{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "-" } }, "source": [ "# GDSII import\n", "\n", "\"diagram\"\n", "\n", "In Tidy3D, complex structures can be defined or imported from GDSII files via the third-party [gdstk](https://heitzmann.github.io/gdstk/) package. In this tutorial, we will first illustrate how to use the package to define a structure, then we will save this to file, and then we will read that file and import the structures in a simulation.\n", "\n", "Note that this tutorial requires gdstk, so grab it with `pip install gdstk` before running the tutorial or uncomment the cell line below." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:10.696498Z", "iopub.status.busy": "2023-03-27T21:52:10.695858Z", "iopub.status.idle": "2023-03-27T21:52:12.029064Z", "shell.execute_reply": "2023-03-27T21:52:12.028494Z" }, "tags": [] }, "outputs": [], "source": [ "# standard python imports\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import gdstk\n", "import os\n", "\n", "# tidy3d import\n", "import tidy3d as td\n", "from tidy3d import web\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Creating a beam splitter with gdstk\n", "\n", "First, we will construct an integrated beam splitter as in the title image in this notebook using `gdstk`. If you are only interested in importing an already existing GDSII file, just jump ahead to the next section.\n", "\n", "We first define some structural parameters. We consider the sidewall of the device to be slanted, deviating from the vertical sidewall by `sidewall_angle`. `sidewall_angle>0` corresponds to a typical fabrication scenario where the base of the device is larger than the top.\n", "\n", "We define the device by constructing the cross section of the device. The cross section can be supplied at the `top`, `bottom`, or the `middle` of the device, specified by the parameter `reference_plane`. Here we choose to define the cross section on the base. On the base, the two arms of the device start at a distance `wg_spacing_in` apart, then come together at a coupling distance `wg_spacing_coup` for a certain length `coup_length`, and then split again into separate ports. In the coupling region, the field overlap results in energy exchange between the two waveguides. Here, we will only see how to define, export, and import such a device using `gdstk`. When importing the device, we can optionally dilate or erode its cross section via `dilation`. In a later example we will simulate the device and study the frequency dependence of the transmission into each of the ports." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:12.031637Z", "iopub.status.busy": "2023-03-27T21:52:12.031357Z", "iopub.status.idle": "2023-03-27T21:52:12.050031Z", "shell.execute_reply": "2023-03-27T21:52:12.049476Z" }, "tags": [] }, "outputs": [], "source": [ "### Lengths in micrometers\n", "\n", "# Waveguide width\n", "wg_width = 0.45\n", "\n", "# Waveguide separation in the beginning/end\n", "wg_spacing_in = 8\n", "\n", "# Length of the coupling region\n", "coup_length = 10\n", "\n", "# Angle of the sidewall deviating from the vertical ones, positive values for the base larger than the top\n", "sidewall_angle = np.pi / 6\n", "\n", "# Reference plane where the cross section of the device is defined\n", "reference_plane = \"bottom\"\n", "\n", "# Length of the bend region\n", "bend_length = 16\n", "\n", "# Waveguide separation in the coupling region\n", "wg_spacing_coup = 0.10\n", "\n", "# Total device length along propagation direction\n", "device_length = 100\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Generating Geometry\n", "To create the device, we will use the `RobustPath` class to define two parallel waveguide with a variable distance between them. First, we define a helper fuction that will give the shape of the waveguides in the S-bends that bring them together and then apart. The distance between them (described by the `offset` parameter in `RobustPath`) will follow a hyperbolic tangent function, so we create a helper function that simple produces a normalized version of _tanh_ in the unit interval." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:12.052011Z", "iopub.status.busy": "2023-03-27T21:52:12.051875Z", "iopub.status.idle": "2023-03-27T21:52:12.291988Z", "shell.execute_reply": "2023-03-27T21:52:12.291489Z" }, "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAF2CAYAAAClCnbOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACB3klEQVR4nOzdd3gU1dfA8e+2bHohvZLQeycYEKmKCigKGkXpVUEpooCo2BERgVdQVKSrNBFR2g8QlCaR3ksgIZRUQnrfnfePhYWYAElIz/k8zzy7O3Nn5gwL5OTOnXNViqIoCCGEEEKIQlOXdQBCCCGEEBWVJFJCCCGEEEUkiZQQQgghRBFJIiWEEEIIUUSSSAkhhBBCFJEkUkIIIYQQRSSJlBBCCCFEEUkiJYQQQghRRJJICSGEEEIUkSRSQohyYfHixahUKg4cOFDWoZQrHTt2pGPHjmUdhhDiLiSREkLkoVKpCrTs3LmzrEPNZffu3TzxxBN4e3tjaWmJn58fPXv25Keffrrvvh07dsx1bRYWFgQEBDB8+HAuX75cCtELISoibVkHIIQof5YtW5br89KlS9m6dWue9fXr1y/NsO5p9erVBAcH06xZM8aMGYOTkxNhYWH8/ffffP/99/Tt2/e+x/Dx8WHatGkAZGVlcerUKebPn8+WLVs4ffo01tbWJX0ZQogKRhIpIUQeL7/8cq7P//zzD1u3bs2zvjx5//33adCgAf/88w8WFha5tsXExBToGA4ODnmuMSAggNGjR7Nnzx4effTRYotXCFE5yK09IUSRLFq0iM6dO+Pm5oZer6dBgwZ88803edr5+/vTo0cPdu/eTWBgIJaWltSoUYOlS5fme9zMzEzGjx+Pq6srNjY2PPPMM8TGxt43ngsXLtC6des8SRSAm5tb4S/wJg8PDwC02ty/d169epXBgwfj7u6OXq+nYcOGLFy4MFebnTt3olKpWLVqFZ988gk+Pj5YWlrSpUsXQkND85zru+++o2bNmlhZWREYGMiuXbuKHLcQonRIj5QQoki++eYbGjZsyFNPPYVWq+X333/n1VdfxWg0MmrUqFxtQ0ND6dOnD0OGDGHAgAEsXLiQgQMH0rJlSxo2bJir7WuvvYaTkxNTp04lPDyc2bNnM3r0aFauXHnPeKpXr8727du5cuUKPj4+Rbomg8FAXFwcANnZ2Zw+fZqpU6dSq1Yt2rVrZ24XHR3NQw89hEqlYvTo0bi6urJp0yaGDBlCUlISY8eOzXXczz77DLVazYQJE0hMTOTzzz/npZdeYv/+/eY2P/zwAyNGjKBt27aMHTuWixcv8tRTT1GtWjV8fX2LdD1CiFKgCCHEfYwaNUr5738XaWlpedp169ZNqVGjRq511atXVwDl77//Nq+LiYlR9Hq98sYbb5jXLVq0SAGUrl27Kkaj0bx+3LhxikajURISEu4Z4w8//KAAioWFhdKpUyfl3XffVXbt2qUYDIYCXWOHDh0UIM9Sv3595eLFi7naDhkyRPH09FTi4uJyrX/hhRcUBwcH85/Njh07zMfIzMw0t5szZ44CKMePH1cURVGysrIUNzc3pVmzZrnafffddwqgdOjQoUDXIIQofXJrTwhRJFZWVub3iYmJxMXF0aFDBy5evEhiYmKutg0aNKB9+/bmz66urtStW5eLFy/mOe7w4cNRqVTmz+3bt8dgMHDp0qV7xjN48GA2b95Mx44d2b17Nx999BHt27endu3a7N27t0DX5O/vz9atW9m6dSubNm1i9uzZJCYm8sQTT5hvLyqKwi+//ELPnj1RFIW4uDjz0q1bNxITEzl06FCu4w4aNCjXLcdbfxa3rv/AgQPExMQwcuTIXO0GDhyIg4NDgWIXQpQNubUnhCiSPXv2MHXqVPbt20daWlqubYmJibkSAD8/vzz7Ozk5cePGjTzr/9vWyckJIN+2/9WtWze6detGWloaBw8eZOXKlcyfP58ePXpw5swZ3NzciI2NxWAwmPextbXF1tYWABsbG7p27Wre9vjjj/Pwww/TqlUrPvvsM2bOnElsbCwJCQl89913fPfdd/nG8d/B7fe7pltJYu3atXO10+l01KhR477XLYQoO5JICSEK7cKFC3Tp0oV69erx5Zdf4uvri4WFBRs3bmTWrFkYjcZc7TUaTb7HURQlz7rCtL0ba2tr2rdvT/v27XFxceGDDz5g06ZNDBgwgNatW+fq3Zo6dSrvv//+XY/VsmVLHBwc+PvvvwHM1/byyy8zYMCAfPdp0qRJsV+TEKJ8kkRKCFFov//+O5mZmaxfvz5Xb8uOHTvKMKr8tWrVCoDIyEgAfvzxR9LT083bC9LjYzAYSElJAUy3Je3s7DAYDLl6rx5E9erVATh//jydO3c2r8/OziYsLIymTZsWy3mEEMVPEikhRKHd6mG5s0clMTGRRYsWlVVIbN++nS5duuRZv3HjRgDq1q0LkOvpu4LYsWMHKSkp5mRGo9HQu3dvfvrpJ06cOEGjRo1ytY+NjcXV1bVQ52jVqhWurq7Mnz8/13iqxYsXk5CQUKhjCSFKlyRSQohCe+yxx7CwsKBnz56MGDGClJQUvv/+e9zc3Mw9P6Xt6aefJiAggJ49e1KzZk1SU1PZtm0bv//+O61bt6Znz573PUZiYiLLly8HICcnh7Nnz/LNN99gZWXFpEmTzO0+++wzduzYQZs2bRg2bBgNGjQgPj6eQ4cOsW3bNuLj4wsVu06n4+OPP2bEiBF07tyZ4OBgwsLCWLRokYyREqKck0RKCFFodevWZc2aNbzzzjtMmDABDw8PXnnlFVxdXRk8eHCZxLRgwQJ+++03Vq1axbVr11AUhRo1ajBlyhQmTpyYp6Bmfq5cuUK/fv0A03yDTk5OdOjQgalTp9KsWTNzO3d3d0JCQvjwww9Zu3YtX3/9Nc7OzjRs2JDp06cXKf7hw4djMBiYMWMGb775Jo0bN2b9+vW8++67RTqeEKJ0qBQZ7SiEEEIIUSRSR0oIIYQQoogkkRJCCCGEKCJJpIQQQgghikgSKSGEEEKIIpJESgghhBCiiCSREkIIIYQoogpRR8poNHLt2jXs7OxyzQovhBBCCFHcFEUhOTkZLy8v1Op79zlViETq2rVr+Pr6lnUYQgghhKhCLl++jI+Pzz3bVIhEys7ODjBdkL29fRlHI4QQQojKLCkpCV9fX3P+cS8VIpG6dTvP3t5eEikhhBBClIqCDCeSweZCCCGEEEUkiZQQQgghRBFJIiWEEEIIUUQVYoxUQRiNRrKysso6DFHB6XQ6NBpNWYchhBCigqgUiVRWVhZhYWEYjcayDkVUAo6Ojnh4eEjNMiGEEPdV4RMpRVGIjIxEo9Hg6+t738JZQtyNoiikpaURExMDgKenZxlHJIQQoryr8IlUTk4OaWlpeHl5YW1tXdbhiArOysoKgJiYGNzc3OQ2nxBCiHsqdPfN33//Tc+ePfHy8kKlUrFu3br77rNz505atGiBXq+nVq1aLF68uAih5s9gMABgYWFRbMcUVduthDw7O7uMIxFCCFHeFTqRSk1NpWnTpsybN69A7cPCwujevTudOnXiyJEjjB07lqFDh7Jly5ZCB3svMp5FFBf5uySEEKKgCn1r74knnuCJJ54ocPv58+cTEBDAzJkzAahfvz67d+9m1qxZdOvWrbCnF0IIIYQoN0p8jNS+ffvo2rVrrnXdunVj7Nixd90nMzOTzMxM8+ekpKSSCq/S8ff3Z+zYsff8872b8PBwAgICOHz4MM2aNSv22IrT2bNn6dChA+fPny/QXEgAkyZNIjU1la+++qqEoxNCiOJlVIxkG7PJMmSRZcgi25h9ezFkk2PMIdtoes1RckyvtxYlB4PRgEExmNcZFSMGxYDBaMCoGMlRbq8zKkbz+luLQTGgoGAwml7N24w5GA3ZKEoOiiHH9NmYjWI0oCgGjMYcFMWAYjRgVAwoRqPps2J6NSpGUIw3Pys3X28d24jBeCuGm9uMCkZM7xvp6/P+gBVl/dWUfCIVFRWFu7t7rnXu7u4kJSWRnp5uHtx7p2nTpvHBBx+UdGhlqmPHjjRr1ozZs2eXdShmvr6+REZG4uLiUuB93n//fdatW8eRI0dKLrB8TJ48mddee82cRO3cuZNZs2YREhJCUlIStWvX5s033+Sll14y7zNhwgRq1KjBuHHjqFGjRqnGK4So3AxGAynZKaYlK4XU7FTSctJMr9lppOWkkZadRnpOunnJMGSQkZNhfs3MySTDkEGWIYtMQ2au1xwlp6wvsWyobi75cMu8Vqqh3E25fGpv8uTJjB8/3vz51izMomRpNBo8PDzK5NxZWVkFfmAgIiKCP/74I1fP0t69e2nSpAkTJ07E3d2dP/74g/79++Pg4ECPHj0AcHFxoVu3bnzzzTfMmDGjRK5DCFHxpWWnEZceR3xGPDcybpCQmcCNzBskZCSQkJlAYmYiSVlJJGYlkpiZSEpWCmk5aaUao1alQafSoFOp0aFGh+kHulZR0CpGdEYjWqMBjdGA1phjelUUNIBaUdDdfNXc3EcN5m1qQKOAmlvtTe/VgEoxtVPd/Jxrm1qLSqVFUWlQ0GJAg0FRk6OoyTKqyTaaXg2oMSgajGjIUdQY0WBAc/NVjUFRY0CDSq3BQmeBhVaHXqfDwsICvU6HpV6HpYUFNb0al+qf+d2UeCLl4eFBdHR0rnXR0dHY29vn2xsFoNfr0ev1JR1amRk4cCB//fUXf/31F3PmzAEgNDSUTz/9lD///JOoqCj8/Px49dVXGTNmTK79EhISePjhh5k5cyZZWVm88MILzJ49G51OZ26XlpbG4MGDWb16NU5OTrzzzjsMHz78vnH999bezp076dSpE9u2bWPixImcOnWKZs2asWjRIurWrcvixYvNPYe3BmgvWrTIHOeECRP47bffyMzMpFWrVsyaNYumTZsCt3uyRo8ezSeffMKlS5cwGo107NiRRo0aAbBs2TJ0Oh2vvPIKH374ofkcq1atomnTpnh7e5tjf/vtt3Ndy5gxY/jf//7H2rVrzYkUQM+ePZkyZYokUkJUQQajgdj0WKJSo4hKiyI6NZrotGiiU6OJTY8lLj2OuPQ40nPSi3wOvUaPrc4WG50NNjobrHXWWGutza9WWqtci6XWEku1Hr0hC8vMFPSZyegzkrHISEKfnoA+LR5dWjz6tOvoUuOxyEhEx107ae5Pawl6u9uLhR3obcHCFixs7ni1AZ01WFjffLUBnRUZWBCZpuJKCkQkKYQlGghPVLh4I5ur1zPIzLl/YWwrnQZPB0vc7S3xdLDE1V6Pu53ps5u9Hjc7PS62emz05bKvJ48SjzIoKIiNGzfmWrd161aCgoJK5HyKopCebSiRY9+PlU5ToCe+5syZw7lz52jUqBEffvghAE5OTvj4+LB69WqcnZ3Zu3cvw4cPx9PTk+eff968744dO/D09GTHjh2EhoYSHBxMs2bNGDZsmLnNzJkz+eijj3j77bdZs2YNr7zyCh06dKBu3bpFuq4pU6Ywc+ZMXF1dGTlyJIMHD2bPnj0EBwdz4sQJNm/ezLZt2wBwcHAA4LnnnsPKyopNmzbh4ODAt99+S5cuXTh37hzVqlUDTMnjL7/8wtq1a3PVa1qyZAlDhgwhJCSEAwcOMHz4cPz8/MzXuGvXLlq1anXfuBMTE6lfv36udYGBgVy5coXw8HD8/f2L9OchhCi/sgxZXE6+THhSOJeSLhGRFMHVlKtcS7nGtdRr5BgLdovMSmtFNctqOOmdcLK8ueidcNA74KB3wN7CHnu9PQ4WDthZ2GFrYYudzg6dRpf3YJkpkHAJEi5D4mWIvwyJV0xL0jVIjgJjIcqtqDRg7XxzqQZWTrdfrZzA0hGsHE2vlg63F709aO/f859tMHLpeioXY1MJi8u9xCQn33NftQo8HazwdrTC28kKL0dLvByt8HKwwsvRCg8HS+wttZXq6ehCJ1IpKSmEhoaaP4eFhXHkyBGqVauGn58fkydP5urVqyxduhSAkSNHMnfuXN566y0GDx7Mn3/+yapVq9iwYUPxXcUd0rMNNHiveEsrFNSpD7thbXH/P1IHBwcsLCywtrbOdSvtznFhAQEB7Nu3j1WrVuVKpJycnJg7dy4ajYZ69erRvXt3tm/fniuRevLJJ3n11VcBmDhxIrNmzWLHjh1FTqQ++eQTOnToAJgGbHfv3p2MjAysrKywtbVFq9Xmuo7du3cTEhJCTEyMuWfxiy++YN26daxZs8bcO5aVlcXSpUtxdXXNdT5fX19mzZqFSqWibt26HD9+nFmzZpmv8dKlS/dNpFatWsW///7Lt99+m2u9l5eX+RiSSAlRcWUZsghLDON8wnnO3zhPaEIoFxIuEJkaaRrAfBdalRZ3G3fcrd1xt3HHw9oDdxt3XKxccLVyxcXKBRcrF6x1hSzwnJ4AkcfgeqhpuREGN8JNS2psAQ6gAls3sPMEOw/Te1v3m4sb2LiCtQvYuJgSpGKYxSMj28CF2BTORSdzPjqF0JgULsSmcOl6GjlG5a77OVjpqO5sjV81a6o7W+PrZI1vNdOrp6MlOk3VmmGk0InUgQMH6NSpk/nzrbFMAwYMYPHixURGRhIREWHeHhAQwIYNGxg3bhxz5szBx8eHBQsWSOmDfMybN4+FCxcSERFBeno6WVlZeZ6ea9iwYa7eG09PT44fP56rTZMmTczvVSoVHh4e5mlPiuLO492aNiUmJgY/P7982x89epSUlBScnZ1zrU9PT+fChQvmz9WrV8+TRAE89NBDuX5bCQoKYubMmRgMBjQaDenp6VhaWt413h07djBo0CC+//57GjZsmGvbrdvJaWmlO55BCFF0mYZMzsWf4+T1k5y8fpJT109xIeECBiX/uw82Ohv87f3xs/fDz84PHzsfvG298bH1wdXaFa26iDdjFMWUFMWchtgzN1/PwvXz90+WrJzA0Q8cfG8uPuDgDfY+YO9pSpjy680qBoqicOVGOqcikzgdmcSZyGTOxSQTHpfK3fIlGwsNAa421HCxxd/FhhouNvi72ODvbI2jtRTAvlOh/zZ17NgRRbl7pppf1fKOHTty+PDhwp6qSKx0Gk59WDZJmpWu6NOJrFixggkTJjBz5kyCgoKws7NjxowZ7N+/P1e7O8dCgSlR+u9kzQVpUxh3Hu9WgnOv46WkpODp6cnOnTvzbHN0dDS/t7GxKVI8Li4u3LhxI99tf/31Fz179mTWrFn0798/z/b4+HiAfBM4IUT5EJ8Rz+GYwxyOPsyhmEOcvn4636fW7CzsqO1Ym9pOtantWJuajjXxd/DH2dL5wW8dGXJMPUtRx24ux01L2vW772PrAc61wLmmaXHyNy2O1U232kpBjsHIhdhUjl9N5MTVRE5eS+RMZDLJmfnf0nSw0lHX3Y7a7rbUcjMtNV1t8XSwrFS330pSxRjJVQgqlapAt9fKmoWFhXl6G4A9e/bQtm1b8y05IFfvTXn13+sAaNGiBVFRUWi12iLdPvtv8vjPP/9Qu3Ztc09c8+bNOXXqVJ79du7cSY8ePZg+ffpdB9efOHECnU6Xp6dKCFF2UrNTCYkMYe+1veyP2k9YYlieNk56Jxq6NKSBcwMaOpte3a3di+eHvaKYxjBdPQhXD5lerx2BfAedq0zJkVt9cK1nenWpbUqg9AWraVdcFEXh0vU0jlxO4MjlBI5eSeB0ZBIZ2Xl/0bXQqKnlZkt9T3vqe9pR18OOuu52uNrpJWF6QOU/46ik/P392b9/P+Hh4dja2lK7dm2WLl3Kli1bCAgIYNmyZfz7778EBASUdaj35O/vbx4n5+Pjg52dHV27diUoKIhevXrx+eefU6dOHa5du8aGDRt45pln7ju+KSIigvHjxzNixAgOHTrEV199Za6MD6aCrkOHDjXf6gPT7bwePXowZswYevfuTVRUFGBK9G4NbgfTQPX27dvf9YlRIUTJUxSF8wnn2Xl5J3uu7uFY7LE8PU41HWrSwr0Fzd2a08K9BV42XsX3A9+QbeplivgHIvaZXvO7NWdhC+6NwKMxeNx8da1vepKtDKRk5nD0cgIHL93g4KUbHL2SQEJa3kHqNhYaGno70MjLgUbe9jTwsqemq22VG7tUWiSRKiMTJkxgwIABNGjQgPT0dM6cOcPhw4cJDg5GpVLx4osv8uqrr7Jp06ayDvWeevfuzdq1a+nUqRMJCQnm8gcbN25kypQpDBo0iNjYWDw8PHjkkUfyFGfNT//+/UlPTycwMBCNRsOYMWNy9TA98cQTaLVatm3bZh5rt2TJEtLS0pg2bRrTpk0zt+3QoUOuW4wrVqzg/fffL7brF0IUjFExciz2GH9G/Mm2iG1cTr6ca7uvnS9tvdoS5BlES/eWOFo6FuPJDRB5FML+got/weX9kP2fcZJqnSlR8m55e3GuVSyDuosqNjmT/WHXCQmL5+ClG5yOTMozpslCq6ahlz3NfB1p6uNIYx8HApxtUKull6m0qJR7DXgqJ5KSknBwcCAxMRF7e/tc2zIyMggLCyMgIOCeA5BFxVDQiu/z5s1j/fr1hZr8etOmTbzxxhscO3YMrfbuv0PI3ykhis/Z+LP8fuF3NoVtIib99kMvFmoLgryCeMTnEYI8g/C1L+aiy4lX4Pz/IHQ7hO+CjMTc2y0dwe+hm0sQeDYDXdn+e49JzmDfhev8czGe/WHXuRibmqeNt6MVLas70bK6E839HKnnYY+FVnqaitu98o7/kh4pUSGNGDGChIQEkpOTCzzXXmpqKosWLbpnEiWEeHBx6XFsvLiR3y/+zpn4M+b1NjobHvF5hC5+XWjv3b7wJQbuxWiAKwfg3GZTAhV9Ivd2vT34PwwBHSCgvekWXRn2NgEkZ2QTEhbP7tA49oZe52x07hpNKhXU87CnTUA1WvtXo2V1Jzwc5Je78kZ+olQhn376KZ9++mm+29q3b1/ubyPeSavVMmXKlELt06dPnxKKRgihKAqHYw7z05mf2H5pu3nMk06to6NvR3rU6MHD3g9joSnGR+cN2RC+G079Bmf+yD3OSaUGn9ZQ+1Go0cnU46Qp2x95iqJw8loSf52L5a9zsRy6dCNXvSaVChp62fNQgDNtajgT6F8NB+uSKYkgio8kUlXIyJEjcxX3vFN5GXydX8kEIUT5lZGTwaawTfx05qdcvU9NXJrwVM2neDzgcRz0DsV3QqPBNNbpxC9wZgOk31EKxdIBaj0KdbpBra6mat9lLCUzh13nYtl+Joa/zsUSm5yZa7u/szXtarnQrpYLQTWccbKRGk0VjSRSVUi1atVyPcEmhBBFlZKVwoqzK1h6cik3Mk3JjF6jp0eNHrxY70XqVivaTAp3FXUCjq2A42sgOfL2emsXqN8DGjwN/u1LrKhlYUQmprPtdAzbTkWz78J1sgy3yxFYW2hoW9OZDnXd6FDbFT/nsnkCUBQfSaSEEEIUWFJWEj+e/pHlp5aTlJUEgJeNF8H1gnm21rPF+7Rd+g04uhIOL8s95snKCRo+Aw2fNQ0UL+NbdgCXrqey6UQUm05EcfRyQq5t1Z2t6Vrfnc713Gjl74ReW/TizaL8Kfu/fUIIIcq91OxUFp9czPJTy0nJTgEgwCGA4U2G87j/40WfduW/FMU0aPzgIjix9nZRTLUO6j4OTV6A2o8VaPLdknbpeiq/H73GxuNRnIpMMq9XqaCFnxNd67vzaAM3arraStHLSkwSKSGEEHdlMBr4NfRXvjr8FfEZpimWajnWYkSTETxa/VE06mLqXcnOgOOrYf+3EH3H/KFuDaHVIGjUu1yMeYpOyuD3o9f4/eg1jl65XVJBo1bxUI1qPN7Ik24N3XGzk6frqgpJpIQQQuTrn8h/mPHvDM7dOAeAn50fY1qMoWv1rqhVxVQ6IPU6HPgBQr67/dSd1tJ0667VYNOTd2Xcm5OamcPG45GsPXSVf8Kuc6v6oloF7Wq50KOJJ4828KCaDBSvkiSREkIIkUtUahSf7P+EnZd3AqbJgV9p+gov1H0BXXEN5o4Pgz1z4OjPkJNhWmfvDW1GQPN+Zd77ZDQq7Lt4nV8OXmHTiSjSs2/PKdqquhNPNfPiycaeuNjqyzBKUR5IIlXJ+Pv7M3bsWMaOHVvofcPDwwkICODw4cM0a9as2GMrTmfPnqVDhw6cP3++wAU5J02aRGpqKl999VUJRydExWRUjKw+u5ovD35JWk4aGpWG4LrBvNL0leIbRB5/Ef6eaUqglJvJiWdTCHoNGvYq86fuohIzWHXgMiv/vczVhNuTFge42NC7hTe9mnvj4yRP2onbJJEqIwWdCqU0+fr6EhkZiYuLS4H3ef/991m3bh1HjhwpucDyMXnyZF577TVzEnX27FlGjhzJqVOnSExMxMvLi759+zJ16lR0OtN/zBMmTKBGjRqMGzeOGjVqlGq8QpR34YnhTN07lUMxhwBo5tqM99u+T03HmsVzgusX4O8v4NjK2wlUzc7w8HhTxfEyvH2XYzDy17lYfg6J4M8zMeb57OwstfRs6kXvFj608HOUAeMiX5JICTONRoOHh0eZnDsrKwsLi4KNL4iIiOCPP/7I1bOk0+no378/LVq0wNHRkaNHjzJs2DCMRqO5mruLiwvdunXjm2++YcaMGSVyHUJUNEbFyJKTS5h7eC5ZxiystFaMbTGWF+q9UDzjoJKjYOc0OLTsdgJVqyt0mAS+rR/8+A/gekomK/69zI//XOJaYoZ5fWBANV4M9OWJRp5Y6qRUgbg3memwDAwcOJC//vqLOXPmoFKpUKlUXLhwgSFDhhAQEICVlRV169Zlzpw5efbr1asXX3zxBZ6enjg7OzNq1Ciys7NztUtLS2Pw4MHY2dnh5+fHd999V6C4wsPDUalU5t6lnTt3olKp2L59O61atcLa2pq2bdty9uxZABYvXswHH3zA0aNHzdexePFiABISEhg6dCiurq7Y29vTuXNnjh49aj7X+++/T7NmzViwYEGuyYE7duzI6NGjGT16NA4ODri4uPDuu+9y59zaq1atomnTpnh7e5vX1ahRg0GDBtG0aVOqV6/OU089xUsvvcSuXbtyXWPPnj1ZsWJFgf48hKjs4tLjGLF1BF8e/JIsYxbtvNqx7ul19K3f98GTqMwU2DEN/q8FHFxsSqJqPwZD/4SXfynTJOrYlQTGrzpC0LQ/mbHlLNcSM3Cy1jH04QC2je/AqhFBPNPcR5IoUSCVr0dKUSA7rWzOrbMuUPf0nDlzOHfuHI0aNeLDDz8EwMnJCR8fH1avXo2zszN79+5l+PDheHp65prWZceOHXh6erJjxw5CQ0MJDg6mWbNmDBs2zNxm5syZfPTRR7z99tusWbOGV155hQ4dOlC3btEqDU+ZMoWZM2fi6urKyJEjGTx4MHv27CE4OJgTJ06wefNmtm3bBoCDg2kqiOeeew4rKys2bdqEg4MD3377LV26dOHcuXPm6uqhoaH88ssvrF27Fo3m9n9YS5YsYciQIYSEhHDgwAGGDx+On5+f+Rp37dpFq1at7hlzaGgomzdv5tlnn821PjAwkCtXrhAeHo6/v3+R/jyEqAz2XdvH5F2TuZ5xHSutFZMCJ/FMrWce/PaV0QCHlpiSqNQY0zrvVvDYR1C97YMHXkQGo8L/Tkbx/a6LHIpIMK9v4uPAgCB/ujeR3idRNJUvkcpOg0+9yubcb18DC5v7NnNwcMDCwgJra+tct9I++OAD8/uAgAD27dvHqlWrciVSTk5OzJ07F41GQ7169ejevTvbt2/PlUg9+eSTvPrqqwBMnDiRWbNmsWPHjiInUp988gkdOnQATAO2u3fvTkZGBlZWVtja2qLVanNdx+7duwkJCSEmJga93vREyxdffMG6detYs2YNw4cPB0y385YuXYqrq2uu8/n6+jJr1ixUKhV169bl+PHjzJo1y3yNly5dumsi1bZtWw4dOkRmZibDhw83J6q3eHl5mY8hiZSoinKMOXx95GsWHF+AgkItx1rM7DCTGo7FMG7w8r+wYRxE3awD5RQAXadCg15lNgYqLSuH1Qeu8MPuMCLiTb9kW2jU9GjiSf+2/jTzdSyTuETlUfkSqQps3rx5LFy4kIiICNLT08nKysrz9FzDhg1z9d54enpy/PjxXG2aNGlifq9SqfDw8CAmJqbIcd15PE9PTwBiYmLw8/PLt/3Ro0dJSUnB2dk51/r09HQuXLhg/ly9evU8SRTAQw89lOu34qCgIGbOnInBYECj0ZCenm6+FfhfK1euJDk5maNHj/Lmm2/yxRdf8NZbb5m335qcOS2tjHothShD8RnxjN85noPRBwHoU6cPE1tPxFL7gMUjU6/DtqmmqVzANHlwx8nQakiZVSCPT81i0Z4wlu67RGK6afiDo7WOfg9Vp19QdSmYKYpN5UukdNamnqGyOncRrVixggkTJjBz5kyCgoKws7NjxowZ7N+/P/cpdLkfDVapVBiNxkK3KYw7j3crwbnX8VJSUvD09GTnzp15tjk6Oprf29jcv/cuPy4uLty4cSPfbb6+vgA0aNAAg8HA8OHDeeONN8zJZ3y8qTJzfgmcEJXZhYQLjNo+iqspV7HR2TA1aCpPBDzxYAc1GuHwUtj2vmlePICmfeHRD8G2bP6NRSVm8P2ui/y0P8Jc+8nf2ZohDwfQu6UP1haV78eeKFuV72+USlWg22tlzcLCAoPhdoG3PXv20LZtW/MtOSBX70159d/rAGjRogVRUVFotdoi3T77b/L4zz//ULt2bXMy1Lx5c06dOnXf4xiNRrKzszEajeZ9T5w4gU6no2HDhoWOS4iKas/VPUz4awIp2Sn42Powt8vcBy9rcCMcfhsN4Tcf6HBrCN1nQvWgB463KC7Hp/H1zgv8cvAKWQbTL3qNvO0Z1bEWjzX0QKOW0gWiZFS+RKqC8Pf3Z//+/YSHh2Nra0vt2rVZunQpW7ZsISAggGXLlvHvv/8SEBBQ1qHek7+/P2FhYRw5cgQfHx/s7Ozo2rUrQUFB9OrVi88//5w6depw7do1NmzYwDPPPHPfgeIRERGMHz+eESNGcOjQIb766itmzpxp3t6tWzeGDh1qvtUH8OOPP6LT6WjcuDF6vZ4DBw4wefJkgoODc/Wo7dq1i/bt25tv8QlR2f185memh0zHoBho4daC2Z1m42TpVPQDGo2mKV22ToXsVFNPfKcp0GYkaEr/R8q1hHS++jOU1Qcuk3OzAFRrfydGdapFhzquUvtJlDhJpMrIhAkTGDBgAA0aNCA9PZ0zZ85w+PBhgoODUalUvPjii7z66qts2rSprEO9p969e7N27Vo6depEQkICixYtYuDAgWzcuJEpU6YwaNAgYmNj8fDw4JFHHsHd3f2+x+zfvz/p6ekEBgai0WgYM2aMeYA6wBNPPIFWq2Xbtm1069YNAK1Wy/Tp0zl37hyKolC9enVGjx7NuHHjch17xYoVvP/++8X6ZyBEeWRUjMz4dwbLTy8H4KmaTzE1aCoWmgcYsxQfButfu90LVb0dPD0XqpV+gdvopAzm7QhlRchlcw9U+9ouvNa5NoEBZT+5sag6VMqdBXrKqaSkJBwcHEhMTMTe3j7XtoyMDMLCwnLVIhIVV0Ervs+bN4/169ezZcuWAh9706ZNvPHGGxw7dgyt9u6/Q8jfKVHR5RhzmLp3KusvrAdgbIuxDG40uOi9M4oCR36CjW/e7oXq+j60Hgbq0i1HmJCWxdc7L7BkbziZOaYE6qEa1Rj/aF1JoESxuVfe8V/SIyUqpBEjRpCQkEBycnKB59pLTU1l0aJF90yihKjosg3ZTNo1if9d+h8alYZPHv6E7jW6F/2AGUmwYTwcX236XEa9UBnZBhbvDefrHaEkZeQApsmDxz9Wh7Y1Cz6tlRDFTX6iVCGffvqpebqU/2rfvn25v414J61Wy5QpUwq1T58+fUooGiHKh0xDJm/sfIO/rvyFTq1jRocZdPHrUvQDXj0Ia4bAjTBQaaDT2/DwOFCXXuFKg1Hhl0NXmLX1HJE3p3Gp52HHxMfr0bGujIESZU8SqSpk5MiRuYp73qm8DL7Or2SCEOL+0rLTeH3H6+yP3I9eo2dOpzm0825XtIMpCuybayprYMwBBz/ovQD82hRrzPez90IcH/5+ijNRyQB4O1ox/tE69GruLU/hiXJDEqkqpFq1aubpWYQQlUd6Tjqvbn+Vg9EHsdZaM7fLXFp7FHEuu8wU+O1VOPWb6XODp6Hn/4GVY7HFez8R19P4ZOMptpyMBsDeUstrnWvTL6i6TOMiyh1JpIQQogLLNmSbq5Xb6eyY/+h8mrg2uf+O+bl+AVa8BLGnQa2DJz4zVScvpdtnKZk5zP0zlIW7w8gyGNGoVbzUxo9xXevgZFM2FdKFuB9JpIQQooIyGA1M2T2F3Vd3Y6mxZF7XeUVPos5vhV+GQEYi2HpA8DLwDSzegO9CURQ2HI/koz9OEZ2UCZhKGbzbowF13Av2MIkQZUUSKSGEqIAURWFayDQ2hW9Cq9Yyq9Msmrs1L8qBYNdM+PNjQAHfNvD8UrDzuO+uxeFCbApTfzvJ7tA4AKo7W/NejwZ0rucmA8lFhSCJlBBCVEBfHf6KlWdXokLFtIen8bD3w4U/SE4W/D4Gjv5k+txqMDw+vVQmGs7INjD3z1C+/fsC2QYFC62aVzvWZGSHmjIOSlQokkgJIUQFs+zUMr4//j0A7zz0Do8HPF74g6QnwKp+EPa3qbTBkzOg9ZDiDfQu9obGMfnX41y6ngZAx7qufPBUQ6o7l/95UoX4r9ItSStKnL+//32rgt9NeHg4KpWKI0eOFGtMJeHs2bN4eHiQnJxc4H0mTZrEa6+9VoJRCVHydl7eyYx/ZwAwpsUYnq+bf0mTe0q4DAsfNyVRFrbQd2WpJFGJadm8teYofRfs59L1NDzsLZn/cgsWDWwtSZSosCSRKiMdO3Zk7NixZR1GLr6+vkRGRtKoUaMC7/P+++/TrFmzkgvqLiZPnsxrr72Wb1Xz0NBQ7OzscHR0zLV+woQJLFmyhIsXL5ZSlEIUr3M3zjHx74koKDxf53mGNCpC8nPtCCzoYnoyz84TBm2C2o8We6x3UhSFjccj6fLlX6w6cAWAlx/y43/jH+HxRp4yFkpUaJJICTONRoOHh0eZTKGSlZVV4LYRERH88ccfDBw4MM+27OxsXnzxRdq3b59nm4uLC926deObb755kFCFKBPxGfG8/ufrpOWk0cajDZPaTCp8AhK2CxZ3h5RocGsAQ7eBZxGf8iug6ymZvPrjIV798RBxKZnUdLVh9cggPu7VGHtLXYmeW4jSIIlUGRg4cCB//fUXc+bMQaVSoVKpuHDhAkOGDCEgIAArKyvq1q3LnDlz8uzXq1cvvvjiCzw9PXF2dmbUqFFkZ2fnapeWlsbgwYOxs7PDz8+P7777rkBx/ffW3s6dO1GpVGzfvp1WrVphbW1N27ZtOXv2LACLFy/mgw8+4OjRo+brWLx4MQAJCQkMHToUV1dX7O3t6dy5M0ePHjWf61ZP1oIFC3JNDtyxY0dGjx7N6NGjcXBwwMXFhXfffZc759ZetWoVTZs2xdvbO881vPPOO9SrV++uFdx79uzJihUrCvTnIUR5kW3IZtyOcVxNuYqvnS8zO85Epy5kEnJuC/zYB7JSIOARGLwZHHxKJuCbNp+I5LFZf7PpRBRatYrXOtdiw+vtae0vhYFF5VHpBpsrikJ6TnqZnNtKa1Wg3xDnzJnDuXPnaNSoER9++CEATk5O+Pj4sHr1apydndm7dy/Dhw/H09MzV1KwY8cOPD092bFjB6GhoQQHB9OsWTOGDRtmbjNz5kw++ugj3n77bdasWcMrr7xChw4dqFu3bpGua8qUKcycORNXV1dGjhzJ4MGD2bNnD8HBwZw4cYLNmzezbds2ABwcHAB47rnnsLKyYtOmTTg4OPDtt9/SpUsXzp07Z66uHhoayi+//MLatWvRaG4/pbNkyRKGDBlCSEgIBw4cYPjw4fj5+ZmvcdeuXbRq1SpPnH/++SerV6/myJEjrF27Nt9rCQwM5MqVK4SHh+Pv71+kPw8hSpOiKHz0z0ccijmErc6WuZ3n4qB3KNxBTvwCa4ebpnup+yT0WQQ6y5IJGEhIy+L99SdZd+QaAHXd7Zj5fFMaeRcybiEqgEqXSKXnpNPmp9KdD+qW/X33Y62zvm87BwcHLCwssLa2xsPjdq2WDz74wPw+ICCAffv2sWrVqlyJlJOTE3PnzkWj0VCvXj26d+/O9u3bcyVSTz75JK+++ioAEydOZNasWezYsaPIidQnn3xChw4dANOA7e7du5ORkYGVlRW2trZotdpc17F7925CQkKIiYlBr9cD8MUXX7Bu3TrWrFnD8OHDAdPtvKVLl+Lq6prrfL6+vsyaNQuVSkXdunU5fvw4s2bNMl/jpUuX8iRS169fZ+DAgSxfvhx7e/u7XouXl5f5GJJIiYpg+enl/Br6K2qVmhkdZlDDsUbhDnBoKax/HVCg8XPQ6xvQlNwttb/PxTJh9VFikjNRq2Bkh5qM6VobvVZKGojKqdIlUhXZvHnzWLhwIREREaSnp5OVlZVnIHfDhg1z9d54enpy/PjxXG2aNLk95kGlUuHh4UFMTEyR47rzeJ6engDExMTg5+eXb/ujR4+SkpKCs7NzrvXp6elcuHDB/Ll69ep5kiiAhx56KFfPXlBQEDNnzsRgMKDRaEhPTzffCrxl2LBh9O3bl0ceeeSe13Jrcua0tLR7thOiPDgae5QvD3wJwIRWEwpfK+qfb2DzJNP7loOg+0xQl0xCk5Ft4PPNZ1m4JwyAGq42zHyuKc39nErkfEKUF5UukbLSWrG/7/4yO3dRrVixggkTJjBz5kyCgoKws7NjxowZ7N+f+1p0uty/SapUKoxGY6HbFMadx7uV4NzreCkpKXh6erJz58482+58ks7GpmiPO7u4uHDjxo1c6/7880/Wr1/PF198AZhuhxiNRrRaLd999x2DBw8GID4+HiDfBE6I8iQxM5E3/3qTHCWHx/0f5+X6LxfuAHcmUW1fh0c/LLE5885FJ/P6z4c5E2UqR9Lvoeq8/WR9rCykF0pUfpUukVKpVAW6vVbWLCwsMBgM5s979uyhbdu25ltyQK7em/Lqv9cB0KJFC6KiotBqtUW6ffbf5PGff/6hdu3a5p645s2bc+rUqVxt9u3blyuO3377jenTp7N3795cg9JPnDiBTqejYcOGhY5LiNKiKArv7HmHyNRI/Oz8mBo0tXBP6IV8fzuJeuRN6DSlRJIoRVFY9s8lPtlwmswcI842Fnzepwld6rsX+7mEKK8qXSJVUfj7+7N//37Cw8OxtbWldu3aLF26lC1bthAQEMCyZcv4999/CQgIKOtQ78nf35+wsDCOHDmCj48PdnZ2dO3alaCgIHr16sXnn39OnTp1uHbtGhs2bOCZZ57Jd6D4nSIiIhg/fjwjRozg0KFDfPXVV8ycOdO8vVu3bgwdOtR8qw+gfv36uY5x4MAB1Gp1nppYu3bton379uZbfEKUR8tOLWPn5Z3o1Dq+6PAFtha2Bd/5wCLYOMH0vt3YEkuiEtOyeXPNUf53KhqADnVcmfFcE9zsSm4QuxDlkZQ/KCMTJkxAo9HQoEEDXF1d6datG88++yzBwcG0adOG69ev5+qdKq969+7N448/TqdOnXB1deXnn39GpVKxceNGHnnkEQYNGkSdOnV44YUXuHTpEu7u9/9NtX///qSnpxMYGMioUaMYM2aMeYA6wBNPPIFWqzU/KVgYK1asyDUwX4jy5njscWYdmgXAW63for5z/fvscYfDy+GPsab3QaOh6/slkkQduZxA96928b9T0Vho1LzXowGLBraWJEpUSSrlzgI9BTRv3jxmzJhBVFQUTZs25auvviIwMPCu7WfPns0333xDREQELi4u9OnTh2nTpuUZMHw3SUlJODg4kJiYmOeJrIyMDMLCwnLVIhIVV8eOHWnWrNl9p7mZN28e69evZ8uWLQU+9qZNm3jjjTc4duzYPYuOyt8pUVYSMxMJ/iOYqylXebT6o8zsMLPgt/SOrTKVOECBNiPh8c+KPYlSFIUfdofx2aYz5BgV/KpZM69vCxr7SFkDUbncK+/4r0Lf2lu5ciXjx49n/vz5tGnThtmzZ9OtWzfOnj2Lm5tbnvY//fQTkyZNYuHChbRt25Zz584xcOBAVCoVX375ZWFPLwQAI0aMICEhgeTk5HyniclPamoqixYtKpPK7UIUxEf/fMTVlKv42PrwQdsPCp5End0Mv44EFGg1pESSqMT0bN5YdZRtp0238ro39mRab6lOLkShb+19+eWXDBs2jEGDBtGgQQPmz5+PtbU1CxcuzLf93r17adeuHX379sXf35/HHnuMF198kZCQkAcOXhTOp59+iq2tbb7LE088UdbhFYpWq2XKlCkFTqIA+vTpQ5s2ZVNjTIj72Ry2mS3hW9CqtMzoMAM7iwL+3Y7YD6sHgmKApi/Ck18UexJ1OjKJp+buZttp0628j55uyNy+zSWJEoJC9khlZWVx8OBBJk+ebF6nVqvp2rUr+/bty3eftm3bsnz5ckJCQggMDOTixYts3LiRfv363fU8mZmZZGZmmj8nJSUVJkxxFyNHjrzr1CnlZfB1fiUThKjs4tLj+Hj/xwAMazKMRi4FnDg85jT89DzkpEPtx+Cpr0BdvENf1x2+yqS1x8jINuLjZMX8l1tKhXIh7lCoRCouLg6DwZBnwLC7uztnzpzJd5++ffsSFxfHww8/jKIo5OTkMHLkSN5+++27nmfatGm5qnyL4lGtWjXz9CxCiPJBURQ+2PsBiZmJ1K9Wn2FNCvgwROIVWN4bMhLApzU8t7hYK5Zn5Rj5dONpFu8NB+CROq7MCW6Gk41FsZ1DiMqgxJ/a27lzJ59++ilff/01hw4dYu3atWzYsIGPPvrorvtMnjyZxMRE83L58uWSDlMIIcrE+gvr2XnFVOrg44c/LthkxGnxsOwZSLoKLnWh7yqwKFqB2/zEJmfS9/t/zEnU651rsWhga0mihMhHoXqkXFxc0Gg0REdH51ofHR2da661O7377rv069ePoUOHAtC4cWNSU1MZPnw4U6ZMQZ1PN7RerzfP0VZQRXj4UIh8yd8lUVqiUqOYHjIdgFebvUodpzr33yk7A35+AeLOgb039FsL1sXX03ziaiLDlh4gMjEDO0sts55vRtcGUmBTiLspVI+UhYUFLVu2ZPv27eZ1RqOR7du3ExQUlO8+aWlpeZKlW0UUi+MH1q1jZWVlPfCxhIDb8/D9d6odIYqToihM3TuV5Oxkmrg0YWDDgQXZCX4bBZf3g6UDvLwWHHyKLabfj16jz/y9RCZmUMPVht9GtZMkSoj7KPRz4OPHj2fAgAG0atWKwMBAZs+eTWpqKoMGDQJMxRS9vb2ZNm0aAD179uTLL7+kefPmtGnThtDQUN5991169uyZa/LdIl+AVou1tTWxsbHodLp8e7iEKAhFUUhLSyMmJgZHR8di+fspxN2sOb+Gvdf2otfo+fjhj9GqC/Df8c7P4MQaUGsheDm41SuWWIxGhS+3nmPujlAAOtV1Zc6L8lSeEAVR6EQqODiY2NhY3nvvPaKiomjWrBmbN282D0CPiIjIlcy88847qFQq3nnnHa5evYqrqys9e/bkk08+KZYLUKlUeHp6EhYWxqVLl4rlmKJqc3R0vOutaiGKQ1x6HLMOmKqXv978dQIcCjAV1LFV8Ndnpvc9ZkHAI8USS2pmDmNXHmHrzaleRnSowVvd6qFRl8wEx0JUNkWqbF7aClJh1Gg0yu098cB0Op30RIkSN/HviWwM20gD5wb89ORPaNT3+TsX8Q8s6QmGLGg3Bh79sFjiiErMYMiSfzl5LQkLrZrpvRvzTPPiu1UoREVVopXNyyu1Wi3TeQghyr191/axMWwjapWa94Leu38SFR8GK/qakqh6PaDL+8USx8lriQxZfICopAycbSz4fkArWvg5FcuxhahKKk0iJYQQ5V2mIZNP9puGNbxQ9wUaOje8zw4p8POLkHYdPJvCs98VS8HNP89EM/qnw6RlGajlZsuiga3xrWb9wMcVoiqSREoIIUrJD8d/4FLSJVytXBndfPS9GysK/PYqxJ4GW3d4cUWx1IpasjecD34/iVGBdrWc+fqlljhYyaByIYpKEikhhCgF4YnhLDi+AICJgRPvP5fenjlw6jdQ6+D5ZWDv9UDnNxoVpm8+w7d/XwQguJUvHz/TCJ1GnnQW4kFIIiWEECVMURQ+3v8x2cZs2nm347Hqj917hwt/wvab02Q9MR38Hmyy7awcI2+tOcq6I9cAeLNbXV7tWBNVMU9uLERVJImUEEKUsE1hm9gfuR+9Rs+UwCn3TmBuhMOawaAYoXk/aDX4gc6dnJHNyOUH2RN6Ha1axfTeTejdUp7ME6K4SCIlhBAlKC07jZkHZwIwrPEwfO197944Kw1WvAzpN8CrBTz5BTxAr1FMUgYDFv3L6cgkrC00fPNySzrUcS3y8YQQeUkiJYQQJWjJySXEpMXgZePFwEYD795QUeCPcRB9HGxcIXgZ6Ipe0iUsLpV+P+znyo10XGwtWDQwkMY+DkU+nhAif5JICSFECYlKjWLhiYUAjG81Hr3mHpOxH14Ox1aASg3PLX6gOfROXktkwMIQ4lKy8He2ZungNvg5S3kDIUqCJFJCCFFC5hyaQ4YhgxZuLe49wDz6JGycYHrf+R3wf7jI5wwJi2fI4n9Jzsyhgac9SwYH4mp3jwROCPFAJJESQogScCz2GH9c/AMVKt4KfOvuA8wzU2D1QMjJgJpdoN24Ip/zzzPRvLL8EJk5RgL9q7FgYCuZeFiIEiaJlBBCFDNFUZj+73QAnqr51N0rmCsKbBgPcefAzvOBKpf/duQqb6w6So5RoUs9N+a91AJLncwbKURJk0RKCCGK2aawTRyLPYaV1orXW7x+94aHl8OxlaZxUX0Wgo1Lkc73c0gEb/96HEWBZ5p783mfJlJoU4hSIomUEEIUo/ScdGYdmgXA0MZDcbN2y79h9CnY+Kbpfed3oHrbIp1v4e4wPvzjFAD9HqrOB081RK2WQptClBZJpIQQohgtP7WcqNQoPG086d+gf/6NstNNRTdz0h9oXNTXO0P5fPNZAIY/UoPJT9STauVClDJJpIQQopgkZCSYyx283uJ1LLV3qQO1dappMmIbN3jm20KPi1IUhVlbz/F/f4YCMKZLbcZ2rS1JlBBlQBIpIYQoJgtPLCQlO4U6TnV4MuDJ/Bud3woh35re9/oGbAtXaVxRFKZtOsN3Nycfnvh4PV7pWPNBwhZCPABJpIQQohhEpUbx05mfABjTYgxqVT69TCmxsO5V0/s2I6F210KdQ1EUPt5wmh92hwHwfs8GDGwX8EBxCyEejCRSQghRDOYfnU+mIZMWbi1o790+bwNFgfWjITUG3BpA1w8KdXxFUfjwj1Ms2hMOwCfPNOKlNtWLIXIhxIOQREoIIR5QWGIY60LXATC25dj8xyod+AHObQaNHnovKNQ8eoqi8MHvp1i8NxyAac825sVAv2KIXAjxoCSREkKIBzT38FwMioGOPh1p7tY8b4PYs7Bliun9ox+A+10KdOZDURSmrj/J0n2XUKngs2cbE9xakighygtJpIQQ4gGcjDvJ/y79DxUqXmvxWt4GhmxYO/z2FDCBIwp87P8mUdOfbcLzrX2LMXohxIOSREoIIR7AnENzAOhRowd1nOrkbbB7FkQeAUtHeHpegUsd3BoTdSuJ+rx3E55rJUmUEOWNzCEghBBFFBIZwr7IfWjVWl5t9mreBpFH4S/TnHs8+QXYexbouIqi8NmmM+aB5dOflSRKiPJKEikhhCgCRVGYd2QeAH1q98HHzid3g5xM+PUVMOZA/aegcZ8CH3fm/87x7c06UZ8800hu5wlRjkkiJYQQRRASFcKhmENYqC0Y2nho3gY7P4OYk2DtAj1mQQGrjv/f9lDm7jBVLH+/ZwMpcSBEOSeJlBBCFJKiKHx95GsA+tTpg7uNe+4GVw7Antmm9z1mgY1LgY77zc4LzNp2DoB3uteXYptCVACSSAkhRCHd2Rs1uNHg3Buz0+HXkaAYoUkwNHiqQMdcsjec6ZvPAPDW43UZ2r5GcYcthCgBkkgJIUQh3Lc36s+P4fp5sPOEJ6YX6JirDlxm6vqTALzeuRavdqxVrDELIUqOJFJCCFEI9+yNunIQ/jElWfScA1ZO9z3eH8euMemXYwAMeTiAcY/mU0JBCFFuSSIlhBAFdM/eqJws01x6t27p1el23+NtPx3N2BVHMCrwYqAv73Svn//0MkKIcksSKSGEKKB79kbt/hJiTpme0us27b7H2nshjld+PESOUeHpZl583KuxJFFCVECSSAkhRAHcszcq+hT8/YXp/ZMzwMb5nsc6ejmBYUsOkJVj5NEG7nzxXFM0akmihKiIJJESQogCuGtvlNEAv40CYzbU7Q4Nn7nncc5HJzNwUQipWQba1XLmqxebo9PIf8VCVFTyr1cIIQrg++PfA/Bs7Wdz90b98zVcOwR6B+g+856FN6/cSKPfDyHcSMumqY8D3/ZrhaVOU9KhCyFKkCRSQghxH8dij7E/cj9alZZBjQbd3hB/Ef78xPS+28f3nEsvNjmTfj+EEJWUQW03WxYPCsRWL/PGC1HRSSIlhBD3seD4AgCerPEkXrZeppWKAr+PhZx0COgAzfvddf+kjGwGLAwhLC4Vb0crlg1pg5ONRSlELoQoaZJICSHEPYTeCGXH5R2oUDGk0ZDbG46tgrC/QGsJPWff9ZZeRraBoUsOcCoyCRdbC5YPbYOHg2XpBC+EKHGSSAkhxD38cOIHALpW70oNx5vTtqTFw5bJpvcd3oJq+U/nYjAqjFlxmJCweOz0WpYMDiTAxaY0whZClBJJpIQQ4i4uJ19mU9gmAIY0vqM36n/vQtp1cGsAbV/Pd19FUXhn3Qm2nIzGQqvmu/6taOjlUBphCyFKkSRSQghxF4tPLMagGGjn1Y6Gzg1NK8N2wZHlpvc954BGl+++s7ad5+eQCFQq+L8XmhFU8961pYQQFZMkUkIIkY/YtFjWha4D7uiNys6AP8aa3rcaDL6B+e67bF84/7f9PAAf92rE443u/jSfEKJik0RKCCHysezUMrKMWTRzbUYr91amlbtnwfVQsHWHLlPz3W/j8UjeW38SgHFd6/BSm+qlFbIQogxIIiWEEP+RmJnIyrMrARjWZJhpDrzYc6b59ACemA5Wjnn223/xOmNXHkFRoN9D1Xm9S61SjFoIURYkkRJCiP9YeXYlaTlp1HGqQ3vv9qaaURvGgyELaj8GDXrl2edcdDLDlprmz+vW0J33n2ookxALUQUUKZGaN28e/v7+WFpa0qZNG0JCQu7ZPiEhgVGjRuHp6Yler6dOnTps3LixSAELIURJyjRk8tPpnwAY1GiQKRk6vgbCd5lqRj05I0/NqMjEdAYsDCEpI4dW1Z2Y80JzmYRYiCqi0PMTrFy5kvHjxzN//nzatGnD7Nmz6datG2fPnsXNzS1P+6ysLB599FHc3NxYs2YN3t7eXLp0CUdHx+KIXwghitXvF37nesZ1PGw86ObfDTISYcvbpo2PTAAn/1ztE9OzGbjwXyITM6jpasOCATJ/nhBVSaETqS+//JJhw4YxaJBpvqn58+ezYcMGFi5cyKRJk/K0X7hwIfHx8ezduxedzvSYsL+//4NFLYQQJcCoGFlycgkA/er3Q6fWwZ8fQ2oMONfKUzMqM8fAiGUHOBudjJudniWDA3G0lqlfhKhKCnVrLysri4MHD9K1a9fbB1Cr6dq1K/v27ct3n/Xr1xMUFMSoUaNwd3enUaNGfPrppxgMhrueJzMzk6SkpFyLEEKUtB2XdxCeFI6dhR296/SGa4fhX9M8e3SfCVq9ua3RqDBh9TH+uRiPrV7L4kGB+DhZl1HkQoiyUqhEKi4uDoPBgLu7e6717u7uREVF5bvPxYsXWbNmDQaDgY0bN/Luu+8yc+ZMPv7447ueZ9q0aTg4OJgXX1/fwoQphBBFsvjEYgCC6wZjo7GEP8aDYoRGfaBGx1xtP99ylt+PXkOrVvFtv5Y08LIv/YCFEGWuxJ/aMxqNuLm58d1339GyZUuCg4OZMmUK8+fPv+s+kydPJjEx0bxcvny5pMMUQlRxh2MOcyT2CDq1jr71+sLBxXDtEFjYQbdPcrVd9s8l5v91AYDP+zShXS2XMohYCFEeFGqMlIuLCxqNhujo6Fzro6Oj8fDwyHcfT09PdDodGs3twZf169cnKiqKrKwsLCzyjifQ6/Xo9fo864UQoqQsOrEIgJ41e+JqBLZ/YNrQ+R2wu/3/27ZT0Uz97QQAbzxah2db+JR2qEKIcqRQPVIWFha0bNmS7du3m9cZjUa2b99OUFBQvvu0a9eO0NBQjEajed25c+fw9PTMN4kSQojSFpYYxs7LOwEY0HAAbHvf9LSeR2NoPdTc7ujlBF77+TBGBV5o7cvozlJwU4iqrtC39saPH8/333/PkiVLOH36NK+88gqpqanmp/j69+/P5MmTze1feeUV4uPjGTNmDOfOnWPDhg18+umnjBo1qviuQgghHsCSk0tQUOjo25EaSXG3JyXu/iVoTB33l+PTGLLkX9KzDXSo48pHvRpJwU0hROHLHwQHBxMbG8t7771HVFQUzZo1Y/PmzeYB6BEREajVt/MzX19ftmzZwrhx42jSpAne3t6MGTOGiRMnFt9VCCFEEcWlx7H+wnoABjUYAL+NN21o9pJ5UuKEtCwGLAohLiWLhl72zHupBTqNTAwhhACVoihKWQdxP0lJSTg4OJCYmIi9vTwZI4QoPnMPz+XbY9/SxLUJy106oto4AfQO8NpBsHUlM8dA/x9C2B8Wj5eDJb+Oaoe7vWVZhy2EKEGFyTvkVyohRJWVkZNhnpx4QM1nUf15syxL5ylg64qiKEz65Tj7w0y1ohYOai1JlBAiF0mkhBBV1voL60nITMDb1pvOZ/6EjARwbwSthgAwa9t5fj18FY1axdcvtaCeh/SICyFyk0RKCFElGRUjy04tA+Blzw5oD/9o2vDkF6DRsvrAZf5v+3kAPunViEfquJZVqEKIckwSKSFElbT76m7Ck8Kx1dnyzInNgAJNXoDqQey9EMfktccBGNWpJi8E+pVtsEKIcksSKSFElXRrcuI+DvWwuXYE9Pbw6IeExiQzctlBcowKPZt68cajdcs2UCFEuSaJlBCiyjl9/TQhUSFoVBpeOv23aWXHScSpHBm0+F+SMnJoWd2JGX2aoFZLrSghxN1JIiWEqHJujY16zMINj5Q4cK1HRvMhDFt6gMvx6fhVs+a7fi2x1GnucyQhRFUniZQQokqJTo1mU9gmAAaEHQXA2G06b6w9xeGIBBysdCwa1BpnW5nvUwhxf5JICSGqlJ/P/EyOkkNLRU/DzAyo/xRfhHqw4VgkOo2K+S+3pKarbVmHKYSoICSREkJUGWnZaaw+txqA/jFXQGvJHx6j+XrnBQCmPduEoJrOZRmiEKKCkURKCFFlrL+wnqSsJPwMCh3T0oloMIKxW64DMLpTLfq09CnjCIUQFY0kUkKIKsGoGFl+ejkAL924gcHOl97HWpNjVOjRxJPxj9Yp4wiFEBWRJFJCiCph15VdXEq6hJ3RSK+UVD7IeonYDDUt/Bz54rmmUuZACFEkkkgJIaqEWyUP+iSlcF7XjOWJjfFxsuK7/q2kzIEQosi0ZR2AEEKUtLPxZ9kftR+NohCclEb/tL7Y6XUsGtgaFylzIIR4AJJICSEqvWU3p4N5NDWNzZldCFf5sPjlFtR2tyvjyIQQFZ0kUkKISi0uPY6NYRsA6JloZHTOs3z4TEPa13Yt48iEEJWBjJESQlRqK48vJFsx0iQjkz9S+/D8w414qU31sg5LCFFJSCIlhKi0Mg2ZrDy9AoBHEqy4Uft5Jj9Zv4yjEkJUJpJICSEqrbUhc7lBNp45OZzRvsLsF1ugkTIHQohiJGOkhBCVUnZ2Nj+eXAI6aJ7sxrihA7HRy395QojiJT1SQohKR1EUvlz2Fpd0ClZGI88/NgsPB8uyDksIUQlJIiWEqHSW/XWS85mbAOior0PLBi3KOCIhRGUliZQQolLZfjqaq3+9z35rHSpFYfQTM8o6JCFEJSaJlBCi0jh1LYkvft5AZrWDAHSo1hA/p1plHJUQojKTREoIUSnEJGUwZMm/vKpaxAZbawD6B04o46iEEJWdJFJCiAovLSuHoUsPUC95H9GO4WSo1dSzD6CVe6uyDk0IUcnJs8BCiArNaFQYt/IIZ67EsdFyOSPsbQHo12QoKpXUjBJClCzpkRJCVGjTt5xhy8lohuq2cNYmkRitFhdLZ57wf6KsQxNCVAGSSAkhKqyfQyL49q+LuHGDcfp1LHOwA+CFei+i0+jKODohRFUgiZQQokLafT6Od9edAGCJ7x8c1xg4qdej1+h5vu7zZRydEKKqkERKCFHhhMYk88qPB8kxKoyvG0/92E3m3qgeNXrgZOlUxhEKIaoKSaSEEBXK9ZRMBi3+l+SMHNpUt2d0xrdc1mr408ZU8qBfg35lHKEQoiqRREoIUWFkZBsYtvQAl+PTqe5szcImp1FHH+fHai4YgXbe7ajpWLOswxRCVCGSSAkhKgSjUeGN1Uc5FJGAg5WOxS/UxGb3pySpVay1NZU86N+gfxlHKYSoaiSREkJUCDO3nmXDsUh0GhXzX25JwNHZkH6DXzxrkq5kU9upNkGeQWUdphCiipFESghR7q369zLzdlwA4LNnmxBkfRUOLiIb+PHWdDAN+ksBTiFEqZNESghRru0JjePtX48D8HrnWvRu4Q2bJoJi5H91OxCdlYCzpTNPBjxZxpEKIaoiSaSEEOXW+ehkRi43lTl4qqkX4x6tA8dWQcReFJ01S6w0ALxY70UsNBZlHK0QoiqSREoIUS7FJGcwcJGpzEGr6k583qcJqsxk2PouAAdav8zpxFAsNZZSgFMIUWYkkRJClDtpWTkMXXKAqwnpBLjY8F3/VljqNLDzM0iJhmo1WapJA+Cpmk9JAU4hRJmRREoIUa4YjApjVhzh2JVEnKx1LBrYmmo2FhB9CvbPByC80wT+urILgJcbvFyW4QohqjhJpIQQ5crHG06x9VQ0Flo1Cwa0wt/FBhQFNr4JigHq9WB56kUUFDr6dCTAIaCsQxZCVGGSSAkhyo1Fe8JYtCccgC+fb0rL6tVMG078Apd2g9aSGx0n8lvob4BMByOEKHuSSAkhyoXNJ6L48I9TAEx8vB49mniZNmQmw//eMb1v/wYrovaQYciggXMDWnu0LqNohRDCpEiJ1Lx58/D398fS0pI2bdoQEhJSoP1WrFiBSqWiV69eRTmtEKKSOhRxgzErDqMo0LeNHyM71Li98a/pkBwJTgGkBw7n5zM/AzCo4SApwCmEKHOFTqRWrlzJ+PHjmTp1KocOHaJp06Z069aNmJiYe+4XHh7OhAkTaN++fZGDFUJUPuFxqQxdcoDMHCOd67nx4VMNbydI0afgn29M75+Yzm+XNnMj8wbett50rd617IIWQoibCp1IffnllwwbNoxBgwbRoEED5s+fj7W1NQsXLrzrPgaDgZdeeokPPviAGjVq3LWdEKJquZ6SyYBFIcSnZtHY24GvXmyOVnPzvyVFgQ1vgDEH6vXAUKsrS08tBUxjo7RqbRlGLoQQJoVKpLKysjh48CBdu97+TVCtVtO1a1f27dt31/0+/PBD3NzcGDJkSIHOk5mZSVJSUq5FCFG5pGcZGLLkAJeup+HjZMUPA1tho78jOTr6M0TsBZ01PD6N7RHbuZx8GQe9A8/UeqbsAhdCiDsUKpGKi4vDYDDg7u6ea727uztRUVH57rN7925++OEHvv/++wKfZ9q0aTg4OJgXX1/fwoQphCjnTLWiDnPkcgIOVjoWD2qNm53l7QZp8fA/UwVzOryF4uDLohOLAHih7gtY66zLIGohhMirRJ/aS05Opl+/fnz//fe4uLgUeL/JkyeTmJhoXi5fvlyCUQohSpOiKLy//iT/OxWNhUbNd/1aUsvNLnejPz+CtDhwrQcPjeJA9AFOXD+BXqPnxXovlk3gQgiRj0INMnBxcUGj0RAdHZ1rfXR0NB4eHnnaX7hwgfDwcHr27GleZzQaTSfWajl79iw1a9bMs59er0ev1xcmNCFEBfH1zgss++cSKhXMCm5GmxrOuRtcOQgHTL1PdJ8JWgsWn1wMwNM1n8bZ6j/thRCiDBWqR8rCwoKWLVuyfft28zqj0cj27dsJCgrK075evXocP36cI0eOmJennnqKTp06ceTIEbllJ0QVs+bgFWZsOQvAez0a0L2JZ+4GRgNsGAco0PRF8H+YCwkX+PvK36hQ0b9h/9IPWggh7qHQj72MHz+eAQMG0KpVKwIDA5k9ezapqakMGjQIgP79++Pt7c20adOwtLSkUaNGufZ3dHQEyLNeCFG5/XUulkm/HANgxCM1GNQun6ld/v0BIo+CpQM8+iGAuTeqi18XqttXL61whRCiQAqdSAUHBxMbG8t7771HVFQUzZo1Y/PmzeYB6BEREajVUjBdCHHb8SuJvLL8IDlGhaebeTHx8Xp5GyVFmsZGAXR5D2zdiEqN4o+LfwAwsNHA0gtYCCEKSKUoilLWQdxPUlISDg4OJCYmYm9vX9bhCCEKITwulT7z9xKXkkW7Ws4sGhiIhTafX7ZW9oPT68G7FQz5H6g1TA+ZzvLTywn0COSHbj+UfvBCiCqpMHmHdB0JIUpMTHIG/RbuJy4liwae9sx/uWX+SdTZTaYkSqWBnnNArSE+I54159YAMKRxwWrQCSFEaZNESghRIpIyshmw8F8ux6fjV82axYNbY2epy9swMwU2TDC9bzsaPEzjJ5efWk6GIYOGzg0J8sz7MIsQQpQHkkgJIYpdRraB4UsPcDoyCRdbC5YNCcxdcPNOOz6BpCvgWB06TAIgOSuZFWdWADCs8TCZnFgIUW5JIiWEKFYGo8L4VUf452I8tnotiwcFUt3ZJv/G1w7D/vmm9z2+BAtTxfKVZ1eSnJ1MDYcadPLrVEqRCyFE4UkiJYQoNoqi8N5vJ9h4PMpctbyRt0P+jQ058PsYUIzQqA/UMs3hmZGTwbJTywAY2ngoapX8NyWEKL/kfyghRLH54n9n+XF/hLlqedta95gaKuTb2zWjHp9mXv1r6K/EZ8TjbevN4wGPl0LUQghRdJJICSGKxfd/X2TejgsAfNKrcd6q5XeKD4M/Pza9f/RDsHUDINuYbZ6ceGDDgejU+QxOF0KIckQSKSHEA1v172U+2XgagImP16NvG7+7N1YU0y297DTwbw/Nb0/7svHiRiJTI3G2dKZXrV4lHLUQQjw4SaSEEA9k84lIJq29PfXLKx3zTkSey+FlEPYXaK1u1owy/TdkMBpYcHwBAP0b9sdSe5en/IQQohyRREoIUWS7z8fx+s9HMCoQ3MqXSU/kM/XLnZIiYcs7pvedp4Dz7aRrc/hmwpPCcdA78Hyd50swaiGEKD6SSAkhiuRAeDzDlh4gy2DkiUYefPps43vXe1IU2DAeMhPBqwW0ecW8yWA0MP+oqQzCgAYDsLWwLenwhRCiWEgiJYQotONXEhm06F/Ssw10qOPK7BeaoVHfp2jmybVwdiOodfD0XNDcnjP9zt6oF+u9WMLRCyFE8ZFESghRKOeik+m/cD/JmTkEBlRj/sst0Ws1994p9TpsfMv0vv0b4N7QvEl6o4QQFZkkUkKIAguPS+WlBfu5kZZNUx8HfhjQCiuL+yRRAJsnQlocuNY3JVJ3bpLeKCFEBSaJlBCiQK4mpPPSgv3EJmdSz8OOJYMD85+E+L9O/QbHV4NKDU/PA62FeZP0RgkhKjpJpIQQ9xWVmEHf7//hakI6NVxsWDakDY7WFvffMSUW/hhnev/wOPBpmWuz9EYJISo6SaSEEPcUk2xKoi5dT8O3mhXLh7bB1U5//x0VBTaMg7Tr4NYQOkzMtVl6o4QQlYEkUkKIu4pLyeSl7/dzMS4Vb0crfh72EF6OVgXb+fhqOP07qLXwzHzQ5k6+pDdKCFEZSCIlhMhXfGoWLy/Yz/mYFDzsLfl52EP4OFkXbOekSNg4wfS+wyTwbJJrc7Yxm2+OfgNA/wb9pTdKCFFhSSIlhMgjIc2URJ2JSsbNTs/Pwx/Cz7mASZSiwPrXICMRvJqbxkb9x7rQdVxKukQ1y2q8VP+lYo5eCCFKjyRSQohcEtKyeGnBfk5FJuFia8FPwx4iwMWm4Ac4tBRCt4JGD73m5yq8CZCRk8H8I6axUcObDMdGV4hjCyFEOaO9fxMhRFVxI/V2EuVsY0qiarkV4rZbXChsnmR63/kdcMs7997PZ34mJj0GLxsvnqvzXDFFLoQQZUMSKSEEYBoT9dKC/ZyOTMLFVs/Pw9pQ292u4AcwZMPaoZCdBgGPQNDoPE2SspJYcHwBAK82exULTQFKKAghRDkmiZQQguspmbx0c0yUi62eFcPbUMutEEkUwM5pcO0wWDqabump844cWHxiMUlZSdR0qEmPGj2KJ3ghhChDMkZKiCou7o4kytVOz4rhDxU+iQrfA7u+NL1/6v/AwTtPk9i0WJafXg7A6y1eR6MuwNQyQghRzkmPlBBVWFRiBn0X/MPF2FTz03k1XQtZiiA9AdYOBxRo/jI0eDrfZt8e+5b0nHSauDahk2+nB45dCCHKA0mkhKiiLsen8dKC/UTEp+HlYMmPhX06D0ylDv4YB0lXoFoNeHx6/udKuswv534BYGyLsahUqgcNXwghygVJpISogsLiUnnp+3+4lpiBXzVrfhrWpuDFNu90dAWcXAsqDTy7APT592b93+H/I0fJoZ13O1p7tH7A6IUQovyQREqIKuZcdDIvLdhPbHImNV1t+HHoQ3g4WBb+QLFnYcN40/uOk/NMSHzLkZgjbA7fjAoVY1uMLXrgQghRDkkiJUQVcuxKAgMWhnAjLZt6HnYsH9oGF9sCTED8X1lpsGqAqdRBjY7Qfny+zYyKkekhptt9z9Z+lnrV8taVEkKIikwSKSGqiL0X4hi25ACpWQaa+jiwZHAgjtZFrOO06U2IPQ227vDs93CXJ/A2XNzAiesnsNHZMLp53rpSQghR0UkiJUQVsOVkFK/9fJisHCNtazrzXf9W2OqL+M//yM9weDmo1NB7Adi65dssLTuN2QdnAzCs8TBcrFyKGL0QQpRfkkgJUcmtPnCZib8cw6jAYw3c+b8Xm2OpK2INpzvHRXWYZKpgfheLTi4iJj0Gb1tvXm7wctHOJ4QQ5ZwkUkJUYgt2XeTjDacBeK6lD9OebYxWU8Q6vHeOiwroAI9MuGvTyJRIFp1YBMAbrd5ArynCOCwhhKgAJJESohIyGhWmbz7Dt39fBGBY+wDefrJ+0es3KQr8Mfb2uKjeC+46Lgpg9qHZZBoyaenekq5+XYt2TiGEqAAkkRKiksnKMfLWmqOsO3INgDe71eXVjjUfrAjm/vlwbKWpXlTvH+46LgrgaOxRNoZtRIWKt1q/JcU3hRCVmiRSQlQiyRnZjFx+kD2h19GqVXzWuwl9Wvo82EHDd8OWKab33T6BgPZ3bZpjzOGTfz4BoFetXjRwbvBg5xZCiHJOEikhKomYpAwGLvqXU5FJWFto+ObllnSo4/pgB028YhoXpRig8fPQZuQ9m688u5LT8aexs7BjTIsxD3ZuIYSoACSREqISOB+dzMBF/3I1IR0XWwsWDQyksY/Dgx00OwNWvgxpceDRGHrOgXvcpotOjearw18BMK7lOJytnB/s/EIIUQFIIiVEBbfrfCyvLj9EcmYOAS42LBkUiJ9zEebNu5OimMocXDsMVk4Q/CNY3PuY0/+dTmp2Kk1dm9K7du8HO78QQlQQkkgJUYH9HBLBO+tOYDAqBPpX49t+LXGyKWK18jvt/xaO/GgqutlnEThVv2fzv6/8zdZLW9GoNLz70LuoVUUssSCEEBWMJFJCVED/LW/wTHNvPuvdGL22iIU273RuC2yZbHr/6IdQs9M9m6fnpPPp/k8B6NegH3Wr1X3wGIQQooKQREqICiYtK4fxK4+y+WQUAGO71mZMl9rFU2Yg6gSsGQyKEZr3g6D7z4/33bHvuJpyFQ8bD15p+sqDxyCEEBWIJFJCVCBXbqQxbOlBTkcmYaFRM71PY55p/oDlDW5JjoafgiErBfzbQ/cv7zm4HOBCwgUWn1gMwOTAyVjrHnBslhBCVDCSSAlRQYSExfPK8oNcT83CxdaC+S+3pJV/teI5eHY6rHgRkq6Acy0IXgbae4+1yjHm8O6ed8lRcujo25HOfp2LJxYhhKhAijQidN68efj7+2NpaUmbNm0ICQm5a9vvv/+e9u3b4+TkhJOTE127dr1neyFEXj+HRPDSgn+4nppFQy97fhv9cPElUUYj/DoSrh40PaHXd5Xp9T4WnVjE8bjj2OnsmNJmSvHEIoQQFUyhE6mVK1cyfvx4pk6dyqFDh2jatCndunUjJiYm3/Y7d+7kxRdfZMeOHezbtw9fX18ee+wxrl69+sDBC1HZZeUYee+3E0xee5xsg0L3Jp6sGdkWb0er4jmBosDWd+HUOlDrTGUOnGved7ez8Wf5+ujXAExuMxkPG4/iiUcIISoYlaIoSmF2aNOmDa1bt2bu3LkAGI1GfH19ee2115g0adJ99zcYDDg5OTF37lz69+9foHMmJSXh4OBAYmIi9vb2hQlXiAorOimDV388xMFLNwCY8FgdRnWqVbxz1+2eDdummt4/8x00Db7vLtmGbPpu7MuZ+DN08u3EnE5zZD49IUSlUpi8o1BjpLKysjh48CCTJ082r1Or1XTt2pV9+/YV6BhpaWlkZ2dTrdrdb0tkZmaSmZlp/pyUlFSYMIWo8ELC4hn10yFikzOx02v5MrgZjzZwL96THP7xdhL12McFSqIAvj32LWfiz+Cod+S9oPckiRJCVGmFurUXFxeHwWDA3T33f+ju7u5ERUUV6BgTJ07Ey8uLrl273rXNtGnTcHBwMC++vr6FCVOICktRFH7YHcaL3/9DbHImdd3tWP/aw8WfRJ3dBOtfM71v+zq0fa1Au52MO8mC4wsAeOehd3CxcineuIQQooIp1fLDn332GStWrODXX3/F0tLyru0mT55MYmKiebl8+XIpRilE2UjOyOa1nw/z0R+nMBgVnmrqxa+j2hLgYlO8J4r4B1YPNE1E3LSvqehmAWQaMpmyewoGxcDj/o/Tzb9b8cYlhBAVUKFu7bm4uKDRaIiOjs61Pjo6Gg+Pew82/eKLL/jss8/Ytm0bTZo0uWdbvV6PXq8vTGhCVGgnriYy+qdDhF9PQ6tWMaV7fQa29S/+22ZRx+Gn5yEnA2p3g6f+7761om6ZdXAWFxIv4GzpLE/pCSHETYXqkbKwsKBly5Zs377dvM5oNLJ9+3aCgoLuut/nn3/ORx99xObNm2nVqlXRoxWiklEUhWX/XOLZb/YSfj0NLwdLVo54iEHtAoo/iYo+BUufhoxE8G0Dzy0Gja5Au26/tJ0fT/8IwIftPsTR0rF4YxNCiAqq0AU5x48fz4ABA2jVqhWBgYHMnj2b1NRUBg0aBED//v3x9vZm2rRpAEyfPp333nuPn376CX9/f/NYKltbW2xtbYvxUoSoWJIzspm09jgbjkUC0LW+GzP6NC2eSYf/K/YsLH0K0q6DV3N4aTVYFKwK+ZXkK7y7910ABjYcyCM+jxR/fEIIUUEVOpEKDg4mNjaW9957j6ioKJo1a8bmzZvNA9AjIiJQq293dH3zzTdkZWXRp0+fXMeZOnUq77///oNFL0QFdSjiBmNXHCEi3nQrb9IT9RjycAn0QgHEhcKSnpAaCx6Nod+vYOlQoF2zDdm8+debJGcl08S1Ca+3eL344xNCiAqs0HWkyoLUkRKVRY7ByLwdF/i/P89jMCp4O1rxVd/mtPC7fyXxIom/CIu6Q/I1cGsIA/8A64JXRP/8389ZdmoZ9hb2rO65Gi9br5KJUwghypESqyMlhCi6y/FpjFt5hAM3C2w+3cyLj3o1wt6yYOOUCu36BdOYqORr4FoP+v9WqCRqR8QOlp1aBsDH7T6WJEoIIfIhiZQQJUxRFH49fJWpv50kOTMHO72Wj3o1oldz75I7afQpWNYLUqLBuTb0Xw+2rgXe/WrKVd7Z8w4A/Rr0o5NfpxIKVAghKjZJpIQoQbHJmbz963G2njKVDGlZ3YnZwc3wrVawgd5FcvUgLO8N6TfAvZFpTJStW4F3T8tO47U/XyMpK4nGLo0Z12JcycUqhBAVnCRSQpSQP45d4911J7iRlo1Oo2JMl9qM7FATraYE6+CG74afgiErBbxbwctrwKrg46+MipFJuyZx/sZ5nC2d+bLjl+gKWCJBCCGqIkmkhChm8alZvPvbCXNZg/qe9sx8rikNvEr4QYlz/4NV/UzFNgMegRd+Ar1doQ7x1eGv2HF5BxZqC/6v8//hYXPvQrtCCFHVSSIlRDFRFIX1R6/xwe+niE/NQqNWMapjTUZ3ro2FtoRnYzq8HH4fA8YcqPOEqdim7u7TMOXn9wu/m+fR+6DdBzRxvfcMBEIIISSREqJYXLmRxjvrTrDzbCwAdd3tmPFcE5r4OJbsiRUFdnwKf39u+tz4eej1dYErlt9yNPYo7+99H4ChjYfSo0aPYg5UCCEqJ0mkhHgABqPC0n3hzNhylrQsAxYaNa91rsWIDjVLvhcqJwvWvwbHVpg+t58And8p8Nx5t1xNucqYP8eQZcyis29nXmv+WgkEK4QQlZMkUkIU0bErCbyz7gTHriQC0NrfiWnPNqGWWylMfZR+A1b2g/BdoNJAj1nQckChDxOXHsfw/w3nesZ16jjVYVr7aahVJZwACiFEJSKJlBCFlJiWzedbzvBTSASKAnZ6LROfqEffQD/U6hKY4uW/4kJhRV+IOwsWdvD8YqjVtdCHScpKYuTWkUQkR+Bt683XXb7GWleCZRmEEKISkkRKiAJSFIU1B6/w2aYzXE/NAqBXMy/e7l4fN7vCDewusrObYe0wyEwCOy94aZVp/rxCSs9JZ/T20Zy9cRZnS2e+e/Q73G3cSyBgIYSo3CSREqIAjlxO4IPfT3I4IgGAWm62fPR0I4JqOpdOAEYj7PrCNLAcBXwfgueXgl3hk59sQzbjdo7jcMxh7Czs+PbRb/Gz9yv+mIUQogqQREqIe4hKzODzzWdYe/gqANYWGl7vUpvB7QJKfjD5LRlJ8OtIOLvB9Ln1UOg2DbQWhT6UwWjg7d1vs+fqHiw1lnzd5WvqVqtbzAELIUTVIYmUEPlIzzKwYNdFvt55gfRsAwC9W/jw1uN1cbcvpdt4AJHHYM0guB4KGgvo/iW06FekQ2Ubs3l719tsDt+MVq1ldqfZNHNrVrzxCiFEFSOJlBB3yDEY+eXQFWZtPU9UUgZgmh9vas8GJV8T6k6KAvu/ha3vgiHLNB4qeDn4tCzS4TINmUzYOYGdV3aiVWuZ8cgM2nm3K+aghRCi6pFESghMA8m3nY7h881nOB+TAoC3oxUTn6hHzyaeqApZm+mBpF6H30bBuU2mz3WegKfngU3RxmOlZacxdsdY9kXuQ6/R82XHL3nE55FiDFgIIaouSaRElbf/4nW++N9Z/g2/AYCjtY7RnWrRL6g6eq2mdIMJ+xvWDofkSNOtvMc+hsDhhS6yeUtKVgqjto/iUMwhrLRWzO08l0DPwGIOWgghqi5JpESVdfDSDb7cepY9odcBsNSpGdwugJEda2JvWbgpVh5YZgpsex/+/d702bk2PLeoSKUNbolLj2P09tGcvH4SO50dX3f9WsZECSFEMZNESlQ5Ry8n8OXWc/x1zjQvnk6jIri1L6M71cbDoRQHkt8Stst0Ky/hkulzy4HQ7VOwsCnyIc/dOMfo7aOJTI3ESe/Et49+S33n+sUTrxBCCDNJpESVERIWz7wdoeYESqNW8VxLH0Z1qoVvtTKo6P3fXigHX3jq/6Bm5wc67N9X/ubNv94kLSeN6vbVmdt5Lv4O/g8crhBCiLwkkRKVmqIo/H0+jnl/hhISHg+AWgW9mnszpkttqjsXvdfnAYKCM3/A5smQeNm0ruVAePQjsLR/gMMq/Hj6R2YcmIFRMRLoEciXHb/EQe9QPHELIYTIQxIpUSnlGIxsOhHFd39f5PhV06TCFho1vVv68EqHmvg5l9GccvEXYeNbELrV9NnB72YvVKcHOmyWIYvPQj5j9bnVAPSu3Zspbaag05TyWC8hhKhiJJESlUpKZg4r/73Mwt1hXE1IB0yDyPsGVmf4IzXKZgwUQHYG7J5lWgyZoNZBu9eh/QSweLCkLiIpggl/TeB0/GlUqHij1Rv0b9C/dEs2CCFEFSWJlKgUrtxIY9m+S/wUEkFyRg4A1Wws6PdQdfoHVcfZVl82gRmNcHw1/PnR7dt4NTrBk1+AS60HPvzGixv58J8PSc1OxVHvyKcPf0p7n/YPfFwhhBAFI4mUqLAURWHvhess2RvOttPRGBXT+houNgxpH0DvFj5Y6kq5DtSdLuyAre9B1DHTZ3tv6PYJNOhV5LpQt6TnpDM9ZDq/nP8FgJbuLfms/Wd42Hg8YNBCCCEKQxIpUeEkZWSz7vBVlu67ROjNKuQA7Wo5M7BtAF3quaFWl+FtrchjsP0DCN1m+qy3h4fHwUOvgM7qgQ9/NPYo7+15j4uJF1GhYkTTEYxoMgKtWv45CyFEaZP/eUWFoCgKhyJu8NP+y2w4fo2MbCMANhYaerf0oX9QdWq52ZVtkJFHYed0OLvB9FmthdZD4ZE3wcblgQ+flp3GV4e/4sfTP6Kg4GLlwrT203jI86EHPrYQQoiikURKlGtxKZn8duQaK0IizHPgAdRxt6VvoB+9W/pgV9pVyP/r2hH4azqc3XhzhQoa9YZOb4NzzWI5xb5r+/hg3wdcTbkKwFM1n+LNVm/iaOlYLMcXQghRNJJIiXInM8fAn6dj+OXQFXaejSXn5uAnS52ank28eCHQjxZ+jmX7VJqiwMUdsHcuXNhuWqdSQ6M+ph4o1zrFcprYtFhmH5rN+gvrAfC08eS9oPd42PvhYjm+EEKIByOJlCgXjEaFgxE3WH/kGr8fu0ZCWrZ5W1MfB/q09OHp5t6lPwfef+VkwvE1sG8exJw0rVOpofFzpgTKpXaxnCYjJ4MlJ5fww4kfSM9JR4WKF+q9wJgWY7DRlUERUSGEEPmSREqUGUVROHktifVHr/HH0WtcS8wwb3O31/NMcx96t/CmtnsZj30CSLwCh5bCwcWQEm1ap7OBFv3hoZHg5F8spzEqRjaGbWTOoTlEpUYB0MS1CRNbT6SJa5NiOYcQQojiI4mUKFWKonDiahIbT0Sy+UQUYXGp5m22ei3dGnrwVDMvHq7lgqYsn7wDMBpMT94dWATnt4BiGuCOnRe0GWGa1sXKsVhOpSgKOy7v4Ntj33Lq+inAdBtvXMtxPO7/uBTXFEKIckoSKVHiDEaFwxE32Hwiis0no7hyI928zUKrpmt9N55q6kXHum5lW/fplrhQOLYCjq64XUQTwL89tBoE9XqC1qJYTmVUjGyP2M63R7/l7I2zAFhrrRnaeCj9GvTDUltGldiFEEIUiCRSokSkZOaw61ws207HsONsDPGpWeZtVjoNneq58ngjTzrXc8NWXw7+GqZeh5Nr4ejPcPXg7fVWTtDsJVPvUzGNfwLT3Hhbwrew8MRCQhNCAVMC1bd+X/o16Ec1y2rFdi4hhBAlpxz8BBOVgaIoXIhNYefZWP46F8v+i/FkGYzm7Q5WOjrVNSVPHeq4YmVRDnqeUuPgzB9waj2E/QVG09QyqDRQszM0fQHqdS+WIpq3xKTFsOrsKlafW018RjwAdjo7XmrwEi/XfxkHvUOxnUsIIUTJk0RKFFliWjb7Lsbx9/k4/joba54k+JbqztY8Wt+drg3caVXdCa1GXUaR3iHhMpzbDKd+g0t7bo97AvBsCk1egMZ9wNat2E5pVIwcjD7I6rOr2XppKzmKKWFzs3IjuF4wL9R7AXsL+2I7nxBCiNIjiZQosPQsAwcv3WDPhTj2hMZx/GoiinJ7u4VWTZuAanSo40rHuq7UdLUt+0HShhy4EgLntsD5/0HMqdzbPZtC/aegwdPFeusOIDwxnN8v/s4fF/7gWuo18/oWbi14sf6LdPHrgk5dxuUchBBCPBBJpMRdpWbmcODSDULCrrP/YjxHrySQbVBytanlZsvDtVzoUMeVNjWqYW1Rxn+lFAWuh8LFnaYlfBdkJN7erlKDTyDUe9KUQFULKNbTR6ZE8uflP9kUtomjsUfN6211tnTz70Zw3WDqO9cv1nMKIYQoO5JICbPIxHQOXrrBgfAbHLx0g1ORSRiMuRMnD3tL2tZy5uFaLrSr5YK7fRk/VaYoEHcOIvbBpX0Q9jckX8vdxsoJanWF2t2gVhewLr6B3IqiEJYYxvaI7WyL2GYuXQCgVqlp69WWp2s+TUffjvIEnhBCVEKSSFVR6VkGjl9N5OjlBI7cXP47xgnA29GKNjWq8VCAM21qVMOvmnXZ3q7LTDbNbXf1IFwOMSVQ6fG522j04NcGAjpAjY7g2Qw0xfdXPSkriZDIEPZe28vea3vN898BqFDRwr0FXfy68ETAE7hYPfhkxUIIIcovSaSqgIxsA6cjkzhxNZHjVxM5fjWJc9HJeXqb1Cpo4GVPSz8nWvpXo2V1J7wdi++JtULLTIHokxB17HbyFHsGyB03WivwaQV+D0H1dqbXYnzSLikriSMxRzgUfYgD0Qc4Hncc4x2D1HVqHW0829DVrysdfTvibOVcbOcWQghRvkkiVclcT8nkdGQypyITOR2ZzOnIJM7HpORJmsA0DUszX0ea+jrSzMf0alMWNZ2MBogPg9jTEHMGok9A1HGIv0iepAnAwRe8W4B3K6jeFjyaFFuBzBxjDhcTL3Lq+ilOxJ3gUMwhQm+EovwnjgCHANp6taWtV1taubfCWmddLOcXQghRsUgiVUGlZOZwPjqZc9HJnI1K4XxMMmejkolJzsy3vYutBY28HWjs7UBDLwea+Tri4VDKY3YyEk0Dwa9fML3GnTeNb4o7D4b848bOEzwam5Iln1bg1QLs3IslnNTsVEITQgm9Ecq5G+c4df0UZ+LPkGHIyNO2un11mrs1p4VbC9p4tsHL1qtYYhBCCFGxSSJVjimKQnRSJhfjUrgQm8qFmBRCY1K4EJtCZGLeH/YAKhVUr2ZNfU97GnjaU9/Tnobe9njYW5b82KacTEi6aqrVlHjZ1Mt0I/z2khZ39321VuBaB1zrg1t98GwC7o3B1vWBQlIUhdj0WC4lXSI8KZxLiabX0ITQXGOb7mSttaaBcwMaODeguVtzmrk1k7FOQggh8iWJVBkzGhWikjK4dD2NiPhULl1PI/x6KmFxaYTHpZKebbjrvm52eup62FHbzY66HrbUdrejrrtd8d+eUxTTIO+UGEiONC1J126/Jl2DxCuQEk2+t+LuZONmqtfkXBOca5veu9YDx+qgLnzBToPRwPWM60SnRhOVFsW1lGtcTblqfr2acpX0nLyD6G9xtXKltlNtajnWor5zfRo6N6S6fXXUqnJQPFQIIUS5V6SfuPPmzWPGjBlERUXRtGlTvvrqKwIDA+/afvXq1bz77ruEh4dTu3Ztpk+fzpNPPlnkoCsSo1EhLjWTawkZXLmRxpUb6VyOv/l683NWjvGu+2vUKnydrKjpaktNN1tq3fHqYF3EYo6KAplJkBZveuIt7YbpNTUOUmNNPUe33qfEmJZ7JCO5aK3AwQccfcHJP+9ief8pUAxGA4lZiSRkJBCfEU9CZgLX068TlxFnek03vUanRROXHodBuXuyCaBRafC29aa6fXWq21fH396fGo41qO1YG0dLx4JdlxBCCJGPQidSK1euZPz48cyfP582bdowe/ZsunXrxtmzZ3Fzyzutxt69e3nxxReZNm0aPXr04KeffqJXr14cOnSIRo0aFctFlBWjUeF6ahbRSRlEJWYQmZRBVGI6kYkZRCZkcC0xnciEjFxzzuVHq1bh42SFn7MN1atZU93ZmhquNgS42OLjZIXuzqlVjAbIToOs6xCXYkqIslJMPUaZNz9nJN58TTK9pidARsLt14zE2/PKFYbe3jR1ip0n2HvlfnX0BQdfsvX2pBnSSc9JJy0njbTsNFKzU0nLjiflagQp2SmkZKWYX5OzkknMSiQpM8n0mpVEUmZSnsHd96JRaXCxcsHd2h0vWy+8bL3wtvXGx9bH/F6nkQriQgghip9KUZSC/8QC2rRpQ+vWrZk7dy4ARqMRX19fXnvtNSZNmpSnfXBwMKmpqfzxxx/mdQ899BDNmjVj/vz5BTpnUlISDg4OJCYmYm9f8nOSpWXlcD0li7iUTGKTM4m9+RqXkklMUibRyZnEJqaRkJKGypiNjhwsyMFClW16JQcLsrEgG70qG0tVDq5WKtytwcMaXK3AxdKIk4URRwsDdpoc1DnpkJ1h6vnJSjMlS9lpkJWGMTsVQ1YaxqxUDIYMjIBBBUZUGFRgML/efp+jUpEDGFQqclCRc8e67FuvWj3ZeluyLaxvL1prsnSWZOksyNLoydbqyFRryVSryVIMZBgyyMzJJNOQaX6fkZNBeo4pebo1j1xxsLOwo5plNRz1jlSzrIaLlYt5cbZ0xs3aDXcbd5wtndGoy8EkyEIIISqFwuQdheqRysrK4uDBg0yePNm8Tq1W07VrV/bt25fvPvv27WP8+PG51nXr1o1169bd9TyZmZlkZt5+iispKakwYRba5IVPcT7nEoqi3OwJUTANy77jvUrh1vgfnU7BywU8XUBR3Wplanmr78mogjQg5eaRLt9sZwSUHDCmqFBUps/Gm/sa7mhjUKkw6sBocWuAuPXNpSRkmJaseMgqniNqVVqsddbY6Gyw1t581VljZ2GHrc4WWwtbbHW22FnY4aB3wN7CHnsLexz0DuZF5qETQghR3hUqkYqLi8NgMODunvvxc3d3d86cOZPvPlFRUfm2j4qKuut5pk2bxgcffFCY0B5IdE4MZ/V33n5T/ee1/FKhQqPWoFFpUKvUaNVatCqteZ1WrTWvM79Xa9GpdebXW+8tNBZYaCzM6yw0FlhqLM3r9Rq9eZ1eo0ev1WOpscRSa4mV1sq8WGut5VaaEEKIKqFcPrU3efLkXL1YSUlJ+Pr6ltj5etUbxkM3wrHW67DW67G21GOh1aLS6FCpNajUWlRqHai1qNQa1Bq96bPmVhsdarUWlUqFCpX5Va1So1KpUKPOte7WehUqNCqNqY1KbW53a92t5OjWcuuzRq3J9VkIIYQQZaNQiZSLiwsajYbo6Ohc66Ojo/Hw8Mh3Hw8Pj0K1B9Dr9ej1+sKE9kCeemRIqZ1LCCGEEJVHobozLCwsaNmyJdu3bzevMxqNbN++naCgoHz3CQoKytUeYOvWrXdtL4QQQghRURT61t748eMZMGAArVq1IjAwkNmzZ5OamsqgQYMA6N+/P97e3kybNg2AMWPG0KFDB2bOnEn37t1ZsWIFBw4c4LvvviveKxFCCCGEKGWFTqSCg4OJjY3lvffeIyoqimbNmrF582bzgPKIiAjUd1Sobtu2LT/99BPvvPMOb7/9NrVr12bdunUVvoaUEEIIIUSh60iVhdKuIyWEEEKIqqsweYc88iWEEEIIUUSSSAkhhBBCFJEkUkIIIYQQRSSJlBBCCCFEEUkiJYQQQghRRJJICSGEEEIUUbmca++/blVoSEpKKuNIhBBCCFHZ3co3ClIhqkIkUsnJyQAlOnGxEEIIIcSdkpOTcXBwuGebClGQ02g0cu3aNezs7FCpVMV+/KSkJHx9fbl8+bIU/Cxj8l2UH/JdlA/yPZQf8l2UHyX9XSiKQnJyMl5eXrlma8lPheiRUqvV+Pj4lPh57O3t5R9HOSHfRfkh30X5IN9D+SHfRflRkt/F/XqibpHB5kIIIYQQRSSJlBBCCCFEEUkiBej1eqZOnYpery/rUKo8+S7KD/kuygf5HsoP+S7Kj/L0XVSIweZCCCGEEOWR9EgJIYQQQhSRJFJCCCGEEEUkiZQQQgghRBFJIiWEEEIIUURVJpGaN28e/v7+WFpa0qZNG0JCQu7ZfvXq1dSrVw9LS0saN27Mxo0bSynSyq8w38X3339P+/btcXJywsnJia5du973uxMFV9h/F7esWLEClUpFr169SjbAKqKw30NCQgKjRo3C09MTvV5PnTp15P+oYlLY72L27NnUrVsXKysrfH19GTduHBkZGaUUbeX0999/07NnT7y8vFCpVKxbt+6+++zcuZMWLVqg1+upVasWixcvLvE4zZQqYMWKFYqFhYWycOFC5eTJk8qwYcMUR0dHJTo6Ot/2e/bsUTQajfL5558rp06dUt555x1Fp9Mpx48fL+XIK5/Cfhd9+/ZV5s2bpxw+fFg5ffq0MnDgQMXBwUG5cuVKKUde+RT2u7glLCxM8fb2Vtq3b688/fTTpRNsJVbY7yEzM1Np1aqV8uSTTyq7d+9WwsLClJ07dypHjhwp5cgrn8J+Fz/++KOi1+uVH3/8UQkLC1O2bNmieHp6KuPGjSvlyCuXjRs3KlOmTFHWrl2rAMqvv/56z/YXL15UrK2tlfHjxyunTp1SvvrqK0Wj0SibN28ulXirRCIVGBiojBo1yvzZYDAoXl5eyrRp0/Jt//zzzyvdu3fPta5NmzbKiBEjSjTOqqCw38V/5eTkKHZ2dsqSJUtKKsQqoyjfRU5OjtK2bVtlwYIFyoABAySRKgaF/R6++eYbpUaNGkpWVlZphVhlFPa7GDVqlNK5c+dc68aPH6+0a9euROOsSgqSSL311ltKw4YNc60LDg5WunXrVoKR3Vbpb+1lZWVx8OBBunbtal6nVqvp2rUr+/bty3efffv25WoP0K1bt7u2FwVTlO/iv9LS0sjOzqZatWolFWaVUNTv4sMPP8TNzY0hQ4aURpiVXlG+h/Xr1xMUFMSoUaNwd3enUaNGfPrppxgMhtIKu1IqynfRtm1bDh48aL79d/HiRTZu3MiTTz5ZKjELk7L+mV0hJi1+EHFxcRgMBtzd3XOtd3d358yZM/nuExUVlW/7qKioEouzKijKd/FfEydOxMvLK88/GlE4Rfkudu/ezQ8//MCRI0dKIcKqoSjfw8WLF/nzzz956aWX2LhxI6Ghobz66qtkZ2czderU0gi7UirKd9G3b1/i4uJ4+OGHURSFnJwcRo4cydtvv10aIYub7vYzOykpifT0dKysrEr0/JW+R0pUHp999hkrVqzg119/xdLSsqzDqVKSk5Pp168f33//PS4uLmUdTpVmNBpxc3Pju+++o2XLlgQHBzNlyhTmz59f1qFVOTt37uTTTz/l66+/5tChQ6xdu5YNGzbw0UcflXVoohRV+h4pFxcXNBoN0dHRudZHR0fj4eGR7z4eHh6Fai8KpijfxS1ffPEFn332Gdu2baNJkyYlGWaVUNjv4sKFC4SHh9OzZ0/zOqPRCIBWq+Xs2bPUrFmzZIOuhIryb8LT0xOdTodGozGvq1+/PlFRUWRlZWFhYVGiMVdWRfku3n33Xfr168fQoUMBaNy4MampqQwfPpwpU6agVktfRWm4289se3v7Eu+NgirQI2VhYUHLli3Zvn27eZ3RaGT79u0EBQXlu09QUFCu9gBbt269a3tRMEX5LgA+//xzPvroIzZv3kyrVq1KI9RKr7DfRb169Th+/DhHjhwxL0899RSdOnXiyJEj+Pr6lmb4lUZR/k20a9eO0NBQcyILcO7cOTw9PSWJegBF+S7S0tLyJEu3ElxFprEtNf/fzh26rA6GYRz2gEyLYLKpoGCxmDT6X9hkzSBWwTaDgkEsYtamiFGLxaTY1hwWQYs2g1HhPumTc853yoafwvhdsLR38Lx72HYztvfjz+y3fNL+YZPJRKFQSKPRSLvdTpVKRdFoVJfLRZJULpfVaDSe49frtYLBoLrdrhzHkWVZLH/wIm570el0ZBiGZrOZzufzc7vdbp+agm+47cW/+GvvNdz24XQ6KRKJqFarab/faz6fKxaLqdVqfWoKvuG2F5ZlKRKJaDwe63A4aLlcKp1Oq1QqfWoKvnC73WTbtmzbViAQUK/Xk23bOh6PkqRGo6Fyufwc/7X8Qb1el+M4GgwGLH/wE/r9vhKJhAzDUD6f13a7fe4rFosyTfOv8dPpVJlMRoZhKJvNarFYvLli/3LTi2QyqUAg8G2zLOv9hfuQ2+viTwSp13Hbh81mo0KhoFAopFQqpXa7rcfj8eaq/clNL+73u5rNptLptMLhsOLxuKrVqq7X6/sL95HVavXf+/7XuTdNU8Vi8dsxuVxOhmEolUppOBy+rd5fEu8fAQAAvPD9N1IAAAA/hSAFAADgEUEKAADAI4IUAACARwQpAAAAjwhSAAAAHhGkAAAAPCJIAQAAeESQAgAA8IggBQAA4BFBCgAAwCOCFAAAgEe/AUZjpkGnluCTAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def tanh_interp(max_arg):\n", " \"\"\"Interpolator for tanh with adjustable extension\"\"\"\n", " scale = 1 / np.tanh(max_arg)\n", " return lambda u: 0.5 * (1 + scale * np.tanh(max_arg * (u * 2 - 1)))\n", "\n", "\n", "fig, ax = plt.subplots(1, figsize=(7, 4))\n", "x = np.linspace(0, 1, 101)\n", "for max_arg in [2, 3, 4]:\n", " s_bend = tanh_interp(max_arg)\n", " ax.plot(x, s_bend(x), label=f\"tanh_interp({max_arg})\")\n", "ax.set_title(\"Tanh S-Bend\")\n", "_ = ax.legend()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We use `tanh_interp(3)` for our waveguides and put the whole geometry creation steps in convenience function. The [documentation for RobustPath](https://heitzmann.github.io/gdstk/geometry/gdstk.RobustPath.html) has more details on the use of that class." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:12.294103Z", "iopub.status.busy": "2023-03-27T21:52:12.293933Z", "iopub.status.idle": "2023-03-27T21:52:12.318413Z", "shell.execute_reply": "2023-03-27T21:52:12.317905Z" }, "tags": [] }, "outputs": [], "source": [ "def make_coupler(\n", " length,\n", " wg_spacing_in,\n", " wg_width,\n", " wg_spacing_coup,\n", " coup_length,\n", " bend_length,\n", " npts_bend=30,\n", "):\n", " \"\"\"Make an integrated coupler using the gdstk RobustPath object.\"\"\"\n", " # bend interpolator\n", " interp = tanh_interp(3)\n", " delta = wg_width + wg_spacing_coup - wg_spacing_in\n", " offset = lambda u: wg_spacing_in + interp(u) * delta\n", "\n", " coup = gdstk.RobustPath(\n", " (-0.5 * length, 0),\n", " (wg_width, wg_width),\n", " wg_spacing_in,\n", " simple_path=True,\n", " layer=1,\n", " datatype=[0, 1],\n", " )\n", " coup.segment((-0.5 * coup_length - bend_length, 0))\n", " coup.segment(\n", " (-0.5 * coup_length, 0),\n", " offset=[lambda u: -0.5 * offset(u), lambda u: 0.5 * offset(u)],\n", " )\n", " coup.segment((0.5 * coup_length, 0))\n", " coup.segment(\n", " (0.5 * coup_length + bend_length, 0),\n", " offset=[lambda u: -0.5 * offset(1 - u), lambda u: 0.5 * offset(1 - u)],\n", " )\n", " coup.segment((0.5 * length, 0))\n", " return coup\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Writing to GDS cells\n", "\n", "Next, we construct the splitter and write it to a GDS cell. We add a rectangle for the substrate to layer 0, and in layer 1 we add two paths, one for the upper and one for the lower splitter arms, and set the path width to be the waveguide width defined above.\n", "\n", "We also store the cell in a library that is saved to a file, so that we can demosntrate how to load the geometry straight from a gds file. Alternatively, we could use the created cell directly." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:12.320913Z", "iopub.status.busy": "2023-03-27T21:52:12.320726Z", "iopub.status.idle": "2023-03-27T21:52:12.341750Z", "shell.execute_reply": "2023-03-27T21:52:12.341152Z" }, "tags": [] }, "outputs": [], "source": [ "# Create a gds cell to add our structures to\n", "coup_cell = gdstk.Cell(\"COUPLER\")\n", "\n", "# make substrate and add to cell\n", "substrate = gdstk.rectangle(\n", " (-device_length / 2, -wg_spacing_in / 2 - 10),\n", " (device_length / 2, wg_spacing_in / 2 + 10),\n", " layer=0,\n", ")\n", "\n", "coup_cell.add(substrate)\n", "\n", "# make coupler and add to the cell\n", "coup = make_coupler(\n", " device_length, wg_spacing_in, wg_width, wg_spacing_coup, coup_length, bend_length\n", ")\n", "\n", "coup_cell.add(coup)\n", "\n", "# Create a library for the cell and save it, just so that we can demosntrate loading\n", "# geometry from a gds file\n", "gds_path = \"misc/coupler.gds\"\n", "\n", "if os.path.exists(gds_path):\n", " os.remove(gds_path)\n", "\n", "lib = gdstk.Library()\n", "lib.add(coup_cell)\n", "lib.write_gds(gds_path)\n" ] }, { "cell_type": "markdown", "metadata": { "tags": [] }, "source": [ "## Loading a GDS file into Tidy3d\n", "\n", "To load the geometry from a GDSII file, we use gdstk to load the library and select the cell with the geometry we want.\n", "It is usualy esier to create a dictionary of all the cells in the library to verify that we can find the correct one by name:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:12.344324Z", "iopub.status.busy": "2023-03-27T21:52:12.344170Z", "iopub.status.idle": "2023-03-27T21:52:12.363367Z", "shell.execute_reply": "2023-03-27T21:52:12.362701Z" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cell names: COUPLER\n" ] } ], "source": [ "# Load a GDSII library from the file we just created\n", "lib_loaded = gdstk.read_gds(gds_path)\n", "\n", "# Create a cell dictionary with all the cells in the file\n", "all_cells = {c.name: c for c in lib_loaded.cells}\n", "\n", "print(\"Cell names: \" + \", \".join(all_cells.keys()))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this case, we only have the single cell that we created previously, called \u201cCOUPLER\u201d, but usually GDSII files hold tens to hundreds of cells, so it is important to find them by name. Getting to the cell we're interested in now is as simple as:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:12.366282Z", "iopub.status.busy": "2023-03-27T21:52:12.365951Z", "iopub.status.idle": "2023-03-27T21:52:12.388198Z", "shell.execute_reply": "2023-03-27T21:52:12.387064Z" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cell 'COUPLER' with 1 polygons, 2 flexpaths, 0 robustpaths, 0 references, and 0 labels\n" ] } ], "source": [ "coup_cell_loaded = all_cells[\"COUPLER\"]\n", "\n", "print(coup_cell_loaded)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Set up Geometries\n", "\n", "Then we can construct tidy3d \"PolySlab\" geometries from the GDS cell we just loaded, along with other information such as the axis, sidewall angle, and bounds of the \"slab\". When loading GDS cell as the cross section of the device, we can tune ``reference_plane`` to set the cross section to lie at ``bottom``, ``middle``, or ``top`` of the \"PolySlab\" with respect to the axis. E.g. if ``axis=1``, ``bottom`` refers to the negative side of the y-axis, and ``top`` refers to the positive side of the y-axis. Additionally, we can optionally dilate or erode the cross section by setting `dilation`. A negative `dilation` corresponds to erosion.\n", "\n", "Note, we have to keep track of the `gds_layer` and `gds_dtype` used to defined the GDS cell earlier, so we can load the right components.." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:12.391792Z", "iopub.status.busy": "2023-03-27T21:52:12.391594Z", "iopub.status.idle": "2023-03-27T21:52:12.575265Z", "shell.execute_reply": "2023-03-27T21:52:12.574674Z" }, "tags": [] }, "outputs": [], "source": [ "# Define waveguide height\n", "wg_height = 0.22\n", "dilation = 0.02\n", "\n", "substrate_geo = td.PolySlab.from_gds(\n", " coup_cell_loaded,\n", " gds_layer=0,\n", " gds_dtype=0,\n", " axis=2,\n", " slab_bounds=(-430, 0),\n", " reference_plane=reference_plane,\n", ")[0]\n", "\n", "top_arm_geo, bot_arm_geo = td.PolySlab.from_gds(\n", " coup_cell_loaded,\n", " gds_layer=1,\n", " axis=2,\n", " slab_bounds=(0, wg_height),\n", " sidewall_angle=sidewall_angle,\n", " dilation=dilation,\n", " reference_plane=reference_plane,\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that we can also individually select the dtype by supplying `gds_dtype` to `PolySlab.from_gds`." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:12.577517Z", "iopub.status.busy": "2023-03-27T21:52:12.577371Z", "iopub.status.idle": "2023-03-27T21:52:12.748147Z", "shell.execute_reply": "2023-03-27T21:52:12.747633Z" }, "tags": [] }, "outputs": [], "source": [ "top_arm_geo = td.PolySlab.from_gds(\n", " coup_cell_loaded,\n", " gds_layer=1,\n", " gds_dtype=0,\n", " axis=2,\n", " slab_bounds=(0, wg_height),\n", " sidewall_angle=sidewall_angle,\n", " dilation=dilation,\n", " reference_plane=reference_plane,\n", ")[0]\n", "\n", "bot_arm_geo = td.PolySlab.from_gds(\n", " coup_cell_loaded,\n", " gds_layer=1,\n", " gds_dtype=1,\n", " axis=2,\n", " slab_bounds=(0, wg_height),\n", " sidewall_angle=sidewall_angle,\n", " dilation=dilation,\n", " reference_plane=reference_plane,\n", ")[0]\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's plot the base and the top of the coupler waveguide arms to make sure it looks ok. The base of the device should be larger than the top due to a positive `sidewall_angle`." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:12.750388Z", "iopub.status.busy": "2023-03-27T21:52:12.750218Z", "iopub.status.idle": "2023-03-27T21:52:12.990058Z", "shell.execute_reply": "2023-03-27T21:52:12.989537Z" }, "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAHFCAYAAADG74/aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4S0lEQVR4nOzdeXxMV/8H8M/sM5nJhqxExJYgFJFYilAelFapbkqtpbWrelrUY2ufqmrR1tZVPLaq9ldaaqu1tW9txRL7FskE2Wcms57fH2Eqskh0ZCT5vF+v+7oz555z7/cOV8w3Z5EIIQSIiIiIiIiIiIjIZaTuDoCIiIiIiIiIiKi8YdKNiIiIiIiIiIjIxZh0IyIiIiIiIiIicjEm3YiIiIiIiIiIiFyMSTciIiIiIiIiIiIXY9KNiIiIiIiIiIjIxZh0IyIiIiIiIiIicjEm3YiIiIiIiIiIiFyMSTciIiIiIiIiIiIXY9KNiIiIqALauXMnJBIJdu7c6e5QiIiIiMolJt2IiIiIyrGFCxciLi7O3WE8kJUrV2LevHnuDgMA4HA48OGHHyIsLAxqtRqNGjXCqlWrit0+PT0dQ4cOhZ+fH7RaLdq3b4+jR48WWPenn35C06ZNoVarUb16dUydOhU2m81Vt0JERESlRCKEEO4OgoiIiIgejsjISFSpUiVfjzaHwwGLxQKlUgmp9NH8PexTTz2F+Ph4XLp0yd2hYOLEifjggw8wZMgQREdHY926ddiwYQNWrVqFl156qci2DocDbdq0wZ9//ol///vfqFKlChYuXIirV6/iyJEjqFOnjrPuxo0b0a1bN7Rr1w69e/fG8ePHsWDBAgwdOhSLFi162LdJRERELsSkGxEREZV7BoMBWq3W3WG4RWFJt7LgUUm6JSYmIiwsDEOHDsX8+fMBAEIIxMbG4uLFi7h06RJkMlmh7b/77ju8+OKLWLNmDZ577jkAwI0bN1C3bl08+eSTWLlypbNugwYNoFAocPjwYcjlcgDA5MmT8f777+PkyZOIiIh4iHdKRERErvRo/lqTiIiIqBCJiYkYPHgwgoODoVKpEBYWhmHDhsFisQAA4uLiIJFIsGvXLgwfPhz+/v6oVq2as/3ChQvRoEEDqFQqBAcHY8SIEUhPT89zjbNnz6JXr14IDAyEWq1GtWrV8NJLLyEjI8NZZ+vWrWjdujV8fHyg0+kQHh6OSZMm3Tf+4rQzm82YOnUqateuDZVKhZCQELz11lswm835zrd8+XLExMTAw8MDvr6+aNu2LbZs2QIAqFGjBk6cOIFdu3ZBIpFAIpGgXbt2AAqf023NmjWIioqCRqNBlSpV0LdvXyQmJuapM2DAAOh0OiQmJqJHjx7Q6XTw8/PD+PHjYbfb7/sZrFu3Dt26dXP+GdaqVQvvvvtunrbt2rXDhg0bcPnyZWfsNWrUKPScAwYMcNa7d5s2bdp9Y7pfvFarFcOHD3eWSSQSDBs2DNeuXcO+ffuKbP/9998jICAAzz77rLPMz88PL7zwAtatW+f8cz158iROnjyJoUOHOhNuADB8+HAIIfD999//o/sgIiKi0iW/fxUiIiKiR8P169cRExPjnB8rIiICiYmJ+P7772E0GqFUKp11hw8fDj8/P0yZMgUGgwEAMG3aNEyfPh0dO3bEsGHDkJCQgEWLFuHQoUPYs2cPFAoFLBYLOnfuDLPZjFGjRiEwMBCJiYlYv3490tPT4e3tjRMnTuCpp55Co0aNMGPGDKhUKpw7dw579uwpMv7itHM4HOjevTt+//13DB06FPXq1cPx48cxd+5cnDlzBmvXrnXWnT59OqZNm4ZWrVphxowZUCqVOHDgALZv345OnTph3rx5GDVqFHQ6Hd555x0AQEBAQKHxxcXFYeDAgYiOjsbMmTOh1+vxySefYM+ePTh27Bh8fHycde12Ozp37ozmzZvjo48+wq+//oqPP/4YtWrVwrBhw4r8HOLi4qDT6TBu3DjodDps374dU6ZMQWZmJmbPng0AeOedd5CRkYFr165h7ty5AACdTlfoOV977TV07NgxT9mmTZuwYsUK+Pv7O8tu3rxZZGx3eHp6QqVSAQCOHTsGrVaLevXq5akTExPjPN66detCz3Xs2DE0bdo03zDemJgYfPHFFzhz5gwaNmyIY8eOAQCaNWuWp15wcDCqVavmPE5ERERlhCAiIiIqI/r16yekUqk4dOhQvmMOh0MIIcSSJUsEANG6dWths9mcx1NSUoRSqRSdOnUSdrvdWT5//nwBQHzzzTdCCCGOHTsmAIg1a9YUGsfcuXMFAHHjxo0SxV+cdsuWLRNSqVT89ttvecoXL14sAIg9e/YIIYQ4e/askEqlomfPnnnuR4i/PwshhGjQoIGIjY3Nd50dO3YIAGLHjh1CCCEsFovw9/cXkZGRwmQyOeutX79eABBTpkxxlvXv318AEDNmzMhzziZNmoioqKiiPwQhhNFozFf22muvCQ8PD5GTk+Ms69atmwgNDb3v+Qpy9uxZ4e3tLf71r3/l+XsAoFjbkiVL8sRRs2bNfNcwGAwCgJgwYUKRsWi1WjFo0KB85Rs2bBAAxKZNm4QQQsyePVsAEFeuXMlXNzo6WrRo0aK4t09ERESPAA4vJSIiojLB4XBg7dq1ePrpp/P1BAJyh/vdbciQIXnm2fr1119hsVgwduzYPD2OhgwZAi8vL2zYsAEA4O3tDQDYvHkzjEZjgbHc6fG1bt06OByOYt9DcdqtWbMG9erVQ0REBG7evOncnnjiCQDAjh07AABr166Fw+HAlClT8vWguvezKI7Dhw8jJSUFw4cPh1qtdpZ369YNERERzs/nbq+//nqe923atMGFCxfuey2NRuN8nZWVhZs3b6JNmzYwGo04ffp0iWO/l8FgQM+ePeHr64tVq1bl+XuwdevWYm2dO3d2tjGZTM5eb3e78zmZTKYi4ylu+zv7wure7zpERET0aOHwUiIiIioTbty4gczMTERGRharflhYWJ73ly9fBgCEh4fnKVcqlahZs6bzeFhYGMaNG4c5c+ZgxYoVaNOmDbp3746+ffs6E3IvvvgivvrqK7z66quYMGECOnTogGeffRbPPfdckSuBFqfd2bNncerUKfj5+RV4jpSUFADA+fPnIZVKUb9+/WJ9HvdT2OcDABEREfj999/zlKnV6nwx+vr6Ii0t7b7XOnHiBCZPnozt27cjMzMzz7G75817UEOGDMH58+exd+9eVK5cOc+xe4egFodGoylwPr2cnBzncVe0v7MvrO79rkNERESPFibdiIiIqFz6JwmKjz/+GAMGDMC6deuwZcsWjB49GjNnzsT+/ftRrVo1aDQa7N69Gzt27MCGDRuwadMmrF69Gk888QS2bNlS6EqWxWnncDjQsGFDzJkzp8BzhISEPPB9uVJRq3UWJT09HbGxsfDy8sKMGTNQq1YtqNVqHD16FG+//XaJeg4W5JNPPsGqVauwfPlyNG7cON/x5OTkYp3H29vb+XcoKCgIO3bsgBAiTy/CpKQkALlzrhUlKCjIWfdu97YPCgpylt/755yUlOScQ46IiIjKBg4vJSIiojLBz88PXl5eiI+Pf6D2oaGhAICEhIQ85RaLBRcvXnQev6Nhw4aYPHkydu/ejd9++w2JiYlYvHix87hUKkWHDh0wZ84cnDx5Ev/973+xfft25/DPwtyvXa1atZCamooOHTqgY8eO+bY7PdFq1aoFh8OBkydPFnm94g41LezzuVN27+fzoHbu3Ilbt24hLi4OY8aMwVNPPYWOHTvC19c3X92SDpP97bffMH78eIwdOxZ9+vQpsE5QUFCxttWrVzvbNG7cGEajEadOncpzrgMHDjiPF6Vx48Y4evRovoTigQMH4OHhgbp16+Y5z+HDh/PUu379Oq5du3bf6xAREdGjhUk3IiIiKhOkUil69OiBn3/+OV9SAgCEEEW279ixI5RKJT799NM8db/++mtkZGSgW7duAIDMzEzYbLY8bRs2bAipVOoc9peamprv/HcSIgUNDbyjOO1eeOEFJCYm4ssvv8xX12QyOVdi7dGjB6RSKWbMmJEvmXP3/Wm1WqSnpxca0x3NmjWDv78/Fi9enOceNm7ciFOnTjk/n3/qTg+5u2O0WCxYuHBhvrparbbYw02TkpLwwgsvoHXr1s4VUAvyIHO6PfPMM1AoFHliFEJg8eLFqFq1Klq1apUnjtOnT8NqtTrLnnvuOej1evzf//2fs+zmzZtYs2YNnn76aeccbg0aNEBERAS++OIL2O12Z91FixZBIpHgueeeK9ZnQURERI8GDi8lIiKiMuP999/Hli1bEBsbi6FDh6JevXpISkrCmjVr8PvvvzsXKiiIn58fJk6ciOnTp6NLly7o3r07EhISsHDhQkRHR6Nv374AgO3bt2PkyJF4/vnnUbduXdhsNixbtgwymQy9evUCAMyYMQO7d+9Gt27dEBoaipSUFCxcuBDVqlVD69atC42hOO1eeeUVfPfdd3j99dexY8cOPP7447Db7Th9+jS+++47bN68Gc2aNUPt2rXxzjvv4N1330WbNm3w7LPPQqVS4dChQwgODsbMmTMBAFFRUVi0aBHee+891K5dG/7+/s5FGe6mUCgwa9YsDBw4ELGxsejduzf0ej0++eQT1KhRA2+88caD/rHl0apVK/j6+qJ///4YPXo0JBIJli1bVmDSNCoqCqtXr8a4ceMQHR0NnU6Hp59+usDzjh49Gjdu3MBbb72Fb7/9Ns+xRo0aoVGjRgAebE63atWqYezYsZg9ezasViuio6Oxdu1a/Pbbb1ixYkWeobYTJ07E0qVLcfHiRdSoUQNAbtKtRYsWGDhwIE6ePIkqVapg4cKFsNvtmD59ep5rzZ49G927d0enTp3w0ksvIT4+HvPnz8err76KevXqlTh2IiIiciM3rpxKREREVGKXL18W/fr1E35+fkKlUomaNWuKESNGCLPZLIQQYsmSJQKAOHToUIHt58+fLyIiIoRCoRABAQFi2LBhIi0tzXn8woULYtCgQaJWrVpCrVaLSpUqifbt24tff/3VWWfbtm3imWeeEcHBwUKpVIrg4GDRu3dvcebMmSJjL247i8UiZs2aJRo0aCBUKpXw9fUVUVFRYvr06SIjIyNP3W+++UY0adLEWS82NlZs3brVeTw5OVl069ZNeHp6CgAiNjZWCCHEjh07BACxY8eOPOdbvXq183yVKlUSffr0EdeuXctTp3///kKr1ea7v6lTp4ri/Pdyz549okWLFkKj0Yjg4GDx1ltvic2bN+eLJzs7W7z88svCx8dHABChoaGFnjM2NlYAKHCbOnXqfWO6H7vdLt5//30RGhoqlEqlaNCggVi+fHm+ev379xcAxMWLF/OUp6amisGDB4vKlSsLDw8PERsbW+jf0R9//FE0btxYqFQqUa1aNTF58mRhsVj+8T0QERFR6ZIIcZ+xGERERERERERERFQinNONiIiIiIiIiIjIxZh0IyIiIiIiIiIicjEm3YiIiIiIiIiIiFyszCTdpk2bBolEkmeLiIgoss2aNWsQEREBtVqNhg0b4pdffimlaImIiIiIiIiIqCIrM0k3AGjQoAGSkpKc2++//15o3b1796J3794YPHgwjh07hh49eqBHjx6Ij48vxYiJiIiIiIiIiKgiKjOrl06bNg1r167FH3/8Uaz6L774IgwGA9avX+8sa9GiBRo3bozFixc/pCiJiIiIiIiIiIgAubsDKImzZ88iODgYarUaLVu2xMyZM1G9evUC6+7btw/jxo3LU9a5c2esXbu2yGuYzWaYzWbne4fDgdTUVFSuXBkSieQf3wMREREREREREZVNQghkZWUhODgYUmnRA0jLTNKtefPmiIuLQ3h4OJKSkjB9+nS0adMG8fHx8PT0zFc/OTkZAQEBecoCAgKQnJxc5HVmzpyJ6dOnuzR2IiIiIiIiIiIqP65evYpq1aoVWafMJN2efPJJ5+tGjRqhefPmCA0NxXfffYfBgwe77DoTJ07M00MuIyMD1atXx9WrV+Hl5eWy6xARERERERERUdmSmZmJkJCQAjuA3avMJN3u5ePjg7p16+LcuXMFHg8MDIRer89TptfrERgYWOR5VSoVVCpVvnIvLy8m3YiIiIiIiIiIqFhTkJWp1Uvvlp2djfPnzyMoKKjA4y1btsS2bdvylG3duhUtW7YsjfCIiIiIiIiIiKgCKzNJt/Hjx2PXrl24dOkS9u7di549e0Imk6F3794AgH79+mHixInO+mPGjMGmTZvw8ccf4/Tp05g2bRoOHz6MkSNHuusWiIiIiIiIiIiogigzw0uvXbuG3r1749atW/Dz80Pr1q2xf/9++Pn5AQCuXLmSZ9WIVq1aYeXKlZg8eTImTZqEOnXqYO3atYiMjHTXLRARERERERERUQUhEUIIdwfxKMvMzIS3tzcyMjI4pxsRERERERERUQVWkjxRmRleSkREREREREREVFaUmeGlj4KcnBwMGDgIV65ccXcoRERljlwuh0Ihh0Iuh0KhgFwuL3Ar6lhh9Tw8PKDVaqHT6Qrce3h4FGt1ISIioodNCAGTyYTs7GwYDIYC90ajETabLd9mtVoLLL9fPavVCqvNBqs19z0REZWMXC7H4kULUb9+/ZK1e0jxlEvz58/H6m9XQRv5hLtDISIqW4SAEA7AYQEcJgiHHRB2SBwOQNgBhwMSYb9dx567CTuEwwHYbRAOe8Gb3Q6H/f5fHiQSCdQaDTy0Onh6eiIwIADBQYEIDAxEQEAAAgICnK/v7DUaTSl8MEREVNbl5ORAr9cjOTkZer0+3+vE60lI1qcgMzMDJqMBJqMRxZnhRyqTQyKTQSIteINzLwUkMkAmh0QihZDKAElumbh97E59SKWQSJQAfxFFRFQiOWf24ttvv8WMGTNK1I5JtxJSaHSo0m2cu8MgIqLbhBAQNguENQfCmgOH5fbemgNhyYGwmpxlNmsOUs1G3MhMw1/6S4DxD9gN6bBkp+cm/O7iodPBzy8AYaHVUa9eBMLDw51b9erVIZPJ3HPDRERUqhwOB65evYqEhATndur0aVy8dBk3UlKQnZWZt4FEAqXOB3KtD6DxgcTDB7JKkZAEeUCl1ECtUEOqVEOiyN2kCjUkt99LlZrccrmSPbSJiB4h+mvxD9SOSTciIirTJBIJJAoVoFAB8H6gcwiHHQ5TJuyG9NzNmA57dhrSDGm4kaTHwdObYL71DexWMwBAqVQhon59tGweg+joaMTExKBevXqQy/ljlYioLLPb7UhISMDBgwdx6NAh7DtwECfi42Ex5wAApHIFVJWrQuIdBFmlSMhDfFFZ6wOZ1hcyrQ9kHr6Qenjl9iwjIqIKj98OiIiowpNIZbe/MPkWWkcIB+yZN2C9dQ3W1ESc11/A2R834/MvvgCEgFrjgSZNmqB9u1h06dIFLVq0gEKhKMW7ICKikrLZbDh06BA2bdqE7Tt24ujRIzAaDIBEAk2VEEgDakP7eF/4VKoGeeVqkHv5MaFGRETFxqRbCQnhgC3rlrvDICIqc+6df8b5XlI2FtKWSKSQewdA7h0ATc0oZ7nDbIRFfx7mpLP4K/kMDn+yAO+//z60Ok/8q2MHPPnkk+jcuTNCQ0PdGD0REd2RmJiIzZs3Y+PGTdi8ZQuyMjOg8PCEoloklM2eh2dQXSgDa0Oq8nB3qP/InXlShSN37lRxe85U4bC7OzQiojLnQf/tZNKtBPz8/GDLMSJxYX93h0JEVH5IJJBKZc7JoqUyuTM5l2eyaIn09iTQd00aLcl9L+QqSJS358Vxzo+jKXDOHKnaEzKtD6QaT5ck/KQqD6irN4S6ekMAuT+QLfrzMF08ii1HjmLdTz9DOOx4rHETDB40EL1790aVKlX+8XWJiKj40tLS8O233+KbJXE4fOggIJHAo2oEFA27IjAsCsqgOg+lB5sQAo6cLNgN6XDkZEFYcuCwmCCs5tw5R2/PP3qnzGHN3UtsObcXFnIADhtw10JDdyfThDOpZofD/vd7h90GFGOxBiIiKj4/P78St5GI4iydU4FlZmbC29sbGRkZ8PT0xI4dO2A2m90dFhFRmSKEgN1uh81mc25WqzXP+3u34h63WCwwGIzIys5GVlYWsg0GZGcbYDIaYDQYYLVaCoxJIpNBeXseHmi8cye6vmteHqmHD+S6ypD7BEIif/Bhoo6cbJgu/QHTqV0wnj8ImUSKrt26YuCAAejatSuUSuUDn5uIiApns9mwadMmxMUtxU8//QSb3Q5NzabwqNcO6rAmkGm8Hvjcwm6FLV0PW/YtOJzzgabBnp0OYUwHcjLgMKTDnJ0KYS+4d4RCoYTGwwMeWh20Wg946nTQ6XTw8vSEVusBpVIJuVwOuVwOhULhfF3QVpLjMpmMizQQEZWQXC5Hhw4dIJVK8+SJvLyK/lnCpNt9lOTDJCKiR4/VaoXBYIDBYEB2djZu3boFvV7v3JKTk6HX65GYlIykpCTcvJECk9HobC+RSKGuFAiJTzBkvlWhqFQVCr8wKANqQqpQlSgWuzEDhpO7kHNyO0xJ5+DjWwmvDR2CMWPGICgoyNW3TkRUId24cQOfffYZFi3+HDdvpEATEAZ1/fbQ1m8Pma7wuTsLImwWWFIuwpJyEbbURNjSEiHSryMnNSnPUCOVWgM//wAEBgagWnAQAgICEBAQgMDAQOfrypUrQ3c7sabVajnvJxFRGcWkmwsx6UZEVPFkZ2dDr9fj2rVrOHPmDBISEnD69GmcOHUaVy5fgsNuh0Qqg9o/FLKAOlAG1oEquC4UfjWKPWTVcuMSsv/aClP8VkjsNgwcOAD//ve/Ubt27Yd8d0RE5dOlS5fw8ccf48uvvobNIeAR2QG6Rp2g8K9ZrJ5dQghYb16BJSkB5qSzcKSchUl/EcJuh1QqRbXqNdCgXjgiIiIQHh6OunXrIiQkBAEBAdDpdOw9RkRUQTDp5kJMuhER0d0sFgtOnDiBgwcP4tChQ9i3/yBOnzoBh8MBpc4HitDGUIdFQVOjCWRan/uez5GTjaxjv8B49GfYjBno1asXJkyYgKZNmz78myEiKgfi4+PxwQezsOrbVZCptPBo8hQ8o54q1vBRuykTORePwXTxKKyXj8GSlQqJRIK64fXQskUMoqOjER0djUaNGkGlKlnvZiIiKp+YdHMhJt2IiOh+DAYDDh8+jC1btmD9Lxvx1x/HAACaoNpQ1oyGtsETUPgWPXzUYTXDEL8NhsM/wpyahKeefhpzPv4YderUKY1bICIqcy5duoS33noLa9asgcrHHx5RPaBr1AlSpbrIdraMFBhO7IDlwkEYr58BhED9yIZ4quuT6NSpE5o3bw6dTldKd0FERGUNk24uxKQbERGVlF6vx5YtW7Bp0yas++knGLKz4RHSAOoGHaCNaA2pyqPQtsJhh+HUbmTvWQ57VipGjRqJ//znP/D1Ldk8RERE5VVWVhZmzpyJjz6eA4laB8/H+0Db4AlIZPJC2zgsJhgT9sJ0cjuMl/6ExsMDT3V7Cl1vJ9qCg4NL8Q6IiKgsY9LNhZh0IyKif8JoNGLt2rVYEheHbb/+CqlCCXXtFvBs+jRUVSMKbeewmpF1eB2yD6yBzkOD996dgddeew1yeeFfKomIyjO73Y64uDhMmDgJaekZ0EX3hFfzXpAqNYW2MSefQ9aRn2E+uxc2swltY9th0MAB6NWrF3uzERHRA2HSzYWYdCMiIle5du0ali9fji+/+hoXzp+DR2hD6GKegzqsaaETcNuyU5Hx2zJkH/8VdeuGY/GihWjfvn0pR05E5F779u3Da68Pw/G//oSufjt4x/aD3Mu/wLpCCORc+QvZB76H8eIxhITWwJDBg/DKK6+gRo0apRs4ERGVO0y6uRCTbkRE5GoOhwPr1q3Df9+fiSOHD0ETWBPa6F7wiGgNiVRWYBtz8jlkbP8SpqsnMHz4cMyaNYu9NIio3DOZTJgyZQo+njMH6sBa8H7itUJ7CQuHHaazB5B98HuYrp9Bw8ca452JE9CrVy/2EiYiIpdh0s2FmHQjIqKHRQiBXbt24f2ZM7F1yxaoK1eFZ9v+0NRpWWDPNyEcyDqyHpm/LUXVoCD8b2kcYmNj3RA5EdHDd+DAAbzSrz/OX7gAr8f7wCumZ6G/mDCdP4zM3UuQk3IZbWPb4Z1JE/Gvf/2r0F7ERERED6okeSJpKcX0j82cORPR0dHw9PSEv78/evTogYSEhCLbxMXFQSKR5NnU6qJXMyIiIiotEokE7dq1w5bNm3H06FHERjfEjR/fx83Vk2DRny+gvhRezbojYMBnuOnQol27dhgzZgwMBoMboiciejhycnIwYcIEtGrVCteyBQL6fwLvFs8VmHCz3LiMG2umIuX7aYipVwP79+/Hrp070KlTJybciIjI7cpM0m3Xrl0YMWIE9u/fj61bt8JqtaJTp073/aLh5eWFpKQk53b58uVSipiIiKj4mjRpgk0bN+KXX35BNbUVSUvH4tYv82DLTs1XV+EbjCq9Z8L3iSFYsPhzRDZshN9++80NURMRudahQ4fQuElTzP7oY3i17gu/PrOhrFI9Xz27MQO3tixEctxo+Is0/Pjjj9i5YweaN2/uhqiJiIgKVmaHl964cQP+/v7YtWsX2rZtW2CduLg4jB07Funp6Q98HQ4vJSKi0ma1WvHFF19g8n+mIMtoglerl+HZrHuBvTysqYlI3/gJTImnMGbMGPz3v/+Fh4eHG6ImInpwZrMZM2bMwAezZkEVUBM+XcZA6VcjXz0hHMj+YxMyf/sf1HIppk2dgpEjR0KlUpV+0EREVCGVy+Gl98rIyAAAVKpUqch62dnZCA0NRUhICJ555hmcOHGiyPpmsxmZmZl5NiIiotKkUCgwYsQIXDh/DsOHvor0nd/g5qqJsKYm5q9bqSqq9J4Jn3aD8NmCRWjY6DHs3bvXDVETET2YI0eOoEnTKHww60N4tuoNv5dnF5hws2XocfO7/yB1y0L0f/lFXDh/Dm+++SYTbkRE9Mgqk0k3h8OBsWPH4vHHH0dkZGSh9cLDw/HNN99g3bp1WL58ORwOR+7cENeuFdpm5syZ8Pb2dm4hISEP4xaIiIjuy9fXF59++il27doFP0UO9HGjkXloHYRw5KknkcrgFdMTAf0/QZJZjtatW2P8+PEwmUxuipyI6P4sFgv+85//IKZ5c1xKMyOg31z4tHoJElnelUaFEMj6YyP0S0bBx3oLW7ZswVdffQU/Pz83RU5ERFQ8ZXJ46bBhw7Bx40b8/vvvqFatWrHbWa1W1KtXD71798a7775bYB2z2Qyz2ex8n5mZiZCQEA4vJSIitzIYDJg0aRI+/fRTeFSPhE+X0VD4BuerJxx2ZB5ah8zfl6NmWA0s+99StGjRwg0RExEV7tixY3ilX3+cOnUSni1fgneL5/Ml2wDAlpmCtE2fwXjxGAYPHow5c+bw/+RERORW5Xp46ciRI7F+/Xrs2LGjRAk3IHe4TpMmTXDu3LlC66hUKnh5eeXZiIiI3E2r1eKTTz7Bzp07UUWSDX3cKGQe+bnAXm/ezZ9FYP9PkGiU4PHHH8fbb7+NnJwcN0VORPQ3q9WK6dOnIzomBhduGhDwylz4PN674N5tf26GfslIeOXosWnTJnz11Vf8vzkREZUpZSbpJoTAyJEj8eOPP2L79u0ICwsr8TnsdjuOHz+OoKCghxAhERHRwxcbG4sT8cfx2quDkfbr57i5+h1Y05Pz1VNUCYHfyx/Cq00/fDRnLh5r3ASHDh1yQ8RERLn+/PNPRDWLxvQZ70IX8zz8+n4MZUDNfPVsmTdx8/tpSN30Gfq+9AJOnTyBzp07uyFiIiKif6bMJN1GjBiB5cuXY+XKlfD09ERycjKSk5PzzFfTr18/TJw40fl+xowZ2LJlCy5cuICjR4+ib9++uHz5Ml599VV33AIREZFL6HQ6LFiwANu2bUMlRwZS4kYh6+j6gnu9tXgOAf3m4WqWHS1atMCkSZPyTKNARPSwWa1WvPfee2jWLBrn9JkIeOVj+LTpA4lMkaeeEALZf22FfskIeBqvY8OGDViyZAl8fHzcEzgREdE/VGaSbosWLUJGRgbatWuHoKAg57Z69WpnnStXriApKcn5Pi0tDUOGDEG9evXQtWtXZGZmYu/evahfv747boGIiMilnnjiCZw8EY/BA/ohdeti3PzuP7Bl6PPVU/qFwq/PR/Bq3RezPpyNJk2jcOTIETdETEQVTXx8PGKat8CUqdPgEf0s/PrOgSqwdr56tqybuPXDDNza+Al6P98Lp06eQNeuXd0QMRERkeuUyYUUSlNJJsgjIiJyl19//RUDBg5C8o2b8I4dCF3jJyGRSPLVs6RcRPqmT2BOuYh3Jk3C5MmToVQq3RAxEZVnNpsNs2fPxtSp0yDzDYJPl7FQBdXJV08IAUP8dmTs+BK+nlp8/dWXePrpp90QMRERUfGUJE/EpNt9MOlGRERlRWZmJsaPH48vv/wSHmFN4Nt5FOTe/vnqCbsNGfvXIGvft6hXrz6WL/sfGjduXPoBE1G5dPLkSbzSrz+OHT0Kz+bPwufxlyGR50/u27JTkb55PgznDqJPn7749NNPUKlSJTdETEREVHzlevVSIiIiKpiXlxe++OILbNq0Cd7mFOjjRiLrz8249/drEpkcPo/3RsArc3HhhgHNoqMxffp0WK1WN0VOROWB3W7Hhx9+iMZNmuLkFT0C+s6Gb+yAfAk3IQSyT+xAypIR0GRcwtq1a7F8+TIm3IiIqNxhT7f7YE83IiIqizIyMvDGG29gyZIl8KgZldvrzatKvnrCbkXG3u+Quf871K1bF/PmzkGXLl3cEDERlWU7duzAmLFv4Pjxv+AV3RPerftAqlDlq2c3pCFty0IYzuzDSy+9hPnz56Ny5cpuiJiIiOjBsKcbERFRBeft7Y1vvvkGGzZsgKfxOvRLRiD7r60F9HpTwKdNHwT2m4urJjmefPJJdHnySZw6dcpNkRNRWXLu3Dk806MHnnjiCZxLNSOw70fwbT8oX8JNCAHDqd3QLxkJ1a2z+OGHH7Bq1Som3IiIqFxjT7f7YE83IiIq69LS0jB27Bv43/+WQlsrGj6dR0DuWUCvNyFgOrsPmbuWwJqRgmGvv45p06ahSpX8dYmoYktPT8d7772HTz75FDKdLzzb9IdHvbYFLuBiN6QjbesiGBL24Pnnn8eCBQvg5+fnhqiJiIj+OS6k4EJMuhERUXnx888/Y/CrQ5CeZYDXE0OhbdC+wC/IwmZF5pGfkb1/NdQKGcaOGY3Ro0fzSzIRITU1FQsXLsTHc+Yi22iCNqYXvKJ7FjiUFAAMp39Hxq+LoFPJ8fniRXj++edLOWIiIiLXYtLNhZh0IyKi8iQ1NRWjR4/BihXLoa3THD7/Gg65Z8HDu+yGdGTsXwPT8S2QSYAhrw7Gm2++iRo1apRu0ETkdteuXcPcuXOxaPHnsFht0ER2hHfLFwr/98OYgfRfP0f2qd3o0bMnPl+8GP7++VdTJiIiKmuYdHMhJt2IiKg8Wrt2LV4dMhQZWQbomj8Hz2bPFNpTxW7KRNbRDTAeWw97TjZeevEljB//Jpo0aVLKURNRaYuPj8ecOXOwbNlySBQqaBp3g1fU05BpfQqsL+xWZB1Zj6z9q6FVKbB40UK8+OKLBfaqJSIiKouYdHMhJt2IiKi8SktLw7vvvotPP/sMcs/KuXMyRbQp9Muxw5KD7L+2wHhkLczpKWgQ2RCDBw3Eyy+/jICAgFKOnogellu3bmHVqlX4+psl+OPYUSi9KsOj6TPwbNwFUpVHgW1y54Tcj6zdcbCkJWHo0KGYMWMGh6UTEVG5w6SbCzHpRkRE5d2ZM2fw5vjxWP/zz/CoVh9e7QdDFRxeaH1ht8F08SiMJ7bBdO4gIBzo0qULBg4YgCeffBJarbYUoyciVzCZTNiyZQuWxMVhw/oNsAsHPGpFw6PBE9DUioZEpii0rUV/ARk7v4bx0p/o+K9/Yd7cuWjQoEEpRk9ERFR6mHRzISbdiIiooti2bRvGjH0DJ+KPQxvxODybPw9VYO0i29hNWTCe2o2ck9thTEyAQqFE69at8eSTXdClSxdERkZyWBnRI0gIgVOnTmHz5s34ZeNG7N79GyzmHGiCakNdvz209dtB5uFd5DksNy4h68D3yD65C3Xq1MW8uXPw5JNP8pknIqJyjUk3F2LSjYiIKhK73Y64uDi8+9/3cfniBXiENYEuphfUoY/d94u0NTURpotHYb54FOarf8FuMcM/MAid/9URMTExiI6OxmOPPQa1Wl1Kd0NEd1gsFvz11184dOgQDh48iM1bf0VS4jVI5Uqoq0dCVaMpNGFRUFQJue+5cq6dQNaB72E8dwhVq4Vg0sQJGDJkCBSKwnvDERERlRdMurkQk25ERFQR2e12/PDDD/jv+zPx159/QBNcF9qYXvCo0wISqey+7YXNgpyrJ5Bz8ShsifHI0V+Ew26DXKFAg8iGaNk8Bg0bNkR4eDjCw8NRtWpV9o4hcgEhBJKSkpCQkICEhATEx8dj34GDOP7nn7BaLZDIZND4h0EWXA+ams2gCmkAqeL+iXAhHDCdPwTDgR9gvHYS4fXqY/KkiXjxxReZbCMiogqFSTcXYtKNiIgqMiEEtm7div/OnIndO3dC5e0HVf320EV2gKJS1eKfx2aFJeUCLMlnYU46C0fKOeTcugZhtwMA1BoP1K5dB/Ui6iI4OBgBAQEICAhAYGCg87W/vz+USuXDulWiR57VakVKSgr0er1zS05Ohl6vR1JSEk6fOYuzZxJgNBgAABKpDOrKwZD614YysA5UQXWg8K9Z6ErFBV4zPRmG+G3IObkD5rRktGjZCu9MmoiuXbtCKpU+rFslIiJ6ZDHp5kJMuhEREeU6dOgQvv76a6xYtQrZmZnQVIuApv4T8KjXFjK1rsTnE3YbbBl6WFOvwXorEbbUa3Bk6iGM6bBlp8JqzMrXxtvHF37+AQgOCkBwUBB8fHyg1Wqh0+ny7e8t8/DwgFwuh0KhgFwuz7Oxlx25khACNpst32a1WmEymZCdnQ2DwVDg/u7XGRkZSEpORuL1ZKSk6JGRlprvWgqNJxSevoDGGxKvQCgqV4WiUjUoKlWF3CewyAUQCuMwG2FM+B2mE9thvBIPD50OLz7/PF599VW0atXKFR8RERFRmcWkmwsx6UZERJRXTk4OfvrpJyyJi8OWzZsBqRyaGo2hCmsKdVgUFL5BLrmOsFthN2TAbkyH3ZAGhyENdkN67mZMB4zpgNUEYc2BsOTAbjHBZjZBOOwlvpZUKoVMJodMLodMJoNcnvtaLpNDrlBALpfdk6hTQCGXQ66Q5+5lMibuygkhBGx2O6w2G2xWW+7eZr0ngWaHzWaD3W6DzWq9/doO++0yh8NR4utKpDLIVRpIlWpIlRpI5CpAqQE0PpBpfSDT+kLq8fdrmdYHMg8fSOSuGdppy9A752TMuXQUDqsFTzzRAQMHDkDPnj3h4eHhkusQERGVdUy6uRCTbkRERIVLSkrCypUrse6nn7Fv717YbFaoKwdDEdoE6rAoqEMaQKrSllo8QgjAboPDmgNhNUFYzHDcScxZzRAOB+Cw5ybmxO29w3673HbP+7uOCztgv7ed4676JU/00SNMKoVEKs+dv1Aqzd1LZLff524S6d/vJVKpswx36spk+dpJpFJI5CpIlGpIFGpI7+wVGkBWuj0uHWYjzImnYLpwBLYrx2C6cRVSmQzNm7fAM92fxssvv4yQkPsvqkBERFTRMOnmQky6ERERFU9WVhZ27NiBTZs2Yf0vG3H18iUAgKZKNUgD6jzwnFJE9M/knVPxDBwp52C6cRUQAsHVQvBU1yfRuXNndOjQAd7e3u4Ol4iI6JFWrpNuCxYswOzZs5GcnIzHHnsMn332GWJiYgqtv2bNGvznP//BpUuXUKdOHcyaNQtdu3Yt9vWYdCMiIio5IQTOnz+Pffv24eDBg9h34CD++vNPWC1mSGQyqCtVhcQnGHLfYMgrVXPOQyXVeHGYJtEDEELAkZOVOz9iWiKsqddgS02ESL8O861E5+rBkQ0boWXzGMTExKBFixYIDw/nM0dERFQCDzXp1r9/fwwePBht27b9R0E+iNWrV6Nfv35YvHgxmjdvjnnz5mHNmjVISEiAv79/vvp79+5F27ZtMXPmTDz11FNYuXIlZs2ahaNHjyIyMrJY12TSjYiIyDUsFguOHz+Ow4cP4+TJkzh1+jROnkrA9WtXcOe/I1K5EkrP3LmrhNordx6rO/NX3TWPlUzrA4lKy2QBlWtCCAiLCXZD2u3tzvyGufMaOgxpgCkDDmMGrNlpsFvNzrZBwdVQr1446kVEoH79+mjWrBkee+wxqFTsZUpERPRPPNSkW48ePfDLL78gNDQUAwcORP/+/VG1atV/FHBxNW/eHNHR0Zg/fz4AwOFwICQkBKNGjcKECRPy1X/xxRdhMBiwfv16Z1mLFi3QuHFjLF68uFjXZNKNiIjo4TKZTDh37hwSEhJw/fp16PV66PV6JCUl43pSEpL1Kbh1IwVWqyVPO6lcAZlKA5lSA4kid24syFUQctXt+bI0kChUkCg1kCrUkMiVf8+7Jbk9T5dMDokk73xc+efpkv/9XnJvPanzfGACsHwQAhACwmHLP2+fKGC+v8L2opB6NkvunIOWHAhrzu3XJkjsFsCaA9wuc1hyYDMb4bBZ84QnVyhQuYo/AgMCEBwUiMDAAAQGBiIgIABBQUGoW7cu6tSpA6229OZSJCIiqkhKkieSl/Tka9euxY0bN7Bs2TIsXboUU6dORceOHTF48GA888wzUChcs4LSvSwWC44cOYKJEyc6y6RSKTp27Ih9+/YV2Gbfvn0YN25cnrLOnTtj7dq1hV7HbDbDbP77t4SZmZn/LHAiIiIqkkajQcOGDdGwYcNC6wghkJ6e7kzI6fV6pKSkIDs7GwaDId8+IzMLWdlpyM7ORrbeAKPRgJwcE+z23FUnHXYufEClRyqTQSaTQy6XQalSQ6fVQavVwlOng66SFt6egdBqtdDpdNDpdM7XWq0Wfn5+zqRaQEAAfH192cOTiIiojChx0g0A/Pz8MG7cOIwbNw5Hjx7FkiVL8Morr0Cn06Fv374YPnw46tSp49JAb968CbvdjoCAgDzlAQEBOH36dIFtkpOTC6yfnJxc6HVmzpyJ6dOn//OAiYiIyGWMRiNSU1PzbGlpacjKysqTbMvKykJWtgGZWVnIzjbAaDDAYMxGjtEIh8Ph7tugCspht8Nht8NqAcw5ObBaLLBYzLBYzMgx58BstsAzJwcWiwUWiwVms9n5WiaTQalUQqFQODedTsfEGxERURnwQEm3O5KSkrB161Zs3boVMpkMXbt2xfHjx1G/fn18+OGHeOONN1wVZ6mZOHFint5xmZmZXC6diIjoIRFCQK/XIyEhAWfOnEFiYqKzJ9u160lITk7GzRspMBmNedpJpDIotd6QqjTOYaVQqAG5GhKlGhKFN6R+akiC1VAp1VDfO7z09v7O67+Hnd49rPTe4ab37O8eliqRcHhpeSIEhN1W5DBROBwQwv53PYfj9vDTO8fvHopq+7u93QphMcFqNSPNYsItqxkiywRxywDYbgE2M2DNgbCa4bAYYTFkQNzTM1Ot8UAVP38EBgagalCgsydccHAw6tSpg/DwcAQHBzMxR0RE5GYlTrpZrVb89NNPWLJkCbZs2YJGjRph7NixePnll51jWX/88UcMGjTIpUm3KlWqQCaTQa/X5ynX6/UIDAwssE1gYGCJ6gOASqXiBLNEREQPQVpaGg4fPuxcSOHEqdM4k5AAQ3YWAEAikULpmbtgAjTekHj4QBYYBXVNH3jcvZCC1hdSjWdu0ovoYZDkJnYfBUI44DBl5S6icHvxBLshHZmGdKQZ0nHy+DXg4AnYjemwZKbmJgkBeGi1qF2nLhrUy11IITo6Gs2aNUPlypXdfEdEREQVR4mTbkFBQXA4HOjduzcOHjyIxo0b56vTvn17+Pj4uCC8vymVSkRFRWHbtm3o0aMHgNyFFLZt24aRI0cW2KZly5bYtm0bxo4d6yzbunUrWrZs6dLYiIiIKC+73Y4jR45g3759OHjwIPbuP4hLF84BAORqLZR+oZD4BEMR1Qt+lYIhr1QNCp8gSOQPZ25YorJKIpFC5uENmYc3gNAi6wq7Fbb0ZFhTE2FNTcSF1ESc2/MXvl/7M6ymbABASGgYWrWIQUxMDFq2bIno6GjI5f9o8AsREREVosSrly5btgzPP/881Gr1w4qpUKtXr0b//v3x+eefIyYmBvPmzcN3332H06dPIyAgAP369UPVqlUxc+ZMAMDevXsRGxuLDz74AN26dcO3336L999/H0ePHkVkZGSxrsnVS4mIiIonKSkJmzdvxsaNm7B5yxZkpKdBKldCHVgLsoDaUAbVhSqwDuSVgtlLjagUCSFgS0+CJekszElnYNefhTn5POxWM3SeXujcqRO6dOmMzp07c1oVIiKi+yhJnqjESTd3mz9/PmbPno3k5GQ0btwYn376KZo3bw4AaNeuHWrUqIG4uDhn/TVr1mDy5Mm4dOkS6tSpgw8//BBdu3Yt9vWYdCMiIipcQkICli1bhh/X/YST8ccBiQQewXWgCG0KdVgUVEF1IJGVTi8a4bDnzoNlzYGw5kBYcnJfW0y55TZzAXNzOXL3zrm5cufpylvv73m58rwXf8/tJRFcpKE8ERLJ33P9Se7M5Xefuf4kMkAqvatcfs/723u5ElJF7tyDUoUGEoUKEqUmt0yhKrVhrcJhhyX5HEwXj8J66ShMiQkQwoG6EfXQo/vTeOWVV4r9S2oiIqKKpFwn3Uobk25ERER5paWlYfXq1fj6myU4fOggFBodlLVioAmLgrpG49vD4P4Z4bDDYcrMncfq9lxW9uw0OIzpsBvSIEwZgCkDwmyA3ZIDu8UEu8Vc7PPL5HLIZHLI5DLIZXLI5PK/93IZ5HK5c1MoFHn3cjkUijv73DKpVMpJ68sJIQQcDgdsNhusViusNhusVhusNpuzzHb7dd73dthtNtjstrv2dthvvy8umUIFmSo3CSdVeQAaL0g0t+cy1Po45zWUaX0g8/CF1MPLJYk6e042ci79AdOFI7BcOAirIQONmzTFoIED0Lt3b1SpUuUfX4OIiKg8YNLNhZh0IyIiyk1EbN26FV9++RXW/fQTbDYbNGFN4RHZAR61Y3JXBi0hR0527txTt67BmnoNttREIEsPe3YaLNnpzgnh7/DQ6eDnF4CgwAAEB+Wu1ujr6wutVgudTpdvf2+ZRqOBQqGATCZjgoxK1Z1EntVqhclkQnZ2NgwGQ4H7u19nZGRAr9cj8XoSkpKTcSMlxbnwiJNEAqXOB3KtL+Dpnzs/YqWqufvKVSHTlPz/r8Juhen8YRhPbIPx/CHIJFJ07dYVQ159FV27doVUyuHhRERUcTHp5kJMuhERUUVms9nw/fff47/vz0T88b+gCagBdf0noK3fHjKdb7HPYzdlOueTsiafhT3lPMyZt5zHA4OqIiKiLsLr1kVwcDACAgIQEBCAwMBA52sPD4+HcYtEZYrJZIJer3duycnJ0Ov1SEpKwpmzZ3HqVAKuJ1511ld6+kLuXwuKwDpQBdWFMqhuiXqj2o0ZMJzchZyT22FKOofwiHqYNHECevfuDYWCC58QEVHFw6SbCzHpRkREFVFOTg7i4uIwc9aHuHLpIrQ1m0IX8xxU1RsWq5eY3ZSFnEvHYLp4FPbEk8hJvQ4A8PTyRkxMNJrHxKBhw4YIDw9HnTp1oNPpHvYtEVUYRqMRZ8+eRUJCAuLj43Hg4EEcOHAQGelpAAC1bwBkwfWhqRkFdY0mxU7C5Vw7gewDP8Bw7iCCq4Xg7X+Px+DBg6HVah/m7RARET1SmHRzISbdiIioIsnJycH8+fMx68PZuHXzJjwiHodnTC+oAmsX2U4IAUvSGZguHIH18jHnpOzh9eqj8786onnz5oiJiUGtWrU4tJPIDYQQuHjxIg4dOoSDBw9i89ZfceL4X7mLnwTVgSK0CdQ1m0FVNfy+qwtbblxC1oEfYDi1G97e3hj/5ji88cYb7I1KREQVApNuLsSkGxERVQRCCPzwww8YN/7fuHb1KrQNO8KreS8ofIOLbGfLSEH2ie0wn9yBnFuJ8PTyRudOndClS2d07twZ1apVK6U7IKKSSkpKwpYtW7Bx4yZs3rIF6WmpUPkGQl2vPbSRT0DhG1Rke1uGHpkHf4Thr80I8PfHh7M+wMsvv8w534iIqFxj0s2FmHQjIqLy7siRIxg9Ziz27vkdHrWj4dNuEBSVQwqt77DkwHhmD0wntsN46U+oNR544fnn0L9/f7Rt2xZyubwUoyciV7Db7di7dy+WLl2KVatXw5idDY+QBlA36ABtROvclVQLYU1LQsauOBgS9iCqWTQ++/QTtGzZshSjJyIiKj1MurkQk25ERFReXb9+HRMnTsKyZf+Dyi8UXu0GQxPWpND6dmMGso6uh/HYBliNmWjTNhaDBg5Ar1694OnpWYqRE9HDZDQa8eOPP2JJXBy2b9sGuVoLzWNPwqtZd8i0hS+gknPlODJ3fg1T0jm8+OKLmDVrFkJDQ0sxciIiooePSTcXYtKNiIjKGyEE4uLiMGrMGFgcUng+3ge6xzpDIpUVWN+WmYLMg2thPL4FcqkEQ4e8irFjx6JmzZqlHDkRlbarV6/i008/xcJFi5BjtsKjYUd4xTwLhU9ggfWFcMAQvx1Zv/0PMrsZH83+EK+//jqHnBIRUbnBpJsLMelGRETlSWJiIl4dMgSbNm6ELrIDfDoMgUxd8Mqhtgw9Mn5fCeOpndDpPDF2zGiMHDkSfn5+pRw1EblbWloaFi5ciDlz5yEtNRUe9drA+/GXoahUtcD6DrMR6bvikHXsF8S2a4+4Jd+gRo0apRs0ERHRQ8Ckmwsx6UZEROWBEALLli3DyFGjYYYc3v8aAY/aMQXWdZiNyNi/BtmH16FK5UqY8PZbGDJkCHS6gpNzRFRxmEwmLFmyBP99fyaSk5OhbdIN3o/3LjR5b7r0BzI2fwqZ1YA5H3+MoUOHcgVjIiIq05h0cyEm3YiIqKxLSkrCkKFDsWH9eugatIdPh6GQafLPwSYcdmQf34bsPcsAiwlvv/VvvPXWW0y2EVE+JpMJc+fOxXv/fR82iRyerV6GrnGXAoepO8xGpO38Btl/bEKHDh3xzTdfo3r16m6ImoiI6J9j0s2FmHQjIqKySgiBlStXYviIkcixS+D9r+HwqFvwioI5V+ORuf1LmJLP4+WX++CDD2YiJKTwFUyJiIDcpP4777yDuLg4qPyqw6vdq4UuyGK6cAQZW+ZDbjdh3ty5GDx4MHu9ERFRmVOSPBFnNCUiIiqH9Ho9evTsib59+8IR3Aj+A+cXmHBzWHKQunUx9CsnILJ6Fezfvx8rVixnwo2IiiUoKAjffPMNjhw5gmbhoUj57j+4tfFTOMyGfHU1NaPgP3A+JDVbYsiQIejcpQuuXbvmhqiJiIhKB3u63Qd7uhERUVkihMB3332H14cNh9HqgFfHYdCGP15g3Zyr8Ujf9AkkpgzM/nAWhg8fzhUGieiBCSHw9ddfY+wbb8Am08C78yhowpoWWNd0/hDStyyAEhZ8Om8eBgwYwF5vRERUJnB4qQsx6UZERGVFSkoKhg0fjv/74QdoI1rD91/DIPPwzlfPYc1B+q7/Ievoz2jZshX+tzQOtWvXdkPERFQeXblyBQMHDsL27duga9wFvu0GQaryyFfPnpON9G1fIDt+O7o8+SS++vJLVK1a8GqoREREjwom3VyISTciIioL1qxZg9deH4Zssw3eHV6Htl6bAuvlXDuJjE2fwJF9C7M+mInRo0ezdxsRuZwQAl988QXeGPcmHCodvDuNgqZG4wLrGs8dQMaWBVBJ7Jj/2ad45ZVX2OuNiIgeWZzTjYiIqIK4efMmXnjhBbzwwguwVKmLgIHzC0y4OaxmpG7/CvqVb6NR7RAc/+tPjB07lgk3InooJBIJXnvtNZyIP47mj9VDyurJSN2yEA6LKV9dj9rN4T9wAURIE/Tv3x9Pd++OpKQkN0RNRETkWmXif9qXLl3C4MGDERYWBo1Gg1q1amHq1KmwWCxFtmvXrh0kEkme7fXXXy+lqImIiB6u//u//0NEvfpYu2Ezqjz9b1TuMQkyrW++eubE07jxvzHI+XMjZn/4Ifbu+R1169Z1Q8REVNGEhYVhx7ZtWLBgAayndyJl6WjkXPkrXz2ZxhOVnxoPv57vYOvOPYioVx8rVqwAB+UQEVFZViaSbqdPn4bD4cDnn3+OEydOYO7cuVi8eDEmTZp037ZDhgxBUlKSc/vwww9LIWIiIqKH59atW+jduzd69eqFnEq1EDBwAbT1Y/MNxxI2C9J2LoF+xVtoUCMIf/35B8aPHw+ZTOamyImoIpJKpRg+fDjij/+FZvVrQ79qElK3LobDkpOvrkfdlvAfOB+O4Ebo27cvnunRA8nJyW6ImoiI6J8rs3O6zZ49G4sWLcKFCxcKrdOuXTs0btwY8+bNe+DrcE43IiJ6lKxbtw6vDhmKDIMJXk8MhbZ+uwLnPjInnUH6xnmwpyfj3Xdn4M0334RcLndDxEREf3M4HJg/fz7eensC4OEDny5joA6JLLCuIWEPMn9dBI1cgkULF+Cll17iXG9EROR2FWJOt4yMDFSqVOm+9VasWIEqVaogMjISEydOhNFoLIXoiIiIXCs1NRV9+vRFjx49YPIJg//ABdA1aF9A7zYr0nbFQb9sPCKqVcGxY0fx9ttvM+FGRI8EqVSK0aNH4/hff6JJeBj0qyYi9dcv4LDm7/WmDX8c/gMXwBYUiZdffhnP9uqFlJQUN0RNRET0YMpkT7dz584hKioKH330EYYMGVJovS+++AKhoaEIDg7GX3/9hbfffhsxMTH4v//7v0LbmM1mmM1m5/vMzEyEhISwpxsREbnNzz//jMGvDkF6lgFeTwyBtsEThfRuO4v0TZ/AlpqI6dOn4a233mKyjYgeWXa7HZ9++ikmTJwEqa4yvLuMhrpagwLrGk7/joxfF0GnkmPxooV44YUXSjlaIiKiXCXp6ebWpNuECRMwa9asIuucOnUKERERzveJiYmIjY1Fu3bt8NVXX5Xoetu3b0eHDh1w7tw51KpVq8A606ZNw/Tp0/OVM+lGRESl7fr163jrrbexYsVyeNSKhm/nEZB7VslXT9isSN/7LbIOfI9GjRph2f+WomHDhm6ImIio5BISEtCv/wAcPHgAns2egU+bVyBVqPLVsxvSkbZ1EQwJe9CjZ0/MmzsXoaGhboiYiIgqsjKTdLtx4wZu3bpVZJ2aNWtCqVQCyP3y0a5dO7Ro0QJxcXGQSks2OtZgMECn02HTpk3o3LlzgXXY042IiNzNaDTi448/xvszP4BdqoBX7EBoIzsU3Lst+RzSN86DNfUapk6ZggkTJkChULghaiKiB2e32zF37lxMemcyZF5+8OkyBqqq9fLVE0LAePo3ZO74CsJswL/Hv4kJEybA09PTDVETEVFFVGaSbiWRmJiI9u3bIyoqCsuXL3+gldf27NmD1q1b488//0SjRo2K1YYLKRARUWkRQmDVqlUY/++3oNfroYvqDu+WL0Cq1uWva7ciY+93yNz/HSIjI7Hsf0vx2GOPuSFqIiLXOX36NF7p1x9HDh+GZ3QPeLfuU2CvN4fFhIz938NweC0q+fpg1gcz0b9//xL/Up6IiKikyt1CComJiWjXrh2qV6+Ojz76CDdu3EBycnKe5cMTExMRERGBgwcPAgDOnz+Pd999F0eOHMGlS5fw008/oV+/fmjbtm2xE25ERESlQQiB7du3o3mLlujTpw8ydaEIHLwQvu0HFZhws+gv4MbyN5F9cA2mTvkPjhw+xIQbEZULERER2L9vLz74YCZMf2zAjWVjYU48na+eVKmBb9tXEPjqIpiqRGDQoEFo0jQKmzZtQhnpU0BERBVAmejpFhcXh4EDBxZ47E74ly5dQlhYGHbs2IF27drh6tWr6Nu3L+Lj42EwGBASEoKePXti8uTJJeqxxp5uRET0sNjtdqxbtw7/fX8mjh45DE1QbXi1GwR19YJ/OSTsNmTs+w5Z+1ejXr36WL7sf2jcuHHpBk1EVEpOnjyJV/r1x7GjR+EZ0xM+rftAIlcWWNeceAoZO7+B6dopRDZshEkTJ+D555/nYjJERORy5XJ4qbsw6UZERK5mNpuxfPlyzPxgFs6fOwuP0EbQxfSCOqxpgfO2AUDO5b+QueMrmG9exjuTJmHy5MnOOU+JiMorm82Gjz76CFOmTIXMOwBe7V+FpmZUgXWFEDBfOY6sgz/AeOEIQkJrYOLbb2HAgAHQaDSlHDkREZVXTLq5EJNuRETkKidPnsTSpUuxJG4pbtxIgbZOS3g27wVVcHihbaxp15GxcwkMZ/YhOqY5Fi1cgKiogr9wEhGVV/Hx8Rg2fAR+/203PGpGwbv9YCirVC+0vkV/HlkHfoDh9O/wrVQJ/fu9gv79+3MoPhER/WNMurkQk25ERPRP3Lp1C6tWrcI3S+Jw7OgRKDy8oI5oC88m3aCoElJoO0dONjL2rkb20Z8RGBiIj2Z/iJdeeqnQnnBEROWdEAJr167F2HFv4uqVK9A1fhLerV+GTFP4/9GtaUnIOroe5tO7YclOQ4OGjTB44AD06dMH/v7+pRg9ERGVF0y6uRCTbkREVBJCCJw5cwabNm3Cxk2bsO3XbbALBzxqRsMj8gloakVDIlMU2t5hNSP7ry3I3vct5MKGSRMn4M033+TQKCKi28xmMz777DNMmzEDFpuAtvkL8GzyJKTKwv+dFHYbTBePwBi/HabzBwHhQLt27dCta1d07twZ9evX5y81iIioWJh0cyEm3YiI6H6SkpKwf/9+bNmyBet/2YhrVy5DKldAHRIJVc1oaOu1hUzrU+Q5HDnZyDr2C4xHf4bNmIFXXumH99//L4KDg0vnJoiIypiUlBRMmTIFX339NaRKD3g06QbPpk9B5uFdZDu7KQvG078h59wBmK/Gw241IzC4Kp7q+iQ6d+6Mli1bomrVqqV0F0REVNYw6eZCTLoREdHdbt26hT/++AMHDx7EwYOHsP/AQSQnJQIA1FWqQRHaBJqwplCFNIRUqb7v+WxZt5B1eB2Mf22CxGHH4EEDMX78eNSqVeth3woRUblw+fJlzJkzB198+RWsdgc8Gv4LXtE9Ife+//BRh9UM87UTMF04AtvlYzDduAIA8AsIRIuYaMTExCA6OhpNmzZFlSpV2BuOiIiYdHMlJt2IiCoWs9mMlJQUJCcnIzExEQkJCUhISMDJU6dxOiEBGWmpAAC52gPKwDqQB9SBMqgOVEF1IffyK9Y1hHDAfO0kDMd/hfHULmg0aowaMQJjxoxBYGDgw7w9IqJy6+bNm5g/fz7mzvsE2dlZ0IS3hrbhv6AObQSJRFqsc9iybsGSdAbm5LOwJZ+BNfkcrKZsAICXtw/qhoejQb0IhIeHIzw8HNWqVUNAQAACAgKgVt//Fy1ERFT2MenmQky6ERGVTUIIGI1GGAwGZGdnO/e3bt2CXq93bsnJybielIyk5GSk6PXIyszIcx65Wgtl5WqQ+ARD7hsMRaVqUPrVgLxy1WJ/ibvDmp4MQ/w2mE/tRE5qEkJCa2DEsNfx+uuvw9u76OFQRERUPNnZ2fjyyy/x2YKFuHj+HFQ+/lDVawddZAcoKpVs2KgQDtjSkmC5cQm21ERYU69BpF+H9VYirKasPHV1nl7w8/dHcFAQgoMCERAQgMDAQGdSrkqVKtBqtdDpdM69RqOBVFqynyVEROReTLq50L0f5tatW3Hjxg13h0VEVKYIIWCz2fJsVqs1X1lJj1utVlisVmRl5ybUsrOzYTQaYTRkI8dkQlE/4pRab8h1voDGG9D4QKb1gUzrm3evqwSph88/Gk5ky0yB6cIR5JzaDeOV4/DQavHiCy9gwIABaN26Nb9sERE9JEII7Nu3D0uXLsXKVd8iOysTHtXqQV0vFuqazaDwefCexUIIOEyZsGfdgt2QBrsxPXdvSIfDkA5hTAdMGbAZ0mAxZABF/DzSeHhA46GFVpu7eXp6wlOnhVKhgEKhgFwud+4L20p6nMNkiYhKRi6X49lnn4VcLmfSzZXu/jB37dqF7t27uzskIqIyTSKVQSKVQSqTOV/f2SCVQXK7HBIZIJUCd7++vRcSGSDJPSaRyiFRqCFVqiBRaCBRqCBVam6XqSFR5G5ShRoSpRpStSdkHt6QyOQP5f4cVjPMV+NhunjUOT+QVCpFu3btMXDgAPTs2RNarfahXJuIiApmMpnw008/YUlcHH799VfYbTaoq1SFIrRpiebhfBDCYYfdmAGHKRPCaobDmgNhyYGw5sBhMd0uM0HcLnfcPiaEHXDkbhJhBxwOIM/+79fCkbvh9l7Y/y5z3PWaiIge3OzZszF+/PgSJd0ezjeOciohIQFShRJVR61ydyhERGWORCYHJNJy99t1W9bN3Pl/ks7ClnwW5sRTzpXwunXvgi5duqBDhw7w9fV1d6hERBWWRqPBiy++iBdffBGZmZnYvn07Nm3ahPW/bETikZ9zV5yuWg/ywDpQBtWFKqgOZJ5+LvmZJZHKINdVAnSVXHAnD04IAQgHhN3m1jiIiMqilK9fR2ZmZonbMelWQjK5ElKFyt1hEBFRKXNYTLCmJjrn9LGmXIBdfw7mzFsAcle6i42JRtsRffDkk0+ifv365S7BSERUHnh5eaFHjx7o0aMHhBA4c+YMNm3ahJ07d2H/wf1IPvADAEDp6Qt5QB0o/GtCXqkqFJWqQVGpKqQqDzffwYORSCSA5HZvciIiKpEH/X89k25ERFShCSHgMBvgyE6D3Zg7H0/ulvtaZKbAnn4d5oy/5/OsVMUPTRs1RIvnhiI6OhoxMTGoWrVkk3MTEZH7SSQS50qkY8aMAQAkJSXh0KFDOHToEPYfOIA//tyBmyl6ZxuVV2XIfIMh8QrInf/T4+/5QKV39modf/FCRERMuhERUdlyZ3iMc94ahz137hur+fbcOLfnxLHenhPHent+HIsJDmsOHGZj7gTXORlwGNJgyU6Hw2bNcw2lSo0qfv4IDAxAzeg6CA9/yvmlrG7duvDx8XHLvRMR0cMXFBSE7t2755nLOTMzE2fOnEFCQoJzu3DpMpISz+LmjRSYc0x5ziGVyaHQ5SbjoPGGxMMHUpXWOb/o33ONaiBVqCC5MxfpXcfvnu+0PE7PQERUETDpVkI2swkpP7zr7jCIiMoYAcmdiZ9vJ8wkwpE7qbOwA3a7cyLoPMk0h+OeyaBtJZ4IWqFQwkOrhcZDC51OCy8vLwSHBiIw8DEEBgYiICAAAQEBeV57eXnxyw0RETl5eXmhWbNmaNasWb5jQghkZ2cjOTkZer0eer0+3+vEpGRkZFyFwZC7wrbRaITFYi5RDHkXIpLfXnhImncxoruSdHcWGxIS6d9lEhmEVAqAP+OIiErCYkh/oHZMupVA7969ceDAAZjNJfsBSUREgEKhgFwuv+/2IPU8PDyg1Wqh0+ny7LVaLRQKhbtvnYiIyjGJRAJPT094enqiTp06xW5ns9lgMBiQnZ2db280GmGz2fJtVqu1wPKS1LNarfcPjoiI8pA37IYBAwaUuJ1ECCFcH075UZKlYImIiIiIiIiIqPwqSZ5IWkoxERERERERERERVRhMuhEREREREREREblYmUm61ahRAxKJJM/2wQcfFNkmJycHI0aMQOXKlaHT6dCrVy/o9foi2xAREREREREREf1TZSbpBgAzZsxAUlKScxs1alSR9d944w38/PPPWLNmDXbt2oXr16/j2WefLaVoiYiIiIiIiIiooipTq5d6enoiMDCwWHUzMjLw9ddfY+XKlXjiiScAAEuWLEG9evWwf/9+tGjR4mGGSkREREREREREFViZ6un2wQcfoHLlymjSpAlmz54Nm81WaN0jR47AarWiY8eOzrKIiAhUr14d+/btK41wiYiIiIiIiIiogiozPd1Gjx6Npk2bolKlSti7dy8mTpyIpKQkzJkzp8D6ycnJUCqV8PHxyVMeEBCA5OTkQq9jNpthNpud7zMyMgDkLglLREREREREREQV1538kBDivnXdmnSbMGECZs2aVWSdU6dOISIiAuPGjXOWNWrUCEqlEq+99hpmzpwJlUrlsphmzpyJ6dOn5ysPCQlx2TWIiIiIiIiIiKjsysrKgre3d5F1JKI4qbmH5MaNG7h161aRdWrWrAmlUpmv/MSJE4iMjMTp06cRHh6e7/j27dvRoUMHpKWl5entFhoairFjx+KNN94o8Hr39nRzOBxITU1F5cqVIZFIinlnVBZkZmYiJCQEV69ehZeXl7vDIaLb+GwSPZr4bBI9mvhsEj2a+GyWX0IIZGVlITg4GFJp0bO2ubWnm5+fH/z8/B6o7R9//AGpVAp/f/8Cj0dFRUGhUGDbtm3o1asXACAhIQFXrlxBy5YtCz2vSqXK13Pu3iGqVL54eXnxH0GiRxCfTaJHE59NokcTn02iRxOfzfLpfj3c7igTc7rt27cPBw4cQPv27eHp6Yl9+/bhjTfeQN++feHr6wsASExMRIcOHfC///0PMTEx8Pb2xuDBgzFu3DhUqlQJXl5eGDVqFFq2bMmVS4mIiIiIiIiI6KEqE0k3lUqFb7/9FtOmTYPZbEZYWBjeeOONPPO8Wa1WJCQkwGg0Osvmzp0LqVSKXr16wWw2o3Pnzli4cKE7boGIiIiIiIiIiCqQMpF0a9q0Kfbv319knRo1auRbOUKtVmPBggVYsGDBwwyPyiiVSoWpU6e6dCEOIvrn+GwSPZr4bBI9mvhsEj2a+GwS4OaFFIiIiIiIiIiIiMqjopdZICIiIiIiIiIiohJj0o2IiIiIiIiIiMjFmHQjIiIiIiIiIiJyMSbdiIiIiIiIiIiIXIxJN6rQzGYzGjduDIlEgj/++CPPsb/++gtt2rSBWq1GSEgIPvzwQ/cESVRBXLp0CYMHD0ZYWBg0Gg1q1aqFqVOnwmKx5KnHZ5PIPRYsWIAaNWpArVajefPmOHjwoLtDIqowZs6ciejoaHh6esLf3x89evRAQkJCnjo5OTkYMWIEKleuDJ1Oh169ekGv17spYqKK6YMPPoBEIsHYsWOdZXw2KzYm3ahCe+uttxAcHJyvPDMzE506dUJoaCiOHDmC2bNnY9q0afjiiy/cECVRxXD69Gk4HA58/vnnOHHiBObOnYvFixdj0qRJzjp8NoncY/Xq1Rg3bhymTp2Ko0eP4rHHHkPnzp2RkpLi7tCIKoRdu3ZhxIgR2L9/P7Zu3Qqr1YpOnTrBYDA467zxxhv4+eefsWbNGuzatQvXr1/Hs88+68aoiSqWQ4cO4fPPP0ejRo3ylPPZrNgkQgjh7iCI3GHjxo0YN24cfvjhBzRo0ADHjh1D48aNAQCLFi3CO++8g+TkZCiVSgDAhAkTsHbtWpw+fdqNURNVLLNnz8aiRYtw4cIFAHw2idylefPmiI6Oxvz58wEADocDISEhGDVqFCZMmODm6Igqnhs3bsDf3x+7du1C27ZtkZGRAT8/P6xcuRLPPfccgNxfZtWrVw/79u1DixYt3BwxUfmWnZ2Npk2bYuHChXjvvffQuHFjzJs3j88msacbVUx6vR5DhgzBsmXL4OHhke/4vn370LZtW+eXegDo3LkzEhISkJaWVpqhElVoGRkZqFSpkvM9n02i0mexWHDkyBF07NjRWSaVStGxY0fs27fPjZERVVwZGRkA4PwZeeTIEVit1jzPaUREBKpXr87nlKgUjBgxAt26dcvzDAJ8NolJN6qAhBAYMGAAXn/9dTRr1qzAOsnJyQgICMhTdud9cnLyQ4+RiIBz587hs88+w2uvveYs47NJVPpu3rwJu91e4LPH546o9DkcDowdOxaPP/44IiMjAcDZA9zHxydPXT6nRA/ft99+i6NHj2LmzJn5jvHZJCbdqNyYMGECJBJJkdvp06fx2WefISsrCxMnTnR3yEQVQnGfzbslJiaiS5cueP755zFkyBA3RU5ERPToGTFiBOLj4/Htt9+6OxSiCu/q1asYM2YMVqxYAbVa7e5w6BEkd3cARK7y5ptvYsCAAUXWqVmzJrZv3459+/ZBpVLlOdasWTP06dMHS5cuRWBgYL4VZe68DwwMdGncROVdcZ/NO65fv4727dujVatW+RZI4LNJVPqqVKkCmUxW4LPH546odI0cORLr16/H7t27Ua1aNWd5YGAgLBYL0tPT8/So4XNK9HAdOXIEKSkpaNq0qbPMbrdj9+7dmD9/PjZv3sxns4Jj0o3KDT8/P/j5+d233qeffor33nvP+f769evo3LkzVq9ejebNmwMAWrZsiXfeeQdWqxUKhQIAsHXrVoSHh8PX1/fh3ABROVXcZxPI7eHWvn17REVFYcmSJZBK83bI5rNJVPqUSiWioqKwbds29OjRA0Du8LZt27Zh5MiR7g2OqIIQQmDUqFH48ccfsXPnToSFheU5HhUVBYVCgW3btqFXr14AgISEBFy5cgUtW7Z0R8hEFUKHDh1w/PjxPGUDBw5EREQE3n77bYSEhPDZrOC4eilVeJcuXUJYWFie1UszMjIQHh6OTp064e2330Z8fDwGDRqEuXPnYujQoe4NmKicSkxMRLt27RAaGoqlS5dCJpM5j935TSCfTSL3WL16Nfr374/PP/8cMTExmDdvHr777jucPn0631xvROR6w4cPx8qVK7Fu3TqEh4c7y729vaHRaAAAw4YNwy+//IK4uDh4eXlh1KhRAIC9e/e6JWaiiqpdu3bO1UsBPpsVHXu6ERXA29sbW7ZswYgRIxAVFYUqVapgypQp/FJP9BBt3boV586dw7lz5/IMmQFyf8MP8NkkcpcXX3wRN27cwJQpU5CcnIzGjRtj06ZNTLgRlZJFixYByP0yf7clS5Y4p3CYO3cupFIpevXqBbPZjM6dO2PhwoWlHCkR3YvPZsXGnm5EREREREREREQuxtVLiYiIiIiIiIiIXIxJNyIiIiIiIiIiIhdj0o2IiIiIiIiIiMjFmHQjIiIiIiIiIiJyMSbdiIiIiIiIiIiIXIxJNyIiIiIiIiIiIhdj0o2IiIiIiIiIiMjFmHQjIiIiIiIiIiJyMSbdiIiIiIiIiIiIXIxJNyIiIiIiIiIiIhdj0o2IiIiICnTjxg0EBgbi/fffd5bt3bsXSqUS27Ztc2NkRERERI8+iRBCuDsIIiIiIno0/fLLL+jRowf27t2L8PBwNG7cGM888wzmzJnj7tCIiIiIHmlMuhERERFRkUaMGIFff/0VzZo1w/Hjx3Ho0CGoVCp3h0VERET0SGPSjYiIiIiKZDKZEBkZiatXr+LIkSNo2LChu0MiIiIieuRxTjciIiIiKtL58+dx/fp1OBwOXLp0yd3hEBEREZUJ7OlGRERERIWyWCyIiYlB48aNER4ejnnz5uH48ePw9/d3d2hEREREjzQm3YiIiIioUP/+97/x/fff488//4ROp0NsbCy8vb2xfv16d4dGRERE9Ejj8FIiIiIiKtDOnTsxb948LFu2DF5eXpBKpVi2bBl+++03LFq0yN3hERERET3S2NONiIiIiIiIiIjIxdjTjYiIiIiIiIiIyMWYdCMiIiIiIiIiInIxJt2IiIiIiIiIiIhcjEk3IiIiIiIiIiIiF2PSjYiIiIiIiIiIyMWYdCMiIiIiIiIiInIxJt2IiIiIiIiIiIhcjEk3IiIiIiIiIiIiF2PSjYiIiIiIiIiIyMWYdCMiIiIiIiIiInIxJt2IiIiIiIiIiIhcjEk3IiIiIiIiIiIiF2PSjYiIiIiIiIiIyMWYdCMiIiIiIiIiInIxJt2IiIiIiIiIiIhcjEk3IiIiIiIiIiIiF2PSjYiIiIiIiIiIyMWYdCMiIiIiIiIiInIxJt2IiIiIiIiIiIhcjEk3IiIiIiIiIiIiF2PSjYiIiIiIiIiIyMWYdCMiIiIiIiIiInIxJt2IiIiIiIiIiIhcjEk3IiIiIiIiIiIiF2PSjYiIiIiIiIiIyMWYdCMiIiIiIiIiInIxJt2IiIiIiIiIiIhcjEk3IiIiIiIiIiIiF2PSjYiIiIiIiIiIyMWYdCMiIiIiIiIiInIxJt2IiIiIiIiIiIhcjEk3IiIiIiIiIiIiF2PSjYiIiIiIiIiIyMWYdCMiIiIiIiIiInIxJt2IiIiIiIiIiIhcjEk3IiIiIiIiIiIiF2PSjYiIiIiIiIiIyMWYdCMiIiIiIiIiInIxJt2IiIiIiIiIiIhcjEk3IiIiIiIiIiIiF2PSjYiIiIiIiIiIyMWYdCMiIiIiIiIiInIxJt2IiIiIiIiIiIhcjEk3IiIiIiIiIiIiF2PSjYiIiIiIiIiIyMWYdCMiIiIiIiIiInIxJt2IiIiIiIiIiIhcjEk3IiIiIiIiIiIiF2PSjYiIiIiIiIiIyMWYdCMiIiIiIiIiInIxJt2IiIiIiIiIiIhcjEk3IiIiIiIiIiIiF2PSjYiIiIiIiIiIyMWYdCMiIiIiIiIiInIxJt2IiIiIiIiIiIhcjEk3IiIiIiIiIiIiF2PSjYiIiIiIiIiIyMWYdCMiIiIiIiIiInIxJt2IiIiIiIiIiIhcjEk3IiIiIiIiIiIiF2PSjYiIiIiIiIiIyMWYdCMiIiIiIiIiInIxJt2IiIiIiIiIiIhcjEk3IiIiIiIiIiIiF2PSjYiIiIiIiIiIyMWYdCMiIiIiIiIiInIxJt2IiIiIiIiIiIhcjEk3IiIiIiIiIiIiF2PSjYiIiIiIiIiIyMWYdCMiIiIiIiIiInIxJt2IiIiIiIiIiIhcjEk3IiIiIiIiIiIiF2PSjYiIiIiIiIiIyMWYdCMiIiKqYHbu3AmJRIKdO3e6OxQiIiKicotJNyIiIqJyauHChYiLi3N3GA9k5cqVmDdvnrvDAAA4HA58+OGHCAsLg1qtRqNGjbBq1apitd22bRsGDRqEunXrwsPDAzVr1sSrr76KpKSkPPWMRiMWLFiATp06ISgoCJ6enmjSpAkWLVoEu93+MG6LiIiIHjKJEEK4OwgiIiIicr3IyEhUqVIlX482h8MBi8UCpVIJqfTR/B3sU089hfj4eFy6dMndoWDixIn44IMPMGTIEERHR2PdunXYsGEDVq1ahZdeeqnIts2aNUNqaiqef/551KlTBxcuXMD8+fPh4eGBP/74A4GBgQCA+Ph4NGrUCB06dECnTp3g5eWFzZs348cff0S/fv2wdOnS0rhVIiIiciEm3YiIiKhcMxgM0Gq17g7DLQpLupUFj0rSLTExEWFhYRg6dCjmz58PABBCIDY2FhcvXsSlS5cgk8kKbb979260bt06T3Jz9+7diI2NxTvvvIP33nsPAHDz5k3o9Xo0aNAgT/tBgwZhyZIlOHv2LGrXrv0Q7pCIiIgelkfzV5tEREREBUhMTMTgwYMRHBwMlUqFsLAwDBs2DBaLBQAQFxcHiUSCXbt2Yfjw4fD390e1atWc7RcuXIgGDRpApVIhODgYI0aMQHp6ep5rnD17Fr169UJgYCDUajWqVauGl156CRkZGc46W7duRevWreHj4wOdTofw8HBMmjTpvvEXp53ZbMbUqVNRu3ZtqFQqhISE4K233oLZbM53vuXLlyMmJgYeHh7w9fVF27ZtsWXLFgBAjRo1cOLECezatQsSiQQSiQTt2rUDUPicbmvWrEFUVBQ0Gg2qVKmCvn37IjExMU+dAQMGQKfTITExET169IBOp4Ofnx/Gjx9frGGQ69atQ7du3Zx/hrVq1cK7776bp227du2wYcMGXL582Rl7jRo1Cj3ngAEDnPXu3aZNm3bfmO4Xr9VqxfDhw51lEokEw4YNw7Vr17Bv374i27dt2zZfb8K2bduiUqVKOHXqlLOsSpUq+RJuANCzZ08AyFOXiIiIyga5uwMgIiIiKo7r168jJiYG6enpGDp0KCIiIpCYmIjvv/8eRqMRSqXSWXf48OHw8/PDlClTYDAYAADTpk3D9OnT0bFjRwwbNgwJCQlYtGgRDh06hD179kChUMBisaBz584wm80YNWoUAgMDkZiYiPXr1yM9PR3e3t44ceIEnnrqKTRq1AgzZsyASqXCuXPnsGfPniLjL047h8OB7t274/fff8fQoUNRr149HD9+HHPnzsWZM2ewdu1aZ93p06dj2rRpaNWqFWbMmAGlUokDBw5g+/bt6NSpE+bNm4dRo0ZBp9PhnXfeAQAEBAQUGl9cXBwGDhyI6OhozJw5E3q9Hp988gn27NmDY8eOwcfHx1nXbrejc+fOaN68OT766CP8+uuv+Pjjj1GrVi0MGzasyM8hLi4OOp0O48aNg06nw/bt2zFlyhRkZmZi9uzZAIB33nkHGRkZuHbtGubOnQsA0Ol0hZ7ztddeQ8eOHfOUbdq0CStWrIC/v7+z7ObNm0XGdoenpydUKhUA4NixY9BqtahXr16eOjExMc7jrVu3LtZ578jOzkZ2djaqVKly37rJyckAUKy6RERE9IgRRERERGVAv379hFQqFYcOHcp3zOFwCCGEWLJkiQAgWrduLWw2m/N4SkqKUCqVolOnTsJutzvL58+fLwCIb775RgghxLFjxwQAsWbNmkLjmDt3rgAgbty4UaL4i9Nu2bJlQiqVit9++y1P+eLFiwUAsWfPHiGEEGfPnhVSqVT07Nkzz/0I8fdnIYQQDRo0ELGxsfmus2PHDgFA7NixQwghhMViEf7+/iIyMlKYTCZnvfXr1wsAYsqUKc6y/v37CwBixowZec7ZpEkTERUVVfSHIIQwGo35yl577TXh4eEhcnJynGXdunUToaGh9z1fQc6ePSu8vb3Fv/71rzx/DwAUa1uyZEmeOGrWrJnvGgaDQQAQEyZMKHF87777rgAgtm3bVmQ9s9ks6tevL8LCwoTVai3xdYiIiMi9OLyUiIiIHnkOhwNr167F008/jWbNmuU7LpFI8rwfMmRInnm2fv31V1gsFowdOzbPUL8hQ4bAy8sLGzZsAAB4e3sDADZv3gyj0VhgLHd6fK1btw4Oh6PY91CcdmvWrEG9evUQERGBmzdvOrcnnngCALBjxw4AwNq1a+FwODBlypR8Qxfv/SyK4/Dhw0hJScHw4cOhVqud5d26dUNERITz87nb66+/nud9mzZtcOHChfteS6PROF9nZWXh5s2baNOmDYxGI06fPl3i2O9lMBjQs2dP+Pr6YtWqVXn+HmzdurVYW+fOnZ1tTCaTs9fb3e58TiaTqUTx7d69G9OnT8cLL7zg/HMtzMiRI3Hy5EnMnz8fcjkHqBAREZU1/OlNREREj7wbN24gMzMTkZGRxaofFhaW5/3ly5cBAOHh4XnKlUolatas6TweFhaGcePGYc6cOVixYgXatGmD7t27o2/fvs6E3IsvvoivvvoKr776KiZMmIAOHTrg2WefxXPPPVfkSqDFaXf27FmcOnUKfn5+BZ4jJSUFAHD+/HlIpVLUr1+/WJ/H/RT2+QBAREQEfv/99zxlarU6X4y+vr5IS0u777VOnDiByZMnY/v27cjMzMxz7O558x7UkCFDcP78eezduxeVK1fOc+zeIajFodFoCpxPLycnx3m8uE6fPo2ePXsiMjISX331VZF1Z8+ejS+//BLvvvsuunbtWrKgiYiI6JHApBsRERGVOyVJhNzr448/xoABA7Bu3Tps2bIFo0ePxsyZM7F//35Uq1YNGo0Gu3fvxo4dO7BhwwZs2rQJq1evxhNPPIEtW7YUupJlcdo5HA40bNgQc+bMKfAcISEhD3xfrlTUap1FSU9PR2xsLLy8vDBjxgzUqlULarUaR48exdtvv12inoMF+eSTT7Bq1SosX74cjRs3znf8zvxo9+Pt7e38OxQUFIQdO3ZACJGnF2FSUhIAIDg4uFjnvHr1Kjp16gRvb2/88ssv8PT0LLRuXFwc3n77bbz++uuYPHlysc5PREREjx4OLyUiIqJHnp+fH7y8vBAfH/9A7UNDQwEACQkJecotFgsuXrzoPH5Hw4YNMXnyZOzevRu//fYbEhMTsXjxYudxqVSKDh06YM6cOTh58iT++9//Yvv27c7hn4W5X7tatWohNTUVHTp0QMeOHfNtd3qi1apVCw6HAydPnizyesUdalrY53On7N7P50Ht3LkTt27dQlxcHMaMGYOnnnoKHTt2hK+vb766JR0m+9tvv2H8+PEYO3Ys+vTpU2CdoKCgYm2rV692tmncuDGMRmO+1UMPHDjgPH4/t27dQqdOnWA2m7F582YEBQUVWnfdunV49dVX8eyzz2LBggXFuHMiIiJ6VDHpRkRERI88qVSKHj164Oeff8bhw4fzHRdCFNm+Y8eOUCqV+PTTT/PU/frrr5GRkYFu3boBADIzM2Gz2fK0bdiwIaRSqXOIYWpqar7z30m8FDQM8Y7itHvhhReQmJiIL7/8Ml9dk8nkXIm1R48ekEqlmDFjRr7eYXffn1arRXp6eqEx3dGsWTP4+/tj8eLFee5h48aNOHXqlPPz+afu9JC7O0aLxYKFCxfmq6vVaos93DQpKQkvvPACWrdu7VwBtSAPMqfbM888A4VCkSdGIQQWL16MqlWrolWrVnniOH36NKxWq7PMYDCga9euSExMxC+//II6deoUGt/u3bvx0ksvoW3btlixYkWRw5WJiIjo0cfhpURERFQmvP/++9iyZQtiY2MxdOhQ1KtXD0lJSVizZg1+//1350IFBfHz88PEiRMxffp0dOnSBd27d0dCQgIWLlyI6Oho9O3bFwCwfft2jBw5Es8//zzq1q0Lm82GZcuWQSaToVevXgCAGTNmYPfu3ejWrRtCQ0ORkpKChQsXolq1amjdunWhMRSn3SuvvILvvvsOr7/+Onbs2IHHH38cdrsdp0+fxnfffYfNmzejWbNmqF27Nt555x28++67aNOmDZ599lmoVCocOnQIwcHBmDlzJgAgKioKixYtwnvvvYfatWvD39+/wMn7FQoFZs2ahYEDByI2Nha9e/eGXq/HJ598gho1auCNN9540D+2PFq1agVfX1/0798fo0ePhkQiwbJlywpMmkZFRWH16tUYN24coqOjodPp8PTTTxd43tGjR+PGjRt466238O233+Y51qhRIzRq1AjAg83pVq1aNYwdOxazZ8+G1WpFdHQ01q5di99++w0rVqzIM9R24sSJWLp0KS5evIgaNWoAAPr06YODBw9i0KBBOHXqVJ4eczqdDj169ACQO69e9+7dIZFI8Nxzz2HNmjWF3gcRERGVEW5cOZWIiIioRC5fviz69esn/Pz8hEqlEjVr1hQjRowQZrNZCCHEkiVLBABx6NChAtvPnz9fRERECIVCIQICAsSwYcNEWlqa8/iFCxfEoEGDRK1atYRarRaVKlUS7du3F7/++quzzrZt28QzzzwjgoODhVKpFMHBwaJ3797izJkzRcZe3HYWi0XMmjVLNGjQQKhUKuHr6yuioqLE9OnTRUZGRp6633zzjWjSpImzXmxsrNi6davzeHJysujWrZvw9PQUAERsbKwQQogdO3YIAGLHjh15zrd69Wrn+SpVqiT69Okjrl27lqdO//79hVarzXd/U6dOFcX5r+WePXtEixYthEajEcHBweKtt94SmzdvzhdPdna2ePnll4WPj48AIEJDQws9Z2xsrABQ4DZ16tT7xnQ/drtdvP/++yI0NFQolUrRoEEDsXz58nz1+vfvLwCIixcvOstCQ0MLje3ue7rzZ/Iw74OIiIhKl0SI+4zHICIiIiIiIiIiohLhRBFEREREREREREQuxqQbERERERERERGRizHpRkRERERERERE5GJlJuk2bdo0SCSSPFtERESRbdasWYOIiAio1Wo0bNgQv/zySylFS0REREREREREFVmZSboBQIMGDZCUlOTcfv/990Lr7t27F71798bgwYNx7Ngx9OjRAz169EB8fHwpRkxERERERERERBVRmVm9dNq0aVi7di3++OOPYtV/8cUXYTAYsH79emdZixYt0LhxYyxevPghRUlERERERERERATI3R1ASZw9exbBwcFQq9Vo2bIlZs6cierVqxdYd9++fRg3blyess6dO2Pt2rVFXsNsNsNsNjvfOxwOpKamonLlypBIJP/4HoiIiIiIiIiIqGwSQiArKwvBwcGQSoseQFpmkm7NmzdHXFwcwsPDkZSUhOnTp6NNmzaIj4+Hp6dnvvrJyckICAjIUxYQEIDk5OQirzNz5kxMnz7dpbETEREREREREVH5cfXqVVSrVq3IOmUm6fbkk086Xzdq1AjNmzdHaGgovvvuOwwePNhl15k4cWKeHnIZGRmoXr06rl69Ci8vL5ddh4iIiIiIiIiIypbMzEyEhIQU2AHsXmUm6XYvHx8f1K1bF+fOnSvweGBgIPR6fZ4yvV6PwMDAIs+rUqmgUqnylXt5eTHpRkRERERERERExZqCrEytXnq37OxsnD9/HkFBQQUeb9myJbZt25anbOvWrWjZsmVphEdERERERERERBVYmUm6jR8/Hrt27cKlS5ewd+9e9OzZEzKZDL179wYA9OvXDxMnTnTWHzNmDDZt2oSPP/4Yp0+fxrRp03D48GGMHDnSXbdAREREREREREQVRJkZXnrt2jX07t0bt27dgp+fH1q3bo39+/fDz88PAHDlypU8q0a0atUKK1euxOTJkzFp0iTUqVMHa9euRWRkpLtugYiIiIiIiIiIKgiJEEK4O4hHWWZmJry9vZGRkcE53YiIiIiIiIiIKrCS5InKzPBSIiIiIiIiIiKisoJJNyIiIiIiIiIiIhcrM3O6PUpSUlJw6NAhd4dBRFSmyOXyB94UCoXz9d3zdxIREVUUDocDNputwM1qtRZ6rKCNiIiKr27duqhTp84DtWXS7QE0bhKFpOvX3B0GEVGFJJFIIJPLIZPJIZPJIJfLodZ4QKfTQqfVwdNTBy9Pz9z3Oh202rx7b29v+Pv7IzAwEAEBAfD394dSqXT3bRERUTlitVqRkpICvV4PvV6P5ORkZGRkwGAwIDs7O88+KysbWdnZyMrKRrYhG9nZBuSYjLBarbDb7bDbbbDbbOBU3ERE7uHp5YUbKSlQqVQlbsuk2wNIun4N3o/3hmfjru4OhYioTBAQgMMBCDuEww447uwdt/e2e97bIcSdeo7be9s97/8+j9lqhslqQoo1ByI1Bw59KiS264DNDFhzIKxm2C0mOCw5sJlN+eLz9vGFn38AgoMCEBwUhICAAAQEBCAwMBA1atRAeHg4goKCIJFI3PDpERHRo0IIAb1ej4SEBFy8eNGZUNPr9UhKSkZiUjJSUvTISEvN11amVEOu0kCqUEOiVANyNaBQQcjVuWUKf0h8qkPqp4ZEoYJKKgekMkikstt76d/vJTJIZLfLJbK76knvql/AXnK7DvjzjIioOIxn9yF1y0LY7fYHas+k2wOQymTIuRoPR062u0MhIio7JIV9EZBCcvcXi4LqyRWQSDX5v3hIZIBMDqlcBYlSDYlCDalSDYlMUWgYwm6F3ZgBuyEdDkMa7IZ02A1p0BvScT0lHbh8CjDug82QBosh09nOQ6dDnTp10aBeBMLDw9G4cWNER0cjKCioFD48IiIqbXemlDl27BgSEhJw4tRpnDmTAENWlrOOwsMTCp0voPEGND6Q6WpDFhCNylofSLW+kHn4QKb1gczDBxJ5UT+bbHBYcyAsORBWExxWM2C3FfALqL9/4SRsVghHzt/lwnHPL7YK2QtHaXx8RETlgvXWPxvlyKTbA3h92HBs374dMF1wdyhERGWCEAJ2u/32XDK5e7vNBtvtITM2m+32cSvsLphrRiqTQ6bUQKbKTcRJFLk9CoRCBYlKC5nW9/aXIF/IdJWgDKgFqdYHMg/v3MTenbhtVtgykmFNvQ5r6jWcT03E2d//hG3dBlgMGQCAwOCqaBETg5iYaMTExKBVq1bQaDT/+B6IiKj0mM1m7N+/HwcOHMDBg4ew/8BBJF67AuB2Yq1yCCQ+wVA07QW/SsGQV6oGhU8gJPK/pycQDjscxkzYjX//Qsd68wochnTYjelw5GRBcrsHNmxmOCwm2C05sJtNcNj/+c8+59QLchnkMjnkCgUUMjlkzjlSc6dkkMlk7LlNRFRcHkCLQYOgVqsfqLlEcHKAImVmZsLb2xsZGRnw8vJydzhEROWeEKLIyaLv3SwWC4xGY745cgraZ2dn4+atVFxPSsKNlBRkZWbkvbhEAqXWG3Jtbq8FidYXcp8gKCpVhaJyNch9q0KqVOcmEbNuwHz9DCzJZ2HTn8vd5xihVKnRrl0snuzSBV26dEF4eDi/3BARPYLOnTuHTZs2YeOmTdi+fQdyTEbIVRooA2pDHlAbyqC6UAbVgdw7ABKJBA5rDmxp12G9lQhr6jXY0q7DYUyDxJQBmyEd1uwMiHt6kek8veDn74+gwED4VakMT0/PfHONFrT38PCAUqkscEGhgjapVMqfNUREpaQkeSIm3e6DSTciovLLbDY7J7m+e16eO6+vXkvEmbNnkXrzhrONytsPssohkAfUhiqoLpSBdSD3rAwhHLDevIKci0dhvnQUOVdPwGGzompIdTzdrSv69OmDxx9/nF+KiIjcRAiBgwcPYsWKFfhp/QZcvngBUpkc6pAGUIY2gSasCRR+NSCRymA3pMGcdBaWpDOwJp+FI/UqctJTnOfyqVQZderUQWhINeccoHfPB3rn9YP2jCAiokcXk24uxKQbERGlpaXhzJkzSEhIQEJCAv766y/sP3gIN1P0AACVdxXIAupAVa0B1GFNoagcAmE1w3z1OEwXj8Jy4SDMaXqEhtXEoAH90a9fP9SoUcO9N0VEVEFcu3YNy5Ytw9dL4nD+7BmovKtAUbM5NDWbQh3SEBKlBra06zBdOALztXg49OecCTbfylXQPCYajR97DOHh4c6tUqVKbr4rIiJyFybdXIhJNyIiKogQAomJiTh48CAOHTqE/fsPYO++fbCYc6Dy8YeiemOoa0ZBE/oYJCoPmK/GwxC/HTln9sBmNqF1m7YY8upgvPTSS1Aqlfe/IBERFZvNZsP333+PL7/8Cjt2bIdUoYS6TktoG3SAOrQRhNWMnCt/wXThCGyXjyEnLRkKhRLNW7RAyxbNERMTg+joaFSvXp09lImIKA8m3VyISTciIiouk8mE3bt3Y9OmTVj/y0acO5MAiVQGj5pR0DR4Ah61m0M47DCe2QvTye0wXvwDAUHBeGv8mxgyZAg8PT3dfQtERGWa0WjEkiVL8MGHs3HtymV4VI/M/fc3vDUkciVMFw7DGL8NpvOH4LDbUKNmLTzV9Ul06dIF7dq1g1ardfctEBHRI45JNxdi0o2IiB7UpUuXsH79eiyJW4qjRw5D4eEJVXgb6CI7QBlUF9ZbV5F18P9gPLkDOp0nxowehVGjRsHPz8/doRMRlSlpaWlYsGAB5s77BGmpqdDWawvP5s9C4RcGi/48DPHbYD69GxZDBho2egwDB/RH9+7dUatWLXeHTkREZQyTbi7EpBsREbnCqVOnsHTpUsQt/R/0yUlQ+9eAtllPaOu3hd2QjsxDa2H8azPkUgmGvf4aJk+ejMqVK7s7bCKiR1pGRgZmzpyJz+bPh9ligyayI7xiekLu5Qfj6d9hOPwjTEnnUMXPH/1e6Yv+/fujUaNG7g6biIjKMCbdXIhJNyIiciW73Y5t27bh088+w4b166Hy8YdH02ege6wThN2KrCPrYTiyFh4qJWZMn4bhw4dDoVC4O2wiokeKzWbDV199hXcm/wcZWdnQNn0aXs26Q6L0gCF+GwyHf4Q5NQn/6tQJY0aPRufOnSGXy90dNhERlQNMurkQk25ERPSwxMfHY9asD7Fy1UrIVFp4NOkGz6jugMOG9N9XwPDnFtSsVQvz5s5Bt27dOJk3ERGArVu3YszYN3Dq5AnoIjvAu+0rkCo1yDq6AcajP8NmzMBzzz2HCRMmoEmTJu4Ol4iIyhkm3VyISTciInrYLl++jDlz5uDzL76EQyKD7v/bu+/wqMq8/+PvaekdSEIJHUKJEEBCUSDUIOhPHll7CcW2CyqgrmBfVwVhd0HBto8KGGVV1vaoiCIqFlqkiZRAQEDSCaRNJpMp5/dHIBrpGBhCPq/rOtfMnDkz8525vInzme+57z7XE9p9BK7C/RR/9SrlezYyaNBgnnvuWTp37uzrckVEfGLnzp1MmjyZJZ98QlBcZ8IG3opfTGvKNn1G6fdvgquC8ePGct9992muNhEROWsUutUihW4iInKu5Ofn88gjj/DKK6/gF9WE0AHjCGzTE8eutZSumI+7KI/HH3+MBx54QKdJiUi94fF4ePbZZ5n24EOYgiII7T+GoPhLqNizkZKvX6Uifw+33JLK008/RdOmTX1droiIXOBOJycyn6Oa/rDp06fTs2dPQkNDiY6OZtSoUWRkZJzwMQsWLMBkMtXYAgICzlHFIiIipyc6OpqXX36ZjRs30rdLPAXvPsGBxY9iDY8hOnUuQReP4pFHHiWpV2+2bNni63JFRM66nTt3cmm//tx73334X5RC9Nh5+DVqwYH3niD/nUfo1rYp6enpLFy4QIGbiIicd+pM6LZixQomTJjA6tWrWbZsGS6Xi2HDhmG320/4uLCwMHJycqq3vXv3nqOKRUREzsxFF13EF18s46OPPqKxpYzc+XdT9G0aEZdcT8xNs9j2SwHdunVnxowZuN1uX5crIlLrvF4vzz77LBd16cqGjD3EXD+dyOQxlKx+l9z5E2ngKmDx4sV8/923XHzxxb4uV0RE5Jjq7OmlBQUFREdHs2LFCvr373/MYxYsWMCkSZMoKio649fR6aUiIuJLlZWVzJ49m0ceeRRLRAwRwyfhF92Kou8WUbr2Pbr36EHa6wvp2LGjr0sVEakVmZmZpI4Zy8rvvyO0xxVE9E/FfSiboqVzqDywj4cfeoipU6fqDBYREfGJC/L00t8rLi4GICoq6oTHlZWV0aJFC+Li4rjyyitPejqO0+mkpKSkxiYiIuIrfn5+PPDAA2zcuIFOzWPIe+N+ir5fRMSlNxJz40y27Mmla2I3Zs2ahcfj8XW5IiJnzOv1MnfuXC7q0pV123ZVdbcNHE/J2vfIS5tM64bB/JCezuOPP67ATURE6oQ6Gbp5vV4mTZrEJZdcQkJCwnGPi4+P57XXXuPDDz/kjTfewOv10rdvX/bv33/cx0yfPp3w8PDqLS4u7my8BRERkdPSqVMn1qxexVNPPUn5Dx+SnzYJzGYa3TKHwMSR/PWBB+jT9xK2b9/u61JFRE7b7t27GZA8kLvvvhtbx4FEpz6HOSCEgjfvo3T12zz04IOsX/cDiYmJvi5VRETklNXJ00v//Oc/8+mnn/Ldd9/RrFmzU36cy+WiY8eOXH/99fz9738/5jFOpxOn01l9u6SkhLi4OJ1eKiIi542ffvqJm29JZdOmTYT2Gk1E3+tx5mZSvHQOntIDTH/6KSZNmoTFYvF1qSIiJ+T1ennxxRe5/68P4PUPJSLlbvybdaJ49WJKV71NfHw8aa8vpEePHr4uVUREBLjATy+dOHEiH3/8MV999dVpBW4ANpuNbt26kZmZedxj/P39CQsLq7GJiIicTxISEli7ZjVP/O1xytPfJz9tMiarjUapzxLQZTj33X8/l1zajx07dvi6VBGR49qzZw+DBg9h4sSJWOP7V3W3BYVVdbeteotpUx9gw/p1CtxERKTOqjOhm2EYTJw4kffff58vv/ySVq1anfZzeDweNm/eTOPGjc9ChSIiIueOzWbj4YcfZt26H2gXG05e2r2UrFpMZPIYYm6Ywaad+7ioS1fmzJmD1+v1dbkiItUMw+Dll1+mc0ICqzduIfraJ4kcciel6z8mb+EkmofbWL1qFU8++ST+/v6+LldEROSM1ZnQbcKECbzxxhssWrSI0NBQcnNzyc3NxeFwVB9zyy23MG3atOrbTzzxBJ9//jm7d+9m/fr13HTTTezdu5dbb73VF29BRESk1nXp0oV1P6Tz+GOPUpb+LvlpUzDbAmiU+iz+CcOYPHky/foPOGGXt4jIubJ3716GDBnKnXfeibldP6LHzMMSHEnBm/dT8t0b/PX++9i4YT09e/b0dakiIiJ/WJ0J3V588UWKi4tJTk6mcePG1dvbb79dfcy+ffvIycmpvn3o0CFuu+02OnbsyIgRIygpKWHlypV06tTJF29BRETkrLDZbDz66KP8kJ5O2+hQ8tKmULLmXSIHjiXm+ums27aLhIu6MHfuXHW9iYhPGIbBK6+8QueEBL5f9yPR1zxB1NA/U7phCXmvT6JZiImVK1cyffp0rUwqIiIXjDq5kMK5dDoT5ImIiPhaZWUlTz31FE8+9RT+jVoScdk9WCMaU7RiAaXrP6Ff//4smD+f1q1b+7pUEakn9u/fz7jx41n2+eeEdBlK5KBb8ZQd5NCnz1KRncF9993HE088obBNRETqhNPJiRS6nYRCNxERqYvWrVvHzbekkpGRQWifawnvfTXO/Vsp+uw5zM5S/vmPWdxxxx2YzXWm6V1E6hjDMFiwYAF33XMPLpM/EcMmEtCqGyXpH1Ly3Ru0atmC1xcuoG/fvr4uVURE5JRd0KuXioiIyMn16NGDDevXMfWBv1K68j8UvHkf5qAwolOfwxrfn7/85S8MHjyEPXv2+LpUEbkAZWVlMWLkSMaNG4epRRLRY+dhjWxMwX+mUrxiPpPunsjmHzcpcBMRkQuaOt1OQp1uIiJS16Wnp3PzLanszMwkrO/1hPUaTcXeHyn+fC4Wl51//fOf3H777ZhMJl+XKiJ1nGEYpKWlMfGuu3EaFsKHTSSwdQ9K131EybdpxMU1I23hAi699FJflyoiInJG1OkmIiIi1Xr27MnGDeu5/94plHz3BgVv3o8ltAHRY+ZhbnsJd955J4MGDWbz5s2+LlVE6rCMjAwuGzGC1NRUjLjuRI99HluDZhx460EOffkKE/58Bz/9uEmBm4iI1BsK3UREROqBgIAAZsyYwffff0/TYMhfOInSjUuIGjaB6Kv/xurNO0hMTOSOO+4gPz/f1+WKSB1y8OBB7rnnHjonJPD1mo00uuphokZOxr71a/IW3EVDSzlff/01zz77LMHBwb4uV0RE5JxR6CYiIlKP9O7dmx83bWTypLspXrGQgv88UNX1NnYe4cnjmZ+2iNZt2zJr1iycTqevyxWR85jL5eK5556jVes2vPDvVwi95EZixr2ALaoZB95+iENfvMwdt45ny+YfGTBggK/LFREROec0p9tJaE43ERG5UH3//feMGTuOXZmZBHcdRsSlN4HZTPF3iyjb+ClxzZvz1N+f4Nprr8Vms/m6XBE5T3g8Ht59910eevgRMjN3EtJlGBH9bgKzleLvF2HfuIRmzeKY/9qrDBo0yNflioiI1KrTyYkUup2EQjcREbmQVVZW8sILL/DoY4/jqHQT0vtqwnpcibsol+IV87FnrqVZXHMe+Ov9jBs3jqCgIF+XLCI+UlFRweuvv870Z2ayZ/cuglp1Izx5LLYGzSndsISyVf/Bz2zwyMMPc8899xAQEODrkkVERGqdQrdapNBNRETqg8LCQv72t7/x/AsvYAuPJrRfKkHxl+Aq+JnSNe9h3/YNEZGRTJ50DxMmTCAqKsrXJYvIOVJcXMxLL73EP/81m4KCfILj+xKa9Cf8Ytvi2JVO6Yr5OAv3M378eJ588kliYmJ8XbKIiMhZo9CtFil0ExGR+mTbtm1Mufdeln76KYExrQlOuoqgDv1wlxRQmv4+5Zu/wM9m4dprriE1NZX+/ftjNmuKWJELjWEYrFy5koULF/Lmf/5DRYWToM4DCUsajTUilvKdq7GvfRdH9g6SkwcyZ85sunbt6uuyRUREzjqFbrVIoZuIiNRHK1as4Onp0/n8s8/wj2pMcI9RBF80BKPSQenGT3Fu+4qKwmyaNW/B2NRbSE1NpU2bNr4uW0T+oL179/L666/z2oKF7Nm9C/+IaAI6DiSk2wgsgWGUbfmS8vT3qCjMon9yMg9Nm8bQoUMxmUy+Ll1EROScUOhWixS6iYhIfbZx40ZmzJjB4sWLsQaFEdjtckIuGoolJApn1lbsm5dTseN73BV2Lu6ZxBWXjyQlJYWLL74Yi8Xi6/JF5CS8Xi8bNmxg6dKlfLLkU1at/B6rfyD+7foSkjAY/+YJeMtLKPvpC8rXf4Sr9CBXjhrFtKlTSUpK8nX5IiIi55xCt1qk0E1ERAR27drFP//5T159bT6uykoCW3UjqPMgAtv1BgwcO9fg2LmSyr2bcDnKCI+IZHhKCsOHpzBgwABatmypThiR84BhGOzbt49vv/2WpUuX8unSzzhYeABrQBD+zbsS0K43Qe37YjJbKd+1FseWL3Hs/gGzyczNN9/EX//6Vzp06ODrtyEiIuIzCt1qkUI3ERGRXxUVFfHOO+/w2vwFrFm9CltgCP7tLyU4YSD+Taq+iDuzM6jYvQ7Xvg2UZ+8EwyAiMoqkpJ70SkoiKSmJiy++mJiYGAVxImdZQUEB6enppKens3btWlavTefggQIAAhu3xdaiG4Gte1SNX7OZyuwd2Ld+RcX2b3GVl9C9x8WMGzuG6667jgYNGvj43YiIiPieQrdapNBNRETk2Hbs2FE991NO1n5sQaH4NU8koFU3Alp1xxraEE95Mc6cHVTm7MCVm4k7byeVZUUAhIVHEB8fT6eOHWjfvj3x8fG0bduW2NhYGjZsqNNTRU6Bx+OhsLCQ3Nxcdu3axY4dO8jIyGDrtu1kZGRQdOggALagMGyx7bDFtMWvcXv8m7THEhyJp+wQjj3rqfh5PZV7N+KyFxMT25jUW24mNTWVTp06+fgdioiInF8UutUihW4iIiIn5vV6Wb16NZ999hlLPl3Kuh/SMQyDwJhWWOO64N+4PX6N22ONiAXAU5KPMzcTd+F+XAf3YxRl4zqYhctRVv2cZrOZiKgGxMTE0qRxDI1jY4mNjSUmJoaYmJjq6+Hh4QQHBxMSEoK/v78656ROMwwDp9OJ3W6nrKyMkpIS8vLyyMvLIzc3t/p6dk4O2Tm55Ofnc/BAAV6vt/o5rAFB+DVohim8CdaoptgaxOEX2xZreAxwePzl7KwKwn/5EUdOJgBdu3Xn8hGXkZKSQt++fRV6i4iIHIdCt1qk0E1EROT0FBYW8sUXX7B06VKWf/k1v+zbA4AtOAxbTFusMe3wi2mNLaoptsgmmKx+GIaBt7wId1EenvIiPPZDeOxFeOxFeO2HwFGE4SjGVXYId0X5MV/XbDYTGBRMUFAwwSHBBAcHExYaSmhIMKGhoQQGBmKz2bBarcfdzvR+i8WiwO8CYRgGHo8Ht9t93M3lcp3R/S6XC4fDURWolZZRWlZGWVkZ5fZy7PYyHI5yvB7PMeuy+gdiC4nEFBSBERiOJTgSS1AEluCqzRwUiTUiBktwJCaTCcPtwlWUg/vgfirzfsaVt/Nwp2kxAE2axjFo4ACGDx/O0KFDiY6OPpcfs4iISJ2l0K0WKXQTERH5Yw4cOMAPP/zA2rVrWbN2LWvWplNYkF91p8lEQGQM5oimWCKbYA2LxhwcURUoHL40B4ZiMpmrn8/rqjgcxhXhrXRguBx4XU6MSgfeygoMV9XmdVVgVDowXE5wVYCnEgwPeL3g9VRfN7we8Howfrt5fr3u9boxjhOESP1kslgwm62YzJaqzWLBZDZjMlvAbMF0+D7MZjBV7au6bgaLP4bNH7MtAJMtALNfICabPyZbIGa/w/tsAZj8qu4zHw7XzH4B1a9vGF68jtKqYLq8aix47IdwlxTgOZSFUZRNxcFcDKOqAy4yqsEx51QUERGR03dBh27PP/88s2bNIjc3l65duzJ37twTLle+ePFiHnnkEfbs2UO7du145plnGDFixCm/nkI3ERGR2mUYBgcOHCAjI6N62749gy3btpGdlUWFo2Ynm8lswS+kqpuHwAhMR7p7gsIx+QUdDi0OhxTVQcavgQYW2x/uQjMMAwzvryGd4akR1vGb0/vkAmA6HKBZqkI1TJbfhGjm2vnvyeM6HAz/GhB7DwfG1fuc5XjKi/HYizDKi8BRFbJVlh06Kgj2DwgktnETOneMp0OHDsTH/3oZHR2tTkwREZFacjo5kfV0nzw1NZXx48fTv3//My7wTL399ttMmTKFl156iV69ejFnzhxSUlLIyMg4Zkv8ypUruf7665k+fTqXX345ixYtYtSoUaxfv56EhIRzXr+IiIiAyWSiUaNGNGrUiEsvvfSo+8vKyo45j9WR21k5ueTm7qLwQAHldvspvJ4Zq38gZpv/bzqRfu1Kwmyp6kA6HK7wmw4l4/D+Xx93JID53X6TGRRqXBgMo6pDzPBieNyHg1XvMYJWDybD+2v3pOHB5PViGFX3/fY443B3peH14HE58VRWVN13EoFBQTRoGE1sbAxN2zQlJqZ7jbkNfzu/YUhIiII1ERGR88xpd7qNGjWKJUuW0KJFC8aOHUtqaipNmzY9W/XV0KtXL3r27Mm8efOAqomb4+LiuOuuu5g6depRx1977bXY7XY+/vjj6n29e/cmMTGRl1566ZReU51uIiIi5y+v11s9R9aRyeePd+lwOGrM1XWyebmOHONyuXG5qy7dbjcutxu36/Cl+9fnkAuHxWI5PIefHzarFavNWnVptWKzWbFZbdhspz4X4JFjLBYLgYGB1Yt/nOgyKCgIs9l88mJFRETknDqrnW4ffPABBQUFpKWlsXDhQh577DGGDBnC+PHjufLKK7HZbGdc+IlUVlaybt06pk2bVr3PbDYzZMgQVq1adczHrFq1iilTptTYl5KSwgcffHDc13E6nTidzurbJSUlf6xwEREROWvMZjPBwVWLJoiIiIiInE/O6OezRo0aMWXKFDZt2sSaNWto27YtN998M02aNGHy5Mns3LmztuvkwIEDeDyeoyZ9jYmJITc395iPyc3NPa3jAaZPn054eHj1FhcX98eLFxERERERERGReuW0O91+Kycnh2XLlrFs2TIsFgsjRoxg8+bNdOrUiZkzZzJ58uTaqvOcmTZtWo3uuJKSEgVvIiIi5yGXy0VZWVn1drLTSysqKo46dfS4p5S63VWnlR6+7j5yedTmweN24zmF+bmk7jCbzVgs1hqnkFafJmq1Yv3N6aU2mxU/m+2kp5geuT8gIOCUTi8NCQkhJCQEPz8/X38cIiIicoZOO3RzuVz83//9H/Pnz+fzzz+nS5cuTJo0iRtuuKH6XNb333+fcePG1Wro1rBhQywWC3l5eTX25+XlERsbe8zHxMbGntbxAP7+/vj7+//xgkVEROS0OZ3OoxZO+O3trOwccnJzKcjPp7Sk+KTPZ/Hzx+IXiMUvAJPV7zcLJ1QtgmBUL6BgxjBVLaBgMlurF1Mwmf3BFFS1YILVgsnv9wsoHD5OCylcUNyGF7fXQ8XxFkSo8IDjyP5K8DqqV7U1Gd7qhRR+u8jCkX1edyXeygo8lQ48lc6T1hISGkaj6Ggax8bSpHHscRdSiImJISAg4Bx8OiIiInKqTjt0a9y4MV6vl+uvv561a9eSmJh41DEDBw4kIiKiFsr7lZ+fHz169GD58uWMGjUKqJo8efny5UycOPGYj+nTpw/Lly9n0qRJ1fuWLVtGnz59arU2EREROXVut5tdu3aRkZFRvW3dtp3tGRkcKjxw1PF+IRFYgyMgMByCIrBEdMLS9BIaBIVj8g/CbAvA5BeA2RaIyeaPyS+wat+R1UrPgGEYNcMWw/u78OVIiHJktUrvH/xU5LxiMh29au3vV6utcfvMAlfD68FwOTFcTrwuB0ZlBV5XBUalo2pfZTme8iIO2IvIP1TExqxMcKzDbT9Epb0YfrceWkRkFO3bt6dTxw7Ex8dXb+3atTtr8y6LiIjI8Z326qVpaWlcffXVPvkl7e233yY1NZWXX36ZpKQk5syZwzvvvMP27duJiYnhlltuoWnTpkyfPh2AlStXMmDAAGbMmMHIkSN56623ePrpp1m/fj0JCQmn9JpavVREROTMGYZBZmYm6enprF27ltVr1rJx40acFQ4ArP5B+DVoCuFNsEU1xRoejSUoAktIJOagCCxB4Zgsv/5GaHjceMqL8NiL8NqL8FaW462swHBVbd5Kx+HLX/eZ3E5wV4C78uiOpd9tXo8Hw+OuCtlETpHJZMZkqQrhTGYLZou1+npVOPebkM7qB1Z/DGsAJlvVZvY7fHk4QD5y3ewfVDUOgqs2k+XX4MzwevCUF+O1F+GxH8JjL8Jdko/7YBZGcQ6VhftxV9gB8PPzp0vXrvTulURSUhI9e/akffv2Wh1VRETkDJxOTnTaoZuvzZs3j1mzZpGbm0tiYiLPPfccvXr1AiA5OZmWLVuyYMGC6uMXL17Mww8/zJ49e2jXrh0zZ85kxIgRp/x6Ct1EREROz88//8zSpUtZ8umnrFjxTfVpoIENmmCObotfbDtsMa2xRTXDEhKFyWTC8LhwH8rFXZyL5zchgqe8CBzFGOVFuO2HcNmPvaq4f0AggUFB1SuZhoaEEhoSTFhYaPX8WIGBgac879bp3m82m8+420nOPx6P55jz/Z1sPsBTmS/Q4XBUzzNYWlpGSWkZZfYyysrslJfbKbfbq0Pp37MFhWINicQUGA6BR8K4wwF1SCTWsGhskU0wWW0YhoHXXoTr4H4q83dTmbMTb34mjgP7AQgODaXfpZcy4rLLGD58OG3bttV/wyIiIqfggg7dzjWFbiIiIifmdDpZvnw5S5cu5ZMlS9m9aycmi4XAZp2wxXXBv0k8frHtsASGYnjcVBbsoTJvF67CX/AczMIozqbiYG5VF9phYeERNIqOpknjxjRpHHvU3FWxsbFER0cTERFBUFAQFsuZnUYqcj7yeDyUl5dTXFxMfn7+UfMb5ubmkp2bS05OHvl5uRQXHap+rMlkxj8qFnNEEyyRTbE1aIZfTFv8oltistjwVpThzM2kMmcHlb/8SMW+n/B63DRv2YqRlw1n+PDhDB06lMDAQB9+AiIiIucvhW61SKGbiIjI0QzDID09nYULF/LGm4soKS4iIDIGa4vuBLbqTkCLrpj9g3AdysGZtY3K3J148jJx5u3G43JiNptp1rwlnTvG06FDB9q3b098fDxt2rQhJiZGixqJnIbKykry8/PZtWsXO3bsICMjg+3bt7NlWwb79v6M1+PBbLURENMac3Rb/Bu3w79JB6xRTTFcFVTs20zFz+tw7d1ARWE2waGh3HDddaSmptK3b191wImIiPyGQrdapNBNRETkV1lZWaSlpfHq/AVk7sjAP6wh/p2SCe40EFvD5oe/wP+IY/d63PuqvsADtGzdlr69q+aSSkpKIjExkaCgIB+/G5ELX0VFBRs3biQ9PZ309HRWrV5L5s4MgMNBebfDQXliVVBeuB/71q+p2PolzqJ8WrZuw7gxqdxyyy20aNHCx+9GRETE9xS61SKFbiIiIrBhwwZmzJjBf//7X0wWGwHtehOcMJiAFl3xOu2Ub/uGip2rqPhlC16Pm7gWLbli5AhSUlLo168fkZGRvn4LInJYcXEx3333HZ999lnNU8KbdsK/bW+COw3AHBSGc99PlP20HOfOlbidDv7flVfy4LRp1fMpi4iI1EcK3WqRQjcREamvDMPg66+/5unp0/li2TL8oxoT3GMUwZ2TMVn9cexeR/mW5Tgy12IywZAhQ7h85EhSUlI0KbtIHbJ79+7DAdwSPv/sczxeD4GtLyaw8yCC2iRheN3Yt31D+Q/vU3FgP/36D+ChB6cxbNgwjXMREal3FLrVIoVuIiJS3xiGwYcffsiTTz3Nuh/SCYxtTXDP0QR1uBR3SQGl6z7CuX0FlWVFJHTpyvixY7jhhhuIjo72deki8gcVFhby1ltv8dr8Baxf9wO2oDACOvQjtPsVWCMb49i5hrK1/8WRvYOLunTlwWlTueaaazCbzb4uXURE5JxQ6FaLFLqJiEh9smbNGu6+ZxJr16wmqEUXQpJGE9CqO66CnylZ8y7l274lIjKSsWNSSU1NpUuXLr4uWUTOkq1bt/L666/z2vwFFBTkE9y+L6G9RuMX246KfT9iX/su9t3r6ZrYjeeenUP//v19XbKIiMhZp9CtFil0ExGR+uCXX35h6tRpLFr0JoExrQkdOJ6A5l1w/vITpWv+S/nudcQ1b8HUB/7K2LFjCQwM9HXJInKOOJ1O0tLSeHrGM/y8K5Ogll0JSfoTAS0TcWZto+SrV3Bk7+B/rrqKf8yaRevWrX1dsoiIyFmj0K0WKXQTEZELWVlZGTNnzmTmrH9g2AIJueRGQi4aQmVuJiVfv0r5L1vp1DmBhx6cxjXXXIPVavV1ySLiIx6Ph/fff5+nnp7Oxg3rCWzSnrDkcfg364R96wrKvl2It7yEyZMn8dBDD+n/nUVE5IKk0K0WKXQTEZEL1ZIlSxh/620UFBwg+OIrCe99NV6nneIVCynb+jUJF3VhxvSnGTFihCZLF5FqhmGwfPlypk57kHU/pBMcfwnhyWOxBEVQsvY9ytLfIyIslH+//BJXXXWVr8sVERGpVaeTE2nGUxERkXqmuLiYcePGMXLkSEoCGxMz/gXC+1xDydr3yH3lTgIKtvLKK6+wccN6Ro4cqcBNRGowmUwMGTKEtWtWk5aWRmjJz+S++meKv19EWM8riR3/EhVRbRg9ejTXX38DhYWFvi5ZRETEJ9TpdhLqdBMRkQvJ559/zpix4yg4eIiw5PGEdBlG+bZvKFnxGkZFGffdO4Vp06YRGhrq61JFpI6w2+384x//YMYzM/Fa/AjtP4bghMHYt35NyZf/Jjw4kFf+999ceeWVvi5VRETkD1Onm4iIiNRQUlLCbbfdRkpKCsX+0cSMnUdQ214UfjidAx/NYuTg/uzI2M7TTz+twE1ETktwcDCPPfYYmTt38Kf/N5LCJXMofPcJAppfRPSYeTjCWzJq1ChuvvkWDh065OtyRUREzhl1up2EOt1ERKSu++KLLxgzdhx5BQcISx5HSNfhlGd8T/EXLxLib+Xll17k6quv9nWZInKB+Pjjjxk3/laKSu2EDbqN4M6DsG/5kuIv/5eosBBefeV/ufzyy31dpoiIyBlRp5uIiIhQVlbGn//8Z4YOHcohaxTRY+YS1L4vhR/N5MCHM7g8ZTDbt21V4CYiteryyy9n+7atXHPVKAo/mU3h+08S0LIbMWPnURbSjCuuuIIxY8ZSVFTk61JFRETOKnW6nYQ63UREpC766quvSB0zluzcPMIHjCWk22U4dqym+IsXCbTCSy++wLXXXqtFEkTkrPrggw+49bbbKSmvIGzQ7QR3Ssa+eRnFX71Kw8hw5r/2KsOHD/d1mSIiIqdMnW4iIiL1lN1uZ+LEiQwaNIhCQokZM5egjv0o/PifFHzwNCmD+rF921auu+46BW4ictaNGjWK7du2ctUVIyj8+J8UfvA0gW16EjN2LiUBMVx22WWMHz+e4uJiX5cqIiJS69TpdhLqdBMRkbrim2++4ZbUMezPziasXyqhPS7HkbmW4mXPE2A2eOH5edxwww0K20TEJ959911uv+NOSitchA++g6AO/Sjb9BklX79GdMMoFsx/jaFDh/q6TBERkRO64Drd9uzZw/jx42nVqhWBgYG0adOGxx57jMrKyhM+Ljk5GZPJVGO78847z1HVIiIi50Z5eTmTJk0iOTmZAk8gManPEZwwiINL5lDw3pMM6d+X7du2cuONNypwExGfGT16NNu3beX/XTaUA/83k8L/m0FQ+z7EjJ1Hka0hw4YN4/bbb6e0tNTXpYqIiNSKOhG6bd++Ha/Xy8svv8yWLVuYPXs2L730Eg8++OBJH3vbbbeRk5NTvc2cOfMcVCwiInJufPfdd3S+qAvzXniJiIHjaXjddFyHssmfPwH2/cDChQv5+KOPaNy4sa9LFRGhUaNG/HfxYt5++21sedvIe+0vOHN20PCavxM17C/Mf/0NOnVOYPny5b4uVURE5A+rs6eXzpo1ixdffJHdu3cf95jk5GQSExOZM2fOGb+OTi8VEZHzkcPh4OGHH2b27NkENO1A5PB7sARHcGj5/1L203JShg/n1VdeoWnTpr4uVUTkmPLz87njzjv54P33CenYn4ghd+CtdFD02VzK92zizjvvZNasWYSEhPi6VBERkWoX3Omlx1JcXExUVNRJj3vzzTdp2LAhCQkJTJs2jfLy8nNQnYiIyNmzatUqLurSlTnPzSN8wFgaXT8Dd1Eu+QsmYuxdy2uvvcanS5YocBOR81p0dDTvvfsu//nPf7DkbCZ//kRc+burut6G3sn/vraATp0T+Oqrr3xdqoiIyBmpk6FbZmYmc+fO5Y477jjhcTfccANvvPEGX331FdOmTSMtLY2bbrrphI9xOp2UlJTU2ERERM4HDoeD+++/n0suvZRsh4XYMc8SmpjCwc/mkf/fx+nfqzvbtmxh7NixmrtNROoEk8nEddddx/ZtW0kZ1I+C95+m8ON/EtSxPzFj51FoCmPQoEFMnDgRu93u63JFREROi09PL506dSrPPPPMCY/Ztm0bHTp0qL6dlZXFgAEDSE5O5pVXXjmt1/vyyy8ZPHgwmZmZtGnT5pjHPP744/ztb387ar9OLxUREV9as2YNN9+Syu7dPxN66Q2E9fwfKvZuovizuVg9DubMns348eMVtolInWUYBosWLeIvEyZS4TURPnQCgW2TKF3/CSXfLKBpkyakLVxA//79fV2qiIjUY6dzeqlPQ7eCggIKCwtPeEzr1q3x8/MDIDs7m+TkZHr37s2CBQswm0+vUc9utxMSEsLSpUtJSUk55jFOpxOn01l9u6SkhLi4OIVuIiLiE3a7nSeeeIJ//OMf+Me2JeKySVhDG3Loq1cp2/QZgwYNZv7812jevLmvSxURqRU5OTncdvvtfPLxx4R0HkjE4NvxVpRS9OmzlP+yhbvvvpu///3v+n9zERHxiToTup2OrKwsBg4cSI8ePXjjjTewWCyn/Rzff/89l156KZs2baJLly6n9BgtpCAiIr7g9XpJS0vjganTKDhQSNgl1xOWdBUV+zZT/NlzWFx2Zv/rX9x2223qbhORC45hGKSlpTHxrrtxYq3qemtzMaXrPqLk2zQiwkJ5+qknGT9+/Bl9LxARETlTF1zolpWVRXJyMi1atGDhwoU1/rDGxsZWHzN48GBef/11kpKS2LVrF4sWLWLEiBE0aNCAH3/8kcmTJ9OsWTNWrFhxyq+t0E1ERM617777jrvvmcSG9esI7tiPiAFjMAeEUrRiPqUbPiU5eSDz579Gy5YtfV2qiMhZlZWVxa233cbSTz8l5KLBRA66DW9lBcXfvk7ZT1/SqXMCzz07h8GDB/u6VBERqScuuNVLly1bRmZmJsuXL6dZs2Y0bty4ejvC5XKRkZFRvTqpn58fX3zxBcOGDaNDhw7ce++9jB49mo8++shXb0NEROSEdu/ezdVXX02/fv3YnltKzI3P0OCK+6nY9xN5r/0Fd8Y3vPDCCyxf/oUCNxGpF5o2bcqSTz5h/vz5GHvWkvfqnTh2/0DUZfcQe/M/2VPsZciQIVx+xRVkZGT4ulwREZEa6kSnmy+p001ERM62zZs388wzM/nPW//BGhxJaL+bCe48EOf+rZR8/SqO7J1cffXVzJw5U2GbiNRbWVlZTJv2IGlprxMY04rQ5PEEtOhK+fbvKP12Aa7iAkaPHs3UqVPp3r27r8sVEZEL1AV3eqkvKXQTEZGz5bvvvmP6jBks+eQT/COiCeoxipAuw/CUF1G8Yj727d/TrXsPnnt2DpdeeqmvyxUROS+kp6dz9z2TWL1qJcHtehGePA5rWCPKNn+B/Yf3cR7MYcjQoUybOpWBAwdq3ksREalVCt1qkUI3ERGpTQ6Hgw8//JBnn5vL6lUrCYhuSXDP/yG44wA89oOUrH0f+6alNGrYkFkzn+HGG2887dW6RUQudIZhsHjxYu69736ys7MIumgoYUmjsYZHU779O+zp7+HI3UX3Hhcz6Z67ueqqqwgODvZ12SIicgFQ6FaLFLqJiMgfZRgGq1atYuHChSz6z1uUlZYQ1DyB4J7/Q2CbnrgO/ELp2ncp37aC0NAwpkyexL333qsviCIiJ1FRUcFzzz3HMzNncejgQYI6XEpYrz9hi25Fxc/rKUt/j/I9mwgKDuaaq69mzJgx9OvXTz9miIjIGVPoVosUuomIyJkwDINNmzbx0UcfMX/h6/y8KxP/iBgCOiYTnDAIW1RTnFnbKF3zLvadq4lt0pQH7r+PW2+9lZCQEF+XLyJSpzgcDubPn8+MZ2byy769BLfpQUjSn/CPS8BdnIf9py9xbvuKioM5NGvegnFjUrniiivo3r27AjgRETktCt1qkUI3ERE5VQcOHGDZsmUsXbqUJUs/40B+Hlb/QPzb9SE4YTABzS/C6yjFvvVrKrZ+hSMnk3bxHXhw6gPccMMN+Pn5+fotiIjUaW63m8WLF/PU09PZ8tNmAqJbEtBpEMGdk7EER+LcvwX7T19SseN73BV2Ihs0ZMTwFFJSUhg2bBgxMTG+fgsiInKeU+hWixS6iYjIsbjdbrZu3cratWtJT09n5eo1bNn8I4ZhEBjbGluLbgS26oF/045gAkdmOuVbvsSxOx2zyczIy0dy6/jxjBgxQl0WIiK1zDAMli1bxquvvsb7H3yA2+UisHV3gjoPJqhdLzCZcWZvx/Hzetx711OenQlAx84J9O3di6SkJHr27ElCQgI2m83H70ZERM4nCt1qkUI3EZH6zePxsHfvXjIyMqq3jZt+ZMOGDTgrHJhMZgJjWmBq1JaAuM4EtOqONSQKj70Ix54NVPy8nsqf1+EqL6Fb9x6MGzuG6667joYNG/r6rYmI1AuHDh3inXfe4bX5C1i7ZjW2wBD8WnYnoFX3o/7Ndu7bjDc/E0f+XgyvBz//ALp27Uq3xK7Ex8dXby1btsRqtfr6rYmIiA8odKtFCt1ERC5MbrebAwcOkJubS15eHnl5eTWuZ+fksD8rh70/76ay0gmAxeaPf4MmENkM/9h2+DVuj19MG8x+gXhdFVTm7MSxZwOuPetx5FR1TVzUNZErRo7ghhtuoHPnzr58yyIi9d6OHTt48803+fiTJWxYv65Gd3JAq+74N27/67/peT9TmbMDZ+4OOLgfZ+F+PK6qvwdWm40WLVsT16wJjWNjiY2NJSYmpvryyPVGjRopnBMRucAodKtFCt1ERM4uwzDweDy43W5cLhdut/u0tsrKSsrLyykrK8Nutx/3srS0jNKyMg4UFpKXl0fRwUJ+/yfQFhiCNSQSU2AEBIZjCYnEGtkEW1RTbFHNsIQ1xGQyY3jcuA7sw5mzg8qcHTW6IiIioxhx2fDq+YFiY2N988GKiMgJFRQUsGzZMj777DM+XvIpBw8UYDKZCYhujjm6Lf6N21f9uNKoBSaLDcPw4iktxHUwC/fB/bgOZuOxHwJHETiKcZUewuUorfEaJpOJ8MgooqOjadSwIWGhoYSEBBMSEkJw8PEvg4ODsdlsWK1WrFZrjeunuplMJt98sCIiFziFbrXoWB/m9Gdm8bfHHiUiqoGPqxMRqRuqgrWqkMzjduPxuPG4Pbg9brweT62+ltU/EItfIGa/AEy2ALD5gzUAw+qP2S8Qs38wluBIzMERWIIjsARFYAmJxBIUgcn660IGhteD11GC61Au7kNZuA7ux30wC6MoG+fBbLxuF2azmQ4dO9Ond9XcP0lJSXTp0gWLxVKr70lERM4ur9fLTz/9VD1P56o1a9m65Sc8bjdmixX/qCaYIppgjWqKNbIptgZNsUU0wRwUhsn867/5htuFp7wIj70Ij/0QHnsR3vKq696KMryuCkyuCnA7wVWB4arAW1mBp7ICt7O8Vt+T2WLBarFisVqwWKxYDodxFosCORGR09GrVxLv/Xdx9f/jK3SrRcf6ME0mE+agCEITL/NxdSIidYjFUvXFxHT40mw+fGnBZLb+7vbhS5P5N7etmMzmmvcfvjTb/DHZAjHZ/KoecxyGx4W3wl71hajsEJ7yIryHvxR57IcwyouhohhP2SEqy4owDG/1Yxs3jaNTx3g6duhA+/bt6datG926dSM4OPhcfHoiInKOORwONm7cyIYNG8jIyGDb9u1s3ZZB9v591Z3SJpMZW0g41uAICIzAFFT1Y445OLLqh53qLRKzfwicIPAyDAPD7cSorMDrqgCvB8Pr+d2lF4zDtz3uqr9TRx3nrbo0PBged83bXg/U8o9dIiIXssoDe3DsWIXdbicoKAg4vdBNEwycAbPFQmjiZQR37O/rUkRE6gQD4/hfGo7xpcLrrqzxJQGvB8Pjqfml4cjzeN0YLifeyqqOAcNVgcntBPfh20c6CCrLMY7xRSMoOJhG0bE0jo2hSXzLGvPxxMTE0KpVK9q1a1f9R1ZEROqHwMBA+vTpQ58+fWrsdzgcZGZm8vPPPx81H2hWdg45uT9SsC2forLSo57TZLFg9avqyDYd6ci2VnVkc/gHJLOff9X+3//YdNSPVtajfsQyW/1q/mhlsR5+3O9+tEKdbiIip8K0KxDHjlVn/nh1up3YsRLMpnHNyd7/i48rExGpH8xmMxarDesxTo+pmrfGQlBQEKGhoYSGBB+eL+f4c+WEhYXVmOxaYZqIiJwNDoejxkI9xcXFJ5x7tKS0lNKyqjlI7fYy3O6q+U7P1fQMIiJybA0aNiI7az9+flVT0ajT7Sxbl76W3bt3+7oMEZE65UwmgbZYLJjNxz9dVERE5HwVGBhIy5Ytadmy5Vl5/jNdiMjlcp2VekRELlQtWrSoDtxOl0K3MxB7eFlwERERERERXzCZTNU/UgUEBPi6HBEROQa1D4iIiIiIiIiIiNQyhW4iIiIiIiIiIiK1TKGbiIiIiIiIiIhILaszoVvLli0xmUw1thkzZpzwMRUVFUyYMIEGDRoQEhLC6NGjycvLO0cVi4iIiIiIiIhIfVVnQjeAJ554gpycnOrtrrvuOuHxkydP5qOPPmLx4sWsWLGC7OxsrrrqqnNUrYiIiIiIiIiI1Fd1avXS0NDQU141tLi4mFdffZVFixYxaNAgAObPn0/Hjh1ZvXo1vXv3PpulioiIiIiIiIhIPVanOt1mzJhBgwYN6NatG7NmzcLtdh/32HXr1uFyuRgyZEj1vg4dOtC8eXNWrVp1LsoVEREREREREZF6qs50ut199910796dqKgoVq5cybRp08jJyeFf//rXMY/Pzc3Fz8+PiIiIGvtjYmLIzc097us4nU6cTmf17eLiYgBKSkr++JsQEREREREREZE660g+ZBjGSY/1aeg2depUnnnmmRMes23bNjp06MCUKVOq93Xp0gU/Pz/uuOMOpk+fjr+/f63VNH36dP72t78dtT8uLq7WXkNEREREREREROqu0tJSwsPDT3iMyTiVaO4sKSgooLCw8ITHtG7dGj8/v6P2b9myhYSEBLZv3058fPxR93/55ZcMHjyYQ4cO1eh2a9GiBZMmTWLy5MnHfL3fd7p5vV4OHjxIgwYNMJlMp/jOpC4oKSkhLi6OX375hbCwMF+XIyKHaWyKnJ80NkXOTxqbIucnjc0Ll2EYlJaW0qRJE8zmE8/a5tNOt0aNGtGoUaMzeuzGjRsxm81ER0cf8/4ePXpgs9lYvnw5o0ePBiAjI4N9+/bRp0+f4z6vv7//UZ1zvz9FVS4sYWFh+kdQ5DyksSlyftLYFDk/aWyKnJ80Ni9MJ+twO6JOzOm2atUq1qxZw8CBAwkNDWXVqlVMnjyZm266icjISACysrIYPHgwr7/+OklJSYSHhzN+/HimTJlCVFQUYWFh3HXXXfTp00crl4qIiIiIiIiIyFlVJ0I3f39/3nrrLR5//HGcTietWrVi8uTJNeZ5c7lcZGRkUF5eXr1v9uzZmM1mRo8ejdPpJCUlhRdeeMEXb0FEREREREREROqROhG6de/endWrV5/wmJYtWx61ckRAQADPP/88zz///NksT+oof39/HnvssVpdiENE/jiNTZHzk8amyPlJY1Pk/KSxKeDjhRREREREREREREQuRCdeZkFEREREREREREROm0I3ERERERERERGRWqbQTUREREREREREpJYpdBMREREREREREallCt2kXnM6nSQmJmIymdi4cWON+3788Uf69etHQEAAcXFxzJw50zdFitQTe/bsYfz48bRq1YrAwEDatGnDY489RmVlZY3jNDZFfOP555+nZcuWBAQE0KtXL9auXevrkkTqjenTp9OzZ09CQ0OJjo5m1KhRZGRk1DimoqKCCRMm0KBBA0JCQhg9ejR5eXk+qlikfpoxYwYmk4lJkyZV79PYrN8Uukm99te//pUmTZoctb+kpIRhw4bRokUL1q1bx6xZs3j88cf597//7YMqReqH7du34/V6efnll9myZQuzZ8/mpZde4sEHH6w+RmNTxDfefvttpkyZwmOPPcb69evp2rUrKSkp5Ofn+7o0kXphxYoVTJgwgdWrV7Ns2TJcLhfDhg3DbrdXHzN58mQ++ugjFi9ezIoVK8jOzuaqq67yYdUi9Ut6ejovv/wyXbp0qbFfY7N+MxmGYfi6CBFf+PTTT5kyZQrvvvsunTt3ZsOGDSQmJgLw4osv8tBDD5Gbm4ufnx8AU6dO5YMPPmD79u0+rFqkfpk1axYvvvgiu3fvBjQ2RXylV69e9OzZk3nz5gHg9XqJi4vjrrvuYurUqT6uTqT+KSgoIDo6mhUrVtC/f3+Ki4tp1KgRixYt4k9/+hNQ9WNWx44dWbVqFb179/ZxxSIXtrKyMrp3784LL7zAk08+SWJiInPmzNHYFHW6Sf2Ul5fHbbfdRlpaGkFBQUfdv2rVKvr371/9pR4gJSWFjIwMDh06dC5LFanXiouLiYqKqr6tsSly7lVWVrJu3TqGDBlSvc9sNjNkyBBWrVrlw8pE6q/i4mKA6r+R69atw+Vy1RinHTp0oHnz5hqnIufAhAkTGDlyZI0xCBqbotBN6iHDMBgzZgx33nknF1988TGPyc3NJSYmpsa+I7dzc3PPeo0iApmZmcydO5c77rijep/Gpsi5d+DAATwezzHHnsadyLnn9XqZNGkSl1xyCQkJCQDVHeARERE1jtU4FTn73nrrLdavX8/06dOPuk9jUxS6yQVj6tSpmEymE27bt29n7ty5lJaWMm3aNF+XLFIvnOrY/K2srCyGDx/O1VdfzW233eajykVERM4/EyZM4KeffuKtt97ydSki9d4vv/zCPffcw5tvvklAQICvy5HzkNXXBYjUlnvvvZcxY8ac8JjWrVvz5ZdfsmrVKvz9/Wvcd/HFF3PjjTeycOFCYmNjj1pR5sjt2NjYWq1b5EJ3qmPziOzsbAYOHEjfvn2PWiBBY1Pk3GvYsCEWi+WYY0/jTuTcmjhxIh9//DHffPMNzZo1q94fGxtLZWUlRUVFNTpqNE5Fzq5169aRn59P9+7dq/d5PB6++eYb5s2bx2effaaxWc8pdJMLRqNGjWjUqNFJj3vuued48sknq29nZ2eTkpLC22+/Ta9evQDo06cPDz30EC6XC5vNBsCyZcuIj48nMjLy7LwBkQvUqY5NqOpwGzhwID169GD+/PmYzTUbsjU2Rc49Pz8/evTowfLlyxk1ahRQdXrb8uXLmThxom+LE6knDMPgrrvu4v333+frr7+mVatWNe7v0aMHNpuN5cuXM3r0aAAyMjLYt28fffr08UXJIvXC4MGD2bx5c419Y8eOpUOHDjzwwAPExcVpbNZzWr1U6r09e/bQqlWrGquXFhcXEx8fz7Bhw3jggQf46aefGDduHLNnz+b222/3bcEiF6isrCySk5Np0aIFCxcuxGKxVN935JdAjU0R33j77bdJTU3l5ZdfJikpiTlz5vDOO++wffv2o+Z6E5Ha95e//IVFixbx4YcfEh8fX70/PDycwMBAAP785z+zZMkSFixYQFhYGHfddRcAK1eu9EnNIvVVcnJy9eqloLFZ36nTTeQYwsPD+fzzz5kwYQI9evSgYcOGPProo/pSL3IWLVu2jMzMTDIzM2ucMgNVv/CDxqaIr1x77bUUFBTw6KOPkpubS2JiIkuXLlXgJnKOvPjii0DVl/nfmj9/fvUUDrNnz8ZsNjN69GicTicpKSm88MIL57hSEfk9jc36TZ1uIiIiIiIiIiIitUyrl4qIiIiIiIiIiNQyhW4iIiIiIiIiIiK1TKGbiIiIiIiIiIhILVPoJiIiIiIiIiIiUssUuomIiIiIiIiIiNQyhW4iIiIiIiIiIiK1TKGbiIiIiIiIiIhILVPoJiIiIiIiIiIiUssUuomIiIiIiIiIiNQyhW4iIiIiIiIiIiK1TKGbiIiIiBxTQUEBsbGxPP3009X7Vq5ciZ+fH8uXL/dhZSIiIiLnP5NhGIavixARERGR89OSJUsYNWoUK1euJD4+nsTERK688kr+9a9/+bo0ERERkfOaQjcREREROaEJEybwxRdfcPHFF7N582bS09Px9/f3dVkiIiIi5zWFbiIiIiJyQg6Hg4SEBH755RfWrVvHRRdd5OuSRERERM57mtNNRERERE5o165dZGdn4/V62bNnj6/LEREREakT1OkmIiIiIsdVWVlJUlISiYmJxMfHM2fOHDZv3kx0dLSvSxMRERE5ryl0ExEREZHjuv/++/nvf//Lpk2bCAkJYcCAAYSHh/Pxxx/7ujQRERGR85pOLxURERGRY/r666+ZM2cOaWlphIWFYTabSUtL49tvv+XFF1/0dXkiIiIi5zV1uomIiIiIiIiIiNQydbqJiIiIiIiIiIjUMoVuIiIiIiIiIiIitUyhm4iIiIiIiIiISC1T6CYiIiIiIiIiIlLLFLqJiIiIiIiIiIjUMoVuIiIiIiIiIiIitUyhm4iIiIiIiIiISC1T6CYiIiIiIiIiIlLLFLqJiIiIiIiIiIjUMoVuIiIiIiIiIiIitUyhm4iIiIiIiIiISC1T6CYiIiIiIiIiIlLL/j+nAOq4HP248QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f, ax = plt.subplots(2, 1, figsize=(15, 6))\n", "top_arm_geo.plot(z=0.0, ax=ax[0])\n", "bot_arm_geo.plot(z=0.0, ax=ax[0])\n", "ax[0].set_ylim(-5, 5)\n", "\n", "top_arm_geo.plot(z=wg_height, ax=ax[1])\n", "bot_arm_geo.plot(z=wg_height, ax=ax[1])\n", "_ = ax[1].set_ylim(-5, 5)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Set up Structures\n", "\n", "To make use of these new geometries, we need to load them into a tidy3d.Simulation as td.Structures with material properties.\n", "\n", "We'll define the substrate and waveguide mediums and then link them up with the Polyslabs." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:12.993536Z", "iopub.status.busy": "2023-03-27T21:52:12.993378Z", "iopub.status.idle": "2023-03-27T21:52:13.013967Z", "shell.execute_reply": "2023-03-27T21:52:13.013447Z" }, "tags": [] }, "outputs": [], "source": [ "# Permittivity of waveguide and substrate\n", "wg_n = 3.48\n", "sub_n = 1.45\n", "medium_wg = td.Medium(permittivity=wg_n**2)\n", "medium_sub = td.Medium(permittivity=sub_n**2)\n", "\n", "# Substrate\n", "substrate = td.Structure(\n", " geometry=substrate_geo, # td.Box(center=(0, 0, -td.inf/2), size=(td.inf, td.inf, td.inf)),\n", " medium=medium_sub,\n", ")\n", "\n", "# Waveguides (import all datatypes if gds_dtype not specified)\n", "top_arm = td.Structure(geometry=top_arm_geo, medium=medium_wg)\n", "\n", "bot_arm = td.Structure(geometry=bot_arm_geo, medium=medium_wg)\n", "\n", "structures = [substrate, top_arm, bot_arm]\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Set up Simulation\n", "\n", "Now let's set up the rest of the Simulation." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:13.016152Z", "iopub.status.busy": "2023-03-27T21:52:13.016012Z", "iopub.status.idle": "2023-03-27T21:52:13.037704Z", "shell.execute_reply": "2023-03-27T21:52:13.037241Z" }, "tags": [] }, "outputs": [ { "data": { "text/html": [ "
[15:59:09] WARNING: No sources in simulation.                                       log.py:50\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:59:09]\u001b[0m\u001b[2;36m \u001b[0mWARNING: No sources in simulation. \u001b]8;id=763325;file:///home/weiliang/Documents/tidy3d-core/tidy3d_frontend/tidy3d/log.py\u001b\\\u001b[2mlog.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=258110;file:///home/weiliang/Documents/tidy3d-core/tidy3d_frontend/tidy3d/log.py#50\u001b\\\u001b[2m50\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Simulation size along propagation direction\n", "sim_length = 2 + 2 * bend_length + coup_length\n", "\n", "# Spacing between waveguides and PML\n", "pml_spacing = 1\n", "sim_size = (\n", " np.ceil(sim_length),\n", " np.ceil(wg_spacing_in + wg_width + 2 * pml_spacing),\n", " np.ceil(wg_height + 2 * pml_spacing),\n", ")\n", "\n", "# grid size in each direction\n", "dl = 0.020\n", "\n", "### Initialize and visualize simulation ###\n", "sim = td.Simulation(\n", " size=sim_size,\n", " grid_spec=td.GridSpec.uniform(dl=dl),\n", " structures=structures,\n", " run_time=2e-12,\n", " boundary_spec=td.BoundarySpec.all_sides(boundary=td.PML()),\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note: Tidy3D is warning us that our Simulation does not contain sources. In this case, since we are using the simulation as a demonstration and are not running any simulations, we may safely ignore this warning throughout this notebook." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plot Simulation Geometry\n", "\n", "Let's take a look at the simulation all together with the PolySlabs added. Here the angle of the sidewall deviating from the vertical direction is 30 degree." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T21:52:13.039774Z", "iopub.status.busy": "2023-03-27T21:52:13.039631Z", "iopub.status.idle": "2023-03-27T21:52:13.325482Z", "shell.execute_reply": "2023-03-27T21:52:13.324989Z" }, "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABXwAAAEdCAYAAAC/lq+3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACAX0lEQVR4nO3dd3wUZf4H8M9sTU82PYGQQOgdQ5feFUtOjrNRD+FEwMN4J6AcCKjooYIN0PsJsXEi3gkqHp3QQUBQWkJPIL3tbrJJts38/ghZsqaHZDfl83699uXuzPPMfGdmDbvffeb7CJIkSSAiIiIiIiIiIiKiRk/m7ACIiIiIiIiIiIiIqG4w4UtERERERERERETURDDhS0RERERERERERNREMOFLRERERERERERE1EQw4UtERERERERERETURDDhS0RERERERERERNREMOFLRERERERERERE1EQw4UtERERERERERETURDDhS0RERERERERERNREMOFLRERERERERI1SXFwcBEFAXFycs0MhImowmPAlIiIiIiIiogZt7dq1iI2NdXYYtbJp0yasWbPG2WHY+fTTT9GpUye4uLigXbt2+OCDD6rVLz8/H0uXLsW4cePg6+sLQRAqvS6XLl3CuHHj4OHhAV9fX0yePBmZmZl1dBREVBFBkiTJ2UEQEREREREREVWka9eu8Pf3LzOSVxRFmEwmqFQqyGQNc0zbQw89hPPnz+PmzZvODgUA8PHHH+PZZ5/FhAkTMHbsWBw6dAhffPEF3nzzTSxYsKDSvjdv3kTr1q3RqlUrtGnTBnFxcdi4cSOmTZtWpu3t27fRq1cveHt74/nnn0d+fj7efvtttGrVCj///DNUKlU9HSERKZwdABERERERERFVzWAwwN3d3dlhNCgymQwuLi7ODqPRKCwsxCuvvILx48fj22+/BQDMnDkToihixYoVmDVrFjQaTYX9Q0JCkJqaiuDgYJw6dQp9+vSpsO0bb7wBg8GA06dPo1WrVgCAvn37YvTo0YiNjcWsWbPq9uCIyKZh/vxFRERERERE1IQlJydjxowZCA0NhVqtRuvWrTF79myYTCYAQGxsLARBwIEDB/Dcc88hMDAQLVu2tPVfu3YtunTpArVajdDQUMyZMwdardZuH1euXMGECRMQHBwMFxcXtGzZEk888QR0Op2tze7duzFo0CD4+PjAw8MDHTp0wMsvv1xl/NXpZzQasXTpUrRt2xZqtRphYWF46aWXYDQay2zvyy+/RN++feHm5gaNRoMhQ4Zg165dAICIiAhcuHABBw4cgCAIEAQBw4YNA1BxDd8tW7YgKioKrq6u8Pf3x6RJk5CcnGzXZtq0afDw8EBycjKio6Ph4eGBgIAA/O1vf4PVaq3yHGzbtg3jx4+3XcPIyEisWLHCru+wYcOwfft2JCYm2mKPiIiocJsbN26EIAjYsGGD3fI33ngDgiDgp59+qjKuyuzfvx/Z2dl47rnn7JbPmTMHBoMB27dvr7S/Wq1GcHBwtfb1n//8Bw899JAt2QsAo0aNQvv27fHNN9/UPHgiqjaO8CUiIiIiIiJyoJSUFPTt2xdarRazZs1Cx44dkZycjG+//RYFBQV2t7o/99xzCAgIwJIlS2AwGAAAr776KpYtW4ZRo0Zh9uzZSEhIwLp163Dy5EkcOXIESqUSJpMJY8eOhdFoxLx58xAcHIzk5GT8+OOP0Gq18Pb2xoULF/DQQw+he/fuWL58OdRqNa5evYojR45UGn91+omiiEceeQSHDx/GrFmz0KlTJ5w7dw6rV6/G5cuXsXXrVlvbZcuW4dVXX8XAgQOxfPlyqFQqnDhxAvv27cOYMWOwZs0azJs3Dx4eHnjllVcAAEFBQRXGFxsbi+nTp6NPnz5YuXIl0tPT8d577+HIkSM4c+YMfHx8bG2tVivGjh2Lfv364e2338aePXvwzjvvIDIyErNnz670PMTGxsLDwwMxMTHw8PDAvn37sGTJEuj1eqxatQoA8Morr0Cn0+H27dtYvXo1AMDDw6PCbU6fPh3//e9/ERMTg9GjRyMsLAznzp3DsmXLMGPGDDz44IO2trm5udVKTLu5ucHNzQ0AcObMGQBA79697dpERUVBJpPhzJkzmDRpUpXbrEpycjIyMjLK7AcoHuV7r4lrIqqCREREREREREQOM2XKFEkmk0knT54ss04URUmSJGnjxo0SAGnQoEGSxWKxrc/IyJBUKpU0ZswYyWq12pZ/+OGHEgBpw4YNkiRJ0pkzZyQA0pYtWyqMY/Xq1RIAKTMzs0bxV6ffF198IclkMunQoUN2y9evXy8BkI4cOSJJkiRduXJFkslk0h/+8Ae745Gku+dCkiSpS5cu0tChQ8vsZ//+/RIAaf/+/ZIkSZLJZJICAwOlrl27SoWFhbZ2P/74owRAWrJkiW3Z1KlTJQDS8uXL7bbZq1cvKSoqqvKTIElSQUFBmWV/+ctfJDc3N6moqMi2bPz48VJ4eHiV2yuRmpoq+fr6SqNHj5aMRqPUq1cvqVWrVpJOp7NrFx4eLgGo8rF06VJbnzlz5khyubzc/QYEBEhPPPFEteM8efKkBEDauHFjhes+//zzMuv+/ve/SwDszhER1S2WdCAiIiIiIiJyEFEUsXXrVjz88MPljn4UBMHu9cyZMyGXy22v9+zZA5PJhPnz59tNUjZz5kx4eXnZbsn39vYGAOzcuRMFBQXlxlIy0nXbtm0QRbHax1Cdflu2bEGnTp3QsWNHZGVl2R4jRowAUFxaAAC2bt0KURSxZMmSMpOu/f5cVMepU6eQkZGB5557zq627/jx49GxY8dySxY8++yzdq8HDx6M69evV7kvV1dX2/O8vDxkZWVh8ODBKCgoQHx8fI1jLxEcHIyPPvoIu3fvxuDBg3H27Fls2LABXl5edu2++uor7N69u8rHlClTbH0KCwsrnCzNxcUFhYWFtY67tJLtqNXqcvdTug0R1T2WdCAiIiIiIiJykMzMTOj1enTt2rVa7Vu3bm33OjExEQDQoUMHu+UqlQpt2rSxrW/dujViYmLw7rvv4quvvsLgwYPxyCOPYNKkSbZk8OOPP47/+7//wzPPPIOFCxdi5MiReOyxx/DHP/6xTPK1tOr0u3LlCi5duoSAgIByt5GRkQEAuHbtGmQyGTp37lyt81GVis4PAHTs2BGHDx+2W+bi4lImRo1Gg9zc3Cr3deHCBSxevBj79u2DXq+3W1e6TnJtPPHEE/jyyy+xfft2zJo1CyNHjizT5v7776/xdl1dXW11on+vqKjILol9L0q2U1695qKiIrs2RFT3mPAlIiIiIiIiaqDuJSn2zjvvYNq0adi2bRt27dqF559/HitXrsTx48fRsmVLuLq64uDBg9i/fz+2b9+OHTt2YPPmzRgxYgR27dplN7L49zFV1U8URXTr1g3vvvtuudsICwur9XHVpYqOsSparRZDhw6Fl5cXli9fjsjISLi4uOCXX37BggULajRiujzZ2dk4deoUAODixYsQRbFMEj4zM7NaNXw9PDxsdYNDQkJgtVqRkZGBwMBAWxuTyYTs7GyEhobeU9wlQkJCAACpqall1qWmpsLX17fc0b9EVDdY0oGIiIiIiIjIQQICAuDl5YXz58/Xqn94eDgAICEhwW65yWTCjRs3bOtLdOvWDYsXL8bBgwdx6NAhJCcnY/369bb1MpkMI0eOxLvvvouLFy/i9ddfx759+2wlFypSVb/IyEjk5ORg5MiRGDVqVJlHyQjcyMhIiKKIixcvVrq/6pZ3qOj8lCz7/fmprbi4OGRnZyM2NhZ//etf8dBDD2HUqFHQaDRl2tamNMWcOXOQl5eHlStX4vDhw1izZk2ZNn369EFISEiVj7ffftvWp2fPngBgSyaXOHXqFERRtK2/Vy1atEBAQECZ/QDAzz//XGf7IaLyMeFLRERERERE5CAymQzR0dH44Ycfyk2GSZJUaf9Ro0ZBpVLh/ffft2v76aefQqfTYfz48QAAvV4Pi8Vi17dbt26QyWS22+xzcnLKbL8kEVferfglqtPvT3/6E5KTk/Gvf/2rTNvCwkIYDAYAQHR0NGQyGZYvX15mVGzp43N3d4dWq60wphK9e/dGYGAg1q9fb3cM//vf/3Dp0iXb+blXJSODS8doMpmwdu3aMm3d3d1rVOLh22+/xebNm/Hmm29i4cKFeOKJJ7B48WJcvnzZrl1taviOGDECvr6+WLdund221q1bBzc3N7vzk5WVhfj4+AprQFdlwoQJ+PHHH3Hr1i3bsr179+Ly5cuYOHFirbZJRNXDkg5EREREREREDvTGG29g165dGDp0KGbNmoVOnTohNTUVW7ZsweHDh22TopUnICAAixYtwrJlyzBu3Dg88sgjSEhIwNq1a9GnTx9MmjQJALBv3z7MnTsXEydORPv27WGxWPDFF19ALpdjwoQJAIDly5fj4MGDGD9+PMLDw5GRkYG1a9eiZcuWGDRoUIUxVKff5MmT8c033+DZZ5/F/v37cf/998NqtSI+Ph7ffPMNdu7cid69e6Nt27Z45ZVXsGLFCgwePBiPPfYY1Go1Tp48idDQUKxcuRIAEBUVhXXr1uG1115D27ZtERgYaJsArjSlUom33noL06dPx9ChQ/Hkk08iPT0d7733HiIiIvDCCy/U9rLZGThwIDQaDaZOnYrnn38egiDgiy++KDdhHxUVhc2bNyMmJgZ9+vSBh4cHHn744XK3m5GRgdmzZ2P48OGYO3cuAODDDz/E/v37MW3aNBw+fNhW2qG2NXxXrFiBOXPmYOLEiRg7diwOHTqEL7/8Eq+//jp8fX1tbT/88EMsW7YM+/fvx7Bhw+yWa7VapKSkAAB++OEH3L59GwAwb948W43ol19+GVu2bMHw4cPx17/+Ffn5+Vi1ahW6deuG6dOn1zh2IqoBiYiIiIiIiIgcKjExUZoyZYoUEBAgqdVqqU2bNtKcOXMko9EoSZIkbdy4UQIgnTx5stz+H374odSxY0dJqVRKQUFB0uzZs6Xc3Fzb+uvXr0t//vOfpcjISMnFxUXy9fWVhg8fLu3Zs8fWZu/evdKjjz4qhYaGSiqVSgoNDZWefPJJ6fLly5XGXt1+JpNJeuutt6QuXbpIarVa0mg0UlRUlLRs2TJJp9PZtd2wYYPUq1cvW7uhQ4dKu3fvtq1PS0uTxo8fL3l6ekoApKFDh0qSJEn79++XAEj79++3297mzZtt2/P19ZWefvpp6fbt23Ztpk6dKrm7u5c5vqVLl0rVSZccOXJE6t+/v+Tq6iqFhoZKL730krRz584y8eTn50tPPfWU5OPjIwGQwsPDK9zmY489Jnl6eko3b960W75t2zYJgPTWW29VGVd1fPLJJ1KHDh0klUolRUZGSqtXr5ZEUbRrU3Iefn9uw8PDJQDlPm7cuGHX9vz589KYMWMkNzc3ycfHR3r66aeltLS0OjkGIqqYIElV3C9CRERERERERERERI0Ca/gSERERERERERERNRFM+BIRERERERERERE1EUz4EhERERERERERETURTPgSERERETUxBw8exMMPP4zQ0FAIgoCtW7dW2ScuLg733Xcf1Go12rZti9jY2HqPk4iIiIjqHhO+RERERERNjMFgQI8ePfDRRx9Vq/2NGzcwfvx4DB8+HGfPnsX8+fPxzDPPYOfOnfUcKRERERHVNUGSJMnZQRARERERUf0QBAHfffcdoqOjK2yzYMECbN++HefPn7cte+KJJ6DVarFjxw4HRElEREREdUXh7ACIiIiIiMi5jh07hlGjRtktGzt2LObPn19hH6PRCKPRaHstiiJycnLg5+cHQRDqK1QiIiKiZkGSJOTl5SE0NBQyWc2KNDDhS0RERETUzKWlpSEoKMhuWVBQEPR6PQoLC+Hq6lqmz8qVK7Fs2TJHhUhERETULN26dQstW7asUR8mfImIGqC4uDgMHz4c+/fvx7Bhw5wdDhERURmLFi1CTEyM7bVOp0OrVq1w69YteHl5OTEyIiIiosZPr9cjLCwMnp6eNe7LhC8RkROtXbsWbm5umDZtmrNDqbFNmzYhIyOj0tt9HUUURbz99ttYt24dUlNT0b59eyxatAhPPvlklX1TU1Px3nvv4cSJEzh16hTy8/MrTLTv2rULmzdvxokTJ3Dp0iWEhYXh5s2bdX9AREQOFhwcjPT0dLtl6enp8PLyKnd0LwCo1Wqo1eoyy728vJjwJSIiIqojtSmVVbMCEEREVKfWrl2L2NjYMsuHDBmCwsJCDBkyxPFBVdOmTZuwZs0aZ4cBAHjllVewYMECjB49Gh988AFatWqFp556Cl9//XWVfRMSEvDWW28hOTkZ3bp1q7Ttpk2bsGnTJnh7eyM0NLSuwicicroBAwZg7969dst2796NAQMGOCkiIiIiIqotJnyJyOkMBoOzQ2hwZDIZXFxcalyYvTlKTk7GO++8gzlz5uCTTz7BzJkz8cMPP2Dw4MH4+9//DqvVWmn/qKgoZGdn4/Lly3a3JpfnjTfegF6vx5EjR9CjR4+6PAwiojqVn5+Ps2fP4uzZswCAGzdu4OzZs0hKSgJQXI5hypQptvbPPvssrl+/jpdeegnx8fFYu3YtvvnmG7zwwgvOCJ+IiIiI7gEzCURUp5KTkzFjxgyEhoZCrVajdevWmD17NkwmEwAgNjYWgiDgwIEDeO655xAYGGhXfHzt2rXo0qUL1Go1QkNDMWfOHGi1Wrt9XLlyBRMmTEBwcDBcXFzQsmVLPPHEE9DpdLY2u3fvxqBBg+Dj4wMPDw906NABL7/8cpXxV6ef0WjE0qVL0bZtW6jVaoSFheGll16ym6m8xJdffom+ffvCzc0NGo0GQ4YMwa5duwAAERERuHDhAg4cOABBECAIgq2MQFxcHARBQFxcnN32tmzZgqioKLi6usLf3x+TJk1CcnKyXZtp06bBw8MDycnJiI6OhoeHBwICAvC3v/2tyuQnAGzbtg3jx4+3XcPIyEisWLHCru+wYcOwfft2JCYm2mKPiIiocJvTpk2ztfv949VXX60ypqriNZvNeO6552zLBEHA7Nmzcfv2bRw7dqzS/p6envD19a3WvkJDQ6FUKu8pXiIiRzh16hR69eqFXr16AQBiYmLQq1cvLFmyBEBxOZuS5C8AtG7dGtu3b8fu3bvRo0cPvPPOO/i///s/jB071inxExEREVHtsYYvEdWZlJQU9O3bF1qtFrNmzULHjh2RnJyMb7/9FgUFBVCpVLa2zz33HAICArBkyRLbCN9XX30Vy5Ytw6hRozB79mwkJCRg3bp1OHnyJI4cOQKlUgmTyYSxY8fCaDRi3rx5CA4ORnJyMn788UdotVp4e3vjwoULeOihh9C9e3csX74carUaV69exZEjRyqNvzr9RFHEI488gsOHD2PWrFno1KkTzp07h9WrV+Py5cvYunWrre2yZcvw6quvYuDAgVi+fDlUKhVOnDiBffv2YcyYMVizZg3mzZsHDw8PvPLKKwBQZob00mJjYzF9+nT06dMHK1euRHp6Ot577z0cOXIEZ86cgY+Pj62t1WrF2LFj0a9fP7z99tvYs2cP3nnnHURGRmL27NmVnofY2Fh4eHggJiYGHh4e2LdvH5YsWQK9Xo9Vq1YBKC6hoNPpcPv2baxevRoA4OHhUeE2//KXv2DUqFF2y3bs2IGvvvoKgYGBtmVZWVmVxlbC09PTVjfyzJkzcHd3R6dOneza9O3b17Z+0KBB1douEVFTMWzYMEiSVOH68soJDRs2DGfOnKnHqIiIiIjIISQiojoyZcoUSSaTSSdPniyzThRFSZIkaePGjRIAadCgQZLFYrGtz8jIkFQqlTRmzBjJarXaln/44YcSAGnDhg2SJEnSmTNnJADSli1bKoxj9erVEgApMzOzRvFXp98XX3whyWQy6dChQ3bL169fLwGQjhw5IkmSJF25ckWSyWTSH/7wB7vjkaS750KSJKlLly7S0KFDy+xn//79EgBp//79kiRJkslkkgIDA6WuXbtKhYWFtnY//vijBEBasmSJbdnUqVMlANLy5cvtttmrVy8pKiqq8pMgSVJBQUGZZX/5y18kNzc3qaioyLZs/PjxUnh4eJXbK8+VK1ckb29vafTo0XbvAwDVemzcuNEujjZt2pTZh8FgkABICxcurHZcW7ZssTvvlbmX4yciaop0Op0EQNLpdM4OhYiIiKjRu5fPVizpQER1QhRFbN26FQ8//DB69+5dZv3vZ5WcOXMm5HK57fWePXtgMpkwf/58u7q1M2fOhJeXF7Zv3w4A8Pb2BgDs3LkTBQUF5cZSMtJ127ZtEEWx2sdQnX5btmxBp06d0LFjR2RlZdkeI0aMAADs378fALB161aIooglS5aUqcNbmxk2T506hYyMDDz33HNwcXGxLR8/fjw6duxoOz+lPfvss3avBw8ejOvXr1e5r9Kzsefl5SErKwuDBw9GQUEB4uPjaxz77xkMBvzhD3+ARqPBv//9b7v3we7du6v1KH2LcWFhYbmzxJecp8LCwnuOmYiIiIiIiKixYEkHIqoTmZmZ0Ov16Nq1a7Xat27d2u51YmIiAKBDhw52y1UqFdq0aWNb37p1a8TExODdd9/FV199hcGDB+ORRx7BpEmTbMngxx9/HP/3f/+HZ555BgsXLsTIkSPx2GOP4Y9//GOlk6BVp9+VK1dw6dIlBAQElLuNjIwMAMC1a9cgk8nQuXPnap2PqlR0fgCgY8eOOHz4sN0yFxeXMjFqNBrk5uZWua8LFy5g8eLF2LdvH/R6vd260nWSa2vmzJm4du0ajh49Cj8/P7t1vy/7UB2urq7l1k8uKiqyrSciIiIiIiJqLpjwJSKnuJck3DvvvINp06Zh27Zt2LVrF55//nmsXLkSx48fR8uWLeHq6oqDBw9i//792L59O3bs2IHNmzdjxIgR2LVrl92I0t/HVFU/URTRrVs3vPvuu+VuIywsrNbHVZcqOsaqaLVaDB06FF5eXli+fDkiIyPh4uKCX375BQsWLKjRiOnyvPfee/j3v/+NL7/8Ej179iyzPi0trVrb8fb2tr2HQkJCsH//fkiSZDd6OjU1FUDxRGtEREREREREzQVLOhBRnQgICICXlxfOnz9fq/7h4eEAgISEBLvlJpMJN27csK0v0a1bNyxevBgHDx7EoUOHkJycjPXr19vWy2QyjBw5Eu+++y4uXryI119/Hfv27bOVXKhIVf0iIyORk5ODkSNHYtSoUWUeJSNwIyMjIYoiLl68WOn+qlveoaLzU7Ls9+entuLi4pCdnY3Y2Fj89a9/xUMPPYRRo0ZBo9GUaVvT0hSHDh3C3/72N8yfPx9PP/10uW1CQkKq9di8ebOtT8+ePVFQUIBLly7ZbevEiRO29URERERERETNBRO+RFQnZDIZoqOj8cMPP+DUqVNl1kuVzBQOFN/Kr1Kp8P7779u1/fTTT6HT6TB+/HgAgF6vh8VisevbrVs3yGQy2239OTk5ZbZfkvQr79b/EtXp96c//QnJycn417/+VaZtYWEhDAYDACA6OhoymQzLly8vMyq29PG5u7tDq9VWGFOJ3r17IzAwEOvXr7c7hv/973+4dOmS7fzcq5KRwaVjNJlMWLt2bZm27u7u1S7xkJqaij/96U8YNGgQVq1aVWG72tTwffTRR6FUKu1ilCQJ69evR4sWLTBw4EC7OOLj42E2m6sVNxEREREREVFjw5IORFRn3njjDezatQtDhw7FrFmz0KlTJ6SmpmLLli04fPiwbVK08gQEBGDRokVYtmwZxo0bh0ceeQQJCQlYu3Yt+vTpg0mTJgEA9u3bh7lz52LixIlo3749LBYLvvjiC8jlckyYMAEAsHz5chw8eBDjx49HeHg4MjIysHbtWrRs2RKDBg2qMIbq9Js8eTK++eYbPPvss9i/fz/uv/9+WK1WxMfH45tvvsHOnTvRu3dvtG3bFq+88gpWrFiBwYMH47HHHoNarcbJkycRGhqKlStXAgCioqKwbt06vPbaa2jbti0CAwNtE8CVplQq8dZbb2H69OkYOnQonnzySaSnp+O9995DREQEXnjhhdpeNjsDBw6ERqPB1KlT8fzzz0MQBHzxxRflJuyjoqKwefNmxMTEoE+fPvDw8MDDDz9c7naff/55ZGZm4qWXXsLXX39tt6579+7o3r07gNrV8G3ZsiXmz5+PVatWwWw2o0+fPti6dSsOHTqEr776yq68xaJFi/DZZ5/hxo0biIiIsC1/7bXXABTXLwaAL774wlYXefHixbZ2v/32G77//nsAwNWrV6HT6Wx9e/ToUeHxExERERERETmMRERUhxITE6UpU6ZIAQEBklqtltq0aSPNmTNHMhqNkiRJ0saNGyUA0smTJ8vt/+GHH0odO3aUlEqlFBQUJM2ePVvKzc21rb9+/br05z//WYqMjJRcXFwkX19fafjw4dKePXtsbfbu3Ss9+uijUmhoqKRSqaTQ0FDpySeflC5fvlxp7NXtZzKZpLfeekvq0qWLpFarJY1GI0VFRUnLli2TdDqdXdsNGzZIvXr1srUbOnSotHv3btv6tLQ0afz48ZKnp6cEQBo6dKgkSZK0f/9+CYC0f/9+u+1t3rzZtj1fX1/p6aeflm7fvm3XZurUqZK7u3uZ41u6dKlUnT/7R44ckfr37y+5urpKoaGh0ksvvSTt3LmzTDz5+fnSU089Jfn4+EgApPDw8Aq3OXToUAlAuY+lS5dWGVNVrFar9MYbb0jh4eGSSqWSunTpIn355Zdl2k2dOlUCIN24ccNueUWx/f58lbx/y3tMnTr1no+DiKgx0+l0EoAy/xYSERERUc3dy2crQZKquM+aiIiIiIioCnq9Ht7e3tDpdPDy8nJ2OERERESN2r18tmINXyIiIiIiIiIiIqImgglfIiIiIiIiIiIioiaCCV8iIiIiIiIiIiKiJoIJXyIiIiIiIiIiIqImgglfIiIiIiIiIiIioiaCCV8iIiIiIiIiIiKiJkLh7AAaOlEUkZKSAk9PTwiC4OxwiIiIiBo1SZKQl5eH0NBQyGQce0BEREREVNeY8K1CSkoKwsLCnB0GERERUZNy69YttGzZ0tlhEBERERE1OUz4VsHT0xMA8NJLL0GlUsFiscDDwwO+vr7VGvFrNpuh1WqhUCjg4+Nzz6OEJUmCVquFxWKBj48PlEplvfSpisFggMFggLu7O9zd3eutT2Vqc255Pe6tT2V4Pe7i9SjG63EXr8ddvB7FmtP1MJvNyMrKAgAIgoDCwkL885//tH3GIiIiIiKiusWEbxVKvtCpVCooFAoolUoEBARArVZXq7+rqytcXV2Rm5uLoqIiaDSaWn9JlCQJubm5UCgUCAgIqNEXvdIxuLq63tOXRIPBAKvVCn9//xp98S45F/n5+RBF8Z6+tJvNZuTl5cHDw6NG55TXwz4GXo+7cfB68Hr8PgZej7tx8Hrwevw+hppcD4VCARcXFwiCAJlMBkmSAIClsoiIiIiI6okglXzqpnLp9Xp4e3tj0aJFcHFxgUwmg0ajgUJRs1y5KIowmUwQBAEqlarGX3IkSYLJZIIkSVCpVLWqeVcX27BYLDCbzVAqlTU+B3W1jXs9l3WxDV6Pu3g97uL1KMbrcRevx128HsWa4/WwWCzQarW2hG9BQQFWrFgBnU4HLy+vWu2bGqaSz828tkRERET37l4+W3GEbzW5u7sjMDAQJpMJDz74ILy9vZ0dEhEREVGDp9Pp8NNPP0GtVkOpVEKv1zs7JCIiIiKiJq3RJHxfffVVLFu2zG5Zhw4dEB8fX2GfLVu24B//+Adu3ryJdu3a4a233sKDDz5Yq/37+vpCpVJBFEV4e3vD19e3VtshIiIiam5KymKpVCpnh0JERERE1OTV/B5AJ+rSpQtSU1Ntj8OHD1fY9ujRo3jyyScxY8YMnDlzBtHR0YiOjsb58+drtW/WmSMiIiK6NyaTCVqt1tlhEBERERE1aY0q4atQKBAcHGx7+Pv7V9j2vffew7hx4/D3v/8dnTp1wooVK3Dffffhww8/dGDERERERAQUT5iXlZVV65rBRERERERUPY0q4XvlyhWEhoaiTZs2ePrpp5GUlFRh22PHjmHUqFF2y8aOHYtjx47Vd5hEREREVIooisjNzYVSqYSPj4+zwyEiIiIiatIaTcK3X79+iI2NxY4dO7Bu3TrcuHEDgwcPRl5eXrnt09LSEBQUZLcsKCgIaWlple7HaDRCr9fbPYiIiIio9kwmExQKBfz8/Fgmi4iIiIionjWae+oeeOAB2/Pu3bujX79+CA8PxzfffIMZM2bU2X5WrlxZZnI4IiIiIqo9QRCg0WggkzWasQZERERERI1Wo/3U7ePjg/bt2+Pq1avlrg8ODkZ6errdsvT0dAQHB1e63UWLFkGn09ket27dqrOYiYiIiJojlUrFkb1ERERERA7SaBO++fn5uHbtGkJCQspdP2DAAOzdu9du2e7duzFgwIBKt6tWq+Hl5WX3ICIiIqLas1qtzg6BiIiIiKjZaDQJ37/97W84cOAAbt68iaNHj+IPf/gD5HI5nnzySQDAlClTsGjRIlv7v/71r9ixYwfeeecdxMfH49VXX8WpU6cwd+5cZx0CERERUbNkNpthMBicHQYRERERUbPQaGr43r59G08++SSys7MREBCAQYMG4fjx4wgICAAAJCUl2dWFGzhwIDZt2oTFixfj5ZdfRrt27bB161Z07drVWYdARERE1CwplUrk5+dDoWg0Hz2JiIiIiBqtRvOp++uvv650fVxcXJllEydOxMSJE+spIiIiIiKqDoVCAQ8PD+j1etbyJSIiIiKqZ42mpAMRERERNV7u7u7w8vJiaQciIiIionrGhC8REREROYSnpyfc3d2dHQYRERERUZPGhG81cTQKERER0b1jwpeIiIiIqH4x4VtNBoOBSV8iIiIiIiIiIiJq0BrNpG3O5iKTQ5+rg5tKBe3py5DcPKrfWQAEmQBBJgNkMghyGQSZDIJMAOSlXxc/x522JcshFyDI5BDkd7Zh116AIJfX34ETERFRoyKJIiSrCEmUgJLnVhGSKN55LRW3EUXgznLb+lLrJKsIiNLd9VYRkKTi7daAriAfFkMhzEYLIFfAbMivpyMnIiIiIiKACd9qE3ILoXRVochoRtr3R5BnbWCDowWhOEGskEOmUkCmUkKmVt79r1oJue21CjK1ovi/d9bL3dRQerlD4ekGhZcbZEq+NYiIiOqbJEmw5hfCnFcAi74AlvxCiEUmiEYzRJMZVqMJotEC0WiCaDIXLy95lH5tsUCySoAkAjXLx9Y7g1yE2bsAkijAAgFFxkJnh0RERERE1KQxq1cDalEGo9DAvkWVkCRIFiskixVikemeNydzVUN5J/mr8HKDwtMdSi83W0JY6eVe/F8fz+KRykRERGRjLSiCSZsPi95QnMjNK4BZX1D8uvTz/EKghiNmiYiIiIiIKsOEbw3Jm8l3MrHQCGOhEcaM3ErbCUo51AE+UAdpoA70Lf5vkAYuwb6Qu6odFC0REZHjSaIIU6YORek5MKbnwpiRW/zf9FxY8gqcHR4RAOCjjz7CqlWrkJaWhh49euCDDz5A3759y20bGxuL6dOn2y1Tq9UoKipyRKhEREREVEeY8KV7IpmtKErJRlFKtv0KAVAF+MAtPBhu4UFwCw+Ca1gQZCq+5YiIqHEyZuSiIDEdBYlpKEhMR9GtDIgmi7PDIqrQ5s2bERMTg/Xr16Nfv35Ys2YNxo4di4SEBAQGBpbbx8vLCwkJCbbXgsA7uYiIiIgaG2bfqknl6wWViwtgtcCvVw94q91q1P/u5Ci/nyjld5Oh2CZKkUpNrlIy0YpkN/HK77cBqwjRKkI0mgFRrKczUd0DBkwZWpgytNCejC9eJpPBJdQP7q1D4NkpHB4dwjgKmIiIGiRJklB4KwN5F24i/8ptFCalw1pgdHZYZQmATKWEoJDfney19ASxcqH4tW2Z8Lv1pSeIlZWaHFYoNZnsndfy4glkgZolAHXGAiiu/QqVXAGlXA6jQVk/54LKePfddzFz5kzbqN3169dj+/bt2LBhAxYuXFhuH0EQEBwc7MgwiYiIiKiOMeFbTWo/L6hdXSEVFSFgeC/4+vo6O6RKiRZrqYld7Cd6sf5+ohejGZb84vqCFv2duoJ5Bkhmax0HJaLodiaKbmci+9BvgEwG9zYh8OwcAc/O4XANC+QoEiIichpzXgHyLyZCf/Em8uOT6r8sgyBA4e4CxZ26+ApPNyi93CBzVUOmKj3ZaqmHSgmZS6lJWFWKBv9vpyonB8qsq1C7uEClUsGokzs7pGbBZDLh9OnTWLRokW2ZTCbDqFGjcOzYsQr75efnIzw8HKIo4r777sMbb7yBLl26lNvWaDTCaLz7Q4her6+7AyAiIiKiWmPCt4mSKeSQKeSAu0utt2EtNBYngPPuTDijL7gzi3jxa1NuHozpuZDMtbydVRRhuJoMw9VkpH1/BApPN3h1bQ1Nv85wb9eiwX+BJSKixs+szUfuz5eg/eUyCm9lAHVRq18AlBpPqAN8oPAqPenpnQlPS557uhaPqCWqB1lZWbBarQgKCrJbHhQUhPj4+HL7dOjQARs2bED37t2h0+nw9ttvY+DAgbhw4QJatmxZpv3KlSuxbNmyeomfiIiIiGqPCV+qkNxVDbmrGuogTYVtJEmC+U7it2TCmqK0HBTeyoDVULMJPix5Bcg5dgE5xy5A5ecFTb/O0PTvBLW/zz0eCRER0V2i2QLd2avIPXERefFJgFjLLK9MBtcW/nAJ8YU66M7EpYHFD9asp8ZowIABGDBggO31wIED0alTJ3z88cdYsWJFmfaLFi1CTEyM7bVer0dYWJhDYiUiIiKiivHbCN0TQRCK6xv7esGzU7jdOmOWFgU301F4Z3KbwlsZxfWFq8GUrUf6T8eR/r/jcI9sAU2/zvCJag+5i6o+DoOIiJoBw7UU5By/AO0vVyAW1rAerwCoAzXFk5CGB8MtIhiuLQMgU/KjFDVM/v7+kMvlSE9Pt1uenp5e7Rq9SqUSvXr1wtWrV8tdr1aroVZzPgYiIiKihobfUqjeqP19oPb3gaZ3BwDFE9cV3s5E3sVE5F28CcP11Konl5NgK/uQ+t1B+A3pgYDhvaDwrNmkeURE1DxJogTdr1eRseskChPTq+5Qisqv+MdMz84R8GjfEnK32pdJInI0lUqFqKgo7N27F9HR0QAAURSxd+9ezJ07t1rbsFqtOHfuHB588MF6jJSIiIiI6hoTvuQwgkwGt1ZBcGsVhKBxfWEtNCI/4Rb0F28i7+JNmHPyKu1vLTAiY8fPyNz7C3wHdEHg6Cio/LwdFD0RETUmosWK3BOXkLnnFIzpudXqIygV8GjXEp6dw+HZJQIuQQ17glaiqsTExGDq1Kno3bs3+vbtizVr1sBgMGD69OkAgClTpqBFixZYuXIlAGD58uXo378/2rZtC61Wi1WrViExMRHPPPOMMw+DiIiIiGqICV9yGrmrGt4928K7Z1sAgOF6CnKPX4T29GVYK7nVVjJbkH3wV2QfPgefqPYIHNMHri38HRU2ERE1YNYiE7IP/Yas/Wdg1uZX3UEA3Nu2hG//zvDu1Y6lg6hJefzxx5GZmYklS5YgLS0NPXv2xI4dO2wTuSUlJUFWauLA3NxczJw5E2lpadBoNIiKisLRo0fRuXNnZx0CEREREdWCIElSXcxH3WTp9Xp4e3tj3bp1cHV1RWFhIf70pz/B15ejfuqLaLZA9+u14sl0LiVWazId717tEPKHwVD7c8QvEVFzJFlFZB04i/T/najWpKEqf29o+neGpm8n/ttRz3JycrBlyxa4uLhApVJBp9Nh9uzZ0Ol08PLycnZ4VIdKPjfz2hIRERHdu3v5bMURvjUgSRJMJpOzw2jyZEoFNL07QNO7A8y6fOQcu4isuDOw6Asq7KM7cwX6c9fhP6IXgsb14wgtIqJmRH/uOlL+e7Dq0g2CAO+ebeE/vCfcI1tAEATHBEhERERERORATPhWkyRJyM3Ntbvtjeqf0tsDQeP6ImDkfcg5dgGZe07DlKUrt61ksSJz1ynkHr+I4IcGwndgVwgyfpknImqqClOykPLtAeTHJ1XaTlDIoenXCYGje0MdqHFQdERERERERM7BhG81abVaKBQKeHh4ODuUZkmmVMB/SA/4DeoG7enLyNh9CkW3M8tta9EX4PamPcg6+CtCJwyBZ4dWDo6WiIjqkyWvAGk/HEX20fOVlv2RuajgN6gbAkbeB6U3//0mIiIiIqLmgQnfarJYLAgICIDVanV2KM2aIJNB06cjNH06Qn/hJtK+P4LCWxnlti26nYnr7/0Hmr4dEfqn4VC4uTg4WiIiqms5Jy4iZUscrAUVT+4pUysRMLo3Aob1hJx/+4mIiIiIqJlhwreafHx8oFQqmfBtQLy6RMCzUzhyjl9A2vdHKqzxm/tzPPISbqHlkyPh3T3SwVESEVFdMOsMuP3vPdD/dr3iRoIATf/OCHlkIEf0NmCcL5iIiIiIqH41moK0K1euRJ8+feDp6YnAwEBER0cjISGh0j6xsbEQBMHu4eJSu5E+SqWyVv2ofgkyAX4Du6Ljq9MROLYvBKW83HYWnQE313+PpM92wFpQ9eztRETUcOSejEfCa59Xmux1b9cS7RY+hVaTxzDZ24CJogitVuvsMIiIiIiImrRGM8L3wIEDmDNnDvr06QOLxYKXX34ZY8aMwcWLF+Hu7l5hPy8vL7vEMGfkbprkLiqEPHo//AZ1Q+rWQ9Cevlxuu9wTl5AXn4Swp0fDq2trB0dJREQ1YdYbkPzvfdD9erXCNip/b4T8YTB8erVzYGRUG5IkITs7GxaLxdmhEBERERE1aY0m4btjxw6717GxsQgMDMTp06cxZMiQCvsJgoDg4OD6Do8aCJWfF8JnjIffkB649eUumDJ1ZdpYdAbcWLsVmv6d0WLiMMhd1U6IlIiIKpN7KgHJm/fBaqjgrgyZDEFj+yBwXF/IlI3m40yzJUkScnNzIYoifHx8nB0OEREREVGT1mi/Iel0xYk8X1/fStvl5+cjPDwcoijivvvuwxtvvIEuXbpU2N5oNMJovDsRjF6vr5uAyaE82rVEh1cmI3XrYWQdOAuUUy4w9/hF5McnoeXTo+HVJcLRIRIRUTkseQW4/fVe6M5UPKrXJdQPYVPGwq1VkAMjo3thMplgsVgQGBiIwsJCZ4dDRERERNSkNZoavqWJooj58+fj/vvvR9euXSts16FDB2zYsAHbtm3Dl19+CVEUMXDgQNy+fbvCPitXroS3t7ftERYWVh+HQA4gUynR4k/DEfnXiVD5eZXbxqzNx42PvsOtL3fDWljxjO9ERFT/tL9cRsKKzytO9soEBI7ti3YLn2ayt5GRJAkajQYqlcrZoRARERERNXmNcoTvnDlzcP78eRw+fLjSdgMGDMCAAQNsrwcOHIhOnTrh448/xooVK8rts2jRIsTExNhe6/V6Jn0bOY/2LdF+8RSkfncI2Yd+LXe0b87R88i7lIiwSaPh2Snc8UESETVjlvzC4lG9v1ypsI1LiB/CpoyBWzjLNDVGKpWKE+ASERERETlIo0v4zp07Fz/++CMOHjyIli1b1qivUqlEr169cPVqxbeJqtVqqNWs6drUyNVKtHxiBHx6tSuu7ZtdtlSHOTcP1z/4L3zv74rQCUMhd+EoJCKi+qY9cwXJX++DJa+g/AYyAYGjeiNofH/W6iUiIiIiIqqGRlPSQZIkzJ07F9999x327duH1q1b13gbVqsV586dQ0hISD1ESI2BR4cwtH9lMvwGdweE8tvkHDmPhNe+QF58kmODIyJqRiz5hUjc8BMS//VjhcledbAv2v3tCYRED2Kyt5EzmUwwm83ODoOIiIiIqFloNN+e5syZg02bNmHbtm3w9PREWloaAMDb2xuurq4AgClTpqBFixZYuXIlAGD58uXo378/2rZtC61Wi1WrViExMRHPPPOM046DnE/uokLLJ0fCu1db3PpyN8w5eWXamHP0uP7Bf+A3qDtC/jCYo32JiOqQ7tdruP3vPbDoKx7VGzAyCsEPDWCit4kQBAG5ubks60BERERE5ACN5lvUunXrAADDhg2zW75x40ZMmzYNAJCUlASZ7O6g5dzcXMycORNpaWnQaDSIiorC0aNH0blzZ0eFTQ2YZ8dwdFg8BSn/PYicw+fKNpCA7EO/Ie/iTYRNHgOP9qzlTER0LywFRUjevB/ak/EVtlEHaRA2ZSzcW/NunKZEpVLBarUiKyuLE7cREREREdWzRpPwlaRyZtr6nbi4OLvXq1evxurVq+spImoK5C4qhD01Cj492+HWV7thzi072teUrce1976F35AeCIkeDLmao5OIiGpKf+46bm3aA4vOUH4DQUDAiPsQ/MhAjuptggRBgEajgV6vh1ardXY4RERERERNGr9REQHw7ByODosnI+U/B5Fz9HzZBhKQfeDXu6N929ZswkAioubKWmhE8pY45B6/WGEbVaAPWk0eC/fIUAdGRo4mCAL8/PxgMFSQ9CciIiIiojrBhG81mc1mW61gaprkrmqETRoN717tcPur3TBr88u0MWXqcG31t/Af1hMhjw6CTMX/hYiIKqK/cAO3v9pT7t9TAIAgwH94T4Q8wr+nzYVMJoOPj4+zwyAiIiIiatL47aqatFotE77NhFeXCHRYPBnJ3x4of0SaJCFr/xnoL9zgiDQionJYC41I+fYAco5dqLCNKsCbd0w0U4IgODsEIiIiIqImjQnfalIoFMjNzYWHh4ezQyEHkLu5oNWUsfDp1a7CmpOmDC2uvvsNa04SEZWSdykRt74svyY6AEAA/Ib0ROgfBkGmYk10IiIiIiKiusYMVTX5+PigqKgIJpPJ2aGQA3l1a4MO/5iClG/2I/fncmaVlyRk7j0N/fnrnFWeiJo1a5EJKf85gJwj5dRBv0Pl51U8qrd9mAMjIyIiImeQrCJEs6Xeti9TKSHInHPXiGS1QjRb6237chdVvW2biJoHJnyrqfTs0tS8KNxc0GraA/C+rz1ub9oDi76gTBtjei6uvrMZfgO7IvjhgVB4ujkhUiIix5MkCdqf45G67XAltXoBv8E9EBI9iF9giIiImombn/wA/bnr9bb94IcGIOjB/vW2/YpIkoQrb29GYWJ6ve2j5aTR8BvYtd62T0RNHxO+NSAIAlQqflFtrry7R8I9sgWSN++D9lRC2QaihOzD55B7+jKCxvWF//BekCnkjg+UiMhBDNdTkPLtARTcTKuwjdLXC2GTR8OzQysHRkZERETOlHcxsV6TvQCQseskNAO6QKXxrNf9/F7u8Yv1muwFgLTvj8Dnvvb8oZyIak3m7AAaG0400rwp3F0Q/ucHET7zoQpH8YqFRqR+dwgJKz6D9swVB0dIRFT/TDl6JH66HVff3lxpstd3UDd0WDyZyV4iIqJmRLKKSP5PXL3vRzRZkLr1cL3vpzRrkQmp2+p/nxZ9AdJ/Ol7v+yGiposjfIlqwadXO3i0a4nbX++D7pfL5bYxZeqQ+K8fkdWuJUInDIFbqyAHR0lEVLeshUZk7DqFzH2nIVVSt07p64mwp0fDs1O4A6MjIiKihiDr4K8wpuY4ZF/ak/HwH9oD7m1CHbK/9B0nyi3xVx+y4s7Cb1B3qAN9HLI/ImpaOMKXqJYUHq6IeGY8Iv7yCFQB3hW2M1y5jStvbsL1D/+L/IRbDoyQiKhumPUGpG49jIuLP0XGzp8rTPYKchkCRt6HDq9MZrKXiIioGbLkFyJ9+zGH7jN5SxwkSar3/RiztMjad6be91NCsliR8t8DDtsfETUtHOFLdI+8e0TCs0sEsvafQfqOnyEWGsttl3cxEXkXE+EWEYzAMX3g1SOSJUKIqEEzZmqRuec0co5fqHRELwB4dY9E6GODoQ7UOCg6IiIiamjSfjwGa0H534fqS2FiOnKPX4TvgC71up+U/xyEZKn881Bd0/92HXmXEvlDOhHVGBO+RHVAppAjcHRv+PbvjLQfjyH7yDlALP9X5oKbabj5yQ9QB/kiYHQUNH07cXI3ImpQCm5lIHPXyeI65BX8LSvh0jIAoROGsE4vERFRM1eYkoXsw785Zd+p3x+Bd6929TbJWV58EvS/XquXbVcl5dsDaP/yJAhy3qBNRNXHhC9RHVJ4uqHlkyPhN7QHUr49gPz4pArbGtNzcPvL3Uj97hB8ojrAt39nuEUEOzBaIqK7LPmFyD0ZXzzz9K2MKtsrvNwQ/NBA+A7sCkHGuxWIiIiau5QtcVX+UFxfLDoDMnb8jJDoQXW+bUkUkfJtXJ1vt7qKUrORdfBXBAzv5bQYiKjxYcKXqB64hvoj8vkJyItPRMbOk5XW7rUaipB98FdkH/wV6mBfaPp1gm+/zlD6eDgwYiJqjiSrFfpzN5Bz4iLyzt+AZBWr7KPwckPAiPvgN6RHvY2iISIiosZFd/aq0+crydz3C3wHdYXa36dOt5t96DcUpWTX6TZrKn37MWj6dITCw9WpcRBR48GEL1E98uwYDs+O4Si4mYaMXSeh+/UaUMmEAsa0HKRtO4K074/Co0MYvLq2hmfnCLgE+zowaiJqyqyFRuTFJyHvUiJ0Z6/Cml9YrX6qAB8Ejo6Cpl9nyJT8+EBERETFRLMFKd8ddHYYxZOc/ecgWv/lkTrbpsVQhLQfHTsJXXmsBUak/XgMLZ8Y4exQiKiR4Dc2IgdwiwhGxKyHYUzPRcbuU8j9+VLlBf8lCfnxSXdKQhyAys8Lnp3C4dk5Ah4dW3FUHRFVmyRJKLyVgbwLN5F3KRGG66mAWPVI3hKuYYEIHNMb3r3as3QDERERlZF18FdY8gshc3X+dxTD5dvIu3wLnu3D6mR7GTt/hiSKDeLYtKcT4De4O1xb+Ds7FCJqBJjwJXIgdZAGYZNGI/ihAcg69BtyT1yEOSevyn6mbD2yD59D9uFzEOQyuLYKglt4EFzDg+AWHgx1kAaCwEQMERWPRClITENhYjoKEtNQcD0VlmqO4i0hKOTw6tYGfoO6cVZoIiIiqpBZZ0D69uMQi0zODsUm5Zs4tH/5aQiye5vkrCg1G5n7ztToh/L6lvJtHCL/+kdnh0FEjQATvjVksVicHQI1AUofD4Q8PBDBDw1A/uVbyD1+EbqzVyEazVX2lawiCm6kouBGqm2ZzFUNt1aBcA0PgkuwH9RBGrgEaSB3c6nPwyAiJ5KsIkxZOhSl58CYnovCWxkoSEyDKVNX6226RQRD078zfHp3gIJ/P4iIiKgKqdsON6hkLwAUpWQh+9A5+A/tcU/bSf72QINK9gJAfsIt6M5ehXfPts4OhYgaOCZ8a8BgMMBsrjohR1RdgiDAs0MreHZoBevjJujOXkHu8UvIv3ILqMEEt2KhEfkJt8pMlKDwdIM6SAN1kAYqf28ovdyh8HKDwssdSk83KDzdIMjv7ZdvIqof1oIimPMKYNEVwJJngFlfAHNuHozpucWPLF2dfAlR+nhA07cTNP07s144ERERVVtBYhpyT1x0dhjlSvvxKHz61P4HbN1v15B/KbGOo6obKd8dhGeXCM6pQESV4l+IajIYDLBarXB3d3d2KNREyV1U8O3fBb79u8CcV4D8i4nIu3QTeZeSYMkrqNU2LXkFsOQVwHA1ufwGAiB3dy1O/t5JBCs83aD0uvPa0x1yFyVkahVkKiVk6rsPlpAgqh7RbIFoNBc/TGbbc0t+Acz64v9HLfoCWPSG4gTvnWWV1vm+FzIZ3NuEwLNzBDw7h8M1LJD/PxMREVGNJX8TV6NBKo5kNRQh/cdjaPGn4TXuK96Z/K2hMmXqkLX/DALH9HF2KETUgDHhW00GgwH+/v6Qy+XODoWaAaWnGzT9OkHTr9PdCZcuJiLv4k0U3Eyru0SQBFjzC2HNLwRSs2vUVVAqIFeXTgKrIFMpiv+rlAMyGQS5DIJMVjzRk+25DJALtueCvPiBO+1K+hT3F0o9L9W+ZBtyGQAmqqgCVhGSeOdhFQFRsj2XxDuvraXXl6wrbodS6yRRKrW+VHtRgmS1QjRaIBpNEE0WWI0muwQvROd/E7Kb+LFDGOSuameHRERERI1Y7s+X7ErMNURZB3+D3+DucAnxq1m/fb/AlKmtn6DqSPqOn6Hp1xlKbw5II6LyMeFbTe7u7nB3d0dRUZGzQ6FmRhAEuLUKglurIASN6wvRbEFRclbxZEx3JmUypuUCkmOTSpLZAovZAtRwMigiql9yD1e4hQfdeQTDNSIYSk83Z4dFRERETYRoMiN162Fnh1E1UUTytwcQOe+xancx6w1I3/FzPQZVN8QiE1K3HUarKWOdHQoRNVBM+FYTSzlQQyFTKuAWEQy3iGDbMmuRCYVJGShKyUJRei6M6TkwZuTCnJvXYG+zIqJ7I3NR2SZoVAf5Qh2kgVt4EFR+3s4OjahSBoPB2SEQEdE9yNh5EmZtvrPDqJb8S4nQ/XYN3t0jq9U+bduRBjcJXUVyT1yE/9AecAsPrroxETU7jS7h+9FHH2HVqlVIS0tDjx498MEHH6Bv374Vtt+yZQv+8Y9/4ObNm2jXrh3eeustPPjggw6MmKj+yV1U8GjfEh7tW9otF01mGDO0d5K/+TDnGWz1QS36Apj1BljyChvc7LNEzZ3cVV1cU9vLrVRd7eLXan8fqIM0vIWPGqW8vDwmfB2Mn52JqC6ZsvXI2HPa2WHUSMp/D8KzcwRkisrLMxYkpSPneMOchK5cEpC8JQ7t/vaEsyMhogaoxgnfqVOnYsaMGRgyZEh9xFOpzZs3IyYmBuvXr0e/fv2wZs0ajB07FgkJCQgMDCzT/ujRo3jyySexcuVKPPTQQ9i0aROio6Pxyy+/oGvXrg6Pn8jRZColXFsGwLVlQIVtJEmC1VBUZsIos94Aa34RrEWmUhNNmUrVKi1eJlmZLCYqQ8DvJjq8W+Nafme53E1d7kSJCk9XzrpMTZLBYEBBQQHvmnIgfnYmorqW8t1BSGaLs8OoEVOGtniSs9G9K22XvCXO4WXy7lXB9VTknoyHpk9HZ4dCRA2MIEk1+4sWHR2Nn376CeHh4Zg+fTqmTp2KFi1a1Fd8dvr164c+ffrgww8/BACIooiwsDDMmzcPCxcuLNP+8ccfh8FgwI8//mhb1r9/f/Ts2RPr16+v1j71ej28vb2xbt06uLq6oqioCBMnToSvr2/dHBRRIydZrbAazRCLzHeSwCZIFiskq2SbMAulJsKSrGLNJtMSRcBaPDFWmcm0RKnRfSgjxxFkQpkJ/8pMDlhqYsG760tPJijYTxZYqu/dyQPldslduVoJQamAIHBCQSIAyMnJwb///W8YDAb4+PhAFEXMnj0bOp0OXl5ezg6v3o0YMQJDhw7F0qVL7Zbn5uZiwoQJ2LdvX73t29GfnUs+NzeXa0vU3ORfuY1rq7c4O4xakbmo0PHVaVB6lf+jY+7JeCRt/J+Do6obSh8PdHx1GmQqpbNDIaI6di+frWo8hGjr1q3IzMzEF198gc8++wxLly7FqFGjMGPGDDz66KNQKuvnj4zJZMLp06exaNEi2zKZTIZRo0bh2LFj5fY5duwYYmJi7JaNHTsWW7durXA/RqMRRqPR9lqv199b4ERNnCCXQ+EmB9xcnB0KERE1UGazGR4eHvD09IROp3N2OA4VFxeHc+fO4cyZM/jqq69sI5xNJhMOHDhQb/t1xGdnfm4mal4ydv4MRSOeCDZz3y8IjR5cZrlktSJz7y+N9tgkq4jsw+cQMOI+Z4dCRA1Ire4ZDQgIQExMDGJiYvDLL79g48aNmDx5Mjw8PDBp0iQ899xzaNeuXZ0GmpWVBavViqCgILvlQUFBiI+PL7dPWlpaue3T0tIq3M/KlSuxbNmyew+YiIiIiAAASqWyWZdy2LNnD/7yl7+gf//++OGHHxAREVHv+3TEZ+eKPje/8EUcVK7N93oTNVlu3kCHRjw5bI4J2LC3/HWBQcWPxupmbsXHRkSNlqmw9nNf3FORwNTUVOzevRu7d++GXC7Hgw8+iHPnzqFz58745z//iRdeeOFeNu8UixYtshvZoNfrERYW5sSIiBqW8ko42NX1NVkgmi1lSjXAVsLhbnkGlCrjIImSXakHlCoJIVlLb0OyK/3Akg5ULgGAUJ3SDcKdUg2lSj/IBEAut627218ovzSEXF5cn1elhMxFeae8gwoyteJO7d7iMg9EzZlcXvlEOU1dSEgIDhw4gOnTp6NPnz7YsmULOnXq5Oyw7hk/NxMRERE1TDVO+JrNZnz//ffYuHEjdu3ahe7du2P+/Pl46qmnbPUkvvvuO/z5z3+u04Svv78/5HI50tPT7Zanp6cjODi43D7BwcE1ag8AarUaarX63gMmauDKnaxNXwBznsH23JJfeCehe2fSNhMnaSOqFUG4M2nbnVq/KiXkbi6lJmwrZ/I2L7cqZ5MmaixMJhNcXJpn6Z+Set5qtRqbNm3Ca6+9hnHjxmHBggX1ul9HfHbm52YiIiKihqnGCd+QkBCIoognn3wSP//8M3r27FmmzfDhw+Hj41MH4d2lUqkQFRWFvXv3Ijo6GkDxxBN79+7F3Llzy+0zYMAA7N27F/Pnz7ct2717NwYMGFCnsRE1RNZCI4zpuShKz4ExQwtzbh4sdxK7Zr0B1vxCJm+JHEWSbD+c1ITcTW1L/io83aD0dofK3xsuQb5QB2mg9PXk5HDUKEiShNzcXAQGBjo7FIf7/fzIixcvRqdOnTB16tR63S8/OxMRERE1XzVO+K5evRoTJ06sdJSGj48Pbty4cU+BlScmJgZTp05F79690bdvX6xZswYGgwHTp08HAEyZMgUtWrTAypUrAQB//etfMXToULzzzjsYP348vv76a5w6dQqffPJJncdG5Cyi2YLCWxkoSExHUUoWjOm5MGbkwqIvcHZoRHSPrAVGWAuMMKbnlLteUCqgDvCBOkgDl2BfuLYKgltEEJTeHg6OlKhyKpUK+fn5yM7OrrcJfhuqGzduICAgwG7ZhAkT0LFjR5w6dape983PzkRERETNU40TvpMnT66POKrl8ccfR2ZmJpYsWYK0tDT07NkTO3bssE0ukZSUBJlMZms/cOBAbNq0CYsXL8bLL7+Mdu3aYevWrejatauzDoHonkiihKKULBQkpqEgMR2FiekoTM4CRI7UJWqOJLMFRSlZKErJgq7UcqWPB1zDg+AWHgy38CC4RQRD7srbrsl5ZDIZNBoNdDodDIbaTz7RGIWHh5e7vEuXLujSpUu97pufnYmIiIiaJ0H6/X1mZEev18Pb2xvr1q2Dq6srioqKMHHiRPj6+jo7NGomzLp85F1MRN7Fm8iLT4LVUOSUOASlAvKS+qPqkompSh6qu3VJ1UoICvmdyazsJ8e6+/zOxFglz22TZcmAMhNl/W6iLfnvtsHb2akCpSf3k+wmBLwz+V/pCQWtdycVrGwywbsTCN7tL4miXZ1r+4kMLbD+rg42RCf8sysT4BYeDM8uEfDsFA638ODi/3+IHCAnJwdbtmyx3R2WlJSEJUuWQKfT2eZ/oKah5HPznz/cBpWru7PDISIiImrUTIUGbJj7aK0+N9d4hG9zxbw4OYpkFWG4mgz9hRvIu5iIopSsut+JgOIJo7zcoLwzWdTvnyu83KH0dIPMRQWZSsnkEFEdEc0WiEYzLPmFxZMj5hlgLpkoMa+4xnbJc0teASSLtQ52KqHgRioKbqQi/cdjkLu7wLNjK3h2joBnlwgovZiYIcdQqVR1Ps8DERERERHZY8K3mrRaLVxdXZ0dBjVhhbczkXviInJPxt97/V0BUPp4Qh2kKX4EaqAO8CmV1HWFIJfXTeBEVCMypQIypQIKD1cguOq7RSwFRcUJYH0BTLn64jrdJY9MLSSzpcYxWA1F0J6+DO3py4BMgGenCPj27wSv7pGQKfnRgOpXc6vhS0RERETkaPxWV00WiwW5ublM+lKdsuQVIPdkPHKOX0TR7cxabUNQKuDaKrC4Tmd4MFxC/KAO9IFMxS/URE2Bws0FCjeXcpPDkiTBnJOHovQcFCZloDAxHQWJaTBr86u/A1FC3oUbyLtwA3I3NXyiOkDTvzPcW4fU4VEQERERERGRozDhW00+Pj4oKiqCyWRydijUBOQlJCFr/1nkXbhRXA+0BlQBPvBo3xJuEcG2BK8gl1XdkYiaHEEQoPLzgsrPC16dI2zLzbp8FCSmFz+upcBwPaVapSGsBUZkH/oN2Yd+gzpIA79B3eB7fzfIXVT1eBRERERERERUl5jwrSalUglXV9dmN7M01R1JlKD79Soyd59Cwc20aveTqZXwaB9WXGuzczjUAT71FyQRNQlKbw94d/eAd/dIAIDVaEZ+QhLyLhVPAGnK1FW5DWN6LlL+cxDp/zsBvyE9EDC8FxSebvUdOhEREREREd0jJnxrQKlUQqXiKCeqGdFiRe6JS8jccwrG9Nxq9VF4uUHTpyM8u7aGe2QLyBSst0tEtSdXK+HdPdKWADZmaJF38Sa0pxNguJZSaV9rgREZO35G5t5f4DuwCwJHRUHl5+2IsImIiIiIiKgWmPCtIZmMt85T9YhmC7IP/orMvb9Uq56moJDDq3skfPt3hmfncAh8rxFRPVEH+kAd2BP+w3rCmKktnjDyxCWYsvUV9pHMFmQf+BXZh87BJ6o9gh7oB5dqTDpHREREREREjsWEL1E90J5OQOrWw5UmT0q4tQ6Bb//O8IlqD7mbiwOiIyK6Sx3gg+CHBiJo/AAYrtxGzvGL0J25AtFoLr+DKEJ7Mh7a05fhN7g7gh8aAIU7/3YRERERERE1FEz4EtWhgptpSP7PARRUcYs0BAHePdsicExvuIUHOyY4IqJKCIIAj/Zh8GgfBusfhyLr4G/I2n8GlryC8juIIrIPnIX25CUEPdgf/kN7QJCz/AwREREREZGzMeFLVAfM2nykbj2M3JOXAKnidoJCDk2/Tggc3RvqQI3jAiQiqgG5mwuCxvVFwMj7kHPsAjL3nIYpq/yJ3qwFRqR8ewDZB39DyGODbXWCiYiIiIiIyDmY8CW6B6LFioxdJ5G56yREk6XCdjIXFfwGdUPAiPug9PFwYIRERLUnUyrgP6QH/AZ1g/b0ZWTsPoWi25nltjVm5OLm+u/h0SEMLZ4YAZcg1vclIiIiIiJyBiZ8iWqp4FYGbn2+E0XJWRU3ksmKa1yO7w+Fh6vjgiMiqkOCTAZNn47Q9OmI3FPFNcrNOeXXKM9PuIXLb3yJ4IfvR8CI+yDIBAdHS0RERERE1Lwx4UtUQ5LVivT//YyMnT9DsooVtvPsEoHQx4bAJcTPgdEREdUvTe8O8O4Ricy9vyBj58/lTu4mma1I/e9B6H69ilaTx7CEDRERERERkQMx4UtUA4W3M5H0+c4Kb2kGAHWIL0InDIVX5wjHBUZE5EAypQJB4/rCd0AXpP1wFDnHLgBS2QLmBddSkPD6lwh59H74D+8FQeBoXyIiIiIiovrGhC9RNUhWERk7f0b6/05UOKpX7qZG8MP3w29wNwgymYMjJCJyPKW3O8ImjYb/0B5I3hIHw9XkMm0kswUp3x6A7uxVhE0eA3WAj+MDJSIiIiIiakaY8CWqQlFKFpI+34nCpIwK23h1a4OWT42E0psTshFR8+MaFojIFyYi+8CvSN12uNwyD4arybj8+hcIfnQQ/If15GhfIiIiIiKiesKEbw2JYsU1W6lpkUQRGbtOIf2n45As1nLbyF3VCJ04DL79Ozs4OiKihkUQBPgP6wnPrhG49fmuckf7iiYLUrbE3R3t6+/thEiJiIiIiIiaNiZ8a8BsNsNkMjk7DHKAotTs4lG9iekVtvHs0hphT4+C0oejeomISqj9fRD5wkRk7T+DtO+PQDRZyrQxXLmNy69/gZA/DIbf4O4c7UtERERERFSHmPCtJrPZjLy8PKjVameHQvVIEkVk7jmNtB+PVTiqV+aqRuiEIfAb2NXB0RERNQ6CICBgxH3w6toaSV/sQsG1lDJtRKMZyV/vg+7MFYRNGgOVn5cTIiUiIiIiImp6OLNUNWm1WigUCqhUKmeHQvWkKD0HV9/5BqlbD1eY7PXoFI4Or0xmspeIqBrUgRq0feFPCJ0wBIJSXm6b/IRbSHj9C2QfPufg6IiIiIiIiJomjvCtJoVCAY1GA6PR6OxQqI5JooTMfb8g7YcjkMwVjOp1USH0scHwG9TdwdERETVugkxAwMgoeHZtjVuf70LBjdQybcQiE25v2gPtmSsIe3o0VL6eToiUiIiIiIioaeAI32ry8fFhjcEmyJiRi6urv0Hqfw9WmOz16BBWPKqXyV4iolpzCfJF2xf/hJDoQRAUFYz2vZSIhNc+R/aR8w6OjhzJbDY7OwQiIiIioiatUSR8b968iRkzZqB169ZwdXVFZGQkli5dWuUEasOGDYMgCHaPZ599tlYxMNnbtEiihMy9vyDh9S/LrS0JADK1Ei2eGIE2z09gbUkiojogyGQIHNMH7Rc9DdfwoHLbiEUm3P5qN65/+B3M2nwHR0j1zWQyQavVOjsMIiIiIqImrVGUdIiPj4coivj444/Rtm1bnD9/HjNnzoTBYMDbb79dad+ZM2di+fLlttdubm71HS41cMYMLW59sROGChK9AODeriXCJo+B2t/bgZERETUPLiF+aPf3J5Cx6xTSfzpebt30vIs3Eb/ic7T441D4DujihCiprpnNZuh0OigUjeLjJxERERFRo9UoPnGPGzcO48aNs71u06YNEhISsG7duioTvm5ubggODq7vEKkRkCQJWXFnkbbtMESTpdw2MrUSIY8Ogt/QHhzVTURUjwSZDEHj+sKrexvc+nwnCpMyyrQRC4249cUuaH+5grCnR0Hp4+GESKkuiKIIvV4PtVrNH9+JiIiIiOpZoyjpUB6dTgdfX98q23311Vfw9/dH165dsWjRIhQUFDggOmpojFlaXFvzLVK2xFWY7HVv2wLtX5kE/2E9mewlInIQ11B/tPv7kwh+eGCFtX3zLtxAworPkXP8ooOjo7piMpmgUCjg5+fHf2OJiIiIiOpZoxjh+3tXr17FBx98UOXo3qeeegrh4eEIDQ3Fb7/9hgULFiAhIQH//e9/K+xjNBphNBptr/V6fZ3FTY4nSRKyD/yK1G2HIRrLnyRGplIg+JH74T+8F7+EEhE5gSCXIeiBfvDqHlk82vdW2dG+1kIjbn2+E7ozV9DyqZFQenO0b2MiCAI0Gg1kskY71oCIiIiIqNFwasJ34cKFeOuttyptc+nSJXTs2NH2Ojk5GePGjcPEiRMxc+bMSvvOmjXL9rxbt24ICQnByJEjce3aNURGRpbbZ+XKlVi2bFkNjoIaKlO2Dre+2I38y7cqbOMeGYqwyWOhDvRxXGBERFQu1xb+aPfSk0jfcQIZO36GZBXLtNGfu46E11LQYuIwaPp2ckKUVBsqlYo/qhIREREROYhTE74vvvgipk2bVmmbNm3a2J6npKRg+PDhGDhwID755JMa769fv34AikcIV5TwXbRoEWJiYmyv9Xo9wsLCarwvch5JFJF96Dekbq14VK+gVCCkZFSvjF9AiYgaCkEuQ/D4AfDuHomkL3ah6HZmmTZWQxGSYndAe+YKWvxpOFQaTydESjVhtZadmI+IiIiIiOqHUxO+AQEBCAgIqFbb5ORkDB8+HFFRUdi4cWOtbgk8e/YsACAkJKTCNmq1Gmq1usbbpoYhLz4RKd8eRFFKVoVt3NqEoNXksVAHaRwYGRER1YRrWCDaL3gS6f87gfQdJwGxnNG+v15D/qVEBIzqjcAxvSFTKZ0QKVWH2WyGwWCASqVydihERERERE1eo6jhm5ycjGHDhiE8PBxvv/02MjPvjvYJDg62tRk5ciQ+//xz9O3bF9euXcOmTZvw4IMPws/PD7/99hteeOEFDBkyBN27d3fWoVA9KUrPQep/DkJ//kaFbQSlHMEP34+AEfdxVC8RUSMgyOUIfmggvHq0xa3Pd6IoueyPeaLJgvSfjiPn6HkEP3I/NP06sXRAA6RUKpGfnw+FolF89CQiIiIiatQaxafu3bt34+rVq7h69Spatmxpt06SJADFI0cSEhJQUFAAoLhW3J49e7BmzRoYDAaEhYVhwoQJWLx4scPjp/pjKShC+vbjyD74a7m1Hku4tQ5B2JQxcAnydWB0RERUF9zCAtFuwVNI/98JZOwsf7SvWZuPW5/vRNaBs2jxx6Fwj2zhhEipIgqFAh4eHtDr9UzIExERERHVs0aR8J02bVqVtX4jIiJsyV8ACAsLw4EDB+o5MnIWa6ER2Yd+Q8buU7AaiipsJygVCB7fHwGjoiBwZnAiokZLppAj5OGB8O4RiVuf76qwdE9hYjquvvMNvHu1ReC4fnALC3RwpFQRd3d3KBQKpKWlOTsUIiIiIqImrVEkfIlKmPUGZO07g6xDv0EsNFba1qd3B4RED4bKl5P5EBE1FW6tgtD+5aeRfegc0rYfgzW/sNx2ujNXoTtzFR6dwhE0pg88OnAC1obA09MTeXl5zg6DiIiIiKhJY8K3mgwGA1xdXZ0dRrNlzNIic/dp5By/AMlc+UzfbhHBCJ04DO6tK56cj4iIGi9BJoP/0B7Q9OmA9P/9jKwDZyFZyv+3If9SIvIvJcItIhiBY/rAq0ckSwo4mbu7u7NDICIiIiJq0pjwraaShK9cLnd2KM2GJErIv3wLOUfOQXvmCiBKlbZXajwREj0IPr078Ms8EVEzIHdzQeiEIfAb3B0p/z0I/W/XKmxbcDMNNz/5AeogX/gP6wGf3h2hcHdxYLRERERERESOwYRvNbm7uyM/P5+jUhzAmJ6LnOMXkfvzJZhzq77tU+aqRuDI+xAwqjdkKr6liYiaG3WgD1o/+wjyE24h5buDKEzKqLCtMT0HyZv3I+U/B+HVrTU0/TrDq0trCHLWeSciIiIioqaB2bFqcnd3hyiKMJlMzg6lSbIYiqD75TJyjl9EwY3UavVReLkhYMR98BvcHXJXdT1HSEREDZ1HhzC0X/g08i4lImPXSeQn3KqwrWSx2ur8Kjzd4NOnAzT9OnOSNyIiIiIiavSY8K0Bd3d3SFLlZQWoeiRRQkFiGvIu3kTexUQUJKZVWbKhhCrAB4Gjo6Dp1xkyJd/CRERkz7NTODw7haPgZhoydp+E7uw1oJJ/vy15BcUTgu47A6WPR3H/LhHw7NgKcjeWfSAiIiIiosaF2bIaUih4ympDkiSYMrUwXEspTvLGJ8FqKKrRNlzDAhE4pje8e7WHIGONXiIiqpxbRDAiZj4MY3ouMvacQu6JSxVO7lbCrM1HzrELyDl2AZAJcAsPLk7+dgiDa1ggZCqlg6Inujc5OTmYN28efvjhB8hkMkyYMAHvvfcePDw8KuwzbNgwHDhwwG7ZX/7yF6xfv76+wyUiIiKiOsTsJdULU24eChPTUZCYhoLEdBQmpsNaaKzxduTuLvDp3RG+/TvBLTy4HiIlIqKmTh2kQdjToxHy6CBoTyUg5/hFFCalV91RlFBwIxUFN1KR/uMxQCbAJcQPbuHBcAsPgmt4EFxb+EPghK7UAD399NNITU3F7t27YTabMX36dMyaNQubNm2qtN/MmTOxfPly22s3N7f6DpWIiIiI6hgTvlRrklWEKVsHY3ouitJzYUzPgTE9F8b0XFjyCmq/YZkMXl0jiifS6dYGMgW/SBMR0b1TeLjCf1hP+A/riaLUbOQcu4Dck/Gw6AzV24AooSg5C0XJWcg5eh4AICjlUAdqoA7SQB3kCxfbcw3ry5PTXLp0CTt27MDJkyfRu3dvAMAHH3yABx98EG+//TZCQ0Mr7Ovm5obgYP7ITkRERNSYMeFLZVgLjbDoC2DOM8CiL7jzvAAWvQGWvDuv9QWw6PIhWcU62aegkMM9MhRe3drAp09HKD05moSIiOqPS4gfQh8bgpDoQci7lATt6QTkXUqsfvL3DslstSWBf0/h4QqFlzsUXm5QeLpB6eVW/NrTDQovNyg9S167QpDJ6urQiHDs2DH4+PjYkr0AMGrUKMhkMpw4cQJ/+MMfKuz71Vdf4csvv0RwcDAefvhh/OMf/6hwlK/RaITRePcOLr1eX3cHQURERES1xoRvIyVZRUiiWJxwFUVIolS8zCpCNJogGs0QTWaIRjOsRrPda9v6O8usRjOs+YXFSdw8AyRz5fUN64oqwBuenSPg2SkcHh1aQa5mXUQiInIsQSaDV5cIeHWJAAAU3s60TShquJ5SZc3fyljyC2HJLwRSqgpCgMLdpTgx7OUOuYsKMpUSMnXphwoylQJytcp+uUoJmYuyeBJTmQyCTAZBJkCQyyHIheJlAuveNzdpaWkIDAy0W6ZQKODr64u0tLQK+z311FMIDw9HaGgofvvtNyxYsAAJCQn473//W277lStXYtmyZXUaOxERERHdOyZ8q6koNRuCiwtMohW3v94HvaJmt2naJ2gl23NJvPPaWvr13eeSKAG25yIkqwSIdTOq1qEEQB2oKa572DoEnp3DoQ7wcXZUREREdlxbBsC1ZQACx/SBtciE/Mu3YLiSjILENBTeyoBoNNf9TiWpVHI4u+63LwgQ5MWJYMhkd57LgFKJYeFOshh32t19XpJAvvNcLgdqmD/WW4ww5eoAWT4sggxFhfdQ9qmZW7hwId56661K21y6dKnW2581a5btebdu3RASEoKRI0fi2rVriIyMLNN+0aJFiImJsb3W6/UICwur9f6JiIiIqG4w4VtN5vxCKMwSrDIJ+WmJkKy89bJCAqDUeMEtPBBu4cFwDQ+CW6sg1jIkIqJGRe6ignf3SHh3L050SaKIorSc4klJbxZPSlqUmg3JbHFypFWQJEgWKyQn7d4gF2H1NsIsCpAgwGwsdFIkjd+LL76IadOmVdqmTZs2CA4ORkZGht1yi8WCnJycGtXn7devHwDg6tWr5SZ81Wo11Gp+viMiIiJqaJjwpVqTu6qhCvCBOkgDl6C7E9aoA30gU7E8AxERNS2CTAbXUH+4hvrDd0AXAIAkSTDn5N2ZwDQHxoxc2wSmZl0+IDorzUpNUUBAAAICAqpsN2DAAGi1Wpw+fRpRUVEAgH379kEURVsStzrOnj0LAAgJCalVvERERETkHEz4kh2Zq/rOJDJudyaVcS+eZKZkgplSk83IlHz7EBFR8yYIAlR+XlD5ecGzc7jdOkmUYDUU3p34VF8AS14BzLo7k6Dm3ZkEVW8oLufA5DDVkU6dOmHcuHGYOXMm1q9fD7PZjLlz5+KJJ55AaGgoACA5ORkjR47E559/jr59++LatWvYtGkTHnzwQfj5+eG3337DCy+8gCFDhqB79+5OPiIiIiIiqglm7BqyOzX0bLX2StXVE+Syu5OzyEvV5JPLbBO9yEsmc1GrIFMr7kz4oiwz2YtcrYTczYVJXCIiojokyITiH0k93YBQ/0rbliSHLXkF5Uy2WnqiVRNEo6V4AtZS6yWLtVT9fxGwSqXq/4ul5gOQSk34KsJpdR6o3n311VeYO3cuRo4cCZlMhgkTJuD999+3rTebzUhISEBBQXFNZZVKhT179mDNmjUwGAwICwvDhAkTsHjxYmcdAhERERHVErN71eQeFgBXV1cUGk0I/9NoaLy8a7aB3018UjpZK8jlZSZSEeSsEUxERNRc2CWHHUgqNZEsyptQ1pZALrWuhkniXL0Ovx7YDReVCkqFEmKevn4Ohuz4+vpi06ZNFa6PiIiAJN29mGFhYThw4IAjQiMiIiKiesaEbzXJXNQQ1CpYjEVwbRkAN19fZ4dEREREdE+K7xySAwp5ve2jKOfOHUYuashVKsjMxnrbFxERERERARxGWk2SJCE3N9duJAQRERERERERERFRQ8KEbzVptVpYLBaoVCpnh0JERERERERERERULiZ8q8lisUCj0UAm4ykjIiIiIiIiIiKihonZy2ry8fGBUql0dhhEREREjRrLYxERERER1S8mfKuJyV4iIiKieyOKIrRarbPDICIiIiJq0hpNwjciIgKCINg93nzzzUr7FBUVYc6cOfDz84OHhwcmTJiA9PR0B0VMRERERCUkSUJ2djYsFouzQyEiIiIiatIaTcIXAJYvX47U1FTbY968eZW2f+GFF/DDDz9gy5YtOHDgAFJSUvDYY485KFoiIiIiAoqTvbm5uTCbzfDx8XF2OERERERETZrC2QHUhKenJ4KDg6vVVqfT4dNPP8WmTZswYsQIAMDGjRvRqVMnHD9+HP3796/PUImIiIjoDpPJBIvFgsDAQBQWFjo7HCIiIiKiJq1RjfB988034efnh169emHVqlWV3hJ4+vRpmM1mjBo1yrasY8eOaNWqFY4dO1ZhP6PRCL1eb/cgIiIiotqTJAkajQYqlcrZoRARERERNXmNZoTv888/j/vuuw++vr44evQoFi1ahNTUVLz77rvltk9LS4NKpSpz22BQUBDS0tIq3M/KlSuxbNmyugydiIiIqFlTqVScAJeIiIiIyEGcOsJ34cKFZSZi+/0jPj4eABATE4Nhw4ahe/fuePbZZ/HOO+/ggw8+gNForNOYFi1aBJ1OZ3vcunWrTrdPREREREREREREVF+cOsL3xRdfxLRp0ypt06ZNm3KX9+vXDxaLBTdv3kSHDh3KrA8ODobJZIJWq7Ub5Zuenl5pHWC1Wg21Wl2t+ImIiIioaiaTCUqlkiUdiIiIiIgcwKkJ34CAAAQEBNSq79mzZyGTyRAYGFju+qioKCiVSuzduxcTJkwAACQkJCApKQkDBgyodcxEREREVDOCICA3N5dlHYiIiIiIHKBR1PA9duwYTpw4geHDh8PT0xPHjh3DCy+8gEmTJkGj0QAAkpOTMXLkSHz++efo27cvvL29MWPGDMTExMDX1xdeXl6YN28eBgwYgP79+zv5iIiIiIiaD5VKBavViqysLI7yJSIiIiKqZ40i4atWq/H111/j1VdfhdFoROvWrfHCCy8gJibG1sZsNiMhIQEFBQW2ZatXr4ZMJsOECRNgNBoxduxYrF271hmHQERERNRsCYIAjUYDvV4PrVbr7HCIiIiIiJq0RpHwve+++3D8+PFK20RERECSJLtlLi4u+Oijj/DRRx/dcwxmsxkKhQIWiwU6ne6et0dERETUHOh0OlgsFsjlcnh5eSEvL8/ZIRERERERNWmNIuHbEGRkZMDV1RWSJOGnn36CQlG7U2exWGA2m6FUKqu9jdr0qYwoijCZTBAEASqVCoIg1EufykiSBJPJBEmSoFKpIJPJ6qVPVXg9ivF63MXrcRevRzFej7t4Pe7i9ShWnXNrsVig1WohCAJkMhmMRuM97ZOIiIiIiCrHhG81WSwWAIBMJoNara7VpCMGgwEGgwEeHh5wd3evcd/8/Pxa9S3NbDZDr9dDoVBAo9HU6IueUqlEbm4urFZrjfuWJkkScnNzYbFYoNFoanQuXVxckJubi/z8/Br3/T1ej2K8HnfxetzF61GM1+MuXo+7eD2KVfd6mM1myGQyW8L3XpPMRERERERUOSZ8q1BSJqJkNIpCoUBhYaEtAVxdJV8O3d3dIZPJUFhYWKP+MpkMcrkcWVlZKCwsrNWXRLPZDK1WC4VCAQ8PDxQVFdV4Gy4uLtBqtSgqKoKPj0+Nv7RJkgStVguLxQIfHx9YLJYan8uSGFJTU+Hj43NPyXdeD16PErwed/F6FOP1uIvX4y5ej2I1uR5ms9kWoyAItue/L8VFRERERER1gwnfKpTUmVu9erWTIyEiIiJqOvLy8uDt7e3sMIiIiIiImhwmfKsQGhqKW7duwdPT06G3IOr1eoSFheHWrVvw8vJy2H4bIp4Lezwfd/Fc3MVzYY/n4y6ei7t4Lu5y5rmQJAl5eXkIDQ116H6JiIiIiJoLJnyrIJPJ0LJlS6ft38vLq9l/KS3Bc2GP5+Munou7eC7s8XzcxXNxF8/FXc46FxzZS0RERERUf+59mmoiIiIiIiIiIiIiahCY8CUiIiIiIiIiIiJqIpjwbaDUajWWLl0KtVrt7FCcjufCHs/HXTwXd/Fc2OP5uIvn4i6ei7t4LoiIiIiImi5BkiTJ2UEQEREREVHjptfr4e3tjT9/uA0qV3dnh0NERETUqJkKDdgw91HodLoaz7vBEb5ERERERERERERETQQTvkRERERERERERERNBBO+RERERERERERERE0EE75ERERERERERERETQQTvg3MzZs3MWPGDLRu3Rqurq6IjIzE0qVLYTKZ7Nr99ttvGDx4MFxcXBAWFoZ//vOfToq4fr3++usYOHAg3Nzc4OPjU24bQRDKPL7++mvHBuoA1TkXSUlJGD9+PNzc3BAYGIi///3vsFgsjg3USSIiIsq8D958801nh+UwH330ESIiIuDi4oJ+/frh559/dnZIDvfqq6+WeQ907NjR2WE5zMGDB/Hwww8jNDQUgiBg69atduslScKSJUsQEhICV1dXjBo1CleuXHFOsPWsqnMxbdq0Mu+VcePGOSfYerZy5Ur06dMHnp6eCAwMRHR0NBISEuzaFBUVYc6cOfDz84OHhwcmTJiA9PR0J0VMRERERET3ignfBiY+Ph6iKOLjjz/GhQsXsHr1aqxfvx4vv/yyrY1er8eYMWMQHh6O06dPY9WqVXj11VfxySefODHy+mEymTBx4kTMnj270nYbN25Eamqq7REdHe2YAB2oqnNhtVoxfvx4mEwmHD16FJ999hliY2OxZMkSB0fqPMuXL7d7H8ybN8/ZITnE5s2bERMTg6VLl+KXX35Bjx49MHbsWGRkZDg7NIfr0qWL3Xvg8OHDzg7JYQwGA3r06IGPPvqo3PX//Oc/8f7772P9+vU4ceIE3N3dMXbsWBQVFTk40vpX1bkAgHHjxtm9V/797387MELHOXDgAObMmYPjx49j9+7dMJvNGDNmDAwGg63NCy+8gB9++AFbtmzBgQMHkJKSgscee8yJURMRERER0b1QODsAsjdu3Di7UUZt2rRBQkIC1q1bh7fffhsA8NVXX8FkMmHDhg1QqVTo0qULzp49i3fffRezZs1yVuj1YtmyZQCA2NjYStv5+PggODjYARE5T1XnYteuXbh48SL27NmDoKAg9OzZEytWrMCCBQvw6quvQqVSOTBa5/D09Gzy74PyvPvuu5g5cyamT58OAFi/fj22b9+ODRs2YOHChU6OzrEUCkWzfA8AwAMPPIAHHnig3HWSJGHNmjVYvHgxHn30UQDA559/jqCgIGzduhVPPPGEI0Otd5WdixJqtbpZvFd27Nhh9zo2NhaBgYE4ffo0hgwZAp1Oh08//RSbNm3CiBEjABT/iNqpUyccP34c/fv3d0bYRERERER0DzjCtxHQ6XTw9fW1vT527BiGDBlil8AbO3YsEhISkJub64wQnW7OnDnw9/dH3759sWHDBkiS5OyQHO7YsWPo1q0bgoKCbMvGjh0LvV6PCxcuODEyx3nzzTfh5+eHXr16YdWqVc2inIXJZMLp06cxatQo2zKZTIZRo0bh2LFjTozMOa5cuYLQ0FC0adMGTz/9NJKSkpwdUoNw48YNpKWl2b1PvL290a9fv2b5PgGAuLg4BAYGokOHDpg9ezays7OdHZJD6HQ6ALB9rjh9+jTMZrPde6Njx45o1apVs31vEBERERE1dhzh28BdvXoVH3zwgW10LwCkpaWhdevWdu1KknxpaWnQaDQOjdHZli9fjhEjRsDNzQ27du3Cc889h/z8fDz//PPODs2h0tLS7JK9gP37oql7/vnncd9998HX1xdHjx7FokWLkJqainfffdfZodWrrKwsWK3Wcq99fHy8k6Jyjn79+iE2NhYdOnRAamoqli1bhsGDB+P8+fPw9PR0dnhOVfI3oLz3SXP4+/B748aNw2OPPYbWrVvj2rVrePnll/HAAw/g2LFjkMvlzg6v3oiiiPnz5+P+++9H165dARS/N1QqVZna8M31vUFERERE1BRwhK+DLFy4sNzJxUo/fp+cSU5Oxrhx4zBx4kTMnDnTSZHXvdqci8r84x//wP33349evXphwYIFeOmll7Bq1ap6PIK6U9fnoqmpyfmJiYnBsGHD0L17dzz77LN455138MEHH8BoNDr5KMhRHnjgAUycOBHdu3fH2LFj8dNPP0Gr1eKbb75xdmjUwDzxxBN45JFH0K1bN0RHR+PHH3/EyZMnERcX5+zQ6tWcOXNw/vz5JjmxKRERERER3cURvg7y4osvYtq0aZW2adOmje15SkoKhg8fjoEDB5aZjC04OLjM7NklrxtDPcKanoua6tevH1asWAGj0Qi1Wl3r7ThCXZ6L4OBg/Pzzz3bLGtP7ojz3cn769esHi8WCmzdvokOHDvUQXcPg7+8PuVxe7t+Exnrd64qPjw/at2+Pq1evOjsUpyt5L6SnpyMkJMS2PD09HT179nRSVA1HmzZt4O/vj6tXr2LkyJHODqdezJ07Fz/++CMOHjyIli1b2pYHBwfDZDJBq9XajfLl3xAiIiIiosaLCV8HCQgIQEBAQLXaJicnY/jw4YiKisLGjRshk9kPxB4wYABeeeUVmM1mKJVKAMDu3bvRoUOHRlHOoSbnojbOnj0LjUbT4JO9QN2eiwEDBuD1119HRkYGAgMDARS/L7y8vNC5c+c62Yej3cv5OXv2LGQyme1cNFUqlQpRUVHYu3cvoqOjARTftr13717MnTvXucE5WX5+Pq5du4bJkyc7OxSna926NYKDg7F3715bglev1+PEiROYPXu2c4NrAG7fvo3s7Gy7ZHhTIUkS5s2bh++++w5xcXFlSkJFRUVBqVRi7969mDBhAgAgISEBSUlJGDBggDNCpjry+uuvY/v27Th79ixUKhW0Wm2VfSRJwtKlS/Gvf/0LWq0W999/P9atW4d27drVf8BEREREVGeY8G1gkpOTMWzYMISHh+Ptt99GZmambV3JSJunnnoKy5Ytw4wZM7BgwQKcP38e7733HlavXu2ssOtNUlIScnJykJSUBKvVirNnzwIA2rZtCw8PD/zwww9IT09H//794eLigt27d+ONN97A3/72N+cGXg+qOhdjxoxB586dMXnyZPzzn/9EWloaFi9ejDlz5jSK5Pe9OHbsGE6cOIHhw4fD09MTx44dwwsvvIBJkyY1ih9B7lVMTAymTp2K3r17o2/fvlizZg0MBgOmT5/u7NAc6m9/+xsefvhhhIeHIyUlBUuXLoVcLseTTz7p7NAcIj8/3240840bN3D27Fn4+vqiVatWmD9/Pl577TW0a9cOrVu3xj/+8Q+EhobafihoSio7F76+vli2bBkmTJiA4OBgXLt2DS+99BLatm2LsWPHOjHq+jFnzhxs2rQJ27Ztg6enp60ur7e3N1xdXeHt7Y0ZM2YgJiYGvr6+8PLywrx58zBgwAD079/fydHTvTCZTJg4cSIGDBiATz/9tFp9/vnPf+L999/HZ599Zvs7MXbsWFy8eBEuLi71HDERERER1RVBkiTJ2UHQXbGxsRUmaUpfqt9++w1z5szByZMn4e/vj3nz5mHBggWOCtNhpk2bhs8++6zM8v3792PYsGHYsWMHFi1ahKtXr0KSJLRt2xazZ8/GzJkzy4yMbuyqOhcAkJiYiNmzZyMuLg7u7u6YOnUq3nzzTSgUTfu3nV9++QXPPfcc4uPjYTQa0bp1a0yePBkxMTFNPtld4sMPP8SqVauQlpaGnj174v3330e/fv2cHZZDPfHEEzh48CCys7MREBCAQYMG4fXXX0dkZKSzQ3OIuLg4DB8+vMzyqVOnIjY21jZy75NPPoFWq8WgQYOwdu1atG/f3gnR1q/KzsW6desQHR2NM2fOQKvVIjQ0FGPGjMGKFSvKTGrXFAiCUO7yjRs32krmFBUV4cUXX8S///1vGI1GjB07FmvXrmVJhyYiNjYW8+fPr3KEryRJCA0NxYsvvmj74Vyn0yEoKAixsbF44oknqtyXXq+Ht7c3/vzhNqhc3esifCIiIqJmy1RowIa5j0Kn08HLy6tGfZnwJSIiIiJqoqqb8L1+/ToiIyNx5swZu9reQ4cORc+ePfHee+9VuS8mfImIiIjqzr0kfJv2sD8iIiIiIqpSSbmP3490DwoKsq37PaPRCKPRaHut0+kAAKbCgnqKkoiIiKj5KPlMVZuxukz4EhERERE1AgsXLsRbb71VaZtLly6hY8eODoln5cqVWLZsWZnlX/69edROJyIiInKE7OxseHt716gPE75ERERERI3Aiy++aKu9XJE2bdrUatslNZvT09MREhJiW56enm5X4qG0RYsWISYmxvZaq9UiPDwcSUlJNf5SQnVPr9cjLCwMt27dqvFtoFT3eD0aFl6PhoXXo+HgtWhYdDodWrVqBV9f3xr3ZcKXiIiIiKgRCAgIQEBAQL1su3Xr1ggODsbevXttCV69Xo8TJ05g9uzZ5fZRq9XlTo7q7e3NL4kNiJeXF69HA8Lr0bDwejQsvB4NB69FwyKTyWrepx7iICIiIiIiJ0pKSsLZs2eRlJQEq9WKs2fP4uzZs8jPz7e16dixI7777jsAgCAImD9/Pl577TV8//33OHfuHKZMmYLQ0FBER0c76SiIiIiIqDY4wpeIiIiIqIlZsmQJPvvsM9vrXr16AQD279+PYcOGAQASEhJsE60BwEsvvQSDwYBZs2ZBq9Vi0KBB2LFjB1xcXBwaOxERERHdGyZ8iYiIiIiamNjYWMTGxlba5vczPguCgOXLl2P58uW12qdarcbSpUvLLfNAjsfr0bDwejQsvB4NC69Hw8Fr0bDcy/UQpN9/0iMiIiIiIiIiIiKiRok1fImIiIiIiIiIiIiaCCZ8iYiIiIiIiIiIiJoIJnyJiIiIiIiIiIiImggmfImIGqnMzEwEBwfjjTfesC07evQoVCoV9u7d68TIiIiIiIiIiMhZmPAlImqkAgICsGHDBrz66qs4deoU8vLyMHnyZMydOxcjR450dnhERNTMPfLII2jVqhVcXFwQEhKCyZMnIyUlxdlhNUs3b97EjBkz0Lp1a7i6uiIyMhJLly6FyWRydmjN0uuvv46BAwfCzc0NPj4+zg6n2fnoo48QEREBFxcX9OvXDz///LOzQ2q2Dh48iIcffhihoaEQBAFbt251dkjN1sqVK9GnTx94enoiMDAQ0dHRSEhIcHZYzda6devQvXt3eHl5wcvLCwMGDMD//ve/Gm2DCV8iokbswQcfxMyZM/H000/j2Wefhbu7O1auXOnssIiIiDB8+HB88803SEhIwH/+8x9cu3YNf/zjH50dVrMUHx8PURTx8ccf48KFC1i9ejXWr1+Pl19+2dmhNUsmkwkTJ07E7NmznR1Ks7N582bExMRg6dKl+OWXX9CjRw+MHTsWGRkZzg6tWTIYDOjRowc++ugjZ4fS7B04cABz5szB8ePHsXv3bpjNZowZMwYGg8HZoTVLLVu2xJtvvonTp0/j1KlTGDFiBB599FFcuHCh2tsQJEmS6jFGIiKqZ4WFhejatStu3bqF06dPo1u3bs4OiYiIqIzvv/8e0dHRMBqNUCqVzg6n2Vu1ahXWrVuH69evOzuUZis2Nhbz58+HVqt1dijNRr9+/dCnTx98+OGHAABRFBEWFoZ58+Zh4cKFTo6ueRMEAd999x2io6OdHQqhuHxgYGAgDhw4gCFDhjg7HALg6+uLVatWYcaMGdVqzxG+RESN3LVr15CSkgJRFHHz5k1nh0NERFRGTk4OvvrqKwwcOJDJ3gZCp9PB19fX2WEQOYzJZMLp06cxatQo2zKZTIZRo0bh2LFjToyMqOHR6XQAwH8nGgCr1Yqvv/4aBoMBAwYMqHY/JnyJiBoxk8mESZMm4fHHH8eKFSvwzDPP8JY0IiJqMBYsWAB3d3f4+fkhKSkJ27Ztc3ZIBODq1av44IMP8Je//MXZoRA5TFZWFqxWK4KCguyWBwUFIS0tzUlRETU8oihi/vz5uP/++9G1a1dnh9NsnTt3Dh4eHlCr1Xj22Wfx3XffoXPnztXuz4QvEVEj9sorr0Cn0+H999/HggUL0L59e/z5z392dlhERNRELVy4EIIgVPqIj4+3tf/73/+OM2fOYNeuXZDL5ZgyZQpYUa7u1PR6AEBycjLGjRuHiRMnYubMmU6KvOmpzbUgImqI5syZg/Pnz+Prr792dijNWocOHXD27FmcOHECs2fPxtSpU3Hx4sVq92cNXyKiRiouLg6jR4/G/v37MWjQIADFs3D36NEDb775JicCISKiOpeZmYns7OxK27Rp0wYqlarM8tu3byMsLAxHjx6t0S2JVLGaXo+UlBQMGzYM/fv3R2xsLGQyjv+pK7X5f4M1fB3LZDLBzc0N3377rV2d2KlTp0Kr1fIOBCdjDd+GYe7cudi2bRsOHjyI1q1bOzscKmXUqFGIjIzExx9/XK32inqOh4iI6smwYcNgNpvtlkVERNjqLREREdW1gIAABAQE1KqvKIoAAKPRWJchNWs1uR7JyckYPnw4oqKisHHjRiZ769i9/L9BjqFSqRAVFYW9e/fakoqiKGLv3r2YO3euc4MjcjJJkjBv3jx89913iIuLY7K3ARJFsUafoZjwJSIiIiKiOnXixAmcPHkSgwYNgkajwbVr1/CPf/wDkZGRHN3rBMnJyRg2bBjCw8Px9ttvIzMz07YuODjYiZE1T0lJScjJyUFSUhKsVivOnj0LAGjbti08PDycG1wTFxMTg6lTp6J3797o27cv1qxZA4PBgOnTpzs7tGYpPz8fV69etb2+ceMGzp49C19fX7Rq1cqJkTU/c+bMwaZNm7Bt2zZ4enra6lp7e3vD1dXVydE1P4sWLcIDDzyAVq1aIS8vD5s2bUJcXBx27txZ7W2wpAMREREREdWpc+fO4a9//St+/fVXGAwGhISEYNy4cVi8eDFatGjh7PCandjY2AoTWvw66HjTpk3DZ599Vmb5/v37MWzYMMcH1Mx8+OGHWLVqFdLS0tCzZ0+8//776Nevn7PDapbi4uIwfPjwMsunTp2K2NhYxwfUjAmCUO7yjRs3Ytq0aY4NhjBjxgzs3bsXqamp8Pb2Rvfu3bFgwQKMHj262ttgwpeIiIiIiIiIiIioiWDhJiIiIiIiIiIiIqImgglfIiIiIiIiIiIioiaCCV8iIiIiIiIiIiKiJoIJXyIiIiIiIiIiIqImgglfIiIiIiIiIiIioiaCCV8iIiIiIiIiIiKiJoIJXyIiIiIiIiIiIqImgglfIiIiIiIiIiIioiaCCV8iIiIiIiIiIiKiJoIJXyIiIiIiIiIiIqImgglfIiIiIiIiImrSPv/8c/j5+cFoNNotj46OxuTJk50UFRFR/WDCl4iIiIiIiIiatIkTJ8JqteL777+3LcvIyMD27dvx5z//2YmRERHVPSZ8iYiIiIiIiKhJc3V1xVNPPYWNGzfaln355Zdo1aoVhg0b5rzAiIjqARO+RERERERERNTkzZw5E7t27UJycjIAIDY2FtOmTYMgCE6OjIiobgmSJEnODoKIiIiIiIiIqL5FRUXhj3/8I8aMGYO+ffvi5s2bCAsLc3ZYRER1SuHsAIiIiIiIiIiIHOGZZ57BmjVrkJycjFGjRjHZS0RNEkf4EhEREREREVGzoNPpEBoaCovFgs8//xyPP/64s0MiIqpzrOFLRERERERERM2Ct7c3JkyYAA8PD0RHRzs7HCKiesGELxERERERERE1G8nJyXj66aehVqudHQoRUb1gSQciIiIiIiIiavJyc3MRFxeHP/7xj7h48SI6dOjg7JCIiOoFJ20jIiIiIiIioiavV69eyM3NxVtvvcVkLxE1aRzhS0RERERERERERNREsIYvERERERERERERURPBhC8RERERERERERFRE8GELxEREREREREREVETwYQvERERERERERERURPBhC8RERERERERERFRE8GELxEREREREREREVETwYQvERERERERERERURPBhC8RERERERERERFRE8GELxEREREREREREVET8f+KnboiDorxvwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(17, 5))\n", "\n", "sim.plot(z=wg_height / 2, lw=1, edgecolor=\"k\", ax=ax1)\n", "sim.plot(x=0.1, lw=1, edgecolor=\"k\", ax=ax2)\n", "\n", "ax2.set_xlim([-3, 3])\n", "_ = ax2.set_ylim([-1, 1])\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 4 }