIWF/ef58PBwSpUqld7LiXzKfOsWt0aNAqBgr15ZVugALD21FKtipUFAg6wtdI7/DIvaqIVOofLwzg6o/qYUOjmN3qCu21O/L7y5EgaHQJc1ULePOoVdscK1/bB9PCxoCtNKw5oP4Mx6SI5/6uVF7uVkcuLLpl/iYe/BybsnGbN3DPlsjk6WcKxWDZ29PZY7d0i+eFHrOGmSpmInOjo69Zg4cSIfffQRP//8M9evX+f69ev8/PPP9OvXL3UbCSGeRLFYuDnkE6zR0ThUrkyhD/tk2bXvJd5jzYU1APSo1CNrLqoosH0irOwJKYlQujX03KTuBSVyPpOD2nXV+jPovR/6nYB2X0K559U1kOLvwNHvYfkbMKWE2nJ35H8Qd0fr5MIGCrsWZlrjaRh0Bn699CtLTy3VOlKuo7ezUwcqQ67ZBT1N3Vh6vf6hZqoHpzx47p8fWywWW+TMMtKNpb07CxZw+/Pp6JycKLF6FXbFsm7m0pyjc5j31zwqFqzIsrbLMt+8arXA+oEQfH/Pt3ofQosxsr1BXmExq7O7zmyAs+vVVZ8f0OnVtX3KtYHy7WWGXR7z/envmXRgEnqdnrnN51IvoJ7WkXKVO/O/5vYXX+DasgWFZ83KlnvafOr59u3b03Sx48ePp+vmIv9JOHGS21/OBMB3+PAsLXQSUhJYfmY5AG9VeivzhY7FDKvfgxM/Azp4/gt1QKzIOwym+9PVG8GzEyHshFr4nPlVHfdzdY96bBqhrutTqRNU6ADuAVonF5n0Rrk3OHvvLKsvrGbQzkEsb7ucom65Y2ZRTuBcJ4jbQNyBgygWS5ZNLrGVTC8qGBMTw7Jly/jmm28IDg6Wlh3xWNb4eEI6vUjy5cu4tm5NwIwvsnRg27Izy5iwfwKFXQqzruM6jPpMrLNiToSfusG5jaA3QqevodKLWZZV5AKRV+Hsb3B6nTrNXbH+/VrRevcLnxfAxVu7jCJTki3JdP+9O8duH6Oke0m+b/s9ziZnrWPlCkpKCueC6mCNiyNw5c84VrT9ZqvZOkD5gZ07d9KtWzf8/PyYNm0azZo1Y9++fRm9nMgHwiZNJvnyZYw+PviN+TRLC50Ua0rq1hBdK3bNXKGTkgw/dlULHaMDvPaDFDr5kUdRdSXst36FAWfguanqPl2gtvZsGASfl4PvX4GTq9UCWeQqdgY7ZjSZgbejNxejLjJs1zAZsJxGOqMRp2eeAcgVu6Cnq9gJDQ1l0qRJlC5dmpdffhk3NzeSkpJYs2YNkyZN4pn7n7gQ/xa9eTORP/4IOh3+kydj8PDI0uv/FvIbN2Jv4GnvmbnVUa0WWNULzv+uFjqdf4IyrbMsp8ilXH0g6B3osRH6n4LWEyCgprqg5Pnf4ae34PMy8OsAdZ8v+YWZaxRyKsSMpjMw6U1su7aNb098q3WkXMOpThAAcftzfkNHmouddu3aUbZsWY4dO8aMGTO4efMms7JoUNKcOXMIDAzEwcGBoKAgDhw4kKbzli9fjk6no0OHDlmSQ9iGOSyc0BEjASjYswfO9/8HySpWxcq3x9UfUF0qdMHR6JjBC1lh7Ydwag3oTfDq9+pYDiH+yT0A6vaGXtugzyFoOBDcAtSFDA99C980h9nPwJ8zIe6u1mlFGlQuVJlhQcMAmHVkFntv7tU4Ue7gXKcOAPGHglHMZo3TPFmai53ffvuNnj17MmbMGNq2bYshiwYjrVixggEDBjB69GgOHz5M1apVad26NeHh4U887/LlywwaNIiGDRtmSQ5hG4rVyq2hQ7FEReFQoQKFPvooy++x7eo2LkZdxNXkymvlXsv4hTaNUKcg6wzw8iIo3SLrQoq8yas0NB8F/Y6ra/lUeVXdp+vuedg8EqaXh1XvwNV90tqTw71Y+kU6luqIVbEyZOcQbsXe0jpSjmdfpgwGDw+U+HgSjp/QOs4TpbnY2b17NzExMdSsWZOgoCBmz57NnTuZX4di+vTp9OrVi+7du1OhQgXmzZuHk5MTCxcufOw5FouFzp07M2bMGEqUKJHpDMJ2IpYvJ27PHnQODvhPm4rOzi5Lr68oCguOLwDgtXKvZXzDz/3zYd8c9XGHuVC+XRYlFPmC3qCu5dPpaxh0Tl3Hx68qWJLg2ApY2Brm1oeD30BitNZpxSPodDqGBQ2jfIHyRCRF0H9Hf5IsSVrHytF0ej1OQWpLfXwO78pKc7FTp04dFixYwK1bt3j33XdZvnw5/v7+WK1WNm/eTExMTLpvnpycTHBwMC1a/P0XtF6vp0WLFuzd+/hmxLFjx+Lt7U3Pnj2feo+kpKSHFkWMjpYfNNkl+epVwqdOA8B74EDsbVCY7rm5h1N3T+FodKRLhS4Zu8jZ32DjJ+rj5qOh6qtZF1DkPw5uUPMteOcPtaur2ptqa0/4SXXNpunl4bdPIOKy1knFvzgYHfii6Re427tz8u5JJh2YpHWkHO/BsIScvrhgumdjOTs706NHD3bv3s3x48cZOHAgkyZNwtvbm/bt26frWnfu3MFiseDj4/PQ8z4+PoSGhj7ynN27d/Ptt9+yYMGCNN1j4sSJuLu7px5FihRJV0aRMYrFws2hw1ASEnAKCsKz8xs2uc/Xx74G1CZoT4cMbO548wj83EOdVlyjKzTon8UJRb6l06mDmDvMgYGn4dlJ4FUGkmNh/1yYWV2d9XctbWMURfYIcAlgSsMp6NDx87mfWX1+tdaRcjSnIHXcTsKRI1gTc+6MxEztfle2bFmmTJnC9evXWbZsWVZleqyYmBi6dOnCggUL8PLyStM5Q4cOJSoqKvW4du2ajVMKgHtLvyMhOBi9kxN+n32GzgYbLQaHBXM4/DAmvYm3Kr6V/gvEhMGy19VNIks2g7bTZZ8rYRuOnlDnfeh9QN2vq2QztcA+9Qt82xK+aaFOX7ekaJ1UAPUC6tGnurqNzfh94zl596TGiXIuu+KBGL29UZKTSThyROs4j5Ulv4EMBgMdOnRg7dq16TrPy8sLg8Hwn41Fw8LC8PX1/c/7L168yOXLl2nXrh1GoxGj0cjSpUtZu3YtRqORi4/YkMze3h43N7eHDmFbSRcvcvuLLwDw/mQIdoVts9rsg7E6L5R6AR9nn6e8+18sZnW6cMwt8CoLLy9WV9MVwpZ0OijVArqshvf3qBvJGuzg+kH1v8c5z8Dh79S1noSm3q78Nk0KNyHZmsyA7QOISorSOlKOpNPpcK6rtu7E7cm5s9iy/s/tdLCzs6NmzZps3bo19Tmr1crWrVupW7fuf95frlw5jh8/ztGjR1OP9u3b07RpU44ePSpdVDmAkpLCzU+GoiQn49ywIR4vv2yT+5y8e5I/b/yJXqfP2Iafm0aqC8PZucJr34ODe9aHFOJJfCrCC3PUjUkbDQbHAnDvEqztA7NqwIEFslChhvQ6PZ81/IyirkW5GXeT4buHY/3nKtoilXM9dV+xuD17NE7yeJoWOwADBgxgwYIFLFmyhNOnT/P+++8TFxdH9+7qHkRdu3Zl6NChADg4OFCpUqWHDg8PD1xdXalUqRJ2WTzTR6Tf3W++IfH4cfRubviNH5elqyT/0zfHvgHgueLPUcQ1nUXusZ/UMRMAHeep04eF0IqrDzQbrk5fb/UZuPhA1DV1heYvq8Ce2ZAcp3XKfMnNzo3Pm3yOnd6OP67/kbpKu3iY0/3GicRTp0iJiNA4zaNpXuy8+uqrTJs2jVGjRlGtWjWOHj3Kxo0bUwctX716lVu3ZL2D3CDxzBluz/kKAN/hwzD5pLNrKY0uRl5ky9UtALxd6e30nRx+Rl04EKDhICj/fBanEyKD7F2gXh/o+xe0mQZuhSE2DDYNhxmVYe8caenRQLkC5RhSewgAXx7+kiPhOXdcilZM3t7Yly4NikJ8Dt02KtMbgeY2shGobSjJyYS8/ApJZ8/i0qI5hWfNslmrzrBdw1h3aR3NizZnRtMZaT/RnAALmqtTgEs0VQeK6nP2Tr0iH0tJVtfo2fU5RISoz7kFQOPBUK2zjDHLRoqiMGTXEH4L+Q1vJ29+bvdzxmZ/5mFhEydxb8kSPF5+Cb9x42xyD002AhXin+7M/5qks2cxeHjg92nWbvL5T9djrrMhZAMAvSr3St/Jm0aqhY5zIeg4XwodkbMZ7aBGF3VLivaz1Jae6Buwri/MqQ3Hf1a3OBE2p9PpGF13NIFugYTHhzN091AZv/MvzvXvj9v5c0+O3ExVih2RaUnnz3Pna3W9G99RIzGmcVmAjFhwfAEWxUI9/3pU9KqY9hPPrIeD99dm6jhPHSchRG5gMKprQH0YrK7V4+SlDmRe2RPmN4Rzm2QrimzgbHJmWuNp2Bvs+fPGn6n78QmVU61a6EwmzDdvknz5stZx/kOKHZEpisXCzREjwGzGpVkzXJ97zmb3uhZzjV8u/ALA+1XfT/uJUTfgl97q43ofqlN/hchtTA7qWj19/4JmI8DeDcJOwA8vw3cdIUzWgrG1sgXKpm4YOvvobA6GHtQ4Uc6hd3LCsXp1IGfOypJiR2RKxPffk/jXMfQuLviOHmWz7itQV0t+0KpTzbta2k5SFHUqb0IE+FWDZqNslk+IbGHvAo0+Voueeh+q6/Rc2g7zGsDaj9TFMoXNdCzVkXYl2qVuGHonIfN7ROYVf09Bz3nr7UixIzIs+foNwr+YAYD3oEE2m30FcDX6KusurgPgg2ofpP3E4EVwcRsYHeDFb9RxEELkBU4FoNV4dVXmCh3UFZkPL1HX6Nk5TR2QL7KcTqdjRJ0RlHAvwe2E2wzdNRSL1aJ1rBzhwbid+P37UVJy1mrgUuyIDFEUhdDRo9W9r2rVwuMV2ywe+MD8Y/OxKBbqB9SnaqGqaTvpXgj8PkJ93Hy0rKcj8qYCxeGVJdDjd3UvruRY2DYOZj8DJ9fIeB4bcDI58Xnjz3E0OrLv1j6+Pv611pFyBIcKFdC7u2ONjSXh2HGt4zxEih2RIVG//ELcn3+is7PDd9xYm+x99cCV6Cv8eulXAHpX7Z22k6xW+KUPmOOgWH0Ies9m+YTIEYrWgZ5b4MVvwb2IujDhT93guw5w+6zW6fKcUp6lGB40HIC5R+fK+B1AZzDgXOfB1hE5a9yOFDsi3VLu3iV84iQAvPr0wb54cZveb/5f87EqVhoGNKRyocppO+nA13BlN5ic1SX5bViMCZFj6PVQ+SXocxAaDwGDPVzaAXPrqUsvJMVonTBPeaHUC3Qo1QEFhU92fkJEYs5cPTg75dStI+Q3gEi38ClTsERFYV++PAW7v2XTe4VEhbA+ZD2QjrE6EVdg6xj1cauxajO/EPmJyRGaDoPe+6DMc2BNgT0z1a6t4z9L11YWGlp7qLr+TkI4o/4clSPXmMlOD8btJPz1F5bYWI3T/E2KHZEucfv2E/XLWtDp8BvzKTqTbVdxnX9MbdVpXLgxlbwqPf0ERYH1A8AcD0XrQc0MbBIqRF5RoAS8sRze+BE8AyHmlro+z9L2cPei1unyBCeTE1MbT8WkN7Hj+g6WnVmmdSRN2RUujKlYUbBYiD9wQOs4qaTYEWlmTU4mdIzaYuL5+ms4Vqli0/tdirrEbyG/AfB+tTSuq3P8Z7iwRZ2O2+5L6b4SAqBMa/hgPzQdoc5MDNkJX9VVZ22lJGudLtcrV6AcA2sNBODzQ59z9l7+HiOV2pX1Z87pypLfBCLN7i1cSHJICAYvLwr162fz+837ax5WxUqTIk2oWDANqyXH3YWN6oZ9NBoMhcrYNqAQuYnJARp/DB/sVfeGsySps7a+bgzXcs5f4LnVG+XeoHHhxiRbk/l458fEm+O1jqSZnDhuR4odkSbJ165xZ+48AHyGDMFg401UL0ZeZGPIRgA+qJrGsTqbRkD8XfCuAPX72jCdELlYgRLQZTV0/BqcCkL4Kfi2FawfCIlRWqfLtXQ6HePqj6OQYyFCokKYcnCK1pE04xwUBHo9ySEhmG/e1DoOIMWOSANFUQgdOw4lKQmnunVwe76tze857695KCg0K9KM8gXLP/2EK3vgrx8Andp9JYsHCvF4Oh1UfRV6H4SqbwAKHPwG5gTB6XVap8u1PB08mdRwEjp0rDy/ko2XN2odSRMGN7fUYQ6xu3drnEYlxY54qpjfNxG3axc6kwnfUbbdEgLg7L2zqT8k0jQDy5IC6wepj2t0hSK1bZhOiDzEuSB0nAtdf1FbfGJuwYo3YXlniA3XOl2uVNuvNm9XfhuAsXvGciP2hsaJtOHcqCEAcbt2aZxEJcWOeCJLbBxhEyYAULBXL5uvqQMw88hMAJ4NfJayBco+/YSD30D4SXD0VFdKFkKkT4km8P4eaDgQ9EY48yvMqS3T1DPo/WrvU7VQVWLMMQzeORiz1ax1pGzn0rARoO6TpSRrPwheih3xRHfnzSUlPBxT0aIUfPcdm9/vcNhhdl7fiUFnoE/1Pk8/ITYctn+mPm4+Sv1LVQiRfiZH9f+hd3aAb2V189yVPeHHLtLKk04mvYnJjSbjanLl2O1jzD06V+tI2c6hYgUMBQtijYsj/shRreNIsSMeLykkhLtLlgLgM2woent7m95PURS+PPwlAB1Ld6SYW7Gnn7R5NCRFqzua1+hm03xC5Au+laHXdmgyVG3lOb1OHctzYqW08qRDgEsAo+upLc3fHP+GA7fy14w3nV6PS4P6AMTt2qlxGil2xBOETZoEZjPOjRvh2qSJze+368YuDocfxt5gz3tV0rCX1dX99wclA20/B73BtgGFyC8MJmjyiVr0+FSGhHvwc4/7rTy3tU6Xa7QObM2LpV9EQWHY7mFEJeWv2W7O97uyYndqP25Hih3xSDE7dhD3x04wmfD55BOb38+qWJl5WB2r80a5N/Bx9nnKCRbYoC7iRfUuULiWjRMKkQ/5VYFe2/7VylMbTqzSOlmuMfiZwQS6BRIWH8bYvWPz1XYSzvXrgU5H0rlzmENDNc0ixY74D2tyMmETJwJQsFvXbBmUvDFkI2cjzuJicqFHpTRs8XBoIYQeBwd3aPGpzfMJkW8Z7R7RytMdVvaChEit0+V4TiYnJjWchFFnZNOVTay9uFbrSNnG6OmJQxV18+ZYjWdlSbEj/uPekiWYr1zFUMiLgu+lcZuGTDBbzcw+OhuAtyq+hYeDx5NPiL8H28arj5uNBGcv2wYUQvzdytN4COgMcPxHmFtf3XpCPFFFr4qpy2hM2D+Ba9HXNE6UfVJnZWnclSXFjniIOSz875WSBw3C4OJs83uuPr+aazHXKOBQgC4Vujz9hJ1TITESvCtCLdnoU4hsY7RTd1Pv8Tt4Fofo67CkPfw+HMyJWqfL0XpU6kEN7xrEp8QzdPdQUqwpWkfKFi4P1tvZuxfFrN0UfCl2xEPCP5+GEh+PY7VquLVrZ/P7JaQkMO8vtbh6p8o7OJmcnnzCnQtw4Gv1cevxMihZCC0UeQbe2w013wIU2DsbFjSD0BNaJ8uxDHoDExtOxNXkyl+3/2LBsQVaR8oWDpUqYfD0xBobS8LRo5rlkGJHpEr46y+i164DnQ6f4cPRZcOO4T+c/oHbCbcJcAng5TIvP/2EzaPAmgKlW0HJZjbPJ4R4DHsXdWuW15eDk5e6sOeCpvDnTLBatU6XI/m7+DOizggA5h2bx9Hwo9oGygY6vR7nBg0AbWdlSbEjAHWNm7BJkwFw79ABx8qVbH7P6ORoFp5YCKjbQtgZnrKfVchOOLteHS/QarzN8wkh0qDsc/DBPijzHFiSYfNIWNoeovLnNglP06ZEG9qWaItVsfLJrk+ITY7VOpLNPejK0nKQshQ7AlD3v0o4cgSdoyOF+mXPjuHfHv+W6ORoSnmUom3xp2wuarXA78PUx7V6QKE0bCMhhMgeLoXg9WVqS4/JCS7vgnn14cx6rZPlSMODhuPv7M+N2BtMPDBR6zg259yggToF/cwZzGHarMYtxY5ASU4m/PPPASjYvTsmn6escZMFbsXe4n+n/gdA3xp9MTxt7M1fy9Sp5vbu6pofQoicRadTx/C8txv8qqrbTSx/Q92kVwYvP8TVzpWJDSei1+lZe3Ftnt8d3ejpiUNldQp63G5tWnek2BHc++EHzNeuqVPNe2bP7KZZR2aRbE3mGd9naFy48ZPfnBQLW8eqjxt/LPtfCZGTFSwJPbdA3ft72x1coA5eDj+jba4cpoZPjb93R987ltA4bRfdszUXjcftSLGTz1kiI1Onmnv37Yve2fZTzU/dPcW6S+sAGFhrIDqd7skn/PklxIaBZyDUtv1mpEKITDLaQevPoPNKcC6kDl7+ugkEL5b9tf7hvarvUdmrMjHJMQzbPQyL1aJ1JJtJnYK+Z48mU9Cl2Mnn7sydizUqCvsyZXDv2NHm91MUhc8PqV1mbYq3oWLBik8+ISZMndYK0GIMGG27GakQIguVbgHv/QklmkJKAqzrCz91U7u4BCa9iYkNJ+JodORg6EGWnFqidSSbcahcWZ2CHhND/OEj2X5/KXbyseQrV7j3wzIAvAcPRmew/Zo1u27s4kDoAez0dnxU46Onn/DHZDDHQ0AtqPCCzfMJIbKYqw+8uQpajlX31zr1C8xrCNcPaZ0sRyjmVoxPaqv7D846MotTd09pnMg2dAYDLo3ubwy6fXu231+KnXws/PPp6q7mDRvi0qC+ze+XYk1h+qHpAHQu35kAl4Ann3D3Ihy+/5dOyzHqAEghRO6j10P9vtBzk7ryctQ1WPgs7Jsr3VpAx1IdaVG0BSnWFD7Z9QkJKQlaR7IJl2bq2mgx27dl+4aoUuzkUwnHjhGzaRPo9Xh/PChb7rnmwhouRl3E3d6dt6u8/fQTto37ewHBwAa2DyiEsK2AmvDuTqjQAaxm2PgJ/NgFEqO0TqYpnU7H6Lqj8Xb0JiQqJLWrP69xrl8fncmE+cpVkkNCsvXeUuzkQ4qiqK06qAsIOpQpY/N7xpvjmX1EHXvzXpX3cLNze/IJNw7DydWADpqPtnk+IUQ2cXCDlxfDc1NBb4LT62B+I7h5VOtkmvJw8GB8A3Wx1BVnV/DHtT80TpT1DC7OOAUFAdnflSXFTj4Ut2cP8fv3ozOZKNSnd7bcc/HJxdxNvEsR1yK8WvbVJ79ZUWDL/QKnyqvga/vVnIUQ2Uing6B3oOfv4F4UIi7Dt63g4Lf5ulurrn9dulboCsCoPaO4k3BH40RZz6VpEwBitkmxI2xIsVq5Pf0LADzfeB2Tv7/N7xkeH87ik4sBdQFBk8H05BMublO3hjDc32FZCJE3BdSEd/+4v9VEEqwfAKt6qWtr5VN9a/SljGcZ7iXeY+SfI7N9bIutuTZpAkDCkSOkRGTfrDwpdvKZmE2bSDx5Er2TEwXffTdb7vnV0a9ISEmgSqEqtCrW6slvtlphy6fq42feBs9iNs8nhNCQUwF1q4mW49R9747/pG4oGpY3ZyU9jZ3BjskNJ2NvsGf3jd0sO7NM60hZyhQQgH25cmC1EvtH9nXVSbGTjyhmM7e/mAFAgR49MBYoYPN7nr13ltUXVgMwqNagpy8geHIVhB4DO1domD0Dp4UQGtPpoP5H0H0DuPrDnXPqqstHf9A6mSZKeZaif83+AEwPns6FiAsaJ8paD7qyYrfvyLZ7SrGTj0SuXk3ylSsYPD0p8NZbNr+foihMPjgZq2KldWBrqntXf/IJKcnqDCxQp6nKthBC5C9F68B7u6BkM3URwjXvw68D1J8N+cwb5d6gfkB9kixJDNk1hGRL3vkauN6fgh63ezfW5Oz5vKTYySesiYncmfMVAF7vvYvBxfbbQmy7uo2DoQex09ul/pXyRMGL1YGKzt5Q9wNbxxNC5ETOXuo2E02GAjo49C0sbgvRt7ROlq10Oh3j64/H096TcxHnmHl4ptaRsoxDxYoYCnlhjYsjfv+BbLmnFDv5RMT3P5ASFobR3w+P116z+f2SLclMOzQNgG4Vuz19AcGkGNg5RX3cZAjY2b4YE0LkUHo9NPkE3lgB9u5w/YA6Pf3KHq2TZSsvRy/G1lc3QV5yagl7b+7VOFHW0On1uDa9v8Dg1i3Zck8pdvIBS2wcd7/+GoBCvfugt7f9/lL/O/0/rsdep5BjodSdfZ9o7xyIuw0FSkCNbjbPJ4TIBcq0hne2g3cFiAuHJe1g//x8NT29SZEmvFLmFQBG7B5BZGKktoGyiGvLlgDEbNmKYrH9BqhS7OQDEf/7H5aoKOwCA3F/ob3N73cn4Q5fH1OLq341++FkcnryCbG3Yc8s9XGzkfC0qelCiPyjYEl4ewtUelFdUf23wbD6PUiO1zpZthn0zCAC3QIJTwhnzN4xeWI6unNQbfSurlju3CHhr79sfj8pdvI4S0wMdxctAsCr9wfojEab33PWkVnEmeOoVLASz5d4/ukn7JwKybHgX11dRl4IIf7Jzhle/BZaT1Cnpx9bDgtbqWP88gFHoyOTG03GqDey5eoW1lxYo3WkTNPZ2f29wOCmzTa/nxQ7edy9777DGhWFXYkSuLVpY/P7nb57mtXn1anmQ2oPQa97yn9i90Lg0EL1cYtP1b56IYT4N50O6vaGrr+AkxeEHoevm8CFrVonyxYVClbgw+ofAjDxwESuRF/ROFHmpXZlbd5s89Yq+c2Sh1mio7m3aDFwv1XHYLDp/R5MNVdQeK74c1Tzrvb0k7Z/pm4IWLIZlGhi03xCiDygeEN1M9GAmpAQAf97EXZNzxfjeLpV6MYzvs+QkJLA0F1DMVvNWkfKFJcGDdA5OGC+cYOkM2dsei8pdvKwe0uWYo2Jwb50Kdyefdbm99t8ZTPBYcE4GBwYUHPA00+49Ze6WiqorTpCCJEW7gHQ/bf7kxkU2DpG3WbCnKB1Mpsy6A1MaDABVztXjt85zry/5mkdKVP0jo64NGwIqK07Nr2XTa8uNGOJiuLekiUAePXubfNWnSRLEtOD1Z3U36r0Fr7Ovk8/6cG2EJVeAr+qtgsnhMh7jPbQfia0nQ56o/qH06LnIPqm1slsytfZl1F1RwHwzfFvOBx2WONEmePasgUgxY7IoLuLF2ONjcW+TBlcWz1lP6ossOTkEm7E3sDbyZvuFbs//YRLO9QNP/VGaDbc5vmEEHnUMz2hyxpwLAA3j6jjeK4f0jqVTT0b+CztS7bHqlgZumsoMckxWkfKMJcmTcBoJOn8BZIuhdjsPlLs5EEpERFELP0OAK8+vdHZeNDvrdhbLDi2AIABNQc8faq5ovzdqlOrh7q2jhBCZFTxhn+vxxMbBovawNG8tYHmvw2tPZQAlwBuxt1kwv4JWsfJMIObG8516gC2bd2RYicPurd4Cda4OOzLl8e1RQub32/aoWkkWhKp6VOTNsXTMOPr1Br1LzCTMzT62Ob5hBD5gGcg9NwE5Z4HSxKseQ82jQCr7Res04KLnQuTGk5Cr9Pz66Vf2XBpg9aRMsy1lTorK3rjRpvdQ4qdPMYSFUXE//4HQKHeH9i8VWffrX1surIJvU7P0NpDn76rucUMW9Xlz6n3Ibh42zSfECIfsXeFV76DRoPVj/fMgh9egYRITWPZSjXvarxb5V0Axu8bz83Y3DleybVlS7Ur6/RpkkJs05UlxU4ec+/779VWnTJlcLm/s6ytmK1mJu6fCMBrZV+jbIGyTz/p8FK4d0ldJ6NeH5vmE0LkQ3q9Og7wpUVgdIQLW+Cb5nDnvNbJbOKdKu9QpVAVYswxDN01FEsubMkyenriXLcuANG//WaTe0ixk4dY4+KIWLIUgILvvmPzVp0fTv/ApahLFHAoQO/qvZ9+QlIs7JikPm48WP0rTAghbKFSJ+j5O7gVhrsXYEHzPLkAoVFvZFKDSTgZnTgcfphvjn+jdaQMebDobYwUO+JpIpavUPfAKlbM5uvq3I6/zdy/5gLQr0Y/3Ozcnn7S3jnqZn6egVAzDTO2hBAiM/yqqgOXiwRBUhR8/zIczJ3FwJMUcSvC8DrqrNav/vqK4LBgjROln2uL5uhMJpLOXyDx3Lksv74UO3mENTExdQ+sgu+8Y/N1db4I/oI4cxyVvSrzQqkXnn5C7G3YM1N93HwUGO1smk8IIQB1XGC3dVD1dVAssH4g/DYELClaJ8tS7Uu2p12JdlgVK0N2DiEqKUrrSOlicHXF+f4Cg7boypJiJ4+IXLkSy507GP39cG/fzqb3OhJ+hHWX1qFDx7CgYU/f/wrgj8n/2Oyzo03zCSHEQ4z20GGu+ocWwP55sOw1SIzWNlcWG15nOMXcihEWH8aIP0fkut3R3Z57DoCYDb9leXYpdvIAJTmZu998C0DBt99GZzLZ7F4WqyV1TYdOpTtRyavS00+6exGC1VYnWo6VzT6FENlPp4OGA+GVpfcHLm+Gha0hIvdvqPmAs8mZqY2mYtKb2HFtBz+c+UHrSOni2qwpOgcHkq9cIfHUqSy9tvzWyQOi1q0j5dYtDIW88HjxRZve6+dzP3Pm3hlc7Vz5qMZHaTtp6xiwpkCpllC8kU3zCSHEE1V4AbpvABdfCD8FC5rBtQNap8oy5QuWZ2CtgQB8fuhzTt3N2qLBlvTOzrg0bgxk/UBlKXZyOcVi4c7XXwNQsHsP9Pb2NrvX3YS7zDyijrv5sPqHFHAo8PSTrh+CU78AOtnsUwiRMwTUgF7bwLcyxN+Bxc/DsZ+0TpVl3ij3Bk2LNMVsNTN452DizHFaR0qzB11ZURs2oFitWXZdKXZyuejfNmK+chWDhweer75i03tND55OdHI05QqU4+UyLz/9BEWBzff7yKu+Dr5p6PISQojs4B4A3TdC2Tbqisur3obtE9WfW7mcTqdjXP1x+Dr7ciX6Cp/t+0zrSGnm0qQxeldXUm7eIv5g1u1xJsVOLqZYrdydPx+AAt26ond2ttm9DoYeZO3FtejQMbLOSIx649NPOvc7XPkTDPay2acQIuexd4FX/wf17nfJ/zEJVvYEc4K2ubKAu707kxtOxqAzsO7SOn658IvWkdJE7+CQunRK1C9ZlzlHFDtz5swhMDAQBwcHgoKCOHDg8f2nCxYsoGHDhnh6euLp6UmLFi2e+P68LHbbNpLOn0fv4oJn5842u4/ZYmb8vvEAvFzmZaoUqvL0k6yWvzf7rPMeuBe2WT4hhMgwvQFajYP2s0BvhBMr1W6tmDCtk2VaDZ8afFDtAwA+2/8ZIVG221U8K7m/0B6AmN9/x5qQNYWn5sXOihUrGDBgAKNHj+bw4cNUrVqV1q1bEx4e/sj379ixg9dff53t27ezd+9eihQpQqtWrbhx40Y2J9eWoijcmae26nh27ozBLQ2L+mXQklNLUldKTvOg5KM/wO3T4OABDfrbLJsQQmSJGl2hyxr1Z9aNQ+oWE6EntE6VaT0r9STIN4iElAQ+/uNjkixJWkd6KscaNTAVLow1Lo6Yrduy5JqaFzvTp0+nV69edO/enQoVKjBv3jycnJxYuHDhI9///fff88EHH1CtWjXKlSvHN998g9VqZevWvLcM+JPE7dlD4okT6BwdKdCtq83ucz3mOvP/UouqQbUG4W7v/vSTzAmwXZ2eTqNB4Ohps3xCCJFlijdUBy4XKAlR19Sp6ed+1zpVphj0BiY2nEgBhwKcjTjLlANTtI70VDq9Hvf2autO1Nqs6crStNhJTk4mODiYFi1apD6n1+tp0aIFe/fuTdM14uPjMZvNFCjw6JlBSUlJREdHP3TkBfe+VdfV8XjpJYyP+dwzS1EUJh6YSKIlkdq+tXm+xPNpO3HPbIi5Ce5F4JleNskmhBA2UbAkvL0FAhuqC6Euew32fpWrBy4XcirExAYT0aHjx3M/su7iOq0jPdWDxXHjdv9Jyu3bmb5eGkaZ2s6dO3ewWCz4+Pg89LyPjw9nzpxJ0zWGDBmCv7//QwXTP02cOJExY8ZkOmtOknDyJHF79oLBQMG3utnsPtuubmPn9Z0Y9UaG1xmOTqd7+knRt2D3F+rjFp+CycFm+UT6Wa0KUQlm7sYlExGfzL049YhOMBOXbCEhOeX+vxbiklJIMFtIsShYFAWr9eF/AUwGPSaDHjuDHpNBh/H+Y2d7Ay72JlwdjLg6GHGxN+LqYMLN0YiXiz0FXewo4GSH0aB547IQ/+VUALqshvUD4PBS+H0o3DkHbaaCwXaLttpSvYB6vFf1Peb+NZexe8dStkBZyniW0TrWY9kFBuJYrRoJR48S9et6CnZ/K1PX07TYyaxJkyaxfPlyduzYgYPDo3+pDh06lAEDBqR+HB0dTZEiRbIrok3c+1bt4nNr04b/t3ff8U1V7wPHP0nadO/dUkYpUFYps+xNywYVQVT2+PoVUERRcQD+UHGAX1QUUREcbJEpUDaUJctC2VBauveeSZP7+yNQqWUkpW1Ke96vV17tvbnn3qdNaB7uOec5pl5elXKNfHU+C08tBGBC8wn42Pno1/DAh6DOgzrtoUXlFjgUStNqJZJyColJLyAhq4D4zMJSXxOzCsnIV6GtJv9BlcnA0VKJk7USZ2sz3O3MqWNvgZeDBZ72FnjZ676am1buOm+CcF8KUxjyFTg3hj3v66rAZ0TCsz+Dhb2xoyuX//j/h/Mp5zkef5xZh2axbtA6rJXWxg7rgeyGD9MlO9u2PdnJjrOzMwqFgqSk0qPek5KScHd3f2jbRYsW8cknn7Bv3z78/R88O8jMzAyzSiy0V9VUsbFk794NgNOkiZV2nW/DviUpPwkvay+m+k/Vr1F8GISt1n0fvFD3aSZUuOxCNdcTc7iVmkdUah6Rdx630/IpUGv0OoeNuQmOVkrdw1KJnYUplmYKrJQmWCh1Xy3NFFiYKjBRyFHIZCjkIJfJUMhlyOW617ZYI6HWaFFrtKiKtag1EqpiDXkqDTmFxeQWqXVfC4vJKSomM19FWq6K9HwVkgRpeSrS8lRcT8p9YKwuNmY0cLbCx9kKHxcrGjhb08DZirqOlihNxJ0hoRLJZNB5hm4Mz6bJcOsQrOgHo9fpurueMAq5gk+6fcLIHSO5nX2bucfnsrjHYv3u2huBbf/+JH30MUVXruiWj6hT/lm9Rk12lEolbdu2Zf/+/QwfPhygZLDx9OnTH9jus88+46OPPiIkJIR27dpVUbTVQ/rKVaDVYtW1K+Z+fpVyjWvp1/jtym8AvBP4DuYmenRFSRKEvAtI0GIEeLevlNhqE41WIjI1j6uJ2VxNyOFqYjZXEnKIy3zwVEyFXIaXvQUeduZ43vnqYW+Bp5057nbmuNiYYW+hNHqSoNFKpOepSMsrIjVHRUpuIfGZhcRnFhCXWUBchu5rvkpDSk4RKTlFnIpML3UOhVxGA2cr/NxtaOphS1MP3Vd3W/Nq+8dbeEL5DYSJu3Xjd1Kv62ZqjVoN9bsYOzKDOZg78EWPLxi7eyx7b+/ll8u/MK555Q2HeBwKe3ts+vUje+dOMjZuxOq18s/slUlGXhZ1/fr1jBs3juXLl9OhQweWLFnChg0buHr1Km5ubowdOxYvLy8WLtR1qXz66afMnTuXNWvW0KXLP280a2trrK0ffTsuOzsbOzs7srKysK3E6dqVoTgjg5u9eiMVFlJ31UqsOnas8GtotBrG7BpDeGo4/er144ueX+jX8Mp2WP8imJjD9DNg/2R3FVY1SZKIyyzgfEwW52MzCYvJ5GJcFvmq+9+p8bAzp6GLNfWdLe/c6dB9reNggWkNGQcjSbrxRdHp+USm5nErJY9bqXlEpuYSmZJH3gN+N/aWpvi52+DnbktLLztaedvj42xVcjdKEMotJxHWjob4cyA3hSFfQuvKq3FWmdZeXcvHf32MQqZgRfAK2rq1NXZI95V38iTR4ycgt7LC7c8dOHh4lOvz2+hjdkaNGkVKSgpz584lMTGRgIAAdu/eXTJoOTo6Gvk9q2QvW7YMlUrFiBEjSp1n3rx5zJ8/vypDr3IZq9cgFRZi3rw5loGBlXKNtVfXEp4ajrWpNW93eFu/RsVFuj5tgE7TRaKjB7VGS3hcFqci0zkdmU5YTCZpeaoyx1kqFTR2s6Gph+7D++6HuJ3lkzlI0hAymQx7SyX2lkr869iXek6SJJKyi0rudl1JyOZqYjYRKXlk5qs5eSudk7f+uRNka25CK297Au48Wnnb42xdc7q3hSpi4w7j/4Qt/4XLW2Dry5B2A3rPBfmT9Z+M55o8R1hyGDsjdzL78Gw2DNmAs4WzscMqw7JDB0zr1kUdHU323n3lPo/R7+xUtSf1zo62oICbvXqjyczE639flCyWVpHicuN4autTFBQXMLfTXP3WvwI4/jXseQ+s3WDGOV0JdqGUQrWGsJhM/rqVzqmoNM7dziwzvsZELqOphy2tvO1oVUf3oezjYo1C3JHQW6Faw83kXK4kZHM5IZvw2CzC47IoKi67oGAdBwva1nOgQwNHAhs40tDFWnR/CfrRauHQx3Dkc92232B4+ntQVt6SPZUhX53P838+T0RWBO3d2/N9v+/1WwqoiqV+/wMpX3xBcfPm+P+xqVyf3yLZeUKkr15N0oIPMfX2puGunchMKvYNKUkS/933X47FH6OtW1t+Cv4JuUyP/6nkpsDXbaEoC4YuhTZjKjSuJ5UkSVxPyiX0RgpHbqTy1620Mh+49pamdKjvSIcGjrSp50AzD1sx86gSqDVariXmEBaTWfKISMktUzbFyUpZkvh0aOCEn7uN6PoSHu78etg2HTQq8GilG7hs62nsqAxyK+sWo3eMJr84nxebvshbHd4ydkhlFKekcKNXb3KLiuhw84ZIdvTxJCY7UnExEf0HoI6NxW3u+zg+/3yFX2PHrR3MCZ2DUq7k96G/08CugX4Nt06Dv38Dd3+Yeki3zkwtlZWv5vCNFI5cTyH0RgpJ2aXLsrvYmBF4z4dpI1dr8WFqJNmFai7EZHE6Kp1Tkemci84ok4zampvQoYET3Ro507WRMz7OVuLOj1BW9ElY9zzkp4GNhy7h8QwwdlQG2R+9n5kHZwKwoMsChvsON2o89xM74xUSdu8WyY6+nsRkJ3vnTuJmvY7CwQHfA/uRW1hU6PnTC9MZtmUYmUWZvNL6Fab461n1OOY0rLhTzHHSXvDuUKFxPQli0vPZezmJfVeSOBWZTvE9RWzMTeUE3vmw7N7YhUauopukuioq1hAem8Vfken8FZnO2aj0MgOgPe3M6drIma6NXOjS0AknMeZHuCsjCtaMgpSrYGqp69JqOsTYURnk27BvWXZ+GaZyU1b1X6Xfgs9VKDc0lCsTJ4lkR19PWrIjSRJRz4yg8PJlnGdMx2XatAq/xpzQOey4tYNGDo1YP3g9pnI9Br9qNfBDb0gIg4AXYPi3FR5XdSRJEhfjsgm5lMi+K0lcTcwp9XxjN2t6NXGlWyMX2tV3EN1ST6hijZZL8dkci0jl6I1UzkRloNKUvvPTzMOWbo2d6d3Elbb1HEQ16NquMAs2ToCIO+s09p0PXWY+MfXGtJKW1w6+xoGYA7hauLJu8DpcLF2MHVYJSaMhrFcv2oSGimRHH09aspN34gTREyYis7DA98B+TBwqdlHNo3FH+e++/yKXyfltwG+0dGmpX8MzP8GO18DMDmacAWvXCo2rOpEkiSsJOey4EM+f4QncTssveU4hl9G+vgN9m7rRr5kb9ZyerAGKgn4KVBpORaVz9EYKoTdSyyS5tuYm9GjiSm8/F3o0dsXRSmmkSAWj0hTrlpY49b1uO+AFGLwETJ6M90OeOo8X/nyBiKwI/F38WRm8EqWi+sQetXQpDWbMEMmOPp60ZCd64iTyjh/H4cUXcX/v3Qo9d746n6e2PkV8Xjxjmo3hzfZv6tkwHb5uAwUZ0P9T6PhShcZVXdxIymH7hQR2XIjnVkpeyX5zUzm9mrgS1NyNXk1csbesPn8MhKqRklPE8YhUDl1L4dC1ZDLy1SXPyWUQ4G1Pn6a690dTDxvRfVnb/PU97H4LJC3U7QQjfwXr6nOX5GGis6N57s/nyFHl8JTvU3zQ+YNq8/59nM9vkexUY4WXLxP59DOgUNAwJARlnYpdB+vTU5/y25Xf8LL24o+hf2Bpaqlfw+0zdevEuLWAqYdBUf2mKpZXep6KbWFxbDoXR3hcVsl+pYmcno1dGNzKkz5+rliZ1ZyfWXg8Gq1EWEwGB64mc+BqClcSsks972FnTm8/V/q3cKejj1ONKfooPMKNffD7BCjKBts68NzqJ2bg8rG4Y7y8/2W0kpbX277O+BbjjR0SIJIdgzxJyU7c62+Q/eef2A4ejNeizyv03OeSzjF+93gkJL7r+x1dvPQsex53TjdWBwkm7IJ6nSs0LmNQa7QcupbCprOx7L+ahFqj+ydhIpfRo7ELg/w96NfMDRvzml/IT3h88ZkFHLyWzMGryRy9mUqh+p+xPrbmJvRp6kZwcze6N3bBUimS5hot5TqsGw1pN8HEAoYthZYjHt2uGvjt8m98evpTZMj4X6//0aduH2OHJJIdQzwpyY4qNpaI4P6g0dBg8x+YN21aYefOV+fz7PZnic6JZrjvcBZ0WaBfQ60GVgRB3BloORKe+aHCYjKGyNQ81vx1mz/OxZWqXtzCy5Zn2tRhaCtPMeNGeCyFag0nItLYczmJvZcTSc39531mbiqneyMXgpu706ep6A6tsQoy4Y8pcGOPbrvLTOgzt9qX6ZAkiY/++oj119ZjYWLByv4rae7U3KgxiWTHAE9KspP44Udk/PYbVl26UHfFjxV67k9OfcLqK6txs3Rj87DN2Cht9Gv41/ewazYobXSDkm0evjJ9dVSs0bLvShK/nYzm6M3Ukv3O1kqGB3jxTNs6NPWovu8L4cml0Uqci84g5GIiIZcTiUn/Z0FXhVxGRx9Hgpu7E9TMHXc7PRbfFZ4cWg0cWABH/6fb9u0Hz/wIFvZGDetRirXFTD8wnWNxx3CxcGHNoDW4Wxnv775IdgzwJCQ7pRb8XPkTVp06Vdi5TyeeZmLIRACW911OZy89u6GyYuGbQFDlwqDF0H5yhcVUFRKzCll7Kpp1p6NLiv3JZNCzsQvPB9ajZxMXMZZCqDJ3Z/jtvpTInkuJZWZ3ta/vwKCWHgxo6YGbrUh8aozw32HrdCguACdfeG4tuDQ2dlQPlaPKYeyusdzMvImfox8/9/9Z//GdFUwkOwZ4EpKdlG++IfXrpZg3a0b9Tb9X2Ej4fHU+T297mrjcOEY0HsG8TvP0ayhJupV+r+8C70CYsPuJWfTufEwmPx6NZGd4Apo7Bf+crZWMbOfN6A518XY0zj9aQbhXVGoeIZcSCbmUyLnozJL9Mhm0r+/IEH8P+rfwwMVGdKs+8eLDYN0LkB0LZrbw9A/QpL+xo3qouNw4nv/zedIL0+lepztf9vrSKGtoiWTHANU92dEWFHCzdx80GRl4fbEY24EDK+zcH578kPXX1uNp5ckfw/7AylTPmjCXNsPG8SA3hZeOgqtfhcVUGTRaiX1XklgRGsmpqH9Wvu7QwJEXO9ajf3N3lCZPRrIm1D4JWQXsCk9kx4X4UomPXAaBDZwY5O/BgBbuYjzZkyw3BTaMhejjuu3ub0LPt6v1OJ7zKeeZFDKJIk0RTzd6mvmd5lf5lHSR7Biguic76WvWkPR/CzCtU4eGu3dV2IKfJ+JPMHXvVAB+DPqRQI9A/RoWZMDSDpCXDD3egl7vVEg8lSFfVcyms7GsOBpJ1J3Cf6YKGUNaeTKpawOae9oZOUJBMExcZgG7whPYcSGBsJjMkv1yGXRu6Mwgfw+Cm7uLIoZPomIVhLwDp+9M9PDpBc+sACsn48b1EAejDzLz0Ey0kpb/+P+H6a2nV+n1RbJjgOqc7EjFxUQMGIg6Jga399/D8YUXKuS8uapcnt72NAl5CTzX5Dne7WhAccJtM+DcL+DcWHdXx6T6/W8yp1DNLydus+JoJOl3ZlXZmpvwQsd6jOtUXwz2FGqEmPR8doYn8Gd4Ahdi/6kBpZDL6NzQiaGtPAlu4Y6tKJHwZLmwEba/Aup8XT2ekT9DnXbGjuqBfr/+Ox+c+ACA9wLfY5TfqCq7tkh2DFCdk53sXbuIe20WCnt7fA8eqLAFP+cfn8+mG5uoY12HTUM36T+4LOoorBqk+37CbqhXcQOlK0JWvpqVxyNZeSyKrAJdBVtvRwsmdWnAs+28ReE/ocaKTstnR3g8f15I4FL8P0UMlSZy+vi5MizAk55NXMXabE+K5Cuw/kVdPR65KfRfqJsEUk0qF//bsvPL+DbsW2TI+KLnF/St17dKriuSHQNU12Sn1IKf06bhMqNibg+Gxoby8v6XkSHjp+CfaOeu5/8YVHnwXVdIvwVtJ8CQJRUST0VIz1Ox4ugtfjl+m5yiYgB8XKyY3suXoa08xYKMQq0SmZrHjvPxbD0fz83k3JL9NmYmBLdwZ1iAJ518nMS/i+quMBu2TYfLW3XbLUfq/u4qq996e5IkseDkAjZe34hSruS7ft/R3r19pV9XJDsGqK7JTu6xY8RMmozM3BzfgwcqZMHPtII0ntn2DGmFabzY9EXe6vCW/o3/fEPXl2zrBf89Xi3qQWQXqvnhyC1WHI0kX6UBoImbDdN7+zKwpQcKefX8X5AgVIW709m3no9je1g88VmFJc85WysZ7O/J0ABPWnvbV5u1joR/kSQ4+S3seR8kDbg0hVG/gnMjY0dWhkarYdahWRyIOYCVqRU/9PtB/4Wky0kkOwaorsnO7QkTyD9xEocxY3B/9/EHAUuSxCsHXuFQ7CF87X1ZO2gt5iZ6jl25uR9+e1r3/ZjN0LD3Y8fzOArVGn45EcW3hyLIvLPgYnNPW2b0bkRQMzfkIskRhFK0WokztzPYdj6OPy8klFqo1NvRgqGtPBkW4EVjNz0LigpV6/Zx2DgBchNBaa2rbdbqOWNHVUZhcSHT9k/jVOIpbJW2/BT8E00cm1Ta9USyY4DqmOwUXLxE1IgRoFDguycEU6/HX/Bzw7UNLDi5AFO5KWsHrdX/DViQAd92hpx4aD8FBi167FjKq1ij5fezsSzZd4PEbN3/Un1drXkjqAnBzd3E/04FQQ9qjZajN1LZdj6ekEuJJXdFAfzcbRga4MkQf09Rc6q6yUmCTZMgKlS37f+c7u+xWfVKUPPV+UzdO5XzKedxNHdkZf+V+Nj5VMq1RLJjgOqY7MTOfI2c3buxHToEr88+e+zzRWZFMnL7SAo1hbzR7g3GNR+nf+M/psKF9eDYEF4KNUp/sSRJ7L6YyOch17iVmgeAl70FM/s24uk2dUR3lSCUU4FKw74rSWw7H8+ha8kli94CtKvnwNAATwa29MBZ1PCpHrQaCF0MhxaCpAVHHxjxE3i2NnZkpWSrspkcMpkr6VdwtXBl1YBVeNt4V/x1RLKjv+qW7KiioogYOAi0Whps3Yp5k8crHa7WqHlx14tcTrtMR4+OLO+3HLlMz4GJl7fqCl3J5DBxD3hX/oCzf7sYl8X/7bjMqUhdMUBHKyXTevnyQmBdMbNEECpQVr6aXRcT2HY+nhO30rj7SaCQy+jq68zQVp4ENXfDRkxlN77bJ2DTZF3VZbkp9J0PHV+uVpXsMwozmBgykZuZN/Gy9mJV/1UVvo6WSHYMUN2SnYS588jcsAGrHt2pu3z5Y5/vy3Nf8mP4j9iZ2bFpyCbcrNz0a5iTBN92hIJ06Pa6blXeKpScU8iikGtsPBuLJIGZiZz/dPdhSncf8cdWECpZUnYh28/Hs/18POfvqeFjZiKnT1NXhrYSU9mNLj9dV/fs6g7ddqMgGPYtWLsYN657pOSnMH73eKJzovGy9mJF8Aq8rB9/WMZdItkxQHVKdopTUrjZpy+SSkW9X3/Bsv3j3Uk5nXiaSSGTkJD4oucX9KvXT7+GkgRrRsKNPeDWEqYcAJOqqchaqNaw8lgU3xy8Se6daeRDW3ny1gA/vOwrps6QIAj6i0zNY1tYPFvPx3ErJa9kv42ZCUHN3Rka4EmXhmIqu1FIEpz5CXbPAU0RWDrrpqc3HWLsyEok5iUyMWQiMTkxeFh5sCJoBd62FdOlJZIdA1SnZCd58Rek/fADFq1aUW/d2scacJtemM6IbSNIKUhhuO9wFnRZoH/j40thz7ugMIOpB8GtebnjMMT+K0l8sP0y0em6pR1a1bFj7pBmtK3nWCXXFwThwSRJ4lJ8dskdn3unsjtZKRnY0oOhAZ60resgZkRWtaRLsGkKJF/SbbcaDQM+BfPqsSROUl4Sk/dMJio7CldLV34M+pEGdg0e+7wi2TFAdUl2NLm53OzVG21ODnW+WYpNnz7lPpdW0jJt/zSOxh2lgV0D1g1ap3+V5LizsCIYtGoY9AW0n1TuOPQVl1nAB9susedyEgButma81d+P4QFe4o+mIFRDWq3E2egMtoXFszM8gbQ7y7KAbvLAYH8PhrTypLmnrZglWVWKi+Dgx3D8K93gZds6MPwb8Olp7MgASC1IZXLIZCKyInAyd2JF8Aoa2jd8rHOKZMcA1SXZSVuxguTPF6Fs2BCf7duQPcZAs1UXV7H47GKUciVrBq3Rf5p5YTYs7wYZUdB0KIz8pVLLk6s1Wn46GsmSfTcoUGswkcuY1K0Br/RuJJZ2EIQnRLFGy7GINLaF6aay3+1+BmjoYsXQVl4MDfCkgXP1q/xbI0WfhM0vQUakbjvwJegzD5TGLyWQXpjO1D1TuZZxDQczB5b3W05Tp6blPp9IdgxQHZIdrUpFRJ++FKek4PHRR9g/83S5z3Uh5QLjdo2jWCrm/Y7vM7LJSP0aSpKuhsPFTWBXVzfNvBKrJJ+OSue9zRe5lpQDQIf6jiwY3oIm7tWrZoQgCPorVGs4dC2ZrWHx7L+ajKpYW/JcSy87hrbyZHArDzzsxPi7SlWUC3vf143nAV3pkKFfQf2uxo0LyCrKYureqVxOu4yVqRVf9fqKDh4dynUukewYoDokOxkbN5L4/lxM3Nzw3bsHmbJ8g4GzVdmM3D6SuNw4guoFsajHIv1vIf/1PeyaDTIFTNwN3uV78z1KVr6aj3deYf2ZGEA3lXzOAD9GtK0jbncLQg2SU6hmzyVdDZ+jN1PRaHUfLTIZtK/vyNBWuho+jlZVM/mhVrqxT7e+Vk6CbrvteOj3f0Yfy5OjyuHVg69yOvE0pnJTFnZbSHD9YIPPI5IdAxg72ZE0Gm4NGowqKgrXN9/EaeKE8p1Hknjj8Bvsub0HL2svNg7ZiI1Sz7skMadg5UDdOJ3gj6HTtHLF8Ch7LiXy3paLJOcUATC6gzdvBvvhIP7YCUKNlpZbxM6LiWwPi+dUVHrJfhO5jM6+zgxq6U5QM3fxt6AyFGTCvnlwdpVu29pdV3nZyDO2ijRFzAmdw97be5EhY07gHEb7jTboHCLZMYCxk53sXbuIe20WcltbfA8cQGFdvn7t1VdW88mpTzCRmfDLgF/0X4AtNxmWd9dl/s2fghErK3ycTlpuEfO3X2b7+XhAtyL5Z8/4066+mGUlCLVNXGYBO87Hs+18PJfis0v2K+QyOjd0YlBLD4Kau4s7PhUt6ihsewXSI3TbTYfAwEVgU7GF/gyh0WpYeGoh66+tB2BKyynMaD1D77v8ItkxgDGTHUmrJXLYcIpu3MB5+nRcppfvjkpYchgTdk+gWCrmzfZvMqbZGP0aaorh1+G6tVacG+vq6VTgOiuSJLHtfDwfbL9Mep4KhVzG1O4+vNqnkShGJggCt1Jy2RmewJ/hiVxJKJ34dPJxYmBLD4Kbu+EklquoGOoCOPI5HPsStMVgZgd93od2E0FunL/JkiSx/MJyvgn7BoBBPoP4oPMHmCke/ZqLZMcAxkx2svfuJW7GK8itrPA9sB+FneH9qKkFqYzaPorkgmT61+/PZ90/03/sy8434dRy3Sq6Uw6AS8WtTpuUXci7my+y74puOrmfuw2fj2hFyzrVo+6DIAjVS2Rqni7xuZDA5X8lPh19HO8kPu5ina6KkBiuq74c/7du270lDPgc6nUyWkibrm/iw5MfUiwV4+/sz5e9v8TZwvmhbUSyYwBjJTuSJBH5zDMUXb6C00v/wXXmTIPPUawtZureqZxOPI2PnQ9rB63Vv57O2VWw/VXd9yN/hWZDDb7+/UiSxMYzsSz48zI5hcWYKmTM6N2Il3o0RGkiKqwKgvBoUal57LyYwM7wBC7G/ZP4yGXQ0ceJ/i3c6dfMTczqehyaYji7Eg4sgMI7S4L4j9INYDZS19aphFO8dug1slXZuFu583Xvr/Fz9Hvg8SLZMYCxkp2cgweJ/e/LyCwt8d2/DxMHB4PP8cWZL1h5aSWWJpasHbwWHzsf/RpGHYNfhupuY/Z6D3rMNvja95OaW8Tbm8JL7ua0qmPHZyNaienkgiCU2+20PHaGJ7IzPIHwuKxSz7WqY0dQc3eCmrnh62otZnSWR14q7P8/OPcLIOnu9Pd4S1efp4qWCbrX7ezbTN8/najsKCxMLPi468f0rdf3vseKZMcAxkh2JEkiauQoCsPDcZo8Cdc33jD4HPtu7+O1Q68BsLjHYoLqB+nXMCMKfugN+WnQ/GkY8VOFDEjedzmJt/+4QGquCqVCzqygxkzu2kCslyMIQoWJTstn18UE9lxO4lx0Bvd+WjVwtiKomRtBzd1p7W0vqq8bKu4c7JwNcWd0206NoO888BtcqcVl7ydblc3sw7M5Hn8cgMktJzMtYBom8tLFZkWyYwBjJDu5oUeJmTIFmbm57q6Ok5NB7SOzIhn952jy1HmMbTaW2e31vDOTnw4rgiDtBngEwIRdj11VM6+omA//vMzaU7q6OU3cbFjyXABNPYy/grwgCDVXck4h+68ks+dSIsdupqHS/FPA0NnajH7N3Ahq7kbnhk6YmYgJEXrRauH8Gtg3H/JSdPu8A3VdW3U7VmkoxdpiFp9ZzG9XfgOgnVs7Pu/xealxPCLZMUBVJzuSJHH7+Rco+PtvHMeNw23O2wa1z1fn88LOF7iZeZO2bm35IegHTOWmj26oLtTNvIo+oVszZfJesPUs3w9xx7noDGatDyMqLR+ZDCZ3bcDrQU3ETCtBEKpUTqGaw9dT2HMpiYNXk8m5Z8kKS6WCrr7O9PJzpVcTV9ztzI0Y6ROiMFs3Y+vEN1BcoNvnN1i37IRL4yoNZXfUbuYdm0d+cT7OFs581v0z2ru3B0SyY5CqTnbyTp4kevwEZEolDfftxdTVVe+2kiQx+8hsQqJCcLFwYcOQDY8crQ7osvVNE+HSZjCzhYkh4Nas3D+DWqPl6/03WHrwJloJPO3MWTSyFZ0b6hGLIAhCJVIVazl5K409lxPZcymppIjpXU09bOnt50JvP1cCvB1QiO6uB8tOgEML4e9fdYuLyhTQZgx0fxPsvKosjMisSGYdmsXNzJvIZXJmtJ7BxBYTyc3JFcmOvqo62bk9dhz5p07h8OKLuL/3rkFtv7/wPV///TUmMhNWBK+gjVubRzeSJAh5F05+A3JTeHET+PQoZ/QQkZLLa+vDuBCrGyg4PMCTD4a1wM5Cj7tLgiAIVUirlbgUn83Ba8kcuJrM+djMUuN87C1N6dFYl/h0b+QiKjg/SPJV2P8BXNup21YoofUY6Poa2HtXSQgFxQV8ePJDtkVsA6C9e3vm+M+hsWdjkezooyqTnbzjx4meOAmZqSkN9+7B1F3/6X37o/cz8+BMAOZ2msuzjZ/Vr+GhT+HQx7rvn1oOrZ4zMGodSZL47eRtPtp5hUK1FjsLUz4c3oIhrR6vK0wQBKGqpOUWcfh6CgeuJnPkegrZhf90d8ll0LquA90aOdOtkTOt6tiLCRb/dvuEbqr67WO6bbkptH4Bus4Ch3qVfnlJkthycwsLTy2koLgAi2ILTk8+LZIdfVRVsnPvDCyHsWNwf+cdvdtez7jOiztfpKC4gNF+o3knUM+2J76FkDm674MXQqeXyxE5JGcXMvv3Cxy+rhuw1tXXmUXPthJ934IgPLGKNVrORWdy4Goyh64lczUxp9TzNmYmdGzoRFdfZ7o2csbH2UpMbb8r6igc/hQij+i25Sa6/0h3ex0c9SyB8hhuZ99mTugcwmLCuPLfKyLZ0UdVJTt3qyXLLC3x3btH7xlY6YXpPP/n88TlxhHoHsiyfsv0G5B87lfdarcAvd6FHm+WK+7dFxOY80c4GflqzEzkvD3Aj3Gd6otpnYIg1ChxmQUcuZ7C0RupHItIJTNfXep5TztzujZypmsjF7o0dBJLWIDuTs/hT+HWQd22TA5+g6DTdN0srkpMDtVaNUuOLeHN7m+KZEcfVZHsSBoNt4YNQ3UzAqf/voTrq6/q1U6tUTNl7xTOJp3F28abNQPXYG9u/+iGF/+ATZN0A8o6z4B+Cwx+0+UUqpm/7TKbzsUC0NzTliWjAmjkJgoECoJQs2m0Epfiswi9kcrRG6mcvZ1Ramo7QGM3awIbOBHo40hgAydcbGpx8hNzCg5/Bjf3/rPPqy10fBmaDQNF5YzpFLOxDFAVyU7W1q3Ev/U2cjs7fPfuQaHHdSRJYsHJBWy8vhErUytWD1xNQ/uGj77YtV2w/kVddeS242HwEoMTnVOR6by2Poy4zALkMnipR0Nm9m0slnsQBKFWKlBpOBWVztEbKYTeSC3T5QXg42JFYAMnOvo40tHHCTfbWtjNn3wFTn4L59eD5s4sONs6EDhVN6DZ0rFCLyeSHQNUdrIjqVREDByEOjYWl9dn4Txlil7t1l1dx0d/fYQMGV/3/poe3nrMoLq8FX6fqEt0WoyAp783aCXbomIN/9t7g+VHIpAk8Ha04IuRAbSvX7FvUEEQhCdZep6KU5Hp/BWZxslb6VxNzObfn5z1nSxpX9+RNvUcaFPXgUau1rWn+z83Bc78BKd/+Kc4ocJMtwZjm3FQv2uFdHGJZMcAlZ3spK1aRfInn6JwccY3JAS55aMrFh+PP87L+15GI2mY2WYmk1pOevSFLmyEzf8BSaNLdJ5aDgqTR7e741piDjPXh3HlzmrDI9vV4f3BzbAxF1PKBUEQHiYrX82pqHT+upXGycg0Lsdno/3XJ6mNuQkB3va0qetAm3oOBHjb1/ySHepCCN8Ip5brVlq/y7EhtBkLAc+Dtf615v5NJDsGqMxkpzgjg4jg/mizs3Ff8H84PPvo6eI3Mm4wdtdYctW5DPYZzMddP370DIBzv8K2GYAEAS/C0K/0vqOj0UqsOHqLRSHXUWm0OFiasvBpf/q3MM6qt4IgCE+67EI1Z6LSOXs7g3O3MwmLyaRArSl1jEwGjVytaVPXAf869vjXsaOxm03NHC4gSRD/N5z7GcJ/B1Wubr/cBBr3h5YjdF9NDVvFXiQ7BqjMZCdxwYdkrF6NmZ8fDTb9jkzx8AQkJT+F53c+T2JeIm3d2vJ9v+9RKh5R5OrUD7DzzkKi7SbBwEUg1+8fS0x6Pq9vPM+pyHQA+vi5svCZlrja1MK+ZkEQhEpSrNFyNTGHv6MzOBedydnbGUSn55c5TqmQ4+dhQwsvO1reedS4BKgoFy79AWd//mfRUdCttu43CFo8Aw176zWoWSQ7BqisZKfo5k1uDRsOGg11V63CqmPgQ4/PV+czIWQCl9MuU9+2Pr8N/A07M7sHN5AkCF0EBz7UbXecBsEf6dUPKkkSG8/G8n/bL5NbVIyVUsH7g5sxqr23qCMhCIJQBVJyikqSn4txWVyIzSxV5PCuexOgph62+Lnb0MTdBtuaMMQg6RJc2KCbQZwV/c9+CwfdLC6/IdCgG5jcf6abSHYMUFnJTvTUqeQdCcW6Tx+8v1n60GM1Wg0zD87kUOwhHMwcWD1wNd62DynBrSmGP1+Dc7/otru9Dr3f1yvRSc0tYs4f4ey9nARAu3oOfDEygLpOj7f6uSAIglB+kiQRk15AeFwWF+J0CVB4bNZ9EyAAL3sLmrjblCQ/TT1saeBshemTWPVZkiD2tK6L69JmyEv+5zlTK2jYC5oMgEbBYO1S8pRIdgxQGclObmgoMVOmgqkpDbdvQ1m//gOPlSSJT09/yuorq1HKlawIXkGAa8CDT16UCxvH6+oZyOQw4DPooN8Mr5BLibzzRzhpeSpMFTJm9WvC1O4+YiE8QRCEakiSJKLT8wmPy+JiXDbXErO5lphDfFbhfY9XKuT4uFjR0MW65GtDF2sauFhhbab/hBWj0hTD7aO6pOd6COQk3POkDOq0g8bB4NObbGsf7BwcRbKjj4pOdrQFBdwaMhR1bCyO48fj9vZbDz1+RfgKlpxbAsDiHosJqh/04INzEmHNSEg4DyYWMGKFro/zEdJyi5i//TLbz8cD4Oduw/9GBdDUo/IXPhUEQRAqVla+mmtJOVxLzOZKYg7X7jxyi+5/FwjA3da8VCJU39mKuo6W1HGwwMxE/xIlVUqSICEMru2G67t0n333yMYWuw9iRbKjj4pOdpIXLSLtxxWYuLvjs2MHCmurBx67+cZm5h6fC8DsdrMZ23zsg0+ceBHWjtb1a1o6w/PrdRnuQ0iSxLbz8Xyw/TLpeSrkMpjavSGv9WtUfd/cgiAIgsEkSSI2o4CbyblEpOQSkZJHREout1JySc1VPbCdTKZLhLwdLal7z8Pb0RJvRwtcrM2qz1jO7Hi4vhtu7ofIULKzM7H7JEckO/qoyGSn8OpVIp8ZARoNdb79BpvevR947KGYQ8w8OBONpGFCiwnMajvrwSe+tBm2vAzqfF19ghd/f+Ria4lZhby7OZz9V3V9n37uNnw2wh//Ovbl+MkEQRCEJ1VWvpqI1Fxu3UmAIpJziU7PJzo9n3yV5qFtlQo57nbmuNuZ42lnjoe9BR525njY3f1qjqOVsuoTIk0x2deOYNe8T7k+v5+QTr3qR9JoSJg7DzQabPr1e2iicy7pHG8cfgONpGFYw2G81ua1+x+o1cCBBXD0f7ptn14w4qeHltyWJIl1p2P4+M8r5BQVY6qQMaN3I17q0bBmTV8UBEEQ9GJnaaorZljXodR+SZJIy1MRnZ5PzJ3H3SQoJr2A+KwCVBptyb4HUSrkOFsrcbExw9n6zsNGiYu1Gc737HOxMcPW3KRiEiOFySN7Nx5GJDvllLF6DYUXLiC3tsbtvXcfeNz1jOtMPzCdIk0RPer0YH7n+fd/4XOTYdNkiDys2+48A/rMf2hV5KuJ2by/5SKnozIACPC257MR/jQWi3cKgiAI/yKTyUoSkX8nQgCqYi1J2YUkZBWSkFVAQlYhiVmFxGcWkJhdSHxmIam5Rag0WuKzCh84cPpeSoUcBytTHCyV2FmYYm955/s7X+3v7LO3VGJvaYqdhSm25qZYKhUVevdIJDvlUHTjBsmLFwPgMus1TN3c7nvc7ezbvLT3JXJUObR2bc3nPT7HRH6fX/mtw7pEJy8ZTC1hyFfg/+DqyzmFapbsu8Gq41FotBIWpgpeD2rMhC4NxEwrQRAEoVyUJvI7Y3ceXJrkbkKUmltEaq6KlJyiO9/rHrptFak5ReQUFaPSaEnKLiIpu8igWBRyGdZmJtiYm2BjboqNuQnmkmHnuJdIdgykLSoi7vU3kIqKsOraFYfnnrvvcTE5MUwKmURKQQq+9r583ftrLEz+VRq7WAVHPoMjiwAJXJrCs6vA1e++57w7APmjP6+QnKN70Qe0cOe9wc3wsjes7LYgCIIgGEqfhOiuQrWGlJwiMvPVZBaoyMhXk5WvIjNfTcadfZn5ajLv7MssUJNVoEajldBoJbLubEMBANqiB3etPYpIdgyU/NnnFF2/jsLJCc9PFiK7z1IN8bnxTAqZRFJ+Ej52PvwY9GPZ6shJl3ULeSZe0G23HqOroaO8/xvo7O10PvrzCueiMwFo4GzF/KHN6dHY5b7HC4IgCIIxmZsq7iRG+reRJIkCtYacwmJyCtVkFxaXfJ+UmsHkJeWLRSQ7Bsg5cICM1asB8PxkISbOzmWOScxLZGLIRBLyEqhvW58fg37EycLpnwM0xXDyG92yDxqVrkz2oC+gxdP3veatlFw+232N3ZcSAbAwVfByz4ZM7eEjppMLgiAINYpMJsNSaYKl0gQ329LrNmZnWzO5nOcVyY6eVNHRJMx5BwDH8eOx7tatzDHJ+clMCplEXG4c3jbe/Bj0Iy6W99x5iT0LO16FxHDddqNg3YrlNmVXHE/MKuTbQzdZ81c0xVoJuQxGtfdmZt/GZd4AgiAIgiA8mEh29KDJzSXmvy+jycrC3N8fl1llp47H58Yzde9UonOi8bL2YkXQCtys7gxczk+Hgx/D6R8BCcztIehDaP1imfWtYjPy+e5wBBtOx6LSaAHd6uRvDfATs6wEQRAEoRyqRSGWb775hvr162Nubk5gYCCnTp166PEbN27Ez88Pc3NzWrZsyc6dOystNq1KReyMGagiIjBxdaXO0q+RK5WljrmVdYuxu8ZyO/s2nlaerAhegYe1h24A8olv4avWcPoHQAL/52D6GWgzplSiE5Wax1u/X6Dn54f47WQ0Ko2WDvUdWTMlkBXj24tERxAEQRDKyeh3dtavX8+sWbP47rvvCAwMZMmSJQQHB3Pt2jVcXV3LHH/8+HFGjx7NwoULGTx4MGvWrGH48OGcO3eOFi1aVGhsUnEx8W/MJv/ESWSWltT59ltM/xXT5bTLvLT3JTKKMvCx8+H7ft/jZuGsW8314EeQfkt3oGsz6L8QfHqWtNVqJY7cSOHXE7c5cC2Zu7Wsu/g6MaN3Izr6OCEIgiAIwuMx+nIRgYGBtG/fnqVLlwKg1Wrx9vZmxowZvP3222WOHzVqFHl5eezYsaNkX8eOHQkICOC777575PX0XS5CUqmIe2M2OXv2IDM1xXv5d1h17lzqmNDYUGYfmU2eOo9mTs34rtdSHG4egCOfQ9oN3UFWLtD7PQh4saRAYFa+mo1nY/jt5G2i0v6ZSteriQvTezeibb2yxZ4EQRAEoTZ7nOWejHpnR6VScfbsWebMmVOyTy6X07dvX06cOHHfNidOnGDWrNLrSgUHB7Nly5b7Hl9UVERR0T+FiLKysgDdL+1BtEVFxL/5FnlHjyIzNcXj44/QtGhR0kaSJDZc38CX575EK2lp6+zPpybNUXzdg+ysWN1JzOygwxRoPwnMbCjKyiH0Rio7L8Rz8Hoq6mLdeBxrcwXDArx4rr03DZytHxmbIAiCINRG934GG8qoyU5qaioajQa3f1UgdnNz4+rVq/dtk5iYeN/jExMT73v8woUL+eCDD8rs9/b21j/QoUMf+vQVrvBbmb05wLw7j4e7AnyifzSCIAiCUGulpaVhZ2f36APvYfQxO5Vtzpw5pe4EZWZmUq9ePaKjow3+ZQkVKzs7G29vb2JiYh57BXrh8YnXo/oQr0X1IV6L6iMrK4u6devi6GhAlcI7jJrsODs7o1AoSEpKKrU/KSkJd/eytWcA3N3dDTrezMwMMzOzMvvt7OzEG7easLW1Fa9FNSJej+pDvBbVh3gtqg/5fVYueGSbSohDb0qlkrZt27J///6SfVqtlv3799OpU6f7tunUqVOp4wH27t37wOMFQRAEQajdjN6NNWvWLMaNG0e7du3o0KEDS5YsIS8vjwkTJgAwduxYvLy8WLhwIQCvvvoqPXr0YPHixQwaNIh169Zx5swZvv/+e2P+GIIgCIIgVFNGT3ZGjRpFSkoKc+fOJTExkYCAAHbv3l0yCDk6OrrULavOnTuzZs0a3nvvPd555x0aNWrEli1b9K6xY2Zmxrx58+7btSVULfFaVC/i9ag+xGtRfYjXovp4nNfC6HV2BEEQBEEQKlO1WC5CEARBEAShsohkRxAEQRCEGk0kO4IgCIIg1Ggi2REEQRAEoUardcnON998Q/369TE3NycwMJBTp04ZO6Ra6ciRIwwZMgRPT09kMtkD1zYTKtfChQtp3749NjY2uLq6Mnz4cK5du2bssGqtZcuW4e/vX1LArlOnTuzatcvYYdV6n3zyCTKZjJkzZxo7lFpp/vz5yGSyUg8/Pz+DzlGrkp3169cza9Ys5s2bx7lz52jVqhXBwcEkJycbO7RaJy8vj1atWvHNN98YO5Ra7fDhw0ybNo2TJ0+yd+9e1Go1QUFB5OXlGTu0WqlOnTp88sknnD17ljNnztC7d2+GDRvGpUuXjB1arXX69GmWL1+Ov7+/sUOp1Zo3b05CQkLJ4+jRowa1r1VTzwMDA2nfvj1Lly4FdNWavb29mTFjBm+//baRo6u9ZDIZmzdvZvjw4cYOpdZLSUnB1dWVw4cP0717d2OHIwCOjo58/vnnTJo0ydih1Dq5ubm0adOGb7/9lg8//JCAgACWLFli7LBqnfnz57NlyxbCwsLKfY5ac2dHpVJx9uxZ+vbtW7JPLpfTt29fTpw4YcTIBKH6yMrKAijXQntCxdJoNKxbt468vDyxHI6RTJs2jUGDBpX63BCM48aNG3h6euLj48MLL7xAdHS0Qe2NXkG5qqSmpqLRaEoqM9/l5ubG1atXjRSVIFQfWq2WmTNn0qVLF70rkgsVLzw8nE6dOlFYWIi1tTWbN2+mWbNmxg6r1lm3bh3nzp3j9OnTxg6l1gsMDGTVqlU0adKEhIQEPvjgA7p168bFixexsbHR6xy1JtkRBOHhpk2bxsWLFw3uCxcqVpMmTQgLCyMrK4vff/+dcePGcfjwYZHwVKGYmBheffVV9u7di7m5ubHDqfUGDBhQ8r2/vz+BgYHUq1ePDRs26N29W2uSHWdnZxQKBUlJSaX2JyUl4e7ubqSoBKF6mD59Ojt27ODIkSPUqVPH2OHUakqlEl9fXwDatm3L6dOn+fLLL1m+fLmRI6s9zp49S3JyMm3atCnZp9FoOHLkCEuXLqWoqAiFQmHECGs3e3t7GjduzM2bN/VuU2vG7CiVStq2bcv+/ftL9mm1Wvbv3y/6w4VaS5Ikpk+fzubNmzlw4AANGjQwdkjCv2i1WoqKiowdRq3Sp08fwsPDCQsLK3m0a9eOF154gbCwMJHoGFlubi4RERF4eHjo3abW3NkBmDVrFuPGjaNdu3Z06NCBJUuWkJeXx4QJE4wdWq2Tm5tbKiuPjIwkLCwMR0dH6tata8TIapdp06axZs0atm7dio2NDYmJiQDY2dlhYWFh5Ohqnzlz5jBgwADq1q1LTk4Oa9as4dChQ4SEhBg7tFrFxsamzLg1KysrnJycxHg2I3jjjTcYMmQI9erVIz4+nnnz5qFQKBg9erTe56hVyc6oUaNISUlh7ty5JCYmEhAQwO7du8sMWhYq35kzZ+jVq1fJ9qxZswAYN24cq1atMlJUtc+yZcsA6NmzZ6n9K1euZPz48VUfUC2XnJzM2LFjSUhIwM7ODn9/f0JCQujXr5+xQxMEo4mNjWX06NGkpaXh4uJC165dOXnyJC4uLnqfo1bV2REEQRAEofapNWN2BEEQBEGonUSyIwiCIAhCjSaSHUEQBEEQajSR7AiCIAiCUKOJZEcQBEEQhBpNJDuCIAiCINRoItkRBEEQBKFGE8mOIAiCHlQqFb6+vhw/frzKr92xY0c2bdpU5dcVhJpCJDuCUAuNHz8emUxW5mHIwnq1zXfffUeDBg3o3Lkzq1atuu/v795HVFQU8+fPJyAgoMy5oqKikMlkhIWF6XXt9957j7fffhutVluxP5Qg1BIi2RGEWqp///4kJCSUetxvIVCVSmWE6KoXSZJYunQpkyZNAnRLz9z7e+vUqRNTpkwptc/b27vCrj9gwABycnLYtWtXhZ1TEGoTkewIQi1lZmaGu7t7qYdCoaBnz55Mnz6dmTNn4uzsTHBwMAAXL15kwIABWFtb4+bmxpgxY0hNTS05X15eHmPHjsXa2hoPDw8WL15Mz549mTlzZskxMpmMLVu2lIrD3t6+1HpoMTExjBw5Ent7exwdHRk2bBhRUVElz48fP57hw4ezaNEiPDw8cHJyYtq0aajV6pJjioqKeOutt/D29sbMzAxfX19WrFiBJEn4+vqyaNGiUjGEhYU99M7W2bNniYiIYNCgQQBYWFiU+r0plUosLS3L/C719aA7bYcOHQJAoVAwcOBA1q1bp/c5BUH4h0h2BEEo4+eff0apVHLs2DG+++47MjMz6d27N61bt+bMmTPs3r2bpKQkRo4cWdJm9uzZHD58mK1bt7Jnzx4OHTrEuXPnDLquWq0mODgYGxsbQkNDOXbsGNbW1vTv37/UHaaDBw8SERHBwYMH+fnnn1m1alWphGns2LGsXbuWr776iitXrrB8+XKsra2RyWRMnDiRlStXlrruypUr6d69O76+vveNKzQ0lMaNG2NjY2PQz6OvL7/8stRdoVdffRVXV1f8/PxKjunQoQOhoaGVcn1BqPEkQRBqnXHjxkkKhUKysrIqeYwYMUKSJEnq0aOH1Lp161LHL1iwQAoKCiq1LyYmRgKka9euSTk5OZJSqZQ2bNhQ8nxaWppkYWEhvfrqqyX7AGnz5s2lzmNnZyetXLlSkiRJ+vXXX6UmTZpIWq225PmioiLJwsJCCgkJKYm9Xr16UnFxcckxzz77rDRq1ChJkiTp2rVrEiDt3bv3vj97XFycpFAopL/++kuSJElSqVSSs7OztGrVqgf+vl599VWpd+/eD3y+R48epX7Ou+bNmyfJ5fJSv2crKyvJ0tJSAqS///67TJtNmzZJ5ubm0tGjR0vt37p1qySXyyWNRvPAOARBuD8T46ZagiAYS69evVi2bFnJtpWVVcn3bdu2LXXs+fPnOXjwINbW1mXOExERQUFBASqVisDAwJL9jo6ONGnSxKCYzp8/z82bN8vcQSksLCQiIqJku3nz5qW6iTw8PAgPDwd0XVIKhYIePXrc9xqenp4MGjSIn376iQ4dOrB9+3aKiop49tlnHxhXQUEB5ubmBv0sdzVp0oRt27aV2hcXF0fPnj3LHPv3338zZswYli5dSpcuXUo9Z2FhgVarpaioCAsLi3LFIgi1lUh2BKGWsrKyemC3zb2JD0Bubi5Dhgzh008/LXOsh4eH3rO4ZDIZkiSV2nfvWJvc3Fzatm3L6tWry7R1cXEp+d7U1LTMee/OVNInEZg8eTJjxozhf//7HytXrmTUqFFYWlo+8HhnZ+eSZMpQSqWyzO/ZxKTsn97ExESGDh3K5MmTSwZC3ys9PR0rKyuR6AhCOYhkRxCER2rTpg2bNm2ifv369/2gbtiwIaampvz111/UrVsXgIyMDK5fv17qDouLiwsJCQkl2zdu3CA/P7/UddavX4+rqyu2trblirVly5ZotVoOHz5M375973vMwIEDsbKyYtmyZezevZsjR4489JytW7dm2bJlSJKETCYrV1wPU1hYyLBhw/Dz8+OLL7647zEXL16kdevWFX5tQagNxABlQRAeadq0aaSnpzN69GhOnz5NREQEISEhTJgwAY1Gg7W1NZMmTWL27NkcOHCAixcvMn78eOTy0n9ievfuzdKlS/n77785c+YML730Uqm7NC+88ALOzs4MGzaM0NBQIiMjOXToEK+88gqxsbF6xVq/fn3GjRvHxIkT2bJlS8k5NmzYUHKMQqFg/PjxzJkzh0aNGtGpU6eHnrNXr17k5uZy6dIlA35r+vvPf/5DTEwMX331FSkpKSQmJpKYmFhqUHZoaChBQUGVcn1BqOlEsiMIwiN5enpy7NgxNBoNQUFBtGzZkpkzZ2Jvb1+S0Hz++ed069aNIUOG0LdvX7p27Vpm7M/ixYvx9vamW7duPP/887zxxhuluo8sLS05cuQIdevW5emnn6Zp06ZMmjSJwsJCg+70LFu2jBEjRvDyyy/j5+fHlClTyMvLK3XMpEmTUKlUTJgw4ZHnc3Jy4qmnnrpv91pFOHz4MAkJCTRr1gwPD4+Sx91qzXFxcRw/flyvWAVBKEsm/bsDXRAEoYL07NmTgIAAlixZYuxQyggNDaVPnz7ExMTg5ub2yOMvXLhAv379iIiIuO9A7cr01ltvkZGRwffff1+l1xWEmkLc2REEoVYpKioiNjaW+fPn8+yzz+qV6AD4+/vz6aefEhkZWckRluXq6sqCBQuq/LqCUFOIZEcQhFpl7dq11KtXj8zMTD777DOD2o4fP56WLVtWUmQP9vrrr+udlAmCUJboxhIEQRAEoUYTd3YEQRAEQajRRLIjCIIgCEKNJpIdQRAEQRBqNJHsCIIgCIJQo4lkRxAEQRCEGk0kO4IgCIIg1Ggi2REEQRAEoUYTyY4gCIIgCDWaSHYEQRAEQajR/h/0RjpU6bZNvQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_absorption(batch_results)\n" ] }, { "cell_type": "markdown", "id": "72e4644e", "metadata": {}, "source": [ "## Additional Notes about Graphene " ] }, { "cell_type": "markdown", "id": "0d9b85e8", "metadata": {}, "source": [ "As briefly discussed in the introduction, graphene's conductivity includes the contributions from both the intraband and interband electronic transitions. The intraband transitions lead to a Drude-like response that is dominant at lower frequencies. The interband transitions give rise to the prominent feature around $f=2\\mu_c$.\n", "\n", "The conductivity of graphene can be inspected by using the `numerical_conductivity` method. Here we show an example of graphene conductivity at $\\Gamma$=0.0033 eV, $\\mu_c$=0.2 eV, and $T$=300 K. Below 20 THz, the conductivity is predominantly Drude-like, which comes from the intraband transitions. The interband transition feature shows up at around 100 THz (~0.4 eV). " ] }, { "cell_type": "code", "execution_count": 16, "id": "fbd83cbf", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:53:08.236253Z", "iopub.status.busy": "2023-03-27T21:53:08.236114Z", "iopub.status.idle": "2023-03-27T21:53:08.593355Z", "shell.execute_reply": "2023-03-27T21:53:08.592800Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHHCAYAAACV96NPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB09klEQVR4nO3dd3gU1f7H8fdmk2x6QnoioYVeRQSMSlFKQEQQLFgoinBFUAHl58VC8yqK12sX9FrwWhELCgoK0iEUKdKUEqpAEggkgYTUnd8fSxaWJJCEJJuEz+t55pnZmbNnvju72f3mzJkzJsMwDEREREQqERdnByAiIiJyISUoIiIiUukoQREREZFKRwmKiIiIVDpKUERERKTSUYIiIiIilY4SFBEREal0lKCIiIhIpaMERURERCodJShSJoYMGUKdOnUqfZ3n69y5M507d7Y/3r9/PyaTiZkzZ5bbPkurImKrU6cOQ4YMKbf6S2PSpEmYTCZnh+FgwYIFXH311Xh4eGAymUhJSXF2SJXW0qVLMZlMLF26tML3fTmfHZPJxKRJk8o2ICkxJSjiVEeOHGHSpEls3rzZ2aFIKV1J72FycjJ33XUXnp6evPPOO3z66ad4e3s7O6wrVkZGBpMmTSr3BGj16tVMmjRJyWgFc3V2AHJlO3LkCJMnT6ZOnTpcffXVDtv++9//YrVanROYFNvF3sPqZv369Zw6dYrnn3+erl27OjucK15GRgaTJ08GcGgNBXj22Wf55z//Wap6z5w5g6vruZ/H1atXM3nyZIYMGUJAQEBpw5USUoIilZabm5uzQxABID09HW9vb5KSkgD0I1UFuLq6OiQZJeHh4VHG0Uhp6BRPNXLgwAEeeeQRGjVqhKenJ0FBQdx5553s37/fodzMmTMxmUysWrWKsWPHEhISgre3N7fffjvHjh1zKPvDDz/Qq1cvIiMjsVgsREdH8/zzz5OXl1dkHIZhUKdOHfr06VNgW2ZmJv7+/vzjH/9g6dKltG3bFoAHHngAk8nk0M+isD4oVquVN954gxYtWuDh4UFISAg9evTg999/t5f5+OOPufnmmwkNDcVisdC0aVOmT59egiN5rh6TycSmTZsKbHvxxRcxm80cPnz4onUcPnyYoUOH2o9f3bp1GTFiBNnZ2QCcOHGCJ598khYtWuDj44Ofnx89e/bkjz/+KFaMf/31F3fddRchISF4enrSqFEjnnnmGfv2ovrxFOf8fHFiu9R7CLB27Vp69OiBv78/Xl5edOrUiVWrVhXY38qVK2nbti0eHh5ER0fz3nvvFesYAOzevZv+/fsTHh6Oh4cHNWvWZMCAAaSmpgIX78NzYX+D/GOzY8cO7r33XmrUqMGNN95I586dGTx4MABt27bFZDLZ++ysWLGCO++8k1q1amGxWIiKimLMmDGcOXOmwP4u9Z6B7XPz4IMPEhYWhsVioVmzZnz00UfFPh6fffYZ7dq1w8vLixo1atCxY0d+/fVXhzLvvvsuzZo1w2KxEBkZyciRIwucwujcuTPNmzdnx44d3HTTTXh5eXHVVVcxbdq0Avv8+++/6du3L97e3oSGhjJmzBiysrIKlCuqr9OFfcLA9n0xadIkGjZsiIeHBxEREfTr14/4+Hj2799PSEgIAJMnT7Z/9vLfyws/482bN+emm24qsF+r1cpVV13FHXfcYV93YT3jxo0DoG7duvb97N+/n06dOtGqVasCdQI0atSI2NjYQrdJ8agFpRpZv349q1evZsCAAdSsWZP9+/czffp0OnfuzI4dO/Dy8nIo/+ijj1KjRg0mTpzI/v37ef311xk1ahSzZs2yl5k5cyY+Pj6MHTsWHx8fFi9ezIQJE0hLS+OVV14pNA6TycT999/PtGnTOHHiBIGBgfZtc+fOJS0tjfvvv5+GDRsyZcoUJkyYwPDhw+nQoQMA119/fZGvcejQocycOZOePXvy0EMPkZuby4oVK1izZg3XXnstANOnT6dZs2bcdtttuLq6MnfuXB555BGsVisjR44s9vG84447GDlyJJ9//jmtW7d22Pb555/TuXNnrrrqqiKff+TIEdq1a0dKSgrDhw+ncePGHD58mG+++YaMjAzc3d3Zu3cvc+bM4c4776Ru3bokJiby3nvv0alTJ3bs2EFkZGSR9W/ZsoUOHTrg5ubG8OHDqVOnDvHx8cydO5cXXnih2K+zKMWJrUmTJhd9DxcvXkzPnj1p06YNEydOxMXFxZ5Arlixgnbt2gGwdetWunfvTkhICJMmTSI3N5eJEycSFhZ2yTizs7OJjY0lKyuLRx99lPDwcA4fPsy8efNISUnB39+/VK//zjvvpEGDBrz44osYhkGDBg1o1KgR77//PlOmTKFu3bpER0cDMHv2bDIyMhgxYgRBQUGsW7eOt956i7///pvZs2fb6yzOe5aYmMh1112HyWRi1KhRhISEMH/+fIYOHUpaWhqjR4++aNyTJ09m0qRJXH/99UyZMgV3d3fWrl3L4sWL6d69O2D70Z08eTJdu3ZlxIgR7Ny5k+nTp7N+/XpWrVrl0Hp58uRJevToQb9+/bjrrrv45ptveOqpp2jRogU9e/YEbKdEunTpwsGDB3nssceIjIzk008/ZfHixaU69gB5eXnceuut/PbbbwwYMIDHH3+cU6dOsXDhQrZt20bXrl2ZPn06I0aM4Pbbb6dfv34AtGzZstD67r77biZNmkRCQgLh4eH29StXruTIkSMMGDCg0Of169ePXbt28eWXX/Laa68RHBwMQEhICAMHDmTYsGFs27aN5s2b25+zfv16du3axbPPPlvq1y+AIdVGRkZGgXVxcXEGYPzvf/+zr/v4448NwOjatathtVrt68eMGWOYzWYjJSXlonX+4x//MLy8vIzMzEz7usGDBxu1a9e2P965c6cBGNOnT3d47m233WbUqVPHvt/169cbgPHxxx8X2M+FdS5evNgAjMcee6xA2fNfR2Exx8bGGvXq1XNY16lTJ6NTp072x/v27SsQyz333GNERkYaeXl59nUbN24sMubzDRo0yHBxcTHWr19fZLyZmZkOdefHYbFYjClTplw0to4dOxq+vr7GgQMHCq3bMAoew3wTJ040Lvzzr127tjF48GD74+LGVtR7aLVajQYNGhixsbEF3p+6desa3bp1s6/r27ev4eHh4fBaduzYYZjN5gJxXmjTpk0GYMyePbvIMoUdv3yAMXHiRPvj/GNzzz33FCib/7dz4Xta2Gdu6tSphslkcnhNxXnPhg4dakRERBjHjx93KDNgwADD39+/0H3l2717t+Hi4mLcfvvtBd67/H0kJSUZ7u7uRvfu3R3KvP322wZgfPTRR/Z1nTp1KvD9kZWVZYSHhxv9+/e3r3v99dcNwPj666/t69LT04369esbgLFkyRL7+gs/Z+fv6/y/x48++sgAjP/85z8Fyua/lmPHjhV4//Jd+BnP/0566623HMo98sgjho+Pj8NxvbDOV155xQCMffv2OTw3JSXF8PDwMJ566imH9Y899pjh7e1tnD59ukBcUnw6xVONeHp62pdzcnJITk6mfv36BAQEsHHjxgLlhw8f7tAE2qFDB/Ly8jhw4EChdZ46dYrjx4/ToUMHMjIy+Ouvv4qMpWHDhrRv357PP//cvu7EiRPMnz+f++67r1SX/3377beYTCYmTpxYYNv59Z0fc2pqKsePH6dTp07s3bvX3uRfXIMGDeLIkSMsWbLEvu7zzz/H09OT/v37F/k8q9XKnDlz6N27t71lp7B4LRYLLi62P8O8vDySk5Px8fGhUaNGhb5n+Y4dO8by5ct58MEHqVWrVqF1X67SxpZv8+bN7N69m3vvvZfk5GSOHz/O8ePHSU9Pp0uXLixfvhyr1UpeXh6//PILffv2dXgtTZo0KVYTeX4LyS+//EJGRkYpX21BDz/8cLHLnv+ZS09P5/jx41x//fUYhmE/RVic98wwDL799lt69+6NYRj2Y3b8+HFiY2NJTU296LGfM2cOVquVCRMm2N+7C/exaNEisrOzGT16tEOZYcOG4efnx08//eTwPB8fH+6//377Y3d3d9q1a8fevXvt637++WciIiIcTpN4eXkxfPjwix+4i/j2228JDg7m0UcfLbCtNJ/xhg0bcvXVVzu0EOfl5fHNN9/Qu3dvh/ewuPz9/enTpw9ffvklhmHY65w1a5b9dJeUnhKUauTMmTNMmDCBqKgoLBYLwcHBhISEkJKSUugP84VfkjVq1ABsTbr5tm/fzu23346/vz9+fn6EhITYv6wu9WM/aNAgVq1aZU94Zs+eTU5ODgMHDizV64uPjycyMtLhlFFhVq1aRdeuXfH29iYgIICQkBCefvrpYsV8oW7duhEREWFPtKxWK19++SV9+vTB19e3yOcdO3aMtLQ0h2bfwlitVl577TUaNGjg8J5t2bLlorHm/zhcqv7LUdrY8u3evRuAwYMHExIS4jB98MEHZGVlkZqayrFjxzhz5gwNGjQoUEejRo0uuZ+6desyduxYPvjgA4KDg4mNjeWdd94p8XtdWL3FdfDgQYYMGUJgYCA+Pj6EhITQqVMn4Nxnrjjv2bFjx0hJSeH9998vcMweeOABAHtH3cLEx8fj4uJC06ZNiyyT//d44bF1d3enXr16Dv+gANSsWbNAQlCjRg2H74kDBw5Qv379AuWK8/4VJT4+nkaNGpW6o2th7r77blatWmXvO7Z06VKSkpK4++67S13noEGDOHjwICtWrABsCWBiYmKpv+fkHPVBqUYeffRRPv74Y0aPHk1MTAz+/v6YTCYGDBhQ6OW6ZrO50Hry/xNISUmhU6dO+Pn5MWXKFKKjo/Hw8GDjxo089dRTl7wEeMCAAYwZM4bPP/+cp59+ms8++4xrr732sr60LiU+Pp4uXbrQuHFj/vOf/xAVFYW7uzs///wzr732WokvWzabzdx7773897//5d1332XVqlUcOXLE4T/Ky/Hiiy/y3HPP8eCDD/L8888TGBiIi4sLo0ePLpNLrIv6T/NinZzLKrb8Mq+88kqRlx/7+PgU2pGypF599VWGDBnCDz/8wK+//spjjz3G1KlTWbNmTaE/sPkudhyK+x91Xl4e3bp148SJEzz11FM0btwYb29vDh8+zJAhQ0r0PuaXvf/+++0dci9UVB+L8nKp74mSuth7UdS+ysrdd9/N+PHjmT17NqNHj+brr7/G39+fHj16lLrO2NhYwsLC+Oyzz+jYsSOfffYZ4eHhugy9DChBqUa++eYbBg8ezKuvvmpfl5mZWerBhZYuXUpycjLfffcdHTt2tK/ft29fsZ4fGBhIr169+Pzzz7nvvvtYtWoVr7/+ukOZkjTVRkdH88svvxToeHu+uXPnkpWVxY8//ujQQnT+KZqSGjRoEK+++ipz585l/vz5hISEXPLUQ0hICH5+fmzbtu2i5b755htuuukmPvzwQ4f1KSkp9s54halXrx7AJeuvUaNGoe//hf8lX05sRb2H+R1I/fz8LvplnX81S36Ly/l27tx5yTjztWjRghYtWvDss8+yevVqbrjhBmbMmMG//vUve+vghceiOMfhUrZu3cquXbv45JNPGDRokH39woULHcoV5z0LCQnB19eXvLy8Uv3ARUdHY7Va2bFjR5FJYe3atQHbsc2PCWydjfft21eq/dauXZtt27ZhGIbD56Gw9+9in8nz44mOjmbt2rXk5OQUOeRASU/11K1bl3bt2jFr1ixGjRrFd999R9++fbFYLBd93sX2k/9PzMyZM3n55ZeZM2cOw4YNK/dk60qgUzzViNlsLvBfzVtvvVWs/5aLqg8c/1PKzs7m3XffLXYdAwcOZMeOHYwbNw6z2Vygp3z+OdriJFH9+/fHMAz7wEzny4+xsJhTU1P5+OOPix3zhVq2bEnLli354IMP+PbbbxkwYMAlm51dXFzo27cvc+fOdbgEurB4L3zPZs+efcnLl0NCQujYsSMfffQRBw8eLLRusH3Jp6amsmXLFvu6o0eP8v3331+0/pLEVtR72KZNG6Kjo/n3v//N6dOnC9Sff0m72WwmNjaWOXPmOLyWP//8k19++eWScaalpZGbm+uwrkWLFri4uNhbZ/z8/AgODmb58uUO5UryWS5KYZ85wzB44403HMoV5z0zm83079+fb7/9ttBE5sJhAC7Ut29fXFxcmDJlSoGWm/x9dO3aFXd3d958802HmD/88ENSU1Pp1avXpV5yAbfccgtHjhzhm2++sa/LyMjg/fffL1A2OjqaNWvW2C+1B5g3bx6HDh1yKNe/f3+OHz/O22+/XaCO/Ljzr0wsyT9hd999N2vWrOGjjz7i+PHjxTq9c6nvqYEDB3Ly5En+8Y9/cPr06TJrYb3SqQWlGrn11lv59NNP8ff3p2nTpsTFxbFo0SKCgoJKVd/1119PjRo1GDx4MI899hgmk4lPP/20RE27vXr1IigoiNmzZ9OzZ09CQ0MdtkdHRxMQEMCMGTPw9fXF29ub9u3bF3r+/6abbmLgwIG8+eab7N69mx49emC1WlmxYgU33XQTo0aNonv37ri7u9O7d2/7l8V///tfQkNDOXr0aKmOA9haUZ588kmAYn/5vPjii/z666906tSJ4cOH06RJE44ePcrs2bNZuXIlAQEB3HrrrUyZMoUHHniA66+/nq1bt/L55587/CdZlDfffJMbb7yRa665huHDh1O3bl3279/PTz/9ZB92fsCAATz11FPcfvvtPPbYY2RkZDB9+nQaNmx4yY6uxY3tYu/hBx98QM+ePWnWrBkPPPAAV111FYcPH2bJkiX4+fkxd+5cwHZp7IIFC+jQoQOPPPIIubm5vPXWWzRr1swhuSrM4sWLGTVqFHfeeScNGzYkNzeXTz/91P5jn++hhx7ipZde4qGHHuLaa69l+fLl7Nq165LH+VIaN25MdHQ0Tz75JIcPH8bPz49vv/3WoY9GvuK8Zy+99BJLliyhffv2DBs2jKZNm3LixAk2btzIokWLOHHiRJGx1K9fn2eeeYbnn3+eDh060K9fPywWC+vXrycyMpKpU6cSEhLC+PHjmTx5Mj169OC2225j586dvPvuu7Rt27ZUP67Dhg3j7bffZtCgQWzYsIGIiAg+/fTTAkMbgO19+Oabb+jRowd33XUX8fHxfPbZZ/YWt3yDBg3if//7H2PHjmXdunV06NCB9PR0Fi1axCOPPEKfPn3w9PSkadOmzJo1i4YNGxIYGEjz5s0v2s/nrrvu4sknn+TJJ58kMDCwWC1Gbdq0AeCZZ55hwIABuLm50bt3b3vi0rp1a5o3b87s2bNp0qQJ11xzTUkOnxSlAq8YknJ28uRJ44EHHjCCg4MNHx8fIzY21vjrr78KXNZX1KWSS5YsKXBJ4KpVq4zrrrvO8PT0NCIjI43/+7//M3755ZcC5Yq6nNUwbJfxAcYXX3xR6PYffvjBaNq0qeHq6upwKWhhdebm5hqvvPKK0bhxY8Pd3d0ICQkxevbsaWzYsMFe5scffzRatmxpeHh4GHXq1DFefvll+yWL518mWJzLjPMdPXrUMJvNRsOGDQt9DUU5cOCAMWjQICMkJMSwWCxGvXr1jJEjRxpZWVmGYdgu5X3iiSeMiIgIw9PT07jhhhuMuLi4Yse2bds24/bbbzcCAgIMDw8Po1GjRsZzzz3nUObXX381mjdvbri7uxuNGjUyPvvss2JfZlyc2Ayj6PfQMGyXAffr188ICgoyLBaLUbt2beOuu+4yfvvtN4c6li1bZrRp08Zwd3c36tWrZ8yYMaPQOC+0d+9e48EHHzSio6MNDw8PIzAw0LjpppuMRYsWOZTLyMgwhg4davj7+xu+vr7GXXfdZSQlJRV5mfGxY8cK7Kuov50dO3YYXbt2NXx8fIzg4GBj2LBhxh9//FHq9ywxMdEYOXKkERUVZbi5uRnh4eFGly5djPfff/+ixyLfRx99ZLRu3dqwWCxGjRo1jE6dOhkLFy50KPP2228bjRs3Ntzc3IywsDBjxIgRxsmTJx3KdOrUyWjWrFmB+gv72zxw4IBx2223GV5eXkZwcLDx+OOPGwsWLCjwXWEYhvHqq68aV111lWGxWIwbbrjB+P333wv9XGVkZBjPPPOMUbduXftxuOOOO4z4+Hh7mdWrV9s/N+e/lxf77Nxwww0GYDz00EOFbr/wM2EYhvH8888bV111leHi4lLoJcfTpk0zAOPFF18stE4pOZNhlLKnk0gxjRkzhg8//JCEhIRC/6OqCo4fP05ERAQTJkzgueeec3Y4IlLJvPHGG4wZM4b9+/cXuEJSSkd9UKRcZWZm8tlnn9G/f/8qm5yAbUTdvLw8XTooIgUYhsGHH35Ip06dlJyUIfVBkXKRlJTEokWL+Oabb0hOTubxxx93dkilsnjxYnbs2MELL7xA3759C72vjYhcmdLT0/nxxx9ZsmQJW7du5YcffnB2SNWKEhQpFzt27OC+++4jNDSUN998s8hLHiu7KVOm2C9Zfeutt5wdjohUIseOHePee+8lICCAp59+mttuu83ZIVUr6oMiIiIilY76oIiIiEilowRFREREKp0q2QfFarVy5MgRfH19y+zOrSIiIlK+DMPg1KlTREZGFrjj9oWqZIJy5MgRoqKinB2GiIiIlMKhQ4eoWbPmRctUyQQl/zb3hw4dws/Pz8nRiIiISHGkpaURFRVl/x2/mCqZoOSf1vHz81OCIiIiUsUUp3uGOsmKiIhIpaMERURERCodJSgiIiJS6VTJPigiIlK1Wa1WsrOznR2GlDE3NzfMZnOZ1KUERUREKlR2djb79u3DarU6OxQpBwEBAYSHh1/2OGVKUEREpMIYhsHRo0cxm81ERUVdcrAuqToMwyAjI4OkpCQAIiIiLqs+JSgiIlJhcnNzycjIIDIyEi8vL2eHI2XM09MTgKSkJEJDQy/rdI9SVxERqTB5eXkAuLu7OzkSKS/5iWdOTs5l1aMERUREKpzuo1Z9ldV7qwRFREREKh0lKCIiIlLpKEERERGRSkcJyvlysyD1b0g74uxIRESkGktOTiY0NJT9+/cX+zkDBgzg1VdfLbf6yzqGy6UE5XzrP4TXmsEvzzg7EhERqWSGDBmCyWTCZDLh5uZG3bp1+b//+z8yMzNLXNcLL7xAnz59qFOnTrGf8+yzz/LCCy+QmppaLvUfO3aMESNGUKtWLSwWC+Hh4cTGxrJq1apSxXC5lKCczyvQNj9zwrlxiIhIpdSjRw+OHj3K3r17ee2113jvvfeYOHFiierIyMjgww8/ZOjQoSV6XvPmzYmOjuazzz4rl/r79+/Ppk2b+OSTT9i1axc//vgjnTt3Jjk5ucQxlAUlKOfzPJugZChBERGRgvJbFqKioujbty9du3Zl4cKF9u1Wq5WpU6dSt25dPD09adWqFd98841DHT///DMWi4XrrrvOYf2aNWvo0qULQUFB9paa/CktLQ2A3r1789VXX100xsLqX7lyJW5ubg6tPfv378dkMnHgwAFSUlJYsWIFL7/8MjfddBO1a9emXbt2jB8/nttuu82h/uLEUBaUoJzP3oJy0rlxiIhcIQzDICM71ymTYRiXFfu2bdtYvXq1w6BzU6dO5X//+x8zZsxg+/btjBkzhvvvv59ly5bZy6xYsYI2bdo41PXHH3/QuXNnWrduzYoVK1iwYAGBgYF06dKFWbNm4efnB0C7du1Yt24dWVlZRcZVWP2bN2+mSZMmeHh42Ndt2rSJGjVqULt2bXx8fPDx8WHOnDkXrbu4MZQFDXV/Ps8atrlaUEREKsSZnDyaTvjFKfveMSUWL/eS/QzOmzcPHx8fcnNzycrKwsXFhbfffhuArKwsXnzxRRYtWkRMTAwA9erVY+XKlbz33nt06tQJgAMHDhAZGelQ72OPPUa/fv3497//DUDTpk2555572LBhA3fddZe9XGRkJNnZ2SQkJFC7du1CYyys/j/++IPWrVs7rNu8eTOtWrUCwNXVlZkzZzJs2DBmzJjBNddcQ6dOnRgwYAAtW7Z0eF5xYigLakE5X34LSk667YoeERGR89x0001s3ryZtWvXMnjwYB544AH69+8PwJ49e8jIyKBbt272FgkfHx/+97//ER8fb6/jzJkzDi0ZiYmJrFy5kkceecRhX97e3gVGZc2/101GRkaRMV5YP9iSkauvvtph3aZNmxzW9e/fnyNHjvDjjz/So0cPli5dyjXXXMPMmTNLHENZUAvK+Sz+YHIBw2o7zeMb7uyIRESqNU83MzumxDpt3yXl7e1N/fr1Afjoo49o1aqVvUPq6dOnAfjpp5+46qqrHJ5nsVjsy8HBwZw8ea4rwYYNG7BarfbWjPPXX3vttQ7rTpywtfCHhIQUGeOF9efl5bFt27YCLSgbN260J1f5PDw86NatG926deO5557joYceYuLEiQwZMqREMZSFErWgTJ8+nZYtW+Ln54efnx8xMTHMnz/fvr1z584FOvY8/PDDDnUcPHiQXr164eXlRWhoKOPGjSM3N7dsXs3lcnEBjwDbsk7ziIiUO5PJhJe7q1Omy71njIuLC08//TTPPvssZ86coWnTplgsFg4ePEj9+vUdpqioKPvzWrduzY4dO+yPrVYrAOnp6fZ1W7ZsYfny5dx7770O+9y2bRs1a9YkODi4yLgurH/nzp1kZmY6nPaJi4vj8OHDBVpVLtS0aVOHuIobQ1koUYJSs2ZNXnrpJTZs2MDvv//OzTffTJ8+fdi+fbu9zLBhwzh69Kh9mjZtmn1bXl4evXr1Ijs7m9WrV/PJJ58wc+ZMJkyYUHav6HLpUmMRESmmO++8E7PZzDvvvIOvry9PPvkkY8aM4ZNPPiE+Pp6NGzfy1ltv8cknn9ifExsby/bt2+2tHO3bt8fT05Nx48bx119/8dNPP3HbbbcxcuTIAlf6rFixgu7du180pgvr37x5MwBvvfUWu3fvZv78+QwaNAiA7OxswDaw280338xnn33Gli1b2LdvH7Nnz2batGn06dOnxDGUCeMy1ahRw/jggw8MwzCMTp06GY8//niRZX/++WfDxcXFSEhIsK+bPn264efnZ2RlZRV7n6mpqQZgpKamljruIv23q2FM9DOM7T+Ufd0iIle4M2fOGDt27DDOnDnj7FBKbPDgwUafPn0KrJ86daoREhJinD592rBarcbrr79uNGrUyHBzczNCQkKM2NhYY9myZQ7PadeunTFjxgz747lz5xoNGzY03NzcjOjoaOOVV14x8vLyHJ5z5swZw9/f34iLi7tkrOfXP27cOCM2Nta45ZZbDIvFYrRu3dr4/PPPDT8/P+P+++83DMMwMjMzjX/+85/GNddcY/j7+xteXl5Go0aNjGeffdbIyMgoUQwXe49L8vtd6gQlNzfX+PLLLw13d3dj+/bthmHYEpTg4GAjKCjIaNasmfHPf/7TSE9Ptz/nueeeM1q1auVQz969ew3A2LhxY5H7yszMNFJTU+3ToUOHyi9B+fwuW4Ly+8dlX7eIyBWuKicoZWnevHlGkyZNCiQhF/Puu+8a3bp1K3H93bt3N5555pnShlriGMoqQSlxJ9mtW7cSExNDZmYmPj4+fP/99zRt2hSAe++9l9q1axMZGcmWLVt46qmn2LlzJ9999x0ACQkJhIWFOdSX/zghIaHIfU6dOpXJkyeXNNTS0WBtIiJSznr16sXu3bs5fPiwQ/+Ui3Fzc+Ott94qcf1//PEHDz744OWEW6oYLleJE5RGjRqxefNmUlNT+eabbxg8eDDLli2jadOmDB8+3F6uRYsWRERE0KVLF+Lj44mOji51kOPHj2fs2LH2x2lpacV+Q0tMfVBERKQCjB49ukTlH3rooRLXn5CQQGJiIi1atCjRc8sqhstR4gTF3d3dfolVmzZtWL9+PW+88QbvvfdegbLt27cHbNeGR0dHEx4ezrp16xzKJCYmAhAeXvQlvRaLxeESrXKVP1ibRpMVEZEqLjw8/LJHzHWWyx6ozWq1FjncbX7P4YiICABiYmLYunUrSUlJ9jILFy7Ez8/PfprI6fJbUDKUoIiIiDhLiVpQxo8fT8+ePalVqxanTp3iiy++YOnSpfzyyy/Ex8fzxRdfcMsttxAUFMSWLVsYM2YMHTt2tA+T2717d5o2bcrAgQOZNm0aCQkJPPvss4wcObLiWkguxVOneERERJytRAlKUlISgwYN4ujRo/j7+9OyZUt++eUXunXrxqFDh1i0aBGvv/466enpREVF0b9/f5599ln7881mM/PmzWPEiBHExMTg7e3N4MGDmTJlSpm/sFLT/XhEREScrkQJyocffljktqioKIe7NRaldu3a/PzzzyXZbcVSJ1kRERGn080CL2Q/xXMSqmjHIhERkapOCcqF8ltQrLmQlebcWERERK5QSlAu5OYJrrZbSasfioiIiHMoQSmM+qGIiIg4lRKUwpzfD0VEREQqnBKUwnjlX2qsBEVERMQZlKAURoO1iYhIOUlOTiY0NJT9+/cX+zkDBgzg1VdfLbf6yzqGsqAEpTAarE1ERC4wZMgQ+vbte9n1vPDCC/Tp04c6deoU+znPPvssL7zwAqmpqeVS/7FjxxgxYgS1atXCYrEQHh5ObGwsq1atKlUMZUEJSmHUSVZERMpBRkYGH374IUOHDi3R85o3b050dDSfffZZudTfv39/Nm3axCeffMKuXbv48ccf6dy5M8nJySWOoawoQSlM/iketaCIiEghOnfuzKOPPsro0aOpUaMGYWFh/Pe//yU9PZ0HHngAX19f6tevz/z58x2e9/PPP2OxWLjuuusc1q9Zs4YuXboQFBSEyWRymNLSbGNy9e7dm6+++uqicRVW/8qVK3FzcyMzM9O+bv/+/ZhMJg4cOEBKSgorVqzg5Zdf5qabbqJ27dq0a9eO8ePHc9tttznUX5wYyooSlMKoBUVEpGIYBmSnO2e6zNHCP/nkE4KDg1m3bh2PPvooI0aM4M477+T6669n48aNdO/enYEDB5KRkWF/zooVK2jTpo1DPX/88QedO3emdevWrFixggULFhAYGEiXLl2YNWsWfn5+ALRr145169aRlZVVZEyF1b9582aaNGmCh4eHfd2mTZuoUaMGtWvXxsfHBx8fH+bMmXPRuosbQ1kp0b14rhhqQRERqRg5GfBipHP2/fQRcPcu9dNbtWplvyHu+PHjeemllwgODmbYsGEATJgwgenTp7NlyxZ7i8aBAweIjHR8vY899hj9+vXj3//+NwBNmzblnnvuYcOGDdx11132cpGRkWRnZ5OQkEDt2rULjamw+v/44w9at27tsG7z5s20atUKAFdXV2bOnMmwYcOYMWMG11xzDZ06dWLAgAG0bNnS4XnFiaGsqAWlMF4aB0VERC7u/B9vs9lMUFAQLVq0sK8LCwsDICkpyb7uzJkzDi0ZiYmJrFy5kkceecShbm9vb0wmk8M6T0/bKOfnt8hc6ML6wZaMXH311Q7rNm3a5LCuf//+HDlyhB9//JEePXqwdOlSrrnmGmbOnFniGMqKWlAKo4HaREQqhpuXrSXDWfu+nKe7uTk8NplMDuvyEwyr1WpfFxwczMmT535bNmzYgNVqtbdmnL/+2muvdVh34oStVT8kJKTImC6sPy8vj23bthVoQdm4cSP9+/d3WOfh4UG3bt3o1q0bzz33HA899BATJ05kyJAhJYqhrKgFpTD5LShZaZCX49xYRESqM5PJdprFGdMFLRQVoXXr1uzYscP+OD95SU9Pt6/bsmULy5cv595773V47rZt26hZsybBwcHFrn/nzp1kZmY6nPaJi4vj8OHDBVpVLtS0aVOHuIobQ1lRglIYD3/g7AdXrSgiIlJGYmNj2b59u72Vo3379nh6ejJu3Dj++usvfvrpJ2677TZGjhxZ4EqfFStW0L179xLVv3nzZgDeeustdu/ezfz58xk0aBAA2dnZgG1gt5tvvpnPPvuMLVu2sG/fPmbPns20adPo06dPiWMoK0pQCuNiPpukoI6yIiJSZlq0aME111zD119/DdhOlXz99desW7eOli1b8vjjjzNq1KgCI7ZmZmYyZ84cewfc4ta/efNmYmNj2bt3Ly1atOCZZ55h8uTJ+Pn58eabbwLg4+ND+/btee211+jYsSPNmzfnueeeY9iwYbz99tsljqGsmAzjMq+zcoK0tDT8/f1JTU21X35V5t5sDSf2wgPzofb15bMPEZErTGZmJvv27aNu3boFOnNeKX766SfGjRvHtm3bcHEpXjvB9OnT+f777/n1119LVH/Pnj1p27Yt//rXvy437GLHcLH3uCS/3+okWxTPQGCvWlBERKRM9erVi927d3P48GGioqKK9Rw3NzfeeuutEtf/xx9/8OCDD15OuKWKoSwoQSmKBmsTEZFyMnr06BKVf+ihh0pcf0JCAomJiQ6XPl+OksZwuZSgFEWDtYmISBUWHh5OFezFYadOskXRYG0iIiJOowSlKJ46xSMiIuIsSlCK4lXDNtcpHhERkQqnBKUoGu5eRKTcVOW+EXJxZfXeKkEpiqdaUEREyprZbAbOjWIq1U/+jQQvvFdRSekqnqLoMmMRkTLn6uqKl5cXx44dw83NrdgDlUnlZxgGGRkZJCUlERAQYE9GS0sJSlHOv8zYMJxyUykRkerGZDIRERHBvn37OHDggLPDkXIQEBBAeHj4ZdejBKUo+S0o1hzIPg0WX+fGIyJSTbi7u9OgQQOd5qmG3NzcLrvlJJ8SlKK4eYHZAnlZto6ySlBERMqMi4vLFXsvHikenfwrisl0rhVFHWVFREQqlBKUi9FgbSIiIk6hBOVi1IIiIiLiFCVKUKZPn07Lli3x8/PDz8+PmJgY5s+fb9+emZnJyJEjCQoKwsfHh/79+5OYmOhQx8GDB+nVqxdeXl6EhoYybtw4cnNzy+bVlDXPANtcg7WJiIhUqBIlKDVr1uSll15iw4YN/P7779x888306dOH7du3AzBmzBjmzp3L7NmzWbZsGUeOHKFfv3725+fl5dGrVy+ys7NZvXo1n3zyCTNnzmTChAll+6rKiu5oLCIi4hQm4zLHpA0MDOSVV17hjjvuICQkhC+++II77rgDgL/++osmTZoQFxfHddddx/z587n11ls5cuQIYWFhAMyYMYOnnnqKY8eO4e7uXqx9pqWl4e/vT2pqKn5+fpcT/sUtmgQrX4P2D0PPl8tvPyIiIleAkvx+l7oPSl5eHl999RXp6enExMSwYcMGcnJy6Nq1q71M48aNqVWrFnFxcQDExcXRokULe3ICEBsbS1pamr0VpjBZWVmkpaU5TBVCLSgiIiJOUeIEZevWrfj4+GCxWHj44Yf5/vvvadq0KQkJCbi7uxMQEOBQPiwsjISEBAASEhIckpP87fnbijJ16lT8/f3tU1RUVEnDLh0Ndy8iIuIUJU5QGjVqxObNm1m7di0jRoxg8ODB7Nixozxisxs/fjypqan26dChQ+W6Pzvd0VhERMQpSjySrLu7O/Xr1wegTZs2rF+/njfeeIO7776b7OxsUlJSHFpREhMT7WPyh4eHs27dOof68q/yudi4/RaLBYvFUtJQL58uMxYREXGKyx4HxWq1kpWVRZs2bXBzc+O3336zb9u5cycHDx4kJiYGgJiYGLZu3UpSUpK9zMKFC/Hz86Np06aXG0rZ00BtIiIiTlGiFpTx48fTs2dPatWqxalTp/jiiy9YunQpv/zyC/7+/gwdOpSxY8cSGBiIn58fjz76KDExMVx33XUAdO/enaZNmzJw4ECmTZtGQkICzz77LCNHjnROC8ml5LegZKZCXi6YdesiERGRilCiX9ykpCQGDRrE0aNH8ff3p2XLlvzyyy9069YNgNdeew0XFxf69+9PVlYWsbGxvPvuu/bnm81m5s2bx4gRI4iJicHb25vBgwczZcqUsn1VZcUj4NxyZgp4BzsrEhERkSvKZY+D4gwVNg4KwNRakJUKI9dDSMPy3ZeIiEg1ViHjoFwx7B1lk50bh4iIyBVECcql+Jwdt+V00eO0iIiISNlSgnIpfpG2edoR58YhIiJyBVGCcilKUERERCqcEpRL8Y2wzU8ddW4cIiIiVxAlKJdib0FRgiIiIlJRlKBcij1BOezcOERERK4gSlAuxX6KJwGq3pAxIiIiVZISlEvJT1DysnTTQBERkQqiBOVSXN3BO8S2rNM8IiIiFUIJSnHoSh4REZEKpQSlODQWioiISIVSglIc+QmKWlBEREQqhBKU4vDVpcYiIiIVSQlKcfid7YOiwdpEREQqhBKU4lAnWRERkQqlBKU4/K6yzXWKR0REpEIoQSmO/FM8mamQneHcWERERK4ASlCKw+IHbt62ZZ3mERERKXdKUIrDZNJYKCIiIhVICUpx2a/kUYIiIiJS3pSgFFf+WCinlKCIiIiUNyUoxaWxUERERCqMEpTi0qXGIiIiFUYJSnFpsDYREZEKowSluHSKR0REpMIoQSmu/FM8pxMhL9e5sYiIiFRzSlCKyzsETGYw8iA9ydnRiIiIVGtKUIrLxQy+4bZlneYREREpV0pQSsLeUVZjoYiIiJQnJSgloeHuRUREKoQSlJJQgiIiIlIhlKCUhMZCERERqRAlSlCmTp1K27Zt8fX1JTQ0lL59+7Jz506HMp07d8ZkMjlMDz/8sEOZgwcP0qtXL7y8vAgNDWXcuHHk5laBS3fto8mqBUVERKQ8uZak8LJlyxg5ciRt27YlNzeXp59+mu7du7Njxw68vb3t5YYNG8aUKVPsj728vOzLeXl59OrVi/DwcFavXs3Ro0cZNGgQbm5uvPjii2XwksqR7mgsIiJSIUqUoCxYsMDh8cyZMwkNDWXDhg107NjRvt7Ly4vw8PBC6/j111/ZsWMHixYtIiwsjKuvvprnn3+ep556ikmTJuHu7l6Kl1FBzj/FYxhgMjk3HhERkWrqsvqgpKamAhAYGOiw/vPPPyc4OJjmzZszfvx4MjIy7Nvi4uJo0aIFYWFh9nWxsbGkpaWxffv2QveTlZVFWlqaw+QU+Z1kczIgM9U5MYiIiFwBStSCcj6r1cro0aO54YYbaN68uX39vffeS+3atYmMjGTLli089dRT7Ny5k++++w6AhIQEh+QEsD9OSEgodF9Tp05l8uTJpQ217Lh5gmcNOHPSdprHM8DZEYmIiFRLpU5QRo4cybZt21i5cqXD+uHDh9uXW7RoQUREBF26dCE+Pp7o6OhS7Wv8+PGMHTvW/jgtLY2oqKjSBX65fCNtCcqpIxDW1DkxiIiIVHOlOsUzatQo5s2bx5IlS6hZs+ZFy7Zv3x6APXv2ABAeHk5iYqJDmfzHRfVbsVgs+Pn5OUxOo7sai4iIlLsSJSiGYTBq1Ci+//57Fi9eTN26dS/5nM2bNwMQEWH7YY+JiWHr1q0kJZ274d7ChQvx8/OjadMq0CKR3w9FY6GIiIiUmxKd4hk5ciRffPEFP/zwA76+vvY+I/7+/nh6ehIfH88XX3zBLbfcQlBQEFu2bGHMmDF07NiRli1bAtC9e3eaNm3KwIEDmTZtGgkJCTz77LOMHDkSi8VS9q+wrPnmjyZ72LlxiIiIVGMlakGZPn06qampdO7cmYiICPs0a9YsANzd3Vm0aBHdu3encePGPPHEE/Tv35+5c+fa6zCbzcybNw+z2UxMTAz3338/gwYNchg3pVLTKR4REZFyV6IWFMMwLro9KiqKZcuWXbKe2rVr8/PPP5dk15WH39k+N6l/OzcOERGRakz34impwLP9bk7sBavVubGIiIhUU0pQSiqgFpjMkHtGHWVFRETKiRKUkjK7QY06tuUT8U4NRUREpLpSglIaQWcHnEtWgiIiIlIelKCURmB+grLHuXGIiIhUU0pQSiO/BeXEXufGISIiUk0pQSmNwHq2uU7xiIiIlAslKKWR34Jych9Y85wbi4iISDWkBKU0/KPA7A552RqwTUREpBwoQSkNFzPUODtgmzrKioiIlDklKKWljrIiIiLlRglKaamjrIiISLlRglJa9hYUJSgiIiJlTQlKaQVqNFkREZHyogSltPJbUFIOQF6Oc2MRERGpZpSglJZvJLh6gjUXUg46OxoREZFqRQlKabm4qKOsiIhIOVGCcjmCziYo6igrIiJSppSgXA51lBURESkXSlAuhy41FhERKRdKUC6HvQVFw92LiIiUJSUolyOovm2e+jfkZjk3FhERkWpECcrl8AkFdx8wrHByv7OjERERqTaUoFwOk0mXGouIiJQDJSiXSx1lRUREypwSlMuljrIiIiJlTgnK5QrSWCgiIiJlTQnK5cpvQTmx17lxiIiIVCNKUC5X/qXGaYchO8O5sYiIiFQTSlAul1cgePjblk/uc24sIiIi1YQSlMtlMp07zXN8t3NjERERqSaUoJSF0Ka2eeJ258YhIiJSTShBKQvhLWzzhK3OjUNERKSaKFGCMnXqVNq2bYuvry+hoaH07duXnTt3OpTJzMxk5MiRBAUF4ePjQ//+/UlMTHQoc/DgQXr16oWXlxehoaGMGzeO3Nzcy381zhLR0jZP2OLcOERERKqJEiUoy5YtY+TIkaxZs4aFCxeSk5ND9+7dSU9Pt5cZM2YMc+fOZfbs2SxbtowjR47Qr18/+/a8vDx69epFdnY2q1ev5pNPPmHmzJlMmDCh7F5VRQtrbpunHYb0ZOfGIiIiUg2YDMMwSvvkY8eOERoayrJly+jYsSOpqamEhITwxRdfcMcddwDw119/0aRJE+Li4rjuuuuYP38+t956K0eOHCEsLAyAGTNm8NRTT3Hs2DHc3d0vud+0tDT8/f1JTU3Fz8+vtOGXrTeutl3FM3AORN/k7GhEREQqnZL8fl9WH5TU1FQAAgMDAdiwYQM5OTl07drVXqZx48bUqlWLuLg4AOLi4mjRooU9OQGIjY0lLS2N7durcCdT9UMREREpM6VOUKxWK6NHj+aGG26geXPbKY6EhATc3d0JCAhwKBsWFkZCQoK9zPnJSf72/G2FycrKIi0tzWGqdOz9UJSgiIiIXK5SJygjR45k27ZtfPXVV2UZT6GmTp2Kv7+/fYqKiir3fZZYuDrKioiIlJVSJSijRo1i3rx5LFmyhJo1a9rXh4eHk52dTUpKikP5xMREwsPD7WUuvKon/3F+mQuNHz+e1NRU+3To0KHShF2+8hOU47sg54xzYxEREaniSpSgGIbBqFGj+P7771m8eDF169Z12N6mTRvc3Nz47bff7Ot27tzJwYMHiYmJASAmJoatW7eSlJRkL7Nw4UL8/Pxo2rRpofu1WCz4+fk5TJWObzh4BYNhhcQdzo5GRESkSnMtSeGRI0fyxRdf8MMPP+Dr62vvM+Lv74+npyf+/v4MHTqUsWPHEhgYiJ+fH48++igxMTFcd911AHTv3p2mTZsycOBApk2bRkJCAs8++ywjR47EYrGU/SusKCaTrR9K/GLbaZ6abZwdkYiISJVVohaU6dOnk5qaSufOnYmIiLBPs2bNspd57bXXuPXWW+nfvz8dO3YkPDyc7777zr7dbDYzb948zGYzMTEx3H///QwaNIgpU6aU3atyFvuVPOqHIiIicjkuaxwUZ6mU46AAbP0Gvh0KNdvCQ4ucHY2IiEilUmHjoMgF8jvKJm4Ha55zYxEREanClKCUpaBocPOCnAxIjnd2NCIiIlWWEpSy5GKGsGa2ZfVDERERKTUlKGVNA7aJiIhcNiUoZU335BEREblsSlDKWv49eY5ugap3gZSIiEiloASlrIU2BZMZMo7DqcJvfigiIiIXpwSlrLl5QnBD27L6oYiIiJSKEpTyoBFlRURELosSlPJwfj8UERERKTElKOUhvwXl6B/OjUNERKSKUoJSHiJbAyZIOQCnEp0djYiISJWjBKU8ePhDWHPb8sHVzo1FRESkClKCUl5qX2+bH4hzbhwiIiJVkBKU8lI7xjZXC4qIiEiJKUEpL7XOtqAkbIPMVOfGIiIiUsUoQSkvvmEQWA8w4NA6Z0cjIiJSpShBKU/5rSgHdJpHRESkJJSglCd7PxR1lBURESkJJSjlqdbZBOXwBsjJdG4sIiIiVYgSlPIUWA98wiAv25akiIiISLEoQSlPJtO5VhRdbiwiIlJsSlDKmwZsExERKTElKOUtvwXl0Dqw5jk3FhERkSpCCUp5C2sGFj/IPgUJW50djYiISJWgBKW8uZghqr1tWZcbi4iIFIsSlIqQPx6KBmwTEREpFiUoFSF/RNmDcWAYzo1FRESkClCCUhGuugbMFkg/Bsnxzo5GRESk0lOCUhFcLVDzWtvygVXOjUVERKQKUIJSUep2tM33LHJuHCIiIlWAEpSK0qCbbR6/BHKznRuLiIhIJacEpaJEtAbvENt4KLrcWERE5KKUoFQUFxeof7YVZfevzo1FRESkkitxgrJ8+XJ69+5NZGQkJpOJOXPmOGwfMmQIJpPJYerRo4dDmRMnTnDffffh5+dHQEAAQ4cO5fTp05f1QqqEht1tcyUoIiIiF1XiBCU9PZ1WrVrxzjvvFFmmR48eHD161D59+eWXDtvvu+8+tm/fzsKFC5k3bx7Lly9n+PDhJY++qom+GVxc4fguOLHP2dGIiIhUWq4lfULPnj3p2bPnRctYLBbCw8ML3fbnn3+yYMEC1q9fz7XX2i69feutt7jlllv497//TWRkZElDqjo8/G03D9y/wtaK0v4fzo5IRESkUiqXPihLly4lNDSURo0aMWLECJKTk+3b4uLiCAgIsCcnAF27dsXFxYW1a9cWWl9WVhZpaWkOU5XV4Oxpnl2/ODcOERGRSqzME5QePXrwv//9j99++42XX36ZZcuW0bNnT/Ly8gBISEggNDTU4Tmurq4EBgaSkJBQaJ1Tp07F39/fPkVFRZV12BUnP0HZvxKy050bi4iISCVV4lM8lzJgwAD7cosWLWjZsiXR0dEsXbqULl26lKrO8ePHM3bsWPvjtLS0qpukhDSCgFqQchD2LYdGFz9dJiIiciUq98uM69WrR3BwMHv27AEgPDycpKQkhzK5ubmcOHGiyH4rFosFPz8/h6nKMpmgQaxtWad5REREClXuCcrff/9NcnIyERERAMTExJCSksKGDRvsZRYvXozVaqV9+/blHU7l0PBsgrL7V93dWEREpBAlPsVz+vRpe2sIwL59+9i8eTOBgYEEBgYyefJk+vfvT3h4OPHx8fzf//0f9evXJzbW9qPcpEkTevTowbBhw5gxYwY5OTmMGjWKAQMGVO8reM5X50Zw9YS0w5C4HcKbOzsiERGRSqXELSi///47rVu3pnXr1gCMHTuW1q1bM2HCBMxmM1u2bOG2226jYcOGDB06lDZt2rBixQosFou9js8//5zGjRvTpUsXbrnlFm688Ubef//9sntVlZ2b57mbB+7WaR4REZELmQyj6p1jSEtLw9/fn9TU1KrbH2X9B/DTE7ZxUR5c4OxoREREyl1Jfr91Lx5nye8oe2gtnE66eFkREZErjBIUZwmIgqvagGGF7XOcHY2IiEilogTFmVrcaZtvne3cOERERCoZJSjO1Ox2MLnA3+t080AREZHzKEFxJt9wqNPBtrztW+fGIiIiUokoQXG2/NM8SlBERETslKA4W5PeYHaHpB22QdtERERECYrTeQacu8OxOsuKiIgASlAqhxZ32OZbv9W9eURERFCCUjk07AHuPpB6EA6tc3Y0IiIiTqcEpTJw84TGt9qWdZpHRERECUqlkX81z/bvIS/HubGIiIg4mRKUyqJeJ/AKhozjsHeZs6MRERFxKiUolYXZzTayLMDmz50bi4iIiJMpQalMrhlom/85V3c4FhGRK5oSlMokohVcdS1Yc2Dj/5wdjYiIiNMoQals2j5km2+YCdY8p4YiIiLiLEpQKptmt4NnDUg9BLt/dXY0IiIiTqEEpbJx84DW99uW13/o3FhEREScRAlKZdTmAdt8zyI4ud+poYiIiDiDEpTKKCgaom8GDPj9Y2dHIyIiUuGUoFRW+Z1lN30KuVnOjUVERKSCKUGprBrEgt9VkJEMO35wdjQiIiIVSglKZWV2PdcXRZ1lRUTkCqMEpTK7ZhC4uMKhNXB4o7OjERERqTBKUCoz37Bzdzle+R/nxiIiIlKBlKBUdjeOAUy2+/Mk/eXsaERERCqEEpTKLqQRNLnVtrzqdaeGIiIiUlGUoFQFN461zbd8DScPODcWERGRCqAEpSq46hqodxMYebD6TWdHIyIiUu6UoFQVHZ6wzTd+CqcSnRuLiIhIOVOCUlXUuRFqtoO8LFjzrrOjERERKVdKUKoKk+lcK8r6D+HMSefGIyIiUo5KnKAsX76c3r17ExkZiclkYs6cOQ7bDcNgwoQJRERE4OnpSdeuXdm9e7dDmRMnTnDffffh5+dHQEAAQ4cO5fTp05f1Qq4IDWMhrDlkn4K17zs7GhERkXJT4gQlPT2dVq1a8c477xS6fdq0abz55pvMmDGDtWvX4u3tTWxsLJmZmfYy9913H9u3b2fhwoXMmzeP5cuXM3z48NK/iiuFyQQdzl7RE/c2pCc7Nx4REZFyYjIMwyj1k00mvv/+e/r27QvYWk8iIyN54oknePLJJwFITU0lLCyMmTNnMmDAAP7880+aNm3K+vXrufbaawFYsGABt9xyC3///TeRkZGX3G9aWhr+/v6kpqbi5+dX2vCrJqsV3u8ECVug/Qjo+ZKzIxIRESmWkvx+l2kflH379pGQkEDXrl3t6/z9/Wnfvj1xcXEAxMXFERAQYE9OALp27YqLiwtr164ttN6srCzS0tIcpiuWiwt0m2xbXv8BnNjn3HhERETKQZkmKAkJCQCEhYU5rA8LC7NvS0hIIDQ01GG7q6srgYGB9jIXmjp1Kv7+/vYpKiqqLMOueqJvto2LYs2Bxf9ydjQiIiJlrkpcxTN+/HhSU1Pt06FDh5wdkvPlt6Js+waObHJuLCIiImWsTBOU8PBwABITHQcSS0xMtG8LDw8nKSnJYXtubi4nTpywl7mQxWLBz8/PYbriRbSCFnfZlhdNcmooIiIiZa1ME5S6desSHh7Ob7/9Zl+XlpbG2rVriYmJASAmJoaUlBQ2bNhgL7N48WKsVivt27cvy3Cqv5ufAbM77F0Ke367ZHEREZGqosQJyunTp9m8eTObN28GbB1jN2/ezMGDBzGZTIwePZp//etf/Pjjj2zdupVBgwYRGRlpv9KnSZMm9OjRg2HDhrFu3TpWrVrFqFGjGDBgQLGu4JHz1KgDbR+yLS+aaLvCR0REpBoo8WXGS5cu5aabbiqwfvDgwcycORPDMJg4cSLvv/8+KSkp3Hjjjbz77rs0bNjQXvbEiROMGjWKuXPn4uLiQv/+/XnzzTfx8fEpVgxX9GXGF0pPhjevhqw06P0GtBni7IhEREQKVZLf78saB8VZlKBcIO4d+OVp8KwBozaAd5CzIxIRESnAaeOgiJO0+4dtCPwzJ2HRBGdHIyIictmUoFQHZlfo9R/b8qbP4OAa58YjIiJymZSgVBe12kPrgbbleWMhL9e58YiIiFwGJSjVSdfJtn4oSdth3XvOjkZERKTUlKBUJ95BtiQFYMmLkHbEufGIiIiUkhKU6qb1QKjZDrJPw/z/g6p3kZaIiIgSlGrHxQVu/Q+4uMKfc2Hbt86OSEREpMSUoFRH4S2g4//Zln96Ak4VfpdoERGRykoJSnXVYSxEXA2ZKfDjYzrVIyIiVYoSlOrK7Aa3z7DdTHD3L7bxUURERKoIJSjVWWgTuPlZ2/KC8ZBy0LnxiIiIFJMSlOouZhREtYfsU/DDSN3xWEREqgQlKNWdixn6TgdXT9i3HNa84+yIRERELkkJypUgKBpiX7AtL5oEh9Y7NRwREZFLUYJypbj2QWjaF6y58M2Dtjsfi4iIVFJKUK4UJhPc9ibUqAOpB2HOSF16LCIilZYSlCuJhz/cOdN26fHOn2DNdGdHJCIiUiglKFeayNbQ/Wx/lIUT4PAG58YjIiJSCCUoV6J2w6BJb7DmwNdDIP24syMSERFxoATlSmQywW1vQ2A9W3+U2UMgL8fZUYmIiNgpQblSeQbAgC/B3Rf2r7CNNCsiIlJJKEG5koU2hv7/BUyw/r+wYaazIxIREQGUoEijnnDzM7bln56EA3HOjUdERAQlKALQ4cmzg7jlwNcDIeWQsyMSEZErnBIUsXWa7fsuhLeA9GPw+Z1wJsXZUYmIyBVMCYrYuHvDPV+BbwQc+xNm3Q+5Wc6OSkRErlCuzg5AKhH/mnDfbPiop+3Knh9Gwu3vg4vyWJHSsFoNcq0GuVYreVbDcTIMcvMMrIbtsdUAq2F7bLXalo3z1xlgGOfKGWcfG2AvZ1s27HexMMgvx7ltXHiXC9uDc885b8t59Zz/uOCzL84o59tqmEymkj+nWPUWp57i7bsUIZZZjMWpqbB6atbwpFmkf3F2UC6UoIij8BZw9/9sp3m2zrYlLV0nOTsqkcuWnWvldFYupzNzOZWVQ3pWHunZuWTY57mcybFyJiePzLPTmew8snKtZOXmkZ1rPbtsJSfPSnaulew823JOrmGb51nJybMlHDlWq253JVXave1r8eLtLZy2fyUoF0jPyiUjO48QX4uzQ3Ge6Juh95vwwyOw8jVbktL2IWdHJWKXk2fl+OksktKyOHYqixPp2SSnZ3MiPYsT6TmkZGSTeibHYcrKtTo7bDsXE5hdTLiYTJhdTJhNJkxn15ldTJhM59a5mEy4uNjmJs7OTefmJs7Oz263LZ+3HtvK/G3A2WXTecv5688rgONigTIXUZrWgvJUnETRKFZbUMnrtdVdNoWKE2PxXmvx1A70KmbJ8qEE5TwfrNjLS/P/YkC7KP7V13lZY6XQ+j5I/RuWvmi7/NizBjTv7+yo5ApgGAYn0rM5cCKDQycyOJKSyZGUMxxNPcPhlEwS0zI5kZ5d6vq93M34WFzxsbjiZTHj5e6Kt7tt7uluxtPNjKe7GQ83MxZXF/vc4uqCu6sLFlcz7q4m3M1m3Mwm3FxdcDe74GZ2wdVsws3FBTdXW6Lh5uKC2WzC1eVcIpKfgIjIxSlBOU9UoBe5VoO4+GRnh1I5dPo/OHUUNnwM3w0Hdx9oGOvsqKSayMrNY9/xdPYknWZ34mn2JJ1mf3I6B5MzOJWVe8nnu7qYCPaxEOJrIcjHnUBvd4K83anh7U4NL3cCPN3w93TDL3/u4Ya3xYyrWX2qRKoCJSjnua5uECYTxB9LJyktk1A/D2eH5FwmE/R6FbJP2/qjfD0I7v8W6tzo7MikiknJyGb7kTS2H0ll+5E0dhxJY+/xdPKsRTc2R/h7EBXoRc0ATyICPIgM8CTS35MwPw9C/SwEernj4qKWCJHqSgnKefy93Gga4cf2I2nE7U2mz9VXOTsk53MxQ9/pkHUads2HL+6GwT/CVW2cHZlUUlarwa6kU2w8kMLGgyfZeOAke4+nF1rW18OVBqE+NAj1pX6oD/VCvKkd5EXNGl54uJkrOHIRqUzKPEGZNGkSkydPdljXqFEj/vrrLwAyMzN54okn+Oqrr8jKyiI2NpZ3332XsLCwsg6lVGLqBdkSlHglKHZmN7hzJnx+h+3y48/6w5CfIKyZsyOTSsAwDOKPnWZ1fDKr9yQTtzeZ1DMF745dK9CLZpF+Zyd/mkT4EeZnUX8MESlUubSgNGvWjEWLFp3bieu53YwZM4affvqJ2bNn4+/vz6hRo+jXrx+rVq0qj1BK7Pr6QXywch9xe9UPxYGbB9zzJfyvLxz+HT65DQbPhbCmzo5MnCA9K5eVe46z+M8kluxMIumU46B+3u5mWkUF0KZ2Da6pVYPWtQII8HJ3UrQiUhWVS4Li6upKeHh4gfWpqal8+OGHfPHFF9x8880AfPzxxzRp0oQ1a9Zw3XXXlUc4JdK2TiBmFxMHkjM4knKGyABPZ4dUeVh84f5v4H994Ogf8ElvJSlXkOOns1iwLYGFOxKJ25tM9nmX7VpcXbi2Tg2ujw7m+uggWlzlr86oInJZyiVB2b17N5GRkXh4eBATE8PUqVOpVasWGzZsICcnh65du9rLNm7cmFq1ahEXF1dkgpKVlUVW1rn/0NLS0sojbAB8PdxofpU/fxxKIS4+mf5tapbbvqokzxow6AclKVeIk+nZLNiewLwtR4iLT+b8Pq1RgZ50aRxGlyahtK0TqD4jIlKmyjxBad++PTNnzqRRo0YcPXqUyZMn06FDB7Zt20ZCQgLu7u4EBAQ4PCcsLIyEhIQi65w6dWqBfi3lKaZeEH8cSmG1EpTCKUmp1nLyrCz5K4nZG/5myV9J5J6XlbSs6U/P5hF0axpKdIiP+o+ISLkp8wSlZ8+e9uWWLVvSvn17ateuzddff42nZ+lOl4wfP56xY8faH6elpREVFXXZsRbl+uggZiyLZ83eZAzD0JdwYQokKbfCwO8hopWzI5NS2pN0iq9//5vvNv7N8dPnBkJrGuHHra0iuLVFJLWCnDuypIhcOcr9MuOAgAAaNmzInj176NatG9nZ2aSkpDi0oiQmJhbaZyWfxWLBYqm4oeevrVMDN7OJwylnOHTijL6Ui5KfpHx6OxzZBDN72242WKu9syOTYsrNs7LozyT+F7ef1ecNUBjsY6HfNVdxZ5uaNAjzdWKEInKlKvdebKdPnyY+Pp6IiAjatGmDm5sbv/32m337zp07OXjwIDExMeUdSrF5ubvSqmYAAHF7jzs3mMouP0mpFQNZqfBpX4hf4uyo5BJOpmfz7tI9dHplKQ9/toHV8cm4mKBrkzD+O+ha4sbfzNO3NFFyIiJOU+YtKE8++SS9e/emdu3aHDlyhIkTJ2I2m7nnnnvw9/dn6NChjB07lsDAQPz8/Hj00UeJiYmpFFfwnC8mOojfD5xkdXwyd7et5exwKjcPf7j/O5h1H8Qvhi/ugjs/gca3ODsyucDfJzP4YMU+Zq0/xJmcPAACvd0Z0DaK+66rzVW6ak1EKokyT1D+/vtv7rnnHpKTkwkJCeHGG29kzZo1hISEAPDaa6/h4uJC//79HQZqq2xiooN4a/Ee4uLVD6VY3L3gnq/gmwfhr3kw637bCLSt7nZ2ZAL8lZDGjKXxzN1y1D68fNMIPx68sS63tozQFTgiUumYDKO4N4yuPNLS0vD39yc1NRU/P79y2UdmTh4tJ/9Kdq6V357oRHSIT7nsp9rJy4UfRsKWr2yPu78A149ybkxXsO1HUnnzt938sj3Rvu6G+kE83CmaG+sHK/EWkQpVkt9v3YunCB5uZq6pFcCavSeIi09WglJcZldby4lXEKx5B359Bk4nQNcp4KKBuyrKhYmJyQS3NI/g4U7RtKjp7+ToREQuTQnKRcTUC7YnKPdfV9vZ4VQdLi4Q+wL4hsHCCbD6LTidBH3esd3XR8rNnqRT/PuXXSzYbhtXyGSCW1tG8tjN9dXhVUSqFCUoF3F9/SBeW4TGQykNkwlueBy8Q8+e8pkF6cfhrk9sQ+ZLmTqccobXF+7i241/YzWUmIhI1acE5SJa1QzA081Mcno224+k0fwqNY2X2NX3gHcwfD0I4n+Dj3vCvV+DX6SzI6sWTqZn8/aSPXwad4DsPNu9cbo1DePJ7o1oFK7ERESqLnUKuAh3VxdubhwKwMzV+50bTFXWoBsMmWdrTUnYCv/tYptLqWXm5DFjWTwdX1nChyv3kZ1npX3dQL575Hr+O+haJSciUuUpQbmEhzrUBeCHzYdJTMt0cjRV2FVt4KFFENwITh2Bj3rA7kXOjqrKsVoN5mw6TJdXl/HS/L84lZlL43BfZj7Qlq+GX8c1tWo4O0QRkTKhBOUSWteqQbs6geTkGXy8ar+zw6naatSGob9CnQ6Qfdo2oNvvHzk7qipj3b4T9HlnFaNnbeZwyhnC/Tx45Y6W/PRYBzo3ClUfKRGpVpSgFMOwjvUA+HztAU5n5To5mirOM8A26myre8DIg3ljYP5TtvFTpFAHktMZ8dkG7novjq2HU/GxuDIuthFLnuzMnddGYXZRYiIi1Y86yRZDl8ahRId4E38sna/WHeShDvWcHVLV5upuGyslKBoW/wvWzoDju+HOj23D5gsAqWdyeGfJHmau2k92nhUXE9zTrhZjujUk2Kfibp4pIuIMakEpBhcXE8POJiUfrdxHztmrJeQymEzQcRzc9T9w9bRd4fNBNzix19mROV1unpVP4/Zz07+X8v7yvWTnWenQIJj5j3fkhdtbKDkRkSuCEpRi6tv6KoJ9LBxJzeSnLUedHU710bQPPLgAfCPh+E74782wd6mzo3KapTuT6PnGCp77YTsn0rOpH+rDxw+05dOh7XVljohcUZSgFJOHm5kh19tGk31v+V6q4C2MKq/Iq2H4Eoi8Bs6chE/7wZrpcAUd450Jpxj80TqGfLye3UmnqeHlxpQ+zZj/eAduahTq7PBERCqcEpQSuP+62ni5m/nzaBqr9iQ7O5zqxTccHvgZWt5t6zy74J8w5xHIqd6XdiedymT8d1vo+cZylu06hpvZxEM31mXpkzcxKKYObmb9iYrIlUmdZEsgwMudu66NYubq/fxn4U6uqxeIq35Ayo6bJ9z+HoS3hIXPwR9f2E773P1ZtRt59kx2Hh+s2MuMZfGkZ+cB0KNZOE/1bEzdYG8nRyci4nz6dS2hYR3r4WNxZePBFN74bbezw6l+TCa4fpTtUmSPADi8Ad7vDAdWOzuyMpGbZ+WLtQfp9MoSXl24i/TsPFpFBTD74RhmDGyj5ERE5CyTUQU7U6SlpeHv709qaip+fn4Vvv8f/zjCY19uwmSCTx9sz40Ngis8hivCiX3w1X2QtB1cXKH7v6D9w7YkpooxDINfticw7Zed7D2WDkDNGp6Mi21E75aRuGgsExG5ApTk91sJSimN/24rX647SLCPhZ8fv5FQXw+nxFHtZafDj4/Btm9sj5vfAbe9Ce5Vo6XBMAxW7jnOq7/uYvOhFAACvd159Ob63Nu+FhZXs3MDFBGpQEpQKkBmTh593l7FzsRTXB8dxKdD22tEz/JiGLbB3H59Fqy5ENoU7voUgus7O7KLiotP5rWFu1i3/wQAXu5mHrqxLsM61sPXw83J0YmIVDwlKBVkT9Iper+1ijM5eYzt1pDHujRwWixXhAOr4evBkJ4E7r7Q521o1tfZURWwbt8JXl+0i9Xxtiu93F1duL99bR7uXE8tbSJyRVOCUoG+2fA3T87+AxcTvD6gNbe1ql5Xm1Q6aUfhmwfh4NlOs9c9Al0n24bPdyLDMFi66xjvLtnD+v0nAXAzmxjQthYjb6pPuL8SExERJSgV7KlvtjDr90MAPH1LY4Z1qKc7y5anvFxYPAVWvWF7XLOd7T4+/jUrPJTcPCsLtifw7pJ4dhxNA8Dd7MId19bkkc7R1KzhVeExiYhUVkpQKlie1eD5eTuYuXo/AEOur8NztzZVn5Ty9tfP8P3DkJUKnoG2MVQadq+QXadm5PDV+oN8sno/R1Jtg8l5uZu5/7raDL2xLmF+ajEREbmQEhQnMAyDD1fu418//QlAbLMw3hjQGg83XaVRrk7sg9mD4egftsfXPwZdJoC5fDqh7k48xSdx+/l2w2HO5NgGWAvyduf+62oz5Po61PB27qkmEZHKTAmKE83bcoSxs/4gO89Kkwg/Xry9Oa1r1XB2WNVbbhb8+hyse8/2uGZbuOMjCKhVJtVnZOcyb8tRZq0/xIYDJ+3rG4f78uCNdbmtVaQSURGRYlCC4mRr9ybzj882kJKRg8kEA9rW4qkejQjw0n/X5erPufDDSMhMBQ9/6PMONOldqqqsVoONB0/y/abD/Lj5CKeycgEwu5jo0jiUITfUIaZekPoaiYiUgBKUSuDYqSymzv+T7zYeBmyDc/2zR2P6t6mpvinl6eQB+OYB2xD5AG0egNgXwf3SnVUNw+CvhFP8sPkIc/84wuGUM/ZttQK9uLttFHe2qUmo+peIiJSKEpRKZO3eZJ77YRu7Ek8DEBXoyeCYOtzVNgo/DdZVPnKzYcm/zl3lE9LYdsonrFmBonlWg00HT7JwRyILdySy93i6fZuPxZXuzcLof01NYuoFaTh6EZHLpASlksnJs/Lxqn28uzSelIwcALzdzdzRpib3X1ebBmG+To6wmopfbLvK53QimC22e/m0G8bx9GxWxyezfNcxlvyVRHJ6tv0p7mYXbm4cym1XR3Jz41D1LRERKUNKUCqpM9l5zNl8mI9W7mN30mn7+vqhPvRoFk6P5uE0i/RTv4aylH6cnG8fxm3vQgDWu7bhkdNDOUaAvYifhys3NQ6lW9MwOjUM0TD0IiLlRAlKJWcYBqv2JDNz9T6W7TpGTt65t+CqAE9urB9Mu7qBtKsbSM0ankpYSiAnz8ruxNNsO5zKhgMn2XDwJHuSTjHY/CtPu36BxZTDCcOHd3wew9SkNzc3DqVt3UDczC7ODl1EpNpTglKFpGXmsPjPJBZsS2DpriQyc6wO2yP9Pbimdg2aRvrRJMKPZhF+hPharvikxTAMEtOy2JN0mj1Jp/jz6Cm2H01lV8JpsvOsBcrXC/amV3gKQ49NJSD1L9vK1vdDj5fAolNsIiIVQQlKFXUmO4/V8cdZt/8E6/adYOvfqeRaC749Qd7uRIf4UDvIizrB3tQJ8qZWoBcRAR4EerlXm86cmTl5JKZl8vfJMxw6kcGhkxkcPHGGg8npxB9L5/TZS38v5OvhStMIP66pXYM2tWpwTe0aBOYPoJabBUtePNuB1rCNldLnXajboeJemIjIFUoJSjWRkZ3LxgMpbDmcwp9HT/Hn0TT2HjtNITmLnbvZhTB/CxF+ngT7uhPo7U6gt4VgH3dqeLnj5+mGn4crvh5u+Hm64mNxxcPVXK5JjWEY5OQZpGflciozl7TMHE5l5nIqM4eTGdkkp2dz4nQ2JzKyOX46m8TUTBLSMkk9k3PRes0uJmoHeREd4kOjMF+aRfrRLNKfqMBinBbbvxK+HwGpB22P2z8MXSYW63JkEREpnSqToLzzzju88sorJCQk0KpVK9566y3atWt3yeddKQlKYTJz8tideJp9yensP57O/uR0DiRncPBEBsdPZ1Had9PDzQUvd1c83cy4u7rgbnbBzdWEu9kFV7MLLiZwMZlwMZnI/+23GgZW69m5YZCdZ5CdayUnz0p2rpXMnDzOZOeRkZNH3sWyqouwuLpwVQ1Pomp4USvQi6hAT2oFep1tQfLG3fUy+o5kpsGvz8LGT2yPA6Oh73So1b70dYqISJGqRIIya9YsBg0axIwZM2jfvj2vv/46s2fPZufOnYSGhl70uVdygnIxOXlWkk5lkZB6hiMpmSSfzuJEuq2FIvlsC0V+y0XamRxOZeWWOqEpLU83M74ermcnN2p4uRHobSHIJ7+1x51wPw/C/T0I8/XAz9O1/Pvb7F4EPz4Kp44AJltrys3PgsWnfPcrInKFqRIJSvv27Wnbti1vv/02AFarlaioKB599FH++c9/XvS5SlDKhtVqcCYnj4xsW0uHbTmXnDzD3gqSlWu1t5BYDdvpmjyrYW9JyZ+bTSbcXV1wM9smd1cTHm5me6uMp7sZL3dz5b1a5kwKLBgPf3xhe+xfC3q/DvW7ODMqEZFqpSS/364VFJOD7OxsNmzYwPjx4+3rXFxc6Nq1K3Fxcc4I6Yrk4mLC2+KKt8UpH4PKxTMAbp8OLfrD3NG2vimf9YNW99iGyvcKdHaEIiJXFKf8Mh0/fpy8vDzCwsIc1oeFhfHXX38VKJ+VlUVWVpb9cVpaWrnHKFeo+l3hkTWw+HlY+x788SXs/hW6TYFW94JLJW0BEpGKZxhgWMGaZ5sbeWeX82zb7MsXlrGeXbae224vY5y37YLt9nLWguscpgvrsAIXrjMKlrOXOTuPaGn7TnSSKvGv89SpU5k8ebKzw5ArhcUHer4MzfvDj4/BsT9td0ne+Cn0ehXCmzs7QpHKzZoHedlnp5yLLOeANefiy9Y827I19+zj3ILLDlNeCR6fl1DkP85PMs5fticVF5QzCo65VK1c++CVl6AEBwdjNptJTEx0WJ+YmEh4eHiB8uPHj2fs2LH2x2lpaURFRZV7nHKFi2oHD6+ANdNh6UtwaA281xGuGwGd/g88/J0doUjR8nIgJwNyzpw3z7Qt556d52RC7tn1uedPWbbyuVmQl2Wb56+3r8s+b57tuK66/3CXhMnl7GQGF/N5yy6O20wmx/WYHMubXM6WObvdxXxBmfzn4fg4v16Hx6YLnmM6r5zpXLmal76qtjw5JUFxd3enTZs2/Pbbb/Tt2xewdZL97bffGDVqVIHyFosFi8VSwVGKAGY3uOExaN7P1on2zx8h7m344yu4+RloPQjMVaIhUiozw7AlDJlpkHXq7HR2Ofs0ZJ2G7FNn5+lnpwuWczIgO8P2OCfD1upQWbi4gtnd9vdkdgcXt7PL+Y9dCy7nl7E/dnXc5uJq+9tzcT332OVsEuDw+Pz52WXT+Y9dbHOT2bEOU2Hz88uev+28pOH8bfnJgJSK075Zx44dy+DBg7n22mtp164dr7/+Ounp6TzwwAPOCkmkaP414e5PYfdCW6KSvBvmjYF1/4XYFyD6ZmdHKM6Wn2RkJEPGCThz0nHKTLFdLZaZalvOTD07pdnmRl75xGVyATcvcPMEV0/b3M3j7HJhcw9wtdgeu7qf99jDlkC4Wmx3B3d1v2BuOZdk2NefTUbUd0tKwWkJyt13382xY8eYMGECCQkJXH311SxYsKBAx1mRSqVBN6jXGdZ/CEunQtIO+PR2qN/NNnZK5NXOjlDKUs4ZOJ0E6cds89OJkHEc0s9OGcchPdmWlJw5YTsNcjlMLrZ7Q1n8zs59wd3H1i/K4gvuvrZld2/bendvW/Lh7mMbBdnN69w6N0/bstld/8VLlaSh7kVKK+MELJsG6/9r6zgH0OQ2uOkZCG3s3Njk4vJyIO0InDp6wTzBloScSrAlJFmpJa/b7A5eQeBZ47wpADwCzs09Amx9mDz8wcPPNrf42RIKJRNSjVWJgdouhxIUqVSS422daLfOBgzABC3vgg5PQEgjZ0d3ZTqTAqmHIOUgpByyLacegtTDkPq3LQmhmF99Zgv4hIJ3yLm5d7Bt7hUM3kFnE5JA21xJhkiRlKCIOEPSn7DkBfhz7rl1jW6BGx6HWtc5L67qKC8X0v6GE3tt08n9cPKAbZ5ywNan41LM7uAbDr6R4Bdhm/uGn5t8wm0JiYe/Eg6RMqIERcSZjmyC5f+Gv37C/l96VHuIGQWNeto6EsqlWa2QdhiS99imE3vPzU8euPRVKl5BEFAL/KPOzmuC31W2uX9NW+uHOm+KVCglKCKVwfHdsPot22i0edm2dT7h0Pp+uGYQ1Kjt3Pgqi5wztmN1fJfjPHmPbYyOopjdoUZdCKxrm9eoDTXq2KaAWrZTLSJSqShBEalMTiXAuvdh4/9sV4MAYLLdiLDFXbZWFY8r4HOcmQrHdsGxv2zT8V1wbKetn0hR/UFcXG3JR1B9CIq2zQPr2Sa/yLODVYlIVaEERaQyys2GnT/Dho9h79Jz683uEN0Fmt0OjXpU/RFq04/bEg97EvKX7fGpo0U/xyPA1qE4uCEENzg7bwgBtTUQnkg1ogRFpLI7sRc2fwk75th+xPOZzHBVG6jXyTbeSs22tgGwKpu8HFs/kPz+Icd32lpHju+yjQdSFN8IWyIS0tiWgIQ0guBGtqti1BFVpNpTgiJSVRiG7eqfHXNg+xzbD/35XD0hotXZqaVtHtK4/DvaGoZtqPXUv89dHXNyn22ef9VM/tgvhfGvZRsLJrihLd781hHPgPKNW0QqNSUoIlVVykHYuwz2LbPN05MKljGZbVej1Kht6wwaUNvWAuHhf24wMHef8+4RcvYmYBfePC779Nlh2c8OzZ5+HE4n2AYsSzti234xbl62fiGB0ee1hjSAoAa2UU1FRC6gBEWkOjAM2ymTo384TllpFReDZ41zV8acPwU1sJ2u0WW6IlICJfn9Vu8zkcrKZDrbX6ORbWRasI0Ncjrx7AipB85OB20tIJmpZ29Gl2Jr/TCstvLG2cnsfvb+LGfv2eLmZRsrxCsIvALPjo4aCv5X2VpofCPUEiIiTqMERaQqcXGxjXrqFwG12js7GhGRcqP2WREREal0lKCIiIhIpaMERURERCodJSgiIiJS6ShBERERkUpHCYqIiIhUOkpQREREpNJRgiIiIiKVjhIUERERqXSUoIiIiEilowRFREREKh0lKCIiIlLpKEERERGRSkcJioiIiFQ6rs4OoDQMwwAgLS3NyZGIiIhIceX/buf/jl9MlUxQTp06BUBUVJSTIxEREZGSOnXqFP7+/hctYzKKk8ZUMlarlSNHjuDr64vJZCItLY2oqCgOHTqEn5+fs8O7Yui4O4eOu3PouDuHjrtzlNdxNwyDU6dOERkZiYvLxXuZVMkWFBcXF2rWrFlgvZ+fnz7ATqDj7hw67s6h4+4cOu7OUR7H/VItJ/nUSVZEREQqHSUoIiIiUulUiwTFYrEwceJELBaLs0O5oui4O4eOu3PouDuHjrtzVIbjXiU7yYqIiEj1Vi1aUERERKR6UYIiIiIilY4SFBEREal0lKCIiIhIpVPlE5R33nmHOnXq4OHhQfv27Vm3bp2zQ6pWJk2ahMlkcpgaN25s356ZmcnIkSMJCgrCx8eH/v37k5iY6MSIq6bly5fTu3dvIiMjMZlMzJkzx2G7YRhMmDCBiIgIPD096dq1K7t373Yoc+LECe677z78/PwICAhg6NChnD59ugJfRdVzqeM+ZMiQAp//Hj16OJTRcS+ZqVOn0rZtW3x9fQkNDaVv377s3LnToUxxvlcOHjxIr1698PLyIjQ0lHHjxpGbm1uRL6VKKc5x79y5c4HP+8MPP+xQpiKPe5VOUGbNmsXYsWOZOHEiGzdupFWrVsTGxpKUlOTs0KqVZs2acfToUfu0cuVK+7YxY8Ywd+5cZs+ezbJlyzhy5Aj9+vVzYrRVU3p6Oq1ateKdd94pdPu0adN48803mTFjBmvXrsXb25vY2FgyMzPtZe677z62b9/OwoULmTdvHsuXL2f48OEV9RKqpEsdd4AePXo4fP6//PJLh+067iWzbNkyRo4cyZo1a1i4cCE5OTl0796d9PR0e5lLfa/k5eXRq1cvsrOzWb16NZ988gkzZ85kwoQJznhJVUJxjjvAsGHDHD7v06ZNs2+r8ONuVGHt2rUzRo4caX+cl5dnREZGGlOnTnViVNXLxIkTjVatWhW6LSUlxXBzczNmz55tX/fnn38agBEXF1dBEVY/gPH999/bH1utViM8PNx45ZVX7OtSUlIMi8VifPnll4ZhGMaOHTsMwFi/fr29zPz58w2TyWQcPny4wmKvyi487oZhGIMHDzb69OlT5HN03C9fUlKSARjLli0zDKN43ys///yz4eLiYiQkJNjLTJ8+3fDz8zOysrIq9gVUURced8MwjE6dOhmPP/54kc+p6ONeZVtQsrOz2bBhA127drWvc3FxoWvXrsTFxTkxsupn9+7dREZGUq9ePe677z4OHjwIwIYNG8jJyXF4Dxo3bkytWrX0HpShffv2kZCQ4HCc/f39ad++vf04x8XFERAQwLXXXmsv07VrV1xcXFi7dm2Fx1ydLF26lNDQUBo1asSIESNITk62b9Nxv3ypqakABAYGAsX7XomLi6NFixaEhYXZy8TGxpKWlsb27dsrMPqq68Ljnu/zzz8nODiY5s2bM378eDIyMuzbKvq4V8mbBQIcP36cvLw8hwMFEBYWxl9//eWkqKqf9u3bM3PmTBo1asTRo0eZPHkyHTp0YNu2bSQkJODu7k5AQIDDc8LCwkhISHBOwNVQ/rEs7LOevy0hIYHQ0FCH7a6urgQGBuq9uAw9evSgX79+1K1bl/j4eJ5++ml69uxJXFwcZrNZx/0yWa1WRo8ezQ033EDz5s0BivW9kpCQUOjfQ/42ubjCjjvAvffeS+3atYmMjGTLli089dRT7Ny5k++++w6o+ONeZRMUqRg9e/a0L7ds2ZL27dtTu3Ztvv76azw9PZ0YmUj5GzBggH25RYsWtGzZkujoaJYuXUqXLl2cGFn1MHLkSLZt2+bQr03KX1HH/fy+Uy1atCAiIoIuXboQHx9PdHR0RYdZdTvJBgcHYzabC/TsTkxMJDw83ElRVX8BAQE0bNiQPXv2EB4eTnZ2NikpKQ5l9B6UrfxjebHPenh4eIHO4bm5uZw4cULvRRmqV68ewcHB7NmzB9BxvxyjRo1i3rx5LFmyhJo1a9rXF+d7JTw8vNC/h/xtUrSijnth2rdvD+Dwea/I415lExR3d3fatGnDb7/9Zl9ntVr57bffiImJcWJk1dvp06eJj48nIiKCNm3a4Obm5vAe7Ny5k4MHD+o9KEN169YlPDzc4TinpaWxdu1a+3GOiYkhJSWFDRs22MssXrwYq9Vq/5KRy/f333+TnJxMREQEoONeGoZhMGrUKL7//nsWL15M3bp1HbYX53slJiaGrVu3OiSHCxcuxM/Pj6ZNm1bMC6liLnXcC7N582YAh897hR73Mu92W4G++uorw2KxGDNnzjR27NhhDB8+3AgICHDoYSyX54knnjCWLl1q7Nu3z1i1apXRtWtXIzg42EhKSjIMwzAefvhho1atWsbixYuN33//3YiJiTFiYmKcHHXVc+rUKWPTpk3Gpk2bDMD4z3/+Y2zatMk4cOCAYRiG8dJLLxkBAQHGDz/8YGzZssXo06ePUbduXePMmTP2Onr06GG0bt3aWLt2rbFy5UqjQYMGxj333OOsl1QlXOy4nzp1ynjyySeNuLg4Y9++fcaiRYuMa665xmjQoIGRmZlpr0PHvWRGjBhh+Pv7G0uXLjWOHj1qnzIyMuxlLvW9kpubazRv3tzo3r27sXnzZmPBggVGSEiIMX78eGe8pCrhUsd9z549xpQpU4zff//d2Ldvn/HDDz8Y9erVMzp27Givo6KPe5VOUAzDMN566y2jVq1ahru7u9GuXTtjzZo1zg6pWrn77ruNiIgIw93d3bjqqquMu+++29izZ499+5kzZ4xHHnnEqFGjhuHl5WXcfvvtxtGjR50YcdW0ZMkSAygwDR482DAM26XGzz33nBEWFmZYLBajS5cuxs6dOx3qSE5ONu655x7Dx8fH8PPzMx544AHj1KlTTng1VcfFjntGRobRvXt3IyQkxHBzczNq165tDBs2rMA/QDruJVPY8QaMjz/+2F6mON8r+/fvN3r27Gl4enoawcHBxhNPPGHk5ORU8KupOi513A8ePGh07NjRCAwMNCwWi1G/fn1j3LhxRmpqqkM9FXncTWcDFxEREak0qmwfFBEREam+lKCIiIhIpaMERURERCodJSgiIiJS6ShBERERkUpHCYqIiIhUOkpQREREpNJRgiJSRRmGwfDhwwkMDMRkMtmHpZaCsrOzqV+/PqtXr67wfV933XV8++23Fb5fkapOCYpIFbVgwQJmzpzJvHnzOHr0qMNt08XRjBkzqFu3Ltdffz0zZ87EZDJddNq/fz+TJk3i6quvLlDX/v37S5QQPvvss/zzn//EarWW7YsSqeaUoIhUUfk3bbz++usJDw/H1dW1QJns7GwnRFa5GIbB22+/zdChQwG4++67OXr0qH2KiYlh2LBhDuuioqLKbP89e/bk1KlTzJ8/v8zqFLkSKEERqYKGDBnCo48+ysGDBzGZTNSpUweAzp07M2rUKEaPHk1wcDCxsbEAbNu2jZ49e+Lj40NYWBgDBw7k+PHj9vrS09MZNGgQPj4+RERE8Oqrr9K5c2dGjx5tL2MymZgzZ45DHAEBAcycOdP++NChQ9x1110EBAQQGBhInz592L9/v0Pcffv25d///jcREREEBQUxcuRIcnJy7GWysrJ46qmniIqKwmKxUL9+fT788EMMw6B+/fr8+9//dohh8+bNmEwm+y3hL7Rhwwbi4+Pp1asXAJ6enoSHh9snd3d3vLy8HNaZzebivhUMGTKk0FaYpUuXAmA2m7nlllv46quvil2niChBEamS3njjDaZMmULNmjU5evQo69evt2/75JNPcHd3Z9WqVcyYMYOUlBRuvvlmWrduze+//86CBQtITEzkrrvusj9n3LhxLFu2jB9++IFff/2VpUuXsnHjxhLFlJOTQ2xsLL6+vqxYsYJVq1bh4+NDjx49HFpylixZQnx8PEuWLOGTTz5h5syZDknOoEGD+PLLL3nzzTf5888/ee+99/Dx8cFkMvHggw/y8ccfO+z3448/pmPHjtSvX7/QuFasWEHDhg3x9fUt0esprjfeeMOh9eXxxx8nNDSUxo0b28u0a9eOFStWlMv+Raqrgm3CIlLp+fv74+vri9lsJjw83GFbgwYNmDZtmv3xv/71L1q3bs2LL75oX/fRRx8RFRXFrl27iIyM5MMPP+Szzz6jS5cugC3JqVmzZolimjVrFlarlQ8++ACTyQTYkoeAgACWLl1K9+7dAahRowZvv/02ZrOZxo0b06tXL3777TeGDRvGrl27+Prrr1m4cCFdu3YFoF69evZ9DBkyhAkTJrBu3TratWtHTk4OX3zxRYFWlfMdOHCAyMjIEr2WfFu3bsXHx8dh3YX3V/X398ff3x+A7777jvfee49FixY5vC+RkZEcOnQIq9WKi4v+LxQpDiUoItVMmzZtHB7/8ccfLFmypMAPLdj6sZw5c4bs7Gzat29vXx8YGEijRo1KtN8//viDPXv2FGipyMzMJD4+3v64WbNmDqdQIiIi2Lp1K2A7XWM2m+nUqVOh+4iMjKRXr1589NFHtGvXjrlz55KVlcWdd95ZZFxnzpzBw8OjRK8lX6NGjfjxxx8d1h0+fJjOnTsXKLtp0yYGDhzI22+/zQ033OCwzdPTE6vVSlZWFp6enqWKReRKowRFpJrx9vZ2eHz69Gl69+7Nyy+/XKBsREREkX03LmQymQq0Hpzfd+T06dO0adOGzz//vMBzQ0JC7Mtubm4F6s2/wqU4P94PPfQQAwcO5LXXXuPjjz/m7rvvxsvLq8jywcHB9gSopNzd3QucOiqsM3JCQgK33XYbDz30kL0z7vlOnDiBt7e3khORElCCIlLNXXPNNXz77bfUqVOn0B/X6Oho3NzcWLt2LbVq1QLg5MmT7Nq1y6ElIyQkhKNHj9of7969m4yMDIf9zJo1i9DQUPz8/EoVa4sWLbBarSxbtsx+iudCt9xyC97e3kyfPp0FCxawfPnyi9bZunVrpk+fjmEY9lNPZSkzM5M+ffrQuHFj/vOf/xRaZtu2bbRu3brM9y1SnelkqEg1N3LkSE6cOME999zD+vXriY+P55dffuGBBx4gLy8PHx8fhg4dyrhx41i8eDHbtm1jyJAhBfpK3Hzzzbz99tts2rSJ33//nYcfftihNeS+++4jODiYPn36sGLFCvbt28fSpUt57LHH+Pvvv4sVa506dRg8eDAPPvggc+bMsdfx9ddf28uYzWaGDBnC+PHjadCgATExMRet86abbuL06dNs3769BEet+P7xj39w6NAh3nzzTY4dO0ZCQgIJCQkOHYNXrFhh74MjIsWjBEWkmouMjGTVqlXk5eXRvXt3WrRowejRowkICLAnIa+88godOnSgd+/edO3alRtvvLFAX5ZXX32VqKgoOnTowL333suTTz7pcGrFy8uL5cuXU6tWLfr160eTJk0YOnQomZmZJWpRmT59OnfccQePPPIIjRs3ZtiwYaSnpzuUGTp0KNnZ2TzwwAOXrC8oKIjbb7+90FNPZWHZsmUcPXqUpk2bEhERYZ/yR609fPgwq1evLlasInKOybjwpLKICLYxVa6++mpef/11Z4dSwIoVK+jSpQuHDh0iLCzskuW3bNlCt27diI+PL7SzcHl66qmnOHnyJO+//36F7lekqlMLiohUGVlZWfz9999MmjSJO++8s1jJCUDLli15+eWX2bdvXzlHWFBoaCjPP/98he9XpKpTgiIiVcaXX35J7dq1SUlJcRjrpTiGDBlCixYtyimyoj3xxBPFTqRE5Byd4hEREZFKRy0oIiIiUukoQREREZFKRwmKiIiIVDpKUERERKTSUYIiIiIilY4SFBEREal0lKCIiIhIpaMERURERCodJSgiIiJS6fw/PyQHVx02LZkAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gamma = 0.0033 # scattering rate\n", "mu_c = 0.2 # chemical potential\n", "temp = 300 # temperature\n", "\n", "freqs = np.linspace(10, 250, 100) * THz\n", "graphene = td.material_library[\"graphene\"](gamma=gamma, mu_c=mu_c, temp=temp)\n", "sigma_analytical = graphene.numerical_conductivity(freqs)\n", "plt.plot(freqs / THz, np.real(sigma_analytical * 1e6), label=\"Re($\\sigma$) ($\\mu$S)\")\n", "plt.plot(freqs / THz, np.imag(sigma_analytical * 1e6), label=\"Im($\\sigma$) ($\\mu$S)\")\n", "plt.xlabel(\"frequency (THz)\")\n", "plt.title(\"analytically calculated surface conductivity\")\n", "plt.legend()\n", "plt.show()\n" ] }, { "cell_type": "markdown", "id": "d66f68dd", "metadata": {}, "source": [ "Like other dispersive materials used in FDTD, graphene's conductivity needs to be fitted, which is automatically done when you define a graphene medium. The plot generated by `numerical_conductivity` above is the analytical result. To inspect the fitting, one can use the `plot_sigma` method as shown below. The fitted conductivity coincides well with the analytical result in this case." ] }, { "cell_type": "code", "execution_count": 17, "id": "c1591ef2", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:53:08.595831Z", "iopub.status.busy": "2023-03-27T21:53:08.595612Z", "iopub.status.idle": "2023-03-27T21:53:08.902589Z", "shell.execute_reply": "2023-03-27T21:53:08.902193Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNN0lEQVR4nOzdd3xUVf7G8c+dkklPIIUQCKEJgnSUYgOlixUWFyyABVcFC66siyKIu8hPXRcVFVx1Bdcuqy4CFiw0pShVqvSeUJOQnpk5vz8CI0NNQsikPG9f88rMueee+8xMgK/nNssYYxARERGRCs8W6AAiIiIiUjpU2ImIiIhUEirsRERERCoJFXYiIiIilYQKOxEREZFKQoWdiIiISCWhwk5ERESkklBhJyIiIlJJqLATERERqSRU2IlIqdq4cSPdu3cnKioKy7L4/PPPAx2pXLMsi6eeeqrMtztnzhwsy2LOnDnFXrdz58507ty51DOJyLlzBDqAiFQugwYNYuvWrYwbN47o6GguvvjiQEeq0l577TVCQ0MZPHjwedvGnj17+Ne//sWNN95Iq1atztt2ROTsVNiJSKnJyclh4cKFPPHEEwwbNizQcYTCwi42Nvakwu7KK68kJyeHoKCgYo/5zTff+L3es2cPY8eOpW7duirsRAJMhZ2InLPc3FyCgoLYv38/ANHR0YENJGdls9kIDg4u0bolKQZFpGzoGDuRKuDIkSM8/PDD1K1bF5fLRXx8PN26dWPZsmW+PnXr1j3l7roTj6c6dmzWhx9+yKhRo6hVqxahoaE88sgjJCcnAzBixAgsy6Ju3boAbN++nfvvv5/GjRsTEhJCTEwM/fr1Y9u2bSdtLy0tjeHDh/uy1q5dm4EDB3LgwAFfn7y8PMaMGUPDhg1xuVwkJSXxl7/8hby8vCJ9HosXL+aaa66hWrVqhIWF0aJFC1566SW/Pt9//z1XXHEFYWFhREdHc8MNN7Bu3Tq/Pk899RSWZbFp0yYGDx5MdHQ0UVFR3HHHHWRnZ/v1zcvLY/jw4cTFxREREcH111/Prl27Tso2ePBg3+d2qm2d6N1336Vdu3aEhoZSrVo1rrzySt+MWt26dVmzZg1z587Fsiwsy/J9lyceYzds2DDCw8NPyg0wYMAAEhIS8Hg8gP/vxJw5c7jkkksAuOOOO3zbmTJlCmPGjMHpdPoK/uPdc889REdHk5ube9IyESk5zdiJVAH33nsv06ZNY9iwYTRt2pSDBw+yYMEC1q1bR5s2bUo05t/+9jeCgoJ49NFHycvL45prrqFu3boMHz6cAQMGcM011xAeHg7Azz//zE8//UT//v2pXbs227ZtY9KkSXTu3Jm1a9cSGhoKQGZmJldccQXr1q3jzjvvpE2bNhw4cIDp06eza9cuYmNj8Xq9XH/99SxYsIB77rmHJk2a8OuvvzJhwgR+++23s56sMXv2bK699lpq1qzJQw89REJCAuvWrWPGjBk89NBDAHz77bf06tWL+vXr89RTT5GTk8PEiRO57LLLWLZs2UmF180330y9evUYP348y5Yt48033yQ+Pp5nn33W1+fuu+/m3Xff5ZZbbuHSSy/l+++/p3fv3iX67I8ZO3YsTz31FJdeeilPP/00QUFBLF68mO+//57u3bvz4osv8sADDxAeHs4TTzwBQI0aNU451h//+EdeffVVZs6cSb9+/Xzt2dnZfPHFFwwePBi73X7Sek2aNOHpp59m9OjR3HPPPVxxxRUAXHrppVx++eU8/fTTfPTRR3675vPz85k2bRp9+/Yt8ayhiJyGEZFKLyoqygwdOvSMfZKTk82gQYNOau/UqZPp1KmT7/UPP/xgAFO/fn2TnZ3t13fr1q0GMM8//7xf+4n9jDFm4cKFBjDvvPOOr2306NEGMJ9++ulJ/b1erzHGmP/85z/GZrOZ+fPn+y2fPHmyAcyPP/542vfodrtNvXr1THJysjl8+PApxzfGmFatWpn4+Hhz8OBBX9vKlSuNzWYzAwcO9LWNGTPGAObOO+/0G+umm24yMTExvtcrVqwwgLn//vv9+t1yyy0GMGPGjPG1DRo0yCQnJ5+U/di2jtm4caOx2WzmpptuMh6P57Tv5aKLLvL7/o459j3+8MMPvnVq1apl+vbt69fv448/NoCZN2+er+3E34mff/7ZAObtt98+aTsdO3Y07du392v79NNP/bYtIqVHu2JFqoDo6GgWL17Mnj17Sm3MQYMGERISUqS+x/crKCjg4MGDNGzYkOjoaL/dwf/9739p2bIlN91000ljHNsN+cknn9CkSRMuvPBCDhw44HtcffXVAPzwww+nzbF8+XK2bt3Kww8/fNJxgMfG37t3LytWrGDw4MFUr17dt7xFixZ069aNWbNmnTTuvffe6/f6iiuu4ODBg2RkZAD41nnwwQf9+j388MOnzXo2n3/+OV6vl9GjR2Oz+f9VfqpdtmdjWRb9+vVj1qxZZGZm+to/+ugjatWqxeWXX16inAMHDmTx4sVs3rzZ1/bee++RlJREp06dSjSmiJyeCjuRKuC5555j9erVJCUl0a5dO5566im2bNlyTmPWq1evyH1zcnIYPXo0SUlJuFwuYmNjiYuLIy0tjfT0dF+/zZs306xZszOOtXHjRtasWUNcXJzfo1GjRgDs27fvtOseKy7OtI3t27cD0Lhx45OWNWnShAMHDpCVleXXXqdOHb/X1apVA+Dw4cO+MW02Gw0aNPDrd6ptFNXmzZux2Ww0bdq0xGOc6I9//CM5OTlMnz4dKNw1PmvWLPr161eiYvHYmC6Xi/feew+A9PR0ZsyYwa233lriMUXk9HSMnUgVcPPNN3PFFVfw2Wef8c033/D888/z7LPP8umnn9KrVy/g9LM8Ho/nlMdWFXW2DuCBBx7g7bff5uGHH6Zjx46+ixf3798fr9dbrPfi9Xpp3rw5//znP0+5PCkpqVjjlYZTfT4Axphij3Wm7+F869ChA3Xr1uXjjz/mlltu4YsvviAnJ4c//vGPJR6zWrVqXHvttbz33nuMHj2aadOmkZeXx2233VaKyUXkGBV2IlVEzZo1uf/++7n//vvZt28fbdq0Ydy4cb7Crlq1aqSlpZ203vbt26lfv/45bXvatGkMGjSIF154wdeWm5t70vYaNGjA6tWrzzhWgwYNWLlyJV26dCn2jM+xGbPVq1fTtWvXU/Y5dmbvhg0bTlq2fv16YmNjCQsLK9Z2k5OT8Xq9bN682W+W7lTbONP3cLwGDRrg9XpZu3btGa8dV9zP6Oabb+all14iIyODjz76iLp169KhQ4czrnO2bQwcOJAbbriBn3/+mffee4/WrVtz0UUXFSuXiBSNdsWKVHIej8dvdydAfHw8iYmJfpcHadCgAYsWLSI/P9/XNmPGDHbu3HnOGex2+0mzVxMnTjxpFqpv376sXLmSzz777KQxjq1/8803s3v3bt54442T+uTk5Jy0m/R4bdq0oV69erz44osnFU/Hxq9ZsyatWrVi6tSpfn1Wr17NN998wzXXXHPG93oqx4rnl19+2a/9xRdfPKlvgwYNSE9PZ9WqVb62vXv3nvSZ3HjjjdhsNp5++umTZj2P/6zDwsJOWSiezh//+Efy8vKYOnUqX331FTfffPNZ1zlW6J5uO7169SI2NpZnn32WuXPnarZO5DzSjJ1IJXfkyBFq167NH/7wB1q2bEl4eDjffvstP//8s98M2t133820adPo2bMnN998M5s3b+bdd9896biwkrj22mv5z3/+Q1RUFE2bNmXhwoV8++23xMTE+PUbMWIE06ZNo1+/ftx55520bduWQ4cOMX36dCZPnkzLli25/fbb+fjjj7n33nv54YcfuOyyy/B4PKxfv56PP/6Yr7/++rS3MbPZbEyaNInrrruOVq1acccdd1CzZk3Wr1/PmjVr+PrrrwF4/vnn6dWrFx07duSuu+7yXe4kKiqqRPd1bdWqFQMGDOC1114jPT2dSy+9lO+++45Nmzad1Ld///489thj3HTTTTz44INkZ2czadIkGjVq5HeiScOGDXniiSf429/+xhVXXEGfPn1wuVz8/PPPJCYmMn78eADatm3LpEmT+Pvf/07Dhg2Jj4/3nWhyKm3atPGNnZeXV6TdsA0aNCA6OprJkycTERFBWFgY7du39x2H6XQ66d+/P6+88gp2u50BAwYU9yMUkaIK6Dm5InLe5eXlmREjRpiWLVuaiIgIExYWZlq2bGlee+21k/q+8MILplatWsblcpnLLrvM/PLLL6e93Mknn3xy0vqnu9zJ4cOHzR133GFiY2NNeHi46dGjh1m/fv0pL7Fy8OBBM2zYMFOrVi0TFBRkateubQYNGmQOHDjg65Ofn2+effZZc9FFFxmXy2WqVatm2rZta8aOHWvS09PP+pksWLDAdOvWzfd5tGjRwkycONGvz7fffmsuu+wyExISYiIjI811111n1q5d69fn2CVI9u/f79f+9ttvG8Bs3brV15aTk2MefPBBExMTY8LCwsx1111ndu7cedLlTowx5ptvvjHNmjUzQUFBpnHjxubdd9896XInx/z73/82rVu39n0OnTp1MrNnz/YtT0lJMb179zYREREG8H2XJ17u5HhPPPGEAUzDhg1P+fmd+DthjDH/+9//TNOmTY3D4TjlpU+WLFliANO9e/dTjikipcMypgRH94qIiBTDypUradWqFe+88w633357oOOIVFo6xk5ERM67N954g/DwcPr06RPoKCKVmo6xExGR8+aLL75g7dq1/Otf/2LYsGHFPqNYRIpHu2JFROS8qVu3LqmpqfTo0YP//Oc/REREBDqSSKWmwk5ERESkktAxdiIiIiKVhAo7ERERkUqiQp484fV62bNnDxEREbqJtIiIiFRqxhiOHDlCYmIiNtuZ5+QqZGG3Z8+egNzoW0RERCRQdu7cSe3atc/Yp0IWdsfOqtq5cyeRkZEBTiMiIiJy/mRkZJCUlFSks8orZGF3bPdrZGSkCjsRERGpEopy+JlOnhARERGpJFTYiYiIiFQSKuxEREREKokKeYydiIjI6Xg8HgoKCgIdQ6TInE4ndru9VMZSYSciIpWCMYaUlBTS0tICHUWk2KKjo0lISDjn6/OqsBMRkUrhWFEXHx9PaGioLmAvFYIxhuzsbPbt2wdAzZo1z2k8FXYiIlLheTweX1EXExMT6DgixRISEgLAvn37iI+PP6fdsjp5QkREKrxjx9SFhoYGOIlIyRz73T3X40NV2ImISKWh3a9SUZXW764KOxEREZFKQoWdiIiISCWhwk5ERKQSOXjwIPHx8Wzbtq3I6/Tv358XXnjhvI1f2hnk9FTYiYiIBNjgwYOxLAvLsnA6ndSrV4+//OUv5ObmFnuscePGccMNN1C3bt0irzNq1CjGjRtHenr6eRl///793HfffdSpUweXy0VCQgI9evTgxx9/LFEGOT0VdmeQ+9MsMqe9ivfwvkBHERGRSq5nz57s3buXLVu2MGHCBF5//XXGjBlTrDGys7N56623uOuuu4q1XrNmzWjQoAHvvvvueRm/b9++LF++nKlTp/Lbb78xffp0OnfuzMGDB4udQc5Mhd0Z7Hzgz+wc9Qp5y+cFOoqIiFRyx2aykpKSuPHGG+natSuzZ8/2Lfd6vYwfP5569eoREhJCy5YtmTZtmt8Ys2bNwuVy0aFDB7/2RYsW0aVLF2JiYnwzg8ceGRkZAFx33XV8+OGHZ8x4qvEXLFiA0+n0m13ctm0blmWxfft20tLSmD9/Ps8++yxXXXUVycnJtGvXjpEjR3L99df7jV+UDCcqyufSuXNnhg0bxrBhw4iKiiI2NpYnn3wSYwwA06ZNo3nz5oSEhBATE0PXrl3Jysoq0vbPtO65jFtSKuzOwB5aeIFAT+ruACcREZHiMsaQne8OyONYwVBSq1ev5qeffiIoKMjXNn78eN555x0mT57MmjVrGD58OLfddhtz58719Zk/fz5t27b1G2vlypV07tyZ1q1bM3/+fL766iuqV69Oly5d+Oijj4iMjASgXbt2LFmyhLy8vNPmOtX4K1asoEmTJgQHB/vali9fTrVq1UhOTiY8PJzw8HA+//zzM45d1AwnKsrnAjB16lQcDgdLlizhpZde4p///Cdvvvkme/fuZcCAAdx5552sW7eOOXPm0KdPnyJ9h2da91zGPRe688QZOMJd5O3Pxr1/b6CjiIhIMeUUeGg6+uuAbHvt0z0IDSreP7EzZswgPDwct9tNXl4eNpuNV155BYC8vDyeeeYZvv32Wzp27AhA/fr1WbBgAa+//jqdOnUCYPv27SQmJvqN++CDD9KnTx/+8Y9/ANC0aVMGDBjA0qVLufnmm339EhMTyc/PJyUlheTk5FNmPNX4K1eupHXr1n5tK1asoGXLlgA4HA6mTJnCkCFDmDx5Mm3atKFTp07079+fFi1a+K1XlAzHK+rnApCUlMSECROwLIvGjRvz66+/MmHCBNq2bYvb7aZPnz6+bTZv3vys24bCwu506/72228lHvdcaMbuDOyRhVeB9hzYH+AkIiJS2V111VWsWLGCxYsXM2jQIO644w769u0LwKZNm8jOzqZbt26+GbDw8HDeeecdNm/e7BsjJyfHb+YsNTWVBQsWcP/99/ttKyws7KQL4h67rVV2dvZpM544PhQWca1atfJrW758uV9b37592bNnD9OnT6dnz57MmTOHNm3aMGXKlGJnOF5RPxeADh06+L3njh07snHjRlq2bEmXLl1o3rw5/fr144033uDw4cNF2v6Z1j2Xcc+FZuzOwB4VCRzAc+hQoKOIiEgxhTjtrH26R8C2XVxhYWE0bNgQgH//+9+0bNnSd6JCZmYmADNnzqRWrVp+67lcLt/z2NhYv+Jh6dKleL1e3+zZ8e0XX3yxX9uho//WxcXFnTbjieN7PB5Wr1590ozdsmXLfEXpMcHBwXTr1o1u3brx5JNPcvfddzNmzBgGDx5crAzHK+rncjazZ8/mp59+4ptvvmHixIk88cQTLF68mHr16p1xPbvdfsZ1SzruudCM3Rk4qkUD4E7TqdciIhWNZVmEBjkC8jjX20PZbDYef/xxRo0aRU5ODk2bNsXlcrFjxw4aNmzo90hKSvKt17p1a9auXet77fV6AfwO2F+1ahXz5s3jlltu8dvm6tWrqV27NrGxsafNdeL4GzZsIDc312/37MKFC9m9e/dJs3gnatq06UknEhQlw4ljFOVzAVi8eLHf60WLFnHBBRdgt9uxLIvLLruMsWPHsnz5coKCgvjss8+KlOFM657LuCWlwu4M7DGFv1iejPN7BouIiMiJ+vXrh91u59VXXyUiIoJHH32U4cOHM3XqVDZv3syyZcuYOHEiU6dO9a3To0cP1qxZ45tVa9++PSEhIYwYMYL169czc+ZMrr/+eoYOHXrSmbPz58+ne/fuZ8x04vgrVqwAYOLEiWzcuJEvv/ySgQMHApCfnw8UXtD46quv5t1332XVqlVs3bqVTz75hOeee44bbrih2BmOV9TPBWDHjh088sgjbNiwgQ8++ICJEyfy0EMPsXjxYp555hl++eUXduzYwaeffsr+/ftp0qTJWbd/pnXPZdxzYorhtddeM82bNzcREREmIiLCdOjQwcyaNcu3vFOnTgbwe/zpT3/yG2P79u3mmmuuMSEhISYuLs48+uijpqCgoDgxTHp6ugFMenp6sdYrrvR/P2PWNr7QbO3c/LxuR0REzk1OTo5Zu3atycnJCXSUEhk0aJC54YYbTmofP368iYuLM5mZmcbr9ZoXX3zRNG7c2DidThMXF2d69Ohh5s6d67dOu3btzOTJk32vv/jiC9OoUSPjdDpNgwYNzPPPP288Ho/fOjk5OSYqKsosXLjwrFmPH3/EiBGmR48e5pprrjEul8u0bt3avPfeeyYyMtLcdtttxhhjcnNzzV//+lfTpk0bExUVZUJDQ03jxo3NqFGjTHZ29hkzvP322+ZspUpRPpdOnTqZ+++/39x7770mMjLSVKtWzTz++OPG6/WatWvXmh49epi4uDjjcrlMo0aNzMSJE8/6ORhjzrhuccc90+9wceqeYhV206dPNzNnzjS//fab2bBhg3n88ceN0+k0q1evNsYUfnBDhgwxe/fu9T2OD+F2u02zZs1M165dzfLly82sWbNMbGysGTlyZHFilFlhlzVjilnb+EKz8ZILz+t2RETk3FT0wq40zZgxwzRp0uSk4u1MXnvtNdOtW7dij9+9e3fzxBNPlDTqWTOMHj3adOrU6ZzH7tSpk3nooYfOeZzzqbQKu2KdPHHdddf5vR43bhyTJk1i0aJFXHTRRQCEhoaSkJBwyvW/+eYb1q5dy7fffkuNGjVo1aoVf/vb33jsscd46qmn/K7XUx7Ya9YBwJNzfq85IyIiUlp69+7Nxo0b2b1790nHmZ2O0+lk4sSJxR5/5cqV3HnnnecS94wZvvzyS98lX6RoSnyMncfj4cMPPyQrK8t37RiA9957j9jYWJo1a8bIkSP9TlleuHAhzZs3p0aNGr62Hj16kJGRwZo1a067rby8PDIyMvweZcFRs/CsFW+BhTf7SJlsU0RE5Fw9/PDDRS7qAO6++24aN25crPGdTiepqamldm22U2VYsmQJ7dq1K5XxS2LHjh1+l1E58bFjx46AZTudYl/u5Ndff6Vjx47k5uYSHh7OZ599RtOmTQG45ZZbSE5OJjExkVWrVvHYY4+xYcMGPv30UwBSUlL8ijrA9zolJeW02xw/fjxjx44tbtRzZourDZYBY+HZswVbw5ZnX0lERKQKSEhIOO93USgtc+bMKdF6iYmJvhNETre8vCl2Yde4cWNWrFhBeno606ZNY9CgQcydO5emTZtyzz33+Po1b96cmjVr0qVLFzZv3kyDBg1KHHLkyJE88sgjvtcZGRnF+j+RkrIcDuzB4MkBz97tOFXYiYiIVBkOh8N3bcGKoti7YoOCgmjYsCFt27Zl/PjxtGzZkpdeeumUfdu3bw8UXhkaCqv71NRUvz7HXp/uuDwovMhgZGSk36OsOI7eL9adurPMtikiIiJSEud8HTuv13vam/Uem76sWbMmUHj7jl9//ZV9+/b5+syePZvIyEjf7tzyxh5WeEKHZ9/pdxWLiIiIlAfF2hU7cuRIevXqRZ06dThy5Ajvv/8+c+bM4euvv2bz5s28//77XHPNNcTExLBq1SqGDx/OlVde6bvJb/fu3WnatCm33347zz33HCkpKYwaNYqhQ4cW69YfZanwfrG5eA7sO2tfERERkUAqVmG3b98+Bg4cyN69e4mKiqJFixZ8/fXXdOvWjZ07d/Ltt9/y4osvkpWVRVJSEn379mXUqFG+9e12OzNmzOC+++6jY8eOhIWFMWjQIJ5++ulSf2OlxREVARzCfehgoKOIiIiInFGxCru33nrrtMuSkpKYO3fuWcdITk5m1qxZxdlsQNmrRQPb8RzW/WJFRESkfNO9Ys/CXj0GAE+6rmMnIiIi5ZsKu7NwxBVeZ8+dmRvgJCIiIiJnpsLuLOzxhRcf9GTmBziJiIiIyJmpsDsLR0LhhZA9Od4AJxERETmzgwcPEh8fz7Zt24q8Tv/+/XnhhRfO2/ilnUHOTIXdWdiP3i/Wk2dh8rQ7VkRESt/gwYO58cYbz3mccePGccMNN1C3bt0irzNq1CjGjRtHevrZTxIsyfj79+/nvvvuo06dOrhcLhISEujRowc//vhjiTLImamwOwt7zbpA4b3wPCnbAhlFRETktLKzs3nrrbe46667irVes2bNaNCgAe++++55Gb9v374sX76cqVOn8ttvvzF9+nQ6d+7MwYO/X0asqBnk7FTYnYXlDMJ+9NrJ7j3bAppFREQqv86dO/PAAw/w8MMPU61aNWrUqMEbb7xBVlYWd9xxBxERETRs2JAvv/zSb71Zs2bhcrno0KGDX/uiRYvo0qULMTExWJbl98jIyADguuuu48MPPzxjrlONv2DBApxOJ7m5v+/R2rZtG5ZlsX37dtLS0pg/fz7PPvssV111FcnJybRr146RI0dy/fXX+41flAwn8nq9jB8/nnr16hESEkLLli2ZNm2a32c5bNgwhg0bRlRUFLGxsTz55JMYY3x9pk2bRvPmzQkJCSEmJoauXbuSlZV11m2fbb2SjnuuVNgVgT208GPy6H6xIiIVhzGQnxWYx3GFQ0lMnTqV2NhYlixZwgMPPMB9991Hv379uPTSS1m2bBndu3fn9ttvJzs727fO/Pnzadu2rd84K1eupHPnzrRu3Zr58+fz1VdfUb16dbp06cJHH33ku/d6u3btWLJkyWlvEXq68VesWEGTJk0IDg72tS1fvpxq1aqRnJxMeHg44eHhfP7552ccu6gZTjR+/HjeeecdJk+ezJo1axg+fDi33Xab33V1p06disPhYMmSJbz00kv885//5M033wRg7969DBgwgDvvvJN169YxZ84c+vTp41f4ncrZ1ivpuKWhWBcorqrsYUFwOA/Pvj2BjiIiIkVVkA3PJAZm24/vgaCwEq/esmVL352bRo4cyf/93/8RGxvLkCFDABg9ejSTJk1i1apVvhm07du3k5jo/34ffPBB+vTpwz/+8Q8AmjZtyoABA1i6dCk333yzr19iYiL5+fmkpKSQnJx8ykynGn/lypW0bt3ar23FihW0bNkSAIfDwZQpUxgyZAiTJ0+mTZs2dOrUif79+/tuN1qcDMfLy8vjmWee4dtvv6Vjx44A1K9fnwULFvD666/TqVMnoPAGChMmTMCyLBo3bsyvv/7KhAkTGDJkCHv37sXtdtOnTx/fNps3b37WbZ9tvZKOWxo0Y1cEjogQANy6X6yIiJSB44seu91OTEyMX2FQo0bhNVb37fv936WcnBy/mbPU1FQWLFjA/fff7zd2WFgYlmX5tYWEFP47d/wM4IlOHB8Ki7hWrVr5tS1fvtyvrW/fvuzZs4fp06fTs2dP5syZQ5s2bZgyZUqxMxxv06ZNZGdn061bN9/MYHh4OO+88w6bN2/29evQoYPf++3YsSMbN27E4/HQsmVLunTpQvPmzenXrx9vvPEGhw8fPuu2z7ZeScctDZqxKwJ7VDiQhufggUBHERGRonKGFs6cBWrb57K60+n32rIsv7ZjhYrX+/uluGJjY/2Kh6VLl+L1en2zZ8e3X3zxxX5thw4dAiAuLu60mU4c3+PxsHr16pNm7JYtW0bfvn392oKDg+nWrRvdunXjySef5O6772bMmDEMHjy4WBmOl5mZCcDMmTOpVauW3zKXy1WkMex2O7Nnz+ann37im2++YeLEiTzxxBMsXryYevXqlXi9ko5bGjRjVwSF94sFz+G0gOYQEZFisKzC3aGBeJwwI1YWWrduzdq1a32vjxV9xx+wv2rVKubNm8ctt9zit+7q1aupXbs2sbGxRR5/w4YN5Obm+u2eXbhwIbt37z5pFu9ETZs2PelEgqJkOHEMl8vFjh07aNiwod8jKSnJ12/x4sV+6y1atIgLLrgAu90OFBbJl112GWPHjmX58uUEBQXx2WefnXX7Z1uvpOOeK83YFYHj6P1i3emZAU4iIiJyaj169GDkyJEcPnyYatWq0b59e0JCQhgxYgRPPPEEmzdvZujQoQwdOvSkM2fnz59P9+7dizX+ihUrAJg4cSIPPvggmzZt4sEHHwQgP7/wbk0HDx6kX79+3HnnnbRo0YKIiAh++eUXnnvuOW644YZiZzheREQEjz76KMOHD8fr9XL55ZeTnp7Ojz/+SGRkJIMGDQJgx44dPPLII/zpT39i2bJlTJw40Xcx5MWLF/Pdd9/RvXt34uPjWbx4Mfv376dJkyZn3PbZ1ivpuKVBhV0R2GPjAfBkFG2/v4iISFlr3rw5bdq04eOPP+ZPf/oTcXFxfPzxx/z5z3+mRYsW1KlTh2HDhvHII4/4rZebm8vnn3/OV199VazxV6xYQY8ePdiyZQvNmzenadOmjB07lvvuu4+XX36Z//znP4SHh9O+fXsmTJjA5s2bKSgoICkpiSFDhvD444+fMcOUKVO44447zngm6d/+9jfi4uIYP348W7ZsITo6mjZt2viNPXDgQHJycmjXrh12u52HHnqIe+65B4DIyEjmzZvHiy++SEZGBsnJybzwwgv06tXrjJ/F2dYr6bilwTJlce5tKcvIyCAqKor09HTfqdrnU9a0SewY9TJB1W00+GnNed+eiIgUT25uLlu3bqVevXonHeBflcycOZMRI0awevVqbLaiHW01adIkPvvsM7755ptijd+rVy8uueQS/v73v59r7FNmGDNmDHPnzmXOnDklHrdz5860atWKF1988Zwznm9n+h0uTt2jGbsisCfUBsCT7QlwEhERkdPr3bs3GzduZPfu3X7HmZ2J0+lk4sSJxR5/5cqV3HnnnecS94wZvvzyS1555ZVSGb8qUWFXBIW3FQNPHhi3G8uhj01ERMqnhx9+uFj977777mKPn5KSQmpqaqldm+1UGZYsWVIqY5fEjh07aNq06WmXr127ljp16pRhoqJThVIEjsT6hU+MhSdlO47aDQIbSEREJIASEhLK5C4K56qku3ETExN9J4ecbnl5pcKuCKyQMGxOg7fAwrN3qwo7ERGRSszhcNCwYcNAxygRXceuiHz3i03R/WJFRESkfFJhV0SOsMIrfrv37Q5wEhEREZFTU2FXRPaIwlOPPftTA5xERERE5NRU2BWRPTIcAPehgwFOIiIiInJqKuyKyBEdBYDnUFpgg4iIiIichgq7IrJXrw6AJz0jwElERERETk2FXRE5YuMAcB/R/WJFRESkfFJhV0T2uJoAeDLzA5xERERE5NRU2BWRPaEWAJ5sd4CTiIiIiJyaCrsiciTUBcCdC8brDWwYERGR0zh48CDx8fFs27atyOv079+fF1544byNX9oZ5PRU2BWRvdbR+8V6LbwHdJFiEREpPYMHD8ayLCzLwul0Uq9ePf7yl7+Qm5tb7LHGjRvHDTfcQN26dYu8zqhRoxg3bhzp6ennZfz9+/dz3333UadOHVwuFwkJCfTo0YMff/yxRBnKk86dO/Pwww+fta2sqLArIltENSxH4Q2PPXu2BjiNiIhUNj179mTv3r1s2bKFCRMm8PrrrzNmzJhijZGdnc1bb73FXXfdVaz1mjVrRoMGDXj33XfPy/h9+/Zl+fLlTJ06ld9++43p06fTuXNnDh78/dqwRc0gZ6bCrhgcIRYA7r07ApxEREQqm2MzWUlJSdx444107dqV2bNn+5Z7vV7Gjx9PvXr1CAkJoWXLlkybNs1vjFmzZuFyuejQoYNf+6JFi+jSpQsxMTG+mcFjj4yMwst4XXfddXz44YdnzHiq8RcsWIDT6fSbXdy2bRuWZbF9+3bS0tKYP38+zz77LFdddRXJycm0a9eOkSNHcv311/uNX5QMJyrK59K5c2eGDRvGsGHDiIqKIjY2lieffBJjCidspk2bRvPmzQkJCSEmJoauXbuSlZV11m0PHjyYuXPn8tJLL/k+z1O1lfZu6zNxlNmWKgF7qJOCIwV4dL9YEZFyzxhDjjsnINsOcYRgWVaJ11+9ejU//fQTycnJvrbx48fz7rvvMnnyZC644ALmzZvHbbfdRlxcHJ06dQJg/vz5tG3b1m+slStX+gqbiRMnsnPnTm655RZat27NPffcQ2RkJADt2rVj3Lhx5OXl4XK5TpnrVOOvWLGCJk2aEBwc7Gtbvnw51apVIzk5GbfbTXh4OJ9//jkdOnQ47dhFzXCionwuAFOnTuWuu+5iyZIl/PLLL9xzzz3UqVOHa6+9lgEDBvDcc89x0003ceTIEebPn+8r+s7kpZde4rfffqNZs2Y8/fTTAISEhJzUFhcXV6T3UhpU2BWDPcIFqQW4db9YEZFyL8edQ/v32wdk24tvWUyoM7RY68yYMYPw8HDcbjd5eXnYbDZeeeUVAPLy8njmmWf49ttv6dixIwD169dnwYIFvP76674CZvv27SQmJvqN++CDD9KnTx/+8Y9/ANC0aVMGDBjA0qVLufnmm339EhMTyc/PJyUlxa+gPN6pxl+5ciWtW7f2a1uxYgUtW7YEwOFwMGXKFIYMGcLkyZNp06YNnTp1on///rRo0cJvvaJkOF5RPxeApKQkJkyYgGVZNG7cmF9//ZUJEybQtm1b3G43ffr08W2zefPmZ902QFRUFEFBQYSGhpKQkOBrP1VbWdGu2GJwRIYB4Dm4P8BJRESksrnqqqtYsWIFixcvZtCgQdxxxx307dsXgE2bNpGdnU23bt0IDw/3Pd555x02b97sGyMnJ8dv5iw1NZUFCxZw//33+20rLCzspBnFkJAQoPA4utM5cXwoLOJatWrl17Z8+XK/tr59+7Jnzx6mT59Oz549mTNnDm3atGHKlCnFznC8on4uAB06dPB7zx07dmTjxo20bNmSLl260Lx5c/r168cbb7zB4cOHi7T98qhYM3aTJk1i0qRJvn3FF110EaNHj6ZXr14A5Obm8uc//5kPP/yQvLw8evTowWuvvUaNGjV8Y+zYsYP77ruPH374gfDwcAYNGsT48eNxOMr/5KE9OhJIxXOo4n7hIiJVRYgjhMW3LA7YtosrLCyMhg0bAvDvf/+bli1b+k5UyMzMBGDmzJnUqlXLb73jd1nGxsb6FSVLly7F6/X6Zs+Ob7/44ov92g4dOgScebfhieN7PB5Wr1590ozdsmXLfEXpMcHBwXTr1o1u3brx5JNPcvfddzNmzBgGDx5crAzHK+rncjazZ8/mp59+4ptvvmHixIk88cQTLF68mHr16hV5jPKiWDN2tWvX5v/+7/9YunQpv/zyC1dffTU33HADa9asAWD48OF88cUXfPLJJ8ydO5c9e/bQp08f3/oej4fevXuTn5/PTz/9xNSpU5kyZQqjR48u3Xd1njiqFd4v1p1+JMBJRETkbCzLItQZGpDHuRxfB2Cz2Xj88ccZNWoUOTk5NG3aFJfLxY4dO2jYsKHfIykpybde69atWbt2re+19+h1V48/EWDVqlXMmzePW265xW+bq1evpnbt2sTGxp4214njb9iwgdzcXL/dswsXLmT37t0nzeKdqGnTpiedoFCUDCeOUZTPBWDxYv8if9GiRVxwwQXY7XYsy+Kyyy5j7NixLF++nKCgID777LMiZQgKCsLj8Zy1rcyYc1StWjXz5ptvmrS0NON0Os0nn3ziW7Zu3ToDmIULFxpjjJk1a5ax2WwmJSXF12fSpEkmMjLS5OXlFXmb6enpBjDp6ennGr9YDv/zUbO28YVme6+2ZbpdERE5s5ycHLN27VqTk5MT6CglMmjQIHPDDTf4tRUUFJhatWqZ559/3hhjzBNPPGFiYmLMlClTzKZNm8zSpUvNyy+/bKZMmeJbZ9WqVcbhcJhDhw4ZY4zZt2+fCQkJMbfddptZt26dmTFjhklOTjYPP/zwKTPceeedZ8x54vjvvfeeAcywYcPMb7/9ZmbNmmUaNmxoALNkyRJjjDEHDhwwV111lfnPf/5jVq5cabZs2WI+/vhjU6NGjZO2V5QMJyrK59KpUycTHh5uhg8fbtavX2/ef/99ExYWZiZPnmwWLVpkxo0bZ37++Wezfft28/HHH5ugoCAza9asIm1/yJAh5pJLLjFbt241+/fvNx6P55RtZ3Om3+Hi1D0lLuzcbrf54IMPTFBQkFmzZo357rvvDGAOHz7s169OnTrmn//8pzHGmCeffNK0bNnSb/mWLVsMYJYtW3babeXm5pr09HTfY+fOnQEp7DL+8w+ztvGFZssVzcp0uyIicmaVsbAzxpjx48ebuLg4k5mZabxer3nxxRdN48aNjdPpNHFxcaZHjx5m7ty5fuu0a9fOTJ482ff6iy++MI0aNTJOp9M0aNDAPP/88ycVGjk5OSYqKso3EXMmx48/YsQI06NHD3PNNdcYl8tlWrdubd577z0TGRlpbrvtNmNM4b/hf/3rX02bNm1MVFSUCQ0NNY0bNzajRo0y2dnZZ8zw9ttvm7PNQRXlc+nUqZO5//77zb333msiIyNNtWrVzOOPP268Xq9Zu3at6dGjh4mLizMul8s0atTITJw48ayfwzEbNmwwHTp0MCEhIQYwW7duPWXb2QSssFu1apUJCwszdrvdREVFmZkzZxpjCqv2oKCgk/pfcskl5i9/+YsxprCq7d69u9/yrKwsA5yxMh4zZowBTnqUdWGX/c0HZm3jC81vbS4s0+2KiMiZVfTCrjTNmDHDNGnSpEizRMe89tprplu3bsUev3v37uaJJ54oadSzZhg9erTp1KnTOY/dqVMn89BDD53zOOdTaRV2xT5joXHjxqxYsYL09HSmTZvGoEGDmDt37jnvEj6TkSNH8sgjj/heZ2RknLTvvCzYE+oA4Mk1GK8Xy6aTikVEpHzp3bs3GzduZPfu3UX+t9LpdDJx4sRij79y5UruvPPOc4l7xgxffvml75IvUjTFLuyCgoJ8Z+20bduWn3/+mZdeeok//vGP5Ofnk5aWRnR0tK9/amqq7zouCQkJLFmyxG+81NRU37LTcblcxTq75Xw5dr9Y47Ew6QewqsUHOJGIiMjJinuf0rvvvrvY46ekpJCamlrka76VJMOJNUNZ27FjB02bNj3t8rVr11KnTp0yTHR253yNEa/XS15eHm3btsXpdPLdd9/5TnHesGEDO3bs8F00sGPHjowbN459+/YRH19YFM2ePZvIyMgzfnDlhS06HstmMF4L954tBKmwExGRKiohIaFId2coD+bMmVOi9RITE1mxYsUZl5c3xSrsRo4cSa9evahTpw5Hjhzh/fffZ86cOXz99ddERUVx11138cgjj1C9enUiIyN54IEH6Nixo++ect27d6dp06bcfvvtPPfcc6SkpDBq1CiGDh1aLmbkzsay2bCHWLizwLN3B1zU4ewriYiISIXkcDh8eykrimIVdvv27WPgwIHs3buXqKgoWrRowddff023bt0AmDBhAjabjb59+/pdoPgYu93OjBkzuO++++jYsSNhYWEMGjTIdy+1isAR5sCd5caduivQUURERET8FKuwe+utt864PDg4mFdffZVXX331tH2Sk5OZNWtWcTZbrtjDXbDPjWd/SqCjiIiIiPjRaZ3FZNf9YkVERKScUmFXTI7qUQC496mwExERkfJFhV0xORNrA1Cw72CAk4iIiIj4U2FXTM46dQEoOJQZ2CAiIiIiJ1BhV0zOehcCUJBeEOAkIiIiIv5U2BWTs1FLADy5Ft4jhwOcRkREROR3KuyKyRaXhM1ReKXtgo2rApxGRETkdwcPHiQ+Pp5t27YVeZ3+/fvzwgsvnLfxSzuDnJkKu2KybDYckXYACrasDnAaERGpDAYPHsyNN954zuOMGzeOG264gbp16xZ5nVGjRjFu3DjS09PPy/j79+/nvvvuo06dOrhcLhISEujRowc//vhjiTKUF507dz7lPXlP115WVNiVgLNaKADu7VsCnERERKRQdnY2b731FnfddVex1mvWrBkNGjTg3XffPS/j9+3bl+XLlzN16lR+++03pk+fTufOnTl48PerSxQ1g5ydCrsScMZFA1CwW7cVExGR0tW5c2ceeOABHn74YapVq0aNGjV44403yMrK4o477iAiIoKGDRvy5Zdf+q03a9YsXC6X7/7sxyxatIguXboQExODZVl+j4yMDACuu+46PvzwwzPmOtX4CxYswOl0kpub62vbtm0blmWxfft20tLSmD9/Ps8++yxXXXUVycnJtGvXjpEjR3L99df7jV+UDCfyer2MHz+eevXqERISQsuWLZk2bZrfZzls2DCGDRtGVFQUsbGxPPnkkxhjfH2mTZtG8+bNCQkJISYmhq5du5KVlXXG7Q4ePJi5c+fy0ksv+T7Lbdu2nba9LKmwKwFnQg0AClJSA5xEREROxxiDNzs7II/jC4eSmDp1KrGxsSxZsoQHHniA++67j379+nHppZeybNkyunfvzu233052drZvnfnz59O2bVu/cVauXEnnzp1p3bo18+fP56uvvqJ69ep06dKFjz76iMjISADatWvHkiVLyMvLO22mU42/YsUKmjRpQnBwsK9t+fLlVKtWjeTkZMLDwwkPD+fzzz8/49hFzXCi8ePH88477zB58mTWrFnD8OHDue2225g7d66vz9SpU3E4HCxZsoSXXnqJf/7zn7z55psA7N27lwEDBnDnnXeybt065syZQ58+fc76/b300kt07NiRIUOGsHfvXvbu3UtSUtJp28tSse4VK4WcSXWBpRQcqDjHAoiIVDUmJ4cNbdqeveN50HjZUqzQ0BKv37JlS0aNGgXAyJEj+b//+z9iY2MZMmQIAKNHj2bSpEmsWrXKN4O2fft2EhMT/cZ58MEH6dOnD//4xz8AaNq0KQMGDGDp0qXcfPPNvn6JiYnk5+eTkpJCcnLyKTOdavyVK1fSunVrv7YVK1bQsmXhFSQcDgdTpkxhyJAhTJ48mTZt2tCpUyf69+9PixYt/NYrSobj5eXl8cwzz/Dtt9/SsWNHAOrXr8+CBQt4/fXX6dSpEwBJSUlMmDABy7Jo3Lgxv/76KxMmTPAVX263mz59+vi22bx587NuOyoqiqCgIEJDQ0lISDhre1nSjF0JOJMbAlCQlnuWniIiIsV3fNFjt9uJiYnxKzhq1Cjcc7Rv3z5fW05Ojt/MWWpqKgsWLOD+++/3GzssLAzLsvzaQkJCAPxmAE904vhQWMS1atXKr2358uV+bX379mXPnj1Mnz6dnj17MmfOHNq0acOUKVOKneF4mzZtIjs7m27duvlmBsPDw3nnnXfYvHmzr1+HDh383m/Hjh3ZuHEjHo+Hli1b0qVLF5o3b06/fv144403OHy4Yl/KTDN2JeBscBEA7kyDcbuxHPoYRUTKGyskhMbLlgZs2+fC6XT6j2dZfm3HChWv1+tri42N9StKli5ditfr9c2eHd9+8cUX+7UdOnQIgLi4uNNmOnF8j8fD6tWrT5qxW7ZsGX379vVrCw4Oplu3bnTr1o0nn3ySu+++mzFjxjB48OBiZTheZmbhHaBmzpxJrVq1/Ja5XK4ijWG325k9ezY//fQT33zzDRMnTuSJJ55g8eLF1KtXr0hjlDeasSsBR/3mYBmM18K9c0Og44iIyClYloUtNDQgjxNnxMpC69atWbt2re/1saLv+BMBVq1axbx587jlllv81l29ejW1a9cmNja2yONv2LCB3Nxcv92zCxcuZPfu3SfN4p2oadOmJ52gUJQMJ47hcrnYsWMHDRs29Hscf1zb4sWL/dZbtGgRF1xwAXZ74aXLLMvisssuY+zYsSxfvpygoCA+++yzs24/KCgIj8dT5PayosKuBCxXMI7Qwj+07k2/BjiNiIgI9OjRgzVr1vhm1dq3b09ISAgjRoxg/fr1zJw5k+uvv56hQ4eedObs/Pnz6d69e7HGX7FiBQATJ05k48aNfPnllwwcOBCA/Px8oPCCxldffTXvvvsuq1atYuvWrXzyySc899xz3HDDDcXOcLyIiAgeffRRhg8fztSpU9m8eTPLli1j4sSJTJ061ddvx44dPPLII2zYsIEPPviAiRMn8tBDDwGFRd8zzzzDL7/8wo4dO/j000/Zv38/TZo0Oev269aty+LFi9m2bRsHDhzwFdKnay8rKuxKyBldOM1bsFUzdiIiEnjNmzenTZs2fPzxx0DhLs2PP/6YJUuW0KJFCx566CGGDRt20h0ecnNz+fzzz30nZhR1/BUrVtCjRw+2bNlC8+bNeeKJJxg7diyRkZG8/PLLAISHh9O+fXsmTJjAlVdeSbNmzXjyyScZMmQIr7zyyhkzTJky5awzn3/729948sknGT9+PE2aNKFnz57MnDnTbzfqwIEDycnJoV27dgwdOpSHHnqIe+65B4DIyEjmzZvHNddcQ6NGjRg1ahQvvPACvXr1OtvHzaOPPordbqdp06bExcWxY8eOM7aXFcuc6znZAZCRkUFUVBTp6em+U7XL2u4/XkHGygPE9+tIzN/+HZAMIiJSKDc3l61bt1KvXr2TDvCvSmbOnMmIESNYvXo1NlvR5m4mTZrEZ599xjfffFOs8Xv16sUll1zC3//+93ONfcoMY8aMYe7cucyZM6fE43bu3JlWrVrx4osvnnPG8+1Mv8PFqXt01H8JOePjgAMU7E0JdBQREREAevfuzcaNG9m9e3eRr5/mdDqZOHFiscdfuXIld95557nEPWOGL7/80m9WT4pGhV0JORMTgXUU7D941r4iIiJlpbj3Kb377ruLPX5KSgqpqalFuuZbSTMsWbKkVMYuiR07dtC0adPTLl+7di116tQpw0RFp8KuhJzJDYDvKDh05tuOiIiIVDYJCQnnfHeNslDS3biJiYm+k0NOt7y8UmFXQo56hWfMuDPcAU4iIiIipcnhcNCwYcNAxygRnRVbQs4LCq8K7smz8B7ed5beIiIiIuefCrsSsscmYgsqnIYu2LgywGlEREREVNidE2dk4Z7sgi3rApxERERERIXdOXFWCwWgYPumACcRERGgzK/yL1JaSut3VydPnANnfHXYeISCPbsDHUVEpEoLCgrCZrOxZ88e4uLiCAoKCsj9WkWKyxhDfn4++/fvx2azERQUdE7jqbA7B86EBGA7BakHAh1FRKRKs9ls1KtXj71797Jnz55AxxEpttDQUOrUqVPkO4acjgq7c+BIqgMsxn0wI9BRRESqvKCgIOrUqYPb7cbj8QQ6jkiR2e12HA5Hqcwyq7A7B856FwJQcDg3wElERATAsiycTidOpzPQUUQCQidPnANng4sAKMgymIL8AKcRERGRqk6F3TlwJDcBy4CxcG9dG+g4IiIiUsWpsDsHljMIZ3jh/vCCzb8GOI2IiIhUdSrszpEzOhiAgm0bA5xEREREqjoVdufIGRsJQMGu7QFOIiIiIlVdsQq78ePHc8kllxAREUF8fDw33ngjGzZs8OvTuXNnLMvye9x7771+fXbs2EHv3r0JDQ0lPj6eESNG4Ha7z/3dBIAjIR6Agj0pAU4iIiIiVV2xLncyd+5chg4dyiWXXILb7ebxxx+ne/furF27lrCwMF+/IUOG8PTTT/teh4aG+p57PB569+5NQkICP/30E3v37mXgwIE4nU6eeeaZUnhLZcuZWAtYjfvA4UBHERERkSquWIXdV1995fd6ypQpxMfHs3TpUq688kpfe2hoKAkJCacc45tvvmHt2rV8++231KhRg1atWvG3v/2Nxx57jKeeeuqcb6VR1px1GgBQcCg7wElERESkqjunY+zS09MBqF69ul/7e++9R2xsLM2aNWPkyJFkZ/9e9CxcuJDmzZtTo0YNX1uPHj3IyMhgzZo1p9xOXl4eGRkZfo/ywnctu4yKuStZREREKo8S33nC6/Xy8MMPc9lll9GsWTNf+y233EJycjKJiYmsWrWKxx57jA0bNvDpp58CkJKS4lfUAb7XKSmnPk5t/PjxjB07tqRRzytnwxYAeAssPPt3Y4+rFeBEIiIiUlWVuLAbOnQoq1evZsGCBX7t99xzj+958+bNqVmzJl26dGHz5s00aNCgRNsaOXIkjzzyiO91RkYGSUlJJQteymzRsdhdBk+eRcHGlSrsREREJGBKtCt22LBhzJgxgx9++IHatWufsW/79u0B2LRpEwAJCQmkpqb69Tn2+nTH5blcLiIjI/0e5YkzqvCehAVb1gU4iYiIiFRlxSrsjDEMGzaMzz77jO+//5569eqddZ0VK1YAULNmTQA6duzIr7/+yr59+3x9Zs+eTWRkJE2bNi1OnHLDUb3wjOCCHVsCnERERESqsmLtih06dCjvv/8+//vf/4iIiPAdExcVFUVISAibN2/m/fff55prriEmJoZVq1YxfPhwrrzySlq0KDwWrXv37jRt2pTbb7+d5557jpSUFEaNGsXQoUNxuVyl/w7LgDOuOqxPx71nT6CjiIiISBVWrBm7SZMmkZ6eTufOnalZs6bv8dFHHwEQFBTEt99+S/fu3bnwwgv585//TN++ffniiy98Y9jtdmbMmIHdbqdjx47cdtttDBw40O+6dxWNMzERgILU/QFOIiIiIlVZsWbsjDFnXJ6UlMTcuXPPOk5ycjKzZs0qzqbLNWdSMvAj+QfKz2VYREREpOrRvWJLQVDTtgDkH8jHeL0BTiMiIiJVlQq7UhDU6gqwDN4CC/d2nRkrIiIigaHCrhTYQiMIiiz8KPOXzw9wGhEREamqVNiVkqCECADy1q4KcBIRERGpqlTYlRJXncI7TuRv2RzgJCIiIlJVqbArJUEXNAIgb9e+s/QUEREROT9U2JUS10VtAMjbnxPgJCIiIlJVqbArJUGtrwTAk2Ph2bstsGFERESkSlJhV0rs1RNwFN4ylrwVOjNWREREyp4Ku1LkqlFY2eWtWR7gJCIiIlIVqbArRa6kBADyN/4W4CQiIiJSFamwK0VBDRoAkLcrJcBJREREpCpSYVeKXE1bA5CfmhXgJCIiIlIVqbArRUFtOgFQkAnew7qenYiIiJQtFXalyJFYD3uwASBvpc6MFRERkbKlwq6UueJCAMhfvTTASURERKSqUWFXyoJqxwGQ99v6ACcRERGRqkaFXSlz1a8PQN6OPQFOIiIiIlWNCrtSFtSkOQD5KRkBTiIiIiJVjQq7UuZqdTkA+eleTI4ueyIiIiJlR4VdKXPUb47NacBY5K9aEOg4IiIiUoWosCtlls1GUEwQAHm/LglwGhEREalKVNidB65aMQDkbVgb4CQiIiJSlaiwOw9cdZMByN+2M8BJREREpCpRYXceBF3YDIC8vWmBDSIiIiJVigq788DVsiMA+YfcmIL8AKcRERGRqkKF3XngbHIJls1gvBYF634OdBwRERGpIlTYnQeWM4ig6g4A8lYuDHAaERERqSpU2J0nroRoAPLXrw5sEBEREakyVNidJ0H1kgDI27Y9wElERESkqlBhd564GjUBIG/3wQAnERERkapChd15EtSsHQD5B/MxXm+A04iIiEhVoMLuPHG1ugJsBm+BRcGaRYGOIyIiIlWACrvzxAoJIziu8J6xOT9+FeA0IiIiUhWosDuPQhomApC7fFmAk4iIiEhVUKzCbvz48VxyySVEREQQHx/PjTfeyIYNG/z65ObmMnToUGJiYggPD6dv376kpqb69dmxYwe9e/cmNDSU+Ph4RowYgdvtPvd3U84Et2wFQM7mXYENIiIiIlVCsQq7uXPnMnToUBYtWsTs2bMpKCige/fuZGVl+foMHz6cL774gk8++YS5c+eyZ88e+vTp41vu8Xjo3bs3+fn5/PTTT0ydOpUpU6YwevTo0ntX5UTIpd0ByN2bi8nLDXAaERERqewsY4wp6cr79+8nPj6euXPncuWVV5Kenk5cXBzvv/8+f/jDHwBYv349TZo0YeHChXTo0IEvv/ySa6+9lj179lCjRg0AJk+ezGOPPcb+/fsJCgo663YzMjKIiooiPT2dyMjIksY/74zbzW+tm+EtsKj35nMEX35doCOJiIhIBVOcuuecjrFLT08HoHr16gAsXbqUgoICunbt6utz4YUXUqdOHRYuLLy11sKFC2nevLmvqAPo0aMHGRkZrFmz5pTbycvLIyMjw+9REVgOB8GJoQDkLPwuwGlERESksitxYef1enn44Ye57LLLaNasGQApKSkEBQURHR3t17dGjRqkpKT4+hxf1B1bfmzZqYwfP56oqCjfIykpqaSxy1xIo7oA5P76a2CDiIiISKVX4sJu6NChrF69mg8//LA085zSyJEjSU9P9z127tx53rdZWoLbXAJAzpbUs/QUEREROTclKuyGDRvGjBkz+OGHH6hdu7avPSEhgfz8fNLS0vz6p6amkpCQ4Otz4lmyx14f63Mil8tFZGSk36OiCLniGgDyDrrxph0IcBoRERGpzIpV2BljGDZsGJ999hnff/899erV81vetm1bnE4n3333+/FkGzZsYMeOHXTs2BGAjh078uuvv7Jv3z5fn9mzZxMZGUnTpk3P5b2US86GLXGEGjAWuT/ODHQcERERqcSKVdgNHTqUd999l/fff5+IiAhSUlJISUkhJycHgKioKO666y4eeeQRfvjhB5YuXcodd9xBx44d6dChAwDdu3enadOm3H777axcuZKvv/6aUaNGMXToUFwuV+m/w3IguE40ADlL5gc2iIiIiFRqxSrsJk2aRHp6Op07d6ZmzZq+x0cffeTrM2HCBK699lr69u3LlVdeSUJCAp9++qlvud1uZ8aMGdjtdjp27Mhtt93GwIEDefrpp0vvXZUzIU0uACB3zfoAJxEREZHK7JyuYxcoFeU6dsdkfTqZHY+/hDMCGv68LtBxREREpAIps+vYSdEEX94bgIIj4N61McBpREREpLJSYVcG7PFJBEVbAOTOmxHgNCIiIlJZqbArIyH14gDIWboowElERESkslJhV0aCL7oIgJwNWwKcRERERCorFXZlJKRDZwBydx3BeL2BDSMiIiKVkgq7MuK6tBfYDJ5ci4J1SwIdR0RERCohFXZlxBYaQXBcEAC5C74KcBoRERGpjFTYlaGQhokA5CxfGuAkIiIiUhmpsCtDwS1bAZCzaWdgg4iIiEilpMKuDIV07ApA7t5cTF5ugNOIiIhIZaPCrgwFte6MzWkwHou8n2cHOo6IiIhUMirsypDlcBBSKwyA7DlfBjiNiIiIVDYq7MpYaJvCCxVn/bwswElERESkslFhV8bCul4PQPaWNB1nJyIiIqVKhV0ZC77iemxBBm+BRe6czwIdR0RERCoRFXZlzHIGEdawOgBZ388IcBoRERGpTFTYBUBYu7YAZC1fG+AkIiIiUpmosAuAsJ79AMjZlYM37UCA04iIiEhlocIuAJwtLscRDsZrkf31B4GOIyIiIpWECrsAsGw2wi6sCUDWXF2oWEREREqHCrsACbvscgCyft0S4CQiIiJSWaiwC5Cwa24BIG+/B/eujQFOIyIiIpWBCrsAcSRfiCvWDkD2zPcCnEZEREQqAxV2ARTWrB4AWT8uCHASERERqQxU2AVQ2JVXA5C1bneAk4iIiEhloMIugEJ73QqWoeAI5P/6U6DjiIiISAWnwi6AbNXiCakVDEDWlx8FOI2IiIhUdCrsAiysdRMAshb/EuAkIiIiUtGpsAuwsKt7A5C96SDG7Q5wGhEREanIVNgFWMhVfbA5DZ48i9wFXwQ6joiIiFRgKuwCzAoOJbReFADZs/8X4DQiIiJSkamwKwfC2rUF4MjC5QFOIiIiIhWZCrtyIKL/nwDI2ZNPweZfA5xGREREKioVduWAs2FLQmo6ATjy0eQApxEREZGKSoVdORFx+cUAHJmjCxWLiIhIyRS7sJs3bx7XXXcdiYmJWJbF559/7rd88ODBWJbl9+jZs6dfn0OHDnHrrbcSGRlJdHQ0d911F5mZmef0Riq6iP73AJC9Mwf3ro0BTiMiIiIVUbELu6ysLFq2bMmrr7562j49e/Zk7969vscHH3zgt/zWW29lzZo1zJ49mxkzZjBv3jzuueee4qevRIIu6oArzg7G4siHkwIdR0RERCogR3FX6NWrF7169TpjH5fLRUJCwimXrVu3jq+++oqff/6Ziy8u3P04ceJErrnmGv7xj3+QmJhY3EiVRuRlrdj/+VKO/DCPao8GOo2IiIhUNOflGLs5c+YQHx9P48aNue+++zh48KBv2cKFC4mOjvYVdQBdu3bFZrOxePHiU46Xl5dHRkaG36Myirj5LgCytmbiSd0e4DQiIiJS0ZR6YdezZ0/eeecdvvvuO5599lnmzp1Lr1698Hg8AKSkpBAfH++3jsPhoHr16qSkpJxyzPHjxxMVFeV7JCUllXbscsHV5ipc1W3gtTjykXbHioiISPGUemHXv39/rr/+epo3b86NN97IjBkz+Pnnn5kzZ06Jxxw5ciTp6em+x86dO0svcDkT0aEZAEe++yHASURERKSiOe+XO6lfvz6xsbFs2rQJgISEBPbt2+fXx+12c+jQodMel+dyuYiMjPR7VFYRfQcCkLUxHc+hU89gioiIiJzKeS/sdu3axcGDB6lZsyYAHTt2JC0tjaVLl/r6fP/993i9Xtq3b3++45R7ro69cEZZGK9F1ie6WLGIiIgUXbELu8zMTFasWMGKFSsA2Lp1KytWrGDHjh1kZmYyYsQIFi1axLZt2/juu++44YYbaNiwIT169ACgSZMm9OzZkyFDhrBkyRJ+/PFHhg0bRv/+/av0GbHHWDYbkZc0BiDjm9kBTiMiIiIVSbELu19++YXWrVvTunVrAB555BFat27N6NGjsdvtrFq1iuuvv55GjRpx11130bZtW+bPn4/L5fKN8d5773HhhRfSpUsXrrnmGi6//HL+9a9/ld67quAibhoAQOaGg3iPHA5wGhEREakoLGOMCXSI4srIyCAqKor09PRKebyd8XrZ1O4i3JlQ+6+DiBj810BHEhERkQApTt2je8WWQ5bNRmTbBgBkfPVlgNOIiIhIRaHCrpyKuPGPABxZnaqzY0VERKRIVNiVUyE9biUoysK4LY68/Xyg44iIiEgFoMKunLJsNqK6XgJA2sxvA5xGREREKgIVduVY9N2PgWXI2ZNP3uKvAx1HREREyjkVduWYo15TwhtFA5D274mBDSMiIiLlngq7ci66Xz8A0hdvwpt9JMBpREREpDxTYVfOhfcbiiPU4Mm1yHxvQqDjiIiISDmmwq6cs1zBRF1xEQBpn00PcBoREREpz1TYVQDRdz0CQNaWTArW/RzgNCIiIlJeqbCrAIJaXEZonWDAIu2tFwIdR0RERMopFXYVRPSN1wKQNmclpiA/wGlERESkPFJhV0FE3P4ItiCDOxOyPn090HFERESkHFJhV0HYIqoR1a4eAGkffxjgNCIiIlIeqbCrQKIH3QfAkXUHcW9fH+A0IiIiUt6osKtAgq+4npCaTvBaHJowKtBxREREpJxRYVfBVL/tZgAOf78a7+F9AU4jIiIi5YkKuwomYuBfcEZZePMt0l4ZHeg4IiIiUo6osKtgLGcQMTdeDcCh6XMxebkBTiQiIiLlhQq7Cihq2N+wBxsKjsCRKf8X6DgiIiJSTqiwq4BsEdWo1rUVAAff+y/G6w1sIBERESkXVNhVUNUeHodlN+Tuc5M9/a1AxxEREZFyQIVdBeWo3YDo9skAHHzjXwFOIyIiIuWBCrsKrPrDo8EyZG3OJHfhV4GOIyIiIgGmwq4CC2pxGRFNqwNwaKJOohAREanqVNhVcDH3PQxA+ooUCjatDGwYERERCSgVdhVcSNebCU0KBq/FwfGPBTqOiIiIBJAKu0ogdthQAA4v3Eb+mkUBTiMiIiKBosKuEgi74W7C6oeB1+LA3zVrJyIiUlWpsKsk4v4yEoD05ak6Q1ZERKSKUmFXSYR07kvERdUAi/3/NybQcURERCQAVNhVInEj/w6WIXNDBtlfvx/oOCIiIlLGVNhVIq6Lrybq4loA7H/hed1DVkREpIpRYVfJxD35PJbNkL0jl6xprwU6joiIiJQhFXaVjLNRG6pd0RCA/a+8rlk7ERGRKqTYhd28efO47rrrSExMxLIsPv/8c7/lxhhGjx5NzZo1CQkJoWvXrmzcuNGvz6FDh7j11luJjIwkOjqau+66i8zMzHN6I/K7mCcnYHMYcve5OfLW3wMdR0RERMpIsQu7rKwsWrZsyauvvnrK5c899xwvv/wykydPZvHixYSFhdGjRw9yc3N9fW699VbWrFnD7NmzmTFjBvPmzeOee+4p+bsQP47aF1C9ZysA9v3rA7xHDgc2kIiIiJQJyxhjSryyZfHZZ59x4403AoWzdYmJifz5z3/m0UcfBSA9PZ0aNWowZcoU+vfvz7p162jatCk///wzF198MQBfffUV11xzDbt27SIxMfGs283IyCAqKor09HQiIyNLGr9S86YdYHOXK3BnQew1LYj750eBjiQiIiIlUJy6p1SPsdu6dSspKSl07drV1xYVFUX79u1ZuHAhAAsXLiQ6OtpX1AF07doVm83G4sWLTzluXl4eGRkZfg85M1t0LDXuvxWAg1+tJH/l/AAnEhERkfOtVAu7lJQUAGrUqOHXXqNGDd+ylJQU4uPj/ZY7HA6qV6/u63Oi8ePHExUV5XskJSWVZuxKK+KOxwmrH4bxWqQ8/ohOpBAREankKsRZsSNHjiQ9Pd332LlzZ6AjVQiWzUaNv78ANkPW5kwy//N8oCOJiIjIeVSqhV1CQgIAqampfu2pqam+ZQkJCezbt89vudvt5tChQ74+J3K5XERGRvo9pGhcbToR0+0iAFInTsGbfjDAiUREROR8KdXCrl69eiQkJPDdd9/52jIyMli8eDEdO3YEoGPHjqSlpbF06VJfn++//x6v10v79u1LM44cFTv2dRzhUJAJB566N9BxRERE5DwpdmGXmZnJihUrWLFiBVB4wsSKFSvYsWMHlmXx8MMP8/e//53p06fz66+/MnDgQBITE31nzjZp0oSePXsyZMgQlixZwo8//siwYcPo379/kc6IleKzRcdSY+hAAA59/Sv5K+YFOJGIiIicD8W+3MmcOXO46qqrTmofNGgQU6ZMwRjDmDFj+Ne//kVaWhqXX345r732Go0aNfL1PXToEMOGDeOLL77AZrPRt29fXn75ZcLDw4uUQZc7KT7j9bLzunZkbc4irH4YSTOWYNkqxCGWIiIiVVpx6p5zuo5doKiwK5n8FfPYcss9GK9FzSHXEP3nFwIdSURERM4iYNexk/ItqNWVxPUtPNYxdcpMCtb9HOBEIiIiUppU2FUx1Ue/TkhiEN4Ciz0P/wnjdgc6koiIiJQSFXZVjOUMIvGfE7HshuztORx+7qFARxIREZFSosKuCgpqdSXxAwpPgNn33ne63ZiIiEglocKuiqr214mE1gnGeCz2/PkBTEF+oCOJiIjIOVJhV0VZDgc1X5yMzWHI2ZXHob/fH+hIIiIico5U2FVhQU3bEz+wBwD7P1lA7k+zApxIREREzoUKuyou+tEJhDUIx3gtdv/5UbyH9519JRERESmXVNhVcZbNRuLr7+MINeQfNuy9rx/G6w10LBERESkBFXaCo/YF1Hr6r2AZMlbsI33CiEBHEhERkRJQYScAhF47mLib2gGQ8u+Z5P44M8CJREREpLhU2IlPzNP/JqxBGMZjsfvPI/AcSgl0JBERESkGFXbiYzkcJL7+EY4wyE8zpOh4OxERkQpFhZ34cdRu8PvxdisPcPj/Hgh0JBERESkiFXZyktDeg4j/Q0cAUv/zHVmfvh7gRCIiIlIUKuzklKqPfYvIlrFgLHaPnUD+qh8DHUlERETOQoWdnJJls1HzzekEJzjx5Fns/NM9eA7sCXQsEREROQMVdnJatohq1H77g6MXL/aye/ANmIL8QMcSERGR01BhJ2fkrHcRtf/xdyy7IWtTJvse7hfoSCIiInIaKuzkrEKu/gOJD/YH4NB3v5H24l8CnEhERERORYWdFEnkn54itldzAPa+Pp3MD18OcCIRERE5kQo7KbLY598nsmUcGItdf3+NnO8+DnQkEREROY4KOykyy+EgccqXhNULxbgtdv55NPkr5gU6loiIiBylwk6KxQoJo9Z7MwmOd+DJtdgx5E+4t64NdCwRERFBhZ2UgL16Akn/+QRnJBQcgR0Db9Y17kRERMoBFXZSIo7kC6nz5pvYgw15+z3suvVavJnpgY4lIiJSpamwkxILanEZSS+Ow+YwZG/PYVf/rnizjwQ6loiISJWlwk7OSUjnvtR+ZoTvAsa7B3TD5GYHOpaIiEiV5Ah0AKn4wq6/i6T8fHaOfonMDensvrUbtd7/DssVHOhoIhWe2+PhcE4WGXnZpOVmcSQvhyN5OWQV5JCdn0uOO49cdz657jzyPQXkefIp8Lop8Lhxe90UeN14jBu314PXePB4PXhM4cMYgxcvxngLX2MAgzFHnxnv0bYzs7B+f25Zvpbfn1tYloXvP8uGhYXNsmFZFjZsYIENGzarcLkNW+FP62g/bNhtNmxHl9mswofDdqyfDbt1fLvd99xu2bFbFvajbQ7b730cvjY7NpsNh2XHbtlw2At/2m127DYbzqP9nMe1O2x27DarcHybhdPm8C1z2gu367DZsNkK13Mc91rkfFFhJ6Ui7A/3UTs/l51/f50jaw6xZ1APEv8zG8sZFOhoIgGVXZDH1kP72JVxgL0ZB9mXdYgDOWkczk3nSH4GmQVHyPFkkefJIs+bjdvk4iUXr5WHsfKwbAWBfgtSyowpLHjBAt/zwmKX45dxrDC2+fW1ju8Pxz0vLIoxx4pq29Eexy0/WmT/Ps7vBTeWjePK8sKx/Hocaz/5uXXcmvgV8acu9Dn62vJ7fcL2rFP3wzoxExR2tR39iX//E7b3e39OyuLf//fvzDq6g/NU6zksB69c+9Dpvu4yp8LuNPLdbt5e9g3fbfuRd24aQ7AKlLMKv2U4tQvy2fV/b5OxYh/WHT2pOeUbLId+zaTyyS7IY8P+PWw4sJMth3ezM2MvqVmppOUfJMtzmDxvBh4rA+xFPDTBAuwnNx3PeB1YxolFEJZxYsOBZRX+tFtO7DixWw5slh275fA9d9gchTNelr1wmc1+3KyXvXCW7Ohr6+g/mjarsJgofP37DJN1Qihz3ISewXv0tSn8zxz7CV7jPdqjcIbQGAqfH+3nNV6/GUTD0Ta8vnG85lh/73H9vHiPvi7M4/H1MRi8eArzHFuXo2P6Zie9cGIbhVmxjrUdfX30p7GObzNgGSzLW7TvGbCso+ud6ks+hRPnTM8+h3qemdM8r6KMNwhQYVchvLJ6LNiz+e/abtzasnOg41QIEYMeo1Z+Hrv/+T7pv+yFQd2oOeVrzdxJhbQ/M4OfdqxjZepGtqXvZG/Wbg7np5Dt3Y/XfvjoP9CnYMPvCGZjbFjeUOwmFKcVQbA9glB7BKGOcMKdEUQEhRPtiiQ6OILokAiiXOFEh4RTPSSC6iHhRIeEEeUKxWG3n3p7Ui54vV7cXi9u46HA4ync/e01hbvDvQaP10PBsV3hXvP7T+/Rvsbg8XrxmMJitcBbuLvcY7x4j7a7PZ7CMtR4f2/3en1Fr8d48ZjCgtXj9RwtoI1v/cKi+PdC2mO8xxXgx70+9vy4It1rCgta79H3enxRDvgV317jPa7oP32h//v4wNH/MTjWdmxNjrb5Rjo6sO/ncf0L23/Pc+I6x7cfq0p/H+d4vy871eEIx7c5nc4i/X6UFRV2pxHkcBDvbME+7yJmbpyjwq4YIoeMxrjd7Hn5Y9KXpmAGXE3iu99gBYcGOprIKaVmpvPDlpUs2b2GzWmb2Je7kyyzF2NPO7nz0aLNAoyxY/dE47KqE+GMIcYVT2xILAnhcdSOiKdOdA3qV0+gTlSsirIqwGazEWSzEYQDyte/9VKFqLA7g0trXsbnuxexIWNJoKNUOFH3PY0VFMTuF94lY/VBvH+8mlofzMYWGhHoaFLF7Uo/xMwNi1i0ewVbM37jsHs7XscB/07HH9vuCSeEmlQLSqBmWC3qRiVxYWxdWibU54KYmirYRKRcUWF3Bre17M7nu18g376TDfv30DguMdCRKpTIu0ZhCwlj199fJ3NDOrv+cBW1P/gaW1RMoKNJFeH2ePhuyyq+3vQTqw/8yr78jXgc+/w7Hf1b0PJEEWGrQ62welwQ3YAWNS6gY50LqRMdV/bBRURKqNQLu6eeeoqxY8f6tTVu3Jj169cDkJuby5///Gc+/PBD8vLy6NGjB6+99ho1atQo7SjnrHFcIkGeJPLtO3l35Tf8revgQEeqcMJvGU5ScAg7n3yRrC1Z7OzXldoffom9ekKgo0kllO928/XGZXy56UdWH1rOYc8G/5MXjv6NZ3PHEhd0AY2im9C2ZlOuqt+K+tXL399BIiLFdV5m7C666CK+/fbb3zdy3FmRw4cPZ+bMmXzyySdERUUxbNgw+vTpw48//ng+opyzxpHt+DVrJz/t/REYHOg4FVJYn3up4wph51/Hk70jlx03dSfpvf/iqH1BoKNJJbB+/y7eXTmbhXt/Yl/BKv9Czg7G6ySSC2gQeRHta7XmmkbtVMSJSKV1Xgo7h8NBQsLJMzLp6em89dZbvP/++1x99dUAvP322zRp0oRFixbRoUOH8xHnnPS+oDO/rvgv+wpWke92E6RLd5RIaO9B1AkOYecjo8lNLWB73xtIevttgpq2D3Q0qWC8Xi+fr1vMtHVfsj79Zwocu35faAfjdRFtNaJp9dZ0rdeRay+8hFCnK3CBRUTK0HmpUjZu3EhiYiLBwcF07NiR8ePHU6dOHZYuXUpBQQFdu3b19b3wwgupU6cOCxcuPG1hl5eXR15enu91RkbG+Yh9Sn2bXsr/LQ0GezbT1y3mD80vK7NtVzYhXW4m+e04dt5zP/nphu23DSJp4gsEX9Y70NGknMstyOf9lXP438av2Zqz5PezVY/+DRbkqUPjyEvofUFnbmraUYWciFRZpV7YtW/fnilTptC4cWP27t3L2LFjueKKK1i9ejUpKSkEBQURHR3tt06NGjVISUk57Zjjx48/6bi9shLsDCLW0YwD5hf+99v3KuzOkavNVSR/9DE7Bw4g76CH7ff+mdrjUgi7/q5AR5Nyxu3x8OGv8/hw7f/Ynrvw912s9sILgsbZW9Cp9lXc2qIbF8TWDGxYEZFyotQLu169evmet2jRgvbt25OcnMzHH39MSEhIicYcOXIkjzzyiO91RkYGSUlJ55y1qDomXM4Xe39hXboue1IanA2ak/zZl+y69Xqyd+ay86/Pk7h/L5F3jQp0NAkwr9fLlxuXMXXlZ6w/Mg/jSCtcYAc8YdR2XUyPel0Z3Lob0SFhgYwqIlIunfcDxqKjo2nUqBGbNm2iW7du5Ofnk5aW5jdrl5qaespj8o5xuVy4XIHbtXJLi258sfdFcm3b2XIoVQdelwJ7fBJJn81hz209OLI+nd3Pv0vBti1UH/smlm6QXeVsO7SPFxZ+yIKUWbgduwsbHYA3mFrOdvRtfD23t7pKt/YTETmL8/4vaGZmJps3b6ZmzZq0bdsWp9PJd99951u+YcMGduzYQceOHc93lBJrllAHh7sWlmV4d+XsQMepNGzhUdT6ZB7VLq8LWOz7ZCEpd/bA5Bbx3ppSobk9Hv7185dc/c7dXPu/7sw58AZux26M104MFzOw/mgWDJjLV7e9ypBLeqioExEpglKfsXv00Ue57rrrSE5OZs+ePYwZMwa73c6AAQOIiorirrvu4pFHHqF69epERkbywAMP0LFjx3J5RuzxGkVezNrs3SzYtQC4LdBxKg3LGUTCm18S9Ld7SX1vDmmLdlHQ50pqTf0f9rhagY4n58G2Q/sYv+AdFu2fgddxEADLBk53ba6o2Zs/X/pHXRRYRKSESr2w27VrFwMGDODgwYPExcVx+eWXs2jRIuLiCv+injBhAjabjb59+/pdoLi861W/M2tX/4+9BStxezy6jVApq/7kZJzJz7H72X+TtSWL7Td2J+nNKTibXBLoaFJKPl+7iEnL3mF3wUIsm7vwbx9PCPVDruDuVv25Tt+1iMg5s4wxJtAhiisjI4OoqCjS09OJjIwsk21m5eXR/v3LsGx5/P2SN7lB1187L3Lm/JddjzyBO9vCHmKo/X+jCe1xS6BjSQnlFuTzz5/+y6ebPyDPvtXX7vQk0b32TTx2+QCqhYYHMKGISPlXnLpHV9stojCXi+q2izjMMj7f8J0Ku/MkpHNf6n5Yj513DiTvgIcdw58mYchyooc/H+hoUgwpRw7z9JwpLNj3OcZx6OglSuzUdLTn7pa30a/ZZdh0koyISKlTYVcM7RMu5auUZaw+rMuenE/ORm2o+8X37LnzBo6sS2Pv6zPIW7+O+JenYbmCAx1PzmBVyjbGzp3MhuxvsWx5R3e3htEqqjejrryLxnGJgY4oIlKp6X+Zi+GW5t0ByLFtYWfawQCnqdxs1eKp9cl8Yq9tCcChuZvZeeNlePZuC2wwOaU5W1bT892h3PLVjfyWOxPLlofdXYNeCQ8wf8B3/KfvkyrqRETKgAq7YmidWA+HOwHLMryz4utAx6n0LIeDuH98SK0Rt2LZDVlbs9l64zXkLvwq0NHkqE/XLKTz1MEMm3cLuz3zsCwPod5G/KnxM/wy+Gue63GPLiQsIlKGVNgVU6PIwmPr/rflY7xeb4DTVA2Rd42i7uvP4wyHgnTDtrsfJuP1pwIdq0qbuuw7Or59M2N+uYeDLMWyDNVozZNtJrH4jv8yrMN1OnNcRCQAdFZsMa1J3ckfZ12PZXMzrMmz/KndNWW6/arMvWsze+6+maxthRcwrt6pAfEvfYwVHBrgZFWD1+vljV++4q3Vb5Jj3wiAMTZqOS7jsY73cnWDFgFOKCJSORWn7tGMXTFdVCOJRiGFx9q9sXqyZu3KkKN2A5K+WEhMtyZA4XF3O667DPf29QFOVrl5vV5e/ul/tJtyA6+se4wc+0aM107doK5M6fpfvr7tNRV1IiLlhAq7EnimywMYr5M8+1ZeWzIz0HGqFMsZRPzET6n12EBsTkP2zly23nQj2V++G+holY7X6+WFBf/l4inX8sbGUeTZt2G8Ti5wXcOHvabzxYAJXFy7YaBjiojIcbQrtoT6ffw463O+IMiTzM+Dp+uaXAGQ98v37HrgAfIPe8EyxP/hUqqPfRNL38U5cXs8TPjpUz7Y+G8K7LsAMN4gmob3ZNxVw7ggtmaAE4qIVC3FqXtU2JXQxgN7uemL3li2Au664G88fOmNAclR1XkOpZDypz+Q8Wvh5WfCG0eS+K+PsddIDnCyisft8fD8gml8vOnfuB17ADBeF83Dr2Fcl6HUr14jwAlFRKomHWNXBi6IrclF4YUnTryz7nUdaxcg9uoJJH40j4TBXbFshswNGWzt3ZOcbz8OdLQKI9/tZtyc97lkSi/e3/b3wqLOG0yL8L7MuulLPuj3tIo6EZEKQjN252DLoVSu/19vLFseA+uPYcQVfwhYFoGcOZ+x+y+PU5AB2Aw1+nei2qhJ2jV7GvluN/83/0M+3TIVjyOlsNETTKuo63imy1CSomMCG1BERADtii1Tt0x7il+z/ovDncjPg2fp2l0B5tm/m733/IEj69IACG8USc3X3sdRu0Fgg5Uj2QV5PDP3fWZsfxePY19hoyeENtE3MK7LfdSOqh7YgCIi4ke7YsvQ/3UdCt5g3I49PL9gWqDjVHn2uFrU+u+P1Litc+Gu2d8y2HrDtWRNfyvQ0QLuSF4OI75+nY7v9OB/u/9ZWNR5Qrkk6hZm9/uaqX2eUFEnIlLBacauFNz+36dZkfkJlieKj679kCbxtQMdSYDc+dPZPeKv5KcZsAyxvVoSO34qlis40NHK1OHsTEb/8G/mpn6CsacVNnrCuTS2L09fPYQa4VEBzSciImemXbFlLDUznR4f/QGPIwWXpy7fDvhQ98csJ7xpB0gZejPpS/cCEFLbRa2Jb+BsckmAk51/O9MOMvqH1/nl8HSwZwFgeaK4Mr4ff7v6LqqFhgc4oYiIFIUKuwD4aft6/vTdQLDnkGC7lK9vnaRr25Uj6ZNGk/Lax3gLLGxOQ8L9NxN139OBjnVerNu3izFzJrE262ssWx4ANncMXWv9kdGdBxGlW7CJiFQoKuwC5N+/fMM/V4/Asrx0iB7IGzeMCHQkOU7+rz+x58F7ydlbAEBkyzgSXvkAe1ytACcrHbM3ruAfi//F7oKfsGweABzuRG6qfzt/ufxmgp1BAU4oIiIlocIugB758lVm75uMMRZ3N3paFy4uZ0xeLgeeGMyBmSvAWDjDIXHsXwntPSjQ0UrE6/Xy5tKvmbLmHY5Yq33tIZ4G3HbhHQzrcJ1mjkVEKjgVdgF23QfD2Zb/LcbrYsLlb9LtglaBjiQnyP76ffY8+bfCa95ZhphuTYl79j9YFeTYyIPZR3h2/gfM3vXf3+8SYSzibG25r/Vd3Nz88gAnFBGR0qLCLsCyC/K4+t1bybJtwHJHM/7yCfRufHGgY8kJPIdSSH1gAOlLCy/O64q1k/jsswRf1jvAyU7vp+3reWHRFH7L+h7sOUDhfVwbhlzNyEvvoX2dCwKcUERESpsKu3Jg26F93PjZADyOfRivk37Jwxlz9e2BjiWnkPHvZ0h5+R08uRaWzRB3UweqP/UvrHJyTFp2QR6TF8/kv5umkc5qLKvwj6zNHcNl8Tcw8oqBukuEiEglpsKunNiZdpD+nz9AhvUrAA1dvXiv798IdboCnExO5N6+nr0PDCLztwwAQmq5SJzwKkEtLgtYph+3r2PikvdZc+Q7sB/xtUea5gy4cAD3XnKN7nQiIlIFqLArR/Ldbu74399ZlflfAEK9jXjn2ok0jksMcDI5kfF6SX/pMVL//QXeAgvLbogfcBXV/joRy+EokwwpRw4zcdFnfLtrJtm2335f4AmncXhnhrcfyGXJTcoki4iIlA8q7MqhFxb8l7c3jsey5WF5ori5/v08fmV/nbFYDuWvXczeh+8le0cuAKFJwdR84ZXzNnuXlZfH6z/P5IstM9jvWY5lcwOFJ0NE0YwbG9zE/e2uJ8ylmV4RkapIhV05NWfLah7+4WE8jlQAXJ5kHmg1nEFtugQ4mZzIuN0cfu4h9r3/HcZd+rN3R/JymLr8W2Zu/oZdeYt9J0IA2N01aF39ah7qcAutatY9522JiEjFpsKuHDuYfYQ/f/0yv6R95rsrQDStGHv5CK5u0CLA6eRE+WsWsXf4fX6zdwnPvoirTadij7U/M4M3l37Jtzu+JdW93Pf9A+CJpFHYFQxu0YfejS/WTK6IiPiosKsANuzfw4hv/8GWvO+wLC/GWFS3WtOvUR/+dElvgsromC45u5Nm72yG2BvbETN6MtYZbs/l9XqZs3U109Z+x4oDi8jgN99uVgA8kdQNaceNF/Tk9lZd9J2LiMgpqbCrQOZtXcOT857jEMt8bZYnmhZRXRne4Tba1moQwHRyvPy1i0l5dChZW7IAcMXZSRz3d4KvvNHXZ92+Xfx37TwW7lnEzpzlGEea3xg2dyyNIy7lD0160adpR53VKiIiZ6XCrgL6dtNKXvvlfTZmzwF7NlB48HyotyEtYtrzhybd6N6wlXbRBZjxekl/5XFS3/wcb74FlmFnhxpMuvJCtng34nXsP6G/g0jrQlrHtqdf065cWbepvkMRESkWFXYV2JG8HF5a+Bkzt35Opm2d3zLLE01ScBs61b6M3o07clGNpAClrJq2HErlq40/s3j3Sg7t+YU/zP6Ndhu8AKRGw5vdbayob8flrU3dsBZ0qXs5t7S4iugKcpsyEREpn1TYVRJLd2/mvVVfsST1J9LMOixbgd9yyx1NjPMCmlRrzhV12tCpXnMSI6sHKG3lkZ6bzaKdG1i8aw2rD6xjd9YWMrw7wJ5xUt+LfzP86WsPUZmFr10XVSPpH2/grHdRGacWEZHKSoVdJZSWk8X7q37g6y0/sDNnLfm23b5bSx3P8kQRbtUmISSZC6o15MLYujSvUY9mNeoQXE5ukVUeHM7OZEXKVtbu28bGwzvYlr6Nfbm7yPTswWs/fMrPFsDmjiM+qBFNql/ElXXa0O2C1oRnZ3Bg5N0cmrcJjIXNaYgb0IVqIyaUm9uSiYhIxaXCrgrYn5nBzA1LWLBrKb+lrSHNsxVjTzttf2Ns2D3VCLHFEeWMIyY4lrjQeGpH1KBOVAL1q9ekTnQccaERFfoYsCN5OexIO8D2tH1sT09lV3oKKVn7OJCzn/T8g2R6DpLHAbBnnnkgTzAh1KJGSD0aV2vMJYkX0bl+C2qER512lZw5n5EyZjS5qYVnvgbXcJDw5JOEdL25NN+iiIhUMSrsqqg9GYeYv20Ny/auZ+PhTaTk7iDLk4rHdgjL5inSGMbYsbyhOEwEQbZwgmyhBNvCCHGEEuYIJywojFBHKCGOYMKCQghzhhAeFEKww0WwI4hgRxAuh/Pocyd2mx2bZWG32XFYNizLwmM8eLwGj/foT+Mhz1NATkE+ue588tyFP7MKcsnMzyYzP5vsglyy3dlkF+SQVZBJtjuTHHcWed4sCkw2BSYTjy3T/9pwZ+MNxuGNIdwRR0JIEvWj6tG8RkPa176QBtVrlKjANQX5HH72IfZ/9APeAgswRLerRdwzk3HUvqDY44mIiFSIwu7VV1/l+eefJyUlhZYtWzJx4kTatWtXpHVV2BWP2+Nh7f6drErZyoYD29mTmcqBnH2k5x8iy3OIPJOG15bhf421CswYC8sbhsNEEmKrRoSz+nEzlAk0ja9Ly4T61I46f8cjureuZd/j95O+vPAuI7YgQ1x/7Z4VEZHiK/eF3UcffcTAgQOZPHky7du358UXX+STTz5hw4YNxMfHn3V9FXbnx+HsTLanH2Bn2n5SMg+xL+sg6XmZHMnPJDM/k6yCLLLdmeR78ygwebi9ebhNPh7y8JoCDG6M5cHggaPPwRx9ANbR58YCjj1sRxfZAQeWcWBhx4YDm+XATjAOm4sgy4XTFozLHkyoM4wIZwQRrgiiXRFEB0eSEF6dWhGxJFeLIzGierm5Plz2l/8hZdyz5B0onDF1xdqp8cgDhPX5U4CTiYhIRVHuC7v27dtzySWX8MorrwCFV+hPSkrigQce4K9//etZ11dhJxWJycvl8At/Zv+H3xVe+w4IbxxFjbHPEdTqygCnExGR8q5cF3b5+fmEhoYybdo0brzxRl/7oEGDSEtL43//+99J6+Tl5ZGX9/uxUxkZGSQlJamwkwrFvWszB54axuEftxbOWtoM1a9oSOzTr2KvkRzoeCJSBRivF7xe8LjB68GYo889HjDeo68Ln2O8GM/R/hxt93oxmMI24wWvKVzmNb+vb44uh8Lnx9oAc3z/wgbfMoz36PKj7b7Qx5UpxnvaNt+6ULiNE3nPU7ljsxPS+abzM/ZRxSnsyvzmlAcOHMDj8VCjRg2/9ho1arB+/fpTrjN+/HjGjh1bFvFEzhtH7QYkvPkl1X7+ltSxI8nalMmhuZtJ796DmOsvpdpfXsAWUS3QMUUqLZOXi8nJLHzkZmNyszB5OXhzsjF5OZCXi8nPLeyXn4spyMfk52EKCvye43Zj3G6MuwDjdkOBG+NxYzwecHswHi/maLF0rDAqbCssjozXHC2wjv9p/H8aU1ibmN+fG2MKj2Y5doSLMcc95+TnnPy88BAYKU2W3XDhmvNb2BVHhbjr+MiRI3nkkUd8r4/N2IlURK5LulJnRlcyP36FfS9OIu+Ql32fLOTQrEuJu+UaooaNw3IFBzqmyHln3G7MkUN4Mw7hTT9Y+DPrCOZIOt7sI3izMjHZWXhzsguLr9xcvLm5mNw8vHn5hQVXXgHeAjemwIMp8OB1ezFuL8Zt8LoNxkPhw8vR43srk0C9H/P7pq3jUhwf53Ttx722rJPbTtXvpOZT9j3Hz+IcVrc5ytclwsq8sIuNjcVut5OamurXnpqaSkJCwinXcblcuFyusognUmbCbx5G2E33kP7ak+z/z3TcmbD3jVkc/ORL4obcQsSgv2I5KsT/e0kVY/Jy8ezfjfdQCp5DKXgPHcCTdhBv+mG8RzLwZB7Bm5mJNzMbb3Yuntw8vLkFePPcePM8eAsM3gIw7vNdmJxpfINlB8tG4U+7dfS5hWW3Hf1pYTns4GuzYznsWDYbOOy/v3bY4dhzu+P3ZXY7OBxYdkfhn2WH4+i6zsJldvvvy+x2sDuOtjt+H8fm8PXD7sCy2eHY9uxOsNkL17dsvm1hO7rcsoHdWTi2zVa4rnV0+5ZV2G7ZwLJ+X89mK9zO0XbsR8e22QqzS7kXsJMn2rVrx8SJE4HCkyfq1KnDsGHDdPKEVEnezHTSXhjBgU/n4ckr/MfIFWsn9o7+KvDkvDEF+XhSd+JJ2V74c/9ePAf34zl0EE96Gu70I3iPZOHJysOTU4Anx4M3z+At9YLMYHOA5QSb08LmtGEF2bE57dhcTiyXE1uQE8vlwhbswgp2YXO5sIJDsAUHF/4MCcUKCcUKDsUWEoblexS2WSHh2ILDsELCsYJDIShYhYpUGOX65AkovNzJoEGDeP3112nXrh0vvvgiH3/8MevXrz/p2LtTUWEnlZXnwB4OPTOcQ7NXHr3AMbhibMQOupmIO0bqGnhyViYnC/fODbh3bsK9ZwfulF149u/HfegQ7rQMPOnZuDPz8eR48ORxTrsnbQ6DzWVhd9mwhTixBTuxh7qwhYZgCw/FHhaOLTwcW0Tk0Uc0tshobJHVsUXHYIuoji0qBiuimooskTMo94UdwCuvvOK7QHGrVq14+eWXad++fZHWVWEnlZ0ndTuHnv2LX4EXVM1GzB97E3nPk9hCIwKcUMqacbvx7NlCwZZfcW/fRMHuHbhTU3AfOIT78BHc6Tm4Mz2+Gd/isAUZ7CE2HKEO7OHB2MNDsUeGY4+KwhYdjb16DPZqcdhjamCPq4ktrjb2mJo6FlSkjFSIwu5cqLCTqsKzbyeH/vEYh75a5rsGnj3EUL3HxVR76O/Ya9YNbEApNd4jhynYsJyCzWso2LGZgj27cafso+BABgXpubgzDcZbxKLNZnCEWDjCnTgig3FUi8BeLRpHTCz2+Bo44mthT0jCUbMu9pp1C3dNiki5pcJOpJLxHNhD2oTHOfTVYtxZhW2W3RDdoS7Vho7E1aZTYAPKWZmCfNybVpK/YQX5m9ZRsGMbBXsLC7f8tHw8OUUp2gyOUHBEBOGoFoozJhpHXCyOhEQctZNx1GqAI7kx9oRk7doUqURU2IlUUiYni4y3xnHwo+nk7ff42kPrBBPd5zoiBo7QbtoAMrnZFGxYSv665eRvWkf+9u3k79lPwcEsCjK8Z51xszkNzkgHzuqhOOOq4aiZgLN2Ms46DXDWb4qj3kWaXROpglTYiVRyxusle/pbHPr3m2RuTPcdAG93GaIubUT0kOG42lwV4JSVk/F6cW9fR/7Kn8jf8Cv5W7eSvzuV/P2Z5Kd7z3wygs0QFGnDGRNKUI0YnLVr40yuh7PBRQQ1bo2tRh3NtInISVTYiVQhBeuXkvbGc6TNWeXbTQsQHO8gstPFRN46DOeFbQMXsILyZh+h4NefyFv9M/m/rSNv+y7y9x4m/1C+74SWU7HshqBoO0FxEThr1SCobj2CGjQhqEkbHA1b6sxmESk2FXYiVZDJyyXz41dI+/hjMjdl+M0chdRyEXlVRyL63omzySUBTFn+eFK3k7dsPvnrVpC3eSP5O/aSty+TgowzzL5ZBmeEhatGBEGJ8QTVq0dQo2YENbsER/0Wuu6giJQqFXYiVZx712aOvPcSGd/NJ3tHDsdfgT+ouo3wVg0I734doT1uwQoJC1zQMmIK8ilY/wv5q38mb8Nq8rduI3/PAfL25+DJPf3sm81pCIoJwlWzOkF1kwi6oAmuZpfgbNZBxzKKSJlRYSciPgWbVnLkvVfJmL+EnN25frNQNqchpE44oRc1JuTSzoR0vglbdGwA05ac8Xrx7PyN/LU/k79+FflbNpO/ay/5+zLIP+w544kLjjBwxYUSVLsGQfXr4bqwBUGtL8eR3ETHvIlIwKmwE5FT8qRuJ+t/U8ic8wOZa1NOnq2yDMFxToIb1MR1wQW4mrXBdfHVOBLrBSbwCbyH91Hw23IKNq+lYPtm8nftpGDPPvL3H6EgzX3GW11ZNkNQNTtBCVEEJSXiatiIoKZtCGp1Ofbqp75PtYhIeaDCTkTOyrjd5C74gpwF35Cz4leytx70O/niePYQgysuBGdMJI4acThrJuJMqocjuVHhnQhiE7FFxxd7dst4vZj0A4X3KT2wB8+BFDwHU3Hv3YN7fyruA4dxp2XgTs/FfcRdhLsqGBzhFq7YUIISYwmqW5egC5oSdNHFOJtcohMXRKRCUmEnIiVS8Nsysr//nLw1q8nbvpu8vRkUHCniypbB5gS7y8KyW2BZWDaO/rQwXoNxezFug9djMG7wuin2vUptQUev9RYThjM+hqA6dXDWb0RQ41Y4m16iY99EpNIpTt2jU7dExMfZqA1Rjdr4tXkP7yNv6RzyN6wqvD9pSioF+w9TcDgbd6b79xvJGwtvPnjzAczRx+mcUMzZDHYX2INt2EOcOCJDcMRE44iNwVGjJo6aSTiSL8DZqBX22MTSfdMiIpWIZuxE5JwYrxdz5DCeQyl4D+zFe2g/piAP43GDx40pKACPGxxObCFhWL5HOLbwKOzxtbEiq+skBRGR09CMnYiUGctmw4qKwRYVA/UuCnQcEZEqTf+LLCIiIlJJqLATERERqSRU2ImIiIhUEirsRERERCoJFXYiIiIilYQKOxEREZFKQoWdiIiISCWhwk5ERESkklBhJyIiIlJJqLATERERqSRU2ImIiIhUEirsRERERCoJFXYiIiIilYQKOxEREZFKwhHoACVhjAEgIyMjwElEREREzq9j9c6x+udMKmRhd+TIEQCSkpICnERERESkbBw5coSoqKgz9rFMUcq/csbr9bJnzx4iIiKwLIuMjAySkpLYuXMnkZGRgY4nRaDvrOLRd1bx6DurWPR9VTxl9Z0ZYzhy5AiJiYnYbGc+iq5CztjZbDZq1659UntkZKT+MFQw+s4qHn1nFY++s4pF31fFUxbf2dlm6o7RyRMiIiIilYQKOxEREZFKolIUdi6XizFjxuByuQIdRYpI31nFo++s4tF3VrHo+6p4yuN3ViFPnhARERGRk1WKGTsRERERUWEnIiIiUmmosBMRERGpJCpFYffqq69St25dgoODad++PUuWLAl0JAGeeuopLMvye1x44YW+5bm5uQwdOpSYmBjCw8Pp27cvqampAUxc9cybN4/rrruOxMRELMvi888/91tujGH06NHUrFmTkJAQunbtysaNG/36HDp0iFtvvZXIyEiio6O56667yMzMLMN3UbWc7TsbPHjwSX/uevbs6ddH31nZGT9+PJdccgkRERHEx8dz4403smHDBr8+Rfm7cMeOHfTu3ZvQ0FDi4+MZMWIEbre7LN9KlVGU76xz584n/Tm79957/foE6jur8IXdRx99xCOPPMKYMWNYtmwZLVu2pEePHuzbty/Q0QS46KKL2Lt3r++xYMEC37Lhw4fzxRdf8MknnzB37lz27NlDnz59Api26snKyqJly5a8+uqrp1z+3HPP8fLLLzN58mQWL15MWFgYPXr0IDc319fn1ltvZc2aNcyePZsZM2Ywb9487rnnnrJ6C1XO2b4zgJ49e/r9ufvggw/8lus7Kztz585l6NChLFq0iNmzZ1NQUED37t3Jysry9Tnb34Uej4fevXuTn5/PTz/9xNSpU5kyZQqjR48OxFuq9IrynQEMGTLE78/Zc88951sW0O/MVHDt2rUzQ4cO9b32eDwmMTHRjB8/PoCpxBhjxowZY1q2bHnKZWlpacbpdJpPPvnE17Zu3ToDmIULF5ZRQjkeYD777DPfa6/XaxISEszzzz/va0tLSzMul8t88MEHxhhj1q5dawDz888/+/p8+eWXxrIss3v37jLLXlWd+J0ZY8ygQYPMDTfccNp19J0F1r59+wxg5s6da4wp2t+Fs2bNMjabzaSkpPj6TJo0yURGRpq8vLyyfQNV0InfmTHGdOrUyTz00EOnXSeQ31mFnrHLz89n6dKldO3a1ddms9no2rUrCxcuDGAyOWbjxo0kJiZSv359br31Vnbs2AHA0qVLKSgo8PvuLrzwQurUqaPvrpzYunUrKSkpft9RVFQU7du3931HCxcuJDo6mosvvtjXp2vXrthsNhYvXlzmmaXQnDlziI+Pp3Hjxtx3330cPHjQt0zfWWClp6cDUL16daBofxcuXLiQ5s2bU6NGDV+fHj16kJGRwZo1a8owfdV04nd2zHvvvUdsbCzNmjVj5MiRZGdn+5YF8jurkPeKPebAgQN4PB6/Dw6gRo0arF+/PkCp5Jj27dszZcoUGjduzN69exk7dixXXHEFq1evJiUlhaCgIKKjo/3WqVGjBikpKYEJLH6OfQ+n+vN1bFlKSgrx8fF+yx0OB9WrV9f3GCA9e/akT58+1KtXj82bN/P444/Tq1cvFi5ciN1u13cWQF6vl4cffpjLLvv/9u4/pqr6/wP4835uQMBFrnjBe4nfP5QMmMgGXUsjIRSZkS0lbCiImAkVmzpyq+astSy1NDa0peBWqWyalFuUAhcJi8RQoBrEHSi4i5VIgfJL7/v7h1/Pt9NFhc8XuHB9Prazcc55836/Dq/dsxfv8z7wGEJDQwFgWPfCjo6OIT+Ht8/R2BkqZwCwYsUK+Pr6wtPTE3V1dcjNzUVjYyOOHj0KwLo5m9SFHU1sCQkJ0tfh4eGIjo6Gr68vioqK4OjoaMXIiGzX888/L30dFhaG8PBwBAYGwmAwIDY21oqRUVZWFhoaGmRrjWliu1PO/rkmNSwsDDqdDrGxsTAajQgMDBzvMGUm9aNYjUYDpVJp8fbQ5cuXodVqrRQV3YlarcaMGTPQ3NwMrVaLgYEBdHV1ydowdxPH7Tzc7fOl1WotXlS6ceMGOjs7mccJIiAgABqNBs3NzQCYM2vJzs7G8ePHUV5eDi8vL+n4cO6FWq12yM/h7XM0Nu6Us6FER0cDgOxzZq2cTerCzt7eHpGRkSgtLZWOmc1mlJaWQq/XWzEyGkpPTw+MRiN0Oh0iIyNhZ2cny11jYyMuXrzI3E0Q/v7+0Gq1shz9/fffqK6ulnKk1+vR1dWFs2fPSm3KyspgNpulGx1ZV3t7O65cuQKdTgeAORtvQghkZ2fjiy++QFlZGfz9/WXnh3Mv1Ov1qK+vlxXkJ06cwJQpUzBr1qzxuZD7yL1yNpRz584BgOxzZrWcjemrGePg0KFDwsHBQRQWFopffvlFrF27VqjVatmbKGQdGzZsEAaDQbS0tIiqqioRFxcnNBqN+P3334UQQqxbt074+PiIsrIyUVNTI/R6vdDr9VaO+v7S3d0tamtrRW1trQAgdu7cKWpra8WFCxeEEEK8++67Qq1Wi+LiYlFXVyeSkpKEv7+/6O3tlfpYtGiRiIiIENXV1eK7774TwcHBIiUlxVqXZPPulrPu7m6xceNG8f3334uWlhZx8uRJMWfOHBEcHCz6+vqkPpiz8fPSSy8JV1dXYTAYhMlkkrbr169Lbe51L7xx44YIDQ0V8fHx4ty5c6KkpES4u7uLzZs3W+OSbN69ctbc3Cy2bt0qampqREtLiyguLhYBAQFi/vz5Uh/WzNmkL+yEEOKjjz4SPj4+wt7eXkRFRYkffvjB2iGRECI5OVnodDphb28vHnroIZGcnCyam5ul8729vWL9+vVi6tSpwsnJSSxdulSYTCYrRnz/KS8vFwAstlWrVgkhbv3JkzfeeENMnz5dODg4iNjYWNHY2Cjr48qVKyIlJUWoVCoxZcoUkZ6eLrq7u61wNfeHu+Xs+vXrIj4+Xri7uws7Ozvh6+srMjMzLX7RZc7Gz1C5AiAKCgqkNsO5F7a2toqEhATh6OgoNBqN2LBhgxgcHBznq7k/3CtnFy9eFPPnzxdubm7CwcFBBAUFiU2bNom//vpL1o+1cqb434sgIiIiokluUq+xIyIiIqL/w8KOiIiIyEawsCMiIiKyESzsiIiIiGwECzsiIiIiG8HCjoiIiMhGsLAjIiIishEs7IiIiIhsBAs7Ihp1QgisXbsWbm5uUCgU0v9RJEsDAwMICgrC6dOnx33sRx99FEeOHBn3cYlo7LCwI6JRV1JSgsLCQhw/fhwmkwmhoaHWDmnC2rNnD/z9/TF37lwUFhZCoVDcdWttbcWWLVswe/Zsi75aW1tHVEi//vrreO2112A2m0f3oojIaljYEdGoMxqN0Ol0mDt3LrRaLR544AGLNgMDA1aIbGIRQiAvLw8ZGRkAgOTkZJhMJmnT6/XIzMyUHfP29h618RMSEtDd3Y2vv/561PokIutiYUdEoyotLQ0vv/wyLl68CIVCAT8/PwBATEwMsrOzkZOTA41Gg4ULFwIAGhoakJCQAJVKhenTpyM1NRV//vmn1N+1a9ewcuVKqFQq6HQ67NixAzExMcjJyZHaKBQKHDt2TBaHWq1GYWGhtN/W1obly5dDrVbDzc0NSUlJaG1tlcX9zDPPYPv27dDpdJg2bRqysrIwODgotenv70dubi68vb3h4OCAoKAg7Nu3D0IIBAUFYfv27bIYzp07B4VCgebm5iF/VmfPnoXRaERiYiIAwNHREVqtVtrs7e3h5OQkO6ZUKoebCqSlpQ0562cwGAAASqUSixcvxqFDh4bdJxFNbCzsiGhU7dq1C1u3boWXlxdMJhPOnDkjnTtw4ADs7e1RVVWFPXv2oKurCwsWLEBERARqampQUlKCy5cvY/ny5dL3bNq0CRUVFSguLsa3334Lg8GAn376aUQxDQ4OYuHChXBxcUFlZSWqqqqgUqmwaNEi2cxheXk5jEYjysvLceDAARQWFsqKw5UrV+LgwYPYvXs3fv31V+zduxcqlQoKhQKrV69GQUGBbNyCggLMnz8fQUFBQ8ZVWVmJGTNmwMXFZUTXM1y7du2Szfa9+uqr8PDwQEhIiNQmKioKlZWVYzI+EY0/y+cjRET/D66urnBxcYFSqYRWq5WdCw4OxnvvvSftv/3224iIiMA777wjHdu/fz+8vb3R1NQET09P7Nu3D59++iliY2MB3CoOvby8RhTT4cOHYTab8cknn0ChUAC4VXSp1WoYDAbEx8cDAKZOnYq8vDwolUqEhIQgMTERpaWlyMzMRFNTE4qKinDixAnExcUBAAICAqQx0tLS8Oabb+LHH39EVFQUBgcH8fnnn1vM4v3ThQsX4OnpOaJrua2+vh4qlUp2TAgh23d1dYWrqysA4OjRo9i7dy9Onjwpy4unpyfa2tpgNpvxn//wd32iyY6FHRGNm8jISNn++fPnUV5eblGgALfW6fX29mJgYADR0dHScTc3N8ycOXNE454/fx7Nzc0WM2N9fX0wGo3S/iOPPCJ71KnT6VBfXw/g1mNVpVKJJ554YsgxPD09kZiYiP379yMqKgpfffUV+vv7sWzZsjvG1dvbiwcffHBE13LbzJkz8eWXX8qOXbp0CTExMRZta2trkZqairy8PDz22GOyc46OjjCbzejv74ejo+N/FQsRTRws7Iho3Dg7O8v2e3p6sGTJEmzbts2irU6nu+PatH9TKBQWs1X/XBvX09ODyMhIfPbZZxbf6+7uLn1tZ2dn0e/tN0aHU/SsWbMGqamp+OCDD1BQUIDk5GQ4OTndsb1Go5EKx5Gyt7e3eMQ71EsqHR0dePrpp7FmzRrpJY1/6uzshLOzM4s6IhvBwo6IrGbOnDk4cuQI/Pz8hixKAgMDYWdnh+rqavj4+AAArl69iqamJtnMmbu7O0wmk7T/22+/4fr167JxDh8+DA8PD0yZMuW/ijUsLAxmsxkVFRXSo9h/W7x4MZydnZGfn4+SkhKcOnXqrn1GREQgPz8fQgjpEfFo6uvrQ1JSEkJCQrBz584h2zQ0NCAiImLUxyYi6+CCCiKymqysLHR2diIlJQVnzpyB0WjEN998g/T0dNy8eRMqlQoZGRnYtGkTysrK0NDQgLS0NIu1YAsWLEBeXh5qa2tRU1ODdevWyWbfXnjhBWg0GiQlJaGyshItLS0wGAx45ZVX0N7ePqxY/fz8sGrVKqxevRrHjh2T+igqKpLaKJVKpKWlYfPmzQgODoZer79rn08++SR6enrw888/j+CnNnwvvvgi2trasHv3bvzxxx/o6OhAR0eH7IWRyspKaY0hEU1+LOyIyGo8PT1RVVWFmzdvIj4+HmFhYcjJyYFarZaKt/fffx/z5s3DkiVLEBcXh8cff9xird6OHTvg7e2NefPmYcWKFdi4caPsEaiTkxNOnToFHx8fPPvss3j44YeRkZGBvr6+Ec3g5efn47nnnsP69esREhKCzMxMXLt2TdYmIyMDAwMDSE9Pv2d/06ZNw9KlS4d8RDwaKioqYDKZMGvWLOh0Omm7/V8uLl26hNOnTw8rViKaHBTi3wtTiIgmuJiYGMyePRsffvihtUOxUFlZidjYWLS1tWH69On3bF9XV4ennnoKRqNxyJdIxlJubi6uXr2Kjz/+eFzHJaKxwxk7IqJR0N/fj/b2dmzZsgXLli0bVlEHAOHh4di2bRtaWlrGOEJLHh4eeOutt8Z9XCIaOyzsiIhGwcGDB+Hr64uuri7Z3+objrS0NISFhY1RZHe2YcOGYRegRDQ58FEsERERkY3gjB0RERGRjWBhR0RERGQjWNgRERER2QgWdkREREQ2goUdERERkY1gYUdERERkI1jYEREREdkIFnZERERENoKFHREREZGN+B9RYZ2gp4keqAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "graphene.medium.plot_sigma(freqs)\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "id": "32145119", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.9" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "00ddbc4f0feb4531ba878e3b93bc04fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0986fa4a15da4f67876782be6e75a63a": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_a5dbd673f5144c43a7353f70b28082ad", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 11.3/11.3 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m11.3/11.3 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "0dafb11865b14463a18220e65c0aa983": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_596916ba998f406ca8ea6ad1171ac88e", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 46.7/46.7 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m46.7/46.7 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "125e22f171c64d2a951022e0ea8d9822": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "348e5e28f2ca4079b686c126075d231f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "353d6ac4da534848b4d13b10d1bdbe6e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3a733e33c29947879f0e780fd665d431": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3e2688204d754c70999acfa7242e1790": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_af9a6de047624237828bcb0ce887bc51", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 11.3/11.3 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m11.3/11.3 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "4aa5583c538d41b9918c8bbbf78ac815": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "596916ba998f406ca8ea6ad1171ac88e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "62923289a48042a2b1a2e65c8261fff2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6aede3de6bba4aeda34ffdb43d3ecedf": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_3a733e33c29947879f0e780fd665d431", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 55.2/55.2 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m55.2/55.2 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "7c83017e99c64d2b9829d5522006c36f": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_62923289a48042a2b1a2e65c8261fff2", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 9.0/9.0 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m9.0/9.0 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "7d7b0e3393ad4db39b564a3ec6ea6e16": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_98e95e5aed87440aa744841d9c821984", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 55.2/55.2 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m55.2/55.2 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "81ecc5eb50f840808c5629858b397b71": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "83caa575c5704078a1e93e5bbdf56b7f": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_353d6ac4da534848b4d13b10d1bdbe6e", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 9.0/9.0 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m9.0/9.0 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "9007fdf6c8dc488e9700212223e8cfac": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "96e863dcd2594220918347a4140a187c": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_00ddbc4f0feb4531ba878e3b93bc04fd", "msg_id": "", "outputs": [ { "data": { "text/html": "
mu_c=0.00: status = success \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nmu_c=0.10: status = success \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nmu_c=0.20: status = success \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nmu_c=0.50: status = success \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n
\n", "text/plain": "mu_c=0.00: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nmu_c=0.10: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nmu_c=0.20: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nmu_c=0.50: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "98e95e5aed87440aa744841d9c821984": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a3c5df155bfb45679b7b0440f080111a": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_dd31b4be87cd4421909a90f2d558d133", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 46.5/46.5 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m46.5/46.5 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "a5dbd673f5144c43a7353f70b28082ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a9bc3f43733a474c9a65f2174899e4cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "abff542b06fa489cb186860d94295b17": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_9007fdf6c8dc488e9700212223e8cfac", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 11.6/11.6 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m11.6/11.6 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "af9a6de047624237828bcb0ce887bc51": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b48ab0d1d13b457bacf4b774e2277763": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b8704f47623846f5ac4e0ee496a90792": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b8c68e2842174a779710dd38ba8c05df": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_e9fd15b543c141d895b0f2fa83e0344b", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 57.4/57.4 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m57.4/57.4 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "cdc3855028b04342906a217f92839a95": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_125e22f171c64d2a951022e0ea8d9822", "msg_id": "", "outputs": [ { "data": { "text/html": "
mu_c=0.00: status = success \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nmu_c=0.10: status = success \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nmu_c=0.20: status = success \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nmu_c=0.50: status = success \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n
\n", "text/plain": "mu_c=0.00: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nmu_c=0.10: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nmu_c=0.20: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nmu_c=0.50: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "ceea8f94d5db4f2ca3f6f68f4ddafc38": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_b8704f47623846f5ac4e0ee496a90792", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 55.2/55.2 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m55.2/55.2 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "d82c420aa5eb4ef49e34f3035e6183a0": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_81ecc5eb50f840808c5629858b397b71", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 9.0/9.0 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m9.0/9.0 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "dc6ce794bed947959d17dbfa2c2420c4": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_a9bc3f43733a474c9a65f2174899e4cd", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 11.3/11.3 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m11.3/11.3 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "dd31b4be87cd4421909a90f2d558d133": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "de543c1de21f49448944c7470c4cca47": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_348e5e28f2ca4079b686c126075d231f", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 46.2/46.2 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m46.2/46.2 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "e9fd15b543c141d895b0f2fa83e0344b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f224dff771214457b0df0c943d3184c8": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_b48ab0d1d13b457bacf4b774e2277763", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 9.1/9.1 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m9.1/9.1 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "fbeb95d48f644b8a8de68a0ea6b75ccc": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_4aa5583c538d41b9918c8bbbf78ac815", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 46.1/46.1 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m46.1/46.1 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }