{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Field projections\n", "\n", "This tutorial will show you how to use field projections to obtain electromagnetic field data far away from a structure with knowledge of only near-field data.\n", "\n", "When projecting fields, geometric approximations can be invoked to allow computing fields far away from the structure quickly and with good accuracy, but in `Tidy3D` we can also turn these approximations off when projecting fields at intermediate distances away, which gives a lot of flexibility.\n", "\n", "These field projections are particularly useful for eliminating the need to simulate large regions of empty space around a structure. \n", "\n", "In this notebook, we will\n", "\n", "* show how to compute projected fields on your local machine after a simulation is run, or on our servers during the simulation run.\n", "\n", "* show how to extract various quantities related to projected fields such as fields in different coordinate systems, power, and radar cross section.\n", "\n", "* demonstrate how, when far field approximations are used, the fields can dynamically be re-projected to new distances without having to run a new simulation.\n", "\n", "* study when geometric far field approximations should and should not be invoked, depending on the projection distance and the geometry of the structure.\n", "\n", "* show how to set up projections for finite-sized objects (e.g., scattering at a sphere) vs. thin but large-area structures (e.g., metasurfaces).\n", "\n", "## Table of contents\n", "1. [Simulation setup](#setup)\n", "2. [Far-field projector setup](#farfield1)\n", "3. [Server-side far field projection](#farfieldserver1)\n", "4. [Coordinate system conversion, power computation](#powercoords)\n", "5. [Re-projection to a new far field distance](#reproj)\n", "6. [Exact field projections without making the far-field approximation](#exact)\n", "7. [Projection to a grid defined in reciprocal space](#kspace)\n", "8. [Some final notes](#notes)\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:49:52.951854Z", "iopub.status.busy": "2023-03-27T23:49:52.951293Z", "iopub.status.idle": "2023-03-27T23:49:54.195810Z", "shell.execute_reply": "2023-03-27T23:49:54.195227Z" } }, "outputs": [], "source": [ "# standard python imports\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "# tidy3d imports\n", "import tidy3d as td\n", "import tidy3d.web as web\n" ] }, { "cell_type": "markdown", "metadata": { "tags": [] }, "source": [ "## Far Field for a Uniformly Illuminated Aperture \n", "\n", "First, we will consider the simple case of an aperture in a perfect electric conductor sheet illuminated by a plane wave. The far fields in this case are known analytically, which allows for a straightforward comparison to `Tidy3D`'s field projection functionality. We will show how to compute the far fields both on your local machine, and on the server. The geometry is shown below.\n", "\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Geometry setup" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:49:54.198896Z", "iopub.status.busy": "2023-03-27T23:49:54.198512Z", "iopub.status.idle": "2023-03-27T23:49:54.218985Z", "shell.execute_reply": "2023-03-27T23:49:54.218243Z" } }, "outputs": [], "source": [ "# size of the aperture (um)\n", "width = 1.5\n", "height = 2.5\n", "\n", "# free space central wavelength (um)\n", "wavelength = 0.75\n", "# center frequency\n", "f0 = td.C_0 / wavelength\n", "\n", "# Define materials\n", "air = td.Medium(permittivity=1)\n", "pec = td.PECMedium()\n", "\n", "# PEC plate thickness\n", "thick = 0.2\n", "\n", "# FDTD grid resolution\n", "min_cells_per_wvl = 20\n", "\n", "# create the PEC plate\n", "plate = td.Structure(\n", " geometry=td.Box(size=[td.inf, thick, td.inf], center=[0, 0, 0]), medium=pec\n", ")\n", "\n", "# create the aperture in the plate\n", "aperture = td.Structure(\n", " geometry=td.Box(size=[width, 1.5 * thick, height], center=[0, 0, 0]), medium=air\n", ")\n", "\n", "# make sure to append the aperture to the plate so that it overrides that region of the plate\n", "geometry = [plate, aperture]\n", "\n", "# define the boundaries as PML on all sides\n", "boundary_spec = td.BoundarySpec.all_sides(boundary=td.PML())\n", "\n", "# set the total domain size in x, y, and z\n", "sim_size = [width * 2, 2, height * 2]\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Source setup\n", "For our incident field, we create a plane wave incident from the left, with the electric field polarized in the -z direction." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:49:54.221442Z", "iopub.status.busy": "2023-03-27T23:49:54.221274Z", "iopub.status.idle": "2023-03-27T23:49:54.240286Z", "shell.execute_reply": "2023-03-27T23:49:54.239784Z" } }, "outputs": [], "source": [ "# bandwidth in Hz\n", "fwidth = f0 / 10.0\n", "\n", "# time dependence of source\n", "gaussian = td.GaussianPulse(freq0=f0, fwidth=fwidth)\n", "\n", "# place the source to the left, propagating in the +y direction\n", "offset_src = -0.3\n", "source = td.PlaneWave(\n", " center=(0, offset_src, -0),\n", " size=(td.inf, 0, td.inf),\n", " source_time=gaussian,\n", " direction=\"+\",\n", " pol_angle=np.pi / 2,\n", ")\n", "\n", "# Simulation run time\n", "run_time = 50 / fwidth\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create monitor\n", "\n", "First, we'll see how to do field projections using your machine after you've downloaded near fields from a `Tidy3D` simulation.\n", "\n", "We create a surface [FieldMonitor](../_autosummary/tidy3d.FieldMonitor.html) just to the right of the aperture to capture the near field data in the frequency domain." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:49:54.242741Z", "iopub.status.busy": "2023-03-27T23:49:54.242483Z", "iopub.status.idle": "2023-03-27T23:49:54.264604Z", "shell.execute_reply": "2023-03-27T23:49:54.264041Z" } }, "outputs": [], "source": [ "offset_mon = 0.3\n", "monitor_near = td.FieldMonitor(\n", " center=[0, offset_mon, 0], size=[td.inf, 0, td.inf], freqs=[f0], name=\"near_field\"\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create Simulation\n", "\n", "Now we can put everything together and define the simulation with a simple uniform mesh, and then we'll visualize the geometry to make sure everything looks right." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:49:54.266821Z", "iopub.status.busy": "2023-03-27T23:49:54.266631Z", "iopub.status.idle": "2023-03-27T23:49:54.603575Z", "shell.execute_reply": "2023-03-27T23:49:54.603056Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAE8CAYAAAAVAG93AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABRxUlEQVR4nO3deZhjVZ0+8Pfe3CVVWSrpSvVGN0uDAjYKDTSMKLK1gKDSCj0wM7LpoLL5Q9QRHhkQFHtUhB6hAWFEBpQZBh8FFUZZbEARlXUGUERGkG6gl1QnlaUqudv5/VHcdFKVvZLcLO/neerprtRNcpJbde6bc8/9HkkIIUBEREREbSN73QAiIiKifsfARURERNRmDFxEREREbcbARURERNRmDFxEREREbcbARURERNRmDFxEREREbcbARURERNRmDFxEREREbcbA1aUefvhhSJKEhx9+2OumEBFRm7HP738MXB67/vrrceutt3rdjKbccccdWLdundfNKPHd734Xe++9N/x+P972trfh2muvrfu++XweX/ziF7F48WIMDQ3h4IMPxgMPPFB229/85jd473vfi+HhYSxcuBCf+cxnkMlkWvUyiKhPsc9vrZ7q8wV5avny5eKwww6bdbtt22JqakrYtt35RtXp+OOPF7vssovXzSi48cYbBQBx4okniptuukmceuqpAoD4l3/5l7ruf8oppwhFUcTnP/958Z3vfEe8+93vFoqiiF/96lcl2z3zzDPC7/eLFStWiBtuuEF86UtfErqui2OPPbYdL4uI+gj7/NbptT6/KwJXJpPxugmeqfTH1wu66Y9vcnJSjI6OiuOPP77k9n/4h38QgUBAbN++ver9f/e73wkA4pvf/GbhtqmpKbH77ruLd7/73SXbfuADHxCLFi0SExMThdtuvvlmAUD84he/aMGrIepv7PMP87oZTWGfP7c+v+WBa9OmTeLjH/+4WLRokdA0Tey6667i05/+tMjn80IIIb73ve8JAOLhhx8WZ599thgbGxORSKRw//Xr14t3vOMdQtM0sWjRInHOOeeIRCJR8hwvvfSS+OhHPyoWLFggdF0XO+20kzj55JNFMpksbHP//feL97znPWJkZEQEAgHx9re/XVx88cU121/P/XK5nLj00kvF7rvvLjRNE0uWLBFf+MIXRC6Xm/V4t99+u1i5cqUYGhoSkUhEHHrooYUdtMsuuwgAJV/uH+KGDRsEALFhw4aSx/uv//ovsf/++wu/3y9GR0fFP/zDP4hNmzaVbHP66aeLQCAgNm3aJE444QQRCARELBYTn/vc54RlWTXfg7vvvlscd9xxhX24bNkyccUVV5Tc97DDDpvV9mp/iLfccosAIL773e+W3H7llVcKAOLee++t2a5q7r333rKP85vf/EYAELfffnvV+3/hC18QPp+v5A9KCCG+9rWvCQDitddeE0IIMTExIRRFEV/4whdKtsvn8yIYDIpPfOITc3odRL2GfX4p9vnT3ve+94l3vetdZX/29re/XRx99NE121VNL/b5SmMnIKt74403cNBBByGZTOKTn/wk9tprL7z++uv44Q9/iMnJSWiaVtj2nHPOwdjYGC699FJks1kAwJe//GVcfvnlWLVqFc4++2z86U9/wg033IAnnngCjz32GFRVhWEYOOaYY5DP53H++edj4cKFeP311/Gzn/0MyWQSIyMjeOGFF/DBD34Q73rXu3DFFVdA13W8/PLLeOyxx6q2v577OY6DD3/4w/j1r3+NT37yk9h7773x3HPP4ZprrsFLL72Eu+++u7Dt5Zdfji9/+cs45JBDcMUVV0DTNPzud7/DL3/5Sxx99NFYt24dzj//fASDQXzpS18CACxYsKBi+2699VaceeaZWLlyJdauXYstW7bgX//1X/HYY4/hmWeeQSQSKWxr2zaOOeYYHHzwwbjqqqvw4IMP4lvf+hZ23313nH322VXfh1tvvRXBYBAXXnghgsEgfvnLX+LSSy9FKpXCN7/5TQDAl770JUxMTGDTpk245pprAADBYLDiY5555pn40Y9+hAsvvBDvf//7sXTpUjz33HO4/PLL8YlPfALHHXdcYdtEIgHbtqu2EQCGh4cxPDwMAHjmmWcAAAceeGDJNgcccABkWcYzzzyDj33sYxUf65lnnsHb3/52hMPhktsPOuggAMCzzz5baLNlWbOeR9M07LfffoV2EA0C9vns8ys59dRTcdZZZ+H555/HPvvsU7j9iSeewEsvvYRLLrmkcNvA9Pl1R7M6nHbaaUKWZfHEE0/M+pnjOEKIHZ923vve95ak561btwpN08TRRx9dcg77uuuuEwDELbfcIoSYPpcKQNx1110V23HNNdcIAGLbtm0Ntb+e+91+++1CluVZ53jdc8mPPfaYEEKIP//5z0KWZfGRj3xk1jl5970QovLw8sxPO4ZhiPnz54t99tlHTE1NFbb72c9+JgCISy+9tHDb6aefLgCIK664ouQxV6xYIQ444IDqb4KYHqqd6VOf+pQYHh4u+UTX6PDym2++KebNmyfe//73i3w+L1asWCF23nnnWZ8wyn0KLPd12WWXFe5z7rnnCp/PV/Z5x8bGxCmnnFK1bcuXLxdHHnnkrNtfeOEFAUDceOONQggh7rrrLgFAPProo7O2XbNmjVi4cGGtt4Gob7DPZ59fSTKZFH6/X3zxi18suf0zn/mMCAQCJaeVB6XPb9lVio7j4O6778aHPvShWUkQACRJKvn+rLPOgs/nK3z/4IMPwjAMXHDBBZBluWS7cDiMe++9FwAwMjICAPjFL36BycnJsm1xU/8999wDx3Hqfg313O+uu+7C3nvvjb322gvxeLzwdeSRRwIANmzYAAC4++674TgOLr300pLXA8x+L+rx5JNPYuvWrTjnnHPg9/sLtx9//PHYa6+9Cu9PsU9/+tMl3x966KH4y1/+UvO5hoaGCv9Pp9OIx+M49NBDMTk5iRdffLHhtrsWLlyI9evX44EHHsChhx6KZ599FrfccsusTxg/+MEP8MADD9T8Ou200wr3mZqaKvk0Xczv92Nqaqpq26ampqDretn7uj8v/rfStrWeh6hfsM9nn1/NyMgITjjhBPzHf/wHhBAApkfh7rzzTqxevRqBQKCw7aD0+S07pbht2zakUqmSocNqdtttt5Lv//rXvwIA9txzz5LbNU3DsmXLCj/fbbfdcOGFF+Lqq6/GD37wAxx66KH48Ic/jI997GOFP8yTTz4Z//Zv/4Z//Md/xEUXXYSjjjoKH/3oR3HSSSfN+kMoVs/9/vznP+OPf/wjxsbGyj7G1q1bAQD/93//B1mW8Y53vKOu96OWSu8PAOy111749a9/XXKb3++f1cZoNIpEIlHzuV544QVccskl+OUvf4lUKlXys4mJiUabXuKUU07B97//fdx777345Cc/iaOOOmrWNu95z3saftyhoSEYhlH2Z7lcrqRDqXT/fD5f9r7uz4v/rbRtrech6hfs86exz6/stNNOw5133olf/epXeN/73ocHH3wQW7Zswamnnlqy3aD0+S2dw9WIuRyYvvWtb+GMM87APffcg/vvvx+f+cxnsHbtWvz2t7/FkiVLMDQ0hEcffRQbNmzAvffei5///Oe48847ceSRR+L+++8v+ZQ1s0217uc4Dt75znfi6quvLvsYS5cubfp1tVKl11hLMpnEYYcdhnA4jCuuuAK77747/H4/nn76aXzxi19s6NNjOePj43jyyScBAH/4wx/gOM6sDnHbtm11nc8PBoOFOQSLFi2CbdvYunUr5s+fX9jGMAyMj49j8eLFVR9r0aJFeP3112fd/uabbwJA4f6LFi0quX3mtrWeh2hQsc9vr27s84855hgsWLAA3//+9/G+970P3//+97Fw4UKsWrWqZLuB6fPrPvlYg23bIhwOixNOOKHqdu75/Jnn/O+44w4BQNx3330lt+fzeTEyMiJOPPHEio/52GOPCQDiS1/6UsVt3KvhHnjggdovpsr9jjvuOLHTTjuVnJMv55vf/KYAIJ555pmq2+2zzz51nc93r7y4/vrrZ2279957l5ynd69Ymemyyy4TtXb5j3/8YwFAPPLIIyW333TTTbOuoPngBz/Y8CXCJ598shgeHhZr164VAMS3vvWtWds0cz7fndcw84oV93fjtttuq9quz3/+82WvWHH3v3vFSjKZrHrFysc//vFG3g6insU+vxT7/PI++9nPimg0KrZv3y6CwaD47Gc/O2ubQenzWzaHS5ZlrF69Gj/96U8LIxjFxFvncCtZtWoVNE3Dt7/97ZJtv/vd72JiYgLHH388ACCVSsGyrJL7vvOd74Qsy4Uhv+3bt896/P322w9A+WFBVz33+9u//Vu8/vrruPnmm2dtOzU1Vbj6ZvXq1ZBlGVdcccWsTwjFry8QCCCZTFZsk+vAAw/E/PnzceONN5a8hv/+7//GH//4x8L7M1fup6TiNhqGgeuvv37WtoFAoKHh5h/+8Ie488478S//8i+46KKLcMopp+CSSy7BSy+9VLJdM+fzjzzySMybNw833HBDyWPdcMMNGB4eLnl/4vE4XnzxxZL5ICeddBJs28ZNN91UuC2fz+N73/seDj744MKn2JGREaxatQrf//73kU6nC9vefvvtyGQyWLNmTd3vB1EvY5/PPr8ep556KhKJBD71qU8hk8mUvXJwYPr8uqNZHTZt2iQWLlwohoeHxQUXXCC+853viC9/+cti+fLlhboqlT7tCLEjjR999NHiuuuuE+eff77w+Xxi5cqVwjAMIcR0Gt9pp53EBRdcIK6//nrx7W9/W6xcuVKoqioef/xxIYQQ/+///T+xYsUKcckll4ibb75ZXHnllWKnnXYSS5YsKanbMlM997NtWxx33HFCkiRxyimniGuvvVasW7dOfPrTnxbz5s0reV3//M//LACIQw45RFx11VXi2muvFaeddpq46KKLCtucc845QpIk8ZWvfEX8x3/8h3jooYeEEOVrsrjv3cEHHyzWrVsnLr74YjE8PCx23XXXkro1c/m0E4/HRTQaFbvssov41re+Ja6++mqxYsUKse+++85qzze+8Q0BQHz2s58Vd9xxh/jJT35S8XG3bNkiYrGYOOKIIwqfFOPxuFiwYIF497vf3ZLqyuvXrxcAxEknnSRuvvlmcdpppwkA4sorryzZzn0fZta7WbNmTeGTzHe+8x1xyCGHCEVRZn3ye+qpp4Su6yVVh/1+/5zryhD1Gvb57PPrsc8++wgAYu+9965r+3r1Wp/f8sKnf/3rX8Vpp50mxsbGhK7rYtmyZeLcc8+dVQSv3B+fENOXBO+1115CVVWxYMECcfbZZ5f8Yv3lL38RH//4x8Xuu+8u/H6/mDdvnjjiiCPEgw8+WNjmoYceEieccIJYvHix0DRNLF68WPzd3/2deOmll6q2vd77GYYhvv71r4vly5cLXddFNBoVBxxwgLj88stnDU/ecsstYsWKFYXtDjvssJIh7s2bN4vjjz9ehEIhAdQugnfnnXcWHm/evHlVi+DNVM8fnxDTQ7J/8zd/I4aGhsTixYvFP/3TP4lf/OIXs9qTyWTE3//934tIJCJQowjeRz/6UREKhcSrr75acvs999wjAIivf/3rNdtVj5tuuknsueeeQtM0sfvuu4trrrlm1qmASn98U1NT4vOf/7xYuHCh0HVdrFy5Uvz85z8v+zy/+tWvxCGHHCL8fr8YGxsT5557rkilUi15DUS9hH0++/xa3KD2ta99ra7tG9FLfb4kRI1xXyIiIqIm/eu//is++9nP4tVXX8XOO+/sdXM8w8BFREREbSGEwL777ovR0dFCzbJB5VlZCCIiIupP2WwWP/nJT7BhwwY899xzuOeee7xukuc4wkVEREQt9eqrr2K33XZDJBLBOeecgyuvvNLrJnmOgYuIiIiozVpWh4uIiIiIymPgIiIiImqzgZo07zgO3njjDYRCoaZWbyfvCSGQTqexePHiqovSElFvYf9M7eb18WOgAtcbb7zRNQuN0txs3LgRS5Ys8boZRNQi7J+pU7w6fgxU4AqFQgCAf/qnfypZud4wjMI6UpqmVf105W4Xi8WgqmrL2mYYRmF9rUgkAlmVkbSSJdtElAgUaccuS6fTePrpp7H/ciA0PPsx05PA0y8A+++/f+G1T78IE8jFSzf2xyCgYNu2bQAAXdcxMjLSipdWYJom4vHp5632HlfbH1NTU/jGN75R+nqIqOcV+ufPn4uhodqHJiEkGJYOAJDgQFONt26XASEhFt4KVbGqPURLTEyOIG9Ot2MsvA2S1Pnr0AxLQzIbAQBEAkloitHxNgghYVtqDACgq3mMDDe25mItpqUgnpoPSAKS5FTczjA1iLdmS2lKvmR/TE1Z+MZV6z07fgxU4HIP3ENDQwgGgwCmF6uUJAmyLEMIAUmSoOt6xeFGx3HgOA7C4TA0TWtJuwzDQDabLQQc0zQRCUVgyKV/NGElDFUuDXmSJCE0DIxU+P2RpOmOrCQ8OQagZku2c/QgxhNpBAIB6LqOXC4HWZZb+ovpvk5Zliu+v/XuD55yIOovO/pnBcHh6h9mHQHkzSH4FAmS5MARMhSfCl0x4AgJjuNDOCRDU9rbT6SnQvApIcwbnkLe1GGKMYyG4pA7GLoMS0U2FcNIyAYAmHYMI0NxaIrZsTY4QsJ4KobAsAJdzSNnhCArAqGhdO0718mwZGRNDbJsV3x/85YGyadAlhwIIUOSNOjqFOQZvwZeHT8GehJMPp+HZVlQFAVDQ0PQNA1CCOTz+VmrvbeLYRiIx+NQVRWxWKwwcpbYnoBjdqYNjhAY356EaZqIxWIYHR1FOBxGKpUqWR293bphfxBRd3PDlhASNDWHIS0HxWfBshXkrdZ8CK5HeiqE1GQY4eEURkPbEQvHYdoKxlMxOKIzB3TDUhFPxaD6LMTC2xALb4PqsxBPxWBYrTsDU40btkxbQSwcx2hoO8LDKaQmw0hPdW4kKW9psGwFis/CkJaDpuYghIS8OQSnS4pfDWzgKj646/r0cLCiKB09yBeHrdHR0cLIz+joKBRFQT6Rb3vocoTAeMqGaVmIxWKFUbtQKNTR0NUN+4OIutvMsKXI032CrhiF0GV0IHQVhy13FEdTzI6GruKwNRqeHlWTJYHRcLxjoWtm2HJH1UJD6Y6GruKwpb91OlWRna4LXQMZuEzTnHVwd3XqIF8ubLlkWUZkXgSSIrU1dBXCli0QmxeddYq0U6GrXNhyzdwfrNNLNJgqhS2XG7psxwfL9rWtHeXClqtToatc2HJ1KnRVCluuToWucmHLNTN0iQ6NPFYykIHLcZyyB3dXu0NXtbDlkmUZekRvW+gqCVshHzSt/B9lu0NXtbDlKt4fhtH5yaBE5K1aYculKwZ8sg1H+JDNBVrejmphy9Xu0FUtbLnaHbpqhS1Xu0NXtbDlKg5dnRj9rGYgA5csyxUP7q52ha56wpZLkqWS0GUarZkE6ThOadhSq/8atCt01RO2XO7+IKLBUm/YcmmKAVmykckFW3qQryds7WhDe0JXPWHL1a7QVW/YcrUrdNUTtlxu6AI4wtVx9ZZzaHXoaiRsuYpDV2J7Ys4jPI7jTE+QrzNsuVoduhoJWy5FUVpaioOIulujYcul+GwE/ZmWHeQbCVuuVoeuRsKWq9Whq9Gw5Wp16GokbLkU2YHq69yVm+UMZOBqRKvmEDUTtlxu6FIUBfF4vOnQ5TgOxsfHpyfINxC2XK0KXYZhNBy2XKwuTzQYmg1broA/25KDfDNhy9Wq0NVM2HK1KnQ1G7ZcrQpdRhNhyyXLdtPP2wo8etVhriNdcwlbLkmWEJkXgaqqTYWuQtgyzekJ8g2GLddcQ5dlWbBtu6mwRUSDYa5hyzXXg/xcwpZrrqFrLmHLNdfQNdew5Zrr/rBsH2zH11TY6gYMXHUqDl22bdcduloRtlxuyQg3dFlWfVWUhRA7wlYsVnGCfL2aDV3ZbBaO48Dn8zFsEVFZxVeUzSVsuZo9yLcibLmaDV2tCFuuZkNXq8KWq9n9kc0F4AgffLLdk2ELYOBqSHHoSiaTNUNXK8OWqzh0ZTKZmnOaJElCJpMpClutmXjeaOhKp9PIZDKQZZmT34moIsPSWha2XI0e5FsZtlyNhq5Whi1Xo6Gr1WHL1cz+yOSCkCXbk2WLWoWBq0E+nw+KosCyLIyPj1cMXe0IWy43dPl8PsRiMVhO+T8aISTEYjHYtt3SsOWqN3Sl02mkUikEg0EoykCtJkVEDWtt2HLVe5BvR9hy1Ru62hG2XPWGrnaFLVej+yPoz0DxeTsHa64YuJogyzKi0ShM0ywbutoZtorbEAwGYVkWMvnZfzSOkJDJx6AoCoLBYNtGlWqFLjdshcNhBAKtr4tDRP1F9ZktD1uuWgf5doYtV63Q1c6w5aoVutodtlyN7I+AP1vmEXoLA1eT3LUPZ4auToQtlyRJiMfj8EmlfzTuH4stpq9qbPeoUqXQVRy2vFqdnYh6S7uvJKt0kO9E2HJVCl2dCFuuSqGrU2HL1Q37o1MG8vyOEKLpmlqO40AIAdM0oaoqRkZGkEgksHXrVgSDQSSTSSiKgnA4XPek9nIsYcGxSttoChOi6A/QLa3gVydgiSi2JscQCU4gMxWEZfswpCYK25Vc1ShMwJrxh2yac6oJp+s6hoeHkUwmC687k8kgGAxC13UYhgHTNOf03gPg0j5EfU4IaU41qxwhQQgJplX58KarOQzrPiSzI4VlgDK5IIL+DHQ117GFn0eGk0hkotianI/gUAbJzAgUn43w8AQsuzOH5/DwxFttKD1+RIPTx49OvBf17A/TUub8uyGEt2NMDFwNcgNXPp+HbU9/EgsGg8jn88hms9B1HZqmIZ/Pz6mNtrALj+/KW3lY0o4QZ5omhoaGYDnAkH8KhqkjmwtAkgSCQ1nk8iqGhlSYpolcLrfjgYQNGDNfvwFIc/tk6fP5EAgECuEuEAjA5/MVntuyLDiOA0mayx8MAxdRPxOQ4TjNr4XoYDpw5S0/bKdyn+aTHQT0ycJyLwF9Ej7ZQc4Yavq5mxEcyiL/Vt+tqyY0NY+86e9oG4b02ccP21FhG50rNF1rf1iOD46QIAkf0ORxQMDbOWADGbjGxsYQDoebuq9pmsjn8zjuuOMwMjLS4pbtkLEzeCz1WMlt7wm/B0FfsPD9Cy+8gK985Su45zpg+dtnP8YLLwFf+Tpwzz33YPny5Tt+YE4Ab/x36caLPwCo7Xs9ADAxMYH77rsPuq43XTE+lUq1uFVE1E3GQlsRDjU/EmFaCvKmH8ftfx9GAhMtbBl5aSI7gvueOg66moOqNHf2KJVuz9zAeg1k4FJVdU6TyG3bxsjICObNm9fCVpVSLAW6VFqrKhKJIKzsCIqBQACJRAIBHZgXnPkIQEAHEonp7UraakhAesauj0YALdrCV1CeuzxPs+8/l/Yh6m+qYkFT5rYMju3YGAlMYN5bp8WoPyg++63fj+bmlamKt2dIOGmeiIiIqM0YuIiIqGtUm+xO1MsYuJowl6vsiIiosmQ20rGrBIk6iYGrQaZpNrxwNO0wl1IZRNT/FJ/d1ALL1P86VSqjXRi4GmAYBhKJxJzKGgw60zSRzfZ+xWAiao9IINnwAss0GExbQTbXuyuWMHDVya0g7y5gTc1xF92uZ8FrIho8UoMLLNPgUH0WMrlgXQtedyMGrjoUL9cTjUY5wjUH7tqOtRa8JqLBVe8CyzRYFJ+FoD9Tc8HrbsXAVcPMtREZtuYuEAhUXfC6GtNs77peRNQdGLqonIA/W3XB62q8vgJ2IANXvXOIOrkQ9aCptOB1NYZhIJlMtrdhRNQ1mg1dvT65mqqrtOB1NYalIpmNtLdhNQxkgshmszUP8gxb7ddI6CqeQ0dEg6PR0JXNBWAycPW9RkKXYamIp2JQfN6upTiQKSIQCFQ9yDNsdU49oat4f0Qikc42kIg8V2/oSk+FkMkFofpYfmYQ1BO63LCl+ixEAsnONnCGgUwS1eYQMWx1XrXQxTl0RATUDl3pqRBSk2EE/RkoDFwDo1roKg5bo+E4JMnbtRQHdtw1FJreMalUqvA9w5Z3uD+IqBY3dI2nYoinYoiF49AUsxC2wsMp6GoOOWPI66ZSB4WGpj+opybDhe9nhi3Z47AF9NAI19q1a7Fy5UqEQiHMnz8fq1evxp/+9Kc5PWbxyMr4+DgP7h7j/iDqXe3oo8uZOdI1np5XCFvugZcGT/FI13h6XteFLaCHAtcjjzyCc889F7/97W/xwAMPwDRNHH300XOuWh4KheD3+5HL5SCE4MHdY9wfRL2pXX10OW7oEkJGzhiCX5ti2CKEhtLwa1PIGUMQQu6qsAX00CnFn//85yXf33rrrZg/fz6eeuopvO9972v6cQ3DQD6fL3yfzWYLp7eo87g/iHpTu/roSrK5YOH/eVOHYanQFNbpG2SGpSJv6oXvs7lgVwXxnglcM01MTAAA5s2bV3GbfD5fcvB25we5Zs4RymazJXOIqLO4P4j6R60+ulb/XE3xnK2AP1Myp4sG08w5W9lcsGROVzfoyXM1juPgggsuwHve8x7ss88+Fbdbu3YtRkZGCl9Lly4t/KzchOxminFSa3B/EPWPevroav1zNcVhKzSUnjWny+tq4tR55SbIN1Mctd16MnCde+65eP755/Gf//mfVbe7+OKLMTExUfjauHEjgOnlYSpNyOZBvvOqXY3I/UHUe+rpoyv1z9XMDFuu4tCVyEThCJaPGRTVrkbsttDVcx8FzjvvPPzsZz/Do48+iiVLllTdVtd16Lo+6/ZkMomRkZGKE7LLlSig9qin9EPx/mAdLqLuVm8fXal/rqRS2HK5oWtrcj4Mq/7Hpd5VT+mH4pIRkvC20nzPBC4hBM4//3z8+Mc/xsMPP4zddtut6cdSFKXm1W8MXe3XSJ0t9/3fvHlzp5pHRA1oZR89U62w5ZIlgWgwUZi7Q/2rkTpb7u/M5vFAp5pXVs8ErnPPPRd33HEH7rnnHoRCocKBd2RkBENDjRW5i0QidZUaYOhqn2aKmoZCIZ5WJOpSreyji9UbtlySJKCpRtPPR92vmaKmoaE00n6upViXG264ARMTEzj88MOxaNGiwtedd97Z8GM1clqKc4har9oculoCAW8/oRBRea3so12Nhi0XJx70L9NSmi5qGtBbXxOuET0zwiWEd8XLike6hoeH4fP5PGtLr3McB6lUCrqus6gpUR9pdR/dbNii/uUICalMFLpqdl1R03r0TODymhu6kskkR1nmwDCMuubQEdHgYtiicgxLh+KzezJsAQxcDQmFQrAsC4bB+QHNkiQJ0WiUYYuIysrmAxAGwxbNJsFBNJjqybAF9NAcrm4RCASgqqrXzehZmqaxtAMRVZTNBRi2qCxNNSD1aNgCOMLVFEXh29Yshi0iqibgzyI0NOl1M6gL9frRgyNcRETUNby+koyoXRi4iIiIiNqMgYuIiIiozRi4iIiIiNqMgYuIiIiozRi4iIiIiNqMgYuIiLqGEL1+8T9ReQxcTfByXUcion6WzEbgMHRRH2LgapAQgkv7zIHjOF43gYi6mGX7MJ6KMXTRLL3+O8HA1QDHcZBIJDjCNQeGYcA0Ta+bQURdKhJIwrQVhi6axbB0mFbvrvTCwFUnx3EwPj4Oy7KgaZrXzelZkiQhkUhwlJCIylIVC7FwnKGLZpHgIJGJwrB6cz1jBq46uGHLNE1Eo1HIMt+2ZmmaBkVREI/HGbqIqCxNMRm6aBZNNaD4bMRTsZ4MXUwONRSHrVgsBlXtvZ3cTSRJQjQahaqqTYUuns4lGgwMXTSTBCAaTED1WU2FLq+vgB3IwFXvHKKZYYunEltDkiSMjo42HLocx0EymWxv44ioazQbuhjO+pckCYyG4w2HLkdISGYj7W1cDQMZuJLJZM2DPMNWe8my3FDoKp5DR0SDo9HQZVoKDEvvUOvIC3KDocsREsZTMVi2r0MtLG8gA1etOUQMW51Rb+gq3h+RSKSzjSQiz9UbugxLRSIThQSWn+l39YYuN2yZtoJIINnZRs4wkIErEolUPMgzbHVWrdDFOXREBNQOXYalIp6KQfHZ0FRekDMIaoWu4rAVC8ehKt6eIRnIwFVpDhHDljcqhS7uDyIqVil0uWFL9VmIBhPgDK7BUSl0zQxbmuJ9/cferSA2R+5Bfnx8HPF4HKOjo0ilUj11cN9///2rXrW3/15Ar1zU1w/7g4jazw1d8VQM46kYwsMpjKfnQfVZGA3HYdkeHdb26pHOthVe7K5I64au8VQM8VQMo6HtSE2GuypsAQM6wuVyD/LFc7p4cPcO9wcR1cMNXYalFU4jjobjkKUBCj1Uwg1dO+p0aV0VtoABD1xEREREnTDQgau41IA7ksIK6N7h/iCierhztjTFQCwc54LXVFL6YXpky+i6ivQDG7hmTsjWdb2pYpzUGtwfRFSP4gnyo+E4dDVfMpHe62ri1HkzJ8jrar6p4qjtNpCBSwhR9uq3RotxUmtUuhqR+4OIis0MW+6creKrFxOZKDiTa3BUuhqx0eKondBTgevRRx/Fhz70ISxevBiSJOHuu+9u6nGSyWTFq994kO+sWqUfZu6PepdlIqLOalX/XEmlsOVyQ5dl+2CYvNBmENQq/TAzdJmWt4UZeipwZbNZ7Lvvvli/fv2cHqd4jlA5DF2dUW+dreL9wbUUibpTq/rncmqFLZemmIgGExC9dWijJtRbZ6s4dHm9lmJP1eH6wAc+gA984ANzfpxIJFKz1MDMulAsT9BajRY1dfdHNpvtUAuJqBGt6p9nqjdsuVTFgmbnW94O6h6NFjV1Q1d2cqRDLSyvpwJXo/L5PPL5HX94qVQKAOpeHqZc6KK5qzSHrhZZlrmWIlGfqNQ/F2s0bLlYj6t/iSYryMuS4FqK7bR27VqMjIwUvpYuXdrwY3AOUWsJIZBIJJquIC9JvAKJqB/U6p+bDVvUvwSARCbadAV5yePfob4OXBdffDEmJiYKXxs3bmzqcYpDVyKRgONwJfpmGYZRcw4dEfW/av0zwxaVY5haUZ2t3hv86OtTirquQ9f1ljyWG7q2bt3KSfRzIIRANBpl2CIacJX6Z9NSkGXYojIEZESDiZ4MW0Cfj3C1mizLiEajPK01B5qm1T2HjogGTzIbYdiisjQlD1WxvG5G03pqhCuTyeDll18ufP/KK6/g2Wefxbx587Dzzjt3pA2SJHF0Zg5kmRmfqB+1qn+eXoh6O8MWzdLrvxM9FbiefPJJHHHEEYXvL7zwQgDA6aefjltvvbVj7eAIFxFRqVb1z5FAEjK7WOpDPRW4Dj/8cAjR2wmXiKgftap/nr6SjImL+g/P7xARERG1GQMXERERUZsxcBERERG1GQMXERERUZsxcBERERG1GQMXERF1jWw+4HUTiNqCgasJltW7lW69xrIeRFRNNhdAeirkdTOoC/X60YOBq0HZbBam2ZvrOHUDwzAYuoioooA/i9RkmKGLZjFMDUL0bo02Bq4GpNNpZDIZrgU4B0IIJBIJOI7jdVOIqAsF9CzCwymGLppFQEYiE4XTo6GLgatO6XQaqVQKwWAQitJTBfq7iqZpsCwL4+PjDF1EVFZoKM3QRbNoSh6W7cN4KtaToYuBqw5u2AqHwwgEOKFzLmRZRjQahWmaDF1EVBFDF80kSwLRYAKmrfRk6BrIwNXIHKLisBUK8Y++FVRVRSwWayp0ZbPZNraMiLpJs6GLs0T7l6pYiIXjTYUur6+AHcjAlUwm6zrIM2y1j6ZpDYeudDrNwEU0YBoNXUJIMEytAy0jr2iK2XDoSk+FkM0xcHVcPXOIGLbar5HQ5e4PntIlGjz1hi5HSEhkohCDeWgbKI2ErvRUCKnJMAJ+bz+wD+RvZSQSqXqQZ9jqnHpCF+fQEVGt0OUICeOpGCzbB03Je9BC6rR6QpcbtsLDKQR0Bq6OqzaHiGGr86qFLu4PInJVCl1u2DJtBdFgArLEWVyDolroKg5boaG0h62cNpCBCyh/kOfB3TvcH0RUj5mhqzhsxcJxqApXAhk05UJXt4UtABjoglLuQT4ej+PNN98EAB7cPcT9QUT1cA+gqckwUpNhSJKDWDgOTTFhWCxMPYjc0BVPxfDm9sUA0FVhCxjgES6XpmnQdb3wPecIeYv7g4jqEfBnCv/X1Tw0hUuuDTpNMaGrO+bvFf+OdIOBD1zpdBq5XA5+vx+SJLEYp8e4P4ioFvc0oiQ58GtTyBlDLI5KSE+FkDOG4NemIElO1xVHHejAVTxHaHR0tOlinNQa3B9EVMvMOVujoe2sSE8lc7ZGQ9ubLo7aTgMbuMpNyG6mGCe1BvcHEdUyM2y5pxGLJ9J7XdySOq/cBPlmiqO220AGrmw2W/HqNx7kO6/a1Ygz90cjyzIRUf+oFLZcbujK5IKw7IG+HmygVLsacWboEh6HroENXNWufmPo6px6Sj8U749kMtnZBhKR52qFLVdoKI2gPwOTgWsg1FP6oTh0JbORzjZwhoEMXIFAoGapAYau9mukzpa7PyyLNXaIBkm9YcsV8Geh+thP9LtG6my5ocuyfR1qXXkDG7jq0Uuh63+3/C+ueOQKPL7xcTiie9vpaqaoqaZpiEQi7W0YEXWNRsOWS2Hg6mvNFDXVFBORQLK9DathIANXI3plDtGvX/s1rvv9dTj5hyfjyH8/Etf9/jq8mnzV62aVVW0OXS2qyqKGRIOg2bBF/S2bCzRdQd7rVQgYuOpQHLoSiUTXhi5FVhDSQnh5+8v46qNfxVG3HYWP/ehj+NEff4R0vjuq7VqWhUwmwwryRFQRwxaVY9kKMrlg11WQr1fPBa7169dj1113hd/vx8EHH4zf//73HXne4jlEhmF05DmLOcLBC1tfwFNvPFX2a3NmMyRIGFKHsDC4EItDi+GTfHjolYdw3n3n4ZBbDsHFD17s+SlH0zQRDAYZtoj61Fz7aMGwRRWYtoKgP9OTYQvosbUU77zzTlx44YW48cYbcfDBB2PdunU45phj8Kc//Qnz589v+/NrmoZoNIpsNtv255rpL1v/got+eRHyVr7iNrawC/+XJRlhPYywHoblWJjITeB7z34PP3juB1g2shQnLdgZH9zpndg1GOtE8wtUVeVyPUR9qhV9dDIbgaYzbNFsqs9CwN/542+r9NQI19VXX42zzjoLZ555Jt7xjnfgxhtvxPDwMG655ZaOtUFVVWia1rHncxm2gUljEiEthKg/WvZrcWhx2fsqsoLR4VHsFNpp+pRj4hVc+fx9OOqha/Cxx76LH732dMdOOSpKT2V8ImpAK/poy/YxbFFZvX4xRFOB68gjj8Tll18+6/ZEIoEjjzxyzo0qxzAMPPXUU1i1alXhNlmWsWrVKjz++ONl75PP55FKpUq+WkGWvcupmk+r+CVL1dslSe4pxwVYNDQCnyTjoc0v4rwn/xOH3H4sLn7wYmxKberQKyGidvCifwYa76Mr9c+RQJJhi/pSU8nh4YcfxnXXXYfVq1eXnF4zDAOPPPJIyxpXLB6Pw7ZtLFiwoOT2BQsWYPPmzWXvs3btWoyMjBS+li5d2pa29SJZkhBSdES0IViOjS3ZbfjJSz/B81uf97ppRDQHXvTPQON9dKX+2esryYjapemhmgcffBCbN2/G3/zN3+DVV19tYZNa5+KLL8bExETha+PGjV43qSsYtoGtuTRen5rAlG3hoNHd8M0jLseG0zfg2D2O9bp5RDRH7J+Juk/TE2oWLVqERx55BGeeeSZWrlyJu+66C3vvvXcr21YiFovB5/Nhy5YtJbdv2bIFCxcuLHsfXdeh63rb2tQur/z0p9j8/LMw868VbpuXHcdRm/24/51vAHL59aCGlCHEhstPgrcdGykjhayRhU+SsdgfxkeWrsCHl7wLy0cWQ9rlbwEt2pbXQ0Sd1en+GWi8j+7V/pmoWU0FLkmaPuDruo477rgDX/3qV3Hsscfii1/8YksbV0zTNBxwwAF46KGHsHr1agCA4zh46KGHcN5557Xteb3wyk9/ivj//g9sZUe9rxHLxhHaPCz8yHGwA7Mn7b+SfAW/31R6+bUQApPmJCbyExBCIOwP48S9T8QJux+Jw6Ut0HycwE7Ub7zon4HB6qOJmtHUEXdm4c9LLrkEe++9N04//fSWNKqSCy+8EKeffjoOPPBAHHTQQVi3bh2y2SzOPPPMtj6vF5ThYdiRot0zmcc84cdXj/wq9DLL21z/xPWFwGXYBpK5JAzbgF/xY/9F+2PNO9bgA2/7AOYH5gNGAnjtrg69EiLqJK/6Z2Cw+miiRjUVuF555RWMjY2V3HbiiSdir732wpNPPtmShpVz8sknY9u2bbj00kuxefNm7Lfffvj5z38+a5LmoDIdE5tSm+CTfVgcXIyP7P0RfHjPD2P52PLCp14i6m9e9c8A+2iiapoKXLvsskvZ25cvX47ly5fPqUG1nHfeeRyeLmNEH8FYYAyH7XIYVu+1Gofvejg0X+frhRGRt7zsn4G599GmpQCwa25H1Gs4iacJjuPd0jiVnLLPKfjwnh9GSOeSOUTUu5LZCMKhFGtxUd/pqUrz3cA0TU/WUqzFJ/t6ImxZFmvsEFFlis9GPBWDYaleN4W6jGX39hgRA1cDDMNAIpHgfKg5ME3Tk7Uoiag3RAJJqD6LoYtmMW0F2VzvrsXb23GxgwzDQDweh6IoLV9LMbNpE3532WWwpqamn2tiAigT6hzLwsOf+hTg80GSZezz6U9j8Xvf29K2tJuqqshkMlAUBaFQ94/IEVFnSZLAaCiO8VQM8VSM6ypSgeqzkMkFofhshIY6s/5vKzFw1cENW6qqIhwOI5/Pt/TxfX4/Jt98E0Y6DcXvBwCooSDymNqxkV+D5AC57dvhvHVarhdH2hRFQTAYLKybxtBFRDPJksBomKGLSik+C0F/BqnJMAD0XOjiKcUaisPW6OhoW0LOUCyG+StXQpJl6NEo9GgUslo6lC7JErSREejRKCSfD0NjY5i/cmXL29IJgUAA4XAYqVQK6XRjfzCmyU6XaBC4oYunF6lYwJ9FeDiF1GQY6anGPrBPXwHrnYEMXPXOIZoZtmS5fW/X0lWrIEkSnBqBQggBxzCwZNUq+Fp8arOTQqFQw6HLMAwkk8n2NoyIukazoavXJ1dTdaGhdMOhy7BUJLOR9jashoENXLUO8p0MWwCw4KCD4I/FYNRolz01BZ+uY8kRR7S1PZ3QSOgqnkNHRIOj0dCVzQVgMnD1vUZCl2GpiKdiUHze1ncbyMAVCASqHuQ7HbYATIeoVavgGMaspTlK2pZOY+Rtb8PIHnu0vU2dUE/oKt4fkTLLGhFRf6s3dKWnQsjkglB9LD8zCOoJXW7YUn0WIoFkZxs4w8AGrkoHeS/ClmvJ4YfDp+uwc7myPxdvFVzd+eije3LCfCXVQlcn5tARUferFbrSUyGkJsMI+jNQGLgGRrXQVRy2RsNxSFLlwYxOGMjABZQ/yHsZtgAgsueeCC9bVvG0opXJQg0GsfjQQzvark7oxv1BRN2lUuhyw1Z4OIWAn3X+Bk250DUzbMkehy1gwMtCuCUJUqkUDMNAPp/39OAuSRJ2PuYYJF58sTCaVcyamsJO7z8U/tHRjretE7ptfxBR95lZMkJX88gZQwgPpxAaSvNqxgHllohITYZhWCrypt5VYQsY4BEuVygUgt/vRy6XgxDC84P74kMPhRoIwJpxJaUwLUiyjCVHHulRyzqj2/YHEXUfN3QJISNnDMGvTfVcTSZqvdBQGn5tCjljCELIXRW2AAauwkiKy+tlZ9z6WvbkjHlcmTz8Y7Gerb1Vr27bH0TUnbK5YOH/eVPnyBYVRrZcxb8j3WCgA1fxHKFFixY1XYyz1ZauWgXIEoQ5fQmrEAIwLSw86vCerr1VS7fuDyLqLsVzthbNe4PFUalkztaieW80XRy1nQZ2Dle5CdnFc4gA75adWXDQQdBH5yGf2AJEAkDOBHQVCw7rrXUTG9HN+4OIukdx2HJPIxbP6RoZTnrbQOq4chPki+d0Ad2xDNBAjnCZplnx6rdmKqC3mk/XsfCowwDDmh7dyuQh7zYfoT2WedKedqt2NWI37A8i6g7lwhZQevViIhOFI1g+ZlBUuxqxmYr07TSQgSuZTFa9+q0bDvILDzsU0BRgygAg4Dt8n76sQVVP6Yfi/cE5XUSDqVLYcrmhS/HZMCy9zCNQv6mn9ENx6MrmAx60coeBDFyKotS8+s3r0BV6+x6Qd5kPjKchBXTIB7+t421ot0bqbLn7g4GLaPDUClsuWRKIBhOQMLusDvWXRupsuaErm2Pg6rhIJFJXqQEvQ5ckSZAPXw7oKuT9d4cU7a6rLeaqmaKmoVAIgYC3fzBE1Fn1hi2XJAloqtGBlpFXmilqGhpKe14UdyADVyOn5rwMXb537wlpQWQ6ePWRanPoamHgIhocjYYtV/9NviCXaSlNV5AP6N4GroG9SrERxVfLDQ8Pw+fzdeR5pXlBaOs+Dmmof0pBOI6DVCoFXddZ1JSIKmo2bFH/coSEVCYKXTW7rqhpPRi46uSGrmQy2dFRln4KW8D0qcR65tAR0eBi2KJyDEuH4rN7MmwBDFwNCYVCsCwLhsH5Ac2SJAnRaJRhi4jKyuYDEAbDFs0mwUE0mOrJsAUM6ByuuQgEAlBVVjNulqZpfVnegohaI5sLMGxRWZpqQOrRsAVwhKspisK3rVkMW0RUTcCfRWho0utmUBfq9aMHR7iIiKhreH0lGVG7MHARERERtRkDFxEREVGb9UzguvLKK3HIIYdgeHgYkUjE6+YQEVER9tFE1fVM4DIMA2vWrMHZZ5/tdVOIiGgG9tFE1fXM5XaXX345AODWW2+t+z75fB75fL7wfSqVanWziIgIjffR7J9p0PTMCFcz1q5di5GRkcLX0qVLvW4SERGhcv8sRK9f/E9UXl8HrosvvhgTExOFr40bN7bkcYXo3cJrRETdoFL/nMxG4DB0UR/yNHBddNFFkCSp6teLL77Y9OPruo5wOFzyNVdCCC7tMweO43jdBCKqUzv76Er9s2X7MJ6KMXTRLL3+O+HpHK7Pfe5zOOOMM6pus2zZss40pg6O4yCRSHAdwDkwDAOqqkLT+mtRbqJ+5EUfHQkkYdjzMZ6K9ewixdQehqVD9RnQFNPrpjTF08A1NjaGsbExL5tQN8dxMD4+DsuyEAwGvW5Oz5IkCYlEgqGLqAd40UerioXwUBzxVIyhi0pIcJDIRKEqVk+Grp65SvG1117D9u3b8dprr8G2bTz77LMAgD322KPtAcgNW6ZpIhqNwrbttj5fP9M0DbZtIx6PIxaLMXQR9YlW9tGaYiIWZuiiUppqwHZ8iKdiiIXjPRe6eiZwXXrppfj3f//3wvcrVqwAAGzYsAGHH3542563OGzFYjEAYOCaA0mSEI1GkUqlmgpdvGCBqDu1uo9m6KKZJADRYAKpyZGmQpfXV8D2zGSkW2+9FUKIWV/N/CGbZn07aGbY4mhMa0iShNHRUaiqing8XvdFCI7jIJlMtrdxRNSUVvbRLjd0mbbS0ET6Xp9cTZVJksBoOA7VZyGeisGw1Lru5wgJyWykvY2roWcCVyslk8maB3mGrfaSZbmh0FU8h46IBkejocu0FBiW3qHWkRfkBkOXIySMp2KwbF+HWljeQAYuRVGqHuQZtjqj3tBVvD+4RhvR4Kk3dBmWikQmCgksP9Pv6g1dbtgybQWRQLKzjZyhZ+ZwtVIkEoFpmmXnEPVS2Hr66adxwAEH4KkfAvsvL/PzF4ADTgKeeuop7L///p1vYB3c0DU+Pl7X/piamvKwtUTklVpzugxLRTwVg+Kzoake1Ep8kacxO80NXeOpWNk5XcVhKxaOY2rK2zMkAznCVWkOUS+FrX5SaaSL+4OIilUa6XLDluqzEA0mwOgzOCqNdM0MW91wReNABi5g9kE+n8/z4O4h7g8iqsfM0JU39ULYGg3HIfFKxoEzM3TlTb3rwhYwwIEL2HGQL57TxYO7d7g/iKgebugyLK1wGpFlIwabG7oUn/3WSJfWVWELGPDARURERNQJAx24iksNuCMpjdSFotbi/iCierhztjTFQCwc54LXVFL6YXpky2ioTlcnDGzgmjkhW9f1popxUmtwfxBRPYonyI+G49DVfMmcLq+riVPnzZwgr6v5poqjtttABi4hRNkJ2Y0W46TWqHQ1IvcHERWbGbbcOVvFE+kTmSg4k2twVLoasdHiqJ0wkIErmUxWvPqNB/nOqlX6Yeb+qHdZJiLqL5XClssNXZbtg2HyQptBUKv0w8zQZVrelh4dyMBVPEeoHIauzqi3zlbx/uBaikSDp1bYcmmKiWgwATGYh7aBUm+dreLQxbUUPRCJRGqWGmDoaq9Gi5oWl4wgosFRb9hyqYoFTcl3qHXkhUaLmhaXjPDSQAYuVa3vXC5DV3tUmkNXiyzLXEuRaIA0GrZcrMfVv0STFeRlSXi+luJABq5GcA5RawkhkEgkmq4gL0m8AoloEDQbtqh/CQCJTLTpCvJer0LAwFWH4tCVSCTgOFyJvlmGYdScQ0dEg41hi8oxTK2ozlbvDX4wcNWpeA4RTy02TwiBaDTKsEVEZZmWwrBFZQnIiAYTPRm2AAauhsiyjGg0ytNac6BpWt1z6Iho8CSzEYYtKktT8lAVy+tmNI2XfDVIkiSOzsyBLDPjE1Fl0wtRb2fYoll6/XeCgasJHOEiImqPSCAJmV0s9SEONxARUdfw+koyonZh4CIiIiJqMwYuIiIiojZj4CIiIiJqMwYuIiIiojZj4CIiIiJqMwYuIiLqGtl8wOsmELUFA1cTLKt3K916TQhe8k1ElWVzAaSnQl43g7pQrx89eiJwvfrqq/jEJz6B3XbbDUNDQ9h9991x2WWXebKmYTabhWn25jpO3cAwDIYuoj7Tyj464M8iNRlm6KJZDFODEL1bFbcnKs2/+OKLcBwH3/nOd7DHHnvg+eefx1lnnYVsNourrrqqY+1Ip9PIZDIIBDjk3SwhBBKJBObPn89lfoj6RCv76ICehaz4kJoMAwBCQ+l2NJl6kICMRCaK+ZGtPbnMT08ErmOPPRbHHnts4ftly5bhT3/6E2644YaOBa50Oo1UKoVgMAifz9eR5+xHmqYhk8lgfHwco6OjDF1EfaDVfbQbshi6qJim5JGZCmA8FevJxc17InCVMzExgXnz5lXdJp/PI5/PF75PpVJNPZcbtsLhMHRdRy6Xa+pxaHrx6mg0iomJCYYuoj5Wq4+u1T8zdNFMsiQQDSYwMRnpydDVk0e6l19+Gddeey0+9alPVd1u7dq1GBkZKXwtXboUQGMTt4vDVijEOQWtoKoqYrEYTNPE+Pg4HMep+77ZbLaNLSOiVqinj67UPxcLDaURHk41PKerdw7B1ChVsRALx2HaCsZTMTgNzOny+gpYTwPXRRddBEmSqn69+OKLJfd5/fXXceyxx2LNmjU466yzqj7+xRdfjImJicLXxo0bAQDJZLKugzzDVvtomtZw6Eqn0wxcRB3Uzj66Uv88U6OhSwgJhqk19kKpp2iK2XDoSk+FkM15G7g8PaX4uc99DmeccUbVbZYtW1b4/xtvvIEjjjgChxxyCG666aaaj6/rOnRdn3W7ZVk1T2cxbLWfG7ri8Xjd+4MXLBB1Tjv76Er9czn1nl50hIREJgpZ5hhXv3NDVzwVq3l6MT0VQmoyjIA/0eFWlvI0cI2NjWFsbKyubV9//XUcccQROOCAA/C9731vTvN+IpEIDMOoeJBn2OqcekJX8f5o5PQjEc2NV310ObVClyMkjKdisGwfghpHwgdBPaHLDVvh4RQcy9vfi56Yw/X666/j8MMPx84774yrrroK27Ztw+bNm7F58+amHq/aHCKGrc6rdnqR+4Oo+7W6j66k0ulFN2yZtoJoMNFTE6lpbqqdXiwOW91w0UVPXKX4wAMP4OWXX8bLL7+MJUuWlPys2SKa5UZWstksD+4e4f4g6l3t6KMrmTnSFfBnCmErFo4DAGxDbelzUncrN9KVzQW7KmwBPTLCdcYZZ0AIUfZrLopHVt58800e3D3G/UHUm9rVR1dSPNL15vbFhbClKVwFZFAVj3S9uX1x14UtoEcCVztpmlYycZOTsr3F/UFE9Qj4M4X/62qeYYugKSZ0dUdtt+LfkW4w8IErnU4jl8vB7/dDkqSG60JRa3F/EFEt7pwtSXLg16aQM4a49iIhPRVCzhiCX5uCJDkN1+lqt4EOXMUTskdHR5suxkmtwf1BRLUUT5CPheMYDW1vqjgq9ZfiCfKjoe1NF0dtp4ENXOWufmumGCe1BvcHEdUyM2y5pxGL53R5XdySOq/c1YjNFEdtt4EMXNWufuNBvvOqlX6YuT/aNQmXiLpbpbDlckNXJheEZffEBfjUAtVKP8wMXcLj0DWwgava1W8MXZ1TT52t4v2RTCY720Ai8lytsOUKDaUR9GdgMnANhHrqbBWHrmQ20tkGzjCQgSsQCNQsNcDQ1X6NFDV194dlWR1qHRF1g3rDlivgz0L1sZ/od40UNXVDl2X7OtS68gY2cNWDoat9mqkgr2kaIpFIextGRF2j0bDlUhi4+lozFeQ1xUQkkGxvw2oYyMDVCM4har25VJBXVVaQJhoEzYYt6m/ZXKDpoqaq4m0QZ+CqQ3HoSiQSDF1zYFkWMpkMK8gTUUUMW1SOZSvI5IJdV0G+XgxcdSqeQ2QYhtfN6VmmaSIYDDJsEVFZgmGLKjBtBUF/pifDFtAji1e3mmmaTYemUCiEyclJTExMtLhVpTJ2BvlUvuS2pEjCKpqbkM1mEY1Gkc0D28usYJDNA9Ho9Hbbt2/f8QNzAkjPGFpNJAG1vSN3ExMTkGUZmqY1/f6bJjtfon62PT0Pmq4iGkwAAAyrsWkEpqXAsn2YyI60o3nkkYnsCGTJgabkG/6dcJmWt/OwBzJwbdu2Ddlstqn7Oo4Dx3Hw4x//GIqiQNM0SNLs2h6O48AwDEiSVHGbamxhI22XpviELwGfNH2VhRAC6XQap512Gp54LY8/bJsdliZzwMc+puHxxx/H888/D1l+a0BT2ICRKN1Y+29AavwKDsuyYJomVFWFopT/dXK3kWUZ6XQamUxmR1saNDk52dT9iKg3ZPMBSIoP8dT8pu7vQIJwJNz39HFQZLvkZ5atwLQVqD6r4sT6eraZC0dIMCwdEhxoqoFyR4Z6tpkLAcAwNQjI0JQ8ZGn28aOebeaqkf0hSwLpqSAy+SBkNNeWyZy3Z6cGMnBJktT0Ad+9//DwMNLpNGzbRjQaLQlUpmkilUpBUZRZP6uXJSxMWqXhQld0KNKOXWaaJiRJQt4KICwnSiYECiEhmYlC03zQdR3Dw8M7HkiYmHU22a8BUnOfGrLZLDKZDILB4KwrQLPZLLLZLILBIDRNQzabndP738x7SUS9wyfbUHxzOLgLCULyQVdyZSdJZ3MBZHJBBP0ZBPzZWT/L5ofL/qyVVJ+BRCYK2/EhGkxAKgozpqUglYlC8dmIBlMlP2slv5pDIhNFZiqAaHD28SORicKyfbN+1mr17g9NySObC0CS7KbDnwSOcHXcXAOX4zgYGhrC0NAQ4vE4UqkURkdHIcsyDMPAxMQEdF0v3NZUGx0JslR6X1VRoco7QpGqqti6dSsWj8UwMRkpzHdwJ5wKyNi2bRv22GMPaJpW9AIAWDOCi6oCsoZmaJoGRVEKIdOdn5VOpzE5OYlIJIJQKFQY8ZNlmYGLiMry+SzITX74czmSgKpYZed/acEkFJ+N1GQYis8uzAdKT4UwmQ8gEpho+xwhTTGhKhbiqRhSkyMYDcchSwKGpWJiMgJdNQu3tdP8yFaMp8ofPxwhY35kW9vn0NW7PwxLhSQJyG99NaNd4bVeAxm4WsWdSB+PxzE+Po5wOIzx8XGoqjqnsNUIIQSCehymiCGeimE0tB2pyfD05EI93rE5T27ISqVShduaLf1ARNRO7kE9NRku3NZsqYFmucU446kYxlMxhIdTGE/Pg+qzOhK2AECWBEbDcYynZh8/OnnBQjfsj05g4JojN3Rt27YN8Xi8o2HLJUkCo6E44qkxxFMxAMDYyFZMTXV2gvnM0MWwRUTdauZB3ouDuxu6tk3MRzwVg6p0ZmSrmBu6Zh4/On11aDfsj3ZjWQgiIiKiNmPgmiPDMBCPx0vqdHV6GSC3bo1l+94aBjYQT8VgOZ2tyl68XE84HEYqlUI63V+fUIioPxQvDxMeTiE1GUZ6qrMj8oalIp6KQVOMwlp/0/OnOjdX1alw/Gi29EKzumF/tBsD1xy4Ycs9jajresfXXpQkCZn8jiKBuprHaDgO1Wchk491bCmcmWsjhkIhhi4i6koz1+ILDaU7fpB3w5Y7Z0tX84iF4zBtpWOha2ZF/+LjRydDVzfsj05g4GqSaZpl52x1csFrIQRisRhsUTrB0T0n75OswqhbO1VaiJqhi4ga5TiN1wNsRKWFjzt5kJ8Zttw5W+6crk6ErkrLJ7nHj06Frm7YH53CwNUEx3GQSCQqTpDvROhyHAeZTAaKMn014swJjrI0ffWiu3Zhu5YjqhS2XMWhq9lis0Q0OExbheW059BU6eDu6sRBvlLYcnUidNVaq7JToauR/ZHNBco8Qm9h4GqQbduwLAuKolS9GrGdoctxHIyPj8O2bcTjcShy+atJJEkgHo/D5/MhHo+3PHTVClsuN3RlMpm2j7YRUa8TMEx/y0NXrYO7q52hq1bYcrUzdNW7MHi7Q1ej+yOTC8Ky2zv62W4MXA1wF66WJAmRSKRm6Yd2hC43bLmLQNeqsyWEQDAYhKqqLQ1d9YYtVygUQjAYLCx5RERUjqYYkKTWhq56D+6udoSuesOWqx2hq96w5WpX6GpmfwT9GTjCB8NqrkB3N2DgqlNx2PL5fHXX2Wpl6CoOW7FYrOLahTNJkoTR0dGi0DW3+iqNhi1XIBCALMuwbRv5fL72HYho4EiSgK5OtSx0NXpwd7UydDUatlytDF2Nhi1Xq0NXs/sj4M9ClmzYjg/5Hg1dDFx1KA5buq43XNS0FaFLOALJ7clC2CpZqqcOsizvCF3bEzDM5oJfs2HLpSgKfD4fLMti6CKismQJLQldzR7cXa0IXc2GLVcrQlezYcvVqtA11/2h+Gz4ZBuWrfRk6GLgqmFm2Gp2Lb+5hC7hCOSTeViW1VTYchVCl6IgnrYbDl1zDVsud+3FZkJXJ+ubEZF35hq6srlAS5aHmUvommvYcs0ldM01bLnmGrrmGrZcmmJA8VlNha52XwFby0AGrnrXF5zryNZMzYQuN2wJSyA6L9p02HLJsozReRGoPqmh0NWqsOXSdb3h0GVZVsfWhiQi7zUbuizbh0wu2LLlYZoJXa0KW65mQlerwpar2dDVqrDl0psIXZYjw7Q7W8x1poEMXI7j1DzItzpsuRoJXcVhS4/qULXW/LLIsozRsK/u0NXqsOVqJHS5+4OIBkujocuwNDjCh6A/09K1+BoJXa0OW65GQlerw5ar0dDV6rDlaiR0WY4Mw/QD6NwaleUM1OLVQky/2aZpIpPJYHJysmwldsdxCiMpmqbBtu1Zj5FKpeZUxV3TNCSTSWSzWUQikVmnKg3bQDKZhLAEtLCG3FQOKTMFRdqxy9LpNIQQSE+Wf470JCAEZhcdFSaQy0GVBLJ5G69NCkSM7VD1oVmPkc1mkc1mEQgE4DgOJiYmmn7NpmliamoKAEper2mayOVyde0Pd1+4+4GI+oP7Nz01Vb50jBAWDEvDVE6C6nMgy/asbUxLhSNsyMjDHkpjIt3qfiIFSdjYPB5A2m8joM+uLWhaCpLZMBTfFIYDSaQzrW6DAU3aimQ6guzkCCKBJKQZgU4ICcnsCCzbQSSwFVNTFqZa2gYBVdqGbD6C1zaHEQkkoSqz91s2H0A250fAn4BjZTExh7xlWg6mpgxAEpAkd5DAhGmpyAkfJiVALRMqHccH0/YByME2p/eXV8cPSQzQkWvTpk1YunSp182gFti4cSOWLFnidTOIqEXYP1OneHX8GKjA5TgO3njjDYRCoaYnv6dSKSxduhQbN25EOBxucQvnppvbBrSmfUIIpNNpLF68uGWneYnIe63on9uhm/tVtq0xXh8/BuqUoizLLUu14XC4a36JZurmtgFzb9/IyEgLW0NE3aCV/XM7dHO/yrbVz8vjB4cIiIiIiNqMgYuIiIiozRi4GqTrOi677DLouu51U2bp5rYB3d8+IqKZurnfYtt6y0BNmiciIiLyAke4iIiIiNqMgYuIiIiozRi4iIiIiNqMgYuIiIiozRi45uDKK6/EIYccguHhYUQiEa+bg/Xr12PXXXeF3+/HwQcfjN///vdeNwkA8Oijj+JDH/oQFi9eDEmScPfdd3vdJCKihnVTn8/+vvcwcM2BYRhYs2YNzj77bK+bgjvvvBMXXnghLrvsMjz99NPYd999ccwxx2Dr1q1eNw3ZbBb77rsv1q9f73VTiIia1i19Pvv73sSyEC1w66234oILLkAymfSsDQcffDBWrlyJ6667DsD0umRLly7F+eefj4suusizds0kSRJ+/OMfY/Xq1V43hYioKV73+ezvexNHuPqAYRh46qmnsGrVqsJtsixj1apVePzxxz1sGRERtRL7+97FwNUH4vE4bNvGggULSm5fsGABNm/e7FGriIio1djf9y4GrhkuuugiSJJU9evFF1/0uplERNQC7POpUxSvG9BtPve5z+GMM86ous2yZcs605g6xWIx+Hw+bNmypeT2LVu2YOHChR61ioio+/Van8/+vncxcM0wNjaGsbExr5vREE3TcMABB+Chhx4qTE50HAcPPfQQzjvvPG8bR0TUxXqtz2d/37sYuObgtddew/bt2/Haa6/Btm08++yzAIA99tgDwWCwo2258MILcfrpp+PAAw/EQQcdhHXr1iGbzeLMM8/saDvKyWQyePnllwvfv/LKK3j22Wcxb9487Lzzzh62jIioft3S57O/71GCmnb66acLALO+NmzY4El7rr32WrHzzjsLTdPEQQcdJH7729960o6ZNmzYUPZ9Ov30071uGhFR3bqpz2d/33tYh4uIiIiozXiVIhEREVGbMXARERERtRkDFxEREVGbMXARERERtRkDFxEREVGbMXARERERtRkDFxEREVGbMXARERERtRkDFxEREVGbMXARERERtRkDFxEREVGbMXD1gdtuuw2jo6PI5/Mlt69evRqnnnqqR60iIqJW27ZtGxYuXIivfe1rhdt+85vfQNM0PPTQQx62jGrh4tV9YGpqCosWLcLNN9+MNWvWAAC2bt2KnXbaCffffz+OOOIIj1tIREStct9992H16tX4zW9+gz333BP77bcfTjjhBFx99dVeN42qYODqE+eccw5effVV3HfffQCAq6++GuvXr8fLL78MSZI8bh0REbXSueeeiwcffBAHHnggnnvuOTzxxBPQdd3rZlEVDFx94plnnsHKlSvx17/+FTvttBPe9a53Yc2aNfjnf/5nr5tGREQtNjU1hX322QcbN27EU089hXe+851eN4lq4ByuPrFixQrsu+++uO222/DUU0/hhRdewBlnnOF1s4iIqA3+7//+D2+88QYcx8Grr77qdXOoDhzh6iM33HAD1q1bh/e///3485//jF/84hdeN4mIiFrMMAwcdNBB2G+//bDnnnti3bp1eO655zB//nyvm0ZVMHD1kYmJCSxevBiWZeG2227DySef7HWTiIioxb7whS/ghz/8If7nf/4HwWAQhx12GEZGRvCzn/3M66ZRFTyl2EdGRkZw4oknIhgMYvXq1V43h4iIWuzhhx/GunXrcPvttyMcDkOWZdx+++341a9+hRtuuMHr5lEVHOHqM0cddRSWL1+Ob3/72143hYiIiN7CwNUnEokEHn74YZx00kn4wx/+gD333NPrJhEREdFbFK8bQK2xYsUKJBIJfP3rX2fYIiIi6jIc4SIiIiJqM06aJyIiImozBi4iIiKiNmPgIiIiImozBi4iIiKiNmPgIiIiImozBi4iIiKiNmPgIiIiImozBi4iIiKiNvv/DBPrLimN/QMAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim = td.Simulation(\n", " size=sim_size,\n", " center=[0, 0, 0],\n", " grid_spec=td.GridSpec.uniform(dl=wavelength / min_cells_per_wvl),\n", " structures=geometry,\n", " sources=[source],\n", " monitors=[monitor_near],\n", " run_time=run_time,\n", " boundary_spec=boundary_spec,\n", ")\n", "\n", "fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(9, 3))\n", "sim.plot(x=0, ax=ax1)\n", "sim.plot(y=0, ax=ax2)\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Run simulation" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:49:54.606334Z", "iopub.status.busy": "2023-03-27T23:49:54.606141Z", "iopub.status.idle": "2023-03-27T23:50:13.207404Z", "shell.execute_reply": "2023-03-27T23:50:13.206717Z" } }, "outputs": [ { "data": { "text/html": [ "
[15:03:16] Created task 'aperture_1' with task_id                               webapi.py:139\n",
       "           'fdve-45857997-b896-4cd1-bcaa-ffcaf59b77f2v1'.                                    \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:03:16]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'aperture_1'\u001b[0m with task_id \u001b]8;id=466232;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=327415;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-45857997-b896-4cd1-bcaa-ffcaf59b77f2v1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:03:17] status = queued                                                      webapi.py:269\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:03:17]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=312039;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=648987;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:03:22] status = preprocess                                                  webapi.py:263\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:03:22]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=253582;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=650209;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
[15:03:28] Maximum FlexCredit cost: 0.025. Use 'web.real_cost(task_id)' to get    webapi.py:286\n",
       "           the billed FlexCredit cost after a simulation run.                                  \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:03:28]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.025\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get \u001b]8;id=977574;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=564589;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mthe billed FlexCredit cost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           starting up solver                                                   webapi.py:290\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=290359;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=777776;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           running solver                                                       webapi.py:300\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=710829;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=322399;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:03:34] early shutoff detected, exiting.                                     webapi.py:313\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:03:34]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=723749;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=642274;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#313\u001b\\\u001b[2m313\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           status = postprocess                                                 webapi.py:330\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=252086;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=143470;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#330\u001b\\\u001b[2m330\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:03:38] status = success                                                     webapi.py:337\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:03:38]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=669062;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=965578;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#337\u001b\\\u001b[2m337\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:03:39] loading SimulationData from data/aperture_1.hdf5                     webapi.py:512\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:03:39]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/aperture_1.hdf5 \u001b]8;id=262185;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=987119;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim_data = web.run(\n", " sim, task_name=\"aperture_1\", path=\"data/aperture_1.hdf5\", verbose=True\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Far field points \n", "Now, we'll define the set of observation angles far away from the source at which we'd like to measure the far fields." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:50:13.511955Z", "iopub.status.busy": "2023-03-27T23:50:13.511818Z", "iopub.status.idle": "2023-03-27T23:50:13.531018Z", "shell.execute_reply": "2023-03-27T23:50:13.530455Z" } }, "outputs": [], "source": [ "# radial distance away from the origin at which to project fields\n", "r_proj = 50 * wavelength\n", "\n", "# theta and phi angles at which to observe fields - part of the half-space to the right\n", "theta_proj = np.linspace(np.pi / 10, np.pi - np.pi / 10, 100)\n", "phi_proj = np.linspace(np.pi / 10, np.pi - np.pi / 10, 100)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, we define a far-field monitor, [FieldProjectionAngleMonitor](../_autosummary/tidy3d.FieldProjectionAngleMonitor), which stores the information regarding the far field projection grid, and then we define the object that does the actual projections, [FieldProjector](../_autosummary/tidy3d.FieldProjector)." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:50:13.532933Z", "iopub.status.busy": "2023-03-27T23:50:13.532785Z", "iopub.status.idle": "2023-03-27T23:50:16.532498Z", "shell.execute_reply": "2023-03-27T23:50:16.531912Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# far field projection monitor\n", "monitor_far = td.FieldProjectionAngleMonitor(\n", " center=[\n", " 0,\n", " offset_mon,\n", " 0,\n", " ], # the monitor's center defined the local origin - the projection distance\n", " # and angles will all be measured with respect to this local origin\n", " size=[td.inf, 0, td.inf],\n", " # the size and center of any far field monitor should indicate where the *near* fields are recorded\n", " freqs=[f0],\n", " name=\"far_field\",\n", " phi=list(phi_proj),\n", " theta=list(theta_proj),\n", " proj_distance=r_proj,\n", " far_field_approx=True, # we leave this to its default value of 'True' because we are interested in fields sufficiently\n", " # far away that geometric far field approximations can be invoked to speed up the calculation\n", ")\n", "\n", "# helper functin to call the projector\n", "def get_proj_fields(sim_data, monitor_near, monitor_far, pts_per_wavelength=10):\n", " # object that does projections is constructed using the near-field monitor, because those are the fields to be projected\n", " projector = td.FieldProjector.from_near_field_monitors(\n", " sim_data=sim_data,\n", " near_monitors=[monitor_near],\n", " normal_dirs=[\"+\"], # we are projecting along the + direction\n", " pts_per_wavelength=pts_per_wavelength, # to speed up calculations, the fields on the near-field monitor can be downsampled to these\n", " # many points per wavelength (default is already 10)\n", " )\n", " return projector.project_fields(monitor_far)\n", "\n", "\n", "# execute the projector, with the far field monitor as input, to do the projection\n", "# let's also time this, for later use\n", "import time\n", "\n", "t0 = time.perf_counter()\n", "projected_field_data = get_proj_fields(sim_data, monitor_near, monitor_far)\n", "t1 = time.perf_counter()\n", "proj_time = t1 - t0\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Analytical solution\n", "Before we plot and analyze the results, we need reference data with which to perform comparisons. In our simple aperture example, an analytical expression for the far fields is already available, so we'll simply implement the analytic formula here at the observation points of interest." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:50:16.586780Z", "iopub.status.busy": "2023-03-27T23:50:16.586612Z", "iopub.status.idle": "2023-03-27T23:50:16.613342Z", "shell.execute_reply": "2023-03-27T23:50:16.612740Z" } }, "outputs": [], "source": [ "def analytic_fields_aperture(\n", " proj_monitor, sim_size, aperture_height, aperture_width, r_proj\n", "):\n", " \"\"\"Compute the far fields analytically.\"\"\"\n", " # in Tidy3D, the plane wave source is normalized so that a total flux of 1 is injected into the simulation domain,\n", " # which corresponds to an electric field strength that is inversely proportional to the square root of the in-plane domain area\n", " thetas_ext = np.array(proj_monitor.theta)[None, :, None, None]\n", " phis_ext = np.array(proj_monitor.phi)[None, None, :, None]\n", " f = np.array(proj_monitor.freqs)[None, None, None, :]\n", " E0 = np.sqrt(2.0 * td.ETA_0 / sim_size[0] / sim_size[2])\n", " k = 2.0 * np.pi * f / td.C_0\n", " ux = k * np.sin(thetas_ext) * np.cos(phis_ext) * aperture_width / 2.0\n", " uz = k * np.cos(thetas_ext) * aperture_height / 2.0\n", " Etheta = (\n", " -k\n", " / 2.0\n", " / np.pi\n", " / r_proj\n", " * E0\n", " * np.sin(thetas_ext)\n", " * np.exp(1j * k * r_proj)\n", " * aperture_height\n", " * aperture_width\n", " * np.sinc(ux / np.pi)\n", " * np.sinc(uz / np.pi)\n", " )\n", " Hphi = Etheta / td.ETA_0\n", "\n", " # for convenience, let's encapsulate the data into one of Tidy3D's native data structures designed for\n", " # storing far fields - this is the same format in which data will be returned when using Tidy3D's\n", " # 'FieldProjector', so comparisons will be easier to make\n", " coords = dict(\n", " r=np.array([r_proj]),\n", " theta=np.array(proj_monitor.theta),\n", " phi=np.array(proj_monitor.phi),\n", " f=np.array(proj_monitor.freqs),\n", " )\n", " Etheta_data = td.FieldProjectionAngleDataArray(Etheta, coords=coords)\n", " Hphi_data = td.FieldProjectionAngleDataArray(Hphi, coords=coords)\n", " Er_data = td.FieldProjectionAngleDataArray(np.zeros_like(Etheta), coords=coords)\n", " Ephi_data = td.FieldProjectionAngleDataArray(np.zeros_like(Etheta), coords=coords)\n", " Hr_data = td.FieldProjectionAngleDataArray(np.zeros_like(Etheta), coords=coords)\n", " Htheta_data = td.FieldProjectionAngleDataArray(np.zeros_like(Etheta), coords=coords)\n", " return td.FieldProjectionAngleData(\n", " monitor=proj_monitor,\n", " Er=Er_data,\n", " Etheta=Etheta_data,\n", " Ephi=Ephi_data,\n", " Hr=Hr_data,\n", " Htheta=Htheta_data,\n", " Hphi=Hphi_data,\n", " projection_surfaces=proj_monitor.projection_surfaces,\n", " )\n", "\n", "\n", "analytic_field_data = analytic_fields_aperture(\n", " monitor_far, sim_size, height, width, r_proj\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plot and compare\n", "Now we can compare the analytic fields to those computed via `Tidy3D`'s [FieldProjector](../_autosummary/tidy3d.FieldProjector.html), and also compute the root mean squared error between the two." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:50:16.615406Z", "iopub.status.busy": "2023-03-27T23:50:16.615257Z", "iopub.status.idle": "2023-03-27T23:50:17.124180Z", "shell.execute_reply": "2023-03-27T23:50:17.123665Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalized root mean squared error: 4.46 %\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAFyCAYAAABhr+y4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyiklEQVR4nO2de3wU1fn/PzO7ySZckhAIhNggFy3gDShIRPEK5WYtNy/YqIAUtBWVi1ZoVZBqKYpKwQtf/bVeKpbWqtRLS0tBwEsKCGKrIgqiIBBQQxJyT3bm98fMmT2ze3Z2Znc2e8nzfr32ld0zZ86cnZ05T848n/M8kqqqKgiCIAiCIAiCIBwgJ7oDBEEQBEEQBEGkHjSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRINoczz77LCRJwpdffpnUbRIEQSQ7X375JSRJwrPPPut4382bN0OSJGzevDli3UsuuQSXXHKJ42PEk0T1ycl5I4h4QxMJIuE88cQTkCQJJSUlie5KRH7zm99g3bp1ie4GQRBEq8AekoheCxYsSHT30ponnngiqgkaQbQm3kR3gCDWrFmDnj17Yvv27di3bx9OO+20RHcpLL/5zW9w5ZVXYsKECaby66+/HlOmTIHP50tMxwiCIOLIkiVL0KtXL1PZWWedhVNPPRX19fXIyMhIUM8Sx7/+9a+4tv/EE0+gS5cumDZtmqn8oosuQn19PTIzM+N6fIKwA00kiIRy4MABvPfee3jllVdw0003Yc2aNVi0aFGiu+UYj8cDj8eT6G4QBEHEhbFjx2LIkCHCbVlZWa3cm/hQW1uL9u3b266fqH/kZVlOm3NOpD4kbSISypo1a9CpUydcfvnluPLKK7FmzRrTdqa/Xb58OZ566in06dMHPp8P5557Lnbs2GGq+9///hfTpk1D7969kZWVhcLCQtx444347rvvLPswdepUdOnSBc3NzSHbRo0ahb59+wIAJElCbW0tnnvuOcO1z54UhVsj8Y9//AMXX3wxOnbsiJycHJx77rl48cUXHZ4lgiCI5CTcGolPP/0UV155JfLz85GVlYUhQ4bgtddes9UmG+uzs7MxdOhQvP3227b7I0kSZs+ejTVr1qBv377IysrC4MGDsXXrVlO9xYsXQ5IkfPLJJ/jJT36CTp06Yfjw4QCAlpYW/PrXvzbsTc+ePfHLX/4SjY2NpjZEayQaGxuxaNEinHbaafD5fCguLsYvfvGLkH0B4IUXXsDQoUPRrl07dOrUCRdddJHh5ejZsyc+/vhjbNmyxbA37Fjh1ki89NJLGDx4MLKzs9GlSxdcd911OHz4sKnOtGnT0KFDBxw+fBgTJkxAhw4dUFBQgDvuuAN+v9/2eSYIBk0kiISyZs0aTJo0CZmZmbj22mvx+eefh0wQAODFF1/EQw89hJtuugn3338/vvzyS0yaNMn0z/+GDRvwxRdfYPr06Vi1ahWmTJmCtWvXYty4cVBVNWwfrr/+enz33Xf45z//aSovLy/Hpk2bcN111wEA/vjHP8Ln8+HCCy/EH//4R/zxj3/ETTfdFLbdZ599FpdffjkqKiqwcOFC/Pa3v8XAgQOxfv16p6eJIAgioVRVVeHbb781vcLx8ccf47zzzsOePXuwYMECPPzww2jfvj0mTJiAV1991fI4v//973HTTTehsLAQDz74IC644AL8+Mc/xqFDh2z3dcuWLZgzZw6uu+46LFmyBN999x3GjBmDjz76KKTuVVddhbq6OvzmN7/BzJkzAQA//elPce+99+IHP/gBHn30UVx88cVYunQppkyZYnlcRVHw4x//GMuXL8cVV1yBVatWYcKECXj00UdxzTXXmOred999uP7665GRkYElS5bgvvvuQ3FxMTZt2gQAWLFiBb73ve+hX79+hr351a9+FfbYzz77LK6++mp4PB4sXboUM2fOxCuvvILhw4ejsrLSVNfv92P06NHo3Lkzli9fjosvvhgPP/wwnnrqKTunlyDMqASRIN5//30VgLphwwZVVVVVURT1e9/7nnr77bcbdQ4cOKACUDt37qxWVFQY5X/7299UAOrrr79ulNXV1YUc409/+pMKQN26datR9swzz6gA1AMHDqiqqqp+v1/93ve+p15zzTWmfR955BFVkiT1iy++MMrat2+vTp06NeQ4wW1WVlaqHTt2VEtKStT6+npTXUVRrE8MQRBEksDGNtFLVQNj9DPPPGPsM2LECPXss89WGxoajDJFUdTzzz9fPf30042yt956SwWgvvXWW6qqqmpTU5PatWtXdeDAgWpjY6NR76mnnlIBqBdffHHE/rK+vf/++0bZV199pWZlZakTJ040yhYtWqQCUK+99lrT/rt371YBqD/96U9N5XfccYcKQN20aZNRdvHFF5v69Mc//lGVZVl9++23TfuuXr1aBaC+++67qqqq6ueff67KsqxOnDhR9fv9prq8fTjzzDOF3znceTvrrLNM9uaNN95QAaj33nuvUTZ16lQVgLpkyRJTm4MGDVIHDx4cciyCiAR5JIiEsWbNGnTr1g2XXnopAM0lfc0112Dt2rUhLtZrrrkGnTp1Mj5feOGFAIAvvvjCKMvOzjbeNzQ04Ntvv8V5550HANi1a1fYfsiyjNLSUrz22ms4efKkqX/nn39+yAJDO2zYsAEnT57EggULQrSskiQ5bo8gCCKRPP7449iwYYPpJaKiogKbNm3C1VdfjZMnTxrei++++w6jR4/G559/HiK3Ybz//vs4fvw4br75ZtP6g2nTpiE3N9d2X4cNG4bBgwcbn3v06IHx48fjn//8Z4htufnmm02f//73vwMA5s2bZyqfP38+AODNN98Me9yXXnoJ/fv3R79+/Uyem8suuwwA8NZbbwEA1q1bB0VRcO+990KWzf+GRWMf2Hn7+c9/brI3l19+Ofr16yfsc/D3vvDCC032lCDsQhMJIiH4/X6sXbsWl156KQ4cOIB9+/Zh3759KCkpwbFjx7Bx40ZT/R49epg+s0nFiRMnjLKKigrcfvvt6NatG7Kzs1FQUGBMAqqqqiz7c8MNN6C+vt5wu+/duxc7d+7E9ddfH9X3279/PwAtqglBEESqM3ToUIwcOdL0ErFv3z6oqop77rkHBQUFphcLpHH8+HHhvl999RUA4PTTTzeVZ2RkoHfv3rb7Grw/AHz/+99HXV0dvvnmG1N58IOir776CrIsh0QPLCwsRF5entFHEZ9//jk+/vjjkO/9/e9/H0Dge+/fvx+yLOOMM86w/Z2sYH1i6/l4+vXrF9LnrKwsFBQUmMo6depksqcEYReK2kQkhE2bNuHo0aNYu3Yt1q5dG7J9zZo1GDVqlPE5XEQklVv7cPXVV+O9997DnXfeiYEDB6JDhw5QFAVjxoyBoiiW/TnjjDMwePBgvPDCC7jhhhvwwgsvIDMzE1dffXWU35AgCKLtwcbaO+64A6NHjxbWSaYQ37wnmycaz4CiKDj77LPxyCOPCLcXFxc7bjMeUIRBwk1oIkEkhDVr1qBr1654/PHHQ7a98sorePXVV7F69Wrb7Z04cQIbN27Efffdh3vvvdco//zzz223ccMNN2DevHk4evQoXnzxRVx++eUmORVg37j06dMHAPDRRx8lldEkCIKIJ8xzkJGREdZrEY5TTz0VgDZuMzkQADQ3N+PAgQMYMGCArXZE4/5nn32Gdu3ahTyJF/VBURR8/vnn6N+/v1F+7NgxVFZWGn0U0adPH3z44YcYMWKEpa3o06cPFEXBJ598goEDB4atZ9fesD7t3bvXdN5YmVWfCSJWSNpEtDr19fV45ZVX8KMf/QhXXnllyGv27Nk4efKk7VCBQOAJixoUnWnFihW227j22mshSRJuv/12fPHFF0a0Jp727duHRMAQMWrUKHTs2BFLly5FQ0ODaVtwHwmCINKFrl274pJLLsH//d//4ejRoyHbg6VFPEOGDEFBQQFWr16NpqYmo/zZZ5+1Ne4yysrKTOviDh06hL/97W8YNWpUxKfx48aNAxBqO5iX4fLLLw+779VXX43Dhw/j6aefDtlWX1+P2tpaAMCECRMgyzKWLFkS4i3n7YNdezNkyBB07doVq1evNoWZ/cc//oE9e/ZY9pkgYoU8EkSrwxY1//jHPxZuP++881BQUIA1a9agpKTEVps5OTm46KKL8OCDD6K5uRmnnHIK/vWvf+HAgQO2+1VQUIAxY8bgpZdeQl5ennDwHTx4MP7973/jkUceQVFREXr16iXsY05ODh599FH89Kc/xbnnnmvEKf/www9RV1eH5557zna/CIIgUonHH38cw4cPx9lnn42ZM2eid+/eOHbsGMrKyvD111/jww8/FO6XkZGB+++/HzfddBMuu+wyXHPNNThw4ACeeeYZR2skzjrrLIwePRq33XYbfD4fnnjiCQBayNVIDBgwAFOnTsVTTz2FyspKXHzxxdi+fTuee+45TJgwwQgOIuL666/HX/7yF9x888146623cMEFF8Dv9+PTTz/FX/7yF/zzn//EkCFDcNppp+FXv/oVfv3rX+PCCy/EpEmT4PP5sGPHDhQVFWHp0qUANHvz5JNP4v7778dpp52Grl27hngc2HlbtmwZpk+fjosvvhjXXnstjh07ht/97nfo2bMn5s6da/vcEYRjEhozimiTXHHFFWpWVpZaW1sbts60adPUjIwMI0TsQw89FFIHgLpo0SLj89dff61OnDhRzcvLU3Nzc9WrrrpKPXLkSEi94FCtPH/5y19UAOqsWbOE/fr000/Viy66SM3OzlYBGKFgw7X52muvqeeff76anZ2t5uTkqEOHDlX/9Kc/hf3eBEEQyQQb23bs2CHcLgr/qqqqun//fvWGG25QCwsL1YyMDPWUU05Rf/SjH6l//etfjTrBYUwZTzzxhNqrVy/V5/OpQ4YMUbdu3RoSajUcANRbbrlFfeGFF9TTTz9d9fl86qBBg0KOwcK/fvPNNyFtNDc3q/fdd5/aq1cvNSMjQy0uLlYXLlxoCmerqqHhX1VVC8W6bNky9cwzz1R9Pp/aqVMndfDgwep9992nVlVVmer+4Q9/UAcNGmTUu/jii41w6KqqquXl5erll1+uduzY0RT+Ntx5+/Of/2y0l5+fr5aWlqpff/21qc7UqVPV9u3bh3xndj4IwimSqpLOgiAYf/vb3zBhwgRs3brVCDFLEARBpAaSJOGWW27BY489FvdjXXjhhfD5fPj3v/8d92MRRLJCayQIguPpp59G7969MXz48ER3hSAIgkhijh49ii5duiS6GwSRUGiNBEEAWLt2Lf773//izTffxO9+9ztKGkcQBEEIee+99/DKK69g//79uOuuuxLdHYJIKDSRIAhoEZs6dOiAGTNm4Oc//3miu0MQBEEkKU8//TT+8Y9/YM6cOZg+fXqiu0MQCYXWSBAEQRAEQRAE4RhaI0EQBJFAHn/8cfTs2RNZWVkoKSnB9u3bw9Z9+umnceGFF6JTp07o1KkTRo4caVmfIAiCIOIJTSQIgiASxJ///GfMmzcPixYtwq5duzBgwACMHj0ax48fF9bfvHkzrr32Wrz11lsoKytDcXExRo0ahcOHD7dyzwmCIAiCpE1CFEXBkSNH0LFjR1p0SxApiKqqOHnyJIqKiiDLzp+XNDQ0mDLrOiEzMxNZWVm26paUlODcc881QlUqioLi4mLceuutWLBgQcT9/X4/OnXqhMceeww33HBDVP0lnEH2gSBSn0TZCCf2IVWgxdYCjhw5guLi4kR3gyCIGDl06BC+973vOdqnoaEB2R3zgZb6qI5ZWFiIDz/80GQsfD4ffD6fqV5TUxN27tyJhQsXGmWyLGPkyJEoKyuzday6ujo0NzcjPz8/qr4SziH7QBDpQ2vbiMLCQhw4cCCtJhNJNZHYunUrHnroIezcuRNHjx7Fq6++igkTJpjq7NmzB3fddRe2bNmClpYWnHHGGXj55ZfRo0cPANoPPH/+fKxduxaNjY0YPXo0nnjiCXTr1s12Pzp27AgAGPSLP8Hja+fa90s1VIWcVamKJLftJ6X+xjp88OC1xr3shKamJqClHhlnXQt4MhweuBnlH/0pZLxZtGgRFi9ebCr79ttv4ff7Q+p269YNn376qa3D3XXXXSgqKsLIkSOd9TNFSQYbwa6pc+a+ENY+ROvotzvmKoqNtmz2QbXRlnbMyO3Z7X8stkWJs4hC1Ld4j6dylJ4tu/2yU0+23Zatara8dXYdAbGc/3D98DfW4b+PXte6NkK3D01NTTSRiBe1tbUYMGAAbrzxRkyaNClk+/79+zF8+HDMmDED9913H3JycvDxxx+bfpC5c+fizTffxEsvvYTc3FzMnj0bkyZNwrvvvmu7H+zC8/jawZvVPvYvlqLQRCJ1aesTCUZM0hNPBiRPpqNd2B1z6NAh5OTkGOXB3gg3+O1vf4u1a9di8+bNaWWUrEgGG8HbB08Y+xDt2Gl3P8nOP/UuTyRsHbMVJhISTSQMUn8i4V7/o923NW1Euv5HlVQTibFjx2Ls2LFht//qV7/CuHHj8OCDDxplffr0Md5XVVXh97//PV588UVcdtllAIBnnnkG/fv3x3/+8x+cd955jvojy5LtCz1a7DzlSRSx3Lw0CXGHdJwQxPuecusYkuyBJHuc7aRq9XNyckwTCRFdunSBx+PBsWPHTOXHjh1DYWGh5b7Lly/Hb3/7W/z73//GOeec46yPKUyy2YhwsPvW6Thodz92fVvZD9E/SKLJhegfQ9HkQnRPBR9fNF7Z/cfc7rkK/qfbbQ9FW5g0APbGSDcnDU6PrR0/vucqVhzbCNWhPUkRUiZqk6IoePPNN/H9738fo0ePRteuXVFSUoJ169YZdXbu3Inm5maTm79fv37o0aOHbc0xQRAEEDASTl92yczMxODBg7Fx40ajTFEUbNy4EcOGDQu734MPPohf//rXWL9+PYYMGRLTd0wnyEYQBNGaxNM+pBIpM5E4fvw4ampq8Nvf/hZjxozBv/71L0ycOBGTJk3Cli1bAADl5eXIzMxEXl6ead9u3bqhvLw8bNuNjY2orq42vQiCaNtIUhQTCcmZoZg3bx6efvppPPfcc9izZw9+9rOfoba21siWe8MNN5gWYy9btgz33HMP/vCHP6Bnz54oLy9HeXk5ampqXP3uqUi8bATZB4IgRDi2EQ7tQ6qQVNImKxR9ddn48eMxd+5cAMDAgQPx3nvvYfXq1bj44oujbnvp0qW47777XOmnU+Il80i0ZCodJTltjdaQICUzkkeG5HEqbXL2bOaaa67BN998g3vvvRfl5eUYOHAg1q9fbyz8PXjwoCk04ZNPPommpiZceeWVpnZEi7nbGvGyEbHYh2glPHb3syM3MrXLSVCs1lAwSUuk9RPBxxcdOxa5k1V9ow9pFILXqd10U8ZkbtdmvSRYB5HI/zUc2wiH9iFVSJmJRJcuXeD1enHGGWeYyvv374933nkHgBZWq6mpCZWVlaYnTpE0xwsXLsS8efOMz9XV1RTejyDaOHIUrmg1Ctf17NmzMXv2bOG2zZs3mz5/+eWXjttvK8TLRpB9IAhChFMbEY19SAVSZnqUmZmJc889F3v37jWVf/bZZzj11FMBAIMHD0ZGRoZJc7x3714cPHjQUnPs8/mMxZF2FkkSBJH+xHuNBOEu8bIRZB8IghBB9kEjqTwSNTU12Ldvn/H5wIED2L17N/Lz89GjRw/ceeeduOaaa3DRRRfh0ksvxfr16/H6668bT+1yc3MxY8YMzJs3D/n5+cjJycGtt96KYcOGRRWNI5WzlramLCXRMqq2RFuXG9lBkiRX7t2oBv40NRTJQjLZCFmSTLIau9GDopXwxCJ3YvBjtdU9wmRPkSQuwdKnSOMTOz5JX8XEcl7iIV+yO446P3Z864sIlsCpibARUdqHxx9/HA899BDKy8sxYMAArFq1CkOHDhXW/fjjj3Hvvfdi586d+Oqrr/Doo49izpw5UR3XLkk1kXj//fdx6aWXGp+ZO3nq1Kl49tlnMXHiRKxevRpLly7Fbbfdhr59++Lll1/G8OHDjX0effRRyLKMyZMnm5INEQRBOEGSZUh2MyYxnNYnHEE2giCIZMGxjYjCPvz5z3/GvHnzsHr1apSUlGDFihUYPXo09u7di65du4bUr6urQ+/evXHVVVcZa8XijaRGm4IzjamurkZubi5KFr/epjNb24U8Eq0HeSQiI0kSWhpqsW3xFaiqqnIsRWH3f+6ld0HyOkskp7Y0ouqtZVEdl0gN2PUxeOGrpoR0buQzcJp3wml9u2O128nsnB4/9Dhtw8aQR8Kd+iKCPRL+hlrsXDqxVW1ENPahpKQE5557Lh577DEAWlCJ4uJi3HrrrViwYIHlvj179sScOXPalkciGUkFeVOi54L0z23bIRXuB7fQnjY5lTaRR6KtYhU9KF6yJ6f13ZQ9accPW02IjCjHD67f6fjgyp0EmlHul8aThXjj2Ebo9iE4hLTP54PPFzohaWpqws6dO00hwGVZxsiRI5Mq7w1ZPYIgCAGtkUeCIAiCSE2izSNRXFyseTT019KlS4Xtf/vtt/D7/UY4cEak3GitDXkk0oC29JSYIAgi1bD7pNTKc2H3ia3qcEEzq2//iXP03gE2z47Fi+4hD7hBLLY/Wi9IW/A0xJtDhw6ZpE0ib0QqQRMJgiAIER6P44R0qkIeCYIgiDaBQxvB7IPdMNJdunSBx+PBsWPHTOWRcqO1NiRtIgiCEEB5JAiCIIhwxNs+ZGZmYvDgwaa8N4qiYOPGjZa50Vob8kikCNEupCKI1sJpBJdkJ5qBnyYSbQhZciwfitxk9BIORW39HA3BMiP70ZXSS6qS7Lh5TcQUWSrOEiVHfXNlgbszGxGNfZg3bx6mTp2KIUOGYOjQoVixYgVqa2sxffp0AMANN9yAU045xVhn0dTUhE8++cR4f/jwYezevRsdOnTAaaed5vj4dqCJBEEQhABZ9kCmhHQEQRCEAMc2Igr7cM011+Cbb77Bvffei/LycgwcOBDr1683FmAfPHgQMhct8MiRIxg0aJDxefny5Vi+fDkuvvhiIzGn29BEgiAIQkA04V8dJ7AjCIIgUhKnNiJa+zB79mzMnj1buC14ctCzZ89WTwlAE4koaCsyI8oPkbokItZ6Iu6LeMqpSNpEuIXbciNhjohoZSOe0P2iTa7XmrKqaHFbXuNGIsJkJamkSElIa0ibUgGaSBAEQQigiQRBEAQRDppIaNBEgiAIQgBNJAiCIIhw0ERCgyYSDkhWSVNrSpBayxWZDkn2WkunKJQ5xOl3SoRkygr+nnRb5sSyljrdhyDiTbzHYU+SRFWKx/d0e2yMx5hoP/oVkUic2oh0tQ80kSAIghAgRZGQzml9giAIIjVxaiPS1T4k6TN2giAIgiAIgiCSGfJIOCBYOtGaUic33bGxuIvdkBzFW4rlpjs8Nhdz5H644haP4Tp0+v2sfrvWlD21RvI7Cv9KWCE5SEiXrsQ6lkdjT5za3UREH3Q6FoaMZxGGHTdks8kmU21t3Lh3Wyv8a7JDEwmCIAgBtNiaIAiCCActttagiUQMiJ6Kuu2liPZpitPZtt0nQ07747QfnmR7wudCf/wWT35E39epl0Cx+XRe9BTL6veJxVvh5tOu1vA+iKCJBJFMxN2TG4O32a7ds/oOdm2FVT/jbS+j9VBHGg/teBjMxxbk/rDRN34s9Qjyh1juG+fgIanoIaGJhAZNJAiCIATIsuT8H5NkmwgTBEEQccGxjUhT+0ATCYIgCAHRaODbumaeIAiireDURqSrfaCJhMtEkmE4lT4xd5/dWa+dCzWSC9vOsSIdx45Eya6MKenkThaIZEyi/lvJnfinFlb1VJvXBruGRL+7lbua/cZ23fmxuKYTJV+yQpIkx3KPdMh/QrQ+rgbTcHrNxlmW5FSKJGrLygZEsg+JsB9W47bTbcb4y6liRGMtU81YjelWY3mk8VsCsweW1UKPaVMSZfceSCYJlFMbka72gSYSBEEQAqQopE1qCk16CYIgiOhxaiPS1T7QRIIgCEKAJEUhbUrTJ04EQRCEGac2Il3tA00kLFBV1Vr6EcVFkchcFNFGu3Dqao60PR7bEg1zSduVMbF6lhKnSMcUlIlc1+y3FbmE2TUR74gcPG7ImCL1143vQ2skiHjihpzJrg2yY2fsyoysjh+LVImVWW0TIdrmjbNs1u643SKo51TaxMqstvGIbIAhb+UiNQWPkfy5sGzD4loSRrJ0KKmNhJU9a21ojYQGTSQIgiAEyJIE2eHDAjVNnzgRBEEQZpzaiHS1DzSRIAiCEEAeCYIgCCIc5JHQoIlEDNh1z1m5n3lXoJXL0Gn0Jrs4dWfbdTsHlzl1V0dyTSeDzIl3K4v622JD7sRvs+Mu5+uI5FGi3y44upPbLmGniZAs67WixIogUhU7kqZIcqbgsV80doiOY2UzIo3zVnbBrkTJnm0J/+Xdth3WUqXQgc+ORCmSJCpaCZQoqZ1w/BacPtEZDd6Xv+asxvxESGqJ+EETCYIgCAHkkSAIgiDCQR4JDZpIEARBCIgms3W6hvcjCIIgzDi1EelqH1oxZlBktm7diiuuuAJFRUWQJAnr1q0LW/fmm2+GJElYsWKFqbyiogKlpaXIyclBXl4eZsyYgZqamqj6oyiq7ZcVLPoT/xLWU0JfVn0St6HaTiBmF48sGS9RWbQvr+Dl88rweWVh/UyvbLzE2z1xfTntD/suou/pxvmz+n3cwOpainwdWl/HgP37QnTMWO9JO0hydC8ifiSbjYgFN69VHqvrkP3jw//zI3qqKkq0xfaTuJfXK8NrY7wOHifZZ1+EF6uXnek1Xmw85suCX5mmfT2ml2lbhieql1X7/DGs++gJ+S5Oz4vV+RbaXP338npl4zcU/TMs+v1F14nVP9LxGg/jcc9EC9kHjaT6WrW1tRgwYAAef/xxy3qvvvoq/vOf/6CoqChkW2lpKT7++GNs2LABb7zxBrZu3YpZs2bFq8sEQaQpzJg6fRHxg2wEQRDJAtkHjaSSNo0dOxZjx461rHP48GHceuut+Oc//4nLL7/ctG3Pnj1Yv349duzYgSFDhgAAVq1ahXHjxmH58uVCo2KFkyf7VjNk0Yxd9PRVGG/ZIu9EvBZgW+E0njcrs7NoLnxZ6HzXztP3WJ7Qi3M/eMLW8cisLPYkCZEWVNvZFi9E17mdhdR2F9W58aTJLa+cLDu/t9SkejSTfiSbjXALp2M5u5+sbIbTp5+RFlbbWVAtWjzNl3lttSELymzaCsF3iEduokhjrl8yb/er9sZ0vxK6TWRTRG2IFmiHti/oh/6Zv1yMnBHc+XS6MNrKLjhtK1k8EME4tRHpah9S6mspioLrr78ed955J84888yQ7WVlZcjLyzMMBACMHDkSsixj27ZtYdttbGxEdXW16UUQRNuGl3A4eRGJIx42guwDQRAiWss+PP744+jZsyeysrJQUlKC7du3W9Z/6aWX0K9fP2RlZeHss8/G3//+96iOa5eUmkgsW7YMXq8Xt912m3B7eXk5unbtairzer3Iz89HeXl52HaXLl2K3Nxc41VcXOxqvwmCSD0kKYqJRJq6rlOFeNgIsg8EQYhwbCOisA9//vOfMW/ePCxatAi7du3CgAEDMHr0aBw/flxY/7333sO1116LGTNm4IMPPsCECRMwYcIEfPTRR7F+3bAklbTJip07d+J3v/sddu3a5bqxXrhwIebNm2d8rq6uNoyFXYmE1UzTruzJjtxJlHeCb5+1x/eb9U3kDo9WHhXJJRytBMqujCke7mpRG85lQ8Jo28a74PwRVpIl0XaneSdMvRDJkgTXXPA1H42cycp1Ha2b2u0gApGgzNapRbxshJV9cBvRvdGa0lWnBEuPIuWFCLe/9l4O24aVjMmpfYiUo8gOfBsiSVHw+O6BYNy2/RiXVQy1IyLs2r/WlMQ6IVllTCJaI7P1I488gpkzZ2L69OkAgNWrV+PNN9/EH/7wByxYsCCk/u9+9zuMGTMGd955JwDg17/+NTZs2IDHHnsMq1evdnx8O6SMR+Ltt9/G8ePH0aNHD3i9Xni9Xnz11VeYP38+evbsCQAoLCwMmaW1tLSgoqIChYWFYdv2+XzIyckxvQiCaONE47aO4p+UZHdbpwrxshFkHwiCEBKlfQiWSjY2Ngqbb2pqws6dOzFy5MjAIWUZI0eORFlZmXCfsrIyU30AGD16dNj6bpAyE4nrr78e//3vf7F7927jVVRUhDvvvBP//Oc/AQDDhg1DZWUldu7caey3adMmKIqCkpKSRHWdIIgUpDXWSKSC2zpVIBtBEERrEq19KC4uNsklly5dKmz/22+/hd/vR7du3Uzl3bp1CyvFLC8vd1TfDZJK2lRTU4N9+/YZnw8cOIDdu3cjPz8fPXr0QOfOnU31MzIyUFhYiL59+wIA+vfvjzFjxmDmzJlYvXo1mpubMXv2bEyZMiXu0TisZBd2ZU92ojuZoigIonOIpEqsb8ESp+D2wtUXIYr+4JRo5U922zDVs+FS9AvkOKL2g+VJkcpE7UXrVra7n9X1aEfOBNiXNNmJwGHXXd3a8qVEkwpu62QimWyEnehgbiy+t5KfWo3ldmWwdtqKBV4G5Haum7aO6Hzaid5kFzu5fUz1EyB5FR7HRluJtDWHDh0yeTZ9Pl/C+uIGSeWReP/99zFo0CAMGjQIADBv3jwMGjQI9957r+021qxZg379+mHEiBEYN24chg8fjqeeeipeXSYIIk3hk3c5eQH2XNep4rZOJshGEASRLERrH4KlkuEmEl26dIHH48GxY8dM5ceOHQsrxSwsLHRU3w2SyiNxySWXOIov/OWXX4aU5efn48UXX3SxVwRBtEWiSSDE6gcvxl20aBEWL15sKrNyW3/66afC9hPhtk4myEYQBJEsOLURTu1JZmYmBg8ejI0bN2LChAkAtBDXGzduxOzZs4X7DBs2DBs3bsScOXOMsg0bNmDYsGGOju2EpJpIJB1Bruto3dQiF5qoLTsRO0TuZ6eRnCIdO/iYkSILiRBJfcLVEdVzQzqVCCImKnKYNMhOvUj1rVzGdiRN0ciZ7Lip3XYtm9pzoW1JjiKpl14/3VzXRHS4EfWPEck+OJXBBvcxol3Q//pDajnHrl2w2teQojrMARqNPbPbNzv1RRLa4LHcqQ0AApImURtWZez3jzRmW8plHdqIWGRMySR/dWojnNoTQPO6Tp06FUOGDMHQoUOxYsUK1NbWGnLYG264AaeccoqxzuL222/HxRdfjIcffhiXX3451q5di/fffz+uXleaSBAEQQjgXdFO9gFgK7pPqritCYIgiFCc2ohoQjlfc801+Oabb3DvvfeivLwcAwcOxPr16w3P9MGDByFzYfPPP/98vPjii7j77rvxy1/+EqeffjrWrVuHs846y/Gx7ZJUayQIgiCShXhHbeLd1gzmtg7nhmZua554u60JgiCIUFors/Xs2bPx1VdfobGxEdu2bTNFmNu8eTOeffZZU/2rrroKe/fuRWNjIz766COMGzculq8ZEfJIJAg7kZEAexE7nEZyMrkG9XrCJHVgbTlPgmYnOpE4wpGib5MF2+whjLTkQFdt2k/kmrZdpkSs3yJwNYvqWbmmeazc1Ox6iVeEpnSLzBTLGgm7pILbmog/8Yj6F0kGqyA2uwBEL3Ni4545opMo8h3bJnP1zN9TKEvyR9huUd8NrGyW9TgfOuiKxn5RZCY7toIvc8NWBNuIZJS8xpN4r5FIFWgiQRAEISAWaZNdUsFtTRAEQYTSGtKmVIAmElbE4IpyG6exxK0WYItyTPCPmVgboidQkg1Pg134pyreoO/lVwKPiALeDXBlckg/Ys3REIngdq2eHoUrC36SFMnDYGcRHv8EJx6eCDeeMrUGpnvVhftWkpzf/9E8cZo9e3bYCBybN28OKbvqqqtw1VVXOT4OkZpEG6xDtBBb5L1mngnTviFv+OOE1mOjtWg89pi8DkHjfIQcEwG7oFjWs7PNCt7jYYVozLe3n7MgHFYeh3DtRWsrrPIKxeKpTjfvgwinNoI8EgRBEG0Ijyw5/sdETZIHDwRBEER8cWoj0tU+0ESCIAhCgBzFREJJU0NBEARBmHFqI9LVPtBEopVJhFQqeAG2VY4JrdC8v8mbK5BH2XFrR3J5W+WdCJY9afXsLeKOFaeL5iK5pIPLIkmhgrfblTGF2yfsftF57KNCdA8ko4s7Go9EuhoKQoCiun7d2rUPduROwnHeQgYrDNAhOjhX6PfrkilFMh0H4PIaCMdve2V2trlRP164kXfCalsk+RLDjoxJVN9cL7RPwe3FkosiHvtZ4kKbTm1EutoHCv9KEARBEARBEIRjyCNBEAQhgDwSBEEQRDjII6FBEwkLYkkg4hZuhguzcmGbjhmxILLcKd5u7Xi4ut1wQzuNzuHUNW2qF4ObOlA/7CbbiK5Rp5Gc3L7P3GiPJhJEa2M3QpPVvlYRnUSRnAKVBPsJIjpBJJkCk85Y53QwitI0ek1rEyminlHPBbsQbQ4hp7KkZJS5hoMmEho0kSAIghDglcXrc6xQSSxKEATRJnBqI9LVPtBEgiAIQgB5JAiCIIhwkEdCgyYSFkST2TYROE1yIkpWxxOS2EjUhsDlbeXW5vso8HQHjmXzfCdacgbYd8HalflYuY7dPJZTOZMpiZVNV3qi7xs3jh9N+FeRlI8gYsFKsuS0viiSk7Gf6N4WyJ14QqWZ8Zel2B2Dgol34sxYxpxkS1Rm9xy3VUkTw6mNSFf7QBMJgiAIAR5Jtp3xlt+HIAiCSH+c2oh0tQ80kSAIghAQjbQpWeLXEwRBEPHFqY1IV/tAEwkLJElKOpej29iRuUSKRGRMslPQNZlqtGbiOBGpcj+40U+aSBDpTIiEVZQo0qGMKJaEZMLIQjYi00WSxMRb0iTCSuYkkpwFl8mC8SuStM1quxtSz0Scx2SHJhIaNJEgCIIQQBMJgiAIIhw0kdCgiYQFkixejJyqRPs0O9JTKVVfPW17UbGtBcHOn36Inl65iegpkRV2FkfaXUBpexF6lE/i0+k6B9z5Ph5Jgsfh+XRanyB43AgiEW0b0TxxtuMd4Mdlq/rs+OL8OKH9FB3LrlfDqr4dIp3jYFsRyQvBxnfRuMXGdN4GWLUnslOqDS+I27D27Z5jq/4k60JspzYiXe1Dmv37QBAEQRAEQRBEa0AeCYIgCAHRhH9NdNhbgiAIonVwaiPS1T7QRMICWZbg8SaH08apa0/kpha5TUVyp2DXsqgtp25l2/VturdFJDJOuF2XdKB+fFzTokh0wXInu7Ifp4NeMuT2ALTryo0Bm9ZIEJbIUqte84m+v6zGcKtF0VbyJX9LqOzJVF9gP4xjCmyFlU0J1LHKZOQcSfaElAWPP/xvZyVVEtmA4G0A4PFKprb49lRBffjVkHZDv0d8ri+n+U9iacMRCbAR6WofaCJBEAQhwCtL8FJCOoIgCEKAUxuRrvaBJhIEQRACyCNBEARBhIM8Eho0kbBA9shJEzdf8jiL8W2lXrErAbKSNMXmfg5tP7jdSPHDbbmwY4jiJPrdLd3VIpmRFOpiNlzXgigdli5vNbzsiW+fnQO70h6n8c6D+5qMSB4Jsid2SSJNJAi3iJdsJN75ASJJUoPH/khRmJiUidXz+wN6VVEbbLuprKVFL/Ob/gKA6g8tC7QfflssMGmTSOJkbPN4LOt7vF69TPs9Pdz4JZI2qYocUmbInZTwdkThhkVZMW/jz3EiclK4cY+0dnQnmkhoJMcCAIIgiCTDI0mGobD9SuIJFkEQBOEejm1EHO1DRUUFSktLkZOTg7y8PMyYMQM1NTWW+zz11FO45JJLkJOTA0mSUFlZGdWxk2oisXXrVlxxxRUoKiqCJElYt26dsa25uRl33XUXzj77bLRv3x5FRUW44YYbcOTIEVMb0ZxMgiCIYGSnkwhZStuoHMkC2QiCIJIFpzYinvahtLQUH3/8MTZs2IA33ngDW7duxaxZsyz3qaurw5gxY/DLX/4ypmMnlbSptrYWAwYMwI033ohJkyaZttXV1WHXrl245557MGDAAJw4cQK33347fvzjH+P999836pWWluLo0aPYsGEDmpubMX36dMyaNQsvvvii4/7ILv3wsbjsrF11urtS5CbkpFBqkPuZ/04K2DZ7fRBJjww3dQvnplbN7Zq2Wbi1xe5w5t7mXNhWrmt/eNe1aD+RS9rYJnBJiz6z93yULyupEnNdm13TWhn/3Zmbmm0TuabNfYocWSpSFCkr2ZLtxHhRXvNuuaYpalN6kkw2QooyapOb/0w4lRiK5J6sP5Ekr1Zjf/D4DQCKX1Cmj+VCyZJeZrYVfn2/pkCZ31zGj+msTLGwFULbYWEzeHh7YJRZSJpk9tebGbqNK1NazGV+k+xJG7h5uRM7bx6ThFPWjxnab9ETY2ZLgiVO4bCUwTq8DkV9jBbFpiQrGDekVMkibdqzZw/Wr1+PHTt2YMiQIQCAVatWYdy4cVi+fDmKioqE+82ZMwcAsHnz5piOn1QTibFjx2Ls2LHCbbm5udiwYYOp7LHHHsPQoUNx8OBB9OjRI+qTSRAEEQxNJJIPshEEQSQL0U4kqqurTeU+nw8+ny/qfpSVlSEvL88Y0wBg5MiRkGUZ27Ztw8SJE6Nu2w5JJW1ySlVVFSRJQl5eHoDIJ5MgCMIuHhmO3NbaK9G9JnjIRhAEES+c2whtv+LiYuTm5hqvpUuXxtSP8vJydO3a1VTm9XqRn5+P8vLymNq2Q1J5JJzQ0NCAu+66C9deey1ycnIARH8yGxsb0djYaHxms0VJcu66dv2JZFB7foH7mT+mOJoRa0vQPKsDzl1t4eUVRWgypEeC6BzMlc27w4Pd26Y2bLiy+XoiuZNiIXuyQpxYKHy0Db6+4ZL2hJZJAje1ITPzhrqr+TKPfoey88NLp5hr2gPray5Y0iRMhidIbBTY37p9V695QVuiaz4SbkSVIo9EauOWjQhnH2KVvsZyjdpJKimSq4qOycZtk+Q1ygSovA1gZQonVQq2HyIbwI/zSnNTaFmQpMkvsAtsP74s8Df0xNiN5CSWMckh2wz5UoZuA7g+enS7wH8nZiuYrWP7afDv9TbApK7c78TOs5f1J7CJfWWn45NQBmvzurW6RiWwSFGOumNCdN06IRHyV1b30KFDxpgEIKw3YsGCBVi2bJllm3v27LF9/HiRkhOJ5uZmXH311VBVFU8++WTM7S1duhT33XefCz0jCIIgEo2bNoLsA0EQbpKTk2OaSIRj/vz5mDZtmmWd3r17o7CwEMePHzeVt7S0oKKiAoWFhbF01RYpN5FgBuKrr77Cpk2bTD9GtCdz4cKFmDdvnvG5uroaxcXFIfWS4ekk36boSa3ouYrhddBn/5HyKwSeODiNLx66nT2B4p9KiRbVGYvkLJ5AiZ48mRbacU+hgrc59UgIvRMZZg+D2dOgbeMX0Nl9umTAniSZFrfrXgQP+2xvYZntp0YWC8IZous43k/e+Wvb7rGi8VxYQR6J1MRtG2HXPjj1MNjxKoTDztNUxWL8BgLjNet3NHl3gu2AlQ0AQr3RVjbAVMaN/f6gMlF93usQbCsUQd4J83eIHJCDX3QtC+wBe8/6Y7ILevt8mT0i1A+yH8x2aP1lx45uYTIgvr6trmE3rlHrnWMPNBAr8V5sXVBQgIKCgoj1hg0bhsrKSuzcuRODBw8GAGzatAmKoqCkpMTRMaMhpRS9zEB8/vnn+Pe//43OnTubtvMnk2HnZPp8PmOGaHemSBBEekPhX1OPeNgIsg8EQYhIlvCv/fv3x5gxYzBz5kxs374d7777LmbPno0pU6YYASQOHz6Mfv36Yfv27cZ+5eXl2L17N/bt2wcA+N///ofdu3ejoqLC0fGTyiNRU1NjfCEAOHDgAHbv3o38/Hx0794dV155JXbt2oU33ngDfr/f0LTm5+cjMzPTdDJXr16N5ubmkJNJEARhB4/kPIEQJaSLL2QjCIJIFpzaiHjahzVr1mD27NkYMWIEZFnG5MmTsXLlSmN7c3Mz9u7di7q6OqNs9erVJtnmRRddBAB45plnIkqqeJJqIvH+++/j0ksvNT4zd/LUqVOxePFivPbaawCAgQMHmvZ76623cMkllwCIfDKdYtcV1VoSiKgkH/rfYIkTX8i7ptgx2Ow5kmSEuQwVkyQnukV1/qb6kG1+UbxwgQSKubNFsieniORLwW5qXrLEjuWxLacKdVMzV7MqhS5YDLiQncf6Dl5kLVpYbcpnYUPa5GR7OKyuK1Gbka5Dj83r1S6yJEF2Gh+dJhJxJZlshCRJEeVMduVL8XhSKWrTHHNf+xvLgleGU9lIwD6EjpeiMr9A6mplA0y2JWgBtlUOokgY9qAlUKYELawGQvNH8P2x037k86L/tuFTIJkI/D5u5MUKLWvNBc+hNjEUO4EG3AjI4dRGxNM+5OfnW+bC6dmzZ8h9unjxYixevDjmYyfVROKSSy6xHJDsDFaRTiZBEIQdPAA8Dsd9m3adiBKyEQRBJAtObUS62oekmkgQBEEkC9GE96Q1EgRBEG0DpzYiXe0DTSQiEI2UyIpY24gk+RDJO4wy/TPvETQiOUHg8hZ4e5lrTuX7EaWCyCqqkiLYJo4NHn10jmBMkThs9JvvD3Nr88eUg+oHv48GXoJk5SYVuX2tIjTZjczkZlSiSBHInOJ61CZaI0E4wE0Zk9OIOpFQg+SqgEAiwkXB0VMjuH5POc1P4XS8tBr7rSSvsY7L/HEAgFklSW+X5ZqI2IbDfvDn083IOYbkVeJtRfh6gTrxuW6tjim6pkR9dUPCF0wyrZFIJDSRIAiCEEBrJAiCIIhwJNMaiURCEwmCIAgBsuR8jUSaeq4JgiCIIJzaiHS1DzSRcABz89qNKGNVL9kSV5lckszlLYVG9BG5GgOSmUCZIX3ym+uYjxk+AZzMfVYFEZRUgcvYyi3My5aiJdg9Leq/LEhkZ/U9xedFEFXJUsbEuZ8jtJdMWMkm7Eoq3JZe8NAaCcIOdiRNdq+LZLtXI439Rj0meY2QYIydB1VltsU6CahoXA22B+Y2lJD6TNEi65HyYpGaio+pl1kkqRPWl8PXj3zMUJmqZb9tPAlPtmsP4CIZWlx7IrmeuC3obbnTN3ZsWiORYgnpCIIgCIIgCIJIDmgiQRAEIYDpX52+4kVFRQVKS0uRk5ODvLw8zJgxAzU1NZb1b731VvTt2xfZ2dno0aMHbrvtNlRVVcWtjwRBEG2FZLIPiYSkTRaoqip0qVk5Q92OROMGTvsRnIiOd8cxyZKkhspv+BjuRjQgT+hcNVAvNClbYP9QV7CfL9PdyHykDJb8R5zAJ7I/k5cu2XFhs+MBgIclqePKRInrWJnHK5v+AoFzZZIqsYSBgsRxVu5tpy5Uu9HJ3Lym3ZAvhXN5O02QJcITxRoJp/WdUFpaiqNHj2LDhg1obm7G9OnTMWvWrLA5EY4cOYIjR45g+fLlOOOMM/DVV1/h5ptvxpEjR/DXv/41fh1tYzCphJXEyRRdx+L+Uo1ISrFfSFZyEHM9/a/gnonUhtFPYeQcfXxSBPZDCR27mGTJ48vm2gg/DvsFkiJDCuXN4L6DHsmppdn0mUexKXGykq7yxwzut9gGCGyFwGYE5F2hElZRFD+ra8dqm+m3Fth0FtXLOhFc6P8AsWDnGrYbCSw+UZsc5pFIz3kETSQIgiBEJFPUpj179mD9+vXYsWMHhgwZAgBYtWoVxo0bh+XLl6OoqChkn7POOgsvv/yy8blPnz544IEHcN1116GlpQVeLw3/BEEQ0UJRmzTIkligKKpwtmulB2uxOSO3uzjbKXae3jqN5c0jesoEr+iMmBe9SS2C3AWewCMCv96G3xu6IE5p0fI1eIR5JEIXzoliiTtFtPgt+CmTabFcRqhHgm0XeR1k5pHgPDasHv/EJ7g+PxBF+8RHFHtcEnjS3AwM4NSTYfdparhrOZZrnOGRJcffndWvrq42lft8Pvh8vqj7UlZWhry8PGMSAQAjR46ELMvYtm0bJk6caKudqqoq5OTk0CQiDvBPPO16JxjBXgq7178Vke4Bqye0Tu8fkVdahv6dBPaBjTcKZxdkfaxT/IGOKfp4ymwAEMjf4xHYAFbPVKaEzyNhJ7+QCJEXxGrxtMguWNkP/npg58VUJrAHRpkc6jlw6qFmv79oP/66USwW18dLN+88F0mcOgLnNiLZguy4Ba2RIAiCEBDLGoni4mLk5uYar6VLl8bUl/LycnTt2tVU5vV6kZ+fj/LyclttfPvtt/j1r3+NWbNmxdQXgiAIgtZIMOixFEEQhIBY1kgcOnQIOTk5Rnk4b8SCBQuwbNkyyzb37NnjrBMCqqurcfnll+OMM87A4sWLY26PIAiirUNrJDRoImGB4leEC9D8/sjxtLUGHLrgXHB72XH7RVpUpxgL/lgBv7Baf8O5qyXmBhXIbli7MncHeVVdxtQSOCarZ8ivVH5bll4/1EepqqFtWJ0D0UI7UexuhmmBm0VOh4AsyXrxmyHr8oa2JVpQHbwAO1KOCfabieRLIv+jsQbd6py10nUZ9vgOF06rimqSR0SLFMUTJPZb5OTkmCYS4Zg/fz6mTZtmWad3794oLCzE8ePHTeUtLS2oqKhAYWGh5f4nT57EmDFj0LFjR7z66qvIyMiwrE/EjlM5hZVExM1jiu4l0b0ZrbSKl2oqUpAdQUDyw46pcvXFYz+zC4F/VRRFW4xtZcf47xQ85otsgN18ElZ5HkRlojHdqGMx9tu1I2b7ZG43lpwFxnk0l4a0q1rkiRLJWe3kXInct9jbcAunNsJOPo9UhCYSBEEQAmJZI2GXgoICFBQURKw3bNgwVFZWYufOnRg8eDAAYNOmTVAUBSUlJWH3q66uxujRo+Hz+fDaa68hKyvLUf8IgiAIMbRGQoPWSBAEQQiQoUVBdPSKU1/69++PMWPGYObMmdi+fTveffddzJ49G1OmTDEiNh0+fBj9+vXD9u3bAWiTiFGjRqG2tha///3vUV1djfLycpSXl8Mf5SJTgiAIQsOxjUh0h+MEeSQsUBRVKKdxil0XYwxBhhwRS9zlgNuUKxTlMVDMt4zIVS4qUxzGMncjuolTnMbpFrk+ha5uh/kgRG5SUUx74/e2ES1GRGtdl4A70ZbcascjSfA4dEU7re+ENWvWYPbs2RgxYgRkWcbkyZOxcuVKY3tzczP27t2Luro6AMCuXbuwbds2AMBpp51mauvAgQPo2bNn3PraFlBV1ZV8JUBAIuIU5xFsoh9LRWOz1Vho9fTVzXHbjXvd7u/ohjQlFslRME4j94nqs99VFth7UV4IsWTJZj/069zNcxAt7uQacmYj4mkfEglNJAiCIAQkUx4JAMjPzw+bfA4AevbsaTKOl1xyiWv/6BIEQRBmKI+ERrp6WgiCIAiCIAiCiCPkkbBA8atQLCI0OWnHUX0XXLWxuA6t3LdGZAjYk+FYRauwW9/KRR7ttkhYJVBzuk0o4WLRSGxKuawjUVmXWT2Vtro2E30dxoIb961H1l5O9yHaBuESltrFqbzHdpJGm16oaOVFVrLMSAkzg6MNiSLO8YiiHgXbD1OUOxv2w+0Fr6IxP7iM/yyMLKWqYbcF9kNIfUXQruiz1TXB6vkjRQ4TyO+Mc28hzRM9hRcJxt2QaTnBnaSlzsb8dLUPNJEgCIIQoC2QcyptilNnCIIgiKTCqY1IV/tAEwmCIAgBchSLrdNVA0sQBEGYcWoj0tU+0ETCgmDXtR1XcDK7nxmxuJ8ZHj4hnb6dL2Pu40y9LJPb5g3apr33mMr4m5OVeQUu7EzBMe24t0VEclGz9016JC9+W0vQNgDwq6FlTS1+U1kL1wYrM7XB3M56GS9TskrQ56bLOxrsuJ3tDqp2Xdh8PVdkWUm22JpILlRFDXuP2Ll3Yrn3nMofjf0sjika5yNJE4MlTTI3HrN9+WSkzEawxHVekw0ItRU+/X12pje0nt6Gz8LuiMqitQ+AtY0QjdsiW9HIxnk/bxe09/VNLaY6/Da+/RbWLtcGswdM1mm6Htg2YbI/m0kKHV47IoKvJ9PYbiWdErWlxGY/3IgcRoutNdJUsUUQBBEbTP/q9EUQBEGkP8lkHyoqKlBaWoqcnBzk5eVhxowZqKmpsax/6623om/fvsjOzkaPHj1w2223oaqqyvGxySNhgdqiQOGeAjh9gmRnpi9ebOukl5EJXsTGPz0wnhrxT5LYTN94ehRan28jM9PsTQCAdnoZe5KUrX8GgOwM7X3HrMDll23U1/5meQP1M/TjZ3F3oVd/n8X3W+9ThsAzYeeBE//TsCdIzYKn9w3Mm8A9DWrQ3zdzi3wbdO9DfVPgUQt7f7JBe/JU3xy6jT2VAoA6vaxJ/wJNXFvst+CfdrHrS3TdsjLRIj8eN68/0QJKO08+RU+qInkm+CdUqhv5X8gjQVig+BXTE2ERdu2C0aZlEIbw9e22b0WkPDbMs8Df0mwf9tfDjdEer1bmzQiM5b5M89jPexo6+LT37Thb0SEr1H6weswTwdsFVubj7YfeN2ZHMrgkSGxX/r4VSVWYd5mNpfzP3qyEjv3MbjTqNoD3MDBbwZfVNOr2QB/faxpCbQCro9XT3p/k6jXq9Vp0m+JvEXil/aFlhs3wh9oRnnhdV4F6gn0tArOwsxcxJ1OYwBtKhHvXDsnkkSgtLcXRo0exYcMGNDc3Y/r06Zg1a1bYkOFHjhzBkSNHsHz5cpxxxhn46quvcPPNN+PIkSP461//6ujYNJEgCIIQIEnay+k+BEEQRPrj1EbEyz7s2bMH69evx44dOzBkyBAAwKpVqzBu3DgsX74cRUVFIfucddZZePnll43Pffr0wQMPPIDrrrsOLS0t8HrtTw/IEU8QBCFAhhTViyAIgkh/orUP1dXVpldjY2NM/SgrK0NeXp4xiQCAkSNHQpZlbNu2zXY7VVVVyMnJcTSJAMgjYYmiqmYfpo5lrGfTYiaE1HO68NWNBUHBC+JMcbd1V7DMHYdfNA0EuxVDF1YzSRMvVcptl6mV6W7oDqZtGaZtANBOd3930F3d7TLkkG3tOBd5pu6m5hdgG5ImvYiX0NjRJvI/Nfsdea8oc1cbC6u5jXW6O7mOkyrVNWsN1vBSJX37Sd1NXVXXbGxj7uyTjYHv6alr0sr0bSYZkz90AbZiYxEev0jbuJYFi/BiIdjd7HiBP/d7WUmh+LZYHHRJlmwHM7CCPBKEFapqXmztdNGqlVQpYrtqaD2r+nYw5WoQSJVEzx3l4PreQBtM0tRRH++BgI3Izc40fQaA/A5aWU4WV1+XNHXgbEWHTLM9aJ8Zahcyue/CFmWzr5LB2z+BrRApKNkptbILvP1gC6mbBLaitinUVtQEyZdOchLW6gbNRlTUNBllzB5kekPLTtaxkkAbfr8UXBQiaeLtArMfka5DO9jNOyKqH2wXzPX0v4JF13ZyVFktHrdLtB6J4uJiU/miRYuwePHiqPtRXl6Orl27msq8Xi/y8/NRXl5uq41vv/0Wv/71rzFr1izHx6eJBEEQhAAtRrjzfQiCIIj0x6mNYHUPHTqEnJwco9zn8wnrL1iwAMuWLbNsc8+ePfY7EIbq6mpcfvnlOOOMM6Ka0MQkbWpubsahQ4ewd+9eVFRUxNIUAGDr1q244oorUFRUBEmSsG7dOtN2VVVx7733onv37sjOzsbIkSPx+eefm+o4XblOEARBuI/b9gEgG0EQROqTk5NjeoWbSMyfPx979uyxfPXu3RuFhYU4fvy4ad+WlhZUVFSgsLDQsi8nT57EmDFj0LFjR7z66qvIyMiwrC/CsUfi5MmTeOGFF7B27Vps374dTU1NUFUVkiThe9/7HkaNGoVZs2bh3HPPddyZ2tpaDBgwADfeeCMmTZoUsv3BBx/EypUr8dxzz6FXr1645557MHr0aHzyySfIysoC4HzluhXBruvgiBq8a9rKJW0Vu1kUQce2i1wJDbwsyZ6QsmAZCO+u9vv1eN6cbIj1g9Xnj220wU3DWZSNDpxLOi9be8/c1Z2yA9uY6zqXc1fn6i7ujizKU0ag/WwWiYOLHsWiNXmUgDQIfs3NK7G/LQG3r/FjidyZzN/I6WlUb6bpr3Ywrd9+WStr4FzBjX6t3/VcWX2zdqyTnLSpSnc/V2Vqf9tz5/1EpvZdPDWcXMdwm4fGKm8R/D7sWmvh3OYsegcrUyK4sEMiizm8zsz1QqN8iWRJVvI7kXvbuEaV0Hb57bFA0ibnxNM+AMllI/wtKuDhZIIWkZYi5SMKthVCOxLBVti5b3mC72FRbiDVG9pXSRZInAT3dHCEJgDIb6/9w9RZtwvMPgBAvm4XeGlTfrZuFzhb0V6XvTK7kM3JqVjUJrnJ0PdAamnQ/jZoOnRmHwAASoteFhijrWyE6tH7IQf6o3p0W5ER+GdQzdSuNSWzHQBzhKb6llBbUavLYJnktaI+0J+OQRENgYDMSZT/okkgbxWNzYZMi0UhNNkMm3mLLK4xO/+LOLULwduDP7M2RPdisASKj2oVLfFebF1QUICCgoKI9YYNG4bKykrs3LkTgwcPBgBs2rQJiqKgpKQk7H7V1dUYPXo0fD4fXnvtNWOMdIqjicQjjzyCBx54AH369MEVV1yBX/7ylygqKkJ2djYqKirw0Ucf4e2338aoUaNQUlKCVatW4fTTT7fd/tixYzF27FjhNlVVsWLFCtx9990YP348AOD5559Ht27dsG7dOkyZMiWqlesEQRAiolk83ZYXW8fbPgBkIwiCSB6c2oh42Yf+/ftjzJgxmDlzJlavXo3m5mbMnj0bU6ZMMca0w4cPY8SIEXj++ecxdOhQVFdXY9SoUairq8MLL7xgLPwGtAmMxxM6EQyHo4nEjh07sHXrVpx55pnC7UOHDsWNN96I1atX45lnnsHbb7/t2FCE48CBAygvL8fIkSONstzcXJSUlKCsrAxTpkyJuHJ94sSJwrYbGxtNq+bZySQIog0ThUeiDc8jEmofgPjZCLIPBEEIcWoj4mgf1qxZg9mzZ2PEiBGQZRmTJ0/GypUrje3Nzc3Yu3cv6uo0b92uXbuMiE6nnXaaqa0DBw6gZ8+eto/taCLxpz/9yVY9n8+Hm2++2UnTEWErz7t162Yq79atm7Et2pXrS5cuxX333RdSriqqWTYSlHo+kozJKgGY4TrkXIPsvanMH1oWXJ9H5E5kZXKG5oL1c3Idjy5tMrvbtcvCo7vtVUHII96lyqI28ZE1WGQmJmnq3I5zYTPZExfNo4PurmZu6w6cG9fTrF34ckNAxyw11WpljbVGmdpUr/2tr9U/NwS2MZmTIgiVorvqJe68yLprWspuHzhmZrbWH59WlpEZ2Nbe1wEA4G/fzihjkTjacTItFmEkq047ZobA5cxHZmIucZaASOTKNskbmFubc9s26+7yQKIiLlmdfl6U5oC7P/i6cnqdAYCkP81gZaZt+nuRlMIqQaIqlDuFdAMy3Ik8RYutnZFI+wDEz0aEtQ+qqstftc9WSbxE0flE9sNKauiGrbC6b5UMbvxj0k7OnhmyVoWTgAZ9Z142my2SvLYzS167cHaBve/C2wXWRmagXWYrMlq08V6uC0zs5MaTWl85u6CcrNT+NmhlSj1vMzQbobZwElmRXIeNY16tb1JmQALCbIScFbAHcsc8rV3dVnh9HY1t2VnaItvmdtlGWY0ubWJyLT5C4bdMrhXBVrBIUSyBXSMX+akZ7NoIjSrJrjmRtEnh5MHMRkR7fQH27IIsGOf56yo4CaIpEalAHsVgtoIpmN2Qv0a72Doe5OfnW8oze/bsafrOl1xyiSvnAKA8EgCAhQsXoqqqyngdOnQo0V0iCCLBSFG+iPSC7ANBECLIPmhEHf513rx5wnJJkpCVlYXTTjsN48ePR35+ftSd42Erz48dO4bu3bsb5ceOHcPAgQONOtGsXPf5fGFXzRME0TaRJUkY5zzSPkTr2wcgfjaC7ANBECKc2oh0tQ9RTyQ++OAD7Nq1C36/H3379gUAfPbZZ/B4POjXrx+eeOIJzJ8/H++88w7OOOOMmDvaq1cvFBYWYuPGjYZRqK6uxrZt2/Czn/0MQPQr18OhKIDkF7mYzW5oU1lLaBQPkZSEuQJFkhLedWhIT2KQNnl0N7XUpEtKMgMu1YA7m3PVBiUX8gpc8GZpk54giJMj5WabI3Dkc1GbmAs71xdwiHX06ZIfRdMiy9UBYy/XV2lvar4zyvxV2vuWqkCZUqu5tVv0UI7+hsC59TdrrmuFi6BktK9HivJwYc88WVofvR06BOq119zTcm5nrY7+FwDkDtp7OTvXKMtt1wkA4MsO/BOSIWu/mWjRFUts1Myd7xoj8ZD+2/GRiQSyCZGbmr1vbtDc+Pw152dyMIV3a3NRTWD/OpO5MiaNELmwmcROaQmtz+ROvEyElUlq4Lt7dGeqQKim7x9mgwMkRBG1KfbDpgWtbR+A1rcRWtQmVSijC5a68pHSgqP/8fX9LS36Z84GCCQlhv1oCbUfIlshQg66N+UWgbTJF7AVTH7Iy0y8GWZRgylqE4uqxMl0WGLSXJ8ufeVkT13b60nqOBlTrm4X2suB7yTXfKP9ravUCni7cELb5uftwskTAICmSs0uNJ0MSJta6pm0M2AXVEESWkn/znKG1n9vduBcZXbU5EuZeZyt6KiN/cxGeDoFIu8YtqJdnlGW0V4ry2SyT24gYf988jKmZv3/kvqswHlhCenYeRfJe0y2gkVr0iVQLU0BeZe/UbMLJmlTS+h1aOdak0XypSD7YNrGSexYmcplWg6O+MRLoWQjwW6oPIqdP+OzG1Gb4DBqU8xHTE6iljaNHz8eI0eOxJEjR7Bz507s3LkTX3/9NX74wx/i2muvxeHDh3HRRRdh7ty5ttusqanB7t27sXv3bgDago/du3fj4MGDkCQJc+bMwf3334/XXnsN//vf/3DDDTegqKgIEyZMAGBeub59+3a8++67ISvXCYIg7CBH+SLiYx8AshEEQSQPZB80ovZIPPTQQ9iwYYMpO19ubi4WL16MUaNG4fbbb8e9996LUaNG2W7z/fffx6WXXmp8Zu7xqVOn4tlnn8UvfvEL1NbWYtasWaisrMTw4cOxfv16U+zbSCvXCYIg7CBJkinOud19iPjYB4BsBEEQyYNTG5Gu9iHqiURVVRWOHz8e4pb+5ptvjPB4eXl5aGpqEu0uJNIqckmSsGTJEixZsiRsnUgr150QnJDOKrKGEeWAc4syN7XJ/ew3u6T5bX6R6zDIrR0pyRCDdxn6g1yGfBseJTukPnNdM9efIvhNRFGb+IQ5LOoESzrHJ6TrqEuamJwJALJb9ChMtZpLWq751tjW8s1hrT/fBaKqNH+nba//5oRR1njC7Lpurg1EbWrR3b6KP/S7yLof2cslTspor/3jwdzWAODrpLmusws0t3VG5y7GNk9nTV/tLTjFKGOJj7LbByRQ0KN4sKvErwbOC0twV8/Jktg5ZedYFLVJMSUNCpVSMJc1c1czOZO2TXdhR5DYWWElXwpEaAq4q1m7sqBMVZjEKXRo4qM8+fUz6OGe8bBvLMmJicjB9iHiYx+A5LIRqqIaL8A68ahYBsvJaYKkrkLJEi8zEUmboozaxO5V/n706vJXiYslr+j3JP9dgiNVRZK8GslI9bGWl7yyyEw5nF1oL2ljl3wyYA88uo3wf3sEQMA+AEDzN8cAmO1C/Xfa9dZ4QpO+Np0M2IWmGq19Zh8Asw1nyLpNZDYis0Og35kdNVvh68RFZuqsTaANW1EQiCTGbISnC+cB03+f9h00m6L6Au2zM8yfq0YWoak5UFalJzQVyWCNwwhksOz7mv4X0e1CC2crRBH+jD46jNrErjWRHJbvhyGxU0LlTsxGqKpAwsVHflJDk9ppbaZX1KZEEpO06cYbb8Srr76Kr7/+Gl9//TVeffVVzJgxw3Ajb9++Hd///vfd6itBEESrwbKWOn0RZB8Igkh/yD5oRO2R+L//+z/MnTsXU6ZMQYv+ZMXr9WLq1Kl45JFHAAD9+vXD//t//8+dniYAVQEkD/856CmTcGE192RDMIMP9kT4I8RpDixwCp93QoRwEZPA4yGq36LP9L26VyHSzD3TE+qR8AXFw87mniazXBFZKvfkoU57giTpi6ybyw8a2/zHtPe1RwILsGvLKwAA9ccDT55qj2meiMbqJv1vIIlUs/7ESRV4JCTdI5HBeSR8OT79b+BJSPtumjchW3/C1b7wZGAby13RHFiw5i3UfjNZCnz3rI7aE6QWfWF3I7fgi50rH3euDI+EIJcHQ5RHwhQTPMgT0czl4wgsqgv0245HQnR9SVxSh+AnVGYvWGj7/NPQ0GNp54q/35h3QpVC49yrSiBGOpEY2oZ90LwRdhZUm2yFyMMQ5IkQBT+IFNOf3cN2PRJG/gi9XT4IR3AdgH86HBgnrbxDzIuayY1nWUF2gc+XwGxEey+3eLZGC7ThqQuM84YnQrcLDYePGNtqyzVvRe3RwGLruuPaeFf3rTbW8XaBvW9u5M63yAOv/weYoXtLmH3g37frEhhXG7tqtoF5xdtzgT+yBL+Ph9kIjzbWte8QWJzd5A/NLcHeZ3HnVnS+g7Fa4M9sARDwRPBlgcAcodeyXY+ErOfhYNcvv7Ba1tsQea9NtiLDbCuEx+QWWxuLsY2F2Kxtd3IoEDFMJDp06ICnn34ajz76KL744gsAQO/evdGBi3LDImcQBEGkGtEsjkvXxXROIftAEES649RGpKt9iOl7vf3227j55ptx8803o3PnzujQoQP++Mc/4p133nGrfwRBEAmBLaRz+iI0yD4QBJHOkH3QiNoj8fLLL+P6669HaWkpdu3ahcZGzUVYVVWF3/zmN/j73//uWicTiUk2YuHGZa5rk/RIsPgtWNIklj01h5YxF58/CmmTvsDJK9jWImvuSl5aogQtHhS5APmFXOw971L1eczu2EwuMLZPfy/VBaRBLFdEywlNvuT/7qixjUmaTh48ZpSdPKy5umuOBNzJNcc1eVGd7q6uag64YOt1SVOT4Ltk6v3P5vqYq7fVjnNhM8lUh1qWkyLwOzHaewOL3ySftgjPa8rbob33tdPjhnPHNKRNnlB3NTvHogV0omtUMcmdtH6LFlaza41fVGe1aNP4bqIFdFwZc3/L3PmwwpBAsWPLvLRDv34zQl3Y/D0pse/s0oo2WmwdPW3BPiiqCokLyMHfc8GSJmFuIIeSV3NM/1AZkxGsw8b9C3CLVjPCywp5mUmgbxb1I9iFDL2MjXFCu9AcGIukRs1GKCcrjDK/biOavtH+MjkTANQc1vJIVH9dbZQxySuTNlVxC6uZjajng6QIzDzrZna91u/c2sDYn3tCky811QZ+H0NKK0how/IWSZlc7qasdnqZvsjdF/Dc+Tx64A/TudL6kSEIemJlK3iMADGiwC+CwBz+Ju17+gWBOUQYklduwb7HQvIqum49FpJXBv+/i7+F7ccF4dB/AmYfFH2T1f9zdqHF1hpReyTuv/9+rF69Gk8//TQyuEReF1xwAXbt2uVK5wiCIBKJ5PBFaJB9IAiiLUD2IQaPxN69e3HRRReFlOfm5qKysjKWPhEEQSQc8khED9kHgiDSHfJIaEQ9kSgsLMS+ffvQs2dPU/k777yD3r17x9qvpEYNishh3hYqPRKllBdG7tDd1SYXo0UeCdvSE0WPziGIrsMiIJj7wY5pT5biZa5UTv+XwVyvLEcDdwd59Yj/UksgeoaqRxJSTlYCAJq5fzYa9ChJdcerjDLmrmZyJgD4TncxVzRp54WXNtXqrmuriBztOUlRTYv2Pt8iypMng3PZt9dc0pk5gbwTckftO6i5gTwSUjvtO7NzwJ8Xdq4yuH6wvnltjkCGzEL4e4quuVCZheOoTfr1pQqiZwj31V3dCh+JI+iYwsgzgogjUhxHZkpIFz1twT4E55EI3mb+bC3hMO5Nkc2wkLyKZCZ288AER7sRRWjiJVZe1m/TfWh5CABmiY03xC4E6rEyqSGQ50Fq1sZLPyeDVWo1e9BUrUfpqwxsq/+2DgDQcCLQBpM0fVOnnT9mHwCgusWhtEnvf70/0HEmly34lquvR9tjkQAz2gf66MvTZEsZeQH5laJ/P0+O9n2llkD/M7I02yI6V17eVtgYC/nfi/2O7Hrkf+uArQhcc36LHCciDGmTwkle9WNZyelMuUuYFEr0f5VABhuQTHGSV48UUib6HA2UkE4jamnTzJkzcfvtt2Pbtm2QJAlHjhzBmjVrcMcdd+BnP/uZm30kCIJoddjTJqcvguwDQRDpD9kHjag9EgsWLICiKBgxYgTq6upw0UUXwefz4Y477sCtt97qZh8JgiBanWh0rWlqJxxD9oEgiHTHqY1IV/sQ9URCkiT86le/wp133ol9+/ahpqYGZ5xxhilOeFvCKgmQcJs/fH3FQh5lV9okgrkm+SgHon5YoVi4A/kU9MwVzKQ5fD41SdFCK0h+zkXKJFx6ZIiWei6ZXK2eSI2LlNGkv288GWijRndTM0lTdYs/ZJuV21oke8rkHiF00I/ly2kO6Q/rI9/vTP27qJz8gH1ndg48cuAWNM4VN9rIFq5Qq99CREBSwbnxBYmt7EojrAh1SQdkcsY1x40+lveKUda6UbhlSbI8/+H2IdqmfbCSuka6v0LGeUF0PiuJLP+el57Y6rfDPooQjUWBsT+8XeDvF/ZO8geiKrFxEnzCTGYj9CRvLfWh0ZKaagL163UpE4vcV8MlB6xxKG1i2/iRyJA7cZIpn3581h++j6zf7Hvw3y9gG7lzoP8129dQW2FEaxKMQVa2ItprNPh9uHZFyUbFkiU9ySh/7cs27hVRf2RR0kT3x2anNiJd7UPUEwlGZmYmzjjjDDf6QhAEkTRIkvZyug8RgOwDQRDpilMbka72wdFEYt68ebbrPvLII447QxAEQaQmZB8IgiDaHo4mEh988IHp865du9DS0oK+ffsCAD777DN4PB4MHjzYvR4SBEEkAElPOOZ0n7YK2QeCINoSTm1EutoHRxOJt956y3j/yCOPoGPHjnjuuefQqVMnAMCJEycwffp0XHjhhe72kiAIorVRFXvxLYP3aaOQfSAIok3h1EakqX2Ieo3Eww8/jH/961+GkQCATp064f7778eoUaMwf/58VzqYKgTH5ObLhNtYrOSW0PoyV99ubH6r/rD3LHYzn0eCj9lsB9kifhmfcp4tSmMLmP18/OoM7bJTPYFFWCyfhZSZBQDwZvuMbSxHQ0b7wILdTP29r2OgjQ76wrkmi4V/dvNI5Oo5IjpwwbvZsdix+f6wPvL9Zt9F4mJmK/p3VvXFYP7AmsDAueK6qFg8wbD6LUSw35r//dk14XRhtej6MsWht3PtC9qzuo9aG0lVIDkc+J3WT1faon3gY8SrYHlOQq9rO2X8PRLYFri22P0lsg9scavdPBJO+yhCNBYFxv7wdoEf39g71cMtlGWLZr2BsdawEVna9/RmB8ZXlrchs0Ogfna11u9s3T7wYzo7o/yiZTt5JPg2svWN2ZmB88OOz/rD95H1m30P/vux72s6B6yvJvsaaivYeRbZOCtbEe01GgmrNkT2wfrat7hXIlyj8czd4NRGpKt9iDoMSnV1Nb755puQ8m+++QYnT54U7EEQBJFCsKdNTl9xoqKiAqWlpcjJyUFeXh5mzJiBmpoae19FVTF27FhIkoR169bFrY8Msg8EQaQ9SWQfEknUE4mJEydi+vTpeOWVV/D111/j66+/xssvv4wZM2Zg0qRJbvaRIAii9VHV6F5xorS0FB9//DE2bNiAN954A1u3bsWsWbNs7btixYpWzapK9oEgiLQniexDNA+abrrpJvTp0wfZ2dkoKCjA+PHj8emnnzo+dtTSptWrV+OOO+7AT37yEzQ3a/oMr9eLGTNm4KGHHoq22ZRA0t2EkhJqmO1KPphLWhRjWYRiEV9c3EeuHx7zsfhjSoJ+sPeSTelMi8Cl2qxrmZp132sL595uATsmJwPK0uLLyx3zAAAZeXnGtqzOtVpbeq4GAPDruSJUgR86u1rL5dDBG5j9sxjiItkTyxWRzfm3mbSpXU6gjx26tgcAtO+m/W3XNZfrY05Iv9l3Yd8NAFT9O7foc/gW7jdk56rZFNM89PxZwX4z8e8Z+luznBIyH4vbHxqfO/Q4guuLv86Nay0j5JgiCZ+Vu9qow8ecb40UoUm0RmLPnj1Yv349duzYgSFDhgAAVq1ahXHjxmH58uUoKioKu+/u3bvx8MMP4/3330f37t3j0r9g2oJ9kGTJfB1y96hRrpglTgAnMVTCSz5Uwb0k7kOgnl/PH2Hn/uX3ZfJGmZcPsW38fcv6bboPLQ+h9Ysf+0PsQqAeK8v0BiQ/aoY2XsrtOhplcnttrM3MqQQA+PIC27JrtdwMLH8DAPj1/A4F32qf+dxA2c3O8kgwaROzDwCQq8uX2nXJNsqyOmnfIbtLu5A+Zua0N30P/vux76ty58DqXLXw/bZhI/jfi/2O7Hflf2u/YSsC14THMseP6FihUiVPiC0KtB9spwB7EiixHFb0v5kk/BsTSbRGorS0FEePHsWGDRvQ3NyM6dOnY9asWXjxxRfD7jN48GCUlpaiR48eqKiowOLFizFq1CgcOHAAHgey96gnEu3atcMTTzyBhx56CPv37wcA9OnTB+3bt4+2SYIgiKRBi8jhdI2EZsyrq6tN5T6fDz6fT7SLLcrKypCXl2dMIgBg5MiRkGUZ27Ztw8SJE4X71dXV4Sc/+Qkef/xxFBYWRn18p5B9IAgi3XFqI+IVtSnaB028R7tnz564//77MWDAAHz55Zfo06eP7ePHnCq2ffv2OOecc3DOOeeQkSAIIn2IYY1EcXExcnNzjdfSpUtj6kp5eTm6du1qKvN6vcjPz0d5eXnY/ebOnYvzzz8f48ePj+n40UL2gSCItCVK+1BdXW16NTY2xtSNSA+a7FBbW4tnnnkGvXr1QnFxsaPjO/JIHDx4ED169LBd//DhwzjllFMcdSjZ4N1fsi5l8iN0VunRozioirUL246UyezGk/Vj61Iem+nphZESmMyEiyLkzcwO6ReL8MDSuYtcgKZIHPr7Js732qi7XOuatT42+T3cNq1+RlbA3as0a7IlTyftnyW1scHY1r6FC23E+pipfZdMLnKSL0f7Dh2qNRd/bnXg5mSubpEUStL91izChtaWz9QmEJA0ZXfVItG0L8wPbCvS+u3pHJCOsO+iZAckUKr+ndk5aOL6w85VI+euZufUiMghcF+brlH9N+OjdLDflv3WomuIHwhYmdPri48GFSKn4q45j4XETuSu9njDP++Q4yl3ikHadOjQIeTkBKQL4bwRCxYswLJlyyyb3LNnj7M+6Lz22mvYtGlTSH6HeNHW7IMsSZAlCYp+efL3nD5cG9eun4vO59QG+AUSEbadv0dFZQxWZnXfejID0hyPT2AX9PdW92Mku9Csl7Exjh//2JjYzhfoh+rTxktPx8BY62moAwBkNmk2on0Td3KN7xbooxHJqb3W/2zOLnTS3zc3Bs6ZVWS/DJ92znyc5JW956VN7bpqctb23Ttrfws7G9syC3Rb0SnwYEDWv5/fxyROgbYaG0XnSpeIcefbjq0wfSf9dxRJnj3cbxCMWRprthWRou6x/0FEdiFwfUWQXmeY+yuyFbz8Tg6SMjGbobqxZixKaVPwP+qLFi3C4sWLo+5GtA+aAOCJJ57AL37xC9TW1qJv377YsGEDMjPtSe4ZjjwS5557Lm666Sbs2LEjbJ2qqio8/fTTOOuss/Dyyy876gxBEETSEINHIicnx/QKN5GYP38+9uzZY/nq3bs3CgsLcfz4cdO+LS0tqKioCCtZ2rRpE/bv34+8vDx4vV54vdo/VJMnT8Yll1zi3nnSIftAEESbIkr7cOjQIVRVVRmvhQsXCptfsGABJEmyfEWzOJqntLQUH3zwAbZs2YLvf//7uPrqq9HQ0BB5Rw5HHolPPvkEDzzwAH74wx8iKysLgwcPRlFREbKysnDixAl88skn+Pjjj/GDH/wADz74IMaNG+eoMwRBEEmDqgQeLTvZxwEFBQUoKCiIWG/YsGGorKzEzp07jczQmzZtgqIoKCkpEe6zYMEC/PSnPzWVnX322Xj00UdxxRVXOOqnHcg+EATRpnBqI4IeNEVi/vz5mDZtmmWdaB80MZj89vTTT8d5552HTp064dVXX8W1114bsX8MRxOJzp0745FHHsEDDzyAN998E++88w6++uor1NfXo0uXLigtLcXo0aNx1llnOWk2aQmOSGGs9le1v7yL16+7FT1e61NqFZ3Gb8NdbTdxmFDalGGWuAABdzbvyvRmMHei7iaMIBlp0t2s9U2BvjW2mKVN9Zx7u7ZZa8/rC7jPsttpciFZv9Ey+KR5GZo7tEN2QGPNomDUdw7cjO0LtVBnTSdZlKfArLpFlzYpAmmTrEubvJy0KaO9FjUjsyN3zE6auzq7QOtrRucuxjZPZ+1m9RYEpBpKB2270i6QlKtB0r5zbVPoeTGkTVwZO6dN/vCDlUnapP9m7DcEAL8vVNIU2FerpzQ3GWXRXmsmF3aG2e3sEUgkZEFEmIB7O/BbMDc1f79ZRd6QZHvRZFKJ/v37Y8yYMZg5cyZWr16N5uZmzJ49G1OmTDEW0h0+fBgjRozA888/j6FDh6KwsFBoRHr06IFevXq53se2Zx+0qE1Gnjj++tRlJapAXqJaRPsz7seWppBtCnd/Kfp9wtezSkRnJT0JlooAARvB2wV2T/L3nFVIYSa14aVNDUF2gf0FgOwMra1MLnpeByYL5TJ3erqYx8IsXtqiJ3tj4zcA+DppgQ/addXylzSdDNiFphqt3RYuypMiGGtlPVqTV5DwLrNjln4cLnqUbpcMW1HQzdjGbISnS2ABrF+3EUwGW9sSuG7qg84Z/76BO7ei8x2MKPId+10VXlImshWeUFsRXD+StCkkgqQgOpkkKOMlUAGbEno9ejyh/7MES5pcjdoUZ+L5oEmEqqpQVdXxmo2oojZlZ2fjyiuvxJVXXhnN7gRBEElPsmW2XrNmDWbPno0RI0ZAlmVMnjwZK1euNLY3Nzdj7969qKuri1sf7ED2gSCItkCyZLaO5kHTF198gT//+c8YNWoUCgoK8PXXX+O3v/0tsrOzHXuLow7/ShAEkdYkUR4JAMjPz7eMCd6zZ0+oEcILRtpOEARB2CSJ8kg4fdCUlZWFt99+GytWrMCJEyfQrVs3XHTRRXjvvfdCFm5HIqUmEn6/H4sXL8YLL7yA8vJyFBUVYdq0abj77rsNl52qqli0aBGefvppVFZW4oILLsCTTz6J008/3fHxJMmccIhdAh59jbofgYtCFMlCkjX3p593SeuuaFF0GpFrWvFq9RWbyWBErsXgJDB8dI6A3IlPDKNH8fCaXYI8fkG0CF7axFyvVY2ayziLOz8sAobpjPk0CVFWR+2SVD1cBIlMbZsnNxD5wtP5OwBAZrfvjDKlVnNdt+jZHP0NAResX0+KpQgifMiZ2jE9GVzyHd1F7u0QSCYnt9dc17LeD74/6KC993MRmpikqUEOLLQ9qUcHOalH4jhRH3DZs3PFu7ANaVNQRA5T/7nfx/jNuPPNfltV0X53kexNzeSilrSYXdd2rzMrN7WV7ImvL4q64RFI7EQubCM6h74ILWaiyURK/6gnlNa0EcEJ6TwIvFcl7TpQ5NDrQZFYkrrAeKMq2hjkD5KhAgEpiShaDi9tMspsShKDk32JIjSZyvR7jt17Whvm+8xsF3T5EmcXqhu08a6dLr30cW352H3OtSf5tHPUviP3jw3rr24jMtsHJEVsTM4oCNiFDidPaP2pNEtfAaClXrevzQG7oAqkTZLeTzlD+5282YHzwuSvmXmcrejYydQfTydOnsJsRbs8o0hpr5XV6hEeq7koUjVNWn8qeFuhS7HY+QQC55mdd6GtEIyh7Hc1RW3KDLUV7FrjbYWda02UeFQkYxJFcgqWMWllgXE++Dsxu2cVzc/dhHQObUQc7YPTB01FRUX4+9//7sqxU0pJvGzZMjz55JN47LHHsGfPHixbtgwPPvggVq1aZdR58MEHsXLlSqxevRrbtm1D+/btMXr0aMer0AmCaOPEELWJSAxkIwiCaDXIPgBIMY/Ee++9h/Hjx+Pyyy8HoM2w/vSnP2H79u0AtCdNK1aswN13320kYHr++efRrVs3rFu3DlOmTHF0PFkO5BjgCfZMAIEnUCYPhv4UmX86qnq1hVlscbZVTGYAUP3hF77afVIcPNM3PXkQLM5l760WLkV68lSlPz3J0OtnCGb/CgJP5Fg87PZsYXUOl49Bf8ovtw/EEpc7abo/b2Pg6ZLapOWiyKyv1T8H/jFQ2ZM7UYQFfWG3xC/+zdR+J4lb4C3pT2kU3XuiZAa2KT7taZQ/o51RVqOfj9rGwNOummb96VKddn74p0zs6VJVvb2nTKInK+w343/PwIJP/doTxOTmF9B5gq4rp9cZEOpxEz15Mi2eDnq6xHtURPlMjAV0/NMoT6BMdeERSSyZrYnE0Jo2wuOV4PFKxuJpRXRv6mX8E1JFDV2Izd6z/ZiHAggsrBblf3FqK+zYB0CcM8KbKbhvg8Z1/juxoBH1nIe1Rn+SXpWp2wfOvnr0thQ1YBdYbIymzMAxO3TQFi5nZGkLmmXuyb4nV/Nc8HZBOVmp1W/QytrV8zZDsxEqn6tI9JSdjWMsD0JmYDE3sxFyVsAeyB21PqnMVvi4nEl6v5u9AWUAswvMZtRwtvRb3VacaOC919r7Gm6ReH1QsA7RQn+TrWC2X/9dVe68ixb9MxsR7fUF2LMLsmCc571gwXZP5H0QeRsC+ST0An/sHolkyWydaByZ25MnT2L+/Pno378/CgoKcNppp2HcuHF44IEHYo5la4fzzz8fGzduxGeffQYA+PDDD/HOO+9g7NixAIADBw6gvLwcI0eONPbJzc1FSUkJysrK4t4/giDSCPJIOCLR9gEgG0EQRCtC9gGAQ4/EDTfcgJ07d2LmzJno1q0b6uvrcdddd+GLL77Avffeix/96Ed48sknjVXibrNgwQJUV1ejX79+8Hg88Pv9eOCBB1BaWgoARga/bt26mfbr1q2bZXa/xsZGU7ir6urqOPSeIIiUIskWWyc7ibYPQHxsBNkHgiCEJNFi60TiaCLxr3/9C++88w4GDRpklN199934+9//Do/HgwceeADnnnsu3nnnnbjEKf/LX/6CNWvW4MUXX8SZZ56J3bt3Y86cOSgqKsLUqVOjbnfp0qW47777QsolWQpZTKaVa3/5eODMrS1x7kTmclPUUBc2c9UpCidBEbi8g9vnsb8I1uzuMy2WE0ibghfsityEosXWNZyEx1enL8wT7MtkTHwM7Fw9PndHfeEzc/UCQLZXW6zsywq4k7M6aC5sj8K5pPVY45JfX9DOx2JnN7DItchco1zyAUNOwC36hoctns8I6X+j7oOvrw30p75ZKzvJLfBmi+TYwmp+sRxbeF1VFyhj59RqsbUoj4THtGDQHG/b4wls8+v11czAgvDga83pdSbqGy/vC74e+fd2ZUzspwrXrjsL6Wgi4YRE2wcgPjYirH1g2WX1W0GUu0Qoe2LvPXw9XQLF7keB7CmSrbBz35r6H3QPi6SGfFlA6sq3EbTYmht3WKCIGm6My/SEtwuKwC7kZ2tjV31L4F+VugytDWYXstsFFmL7crS8KXJTIASylK/Jl6RmbTIo+7lgEoo2vkp+LgiHhY1QPXo/5EB/mI1QMgJjqF+XMCuZmtTVlBtIzxFRXxc4Zq1u707q431FfWAbsxEV3HmsqNG+QyVvK/Tt7Lz7RYvGBWMo+11V7n8AIzCBN2BzeUksw+oas/O/iFO7ELw9+HOIfImvFxSAw52AHDSRABxKm7p16xY2Rvmpp56Kp556Cj/72c9w++23u9K5YO68804sWLAAU6ZMwdlnn43rr78ec+fOxdKlSwHASL507Ngx037Hjh2zzO63cOFCU7ryQ4cOxaX/BEGkDixGuNNXWyXR9gGIj40g+0AQhAiyDxqOJhKzZ8/GjTfeiA8//DBsneuuuw6bNm2KuWMi6urqIMvmLns8Hij6AtpevXqhsLAQGzduNLZXV1dj27ZtGDZsWNh2fT6fkbLcbupygiDSHEWJ7tVGSbR9AOJjI8g+EAQhhOwDAIfSpnnz5uHIkSP4wQ9+gB/+8IeYMGECFEUxuYjWrl2LLl26uN5RALjiiivwwAMPoEePHjjzzDPxwQcf4JFHHsGNN94IQHNVzZkzB/fffz9OP/109OrVC/fccw+KioowYcIEx8cLziPB3LGGq1niZEyeQIxyBpt8KgI3teizInCpimROATIstgWwko0w17XsEZQJ4jSz/vASGxZZyCMH3KzsXLF6fI6J2mYWmSJw+Z1o0NygHXRpU7uMwD8DLOZ4O871mqn318v1LUPWI41IeoxqL//bISK8J5j9jn5OOdXcqJW1KJpbucnPnQP9O/E5IOqMSBwtIfWYC9skY9JlTyf5KE+6u5qdY7/gWjJFLtJ/M6/JTa2Y6vk5aZOXXcsC+V0Ae9cZT7D72co1zZeJXNMiF7TIDc635YrbmnBEou0D0Lo2QovaxEXuE0lSdRvBj68BWVJom8xWiKRNpnoWMthAmbOgjCJJCS+DFeV4sep3oz5mnWwIzd0jsgv1HfT6prwTul3wBb5Lh0yzPWifGWoXMrkcHZkeTXLk0VU6fARB9rOYJDaCoYN9LcMucKe92bCJgbImPfdDU0OorahtCrUVRrQmfew/Kci9weRMQOCcVtWHlrHzbiV7A8TyNWNb0P86gPlaCBD5GrMc7wXXUiRZa2Cb/tfCPlj2w4WoTYSG4/Cvy5cvx1VXXYXly5dj/vz5qK+vx4ABA9ClSxdUVVWhoaEBzz77bBy6CqxatQr33HMPfv7zn+P48eMoKirCTTfdhHvvvdeo84tf/AK1tbWYNWsWKisrMXz4cKxfvx5ZnL6eIAgiIpSQzjGJtA8A2QiCIFqRJEpIl0iiyiNRUlKCl156CU1NTdi1axc+++wzVFdXo0uXLrjsssscp9e2S8eOHbFixQqsWLEibB1JkrBkyRIsWbIkLn0gCKKNQIutoyJR9gEgG0EQRCtCi60BxJiQLjMzE+eddx7OO+88t/qTVMiSZHLnMXey4W7j6lq7mAOERNYQypmi6W14giMYiCIliBKAyRaubD8XhaJJb4N3YQe7rnm5Dos00TErcPll6+5p9jfLG3BXs6RFWdxv4dXfZwn6zVzXHtnaXR0M/9Ow/jcLpGcsqkgL58tu0N83cy7sBj2JnMl9H+Tu55M1sW31vBTKSEinR21qCb04TL+nhZuaJUgUySx43Lz+7ETPAEJd0Vbu8HDwbnLVBWlTNIvj0nUxXTSku30Ilr4Kr1kruxAa1CYgEbJ5X4qj+UX31NMqiRdgTvgY7pj+Fv7Y+ljHrb9n41gg0l/ABrAxsR0nVeqg24hsvkyXOfn0sY63C6zMx9sPlhTVw+wDJ9fS3/Jjh0dk71SzBJSXMTUroWM/sxuNLeYkcUDAVvBlTNIUiHQVagP4qIjMRvA2l0maWnSbwv8Womsi9HcMn2gwXBt2iHRdBeoJ9hXIq+20bydqnxvyV6c2Il3tQ0pltiYIgmg1yCNBEARBhIM8EgBoIkEQBCFGVaOYSKSnBpYgCIIIwqmNSFP7QBMJCySvbJKKiNzUBron1eT+E7iuGaIITSLcdCcynEbQ4TES78lcQjpBRCHmumZu2UzuPLJIS3xZpu6KZmW8e5mV8RGaPII2PAJJU/A2K0TJ3vgy9l6UHK4laBsQcIfzZU0tZqlSi+CcmdowJANaGS95EMkajN9McN0aiYciRApjRHvtAfZcy6KIHdG2FVxPEUi8HKP6gQhJvYT7EG0C2SOHiWTDy5cE165uF0T3Hmst0r1nN2lpyH4W93vU0W+4/vBJ0FRVCukX285kOF4vl6xOv2f5MZ1JlbIzvaH1PLKpDmBtFwzbEqV9AKxthGjcFtkKJmlq8vN2QXvPJEuNLaHb+PZbWLtcG8xGKH6WwNBa2hQs0eZ/a6FkzuG1I8KOhNXu9ljth2onlGMknNqINLUPNJEgCIIQoCoKVIdxv53WJwiCIFITpzYiXe0DTSQskGXJPIO2+dQiVuw8WYqE1eKkSNh5uiBa9KtwT0fYc6ZG0RMtiwVUoqcHVk+Lot0WCdGTp2i3WT09FC+qjO5pI8DFBucXVMvRXU+Jvg4TflwlCo+E0/pEyiLJUtinnbYWe9rwcPMks7fbOCZnF1SWt4ZLI9HSbM5pw9uaOsEDYlG+mGD7Icr1xBNcFotdEBHJkx382chDxZcF5QURL6JHSP1YclRZXaN2z1EiPM/R1nd7fwDObUSa2geaSBAEQYigiQRBEAQRDppIAKCJBEEQhBDV74fqdzbwO61PEARBpCZObUS62geaSFggeyRTzP2o20mQvCMcdiUromAErEwkyVG4ONoh+TLsSn5sSn3sbIsXVi5RYcxsgWvXbuxry/jZFi5jPia3BIsFayl6bUbCjfsWiqK9nO5DtAlCpK+OG4j9GhUGXLCobyWPijSW2gnM4AefjMdmP2LEjTHDaiExjxu5B9wcc92QAxmLriN8N6d2z4pksDvuyF8d2og0tQ8uLFsnCIIgCIIgCKKtQR4JgiAIEYoSxRqJ9HziRBAEQQTh1EakqX2giYQFsizB4zAefSyuTzdcbXbcvJIgio8pwoORK4Jt4+pZRIvg22Dxra0iVPhbwrfBu9ENt7kgUpQqqGd1DlTBTS/J4UOg8L8Jc9+KfmN2nfAuXuYqlgRteLyhbQmjkHjM7Zra138fyZQXJPx3ELq1bVyvrXVdAoDop7ArOzDqK6orfVYVv/B6ibQP0TaQJMkVqQsgvm/twEv47OTFEkVwC4z3fFsCyZTevmhsthuZjvVREexnNfaL7JNVxDuzffIH1Qm9R+3etyJbYVVmd+wNrmfXjpjtk7ndSGNgsKQpFrmt3fsg2uucx63k0G7cu05tRLraB5pIEARBiFCjWCPhlpUjCIIgkhunNiJN7QOtkSAIghDAnjY5fREEQRDpTzLZh4qKCpSWliInJwd5eXmYMWMGampq7H0PVcXYsWMhSRLWrVvn+NjkkbBA9shC95dd2YTTSAZuJMqxSpYWcPsKNsqhb5n0iHchM5exwsmMmCuaLwtIm1hbodtE9Vk9/oZTWpq0v81N3Hfxh9QLLlNiuGll3TXNu62loDJ+m5yRqf31ZobU5+VxTKok62XsM1+Pd/+y34zVlxXuGmFl/OMAxSyd0toLL8mycr0b/YrzdSnCLJUIf3yRZErySJA9LjwjoTwSRJQ4lXC4EkEm6JjCe4O7l9jYzJJXmsZ5o46z+9bPJSUNljEBgTFfZDMM2+IXlLUExn5mB0Q2gNUzlQXVM9mMKMNxSp7wdgEItR8iu2BlP/jrgY1lpjI29kuCMiZJ5n5Pj8PxUCidEkYfDN9GvCIzKXBqS+LSDY0kyiNRWlqKo0ePYsOGDWhubsb06dMxa9YsvPjiixH3XbFiRUxSL5pIEARBiKDwrwRBEEQ4kiT86549e7B+/Xrs2LEDQ4YMAQCsWrUK48aNw/Lly1FUVBR23927d+Phhx/G+++/j+7du0d1fJpIEARBCKCEdARBEEQ4ok1IV11dbSr3+Xzw+XxR96OsrAx5eXnGJAIARo4cCVmWsW3bNkycOFG4X11dHX7yk5/g8ccfR2FhYdTHp4mEBeESDrkhA3FDLmLVLi8l8QdF5TApYaKUnPCRNZh7mndrM1mUaFtLs1+vw7mwg+RLJle2/t4vKONv4mDXtVn2FPlJgMRphETuZ6PME+qu9nhDpU3svZIRKPPrZR6/diw1I9B+sIxJI6jf3DaJ/XYxJAMSXcvsGnLzGhW1ZSl34upb1QvnWXcv2RCFfyXsYVfOZOfadCqLFR4nwnYmERFJP2SBHbFsSwltSySDDZawKiab0aK3wcmSbNgDK9kT/15paQ7ZFuirvftctorQ5M0IKTO2ZYTaBQ9vK1qCpE0ZIols4N81WT+3wqiSTOLEydgUSa9v87qyTIQq263nRlQkQfSwoHYj/Q8jij7pGlGGfy0uLjYVL1q0CIsXL466G+Xl5ejataupzOv1Ij8/H+Xl5WH3mzt3Ls4//3yMHz8+6mMDNJEgCIIQQ2skCIIgiHBEuUbi0KFDyMnJMYrDeSMWLFiAZcuWWTa5Z88e+8fneO2117Bp0yZ88MEHUe3PQxMJCyRJsnxiGwmrem4+7Y301EjkpbAieIYfKWeE6GmUkfsh6AkU/170JMnfVB+yzS9YbC1cVBf0xMntxdbsiRMrE3lDPIInYWK0J07iBWz8gkjtPXuiJPG/hRQaM50tnDSV2bjWEu1JC8Zvs//hzrA7McIVW56s4H2ItoUdT0S8AnTYbctq0bTRfy6QA1uoG6kNq3Yt80II8xHpnurGeqNMEXgdgu2B2VvRHFrGPNT+yAE6ImHpqeaOKQctshYt8ObLPBbedI8vW/8e/DEFdlgOshGCa4mvH3ytRcp1Yec6d/P65duzus74e8vKOxEPz4RTG8Hq5uTkmCYS4Zg/fz6mTZtmWad3794oLCzE8ePHTeUtLS2oqKgIK1natGkT9u/fj7y8PFP55MmTceGFF2Lz5s0R+8egiQRBEARBEARBJBEFBQUoKCiIWG/YsGGorKzEzp07MXjwYADaREFRFJSUlAj3WbBgAX7605+ays4++2w8+uijuOKKKxz1kyYSBEEQIkjaRBAEQYQjScK/9u/fH2PGjMHMmTOxevVqNDc3Y/bs2ZgyZYoRsenw4cMYMWIEnn/+eQwdOhSFhYVCb0WPHj3Qq1cvR8eniYQD3JAqtZY0xClCt7Ua6j4V7it0U6vCOuZjhpcBKTbdz3bdinYiK/CxwYVt6McypE2iBX1cmRy0Lfg9EO68hMrGrNzKfH2VubcRKkmQPMl17fH3QrDszu7ibKs2YkaNYiKh0kSircGkElb3KD82WsmcjHs1SeyE3TwSonFMREAGy/5aS0FF46p1UA1BfT9bbB0qh7U6thV8fWNBNQILpJlVkow+yiH7inJdSBZ9M39Ps+RVO75Ff43fJ/K1pzWWOtef3YAxcVls7dRGxNE+rFmzBrNnz8aIESMgyzImT56MlStXGtubm5uxd+9e1NXVuX5smkgQBEEIoDUSBEEQRDiiXSMRD/Lz8y2Tz/Xs2TPihN/uA4FgaCJBEAQhgsK/EgRBEOGIMvxrukETiQi4LUVi8oto240k3xBt9we5k00SJKG0Jnz7ik25kx1EkS8YfLxuVRCLm0XskOTwN7HJ1SuI/22nb+Y+yqYyUaxvqzjjwe+jQRSlwyNwV5t+QxatwpCghWwyRT8KjvIVST4Ur2vZKU6jk0WE1kgQDhCNmyK5k0iKESx3cmN8FSE6Nus3bwuc5heyC/uedm8Tp+OlaBwOyIxiG3vD9Sc4vxB//Gj7bxdX8uUIYL+/bEpppB2Lv6YD9SJHV3K7b1bERcYkIknWSCQamkgQBEEIoMzWBEEQRDiizWydbtjMxUkQBNHGUJToXnGioqICpaWlyMnJQV5eHmbMmIGampqI+5WVleGyyy5D+/btkZOTg4suugj19fUR9yMIgiAsSCL7kEhSziNx+PBh3HXXXfjHP/6Buro6nHbaaXjmmWcwZMgQAJp7dtGiRXj66adRWVmJCy64AE8++SROP/30qI5nOzGWQ8mHG/ILKxkTT7CkSRUkCBK5C+26t1nSGt4NqurfXVK1vx6PaM6aKSjT2xTIgfxcwh+RvIhPWAdEjghi55g87Fgi2ZNHTzzEEhDx7/k+sjKPVzsf/HlhkVr4iC3MZWw3wRr7zTxchCbD/Ww0ytcPKQqb5I0nrtGSomzT9X4kmbSptLQUR48exYYNG9Dc3Izp06dj1qxZlgvsysrKMGbMGCxcuBCrVq2C1+vFhx9+CFlO32dIrWUjVFU1jaWie9RKYiGSiNjFjqQlUptuyj/Yd1dh02YYY50gsZugzOMNbyt4WGQmfhxmkZCY3EgU0YlHZCuC7UEkGVPgu8gh/WH2gC9j388y4Z2pzJmkyY0EnQz+umHXsB25nohYJHROr99gGXe0C4tNkLQJQIpNJE6cOIELLrgAl156Kf7xj3+goKAAn3/+OTp16mTUefDBB7Fy5Uo899xz6NWrF+655x6MHj0an3zyCbKyshLYe4IgUglV8ccUFtJN9uzZg/Xr12PHjh3GP8SrVq3CuHHjsHz5ciNWeDBz587FbbfdhgULFhhlffv2jUsfkwGyEQRBtBZObUS87EOiSamJxLJly1BcXIxnnnnGKOMTZ6iqihUrVuDuu+/G+PHjAQDPP/88unXrhnXr1mHKlCmt3meCIFKTWMK/VldXm8p9Ph98Pl/UfSkrK0NeXp4xiQCAkSNHQpZlbNu2DRMnTgzZ5/jx49i2bRtKS0tx/vnnY//+/ejXrx8eeOABDB8+POq+JDNkIwiCaC2SKfxrIkmpicRrr72G0aNH46qrrsKWLVtwyimn4Oc//zlmzpwJADhw4ADKy8sxcuRIY5/c3FyUlJSgrKwsrJFobGxEY2Oj8Tn4nwCGHelEoiUfoqgJIkmTZRs26plcq4KkaWy7rEd6gDeSlCLItcu7jplEiJM2CZP0ZIYmIwqub4VQzmThYubrsz6K+m2WQJklTTJ3XmQpVNoUHPXFrkvbJLmwSkJkEcmJITpzdiV/bhCP+8gOqqJC9TudSGh9LS4uNpUvWrQIixcvjrov5eXl6Nq1q6nM6/UiPz8f5eXlwn2++OILAMDixYuxfPlyDBw4EM8//zxGjBiBjz76KGq5ZzITDxth1z44lkoo0d83ig0JkV3pRywSD2M8smMDgAh2wJ58icHGZj8/DuuyIV7mGmwrZME/c3afFIujNskh24KltyIZrMh+2JHDAvbshyhiWCyJDtl1wsukLCM8uniNWvUnkTi1Ea0R1SoRpJRQ9osvvjC0rP/85z/xs5/9DLfddhuee+45ADAMardu3Uz7devWLayxBYClS5ciNzfXeAX/E0AQBOGEQ4cOoaqqyngtXLhQWG/BggWQJMny9emnn0bVB0X/h+mmm27C9OnTMWjQIDz66KPo27cv/vCHP0T93ZKZeNgIsg8EQRDhSSmPhKIoGDJkCH7zm98AAAYNGoSPPvoIq1evxtSpU6Nud+HChZg3b57xubq6GsXFxdpiOoczyBZB/ZieAriQIl61yP1geCtsTqrZUw+Fm4KyJyX+FoUr0+sbC6UD20RP3tkTFkWP9a1mZhjb2L6RFk8bT54sQqzZWUhn2uYJfcok+hxYFMgtnjYWofMeBvPic9M58LIy7hh6G4Ft3EJsmwvo2G/LnhAJnx4IFmAHCgLXjWgBnZvXvFtPbNx4WqX6FeceCb1+Tk4OcnJyItafP38+pk2bZlmnd+/eKCwsxPHjx03lLS0tqKioQGFhoXC/7t27AwDOOOMMU3n//v1x8ODBiH1LReJhI8LZB0VRo1osasTcj+EaVfVhzOkiWqtjxrLw1cgPwXs22ZjCeyHYWM7GQeFoFJqfR+TpFS2sZmUKVxY85gtth82wnHw/gvsoKmP2z7T4W1TmMZdZebG17bpt4X5/5p0QBeiINt+EIhj7RdeQ00ADbnoTor1u3ciV4tRGOLUnqUJKTSS6d+8uNIovv/wyABgG9dixY4YRZZ8HDhwYtt1Y9csEQaQfsayRsEtBQQEKCgoi1hs2bBgqKyuxc+dODB48GACwadMmKIqCkpIS4T49e/ZEUVER9u7dayr/7LPPMHbsWEf9TBXiYSPIPhAEIYLWSGiklLTpggsuEBrFU089FYC2qK6wsBAbN240tldXV2Pbtm0YNmxYq/aVIIjUhj1tcvqKB/3798eYMWMwc+ZMbN++He+++y5mz56NKVOmGBGbDh8+jH79+mH79u0AtKeEd955J1auXIm//vWv2LdvH+655x58+umnmDFjRlz6mWjIRhAE0Voki31INCnlkZg7dy7OP/98/OY3v8HVV1+N7du346mnnsJTTz0FQDOcc+bMwf3334/TTz/dCO1XVFSECRMmOD5etK7r0Ibis8DGyj1oJRHhv5MdSZNIpiJz+zGZEy/rMfJTSGwRHr+NtRFa39iP+24ZPnOd4PdGP4LKYlpEKHDVBruHJYFkyVRfuHjaLHcSyZhEUiiRK1uUd8KKYIkTfyzTuQX7zULb9ftDF9wJSfCiskS4rdk+8WLNmjWYPXs2RowYAVmWMXnyZKxcudLY3tzcjL1796Kurs4omzNnDhoaGjB37lxUVFRgwIAB2LBhA/r06RO3fiaS1rQRqmJf+srfS67YFB030oHYzhdkLJ7m9g06vqg75kW/Zommn7tfgmWf2nbtveoN/Kvib2nRWtIXJKuCvBCW0leXQ3CKgm+EbBNIZM3yJa9eFnoOROO8WBprljRZ2RFAbJ+sMPIRCeo7tbVu3gOmfjho1w0ZLUmbNFJqInHuuefi1VdfxcKFC7FkyRL06tULK1asQGlpqVHnF7/4BWprazFr1ixUVlZi+PDhWL9+PcUHJwjCEarfD8WmdprfJ17k5+dbJp/r2bOn0KAvWLDAlEcinSEbQRBEa+HURsTTPiSSlJpIAMCPfvQj/OhHPwq7XZIkLFmyBEuWLGnFXhEEkW6oahRrJNxMF0xEBdkIgiBaA6c2Il3tQ8pNJFoTxa8kRaxiwLkbzg3XYSASB5eTQODW9Oh5ClRJ5Qu1fS0iRjnNeRHpHoyXu5RhFflCGLNb4GIO1A9fJorGZFXfbh9FWJ0zK9WEKogRHkt0MjdRFRWKCy7kZJM2EamLGzIK0f0V7zGPPyb7DiZ5DJNLyqH1JSV07Jck8/gutYS2z9dnkYj4Mm+GZlxEtsKW5DVO0iYeSxmsCxLWYBkT356V5FXUbrjP4UgGWVKyQNImDZpIEARBCKCJBEEQBBEOmkho0ESCIAhCgLaYNrrM1gRBEER649RGpKt9oImEBYqimhKppTp25XnBEXmEkUFsutlFu9q5maK54ZQ4y9DsJoBj2HEV23Un25Us2UlQJboORNIsxy7sJBok3XC/K37FsUTKDUkVkSI4iNpkF6vxIJoIUW5i1a4hb+X76GHJSzlpU9B38HgCn+3KWhWBBCpQTyBtijK6oRWRznGwrYgkTRVF8TPqWUihRO3FIo2NB65ER4qHbUmAjUhX+5BSeSQIgiAIgiAIgkgOyCNBEAQhgNZIEARBEOGgNRIaNJGwQFXsy4HSmUhyGeaOlT3JEbUnnYnX9Zhu17kb34cmEkRrYyXhsJ94MnxCSSucRnzTdjLvE0neavX97MqSgutFkr3EO7KVCOsIf5FlRnblSXa3R/XbBuH0PDqVI6Xi+gGaSGjQRIIgCEIA5ZEgCIIgwkF5JDRoImGBqqpJk0fCCjsLbMPua2OVjO2FvlZPYWz20Y1jtRZ2n6DYfZJjda0Zx4rwe9k5VixjWSrcD4A7/SSPBJHO2BlrndoWTySvdGjKBcdEe28nMs9QJGKx4fFAdI5F3y8R3p5kIpk8EhUVFbj11lvx+uuvQ5ZlTJ48Gb/73e/QoUOHsPtccskl2LJli6nspptuwurVqx0dmyYSBEEQAmgiQRAEQYQjmSYSpaWlOHr0KDZs2IDm5mZMnz4ds2bNwosvvmi538yZM7FkyRLjc7t27RwfmyYSBEEQAhRFgeJQ2uS0PkEQBJGaOLUR8bIPe/bswfr167Fjxw4MGTIEALBq1SqMGzcOy5cvR1FRUdh927Vrh8LCwpiOTxMJCxRFTbjrzo67lHdD2nGRRpIzBR9TuDhMcBxRX0X7emyWRVvfbhvB+B3+1qL6kdoI3i6qL1x0KAnqidzPgmMGX8P8729H5hSNlCDR940bxyePBJEMOJVxRrvoVjSmu2Er7B6LcI7dsVloU6zGSCX097GSO4naYteC0/wnqbToOlqPRHV1tanc5/PB5/NF3Y+ysjLk5eUZkwgAGDlyJGRZxrZt2zBx4sSw+65ZswYvvPACCgsLccUVV+Cee+5x7JWgiQRBEIQAzUj4He9DEARBpD9ObQSzD8XFxabyRYsWYfHixVH3o7y8HF27djWVeb1e5Ofno7y8POx+P/nJT3DqqaeiqKgI//3vf3HXXXdh7969eOWVVxwdnyYSBEEQAlQliqhNJG0iCIJoEzi1EazuoUOHkJOTY5SH80YsWLAAy5Yts2xzz549to8fzKxZs4z3Z599Nrp3744RI0Zg//796NOnj+12aCJhgaqorrvZnLqpg12GMUWGELip7ciRIsmYrORLVrIku5IlrwtSqGixkiqJtrXYlDuxskjyKPbeI3D7Cscv0W8c9Jm/ptg1EUskJ1dkRC7fZ260pypRSJtoIkHEQCzR6JxKmoLH9WjtA99Wa8pbrXDTBsSCG3JZq21OpbG8PElkU4z6EPTDQu5kR+IU7lhW9Z3slwic2ghmH3JyckwTiXDMnz8f06ZNs6zTu3dvFBYW4vjx46bylpYWVFRUOFr/UFJSAgDYt28fTSQIgiBiJoo1EiBpE0EQRNvAqY1waB8KCgpQUFAQsd6wYcNQWVmJnTt3YvDgwQCATZs2QVEUY3Jgh927dwMAunfv7qifNrIIEARBEARBEASRbPTv3x9jxozBzJkzsX37drz77ruYPXs2pkyZYkRsOnz4MPr164ft27cDAPbv349f//rX2LlzJ7788ku89tpruOGGG3DRRRfhnHPOcXR88ki0MsEuutZIrBbsso7kfg52eUcjYwp2LVttAwLyJbsub48cOgeOtzs7NOJS6NMFTwT3c0uQVMlKxsSXGX/5YzmUO7F6/O/JXNFOIznFQrK6qYNR/AoUh0+QnNYnUhhZSlhiTDvHtSNn0toKv2+kiH1W9dy0C+H2cbLNCpE9ESEa8+3t5yyaXySJrB25LF9HbCvCJzmVg+tALINl10KwxCl430Ab5t/HaUQnV3GhTac2Ip72Yc2aNZg9ezZGjBhhJKRbuXKlsb25uRl79+5FXV0dACAzMxP//ve/sWLFCtTW1qK4uBiTJ0/G3Xff7fjYNJEgCIIQQIutCYIgiHBEu9g6HuTn51smn+vZs6dpjUxxcXFIVutooYkEQRCEAMojQRAEQYQjmTJbJxKaSFgRFLUpUW5swJ1EQlaSJqvITJGibjh1YduRMdmVLrmRrM4KkXs4IEHyhNTzyPy+AumTQNIUa9/430fokma/bZDECRBH2wh2YfPXhtOkRK2JyU3uSkI6FarfWTtO6xNEJOzanWhtRLR2ga9nZQOs7II3Qv3ANjmkXrjPofu6abc9kasg+uhLzGZkCreFSmTFbYTWF0ljA7ZC0EnZXIeHj+gUbCN4+yC6rkKTo6ZOhCYRTm1EutoHmkgQBEEIUJQo1kiQtIkgCKJN4NRGpKt9oIlEgoj3UyarNqwWVvP1nS6gs/IOiJ48idsN74mIxfvgEXzPYPyCp+1On2aZPRjGM5+Q7Vbtirwgdo/JfjP+LBoLqoM8E4C9BdhWi+t4Ii20C+5jsj95iiaPTLJ/JyI5idbbHYt9cMMuBI/NkexCsDfaXN/e2B/ikRD0NV55J2x7kj3h6/tlK29CqMeaebl5D7dH4HVwCvNO2PFiA2Fshe6dcNN7HeleSKYx1qmNSKa+uwlNJAiCIAQofkARGP1I+xAEQRDpj1Mbka72gSYSBEEQAlS/AlWmxdYEQRBEKE5tRLraB5pIWOFSnHA3ZExGWy4srHZ67EixviPtE02deOeEiBeiHBCi7VYu6UhtiOpZ1bdyJ4tkRsH1RTkm7LqwGXZiigf3wymm9ly4flS/CtWhRyJdF9MR0eFmgI5I9kFkGwL9sNjPpl0IXljNv7eSIEWStQZjWzYrRSd5FeWmsItoX9HCZ0v0MZSX0tqVugbjhp0MljgB9m1FYBv0bVyZ4HoU5ZuwOqYIO/dUa0mInNqIdLUPNJEgCIIQoPjVKKRN6WkoCIIgCDNObUS62gd76RyTlN/+9reQJAlz5swxyhoaGnDLLbegc+fO6NChAyZPnoxjx44lrpMEQRBEQiAbQRAEEV9SdiKxY8cO/N///R/OOeccU/ncuXPx+uuv46WXXsKWLVtw5MgRTJo0Ke79kXQZlOhlhSxLxkvYriSZXuZjhrqsRW0F9yNce+Hqi/DIkvGKFr+iGi872yKVhWsL0NzIkV6R+ui0P1btRYvd8251/Yl+f1F98bUUes0FX6PhIr5YXeeifji5j+IBSzbk9EUkB/G2EVbXqpvXrF37ENq/0PvV6j6MZBeipUVRjVes4x9hhrc37By7SaRrIvhaEl1zovbstBULdu5NN+5Psg8aKTmRqKmpQWlpKZ5++ml06tTJKK+qqsLvf/97PPLII7jsssswePBgPPPMM3jvvffwn//8J4E9Jggi1VBUFYri8BVmQkq0LmQjCIKIN45tRJrah5ScSNxyyy24/PLLMXLkSFP5zp070dzcbCrv168fevTogbKystbuJkEQqYyetdTJC2mqgU01yEYQBBF3yD4ASMHF1mvXrsWuXbuwY8eOkG3l5eXIzMxEXl6eqbxbt24oLy8P22ZjYyMaGxuNz9XV1cZ7N9xfdt11dlzKsURoskoy5JRISdOsEq+JtgXaE7n+nM137SR9s9uG0zp+QebKcNKtaI4diyxAFL1JlGAuODqHVbI6rV7osYKvNb59q2sulkRFgf64M1grfgWK5DCzdZq6rlMJt22ElX1wG7ekHa2FnfHIfkQidu/YHO9ZojbunzMWycnKPjlN+Cki0vcO3i6SzlrZBbNcVrF1TOs2Yk9g11rEEtGptXFqI9LVPqSUR+LQoUO4/fbbsWbNGmRlZbnW7tKlS5Gbm2u8iouLXWubIIjUxKk3wnjqRCSMeNgIsg8EQYgg+6CRUhOJnTt34vjx4/jBD34Ar9cLr9eLLVu2YOXKlfB6vejWrRuamppQWVlp2u/YsWMoLCwM2+7ChQtRVVVlvA4dOhTnb0IQRLJDE4nUIx42guwDQRAiyD5opJS0acSIEfjf//5nKps+fTr69euHu+66C8XFxcjIyMDGjRsxefJkAMDevXtx8OBBDBs2LGy7Pp8PPp8vpNyJrMmpS9puZAyrREKJcIPbkSzx291wpfr1vPJmKVRoPY9sPlluu3FFsiU7xxJtE0XXcFMCFS+E8ijBNRosd7JKTiRqX4SThEVuSBJJ2pR6xMNGhLMPbuKm/bCyGVaY5I1S6H3OmvVz+zgd54PthyjBGxvv+XrBY7t5G2cXIEgCqlokPlWilDZFWDRrZ9y2ksZGsgUtlm2ElzaJ6jEpqGh8FY3RdhElqTO2CSS1VojktckASZs0Umoi0bFjR5x11lmmsvbt26Nz585G+YwZMzBv3jzk5+cjJycHt956K4YNG4bzzjsvEV0mCCJFUVXV8XqLWAwvETtkIwiCaC2c2oh0tQ8pNZGww6OPPgpZljF58mQ0NjZi9OjReOKJJ6Jqy624xm54Hxh24vC7Tbw8DSLYkxbxk6pIC7z9IWXxJNI5sIrpbdf7ELJoz6HXIhaCF13zRHpCFHwt21mQDVgPtE7uRTfuW8WvQhE84Yy0D5HcuGkjYiFeHmV2r4nsicnDEHR/87aD3Yf8Pcr25ZttEezLEHmvg+2HX7CNJ2AHlLD1RPuJPBhW9WPB2vsQXfCNSB5ru56I4G2isdyuJ8LuvoH6YTfFhMgrniic2oh0tQ8ptUZCxObNm7FixQrjc1ZWFh5//HFUVFSgtrYWr7zyiuX6CIIgCBGaptVpwqH4GYqKigqUlpYiJycHeXl5mDFjBmpqaiz3KS8vx/XXX4/CwkK0b98eP/jBD/Dyyy/HrY/JCNkIgiDigXMbQRMJgiCINkOyLbYuLS3Fxx9/jA0bNuCNN97A1q1bMWvWLMt9brjhBuzduxevvfYa/ve//2HSpEm4+uqr8cEHH8StnwRBEG2BZLIPiSTtpE2tiV3JkmUbdkNmx8kNbrirebd2kMuQd1tb54AIj115lJ1tgLVsKBHEKy+E032t9JrxcgXbcTVHyjth1LN5T6Wr1jQce/bswfr167Fjxw4MGTIEALBq1SqMGzcOy5cvR1FRkXC/9957D08++SSGDh0KALj77rvx6KOPYufOnRg0aFCr9Z9wF5H0KKQOd59FkjkBYZ4qCgr5vA3G8Zl0RiRxEkqPwpfx25os6lu15ZXt6WrilUeCYTeohtU2O5IlnljkS07bCN0vYpWIxyZSD/JIEARBCFD8alQvQEtaxr/4hGbRUFZWhry8PGMSAQAjR46ELMvYtm1b2P3OP/98/PnPf0ZFRQUURcHatWvR0NCASy65JKb+EARBtHWitQ/pBk0kCIIgBKiKEtULAIqLi01JzJYuXRpTX8rLy9G1a1dTmdfrRX5+ftiMzADwl7/8Bc3NzejcuTN8Ph9uuukmvPrqqzjttNNi6g9BEERbJ1r7kG6QtMkCSZJckS+Z2kzg1M3KHS6K5mHsJ3KpxtAPu7koGPGOFOUmTuOpx1LPbtg5y8gaCXAx28k7EbGNCPelG/dtLFGbDh06hJycHKM8XB6CBQsWYNmyZZZt7tmzx1EfeO655x5UVlbi3//+N7p06YJ169bh6quvxttvv42zzz476naJ2LEac+0iun+F0dCs5IRyaH8MIvRRhTlqk1/wxFUS5Gpg9oNvs8Xojz0plJ1tdrbHAzelro6jJTmULNlp09yGrWq2+hMNyRCtiZFMUZsqKipw66234vXXXzei0v3ud79Dhw4dLPcrKyvDr371K2zbtg0ejwcDBw7EP//5T2RnZ9s+Nk0kCIIgBKiKavyj5GQfAMjJyTFNJMIxf/58TJs2zbJO7969UVhYiOPHj5vKW1paUFFRETbi0P79+/HYY4/ho48+wplnngkAGDBgAN5++208/vjjWL16tY1vRBAEQYhwaiOc5iVyQmlpKY4ePYoNGzagubkZ06dPx6xZs/Diiy+G3aesrAxjxozBwoULsWrVKni9Xnz44YeQLcIni6CJBEEQhAi/AtUiK64Qh67rgoICFBQURKw3bNgwVFZWYufOnRg8eDAAYNOmTVAUBSUlJcJ96urqACDEKHg8Hihp6mInCIJoNZzaiDiNu9EG45g7dy5uu+02LFiwwCjr27ev4+PTRMJl3JYuOXV5i5ILhdSJ4A63ch0GJzEKh1WiIkakyExW9VIJp/13+tTCtkvaoYvZaT8iJamzwuq+iVdio0gofhWKw3MWL7d7//79MWbMGMycOROrV69Gc3MzZs+ejSlTphhG4vDhwxgxYgSef/55DB06FP369cNpp52Gm266CcuXL0fnzp2xbt06I3wskTzYuW7s2gLH97muM4okB7QaxyTZ3jGDvwOfQ9SwFQLdbAv33qqf0UrE7CZyjfaJcqTf185vFunYbkZVEu4bZxlsMkmW7OLURrDvWF1dbSr3+Xxh5a92iBSMY+LEiSH7HD9+HNu2bUNpaSnOP/987N+/H/369cMDDzyA4cOHOzo+LbYmCIIQkGx5JNasWYN+/fphxIgRGDduHIYPH46nnnrK2N7c3Iy9e/canoiMjAz8/e9/R0FBAa644gqcc845eP755/Hcc89h3LhxcesnQRBEWyBa+5AMwTi++OILAMDixYsxc+ZMrF+/Hj/4wQ8wYsQIfP75546OTx4JgiAIAYoahUcijk/t8vPzLfWuPXv2DHlqePrpp7e5TNYEQRCtgVMbweomQzAOJm+96aabMH36dADAoEGDsHHjRvzhD39wNLmhiUQMtEYEJlHCODtYuUFFbly7bkvHEj9BP6y+ixuJ5uy6qe0Qz8VRgDvu3Fhczm5+v3i5pt2I8hQNflWF3+G5dVqfIOwSf+mH8/YNqavNMH7BUWvMMiV7x3dqd+OVzNUKp79VIiIhpaKUKNlwaiNY3WQIxtG9e3cAwBlnnGEq79+/Pw4ePBixbzw0kSAIghDgV7WX030IgiCI9MepjXBqH+IZjKNnz54oKirC3r17TeWfffYZxo4d66ifNJFwQCJzQNhZAG2XmJ5Cu3AORLHGg4kpD0CSPGlprRwN8faa8CTLU6xEeSkIgqEqaqvee8lIvANhCL3LsSQxgvseiniMiW39umoN0ukcRxOMQ5Ik3HnnnVi0aBEGDBiAgQMH4rnnnsOnn36Kv/71r46OTxMJgiAIASRtIgiCIMIRrbQpHqxZswazZ8/GiBEjjIR0K1euNLYHB+MAgDlz5qChoQFz585FRUUFBgwYgA0bNqBPnz6Ojk0TCYIgCAEkbSIIgiDCEW9pkxOiCcYBaAu6+TwS0UATCQcw6UQiJU4i4iU3EbmAW8sd6DSjMGEmWSRI8SaeciYlCo9EPKM2EQQj7kEgkuU6jlHGJEKORTYrIGnOVRxw+1wF42ZglETg1Eak67VCEwmCIAgBfkThkYhLTwiCIIhkw6mNSFf7QBMJgiAIAX5Vhd+hZ4zWSBAEQbQNnNqIdLUPNJGIgkREh0mEnKqtyGMId0i3qEl+1fkTJFojQYhoDUlotLIJN/uWCpFw0myYskW0EiLRP8mxyJGCpVJuXy+tLZVyaiPS1T7QRIIgCEIATSQIgiCIcNBEQoMmEgRBEAJI2kQQBEGEg6RNGjSRSBHSTTZCEMmOEoVHIgWUHYRbxCEhnRtRXZz2KZbvEK38tbWSdaY7thO3Cn4ntxPzhYOXG0V7fduNHuXoWnbh3nVqI9LVPtBEgiAIQgB5JAiCIIhwkEdCgyYSBEEQAmiNBEEQBBEOWiOhQROJNIDcxERrYduVThCEQSpIluzKlGKxN25IdNMxmmC0MiM+cavTyI5+/b9au2M666Pd60qKsr4Iu/dPvBPoEWJoIkEQBCFAe9rkVNoUp84QBEEQSYVTG5Gu9oEmEgRBEAJI2kQQBEGEg6RNGjSRiADJhiKTjq7mZKW1Im2EIxXuB7fkV7TYmnBCW5QvOZUqRR3lKc1tjF//fjEle4OzfZkUyuq35sdSq99OZJesfjPR93RaX4TVPRgP2RMtttZIQL7k2Fi6dCnOPfdcdOzYEV27dsWECROwd+9eU52Ghgbccsst6Ny5Mzp06IDJkyfj2LFjCeoxQRCpiAotC66TV3qaidSB7ANBEK2FUxuRrvYh5SYSW7ZswS233IL//Oc/2LBhA5qbmzFq1CjU1tYadebOnYvXX38dL730ErZs2YIjR45g0qRJjo+VCk9fw6Eoaqu9iNaDftfIqKrqyr3rV9WoXkTiaE37oKiq6WUXVc8/IXo53U/YL5v3NLtPRK/AMa1fTo7NH9/qHNDL/iua393Ob2vnGuGvE+fHjv3at7Of6fwE3a9ueBDJPmiknLRp/fr1ps/PPvssunbtip07d+Kiiy5CVVUVfv/73+PFF1/EZZddBgB45pln0L9/f/znP//Beeedl4huEwSRYtAaidSD7ANBEK0FrZHQSDmPRDBVVVUAgPz8fADAzp070dzcjJEjRxp1+vXrhx49eqCsrEzYRmNjI6qrq00vgiDaNuSRSH3IPhAEES/IPmiknEeCR1EUzJkzBxdccAHOOussAEB5eTkyMzORl5dnqtutWzeUl5cL21m6dCnuu+++eHdXSCpLSKxI98VxrUUsi+9iJV7XZqIXjNuFPBKpTTLYh2jHQbv7Ob1H3V5Ebef4dr9LtOfKDYlKa2K16NeNBcqieqLfyWocZr9/pNwU7HqyCnBh99h2v4tb+7kBeSQ0Utojccstt+Cjjz7C2rVrY2pn4cKFqKqqMl6HDh1yqYcEQaQq5JFIbcg+EAQRT8g+aKSsR2L27Nl44403sHXrVnzve98zygsLC9HU1ITKykrTU6djx46hsLBQ2JbP54PP54t3lwmCSCGUKDwS5IhLDsg+EAQRb5zaiHS1Dyk3kVBVFbfeeiteffVVbN68Gb169TJtHzx4MDIyMrBx40ZMnjwZALB3714cPHgQw4YNc3SsVI9eEyskT0o80f4GiZRERaI17qm2fN+2ZVrTPlj2IwkkTekoYwLiL2WKt1RG1H87OQ7s9itauZNYbhTaD5HcSXSt2ZE7RZK5su/i9Pzz5yCZbWG6kHITiVtuuQUvvvgi/va3v6Fjx46GrjU3NxfZ2dnIzc3FjBkzMG/ePOTn5yMnJwe33norhg0bRhE5CIKwDSWkSz3IPhAE0VpQQjqNlJtIPPnkkwCASy65xFT+zDPPYNq0aQCARx99FLIsY/LkyWhsbMTo0aPxxBNP2D4Gm137G+tc6XOqQh6J1KWtP4Vh924s+STqoTheHNcEh6l+CVdJFvsQ7XVn3yNhoy3ySERFIhbvqlFmXbbbL1uLlm23ZauapUcicEybbcVw/sP1IxE2Il3tg6Smcta1OPH111+juLg40d0gCCJGDh06ZNLI26GhoQG9evUKG8UnEoWFhThw4ACysrKi2p9Ibsg+EET60No2Ih3tA00kBCiKgiNHjqBjx462ZtWpQnV1NYqLi3Ho0CHk5OQkujspDZ1L94jHuVRVFSdPnkRRURFk2XlwuoaGBjQ1NUV17MzMzLQyEoSZdLUPAI1rbkLn0j3SyUako31IOWlTayDLsuMZaiqRk5NDA5tL0Ll0D7fPZW5ubtT7ZmVlpd1gT7hDutsHgMY1N6Fz6R5kI5KTlM4jQRAEQRAEQRBEYqCJBEEQBEEQBEEQjqGJRBvC5/Nh0aJFlFzJBehcugedS4JIDuhedA86l+5B5zK5ocXWBEEQBEEQBEE4hjwSBEEQBEEQBEE4hiYSBEEQBEEQBEE4hiYSBEEQBEEQBEE4hiYSacbixYshSZLp1a9fP2N7Q0MDbrnlFnTu3BkdOnTA5MmTcezYsQT2OLnYunUrrrjiChQVFUGSJKxbt860XVVV3HvvvejevTuys7MxcuRIfP7556Y6FRUVKC0tRU5ODvLy8jBjxgzU1NS04rdIDiKdy2nTpoVcq2PGjDHVoXNJEO5CNiJ6yD64B9mH9IEmEmnImWeeiaNHjxqvd955x9g2d+5cvP7663jppZewZcsWHDlyBJMmTUpgb5OL2tpaDBgwAI8//rhw+4MPPoiVK1di9erV2LZtG9q3b4/Ro0ejoaHBqFNaWoqPP/4YGzZswBtvvIGtW7di1qxZrfUVkoZI5xIAxowZY7pW//SnP5m207kkCPchGxEdZB/cg+xDGqESacWiRYvUAQMGCLdVVlaqGRkZ6ksvvWSU7dmzRwWglpWVtVIPUwcA6quvvmp8VhRFLSwsVB966CGjrLKyUvX5fOqf/vQnVVVV9ZNPPlEBqDt27DDq/OMf/1AlSVIPHz7can1PNoLPpaqq6tSpU9Xx48eH3YfOJUG4D9kIdyD74B5kH1Ib8kikIZ9//jmKiorQu3dvlJaW4uDBgwCAnTt3orm5GSNHjjTq9uvXDz169EBZWVmiupsyHDhwAOXl5abzl5ubi5KSEuP8lZWVIS8vD0OGDDHqjBw5ErIsY9u2ba3e52Rn8+bN6Nq1K/r27Yuf/exn+O6774xtdC4JIj6QjXAfsg/uQ/YhNfAmugOEu5SUlODZZ59F3759cfToUdx333248MIL8dFHH6G8vByZmZnIy8sz7dOtWzeUl5cnpsMpBDtH3bp1M5Xz56+8vBxdu3Y1bfd6vcjPz6dzHMSYMWMwadIk9OrVC/v378cvf/lLjB07FmVlZfB4PHQuCSIOkI2ID2Qf3IXsQ+pAE4k0Y+zYscb7c845ByUlJTj11FPxl7/8BdnZ2QnsGUGYmTJlivH+7LPPxjnnnIM+ffpg8+bNGDFiRAJ7RhDpC9kIIhUg+5A6kLQpzcnLy8P3v/997Nu3D4WFhWhqakJlZaWpzrFjx1BYWJiYDqYQ7BwFRzDhz19hYSGOHz9u2t7S0oKKigo6xxHo3bs3unTpgn379gGgc0kQrQHZCHcg+xBfyD4kLzSRSHNqamqwf/9+dO/eHYMHD0ZGRgY2btxobN+7dy8OHjyIYcOGJbCXqUGvXr1QWFhoOn/V1dXYtm2bcf6GDRuGyspK7Ny506izadMmKIqCkpKSVu9zKvH111/ju+++Q/fu3QHQuSSI1oBshDuQfYgvZB+SmESv9ibcZf78+ermzZvVAwcOqO+++646cuRItUuXLurx48dVVVXVm2++We3Ro4e6adMm9f3331eHDRumDhs2LMG9Th5OnjypfvDBB+oHH3ygAlAfeeQR9YMPPlC/+uorVVVV9be//a2al5en/u1vf1P/+9//quPHj1d79eql1tfXG22MGTNGHTRokLpt2zb1nXfeUU8//XT12muvTdRXShhW5/LkyZPqHXfcoZaVlakHDhxQ//3vf6s/+MEP1NNPP11taGgw2qBzSRDuQjYiesg+uAfZh/SBJhJpxjXXXKN2795dzczMVE855RT1mmuuUfft22dsr6+vV3/+85+rnTp1Utu1a6dOnDhRPXr0aAJ7nFy89dZbKoCQ19SpU1VV1UL83XPPPWq3bt1Un8+njhgxQt27d6+pje+++0699tpr1Q4dOqg5OTnq9OnT1ZMnTybg2yQWq3NZV1enjho1Si0oKFAzMjLUU089VZ05c6ZaXl5uaoPOJUG4C9mI6CH74B5kH9IHSVVVtfX8HwRBEARBEARBpAO0RoIgCIIgCIIgCMfQRIIgCIIgCIIgCMfQRIIgCIIgCIIgCMfQRIIgCIIgCIIgCMfQRIIgCIIgCIIgCMfQRIIgCIIgCIIgCMfQRIIgCIIgCIIgCMfQRIIgCIIgCIIgCMfQRIIgCIIgCIIgCMfQRIIgCIIgCIIgCMfQRIJIGfr374//9//+X8R63333Hbp27Yovv/wybJ1LLrkEc+bMca9zOlOmTMHDDz/sersEQRBEeMg+EERioIkEkRLU19fj888/x4ABAyLWfeCBBzB+/Hj07Nkz/h0L4u6778YDDzyAqqqqVj82QRBEW4TsA0EkDppIECnBRx99BFVVcdZZZ1nWq6urw+9//3vMmDGjlXpm5qyzzkKfPn3wwgsvJOT4BEEQbQ2yDwSROGgiQSQ1u3fvxmWXXYbhw4dDURT06NEDK1asCFv/73//O3w+H8477zyjrLa2FjfccAM6dOiA7t27C13LiqJg6dKl6NWrF7KzszFgwAD89a9/NdU5efIkSktL0b59e3Tv3h2PPvqo0AV+xRVXYO3atTF9b4IgCMIasg8EkXhoIkEkLfv378fFF1+Myy67DD/+8Y8xadIkzJ8/H3PnzsXu3buF+7z99tsYPHiwqezOO+/Eli1b8Le//Q3/+te/sHnzZuzatctUZ+nSpXj++eexevVqfPzxx5g7dy6uu+46bNmyxagzb948vPvuu3jttdewYcMGvP322yHtAMDQoUOxfft2NDY2xn4SCIIgiBDIPhBEkqASRJIycuRIddq0aaqqqurQoUPVhx9+WPX7/WpOTo66cuVK4T7jx49Xb7zxRuPzyZMn1czMTPUvf/mLUfbdd9+p2dnZ6u23366qqqo2NDSo7dq1U9977z1TWzNmzFCvvfZaVVVVtbq6Ws3IyFBfeuklY3tlZaXarl07ox3Ghx9+qAJQv/zyy6i/O0EQBBEesg8EkRx4Ez2RIQgR5eXl2LRpE9577z34/X7873//w9KlSyHLMjweDzIzM4X71dfXIysry/i8f/9+NDU1oaSkxCjLz89H3759jc/79u1DXV0dfvjDH5raampqwqBBgwAAX3zxBZqbmzF06FBje25urqkdRnZ2NgBNj0sQBEG4C9kHgkgeaCJBJCX/+c9/oCgKBg4ciL1796K+vh4DBw7El19+iRMnTuD8888X7telSxecOHHC0bFqamoAAG+++SZOOeUU0zafz+e47xUVFQCAgoICx/sSBEEQ1pB9IIjkgdZIEElJU1MTAKChoQEffPABTj31VOTn52P16tU466yzcPbZZwv3GzRoED755BPjc58+fZCRkYFt27YZZSdOnMBnn31mfD7jjDPg8/lw8OBBnHbaaaZXcXExAKB3797IyMjAjh07jP2qqqpM7TA++ugjfO9730OXLl1iOwkEQRBECGQfCCJ5II8EkZQMGzYMXq8XS5YsQU1NDXr37o3HHnsMq1atwtatW8PuN3r0aCxcuBAnTpxAp06d0KFDB8yYMQN33nknOnfujK5du+JXv/oVZDkwh+7YsSPuuOMOzJ07F4qiYPjw4aiqqsK7776LnJwcTJ06FR07dsTUqVNx5513Ij8/H127dsWiRYsgyzIkSTL14e2338aoUaPidm4IgiDaMmQfCCKJSPQiDYIIx/PPP692795dBaB6vV61pKRE3bp1a8T9hg4dqq5evdr4fPLkSfW6665T27Vrp3br1k198MEH1Ysvvti0CE5RFHXFihVq37591YyMDLWgoEAdPXq0umXLFqNOdXW1+pOf/ERt166dWlhYqD7yyCPq0KFD1QULFhh16uvr1dzcXLWsrMydk0AQBEGEQPaBIJIDSVVVNdGTGYKwIj8/H88++yx+/OMf26r/5ptv4s4778RHH31kerLkNrW1tTjllFPw8MMPGwmOnnzySbz66qv417/+FbfjEgRBEBpkHwgisZC0iUhqvv76a5w4cSJixlKeyy+/HJ9//jkOHz5saFjd4IMPPsCnn36KoUOHoqqqCkuWLAEAjB8/3qiTkZGBVatWuXZMgiAIQgzZB4JIPOSRIJKaf/zjH7jqqqtw8uTJEK1pa/PBBx/gpz/9Kfbu3YvMzEwMHjwYjzzySNiFfQRBEET8IPtAEImHJhIEQRAEQRAEQTiGwr8SBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOGY/w9YMbBMIrOopQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def make_field_plot(phi, theta, vals1, vals2):\n", " n_plots = 2\n", " fig, ax = plt.subplots(1, n_plots, tight_layout=True, figsize=(8, 3.8))\n", " im1 = ax[0].pcolormesh(\n", " phi * 180 / np.pi,\n", " theta * 180 / np.pi,\n", " np.real(vals1),\n", " cmap=\"RdBu\",\n", " shading=\"auto\",\n", " )\n", " im2 = ax[1].pcolormesh(\n", " phi * 180 / np.pi,\n", " theta * 180 / np.pi,\n", " np.real(vals2),\n", " cmap=\"RdBu\",\n", " shading=\"auto\",\n", " )\n", " fig.colorbar(im1, ax=ax[0])\n", " fig.colorbar(im2, ax=ax[1])\n", " ax[0].set_title(\"Analytic\")\n", " ax[1].set_title(\"Field projection\")\n", " for _ax in ax:\n", " _ax.set_xlabel(\"$\\phi$ (deg)\")\n", " _ax.set_ylabel(\"$\\\\theta$ (deg)\")\n", "\n", "\n", "# RMSE\n", "def rmse(array_ref, array_test):\n", " error = array_test - array_ref\n", " rmse = np.sqrt(np.mean(np.abs(error.flatten()) ** 2))\n", " nrmse = rmse / np.abs(np.max(array_ref.flatten()) - np.min(array_ref.flatten()))\n", " return nrmse\n", "\n", "\n", "# plot Etheta\n", "Etheta_analytic = analytic_field_data.Etheta.isel(f=0, r=0)\n", "Etheta_proj = projected_field_data.Etheta.isel(f=0, r=0)\n", "make_field_plot(phi_proj, theta_proj, Etheta_analytic, Etheta_proj)\n", "\n", "# print the normalized RMSE\n", "print(\n", " f\"Normalized root mean squared error: {rmse(Etheta_analytic.values, Etheta_proj.values) * 100:.2f} %\"\n", ")\n", "\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We obtain good agreement to analytical results. Now let's see if we can repeat this simulation but compute the far fields on the server, during the simulation run." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Server-side field projection \n", "All we have to do is provide the [FieldProjectionAngleMonitor](../_autosummary/tidy3d.FieldProjectionAngleMonitor.html) monitor as an input to the `Tidy3D` `Simulation` object as one of its `monitors`. Now, we no longer need to provide a separate near-field [FieldMonitor](../_autosummary/tidy3d.FieldMonitor.html) - the near fields will automatically be recorded based on the size and location of the [FieldProjectionAngleMonitor](../_autosummary/tidy3d.FieldProjectionAngleMonitor.html)." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:50:17.126314Z", "iopub.status.busy": "2023-03-27T23:50:17.126165Z", "iopub.status.idle": "2023-03-27T23:50:17.146204Z", "shell.execute_reply": "2023-03-27T23:50:17.145670Z" } }, "outputs": [], "source": [ "sim2 = td.Simulation(\n", " size=sim_size,\n", " center=[0, 0, 0],\n", " grid_spec=td.GridSpec.uniform(dl=wavelength / min_cells_per_wvl),\n", " structures=geometry,\n", " sources=[source],\n", " monitors=[\n", " monitor_far\n", " ], # just provide the far field FieldProjectionAngleMonitor as the input monitor\n", " run_time=run_time,\n", " boundary_spec=boundary_spec,\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run the new simulation." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:50:17.148142Z", "iopub.status.busy": "2023-03-27T23:50:17.147999Z", "iopub.status.idle": "2023-03-27T23:50:35.895816Z", "shell.execute_reply": "2023-03-27T23:50:35.895191Z" } }, "outputs": [ { "data": { "text/html": [ "
[15:03:43] Created task 'aperture_2' with task_id                               webapi.py:139\n",
       "           'fdve-da8e7fcd-ebde-4437-a5f4-a07fafe4ff3ev1'.                                    \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:03:43]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'aperture_2'\u001b[0m with task_id \u001b]8;id=810971;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=134249;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-da8e7fcd-ebde-4437-a5f4-a07fafe4ff3ev1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:03:47] status = queued                                                      webapi.py:269\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:03:47]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=549111;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=717470;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:03:52] status = preprocess                                                  webapi.py:263\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:03:52]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=957153;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=505366;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
[15:03:56] Maximum FlexCredit cost: 0.025. Use 'web.real_cost(task_id)' to get    webapi.py:286\n",
       "           the billed FlexCredit cost after a simulation run.                                  \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:03:56]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.025\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get \u001b]8;id=679653;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=487716;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mthe billed FlexCredit cost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           starting up solver                                                   webapi.py:290\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=655571;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=747498;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           running solver                                                       webapi.py:300\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=61582;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=490330;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:04:04] early shutoff detected, exiting.                                     webapi.py:313\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:04:04]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=476617;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=863130;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#313\u001b\\\u001b[2m313\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           status = postprocess                                                 webapi.py:330\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=393732;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=933216;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#330\u001b\\\u001b[2m330\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:04:07] status = success                                                     webapi.py:337\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:04:07]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=715000;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=651686;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#337\u001b\\\u001b[2m337\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:04:08] loading SimulationData from data/aperture_2.hdf5                     webapi.py:512\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:04:08]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/aperture_2.hdf5 \u001b]8;id=713151;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=370906;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim_data2 = web.run(\n", " sim2, task_name=\"aperture_2\", path=\"data/aperture_2.hdf5\", verbose=True\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now the projected fields are already contained in the returned `sim_data2` object - all we have to do is access it as follows, and then plot and compare to analytical results as before." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:50:36.199985Z", "iopub.status.busy": "2023-03-27T23:50:36.199749Z", "iopub.status.idle": "2023-03-27T23:50:36.649478Z", "shell.execute_reply": "2023-03-27T23:50:36.648989Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalized root mean squared error: 4.45 %\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAFyCAYAAABhr+y4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC0LUlEQVR4nO2de3wU1fn/PzO7ySZckhAICVGQi5aLWkAQxCsVys1aEKxioyJS0NZ4AbRCq4K34gWRghe++qu3iqX1WluVSkHFSwqIYqsiCqIiEFBDEnLf7Mzvj5kze2b37OzMZDZ74Xm/XvvK5syZM2dnZ86zZ57PeR5JVVUVBEEQBEEQBEEQDpCT3QGCIAiCIAiCINIPmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQRxxPPPEEJEnCV199ldJtEgRBpDpfffUVJEnCE0884XjfN998E5Ik4c0334xbd/To0Rg9erTjYySSZPXJyXkjiERDEwki6Tz00EOQJAkjR45Mdlfi8oc//AEvvfRSsrtBEATRLrCHJKLXggULkt29jOahhx5yNUEjiPbEn+wOEMTq1avRu3dvbN68GTt37sSxxx6b7C7F5A9/+APOP/98TJkyxVR+ySWXYPr06QgEAsnpGEEQRAK57bbb0KdPH1PZCSecgGOOOQaNjY3IyspKUs+Sx+uvv57Q9h966CF069YNl112man8zDPPRGNjI7KzsxN6fIKwA00kiKSye/duvPfee3jhhRdwxRVXYPXq1Vi0aFGyu+UYn88Hn8+X7G4QBEEkhIkTJ2L48OHCbTk5Oe3cm8RQX1+Pjh072q6frB/ysixnzDkn0h+SNhFJZfXq1ejSpQvOOeccnH/++Vi9erVpO9PfLl26FI888gj69euHQCCAk08+GVu2bDHV/e9//4vLLrsMffv2RU5ODkpKSnD55Zfjhx9+sOzDjBkz0K1bNwSDwaht48aNQ//+/QEAkiShvr4eTz75pOHaZ0+KYq2ReO2113DWWWehc+fOyMvLw8knn4xnnnnG4VkiCIJITWKtkfjss89w/vnno7CwEDk5ORg+fDhefvllW22ysT43NxcjRozA22+/bbs/kiShvLwcq1evRv/+/ZGTk4Nhw4Zh48aNpnqLFy+GJEn49NNP8ctf/hJdunTB6aefDgBobW3F7bffbtib3r1743e/+x2am5tNbYjWSDQ3N2PRokU49thjEQgE0LNnT/z2t7+N2hcAnn76aYwYMQIdOnRAly5dcOaZZxpejt69e+OTTz7BW2+9ZdgbdqxYaySeffZZDBs2DLm5uejWrRsuvvhi7N2711TnsssuQ6dOnbB3715MmTIFnTp1QlFREa6//nqEQiHb55kgGDSRIJLK6tWrMXXqVGRnZ+Oiiy7CF198ETVBAIBnnnkG9957L6644grccccd+OqrrzB16lTTj/9169bhyy+/xMyZM7Fy5UpMnz4da9aswaRJk6Cqasw+XHLJJfjhhx/wr3/9y1ReWVmJDRs24OKLLwYA/PnPf0YgEMAZZ5yBP//5z/jzn/+MK664Ima7TzzxBM455xxUVVVh4cKFuOuuuzBkyBCsXbvW6WkiCIJIKjU1Nfj+++9Nr1h88sknOOWUU7B9+3YsWLAA9913Hzp27IgpU6bgxRdftDzOn/70J1xxxRUoKSnBPffcg9NOOw0///nPsWfPHtt9feutt3Ddddfh4osvxm233YYffvgBEyZMwMcffxxV9xe/+AUaGhrwhz/8AbNnzwYA/OpXv8Itt9yCk046Cffffz/OOussLFmyBNOnT7c8rqIo+PnPf46lS5fi3HPPxcqVKzFlyhTcf//9uPDCC011b731VlxyySXIysrCbbfdhltvvRU9e/bEhg0bAADLly/H0UcfjQEDBhj25ve//33MYz/xxBO44IIL4PP5sGTJEsyePRsvvPACTj/9dFRXV5vqhkIhjB8/Hl27dsXSpUtx1lln4b777sMjjzxi5/QShBmVIJLE+++/rwJQ161bp6qqqiqKoh599NHqtddea9TZvXu3CkDt2rWrWlVVZZT//e9/VwGo//jHP4yyhoaGqGP85S9/UQGoGzduNMoef/xxFYC6e/duVVVVNRQKqUcffbR64YUXmvZdtmyZKkmS+uWXXxplHTt2VGfMmBF1nMg2q6ur1c6dO6sjR45UGxsbTXUVRbE+MQRBECkCG9tEL1UNj9GPP/64sc+YMWPUE088UW1qajLKFEVRTz31VPW4444zyt544w0VgPrGG2+oqqqqLS0tavfu3dUhQ4aozc3NRr1HHnlEBaCeddZZcfvL+vb+++8bZV9//bWak5OjnnfeeUbZokWLVADqRRddZNp/27ZtKgD1V7/6lan8+uuvVwGoGzZsMMrOOussU5/+/Oc/q7Isq2+//bZp31WrVqkA1HfffVdVVVX94osvVFmW1fPOO08NhUKmurx9OP7444WfOdZ5O+GEE0z25p///KcKQL3llluMshkzZqgA1Ntuu83U5tChQ9Vhw4ZFHYsg4kEeCSJprF69GsXFxfjJT34CQHNJX3jhhVizZk2Ui/XCCy9Ely5djP/POOMMAMCXX35plOXm5hrvm5qa8P333+OUU04BAHzwwQcx+yHLMsrKyvDyyy/j8OHDpv6deuqpUQsM7bBu3TocPnwYCxYsiNKySpLkuD2CIIhk8uCDD2LdunWml4iqqips2LABF1xwAQ4fPmx4L3744QeMHz8eX3zxRZTchvH+++/j4MGDuPLKK03rDy677DLk5+fb7uuoUaMwbNgw4/9evXph8uTJ+Ne//hVlW6688krT/6+++ioAYN68eaby+fPnAwBeeeWVmMd99tlnMXDgQAwYMMDkuTn77LMBAG+88QYA4KWXXoKiKLjlllsgy+afYW7sAztvv/nNb0z25pxzzsGAAQOEfY783GeccYbJnhKEXWgiQSSFUCiENWvW4Cc/+Ql2796NnTt3YufOnRg5ciQOHDiA9evXm+r36tXL9D+bVBw6dMgoq6qqwrXXXovi4mLk5uaiqKjImATU1NRY9ufSSy9FY2Oj4XbfsWMHtm7diksuucTV59u1axcALaoJQRBEujNixAiMHTvW9BKxc+dOqKqKm2++GUVFRaYXC6Rx8OBB4b5ff/01AOC4444zlWdlZaFv3762+xq5PwD86Ec/QkNDA7777jtTeeSDoq+//hqyLEdFDywpKUFBQYHRRxFffPEFPvnkk6jP/aMf/QhA+HPv2rULsixj0KBBtj+TFaxPbD0fz4ABA6L6nJOTg6KiIlNZly5dTPaUIOxCUZuIpLBhwwbs378fa9aswZo1a6K2r169GuPGjTP+jxURSeXWPlxwwQV47733cMMNN2DIkCHo1KkTFEXBhAkToCiKZX8GDRqEYcOG4emnn8all16Kp59+GtnZ2bjgggtcfkKCIIgjDzbWXn/99Rg/frywTiqF+OY92TxuPAOKouDEE0/EsmXLhNt79uzpuM1EQBEGCS+hiQSRFFavXo3u3bvjwQcfjNr2wgsv4MUXX8SqVatst3fo0CGsX78et956K2655Raj/IsvvrDdxqWXXop58+Zh//79eOaZZ3DOOeeY5FSAfePSr18/AMDHH3+cUkaTIAgikTDPQVZWVkyvRSyOOeYYANq4zeRAABAMBrF7924MHjzYVjuicf/zzz9Hhw4dop7Ei/qgKAq++OILDBw40Cg/cOAAqqurjT6K6NevHz766COMGTPG0lb069cPiqLg008/xZAhQ2LWs2tvWJ927NhhOm+szKrPBNFWSNpEtDuNjY144YUX8LOf/Qznn39+1Ku8vByHDx+2HSoQCD9hUSOiMy1fvtx2GxdddBEkScK1116LL7/80ojWxNOxY8eoCBgixo0bh86dO2PJkiVoamoybYvsI0EQRKbQvXt3jB49Gv/3f/+H/fv3R22PlBbxDB8+HEVFRVi1ahVaWlqM8ieeeMLWuMuoqKgwrYvbs2cP/v73v2PcuHFxn8ZPmjQJQLTtYF6Gc845J+a+F1xwAfbu3YtHH300altjYyPq6+sBAFOmTIEsy7jtttuivOW8fbBrb4YPH47u3btj1apVpjCzr732GrZv327ZZ4JoK+SRINodtqj55z//uXD7KaecgqKiIqxevRojR4601WZeXh7OPPNM3HPPPQgGgzjqqKPw+uuvY/fu3bb7VVRUhAkTJuDZZ59FQUGBcPAdNmwY/v3vf2PZsmUoLS1Fnz59hH3My8vD/fffj1/96lc4+eSTjTjlH330ERoaGvDkk0/a7hdBEEQ68eCDD+L000/HiSeeiNmzZ6Nv3744cOAAKioq8O233+Kjjz4S7peVlYU77rgDV1xxBc4++2xceOGF2L17Nx5//HFHayROOOEEjB8/Htdccw0CgQAeeughAFrI1XgMHjwYM2bMwCOPPILq6mqcddZZ2Lx5M5588klMmTLFCA4i4pJLLsHf/vY3XHnllXjjjTdw2mmnIRQK4bPPPsPf/vY3/Otf/8Lw4cNx7LHH4ve//z1uv/12nHHGGZg6dSoCgQC2bNmC0tJSLFmyBIBmbx5++GHccccdOPbYY9G9e/cojwM7b3fffTdmzpyJs846CxdddBEOHDiAP/7xj+jduzfmzp1r+9wRhGOSGjOKOCI599xz1ZycHLW+vj5mncsuu0zNysoyQsTee++9UXUAqIsWLTL+//bbb9XzzjtPLSgoUPPz89Vf/OIX6r59+6LqRYZq5fnb3/6mAlDnzJkj7Ndnn32mnnnmmWpubq4KwAgFG6vNl19+WT311FPV3NxcNS8vTx0xYoT6l7/8JebnJgiCSCXY2LZlyxbhdlH4V1VV1V27dqmXXnqpWlJSomZlZalHHXWU+rOf/Ux97rnnjDqRYUwZDz30kNqnTx81EAiow4cPVzdu3BgVajUWANSrrrpKffrpp9XjjjtODQQC6tChQ6OOwcK/fvfdd1FtBINB9dZbb1X79OmjZmVlqT179lQXLlxoCmerqtHhX1VVC8V69913q8cff7waCATULl26qMOGDVNvvfVWtaamxlT3scceU4cOHWrUO+uss4xw6KqqqpWVleo555yjdu7c2RT+NtZ5++tf/2q0V1hYqJaVlanffvutqc6MGTPUjh07Rn1mdj4IwimSqpLOgiAYf//73zFlyhRs3LjRCDFLEARBpAeSJOGqq67CAw88kPBjnXHGGQgEAvj3v/+d8GMRRKpCayQIguPRRx9F3759cfrppye7KwRBEEQKs3//fnTr1i3Z3SCIpEJrJAgCwJo1a/Df//4Xr7zyCv74xz9S0jiCIAhCyHvvvYcXXngBu3btwo033pjs7hBEUqGJBEFAi9jUqVMnzJo1C7/5zW+S3R2CIAgiRXn00Ufx2muv4brrrsPMmTOT3R2CSCq0RoIgCIIgCIIgCMfQGgmCIIgk8uCDD6J3797IycnByJEjsXnz5ph1H330UZxxxhno0qULunTpgrFjx1rWJwiCIIhEQhMJgiCIJPHXv/4V8+bNw6JFi/DBBx9g8ODBGD9+PA4ePCis/+abb+Kiiy7CG2+8gYqKCvTs2RPjxo3D3r1727nnBEEQBEHSJiGKomDfvn3o3LkzLboliDREVVUcPnwYpaWlkGXnz0uamppMmXWdkJ2djZycHFt1R44ciZNPPtkIVakoCnr27Imrr74aCxYsiLt/KBRCly5d8MADD+DSSy911V/CGWQfCCL9SZaNcGIf0gVabC1g37596NmzZ7K7QRBEG9mzZw+OPvpoR/s0NTUht3Mh0Nro6pglJSX46KOPTMYiEAggEAiY6rW0tGDr1q1YuHChUSbLMsaOHYuKigpbx2poaEAwGERhYaGrvhLOIftAEJlDe9uIkpIS7N69O6MmEyk1kdi4cSPuvfdebN26Ffv378eLL76IKVOmmOps374dN954I9566y20trZi0KBBeP7559GrVy8A2hc8f/58rFmzBs3NzRg/fjweeughFBcX2+5H586dAQBDf/sX+AIdPPt86YaqkLMqXZHkI/tJaai5AR/ec5FxLzuhpaUFaG1E1gkXAb4shwcOovLjv0SNN4sWLcLixYtNZd9//z1CoVBU3eLiYnz22We2DnfjjTeitLQUY8eOddbPNCUVbAS7poZc/0x8++BwDFVsCgTsCAnijd+K4s1xtGPZqgbFpU05UmxRW8Zt2ca+ks0H73Y9bVYP8u18FtvHcer5s3HsUHMDti39ZfvaCN0+tLS00EQiUdTX12Pw4MG4/PLLMXXq1Kjtu3btwumnn45Zs2bh1ltvRV5eHj755BPTFzJ37ly88sorePbZZ5Gfn4/y8nJMnToV7777ru1+sIvbF+gAf07Htn+wNOVIGbwzkSN9IsFok/TElwXJl+1oF3bH7NmzB3l5eUZ5pDfCC+666y6sWbMGb775ZkYZJStSwUY4sQ9Ox1DJ9g/3tk8kJDtteDyRsHNMcftHhi1Kv4lE7Hq2JhI2P6/TiYST89ieNiJTr+KUmkhMnDgREydOjLn997//PSZNmoR77rnHKOvXr5/xvqamBn/605/wzDPP4OyzzwYAPP744xg4cCD+85//4JRTTnHUH1mWbN2cbcHtE5r2oC2D2pEy8CeaTJwQJPqe8uoYkuyDJPuc7aRq9fPy8kwTCRHdunWDz+fDgQMHTOUHDhxASUmJ5b5Lly7FXXfdhX//+9/48Y9/7KyPaUwq2QhJliDJkuVYJ7p/reqLfjCJvBR22uXriI4ZeY+IbJHoR5ZociH6gSqaXFjdl1a20Ok4mCr2x8vx2+mY1p6ThvAxrevYOR+JnDR4jWMboTq0J2lC2kRtUhQFr7zyCn70ox9h/Pjx6N69O0aOHImXXnrJqLN161YEg0GTm3/AgAHo1auXbc0xQRAEEDYSTl92yc7OxrBhw7B+/XqjTFEUrF+/HqNGjYq53z333IPbb78da9euxfDhw9v0GTMJshEEQbQnibQP6UTaTCQOHjyIuro63HXXXZgwYQJef/11nHfeeZg6dSreeustAEBlZSWys7NRUFBg2re4uBiVlZUx225ubkZtba3pRRDEkY0kuZhISM4Mxbx58/Doo4/iySefxPbt2/HrX/8a9fX1RrbcSy+91LQY++6778bNN9+Mxx57DL1790ZlZSUqKytRV1fn6WdPRxJlI8g+EAQhwrGNcGgf0oWUkjZZoegrwyZPnoy5c+cCAIYMGYL33nsPq1atwllnneW67SVLluDWW2/1pJ9OSZTMI9mSqUyU5BxptIcEKZWRfDIkn1Npk7NnMxdeeCG+++473HLLLaisrMSQIUOwdu1aY+HvN998YwpN+PDDD6OlpQXnn3++qR3RYu4jjUTZiHj2wal8qb3kTnybVuMxqye6372WO4WPGV3mdrwR9jHFxi6vx1K7siWjvkO5UFvXPtit53gRtYPjx6vvxTXi2EY4tA/pQtpMJLp16wa/349BgwaZygcOHIh33nkHgBZWq6WlBdXV1aYnTvE0xwsXLsS8efOM/2traym8H0Ec4cguXNGqC9d1eXk5ysvLhdvefPNN0/9fffWV4/aPFBJlI8g+EAQhwqmNcGMf0oG0mR5lZ2fj5JNPxo4dO0zln3/+OY455hgAwLBhw5CVlWXSHO/YsQPffPONpeY4EAgYiyPtLJIkCCLzSfQaCcJbEmUjyD4QBCGC7INGSnkk6urqsHPnTuP/3bt3Y9u2bSgsLESvXr1www034MILL8SZZ56Jn/zkJ1i7di3+8Y9/GE/t8vPzMWvWLMybNw+FhYXIy8vD1VdfjVGjRjmO2AS0MSxYkmlPWUqyZVRHEke63MgOkiR5cu+6Gvgz1FCkCqlmI2JhJTOyUz/evlaSECZ7iifdYO1a1bP7pNFOTgpzw97ZDF/cz+nZoYQ4lRl5emwPJUumdj2uZxzfRn/bIjlqb0mbYxuRofYhpSYS77//Pn7yk58Y/zN38owZM/DEE0/gvPPOw6pVq7BkyRJcc8016N+/P55//nmcfvrpxj73338/ZFnGtGnTTMmGCIIgnCDJMiSrjEsinNYnHEE2giCIVMGxjchQ+yCpdjPOHEHU1tYiPz8fIxf/44jObG0X8ki0H+SRiI8kSWhtqsemxeeipqbGsRSF3f/5P7kRkt9ZIjm1tRk1b9zt6rhEesCuj+E3/912wtK25DVwuq/t7NgeJLUzjumwj+35s4M8EmHIIxGmtake798+uV1tRKbah5TySKQi6SBvSvZckH7cHjmkw/3gFdrTJqfSpsx84kS0Dbs/cEQ/3BMhe3LSJzs4v+rtRYjygnSPuOmlffUq4lEkiU4il2pRuBiObYRL+/Dggw/i3nvvRWVlJQYPHoyVK1dixIgRwrqffPIJbrnlFmzduhVff/017r//flx33XWujmsXsnoEQRAC2iOPBEEQBJGetEceib/+9a+YN28eFi1ahA8++ACDBw/G+PHjcfDgQWH9hoYG9O3bF3fddZdltFIvIY9EBnAkPSUmCIJIBWRZivu02OlTdqeeC8fSEocyH8Xmo0anXhMR8RZNE/bw4um9m/wObo6dKE+DHS9Ouigpli1bhtmzZxtJSletWoVXXnkFjz32GBYsWBBV/+STT8bJJ58MAMLtiYAmEgRBECJ8PscJ6VSFPBIEQRBHBA5tBLMPtbW1pvJAIIBAIHqtRUtLC7Zu3YqFCxcaZbIsY+zYsaioqHDZae8haRNBEIQAyiNBEARBxMKtfejZs6e2WFt/LVmyRNj+999/j1AohOLiYlN5cXExKisrE/757EIeiTQhmZEhCMIOiY6O0t64mRjQRILgcSqfsCuFcioJcSuF8gkWRTuOQOVLLQlJouQ0bYnMlUy8PB/JlColA6c2gtXds2ePKWqTyBuRTtBEgiAIQoAs+yBTQjqCIAhCgGMbodfNy8uzFf61W7du8Pl8OHDggKn8wIED7baQ2g70nJsgCEIAC+3n7EVDKkEQxJGAcxvhzD5kZ2dj2LBhWL9+vVGmKArWr1+PUaNGef1xXEMeCRccKTKjVHUnEvFJRpLAZNwXiZRTkbSJaG+8HHP5MSAd5CtWHCm2KJOSux4J35lbaZMT5s2bhxkzZmD48OEYMWIEli9fjvr6eiOK06WXXoqjjjrKWGfR0tKCTz/91Hi/d+9ebNu2DZ06dcKxxx7r+Ph2oIkEQRCEAJpIEARBELFoj4nEhRdeiO+++w633HILKisrMWTIEKxdu9ZYgP3NN99A5jwd+/btw9ChQ43/ly5diqVLl+Kss87Cm2++6fj4dqCJBEEQhACaSBAEQRCxaI+JBACUl5ejvLxcuC1yctC7d2+oavt6tmgi4YBUlTS1pwuxvdzamZBkr71uZlG0kERdE6nmeufvSa9lTixrqdN9CCIV8HoMSPSY7NS+JmqME9m4RERkEo2lskWEq0TJONv7R2cm4dRGZKp9oIkEQRCEAMlFQjqn9QmCIIj0xKmNyFT7kKLP2AmCIAiCIAiCSGXII+GASNdie0qdvHTjtkWe5IV7O9FSLC/lV21zacfvhydSoTZch04/n9V3156yp/ZIfsdC+zndhzgykCQpIySYXtgxp2O63THa6vy6tSNey3Pd2gir8dKu3MjpsUXHlGzYKe1Yjg6V8nhx7zq1EZlqH2giQRAEIYAWWxMEQRCxaK/F1qkOTSTagGiG7rWXor2eutidnSfqyRPDl2qxpz3oT8jiqZHo8zp/ymSvnugpl9X30xZvhZfeiWQ9CaOJBJHqpJo3IZ4dsTqWqF0re2DXViTDpliN+XbqiLYJx2NuuLHj4WiTvZHjH8cp6e7loImEBk0kCIIgBMiy5Hwin2oTYYIgCCIhOLYRGWofaCJBEAQhQJIl5569DDUUBEEQhBmnNiJT7QNNJDwmnqvOqSuauRHtznrtXKhtcT/bPY4dd3Iqu6bdInJJi/pv6frm6lvVU21eG+waEn3vVov62Hds1/XdFpd3Krq43SymzYTFt0TyaU/JUlsWPkcew6ldEI2NbSkT4U+C/Wh1KW3yuowhGsMNu6DnrrC7wNvupWnHHsS7zlPRLvA4tRGZah9oIkEQBCFAciFtUtNo0ksQBEG4x6mNyFT7QBMJgiAIAZLkQtqUoU+cCIIgCDNObUSm2geaSFigqqq19MPFRZHMXBRuY3I7jaYRb3sitiUb5la2K2Ni9exE94h5TEGZyIXNvlthDHHJmVvbC7xwV8frrxefh9ZIEO1Fe0mZnEZcErVp1x5YldmtL5Il2ZFHmbe3f+z+kEUoPTuyJJE0Kt5+kdtN/wvsDTtvYZthHXWPjami79/K7vA4lb+K7otUkjvRGgkNmkgQBEEIkCUJssOHBWqGPnEiCIIgzDi1EZlqH2giQRAEIYA8EgRBEEQsyCOhQROJNmBXPmElKeLddFbubafRm+xi13XNcBtRw2nUjXiRNlJB5sS7iUX9bbUhd+K3OU1iJJJHWbmdrSRObcFOe3bd0e0psSKIdMepJNW03YbU1amMKd44H7ndb7HN3G60cUwViax43JYttsXej0mifHFkTCLbwrY7tS0iiSw72/zYbhX1z26Ev0TZICK50ESCIAhCAHkkCIIgiFiQR0KDJhIEQRAC3GS2ztTwfgRBEIQZpzYiU+1D+4czsGDjxo0499xzUVpaCkmS8NJLL8Wse+WVV0KSJCxfvtxUXlVVhbKyMuTl5aGgoACzZs1CXV2dq/4oimr7ZQWL/sS/hPWU6JdVn8RtqLYTiNnFJ0vGS1Tm9uUXvAJ+GQG/LKyf7ZeNl3i7L6Evp/1hn0X0Ob04f1bfjxdYXUvxr0Pr6xiwf1+IjtnWe9IOkuzuRSSOVLMRycLNJBcIJ9DiZSqsLf4letLq5ZjPxkbRGBpv7I2uL0e/fCnyEvTNyn5YfXa+vsi2xDo/Tu0JEH7SLro2RNdT5H7xnry7vX5TDbIPGin1serr6zF48GA8+OCDlvVefPFF/Oc//0FpaWnUtrKyMnzyySdYt24d/vnPf2Ljxo2YM2dOorpMEESGwv/ocvIiEgfZCIIgUgWyDxopJW2aOHEiJk6caFln7969uPrqq/Gvf/0L55xzjmnb9u3bsXbtWmzZsgXDhw8HAKxcuRKTJk3C0qVLhUbFCidP9q2egIpm3qKnr8LFTBZ5JxK1ANsKp4vYWJmdeOCxy5wttHNSJxbi3A++mHV8Mitre5DreAuq7WxLFML44jY+st1F1F54Erzyysmy83tLTalHM5lHqtkIr2D3kN0nlu019scbQ+0sshYtqLa7iNpyAbbAXrbnIuvIdoVjNAT5G3x6me3AEqKLIvagK8pBIfrskf21uzjbC5yO86mUO4LHqY3IVPuQVh9LURRccskluOGGG3D88cdHba+oqEBBQYFhIABg7NixkGUZmzZtitluc3MzamtrTS+CII5seDe9kxeRPBJhI8g+EAQhguyDRlpNJO6++274/X5cc801wu2VlZXo3r27qczv96OwsBCVlZUx212yZAny8/ONV8+ePT3tN0EQ6YckuZhIZKjrOl1IhI0g+0AQhAjHNiJD7UPaTCS2bt2KP/7xj3jiiSc8/zIWLlyImpoa47Vnzx5jG5NJxHtZYXdBqJ3Fp6IFrKL2RH0Ttel2YWq8Bb5Ot4XbkwUvZ4vG3C4286YN6/47OT+x3PpuF1ZbXXOmsojrRnx9OVtILeqH46AFHtyLTmBZS52+iOSQKBsRyz6IxmsnwQNE2Am4kSjiPTW1M+6IFlbbxe2Y2JZ2RYiCYzg5jtd9dNt/u/1x2+dE4fU94OX9GUl72YcHH3wQvXv3Rk5ODkaOHInNmzdb1n/22WcxYMAA5OTk4MQTT8Srr77q6rh2SZuJxNtvv42DBw+iV69e8Pv98Pv9+PrrrzF//nz07t0bAFBSUoKDBw+a9mttbUVVVRVKSkpith0IBJCXl2d6EQRxhOPUGyFLgAuDnOpGIl1IlI0g+0AQhJB2sA9//etfMW/ePCxatAgffPABBg8ejPHjx0eNY4z33nsPF110EWbNmoUPP/wQU6ZMwZQpU/Dxxx+39dPGJG0mEpdccgn++9//Ytu2bcartLQUN9xwA/71r38BAEaNGoXq6mps3brV2G/Dhg1QFAUjR45MVtcJgkhD2mONRDoYiXSBbARBEO1Je6yRWLZsGWbPno2ZM2di0KBBWLVqFTp06IDHHntMWP+Pf/wjJkyYgBtuuAEDBw7E7bffjpNOOgkPPPBAWz9uTFIqalNdXR127txp/L97925s27YNhYWF6NWrF7p27Wqqn5WVhZKSEvTv3x8AMHDgQEyYMAGzZ8/GqlWrEAwGUV5ejunTpyc8GoeVpMLq4uHlHHaiO/Eue1GkD1E0D9Y3I40916Y4UpS5vghRZCGnuI0AZbcNUz0bLkVRFA2raBeiKBfxIl+0NdKS3f2srkexZC66zG6EJjsuYrvyOa9zoKQ6vJEAgFWrVuGVV17BY489hgULFkTV540EANx+++1Yt24dHnjgAaxatapd+54M0s1GWN0bduVXVhGdrOwHfy/Z+QHjtL7XiMbQyG38djZe82O7nXE4ns0QRT2ywmpMtjtee9FGMhDJYq2wsgNOJUxeSJOSRWTAhkAggEAgEFWvpaUFW7duxcKFC40yWZYxduxYVFRUCNuuqKjAvHnzTGXjx4+3zLnTVlLKI/H+++9j6NChGDp0KABg3rx5GDp0KG655RbbbaxevRoDBgzAmDFjMGnSJJx++ul45JFHEtVlgiAyFFEyJjsvAFFRfpqbm6PaZ0Zi7Nix3DHjGwm+PqAZiVj1Mw2yEQRBpApu7UPPnj1NARyWLFkibP/7779HKBRCcXGxqby4uDhmcIjKykpH9b0gpTwSo0ePdjTL/Oqrr6LKCgsL8cwzz3jYK4IgjkTcJBBi9SMj+yxatAiLFy82lVkZic8++0zYfjKMRCpBNoIgiFTBqY1gdffs2WNaayXyRqQTKTWRSDkiosC4dfeK3H2itkRuvyh3tUCWxLsEmftb5PK2kixZucitJDqxsHJTi9qNrOeFdCoZxHND23FTO3WHx6tv7U6OL2lyI2eyI2XyWsZkas+DtiXZfoIwfh8g8wwF4T1OZU+i+9BpglKR/bDaz+7YbzUG8VGPouuJ9CwObzpn+do8sS22x2jBdyzaN7KM/1+U5NRq7G8VbLMjnWqLHXG6n10ZU6rLl5zaCFbXbtCGbt26wefz4cCBA6byAwcOxAwOUVJS4qi+F6SUtIkgCCJVaIu0KTLKj2gikS5GgiAIgojGrX2wS3Z2NoYNG4b169cbZYqiYP369Rg1apRwn1GjRpnqA8C6deti1vcCmkgQBEEISHTUpnQxEgRBEEQ07RG1ad68eXj00Ufx5JNPYvv27fj1r3+N+vp6I0DHpZdealqMfe2112Lt2rW477778Nlnn2Hx4sV4//33UV5e7tnnjoSkTUnCTmQkwNrtzNx+TiM5mSQgej2+DaM+WFvWkYhE2IlOJI6soejbZME2ewhd7y5dpHbc0LHLlLj1W+O4nyPdzvHc1ey7FbqT9XOQqAhNmRaZqS1rJOwyb948zJgxA8OHD8eIESOwfPnyKCNx1FFHGYvxrr32Wpx11lm47777cM4552DNmjV4//33abFwEnCbzNPOU0nRfRZP7hQpa7WK3Mcfw2nkPi+j0QmjMSmhqDLzseSI/+MnXIvdAXttGNUTFIUpUr5k18ZY2Y94bVhJmuzYEVF9HqeSJi9kTE7uR7dSLR63aySccOGFF+K7777DLbfcgsrKSgwZMgRr16411sp98803kLl74tRTT8UzzzyDm266Cb/73e9w3HHH4aWXXsIJJ5zg+Nh2oYkEQRCEADeuaKf108FIEARBENE4tRFO7QOjvLw8pkfhzTffjCr7xS9+gV/84heujuUGmkhY4dIVlQjseCYAewuwRU+qeJFb1CI87liSyydPIvinKf6IzyV6KhXiPhN7KiV+opWYJ97RT3xiL4KLVRYZozyeh8HKI8HgnwYlwhPhxcLq9sB0r3pw30qS8/vfzROnVDcShLfYuV/s5BQCrL3RwuAd/L7MQ62yp8+CfnDvQ9Gbw9ts5oAwyoSehtj3jtk+MK+1szxEVkR6OeIhGvvF9Zx5JqxyWLTNOx6/zK4dibVPzP1c5h6K124q4NRGuLEP6QBNJAiCIAT4ZMnxDxI1RR48EARBEInFqY3IVPtAEwmCIAgBsouJhJKhhoIgCIIw49RGZKp9oIlEO5MMqZSVy9tqATbD5MUVyKOYy1skMxLJjSK38dtFN2Wk7EmrZ28Rd1vxwjVtR7IUq34y3c+JQnQPpOICbDceiUw1FET7YpXXhyeerNXYJhr7IytZyFuF9REtd7Kbo8HufcXqtdioY7ctMVbCLXt4sRDby7bitWHLLsSxJ9Y5igRlNiRNqSpjEuHURmSqfaDwrwRBEARBEARBOIY8EgRBEALII0EQBEHEgjwSGjSRsMBtAhEvcRsuTIRVjgnTMeMWxJc7MYmP3egcTt3gzqNyxK/flhjodtuwE+vbdnSlNsTzDtePuck2omvUqXva6/vMi/ZoIkGkAlYR+3is80Jof53mF+IJhQTtR9znIhsgojXmFuc4vde9lL4C7qMEtqec09IGWMiNvLAndiM0pZOkiUETCQ2aSBAEQQjwy+L1OVaoJBYlCII4InBqIzLVPtBEgiAIQgB5JAiCIIhYkEdCgyYSFrjJbJsMnCY5ESWr44l0MYom0SpEUhtBP/RgGHwfreJj2D3fyZacAfZd03Zdtk5dzG6P5VTOZEp6ZdNNnez7xovjuwn/KpLyEYQXOI3kZCVxAuwnrotqgxv7I8dhJn+Kua9L+UpbZC+R5yrouiXnOO23F+OWXdvo9LtItEQ2HXFqIzLVPtBEgiAIQoBPkh1nvPWJZuYEQRBExuHURmSqfaCJBEEQhAA30iavF3ISBEEQqYlTG5Gp9oEmEhZIkuRYNpRu2HFJxotKYUyy0zDqQrqRbBdyutwPXvSTJhJEKuBU7mL32hdFcmLYluS4lLuIJJLW0pkjw7ZYyZJE14H4u9albe3w8NtLe8Q+XzpFb6KJhAZNJAiCIATQRIIgCIKIBU0kNGgiYYEkt8+svr1w+/Qg3gJbVV89bXtRsa0Fwc6fSig2FwK7RXb4lNvOoje7C+NsL0J3+SQ+k65zwJvP45Mk+ByeT6f1iSMXrwMSuL332/JU2co2CHPf6GXC/ARq7G2O8xkk2BbYxeo7EXoYLMpE9seyviD4STI8yk6DdcS7L1LJY+HURmSqfciwnw8EQRAEQRAEQbQH5JEgCIIQ4Cb8a7LD3hIEQRDtg1Mbkan2gSYSFsiyBJ8/NZw2XsR8Fsk97KS0t3JRxytz664WuUDjueAT7fK0GgRE55a5dL1wYas22xBFoot0Z9uV/The5Jkig6SqqJ4M2LRGgrCivfIMpUqAA6sF0lbjOy85jZQ2CW2LqT6i6tmRR4n6IcLtIu54Y13k9niyJGPs1//yY7To+w/XE7ShaH/j2YzIa9fNdcb6aVceZ+cY8eRPXt1zybARmWofaCJBEAQhwC9L8FNCOoIgCEKAUxuRqfaBJhIEQRACyCNBEARBxII8Eho0kbBA9skp41aWfAK5i4UL0Eq9YlcCZDfqhki+FOm6duqujueithPFoy2RO6zcyUYdgVvZVF+ycD9buLBlQX1JtRe5g50Du25ba7mWxbYUuS9ESD4Jsq/tkkSaSBCJINUiq7Ul34PVuC20FRH2INQap75j2xItmVKVkPkzRfwfiWi7JPti1hdtY2VCCZLVOC+Qt0ZuAwCfXy9ToqVKaoTNiGyPwb52Yz/uPFpdo0IZr8trU3TtOb0/khmhiyYSGjSRIAiCEOCTXEwkUniCRRAEQXiHUxuRqfYhNVYS62zcuBHnnnsuSktLIUkSXnrpJWNbMBjEjTfeiBNPPBEdO3ZEaWkpLr30Uuzbt8/URlVVFcrKypCXl4eCggLMmjULdXV17fxJCIJId1hEDievTI3KkSqQjSAIIlVwaiMSaR/cjGuPPPIIRo8ejby8PEiShOrqalfHTimPRH19PQYPHozLL78cU6dONW1raGjABx98gJtvvhmDBw/GoUOHcO211+LnP/853n//faNeWVkZ9u/fj3Xr1iEYDGLmzJmYM2cOnnnmGcf98SoqR1ui2VhHldDaFUZo4qRQaoR7mP9MCtg2e32wcmGHWsONhI+J6G2sfii6TOSuZvvyLmeR+5mVqaHYrmvHbmufL2Y9/n/2no/yZeXC9unSG7O7WiszuZh11zXbpnBTf1nkFrYRWSpeFCmnSZTEx3KbHMsbNzVFbcpMUslGSJLUJolfW6RKbq9vq2h+dqPiWdkDfpsxbgtkreExnasfslnW2qqXhUx/gfDYr7S2cMeMLW2KJ3OKhWjsF22X/dna/wI7wu/n8/v1MrN9iFWmRtgFIHyeI20GELYbIpsRKXGKhdX16vp6hPvxnl1LrqWCHngHUkna5GZca2howIQJEzBhwgQsXLjQ9bFTaiIxceJETJw4UbgtPz8f69atM5U98MADGDFiBL755hv06tUL27dvx9q1a7FlyxYMHz4cALBy5UpMmjQJS5cuRWlpacI/A0EQmQFNJFIPshEEQaQKqTKRcDuuXXfddQCAN998s03HTylpk1NqamogSRIKCgoAABUVFSgoKDBOJACMHTsWsixj06ZNSeolQRDpiE+GI7e19kp2rwkeshEEQSQK5zZC26+2ttb0am5ublM/kj2upZRHwglNTU248cYbcdFFFyEvLw8AUFlZie7du5vq+f1+FBYWorKyMmZbzc3Npi+ytrYWgO66TvYTyYj2QgLXNH9McTQj1pageVaHczGqFt5euy5sFo1D0bfxUihWxkubIuVLJte0hbta5KZWLGRPVohc1LLAhS1yTTMXdsgXXWZ2YevyJSYz413TgjKffoey8yNyV/tgzyUtiiBi1OHcvFbRqUR4es0L2hJd8/FIhtua7UOkBl7ZiFj2IZJkSJXs2ieRrJXBJEt8/+0mGIu0BybZk0VkJjb2K5zklfVDMdmFVr1ebHsgsgshka0IxbYZIvhtdmStIvmST2ADmF1gf7XPYJZCqf7wTzMWgY4/t7IgUa4hgfIjqr5xHG63eHYjFm4j/QnbcnF80fVqB7vXtBPceiR69uxpKl+0aBEWL17suh9uf/t6RVo+PwsGg7jgggugqioefvjhNre3ZMkS5OfnG6/IL5kgCIJIH7y0EWQfCILwkj179qCmpsZ4xVqfsGDBAmMtVqzXZ5991s69jybtPBLMQHz99dfYsGGD8aQJAEpKSnDw4EFT/dbWVlRVVaGkpCRmmwsXLsS8efOM/2tra4XGIhWeTvJtip7Uip6vGF4HfUYeL+5y+Glu7Hqipx38jD9yER7/5Ik9jeIXYBtPl4LRT5nYe+FTJu6pEds3sk7k+1jEW0AnZ5mfLpk9DdFPmdgTMLafBv8+Av0pk2RazKh7EXzsf24htgd5HqwWhDNE13Gin7zz17bdY7nxXFhBHon0xGsbEcs+SHL8p6JOPQ1tCczhtN1IL4Xd/EJWmPM3mI8DRHsiRF5p09hvwx7Y9V4rrUHT/1p/Bd5rQbAO3tsAWHuqAUD2Z2ntCxZbMxvh42yF4Ykwjp3LHY39TOMWYDPPDsLnzwfmudC/T4nzYBh9jVYv2AnQAcQP0hGzDYEtMhaGO/SoxepHJFZBBWL97wa3Hom8vDzTuBSL+fPn47LLLrOs07dvX9e/fb0irSYSzEB88cUXeOONN9C1a1fT9lGjRqG6uhpbt27FsGHDAAAbNmyAoigYOXJkzHYDgQACgUBC+04QRHohu5hIUPjX5JIIG0H2gSAIEU5thFP7UFRUhKKiorj13P729YqUmkjU1dVh586dxv+7d+/Gtm3bUFhYiB49euD888/HBx98gH/+858IhUKG9quwsBDZ2dkYOHAgJkyYgNmzZ2PVqlUIBoMoLy/H9OnTKRoHQRCO8EmS4wRCmZpwKFUgG0EQRKrg1EYkyj7YGdf27t2LMWPG4KmnnsKIESMAaGsrKisrjTH1f//7Hzp37oxevXqhsLDQ9vFTaiLx/vvv4yc/+YnxP3Mnz5gxA4sXL8bLL78MABgyZIhpvzfeeAOjR48GAKxevRrl5eUYM2YMZFnGtGnTsGLFCtd9sjvbbC8JhCvJh/43UuLEF/JevlCEyzueZIS5Kc1ubfPiO7su7FBLY9Q25sIWyZjMLmzzgm23McIBsbuaHctYLMdJltixfLblVNESJ+bmVTmXdPTCMuvvXPTEI3KRtWhhtSmfhQ1pk5PtsbC6rkRtxrsOfTavV7vIkgTZ4cDvtD7hjFSyEW7zDLmVg3iBKUcNG28c3i9iWauzNsQ5KSwCaAjsQaQc1lSmy5j4+laLre3aCmYPlDiLrX0R7fKSV1vtt7YItnILsC0CZzDMEmbvrqd4wTpstWGzvlsJlNV96YWEj+HURiTSPsQb14LBIHbs2IGGhgajbNWqVbj11luN/88880wAwOOPPx5XUsWTUhOJ0aNHW+r342n7Ae3Jk5vkcwRBEDw+AD6H437s1IaEF5CNIAgiVXBqIxJpH+KNa717944aHxcvXtymaFGMlJpIEARBpApunjjTGgmCIIgjA6c2IlPtA00k4uBGSmRFW9uIJ/kQyTuMMv1/XsZkRHIC7/LWywTeXuaaU/l+uFQQWUVVUkTu7aAoapMiKIvOJyGKxBGJKbKGjX7z/WEyJ/6YckT9yPdu4F28Vm5SUUQKqwhNdiMzeRmVKF4EMqd4HrWJ1kgQLkmEfMnpjxBh5BrumHa8NyJMny3UdllUVJ2Q9XhpnRdCiS6LqNcWaROrJ8oLYaons3Z9sfsjx/9sAIS/0gzJK38+HT7u9iJCmNU17PX1Gono+rWKThbZLy9+1KfKGolkQxMJgiAIAbRGgiAIgohFKq2RSCY0kSAIghAgS87XSGSo55ogCIKIwKmNyFT7QBMJBzDphN2IMlb1Ui1xlcklyNymUnRkCJFrOiyZCZcZ0qeQuY75mLETwPEJf1RBBKWwi1mOKhMRmVDIDfyxIvvD3suCRHZWn1N8XgRRlSxlTJxUKU57qYSVFMmuTMlrORMPrZEgnGD3Pku0pMkt/HEUXeoqkreKMD57nPtRipCVqKpgvOLGakmJHvsjoySxOtq2aOmRT5edhoKiSEjmNgGxHYkatwX98XFR/MJR/+To+j6LzySIABWuYx1tL6o+d505tQFMGtue45nTxIjs88VNsOsyOpkdaI2Ehge5/QiCIAiCIAiCONKgiQRBEIQApn91+koUVVVVKCsrQ15eHgoKCjBr1izU1dVZ1r/66qvRv39/5ObmolevXrjmmmtQU1OTsD4SBEEcKaSSfUgmJG2yQFVVoTvMytvrdSQaL3Daj8hEdLw7jkmWJDXazSpKduTzRc9Vw/ViJ+kRuX1DAvcwH92CRc8QR+fgs/DFOqbMvY/vUuejdfhYkjquTJS4jpX5/LLpLxA+VyapUoSL2bwtdvQJpy5Uu9HJvLymvZAvxXJXu41Iw+NzsUbCaX0nlJWVYf/+/Vi3bh2CwSBmzpyJOXPmxIwdvm/fPuzbtw9Lly7FoEGD8PXXX+PKK6/Evn378NxzzyWuo4QlRpItmz8qRFIP0f1tRxJidV+YE4ra6prxwygEga0QJBOTFXPUP0kJb/P57f0cYbVYUjiFG3NFSeqMZKHZOfr/0ZH+eJxLmwTyJSZ1zRLYBTnafkTaCrNt0T6xSKokC8qsZEl2f8iy71/hojmK2rO6lhXB7wcrnCaK82KMbytObUQi7UMyoYkEQRCEgFSK2rR9+3asXbsWW7ZswfDhwwEAK1euxKRJk7B06VKUlpZG7XPCCSfg+eefN/7v168f7rzzTlx88cVobW2F3+YPN4IgCCIaitqkQZbEAkVRxU+DLPZpVaKfyouwuzjbKXae3rYlRbzxJIR7kgS/6IxojzTY0xepVZC7wBd+MhTS2whFeBWA8FMmnzCPROyY4EobcjbIVh4JwTbRkyRjEZ7A6yAzjwTnsWH1+BwQkfVFT6Ccwn//7FCSwJPmZWAAp54MuwvjYl3LbbnGGT5ZcvzZWf3a2lpTeSAQQCAQcN2XiooKFBQUGJMIABg7dixkWcamTZtw3nnn2WqnpqYGeXl5NIlIAMJAFBbXj9UT1XjeCqvr2+6TWi8Xn4o+J/M2+EyXmtnrag7koY9x3JioZmcBAEKtuUYZsweinAvG2N8abStE/7u1EbLALvBIEV4H0WJrK1vBf/9hu8CVCbzXPr85MIfIe+0FquA3jrWnqw3Hcul1SMTCahFObUSqBdnxClojQRAEIaAtayR69uyJ/Px847VkyZI29aWyshLdu3c3lfn9fhQWFqKystJWG99//z1uv/12zJkzp019IQiCIGiNBIMeSxEEQQhoyxqJPXv2IC8vzyiP5Y1YsGAB7r77bss2t2/f7qwTAmpra3HOOedg0KBBWLx4cZvbIwiCONKhNRIaNJGwQAkpQtdaKGTTJe1UzuGB28vtgjveFcjaMCQ2nIzJWI/MyXUktqhKILth7crcHeRXdRlTK7+4TzX9VVR+W45eP9pHqqrRbVi6/W0spOORBe5hkexA5H6WLVzMkW5o/lhWLux4OSbYdyaSL4n8j4bb2eqctdN1GfP4Dt3bqqJCCbXBn64juXiCxL6LvLw800QiFvPnz8dll11mWadv374oKSnBwYMHTeWtra2oqqpCSUmJ5f6HDx/GhAkT0LlzZ7z44ovIysqK2y8iPkz6arWY1K3EQkVipBmi+1C0sNruPReWuurt87JMfUw0SWEk1dS+j9uB9S2Lm3NH2gUAUNTsmNsi2xLh9SJdKxmaVb6HeLYisp7ZFkUfO/JYdtsXYZwjzvaHIn8XAIbdsLwHEnQtOyXymvBC/urURjjNIZMu0ESCIAhCQFvWSNilqKgIRUVFceuNGjUK1dXV2Lp1K4YNGwYA2LBhAxRFwciRI2PuV1tbi/HjxyMQCODll19GTk6Oo/4RBEEQYmiNhAatkSAIghAgA5Alh68E9WXgwIGYMGECZs+ejc2bN+Pdd99FeXk5pk+fbkRs2rt3LwYMGIDNmzcD0CYR48aNQ319Pf70pz+htrYWlZWVqKysRCjkPhABQRAE4cJGJLvDCYI8EhYoiiqU0zjFdhzldrLtdl16Ipc3c83J/B0hiletmG8ZkftZ6JKOI7tysi1RWLmHRdtErs94rm5jX6tjCdpl3xnvfja+b5vx6CNpr+sS8Mbd7FU7PkmCz6Er2ml9J6xevRrl5eUYM2YMZFnGtGnTsGLFCmN7MBjEjh070NDQAAD44IMPsGnTJgDAsccea2pr9+7d6N27d8L6eiTh1TXrBrv5Hoz6NmU9Tj+TIdkEF4VJlzEhtnJUfOw4fXS7YNXLyEUinNqieJ+T0V6fV5yvJLqeKrAHTq9DhpTmv6yd2ohE2odkQhMJgiAIAamURwIACgsLYyafA4DevXubfiiOHj06JZI2EQRBZCKUR0IjzeeDBEEQBEEQBEEkA/JIWKCEVCgWEZqctOOovgeucrtyKhFWkQWMaBGwJ8MRSngMeZS9+lYLlNxui4dVAjWn26yiisSLoBVZX4Qw6gpXZpksyOLaTPZ12Ba8uG99svZyug9xZKAq9iUdXniG7EtSU0PuKUquFq6v/Y0XFU8YyY7JqCL+xirzW9QP72fvxg0JsqtFJvAEwolpRdusykSRB9m1I4qsaBVxK971YhX1KrJfbcFSYsXJpLywFU6iIrmVY/E4tRGZah9oIkEQBCFAWyDnVNqUoM4QBEEQKYVTG5Gp9oEmEgRBEAJkF4utM1UDSxAEQZhxaiMy1T7QRMIClnCIYcdlbNetbDdig1s3tZU7UZQ4TrSvKOEZw8cnpNO382XMfZytl2Vz2/wR27T3PlMZf3OyMr/AhZ0tOKbYdR3/Bha5cUXu5xY9kpfIld3CRfkKqdFlLa0hU1kr1wYrM7XB3OB6GS+RsErQZ3XdmpM7JSYilp2IIXYHVbvRR/h6nsiyUmyxNZFaqKpquh+dXnNtiUbnNLqdW+wm2BTZCiPppiDBpl9gF9j7AFeWm+2Prucz1xO1ISozbAanLxHdr6Lsw5FKSf78i8d5RfiXf9/Ml4XM9RpbWo1tzRZttPK2Qm9DNWxGtDxKnJBQlAQ2MfK4yLGcP/8ipZHTCIkQJL+LJZnyQm5Ii601MlSxRRAE0TaY/tXpiyAIgsh8Usk+VFVVoaysDHl5eSgoKMCsWbNQV1dnWf/qq69G//79kZubi169euGaa65BTU2N42OTR8ICtVWBws34nT69tbNoVrzY1kkv4xMZq1m0mE3mnuDIir6dPcnxRdfn28jONnsTAKCDXsaeKOVmh4OJ52Zp7zvnhC+/XKO+9jfHH66fpR8/h7sL/fr7HL7fep+yBJ4JOw+1+a+GeQKCgqf3TexpUCj8RTXp74Pco6sm3fvQ2BJeUcbeH27Snjg1BqO38U+jGvSyFv0DtHBtse+C94yw60t03bIy0UI+Hi+vP1GccJGHK/KpkelpU0hQJsC4bqHdu22FPBKEFcxj7dazYNerIFqAa2zz8P7l71VRQAzVyBXBeaMj7AHzQgCAXx/n/SYPg3nsZ/YBsLYLnbgyZhvY2M/248sCnK1g9iNLX1CdxdkzVmb3Bx4b8oPcoms25ovKmvUdmrjxiI35fBmzFXXMLnDjvNhWtJq28fuEvRTh+iGjWrTXIdKTAYiDgXiZK8LKBtgd+/nxPnys6LJIpQGrkwyvdSLtQ1lZGfbv349169YhGAxi5syZmDNnTsyQ4fv27cO+ffuwdOlSDBo0CF9//TWuvPJK7Nu3D88995yjY9NEgiAIQoAkaS+n+xAEQRCZj1MbkSj7sH37dqxduxZbtmzB8OHDAQArV67EpEmTsHTpUpSWlkbtc8IJJ+D55583/u/Xrx/uvPNOXHzxxWhtbYXfb396QI54giAIATIkVy+CIAgi83FrH2pra02v5ubmNvWjoqICBQUFxiQCAMaOHQtZlrFp0ybb7dTU1CAvL8/RJAIgj4QliqqGfZkcdl3NzBXYloWvXix6MhbECRbLsQXSMnccftE0ECk7iV5YzSRNvEs6v0O2VhbQyjqZtmWZtgFAB9093Ul3dXfIkqO2deBc2Nm6e5pfgG1ImvQi08I/G1Nm/qtm3yO/yI7JnIyF1dzGBt3t3MC5nxuCWoN1vFRJ3364WSuraQga25hb+3Bz+HP6Glq0Mn2bScbEXNL8gk+2EJz7MGxRNsutwC/STtRCO6tFdbYW+AtkFqb2BG7wkO62l2TJdjADK8gjQVgRKX3libz+4klfrfPKmOvw+wrlsw6vfZHcgkld+bFf9gkWW7Pj+1id8I0byI6WKnXK0cb+TvrYX6DbAiBsF/JEdoEr65Rttgcds6PtQrbALvh9zD5wdkF/azfnkJHvgSsz7AJnD1hZi8BW1LdE24o6vaxOtwuHOWlTfUu0rajW32dzEuC6Jq2M2Qr+egnp0inR741I+8Dva1fabYXo+pIE47do7DfqC+TYqsiOqIJrOeL4xr3jgfzVrUeiZ8+epvJFixZh8eLFrvtRWVmJ7t27m8r8fj8KCwtRWVlpq43vv/8et99+O+bMmeP4+DSRIAiCEKDFCHe+D0EQBJH5OLURrO6ePXuQl5dnlAcCAWH9BQsW4O6777Zsc/v27fY7EIPa2lqcc845GDRokKsJTZukTcFgEHv27MGOHTtQVVXVlqYAABs3bsS5556L0tJSSJKEl156ybRdVVXccsst6NGjB3JzczF27Fh88cUXpjpOV64TBEEQ3uO1fQDIRhAEkf7k5eWZXrEmEvPnz8f27dstX3379kVJSQkOHjxo2re1tRVVVVUoKSmx7Mvhw4cxYcIEdO7cGS+++CKysrIs64tw7JE4fPgwnn76aaxZswabN29GS0sLVFWFJEk4+uijMW7cOMyZMwcnn3yy487U19dj8ODBuPzyyzF16tSo7ffccw9WrFiBJ598En369MHNN9+M8ePH49NPP0VOTg4A5yvXrVBV1dL9zEcxUASuZivZiEgeFW43frQnrV4oqkySfVFlkTIQH+d+DoX0uN6cbIj1QxTdwGiDm4Z3MCJrhC/AglztfWEnTeLUJTe8LU+vl8+5q/N193dnFuUpK9x+rhGJI1zGonP4lLC7FyFNBiSxv60t4W3syxK5Z5m/kfOpqv5s01/tYFq/Q7JWxkfdaA5p/W40RefQjnWYkzbV6G7nmmztb0fuvB/K1j6Lr46T67DIGoI8Fa2C74dda61BPmKHuUyxiD0e2Z62zdl1Zq4XHeVLJEuykt9Fyp4A7hpVotvlt7cFkjY5J5H2AUgtG6GoKqQYksDIMVw8zkdvF0mWFIFdsCOvjSdRjJQY8nZB0scFvsyvj/P8+MG2s6GTvweZ5JW3C/m6Heiq24XCjuHxldmDPK5+Ya5uFzhbwexBjm4PcjkZLLMRWWp4zJVam7Q3wSb9s4VthqTo9ZRwfWF4IuMDav1Q5XB/VN0uICsnXKb/MAxK2rZmTjbUGNTOYxNfpp/T6kbdPjSH+1OrS5b46FRGboy66AGH5Z1oNo2h0R9JiZA0tXJyKpFdCFnIvEUIJawR0cCsbABfZiWBEtkWUx9F0aDgXqrFk+jF1kVFRSgqKopbb9SoUaiursbWrVsxbNgwAMCGDRugKApGjhwZc7/a2lqMHz8egUAAL7/8sjFGOsXRRGLZsmW488470a9fP5x77rn43e9+h9LSUuTm5qKqqgoff/wx3n77bYwbNw4jR47EypUrcdxxx9luf+LEiZg4caJwm6qqWL58OW666SZMnjwZAPDUU0+huLgYL730EqZPn+5q5TpBEIQIN4unj+TF1om2DwDZCIIgUgenNiJR9mHgwIGYMGECZs+ejVWrViEYDKK8vBzTp083xrS9e/dizJgxeOqppzBixAjU1tZi3LhxaGhowNNPP20s/Aa0CYzPF/2wMBaOJhJbtmzBxo0bcfzxxwu3jxgxApdffjlWrVqFxx9/HG+//bZjQxGL3bt3o7KyEmPHjjXK8vPzMXLkSFRUVGD69OlxV66fd955wrabm5tNq+bZySQI4gjGhUfiCJ5HJNU+AImzEWQfCIIQ4tRGJNA+rF69GuXl5RgzZgxkWca0adOwYsUKY3swGMSOHTvQ0NAAAPjggw+MiE7HHnusqa3du3ejd+/eto/taCLxl7/8xVa9QCCAK6+80knTcWErz4uLi03lxcXFxja3K9eXLFmCW2+9Napc1RMOMZgL0K6MySoBGIuUwMtG2HtTWSi6LLI+j0hywsrkLM2NHOLkOj5d2mR2UWqXhc+n91EQ8sgncmEHoiMzMUlT1w7hYxYy2RMXsaOT7p7uqP/txEXi8AW1C19uCuuYpZZ6ray53ihTWxq1v431+v9N4W1M5qQI3NZ6UiKJOy9ytubik3I7ho+Znav1J6CVZWWHt3UMdAIAhDp2MMpYJI4OnEyLRRjJadCTI8VJoMPc1CwBkSi6iEkGwaI2tXIRRHQ3OZM28VGbFP28KMGwDCzyunJ6nQGApD/NYGWmbfp7PvJXpMtblCBRFcqdoroBGd5EnqLF1s5Ipn0AEmcjYtoHXfpqT2YULrOyH1ZSQ4WTloTbsLYfxjbdjkiCp4zsfjTZBX+0XTDuOU5iGnmf+UVJSTlJDovSxCRNIrvQjbMLHY1ofnwUP13aBG1ck5qrjW1yXb1eFrYLzFYo9Ye1PnN2QdHfq9z4B8H5AxvHdBsqZYclIMxWyB07G2WqbhuYrcgOhG1Fp4BWr4n7+cUi/LGkq50D4XP2vX5O/QI7zNsKJntl551Pateiz4NF11VIEOnPylaIfp8wrK4v/r3xm8QUFSw6UphIjh0pVeJtgCF55X/d658zUk7lhfzV7WLrRFBYWGgpz+zdu7fpM48ePdqTcwBQHgkAwMKFC1FTU2O89uzZk+wuEQSRZCSXLyKzIPtAEIQIsg8arsO/zps3T1guSRJycnJw7LHHYvLkySgsLHTdOR628vzAgQPo0aOHUX7gwAEMGTLEqONm5XogEIi5ap4giCMTWZKEMdDj7UO0v30AEmcjyD4QBCHCqY3IVPvgeiLx4Ycf4oMPPkAoFEL//v0BAJ9//jl8Ph8GDBiAhx56CPPnz8c777yDQYMGtbmjffr0QUlJCdavX28YhdraWmzatAm//vWvAbhfuR4LRQEkQZKWSDe0qYxP9qVGl0W6B0WSEt51aEhP2iBt8ukua6lFl5ToEh0AULKYaznsqjXciX7tr1/ggjdLm/QEQZwciUXnYBE4CrmoTd10d3Z+IOwQY67cHEXzwcq1YWMvN9Zob+p+MMpCNdr71ppwGXNdt+qhHENN4XMbCmqRLxQugpLRvh4pyseFPfPlaH30d+oUrqe7ruX8rlod/S8AyJ2093JuvlGW36ELACCQG/4RkiVr35lo0RVLYhTkzjdLUsfOMX/eRRFe2DXJR21i74NNmhufv+ZCTA7GXUshPtoV7F9nMlcms2tOIG1iEjulNbo+k1TwMhFWxicb8unO1FgphUQKNqdIcBG1qe2HzQja2z4A7W8jQq0q4Ise74HoJHKie9SutCnU2qqXcXYhKJCZRNgP0X3LEyUz4aRNhl3gorhI+jjCSxIjI9+I7EJnQTJSFqGJtwvddbkTL2PqzJLacfJQufGQ/rfG9BcAFJFdqKvW/tZra1uChxuMba1Nmr3h7UIoGG0jfFlaf5mt8OeEx3R/R+0c+ToXhPvYSXvPbISfsxWKbiNyOVsRyNVsBUuwGi+Baqt+nbRwv0EaI5La+QSRjniMBKUCmyGyFUJpk8U1ZiVrjZRb82U+LquyIUMSSOxEsieR3IlFdzJsgvFbzYOoTXAYtanNR0xNXEubJk+ejLFjx2Lfvn3YunUrtm7dim+//RY//elPcdFFF2Hv3r0488wzMXfuXNtt1tXVYdu2bdi2bRsAbcHHtm3b8M0330CSJFx33XW444478PLLL+N///sfLr30UpSWlmLKlCkAzCvXN2/ejHfffTdq5TpBEIQdZJcvIjH2ASAbQRBE6kD2QcO1R+Lee+/FunXrTNn58vPzsXjxYowbNw7XXnstbrnlFowbN852m++//z5+8pOfGP8z9/iMGTPwxBNP4Le//S3q6+sxZ84cVFdX4/TTT8fatWtNsW/jrVwnCIKwgyRJ5kV7NvchEmMfALIRBEGkDk5tRKbaB9cTiZqaGhw8eDDKLf3dd98Z4fEKCgrQ0tIi2l1IvFXkkiThtttuw2233RazTryV606ITEhn7X5myV24ZF+6S1rhpCIsyoEhWeK2hQSuw0gXdjx3NYN3J4Yi3Ih8Gz4lN6o+cxUy158ocYsoalMuJ23qoEfbYC5sPiFd50B0ZIrcVj0KU73mkpbrvje2tX63V+vPD+GoKsEftO2N3x0yypoPaZKmlsNaW8H6cHSOVl0ipISiPwuLQuLnXPBZurs6u3M42kagiyZzyi3S3NBZXbsZ23xdNX21v+goo4wlxsvtGHZrQ4/ewa6SkBo+LyzBXSPnYmbn1EhAJHJRq/x1qH9nfOK6Fk3WFWrWZExMzqRt097Hk9hZYSVfCrurwy5s1q4sKFMVJnGKHpp4SUVIP4M+7hkP+8SSnJyIHGwfIjH2AUgtG6Gqqm4jtP8Vga2wksGaIwKyaGvxbQb/XiRJtBu1KfK+5e9RkV1gP4JE0alkQ5JjbReMKEy6XeCTkrJoTJ25+p39upSWswdyvZYlXa3R5K9Bzi4wG9FyqNooa/xBkz41V2v2IVgbjugUrNekTcGmsJxJFSRek3Sb6NP7mNUxLG3KztPG9EBBWAab21WTLQW6aWuAmH3g3/vywyGFpZB2/M6GrQifA3a6g5ztatBtREMbbIURDUy3FcxOAGJbIbq+jHHbRlQwgJNZs98krVykRH9syavK2QNRdCdjm40If0zqlGlRm5JJm6RNl19+OV588UV8++23+Pbbb/Hiiy9i1qxZhht58+bN+NGPfuRVXwmCINoNlrXU6Ysg+0AQROZD9kHDtUfi//7v/zB37lxMnz4drfpTFL/fjxkzZmDZsmUAgAEDBuD//b//501Pk4CqAJKP/z/iKZNwYXX4yYYoRn+kJ4Jf2CpaQBd+8hQ774QI0QIn2eKJFV+/VZ/9+/WnR/Fi8mf7op88BfSnIswzkcs9TWa5InLU8GeXGzTPgqQvsg5WfmNsCx3Q3tfvCy/Arq/Unko1Hgx7JOoPaE+ammtb9L/hJz7siZMq8EhIukcii/NIBPIC+t/wE5OOxdqTp9wftCeqHUsOh7ex3BXB8FMdf4n2nclS+LPndNY8EK36wu5mbsEXO1cB7lwZT5ksVt+J8kjwC+ciny4FuXwcbJvSGu63HY+EeAEdF+tb35dtM3vBotvnvRPRx9LOFX+/GXHupehFeKpijttPtD9Hin1QFXsLqkXbrPK5mDwSSrRHImSR/8XpYmvjqa+gPr8YVs3O0vsR7V1hmDwS+piVzY1nAT/LC6EH6OByTDAbwewDAMiN2jjP7AMAqIc0r0OrbheCB/cZ2xoqNY92/f7wYuumH7RxuuF7bZF146GwpzpYr417vEdCaRGcB72/zEZkdQx7knO7aN7rnC5h+VyH7ppHoqPuHe/QGF7gnaXnrvBzESFYNB/Vp7XfMTcczaxFt1nN3LkK24pwGTvP7LzHyzkU6S0TebxaOY+E1bVphWkRv96G4bHm2mLeCpOnOmT2VPPbeQ+1UZ8txLYIzMECnZCN8A7XE4lOnTrh0Ucfxf33348vv/wSANC3b1904qLcsMgZBEEQ6YabxXGZupjOKWQfCILIdJzaiEy1D236XG+//TauvPJKXHnllejatSs6deqEP//5z3jnnXe86h9BEERSYAvpnL4IDbIPBEFkMmQfNFx7JJ5//nlccsklKCsrwwcffIDmZk1GUlNTgz/84Q949dVXPetkMjHJRiwW5zA3tSh9vEiqJHJNh2VPweiyiEVNke1GYpKe6Aug/IJtrbLmujS5H9kiLDXaLc/g3absvcmF7TNLm7J9ErdNdz82hKVBLBZ46yFNvhT6Yb+xjUmaDn9zwCg7vFdzddftC8t06g5qbuQGXdJUE+RibOvu4RbBZ8nW+5/L9TFfb6tDXnhRHZNMdapnOSnC3xOjoz/s8pYCmqvbb8rbob0PdNAW1fHnxXBXczKmyIVz8dzV7DszLeSMcFObr7mgaRsgvm4jEV1ffB4JJsWTufNhhSGBYseW+UWk+vXLufaN/nP3pMQ+s0cr2mixtXuOBPugKCokRY2SiADWi62NwBwCWatVEA6r+tqxotu1QiQ7NI7JFmDzOWdatbHLyg7yCO2C/j7HkOGEb5gcPW+RrzUsPZKbdBtRH5Y2hXQb0aovrGZyJiBsI+r2h3NL1B/QZEWR9gEI24hGTvJqx0bkc/KrDj9oNqJD1/A4bwT3EOSk6KiP71J2WArlz9Vks3KWnpMiq4OxLUe3zWZbobXBy2Dt2AqeSIk2bxdEtoJJY0UyWPb7hLcBDL4+swdGwI2s2JLW+ETv6xM8G+flr0BY4iQKGuAUWmyt4dojcccdd2DVqlV49NFHkcUl8jrttNPwwQcfeNI5giCIZCI5fBEaZB8IgjgSIPvQBo/Ejh07cOaZZ0aV5+fno7q6ui19IgiCSDrkkXAP2QeCIDId8khouJ5IlJSUYOfOnejdu7ep/J133kHfvn3b2q+UxnBbC1y8whjLvLQposwcKSEYVRayyCNhW3qiaO8VQXQd5loUxyi3J0vxM1cqp//L0t23WSxHA3cH+XXnotQadjGreiQh5XA1ACDI/dho0qMkNRzk3dWam5q5qwHgBz0aR5UedYOXNtWzSCminBh6vztykqK6Vu19oUWUJx/n3s7qqLm1WUxxAJA7a59BzQ/nkZA6aJ+ZnQP+vLBzlcX1g/XNb3MEMmLUW8ScF21zmkdCdH2pAre2cF9dCqXwUZtsRJzh7zf2OaUEjsyUkM49R4J9UHVZk0j6GZkrwhwtJ/ZYzv6G4tyjIhmsEec/JLh3IqKoAdEx/0V5YOJF6LGK2iSS2DB1TpZug/jAO2yMk1rC0iYpqL1X6muNMqWuGgDQfEiTPTX+EN7W+INmR5icCQAO79fKqnRJUxUXlYnZiHpeesYiMHIfjUmbmI2oCYY7XqRX5CMCslwHPj3ak79jWPbk76DLl3T7AACq/vmkXC2BI8tBBAD+LE06xZ8rdv44tZNtSRMjLF2OfT2Kfp/w12akDJYPhGRE8xPklnCKZJLNRtqK8OdVdBkTL7VRZL0sIkpTvGiUtvpFCekAtEHaNHv2bFx77bXYtGkTJEnCvn37sHr1alx//fX49a9/7WUfCYIg2h32tMnpiyD7QBBE5kP2QcO1R2LBggVQFAVjxoxBQ0MDzjzzTAQCAVx//fW4+uqrvewjQRBEu+NG15qhdsIxZB8Igsh0nNqITLUPricSkiTh97//PW644Qbs3LkTdXV1GDRokClO+JGE2O1rIdOwcD8rFi5vu9ImEUwmJUr4YherSAcy57ZjLlcmzeHzqUmKFsmCd9+qTMKlu7VbG7lkcvV6IrX6sBu/RX/ffDjcRp0efYK5q2tbQ1HbBEolo68i2VM29wihk36sQF4wqj+sj3y/s/XPonKSBPaZ2TnwyeFb0DhX3GgjW7hCnUadCLuhOTe+IAmi3YRWVrBrWDLaCMvkjGuOG30s7xWjrH2jcMuSZHn+Y+1DHFn2wSq6nSqIomZc64IIfMJxXhBFTZigNBS7DStYhDS7tsWpJISX2rD7QzbsQrTNQCgc6UgKaWOsykcKatbG1VCTHo2uPhxxrqVOq9dSHx5zWxq0skj7AIRtRF0rL20SfAYbNiKXO2ZAf8/6w/eR9Zt9DgBQdFvBknVCCZ8Ddmx+bIk8j4A9SZPVdxfPBti5buMe37jWoiOGiSL2CfsWUU9R+OSo7PNJ3L56mc/7sdmpjchU++B6IsHIzs7GoEGDvOgLQRBEyiBJ2svpPkQYsg8EQWQqTm1EptoHRxOJefPm2a67bNkyx50hCIIg0hOyDwRBEEcejiYSH374oen/Dz74AK2trejfvz8A4PPPP4fP58OwYcO86yFBEEQSkFQVks3kW/w+RypkH4gjGZ+Xj5sVJX4dIuk4tRGZah8cTSTeeOMN4/2yZcvQuXNnPPnkk+jSpQsA4NChQ5g5cybOOOMMb3tJEATR3qiK9nK6zxEK2QeCII4onNqIDLUPrtdI3HfffXj99dcNIwEAXbp0wR133IFx48Zh/vz5nnQwXZAEMfSNOMqibSy2cmt0fT7NvN3Y/Fb9Ye99emxwPo+E0xjPssWCLoWbbbMFa0ZMbu7+UbO0y071hRd9s7jlUrYWY9ufGzC2sRwNWR3DC3az9feBzuE2OukL5loEC8rY0yK7eSTy9RwRnbjg3exY7Nh8f1gf+X6zzyJlhfuo6J9Z1RdZh8JrCIXxyxWLJxhW34UI9l3z3z+7JpwurBZdX6Y49HaufUF7VvdReyOpCiSHA7/T+pnKkWQf2AJKhYsFYOQ5YYtiuXtVFcTXZ7lYRPeBcd+aFpVG54Vg9zILoCCKvS9sV3RMi3vOae6WkGA8Vgy7EG0z4Av/LFF92hgr+cNjrRTQ8zDkaJ+Xz9GQ3UnLGZHdMTzmZnfQzoeVfeCDaljZD2Yj8rOibUV2B94+6baiU1ZUH1m/2ecwfT523rlzwM4LbwvYe5PNbWNehHhjutO8EKL64Xbl6PZ9Fse0qMffW6I8DQnNNeTQRmSqfXAdBqW2thbfffddVPl3332Hw4cPt6lTBEEQSYc9bXL6ShBVVVUoKytDXl4eCgoKMGvWLNTV1dn7KKqKiRMnQpIkvPTSSwnrI4PsA0EQGU+a24crrrgC/fr1Q25uLoqKijB58mR89tlnjo/teiJx3nnnYebMmXjhhRfw7bff4ttvv8Xzzz+PWbNmYerUqW6bJQiCSA1U1d0rQZSVleGTTz7BunXr8M9//hMbN27EnDlzbO27fPnyds2qSvaBIIiMJ83tw7Bhw/D4449j+/bt+Ne//gVVVTFu3DiEHKYFcC1tWrVqFa6//nr88pe/RDCo6TP8fj9mzZqFe++9122zaQFzlUmKyI1mT/LB3Nt8TgcrFIsYzuI+RrsC2bH4Y0qCfrD3dl2CrQqT5IRvkqCuZQrqftlWzu3aCnZMTgaUo8WXlzsXAACyCgqMbTld67W2+FjceixwVRD0O7dWy+XQyR+e/Tfq9azc2rlcnGnmru6QF+5jp+4dAQAdi7W/Hbrnc33Mi+o3+yzsswGAqn/mVn0O38p9h+xcBTkdGDunrTbd1uw7E3+f0d81i0cvx4lbH30cwfXFX+fGtZYVdUyRhC/yXhFKnLgfwol0Vxuk0BqJ7du3Y+3atdiyZQuGDx8OAFi5ciUmTZqEpUuXorS0NOa+27Ztw3333Yf3338fPXr0SEj/IjkS7IMkS+brkBuLjPtQ/19V+Ws3voTDZ9Mu8KgR8qh4csXweGBxjwrKzG2Y70OTVInZBa4sqL8P6uMOl77BGONUf1jyo2Zp7+WOeUaZ3KkAABDoUq3t1xDOx8DyNYRaoj+7pI/vzD4AQH6W1oG6Vl5iFVvaxGwEL21iNqJD17B8qWNxB61+107633D/A106mz4H//nY5+XPATsv/Lli5483f6LzHYkkyOlhdT2abYUgv4ORy0H7KwuuEfM1JJvK5KxoO+UTXHNW94rpM7HfZsLPKf7bJlJkjYRb+8BPNHr37o077rgDgwcPxldffYV+/frZPr7riUSHDh3w0EMP4d5778WuXbsAAP369UPHjh3dNkkQBJEyaBE5nK6R0Ix4bW2tqTwQCCAQCIh2sUVFRQUKCgoMIwEAY8eOhSzL2LRpE8477zzhfg0NDfjlL3+JBx98ECUlJa6P7xSyDwRBZDpObUSq2Qee+vp6PP744+jTpw969uzp6PhtThXbsWNH/PjHP8aPf/xjMhIEQWQObVgj0bNnT+Tn5xuvJUuWtKkrlZWV6N69u6nM7/ejsLAQlZWVMfebO3cuTj31VEyePLlNx3cL2QeCIDKWNLcPAPDQQw+hU6dO6NSpE1577TWsW7cO2dnOPKKOPBLffPMNevXqZbv+3r17cdRRRznqUKphcpHpUqYQBK5PPbqPqkRLPvhoG3akTGY3nu4K1F2ZopT18duIcGFz7kR/dm5Uv5h7MNIlyCNyYbdwvtdmXZ7TENT62BLycdu0+lk5nY0yJai5pH1dtJtBbQ67qzu2cqGNWB+ztc+SzUVOCuRpn6FTrRalI59zYQebtPBYIikUc3ln5YRvh4DurmZtAmFJU253LRJNx5LC8LZSrd++rmHpCPssSm5YAqXqn5mdgxauP+xcNXPSJnZOrdzWIjcuH8mCfbfsuxZdQ/xAwMqcXl98NKgoORV3zfksJHaiyB0+f+znHXIi5U5tkDbt2bMHeXmcnCHG06YFCxbg7rvvtmxy+/btzvqg8/LLL2PDhg1R+R0SxZFmH2RZgixLYFeIj3suF4L5uvEJn9lF2wKryDUKVxYSSD4i71v70qZomYlPWKbbIptrbYR2QX/fxCIoceNfky4vys3hohnp46WvY9ge+Lpo79UW7W+HUPQ9KmeFRzQWQYmN5R0OhdvKr9dsC7MPgD0bwUfsy+2i9TenS7jfTPbasUdX7f+SrsY2f9cS/XNwP/w6ajZF0T9viJM2NTUxG8qfK+0zN7c6sxWmz6SPl+x7DQm+f9E1JLrmrOI4CSVzWdEyJkvptVACpfXbx0VbND6ToMyQG+p/1SRKm1LBPjDKysrw05/+FPv378fSpUtxwQUX4N1330UOdx/Gw5FH4uSTT8YVV1yBLVu2xKxTU1ODRx99FCeccAKef/55J80TBEGkDm3wSOTl5ZlesQzF/PnzsX37dstX3759UVJSgoMHD5r2bW1tRVVVVUzJ0oYNG7Br1y4UFBTA7/fD79d+BE2bNg2jR4/27jzpkH0gCOKIIo3tAyM/Px/HHXcczjzzTDz33HP47LPP8OKLLzo6DY48Ep9++inuvPNO/PSnP0VOTg6GDRuG0tJS5OTk4NChQ/j000/xySef4KSTTsI999yDSZMmOeoMQRBEyqAqzjPMOvRgFBUVoaioKG69UaNGobq6Glu3bjUyQ2/YsAGKomDkyJHCfRYsWIBf/epXprITTzwR999/P84991xH/bQD2QeCII4onNqIFLIPwu6pKlRVRXNzc/zKHI4mEl27dsWyZctw55134pVXXsE777yDr7/+Go2NjejWrRvKysowfvx4nHDCCY46kapIcuT/uotMNbsEASCkuxV9futTahWdJiSIthEZgcNu4jChtCnLLHEBAJ/+3hcIl/mzmMubJY2xdgG26K7lRi5SBnO5MrlOI+eCrQ9q7fkDYXdlbgfNtSvrN1oWnzQvS3Mjd8oNa6wDBZoLuJGLhtGxRIuZ3HKYRXnionnormtF4LaWdbe1n5M2ZXXU3HrZnbljdtEjcBRpfc3q2s3Y5tPd1f6isFRD6aRtVzqEk3I1Sdpnrm+JPi+GtIkrY+e0ReC+Z5ikTfp3xr5DAAgFoiVN4X112YSexIqv5/RaM0UnyzJLm+K6sCMii/H3EYvWxN9vVpE3JDn63k13Bg4ciAkTJmD27NlYtWoVgsEgysvLMX36dCMix969ezFmzBg89dRTGDFiBEpKSoRPo3r16oU+ffp43scj0T5IMiBDT0jHbWNSJlXSE4fJArkMJxFSZO2JZKi1NbqeReQalbuHQq3aPSyMrqNHYhMnB4u+R30CyauRXE9wHxp94OQ0bMwyS5u0ftTp41rn7HBfA36trexguM3OOZpESAqFz4usL1j1s6Rm2WEJhi9Xi5bE7AMANP5QAwDoUK3Zh2BtvbEtWK/9YDJLm6LHWkmXyjBpky+HSz6Xp9mIHM4W5ejHD3TT5K/MPvDvpfywtInZCEX/vPVBzgZE2FIgfP7Y+QTC55md93gy2EgZkCz4/nlCApmRGhFN0irZKBC+xiyjRXJtiOyBzPorR1+PIjl2pKSJ2YZMshFu7MOXX36Jv/71rxg3bhyKiorw7bff4q677kJubq7jhzyuojbl5ubi/PPPx/nnn+9md4IgiJQn1TJbr169GuXl5RgzZgxkWca0adOwYsUKY3swGMSOHTvQ0NCQsD7YgewDQRBHAqmU2dqpfcjJycHbb7+N5cuX49ChQyguLsaZZ56J9957L2rhdjxch38lCILIaFIojwQAFBYW4plnnom5vXfv3lDjJDyKt50gCIKwSYrkkQCc24fS0lK8+uqrnhw7rSYSoVAIixcvxtNPP43KykqUlpbisssuw0033WS4XVVVxaJFi/Doo4+iuroap512Gh5++GEcd9xxjo8nSeaEQ5HROfjIHKLIMpKsuT9DnGtP0d3PougcsiBSguLX6isid3WciArhvkXITDi3ZVjuFHbVMlehz2+O3sRjcmG3RkubmBu2pllzGedw54cl9zGdsYDuHu6sXZKqj3ezatt8+eHIF76uPwAAsot/MMqU+sMAgFY9LXyoKSzXCelJsZSWaOmAnK27q7PC58CXo5+XTuFkcnJHPZGQ3g++P+ikvQ9xEZqYu7pJDi+kOtwc0v9q5+xQYzgiFTtXvAvbkDa1xnZX89+P8Z1x55t9t6qife9CiQQnMWASCYbd60yUkM6O7Imvz+4jyfSZoiV2zB0vTEYkSd5kcXaTiZR+qCeV9rQR7DqT9MuYl0qoeoQ/Rb9fJZHMhCuLTKSlclIOJnfiJSVMisjfmz6XUZuEMhOBXTCiNgnkhIogUpDILtTrY1udPtbVcBLMgBEVim9Z2965U1gnrvr8eh+1cTWLS1bHxmRfTdguBEqqtT7Wa7H7g4fDHrvWJk3axNuFUFBgI/TxxrALOeEx3a/LYH16AlIgnGyO9UfmbAWL4meyFbmarTgc1M7f4ZZoGROzD0D4/NW3wVZESoP471pkK2SBdM5OZD+rZHL8NR2W2HGyVhtRmETbZJO0Sf8bYROSYiMy1D6klUrs7rvvxsMPP4wHHngA27dvx91334177rkHK1euNOrcc889WLFiBVatWoVNmzahY8eOGD9+PJqamixaJgiCiKANUZuI5EA2giCIdoPsA4A080i89957mDx5Ms455xwAmqvmL3/5CzZv3gxAe9K0fPly3HTTTUYCpqeeegrFxcV46aWXMH36dEfHk+Vw/GgeUdxwtqjO5MHQnwzwM19Vjw/NFmeLUtCbZvyh2E+X7D4pjpz9mxZVCRbnsveip77svfnJk9aPBu4pSo3+pD1Lr58leoqF8BOQoN5eR7awOo/Lx6A/uZE7hvM2yF20BUT+5vDCObVFy0WR3Viv/x/+YaCyp+yiCAts0R6/sFBfwCdxC7wl3ZOj6N4TJTu8TQlonotQVgejjD1JquefJOmL6KoatPNTxXkkapu09zVcWYPxlEn7y5930YJj9p3x36dq7KNfe4Inj/xia1/EdeX0OgOiPW6ip1KmxdMR+S+cLqADwovmZVmC6sEjkrZktiaSQ3vaCJ9fgs8vG/cXP7REeimYh0Ir070O3L3M3ou2safhCrcIWBF4r608EXYWw4rsAv+01wjCwdnESG+1yC4c5hYy5+rjXjYbp3zRN6qihu0C+8itSrheh4D29D4noHmI+Tw9ckftyb+/a9guSC3ae+axzmoKb4Oeo0jlxj+InrKzcYw9QfdzHvycjvqxwwu8Vd02qLqtaA2EbYWq97uJ+/nVoHuo61q0v7yn4XuBrWDeiZqGcBk7zyJboYi8Ez7zE301i782om2FIvJIhMznKt5i6yiPhGn8jvZ4OckLoZXpfwXehkivH0Jt90i4zWydaTgyt4cPH8b8+fMxcOBAFBUV4dhjj8WkSZNw55134rPPPktUHw1OPfVUrF+/Hp9//jkA4KOPPsI777yDiRMnAgB2796NyspKjB071tgnPz8fI0eOREVFRcL7RxBEBkEeCUck2z4AZCMIgmhHyD4AcOiRuPTSS7F161bMnj0bxcXFaGxsxI033ogvv/wSt9xyC372s5/h4YcfNsJNec2CBQtQW1uLAQMGwOfzIRQK4c4770RZWRkAGKnAi4uLTfsVFxdbpglvbm42xc2tra1NQO8JgkgrUmyxdaqTbPsAJMZGkH0gCEJICi22TiaOJhKvv/463nnnHQwdOtQou+mmm/Dqq6/C5/PhzjvvxMknn4x33nknIXHK//a3v2H16tV45plncPzxx2Pbtm247rrrUFpaihkzZrhud8mSJbj11lujyiVZEi4sE7mrRYvqmNtXUaNd2MxVpyicBEWvpwrckCLXpP1FsLEXJ4nyDkQu2BXF6hctqqvjJDyBBt01LtiXyZiauPji+Xp87s76wuc6Lo52rl9b2BbgUrbndNLCk/mUsGsXIe29FNIXtHOLhg33o8i1yNyg3GpJQzrALfqGjy2ez4rqf7Oen6KxPtyfRmPhXPi81OjuZ+aaZnImILzwmndXs3NqtYBOlEfCZ4qF7jfV8/nC20J6fTU7vHgw8lpzep2J+iYJFvkJpUo2ZUwiFzbfbrzcJ7agiYQjkm0fgMTYiJj2QQ/GYVzjAqkSWI4JiZcksjoC+yGQNimGXeCktIacKtp+RPdBTOQ9IpKP8GWixdaRbbTyeXF0WWa2Pzz+ZVvYhVZ9zDLZhYA2dhXkhn+q5Aa1NnL1/uRkFRjbAjl6jh81fEypVZ8EBjWpqxQKj6/MVpjuW9E9HJF8gLcLim4XFF6mnKXJYIOS1u9mLn9Roy5jauJyY7BcEdWNZvsAcJJXrqyqXut3dQNvb8wSY/67CH+M6PGSfa+i64X//kOCgDJW15gwx0+EhNXKBvBlwqAaFjZA1I/I/niz2JomEoBDaVNxcXHMGOXHHHMMHnnkEfz617/Gtdde60nnIrnhhhuwYMECTJ8+HSeeeCIuueQSzJ07F0uWLAEAI/nSgQMHTPsdOHDAMk34woULUVNTY7z27NmTkP4TBJE+sBjhTl9HKsm2D0BibATZB4IgRJB90HA0kSgvL8fll1+Ojz76KGadiy++GBs2bGhzx0Q0NDRAls1d9vl8UPRVbn369EFJSQnWr19vbK+trcWmTZswatSomO0GAgHk5eWZXgRBHOEoirvXEUqy7QOQGBtB9oEgCCFkHwA4lDbNmzcP+/btw0knnYSf/vSnmDJlChRFMbmI1qxZg27dunneUQA499xzceedd6JXr144/vjj8eGHH2LZsmW4/PLLAWiuquuuuw533HEHjjvuOPTp0wc333wzSktLMWXKFMfHi8wj4YtwO/PuahYBQTXJmLS/itDlHf2/IpDdWLunsyy2hbGSjRjuap+gLMINyfeHl9gwV6pPDrtZ2bli9YSxxFvCl9+hJs1F30mXNnXI4qJ06LKrDpz8Klvvr5/rW5as5yKQ9DwFfv67Q1x4NRD7HjkvOILNWlmrormVWzh3Ncv9wOeAaAiySBytUfUOC6Ju1Omyp8N8lCfdrc3OcUhwLZkiX+jfGS9VkyTFVC/ESZv87FoWyO/C2LvOeCLdyCJ3tah+pNsasBmBI6ItT9zWhCOSbR+A9rURsiSZoxZxY6gim+8hoeyJUwcyGxGWt0YfT2RHhDJYh5FhRHmCZIGMyYiKJpS4RPex0YZdaOHkN40dtHGGz6FQm62dpENNYVvRKdtsDzpmR9uFbJNd0CSxfl1ulBXg7AJTtfLyGMHQwT6WYRe4U8ykuq1cYbBR/3y69Ja3FfUt0baCRfhjUlbTOdBtQB0X/YpJmuoEtoKdU/P1Ev2ZjO9Yr+fnzqOsy+gU7vthNsWL68tKsmSup/+1kC+J5FHxjg8AKtkIz3Ac/nXp0qX4xS9+gaVLl2L+/PlobGzE4MGD0a1bN9TU1KCpqQlPPPFEAroKrFy5EjfffDN+85vf4ODBgygtLcUVV1yBW265xajz29/+FvX19ZgzZw6qq6tx+umnY+3atcjh9PUEQRBxoYR0jkmmfQDIRhAE0Y5QQjoALvNIjBw5Es8++yxaWlrwwQcf4PPPP0dtbS26deuGs88+G927d/e6nwCAzp07Y/ny5Vi+fHnMOpIk4bbbbsNtt92WkD4QBHGEQIutXZEs+wCQjSAIoh2hxdYA2piQLjs7G6eccgpOOeUUr/qTUsiSZIpawFx6hgyDqytyMduJvhQZaUPbz01vYyNFeKJFbkJRAjAjapPABRjiXJ4teht84qFISRMv12Fu2c45XCQO3a3K/ub4w27WLN3/nMMnR9Lf5wj6zZLf+WRrd3Uk/FfD+h8USM9YVJFWTgvVpL8Pci7sJj0xEC/rMs6Hfq4ag9HbGnkplJGQTo/aJIrEwX+fAtkBu16Zm5qXsSX6+ou89gBrqVJ4v9ju8FjwLmwv3NZuFsdl6mI6N2S6fZD8MmQuIR2PDxHRl/jEpvrQxktE2G1iZUeEkfs8vH9FckJRhCYrmSKfNK+1VdtWJ7ALLGkaP/5Z2YVOXBmzDWzsz+VknKwswNkKZj+y9LUzWdx3wcrsSF+1/mt/g5zWPdIuAGE70CyIRMU+M1/GbAU7V7zNENmKSMkrvw+L1qSEBLaCt4mKOWqTzMnxDKkdJw/24royymzYAL6/TiRLsepHblMEttIpTm1EptqHtMpsTRAE0W6QR4IgCIKIBXkkANBEgiAIQoyquphIZKYGliAIgojAqY3IUPtAEwkLmOva+N8qgpLuXTW5pqNzdhnYjXwQL6lQLKxce04j6PCEEydxCekEEYWYFCeclIiTJent8mXZurualfm4PrIyPkKTT9CGTyBpitxmhSjZG18WGWmE39YqiEISUqPLmEuflbUKzpmpDRYlSy/jpQwiqYPxnQmuWybTixcpjOH22gPiy5AAa9e007Yi63nhtoYaAgTJ+OLuQxwRyCxhKZNKxEkWGbVNdH/ZtCPOI/y5wySFEUT9M47Nohm18qW6XTDJnbT3jYZdCEd0YmN5gLt3c/UofiZb4TPXM9uR2GWGzfBFy2F5fIKvLBRxavnzLx7nFeFf/n0zXxYynxdmJ/h6ojb4pHPsPBuRFVu5qE2C68VIOqgL6/hIY5a/ddqA3d8lduo7TToa+XtG9PvGMU5tRIbaB5pIEARBCFAVBarDuN9O6xMEQRDpiVMbkan2gSYSFhhPnIyC9ok7LHqy5ZS2zLbtxOAXLfrlF3ex50zNIo+HYCGfsc2hN8HttniIvBNut1ktuhcvloy/SD8W7Nz6+AXVsrvrKdnXYdKPq7jwSDitT6QtkmTOV+ITPcoWYNzzDq9R/n608rclwjMR71jhkZ9/Cq57MLhz1KrXbNE/QJNgMbcoGIgon5PIAy0q81vUD+9nz4MZEvwQNLzGAg+1aJtVmWhhfTi3iGAxtOB3Katv22YYnonogABeYNdz4HbMdpszyJNcQ05tRIbaB5pIEARBiKCJBEEQBBELmkgAoIkEQRCEEDUUghpyNvA7rU8QBEGkJ05tRKbaB5pIWCD7JFPMfdftJEneEQu7Lk+h21QvE0lylFC06zW8n00Jj8NFhO3pxmc4XQBmdxGZcF+rY1nG0ebeI3a9dL024+HFfQtF0V5O9yGOCCRZHCM/7n4W96MVomtaGDDGQpYiGrcZ9u2CvTG6VSB/dYsp54YXkhQdpwt2Rbi1QVaBLrz4jG6CVET1w24bDvvr5r7xGk/64NRGZKh9SIGvkyAIgiAIgiCIdIMmEgRBECIUJayBtf3KzCdOBEEQRASObUTi7ENVVRXKysqQl5eHgoICzJo1C3V1dbb2VVUVEydOhCRJeOmllxwfm6RNFsiyZKSPt0tbIgF4ITOx456WBFF8RBEhmOuPd5+LIkKoSnRUiciY1qIoFKY415FRK9TobaJIUaqgntU5UAWLnSQ5thZAjhNVhMGuk3hx140IGX6bEUp85nZN7evfj2TKCxL7MwjlVDau1/a6LgFA9FVYyTFEqIrqSZ9VJSS8XuLtQxxZJEIeGE+WYoy1Dh8Fin7HsPHdFOlNJF21ITEVjdvCaENCCWv0cYRtREQxshvlzuk44hTRWGoVmdDKVpjHeVEb0ceMHOcl1V4OEMvjCGW59vZ1CutbouXKXslnAec2IpH2oaysDPv378e6desQDAYxc+ZMzJkzB88880zcfZcvX96m3640kSAIghChulgj4TQTNkEQBJGeOLURCbIP27dvx9q1a7FlyxYMHz4cALBy5UpMmjQJS5cuRWlpacx9t23bhvvuuw/vv/8+evTo4er4JG0iCIIQwJ42OX0RBEEQmU+q2IeKigoUFBQYkwgAGDt2LGRZxqZNm2Lu19DQgF/+8pd48MEHUVJS4vr45JGwQPbJtt2VIpxGhGhLAjWGVbK0sPRHsFGOfsukR7xLmLkFFU5mxFzNfFlY2sTait4mqs/q8Tec0tqi/Q22cJ8lFFUvskxpw00r6xobXvYkRZTx2+SsbO2vPzuqPi+PY1IlWS9j//P1eNcx+85YfVnhrhFWxj8OUMzSKa292JIsK9mT0a8EX5cizO7t2McXuaklnwTZ58EzEsojQVgQlbCUw200ILvyAskiKpmVhIe/l8PJ5AT19XEknhwoUtJkkreysdwkdzJvC3FJTEUS1rAMlq+nj++6XeBDahplFnbB9DFd3q+yQINpZStMdsEnKIuwFaZEhwLZbKTkVaunj+WGDQiPgYr+VuZsv2X0QUMKFS6zm0A2sg2niK5tN/LWWLDPkZSkpXrd2tpaU3EgEEAgEHDdjcrKSnTv3t1U5vf7UVhYiMrKypj7zZ07F6eeeiomT57s+tgAeSQIgiDEsNB+Tl8EQRBE5uPSPvTs2RP5+fnGa8mSJcLmFyxYAEmSLF+fffaZq66//PLL2LBhA5YvX+720xuQR4IgCEIAJaQjCIIgYuE2Id2ePXuQl5dnlMfyRsyfPx+XXXaZZZt9+/ZFSUkJDh48aCpvbW1FVVVVTMnShg0bsGvXLhQUFJjKp02bhjPOOANvvvmm9YfhoImEBbFc117IQLyQi1i1y0tJ2HvWb5MSxqXkhI/OoQjc1EwWJdrWGgzpdTh5VIR8if3Pvw8JyvibONKFbXZvx39SLHEaIZF8ySgTuKZ9/mhpE3uvZIXLQnqZL6QdS80Ktx8pY9KI6De3TTIitzi7lkSRqHjYNeTlNSpqy1LuxNW3qhfLpeqN21pxIW0ij8SRiu0EYB4kGxNd30a0PYv2eYlIpD1oSzQbUQQlUXS+SHtgsgFGWStXP1rWapSxvw5lsLwtsJI9iRDbBVlQptsIgeRVFsid2PuQoL4S0n6m8XJN1a+dU59JwqnLZf3sswm+Tw8SdTqN/md3LLa6/kTtW8mdRH1MSDQopzZCv/by8vJME4lYFBUVoaioKG69UaNGobq6Glu3bsWwYcMAaBMFRVEwcuRI4T4LFizAr371K1PZiSeeiPvvvx/nnntu3GPy0ESCIAhCBK2RIAiCIGLhco2E1wwcOBATJkzA7NmzsWrVKgSDQZSXl2P69OlGxKa9e/dizJgxeOqppzBixAiUlJQIvRW9evVCnz59HB2fJhIWSJJk+cQ2Hlb1vHzaG28hq8hLYUXkk4G4cb2NMkTVEz15Yu9NXgf9CVKopTFqW8jiqZR5UXbQVOb1YmvZn2UqE3lDfIJFfmK0J07iON38gkjtvSLpTxv570KKzpvBYsGbymxca8n2pEUSstn/WGfYi6e+qqLY8mRF7kMQXmL3iW5kPWEgAu6+iHyiy+/PFmCrcYZQRbWyFeyvRQ4Ibn/miRDZBb6sNcJGiL0VQa4fugc8GHshNo+dXEMi74MvK3rxtKz3x+R9YF4H7jhWP8TCXhBBziSuTDLssNlmAOExlP++fBZBLES5IoT1PPBERNa36xljx050fhArnNqIRNqH1atXo7y8HGPGjIEsy5g2bRpWrFhhbA8Gg9ixYwcaGho8PzZNJAiCIAiCIAgiTSksLLRMPte7d+/4UdhcTspoIkEQBCGCpE0EQRBELFJE2pRsaCLhAC+kSu0lDXGKaCGSKogNLtxXjZbYRO4jmulauZgVwTaxG9qeq9BOZAW2iDpmG/qxDGmToI98v+WIbZHvgVjnJVo2ZuVqNi1w1F3dEqSo7Vax55OBz2JBtd3F2VZttBnVxUQinhaEyFj4+9Bq4bXonreSiIikHlayEbeLpkWyJLvYXcgazmUU27ZYBdAwlYViB9XgyyIlTXZzTJj7rW2PlDjxhDiJFZM5qYrAVrB+yxaBQoTngJOeCaSuiOiaOX+HOeBKPNj3b1fi5AWOA7/YfHqekEXWRuMObUSG2geaSBAEQQigNRIEQRBELFJpjUQyoYkEQRCECAr/ShAEQcTCZfjXTIMmEnHwWorE5Bdu240n3xBtD0W4kU0ubKG0Jnb7kVE32oIo8gVD5v5XI2JyA+FIHZIc+yY2eWUtXNJWfbOKFy6LonQIjmP1OZ1ikj3pMiZR9A3Td6ifiLAELWqTKfpRZJSvePKhRF3LTnEanSwutEaCsEBRVCiKKpQZWY2Pwhj3EeNwvKhjbuVLXkS4sfps8dq3I63hJaaSEns8ZfX4Oswe8OMskxnx0iO3WOUXEkVtEuaY8EW3EbVfHJltuL773ydO5U7CNtTYuUvakpcksn3LOg6Powh+B7mG1kgAoIkEQRCEEMpsTRAEQcTCbWbrTKMdl9IQBEGkEYri7pUgqqqqUFZWhry8PBQUFGDWrFmoq6uLu19FRQXOPvtsdOzYEXl5eTjzzDPR2NiYsH4SBEEcEaSQfUgmaeeR2Lt3L2688Ua89tpraGhowLHHHovHH38cw4cPB6C5whYtWoRHH30U1dXVOO200/Dwww/juOOOc3U824mxHEo+vJBfWMmYeKIiZQiiOYjcfE4Tw8jctFTVP7ukan99PtGcNVtQprcpcB2HuKREInmREuG6jpd4yM4xedixRO5tn55wyJR4iJVlRZf5/Nr54M8LczHzrmYmm7CbYI19Zz4uQhMrM44k8/WjimImeeNJaLQkl2163o8UkzaVlZVh//79WLduHYLBIGbOnIk5c+ZYxg6vqKjAhAkTsHDhQqxcuRJ+vx8fffQRZDlznyG1t42wGifdyp7aI8lWIqLZmBLeIf55UdVwfSvZED+uRh1TUJ8vi4y4JLIFTpOXysI+ZsXst0gG6xPYCqtzILILVniRlFOEKDqZ1fVqlQTRzTHt4IlsydaBSNoEpNlE4tChQzjttNPwk5/8BK+99hqKiorwxRdfoEuXLkade+65BytWrMCTTz6JPn364Oabb8b48ePx6aefIicnJ4m9JwginVCVkK0JaOQ+iWD79u1Yu3YttmzZYvwgXrlyJSZNmoSlS5eitLRUuN/cuXNxzTXXYMGCBUZZ//79E9LHVIBsBEEQ7YVTG5Eo+5Bs0moicffdd6Nnz554/PHHjbI+ffoY71VVxfLly3HTTTdh8uTJAICnnnoKxcXFeOmllzB9+vR27zNBEOlJW8K/1tbWmsoDgQACgYDrvlRUVKCgoMCYRADA2LFjIcsyNm3ahPPOOy9qn4MHD2LTpk0oKyvDqaeeil27dmHAgAG48847cfrpp7vuSypDNoIgiPaCwr9qpNVE4uWXX8b48ePxi1/8Am+99RaOOuoo/OY3v8Hs2bMBALt370ZlZSXGjh1r7JOfn4+RI0eioqIippFobm5Gc3Oz8X/kjwCGHelEsiUfIhegSNJk2YaNeqZID4KkaWy7zJLo+ONJKSJcu1zUCsM9zEmbhMmFsqOTwkXWt0IoZ7Jwm/P1Dde0oN9mCZRZ0iRz50WWoqVNkQmBbCcU4r5DSRDVKbKeKJITQ3Tm7Er+vCAR95EdVEWFGnI6kdD62rNnT1P5okWLsHjxYtd9qaysRPfu3U1lfr8fhYWFqKysFO7z5ZdfAgAWL16MpUuXYsiQIXjqqacwZswYfPzxx66lPKlMImxELPugKrEj3LH71q7EwpD6OLzW7ScYi92uUxmI6Zghc+QffuwwIvpw9X02lmXKcnjCHbJhDxTeLujbQiJbIUhgF1nHLkLpkS+6zCewAbJABsv2DUtfwz/NZGYreGmTpTQWUfVF14nTaE2GRJbbL/K6shORzLTNxdjuOHFdjHvUadJFcRvObERCk+MlkbQSyn755ZeGlvVf//oXfv3rX+Oaa67Bk08+CQCGQS0uLjbtV1xcHNPYAsCSJUuQn59vvCJ/BBAEQThhz549qKmpMV4LFy4U1luwYAEkSbJ8ffbZZ676oOizwyuuuAIzZ87E0KFDcf/996N///547LHHXH+2VCYRNoLsA0EQRGzSyiOhKAqGDx+OP/zhDwCAoUOH4uOPP8aqVaswY8YM1+0uXLgQ8+bNM/6vra1Fz549oaqq4xlkq6C+F7GerYg3Q1ctcj8Y3gqbk2r21FzhpqDsKXuoVeHK9PrGQunwNtGTd/ZkRdFjgqvZ4YVrbN94i6cjnzyJEO1nldtB9JRJ9H/4CRT3hMhYhB79ZIh9XtM58LMy7hh6G+Ft3FMpm4vp2HerIGLRNY9gAXa4IHzdiBb5eXnNe/XExpN4+SHFuUdCr5+Xl4e8vLy49efPn4/LLrvMsk7fvn1RUlKCgwcPmspbW1tRVVWFkpIS4X49evQAAAwaNMhUPnDgQHzzzTdx+5aOJMJGxLIPVjh92qlYLEwW4daDYWUr3DyhFdkDhqSwsYs/hnlc4McwSfCZjDLuCX2otVXbV1/AbLIL+tjvF9gKkRc7so5d4i3wjvJeC+yI2VPt18uig5NYlvH2Rn8rCT3bui1yuACbvyasvGyJuB7t9CnZOLURTu1JupBWE4kePXoIjeLzzz8PAIZBPXDggGFE2f9DhgyJ2W5b9csEQWQebVkjYZeioiIUFRXFrTdq1ChUV1dj69atGDZsGABgw4YNUBQFI0eOFO7Tu3dvlJaWYseOHabyzz//HBMnTnTUz3QhETaC7ANBECJojYRGWkmbTjvtNKFRPOaYYwBoi+pKSkqwfv16Y3ttbS02bdqEUaNGtWtfCYJIb9jTJqevRDBw4EBMmDABs2fPxubNm/Huu++ivLwc06dPNyI27d27FwMGDMDmzZsBaE8mb7jhBqxYsQLPPfccdu7ciZtvvhmfffYZZs2alZB+JhuyEQRBtBepYh+STVp5JObOnYtTTz0Vf/jDH3DBBRdg8+bNeOSRR/DII48A0AznddddhzvuuAPHHXecEdqvtLQUU6ZMcXw8RVE9SqOemAU2bhcx8Z/JjptQJFORuf2YW5t3sxr5KSS24I7fxtqIrm/sx322rIC5TuR7ox8RZW2Rt4hicEfKekSuY1N9KxdzxMI4/pgiKZTINS3KO2FFpMSJP5bp3CJ6kSQjxBZXxnORJ3lRmRf3bVukTYlg9erVKC8vx5gxYyDLMqZNm4YVK1YY24PBIHbs2IGGhgaj7LrrrkNTUxPmzp2LqqoqDB48GOvWrUO/fv0S1s9k0p42QlVVV2OM6N6xNw6H37dbnHwONlaIusrsgUjyyo8tkfYg1CqQMfFSSkEb/ixNEmQ3L1KkbMnrEJwiaayRR0IwRnsxzvv80fmFIo8lksFa2aK24Ml463LodJ2bIgnyV5pIpAAnn3wyXnzxRSxcuBC33XYb+vTpg+XLl6OsrMyo89vf/hb19fWYM2cOqqurcfrpp2Pt2rUUH5wgCEeooRAUi/U2sfZJFIWFhZbJ53r37i00jgsWLDDlkchkyEYQBNFeOLURibQPySStJhIA8LOf/Qw/+9nPYm6XJAm33XYbbrvttnbsFUEQmYaqulgjkUorAY9QyEYQBNEeOLURmWof0m4i0Z4oIcUT95cXJCNFvOHKFkTR4PHpeQpUSeULtX0tIkY5zXkR7x5MtLvfygUcme8BELuww/Vjl4kia9iNA+7UTW11zqwWUKmCKDNtiU7mJaqiQvHAhZxq0iYiM3BqU9g4kozfILx0hvWbH2Miu+TjctYwe6DInP2IkLBKkmCcN0mV9OMIZK1C+yG0G6rl/26IN9ZFbo83pltJXo06FjImUxsWMiZTnyKlunHkqqLrL7KfnuRmSJHfXHYgaZMGTSQIgiAE0ESCIAiCiAVNJDRoIkEQBCFAVVQX4V/T52kaQRAE4R6nNiJT7QNNJCxQFNWUSC3dset2jHRxyiKNi8BVKkxUI+xH/JvJzQ0ncmt7idNkPnakPnblQHYlS3GjKcGeixpwIRVLoUHSC5mbElIcS6S8kFQR6YHbqH5O5Yd2pR527v22IGrf59NlV3JsmSo/tNiRJTmVwZrqObQBTqU4onHS1n42ogBq7buXvEbJqURteXyNOD1/XsiWvJIwJ8NGZKp9SKs8EgRBEARBEARBhKmqqkJZWRny8vJQUFCAWbNmoa6uznKf0aNHQ5Ik0+vKK690fGzySBAEQQigNRIEQRBELFJpjURZWRn279+PdevWIRgMYubMmZgzZ45lyHAAmD17timCXYcOHRwfmyYSFqhKciJlpBrx3KHM3Sv7UiNqTyaTqOsx065zT6KH0ESCSABOJRV2pVBMNuJUvuJWrmNqAzZlNHo0PyuJi1CyZPOcpZoG3WkkO6v6TqVKXnyv8bAzzjqVMyUj2aJbUmUisX37dqxduxZbtmzB8OHDAQArV67EpEmTsHTpUpSWlsbct0OHDigpKWnT8UnaRBAEIYDFCHf0yrQZGUEQBCHEsY1IkH2oqKhAQUGBMYkAgLFjx0KWZWzatMly39WrV6Nbt2444YQTsHDhQjQ0NDg+PnkkLFBVNS1iGrdlAZWdpxa2F/pa5Vmw2UcvjtVe2H36ZfcJi9W1Zhwrzvdl51htGcvS4X4AvOkneSSIVEAYxMJi/LPrmbAa+xM1DofHTO/y3TjF6WJ3u3iZu6kt2P1OvMhNxa4htzYlnbwPItx6JGpra03lgUAAgUDAdT8qKyvRvXt3U5nf70dhYSEqKytj7vfLX/4SxxxzDEpLS/Hf//4XN954I3bs2IEXXnjB0fFpIkEQBCGAJhIEQRBELNxOJHr27GkqX7RoERYvXhxVf8GCBbj77rst29y+fbvt40cyZ84c4/2JJ56IHj16YMyYMdi1axf69etnux2aSBAEQQhQFAWKwzwSTusTBEEQ6YlTG8Hq7tmzB3l5eUZ5LG/E/Pnzcdlll1m22bdvX5SUlODgwYOm8tbWVlRVVTla/zBy5EgAwM6dO2ki4RVu44R7iR1XJy/jsCMhiidnijymMLZ1G+Ji+2yWua1vt41IQg6/a1H9eG1EbhfVF8ZMl+zFTBd9tZHXMP/9J2KxnOiY7Y0XxyePBJGOOF2Aa3fcttN+XHvls97sBi9krk7tiVNbwZOMBeFCWVJEcBTROM/3lX23iZKZJdtmuMGtRyIvL880kYhFUVERioqK4tYbNWoUqqursXXrVgwbNgwAsGHDBiiKYkwO7LBt2zYAQI8ePWzvA9Bia4IgCCGakQg5fNFEgiAI4kjAuY1IjH0YOHAgJkyYgNmzZ2Pz5s149913UV5ejunTpxsRm/bu3YsBAwZg8+bNAIBdu3bh9ttvx9atW/HVV1/h5ZdfxqWXXoozzzwTP/7xjx0dnzwSBEEQAlikDaf7EARBEJmPUxuRSPuwevVqlJeXY8yYMZBlGdOmTcOKFSuM7cFgEDt27DCiMmVnZ+Pf//43li9fjvr6evTs2RPTpk3DTTfd5PjYNJGwQFVUz92QTt2wke6+tkR1cOvWjidjspIvWcmS7EqW/B5Iodxi5cIWbWu1KXdiZfHkUew9+0z89Sgck0TfccT//DXV1qgbke25xev7zIv2VMWFtIkmEkSCiDf2t1XSxI/jbZGuMrwYoxMhYfXSPvDYlTvZqedFW/w20WeOHCPd2BM29ouuL2ZT+GvJSiabCOlUonFqIxJpHwoLCy2Tz/Xu3dt0/nv27Im33nrLk2PTRIIgCEKEizUSIGkTQRDEkYFTG5Gh9oHWSBAEQRAEQRAE4RjySLQzke7E9kisFul2jOeijnRru5ExRbpSrbYBYfmSXbmTT46eAyfKZc2IjrgU/XTBF0eq1BohVbKSMfFlxl/+WA7lTqyeKFKG00hObSEZUUvcoIQUKA6fIDmtTxAibCeEa4OcyUsJq+h/L6LziWStbtsS13P3LFU09ovrOZPGMpxKZEVlIjtiqhfxv1CyJJAl8deBU9ksa8+OxClWu6mEUxuRqfaBJhIEQRACaLE1QRAEEYtUWmydTGgiQRAEIYDySBAEQRCxcJtHItOgiYQVEVGb2kOGFAsrV7fIJe00QpOVWzueS9uptMmOjMmudMmLZHVWiCJfhF3Hvqh6PpnfVyB9Ekia2to3kavZ5GJm322ExAkQR8qIdEnHi7qRKtE2TJIpTxLSqVBDztpxWp84cnEagS9eslGnElardkVjv9sIfG2JxGdH1hpvvE9EhL+QYk8SZV+OZLYV8SSyDCsJlJXtEtW3a0dMCXAj5LV2ZbOia86p3CnyOMnAqY3IVPtAEwmCIAgBiuJijUSGuq4JgiAIM05tRKbaB5pIJAm73o1EeCLsxgt3urDa6omS3/aTrdieiLZ4H3xxnuYBQEjwRMTpEyvzUyDjuU7Udqt248X/tqrPvjPLhXOmJ0TxnyTZXSwnakNE5FOsVMVNHplU/0yEd8iy1Ka8PlbE8z4Y9VzmBhIdI97CaobToBpW3od4Hgc7Y76wjsX588RjHXZGWy+olu16JKSYdZi3It7iaSuc2h1bdgTRC7Cdert5nHopIo/jFC/uXac2IlPtA00kCIIgBCghQBH8EIi3D0EQBJH5OLURmWofaCJBEAQhQA0pUGVabE0QBEFE49RGZKp9oImEFbLkyQJrL2RMRlseLKx2eux4scHj7eOmTqJzQiSKeO5nO4ut7bqwRedIVN9qMbQdl3S8xXLxZE7xjs3TFtevqT0v3NYhFapDj0SmLqYjvMeufMmoH2d9r1v74cXYbyVVsqoXL6iGpQxW8FmSYVOsxnQforf5fHqZDdmOhuiLj/5BGnl8u/ZBVN+pHbEi3gJshl25k1Hf9vlLHE5tRKbaB5pIEARBCFBCqgtpU2YaCoIgCMKMUxuRqfbBXVrHFOGuu+6CJEm47rrrjLKmpiZcddVV6Nq1Kzp16oRp06bhwIEDyeskQRAEkRTIRhAEQSSWtPVIbNmyBf/3f/+HH//4x6byuXPn4pVXXsGzzz6L/Px8lJeXY+rUqXj33XcT2h+3Eqh47mgr155bSVP8eORtkyXZxSo6UbwY2JbuZJFL16Ub1DIih81Y3062x8Ou7In/DiPlQlZRN/j6dqNu2Im24TSik4j2jnhBayTSm1SwEU7lS8I2LB73WUb1S7I8VBStyQq3sqS2RPNz2keGKH+DlZRING6bpFmyeZuoXbu2g30mUR9FtCW3UWQUPyu7A8ST2bL9nB07HomUQNEaCY209EjU1dWhrKwMjz76KLp06WKU19TU4E9/+hOWLVuGs88+G8OGDcPjjz+O9957D//5z3+S2GOCININRVWhKA5fKaDbJchGEASReBzbiAy1D2k5kbjqqqtwzjnnYOzYsabyrVu3IhgMmsoHDBiAXr16oaKior27SRBEOqNnLXXyQoZqYNMNshEEQSQcsg8A0lDatGbNGnzwwQfYsmVL1LbKykpkZ2ejoKDAVF5cXIzKysqYbTY3N6O5udn4v7a21njvhXvYbuITO646LxMQOelbJPGSplklwLFy94qiUTid79pJvmO3Dad1QoLMlU4lUG63xUMoVRIkmIuM5BQv6oadaBt8+1bXnFvZk+lYHkmglJACRXKY2TpDXdfphNc2IpZ9kCTJE+kST7zITMnEaVIzhl35kB2bIdreFsmrXfmPHRzLYLkx0csxn30mu/u1VW7rNXYjOtluL8Y96sW969RGZKp9SOFhK5o9e/bg2muvxerVq5GTk+NZu0uWLEF+fr7x6tmzp2dtEwSRnjj1RhhPnYikkQgbQfaBIAgRZB800moisXXrVhw8eBAnnXQS/H4//H4/3nrrLaxYsQJ+vx/FxcVoaWlBdXW1ab8DBw6gpKQkZrsLFy5ETU2N8dqzZ0+CPwlBEKkOTSTSj0TYCLIPBEGIIPugkVbSpjFjxuB///ufqWzmzJkYMGAAbrzxRvTs2RNZWVlYv349pk2bBgDYsWMHvvnmG4waNSpmu4FAAIFAIKrciazJqUTIrlvNbcSOROHU/eyF2zSk55U3S6Gi60UmN/LaZSuSLdk5lmibyKXupQQqUVhFcuKJdEXbiezEty/CbiIkyaNEkiRtSj8SYSNi2QcvcSpp8nLsVwQSRobTMd1uVDnu6IIymydDUC0UEkREaifiyZes6kfua94WWy7L17OSNInqWx1ThNNEdFY4TW4XT0qbLEjapJFWE4nOnTvjhBNOMJV17NgRXbt2NcpnzZqFefPmobCwEHl5ebj66qsxatQonHLKKcnoMkEQaYqqqo7XW6RCttUjGbIRBEG0F05tRKbah7SaSNjh/vvvhyzLmDZtGpqbmzF+/Hg89NBDrtqSZcmTJz9eeB8YcfNOJMBLkShPgwj2VEW0QC/+Au9QQvoUi3jnwGohn13vg52nRon6LiIXXfPEywsReS3bWZANWA+0Tu5FL+5bJaRCAWW2zjS8tBFtoS0Lq628CAz+vjXuZT6oQsT9x9/Hoq6x0dW51yEa0Tgfti2hqDLe22zlFTfaENy3PjWxXgovcg4x70O8+lYebbseichtonE+nscgcry2+6O6Ld4Np/kmEolTG5Gp9iGt1kiIePPNN7F8+XLj/5ycHDz44IOoqqpCfX09XnjhBcv1EQRBECI0Tavi8JU4Q1FVVYWysjLk5eWhoKAAs2bNQl1dneU+lZWVuOSSS1BSUoKOHTvipJNOwvPPP5+wPqYiZCMIgkgEzm1EatkHAKioqMDZZ5+Njh07Ii8vD2eeeSYaGxsdHTvtJxIEQRCJINUWW5eVleGTTz7BunXr8M9//hMbN27EnDlzLPe59NJLsWPHDrz88sv43//+h6lTp+KCCy7Ahx9+mLB+EgRBHAmku32oqKjAhAkTMG7cOGzevBlbtmxBeXk5ZNnZ1CDjpE3tiRdxiO26txO1sFrkIo90T0oCV7ZT97bTWN/x4oB7Gf/bCxKVF8LpvlauZS8Xy/HYWThnd7Gc3XsqU7Wmsdi+fTvWrl2LLVu2YPjw4QCAlStXYtKkSVi6dClKS0uF+7333nt4+OGHMWLECADATTfdhPvvvx9bt27F0KFD263/RDT8feBW5mSSI9mQOfFjeeQ9xN97VnbBSkAab5wPS5Vib+MJS5+UmPXi5QuKDMLRHjgNzBFZ5iYYh1sZrF1Jk9WY2x6SpvCx2txExuHWPsydOxfXXHMNFixYYJT179/f8fHJI0EQBCFACamuXoCWtIx/8QnN3FBRUYGCggLDSADA2LFjIcsyNm3aFHO/U089FX/9619RVVUFRVGwZs0aNDU1YfTo0W3qD0EQxJGOW/vgNW7sw8GDB7Fp0yZ0794dp556KoqLi3HWWWfhnXfecXx8mkgQBEEIUBXF1QsAevbsaUpitmTJkjb1pbKyEt27dzeV+f1+FBYWxszIDAB/+9vfEAwG0bVrVwQCAVxxxRV48cUXceyxx7apPwRBEEc6bu2D1w+a3NiHL7/8EgCwePFizJ49G2vXrsVJJ52EMWPG4IsvvnB0fJI2WSBJkifyJVObSZy6Mdek6DNZuchFbsu2xEeym4uCkehIUV5it49e1PPCnZwMiZCdvBNx24hzX3px37YlatOePXuQl5dnlMfKQ7BgwQLcfffdlm1u377dUR94br75ZlRXV+Pf//43unXrhpdeegkXXHAB3n77bZx44omu2yW8JSrvigs7EXmfi6ROojFDFNGJEeKeoBr3lMBWCKU4FlGVYv0fWdZiUc+qDR6/3P5aGKcR+6y2uS2LZx8irxe7toBkTGHcRm3q2bOnqXzRokVYvHhxVP1E2gdFn9RcccUVmDlzJgBg6NChWL9+PR577DFHD79oIkEQBCFAVVSoDicSzMjm5eWZJhKxmD9/Pi677DLLOn379kVJSQkOHjxoKm9tbUVVVVXMiEO7du3CAw88gI8//hjHH388AGDw4MF4++238eCDD2LVqlU2PhFBEAQhwqmNYPbB7oOmRNqHHj16AAAGDRpkKh84cCC++eYby2NGQhMJgiAIESEFqtPY8xaLLEUUFRWhqKgobr1Ro0ahuroaW7duxbBhwwAAGzZsgKIoGDlypHCfhoYGAIiKwOHz+YynUQRBEIRLnNoIfdy1+6Apkfahd+/eKC0txY4dO0zln3/+OSZOnBj3mDw0kfAYr6VLTqM1iaJzRNURuDBFETus+hPPvdlqox/xIjNZ1UsnnPbfaTZluy5kpzImp/2Il6TOCqv7JlnubSWkQnF4zhIVGWvgwIGYMGECZs+ejVWrViEYDKK8vBzTp083InLs3bsXY8aMwVNPPYURI0ZgwIABOPbYY3HFFVdg6dKl6Nq1K1566SUjPCCRusS75u3YGbvXol2TxZ68mqL4RSweNUkKRZF/Isb3Vn5fl/KleNImp/Xc4oVctS1SVrcS1kTZGzukunQpHk5tRCrZB0mScMMNN2DRokUYPHgwhgwZgieffBKfffYZnnvuOUfHp4kEQRCEADWkJnzy5YTVq1ejvLwcY8aMMTIzr1ixwtgeDAaxY8cOwxORlZWFV199FQsWLMC5556Luro6HHvssXjyyScxadKkhPWTIAjiSMCpjUgl+wAA1113HZqamjB37lxUVVVh8ODBWLduHfr16+fo2DSRIAiCEKCoLjwSCVy8XlhYiGeeeSbm9t69e0cZteOOO+6Iy2RNEATRHji1EalmHwBtQTefR8INNJFoA+0RgUmUGMgOVjNfkQvZ7qzasbRa0A+rz+JFojkrF7lTEvkEAfAoskUbBicvP1+i3LZeRHlyQ0hVEXJ4bp3WJwg3eHn9O41MZjWmx1t4qujh/oRjtCAUIJNKWUUJbEuyVre2oi3jpp1xMhUjKIWP6VlTaY9TG5Gp9oEmEgRBEAJCqvZyug9BEASR+Ti1EZlqH2gi4YBk5oCwswDaLm16Cu3BOYhcoCeiTXkAUmRxdnvlaEi014QnUV4HpyTLS0EQDFV1voYmFVEdJgUSjc3OA2KI8lk4bEKnLR6JZOB2DE3U+JbK17CXebwiP2cqf+50gyYSBEEQAkjaRBAEQcSCpE0aNJEgCIIQQNImgiAIIhYkbdKgiYQDmGsxmRInEYmSm4hcxu0lo3GaUZgwkyoSpESTSDmT4sIjkcioHAThFm/HgwRd4w4lVsw+KWn66ywTx2ivZWapLj9yaiMy1T7QRIIgCEJACC48EgnpCUEQBJFqOLURmWofaCJBEAQhIKSqCDl8+pqpGliCIAjCjFMbkan2gSYSLkhGdJhkyKky0fVKJI5Mi5oUUp0/QUpTlQWRYng99nopSW3PKHFWZNhwkzS8zLvk9XeS6hG5nNqITLUPNJEgCIIQQBMJgiAIIhY0kdCgiQRBEIQAkjYRBEEQsSBpkwZNJNKETJONEESqo7jwSKSI6oNIMVJFquR0v7ZEmUkVCdSRim3JkuAxuexhIjgr4vXR6X3T3lIopzYiU28JmkgQBEEIII8EQRAEEQvySGjQRIIgCEIArZEgCIIgYkFrJDRoIpEBpHrSFiJzkNrJ5U0Q6YKXsiWncqBESZUS3Q8GRQZ0hx0Jj+g7sSt3Yk/Z7dZnUii71wFr12n9eNi5nlI9ElQ6QhMJgiAIAdrTJqfSpgR1hiAIgkgpnNqITLUPNJEgCIIQQNImgiAIIhYkbdKgiUQcSDYUH3JPtx/Jdsumw/3glfyKFlsTViiK6mrsSyf5kt1jOz0PXo4j6RDR0OuEsiH9F6nTsS5ReW0Vmw3bkUCJZExeSqDYterF7xZabK2RhHzJbWPJkiU4+eST0blzZ3Tv3h1TpkzBjh07THWamppw1VVXoWvXrujUqROmTZuGAwcOJKnHBEGkIyq0TK1OXplpJtIHsg8EQbQXTm1EptqHtJtIvPXWW7jqqqvwn//8B+vWrUMwGMS4ceNQX19v1Jk7dy7+8Y9/4Nlnn8Vbb72Fffv2YerUqY6PlQ5PX2PBnpa1x4toP+h7jY+qqp7cuyFVdfUikkd72gcrVEWN+fKivqKqMV922uTbtapjd6xg95ztl4I2v0KtKkKt7TcetuXF+sq/vDgHTs+707G/LdeQnevW6b0QzzPhtH5bIfugkXbSprVr15r+f+KJJ9C9e3ds3boVZ555JmpqavCnP/0JzzzzDM4++2wAwOOPP46BAwfiP//5D0455ZRkdJsgiDSD1kikH2QfCIJoL2iNhEbaeSQiqampAQAUFhYCALZu3YpgMIixY8cadQYMGIBevXqhoqJC2EZzczNqa2tNL4IgjmzII5H+kH0gCCJRkH3QSOuJhKIouO6663DaaafhhBNOAABUVlYiOzsbBQUFprrFxcWorKwUtrNkyRLk5+cbr549eya66waZKkuJ556kl71XMsnUa9MuIdXdi0gN2ss+JFp+YSVfsmo33jEj69m9V0WSGXF/Yr+sjtmWcSTZ47WTcdybzxv/HLv57tyeb7vfhXEcC4mem+vcTn0v7Wsq2YeqqiqUlZUhLy8PBQUFmDVrFurq6mLW/+qrryBJkvD17LPPOjp2Wk8krrrqKnz88cdYs2ZNm9pZuHAhampqjNeePXs86iFBEOkKeSTSG7IPBEEkklSyD2VlZfjkk0+wbt06/POf/8TGjRsxZ86cmPV79uyJ/fv3m1633norOnXqhIkTJzo6dtqtkWCUl5cbJ+voo482yktKStDS0oLq6mrTU6cDBw6gpKRE2FYgEEAgEEh0lwmCSCMUF2sk0sjhktGQfSAIItE4tRGJsg/bt2/H2rVrsWXLFgwfPhwAsHLlSkyaNAlLly5FaWlp1D4+ny9qzHvxxRdxwQUXoFOnTo6On3YeCVVVUV5ejhdffBEbNmxAnz59TNuHDRuGrKwsrF+/3ijbsWMHvvnmG4waNcrRsdojmkMqk66SnEwiE89/e9xXqX5vEYmhPe1DKsmYRO06ldYIj9MGGZPbY8b7nOk47nnRf6fjXTLkTnY/i93vy+oeEB0z1a+DRFFRUYGCggJjEgEAY8eOhSzL2LRpk602tm7dim3btmHWrFmOj592HomrrroKzzzzDP7+97+jc+fOhq41Pz8fubm5yM/Px6xZszBv3jwUFhYiLy8PV199NUaNGkUROQiCsA0lpEs/yD4QBNFeuE1IFxmwoa1ez8rKSnTv3t1U5vf7UVhYGHPtVyR/+tOfMHDgQJx66qmOj592E4mHH34YADB69GhT+eOPP47LLrsMAHD//fdDlmVMmzYNzc3NGD9+PB566CHbx2Az8lBzgyd9TleOxJl9pmAnw2cmw+7dtuSTaITieHFcC9IgzW4Gk3L2weEYajsrtY168Z9we3Mc7Vi2qjn2FB5pNqgt47ZqY1+7GbbtZsxWLdqz81lsH8dhBm/YOHYybASzD5EBGxYtWoTFixdH1V+wYAHuvvtuyza3b99uvwMxaGxsxDPPPIObb77Z1f6Sms5Z1xLEt99+266RmwiCSAx79uwxaeTt0NTUhD59+th+khNJSUkJdu/ejZycHFf7E6kN2QeCyBza20aUlJTgo48+MtmHWB6J7777Dj/88INle3379sXTTz+N+fPn49ChQ0Z5a2srcnJy8Oyzz+K8886zbOPPf/4zZs2ahb1796KoqMjhJ6KJhBBFUbBv3z507tzZ9ow5HaitrUXPnj2xZ88e5OXlJbs7aQ2dS+9IxLlUVRWHDx9GaWkpZNn5UrCmpia0tLS4OnZ2djZNIjKYTLUPAI1rXkLn0jsyyUYkwj5s374dgwYNwvvvv49hw4YBAF5//XVMmDAB3377rXCxNc/o0aPRrVs3PPfcc66On3bSpvZAlmXHM9R0Ii8vjwY2j6Bz6R1en8v8/HzX++bk5NBkgBCS6fYBoHHNS+hcegfZCDEDBw7EhAkTMHv2bKxatQrBYBDl5eWYPn26MYnYu3cvxowZg6eeegojRoww9t25cyc2btyIV1991fXx0y5qE0EQBEEQBEEQGqtXr8aAAQMwZswYTJo0CaeffjoeeeQRY3swGMSOHTvQ0GBe2/XYY4/h6KOPxrhx41wfm6RNRxC1tbXIz89HTU0NPSFpI3QuvYPOJUGkBnQvegedS++gc5nakEfiCCIQCGDRokWUXMkD6Fx6B51LgkgN6F70DjqX3kHnMrUhjwRBEARBEARBEI4hjwRBEARBEARBEI6hiQRBEARBEARBEI6hiQRBEARBEARBEI6hiUSGsXjxYkiSZHoNGDDA2N7U1ISrrroKXbt2RadOnTBt2jQcOHAgiT1OLTZu3Ihzzz0XpaWlkCQJL730kmm7qqq45ZZb0KNHD+Tm5mLs2LH44osvTHWqqqpQVlaGvLw8FBQUYNasWairq2vHT5EaxDuXl112WdS1OmHCBFMdOpcE4S1kI9xD9sE7yD5kDjSRyECOP/547N+/33i98847xra5c+fiH//4B5599lm89dZb2LdvH6ZOnZrE3qYW9fX1GDx4MB588EHh9nvuuQcrVqzAqlWrsGnTJnTs2BHjx49HU1OTUaesrAyffPIJ1q1bh3/+85/YuHEj5syZ014fIWWIdy4BYMKECaZr9S9/+YtpO51LgvAeshHuIPvgHWQfMgiVyCgWLVqkDh48WLiturpazcrKUp999lmjbPv27SoAtaKiop16mD4AUF988UXjf0VR1JKSEvXee+81yqqrq9VAIKD+5S9/UVVVVT/99FMVgLplyxajzmuvvaZKkqTu3bu33fqeakSeS1VV1RkzZqiTJ0+OuQ+dS4LwHrIR3kD2wTvIPqQ35JHIQL744guUlpaib9++KCsrwzfffAMA2Lp1K4LBIMaOHWvUHTBgAHr16oWKiopkdTdt2L17NyorK03nLz8/HyNHjjTOX0VFBQoKCjB8+HCjztixYyHLMjZt2tTufU513nzzTXTv3h39+/fHr3/9a/zwww/GNjqXBJEYyEZ4D9kH7yH7kB74k90BwltGjhyJJ554Av3798f+/ftx66234owzzsDHH3+MyspKZGdno6CgwLRPcXExKisrk9PhNIKdo+LiYlM5f/4qKyvRvXt303a/34/CwkI6xxFMmDABU6dORZ8+fbBr1y787ne/w8SJE1FRUQGfz0fnkiASANmIxED2wVvIPqQPNJHIMCZOnGi8//GPf4yRI0fimGOOwd/+9jfk5uYmsWcEYWb69OnG+xNPPBE//vGP0a9fP7z55psYM2ZMEntGEJkL2QgiHSD7kD6QtCnDKSgowI9+9CPs3LkTJSUlaGlpQXV1tanOgQMHUFJSkpwOphHsHEVGMOHPX0lJCQ4ePGja3traiqqqKjrHcejbty+6deuGnTt3AqBzSRDtAdkIbyD7kFjIPqQuNJHIcOrq6rBr1y706NEDw4YNQ1ZWFtavX29s37FjB7755huMGjUqib1MD/r06YOSkhLT+autrcWmTZuM8zdq1ChUV1dj69atRp0NGzZAURSMHDmy3fucTnz77bf44Ycf0KNHDwB0LgmiPSAb4Q1kHxIL2YcUJtmrvQlvmT9/vvrmm2+qu3fvVt9991117Nixardu3dSDBw+qqqqqV155pdqrVy91w4YN6vvvv6+OGjVKHTVqVJJ7nTocPnxY/fDDD9UPP/xQBaAuW7ZM/fDDD9Wvv/5aVVVVveuuu9SCggL173//u/rf//5XnTx5stqnTx+1sbHRaGPChAnq0KFD1U2bNqnvvPOOetxxx6kXXXRRsj5S0rA6l4cPH1avv/56taKiQt29e7f673//Wz3ppJPU4447Tm1qajLaoHNJEN5CNsI9ZB+8g+xD5kATiQzjwgsvVHv06KFmZ2erRx11lHrhhReqO3fuNLY3Njaqv/nNb9QuXbqoHTp0UM877zx1//79SexxavHGG2+oAKJeM2bMUFVVC/F38803q8XFxWogEFDHjBmj7tixw9TGDz/8oF500UVqp06d1Ly8PHXmzJnq4cOHk/BpkovVuWxoaFDHjRunFhUVqVlZWeoxxxyjzp49W62srDS1QeeSILyFbIR7yD54B9mHzEFSVVVtP/8HQRAEQRAEQRCZAK2RIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRINKGgQMH4v/9v/8Xt94PP/yA7t2746uvvopZZ/To0bjuuuu865zO9OnTcd9993neLkEQBBEbsg8EkRxoIkGkBY2Njfjiiy8wePDguHXvvPNOTJ48Gb179058xyK46aabcOedd6Kmpqbdj00QBHEkQvaBIJIHTSSItODjjz+Gqqo44YQTLOs1NDTgT3/6E2bNmtVOPTNzwgknoF+/fnj66aeTcnyCIIgjDbIPBJE8aCJBpDTbtm3D2WefjdNPPx2KoqBXr15Yvnx5zPqvvvoqAoEATjnlFKOsvr4el156KTp16oQePXoIXcuKomDJkiXo06cPcnNzMXjwYDz33HOmOocPH0ZZWRk6duyIHj164P777xe6wM8991ysWbOmTZ+bIAiCsIbsA0EkH5pIECnLrl27cNZZZ+Hss8/Gz3/+c0ydOhXz58/H3LlzsW3bNuE+b7/9NoYNG2Yqu+GGG/DWW2/h73//O15//XW8+eab+OCDD0x1lixZgqeeegqrVq3CJ598grlz5+Liiy/GW2+9ZdSZN28e3n33Xbz88stYt24d3n777ah2AGDEiBHYvHkzmpub234SCIIgiCjIPhBEiqASRIoyduxY9bLLLlNVVVVHjBih3nfffWooFFLz8vLUFStWCPeZPHmyevnllxv/Hz58WM3Ozlb/9re/GWU//PCDmpubq1577bWqqqpqU1OT2qFDB/W9994ztTVr1iz1oosuUlVVVWtra9WsrCz12WefNbZXV1erHTp0MNphfPTRRyoA9auvvnL92QmCIIjYkH0giNTAn+yJDEGIqKysxIYNG/Dee+8hFArhf//7H5YsWQJZluHz+ZCdnS3cr7GxETk5Ocb/u3btQktLC0aOHGmUFRYWon///sb/O3fuRENDA37605+a2mppacHQoUMBAF9++SWCwSBGjBhhbM/Pzze1w8jNzQWg6XEJgiAIbyH7QBCpA00kiJTkP//5DxRFwZAhQ7Bjxw40NjZiyJAh+Oqrr3Do0CGceuqpwv26deuGQ4cOOTpWXV0dAOCVV17BUUcdZdoWCAQc972qqgoAUFRU5HhfgiAIwhqyDwSROtAaCSIlaWlpAQA0NTXhww8/xDHHHIPCwkKsWrUKJ5xwAk488UThfkOHDsWnn35q/N+vXz9kZWVh06ZNRtmhQ4fw+eefG/8PGjQIgUAA33zzDY499ljTq2fPngCAvn37IisrC1u2bDH2q6mpMbXD+Pjjj3H00UejW7dubTsJBEEQRBRkHwgidSCPBJGSjBo1Cn6/H7fddhvq6urQt29fPPDAA1i5ciU2btwYc7/x48dj4cKFOHToELp06YJOnTph1qxZuOGGG9C1a1d0794dv//97yHL4Tl0586dcf3112Pu3LlQFAWnn346ampq8O677yIvLw8zZsxA586dMWPGDNxwww0oLCxE9+7dsWjRIsiyDEmSTH14++23MW7cuISdG4IgiCMZsg8EkUIke5EGQcTiqaeeUnv06KECUP1+vzpy5Eh148aNcfcbMWKEumrVKuP/w4cPqxdffLHaoUMHtbi4WL3nnnvUs846y7QITlEUdfny5Wr//v3VrKwstaioSB0/frz61ltvGXVqa2vVX/7yl2qHDh3UkpISddmyZeqIESPUBQsWGHUaGxvV/Px8taKiwpuTQBAEQURB9oEgUgNJVVU12ZMZgrCisLAQTzzxBH7+85/bqv/KK6/ghhtuwMcff2x6suQ19fX1OOqoo3DfffcZCY4efvhhvPjii3j99dcTdlyCIAhCg+wDQSQXkjYRKc23336LQ4cOxc1YynPOOefgiy++wN69ew0Nqxd8+OGH+OyzzzBixAjU1NTgtttuAwBMnjzZqJOVlYWVK1d6dkyCIAhCDNkHgkg+5JEgUprXXnsNv/jFL3D48OEorWl78+GHH+JXv/oVduzYgezsbAwbNgzLli2LubCPIAiCSBxkHwgi+dBEgiAIgiAIgiAIx1D4V4IgCIIgCIIgHEMTCYIgCIIgCIIgHEMTCYIgCIIgCIIgHEMTCYIgCIIgCIIgHEMTCYIgCIIgCIIgHEMTCYIgCIIgCIIgHEMTCYIgCIIgCIIgHEMTCYIgCIIgCIIgHEMTCYIgCIIgCIIgHEMTCYIgCIIgCIIgHEMTCYIgCIIgCIIgHPP/AacFd3BU4XV1AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# extract the computed projected fields\n", "projected_field_data_server = sim_data2[monitor_far.name]\n", "\n", "# plot Etheta\n", "Etheta_proj_server = projected_field_data_server.Etheta.isel(f=0, r=0)\n", "make_field_plot(phi_proj, theta_proj, Etheta_analytic, Etheta_proj_server)\n", "\n", "# print the normalized RMSE\n", "print(\n", " f\"Normalized root mean squared error: {rmse(Etheta_analytic.values, Etheta_proj_server.values) * 100:.2f} %\"\n", ")\n", "\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We obtain nearly identical results, except that they are computed much faster on our servers. Note also that in some cases, the server-side computations may be slightly more accurate than client-side ones, because on the server, the near fields are not downsampled at all.\n", "\n", "To see the performance gains of using server-side computations, let's compare the time taken in each case." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:50:36.651460Z", "iopub.status.busy": "2023-03-27T23:50:36.651315Z", "iopub.status.idle": "2023-03-27T23:50:36.669860Z", "shell.execute_reply": "2023-03-27T23:50:36.669375Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Client-side field projection took 3.18 s\n", "Server-side field projection took 0.61 s\n" ] } ], "source": [ "# use the simulation log to find the time taken for server-side computations\n", "server_time = float(\n", " sim_data2.log.split(\"Field projection time (s): \", 1)[1].split(\"\\n\", 1)[0]\n", ")\n", "print(f\"Client-side field projection took {proj_time:.2f} s\")\n", "print(f\"Server-side field projection took {server_time:.2f} s\")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As expected, the server computes far fields faster than the local CPU-based computation, though it's a relatively small gain in this case. The gains in computation time are expected to be greater for larger and more complex setups." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Other far field quantities and coordinate systems \n", "So far, we've been looking at the electric field in spherical coordinates. However, we can also look at the fields in other coordinate systems, e.g., `E_x`, `E_y`, `E_z`, and the radiated power, as follows:" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:50:36.671863Z", "iopub.status.busy": "2023-03-27T23:50:36.671725Z", "iopub.status.idle": "2023-03-27T23:50:37.491091Z", "shell.execute_reply": "2023-03-27T23:50:37.490582Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAFyCAYAAADBIKwXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeZgeVZn276p6t947C+lOQiIBIotoMgaTCTICn9GwqMQFgY8BDBhGZqJgEBGFgIBmZDNsEmFEdCQDMo75dGCimSAqEkES48oqSwKkOwlJ793vVvX9cc6p81TX6Xq3Xt7uPL/rytWVU6eqTlWdqqfequc+t+V5ngeGYRiGYRiGYRiGYRiGYYYNe6wbwDAMwzAMwzAMwzAMwzATDX7pxjAMwzAMwzAMwzAMwzDDDL90YxiGYRiGYRiGYRiGYZhhhl+6MQzDMAzDMAzDMAzDMMwwwy/dGIZhGIZhGIZhGIZhGGaY4ZduDMMwDMMwDMMwDMMwDDPM8Es3hmEYhmEYhmEYhmEYhhlm+KUbwzAMwzAMwzAMwzAMwwwz/NKNYRiGYRiGYRiGYRiGYYYZfunGMAzDMAzDMAzDMAzDMMMMv3RjDhjuv/9+WJY15L/f/va3Y91EhmEY5gCBYxLDMAxTLXBMYpiRIzbWDWCY0ea6667DnDlzQuWHH374GLSGYRiGOZDhmMQwDMNUCxyTGGb44ZduzAHHKaecgmOPPXasm8EwDMMwHJMYhmGYqoFjEsMMPywvZRjCNddcA9u2sXnz5kD5RRddhEQigT/84Q9j1DKGYRjmQMLzPBxyyCE4/fTTQ/MGBgbQ1NSEf/qnfxqDljEMwzAHIieeeOKQ8tP7779/rJvHMFULZ7oxBxydnZ3Yu3dvoMyyLEyZMgVXXXUVfvrTn+LCCy/En/70JzQ0NOBnP/sZ7r33Xlx//fWYN2/eGLWaYRiGmYhExaR//Md/xI033oh9+/Zh8uTJ/vyf/vSn6Orqwj/+4z+OdnMZhmGYCUxUTPrKV76CT3/604F5P/jBD/Czn/0M06ZNG81mMsy4wvI8zxvrRjDMaHD//fdj+fLlxnnJZBIDAwMAgD//+c9YsGABzjvvPNx000045phjMH36dGzZsgWxGL+nZhiGYSqnmJj0wgsv4IgjjsDdd9+Nz3zmM/78008/HX/84x/x8ssvw7Ks0WoywzAMM0Ep9ncS5cknn8SJJ56Ic889F9/5zndGuokMM27hNwjMAcddd92Ft7/97YEyx3H86WOOOQZf/epXceWVV+KPf/wj9u7di5///Of8wo1hGIYZdqJi0tvf/nYsWrQIDzzwgP/Sbd++ffif//kffPGLX+QXbgzDMMywUuh3kqKtrQ2f+MQnMH/+fHzrW98areYxzLiE3yIwBxwLFy4sOEDo5ZdfjgcffBBPP/00vv71r+Poo48epdYxDMMwBxKFYtJ5552HlStX4rXXXsPb3vY2PPzww8hmszj33HNHsZUMwzDMgUAxv5NyuRw++clPIp/P47/+67+QTCZHqXUMMz5hIwWGMfDyyy/jxRdfBAD86U9/GuPWMAzDMAcqZ511FuLxOB544AEAYvycY489FkccccQYt4xhGIY5ELn88suxZcsW/PCHP8TBBx881s1hmKqHX7oxzCBc18WnPvUpNDY24stf/jL+4z/+A//1X/811s1iGIZhDkAmT56M0047DQ888ABee+01/OY3v+EsN4ZhGGZMePDBB7F27VrcfPPNOOGEE8a6OQwzLuCXbgwziFtvvRVPPvkk7rnnHlx//fU47rjjcPHFF4ecfBiGYRhmNDj33HPx17/+FZdffjkcx8FZZ5011k1iGIZhDjD+/Oc/49Of/jT+8R//EZdccslYN4dhxg08phtzwPE///M/eO6550Llxx13HNLpNK6++mp86lOfwoc//GEAws1n/vz5+Od//mf88Ic/HO3mMgzDMBOYqJh06KGHAgBOO+00TJkyBQ8//DBOOeUUTJs2bbSbyTAMwxwARMUk5W76vve9Dz/4wQ9C81XMYhgmCL90Yw44Vq9ebSz/t3/7N3z729/G1KlTsXbtWr987ty5WLNmDS655BL88Ic/xCc/+clRainDMAwz0RkqJn33u9/1f8AkEgmceeaZ+Na3vsXSUoZhGGbEiIpJe/bsQW9vLy666CLjfH7pxjBmLM/zvLFuBMMwDMMwDDM0n//85/Gd73wHbW1tqK2tHevmMAzDMAzDMEXAY7oxDMMwDMNUMQMDA/jBD36Aj3/84/zCjWEYhmEYZhzB8lKGYRiGYZgqZPfu3fjf//1f/Od//ifeeustHriaYRiGYRhmnMEv3RiGYRiGYaqQv/71rzjnnHMwbdo03H777Zg/f/5YN4lhGIZhGIYpAR7TjWEYhmEYhmEYhmEYhmGGGR7TjWEYhmEYhmEYhmEYhmGGGX7pxjAMwzAMwzAMwzAMwzDDDI/pZsB1Xbz55ptoaGiAZVlj3RyGYUYIz/PQ3d2NGTNmwLZL/wYxMDCATCZT8nKJRAKpVKrk5ZgDE45JDHNgwDGJqXY4HjHMgUGl8QjgmEThl24G3nzzTcyaNWusm8EwzCixc+dOHHzwwSUtMzAwgJqGyUCuv+Tttba24pVXXplwAYUZGTgmMcyBBcckplrheMQwBxblxCOAY9Jgquql269+9SvcdNNN2Lp1K3bt2oUf//jHWLZsWaDOs88+iyuuuAK//OUvkcvlcPTRR+NHP/oRZs+eDUCc4MsuuwwPPvgg0uk0li5dim9961toaWkpuh0NDQ0AgNd+9f/Q2Njol3u2PFyOEy6zY6RMzrcN9ZxEqJ7nxP0y1xJleeJvkc2L6bxLylzxN0fqqWVypF4ur+q7ofUBQDrnheZn8q4sI+t2vVCZK7fnBspQFLb8OGbbFikT03FSFnfEm/UYKUvJsmRMlyVjoizh2GRZMT9Blk044W34ZV7OL7Ny8q18boCUpQN/AcDKqjJdz8uIaS+t67lZOT+X1fWyYtojZXDlCfPyuh45N1FY6iuEpfud6oNWLE7K9DGy4nH5V9/UVF0rGS4L9F/Zb72YLlPXgeeQ60EtE1hW1iPXjer7pn5H+77qvoEyfx7pi264LD+orLenGx889h3+NV8KmUwGyPUjfszZALmGC5LPou3P/4FMJjOhgslEpNpi0ssbvo2GmkS4ArlHePl8qEzXM9xXSJm67xjvObRMLuNvi84PbCO8Pk9et16eloW3p+YH6snted7Q9QdPD96ua5pXZFlgvqENxnoF1jNSWE5xX6UtK7qeaT2mMluWWXY484XWN65PtsEiz1aqnrG+HV4f3a6ab9nhWBiIf074WQ2Gr/mRsZXWp+sxrE9vz3DM5bLdvf04dNk/cUxijFRDTFJ98ycnLEZdLKYfyqoU0z1/tPGq/BgdaFjO2Gdo2kXG6DHDsdCby+Ejv9xSVjwCOCYNpqpeuvX29mLevHm44IIL8LGPfSw0/29/+xuOP/54XHjhhfjqV7+KxsZG/OUvfwmckM9//vN45JFH8PDDD6OpqQkrV67Exz72MfzmN78puh0qXbqxvg6NDfV+efEv3VQZqeeYXrqpFxTFvXTLmV66ueGXbtkSXrrFcm5ovi4r/aVbsXHFKfGlGy1LxdRLNztURl+6qZdpCSf8gs34Ii7w0k2+MMvGSVlC/iVlcr6VJec6I1+mxnWZm5HtCrx0Ey/2vBy5DNUPVtOP4wL4D/+GHxrBl27kh4166ZagL9jkfppeusWSul2RL9309vz5phd2Rb50yxV66abKIl6wDVUGoDKJhBOH5RhehAwBP3qNH6otJjXU1aCxJhmuYHzpljfUK/DSzfCSzLRsRS/dTC/Tinzp5uaHbl/hl26uXMcwvXQr8r5c9S/dCkhGSn/pFl0/6iWaXclLN7qNil66hV+cRcbWgi/d6D4Vfunm1+WYxBiohpik+mZdLIb6WAyeVd09yLWq4KVblR+jAw1+6VYYeowqlpFzTAJQZS/dTjnlFJxyyilDzv/KV76CU089FTfeeKNfdthhh/nTnZ2d+M53voP169fj//yf/wMA+O53v4ujjjoKv/3tb/H3f//3JbXH7emAa+sfEFZcvowgLzD8hzrTSzfDyzmPdDq1LH1pYct6DqkXly8o3JheX9bwMsIvI2++sraqR5Z19PxUXFz0mRzJfouJfaYv59S6s+QHhKlMLeJ6xV0yNrmQo+6BjuHr+XjCP9fIGubpG6/pqFmmB3kFfaBX6yH9yX+pRsvoCzg/q62GLCN+1NMXYp6s5wVenCXkX7q+hKGe7L+Wof/m6Qsx2e/I85Epe7PYl2mqDwb7sRuo3ztgeDFRIpbtRJ+jwXgl1GXGlGqLSXZNPexafa3ql2QkTvnz6Eut8Is4y1UvtcIv0wJ3W9OLOFWvwEs8a5hfztluuGxwfbHqoV/O2cW+dDMsW2zGRGB9JXzcHSmKfQFn+hFQ6CVaZFnEyzTTsqPxMs34kswUR8t5gRZYz9Av2KLab7uV/xDjmDRxqbaYxAzNeMpuG+62VsNLrSjo/lZ7WycCHJME1f2aleC6Lh555BG8/e1vx9KlSzFt2jQsWrQIGzZs8Ots3boV2WwWS5Ys8cuOPPJIzJ49G1u2bBmDVjMMM9FRwaSUf8z4h2MSwzDVCMekAxOOSQzDVCMckwTj5qXb7t270dPTg3/913/FySefjJ///Of46Ec/io997GP45S9/CQBoa2tDIpFAc3NzYNmWlha0tbUNue50Oo2urq7AP4ZhmGKwrBKDiTUxg8mBBsckhmGqEY5JByYjFZM4HjEMUwkckwRVJS+NwpVSj9NPPx2f//znAQDz58/Hk08+iXXr1uGEE04oe91r1qzBV7/61VC5l00DOT0OgpKbqLG4AC05DcgKlHzPJYfXErJCy9bLKlmplSfjfPnSVLINOR4c1UM7SrIX19oVJcFTktJAGVG7mCSpcbJMwhWptnTMrAE1zlveJsuGy1zDuHKKfAGXBSUhpZLTuF+m66n5Dqlnj7VtuVEuQsuklIpKk+VfKr3Sci2DJsk01kw8PFZbQP6s+hipR8dvUwNbUjmoW6xpgkFeqtZD1MqkD1IZskFeahiXLesbKej1eaZ6cmHXG1pKSuer9aaLHJcpCsuxAwOAF8QbN986mAjGIibZtY2w68IxySo0fpvJXMEgTVXzPcP4bVaBceOsMZKh6jYZpKkF6kWVuXnDMaXLlHHvGI3x3YqVkvr1C4zpZhvubaXKS4sd023UZaNqWbqPhnomqahljPMF2jq4fYZ22W7lPzY4Jh2YjFRMGioeKZQ8bzzJKUeS8XIcRrKdat3jQbo5nto60ozUMeCYJBg3ezV16lTEYjEcffTRgfKjjjoKO3bsACDsZTOZDDo6OgJ12tvb0draOuS6r7zySnR2dvr/du7cOeztZxhmYmLbTsn/mPEPxySGYaoRjkkHJiMVkzgeMQxTCRyTBOPmpVsikcB73vMePP/884HyF154AW9729sAAAsWLEA8HsfmzZv9+c8//zx27NiBxYsXD7nuZDKJxsbGwD+GYZhi4LEKDkw4JjEMU41wTDowGamYxPGIYZhK4JgkqCp5aU9PD1566SX//6+88gq2b9+OyZMnY/bs2bj88stx5pln4n3vex9OOukkbNy4ET/96U/x+OOPAwCamppw4YUXYtWqVZg8eTIaGxvx2c9+FosXLy7Lkcdy4kbpQMEUSSWHsYjUQP71SMqklRMSUs/RkhPLk9MelejkhiyzifRGuZzG4rp9StoXI2nEObKamJSSUslpTEn6iFQvLvedlqWV5JTKBuUkLTOpSk1SU8cgJVUS0rhDJad2qEzVo8oVtR76ZtkeNE9My/+QJnlW2E3NP5+WQcbi6Usp4A7q1wvLZ5QjqGVyGSQYbz5qfVTuqcrixKlUSUmpE2lADqrkzOVLSV3idWhy1c0bJM6qH9F+YJKXqklqhusiLCU14Z9Xmy4s+5M8hfFhkCWXHCAmaDCZiFRbTPLiKXiJOlIQliuaYohfZpB5mpxKC0lTPRm7TA6plkmuapLQm9pikLVSGWeUjNYoTTXUo5jut1Gy0UrlodUoLy12WaOLaQHppC6rXHZJpwtKSSOcRS3TM50pjjrh7RqHeBjCvdT0vOBZ4WPol8lY5MXHwFGbY9K4odpiEoVK06pJYkldmYt1oK6E8SK3ZTmlYDSPg8khvBoY6WPAMUlQVS/dnnnmGZx00kn+/1etWgUAOP/883H//ffjox/9KNatW4c1a9bgc5/7HI444gj86Ec/wvHHH+8v881vfhO2bePjH/840uk0li5dim9961ujvi8MwxwYWLZdcFykAKXUZcYUjkkMw4w3OCZNXDgmMQwz3uCYJKiql24nnngivALZKxdccAEuuOCCIeenUincdddduOuuu4a7eQzDMCH4C87EhWMSwzDjDY5JExeOSQzDjDc4Jgmq6qVbtWHVNcCuawjPMEkIAguKsoCUYJCEACDSPtM6TFDZi6XkOLnIRWKGjkullao5NOPVkeqGvEdkg5aSnIbXnSeS2bzvNqm3q2SAVDYYJQ2kTqRKNhpwNHXC7qUxB6EyNW2RMitCTugZ5MCBc+PLFalU0yDv8hc1yFOo9NMgizK1rmjHNiULpe2T9fy+BgSlpLIulY3CUWVUcuOEypSsNGuQkroBOWhx6H6pj0JeSklp/7Rkv7RJR3Z8CSm5vmSRqa/5CoPEMDjF2XaJwWRifsFhRh4vUQsvUWOYQWSeUZJTGkN87Xb08AZR0lSY5KBFOpCapKkoIE0dvK3AdouUlBrLCOW4kpa6jVFnGB5gC36lLlJqGiUbDdQrVSJqWl8lzqeG5zfTM51HnynIekxSUuMQFYPXlxgGR22OScwYEyVXG0vZpUneN1KS00KSvWqXn04UxkpGW01S0rGWEnNMEvBLN4ZhmAqwrBK/4FgT8wsOwzAMM/ZwTGIYhmGqBY5JAn7pFkVtE7yaev+/xi+XiqivmkOUeaavnuqrqakezVYyfnkNv8m2ZDYDzQBzA0YF4QwhqA+9NLFOzqYfhPLKf4BkxOXtcKaTn3GE0r/q2FDZaqR5dnAeLQtkv9lDmytEZbyJCoZBkO3w5eIbZATMFeS0S7PHRIaYRbNQPMNA5sW0iWwvsF35JT/Ylli47dTMQZXTvmWHMzD9jDh63OTppJmTqisEz3TY0MD2wtmKSjJBvzmqvmXKVjNtw2TaEVhm0Hw7MzFv7MzExI2n4BIjBcuQ1eZnqVFDksHz6LKmLLmobDlAZ6nRC0rOtw33uKAJkCEzLcrAgWLKsPM3FVF/CIzLjDKVuHSNdfsLtr1U8wVT/QKGBsbMuSgTA8Mzk1dOhlqUoiGwrBU5f/D23Hi0eqGauOuuu3DTTTehra0N8+bNwx133IGFCxcOWf/hhx/G1VdfjVdffRVz587FN77xDZx66qmBOs8++yyuuOIK/PKXv0Qul8PRRx+NH/3oR5g9e/ZI7w4zSlRbBlhURtJIGi+MVfbRWGXYjXW21UjA2WxMKVRPb2EYhhmPOA6sEv6hkPsxwzAMw5TLKMSkhx56CKtWrcI111yDbdu2Yd68eVi6dCl2795trP/kk0/i7LPPxoUXXojf//73WLZsGZYtW4Y///nPfp2//e1vOP7443HkkUfi8ccfxx//+EdcffXVSKVSZR8KhmEYZozh30kA+KUbwzBMRagBQkv5xzAMwzAjwWjEpFtvvRUrVqzA8uXLcfTRR2PdunWora3FfffdZ6x/22234eSTT8bll1+Oo446Ctdffz3e/e5348477/TrfOUrX8Gpp56KG2+8EX/3d3+Hww47DB/5yEcwbdq0so8FwzAMM7bw7yQBy0sjyNc0I19jMFKgFDvYX4ny00ImDMUO7KsGtveIGM/kfBSQCKrZtHmuGrxeFzmD60PL++gWtOQvPMg9xaT49OWggbKw5FQ1y6GD61tDl9mFsnB92Ym+RCw56bmGc+MS8wIlGzXIrDyT9Ipu1lA2LHIXKuMMSE0jBnamUjRp2EHbp9ZjBY5vWA6qplzPICWl6jSD0NYkFy3k3OUvW0yldOXfHUoNEBM1mDAjjxevgZeoJQUR8lJTGb1+1YRrkJwalvUMUlLj/aqAvNS4DYNc1b8bFFrWUC8SU71izYxMlLFs5FAV5TSh2H0PNKIC2VQlxzCiXtFSTSoHjVq2wPqKHeLD2D7Ts1/B9heWl3rDIC8d6ZiUyWSwdetWXHnllX6ZbdtYsmQJtmzZYlxmy5YtWLVqVaBs6dKl2LBhAwDAdV088sgj+OIXv4ilS5fi97//PebMmYMrr7wSy5YtK6l9zPimHJncSEkmh0s+OJIy1VJhGWJ1yUJNTLRzxL+TBNXd6xiGYaoc23ZK/scwDMMwI0G5MamrqyvwL51OG9e/d+9e5PN5tLS0BMpbWlrQ1tZmXKatrS2y/u7du9HT04N//dd/xcknn4yf//zn+OhHP4qPfexj+OUvf1npIWEYhmHGCP6dJOBMN4ZhmAoo1QrbmqBW2AzDMMzYU25MmjVrVqD8mmuuwbXXXjucTRsSV2a7nn766fj85z8PAJg/fz6efPJJrFu3DieccMKotINhGIYZXvh3koBfukXg1jTDrW0sfwUF5BaeQU9pUs5FOTcG5Hn+f3RhtNzT7BgZ1Rbq+mmrCgE3VGvI9ZkwHSGTsyiVg/oKE8MygXqqTaTQJFfVmzNIQ0iRkoFYJkdTk5TUJNsyyreiXQYjKSTpMTraEomZmnQzuoId3k+4JhlOVvwxtMcp5NhWSJqj6kW4zBapMo0mUfnXFE6bZkYLL5aEF0vq/8u/BeWFBe47uihC8l5ISmralsE9NNJxtUD7jAzXvdKvFyHrKEIeCKD4YSeGWGfRFLvvlZwHf14VnY9yzkMlQ3xE1h+ivxQrox08j1zf5VJuTNq5cycaG/UzbzJpbsvUqVPhOA7a29sD5e3t7WhtbTUu09raGll/6tSpiMViOProowN1jjrqKDzxxBNF7wtzYDIccryRdPWsdjkjM3xMNGnocMC/kwR8F2AYhqkAHiCUYRiGqRbKjUmNjY2Bf0O9dEskEliwYAE2b97sl7mui82bN2Px4sXGZRYvXhyoDwCbNm3y6ycSCbznPe/B888/H6jzwgsv4G1ve1vZx4JhGIYZW/h3koAz3RiGYSqAv+AwDMMw1cJoxKRVq1bh/PPPx7HHHouFCxdi7dq16O3txfLlywEA5513HmbOnIk1a9YAAC655BKccMIJuOWWW3DaaafhwQcfxDPPPIN77rnHX+fll1+OM888E+973/tw0kknYePGjfjpT3+Kxx9/vOT2MQzDMNUB/04S8Eu3CAZcCwk3Ok3U5K6o8BCdqmyUjRrKipV+RralgDSkEjkoRck86eXiSzpN7qSGZU0S0cAyVrD+4GUGL2ubJJYFsn+NslF/Y2TvomRRBZxKTc5+/nQhOVCxcixTW5DX6wwvES37IQeu2GVNUhqjXr9YOU8x84bY7mCcbF/BOoWwrBKDiTUxgwkz8uRgI0fumv69rcg+Vei+Z0UMZVBINliss+jICXgIxcoPIyTthYZ6MO2HP5zDEPE2+nmhOAoJV4yx0BBbTeuLipWmvlGsA3dFTqnlUKa0s/Cy0Ue/nCEPBj8H5oZBgDIaMenMM8/Enj17sHr1arS1tWH+/PnYuHGjb5awY8cO2CTOH3fccVi/fj2uuuoqfPnLX8bcuXOxYcMGHHPMMX6dj370o1i3bh3WrFmDz33uczjiiCPwox/9CMcff3zJ7WOYUhmPskDbdFOfILhRAZMZV/DvJAG/dGMYhqkAy3FgOSUEkxLqMgzDMEwpjFZMWrlyJVauXGmcZ8pOO+OMM3DGGWdErvOCCy7ABRdcUFZ7GIZhmOqDfycJeEw3hmEYhmEYhmEYhmEYZtxx11134ZBDDkEqlcKiRYvw9NNPR9bv6OjAv/zLv2D69OlIJpN4+9vfjkcffXTE2seZbhGk8x76c4UkouGyUiWiUe6khbcV2Ty4hjXZBQQqRhmowfVTSVFofeVoSh1D1XzHIAel61PLmOSlxUpEjRIY09E0FRlXGH7b7iFcVkh6Y3QZ9OWlelnLzYkJ2+CGms/pemrCzYfqmbcRLU0t6H5okLtGOfRRCY/f1hLd4wavJ3oZU/8o3D4r2z9knWJhK2xmtMh74p/+/2jKLwr12ygpeHFbKDgMQsSt3OTKHVjWn0fX54bqm+t5gW3R7QXqyRrBZQ1tHua4HRWz6Xy6Dr+sQLwt2i3cr2cYToDEUVPsN7XZhMnZvGQKXTKR80f+ehsOA0WOScxYMJGljqONNQpup/YoyGndCm5opSQ7eflRHsJggjJSkt7RiEkPPfQQVq1ahXXr1mHRokVYu3Ytli5diueffx7Tpk0L1c9kMvjABz6AadOm4T//8z8xc+ZMvPbaa2hubi5528XCL90YhmEqgAcIZRiGYaoFjkkMwzBMtTAaMenWW2/FihUrfDOfdevW4ZFHHsF9992HL33pS6H69913H/bt24cnn3wS8XgcAHDIIYeUvN1S4JduEWTyHjKGt/TFD6ZsmEeW0JluCJWZlik0sHM5RGWQGTPTSHXHCv6lFS0vXC+wDTXPDm/DMXxlD2SSqYwuU/ZVAYoeTHsYjrVNvu77u+SRbfn7oTPYlIEDLSvWhMFfhixrqew4w/ELLGPaBs2iKxHjDZMe56iBzmmWnJ8+UWBg9KjzGjHPyqXD80qEf+Awo4XneciX8SWy1CUKbSIqI60S45/hyjhTGYCm2EqzA9X6siTO5w1lqh5dVs2ncUEtEihzw+uhVJLZZIqtKqYHY6sVqq/K4qTQ8TPYdJma7xjKaD3HlPkeEdMrybCjmI0jwmVR380LZdCVk8BT6iJqG4WyPYvaNsckZhSwLWvCZ7eNZMZZJZlmw2H6MBrZdNYwZaB5hQJlRFpcJdl2hZhoGXaDr2fTO4JyGOmYlMlksHXrVlx55ZV+mW3bWLJkCbZs2WJc5ic/+QkWL16Mf/mXf8H/+3//DwcddBD+7//9v7jiiivgjNCYcvzSjWEYpgJsu8QHzwn+kMowDMOMHRyTGIZhmGqh3JjU1dUVKE4mk0gmk6Hqe/fuRT6f992zFS0tLXjuueeMm3j55Zfx2GOP4ZxzzsGjjz6Kl156Cf/8z/+MbDaLa665pvi2lgAP5MAwDFMBlm2V/I9hGIZhRgKOSQzDMEy1UG5MmjVrFpqamvx/a9asGbY2ua6LadOm4Z577sGCBQtw5pln4itf+QrWrVs3bNsYDGe6RZDzPGSJNMSXgxokopTiB1iWkhXXUGYaCDogWTFtd+gU2qFSRFV2sUkmUkhi4tlyn2iZOjb0da6rdCK6fWrdASmFSeqq5lNJpMkcIAoqV1QDZ0cMsk8p1uSi0LL+ANZUPmP0fDDsm5SIBiSnUvpp5TN6fWp+Ph8uoxLWXJZsLh9YHwB4anmTfLeQ5NSUEiyloUYLaFpfTgcG0FTzTVLSgvLSsDTVN1BQf/PZ0GKlYllWSQN8D8tg4MwByVCyz0L3pOEx/Ileh0kOqrcfHpIhEPcM8VHNp/FWSTXpsll5nzLJQWn8zsqFCpepZfVG1ODCtF5GLkvlo2o6k3NDZYOnSy1zDC9GosrovETMDpWp6QSRGMWVmRGpF5f3TypDVfXihmVNZaZniTi5L6tFApJYWIF5gNkQQs0PjnIx9LAZZrkqfTYJ1ge0BNj01DDU/TzqPZZplhtxnZUKxySGGTn5ZDmy0GLloKW2uay2jOZL9jh5/i7x5kZloQZPOyMmuadjOEYF5aoF2qPbVXkfm2gSVRPlxqSdO3eisbHRLzdluQHA1KlT4TgO2tvbA+Xt7e1obW01LjN9+nTE4/GAlPSoo45CW1sbMpkMEolE0e0tFs50YxiGqQBLpk0X+4+zChiGYZiRgmMSwzAMUy2UG5MaGxsD/4Z66ZZIJLBgwQJs3rzZL3NdF5s3b8bixYuNy7z3ve/FSy+9BJd8YH3hhRcwffr0EXnhBvBLN4ZhmIqwrBLTpjmrgGEYhhkhOCYxDMMw1cJoxKRVq1bh3nvvxfe+9z08++yzuPjii9Hb2+u7mZ533nkBo4WLL74Y+/btwyWXXIIXXngBjzzyCL7+9a/jX/7lX4ZtvwfD8tIIsoPcS6PkpSbpZ9DVLOx0Nrg+nR90WAu3zSQ/Ma27kPOIknPQD51K9kGzZl0vLDFxpUjCDWwiLNfwX+2SirYvQyULuwYNh3JEozJE5QBqkJdahrJiHUsDsw0yFt3M4o4zLfJlsuSNupZ+RstBjfWkrDQgOZWy0UCZlE8GJKVZLUlV7fFyhrJCUlLTfIO8VJ27wFFTklODvNQzOJUGpKlqGbKsL0ml64uSoSp5aXY43EtLyxTgrAKmXGzLfMukPSpKNFFIUlqslNTk0qmm6LIqjhUrG6USUZNsNOvX060eyIUlojk5f4DUM8lG+zPiHkbloGpazQOAtCzL5MP1aCzO5PKhsrRBalqspNREIZmpmk7G7FBZIuYYynQ9JTWly9YknHA9Oa3mAWYZakquL2aQnKbI+pQkNU72wyRD9Ye5oDLUvEmGKo6l0YFdVyPuqrpMPdcEHmFkEX3WUZuj10WhHwqmuYNP53CEB45JzIHAcMlHS5VoDpdUtNjtRl2fdpHHYDjcToeLYqWdlh0tuzTKVQ3D2JhlobQ9xck7S+1txbqmFuonE0F+Ohox6cwzz8SePXuwevVqtLW1Yf78+di4caNvrrBjxw7Y5Hli1qxZ+NnPfobPf/7zeNe73oWZM2fikksuwRVXXFHytouFX7oxDMNUgG1ZJdlqe5xVwDAMw4wQHJMYhmGYamG0YtLKlSuxcuVK47zHH388VLZ48WL89re/LWtb5cAv3RiGYSqAswoYhmGYaoFjEsMwDFMtcEwS8Eu3CAZyLqwscTAzSj+LcyBVWbBUQmKUmhZwfisVU78NZBm74Yr+9qgcVMo17ECZ+Etblzcsq2p4pEhVc8jCql20zJLL0v1Q0hLLkOxrm+SNRV67luE4G+UgBo8/y+T0SaWuym2UlqlpKiXNlyg5pU6lBudTT7WLSkHdcLtomcnR1ORk6uVN8tOwG6ip9yq5qElyGsB3NHVC9WiZ50tOiVOtE5ahDnZItbJ9htZVJ3fddRduuukmtLW1Yd68ebjjjjuwcOHCIes//PDDuPrqq/Hqq69i7ty5+MY3voFTTz3Vn+95Hq655hrce++96OjowHvf+17cfffdmDt3bmhd6XQaixYtwh/+8Af8/ve/x/z580diF5kCOLYVkNaZHJA9fygDXeYvYtH7vJxH45TB4VHFLKOzaaCeXEdANir/BoZfCEtJtURUbyVtkI2qelSymZaSTiolNclGVVkfkY32Z/OBeWKZcD21njQpyyv3UrINJSdxaZzPhZ8hTLKYYp3dTA+jtEx9TbaJfFO5kVI5k6McTYm0JWmQktb6Zfo+qmSlNXEnVI9KTk0y1JQvYdVlSs4akJwaZLJKahqUpsphLqijqT8+BB0KJCxDVdC+ra6HwHUW4Xw61G8DVUznm+Sng5c3yYcZhhFUKiktWtI5DBJS07YKvUwwyUWj2lLoeFim5+oiKVa66pYqf4zrSc/020li5aOPlUmmamoLvaea4qwbIRyl0s6o82Bqi+n8Fys5pahzPBFkpgc6bKTAMAxTASUNDlqmU9xDDz2EVatW4ZprrsG2bdswb948LF26FLt37zbWf/LJJ3H22WfjwgsvxO9//3ssW7YMy5Ytw5///Ge/zo033ojbb78d69atw1NPPYW6ujosXboUAwMDofV98YtfxIwZM0puN8MwDDO6jEZMYhiGYZhi4Jgk4JduDMMwFVCKDbb6Vyq33norVqxYgeXLl+Poo4/GunXrUFtbi/vuu89Y/7bbbsPJJ5+Myy+/HEcddRSuv/56vPvd78add94JQGRDrV27FldddRVOP/10vOtd78L3v/99vPnmm9iwYUNgXf/zP/+Dn//857j55ptLbjfDMAwzuoxGTGIYhmGYYuCYJKgqeemvfvUr3HTTTdi6dSt27dqFH//4x1i2bJmx7mc+8xl8+9vfxje/+U1ceumlfvm+ffvw2c9+Fj/96U9h2zY+/vGP47bbbkN9fX3J7dnfn8OAo+VyyjGNZodqeWlxslHTPLdIWYmpE9KBCVUma2CwQvlalbqC0fm+G5ihjLqGqWWoM5lapJB8U++eQW5LpaSq/aTQJOFQzmRmqQdZ1m+7rqelqeEyii/fLFYiapSNkrRkYz0vVGauZygzoFxaLeLWacVEHjftYQFZpnQyDRwBV6Yy5xDCyxL5qEGGapSzDq4/qD0hDBJho1OpaT6t5xgkp7FEoCzfU7m81LILmuGG6gNAV1dXoDyZTCKZTIbqZzIZbN26NWB1bds2lixZgi1bthi3sWXLFqxatSpQtnTpUv+F2iuvvIK2tjYsWbLEn9/U1IRFixZhy5YtOOusswAA7e3tWLFiBTZs2IDa2trid3KCUG0xKWZbiFGphCmuyHshvcbU/TbgtKjWQW/gSkpquGdSvWqUrzFtipqm8VHJSgeoRFS5jRpko1RKqiSkfVkiEc2EJaI9A+LmRSWiPemcrKdvbH2GZXNy3bmMGyrLE3mHko3SsnzOC8wbPF9JW0wx3+Qsa8IoUaRSSDlNZaNKaurEyPOCnE9lqKosRmSjsUS4TMlFaxO0TDxO1if1Y6WaX5+KhZatSejjUuuKslyeSF1lu+gzQsr4xGoaZkJeA4HAZ1o2vAb/GcHgVBqQnKp5Q8hHVbnZsTT8HKWIDcOPjXJjElP9VFtMGg8Ml6TUJOWMWrcpW6dY+ahpW6Zn30IS0FLluOXId30n5zLkj1HLuAb3UipHNTmQOsS91Cg/NQyUEbXHJumpqc30HEa5s9L+Uo7UdLzCMUlQVbvV29uLefPm4a677oqs9+Mf/xi//e1vjXKnc845B3/5y1+wadMm/Pd//zd+9atf4aKLLhqpJjMMc4BjWVbJ/wBhV93U1OT/W7NmjXH9e/fuRT6f922vFS0tLWhrazMu09bWFllf/Y2q43kePvWpT+Ezn/kMjj322BKPysSAYxLDMOONcmMSU/1wTGIYZrzBMUlQVZlup5xyCk455ZTIOm+88QY++9nP4mc/+xlOO+20wLxnn30WGzduxO9+9zv/R+Idd9yBU089FTfffHPJYxK91Z9Fys74/1df6GlWQWT2mynjrUBWmynrSmWhBbLV7HA2ms5QI8tCZYCFM9kAPSCxaT20LaoN9COIjfAX4ShcQwZEIPstOv8phE0HTpbtok1Rx4vuh/qoT4+ROjaBDLa8yOiy8vr8Wzk5TU0O1HyareYbH5Qx6KXhS5ZneOXvl8UM7809MkqpaoOTCLcPJBMuRzLYsnqf/VX6i4Qz3eiy/nROr8M3XKD1DJlwkQOqGo6LZTBICGS1xRPBedD7q8ryvf1DbrNYbNuchToUnmzizp070djY6JebstzGkjvuuAPd3d2BDLsDjWqLSXYuDTsfNiux6T1CTtMMNp0Rp6upSVpmDZoHkJhF+7i/EPlqK7OMC10JeS8cR7W5gr4HKAMFapCgst5MWW3dA/q+ZspqU/N7SL2orLZcNjr7TWWwmbLaAuYK9F6o7pn5fKisHNQ90HKcUJkd0/d8k2mCbSgzZbXFso4sCx+j/oyuV5+S+07u45m8eMTMueFzTXEMDxG++QM5/yqmu8QgQfWnuKHn0dWqabot37zJji5TU05AMRCcJ8oMSoBA6qfYlyjjJTuXDs8rkXJjElP9VFtMGm2CA9sPT8ct1aigWIOEcrLais1mi9r3kTRXqGS9pmf8KJMAGpv8+aSMmiaobQe3YcpqC7fRlP2mstJNmWmWqV0EdY6jMt5KYSIYKHBMEoyr3XJdF+eeey4uv/xyvOMd7wjN37JlC5qbmwNZGUuWLIFt23jqqaeGXG86nUZXV1fgH8MwTDGUO0BoY2Nj4N9QL92mTp0Kx3HQ3t4eKG9vb0dra6txmdbW1sj66m9UncceewxbtmxBMplELBbD4YcfDgA49thjcf7555dyiCYsHJMYhqk2eNDqA5eRiEkcjxiGqQSOSYJx9dLtG9/4BmKxGD73uc8Z57e1tWHatGmBslgshsmTJw8pwwKANWvWBGRes2bNGtZ2MwwzcbGsEoNJiWnTiUQCCxYswObNm/0y13WxefNmLF682LjM4sWLA/UBYNOmTX79OXPmoLW1NVCnq6sLTz31lF/n9ttvxx/+8Ads374d27dvx6OPPgpAOKl+7WtfK2kfJiockxiGqTZGOiYx1ctIxCSORwzDVALHJEFVyUuj2Lp1K2677TZs27Zt2E/GlVdeGRh0vKurC7NmzULHQBYxS0tDMlIykiHSEVOZkk9QGUUuQlZKB85V8gUqY0hIGUiCSAnVYMSpmJZ3pGQ+pk2kIUkrvL4UWU+trJsg6bJalhluo8m8wASV1vqDaVNZrm9AoZfJ+RIjUk+mCpsMKIImEmGjB7VPCSqnVdPkGMSkVMWhElEpG7UyWn5oZfvk3zQpE/MD8kyDhMivT2RAkPIfX/IIwHPCkkjE5GVq68vVl5caTAcCR8pk1kAls0pqStpvx8Q+BRKafZmq3p4rpVZeZkBvLj0g5+my/EBGlmlZV14aMtC0aTUdJTMFdBp5ICVfTjtxfSxtObC3HdfHTU0rQwW3T7ezXGzLCpqXFMAr4/61atUqnH/++Tj22GOxcOFCrF27Fr29vVi+fDkA4LzzzsPMmTP9ceEuueQSnHDCCbjllltw2mmn4cEHH8QzzzyDe+65B4C4di+99FLccMMNmDt3LubMmYOrr74aM2bM8Adlnj17dqANapDlww47DAcffHDJ+zDRGIuYZOUysEzyM4O8NNAmWWaSoboGuV3eIDm1aJmSzpkuVeoBI++tLhHhqaEMspZBZki/bhpUl3mDcZEp3qppU6ym0k8lFzVKSWmZoZ5ajxswUhD3ONckrweRl7rRZVFYdlhKarnhsuA2xP3Oi5F7oTxGXqx8CQztY6ZnoUSsyPMVYSJhGnIjMFyG7E8Biajs5gGDKDk/VqBelOSUbteGIbbS2OUbIBnkpSZTJDUvFx7eoVRGIyYx1cdIxaSh4pHreQFTmInqOBhFqbLSQgYJxUpJizVa0PUNBmVFYtpWOZJH1QbjbyPS9kK/ARSmvS28pPydQR5y1DEPylWlRLRIo8OJwmCTJ9Nv73LgmCQYNy/dfv3rX2P37t2BH4L5fB6XXXYZ1q5di1dffRWtra3YvXt3YLlcLod9+/YNKcMChnYNZBiGKUipqdBlPJieeeaZ2LNnD1avXo22tjbMnz8fGzdu9I0QduzYAZs8tBx33HFYv349rrrqKnz5y1/G3LlzsWHDBhxzzDF+nS9+8Yvo7e3FRRddhI6ODhx//PHYuHEjUqlUye07EOGYxDBMVTIKMYmpPkYqJnE8YhimIjgmARhHL93OPfdcLFmyJFC2dOlSnHvuuX62x+LFi9HR0YGtW7diwYIFAMS4RK7rYtGiRaPeZoZhJj6ljj9Q7lgFK1euxMqVK43zHn/88VDZGWecgTPOOGPodlgWrrvuOlx33XVFbf+QQw6BN0xfvSYCHJMYhqlGRismMdUFxySGYaoRjkmCqnrp1tPTg5deesn//yuvvILt27dj8uTJmD17NqZMmRKoH4/H0draiiOOOAIAcNRRR+Hkk0/GihUrsG7dOmSzWaxcuRJnnXVWWY483QNZeESKpxzT+ohzWiZvkpzmQ2VR8lJKMhaWStRImVwNkY02pERZfUqfwqYaIa2jKZzanVSXJUmasZqfLCDLVG6fNGXddE340hFPz1QudOkcqSf/ZojMQjnTdRMZoioboG5wEVJTk3S2iRwjT5ZZRNqk9jNOXUmzQnZoZ3p0Wb8YPNbt7tD7MdAr1psmMkWTTEjJgJI6i8hKiGm7TjtYWknpwEMkp0pW6sZrdJmUR3pEcmqSmhaUl8r9tBwiWVPyNJriLeWnbn+vXrWUkHqkLNsjprPEFTTbK+opmSkA5OQ0TVF3s2FXRhMqDd1O6GPkxA1SUnndxFLaxS+WEl9rHVmW66/cKY6ZuFRbTLJyA7AyRI6urlWTrMQgJaUSdVVGpXW2nO+QGJE3SE7VZZsLiNmLe0jy5KrjLokvcjrr0vhihdrnGIZLMA3JEFVGJVBOTEzn87pMPezRWKfcPwtLTcKPVJ5tkJKOgnsplaE6UlZKpUsmR1NVRvfdPx6G42ZXcB6M7uhW+PybnNfpMBLatV2XKQmpuQyhsoLupfIcWXnyEGOKrS6d74bm+5DYOlhqauUqH/KAmbhUW0yiDJamDcVwyVCLdTJ1A1LC8LY935VyeH/oF1pftBy0ckmpWGZoWWkl7q/FLmt293TI/KGlplRmanI5LegianQ0VcvqczNcLqPFrM8tclvD7Vha7LXJjCxV9dLtmWeewUknneT/X40hcP755+P+++8vah0PPPAAVq5cife///2wbRsf//jHcfvtt49EcxmGYWDbVkkPkQfiuCfjFY5JDMOMNzgmTVw4JjEMM97gmCSoqpduJ554YknypVdffTVUNnnyZKxfv34YW8UwDDM0llWa085EdeWZiHBMYhhmvMExaeLCMYlhmPEGxyRBVb10qzYyOQ85T6e+dg8I6UA/cTDrl1JIKjlVMtQcdTT1nRmjg6WScFDJR1I6lTYQmWR/NiHbGE5BpZKKbD6cAkylGUpeQWWZNVI6kiRltnLMI6nAJgcuJXf0YnrQ1bQvGQpLRG0i61FOpX1ZXa9HHt8eok3N+hJWfSyVLIW2uV7KC7PUXalO1KPSWc8owRRSRyutpZP5/XvE38639LJ9QnJK5aVKLmQFHEil9JdISdW0lyCS05RwiPRdTKFlpV6ynpSJZTIkVTlv6FuqKzhUjkNkqpbcjp3WMlpIiYxNXVXVBHXlSwsJqZKUAkB6f7doV3efX5bpUpJT6mgqjm+eXEtRaddUEuBIibCd0MdXSUidVDJUZk5vl25F2VxoXqlYdlDJV0x9hikHK5cB8lqG7V8Vpk5lcC8N1HNi4TIphbRImS3vY46j7wfqtk0/RloRZWZKd1Pz3Us9In+NcC81bpU0sGcgLJ2MSf1hjgzn4Mo4myPaRB3TSftyqozcv6mTt3IMJe2rRPahvgbT9qtp2yARdUh8VKeYPmvE1L2VunvLfXZi4Xp0eIvahCrT/UQNiVFL7tXKeb2GlKm4TYfQUMND1JJjrst0PRXLqStpIlJyilAZ7RO2ur5IbPKdRU3yUSI5DTwTmdxLB88jWMPoXsoxialmCt3zyslyUc95hWSP6jnTJDMtB3UvN41BRWWGJqmpkj2aJKImGaWxjEowC0hNo7ZhohIJaSWY5KCmbRTabpQLaiFJ6XC7lo6GrLSaJaQckwT80o1hGKYCOG2aYRiGqRY4JjEMwzDVAsckAb90YxiGqQB25WEYhmGqBY5JDMMwTLXAMUnAL90iqEnYSJMcx4SUQFB5qZKxBNxLlbzUIJ3Lk3qm9FWTU1hG6iHSRMJqckNV7aOSD5MUk0p+lPyCyi1TcppKDq2MkAtaOeL2aJKXSrmiF9cyv1SiTqwvriU3qjkZ4tym5DBUjqPcS3vJseyRMl96zJU8hEpWsvKY06xuJVWhkhV1KAPSEOnw6fZ26Xrd+8VfIi/N9YhjRJ05XSnBdYi7ZqxOyEEtegxS4rgEnHykhMsjElAv1SD219bL9qelQy5JWc4a5aXh80udamsStaINRDbjn2PS933XvZyWtin3UupUqmSl6Y5uvyy9X8hLM73EvbRfbI+mQ5vSvVVKvkPkRE5CtCWW1/3cdzSNh29pToI4msr5yr3UKWFslKHgsQqYUSOfCbobGmWlBimpqb665k2SU+Jy6nnS+ZLK723lhklcM6UjdCF5qflZqjipqbp1xYmMRk0n6BAJMg70k5ippIsZIt9Q8/sNjtlBR3IxTeO3K9cTuIf5ikKzfNQkLzUR5dBtwigvpWWWeq4g61P1DO6l9Fiq6WTg+EpH9QSVeYr5dBgMk5S0Ti5bG5CSqm2Ey2oNktNEwG29VHkpkZLK4UOsHJGNquEhqJRUTgfdS91AfcA85AZMktOh5gP+s0clcExixjNRMrlCGTBRw4kEtmFwNDXJQU2SzkJuqCo22IbtFpKIqinb4MxZyK3TRJSEteCyBmfR4SBK9im2GyULNc9z/eEeSpehuhHzTbJQs9Q1XK+QpLRUKWk1y0cLwTFJMEFVswzDMKODSpsu5R/DMAzDjASjFZPuuusuHHLIIUilUli0aBGefvrpyPoPP/wwjjzySKRSKbzzne/Eo48+OmTdz3zmM7AsC2vXri2rbQzDMEx1wL+TBJzpFsHkmgRyCZ2xpb740i+qjqFjqOw3LzCAcviNtvqaTb96W578+uzq9apvq7YdzvaiAxT3ZcTppF/oTW/GbZD2y0m6TyrTyQpkuolsJSurM90CX4IlvpECyXTz5NfhRE2TX1YjB+nPEKMHZeYQ+BIt33bTgbHV/tEsBgWtp85XOhfOfssXyHBSX7RNmV1uRmeaqCwvmulmQmVWgZgrWHFxDCxipODKzDOXmCaoDLeejD6vvdJsImCkYNgnZTCRJf3J9Uhmgy2WSRHjBnUOjZky5Ku+2me67zk5TU0TsrKvquw2AMjL9tMvTOpLER1w1pGZNAEjBdnnYzU6kzAuMwkTjXV+WaKhNlQWl2XKxCKWIFlDZWJZJaZNT9AvOMzIY+VzwWwbhWkgZnr9ymlqkKAybGg9P1PHItswZL/BkVnENv1qL81iaKabYR9MX/rUJWFZ+v6oMtjiJO6l/awrvV2VgUUzotJJsQzN/lUZ6qYMNlqmYkjaUEaz5Io1cMi74WVMRM2jmJ45TPMdQ59wDM8utExlq9EydXwD9SIy4qgZgorlNIPNdL5U7E+STA4/qy0WncGWkNMxJ1xmMo2yiRGJn9VGs8tKzWobKpNNGSOYstsiMj2M13eJjEZMeuihh7Bq1SqsW7cOixYtwtq1a7F06VI8//zzmDZtWqj+k08+ibPPPhtr1qzBhz70Iaxfvx7Lli3Dtm3bcMwxxwTq/vjHP8Zvf/tbzJgxo+R2MRMb+pum2B/mpuyywDoN5gqm51FTxpm/rKmtxDzOHqLGUORNBgmGzChTRlwhijVIGG5Kzuwqwyih+Cy0aNXZSGW4lWOUMJ4z3BT8O0nAmW4MwzAV4NhWyf8YhmEYZiQYjZh06623YsWKFVi+fDmOPvporFu3DrW1tbjvvvuM9W+77TacfPLJuPzyy3HUUUfh+uuvx7vf/W7ceeedgXpvvPEGPvvZz+KBBx5APB43rothGIYZP/DvJAG/dGMYhqkAu8RAMlHTphmGYZixp9yY1NXVFfiXTqeN689kMti6dSuWLFlCtmljyZIl2LJli3GZLVu2BOoDwNKlSwP1XdfFueeei8svvxzveMc7Kj0MDMMwTBXAv5MELC+NYHpjCm5cS/8a5ADA1Kigvk+WJUlZSsgXOvq0ZMEf/J+aIUi5S6HBFlXKM00jTviSD10WK6OTqhROOhao5csrtAzDl5Wme/0yN60H0PfrKTlgSkv6VDItlTalaicBADJEOpKRcpImcnwHpMQnndNlUTIcKndRb8rpxavkqrZR+ERQx5XIQdU0HZCUmiUMJl6nzRCcOiEXtWsb9OrqmwEAXk2jX+YmxXHLx2v9sl7ZZ5SkFAD65HQfNeswyEuT/kDndOBxgxyK7meRab0qRZ0eD1tOO8TQwImLfuTVEOMDZ+gUaydB+rTsC0YpaQORkjbWhsrissxpaNbtk8fcl5f29g3ZjmIp9auMO0GDCTMKeJ52oaHQAY/VoPlUuiKvy0KSU3/NFhnyYPC8QJmWpau1xJzo7BRVj8oHHMsL/AX0fYrKCzM5Kf0k+9sg5eZUSpqVEg5TGQ236p5J5RtqPr2fmqT7JslHgVBuvEcPN1GGC4Yxv40Pt44Vjpl0Wd+EIXAOxd+4Q2ONFVFGzX3CUlJVjz7XmMsQLjOYK/iyUioRVbJSaiSk5J2kni8VdQ2SU2owQqWkJglpMed/GPpIuTFp1qxZgfJrrrkG1157baj+3r17kc/n0dLSEihvaWnBc889Z9xGW1ubsX5bW5v//2984xuIxWL43Oc+V3TbmTEk78GzSu+vlulGVAbG4XMK9HuTRNRfXxnmCv6yhhwWWpJXUnbaPoNPge2Yjmc+sP3AdrOhIiOB/S1ymZGiHImlXraACVFBSWr5UtKoNgyXacJISUkLHbchKXe5QYzW76S77roLN910E9ra2jBv3jzccccdWLhwobHu/fffj+XLlwfKkskkBgYqH3ZoKPilG8MwDMMwDMMcwOzcuRONjfojYDKZjKg9vGzduhW33XYbtm3bNmHH82EYhmFGhlLHGQWAxsZGPP/88/7/Rzr2sLyUYRimAnisAoZhGKZaKDcmNTY2Bv4N9dJt6tSpcBwH7e3tgfL29na0trYal2ltbY2s/+tf/xq7d+/G7NmzEYvFEIvF8Nprr+Gyyy7DIYccUuERYRiGYcaKahxnFBAv2VpbW/1/g7OxhxvOdItgen0CTkpLBHsyQlrQmdbymZ5aUdZNZKP7paxUSUoBoKNP5PP2Ezlgv1xfH1nWJJ1UnS9JpJP1KdGGJiK7a6oV041E6qqcxFJk2RhVTFrqL+ngJlcuBZVcKPkEKfPdPolc0bZN7ndKqtvsF6ks1rwXlicF3dTEutM15LjJZWn2tXI/ayLHQ5XRTGu1aiq9Ug6eVo2WK9pKpkjlKcp51A1Luayk7jtK1uhMOkgv2yTevLsp7eqqpqmUtD+rJLa6b6R92a3BzYicS9c2pEFTV1311yA784hMTO2nRWTDSjKbaNQyauUmRFPZlXOrm9XXgynVWi3jpPSDfkwu67u/QktJqXw3Lr/O23VavmvVijIqL7WkrBRSxmt3a4fecmF5KTNmRH2VM7hXFlydwdHUh97jLJNzo5S1kvujo9xIScwhC+imKkks2R2Ts3ZCSm9qXHKv9uOGXp9JxmlSdxQr94ySbE5EKjkuJmO8oAzVcK7t4DwxreaF5aU0zqv+QeWq/jYMElGj22iEmygwhANpIdT1F7huDP1oBCTHIx2TEokEFixYgM2bN2PZsmViHa6LzZs3Y+XKlcZlFi9ejM2bN+PSSy/1yzZt2oTFixcDAM4991zjmG/nnntuSALEjG+KlbqVI0Mt1t20EkfTIbYcKgmM+qC2UWDf81nDM71qwxjLQquNQpLOKArJPYvto8PhVFqJpLRs2egoM9IxSY0zeuWVV/plhcYZBYCenh687W1vg+u6ePe7342vf/3rIzqeKL90YxiGqYCYXdp4ih7nFzMMwzAjxGjEpFWrVuH888/Hsccei4ULF2Lt2rXo7e31X5Cdd955mDlzJtasWQMAuOSSS3DCCSfglltuwWmnnYYHH3wQzzzzDO655x4AwJQpUzBlypTANuLxOFpbW3HEEUeU3kCGYRimKig3JnV1dQXKk8mkMQO7nHFGjzjiCNx3331417vehc7OTtx888047rjj8Je//AUHH3xw0W0tBX7pxjAMUwGc6cYwDMNUC6MRk84880zs2bMHq1evRltbG+bPn4+NGzf6P3p27NjhGysBwHHHHYf169fjqquuwpe//GXMnTsXGzZswDHHHFPythmGYZjxw0ib+5TD4sWL/UxrQMSoo446Ct/+9rdx/fXXD8s2BsMv3SJoTjpI1hJX0qR4gJhcq2V3ylmyh0hE+xrEW1jqLKmm+wLyUjGdIRJBJS81yUypM2eNdGxT8lEAqJfuqtT9c5KUoTYQiWUiINdRbp5ke0pKYXK6ixHpp5RueKaU54AMVbqhZrUjiCXlmzEiOW1KCrkizShPyv80JfV21TEcIMctKyUcVJ6i5CbquABAjTyGSZJO7g+cSOWlcSFdtOqa/bKY3He3XpdBymk9KjmNCSmkldTOt1ZK7Jub0vLHvJym8tK+vGhLP9m3jOoTBjc9k7yHymzUNL3XBeSncpUekQN70rHXI869Sh4blNGKZZJERptoEl8l8um0buuAkJ/mM+GOYjt6uyr93qbOp1JWahOZr5K4Uqmrmh+Ql9aIaS+mv4p4idpAmetVPlC0XWIwyfNLN6ZcHEf8kxhloArTPJOM3FBGZXD+fNtQrwD+rZWEF9O1oubTe7+6Tmgo9JTbqGFbJpWeSc1nB+aH749qGVO9wHrUvhnKgm2Ivt4ruR1EqVI8k+MqPZYR66DLun5ZeD2mesH1hMuizokVcE0VfwPO6gYnVdWf6Gr91RRS3hj6tv/4Y+k9UsNNGJ1KSZlnkqFaJUpXHaMWuyRGKyatXLlySDnp448/Hio744wzcMYZZxS9/ldffbWsdjETA5NzaCko2d5wOZpGUSgienmDVWmR5IZBQliJY+hwYzrO5WAPkwuuiZGUrvrbOABkpYpyY1Kx5j7ljDM6mHg8jr/7u7/DSy+9VHQ7S4WFTgzDMBXgWDYcu4R/Rb6wYBiGYZhS4ZjEMAzDVAvlxqRizX3oOKMKNc4ozWaLIp/P409/+hOmT59e+Q4PAWe6MQzDVECpadPsXsowDMOMFByTGIZhmGphNGJSqeOMXnfddfj7v/97HH744ejo6MBNN92E1157DZ/+9KdL3nax8Eu3COoTNmqT+gtgrXRMy5C0zkYp86RlWZkymiOpo8pl0iSJzJJllWsYzRxVGbQBBzDlaErSdJVDaSpOyuT8ZEwvW0Nkqkq+abnaWVLhUbdRJSv1tJTQUpLEWJGWOkSCaWf7RBGZHZPy0yYpAQSARulQmSXHI5MX7cqS4xuVzUszmZX8lBwi3xHNs7SE1U2JdFYqsUTNJACA1Rg+VhRXHbeYdtz05YxE6uj3CbJzmXzYqdS0b3Eph4kbPlBTeakauJIOYGnKyKZyZltKa92asLzGTlDH0MliXrpP10uLc+hltJTYl96anG+pZE32JyphNkp1pZOq5+jjq/qnF9P1XOm+Ss+hv4yc5+Yql/LwDxxmtPBiqUAfN9YpJCv1ywyyepOUVN3PjPXI9eNLU6OzZvzuT64DW8lGPXKfMi5tkKaGV2eUjap7v2kohUD8k/epQFleDpGQJ2W+8yUZWiDKIXPw9OBlyiDyXBeSEqtzR8+rE3Ya958DqKzZ7xO6zJVnIugiK+ubysy7FMIk3zXJUM0LGyTRpEi1wQocF+ngSxxyVbyyTFLSodxHizzXg5f2YtHPF8XAMYmZCJQjKa2EQrJAkyxSLVOOejRKXlhIPuga2lqs5HCspInFnk9TPbuAJDVq3YXkxdHrHfqcjyVqf8eLzHQ0YlKp44zu378fK1asQFtbGyZNmoQFCxbgySefxNFHH13ytouFX7oxDMNUAP/AYRiGYaoFjkkMwzBMtTBaMamUcUa/+c1v4pvf/GZZ2ykXfukWQdzNIGXrt8jJmPiqS7OC8oYvuaqM1lPvxekLcuNAxxHtMQ3sbMriMg0yHA9kFZAv8/lM4K9oZE5thKxIZAgFvpS7MiMpRj7xeOEvwv62aFlWDLTvZPWA+57xC73M1HKIGYL/xdrwNZ4aAqhlPFLPUtOknpzvkq/2+ZjI6MrbKVIm/xrOv7GMZKu5WTVPH2d1+oMDhWNIqEmEIzMX6SnSA0/TjMhwGc0SUFkJaXIK8/JYxlPNet1JafqQ11mNfiaIKSOElFlqpwpldBiyNjzZVpdmXdoR59+QyUEzNgdnY2Ssym+BjmUFjm8x9RmmHNx4Cm68JjzDjv4KHJmFZspgM9yDC9VT12pgwH15c6O3NdPHfdMA+YpABptfRuKZXLsxW43GNWXok9NllrqfkXqWNMcJxkRpmEMzeLOyjKzPlcsqgx1g0ADahqxfzy3/q7nl3wtJXqDKGKYD8stMYGMWcZyUySxilQkM6Oxgj5ooqTJSz5bro+ZIfmaxIS67JIdNZfgX6icmVD3aT1Q8pv3Ekm21aAe1IzITvYShLDprsdB8f8sR59yND0OmG8ckZpwwktlslWQ4mYjKcCo0KL4pI0llq5nm0TJjVpthe2rw/0KZWMVmRxVtIlFBBpuep58lTOuzDOeSZr+Z1u1ngxmy1Qr1O9V3RjKrTW2jEkOFQvtRLZlwHJMEPHoqwzAMwzAMwzAMwzAMwwwznOnGMAxTAaVaYQ/311eGYRiGUXBMYhiGYaoFjkkCfukWgZXPwc72+/9XkhqaHhhHBIY+Y9kFUlVNMobB8wBfp2rlCtQbJnwZCZWdGGSDSuLjUXmhQa6jBt9XA+8DgDvQGyqDlO54RK4TGJBfoaQyCS0HteuEJNJumKTr1QiDBLemSa+uphkAkCUSrZ6M2KeerN5WT1qUdaazpJ6YTw0ycoZ0ZNsg840rkwuS+lwbFzKcFDG7UMYYdFlljGCSEptkyEOhmpoPpDdHpSPHQ9OBe6NSeVLZa0RbTNIxE2Xdf9VuGIxKFNlhSL3m8XOY0cJL1MFL1uuCqOvbKNc2DCwfmG+QiBqkf/68wHAJEdIbqugzxUWD8YGapNeLpWSjOYPMPSARlcMm5PTwBf5QCnRIg4yI715/r26rlJC6pEzJSgPy0nR/qCw/ILbhZnX8y2eI1NRVciIyIL+SGBUpM7VsKqmxA3/pfCdBpJ9xcWN2UloyqWKllawJl9E4WlMXKrNkGTXW8eLCJIga3CgDIY+YCllyvkVkqLYyvSEy1HyENNk0NEeWHD7dZcL1giYMYZm0mh2QpiqFtWn8B/r8U+i5zcSgdXrpyp/fOCYxo4JjjbrZAWWsfpib5IBR8lE6v2A9uW4q7fQMMlRfSmqIG8FlTW2NXmY4MEpEI2SeZklpWHJK+5tJkkplqEp+6pKBmyzDekwmDaa78Ej1t0LrHUn5aUG84dlnjkkCfunGMAxTATHbCrjDFiI/QYMJwzAMM/ZwTGIYhmGqBY5JAn7pxjAMUwH8BYdhGIapFjgmMQzDMNUCxyQBv3SLws0FJSuuwZlTSR0NEkvq6mgpR1AijfTXQ+r5MkrqbpYlLmr+dg3Jr7aSmlDXMinloM5jAXcxKesg8g+j45haxjF0GXo8lKwnT9J11b4T50u3t0v87XxLV9u/BwCQ2d/hl6U7ukVZV5/ehJTwUFc4W0ppEg21flnNFCEhTU6b6pfFZswRuzH9MN38hFgmB30MuqVs9LUOLR3a2SnkRG926rLdXUKq1Nmvz1FGSk3pTaMmIY5bU40+D1Pqxfam1if9sqm1Yv4kUi8uz1GCpAkrqSn9chBXShmD5CxP3XXdcHmOpC9n5XQuH65H5ZhZ2QfdIdatMGRuIy77KpXwxB0lmQ3Leop16aWbUmVRUtcKsrYD2+FgwowGWSeJrKPvF0bJp0kB5w8FQOuZZKNeaB0mKZ+/jujmGp2aTE6lyoEUAemfvH5pzMyHhyqwsuJ+HJCS5mSZQUqqYg+ghzRwe7t1PTXMAZGX5vrEstneflImtpEj934lL80NpENlAJCXslPPIDsySYwoSjZjcmyjMhvHICWNpZLhshrpNlqrZaPxuhpZpmWjrpKXpur8Mn/oBlJm1YmhG4KSUxWr9Ta8mHweiOsyE7Z0E6exS/VFenhMDvJ+241r1vWinMSCMlTDfH8enamfmfzlaT+PWI+CXt/lwjGJqWZGSxZqkjOaKNahMkpWanQYNcg8Tff5fCZvqEeWVc/aVF4qlzFJSQcPowIM+g1gCOn5iDhfDib3SRXzTfOCTtNhyamdcEJlheSnjlwmIDk13PVdQ6RQ9ej61Pkvtv8OV/8bjuulEonqcMAxScAv3RiGYSrAsUoMJhPUCpthGIYZezgmMQzDMNUCxyRBca9hR4lf/epX+PCHP4wZM2bAsixs2LDBn5fNZnHFFVfgne98J+rq6jBjxgycd955ePPNNwPr2LdvH8455xw0NjaiubkZF154IXp6ekZ5TxiGOVBQrjzF/puorjwTEY5JDMOMNzgmTVw4JjEMM97gmCSoqky33t5ezJs3DxdccAE+9rGPBeb19fVh27ZtuPrqqzFv3jzs378fl1xyCT7ykY/gmWee8eudc8452LVrFzZt2oRsNovly5fjoosuwvr160tvkOf6LmgAfMmnZXJJI9JJSJlL0OlMOqINEEe0bDZcT02b5KURklIAsOJhKamShCi3MSAoCVEyEXi6TDl5UScxX1ZqR8tLPenOGjgecl+ohEfJSrPtO/2y7h3tAIDeN/b4ZT27OgEAfXu1rCfTK9btkpTsWI1oV2qSlqw0TBcuf02HzfTLmtXuNDT7ZWicBgDIWzr9tmNASGCUpBQAtu8UbXlul5Yn9Uj56UCf7hM56XzqEAfSeFIcy5p6Le+ZMknIcN42RR/7Q6eR86CWlec4EdBYyj+0SMkpQ2sIluaJvEY5xGVIvrlyYu1O6+PbJ11c+4iba7+czlJpqkyTNqWvUzmZcm6lKeVJebyoc6uS0SpX16HriekY6bImCa76ehK3pbRuGFLqOW164lJtMak/68LOGmQshm5cSCJqEjSY11PcNeLLQQs4Fzu2Wp9BfkKmfXWeaxi6gcZlJTnN6ThqKVfStB6WwB/SgEpJ+8JlOfnjM9OtY7Ua3iDXq7eh5ueIfDTbK+Wl/XrIiOyAnlblATlRhFsdRUlVgvIaKdVN6COnYmE8FQuX1VHJqZhONOiYE6sT8TPRqIdpSDSIYxmrN7iKZ3Wct2Wct+sMQ2gQPKNjqJwmzxyWmg5IosVfGl+ULIoeMl+GSrfrqXWU1p8ppo/vQ325NjnyFrOefsP1XSockyYu1RSTbGv4fhwXK8UbCUzbjpL8mRxBTfNpvXzWJAeVz8sZKjk1lBnqqfsYlYVmlFzVdH8sICmN2qVCz/MmoqSkgaFhDMNNJFxZliOyUPW7KhF276blgaGNDPVUvHUCTxuqXrit9BxGOYFW0n+Hu++b+m6516kpDpYDxyRBVb10O+WUU3DKKacY5zU1NWHTpk2BsjvvvBMLFy7Ejh07MHv2bDz77LPYuHEjfve73+HYY48FANxxxx049dRTcfPNN2PGjBkjvg8MwxxYcDCZuHBMYhhmvMExaeLCMYlhmPEGxyRBVclLS6WzsxOWZaG5uRkAsGXLFjQ3N/uBBACWLFkC27bx1FNPjVErGYaZyDg2ik6ZFv/GusXMSMExiWGYsYZjEqPgmMQwzFjDMUlQVZlupTAwMIArrrgCZ599NhobhWtWW1sbpk2bFqgXi8UwefJktLW1DbmudDqNdFq7jXV1CcmJlc/A0soQo0uakq+4xOnMNbifuQN94TIpJaXuZrl+sW43SxxNo6QmcSohEa5X1I3MltuwqVyVupImZd24IZXaiu71SiZiUZdWOU2lPugXxzNPnEpze94AAHS9sssv6/ybKNv/codf1vW6kP3s69LHvDOrJIw67bdGpv22pLS0Nt0plqHHqHbaJABAnMiJlLMszUrukfKf9m693Zf3CNnRW7v0sl1vifPav3+33jcpbbLJcY7XCifVWvngAwD9PeK89xD5kZJ70rf8Soppkl0GpZNqnt4Pk2GN6QMCraccStOk3/VkRBs707qtSmpK298vj5tycKX7RFH7lyD7VCMlUjVEKpWSelEqL62VOxgsC9dLxZUsV+9wwt95MW8YlDz8BYcBMDoxqTfnwspSiUl4WaNEFN7Q8ypQWNOubEl5vk1ko+rBiaoy/DYQdYeSMBjbQiWKctoUc5CnQzLIIR5IvPVUDO4j7qUyDuTIeEYmx+xMd58sI5LTbhHjMj1aYpmR8tJsry4zSU3p0AhKMhRwgTacKMeXK1J3NvkcQO6ZSlaqJKUAEK+TDth1ul2J+ozcvm5fwuiuGr5JqjXTJwRPuqYHhqVQ046WtVqOcnInzyHqHBvkqAGZtPxLj08uHyGpokbzhmsguu9HXxiFZKO2QT5tlJUOMjntzbG8lBkehismDfkbybFHRBZqF9IuDjNuAblo9LLiei3kVOr6klPybCzv/fls2L2UDkGQz4V/85ikpLqM1kOoLEpqWsGhMMpG6X3UJDlNyOEmaJlqg0OG/FHP7m6arC9mcPl2DLFThx+4ypXU1uchytHUrqB/j1U/Hs5r0nKHZ10ckwTj8l1iNpvFJz/5SXieh7vvvrvi9a1ZswZNTU3+v1mzZg1DKxmGYZgDAY5JDMMwTLUwnDGJ4xHDMEzljLtMNxVIXnvtNTz22GP+1xsAaG1txe7duwP1c7kc9u3bh9bW1iHXeeWVV2LVqlX+/7u6ujBr1ixY2QFYDhkUOCO+cgcMAQwDMfuDM5Ov7Lk+8VU826sH5s/KQZld8qXZNXxpduXAmjYxTbATamBkndXmzyOZXXaNmiADFFOjhYRY3iNlnvws4Dmkexiy3pShhMoABPQxQm+HX5Z/S3w9y7fv8MtUVpv6CwD7XtwPIJjptrNPfJnfQzKseg1f3htlRhT9WpLqEu1TGQkAkBuQGRBkIG412HMw20uU9ZOvTX39oi0ZkrkwILP3+vfrL4QZkkmhiEvzimzfQbot2YNFW8iGnwstac5wMA1aToYtJ8uq+giVATpjLkdOrzIqiGfD26OobDZ6jLplJkcPOV+qXp4MiO7Ivky/ZqisN2oY0SCzNurJoOBqmma11cvroSFhKEuSjAq5DU9+xUqbzElKhL/gHNiMZkzqz3pwsvp+EZ3BRg1ToucXQyDDyg6XWf5XbLIN9Zd2eWX4QtqklgkaPhR5nRiy3zyZ2e0ZDIm8nM72UnGAZpurGEzL8jJuZHt1tofKcFPZbQCQ7lKZbplQPQDIyIyGjBvOWMgUmXKYoPdMOdB0gmQbJ2R8SmR1TI/K5LBotrS8Z+bJM4RbI54H6PFwUoZjqY4vOeaWMp+i58aQzRYF7RO+kQJZhdo1auhjynRTZcFMN0NGXAXXBcV0jSiiMuL6sxWkmvjb5ph0IDPcMWmoeBRFJVk+UQPWDxc0M0211Q0Mmi+fFSMMFYbCz34j9yTPlBHnhstUhlueZLyaM9jCccOU1VasuYIpu7rYPTdl75gMEnQZvVeH66m2JAz3pYDhgiErmJoKeY46vnQ9soysSGW1OU7YXKEQpqwyU98fjT5dSRZVJdmexcAxSTCuXrqpQPLiiy/iF7/4BaZMmRKYv3jxYnR0dGDr1q1YsGABAOCxxx6D67pYtGjRkOtNJpNIJpMj2naGYSYmdonBZKJaYR+IcExiGKba4Jh04DISMYnjEcMwlcAxSVBV8tKenh5s374d27dvBwC88sor2L59O3bs2IFsNotPfOITeOaZZ/DAAw8gn8+jra0NbW1tyGTEF9ajjjoKJ598MlasWIGnn34av/nNb7By5UqcddZZ7MjDMMyI4FhWyf/K4a677sIhhxyCVCqFRYsW4emnn46s//DDD+PII49EKpXCO9/5Tjz66KOB+Z7nYfXq1Zg+fTpqamqwZMkSvPjii/78V199FRdeeCHmzJmDmpoaHHbYYbjmmmv8++2BAMckhmHGG6MVk5jRh2MSwzDjDY5JgqrKdHvmmWdw0kkn+f9X6cznn38+rr32WvzkJz8BAMyfPz+w3C9+8QuceOKJAIAHHngAK1euxPvf/37Yto2Pf/zjuP3228tqj5XpB1wtEc13dwAA3F4yEHNPuCxrGHRZSUkDpgkDxZkmKCmpF4+HyiwiOVVGCk5dva5X3yzKmvTXLptMu6kGue5a3YaE1KTaunsYTROkNMeXlAKwevaJ/dyjZaPZ118CEJSSqmklKQWAt/4mpnf0aclKu5Qp9hhSrWsMab2BVGY5yHSMSBMdeQytGBlZU+4bfbGuzAvoQP8xKWe0SZllh9ORPTmgdz6jpcSulN64RI7jSumN684OrcMkMzWlfwPk66NUGttECqzSnOlxoXIiy7+xuaRMLa/7m99mKvVR6e3k3FCpqd9umULfR+ZlyHFQqK8gSXJ8O/vFuaPmCg1JUdZUq9unpvuz+lwPyHal87qsSS5bJ9eXzlWeUm1b1pASo6Hql8pDDz2EVatWYd26dVi0aBHWrl2LpUuX4vnnnw8NigwATz75JM4++2ysWbMGH/rQh7B+/XosW7YM27ZtwzHHHAMAuPHGG3H77bfje9/7HubMmYOrr74aS5cuxV//+lekUik899xzcF0X3/72t3H44Yfjz3/+M1asWIHe3l7cfPPNJe/DeKTaYlJfNg+bDLqs7gmVSEmjBu2nmOSlcRJ/4r6WnW5YSuMD5i5hmZ+etgxlw4zhnl0JwQG05VAFhkG1AS3nMctLi95iqISeLz2Id7S0aVgY5mNJMZ1/z+87VHIa7k95g8xKGfpkyTHIum6gPl0fpdhrhGK6z5skp4PX05cNx9BSGY2YxIwN1RSTbMcqSUZaqsRuJEwa1L3Q1JZA6BqGe6VpHbTMZK7gGykYjHUKxY2oeiYpKQ05xUpOTZikpGrddH3aSCG8jgQ5+Bl/PIrw9mk9um7bcCxdKSu1bGK+YJASD4eUkV4HUf18uPs03d9iry/Tc8BQ17HtDk9s4JgkqKqXbieeeOKgMV2CRM1TTJ48GevXrx/OZjEMwwyJA/NDRFT9Urn11luxYsUKLF++HACwbt06PPLII7jvvvvwpS99KVT/tttuw8knn4zLL78cAHD99ddj06ZNuPPOO7Fu3Tp4noe1a9fiqquuwumnnw4A+P73v4+WlhZs2LABZ511Fk4++WScfPLJ/joPPfRQPP/887j77rsPmJduHJMYhhlvjEZMYsYGjkkMw4w3OCYJqkpeyjAMM96wbavkf6WQyWSwdetWLFmyhGzTxpIlS7BlyxbjMlu2bAnUB4ClS5f69V955RW0tbUF6jQ1NWHRokVDrhMAOjs7MXny5JLazzAMw4weIx2TGIZhGKZYOCYJqirTreoY6IbrETlgt5A/KkkpAOS6OgEA6Q7tXprpEvLSXK92zcz2Calhrj/skuYFHHOkHIc6kMq/sZSWRCYahBw0NaXJL4tPmgQAcKZM98ucSdIts15LSvNSUgoAXlK4anrxGl1mh7uFLyvNE9fPrNgne0Dve07KSnNvvuKXFetU2iYd2DqzYSkplWA0xcURmUTcK1tTYnp6i5bWNr9NHJv6mdoxNDlVvDCw6/QxyEuXVvoWvl7KD1satTvs26aKYzXQS/pELizts6V0NdOjpbN5KS/NE9fUbK/oOwMx7XzaYetzp4hyNKXEnVRoP2JS/pMghQnDsqmYLktKyWVgGScs/UxKx1h6czSlaStZD5WX5g3SVOX01BNwNBV9gspL+1Px0PqUrDVTr68Rk/RuML0GOWyplDr+gKrb1RV0uR1qsOK9e/cin8+jpaUlUN7S0oLnnjP1DqCtrc1Yv62tzZ+vyoaqM5iXXnoJd9xxxwGT5VaNpHNeQF6qyAfkduHl8kU6Y/rrIJ/jjM8+SjZKXMhsv4zUi7gsrGGWD9C4pRy66TACVjwRmAdo927lxgkATjYryxKkTNyHYjXE0VTGqTyV+8r7iTeEvDRFnK/9dVvKqS0sQw3WU3/J/VEe7BSRrMRqpLM5GVZBDbGg5tHpWI0+Hk5KDlFB911O0zJ13ALH0j++pJ6cb3qmqIRg34nK+tHTZsmp+OsapFxuYNnwNrIR2wXMsdCW24uSbw/HkAflxiSGGS5GW0pqciCN2k6xrqSBdrmVPy+OJGrXgxJR9Zc8I8i/GYPjs2l9hQlLU9XpDziQ+tvQZaY2j4LRZ0WU01eLXabYfhy13kJ923RtDvvQE4PgmCTgTDeGYZgKUGMVlPIPAGbNmoWmpib/35o1a8Z4T4bmjTfewMknn4wzzjgDK1asGOvmMAzDMENQbkxiGIZhmOGGY5KAM90YhmEqwLZK+zKnPvzt3LkTjY2Nfrkpyw0Apk6dCsdx0N7eHihvb29Ha2urcZnW1tbI+upve3s7pk+fHqgzeADmN998EyeddBKOO+443HPPPYV3kGEYhhkzyo1JDMMwDDPccEwS8Eu3CLz0ANy8loi6fUJGme+lUlLh3JklUlIlK810a1fPnHQtdYmczZUpoDZJD1Wpok5Cn5pEg5A1Jpu1dLJmmpCSxiZr6WTsoJli2Sn6h7hbK+q5NVqG6ia1tDIrkx2zgXxk8YfKI5JSHmJ5xCklK/bT7XxLL/rWLgBAz04tUeveIX78d7zW6Zd1vS6kdXvTWm5DHUoVjVLCWEOu1oOSomwqkRI2HixeXkw6tNkvazpM2J83v32WXxabcYiYIHJb5dJK97dZynFmN2l5afZtYt3U0fQFKdFJ1WmZTdc+IWHt79jnlw107QEA5NPa0dRf70CPriePZRfpE8ot9WWy3Vopt6Ryzwa/TB8XNaiuQxxNnZzuq0o2TG8ECUfsS12NfgnUGxPnJknOQ62U96ZIG5SbYSE3oLybln91v8splyXSD9KqjKbBG6Q+anuOQepK05SVK21czuvPFm0ZOCSljj+g6jY2NgZeug1FIpHAggULsHnzZixbtgwA4LouNm/ejJUrVxqXWbx4MTZv3oxLL73UL9u0aRMWL14MAJgzZw5aW1uxefNm/yVbV1cXnnrqKVx88cX+Mm+88QZOOukkLFiwAN/97ndh25wcPZYMlkqbpHD+vBIlpYUwuZc6xZaRbqOuS3rJqDIqG4z80GlR/au8ezlEuinvYVZS37+tnBiSwcrrGOwP3RCxKUDHZSrlcOK98i+5/8m4kSFDEMR7qGO5aGOKWM4peWrw2WBodzGbSO0deQ92iKWbkpImSHxMyPgUJ3Eq2SiGlIg31ul6ctiKRGMtKRPzY+ReZdeJaSull7VS8viSY67OAxwyLLI6X1b0vUSdf8vQn6gUSvUdD2H5lOfpZV1bXSvhMhCHtmId+wqhrj8ak/QlSdov988tYjiEYik3JjHMaFOq7K6ceqb7Kd2uSY5nkvmp6yQ/wlK8cjG5g+ppeh/yQvXU/MC9tcTbQiD2G5Y1uZxGOZpWG6b7ZFS/LNS3o5Yt1N+j5KeF+vZYMFox6a677sJNN92EtrY2zJs3D3fccQcWLlxYcLkHH3wQZ599Nk4//XRs2LChrG0XA/+CYhiGqXJWrVqFe++9F9/73vfw7LPP4uKLL0Zvb6/vZnreeefhyiuv9Otfcskl2LhxI2655RY899xzuPbaa/HMM8/4L+ksy8Kll16KG264AT/5yU/wpz/9Ceeddx5mzJjhv9h74403cOKJJ2L27Nm4+eabsWfPHrS1tQ055hvDMAzDMAzDMMxo8tBDD2HVqlW45pprsG3bNsybNw9Lly7F7t27I5d79dVX8YUvfAH/8A//MOJt5JduDMMwFTAaYxWceeaZuPnmm7F69WrMnz8f27dvx8aNG30jhB07dmDXrl1+/eOOOw7r16/HPffcg3nz5uE///M/sWHDBhxzzDF+nS9+8Yv47Gc/i4suugjvec970NPTg40bNyKVEpkqmzZtwksvvYTNmzfj4IMPxvTp0/1/DMMwTHUyWuPn3HXXXTjkkEOQSqWwaNEiPP3005H1H374YRx55JFIpVJ45zvfiUcffdSfl81mccUVV+Cd73wn6urqMGPGDJx33nl48803y2obwzAMUx2MRky69dZbsWLFCixfvhxHH3001q1bh9raWtx3331DLpPP53HOOefgq1/9Kg499NBKdrEoWF4ahVtZWiZ1IHVkiqdF5FlKcEHlpcohLEEkH6kpjfKvlojGpIRUSUoBwJosfgzn6ybrXZDy0gFLS02opC4jpTZU0aCyWql0MaEkLeSYWHkhocl1d/hl2f3CsbNvjy7r2y3kkwP7iZtrOuwCVC+316QVMGiS8pmGJi11bDxYyGOVOykANB4i9r1xjn4hEG8VstJYi5aXWk3CbdStbfbLPEccmxhJZ1VSzTmTtKtrk5TtTKvTbZkr3VJfbNcS0RfbhPy48y19Drv3TQUA9BPJsXIv9QyOSDniiKfcUrs6037ZrnohUz2oUbdlam0i8BfQMhubyFksKi/NiPX47rQAPCn7sWLkmCfFfqZqdVnCEWunx03JNuMkNVrJa6gsV5V19mnplXIjjZKPAsF+WQ04JY5VUG4a/cqVK4eUkz7++OOhsjPOOANnnHHGkOuzLAvXXXcdrrvuOuP8T33qU/jUpz5VTlOZESLuBB9G1LRJklZsdn6UkyKgJX1xErvU9R2QcyvpCLk81f3AdI+IBZYN/gUAyySzk/cmzygv1fc9SDk83TNbOjlTd003aXDhTIp7fqxWuwsnGsR9kg4ZkZXDPaSoS3mvqJcfoC7V+r6tpKQ54mKqZCJUBuIa7oFKbkGlI0qCQl1JleQ0TuKUeq6I1+l4FqtLyTItB/WlpLW6niWlpHaq1lBG5KU1YtqK6+16MoZ45NwoJ9PAOTRITS2DBEopQ2NFS09I3LPU0Ae6LC5lpXR4DUe5nJLHP9cOn49iZaiFri+/nrrOhkFnNRoxSWUVrFu3DosWLcLatWuxdOlSPP/885g2Lezq/uSTT+Lss8/GmjVr8KEPfQjr16/HsmXLsG3bNhxzzDHo6+vDtm3bcPXVV2PevHnYv38/LrnkEnzkIx/BM888U3oDmQlFsW6OxVJIdlfsfTkKKhFUoxrQMk/efzz6G1DdKnUIgX6SD0Ov3Yyhmrr/UKdSx3cMDcvq3SjL8QLQu7hZSip/CxhiPy1T03RZVZYIPEvQ4xYeAsIfksFwgytWrkxR598m58OVe21aH+07JqnpcPfpamakY1Imk8HWrVsDih/btrFkyRJs2bJlyOWuu+46TJs2DRdeeCF+/etfl7bRMuCXbgzDMBVQ6leZierKwzAMw4w9oxGTaFYBAKxbtw6PPPII7rvvPnzpS18K1b/ttttw8skn4/LLLwcAXH/99di0aRPuvPNOrFu3Dk1NTdi0aVNgmTvvvBMLFy7Ejh07MHv27JLbyDAMw4w95cakrq6uQHkymTSazu3duxf5fN5X/yhaWlrw3HPPGbfxxBNP4Dvf+Q62b99edLsqhV+6RWDV1ML2SNpVLhOqo0697dDBjcVhzZGv3W42h6GgGXHqq3OyWZsdqAGMnUn666EyS7CadQfL1wlzAJXdBgC9edFxe8kgzekcGZReft2wTF8UyJdc9dWZZkQhJ77gexn9pT/vG0bogaT9dZA3/YlacVwPotlPygigUX8Vb5gusgkaDiZZbTKbrenQg/2y2Iw54i/JanNlxh81jvAS8mu9o8+r+vKeIAehKSnaVRfXZc0p0b5WMkD126eI9b19qja52Cnb+twubbjxYruY3r9P1+vpEPUy/fpY5eWXEYd+rTF81c9Is4F+cl4HZFmWZCPmXdFmj55gaoaRF+dLmWIAJMPE6fPLXHmukyl9LCelZL8MDJIuMyrIZ4qko46lvkaa5PnfRwYZ75aDjGcKfIFMyPXVkgHF62UWolovADSnxHQ9qafMH9RfN1551pxjWwWNIwbXZ5hyqInbqCHXkaKSwddNWW20TE06gQy7cJnJSEFlJAXuEXJ+PHDfCGfOwZABrBfQMdO45yojjtSzZAqBTTKxVHaWV6vva7aMZ96Avv850gAnTso8WWaKfzTTLTegM93Uc4BLsycy4WcDz5BlbxlMTGxpuESz5dXzRCwVznRTfwHASsgsv6TOarN9MwSS6abKEsSUQs4PZLXJ4+uSrEGVtqFirKinzBUKPH7KOOXYur97himVz0hDnM6yIM86tjLlsUJlJEQg78m+Qzahrq9A9tswXXN+m+UpHA8xqZysgi1btmDVqlWBsqVLl0YOWt3Z2QnLstDc3FxS+5ixx5NZPFaBlJWojLNiTRbKWbdnyDIarswjdT92Ycp00mUODLE8H85otuRzfpy0LyFjBG2yymajWbh5P6vNVAZS5oXKSsWU1WY2TTBluUdnuqmsNtqfHHLjtgxZbSrrmy7jmyKRe55dYT8DBhlumGsMuWwl/bwSowTTNTBSlBuTZs2aFSi/5pprcO2111bcnu7ubpx77rm49957MXXq1IrXVyz80o1hGKYCONONYRiGqRaqMaugra3NWH8oY56BgQFcccUVOPvss4ty+WYYhmGqk3Jj0s6dOwP3f1M8AoCpU6fCcRy0t7cHytvb29Ha2hqq/7e//Q2vvvoqPvzhD/tlrnyRHYvF8Pzzz+Owww4rur3FUl2DIzEMw4wz1FgFpfxjGIZhmJGg3Jg0a9YsNDU1+f/WrFkzJu3PZrP45Cc/Cc/zcPfdd49JGxiGYZjhodyY1NjYGPg31Eu3RCKBBQsWYPPmzX6Z67rYvHkzFi9eHKp/5JFH4k9/+hO2b9/u//vIRz6Ck046Cdu3bw9l2A0XnOkWRW0znBRJX5UyC5tITOz6ZgBAbJIeYDml5ClZIrGUUhk6aL6lBnZOEtmGknzU6je7TpOQjdqNxCChRkgT8zVadummxHQvkY8q04RMnqYW62k1tiZ9EaDeMNNUUF9WStpvksAouQsdsLlmqpSn0EFFpWyUpgInpSlAzbRmv6xhtpDU1s0mUtKZ4u2zPe1ten0NB4n9TOnjkZYykZxpYH5SFJPTcVefL1uaRCSInFYNIz0pqSU6rVIOPKNeS2rmThH7fsRUPcj0q7NEu17eo/vJy3uE+UJ7h5YnpeUA2x45R+oY1dbp7dZL6WTCYCpAs439lHE6iCqR+pgGsPblp0TdZVmyjWldX62lKUX6qmGg1IakqEkNHvYPiOPb06iP74BseDpH5LH+YNpU2iblaaTvpGR6NpXeqe3WErlOveyfyZhMRc+G0/tLxSrxC47FmW5MmdTEbdQndX8uVeFm6no2GThZzacqADVpGyQhVgF5qWNYny8lpde0kgvS+KjuvWQnfZMXO/zo4hH5peeK+6NFhxGIG4ZIUNP1+p5j50WZMgqi9bwcKZPDTdA476khKEhs9OiwFLLcy5Obq0lGayqzDfcq9QxBhreAkuEQwwhTmRWXx4aWKWmoQQ5KpbrqPARko2qanFe/jEpjVcyxw+uj5zpwniRxZYZABx73ZaO6nitnmwYKp/U8g6RKyUbppaXCZ0ByahA2l6M4HXxN5odBXlpuTBqprAIAaG1tLaq+euH22muv4bHHHuMstyrGzXtwbS9yUPpKJGyB++QwESUhNUn1SjVPAIjU0ZDX4pFjpdpiE5mkagM9bq4cPoX+5or7Rg9eaFnTPgbWZ7hRRRnDmA5ZoY/HUQYyJskx7UO+BJSUqfl0mIXgMmFZrrGerWSoRL5b4pdw2idsg2zUNeUzqXNtNFwY/n4+HLh5b9gk16PxO2nVqlU4//zzceyxx2LhwoVYu3Ytent7/XFHzzvvPMycORNr1qxBKpXCMcccE1heDWMwuHw44Uw3hmGYClBjFZTyj2EYhmFGgnJj0khlFQDA4sWLA/UBYNOmTYH66oXbiy++iP/93//FlClTKj0UDMMwzBgzGr+TzjzzTNx8881YvXo15s+fj+3bt2Pjxo3+sAY7duzArl27hnvXSoIz3RiGYSrARjCTp5j6DMMwDDMSjEZMKiWrAAAuueQSnHDCCbjllltw2mmn4cEHH8QzzzyDe+65B4B44faJT3wC27Ztw3//938jn8/7471NnjwZiUTC3BCGYRimqhmt30krV67EypUrjfMef/zxyGXvv//+MrdaPPzSLYJ8/VTka4j0QrqC2nktF7Gl3MTKUwmJlJLmwg6eAZQ0hLh9KQcwj7qCxYSEMZfQkk0vIaSLWVu3T7mSDgTcSeWmSGePkf+oSSoHTErJIpXlWf1igF0rp6WQaj+pq1lcpmc2ztHVUlOEPIA6uKoU4USjlmAmJollnYNm6ra2Cpt4r0lLEPINQnLaTZxluzMixXegR6fp5mTKbsCZVab21sSo5FDKFYmkxx6Q+5vRclArK1zoLOL+GZPSm4RyRQXQLPvJjBnaqfSwSeLczWvRUok3usWx3NWt3e329ojpzj7dd5Q8NknarFw6pxLJaUrOp6njSlbcT/pEjLi5KikplWv555jsp5IEBSQ/GSGzpqKnxrjYz1StXl+dlDg3JXXN6flEoH10P7MF0uAVVF6q0pZp347bqgyhMtUPYunK5aWOZRlT6aPqM0w51MUc1BvcS4vF9NBDu6Ptl4VjBF3Udy+lQxD488JyVYvKRj05TS9tda8xXe9eWL7hUVm8M/SP8WKFEZZhG6btFl1mGHohsL0i21UJgX2X8TZQZhpaoMgyz1RvOAgcSxlzqMzXd8Qj8lK1KJUXy2crkwMpPQZq2AWqIPP8+qRMLktbZ+qqZSjRQnix8RGTzjzzTOzZswerV69GW1sb5s+fH8oqsMk5Oe6447B+/XpcddVV+PKXv4y5c+diw4YNvpTnjTfewE9+8hMAwPz58wPb+sUvfoETTzyx5DYyo8NwSdAqoVgXx2LlolGyWNewrUISRccp7roebkdJU1urieFwDqWUKhUttAw9fia5cN7k0hvhvO7li2tfpc691Qb/ThLwSzeGYZgKYPdShmEYploYrZhUalbBGWecgTPOOMNY/5BDDgmMZcswDMNMDPh3kmBivUplGIZhGIZhGIZhGIZhmCqAM90iyNVMQq5JywGVRCYgRTHKTSK+1tG3t8oBzArLIqjbpMo2DpQpg0mS+mrarJLbJQyOcoCW2SWoG1heyij7tLTSTotpi0pmZVudhma9S9KJNTZN16sxOKfZdVLiWDfJL3OlLFP9BYBuSyzTmdb72dUtzkN3ul/XS4syKkdUb8priRyruUa6qxJZlP91lZxLJWlR+w0Abtc+AEB+QJf5acTEWc6uFftWJ51tAaBG7lNrkx4Y+PDJTYG2A0CXlMl2pbWMsycj5mfJuVZ9gu6HkpfSLwRKstmXpf1Ez69JijbEieTUysnzT6TEVl45CRrS6rNEciyd+pLE6S4ppatenNxupNTUs7VE2JWiK3oOTVIfE0bZnD/P4JKo9iOOinFs7dxYbH2GKYeGpI3GZHQHMn0fNH019KWfBSSdfrwLxD25TM5wPygUH4vFEB99qWOBOKrKXHI0XINTpS8bJGVqvkeEiO6geYFlQctU/fA9jG7HKE0sUgxrG85wQCJskgPLe36gnqeWNbjNBtZtBeYFtmF0qo2436JAf6L13KFjjgnjd3H6bBUlnS2yP1E8ucxQj3umoRGKOsMFru9i4JjEjAZe3oVnVyZfLNUdtBT5ZanSymLXXayE0SGupEbHTjvsuGlytzQ5c2o3T+rwGb6Qo1w9qROoiWKln1HH2TMMtUClwKZjrtbnkb7h+m6thZY1uLka+ljAzbXIfpLPFOcyGtU/TGswHues4dmqDOmsXYYhAaVY2XYhOCYJ+KUbwzBMBdhWaanQbF7KMAzDjBQckxiGYZhqgWOSgF+6MQzDVIBd4gChE3WsAoZhGGbs4ZjEMAzDVAsckwT80i2CjoE8cnEt81NJllSe53phVzCThERJR0xuWjTh1PPCjpsKmm7pGCQfg50Z6TR1vrSJHNCSDpRWRks1laxQuXUCQ0g9pOuqNalF15Nunh5x83STwqE0n2ryy7qlg0sPSaHtlhLSfXu0NHW/dBHtIXLLvqyUW5KUYXWBUkfL+oTo3k5ASirbVGjAXoMExsuI4+J2d+iyPtE+L0tkt0pySlxp7RpxDKxaLVeuk1LThqapflmLlKF6zfpY5RJC+tlDUpuVG+kASf3Nydl5g3tplrjp9GZJ/5ByVtpnUo5wzk0mtVuuUrxY2eh+YuflfOJy6ktTDY4+VIpWtPzHjpD/GMqi5GlOb3d4myXCA4Qyo0Ui149ELqyJLjzkgUHSp3AN0j/jskXeMwMNM13TJi24vFaJLN13TCbOyp7hOvfkfGLQ7A+/kCP7puJFjshK/DLSdFWWIffWAVkhnTOUGerl8uHtAnqIgGxg+Agpey1SZkXjmXoOoMMMxOWDAi2LybIUeQ5Imspi4bKEaX1ydnAb4bao4S2o22hMDTdBnbA9w9AdhmeOqGEOCjnf+q0q5Lzq664LuLaapFkFJKnGmDSIRK5/yHnFwjGJGQ1czxtSHlqsVDNSmlhgHYXmD7dzp5IB0u1q+WZY5unEbVJPliXIUD5SfuqQIXBsvyxGysS0HdexX81X88R8+ZuHlCkJqW0ocxJ6feXITxVREtJ8Jhuq52ZyobI8KXOzuVC9vCojv7WM88nvpLz8rUhloXn5m8cki3YN0tUo+etwUUjGGyUrLSQ59YrUaQ61noK/lYuEY5KAX7oxDMNUAI9VwDAMw1QLHJMYhmGYaoFjkoBfukXQm8sjn6ZfrMX0APnarb58B8rU12zD127XYJAQGKBYfhlOkh6nvjrXky8VTSkxXUu+pKRsK1QWl19N7c5OvQ2ZPQYA6JeZWv3aHMDP6CKZSZbM2rLrdKYWasQ0NT5w6yYDALpc/QVl34D4ArG7TWfYvdEtptt7dJZUW4co6+jXXzL6DQNXJtTxSOrjMaVeGC5MrU/6Zeq4xgtkBliGL9ueI00fSJaFOgb064/66pLZ3+GXpTtE9lS2V+8v/SLjtyUltpFo1FmBNdPEsYxNafXLEi2zxT5Onu6X5RtFdmG6RmfEdQ6IY6XMGACgVx6/brL9LPly4xj6mzKeqCcDOtf5fTCl25qUxyNP9k1+bbIHdAaZygx0+3S/89Li2Ki+JiqIttKvZv6xJkYV6jyAGHMoAw+btM9UhpjoH57MyLT7e1Ap/AWHGS3sgS7YseiMUWNWm8kARZXRr9RRXzWLzWQLzFej64cz00zZaoHMV0M9fx4pU2YJwaw28TdD7nUqLtMyFbepmU2PvFd208zibPg+2tmXDfwV6xHzewZ0WR9dj5zOkOeFvJz2qIGMIXtEDZgdMC+Q9+UEyUyrkZkStWQQ7/qUuN81kJjZVBsP/AWABvmMUUMyLxrkeujzR4M0wglkxLnhWKKaQB5J/K/6NjmHlsr2p31MxpVARpwyswpkybmGesOcnenPK5BxbVpPoezrQfNo7CwXjknMqJD34FnesGermdan7onuEOuLGvC9FPMFhcmAQLUhYF4gbWdoppCapkYKKoMtntL3UUfel2M1+lk2Xlsj5+kyNT9WmyJlyVCZJZ91LaJS8cvos7HMmKPmdv5zNXnWNmbzmlD3W/Kb0ZOme540VwO0Iog+96tpjxjjqbJcn66X608byvS68wNiOtvXH5qfJ/E464Qz4vzf5eTRSvWZQPaboQ+qfldJHzPPCx97arJhGQY9M2XMec7Q7Qps3+DwYDt20D2qAjgmCfilG8MwTAVYllkxF1WfYRiGYUYCjkkMwzBMtcAxScAv3RiGYSrAhgUbJXzBKaEuwzAMw5QCxySGYRimWuCYJOCXbhH0Z130EamjGsC/h0hM1OD2ah6gB/2n0kglJ6GyEgUdGFlJQ6jko1mmINMsTyUBtHV2MGpiUjpJBuJ1utsBAFZnu1+Wf6tNT3e+BSAoL/UlHEmdjmzXN4syKtVrEinMbr02AmhPiza81qHb8PxeIeH70xtaXvjcLjHd1aFThQd6RSowldk4Ml02UaOPR12jSKt+29Q6v6xZHi8qd1FymElk2Zp42GzCP/zk1boXF9tQJhAAYEvjA5ekRlt9QgpCU9szXcKcoueNPX5Zb7s4vukukg4t+wxNE66ZJI5v/YwGv6zpsJni79vn+GWJQ48R+zt9rm5L4wyxfSJN6hgQ7dpP+nEnMaVQ8miayqv6Fj1uLXWio02p1beMySlRryZZ75c5GbGfKrUcANyeDrG/+3frfZeS06w8VgCQGxDp4yaZAB0E1pGp8YH0e5mSb9WQ81UrjqFFJNF2Ssy36+S8DOn3ZcJfcJjRwh7ohh0Ly0YLyksN0u3B80LTRTXICU0HBl9W84lMH7bchkOWlW31QOQuSopXQCarBvql8TFnNEMQZb0kLqt7YedA+P74Vq++V+/rEdO7u/VwCG/JoRG6ibx0QE6nyf02S6SrGbnuHJW2yDbSoSc8k+mMPJY2lTbJ+BgjMqaElJDGk7osKe/lKSolldNTyJAM0xrE9OR6fR6myHt/U1K3KZ2X0lQiV62TbbCgj7mSkNL4os5XQAhj6LNa/kyGuciL8xCQkuYNklM1TeVOBgnUsPR3MtvY90s097EHKh/ygGMSMxrkM3nkXfLcXKJUNFivOMleoJ4hngXXU5o0LmiGIOWl5JpWZTa53/rzyB1N3aPp+pSsNF6n77fxRvE8GicSUTXcTKJRP8vG66URG32Wlc+3dMgfK1UbKvNiYt3qNw1Ahs9xdDxwlYkRjdURcnjjM4fBQM3K61hoq/s3NemThmxuLxl+ZkD8LoiRMlf91iJl2R79/J7pEtNOl45dWSlFzXaFn/Pps4E6XzQaqH6bJ2Z/SpJq6oPD3e8C85UZhmleQNZsqJdV6yhOjkrXl8/nkc+VGCOHgGOSgF+6MQzDVIBtkRe3RdZnGIZhmJGAYxLDMAxTLXBMElTkD5HNZrFz5048//zz2LdvX8WN+dWvfoUPf/jDmDFjBizLwoYNGwLzPc/D6tWrMX36dNTU1GDJkiV48cUXA3X27duHc845B42NjWhubsaFF16Inp7KvxwyDMMw1Q3HJIZhGKZa4JjEMAzDAGVkunV3d+MHP/gBHnzwQTz99NPIZDLwPA+WZeHggw/GBz/4QVx00UV4z3veU3Jjent7MW/ePFxwwQX42Mc+Fpp/44034vbbb8f3vvc9zJkzB1dffTWWLl2Kv/71r0ilRArtOeecg127dmHTpk3IZrNYvnw5LrroIqxfv77k9qRzLjxHp5YqWSmV5ymnzYCDmXTr7CH1+uWyeUNadQ2RzlFHTkUqFk5ljjsGl1NbrNvpfssvs/a/CQDIvvmqX5bb84Y/PfCWcDVVzi8AYMdFG2h6c1I54BBJkJsQ87vyuuz1LiEr3bZLu6X+6nkhs3zttQ6/bH+7CPD9RHKYy4hlHeKok2gQbqiNU7VLZyIZPh5KjhuQREqJTEOCuHBKGzUqL1WOph5Nq5Yp2a42AfJTrWNTSLqtlFHGu/W+QR7eTC/pE7vE/r71pn6w2aec7EifqJHtaknp/Zg8VzyotbTp89oi069TJPU9IaWwNTEtTVWynjSRNVOJlOq3dL5yvTuoUaejK/l03tNp8Oq4JWq1+6odFwfMjun2K5RjKaBlpQMd2qktJ91ec6QvKqiTT0zKSuN1xMmpVvSdRKPet5iUDtEvC56U/HhSohpwTy0TTpseWw6kmGRlB2CRy0NJGzyDZE45hdEyir+MQaITJW8MQO4/ar5Hrn0/XlCXNClz8TzqDO2vRLdBTZscJmlb5V8aWlWcpaM5KMkpHQpCuY3SmK7uj7u7iLN2Z3+orF9KTvvI/VTJSweINDXbq2NhTkoHVawDgLx0bXOJJD9SXkqOryNd6mIJHahiKSH3j9fpmJmSElEqLx2QUtKegfBzCo0HpmcWFVeoC3hSDu2QI3IztaxL6kUKbwySaCob9afJsVJlHpEsQTrmeflwrA5eK5X3fTovsG9KfhqPh8oCbtyDHLqtLMek8c6BEpNC8tIiZaMU7RJZnGSPrqOQpM81uBfnZZlj6PRUBq9kdlSqF6sJ/z4zS/7ENU3dS32n0jp9r040iGfnZLMeoiU5STy/O3I4G0AP7xMoaxBlbko/73vyN1mODPniymfyLHkSVg7e1Mk7K89dPqfL1GyTCTQ9fOoQ0KGS4moon5QuU7+74nQIgqyIf1aj/m2khn2JEydnV/7GUkMiAYBV16HbkBLl6vcroM9DsM+IaYc8B+QzEW65ZCgINSRQrl/HJNfvl/ogVdLvdNsNUmfyO8jUP00yVJNDqn9cTC7p+WB9lpcOLyW9dLv11lvxta99DYcddhg+/OEP48tf/jJmzJiBmpoa7Nu3D3/+85/x61//Gh/84AexaNEi3HHHHZg7d27hFUtOOeUUnHLKKcZ5nudh7dq1uOqqq3D66acDAL7//e+jpaUFGzZswFlnnYVnn30WGzduxO9+9zsce+yxAIA77rgDp556Km6++WbMmDGjlN1lGIYpCA8QOnZwTGIYhgnCMWns4JjEMAwThGOSoKSXbr/73e/wq1/9Cu94xzuM8xcuXIgLLrgA69atw3e/+138+te/LimYRPHKK6+gra0NS5Ys8cuampqwaNEibNmyBWeddRa2bNmC5uZmP5AAwJIlS2DbNp566il89KMfNa47nU4jndZfSbu6uoz1GIZhQpT4BWeCxpIxgWMSwzDMIDgmjRkTMSZxPGIYpiI4JgEo8aXbf/zHfxRVL5lM4jOf+UxZDRqKtjbhuNnS0hIob2lp8ee1tbVh2rRpgfmxWAyTJ0/265hYs2YNvvrVr4bKbcsKSP9U9miWpJEq+QR1Je2XKai0zORaOngdgE7PTRAXTuXIWRvXZUnpVFoXJymoAx3ib69Ov83uFlpHKintJa6a6f0ipTef1emySrZH03QTMt2bupe6MoW5k7iz7egU0og/7tSSmh1yevdrWkra/eZLAICBzr0YTILIYpR0w20mkkmZGqtc1QDgoFoxPZ04sTVJGWojdXGTqbY0DdqSab8elZDIlOyAu48dvlwcKVmJde/X22h+Sy6qz5dKX+4kKc1vSlkPLVO0Deiyw58Vx4imCScaRBr5QVNa/bLYFOFyWtOsnYtU36GZ99RVVzn09RD3voSUM/dlwu2iciLlcqpccwGgKSW2bffr868clQJuuFJSTd1ztGOVQQpHylyZQp2zw5Jomkau5HXU4cqXDhlkPuXCA4SOHQdaTPKyA/CovDQfloh6UloHU78vJK0zXHs+TrS81JeQ0m3IsoA8T7qZWVRKqtpim9xVo+WlJlz/L5HPyJtg1g1LaqicUt0f6fAQasgI6kqqJKQDZGiJ/m4hlcl067GbMn36XpiVzmtmeWlYVm/CJlJdk7w0Xhden+dODq/HDstTuqUcqj6l970hI+6t9Bip4xY4lvL4JmNEZlPqk7PpXAckpwa3XuWOR51K1b2fHlMlxTaUBTZnij/yr2W4BjyTYymI3Jpsz1Lnji7jBGORNwzyUo5JY8dEjElDxiPPg+d6RGI3tHwUIFI8NywR9QwyVCr70y7V4d9ktNxUVixU+peQMrtEgYtDOZma5K1OXN8PYjXhYVGUU2lqiv7NoySk9iR9jhw1Xdfsl+VTYhm3Ri87YIlt9BHHzd5eMd2f0/d05eDdQ57xB+T9PU3khOr+7pqGGKBSUjmdJEMhqd8e9URiqxyua8jv2zr5W6u2Tg9nlKqVwwOQ3xG2HD4nVqPr5ffrY2n5cv/wc4VLft+6MjbkyW8eZfFp6qt58vtMyUoDjuTqHUDgXUH5/c6X6uYNZaSekqQ6CSo5lcegoAuvvOYipKdqWa/EfRkKjkmCiowUJgpXXnklOjs7/X87d+4c6yYxDDNOsMr4xzBRcExiGKZcOCYxwwnHI4ZhKoFjkqBkIwXFqlWrjOWWZSGVSuHwww/H6aefjsmTw19Yy6G1VWT0tLe3Y/r06X55e3s75s+f79fZvXt3YLlcLod9+/b5y5tIJpNIJpNDzmcYhhkK27KMA6FG1WeGH45JDMMwHJOqhYkSkzgeMQxTCRyTBGW/dPv973+Pbdu2IZ/P44gjjgAAvPDCC3AcB0ceeSS+9a1v4bLLLsMTTzyBo48+uuKGzpkzB62trdi8ebMfPLq6uvDUU0/h4osvBgAsXrwYHR0d2Lp1KxYsWAAAeOyxx+C6LhYtWlTyNuOOFUi/VCm0KZIaOyCna0gKrZKLBlKVY+GkQiVxrCEpyFOk4+ZUIp2cIqWTU2t1Wb2S9lk6zVVJ+lzi7uJ2ien0fu0Ck5HOkQCQGyCOX4Pbl9DSSltKBJU7DgC4CVHW16PXsbdPpAXv6tDymb5OMZ9KbtJSjpknMhslx6BpsI6UzaTqdFumNYuU4pmTtaSmVTqxTSLuQkpeWkvkj1ZeSa/0firXUg/6PPgGPpZeX0xKJ6nDni2d05yD9BgXtdOFfLeWyHhrJon5Nbt79bLyr0nCvJ+kNO/LiHZNadfnrW+3PH7E/TUhnX5SpM+apMmmvkglzsrBrpPk9+6TTn0NxF13v5Ra1ZP05tpa6V5KUt5Varw3oNsfzyp3ubAcwenX/dwzyH+UlFS5mIppcf5t4gSs5KwWdVOU04P/VoKFEl15Kt4iY+JAiElDYnBcHPcYXEuVrJAKHkzXkymFX6kmhku2YBlWpGNYWGYopqW7GClzDctEb1fXsw0xs1AbotpfKnQVjuGgm86DaauWyaG2gGvtuMQf3mBkRSYck6qDiR6T8hkXeSdvdg6NkJJSR0iTvDQrlzFJRU3Py3R+sCw4byjUbzXH0vWUrJTKS+sRRklIvVT453RA5iddjAPyUjlMjN0wSdeTz8sxMnSMWz9V/K3V9TIJMeRON5HgdmXEM3kXGZ5G/SbbT4ZGUG7d+4jLtnKx7iZu1hkl8zXIS+kQPQl5828gx6BeTk8mv2Wb5O+HSTX6uVv9rm1M6RjVKJ/jG+oO0tuIy2GPHPLcT+6jqtW0vyUGxP7lB6ibuJDvm1w9A/LSTNipVMlKe+jQUUZ5qfpber8zSUlVGe2L/rIDui1xe2h5qU3eUXjScdjK26F6dHgFz7GQN/xGKweOSYKyI//pp5+OJUuW4M0338TWrVuxdetWvP766/jABz6As88+G2+88Qbe97734fOf/3zR6+zp6cH27duxfft2AGJQ0O3bt2PHjh2wLAuXXnopbrjhBvzkJz/Bn/70J5x33nmYMWMGli1bBgA46qijcPLJJ2PFihV4+umn8Zvf/AYrV67EWWedxY48DMOMCHYZ/5jhh2MSwzAMx6RqgWMSwzAMxyRF2ZluN910EzZt2oTGRj1oe1NTE6699lp88IMfxCWXXILVq1fjgx/8YNHrfOaZZ3DSSSf5/1ep2eeffz7uv/9+fPGLX0Rvby8uuugidHR04Pjjj8fGjRuRSukvBw888ABWrlyJ97///bBtGx//+Mdx++23l7ubDMMwkViWBauETzil1GWKh2MSwzAMx6RqgWMSwzAMxyRF2S/dOjs7sXv37lBK9J49e3w76ebmZmQyxTlyAcCJJ54Y6ZRhWRauu+46XHfddUPWmTx5MtavX1/0NqOI2zaSRK5myLD1dccp4tqinL+oS6QpPVfJ/OpJSm6D3N4UIiVVjpwNRManJH1Wmri7pIV0MTegJYwmB8eAO4mUkDrUqbRByEbj8i+g05+9pJaXKjezPiKFNLm02nI/HeKwlpTriyV1mSOdUWulCycANB4knHwap+i2HHqQSPI+uFE/RLTUiWPUSKWOUlZqZ/TxgJSDgjqRSrmoS96tKyc2mqquUoBrkiTJXMpVY1P0F8J4i5D0NszWjqZ9u8V5mrZfO5NlDDLkAXmeUiRtukY5ribC7/6pK48nz7uV1ZLdGumW1pTS6dxNtXq6uU9M0/6Zke5FNH1czafOveq892dpmWh/vKbZL7NyQl7sHETdguS8uO7nqr/l+vQxcjO58DKy/zpEXurUSIdU4mxk14r0e7tOP/D60zE5PokTblOpsCtPdXAgxCQrFtcuoQAsSJk2rePKWBRwKpX3DjcsM/RIvWLl1r5c0SBrBJVzD3JmBOA7QntEpu+vh5ZZQ3/rDMgRZT16XVm+bIPIMQzDQygH5n4yxIO6P9L4reIajW8m9aOj7k2xqbqMxLh4SsQO6l6qXEbdLHUbDcuF1fG1yT1TOZlS99JYjdhGopa6wYl6dJgGVVZLh7KQzxrNNeF4UUuOkZqmx1IdX3rM1Xkw3fOMktJABUOfkP3Ec0m/Uw7j9BlHSrkCMk7pNB4oU46mlVwDFNP1QOv58h9S5jv82iVtPwqOSdXBRI9JXt6DB69oV9K8vKcWkpKqZ2Mqz9MyPl3PNL8c91It89NlSspXQwrVpJ0hz8byOdg1yPDoby31G4s+t8bUcCzyWRXQ7qVubbNfpmSlSlIKAB1SQtqZ1ttt7xXP2m3desifNjn8T1uHfq7eLee/RYYG6pEu3NSZMyf3zTP8fqXDE8RkPIgnye9gGTdUTAGAaXIYoNZm/dutVc5XQwQBQE7+nqO/S5pTYt/10YP+PQfAkfd3r1//3ovVimvMSekydR4sw3gI9Byq80oddPvl/P48LStfXuq3qUgpacIOy5/psnkZUx3SFeNSQuqSC8ORUlPLIY7BSnJKXU5hduUth9GKSXfddRduuukmtLW1Yd68ebjjjjuwcOFCY93/+q//wte//nW89NJLyGazmDt3Li677DKce+655W28CCqSl15wwQX48Y9/jNdffx2vv/46fvzjH+PCCy/005iffvppvP3tbx+utjIMw1QdllX6P2b44ZjEMAzDMala4JjEMAwzOjHpoYcewqpVq3DNNddg27ZtmDdvHpYuXRoyjlFMnjwZX/nKV7Blyxb88Y9/xPLly7F8+XL87Gc/q3Bvh6bsTLdvf/vb+PznP4+zzjoLuZx42xyLxXD++efj1ltvBQAceeSR+Ld/+7fhaekYkIhZSJCvuyqrLU5ewaovvjTbKyu/EufoW3P5sph+SYnJN+30a3G9fAM9mXxpVmX1ZCDElBw20soSIwT15ZgOoCwHk0826y8k9E22ypSySaZbcpKo60zR7ke2/PqSj+sv6lnDh2plCjGNZKF1SsMDN6fXl2iYLMv0F764TH+vJ19Bmg8SX+vfMavZL5vbIr7kTydfRlTmXw0xDPAzvvKGr4gFvrKrd/v0i6IyV0iTbIcaaSzhUuOAg0SmXv2cDr9MDd5Jvxgl6sU5PujNHr9MZVfQrxy18vg1HqwztmqmiO05Bkcpi+xvUmZ0TSKZbtPq9DLqSxI1AlHZHNRwQWU70L6qrgeX5NlkZEfPxvU2LHlsbPJVSg2AaqV0BqPbK4wgnIz+IgfZPwKZmqr/0owfZYxAM91k5qRFMt0smRHi+n8n4AD0BygHQkzyYim/DwMA5HUWyBpy1ddpcs2oTB5DBhUdOLdYjBlshkH9/fkks1gZ14Bk+/hmNjQDWS3rkGUN2W/qPhQYjFhWo7E6L4MvzdhSmbuuR0yD1PrIsur+WE+MZPbVq2wBfb8dkINVpwODL+t7XC4r4miOZsGrwaoNWeImHJpdJnc0Ru7fMRkD46StSWkwlCLPFcq0aTKJB35Zvb63Tq5R2dI0I1+aFJFjmXDCz0fqPNDnHt+VjHxAV+fVIudaxWjPC5dZtEh+ybdo31DxgPR3dT1YgQxQlXlTwTVAKfZ6MGR0qmPgxTgmTRQmekxy8x5ceP61RbOClEkWzbBR9zhzBlt01lpUPVo369GycJaO6beYyhai0aXGkAmlYkzCJoPX+1l+0RlBvkIjTjLB5fMqVWNYMhvaTerfbGq6m2S1qQy3XSRb7Y0u8ez8OjGye+0tYWD2+j5tZNYtM936aezqVZluOnapTDfXsG+2MdNN35i7ZVZ1B4klu+Vvtg5i6tA/RWwjS7ahJ3VsUvF4EjkuVlb/VrBTYp/psXR7OsSyca0IM2W4Keg5VP0264az2vpJx9RlJMtT/s174f5p8G8IZKvF5TTt2+r3YN6jWW1qWboNK1Cftsbxwhu2SWM81T9JKqELO3D9Vju33norVqxYgeXLlwMA1q1bh0ceeQT33XcfvvSlL4Xqn3jiiYH/X3LJJfje976HJ554AkuXLh2RNpb90q2+vh733nsvvvnNb+Lll18GABx66KGor9fSO+WewzAMM1EpddDPiTpA6FjDMYlhGIZjUrXAMYlhGGbkY1Imk8HWrVtx5ZVX6nXYNpYsWYItW7YUXN7zPDz22GN4/vnn8Y1vfKPErRdP2S/dAODXv/41vv3tb+Pll1/Gww8/jPr6evz7v/875syZg+OPP3642sgwDFO18ACh1QPHJIZhDnQ4JlUPHJMYhjnQKTcmqbEvFclkEkmDwmvv3r3I5/NoaWkJlLe0tOC5554bcjudnZ2YOXMm0uk0HMfBt771LXzgAx8oup2lUvZLtx/96Ec499xzcc4552Dbtm1Ip0W6amdnJ77+9a/j0UcfHbZGjhUp20IyTlJofTmozr9UqadZ08CgpoGWqdLAN2HQhWo6SdI+lWSyJkY6bC48ALyS5tBBOTFpGgDASmjJZqyZyPekvILOt2pFeq4z6SBdr65ZbCOhpTJKellHpC3T5KDMR07XbVAyxdeJbLSvP9x+laI8ndR72xSRfn3oQVo2eEizkFdNIYYAtUpSQwfTjpKQRgzSDQBRtwaaae0qeVeKDITaLC762Ex9nCfJv4lGffwaZu8FAPTv1oYLuYGwcUCiQRyPuulTyLJiG86UVt3mGtkGst8p2Y8ayQCnBzfqG5bqbwcR444B2XFpynNSmX4QY5EGuU7HcCPNkYMUVxLcPNk31VcT+rw6TWKwU4/IS33Zj2s4l3TQajm4eGAQaimt9Rxd5spr14uJY+rFK5fy8KDV1cGBEJO8RI0vjQaGuMepa8U0iK+hvl1oQHtTO0z3T18mR7WEdri+kpCSMl9WSuR5nhOuN1iKB+ixP+gDnRplwAsoAKXhArm7K8lK0mCuQIdzUPfH7mZ9v+gaEDGsh9yzu+V0D5Ho9BMzGCXdp0MUqDKT2ZIJKntVsZW2X5XVkHu1ksU2EImoMnBqJEMPKNloDZGNNshl6fFQMT9FHmiUvDTh0PMgB2cOmCuIv8FzGDZNUOef3i79ZchQBWrUaI+U+dcFjRvqehiFayBYL3w9GNej+vYwDHnAMak6mOgxyXNdeJZFTBPCRgpUNq/kdiaJaLAMRdUzSUnLGdDeNCi9FgmSe5wd3kYqM/T1GhiUPq6eefU92B8Whfz+8uRvCi+uywaUhJEcy860iD97+7REdLeUmr6+n8hL94rn6i5ipNAjp/uJNDXdLV5u5Ab0cDfK8Iea/Oj9IYYQ8pkkltIZnAMN4nckHWohlw3HOhXP6HA2Kp7VkuGCauSPO/o7uDYePm6B37Ly+NJjrs6DZbgXU1x5Xk19MCgvFfs04Eb3RROOYWiMvNEgIfiXTgelpENvL+DDlwv3bRtKDm4FyjzTb68yKDcmzZo1K1B+zTXX4Nprrx2WNgFAQ0MDtm/fjp6eHmzevBmrVq3CoYceGpKeDhdlZ5XfcMMNWLduHe69917EiUb9ve99L7Zt2zYsjWMYhhkPWCX8Y0YGjkkMwzACjkljD8ckhmEYQTkxaefOnejs7PT/UfkoZerUqXAcB+3t7YHy9vZ2tLa2GpcBhAT18MMPx/z583HZZZfhE5/4BNasWVP+Thag7Jduzz//PN73vveFypuamtDR0VFJmxiGYcYN6gtOKf+Y4YdjEsMwDMekaoFjEsMwTPkxqbGxMfDPJC0FgEQigQULFmDz5s1+meu62Lx5MxYvXlx0O13X9TOSR4Ky5aWtra146aWXcMghhwTKn3jiCRx66KGVtqsqSMbsQHqrypzOx3QKp+eJ+TR9uUiViO9iQuUiKqWUSjTUNK3nSxGIdM6TEkeLSHRi9c1iHnU5zRncPKkT5CCHR4A46ZDtxVzRnnpyjA6bLOSTTUSycqiUiCo5DhB0qlEoKQp1iFOum9TNtTml5C5haQuVjmhHNGLHoubZYUc8m6TzRhjcBB5QfcVKTKc0u7VCTGq3kvZJRx2nZbZfVv/2t0T9XqJZN8iGlROb3TDJL3KkmyyVAPsOqmR/Y+qYJqiUR89vSop1D5C09awhnTguU7ETsXC/pBKjmBOWE/nHOqlTz10lHYqRG6jqv1Q65IbltiZ85zfDeQ1I1nznROmWGC9u/VHw+DnVwYEQk9xkPbyklmT7d1GTPK5IeWlFGCV2hv5NZYP+dRmWjRolpwF56dDXTsAVzPAWQc2P2eF7WA2Rtqj4knX1fTIjravTxOVS3TPp0BLpvCqj91Mih/LdUsNSFJNDnAnb8LxAY1fc4CIad9SwFXaoHh3eIikdOel9Xq2HHjdzmWwTdbXzpTIFdkq236Ox2pcck3u072hK3XqlKymN/ePoevCbIstcw+NZyc3gmFQVTPSY5LuXGhwOTWVRMrlgmRf4C2ipXtZQRqdNjpGF5KVaqqfL1D0rYdgebauS0Rbr8hiQNcrfXRbJglT3QI88G2fkugdyehvdaRGL6FAG+6Qb6e4uLSXt6xVlVEqqpvv37/XL0j37AAC5fi0vzQ7IIV8M7s7UvTmeEs8ksRryjO//zpzqlzkyrsTIb0bV1mbyG2+SnFb7CADNKSnZJMe5hhwjddzosfSPbwEpqd9msm5fHm1w0KX9KRshmS7U7/x3AOT2a+qLfnoUCVdqmeB1YxnKwvX8n8uGQlrmovh+XYjRiEmrVq3C+eefj2OPPRYLFy7E2rVr0dvb67uZnnfeeZg5c6afybZmzRoce+yxOOyww5BOp/Hoo4/i3//933H33XeXvO1iKTvTbcWKFbjkkkvw1FNPwbIsvPnmm3jggQfwhS98ARdffPFwtpFhGKZqGa2sgrvuuguHHHIIUqkUFi1ahKeffjqy/sMPP4wjjzwSqVQK73znO0Pjx3ieh9WrV2P69OmoqanBkiVL8OKLLwbq7Nu3D+eccw4aGxvR3NyMCy+8ED09PahGOCYxDMNM7Jg0nuCYxDAMMzox6cwzz8TNN9+M1atXY/78+di+fTs2btzomyvs2LEDu3bt8uv39vbin//5n/GOd7wD733ve/GjH/0IP/jBD/DpT396uHY7RNmZbl/60pfgui7e//73o6+vD+973/uQTCbxhS98AZ/97GeHs40MwzBVi4XSxsUp5/fNQw89hFWrVmHdunVYtGgR1q5di6VLl+L555/HtGnTQvWffPJJnH322VizZg0+9KEPYf369Vi2bBm2bduGY445BgBw44034vbbb8f3vvc9zJkzB1dffTWWLl2Kv/71r0ilRObmOeecg127dmHTpk3IZrNYvnw5LrroIqxfv76MvRhZOCYxDMNM7Jg0nuCYxDAMMzoxCQBWrlyJlStXGuc9/vjjgf/fcMMNuOGGG8rcUnlYnlcg/7EAmUwGL730Enp6enD00Uejvr6+8EJVTldXF5qamvDGrjY0NDb65Sb1R9ThM9U3vb2laZRqflApIyUk1JlEyiKCUrx8uEzJJ0qRUfjyHyLVk7JSKv9Qmc7UqTJjSMlV8ppy3NmUfCZOM7Ll/LgTrmc8RoZ994yOeEQSKVfjGs4vlfL4znmuToNWx9/KE6loXqRaW1TaazpfEVDpJPzzQc6RkrhSt045nTNInAB9noq9DZj6Kk2NVufOKXSMTP0ywl2u4Dk0NjZC6iPndXV1YdqMg9HZ2YlGcq0Xg7pP7GprL2nZrq4uTG9tKWmbixYtwnve8x7ceeedAMS4A7NmzcJnP/tZfOlLXwrVP/PMM9Hb24v//u//9sv+/u//HvPnz8e6devgeR5mzJiByy67DF/4whcACEe1lpYW3H///TjrrLPw7LPP4uijj8bvfvc7HHvssQCAjRs34tRTT8Xrr7+OGTNmFL3Po8lEjkm739gR7DOVhe+hMcWLQtdbFIWkAhHrLuQS6RnWbbp/qykahtR9L1AWVc+4jXA9imkZE6ZYY8IucCzVbNMRNT5rkNXZUfUCbSi2nhpuwNAWLxyrg/MjnlkKPc9Ucl0Md98vxKCD09XVhWkzZ3NMQjgmjVcmWkxS/exHh74LdY7jS9LyxMlTldHhSsxOpaoMkfWUS2RheWl4PYXwpaTkt0eNlOLXEUl+vZTiTybaPzX0TV2LHvahfpoYZqfh4Ca/rGF2S+AvACRmvA0AEJsxxy/zJs0U+9GoB3/flxXb20ucQF+TDqSvdvT5ZS+2CRXCi+3detm9Yn73Pu1o2tMh5qc79/hlA3I6Q4a7yUv3Us81yEvJsC2OHIpIDaMDAKkmMfRNskkPgVPfLIaQaZishy6aPFUcq7ktDX7Z3FZxfRzSXOuXva1Z/L6ZWqN/80yO607jdLWJdu1/wy/LvfmK2Kc3X/PLune0B/4CQPfrnQCAnt36WPa2C2ntvn79O26f7KQ9ZDieXtkv+/Phfl6sMjMR+M0bLlPTcSvcP031qDRVlxnWR2S3lhrGiriUW46F3nweH3/5j2XFI2B0Y9J4oOIniUQigaOPPhoLFy4c94GEYRimVCyr9H+lkMlksHXrVixZssQvs20bS5YswZYtW4zLbNmyJVAfAJYuXerXf+WVV9DW1hao09TUhEWLFvl1tmzZgubmZv+FGwAsWbIEtm3jqaeeKm0nRhGOSQzDHMhM1Jg0XuGYxDDMgcxIx6TxQkny0lWrVhVd99Zbby25MQzDMAcKXV1dgf8nk0mjM8/evXuRz+f9cQkULS0teO6554zrbmtrM9Zva2vz56uyqDqDZUKxWAyTJ0/264w1HJMYhmGGh2qPSeMBjkkMwzCMiZJeuv3+978P/H/btm3I5XI44ogjAAAvvPACHMfBggULhq+FY0jcyyFBraRKdL8qWhJncmej8hkoZ0biwggxnSfpoXkpjMmTN8Qqu7oUFbGSjFDZoO9WRl3S3GzgLwDU5kXKs5UnkkkpsyxLRin32YtRB1Lp7mPFQ8uYjpFrSOg0SkTJMVLnzjGdw8D6pOOYpberzknW0+3LQaRTZ8kx9R2aypDdxu3wOUoYzlFMboP24yQ5X747aLHyY5Msl54vecyDZeFjpM6JV2RfLVaqHWiq4VPJYAlU1ip7WEu9Hc8LSqWKqA8As2bNCpRfc801uPbaaytuz4HEgRaTMnYCGVvfC4t1yi4V0zVYicNhwWs1ctnwXFpkuvaM929f0l5gCAKj9F1OE6lUpESe4hmWMVHOPdi0GoMTrF6WHjg7WB/QjrKG+7zRgbbIZxeTqCIwnAOc0HxT3NbLDjlLLFuJunSY+34hBl8b9PouF45JY8eBFpMYhmEKUW5MmmiU9IvzF7/4hT996623oqGhAd/73vcwadIkAMD+/fuxfPly/MM//MPwtpJhGKZa8dzSxkyUdXfu3BkYq8CUUQAAU6dOheM4aG9vD5S3t7ejtbXVuExra2tkffW3vb0d06dPD9SZP3++X2f37t2BdeRyOezbt2/I7Y42HJMYhmEGMUFj0niAYxLDMMwgyoxJE42y0zxuueUW/PznP/cDCQBMmjQJN9xwAz74wQ/isssuG5YGjiVWpg/WAMl+UllBpgHhTeYFhfCzswyZXXHi1KQGyCdfkNWgo/1kQMe0dDYYoAM6ypEcMzm9H3RgUwUdUDElBwtNxvQn2DrpZNBARmh0cmnR5N63dPN79gIA8vv1AJ35TjHf7d6vN5gj2VaKmMgMs8lgnHbTFLEt+Vc0Qky7KT1IqZsSy9Bsqow8Dqav3mRsVD9rjGYhWFHZefRLfkw8lGY9XdaXlYNtkpFhOwbEeuignPsHxHRPWm8ja2isal9jSmfOqcFbp9bqsqakE/grlhV91e7v1M1P60FWbTVQakYPsgpq9qCQmYZWXD+Eq333EnqwUzcuB0hN1pMy0X+pgYPfLwOmDuHMv2IHItWmDuEMRlqmzrsqG8hV/jXF8tzoDBZDfQBobGwsaoDQRCKBBQsWYPPmzVi2bBkAMWj15s2bh3TpWbx4MTZv3oxLL73UL9u0aRMWL14MAJgzZw5aW1uxefNm/wdNV1cXnnrqKVx88cX+Ojo6OrB161b/q/xjjz0G13WxaNGiovd3tDgQYlJf1oWdCfe1Yk1+hvsxptBg/X49mmBlGOhfLUPrqSzewED/6pomuXFqymgqlKfGNdLghtzffLMbUs+SsYku62VFrPPS+j7pZURWt0dimZcWZfQeGpivpunA1HLay4cHqzZhOSQrTGV2kwxvS8ZR9ReAvn8nU6F6doKUJcX9O3Cfl+ZJHl2fKiOmPX42esDwR5WRDHT13EO6p7r3m0wpaAwwZUO7fv1wPUq1Xg+6nvirnh8qYaLGpPHGgRCTKDaRXuTlhRt4/rKCf4NlXoF64j+0V5vWA2KmptQf+QJZM46v7im2rdGZr5ZjyOyVv0c88vvMU7/FaDwwZFA78jcH3a76XZAi26qVg+DXkMHw4/L3QDxFyqQTcK5fGxrEasJjDWZlrDHFJhqH4qm60DqUuUKcuA6rNsTJbxTV1lrSZrVP8YDBQFjdY85GJ2YeruGY58P3RdP5Grxduu1CfcLUF6PWbernwfWV3z+j1kexneg+XSnlxqSJRtkv3bq6urBnz55Q+Z49e9Dd3W1YgmEYZgIyCl9wVq1ahfPPPx/HHnssFi5ciLVr16K3txfLly8HAJx33nmYOXMm1qxZAwC45JJLcMIJJ+CWW27BaaedhgcffBDPPPMM7rnnHgDih+Cll16KG264AXPnzsWcOXNw9dVXY8aMGf6PqKOOOgonn3wyVqxYgXXr1iGbzWLlypU466yzqtK5lGMSwzAMJmxMGm9wTGIYhgFnuknKfun20Y9+FMuXL8ctt9yChQsXAgCeeuopXH755fjYxz42bA1kGIapajzPPJZTVP0SOfPMM7Fnzx6sXr0abW1tmD9/PjZu3OgPOr1jxw7YJFv1uOOOw/r163HVVVfhy1/+MubOnYsNGzbgmGOO8et88YtfRG9vLy666CJ0dHTg+OOPx8aNG5EiXyYfeOABrFy5Eu9///th2zY+/vGP4/bbby+5/aMBxySGYRhM6Jg0nuCYxDAMg1GJSeMByytlhH1CX18fvvCFL+C+++5DNiskE7FYDBdeeCFuuukm1NXVDWtDR5Ouri40NTVh74t/QFONlk8oWYovSQEAKbEMSEiyUlpikHGCPISo9FyLyDu8RJ38q9N+XVVWo+WU/Z5YlkoYu+R0x4Buy77+nKynpTdpIklVadc0Rbk+Kd7FUuniQbUJ+VenANdmOgAAsf2v+2XZV/4CABh47W9+WfcOMY5H7y4tQ810D2AwsZTYbs00nYpfP3MqAKBu9sG63szDAAD2tLfp/WgUD3r5mma/rF/KNHIGrUmMpC0nZFpt3NPHyJLnlcqOfBwykLk8N91ZvY19Ukr6RlfaL3u1Q8iSXt7T65e99paY3tWhj0UuG07jrpV98ODJWsZ56EFiu3On6uvs7XK6pVa/S2+yRBtinW/4Zd6+Xf60kgF7fdq1TMmmApIl2UcD0t/GyWJe41S/zK0V584lfTUbE325h8hm1LlJE+3QgOyXA6R/ur7kFCGCEmGZju5YobKYQ+uJ+Up20N3VhaPnzERnZ2dRshqKuk/s3vlKSct2dXVh2qw5ZW2TGZoDISZtf/l11NXrPmOK3q6UNBjnGWV3pbfHpK7xTUqoHFSKPy2DBMI2SSXs6DJ136ayE1vur3/PhpaGWll9b1XzrRwpU/L6fp114vZ2y7/knjjQG5gHALmeHgBAtldLTnN9A7KM3NMHdAxxM6Jfulkda/IyNnum5wUDFnmGcBLiXm/H9T3fToh4EUvpOBWvE/fvWC2R+tSJ+3KsXkuC7LoGsY1UHSlrDMwDAKtGTNPnFE8Og6GGHQD0MBkeiZlqvkskwmpYBRqr1TADVF5qKnMNMlTVp10i7/HLRuEaGKqebbAM8eXW8m93dxfmH3owx6QJwESNSaqf/XjuPNQ5Dlx58bkZ/fyqyvKG3xsZchGq6WAZiqqXJReuad3qnlBIXprwjcn09ZmSZTXkQbNJDrOj/gJAo/ydVNeiz2XdNDFdP13fM+tnHiT+HnyQX5acPhMAEJs+xy+zpoqyfIN28e2LiXv0vgF9fNt6RFzZ0aljzU7D74yXd4s41UV+Z/TI6f4eHTPT3SLe5QZ6/LKcjI9uNvw7yI7re3pMxoFYSseSZIO4j9TU63hQ3yziQWOzjkOHThPLqN80ADCrWaxvdpOu11ovtjeZyGRrc7qtTrf4nent1b91crteEfu2S5f1vC5+8/S8oTNQe3aJuN67Wx+33nYx3dWnf093yt8tnfS3jPxxMuBG90UTJnmpqS/GreDvFjodLENR9fztxnQ/VvJSm8h8bcdCbz6Pj774h7JjA8ekIGVnutXW1uJb3/oWbrrpJvztb+IFy2GHHTZugwjDMEw5CFeeUsYqmJhfcMYajkkMwzAck6oFjkkMwzAckxRlv3RT1NXV4V3vetdwtIVhGGb8wWMVVBUckxiGOaDhmFRVcExiGOaAhmMSgBJfuu3YsQOzZ88uuv4bb7yBmTNnltyoasHK9sO2iQuZSrUlshNXOZj167RUX2pKHcykdIRKQ3xHMSIvVRKOgFtnrZCfuI4+XbGklu8pVEprd1qnIL/Vlwn8BYBOki6bkanfCZJmOlmm8Q7kdLuSUgrbkCROOdJRh0pz8m+1iW28pNN59/xZyE/3v9zhl/XtE8eSpt8qF5uGGXv9skmHihTgKV19ukz+jdPjJh00vbiWu9gWcVsbRMF36BEXvEfcS5WqlDqOvSWPr5KUAsC21zoAAH/eoR1cO2QKeA9J+84OiGk7plO3a2V6duc0XU+dNyp/ntkojodVRyTRGXncejv8slz7Tj29R5yn9H4ir5LSJypZSjRKd6JmIguWbnax+maEIK52/dIhlEqhe6QMgbq5qjIqL83J1G0qHVKp2DGS9q/kZrVx4oAk+3R9IhYqc2XRQIH076LgYDJmHGgxKZ3zECOOuyYpqUmSrSV4BgfHMr4o2gZHLL/Mjq6nHYQRKgs8kPiu0rpIjYZBL1tb+dnR60oNBUElp/JeaKW1JMXt7gAA5OVfAHB7ZFmnHg5B3R/THXpZNZ3u0PfOtBxSIE2GFsj26HtcVg49kOsn8lI5pACVZkVB5R+OvN/FavSRi8thGuL1+h6cbEwG/gJAsrlB/iWSIDmdnKRlUepZxO5v1mUNMk416DIkw/c1P1ZSR1N5nlzi9Wk6r+qeTx29lfyU9u28ob9rN1QqV0W4zFCvWGyDvrTY6yFKgp0eBkdtjkljx4EUkyzbhmXb/j3YI53dvy9TT1/1e2Nos0hJkc6ngWtexZrw9Q0i61b3FZNjJG2WkpXWONFSPXo/Du0FGTJAPVe7ZKgf9VvRH9IFgC2dsunQCKmkuB/XkN9pTUlxf59aq7ehhg7KUEmvvGe+TodpkPLYJIkbA3IIoWy62S9Tw924hudkO7A+5UpKnrXl75Caev1bpqFBxB86VM7Bk8RvtmlEhjpVtkXtI6D3PUXOh9VPhoqQx80lx1IdX3rM1XkoNJyDOq+JAb1swpcc03u/OifkXEP1k7DU2WQSapKSmiSnJtlo8fXItSSPJXUsVQ6ugTLbHr6MM45JAMwO50Pynve8B//0T/+E3/3ud0PW6ezsxL333otjjjkGP/rRjypuIMMwTFWjgkkp/5hhgWMSwzDMIDgmjRkckxiGYQbBMQlAiZluf/3rX/G1r30NH/jAB5BKpbBgwQLMmDEDqVQK+/fvx1//+lf85S9/wbvf/W7ceOONOPXUU0eq3QzDMNWB55pNU6LqM8MCxySGYZhBcEwaMzgmMQzDDIJjEoASX7pNmTIFt956K772ta/hkUcewRNPPIHXXnsN/f39mDp1Ks455xwsXbo0YAE+nrEz/UHZjpSgBOSlfUJaQuWl+X4hY8kT1zLPYL9oS9kbdRRTTmHegJZTOgeJZW0i0YhLp7AEkfEpmQKVSiip3r4e3Zbd3Vr60i/TbhPE4rFfylyoa9zkGpXKrNvgEfcaRT4t1t3/Vqdf1vW6OF6vt2lpzhtSXjNALsKUlN7OJPLXg6U0xyJtUU5sjUTWGG8QTppuUg9Qm6yVZeTiVSm+hgzfIEoWY1FtiNh3KmHtl5JJKp3cJY/vi+16f/+yswMAsGen7jsdu4SLaN9bWoqbl6nRDpHOZqbMlJvXEoTd0v2n3+B2GqdNzkpJNJFK5d/S7qV90lGWyqbyMv2aut+pVGynRqeFw5XbJsfIi4sU8QFya1HOuZ3EeWmXdE2isuduWa+HpHPTNHmF6pc1JK2/Tl5LVF5aL+dTeVKTn/7uyPVPzME6DxQOtJiUybtwyDWRlddl8TK68DrzZUis1TVoGyQ61EFYyeniZFiFREzGqcBNWErsiPBfLRFwPvUM7o/y/m65xH1aTRP3aSU1dUmsVvHb7dL3x1zHPgBA/249FMDAW+K+3bdHl/XvFTG6f7+WswzIaVrWk9bt6pHnrp/o5U2ufHnDKVGH1SQdoXKXeiWrJ1KfmkkiXqQmpUiZaH/NVC2PrT1IDN5An11qZIeKufr+rZzX1RADAGDLZxGPDINhqecTcm7gyTISN9Su5wP92Av8FdPib9bkFEfu5abrIqvcFEmZv90KrgGK6XqwDdJqWqauDTUvY7LqZsYNB1JMsh0LtmP5UnFiUgw3L+/phpuZHSiTz5YBKWn4WtXyUnr/C99HEyRGFHIt1eseWqpH761qmsYzJcezDPcDivoNmM/q3zfqdyP9TWk3iGdxizhD29IFuiGhZf/6nqVlmaoJ1N1bPSc3k6Fo1G/At4h7aY/83ZUlwxMpealnuD9aRnkpef6Wrq5TiGx0mpSXtjZTV1JZ1qDrtdSJ6SYynFGD1CTbaR2vLDLtSdfVgOu4PL6BYx5xf6X7ZBvOdY2j+qVpaAFdr1jXXL1sWEZtchulsmyTbNQkOVXtt0ihI/sELdP9ONi3TY7bTPmUZaRQU1ODT3ziE/jEJz4x3O1hGIYZV1ieW6IrD/+oGm44JjEMwwg4Jo09HJMYhmEEHJMEFbuXMgzDHNDwAKEMwzBMtcAxiWEYhqkWOCYBGGcv3fL5PK699lr84Ac/QFtbG2bMmIFPfepTuOqqq2DJFEvP83DNNdfg3nvvRUdHB9773vfi7rvvxty5c8vYYCbghKLSVpW7GaBdz7LEXTPbKyR9OSLRUI4pFJXGGavROdnJZrGeRDYTqh8jUg4vJtJva+tb/LKauOikVGKnpD5UCkGlFBmD242q20Rknp0DYro/p1OAvVqR/myltKSTOl7628uEJTX7ZdpyD92uJcpoSm5it0gPrnlNpwzXTmsXZdO0C6etHNZISrbKda9Jane2nMmFR/Ud6iuiZDFEvuvJ9fURGUuX3Lf2Xp2m/XqX6DMv79GSza63xHnt2qNlTL17dgAA+ve3621ICU8sRRzllHTWILWkrrPqvCdJmZWW6dXdWhaV7dZ9NSOnVZ+leORcqr5qxYmcSJ53Kun1pMsSldt2y+ldJJW9rVsco3YidX5LSqCpZNYk+0lIHU4tkZfWS8e+plrdPtcLu9f66ffyusiWMsbAUHhe0D6ymPrMhGC0Y1I27yFGHdFkX8rmw3K7gBOka3BzNHTDKBdHKolT8r6AjEFel/T+7UvnqKOcbD51P/NdWEHLhibgHKlWTR/SZBusPIm7+bBTnJKa0uEhMl1iOkPuk8qhdGC/vk8qCWnvbr1sf4e4n+0jTqSdxNm6U97bqGtyvzwgmSIljlR2ohz2UqSsScaBJnKCJ+eUtCk8HEFAdiLv+TZxfHbkMANOUsd+NyX22UqR4Qbk8aXHXLmSmh6gg+6fBlddwxyTW6+pb6vrIRu4VtS88HATge1WcA3Q+a4vJaVyViXB1stoKawVaHtFcEw6YBnNmGQ5FizH0k/Oju7YlpR+esRiVN1rqFOzJWWoHun3jiXvVx6Vzplk+GEpKb18ipX5RclLTfdbh+j8lIO0TW2KJVTKqIZtodL9XJ+IJ1aflkkq12z6e08NbUMH9GlOiWdt+tsu5oh7dAO5f0+SstJWIvPslEMe7OvVbVHDunTT4V2UJNYQm+h21TN5Q0pvVz2TT67TrVbDu0wiUlflVNqY0n2nUT7bN5DjnMiIY2T36d8ydl+HP52Tx80lx1IdX3rM1XkwDvnkhM8rPdc1hj6mnm1Mw0OU0+9MMuooyWkhKamSjVKX3aGkpIOxHAvWcMlLOSYBKNG9dKz5xje+gbvvvht33nknnn32WXzjG9/AjTfeiDvuuMOvc+ONN+L222/HunXr8NRTT6Gurg5Lly7FwMBAxJoZhmHKhF15Dlg4JjEMU3VwTDpg4ZjEMEzVwTEJwDjLdHvyySdx+umn47TTTgMAHHLIIfiP//gPPP300wDE15u1a9fiqquuwumnnw4A+P73v4+WlhZs2LABZ511Vknb83JZePls4P8A4KXJl3I5+HtuQGfsZHvF/MAXDTJ/MPmBZKjMIm/cLWlYQL8q23Iw/3iq0S+rl4PY068Ik/rFdHe9/tpAv2SoLxiZXPgLOM1+65Nf6wdI2YB8nR9L6cE9nUnTAAC10yb5ZXUt4gvE5D06I2BfRrx1N30JoJeaygKgA1P37RYmDcoEAABik4QZQbxOHw/feIJcvOq4ecSUQn8sIwM7y0xC+oUnLTPcushAo/ulIUQbydh6Y5/4urK7gwyw3Sv6Tj6jMyWUOYEdCxtSJBv08UvITLfaJt1PpjeL/VBfiQCgVjoo2BmdoWFl5ECtxJgjn9F92q9HvlCqbIdEo+5vyUniHNuNU/wylV2Yq2nyy/o9sZ4ektm5V5olUNOEvfIL21vE4EN9dVPmHkNRI7/iBQbZNZgrqL5aEzdkQAz6WwmW55U4VsHE/IJzIDLaMWkoaIZNsYP3VjumL4LGsapN156hTN1vS3LQisAz3Dt0tkU48xDQsS1vyDgs9lYUzOSQWV4wZXyY2xDV/pIhx9IzHdciz43pvI6rL8JFEszuGzk4Jh24jGZMchI2HMeBK+8lNHvIcVQGm+7zKvuNZtXoZcnznMqwIooJlYFKzRNM90JTWRHWaWK7hkHpaXaRMgqI1ejfD7ZhUHoF3SdXDuavfh8CgCMzhp2Uzt5S2Uf0KdhRRmbEGCiZEuuJk+fvWvlbsZE8B0+Sbe0nv916ZaZhD8k4VM/LafJbUGXzuiaFED0ucjpJDPlSytAnYHgmpmuIGqdO/m6pJQ5wKU/sp92rDfnsATnd2+GX5fbv9qddOe0SVU+mWxxfeszVeTDFv0CGWCJ8rhX1ZNpshFR+v4vKdKNlKpbQTDz13qAYg4TB9QavQ9VzhuM5ARyTFCU913R3d+Oyyy7DUUcdhYMOOgiHH344Tj31VHzta1/Dc889N1Jt9DnuuOOwefNmvPDCCwCAP/zhD3jiiSdwyimnAABeeeUVtLW1YcmSJf4yTU1NWLRoEbZs2TLi7WMY5gCEv+CMGRyTGIZhBsExaczgmMQwDDMIjkkASsx0O++887B161asWLECLS0t6O/vxxVXXIGXX34Zq1evxoc+9CHcfffdmDFjxog09ktf+hK6urpw5JFHwnEc5PN5fO1rX8M555wDAGhrawMAtLS0BJZraWnx55lIp9NIp3WmUldX15B1GYZhAvAAoWMGxySGYZhBcEwaMyZiTOJ4xDBMRXBMAlDiS7ef//zneOKJJ/B3f/d3ftlVV12FRx99FI7j4Gtf+xre85734IknnsCcOXOGvbE//OEP8cADD2D9+vV4xzvege3bt+PSSy/FjBkzcP7555e93jVr1uCrX/1qeIabh2XTgUHDg8mrVExqIKCMEajcwpbTpsEbaTqnK+e7RGKn5KwekQhaWSFTtAd08KtvaAUANJGB/qc3CElidohBmtVg9H0kzVgNxE+leioLlcpL++V2auu05DA2/RAAwKSjdPBWKb40nbfuRZEC3D6gpY7KaCFhGBSaptDmpdQ13aGNCnL79wAAbCLLDAxEKnFT8rj+//bOPM6Ossr7v6q79pLbnc7WCSQkQTRh2AMkLYz6kkhQUJC8KBhli+CSMJAwCJlBQBwIIJswwbwoxuEDEcVxGUWjMRhUCAEDOAIxIouJIZ1Aku5Or3epev+o56k61XW67tL3dt9OzvfzyadvTj1V9dRy69StOr/nF016QSUltQxve12DCdLnLrXediIv3aUkke8Q6eQeFbPIsTbVPo3VkVJwZZqQaBjrdUUZQdQomS4AjJ7gFDNPmezNe4z6PKXB244GVfpu9nnl1XrQcFpaHK3xZKqJxnrVL285euDs5BhvfdFxhzh/xx/ixix13K2k166rz9lffeQc5KTJev9S+a6WiEYYrZFv0FZ9fpLRqHWMtnNNROggpWq6N9h8OQatlmQyXBxsOSkRNV3ZBuCZElhEchNjBmSn0915GcMFb7nhAydraEhLH2KRoASCyur0cqjSzlQyDE6MUZLM0NCj2BPphcoHBskLbizhXf/09ZFeEzN1znU5kSIDMivpk8Xk9Eib9wM1bnr5Qg/E3UPm0Xkvk0cO6u5fsuNq1L6uIfcQ9VFlhESujzWNzjYlG71tSo5Oqm3y8kFUbSfddr0/6D4K25c22efucSgQrrXhm67PnWDeoIfBM5Dylqi/DybpUznO/cgAklGT+T5E2O+Dv30mWtIZ70dy0rBxIOakgfKRYRgwTMP9ftiMXM0iechwv6TeOa5/F9B27tArcTvQjv6G8s3DyOC4+zt9beW+t/R7qaV3VAqrpYaRGDMoPbPt1Lgm26MkkzFP6qh/N9L784SWklLpvvoNGGnwhuiJjFJmNn2ecUBt3DE1o+Zxo9U1PUN+7uvfNfT3jf6NmGMMAbjbZLr7XPkjIzmNk/2iP8fIIEKm+i1rdHm/5/SwOGavt22WMi3URhNAP1NDFe/b582T7tBGcd4+18chn6mQPq70WHNo+WWS3m8N4rwL64tv2Cnm/NTnkS8WIiFlzRP65TrDKpeRguQkoMj72QkTJqC7u5uddthhh+HBBx/EF7/4RVx55ZVl6Vx/rrnmGlx33XU4//zzcfTRR+Ozn/0sli5dihUrVgAAmpudh067du3yzbdr1y53Gsfy5cvR3t7u/tu+ffuAbQVBECiGbRX9TygPkpMEQRD8SE4aPg7EnCT5SBCEwTBUOWnlypWYOnUqkskkZs+e7Y5lyfGtb30L//zP/4zRo0dj9OjRmDdvXmj7clDUQ7clS5bg0ksvxZ/+9KcB23zmM5/Bk08+OeiOcXR3d8M0/V2ORCKw1BuBadOmobm5GevXr3end3R0YNOmTWhpaRlwuYlEAqlUyvdPEAShICyr+H9CWZCcJAiC0A/JScPGgZiTJB8JgjAohiAnff/738eyZctw44034oUXXsCxxx6L+fPnY/fu3Wz7DRs24IILLsBvf/tbbNy4EZMnT8bpp5+OHTt2DHZrB6QoeemyZcvw9ttv44QTTsCHP/xhnHPOObAsCwYpjXzssccwduzYkKWUzsc+9jHccsstmDJlCv7pn/4JL774Iu6++25ceumlAJxS56uuugr/8R//gSOOOALTpk3DV77yFUyaNAnnnHNO0esz4kkYhnfgDeWMSdNZVMlPIwlPopHtdspl46OIFEU5pliMMyMtGY0mlbSFOEdSWYdGO6lqmSkARDLO27UG0j5nO5IPWtJaS8plm5QUtpuU2urS2ASROejPtGxWu+Gkaz15YWLC4QCAJPnCTFSuq7XNb3rrPcI5qZvf9kqBtUOpTSWHqq+JlOfSGa8LykYzqow4QtxsoOQuUSIR1iWrVg2ZWU3PkRsVXXbdmfG2o1PJiXYRx03tyNneHXQEjSW8r1e9kvXEE15fcrlGAPB9f5J1yn2IyIBmTHTOu6MP8W503jfWKR8/lEiDUhHnGOrSbACwcyoW95YXH+PJgWP1Tjk6qIy6xolFGrx2kTHOG1C7wRsHJKfkpb2k/LhPrY9zBaWyuIba4DHUUuecFXRzjZN544z8uV7ta3pua9ek+rh3HBLqu6b7ki2HlEcYNg62nJSIGr7vkcXIPyzYwZh2dmPuY6w8ssYwWDct8pVyY4ycjo2ZNKalhHnkDVouSKWM6npmR8i1JKJyprq+AYCp8igsL//pOXxuX0oGFE16y4vVObmrZrR3bdU5rK/Dk5emurzckFFDD2R7iIO4lqkWKC/1SRPVsAvUYS2mcgjNk1pCSvsaTynJbKPnPp4ckwrEYqOdIRvM+kY3Zqp7Ibov9b727XOdV+ixCZGcGsw5QU9ZG0FXOK2cNqNE2qQk1r59qrpS7vPdN50591kZNY2pzzqWiZZJziMMCwdTTorEI4gQx0rWEdKkum/nC2IzEm6/VFQPx5OnHfPDPJ/kNIxCXR9Ncu/ZX47nrFcNn0KG7cmpoXSyEe83m/7t55PMZpzcEO/1fmfEupxhhKic0qx1rtH6WgwAhvqtFSExWw2lE415vxWS+hod8XKEHVE5JEoeC6hrtc1cs32VSPqz5eU1Q20HyBBChnJfNTJefjSyTs60uryhkvRQShkSs7qdfGuTWKbT+62T7uhSf70q00y3s+xsl7fP9XGgx4Yd9skMHmtvGpFHW3qYifKed9z62Gk+KWnhslGnHXNc+80bYYYmqVbuvvtuXHbZZbjkkksAAKtWrcITTzyB73znO7juuusC7R999FHf/7/97W/jv//7v7F+/XpceOGFFeljUQ/dAODOO+/EeeedhzvvvBNXX301enp6cOyxx2Ls2LFob29Hb28vvvvd71agq8D999+Pr3zlK/jSl76E3bt3Y9KkSfj85z+PG264wW3z5S9/GV1dXbj88svR1taGU089FWvXrkUyGXxwJQiCMGhsmx/0Iqy9UDYkJwmCIBAkJw0rkpMEQRAIFc5J6XQamzdvxvLly92YaZqYN29ewa7M3d3dyGQyaGpqKmrdxVD0QzcAmD17Nh5//HGk02m88MIL+Otf/4qOjg6MHTsWp512GsaPH59/ISUwatQo3Hvvvbj33nsHbGMYBm6++WbcfPPNFemDIAiCDxkgdNiRnCQIgqCQnDTsSE4SBEFQlJiT+jslJxIJJIiyUPPuu+8il8uxrsx/+ctfClrltddei0mTJmHevHmF97NISnroponH45gzZw7mzJlTrv5UFXa8Dmatd3DNOqec1x7V6LVRrjJW2nNHiagYsl55sM3IWHRZKi1V1XIMKgfU8lKzlpQRa6cwchKbfY77Sw2R7jUlneVRR9BU0iuX7exzto/KS/t0aTQpAdcOXDHS117lUNnW683bkHJs0BMJT3aSaJoIABg3facbG71rGwAgu8dzOe3Z7bhu0vLgHCmxdrdTyQWpw5pbpt3nHQddhmyRfWmazrw2cS+1Y05JNq141/LSnowX3NfjHMNOIhHWjpxUFtVQ4+z/6eM9B6F0kycX1mh5ZGONd7yalax0Qr133h0yyomNr6fH1dmOlOmVbpudewEARtorpUbMKSM3iVTUoOXo3PmmJUM1Xjsr6Xy2ajwpcSbqyJN60qQ0Xu0u6tjWoKSftGo5pWJ9ZDst7Z5EjoOex2RckWKkNLq/bBTwJNE0ps9frYjIxQYvLy120E8ZtLpyHOg5qTZiopY5ZzkpKX1PyLk06nks0jLs5SK3DEax4EMrqkwiB9RfWzqr61xM3eP0vKQhJzV1pS8muZ2JKvkMI4ExiFQmol04meufQfJtbIwjXaltJtKW/U6e0rIWwHNJ07IWAMj1elIa7ZymJUSAJ3OhkiuLkad4cicqL1WO1Yx7eiTpXVtjtc720ZwZTznbGRvl5SZXNpokElx130PvP9x7oTiRlyr5kh311mur42CTY8NKlVzpLHE65NxB3XOHDEGhzqQcaaaPum2Hn6DFntP5pKLccnzuq4zk1Fue6hMj+SkWyUnVw4Gck7S8VDs4s06JufDvoJbiEaUj6witr4/ctdFZzsDncLFyP8DbFjr8D3cN5iR6+l6WrjfTGxxaSG8nzRH6Nw/9HRStaXf+1u4lsYSKkdyl8piRqAnGaI6LafdpbygAUztR0+F4zAKvRVrmS3/fqt+8NvkdbKlhlmzye1l/tvt6ArEsyaPZnj4mRoZwUvst090TmJ4jEld9HOixsZhEwB1XffwLlULng/u+eNMGXj9Quly00Gl6eeWSl5aakyZPnuyL33jjjbjpppvK0ifKbbfdhsceewwbNmyoaMXvoB66CYIgHPRIVYEgCIJQLUhOEgRBEKqFEnPS9u3bfcYtXJUbAIwdOxaRSKQoV2bNnXfeidtuuw2/+c1vcMwxxxTexxKQUcQFQRAGg217CaWgfzJ+jiAIglAhJCcJgiAI1UKJOam/a/JAD93i8ThmzZrlc2W2LAvr168f0JUZAO644w587Wtfw9q1a3HiiSeWd5sZpNItBKsmhVydJxF05SmMZMXkZCw0pstv6c0N89RXz8NJMGjZr6WdZqikRpX2Gn2eI2iNklEma7xy41GWt5y+hLO+3py3HC2tTJNyWe3yRbufVSW57X3ednQpuWUy4u23GuWEVj/+fW4sOt2RwiZ62t1YbbcjL7Xa3/XW277HWW83cbHpUXKeLHEM1TLJGHHjUfvcpu2Uu4520VEN1baRUnBX6sjFvFm1jHIskUk2Kfe4GCn/1a6a9cTRdHTS6WsTkZeOSjjHvZ5IyGojzgrNXm9fmV3OPjDSXgm6kdMSZlLGrkrKIwlPQuST+riSIK+c1orXqGnePFbMmd6X9Y51OhOUIetqZSqBS6iy9TFW0LGUnk+s5MYITgt1gPPNy7nH6eU5QTsadCYqGjvnK6svqL0glEBd3EQqzshZaFph5vNcThk3OPKZ++0dNu9Ay9Fwb/U4iaj+/lK1g27HCSCoA6UrkadObIyjqb7uGVEqx3GudQaR0keyzlhL0UxQ7kKHL4ipWE1fUCrDDi0BwM6oOI1ZWl5a2FtgOhyF3nbt1A0AhhpSwCAxLbdlh61gYrSdHasJrMNinEptvf+jNKY+k3sXW33mJD0+ybGWnBJ5i2kHZcjecunylAwo0Cr/m2ZP6spNC18OPbfZ+UOmaSzm+100kpOEoSBiwIgYiESC91Gu3C7PLRYnJTWhXT3Dc06+6dyyB0Oh8j3dL+qQqSWJVAYbUcP6+OSPaoiCCBkyQA+pY5LfN3q6nuZMV0O5kJjrfMnEInGSN7htK1BeyuUuz8E1E2hnkSF6dCxHYnr4Bdoup2MZb3nsdOoYq/cvjaW1HNTrM+u6q51q6ZXeNeMOOvIOBu684vpS7LRClp13OXmGaCiYIchJy5Ytw0UXXYQTTzwRJ598Mu699150dXW5bqYXXnghDjnkEKxYsQIAcPvtt+OGG27AmjVrMHXqVLS2OsNd1dfXo76+fsD1DAZ56CYIgjAIbMsq+Aezbi8IgiAIlUBykiAIglAtDEVO+tSnPoV33nkHN9xwA1pbW3Hcccdh7dq1rrnCtm3bYJIHyd/85jeRTqfxf//v//Utp1LjxgHy0C2UXN1Y5FKN7v8t/faUvGUPqyrg8A0K7cbI21G1RINWK+kKNl9Mfc55MV0lZ5C37O5nZbIAADUR77An1Vv/FBl0OaMe5/dkvJO+R5km9JBKpy71xmAfeZOhjQUyTPUTHfi+Xg0AnUqMc2OpRueLMWqC92osmXOqDaJde9yYqSviOtvcmNWtqvvok3TGJABMBQQHVyWlB+tvINVqo/RA1qThqERE/fXapVS7hoS33ho7rbaHbFu7s23o2udtW5ezbb4BSfUFiVQf6IoFapSApBrwmhhbWOSzHgg7F/GOf1q9AfJVOiqzDO7cpiYS0UiwEkEff9qOixn6PGeqRvPKX7gyOXWMbV+1S8S3uEi6DJVuVpFvcIppKwiEGmRQg0xwAj39mWsbWzntfj+YN/UFGjOwlXN5qu4KJawqiC5XV9raJn1rH/P9BQBDVWzZ9PvHVqVnfdOcmGpn0XxrB+Z1P3PXsIHW128deWGqD3zHl8txzLWQO/6WroI2meVxZgh0efraGnK9Bcgg44GtGOBY01zCzEM6GhrhK9eCVW3cfRmbXvRG+Y4lqcDkjnEBY9pkuO93sUhOEoYA0zB8Jlf9Jha0jHyVOv0pZsD6YivdCl12vj5z6zW0UoaY1pk9SnnDmDVw6yvF1IGb152Wp5Kt0CqpsP0cVgXnfGbuIbQ5AWMulH/eoMkBV1XtM1Lgjpe734zAPFxlJzdvoQy6Gi1s2QV+DwecfyCnoGIZopy0ZMkSLFmyhJ22YcMG3//feuutktYxGOShmyAIwmCQHziCIAhCtSA5SRAEQagWJCcBkIdugiAIg8LO5WDnCk8QxbQVBEEQhGKQnCQIgiBUC5KTHOShWwj7M0C6xzvwWjJJFJYkRkpVlewgk6dUWZdtxkjJaFSVgsZJLK7koEkilalRMsW4TSSnauDnfIPr+2QPWmJCBpc21eDSsWSD18xQ28RsZ3uft+zdnX0AgHe7PClke7fTBzoIv97Ohlpvm7QZwcRRntTxkFFOv8bWTnRjTQ2HAgASmS6vz0pyym07lbtY2jiA7Eu9D+ggyLp/NVFv3ojqa5PtzavH4U+S8uBRaiDkOsOTiUT273TW8U6rG8u2bgMAZN7Z4cbS+9qcvx3etunybJMMrBpPObLQWGOjt44xzj6K1hD5qJKfWkpmCgC5Gm+eTiUR7iMDkqbVMaYV2d5A5+HnakJ9jllE4pzWpg/ewORG1hks1sj0eTFlbuE3vhj4wusbKFzLmMjA3lp66x/sWw0Ars6DaI9nOlIyllW4NEy3F4QSMHvaYEYHcTOST3pqDixN9JkSuJLDSKCdzUgTLSL0sxhJqu1OC3aZSlj1Zz61ckHf0PwqFAlM9q3XHHhp+frntuO6N4wUa2jha8ctjwva/f4Cg7rWRZiVcIY53rTgMB3IJ/3NhQ1pwMQsZnmUAuSj+TAlJwkjBCNisrLFYsij1AsS9OMC4JcdustmBrnnpIb88gZuV6hslQ7gXyjFyGcLodxmEuWmUGlloZQiwSx0nkh84JO10GUUKvcc7PeqXBhWmfohOQlAfiMnQRAEQRAEQRAEQRAEQRCKRCrdBEEQBoNlFTlWwYH5BkcQBEGoAiQnCYIgCNWC5CQA8tAtlLZ0DrGId5J0KgleN3H13K+klT3EkaZXlfNSeanlymKoq6dTZpogEkYtU6wnzpejk049dWONF6tXZdP1pNy1Pum4VvoKYPuUtC9HHU2JfI9xPLW1FJXIiWrijjyxJ0skHKr/vUQ2qmWlr+3y3FL/sdeRfHYTyal2mKESl4TavgmNntR1+rh69deTTE5tdOSvh6Q8Gero2kkAgPpGb+sjWsJItt3dRuLEpiVStDq4Lub8JxkNlhNHSXlwwlDSz952b71733G2cfff3Vhmx+sAgK5t/3Bj+7ftBgD07G5zY30djtySOvBElFw1ObrG61/zGABAahrZjFGjfdsDeLJh7VIK+M9f/bmXlKDrj7QK2pWSktrYZNSJ1UXJOaH2g9nj7Q/92erY662j3XFstbs7vL6mneNl9/V6Me1oSmVs2pU2RpwJtXNr0ttOU7m4GslaNxZRMVs5GUY6vfO0VGwr53dELKC9IJSC2dMBM0plb0VKUTgnKpORjeaTl+rrJ1mejhkRem1VMTJvREvBqRsm43KpcyWVpmopp+Vr55/mzKOm+XZVUJqaY5enhozIBWM0p2esYJ7XMbq8DL22qjiV2OYYuRMnweVcxLQE02TcoqlbuL6Wx8ix1sNacDHfMAIRBGLccAN6vTSn6y5QSYWeTvOtyczLrUN/NMg11HWUpTFXDkqG31BO7z4XeO1A64sNLC81GEdbH8V+H4HAd9LsObBy0t69e3HFFVfgZz/7GUzTxIIFC/CNb3wD9fX1A87T29uLq6++Go899hj6+vowf/58PPDAA5gwwXG4/9Of/oTbbrsNf/jDH/Duu+9i6tSp+MIXvoArr7yyYtshDAznuDnkFKhTNULkmz6JqroAcXJUk1zRXKdNZrmcQybnyMn1wT+vcu4k1xzPzZNx68zXF+Y6lQu5dnG7LN8hj7DDFwQdQd1pJKallbSd59bKO72GubT62umcmUe+qZdH27H9ZuSiYdLQqviuFAh3HpVKNeWk4UQeugmCIAwGu8ixCsow7o8gCIIgsFRRTlq4cCF27tyJdevWIZPJ4JJLLsHll1+ONWvWDDjP0qVL8cQTT+Dxxx9HQ0MDlixZgnPPPRdPP/00AGDz5s0YP348HnnkEUyePBnPPPMMLr/8ckQiESxZsqRi2yIIgiCUQBXlpOFEHroJgiAMAnmDIwiCIFQL1ZKTtmzZgrVr1+L555/HiSeeCAC4//778dGPfhR33nknJk2aFJinvb0dDz30ENasWYPTTjsNALB69WrMnDkTzz77LObMmYNLL73UN8/06dOxceNG/OhHP5KHboIgCFVGteSk4UYeuoXQ0ZtDjrgwtvc6ssxO4kjTpmLaoRMAOnuVDJW0S4c4yMSp82XSOSRN9Z7j4ugaR0Y3ptaLTVDTxxD3z5ztlFenEik35h5gzsULALjzmpFmaBlLhJGOUNJKatrZ6+2Prv3OPty/z3Ov7FVS0xzZLxG1wN013ja92ejID19o8qSVR0xwpK4zJnqOnJMbnOmHEslpKuHsj9qYJzlMqtJeKhHV2xYl5dUxQ+0Yy9sO7Yxq9nnuYmaXI5nM7truxvrefhMA0P6GJyXteNNxL93/D092uX+nIyPp6/DOMe12RF1ykqMd6WQDKfWNj3IkkxZxHXX7Sd0DGSlXjsiBeRmT85cea+1QWkPcoOoizrx6HwBApEvJRtt2ubHMHsexNbdvtxvLdjjHta/N25eZLkdWamWC2+Trn3JxjSa970OsTjnupoiUdFSj077WO0/sXnUM1TR0ey6xJWPlihyr4MBMJkLlMdJdQA+TSwZzThHptqmvHawrqXcNceWiRNLjTqeyUe0STeX8Wn5KXIUNzn3Yvf5Q+abzl5OIZklQf6Ru29phnMbSWedzH7Gn18MlUBl+n9KacjEqze9R1+8ekvvpZ+3gTSWl3L0BJznl3Dz1vQOdpoerqCE5RH+mMT2URYIMoVAbGziWJMNgJNRxj5OhBWJmMLfG3PsGr8/eooPbQ80Gdf4xyfF3h8GgUlI9fESOOLSrexfXvR1w72d8UlJ93On9kZ7uk5LmVCgYKwkzKIXTeVu7fQ+KEnNSR0eHL5xIJJBIJLg5CmLjxo1obGx0H7gBwLx582CaJjZt2oRPfOITgXk2b96MTCaDefPmubEZM2ZgypQp2LhxI+bMmcOuq729HU1NTSX3VSgeM2LklcuV4ibpzTs4rz/W0VT1h5ODWoy3oEm8qIt1PqXOobmMlo1agXY5MjwRJxvVvwtsZigDuhlpKziMkZ7Ox0BiYc7ghUEPdYQZRiDC/LbgYnEmb+hhEOj5RH8neXJQMj2m7yuC0lWKlguX4kCaT87av38cgznPuXO88HnDD7YZMWBaZZLDyu8kAOJeKgiCMDi0FXYx/wRBEAShEpSYkyZPnoyGhgb334oVKwbVjdbWVowfP94Xi0ajaGpqQmtr64DzxONxNDY2+uITJkwYcJ5nnnkG3//+93H55ZcPqr+CIAhCBZDfSQCk0k0QBGFQ2Lkc7Fzhb2WKaSsIgiAIxVBqTtq+fTtSKU8pMVCV23XXXYfbb789dJlbtmwpeP2D4eWXX8bZZ5+NG2+8EaeffvqQrFMQBEEoHPmd5CAP3ULoyVjIGt6B17LSNiKd3NvpSBvaiLy0vcf53EOkf1pqmk82UqvKZfd0eTKb8aOcG58uUoLcxzik5qy4+ustO5VwpHVxItux+7wbKSPruGVSyannTEdcW1TpMa2C1eW+VHai5SvxaLCIkpZmp5Xra3q/J020lHSEOlV2vNsAANg3ypOIvqOcUV/Z4Uk1j2h2tvOICZ4j1qGM5LRJSVdHUddX7Q5q9bkxs6fN+dvd5sbsdkceSaWkmVbns5aPAkDHW87ntr97/ev4hyOj3N/uraNdHU9a4avLqpuIBDSRIpIr3b+4sx0RIrHUDp6Ieturj6Xtc4ALyn9MxiEuTsqha9TxTNqeFNbs3Of8JfJSe6+z7dl3drixrJKX9u7x9kfvHkfGku7wpDS5XmfZFlMuTR2E9DZHk9525pQk1SIXavbnQtSZ14g6+8/u6eZaFYdYYQtDhNXTBdsoTF5a6JgY9HrrXop8bsFKehEj1xr1/UEkRtppeSmZV33fqJSUGyDXhvpeGkQiqJfNKCCoVEbLSn2yUfU5TS6uWkraTfKo/txJc7WSAdFYp8pXdBiJ/WoYCT0N8IZVoENLdPd60/VwCtk0ybfaQZX032buE1zXNTN4LY8SW2k9TENt0ru90/cV9UnveGmH9FGkXYMaroK6p9fHnc+1RPvpxagMNSg5zUW06zUjUSGnCed05zqVEtmoPs/9buxaXkqGglDTqSu7O69PXurMYxNHdyujJazhUtJSvl8uTMxW3zOrpxzy0tJyUiqV8j10G4irr74aF198cWib6dOno7m5Gbt37/bFs9ks9u7di+bmZna+5uZmpNNptLW1+arddu3aFZjn1Vdfxdy5c3H55Zfj+uuvz9tvYegoVKo3WAlp6ctm7jPp1EHoLDmnUs6VVMtKczQfqHY0pqWkaSbHcfJS2k5P98dCnLzzb96A0P3Hy0uD+UBPpzFOXho3nf7FidwxRjYgonKgzRzzCE02agup5NRSsUiBDrgcnJMqpVLneb7lhslPaT/zSU0HjfxOAiAP3QRBEAaHjFUgCIIgVAsVzknjxo3DuHHj8rZraWlBW1sbNm/ejFmzZgEAnnzySViWhdmzZ7PzzJo1C7FYDOvXr8eCBQsAAFu3bsW2bdvQ0tLitnvllVdw2mmn4aKLLsItt9xSVP8FQRCEIUR+JwGQh26hmMzb12LoI9VK2mAgSwexV28e6Jtr3Y7Oq6vj0kws4xtYUw0obXlVBemc8xS8Pu7F6urGup8jOVXpRgccVtCBsy3oQY099IDIDeSt+Jg6Zz0TGzzjgz2qGrCPVAhqIwXyHhqZXqeCLdfnGS707HOqpLoS3vI633Vu9toavUFz96nqt7+O8yri3jvJeWP7T4d4b24PH+0MtD9ttLe8pHozT9+e6wq33I6/ev3b5nxu+6tX6db++tvO+t9oc2Md/3CquN7t9Jb3Tp8aYJt5m1BD3jY0qYqEWCJopFA73qviqx3X6LQbPdqNaeMA21d9oqpUyAWMGndEjOBbkpjqT4y88zL7nCo1s8erVjO7nUq33B5vnBVd4Zbd+44b69nttOtr63Rj2kAh2+vtI0tVh9BKN13hZvsGTFV9TpY+wHM5sS3LP8B2Ae0FoSSyWd/NiFttw5xThVbi2Ahe+w2m0o2uw1bVQGz1WzT8e6mvgL7sqs0aaHW1Gbw90fPavjf0zl+SHt0Kt15ifLBfVa5RIyS30o1Uq+3rCZoj6Ur29p50INZJ2mXUdT5Dlpcmn7OqPxbN5bqygcRsxuBGV7VFosGqNpPEoqoirZPk5Zj6TPNKvapqayRmTA3d8WBMfR5NDI70vUZfLliNMcqmx031jxxt16iHbCL3jl1X1/tME7QZAq1gU/cuXPWb775GVfXTqjabqWqzs0xsUKYJzPXeJNukv2t6HdlwI6FCqJacNHPmTJxxxhm47LLLsGrVKmQyGSxZsgTnn3++61y6Y8cOzJ07Fw8//DBOPvlkNDQ0YNGiRVi2bBmampqQSqVwxRVXoKWlxTVRePnll3Haaadh/vz5WLZsmTvWWyQSKehhoDDyyGfYEAZXtUYrhLhqIL0+aq6gTRVyBVYFceulMc80geQDVeGWId9JroLNi3nL1tVq+SriMm6lW7jhQrH4DRLsQCxmBNfBVUHrvsTzFofRpK/WS4rqrZz6bWeSijh9XGmVHFeJzaB/q9NzJ+y8zFeFVu5zupqplpw03IiRgiAIwgHE3r17sXDhQqRSKTQ2NmLRokXo7OwMnae3txeLFy/GmDFjUF9fjwULFmDXrl2+Ntu2bcOZZ56J2tpajB8/Htdccw2y5Afij370I3z4wx/GuHHjkEql0NLSgl/96lcV2UZBEASh+nn00UcxY8YMzJ07Fx/96Edx6qmn4sEHH3SnZzIZbN26Fd3d3lAP99xzD8466ywsWLAAH/jAB9Dc3Iwf/ehH7vQf/vCHeOedd/DII49g4sSJ7r+TTjppSLdNEARBEApFKt0EQRAGQ5WVTS9cuBA7d+7EunXrkMlkcMkll+Dyyy/HmjVrBpxn6dKleOKJJ/D444+joaEBS5Yswbnnnounn34aAJDL5XDmmWeiubkZzzzzDHbu3IkLL7wQsVgMt956KwDgd7/7HT784Q/j1ltvRWNjI1avXo2Pfexj2LRpE44//viKbrMgCIKgqKKc1NTUFJp7pk6dGqjsTCaTWLlyJVauXMnOc9NNN+Gmm24qZzcFQRCESlFFOWk4kYduISSiBqJkoOCMloHQklxdumsFY5SIqc0VvBNJy0VtZl4qJW3rpiJMP3Rduhy5l8w7VklD+kgpak+WGB8oSVCSyIS4QY31NtNB+HVZMJWdjE870qK+cV4f9KDSdJu0vMbKjSExZzupvDTd7Ug17f373Fhf+7vOduzzpJU9bc4Au71dnj19X082sF5t/kD73JTU8g4i6+jcAwDIvv2WG9r7ypsAgHdf9uSle15z+rVzl1dJ1NrrbO8+MmC3LvGm1cQppc+tJ9KgsUoGlDrUk8Q2HuaYSYyaMsGN1U92tjcyZqIbMxucfWnFkt5KDC0v9bYtQWVbatPpdEPtf6PPG9DZ7HXkoHq/AEB2nyMhze3xTCQy+5z9QU0TtKw0vZ+YJiipF1fWHyFSUjPm9DVa452fsVpHGhyt87Yzpj7HU568OFLnmGuYtaO85dU40w39txzXdbvIZGJXLpls2bIFa9euxfPPP48TTzwRAHD//ffjox/9KO68805X0kNpb2/HQw89hDVr1uC0004DAKxevRozZ87Es88+izlz5uDXv/41Xn31VfzmN7/BhAkTcNxxx+FrX/sarr32Wtx0002Ix+O49957fcu99dZb8dOf/hQ/+9nP5KFbuTD9xelamubLOCoP+AwSynEDwy3DJ3V11ucbqJ65/rhSUiph1dPptck1XGBMeZgBoLm8THOhNkigRgpaVqolpYAnK93TlSYx5/MeMmRAr5pH5xnnsxPTMlPnM5WXOvFs2jPU0QP325xsmKCPJz2upsrb0bgn6dX3LJmEt4xYwulDguQ9LePnhq0oRWKkh+OIETmlHqogZwZlTJadR1qjjz813tDnCYm5klMraLhAc7orV6H7louVCd5AwQyZFvG1GRRVlJMEIQx9D5hPipdPTmcyssFC1lvM+izmt1014UlEuViw75yRwkDTw4gwslE9gAT9zeNNJ2Y7TJ8HobqsKPr4U78FfZ5wUlF6jnHnN3eOFXsec+Q7t4cFyUkARF4qCIIwKPRYBcX8A4COjg7fv76+vjxrys/GjRvR2NjoPnADgHnz5sE0TWzatImdZ/PmzchkMpg3b54bmzFjBqZMmYKNGze6yz366KMxYYL34Hf+/Pno6OjAK6+8wi7Xsizs378fTU1N7HRBEASh/JSakwRBEASh3EhOcpCHboIgCINBW2EX/M9JJpMnT0ZDQ4P7b8WKFYPuSmtrK8aPH++LRaNRNDU1uYNNc/PE43E0Njb64hMmTHDnaW1t9T1w09P1NI4777wTnZ2d+OQnP1nKpgiCIAilUGJOEgRBEISyIzkJgMhLQ6mLR2AkgrvI9Dm0OJ/jRCJYo+Rx1P1Mx6i8tEdJ7DinUg7dHgDaOMcXNS8tge7L5tRfT55HpZXpmHIhy3rLS6htodWyenV0tUnVjlbBTqwPOtdxZct/CUQAy3IkkzniTJZL9wIAMhlPvpnucqSLuQxxvswGJbja0e3vdd72HjbGcS/tbKol/XP+Gjlv/1pdjpyy7929bqxzhyOnbPu7J53UstJt3cT9LqOdSr3jqqW4NaTEuEG5zDUnvXNs9PRGAEDTEZ50tuHwQ3x/ASA6aRoAIDLOi1lJR0ZpxzxnVi3lomW9JnV009KctCfpNTLOgMaupBSA1e7ISnP7druxnIpl2trcWN8+Z570fm9Q5Fwm6MamXUlNYjWky6+1pBQAosqhNJIk8lJGShob5RxPs86T5Zr1jcGYcnhFjYply/DeocSxCrZv345UyutbIjGw6+N1112H22+/PXSxW7ZsKbwPFWbNmjX46le/ip/+9KeBh4BC6RiJpCuNBuCddzlGMkfnCzk/w6SMPjhHUxIzdIxxROZXXF6pDlVUaFdv6gCnh4egjt+9Kkbzsh4OgYulSUw7kWYz+WLks5KV0iEUdO7ichiHGfWuhbxs2LmOGCRZ68+RqNdeu6CmI8HtjJN23TEdC97jJKh7ut6/vn3uzBOjpwRzahVNoeeOzw2XkTWbzLnvTqMaouA5zX5HKGHyUqpP6tfOyBSRSwZCxs8RhhmbdQwdWDfISeLySU4p5ZKVDrb9cKJ3L93N3mcSVNdP6hzKyTx5X2luvUEpqY6ZedsF+1zt5JONhs0zWBl1WF8Kn2cYZNKSkwDIQzdBEIRBYedysHOFJwjdNpVK+R66hXH11Vfj4osvDm0zffp0NDc3Y/fu3b54NpvF3r170dzczM7X3NyMdDqNtrY2X7Xbrl273Hmam5vx3HPP+ebT7qb9l/vYY4/hc5/7HB5//HGfZFUQBEGoPKXmJEEQBEEoN5KTHOShmyAIwmCwrOJKoUsomx43bhzGjRuXt11LSwva2tqwefNmzJo1CwDw5JNPwrIszJ49m51n1qxZiMViWL9+PRYsWAAA2Lp1K7Zt24aWlhZ3ubfccgt2797tVq6tW7cOqVQKRx55pLus733ve7j00kvx2GOP4cwzzyx6OwVBEIRBMgQ5SRAEQRAKQnISgBH40G3Hjh249tpr8ctf/hLd3d14z3veg9WrV7sDh9u2jRtvvBHf+ta30NbWhlNOOQXf/OY3ccQRRxS9rkTUQCLhlf5rJ64EKQ/VEssa4nJaqz431Hqyxs7erO8vAOxXn9OkPFQ7ifndUJ1YhHG1ypJ2Wg7TEfXWYaryYZNxJFVbBQCwbbpsZ31xUu8bUcuhS4lqySSRncA1lAxK5ThXVE5mapqHkc/Ovuxtf8eNZXq7AvNoqNxGO6RSeY/evxmyz91dSBzRbO2kmvGkmFl1vHJpIgdmqnT1bqOupHXqnBlH5MqT1fmhJaWAJyulUtLGI6YA8CSlgCcrteu9QertuCM7s4n8iHUPpE6lGUfuZKY9+a52LdWSUsCTklqdbV6sy5kn2+MZAHCDX5r6vE1654R2IKWl1lpWasa9faSlpLE6TzIbrXViJpHZGbVOxZhZR5xKmZi7j2IJ9f8DS8ozc+ZMnHHGGbjsssuwatUqZDIZLFmyBOeff77rXLpjxw7MnTsXDz/8ME4++WQ0NDRg0aJFWLZsGZqampBKpXDFFVegpaUFc+bMAQCcfvrpOPLII/HZz34Wd9xxB1pbW3H99ddj8eLFrix2zZo1uOiii/CNb3wDs2fPdsd6q6mpQUNDQ8W2ebgZypxkJOpgJOu9gLpmGTZzg+Jzwxx4esGqDk5KSqVxritpNDCPTSWn+jPNB5wkVcfKrISwyixrpTJOnW85aafz2dkfJnELLxYqL9XLMXzHJtgHrl/loNz70kfYOcGcO7ZPShp09TX6TQMAQ7m3+74fnNw6rJ8DyEzZ70i/Pgc+AzAyGDxVlJOEoWeocpKVs2GZ/DWAd3Ms7HqhZaiVlHZyfRmMYyQH3Qe6cIfGbEttJ7kPNiLKIZO4O+tZ4qwy0etzWi2Pa8c7mpK+qr8xctisAu8OuG6FSU5pTEtc6e9D3X8qf+Xa0c/6nPH9plAx7lzkYoOBnjvc/hiuc7pQBjr3y/adkJwEYIQZKezbtw+nnHIKYrEYfvnLX+LVV1/FXXfdhdGjvfGv7rjjDtx3331YtWoVNm3ahLq6OsyfPx+9vb3D2HNBEA5UbCtX9L9K8uijj2LGjBmYO3cuPvrRj+LUU0/Fgw8+6E7PZDLYunUruru9cffuuecenHXWWViwYAE+8IEPoLm5GT/60Y/c6ZFIBD//+c8RiUTQ0tKCz3zmM7jwwgtx8803u20efPBBZLNZLF68GBMnTnT/XXnllRXd3uFEcpIgCNVGteUkYeiQnCQIQrUxVDlp5cqVmDp1KpLJJGbPnh0YFofyyiuvYMGCBZg6dSoMw8C9995b4tYVzoiqdLv99tsxefJkrF692o1Nm+ZV/9i2jXvvvRfXX389zj77bADAww8/jAkTJuAnP/kJzj///CHvsyAIBzbF2ltX2gq7qakJa9asGXD61KlTYferUEkmk1i5ciVWrlw54HyHHXYYfvGLXww4fcOGDUX3daQjOUkQhGqj2nKSMHRIThIEodoYipz0/e9/H8uWLcOqVaswe/Zs3HvvvZg/fz62bt3KGrp1d3dj+vTpOO+887B06dKi11cKI+qh2//8z/9g/vz5OO+88/DUU0/hkEMOwZe+9CVcdtllAIA333wTra2tvsG7GxoaMHv2bGzcuHHAZNLX14e+Pk8i19HRAQBImCYSpATVUDKACCl51fLS2pj3VHaUcvbqJrLG7oQjY+iu9WK92aBLmv6czuNoqvvAOYrRmIbKQDI+d1NnPVGyTVHLvw4AMNQstCLXcySjZbpK6kHUpZYdD/QhzNGUSmCiMUdqGqv15GmZbsc91CJPwqNxR36YbBjjxuI1zuldS9xa9T6K0RJkT3fixgwl4YkSSWR8lCNrTKQ8ec/YfdHA9jTktPurtx3aqbQp5S0vdagje6TyUs6pNDLBkZdGxpAB6+ucebRcEgDsmNM/mzqCatkZkZ9Rl1Yjpxzzsp6mxVaOsXaWupwG3zpoOWi0Jiglpg6kYa5UPqfSmqBTqRl3tok6NprJWiZWF4gZCaedHfX65+4jFbNjQWfVYrEtu6iScTvEoVgYWQx1TrKSo2AlPOdlMLJSXmqqrwPMuce1z4O7FJ9MTltcezFXakokpzrmk6G6ssHii+/1VZaagplGUIqir/kxkl9iqq86LwBeDqaxdNb5nCZO0/0fXPv6RPoSIR3LqqEncsRN3FLXDuo6HuYoa1LZqFp2hOT8qFpHlGiMYmpYgzgZ3iCmhs6oIdtUq7aZbrt2M6cxvd98+zISzHvucaCnSWDL8sBIMX3njjoOdLk2M6yCbUV87VWw2N7w/XJjRDrGDAdih0pmnb9WZvCyJ8lJBy+VyEkD5aMwBiNLG2oJFtfXwcgA9XXZAudySe/FtZuxt/5IPChHj+thh9jhbKjc0g6009Nzvt9fwWuMnj4YNSEnJeWmc1JSf6wwGSrNe3q/UYdcw3WLpjJUFWPyaClwrqT6fPJJiYfAMbTc8uhyMhQ56e6778Zll12GSy65BACwatUqPPHEE/jOd76D6667LtD+pJNOwkknnQQA7PRKMKLkpW+88YY77sCvfvUrfPGLX8S//Mu/4L/+678AwB1DaMKECb75JkyY4E7jWLFiBRoaGtx/kydPrtxGCIIgCAcEkpMEQRCEaqESOUnykSAI1Uw6ncbmzZt9LxNM08S8efOwcePGYeyZnxFV6WZZFk488UTceuutAIDjjz8eL7/8MlatWoWLLrqo5OUuX74cy5Ytc//f0dGByZMnI2YCcfL0OqIGDI2RgUO12UAtMVLIqKqCXlKtpivKaPWbrjjj2vkq03Jhbzm8z9ybfG3wQPtHjSC0OQQ3vnK+B816Op1XL5qaMNSpNxCjk17FmbtNzeQNj1rQ38mb9z31TkVAT5M3kH6mzykTzZH9pt/qJ2u9CoL6Rqeqafo4b+DxCaOcCqd68jZJd9WOeOuNqMH342M8o4JRU5ybFCvjvT1PNDjLS+3zxsLI9jjTTbKOeJ2z7bVjve2on+hU79Ud4rlS6nVEx5FKN129V5NyY3ZUVWwx1SJspQuFm+6r8nP6asSTXqxOmRLQQajVdLPOq4iLZVTlHFcaTN78G3ogcWZ5vvXGnL7oSjYAMBLBdtCVaxHvHLNUtSKt/HMHduemlYids4p7g1PBgVSFoWWoc5KVqIeVqAu0p99594pKv+cFVrix145Cq4GYAe25ge/da1aEq3QLJiKD+UxfTOsBpyOkm/Goysu2d33Rb/Itu7DbHlrprd+ux6Pe8trUW/aehJfT+/qc6dm0dx2iRj76M81dumKO7maLSb6eGYIXM3QlGVfpRnK+zo8JUummK9caac5U0xuJCZQ2hEqR/K2r+evJ8mpjuuqf5L0oU52gKxaY6je2xosz3CDnjs2109WUtMKbqfoOhalKC61UC8SN4paj8qOVLqx7YUhOOnipRE4aKB/ZOQu2WZ5zh6sUGglwVW3uNFLXoit3LBLjbj/tCLMc/TuNmLh5VW3kN5S65NBKtrhpB2KafNVv3rRgLJ8PAVfVxs1bqLmCWzVNKrjpOaPjhsnEWHMFuhzD97f/9FIZrvO4nNfzci2r1JzUv6o2kUi45m2Ud999F7lcjn2Z8Je/cJaNw8OIqnSbOHEijjzySF9s5syZ2LZtGwCgudmR3+3atcvXZteuXe40jkQigVQq5fsnCIJQCHqsgmL+CQcGkpMEQag2JCcdvFQiJ0k+EgRhMJSakyZPnuyrsl2xYsUwb8ngGFEP3U455RRs3brVF/vrX/+Kww5zxv2aNm0ampubsX79end6R0cHNm3ahJaWliHtqyAIBwf6DU4x/4QDA8lJgiBUG5KTDl4kJwmCUG2UmpO2b9+O9vZ299/y5cvZ5Y8dOxaRSKToF9xDzYiSly5duhTvf//7ceutt+KTn/wknnvuOTz44IN48MEHAThSi6uuugr/8R//gSOOOALTpk3DV77yFUyaNAnnnHNO0eszDIOYBQARJX6g8s24LhkmezJnOdOphNEdpJJR/OR8UlItgaHGB8EbIu4eSVfDmnTwaD3gMSmbpSW7Wi1DtynCaE29Pgan0QGlw/o1KkEluLFAu6TqzHhiNrBnnKO1aO/xJIw96axaF5H5KnlNQ41Xr62XM6nBkyFObnDknY1EwupuL5Ud1TuSzugkz/WpUf2tGeOZOjTscUwd0vu73ZiVdvpqRIi8R5kDxFPeIOiJRiVhHd3oxiKjHampSQwhTCV1tc3gAKv+gaJDBiPP8YYBrtQrRsp11flhEgMCc5TTR5+5QtY5NnaODPqdR1bqroKTlypZq2/Qdb0tpJ2WAdvM4Oy+bddSUl+s3z4qYeD2/oiU5+BlqHOSnaiHTWTmWirnEzEUKyXNK00NOV/zVcgw3333O8d9zylqvaZBhgJQzWj20Jtr+y6PyqgFjDzFlx+dz1EiJdHmSFQ6qSWWnb3edbSpTg19kAkaIekcBQDdxChJGyTlfKYJKufTGHMMtZSUGikYrlST3JNocydy/1ETj6q/JKZkoKNILqxXn/2y0YivPeDJS6mUtF6tI0mkrnqYCTrchN7n3D0HvXeBHTSTcA0SzOCtK2dcQM9PVujDzaPhZNLMdPbcHXAeRpPVr52dGLwkSXLSwctQ5iTLtlkpfD5M5jdGJc5Bo0CJYLHrNvIMkG8w2ssI1ED/RI5rM+3snB5GgEpTVS6Me+uyVF6JkPXHmN+PGr+UNDCZNbcbDIUaKWjotd9wJaAkf6ucYzJGCTRO971rrsCYJvjNFQbWyoZNo4QZxpUyb7kp5XsK8OdSKZSakwqtrI3H45g1axbWr1/vXscsy8L69euxZMmSkvpcCUbUQ7eTTjoJP/7xj7F8+XLcfPPNmDZtGu69914sXLjQbfPlL38ZXV1duPzyy9HW1oZTTz0Va9euRTKZDFmyIAhCadi5HKxc8AdiWHvhwEBykiAI1YbkpIMXyUmCIFQbQ5GTli1bhosuuggnnngiTj75ZNx7773o6upy3UwvvPBCHHLIIa5ENZ1O49VXX3U/79ixAy+99BLq6+vxnve8p+j1F8KIeugGAGeddRbOOuusAacbhoGbb74ZN9988xD2ShCEgxXbLm5MHLvQgbyFEYHkJEEQqgnJSQc3kpMEQagmhiInfepTn8I777yDG264Aa2trTjuuOOwdu1a11xh27ZtMEl15Ntvv43jjz/e/f+dd96JO++8Ex/84AexYcOGotdfCCPuodtQYhpAlJal8tZaRS0zX4Wnnsy1o5ITy40Vv45S0FWhOQQlMJavnXbKAWnn/KUSmFFKihIjXwAtT5k4ypM1apfTDNkorkxWy4OotEXLexsSnhipPqGkQ9TZTfXLhidNtWobnT5P8p52R0Y7rqmxKfvcWG3XfmfetOdeqmWXPpTU0ZVQAoBy0NRunIDn0klj0I6c9GDnnHX43AYt9WbAb28X7AvTL9v0XFXtWM1ArXnyubP1l3QONG+I1HNACU+RBNwZGZlSsYiURxgqehFFnKTtUHUcE/NJODilm6vVLND1kV6TQm6SfO6qBTpAGq68lLhtM0nYdTQlk/Q1PUqkPHEl96c5QjuH18eJA2ku6DSu2/X5nMad6b3k+6zlpWnSjn528yPJYfpztsDEHWVkmREmFqcyT/WZykuTKmcmiCNrIhrMo1pCSl3PdYyTkpKQ6/5Oh+mIMn3Wx9Uk9xesk66WdNKYsgDMe471W4bzeWC5J+fCazPt6VeAk+LkO6r9D3tvGW7LJScJ1UypUrf+cDJVSrnPa70+2n9XCskMkZ7P0VQpTn3yR3e4AfIjSm8HlbJa6hrMPcjwz8tck5j9Um6nTZORZXJyS05K6k7LIx/lXEk5KSm3vnxOpZysNN/51p9ynX/l+r4MJ0OVk5YsWTKgnLT/g7SpU6eyQ3lUEnnoJgiCMAjkB44gCIJQLUhOEgRBEKoFyUkO8tBNEARhENiWXVzZ9AHw1koQBEGoTiQnCYIgCNWC5CQHeegWQixi+OQTWvpAHSNdSR+V4+jpvnZWcN4CXea8BQdlEdTBEcrVEYyrox3xZI0WcYPLMNKWjCuB8RaddWWjQadSGtOL4TaNOslpeQp1PxujHOJoBa9Wc1C3G5OJua44ZikxtS8Nso9qRzt/k55ritGgjt147xia2hXU8qRI7PFXx9XIMcefk3Ix0HPHUO54VAJj6M/ENdU9P+g5Qc4Fd3o0TqbHA+30OZNhZFG0Kp136dWOSsxGkRgnCNKOfbT6W3/kjquR55ww1HHS+1I7oQ4GK2fBKuKtTDFtBYHSm7UQy3KSlXBc50uDcVqjy3G/RyTvacdIg7YzArEwaapvfI6wcn6fXDXnWwYARFRfqOTUVjnEJ9lUH7OW10E9PePLa6aKRUhMtwte63rJvtdO49Rd3IvRnBhcjpXHSa5Q9DWOyoY5J1DXMdTnIhp0Ntf3O5z0M5o3hsC8rpSUnCd6uuHLmYyEOew84YY0oO7eBUpE9Sro8eCG+LCZ48b1zjdPSP/DMkAv8/0uFslJwpCQs2EzOaUYCnWH5MgnuytWDlgo3HK5b1CE3oszF3r9vTNynIupHWjnm85su5aI5qsS4vrCUajklJOGcoS7hAalor7pzD6nslBu2Z50tTD5qG/ZFTp3OCopHy30WA9ImWTHkpMcyjNQkiAIgiAIgiAIgiAIgiAILlLpJgiCMAhkrAJBEAShWpCcJAiCIFQLkpMc5KFbCHE7i0im2/2/oR0jM70klnH+Zql7ZcbXHvDcLe0+r52tXC5t1R6AJ1Ok2mft4ELkE4b6bMY9l0vteGkkar11xB0nSivmxcxEnfs5Enc+Z4jMTle6ZonUQ8tl0qTU1JXh5Ck/jUUGlqckol5Mu58lSdmvdlMzs33edurPxCXUJ9vsByfB1RJKALCjjlsqld2mlegqA09imVNl9L5KcOYbpCuZqdOe3rYYlWNlepy/aXKOqW0zyXnHnk/0nOmHzyFVS0VjniMsuP1BHEszhhPryXrHtSfr7N8+EtOufb1Er+W6/JELZpikilZ4azkUJ4GiMm99TnDnU5zMG2VinizK2S8ZTT2RawAAU6pJREFU0zsPSkWSiTBU9OVsxLPh11vOkNFkxHCe5DQ4L23vygHp8tS10CfddtsTmZ+tpKlUaq+FOIzzqU9eHya19/0nKDmN6c9UShhT1zrSP92FHCMB9cnmmZjFzBsmV6TzUAZjnsUeay0R9sWCcuAIc/yLHZLBJy92pfv0fqZIN1wOKiV2jyvjQErb6WE1SAf1MbRZua+3OLvfNIB3i/eG0uAPILd1hRzrvjLIeSQnCSOFMPnbYKSngCfbK5dUkHPf1N+dvOvgnLdDti+fLJCVnBZ47Ri05LBECj2erHMos+8LXfZgjn/YMR8s5ZCVDtexLBbJSQ7y0E0QBGEQ2LZV3AChhf7YFARBEIQikZwkCIIgVAuSkxzkoVsIZk8bIiBVSKoiySBVV3bPfgCA1bXfjVk9Xc603i6vnfqspwFArtepXLIyXhWAfrpr5bxBhjWRuFfBFEk6FTqRhFfBZNQ5g/6b9Y1eu4Yxzt9Uk9c/UnVgqbfDEWIYoN/10gfoWbfSLVjVxFW6+aqV1GCi9IWBrnCrj3nB2oh6K9Xb5sbMjv0q5u1fu7fT+ctUDRq0ykJVfEXqvG2zVZWflRjlxqyaRmc7TK8vXRmnL92kiqtHbW9n2tt/ettptQNXneUZR3j7pU5Vn9XXeVWI0bSzbfRyY1pODPSU0FWSGabiLeadJ0ZczUQrAyLkfNN/SfWbrmbrTHsr7FT7oa3Hm3dfr7Pu9l4vpvdNT8abt0ctJ80MEO2rntCVaWS/1cSDhhucCYf+XB/3YnXqM610S6qTUMc604O/sMsbHGGoyORsX7UxV+mk4V7u8qYJJOYu1wta6ipB3/e631vyplbHaDUP2z2bMyRSn2lFVC4Y48xn3L4zMZsZcJ+rkopx1VSmyc/TP2Yy8w60Po6wg5iPUFOK4P5gKwl9MfWXXqO0CRQ7b7BaccD16WZh+8hXOqeMD0gVvmvwwZhFcSebr3vqL2e4wVW1sWZAzLKLMVfg6H8I8ykHCkFyknAgQKt4Blv1VghcVVOh8xRqJkCJ5G8CoHBDgzCq6Tteyn7mKGWfF0rYPs/X/6HY1yOlwk0jOclBHroJgiAMAkkmgiAIQrUgOUkQBEGoFiQnOchDN0EQhEFgWRasIsqmi2krCIIgCMUgOUkQBEGoFiQnOchDtxDMzj0w0mQg5q4OAEB2f5sX63ZiVF6a6XBima4eN5bucKSpWlIKAFn1OddL5KrM0123fDnmHa5YnTPwfTzlSRMTjU4f4mO89brGDEQCY0SJJFWZQhhxz1xBD7pMZRNaIkGlD/qzxUhcIkRCogddjhO9U42SEGpJKQBEuvY46+/a68bs9t3Ouva94/Wls82Z1ke30wpsp1njbJOpJLYAEBkzEQBgUDMBJa2lAyJrI4COPk8mubvLOU77ejxJZ7eSUdJKX13xnIh6xeMNSWd9Y2s96WdTTSwwb0OiHgAQJdIrW33Wph3ORqllW8TAQ7enilPdLjbAAOXqOFlEm6MlxGmii9nf5/Th3W7v/N2jPu/a752/ezqdWDvZR51KhtpH5KU5RnOj5Wm1RCJaE3f2Ww2RkjaqfVif9I7h6FpHbj2KzFufcKY3JLx29e7ynO3u7AvKuItF3uAIQ0XOtn1S9jBxhW0zAzeTkK3EcAaV4KkGESKU08uxqPKPMULhOxGUMLqy0hxjhEOucW47ci1021ne99aVMPrkqsHvNTueCNOOxSxUCHSAMIj9YpiM9Ia2c00OzMB0KiV1JaQ5avwTU+3I+aT+2r6TW003wo+bTkOcbNRmjH84KanPhIFR/Fis6HTgeXKDcdbQy5ScJBwADFZSWugA+mFywUIljPn6OhhJZXQIpLUjkcHIbvNd8wo9Wlwf9LHOuw51fpZiqKDPt5EiM5Wc5FAeYbUgCMJBipNMckX8OzCTiSAIgjD8VFNO2rt3LxYuXIhUKoXGxkYsWrQInZ2dofP09vZi8eLFGDNmDOrr67FgwQLs2rWLbbtnzx4ceuihMAwDbW1tFdgCQRAEYTBUU04aTuShmyAIwiCwLavof4IgCIJQCaopJy1cuBCvvPIK1q1bh5///Of43e9+h8svvzx0nqVLl+JnP/sZHn/8cTz11FN4++23ce6557JtFy1ahGOOOaYSXRcEQRDKQDXlpOFE5KUhWO/+A1kQp08la8wReWlGyUbT+z1X0jQTy3Q5MsAskd1lletjLo+DYiTuPBuNEjldIqXcK8nTYC3r0M6mgCextNOeDNGkMkU76ExmKE8d0+eqZgdiulo6QkROenqCOFBqp9Ia4lRapz6bPZ6U1Oxtd9akJKUAkNvT6vzd58WyjHzX7RNxeI2NUttMpC1mrSMlNeoa3Zjedlrhq3drN3HhbFcSy7293v5r73Y+c86cVP7Yl1VSUk5WSfep+pgi7qrIBWVWphWUWdmM4y0ri/K59yl5KSMlzpLFaada6kraofaH3gcAsLfLOS/3dHqS0041PUvmDSsLp+X8USUrjVPZqNqvjbXeed6gpLqNRL7boD43Jr1YSklNR6m/XZ2exK1UbKvIsukDNJkIQw+nRNOXEyprM0OFqMF5OegbOs/51JvBcNsR+SsnjVeyUiNL5aUZ3zRnekZN82J2xrmu0KEFbNVO/3U+M+7OOka/f/r6Sa+jejqVWHJyVe56m++7XahsczCESWEZ6acRYdr75KDOZ59sVE8n7dzpUe+6bCgnbYPGlKu4dhcHACPhDJdhxryhL+xIPNCOkyvrs407dU0i6dJz0HPWVDpp+j3ijpA7SxFKHk5WWgblaEFUS07asmUL1q5di+effx4nnngiAOD+++/HRz/6Udx5552YNGlSYJ729nY89NBDWLNmDU477TQAwOrVqzFz5kw8++yzmDNnjtv2m9/8Jtra2nDDDTfgl7/8ZUW2QSg/lXQiLYekFOBlpWH95pbHLiNP/8yQfg1mv5XLMbQcDKaKicopI7HgdCvPsm39A4fkPf73yMDLoX3QxzhMZurMM/Dy6DlbrNS00HNiuGWo1ZKThpvq+RYKgiCMRNRYBYX+wwFaNi0IgiBUAVWSkzZu3IjGxkb3gRsAzJs3D6ZpYtOmTew8mzdvRiaTwbx589zYjBkzMGXKFGzcuNGNvfrqq7j55pvx8MMPw+TGERQEQRCqgyrJScONVLoJgiAIgiAIwkFMh1IRaBKJBBKJxACt89Pa2orx48f7YtFoFE1NTWhtbR1wnng8jsbGRl98woQJ7jx9fX244IIL8PWvfx1TpkzBG2+8UXIfBUEQBGEokIduIWR3/wNZ25O2ZPYr2WgHkZKGxDJdxKm0x5HZZHo9iWAu7QgZaNmnLhU1fWWppprmxXIZZznUVleXYxZVuqv1DkT2ElGuYVFS8hqPeOIhNxYNlrW6TqWk5FVLSeuIvDSScfaR2eftN6PHueHLKRkvAFjdjiNrrssbeFfLSqkTLEc0TCaUp3RVS0N8sktV9kslolpW2pMOlw1pZ07qaJpU50ItcebU+y1OjnVN0pGa2kRS40plIkRKTN37FLZ2ivPJdmKB6bTy2C5QA6P3Q5bsj5zar1Ruq8u9sxkSy2pJL3GDU8uh5feRiLNfM2Qf9SlZayf5LnUqKWlnn7c/9PTOWq+dlpyO6nO2u6cz6P5aLFbOylvS3r+9IJSCYfASUE4+Stu5clA6j2pA2+nrt+mLqb8kqHMDVTbodGDkGNlopjcQM7IkltWSU+LkraSkVo+XI/QwCXS4BD2dxlz5KZGc5vrU8jJkyIi0GuKByFB1/vS107E0dZUO5lsu9/pydMh3n5WrMrByUN90NXQDKyU1A5+pbNRU7s70/kO7ptN5I0o2qtvTdhH6kEZJQ7V8FACMeNJpX1MXiOm/AGBo93Gau6Jq/xO5qr6HoXIUTnATJbnS6zTTUuczMs11+CW7VKcugzr9+hx+DV872rEwR9MwiXehlJqTJk+e7IvfeOONuOmmmwLtr7vuOtx+++2hy9yyZUvB6y+W5cuXY+bMmfjMZz5TsXUIBRAxKioVzUehUlJKsU6l3PaVIiXlZKOFLpt1hA5Zbj6GS2rq5j9GFsrBXsN8ow0Epxu54D71SSsjwWVze8Niorr/9LjpZdPjXw5HU19fSnA3Da6/xO+pXZ7vt/xOcpCHboIgCIOg2EE/D9SxCgRBEIThp9SctH37dqRSKTc+UJXb1VdfjYsvvjh0mdOnT0dzczN2797ti2ezWezduxfNzc3sfM3NzUin02hra/NVu+3atcud58knn8Sf//xn/PCHP3T6r55sjh07Fv/+7/+Or371q6F9EwRBEIYO+Z3kIA/dBEEQBoE7BkER7QVBEAShEpSak1KplO+h20CMGzcO48aNy9uupaUFbW1t2Lx5M2bNmgXAeWBmWRZmz57NzjNr1izEYjGsX78eCxYsAABs3boV27ZtQ0tLCwDgv//7v9HT45mpPP/887j00kvx+9//HocffnjefgmCIAhDh/xOcpCHbiFk2/ehl0hMst2OfEW7kwKe1FG7kwKeQ2kuHe7WaHr2ny6uvJRKeWqcwxQjbpixOkeGESVOpdq1lLqXsk5m1KnUdZfzJEHxmLPsGiIfNZXLZcykLpfBbYqZQXmpdi2NW946zD5HLmqkvX3pSoeo45ySg/qkLfFgbbKpJDc+51ZGsqLlLnYk/NTXMqsY2Q7tyJqMBp00qfRKyy7jxMFVT6f7LKPa9RIpZq+60MSzRGIZd7YpXtPgxgzVfyPjybHoMfSCqqQ5SiQ68Vrvs4pns0QiqhXHjASGnpc1ylG0ljiL1ii5UX3SO/ezWkpKSqT1t8qwqDRn4BJqKnnNqeWlDW8d+5mSbE7+qmWv6Vrnb29PGdxLc3ZRzkDD7SIkjFxMw/C5HXPqGoO0DUwrQUrKx9S8tvcd5NxGwchG9XTftUtJTe1eT0rqykZ7SY5QslGLxlS7XI8X00MPZHu9degcTSWiXDstK82Rdl7M295chpOXqmEJyHecTtfXwHzXAE5aUairnb5G05yppS+0nZ4eocM+qGu5loo6sWggFk06ecOfb9V9Sl0ytF2kxsk/Pkf1pBPzyVDVueOToSa1eymz/zhHUxLT80TJ8AqmqZ3avWZanUQPkc4lJpHa6LTiH5rB+6x3tW8IBT0NweW4fSqDvrRactLMmTNxxhln4LLLLsOqVauQyWSwZMkSnH/++a5z6Y4dOzB37lw8/PDDOPnkk9HQ0IBFixZh2bJlaGpqQiqVwhVXXIGWlhbXubT/g7V3333XXV//seCEA4tyS0qB8shKOVdS0yfnL05KystRw7cjbHqYRHXIUJfefFVMOmdGmO3xPYyh7tShD2mYfErkoxY7XS+XDv8UlIjq41puR1NfX/TvxzLITIeLaslJw408dBMEQRgEllXkWAUHaNm0IAiCMPxUU0569NFHsWTJEsydOxemaWLBggW477773OmZTAZbt25Fd7f30Pyee+5x2/b19WH+/Pl44IEHKtZHQRAEoXJUU04aTuShWwi53rTvwNM33xo9qHGEDCisn+LTNxW5uPOG3MqF73L9hDxCBo6PJJ3XA/QNcjzlvP2Nj/KqlmJ1zlti32DEeiBjWvFG3/66VQfkrbMaXL825r111hVf1ESAe+geYSrdTLVso88zQzAyTsWCO9A2ACunq9q8vrqDLie97YzrajVikKC3z0iQba91ZBLmqNFeX+qcmEUGVbZVNRh9UaUr9urJcW1Qb9npA3i9X/oS5DxRb7ZpRUrMNVIg1QdGsPotqzaJVr/pxVhk8OhEjfPZiJFqEc5IQW0brXi0SNVbn678IhulK/D8b+0N33YAQFKd3/WkApMaKGj0oOv7e4kZgqoYydEqkZC3OH5zBWe9UbIvdVVhhHnbSPvU3/iiNz34C7tt2aF959oLQinETMN3bdVw77ANpiKu0Eo3Oq+OUd8cw1LXbXL9divYsqTSjTVNCMZ0hZvPNEFVs/li3R2BmK5A11XnzmcnRs12vFiw+i3LGBxp8yNnMywmpnM6yYnpYIy+1ddxe4BKuGJxzRBovnUrL4KVbiapSubuNXRVPa1+c2Nk3mgyWNUWUVVtdJ/rCjfaLqaqBqNZpiKS7Cu30oBsr44ZpHjdxWb2o6/SzQrEIqrqTd/zAF6uMZiqNZr781W66elcUR53xHW7WAmVPIFlVVFOampqwpo1awacPnXq1IB5UzKZxMqVK7Fy5cqC1vGhD32oYAMoofoppZpNU6hJQLlNE/zTw6qSw40SCq1wK9RwIZ/xThiF7sticxjtU6EGQp6JAV8ppvcb7YnOvfmqy9x52WlBgwRueYMxV6CE7ct834tqroSrppw0nMhDN0EQhEFg5QDLLDxBWIXdYwiCIAhC0UhOEgRBEKoFyUkOVSDyFgRBGLnoAUKL+ScIgiAIlUBykiAIglAtDFVOWrlyJaZOnYpkMonZs2fjueeeC23/+OOPY8aMGUgmkzj66KPxi1/8oqT1FopUuoVgxqKIcoNR0wGK1eDCFhkoOKrkE1bak94Uan9rxmKBdUQZgwQt19CSUgCI1TuSUzoYMYgk0e1LlkiC9GfTk+aYth4gmpgraDmmQZ7TcgP+aokoMaDQ0hEz463DHWybmjrElGSSSElNVS7tM0PgHoEz8lIz6ewPc1SjG7MTTswmgynrbaKSKi2JrCESxrG1SuZLSnxHKckNlYNyBhNaSpoky9NS0xgpCdfmBVnLW0efa3LgrSOr+hAxyADVMU826vXF+UulFxkiqdSy0jS5wGnjgQxTDh2L0P47295QEzS2oCYSNUq+1FDrHbceJdWmcuU+RprKoY9N3CcvjQRjqq9+owd/OytaBilPzoZdxBucA3WAUKHyxE3Dd/3Rl6xC5aVUFWOw8lIVIyYqrmydyEC8mJcjtKyUDhngDl/gyzmFmSZ4MSIv7QvKRrM9fYGY/uwzOHJNj4i8VMlKM53pQKxgeSk1V1DX1gwdloIOyK+uw1ysFPTxijDHkMZ0jonEyb2Luhb65KW9jLy0N2jkxMlkY2GyGDqguM7pJo1FdENvHXpeshwuxkpNNXnkpe5n0zuGMdWHKJGcWmqN9Fhx8lFOfppPXtp/erwc8lLJSUIVMxj56EAMRlY6qPWGbAsnV/XPW6QMtUBJaaEUus8Gs5xSHp7obaK/m3kTg3DZKLccb96gHNQ/rzJIKJPMMcxcwd+v4HYWvI6Qc3G4padDkZO+//3vY9myZVi1ahVmz56Ne++9F/Pnz8fWrVsxfvz4QPtnnnkGF1xwAVasWIGzzjoLa9aswTnnnIMXXngBRx11VNHrLwSpdBMEQRgEVs4u+p8gCIIgVALJSYIgCEK1MBQ56e6778Zll12GSy65BEceeSRWrVqF2tpafOc732Hbf+Mb38AZZ5yBa665BjNnzsTXvvY1nHDCCfjP//zPwW7ugIzoh2633XYbDMPAVVdd5cZ6e3uxePFijBkzBvX19ViwYAF27do1fJ0UBEEQDgokJwmCIAjVguQkQRAOdNLpNDZv3ox58+a5MdM0MW/ePGzcuJGdZ+PGjb72ADB//vwB25eDESsvff755/H//t//wzHHHOOLL126FE888QQef/xxNDQ0YMmSJTj33HPx9NNPF72OaF0d4kSOEc04OgaLSCctLZPLEClpzvL9BcLlpT6ZhetG5sUiSnJqEidNLTU1qVOpklb63EuVSwyVlKKPSEn1uqnMU0mCbCIHtQuVl2qos6heNnXXVPvDpq5h2qmUOq0qyRLncONz5dHy0qgndbSV+6pFZJd2rFb9TQbmpZXg2iHQtqmUS0kTybHRskwqxdQSlDCZKeBJfmJkxVoaZIEuz/nbR3Zf2gg6pALB9WlZKT37sqTMWJ+iGRLT29RH9rmeTvuv5bGWTRzx1PQaIunU7qaci2jO1xctrQ1/w6HlpdSpNMJKTs0BY+6+zwWlscVi5yzYZuGl4DJ+zoHJUOSkeMRAgnMvzSMbNdx2QWmqQa/VOk9ZjJSUXr9zWf80EFmpT3KqnEpJTOcim+ZMHaPXed0H0hftWE3zqf5Mnce8HOzNq6fTdq7bKLnmaFkDlZXodlpS6osRub6Wlaat4PXb+TywvLTQF7t+KWlhMTcDpBGK63LKSG8sZn9YRIZqMfvcZva5Pl7+Y6iGpbCCx993TjDnDqLqHDOC75DpLuXuVjx3O3IrrO9JiOQ0ou4RTLIOW99bkXsEmvPdQSHIdDcfM8dahzh34mKRnCQAQ5OTKJWQjYZRLklpPhloqVCJHLcO9/rDSEQ5GSUboxJMdjnq2sq4mBb6vS/WZTMf+RxLud/L3Pry9SHsd3clJfX6WHPryOdo6i0jXDpbLIV+NyslQy01J3V0dPjiiUQCiURwKKV3330XuVwOEyZM8MUnTJiAv/zlL+w6Wltb2fatra0F97NYRmSlW2dnJxYuXIhvfetbGD16tBtvb2/HQw89hLvvvhunnXYaZs2ahdWrV+OZZ57Bs88+O4w9FgThQMWybVhWEf8GMYaTUJ1IThIEoVqQnCRIThIEoVooNSdNnjwZDQ0N7r8VK1YM85YMjhH50G3x4sU488wzA2WBmzdvRiaT8cVnzJiBKVOmVLRcUBCEg5ic7QwSWuC/gktaSmTv3r1YuHAhUqkUGhsbsWjRInR2dobOU4jcZNu2bTjzzDNRW1uL8ePH45prrkE2m2WX9/TTTyMajeK4444r12ZVNZKTBEGoGqosJwlDj+QkQRCqhhJz0vbt29He3u7+W758Obv4sWPHIhKJBH637Nq1C83Nzew8zc3NRbUvByNOXvrYY4/hhRdewPPPPx+Y1traing8jsbGRl88X7lgX18f+vo8RzNdzmimmhCp8dwhTS3RpHKXjNJr0DJWVwITLKHN52LKlQe7zl5EOumWChN3Ui2tpMtwy3hpX9Keo5vujc9dTi+HOHy6MlAq/dTOMIysIy+6j7SvetmxmkBztjDWN2800BdXEkv6bKv95U4j8/iln+omlEgTIyqWjBAnUOUySm9ZdSWwxcg982EyW6qrffm30ZyklMyrptPqZOrApiWdVB6rJVLUkVW3o33QVdIJso/0PqSS2TrljkclrJxjH5Wa9ifClEZHfO6MjGNfhDmuWj6lYokyyEutnAXLKLxs2qqwlGfhwoXYuXMn1q1bh0wmg0suuQSXX3451qxZM+A8+eQmuVwOZ555Jpqbm/HMM89g586duPDCCxGLxXDrrbf6ltXW1oYLL7wQc+fOPSjGiRnKnBSLGKz8jJWN0u+YkvgbNP+4bo6MUyl1eFQxI0eHB8j52wOeUylp57mcEjlgVudMRmLCxQg6F/qdL9X3nDpk6u9+3Pt+R7SrOBkeYjDOZDl1HIwIkfco2WWESukZqalfXlpyF0LdS6kLZiSq3Uu9XKidTH3upTVOHo0Sp1IdizEx//KcGN3n7nEo1L2UI995os8nujx9H5Aj0k49jS5Hn/vkfLfV8TR83wF9v0KGw9DntkHzHx1+Q90fkeOgpahcLteRWBmkbtWWk4Shpdw5acDfSIYx5JLSakPnEOpiqr9Ppk8i6ArOQ5fHTS30F5aW5LFy0Dwy1PDlhuflgpcTKvfMIxVlpnPXLd+wBawkNXjt5ZdzcL6I6P99NsOGkSqCUnNSKpVCKpXK2z4ej2PWrFlYv349zjnnHGcZloX169djyZIl7DwtLS1Yv369b7zLdevWoaWlpeB+FsuIqnTbvn07rrzySjz66KNIJsN84otjxYoVvvLFyZMnl23ZgiAc2BTz9sZ9i1MhtmzZgrVr1+Lb3/42Zs+ejVNPPRX3338/HnvsMbz99tvsPIXITX7961/j1VdfxSOPPILjjjsOH/nIR/C1r30NK1euRDrtHyjqC1/4Aj796U9XNHFVC5KTBEGoNqopJwlDSyVykuQjQRAGw1DkpGXLluFb3/oW/uu//gtbtmzBF7/4RXR1deGSSy4BAFx44YW+Srkrr7wSa9euxV133YW//OUvuOmmm/DHP/5xwId05WBEPXTbvHkzdu/ejRNOOAHRaBTRaBRPPfUU7rvvPkSjUUyYMAHpdBptbW2++fKVCy5fvtxXvrh9+/YKb4kgCAcK1fQDZ+PGjWhsbMSJJ57oxubNmwfTNLFp0yZ2nkLkJhs3bsTRRx/tG3R0/vz56OjowCuvvOLGVq9ejTfeeAM33nhjuTetKpGcJAhCtVFNOUkYWiqRkyQfCYIwGIYiJ33qU5/CnXfeiRtuuAHHHXccXnrpJaxdu9b93bJt2zbs3LnTbf/+978fa9aswYMPPohjjz0WP/zhD/GTn/wERx11VNm2uz8jSl46d+5c/PnPf/bFLrnkEsyYMQPXXnstJk+ejFgshvXr12PBggUAgK1bt2Lbtm2hVRcDuWFEGsciUuu9KbKzQSkpK98Mk5WWIKlx4SQYJOaWDHPtqCSWG4aJyEttLS+NeRJMzh3UlVUQyYUbI045ruSTSj/1PDTGtPO0Ukw7MyjlACfvoDG9b5h2tIrWc8j0Yq5s1A5KVmglMucYqtUkhbfjXNCC7ahM02Ji+iOVj9Jlaykp57460DwaV0pqMjE7WJJcqCsOJ1egJc6c+saVl5J5wyWnzv+7hlFeWqgrTzG0trZi/Pjxvlg0GkVTU9OA0pFC5CYDufzoaQDw2muv4brrrsPvf/97RKMjKrWUzFDnpJgBRH2GxYxstN8053NQRufK5xgpKc1xnvt0uKOpwchVWfQ12Je79NACJOfo9cWD1RoRJmeakWAuNGPeeWgysWivk9OzyTSJZVXM27aMiuXqqHupcmAmjqY5xtE0Qaa7zqisVKbA6yNzATR80lp13YsxUlIqB1XTTeLQrqdzUlKf5FS5p2sXdSfmnK/RumSgXazOGzIiwszLOq8z9yEGc+6w9zsaKp22tWsqOWd1MzKLG6PfKS2Jpd8V5v7CYO5dOFdVToaqiZVBzSPy0oOXSuSkctyblItCHUuLQV+XWYdRxjGUXqv19ZiTI1qMWNRka12Ckki6nTnO5ZSRsIb1eaDp/RnM/i3FZTNsnnzy0XzLKYeUlMvL+aWw5X2JwbnXjjSGKictWbJkwEq1DRs2BGLnnXcezjvvvJLWVQoj6pfRqFGjAk8g6+rqMGbMGDe+aNEiLFu2DE1NTUilUrjiiivQ0tKCOXPmDEeXBUE4wLFtu6jxH2ziykO58cYbcdNNN7HzXHfddbj99ttDl7tly5aC+1BucrkcPv3pT+OrX/0q3vve9w5bP4YayUmCIFQbpeYkYeQjOUkQhGpDcpLDiHroVgj33HMPTNPEggUL0NfXh/nz5+OBBx4oaVmRhiaYtWRQfytY1eZVuuUxUrAsJsZVvXFP60sfxNI1XBjo7YB+6WuSNyN6Gq12iDlvnX1vhPWbaDoIMWeqwFTEccYMdiQaaFdwtVoh6y8CbuB+Xf3GXQv8lWCcuYI2IvBitmqX4wba9hkfeHMEY2R5tv8v4FWrZcix5CrYfCYHjGmCnsU3qKYuaiRDUxdaN8YNzll4BZtuz1S1MVV3Ye3i2cFfAq2cXZRphn5ztn37dt8AoWFvkq+++mpcfPHFocudPn06mpubsXv3bl88m81i7969oQ4+Wm5Cq92o3KS5uRnPPfecbz5tktDc3Iz9+/fjj3/8I1588UX3LZNlWbBtG9FoFL/+9a9x2mmnhfb/QKWcOcnIpWHkyBh63MVIV7/5Kt1CKuF8lW7cIPK5gZfBdpJUAusqYmLKE1rIQ9/k68/ELEh/NqmBULwHABBJegZBuoqKmiZke52BwHO93v7L9qQDsZyaJ9frDRyeS+tYhrTTVW200k3leXIBz2W8z/rtLfcmvNC341w1Bo3pyocIKUHWb8ojTFWbryIuGVPToiSWUO1ozNm/UWI05caS3nVMVxX6qtpUNZuRqAnGaKWbuufwV7/F1bzBijhQ4ye38r3AsjHf+a5mNbnJRCbgVsgPcH/B3bvoeUDu6fr10ff9LpFSc5JwcFDOnDQS4CrTOOg1OF/Vm7vskFGa+Jo2Jo+Sy4HpVjWRynJdTcdWaYX/vjFypVeucVV0HIOplB2cuUJhlWz+9XHzDHz9K7S6rND8fbBeayUnOYz4h279ywWTySRWrlyJlStXDk+HBEE4qLBzNuw8jlT92wOFu/IAwLhx4zBu3Li87VpaWtDW1obNmzdj1qxZAIAnn3wSlmVh9uzZ7DyzZs3KKzdpaWnBLbfcgt27d7vy1XXr1iGVSuHII49ELBYLSFoeeOABPPnkk/jhD3+IadOmFbSdBwKSkwRBGE5KzUnCgYnkJEEQhhPJSQ4j/qGbIAjCcOIkkyLKpiuYTGbOnIkzzjgDl112GVatWoVMJoMlS5bg/PPPx6RJkwAAO3bswNy5c/Hwww/j5JNPRkNDQ165yemnn44jjzwSn/3sZ3HHHXegtbUV119/PRYvXuxW6PWXtIwfPx7JZLKig5IKgiAIfqopJwmCIAgHN5KTHOShWwh2rBZI1Lr/5wae5gaZ1uWyBiMlZaWieaSp3CDZdqGGDGGDDIMOTMzIN5mYwZgX+OQTSs5qUylpJB7oi63lQfkkp6zhQqEyT7U4RtDEqU6MEKmWb3lcLI+sNRpV+4qsQhsW5AwaQyCm1UmGr3vaccFraKkGdNN0dTg1f7BMsiA1v0kXrvWbVjBE4eT5rGyUNUZQ0/JIRLnl6nl8MTPYTn+kx9+Nqb/Z6IgycC6IRx99FEuWLMHcuXNdCcl9993nTs9kMti6dSu6u7vdWD65SSQSwc9//nN88YtfREtLC+rq6nDRRRfh5ptvHtJtO+ixcn5DgzDZKBfjpnGmCb4B4/X3h9HbseY4zFAFzGDzPsmpkgja1NBHywppTH12TY0A2H29gXkjarqd9iSn8UxwXi0rpTLUXDrjmwZ4klMr7bXT8/ilpDqWC7SjbYsZILo/vhysMH1GCkHDCD3MRMQXY8wmlKyUk5JG4t7xYmWjWvoZI8dVH0MqB9bDUiQY2Sg1auKMFBgpqXsf4huWQt0jRIJDVbDDTXDmTTZzHtNDZDJBZtmc+QIlMCRGocZagnAQks8kIB+cbI2TnIb96KfS01AjAE5gmkfqmmO+/0aOuQF3l5Hv4YSzPE4umw8rk79NKRQuxSxeKsovJ7xduSWkha63UEaygYLgRx66CYIgDIJqG6ugqakJa9asGXD61KlTA4OUFiI3Oeyww/CLX/yi4H7cdNNNAxpDCIIgCJWh2nKSIAiCcPAiOclBHroJgiAMAtuy3OrLQtsLgiAIQiWQnCQIgiBUC5KTHOShWwh2LAE7RhwFXSkpdYUrzj2Oc4WzGXmpwZQY+9xsuBMyTJYwkMzU1FKfSLAtmceVdXBy0EhQDupKSslyfPIP3c4XY6SpOkYVkaqkuNDn4Pkkp+x1gDte/aZR2HacaxknY6EV6LpcmkgyLUZK6s0TdE2l6lG9nVQ+apJSdS01jVH5qZa90tOyQPtmXl4aMq1AB1K/aSoT4+TCBchLYyWU3PdH3uAIQ4Vh24VLStkFMBJRIld0F0PloG6QuFRreR+9LjDXTDcP0JhuZxEnSEvl2Ti5TunpdNtySiJK85+WkmaIFkbnVp80NdguqmOMhBVUwqpzL2lnaakruVC68lFGUup0i8nrrGM5k2MYKRUvNY0E2ms5qMHJUDlJJ70fYKSf7mcqG9Vuo4yU1HcvEWPm1duRRzbq3rTTc5YZgiJUxsnlYAo3bIaG2d9FuaMzsuz+32d2mIsikZwkHAzkk90VKj8t9vwv9BvPOZBSuNGG2D6HuWsWKLEESY8Gd8M8BBTcV0Up16VKSUWByl0nDwb5qOQkB3noJgiCMAhsq8gBQou88RAEQRCEQpGcJAiCIFQLkpMc5KGbIAjCYMhZsO0i3hweoGXTgiAIQhUgOUkQBEGoFiQnAZCHbqHYkRhAZJLuc1dGNuqfsTCnOFeaw7mhMstjpw3W6YqTnbKyDi3NIK492hmsUAfSQp3EaFf0PqIyRCUXLFTySOEkjmHYnAykQDmJzchdfJp2pvuGllOSbXMlmIzrKK1zN9QCDZvKKZ1YhMSipLRcO6gW6gRbKNx+5iSi3HRa+c5JRNnlcSqhAvoSLfJ84LBydlH7yjpA3+AIlWfAMTGKkbiFzcM4MrJna4iclZNLcrnLZnNduFyVza1cO6XbMbjc6pO1BmWoboyTq1KXcj2Pz6XcWYfPpZxxMacMZuwSTl7KDg8RCXEkp7JRbt4YIxFlZKPukBGczJMOQcHk/kJjYXJQSsHS0JBlFDW9DPPY3D1CiUhOEoTyyPY4uWdJ0reCXVML+02n5aoFNh9gGSVc14qkXNLJUuSgmkpKFQ8GaWg5kJzkIA/dBEEQBoGdswNuoKHtD9BkIgiCIAw/kpMEQRCEakFykoM8dBMEQRgEll3kG5wyDJQtCIIgCBySkwRBEIRqQXKSgzx0C8GOJmBHE3kaDSyRsfO0MxipDCthLWQZA8FJV8JkFhhAmsFKPRiXrwJlo2Ac7LQM1edqxyzPkw1yspIyufIUKlkJWS8r2SRP7/Un+kA/V6Azq5ZT+tZhBt1LI1rBTPvgW7gxYF8pnOsMJ/l0l8pMCpOA+tuFO8tyR8FgGoYZNOnm8TK4l+Zs25XpFtpeEErCMP2OzyOEgs/4PPks1Lk137APVphctTBZKydX9TuSD7y8vNtByeeG3b95WM4GiE4/n3wzGLPCZJ6cHDSfw2fIPUJYjh1ongOOMmyj5CRhKLBs23dPaw6TK2YlqaR8MEwamlf6WQbJpBmp/Pd+qFwoReZZHvrLOsv18EtyksPIu3sXBEGoInJ2cfc/B6gTtiAIglAFSE4SBEEQqgXJSQ7y0C0EO1YDK1Ef2ib0jXWet9n8QNJ5zBf6rTdfNR1ZWWhf8vXVW3G+N9G6BItUBOhV5LLB9uStuFvhxrwVp+/PwgZY9r1n4yrx+k2jFFytRoI201C/KLCZmG/ZzDQ9D3c0aF/0PLTCy3RNJ7x22oShmHdA/BE2Autj5+Wq2SpVrRbak/B5NekyVLoJwpBhRvwmNcVWxeRpH1YpnLcaNqTBUN8/5augddtx1yvG4Mibls9EaeB5A/MH5i1PDg6vVA83Igibt5T86Lbju1oxwq7q+cyUwiYb5bqP8i2z3zycuZUgjAAO1MHPh4UCTfIGU104GBOGoUDOJ+FAQx66CYIgDAIpmxYEQRCqBclJgiAIQrUgOclBHroJgiAMAimbFgRBEKoFyUmCIAhCtSA5yUEeuoWQi9UiF6stef58Y/qzUoUCB122QwaAZucdSBajP4dIWAdaNqstYeU1Tg0zuztYOUu4BAbcgM1hg0LTgce5AaCZgck5QwNd6ZzLY4bASUT1bmFlpsx+LFSkkk9cpiWbVLBCq9HDpJ8+6arebQMsp//6fOtg+lW01IujBClPf9Lm4K/sVpFvcA5UVx6h8uTMGHJmLBDPd07ZgQ8DXYuC3ylXLs8sN9/1LJ9MvtDlhFGua6UmTELvN+9RQx8UKJ/Pu74SVELsPip4/xbWTu/hajoepQxj4C2HDPweYu4Tlt8G7kvQ8InDl/8Mv5yU+34XSzXlpL179+KKK67Az372M5imiQULFuAb3/gG6usHHrqlt7cXV199NR577DH09fVh/vz5eOCBBzBhwgRfu+9+97u4++678de//hWpVArnnXceVq5cWbFtEQ5s7BH4Sz83Avt8oGPIsDUBqiknDSfy0E0QBGEQ5FDkG5yK9UQQBEE42KmmnLRw4ULs3LkT69atQyaTwSWXXILLL78ca9asGXCepUuX4oknnsDjjz+OhoYGLFmyBOeeey6efvppt83dd9+Nu+66C1//+tcxe/ZsdHV14a233qrglgiCIAilUE05aTiRh26CIAiDIGfbyBUxVPiBOlaBIAiCMPxUS07asmUL1q5di+effx4nnngiAOD+++/HRz/6Udx5552YNGlSYJ729nY89NBDWLNmDU477TQAwOrVqzFz5kw8++yzmDNnDvbt24frr78eP/vZzzB37lx33mOOOaYi2yEIgiCUTrXkpOFGHrqFsD+dA9Lhz1vLLpEAI88zokxML8MIxHySPO0ISmVDxBXHlZCaVmAeOosRImdlZah5pKmsZDbUdY3INjhXUldKSpz9ItHAulwpKV2V6wRL5lV/qZRUP6XPF9Nr87uNDixXpXDXGVY2w8o9jUB77WhqMOcJ4O2GCDm5OHmNnk7X58YKPicKbEcpNMbBSKb7Y/bsL2xZIeTs4t7KiBpAKJV0zkI6553XYa7IFM5R2Z1G5w2RHHKy0ULdnf3ye2Ye1TKf5DHsPswq8Iau0GtsoZgl6EIHsz6OUu5PC91fha6v0G0K21++3BQiIeWWwc3L5Ud+eTQWvAfzphFpanAyOySDb7r7aWCJK/1+l0qpOamjo8MXTyQSSCQSJfdj48aNaGxsdB+4AcC8efNgmiY2bdqET3ziE4F5Nm/ejEwmg3nz5rmxGTNmYMqUKdi4cSPmzJmDdevWwbIs7NixAzNnzsT+/fvx/ve/H3fddRcmT55ccn+FkUu1S0OtMnyvhfJhRop0fi+CcpyLB5pEVX4nOVTurBMEQTgI0AOEFvNPEARBECpBqTlp8uTJaGhocP+tWLFiUP1obW3F+PHjfbFoNIqmpia0trYOOE88HkdjY6MvPmHCBHeeN954A5Zl4dZbb8W9996LH/7wh9i7dy8+/OEPI51OD6rPgiAIQnmR30kO8tBNEARhEGgr7GL+CYIgCEIlKDUnbd++He3t7e6/5cuXs8u/7rrrYBhG6L+//OUvFds+y7KQyWRw3333Yf78+ZgzZw6+973v4bXXXsNvf/vbiq1XEARBKJ5q+p20d+9eLFy4EKlUCo2NjVi0aBE6OztD53nwwQfxoQ99CKlUCoZhoK2traR1i7w0hM60BfR5JcFh8olwKQFtF5T55ZM2aElDhJEuRIjcQcv9aDsj4jhhGT5JaVDm55efKumflqYCriTVH8uq5ZF5c7nA8lgHVYYwd1OflFRJSA2TcSClTqRaNkqks0qpy0tZCa5TKdlVGRWkVeJZHSP7VE+n8p0co7AsVt5DJTWevNibrquRDSbmq6S2gvpSchqR5Rgkps5Ln/0hd04wMX3cc16Md9W1A7HQc6cE6Wl/WXOkJ/xCWwhWkWXTvEOgIOSnL2ejl1yUCpWDutPIZ89ROVwOyq2Lk4N6683XLngddWNUwsr03722ctO47c3zXctVwZcxwt08FMhw9z9f37nJEeZGSt8XcYofk8tDNGYG23EyVH0fxQ7TwbTjtiPvcA5MTs8rOe0X6yvDK/5Sc1IqlUIqlcrb/uqrr8bFF18c2mb69Olobm7G7t27ffFsNou9e/eiubmZna+5uRnpdBptbW2+arddu3a580ycOBEAcOSRR7rTx40bh7Fjx2Lbtm15+y9UN9UkFT0QZaHDtX+rSTJZruNaKZlqKceomvZvf6rpd1Ip5j7d3d0444wzcMYZZwz4MqoQ5KGbIAjCIJABQgVBEIRqodI5ady4cRg3blzedi0tLWhra8PmzZsxa9YsAMCTTz4Jy7Iwe/Zsdp5Zs2YhFoth/fr1WLBgAQBg69at2LZtG1paWgAAp5xyihs/9NBDATjVC++++y4OO+yworZFEARBqCzV8jupFHMfALjqqqsAABs2bBjU+kVeKgiCMAhkrAJBEAShWqiWnDRz5kycccYZuOyyy/Dcc8/h6aefxpIlS3D++ee7P2527NiBGTNm4LnnngMANDQ0YNGiRVi2bBl++9vfYvPmzbjkkkvQ0tKCOXPmAADe+9734uyzz8aVV16JZ555Bi+//DIuuugizJgxA//n//yfymyMIAiCUBLVkpPymftUGql0C6GjLwcjGSyI5GQMvulgZAeuZI/IQTkpqXoSTGUbrhzDpGdh0E1SL5pWmGopKSv3Azx3Uyr9y2WC8+TSaloeKaGa1ybOkbaWthKJq50buNDUiHguoq4bKXElNaIxFSOnb0RJSSNEmsgs27a1vjS8tFhLs2iJq65GzpJghpGXZtWm0Vgmp5dHJKd2MMbhSm98MpWgHIeTF+vpEbKKGJnHXTXZ5XrPmb6+qinU5VRPJu1YOag6ZwqWoVJ5qT7fBuN8agXPNff87O4KzicIVUpfzkY0wzg/k89h0lAqaffkpYW2YyT0ea5n4e1A2nHXx+C8/dvT6dxNGjevlUe3UI6bvXzX9KGGc+4slnzKFZPRTnLr1cvxS0RDJKcGEzNpLtTLDc+PheZRXjbK3dPZA7bzx20yj5qGIHq95ZCXVhOPPvoolixZgrlz58I0TSxYsAD33XefOz2TyWDr1q3o7u52Y/fcc4/btq+vD/Pnz8cDDzzgW+7DDz+MpUuX4swzz4RpmvjgBz+ItWvXIhaLDdm2CaVRTfJRYPgkpNW2HyrNgShrDTt3KumQyhG2f6tZehpGuR21SzH3KSfy0E0QBGEQOFbYxZRNV7AzgiAIwkFNNeWkpqam0LFypk6dGhh/MplMYuXKlVi5cuWA86VSKTz00EN46KGHytZXQRAEofyUmpMmT57si99444246aabAu2vu+463H777aHL3LJlS8HrrxTy0E0QBGEQ5IocIFQeugmCIAiVQnKSIAiCUC2UmpO2b9/uM/cZqMqtkuY+5UQeuoXQlc7B7PNOE84li3fTCkpEbTsoY/Ce+tLlDdwfWqjqSirIOmJm0GHScGWhGbLitDc9O/B0g5GcgsgB7XSvE8p4y9POp3Y2GKPYjOTPUBJSm7iS6hiiRDKgpYkkxkpJtUMp42jKwUmC6BtY25UxBaVSWbI5GbW9GXIny8XCZFYUXnrj/I2RfaXPLRpLRJ3P9LzKEa2pPn9jZLVqFp+iM8rclEfNSDCo8Ek/dX/yVfBr2SiVMIfJo8k568pF6XmlPvukzP3a2V2epKVUqmWAUOHApy9nIUquIcVLSYPST0qYiyhtr69npUhEC21nudL9YP8o7nXUCi6P2zZuXl8sRH46WLfQoXAbHYwbati83LQwJ1J/OzKdGQaBm9eVofqkpIVKTouTpnJ5NN99Xv/2/afzzqiB2QNDj/SVQeomOUkYbqpVOjmUUtJq3QcHG/mOQ6Wkl9y5NtSSU81w7QNNqTmpUEftSpr7lJMRZ6SwYsUKnHTSSRg1ahTGjx+Pc845B1u3bvW16e3txeLFizFmzBjU19djwYIF2LVr1zD1WBCEAxkbzvPEQv/JbdiBg+QjQRCqDclJBy+SkwRBqDaqJSeVYu4DOGPBvfTSS/jb3/4GAPjzn/+Ml156CXv37i1q/SOu0u2pp57C4sWLcdJJJyGbzeLf/u3fcPrpp+PVV19FXV0dAGDp0qV44okn8Pjjj6OhoQFLlizBueeei6effrqodWVs2/923AoaGoS9reXecNLmMW7ge/UxGgm+ZaUD4EfVvFFqmpDrU3+ZqjVSecZPz5Dpqi2tJFJVbXaGxNQybTKvW0FE2vWfNhC2qpyiRgq2qmYzLKZaieBWxBnUJYAZ1N8KGYSfzKsLEuiarH7TAK/6gzNN6M16c/PVb9zA4wNfarhKg5jprUOfdzFiJtGbNVXMmzcZpW/1nXiWLDvKxpy/1ERCt4uRNzfRWNLpC62C0+cRPTa6mi1HqhrVdJu00+etL+ZuMFkHV02pK9zoNH1+qnPWzjHnaZFIVcHBy1DmIwDoy9qIkOsKZ1TgTstTrcZXtenlhhsVeMsrrB1XhcaaKxTYjrtO0pj+nK9dsbFippdrnmIpttItX3u2wq3ImM8YKqwdZ3KQp0ourB1bOccYOJiGVWA70mdW5UD6wBg39J9G53GNFLKDP0ckJx28DHVOolRrZddQGyVU637oz1D0cyQM4K/3w1D0lZ6Lw1X1xlHpfVBNOakUc59Vq1bhq1/9qvv/D3zgAwCA1atX55W1UkbcQ7e1a9f6/v/d734X48ePx+bNm/GBD3wA7e3teOihh7BmzRqcdtppAJydMnPmTDz77LOu5bggCEI5kPFzDl4kHwmCUG1ITjp4kZwkCEK1UU05qRRzn5tuuok1cCiW6nnMWiLt7e0AnJ0IAJs3b0Ymk8G8efPcNjNmzMCUKVOwceNGdhl9fX3o6Ojw/RMEQSiEnG0X/U84MClHPgIkJwmCUDqSkwSN/EYSBGG4kZzkMOIq3SiWZeGqq67CKaecgqOOOgqAo7uNx+NobGz0tZ0wYQJaW1vZ5axYscJXNqhJmKZPlqcH26UxTkKgK0a5WJTKLBjZqJYx0HauQYLtPSf2DBKIYQFjisC3I9PVAPV2ps+NWX09gXauHI/IVF0JKY1xA9qHQSSChqmkfxaJ6eWSWVwpKTNoPgYe27+isFIpRnKasWjMYuYNLs+bGAxx8hkq99TyUxrrI/I0fS4niKQ3rjTLaSN4DhJlqhezuHbepSUWcyTCZtRznXHP0Rw9d5xzkUqh7UhctafGHFqa6q3D0OsjhgvaaIPKn21l+qHPISNdzLsXnmp6gyMMH+XKR8DAOakrnUOOmPtwElFvmve5WJMD/3KGRzbKSUQLlY2WQ16aLUFyWmy7oaJQySnXLjqU8lKmHRsbYhkq1/cwswbaltv1bL9Ubu2SnCSUiUr/RtKMFDnlUKEletW+X6iUsNx9HQmyUs1I6muloedBOfeL5CSHEV3ptnjxYrz88st47LHHBrWc5cuXo7293f23ffv2MvVQEIQDHXmDIwDly0eA5CRBEEpHcpIAyG8kQRCqA8lJDiO20m3JkiX4+c9/jt/97nc49NBD3XhzczPS6TTa2tp8b3J27dqF5uZmdlmJRAKJRIKdJgiCEIZV5BucKiuCEcpAOfMRIDlJEITSkZwkyG8kQRCqBclJDiPuoZtt27jiiivw4x//GBs2bMC0adN802fNmoVYLIb169djwYIFAICtW7di27ZtaGlpKWpdqWQEDYmY+/8w2SjnQOqTRWhXUkYqEaOSBSUhNSwiAU0HpXgGIyV1nUhzRGKnp2c9+SiV21l9ypWUSvoYp9L+ro80RmWeNuMiyWGYwSJL2502TBrRYaJQ2RYPddJ1/lIJq+toSlxOI4x0ORElktOMc2yoy6mWocbIcYtGnPVEcpy8lMYQjEWcG7hINOn1VZ/7OUb+TM99fX6T806388lLXRmq187s186E9/0WhGIZynwEAPvTOWRj2UA8n7No/2l0HhrT1x3umjMUslHfNpVBXkrJFis5zfOmtdqlpj4ZZ8jdbr52nPtmmEQ0nxx1MPLSsOWVW4bqW5/hbz/g8kqQpPafVg55qXDwMtQ5SRiYSso3y83BJrE82LZXqA5G3EO3xYsXY82aNfjpT3+KUaNGuWMQNDQ0oKamBg0NDVi0aBGWLVuGpqYmpFIpXHHFFWhpaRFXHkEQyk41WWELQ4vkI0EQqg3JSQcvkpMEQag2JCc5jLiHbt/85jcBAB/60Id88dWrV+Piiy8GANxzzz0wTRMLFixAX18f5s+fjwceeKDgdWir2K7O/Xmr2kyu0s1tn6f6LbTSjVar6YodWu0TrGoLrXSjA9bTgeXdSjc62DxX6WYF2rmVRvYgKt0MUtWmB7ePkv7rqo6oV5Fkpp11GBlS6RRXlXhR0peYMn+Ikm2Lqv3gizlVgBnD+zqkGeMDHUv7zBBULOdttzYq6Mt67XrV9KxvXiuwDq7SrdBCCTPkbXxsgEoDHc/6zBecz9korUzjKt3866DLi/pizHojTIUBW+mmjic99y2u0k1XXYZXuvWft6OzCwAC9tDF0AOrqEE/0yjsOyJUP0ORjwDv/Ozu3M+eq+WudOOuOXkr3Qptx1awBdfHtfMq8cpb6WYd6JVug2jHVbqZIdVnuVIq3dQ6zIIr3YLL9lWUhVW6MduRr9ItLLeWq9LNUNO6O/cDkJwklMaQ/kbK6nus6v6BbHEJZoip9kq3gw3DHv5KN9Ou8mH1bcP9jg8mHwGSkzSGPdg9eQDyj3/8A5MnTx7ubgiCMERs377dN+5JIfT29mLatGmhLpQD0dzcjDfffBPJZDJ/Y+GgR3KSIBxcSE4SqhXJR4JwcFFKPgIkJ/VHHroxWJaFt99+G6NGjXLfPuajo6MDkydPxvbt25FKpSrcw8Ehfa0cI6m/0lfn7c3+/fsxadIkmMw4g/no7e1FOp3O37Af8Xj8gEokQmWRnFQ9SF8rw0jqKyA5STh4KSUfASPrOy59rQzS18pQrfkIkJxEGXHy0qHANM2SnugCQCqVqvovp0b6WjlGUn8P9r42NDSUPG8ymTzgkoJQfUhOqj6kr5VhJPUVkJwkHHwMJh8BI+s7Ln2tDNLXylBt+QiQnESpckGxIAiCIAiCIAiCIAiCIIw85KGbIAiCIAiCIAiCIAiCIJQZeehWJhKJBG688UYkEonh7kpepK+VYyT1V/oqCAcuI+k7I32tDNLXyjHS+isIw81I+s5IXyuD9LUyjKS+HsyIkYIgCIIgCIIgCIIgCIIglBmpdBMEQRAEQRAEQRAEQRCEMiMP3QRBEARBEARBEARBEAShzMhDN0EQBEEQBEEQBEEQBEEoM/LQrQhWrFiBk046CaNGjcL48eNxzjnnYOvWrb42H/rQh2AYhu/fF77whWHp70033RToy4wZM9zpvb29WLx4McaMGYP6+nosWLAAu3btGpa+Tp06NdBXwzCwePFiAMO7X3/3u9/hYx/7GCZNmgTDMPCTn/zEN922bdxwww2YOHEiampqMG/ePLz22mu+Nnv37sXChQuRSqXQ2NiIRYsWobOzc0j7mslkcO211+Loo49GXV0dJk2ahAsvvBBvv/22bxncsbjtttuGtK8AcPHFFwf6ccYZZ/jaDNV+FYRqZCTlpJGUjwDJSUPRV8lJgnBgITmpMkg+Gpr+Sk4SKok8dCuCp556CosXL8azzz6LdevWIZPJ4PTTT0dXV5ev3WWXXYadO3e6/+64445h6jHwT//0T76+/OEPf3CnLV26FD/72c/w+OOP46mnnsLbb7+Nc889d1j6+fzzz/v6uW7dOgDAeeed57YZrv3a1dWFY489FitXrmSn33HHHbjvvvuwatUqbNq0CXV1dZg/fz56e3vdNgsXLsQrr7yCdevW4ec//zl+97vf4fLLLx/SvnZ3d+OFF17AV77yFbzwwgv40Y9+hK1bt+LjH/94oO3NN9/s29dXXHHFkPZVc8YZZ/j68b3vfc83faj2qyBUIyMtJ42UfARIThqKvkpOEoQDC8lJlUHy0dD0V3KSUFFsoWR2795tA7CfeuopN/bBD37QvvLKK4evU4Qbb7zRPvbYY9lpbW1tdiwWsx9//HE3tmXLFhuAvXHjxiHq4cBceeWV9uGHH25blmXbdvXsVwD2j3/8Y/f/lmXZzc3N9te//nU31tbWZicSCft73/uebdu2/eqrr9oA7Oeff95t88tf/tI2DMPesWPHkPWV47nnnrMB2H//+9/d2GGHHWbfc889FesXB9fXiy66yD777LMHnGe49qsgVCvVnJNGcj6ybclJlegrh+QkQThwkJxUGSQfVaa/HJKThHIhlW6DoL29HQDQ1NTkiz/66KMYO3YsjjrqKCxfvhzd3d3D0T0AwGuvvYZJkyZh+vTpWLhwIbZt2wYA2Lx5MzKZDObNm+e2nTFjBqZMmYKNGzcOV3cBAOl0Go888gguvfRSGIbhxqtpv2refPNNtLa2+vZjQ0MDZs+e7e7HjRs3orGxESeeeKLbZt68eTBNE5s2bRryPlPa29thGAYaGxt98dtuuw1jxozB8ccfj69//evIZrPD0r8NGzZg/PjxeN/73ocvfvGL2LNnjzutmverIAwH1Z6TRmI+AiQnDSWSkwThwEFyUvmRfDS0SE4SykV0uDswUrEsC1dddRVOOeUUHHXUUW7805/+NA477DBMmjQJ//u//4trr70WW7duxY9+9KMh7+Ps2bPx3e9+F+973/uwc+dOfPWrX8U///M/4+WXX0Zrayvi8XjgIjJhwgS0trYOeV8pP/nJT9DW1oaLL77YjVXTfqXofTVhwgRfnO7H1tZWjB8/3jc9Go2iqalpWPd1b28vrr32WlxwwQVIpVJu/F/+5V9wwgknoKmpCc888wyWL1+OnTt34u677x7S/p1xxhk499xzMW3aNLz++uv4t3/7N3zkIx/Bxo0bEYlEqna/CsJwUO05aaTmI0By0lAhOUkQDhwkJ1UGyUdDh+QkoZzIQ7cSWbx4MV5++WWf/h+ATyd99NFHY+LEiZg7dy5ef/11HH744UPax4985CPu52OOOQazZ8/GYYcdhh/84AeoqakZ0r4Uw0MPPYSPfOQjmDRpkhurpv16IJDJZPDJT34Stm3jm9/8pm/asmXL3M/HHHMM4vE4Pv/5z2PFihVIJBJD1sfzzz/f/Xz00UfjmGOOweGHH44NGzZg7ty5Q9YPQRgJVHtOGqn5CJCcNBRIThKEAwvJSZVB8tHQIDlJKDciLy2BJUuW4Oc//zl++9vf4tBDDw1tO3v2bADA3/72t6HoWiiNjY1473vfi7/97W9obm5GOp1GW1ubr82uXbvQ3Nw8PB0E8Pe//x2/+c1v8LnPfS60XbXsV72v+jsa0f3Y3NyM3bt3+6Zns1ns3bt3WPa1TiR///vfsW7dOt/bG47Zs2cjm83irbfeGpoODsD06dMxduxY95hX234VhOFiJOakkZCPAMlJQ4HkJEE4sJCcVBkkHw0NkpOESiAP3YrAtm0sWbIEP/7xj/Hkk09i2rRpeed56aWXAAATJ06scO/y09nZiddffx0TJ07ErFmzEIvFsH79enf61q1bsW3bNrS0tAxbH1evXo3x48fjzDPPDG1XLft12rRpaG5u9u3Hjo4ObNq0yd2PLS0taGtrw+bNm902Tz75JCzLchPjUKETyWuvvYbf/OY3GDNmTN55XnrpJZimGShRHmr+8Y9/YM+ePe4xr6b9KgjDwUjOSSMhHwGSkyqN5CRBOHCQnFRZJB9VHslJQsUYTheHkcYXv/hFu6Ghwd6wYYO9c+dO9193d7dt27b9t7/9zb755pvtP/7xj/abb75p//SnP7WnT59uf+ADHxiW/l599dX2hg0b7DfffNN++umn7Xnz5tljx461d+/ebdu2bX/hC1+wp0yZYj/55JP2H//4R7ulpcVuaWkZlr7atm3ncjl7ypQp9rXXXuuLD/d+3b9/v/3iiy/aL774og3Avvvuu+0XX3zRdbK57bbb7MbGRvunP/2p/b//+7/22WefbU+bNs3u6elxl3HGGWfYxx9/vL1p0yb7D3/4g33EEUfYF1xwwZD2NZ1O2x//+MftQw891H7ppZd853BfX59t27b9zDPP2Pfcc4/90ksv2a+//rr9yCOP2OPGjbMvvPDCIe3r/v377X/913+1N27caL/55pv2b37zG/uEE06wjzjiCLu3t9ddxlDtV0GoRkZSThpp+ci2JSdVuq+SkwThwEJyUuWQfFT5/kpOEiqJPHQrAgDsv9WrV9u2bdvbtm2zP/CBD9hNTU12IpGw3/Oe99jXXHON3d7ePiz9/dSnPmVPnDjRjsfj9iGHHGJ/6lOfsv/2t7+503t6euwvfelL9ujRo+3a2lr7E5/4hL1z585h6att2/avfvUrG4C9detWX3y49+tvf/tb9rhfdNFFtm07lthf+cpX7AkTJtiJRMKeO3duYBv27NljX3DBBXZ9fb2dSqXsSy65xN6/f/+Q9vXNN98c8Bz+7W9/a9u2bW/evNmePXu23dDQYCeTSXvmzJn2rbfe6ruAD0Vfu7u77dNPP90eN26cHYvF7MMOO8y+7LLL7NbWVt8yhmq/CkI1MpJy0kjLR7YtOanSfZWcJAgHFpKTKofko8r3V3KSUEkM27btgkriBEEQBEEQBEEQBEEQBEEoCBnTTRAEQRAEQRAEQRAEQRDKjDx0EwRBEARBEARBEARBEIQyIw/dBEEQBEEQBEEQBEEQBKHMyEM3QRAEQRAEQRAEQRAEQSgz8tBNEARBEARBEARBEARBEMqMPHQTBEEQBEEQBEEQBEEQhDIjD90EQRAEQRAEQRAEQRAEoczIQzdBEARBEARBEARBEARBKDPy0E0QBEEQBEEQBEEQBEEQyow8dBMEQRAEQRAEQRAEQRCEMiMP3YQRzcyZM/Htb387b7s9e/Zg/PjxeOuttwZs86EPfQhXXXVV+TqnOP/883HXXXeVfbmCIAhC9SD5SBAEQagWJCcJQvUgD92EEUtPTw9ee+01HHvssXnb3nLLLTj77LMxderUynesH9dffz1uueUWtLe3D/m6BUEQhMoj+UgQBEGoFiQnCUJ1IQ/dhBHLyy+/DNu2cdRRR4W26+7uxkMPPYRFixYNUc/8HHXUUTj88MPxyCOPDMv6BUEQhMoi+UgQBEGoFiQnCUJ1IQ/dhBHHSy+9hNNOOw2nnnoqLMvClClTcO+99w7Y/he/+AUSiQTmzJnjxrq6unDhhReivr4eEydOZEubLcvCihUrMG3aNNTU1ODYY4/FD3/4Q1+b/fv3Y+HChairq8PEiRNxzz33sCXYH/vYx/DYY48NarsFQRCE6kLykSAIglAtSE4ShOpEHroJI4rXX38dH/zgB3Haaafh4x//OM4991xcffXVWLp0KV566SV2nt///veYNWuWL3bNNdfgqaeewk9/+lP8+te/xoYNG/DCCy/42qxYsQIPP/wwVq1ahVdeeQVLly7FZz7zGTz11FNum2XLluHpp5/G//zP/2DdunX4/e9/H1gOAJx88sl47rnn0NfXN/idIAiCIAw7ko8EQRCEakFykiBUMbYgjCDmzZtnX3zxxbZt2/bJJ59s33XXXXYul7NTqZR93333sfOcffbZ9qWXXur+f//+/XY8Hrd/8IMfuLE9e/bYNTU19pVXXmnbtm339vbatbW19jPPPONb1qJFi+wLLrjAtm3b7ujosGOxmP3444+709va2uza2lp3OZo//elPNgD7rbfeKnnbBUEQhOpB8pEgCIJQLUhOEoTqJTrMz/wEoWBaW1vx5JNP4plnnkEul8Of//xnrFixAqZpIhKJIB6Ps/P19PQgmUy6/3/99deRTqcxe/ZsN9bU1IT3ve997v//9re/obu7Gx/+8Id9y0qn0zj++OMBAG+88QYymQxOPvlkd3pDQ4NvOZqamhoAztgJgiAIwshG8pEgCIJQLUhOEoTqRh66CSOGZ599FpZl4bjjjsPWrVvR09OD4447Dm+99Rb27duH97///ex8Y8eOxb59+4paV2dnJwDgiSeewCGHHOKblkgkiu773r17AQDjxo0rel5BEAShupB8JAiCIFQLkpMEobqRMd2EEUM6nQYA9Pb24sUXX8Rhhx2GpqYmrFq1CkcddRSOPvpodr7jjz8er776qvv/ww8/HLFYDJs2bXJj+/btw1//+lf3/0ceeSQSiQS2bduG97znPb5/kydPBgBMnz4dsVgMzz//vDtfe3u7bzmal19+GYceeijGjh07uJ0gCIIgDDuSjwRBEIRqQXKSIFQ3UukmjBhaWloQjUZx8803o7OzE9OnT8d//ud/4v7778fvfve7AeebP38+li9fjn379mH06NGor6/HokWLcM0112DMmDEYP348/v3f/x2m6T2DHjVqFP71X/8VS5cuhWVZOPXUU9He3o6nn34aqVQKF110EUaNGoWLLroI11xzDZqamjB+/HjceOONME0ThmH4+vD73/8ep59+esX2jSAIgjB0SD4SBEEQqgXJSYJQ3chDN2HEMHnyZHznO9/Btddei507dyIajaK7uxtr164NOO9Qjj76aJxwwgn4wQ9+gM9//vMAgK9//evo7OzExz72MYwaNQpXX3012tvbffN97Wtfw7hx47BixQq88cYbaGxsxAknnIB/+7d/c9vcfffd+MIXvoCzzjoLqVQKX/7yl7F9+3bf+Ai9vb34yU9+grVr15Z5jwiCIAjDgeQjQRAEoVqQnCQI1Y1h27Y93J0QhGJpamrCd7/7XXz84x8vqP0TTzyBa665Bi+//LLvbU256erqwiGHHIK77roLixYtAgB885vfxI9//GP8+te/rth6BUEQhOFB8pEgCIJQLUhOEoTqQyrdhBHHP/7xD+zbtw9HHXVUwfOceeaZeO2117Bjxw53vIFy8OKLL+Ivf/kLTj75ZLS3t+Pmm28GAJx99tlum1gshvvvv79s6xQEQRCqA8lHgiAIQrUgOUkQqhOpdBNGHL/85S9x3nnnYf/+/YFxAYaaF198EZ/73OewdetWxONxzJo1C3ffffeAA5YKgiAIBw6SjwRBEIRqQXKSIFQn8tBNEARBEARBEARBEARBEMpM5YTbgiAIgiAIgiAIgiAIgnCQIg/dBEEQBEEQBEEQBEEQBKHMyEM3QRAEQRAEQRAEQRAEQSgz8tBNEARBEARBEARBEARBEMqMPHQTBEEQBEEQBEEQBEEQhDIjD90EQRAEQRAEQRAEQRAEoczIQzdBEARBEARBEARBEARBKDPy0E0QBEEQBEEQBEEQBEEQyow8dBMEQRAEQRAEQRAEQRCEMiMP3QRBEARBEARBEARBEAShzMhDN0EQBEEQBEEQBEEQBEEoM/8fYRHKI/ZY+IwAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAFyCAYAAABV6cU5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhz0lEQVR4nO3de1wU5f4H8M8uCwuiQKDcDBVNU9PEK6KmlSReTklaRzycNCM99RNTUUv9eSmPRVleskyOdso6aZantDJ/nMi7SaignTTFa4LpooksgnLbeX5/7O5c2mHZ2R1gF79vX/MSZp6ZfWZY+O7zned5RsMYYyCEEELcgLaxK0AIIYRYUVAihBDiNigoEUIIcRsUlAghhLgNCkqEEELcBgUlQgghboOCEiGEELdBQYkQQojboKBECCHEbVBQIoQQ4jYoKBGPs2HDBmg0Gn7x9fVFp06dkJqaiqKiosauHiHEBbrGrgAhzlqyZAmio6NRUVGBAwcOYO3atdixYweOHz+OZs2aNXb1CCFOoKBEPNaIESPQp08fAMCzzz6LkJAQrFixAl999RXGjx/fyLWTx3Ecqqqq4Ovr29hVIcQtUfqONBkPP/wwAODChQuoqanB3//+d3To0AF6vR7t2rXD/PnzUVlZyZdPS0tDSEgIxBPlT5s2DRqNBqtXr+bXFRUVQaPRYO3atfy6yspKLF68GPfccw/0ej2ioqLw4osvSo4PABqNBqmpqdi4cSPuu+8+6PV6ZGZm1tclIMTjUVAiTca5c+cAACEhIXj22WexaNEi9OrVCytXrsSQIUOQnp6OpKQkvvwDDzyA4uJinDhxgl+3f/9+aLVa7N+/X7IOAAYPHgzA3Np57LHH8NZbb+HRRx/FO++8g8TERKxcuRLjxo2zqdeuXbswc+ZMjBs3Dm+//TbatWtXH6dPSNPACPEwH374IQPAvv/+e3bt2jVWWFjINm/ezEJCQpifnx/bs2cPA8CeffZZyX6zZ89mANiuXbsYY4xdvXqVAWDvvfceY4yxkpISptVq2ZNPPsnCwsL4/V544QUWHBzMOI5jjDH2r3/9i2m1WrZ//37J8TMyMhgA9sMPP/DrADCtVstOnDhRL9eCkKaGWkrEY8XHx6NVq1aIiopCUlISmjdvjq1bt+LgwYMAzOk5sVmzZgEAvv32WwBAq1at0LlzZ+zbtw8A8MMPP8DLywtz5sxBUVERzpw5A8DcUho0aBA0Gg0AYMuWLejSpQs6d+6M33//nV+s6cPdu3dLXnfIkCHo2rVrPV0FQpoW6uhAPNaaNWvQqVMn6HQ6hIWF4d5774VWq8XWrVuh1Wpxzz33SMqHh4cjKCgIFy9e5Nc98MAD2LFjBwBz8OnTpw/69OmD4OBg7N+/H2FhYfjpp5/wl7/8hd/nzJkzOHnyJFq1aiVbr6tXr0q+j46OVuuUCWnyKCgRj9WvXz++950ca8vGnkGDBmH9+vU4f/489u/fjwceeAAajQaDBg3C/v37ERkZCY7j8MADD/D7cByH7t27Y8WKFbLHjIqKknzv5+fn4BkRQigokSanbdu24DgOZ86cQZcuXfj1RUVFKCkpQdu2bfl11mCTlZWFw4cPY+7cuQDMnRrWrl2LyMhI+Pv7o3fv3vw+HTp0wE8//YShQ4c6FPgIIY6je0qkyRk5ciQAYNWqVZL11pbNqFGj+HXR0dFo3bo1Vq5cierqagwcOBCAOVidO3cO//73v9G/f3/odMLntz//+c/47bffsH79epvXvn37NsrLy9U+JULuGNRSIk1Ojx49MHHiRKxbtw4lJSUYMmQIDh06hI8++giJiYl46KGHJOUfeOABbN68Gd27d8ddd90FAOjVqxf8/f1x+vRpyf0kAHjqqafw+eef47nnnsPu3bsxcOBAmEwmnDp1Cp9//jn+85//2E0rEkJqR0GJNEnvv/8+2rdvjw0bNmDr1q0IDw/HvHnzsHjxYpuy1qA0aNAgfp1Op0NcXBy+//57yf0kANBqtdi2bRtWrlyJjz/+GFu3bkWzZs3Qvn17TJ8+HZ06dar38yOkqdIwJhrOTgghhDQiuqdECCHEbVBQIoQQ4jYoKBFCCHEbFJQIIYS4DQpKhBBC3AYFJUIIIW6DxinJ4DgOly9fRosWLWgaGULuEIwx3Lx5E5GRkdBqnfu8XlFRgaqqKsX7+fj40NOILSgoybh8+bLNpJqEkDtDYWEh7r77bsX7VVRUIDo6HAaDUfG+4eHhuHDhAgUmuFlQ2rdvH958803k5ubiypUr2Lp1KxITEyVlTp48iZdeegl79+5FTU0Nunbtii+++AJt2rQBYH5jzJo1C5s3b0ZlZSUSEhLw3nvvISwszOF6tGjRwvKVFgC1lAi5MzAAnOj3X5mqqioYDEacv7gSAQGOzwxfWnob7dvORFVVFQUluFlQKi8vR48ePfDMM89gzJgxNtvPnTuHQYMGISUlBa+88goCAgJw4sQJyQ9y5syZ+Pbbb7FlyxYEBgYiNTUVY8aMwQ8//OBwPYSUnQYUlAi5s7iasg8I8FMUlIiU204zpNFobFpKSUlJ8Pb2xr/+9S/ZfYxGI1q1aoVNmzbhiSeeAACcOnUKXbp0QXZ2Nvr37+/Qa5eWliIwMBCAFygoEXKnYABMMBqNCAgIULy39e/GteJ3FbeUWgWnOv26TY3H9L7jOA7ffvstOnXqhISEBISGhiI2Nhbbtm3jy+Tm5qK6uhrx8fH8us6dO6NNmzbIzs5uhFoTQu40jJkUL0TgMUHp6tWrKCsrw+uvv47hw4fju+++w+OPP44xY8Zg7969AACDwQAfHx8EBQVJ9g0LC4PBYKj12JWVlSgtLZUshBDiDI7VKF6IwK3uKdnDcRwAYPTo0Zg5cyYAICYmBgcPHkRGRgaGDBni9LHT09PxyiuvqFJPQsidjbEaMAWBRknZO4HHtJRatmwJnU6Hrl27StZ36dIFBQUFAMzdKquqqlBSUiIpU1RUhPDw8FqPPW/ePBiNRn4pLCxUvf6EkDuDOSVXo2Ch9J2YxwQlHx8f9O3bF/n5+ZL1p0+fRtu2bQEAvXv3hre3N3bu3Mlvz8/PR0FBAeLi4mo9tl6vR0BAgGQhhBBnMK5G8UIEbpW+Kysrw9mzZ/nvL1y4gGPHjiE4OBht2rTBnDlzMG7cOAwePBgPPfQQMjMz8c0332DPnj0AgMDAQKSkpCAtLQ3BwcEICAjAtGnTEBcX53DPO0IIcQmrMS9KyhOeWwWlI0eO4KGHHuK/T0tLAwBMnDgRGzZswOOPP46MjAykp6fjhRdewL333osvvvhC8hjrlStXQqvVYuzYsZLBs4QQ0hDonpJr3HacUmOicUqE3InUGad06dKLCAjQK9ivEnffvYzGKVm4VUuJEEI8nbml5KWoPBFQUCKEEDVxNQDneFACdXSQ8Jjed4QQQpo+aikRQoiaqKXkEgpKhBCiKpPCbt40eFaMghIhhKhIw9VAwzl+Z0RDLSUJCkqEEKImrgZQEJQofSdFQYkQQtREQcklFJQIIURFGlYDDVOQvqNxShIUlAghRE0cB3AKOi9YHstDzCgoEUKIiswdHRyfnow6OkhRUCKEEDVxJoX3lKhLuBgFJUIIURNXAyhoKVFHBymaZogQQojboJYSIYSoSMOZFA6epfSdGLWUCCFETcxkua/k4MKUB6U1a9agXbt28PX1RWxsLA4dOmS3/JYtW9C5c2f4+vqie/fu2LFjh7TKjGHRokWIiIiAn58f4uPjcebMGUmZ4uJiJCcnIyAgAEFBQUhJSUFZWZnNcd566y106tQJer0erVu3xquvvqro3CgoEQJAI/OPEGdoOM7SWnJ0UdYl/LPPPkNaWhoWL16MvLw89OjRAwkJCbh69aps+YMHD2L8+PFISUnB0aNHkZiYiMTERBw/fpwvs2zZMqxevRoZGRnIycmBv78/EhISUFFRwZdJTk7GiRMnkJWVhe3bt2Pfvn2YMmWK5LWmT5+O999/H2+99RZOnTqFr7/+Gv369VN0fvTkWRn05Nk7j1wQYqBfjTuLOk+eNeQMQUBzx++MlJbVIDx2r8OvGxsbi759++Ldd98FAHAch6ioKEybNg1z5861KT9u3DiUl5dj+/bt/Lr+/fsjJiYGGRkZYIwhMjISs2bNwuzZswEARqMRYWFh2LBhA5KSknDy5El07doVhw8fRp8+fQAAmZmZGDlyJC5duoTIyEicPHkS999/P44fP457773X4fP/I2opEUKIipS1kkz8PaXS0lLJUllZaXPsqqoq5ObmIj4+nl+n1WoRHx+P7Oxs2fpkZ2dLygNAQkICX/7ChQswGAySMoGBgYiNjeXLZGdnIygoiA9IABAfHw+tVoucnBwAwDfffIP27dtj+/btiI6ORrt27fDss8+iuLhY0fWjoEQ8hlyKTa1/7vB6pIlQcj/JugCIiopCYGAgv6Snp9sc+vfff4fJZEJYWJhkfVhYGAwGg2x1DAaD3fLW/+sqExoaKtmu0+kQHBzMlzl//jwuXryILVu24OOPP8aGDRuQm5uLJ554wqHLxh9XUWlCCCF2mVs/SmZ0MAelwsJCSfpOr9erXrf6xHEcKisr8fHHH6NTp04AgH/+85/o3bs38vPzHU7pUUuJEELU5GRLKSAgQLLIBaWWLVvCy8sLRUVFkvVFRUUIDw+XrU54eLjd8tb/6yrzx44UNTU1KC4u5stERERAp9PxAQkAunTpAgAoKCiwc8GkKCiRRncnprzuxHO+U2g4ZumB5+jieIcaHx8f9O7dGzt37uTXcRyHnTt3Ii4uTnafuLg4SXkAyMrK4stHR0cjPDxcUqa0tBQ5OTl8mbi4OJSUlCA3N5cvs2vXLnAch9jYWADAwIEDUVNTg3PnzvFlTp8+DQBo27atw+dI6TtCCFETZwKU9PJWOHg2LS0NEydORJ8+fdCvXz+sWrUK5eXlmDRpEgBgwoQJaN26NX9Pavr06RgyZAiWL1+OUaNGYfPmzThy5AjWrVsHANBoNJgxYwaWLl2Kjh07Ijo6GgsXLkRkZCQSExMBmFs8w4cPx+TJk5GRkYHq6mqkpqYiKSkJkZGRAMwdH3r16oVnnnkGq1atAsdxmDp1Kh555BFJ66kuFJQIIURNTGFQUjh4dty4cbh27RoWLVoEg8GAmJgYZGZm8h0VCgoKoNUKSbABAwZg06ZNWLBgAebPn4+OHTti27Zt6NatG1/mxRdfRHl5OaZMmYKSkhIMGjQImZmZ8PX15cts3LgRqampGDp0KLRaLcaOHYvVq1fz27VaLb755htMmzYNgwcPhr+/P0aMGIHly5crOj8apySDximpr8FTUZpG+rk18K8TjaVSkzrjlK593w0B/l6O71duQqv4406/blNDLSVCCFGRhnHQMAW97xg95E+MghIhhKipnu8pNXVu1ftu3759ePTRRxEZGQmNRoNt27bVWva5556DRqPBqlWrJOsdmTSQ1K9660Wm0Ti+NJYGrh/12HNDHKd8ITy3Ckrl5eXo0aMH1qxZY7fc1q1b8eOPP/K9PsQcmTSQEELqDQUll7hV+m7EiBEYMWKE3TK//fYbpk2bhv/85z8YNWqUZNvJkyeRmZkpmTTwnXfewciRI/HWW2/JBjGiDtU/oTdma6chyJ2fSp0kxD8L6gjR8Mxjj5SVJwK3ainVheM4PPXUU5gzZw7uu+8+m+2OTBoop7Ky0mYyREIIcQq1lFziUUHpjTfegE6nwwsvvCC73ZFJA+Wkp6dLJkKMiopStd6EkDsIBSWXeExQys3Nxdtvv40NGzZAo3JqZ968eTAajfxSWFio6vGJAqp3VNA20KICd+ioQVxHQcklHhOU9u/fj6tXr6JNmzbQ6XTQ6XS4ePEiZs2ahXbt2gFwbNJAOXq93mYyREIIcUoDPA69KXOrjg72PPXUU7IPqnrqqaf4OZ/Ekwb27t0bgO2kgYQQUp+oo4Nr3CoolZWV4ezZs/z3Fy5cwLFjxxAcHIw2bdogJCREUt7b2xvh4eH8czocmTSQuCFKV9myXhOaBYzcYdwqKB05cgQPPfQQ/31aWhoAYOLEidiwYYNDx6hr0kBCCKlXHKdwRgdqKYm5VVB68MEHoWR+2F9//dVmXXBwMDZt2qRirQghRAEKSi5xq6BE7lDiDyKqp/I89Bee0naei2PKAo2Ch/zdCSgoEUKImjimsKVEQUmMghIhhKiJ4wBOQYufgpIEBSWiCrk51pyaD89e2qop9dKrh/QczXPnJigouYSCEiGEqInSdy6hoETqjWqtJ/6A9MsLUIvI7TEOUPDkWXpfS1FQIoQQNTGFLSUKShIUlAghRE2UvnMJBSXSoBxNPd2Jj/WmtFwTQUHJJR4zSzghhJCmj1pKhBCiIsaZFyXliYCCEnFLlMoiHovSdy6hoEQIIWrioDAo1VdFPBMFJUIIURMFJZdQUCKEEDUxy6KkPOFRUCKEEBUxTgOmYO476uggRUGJEELUROk7l9A4JUIIURPTmGcJd3RRMk+exZo1a9CuXTv4+voiNjYWhw4dslt+y5Yt6Ny5M3x9fdG9e3fs2LFDWmXGsGjRIkRERMDPzw/x8fE4c+aMpExxcTGSk5MREBCAoKAgpKSkoKysjN/+66+/QqPR2Cw//vijonOjoEQIISqypu+ULEp89tlnSEtLw+LFi5GXl4cePXogISEBV69elS1/8OBBjB8/HikpKTh69CgSExORmJiI48eP82WWLVuG1atXIyMjAzk5OfD390dCQgIqKir4MsnJyThx4gSysrKwfft27Nu3D1OmTLF5ve+//x5Xrlzhl969eys6Pw1jNBvgH5WWliIwMBCAF3AHTnfT1LkyhRGNn2rKGAATjEYjAgICFO9t/btxbakfAnwdf4+VVjC0WnDb4deNjY1F37598e677wIAOI5DVFQUpk2bhrlz59qUHzduHMrLy7F9+3Z+Xf/+/RETE4OMjAwwxhAZGYlZs2Zh9uzZAACj0YiwsDBs2LABSUlJOHnyJLp27YrDhw+jT58+AIDMzEyMHDkSly5dQmRkJH799VdER0fj6NGjiImJcfj8/4haSoQQ4iGqqqqQm5uL+Ph4fp1Wq0V8fDyys7Nl98nOzpaUB4CEhAS+/IULF2AwGCRlAgMDERsby5fJzs5GUFAQH5AAID4+HlqtFjk5OZJjP/bYYwgNDcWgQYPw9ddfKz5H6uhACCFqYgrvE1ka36WlpZLVer0eer1esu7333+HyWRCWFiYZH1YWBhOnTole3iDwSBb3mAw8Nut6+yVCQ0NlWzX6XQIDg7myzRv3hzLly/HwIEDodVq8cUXXyAxMRHbtm3DY489ZvcSSI7rcElCGok7zRheH3WhlGDT4myX8KioKMn6xYsX4+WXX1axZvWrZcuWSEtL47/v27cvLl++jDfffJOCEiGENBpOa+5V53B584eSwsJCyT2lP7aSAPMffi8vLxQVFUnWFxUVITw8XPbw4eHhdstb/y8qKkJERISkjPXeUHh4uE1HipqaGhQXF9f6uoD5/ldWVlat2+XQPSVCCFGTku7g1gVAQECAZJELSj4+Pujduzd27twpvBzHYefOnYiLi5OtTlxcnKQ8AGRlZfHlo6OjER4eLilTWlqKnJwcvkxcXBxKSkqQm5vLl9m1axc4jkNsbGytl+LYsWOSQOcIaimRRudUSkzjTBpN7c9gTox6lOnsau/8KbXneRjTgCm4p6S0/3NaWhomTpyIPn36oF+/fli1ahXKy8sxadIkAMCECRPQunVrpKenAwCmT5+OIUOGYPny5Rg1ahQ2b96MI0eOYN26dQAAjUaDGTNmYOnSpejYsSOio6OxcOFCREZGIjExEQDQpUsXDB8+HJMnT0ZGRgaqq6uRmpqKpKQkREZGAgA++ugj+Pj4oGfPngCAL7/8Eh988AHef/99RedHQYkQQtTkZPrOUePGjcO1a9ewaNEiGAwGxMTEIDMzk++oUFBQAK1W+AA2YMAAbNq0CQsWLMD8+fPRsWNHbNu2Dd26dePLvPjiiygvL8eUKVNQUlKCQYMGITMzE76+vnyZjRs3IjU1FUOHDoVWq8XYsWOxevVqSd3+/ve/4+LFi9DpdOjcuTM+++wzPPHEE4rOz63GKe3btw9vvvkmcnNzceXKFWzdupWP1NXV1ViwYAF27NiB8+fPIzAwEPHx8Xj99df5SA2YRx1PmzYN33zzDX/h3n77bTRv3tzhetA4pYZ1p7eU7BanllIDUmeckmHuXQjwdfy9VlrBIfz1G06/blPjVveUysvL0aNHD6xZs8Zm261bt5CXl4eFCxciLy8PX375JfLz8216dTg66pg0Po3ln/xGjf0FWruLBjqZRavyYvsaddXL/jnVfo3cqQciqUMDTDPUlLlVS0lMo9FIWkpyDh8+jH79+uHixYto06aNQ6OOHUEtpYZh9w9tnS0h+5+nNI30eYvV2Xqys72OX0VqNdU3dVpKV14MQYBeQUupkkPEsuvUUrJwq5aSUkajERqNBkFBQQCUjTomhJB6wWmVL4TnsR0dKioq8NJLL2H8+PH8pwtHRh3LqaysRGVlJf/9H0dWE9ep3SqSbQlpHP3lduWPgP2WkKReMg/KkW/rWMrJXQdR60nuGlLryf0oHzxL2RgxjwzR1dXV+POf/wzGGNauXevy8dLT0xEYGMgvfxxZTQghpGF4XFCyBqSLFy8iKytLkoN1dtTxvHnzYDQa+aWwsLDe6k9E7Nzgl3ZasF2gkVkapMOD3PFq6eAgU0fZc+EXO9fIqd6GpDFYxykpWYjAo9J31oB05swZ7N69GyEhIZLt4lHH1md4ODLqWG7iQ0IIcYrS+0T05FkJtwpKZWVlOHv2LP/9hQsXcOzYMQQHByMiIgJPPPEE8vLysH37dphMJv4+UXBwMHx8fBwadUwIIfWJ7im5xq26hO/ZswcPPfSQzfqJEyfi5ZdfRnR0tOx+u3fvxoMPPgjAPHg2NTVVMnh29erVNHi2EdQ5tkY2JWWnU4NsRwb5T6RyHSE0djtCyG2z/xGWyXZkkNtHZp1oX8f3oS7j9UudLuGFqa0VdwmPevc36hJu4VYtpQcffBD2YqQj8TM4OBibNm1Ss1qEEOI4St+5xK2CEiGEeDpK37mGghJxS87MyOB4ys6V8UzCx1rxsa2pPHEd6p7dAZJ9HC1P3JvyWcIpKIlRUCKEEDUxhek7uhUoQUGJEEJUROk711BQIm5JnMpyNJXn+D7iNJmjn2gdS605k4KjtF3TwpiylJz79H92Dx43owMhhJCmi1pKhBCiJoXpO0VPqb0DUFAi9UY8mFN2IK01byEZRGtNZdn2YtPIpTlq+X22FhUPcJVP6TmfOnNmoKzyfWnArKdhTAvGHE9CudH8BW6BghIhhKjJ+kRZJeUJj4ISaRDWT/R2W0ximrpaF5ZPorW2hOw8y8jh5y7JkGn11FrU0dYQv4Njn5ipdeTeaJySaygoEUKIiqhLuGsoKBFCiIronpJrKCiRBuVo6km2U4OESebYonX2HopXn38DXPgDQ2m5poFaSq6hoEQIISqie0quoaBECCEqoqDkGgpKxC25nMqiPD1pJIwpTN9RUJKgoEQIISqijg6uobnvCCGEuA1qKRFCiIqo951rKCgRQoiKqKODaygoEUKIiigouYbuKZFGp6nrn0Yrs+hsFq3Gx/6i9VV3qeP15Oooey52/hHPwzghhefYovw11qxZg3bt2sHX1xexsbE4dOiQ3fJbtmxB586d4evri+7du2PHjh3SOjOGRYsWISIiAn5+foiPj8eZM2ckZYqLi5GcnIyAgAAEBQUhJSUFZWVlsq939uxZtGjRAkFBQYrPjYISIYSoyNpSUrIo8dlnnyEtLQ2LFy9GXl4eevTogYSEBFy9elW2/MGDBzF+/HikpKTg6NGjSExMRGJiIo4fP86XWbZsGVavXo2MjAzk5OTA398fCQkJqKio4MskJyfjxIkTyMrKwvbt27Fv3z5MmTLF5vWqq6sxfvx4PPDAA4rOy0rDqD+ijdLSUgQGBgLwQq0P7GlktX2KdtepamTry08FpBWVs3wtmclbK90GQKPRWf73st0XgJbfLt5HKCu3jz1yM34zZhJ9bd7OsRqbfaTlamSOZ/la9JFZ2C4qJ/Or6kk/b3etq4ABMMFoNCIgIEDx3ta/G8f+1A8tvB2/M3KzugYx2w85/LqxsbHo27cv3n33XQAAx3GIiorCtGnTMHfuXJvy48aNQ3l5ObZv386v69+/P2JiYpCRkQHGGCIjIzFr1izMnj0bAGA0GhEWFoYNGzYgKSkJJ0+eRNeuXXH48GH06dMHAJCZmYmRI0fi0qVLiIyM5I/90ksv4fLlyxg6dChmzJiBkpISh68FQC0lQghRFcc0ihfAHNTES2Vlpc2xq6qqkJubi/j4eH6dVqtFfHw8srOzZeuTnZ0tKQ8ACQkJfPkLFy7AYDBIygQGBiI2NpYvk52djaCgID4gAUB8fDy0Wi1ycnL4dbt27cKWLVuwZs0apZdNOB+n9ySEEGJL0f0k4YGAUVFRCAwM5Jf09HSbQ//+++8wmUwICwuTrA8LC4PBYJCtjsFgsFve+n9dZUJDQyXbdTodgoOD+TLXr1/H008/jQ0bNjjV0uSP6/SeRJGGumntyuuonV6R1EUuVWdNsYnehtZ1Wo03v85L6yOzTg8A0Gn0/Drx116Wst4QrYO3pQbidKGXzTorDuJ0mslmnQnV/NfVMH+qNTFhXQ2rlPwPACbO/DUnKmfiqmzWCWk+cTrQ+rXowYaiH1m9/vzc8HiAe6YEne19V1hYKPljrtfra9vFLU2ePBl/+ctfMHjwYJeOQy0lQghRkbMdHQICAiSLXFBq2bIlvLy8UFRUJFlfVFSE8PBw2fqEh4fbLW/9v64yf+xIUVNTg+LiYr7Mrl278NZbb0Gn00Gn0yElJQVGoxE6nQ4ffPCBQ9cOcDEoVVdXo7CwEPn5+SguLnblUACAffv24dFHH0VkZCQ0Gg22bdsm2a52t0VCCPEkPj4+6N27N3bu3Mmv4zgOO3fuRFxcnOw+cXFxkvIAkJWVxZePjo5GeHi4pExpaSlycnL4MnFxcSgpKUFubi5fZteuXeA4DrGxsQDM952OHTvGL0uWLEGLFi1w7NgxPP744w6fo+L03c2bN/HJJ59g8+bNOHToEKqqqsAYg0ajwd13341hw4ZhypQp6Nu3r9JDo7y8HD169MAzzzyDMWPG2Gy3dlv86KOPEB0djYULFyIhIQG//PILfH19AZi7LV65cgVZWVmorq7GpEmTMGXKFGzatElxfRzhUkrC3oPoauXo5wgHBz+IenRZz8XVlAh/TUTnx6foNMJbTqsxp+WsqTgA0Gn9AADelv/NXzcDAOg1zfl1vjB/7cea8ev0zIf/2o/zsewj9LjztvTE02mFa6izVrWO3mI1li9rOOG6Vot6y1Vaetjd1lQJ6yxf39be4tdVeJVZygsflKq5W5b/bwuvZ/namu4DAA6WY4t7+GmEr62pPFd+fvZ7STpC5fenVS2dhB39/WvINF99D55NS0vDxIkT0adPH/Tr1w+rVq1CeXk5Jk2aBACYMGECWrduzd+Tmj59OoYMGYLly5dj1KhR2Lx5M44cOYJ169YBADQaDWbMmIGlS5eiY8eO/N/WyMhIJCYmAgC6dOmC4cOHY/LkycjIyEB1dTVSU1ORlJTE97zr0qWLpJ5HjhyBVqtFt27dFJ2foqC0YsUKvPrqq+jQoQMeffRRzJ8/H5GRkfDz80NxcTGOHz+O/fv3Y9iwYYiNjcU777yDjh07Onz8ESNGYMSIEbLbGGNYtWoVFixYgNGjRwMAPv74Y4SFhWHbtm18t8XMzExJt8V33nkHI0eOxFtvvSXptkgIIfWBY1pwCmYJV1IWMHfxvnbtGhYtWgSDwYCYmBhkZmbyHRUKCgqgFX3wGjBgADZt2oQFCxZg/vz56NixI7Zt2yYJFi+++CLKy8sxZcoUlJSUYNCgQcjMzOQ/7APAxo0bkZqaiqFDh0Kr1WLs2LFYvXq1oro7QtE4pfHjx2PBggW477777JarrKzEhx9+CB8fHzzzzDPOVUyjwdatW/lIff78eXTo0AFHjx5FTEwMX27IkCGIiYnB22+/jQ8++ACzZs3CjRs3+O01NTXw9fXFli1bam1CVlZWSrpflpaWIioqCo6MU2pKLSV+VVNoKTE3ailpRC0luNBSYjItJVFHCOvP8k5qKTm8u0PXRJ1xSj/GD0ZzneOf98tqatD/+31Ov25To6il9OmnnzpUTq/X47nnnnOqQrVRq9uinPT0dLzyyiuy25wKOg7/Etv/BXZ0YKejx5YbAAqN7TpnenTJ9bQT96qzBiMvUbDRac2fwry9hGCj11qCjUb45fRnQQCAFiahXIClp52/l/AaLbyFc/azxKJmoir4eTHLawjn5GXZxUvmOphEaRWTZXMlJwS52ybh4LdqrOuE87tZbd6p3BTIryu19MS7qRWCUrlXiXlfbSm/rpIzb682CeVqLK9tEgUvyc/Kkspz6ecn+96Vfx82yPuTfzEFQUwmgNn7PVY7tUdz37mGet8BmDdvHoxGI78UFhY2dpUIIR6qvqcZauqcHqeUlpYmu16j0cDX1xf33HMPRo8ejeDgYKcrJybuthgREcGvLyoq4tN5jnRblKPX6z1uTAAhxD2JZ2lwtDwROB2Ujh49iry8PJhMJtx7770AgNOnT8PLywudO3fGe++9h1mzZuHAgQPo2rWryxUVd1u0BiFrt8Xnn38egLTbYu/evQHYdltUxoE3S52pOtvGqN20h0Zum6sNWs72dS33Q5hMOcm9IDs9umpPiVjnr7O9f2RN2QFC2q6Z1138uuYIAQAEcELKKxjm+0ZBPsLg2SAf82sHCasQ5CPMMRfoY05ltdAJ91z8vc2DU/10wiBVHy/zdi+tTPqOE65XlSVVd7tGeMHyauHrmzXm7cYq4ZxLqszptpJqH9E6b8s64UNQMTOn/Eq1wv2xMq/rAADhbpRAPJeepNb8PS5hu70elfKDm8Vs5xxU//0pGghsPY7stNnCa8in+UTr5M7Fzj0p4Rqpg9J3rnH63TR69GjEx8fj8uXLyM3NRW5uLi5duoRHHnkE48ePx2+//YbBgwdj5syZDh+zrKyM7+MOmOdkOnbsGAoKCiTdFr/++mv8/PPPmDBhQq3dFg8dOoQffvjBptsiIYTUJ0rfucbpltKbb76JrKwsSW+RwMBAvPzyyxg2bBimT5+ORYsWYdiwYQ4f88iRI3jooYf4760pwokTJ2LDhg1u1W2REELkUPrONU4HJaPRiKtXr9qk5q5du4bSUnMvoqCgIFRVVcntLuvBBx+EvR7qGo0GS5YswZIlS2otExwcXG8DZe2n6hT0UHIwBSK3r0Z2X1tMkgIx7yNJe1g7W0l6alnJ9MgTpXpkeytJun/bpn34uepEKSpfrfkDjTVlBwBBXBAAoJXGn18XotdZ/hderpXenKIK9RXeXyG+wrNfgv3KAQCBzcr5df7NzMkwv2ZC7zWdjzmV5yVK81mZaoRfjxpL2u32LaF3Xfkt4VyMt8z1Lb4t1Pt6hfnD0tUKIX13TWdO6flWCuu8K83XScuJ3l+WS8dp63g8hklcb8vPWdxTTWFPNEcfIyLZLj624venTFpOcgz7vUOFfeU4n9JzBWPKUnL08CApl9J3zzzzDLZu3YpLly7h0qVL2Lp1K1JSUvh02qFDh9CpUye16koIIW6P0neucbql9I9//AMzZ85EUlISamrMn9Z0Oh0mTpyIFStWAAA6d+6M999/X52aNhZXOzLYaRXV/UlTbrvtg+rkmWzWaMSzXls7OshOUyPeyfoAOtvpiKRsz1kj6uhgbSmJB8X6WgbDtuBa8OvusnRquMtH2LeVpYUU4SfUNdzP3CoK97/JrwsNLBGOc5f56+YhwjrfYHML3itAaD1p/c0tJY23zCDiauE8uXJzS8lUKrSEKoqF1HXZ9SDz694I4te1MJq/9vUSzs/H0tFDK/rV45j565pKoeVl4sw/vyrRFEU1WutM5LazjgOigbSSGQLMx6l7UGztnRqks7jX//vT0Va+ZF9Ji9+2FSY7WNd6/tRUcStOB6XmzZtj/fr1WLlyJc6fPw8AaN++PZo3FwY4imdeIISQOwFTeE+JWkpSLvU13r9/P5577jk899xzCAkJQfPmzfGvf/0LBw4cUKt+hBDiUSh95xqnW0pffPEFnnrqKSQnJyMvL4+fO85oNOK1117Djh07VKtk46ljHI6kpONjOfiOAA6mQpy5ocxkbiCLsxRC5kJcb+sOCucls2G5cS96KJ/WksoTP4jPOn9dMyb0nmzubT7nQNH4oxBLp4ZWvkKqypq2i7hLeGRKy7BrwnEizV/rw4V5ELXh5oOylq34dZy/OQXH+QppOStNhZDm8yo3p/50v//Or/M2GPmvfQzm6YB8Lgt1lB37ZPkDVCXq1FBhMp/zbZOQ+rpVbb4m5RAyDxUa82toJeO/hAvFz43nCpn3ZG3vU7n3p733pTgtZy3HJClluWNY08ei40iOats5QkhD26YB7afxaq26IjROyTVOt5SWLl2KjIwMrF+/Ht7ewi/GwIEDkZeXp0rlCCHE01i7hCtZiMDpllJ+fr7sY28DAwNRUlLiSp0IIcRjUUvJNU4HpfDwcJw9exbt2rWTrD9w4ADat2/var3clMIpg0T7yKc47KdCbMsrmJlZ/D5ntuv4VIlMmk9unfxryP8yyaUnNTCfn5co3eTNP15CeBv6Wh4r4S96Zzb3NqfvAn2E1FiQZfxRYJCQQvMPFVJ5+kjz19o2Qs83U+toAEB1yzbCugDz1xpvIU1mxaqFGbq9SgvMdQ4sENb5XhBeT2t+PVYjpOCqLWORblcKKcuyKvPXRtEURf7WsUuiR2pYr4m36HEc1mtnvZaA/HtD2nvSsR5msu871P4+FW939P0pLsdk0nL2U3qiAzk8tk7ufVxHjzwV0OBZ1zidvps8eTKmT5+OnJwcaDQaXL58GRs3bsTs2bP5uegIIeROw6BRvBCB0y2luXPnguM4DB06FLdu3cLgwYOh1+sxe/ZsTJs2Tc06EkKIx6D0nWucDkoajQb/+7//izlz5uDs2bMoKytD165dJeOU7igOTq+i6JAa29TfH7fVSpyt0diuY9ZBleKUCt8TT3lao660ovV1tKLUk84yaNRL9ElRp7X+L1RWb+nF5iuaCsjXx9zTzMdPSOnpmgvTB2kDzcfkglvy66qDzZPymoKFWUb0zcwpPZ1OGLhqVVMjDFyt1Fl6CHKiwca3hYG7WmOZTR2sdbPWVXwOelHPPOu56rTCdbBeE+s1AgCtNcVbx8/e4fSrLPs96eTS0E71vuOnMJLf7hJrHdQ6nkKUvnON00HJysfHR5VHUxBCSFNALSXXKApKtT3YT451qiFCCCHEUYqC0tGjRyXf5+XloaamxuYhf9YH7BFCyJ2Gg8L0HXV0kFAUlHbv3s1/vWLFCrRo0QIfffQR7rrL/OTQGzduYNKkSXjggQfUrSUhhHgISt+5xul7SsuXL8d3333HByQAuOuuu7B06VIMGzYMs2bNUqWCHkN8U1WlTg/8jV/xU6utY1HquInL5GYEl7npLT2O8zeGxceW+xXjnwUkmh26xjJDuUk0hqaGs/4vHKXS8ljyCtHzjSqqzON3qm4LY4BqyoQZyHWWjgfaYtG0QH6WMUta4TiVNebZxqscHadUfJlfJz42Z2Q2dbDWzVpX8TlUih61bj3XGtHlN1l6pdSIZnG3XjslP3vlbN83suOLzN+Y1TKGyB4mOyO4Shqpg4MVB42i1g+1lKScDkqlpaW4du2azfpr167h5s2bMnsQQsgdQOkkq9RSknD6I/3jjz+OSZMm4csvv+Qf8vfFF18gJSUFY8aMUbOOhBDiMWjuO9c43VLKyMjA7Nmz8Ze//AXV1eYHpel0OqSkpODNN99UrYLupfZHONc+TseaOhORmTqF8TMbC+ktfkoXmQeY1TlLuCiFIaRKxA9Ws5PSczT9I5l23HZ/aR3Mr21i1fy6ao15/E6laOxPBWd+S5bXCOdXVm2+DsYqIVXX3PL4cb+SQH6dt14YD6TRmV9PzwmzhHtVnAIAaI2itJv/WXP96pglXGuZJVwjmiWcMwjnUmkINtf7ajC/zmipW8kt4djWc7Cek/lczf9XcML1qrQ88rxaK5yT9dqJ3yNyP2cJBx9gZ2+KKenDIUU7yYx/s5eJkkvVSdPMtg/+g+x7ybGUs/z7uP5Te3RPyTVOB6VmzZrhvffew5tvvolz584BADp06AB/f9tfbkIIuVNwUBb6GvcOmPtxefCsv78/7r//fjXqQgghHo9aSq5RFJQKCgrQpk2bugta/Pbbb2jdurXiSrkPBvl8hO3DwyS9zyTpDNupe5jNF8J26bQ/1mK2Kb06e2DZSYVI9xf3plLrM5ulp50oVcdZ0lE1TJgWyPrQulsaoXVdVmOeCdtYLVwH30rzOftohfSdl0aY/dvKJOrRVlVhLtvcKPSq871mTsF5BQgddLT+5t50Wm/bNBerFn72pnJzvUylQl0rigOEel8PAgDcuBHEr7tqNH9tKBfqes1Sr+uVQvrOaLlMZTXCz+yWxtwrsAJCD0DrtbNeS/PXwjVW5TO3pBepZZXk4XyionLvT9E0UnZfxsFUHV++rpRdXWlMe9eGz0mq85Q/jimbOohT6eGCTYWijg59+/bF3/72Nxw+fLjWMkajEevXr0e3bt3wxRdfuFxBQgjxJDRLuGsUBaVffvkF/v7+eOSRRxAeHo5Ro0Zh8uTJmDZtGv7617+iV69eCA0NxQcffIBly5bhhRdeqK96E0KIW2qI3ndr1qxBu3bt4Ovri9jYWBw6dMhu+S1btqBz587w9fVF9+7dsWPHDsl2xhgWLVqEiIgI+Pn5IT4+HmfOnJGUKS4uRnJyMgICAhAUFISUlBSUlQkt+fz8fDz00EMICwuDr68v2rdvjwULFvAd4RylKH0XEhKCFStW4NVXX8W3336LAwcO4OLFi7h9+zZatmyJ5ORkJCQkoFu3booq4dYkPczspfLkBxhq5JrmGttykBkUK9+jz7EUjcMpENm0hzilJ5PWsqQ5NJJPeLZpQAYhzWTizKmnao0wi7Y1fXdTK8zQ7cWZ0z+6KiFNprU88I4TvV2rOPMg1QqTkC66WeXLfx1cZk6ZBV4XesP5NzPP+u3XTKiDzsf8C+MlmoGcr7NosG5NlTl9d/uWMDi2/JZQb6Olh13xbaHe1yvM9blaIQyevWZJ210Xspi4UWV+7RsQZiW/qTWP9atgwi99NWeut/VaAgATpfIgl5K1bhKlpjRCXk4ooLHtJWp97zLRAF5hJvn6fn/aOZ4r+0orYX+7m/rss8+QlpaGjIwMxMbGYtWqVUhISEB+fj5CQ0Ntyh88eBDjx49Heno6/vSnP2HTpk1ITExEXl4e/7d62bJlWL16NT766CNER0dj4cKFSEhIwC+//AJfX/P7ODk5GVeuXEFWVhaqq6sxadIkTJkyBZs2bQIAeHt7Y8KECejVqxeCgoLw008/YfLkyeA4Dq+99prD56dhzEN/MvWotLQUgYGBAHTSP7y1PGnVTL7RKfuLK9ud27Gn2tb5yAqLBg9KomujsQQPjUb4Y6zzMv+x9vES7sP4eQUBAAI0wi9SEGde10p0nylEr7P8L7xcK735nkSor9BlOsS3gv862M/yZNpmQrdudw1K1yvNr32NCXUt0ZYAAErZVX7dbZN5XZWpVKiXSdiHMfO1EH8YsP78ZIOSGP/zkwk6kvec/aCk3vvTquGCkvka1cBoNCIgIEB+Hzusfzc+vC8Jzbx86t7B4papCpNObHb4dWNjY9G3b1+8++67AACO4xAVFYVp06Zh7ty5NuXHjRuH8vJybN++nV/Xv39/xMTEICMjA4wxREZGYtasWZg9ezYA822YsLAwbNiwAUlJSTh58iS6du2Kw4cPo0+fPgCAzMxMjBw5EpcuXUJkZKRsXdPS0nD48GHs37/f4euh/kOACCHkDlaf95SqqqqQm5uL+Ph4fp1Wq0V8fDyys7Nl98nOzpaUB4CEhAS+/IULF2AwGCRlAgMDERsby5fJzs5GUFAQH5AAID4+HlqtFjk5ObKve/bsWWRmZmLIkCEOnx+gQpfwhmQymfDyyy/jk08+gcFgQGRkJJ5++mksWLAAGssnPcYYFi9ejPXr16OkpAQDBw7E2rVr0bFjR9crINeo5D9hyn8qk83eybZNrfPcyaUBxT3ynOlhVfunTccHItbRoBZdG6axbXFZU041GiFFVWF98J+XqMeW5VQ5UZek6gpzi6TC5M2vK68x71NSJbRcgkQtkkBLK6aFUZib0d/b3Cry0wk5bh8vc6vCS2t77pLefCbzr8rtGlEdqoWvb1paVcYq4VeqpMpSR1FKvaSKWdYJK4stabtSrZFfV4brAIAKTtQq4m5Z6iVK30GmpVtH8kM+/Wpl20tU2ptUfBw13p+OtYQkm908VefsQ/5KS0sl6/V6PfR6vWTd77//DpPJhLCwMMn6sLAwnDp1Svb4BoNBtrzBYOC3W9fZK/PH1KBOp0NwcDBfxmrAgAHIy8tDZWUlpkyZgiVLlsifeC08qqX0xhtvYO3atXj33Xdx8uRJvPHGG1i2bBneeecdvow1N5qRkYGcnBz4+/sjISEBFRUVdo5MCCHqYEz5AgBRUVEIDAzkl/T09MY9ESd99tlnyMvLw6ZNm/Dtt9/irbfeUrS/R7WUDh48iNGjR2PUqFEAgHbt2uHTTz/le54wxrBq1SosWLAAo0ePBgB8/PHHCAsLw7Zt25CUlKTwFWsbpyQuYq/1BMjfdLb9hClslOvooM74Icdz9qJWj50WUu33Kayf2Gv+uAY1nO04lluir01acwuiSiusvc2CAAClVcKYo5Jq8ydIfy/hLdzCWzi2n6X11UynF60z11cvetS6l+USe8k0X02iT7smywlUimYvv20Svr5VY10n7H+z2rxTuUm4DqWWsUY3tUIHhnJNieU8hU/KlZx5e7VJNE6JM3+w4phwH018jevq4GBvG3/6Mu9d6RRZDf3+lNbFsQMpaxUJ10Gd1hRTOEu4NX1XWFgouaf0x1YSALRs2RJeXl4oKiqSrC8qKkJ4eLjs8cPDw+2Wt/5fVFSEiIgISZmYmBi+zNWrVyXHqKmpQXFxsc3rRkVFAQC6du0Kk8mEKVOmYNasWfDycmwMm6KW0s2bNzFr1ix06dIFrVq1wj333IORI0fi1VdfrbXpqKYBAwZg586dOH36NADgp59+woEDBzBixAgAjuVGCSGkPllndFCyAEBAQIBkkQtKPj4+6N27N3bu3Mmv4zgOO3fuRFxcnGx94uLiJOUBICsriy8fHR2N8PBwSZnS0lLk5OTwZeLi4lBSUoLc3Fy+zK5du8BxHGJjY2u9FhzHobq6Ghzn+IcKRS2lCRMmIDc3F5MnT0ZYWBhu376Nl156CefPn8eiRYvwpz/9CWvXrq21J4ar5s6di9LSUnTu3BleXl4wmUx49dVXkZycDMCx3KicyspKVFYKefo/5nYJIcRRzt5TclRaWhomTpyIPn36oF+/fli1ahXKy8sxadIkAOa/061bt+bTf9OnT8eQIUOwfPlyjBo1Cps3b8aRI0ewbt06AIBGo8GMGTOwdOlSdOzYke8SHhkZicTERABAly5dMHz4cEyePBkZGRmorq5GamoqkpKS+L/3GzduhLe3N7p37w69Xo8jR45g3rx5GDduHLy9vW1PpBaKgtJ3332HAwcOoGfPnvy6BQsWYMeOHfDy8sKrr76Kvn374sCBA4iOjlZyaId8/vnn2LhxIzZt2oT77rsPx44dw4wZMxAZGYmJEyc6fdz09HS88sorstvqusEve7PY0fSBxpkbuo42bp2Y6Zt/XeVpDLlUkHh8i3WdiRO6Y1unmhFPm2PSWsYzidN3WvOHhJteQvquGOav/TihW7Ze1NHBj5m/1muElIG3pWOFTitcQ53lxyfXvVl8TjWWL2s4IT9XLUplVVrO5bZGSK1VWr6+LToX67RBleLxRybz9mrRtamRGZPEp+1E16uu7t+O4js/yPbMqa0TTwO8P/kXcy215sw1cf61lCUCldZs3LhxuHbtGhYtWgSDwYCYmBhkZmbyH8YLCgqgFb3HBwwYgE2bNmHBggWYP38+OnbsiG3btknGk7744osoLy/HlClTUFJSgkGDBiEzM5MfowSYg05qaiqGDh0KrVaLsWPHYvXq1fx2nU6HN954A6dPnwZjDG3btkVqaipmzpyp6PwUjVNq3749/vWvf2HgwIH8uhYtWuCnn35C+/btAQBLly7FoUOH8PXXXyuqiCOioqIwd+5cTJ06lV+3dOlSfPLJJzh16hTOnz+PDh064OjRo3wuFACGDBmCmJgYvP3227LHlWspmfOiXqjrnpJ8DyYH2R33VBv3DEpi/DWRGbsEjfA5SGsZx+QlmtNOpzX3pvPWCr3qvC2Da/Ua0Tx21qDEREGJuRKUbH8W8kFJuK4OByVNHUGJa/ygZGV/DJMjPDkoMQAml8cpvdtpAvwUjFO6bapC6umPnX7dpkbRPaXU1FQ888wz+Omnn2ot89e//hW7du1yuWJybt26JfkEAABeXl58vtKR3KgcvV5vk88lhBBncE4sRKAofZeWlobLly+jV69eeOSRR5CYmAiO4/gxQgCwefNmtGzZUvWKAsCjjz6KV199FW3atMF9992Ho0ePYsWKFXjmmWcAOJYbVZujn0pdSvNJyM2urA61UhxyqSA+lSdqXXDW3l0muemIhJkKvLTmT523NN6idebWlU4jamWJvvbSmst6Q7QO5nVa8VQ5zNyS0sp8PuNEfy6sM2FzolSWSSN6YCHM9RY/xNA6q3eNqLVjPT/x7N4mrspmnXX6IHFLSJhSSH7GDTV+fnVOR1Sn+nt/ymnItBxpGIq7hL/11lt48skn8dZbb2HWrFm4ffs2evTogZYtW8JoNKKiogIbNmyoh6oC77zzDhYuXIj/+Z//wdWrVxEZGYm//e1vWLRoEV/GkdwoIYTUF3qekmtcmvuuqqoKeXl5OH36NEpLS9GyZUs8/PDDspMCehJh7ru67yk5yqV7Tw1E7U+d8nPjiVoplvtLGtFnI+s6raRV5COzro6WksZOS0kyf5vClpJ4lgo42FJintNSErvz3rPq3FNaec/Tiu8pzTy7ge4pWbg0eNbHxwf9+/dH//791apPk9VQfzDcKZ0hOzhTlN6x9t4S/+HVWFJrnGi6pRrLdD8auYAm6sgg3q7lt4v3sR28Jz/Ttdy5yAxMFT2ozjq9DifphMDJlKuRbDNzfXLc+qB2hwl3em/Wp/rufdfUedSMDoQQ4u7qe5xSU0dBiRBCVKS0Rx31vpOioOShPC0VIltfZp2tWnxfxGT9QmCdAV6yr2PPn5IWUHn+YbVms7ZzW9fTfs5WnlpvNVBHB9dQUCKEEBUxKGv93LnhWx4FJdLolDyrSSA3I3adL0RIvWNQ2FLygF6ODYmCEiGEqIhj5kVJeSKgoEQIISqiLuGuoaBECCEqoi7hrvGox6ETQghp2qilRAghKqJxSq6hoETcksvzrjn1rCoVuPDcnzt5bE9TQuOUXENBiRBCVEQtJddQUCKEEBUxpqzB7OJDdZscCkqkQTmclqsz/ebENEN8QRf699QxtZD49ByeZsi6q4N/nCjN5944aMApSD8rKXsnoKBECCEqosGzrqGgRAghalKYvqOGrxQFJdIg7KbtZFN1Dqbnak3FuZDes0dBeo5/PUnKT1v7vhrHZhAXX0tK5bkfSt+5hoISIYSoiDo6uIaCEqk3dXZqUNpCkm0Vybd+rPto6uzU4GjrybYVI255WR+HLvv3ReY0xZ0ahFaTuC6WdeJrRK0mj0Bdwl1D0wwRQghxG9RSIoQQFVHvO9dQUCJuyZlOCY7v40yCwLqP/WSLJKXnYGJGY6/zA/E49OgK11BQIoQQFZlbSkoeXVGPlfFAFJQIIURF1PvONRSUiFticuN9nNiHicYICT3x5NJkcq9hP53GZKYcciYFR2m7poV637mGghIhhKiIWkquoS7hhBCiIs6JRak1a9agXbt28PX1RWxsLA4dOmS3/JYtW9C5c2f4+vqie/fu2LFjh2Q7YwyLFi1CREQE/Pz8EB8fjzNnzkjKFBcXIzk5GQEBAQgKCkJKSgrKysr47Xv27MHo0aMREREBf39/xMTEYOPGjYrPzeOC0m+//Ya//vWvCAkJgZ+fH7p3744jR47w2x25uKRhMNE/x9n5NWWcsNiUl+7DwNmkxRjj7Cw1Mou98nW/nuy52NRfrrzjf6acu8akPjEmdAt3ZFHaUvrss8+QlpaGxYsXIy8vDz169EBCQgKuXr0qW/7gwYMYP348UlJScPToUSQmJiIxMRHHjx/nyyxbtgyrV69GRkYGcnJy4O/vj4SEBFRUVPBlkpOTceLECWRlZWH79u3Yt28fpkyZInmd+++/H1988QX++9//YtKkSZgwYQK2b9+u6Pw0jHlO4/HGjRvo2bMnHnroITz//PNo1aoVzpw5gw4dOqBDhw4AgDfeeAPp6en46KOPEB0djYULF+Lnn3/GL7/8Al9fX4dep7S0FIGBgQC8IDscnygmO7uD3cdTCJ+XHJ/zrp7mu3OAw4+psHsfqo5gJPOrSsFITQyACUajEQEBAYr3tv7dmBL6N/ho9Q7vV8VVYt3Vfzj8urGxsejbty/effddAADHcYiKisK0adMwd+5cm/Ljxo1DeXm5JDj0798fMTExyMjIAGMMkZGRmDVrFmbPng0AMBqNCAsLw4YNG5CUlISTJ0+ia9euOHz4MPr06QMAyMzMxMiRI3Hp0iVERkbK1nXUqFEICwvDBx984PD18KiW0htvvIGoqCh8+OGH6NevH6KjozFs2DA+IDHGsGrVKixYsACjR4/G/fffj48//hiXL1/Gtm3bGrfyhJA7gpJWktKBtlVVVcjNzUV8fDy/TqvVIj4+HtnZ2bL7ZGdnS8oDQEJCAl/+woULMBgMkjKBgYGIjY3ly2RnZyMoKIgPSAAQHx8PrVaLnJycWutrNBoRHBzs+AnCw4LS119/jT59+uDJJ59EaGgoevbsifXr1/PbHbm4ciorK1FaWipZSAOwe0dYSGUxmUWSyuNTYrYLQ43MIn9Mxxa549XIvrZcHWXPxW7Kkim/c04alfhH5ugCwOZvUGVlpc2xf//9d5hMJoSFhUnWh4WFwWAwyNbHYDDYLW/9v64yoaGhku06nQ7BwcG1vu7nn3+Ow4cPY9KkSbLba+NRQen8+fNYu3YtOnbsiP/85z94/vnn8cILL+Cjjz4C4NjFlZOeno7AwEB+iYqKqr+TIIQQGVFRUZK/Q+np6Y1dJaft3r0bkyZNwvr163Hfffcp2tejuoRzHIc+ffrgtddeAwD07NkTx48fR0ZGBiZOnOj0cefNm4e0tDT++9LSUgpMKpO798HfZ5JrBUjuN8ndh5F7EUfHNtXfyJC6xxzZ2V5Ha4juH3kGZ8cpFRYWSu4p6fW296VatmwJLy8vFBUVSdYXFRUhPDxc9vjh4eF2y1v/LyoqQkREhKRMTEwMX+aPHSlqampQXFxs87p79+7Fo48+ipUrV2LChAm1nHXtPKqlFBERga5du0rWdenSBQUFBQCkF1fM3g8MMP/wAwICJAshhDjD2XtKf/wbJBeUfHx80Lt3b+zcuVN4PY7Dzp07ERcXJ1ufuLg4SXkAyMrK4stHR0cjPDxcUqa0tBQ5OTl8mbi4OJSUlCA3N5cvs2vXLnAch9jYWH7dnj17MGrUKLzxxhuSnnlKeFRQGjhwIPLz8yXrTp8+jbZt2wJw7OISQkh9Yk4sSqSlpWH9+vX46KOPcPLkSTz//PMoLy/n791MmDAB8+bN48tPnz4dmZmZWL58OU6dOoWXX34ZR44cQWpqKgBAo9FgxowZWLp0Kb7++mv8/PPPmDBhAiIjI5GYmAjA/OF/+PDhmDx5Mg4dOoQffvgBqampSEpK4nve7d69G6NGjcILL7yAsWPHwmAwwGAwoLi4WNH5eVT6bubMmRgwYABee+01/PnPf8ahQ4ewbt06rFu3DoD04nbs2JHvEi6+uMR9WNNRst3F67qxL/focMmxHZ1KyBVOpAEVdliglJ3nqe9HV4wbNw7Xrl3DokWLYDAYEBMTg8zMTP5eekFBAbRa4b0+YMAAbNq0CQsWLMD8+fPRsWNHbNu2Dd26dePLvPjiiygvL8eUKVNQUlKCQYMGITMzUzKMZuPGjUhNTcXQoUOh1WoxduxYrF69mt/+0Ucf4datW0hPT5fcDxsyZAj27Nnj8Pl51DglANi+fTvmzZuHM2fOIDo6GmlpaZg8eTK/nTGGxYsXY926dfzFfe+999CpUyeHX4PGKTWsOp9QK7uTMz8XCkrEHnXGKSXfpXyc0sYbjo9Tauo8Lig1BApKDYuCkp3iFJQakDpBabwTQelTCko8j0rfkaaprj+8TqX3ZJmc2Kf+UeBpWjgoTN/VW008EwUlQghRET151jUUlAghREWMKWv90A0UKQpKxO2pnd5y6h6WBaXaSF0YU9hSoreUhEeNUyKEENK0UUuJEEJURI9Ddw0FJXLHoRQcqU8cM89Pr6Q8EVBQIoQQFVHvO9dQUCKEEBVxCnvfUUtJioISIYSoiFn+KSlPBBSUCCFERdRScg0FJUIIURH1vnMNBSVCCFERYwrTdzR6VoKCEiGEqIhaSq6hoETckitTAXkquuHdNFBLyTUUlAghREUMCidkra+KeCia+44QQojboJYSaVB3YlrOUY5eG0rzuTeOMYXTDNHPU4yCEiGEqIgGz7qGghIhhKiIet+5hoISqTeqp+o0TSj150LKprbrSp+43QMHhek7+rlJUFAihBAV0T0l11BQIqpQrVXUlFpD9tR1nk78oZL7GVDrqeHRPSXXUFAihBAVUfrONRSUCCFERRSUXENBiTS+ek3ZNdT4cJX7UFmvCd1v8DiUvnMNBSVCCFERU9hSoqAk5dHTDL3++uvQaDSYMWMGv66iogJTp05FSEgImjdvjrFjx6KoqKjxKkkIIcRhHhuUDh8+jH/84x+4//77JetnzpyJb775Blu2bMHevXtx+fJljBkzppFqSRzCmLAQM7oeHovTcIoXIvDIoFRWVobk5GSsX78ed911F7/eaDTin//8J1asWIGHH34YvXv3xocffoiDBw/ixx9/bMQaE0LuFNaODkoWIvDIoDR16lSMGjUK8fHxkvW5ubmorq6WrO/cuTPatGmD7Ozshq4mIeQOpDwkKW8prVmzBu3atYOvry9iY2Nx6NAhu+W3bNmCzp07w9fXF927d8eOHTukdWYMixYtQkREBPz8/BAfH48zZ85IyhQXFyM5ORkBAQEICgpCSkoKysrK+O0VFRV4+umn0b17d+h0OiQmJio+L8ADg9LmzZuRl5eH9PR0m20GgwE+Pj4ICgqSrA8LC4PBYKj1mJWVlSgtLZUspJGonrbiGmhRAaUxmwTzO6L+QtJnn32GtLQ0LF68GHl5eejRowcSEhJw9epV2fIHDx7E+PHjkZKSgqNHjyIxMRGJiYk4fvw4X2bZsmVYvXo1MjIykJOTA39/fyQkJKCiooIvk5ycjBMnTiArKwvbt2/Hvn37MGXKFH67yWSCn58fXnjhBZsGgxIeFZQKCwsxffp0bNy4Eb6+vqodNz09HYGBgfwSFRWl2rEJIXeW+r6ntGLFCkyePBmTJk1C165dkZGRgWbNmuGDDz6QLf/2229j+PDhmDNnDrp06YK///3v6NWrF959910A5lbSqlWrsGDBAowePRr3338/Pv74Y1y+fBnbtm0DAJw8eRKZmZl4//33ERsbi0GDBuGdd97B5s2bcfnyZQCAv78/1q5di8mTJyM8PNzp6+dRQSk3NxdXr15Fr169oNPpoNPpsHfvXqxevRo6nQ5hYWGoqqpCSUmJZL+ioiK7F2nevHkwGo38UlhYWM9nQghpqjgn/gGwydZUVlbaHLuqqgq5ubmSlohWq0V8fHyttyiys7NtWi4JCQl8+QsXLsBgMEjKBAYGIjY2li+TnZ2NoKAg9OnThy8THx8PrVaLnJwcJ6+UPI8KSkOHDsXPP/+MY8eO8UufPn2QnJzMf+3t7Y2dO3fy++Tn56OgoABxcXG1Hlev1yMgIECyEGWY6J86B2S2S1NSj+en+s+CKOJsUIqKipJkbORuUfz+++8wmUwICwuTrLd3i8JgMNgtb/2/rjKhoaGS7TqdDsHBwXZvjTjDowbPtmjRAt26dZOs8/f3R0hICL8+JSUFaWlpCA4ORkBAAKZNm4a4uDj079+/MapMCLnDKL1TZC1bWFgo+UCs1+tVr5sn8Kig5IiVK1dCq9Vi7NixqKysREJCAt57773GrtYdRe4TuiqziCtpTTTWbOMN3KKj1pD74TQcNAruE1lbSo5kaVq2bAkvLy+bCQHs3aIIDw+3W976f1FRESIiIiRlYmJi+DJ/7EhRU1OD4uJil+4fyfGo9J2cPXv2YNWqVfz3vr6+WLNmDYqLi1FeXo4vv/xS9YtGCCG1YQpTd0paVT4+Pujdu7fkFgXHcdi5c2ettyji4uIk5QEgKyuLLx8dHY3w8HBJmdLSUuTk5PBl4uLiUFJSgtzcXL7Mrl27wHEcYmNjHa6/I5pcS4kQQhoTgwlMwed9BpOi46elpWHixIno06cP+vXrh1WrVqG8vByTJk0CAEyYMAGtW7fm70lNnz4dQ4YMwfLlyzFq1Chs3rwZR44cwbp16wCAn6pt6dKl6NixI6Kjo7Fw4UJERkbyY426dOmC4cOHY/LkycjIyEB1dTVSU1ORlJSEyMhIvm6//PILqqqqUFxcjJs3b+LYsWMAwLe4HEFBiTQIe2km1R+bDjSZjhGUniN/NG7cOFy7dg2LFi2CwWBATEwMMjMz+Y4KBQUF0GqFoDhgwABs2rQJCxYswPz589GxY0ds27ZNcn/+xRdfRHl5OaZMmYKSkhIMGjQImZmZkqE3GzduRGpqKoYOHcrfIlm9erWkbiNHjsTFixf573v27AnA3O3cURqmpPQdorS0FIGBgQC8gPr4g0kk6iUoNREUlBoSA2CC0Wh0qgeu9e9GW/9HoNV4O7wfx6pxsTzL6ddtaqilRAghKjLPZaekowN98BCjoEQanaOtgabUoqIWUNNlvqfk+HtV6T2lpo6CEiGEqIhTOB8ip6DsnYCCEiGEqMjZwbPEjIIS8Rj1mfKSSw1Sio04g4MJSjpIcZS+k6CgRAghKqKWkmsoKBFCiIo4prClxKilJEZBiRBQqo6oh1pKrqGgRAghKjIHJcdbPxSUpDx+QlZCCCFNB7WUCCFERYxx4JQMnmXUUhKjoEQIISoyp+OUzOhAQUmMghIhhKiIKexNp7R8U0dBiRBCVGRO3lFLyVkUlAghREXme0R0T8lZFJQIIURFSmf9plnCpSgoEUKIiszPTVUweJaesypBQYkQQlSk9B4R3VOSoqBECCEqMvemc7z1Q/eUpCgoEUKIipQGGQpKUhSUCCFERZS+cw3NfUcIIcRtUEuJEEJUROk711BQIoQQFVH6zjUUlAghREXU+841HndPKT09HX379kWLFi0QGhqKxMRE5OfnS8pUVFRg6tSpCAkJQfPmzTF27FgUFRU1Uo0JIXcW6+BZRxcaPCvmcUFp7969mDp1Kn788UdkZWWhuroaw4YNQ3l5OV9m5syZ+Oabb7Blyxbs3bsXly9fxpgxYxqx1oSQOwVjnOKFCDTMw+e4uHbtGkJDQ7F3714MHjwYRqMRrVq1wqZNm/DEE08AAE6dOoUuXbogOzsb/fv3r/OYpaWlCAwMBOAFJRMrEkI8GQNggtFoREBAgOK9rX83NJoW0GiUTMjKwNhNp1+3qfG4ltIfGY1GAEBwcDAAIDc3F9XV1YiPj+fLdO7cGW3atEF2drbsMSorK1FaWipZCCHEOUpSd9aFWHl0UOI4DjNmzMDAgQPRrVs3AIDBYICPjw+CgoIkZcPCwmAwGGSPk56ejsDAQH6Jioqq76oTQpoqxilfCM+jg9LUqVNx/PhxbN682aXjzJs3D0ajkV8KCwtVqiEh5E7DwCleiMBju4SnpqZi+/bt2LdvH+6++25+fXh4OKqqqlBSUiJpLRUVFSE8PFz2WHq9Hnq9vr6rTAi5Iyh7yB/1vpPyuJYSYwypqanYunUrdu3ahejoaMn23r17w9vbGzt37uTX5efno6CgAHFxcQ1dXUIIIQp4XEtp6tSp2LRpE7766iu0aNGCv08UGBgIPz8/BAYGIiUlBWlpaQgODkZAQACmTZuGuLg4h3reEUKIa5jCxg+1lMQ8rkt4bV0tP/zwQzz99NMAzINnZ82ahU8//RSVlZVISEjAe++9V2v67o+MRqMl9acFdQkn5E5hHvRaUlJiGRKijHQoiVLOd0VvajwuKDWES5cuUQ88Qu5QhYWFkvvUjqqoqEB0dHStvXztCQ8Px4ULF+Dr66t436aGgpIMjuNw+fJltGjh+CC40tJSREVFobCw0CM+7VB9648n1RWg+loxxnDz5k1ERkZCq3XudntFRQWqqqoU7+fj40MBycLj7ik1BK1W69QnJQAICAjwiF9sK6pv/fGkugJUXwBOpe3EfH19Kbi4yON63xFCCGm6KCgRQghxGxSUVKLX67F48WKPGYRL9a0/nlRXgOpL3At1dCCEEOI2qKVECCHEbVBQIoQQ4jYoKBFCCHEbFJQUSk9PR9++fdGiRQuEhoYiMTER+fn5kjIPPvggNBqNZHnuuecavK4vv/yyTT06d+7Mb6+oqMDUqVMREhKC5s2bY+zYsSgqKmrwelq1a9fOpr4ajQZTp04F0PjXdd++fXj00UcRGRkJjUaDbdu2SbYzxrBo0SJERETAz88P8fHxOHPmjKRMcXExkpOTERAQgKCgIKSkpKCsrKxB61pdXY2XXnoJ3bt3h7+/PyIjIzFhwgRcvnxZcgy5n8frr7+uel3rqi8APP300zZ1GT58uKRMQ11bUr8oKCm0d+9eTJ06FT/++COysrJQXV2NYcOGoby8XFJu8uTJuHLlCr8sW7asUep73333Sepx4MABftvMmTPxzTffYMuWLdi7dy8uX76MMWPGNEo9AeDw4cOSumZlZQEAnnzySb5MY17X8vJy9OjRA2vWrJHdvmzZMqxevRoZGRnIycmBv78/EhISUFFRwZdJTk7GiRMnkJWVxT96ZcqUKQ1a11u3biEvLw8LFy5EXl4evvzyS+Tn5+Oxxx6zKbtkyRLJ9Z42bZrqda2rvlbDhw+X1OXTTz+VbG+oa0vqGSMuuXr1KgPA9u7dy68bMmQImz59euNVymLx4sWsR48esttKSkqYt7c327JlC7/u5MmTDADLzs5uoBraN336dNahQwfGcRxjzH2uK2OMAWBbt27lv+c4joWHh7M333yTX1dSUsL0ej379NNPGWOM/fLLLwwAO3z4MF/m//7v/5hGo2G//fZbg9VVzqFDhxgAdvHiRX5d27Zt2cqVK+utXrWRq+/EiRPZ6NGja92nsa4tUR+1lFxkNBoBAMHBwZL1GzduRMuWLdGtWzfMmzcPt27daozq4cyZM4iMjET79u2RnJyMgoICAEBubi6qq6sRHx/Pl+3cuTPatGmD7OzsRqmrWFVVFT755BM888wzkvkH3eW6/tGFCxdgMBgk1zMwMBCxsbH89czOzkZQUBD69OnDl4mPj4dWq0VOTk6D11nMaDRCo9FIHowJAK+//jpCQkLQs2dPvPnmm6ipqWmcCgLYs2cPQkNDce+99+L555/H9evX+W3ufG2JMjT3nQs4jsOMGTMwcOBAdOvWjV//l7/8BW3btkVkZCT++9//4qWXXkJ+fj6+/PLLBq1fbGwsNmzYgHvvvRdXrlzBK6+8ggceeADHjx+HwWCAj4+PzR+hsLAwp2Y5Vtu2bdtQUlLCP44EcJ/rKsd6zcLCwiTrxdfTYDAgNDRUsl2n0yE4OLhRr3lFRQVeeukljB8/XjKX3AsvvIBevXohODgYBw8exLx583DlyhWsWLGiwes4fPhwjBkzBtHR0Th37hzmz5+PESNGIDs7G15eXm57bYlyFJRcMHXqVBw/flxynwaAJI/dvXt3REREYOjQoTh37hw6dOjQYPUbMWIE//X999+P2NhYtG3bFp9//jn8/PwarB7O+Oc//4kRI0YgMjKSX+cu17Upqa6uxp///GcwxrB27VrJtrS0NP7r+++/Hz4+Pvjb3/6G9PT0Bp9NISkpif+6e/fuuP/++9GhQwfs2bMHQ4cObdC6kPpF6TsnpaamYvv27di9e3edM4rHxsYCAM6ePdsQVatVUFAQOnXqhLNnzyI8PBxVVVUoKSmRlCkqKnL4YYj15eLFi/j+++/x7LPP2i3nLtcVAH/N/th7UXw9w8PDcfXqVcn2mpoaFBcXN8o1twakixcvIisrq84Zt2NjY1FTU4Nff/21YSpoR/v27dGyZUv+Z+9u15Y4j4KSQowxpKamYuvWrdi1axeio6Pr3OfYsWMAgIiIiHqunX1lZWU4d+4cIiIi0Lt3b3h7e2Pnzp389vz8fBQUFCAuLq4Ra2l+inBoaChGjRplt5y7XFcAiI6ORnh4uOR6lpaWIicnh7+ecXFxKCkpQW5uLl9m165d4DiOD7ANxRqQzpw5g++//x4hISF17nPs2DFotVqbNFljuHTpEq5fv87/7N3p2hIXNXZPC0/z/PPPs8DAQLZnzx525coVfrl16xZjjLGzZ8+yJUuWsCNHjrALFy6wr776irVv354NHjy4wes6a9YstmfPHnbhwgX2ww8/sPj4eNayZUt29epVxhhjzz33HGvTpg3btWsXO3LkCIuLi2NxcXENXk8xk8nE2rRpw1566SXJene4rjdv3mRHjx5lR48eZQDYihUr2NGjR/kea6+//joLCgpiX331Ffvvf//LRo8ezaKjo9nt27f5YwwfPpz17NmT5eTksAMHDrCOHTuy8ePHN2hdq6qq2GOPPcbuvvtuduzYMcn7uLKykjHG2MGDB9nKlSvZsWPH2Llz59gnn3zCWrVqxSZMmKB6Xeuq782bN9ns2bNZdnY2u3DhAvv+++9Zr169WMeOHVlFRQV/jIa6tqR+UVBSCIDs8uGHHzLGGCsoKGCDBw9mwcHBTK/Xs3vuuYfNmTOHGY3GBq/ruHHjWEREBPPx8WGtW7dm48aNY2fPnuW33759m/3P//wPu+uuu1izZs3Y448/zq5cudLg9RT7z3/+wwCw/Px8yXp3uK67d++W/dlPnDiRMWbuFr5w4UIWFhbG9Ho9Gzp0qM15XL9+nY0fP541b96cBQQEsEmTJrGbN282aF0vXLhQ6/t49+7djDHGcnNzWWxsLAsMDGS+vr6sS5cu7LXXXpMEgYaq761bt9iwYcNYq1atmLe3N2vbti2bPHkyMxgMkmM01LUl9YtmCSeEEOI26J4SIYQQt0FBiRBCiNugoEQIIcRtUFAihBDiNigoEUIIcRsUlAghhLgNCkqEEELcBgUlQgghboOCEiGEELdBQYkQQojboKBEPF6XLl3w/vvv11nu+vXrCA0NtfvohQcffBAzZsxQr3IWSUlJWL58uerHJaSpoaBEPNrt27dx5swZ9OjRo86yr776KkaPHo127drVf8X+YMGCBXj11VdhNBob/LUJ8SQUlIhHO378OBhjksfRy7l16xb++c9/IiUlpYFqJtWtWzd06NABn3zySaO8PiGegoIS8UjHjh3Dww8/jEGDBoHjOLRp0warVq2qtfyOHTug1+vRv39/fl15eTkmTJiA5s2bIyIiQja9xnEc0tPTER0dDT8/P/To0QP//ve/JWVu3ryJ5ORk+Pv7IyIiAitXrpRNAz766KPYvHmzS+dNSFNHQYl4nHPnzmHIkCF4+OGH8dhjj2HMmDGYNWsWZs6cyT+N9o/279+P3r17S9bNmTMHe/fuxVdffYXvvvsOe/bsQV5enqRMeno6Pv74Y2RkZODEiROYOXMm/vrXv2Lv3r18mbS0NPzwww/4+uuvkZWVhf3799scBwD69euHQ4cOobKy0vWLQEhT1cjPcyJEsfj4ePb0008zxhjr168fW758OTOZTCwgIICtXr1adp/Ro0ezZ555hv/+5s2bzMfHh33++ef8uuvXrzM/Pz82ffp0xhhjFRUVrFmzZuzgwYOSY6WkpPBPNC0tLWXe3t5sy5Yt/PaSkhLWrFkz/jhWP/30EwPAfv31V6fPnZCmTtfYQZEQJQwGA3bt2oWDBw/CZDLh559/Rnp6OrRaLby8vODj4yO73+3bt+Hr68t/f+7cOVRVVSE2NpZfFxwcjHvvvZf//uzZs7h16xYeeeQRybGqqqrQs2dPAMD58+dRXV2Nfv368dsDAwMlx7Hy8/MDYL6/RQiRR0GJeJQff/wRHMchJiYG+fn5uH37NmJiYvDrr7/ixo0bGDBggOx+LVu2xI0bNxS9VllZGQDg22+/RevWrSXb9Hq94roXFxcDAFq1aqV4X0LuFHRPiXiUqqoqAEBFRQWOHj2Ktm3bIjg4GBkZGejWrRu6d+8uu1/Pnj3xyy+/8N936NAB3t7eyMnJ4dfduHEDp0+f5r/v2rUr9Ho9CgoKcM8990iWqKgoAED79u3h7e2Nw4cP8/sZjUbJcayOHz+Ou+++Gy1btnTtIhDShFFLiXiUuLg46HQ6LFmyBGVlZWjfvj3effddvPPOO9i3b1+t+yUkJGDevHm4ceMG7rrrLjRv3hwpKSmYM2cOQkJCEBoaiv/93/+FVit8TmvRogVmz56NmTNnguM4DBo0CEajET/88AMCAgIwceJEtGjRAhMnTsScOXMQHByM0NBQLF68GFqtFhqNRlKH/fv3Y9iwYfV2bQhpCigoEY8SFRWFDz74AC+99BKuXLkCnU6HW7duITMz06Z3nVj37t3Rq1cvfP755/jb3/4GAHjzzTdRVlaGRx99FC1atMCsWbNsBrf+/e9/R6tWrZCeno7z588jKCgIvXr1wvz58/kyK1aswHPPPYc//elPCAgIwIsvvojCwkLJPayKigps27YNmZmZKl8RQpoWDWOMNXYlCHFGcHAwNmzYgMcee8yh8t9++y3mzJmD48ePS1pEaisvL0fr1q2xfPlyfrDu2rVrsXXrVnz33Xf19rqENAXUUiIe6dKlS7hx40adMzmIjRo1CmfOnMFvv/3G3xNSw9GjR3Hq1Cn069cPRqMRS5YsAQCMHj2aL+Pt7Y133nlHtdckpKmilhLxSP/3f/+HJ598Ejdv3rS5d9PQjh49imeffRb5+fnw8fFB7969sWLFilo7XRBCakdBiRBCiNugLuGEEELcBgUlQgghboOCEiGEELdBQYkQQojboKBECCHEbVBQIoQQ4jYoKBFCCHEbFJQIIYS4DQpKhBBC3AYFJUIIIW6DghIhhBC38f+q8JAZdboQpQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def make_cart_plot(phi, theta, vals1, vals2, vals3):\n", " n_plots = 3\n", " fig, ax = plt.subplots(1, n_plots, tight_layout=True, figsize=(12.6, 3.8))\n", " im1 = ax[0].pcolormesh(\n", " phi * 180 / np.pi,\n", " theta * 180 / np.pi,\n", " np.real(vals1),\n", " cmap=\"RdBu\",\n", " shading=\"auto\",\n", " )\n", " im2 = ax[1].pcolormesh(\n", " phi * 180 / np.pi,\n", " theta * 180 / np.pi,\n", " np.real(vals2),\n", " cmap=\"RdBu\",\n", " shading=\"auto\",\n", " )\n", " im3 = ax[2].pcolormesh(\n", " phi * 180 / np.pi,\n", " theta * 180 / np.pi,\n", " np.real(vals3),\n", " cmap=\"RdBu\",\n", " shading=\"auto\",\n", " )\n", " fig.colorbar(im1, ax=ax[0])\n", " fig.colorbar(im2, ax=ax[1])\n", " fig.colorbar(im3, ax=ax[2])\n", " ax[0].set_title(\"Ex\")\n", " ax[1].set_title(\"Ey\")\n", " ax[2].set_title(\"Ez\")\n", " for _ax in ax:\n", " _ax.set_xlabel(\"$\\phi$ (deg)\")\n", " _ax.set_ylabel(\"$\\\\theta$ (deg)\")\n", "\n", "\n", "# get the fields in Cartesian coordinates from the projected data we already computed above\n", "fields_cartesian = projected_field_data.fields_cartesian.isel(f=0, r=0)\n", "\n", "# plot Ex, Ey, Ez\n", "make_cart_plot(\n", " phi_proj, theta_proj, fields_cartesian.Ex, fields_cartesian.Ey, fields_cartesian.Ez\n", ")\n", "\n", "# get the power\n", "power = projected_field_data.power.isel(f=0, r=0)\n", "\n", "# plot the power\n", "fig, ax = plt.subplots(1, 1, tight_layout=True, figsize=(4.3, 3.8))\n", "im = ax.pcolormesh(\n", " phi_proj * 180 / np.pi,\n", " theta_proj * 180 / np.pi,\n", " power,\n", " cmap=\"inferno\",\n", " shading=\"auto\",\n", ")\n", "fig.colorbar(im, ax=ax)\n", "_ = ax.set_title(\"Power\")\n", "_ = ax.set_xlabel(\"$\\phi$ (deg)\")\n", "_ = ax.set_ylabel(\"$\\\\theta$ (deg)\")\n", "\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Re-projection to a different distance \n", "We can re-project the already-computed far fields to a different distance away from the structure - _we neither need to run another simulation nor re-run the [FieldProjector](../_autosummary/tidy3d.FieldProjector)_. Instead, the fields can simply be renormalized as shown below.\n", "\n", "Note that by default, if no `proj_distance` was provided in the [FieldProjectionAngleMonitor](../_autosummary/tidy3d.FieldProjectionAngleMonitor), the fields are projected to a distance of 1m." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:50:37.493023Z", "iopub.status.busy": "2023-03-27T23:50:37.492874Z", "iopub.status.idle": "2023-03-27T23:50:37.904309Z", "shell.execute_reply": "2023-03-27T23:50:37.903798Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalized root mean squared error: 4.46 %\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxMAAAFyCAYAAACObYeGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC1uUlEQVR4nOyde3wU1fn/P7ObZBMCSQiEhGiQmxVUBASJIFWUlAStguAFi3KRglrxAniBVrmKCCJS8EL1ZwErlNZv1XppUQoCXhARpFZFBERBIKBAEnJPdub3x86ZPTN7dvbMZjfZJM/79dpXds+cOXN2duY8OfN8zvMomqZpIAiCIAiCIAiCcIiroTtAEARBEARBEETjhCYTBEEQBEEQBEGEBU0mCIIgCIIgCIIIC5pMEARBEARBEAQRFjSZIAiCIAiCIAgiLGgyQRAEQRAEQRBEWNBkgiAIgiAIgiCIsKDJBEEQBEEQBEEQYUGTCYIgCIIgCIIgwoImE0SzYtWqVVAUBd9//31Mt0kQBBFLfP/991AUBatWrXK87+bNm6EoCjZv3hyy7qBBgzBo0CDHx4gmDdUnJ+eNIBoSmkwQDcpzzz0HRVGQm5vb0F0JyeOPP4433nijobtBEAQRcdhDEdFr+vTpDd29Js1zzz0X1iSNIGKFuIbuANG8WbNmDTp27IhPP/0U+/fvR9euXRu6S0F5/PHHccMNN2D48OGm8ttuuw2jRo2Cx+NpmI4RBEFEiLlz56JTp06msgsvvBDnnHMOKioqEB8f30A9azjee++9qLb/3HPPoW3bthg3bpyp/PLLL0dFRQUSEhKienyCqCs0mSAajIMHD+Ljjz/Ga6+9hjvuuANr1qzBrFmzGrpbjnG73XC73Q3dDYIgiDozdOhQ9O3bV7gtMTGxnnsTHcrKypCcnCxdv6H+mXe5XE3mnBNNG5I5EQ3GmjVr0Lp1a1xzzTW44YYbsGbNGtN2ptFdvHgxXnjhBXTp0gUejweXXHIJduzYYar7xRdfYNy4cejcuTMSExORlZWF22+/HSdPnrTtw9ixY9G2bVvU1NQEbBsyZAjOO+88AICiKCgrK8Pq1asN1z97ihRszcS///1vXHHFFWjVqhVSUlJwySWXYO3atQ7PEkEQRMMTbM3EN998gxtuuAHp6elITExE37598eabb0q1ycb1pKQk9OvXDx988IF0fxRFweTJk7FmzRqcd955SExMRJ8+fbB161ZTvdmzZ0NRFHz99df4zW9+g9atW2PgwIEAgNraWsybN8+wLR07dsTvf/97VFVVmdoQrZmoqqrCrFmz0LVrV3g8HuTk5OChhx4K2BcAXnnlFfTr1w8tWrRA69atcfnllxvejo4dO+Krr77Cli1bDNvCjhVszcSrr76KPn36ICkpCW3btsWtt96KI0eOmOqMGzcOLVu2xJEjRzB8+HC0bNkSGRkZeOCBB+D1eqXPM0HIQJMJosFYs2YNRowYgYSEBNxyyy3Yt29fwCQBANauXYsnn3wSd9xxBx577DF8//33GDFihGkCsGHDBnz33XcYP348li9fjlGjRmHdunW4+uqroWla0D7cdtttOHnyJN59911TeWFhITZt2oRbb70VAPCXv/wFHo8Hv/zlL/GXv/wFf/nLX3DHHXcEbXfVqlW45pprcOrUKcyYMQNPPPEEevXqhfXr1zs9TQRBEPVGcXExfv75Z9MrGF999RUuvfRS7NmzB9OnT8dTTz2F5ORkDB8+HK+//rrtcV566SXccccdyMrKwqJFi3DZZZfhuuuuw+HDh6X7umXLFtx///249dZbMXfuXJw8eRIFBQX48ssvA+reeOONKC8vx+OPP46JEycCAH77299i5syZuPjii/H000/jiiuuwIIFCzBq1Cjb46qqiuuuuw6LFy/Gtddei+XLl2P48OF4+umncfPNN5vqzpkzB7fddhvi4+Mxd+5czJkzBzk5Odi0aRMAYOnSpTj77LPRrVs3w7b84Q9/CHrsVatW4aabboLb7caCBQswceJEvPbaaxg4cCCKiopMdb1eL/Lz89GmTRssXrwYV1xxBZ566im88MILMqeXIOTRCKIB+OyzzzQA2oYNGzRN0zRVVbWzzz5bu++++4w6Bw8e1ABobdq00U6dOmWU//Of/9QAaG+99ZZRVl5eHnCMv/71rxoAbevWrUbZypUrNQDawYMHNU3TNK/Xq5199tnazTffbNp3yZIlmqIo2nfffWeUJScna2PHjg04jrXNoqIirVWrVlpubq5WUVFhqquqqv2JIQiCaADYOCZ6aZp/PF65cqWxz+DBg7UePXpolZWVRpmqqtqAAQO0c8891yh7//33NQDa+++/r2maplVXV2vt2rXTevXqpVVVVRn1XnjhBQ2AdsUVV4TsL+vbZ599ZpT98MMPWmJionb99dcbZbNmzdIAaLfccotp/927d2sAtN/+9rem8gceeEADoG3atMkou+KKK0x9+stf/qK5XC7tgw8+MO27YsUKDYD20UcfaZqmafv27dNcLpd2/fXXa16v11SXtwUXXHCB8DsHO28XXnihyba8/fbbGgBt5syZRtnYsWM1ANrcuXNNbfbu3Vvr06dPwLEIoi6QZ4JoENasWYPMzExceeWVAHwu65tvvhnr1q0LcMHefPPNaN26tfH5l7/8JQDgu+++M8qSkpKM95WVlfj5559x6aWXAgB27doVtB8ulwujR4/Gm2++iTNnzpj6N2DAgICFiDJs2LABZ86cwfTp0wP0roqiOG6PIAiivnj22WexYcMG00vEqVOnsGnTJtx00004c+aM4cU4efIk8vPzsW/fvgDpDeOzzz7DiRMncOedd5rWI4wbNw6pqanSfe3fvz/69OljfO7QoQOGDRuGd999N8CO3HnnnabP//rXvwAAU6dONZVPmzYNAPDOO+8EPe6rr76K7t27o1u3biYPzlVXXQUAeP/99wEAb7zxBlRVxcyZM+Fymf/dCscWsPP2u9/9zmRbrrnmGnTr1k3YZ+v3/uUvf2mynQQRCWgyQdQ7Xq8X69atw5VXXomDBw9i//792L9/P3Jzc3H8+HFs3LjRVL9Dhw6mz2xicfr0aaPs1KlTuO+++5CZmYmkpCRkZGQYE4Hi4mLb/owZMwYVFRWGW37v3r3YuXMnbrvttrC+34EDBwD4IqAQBEE0Jvr164e8vDzTS8T+/fuhaRoeffRRZGRkmF4skMaJEyeE+/7www8AgHPPPddUHh8fj86dO0v31bo/APziF79AeXk5fvrpJ1O59cHQDz/8AJfLFRBBMCsrC2lpaUYfRezbtw9fffVVwPf+xS9+AcD/vQ8cOACXy4Xzzz9f+jvZwfrE1vLxdOvWLaDPiYmJyMjIMJW1bt3aZDsJIhJQNCei3tm0aROOHTuGdevWYd26dQHb16xZgyFDhhifg0VK0ri1EDfddBM+/vhjPPjgg+jVqxdatmwJVVVRUFAAVVVt+3P++eejT58+eOWVVzBmzBi88sorSEhIwE033RTmNyQIgmjasHH1gQceQH5+vrBOLIX65r3XPOF4CFRVRY8ePbBkyRLh9pycHMdtRgOKMkjUFzSZIOqdNWvWoF27dnj22WcDtr322mt4/fXXsWLFCun2Tp8+jY0bN2LOnDmYOXOmUb5v3z7pNsaMGYOpU6fi2LFjWLt2La655hqTtAqQNzpdunQBAHz55ZcxZUwJgiAiBfMgxMfHB/VeBOOcc84B4BujmTQIAGpqanDw4EH07NlTqh3RGP/tt9+iRYsWAU/kRX1QVRX79u1D9+7djfLjx4+jqKjI6KOILl264L///S8GDx5saxe6dOkCVVXx9ddfo1evXkHrydoW1qe9e/eazhsrs+szQUQTkjkR9UpFRQVee+01/PrXv8YNN9wQ8Jo8eTLOnDkjHVoQ8D990SxRm5YuXSrdxi233AJFUXDffffhu+++M6I48SQnJwdEyxAxZMgQtGrVCgsWLEBlZaVpm7WPBEEQjZF27dph0KBB+NOf/oRjx44FbLfKjHj69u2LjIwMrFixAtXV1Ub5qlWrpMZYxrZt20xr4g4fPox//vOfGDJkSMin8ldffTWAQDvBvA3XXHNN0H1vuukmHDlyBC+++GLAtoqKCpSVlQEAhg8fDpfLhblz5wZ4yHlbIGtb+vbti3bt2mHFihWmELT//ve/sWfPHts+E0Q0Ic8EUa+whc7XXXedcPull16KjIwMrFmzBrm5uVJtpqSk4PLLL8eiRYtQU1ODs846C++99x4OHjwo3a+MjAwUFBTg1VdfRVpamnBQ7tOnD/7zn/9gyZIlyM7ORqdOnYR9TElJwdNPP43f/va3uOSSS4zY5v/9739RXl6O1atXS/eLIAgiVnn22WcxcOBA9OjRAxMnTkTnzp1x/PhxbNu2DT/++CP++9//CveLj4/HY489hjvuuANXXXUVbr75Zhw8eBArV650tGbiwgsvRH5+Pu699154PB4899xzAHzhWEPRs2dPjB07Fi+88AKKiopwxRVX4NNPP8Xq1asxfPhwIziIiNtuuw1///vfceedd+L999/HZZddBq/Xi2+++QZ///vf8e6776Jv377o2rUr/vCHP2DevHn45S9/iREjRsDj8WDHjh3Izs7GggULAPhsy/PPP4/HHnsMXbt2Rbt27QI8D+y8LVy4EOPHj8cVV1yBW265BcePH8cf//hHdOzYEVOmTJE+dwQRURo0lhTR7Lj22mu1xMREraysLGidcePGafHx8Ub42CeffDKgDgBt1qxZxucff/xRu/7667W0tDQtNTVVu/HGG7WjR48G1LOGceX5+9//rgHQJk2aJOzXN998o11++eVaUlKSBsAIExuszTfffFMbMGCAlpSUpKWkpGj9+vXT/vrXvwb93gRBEA0FG8d27Ngh3C4KDatpmnbgwAFtzJgxWlZWlhYfH6+dddZZ2q9//Wvt//7v/4w61hCnjOeee07r1KmT5vF4tL59+2pbt24NCMMaDADa3Xffrb3yyivaueeeq3k8Hq13794Bx2ChYX/66aeANmpqarQ5c+ZonTp10uLj47WcnBxtxowZplC3mhYYGlbTfGFaFy5cqF1wwQWax+PRWrdurfXp00ebM2eOVlxcbKr75z//Wevdu7dR74orrjDComuaphUWFmrXXHON1qpVK1No3GDn7W9/+5vRXnp6ujZ69Gjtxx9/NNUZO3aslpycHPCd2fkgiEiiaBrpLggCAP75z39i+PDh2Lp1qxF+liAIgog9FEXB3XffjWeeeSbqx/rlL38Jj8eD//znP1E/FkE0RmjNBEHovPjii+jcuTMGDhzY0F0hCIIgYoRjx46hbdu2Dd0NgohZaM0E0exZt24dvvjiC7zzzjv44x//SInlCIIgCHz88cd47bXXcODAATz88MMN3R2CiFloMkE0e2655Ra0bNkSEyZMwO9+97uG7g5BEAQRA7z44ov497//jfvvvx/jx49v6O4QRMxCayYIgiAIgiAIgggLWjNBEARRjzz77LPo2LEjEhMTkZubi08//TRo3VWrVkFRFNMrMTGxHntLEARBEPbQZIIgCKKe+Nvf/oapU6di1qxZ2LVrF3r27In8/HycOHEi6D4pKSk4duyY8frhhx/qsccEQRAEYQ/JnASoqoqjR4+iVatWtBiXIBoJmqbhzJkzyM7Ohsvl/DlJZWWlKRuvLAkJCdLegtzcXFxyySVGOEtVVZGTk4N77rkH06dPD6i/atUq3H///Y6yAhORhewBQTQ+GoM9aErQAmwBR48eRU5OTkN3gyCIMDh8+DDOPvtsR/tUVlYiqVU6UFvh+HhZWVn473//azIgHo8HHo/HVK+6uho7d+7EjBkzjDKXy4W8vDxs27YtaPulpaU455xzoKoqLr74Yjz++OO44IILHPeTCA+yBwTReGkIe3Dw4MFmN6GIqcnE1q1b8eSTT2Lnzp04duwYXn/9dQwfPtxUZ8+ePXj44YexZcsW1NbW4vzzz8c//vEPdOjQAYDvIpg2bRrWrVuHqqoq5Ofn47nnnkNmZqZ0P1q1agUA6P3QX+H2tIjY92tMaCo5rBojiqv5Pjn1VpXj80W3GPevE6qrq4HaCsRfeAvgjndw0BoUfvnXgPFl1qxZmD17tqns559/htfrDaibmZmJb775Rtj8eeedhz//+c+46KKLUFxcjMWLF2PAgAH46quvHBvIxkas2YOLprwitAfhOvdlx1hVlWhLsg+aRFuqZL9k+l8XO6JGWTRh7Vu0x05XmF4t2X7J1HNJtyVVTcpTJ+sUCPf8B+uDt6ocXzx9a4PYg+rqappMNCRlZWXo2bMnbr/9dowYMSJg+4EDBzBw4EBMmDABc+bMQUpKCr766ivTjzZlyhS88847ePXVV5GamorJkydjxIgR+Oijj6T7wS5Ot6cF4hKT6/7FGiE0mWicNOfJBKNOUhR3PBR3gnR1dpccPnwYKSkpRrnVKxEu/fv3R//+/Y3PAwYMQPfu3fGnP/0J8+bNi8gxYpVYtAdugT0Id6yU3U+R+ac9gpMJmeP52oruZEKhyQSApjCZiFz/w9mvIexBcySmJhNDhw7F0KFDg27/wx/+gKuvvhqLFi0yyrp06WK8Ly4uxksvvYS1a9fiqquuAgCsXLkS3bt3xyeffIJLL73UUX9cLkX6RggX2adA9U24NzZNQupOU5wQRPs+itQxFJcbisstv4Pmq5uSkmKaTIho27Yt3G43jh8/bio/fvw4srKypA4XHx+P3r17Y//+/fJ9bKTEmj0IBrtfnY59/H1uty+7ru1shegfJtEEQ/RPonWCIbqPRMcWjVMy/6DLnifRP9+R9FZEc5wNd+IAyPVLtu8yY2IkJw7Ojx3dCVZdCdceNEcaTTQnVVXxzjvv4Be/+AXy8/PRrl075Obm4o033jDq7Ny5EzU1NcjLyzPKunXrhg4dOthqkgmCIAC/8XDykiUhIQF9+vTBxo0bjTJVVbFx40aT98EOr9eL//3vf2jfvr3j79aUIHtAEES0iaY9aGo0msnEiRMnUFpaiieeeAIFBQV47733cP3112PEiBHYsmULAKCwsBAJCQlIS0sz7ZuZmYnCwsKgbVdVVaGkpMT0Igii+aEoDo2H4sx4TJ06FS+++CJWr16NPXv24K677kJZWZmRXXfMmDGmBdpz587Fe++9h++++w67du3Crbfeih9++AG//e1vI/q9GxtkDwiCiDbRtgdNiZiSOdmh6qvQhg0bhilTpgAAevXqhY8//hgrVqzAFVdcEXbbCxYswJw5cyLST6dEQ/7RkNKppijRaU7UhxwpllHcLihuJ25tZ89jbr75Zvz000+YOXMmCgsL0atXL6xfv95YEHzo0CFTGMPTp09j4sSJKCwsROvWrdGnTx98/PHHOP/88x0dt6kRi/agLpIe676i/WTlR0abnCzFbk0Fk7nYracIV/ok+h52NiLU+aqLfCiWcGInIylpMrcrUUfyfEdT0lTXfetCtO1BU6LRfPO2bdsiLi4uwIh2794dhw4dAuALyVVdXR0Qkz2UJnnGjBkoLi42XocPH454/wmCiH1cLrfjl1MmT56MH374AVVVVdi+fTtyc3ONbZs3b8aqVauMz08//bRRt7CwEO+88w569+4dia/aqCF7QBBEtKkPe9BUaDSTiYSEBFxyySXYu3evqfzbb7/FOeecAwDo06cP4uPjTZrkvXv34tChQ7aaZI/HYyyglFlISRBE04Q0so0DsgcEQUQbsgfyxJTMqbS01BSl5ODBg9i9ezfS09PRoUMHPPjgg7j55ptx+eWX48orr8T69evx1ltvYfPmzQCA1NRUTJgwAVOnTkV6ejpSUlJwzz33oH///mFF7mis2U7rU6oSq9GomhrNXX4UCkVRInK/OjYIzdh4RJtYswcuRTHJbGQiC4Ur6ZGVTNmNC/zYbHdvMAmUnexFJIGSOTbJXsWEe15iXcpkPnZ061uxSuC0RmQPnn32WTz55JMoLCxEz549sXz5cvTr109Y98UXX8TLL7+ML7/8EoDvocnjjz9uqj9u3DisXr3atF9+fj7Wr18fVv9kiKnJxGeffYYrr7zS+Dx16lQAwNixY7Fq1Spcf/31WLFiBRYsWIB7770X5513Hv7xj39g4MCBxj5PP/00XC4XRo4caUpSRBAEEQrF5YIim2UJkM/IRDiG7AFBEA1JfdiDv/3tb5g6dSpWrFiB3NxcLF26FPn5+di7dy/atWsXUH/z5s245ZZbMGDAACQmJmLhwoUYMmQIvvrqK5x11llGvYKCAqxcudL4HKncR8FQtHDTdzZhSkpKkJqaitzZbzXbDNiykGeifiDPhD2KoqC2sgzbZ1+L4uJix9IUds+nXvkwlDj5QVerrULx+wvDOibROGDXRp8Zr5uS1tU154HTvBRO60tnspb4HjLJ7sI5duBxmoc9Ic9E3etbsXomvJVl2Lng+pi3B7m5ubjkkkvwzDPPAPAFl8jJycE999yD6dOnh9zf6/WidevWeOaZZzBmzBgAPs9EUVGRKVR2tIkpz0Qs0hikTg05H6R/cps+jeEeiBS+J1FO3NrkmWiu2EUWioYEymn9+pJAiXAhzDGD63NTe1AVmaSaYe4XAxOGSEje6juaV7j2wBpO2uPxCD0D1dXV2LlzpykcuMvlQl5ennQunPLyctTU1CA9Pd1UvnnzZrRr1w6tW7fGVVddhcceewxt2rSR/y4OIUtIEAShQ3HFCYIgCCB8e5CTk+PzbOivBQsWCNv/+eef4fV6jdDgjFC5cHgefvhhZGdnm5JzFhQU4OWXX8bGjRuxcOFCbNmyBUOHDoXX6w3zTISGPBNNgOb05JggCCLWkXmCaue9kH2Kqzlc6Mzqyz+B9tVz6iVgc+y6eM3d5PUGUDf7Hq43pL4lSkDTySECAIcPHzbJnKK1XuGJJ57AunXrsHnzZiQmJhrlo0aNMt736NEDF110Ebp06YLNmzdj8ODBUekLTSYIgiAYbrejJEWaSp4JgiCIJkmY9kA2pHTbtm3hdrtx/PhxU3moXDgAsHjxYjzxxBP4z3/+g4suusi2bufOndG2bVvs378/apMJkjkRBEHoUFxxgiAIAoi+PUhISECfPn1MuXBUVcXGjRttc+EsWrQI8+bNw/r169G3b9+Qx/nxxx9x8uRJtG/f3lH/nECeiUZAuIuuCCLaOI3yEus4NQg0mWhGuBTHciL75sKXdaha/eZxEEmO5CIvNR3pSqwTyWsh7GhTUZYqOepXRBa8R98eTJ06FWPHjkXfvn3Rr18/LF26FGVlZRg/fjwAYMyYMTjrrLOMdRcLFy7EzJkzsXbtWnTs2NFYW9GyZUu0bNkSpaWlmDNnDkaOHImsrCwcOHAADz30ELp27Yr8/HzH/ZOFJhMEQRA6LpcbLkpaRxAE0eypD3tw880346effsLMmTNRWFiIXr16Yf369cai7EOHDsHFRQ18/vnnUV1djRtuuMHUzqxZszB79my43W588cUXWL16NYqKipCdnY0hQ4Zg3rx5Uc01QZMJgiAIHaehAB0lNCIIgiAaDfVlDyZPnozJkycLt23evNn0+fvvv7dtKykpCe+++25Y/agLNJkIg+YgO6L8EY2T+o7N3hD3QjSlVSRzIiJBJCUnwhwS4cpJ3IH7hZt8r74kVuESSclNXRMUxjIxJU2KMcgeyEOTCYIgCB0yHgRBEARA9sAJNJkgCILQIeNBEARBAGQPnECTCQfEqrypviRJ9eWubOxJ+OqSqMnRcUTyhyj8RvUtnQoFuw+jIXdiGU+d1CeIaBLtcdcdAxGXovEdIzkWRmsMlIuIRTQUZA/kockEQRCEjuIwSZGTugRBEETjgeyBPDH6rJ0gCIIgCIIgiFiHPBMOsMoq6kv2FGnpSrgu5brKj6Itx4p2BBUHPQlZIyJu8zCvP6ffze53qy8JVH0lx6PQsEQwFAdJ65oakRi7ndoPp/a1viMQOh37hGOYzVATCblsrElU65NI3KtkD+ShyQRBEIQOLbgjCIIgALIHTqDJRB0QPWmIpLci3CctTmfksk+MnPbHaT/csfTULwJ98do8FRJ9V6ceA1Xiab3o6Zbd71IXr0Ukn4LVlyfCChkPIhaIuhe3Dl5mGRtn139Zu2DXx2jbxnA903ZjoKynwX9sQU4QiX7xY6dbkFfEdt8oBg9pjF4Ssgfy0GSCIAhCx+VSnP2jEksTYIIgCCJikD2QhyYTBEEQOk518c1VQ08QBNHUIXsgD00mIoydPMOpBIq5BWVnxvXlPrY7jqxUSaZeTMmeQiCSNIn6byd9Yk817Orw7neZhdGi39rOlc3/tjKu/nBd1w0lYwqFoiiOJCCNPScKUf9EUsIUjUXNofpnN/47tS3WtkKN+Xbb69te2I3TtuO8YLtprNWVMqKxlalo7MZwu3E71Hit6NIqp+OzjDxK9rqPJTkU2QN5aDJBEAShozh0a2uNaMJLEARByEP2QB6aTBAEQegoikO3djN+EkUQBNGUIXsgD00mbNA0zV4S4vDCiXb0JzvClTaJbqRwXc2NyYUtC3NXy0qa3BJSJtvjCcpEbm32m4pcxvy1EM3oHTx1lTXJ9DMS34U0skS0qKu8SdbehCtlcipfCle2xJdZtzu1EXERlNWKkB2nay31nMqc+M922xiiMd+QtrqDj+/8ebBtw+YaEv4f41BOa4ed7apvyB7IQ5MJgiAIHZeiwOXgIYHWjJ9EEQRBNGXIHshDkwmCIAgdehJFEARBAGQPnECTiTog68azc08zl6GdW1GVjODjFKeu7lAua9k6wcoYdq7rWJE7MdezqK+1EtInfpuMK91uP9FvxlzY0Uoq5zR5km29epJaEURjREbeFEraZB3rRWOGUymT3bjudJtoHJWzN8G/eCRtRWjZkmr5HFhfVGaVR/H17Nqw22aWL9lIhgSnzloklMlylWyjV+rXE43vzQOaTBAEQejQkyiCIAgCIHvgBJpMEARB6DjNeNqcQwESBEE0ZcgeyFNPsYTk2Lp1K6699lpkZ2dDURS88cYbQeveeeedUBQFS5cuNZWfOnUKo0ePRkpKCtLS0jBhwgSUlpaG1R9V1aRfdrCoUPwroI4a+LLrk/A4qiaVaMwJbpdivERl4b7iBC9PnAueOJewfkKcCwlBt7mj+nLaH/Y9RN+xrudN9NtEEnYNBYv0YX/9hb5+Ze6FYMes630og+Jy/iKiQ6zZg7oSqWuUx+4aZP8I8f8MiZ60WhNz8fux+nFxLuMVbCzkX6JtHpsXq5OUEGe82PjLl1lfCaZ93aaXaVu8O6xXsLYD2rftY+D3cHJOZM+1YVu534r9fqJ/ikUJ2azXh+gakr3+wiUa90m4kD2QJ6a+ellZGXr27Ilnn33Wtt7rr7+OTz75BNnZ2QHbRo8eja+++gobNmzA22+/ja1bt2LSpEnR6jJBEE0IZmCdvIjoQPaAIIiGhOyBPDElcxo6dCiGDh1qW+fIkSO455578O677+Kaa64xbduzZw/Wr1+PHTt2oG/fvgCA5cuX4+qrr8bixYuFxsYOJ0/57WbSolm99YmsME6zTV6KaC3KtsNpHghWFsnFdbJP4iMZV9ztcget53axz3VMpAC5xdlOF25HAtG1LbO4WnbhXSSeQkXKK+dyObuftJh6HNO0iDV7ECnY9S57nbH7yM5GOH0iarfYmn8yLbOQWpQ3Ik6wTdQmG+NlFm6bygT9j0aeIrsx1qsIFkFrcgE2vKo535DIfohyEokWbNv12WhD/8xfJkZOiTrkHbKzA07bihVvBA/ZA3ka1VdXVRW33XYbHnzwQVxwwQUB27dt24a0tDTDcABAXl4eXC4Xtm/fHrTdqqoqlJSUmF4EQTQ/mJvfyYtoGMgeEAQRTerLHjz77LPo2LEjEhMTkZubi08//dS2/quvvopu3bohMTERPXr0wL/+9S/Tdk3TMHPmTLRv3x5JSUnIy8vDvn37wuqbLI1qMrFw4ULExcXh3nvvFW4vLCxEu3btTGVxcXFIT09HYWFh0HYXLFiA1NRU45WTkxPRfhME0ThQFIfGoxm7tRsasgcEQUST+rAHf/vb3zB16lTMmjULu3btQs+ePZGfn48TJ04I63/88ce45ZZbMGHCBHz++ecYPnw4hg8fji+//NKos2jRIixbtgwrVqzA9u3bkZycjPz8fFRWVoZ9LkIRUzInO3bu3Ik//vGP2LVrV8QN+IwZMzB16lTjc0lJiWFAZKUTdjNSGQmUyCUo69a2us35PiuC9lm7Tt3tjHDdybIub9n6TrbJInItyyGal6sBbdm1H+42O4QSJWEAAPGCa3Md+2PZubXDdWFHOqBAKCjjaeOgoexBJBHdE/UlWXWKSMpkJ02ya4Mf52Xa4iVNoiAUwbDLVyQLa0MkLxJJmdwQjNNSj2xNAqTANmyObUd9SWGdEouSJhH1YQ+WLFmCiRMnYvz48QCAFStW4J133sGf//xnTJ8+PaD+H//4RxQUFODBBx8EAMybNw8bNmzAM888gxUrVkDTNCxduhSPPPIIhg0bBgB4+eWXkZmZiTfeeAOjRo1y3EcZGo1n4oMPPsCJEyfQoUMHxMXFIS4uDj/88AOmTZuGjh07AgCysrICZnO1tbU4deoUsrKygrbt8XiQkpJiehEE0Qxx6tIO4x+WSLu0myNkDwiCiDph2gOrTLKqqkrYfHV1NXbu3Im8vDz/IV0u5OXlYdu2bcJ9tm3bZqoPAPn5+Ub9gwcPorCw0FQnNTUVubm5QduMBI1mMnHbbbfhiy++wO7du41XdnY2HnzwQbz77rsAgP79+6OoqAg7d+409tu0aRNUVUVubm5DdZ0giEZCtDWy0XBpN0fIHhAEEW3CtQc5OTkmqeSCBQuE7f/888/wer3IzMw0lWdmZgaVYhYWFtrWZ3+dtBkJYkrmVFpaiv379xufDx48iN27dyM9PR0dOnRAmzZtTPXj4+ORlZWF8847DwDQvXt3FBQUYOLEiVixYgVqamowefJkjBo1KuqRO+zkGDISKJmITwCXop6TnFgjPPFtsX7xfbCPDhJY34pItuOUusihnBxbFPVDhNdyrkVt28mVoh2BSXY/u+tQRt4kG7lJJlKHrCu7vqVMDUmkXdpNmVizB6EihkViMb6sPbCO3Xb2QNSeXVt1wS6KExEeonMpE9VJFqfy1HAjOEVS2iRjMxrSrhw+fNjk0fR4PA3Wl/oipjwTn332GXr37o3evXsDAKZOnYrevXtj5syZ0m2sWbMG3bp1w+DBg3H11Vdj4MCBeOGFF6LVZYIgmhB8kibZFyDn1o6GS7spQ/aAIIiGJFx7YJVJBptMtG3bFm63G8ePHzeVHz9+PKgUMysry7Y+++ukzUgQU56JQYMGOYpN/P333weUpaenY+3atRHsFUEQzQWniYdYXesC3VmzZmH27NmmMjuX9jfffCNsP5RLuylD9oAgiIYkXHsgS0JCAvr06YONGzdi+PDhAHwhrzdu3IjJkycL9+nfvz82btyI+++/3yjbsGED+vfvDwDo1KkTsrKysHHjRvTq1QuA72HX9u3bcddddznqnxNiajIRc1jc2uG6sUXuNmtbspE9RBIla4QnkXvb7nvYucPtIguJkJVAieRBMttiFdvkRpLuVpl6fB27+nYuZZnITb56ls8h/rGTcWNH0vUc0FYE2lZczhKAsbrN0a1NmIlE5D9GKHtgl/TULpGdnYzVkFhxZd6AWs4INYbLRCwySVAd5AZ1artk+yVT3yqbtdbxJ6tzNubXCvaztiXaxn73UGO0rUzWody1sUTwsyNce+CEqVOnYuzYsejbty/69euHpUuXoqyszJDCjhkzBmeddZax7uK+++7DFVdcgaeeegrXXHMN1q1bh88++8zwuCqKgvvvvx+PPfYYzj33XHTq1AmPPvoosrOzjQlLNKDJBEEQhA7vqpatD0Aq6k80XNoEQRBEdAjXHjjh5ptvxk8//YSZM2eisLAQvXr1wvr16w2P9KFDh+DiwikPGDAAa9euxSOPPILf//73OPfcc/HGG2/gwgsvNOo89NBDKCsrw6RJk1BUVISBAwdi/fr1SExMdNw/WWgyQRAEoeM0QpOTutFwaRMEQRDRIZr2gGfy5MlBbcDmzZsDym688UbceOONwfuhKJg7dy7mzp0bVn/CgSYTDYRM1CSnkT1kEtrxx2b+bN5FbnV18/2TccnKRi4SJ2FT9W0u6eMFO7bRBweaa9N+gmPLlwVPOsTKagWuaNFnOxc2g3cLBySa475/uInpIuHKjiXXtR3R1shG2qVNND7qGvkPkIvOxN/LKsx2wNQHix0wHUf/G67ciR/n/JGeRFHx2OfAhHY8AWVem20i6qrb4ptyKG01j+uqzbZAG2HdJmsj7ORN7JqxswtkD6JrD5oSNJkgCILQibZbOxoubYIgCCLy1IfMqalAkwk7wkhKFQ3snkgBgYuyZWOOWz0UfBuixXiK0JsQHuypS5zIm6D6Hh+ZvRzQy1xcmXmhdiT6JcLO+2BfJ/QTJtG+sgv16vrUydxWQFG9xQwPl4B7MwL3qqI4dGuH8SQq0i5toukgE6wDCLz/RIuzRYuymYfCtG/AG/44gZvYw31RoAy34X0QjOs22/x2wD8QOc1FJANvP+ywju+yOPVWyHof7LZZ64k81XY5hupiD+o76EZ9Ux/2oKlAkwmCIAgdt0tx9I+KFgMPGwiCIIjIQ/ZAHppMEARB6LgcGg+1GRsPgiCIpgzZA3loMlGPNIRkSmZRtmgxnr8u/yFwMbeMy1tmm3U7IJZA8Yv3ArdF7vyGkkxZt4eSMlnLnG6TkTSJ6vPIurOjgfXaj1XXt9MnUc3ZeDQ7VC2i162sPXCap8gY150G6RAdXC/0erm2VMV0HFMwCUu/pBZRS26LRP1oUde8FHbbQgXdYMhImkT1zfUsnx1Km+pyf0TcJkSgPbIH8oSRYoMgCIIgCIIgCII8EwRBEAb0JIogCIIAyB44gSYTNjhNWBJpIhlmLFSEJ+OYIQvspU/RdnlHyw1eVzd1XWKOM6TyQNTBhe2vH3STNKJr00mEp2jcV5Fok4wHUV/IRm6y29cu0pMowpO/kmA/QaQnkbRVA5PTCPpqyePgbcbRbSKFXVQ9U70I2IFwI/g5lSjFqszVCtkDeWgyQRAEoRPnEq/VCYZGQlGCIIgmCdkDeWgyQRAEoUNPogiCIAiA7IETaDJhg9Pshw2F00QpoogejIBkSKL9Be5wO5c36583sIb5WBLnOhaSCAJyblpZ2Y+dazmix3EobzIiwEi62Rv6XonE8Z2GArRK+QiiLtjJl5zWt0t2KrynBdInhljGGV2piuy4YyXaCTXDHWdiLaGZzPkNdS6dyJUai7SJh+yBPDSZIAiC0HErLuksuaw+QRAE0fQgeyAPTSYIgiB0nLq1YyXOPUEQBBFZyB7IQ5MJGxRFiTnXZCSRkb2EinJkTMQboQuzMVFfyeVENJZ7IBL9JONBNEUC5KuC69aprCjc6D7CqEOSUers2o22vMmKndxJJDsTlbkEY5adxM1uWyRknvV9DmMdsgfy0GSCIAhCh4wHQRAEAZA9cAJNJmxQXOJFyo2RcJ9sh3papemrqmWeaMguwHK6UEv0VCuSiJ4e2SGzeFJ2gaXUovQ6PJFvKtc3EJnv4lYUuB2cTyd1CYInEsEkwm3D6RNoWS8BG4vt6vPHttoX3k6xek6PLSLcxb+2ngBJrwIr48dy61jFj+Gsnm1bgmNrkt6QSMLalzm/ofoSiwu0yR7I04T+lSAIgiAIgiAIoj4hzwRBEISO01CADR0OlyAIgogOZA/kocmEDS6XAndcwztvHMt+BPVFEhCR9Mnqdha1FUmXt+hYImmVnUyrIeOKi84rc1mL9qur61q4iM+mD6H6GthW5CVd9YGmahEZyEkjSwTFpdTb9d6Q91Wo8doqJ+K3WaVM/FjurQ20B0Z9ga2wk0XZ2Q///qEyG8mjuNwBZXbjeyjZknXMF21zxwVvSxPUh1cztSn+HtG5rmTaDfV/TMT7RvagXqHJBEEQhE6cS0EcJSkiCIJo9pA9kIcmEwRBEDr0JIogCIIAyB44gSYTNrjcrpiIsa+4ncUED6VmkZEF2cmbRC5v4TaLqztUpA6ryzvUsW37GmaEJ9HvbevOtokdLqrjd3kHHlPoDteCS6BYPf77y0h9nMZHt/YzFlHcClzuuksSyXgQkSAacpJo5xGwjcCkBY7TdjIkkaTJ61UDyth70TZvba1e5uXq+95rXm/AtoA6UZI5iSRPrExxu4PWd8fFcWW6lEkfs0QyJ00N3GZIn9TgMiqVGwZdqrVN//mt75wVkbgn6jviE9kDeRp+QQBBEESM4FYUw4BIvWJ4gkUQBEGETyzZg1OnTmH06NFISUlBWloaJkyYgNLSUtv699xzD8477zwkJSWhQ4cOuPfee1FcXGyqx5Iz869169Y57l9MTSa2bt2Ka6+9FtnZ2VAUBW+88YaxraamBg8//DB69OiB5ORkZGdnY8yYMTh69KipDacnnCAIguFyYjhcSrOO3hFtyB4QBNGQxJI9GD16NL766its2LABb7/9NrZu3YpJkyYFrX/06FEcPXoUixcvxpdffolVq1Zh/fr1mDBhQkDdlStX4tixY8Zr+PDhjvsXUzKnsrIy9OzZE7fffjtGjBhh2lZeXo5du3bh0UcfRc+ePXH69Gncd999uO666/DZZ58Z9UaPHo1jx45hw4YNqKmpwfjx4zFp0iSsXbvWcX9cEbo4wnXv2bv0/G0GuBM5WZQo+gX7TioC5Ud2fbBzeXtrVdPx+HaNbSFc3lZZFNvPV0/Cre0N7tYW7SdyVxvb3JJubcOF7Z+X28mWRG5tti/73rwLm21jrmuX4LeylSbxLm/J6CNWZO+B6Fzn8lA0p6ZFrNkDJYxoTpH858KpzFAk9TTGfkm5k0yUJdUbOIar+tjNxnl+P77Mbxu8+n7V/vpeQZmlniqQQAX7zLcZCn78B+xtAAC49PeuuITAbXqZWhtY5hXYD2Yj2Plym+SbLv14gX0WPRm22o1Q16+tBNbh9SfqY7iw68rJ/RcJWVWs2IM9e/Zg/fr12LFjB/r27QsAWL58Oa6++mosXrwY2dnZAftceOGF+Mc//mF87tKlC+bPn49bb70VtbW1iONkd2lpacjKyqpTH2NqMjF06FAMHTpUuC01NRUbNmwwlT3zzDPo168fDh06hA4dOoR1wgmCIBixYjwIsgcEQTQs4dqDkpISU7nH44HH4wm7H9u2bUNaWpoxjgFAXl4eXC4Xtm/fjuuvv16qneLiYqSkpJgmEgBw991347e//S06d+6MO++8E+PHj3c+eXRUO8YoLi6GoihIS0sDEPqEEwRB2OF2wZFbOwJrvokIQfaAIIhIEq49yMnJQWpqqvFasGBBnfpRWFiIdu3amcri4uKQnp6OwsJCqTZ+/vlnzJs3L0AaNXfuXPz973/Hhg0bMHLkSPzud7/D8uXLHfcxpjwTTqisrMTDDz+MW265BSkpKQDCP+FVVVWoqqoyPrNZpaI4d2tH9EmloC2vwD3NjimOdMTaEjTP6oBzYdt4gUUub6u8iUXxAPyubrafysmWmKtbJGViLmzeJW2UiSJ7sP1sJFChsLqxXYJoHKIIHYa72h3owhZJoNi5c9mUubm7kp0fq9wJANwILW/i3dbChHkOE+wZx26A6zwUkYg2RZ6Jxkl92IO6yl7DvT5lkk2KpKqi47Fxmv8eTpN+WuWo/P7WMV8kbeXHfEOuVFNt+sy/58dwr6WM7ceX+f8GnpRw7YHCaXZE9sAVr4/5ev/cug3gv4eLK2O2je0H+Lcx3GBjPvf7sHPHy2r1t+zrOh2ThGO/5LVqd20qYP+XOOqOAS/TC+e+a0jZ6+HDh41xCEBQr8T06dOxcOFC2zb37NkjffxglJSU4JprrsH555+P2bNnm7Y9+uijxvvevXujrKwMTz75JO69915Hx2iUk4mamhrcdNNN0DQNzz//fJ3bW7BgAebMmROBnhEEQRD1CdkDgiBiiZSUFNNkIhjTpk3DuHHjbOt07twZWVlZOHHihKm8trYWp06dCrnW4cyZMygoKECrVq3w+uuvIz4+3rZ+bm4u5s2bh6qqKkfSrEY3mWCG44cffsCmTZtMP1i4J3zGjBmYOnWq8bmkpAQ5OTkB9WLhiSVrV/TkVvTMxfA+cE8H7HIw+J9IOI1HHrjN6pEQLbwzPYmyPJ3it1mfSPHv+adT1m1On0SJFtoZT52EscN925w+dTKhP2VSjPjtnDdBP6QmuQBN5okSX0e0SJxhvYaj/RSev6ZljhWO9yIU5JloXDSkPXDqaZDxMIiQecKq2ozXgH98Zn12moenIcd8u/q898HOUy1aeG21DcJF1rrHOZSn2up94NvmbYMcNvUttsJ3LH0Mt9gKXx8dXqOWazrUNRuJazP4jnUPOFBXom0PMjIykJGREbJe//79UVRUhJ07d6JPnz4AgE2bNkFVVeTm5gbdr6SkBPn5+fB4PHjzzTeRmJgY8li7d+9G69atHa/xaFSTCWY49u3bh/fffx9t2rQxbQ/3hNd1cQxBEE0Dl0PjQaFhGw6yBwRBRJNYsQfdu3dHQUEBJk6ciBUrVqCmpgaTJ0/GqFGjjEASR44cweDBg/Hyyy+jX79+KCkpwZAhQ1BeXo5XXnkFJSUlhmQzIyMDbrcbb731Fo4fP45LL70UiYmJ2LBhAx5//HE88MADjvsYU5OJ0tJS7N+/3/h88OBB7N69G+np6Wjfvj1uuOEG7Nq1C2+//Ta8Xq+he01PT0dCQoLUCScIggiGW3GWeIiS1kUPsgcEQTQksWQP1qxZg8mTJ2Pw4MFwuVwYOXIkli1bZmyvqanB3r17UV5eDgDYtWuXEWiia9euprYOHjyIjh07Ij4+Hs8++yymTJkCTdPQtWtXLFmyBBMnTnTcv5iaTHz22We48sorjc/M1Tx27FjMnj0bb775JgCgV69epv3ef/99DBo0CEDoE+4U2VmpU/dWuPIIJu2Q3Z85W3lvpXVRNr+Nte+ykVPxWBfhieKRyyy8AwBvdYVpm1cUX7xGtEDPHKvc+t4JMi5swC9hYsdxSx870IXNXNGaErig0e9mdpYHQiRfEi22ZttF15PdNVbX61e2Tdn6kZI8uRQFLgcGwUldwhmxZg9Ydtig2yVlTNF4eilqUzSOhLsYlseJnMRsDwKlp9Yyr2ABtt2Yb5JAWWyEXU6iUBjjf63etmCxtUuYSyJQcmvXvv050X/T4OmQTPh/l0jkxgosC/e6dbqfP6dE8DoyAQciEZAjluxBenq6bX6cjh07mu7NQYMGhbxXCwoKUFBQEJH+xdRkItSXlxnEQp1wgiCIYLgBuB3YA0k7T4QB2QOCIBoSsgfyxNRkgiAIoiFxGv6T1kwQBEE0TcgeyEOTiRA4jTBjRyQiv9hJQUSRnowyrr41wpMGgTtc4A1mLjyN70N4aiLbaEuqYJvIdW2VN5nqszJBFA8RRtQOiT7z/WEubz5yiMtSP1zJlal/+jkP5Ua1uoZDRW6SidgUyYhFdtHInBKVaE4xpJElYhsZWZPsPxdOo+7YoVmkqoBAOqLy44LvbyTvJ6e5K5yOkXYRm+zG3UiMxew4vNJG0dvl81HYtuGgH/y5jGSOTMMecGOY9Zp2mn/IKaIoYaEke74+iNqKWLcMyB7IQ5MJgiAInVjSyBIEQRANB9kDeWgyQRAEoeNSnGlkm7FXmyAIoklD9kAemkw4wC6SktVFHKpOLCW7MrktmTtcCZTEiFyS/ghBeh2BBEoUVcE2SRyLdCFIFMS7h5lL2c5lzORLdUHkurb23yVKeGTzHcXnRBBtyTZ6TKCb2rot1rCTUsjKLKIhb2KQRpawI5IRm2LtHjWiyoW4v4zEdzbJyNj31zReQmMzHgrGUU1Q39+GGlDfH6QwMHGcU3mTta+mPkgkshP1WVRf9NnfRqA9sO2zTMLSGL3mAPvrjp0DO/kcf29GSvJE9kCeSErwCIIgCIIgCIJoRtBkgiAIQodpZJ28osWpU6cwevRopKSkIC0tDRMmTEBpaantPoMGDTLyIbDXnXfeGbU+EgRBNFViyR7EOiRzskHTNKHrzc5hGsloNZHAaT+syep4tx2TMCmc69rvzmbRQrhIQW7zXNUcFz4weRtD5Cr2sjJOtsSiarCEQeLEP3L+TiZlsnNT88dmx3Trf00J7VhZfOA2d5zL9BfwnydDtsSdNmsEJv782iWrk0UmCWIkr+VISJmCucOdJNMKhtuhRtZJXaeMHj0ax44dw4YNG1BTU4Px48dj0qRJIfMmTJw4EXPnzjU+t2jRInqdbGbw8gk7yZMqGD8D2+Kj6NXtQgolTfLX0/8K7hW7NkRSWNE2l2qO+KeoAlvBja1uT5LeRvBx1yuQGBnSobh4rv96lKXaGtNnHlVS7mSVrfL9YscUSpmEY35oG2Fq3yJfNZ1fQZkVu22m39hiuwEYUb7sE8bV/3UrEx0sOtGcYscexDo0mSAIgtCJlegde/bswfr167Fjxw707dsXALB8+XJcffXVWLx4MbKzs4Pu26JFC2RlZUWlXwRBEM2FWLEHjQGaTNigqppwRmynDatVA5/Qi5BZsO0U2ae5TmOAM4wFYdzTJsRZz4b/8QB7uqPUCvIbuH31vNz+XouHQa2t9tcX5pkIHldc9gmUFZedZ0LySRTbZnghOA+NS1DG6rGnQaL6Mk+kQmE8LeXKFIsnKpJBApx6NOr6lCrc65rH7VIcfW9Wt6SkxFTu8Xjg8XjC7se2bduQlpZmTCQAIC8vDy6XC9u3b8f1118fdN81a9bglVdeQVZWFq699lo8+uij5J2IAuxJqIyHgkfkrZC99p0cx9x++PtasXqjXQhuD/jxStXtgIsb31Svr2OqPn7yYz7L5eMWjPmsnjC3kMAeyOYbsmL1hPDvRQuqmR2wsxV8PXYu+XNilFnGflMZH6TDhYAyGey8Z+x6UW0W2QPR0ck7z1EShU7ohGsPmiM0mSAIgtAJ90lUTk6OqXzWrFmYPXt22P0oLCxEu3btTGVxcXFIT09HYWFh0P1+85vf4JxzzkF2dja++OILPPzww9i7dy9ee+21sPtCEATRHCHPhDw0mSAIgtAJVyN7+PBhpKSkGOXBvBLTp0/HwoULbdvcs2ePfAcsTJo0yXjfo0cPtG/fHoMHD8aBAwfQpUuXsNslCIJobtCaCXloMmGD6lWFC9W8XpuFamxm6tRVFwH3mKx70PqdRBIow3VvWkCnv+Fc2QpzldrkpXDpd1icxkmaarWAY7P3qsa2JXL1A32ZmmZuw+77ixbjieKdM8xu5OD5HPwSpeCL5EzyrrjAtqyLrHmZk7UNUQ4KXmYRIGUS+KFNa9Ltzlkdr8m6yI6cLqbWVM2QTNQFxeGTKPYbpKSkmCYTwZg2bRrGjRtnW6dz587IysrCiRMnTOW1tbU4deqUo/UQubm5AID9+/fTZCJKOJVZhJKOROqYontIdE+GK7Fi45Sq8AtyfX+ZBIg/nuZmeYE4e2MZwzXV/y+JqvoWZ9stFje1bxnjRWO+bL4JuzwQojLrGG6qpwjGbuu4rthsE0iaRPbDKcY5NJea2tS40yWyf1Ypq2weFvt+1b2NSBGuPWiO0GSCIAhCJ9oa2YyMDGRkZISs179/fxQVFWHnzp3o06cPAGDTpk1QVdWYIMiwe/duAED79u0d9ZMgCKK5Q2sm5KE8EwRBEDou+CImSr+i1I/u3bujoKAAEydOxKeffoqPPvoIkydPxqhRo4xITkeOHEG3bt3w6aefAgAOHDiAefPmYefOnfj+++/x5ptvYsyYMbj88stx0UUXRamnBEEQTZNYsQeNAfJM2KCqmlBe4xQZN2SYwYfCItyYzX53LVdo+W4uNfB2ErnRRWWqjfxK3Mf6zeXhNLa3yD0qdINbz6HdcQRtimLfG7+xZDQZEfV1TUYiClOk2nErCtwOXNVO6jplzZo1mDx5MgYPHgyXy4WRI0di2bJlxvaamhrs3bsX5eXlAICEhAT85z//wdKlS1FWVoacnByMHDkSjzzySNT62JzQNC0iuUy0MO8r51FunOdqAQLHYcB+7LN7GhvpMbqu97js71dXuUq40iMRTiP4ieqz39QlsOuivBGiSHxS/eCu7Uieg3CITN6h2LEHsQ5NJgiCIHRiKXpHenq6bYK6jh07mgxmTk4OtmzZErX+EARBNCdiyR7EOs3ZK0MQBEEQBEEQRB0gz4QNqleDahO5yUk7jurX0ZVbF/einXvXiCQBgaRHQr4TKgKFtX6oxUx228NdCGWXaM3pNqGUi0UtsYlQIqovQiRFY2V2Ll676zESUqGGcm9H4l51u3wvJ/WJ5kGwJKayOJH8SCdwlJRyhCs3spNl2iXSlI0+xxBFQ7KLgiQa361lkVwMKxrf7cpEERL5MdkuAqF1DDdHrLKJbGVzLbA63lCRxCwSPNNvayPPEz2Rt5qnSMi1nBCZJKZkD2ShyQRBEISObyGdE7d2FDtDEARBNBhkD+ShyQRBEISOy+GCu+askSUIgmjKkD2QhyYTNljd2jKu4ki6pyPpmuZx4p62S9TGb2dlvGs5QS9jf+OE29wBZezmTeCOEydwbydYjinj+g6G1WXNf2bvq7nIXqysVrRNM5dV1/r9w6yslmvfX08NPLZexlzedsn7AM6lXkd3eDjIuKVlB1uZtqx1IiLRogV3RBA0VZOOTCci3PvOqfzR2M/meKJx3TaKnCApp0sff/n9WIJSwx5wuo84iz3g33v0v0kJcQHbErg2PJYxn2/LWhYteyAap61lVdw4Xe01j+8AUFFda6rHbzNsBGuTS8bJxn9e0mlcC2ybQE4lew05vWas2MqXBTIpu3HepdbNVkQikhjZA3mascKLIAjCDNPIOnkRBEEQTY9YsgenTp3C6NGjkZKSgrS0NEyYMAGlpaW2+wwaNAiKophed955p6nOoUOHcM0116BFixZo164dHnzwQdTW1jruH3kmbNBqVajcEwMnT5bq8iQgkunkRYvdrAvbXNzTHeNpgPFkKXDRNP+EIiHB51lgT4NaJPg9DewpU5JelhTv39Yq0byNf5+oeyviuWMn6ndpHHe3JrInY3p/4rknFOwJlKyGkf007MlSDb+ATv+NKrlroVZ/WlSp/63hnhRV6p6IimrzXwA4U+m7SStq/GX+er5t5Vz9av0LVOtl/JMf1lf+ulItT6dM16/t4u+AorCxu+YYIRfgewVlFqxPrrRI5IShJ1FEEFSvanpKbMWp18Lk9Q7IsWNfX6Z9O4R5cdiYyY/5gvrGImh9LHbH+bfF6WO8Rx/L2TgP+O1BS4+/jNmLlgJ7wOp5OPvE7IDH8Gj467Pxn9mNeC4hEjMb/P1qla94tcAxn/3cNar/B2FjPW8jqvQxn3kaKrnrhJWVVvn/QWNjfmll4JjP6jF7wGwGAFTp9Wo5++GttXgfOFtkXegt9GhwRON68tcR7GcTlIW/BQKCuZhshbjPqs29Kkss2YPRo0fj2LFj2LBhA2pqajB+/HhMmjTJNnw4AEycOBFz5841Prdo0cJ47/V6cc011yArKwsff/wxjh07hjFjxiA+Ph6PP/64o/7RZIIgCEJHUXwvJ/UJgiCIpkes2IM9e/Zg/fr12LFjB/r27QsAWL58Oa6++mosXrwY2dnZQfdt0aIFsrKyhNvee+89fP311/jPf/6DzMxM9OrVC/PmzcPDDz+M2bNnIyEhQbqP5KQnCILQcUFx/CIIgiCaHuHag5KSEtOrqqqqTv3Ytm0b0tLSjIkEAOTl5cHlcmH79u22+65ZswZt27bFhRdeiBkzZqC8vNzUbo8ePZCZmWmU5efno6SkBF999ZWjPpJnwgZV0/x+Tg7bGNEaczly7YS5KDYSC4isMcH5MrZIzsUdh19cDVhdj0pAHSZvYu7s1Bb+mWwr3U3d0tgWH7CtBSd9apnAylwB29j7BM4FzxZlM/c2t8m/MFxyusx+ZmOhM3fqmTvbtGhar1Cuu5vLObdzeY3u1mayJW7bGd2FXVxeY5QxV/eZKt93dJdX++vr2wxJE3c9agIpE5NhiBbqGYu5BRKuSF5rDNE1J/rsjzHPbbeRRbF9+ZjpikuRjrlvR6w8iSJiD00zL8C23jOhZKxW6ZIouIdQHmtzj0ZClmKVLYmeMfIlfvvh+xvHy1f1Md6wB0mcPdDL0lv6y1IS9fpM7sRJoFrqZbwdSE4w24EEPiAHk13pnTXJXvW3JlmN5d7lT6XVDvCSJjYEV3NjcTULxKHvUFbN2wNd0iSQMp3Ry0oq/fbgVKlv/Gdjf0JcoD044/9/EEwT6vUGLnS2ypu8Althd03LIpOPRLRNZAf8dbj3anB7EKwPdovJZQnXHuTk5JjKZ82ahdmzZ4fdj8LCQrRr185UFhcXh/T0dBQWFgbd7ze/+Q3OOeccZGdn44svvsDDDz+MvXv34rXXXjPa5ScSAIzPdu2KoMkEQRCEji+uuLP6BEEQRNMjXHtw+PBhpKSkGOUej0dYf/r06Vi4cKFtm3v27JHvgIVJkyYZ73v06IH27dtj8ODBOHDgALp06RJ2uyLqJHOqqanB4cOHsXfvXpw6darOndm6dSuuvfZaZGdnQ1EUvPHGG6btmqZh5syZaN++PZKSkpCXl4d9+/aZ6oSz4p0gCIKoG2QPCIIggJSUFNMr2GRi2rRp2LNnj+2rc+fOyMrKwokTJ0z71tbW4tSpU0HXQ4jIzc0FAOzfvx8AkJWVhePHj5vqsM9O2gXC8EycOXMGr7zyCtatW4dPP/0U1dXV0DQNiqLg7LPPxpAhQzBp0iRccsklTptGWVkZevbsidtvvx0jRowI2L5o0SIsW7YMq1evRqdOnfDoo48iPz8fX3/9NRITEwGEv+JdhNWtbY2GYydlCiUlsUqlNEFsaGvbpr6pgUGbFZc7oMwlcCcyd7bXq0dI4tzIrB+sPn9sw73NteWPxuFzV6cl+aVMzJ3dWi9jLm0ASNXd2alctI9WLPpTvK/9JE5O5dH91Il8XHFVdw17fW5gxet3Byu1+nvN0C8hAN5/qftUtbgE01/fgXz99rr8ZSyyU5XX1+cKPoZ4je9YZ3SZUzEXjaM4wfc+mTvnpxN838Ndqst3bHJc1HLn3nBhc9+NRflgET74qB+qIG65rWTPco3ZXV/meoFRv6zXoShuvUh6wfbj7w/m8rYeuyHd2s2V5mQPvLUa4A6UGRqf6yBttdoNUaQnkS3y7y8I4s9hvXdFuYK0uMC+Ki6B5MlyD3sSAqP0pSf7/nlqw0mamD1I5+wAswnpSb79WnEyp2Rd7srbgSRdWsWiObmq/XofpbbS97fSp0/n7QHUWr2MC3lpHS+4m1lz6/1wxemf/d9Di/d9Ny0h0d98gi9CDovcVFHr/x7MNpTV+C8QJnc9VeH720oQ1ZDJnUS5MaoFciXRWGzNT2SOAmXOYcSXGfs7vK5EclRr9EjTthB2wFpfZA+MOhYpFLOBdSHa9iAjIwMZGRkh6/Xv3x9FRUXYuXMn+vTpAwDYtGkTVFU1Jggy7N69GwDQvn17o9358+fjxIkThoxqw4YNSElJwfnnn+/ouziaTCxZsgTz589Hly5dcO211+L3v/89srOzkZSUhFOnTuHLL7/EBx98gCFDhiA3NxfLly/HueeeK93+0KFDMXToUOE2TdOwdOlSPPLIIxg2bBgA4OWXX0ZmZibeeOMNjBo1qk4r3gmCIJwuqm7OC7DJHhAE0ZSJFXvQvXt3FBQUYOLEiVixYgVqamowefJkjBo1yhjHjhw5gsGDB+Pll19Gv379cODAAaxduxZXX3012rRpgy+++AJTpkzB5ZdfjosuuggAMGTIEJx//vm47bbbsGjRIhQWFuKRRx7B3XffHdSbEgxHk4kdO3Zg69atuOCCC4Tb+/Xrh9tvvx0rVqzAypUr8cEHHzgyHnYcPHgQhYWFyMvLM8pSU1ORm5uLbdu2YdSoUSFXvF9//fXCtquqqkyr7UtKSiLSZ4IgGhkOn0Q147kE2QOCIJo2MWQP1qxZg8mTJ2Pw4MFwuVwYOXIkli1bZmyvqanB3r17jWhNCQkJ+M9//oOlS5eirKwMOTk5GDlyJB555BFjH7fbjbfffht33XUX+vfvj+TkZIwdO9aUl0IWR5OJv/71r1L1PB5PQJa9usJWlotWnrNt4a54X7BgAebMmRNQrqmaOSGY1yJNEsmWJJOF+SPreE1/TWXewG3WOjwiGQorc8X73bReXcLj1mVOZle875Jw6+58TRAOiXe7smhOLAoHH7GJyZva6BGe0nkJlF6vZby/febWZlE83DV+F7ar0qdzVqrL/GVVvvdadYXvb4V/m1btc3lrTO6kWkKpAADnwlf0c+LSXddKUrJ/W0KSrz8ef1l8gu99sqclAMCb7E8Ew6J2tNDlWsmcCzux3HfMeIErl0maqnjJlC6VErm6jWuOd3nrrt0a3Y0ucmurtX73v1pTrbcV+hqzu74AQHG7TWWmbfp7Jq8QSaBEyRM1YdSPgG7AhchEpKIF2PI0O3ugabZJv+zsAV/G/trJDYX2gC+TsA1296vK2QMXk3ZaJK4A4FZFNkLfptsGU6I5JnfVx3c+clNb3Q60bcGX6XaAyWUT/Dc3sw3xtRX+vpb7JnauqjO+vlb5x3z1TJHvb6WvTBXaA3/UJFjPHT9exfn6pQjsgSvR997VKs3fvm4b4jytAABJif7FtzUtfPajlJM5MekWi1T1Mz/2WQYVXvbKIkjxSe5YIrsasGsiMIIYu9YiYQ/sritmA0xlAntgJ78WSqBs7IG/Tb4/kZG9xpI9SE9Pt5VnduzY0fSdc3JysGXLlpDtnnPOOfjXv/5V5/5RngkAM2bMQHFxsfE6fPhwQ3eJIIgGQAnjRTQtyB4QBAGQPXBC2KFhp06dKixXFAWJiYno2rUrhg0bhvT09LA7x8NWlh8/ftxYPMI+9+rVy6gTzop3j8fjWB9GEETTw6UowrjodvUJsgcEQTQ9yB7IE/Zk4vPPP8euXbvg9Xpx3nnnAQC+/fZbuN1udOvWDc899xymTZuGDz/80PGqcBGdOnVCVlYWNm7caBiLkpISbN++HXfddReAyK14Z6gqoAjc2nZuarsICbw7kbkMRW5FY5teX62DzMmtu7CVav82ty7b8bu6/VEpAhISCVz3ZpmTnlhId1OnJokidfj+8u7tVI+e7M7DSYBUn07ZVeL7B8BVUez/IqUnAQDe4pNGUa3+Xi3zubxruZCP3krfufPW+NzaajUXxUPHleC//N3xvj66E319jGvZ0l8v2ee6dqW28dfX37ta6n+TUv3frUVrAIAnyfcPSbzL/1uJFmixhEjsbykX/YmdX3bORVIK/jpkbmz2t6ay0tjGrjVvtV82wK4jL3dtWrcxxNGcONc1u9ZEbm39WlNr3aa6gF/6xMtGDDmUpl+PnBNVIFjT9w+ywQEKHEbvqPshmwTNwR54azVoik0SU27MZ9JDu6hM3lr/fe7EHpjKQkTbYbgs96SrViBz8vjsAi9BZNKTuPhAEYMRzYmPthTPovvpslcPJ3vV7UG7ZC6RnS5rStXtQDI/Vpb+5PtbXuQ/KLMDp33beHugnjkNAKgu8tmB6jN+mVNthW5La7hzbklIq3CSXle8r/9xetK9hFZ+mVNCms82uFq1NsqYPXC39kXmYXYBAFwt0gAA8cn+sgQm+9RPNf9PKJM11ej/e1QkcklPddvAn/OAZG1q4P8etboUqrbaL/PyVvnsgEnmVGu+/sK9vgA5e8CXaXFxpu9jJ4V1cZGbjCSmlsiTEYnmBLIHsoQtcxo2bBjy8vJw9OhR7Ny5Ezt37sSPP/6IX/3qV7jllltw5MgRXH755ZgyZYp0m6Wlpdi9e7cRvurgwYPYvXs3Dh06BEVRcP/99+Oxxx7Dm2++if/9738YM2YMsrOzMXz4cADmFe+ffvopPvroo4AV7wRBEMFwhfEiyB4QBNH0IHsgT9ieiSeffNKIR8tITU3F7NmzMWTIENx3332YOXMmhgwZIt3mZ599hiuvvNL4zFznY8eOxapVq/DQQw+hrKwMkyZNQlFREQYOHIj169cbMcWB0CveCYIggqEoiumJmEx9guwBQRBND7IH8oQ9mSguLsaJEycCXNY//fSTEUovLS0N1dWB8olgDBo0yHYFvqIomDt3rm3YqlAr3p1gTVpnlZWI3Imqvo13YRuuQ683oIz99TqUQNnBuw69gmhOrA23mhRQ30hoVxvoujfqCKI5sYgeLbhkbCwxHYvq1Mrjn7czeVNSLRedqcznsnaV/gwAqP3piP97nPRFX6k5+bNRVvGTz61ddTrQrV1T5pP31OpuYT4Ki3E8t/97xOlu+fhk3z8ivFvb09rn1k7K8Lu149u0BQC42/i013EZZxnbWLKkJObW5qJAMce6V/O7/1kCvApdmsRHR2HnVxTNSTUSEgXKK5g7m7myAb+8qZaTOVmvMZnrC5BzXbvjAq85Q1Jhuqb16GJxgcMRkzt5OXETkzzxIoWmGL2jMdEs7IFqSWJqkS2Z7IHQRtTqZebxHRDIS3jpiUjmFGY0J3aP8jLDOF32yiLxqNx9yL6HKKklG5OYFBPwy12ZxJVPSsrkrnzEphQmb1J845XrjH98d+v2wPvzUaOM2YSan3xZepkNAICKk77rrOq0T/ZafcYv8awu9bVfy0lIVYvMycXJnJg9SGjp63NCK/8E1dNaj9jUxj9xZrYhPsMXXYy3B+622eyARllyS5/90HQZGH922XmqYpGbavy2olhPcMqfc6ttUAXXIfuu/DUktAfs/5Ka4LJX2WhO7BpjEij+mmPHcZlshNV++K8dTbNIufgEePo263oFiu5Xv9RJ5nT77bfj9ddfx48//ogff/wRr7/+OiZMmGC4mT/99FP84he/iFRfCYIgogrLeOrkRZA9IAii6UH2QJ6wPRN/+tOfMGXKFIwaNQq1+hOXuLg4jB07FkuWLAEAdOvWDf/v//2/yPS0AdBUQHHzn60L6LgF2Jp5UZ0odrNooZNX8CTA+nRKU9WAbXZPkEXx/V0Cz4eofq3+NCBO9zCEmt0nWGKN8wvDmJeCxdRO5hbxJWr6k4ly/5MlRV94XVN4CADgPX7I2FZ21LetrPCUUVZxwrdv2XGfR6KqxP8dq0p8i7lr9CdRmsAzoXCeiXj9SZQnxaP/9T8xSc70eRaSTvqTVyVn+Z5+JeuxzLUa/8K2uCzf7+VSfN83sZX/yVKtvtC7ivMmsPPksXh5AP/5FSHKM8EWXjOPBL/YukbP1cF7K1Q97nq415XCBfe2Prni23Jb2uefSImP5TtP7B5zc9eVpgTGw9dUf0x1ov5pHvZAs11kbZdHyFffPNaLFlR7awW2QuChtt635n4GPkE28kvo7bIgHDyK4AmypsYFfDcrCdy9yd4nWvIo8O+TuPrJeqAPV6kv2IabswfMI1HL2YHKI76yskKf16LsmH8BdvkJ3/hW/rNvfGM2gH9fU8XlWbB8Jzf3n2C87jHx2wN/dK8WbX3HqWp3xihjnvBkPfBHouB3cSvcWO72jW/JLX0Ltqu9gXaT/U0UnF/+nFvRBLlN2P8l/NjPPBIi7zX7n0OkirDNZxXnt3XsujW8Ybw9EHqovab6ovaNz9wCbCMvhylPUWQ8E4Q8YU8mWrZsiRdffBFPP/00vvvuOwBA586d0ZKLgsOibBAEQTQGnC6ia84L7njIHhAE0dQgeyBPnb77Bx98gDvvvBN33nkn2rRpg5YtW+Ivf/kLPvzww0j1jyAIot5gC+6cvAgfZA8IgmhKkD2QJ2zPxD/+8Q/cdtttGD16NHbt2oWqKp8bsbi4GI8//nhE0nPHAqIFdyKsbm1+sbVoUZ1V3mSWQNWYyvhYz3YL7xgm97a+ICpOsL3W5XNpmhZGWWKmi1yF/IIv/yI837zU4w501ybociIPJytSyn0uYj6XRO1pn5TJe/IYAL+0CQDOHPItuDtzxO8GLz3qczeXnvBJjco5t3Zxjb6oWZc3VQu+RwL3PZL0vqXqbbXg3NpMPtWyzC9lUrl43QCQzLl3FY9vsV6ckc/DLynwtPAtyk7gzoUhc3IHurDZ+RUtwBbGtzekT74+ixZbs+uL3x7udcXnmWCucd7VLdOWcWwuxrxXz0cRFx/oUmffV+F/0witfKMFd+HRHOyBqmlwqYH3ml/iGihHtZO7OrUH/L3ptQT1CBU4wVjUKpCQMJj0xNwvm/qCsYmNXfEsBwVnD4R2oMY3/ihVPnugnvHLWL26Paj+yW8HmLyp9Igvz0TJj37pKZO7MplTMbfY2m8P/L+RVfnKdQtJFXr+C33MTz3NLeYu852fmko+T4hlMTeXw0hJ8NkDJbEFV6Yvevf4PHcet3+Bt/88mc8lIA7IIbINDGuOK9NvK5DCeqt939MrkNaJsC68dnP1rXJX0f9E7hByVwb7H8Wrn3Je9spOPW8PVJf9/2uykD2QJ2zPxGOPPYYVK1bgxRdfRHy8/5+Hyy67DLt27YpI5wiCIOobxcGL8EH2gCCIpgjZAznC9kzs3bsXl19+eUB5amoqioqK6tIngiCIBoGeRIUH2QOCIJoaZA/kCXsykZWVhf3796Njx46m8g8//BCdO3eua79iGk0QvcO/LdDtLEpNb3WD89ITI9KTTZ4JaTmKqkfxMEX20FPSxwe6tf0RpEJLVQAgjrm6da1gPOfWjtfdtaxOHJcZQKn1ySA0PcIQAKhnigAANfo/H5Vc9KTyEz45FHNlA35500ndBX2q2n9OmFu7jOX9EOXL4PSNyXq/S2t9f9NDRH9y65Gp4pN97uqEFH8uCVcrX/+1VJ+kSWnhl1+xcxDHjTrsPLFzx/crTmJ0MknxLO5sYTQZm0gxTq8rTRDZQ7gvi2HPInZIXtOaQG6nRHHEpiRF4dEc7IE1zwRfHlgWXNpRV3sgaktWjiL67JeQ+NqP4/ts3H+2zRswyU0ck+jwuXx008CXKZW+sVup8Y2R3nJ/hCS1zDf+V5f4x/yqIt/2ip/LAQCVnPyIyZt+KvedO94elNQ6lDnp/a/QoyzxMtkMPRWGm4u6F2/kKfL1z5PmDzwQn+b7Hir33dwpvu+r1Fbq+/ulsNbzFOcOlL3awf9Wxu/nNUcL89Vj15z/WvPWBLcfIgyZE7MH3LVjJ6mz2gNfG5Zrmr8OXdZIgZw90M+T9T6MRDQnsgfyhC1zmjhxIu677z5s374diqLg6NGjWLNmDR544AHcddddkewjQRBEvcCeRDl5EWQPCIJoepA9kCdsz8T06dOhqioGDx6M8vJyXH755fB4PHjggQdwzz33RLKPBEEQ9YJT7Wszth0myB4QBNHUIHsgT9iTCUVR8Ic//AEPPvgg9u/fj9LSUpx//vmmuOLNCas7UCRNMm33Bq+v2riwZd3aVngXOXNrW/sQCtXGbchS2fOuYibXYV5aRfVHv1C8uhuVd93rkSRqK/QEQ2VcwjU9qkY1F1Gp6oxv31Ldhc2kTQBQUus1bROolkx9tcqg+EhPLfXjeFL8x2b9YX1kfQaABP17sO/GvivgPwdul//Wc1vOncvGVWr3G4gwyyz0c1EHuYQd7LpVjDb8UjmjH3Hm4wY7pr+sfiN3uxTF9vyL6hPN0x5YZa6hxmm7e80alcnOHvDvecmiVJ8d9kuEdQziZZlGhCclcBu7V/g7RtHD8xi2gZPcGPag0v8dayvMkZSqS/31K3RZE4vgV8pF1yp1KHNi29jok8RJjdhxPNyxWX9Y//g+s+/Bfzf2fY3vz/XDb0sFNtUiK+axsw2y/0s4vRbskpBa7YGmcolHBRH8bO8PaxlnP/33YeTHYrIH8oQ9mWAkJCTg/PPPj0RfCIIgGhRF8b2c1Cf8kD0gCKKpQPZAHkeTialTp0rXXbJkiePOEARBEI0DsgcEQRAE4HAy8fnnn5s+79q1C7W1tTjvvPMAAN9++y3cbjf69OkTuR4SBEHUE4qmQXGQ7MhJ3aYG2QOCIJoyZA/kcTSZeP/99433S5YsQatWrbB69Wq0bt0aAHD69GmMHz8ev/zlLyPbS4IgiPpAU+XjYLL6zRSyBwRBNGnIHkgT9pqJp556Cu+9955hOACgdevWeOyxxzBkyBBMmzYtIh1sLNjF8bZuA/xxllEbWMflchbD364v7D0f85nlmTD6IInLJu4ZS13PL2pji5rZmjctnls05fb1x8X3KyERABCX5AHgz+Hge+9bzJuQ7F/U62nl27elvriuWrAAjS1Uk80zkarnj2gZ518sxo7DH5v1h/WR9Zn/HgrL4+H2f0dNXzjm9a/F858nvYuqzdMNu99ABP8bs9+dvxacLLgWXVei69b2erdpK9j2+kTRVCgODIKTuk2Z5mgPWEx5Db77NdT9YS0zbXNbt/mvKzt7YATTkM0H4LBfIqxjED+2elXzWMZvY+MaP7ppbt94yMZFxPnHWMMeJPrHq7gk33uW1yGhpb9+Uomv30m6PeDHcHY2RYusIdjGFlyzNpK4jUl6fgn+2Kw/rH98n9n34L8b+77G9+f64belApuqmrfx2NkGmd89WJkddteO1R7YXe+h2rLrVzRzO5A9kCfsUCklJSX46aefAsp/+uknnDlzRrAHQRBEjMOeRDl5RYn58+djwIABaNGiBdLS0uS6r2mYOXMm2rdvj6SkJOTl5WHfvn1R6yOD7AFBEE2OGLIHsU7Yk4nrr78e48ePx2uvvYYff/wRP/74I/7xj39gwoQJGDFiRCT7SBAEUT9omvNXlKiursaNN97oKOnbokWLsGzZMqxYsQLbt29HcnIy8vPzUVlZGXrnOkD2gCCIJkcM2YNTp05h9OjRSElJQVpaGiZMmIDS0tKg9b///nsjg7f19eqrrxr1RNvXrVvnuH9hy5xWrFiBBx54AL/5zW9QU+PTbMTFxWHChAl48sknw222UaDo7kRFDXSv2bnoXFwZc1mL4jNbUW3ikYv7F+hO5I/D3iuCPvi3ybkOay1u1xoujneN7p9ldWrBuUDjfLIgJdEfh97VKg0AEK8/hU1sU+ZvS8/n4OVySWgWP3VSiT/XQ8s4FlfcV0ckgeJzSTA3NpM5tUjxy5ZatksGACRnJhtlLdql6n1MMfWZ/x7su2lx/rZq9fl7Lff7sfPEzh3vwq6VyCvB/1bs97P+xnwZyzcBAC4Wvzvc60rQvkt35/PXlfUecOrClr0e60wMaWTnzJkDAFi1apVcVzQNS5cuxSOPPIJhw4YBAF5++WVkZmbijTfewKhRo6LV1WZhDxSXYr4OVc0o5z/7yvRrmpcZqubr3Kk94O8Pr55fQua+5fdlEkcXLydi29iYwffZuP9sm/f3i431+lhW4+XHMgSUJcT5JEBavG+MdLVoZWxzJfvG1oSUIqPMk+bbnlTmmxyz/A4A4NXzP2T8rLfNj+81zvJMJFlkr6mJ/n+VWrT1SVsTWyf667dtYepfQorfVrDvwX839n01/fvbnadavs9S9oB7z34/t/k3BgCvcc35rwW3Tb4s8bHM17lbNOZL2ANTW6J7J0BGLvrfSzG9j4jNiCF7MHr0aBw7dgwbNmxATU0Nxo8fj0mTJmHt2rXC+jk5OTh27Jip7IUXXsCTTz6JoUOHmspXrlyJgoIC47OsJ5wn7MlEixYt8Nxzz+HJJ5/EgQMHAABdunRBcnJyiD0JgiBiE1/0DicaWZ9xLykpMZV7PB54PB7RLlHj4MGDKCwsRF5enlGWmpqK3NxcbNu2LaqTCbIHBEE0NcK1B5Fmz549WL9+PXbs2IG+ffsCAJYvX46rr74aixcvRnZ2dsA+brcbWVlZprLXX38dN910U0Ay0bS0tIC6Tqlzetnk5GRcdNFFuOiii8hwEATRuAlTI5uTk4PU1FTjtWDBgnrvemFhIQAgMzPTVJ6ZmWlsizZkDwiCaDKEaQ9KSkpMr6qqqhAHsmfbtm1IS0szJhIAkJeXB5fLhe3bt0u1sXPnTuzevRsTJkwI2Hb33Xejbdu26NevH/785z9zWcXlceSZOHToEDp06CBd/8iRIzjrrLMcdyqWMElIdFmTF4En2q1HfdDU4O5tGUmT75jM3efSj8tJeyTS3AslVpwrk0VQiktICugXiwjhspGX8K5W9r5a981WcS7Z8hpfH6u9bn2bf7/4RJ/LV62pMMrcrdv5vluVz4WdXMuFPGL9S/B/DxZdyZOiR3UqqTa2peqSJ+YGt0qiAEDh/NosGodHlzexNgG/vCmpnT9STXJWuu9vtq/P7jbtA76HmuSTQmmJfvc2OwfVXH/YeWLnjp1LgIveIXBvK5bfCuB+vzjzbwyIr504m22BxxO5pP3PIwLkc1zUKLeN/EoU2cMdF/w5h921WWfCdGsfPnwYKSkpRnEwr8T06dOxcOFC2yb37NmDbt26yfehgWhu9sClmKUT7F5jwzN/zXp19Y3TMd9rI/Hg701RGYOV2d2vbm5ccHvMdoDvs919KBqb2NhVo5fx9oCNebwdaKEfW/P4xkh3q3T/sSvLAQAJ1f71PsnVflkT/30ALsJTsq//vOy1NbMHVf7zZY2IxEf3i/f4zpffHvjvZyZzatHO/3Q3uX0b398s39+EjHb+dnV74OK+m1f/vlq8r62qKtF5Mp9LwH9+RTZYBPv9hL+tJ0m4D1+Pv75E1xVD9H+G1Q6Yr6vgMlxRfb8UT49EKbB5pntTUaBFIspTmPYgJyfHVDxr1izMnj077G4UFhaiXbt2prK4uDikp6dLPyh66aWX0L17dwwYMMBUPnfuXFx11VVo0aIF3nvvPfzud79DaWkp7r33Xkd9dOSZuOSSS3DHHXdgx44dQesUFxfjxRdfxIUXXoh//OMfjjpDEATRoIT5JColJcX0CjaZmDZtGvbs2WP76ty5c1hdZ27q48ePm8qPHz9eZxe2CLIHBEE0acK0B4cPH0ZxcbHxmjFjhrD56dOnB10kzV7ffPNNnb9GRUUF1q5dK/RKPProo7jsssvQu3dvPPzww3jooYfCWufmyDPx9ddfY/78+fjVr36FxMRE9OnTB9nZ2UhMTMTp06fx9ddf46uvvsLFF1+MRYsW4eqrr3bcIYIgiAZDU/2PmmXrOyAjIwMZGRkOOyVHp06dkJWVhY0bN6JXr14AfO727du3O4oIJQvZA4IgmjRh2gP2UCkU06ZNw7hx42zrdO7cGVlZWThx4oSpvLa2FqdOnZJ6UPR///d/KC8vx5gxY0LWzc3Nxbx581BVVeVo3Z+jyUSbNm2wZMkSzJ8/H++88w4+/PBD/PDDD6ioqEDbtm0xevRo5Ofn48ILL3TSbMxijWBhRHHSfH/Nbm1VLwt+Su0i2Hi5bVZ3osjVaN9vgcyJk5ww6QtzdfPuzrh45q7U3YkhpCTVuiu2Qo+kUcVJdJh8p0IvK6vxtxXn0V3RLfzSIZd+I8azpHrxfpdpyySf1IhFywCACj2SUnKWLzxa9Rk++pPPNV6ry5xUgczJxcmc4nQXeXyyL7pGQiu/3tvT2ufOTsrw9zW+TVsAgLuN70aOy/DLN9SWvm2q/t0qFf+5L6s2nxOAkznVms8l4D+/IgyZE3cdst/Py+QDguuFvz7UmmpTPdkkdsIkRfFm17VbECXMJYgYw8r4e4e5sd2C61AcyUM+4kxj4dChQzh16hQOHToEr9eL3bt3AwC6du1qLKDr1q0bFixYgOuvvx6KouD+++/HY489hnPPPRedOnXCo48+iuzsbAwfPjzi/Wt+9kAxSQrBrk1dZqIJ5CaaZMQ/VY/OxMpUfpt+f7A6gH2yOjs5ikhCEmexA6b7kNk8G8kIL8tk7yv1v2xs498nxfvbStDH4Ja6JJTP5uluGzj2JbKxRU8Kx8ZrAPC09gVBaNHOl9ek+oxfHlVd6mu3lov+pFrGVpebG0ctSfESWvHH0SNKtfH/s8hsQ3yGb70Sbw/cbX2LY72crWMS2LJa3zUjsgfsb6Xg/PLn3Ar/W7Hfj/2mqidQ9mraVx+XmV3gkZE5icZ1lyGBEkV64mxEgP0IvA7d7uD2wGX53vUWAbAOyD5c6t+/P4qKirBz50706dMHALBp0yaoqorc3NyQ+7/00ku47rrrpI61e/dutG7d2nEAkbCiOSUlJeGGG27ADTfcEM7uBEEQMUksZTydOXMmVq9ebXzu3bs3AOD999/HoEGDAAB79+5FcXGxUeehhx5CWVkZJk2ahKKiIgwcOBDr169HYmIiogXZA4IgmiKxYg+6d++OgoICTJw4EStWrEBNTQ0mT56MUaNGGZGcjhw5gsGDB+Pll19Gv379jH3379+PrVu34l//+ldAu2+99RaOHz+OSy+9FImJidiwYQMef/xxPPDAA477GHZoWIIgiCZHDMUVX7VqVcgcE9aoG4qiYO7cuZg7d27U+kUQBNEsiCF7sGbNGkyePBmDBw+Gy+XCyJEjsWzZMmN7TU0N9u7di/LyctN+f/7zn3H22WdjyJAhAW3Gx8fj2WefxZQpU6BpGrp27YolS5Zg4sSJjvvXqCYTXq8Xs2fPxiuvvILCwkJkZ2dj3LhxeOSRRwzXnqZpmDVrFl588UUUFRXhsssuw/PPP49zzz3X8fEUS/QOdpm49XXrXvgvHGvUC8Xll+gwCRPvprZGsOHdfcydqMb56qs2rmzzMQPdj6KoCUze5I/qxEV60r+HOy7QdWh8H0F0CSbN4d3axVU+l3Iia5OPwMDeePxyosRWvstRc+uylwT/NneqL0qGu81Joywh0/deLfO5tWu5bJDeSt+58+oJtFRLFBAAcCX4L3+3Lqli7vM4Lg6zK9nn1nbpfeD7g5a+v17mpgcnb3L53IRnuAgiZ/SoHacr/O58dp4MWRgvcxJE7zD6ZUiB+KR1vjPLflNN9bu1RfIKLcF3LG9tcLe2dX9THwTROGQkUKKIMbx73ipvcnMSBMOtzbu69cVqdcZpFtMoZjwlQlOfNsEqnXBDb1/xXQOqK/BaUBU+kR27J33jjldwfzB5idAecPeoUSYpS7QmixQlKjX+cvcau+9cNlH9qms5KZM+dpVU+sa3FvH+7+jR2/JwtpK1qnh85ya5FRexhvXV7e9rgj4Ws/E3PsNvD1qeOe3rT1Gg7LW2QrelNX47oFlkTgr3vV3xvt8oLsl3bF72mpDmsw2uVn7ZkmGfWusykpZ+W+FtkeY7drK/rEyP8Fii24bSan9fTum2oViXZLFzCfjPL3/OrbaB/62M34/95cdd/f8AkdyO2YVwry/+WDL2APDLmkTSOpdF0muVNFmJXNK62LEH6enpQRPUAUDHjh2FIV0ff/xxPP7448J9CgoKTMnq6kKjUhkvXLgQzz//PJ555hns2bMHCxcuxKJFi7B8+XKjzqJFi7Bs2TKsWLEC27dvR3JyMvLz81FZWWnTMkEQBMKO3kE0DGQTCIKIGmQPpGlUnomPP/4Yw4YNwzXXXAPANxP761//ik8//RSA7wnU0qVL8cgjj2DYsGEAgJdffhmZmZl44403HGeAdbnMuQgYVg8F4H86xWbDKrdAynhCFufXLbMF23bxnDVv8EWxsp4J0QJs/4JX/Sk29/SIvbdb6GT2TOgeCf2JSTH3xD1erx8veEKgwvckio+hnax7B1qm+HI2uLmn/a5kX4xuV2t/pse4Kt+TJ63al6siocL/JErTY5Nr7GmeKCIDF6NcYU9REny/kZLkfxKl6E9wVM6LoupeE9Xje0rljW9hbCvVz0WZ7nEoreGeOpX7zs8p7jyxJ0/s3JWbPBO650A1X1/8e/6pPfv9/ItBuWvOEscb8D8JdUtcY3bXFxDobRMFArCLE84vJLfmkhDF9+cX0LtcCrQIPBqJlYynhBz1aRPccYrpGlUt96TCjWXs+lW560OzLNTmr2nmrVDt7AFfJmEbwrYHCYH5XkRPedn34INuVOje1VL9qXpxAmcP9PvVzXv7Nd+Yz+JjVCf4z2/Llr7FzPGJ/oXOLv0pvzvV58FgNgAA1DNFvvqVvrIWQnvA5S6ynjt+vNLzJYjsgSvR997VKs3fvofZAz1/Etfnmjif/eDtALMR7O/P5f5+nWb2oMr3t5RbNF5hCdYBBC78N3nPLL+ppgXmgeA9XtaAHDxOF2Bb7YDJMyEY163/c1jzRgTbZm3Ttx2At+6eCbIH8jgyv2fOnMG0adPQvXt3ZGRkoGvXrrj66qsxf/78iMTCDcWAAQOwceNGfPvttwCA//73v/jwww8xdOhQAMDBgwdRWFiIvLw8Y5/U1FTk5uZi27ZtUe8fQRCNHHoSJU1D2wOAbAJBEFGE7IE0jjwTY8aMwc6dOzFx4kRkZmaioqICDz/8ML777jvMnDkTv/71r/H8888bq8sjzfTp01FSUoJu3brB7XbD6/Vi/vz5GD16NAAYmQAzMzNN+2VmZtpmCayqqjKlOy8pKYlC7wmCiHliaMFdrNPQ9gCIjk0ge0AQBACyBw5wNJl477338OGHHxohCgHgkUcewb/+9S+43W7Mnz8fl1xyCT788EN06tQp4p39+9//jjVr1mDt2rW44IILsHv3btx///3Izs7G2LFjw253wYIFmDNnTkC54lKEC89YPHs+hrjh8tb/8guEmKubd0cyl56qMvdjoDvc2jaPrMzJzp3oEsicjIXXNu5t0QLsUl3S4ynnFu9Z9uUlTSx2dmqi/xJspS+IZu7gpDh/nGOPHtoysaV/gZ5b1V3DemxyxcstcGdx29nNLXI/8gt29R/VkBlwi/7g1l3x3KJ61v8q3T9fUeZ3U1fU+MrO6Iu+izk3NVtszS+qY4uxi3VXNzuXgP0CbFGeCbexqNC8mA0A3G69La6+luA7xzLXmN31JeqXSMok48I2fTejPte+IliAHbEFd2Q8ZGloewBExyYEtQeKYpLWWfOa2NkDAICb1dNtBH8fWiRQzC4AftvA2wXr/RoqP4z13uUDhlhzupiDHbC/AjtgyTEEAKX6uJagt2G1Ada+s3E0Pck3XlXU+u1BebyvDd4OJLXwjf+eFF9+H1e1P3KNku6TMik1vomgi7MHUH1jquLlAnFYbQI3XmluvR8uc1AQAFDjff3xcrJlNcEnczVyBdX6264o9x2zjJM5ndHH+FMVgfbglP7+VKmv/0WcBIqdX/6ce60Lya1yH/h/U42z9UL5NbdAG3B+XVnHZP44wm0h7IC1vsgeGHUsATgiE5CD7IEsjmROmZmZAWGnGOeccw5eeOEF3HXXXbjvvvsi0jkrDz74IKZPn45Ro0ahR48euO222zBlyhQsWLAAAIxMgMePHzftd/z4cdssgTNmzDClPj98+HBU+k8QRGzD4oo7eTVXGtoeANGxCWQPCIIAyB44wdFkYvLkybj99tvx3//+N2idW2+9FZs2bapzx0SUl5fD5TJ32e12Q9UX13bq1AlZWVnYuHGjsb2kpATbt29H//79g7br8XiM9OeyadAJgmiCqKrzVzOloe0BEB2bQPaAIAgAZA8c4EjmNHXqVBw9ehQXX3wxfvWrX2H48OFQVdXkTlq3bh3atm0b8Y4CwLXXXov58+ejQ4cOuOCCC/D5559jyZIluP322wH43Fr3338/HnvsMZx77rno1KkTHn30UWRnZ2P48OGOj2fNM8FctoYrmoshztzffpe0vx1VDXRTM4y2BDIcUX0/8Tbb/ARLNQ/43dq8695tiePMuyZZf3jJDYs85HbV6H/99Vk95pIt43JQlFb7Lr3TlX43aUtd5tRCd2/zMcrZ+wSur3FGtCg9Gonid9EqcSxyCKRgnmL2+3m5oB81Vb6yWtXvNq/W5U0sNwSfX6Ncd2eXVtcGbGPu7WKT67rWtK1UEFfcK7iGXILflknWFEU11QEAry5ziuPlEgIJhR+5a4xhdU/bxQIXRWcSSZmsdURtsbKIuLUJaRraHgD1axPccYpJHhQgR7WxB7765vZ4uY9V5mSqZ3OP+sucBWa0iwonkkCJ+m1Ec+IkN2cqzfl8eFvB7EBFS66+kZfCN2619Pi/R0s9AhFvB5ITzHYggZOeJrh98iO3rtrhowgys2GSXlq+Gn96DTugl/ESXWYrqrncENV6XiNmF8qqeXtgjtwE+KWsZyx5OQC/vImdy+IKv91hZfw590vjBFJYi4TNtM3y/wxglrj5kLuubKVJgmvILkqfvw733sYeBO1DBKI5EfI4Dg27ePFi3HjjjVi8eDGmTZuGiooK9OzZE23btkVxcTEqKytDZm0Nl+XLl+PRRx/F7373O5w4cQLZ2dm44447MHPmTKPOQw89hLKyMkyaNAlFRUUYOHAg1q9fj8TERJuWCYIggFhKUtQYaEh7AJBNIAgiipA9kCasPBO5ubl49dVXUV1djV27duHbb79FSUkJ2rZti6uuugrt2rUL3UgYtGrVCkuXLsXSpUuD1lEUBXPnzsXcuXOj0geCIJowtODOMQ1lDwCyCQRBRBGyB9LUKWldQkICLr30Ulx66aWR6k9M4VIUk9uPuZsN9x1X1+qCFrqrRW5qobwpnN6KsYt6YJcszCVILsbwcglzqvU2mPtV5NZm8h0+KkUrPYpTEpcgib1PjPP9jeckTYn67xDH/R6JFklWvECSJhvgh3Wb9b9GIAWq5L53re7rrtT/1nj99Sv1RHOGW18gA6jgpE/+erosypS0To/AVBt4UShK4O9nbBMkTxRJLxj1dc0ZfZFxUwcpM9qwtKlFQObkdBFdc15wZ6Wp2wOr7DVAumcrQ4IRzYlhkjlpVvsReHxxxLXwnoTaJf2yJoMMdkyvEbGIG9/09fhs3Krmxp/SKt+Yz0uhWuhjfkuBPWCSJw83vjE7wMo8cf76RpJUN7MHfGRB/ftwY4TbMl54tcAxn0maajgtPBvreRtRVWtOJlfJRViqskQ8BPxjPpO4lgskUMwe8OeLyZtqOfvBfgfRtRD4+/GRuoL/tk4JlUTOV0ewnyDin0z7MpH7IiF7JXsgT6PKgE0QBBFV6EkUQRAEAZA9cABNJgiCIBia5tB4NF+NLEEQRJOG7IE0NJmwQYlzmSQkIje2gSUhkdWlbUUUvclKJF2OPE6Sw/AYiZhcXNI6S7Qh3q3NXLcJLDke1yYrS+Dc1KyMuZ8TuHPP9nUL2nALtjFEZSKsSeG8pugdgd+NldWKtmnmsuraQNlSLde+VRJgOrZexmQQIqmD6bdi8jS9Hi/Ts4scZq0TDjKuZ1Fkj3DbstZRBXIvx2heIESipoD6RLPA5XYJot3wY77gmuXsgPW+s5PJCtvnEI0DAfvZ3OciCYis9NCQOXnZ2OSvo1q28VGH4uL0hHbcfZoQZ5YtJSXEBWxL4M65xzLm821Zy6JlD0TjtLWsipcCewMlX0zCVCWQgxk2grXJSaaYPVA5Wa1dtEirJJv/jWVl10ZbEmO37DUks62utkKTDeVoB9kDaWgyQRAEoaOpKjQHscKd1CUIgiAaD2QP5KHJhA0ul2Keacuu5q0jMk+d7LBbyBQKmacPosXAKluIzJVVWRdNhVhsZX3CEOopkt122SdQVqxPpOqyze6JongRdHhPIPnz6maLrF3hXUN1vfaAul1/DX5c1eGTKCd1iUaN4lIcBwkw1ZPwbDPsFm7zyHi4A9pzgOi7GcdkXlM+l42+Vri2JjDPDRunygUPjP25ZgLri3LMyHgdwrUBIkTju10Zf75FY75dbgimqhF5o53mqrK7NmXOj+y1LeNFkG0r3PqR3h8A2QMH0GSCIAiCQcaDIAiCAMgeOIAmEwRBEDqa1wvNK28QnNQlCIIgGg9kD+ShyYQNLrdiirkddjsNJPsIhtTiPYH0z+p+NbXptXPbSkp6AmKt2/ezLouFw8HpQjKR61dGJmEbbzuEO5nF8lZgs7CtEV6PMkTiXoWq+l5O6hPNggDZq+MG6nZ9CoMv2NS3k0rZjZ2hpFPGAmyw5DySfYgAdR0r7BYY89Q1R0Ekx9hIyIOMhdgh7Ud4i6VFNLSdiYzsleyBLBFY7k4QBEEQBEEQRHOEPBMEQRAMVXWokW2+T6IIgiCaNGQPpKHJhA0ulwK3w9j14bpHI+GSk3UBK67gciJ/Lgm2jatnE13CGnucLxNFs/DWBka9sEal4LeJIkhplnp2318TDAiKK3iYFFEEEdFvy64P3gVszePBb3PHBbZljWTCx7K3tuHiLkfFOE7w/gtd3pLXaF2vSdnrUfQzyMoRjPqqFpF7SFO9wmvFrj7RPFAUpc7yF0B8v8rAy/hk8miJIrr5x3e+LUv+C65t0VhsrW+yB0Z9wTZRpCNL+6GiIFnbMrfvtdQJvDdl71erbRDZCr5MZrwV2hSB/ChwzOe3mdu0bg/so7l92WhkwmiLUhGbQlYJSaSSSEfiXiV7IA9NJgiCIBiaQ41spCwfQRAEEVuQPZCG1kwQBEHosCdRTl4EQRBE0yOW7MH8+fMxYMAAtGjRAmlpaXL91zTMnDkT7du3R1JSEvLy8rBv3z5TnVOnTmH06NFISUlBWloaJkyYgNLSUsf9I8+EDS63S+gqk5FTOI18EIkEO3ZJ1czuY8tGV+BbQ4akBbqdVU5yxNzUrMwsc2JtBW4T1Wf12A2p1lb769dUm7bx761/fX0N76Z26a5r3oWt2JS54hN8f+MSArYxCRQvW3IJyvxSKfa9tID6LlW/PjjZnSF5Uv3XjiGjspFmidztIup6TdpdjyLM8ongxxbJpxS3Apc7As9GKK444RCn0o6IRJmxHFN4T3D3EBuLjaSW/Lhu1HF2v7Kxm38Ya7URfGQoo4y3RV7Vsp/cmM/qicZ8kT0IN2Sn4rYZ+0Vluh2wsxV8PXYt8GOXUcbGfl7SxMq435/9lm6H459QRmWxF6Gu7WhEbFLh1G5EvAt+YsgeVFdX48Ybb0T//v3x0ksvSe2zaNEiLFu2DKtXr0anTp3w6KOPIj8/H19//TUSExMBAKNHj8axY8ewYcMG1NTUYPz48Zg0aRLWrl3rqH80mSAIgmBQKECCIAgCiCl7MGfOHADAqlWrpOprmoalS5fikUcewbBhwwAAL7/8MjIzM/HGG29g1KhR2LNnD9avX48dO3agb9++AIDly5fj6quvxuLFi5GdnS3dP5I5EQRB6LAkRU5eBEEQRNMjXHtQUlJielVVVdV73w8ePIjCwkLk5eUZZampqcjNzcW2bdsAANu2bUNaWpoxkQCAvLw8uFwubN++3dHxyDNhQ7AkRZGQhkRC1hSsTV5e4hVE7zDUMWHKUESua+byZvIo0bbaGv8/XkzSJHJrszJ+m1dQxm5coVvbKJN7UqC4mNTIRubk5qJ36G5qd1ygzIm9V3W3tpfb5vb6jqPF+9ti59VlSJgEfWZSKP43CzOJkOj6ZddOJK9LUVu20ieuvl29YE9AIpekiEIBEqGRkTfJXpNOZbEBxwmxnUlHRJIQl8Bu2LalmtsyyZYC7AEnbTXKao0yQ7ZUEzi+s/deQZm9BKomYJu/73L3tssmmpMrLj6gzE72atiIWoHMKT5QFuWO8/1b5tLPqzCiJC931eVsqqLXl7yW7KNAha7jq1e361YkrRMd0+5/FVHkyYgRpj3IyckxFc+aNQuzZ8+OYMdCU1hYCADIzMw0lWdmZhrbCgsL0a5dO9P2uLg4pKenG3VkockEQRAEI4Y0sgRBEEQDEqY9OHz4MFJSUoxij8cjrD59+nQsXLjQtsk9e/agW7du8n1oIGgyYYOiKLZPce0IVSeST4DtniiJvBV2WJ8AhIwTbnlKZcoNYXk6ZXpKZXnCBADe6grTNq+N18J3rOBPoiK5AFv0JMrqFXELnpCJ0Z9ECRZGs2tN4xZUs6dNzCOhKYHn3s3FnzfKIughi4YXTQR/jdodM9jZjUxccVXam8XqE80H2cXW0QjSIduW3UJqRRC0gS3g9Y8/wfM6iLDNGyEI4MGPj94q85gv9EbXCDwT+phv8mQwb7TXzlPtLM+E0FOtH9PlCvRUa5Y+8GUiG2Fs8yRx34MdU2BvXWZ74Du4+Tri61uvsVB5h2Su74a4btn9JOOh8LVV97752gnPHqSkpJgmE8GYNm0axo0bZ1unc+fO0sfnycrKAgAcP34c7du3N8qPHz+OXr16GXVOnDhh2q+2thanTp0y9peFJhMEQRAEQRAEUY9kZGQgIyMjKm136tQJWVlZ2LhxozF5KCkpwfbt23HXXXcBAPr374+ioiLs3LkTffr0AQBs2rQJqqoiNzfX0fFoATZBEASDubWdvAiCIIimRwzZg0OHDmH37t04dOgQvF4vdu/ejd27d5tyQnTr1g2vv/46AJ/H6f7778djjz2GN998E//73/8wZswYZGdnY/jw4QCA7t27o6CgABMnTsSnn36Kjz76CJMnT8aoUaMcRXICyDPhCDvpRSzJRZwidGtrgS5W4b4sz4RAAmWtYz5mcLezNV54sHoy7kfZaDv84upgxzHJnCx95GVVriB1TG0Kz4n5XPqOGbzPhpTAxdWHWaqguGPrmrOT3cku2HYq3XOE5tAgaDSZaE7w8gm7e5Pdw3ZyJzs5SkMgm2dCNHZZEdkD2/FQMI7aB9YQ1PcGz0Fh3V8WVt8ke9Wlqrz1UYx+uYL2me+rYumH+DuaF1b7jm3TV+N3kbvmnAbwiAay15xMsJioLMCOIXswc+ZMrF692vjcu3dvAMD777+PQYMGAQD27t2L4uJio85DDz2EsrIyTJo0CUVFRRg4cCDWr19v5JgAgDVr1mDy5MkYPHgwXC4XRo4ciWXLljnuH00mCIIgdGjNBEEQBAHElj1YtWpVyBwT1om+oiiYO3cu5s6dG3Sf9PR0xwnqRNBkgiAIgkGhYQmCIAiA7IEDaDIRgmhFXQq3XTtph2ibV+BuVgWRNhh2rkJrpI66IIqSwWBRMjTetazH4+Yjeyiu4De54Q4WtO+0X9YcFHx/jPjiguPYfUenGBIoTtLkFrizjd+Pxd42RVMxbQLgj4wkkg45lSTJEElpEt+HiLVLoWEJSaxjpUj2JJJniKRPkRhTZY5tRN0TRFmKJEb0Hcnbw+kYKRp32c+hqHUfb639MdkDd+Cxw+2/DBHJnyPAL8XjC1kuInMdvh/RuFZF/bIjKpImEWQPpKHJBEEQhI7TrNaUAZsgCKJpQvZAHormRBAEwVBV568oMX/+fAwYMAAtWrRAWlqa1D7jxo3z5cfhXgUFBVHrI0EQRJMlhuxBrNPoPBNHjhzBww8/jH//+98oLy9H165dsXLlSvTt2xeAz307a9YsvPjiiygqKsJll12G559/Hueee25Yx5NOpGVxzYWSgdRVlmEnaeIRRQiyRmoSuRVlXd8s4Q1zlWrc91Y033u3WzRnTQjepkAexBIYiaRGvPSJUdckRTxWSRP/3q0nK2JJi/j3bD9+mzvOdy74c8IiubC/vFtbJhEb/1uxBHaGC9v0RVj9gKKgieB4oiIr4nDaZlSiOcWQW7u6uho33ngj+vfvj5deekl6v4KCAqxcudL4HCz7alOhvmyCpmkmeZD13gwlvRBJR2SQkbmEajOSshD2vTWE/h58lCqxhNRc5o4Lbhd4WMQmfmxlEZKY/EgU6YnHahtEY7+dpEkkhbWO/XwZ/91sk+IZZc7kTZFI2slg1wsv3ZOV7FkJV0bn9Jq1yrZloo6FJIbsQazTqDwTp0+fxmWXXYb4+Hj8+9//xtdff42nnnoKrVu3NuosWrQIy5Ytw4oVK7B9+3YkJycjPz8flZWVDdhzgiAaA5rqdfyKFnPmzMGUKVPQo0cPR/t5PB5kZWUZL358bGqQTSAIIlrEkj2IdRqVZ2LhwoXIyckxPXXr1KmT8V7TNCxduhSPPPIIhg0bBgB4+eWXkZmZiTfeeAOjRo2q9z4TBNF4CDcUYElJianc4/E0mEdg8+bNaNeuHVq3bo2rrroKjz32GNq0adMgfYk2ZBMIgogWsRQaNtZpVJOJN998E/n5+bjxxhuxZcsWnHXWWfjd736HiRMnAgAOHjyIwsJC5OXlGfukpqYiNzcX27ZtC2o4qqqqUFVVZXy2/mPAkJFVRDWhVoh2RVEW7CI3CduQqGdyv7LkaK7AbS49MgTi7BxgAtcvcy3z0iFBIiJDypQQmBTIWicUVhd3aLe2uY980jujzHDd+78/kze5uDKXYpY5iaLCyLq82e+n2CUuChHhiWE9c5GIRiZLtO6fUGiqBs3rxHj4+pmTk2MqnzVrFmbPnh3JrklRUFCAESNGoFOnTjhw4AB+//vfY+jQodi2bRvcNokZGyvRsAmy9sCxjEIN755RJeREspKQcKUf0RrzZeDHYi8bdwUSV6u01SX4xy5ce6C4XAHb7KL7iSRN4Uph7WyF77217+GPzYb9YFK2ENdVJK/NYH1pSMK1B82RRiVz+u677wyt67vvvou77roL9957r5EVsLCwEACQmZlp2i8zM9PYJmLBggVITU01XtZ/DAiCIOw4fPgwiouLjdeMGTOE9aZPnx6wQNr6+uabb8Lux6hRo3DdddehR48eGD58ON5++23s2LEDmzdvDrvNWCYaNoHsAUEQhDMalWdCVVX07dsXjz/+OABfOvEvv/wSK1aswNixY8Nud8aMGZg6darxuaSkBDk5Ob4Fdw5nmrWC+uE+KYhEqnnrYmvRfrJPDthTEZWbgrKnKN5aVf/M1defyLBtLoV/mhK4OFvV44NrCfGm/Xx9DL6g2thmE5ZNtJ9drG/e0yBcmBewcJB7cmUsSg98isS+r6ksjpWZ9zdv09uUXGTHflP+yZHwyYFgUbaBEYc88JgNcZ2HbCcCT7I0r+rsSZReNyUlBSkpKSHrT5s2DePGjbOt07lzZ+njh6Jz585o27Yt9u/fj8GDB0es3VghGjYhmD1QVa1Oi6fDvT41fehyusDW7nh1yS1h5JBgXk1+YGHjoD528wE53MIRyPxEX+ThZYutRWUq90TfOsYLbYVk6E7FbfVMBLcBgN/WWb3SpjKH3mvRmM+8FKIgHeHmoxDmkhBcO6Lrz+5/h0h6FsK5XiORPyVce9AcaVSTifbt2+P88883lXXv3h3/+Mc/AABZWVkAgOPHj6N9+/ZGnePHj6NXr15B221IfTNBELFDtDWyGRkZyMjIcNqtsPnxxx9x8uRJ03jYlIiGTSB7QBAEQGsmnNCoZE6XXXYZ9u7dayr79ttvcc455wDwLbzLysrCxo0bje0lJSXYvn07+vfvX699JQii8cGeRDl5RYtDhw5h9+7dOHToELxeL3bv3o3du3ejtLTUqNOtWze8/vrrAIDS0lI8+OCD+OSTT/D9999j48aNGDZsGLp27Yr8/Pyo9bMhIZtAEES0iCV7EOs0Ks/ElClTMGDAADz++OO46aab8Omnn+KFF17ACy+8AMDnhrv//vvx2GOP4dxzz0WnTp3w6KOPIjs7G8OHD3d8vHDc2uKGIr8ox86FGEo24kTeJJKuuLj9mOSJuWn5Y6sKW6jHtvFtBNY38l7o3y2eezioqaHlWjxhLzQUuHJF7mNrbghT/YAF1ZybWrDI2k4WZXV1i7bZwZ9zJnkySS/YeQX7rQLb9HrNi/KC0sCLz5qaW3vmzJmG9h/wSXgA4P3338egQYMAAHv37kVxcTEAwO1244svvsDq1atRVFSE7OxsDBkyBPPmzWuyT9rr0yZoqrzsVTGkQJG7J1wRePQn0x/zgmp9P8GxRd3xj2uBck6vfq+IZJ9er24P4vz/knhra30txQdKmZhcyVb2GsEwnaLgG6LtTMokzkkUx5WZZb6icV0sidXtgCKyKQJ7I7Abdqg20lanNjWS177RBwdtRkI+G0v2INZpVJOJSy65BK+//jpmzJiBuXPnolOnTli6dClGjx5t1HnooYdQVlaGSZMmoaioCAMHDsT69euRmJjYgD0nCKIxoHm9UCV11ax+tFi1ahVWrVplf3zOwCclJeHdd9+NWn9iEbIJBEFEi1iyB7FOo5pMAMCvf/1r/PrXvw66XVEUzJ07F3Pnzq3HXhEE0RTQNIca2UimFibCgmwCQRDRgOyBPI1uMlGfqF41ZmIdOyES7kWXwE0vcpW69XwGmi5pAucBVm0iSTnNiWF3j0bDncpjFyVDmBPCJrqG6BzaRWqy1hfKqhxG8bA7X3ZKCk0QU7wuMc0jiaZqUCPgYia3NhEJ6iqxEN1X0R7n2DE1wZgvkrYashqBVFVRAsdypTawffbeJZDJxsX7jAn/vWWiE/rbjo7MiWErf7WRIfHv7eSrMpIm63u+TdE2p3KnSNIYczCQPZCHJhMEQRA6ZDwIgiAIgOyBE2gyQRAEoeNbZEsZTwmCIJo7ZA/kocmEDaqqmRKnNWZkpXzWiD3CCCKSLnjrrrI3mmNZV5SlaLKJ4hgyrmRZd7OMhEk2mZXoGrDKtBy7t2No8IyEa171qo7kUpGQVhGNBAfRnGSwGwOcRo2KJKHaNKStrI9uf33VpcucBP13u/VofQLZkvGZl1PZRPATypzqEOEwGHbnQkaWypeZEs1Zxt1QUqaAthweO9pEJHJSpG0J2YN6pVHlmSAIgiAIgiAIInYgzwRBEIQOaWQJgiAIgOyBE2gyYYOmysuDmiqhJDTMXety1487tbkSreuwKV3fkfguZDyI+sJO1iErTzGiJzmUsziNAOdU2mr33WQlSrLyJrv+RBP7KH9ykiNZuZLMNse/qQCn57C+k8jVN2QP5KHJBEEQhA7FFScIgiAAsgdOoMmEDZqmxUSeiVDILsAN2E9ixYzs0w7bpymS/ZNabBxDeQ1CIfuUx+4aM45j81tJHyfMca4x3ANAZPpJT6KIpkgkAzkw3Hbe6MC0DI4J935uyLxDdoRrp6OF6Pxav1t9e3tijViyB/Pnz8c777yD3bt3IyEhAUVFRbb1a2pq8Mgjj+Bf//oXvvvuO6SmpiIvLw9PPPEEsrOzjXodO3bEDz/8YNp3wYIFmD59uqP+0WSCIAhCJ5aMB0EQBNFwxJI9qK6uxo033oj+/fvjpZdeClm/vLwcu3btwqOPPoqePXvi9OnTuO+++3Ddddfhs88+M9WdO3cuJk6caHxu1aqV4/7RZIIgCEJHVVWoDtzaTuoSBEEQjYdYsgdz5swBAKxatUqqfmpqKjZs2GAqe+aZZ9CvXz8cOnQIHTp0MMpbtWqFrKysOvWPJhM2qKrWoG4+WXcqc1fKulHt5E3WYwoXkgmOI+qrdV+3oI6oLNz6sm2I8Dr8na317fYXbROVCRcmKpY47CLXtOCYouuW/e6ycienMoOGdolH4vix9CSKaH44lXGGuyBXNIY7sQuhjm13HMIZsuOw0H7YjYlq4G9jPRb/u4ttiiXniA389dJYFmOHaw9KSkpM5R6PBx6PJ6J9C4fi4mIoioK0tDRT+RNPPIF58+ahQ4cO+M1vfoMpU6YgLs7Z9IAmEwRBEDo+4+F1VJ8gCIJoeoRrD3Jyckzls2bNwuzZsyPZNcdUVlbi4Ycfxi233IKUlBSj/N5778XFF1+M9PR0fPzxx5gxYwaOHTuGJUuWOGqfJhMEQRA6muowegfJnAiCIJok4dqDw4cPm/5hD+aVmD59OhYuXGjb5p49e9CtWzfpPoioqanBTTfdBE3T8Pzzz5u2TZ061Xh/0UUXISEhAXfccQcWLFjgyJtCkwkbNFWLqDvOqQtbGMc73EgSAhe2jOs6lKTJTspklRjZbROVxUVAFhUuoWRP1u21klImVia7zW1xIwvHNdFvK6jGrif+Wgg3wlNdJUXRcHNHok1NdejWpskEESZ1iUznVN5kHcfDtQd8W/UlbbUjkmN+XairTNZum1NJLC9VstoPU30I+mCRPvFtsd+7rnInvr7pWDEofQrXHqSkpJgmE8GYNm0axo0bZ1unc+fO0scXwSYSP/zwAzZt2hSyX7m5uaitrcX333+P8847T/o4NJkgCIJgONTIgmROBEEQTZMo24OMjAxkZGQ47JQ8bCKxb98+vP/++2jTpk3IfXbv3g2Xy4V27do5OhZNJgiCIAiCIAgiRjl06BBOnTqFQ4cOwev1Yvfu3QCArl27omXLlgCAbt26YcGCBbj++utRU1ODG264Abt27cLbb78Nr9eLwsJCAEB6ejoSEhKwbds2bN++HVdeeSVatWqFbdu2YcqUKbj11lvRunVrR/2jyUQ9InLjRTsJm4w7m++D1R1uJ2kC/G5U61+7OjxxNtIncVuBXyjarm6xJMn8BMJtI1uqFciW+DbZe7ttXsv+gJz0ib/mRG5qpxGewiUWXdgiVK8K1cHTJSd1iUaOS2mQpJkyx5SRNvnaCr6vrKRJRtpaFzsgatfJNjtE9kOEdXyXxWlUPzt5rKwU1mo/+LHWGOttpLB29oC/hpjkyS7CU13kSxG/tyLQXizZg5kzZ2L16tXG5969ewMA3n//fQwaNAgAsHfvXhQXFwMAjhw5gjfffBMA0KtXL1NbbB+Px4N169Zh9uzZqKqqQqdOnTBlyhTTOgpZaDJBEAShQwuwCYIgCCC27MGqVatC5pjg17h07NgxZFjhiy++GJ988kkkukeTCYIgCAblmSAIgiAAsgdOoMmEHZZoTg3h4gZCR3Cqa6QOu4hNdtIm/r2Me9tO0mRuQ07KJCOLChdRRCVzmdtU5nbx+1okUFy/nEb9sOsX+234s2VEbGK/qSlyU3A3tUjuxNoQJsqziexRXwS4zyOStE6D5pVvx0ldggiFrI0JNyFdJOyA3ZgvI2Wyj/jnCrotWJnMNue4Q9aoS6JSZiMShNsC5bHWbUIprEUSC/BSJkEnXeY6PCzSUyh7YL2e7CI98TQW2SvZA3loMkEQBKGjqg41siRzIgiCaJKQPZCHJhMNRLiL6oz9HS6uEx07XI+E0wV3oidS1jq+9y6bbc6eUhl1BN9RhNfy9N3pUy6z18J4HiTYFrxd60I62WPyv5V1UZ3pN5ZYlC3KQSHjoeDbEOE0DnlD4TS3TKx/HyL2CNfDXRd7UNegG7LeaLsxX8bzHHLMt/Q1WnkppDzInPMiIDeEK5RnwuztFnm23QIvhFOYl0K42FrCe83norBblM1wag9ExNKYSvZAHppMEARB6KheQBX8I2BXnyAIgmh6kD2QhyYTBEEQOppXheaiBXcEQRDNHbIH8tBkwo4IxRWvq6TJ1JaEvMlO2uT02KHcznb1w60X7bwR0cBukbXsAmzRQm+749i1abdAmr8WAtzaDmOOi47JiPZivIC2InDdaF4NmoMnUc15wR1hJpIBOpwG3TD3w2Y/CTtgt9haVMZvs5O0ipAK4KEEHjvYZx5R7gpZrPuKFkPbwv1PySS0MhJXEZGwh1a5E2A/PotzYkHfxpVZrkOni7NFyNxH9SUnInsgD00mCIIgdFSv5tCt3XyNB0EQRFOG7IE8cukgY5QnnngCiqLg/vvvN8oqKytx9913o02bNmjZsiVGjhyJ48ePN1wnCYIgiKhD9oAgCKJhaLSTiR07duBPf/oTLrroIlP5lClT8NZbb+HVV1/Fli1bcPToUYwYMSLq/VF0SZToZYfLpQR1aSuKEvDyH8//smtL1AdrW6HqW3G7FOMVLl5VC+raFW2zK7NtS9OkXsH6EKx9a5ldP0L1UQbZ8233+4l+d2t9dg2ZI7oESifsrk27tuz67PTeiQYsSZGTF9Hw1Ic9sLtOI3WtytqDwL4FtwdC2atNW3WhVtVQG4HxjvDD2w92fiOJ0zFcdK2F21bYfQ5xL0bqniR7IE+jnEyUlpZi9OjRePHFF9G6dWujvLi4GC+99BKWLFmCq666Cn369MHKlSvx8ccfRyxlOEEQTRdV06CqDl6CiShRv5A9IAgiGpA9kKdRTibuvvtuXHPNNcjLyzOV79y5EzU1Nabybt26oUOHDti2bVt9d5MgiMaGnvFU9oVmrJGNFcgeEAQRFcgeSNPoFmCvW7cOu3btwo4dOwK2FRYWIiEhAWlpaabyzMxMFBYWBm2zqqoKVVVVxueSkhLjfSRcZTJuPVl3s0xiOlGf7RLUOcUuCZvTbWZXuNVF6GyuK5scTrYNJ/W8gsyXwSRP4Rw7XMmAKImQKCqTKIqHTEI7HieRPXjCTW5kOlaEXP+qV4WqOMh42ozd2rFAfduDSBIJuUd9ITv+yEUs4u8ZiTGeT+im/7PGIjyFa4tkcTomB5PMBivz/1Vt69u1GdhW7P9DK7r2ZaM91SdkD+RpVJ6Jw4cP47777sOaNWuQmJgYsXYXLFiA1NRU45WTkxOxtgmCaDw4eQplPI0iGgSyBwRBRBOyB/I0qsnEzp07ceLECVx88cWIi4tDXFwctmzZgmXLliEuLg6ZmZmorq5GUVGRab/jx48jKysraLszZsxAcXGx8Tp8+HCUvwlBELEIGY/GA9kDgiCiCdkDeRqVzGnw4MH43//+ZyobP348unXrhocffhg5OTmIj4/Hxo0bMXLkSADA3r17cejQIfTv3z9oux6PBx6PJ6DcicTJqctaRtZkl3yoIVzkzH1qlzhNNkGb3PH8uen9sqjAem5X4ImKpKtXJGGSOY5omygShyhSVDjHixZ2Ce14rNIn0TUuk+yOx0mio0hIEsmt3Xiob3sQKSJpK+xshB38fcjaZ/ca3yQbgZ2O6yJ7IEoix8Z4f9K6wC8kSpjnRWAf3JpNIlQ1TJmTzYJa2XFaLHNSbbb5ymptZEt2MidRPSYDFY2nojFZFlEiO2Obfl3Jtm+XaLWhIHsgT6OaTLRq1QoXXnihqSw5ORlt2rQxyidMmICpU6ciPT0dKSkpuOeee9C/f39ceumlDdFlgiAaEZqmOVp/URdDTNQNsgcEQUQTsgfyNKrJhAxPP/00XC4XRo4ciaqqKuTn5+O5554Lq62IxUSuoxeCx64/0YjLH3rRdORgT2LET7DsvCLegLJoY3cO7OKAyyzKll24HY3fgb+GrIOoaDG3eV/zZ5lF2oD9AOzk/ovEvap6NaiCp5529YnYJZL2oK5Ew5vM7jGR/eDvUXZsdk+b7nMWhEEJfDLMmuXHNKudEdkIka3wWrbx+Md8/6AhqmctE3ky7PYPl1BjrdV7LTte23mqZRZui7aJ/vmV9UhY9w3lJRCN8XUlljwUZA/kafSTic2bN5s+JyYm4tlnn8Wzzz7bMB0iCKLRonk1aAFRxezrR4Pvv/8e8+bNw6ZNm1BYWIjs7Gzceuut+MMf/oCEhISg+1VWVmLatGlYt26d6Z/nzMzMqPQz1iB7QBBEpIgVe9AYaPSTCYIgiEjhMx4O3NpRMh7ffPMNVFXFn/70J3Tt2hVffvklJk6ciLKyMixevDjoflOmTME777yDV199FampqZg8eTJGjBiBjz76KCr9JAiCaKrEij1oDNBkog7I5oawbUMmzHaUFlsbC+5spC28SzvcRday+9nJqNg2OwlRQxCNvBFOt9lpOqPlKpZxRYfKS2HUk7iPmpsWtaCgAAUFBcbnzp07Y+/evXj++eeDTiZYxue1a9fiqquuAgCsXLkS3bt3xyeffELrBBopVhmSsA53f4WSPAFBwjgKClleB9OxmZxGJDkNkCHZS5XY+2qb+nbtxbnknhpHO++Q1S6FlkUFry8je62LlMlpG4H7hawS8thE04MmEwRBEDrhamStic2iERGouLgY6enpQbeHyvhMkwmCIAh5aM2EPI0qzwRBEEQ00VTV8QsAcnJyTInOFixYENF+7d+/H8uXL8cdd9wRtE64GZ8JgiCIQMK1B80R8kzYoChKRKRMRnsNOHUTxRVniKJ+GPuJokaE2QdR1I9g2611GiK/ghNk++dEFiZCNkydnbu6IdzPMpGebPeXiYgWgXs13CdRhw8fRkpKilEezCsxffp0LFy40LbNPXv2oFu3bsbnI0eOoKCgADfeeCMmTpwo3TcithDJSp0gum+F0dHsJIUuc1/MHQzeP143zqSvXsFTWMWSz4G3FazdWlN/QsuiZLdHMnqTDHXJB2Td7lRy5FS+JNOmuQ2palL9cUosRHFixJJnYv78+XjnnXewe/duJCQkBCTjFDFu3DisXr3aVJafn4/169cbn0+dOoV77rkHb731lhH57o9//CNatmzpqH80mSAIgtDRVIcL7nTDl5KSYppMBGPatGkYN26cbZ3OnTsb748ePYorr7wSAwYMwAsvvGC7X1ZWlpHxmfdOhMr4TBAEQQQSrj2IBtXV1bjxxhvRv39/vPTSS9L7FRQUYOXKlcZn64Ou0aNH49ixY9iwYQNqamowfvx4TJo0CWvXrnXUP5pMEARBMLwqNJtMugE4dGtnZGQgIyNDqu6RI0dw5ZVXok+fPli5ciVcNjH1AaBPnz5hZXwmCIIgBETZHjhhzpw5AIBVq1Y52s/j8QR9mLRnzx6sX78eO3bsQN++fQEAy5cvx9VXX43FixcjOztb+jg0mYgwkZQyOXWHixISCetZXJK8q9zOxWhNfCTCLrkRj13EJrs6jQmn/Xf6VEMq8oZD97PTPoRKZBeMUPdJNJIhyaB6NagOzlm0XPJHjhzBoEGDcM4552Dx4sX46aefjG3MMBw5cgSDBw/Gyy+/jH79+iE1NZUyPjcCZK4Z2bHf8f2t647sJIGhxi3FFV7/WW5Rk12waGZNEiibPoYrFZNN7BruE+ZIyEvrKlOqy9gZTQlsLMmXZAnXHtRHQA5ZNm/ejHbt2qF169a46qqr8Nhjj6FNmzYAgG3btiEtLc2YSABAXl4eXC4Xtm/fjuuvv176ODSZIAiC0NG8miODGi239oYNG7B//37s378fZ599tvmYev9qamqwd+9elJeXG9tiKeMzQRBEYyZce5CTk2MqnzVrFmbPnh3JrklRUFCAESNGoFOnTjhw4AB+//vfY+jQodi2bRvcbjcKCwvRrl070z5xcXFIT093HLSDJhMEQRA6qubwSVSUnuSNGzcu5NqKjh07Bhg6yvhMEAQRGcK1B9EMyOGEUaNGGe979OiBiy66CF26dMHmzZsxePDgsNoMBk0m6kC0ozOFG/0j1NNSq6tXdubtWA5oTZQU4nvUNSGdrAtbhmgupAIi4/IN1yUdye8WLdd1XaM/hYtX0+B1cF6d1CUIWaIvCQlfzqhJhPMTRbXxy5bkju3UvkYruWswnP5GDREhqTFKi2KJcO1BtAJy1JXOnTujbdu22L9/PwYPHoysrCycOHHCVKe2thanTp1yHLSDJhMEQRA6Xs33clKfIAiCaHpE2x44CcgRCX788UecPHkS7du3BwD0798fRUVF2LlzJ/r06QMA2LRpE1RVRW5urqO2aTLhgIbKExHq6UKkPRfBDxTebgxRXHIRYecLiJGnMPWVxyHa3hNGLDzdEt17DbVIm2ieaKpWb/dcrBHtYBhCr3K4CY10IumpiNYY2Fyvp/qgqZ3bQ4cO4dSpUzh06BC8Xi92794NAOjatauRE6Jbt25YsGABrr/+epSWlmLOnDkYOXIksrKycODAATz00EPo2rUr8vPzAQDdu3dHQUEBJk6ciBUrVqCmpgaTJ0/GqFGjHEVyAmgyQRAEYUAyJ4IgCAKILXswc+ZMUwK63r17AwDef/99DBo0CIAvFHhxcTEAwO1244svvsDq1atRVFSE7OxsDBkyBPPmzTOt4VizZg0mT56MwYMHG8E7li1b5rh/NJkgCILQIZkTQRAEAcSWPVi1alXIHBO8KiIpKQnvvvtuyHbT09MdJ6gTQZMJBzBZRUPJnYIRDResyEVcX25DJxknCTOxIEmKNtGUN6kOn0RFK5oTQTCiHgwiFq7hOkqaRLjClcsKiIlzFCUieZ5ERDIwSn1D9kAemkwQBEHoeOHwSVTUekIQBEE0JGQP5KHJBEEQhI5X0+B14BmjNRMEQRBNE7IH8tBkIgzqO4pMQ8iqmoNchqg7TS2ikldz9nSJ1kwQImJVmhTJfsV6tJwmNjSFJFw5keif5XDbEkmmInmd1LdkiuyBPDSZIAiC0CHjQRAEQQBkD5xAkwmCIAgdcmsTBEEQANkDJ9BkohHQ1KQkBBGrqA6fRMW40oOIJBFOWheJyC9O+xNu/8OVvdZXAs+mjHQSV8FvFMnEfXYw+VFdrmmZqFKOrt8I3KtkD+ShyQRBEIQOPYkiCIIgALIHTqDJBEEQhA5pZAmCIAiA7IETaDLRBCBXMhFNpN3sBEEAqLuEKdryJVnZUri2JRLS3KYWUTBcyRGfxNVpZEev/t+t7BjO+ih7PSkO6oeKxCRzz0Q7wR4RPjSZIAiC0PE9iXLi1o5iZwiCIIgGg+yBPDSZIAiC0CG3NkEQBAGQPXACTSZCQBIie5qaKzpWqa+oHCIawz0QKSkWLbgjZGlOUiansqWwoz81YXviVXm5UphJ4eBsPyaLsvuN+bHT7ncT2SC738v6HUP9tjLnxO6ei4YEiuyBPA2QW7luLFiwAJdccglatWqFdu3aYfjw4di7d6+pTmVlJe6++260adMGLVu2xMiRI3H8+PEG6jFBEI0FDb7MubKv5ms6YgOyBwRBRAuyB/I0usnEli1bcPfdd+OTTz7Bhg0bUFNTgyFDhqCsrMyoM2XKFLz11lt49dVXsWXLFhw9ehQjRoxwfKzG8ERWhKpq9fYi6gf6Pe3RNC0i96tX0xy/iIajPu2BqmmmlwyanptC9HK6n7BPkvcyuz9EL/8xg7/CPbbd96eX3Cuc39vJbypzbYR3bPnrPdS1IoP1/oxEHheyB/I0OpnT+vXrTZ9XrVqFdu3aYefOnbj88stRXFyMl156CWvXrsVVV10FAFi5ciW6d++OTz75BJdeemlDdJsgiEYAaWQbF2QPCIKIFmQP5Gl0ngkrxcXFAID09HQAwM6dO1FTU4O8vDyjTrdu3dChQwds27ZN2EZVVRVKSkpML4Igmh/0JKpxQ/aAIIhIQfZAnkbnmeBRVRX3338/LrvsMlx44YUAgMLCQiQkJCAtLc1UNzMzE4WFhcJ2FixYgDlz5kS7u0Ias7RERFNeQFdfhLs4LxJE63psyAXkTqAnUY2XhrYHdRn7ZPZ1em/Kyv5kFldLL+aWlLOESySkK/VBqMXAdV24LLIRot/Ibtxlv7td7gr+GrILciFzbNnvIeyHZd/6spFkD+Rp1J6Ju+++G19++SXWrVtXp3ZmzJiB4uJi43X48OEI9ZAgiMYEPYlqvJA9IAgikpA9kKfReiYmT56Mt99+G1u3bsXZZ59tlGdlZaG6uhpFRUWmp1HHjx9HVlaWsC2PxwOPxxPtLhMEEeOoDp9EkSMuNiB7QBBEpCF7IE+jm0xomoZ77rkHr7/+OjZv3oxOnTqZtvfp0wfx8fHYuHEjRo4cCQDYu3cvDh06hP79+zs6VmOPcFMXSK7UcNTl3DekRMqO+riPmuu92pypT3sQtA9hXnfSUWpkpEMkaXJMNKUzor7L5kGQ6Ve40idxrojAPoikT6JrTEb6ZC+1Ci/3Rrj7EdGj0U0m7r77bqxduxb//Oc/0apVK0P3mpqaiqSkJKSmpmLChAmYOnUq0tPTkZKSgnvuuQf9+/enyB0EQdhCSYoaF2QPCIKIFmQP5Gl0k4nnn38eADBo0CBT+cqVKzFu3DgAwNNPPw2Xy4WRI0eiqqoK+fn5eO6556SPwWbg3qryiPS5MUKeicZJc35Kw+7XuuSbqIDqaBFdNRymBiYiSizYg3CvN3nPhERb5JlwTH0v6tXCzNAs2y+Zepp0W1LVbD0T/mNKthXm+Q/WB7IH9YuiNdbMbFHkxx9/RE5OTkN3gyCIMDh8+LBJNy9DZWUlOnXqFDTCjx1ZWVk4ePAgEhMTHe9LxD5kDwii8UL2oH6gyYQAVVVx9OhRtGrVSmrm3RgoKSlBTk4ODh8+jJSUlIbuTqOFzmNkiMZ51DQNZ86cQXZ2Nlwu54HqKisrUV1d7Xi/hISEZmc4mhNkD4hg0HmMDGQPGj+NTuZUH7hcLscz2cZCSkoKDXoRgM5jZIj0eUxNTQ1738TExGZpBAh7yB4QoaDzGBnIHjReGnWeCYIgCIIgCIIgGg6aTBAEQRAEQRAEERY0mWgmeDwezJo1i5Ix1RE6j5GBziNBNBx0/0UGOo+Rgc5j44cWYBMEQRAEQRAEERbkmSAIgiAIgiAIIixoMkEQBEEQBEEQRFjQZIIgCIIgCIIgiLCgyUQTY/bs2VAUxfTq1q2bsb2yshJ333032rRpg5YtW2LkyJE4fvx4A/Y4Nti6dSuuvfZaZGdnQ1EUvPHGG6btmqZh5syZaN++PZKSkpCXl4d9+/aZ6pw6dQqjR49GSkoK0tLSMGHCBJSWltbjt2hYQp3DcePGBVybBQUFpjrN/RwSRCQhexAeZA8iA9mE5gNNJpogF1xwAY4dO2a8PvzwQ2PblClT8NZbb+HVV1/Fli1bcPToUYwYMaIBexsblJWVoWfPnnj22WeF2xctWoRly5ZhxYoV2L59O5KTk5Gfn4/KykqjzujRo/HVV19hw4YNePvtt7F161ZMmjSpvr5CgxPqHAJAQUGB6dr861//atre3M8hQUQasgfOIXsQGcgmNCM0okkxa9YsrWfPnsJtRUVFWnx8vPbqq68aZXv27NEAaNu2baunHsY+ALTXX3/d+KyqqpaVlaU9+eSTRllRUZHm8Xi0v/71r5qmadrXX3+tAdB27Nhh1Pn3v/+tKYqiHTlypN76HitYz6GmadrYsWO1YcOGBd2HziFBRBayB3WH7EFkIJvQtCHPRBNk3759yM7ORufOnTF69GgcOnQIALBz507U1NQgLy/PqNutWzd06NAB27Zta6juxjwHDx5EYWGh6bylpqYiNzfXOG/btm1DWloa+vbta9TJy8uDy+XC9u3b673PscrmzZvRrl07nHfeebjrrrtw8uRJYxudQ4KIPGQPIgvZg8hCNqFpENfQHSAiS25uLlatWoXzzjsPx44dw5w5c/DLX/4SX375JQoLC5GQkIC0tDTTPpmZmSgsLGyYDjcC2LnJzMw0lfPnrbCwEO3atTNtj4uLQ3p6Op1bnYKCAowYMQKdOnXCgQMH8Pvf/x5Dhw7Ftm3b4Ha76RwSRIQhexB5yB5EDrIJTQeaTDQxhg4dary/6KKLkJubi3POOQd///vfkZSU1IA9I5o7o0aNMt736NEDF110Ebp06YLNmzdj8ODBDdgzgmiakD0gYhmyCU0Hkjk1cdLS0vCLX/wC+/fvR1ZWFqqrq1FUVGSqc/z4cWRlZTVMBxsB7NxYo5zw5y0rKwsnTpwwba+trcWpU6fo3Aahc+fOaNu2Lfbv3w+AziFBRBuyB3WH7EH0IJvQeKHJRBOntLQUBw4cQPv27dGnTx/Ex8dj48aNxva9e/fi0KFD6N+/fwP2Mrbp1KkTsrKyTOetpKQE27dvN85b//79UVRUhJ07dxp1Nm3aBFVVkZubW+99bgz8+OOPOHnyJNq3bw+AziFBRBuyB3WH7EH0IJvQiGnoFeBEZJk2bZq2efNm7eDBg9pHH32k5eXlaW3bttVOnDihaZqm3XnnnVqHDh20TZs2aZ999pnWv39/rX///g3c64bnzJkz2ueff659/vnnGgBtyZIl2ueff6798MMPmqZp2hNPPKGlpaVp//znP7UvvvhCGzZsmNapUyetoqLCaKOgoEDr3bu3tn37du3DDz/Uzj33XO2WW25pqK9U79idwzNnzmgPPPCAtm3bNu3gwYPaf/7zH+3iiy/Wzj33XK2ystJoo7mfQ4KIJGQPwoPsQWQgm9B8oMlEE+Pmm2/W2rdvryUkJGhnnXWWdvPNN2v79+83tldUVGi/+93vtNatW2stWrTQrr/+eu3YsWMN2OPY4P3339cABLzGjh2raZovHOCjjz6qZWZmah6PRxs8eLC2d+9eUxsnT57UbrnlFq1ly5ZaSkqKNn78eO3MmTMN8G0aBrtzWF5erg0ZMkTLyMjQ4uPjtXPOOUebOHGiVlhYaGqjuZ9DgogkZA/Cg+xBZCCb0HxQNE3T6s8PQhAEQRAEQRBEU4HWTBAEQRAEQRAEERY0mSAIgiAIgiAIIixoMkEQBEEQBEEQRFjQZIIgCIIgCIIgiLCgyQRBEARBEARBEGFBkwmCIAiCIAiCIMKCJhMEQRAEQRAEQYQFTSYIgiAIgiAIgggLmkwQBEEQBEEQBBEWNJkgCIIgCIIgCCIsaDJBxDzdu3fH//t//y9kvZMnT6Jdu3b4/vvvg9YZNGgQ7r///sh1TmfUqFF46qmnIt4uQRAE4YfsAUHEHjSZIGKaiooK7Nu3Dz179gxZd/78+Rg2bBg6duwY/Y5ZeOSRRzB//nwUFxfX+7EJgiCaA2QPCCI2ockEEdN8+eWX0DQNF154oW298vJyvPTSS5gwYUI99czMhRdeiC5duuCVV15pkOMTBEE0dcgeEERsQpMJIibZvXs3rrrqKgwcOBCqqqJDhw5YunRp0Pr/+te/4PF4cOmllxplZWVlGDNmDFq2bIn27dsL3c6qqmLBggXo1KkTkpKS0LNnT/zf//2fqc6ZM2cwevRoJCcno3379nj66aeF7vFrr70W69atq9P3JgiCIMyQPSCI2IYmE0TMceDAAVxxxRW46qqrcN1112HEiBGYNm0apkyZgt27dwv3+eCDD9CnTx9T2YMPPogtW7bgn//8J9577z1s3rwZu3btMtVZsGABXn75ZaxYsQJfffUVpkyZgltvvRVbtmwx6kydOhUfffQR3nzzTWzYsAEffPBBQDsA0K9fP3z66aeoqqqq+0kgCIIgyB4QRGNAI4gYIy8vTxs3bpymaZrWr18/7amnntK8Xq+WkpKiLVu2TLjPsGHDtNtvv934fObMGS0hIUH7+9//bpSdPHlSS0pK0u677z5N0zStsrJSa9Gihfbxxx+b2powYYJ2yy23aJqmaSUlJVp8fLz26quvGtuLioq0Fi1aGO0w/vvf/2oAtO+//z7s704QBEH4IXtAELFPXENPZgiCp7CwEJs2bcLHH38Mr9eL//3vf1iwYAFcLhfcbjcSEhKE+1VUVCAxMdH4fODAAVRXVyM3N9coS09Px3nnnWd83r9/P8rLy/GrX/3K1FZ1dTV69+4NAPjuu+9QU1ODfv36GdtTU1NN7TCSkpIA+PS6BEEQRN0ge0AQjQOaTBAxxSeffAJVVdGrVy/s3bsXFRUV6NWrF77//nucPn0aAwYMEO7Xtm1bnD592tGxSktLAQDvvPMOzjrrLNM2j8fjuO+nTp0CAGRkZDjelyAIgjBD9oAgGge0ZoKIKaqrqwEAlZWV+Pzzz3HOOecgPT0dK1aswIUXXogePXoI9+vduze+/vpr43OXLl0QHx+P7du3G2WnT5/Gt99+a3w+//zz4fF4cOjQIXTt2tX0ysnJAQB07twZ8fHx2LFjh7FfcXGxqR3Gl19+ibPPPhtt27at20kgCIIgyB4QRCOBPBNETNG/f3/ExcVh7ty5KC0tRefOnfHMM89g+fLl2Lp1a9D98vPzMWPGDJw+fRqtW7dGy5YtMWHCBDz44INo06YN2rVrhz/84Q9wufzz51atWuGBBx7AlClToKoqBg4ciOLiYnz00UdISUnB2LFj0apVK4wdOxYPPvgg0tPT0a5dO8yaNQsulwuKopj68MEHH2DIkCFROzcEQRDNCbIHBNFIaOhFGwRh5eWXX9bat2+vAdDi4uK03NxcbevWrSH369evn7ZixQrj85kzZ7Rbb71Va9GihZaZmaktWrRIu+KKK0wL5VRV1ZYuXaqdd955Wnx8vJaRkaHl5+drW7ZsMeqUlJRov/nNb7QWLVpoWVlZ2pIlS7R+/fpp06dPN+pUVFRoqamp2rZt2yJzEgiCIAiyBwTRCFA0TdMaekJDECLS09OxatUqXHfddVL133nnHTz44IP/v707RlEYCMMw/DV6CY8heAkLK2+Qk9hrk8JjWApeIk2KiK3WIpJ+iwXZZVkWhuwS2OepA1P+vMlMJm3bfnrjNLS+7zObzbLdbl+XIu33+xwOh5xOp19bF+C/Mg9gvGxzYpSu12vu9/uPN51+tFwuc7lccrvdXntch9A0Tbquy2KxyOPxyGazSZKsVqvXM5PJJHVdD7YmAO/MAxg3XyYYpePxmPV6nefz+WUv6l9rmiZVVeV8Pmc6nWY+n2e32317+A+A4ZgHMG5iAgAAKOLXsAAAQBExAQAAFBETAABAETEBAAAUERMAAEARMQEAABQREwAAQBExAQAAFBETAABAETEBAAAUERMAAECRN+9LZ6HZyM8MAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# new projection distance\n", "r_proj_new = 20 * wavelength\n", "\n", "# re-project our far field data above to this new distance\n", "reprojected_field_data = projected_field_data.renormalize_fields(r_proj_new)\n", "\n", "# now all the fields stored in 'projected_field_data' correspond to this new distance\n", "# compare to the analytical fields at this new distance\n", "analytic_field_data_new = analytic_fields_aperture(\n", " monitor_far, sim_size, height, width, r_proj_new\n", ")\n", "\n", "# plot Etheta\n", "Etheta_analytic = analytic_field_data_new.Etheta.isel(f=0, r=0)\n", "Etheta_proj = reprojected_field_data.Etheta.isel(f=0, r=0)\n", "make_field_plot(phi_proj, theta_proj, Etheta_analytic, Etheta_proj)\n", "\n", "# print the normalized RMSE\n", "print(\n", " f\"Normalized root mean squared error: {rmse(Etheta_analytic.values, Etheta_proj.values) * 100:.2f} %\"\n", ")\n", "\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### More accurate field projections \n", "In the field projections used above, the far field approximation is used: it is assumed that the fields are measured at a distance much greater than the size of our simulation in the transverse direction. Accordingly, geometric approximations are invoked, and any quantity whose magnitude drops off as 1/r^2 or faster is ignored. The advantages of these approximations are:\n", "* the projections are computed relatively fast\n", "* the projections are cast in a simple mathematical form which allows re-projecting the fields to different distance without the need to re-run a simulation or to re-run the [FieldProjector](../_autosummary/tidy3d.FieldProjector.html).\n", "\n", "However, in some cases we may want to project to intermediate distances where the far field approximation is no longer valid. `Tidy3D`'s field projection functionality allows doing this very easily: simply flip a switch when defining the [FieldProjectionAngleMonitor](../_autosummary/tidy3d.FieldProjectionAngleMonitor.html)! The resulting computations will be a bit slower, but the results will be significantly more accurate.\n", "\n", "**Note**: when the far field approximations are turned off, we can no longer simply use `renormalize_fields` to re-project the fields at a new distance. Instead, we would need to re-run the [FieldProjector](../_autosummary/tidy3d.FieldProjector.html).\n", "\n", "Below, we will demonstrate this feature by looking at fields only a few wavelengths away from the aperture. Note that our analytical results also made far field approximations, so here we'll make our simulation domain a bit larger and measure the actual fields on a monitor, so that we can compare these actual fields to those computed by the [FieldProjector](../_autosummary/tidy3d.FieldProjector.html).\n", "\n", "Also, this time we'll use the [FieldProjectionCartesianMonitor](../_autosummary/tidy3d.FieldProjectionCartesianMonitor), which is the counterpart to the [FieldProjectionAngleMonitor](../_autosummary/tidy3d.FieldProjectionAngleMonitor.html) where the observation grid is defined in Cartesian coordinates, not angles." ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:50:37.906399Z", "iopub.status.busy": "2023-03-27T23:50:37.906224Z", "iopub.status.idle": "2023-03-27T23:50:38.160044Z", "shell.execute_reply": "2023-03-27T23:50:38.159447Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqMAAAE8CAYAAAD0R7hjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYzElEQVR4nO3de5QjZYH//09VqirpzqWT7vTcmOE2KIODwAADK8h9BAQvs+p8YVe56aLCgLIoAkcWBBdHXYRZAQFZcVaQlS/+voCCitxBFBcG2MNFQFaRYYZhOj1J59LdqarU8/ujqUySTncunaQqqc/rnD4w6Vye7uquenel6ilJCCFAREREROQA2ekBEBEREZF3MUaJiIiIyDGMUSIiIiJyDGOUiIiIiBzDGCUiIiIixzBGiYiIiMgxjFEiIiIicgxjlIiIiIgcwxglIiIiIscwRqnrPProo5AkCY8++qjTQyEiojbi+t4bGKPkWj/4wQ+wYcMGp4fRlNtvvx3r1693ehhlfvSjH2GvvfZCIBDAe97zHlx77bV1Pzafz+PCCy/EokWL0NfXh4MPPhgPPPBA1fv+/ve/xwc/+EH09/djwYIF+NKXvoRsNtuqL4OIehDX963Vdet7QeRSy5cvF0ccccS02wuFgpiYmBCFQqHzg6rTiSeeKHbZZRenh1F04403CgDik5/8pPjhD38oTjnlFAFAfPvb367r8SeffLJQFEV89atfFTfddJP4wAc+IBRFEU888UTZ/Z577jkRCATEihUrxA033CC+/vWvC7/fL44//vh2fFlE1CO4vm+dblzfM0ZdLpvNOj0Ex8y0cuoGblo5jY+Pi6GhIXHiiSeW3f7pT39aBINBsX379lkf/8c//lEAEP/2b/9WvG1iYkIsXbpUfOADHyi774c//GGxcOFCMTY2Vrzt5ptvFgDE/fff34Kvhqh3cX1/hNPDaArX93Nf3zNGO+itt94Sn/3sZ8XChQuFpmli1113FV/84hdFPp8XQgjx4x//WAAQjz76qDjrrLPE8PCwiEajxcdff/314n3ve5/QNE0sXLhQnH322SKZTJa9xmuvvSY+8YlPiPnz5wu/3y922mkncdJJJ4lUKlW8z29/+1tx6KGHioGBAREMBsV73/tecfHFF9ccfz2Pm5ycFJdeeqlYunSp0DRNLF68WFxwwQVicnJy2vPdeuutYuXKlaKvr09Eo1Fx2GGHFX+Ad9llFwGg7MNeUT3yyCMCgHjkkUfKnu///t//K/bff38RCATE0NCQ+PSnPy3eeuutsvucdtppIhgMirfeekt8/OMfF8FgUMTjcfGVr3xFmKZZ83tw9913ixNOOKG4DHfffXdxxRVXlD32iCOOmDb22VZUt9xyiwAgfvSjH5XdfuWVVwoA4r777qs5rtncd999VZ/n97//vQAgbr311lkff8EFFwifz1e2whFCiG9961sCgHjzzTeFEEKMjY0JRVHEBRdcUHa/fD4vQqGQ+NznPjenr4Oom3B9X47r+ymHH3642Geffap+7r3vfa849thja45rNt26vlcaf2OfmrFlyxYcdNBBSKVS+PznP49ly5Zh8+bN+PnPf47x8XFomla879lnn43h4WFceumlyOVyAIBvfOMbuPzyy7Fq1SqcddZZePXVV3HDDTfg6aefxpNPPglVVaHrOo477jjk83mce+65WLBgATZv3ox7770XqVQKAwMDeOmll/CRj3wE++yzD6644gr4/X68/vrrePLJJ2cdfz2PsywLH/vYx/C73/0On//857HXXnvhhRdewDXXXIPXXnsNd999d/G+l19+Ob7xjW/gkEMOwRVXXAFN0/DHP/4RDz/8MI499lisX78e5557LkKhEL7+9a8DAObPnz/j+DZs2IAzzjgDK1euxLp16/DOO+/g3//93/Hkk0/iueeeQzQaLd63UCjguOOOw8EHH4yrrroKDz74IL73ve9h6dKlOOuss2b9PmzYsAGhUAjnn38+QqEQHn74YVx66aVIp9P4t3/7NwDA17/+dYyNjeGtt97CNddcAwAIhUIzPucZZ5yB//f//h/OP/98fOhDH8KSJUvwwgsv4PLLL8fnPvc5nHDCCcX7JpNJFAqFWccIAP39/ejv7wcAPPfccwCAAw88sOw+BxxwAGRZxnPPPYfPfOYzMz7Xc889h/e+972IRCJltx900EEAgOeff744ZtM0p72OpmnYb7/9iuMg6nVc33N9P5NTTjkFZ555Jl588UXsvffexduffvppvPbaa7jkkkuKt3lqfd9QulLTTj31VCHLsnj66aenfc6yLCHEjr+UP/jBD5b95bVt2zahaZo49thjy46bue666wQAccsttwghpo7fACDuvPPOGcdxzTXXCABiZGSkofHX87hbb71VyLI87bgS+/iVJ598UgghxJ///Gchy7L4+7//+2nHAdnfCyFmftum8i9lXdfFvHnzxN577y0mJiaK97v33nsFAHHppZcWbzvttNMEAHHFFVeUPeeKFSvEAQccMPs3QUy9BVLpC1/4gujv7y/bG9Do2zZvv/22GBwcFB/60IdEPp8XK1asEDvvvPO0v06r7UGo9nHZZZcVH7N27Vrh8/mqvu7w8LA4+eSTZx3b8uXLxdFHHz3t9pdeekkAEDfeeKMQQog777xTABCPP/74tPuuWbNGLFiwoNa3gagncH3P9f1MUqmUCAQC4sILLyy7/Utf+pIIBoNlh2p4aX3Ps+k7wLIs3H333fjoRz867a8IAJAkqezfZ555Jnw+X/HfDz74IHRdx3nnnQdZlsvuF4lEcN999wEABgYGAAD3338/xsfHq47F/ovxnnvugWVZdX8N9TzuzjvvxF577YVly5YhkUgUP44++mgAwCOPPAIAuPvuu2FZFi699NKyrweY/r2oxzPPPINt27bh7LPPRiAQKN5+4oknYtmyZcXvT6kvfvGLZf8+7LDD8Je//KXma/X19RX/P5PJIJFI4LDDDsP4+DheeeWVhsduW7BgAa6//no88MADOOyww/D888/jlltumfbX6U9/+lM88MADNT9OPfXU4mMmJibK9sSUCgQCmJiYmHVsExMT8Pv9VR9rf770vzPdt9brEPUCru+5vp/NwMAAPv7xj+O//uu/IIQAMLX39o477sDq1asRDAaL9/XS+p5v03fAyMgI0ul02S752ey2225l//7b3/4GANhzzz3Lbtc0Dbvvvnvx87vtthvOP/98XH311fjpT3+Kww47DB/72Mfwmc98prjiOumkk/Af//Ef+Kd/+idcdNFFOOaYY/CJT3wCn/rUp6atKErV87g///nP+NOf/oTh4eGqz7Ft2zYAwP/+7/9ClmW8733vq+v7UctM3x8AWLZsGX73u9+V3RYIBKaNMRaLIZlM1nytl156CZdccgkefvhhpNPpss+NjY01OvQyJ598Mm677Tbcd999+PznP49jjjlm2n0OPfTQhp+3r68Puq5X/dzk5GTZCnemx+fz+aqPtT9f+t+Z7lvrdYh6Adf3U7i+n9mpp56KO+64A0888QQOP/xwPPjgg3jnnXdwyimnlN3PS+t7xqgLzWWj/b3vfQ+nn3467rnnHvz2t7/Fl770Jaxbtw5PPfUUFi9ejL6+Pjz++ON45JFHcN999+E3v/kN7rjjDhx99NH47W9/W/YXeuWYaj3Osiy8//3vx9VXX131OZYsWdL019VKM32NtaRSKRxxxBGIRCK44oorsHTpUgQCATz77LO48MILG9rzUM3o6CieeeYZAMDLL78My7KmbTBGRkbqOoYoFAoVj1tauHAhCoUCtm3bhnnz5hXvo+s6RkdHsWjRolmfa+HChdi8efO0299++20AKD5+4cKFZbdX3rfW6xB5Edf37eXG9f1xxx2H+fPn47bbbsPhhx+O2267DQsWLMCqVavK7uel9T3fpu+A4eFhRCIRvPjii009fpdddgEAvPrqq2W367qOv/71r8XP297//vfjkksuweOPP44nnngCmzdvxo033lj8vCzLOOaYY3D11Vfj5ZdfxpVXXomHH364+LbKTGo9bunSpdi+fTuOOeYYrFq1atqH/Zfs0qVLYVkWXn755Vlfr963cGb6/ti3VX5/mvXoo49idHQUGzZswJe//GV85CMfwapVqxCLxabdt5m3n9auXYtMJoN169bhd7/7XdVJlFeuXImFCxfW/LjqqquKj9lvv/0AoBi6tmeeeQaWZRU/P5P99tsPr7322rQ9A3/84x/Lnn/vvfeGoijTXkfXdTz//PM1X4eoF3B9z/V9LT6fD//4j/+In//850gmk7j77rvxD//wD9PC2Uvre8ZoB8iyjNWrV+OXv/zltAUHoHjcyExWrVoFTdPw/e9/v+y+P/rRjzA2NoYTTzwRAJBOp2GaZtlj3//+90OW5eKu9O3bt097fvuHptrudls9j/s//+f/YPPmzbj55pun3XdiYqJ4pujq1ashyzKuuOKKaX9dln59wWAQqVRqxjHZDjzwQMybNw833nhj2dfw61//Gn/605+K35+5slcUpWPUdR0/+MEPpt03GAw29DbOz3/+c9xxxx349re/jYsuuggnn3wyLrnkErz22mtl92vmGKKjjz4ag4ODuOGGG8qe64YbbkB/f3/Z9yeRSOCVV14pOwbtU5/6FAqFAn74wx8Wb8vn8/jxj3+Mgw8+uLgHZGBgAKtWrcJtt92GTCZTvO+tt96KbDaLNWvW1P39IOpWXN9zfV+PU045BclkEl/4wheQzWarnuHuqfV9Q6c7UdPeeustsWDBAtHf3y/OO+88cdNNN4lvfOMbYvny5cW54+yzK6udgXnZZZcJAOLYY48V1113nTj33HOFz+cTK1euFLquCyGEuOuuu8ROO+0kzjvvPPGDH/xAfP/73xcrV64UqqqKP/zhD0IIIb785S+LFStWiEsuuUTcfPPN4sorrxQ77bSTWLx4cdncdJXqeVyhUBAnnHCCkCRJnHzyyeLaa68V69evF1/84hfF4OBg2df1L//yLwKAOOSQQ8RVV10lrr32WnHqqaeKiy66qHifs88+W0iSJL75zW+K//qv/xIPPfSQEKL6vHP29+7ggw8W69evFxdffLHo7+8Xu+66a9ncfPa8czN9f2eTSCRELBYTu+yyi/je974nrr76arFixQqx7777ThvPd7/7XQFA/PM//7O4/fbbxS9+8YsZn/edd94R8XhcHHXUUcWzSxOJhJg/f774wAc+0JIrj1x//fUCgPjUpz4lbr75ZnHqqacKAOLKK68su5/9faic02/NmjXFOeVuuukmccghhwhFUcRjjz1Wdr+NGzcKv99fdkWOQCAw57nziLoJ1/dc39dj7733FgDEXnvtVdf969WN63vGaAf97W9/E6eeeqoYHh4Wfr9f7L777mLt2rXTJkGutnISYmpqj2XLlglVVcX8+fPFWWedVfaL95e//EV89rOfFUuXLhWBQEAMDg6Ko446Sjz44IPF+zz00EPi4x//uFi0aJHQNE0sWrRI/MM//IN47bXXZh17vY/TdV185zvfEcuXLxd+v1/EYjFxwAEHiMsvv3zaNEW33HKLWLFiRfF+RxxxhHjggQeKn9+6das48cQTRTgcrmsS5DvuuKP4fIODg7NOglypnpWTEEI8+eST4u/+7u9EX1+fWLRokfja174m7r///mnjyWaz4h//8R9FNBqtOQnyJz7xCREOh8Ubb7xRdvs999wjAIjvfOc7NcdVjx/+8Idizz33FJqmiaVLl4prrrmmbGoVIWZeOU1MTIivfvWrYsGCBcLv94uVK1eK3/zmN1Vf54knnhCHHHKICAQCYnh4WKxdu1ak0+mWfA1E3YLre67va7Ej9lvf+lZd929Et63vJSFqvGdARERERC317//+7/jnf/5nvPHGG9h5552dHo6jGKNEREREHSSEwL777ouhoaGaJ5N5Aad2IiIiIuqAXC6HX/ziF3jkkUfwwgsv4J577nF6SK7APaNEREREHfDGG29gt912QzQaxdlnn40rr7zS6SG5AmOUiIiIiBzDeUaJiIiIyDGMUSIiIiJyjKdOYLIsC1u2bEE4HG7qco1E1H2EEMhkMli0aBFkmX9/U/fhtovazen1pKdidMuWLcVLWRGRt2zatAmLFy92ehhEDeO2izrFqfWkp2I0HA4DAL72ta+hr6+veLuu68Xrz2qaNutfnvb94vE4VFVt2dh0XS9elzcajUJWZaTMVNl9okoUilS+yDKZDJ599lnsvxwI95c/Z2YcePYlYP/99y9+7VNfhAFMJsrvHIhDQMHIyAgAwO/3Y2BgoBVfWsPGxsaK1xweHh52ZE9A5fLQNK3jYxBCNLY8ZliukOb2c+rk8jAMA4lEAoVCAYVCAQCgKErxutH1mJiYwHe/+93y3wGiLlLcdn11Lfr6pm+2C5YPZmHq91zxGfDJharPI4QMCAnxyDaoiln1Ps0SQsJIehgA4FfzGOhv7FrtrTI2PoC84QcADEdGIEmdP0dbNzWkclEAQDSYgqbobXstw1SQSM8DJAFJsoq3CyFBN6e+DxIsaOrsY5iYMPHdq653bD3pqRi1N6J9fX0IhUIAgHw+D0mSIMsyhBCQJAl+v3/G3dSWZcGyLEQikZYFiq7ryOVyxdgwDAPRcBS6XP7DE1EiUOXpYSFJEsL9wECVnyFJmlqRlYWMpQNqrux+lj+E0WQGwWAQfr8fk5OTkGW54z+YmUwGPp8Pg4ODyOfzMAwDQ0NDHX3boNryGBgY6GiQWpaF0dHRxpZHleWKvgggNz9up5eHruvIZDIwDKPs+69pGhSlsdUX396kbrVj26Ug1F++DTAtGboRgKq9G13CD02dhCJblU8DS0iwLB8iYRma0rrfB0tIGE3HEexX4FfzmNTDkBWBcF+mZa9Rj8xEGD4ljMH+CeQNPwwxjKFwAnIHg1Q3VeTScQyEp/4gMApxDPQloClGm15PRs7QIMuF4tdpCSBv9MGnSJAkC5aQofhU+OuIYqfWk54+gCqfz8M0TSiKgr6+PmiaBiEE8vk8LGv6L3I76LqORCIBVVURj8eLe1yT25OwjM6MwRICo9tTMAwD8XgcQ0NDiEQiSKfTyGQ6tzLJZDJIp9OIRCIYGhpCPB6HYRgYHR11fHkkEgnoevv+ui1lhyiXx9QfAqZpQpIkBAIBBAIBSJIEXddhmq3ds0PUbewQlSSBgDqBgDoBSRLQjQBMqzObdztEjYKCeCSBofB2RPrTSI9HkJno3M6MzEQY6fEIIv1pDIW3Ix5JwCgoGE3HYYnOBJZuqkik41B9JuKREcQjI1B9JhLpOHSzde+kzsYOUSEkaOok+rRJKD4TZkFB3uz8O3z18myMloao3z+1K1tRlI4GaWn42HubZFnG0NAQFEVBPplve5BaQmA0XYBhmojH48W9T+FwuKMBVBo+9t4/TdM6GkCzLY9OBWlliHp9eSSTybJ3K2RZht/vZ5CS55WGqF+dgCwBsgT4OxiklSFq7/0L92U6GqSlIWrvjdUUo6NBWhqiQ5GpvbGyJDAUSXQsSCtD1N477ld01wepJ2PU3ttSGqK2TgVptfCxybKM6GAUkiK1NUiLIVoQiA/Gpr0N3akAqhY+tk4FUK3l0YkgnSlEbV5cHvbxoaVvHTFIyeuqhaitU0E6U4jaOhWk1ULU1qkgrRaitk4FqRBS1RC1uT1IPRmjlmVVDVFbu4N0tvCxybIMf9TftiAtC9GwD5pW/Rek3QE0W/jY2h1A9S6PdgZprRC1eW15RKPRmX8/GKTkQbOFqK3dQVorRG3tDtLZQtTW7iCdLURt7Q7SqT2i/hlD1ObmIPVkjNobstm0K0jrCR+bJEtlQWrorTkA2rKs8hBVZ/8xaFcA1RM+tnYFUCPLo11BWm+I2rg8pjBIyWssy1czRG3tCtJ6Q9TWriCtJ0Rt7QrSekLU1q4gtYSEgqVCYPYQtbk1SD0Zo/VOydTqIG1kQ2srDdLk9uScA8iyrKmTleoMUVurA6iR8LG1OoCaWR6tDtJGQ9TG5TGFQUpeYhTUukLUVhmkBav+KdGqaTREba0O0kZC1NbqIG0kRG2tDlJLSEjlYhAANEWvGaI2NwapJ2O0EZVBas8z2qhmNrQ2O0gVRZlTABXDxzQbClFbqwKomfCxtSqA5rI8WhWkzYaojctjCoOUvKP+ELWVBampNR1hzYaorVVB2kyI2loVpM2EqK1VQWovD7OgQJHNGeeWnYnbgpQxWoe57iGdy4bWJskSooPRpgOoLHwGYw2HqG2uATSX8LHNNYBasTzmGqRzDVFb+fLI1X5AhV5aHgxS6nWaojcUorZikELAtBQYDQbQXEPUNtcgnUuI2uYapHMJUdtcg7R0ecSCyabnUS0N0kZ/JlqNMVqn0iAtFAp1b3BbsaG1NRtAQoiK8JnbD12zQdqK8LE1G0BuWB6tClFbcXlkssiM1//XcS8uDwYp9bK5XE1oKkjzkAAkc7G6A6hVIWprNkhbEaK2ZoO0FSFqazZIK5eHOsflYQepJeZ2CMdcMUYbUBqkqVSq5ga3lRtaW2UA1drgSpKEbDbbsvCxNRqkrQwfW6MB1InlUStIWx2itnA4jEg4hPSEVVeQ9vLyYJASVSdJAj7ZgFJnALU6RG2NBmkrQ9TWaJC2MkRtjQZpu5aHX9EhS429zd9qjNEG+Xw+KIoC0zRn3eC2Y0NrKw2gbDY74wlZQkiIx+MoFAotDR9bvUHajvCx1RtAnVoeswVpu0LUFg4HEemTawapF5ZHaZB26mpRRN1AloBoMFkzgNoVPrZ6g7QdIWqrN0jbEaK2eoO03ctjrntY54ox2gRZlhGLxWbc4LZzQ1s6hqGhIfh8PsTjcZhW+Q+wJSRk83EoioJQKNS266rXCtJ2ho+tVgB1cnnMFKTtDlFbuN83a5B6aXnYQWoYzq5kidymVgC1O3xstYK0nSFqqxWk7QxRm1uWh5MYo02yr11eucHtxIbWJssyQqEQTNNENr/jB9j+wS0IpXgVm3aaKUg7ET62mQKo08ujWpB2KkRtZUFaclKTF5dHrfmEibxqpgDqdPjMFKSdCFHbTEHaiRC1uWV5OKW9leJSQoim37qzLAtCCBiGAVVVMTAwgGQyiW3btiEUCiGVSkFRFEQikTkdr2YKE5ZZPkZDGBAVvwyFQgFjY2NYNC+GbalhRENjyE6EYBZ86FOTU89lmuV76oQBmBW/VIYBzGHaNb/fj/7+fqRSqeLXnc1mEQqF4Pf7235Nd1u7lkcjIpFIcQzRaBTZbBamaSIWiwFA+74XJcvVr8noLwikxtKwf4y6cXkYhjGn31eg/nmFidxOCGlO82NaQoIQEgxzx6Y/0j+GZHb69iMWmtp+tPt66gDgVyfR7/chlRuAWZg6kSY7GUIokIVfnezIGABgoD/17vdiHkJ9WaSyA1B8BUT6x2AWOpNLjS4Pw1Tm/HMBAEI4u2+SMdogO0bz+TwKham3QUOhEPL5PHK5HPx+PzRNQz6fn9MYC6JQfH5b3szDlMo34IZhIBAIQFMm4PP5kZsMQpIEQn05TOZV9PWpMAwDk5OTOx4kCoBe+fXrwBwPYPb5fAgGg8XQCQaD8Pl85a/dAe1YHo3q6+uDruvI5XKQJAmhUAiFwvRl2lIVy9XnkxAM9nf18jBNE5ZllV2bnsirBGRYc5i43sJUjObNAArWjnVRn38CulG+/ShYKgp65/6Q88kWgv5x6O/OeRn0j8MnW5jU+zo2BgAI9eWQf/d74VcNaGoeeSPQ0TE0sjxMywdLSJCED2hyHnQAEHD2BCZPxujw8DAikUhTjzUMA/l8HieccAIGBgZaPLIdsoUsnkw/WXbboZFDEfKFym576aWX8M1vfhP3XAcsf2/5c7z0GvDN7wD33HMPli9fvuMTxhiw5dfld170YUBt39dDHdCDy3VsbAy/+tWv4Pf7m97DmU6nWzwqImcMh7chEm5+D5ZhKsgbAZyw/68wEBxr4cjIKWO5Afxq4wnwq5NQlebf/UtnnD3R05MxqqrqnI7bKxQKGBgYwODgYAtHVU4xFfil8uPdotEoIkp5RAeDQSSTSQT9wGB5pyLoB5LJqfuUjVWXgEzFoo9FAS3Wwq+AOq5Hl6uiKHP6nW33MdNEnaIqJjRlbu8SFKwCBoJjGHz3bV/qfoqv8O7PRvPHk6pK+46HrQdPYCKinmVZFlKplNPDICKiWTBGiagn2bMYcOJ7IiJ3Y4w2gZNoE7lb6XRa0WjU6eEQEdEsGKMNMgyjY9PiEFHjKud15dRORDs4e2QguVUuH3T09RmjDdB1HclkktPMELlUpy8wQNRNhJCgG/ydoHKZiTByk4zRrmBfOUZRFG7giFyIIUq9TsxxwvtkNgbBzT6VsK90FQzkat+5jfhTWYfSSxjGYjHuGSVyGYYoeUEqF23qSjv2JSXNgg+a0tkLgFD7NXv1pdJLrgb9jFFXq7yWNkOUyF0YouQVZsFXdu30epRe2zwWSrb1+urkDN30l13itR6lIRruy7RpZPXzZIzmcvX9BVAZorLsyW8XkWsxRMlLosEUjIJSd5CWhmg8kpjTFXrIvSRYSGZj065bPxO3hSjg4RjNZGZfAAxRIndjiJLXqIqJeCRRV5BWhuhcrs5D7qapOhRfAYl0vGaQujFEAY/GaDAYRDqdnjFIGaJE7iHE9LcVGaLkVZpi1AxShqi3SABioSRUnzlrkLo1RAEPx2gkEqkapAxRInfRdb0sSBmi5HWzBSlD1JskSWAokpgxSN0cooBHYxQAwuHwtCBliBK5jxACyWQSlmUxRIneVS1IGaLeJs8QpG4PUaCLYnTdunVYuXIlwuEw5s2bh9WrV+PVV1+d03OWBuno6ChDlMiFNE2DaZpIJBJIJBIMUeo67dh+AeVBmkgPI5EeZoh6XGWQjmYGXR+iQBfF6GOPPYa1a9fiqaeewgMPPADDMHDsscfWfWb8TMLhMAKBACYnJyGEYIgSuYwsy4hGozAMA4ZhYGhoiCFKXaVd2y9gKkiHwtthmCoMU8VQeDtD1OPsIBVCxqTeh4A24eoQBYDGJqZy0G9+85uyf2/YsAHz5s3Dxo0bcfjhhzf9vLquI5/fMQlwLpdDOBxu+vmIqLWEEMhms8V/p9Np/tFIXaVd2y9g6hjR9Hik+O/0eARDkQTnE/W43GSo+P95ww/dVF39R0rXxGilsbExAMDg4OCM98nn82WhmU6nyz5feYxoLpcr3odBSuQOuq7DNE3MmzcPAJBIJDA6Osogpa5Va/tVa9tlKz1GdHhgGwBMvTWbjjNIPazsykqBLEbTcSTScVcfvtGVa3LLsnDeeefh0EMPxd577z3j/datW4eBgYHix5IlS4qfq3ayUrWTmojIWUIIxGIxaJoGTdMQj8dhGAZGR0dhWZbTwyNqSD3br9m2XcXnqXKyUj3TPlFvqzxZaaaTmtymK2N07dq1ePHFF/Gzn/1s1vtdfPHFGBsbK35s2rQJAGAYxownKzFIidxF0zSoqlr2bwYpdat6tl8zbbtss501zyD1rpnOmu+GIO26t+nPOecc3HvvvXj88cexePHiWe/r9/vh9/un3Z5KpTAwMDDj23z2W/R8y57IedV+R+0g5Vv21E3q3X7NtO0C6ptH1A5SvmXvHbnJIMbzwRnPmreD1K1v2XfN2lsIgXPOOQd33XUXHn74Yey2225NP5eiKDU3XtxDSuRu3ENK3aJV2y/RwDyi3EPqHWZBQXYyVHP6JjfvIe2aGF27di1uu+023H777QiHw9i6dSu2bt2KiYmJhp8rGo3WtReFQUrkbgxS6gat2n6lctGG5hGtDFLBIO1JRkFBKJCta/omtwZp18ToDTfcgLGxMRx55JFYuHBh8eOOO+5o+Lkkqf5fSAYpkbsxSMntWrX9Mgu+ht9eLQ3SZDYGvlnfe1SfiWCg/jlr3RikXXPMaOm1qTut9BjS/v5++Hw+x8ZCRNPxGFJys1Ztv6LBFDSl0PDj7CDdlhqGbvCCEb1G8ZkNP6byGFJN2taGkTUwHkdfvYvYe0iz2SxMs/EFT0TtxT2k1OtUpfltj6YYiIWSENzs07tK95CmclFnx+Loq3eZcDiMUCgEw3DPGWhEtAODlGhmqmJCU/K170ieYQep4mt8j3tLx+Hoq3ehYDBYNuchEblLZZA6eYgPkdtwiieqJEsC0WDK2TE4+updSlG65lBbIk8qDdJUKuX0cIiIXE1y+I8UxigR9SQ7SHmMNxGRuzFGiahnaZqGaDTq9DCIiGgWjFEi6mk8xpuIyN0Yo0RERETkGMYoERERETmGMUpEPS2Xq/8yeURE1HmMUSLqWZlMhjFKRORyjNEmcBJtIvfLZDJIp9MIBoNOD4WIiGbB2dsbJISArutOD4OIZmGHaCQS4SVBiYhqMExnc5B7RhtgWRaSyST3jBK5WGmIhsNhp4dD5CpmgfugqJxuqkjloo6OgTFaJ8uyMDo6CtM0oWma08MhoioYokQzy00GYTBGqYRuqkik41B8BUfHwRitgx2ihmEgFotBlvltI3Ibhij1uly++eOfMxNhZCdDUH28PG6vafa9WjtEVZ+JaDDVyiE1jFVVQ2mIxuNxXs2FyIUYouQFuckgMhON/3xnJsJIj0cQCmShMEZ7jm5oEEJq7DElIToUSUCSnD380JMxahhGXferDFG+PU/kPgxR8opgIIf0eKShILVDNNKfRjDAac56kYCMZDYGq84grQxR2eEQBTwao6lUquYZ8QxRIvdjiJKXBP05RPrTdQdpaYiG+zIdGCE5QVPyMAs+jKbjNYPUjSEKeDRGFUVBIpGYMUgZokTuxxAlLwr3ZeoKUoaod8iSQCyUhFFQZg1St4Yo4NEYjUajUFW1apAyRIncxTSnH+PGECUvqxWkDFHvURUT8UhixiB1c4gCHo1RSZIwNDQ0LUgZokTuYxhG2SU9GaJEMwcpQ9S7NMWoGqRuD1HAw1dgkmUZQ0NDGB0dRSKRwNDQENLpdNeF6P777z/jJPz7LwM4Pz91O1VVkc1moShTqyuGKNEUOzbT45Hiba4M0WUe2hC90thZ7a1mB2kiHcdoOo5IfxqjmUFXhyjg4RgFdgRpIpFAIpEAAAwPD3dNiBJ5gaIoCIVCSKfTAMAQJSpRGaSuC1HqODtIR8bmTe0RVQxXhyjg0bfpiYiIiMgdPB2jpZf4tN+an+0seyLqPNM0kc1mEYlEEIlEkE6nkclwzw8RUH6MaCPTPlHvso8R1RQd8Uii7mmfnOTZGK08Wcnv91c9qYmInGUYBkKhEMLhMMLhMIOU6F2VJyvVO+0T9a7Kk5X8an7Ws+zdwpMxKoSoeta8fQwpg5TIPVRVRTC445rcDFKimc+aZ5B610xnzc90lr2bdFWMPv744/joRz+KRYsWQZIk3H333U09TyqVmvGseQYpkbvYZ9GXYpBSN2nVtstWa/omBqn3GKYy6/RNbg/SrorRXC6HfffdF9dff/2cnqf0GNFqGKRE7scgpW7Rqm0XUP88ogxS77CEhGQ2VnP6JjcHaVdN7fThD38YH/7wh+f8PNFotOb0TZXzkHbT3KNEXmFP8WRP+8Qpn8iNWrXtyuWDEHr984hWTvvkVyfnPAZyH930Q/EV6pq+qXIeUrdM+dRVMdqofD6PfD5f/Le9wVJVta7HVwtSInIXBin1mpm2XbnJIBYMNTaPaGmQ9vt98MlWawdLjpNgIRZK1x2V1YIUcDZIu+pt+katW7cOAwMDxY8lS5Y0/ByVb9kbhtGGkRLRXPAte+olM227goFcUxPa22/ZZydDMAs9vQ/KkzRVh9Tg3s3Kt+yFw2/Z93SMXnzxxRgbGyt+bNq0qannKQ3SZDIJy+JflkRuwyClXjHTtivozzX9nOG+DEKBLAzGaM9pNiNLgzSVi7ZySA3r6Z9Kv98Pv9/fkueyg3Tbtm08oYnIpfiWPfWCVm67SgUDOYiJnt4HRQ2yg/TNrRFHx9HTMdpqsiwjFosVN3RE5D6VQUpEOyg+0+khkMtoioFoMOXoGLoqRrPZLF5//fXiv//617/i+eefx+DgIHbeeeeOjEGSJJ5VT+RypUEqSe6ZvoS8yQ3bLqLZqIqzf6R0VYw+88wzOOqoo4r/Pv/88wEAp512GjZs2NCxcXDjRuR+dpBu3brV4ZGQ17ll20XkVl0Vo0ceeSSEcH4+LCLqDuFwmCczkeO47SKaHY9kJqKeVnpdeyIich/GKBERERE5hjFKRERERI5hjBJRT+NV04iI3I0xSkQ9S9d1pFIpp4dBRESzYIwSUU/SdR2JRAKK0lWThhAReQ7X0k0wTV7BgsjN7BBVVRX9/f1OD4eIyNWEcHb+dO4ZbVAul+MxaEQuVhqiQ0NDvEgFUQnL4egg97GEhFQu6ugYGKMNyGQyyGazUFXV6aEQURWVISrLXMUR2QxTgW76nR4GuYglJIym4zALPkfHwTV1nTKZDNLpNEKhEI9BI3Ihhij1OsNsftujmyqS2RgkWC0cEXUzO0SNgoJoMOXoWLi2roMdopFIhFdzIXIhhih5QSoXhW42/s6cbqpIpONQfAVoqt6GkZGTzELjf6SUhmg8koCqOHsujCfX2I1cI7g0RMPhcBtHRUTNYIiSVyi+AhLpeENBaoeo6jMRCyXBI0Z7j1FQkJusf0dZZYhqivPnwXhyrZ1KpWBZtd+qYIgSuRtDlLwkGkxB9Zl1B2lpiA5FEpCk+nfEUPdQfSaykyFkJmp3ihtDFPBojJqmidHR0VmDlCFK5G4MUfIaSRIYiiTqCtLKEJUZoj1L8ZkIBbJIj0dmDVK3hijg0RiNRqMwDGPGIGWIErlHtd9Rhih5lVxHkDJEvScYyCHSn54xSN0cooBHY1RVVcTj8apByhAlchdd18vm9mWIktfNFqQMUe8K92WqBqnbQxTwaIwCgKZp04KUIUrkPpIkIZlMQtd1hijRu6oFKUOUKoO0G0IU8PjlQO0gTSQSePvttwGAIUrkMpqmoVAoYGRkpPhvhijRjiAdTccxMjYPAKApOkPU48J9GQBAejyC9HgEkmS5OkQBD+8ZtWmaBr9/xxUpOI8okbtIkoRQKFT8dyQSYYgSvUuWBCL96eK/I/1phighGMgW/9+v5l0dogBjFJlMBpOTkwgEApAkqeZZ9kTUWZZlIZVKQVVVqKqK0dFR6Don7iYCpo4RHc0MQlUMqIqB0cxgUxPjU++w35qXJAsBbQKTel9d0z45ydMxWnqM6NDQ0IwnNRGRc3Rdh6IoiMfjiMfjUFUViUSCQUqeV3qMaDwygnhkpKF5SKn3VB4jOhTePutZ9m7h2RitdrJStZOaiMhZkiQhFotBlmXIsoyhoSEGKXletZOV6pn2iXrXTCcrzXSWvZt4MkZzudyMZ80zSIncRdM0SNKOixgySMnrZjtrnkHqTaLGWfNuD1LPxuhsZ80zSIncozREbQxS8qp6pm9ikHqLAJDMxmpO3+TmIPVkjAaDwZrTNzFIidyNQUpeY5hK3fOIMki9Qzc0mAVfXdM3uTVIPRuj9eimIN00tgmXPXIZHvrLQ9AL3CiTNzBIyUtSuWhDE9pXBqlhenpq8Z4lICMWStY9fZMbg9STMdqIyiAVwp3ztz2/9Xn8x7P/gdPuPg2H3XIYvvO77+DlkZddO16iVmGQklcovkLDE9qXBmkyG4Mlph/2Qt1NU/JQFbOhx7gtSBmjdSgN0mQy6drAK4gCYoEY3s6+jWueugYn3n4iVv9sNW79n1uRGE84PTyitmGQkhdEg6mmJrS3g1TxFaCb/toPoK7S7EUOSoM0l3f2gj9dF6PXX389dt11VwQCARx88MH47//+7468rh2kpmk6tqH78+ifsXHLxqofb6TemBqnT8O84DzsFN4Jfp8fT295Gl978Gv44C0fxLm/Ppdv41PPYpCSm7Vi2yXN4cpKsiQQCyUhwb2Hm1Hn2UGam3Q2RrvqAJI77rgD559/Pm688UYcfPDBWL9+PY477ji8+uqrmDdvXttfX9M0xGIx5HK5tr9WpWQuiYt/eTHGjfEZ72NaO3bTS5KEkBZCSAuhYBWQzqdx50t34q4/3YWdQvPxifm74KOL98FekYVVz1Ym6kZ2kI6OjiKRSCAejzs9JCLHt102SRLQVP6RRuXCfRlkAgVHx9BVe0avvvpqnHnmmTjjjDPwvve9DzfeeCP6+/txyy23dGwMqqpC07SOvZ7NKBiYNCfRp/QhFohV/VgSWVI1LH2yD7G+GBZHFr/7Nv47uOaVh3DiI9dh9WM/wK1/eQqj49s7/jURtUPlHlLDcPc1man3uWHbZeOuB6om6O/8TrZSTcXo0Ucfjcsvv3za7clkEkcfffScB1WNruvYuHEjVq1aVbxNlmWsWrUKf/jDH6o+Jp/PI51Ol320giw71/CKrEDzaVU/fLKv5uP9ih/zgsPYqW8AflnB09v/hq899//h0FuPx7m/Phcvj7zcga+CqL1KgzSVSjk9HHIJr2+7iNyqqap69NFHcd1112H16tVlb1nruo7HHnusZYMrlUgkUCgUMH/+/LLb58+fj61bt1Z9zLp16zAwMFD8WLJkSVvG1o0kSUJQ0RBT+wAAiYntuP/1+/HUW085PDKi1rCDVFG66mgkaiNuu4jcqeldfA8++CC2bt2Kv/u7v8Mbb7zRwiG1zsUXX4yxsbHix6ZNm5wekisYBQOj+Sw2T4whY+axLLIAVxx2MR489UF8dsVnnR4eUcvIsoxoNOr0MMhFuO0icp+mdxksXLgQjz32GM444wysXLkSd955J/baa69Wjq1MPB6Hz+fDO++8U3b7O++8gwULFlR9jN/vh9/ffdNYbHniCfztd4/CyL9ZvM2vj+PYv2n49V4jGA1U/xtCk6fOpK923KglLGT1LDJ6BpIQGFIC+PSu++Jji/fFgUO7QN7lJECLte1rInIKT9CjUtx2EblPUzFqr9z9fj9uv/12/Ou//iuOP/54XHjhhS0dXClN03DAAQfgoYcewurVqwEAlmXhoYcewjnnnNO213XC5scew6Zf/BKFkvOk/JbAoVIE8445AhM7RaY9Zmt2Kx7+68NltwkhMGlOIpVPwRIWgmoQH9r9Q/jEe47FKt92hNRAu78UIiLX4LaLyJ2aitHKSd8vueQS7LXXXjjttNNaMqiZnH/++TjttNNw4IEH4qCDDsL69euRy+VwxhlntPV1nSAH/JDiO2JRGCYiOeCrh3wVsWXLpt3/l6/+shijRsFAOp/GhDkBzafhvYPvxZrla/CR934EOw/sDOhJ4M07O/a1EDnJrRepoM7jtovInZqK0b/+9a8YHh4uu+2Tn/wkli1bhmeeeaYlA6vmpJNOwsjICC699FJs3boV++23H37zm99MOzDcyzZnNkOWZAz1D+HT+3waH9vzYzhw0YGQpa6axYuoJSzL4tn0VMRtF5E7NRWju+yyS9Xbly9fjuXLl89pQLWcc845fGujioHAAAb7BnHgogPxib0+gVW7r0JICzk9LCLHWJaF0dFRmGZj12ym3sVtF5E7cc6TJliW+y6n9sGdP4in/ukpRPzTjycl8ho7RA3D4Nn0REQux/duG2QYhiuveS1LMkOUCOUhGo/Hoaqq00Micg0eQU3V5PLOXpueMdoAXdeRTCY5VQyRS1WGqBOX7iVyKyEk6AZ/J6hcZiKM3KSzMcq36euk6zoSiQQURWn5Bs7IZvHkBRcgPzYGADDHx6veTxQK+OOll0J694oye6xZg6V///ctHQtRt2KIUq8TovkdIZaQkMzGIMvcN0o7ZCbCSI9HEAwkHR0HY7QOdoiqqopIJIJ8Pt/S55c1DZPbtyO7aRPU4NRfJ1p0AAZKXkfxQfYryCeTEJaFQj4PuPDYVSInMETJC1K5KCLhMchSY0FpCQmj6TjMgg8hLVf7AdRVrCb/SLFDNNKfhmU6+3PBt+lrKA3RoaGhtrxF79M0LD7mGMiKAi0ahT8Wg6/i6huSJEEbiMAfi0FWVWiRCBYdfnjLx0LUbRii5BVmwYfRdLyh+LBD1CgoiIWSDYcsuZ9u+mGYje1bLA3RcF+mTSOrnydjNJer7y+AyhCV5fZ9uxYfdRR8fj8KExM172tOTGDeypXoq5gvj8hrGKLkJdFgCkZBqTtIS0M0HklAVTjNWS+SYCGZjUE36ztZ020hCng4RjOZ2RdAJ0MUAAb22AMD73kP9BrjsgwDkiRhyapVbR0PkdsxRMlrVMVEPJKoK0grQ1RTjA6OlDpJU3UovgIS6XjNIHVjiAIejdFgMIh0Oj1jkHY6RIGpt+F3PvZYQAiIQmHG++mZDALxOOYfdFDbx0TkBtUu58kQJa/SFKNmkDJEvUUCEAslofrMWYPUrSEKeDhGI5FI1SB1IkRtiw47DGooBGOGwwiEELB0HYtXrZp2TClRr9J1vSxIGaLkdbMFKUPUmyRJYCiSmDFI3RyigEdjFADC4fC0IHUyRAEgMDSEBR/4wIxTOxUmJyH7/Vh85JEdHReRk4QQSCaTsCyLIUr0rmpByhD1NnmGIHV7iAIen9opHA4DANLpNHRdRz6fdyxEbYuPPhpvPfwwLMOY9qeCmclicNleiO65pyNjI3KCpmnIZrNIJBIAANM0GaJE2BGkiXQcifTUCa1mwccQ9TA7SEfTcSTScfjVPCb1PleHKODhPaO2cDiMQCCAyclJCCEcDVEAxbPkjUy27HZhWYAQ2Pm443gFKPIUWZYRjUZhGAYMw8DQ0BBDlOhdmmJgKLwdhqnCMFUMhbczRD3ODlIhZEzqfQhoE64OUYAxWtwjaqt32qd28WkaFq9aBcswyk/cGNfhCwax6LDDnBsckQOEEMhmd/xxlk6nYfGCD0QApo4RTY9Hiv9Oj0eangSdekduMlT8/7zhr3vaJ6d4OkZLjxFduHDhjCc1ddrio46CT9OAyZK/bid0xFeu4Nyi5Dm6rsM0TQwPD2N4eBiGYWB0dJRBSp5Xeozo8MA2DA9sa2geUupNpceILhzcUvMsezfwbIxWO1mp2klNThjYYw+E37MUyE7tsRVGAZAkLDj6SMfGROQUIQRisRg0TYOmaYjH4wxS8rxqJyvVM+0T9bbKk5VmOqnJbTwZo4ZhzHjWvBuCVJIkLPzQUQDE1LGiuUlIgyEMrdzfkfEQOUnTNKiqWvZvBil52WxnzTNIvWums+a7IUg9GaOpVGrWs+bdEKTzDv0ApKAfyOUB3YR82F6cW5Q8qdrvKIOUvKqe6ZsYpN6TmwzOOn2T24PUkzGqKErNs+adDlL/0CDk/ZcC6QlAU+A7dFnHx0DkZgxS8hrRwDyiDFLvMAsKspOhmtM3uTlIPRmj0Wi0rumbnA5S+bC9gIAKeZd5kJYu6PjrE7kdg5S8JJWLNjShfWWQCgZpTzIKCkKBbF3TN7k1SD0Zo43M0+lkkMr77QppSRy+Y97PuUWJZsAgJa9oZkL70iBNZmMQtR9CXUb1mQgG6p+W0o1B6skYbVRpkHZyHlJJVaB9+zOQj923Y69J1I0YpOQF0WCqqQnt7SA1Cz7oBi8Y0WsUn9nwYyqD1DCdvSAnY7ROdpBms1mYZuMLvllSQIPk4BWhiLoFg5R6nao0v+3RFAOxUBKCm316V2mQpnJRZ8fi6Kt3mXA4jFAoBMPgpdaI3IhBSjQzVTGhKfnadyTPsINU8RWcHYejr96FgsFg2ZyHROQulUFadlldIo+TJf4+UDlZEogGU86OwdFX71KK4uyxFUQ0u9IgTaVSTg+HiMjVJIf/SGGMElFPsoO0k8d4ExFR4xijRNSzNE1DNBp1ehhERDQLxigR9TQe401E5G5dE6NXXnklDjnkEPT393NPBxERdQVuu4hq65oY1XUda9aswVlnneX0UIiIiOrCbRdRbV1zWvjll18OANiwYUPdj8nn88jnd8yplk6nWz0sInK5Tl41jagSt11EtXXNntFmrFu3DgMDA8WPJUuWOD0kIuqgTCbDGKWuw20XeU1Px+jFF1+MsbGx4semTZta8rycRJvI/TKZDNLpNILBoNNDIWpIu7ZdRG7laIxedNFFkCRp1o9XXnml6ef3+/2IRCJlH3MlhICu63N+HiJqHztEI5EIY5Rarhu3XUSzMUxnj9p09NW/8pWv4PTTT5/1PrvvvntnBlMHy7KQTCYhyz29Q5moq5WGaDgcxtjYmNNDoh7TbduuUmaha04VoQ7RTRWpnLN/8Dj6Uzk8PIzh4WEnh1A3y7IwOjoK0zQRCoWcHg4RVVEZokTt0E3brlK5ySAMxiiV0E0ViXQcim/C0XF0zU/lm2++ie3bt+PNN99EoVDA888/DwDYY4892h6HdogahoFYLIZCodDW1yOixjFEyY1aue3K5YMYCI83NY7MRBjZyRCC/uYeT+7V7FksdoiqPhP9wVQrh9SwronRSy+9FP/5n/9Z/PeKFSsAAI888giOPPLItr1uaYjG43EAYIwSuQxDlNyqlduu3GQQmQkfwn2Zhh6XmQgjPR5BKJCFT7Yaeiy5n25oCKiTjT2mJESHIglkss6emN01Bz9u2LABQohpH82EqGEYdd2vMkQ1TWv4tYiovRii5Gat3HYFAzmkxyPITNT/c26HaKQ/jWCA05z1IgEZyWwMlpDqun9liMqS8zMEdU2MtlIqlap5RjxDlMj9GKLkJUF/DpH+dN1BWhqije5Npe6hKXmYBR9G0/GaQerGEAU8GqOKoiCRSMwYpAxRIvdjiJIXhfsydQUpQ9Q7ZEkgFkrCKCizBqlbQxToomNGWykajcIwDCQSiWmx2W0h+uyzz+KAAw7Axp8D+y+v+NxLwAGfAjZu3Ij999/fmQESzZFpmtNuY4iSl9lxmR6PlP3b5roQfaW+t4+peapiIh5JIJGOYzQdnxabbg5RwKN7RiVJwtDQEFRVLdtD2m0hSuQFhmGUXdKTIUo08x5S14UodYymGIhHEtP2kLo9RAGP7hkFAFmWMTQ0hNHRUSQSCQwNDSGdTjNEiVxGVVVks1koytTqiiFKNKVyD6n9/wxR77KD1N5DGulPYzQz6OoQBTwco8COIE0kEkgkEgCmJjNmiBK5h6IoCIVCSKfTAMAQJSpRGaQMUbKDdGRs3tQeUcVwdYgCHn2bnoiIiIjcwdMxWnqJT/ut+dnOsieizjNNE9lsFpFIBJFIBOl0GpkM9/wQAeXHiDYy7RP1LvsYUU3REY8k6p72yUmejdHKk5X8fn/Vk5qIyFmGYSAUCiEcDiMcDjNIid5VebJSvdM+Ue+qPFnJr+arntTkNp6MUSFE1bPm7WNIGaRE7qGqKoLBYPHfDFKimc+aZ5B610xnzc90lr2beDJGU6nUjGfNM0iJ3MU+i74Ug5S8rNb0TQxS7zFMZdbpm9wepJ6M0dJjRKthkBK5H4OUvKjeeUQZpN5hCQnJbKzm9E1uDlJPxmg0Gq05fRODlMj9GKTkJbl8sKF5RBmk3qCbfii+Ql3TN7k1SD0Zo6qq1nU/BimR+zFIyStyk8GG5xEtDdLcZLD2A6jrSLAQCyXrnkfUjUHqyRhtRGWQGobh9JCIqAKDlLwgGMg1NaG9HaTZyRDMgqevddOTNFWH1OCE9pVBKhwOUsZoHUqDNJlMwrIsp4dERBUYpNTrgv5c048N92UQCmRhMEZ7TrMZWRqkqVy0lUNqGGO0TnaQKorCt+uJXIpBSjSzYCAH1Wc6PQxyETtIzYLP0XHwT6QGyLKMWCxWvEY2EbmPfd16/p4STacwRqmCphiIBlOOjoEx2iBJkmqeiU9EzioNUkly/uB8IiI3UxVn/0hhjDaBGzci97ODdOvWrQ6PhIiIZsNjRomoZ4XD4bJLiRIRkfswRomopzFGiYjcjTFKRERERI5hjBIRERGRYxijRNTTeNU0IiJ3Y4wSUc/SdR2pVMrpYRAR0SwYo0TUk3RdRyKRgKJwBjsiIjfjWroJpskrWBC5mR2iqqqiv7/f6eEQEbmaEM7On94Ve0bfeOMNfO5zn8Nuu+2Gvr4+LF26FJdddpkj14jP5XI8Bo3IxUpDdGhoiBepIMe4adtlsxyODnIfS0hI5aKOjqEr9oy+8sorsCwLN910E/bYYw+8+OKLOPPMM5HL5XDVVVd1bByZTAbZbJbzFhK5VGWIynJX/L1NPcot2y6bYSrQTX/HX5fcyxISRtNxmAXL0XF0RYwef/zxOP7444v/3n333fHqq6/ihhtu6NgvdCaTQTqdRigUgs/n68hrElH9GKLkNq3edhmmAqDQ1Fh0U0UyG4NfdW6vLLmLHaJGQUE0uM3RsXRFjFYzNjaGwcHBWe+Tz+eRz+eL/06n0029lh2ikUgEfr8fk5OTTT0PEbUHQ5S6xVy2XalcFJFwGprS2KFiuqkikY5D8RWgMUZ7jlloPOVKQzQeSWBiwtlzYbpyjf3666/j2muvxRe+8IVZ77du3ToMDAwUP5YsWQIAEELU/VqlIRoOh+c0biJqPYYodYu5brsUXwGJdBy6qdb9mnaIqj4TsVASPGK09xgFBbnJ+g8frAzRRv+4aQdH19oXXXQRJEma9eOVV14pe8zmzZtx/PHHY82aNTjzzDNnff6LL74YY2NjxY9NmzYBAFKpFCyr9vERDFEid2OIkhOc2nZFgymoPrPuIC0N0aFIApJU/44Y6h6qz0R2MoTMRO1OcWOIAg6/Tf+Vr3wFp59++qz32X333Yv/v2XLFhx11FE45JBD8MMf/rDm8/v9fvj90w/WNk0To6Ojs268GKJE7sYQJac4te2SJIGhcAKj6TgS6fisMVEZojJDtGcpPhOhQBbp8QgAINyXqXo/t4Yo4HCMDg8PY3h4uK77bt68GUcddRQOOOAA/PjHP57ThicajULX9RmDlCFK5B7V3sVgiJKTnNp2AYAsCQxFZg9Shqj3BAM5KL7CjEHq5hAFuuSY0c2bN+PII4/EzjvvjKuuugojIyPYunUrtm7d2tTzqaqKeDwOwzAwOjpatrFjiBK5i67rZXP7MkSpW7R622Wzg7TaW/YMUe8K92UQ6U8jPR4pe8ve7SEKdMnZ9A888ABef/11vP7661i8eHHZ5xo5GamUpmmIx+NIJBLFPaS5XI4hSuQykiQhmUxCVac2uAxR6hbt2HbZqu0hBcAQ9Th7j6i9hzQYyLo+RIEu2TN6+umnQwhR9WMu7CA1DANvv/02Q5TIhTRNg6IoGBkZwcjICEOUuka7tl220j2kI2PzMDI2jyFKZXtI396+yPUhCnRJjLaTpmllB4rz6kpE7iJJEkKhUPHfkUiEIUr0LlkSiPTvmEM70p9miBKCgWzx//1q3tUhCjBGkclkMDk5iUAgAEmSph1DSkTOsiwLqVQKqqpCVVWMjo46em1vIjfRTRWjmUGoigFVMTCaGWxoHlLqPfYxopJkIaBNYFLvq2vaJyd5OkZLT1YaGhqa8aQmInKOrutQFAXxeBzxeByqqiKRSDBIyfNKT1aKR0YQj4w0NA8p9Z7Kk5WGwturntTkNp6N0WpnzZceQ8ogJXIHSZIQi8UgyzJkWcbQ0BCDlDyv2lnzs51lT71vprPmZzrL3k08GaOznTXPICVyF03TIEk7LmLIICWvm236JgapN4ka0ze5PUg9G6OznTXPICVyj9IQtTFIyavqmUeUQeotAkAyG6t51rybg9STMRoMBmtO38QgJXI3Bil5jWEqdc8jyiD1Dt3QYBZ8dU3f5NYg9WyM1oNBSuRuDFLyklQu2tA8opVBaphdcZ0bapCAjFgoWff0TW4MUk/GaCMqg7RVkxUTUWswSMkrFF+h4QntS4M0mY3BEtMPe6Hupil5qIrZ0GPcFqSM0TqUBmkymWSQErkMg5S8IBpMNTWhvR2kiq8A3fTXfgB1lWYvclAapLm8sxf8YYzWyQ5S0zS5oSNyIQYp9TppDldWkiWBWCgJCTzcjHawgzQ36WyMevIAEsMwmt5QhcNhjI+PY2xsrMWjKpctZJFP58tuS4kUTF/5rvhcLodYLIZcHtieRfnn8kAsNnWf7du37/iEMQZkKnbpJ1OAyj2+Xa0Hl+vY2BhM04Rh1H8pu0gkgmQyiW3btiEWizX0WCI3M0wFutn8PiSz4IMsFzCWG2jhqMhJY7kBmAXfnI4H9quTCGgtHFQTPBmjIyMjyOVyTT3WsixYloW77roLiqJMmwOx9H66rkOSpBnvM5uCKCBTyJTdlvQl4ZN8AAAhBHRdx+TkJE466SQ8s0ng5ZHy5xifBD7zGQ1/+MMf8OKLL+64nrcoAHqy/M7ar4F3n7sRdiioqgpFqf7jVM995qKe7/Vcl0ct9vIQQkDTtKrXTq/nPnMbRAHmxHYYBQHVJ0HxSVWXazctD9M0kUqlIElSQ98vIQRM08SWLVsYo9QzRjLzkDOarwYLEoQl4VfPnoBCwQcBGZqSr/o2r8DUWdqz3WeuzIICo6BA9ZlQfNWPeaznPnNhCQm66YcEC5qqo9qaqJ77zEU93+uZ7mNaPqRyUUiygIzml9H4pLPvJHkyRhvdsFV7fH9/PzKZDAqFAmKxWNnG1DAMpNNpKIoy7XP1MoWJcXO87Da/4oci7VhkgUAAExMTCAaDkKUkAtqOX1QhJKSyMWiaD36/H/39/TueSBiYdoRGQAOk5qb+yOVyyGazCIVC02YqyOVyyOVyVT/XSqqqIplMtm151CMQCCCZTCKbzSIWi0FVd3w/hRBIJpMwTXPa51pGGAB8yE0UkJ20EArICFYs125bHoZhQJblpn5nJUmCruswzdZvwIicIMGCLBeafwIhQUg++JVJKP4CktkYshNBxELJshNghJCQzMZgFnzTPtdquckgspMhhAJZBAO5aZ/L5furfq6VVJ+OZDaGgjX19ZYeDmGYCtLZGBRfAbFQek6HSswmoE42tTwMU4EsCUhSYU5/MDh9+AZjtAmWZaGvrw99fX1IJBJIp9MYGhqCLMvQdR1jY2Pw+/3F25oaoyVBlsofqyoqVLk8YiKRCLZs2YIJI4oopuYYsy8JJiBjZGQEe+yxBzSt5K9pC4BZEQCqCsjN/cWtaRoURSkGhj2HayaTwfj4OKLRaM15XedK07TisYLtWB71mjdvHkZHRzE2NoZ4PA5N02BZVnFqsHnz5pUvi1Z6d7lqYQWKr4D0hAVlUkd4YCo6u3V52L+vjS47+zETExPNfhlEriK9e8nPubAkAVUxoSkG5kW3YTQdx9h4tDhHpb39sISMedGRuqcLapYWSk2tr8YjUHwFhPum3hHMTIQxng8iGhwr3ta2MSgGVGVq+qv0+EBxxgLdVDE2HoVfNRqexaAZzS4P++diTjHa5q+tFp7ANAeV0z7l83kkEgmoqtqR8AGmNtSJRAI+aeoXKW/4i5cEC/kTHXuLMhwOIxKJIJ1OI5PJIJPJzHjJ1XZxw/KoPIkmn89jdHQUhmEU47QTwv0+RPpkpDNZzy+PTn3PibpN5TykpduPeiZQb5XKaYYyE2GkxyOI9KfbHqI2TTEQjyRgFBSMvvu9qPcCA63iluXhBMboHNkbXF3XkUgkoChKxza0NiEEQv6paTumrrShIR5JQJE7+4NbGqSdDh+bG5aHHaSKohTP6u5kiNrC/T5EwiHPL492HZZB1AtKp30q3X50OnxKg7TTIWqzg1Q3NSTS8abmdZ0rtyyPTmOMEhEREZFjGKNzZO/xKZ2HtNOXDpUkCdl8vOTatDoS6ThMq7PXIi59K7j0LftOcsPysI8RNU2zuEfUiXkvM+MFpDNZzy8PXqSCaGb2MYmV249OX8u+9K15p64MpJsqEuk4NEVHPJKAWfC9e7xm595dccvy6DTG6BzYG1r7GDi/39/xa9kLIRCPx1EQU8eU+NV88ZiTbD7enrO2q6g8JrHyGNJOcMPysEPUPkbUPlGn0xOxZ8anTmCKhEOeXx6c/J6oOjt87GMSS7cfnQygymNEnbhUpR2i9jGifjVfdgxpJ4LULcvDCYzRJhmGUfVkjMqTNtq5wbUsC9lsFooydbKSfUyJfcyJTzKLe6PaaaaTYzoZQJXh49TyqHayUqevDFQM0T4Z4fCO6Zu8uDzy+XztOxJ5UGX4VG4/OhVAM52s1MkgrQxR+xjRypOa2hmkblkeTmGMNsGyLCSTyRnPCu7EBtcOn0KhMHViSMXJSrI0dVKTaZrIZrNtC6BaZ2l3IoBmCh9bJ5fHTGfNdypIy0K0f/pFDLy0PPL5PIQQHXt3gKhbzBQ+tk4FUK2z5jsRpDOFqK0TQeqW5eEkxmiDCoUCTNOseVZwOze4peETCoVmnL5JksTUtE8+X1sCqN7pgtoZQLXCx9ap5THbWfPtDtJMJjdriNq8sDzsEG3Lla6IupglgFQuVnO6oHYHUL3TN7UzSGuFqK2dQVorRG3tXh6Gw4HLtXQDTNMsXsIwGo3W3Mi1Y4NbGT61LucohEAoFGp5ADU6b2U7Aqje8LF1YnnUmr6pXUGayWSmTlaqEaK2Xl4epSHajsudEnUrISQULBVmnfNWtiuAGp1HtB1BWm+I2toRpPWGqK1dyyNvarBE45cDbyXGaJ1KQ9Tn89W9t6WVG9xGw8cmSVJFAM1tvrJmJ1BvZQA1Gj42NyyPVgdpcXmEQ3WFqK0XlwdDlHqZmEMAWQLIG34IALFgsu55K1sdQM1OaN/KIG00RG2tDNJGQ9RWuTzmukczb2owCwpkaQ6XmW0BxmgdSkPU7/c3/LZfKza4whJIbU81fSWfsgDanoRuNLfRn+uVfFoRQM2Gj60Vy6PZELW1KkjLl0fj15rvpeXBEKVep5sarCZmKpsK0T4ISFBkE2qDE6i3KkjnemWlVgRpsyFqa0WQNhuittLlkczFmo5iO0QVX+M/E63GGK2hMkSbvZrLXDa4whLIp/Jl81Y2oxhAioJEptBwkLbqkpJzCaC5ho9tLstjriFqm2uQcnlMYYiSd0jIG30NBWkxRIUETdGbvprQXIO0VZf4nEuQzjVEbXMJ0rmGqG3HlZpMmJaCgtXY2+ylIepXnJ/+zpMxWu/12ue6R7RSMxtcO0SFKRAbjM35kpKyLGNoMArVJzUUpK2+tnkzAdSq8LE1szxaFaK2ZoOUy2MKQ5S8RPUZEKL+IC0LUXUSPnlub8U2G6StvtZ8M0HaqhC1NROkrQpRmywJRINJSJjaa25a9a2D3RaigEdjtJ75B1sdorZGNrilIeqP+aFqrTlYWZZlDEV8dQdpq8PH1kgAtTp8bI0sj1aHqK3RIOXymMIQJa+R5QI0dbKuIK0MUUVuzYwVjQZpq0PU1kiQtjpEbY0EaatD1CZLAj7ZgAQB3QjUDFI3higAeGrtbV8W0DAMZLNZjI+PV52D0LKs4t5TTdNQKBSmPUc6nZ7T/IWapiGVSiGXyyEajU57+18v6EilUhCmgBbRMDkxibSRhiKVL7JMJgMhBDLj018jMw4IgelhIQxgchKqJJDLF/DmuEBU3w7V3zftOXK5HHK5HILBICzLwtjYWNNf80wkScLWrVuRyWQQDE4/7tEwDKRSKSiKgv7+/rbMj1lreQghkEqlYJomotEoJiYmMDEx0dIxqKqKXC6HN998E9FotOrP16zLQxjAZMWYjDQgNfZz6qblkclkMDk5CVmWy5aJEKIY7aqqzhqt9nLiZUGpW9k/uxMTUxcwsSwTRkHF+IQMTdEhVcSVEBJ0UwOgQ/UZsN7dhgkhA6KAdMaCqszl90FAlUaQy0fx5tYIosEUVGX6xVVy+SBykwEEA0lYZg5jLV9VpCGJAraOBpEJFBD056bdwzAVpHIRKL4J9AdTyGRbvR7QoUnbkMpEkRsfQDSYqro8UrkBmAUL0eA2TEyYaNXWwzAt5Cd1CORhFFRMTEpQfRbkKnvBDVOFJQqQJR1CMWCUtKj9s+XUelISHlpDv/XWW1iyZInTwyAiB2zatAmLFy92ehhEDeO2izrFqfWkp2LUsixs2bIF4XC46ROR3C6dTmPJkiXYtGkTIpGI08PpGvy+Nacbvm9CCGQyGSxatIgT4FNXcuO2y82/+24eG+DO8Tm9nvTU2/SyLHtmz0gkEnHND3k34fetOW7/vg0MDDg9BKKmuXnb5ebffTePDXDf+JxcT3I3ARERERE5hjFKRERERI5hjPYYv9+Pyy67DH6/3+mhdBV+35rD7xuRN7n5d9/NYwPcPz4neOoEJiIiIiJyF+4ZJSIiIiLHMEaJiIiIyDGMUSIiIiJyDGOUiIiIiBzDGO0h119/PXbddVcEAgEcfPDB+O///m+nh+R669atw8qVKxEOhzFv3jysXr0ar776qtPD6jrf/va3IUkSzjvvPKeHQkQOuPLKK3HIIYegv78f0WjU0bG4dVv4+OOP46Mf/SgWLVoESZJw9913Oz0k12CM9og77rgD559/Pi677DI8++yz2HfffXHcccdh27ZtTg/N1R577DGsXbsWTz31FB544AEYhoFjjz0WuVzO6aF1jaeffho33XQT9tlnH6eHQkQO0XUda9aswVlnneXoONy8Lczlcth3331x/fXXOz0U1+HUTj3i4IMPxsqVK3HdddcBmLqW8ZIlS3Duuefioosucnh03WNkZATz5s3DY489hsMPP9zp4bheNpvF/vvvjx/84Af413/9V+y3335Yv36908MiIods2LAB5513HlKplCOv3y3bQkmScNddd2H16tVOD8UVuGe0B+i6jo0bN2LVqlXF22RZxqpVq/CHP/zBwZF1n7GxMQDA4OCgwyPpDmvXrsWJJ55Y9rNHROQEbgu7l+L0AGjuEokECoUC5s+fX3b7/Pnz8corrzg0qu5jWRbOO+88HHroodh7772dHo7r/exnP8Ozzz6Lp59+2umhEBFxW9jFuGeU6F1r167Fiy++iJ/97GdOD8X1Nm3ahC9/+cv46U9/ikAg4PRwiKgNLrroIkiSNOsHI49agXtGe0A8HofP58M777xTdvs777yDBQsWODSq7nLOOefg3nvvxeOPP47Fixc7PRzX27hxI7Zt24b999+/eFuhUMDjjz+O6667Dvl8Hj6fz8EREtFcfeUrX8Hpp58+63123333zgymDtwWdi/GaA/QNA0HHHAAHnrooeLB0JZl4aGHHsI555zj7OBcTgiBc889F3fddRceffRR7Lbbbk4PqSscc8wxeOGFF8puO+OMM7Bs2TJceOGFDFGiHjA8PIzh4WGnh1E3bgu7F2O0R5x//vk47bTTcOCBB+Kggw7C+vXrkcvlcMYZZzg9NFdbu3Ytbr/9dtxzzz0Ih8PYunUrAGBgYAB9fX0Oj869wuHwtONqg8EghoaGeLwtkQe9+eab2L59O958800UCgU8//zzAIA99tgDoVCoY+Nw87Ywm83i9ddfL/77r3/9K55//nkMDg5i5513dnBkLiCoZ1x77bVi5513FpqmiYMOOkg89dRTTg/J9QBU/fjxj3/s9NC6zhFHHCG+/OUvOz0MInLAaaedVnVd+sgjj3R8LG7dFj7yyCNVv0ennXaa00NzHOcZJSIiIiLH8Gx6IiIiInIMY5SIiIiIHMMYJSIiIiLHMEaJiIiIyDGMUSIiIiJyDGOUiIiIiBzDGCUiIiIixzBGiYiIiMgxjFEiIiIicgxjlIiIiIgcwxglIiIiIscwRqln/eQnP8HQ0BDy+XzZ7atXr8Ypp5zi0KiIiKgdRkZGsGDBAnzrW98q3vb73/8emqbhoYcecnBkVIskhBBOD4KoHSYmJrBw4ULcfPPNWLNmDQBg27Zt2GmnnfDb3/4WRx11lMMjJCKiVvrVr36F1atX4/e//z323HNP7Lfffvj4xz+Oq6++2umh0SwYo9TTzj77bLzxxhv41a9+BQC4+uqrcf311+P111+HJEkOj46IiFpt7dq1ePDBB3HggQfihRdewNNPPw2/3+/0sGgWjFHqac899xxWrlyJv/3tb9hpp52wzz77YM2aNfiXf/kXp4dGRERtMDExgb333hubNm3Cxo0b8f73v9/pIVENPGaUetqKFSuw77774ic/+Qk2btyIl156CaeffrrTwyIiojb53//9X2zZsgWWZeGNN95wejhUB+4ZpZ53ww03YP369fjQhz6EP//5z7j//vudHhIREbWBrus46KCDsN9++2HPPffE+vXr8cILL2DevHlOD41mwRilnjc2NoZFixbBNE385Cc/wUknneT0kIiIqA0uuOAC/PznP8f//M//IBQK4YgjjsDAwADuvfdep4dGs+Db9NTzBgYG8MlPfhKhUAirV692ejhERNQGjz76KNavX49bb70VkUgEsizj1ltvxRNPPIEbbrjB6eHRLLhnlDzhmGOOwfLly/H973/f6aEQERFRCcYo9bRkMolHH30Un/rUp/Dyyy9jzz33dHpIREREVEJxegBE7bRixQokk0l85zvfYYgSERG5EPeMEhEREZFjeAITERERETmGMUpEREREjmGMEhEREZFjGKNERERE5BjGKBERERE5hjFKRERERI5hjBIRERGRYxijREREROSY/x9oRABMxnTZrwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# project fields only a few wavelengths away from the aperture\n", "r_proj_intermediate = 4 * wavelength\n", "\n", "# create a field monitor to measure these fields at the intermediate projection distance,\n", "# so that we have something to which we can compare the 'FieldProjector' results\n", "monitor_intermediate = td.FieldMonitor(\n", " center=[0, offset_mon + r_proj_intermediate, 0],\n", " size=[td.inf, 0, td.inf],\n", " freqs=[f0],\n", " name=\"inter_field\",\n", ")\n", "\n", "# make a larger simulation along y to accommodate the plane at which the intermediate fields need to be measured\n", "shift = 1.2 * r_proj_intermediate\n", "sim_size3 = [sim_size[0], sim_size[1] + shift, sim_size[2]]\n", "# move the sim center\n", "sim_center = [0, (sim_size[1] + shift) / 2 - sim_size[1] / 2, 0]\n", "sim3 = td.Simulation(\n", " size=sim_size3,\n", " center=sim_center,\n", " grid_spec=td.GridSpec.uniform(dl=wavelength / min_cells_per_wvl),\n", " structures=geometry,\n", " sources=[source],\n", " monitors=[\n", " monitor_near,\n", " monitor_intermediate,\n", " ], # provide both near field and intermediate field monitors\n", " run_time=run_time,\n", " boundary_spec=boundary_spec,\n", ")\n", "\n", "fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(9, 3))\n", "sim3.plot(x=0, ax=ax1)\n", "sim3.plot(y=0, ax=ax2)\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run the new simulation." ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:50:38.162040Z", "iopub.status.busy": "2023-03-27T23:50:38.161848Z", "iopub.status.idle": "2023-03-27T23:51:00.596954Z", "shell.execute_reply": "2023-03-27T23:51:00.596371Z" } }, "outputs": [ { "data": { "text/html": [ "
[15:04:10] Created task 'aperture_3' with task_id                               webapi.py:139\n",
       "           'fdve-b53a1dbf-4a22-4015-ba30-1d38d65a7664v1'.                                    \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:04:10]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'aperture_3'\u001b[0m with task_id \u001b]8;id=802322;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=517211;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-b53a1dbf-4a22-4015-ba30-1d38d65a7664v1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:04:11] status = queued                                                      webapi.py:269\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:04:11]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=964046;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=214674;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:04:16] status = preprocess                                                  webapi.py:263\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:04:16]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=231780;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=139124;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
[15:04:20] Maximum FlexCredit cost: 0.025. Use 'web.real_cost(task_id)' to get    webapi.py:286\n",
       "           the billed FlexCredit cost after a simulation run.                                  \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:04:20]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.025\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get \u001b]8;id=758565;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=900962;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mthe billed FlexCredit cost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           starting up solver                                                   webapi.py:290\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=513866;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=360813;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           running solver                                                       webapi.py:300\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=245876;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=916604;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:04:31] early shutoff detected, exiting.                                     webapi.py:313\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:04:31]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=962261;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=90719;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#313\u001b\\\u001b[2m313\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           status = postprocess                                                 webapi.py:330\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=34952;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=122509;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#330\u001b\\\u001b[2m330\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:04:34] status = success                                                     webapi.py:337\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:04:34]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=119713;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=133052;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#337\u001b\\\u001b[2m337\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:04:35] loading SimulationData from data/aperture_3.hdf5                     webapi.py:512\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:04:35]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/aperture_3.hdf5 \u001b]8;id=916832;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=477444;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim_data3 = web.run(\n", " sim3, task_name=\"aperture_3\", path=\"data/aperture_3.hdf5\", verbose=True\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's create the [FieldProjectionCartesianMonitor](../_autosummary/tidy3d.FieldProjectionCartesianMonitor.html), this time turning off the far field approximations, and then run the [FieldProjector](../_autosummary/tidy3d.FieldProjector.html) again.\n", "\n", "The [FieldProjectionCartesianMonitor](../_autosummary/tidy3d.FieldProjectionCartesianMonitor.html)'s xy observation grid is defined in a local coordinate system whose z axis points in the direction along which we want to project fields, in this case the +y axis. The mapping between local and global coordinates is as follows:\n", "* `proj_axis=0`: local x = global y, local y = global z\n", "* `proj_axis=1`: local x = global x, local y = global z\n", "* `proj_axis=2`: local x = global x, local y = global y" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:51:00.961957Z", "iopub.status.busy": "2023-03-27T23:51:00.961698Z", "iopub.status.idle": "2023-03-27T23:51:17.060420Z", "shell.execute_reply": "2023-03-27T23:51:17.059831Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# make the projection monitor which projects fields without approximations\n", "xs = np.linspace(-sim_size[0] / 2, sim_size[0] / 2, 100)\n", "ys = np.linspace(-sim_size[1] / 2, sim_size[1] / 2, 100)\n", "monitor_intermediate_proj = td.FieldProjectionCartesianMonitor(\n", " center=[\n", " 0,\n", " offset_mon,\n", " 0,\n", " ], # the monitor's center defined the local origin - the projection distance\n", " # and angles will all be measured with respect to this local origin\n", " size=[td.inf, 0, td.inf],\n", " freqs=[f0],\n", " name=\"inter_field_proj\",\n", " proj_axis=1, # because we're projecting along the +y axis\n", " x=list(xs), # local x coordinates - corresponds to global x in this case\n", " y=list(ys), # local y coordinates - corresponds to global z in this case\n", " proj_distance=r_proj_intermediate,\n", " far_field_approx=False, # turn off the far-field approximation (is 'True' by default)\n", ")\n", "\n", "# execute the projector, with the projection field monitor as input, to do the projection\n", "# let's also time this, for later use\n", "import time\n", "\n", "t0 = time.perf_counter()\n", "projected_field_data_noapprox = get_proj_fields(\n", " sim_data3, monitor_near, monitor_intermediate_proj\n", ")\n", "t1 = time.perf_counter()\n", "proj_time_new = t1 - t0\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's compare the following three results:\n", "* Directly-measured fields at the projection distance\n", "* Projected fields with approximations turned off\n", "* Projected fields with approximations turned on (just to compare the accuracy)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:51:17.311981Z", "iopub.status.busy": "2023-03-27T23:51:17.311700Z", "iopub.status.idle": "2023-03-27T23:51:24.021158Z", "shell.execute_reply": "2023-03-27T23:51:24.020670Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Compute projected fields *with* far field approximations, to facilitate an accuracy comparison\n", "monitor_intermediate_proj_approx = td.FieldProjectionCartesianMonitor(\n", " center=[\n", " 0,\n", " offset_mon,\n", " 0,\n", " ], # the monitor's center defined the local origin - the projection distance\n", " # and angles will all be measured with respect to this local origin\n", " size=[td.inf, 0, td.inf],\n", " freqs=[f0],\n", " name=\"inter_field_proj_approx\",\n", " proj_axis=1, # because we're projecting along the +y axis\n", " x=list(xs), # local x coordinates - corresponds to global x in this case\n", " y=list(ys), # local y coordinates - corresponds to global z in this case\n", " proj_distance=r_proj_intermediate,\n", " far_field_approx=True, # turn on the far-field approximation\n", ")\n", "\n", "# execute the projector, with the projection field monitor as input, to do the projection\n", "# let's also time this, for later use\n", "import time\n", "\n", "t0 = time.perf_counter()\n", "projected_field_data_approx = get_proj_fields(\n", " sim_data3, monitor_near, monitor_intermediate_proj_approx\n", ")\n", "t1 = time.perf_counter()\n", "proj_time_new_approx = t1 - t0\n" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:51:24.129639Z", "iopub.status.busy": "2023-03-27T23:51:24.129507Z", "iopub.status.idle": "2023-03-27T23:51:24.148064Z", "shell.execute_reply": "2023-03-27T23:51:24.147560Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Client-side field projection *with approximations on* took 7.34 s\n", "Client-side field projection *with approximations off* took 17.34 s\n" ] } ], "source": [ "# let's see how long this took compared to the previous case when the approximations were turned on\n", "print(\n", " f\"Client-side field projection *with approximations on* took {proj_time_new_approx:.2f} s\"\n", ")\n", "print(\n", " f\"Client-side field projection *with approximations off* took {proj_time_new:.2f} s\"\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As expected, when the approximations are turned off, the projections take longer. Now let's see if it was worth it!" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:51:24.149869Z", "iopub.status.busy": "2023-03-27T23:51:24.149727Z", "iopub.status.idle": "2023-03-27T23:51:24.169431Z", "shell.execute_reply": "2023-03-27T23:51:24.168873Z" } }, "outputs": [], "source": [ "# Helper function to plot fields\n", "def make_cart_plot(phi, theta, vals1, vals2, vals3):\n", " n_plots = 3\n", " fig, ax = plt.subplots(1, n_plots, tight_layout=True, figsize=(9, 3))\n", " im1 = ax[0].pcolormesh(ys, xs, np.real(vals1), cmap=\"RdBu\", shading=\"auto\")\n", " im2 = ax[1].pcolormesh(ys, xs, np.real(vals2), cmap=\"RdBu\", shading=\"auto\")\n", " im3 = ax[2].pcolormesh(ys, xs, np.real(vals3), cmap=\"RdBu\", shading=\"auto\")\n", " fig.colorbar(im1, ax=ax[0])\n", " fig.colorbar(im2, ax=ax[1])\n", " fig.colorbar(im3, ax=ax[2])\n", " ax[0].set_title(\"Ex\")\n", " ax[1].set_title(\"Ey\")\n", " ax[2].set_title(\"Ez\")\n", " for _ax in ax:\n", " _ax.set_xlabel(\"$y$ (micron)\")\n", " _ax.set_ylabel(\"$x$ (micron)\")\n" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:51:24.171191Z", "iopub.status.busy": "2023-03-27T23:51:24.171054Z", "iopub.status.idle": "2023-03-27T23:51:25.755142Z", "shell.execute_reply": "2023-03-27T23:51:25.754545Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalized RMSE for |E|, no far field approximation: 0.59 %\n", "Normalized RMSE for |E|, with far field approximation: 22.31 %\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2wAAAErCAYAAACirgCsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADyhUlEQVR4nOy9e7wkRXk+/lRVd8+cvaEosKJECMELl0AEQVADUXRBRIlyjQgoNzUoiEHFcBVxRZSAeFkxXEwEUaISLwFFBDGCUUC+iigxEYSfZrkKu3vOmenuqvr90V1Vb/V0z5k55+yeM2fr+Xx2T53qmp6aOdPv9Ps+7/u8TGutERAQEBAQEBAQEBAQEDDvwOd6AwEBAQEBAQEBAQEBAQH1CA5bQEBAQEBAQEBAQEDAPEVw2AICAgICAgICAgICAuYpgsMWEBAQEBAQEBAQEBAwTxEctoCAgICAgICAgICAgHmK4LAFBAQEBAQEBAQEBATMUwSHLSAgICAgICAgICAgYJ4iOGwBAQEBAQEBAQEBAQHzFMFhCwgICAgICAgICAgImKcIDltAQEBAwEaBffbZB/vss8+U6/I8x/vf/35stdVW4JzjoIMOAgAwxnDOOecM/bwPPvggGGO46qqrplx7zDHHYOuttx76OQICAgICFi6CwxYQEBAwgrjqqqvAGANjDP/5n//Zc1xrja222gqMMbz+9a+fgx2OLq644gpceOGFOPjgg/HFL34R733ve+d6SwEBAQEBGzGiud5AQEBAQMD00W63cc011+AVr3iFN//DH/4Q/9//9/+h1WrN0c5GFz/4wQ/w3Oc+F//0T//kzU9OTiKKwtdmQEBAQMCGRWDYAgICAkYYr3vd63Ddddchz3Nv/pprrsGuu+6K5cuXz9HOZg/j4+Mb9PkeffRRPOMZz+iZb7fbwWELCAgICNjgCA5bQEBAwAjjiCOOwBNPPIGbbrrJzqVpin/7t3/D3/3d39U+RimFiy++GDvssAPa7Ta22GILnHjiifjTn/7krfv3f/93HHDAAdhyyy3RarWw7bbb4rzzzoOU0lv329/+Fm9+85uxfPlytNttPO95z8Phhx+Op59+GkD/Gq5qXdg555wDxhjuu+8+/N3f/R2e+cxneuzhl770Jey6664YGxvDpptuisMPPxwPP/xwz3kvu+wybLvtthgbG8Puu++OH/3oR1O+l2aft9xyC371q1/ZlNNbb721dq8A8Ic//AFvf/vbscUWW6DVamGHHXbAFVdcMeVzAcD111+PHXfcEe12GzvuuCO+8Y1v1K679tprseuuu2Lp0qVYtmwZdtppJ1xyySUDPUdAQEBAwOgjhAoDAgICRhhbb7019txzT3z5y1/G/vvvDwC44YYb8PTTT+Pwww/Hpz71qZ7HnHjiibjqqqvwtre9De95z3vwwAMP4NOf/jR+/vOf48c//jHiOAZQ1MktWbIEp556KpYsWYIf/OAHOOuss7BmzRpceOGFAArncMWKFeh2u3j3u9+N5cuX4w9/+AO+/e1v46mnnsImm2wyrdd1yCGHYLvttsNHP/pRaK0BAOeffz7OPPNMHHrooTjuuOPw2GOP4dJLL8Vf//Vf4+c//7llxS6//HKceOKJ2GuvvXDKKafgd7/7Hd7whjdg0003xVZbbdX4nJttthn+9V//Feeffz7WrVuHlStXAgBe/OIX165/5JFH8LKXvQyMMZx00knYbLPNcMMNN+DYY4/FmjVrcMoppzQ+1/e+9z28+c1vxvbbb4+VK1fiiSeewNve9jY873nP89bddNNNOOKII/DqV78aF1xwAQDg17/+NX784x/j5JNPHvTtDAgICAgYZeiAgICAgJHDlVdeqQHon/3sZ/rTn/60Xrp0qZ6YmNBaa33IIYfov/mbv9Faa/385z9fH3DAAfZxP/rRjzQAffXVV3vnu/HGG3vmzfkoTjzxRL1o0SLd6XS01lr//Oc/1wD0dddd17jXBx54QAPQV155Zc8xAPrss8+2v5999tkagD7iiCO8dQ8++KAWQujzzz/fm//lL3+poyiy82ma6s0331zvsssuutvt2nWXXXaZBqD33nvvxn0a7L333nqHHXaYcq/HHnusfs5znqMff/xxb93hhx+uN9lkE/v+1b3+XXbZRT/nOc/RTz31lJ373ve+pwHo5z//+Xbu5JNP1suWLdN5nk+574CAgICAhYmQEhkQEBAw4jj00EMxOTmJb3/721i7di2+/e1vN6ZDXnfdddhkk03wmte8Bo8//rj9t+uuu2LJkiW45ZZb7NqxsTE7Xrt2LR5//HG88pWvxMTEBH7zm98AgGXQvvvd72JiYmLWXtM73vEO7/evf/3rUErh0EMP9fa9fPlybLfddnbfd955Jx599FG84x3vQJIk9vHHHHPMtNm+Omit8bWvfQ0HHnggtNbenlasWIGnn34ad999d+1j/+///g/33HMPjj76aG9Pr3nNa7D99tt7a5/xjGdgfHzcS3kNCAgICNi4EFIiAwICAkYcm222Gfbdd19cc801mJiYgJQSBx98cO3a3/72t3j66aex+eab1x5/9NFH7fhXv/oVzjjjDPzgBz/AmjVrvHWmPm2bbbbBqaeeiosuughXX301XvnKV+INb3gDjjzyyBk5SNtss03PvrXW2G677WrXmzTO3//+9wDQsy6OY/z5n//5tPdTxWOPPYannnoKl112GS677LLaNfS9pGjaIwC88IUv9By9d73rXfjqV7+K/fffH8997nPx2te+Foceeij222+/WXgVAQEBAQGjgOCwBQQEBCwA/N3f/R2OP/54rF69Gvvvv3+tyiFQCI5svvnmuPrqq2uPb7bZZgCAp556CnvvvTeWLVuGD3/4w9h2223Rbrdx99134wMf+ACUUvYxn/zkJ3HMMcfg3//93/G9730P73nPe7By5Ur85Cc/wfOe9zwwxmqfqypeQkHZPbNvxhhuuOEGCCF61i9ZsqTxXOsD5vUfeeSROProo2vX/OVf/uWMn2fzzTfHPffcg+9+97u44YYbcMMNN+DKK6/EUUcdhS9+8YszPn9AQEBAwPxHcNgCAgICFgD+9m//FieeeCJ+8pOf4Ctf+Urjum233Rbf//738fKXv7zHKaK49dZb8cQTT+DrX/86/vqv/9rOP/DAA7Xrd9ppJ+y0004444wzcPvtt+PlL385Vq1ahY985CN45jOfCaBwAikM0zQItt12W2itsc022+AFL3hB47rnP//5AApG7lWvepWdz7IMDzzwAHbeeeeBn7MfNttsMyxduhRSSuy7775DPZbusYr777+/Zy5JEhx44IE48MADoZTCu971Lnz+85/HmWeeib/4i7+Y3gsICAgICBgZhBq2gICAgAWAJUuW4HOf+xzOOeccHHjggY3rDj30UEgpcd555/Ucy/PcOlWGxdKlQiNQKEJ+9rOf9R6zZs2anh5wO+20Ezjn6Ha7AIBly5bh2c9+Nm677TZvXfVc/fCmN70JQgice+653p7MHp944gkAwG677YbNNtsMq1atQpqmds1VV13V4zDOBEIIvPnNb8bXvvY13HvvvT3HH3vsscbHPuc5z8Euu+yCL37xiza1FCgUIe+77z5vrXldBpxzy9yZ9zcgICAgYGEjMGwBAQEBCwRNqXkUe++9N0488USsXLkS99xzD1772tcijmP89re/xXXXXYdLLrkEBx98MPbaay8885nPxNFHH433vOc9YIzhX//1X3ucpR/84Ac46aSTcMghh+AFL3gB8jzHv/7rv1qHxuC4447Dxz72MRx33HHYbbfdcNttt+G///u/B35t2267LT7ykY/g9NNPx4MPPoiDDjoIS5cuxQMPPIBvfOMbOOGEE/AP//APiOMYH/nIR3DiiSfiVa96FQ477DA88MADuPLKK2e1hg0APvaxj+GWW27BHnvsgeOPPx7bb789nnzySdx99934/ve/jyeffLLxsStXrsQBBxyAV7ziFXj729+OJ598Epdeeil22GEHrFu3zq477rjj8OSTT+JVr3oVnve85+H3v/89Lr30Uuyyyy6N7QYCAgICAhYWgsMWEBAQsJFh1apV2HXXXfH5z38eH/rQhxBFEbbeemsceeSRePnLXw4AeNaznoVvf/vbeN/73oczzjgDz3zmM3HkkUfi1a9+NVasWGHPtfPOO2PFihX41re+hT/84Q9YtGgRdt55Z9xwww142cteZtedddZZeOyxx/Bv//ZvVkTjhhtuaBQ/qcMHP/hBvOAFL8A//dM/4dxzzwUAbLXVVnjta1+LN7zhDXbdCSecACklLrzwQpx22mnYaaed8M1vfhNnnnnmTN86D1tssQV++tOf4sMf/jC+/vWv47Of/Sye9axnYYcddrA905qw33774brrrsMZZ5yB008/Hdtuuy2uvPJK/Pu//7tt1A0UNXKXXXYZPvvZz+Kpp57C8uXLcdhhh+Gcc84B5yFJJiAgIGBjANPVcGlAQEBAQEBAQEBAQEDAvEAIzwUEBAQEBAQEBAQEBMxTBIctICAgICAgICAgICBgniI4bAEBAQEBAQEBAQEBAfMUwWELCAgICAgICAgICAiYpwgOW0BAQEBAQEBAQEBAwDxFcNgCAgICAgICAgICAgLmKYLDFhAQEBAQEBAQEBAQME8RHLaAgICAgICAgICAgIB5iuCwBQQEBAQEBAQEBAQEzFMEhy0gICAgICAgICAgIGCeIjhsAQEBAQEBAQEBAQEB8xTBYQsICAgICAgICAgICJinCA5bQEBAQEBAQEBAQEDAPEVw2AICAgICAgICAgICAuYpgsMWEBAQEBAQEBAQEBAwTxEctoCAgICAgICAgICAgHmK4LAFBAQEBAQEBAQEBATMUwSHLSAgICAgICAgICAgYJ4iOGwBAQEBAQEBAQEBAQHzFMFhCwgICAgICAgICAgImKcIDltAQEBAQEBAQEBAQMA8RXDYAgICAgICAgICAgIC5imCwxYQEBAQEBAQEBAQEDBPERy2gICAgICAgICAgICAeYrgsAUEBAQEBAQEBAQEBMxTBIctICAgICAgICAgICBgniI4bAEBAQEBAQEBAQEBAfMUwWELCAgICAgICAgICAiYpwgOWwCuuuoqMMYa//3kJz+Z6y0GBAQEeAh2KyAgYBQRbFfAdBDN9QYC5g8+/OEPY5tttumZ/4u/+Is52E1AQEDA1Ah2KyAgYBQRbFfAMAgOW4DF/vvvj912222utxEQEBAwMILdCggIGEUE2xUwDEJKZMBAOPvss8E5x8033+zNn3DCCUiSBP/v//2/OdpZQEBAQC+01th6663xxje+sedYp9PBJptsghNPPHEOdhYQEBDQH/vss09jyuRVV10119sLmAMEhi3A4umnn8bjjz/uzTHG8KxnPQtnnHEGvvWtb+HYY4/FL3/5SyxduhTf/e538YUvfAHnnXcedt555znadUBAwMaMfnbryCOPxMc//nE8+eST2HTTTe3xb33rW1izZg2OPPLIDb3dgICAAAD9bdc//uM/4rjjjvOOfelLX8J3v/tdbL755htymwHzBExrred6EwFzi6uuugpve9vbao+1Wi10Oh0AwL333otdd90VRx11FC688ELsuOOOeM5znoM77rgDURR8/4CAgA2HQezWf//3f+OFL3whPve5z+Ed73iHPf7GN74Rv/jFL/C73/0OjLENteWAgICAge+5KG6//Xbss88+eOtb34rLL798fW8xYB4i3GUHWHzmM5/BC17wAm9OCGHHO+64I84991ycfvrp+MUvfoHHH38c3/ve94KzFhAQMGfoZ7de8IIXYI899sDVV19tHbYnn3wSN9xwA97//vcHZy0gIGDOMNU9l8Hq1atx8MEHY5dddsFnP/vZDbW9gHmGcKcdYLH77rtPWQB72mmn4dprr8VPf/pTfPSjH8X222+/gXYXEBAQ0Iup7NZRRx2Fk046Cb///e/x/Oc/H9dddx2yLMNb3/rWDbjLgICAAB+D3HPleY5DDz0UUkp8/etfR6vV2kC7C5hvCKIjAUPhd7/7HX77298CAH75y1/O8W4CAgIC+uPwww9HHMe4+uqrARR1ILvtthte+MIXzvHOAgICAvrjtNNOwx133IGvfvWreN7znjfX2wmYQwSHLWBgKKVwzDHHYNmyZfjQhz6EL3/5y/j6178+19sKCAgIaMSmm26KAw44AFdffTV+//vf48c//nFg1wICAuY9rr32Wlx88cX4xCc+gb333nuutxMwxwgOW8DAuOiii3D77bfjsssuw3nnnYe99toL73znO3tUjgICAgLmE9761rfivvvuw2mnnQYhBA4//PC53lJAQEBAI+69914cd9xxOPLII3HyySfP9XYC5gFCDVuAxQ033IDf/OY3PfN77bUXut0uzjzzTBxzzDE48MADARRKR7vssgve9a534atf/eqG3m5AQEBAX7v153/+5wCAAw44AM961rNw3XXXYf/99w+y2AEBAXOOfrbLqEj+9V//Nb70pS/1HDe2LWDjQXDYAizOOuus2vl//ud/xuc//3k8+9nPxsUXX2znt9tuO6xcuRInn3wyvvrVr+LQQw/dQDsNCAgIKNBkt6688kp7U5MkCQ477DB89rOfDemQAQEB8wL9bNdjjz2G8fFxnHDCCbXHg8O28SH0YQsICAgIWPB473vfi8svvxyrV6/GokWL5no7AQEBAQEBAyPUsAUEBAQELGh0Oh186Utfwpvf/ObgrAUEBAQEjBxCSmRAQEBAwILEo48+iu9///v4t3/7NzzxxBOheD8gICAgYCQRHLaAgICAgAWJ++67D295y1uw+eab41Of+hR22WWXud5SQEBAQEDA0Ag1bAEBAQEBAQEBAQEBAfMUoYYtICAgICAgICAgICBgniI4bAEBAQEBAQEBAQEBAfMUG2UNm1IKf/zjH7F06VIwxuZ6OwELCFprrF27FltuuSU47x8P6XQ6SNO08XiSJGi327O9xYARRbBbAesTg9quqewWEGxXgEOwWwHrExuT3dooHbY//vGP2GqrreZ6GwELGA8//DCe97znNR7vdDoYW7opkE82rlm+fDkeeOCBeW1AAjYcgt0K2BDoZ7sGsVtAsF0BDsFuBWwIbAx2a6N02JYuXQoAOOKzNyIZW4zxboa1HQkAmOzmyLNiLHNtx0oqGH0WrTSU6j2vce4ZZzaSxBkDi4oDQnCIqJiPYoFIFPPtRGBRUoxjITCWiGI+FlhUjhe3IoyVa1qRQLt8bBJxtMx5Io6kHMeco1U+VyviiHgxFhxuzBgi5ubtnBlzBmFeh5ZgKkf5ZoDJrBzndp7JHDDjPAWULOcz6KxTvHfdDnRePFZnHehutxinHeisa9eotFgvuxnyieIik50M+WRazqeQWW7HxfEUKi2eM+tKO5aphMpVuXUFLcu/o9RQsvcPyQUHE8XrZoKBl3+DuBWRsUC8uFW8T4vaiBcXF3g3Evir86+0n7EmpGkK5JOIdzwCEHHvAplh9b1fRpqm89Z4BGxYmM/UT3/xGyxauhTS2CPA2iMFDSMjpTTcGE5baliZKRoU52D2d878NRzlBDlulnDG3Bgg9rF6DjNm3jH7/KzhseVzVPfMtAa0u8aZGZM5kDWMvjl0LRkz77Gq/hw1j2VauT9U5Xka9zUM6B+KFe+kZtyOize4nOeRW8MFwDjWrl2HbV7y8r62a0q7BQTbFeDBfJ5+/6NvYtmSxf5B7zqQbli9wVLS3k8US8uxcteUVtJeP5quV6qyXrrnMGOZESMqG9ZLuy+tNLRU9jx2LMlz2ZfoXouW9eNhwQSvHzM6L+wxJjgYp+Py/oZzMF7c04ALax+YqJuLi9/Lx8E+jpP1nKwR1sYwch5vvXkO+tOc370QMu79UlizbhzPf+UbNgq7tVE6bOYLP+MJwFvoMIFclM5FLO2XJ2MKgpUXlVTQyhkXQc9nP/zOSeOl18M5AxfOSRPl/FjinLGxJLJO2lhM54U33yof2xbcjluRQNuMBUdcPlc74hDlfmLieFUdNuqoFT9hH0fHTGvfYbPjHJClk6Zy4qSlbo2UYLKkomUGXTpjOiPjtAPdnXTj1Dl4snTqZCdF3iHjSeeoAUDe6ZJxClk6bHknh0ydQZVZvfNWB8YYRGkwhGYQuvxbMo6o/DxEuUSUm88Mt48bBLy1GEwkPfNa9qfuAzY+mM/UkqVLsXjZMkjlHDbz3V912AzofRF13ppgnS+U9/kVx8qsoc5b9RPPGTlO9l84Xb3z5hhgHDD6nPVOGn2u6v6ABgcMqHe6APdGVdfWOlTuZtFfQ5031fuY8qfdg1I9DlzfPTaB3KxpxnvnGx22yHvsILaryW4BwXYF+DCfp6XtGEuTSsqa54SZOeVusIyzxCSZU9DcXA8SQPndrqU9iVYZcdikc5q0hM5T9zzEGVNlAFhL5RwzqSDTMsBcdcwUvY/onXevS3nOmaqJ9g/ivFHHDICX/kcdMzvHuTfPzbgyb5wjkcRunjh3PC7cBKYz30mLy+tfCzBlnlfA/KEYj62zxTgAXto4TmwM5yj+hqXdtk6bIo6i96L9N4UL6DwuH7/w7dZG6bAFBMwXMCZchItC1cwFBAQEzAM02i0g2K6AgIB5iVG3Wxu1wzaRKsRCIs0VSYNUkJbq1lBl5JPV5eeU8ya6OwirlpTjRYnAWFK8/Uta0YxYNTOOBUNsoiUcHqvWxKAxMg8UEeyGl0peNLMRXMbdR0hzXqRFoozwGoaN54ChwGUCFhWphCzvQrcK6ll3O9BJOaZsW9IBaxVsm2h1INpFdER2Uoi2Y9sAgI9HyJMi2sKTCCotnl8kPtvGRH+2rQqTNskEA8rzmJTJYszBDPNXlyvbByKOwaIaho2F9ogB9aDp1gAgtXaMlWZQ5WeHxiLpp1L0cGEOdUxacS5m53wWjMzX7NOu7ZPu6NIm69k2usbfqz87ZYCVcZcyRRklb035U7tZrckrq6YvcrOGMGnKrSnm69kzG/Xn1bTJ4rk1RO1jB4LHsLlodi3zZtYMIQjRZLeAYLsC6qEnx6EFfFaNpC16c8pPK/TTGiW8tMaSMaMpjlASOsvcuJxXWe6lMpp7BCXrGTaZ5rWpj5KeR0qPkauyZarCuvlpkcNdK9X7Djsu7/t4JVWSeayasPPCsGaVVElR3pPWMWxcCHBy3Jybx5GXVsni4h5Mc+GnUJb2gnFeHDPry31pyp5x51hpwLFt1NkyxyfHp3rbLEbdbm3UDluaK+hcIc9dumP1O9G7KaAXC0mDFOUH19SnccGHSn1c0nbzbeKMjcX1jlkr4tYxSyKX7hhzP8VR2JslN89B0hxBbr5oulLda4e7yWHmRChvZsy8VkV6DQCoHFqVVLXKbf0fUzm0qXOLW0BZz8Zbi2wNG/IUuls4aSrt2LFOO2Cd4uIU3Q4iU+dWOmyinbiUyMnUzZNUSeq8yUxB0Do31T890nsvpIYq16lUQvLiNeVqSAPMGyI+TVGggAAUl5+5paHXsULhtJkDJv1RDHAv3jcN0qwZMM0RGN4xa0pxpJixyBx1Ukp4Toz5Aqisc+mJgqRXNdShcZJ0OogjpyvzXHnndc8v7HkGBrkJ8uvZGhy3AdFot4BguwJqoboTUBF8Z0w5p8fNVRyyujkzzlKv9kyZ+njiOFEnTWaZN2+CsSrNXYpjmtu0RZVmlfTI3O7BOWyuFl4rd1/gHyc1xF565HD3C5wYVOqwcVJzbx0pwVyZjleXT9MgI8+p4ybgbRzAJHLOYBJZh5DH7nEijn3njaZhRtR5K+fjxHPkPOfN1rkJNw80OnVA8bkaFKNutzZqhy0gYK7Boxgs6i2C1RjipiwgICBgA6LJbgHBdgUEBMxPjLrd2qgdNqU0pNI9UQ4TxVDwUyHNPGPMBiVFxC3DFjWxanExXpQILGlHdo1h1RbFTvXRY9UiwqoJgSRyYiExUX0cJN2RMmlNkXM71xTFpspjNQX8VA0JOvEL9UtWTWvl0iaVBIvMOAdLxor1eQY+VrJwWbciRlIoAeluB9ywbSXTFi0at0ya7KTIxovH5Z3UFyMp0xdzoiopM2mZNxoRq6Y3VAt/gSLlgZuIXB4YtoD1C8NQCcvjMJu6LZjL5lO6f/qjOZdBleEaRjDEZ+bL81VYtKlsjScQUhVGsbaEzA3ADOkBKDnvaU2RfOVhmshMNQmZ+MqQU6RBVpi32sdWmTeDGgauLxpYNZsNwVhxbAimbdQj1QEbHrrbgebkuiCqiz7rVjM/gxTHfkyatGmQfkqkmVep9NizunsEmUmblVMnZEaVqCkD57030xEdMYwZvUetKlxbtotBlPehXDC7RiTCY+GMCjZNmbSiI0LY+X7M2zAplJqkUFJWzVOhLNfVzYMLm4E1CEbdbm3UDltAwFyDi4YatmHqVQICAgI2IJrsFhBsV0BAwPzEqNut4LChYM50GZYWkUuJ5qTwg3OXDyxIH4uqkEgx18yqLS4jDouIoMgiwqotijlaZb5uEjkmLeKuJq2oVevPqvX0QGqMZBvo2qGdqoacidaqRm9kgj6HrhTqaxpBJu0BDPNW9HkrJVZbOVi7rHOTKenVNgndKXKXTQsANjkObti2yXFEi4vjg7BtKs2Rl/Naakjbf0/XRr8KmVwXmZouWJyAx70GRI0APR8wNzCMuSqvcAFtr3t6adO6NaV1bV2YLywyPJPWr/a1x+YQlmxoyXpv06aAlkSuB6jJ8lobVGxgj8kbgCgvX3nxP2MeOzd1Pzdf+n9Y5s3uoe6906r5PaBsm21Wx6FF5Bi3AdBkt4BguwLqoTsT0EL31qcBfo2alK62jQiKUOl8nw3LeuapWIjKKJOmoMr1PsOmvNp2W/OWKnsvQGvVVKrsmK73snOs7D+tX/PvJ+rYtn7gNaIjVIikqFsjNWykbk3ETpiEJ25s2bZYQCR+ewARc4ikV6yEJxF4yYx587S2LYkIO8chyHo6z1IijFI6U9rr7ebES3S5zs4D0J3+zbApRt1uBYcNBaXMFKWR3TGbBsmZdcySyCk2VoVEAGApERFZ0o6wKHapj6bJ9aJY2Pl2xNEuL6aYMyRGYZJTQRHSP404b4Izd3OgFZgmqkuDNF7tccQaitThTkdvdugzNNfPctgbG17vSDb2eZNp0YTbzJeOHGt3wZeUxrwsOuXdDlSZJqmp89YZR1wqCeUTHeSTXTJ2KZTCOG9ZbouLi5SL3tQGCjaIokMDmij6Rto+YKMHKwWFzLWjNYMVuGJwARECwVizAuOQjpkgDhmrSd+zRmEYJ2MK+A4ZeX1mL3RNxWGpc9Q0qn3q/PdsSC0AALqxbxyDc5JcWr177zQNXA3oyNlUSXPM20rD5iuNte37xfmspkQG2xVQB511oVNW65jRNMeqcwYMLhxSm9aYZTZVkqo7ylQ6lejUlUQokvpYdcxMCYWSmihJEoETqd39QnkdSq1h/DJJrs2qryYbrltRE2ijtxxUYE4wp1pe3MsShy1xjpENNiei1pEzThrnzI0TARFn9rhz6iLIxDhssXXeZIcoTCYRpCjVvPsKluR2v4wqQ5L+b6COHODE6gbAqNut4LAFBMwhRBSD11D01vEOCAgImGdosltAsF0BAQHzE6NutzZqhy2OOOKII82VjSJQCMKqtSJOGDbRyKYBpWR/LHrGi2LusW2GSUsEs+xZIurTICOGegbKS7NRU0s+U1nUGplnzaP6qDXqo9NSaRtQV9qPVE8VR++N6JcFrzyCEEWvNtFaAi5dsbFNlcxTsLyIrLB2IUTCsi6ivGwB0BmHKlk13ZkAK8d8sWPbZLeLfLxYn3e6yMZdmwBXdJz5aRYN76+JKkEOd9EHhi1gWHBmmPXidw1t7UTJzfQ+hoy9/mg15zXzvIlJk/VsUC/TU5mbphw9GGk4QGxWYZvMOkVaqNUzRUrX2yql4c3b7Q9hy7ytF48uttsj8lT2yPNYS27tXQ/z5tn2sgekbmgbMMh7XbX/5ifjwDApkSMeqQ7Y8NBZCt0FSYms71/m9TtLMzuniKS+nwFjGLAcqlxPs2SKx/aKi9F0R5lKqNSwZMpn3kh5BGXYZF4+L2HQUqUtU0ZZNcqm+eNeVo0erybvULbNZ9nccTpOaOnMhCn78Rk2TlIinehIPetmhEtE4lIlVSzBy3skxlPby43HkW0TILLIY9LMGpXmTpgkzSASlzZJe8HR1gOObStaBegs7XkPmzDqdmv6xTcBAQEzBo+Sxn8BAQEB8xH97FawXQEBAfMRs2m3Vq5ciZe+9KVYunQpNt98cxx00EG4//7719POC2zUDFtSMmyChEAFZ16tWBIZIRGBpPTyq6zaYsKaAVVWjbJt3GPVzLhat2YZJZk5RknmPsNWV9vQhGpU2kZWmSs0F2WUgza/5rDn1kREXCoXMVLaRYmkIlFr+DVvU5WEVCP6tlUBB0RZzB9zgSgpItFRC66eLXcNtynrxheX891x8JJVU51xaMO2dcYhFhfjuDOBuIZtU2nuWgVkuW3wSaOAgCvS5dlw9WyMNTBsbHrRns985jO48MILsXr1auy888649NJLsfvuuzeuv+6663DmmWfiwQcfxHbbbYcLLrgAr3vd6wAAWZbhjDPOwH/8x3/gd7/7HTbZZBPsu++++NjHPoYtt9xyWvsLmDlMDatjnZi9vqqfmiqDViz3GbY6Jo2p3LE0lElTeS2j7zFsTbL3Zk9NYiGAs00SvihGtd4KAKN2jUeg/OJ0MwPMzrR2a/sxbfSl1nUQ4MTyee87c8eKedeWgTJvrHwdQrBm5q1SJ8i0ch+Epu+GmlplPUSEuclumWMBAVXotAPF/e/Nuho1JR3ztqFYtaY1hax/eX+TK6TK1aW5MTxWjc6btQZ0LV0zKKq1a3Vz5veEs1rmLZHKPjbpSojIsGk5YdgIk5aVTFqqIJPifRGZgCjfO5FIu0bEwv7tWJpDmEwlyrYRcRgeRxBmPefusZyDCyd2QkVKAL/OzYjODYLZtFs//OEP8fd///d46UtfijzP8aEPfQivfe1rcd9992Hx4sVDnWtQbNQOWytiNQ4bSX0UnCg/Cs9JM33TlrR8UREAWJI4J60VOVo6ERztiKQ+mi9vmYKlxOkoHTYmU9u/jMncS4mpTYOhoF/IPHI3OUKQm58IEP6XvRaRvUmoU38ESieNGqtynBFHThPDpCpGaqqaeA4nRlLtM2fTRQVDzAsDkCRFZCRqM3DjsOVdsLQQI2GtxWBjpQBJNgldCpOo8bUuVbIzDt5eAwCI0w7ixaXzNtn1VCVtb5c0h1K9Xzx1Snz9wOO4XrVI50OdBwC+8pWv4NRTT8WqVauwxx574OKLL8aKFStw//33Y/PNN+9Zf/vtt+OII47AypUr8frXvx7XXHMNDjroINx9993YcccdMTExgbvvvhtnnnkmdt55Z/zpT3/CySefjDe84Q248847h95fwOzAKMOaq7MqkNGvtxowYIojdcxk3ugg1AaOhhAYqTpXPWl65XFjk6BIkIm7ND6mctJXrP65qGOm4eyWQhFsKt6C/gEnP2Wy70srtkL2wpmuFVziROWzSJU0zptz8ITSfgql6UtU+Vt6P3vGlQ1XREiG6UPUaLeAadmugIUPlUuvDxpNg6w6aU5hcThBkfXppNF0x1RV0yCLcdWRM3P2PcDsO2wc/pzvsJl7J23vQ1NFxwxJud+EMwgjmGLfx3rHbFjnTUjl/d1NCQn9DPAk8hw2bVIlJbdrvPRIWYxVPngZymzarRtvvNH7/aqrrsLmm2+Ou+66C3/913891LkGRUiJDAiYQ5ic6rp/w+Kiiy7C8ccfj7e97W3YfvvtsWrVKixatAhXXHFF7fpLLrkE++23H0477TS8+MUvxnnnnYeXvOQl+PSnPw0A2GSTTXDTTTfh0EMPxQtf+EK87GUvw6c//WncddddeOihh2b0ugMCAkYX/ezWKNSCBAQEbHxYn3br6aefBgBsuumms7HVWmzUDNviVoykHZcpRiXz5Un2O1ZtLKlPc6Rs2uJybVtwtAiT1rZpkBxClgxQ2gXLSipXZmClWAbLaRpkBp2XRbdZatOPVE6KLGlxOefuQ1cWZAIAixMbPWVxyxWXRy4qrkURdfAi3pUidJtOpF1kKFMauYkoqeL3Yo1Gmjt528xI4Cpf7pZGrCkzEJd7F9yNY+H6z8XcF2oxc4lwrFucLC7fU8K25V3wVjEvxpaCT64t9jg5DtYu5nVnHHysYN6iyXGXEtlJkddI/2sSPYq6gxfAAoCIIvCo9zJkqphbs2aNN99qtdBqtXrWp2mKu+66C6effrqd45xj3333xR133FH73HfccQdOPfVUb27FihW4/vrrG/f79NNPgzGGZzzjGY1rAtYvTNq2CdTSqGtjv8V+YiFEwMit8UUuvDVen7AGtq0OZr7CqHliISRd2wpkkAwBzSNHoGmScMgjwjCx2lRuTeW1G9O6KQNXHocmbJtPVBH5DzvfRLLTzAHOdCWjwImRuLYJ2kXRWRElL+aZHVfFSwBAcNH3c9ADL610MDTZLcDZroAACpXl0JHwJPtpDzUqOkLTH91aJwRG2Tg3Lz0mTdYwaflkXisoIlPSh60h9bHKqtWlRKZK27RpmiZZx6pVBUea2La6rkGC2ADze/HT2QzKpAnG7H4TzuxzCaYhyx7EUjMIsgYABGlToBUnLY40hJw+32NKS0yaZHF+BV0ybyKJLHPKhEuVFIj98yiXXjkIBrFbg95zUSilcMopp+DlL385dtxxx4H3MywCwxYQMIdgZUP2un8AsNVWW2GTTTax/1auXFl7nscffxxSSmyxxRbe/BZbbIHVq1fXPmb16tVDre90OvjABz6AI444AsuWLRv2pQYEBCwQ9LNbjDd4rAEBAQFziEHs1qD3XBR///d/j3vvvRfXXnvtet3/Rh0KW9yK0GpFiCpNsW2tWiuybFuVVVta5tdSeX7DqrUFs49rcYBlRSd21plwohh5B6xs+MeySVs4qbsdSFNEmWdOspRI4JrIdw+4cF3go8R2imdJGywqIxOtNljSLsZaAcKPemvGG+vjbP2H1q6GTWnLquUSlknr5ArdUvY2Uxqdcqy0RmYKhrXfhNt7KaRuzYxjwW0NW5swoW1Sc1gn6tIWbbSWLCrOm3Wgs7HiJceT4EkxFou64IvXFXscXwM1XjBvrD0OXta8Rd0OxETxtyyk/8tiZ5JzPyypzgWHEDVxk3Lu4Ycf9pyjqSI96wtZluHQQw+F1hqf+9zn5mQPAQW4zMCU9Eq1WF3dUpPsvlZAyaQxyqTRujVF6takrK9tq9gkXbFLuqHFhbFLxYtxTVE9yWbGLePDuIKmokgoaxA4XIYBm0J4qYRh9BUZS+2yBOicYdik1l49m2XetPbrU6awZQCpO2HMXOJePZvwBEgYqWejNlG79gvMReCdkIxuFJgxMdpqra3SGvkQ9TSNdguwtisggELLQppf1Qh30SwVmebePOA3vKYS/8PXrVXFSJRdY2T6ffaMMmyYUnQkq2mSvX4YtiZZf39s6L7qevNcBZNGmTr/eZJ8arvKxWC213tM4mrYZCkiIhBBc/cZMNL/FBIZmDQiKUXzbipiM/Vep7Zbw95znXTSSfj2t7+N2267Dc973vMG3st0sFE7bEtbEVrtyHPSxmLR6KTR1EcjOtKKGMas41A6FlDgWXGTz9IJ57Clkzb1sdonTHeLNTrt+GmQZkxvjirwOsKXjhmLE+uksaQN1iqdlDwDKx0NNqbATP2lcfQYh1bl48hNngL3bnbMBZ+rwlEDCidtojSSXamsk9bNpee8GYctoz1LqsoJJWi6aswZ4vJ9jzlxiqP+fe5agqEd6XKcoD1WOKwi6UKbv013HDw2vd8WgY8V6ZFqctw6b7ozjrjlnDfZLRxu2Ultv5h4Sj1MH4zVR6RNmtOyZcsGYrOe/exnQwiBRx55xJt/5JFHsHz58trHLF++fKD1xln7/e9/jx/84AeBXZtrKGmFiSyaHDOSvuh6N2qiOOscME/YiMzrPLPziqRme06aUj0OWxO8WgGSxq2j2DlzUQIWmdcRuXxD4uxpJC6dknPrYGrtfyFbu0VER6RyN0y58p2z6vFMupTuIuBUn9LdZMMojKNFUx+p8xZzTgJUviMnOBEjUW5MUyWL53CpM4zBc9ioSmUVwwggNNktuo+AgKngOWE1zpvn0BlHT/prrTAJTd+Tioy1dd6K9ZqsV24NKdWoExeh87QsRGqaBuk7au5x7jUPKzpS15etOAe9zswi5o2tA0bWF+ejr4OmUPrPKTXAyXuqZBko4hrMOtMSrHwiLbV1urRk9r1mXIGVj1Vc2cdq7r4zNFfQxPkzf1evh+gMg0GD2K1B77m01nj3u9+Nb3zjG7j11luxzTbbzGhvgyCEwgIC5hCijPjU/RsGSZJg1113xc0332znlFK4+eabseeee9Y+Zs899/TWA8BNN93krTfO2m9/+1t8//vfx7Oe9ayh9hUQELDw0M9uDWu7AgICAjYEZtNu/f3f/z2+9KUv4ZprrsHSpUuxevVqrF69GpOTk+tp9xs5w7ZsUYT2othj1dqCY6xkaZa2IiwqO74vSSKb8jgWcSsk0oo4WmU6Ds9KYYvuOo9VQ7dk0sbXQJbpdXpyHKoz4cap6/tliihlmnlFt3WgMqciji3VLNoJuGHYWm2w3LQKkGBlJJxz103eCoxw1+9NV1Miy580+iyJoEhXSo9hM+OJzDFsqVSYLFMS0lwhzY0Yie7LsgFFuipNXU0ss0nFYOrY0QhjsS7XMrTK3J+xKEa7XbJqUdtPlYzK+fZim0KqO4uhxteU43GwVvE3Ey3Htg17QTXVfEynDuTUU0/F0Ucfjd122w277747Lr74YoyPj+Ntb3sbAOCoo47Cc5/7XJuTffLJJ2PvvffGJz/5SRxwwAG49tprceedd+Kyyy4DUDhrBx98MO6++258+9vfhpTS1rdtuummtp1CwIYFo/0ZAZ9JA3zhEK+vWo24iJKObSMiR5RJ03nDWEqXnk3YtakyAWi/LxYn0CZDIKLjDIhJhoAw7FkEFtkTOoEkpQDePzVGg/ZZo2ndvlhSMefSuH2GDV5Kd0bssqpE1qug6UYFq0YYtvJYLLhlwWLOPeYtFoZBI3LdnAqTlKybcuejDFtVnKZqYgZhCO3j+9SqTcd2Dds/0uDaa6/FEUccgTe+8Y19xZIC5h7Ve5hhUtmAZrtSB6U0YeGGy3pZH3DM2Po791zCiZEoy7YNUh6ilfJT5Kd8HuXuWeGL1QyC2bRbpjRkn3328eavvPJKHHPMMUOda1Bs1A5bQMBcQ0TcNq70MA0FpsMOOwyPPfYYzjrrLKxevRq77LILbrzxRiss8tBDD4ETY7fXXnvhmmuuwRlnnIEPfehD2G677XD99ddblaM//OEP+OY3vwkA2GWXXbznuuWWW3oMVUBAwMaBRrsFDG27hu0fafDggw/iH/7hH/DKV75yqOcLCAjYODGbdkvrDR8IGEmH7bbbbsOFF16Iu+66C//3f/+Hb3zjGzjooIOGPs/SJMJY2fi6vm4twljJ2IxFzIpbjEVOqp9lk+DdQqyCpaZubRKYLJgYKmChJ9bYujXVmUA+XjZn7rjmzJIwbLQ5M40i0DxeEUf2dx5HiNoF6yHaCaKxkiXKM3Ajo0oj4VEMbbvJx3aOSnVTmACsJrUbVFCkkyt0y32u6+aWYRvPpGXVJlM3nkglUukYtpQ0QKTRXhOJrjY1N2Pa3HxJu/hIL6Z/x1aEJeWapUlk2y90JcOYNGxbgtaigknj0QRQvh8sa4OZlgetcVsXqFptaFODmHSAqBjHQ4bQqJJ5dX46OOmkk3DSSSfVHrv11lt75g455BAccsghteu33nrrOTFKCxWzZbegcoC09vDr1kh9GpHj76lPK2vgdJ4VbBpQiByRmlmQWlozD+VYNa1UPcNWIzbChHDMGhFH0mnHXlOad4oWJACQuHNrKV0Nbgxo88XKctdQmwuXEdAglkQl+as1KLZmpWTfu1LaWrXMY9uUZdIypaGI8IDXrqSGreIkgluIixBhJcK2GWElKrIkuCLzrLbVSR3rJpj2nocRNs5r6o1hGbZmGzWs7aL9IwFg1apV+M53voMrrrgCH/zgB2sfI6XEW97yFpx77rn40Y9+hKeeemq4Jw0YGLNlt6r1R/T3QdgzazMGYFQ4Z9Dl+bXQQDbFAwho82nBHOtO5wFNxswalmLOFo654wCZq6s9G3xvblw/J6hdaXhNbo1vk+rmB4Fh1bjgnp2b8nF8MGNhm2XXfIaGqWubTbs1FxhJh218fBw777wz3v72t+NNb3rTtM+ztB1jUTvuSaWj/dTGIpf6aMaxSsHKm3XeHQcrUx7RKXt6rf2T76SV43zdOmTjRapkPtFBZh22FNL09yJ9RWjhLAUTzH2AOUc0Vtzk8DiGJA6bcfxiqewfmgmnyqbjGDoqnZHEpEzm0FF/g1iIjhCVyHKPXSI60pEK4+V4XSfHuk6xl7WdHJOZcd5ymyo5mUpPeVLX3DwwzmrTI53DFmFJq3ilS9uRdd6WtWMsLdesa0nrvG3SipEm5Y2a5M55i8dsPzeWJtZh41FshUnYZBvKpkpOAOZ9HEx3wUII1qASOQ/yHAJmFbNlt5hMwSRJR9XKc9KcoIivAKlLVVqdp9Cm/1FOnDGiSqvzzDqF2lOrJY4UEUKa6iaKfqnyKCbOG7dOGoviipPWLvcuXdoM585Jk8z1DlOyx1GrgqZBUoVHqZyzQlVurV2TyqY+dnNl0yczqUgvN22DT8U5+9+ICe47WtSposJKERnH3liVY5cqaZy4JCI3Z0SARPBCQdI8v1fMzxiyITLUGu2WeREYrJ/RdPpHAsCHP/xhbL755jj22GPxox/9aPCNBwyNWbNb5c21+dQoOLvBuJvX5HNl73MUmVMK3DhjioOLUhRDaWgTSBccrLwGmWAQ8QBpdyYGppTn3JieZLSvWargCXSk5Nqppj/6giPVsRECGUCwqMZZq5u3KdLkWMKZ5+C5/mzwxp7CJMq07PKF8kTY91EkHKK8jxKxsA6bd28qGDhx5CyxQMasVHosxq5Ehwlu/8bUqWOcg1uSgQ/tsA1it+YzRtJh23///bH//vvP9TYCAmYMLjh4DUWv8xEI9wQMhWC3AhYKmuwW4GzXVltt5c2fffbZOOecc7y5fv0jf/Ob39Se/z//8z9x+eWX45577pne5gOGQrBbAQsFg9it+YyRdNhmC8taERaXKZEmfW4s5laef4ywam3BwE3KY3cdeLfs09Udh1r7FABArSt/EoYtX7cO6dricekalwaZTUwinyzTIDsZso5Jg5RWClVL5aXWeCk1ZXSDJwJivBS8GHMMW7R4rKeXCVBGKAzD1u1AG5ZIkZQqK4/tUq00A+nDRlKLVH3vtYlMWlbt6YkMa7vFeF0nw9pyfjKVSMv0SCUVZJmOJMl+KdPGOLPvAWMMovzbROXfrpUI255haTu2bNszFsXYZFHBmFG2bSJT2KRcs0k7QlqmWmUKGCuFTMbGngEuTN8nAWZ7Q0XgJaumo8S2U+Dl6xwUnETXKXSQxg5oAJN5ITpCUgBpzzQq2W9THCmrlnYK8RAAOstsD0gQto22FFF5ZvseVXsn0Z5KtXsl0VETGeVJZOd5EoGb54xisPI8jKREYmwxdLdDzmnYtsgJqfDIiqH0a0dC5bddeqQmLUic0IjJFsiUtvPdXFqGLZW+aBIdG/RtV2LTHf0xTfuuS4+MBLfp+TFXlnlrCcMSVlImTdRcu4i71LpH7j8fIv25yW4Bznatjx6Sa9euxVvf+lZ84QtfwLOf/ewZny9gw4Fxnw2ht8dauN5qIokgyzEnt6imXxeTRGhtfdzCprCtMgRz/dYEAxkzTw7fsWqMCLK568PMKfTOFWBD9mFzkxz17JufBslqmbSECBgl3K2xjH/CwQmTZtg2Qdg2XmHb6tcIiLi8d6owaWaek/IeUfmOsOMaRm7QtErzuqayW/MZG4XD1u120S1V/IDeVI2AgLkCi+ojPqqpMDZgo0GwWwHzFU12C3C2a5B+RsP2j/zf//1fPPjggzjwwAPd85WOehRFuP/++7HtttsO9VoCZhfBbgXMVwxit+YzNgqHbeXKlTj33HN75pcmAotbwpPsp3VrYzFHosuoTmccvONYNUw8BQCQa5+CWvsnAI5hy9c8je5Txdp0zQTStYV8fz4+iXRNUcOWdXLkk8W5804OWTJNMpWWVVKVkIvJB2acuYhGIhCVtVoyU1CpaxBpwAS3cv88jsCSMrpOmnSbehWmcle8X4mam9+Udo1mM1Vf61EVF1nXKZ7nqYkMEyXDlmcSeVk4kafSMmsyV47NqwTuTflKwbCV0Zgy4tJJBMbLWsSn4hRLS1bt6ckIm0wUbNgzFsXYdEkx7kiFbu7aEBi2TWqBvMyZlxoYiwrBg5gLMFG+jzyykX4exbbxOF/svqgGASesYXU+YONGk91CKdHv5Pt1LauGJlat6657nXZcrVq3A2VYtT7tRQybpiqSytU6NhpNpzUJPI7Ay6iqyGLwuIyst6XXlBsl+w8urO3hXABRWW/LI0CXbJtWA5XvWz0lDWfDpKvDtUybdAJK3Vw50RFV35YkJdkF1RYlNJLuRcIJqxbVMWzVNiaGSYs4urkbx2U7g8ywboJbti1uYts4vKbcGnqgOhqDJrtljg0K2j/SCFmY/pF14kkvetGL8Mtf/tKbO+OMM7B27VpccsklPWmYARseTXaLxwI8jlxjZaHAZK+QCB2rmtpYzjlkydarbAg1kRKM3EeZdiFcMEhTb5Voex/FU4WkbFhf1LDRhtNm3rFpdN6gOtfURHsQTFXHVp2rq8VrYt44Y169GlC8Lz5L5tgzK9/fp7bNsXMRuQeNPbbNfBfwJPK+I2i7qqY6NyY4eD54VtNs2a25wkbhsJ1++uk49dRT7e9r1qzBVltthSUtgSWtCG3BvR5rVlxEdsFKBUjeXQteiouotU+69Menn7ApkenThZPWfWotun8qHpeuHbdOWjqeIh0vDEy2zk+DlJlx2Jr7Sji6mHsXUbK4cExkJmvVJDn3e7WJdpFepFtjRAmuvAmq9HSqQ9HPyBTea1KEr9EhDptJfVzXze14opMjLdMGs65EbtKOuhLS3PBIBVWO69TWitfEbKTEOGwi4ohKgxK3Ivs8a1sR1i4ye0kwYRQrl0h0FxfOWzd3zmamImzSKt9TrSF1cc6xKEG7VYwVc+IHnHNwM550qVuDgJPC3Op8wMaNJrvF8hQsj301SEkcMyooUqY70tTHqpNmegiqLLdpSXmnSxy23NoVlZGxanbWgP5qtmYctRP7ha2VgmiXN1D0RFxY0RFdvvbiwTGgYvseeKncNdBEyVERByVTyqZ1G1tG07s7uUIn71W5TXNlbYlUeiDFW/t+0PR2zj0xJZuiFHGrXjyWCM95M71CM8WtQ2b23o60tWWFQ+ecN5NKqcDAy/QszQvFyHwIlcgmu2WODYNh+ke2223bdsTgGc94BgD0zAfMDZrsViHaFUGbnopS+c5baRNkmrkbdJMaKThkOaey3K2t3MBLXgbYiaMhEwmZlutjYe+1mGAQpeiYjDl4Juy+ZPnYaExBlooisVQ2iC5zRVIfUTs26Oew9ZuronpZDeewVcaRSTFk3n2leS+N41akLA7npFnFyDiCIEQBT+Jyjf9dYNYw7ogFxjlEub7OSTNrGBfg0eBKb7Npt+YCG4XDVqdOFRAwHxAYtoAmBLsVMF8xm5HqYftHBsxvBLsVMF8RGLY5wLp16/A///M/9vcHHngA99xzDzbddFP82Z/92cDnaUccYxFHWzDSb41D5EUkmnfWgJXiIrw7DrXmSQCAfPoJqDVPFOO1T6H7J8OsrbM/TUpkd00X3TVFBDtblyEdLyLbOUmJlKmL8KbKj8TURUjiSSe1Go1FRASACHQIDl6mPvI4gijFSGTm0pu4kkSuu4xSDMCw0X5GSrtortLaSxFKLduW26h0nklkXcOq5Ui7bj73BEiMyIEsekKhlPo28t6AFf0QURnFERxRGemJuhJJq4xCtxyTN5lKG/32UpqWJI4pVC7l8xmISP85ACUb0GottawaZdvYWP+ajSo4SRWrzgcsLMyW3YKShegI6aWmSS81ZUVEMuhuwe7rtOMYNpL6KDsp8knHsOVlP0gvJTLLoVLTn60qOtJsK6h8M42E88SlxGipbIS1KlxibtJZFENnjlWz2QCJhNczsolZM2+bdmPKttGUSGPLcpLe3ckdq7auk1tWLc2VbVGS5tLakpykRFbTIynqREciLyXSsWoTqbTtS5KII02K5xpLhE2VzMo07lw6Zk5qWIatrbl9zbQdgEIhPDBAeyuLJrtljg2LYftHUlx11VVDP1/A4Jgtu8VabbDECQuBfrcTu8IEdzYmNtlDmevDRkRJmODQsSkJycHjMqU7y51wSSIg4pIJJ2ybbke2FEWNubGW2o2V9uatIJxSRBxOu6wDqXtaMdEWIhRNrFpTCjVFL9vmi4UAvqx+wUwZiX1GRDyYx5ox7sbmHFbgjpTi0Hma+lgwY9Nj1aqpj7xOpIS7tlTgvGgLMEQrpdm2WxsaI+mw3Xnnnfibv/kb+7uh348++uhgvANGCoFh23gQ7FbAQsGoR6oDBkewWwELBaNut0bSYdtnn32sKMVM0ObMsmtjph4q74B3ClUj1l1rhUbU009APl2wamrdU8ifKti2zhNPE2atZNX+NG5Ztc6aLrpriqh1Np4iXVdEgNJMYlK6YlY/B9rtsa47fcI1xsooVVJh1Wy0JHYFolHbRctp5FxnqdcEt1jgwhWsUshP33Jl96tJpNovwk+JVHZqGTZl2S46zro58jKKL7uTUKbGxovCkb1xYUU/nPhHAtEqBEKiJEaeFR/vJFNE0EQjp/uSbr9yWa8ct9IazxyL0YOYo5UsLp6XTKtkrHdtH0SCI6pTJxqBaE/AcJgtu8VkBp0xV4eWZU5QJO1YCXydk7q17qQdy04K2TFMf9eyarKT2ho2meWQnbLRtlSQRHTERJwBv+1Gzz45c81PBSNCIzkUYdg0bQLuPb6MhAsXVWVx4mxWnoFF5b50zTVaA7NdqWBZNaVdHa4RGulI5dXjmhYlE6m0rFpRz1bMdysCJFY4SunGvzmjAgLm+4cwbILnhFUT9nnHYuE9l2llIksBFqW017TXtANQWqNV1uNK7oQSCrZtuBq2RrtVbHzg8wTMf8ya3UpaYDRVUkkwcy1nmb2ueRw5YSPLkkVQpTiRktIKFakstyw/T327YmyWyjLosjZW0vsfqW09m5JOaEQRxkxmLotAE/ZMSeWJw/miKb2icTR7oComN13Qmiu/fYph1Sjbxj3ROmqXHfPm6tVck2tWK0Di2fOEsmeDCYrYeSG8ujU6du1bBFjJtIIybGZdvvHYrZF02GYLYzG3zpqXBln2W+Okx5pc+5RTgXzqSXSeeBoA0HlijXXUOn8aL392rJPWXdO1QiPpRIZ15RftpFQoa1mRKl1JhXS9PgyKHhn0uPlwSfBJcyG6C05mEjJzRsrecJHUAyin+EYVIW3xfsP75jtu8G4OjKOTk8L7NHdGT+bKiovkqUuDzNMMskzfkqlz2GSeQpl0LzinjZGLlscmNTKBTMtzJGOQ+ZJij+Q5Ve6cN1VJXaqD4K5vB2MRvCBM+V63ksX2r6Hj4Rw2TtKhKNQIRHsC5gZaZkCOZgVIIi5inDc5OeE5aXY86TtvVGhElsquMnO9IWmfyGIvU4iNeMXr5Q1RliMqU7S1Up54iT0HJykxUWaVIXXmesUxJf00SJoeSeBSmt2+fdERl9btUiNdevdkKp1QUeYUbydS6a2xNob0z6TvVVVAiUZ0jfMmIoauSUsS3J4/iaRNc0yTyAaaqo5icVxgMUlZr5OrVgJw3yEKALevfRA02S0g2K6AerDWYvB2Qu45pAsQRy4Qw5SELvs7cnPdK2kdNi2Vp1orjR1su3klFUTqnDrngOX23J6AkndO7Zw0RdIgpfKcMU3uIwzoY+lc3ZiiX2q5QVPKnu+Ykf5sJIAPOHvjOW9EdKRIlXTOmznunCsOXzjKKUDSeasGWUlrFLETEeE1Th3jwvazZYKmPgrnkBKHjXFeHJODO1qjbrc2aoctIGCukUQccc0NFRuBniABAQEbJ5rsFhBsV0BAwPzEqNutjdphSwRDSzAIIt/Pskkn37/uKZcGueaJxjRIyqwBwCRh2LLxFOOluMi6XNk0yIJhcymRJr5SLTg1H6FUuX4ZY4LBdUXjiEuqjieUVXMS/5RVoxLdXoSrRLXwvwk0IGSlsrVjrNJceeyViUJJKo1LRAtkd9KyY3k6adk2lad+YXIlLRIAmGHVosSybVGeWpZO5Uug1Fh5Dt3YKqAp8uKOAxxlBAjK9jHiMUdSMmvDMmwiMGwBwyJPoTP4TFpGUiI7hT2ikv35eAd5meKYeymRqU19LNg2x6oZUSRFUoe86HOlwJ5Gc83vvGPaiXCoMrVGK/c4QQwJbT/C49zukccRmCp6suk880WISjaNadUo52+g4Pdhs2ndyqVE2vTuhn5rHtuWSnSNrL9UyNOatiRae2mjdGyi2Yyw+HnmJLdz5rIBuoIjLd+/QtTEtRCoZgnQbAGlxQCCBxyAQj6g7Qea7RYQbFdAPVirBTa2yIqOGKYLKNlymupMvvPNcWYF0pTLKFAKUU3LEZlmXlqlGdP7H+++iDxWS2nXa9JrUpEelNUUSMqQ1aWJ16VBNrVvGgSswrbVSdIz3sy2UWl8x6b5kvnFnCAtoSLvuGsHEBFBKTcWSVxh5MhjS8E4cF6kuReb9Jg0FjWkQQonOgIALN947NZG7bAFBMw1WhGrjfjwaP4bj4CAgI0TTXYLCLYrICBgfmLU7dZG7bBFUIigClYtK1ga1h2Hnijq09S6p6AnCgESNb4G6Zoicp2umbB1a+maScusubq11IqOTKYST5sidak9hi0jQiNpTVRGME2ERmBJtaoAiWkJICirRqLfRZRoCO3TWQKN+JrgN2W4ino2J9/vGDHKjmVuTHLbKUQZoVF5Bm4ib1JC1YiVaN22Y1pDQnObaeF/EnFbtB/31LOZWkNt87N1NFz/maacajkC0Z6AuYHOMmhGoswZaZDdGXd1a90u8vFinHe6yMad6Eg2PmnHuWXbcisokk/mHltPZa5pTUcdaE2EKVJXknt1XdFYr72rRm1lKUIkstxG11nSBsoaNijlMgQGZIeMjFKRDVDMZcoXTgJ6RZOc0IhrUdJNpSegZGrYKMMmpbK2r4nZ55yh7AoCRpraCsEhy/qMKOaWbUsrdWuyXUqfDyEaAlSlwTmyYeSx+0Sqg+0KqAMfWwredt+/Wkl73WrCsDHl7leYvb6lrV0t2gGUF1We2rWCMG8RYc+Ux54pKOnYOyNqUsj097Jq5ljdvKpl23ovoqaspdlk2Ox8pV8hbYNk7TJZU8eq0bWMyOBXRUG4ED3n6Mukmb1EyZRMWlHDRtZQKX/CtoELcEV+nwKjbrc2aoctIGCukQiBJKoxOGJwIxQQEBCwIdFot4BguwICAuYlRt1ubdQOG8864FkMlk6CpRPFZHccaryU8h9fa8fZ2gmka4s16doJpGuKMVWBtA2yx1PXaJXUra3LFTqkbs2walLr2iaKBZNG9lsGHFJVMGvFY5n3WMeq0Uh4pZHjemTb6qK8mkhba1Wt6XAsmGHEVObq1lSeQma9Ev/++Z1ypJii3g1wimyMO1WkruB4uhy3Im6b0RYMWxnlFhxxOR9zblVg6d9JxS6COAiacqqnqqcL2Hih8wyaSyffT5tiZ1lt3Vo23vHYNlMflo13kZWS9flkjrxjVCIdqyYz5Utem9qQil2p1lGIWNhziExAlTVeusKumdoKlTk123wytephKsshaHRduqi7e1O0U7clTbQ1c+qQWte3JlHasf6mls2rW8ukVbylqox5JpFnRPE2c/VsMnf2Tk5R30Jr2BhnrsZXKIiSYVM5R0RrAGvOMxXDxhlDl9VH9TmDzdQYBP1qQYLtCqgDG1sMtnixY9IAV7cmHdtGG2pTBo6ROW3r2QjbVqmDm+rctIZNV+rTPCaNMHIGPqtWUYWsuY4GUYGcCeoUJHvZtl4Gja7jNWyc17S6wsZR2X2QmjfLkkVxo9Kjq1vjRPWRnKemQbZ9Lveii7VD3M6Out3aqB025B0gi8HyDlhe3NioyXGoybJovzOOfF0hLpKuGUdWOmn5+KST6h/P7Njc+GRdiUnTw4ekQVInrZ/D5u57GIy4vtSAQk3q3DT6o/D1GEmY7oe+6ojZm8JKH7amnmz0p5svWxx0J8HJmjwybQA4sq5JP8ohyhzmtR2BpJQTbkXcpke2I46JctwSHElkUiU1InPDN2SPlUQ459DDCPQECZgbaJlBZ9ymCOk8s86bSjueTD9Ng6TOmxEXScdTKy6SdXI7pk6azCRk6m5mmgJBrp9P8VOmysr60wASBRcMuXlcnIPHxb5UHHm9IzW5EWOePZjejZBUznZS0REzl+YK3ZqekmnuekfKXLu2JMR5k7R1SO4k/rWud7QYZzaIxDmzaZBCcM95sw6mEl56ZdVRq9pgmuptwBlzKd1Kg0v3HgyCRrtVPNHA5wnYiJAsAqN9SolIENMuvVkrcqdDUyJNoIYID4EGZmmKpZT+Y+ucOppSTZ7LS2usrrFbp70o+9ugmaQ+DoumVEmgkvLIa+4BicPkzifqnSTiaDXK7g+S1hjFvjNW6bFm5xnZFxlrxoF047FbG7fDFhAwx4iJQ0ihR0BiNiAgYONEk90Cgu0KCAiYnxh1u7VRO2ws74LlCVjWhe4W7JnqjDtZ7MlxT/7aRai7NhKdT+beGCgERerk+zPtM2ySiI5QuN+11zy7Dk3HmWC1He/nAjSCzBoYuNqITwVTpUQCsAIl9JyMC+Sl9D/jwkr/5xGHKKMqecyRZ8X6iU6ORWX60UQa2fTWicw1r20JjnZk0iMZIm6i38MxbBFniILoSMAwULLoBm0+63lqi+0pk9Yr32/WZEjHTePsvDYlshAgIaIjRkSjIX0bAIQRRcpLtogpaJPSJ3XZEAOQglmblJGxynKvIa5JI1JS2nlOW5HQ6PcUkv72raMNpcmYMmtAr1w+ZdskSYk0TFqRBknma5poN9kvwLdVNg3SEx1pso+5HdUxaTQFiI4zxSDKrUjOoLj2GotPhSa7Zc4XEFCFTsagEr/tDXOKPGShttczc2plbgzUs2ReujRl7CriJvQcXppjL9vWMzZrh2H2G6759YIB7qOA3nTJnsfWyegDHmPmzjVgKmMdO1dM2J/aG/fWA2lW2Tfj0Mng7++o263571IGBCxgJGXEp+5fQEBAwHxEP7sVbFdAQMB8xGzardtuuw0HHnggttxySzDGcP3116+fTRNs3AybzMBkCiZTKFPA33UF/LLbtdFqSSPUmXTF+Zm0TWVNVLVgz4rnkBoek0Zrzhoj1cz8ZJZBo020/Xm3npHmiIxErov5XgnWas4wUEQ/Bomz0nRfUzDPWX00V1DZaiL0UchZu8gyrTOzhbBcQNfUqDUxbWZNtd5NSzdWZcGyzMe8CLmpR5Et4ZrjZtIybJOZxKIy0t2VCp3y792OOfKaprWDQLAG0ZEpmNWAjRc6y6DBXZF8lnn1XkaqWqVOxEN2ula+n9aqZZ0cWVmDS9k2lbq6tUwpUm/bXDfrbJK2vyfdYhwDyMha2zRaMMjympKpBI+NXc0hiOR2bVNbyrYVE33fN+XZXsKgaceMU1YttTL60jFvuavh81i1lNa2ubHKnYBSsfcpGDYhoFWRAaCjCNyycxq6lK+uMmGcl/apxvamEffq78w45hxxaZMzpSHUcDVsTXbLHAsIqELHbeh4kT9XrWOzB5R/vKfezcz7bByjj7fsXUO9WQOL1iPNP8062ZFDDevms2sNDBx9HK03q9aaMcOSsXrGjKzpeSxd422QQcc5BsVs2q3x8XHsvPPOePvb3443velNQz12uti4HbY8BctT6KzrVNbSjutj5PUoSt3NTyptuo5MpS2+b3LMmi5342hVBUfqnLHmeWZVDEXCIcpUPl5R9BGl4hr3HDanAEQv1h7auQKPqa7u0etlJuzY9DzjjFlxDx5xiKjYlyRFqUwIz5Gzzmal30b15qcprZIa6V4Rk/L5c9eLSVKFuDTHRBqVY4lOUsx3coWuvaHTSITrMTUMmnKq1TSj1J/5zGdw4YUXYvXq1dh5551x6aWXYvfdd29cf9111+HMM8/Egw8+iO222w4XXHABXve619njX//617Fq1SrcddddePLJJ/Hzn/8cu+yyy7T2FjBLUMpLidR5ah02mWXESUshSXpkTlIfvTTIOtGRXFnhJNonsm9KJHHUgLJ3pEFXeimRvEw/Fom2zpjMFCJV45gRBbcmEQCm1UCBpjpfU5HXRB22urGf4qjrnbeM9JTMXE/JQVMizQ2jygVEmUJWddIYkUYztpURx83ZYaJ4S+xaEilkqhRN0sx7jYOgXy3IdG1XwMKGjhdBtxaTCd9Bs58+NZUTp3sdOPjOX/XcrC6YU3XEymtsvYYb1kcwYxrCc0Ohbs/0fhHwUhnd4/xxrePFWLNzxpvPRaHjwVMiZ9Nu7b///th///2HesxMESxrQMAcwkTD6/4Ni6985Ss49dRTcfbZZ+Puu+/GzjvvjBUrVuDRRx+tXX/77bfjiCOOwLHHHouf//znOOigg3DQQQfh3nvvtWvGx8fxile8AhdccMG0X2NAQMDCQj+7NQry2AEBARsfRt1uzYhhy7IMq1evxsTEBDbbbDNsuumms7WvDYIiJTKDJkX7XgF/mtn0Ii2lk7lOlespJEmEuCHQQb1iR7tqmFhOVRPE/J5whqT8EMXMjccEt+OEMyudLWIBUaYXiZhDxIZ5c93neRyRvhq0ELS3z0WVafOZNZKqSSSpzYe+FXE7TiKOSfP8ROhDCG77h/A4Ac+LVKAoGfNSGClMOqO3Z7rHmvTJ2gLb8txetNwKBWjkRHzApUYp26solwqZdCljeSkOMGybhSRiDQzb8MbjoosuwvHHH4+3ve1tAIBVq1bhO9/5Dq644gp88IMf7Fl/ySWXYL/99sNpp50GADjvvPNw00034dOf/jRWrVoFAHjrW98KAHjwwQeH3s98xajbLSgJnWvorJTAzyppkDZ1283nk5kTRyJMWt7x2ba0TOXrbUFSPHVTSrefAVB/DfDyJEwoiDIqKmMOWWYFRKT/UbVHEn3ttWPv/fEj500ZDjRFUlWuW8o45ZRhI3ZCEgESlRORlDy1dkrlPsOmVK9do7aKc2GP8bL9SLHejYvH+BL9AOkvySTS0qakucRkVgolVdIjTWZGxjVirnveg35oslvA9GxXwGAYZdtVpESOVSZrrk7yOZwqZdJj5jxREv+8tQzbgEJFjZgiE2mqTKW6FMSB0SdNs/a1Usz0dQO9LFfda+3HkA2S8ljH7NU8j46z3nUNGMRurVmzxptvtVpotVoDP8f6xNCfmLVr1+Jzn/sc9t57byxbtgxbb701XvziF2OzzTbD85//fBx//PH42c9+tj72GhCw4DBVtGfNmjXev27ZFLmKNE1x1113Yd9997VznHPsu+++uOOOO2ofc8cdd3jrAWDFihWN60cZwW4FBMweRj1SPUoItisgYHYwiN3aaqutsMkmm9h/K1eunONdOwzFsF100UU4//zzse222+LAAw/Ehz70IWy55ZYYGxvDk08+iXvvvRc/+tGP8NrXvhZ77LEHLr30Umy33Xbra+8zh5KAyosi/sw1obXS0srVTgwi41pfb6ZrazqKOrf6c7j1DDEZjwl3HjNuC45orKxPSwR4+STRWOTq2eIIvKxhY4KDJ+Wf3ZNgLX9Woh914MwFPzyhEeaiF0UNm4vsisjIU3PkZcRXRBxRuUclW15tmWi5SBxlzVQ5VlTCl8DUu3EubISa1sFxLmpZuCbklVoWE6HOSJF+JptbNEyFuKGRoyznttpqK2/+7LPPxjnnnNOz/vHHH4eUEltssYU3v8UWW+A3v/lN7XOvXr26dv3q1auHeQnzHgvNbmmlAEZkq6WCLO2XzHLLSClaz5YpSJshICHLJs95J3eZA7kTF5mU1RYkxXM31bBV623rjht2WkhlhZoiFVlmSktt96gb2LbihfUKBLBiYb+3zatx89i1mibU1eveMGlaucdqrV2DbKUhc/O9QWrY8hSypoataruMfdJcWBZOVGrepLFbjNl6taLRdrEHLs37y6yd6uYKY+Xr6OYKCckcsI24y7/pMLaryW4BznYNg2Fqb7/whS/gX/7lX2zq9q677oqPfvSjfWt1RxULyXZlLELGKrecNVk73mEyxeoY4CYGrnJsVqq8BmGVGu6d9BS1a4OQ2/1OUfveALU2sd/7NCuoY8H61aCRF9ZUY9wPPZ+pPhjEbj388MNYtmyZnZ8v7BowpMP2s5/9DLfddht22GGH2uO777473v72t2PVqlW48sor8aMf/WjeGg8AgJZlelFa6eVRk4pTga/GWDogJE0w4eYGnrkvQuVYYgVWmz5H1SBpSiR12JZEHGPCOWZRu/gzxu0IcTkWiUDULhwWnsTWSRNx7FIivS7zNUWjfcBNOid3hjYmUYokIsXuEcdY6ZjlmbQ9hVSuoBQdV9IlSljREaoeqVRtAb9zxrgd8yixzhuPkooypesP19QjzsATIiAqc5lS3s3PMOAkpbQ6D8xv4zEqWHB2S0mAKRLgcA4NVYYsFCNLAQvipMnUT+82apC0Z2Q1JXI2HDZjH5UkYh2ptPaLCvZoqaCU62XmnDeaEjmzGw36OmzAxRMaUd4cUDhp2qzJ3biYL99rIjQiaUqk9AWPKIygEg0uece9tMlFUGWvOymU7bcpykZ4UnCb0l0oQ5ZprhH3X592tkzp4VIim+yWOTYMTO3tqlWrsMcee+Diiy/GihUrcP/992PzzTfvWX/rrbfiiCOOwF577YV2u40LLrgAr33ta/GrX/0Kz33uc4d67vmOhWS7UqnR7RsV6D1W90nyv6bdL6yPMzgMqgI/9vLX9Y4f1eqhKZx11mmQS4yebxCyunq5ce8YTZ02I1IuQn6vey425LXcBE1fFHkXi2ldc2RwpENEmgaxW8uWLfPuueYThnLYvvzlLw+0rtVq4R3veMe0NhQQsDEh5gxxzR1uzoczHs9+9rMhhMAjjzzizT/yyCNYvnx57WOWL18+1PpRRbBbAQGziya7BTjbNSiGrb29+uqrvd//+Z//GV/72tdw880346ijjhrquec7gu0KCJg9zKbdWrduHf7nf/7H/v7AAw/gnnvuwaabboo/+7M/m9E+m7BRy/rrPIPOM08qui7Nrgpe6XFmRT/SklFSGlKXEdBKYb6bd2vMseInqxUdoQzbmOBIFhUi2cni2Eaoo7HIpkdG7QiiZNiidkLYtgjMFLNHCRDF5esoU3JoSmSlKNb8xuCnRMblHiPBbSF7EnEsKlm1ySwiMvmCFOoLIvrhPoop/HRIG62Opo5W17UD4FECQRg2HhdjEXHwyPR7cwzbIFEl5aUUFWmRANCgt9AI2lOvOj8MkiTBrrvuiptvvhkHHXRQuUeFm2++GSeddFLtY/bcc0/cfPPNOOWUU+zcTTfdhD333HOo5w7Y8KCy9yrNvfRBlZZiJCT1UKbSpURm/rxJVewVGqln2Ooix1L7YklmrrYfZa4gygOFaJMZKxuJVX2yG2rT0wdM66kT/58qQCuVtlF3pQirpijbpuC3C+ntAen1ZKuKIpQpjoyLnvYlZt7uJ0pcL0upIIzgEUmNtP0lSRo3zRBIc+UJqQyLJrtljgGDFe+b2tvTTz/dzk1Ve1vFxMQEsiwbKQGOjRGdXCPKBrtOB2V2/HvsqT/HTR/1HlbNO0Yfr3ueyWfY6Dl07fxUexkEVd/CE4TzWMf6xzA717C25jmb/ibDlqwO8rqrf48mMMbQyQd/IwexW4PizjvvxN/8zd/Y30899VQAwNFHH42rrrpqqHMNihk5bDfffDNuvvlmPProozZ9xeCKK66Y0cYCAjYGRNw5vBTZNAr3Tz31VBx99NHYbbfdsPvuu+Piiy/G+Pi4jVwfddRReO5zn2uLaE8++WTsvffe+OQnP4kDDjgA1157Le68805cdtll9pxPPvkkHnroIfzxj38EANx///0ACnZuVJm4YLcCAmaGJrsFONs1SP3tdGpvq/jABz6ALbfcskdAaSEi2K6AgOljELs1KPbZZ5+BHcvZwrQdtnPPPRcf/vCHsdtuu+E5z3nOrOW6zhWmEhVhnHt1a0aOXsQcykjpl02V217IVnmR59SGF1gP+1b8bGbY2qRuLVlcMGPx4hjJkoIxShbHSBYn5XwbUbuIZop2YkVHRDsBa7XdazKRW8O6DSQ6wsBLKinmnIiOAO2SsRpLBCbLiP5YLJCWNXRL2opEqJufI+eLyu0IK5HNh5TIFkR0xNSwidYYoqR8X4RrMcCFy20u3oKSNexzEddF5oeNmnHSVLw6PywOO+wwPPbYYzjrrLOwevVq7LLLLrjxxhvtzdBDDz0ETljTvfbaC9dccw3OOOMMfOhDH8J2222H66+/HjvuuKNd881vftM6fABw+OGHA2gWP5nvWBB2S0uAuRpb1dBkWmW5ZdWUcoIeKpW2bo0KjRQNsounqDJs5lJtbFvBmA0jp+S6NrasYNhcdgGtD1ZEuKNax2Z+qqbMh2nWsTUReHXNsgF4rBplpFyGgGPSqG3qbZxdU4tHfmdcWbaNQhGxJJWnVoBECAVZ1q6ZWrYodiIpaa6Qk9eUN7w+VXldU6HJbpljwIapv/3Yxz6Ga6+9Frfeeiva7fasn38+YdRtV1cpRAPXG83ejXCTyWpiwJSuZ8qqTJung0TqQatzAGrXVtFkW5uYH8qOUR0Nb960XKqsrWPW6pg5j5VrYPEoNvRHkjON7hDfAYPYrfmMaTtsq1atwlVXXWX7NI0kVCk6Ui0AF9z+pD3LrNOT5KRQnqbxuAuuXfY5EgzeDdFUaoKCuZQiwZyTJhLupTua50+WJJ7zJtrFWLRbfkrkWPFlyaMYrEyDRJTYsXmdmjG/a305LtIgTcqgthem4LARi1hwxLy4eBLhhEbSXJFeZsKm6DTdIDDOXKqi4FClg5WnXa+wv050xJ2DqEEK4rBFkRU9iWKByKhqJsIqVoqIe2qX1iFtkKymBfzDpkTGDRGfpijQVDjppJMaUyBvvfXWnrlDDjkEhxxySOP5jjnmGBxzzDHT2st8xIKwWwCgfBVFRZwb5+i4dEOZSs9Oud6R9WmQNJ1RASTQ5N9YmBsCqbW1W9D0HDQ90gWr7MtoMIRNATQ6P0j6ej/4N1TNF27TMV2Zb0yJJGmQxnkDYJ06oFCvNeuNraJOoMxTXyypXKOU8IRPgCI1MlLmfLrRCZWq/3dRPzTZLXMMGKz+djq1twaf+MQn8LGPfQzf//738Zd/+ZdD7H40Meq2q5trRH3S1+rSlYfFVCqDTY6TEd6prisUVKsiGb7KKr1+lNY99sKosNY9r7euwc40OhieY1Yzx1njGnMfQ09Ne+rWOYDUcRzEWQRmx4Frcg7N+btDpEQOYrfmM6bduS9NU+y1116zuZeAgI0ORrWo7l/A7CPYrYCAmaOf3RrGdtHaWwNTe9uvlvbjH/84zjvvPNx4443YbbfdZvRaRgXBdgUEzAyzZbfmCtNm2I477jhcc801OPPMM2dzP3MCKhfPhHAMG+dEDj+CSBzDpWihfCVEyQWzQiRRqpDY3kLaFvhXQalrk3opEuEETWLhM2xjRMrfMmwtxIvb5biNaMwwbI5tY622TX8sxrHZdPlzOFl/zpzqTktwdITrvUYZtq4pfG/HjRFrk4YoIglRdp0XgtsC+igWdqzVIi8dqQ4iiux5bepj5NIgo4T7bFvM7dgwbEkkbHsCyrBx7lJXZ9IoNhYccU1fkLq5gJljIdgtrVSRFknnbFohkfiXitgpIqWfuZRIX1DEsWCp0shImo/0otHeM/fOky8+l1HAvOex+1IkRVr6qZLzCc7WEAES7cZNrFrxu0uDpKwaZQjpq2YmiyAnc0J457d93qLI2UfCqlGRFMewKY9ts89dMgDDpHM32S1zbBgMW3t7wQUX4KyzzsI111yDrbfe2vaNXLJkCZYsWTLUc48SRt12TWYKIle1DFNjqjXBVG0n+rFnbp6un5olo+yY0i5tuLheatIglb++eryO4Z4O6D2HN6YsGfPZOXqPadk2XllvGbaaVMqa48Uasq8BWLgqBnGU6tJCzeMmBxSyAWbXbs0Fpu2wdTodXHbZZTYdIY5j7/hFF100480FBCx0NBXB9qudC5g+gt0KCJg5+hXvD2u7hq29/dznPoc0TXHwwQd75xnVutpBEWxXQMDMMJt2ay4wbYftF7/4BXbZZRcAwL333usdG5liWC4Is+TENwzbJpIYoqxbU+0EomxIW8eqAa6ZtogFsk5ZwxZLqLLeTCuFmES8q48rtsEgYmHnhamr6suwFTVe0eIxn2Fb1C7n2+BJKTSStMHMOIrBSol78HKPVHSkIj5iPs8cLoguGLNS/rFQVnQklxxZVOxdtnvzugGfsZrgzLFqhAUTQjqJatKoVpLaQSAu31/ynhKZfs4YYe+4ZdJ45Bi2pCXseCwRtiXBWCLQsmybE1iJOa8t7h2WH2iqi5sJaxfQjAVht0p4QiOeQIdhdHSlns2NaWRZekwayLi3nq03Eu6is2aNLzRCHzfc+2tFPOaAdZM1tSiDQlUESAx0hV2rO8a4gOZ0ntv1hp3jtFUAaS1AWUA71pUaNtIgfKYR/iYbNR3bNUzt7YMPPjj0+RcCRt12TWYKSB1tXLUldR/Hps9oPUtXf7wfk9bEmDXN19WD9htXXwMd50OybfS6ipoYtoaa+77jBuYNaGbsBmPeeuvn6o41vUa3trKmwuINw7DNtt3a0Ji2w3bLLbfM5j7mFpxbh41xbvuUiXYOUfY0KlJ3ej8YhWKkS2EEigJ/npgvWqfOpisqaPbpyaeZcadAyRNe67CJmCMaK5yUqJ0gWjxmx8Zhixa1EZfzotVyypBJG6yMzDEiOqJLh60QGun/wWVEJVJw2JTImDvRkVbEkdm0AgHZrjdI1HBMln3sUiGtU5Vnrm+blAqKCJZUJVWrqpPW72QMIjJprsw6ZkJwJzoSC5vCubQdYUkp3jJG5scSYZ1TwWjaQN+3qy9i1iA6MgJfwKOIBWW3CJzzRvqzSXfjoUiQSUvV4KS5mygF1DpvgH/T41IimR2b406uyJ3H/KwLeI0inHpkr3hVdb7qyNWp29K0SQ5AK9GzvjpWJBWyeB6/V1yT6MhM0GS3zLGA2ceo267xLIfO5JQCHNV03Z7jDY+noh3U0Sp+JynCJGWxLoDR1K+wuoYqrhpRtVpRH6UhVfNxg7zh2qxjfnqdtN6yDbouES7YHPVx3qjYWt3xJueuLhWSOml8Go5cvfPW+9iJLO9Z14RRt1sz6sP21FNP4fLLL8evf/1rAMAOO+yAt7/97dhkk01mZXMBAQsdTcWuo1AAO6oIdisgYGboV6QfbNf6Q7BdAQHTx6jbrWk7bHfeeSdWrFiBsbEx7L777gCKHOrzzz8f3/ve9/CSl7xk1ja53lCmRLIosayTjlyfMp6nVg6fSmdTMMHBRFEAblIZZSYtGyZTIgJA+/o0pURylwZZTYnk5ThqJxBlj7Vi7OT7LavWThAtKsZsbDFYe3Exbo25lMg4BkSZB28bb0SNKZFml5w5Wpox7dIEBbPpgzQdqgoa6TGCHkkkMFmmS0yk0vZwy2NFUiKVZdH8lMjyPa2kRNKxpfKFY9uE4IhI3ziTBrmkHWOs/FsuShzDlkTcpnxGgrt2BiQ9Ug95zcfCMZTV+YDZx4KwW0pBa+mlQVLQecuqEXZfySqrZsbNKZEG1Wva/a4b+wVN+XJqDMV8Eh+pRsL79Y+cCpQZq5tnXLh0RzgBkn4MmxM+cWmQlG2rY9U8tqCUNJ9K1IGiyW6ZYwGzj1G3XZ1cAX0YtipDRtEoItLAqlWFPqZKX6wyaTmdr2Hh0lw2sm11KZFmTO9RvPvBAa49mvbKK/c3U6U+Vlm1pCxX8dYzx7BFNeegJSH9UiwNqumUdXtvFCkZkJ3jjBWfqwEx6nZr2g7be9/7XrzhDW/AF77wBUSlGl+e5zjuuONwyimn4Lbbbpu1TQYELFQUqQWBYdtQCHYrIGDmaLJb5ljA7CPYroCAmWHU7daMGDZqOAAgiiK8//3vH5m+KEwUTaQ1qVtjSbtoqI2iuLvuDeKkobaMI8t2yU4XQFkjUubVqlR6zFyVFbJ7sQwQt4wbjyNSzxaBx65uzTTxjsYow+bk+0WrBTZWsmrtxY5Vo6IjSdvWrmnhREd0hVnr2SvzRUdMwKIdcRvhUro+/xxAbc50krpm1WOJsmxbN1e20bZU2o6rhfX1++yNSEWVptiLLHtGatViyrZFWFKKxiyKnQBJO3LysLSOb3iGjTUwbPPfeIwiFoLdqgNtot24hhyTNRFrv7k1vONNoiP0y4+ydgAQM7p+6s9zXQbDfMOgLFSdoEi10XdTOxIDJlzIV3tCIxKCzA+6t3w2a9ga7JY5FjD7GHXbNZlJqExNyZY1iofUyONXa8KGEQXJyf0EFRQp2DZ3z9El9x91jJxWmrQbIvclpTnTRMTErKE/614rRZ0jQUXVAHd/wxiziVGcrBGCu3GlVs3cj7U8Bq1XaK3KwA0rbmLQU2c3BcvWj5ETrPhcDYpRt1vTdtiWLVuGhx56CC960Yu8+YcffhhLly6d8cY2CBgDGC+UEvNCXITFMaAKhwZKgpVfkhFAnLTYOkxqLEE+WfbEKZ0l6rBREYB+aT6095v5omaCW5VKJrhzxuKI9IeL3Xw7cc4YTX1M2uDGeUvaYK0iVRIiJiqZRHSkfJ3UeeNEaITDdVwvxDfKsWZolXtveqmcFH0mxHlKIo5FOenb1ir2M5nJgdIQ+kFw5lH8NB3AOonEGRtLfKGRdvkC24KjVY5jzryUSGNHhg3ShBq2DYsFYbcqqDppTlxEWyeIph3SdOwmZ6ya0jxIn6Qq6K4WiMbIQKjrwTbMY60AiZREMTLu0+etN2XT3PxpVR8kbBI4GBSjXgsyihh12zWZScjMDzBM1aNskLlBREFo+m+dY5bmyhcRIU5aToTOlKRjl3bsifwQ580eJ6/TOHJ1Tlw/VB00Glc3wekmJ61aFtIhBAENZtP0R8C/dyqct3pHjjpmdemUAztvDWvsuGJ3hnXYRt1uTbtT3GGHHYZjjz0WX/nKV/Dwww/j4YcfxrXXXovjjjsORxxxxGzuMSBgwUKUFH3dv4DZR7BbAQEzRz+7FWzX+kGwXQEBM8Oo261pM2yf+MQnwBjDUUcdhTwv2KQ4jvHOd74TH/vYx2Ztg+sTmkfQPPLTIOFHhrmJdsYJWNQp5pKOZbVkJ7VjKy6S5a4XEu2R1Cfaati7QsSkZLVI6iVPIogyJbJIjyz+dDyOiIhI4qc+xi7N0zFvbbC4FFIRiU2FdDy66BEb6dkrY5ZVk9pR1zGH/UQpXe3hZtgoR0nHubLs1VgibFQrJWmQdJxXo2m6N+JWBypH25QCkES8Ii5SjNsRt8xbSzjREZoe2Yq4J3c7DGh6aXU+YPaxEOxWP/Rj8ZX0GTT6066peVyT0IiopDzONKPEpH8DLuNgPqCpt9B0UCc6Qlk1esyfq7CoNWmWU0XpZysdEmi2W+ZYwOxj1G1XRykokiUDTM2a1c1V1w7DpNE1XZLW6ImO5MoyYjJXHpNm2wppXdtiiPaKtQyb9uemEhtpEk8D6ss8mnrOMu562zJGGLbIiaTxiNcKsk2a+6XKPVJ9+iQbmnkzmCnzJjhDZ4gshlG3W9N22JIkwSWXXIKVK1fif//3fwEA2267LRYtWjRrmwsIWOgQ3KWUVucDZh/BbgUEzBxNdsscC5h9BNsVEDAzjLrdmpbDlmUZ9ttvP6xatQrbbbcddtppp9ne14ZBKesP7VgqwOWJKnO8XGuaTLNWG7xbsG2inbpGtaVQhlbKjgFA2Wap9ZEAw6IVTyNcPVuFYbMsHGlDANL8mkWxq0+LYnDzmsg8i1uuSbYQtnbNio8w3izrb1kkTURHAFWONWN23I5dFEdw2HqvTs6sWEfMJTJVslRSI4uL9yeTGhmJiKU1Rb9NUbg6VKM1ND+bjk1T7HbkJPsjwqpRhq1FJP4FYRyHZRk4GHiNIEPdXMDMsGDs1oBQUnvNsu18Qz1atWatXoDEH2+IOu25YNs2RHpMnTBJlWnzm2jX12qoit3zamqmUXs4CJrsljkWMLtYCLark0pI0cyw9WPe8sqxOibNvz9QtUxaz/2EYcmksteRko4FU7nyatJciyF3jdEWQ401bE31p3Lw+ivAFyIytoJxYcf9atiE1UlwzJsnRiI4eHlPQ1k3M04FdwzcgMIltTVsrJ5VqwqZGEzFwnXSIWrYRtxuTcthi+MYv/jFL2Z7LxscOkqgjTpkOccA66RxLqBLZ0jHMXRWCpPkKXTihEl0KVgiaJqKcc56CsTdjRN11NwcdRKdAAl1GL0xcd4Ycd4QxS4lMoqBqEyD5FHhqKFMiTTOG3lO57D5H2BzrTAQ0RHOSBqVNu8guAa4MQocyHhhvGLBkJV3fe2IIyuNW6a0NzYGMyOpj0o5gYRqwbIBNfpNSkTGGeMkVTImRblF2qYTFzGpjzF3TlosnIMXCXfObMgbPd4Q8an5aATMEAvFbhlQJ8xzyBrSInWD8kedYuR8AL05mQtQ+zHXKL5DYjKuW1P/t1M1N8LV8bBoslvmWMDsYiHYrjTX0BXnqS7NsVr6YFDXD60Y9093rKpLew5Y3ut0Sam8dEeTEimrzps5pyZjJaHyQoROy14nrVcwqPdaVmSOc98G0oBOncPGuLB2k0eJnRcRR07SHPPMOWnGCZNCgWcuVdIcdw6dE13JOUOeOwfQOG9prqZMm+wRIyn3lcJPfYwqzlntYzlDmg9ux0bdbk17i0ceeSQuv/zy2dxLQMBGB9bnX8DsI9itgICZo5/dCrZr/SDYroCAmWHU7da0a9jyPMcVV1yB73//+9h1112xePFi7/hFF100482td/AI4BE0fRcYBxMuxVCnReqjTtpW+l/nGXQZRYFSjtZW7qcmDJtFU98dGkXxIijcT8k0EecodhGVyEnzszgGDGPIeSHbj5JVM+IpIvLTIM0aIz7Coyn7sHFGos9KO+qtOFPx/JqBlW0AGOMQhmFTDLJ8GZlSyCQvT6ORkYiYGSuS8qCIBLn5naKaGmT3WxENsP09CDVP52PhUiJj4WRg2z0FteV6KmpSu4Nm0PSA6nzA7GNB2K1ZwLBM2vqU5efTzKucKQM3XQGRKczjjFAVIBlk/VygyW6ZYwGzj1G3XVmuehi2JsEQg6nSHZvO0U9ExMjqN7FqxTzsesOq9aRH5qYERkJlqRvnbmznahg2XzBo6uvYY9eEz6rxuvRIwrCpmIxlZFkzJTikdGyaYduYec0kTbJgJx0zJ3mxRkTcMoxUpEQqXWHMlB03pk2aRrYStUJxdf3fsnxw0ZFRt1vTdtjuvfdevOQlLwEA/Pd//7d3jI3ACw8ImA+gPe2q8wGzj2C3AgJmjia7hT7zATNDsF0BATPDqNutaTtst9xyy2zuY06gRQQt4iJkasKmKoelgHgEVtZ+MZXbWjWmpGXLqvVqQBktIbVqw0ZPaDItIwwbrPS/q3OjDBsY98VDTK0a4z6rRiT8e2T9q6Ij5ZgxoCTMwBgD09qORcmqgTNX2wbXPFsyQJeRE8k1DBGWaAYTTFNa29o2qbVlzyRpAksjb5RMG6QWw5fmLudIE0XBXcSdzsfCsWeMkSbhhJGjedjRkGxBVRClbr8Bs4eFYLdmimqD7GHWB6x/1AmQNK3xx9P+Oh8aTXbLHAuYfYy67UpLFmsqGf568ZFmVq1OlKypVo3Wm3kMG5Hvb6pVU1JZVk3lqWXIVJ7aa1DlqWXTaC1bcw3b1PeJrJp1VZn3atiEAC+zrHie2rHyxm6NjiJw855F7j0zAiU6gnfcMHNaacvGaaWsiInWGrp8bJVhq2vGLbiuZdvMOgAQmkEoc//Yy7alfVrZVDHqdmvDWfh5CNuHjXGXBsgjgJcKj1pBl9w4kzkQte08M/Naudb1Bg0X5CDwhEjoFzZxnqiSowZ8x6zG2SocNuLUmTUi8tfDOHT9P7icwXk9SkMbh0a7h2rtKGapNXHMTNIkoIjDJrVGOyJrzHq4xxbHqDHvu81a0IJTmhLFmFMJYowIrDCQHmsuz1lQ55Qzopo5pMPG6pX2NoT6XsDCh1OJDE7XxgJNVCLXF5rsljkWEFBFN1eFMzSAk0aFRMzPWkePjPPcKT36QiDw0hrNPQRNcZR5fY81KZVz2PK0NvWx6qRRR86sNfeB1GGj4iKDqEXSFHBeFRoxwXwu3PMLAW5UZrmwz8ujhAiiJM5509o6anZfSruUyMpxY2OK4+b53d+RKQZtbqQibh1rwRlkjbhI1Xkz8By/GuetO1RK5Ozarc985jO48MILsXr1auy888649NJLsfvuuw9/ogExbRZw5cqVuOKKK3rmr7jiClxwwQUz2lRAwMYCxljjv4DZR7BbAQEzRz+7FWzX+kGwXQEBM8Ns2q2vfOUrOPXUU3H22Wfj7rvvxs4774wVK1bg0UcfXU+7nwHD9vnPfx7XXHNNz/wOO+yAww8/HB/4wAdmtLENApEAUVKwaIYlUwrQpTS+Vpbq0ZFj1QBY5s1j18iYVVm3AaGBetEPyp6Z381jPFaN1R/nvcybx7ZRKX/KzBEYRkpp7XRGOLMFvcxb43oACTDCkjGbzqi1ti0BTMqkOb97PxjqgsUzydKi1yVlwd1LqjJvZsw85q1uflhWnTdEfEaAnR9JLAi71Qd6OrRziWqq5Hwk5epaocwG5mM6jFbSRd6jmQuMzETGv4omu2WOBcw+Rt12SaXBSJuefvL89DFAr9Q/TYOk/c6M7DyV41eqH3vm2LZ65k05Ji1LPVbNXI+ygXlrYtWo3L/BQGUzivRopPL9Htum6pm0ssWTeS7DqvmomYs4YBksDpAmTiiZNxCGi2tm1xRib8WaPFceq2bSI5sglaxl2+w24LYyjF2bTbt10UUX4fjjj8fb3vY2AMCqVavwne98B1dccQU++MEPDneyATHtb7/Vq1fjOc95Ts/8Zptthv/7v/+b0aYGwWc+8xlsvfXWaLfb2GOPPfDTn/50vT9nQMBsg7Pmf9PBsNfFddddhxe96EVot9vYaaed8B//8R/eca01zjrrLDznOc/B2NgY9t13X/z2t7+d3ubmAYLdCgiYOfrZrenYrtm2WwsRwXYFBMwMs2W30jTFXXfdhX333dedm3Psu+++uOOOO9bDzgtMm2Hbaqut8OMf/xjbbLONN//jH/8YW2655Yw31g+Gily1ahX22GMPXHzxxVixYgXuv/9+bL755gOfR4sYWiQ9zJj11yv1aZqyZjW1aR4D1/ik5ZoBtaFr2bZqxKGBeWtk4exxNvhaspyD2WiUYLA1bAK+GAitW7Nz5HyKsGrao8xoM+7e8w2Cnm4DDahjwbl33Bcrocs9do6IlAyD2RQdGfa6uP3223HEEUdg5cqVeP3rX49rrrkGBx10EO6++27suOOOAICPf/zj+NSnPoUvfvGL2GabbXDmmWdixYoVuO+++9But4fe41xjIditQTEo27YhmLSNqa5pGFn+6WCQeheDplYnM8VsFu+vD7u1EDHqtkuV7FqTVD8FZdZ615IMHKW9ujU7ViBjJ2LmrVeuDqvKvGm7pl4wRCsJ6dWo0TWOWQMKBq6uiTZdUx1TGHtCW35oJS3jRtk2EflMGh2b/YooaXxN2tSH1TBpTGl7XLGCLQUAxeHGcPdCCtrWtClF7qs4m5IVozak+GzU3QcXTziMjRvEbq1Zs8abb7VaaLVa3tzjjz8OKSW22GILb36LLbbAb37zm4H3Myym7bAdf/zxOOWUU5BlGV71qlcBAG6++Wa8//3vx/ve975Z22AdZouKLBy2uDLZ5yZnijTHgT42xuuYzTz/AZy/qXqrDdNciApxAL4j5d+YuRTKKfc3y20LB3XYpkK/U9T1cRpWdIQ1PMd0tj7sdXHJJZdgv/32w2mnnQYAOO+883DTTTfh05/+NFatWgWtNS6++GKcccYZeOMb3wgA+Jd/+RdsscUWuP7663H44YdPY5dzi4Vgt6aLmaRLzltMM0VSTDu3ZP5ifTlndWiyW+gz34TZtlsLFQvddjUJjJifdWMKKrRDA8C64uCZY/2uF0UdthpnqyoY0uQA9UPVeeu3roqmoJDvpJEgvHTOnlKyUDpH5fVxCVU6gU1OjXlfGHfvK+PMH9sSGTIvqAM2nJ2azXT1QezWVltt5c2fffbZOOecc2ZtDzPBtB220047DU888QTe9a53IU0Lz73dbuMDH/gATj/99FnbYBWGiqTPMRUV2e120e127e9VDzogYK4wFcM2SLQHmN51cccdd+DUU0/15lasWIHrr78eAPDAAw9g9erVHu2/ySabYI899sAdd9wxkg5bsFsBATPHbEWq14fdWqgYFdsV7FbAfMUgduvhhx/GsmXL7Hzd/dazn/1sCCHwyCOPePOPPPIIli9fPos79jFth40xhgsuuABnnnkmfv3rX2NsbAzbbbdd7YubTUyHily5ciXOPffcnnnFBBTzIxWqT1mfngVHnwYXZitwMMhp6tgg7xxTnIT1YcmmElgRgwiwTFOkpfc8ZJ+zwWL2YR51zWeF6+GEAZjWte+tmRs02jOd62L16tW161evXm2Pm7mmNaOGhWC3AgLmGk12yxwDBrNd68NuLVSMiu0KditgvmIQu7Vs2TLPYatDkiTYddddcfPNN+Oggw4CACilcPPNN+Okk06a1T1TzLgP25IlS/DSl750Nvay3nD66ad7Ebk1a9b0fJkEBMwFmMrBVF47DwwW7QkYHsFuBQRMH012yxwDgu1aX5jvtivYrYD5ikHs1qA49dRTcfTRR2O33XbD7rvvjosvvhjj4+M2bXh9YCiH7dRTT8V5552HxYsX96QkVHHRRRfNaGNNmA4V2ZRGlimNjOQ0A70CGb6IBllX8zyDiGKY8w3Krk0lilGs8YUx7Dx9DNP913rMH2t8bgBe43DzuxvrnvnmtQ1jYEpRlymh1fRr+2hdTFXEZQqBl2Ev+qqwjTePwaI9wPSui+XLl/ddb34+8sgjnjrZI488gl122WXKPc0XLDS7NV2whVm4Na2HLcxyvg2o7NJkt8wxDGa71ofdWkgYRds1Xbs1nVqlnNygMc7sDVZxn+PqqoyyEuMMrBTO4Ly5nspcS1TQgyknn8+5gCzrwJgQnuQ+49V7mf5iIgZTiY7UPaZurd9QW9g9utdWWSPceCobYo4zxor31T4vGbP6eQOallgdRzXzs4oB7NagOOyww/DYY4/hrLPOwurVq7HLLrvgxhtv7GGiZxNDOWw///nPkWWZHTdhfTbOnE0q0hS30p5hCr66Yd18cawsSgWdc+PZ6hNm0KtQSC+QsuM83HvvKxjSnmHuGCPr6OPMa+Ng/l6oA2b70OmGeb+3Xa3TVn1s9Xj1PATT7XMH+E4aq3PAqoqZDT3qWE1vOyaHdNiUrDfoQ/Zcms51seeee+Lmm2/GKaecYuduuukm7LnnngCAbbbZBsuXL8fNN99sHbQ1a9bgv/7rv/DOd75zqP3NJRaa3RoUgzpoG0LBcT72dFtfmGm/tKlAb76mwnpz4prsljk2INaH3VpIWEi2i3NWiHLVmiXuKUVOdbMuiciFbcul3OddQZc9wYp7N27UDTlxxrS2DgVXzPUVg1NJbHSAuLCKjDJPK06V//kXUQLN6/uw1SlANqHquNX3YRP2vqRpv/1ek3k/RPndwSPuAvic2Vshzp3DxonzxqtrGOtZD6DWYYsa6/l5vYPHivFQNm6W7JbBSSedtF5TIKsYymG75ZZbascbGnNBRQYErA8UOdV1Dunwd7hTXRdHHXUUnvvc52LlypUAgJNPPhl77703PvnJT+KAAw7AtddeizvvvBOXXXZZsQfGcMopp+AjH/kItttuOyvrv+WWW9ov7lFAsFsBAbOLJrtljg2D2bZbCwnBdgUEzB5m027NBWZUw9bpdPCLX/wCjz76KBSJjjDGcOCBB854c02YLSrSpUS6iI2CG9OUSKl1hXkrx9A9bBqVsR829YYGxX0WrWC87JjkMArWO8/I46kMP2fasmaCMcsQ2g8rZ5Z1U1p7MvXMY8/K51G5z6qVDJPHtilZeawb23naW4jOVxk2T7Z2eJaNce6YShrRIiwZZdUYY9Ai6lkDHpGxcKzdsCmRKq9/zLDnwdTXxUMPPQRO0j332msvXHPNNTjjjDPwoQ99CNtttx2uv/56r5fR+9//foyPj+OEE07AU089hVe84hW48cYbR7IHm8Go261+mEnao2AMGemvaJi3+cSOTeeaHwTDSk1vCNAouvl9JpjVFKMmu2WODYH1YbcWKkbZdll2xGybV48Xn+9Ctr//dZ6UbBiV+M9z16+r6P9VsmSUfcyVx6R5myn7sPnHASBBFYwLqLKvmfkdABRh25Tt08ahlUmrlB7bZjBIb8W+aY2EVeOGSRNuzMk8jxKX2hkndl5E3GPWgOIe0oxFxGqZN04ex3hxHqB43w37FUUNLFlDGiRl1cwxu4b564eya7Not+YC03bYbrzxRrz1rW/FE0880XOMMQY5RHPP6WBDU5EBAesFU9SwDYt+18Wtt97aM3fIIYfgkEMOaTwfYwwf/vCH8eEPf3ha+5lvCHYrIGAWMIu1IMDs262FiGC7AgJmiFm2Wxsa03bY3v3ud+PQQw/FWWedtV6L7NYnpCr/adKUURe/m+OaMGxZGWpWWts1SmvLohlmTWrt1bMNEr2lUQIaMHDMGLPsG2cuyhAL1sCkuQh5Ma/t85j4keZ0jaXV7AYaa1u0duIahGFjMncMmFbeGo9JM+spO6ckdJ7ZsTJfPkrZc3q1ISQCN0jNiBedJtEoy7Jx7iJYZJ5FMZgsLhPNuFsvooJlA6B15M4/ZJSGqby27m1o8ZKAgbAQ7NYwMA1L2YYoVAuYF2CVepH18hwNdsscC5h9jLrtakUcUcS9ptiyvC+R3G+GTdm24qeCaGisnRJmzGZHVZplG+aNcwaZE2bSimgoqHJcPW7ujRRvQdYwaYwLcNNQmwvLnJn7iabG2gJ+xsBgoiO8Z74qLlLHqjUxbyKKwIVh0HhPDZuIOHj53VE9Tpk0Ebk6N8e2+UyaYUVng1UDSM1bDyPajFG3W9N22B555BGceuqpI2k4DHJdXPhSF6mRgHPgirFGp7x4FXHYMqWRlV6a1MRRU9Shgx0bqAbHjXvOGvnAMve74M4xi8mHNqbzgiHm5qIgH3ji7AntHDFVPGExXyZHauY61RfjYm2joIhW7gKQme+kmXkl3bzMrJHSeQqdOSfNOGxaScCMJSkSVdJPiaoauCbHzXPWXPqA55gJ4Ry5KAGL4uL5o9ipKCVtQMTuuXj5mqIE0MWlxGRWv4cmzDLDFtAfC8FuzRSiYmMGWS9HIL9/oWCQ1MdhlOPWC0Y8Uj2KGHXblYjCYWtyvKjzZuAcNtbovJn7HJoemebKOhcyV2WKZDlmxtFh1rFjnEHlRmgEEIqTx5YOW+4CITqKIPPi+5/HCVRWpD/yKHGpkKVTpJW0Thx12Gga5LBBZyb8lEhe47xVUx/NWESR53jZlEfqhJn7xcpx+ji7JuLWqRUk9TGppEFO5aRV0xv7OmlkXg9TBjDidmvaBQ8HH3xwbapCQEDAEDCqRXX/AmYdwW4FBMwC+tmtYLvWC4LtCgiYIUbcbk2bYfv0pz+NQw45BD/60Y+w0047IY5j7/h73vOeGW9ufUNqx67l5d8qU8oyaZ1cISsZnW6uLAuXSTdWirBzuneOzgOo0P41EqbMMWaCOfZNMIaYSKeacSx4ZazKsWPbYsEQ61JQg2toG2H3mq8VP5WTum2K2zKtbOofkzlQskoF3VwW4krCquVdx55lqWPP8gzaRKOyDDDjPHNpkHQspUuFJJEqCsrA1aUPAABK9qxg1Vzqozc26QNxXDBrAFiWgbXaZI3rNaONLsmQFz2j7GNlPmD2sRDs1mxA1NmAvuuLn+tDgERN86SDFOr3fd5psobrMxA7LFs2J+wamu2WORYw+xh12xVHHDFJW5RKe0yZQU6YMsO6QdDMJ/8cRqCEMmyCE0Yu4jZtUggOWWZHCcUgc8ewGaaGS2XZNi4YhCzZNqHAy8dqpW0qodYakrJp5j6GyPfXpUSa36ugYiS8cn3XMes90vyil2GrsmB1qY1cOJGQJlatKfWRpjua+9pWj9BI7xqa7mh+Nz8jXj9fHauhUiJH225N22H78pe/jO9973tot9u49dZb/WZ5jM174xEQMC8QUiI3KILdCgiYBYx4atEoItiugIAZYsTt1rQdtn/8x3/Eueeeiw9+8IOe5O4oIVeOXTNMWidX6OZkLN04L8cZqW3LlPLypoFKISzgRYPqUC20rIsm0HzgmHPEom7M0IqEHbej4vlixdAqAzNJxKDs0zGYCLttrC2c1L8i9W4AnAKLVh7TxSzb5tgzpnLorFss707aeZV2HMPWnXTMW04Ytowwb0pBpbkdaxPhksoJk5jtNUgBM87BqSRuErl5MmaGVWu1SQ1bAlbW2bFW2xYXo9W27QE8nnTIi56pvIFhm/8FsKOIhWC3DKiEPx3zhpz+JuERyrYNy7ytT8yUQZsp5pPU/yA1a01CI7wmUl0dD72fBrtljgXMPkbddiUR8xg2ABWmrBgn6L1nyiuPcSJxGtLUm9FzRO6+rJsrrw0AvU/jomTbJLMaA0JyqLjMlsqVZeSi2LFzMteIyjVSKjvWKoKU5b0DycJqZNiGtHF1bT68ujUiOETZsR4xkKh3Da1Xs0wbZd0IG1cVEaln1fo3vDbzBtX6NIPqPXF1XkWD27FRt1vTdtjSNMVhhx02kobDgKpEGgesmytMZMVFRB22bq7smk4u7UU/mUrPAJi1niHS/R02oCoQ0ksLJxG3F0h13BYm9ZHbVMwWGbcjTpQsOdpxeVFqgGlmx0AhSmK2WYiPkIuhpn8ao30tSBqk7k5AdzvFOO1Ap+U4S9047RQpkuVYZcVjVZZbJ01mmeewKeKwWedtip4tjHN7Q8sEtze0PI7svIhjiHaprpR2wE0aZKvtiZ6YdAXunV+4Kt2h+7AR57c6HzDrWAh2a1BwwYhKJHHoWJPjBmTGDjBG0iC1t0ZqN94Q0MM2s5wFbAiRFXOTpZWsdcKomABdXwWvOF70po01/K1njCa7ZY4FzDpG3Xa1E4EkEY0OG52r3it5TlplbV7j9FHl7yRXtWmT9D4tpfdsubLCazJXNmVbKW1TJZUmY6XJem0dNeuwaX+Ois/pGjtDFS6rQRh6PXPijJl1nDHfSYucHaDpjrSHGnXOqPIj0Cwi0pTu6AmNNNzLDuOM0d8b12RDpIWPuN2a9pV/9NFH4ytf+cps7iUgYOPDCBfAjiKC3QoImAWMePH+KCLYroCAGWLE7da0GTYpJT7+8Y/ju9/9Lv7yL/+ypwD2oosumvHm1jeM6EiXpEFOZNIyaZOZdGybVJhMi/FkKu24mytMlmv8lEhpx3lNZKiKJtnSpExxFJxhLC7GrQrDNpYU82OJQFYWyGaRQCtyER4KG2GPih5tQMGsFXukkfOG6Kx2vdGorD+TKUmDdKyamhz3WbXupB3LTsGwyU4KmZm0yRyyZNtkJ7URdpnlJCXSSfxPFYFnglsBEiYERBzZeV6Oo7EEvFPsPWq3INrF84s8BTOSveSCViDRDi7AWuX5G3p8NO6NsJXV+YDZx0KwW/3A+kgcc0KJmWGVJat7NGXVqo8RRCBpplDkOp4LVq0J1G5PV6jEgLJkJjWqypzVs228do2fItX/jzCTFMie/TTYLXMsYPYx6rarzbm9nwH8frZAL3M26FxdWqV33xXXM28pYd7SXNX2dpNKIydMmrFRxZimPDoGTRJhEnucvE7beranV1x/0Ou7YNHJMcOY9UmJbEpzNOOowqYBvVlewzJpTWIhBoMyaXZMRPmK3wE9BOM86nZr2g7bL3/5S/zVX/0VAODee+/1jq23NIyAgIUGJevTKEcg2jOKCHYrIGAW0GS3zLGAWUewXQEBM8SI261pO2y33HLLbO5jTqB18S9TRLJfaSc0IhU65XhdJ8e6TvGHnkilZdWKGjZp5wE/QpPnasqcZaA+QpJUIh6tMuoxlkQ2AjIWC/tcaa6QGrZNaShdn9trm2hzAVk+rzQRd5QNtVHUspmIsqCRCUWUdlTuPugy89gzNTlux7pTjifHIbsFkyU7KfIOGU8WTJbKcuQdM3Y1bEoqW+empYt2NUWnvIiUqVtLfIZNtFv2+U0Nm8pyiJLti5WyF4kmbQDABXRUNsnOUiv9j2Ej8LqBitfz33iMIhaC3aqih32xdWvMfe4JBcYEA8rvrKJWTduxERsRzJfyN0zaMLVddFcbqt5tPsAXCBmu6qCpOS49RkUGit8rdS7cZVEwXs+8RTVzQ6HJbpljAbOOUbddY7FAKxYeS03tibIsmHtM09ph2ba6cU6ZtAbmTSpts6+qjbllA6um7HyxL611LZtWvW9pYu/rao5p3RpA6tmYY96a2LZBBUOAXibNPK6ugfVUY4OmBtnV12q+M3iftYIBiIeoYRtxuzVth20hIJMamdSQquitBvgqkROZtE7auk6OteV4MpNY1ylu1idIeqShzqVUkIZGl/QCrqfA6YVH1Xy6HE6VR3BE1mGTWFQ6ZmkSeQ7bVIqUnDHbco0TKtsYSa3ZlD4HpZWZdKo7nrgIHXfGoUvnLZ+YtGmQ2fikdcwK582Mu85hSyVk6RzLVEKXG5Wp9IwgAHsM8BXxOGdOXCThEOV7J2IBXj5P1E4gsl5xE4oIpC8KF9BlSgpTbat2OazDVvSiy2rnAwIGhRXV6eMg0GN1ypCCuXHmCY04R64xTRr1aZZiiMh/k7rlfEKTYEsVtY6WEJ5CXJPQSOO86a/UIEQy1d6iyo3STNBkt8yxgIAqxmKBdswbHTL6fV5tzTiVk2ceY9ZVnbupnLfqvVNO53XdelmfflkjjkLn6H3fIIF8ijrBEaC8Z5zCYepXatPkkFWPJz1CI1M4ZpWewnV7n8pZq66vruGMQQ/hsI263RrqG/Khhx4a6uR/+MMfhlofELDRYYQLYEcFwW4FBMwyRrx4f1QQbFdAwCxixO3WUAzbS1/6Uhx00EE47rjj8NKXvrR2zdNPP42vfvWruOSSS3DCCSfM62aOSmsorb2UyFw6+f40d0IjNA1yXSdzbFsqkZfzeeoYNjOnlbZsm9a6tk1XtXiUyq8atk1EHFEpx5+mEpNWaERiabv4M6YymlLghKY6xdz1RNGWadNQpdR/zxmIrL/NA9YakGUvtSxzrFp30kuDzCeKVMlsfBL5RKccdyyTlhO2LZ/MILMypXQy9xg2lRrmUvWmFFTCciYNjHFmWTUmGOLy/RKJQDRWjGmbAP8cTrCExxFY2aqARTF0ZnrIpWCqbAMwbEZkltnzVOcDZgcLzW6BczAtvFYVFHSekWvAXA9cMI8Nc2M/PdJFObUn5V8nQDIMk9bzcmryJfuJp2xoVFkpNoOt1YmOVOcpk1aXBtkzZu5vDJi0KJdiX8eqVSPrvFLMPxWa7JY5FjA7WEi2qx1xLIpFI8NmMJXIz6AMXR0rp5SzZVT0ZFDmrYlVS6VLm6y+juJxzccN8oZ7trr05d4Uw94UR7ouEbyRbfOZN+49rodJM6U75PuBk3lzDBicJaPwjtW87rrHqmhwgzzqdmsoh+2+++7D+eefj9e85jVot9vYddddseWWW6LdbuNPf/oT7rvvPvzqV7/CS17yEnz84x/H6173uvW174CAhQGl6iM7I9ATZFQQ7FZAwCyjyW6ZYwGzgmC7AgJmESNut4Zy2J71rGfhoosuwvnnn4/vfOc7+M///E/8/ve/x+TkJJ797GfjLW95C1asWIEdd9xxfe13vUBpEg0pRUgAX76f1q2t7eSYKBm2PJNIu9KOAUDlCnnJEMlcNTZQNGiqYat2pI/KXN0oEbbGKh+gbk1wFz2NOUNcnj9TyrYBiE3fZ07zqRsirlpbto2p3Ob+6jx1rFPasY2zZbeLbLxg2PKJDrJxwrCNG+ati8y8p5M5cjKurWHLZA+jVq1hcwwbd+xCIixLxxOOuPz7Kqm9x9vzcMewySS2bQC0UmC2ofb0L3QtG2rY5PyP9owKFqrdoqBtKywjXJFvpk20Xd0aZdUcU8ahvfYetIl2k6w/PSf92buWeTWmowwnm92n9oyX9oYLTGUpaLPs4rGcjOsZNtpAt3ieSvPcmmj5TNFkt8yxgNnBQrJdi+PItiYCegWM6m5fmu5phmHepNKkts1fQ4VOaP1b0/wwoib9WhMAPqPWr+WTAb12oxoWzYyHFQNpYs2A3jo0+31SU0tW3cugTFrTa3RrK2sqbB6LB3djRt1uTUt0ZGxsDAcffDAOPvjg2d7PBgWlxM1FmSnl0eFGgGQylVYFkqZBpl2JrOucN6BIjTSqQSpXnoKQzOslRc0XcFXZhxPREXOeQtSkWC9zYlyIsaCgF2gsGKLyNbUEt86p1MXzaM08lUgPJCWSEZVIXfYp03nmiY6ocpyPd7w0yHTNuB1n491ynA3gsCnI8m+gpa4tMKaI7U2sS4kUmYQqzxGNRfVOmnAiJTKOwJOofP4MkXHO8tSP1NjxEIpFKNKidE3Ep24uYGZYKHbLwDlp3EuD5CTg4+b9Ma91tOClRJKuaF7qY3NPNn9/1XTLoV+fMGnMGz49kvYWGhacCyizdyUAFDcCjAtrJ2j/tOrvtY6ZqDhyovf7gjpuVDWu7uZsps5bk90yxwJmFwvBdo3FHEuSqMHZmtphmaoHIq1oaBQp0XR9syMnSZCdplA2OXL2sZWUy+rxfimRw2CQPmXUwTLHgF7HzFtfcbwGc8zIvppERPqY8EFSseu+P8zjVDxESuSI262NWiUyIGDOkWfFv7r5gICAgPmIJrtljgUEBATMN4y43QoOG0pmykRFKpS2KSZNc+l6q2XSpjwW48IzzzqyZ07mOVReMlDSefdN3jzjAjxO7DhKij5hXHBI6Vg1K2TSJw3S9tdIuS0mTQRHWxSP7UqFdpkSaaJBChr9pLstDNOkpP2g626nYJ7KsZHvzztd22OtYNUM29ZFNl48Nh3PkK4z6ysMW+r64ploVUr+ZrWvn7IFOZCUf494kluhEVVJoTSRfC4YeFw8v8xyiNTJ/RthkuJvaf4G04/MaCmhZQ3DVjMXEACUzJquMjTlZ5dz8jl2qcA0RVjEAiopPl+JUkhVb0pkwgGav+ezZ5rM10RwyUqfvXPnounKNn2PXIPzDZS9YiRS7QQ/6lMWi985OY+bp+mRdVL9PIrBI/dd4KVBlvNccJJCbx7PvL6etLdSnfy2ibgPQ7g12S1zbH3hySefxLvf/W5861vfAuccb37zm3HJJZdgyZIljevPPvtsfO9738NDDz2EzTbbDAcddBDOO+88bLLJJuttnwG9GIs52n0EIlSvzNnQqCPh/PTIhnmta9fRLKzid3N8anbOm5tCaAVAT5siA95wYdb2LKuIdjStcQwayHHCtpE/k2PgpmbPqmzZbPRz533uRxkD5DAM2xzZLZPSfM899yBJEjz11FPTOs/8/HYMCNhYkGeFk9vzb/5HewICAjZSNNqt9Wu73vKWt+BXv/oVbrrpJnz729/GbbfdhhNOOKFx/R//+Ef88Y9/xCc+8Qnce++9uOqqq3DjjTfi2GOPXW97DAgImKeYI7uVpikOOeQQvPOd75zReabNsK1duxZLly6d0ZPPNYrIYm8uf1MBqWHYZK6Qm2bZqbRy/raGLZPI06I2S3YnHcOmJGQ5Nr8buBo2AZaaCGsCVdaH8TiBkgXbpnIFrer/dCYaMxFxJFEZRReOYRtLhG1hkEnXzsBElLR2USqtNbSJbmjlhEa0sou0Uq6IM0/tWOUZ8sniPcg7qWXbZKcLWYq3ZOMZUsOwrUs9ti2fLFitjnQMQKq0HUvtcsObamoSWzjrxmMCaE+6OkIq/W9qf0TCoUwTbcqkNUj/My6A8u+n1XAxkKKRY+/fchSaOI4iFoLdAlBI+5Nm2VzU1bM5cQ+RCHtNccJkCcbstVFcUyjHrm5NapA1uraeQDBmo3++oImZa6hDaBAfaWoATuerdWDDYioJ6amOscr8VBL8ACwzppWEaBQpIUIj5WsUUeJYtTiprXk2rJoQ3GPbmkRHBLGPw6LJbplj6wO//vWvceONN+JnP/sZdtttNwDApZdeite97nX4xCc+gS233LLnMTvuuCO+9rWv2d+33XZbnH/++TjyyCOR5zmiaHSSjEbddrUihlbU78M2C3RMDZpK3yijpz0GrPJ7uU73MGn+70C1Xm5qZo+iqY6vqf53EJaL1q3RtfR3M6RMlp0jT0230cR6zQajNgw4A7K+nykfc2G3AODcc88FAFx11VUzOs+0rdUrX/lK3HjjjVi+fPmMNjBfMNWXVq6owiNJIZTaEwMBgDztQnYL9UOZTlonTeWppV2rxY+srqA8SiDMl3Se2PVKjTXu03xRr+MMLZMGGXEsKkVKJlOJdtnlfiwW1iE14iNKc2JQGt4U4rwhT0map3LKkJ3UOj2ykyLvGHGRDtLx4v2gaZCe8zaRYbJ8LyelnpbDJhizaxNOhRKc5RxLJWRSpo9lTnlTE8VI3UcBsvamctgmTbqhYaOeP2lFANDpdPC+970P1157LbrdLlasWIHPfvaz2GKLLeya97znPfjxj3+Me++9Fy9+8Ytxzz33rLfXMF0sCLvFBABFUh/JTX6lb6BISidtMrfCOzJTEGVwSaQcCUkzLi8HSF0JYpXXTyVT0oKDplO6n/XOm5/6yG06J/McOF9IpcE5a3DspkJT5mWTc0NVF72eQlQlUpCURRPAKdPbAdjAXR3q1CB5TJy0iDhpUQJR2nYecTs2Pwt1YWf7I/KaoobXxyuva0o02S1zDMCaNWu86VarhVarNfhzVHDHHXfgGc94hnXWAGDfffcF5xz/9V//hb/9278d6DxPP/00li1bNlLOGjD6tqvFOdoDRgfYgHf+w+rmNOl86IqzpLxj9PHlfUHDOescver8VHsZBNXX3eRMefPU+bJzDWtrnrPpbzJbfwOK6t+jCYwxpMN8Bwxgt+Yzpp0S+Vd/9VfYY4898Jvf/Mabv+eee0IvkICAAaHzvIz6VP/Vq4nOBoZNKwKA9773vfjWt76F6667Dj/84Q/xxz/+EW9605t61r397W/HYYcdtr62PmMEuxUQMHM02y1nu7baaitssskm9t/KlStn9JyrV6/G5ptv7s1FUYRNN90Uq1evHugcjz/+OM4777wp7d18RLBdAQEzwyB2a82aNd6/brc7x7t2mHaI6corr8TZZ5+NV7ziFbj++uux+eab44wzzsDXvva1kTEesWCIBQMncqWDRBk16aemlIYiqZIAoLLURlNlnlq2TVXZqBpPn6bE8CiBil2Ela5PMUYeY/YuXRuAyLUhSKIcE2X/kyIlsmQCSUqkjRxpFz3qiaQbtonI+ivpREeKlMiSTUxz5FZ0JCUCJLlNzaLy/el4hnSiOM+kVFiX92fYFOpTCPw+Ui7Vyx13YiRJrqygSdRWllWr9nerAxMuDRKcg0Ux7MaGgWqI+KwnidnppBU9/fTTuPzyy3HNNdfgVa96FYDi+n/xi1+Mn/zkJ3jZy14GAPjUpz4FAHjsscfwi1/8Yr3sf6ZYCHYLqPRbSyKwDkmPTIrPIu+kEOV1LxIBUQoliVRC2XmFWBommhbh+8/nUiV7jwG97QHcXM3xiPaEY6D94awt6yM+MhNmuy6VZ6qgv6iIeFC2zbZgiThU3pASaTImkDSKTk2ZYRElVoxKRJEVGhFEWIbO2TFnNh2esmpJ5ARIhmLWDJrsljkG4OGHH8ayZcvsdBO79sEPfhAXXHBB36f79a9/PfweK1izZg0OOOAAbL/99jjnnHNmfL4NjVG3Xe2IYWwIgQigPsen6eM6KCs3FXrYNsqg1az3GTaSEll77qmfn55vkEuz+rK5d4wKhdQ8lj6u7vh6ek8NqmwbkYEb+NzDpEQOYre22morb/rss8+utReD2q0XvehFg+9vCswoJ+Dcc89Fq9XCa17zGkgp8epXvxp33HEHdt9999naX0DAgobOMuisN93LNCCfbUwnreiuu+5ClmXYd9997dyLXvQi/Nmf/RnuuOMO67CNCoLdCgiYGZrsljkGAMuWLfMctia8733vwzHHHNN3zZ//+Z9j+fLlePTRR735PM/x5JNPTpkmuHbtWuy3335YunQpvvGNbyCO4yn3NR8RbFdAwPQxiN0aNNA0qN2aTUzbYXvkkUfw0Y9+FF/4whew/fbb4ze/+Q2OOeaYkTIcvJQxjanccaXRaBNcPZtrpkijp4rUrblx5saqXl6UNkilLFyT5GjOF1lWjXMGXgqNRDHHZMmwLUoEaU+gSN0akaY1MraDyvrbxtnK1eXlma35klkGVcrhqzSzbJtMpW2QnVXk+03d2rpcYbIM41OGLdO0hq1e1p82/jX1OFB+bZthEqTWRKZf1zbRpqCCDiBCIyxKnOjIsBX8UzBss10HMp20otWrVyNJEjzjGc/w5rfYYouBU5HmCxaC3So+e4ywMkTKP4kgsrLRexKBl3WkPBEQpT0QiYA0bFsmocvWHmNaw8SFZ4NhSzir1LOZ7ZMWA4mwDFu1fo0bBpEKqVChjmnWr9E9u7Fv8ws2intzQBFxdqwaQ54xMu9qz+qyJzSXjfac1r+Z81SFRkRSZFVwwUkmBffq2cy+IlLDlpQ1y4nwZf1pfaH5LhwYA0SqB8Vmm22GzTbbbMp1e+65J5566incdddd2HXXXQEAP/jBD6CUwh577NH4uDVr1mDFihVotVr45je/iXa7PdT+5gtG3XYlgqHV5/ux7vNHp1gdS6MVOS4bj80IZg8VFl/XsfoNTL+e4toahHnrd4ra9waofQ9Yda7f+zSdOrua90BTW93zProXNlVbhjp0h7nnGsBuDRpoGtRuzSam/Y23zTbb4LbbbsN1112Hu+66C1/72tdwwgkn4MILL5zN/QUELGgUTnz9P2DwOpAPfvCDxU1jn3/V2oeNEcFuBQTMHP3slrFds40Xv/jF2G+//XD88cfjpz/9KX784x/jpJNOwuGHH25Tuf/whz/gRS96EX76058CKJy11772tRgfH8fll1+ONWvWYPXq1Vi9ejXkiPW6DLYrIGBmmAu7BQAPPfQQ7rnnHjz00EOQUuKee+7BPffcg3Xr1g11nmkzbFdccQUOP/xw+/t+++2HW265Ba9//evx4IMP4jOf+cx0T73BIEpZ/1gwxGXkMW7I+Y8GSCb2GDYSSbXqjnkKmTmJ/9qGyzmgTKRWSYiamgfOha2LY1w4OXrBbT1dnilEcdkgO1euJQFtT0CaPNIatilVfKhKJI1YKGlZNS2VVYlUWQ5p2iBM5lBl3ZhKpSffb1i1VIEwbAoZUbGjKpF1oDUz7v1yqncFM9db29aEorEvqQ+Ki0uGRTFYmVbD4hjg5aU0ZD2IVrq2VYBhcGebnp9OWtHy5cuRpimeeuopj2V75JFHRk6xbCHYLcZ58TkzDJvgEOVnUcU5pGHb4hiibAAv4gyqVIkUmbJsm25HtmZTSG0VIwH/WiovWe+a6a0NbWbYRJnJ4PZrGCVGWhIwq2TptScgDGLxwkiTaaoeOUUdm1+v0av0CMCz9x4bVX4n5Jm0j2WM2VoxxRVEqTqolbTMGIX3vcB7FYKLvQhPGZKTGmaqBhmV7x8XzKtdK+ZcG5cWqVVrRdz7brN126WC5zCB6ia7ZY6tL1x99dU46aST8OpXv9oq3JraWQDIsgz3338/JiYmAAB33303/uu//gsA8Bd/8RfeuR544AFsvfXW622vs41Rt12xzhHriphWHbtDGRWPQVO983VzgKu3r3tsv+ceBlPYm1oGjmImGQL91Kunel2zwTwOwjbSFiyswrCR33X1mHsQAMBLYKx5np7PVB/Mld0666yz8MUvftH+/ld/9VcAgFtuuQX77LPPwOeZtsNGDYfBS17yEtx+++3Yf//9p3vaDYpIFP9izhGXX3aR4PbGIok4ElK8bdJMuGA2/YTKPHvpOgRUGp46dXUF6PQcpgdb9VieTtqxylKopLiJl1LZ1gIqV1amnqZBdslY0ZRI7TtuQC897RkCunfPOTXCK7m9MGSa2xQsmSnIUlJcZtKKflBnbJL0XqNpkKnSJDWrNyWyuOEwdx0utbPJPAlGpcMZeOL6sHF74yjAk6icj4v0RwCIEm+sRVy+H8M5bCrLoaLez41xdmebnp9OWtGuu+6KOI5x8803481vfjMA4P7778dDDz2EPffcc8rnnE9YCHYLXIBFDCidNJ5H9jPKswiiXXwuVZpDlfPRWOyEkqS2tgFAbSqwyBXMlVMEtmg7jfpt0bRjoCYlsub6EomAiGt6yNE+cw3OGhrsbfVGqOm2yHPaKvlG1WAdFeiwqYeSW2dXSg5evr91zhpQ2ErWkI5DRUfM45kQNg2SOmlRLBCV71mUCETlexmV72+SCOuYJZHAWPm4hDhsScQRl3+wQnhruJTIJrtljq0vbLrpprjmmmsaj2+99daewME+++wzsET4fMeo2y6WdcAyUjs4gLNV76Tpekeu6XxEJM1D1enZEJ+T9dGobH3vu27PvMFha3S+eL1jxpjnzHlrmtIoK04byzp9t08xV3brqquumnEPNmCGoiN12HrrrXH77bfP9mkDAhYkmppxN0WBZgqaVrRq1SpkWVabVvTqV78a//Iv/4Ldd98dm2yyCY499liceuqp2HTTTbFs2TK8+93vxp577ukJjvzP//wP1q1bh9WrV2NyctL2Ydt+++2RJPU3sfMFwW4FBAyOJrtljgVsOATbFRAwGEbdbq2XzpHPfOYz18dpZx0RZ2UKJEOrjOK2I452GYUcSwQWJUYOP0ISFR54N+I2GikiKvPc2zhVokGGGr3SznVzVtCjUrBO2TlZ9o9QuYDMHVNmxFCKNEhpx1L1Rsubmj/WgVWiYZZBVO5iUFJBlhELXZ0v07FkqmyLAcqYVZtiN81XIXV9Wg9993sb+DrxA5tamgiIMvUxaieISsZCtBOwVlGwzpI2WFKO4xZUGRUfNttApZlNYavOry8Mm1YEAP/0T/9k19LG2RTHHXccfvjDH9rfDe0/KqlHo2K3wHnxzzAxUQZuUx9jqHKs2gmUMqI69Br000LqUkF4KsHT4trIlLLXjNSstp0GUCfr7xi2uCUcqxZTVs010RYxST9uaAZevPYaVdUBZf1rg8XUJtQ0lqZjLjg4L947Rhp9C8GhI/e+5HABCpO2Se12z744YfQjJ99vbRJl2BLuWDXKtpHWLe57S6DlCZAU45i7TBJeCm31E9mqoslumWMBGxajYLtYNgHWrXxmBk15rK5TvWxbz+Np2Yad7s0S6llTrW3sk364oFBzn+qlnDdkNzBOmqVwQdgznzljhFUzz1Vl3VjDY+kaf4MMLJvAoBh1u7VeHLaAgIDBoLXyv0TI/PrCsGlFANBut/GZz3ymb53ErbfeOltbDAgImMdoslvmWEBAQMB8w6jbrY3aYYsYsyybYdVagtuI5FgsMGYilbGLWk50XIQzz6Qr+i4fJ+MELHURU68pqpXsl96YQnsRoVKwRElwEy2nxeukFk4p19BbK20DTB6rpnyhkapk6qCscG2kSkkik0/k/qVrSk3l87VUDeyZtnVnBfPWX8rfoCrTTSP9VEDBCiFETvxAxAJRO7JjQVi1qF3UCIpWy7FqrbZl27RIoEUZUW8oq2mCSnMrMlOdDwioA4tjsIgDZYsQxDF4XtawJRF4RurZyrGKI8sUa1lfeM24Y5xzwcBEGblOZVnT5ov2VFGtYePM1a3xRCBum3q6yIqLiESQ2jYBYepFY1eX59ezEeaNtNYoJ/q+b0VWhGv74Vq5OOERyqqZ+uUkEkjKdilpxGtZtcbGsLzltX2ZkmHjwomLEPn+nro1W8/GPWYNKNq4UCn/pI5hE84mxuV3YDwUw1Zvt8yxgIAqihq2Sv0RaQ9kUceaUcYMIDX0yqunt+xYZR7k3sk7B9UXkPWMW50MfNNNfy2GbHMxIzTV9VZQm/XVxKB5LBvvPc6FnfdsMufusbQNEsmSKGQHHKvm1cIZcSfyvD2ZFIwPV8M24nZro3bYEsGQCIZcMbTLL8NFuUBXOnVF+iU4Vt5ALGpL5JnpdyYQJeXNjBHZSMasYAg1IpqoPgKwPdnMMQP65T0Vmm4AtNL2JmJ9qt8MAi21Lc5v6nXWlGZFIcgNV1WhzhynIgcxET8YK2++xoQbR2MRorGoZxwvblknLWon1nljY4vB2osBALy9GKy1CACg4hZ01Cpf33BRmsKxblaJDAjogfmCNOIWSoFFRTqHaKtK0KT3s6WkwlQVhYWSY5m6nHArDqSlaryWq/3UmODOGYsrKZHlOG47543HkVNhFdymA3Ih7DwqNwR2PGBKpPFJCpENN7ZCKTUKwYIzG8RLI468HBf3kCRARr5NTZq8yplz2DSHVr1fuYwXbTeKl0RETQTpsSZYbRpk0orQIt9RQJG+b4RGiu8t59CZNMiYc0REUIszt4dB0GS3zLGAgCpYOmnTrAH0ioRQJ8xO02BwOc4zMq+8NdYxk756tSvbkLXOnj2GquOmGhy2hjTLGmzI2ijWkO4H+E5a7b0lcbzc+UStI0edLnAXRPMcMyE8B49RR86Mo7jWqfP2S9IsPQcPZaplOtn4mqsYdbu1UTtsAQFzDZnmkDXRLjkC0Z6AgICNE012yxwLCAgImG8Ydbu1UTtscSk7nXOGrIwKL4odw9bJFZa1CxnaNFfo5kYmX2LSCGfk2jFrufupWoUcc2/6Yh2bUp8qQ1MoOY1iVNYMC7keIwlqms1IKXsGOKEQms5Ipfr99Ee3ljJsZlywambMEbdcdD9ZXPx9k8WxHUeLxxAvK9izZNliREuWAABYezH4WMGwsbHFjlWL2kBcpkcO+fo3tEpkwOiDiRgs5l4EGWV6LgcgCMNGQX/nJBJL5fPNvEwlZMni8ExYtk1JF6FUFYaNVxR/RCw8UR+TfhyNRTb9mCckFTmJwJOyVQFh23gSuayDKCZRXmcTh7VoghORFJIOSJm2OrGOJOJIY5PKrqF1r/1lHGB5cR4tuP1+MI/pXe8k9Rnp+cYF89IjHcPm0iAXtSOPWQOK9P2l5Xs6Rhi2diRs6n+19yj9fRCMutpawBwgnYBOWTOrRVgwyqABJq2RsGqm5VETe5ZnU56biqFp6Wqbqp9tJQkjV8ITbara2Zp7PLWerwlew6xV7xdZjc2n6zhJfaTfCZ74E227wikz5lLWUWOrqywcK/tL0iyJamqlbkqtdC+6+JkOLjoy6nZro3bYAgLmGirPobJeY6vy+R/tCQgI2DjRZLfMsYCAgID5hlG3Wxu1w2Yk/D3p+BjIVOG5Z1IhL73ubFGM1DBs0rFtWjmGzatn0G37PHX1aTJ1EQqtJGSlSTZQSjwbhi1KHNsWJ3aesnDF7y5Sy0jUlmIY+eZhQaM0dk/CyV8XMt7u+akYCG24a/4eCbm2mpr2WhERBlu3NiY4YdUYlpBWDfHiIrrTWtayrFprWQuJYdWWLkKytBjHSxeBL15avLbFS+0YrcXQSbFGJ2NQccGodifWTfkeUcisISVyPTZxDBhtsCgGa2j+CSUhVKv/40U18upqz0zNWT6ZQybGVjm2TStaj1ofkWSCMEQlE8QT7oRGYuHqRduESYsj105jLPHmEZUNd7moj7YyVilYdzUP1g4y7cn6cyKOwgnbBPis2lgsrO1vRQqprWHz/wbGznKpIISraxaqWK8aMhs4Z6SPLGsQHXH1bBERw1qUCCwps0BM3drSdmSPL2m7erZYuFq8luCEbeOezP8gaLJb5lhAQBV6chyaVQTVmhg0SbIHyp86z9zYsFh56gmN6NxoB5A2JlnuMWmUMTNCE1opy4JVWZhG5o3M27U1GTaNNVMzYHSaatV6WbVe1ozTWrYKa1ZdS7MuGOeeEJS516Pn4HHks3CRY9LsXqLEZ9tK266HrX8rj+nJ8dr3og6jbrc2aodNqAxCZWhHkVU+U5pBl9XjSmtk5ZdspjTSRSYlUnmqi9UvYvo7LeSm/dmYEFaYROWp7b1Tde6oIppZw6PEjgtVsTKlKOL2xoORm4Bhe+zMFph3QVOHjSjHlWIGgmkk3AiKOIcNyl23Cn4PKKtGV/7up0E6h21JxLHYCookaC0zDluC9jP///bOPkiWqrz/33NOd8/s7r17L5e3C8LFIKmAkVAI8qaJvJWQpPyRhKLKxFiIBAwVMIAlQhJFk1AagqUJQU0sSkmhFZMYTapITAxqxVIUA8Eq5KXEkkChvETe7t3dme4+5/z+6D7nPKene3fmvu3s7vOp2tqzp3tmenqnn+nnfJ+XyrHO5mfQ27q5Hs8im6+Li8zNQ8zOV+NNWyFmt1TH0pvzTppNZ1DWR1EsV8ayBQ6JZCZFpCkEbUTecUPQFSxNv2DLLPVfwjLNoQd18ZJMoVxy/dwS6MKFF1lyYxMqvlbPG9uYaqHGFR0JDlsyk4TqrP0UyUz1XpJ+zxf4kWkCRcIjQwiNIs4bTXwfs+gISAXL+iEpCUlMfWXI4LD1EumdHm0syo6wRrpAZpxtSmQUBknHdHGtLSRSCIHEFW1R0hcXafYHpQVG3PZN/RAe6Zy02VT5fqOpkv699pSsQiIniK5f66FFzP7HLO2EkY3CIH5jRzgjDWX0YZArO2Y6L0Lodl76sc6J80YeqyOnTrc6aaYRNumgNrF63lH70Awfbz7HpDQdtmY4OhAv1EtyD0YfXzle7SGP1ZwifTIbzpjvW5uEsEoyVlkKoaoKjss6csS2+xB34siBhkeCOKH1vmaJQyIZhtkPmKKEaXGmzRpY7WEYZmPSZbfcNoZhmGljrdutDe2wVX1BUqTZHGZcmIsFXBcwg2TFvmRdBTyo0uXGeZKhXKpC5mSS+bL+usy92gYElY1KvzLNoIjCprJK3VG9mbCKreIeQbS3kCKhPm5clbZuhksu/34dkfROE0vpqkvraoyCSkOpb5NV73XGGAStzHj1LDcWOTnHTmFT5LjjQiPV3IySPgwym02j0EensPUP6KN/QKWk9bZuRm9rVVykf+AWJFu3VW9p/kCoLQdW401bYXrV/jadge1V+2vV8yGy7ve40FW+5jzDtJJkEGkaz3X01VFyNCRmJMxFhrHrg6bzEiqt1DZdaBhdRx3kOlotbu3nRoyIC7Gs2gQEG+B6wsksgXJ9DvuZf32ZJqGdRpJFieyChs3UYQSWhEF2IQEfEilECImkRUeGTmmT0ocV5qUJ4ZFWQZNr09nSpVx7hU1pAVO/V3qumpEYktw4+Mcmwq+MU1WNFkGZyZLW/qC0fP9cfR775HHNMMigtomqzP8EIZFddsttY5gmdjiElRYrlthvlPCvtmt/Q221ica6KEbmjQ7hjpHyVpT+uem8iZ6TRBE0QsBdRIEhvSzpdd1U29xc25gyTlGStsIiABrKWbeq5u9JyX1iFPGkgu0JqpsIoekjoY8uxD2J5n3EhpJRmxZVf2cJJSHTnIxdmKWCTdw+tOhIXLDEzbvWAnY4XPHcOda63drQDhvDrDYmL6HRorCtgRKzDMNsTLrsltvGMAwzbax1u7WhHTaRL0AMJSSAXlYpJ0jDKoaxgO2HfLYuNY02WAWAF6WAcisOCWl+mkgUSZUPVeYz0MOq4Z8qc1JqVo/ksbnfvuhIkkHVbQOSLA3lnjMVEtaTsIpe5WPU+9CGsCIU/aAq8Ur9U62Q4SMvJVn9iGOgXQEBlSWRqkZzWdyqRqYtAPe+JZSoznUm4fMLm82yaTn/at9Qvj9LFbJN1WoNzVvrz/fQm69W9HsHzPm8td7WTegfWOWnJVu3QW7aWj335q2Qm6ux6c3B1p8T05+HTqr8t6XSYKmoW0FM2DLBGtO6srMWVnuY1UGotFLZ6GSHwuaUKSUlZBryCXQa8sNKtyKaJf5LSxcldFatXFar2GRFO6eFA7o/70KK1pValYVCIzRvLZnJyLgXVl7T1OcziDSLchsiVc3LZ438Dq+qhdYhEqFZdlXW3qlN1XWXGhFUtUy12n4lJZbq86WkCEWpSuPPizEW1rafI5rf7O22FFHz7lmvsKmoCApV1WYaCltfSfRqe99LpFcPqdqWyipvjY7TljyYLrrsltvGME3scAFGkJtiqrAVNG9NR/ln1RxRzHRQ20xRenXK5GVDeXP7FCS3rYyUNJeba7SFyUnrEq/Imdac3SqfbVRtc/u5eT9Hrom2fLbdgeat0Ygnqp757VRVa9jlUHQqREFQ1U3WdoUWkWra86Cwpf6+j6pnMkugVV7vQwpNKRUXMskKP47aBqTE5rtiffV+djhJ4+y1bbc2tsNWLEEU9Yexnutlc5HT5vcVaRRC46BfsJlL4k4kfppUH06VBOctSUMPn7JIUPaqmxOjDXRdUtSFSQJV8qsv3EEcNpUk/oJLMuV78tD+PEkqkWXhS5v2EcpIWIx/T6RiWnjP8TmwtNt81DujHqdZdIHSKm/JTHXB6cJEBQyi3lBL9Q1EblDUF08cDhn3X3OhkKlPcpW++lzST5DV1SDTTWlw0uZ7kZPmwiB7B2yGqh2zKAxyflsIg+xthulXDrdO+liqb9CWCoNBbYTzcjJjbHINg9HPm8lHq00xDABYlUKkvaiKFu1fY9z1WBawPolbwhJbIrPR69T0M5SD2m7lJUztPOmihMpdaFLcu2i5UB4aQkP7+cgsfKnTMEjVz5DOzfixyKoFEZH1/Ri0D1uSwsr6K2yFcEh/TG6RR8I7KLIMIZEuTNCQYlKuWmYTJUioeam9w1YaGxWlGmehz40T+n1CnLRMSeK8ychJo987gHPY3JyKHLamk+ZfXwgkExSm6rJbbhvDNLH5EFaYFXuiNas6AoAuish50x3hjqa2U6Yo/T6Vs1f3zS20X3Cy2vqxMbZ13jbmfXikMSRUkoRHNgoxAfVif8uiTZff1lZYrUlzbaX1/i2qzi1BqwGH3mvBYVOZCuHYWXDM3FhK0ZivF6tS5Z06IfMorN311VRFHDapqJNW1PY/Tb0zLRrhlKK+L6b3m5ASUAo2Hz8kcq3brfGD1qeEm266CWeccQZmZ2exdevW1T4chtkjTF1OeORnDaz2MOPDdotZT3TaLbZd6w62Xcx6Ya3brTWnsOV5josuuginn346br/99j16LjlcgMwErDUwtvpnSWvQ9+GRiVeZpAAk6tUCGfr1pFL4Fc5YxapWAV7MFHbWyfv5UCEdVl58MSxR1mF0ujTQunpuU/aW7dcD1GGWrohHIpH2nKqmonFYhU2iY3THKUUIBfJlpUUcHtkKTfCPutarIJOnoVx40u+FEIZcR6qaICtATm7XhUZSl/vvL9PryRU0CL2eFNI6hDXdFAqNZHMZsvlq5T7bPIfeAbWqtnUzsi11j7XNWyFJcRG5uSo6YnpzML1qH9vbhEJVSt1SYbzCNiwtBvVx7powDloXFhqj71EXeydsgpkO9qbdglSwKoNwircKIYM2H/jWIbbMgwqXZNVPPVb1iqVMBkFhK0okdQGQcjD01ywthR0l6hsaBrRC8ZFGYrobJ/2gyiczpKx/1g92Jcn8WCRpKLgiVRwG2aGyOXMmRRjToiOpEkhNPa57phXGIq3tcL9xKTo1LC+NH+tUIXcr/cYiL8NqbXs4JY3SkHFRKBHGPRKWSb9fXCn/KuSxobCRMEi6PVXCFx1RUvgWB0pW52PcglNAt91y25j1w96yXXY4gBXtJfOjEvuNkvxu+ySqWrVPrXITVU3nIcJH5zrsk2voIhyXzg15XRpRUO9fGq+EVf1hR8eO5lybsjZOlOSoqkbHonWOpo1E44QqbCFCSZBoJWC0WJQYlH6sXEumTEMVocem+96QaQLl7vuo2kYKvMg0gSL/axoeqer/MY3OGGk9IBXscLDyyatZ63ZrzSlsH/zgB3HNNdfg+OOPX+1DYZg9xn1ptf0w6we2W8x6Yjm7tS9t1/PPP4+3vvWtmJ+fx9atW3HppZdi165d4x2ztfjlX/5lCCHwpS99aZ8d43qDbRezXlgtu7W3WHMK2+4wHA4xJKU/X375ZQCAWXgJRpSQcwbSrfoQta2fzUHVK7vVCkW9oiBTsmpJ8wXCaqjLN9jUS/BSv1rN3jkosXOxWg0qi8QrbGWuoXVQ21ySum18ftwCsiArJErJUHSE5LDN9hNsrtWmTb0wnskU+lE557DKDFTJ+CtmMpDVbJGmvpGtSFKfa6L6OdK5amyJ3Byra0FVU5kiq2A6Suil0MRZF0/ti5j0E5/DlvYTr6olczPINs8CqJpiuxy2ZH6LLy4iNx/gi4tgNpTvN/3NvtBILhJfXGSJqGrD0nplbVcx2UWvcwPd/EcDfrWP2bh02S2bZFX5Y11fqdYGtU0qIKkTt8sUtlbVbD6ArZUpm6RVc1oASDIkvboJ7XAAU8+rfkYUtiJK5ver340vueYXHlXYaCsBmnSusjSM+5lvqCp6/SiHLdgYohTKJCiIQvoc206ljahqEmE1OpUSqbT1uFbVEgnTkndC881ouf+8NL6lhzYWmnSh7spJoTlsCRm35RtniYxy1aiqRnPUgPaS/W7sV+JlECeVEJACE+WwddktYN/arre+9a34yU9+gq985SsoigKXXHIJLr/8cnzuc59b8bEf+9jHokIvzL6h836rLGAK0aqqLVeeH1i+oAgtlNSWqzaOqmZy3VqAROfG24Hc2FYlrZrHyLxjOYWtLbdtOSL7MZHCFnL+lRBevVJC+Hm5JLyypl1tByVgfOST8WobzfNTRUNtc/dlOrRwUI2m4y6HmTpKMgtF6GQaxipNg6pmJISmapvx31njsFp2a2+xIRy2D33oQ/jgBz84Mm+WdsHIKglWzNQ3OUZDGmcYSqR1ry2VzfoPfyLDF18vCV+OrjJXX0nfB2fLbIGXFqubjRcXC+yarZ5756DAUv2BH+YapTMoZagqZoyNqrDRzvUhJDJU/MlIxbDN/QSb+tXrzjYqibkwyJ6Kk9CB6ouc3tRE0Jsjl+yfhKptIutD5JU8rfoZEh8GWY44agAgs9wbgGQmIUYyhBPR8FAp454hLtHVhUGqfopkpi40MjuDpHYYs/lZZJsrpyvZtAlyzoVBHkActq2wzknrbfY91kw25wuK0DDIQWm987ZYaCzW/79dw8lCIq02sLKlSuQaWO1h9i1ddqtyVJLgoFgD2NpB0AmEvzbT4LylaVWJDbXDV4dE2qwPW1+zIutD1F9+ssh9DyRTxgn/cdER0kephbh6mQtdTkgBkgTSVX1MUoi6+q3I+sGu9PqQznkjFSMtOQd2zKIjtA+b8ydpSGTfhudxoYy0X+WwBFSvdtgS4wuNVGGQJnpcc0yhjl9zTAuNhAW1ME5oPzVS4XIcJ82Naei7qN9jV4GDNrrsltu2L3j44Yfx5S9/Gd/97ndx8sknAwBuvfVW/Mqv/ApuueUWHH744Z2PfeCBB/CRj3wE//3f/43DDjtsnxwfU9F5v1VoGFl22o+28Ecaiu2dtMYCkibpFtQxc6GM1HkzDeeN7tPlpLnCZ9rScXC8uhy5NseMXhltjl0bbcVb6bUq0e7INcMgXY9aJayfz6RAbkKV7WxY2zzvgEm/aK60ha2dJWusX2yflMpJq861C5P02+ginx4dS6VGnDdTjF8sZDXs1t5kKkIir7/+egghlv155JFHdvv5b7jhBrz00kv+58knn9yLR88wu48pTV05M/4xEzbgZvY/bLeYjUqX3dqXtuuee+7B1q1bvbMGAOeeey6klPjOd77T+bjFxUX81m/9Fm677TZs3759nxzbWmNf2i62W8y0shp2a28yFQrbu9/9brz97W9fdp+jjz56t5+/1+uh1+uNzJudL8GYaiXZlQ2VZR4UNlP63iBC55irQ+PSXuIr/2dKIKuXK2ZdOGIqsalerdmcKczXSteW2QK7Bk5hK70as5SXWKz3z8t41batz5ForMjOkPL9M7WyN5OqEBLZT7CpHs+mqpGcHpQ1oFp5DavQJDyShEFaIX1oiZAyDmPKq5VwaTQSM6qqVWGQtSI2yJHO1SGiS3kjGbnlfdME2TTxCaqqLpSQ9DMfhpnM9n2JcKqqidn5SGFDvxpXxUXq8v3ZHApZvaelwvpQJxoGuZAHVW2xMH68MGFpWKMNjBg1FMuVS2emg9WyW1YlsCojEwaobRakAUy98mlSoN5PpD0gGdZjoraVOWyvLplfFrBFrbyVBeBKKZdFpbgBVUnuln5JK61O0vBISUrzQ8q4oIgv359B1MclkjSMs36lMAK1TETK+stgn5ziVqljrvdaWKFUIkSUKhGKcTi0tZhFdYxDbaLQosK48EmBfh1VYaz1RUeAbmXNEalqRMFTAqEnnBRI1KiSVo1Hy/M7W54lsaoWFRchr0/fsRACyQQKW5fdctuAEArn6Po8j8vTTz+NQw45JJpLkgTbtm3D008/3fm4a665BmeccQYuuOCC3X7t9ca+tF2ddsvEuUK0nxoNtW4WOQKqcMfWAiVjhkGaFrWN7mOI2lYY45U0Gu44Og5KGlXh3FWxnNK23HwXsYrWDLOuVTBBSvzDkh614TVoGKS21itv2lrf89ZtR+gytddQSGAVCYVFiEqStUui89KX/jd5GX9/NJ5vkv5p49itvc3jjz+OP/mTP8FXv/pVPP300zj88MPx27/92/jDP/xDZFm28hMQpsJhO/jgg3HwwQev9mEwzH7H5O3lZNfCas9Gh+0Ws1HpsltAsF1HHnlkNH/jjTfiAx/4wMj+119/Pf7sz/5s2dd7+OGHd+s4/+Vf/gVf/epX8T//8z+79fj1CtsuZiMyjt3a2zzyyCMwxuCv//qvccwxx+DBBx/EZZddhoWFBdxyyy0TPddUOGyT8MQTT+D555/HE088Aa01HnjgAQDAMcccg02bNk30XGbXizBmAJQ5RN0t3eYDyLpMqJibhyxdImzu8z6y3iYkvbqIhTJeYXO/Z1LplZadmYrUtsWZWokptFfblnIdK2y1p5+XBtqtOpEVW1oSOktUKAlNmqvONPLW5tKQXzdLS0KT5qlAvdq70okTEla5poahzLbI+hD9uiWC0ZB1nHICRCW9tWvOO8j9Clq2OcSiV+e7JedNytDwlzRfdKXAk37P563J/izkTHUskao2Nw/MzFevkc34giKmtwk2rRS5gbZYyl2umsFSGXLYXHERmrc2LIPCtquYLIeNFbaNwd60W1ZlsCrE/gtrYJ1iZW1Q26jyppVXo0Tag8icwhZUNZSFL0ZijfY5bLbIQ5ESo4nCFtQ2/xvw+QkUoWjDUxVy26TyOWm0RQjNYaty8eqVSBWaZVuVRO1FVmqeLYTwkQTahlwPKy0MYpWqn1i/iq2kwIA0pu3VK9WFkaG5toXPe9HWtrZmkTQHuaGq+ZYtQrTmrSkZF4iKctSI7a72jYsQ0NcR/n2ESAqgWrVOVzT8gXFWqp988knMz8/7+S51bVy1Z/v27Xj22Wej+bIs8fzzz3eGOn71q1/FD3/4w5H+YRdeeCF+8Rd/EV//+teXfV1m79kup6615b3auj+W36+h3NO8J6vjfX1hEtK0mkbpWG3Hylsr3L0WyU+L1TMsk89W2wRLC5C0K2y7X3TEduSqIZprm88NSN5a9Xc1Fv59ZFJE7xtAFVExhsrm2jNZbX2OmNXC578JaSDqkAYjDYT7/0nyvSGNV96AYEckwj2gNcYrmM5cTZJ7thoK2/nnn4/zzz/f/3300Ufj0UcfxSc+8Yn177C9//3vxx133OH/PvHEEwEAX/va13DmmWdO9Fx6cQHallVIpAu5yQe+r4MsC4h+5cjJuRw2rfs96AKirMYz6Syy+rG9+kO7pCz6STWey5QvTrGrV5IwOo3FmVC0YlCOhkQ2wyPboKE1tKrYTKaiqmIhXFP55PR+EievA+6LPIwjQpnKEB6pslDNTWtftACA7wcllIJMQjES57CleRlVhuq68Kizp+okVUlCIn1Bgpk5yP4sGdcO29w84MMdZ7xjZnubYOrx0EoMnZOmbdRjLThpBjtdGGuhSZVIg6X6//ry0oR92MqOKpHssK0r9qbdgkyCA4Oqsm1UUlY7580A1jk6pXferDUQuv6cphqy55w64rAVefVljbqfW9tY63aHbaUCJDIkq4s086GMIonHdCEIKhQagXKOXxKcN9qHreG4BXtmSWVEwDiHTQg/rk0KlFQY1F/sUltvC00iUehwY1eQ69S03KBR6A2UFMFuS1IcIFXSv1YqZSiMIuPFtTbnTPr3Fp5P1BUgm69P5/3xTVIlssNuAcF2zc/PRw5bF+OqPaeffjpefPFF3HfffTjppJMAVA6ZMQannnpq62Ouv/56/M7v/E40d/zxx+OjH/0o3vzmN6/4mszes13N7/dJS6lPFPpmLHHqJqvEWDlVwTFrn0fkmIUwyFFHrRkGuVJPtuWhDxAdc9aP/TVvrd+/es1wjM5+aGtHHLZxCxG5c2y08c7bOCVJrDHVYt6Kz08W8Ekhq0k/Q+PYrf3BSy+9hG3btk38uKkoOjIJn/nMZ2CtHfmZ+KaHYaYAkxuYXLf87DvjsTu9jAaDAX7v934PBx54IDZt2oQLL7wQzzzzjN/+ve99D7/5m7+JI488EjMzMzjuuOPwF3/xF/vsPaw12G4x64luu7XvbNdxxx2H888/H5dddhnuvfdefPOb38SVV16Jt7zlLb5C5FNPPYVjjz0W9957LwBg+/bteM1rXhP9AMCOHTvwMz/zM/vkONcbbLuY9cI4duvll1+OfmiLir3BY489hltvvRXvfOc7J37smlPY9ibFywvIixIqy6H61T9F9Qa+NL3NBz7Ez+YDH2KnyiFsUSkzJl2CqNWbuVqt6fd7GJTVKsMwsZjxaptEXq9E0JC6xcJgWIbwOpfUXugw1tYuq7IB1WpIWzhNL5Gh5QBtQ6BUKDoiwnP4AiTNF3KqmiSlw1UJJFWoi+iRfnZSwdYrJzZJYbM6zLQsIPskBMuMhkfELymr3lJAVfa7pUCBLwVOwyD7c7BJ3QeOqmrZrFfVCkgMXLhjqTGsxwNtfEjrYqGxi4xpGKRT1ZZy7ZXQxQnL+httYTD6f232n9ub7E4vo2uuuQZ33XUX/uEf/gFbtmzBlVdeid/4jd/AN7/5TQDAfffdh0MOOQR33nknjjzySHzrW9/C5ZdfDqUUrrzyyn32XjYiVqVx0RHAK2xVeGQS5qxL1E8hfKikra5bADBlpdABleqW1uWWe2V4bFmEMEiivMFof/3CGD9eaU1WEIUNzevbrbaSdiFUSYNSQVWTSYjrk3JEWRt5XYQVShoeaRFWn+s2bJAQkGk1V0iLopbgjLUoSMK+IcVKVio0AoCoalQZE5GS5kIYUyWiXmluHxWpZrGaVr1G/D7j8v3xvm3HNg5ddstt21d89rOfxZVXXolzzjkHUkpceOGF+Mu//Eu/vSgKPProo1hcXNxnx8DsHrRwhPt7EnXEKSvjPEZK4UvEW2WB8Vt17RP24SURhXevFk5Vk0pGod8rPk5Ophm1fYaac8sxjt3a27m3xx57rP/7qaeewvnnn4+LLroIl1122djH7djQDhvDrDa60Gj7/tEteUB7g93pZfTSSy/h9ttvx+c+9zmcffbZAIBPf/rTOO644/Dtb38bp512Gt7xjndEjzn66KNxzz334J/+6Z/YYWOYdUaX3QL2ne0CgG3bti27sPTKV77S9zHtYqXtDMOsT8axW3s799bx4x//GGeddRbOOOMM/M3f/M1kB16zoR22cmmI0lroQQ45qBW2dABV560lswOIwQIAwA4WYGq1Tc4tVMUrAKj+ELaoVvNMWudPZTOYq8cz/T6Gtdo20NYrbLOpRK6r059rg4HPmQrjwlifI2FIfLHp+MIZzYWo/qjK9we1LeStSSRuQduv3obVWUkS1i3CCraQpHG2yvyKu8jIKliawroGt6Q5r9XalwuPihaMvBnlX8uP06wqQIAqby0q9Q3ApjOwaXVxmaQPWyt/Npv1CtvQAMPC5aoFVS3X1qtnO/OyU1ULrRh0lGtY1qvri4MJG2cbW6/wj87vC1bqZfTrv/7rI4+57777UBQFzj33XD937LHHYseOHbjnnntw2mmntb7W7sZpMysgVVR0BKiUNaDOTHAx+tbGypufN7B1Dpuw5BpURFUzpX9OJNrPU+UNpKw/LUbiaCs+AiDOWZCq9VqHIDZGKl/kqCp4lIV5Utbf0hxberp8rhpVoWxIYpP+zEHUZa2FsBDGjYHUhvL9LkXQkJwW93cbkhxPm6omRaykUfWM5tzR4iFODRORUle/fcRKGp1vOyZ37JOs0nfZLbeNYcahrVx71DyZNEn2c8ZA+iIUElLVxUWMha0/xEJJiPpzKJTwTZ6NtmT/oMIJZaEsub6iAh2hHH64Ruj1IuocMfe4Zm4ZzSsL23Xjmpu0cXZcbIQeexjLlv3jfQR5ryKad78FOafSK2m0xZIi+4R5oQTZPyhhdCxoI2wl/f1j9VrhfnMSFW05xrFbezv3FqiUtbPOOgsnnXQSPv3pT0NOqCw6NrTDViwOUGhTfSAG9YcvS7zzpge5d95Uf8GH29nBAszCTgCAnNscQiVnqkqEtpiBSavHiaSHmaxy3vppD0VtOHLivBUmhEqWxoYwSGNR+H2MXxkoSPgg/W4cJ8yG9uhJJQmzIdXIfI+1ZtgMTeqvb6ysJQUQSFiSUKGymzA6VKJr9HECDYUkH2JBnpOGQfriAyrzDqGpQx+hUti0dt6SHrTq1efaYFDHJ+faThT6uFhoLOUh9NGNh7QgDAlXzYsJ+7DlGrrl2jX1OZqGXkZPP/00siwbqbR26KGHdj7mW9/6Fj7/+c/jrrvu2u1jZdoxKq1CjqN7gNrpoYUlyA7WmkZIZHDeWouRWBLimDT28Q6b8TcqoPPOSWweuNtOQxfJOC4cIkJfNRmqQVqZRE6dtxkrhEM6vPNmKwcO7khd9cj6OpakWq5CeJvGCljyUjS8xu3TlacvERwwWqWxOa+8/Y2dMRr6qKLniR026ugB8ecgOPPkwERV6CSZwGHrsltAsF0MQxGqqvIsdAht1C2xiipLoOtCX85RU0h8vy6hQ7XoSVFdH1pCRsq7x05UqNJI0zRpARKQaoy0gEdcGbLtufe+wyYR+qk1HbMwH/ahDpvfnkioutq4yqR3fGWmoOqysjIj+6QKKnP30qqxvysSl0SOmZun4Y2qsU9wDtPIwaO/x2E17NZTTz2FM888E0cddRRuueUWPPfcc35bV3XbLtZc0RGGWU/YuhRx2w9QxVNv2bLF/3zoQx9qfZ7rr7++anS+zM8jjzyyX97Tgw8+iAsuuAA33ngj3vSmN+2X12QYZv+xnN2atCofwzDM/mA17NZXvvIVPPbYY7j77rtxxBFH4LDDDvM/k7KxFbaFAYrSxLI86fVVpAMkdY8v1c+QzFRhfcnsQgjDo6GSM0F1U65YSToDm9dhlUkPslbbsqQH06+UktJQtc2iJGNaGlaTSCe3stsVji8aqy9dYTa0z4+bo6u3rU8qQ6d6AYRQJJ2HlW6bVuGSAGBNKB1e/91+0GG13JL+Si4cysrEh0NZouD50EeVoajPR64tBoO6VYI2PqxhWIbQx115rKS5cMeBNlGPPKeqLea6tUceEFbm9YR92ApjULSUaXAq6jT0Mtq+fTvyPMeLL74YqWzPPPPMyGMeeughnHPOObj88svxR3/0R8seD7N7aGN9CC4Qq+xAfN2GoYSsFWchgurSVN5sUl/XhoRH6jJSz2yHqmYbChsQQjWXw7YpbkRtaypvIVRS+t5yaJb1d0q/AIRXvgSUk5ak8CdOCPjwSCfYGQQ7aGwQpOi5rk7D8rJU1OtMhL1pGKRErJK1h0fG+1AVTpD/B1CFjIWDpOPGByWS4WT4HIxBl91y2ximiUyDauJQqKNkpPb3FCYvfY9Vd29m8vDZlFJO/D0bHUf9OlqRcD8ZytHLXEPVN166NKEfowgh0FSZyo2Ftk6Zov3ZQuiju/KN/xsAxMTFSNpUNYl4rj3EEa2qmhIiVtgSF7ZYPzdRyVRDSZMtStroPm5M2jClaaSqSaK80TBIt7+QElIpv79ohErKcnxlbDXs1tvf/vYV783GZUM7bAyz2jTDJeg8MB29jE466SSkaYq7774bF154IQDg0UcfxRNPPIHTTz/d7/f9738fZ599Ni6++GLcdNNNKx4LwzBrky675bYxDMNMG2vdbm1oh80UJYwUsAOyIqxCPptQCmXt/at+5j3+dK6PpFbHksGib9Zs61w2s/AyRD2W/Tk/Fr05orb1IWplSCUZMl8gI0OdYlXns1VjqrBpa0lORVcKZUAgJJkLkohKS1vTXImVqrJaIX1Zfysk4PJehIBr1GutqXJfgHj1vfMgGyvqLkdOJoBT2FTmc9iMSr3K4NXJ3PgxzRFcKkzcsNyV4yfjhUJHqtrOepxr4xW2vNReSStN3GbBKZS2nGyVJjcWSct/MN9Hifu0l9EnP/lJFEXR2svonHPOwd/+7d/ilFNOwZYtW3DppZfi2muvxbZt2zA/P4+rrroKp59+ui848uCDD+Lss8/Geeedh2uvvdbntimlxk7MZcZD20pli9Sejn3ppSyFU5RoIYp25Q1EYUNiQ+l/Om+NLzoiaPPuRu7cyDGROdvMPYvUNuHnguLerqRFJf47kAIw9RkR1obCHRaQdT1/t93aoKZRYar5bui2tpen7y467w073KWkuadUUkRKmlfRbJxHWL2fDoWNMpI7aLsLQLXQZbfcNoZpIhMFmSWhLH8aSvSLogxjKYNdqZU1qSS0U9uK0qssulGoQst6/0xB1S1KdKah83r/VEFndeuSPORkjexTuH2C2paVIVKHKmmZFKRZtiAKG+rf4XrY08bZXXlrdC5W2Lrm21U1SdQxYM9UNSGlV0plmkBmab1PEgqQpElQU5dR1WQaK65uLKSEnEBtXet2a0M7bLYoYYTolNejD9xg6D9w5cIAqg6VrJy3qkpkMlc1H1a9nnfSTH+O9AYLfcIk7ROW9kKoX9JDVof6pSrDTP2hNSoNYXc2hOBZ0BsLO3JD0aTzBqKeUzKeCzch5EZJhhstYcpw02ST6Aahq7daOJhlbr6Iw1Z6wwfvpBWljgq1ALGT1uxz1+akLXU4aUuFRl46J81gSKpBdvVaymqjZ8rJLvpmpTk6v6/YnV5GH/3oR/2+w+EQ5513Hj7+8Y/77f/4j/+I5557DnfeeSfuvPNOP3/UUUfh8ccf32fvZSOi61Bpet07uq64+LpH47p3hTZo9cHE99NZLoSSOm8jzkFzzvVoHOdN0tCpZshkR6hkNE+fqjZixtqwGCWFP29VWHdw3tykJaFLkyzDdNlY91r1y48V4uidrzIUaxpxyFpCUdFle1vOq6jPo5jAYeuyW24bwzQRWR8yy6KiYz61gvRkk8b4sXaFh4wJFahpURIlYeubeV2UkGlVxMQU5W47b6ZvoAsXnqm982a0RZqHsaZFx1wqhrHEecPIdjrvtjWh25sFRxRZFYodtbCdjmkYpHfwEhmFPLpxHMIYKjruTydN1fs3K0ZGYZCu6JRUVVG6CaJj17rd2tAOG8OsNrm1UC1OYL4Pjcfu9DLq9/u47bbbcNttt7U+5gMf+EBrc0mGYdYfXXbLbWMYhpk21rrd2tAOmy5KaCGq8rJ5++qiHlQrNkIJL8uqLPFjqrYlM/Xv2T6SmQU/tl5hm4Opi5WImTnIvguV7EP26rBKlfleYlZloUdRkkE5Fa6hQLnV4SqMZ1R5W45m+GMcQhVv9Koa2dHSfcb5wDdXwv1YtCqIZWmisFCqprn2BwPXV62MQx+H9SodVdt2DUof4rhzUGLJqW25xlK9akdL9uel8f05TMcJVYn0+096QWkLtH3y1kI8NbM6GBcSWf9Nw/eqv9s/PKFNh41VH1r8on7SKhwvKG9BDZJQXcVLWhW2OFwPwFiFSJq0FiahB0/DJjuQQnj7SMMjFVHTaKGRlUIsR5+fHtZoWKM7BnfYkZKmR1VL0VTPSDuFZcMel6tE5XZtCzOdoOhIl91y2ximiUizqneqU3K1DqG9Rvs2IpYobO4+yxQlbFqpL7ooonnj9s1LmHreauMjp0xRwKS12laUSPq1MpbrWElz6pmxYZwb//y6MDBEYXMRRDoPxztDqg0ar7TZzvBISpfyo1rsUFcYZFWoqLYxpA+aUNKX26/CDWlRkXY1DQCkFGFM9lWZIqX2JysoIonaRsv00/lIYSO9OiFl6OPp+/OO/32y1u3WhnbYGGa1yY31Vaii+TWw2sMwzMaky24BbLsYhplO1rrdYocNdW8Gp6JoG5JiCVXn9WqVhnZ21/3cry4oV4iEqm79DOncYr39JaiZSkkTM0FtkzNzvk2A6M9C9Gaq+Si3LfUlrKnyZlUS5mUC1ZXTESWZT7ZyHE5Ce45IG/Q1upQ/S+O9jQmrULR5OM1bMxZ5nSM21BqLRFkDalWNjBfykJ/mctUWc01UtRKLechVc8qbNRa6/gxYY1uVNSkFhCs0YuzKlVo6MB0rPmsg/5VZJawdzWGjalsbUf4WISo7T/6OGzs35juUN1HbBaoi+dchypHFmIUxumixP50KHDkOa+N8NrpK3bSJapzDIGMajRCpZ0CsmPliIRMqaZOolda0niOAnCdhIZycamX1PTLB/6HLbrltDNNEpL3qPscpbDTP0mifQ2m1DvmuZQ4AUbESpTOYWj2rlLQqCsr2jZ/XeQlV72+K0qttiTYw9f4mD/M0ykoXJIcuNz6HzWrr1bam8ub2r/ap73Xq92CIdGMb95dmQllHEqMV1CgRbXfKlKRtC5RsVdKkkn4f2vQ6KGAhV402uZZZApmmo/NUPSORaNU+YX/Z0ixbSAlR128YUdJksMi+NYRT2Irxz+Fat1vssAEw2vgLx+Q6XHANx81Lt6r0H/JyUJJu7nWftn4WnLd+hmIhzKdz1Vj1d3mnzkYO21wVNoAqSdfP92YgXKikTIAkDWPisEWOnAthlAn5opYkNArtTljrDVEjPJJ8uKkz5ueM9WFGxga52dLwgI4+cwVx5PLSYqirS2xACoAMSuMdrwEJfXRO1zhO2lKuUbrEYW18EnF1b9QeBim9k+aLV8J0rNiMQ26sr94Xza+B1R5mdXDOmvUhN3HCtBs1v4DaQm5GC2I4Z6zZJyzs3+3IuXFdzIPYjGo7cehE/WXbdOq6aHMmxlg4inZvqbAGtDu5y61ptTljsGh3rsg+u+OYRfPN12yOOw+Y2H63v5Chnx2qkMxJ+rB12S2AbRfTjujPQmShj6gwOhQmIwVv6Lwwfb/d1o4WDZ80RQml6/soY3y/NqO1d95o2KTJy+BIRQ6bbjiB9WNz7R9rSagkdcx0oUMYpDZ+TOcc1thWJ61NJBg5fyq2dz7cUVKHTRInTYS+ZkqE+1TiyKlM+cdXjlzom+ZeMzhXKnLYvGPYCHf0YZBKRQVFotBHUjhE1I4cdcyElJGTtty80OMvlq91u8UOG8OsIlVM9aihWAvx1AzDbEy67JbbxjAMM22sdbu1oR22qkSorHp8FGQVxK3GmJBACgAg+7gVCrlURkmZAFAuFVCR2ubCI3tBbZvJSGuAEEIps51BYesT5a3XhyRj1NKxTHt+pVQkaRjLJKygCuFVOEgZxiTxXIwTSlmfCtr7ja70GxtW92lRBG1iNSCEQYKEPoZwx8LESporHhKpaqXBoAxKGVAVFPHqWaS2xaqaU9KMNtD1a2odiovYDm1cyFDeW9EwBCl8OfTehOGmrLAxk+KuOd15PZJ9VyiiT82bJEF+QjQKk0yovKHe1l7S3o6ob3S7e52IFkVuHJZV7RrHBSBSzOLnaVG1Gipapxo2qZLW8lrR66/ULoUiZQhFbdhzp6hV3xON112Btb5Szex/RK8PMTPbUNNcKCEJVKPhkUSBE1mYc9tFkYfrwWiYsg6P1CFM0ZAeb7ooovku5c34ceHnq7DJ0h9DHAZJUigaEVpUjaPzQHchsy4kMahUcZNEVQuRYCJSz2h4pFPHVJZEIYmuDL8k6lmXkjZO4RCZUPWsnk+zdsVMqjjckYZBqlB0hLzpatsEvW/Xut3a0A4bw6w2pbUoWm6qyzVgPBiG2Zh02S23jWEYZtpY63ZrQztsMqsa+FljIF1iaaNTYRR/3KKZCiW8OqdqFackJVR1rqEGVeJss0BJUqtqepATFS6obaq3EOWzWZrPlpE8N7dPkkIkIc/NrUpYmUBEeW71KpFKgrLmtgvpl8iF+9udC5Kr5sruT5qfFueqGRT1Tk0lbVirZ8PS+By1IVHYqjL8dQl/p7ANS1+afzHXvtQ+VdXKIuQoGmNhnNpmbauyRuPDFVUgZNiWJNI3zu5PeElxWX9md6Briha0AElQ1eI805WfU9Ny/7ZZkMQVErGRIubHAlHDaD/Xsr1qJh0OKChvIe9N26bCR96s3z+21WOpby0qUmfhDj/eS0oaeUxXPltUmKTltcfG2W2t/YkRsiEcun2s8QrmuKz18tjM/kf2ZqtWRkRhc7lognzmrdGhSbybNMarcIJst8YAdWESawyUL2jSnfPmla+OnDerDSnZH+8flDoyr3WkwjXz0Qx5PrdPGE92sYiWoiNAKMQh6VyzoIcaLR7SbFBNG1q7ub2Wk1ZHhY2oah3qmYhy1UiJf7IP4G9nx2Kt260N7bCpXgbVy6qLrN9yEeUaVgXHq+3istrCqji5VCoJq93jTOy81WGTSV7C5KFakXPS9Ax13nKo/rA+1kFwzPJBXIwkJ85bOvBjqPrCURlQV7iETHzlSWENSTyvEDKBtcRja8HYcAPYDHF049LETpoPfTTWV3UstN0jJ43OV7/bQx/HcdK6wiABQHmjJ/xYJRJJncSbJRKz9f91Zqz6coHcWAgOiWQmIIQgkzAbFx4JS0KXMbLd7dOFM3FxeCRg3WeUOHISwn92m/3G/FwUPukqStrWeW1JwRIAljpspK+Zfx/kTUkh/HvsdNy6qiu2OWfNfbucNFccIdrHtjtm9PHU8TPLOHVtx9gFDV+PNkj/Ot5HEyFUsvLkGrG0K9BltwC2XUw7YiYUVPNz1HnTo85bcMx07LwZ6ryRsEq3f1mE5yZFTKTRsEXun4c+f5vDVoVB1mGWURhk2Mfo9vnwvkwjDHL0Wt6toiNSjmxrOnFReGLkvI32O1NZGjl4/nHOuWv2Q0tdRcf2UEaRpGGsQkhk5IzR99AIg/ROmhp10ujfossDa2Gt260N7bAxzGqjre0oOjL9xoNhmI1Jl91y2xiGYaaNtW63NrTDls71kfayaK6ZIOqSQqkUTZNMAXiN1a1gWGVb1TarrQ+frMah7Kxy/UNIeCRV29K5EqpOqJVFAVGPRVlUibcARJkH5a0oSDilgbVOjqartuHf3x4qI0LCOpTfJwp9JCGOJSnHX5h4nhYRKUxQz5zaNtRxoRFaUKS9PL9GXsYhkbRMf1noqKBIl6q2Uo81QcZKSagkjGdqVW1zP8GmfqVmzkzYU6roWPEp1oDxYKYfqrw155aDfqkJxMqb72smrDccVchj3H/NwsILc0L4wiXWBsXMinBAQoCoZMIfgSAHbaPeb+F4qz5zgjw/PQktylpTVVtO1eoKd4z26VDVusIdxw2z3E18ZOuErQ/GpctuAWy7mHZEkkH0ZuNJem1GoZLxZ5+GQQJBjWuqZF5to/uTcEo0wymJIiepItfx/G2hj03lzehY8ukOh9yD61uNqmtAUMaAKoSxTUkbCZUk4YkjqlaXYrZcWKPfhzxfU51rU83aeq015ttauYikGJnrYq3brQ3psLmQol3DytEphrmXvYu8QFG4eGeNoqydqjKERI44bDWyDiUUVkDU8TzSSsg6JEWJUKEmlRayzkRRUvi+QMoYH1SXCHg3KZESysn6JbwMLArrGweK0kDk9c1BUkDU70OkGlbVYQBSwfrmhEnVrw0IoZEygVUhBtnNG6FI6KOFK8wTOWzWtoZEUodtWFrvsOU6dthcztlAh/DIQW4wHFb/g2GukdfvKc81itowFvV7LnONUrc7bJY6bO7mz9jWgmuW5KcJIXxYLLSCrR02aIWidngLq5CburqSrePpx7z4l2BaY6dz7L4xZ9Yn3m7t3AmDsCJoQQqlNUIid9dhozRz2WhlSLqPD6Ns7c0mwhjtTtdontvoscgOh00gzmlzQ9qwu/p7JYetJWes4YCt7LDZ1sdO7rDtwT+qrdKvEP4GysrQp9NKBQiJnTt31S+78ut22S2AbRcT4z5PL+9aaNtIxt0OG5Z12IiTZsm41WEz7Q6bLqJqkys6bMZ2Omy26bCRa3qfO2y0CuxyDptfkB7HYXNzZYfDJrsdNkEdNjm6v3sN+ts9f3gjZDz6peA+VxvBbm1Ih23nzp0AgFM+9nerfCTMeuWnP/0ptmzZ0rk9yzJs374dn336qc59tm/fjizLOrczGwtvt37h2FU+EmY9s3Pnzk7bNY7dAth2MQFnt476xf+3ykfCrGc2gt0SdlwpYB1hjMGjjz6KV7/61XjyyScxPz+/2oc01bz88ss48sgj+VyNwUsvvYQdO3bghRdewNatW5fddzAYIM/zzu1ZlqHf73duZzYWbLcmg+3W+Lhz9dBDD+Hnfu7nooIGTVayWwDbLibAdmsy2G6Nz0azWxtSYZNS4hWveAUAYH5+ni+KMeFzNT7LGQ5Hv9+fauPATBdst3YPPlfj84pXvGJF28V2i5kEtlu7B5+r8dkodmvfZCQzDMMwDMMwDMMweww7bAzDMAzDMAzDMFPKhnXYer0ebrzxRvR6vdU+lKmHz9X48Lli9iX8+RofPlfjw+eK2Zfw52t8+FyNz0Y7Vxuy6AjDMAzDMAzDMMxaYMMqbAzDMAzDMAzDMNMOO2wMwzAMwzAMwzBTCjtsDMMwDMMwDMMwUwo7bABuuukmnHHGGZidnV2x2fFG47bbbsMrX/lK9Pt9nHrqqbj33ntX+5Cmkv/6r//Cm9/8Zhx++OEQQuBLX/rSah8Ss85hu9UN263xYLvF7G/Ybi0P266V2ah2ix02AHme46KLLsIVV1yx2ocyVXz+85/HtddeixtvvBH3338/TjjhBJx33nl49tlnV/vQpo6FhQWccMIJuO2221b7UJgNAtutdthujQ/bLWZ/w3arG7Zd47FR7RZXiSR85jOfwdVXX40XX3xxtQ9lKjj11FPxute9Dn/1V38FADDG4Mgjj8RVV12F66+/fpWPbnoRQuCLX/wifu3Xfm21D4XZALDdimG7tXuw3WL2J2y3RmHbNTkbyW6xwsa0kuc57rvvPpx77rl+TkqJc889F/fcc88qHhnDMEw7bLcYhlmLsO1iVoIdNqaV//u//4PWGoceemg0f+ihh+Lpp59epaNiGIbphu0WwzBrEbZdzEqsW4ft+uuvhxBi2Z9HHnlktQ+TYRjGw3aLYZi1Btsthtn3JKt9APuKd7/73Xj729++7D5HH330/jmYNchBBx0EpRSeeeaZaP6ZZ57B9u3bV+moGGZ9w3Zrz2C7xTD7H7Zbew7bLmYl1q3DdvDBB+Pggw9e7cNYs2RZhpNOOgl33323T+Y0xuDuu+/GlVdeuboHxzDrFLZbewbbLYbZ/7Dd2nPYdjErsW4dtkl44okn8Pzzz+OJJ56A1hoPPPAAAOCYY47Bpk2bVvfgVpFrr70WF198MU4++WSccsop+NjHPoaFhQVccsklq31oU8euXbvw2GOP+b9/9KMf4YEHHsC2bduwY8eOVTwyZr3Cdqsdtlvjw3aL2d+w3eqGbdd4bFi7ZRl78cUXWwAjP1/72tdW+9BWnVtvvdXu2LHDZllmTznlFPvtb397tQ9pKvna177W+hm6+OKLV/vQmHUK261u2G6NB9stZn/Ddmt52HatzEa1W9yHjWEYhmEYhmEYZkpZt1UiGYZhGIZhGIZh1jrssDEMwzAMwzAMw0wp7LAxDMMwDMMwDMNMKeywMQzDMAzDMAzDTCnssDEMwzAMwzAMw0wp7LAxDMMwDMMwDMNMKeywMQzDMAzDMAzDTCnssDEMwzAMwzAMw0wp7LAxDMMwDMMwDMNMKeywMQzDMAzDMAzDTCnssK0zfvrTn+KQQw7B448/vkfPc+aZZ+Lqq6/eK8e0p7zlLW/BRz7ykdU+DIZh9iFsuxiGWWuw3WL2F8Jaa1f7IJi9x7XXXoudO3fiU5/61B49z/PPP480TbF58+a9dGS7z4MPPohf+qVfwo9+9CNs2bJltQ+HYZh9ANsuhmHWGmy3mP0FK2zriMXFRdx+++249NJL9/i5tm3btkeGI8/zPT4Gx2te8xq86lWvwp133rnXnpNhmOmBbRfDMGsNtlvM/oQdtinmiCOOwMc//vFo7lvf+hZmZ2fxv//7vyP7/+u//it6vR5OO+20aP7MM8/EVVddhauvvhoHHHAADj30UHzqU5/CwsICLrnkEmzevBnHHHMM/u3f/i16DJXnjTG4+eabccwxx6DX62HHjh246aabov2vvPJKXH311TjooINw3nnnAQCGwyHe9a534ZBDDkG/38cb3vAGfPe7340e9653vQvXXXcdtm3bhu3bt+MDH/jAyHt785vfjL/7u7+b6PwxDLM6sO0KsO1imLUB260A263pgx22KebUU0+NLjRrLa6++mpcc801OOqoo0b2/8Y3voGTTjqp9bnuuOMOHHTQQbj33ntx1VVX4YorrsBFF12EM844A/fffz/e9KY34W1vexsWFxdbH3/DDTfgwx/+MN73vvfhoYcewuc+9zkceuihI6+RZRm++c1v4pOf/CQA4LrrrsMXvvAF3HHHHbj//vtxzDHH4LzzzsPzzz8fPW5ubg7f+c53cPPNN+OP//iP8ZWvfCV67lNOOQX33nsvhsPheCePYZhVg21XgG0Xw6wN2G4F2G5NIZaZWm6++Wb78z//8/7vO+64w27fvt3u3Lmzdf8LLrjAvuMd7xiZf+Mb32jf8IY3+L/LsrRzc3P2bW97m5/7yU9+YgHYe+65xz/m93//96211r788su21+vZT33qU53H+sY3vtGeeOKJ0dyuXbtsmqb2s5/9rJ/L89wefvjh9uabb249Nmutfd3rXmff+973RnPf+973LAD7+OOPdx4DwzDTAduuANsuhlkbsN0KsN2aPlhhm2JOO+00PPzww9i1axcWFhbwB3/wB/jTP/1TbNq0qXX/paUl9Pv91m2/8Au/4MdKKRx44IE4/vjj/ZxbuXn22WdHHvvwww9jOBzinHPOWfZ4mytNP/zhD1EUBV7/+tf7uTRNccopp+Dhhx9uPTYAOOyww0aOY2ZmBgA6V6MYhpke2HYF2HYxzNqA7VaA7db0kaz2ATDdnHTSSZBS4v7778d//ud/4uCDD8Yll1zSuf9BBx2EF154oXVbmqbR30KIaE4IAaCKm27iLtyVmJubG2u/cY6teRxOzj/44IN36zUYhtl/sO0KsO1imLUB260A263pgxW2KWZ2dhbHH388vvCFL+CWW27BRz/6UUjZ/S878cQT8dBDD+314/jZn/1ZzMzM4O67757oca961at8fLWjKAp897vfxatf/eqJnuvBBx/EEUccgYMOOmiixzEMs/9h2xVg28UwawO2WwG2W9MHK2xTzmmnnYZbb70VF1xwAc4888xl9z3vvPNwww034IUXXsABBxyw146h3+/jve99L6677jpkWYbXv/71eO655/D9739/2XK2c3NzuOKKK/Ce97wH27Ztw44dO3DzzTdjcXFx4jK43/jGN/CmN71pT98KwzD7CbZdFWy7GGbtwHargu3W9MEO25RzwgknIE1T/Pmf//mK+x5//PF47Wtfi7//+7/HO9/5zr16HO973/uQJAne//7348c//jEOO+ww/O7v/u6Kj/vwhz8MYwze9ra3YefOnTj55JPx7//+7xMZt8FggC996Uv48pe/vCdvgWGY/QjbLrZdDLPWYLvFdmtaEdZau9oHwXRz1lln4bWvfS0+8pGPjLX/XXfdhfe85z148MEHl5Xy1xKf+MQn8MUvfhH/8R//sdqHwjDMmLDtYtvFMGsNtltst6YVVtimEGMMnnvuOdx+++34wQ9+gH/+538e+7G/+qu/ih/84Ad46qmncOSRR+7Do9x/pGmKW2+9dbUPg2GYFWDbFcO2i2GmH7ZbMWy3phNW2KaQr3/96zj77LNx7LHH4tOf/jROPfXU1T4khmGYFWHbxTDMWoPtFrMWYIeNYRiGYRiGYRhmSlkfAbcMwzAMwzAMwzDrEHbYGIZhGIZhGIZhphR22BiGYRiGYRiGYaYUdtgYhmEYhmEYhmGmFHbYGIZhGIZhGIZhphR22BiGYRiGYRiGYaYUdtgYhmEYhmEYhmGmFHbYGIZhGIZhGIZhphR22BiGYRiGYRiGYaYUdtgYhmEYhmEYhmGmFHbYGIZhGIZhGIZhppT/D+X/iTkJn1xfAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2wAAAErCAYAAACirgCsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD0S0lEQVR4nOx9e7wkRXn2U1XdPXN2YReXq+gKKKggCgqyYkQwri6IRmJQ4Kfc5JLwiYprMEC4SnRBkCwR4gYFMVEE8YIxKggrBA0bFPiIEgFv3D5xFxBhb+ec7q6q74/uqnqrp3vOzDlz9ly2nt9vfqdOdXVPdc/0O/3W877Py7TWGgEBAQEBAQEBAQEBAQHTDnyqJxAQEBAQEBAQEBAQEBBQj+CwBQQEBAQEBAQEBAQETFMEhy0gICAgICAgICAgIGCaIjhsAQEBAQEBAQEBAQEB0xTBYQsICAgICAgICAgICJimCA5bQEBAQEBAQEBAQEDANEVw2AICAgICAgICAgICAqYpgsMWEBAQEBAQEBAQEBAwTREctoCAgICAgICAgICAgGmK4LAFBAQETBA777wzjjvuuKmeRt+44447wBjDHXfcMdVT2ezBGMP5558/1dPwcP7554MxNtXTCAgICNjsERy2gICAWYlrr70WjDH7arfbePnLX45TTz0Va9asmerp9YVPf/rTuOmmm6Z6GgGzEBs3bsT5558fnPaAgICAaYxoqicQEBAQMJn45Cc/iV122QUjIyP4yU9+gs9//vP4/ve/jwceeABz5swZyHs8/PDD4Hzy1r8+/elP4/DDD8dhhx02ae8RMLUYHh5GFG36n+SNGzfiggsuAAAcdNBB3razzz4bZ5xxxiafU0BAQECAj+CwBQQEzGoccsgh2HfffQEAJ554Irbeemtcdtll+M53voOjjjqqdp8NGzZg7ty5Pb9Hq9UayFwDpj/yPIdSCkmSDPS47XZ7oMcbBKIomhInMiAgICDARwiJDAgI2Kzw53/+5wCARx55BABw3HHHYYsttsBvf/tbvOMd78CWW26J97///QAKx+3jH/84Fi5ciFarhVe84hW49NJLobX2jlmXw/bcc8/htNNOs/vuuuuuuPjii6GU8sYppXD55Zfj1a9+NdrtNrbddlscfPDBuOeeewAUuU0bNmzAl7/8ZRveSd/r97//PT74wQ9i++23R6vVwqte9Spcc801Hef9//7f/8Nhhx2GuXPnYrvttsPHPvYxjI6Ojvs6Pvroo2CM4dJLL8VVV12Fl73sZWi1Wnj961+Pn/3sZx3jf/SjH+GAAw7A3LlzsdVWW+Hd7343HnzwwTHfJ01TnHvuudhnn30wf/58zJ07FwcccABuv/32xvn84z/+I3baaScMDQ3hwAMPxAMPPOCNNZ/57373OyxZsgRz587FjjvuiE9+8pPeZ0uPuXz5cnuOv/zlL3s6py996UtgjHV8Hp/+9KfBGMP3v/9921fNYTP5Y7/61a/wgQ98APPnz8e2226Lc845B1prPPHEE3j3u9+NefPmYYcddsBnP/vZvq/bo48+im233RYAcMEFF9jvl5lHXQ5bnue48MIL7bXYeeedcdZZZ3V8l3beeWe8853vxE9+8hPst99+aLfbeOlLX4p//dd/9cZlWYYLLrgAu+22G9rtNrbeemu86U1vwq233oqAgICAgAJh6SwgIGCzwm9/+1sAwNZbb2378jzHkiVL8KY3vQmXXnop5syZA601/uIv/gK33347TjjhBOy999645ZZbcPrpp+P3v/89/vEf/7HxPTZu3IgDDzwQv//97/HXf/3XeMlLXoK77roLZ555Jv7whz9g+fLlduwJJ5yAa6+9FocccghOPPFE5HmOH//4x/jv//5v7Lvvvvi3f/s3nHjiidhvv/1w8sknAwBe9rKXAQDWrFmDN7zhDWCM4dRTT8W2226LH/zgBzjhhBOwdu1anHbaaQCKcLu3vvWtePzxx/GRj3wEO+64I/7t3/4NP/rRjyZ8Pa+77jqsW7cOf/3Xfw3GGD7zmc/gPe95D373u98hjmMAwG233YZDDjkEL33pS3H++edjeHgYn/vc5/Bnf/ZnuO+++7Dzzjs3Hn/t2rX44he/iKOOOgonnXQS1q1bh6uvvhpLlizBT3/6U+y9997e+H/913/FunXr8KEPfQgjIyO4/PLL8ed//uf4xS9+ge23396Ok1Li4IMPxhve8AZ85jOfwc0334zzzjsPeZ7jk5/8pHfML33pSxgZGcHJJ5+MVquFBQsW9HROxx9/PL71rW9h6dKleNvb3oaFCxfiF7/4BS644AKccMIJeMc73jHm9T3iiCOw++6746KLLsL3vvc9/MM//AMWLFiAf/mXf8Gf//mf4+KLL8ZXv/pV/O3f/i1e//rX481vfnPP123bbbfF5z//eZxyyin4y7/8S7znPe8BALzmNa9pnM+JJ56IL3/5yzj88MPx8Y9/HHfffTeWLVuGBx98EN/+9re9sb/5zW9w+OGH44QTTsCxxx6La665Bscddxz22WcfvOpVrwJQOIXLli2z3/G1a9finnvuwX333Ye3ve1tY16fgICAgM0COiAgIGAW4ktf+pIGoG+77Tb99NNP6yeeeEJff/31euutt9ZDQ0P6//2//6e11vrYY4/VAPQZZ5zh7X/TTTdpAPof/uEfvP7DDz9cM8b0b37zG9u300476WOPPdb+f+GFF+q5c+fqX/3qV96+Z5xxhhZC6Mcff1xrrfWPfvQjDUB/5CMf6Zi/Usq2586d6x3f4IQTTtAvfOEL9TPPPOP1H3nkkXr+/Pl648aNWmutly9frgHor3/963bMhg0b9K677qoB6Ntvv73j2GPhkUce0QD01ltvrZ999lnb/53vfEcD0N/97ndt395776232247/cc//tH2/c///I/mnOtjjjmm6/vkea5HR0e9vj/96U96++231x/84Ac75kM/W621vvvuuzUA/bGPfcz2mc/8wx/+sO1TSulDDz1UJ0min376ae+Y8+bN00899ZQ3h17P6Q9/+INesGCBftvb3qZHR0f1a1/7Wv2Sl7xEP//8897xAOjzzjvP/n/eeedpAPrkk0/2rsWLX/xizRjTF110kXc9hoaGvO9Ir9ft6aef7njv6hwM7r//fg1An3jiid64v/3bv9UA9I9+9CPbt9NOO2kA+s4777R9Tz31lG61WvrjH/+47dtrr730oYce2vHeAQEBAQEOISQyICBgVmPx4sXYdtttsXDhQhx55JHYYost8O1vfxsvetGLvHGnnHKK9//3v/99CCHwkY98xOv/+Mc/Dq01fvCDHzS+54033ogDDjgAL3jBC/DMM8/Y1+LFiyGlxJ133gkA+OY3vwnGGM4777yOY4wlp661xje/+U28613vgtbae58lS5bg+eefx3333WfP5YUvfCEOP/xwu/+cOXMsYzcRHHHEEXjBC15g/z/ggAMAAL/73e8AAH/4wx9w//3347jjjsOCBQvsuNe85jV429ve5oUF1kEIYfPFlFJ49tlnkec59t13X3t+FIcddpj32e63335YtGhR7fuceuqptm1YyjRNcdttt3nj/uqv/sqGDvZ7TjvssAOuvPJK3HrrrTjggANw//3345prrsG8efO6nrfBiSee6F2LfffdF1prnHDCCbZ/q622wite8Qp7zc3Yfq5bLzDntXTpUq//4x//OADge9/7nte/xx572O8DAGy77bYd89xqq63wv//7v/j1r389rjkFBAQEbA4IIZEBAQGzGldeeSVe/vKXI4oibL/99njFK17RoegYRRFe/OIXe32PPfYYdtxxR2y55ZZe/+677263N+HXv/41fv7zn3sP+RRPPfUUgCI8c8cdd/Qe+nvF008/jeeeew5XXXUVrrrqqq7v89hjj2HXXXftcAJf8YpX9P2+VbzkJS/x/jfO25/+9Cf73k3vtfvuu+OWW24ZU+Tly1/+Mj772c/ioYceQpZltn+XXXbpGLvbbrt19L385S/H17/+da+Pc46XvvSlHeOAIreLovo+/Z7TkUceia985Sv43ve+h5NPPhlvfetbm061A9XrO3/+fLTbbWyzzTYd/X/84x+9vn6uWy947LHHwDnHrrvu6vXvsMMO2GqrrTruiercgeL7Yb4bQKHi+u53vxsvf/nLseeee+Lggw/G0Ucf3TUsMyAgIGBzQ3DYAgICZjX2228/qxLZhFarNVBZfqUU3va2t+ETn/hE7XbjGEz0PQDgAx/4AI499tjaMZvioVcIUduvK8Is48VXvvIVHHfccTjssMNw+umnY7vttoMQAsuWLbP5iJONoaGhCe3/xz/+0YrI/PKXv4RSqufvW9317eWaT+Z167WYdi/zfPOb34zf/va3+M53voMf/vCH+OIXv4h//Md/xIoVKzx2MSAgIGBzRnDYAgICAmqw00474bbbbsO6des8lu2hhx6y25vwspe9DOvXr8fixYu7vsfLXvYy3HLLLXj22We7smx1D8jbbrstttxyS0gpx3yfnXbaCQ888AC01t6xHn744a77DQLmOtW910MPPYRtttmmK7v2jW98Ay996UvxrW99y5t7XRgpgNrQul/96lcdwiZKKfzud7/znOdf/epXANBVBAXo/5w+9KEPYd26dVi2bBnOPPNMLF++vCOscNDo9br16nwBxXkrpfDrX//aMs1AIX7z3HPPdb0numHBggU4/vjjcfzxx2P9+vV485vfjPPPPz84bAEBAQElQg5bQEBAQA3e8Y53QEqJK664wuv/x3/8RzDGcMghhzTu+773vQ+rVq3CLbfc0rHtueeeQ57nAIrcKK21LVxMQVmIuXPn4rnnnvO2CyHwV3/1V/jmN7/ZIVsPFCGT9FyefPJJfOMb37B9GzdubAylHCRe+MIXYu+998aXv/xl7xweeOAB/PCHPxxTKdGwNPR63H333Vi1alXt+Jtuugm///3v7f8//elPcffdd9d+XvSz1VrjiiuuQBzHY4Ys9nNO3/jGN3DDDTfgoosuwhlnnIEjjzwSZ599tnUOJwu9XjdTPL76/aqDOS+qcgoAl112GQDg0EMP7Xue1TDOLbbYArvuuuuESk4EBAQEzDYEhi0gICCgBu9617vwlre8BX//93+PRx99FHvttRd++MMf4jvf+Q5OO+00K61fh9NPPx3//u//jne+851WxnzDhg34xS9+gW984xt49NFHsc022+Atb3kLjj76aPzTP/0Tfv3rX+Pggw+GUgo//vGP8Za3vMWKYuyzzz647bbbcNlll2HHHXfELrvsgkWLFuGiiy7C7bffjkWLFuGkk07CHnvsgWeffRb33XcfbrvtNjz77LMAgJNOOglXXHEFjjnmGNx777144QtfiH/7t3+zD+sUd9xxB97ylrfgvPPO8+qCTQSXXHIJDjnkEOy///444YQTrAT+/Pnzx3yPd77znfjWt76Fv/zLv8Shhx6KRx55BCtWrMAee+yB9evXd4zfdddd8aY3vQmnnHIKRkdHsXz5cmy99dYd4antdhs333wzjj32WCxatAg/+MEP8L3vfQ9nnXVWY+5hv+f01FNP4ZRTTvE+yyuuuAK33347jjvuOPzkJz8ZaCguRa/XbWhoCHvssQduuOEGvPzlL8eCBQuw5557Ys899+w45l577YVjjz0WV111FZ577jkceOCB+OlPf4ovf/nLOOyww/CWt7yl73nuscceOOigg7DPPvtgwYIFuOeee/CNb3zDE4QJCAgI2OwxJdqUAQEBAZMMI+v/s5/9rOu4Y489Vs+dO7d227p16/THPvYxveOOO+o4jvVuu+2mL7nkEk9yX+tOWX+z75lnnql33XVXnSSJ3mabbfQb3/hGfemll+o0Te24PM/1JZdcol/5ylfqJEn0tttuqw855BB977332jEPPfSQfvOb36yHhoY0AO+91qxZoz/0oQ/phQsX6jiO9Q477KDf+ta36quuusqbz2OPPab/4i/+Qs+ZM0dvs802+qMf/ai++eabO2T9v/vd72oAesWKFV2vm5G8v+SSSzq2oUYm/rbbbtN/9md/poeGhvS8efP0u971Lv3LX/6y63toXcjtf/rTn9Y77bSTbrVa+rWvfa3+j//4D33sscfqnXbaqXY+n/3sZ/XChQt1q9XSBxxwgP6f//kf75jmM//tb3+r3/72t+s5c+bo7bffXp933nlaStnTOfZyTu95z3v0lltuqR999FFvP1P64OKLL268ZkZS35QYqM69igMPPFC/6lWv6vu6aa31XXfdpffZZx+dJIk3j6qsv9ZaZ1mmL7jgAr3LLrvoOI71woUL9ZlnnqlHRka8cTvttFOtXP+BBx6oDzzwQPv/P/zDP+j99ttPb7XVVnpoaEi/8pWv1J/61Ke8eyQgICBgcwfTekCZ4QEBAQGbKRYuXIglS5bgi1/84lRPZcL4xCc+ga997Wv4zW9+g1arNdXT6RmPPvoodtllF1xyySX427/9265jjzvuOHzjG9+oZegCAgICAgKmG0IOW0BAQMAEkGUZ/vjHP3bIrM9U3H777TjnnHNmlLMWEBAQEBAwmxFy2AICAgLGiVtuuQXXX389hoeH+6qtNZ3xs5/9bKqnEBAQEBAQEEAQHLaAgICAceKiiy7Cb37zG3zqU5/C2972tqmeTkBAQEBAQMAsRMhhCwgICAgICAgICAgImKYIOWwBAQEBAQEBAQEBAQHTFMFhCwgICAgICAgICAgImKYIDltAQEBAQEBAQEBAQMA0RXDYAgICAgICAgICAgICpimCwxYQEBAQEBAQEBAQEDBNERy2gICAgICAgICAgICAaYrgsAUEBAQEBAQEBAQEBExTBIctICAgICAgICAgICBgmiI4bAEBAQEBAQEBAQEBAdMUwWELCAgICAgICAgICAiYpggOW0BAQEBAQEBAQEBAwDRFcNgCAgICAgICAgICAgKmKYLDFhAQEBAQEBAQEBAQME0RHLaAgICAgICAgICAgIBpiuCwBQQEBAQEBAQEBAQETFMEhy0gICAgICAgICAgIGCaIjhsAQEBAQEBAQEBAQEB0xTBYQsICAgICAgICAgICJimCA5bQEBAQEBAQEBAQEDANEVw2AICAgICAgICAgICAqYpgsMWEBAQEBAQEBAQEBAwTREctoCAgICAgICAgICAgGmK4LAFBAQEBAQEBAQEBARMUwSHLSAgICAgICAgICAgYJoiOGwBuPbaa8EYa3z993//91RPMSAgIMBDsFsBAQEzEcF2BYwH0VRPIGD64JOf/CR22WWXjv5dd911CmYTEBAQMDaC3QoICJiJCLYroB8Ehy3A4pBDDsG+++471dMICAgI6BnBbgUEBMxEBNsV0A9CSGRATzjvvPPAOcfKlSu9/pNPPhlJkuB//ud/pmhmAQEBAZ3QWmPnnXfGu9/97o5tIyMjmD9/Pv76r/96CmYWEBAQ0B0HHXRQY8jktddeO9XTC5gCBIYtwOL555/HM8884/UxxrD11lvj7LPPxne/+12ccMIJ+MUvfoEtt9wSt9xyC77whS/gwgsvxF577TVFsw4ICNic0c1ufeADH8BnPvMZPPvss1iwYIHd/t3vfhdr167FBz7wgU093YCAgAAA3W3X3//93+PEE0/0tn3lK1/BLbfcgu22225TTjNgmoBprfVUTyJganHttdfi+OOPr93WarUwMjICAHjggQewzz774JhjjsEll1yCPffcEy984QuxatUqRFHw/QMCAjYderFbv/rVr/CKV7wCn//85/E3f/M3dvu73/1u/PznP8fvfvc7MMY21ZQDAgICen7morjrrrtw0EEH4eijj8bVV1892VMMmIYIT9kBFldeeSVe/vKXe31CCNvec889ccEFF+DMM8/Ez3/+czzzzDP44Q9/GJy1gICAKUM3u/Xyl78cixYtwle/+lXrsD377LP4wQ9+gE984hPBWQsICJgyjPXMZbB69Wocfvjh2HvvvfHP//zPm2p6AdMM4Uk7wGK//fYbMwH29NNPx/XXX4+f/vSn+PSnP4099thjE80uICAgoBNj2a1jjjkGp556Kh577DHstNNOuPHGG5FlGY4++uhNOMuAgIAAH708c+V5jve9732QUuJb3/oWWq3WJppdwHRDEB0J6Au/+93v8Otf/xoA8Itf/GKKZxMQEBDQHUceeSTiOMZXv/pVAEUeyL777otXvOIVUzyzgICAgO44/fTTsWrVKnz961/Hi1/84qmeTsAUIjhsAT1DKYXjjjsO8+bNw1lnnYWvfe1r+Na3vjXV0woICAhoxIIFC3DooYfiq1/9Kh577DH813/9V2DXAgICpj2uv/56LF++HJdeeikOPPDAqZ5OwBQjOGwBPeOyyy7DXXfdhauuugoXXngh3vjGN+KUU07pUDkKCAgImE44+uij8ctf/hKnn346hBA48sgjp3pKAQEBAY144IEHcOKJJ+IDH/gAPvrRj071dAKmAUIOW4DFD37wAzz00EMd/W984xsxOjqKc845B8cddxze9a53ASiUjvbee2/8n//zf/D1r399U083ICAgoKvdeulLXwoAOPTQQ7H11lvjxhtvxCGHHBJksQMCAqYc3WyXUZF885vfjK985Ssd241tC9h8EBy2AItzzz23tv+LX/wi/uVf/gXbbLMNli9fbvt32203LFu2DB/96Efx9a9/He973/s20UwDAgICCjTZrS996Uv2oSZJEhxxxBH453/+5xAOGRAQMC3QzXY9/fTT2LBhA04++eTa7cFh2/wQ6rAFBAQEBMx6fOxjH8PVV1+N1atXY86cOVM9nYCAgICAgJ4RctgCAgICAmY1RkZG8JWvfAV/9Vd/FZy1gICAgIAZhxASGRAQEBAwK/HUU0/htttuwze+8Q388Y9/DMn7AQEBAQEzEsFhCwgICAiYlfjlL3+J97///dhuu+3wT//0T9h7772nekoBAQEBAQF9I+SwBQQEBAQEBAQEBAQETFOEHLaAgICAgICAgICAgIBpiuCwBQQEBAQEBAQEBAQETFNsljlsSik8+eST2HLLLcEYm+rpBMwiaK2xbt067LjjjuC8+3rIyMgI0jRt3J4kCdrt9qCnGDBDEexWwGSiV9s1lt0Cgu0KcAh2K2AysTnZrc3SYXvyySexcOHCqZ5GwCzGE088gRe/+MWN20dGRjC05QIgH24cs8MOO+CRRx6Z1gYkYNMh2K2ATYFutqsXuwUE2xXgEOxWwKbA5mC3NkuHbcsttwQAnHXjnWjP2QLDqcJIJgEAo7lrp7mCVIUmSyalbecKti2Vtm0DRf6vbusFgherUJwzry+JitWDiANx2U6EsP3tWKBVtue2Igwlrn9OJGx7y6RoD0UCc007Lsa2IoZWuUrRjhgSUcwh1jlYNgIAYNlG106HgXQjAEBvWAc1uqG4BhvWQ4+W/cMbIMuVDTmSIt9Y3DQqk8iHi36V55BZXrTTHFqpYt8sh5LKXgfbT/r6ARNuBYaR1RguOFBuY5zbbUxwiDiybR4V7WgoAY+LaydaLYh2AgAYBsPLP3Sx/Y41IU1TIB9GvOdRgIg7B8gMqx/4GtI07ct4XHnllbjkkkuwevVq7LXXXvjc5z6H/fbbr3H8jTfeiHPOOQePPvoodtttN1x88cV4xzveAQDIsgxnn302vv/97+N3v/sd5s+fj8WLF+Oiiy7Cjjvu2POcAgYD852694GHMWeLLSFLvSgN2LbSZQcABQ0jKUXNUFVmSqHeRnF0robTBXJinsBYzXjmxjAAnOxsWhywq+6cuePTdVLGmPde9pikn74zZ8weh2kNaFW2ic3Qyl0IrYpxpt9ur4w3x7Bj6LG1P5Ycx3tfRfatHLtjjpVtHljnSrKmfabNGFDaMs246+cRtL3YAmAc69atxy57v6Gr7RrTbgHjtl0BsxPm+/TId6/GlnP874NW0v3jtf3vvZbS7yvHaqXcflra5wOQfm9fJe17aqWgS8OopfKeLczzhZYSWtf0K22fS2g/AG+8m79rK9V5T/fyPEOfXQB4bJL3XGOeY5jfZ/q54GCl4aT9jHEwIfxjCP9ZyO7HORgX5USEtTFMiOL/YoLuGYu5fsa5G1OOs/tW+uzxzXnQ/YoOrNuwEbu864TNwm5tlg6beUBoz9kC7blbQscSPC9umChXiMp2KlWjYybJTdfNKevFYROcNf4vyi+u4Mz2C86QCONgceuwJaQ9lAi0jZMWcQyVzsWcWGBO6ZwV7aLfOGYtwdC2ziBDy3PYii86y2KwrHBQWBqD5UVbt2Oo4VbRHmpDDRfOmx5pQ48WDp5KRyBHhsp2DpllpF3jsBFjSA1dnYHTUnb0VeEZBa+fOG+83tAxzsGT4pYRcUTasXXYRDnHXkM/eGsumEg6+rXsTt3X4YYbbsDSpUuxYsUKLFq0CMuXL8eSJUvw8MMPY7vttusYf9ddd+Goo47CsmXL8M53vhPXXXcdDjvsMNx3333Yc889sXHjRtx3330455xzsNdee+FPf/oTPvrRj+Iv/uIvcM899/Q9v4CJwXyntpy3JeZsMQ9G4FdqQBHnzZgcrZ0zRv2DXteQeM1X2HPYwGodOOuMUQeNOSes6oBRJ43eN76zR8czb7sb478f4Dtsxf/EITOojLHjascq+/DX3QHsdPaqTqAdoypzoWhy2OrgOWzmonLnyFGHjXFoHtmxmkd2XC+2q8luAeOzXQGzF+b7tEUEbBm776iW0j2YK7+tOxaRNMCMs6QAVv7WMwkN47ApQJfOmCaOlnbOmMpy9zwhpfecoczzh+ew1TtySlWcupoxBoocAwDME0h1nJb1hpmJmoWzivNmHCMump9dqDPGqRPmjXH95nicLFi79xFgopg/j7V1DplWYOVnwLQAdHm2TIGVnx+YAJh28zaGnLvzZ1wTR81vV5/htDVjs99uBdGRgIApBGMCjNe8WL1j2Q2XXXYZTjrpJBx//PHYY489sGLFCsyZMwfXXHNN7fjLL78cBx98ME4//XTsvvvuuPDCC/G6170OV1xxBQBg/vz5uPXWW/G+970Pr3jFK/CGN7wBV1xxBe699148/vjjEzrvgICAmYtGuzVO2xUQEBAw2ZjpdmuzZNgMDGtF2ask4rbdUhw5Ydgm4/3rEFVCIelc69qUYYttOCNHbM4j4mgRts0waO2IQ5SrEvYvJ+FE1YkxElrDzaqLAFTZTtpghuVSyq4GaM6ho5Kda7XBk4Jt03nqVrXIypeWCkqSsAXSb6BrwgoAeOGTgwJvWIFiNatU1VCOsSDiGCyqYdhYf9+3NE1x77334swzz3Tz5hyLFy/GqlWravdZtWoVli5d6vUtWbIEN910U+P7PP/882CMYauttuprfgGDBWcFswb44YhKa7tgqQBw7W5mw7bVLNh2Hh+dbJV5X9uPelaLMml0v17CHRkZT8c0vb/rr59v0VG+o1aORfIGqGLVF7AMl2a8mZkzh6uGTRLmTVcZvHJfyrzZMbyGjbPvKbxj9wQSIaArrJpnw+0b9b9u22S3imOH0q4BndCjI9AR83+7TTgjCYf0whxpP3m2cCGR0j5DNLFhMsu8ZwhJxxvGjDJvivZnlecSx/K5fhIeqTSUdGGWbu5lyHqFRes3taPKrAEAF8xj4Rw7xmwIIxfcjvGZMv+ZhsexfwzyzMPjyBtLU0VMv4jjxmcky9RxFx6pCfNXTqjsF17KCkj4pbmCZruJ3uoFM91uBYetdHiMA1SXkzbWMeraTX1NTlov44UNBWL2oYtzZvtjzhCVN0vMGWLSNk5aizhsMeco/ThEJrUB7oGKM/cgpOF+7BknP/wicQ8qAHgR7QgthHXSVBSDtYoNOkuh20UYJPIUPC/bSjYaZIOqkzaWsasNm+xyjH6MZ2Mogexvlcas7nSg7Fu7dq3X3Wq10Gq1OoY/88wzkFJi++239/q33357PPTQQ7XvvXr16trxq1evrh0/MjKCv/u7v8NRRx2FefPmNZ5TwOSi6hBxraGsM8RseKRggKYOjq63PbWhj972+tBGbw59hjjWvXcvjll1PtX37ArimOhKv3Wk6HHI9dKanHVTzhl3IVjeWOrI0f6aPLZah44cu24OHWhyxlg1PJJ64hz9OG6Ndgvw81MCAkrobARqhMZmy54csuLv2GGK/TpmMsvte/qhkoo4gc4Zk1nVSXOOmbK5cDS3TXt/zbHt+Va1DxpCInldSCQxkH4YpHPeqJPGOfMdOeK8iZh3ji+dK+rQFQ5bmbcfR8gH5Mh5z1HUMavNbSPOXrmPznp32Ga63QohkQEBUwgexY0vAFi4cCHmz59vX8uWLZuSeWZZhve9733QWuPzn//8lMwhICBgeqCb3TK2KyAgIGA6Yabbrc2aYYsFRyIKdm0sVk0QJgtwq7yCOTXHpu22r4Fdq1sxtu9bs4kz5jFvnDBspj/mzPULZkMlk6jCyHF3fvY8jRJQdV5EYQy8XIHSERC3zQk6Fk7EQEk9i1YbOiNMWsmqaSUB06aCIZWVN4OmMEhvvzH6vXALsq2qJOXGyzHf11sZUv2tgYzFsD3xxBMem1XHrgHANttsAyEE1qxZ4/WvWbMGO+ywQ+0+O+ywQ0/jjbP22GOP4Uc/+lFg16YYjDDsAKDAwA1bw/z7lpI4TaGQdeankR1j9WN6CWvsJZyx25zq4NQd67frpgMx4Sk76rHYpRpGq4Mxs+16oZMO5q1WdER1Hqvm/TvUJJum3ci2MRIlEXnhkr1gpq9UB2x6qOGN0EyhXu2xXrijVvCDiHxQgTIlFVSa2/1MWykFlWad/RUmTZbq4EpqqNS1TX+VPZOpmbvPttWFP7o5kr4ewyPrwiBpCGQR+si9/82YuvBIkYhaFk7Ewu7LS/VwLhhELOzxKPNmRNcKMbbC2eGcQ3r9RVuK1IVhJlFFvKQ/5s2dKC9EtoYDwxYQELAJwEUMHiWdr1J6dt68ed6ryWFLkgT77LMPVq5cafuUUli5ciX233//2n32339/bzwA3Hrrrd5446z9+te/xm233Yatt956oqccEBAww9Fot4jtCggICJhOmOl2a7Nm2FqC27pldRCM1TJplL0SnHWwaTFZEeHMzz3zjj9Od7njODS3jbsxLpfE9QtWaTMzl6IRcVa7Qg7ALXszDl2yZwzw8yKMVLTKgVI+lancT9qvq6FSYcd6keivRR0bRmqv0O06T+3/BcPm5qJpbh1l3ppYvBJMZ31Nl8UJeNyZBKvQv3jK0qVLceyxx2LffffFfvvth+XLl2PDhg04/vjjAQDHHHMMXvSiF9mwyo9+9KM48MAD8dnPfhaHHnoorr/+etxzzz246qqrABTO2uGHH4777rsP//Ef/wEppc1vW7BgAZKkPnk3YHLBSxbNpF8zBmiSb+XlTo/BVNXlngHd88+aJPbrcs3oMVlVsh4oGaWaiWnCTPXC/PQpnKE1oMe4OCYXkDPmREm89xS1TGBjTTbzv51AAwtXN175Y2uZvbFAc/gYd+Ikhl3rh2FrsFvA+GxXwOyHTkegIz9SZkz5fCI+5rFnsoZhS3Nb+kelmd9PctgoM2baMqW5cPT4rl3NYaOMnKb5bJXcNUXsgdQalFiTdTaxC2gUl312q0R2OfaMEfaKWfZMxKIxh40nfnkAEZM8tIRDJMVnwDiDMCxcHIGPFJL4PInARgyTFoOP1LBqWeQJuXlMHSk90K3cgOkHiu9Vr5jpdmuzdtiGSB0y6gTFJDyQhhvGpiYZ59bpiTm3/c5xI84Sqz4I+Qn8Y6HP+7mxLpKZGxUNoIqQTi3SOW/MOx4RGuGRPQsdAZB5OcQpRmqtwKKah5BuRWLpedT09fLgVlukFjR0iii1qdw5j3kGnaV2P52ntt8L2yTj65w3JofHnKM3voGib6Ttu+CII47A008/jXPPPRerV6/G3nvvjZtvvtkKizz++ONejbk3vvGNuO6663D22WfjrLPOwm677YabbroJe+65JwDg97//Pf793/8dALD33nt773X77bfjoIMO6nuOARNHsQjkwv2Yhr1htNY9qUD2IgbS5IxRW9JRcBrkHuxWX8z2jy2ewUDus6YwbaIA2eR4aO0/PNXNqC4yPu8SEt1U+4cTu2lqFFXFW7xrN4ZT1yFGUje+F9QW1y7ESHQfNqdbaNF4bFfA7IfKJeRI2uiw1SlD19VGqypK2/qtRHREpnltuKNMpXWkZCohMxpOaRwzaZ0ulcpax4weR2mN1KiJE4dMeo5ac1+13QRq1/026/jfjDHthDzLMuGcraojR0MhXV9pv0accycSgXwkL9u5C5scSW3YpMhyF5KZxVaMRNH+OAIrP6fuNd/qHTYmOFTe++L+TLdbm7XDFhAw1RBRQdFXYYpP9otTTz0Vp556au22O+64o6Pvve99L9773vfWjt95551tceaAgIAAgya7BYzfdgUEBARMJma63dqsHbY5JcNGZfJjwe3qaMyJBL4gtc9IWGFMxEgoW2VDE9E9Mb8b6KMyXfmtPkSPtb5aJ8Nt5lMNf6TiANXQS1vDiCloE/rIOBh3rBqqK8F2kmPMkldWxbtIU/eELgn+TJWMoJIe28by1PZzM0ZmTiRldMQyb5SFg1I2hJNl/Tk4g2TYAjYPGGEgTeT7rX3oQtuPJaFfZeJrWWnA3csNDFAj+zMWE1S9txvue59JI8ye2V4dX56G0rrWpmqtO5i1JttrxtePLOfRWJ5Ae/3ud8GxcIALvaefgaafQUNJAPs+PTBuHWIkjPWVdD/TV6oDNj3kSArFWK14SFVohIY8mj5fjt+wbfWsmkyllc2XqYQk7JnHsJmQyEzVCo2o1LFtMleWIUuVz6TRdlq5/cZi3ar9TagLhzT9fnhkcayE17NtIgeS8vwEYxCRYbJyy7AZxszv45aZE5lyYiWpgkjK4yUCzFzHLHdsm1RQpfAcJxL/QirbVpyDl58lJwybqoRH0rBJZMX3qlfMdLu1WTtsAQFTDZPw2oEZsNoTEBCweaLRbgHBdgUEBExLzHS7tVk7bCaHrZqfZoRIBGO2sHQhge8YtjKUFxGnzFvRJzgDK/ObmJe/1bAiTdAow8yZyyGrJIibXBa6SDNWrgZQz/JV8yz8HVwOm+2iCfBA8yp63Qo5PWZFitzMX6OZXexWiaEpB4czBm7EGkgOG1M5IIuVGpanrl+mlnnj7azIe0OZQG1y3nLHwrG8v8RVxhoYtjqRg4AAkBVVW9QeGOvbQtkzuF0LBofapCb2zGN36oUwOu79iSTgdhHIYJXcKzdedezrTQf1rFq1H+WRfHtKjjPmefnbm8sjlKImqNoq7do1LBwnucf083NvX/NZ1KFyjaldH3PXBrtltgUEVKHSDFLwMVk17cntd+aqaSkJk0ZFR6SXq2ZYtWJfRfrHZtXMvjQ/rWDV6hg2NDJvZruB1NqLiJqI6Aiv6fOYNFbkrpkxguna/kQZRo6Bm/MuGTOeCAibz8fsdRSptGyblhpaFrORqYIoc9600nZfrZRlzIRUlnnTUnmFtu13gxTj5oqDSd4xxvSZkg29YKbbrc3aYdsi5pibCLQj7tUvi0g7Kb2wiDsnLREcXNMHehM+Vz7wy4ojUPewAzSroNGHkDonra6GzljjybEbncJiz/qmdwxBhpB2xWFsDD8ylwPEMdPKGjal6x+c6DHrnDWt/VOtC/WioiqCcUTlzSuiFuJki2I/LcHy0WJf4rCxfNR9xlEbvGxDZlapiOf9GWAex/WqRTrv6zgBmw84NCKG5hpjJapqhUxRO1QT7lh1zMwPY7dFpxoxob5EMADffpE+F4LNAVU6pzzynTcTjg1Yu8SoAAkqi1fGrmj3IKXJQ5RUnX1NYiVjlO4kcA6YPT1UhaDKRSQSkt7YD10JYef2mADAua9eWavOSWdnHP8+QoIa7RYQbFdALbRWvmBIxUnz+kkNNaA31Ueq4ihT5TlvVFCEKkPSGmu2P1eeiIjvsKGjTcdQ583alC7KkL2IjVAIIgHsHDXthUQamyEYs/NKSOqOYO59BdOQpcKw1G5MMloegwitMMGcAya5DTkt6tM5MRIKE04qpPK2mc+JJ5FNJ+FJDC6JqIg0z7i80XljgvupN2NgptutzdphCwiYaoQctoCAgJmGmZ4LEhAQsPlhptutzdph2yKJsEUSQXB4TJppJ5RhgwKTZdjbyAhYVjAqTGYklK7crnIXOpdngJGIl9KvA1Y3Kc7BBKnqXn6JeBT7IYlmBVkITwDEtBnjdl8vpIhHNrSmloXrwsDVhVx2CzOSqpMlk4quZjvGTCqyMkVWqbQGMiKf68ZouxreBFqTLuZEPMbW0IPHppp2IhgSMVT0x3MglAl3HAXM556PgpnPPRsFi4qC1jztLw5aRBF41HkbMrVZ35oBXcBkWtQ2bBpA2TDS59dCNMI79WIWTZEBTWGTdlvdPOyAzlDFani3DfMUkR/6aOya1oAmds0eOoLWZnzH2xSnqp2tkhUbQ20V4Numqj2ix6sjrypB4o2lXDjTts+MYUw3RAZoP2zSCENBe2VYzHHHKtvgoYxcyHunDBvtFhBsV0A9VJpDc+GYMsqqVcIgKbMGVFg3MpZK82upPHERw5ipCttGxyjCtplnmlQ1hUGiVr6fjlHoDIWcPNERx6Q5hs2l5ihvDoUIiRlj+ovQSN0xxiDJlWXYRHVjDyhL8aLzqai0EWlu67CpNAOS2PZbVo24KQq+iJ6W7nvR03xmuN2a/jMMCJjFYJyBdVQoR21fQEBAwHRAk90y2wICAgKmG2a63dqsHbYkYmhFzMtVawmfVePZxmJwNuLymvIRsKxsZ8M2f0mPFn9lOuKKLWepFaSAcoWXG0FYNRbFrh3HYEbdhnPbZq12wb4BgIgd28ZFkd+GcvWZsHBWvpnmv5lcEB6BMZe8X5cLQlk1SWK5NV1JqjBp3mqTou1iQyY1RkrBjkwpe/xMKmRmVUtp21ZaQ42xImzksQuGrWTSBLftduQEZtoRR1Ku6CTkO5AIhqS8Xu1kC4iSSUM+CqQb7bXTJdum4zld59QxR8EhRM3KVV1fQABQ2BDpJ1rXyupXy1l4DFuNKJLK/aLXtcJJrl+TMcX/PbLLNPSEC5uMXti+yJ0jiSKw788jy18xDpe/4M2R2baGsOM1yYHVWnusf4dQQIXx12S7ImOUt2Le3yo5J0y/n8/m2oKX+W9gYEQ0gI4X5tKMmfvmUPdsIvtg2BrtljmhgIAadMtbM1Cqs78orO36tBWz0LV5a5rkXimpbC6VlpocU7sC2Q3iIlSmX2rtsWeUbTOz9/d1+xlQZp+O6QVSu1w1qf0cNpeTBo9tM+IiIOdRZdVSZSLKKGvo3tcQa0xqMHMdhYKWxX5KajBuhECYK5tAeDWRALqcmJYaujRaCgAjoVK2XANg7Qv9bphtQCnWVC0HNQZmut3arB22Nmdolw/n5sG9xQsnDABYuhHctPMRsLRo6+F1UMMbivbIRte2jtuwddhUntXWEqmC1pnwqsCbh5soBiuTJVnSLpw5AKw1BJRtnrRtm7WGrCOnRWKPo0XkeGolXdikcCFPzulD7YOP94DT0M6o4VIu3CaTGqNlkqnvpGmMlhXri3bZTx02rZGW/VI5Z6/pQcOKi3CGJDLOmHPYWpGwn3tRk8+155YJsm3BrfOWKo12Ga7aam0BbsK0so1gWenwxhtr59IExhoYtjEEJQI2XzCZ2XBciybHjIqLmDBI2q46ZqRGoa0/qKRNDKfjtaqEeI/hsFlbRn5kGRfQxmYJAZiFKM4BUdovHdkHAi3c+WkkrvYa46S/PhehIyTS2KQxHLbC1qAc60KnMqm9hy+6iNUEwanDVvYxVuu8CebUi4taofWOnGmbIwvObNgQY1VHzrQ77Us/ArdNdqvp2AEBust9QZ234n/ZsZ221Rj5EEW4ZadTp4iTpsmY6mILDSWs9lXHK3TuX0W/4iL9oHDemraVb8yYtYqF48c69i2cyaJNj2eOwSW9jgzM2B2pPGfMfDZCNNhhqcBKZ49xbo/JBHf1bAX3PvMmx0wr1fV7VcVMt1vT36UMCJjFEOWKT90rICAgYDqim90aj+268sorsfPOO6PdbmPRokX46U9/2tN+119/PRhjOOyww/p+z4CAgM0Lg7ZbmxqbNcPWKkPi2hFDUkp6stFhsDLUjaUbwA2rNrIect1zAAA1vAF641rbViPF+HxDwbDlI6OWVZNZXsuwaVLhHahn2EQS2XoVUbtlkzNFO7HsGWu1wZJ2ccykXTBuKFm4sp+OgUr88KKSbXPkOpwoSZeVastuaVgGLPdWorVl1UZzZZm0UUnaubRM2ohUtp1KheEyGTjNXXs0V45h0/UMm2kLWh+PMxvu2Iq4ZduGEoEt2sU1nVvW5AOALVoR5qRFe34rsv2ZYpDlvlIrtEQRHhnTMgtxu/aaNSHksAX0DZXbUhMAOpm0GnERphVgVq0pwyadXLbOU+jMhW9Ths2yahkJxayEeFdDVwB/ZdTKxnNhhZU0dyHaLIrBosz2W1sWKUC7nyobEsm4K20gcxdCWVnt9oSQamT9aZhSSfJDam3Fjkal9Bg2XwQJrk3CtQ2qK+t05dqxaq4z5szrj2lYN6kVan46BGcQyomRAEWIpLksgulKuCVcm0r/s/5qQg0yF+SGG27A0qVLsWLFCixatAjLly/HkiVL8PDDD2O77bZr3O/RRx/F3/7t3+KAAw7o6/0CpgbdvhcdjIqxD8qxL2OqjI1nTuU9JTSr/f77Evi07cZzgKgJafhPUyj/d89Ljt3SFSarfo517Fm32mt1bd5l327vQ8ezpgEThP8cXKOY3cWRYpz3ZW9meg7b9HcpAwJmMUTEG18BAQEB0xHd7Fa/tuuyyy7DSSedhOOPPx577LEHVqxYgTlz5uCaa65p3EdKife///244IIL8NKXvnSipxMQELAZYJB2a9myZXj961+PLbfcEttttx0OO+wwPPzww5M08wIzkmG78847cckll+Dee+/FH/7wB3z7298eV0hEO2IYihhinYOlRR4aG90APrq+bK+H2rAOAKDWPwe17k9Fe8M65OuLMdmGYeQbR8q2YdhSyJFClESlOSSRq9U1yyhMMI9hEyWTxuMIvJQ5jdoJYdsSiHbBjEVDLURzSiaNMGy8PcetUOdzwLJSgr41BKaLfputDrcWVIiS1MiCw1+pNntSJi1T2q5Qj+TK5qqN5AobM8eq0fZIuWq2fiS3TNpwKrHRMGxSYbhkKNOcsHC56mDYqrHMrC6HLeKYU+anDSURtmgV13TLdmTZtnntGFuWY0ZyhflmTEuQhGIOZWTEowRxmZmro3XoB1VVc9ofMLswKLtVlBJxTFejcIiUtp+p3O6j88zmm+ksgzZlR/LMiSVJ6cqRKOW3aa4aZdhkZw6bV6LEgAubg+u14wS6ZNhYFLv8uBbJ2SXHpiUBGBu7gGpVPIQKCxi7lSmTO+uLIBlWLVMamXR5tzSfrU6ApCqMxDld3a4RIGFAZCIsWCGSZLY74aT6MiWGgROkSC4nIgSMtGlpAKBYuc37SLRpsltmGwCsXbvW62+1Wmi1Wl5fmqa49957ceaZZ7q5cI7Fixdj1apVje//yU9+Ettttx1OOOEE/PjHP+553gH9Y1B2y4CX32l6t2qliIw7IE1eU/k911LZ/bTi4ML89ku3n9BWCEMLDi1MjhXzxyg3hsNEPDFblJqKdaSKFqtmhIXS3hiQXDGfWSvG0pwxYxvo/d8tD82gup0yabTPL6Lt2ma+Pgvnj6djzF9jm7ig15GBC8O8OZaLCWY/J879MQacFsKm7BqJxuAk0ozuzwT39ukXvditXvGf//mf+NCHPoTXv/71yPMcZ511Ft7+9rfjl7/8JebOnTvuOXbDjHTYNmzYgL322gsf/OAH8Z73vGfcx4l1bp01Nlo4bHx0PTBc/NDIdX+CMmGQ65+zIZGjf1qHdJ0Lg0zXFfvmw8VDTbZhFPmIqRPiKxfVJcsWX+DyRomFrXchEgFRhuOJdoxoqHDS4jlDxGFLEA0XzmE8N0U0x4idpK4unJTgdeFKCZwAgPm2KgFtwo8qD0CahhOZZ0ISBplLkNBH55htzCQ2ltdgY+bCINeP5lhfXqd1IzmGM+ewrRvJbHvU1EqRCjJ3ycOmrWtCkQCipMaZXT3hgiEqr+lQO8JQ6ZhtNSexzttWc3Is2KK4vv4DWoT5Ku64jgAHIiM60l9IpBCsQSVy+tPzAf1hUHaLycyrk1bUfXSLLE5QJHdhjSTcUedEuTbPoDPqsNU4aVI6R05JT7mNovp/9QfX/CB7QiNxYkMlqZgS4gRI6kIshXPSVO7UbetUMs2/NcIg2rNh7iHKOGbFgpOybeqkGfultO+8+SIlnWHagB/+SPts+DZxzDh3jhl15GLOrCNXtF2oJFDn0Jn3AaRx2OBE0RiKOklZHyGRjXbLTBbAwoULve7zzjsP559/vtf3zDPPQEqJ7bff3uvffvvt8dBDD9Ue/ic/+Qmuvvpq3H///T3PN2D8GJjdEhw8jqyd4KCKfxEUXD0tUT6aSrsddjuTHDyhRy6fr4hD0WsJZCXJ/WijzJUXnmjun1Q5xytV1VBJF+ZI28XR/HBLs52O6RXN4Ywu9HGs8EjqkPrtToct5tw+j/JEWAdMxAK8fHYSMYcw7URAxM65Ms+1XDD7LMsTpwxsvhNFW0DYdkV8jzh4dF/6t6fr14Pd6hU333yz9/+1116L7bbbDvfeey/e/OY393WsXjEjHbZDDjkEhxxyyFRPIyBgwuCCg9dQ8ToPFNtsQ7BbAbMFTXYLcLbriSeewLx582x/lV0bD9atW4ejjz4aX/jCF7DNNttM+HgBYyPYrYDZgl7s1njx/PPPAwAWLFgwoeN0w4x02AYFlqdg+ShYOmzrrbHR9ZAm9PH5P0Ktfw4AkP3pTxh9rgh3G31uPdK1BauWrtuIbEOxNJOuL1ah0w0pVFnIIhvJvTohBlopu1JQUM3lygVh1XjCEZdhetFQhKhdMGn53NRj22QZMqiyHKoMv4zmZt4qE61dYc+fE37YJuwnHSvUVRQ1jDpFRzLlwiA3Zspj1Ux7HWHV1o/kWGfao7nHqg2X/XkmkZdMXZ5JKCM6IhVk7odCahKixGm4UcRtKFIUuxs2HYmwsSXsXLaaU6zuD2fSipukWygiVEBXymNbL4lDQZTXT0X9PZRwIulNoWv6AgIAFGGPMq0XEdGKsGeEVUtHXOhjRpi0PKsfn6fWlmip/LYkddjGgLNxwg9riV3Yt60vmaeAFUdqLhHAWiZMigO8PG8e9Wm3/JBIK37UgziSC490IkjVEO2xSo5QdAgklfaJtmPOEZch7H6bsm1ln+BoleFgsfLZNidG4gsoMPJ/L2iyW4CzXfPmzfMctjpss802EEJgzZo1Xv+aNWuwww47dIz/7W9/i0cffRTvete7bJ8qv4dRFOHhhx/Gy172st5PJGCTgUdRDete/p4jB4epBatsmSEDVWFFxiqPpNJm++HC9Jj3TGbtUypt6opgyjJigjmbkXBG6rAxYkv8tkG1NpvrG9/vfJPoiPnfjKlrJ7w5DDK27JV7Hm2K/rIpJ4lwDBth25oZuchjz0zaD+fcCutR8T0muMe8GZioDZ43f9ZV9GK3egnlrkIphdNOOw1/9md/hj333LPn+fSLzcJhGx0dxejoqP2/+oEEBEwVWFS/4qOC6Mhmj2C3AqYrmuwW0J/tSpIE++yzD1auXGnzopRSWLlyJU499dSO8a985Svxi1/8wus7++yzsW7dOlx++eUdYZgBmx7BbgVMV/Rit3oJ5a7iQx/6EB544AH85Cc/Gcg8m7BZOGzLli3DBRdc0NHPso1gqSj+ljlsat1zXt5a9qeCbRv54/MYfa4QGhl9bh3StYXc/+jaUYysLYxTtqFYnc6Hc2SGIRrO7WpN1rAiLVglx2qolO+PBbIhIzQSIZlbrETITCGhK94NOSV2dbs4cDFGuCR/nWdgZXFa6PKvyqHLPC0qZqDAbf5HUSiy3E37+R80B8SsUFOGbf2IY9ieG86wvmTV1pH+bDRHOiptOy/3zVNlk5HzVLrVcpvLVr/SIqLIrgZFsbA5bNlojrjMW8vbCrldUe8UNDGgRW2dXDa3xWv7SdwHysTcmryWur6AzQuNdqsUB+mXVdPpiBtjctJG3RjK0BdiSUaAxDFsqqPAbTOr5eUhkNwDnkQQcWzbPC6OLVTLFU5Vql7CmHMiWEJYNa1sHl83u2Vm6xXRVtraZpq3Npq7aAHTzpS2ubZp7jNspp1XGLamPBVvVZwwbK0ahi0h5UiSiNuV8HbELbNmctzakcuta2bbnOiIYoUISS9soEGT3TLb+sHSpUtx7LHHYt9998V+++2H5cuXY8OGDTj++OMBAMcccwxe9KIXYdmyZWi32x0r2FtttRUATOrKdkDvaLJbPImL+948akhpmTQq6y8zF5Vk85WyHLxsSyGgStvEBIcsWfaCMSvuTRq1xITyGCMzhnEGkZT3acot2yYS0pbKFtpOcuUxZb206d+i3Vzyoxc74frqtws2NsPW0SbPnq6klMk35mOyaozkp4nEMWzF9S3ZtjiyYnpFhEXxJaiybU2sGhXl40T6nwkO3ke5h17sVr+h3Keeeir+4z/+A3feeSde/OIX9zyX8WCzcNjOPPNMLF261P6/du1aLFy40IVEZqPQI6XDtnEd1MYi9DFf+7wXBmnaI3/agJE/FQ8/o2tTjJYOW0ocNqN+OCwVuXE16pJZBWMQ5UNAwhmGSmdFRBxJVjpphKZXSpN6bhVlxBplnZgLoAw70lEMVT648Sh29dlMeJVwdZyafr61duGBUmsrkJQp56RlpK7aaK7qwyBHMttetzFDOmocNomsbKej0jps2WhunTOZDkMZsQSjeKek57QxI2bAhW2L1hCipLgBo1ggLw2zyp0zWFV2ow9T7oGH2weriDPEvF6pcixQtaVqf8DmjUa7VYZENoUyUmfMhj6mI16/sQEqdU5aL/Uj6cMU0F0ZkgluH7KqSeSC1JQ0zpuWCqJNVCeJapgRR2J5bM+DiRiQ5Y+3cE5aN7tVpxJJF5qMo0PDIKma7XAqvRqRG0k7NdfIc9iaF3+oAIlpJ5HoqX6kaY9EHO2ouAbtyCwaKWubYjKXwmGrd94EY32VuWqyW2ZbPzjiiCPw9NNP49xzz8Xq1aux99574+abb7ZCJI8//rj9HgVMfzTZLdFOIJLY1VaTzklTvNl5q/YxwSGNYiSpZ6vJ4o/KcutEyERCpma8hixFMWQirAiciAVU27ynQtR2z1dGNE5JbZ+3NHHkNFGIpc94Tc5ZnWPWyzpvk0pkdVttHTbmHFjqmDFyH4tYECe3dNJip8rIE9emoY9MMBIS6Y7R5KRRZ6xfJ63azwSH6EO4pRe71UsoN1CE2H/4wx/Gt7/9bdxxxx3YZZddep7HeLFZOGy9xKAGBEwFAsMW0IRgtwKmKwbJsAHFKnVdCCQA3HHHHV33vfbaa/t+v4DJQ7BbAdMVg7RbH/rQh3DdddfhO9/5DrbcckusXr0aADB//nwMDQ1NeK51mJEO2/r16/Gb3/zG/v/II4/g/vvvx4IFC/CSl7yk9wPJFJApWDYMaeqtDW+A3lDEXKdrNyBdW4iRpOs2YORPBQs38qcRDNcwbLaOmFQYLpdMUqVJcmp9DQ4qrUqTWYeUhn6+ZNXI6k4VdFVElisUIomQl3L/PI4goiKEU0cxWGyS/InggCj7aE2nqjx2+Vdpv+1Wp7UVIBmVLoxoOHOr0qO5siFFG1Npmbd0NEdGwiBHh53oiGHb8nQUcrQ4D5kOQ5pQLio/buaqpGPYhAAvGUaRDkMmxc2Ut4YgZbscrzuYNaAzLGmoXLVrRRzrUxeWlJSfgeo3JLKhrshEao0ETE8M0m7pFFaOn97HOh1xMv3piA2D1Flq23IkhRwpxsgsc+20GhJpVqszwugruyrdJDrihEb8xHEaBqOywk4pqaDMqji5fwWK8O3yQIBhEKMMMDUlk7ajzLrJ+pO2WQmnbFumFBFOcn8NqzYilbVftF4ktWVFSKTr70eAxBcdyW27YNWKa5BE3LJtG1Npa0kmEUdalj/Iyr624PY8WhFl2DhKDSsozaCEEVPiiAVrDNmvQ5PdMtsCZg8GZbdEkkC0Y89uULti+lWaW1tgRCi8sOwkAifsv0pLW6IUeFyWNSKRADzLLWMmU2lTTmjUkkyl/f2n/bQUk1bahlMW/e5+tnOveU6jbJzf39+zAgWrsER19c4oe+bVOKuI3JkwR1peim7nJAyybr+i3zBvvQmKmDb3ZP25J1LVJEBiz49zMC4g+riOg7Rbn//85wEABx10kNf/pS99Cccdd1xfx+oVM9Jhu+eee/CWt7zF/m/o92OPPTastgXMKASGbfNBsFsBswWDZtgCpi+C3QqYLRik3dJ9hGIOCjPSYTvooIMGcrFYnoHlmb8SPbIB+caCxck3jiDbWPSnazdaUZHRtSlpj7rVV1MQOvcZtozEN1PQYoeUYZO6jLHWLsl17noyb7JCwr3EztSuYvM4sisXWrqEfChpmSitJFgX+exeQeO3TVspEsuttE3IL9i2YnVsOHX5aXmmbLuat5aNFCynHB2GTMvPhuSwKVLst054hHEBXgoVyCiBKMfHlbF2pYlntrji8xszu5o9FAts0S7mPicWGCnZtpFcoV2ycP3msEWCI6pTLQqr1LMOg7JbOs+gM9hi1iodcYWtR4edLUtHijw2AHJ01DJpNFct99i2HCotjiNHUruyXKxWl/d45u6ZJjbZreoykv8gwHjxPtFQAp65vDXdTmqPYxhycOFEk+IYLHeiSbWRAQ3oGhlAxEaAgiUzOWzDJBJgOJU2b43astHcsXBSaStgpJQrJdBkGxh5UBCC2/+TiEOUggpzSN5aEglrT+ckwhM+AYA0ETYSQGoXOUDLkkjO4Iq8KADcXo9e0Gi3gGC7ZhkG9rzVaoMlsROyV8qW7yjyz0tGjBTX1kRQTZa2SSvHymulbO6ZSnNrS1SaWzE2kWYV9q7Trimp7P3p6QVIpxdQaAeQ8TUsXDEn/1p5TFwlUbRflq3KrBV9Pntm+4ldqbJn3DJWzoFhgnslD4BmBo7HEbHtERGUim2+qd/vxrMK2yYSl9vGanKeDZNWTsLmMxfjBFgfj7Az3W7NSIdtUGAyBZMp1OgIdBlqp4c3INtQOgXDKXLTHsmtqEhG2sOp9Bw183dEOYetrgYHUNT1KP4yq15WjDH/cVc7QykI80AQO6UjSVSPCpU3Z9Q0NUzEqbFOGglNsEIjWrlYoQZora3CGh2qtAv7kUSYpFqjaJQ8YBgREdXQlnluHTOZDiMvHTY5OgxlHlhNaGTVGaUhkeUYHmXNapKG1o+4DcOMEm6FUbZouwe3LVoRtrAhUMKGIPX7w8ZJOBSFCqvUAQ3QWQrNpK/06Dlpw7ZtnbGRFPlIWceROGlFu+inYZD5cAaZ0YelTiXauhBiAN4DgFUbG+EQsVnUUBDmgUvKWqVJGhLDs9Qp22YZdGKUJOWE7BZdaDL3by6daJIREaFCIxtTifWjxnnLfdERY4elck6SdA5TLw4b5y6MKSMOb5or4rBJpOUiUioj55zVhWFq4UK9tPsNapOHFqkZEBXqlr2iyW4BwXYF1IO15oAPucUZTRw2Rn67q46cGStKZ6xaF9Kq2bbrxZE66kha5y3zHEL7vETCMzVxzKhTRx25Ypzrd33dbeVAQyLJPVfnwNHxnmPGfeeNOknF/n44Yp1jRutqUkdLdAiKxF3HNzlmTLgFO3DhhXeCCzDZu6M10+3WZu2wBQRMNZKII65Z8WGhDltAQMA0RZPdAoLtCggImJ6Y6XZr83bYVA7IImHfrFCrPLOrMcWqdLkSPZwjN0IYpJ0qbcMf64RGfNERt6JCRUcS+j3hhUJ1MUajXNhGqjTi8p9oSNnV7yo1X5fE661gV9mlAYRE1snUKiKbLZW2q7d09VcrbaOYlHZJvEXbsG2pZdBknpIwyMz1V0Iji2P78v46Ssj/Zcjp6DB4uXLDowR5Vihb5alEXrIBeepCnYZT6cKOSNmCjJ5Tn4tmIjBsAf0iz6G5suGOXkg3CYmUI6mNFqC2zG+PEhvnWDWVSsfiZ0RoRPphQRR0pdb8FVl5f3EGXSb7a6Wh252smif9n2XgI4YVJ1L+pGwBlLRhkEwrJy5SCY2ki9vm/lSoyvq7e9n8pfL9ozUh3RsJ85Zn0kYF5BkJryKr8k3CRpwzy7Ix7uo78ohDCHet0/LaJInoKmpC+4odOt6yOgMIpvsKiWyyW0CwXQH1YO05YG2nHknTMfzIHxce6fURBo5GDEVNTJp07BwtUaJkJ6tGI5KqtW01OU5dDUo/HLLTrk00DLIJY4VHAlWxkRrhDi8M0YmH1JVjqYp/NIU4Ugn+RibNPI9xbsvA0NB3xnlXVo22mezd3sx0u7V5O2wBAVOMVsRqV3x4NP2NR0BAwOaJJrsFBNsVEBAwPTHT7dZm7bDpUg6bFpulhWSLJPxylTmVNuFeZtJKIFfZNADItN9Xl8Mmtbb5aTS3oGgzMs79tYIePazQdKzqqC4sWzFgzGPWQVXK1HqJ7TWryU3S1v5USN6H9Ith0yLZqiPO3R/rzYuwb7SgtikNIPIUMi8/dxnZItpSKisgkJJiumlOpMClsqvTUZ+LZ00x1XIGrPYETA20zICc26LYyFOvQLbJT8s2DJP2iCc6km0wLFyGbMRI+UvblqmESk0+iCRFYlXjCnG16CoXzB6DJ9ze03Hj/mSFl+Q8qDyDILksZtVdZxmYYepUD6IjcPZKE9ERVVPsNpXKsukbU2nl+2nemiealDrRJCkVVO7sh40iUHrMPLaCbSv6hODg5cOFEBxRmaumPJvUWZi7LuIBAJC4XBchgaw0MZwxCCKO1Qu65YIE2xVQBz40F3zuHP832uawUeZKeswa0MzAQUk3JstqRUy6Mmk17BmNTireojNSqTqmLg+3rg+AZe8miqZi8lWWrdpHmTK6jVfGmG29FrC2/WZfypjFcT1j1o1VE5RJI+PtHMvoDdW7vZnpdmv6B20GBMxiJEIgiWpe1Fj1gSuvvBI777wz2u02Fi1ahJ/+9Kddx99444145StfiXa7jVe/+tX4/ve/723/1re+hbe//e3YeuutwRjD/fffP655BQQEzB402q0J2K6AgICAycRMt1ubNcNmVmfoyozKcsjUFYw1qytFHke5IptKb0VWan9lkxbINv8PApz1vgLQLZa5fofx+e4czXOqW8loWt3oOO4AVzuoYiRl4ZraMier4rlTfBvNlSehbXNgCIvK+kxia4qp7vU6Udxwww1YunQpVqxYgUWLFmH58uVYsmQJHn74YWy33XYd4++66y4cddRRWLZsGd75znfiuuuuw2GHHYb77rsPe+65JwBgw4YNeNOb3oT3ve99OOmkk/qeU8DgofMUGtwvlj1aUxR7JCVMWopso1O/zTYYxUiXjyszRdokhy0lRW1rCsMaWMlnUqxVlIqOIhNerq2/n8tbM0VwZZxb9TeR5uCJy2FDzep6v1CkBInUVB3SKdvSe920qQ3IM4m8ZBCz0dyy8kU+W/lbkStXrLsHho3msMlIQ5g8GcFJXpxjK2lOXJPKI7UlNHfa2FguFQRz16AXdMsFGY/tCpj9YK2hIo/NdDRE/Wgl7TZtGTjpjXf5bNJj4TAWCyelZz+oCqU7diVXrYFJ81QgZbMdqstrmyw0Pedx4ozUsWvVfbsVqi4POLaK4zjYM3d88l7mWNXxZl75YHJvZ4Ld2qwdtkJSmtzItp9S4/UyrU1S/Qbmh7Ea+ui2+z+epi0Ys+OLMa5NH4i4bfv1NepuQM95IzeR/X+C8B4CTMI8PTfOEHH//2J+LvyHM9dmNAlfuJuYcb9tBEPMp0Jv8KroSF2bohpOSR+ENBFPoY44HaP6VRspkQiOpK7+xzhqglx22WU46aSTcPzxxwMAVqxYge9973u45pprcMYZZ3SMv/zyy3HwwQfj9NNPBwBceOGFuPXWW3HFFVdgxYoVAICjjz4aAPDoo4/2PZ+AyYHOMt9hyzLI0VKaP8tr5fuzjcPIh0145CjyESegZEqUyFTafpkqGwKuUhoSqRu/6+aepzV8tOJ2P4qspl4Q49zVkcxyKxSgstx7KKOlO+zDkNYVif+yzdz9q7UTHZHK2XAaEklLkVCBoTQnwkNGaKQSBknDI43zpnLXbhIdAUgpBM7AzG+B5FB5KZAUuX2F5KA/3cO1RywgmHtAEZxhmBdz5Iwh47ps6yIksg9Z/0a7VbxRz8cJ2HzA58wDnzvXdVQWWzqERsiYqqPl9qk4d6RkEX2mq3XkKv3VeXTMsTrfJidtEzpoXdEYMll5BuryPNgh9uE9S3U6Zt7xiZPGqINXfb86x4/MpcMJrcyRq96fYWe63Zr+MwwImMWII46k5tWUGNuENE1x7733YvHixbaPc47Fixdj1apVtfusWrXKGw8AS5YsaRwfEBAQADTbrfHYroCAgIBNgZlutzZrhs1CdbJrY8ExYj47VvzVHjMGGwSgK6xa8TfhjlWLGUPC3fFMOyEFVUUsCAPF6hM+Owoe1qyiNIVJjhF6WawA18hTs/rwG0pDU7ZNcFa/siw4cittnYCXErA8T8HjsngmYcRMn5H8L44nXDgFZea6MHZN7FsdqHiK9Ji2ng8BAIgq7KM9Ztm3du1ar7/VaqHVanWMf+aZZyClxPbbb+/1b7/99njooYdq33v16tW141evXt3XOQRsYigF5LkTGslTK5SUE5l+r1j2cAo5kpVjHKuWD+ce22ZYtXw4t8Wyla4vTSK1s2EAud9LExpLDV0WNW0SSuKcgZdFoEWWQ5kiuDLxRANUySaKCYRBNkEqxxqaYtnVUiRUbMiGyVNWjYRHUol/JZUVM6qy+GaFngkB08u4sPZOSQVZ2vBIC1cegHwGmqwujxI7Qm2sqGknkUKmnACJ5KwnQSh6/Dq7BcyM5P2ATQ8dt6HjoUonrbnhnr1YRUCIEdYcQH0YJO2njBzpL/YhBbqrfTXjXd/Yz4aNrNsUoYNNq0Pdc2DNs5D/DDl2yGJXxoz2u9Aq26Ub2nXPpjru/ZrPdLs1/V3KgIBZjKbVnqRc7Vm4cCHmz59vX8uWLZviGQcEBGzu6Ga3khmwUh0QELD5YabbrcCwdUHBTNUzWY5BYxCsWCUybJjUzHOF3eKyz66ZFemEM8SkbY4zJFw75tyuRPNEQJhV6VhAlEWeRRyBJ2UOSBx5sqt2dSOK7aoLlV3VNasc3WAWIxhzuSuCuYT5WLi2t7Ir3I2RRNwWgxURh4jcarxrR1AlgybUkJPyJytZZqVHcVG7HXArTSJKwKPyGkVJLcPGm5i/SViBoTkm1X4AeOKJJzBv3jzbX8euAcA222wDIQTWrFnj9a9ZswY77LBD7T477LBDX+MDpgmUhGa6EEtCkeNl871S15aZK1GistxK9ufDTmiEio5kVIAkVz2WJqE2rcyxsvm7CsloKeUPQNJcW2MrEwFR5oTpduTN3Yo/SekiHyp5KrbdY1kSRXLVaFuSPFXzNyXlPExbK+0JihgmTebalQLJHfOm8tQy/x0MG4kAMGBc2PE8dtEFWmvouH613JUEkPZ/wwgmuURa2tKqkEpcroTH3Bdh6QVNdstsCwioQidzoJM5DRsrZYiq97NWPutG2S7zvSXbOR3b1G7IoesJ/bL8A9AK6IpJnE+tkEkdQ1Zp62p/aRc04LF6tc+e1efQLs+lOulDLGmG263gsFXQWXfCVH5nzjFKOOLh0ungGkPCPKCg/MusEoYQrLYujmDM+nTUSUs4s8cbEgxDJiRmKELcLj6uuB0hGopsv7COXARRVpYXSWTrGPEkKupgAF6SJ1X06ddhM1/tIgzStF1oJ2cMsTDhN76TlkSibEvrmEUxh8yNkqP22kq5MApPTIQ6nig/r4q6lB1Lx5gQyzhBlBTH5lECEUVlmxOlO+e8RZx5YZ6DQNywsqPKvnnz5nkOWxOSJME+++yDlStX4rDDDiuOoRRWrlyJU089tXaf/fffHytXrsRpp51m+2699Vbsv//+/Z9IwCaDzrPix48q25bOG3XSJAmP7HDMiPNGHbm0dDSq9SVpPUgDKqgE0BDvzjnzVAEo3qeo21M6N6mELO2qzKRVRWyunUTqK1XDI8eqw+aFc2pSt8wJCFGHjTpxtl8qr0ajVQ7OFfLS8VRS2bqPKktdO08rwkZlSHfFYatXtE0az4vWcCv+lxgmYZDG3o4KhYQ4bEOxE13J+hQdabJbgLNdAQEUKm5DVUMia8AaHCz77ewhjLLO4avFOOvPdsU4FbcHjgGdm2cVms6trr+b82bbleeopn26QMV5T+OAmW+3gsMWEDCFGKSs/9KlS3Hsscdi3333xX777Yfly5djw4YNVjXymGOOwYte9CIbVvnRj34UBx54ID772c/i0EMPxfXXX4977rkHV111lT3ms88+i8cffxxPPvkkAODhhx8GULBzgYkLCNg8MdPlsQMCAjY/zHS7NSGHLcsyrF69Ghs3bsS2226LBQsWDGpemxakLgQTHCKJyrbwJKppGKJhuIaUKhg1AEPlQqlgvLI6XRfyhlpxkYJVM22OZE7BjCVzY8Rzi3YH29YuQwbbLYi2YY8i8MQwRjFQskosohXnSfInXeloYNsoq2b7aEgkd+2YMxtyQ8MgWxHHUBnakyaiNtSoSf46hVudY1xApoWgtTShjHHihR95cydjDMMmiKCJaA0hKuclhAvPFCQstlit5rbNeSfb1u89n0SsgWHr33gcccQRePrpp3Huuedi9erV2HvvvXHzzTdbYZHHH38cnIQivPGNb8R1112Hs88+G2eddRZ222033HTTTbYGGwD8+7//u3X4AODII48EAJx33nk4//zz+57jdMCMt1taQmdOiIOyUSrNITMaHmlqqTnJfpUqW2ONhkGmmcSwdHYrJQxUnehIORkAfjmSOgimwGQZiZBJiMTJ/duaYlJbdtBj0qSrA4eqyEAJplWNDFIn6qL+qKy/x7DVhEfSWmrUTkmpXPmPPLd2SOWOYZOEYfOYNnoeXEBEncJKTWIGjDOIkq3MWcnYCYZc0BpyJWsacf+cyu9MYatZY8mBOjTZLWB8tiugN8xk26XjoSIkso45qWPS0Ck+UjfedvXKqk0EY7E+E90+HnQ7z7Guwaa6Rj2GODayal2+M7oPhm2m262+vz3r1q3D5z//eRx44IGYN28edt55Z+y+++7YdtttsdNOO+Gkk07Cz372s8mYa0DArINZ8al7jQennnoqHnvsMYyOjuLuu+/GokWL7LY77rgD1157rTf+ve99Lx5++GGMjo7igQcewDve8Q5v+3HHHVfkz1ReM81ZC3YrIGBw6Ga3xmO7rrzySuy8885ot9tYtGgRfvrTnzaO/cIXvoADDjgAL3jBC/CCF7wAixcv7jp+piPYroCAwWDQdmtToy+G7bLLLsOnPvUpvOxlL8O73vUunHXWWdhxxx0xNDSEZ599Fg888AB+/OMf4+1vfzsWLVqEz33uc9htt90ma+4TRsGgCU9+lMeRzesSsWOveJK5vLGRyOYuJKnEFuXxTNL9sFREUER3FMw2cAwbbK5awhnaJG8tIayafX+SwybasWXVonZi2cGIsG2I4oJZAwo2sWwzIfpK7qRwhbG1Jedo3pqQrh1zhqGSnUxzZRPih5LIrlxL5ZL2tRY236RYtXZf05zPKafp5K95ybRpJSEjJ+1fVzybk/1EMgTRKli7KIktwxYl3LFtkZt7EgkrCZtE3H7GnIit9Iu4oZCjnAFFHGcKZpvdAlAWhiWy90RcRKUun83I9Msqq2bZNidBX81bq89hq2dhChGl5ukKBojyfXgqIcv7SyYSkYzsXHQZOaAr51d/DXorXNu0htxNZIMybDlh1WRO2lJBWdERJ0BCWTWVp5A0h012MmwUtByJsVN2WxkFIrmwQkiMS08gCSiYSmNLq0Ij1vYqP4evXzTZLaB/23XDDTdg6dKlWLFiBRYtWoTly5djyZIlePjhh7Hddtt1jL/jjjtw1FFH4Y1vfCPa7TYuvvhivP3tb8f//u//4kUvelH/JzONMZtsl46HoJpERxrAxhLC2YQsmq78xjex9R37NbxNvyWAKJp8i2p33XNJR9pYt2u8iVnK6jUe81BaQ8dZz+MHabemAn05bD/72c9w55134lWvelXt9v322w8f/OAHsWLFCnzpS1/Cj3/842lrPAC4Cu2cEyeG21BC0U5sO25HLrxobmwdNq0U+HDppIwW2wWD94BT94NYVYm0apAtYdUgk7kxorYTF0nmFj/gyRYx4rIdDSWI5w7Z+QobHunUEFmcuPOLYzDzIBAl7uYh4iNjJXsy5m56DieeEnOOmJeqcFwhNuckOJLSOg2RMEipNGS7mFdOHiA638+pn9kEe8GRE/EQoEjwFzUhR8W+RA3SKEYmQ8RJE4jK6x63ItcfC0uhDyXCC4mMicNtPst+/bYmZ2+8DmBAJ2ab3dJKAcw5MjLLbG0w6rxp6Zw0mUnbVqm0NdZkqjBc7jssB++wmb5UFYtXACCktiGOSmo7d1qrrUl0BBWhEVvLrMv1qgN9sFKkDht10mj4oH0/oqaoFbyFJW1FYFzoo6TOW1YfEknBuAAjtdWawMuFK5UzyDL80QglyVy5dqxrnbQ0V34tSd3fA2S3Rap+bddll12Gk046yYZer1ixAt/73vdwzTXX4IwzzugY/9WvftX7/4tf/CK++c1vYuXKlTjmmGP6eu/pjtlku0YVrOhNFU3fvbFJj/6+a03voyv/0XG6xubRs6Cb+9mvYw4Ncxvrdqo+rTGyQzV9pWmf5v1cX9M0+iemmg1N0yJao4PKGEb78CkHabemAn05bF/72td6GtdqtfA3f/M345pQQMDmhJg7JpIinwH0/ExBsFsBAYNFk90C+rNdaZri3nvvxZlnnmn7OOdYvHgxVq1a1dMxNm7ciCzLZlQ+V68ItisgYHAYlN2aKmzeKpElw8aixIpy8ChG1C5qXWXJCETZFu0UURleFKcSmqwGM1vZvVjZFmR71lDbg9YsE4mrsRa3I69tQh990ZEY8dx2MWbOkBcSGdn5JmCtYgxL2kR0JHGV6DmH5mUIUvkXjNeybcXKRHFOHG6FRnBAaNIuN8SCIy6Xm1oRreNUYdjMKnbJtNlrahkrd504Cf+RubLCIKYEgEpaNnG+aQVbRJETERHcY9jilmPVolIUoZUIzDGMp+AuPFJwROXJxoK7Ofa54leINdSJ0kx/4xEwRVAKYBVRDsNSETZKekyadKF8matrlinlsWdNDJuxYlWGzXxPi5XR8t4kJQBSU96EOeGSWGoXoSCVZ0vVWGGQ3TBG+M54I5BkRQTJXEdVFSDJneARbdMwSCMUY/6vgnEFxpvZN6BgFWVe/NZwwW34Y6RLeygVhDS2URGmUNWKqpgabH3XYWuwUaZ/7dq1Xn+r1eqoI/nMM89ASmmFkQy23357PPTQQz3N5e/+7u+w4447YvHixb1OP2AKkOYKI5RFn0BIoEEvrHCV6aqzEj5LRuaIKmtGj6M7+xrGVvfpNqYb6m656jOHx6TVMGx0fHVst5DK6nuPxdI1YaJ+kc8UOkGoXtCL3eoVd955Jy655BLce++9+MMf/oBvf/vbtqTSZGFCDtvKlSuxcuVKPPXUU1AVx+Saa66Z0MQCAjYHRCS0kiKbAas9MxXBbgUETAxNdgtwtmvhwoVe/2Qoy1500UW4/vrrcccdd6Ddbg/02NMRwXYFBIwfvditXrFhwwbstdde+OAHP4j3vOc9g5jemBi3w3bBBRfgk5/8JPbdd1+88IUv7Mmznm5gohDjYESUg7Xa4HEhYhG1E8iSvVJz217ehTuGX1AbKPJCzNhYap+NI3SsKNkdLliFYeO27Ri2BKJkoeK5bcukRXPbjm2bO4RormPVWELaZeFsFsVgZc4XROyWK8YpN8vgDiGIlH/Mtb0xWoI76W6lIdvdv3YRZ1hHisHaNLuIg0dlnojHsJHSAHZlPrar38XpucR8y4ZFHFH52UWJsGxb0hJotYo5btmOMFTmMc4hOWytiLscPUKzy35z2Eh5gGp/wOAxG+wWYJgbIoVNc9ikux+c3L/LZ1NSW+bNZ9JQy7BllTxcw7IJxkjbrbhSVo2ybaa8idLOJmpJ28q7Z5W1tzSfjbBPDdELvaLunHwGihbirWfVPLaNMmmKsmqEbauT9VfSFs/WSlomrQpVk4eroghaGTtYfhZCQcUut66uGLh3ruOgOprsltkGAE888QTmzZtn+6vsGgBss802EEJgzZo1Xv+aNWvGrPN46aWX4qKLLsJtt92G17zmNf2ewozDTLddI1Ijysn93fC9G+vb2I1VG4vV6saG1Y1T3v3i/qf3jNIaNCCgel7+WNI/AdWRplJClCWi7BgtuUTHccZAtTbMGJ/FqulrzI1rZvvq0O0xpzlnzmf9RvpQTerFbvWKQw45BIccckhf+0wU43bYVqxYgWuvvRZHH330IOezacFYGQIonBMTJSTEsAU119U0oiFIJqm7qNtmRCxKFS8SfqQavkxcOAENv8YbdwqQiXCiI+0EUSkuUrTbtk1FR7hx0lpDzmGLE9duta1zqnlkwx9d7TU2pvPGGCPKkCQ8ksE6Li3NSRgkNXTkIS6phFeRumamvY4IjYhIWgcrzxSiuAz3MiFguauF1BQdxbij7UVE1SC5FxK5RXndh5IIW7RMW9iQyJhzxMKFi9Lr0Q9MDaS6/oDBY1bYrQponTJav0x5Nc5c6KFKpXc/1omL+GGQ8O5l2H5NhEYYqo9aUjPPYaP7jRXyqMYTEjlJ6PZgVReCXa2fZsVI8sy1SagkAEgjniKEtadaCevsMS6s2iRVyFVK2wWrKK53Kptqy00ETXbLbAOAefPmeQ5bHZIkwT777IOVK1facCKlFFauXIlTTz21cb/PfOYz+NSnPoVbbrkF++677/hOYoZhptuuVGqM0EWmylew7ivZtJZQV3WxKayx6kxVnS0zxtvHLNBoeKHDsuY9JBUtqtlOw6mrj4P9hCED9cIYNCWLc1ZxzNx+5pmqut3V0WX2+aXO8evm9Nm+GucPqAunrLcdtSGfrDrGXTMOhrQPh60Xu9VLKPdUYdw6lmma4o1vfOMg5xIQsNnBqBbVvQIGj2C3AgImjm52q1/btXTpUnzhC1/Al7/8ZTz44IM45ZRTsGHDBqsaecwxx3iiJBdffDHOOeccXHPNNdh5552xevVqrF69GuvXrx/oOU43BNsVEDAx9GK3Fi5ciPnz59vXsmXLpnjWDuNm2E488URcd911OOeccwY5n00KzSNoHhXhgiYkkoQSinYKkRVJ4obRMmBipPjLGWRWhj+WrIxMpVt5JbLVnCw/MOGoWZE4KX8RO8YuImUFRLtla8LFc9seC2jmxpM22NBcdx5ljTGWtH0pf1EKfDAiOsIqTFu1DZpQqu2qB2NuVUVqx5JRiX8aAVldDKHUfh3DJrirTJ/mAsNlWFcUu9AvEwokSUiVF1qltaP6KWMnOERZ3Z4LjqS87lu0I2xZhp9u0Yqs6MhQImyNPC8kUrhE1n7XrWPhmLpqf8DgMRvsFpSE1vWy99X6ZTbcUDmhD0Xk+2nZEUlWnxXQOMaHswnVpG1JhEj8fV2fJ+tP5tgNui4Ussd6QXUr870s0HriIjU2pvi/Uyyk2qdqmLfOOZbIU8ukVcMpHWuXQkdtf47aD9WsK1VQLVsgK8zDWGiyW2ZbPzjiiCPw9NNP49xzz8Xq1aux99574+abb7ZCJI8//jg4d8f8/Oc/jzRNcfjhh3vHmYwcuemEmW67RqRCJHXPTFgVdcyYt72BJSvGmzHNbFgdk6a0u9/9SKHmfjefTja7qV33v0FdQee65ybT9v6noY+GbeOssd+yaeNk5uh70n2qJqGOqWvc3pW181nbsdCL3eollHuqMG6HbWRkBFdddZWNH49jX+Xvsssum/DkAgJmO5qSYKMG2j5gYgh2KyBg4uiWvD8e23Xqqac2hkDecccd3v+PPvpo38efDQi2KyBgYujFbvUSyj1VGLfD9vOf/xx77703AOCBBx7wts2YZFjGi1dECksTZiqak9Wu5jLBrZS/iFPIzOS5maR+ZVk3wAkCMOLZV3PYzDYRR5Y940lsWTUeR7Yt2gmiISffz9tFEVUvby1p+6yhkfiPYifhLwTJXXNS/mPlsHFGJWLderlgDKr8JxZAW7vjmNWjduQfm8ZfU1bN3DyFlH5Z2DfNLdu1MZVeeQCgmsNGVteU9hJKDdPJOUNUzieJuD32Fu0YQ2Vu21ZzYpvPtkUrQisS9jxMvl7MeW3sdy+orohVr0XAYDEr7FYNalm1SlFql+dGy2z4+Wk+q1Y/pvLO5V+Xr2buaX8/yrRN/HynGxpz2BQpv1CR+G9i2AwUAEaYNCNGojqO75iBos9va8qkTTB3zaDJbpltAYPHTLddI5kCS4nYThexjirb2yTW4e9TZewGw5g15YD20gYKNrtu7h0MWwPDXVv2p4FhiyrRSX23K3lpgjkxDq8UFen3WDrm24UqY0f7qnMfr3jKSNY7wzbT7da4Hbbbb799kPOYGggBCFEoJxpHJx2xbeQpopof1Uxw62Cpdss5bGX4pEpzL2ne/GAzTh02dwwmOHi5WibiyIZBUieNJ5FXY02UNC1rtStOWmL7rQBJ7FQwwaOi/hxcSGgxyPLiY4uOwCU/MqIypOGECrQmyomaec6bgWDw6PhEOOcpIY6UccwSwZGW13UoUUjz4rMZravrVjGMdQYuiTha9n2cAuRQLLClcdLakXXYWmR8zJl1PicUEskaREdmwA/wTMSssFsVVAU6PCeNKDDakMiOMEjXNqiKhPTiZFWduup32AtB6iX0cSI12SaIXp0bWuOpyQGjQiNjHo+MYUKQ/+PakEgtZUeIpic6ov0acgYTFh1psFtmW8DgMdNt13CmoDNZ63xVHS8DKuxR7TNjm8Q9+nXGauvDknaaK+t8eWManbrO4wHNDlwvqDpn1f7CIeGk3emM0f6IpJxUx5u/tdsbnLdqv0FduCXQ6bzVCabQcVUHTzCG4T4ctkHarfXr1+M3v/mN/f+RRx7B/fffjwULFuAlL3lJX8fqFROqw/bcc8/h6quvxoMPPggAeNWrXoUPfvCDmD9//kAmFxAw29GUpB9ERyYPwW4FBEwM3cRFgu2aPATbFRAwfgzSbt1zzz14y1veYv9funQpAODYY4/FtddeO+45dsO4HbZ77rkHS5YswdDQEPbbbz8ARQz1pz71Kfzwhz/E6173uoFNcrJgRUd4ZGX9WdIGN7LYSlomKYJjyBjnUCXzlY+kEKlh2Iq/WqqOopZVcF5l2IyUf2TbPI4gkti1y/dkUeJCHJM2qSE3VF97LWkDUcudszCsGu8IifRFR/wvsFmYkHAhGJy5JGIGR2VrrmF5uIgew63SjFDau0LH1zFsQ4mw7dFc2bZh3epWt+pAV6Ds+wgXEplEnMj6C8wpwyPnxK5diI6UxyEso+zzpo+FK4VQ7Q8YPGaD3TJQskbkogsbpWtYLZ9JI4IXZFtdvTIH893tFB2p7rs5Qdd8NgBqWTIKxoXHntloCKU6wi47j939YvcqctALmuyW2RYweMx02zWcS6hMjRm2aP4H6iXxq6GTEwllrGPVctqvfYaNsmZNkT3VKB8qVARUWfn+7kFG2CFWeX4y28cKfWxFnPRzn0FjLvoI6AyxbGLjattdWDg7bxJOSc+jm8BJdd/hfOzIBYNB2q2DDjrI+yw3BcbtsH3sYx/DX/zFX+ALX/gCoqg4TJ7nOPHEE3HaaafhzjvvHNgkAwJmKwqjExi2TYVgtwICJo4mu2W2BQwewXYFBEwMM91uTYhho4YDAKIowic+8YmZU8iyZJi0IDlsWQqYnDOySsoBm/TNBLdsWtRuQZLcNaBYDR2r8CsnwiWUYeNCeDlspt9j1aLY5apVmDRGcths3lrU8oVGjJQ/jyyLRlk33YPoiFlXEAxQVLrVrCoxBnAzittvmqBFD0kOW6ac9H7MGTJlcsU4svLzSCmrlitv5QsoVrTyyupWHerit6t5c0OESaMMm8lba5N8tkg4nqHfvNVYsAaGbfobj5mIWWG3akAZfZu/VBEgMexbk6CI2VYdQ/v7AZX1r0r89wIagbCp0S05fSyoMZiwbtBK2t8ZraQ9ViE+Etv+Wol/ZfbzZf21x2gMJh+wyW6ZbQGDx0y3XRszCZn5oiN17Fjxv8+wdUjw63pGa6x2Ux5aKunzhLTtUfKcUWXkrJgPKSdU5I8W89Sa9vl5puY8DHph2liFXaL9ZhvnzDJvjFeYN2NPiW1LPLaN2Wcat124tvDHRg3HGI+4CdAbC1dXGHxj1g/DNrPt1rgdtnnz5uHxxx/HK1/5Sq//iSeewJZbbjnhiW0KaC4Kp0VEYLJ0jFpD1mHjICFCXFgnSUTDEHnppOWZDYl0KmxqzER5RkVHOLdOGuPc1Uzj3IVqNjlpROESUexqr0Wx75iJGqERc/7FG7u/NW3GAONrMcbASmNTiI6YWAVmoyA1NKxkJAmP5Mw5ZqPS3ZiZ0jYZNFMcI6VhpM5bJhRkeWkyVe+w1YmOVFFnRJKIW9GTmDOrBtmKuHXS5sQCLVOHTQiXxEvCPFWf93zIYdu0mA12qxvGWiiqQ3ONteaxgJ8UvilBxZtIZ0/78hqncap/pz2hEd4cl+OFSo4Dg1KIBEIO21Rgptuu0VwBuWoUAzGoOmT0r2kPwjErHDBp2zTE0XumyI2IkyICP4WjVrSbnTfA1EWE12f2q2s3wQuHpM4bZ+6RjbFGJ43WnzXjRzizqtmCOF4u9DH3nLikfC7ynp0m6MgZNIVTFv+7c63WkDOfWy+Y6XZr3EuXRxxxBE444QTccMMNeOKJJ/DEE0/g+uuvx4knnoijjjpqkHMMCJi1ECVFX/cKGDyC3QoImDi62a1guyYHwXYFBEwMM91ujZthu/TSS8EYwzHHHIM8LximOI5xyimn4KKLLhrYBCcVXJSvCFqUjFXse+vGo9VCQJdMlo5i6JJhE0qCZ2kxyISbdKmx462gmjbnYCUDhihxK8jVdhOrRlm48jw0le8XkWXbOhg0TtrjAGewoiOatAVjYCXzxjQDK+k5ppjVMhFcICvHZEohswybz7ZlNpRLICdtEyqp4u5hFVVUV2iAosq9DckUzDJpsXAMW0u48MgkYigXm8ryBMW+eZ83PWMd2i62P2DwmBV2q4ImNl8pvw6bQREGadoVIYoGoZE68ZCir9ggGKsdE+BAmbEm0ZEq22brtnEXEgm4sMu641CRg6aV+4mybU12y2wLGDxmuu0alQrIpSce0hTaaNBPuON4xEK8dArTJiyZzLXHpHntcjxl0GROGDZSE7bKurn9xic6UhUcYYRVM88xjDOIyDBsbh8R8Qrb5toiKqOfSN+wx7BJ2255AiQuncSyZClrFC8Zq23+7xijOoVMRvuIKpnpdmvcDluSJLj88suxbNky/Pa3vwUAvOxlL8OcOXMGNrmAgNkOwYG6FJ0pSNvZLBDsVkDAxNFkt8y2gMEj2K6AgIlhptutcTlsWZbh4IMPxooVK7Dbbrvh1a9+9aDntWlgREfKPDYAgNZ+loMRBoliqHSkaMeJWy3NU5u7BrPSqaTr63hL8q2wDJtw/Yb1Q1Hw2rajuDm3zR4n8sRFrHiIVyCb+8xbRc5fF0sxTVesOBwr2DSg0BixKzfQTnVDabcKpJzgAOdOi4SDgZfMW6yZx7bJ8u7JlEImyyLlWtt8Nqk0VFmMm67Y1ckAV1GXwCpYwaYV5+eKK7YjbpNRW0IgiZwwCi1EaU67X50CDlabV1PXFzAxzBq7NU70UqyaIjBmUwsqQNLT+E0oMd1kt8y2gMFiNtiu0TK3vx/WrIlJ8/prWLom4RAqVpbnLidNSQWZu5wzWcu2KWtDldJQJrdNkzYR+XH75bUlOaqM+1igtoAJ4f9ftkUUeSyclcmPXAQRj7jrF46Fy0nOm+1jCnlkxnLLvEURx3BNrlrLy4MTtuRSt8LdfQuW0Lbqj2Gb6XZrXA5bHMf4+c9/Pui5bHKYmmRMK0AUDhD9yWPMKTnqPAM3YYh55m4wpaDz1D+wUo2J4Tb0EXDhiJzcfJyTtnAOY5x4zpt1sDhxuipOmueEmWMyXluHTVccN6/PTLe84aR2zhgv5EWK0wYrnLZisBUpAXHSlNZg2jlJztly4iUtzZEZw6idSqRUfp0V45uNVculCuqkGRQhkSj7nZJQzLnXNqswEXdOnajUEukHvGHFp05XIWBimC12ayz075hNH8+MT7UCSANYvysxk4j+lScH//k22S2zLWCwmA22K5OF6Eid8wQ0hz8CvpNWFQ6htVdNiKMXHknaNKyxCF8s31sq63R5Thpx5BQRTFEVZ8+287TDIWtSdaX3serhnuYVB82qlpO25MI+YzIuwMtFfp45cRGeMfDILU6btogYVDkmz1xIpCwXzIXQ9vFQSm6duzRXNvSxqS14vQAJFSzp5rwZ1NWCy/px2Ga43Rr3FD/wgQ/g6quvHuRcAgI2O7Aur4DBI9itgICJo5vdCrZrchBsV0DAxDDT7da4c9jyPMc111yD2267Dfvssw/mzp3rbb/ssssmPLlJBw2JNDL1IMxSzpysfdQCS0r5/jwr6+KgCH+Ujm2zaFox4TUMGwjzRkMiuc+M+ayajevrjVWzY3zRkU5Zf3fOTWAgkY+UVSv/B4rwSDtFzRwbpuvZNq0Bc2W0diIeChot7UIizWIKTVj2hEboRzAGwwa41RZaUJEThk0wKpKCWlZNkITefhfiaUmAan/A4DEr7BYXgMwmdIg6Vm0wFbrqUf0+T1cmrV+wmvuUc4HxCe93R12Yfb9sWxP6VUlrsltmW8DgMdNtV5or5KkcMwyyGvII+CIiTaGPk8Wq1YmOFMcp6x/mKVQpPOfVRSwjr1QDq6ZlszhdE1wt4Hq2jRNWzeuPE69fWNaMgxlhqpxDRqWIVBkGqZV22wW3bJxWgORluGPE7bVjnNnPQ3BmSytEXNXWdpNKe1L+deUBqmwbPX4Scfs594KZbrfG7bA98MADeN3rXgcA+NWvfuVtq/sRCwgI6ARHPc09A9j5GYlgtwICJo4mu4Uu/QETQ7BdAQETw0y3W+N22G6//fZBzmNqwJ3cvV1vpgwT44AqWDVoBagyh00kRd5b2W9Npe6BYbPvTZg2KrUPx/B5AiCUSatI8/v9rLO/wqr5AiOEWRsHOKuwavYcXA6bbmDbqqya7QdQaotAawYF7dpkXwO3nfR1ycuhDBs9bZN0yhhh3kAYNobKahBc21z2Pq9jVcqW9gcMHrPCbk0Q0ylnrV+whgiFcmP3fSv/U5JvJqyuNmFQLFs/aLJbZlvA4DHTbVeaa8RxVW5/bCER29eQqzYRQREqFmJyfyVh1SjD1o1VM2yaVhKStAGfSfNz2NzzYt+iI0TrgDJpSgiw8v1FlNh+raSdL48TaFWwbZILKzCilQa3gillX+SiIfztmuynoEtmjguOUcOqRdx+HlSYRCrdnNtm9A0Ug2xg28y+QPGZp3nvv2cz3W6N22GbDdCMQTMOxt1l0JyDyTL0kQtAl8qMKncOmVbQxDljukLJNihEeqg8bNSJfjQ5cp5jRvbRTXXV6sRF6o5T9tXOBcR3BHM1RuCHR3ISHlnnvIE5NTMFZp2s4r424ZHahmdp0q+09kRhnPPWeaMpjH0TU1Ugz3Fjbu684ow5YRKijskwbpXIooZbfX9AwERhQlWaVGub9Emmwqnj5Obh00hjmf6Qb2rxkaYHuW4PeErrSVeMbLJbZltAQBVZrqBzXzAkr3PIKjXUiu31+1EnLc39sMaxaqn5zpj2wiNpjTXTpk4aFRdReeo5adSRM3+N/fVCJivhkWOBhkHyDtERTtrOSbPqkUrakEhN0nh4nABI7HFt/cbIOWZUlKR2XpzB8VPKex6TxF5aOxpxIDfqkSQkknPnjHE0xuindt9SdKSvkMiZbbfG/au4bNkyXHPNNR3911xzDS6++OIJTSogYHMBY6zxFTB4BLsVEDBxdLNbwXZNDoLtCgiYGGa63Ro3w/Yv//IvuO666zr6X/WqV+HII4/E3/3d301oYpsEpcCH1o6BYip3DJOmlHXshUG6DYT1qTJtY6EuhKeGOQMqzBjntWMaGbmOcfXv0bFPF5iwQhp6yJk7ttJuxUJrbdtFSbaSSYNjycy4clLe4op7C9Yw3oHwnr2dB2nTG9YsBjFWP4aTlRrKvPV7y/OGFZ8ZwM7PSMwKuzVNMdYKpRXpoWz2TFjWbADzmDe/LlLteCGmJHxxMtBkt8y2gMFjptsuqTVYD/XUUo+FcyIidXXVmsRFtNI2DLIqKOIzafXiIubZQubKiYdkqWt3YdVceGQ9q0bl/g16ColUzr5oIt/vs20KjLtjUZtkGD0ROUbNR+KFRwKA9J7E6mkvAU7GcVvSWEJBoF7u3zBvrYg+XSmkZQaSF/o4xmN1P9EgM91ujZthW716NV74whd29G+77bb4wx/+MKFJ9YIrr7wSO++8M9rtNhYtWoSf/vSnk/6eAQGDBmfNr/Gg3/vixhtvxCtf+Uq02228+tWvxve//31vu9Ya5557Ll74whdiaGgIixcvxq9//evxTW4aINitgICJo5vdGo/tGrTdmo0ItisgYGIYtN3a1Bi3w7Zw4UL813/9V0f/f/3Xf2HHHXec0KTGwg033IClS5fivPPOw3333Ye99toLS5YswVNPPdXfgQwjZaT0uYAWCXTU7nghbkMnczpfrbnQyVDxas3t72X2o/vSY5P3RNy2L29udL4iKYqB8whaxN55eS9SzkCXOWvmBfpqumzMvThj9iUYs/UsTKywEeowr1i4dsQZElG8Yg7bTgRDwt2rJYpXIhjakXsNxRxDMUcrcq+hPl92v5h7x7bvSeZIXxE5J8FcHQ/eJ61Or0311S/6vS/uuusuHHXUUTjhhBPwf//v/8Vhhx2Gww47DA888IAd85nPfAb/9E//hBUrVuDuu+/G3LlzsWTJEoyMjPQ9v+mAWWG3Zhm44GPmrDHBwTZBXlsv9x7nzMu32xzRzW71a7smw27NRswG22Xyzwy7Zl9adwiLmLw18zL7meOYly5fqtouczm18l/KjoXrI+NMDpth11RWvAxTVn3RbUVumypf0oqQyKx4GZbO5MDVtasv/9iubeYls4Ltk3Z78f7e+DHmb+ZlzltKZZlJpen1KfX3VOd1NcykIp8FbdPPzKDje1B+7t5nrHXt94Aep1cM0m5NBcb9C3jSSSfhtNNOw5e+9CU89thjeOyxx3DNNdfgYx/7GE466aRBzrEDl112GU466SQcf/zx2GOPPbBixQrMmTOnNr67G6xzQ18idq+oVf+Kh/xXMnfir+oxzatpDvRF52xededWeaHqoPUYDklBnTfGGm4I5r9i3vlKBK+8Op2kVsNrKJr4q3pM/73dvOic7TmRc+03DJp1efWLfu+Lyy+/HAcffDBOP/107L777rjwwgvxute9DldccQWAgl1bvnw5zj77bLz73e/Ga17zGvzrv/4rnnzySdx0003jmOHUYzbYrZmEbknesxlMCE8kYLahm93q9+MetN2arZjptqvbA7ZseKBvGlN3TJoi0aEDR52OcYryeE4OadNt1XHdQh3HO67XsU3zUj0eqxuoI1xV5DZOnR2nfSebtnv5rHv53vSKQdqtqcC4c9hOP/10/PGPf8T/+T//B2laxOy222383d/9Hc4888yBTbCKNE1x7733eu/BOcfixYuxatWq2n1GR0cxOjpq/1+7du2kzS8goB+MJetf/a62Wi20Wq2O8eO5L1atWoWlS5d6fUuWLLHO2COPPILVq1dj8eLFdvv8+fOxaNEirFq1CkceeWRvJzmNEOxWQMDE0Ys8di+2azLs1mzFTLFdwW4FTFdstrL+jDFcfPHFOOecc/Dggw9iaGgIu+22W+3D5CDxzDPPQEqJ7bff3uvffvvt8dBDD9Xus2zZMlxwwQUd/YWsvxHA6L4aqqZRWb1+w+6AcZdZc/tPQCa6o+xBDxDj2GeyoMf87N32fq8T07p2H9O3cOFCr/+8887D+eef3zF+PPfF6tWra8evXr3abjd9TWNmGmaD3QoImGo02S2zDejNdk2G3ZqtmCm2K9itgOmKXuzWdMaE67BtscUWeP3rXz+IuUwazjzzTG9Fbu3atR0/JgEBUwGmcjBTnL3SDwBPPPEE5s2bZ/sn+8d5c0GwWwEB40eT3TLbgGC7JgvT3XYFuxUwXdGL3eoHV155JS655BKsXr0ae+21Fz73uc9hv/32m+g0G9GXw7Z06VJceOGFmDt3bkdIQhWXXXbZhCbWhG222QZCCKxZs8brX7NmDXbYYYfafZrCyGj8q/Gtm2TjvX5yjHHkPdaiiY2t6+bMf9O6+hHV47GaedYxdX0zcRUmrJZNq/bVrWSM5zhj9feLxjIIY5RHoH39zoUGfFf7AcybN8976GnCeO6LHXbYoet483fNmjWeOtmaNWuw9957jzmn6YLZZrdmEpoKc8929FIId0ajyW6ZbejNdk2G3ZpNmIm2q8ludQs5q26TNV8tOsY8twnOrBAJYwymyBLjgCa3oHnW0ZyBKRNV1Wc0DJHP51xAmwLV0hWopsWqLRryxKrjmvLJ6LgxS4dUyovUtatFt8cDxpgta1J9jvQfkdw2+vm5YtnN4YljjamO6wk92K1eYYR4VqxYgUWLFmH58uVYsmQJHn74YWy33XZ9HatX9OWw/d//+3+RZZltN2EyC9AlSYJ99tkHK1euxGGHHQYAUEph5cqVOPXUU/s6loarBWYTI7VzwjyHDc7PaHTq+jyXukC7ulpgRX/9fsV4bcebYbJj/87jSq07HEJOeho/RvLF9hyrSn26nsY37a/6fI+67b1gjPp0mnGwurp3pcpmOUG7b9/hn0rWG/Q+k4HHc1/sv//+WLlyJU477TTbd+utt2L//fcHAOyyyy7YYYcdsHLlSuugrV27FnfffTdOOeWUvuY3lZhtdmu2QdU9nVWgexgzCPSSwK4GtUo3k9Fkt8y2HjEZdms2YbbZrsaHawX7YCOVhrC/uZ33fbGdOG/GcQCgNWmXu3r1ErVTeNVaO6dDMWjjIHhPWK5mmcpSz9GxDlCc2DpsPEpsHTZ7zlECzevrsHV19CqoOl/1ddiEfV7hUeLNsW7ujAvwOLHjTR02USryMs6sQ8Y4s48/nDuHjdE2c9eXcb9d54BFlX5BnrVsP/PHRD04co0YkN0CfCEeAFixYgW+973v4ZprrsEZZ5zR/9x6QF8O2+23317b3tRYunQpjj32WOy7777Yb7/9sHz5cmzYsMFeuICAmYIiprrzR2k88dRj3RfHHHMMXvSiF2HZsmUAgI9+9KM48MAD8dnPfhaHHnoorr/+etxzzz246qqrijkwhtNOOw3/8A//gN122w277LILzjnnHOy44472h3smINitgIDBoslumW39YNB2azYh2K6AgMGhF7s1WWJJg8CEcthGRkbw85//HE899RQUZUQYw7ve9a4JT64JRxxxBJ5++mmce+65WL16Nfbee2/cfPPNHUmxY8GERCrtQne01rbdyby58EmfZfOPq3qg2nmF2zILZDTcsVrXy44BXVHTljFjzLFvjDF7Hpy5LyNn7lwZYx2hk0rrnkRN7Je+ynjVsWlNTJpSYx6nF0au9gZUPazIk9UcXQ17LP9nHpPGHPMmIve+ZT27jvPoBSovXnX9fWKs++Lxxx8HJ+f8xje+Eddddx3OPvtsnHXWWdhtt91w0003Yc8997RjPvGJT2DDhg04+eST8dxzz+FNb3oTbr75ZrTb7b7nN10w0+3WdMVY4Y9mOx2nZnDMpKaS4j1IZM+qMMkmu2W29YHJsFuzFTPZdlGmpBbl6SQRt0x3mlc2AmhF3IZBprlCUrJCaa4sOyahIOzTLYcs9xcdcU3KjjGQUDZssmCcEtTBsFSUUaM2wMnpc2hVMlpKemybHduDbaBlQppYtSrzZ9oiSsCjxI4xbR67fhFx+1xpGDMhOLhh3SJmmTcecY+FM20RMW9f004ibj/7JOIeS+bYM24/S1MOqjqmk5Fz43pCD3ZrssSSBoFxO2w333wzjj76aPzxj3/s2MYYg5zkH6dTTz11sw8lCpgFGCOHrV90uy/uuOOOjr73vve9eO9739t4PMYYPvnJT+KTn/zkuOYz3RDsVkDAADDAXBBg8HZrNiLYroCACaIHuzWdxZLG7bB9+MMfxvve9z6ce+65M3aFWJX5alIX+VxAkezq2powb445k4rksxE2jTJt1WKCVVSZs7rcMc4AVjJuHMzvt3lrrJZ540zbfq1dv4bLc+PQUGD2mGa7mTt9z2IjYbTqcsm0qmfVtLKMl7dvlUmr2ZeRfbsyb/Qv0D0emcaKGyaNtDXjbgwnBcVNwfHy/S3zBoCZdr+y/ioHk80qkQGDxWywW/3A5RnUl6ZoKmotGLN2cFOB5ob1kte2qeAV593E+WtNeS3d8l2K34TJrSnUZLfMtoDBY6bbrjjiiD32rOEeJ/lshnGRipGiywow+5LjFduIDbHRSu6AmjdIujMNZWxl7lgi5c2R5IEJYfPWKKullYQkbaBgz+oKWXPCkPZSwNrPYeP1OWlCeKyaZdsq+WyUbaN5a7ySwyYiDl7+SHDOvO1mP8YYRFSOEdzmrUUVVo2yZI5J4x2MGdA9b81j4TiDinovudWL3ZossaRBYNwO25o1a7B06dIZaTgMqLOWSxf6aB5UMqWtWpGm/dJVd5eatKm/0PCwQx01wTv7BXNJnoK7fsa0deoEr4ZHlsdj8MIjDVWsiYNXdd5E2V913HoGdaJUPraTpqTv1JU3SdUxsz/6lX11OUaT5FEvnED14LTRhx0TSiAEcdIEWBSX7Yg4bDlQGjroyDpn3ic9YJXIgMFiNtitiaKvEJJpBu/Bphr2PMY9U7XINBpzUzung8R4ld4mhAEzbAFjY6bbriRyIhTF/87ZEkSxOydtWTpdkpM+5cQp0lx6ipHGCaTtQiCjaMtcgTHj6DCo0hZKqcC5U5hkeemwMT/ET8rSgSRhhSpPPYeN9gOl0Ahx2AyoI9crqGNG+6gCJHXGenHSmsIfu24X3D4WiUp4JHWoTJuGMiaR6NtJqx1fHl9FffyeDchuTZWI2LirQR9++OG1oQoBAQF9wDieda+AgSPYrYCAAaCb3Qq2a1IQbFdAwAQxQLu1dOlSfOELX8CXv/xlPPjggzjllFMmXYhn3AzbFVdcgfe+97348Y9/jFe/+tWI49jb/pGPfGTCk5tsaK0LkRHlVlszpW1Cq1RAVq7iZlJ7bbMiqzSQVcJ3qEBJFR7DxlyfWTXghBkr+osxMed231iwWlZNM2ZDKAUrmDWgk22rsmqA3zcmy6ZJTKhWtWwYkzl6YtUMO1Y5js4zu68uQw+glGPVlLQr7HaVivQBzYm8dnWKhImxKHFsGxfQJcPG4sSxbVHLsWoRuXqMQZt9+w6JlA2Fs8NDz2RgNtitQTwQO5bNfV/HvXrXAwp76QzLTBYbodA197uapHu3Lqx1UOya1LovlrHJbpltAYPHTLddScQRJ8ILiawLZ6T1cetYt1Qqj1WjoZKGlcmJ9L9UGmlOWbLyGSUHtBHRkMqGPxYiGuUxIwaeF2NUrgjDpKBKIREVRVDJUDkm9UIhAT8Msto26MVm8Kqsf4NMv3m+8cRFOAM350pCGzljtaIig2LVxgp9TIQfKtnEpBlMPCRycHZrKkTExu2wfe1rX8MPf/hDtNtt3HHHHV7MPGNs2huPgIBpgRASuUkR7FZAwAAQQiI3OYLtCgiYIDahWNJkYNwO29///d/jggsuwBlnnOFJ7s4kSJLDlpGVnMyuAGmMlqskmdQYKVdgMuXy1jKpSBmAkqUiYiVV0CR/zgmTVsO2xaRoYSwU4vI6CwnbjgXJeWMuL67Ktpnlc61hKTlBREeoEImh75TWXr5LndBHVSzEJnQq6ee21bBqtB9KWlZNZ6ljz/K0wra5tmPbVEef11+BXanmLm+NcW7z05gQQMmq8aTt2LaWAoudYpB2B3Tn3edNz1TewLCFxP3JwGywW2OBNymJNKCObZsqTFfmbVOLjXRDv6waGzNkYhxzaLBbZlvA4DHTbVcsuJ+35rFjuivDRnPcOvazGgIcSWSe3SRaJfMyWpH+l6po50JZoSMhGWT58BRpDWny36RCFJfHz5W1TyrWlpFTmrRjYVl3YzNkntfL/cvOvm7wREeIuAjdJqKotog1j1yEFo+cMAgXzImHePL84xMUaXn9lVy1HmX6+2oz97n1gplut8btsKVpiiOOOGJGGg4DqxJJbvpMaaR50d6YSYyW9PlIrmzo46hUyMyNq7Xtp45bU3gJdYCoo8Wtk8at8xYJ144FR1wmzhbt4vixYp7zZhwwRZw3gNnCcZq5NjizoZDaOmmAEVdqfO6jxQerYZCKOGM2JDL3HDl7Y8jMd9JMO8+gy4RdnWWAaStV3zaGj4RMFmMaQiKJuIgNg4wT57xFMVjSLqee2TYNtyxUJY2XnUObY/Zdh02htmZcL3XkAvrGbLBb40X/jlzxd5r6ULMefTtmm1JMpslumW0BA8dMt10twdESHKVuh/ecVOek0XY3h46GTRqhEeoYJrkqlCXL8aO5a6eknZu2VIjiUlwk1zaEMopdWyvn1Gmt7c++zJV11GzdXhW5Pqo4q3XfC0HUGTMoRFWY3W6F6jh1xtw+IvKFRGjbOGe0L6oJdxScWYe4cKKKNnXeBKsXHenFGTP/d4xhrOO5WfXhsM10uzXuO//YY4/FDTfcMMi5BARsfgiJ+5sUwW4FBAwAQXRkkyPYroCACWKG261xM2xSSnzmM5/BLbfcgte85jUdCbCXXXbZhCc32TCJ1lIDeflZpbnGxqz4Z1Qq2x7JlV2ZGc2lC5uUylulMX/lGCsndfKkpm1DH5lEXK4exFwhKtvtSCM2jJzy2bZWmXAaC0CXqiOaa8ugCa5dNXsX/Tg2q9YET45f+ayaZdIIq6Zyx6qNDjeyajodKcaTkMiOUMmyrdK8fHsFbVbAutRxYiZZVnAbHsmTCLwMfdRRDFa+J0vaYCWDV13dYKZum4gAZeqw9RkSSWvXVfoDBo/ZYLeqYA0rjF6iObmxBXP3ecH4a2+b+St15xjKtgkiZkT3DagHE8Ky/pQ9o5EAVEDA7FMdDzgBgur4os+FQjWFQ4qG/l7RZLfMtoDBY6bbrpbgaEXCL4lknpmICasyb/SvaY/FtqW5cuJxsS9YMkTGp+WDXzfmzTBpSroQyiKzw7FtNvxRqg42jTJwHsPWZ31Hei/TdsGwlf3Mv/epMIjPqrl9OQmDpGGOQCeTlkTCtuuEQ6gcv8e29SgoUsekFf+7+XqifAx9MWwz3W6N22H7xS9+gde+9rUAgAceeMDbtklDMwICZjKUdHl81f6AgSPYrYCAAaDJbpltAQNHsF0BARPEDLdb43bYbr/99kHOY0ogtbb5a2ZFZ1S6vLWNmbQM28ZM2hWY4UzaFZg0V14b8CVom9CtertpJxG37ZhztMuE2lzWs20tzW3x7rbmiO2SNwe4SbBjtog2ePE/AFs0UjPmkmYZs+r9VXERT2hEdeanMZX74iL5aDE8z6BHR8p2apm0RlZtdMQybyrLobLi+CrNocrjmz4tlWPdujBs3K46cfCkuAVEHNs2jyMII3SSp/ZGViAsG+dW7p/JvCiqbc61H+gGKl5Pf+MxEzEb7FY38H7i+UtQti0bQ9p9OrBotWJCPa6OqhphlanO0es1V62uaG4/mCir5qHJbpltAQPHTLddrYhbtgYoxToMM1UphSS1z1LRe7Rb7ltfzJvSkGVkDC0VQItxj5LSA1XmrYlVs49Gmvb5QiTmPAz6Zdgo+0TZM86Zi6DiaGTb6gRDqmxasV0MjEmrEyCpsmicMGz0XCnDVt1H9iHrP9Pt1rgdttkAXb5yCeuMjeTKqkFWHbbhtGivH8ntjbsxlUil77AVhqD7A0S1LkUinJPWqnHYkogjS8pwR+K8Ke0cNqmBNvlEpSnEFgHW1eAazPQrbUuRmbFMO8XIpscCVhUaKQ2Pp/pIwyDz0VrHTKcjRVgkSkfO9BMnTY6k1iGTaeYctiyHTF0bKB228rNQXa6/SdpmgoPHpZOWRIjaZc2SOEI8t9hfKOmFQmpSw03Hpaokj6BLhcl+QyKLUNCstj8goFdQIQKbgC44mDBtZkMnBSOKXYwqwWrST0VHXH8/tbr8cMn+nYVewpsnC72EtTeBcwHz0184Wb3fy1XlNxr6SPvrajDRh7O6BzgAVhxgomiyW2ZbQEAVc2KBVix8x4wIdFSdMsAPIayqcRd99U6fWYw379HU9p/ZOsVL6HHSLuIl3RQutdIdYiO2PU7REaBTeMRsH8thankOFvfrmjE/JLIqFlKtgda1XSMQYvrtvIkzRs+jw5EjCpMd+8a9L2DNdLvVl/V+/PHH+zr473//+77GBwRsdpjBCbAzBcFuBQQMGDM8eX+mINiugIABYobbrb4Ytte//vU47LDDcOKJJ+L1r3997Zjnn38eX//613H55Zfj5JNPntbFHJUCpDJ12IygiPJYNdNeP5Jj/UjB5KwbyTFc9hchkdLua/rqpGkbEywJFZ1EwrFqgmNOyaolEberPkOJgNJFv9QabeGHGZj3bGvij9tPmtv6bJwxmLVrIzqitVMiUboSAkVX15vCIyUJDTRhkOmIDYNUpA0aEkn65ego5EjBsOUjo1ZUJCdsm0pzSMu2leGTlGEjq/JaKVd7DS5sjCcReJm4LeLIvqdoJzbsKlbKXjoOQNnVbA5dyv2zhAis9MFAACXjmNUwbDV9AePDbLNbBrwmNK5JgKTY1sly0S4qNEK3dQqQ1I1pELeYBiGUUwEbtliJkO4l/LEu9JFxXlt3yd+v+8WuhkROJESyyW6ZbQGDwWyyXUORQDvmoKQSZdhsXw3TRp+nqmOb2LhacZMuLFwd29Y9nHIsNq/zeADsMarn1QvoPRtVnifNX8OiN4UhVuugNbFm5m/t9i7sGe03oKGMXj/zz6FOaISO8xm24v101AfDNsPtVl8O2y9/+Ut86lOfwtve9ja0223ss88+2HHHHdFut/GnP/0Jv/zlL/G///u/eN3rXofPfOYzeMc73jFZ8w4ImB2o1I7z+gMGgmC3AgIGjCa7ZbYFDATBdgUEDBAz3G715bBtvfXWuOyyy/CpT30K3/ve9/CTn/wEjz32GIaHh7HNNtvg/e9/P5YsWYI999xzsuY7UBixkUxqm7eWkdjk0VxZVm39SI7nNhYe+HAmsX6kaG9MnQCJKbyolPYYHrO6w8nqACO5BVU5VY9Vk8VHlAjuC50khG2LDdsGtGoWbIpYX8OqaTAjNAJYARJDQCknSdIMT8pf+0Ij5mag8v1ZBkXz02py2NTIRseqDVOGzbFq+UgKlRbHlCOpZdgMqyZT6ZJ/yTKdlspjHkRspM45eHmtRRxBlDlsMWHqKGIugDJXTSdtdx6tISAqz7vPtBctG3LY5PRf7ZkpmG12q4qq0AiV8nc5bNxK+9O8AUFsA5Xv70XWvwqX/zY229ZLEW9afmNTo1rEtQk0j6SJPXM5ZgJSdg+76ZD1r2l7OWxCdEj4e4V0icw3xUQFSJrsltkWMBjMJts1FHMMkXwjpTXoz2yd6Ijb5tq9sG10HM2PaxI6mWguXLcctiZGrcquNeUH19nTugLTQP8FqscSA+nGntF8MysKwliFBRubVXP99efsj6/mtzGouPffh5lut8YlOjI0NITDDz8chx9++KDns0mhdPHKlEJW3tFFvbUyDHLUhUE+tzHD+lETEpnZ/jSV1jmTeadqkFba3vxNyj60wnwquBU3GUoENpbtOYmwzlteYxSA5oep6g1kpsE1IEqJEWM3tfaNYy1oLQsaEkmERjw1yHTE1VtLicM2vME6cvmGEeQjRQilHEmRbSj7R1LIsl+lOfLSkZOphMxMHTZp+2ztE3IxlFROGVK4BxiRCOKwZYiMA6gU4hqHjXGOyNRqS9rQrSIkEnnqRFj6DHHQSnp1mGh/wGAxW+xWHbzagkRoxHPeuLsHhOwUHRFMIynvDaXoj6yGkyLyv991IiXcbvO3g/TPNnQXBXG118ZSeKRjOBUUiZLa/uL4/kMW436b1TycTRRNdstsCxgsZoPtascccxPhZQ34DlZ9v91O+mq3q2anz/wsS/I81qE8OSAHz82n5hmtm8PW8OxQd882OWzVe7xaswyor2Vm+qsOFnXAugmBjOVsVdfcqk5XFVUnra7fNPN+HLYZbrc2a5XIgIApR55ZZ7ajPyAgIGA6oslumW0BAQEB0w0z3G5t1g4bDYnMSN2NkXKpZziVluFaP5pjXRkG+fzGDHkpOpKNSkgTEln2yVy5WmYNYbGMww+JNCvhEUdUrhjkmURUhhCklXogtas3SXX1u/g7wtwKSKYYhHLy3mZVy4ylizzFOZDVD3oyhlGiddi0AgytnKdWmt+T709HoIc3FPMddmGQ2YZhy54VbJtpk/6RHLL8PPLh3DJskjBsdSGRFAXT4Bi2aMjUYROOFa2wa6KszybjGKJdwxpmGbi9Bv2tYGspoWvCpOr6AgIAAFyAaelYNc7r25Rt48yFRApmmbRU+SGRjiXTZAzgmDX/+91NdKRToKRmJZWygGSO3cDqpOlZb6usHHXzHHs/G2LIWUcIohtTJwTi9xmZ/qZsiSLEkbBqhhVtkvKPElJ3yYVB0vBIKjBQ1zahUP2UXmiyW2bbZOHZZ5/Fhz/8YXz3u98F5xx/9Vd/hcsvvxxbbLFF4/jzzjsPP/zhD/H4449j2223xWGHHYYLL7wQ8+fPn7R5BnSiLTgScrMVj0ju/zqCqUnDq66eYq/MXR1T18TOKT126YFurB1QX5qgbp69gNfaWbK9QbijX6asiSWrY8b6YcPstho7XDeuOE7zGA6GvI+Q+amyW4PCZu2wBQRMOfKsCKms6w8ICAiYjmiyW2bbJOH9738//vCHP+DWW29FlmU4/vjjcfLJJ+O6666rHf/kk0/iySefxKWXXoo99tgDjz32GP7mb/4GTz75JL7xjW9M2jwDAgKmIabIbg0K43bY1q1bhy233HKQc9nk0NrkbGlk0oiOKJtDNpxKm7c2nLp8tmw0RzpaMj2ZRG5YH5NTlSu7cqJJlXvAX5X1Ks+bQoUxR56ZtrDsnR4jsdUe0yaI+qsro2TlxMm7alsc2xzGXJNytg0XTrlBRICEUaERKi6SEfn+0WGbt1bkqhXMW7ZhBLnNWxu1OWxyJEO6wYiR5MhGjKy/Iu3i+iupITO3SkLz2BhhF8yqtUi4ZeeioYiUBNBgonh/xjn4hrK4dhxBjJTFtYdS6Ky88ZUkpQ36ZNjyDDrvvA1nQhHHmYjZYLeqYIKT/DRh25zka3LCtvFEgKdlYXgGy6RJ7VaWE86QmnIkDDC2oBAjoSIlsP1xRXSE2iA/h42NKSRSFVKZSnTL+3JsW0MOm6BsGGCIeA4Ahm1T0rJq9FiMc/BS5IgJAVG2/Xw299tRKzrSRWBgImiyW2bbZODBBx/EzTffjJ/97GfYd999AQCf+9zn8I53vAOXXnopdtxxx4599txzT3zzm9+0/7/sZS/Dpz71KXzgAx9AnueIopmzZj3TbVciWG0JoirG4pxUhZnz9q3ZmbJxPgvn71c3rsrU1eWqdRNP6RxL+vvMd6cYhFiHGVPHilVZrI4+0q4bW7etDt3MUNOmKnOX9pEUPRV2a5AYt7U64IADcPPNN2OHHXYY5Hw2KTLpwiFpSKRRY9yYSgynrvbaaOm8paMS2ahx3qjDVobmEdERmVcK8ZRgXHgPU+ZHV+bCtlWuoPLih7nwi5yTlo9xswsSukPDYopzNTXGGHTZP27TQZ03mVknRueu3oUnNJI6xyzbMOzERTaMINtInLfhrGxnSDcUbd9hkx0Om0xVrUGliLl7cBWJgCwfXGWmPAeP21AyDp6UtdpGUsRGmGR0xDmnuVMeYrrPW0o3FGzU05+en4mYDXYLMOIU7peWhkFyshBk+nnCIbLyIX8kh0jKWo9K2TCdIkS85sePCJBIrSuOWmc7sYtGZHGooiRGhVGokiVd0OLW8aQhnyTEsC40sg9UnUgAFeeGXF/mbCl1hjwnSbiQReOAaS6s06XyFIwrO8YkuYsOZ8+ExyfgsXPSeFTTJtfMCFfxiDtHktWrwHnn2kcopEWT3TLbAKxdu9brbrVaaLVa/b9XiVWrVmGrrbayzhoALF68GJxz3H333fjLv/zLno7z/PPPY968eTPKWQNmvu1qC4ZWREMiJ7ZoAPQgkAbY9BS7T+0YekziuKHTsXPH0TX71o+t7tNtTDfUhgx2cZLqHCs6vjq2evjuYY118xv7M52o7pHvIAJZPypWPdit6Yxx/+K99rWvxaJFi/DQQw95/ffff3+oBRIQ0CN0nluHz3/VO/oBE0OwWwEBE0ez3XK2a+HChZg/f759LVu2bELvuXr1amy33XZeXxRFWLBgAVavXt3TMZ555hlceOGFOPnkkyc0l6lAsF0BARNDL3ZrOmPcS0xf+tKXcN555+FNb3oTbrrpJmy33XY4++yz8c1vfnPGGA+ltQ2HzEtOO5UuJDKVyoqOjKYSeerERbIyJDIdzTsZtnTYJjA2yYh6ieOxWzGVuXIMm4osq6a0dkImlWWZupCXJOLe6nZsGDbOIMvVaqlcQm6p8g3F3QqUInK1gkr5Kyflz1TupPyVC4/UeWpjhQvRERcGaeT7C8n+UnRko2Pbsg0p0vUFY5VuSJEPmzpsuWXbVEo+g/IapcolFFeTe11oloYo78uh3NVb06RoIhMMgsj9u7ICbTv3aG4b3JxfnpL6c32ugaiGFZ8ZIDE7EzEb7BY4BxhIGKRjoDgRHRGJsEyayIS9j0TsmOWYc6SG6WEMScPX19xPTd9uyqDRv+Z4NPSyKDdAWDWyQsoJU9g3xhAeGe/CLo1WKN6mnm2zTFqWuraSjnlTArz8xdVK1oqnNP0uiCjxwixFyQ5xzlxovbH3pOYerfEpOK/9reBlfaU6QYNGNNktsw3AE088gXnz5tnuJnbtjDPOwMUXX9z17R588MHe59aAtWvX4tBDD8Uee+yB888/f8LH29SY6bYriTjaDWxIE1M2mCoU7iBN71Pt7hRfq2yn+zYybN3365hDw9zGDCvsGF8fLlllpjrfp34/u73p/QfyGRXo93vAGMNo1MdvRQ92azpjQjEBF1xwAVqtFt72trdBSom3vvWtWLVqFfbbb79BzS8gYFZDZxl01qkuZ8JJAwaPYLcCAiaGJrtltgHAvHnzPIetCR//+Mdx3HHHdR3z0pe+FDvssAOeeuoprz/Pczz77LNjhgmuW7cOBx98MLbcckt8+9vfRhzHY85rOiLYroCA8aMXuzUZMIXv77//fiRJgueee25cxxm3w7ZmzRp8+tOfxhe+8AXsscceeOihh3DcccfNKMNhJF6lhs1hk0rbHLbhVNp2nkki5e9YtaJdfNCylK6X6TBUyb6oCsNGczBMEjlLBUQyVIzPE0RJsRJZCJYUH1Hdag1QrJRGPLNtyrAl5cpDzBmykvmhOWyZYkg6CmezMeOqWQPb5kn5Zy6vS2cpVNmWhFWjoiP5cIqsFBdJ1zuhkWxDZpmBlLRHpLLM2rApXK4d22b+t9fJrvo7FkFqYMiILEjtiTUYho0nAnGZxyhHUqiyraVySapKudWZfnPYAsO2STEb7BbjvCheb5i0OIYUxf3CBAePI9u2THGqbFtmCqK0ZVpyew90W/91eW712ynDZpi0hORM0TYV/vFk/cnqOxP1pQrAhRXrKMZ1L0TdBMomeQVjG2Tv7fsRJsorUM2Yx4zZ/LTSxhvQyIs6eIWzo8QTGhGt4jdCJEPumkUu/5n+tW3O0CJtLwLDK7Db50r5AFeqt912W2y77bZjjtt///3x3HPP4d5778U+++wDAPjRj34EpRQWLVrUuN/atWuxZMkStFot/Pu//zva7XZf85sumOm2q8Vhv4u9go31MNJUN2ki6GDqyzz/CtVVm6NW09l0BhPQHGlmnDrGdQ6sdnW9xpvk+pK36zOflmmNVj9fqSli2NI0xXvf+17sv//+uPrqq8d9nHE7bLvssgte8YpX4MYbb8Shhx6Km2++GUcccQQef/xxnH766eOeUEDA5gSVZ1ZYptofMHgEuxUQMHE02S2zbTKw++674+CDD8ZJJ52EFStWIMsynHrqqTjyyCOtQuTvf/97vPWtb8W//uu/Yr/99sPatWvx9re/HRs3bsRXvvIVrF271oqhbLvtthDjdPinAsF2BQRMDFNht4CCGQeAa6+9dkLHGbfDds011+DII4+0/x988MG4/fbb8c53vhOPPvoorrzyyglNbFPA5GjRYopprqwCY5pLm88mc20ZtjxVpJ0hH15fjElLhi1PHcOWpY05bKpUAGNc2PEiGbLjlRoie0RgrOjnjNl441EhyappjqRceR1OpWXYEsGRlUvjUmjbVpF26vyejG0Pqxw1RbS1lIR1Iu08s6xaPjIKmZqcNMq2ZV6umm0Pu7y1dGNm2bRhqTEsXe4aUCjYubY/Xbr6b5TwpFa2vQUAUapOcsGQt4t23I5s4e4oy22um8pyuyLjFWPsM/VGK91RqNv0Bwwes8FuAQAqBbINq8bjyKmaxhFUXDI9ibQMWyy1V8JClDdLUikMayAYa7yv6Jg6hs1j2yKjWEly62LhlRtwhb7986u/Bg0P25XcsKZbslvOFmWjIpKrJiKGPHO5YjIqc3wldznGKmkuzsrHZths5AVRmKTKkJRBi2KBKOZ2PkAZIVC2aaRFEvFatq0fkTV7Hg12y2ybLHz1q1/Fqaeeire+9a22cPY//dM/2e1ZluHhhx/Gxo0bAQD33Xcf7r77bgDArrvu6h3rkUcewc477zxpcx00ZrrtYtkweBrXMywNTA5rYnjq+qt9m5gdGsj28aDbeY51DTbVNar2NVwH3XR9unxnWDbc89Smym4NCuN22KjhMHjd616Hu+66C4cccsiEJrWpIZX2JPNNGKQkNdSkVLYmmpTOYZOjLvwxNw4b6dNKNTts5RgeJcRJ80MoUwx17MsrDxDDXhiktG1zHqlUJAySO+l7RSn8zsTcjq+vrTVGnTVNBDdcaKAmBQpVntlQQpXlxEkbtc5QNuIk+/PhHJlx0jZkSDcW7WGpsD53DhsVGzF/zcyqsv4mHCtV2j5EDgluH1aGpUZsRBlIfTaZSiv3r6W0zqaWyj2U0c+3TwOoshwqqmHYsslTLHr22Wfx4Q9/GN/97nftQ8/ll1+OLbbYonGfkZERfPzjH8f111+P0dFRLFmyBP/8z/+M7bff3o75yEc+gv/6r//CAw88gN133x3333//pJ3DeDEr7BYTYHEEbkpJiJTI90cQWWHWZRKBl98jkQlE7aJfSWUl/uMOD8wIkLgH+VQ5KX8q+98p8V/8rXPYYk6EMGJBnDFaK46RcE4nb0/rzIHzWket8Ye+glpZbCqY0lCzzDg9eVYRGuHEeSttk4giaOWHQtp5Eluhyna1Bpur2+bL+kelI144aWWoa8TAjfNmwl8jjiiiDlvRnwhfdMQs7sWiKAPA+4iJbLJbZttkYcGCBY1FsgFg55139tIHDjrooMZ0gpmGmW67WDYMlo79yMlqFoM90M+TbO+6Xz+O30QxGU7ZeLApz20MJ82zz167WpKgYZ9uU+rDYevFbg26HMkgMfBv1s4774y77rpr0IcNCJiVKBy/+tdk4f3vfz/+93//F7feeiv+4z/+A3feeeeYMtcf+9jH8N3vfhc33ngj/vM//xNPPvkk3vOe93SM++AHP4gjjjhisqY+aQh2KyCgd3SzW5NpuwI6EWxXQEBv6MVu9VqO5Iwzzihyl7u8qiU4JopJqRz5ghe8YDIOu0kgiTR8Tpg3rTSUCSXMlS2IrfLUMmsqS22fFdnI09rwGCZIcVXCwtGxVKAk53MIq8bBuLRtLkomLVdI81LqPheOYcsVssiVBzCL6kprK+vfyKo1gbBtVhJfSSvrDyWt6o5Kc8iyLdMcMstdvymJMOzCIKtsW10YJGXYMu0YtmZZ/zLsizOrrSCYxrB0bcNCRqmCzMqQMaWhiPS/LQMwoIcSlWa2zEK1fzLw4IMP4uabb8bPfvYzW4D2c5/7HN7xjnfg0ksvtbkgFM8//zyuvvpqXHfddfjzP/9zAIXE9O67747//u//xhve8AYAsKFJTz/9NH7+859PyvwnEzPFbrEoBri2TBOPI4hS9U7FOVTJUol2y/u+KssU+0Xi6yByZe8ZwervK6mrhbPN306GTSQc0VBk28KE8SWClNAQnqx/neiIx7xVBEjGWtkuQiDNOfkhgZwwT+YvLaYtCJNmwg2V4JCl7eURR6SLueQpbPgiBS2WDQC8bLMmhi32wyANqxbFAlFCQyJNv+sbKq/pnERYdrBVCY80IaG8LPsS98OwNdgtsy1g02Im2C6ejYBnDY+cYzFiVOgMcM8ZgGPcemHbvGP4z2W0tM+Y6Fegoil8e1CYxPnUlR9ptLsNDBljvFJXoGZc5TieNepi23k20ritil7sVq/lSHpVtx0kJsVhCwgI6A2aOryVfmDw9PyqVauw1VZbWWcNABYvXgzOOe6++2785V/+Zcc+9957L7Isw+LFi23fK1/5SrzkJS/BqlWrrMMWEBCweaDJbpltAQEBAdMNvditXsuR9KpuO0gEh60LpCLFqgnbppR2jBjJOVMkZ0vWiI4UxVLLlYkcUGYlVUkIKv1fKlfJdNiOl1FiV59lrmw+iMyVZYAKhs3lrUmSl2dy1TLp2lK7thMd6fHimIRPrfxrIUkOm+13zJTKcruSIbPcMlkyk5ZtU6mEMmUTFJXv9/PWRsobzy+c7aZoWAEqiADABgILks8mCfNI6XEtXR7jZIT6qDS334NqP1DQ8xTnnXfehIq+rl69Gtttt53XF0URFixYgNWrVzfukyQJttpqK69/++23b9wnYBLBBRhXQMmq8TwCT0rRkSyyq9giiyzbxuMIcdt9j1XDjW7sSj6cg5fFtROuPWEfA6n9+8oyUmVfzLkVF+GJgDB5Vx6rxsETUxCa2fMQcQRhzkmIell/ms/WY76DIZGKQtGuTdk089exUcLmBg9zBhGVNkNyCFmM0VpDl6VTdOSukeItSBtJ4ecnG1tJSxN4QiPclTyIEmGZvSipsG2EWSvm68RFkkjYXLWqAEksCMPYZ+HsJrtltgUEVMHSjWBp5T7tJR/NbKthxzQtqUP6lZQ+C0fvO5pzX+2rGe/6xv79bxIbmir0VPZkLAbNHIv2cV75399m37tmDKvkIbMahq3XnDeg+F71iqmyW48//jieffZZPP7445BS2vz+XXfdtat2QBXBYYNfZ0f0GBZS57DVOi6V7bomDEZlqQ2PVHlmt6koIU5gCl0mnUupEOny4aAimJKTNnXYvAct43g2OGe6RoikMqC+v2I8XZinH0poVjiaHCOZSRu+lSpdqwKZEQeLKtjVh0Q65ctiDOzx3HjWIVTSDZ5yXR9hWVUUtfaaVSJ7pefPOOMMXHzxxV3f68EHH+xrbgHTFJwDUWQfIFiUgcfFj01UCYPUJJzXICILD1RognEGNuJUGnniFlCEDafUtbWGAFKTzDgCFTVIExIZtSMSHilseCSPI/DSCaVCI0xw8KgsdFwNgxwABKnDZpybor6lc95axNGRuVFl1NBx/VxM+LrKnUiJVlGzo0yETIwCsIhc+CWPuFODjDjiVnktY+e8tUrHdygRGCqd3aFYYA7pd7U5OeLy+kalGEmvv33FudTbLbMtIKAKlo2A0aLFTSGJSrrUDJoqQlMv7D6uX9MaW0r5zpPtl/73lvR3zKM6x+p8m5yzfkIrJxN1jhhqnLgmxwuVcMhqDUwrBNVQG5M4ZkX4Ogll947Zg4PXNF8U36teMVV269xzz8WXv/xl+/9rX/taAMDtt9+Ogw46qOfjBIctIGAKIdMcssawGjXKXun5XuOpd9hhBzz11FNe//9v79xjJSmuM/5VVXfP3LtPNiysMbvGmChAQhBevMtiEmMWAXKEsIOQUBwEGIONtGvzkDEksXEeyDbBwjbBJiGEhwDhJA5OLCckhEfiGIwtCJYwy8ogCARYwFkW2L2PflTlj+6qOtXTPXdmX3fu3vOTrm5N9WNqHn2mT32nzsnzHFu3bsWKFSsaj1uxYgXSNMW2bdsCle21115rPYZhmH2XNrtltzEMw4was2W3brvttl2uwQbMc4dNCj8rTGeaaXiMIBJsOButgv91TJME37JdSOVSPIsWRc4UhQ/N08ZFB2jj24aoagACtc2iTThDPoyq1ErTLFQQ+hPGDQeqmk3kQpIiaNIfKmLN6hh9LU25FMrkCH6fJuWwTGNOPl+ioLk03iQRQvm4YVZpyLezLavasOGXg8ZTr1u3Dtu2bcPjjz+O1atXAwAefPBBaK2xdu3axmNWr16NOI7xwAMP4MwzzwQAbN68GS+++CLWrVs31DiZXUfEMUQk/TUWx1C6VF5NoRF1fXuY71GR+KQfRVKgqMKXilj5+oPk2uwZl62nRmqpOYUt8WUFVKIQV+1oLEI0VqWrH0uggnpyvk1nW+21ViboqCINhAgXr1dtATgbLoRxETVK+uudpvV3ShsNH1Q+Nf5Y4kPNabr4+uysyCuFTfi0+4aUiel572ipADuuSLrwS6W8kkbVtihWGKveS5toZFE3DpKO2HYSSYxV54iVcCGRNuHIMElH+n23OEsk04SeeBta0nuFPiGLVDWz24N7CNrfEB5JlTS6T02pM/RYd+7wu91071Jv6z6hkEMlM9lFGhOEoAwrd/sE9zD0Pqe3v77d3e+2KWPEJlPlLQiDlCpU+cj+/vz+uYw9V33/Cj2xo/E1NzHX7da8dtgYZrbReQ6dNWSJzPfMbM8RRxyB0047DRdeeCFuuukmZFmGDRs24Oyzz3YZIl9++WWsX78ed9xxB9asWYMlS5bgggsuwGWXXYZly5Zh8eLF2LhxI9atWxckHHn22Wexfft2bNmyBZOTky5O+8gjj0SSNNelYhhm7tFmt+w2hmGYUWOu26157bDZxeYxSeFMZ1Y7kfRFXSPplieVafXpLG+ottE+mmikSWkbhrb1D00UtX3rj3vO7aShwWdZAfQtzti4NmvAWYy2dTI7Qz0xAk0/7hMlkFn2RJEiv9KpDjKOfSIEOusfx2QGaLj1NUXWEhK5B4vP3nXXXdiwYQPWr1/vCmfblPwAkGUZNm/ejIkJv5j3+uuvd/vSwtmUT37yk/iP//gP99jGaT///PM45JBD9tjrmW+IKIGIicKWdN02mryobdaXzqRKohqrtPAqWSpdkpAi8WtK+5UEsMe6It5KuHPIRLpEIzFZwxZ1I6KqxT7pSOJLFcgkKq8xAIiSYEZ2Z9ez0SQbSpTruAAgrtL01xN0JIX/TUir/kLT544gMrs+WUBV5yki4aMhBlDYpBT+d0ZJp85RhU1FIli3tsgpbF5pW9Tx7TGyhs2uxesq6RS1WEnESrr3YBDa7JbdxjB1zPQkTCTC+6CmBCBFgXqkzkDqWUYTnfl96mt5w1InvYnR6hFBmvT7MTZHDQWvt+VeR+8mxU22rlHr7e9RyhpUNtmgttXLq1ilrr3sCll7TBU2eo/UR4UzA6hwfozVffX04IWz57rdmtcOmw0LicmPVz3DVkR+MO0CcKUkVFS+dUWUQFVZvXT139SyPtrEIZR67R3Z4OzR/cq6bT5sZibqC8jp46ZsYHJYR80PsHaihkWpdPcBbgqkCm+mQofL/qeOF3r2peGSSvh6UIkUiBvqRCVSuEX4Kg4z2kmX0S4qHTVUN5FVIgQRJa5tiiGTjuymkMhhWLZsGe6+++7W7YccckgQ7gUA3W4XN954I2688cbW4x5++OHdNUSmD0LFQCSBgtzs2AQkSdE6ZRD8qNpMtMk0ZFLap3wyc991nfqsrUWmyU1LGMZM8TXUfPIR66RJKYJEIzY8MuomUN2kp626iQ+JjGI0hdaIOPb2R8peW1RDwts5IYwLCZS1SRzAhkGW5xtPVJjAiThd9FbBRWRmAsbeBBU6CGVvmnQrnbSWkEj7mxP5jJFJomohjz7BiO8r2wu7kWuXTppPNBJbJ9WGRA6RJXKuhxYxex89uQMa5Ka4nuijzSGzfcTemeqeqscBq266686YzQBotA4csFZHLnD2ep06u60cWnP4ZH0//3j3TEYL1Xu91u+v6pNz9X3C5E4+G69scdjob4ikjlxlg+pOnb1f6jmPrVNJQtxNP+etnvwEPlRSTw6eJXKu26157bAxzGyjsxy6wQHXc2C2h2GY+Umb3bLbGIZhRo25brfmtcNmUxnHNG0zmVml4STTtPZNohFV6WnzOIFKxgDAJQ6hcjzgE1KUiUN8Wn/bL2ntnSiGjKtZ5igh/b4OmxTChexJ4UNoBEnNXE9Lbamra2qIWdVWmsKSaKhoLUW3IDPxPlGBdOm9c5KsINGaqGBl+n2gSj5Sm1BXIkxQogKVrldVG1MCY8r3uzCtsShs01n/2M/6iyoUTUQxoKqQLTNciFZ91o72M0wjUQQRzfw9o3vQWmbhNUhCIuPIhYVQtS0qNIq0NyxoxhT1yl/Hglzf0VjswiBVN3FJUlTXJx1RcezUNkSxU7BB1GxI5WSt1ro9AOjvszV3Ej4c2kZZAEAsdfVfONuf5tr9PhRaNYaXp1IgFYV7/fa9UYV07ZnCIe2xzrbLUFWjIZo+VX8UKGtlXxgG2VU2nJOEREYSHRcGKoIkJIPQZrfsNoapY6YmYIS/Ke5R1YKIgXqppHYlrcgy17b7FFnerrzZBEpp1hg2qXtKDxnSTxOjUbXN9/u+/rZyV5S2uroWJMQjCpok0Q50u08MJYLICKqClcc3hzvKJA5UuCYlTcVRcKwiJVtknPbsT5OamFpSk35qm5kaPCRyrtutee2wMcxso9McRUM4KhefZRhmVGmzW3YbwzDMqDHX7da8dthioq51qhnr8VhhYbW+4p2p3C3o3j6Vu2KleVa4dlF0G87s157pPIbOqxmgWtIRQeJ1nZIWJ4gqxU4lY0Rti6Cq2dEy3XNvm66/o4VQk8ivXVDCK26NM88CQSmD5hcnmme2g0KJPgZZ0pkWKV1xXBlHUEl5kajYJyVQiURRKZhxqpHIciZqTAFeVtOo1vWTHlr8OizTQNetWVVtYSSxkKipyYJyXHE3cu2oGyFaUH4e0ViCuGqLsQUQnard6cKoav2iGXINm9bNce9zYLaHmR1EnEAksbcxICq+lDA21b2qqdzBbKdPnlNU7SLLodLSVqk4dWszdJb7MhsZTWrSorA1zN7KxM+MRmOJswF917DZNaJxUiYbQblujaaWDlP597dbQghIYao2yDpZn9LeJR/RBkk1Kz6WNKtq1MZO5xqTVbvQBnlevXfauPWggyhsSkn3OImkO/94oLCpQFWjESH2v93eiSRR2PzvXCwFuraItirX70ZySIWttQAt2y6mFzM9AY3Md9SUtLYkIbavSDPX17QmTae5Lz+S5o1Kmk7zRrtG1bMiLQLFzClvOly/a1wiJlNbxxZe522qmz12GGZatyapkkaVeyWDtcVUVaMREXVFTiXKJ0Qi55BxRGx71Ki8FUF/hEJVqlptzZtKvPLWluwksPlB+QEFMz1M4ey5bbfmtcNmwwa7kXQ/XmOxwsLKGVvUjTCZlV+mJeMFiupHuChiEuYS95xXSIWiusEo8tQlHamHRLr9lQ+JVJEPsVSdMURJGS4UdyIXkpl0lA/PjH2o5lhtAXpCnTfrkEkR3Kg0JSAZGpowRTVJ2l4yj8YSF56gs8y1i7Tw72mt1tOC7ajGq6GErtoSabW//U9tX2FMEBJJk4tYh21MSXeT01ncQVw5aZ3FiWsni8cRj5dOeTTeRTReOWndBT4kMulC2zCtIa95nRbQ9djOqp9hmhBRDBEnLq+rBHzICBBk47JtFcWQcfnDJuMIxVRpk2QSoahsRpHm/trsdlx4pM6yWma18GaqZ3wt4TTWSVOkxloQBtn1EyKqm0B0/PXlw48TwCX7iRtrr7UhhZ/GkQK+DpkSiLUNFaxuyEidx6IlzDmYFCNhk9O5bkxS0papl56HtjuRr/+WRBKJDY8kIZFJJANHDaiSi1AnzYU++t+5WNI6bHLokMg2u2W3MUwdMz0FI8LlIk2ZGUunKqyPRsMadVFz2Kq21hq6cuo0CYmk4ZFFWjQ6ZvT+g/ZTZ8xo4xIxlf20DmN7nUpDasyG/bsxJLKWodfuQ2ti0n1ncsjoduvQqUSR/twdV/b3hkGWtTSryfmpWmKSLHLPaT/XIORSqWD/trpwkMM5bHPdbg0nB4wA11xzDY4//niMj49j6dKlsz0chtkldDVD2PM3B2Z7mMFhu8XsS7TaLbZd+xxsu5h9hblut+acwpamKc466yysW7cOt9xyyy6dy4ZEJkpiYTU7OZVrTFee/ZLxGGmlqqVk1pRCUzLbFMx50kGeljPFxfQkWThbBGGRTXXbJElioiLpQi+jWCHpVOEsnQhxx6ptkQvhHK+FwriZ11i5UJhOUH9HkNTW1Zhq7YCm2WwhfUr7KPaz30kXogoFVXmGaMzO1uc+7CnLEZN04U0Es0TbMyS5Vcp0j7JWGBOobE0lAMaUDxGKxnzoY2dxB53F5bi6+3XR3W9B+TyLFiBZPF62Fy+AWLC4fL/GFkAuWFSOPR4DbEhkNNwcSJEZFA2yXJHtvjp0zOyzO+0WVFIqTlZJU6QemZTuGoRU/tpMp2Cq8GoRTUEm5aykSnPoKulHPjXtZqvL8Eg/i900Ww3AJwogCJrWuSHEpQyFpgpb7NuVbQhVtdjVYbPqYvmAhEH2STpC7ZiNKBDCuENjKRFXYdfONkrh7ITWBiB136mqZtup0q4+21igqulWhY0mg/Lh6ypQ2xKilNHQR5qApFvZdqqedSKvqgXJRWRzuwwLHdx2tdktu43Zd9hdtqtIUxQwLYk+mkMiC5IsxO2b5UG/JklHitTfZ9AwbqqMNZUr0alvFxlNcGJcGDhVz6hqZgrj6sbSexBaWqge/dPz3gxwydQFcJowrl5r1vbZthQ0wRtJLkLur1SsUK+lGdShTXybLmHJp3LX1nERhE0qop7JzIc+qsyH5IvU72OjLbSSENXnOlP9tyLtLZvVxly3W3POYfvjP/5jAMBtt902uwNhmN2AKTSM3Lt12Ji9D9stZl+izW7Zbcy+A9suZl9hrtutOeew7QzT09OYnp52j99++20AVYp3JZBpgfFKmVqUaGTVB5fpuHV2VBJVTVazmVGVwjpPNfJqBiHvdn3MdN6chUZI5RKHCCEQ2eQbSrpzRrFyalvS8e2F3cglRlnYjUnbK28dkowkXMcg3SxzMBMzw1IGIySEncVWCqiKRYs4gaxmxXWeuRly5CkiqzI2FJ507wOZ3fELYX3xXRUrN9sVT+ZuhsutLWyYuXKvszp3NBYhtkV7xyK3Vq27uIPO4lJpSBaPobO0VM86Sxe6drR4CeR42ZbjiyC6pQqn4w5MVB5rhrzmi1SjaDioyEbfeDB7lja7ZWQEoxJ/DUYxEFWzkXkMY2ecpYLJfTp8pKWqJqLYrQ+T01OuCK3qkvWlaR6ky6brR/pdw5RAVQtSQkdOVZOJL0avOh2v0HfGvMLWGfOFVkmK//J9KI81QoYJkJrGIxDYOzsrXa5hq5S1ai1bJ5gR923V8WvM0lw7pSvNtYvGyGvr1trsUjBDTlQ1mjiKKmm0bdWwbiR7EqbQvn4KG30vpADU4AJbq90C9qzt2rp1KzZu3Ijvf//7kFLizDPPxDe+8Q0sXLhwxmONMfjIRz6C++67D/feey8++tGP7rFxzmfa7FYxlQb3Uf1UNbq2Dehdk9amqjkljaw3K1Lt7hsCha22ns2VLtFhGRN6n+HXtWKgNv1ftptVt/o2SlPppSZFzfY3RRYpIaDyln6bwE7lXlmz97KkxJLKVLBuTVXXuVACqnq/VFK4+zWRFu53Q8YRVGH3l+6zVIUOIi8M2UeRUgH2eyIKr7bZbXY99iDMlt3aXcwLh+3LX/6ymyWiJEqgowQKLVx2P92N3IWjaxdQ04/qtsg7Vdl0+Xam0zm0/fHOtFvMavvsuV14Dg2rjIQLrZSRbE4u0o1cuOOibhwkSVlIHDbrhI7Hyjlp3UgGi+2VCxGqXqPwCxslyaRm4MMgywyQ1VdHSKBqiyguwyJRhTQVvsaKPWek605a9VolDZlKSc2mCPlkedFnUzl0ao12GOZQPo0Pt6CLbFXizx13I0hb421BgmRhlRlyQYJkkQ997CwtbwA6Sxch3m+/clwLl0IuWlq2Fy2F6ZQOm4nHYZLy2Hom0JlghY1po81u2dBjU02UwOhm5y0mzls6BVM5SSbLIGwipKQLU4Uuyzz1++dpWLuItmsJAfpBF5GHCUhISAzNAEkS+bgsrDQ8Mk58zcNaaLZNckSdN0kyQ0rUbVvZLmtxVo5aS3k7e4MzVWhnE5NIN4bMD5JoJDh3LelI0uCw2cQgvW1aQ254J822hQhDNGditmaqP/7xj+PVV1/F/fffjyzLcP755+Oiiy7C3XffPeOxX//612fOgMzsMm12S6cZCtE8aVt30mgCEqB/QhHtQhwL51zptAhCH2dy0oosTEBi25nWzrFKtQmcMboko5/DVrbb+3aGXietNzyyxzGr2okM+202XCXgbEWResesyKp2qp3zRh1ilSgSKipdWybKvdeK3Jsp4piZonCJSUyhfaKRQrY6b0GSkkK678UgzHWFbSSSjlx55ZUQQvT9e+aZZ3b6/FdddRXeeust9/fSSy/txtEzzM6jc13+oNT+qHPPjCZst5j5Spvd2pO2a9OmTbjvvvvw13/911i7di1OOOEE3HDDDbjnnnvwyiuv9D32ySefxNe+9jX8zd/8zR4Z21xjT9outlvMqDIbdmt3MhIK2+WXX47zzjuv7z6HHnroTp+/0+mg0+n09CeqDIksjISuFiJqSCwhqfppCnwakmKTeyzsxtg2Uc5WT1YzDpNTOXKyUNWG7BltelQ7+xxeYfO1MFQkndrWSVSgqtGEIkEYZMeHQVKFzbclOsrW4vGhM3bGxRrrvtDF/jICouqLbjREx3/p7WwAvQwU4OoryZiEQyWRSzhQTKWIxsrq9flkimKqnEGhqlo9zAFAUAsFQFBrRMW+xltUvV/xgg6isfI5k0ULEC3oVu1xdPYrQx/VoqWQC5eW51u0FHJRqbaZzkLouFLVkjEXEpmZif7vXQ1daGjRayjqr4UZPWbLbqEKiUQ1Uyh0DqMracgYCKt+t6lteepUNZFnMFmltuVEedMakpQjAaklScOYKL0hzjJouxo7UvnQxzjxZUGSrgt3LGvNUbXNt526r5RT92ltyDaEoAqTt3lawEVMtGF/ByIlMW1rrBmJrCoGmcVk9p0obPaxpUnFChQ2UhNOEuVPCVIjrqaqUeUNaE4oUj4PMdsQLgTSjmiIrP6tdstu2xM8+uijWLp0KY499ljXd/LJJ0NKicceewwf+9jHGo+bmJjA7/3e7+HGG2/EihUr9sjY5hp70na12S2d5zCRCmqsaaKq6YYEIz65SEFKANF6a4W7DwjCGgvtQtyKmtrWrsjZpTDNqlrZRk+7nmiknnREA62hkMOqbF5JM41hkZK0lTCN7VQbV+ZICYPCeNtjwwVtjdu4ME5VA2iZBQOZtIQjVOjasRRR9PabWqijqMLTJSIUqEIrtQyip0yhoVuWGjWPae/brd3JSDhsy5cvx/Lly2d7GAyz19FpczrZuTDbM99hu8XMV9rsFuBtl127ZGmdgBiQLVu24IADDgj6oijCsmXLsGXLltbjLr30Uhx//PE444wzdvq59zXYdjHzkUHs1igzEg7bMLz44ovYunUrXnzxRRRFgSeffBIAcNhhhw208JgSmxyxyYEoQlN0qJIxman0alQ3Um6t2PapHEvGylnh7dOlpz+Z5pioZnHoYvRCGxfTSxEtaxjCVM6RS/E8TtS2scSPpaukS98/Hodtu4ato/x6tkj5heb++Ula/7rSRtaLuFluWfhMG0pDJOhBSulmT0wUQ0elChVFsVPV8rEO8slyoXIxlTq1S2c58mpRqU6zxlk2moI3GC5JYmJjoGUSQVVpzKNugniBL4pti/ZGCxe6lP1y0X5eYVuwCKZTfsd0Z6Ffw5YsQCbK80/nw82YscI2P9iddsuo2F9/QKky2WtQ54At9FxErtyEiDsQiVXYMsAmAcoyl3TE5JlX0ooCIGpb0KbrNEm7X4p/1Ap7i4bSAyIOi2K7tW2dLtk/cucyMgoLZ7snraX1J7PS3rZ526cBGOPX9VZP5IcrgKw6MNPG/Q5k2jhlLivC6Ak3u96SrAoI1534SA6vpCkBp6RJory1KWh27Er6PknWtwiiKtaTS0kA8RDruwaZqV65cmXQf/XVV+NLX/pSz/5XXnklvvrVr/Z9vk2bNg08Nso//dM/4cEHH8R///d/79TxzO6zXVRFA8IERrq2ho0qaz3bdbNKZgpDlLlw3ZpV20JFjih5qUZW3U/UlTS6Vs2362pbr5rWlt5/19L6E7We2AzbX65V821J+q3YpYR/vkQKNx4qhnn1TgMkp4cZIjORAmCK8kTlZ+R/H2R1n2gKDW3VM7KHIq6JRg5ZPdbwltloXeZTGOJeiRW2vcwXv/hF3H777e7xMcccAwB46KGHcOKJJw51LpFOQKQKcTxWZlEDIIUkF4IIsnFZR2dhVmBR5TBNjBXYURmA7VPWYSuckzada6SFd9joYvSmOjz0xzYh2R1p7Z2xRAX1ebqk3SE1eezC8y45TyT9D7+S5WPAL1iX8CEyPdE7tOaRlaVVjMDWSH8DZUMfTZzAVO+vIckEzPQkTJW5To5NIa4q1us8c5l/dJojnyoduTILFAmbaAjNogtVab0Ou5hVxZFrR92OcwxldxxyrHTAxPhi15aLlkJ0KyctGYNJrJM2XtZfA5CKCFOVo5YOYnkJZeaphiyRc8B4MIOzO+2WUbFPvAHAGA3YmwDqvCldOnAAYGKgqH4lYw1R9Ysk88lDSNIR6MKFTRpdBA6eg/SX+/V+Z2n4iq8Vp4gjJ31IJHHSIKVPOhLFLvTRqNhlhgycN5qApAUpwiyRhoREQtnr1jpIPinUdAFUOZCQae2cN01u2rTxtl33yQRHw5ick0YMbSxF0O/ssghDH+lEG3XO7GsLkkgRh82+Q4IkHbHboiFiItvsFuBt10svvYTFixe7/jZ1bdDwvBUrVuD1118P+vM8x9atW1tDHR988EE899xzPQWfzzzzTPzWb/0WHn744b7Py+xe2wUgCINs+u2mCgi1KUH4ZNNxhfEJ3grtE2FoE+7TUEtNB6GMzY5Z2W523uxomkIiZ0pE4h83v1/2sgxrzHpHK0w6YuDv4Iw3eMagiviswiHpeIQbT7hPuV1VzyMKA2mXDhUCQtp+DVMN0hTGfTZCCYjC74PK5utCQ1hHTmq37Mdo7X4XtNbeVqnQKbMtOYTzaBnEbo0yc85hu+2227geCLPPoFMNrXqVibkw28MMDtstZl+izW4B3nYtXrw4cNjaGDQ8b926ddi2bRsef/xxrF69GkDpkGmtsXbt2sZjrrzySnzyk58M+o466ihcf/31OP3002d8ToZtF7PvMIjdGmXmnMO2OxHZJERazkjHcTVbEXehKslUSYm4mkVIlEC3mmbdkRZYaBW2TGOiUtimx6yqViDTVnEJQyLb0jwHCpv0CpsLdyELzTukzk4nUiRU06d77ijl2pH0C8zponYlyPPaGVkpepW1GkZIl9ggmM8R0s/oCz9zDuXrs5k8g5kuE4ogz6ArhQ2kX+YZVNVvshQdMtMfLExuSX5gaVLYZJUSHQhrPcmxBRDdcd8eK0MiTTIGHVXhmfGYT98fj2G6etrpTDtlbXqAVOcUXRho9H4n9JBKHTOPkJFTrB0uJFL7ttGAqZRtoyFsIR5DlDfdcSqZSMac8kYVNujChzuSkMhSeaOz4f1LWghJVDXaZ69HpVykg5DSqYiGKmkq8mqbjLyqpki7FtrnwiDhZ6KN8Iv2yxJs1gBWM8KaqFRSwZqYTAvoqEr5XYQ11qxp75fKn6ppVBHzqlqY6MracCnCEizWnjcmD5GiUUmrK2w9YxsqJLLZbtlte4IjjjgCp512Gi688ELcdNNNyLIMGzZswNlnn42DDjoIAPDyyy9j/fr1uOOOO7BmzRqsWLGiUX1btWoV3vve9+6RcTLNNC0Hcdt6EhgVfbfvtjHZVP4tyT9CRYy2yXWP/moaVd3qxw5yqYTKmj+HvV7L7XYn0dwWAjYovX4sVfCaRHY7Xtm2wy5Co6Ls504TVplCh5Ea9Fit+36v6syG3XrhhRfwp3/6p3jwwQexZcsWHHTQQfj93/99/OEf/iGSpGENUR/mtcPGMLNNkRVo+i0qGtYDMQzDjAJtdgvYs7brrrvuwoYNG7B+/XpXOPub3/ym255lGTZv3oyJieGy9TIMs+8zG3brmWeegdYaf/mXf4nDDjsMTz31FC688ELs2LED11133VDnmtcOm8gmITJVpsUuqjUdOsdYlaI9SWJMSb8QtVPF3Y5FEmlRFckuNKbIejUAmMq1U9iywre1MT2L0OtIsoYhJmobVdikQLC2rmmxuZLholR7HolQVRNkH3sOOiPtJ13JGhEJt9hfkCK1MBoo7Cx6BBPRtOPleyqKHKJK1iF0Dln4RAimWsNm8tTN3JuWdTX19TPNbyZZM9OQ2EDW04VXa9JM3HGqmok6QOwVtryao05zg+nCr1vzn/dwszRGG5iGGZ9hZo2Y+UW5jiucmRNu3Vq1pg2oFDaqvMWu36phguxjdO7PozUQ+30EPadT2NoTkPSlnoDEzp5Kn6Y/WJOmFElyFJG28uvZqB1qe1rh556VQLBIV5raf9JWQsBUp46NcGvUClVfrzbzNduYaISoaqUK1qykta1Lq69ha1urRufGm6IoZqhsENBmt+y2PcWyZcv6Fsk+5JBDYGb4HGbazuwZRJ/QHaqogKxlslE0QkmAKDFS2VwAzTZHKglj1fJCuPNLZWB0pbIrCVHto4wIrl9FrrXCNLX9/hJwN0ptNqBpHdruop/oRdP91/vqx9JSJ03nEIq+j8KVnypLtvh9ZlpbJkl+AXu8b6ueftHnfELKvt+rOrNht0477TScdtpp7vGhhx6KzZs349vf/jY7bMMg00nIVMHIzIcIFRlQOWxR3MWCqt2NYhLmaFwIXK6l689dQhF/4WaFcdmHyoXp/cdUD4lxzpsSwYJ5Gk5DQ2KaHDP6A66kCJKKiPqPPfzz16EZ2ewNnBHC10Iy2hfwIGFXRvsbPqN9Vkmh86AtxskNovbhW01OminCcKxGbN0nGmpFExjICMYmRlFJmcwBgIm7MNZhU7F30gqD1GaSKoz7vNPCf65TQ6aG1WmBhpIk0IPe/DLzD6mCpCMAwp8g51yZsM/0vzZhtLuZpdemIccKo/11Z4w/p93WNA63Q0PtnbqjZUMWgxBHkpWWhFoHTl1LWwhAuKggAWFfnxAQNoOaFC6e0dpDAQNVWUpNwpyUEQDpb7o/q4fcSOIqBZkZAweL2OoGW6xqttrXUyN2npyXhjw2OWx1DDnPILTZLYBtF9OOkLKxPivgQ+OklG4brddlHQENQFT3GdQZo3NYBQqXJVoq6W7GjRLunEIZ53SYQgRZEm3yDSWApJq5SbUgDo2vZZZqOENQZl2sxkD+e0etLRxxuMmeeg0272CGbUn2SchEPU2s57NHkoR30v+3Nkgq4TNvS0neX++kCbKPipWrw1Z36uwkHXXeynNW/UHYvAycN0n2H5ZB7NbuLkfSxFtvvYVly5YNfdzwr5hhmN1GmYq4+Y9hGGYU6We32HYxDDOKDGK3Vq5ciSVLlri/L3/5y7t1DM8++yxuuOEGfOpTnxr62HmtsJnJt2FUAZF0IYqqzpBKYKIqEUY2WYbEARBRAlVN4XSiDnRczvJmJJGIU9iMX3heGB82Y+AXpgN+drYuaDXNsLaFufTMvJJz1NWz+jmbnrsvZCa8MfzI+LllGmoFkDAUEl5larP+oiBJERr271EJ6sMzujZbL/1Yq7auJzCoPlMjI6ewaaFcKYYsB3KiqlE1NXOKqnHK2mQ2nMKWaY2sYe47GzJ5CTN/MCqpapD1v3hFP4XNJC395Nq04UhBv1fVRO1YP4k85He3pZZaUGPNKm8yCkqHhCGU/d8PKeBS+VcnKI+FcbPCVimX0isAxpCs//BqZnsETfM42uxwawhjn9BGWiuzrqDVa6yJmUIEq52jIRS2NrtltzFMHZlEQXibRKiy2VpbRmmgKt+DpPpNTjOXOKzc1nvrWiBU2YZBKOnqtiUkSkYJr7ZRdSzVYaik3acwJJqJhEH6OQzRknRksGuvrqzV++uqmu1P6HIZgUBto2paXWFTkYSqEuwJJaCq+16V+H4VK8jEqpwq2Mepn7HfX8aRU8lkEnm1LYmdskb7aYkmqWRPvxxC0R/Ebg1ajmTQ+pGHH364e/zyyy/jtNNOw1lnnYULL7xw4HFb5rXDxjCzTWjMw36GYZhRpM1u2W0MwzCjxiB2a9ByJIPWj7S88sor+PCHP4zjjz8ef/VXfzXokAPmtcOmJ7ZDCw0xPeVTS8c+BT2I6mKixC/0lwqyWhMVVbPd1YNyXxlBu3UOJpiRtUpT2+xsWMw0XIcw4wxq23qSthnPljUlTdvpbD6dsNXB7K30s+xCBpNGdE6jSeGrqwGhqlZTCuyxfWbyw/UtIlDbTKWwFZoUudQGeVatO9SFmwWjSlpe+Fjz6Vy7GZmMKG/vpMOt30i1QdSwCDblpCNMCxoCuYG7Lgb5pghISJLsg153plExM2hS3gIVTteuxZ41bEN+hwOjVlPzqapG17Y1qHN19d/am8IYH3VA3jUjhFvnJqv1KhqiZueo/RvudTWuJ6Nr2cg+/aIkmuy/qK0jBAChGz6LxoFVM9Uo3zMxxEx1m92y2ximjhASMo5KBQ2o0rVXbaWDwtjuGLKurahK+ggpIao2AKK+FCiy3u+wlAKFXfOmBFlLpd0aNl14lV2mBWTq8w6oyjgo4ct40AQkhRFknZtBYby9sdstZZHt8PEwBEmLGvrC9WlUSaNr28L+pvVqdu2ZJIqZVALSqWpEYUsUVOxVL9WgtsnEJ5dSSQQZR9X+Csq1iZIWR31VNcCvYRMzJJui7E67NWj9SKBU1j784Q9j9erVuPXWW4M1esMwvx22yR3Q0pRJKeyHHyVB22YRlFHcXBcoSsKwHKB06Fwms9pieMsgXzL6o9vWBgZOvtE4Bho2iOrLT8OP6I2QM1DGOZyGtlEP+fQPZrp9qL8bQtibS1VzYulO7eejl57WxFGGzyxVGBO8Jh/iSIytNi7z4xRx0rQpM4CWx3rHdbLhB6Mf2phGo62Hvdll5g22rk9wfQ3wdZHC7xQ6Ef7alyRRkZ1EMXQCBWh36urb+7WbqNvE1smj3lDJxuPrpweZECNOmjHGmxJr+8hx9fd2pkuzyUGzz0/7m5yx8nHvZxBMYun2SSyg/0SWO0RIlEFkAISEECTR0wC02S27jWHqyCSGSmLnkGlZtDpv9qZcV6GRtK/IcpdNsKzdVf0Oy5wkxRBQSfUbnhY+SYkSztEo0gJFbM9JnLdYQSZF9fwFVPX7n+TafedTOtlrQictrV1+tA5bWw223Zl0xJLIWqbwNkcuso4RdchmdtKakouoRDmHWCXKOWaKhMPKOCahklHggLl6uX2cNEk+ewCQQ9Tomw279fLLL+PEE0/Ee97zHlx33XV444033LamGpH9mNcOG8PMNqkxUA132ynf9DAMM6K02S27jWEYZtSYDbt1//3349lnn8Wzzz6Lgw8+ONg2bLTGvHbYzNQEjKpCFmm4UBUeCal8XYgo9rW8qAoXJ8H+5f+ofRZYNswU92GQ2dLgNTXNSteVNKIEOmVN9dY5qifxsDMQupZUpXAz8b6fZLrtCQt1Y92FiKk2gjAmGvbkxlJXCqswSFJ+odBoDHcsyzLYsEnTOCMzPcRsTzkGN8/d088wTRRVoqPma2qwL05jevnyDK7PK0AyCDtpU+HcuRtVt5Zx9bNvTfaxbgTalLeGQyREcM1Stc1a/6bf8t73lIZ0NxulJmWtHgreqJ4BjWUTehTOYZTLYOg+DLIntHSIkMg2u2W3MUwd1U2CkEiJyKljptDQha/vaFUTbZW2Qrt9qapm4siHSioJYxWaOIeu+lWsUFSKWZFKlw2wiCWKSjHShYaupLEiK6CrOrs69WGWmmQSTNLCtbUxLpyuWU0TAyhsA7x/oq0teh7bfWgSEafcE5VRkHpqZfIQr6z5Ph+aaEMfA4WNhD4KJVpVtUFCHyXdx6X+V4012Wy6fzXEjeRs2K3zzjtvxrVugzKvHTaGmW1S7WPkg36epWYYZkRps1sA2y6GYUaTuW635rXDZqYn3GxP0G8bUjnVTEjp21FM1DSiwtF1cO4cEoLsGzDAwsOmrxCtBh+cVyq/mFGqcAZV+kWeLkmKjBAUvQZgIj8jbITw/VBuLDRZR07KGlC1LVwH5tUuQ9Z7FZq0axfLzsYTNwlcNG6ZzqBnhXavg6pnmqxn0+S19ot/tqTDFs5umfHZk+v2t27dio0bN+L73/8+pJQ488wz8Y1vfAMLFy5sPWZqagqXX3457rnnHkxPT+PUU0/Ft771LRx44IEAgJ/97Gf4yle+gv/6r//CL3/5SxxyyCH49Kc/jc9+9rN77oXMU8pCzuG6zDBBxiBn8UqapTcRBnlMVLimtXBSkPLQld2RcoD08n3UIVf+Y5D1voNEK5AZ57bLmM5UWxvUb4F4k8DWnkAJzev/UFMlm9SzeoKX+vZB6JPIRQyZdKTNbtltDFNHRgqqmwTJiqjCJrVvu3VuleJitPbr2ZLIJSjRae7WPek0gq7OIePMPY9Ocyi7f5a79P3RWOTaRaphulZh0+T8vl1kmozXBMpbUt0klEqhcfsA4b0MVeDs42FoS+VvkcIXri4LXVtlKlTS3Fo/oppJJQM1rdyXpOYnqfzLNYI7l6ZfJn5/um6tvj6tqaB2XWEDAJkNs/Z2btutee6wTcEowOgiMCJNCOp4AcRJksRh690eVGOvO2wz9dePp/vTEE4attngVIo4BionUsQd76RFsa9DZqqLBoCpLuD6XQ1NLpKT0EBfhw4+cYcxSHO7j3aJO6gzVOgw3NBStIQbziRZtzl5WlOD2WtA7T7UMaPbixmuZEXql+RDhkSm2gQ3wK5/D872fPzjH8err76K+++/H1mW4fzzz8dFF12Eu+++u/WYSy+9FD/4wQ/wd3/3d1iyZAk2bNiA3/3d38WPfvQjAMDjjz+OAw44AHfeeSdWrlyJRx55BBdddBGUUtiwYcMeey3zEZtt1n9f2xP8DPI1anI6Wh22FqeuOQQwdOyaE3DIIFSQjsmg3S66/XbyOglCElvw4zWNjlGr49TPGaP7tzljTaGkO5FYBKiHyNPPQwOmCpNX4aTdILTZLWBuzFQzex+RdMs/eq+lbRikvwejDlvgxMVVTbbC76vj3Le7xKnrJq5d9mfV8/h9dKFd2GTdAdOpb9t+UxiSydI4Z89oQ5w07R01csPixkj7ajc0puXegTopvo9YUCWC+0TpnDFBwg19dkwaziiVDJKH2GNpaGRTuGPp3BFHq6qXJ+sOWEMSkcB5q4U7tiUaaRQ97L6D+2tz3m7Na4eNYWabMqZ6eOd0Z9m0aRPuu+8+/PSnP8Wxxx4LALjhhhvwkY98BNdddx0OOuignmPeeust3HLLLbj77rtx0kknAQBuvfVWHHHEEfjxj3+M4447Dp/4xCeCYw499FA8+uij+Id/+Ad22BhmH6PNbtltDMMwo8Zct1vz2mHTeQadK+g0b5zdGYRAom2aCakpZE379NtOjw9mGdxMBAnbjIiSFsUQcRWaGcW+tlynnOUCUM6o2tmuuOwrF59XUxYy/HrYWfyChkFqv+A2L3yyjqlcYzr3baukZYUmdc10oMhp124OlawrXTMpX03b+51jpvNRlBRQdsZKCiRVatxhQxxmUtjefvvtoL/T6aDT6Qz1HJRHH30US5cudc4aAJx88smQUuKxxx7Dxz72sZ5jHn/8cWRZhpNPPtn1HX744Vi1ahUeffRRHHfccY3P9dZbb2HZsmU7PVamGauuBaU13LZQIabfrEFqP1rCBCRhsgxqoRoVNpfkgyblMLXkJvQ4Ux03czr8+nhsQv62hEStKtogilVb0pS2WpBtSppuSxzSe8521a42vgGTtYhaEiqvuElYLVYUeamyscLG7EHk2DgE/e3ShVPYBABTJR2B1oHyVv7XQfiku1/r+v4iy1xYoym0S0YShFhmOdk/d89J++vKW1tIJFXV7L1LXYWj/+25LaZmkHWLxyBVQwSCpAobvQcVjeqZlDW1rSUk0u1PlLQwQYhN8R+hKXFIeb7e5CKKpPIfWEmj97j+xYbRZVJCmgFC5ivmut0a/JUyDLPbyY1B1vCXV8Zj5cqVWLJkifv78pe/vEvPt2XLFhxwwAFBXxRFWLZsGbZs2dJ6TJIkWLp0adB/4IEHth7zyCOP4Dvf+Q4uuuiiXRovwzCjR5vdoraLYRhmlJjrdmteK2xGm3J2JMtRkBjnppkcPeTapEGQLWpboKo1zErU437dbEgcuYQnotP1ZQiSLnRevj6RZxDVrJIcI7PX1bmNjMIZ4WrWVUO6GXoNv04m16WyBpTq2kQV7z2RaUxVCtt0Xji1LdPG9WdauyQdaa4D1a6tbclb5IJhVLJBsUpaVFPVbDuJpGsPq7DNlNb/pZdewuLFi11/m7p25ZVX4qtf/Wrf59q0adNQY9tZnnrqKZxxxhm4+uqrccopp+yV55xPeDWtN+lIvYRGW5kLStPErgxS1/sd6spXm7JWPhZAUCYg3G73cecwhiQ8Cvehz2+vsUCpC8bb+3rKkw6QuGMmJa1fev0Guxmcs7UAefNYGlP9D0K9dAxV3Gx/uaPv1LUxzwCn9WeGRcRdyO5YmC/AJrrRhf9uEoWNJsJpU+Bc+v7CJzShqlqRZcE9nVXeohblTWvaHx7r1DNdV9tsf6i8+bH3rmur7zMITRFaVDGj+9B1a1Q9C+8lZe1eMg7PIZtT8O+MkuZS9lOVjOaAKAfk/jfmf6ipawAgssENzly3W/PbYasu2MAxS3N3QfcLldRaB+dpf46ZM2/Vsz7Si1K2SMd2MaeKI9KOfbs75cIgRZ65hb6yPGk5NqW8BF3Yiy8HTHnRmtoPuP0+03prBcmcOJV7J20q987bZFaQ/gKT1WLdNA8dNuvUpUWb8+bHM0i4YxOqKf6r1q+IoegJfaw+g04kfRiknjkxSRupNsENseuv3tPFixcHDlsbl19++Yy1Pg499FCsWLECr7/+etCf5zm2bt2KFStWNB63YsUKpGmKbdu2BSrba6+91nPM008/jfXr1+Oiiy7CH/3RH804bmbnqNcztGGQhmwzJszO2nRsGwUJYaR+Xph0RDQ6c6L22B5HHbnASWsIoSwMOZ/xYymM34eeXxvjQiWNqTltg9SIawqR3NkQx36OWdNYdG0slJ3JAlkU7g0QEs2ZhkESkhgdOHWD0Ga3gLkRWsTsfUSnC9EZ844ZvTcijploSgKnC+e81R06kTQ7cvYcrY5ZESY6sY4frfkWhF/S8wQOW3PCFD903ft60HvfWE9C4t6PppDIlqUzYXhkPdOiz8DYdl9Zz8Y4SG20uiPnHKk2x6wl+3qPM9aU5A8N98v54PZmrtutee2wMcxsUxjTknRkOOOxfPlyLF++fMb91q1bh23btuHxxx/H6tWrAQAPPvggtNZYu3Zt4zGrV69GHMd44IEHcOaZZwIANm/ejBdffBHr1q1z+/385z/HSSedhHPPPRfXXHPNUONnGGbu0Ga37DaGYZhRY67bLXbYKgyRul3a15YFqvWwyXq4ZFOdkWGgMx6WtjSqKo7cDEg0lrh2XGhXe0SR2SsNr9oZqVySEpvevyfMpwFtEIRd2ZT900Qlm8gKTLrwSN+eTAtsn8rd/ra/VNt824Y80lBJAI3hkcMQKmlhmyppUZBQRDXv3zAG1RqP1UzWMuOT7SHjccQRR+C0007DhRdeiJtuuglZlmHDhg04++yzXYbIl19+GevXr8cdd9yBNWvWYMmSJbjgggtw2WWXYdmyZVi8eDE2btyIdevWuYQjTz31FE466SSceuqpuOyyy9zaNqXUQI4kMzgu/JH2Vf9pGKSGIaGSvcdb2kIljWmY2SVdRnhDIETv/kKQRCMGZV3HagBNqpoRgCDBeoU7t3AjFAAkbCio6FHZADSWCSjHUE/c0aCItdVDawp3JMpcr9rmz9MY2jhIEpPatvDF9Cpi4aco3fM5Ia1+vD23UBD1cc5Am90C9pztYuY2ojPuE56hUnl1m8pWV5/CBCUgapsgYZX23kuQhCblsZrsM0MiE6qktahnRpPwyJqqRvf342+Ozmra3kZdVZMNS2dou760hqpmbUk/aB00t33YBCFNYY1tqprdZo/1L65ne3lsby3jYdL6z3W7NS8dNrv2453JaQBAMZWimC7bOiuQT6VlO687bCR+2V50e9FhsxnPysw4ZVtpDVk9RyQAWTmVkZRQdp/CQJjqoigkZFXfSObC9SOtQqeSAiauMiTFBUxcrn3LRIS0sKGPBtPVa5zODSazsr0jLTBZOV0TaYEp66Tlvj2VakxPe4ctpQ5bNfYs17D1p7Oaw6Z30WEz5A5P19r2sZbCligq+xRx2CIbBqBcW2QKIqtiuPOp8nkGvPgnoRtjp1MM/70ZlLvuugsbNmzA+vXrXeHsb37zm257lmXYvHkzJiYmXN/111/v9qWFsy1///d/jzfeeAN33nkn7rzzTtf/nve8By+88MIeey3zCfud2v7OO1XxbB8GGRSG300Om+zJz1gLiewJeaztL8IwySDbpHuOMMRxxnVu5Hlpf5h50hfsFn2dKuqw+bbf3hvW2O6w1Ryw2XDYahkhy//Ch8DT9Wwy8g60VICQeOed7dXQZrZdbXYL2LO2i5l7uPutHRM93+c2h62+ZjNwusi+NDwShoRS0vDIfg6by+7Y7LCZonBLQ0KHzbQ7bGR/P/5ZcNhEP4dN9PQLEYZNuu3UYbPHDeSw+WMh+jlsTdkgB3TYhCy/V5gfdkuYQe8s9yH+93//FytXrpztYTD7MM899xwOPfTQ1u1TU1N473vf25plESjXjj3//PPodrut+zDzB7ZbzN7gpZdewsEHH9y4bRC7BbDtYjxst5i9wXywW/PSYdNaY/PmzTjyyCN7svAxvbz99ttYuXIlv1cD8NZbb2HVqlV48803e9Lg15mamkKapq3bkyQZWcPB7H3Ybg0H263Bse/V008/jV/7tV8LZu/rzGS3ALZdjIft1nCw3Rqc+Wa35mVIpJQS7373uwEMnoWP4fdqGPoZDku32x1p48CMFmy3dg5+rwbn3e9+94y2i+0WMwxst3YOfq8GZ77YLS6czTAMwzAMwzAMM6Kww8YwDMMwDMMwDDOizFuHrdPp4Oqrr0an05ntoYw8/F4NDr9XzJ6Ev1+Dw+/V4PB7xexJ+Ps1OPxeDc58e6/mZdIRhmEYhmEYhmGYucC8VdgYhmEYhmEYhmFGHXbYGIZhGIZhGIZhRhR22BiGYRiGYRiGYUYUdtgAXHPNNTj++OMxPj4+Y7Hj+caNN96IQw45BN1uF2vXrsVPfvKT2R7SSPKf//mfOP3003HQQQdBCIHvfe97sz0kZh+H7VY7bLcGg+0Ws7dhu9Uftl0zM1/tFjtsANI0xVlnnYWLL754tocyUnznO9/BZZddhquvvhpPPPEEjj76aJx66ql4/fXXZ3toI8eOHTtw9NFH48Ybb5ztoTDzBLZbzbDdGhy2W8zehu1WO2y7BmO+2i3OEkm47bbbcMkll2Dbtm2zPZSRYO3atfjABz6Av/iLvwAAaK2xcuVKbNy4EVdeeeUsj250EULg3nvvxUc/+tHZHgozD2C7FcJ2a+dgu8XsTdhu9cK2a3jmk91ihY1pJE1TPP744zj55JNdn5QSJ598Mh599NFZHBnDMEwzbLcYhpmLsO1iZoIdNqaRX/7ylyiKAgceeGDQf+CBB2LLli2zNCqGYZh22G4xDDMXYdvFzMQ+67BdeeWVEEL0/XvmmWdme5gMwzAOtlsMw8w12G4xzJ4nmu0B7Ckuv/xynHfeeX33OfTQQ/fOYOYg+++/P5RSeO2114L+1157DStWrJilUTHMvg3brV2D7RbD7H3Ybu06bLuYmdhnHbbly5dj+fLlsz2MOUuSJFi9ejUeeOABt5hTa40HHngAGzZsmN3BMcw+CtutXYPtFsPsfdhu7Tpsu5iZ2GcdtmF48cUXsXXrVrz44osoigJPPvkkAOCwww7DwoULZ3dws8hll12Gc889F8ceeyzWrFmDr3/969ixYwfOP//82R7ayLF9+3Y8++yz7vHzzz+PJ598EsuWLcOqVatmcWTMvgrbrWbYbg0O2y1mb8N2qx22XYMxb+2WYcy5555rAPT8PfTQQ7M9tFnnhhtuMKtWrTJJkpg1a9aYH//4x7M9pJHkoYceavwOnXvuubM9NGYfhe1WO2y3BoPtFrO3YbvVH7ZdMzNf7RbXYWMYhmEYhmEYhhlR9tkskQzDMAzDMAzDMHMddtgYhmEYhmEYhmFGFHbYGIZhGIZhGIZhRhR22BiGYRiGYRiGYUYUdtgYhmEYhmEYhmFGFHbYGIZhGIZhGIZhRhR22BiGYRiGYRiGYUYUdtgYhmEYhmEYhmFGFHbYGIZhGIZhGIZhRhR22BiGYRiGYRiGYUYUdtj2Mf7v//4PBxxwAF544YVdOs+JJ56ISy65ZLeMaVc5++yz8bWvfW22h8EwzB6EbRfDMHMNtlvM3kIYY8xsD4LZfVx22WV45513cPPNN+/SebZu3Yo4jrFo0aLdNLKd56mnnsJv//Zv4/nnn8eSJUtmezgMw+wB2HYxDDPXYLvF7C1YYduHmJiYwC233IILLrhgl8+1bNmyXTIcaZru8hgsv/Ebv4H3ve99uPPOO3fbORmGGR3YdjEMM9dgu8XsTdhhG2EOPvhgfOtb3wr6HnnkEYyPj+N//ud/evb/53/+Z3Q6HRx33HFB/4knnoiNGzfikksuwX777YcDDzwQN998M3bs2IHzzz8fixYtwmGHHYZ/+Zd/CY6h8rzWGtdeey0OO+wwdDodrFq1Ctdcc02w/4YNG3DJJZdg//33x6mnngoAmJ6exmc+8xkccMAB6Ha7OOGEE/DTn/40OO4zn/kMrrjiCixbtgwrVqzAl770pZ7Xdvrpp+Oee+4Z6v1jGGZ2YNvlYdvFMHMDtlsetlujBztsI8zatWuDC80Yg0suuQSXXnop3vOe9/Ts/8Mf/hCrV69uPNftt9+O/fffHz/5yU+wceNGXHzxxTjrrLNw/PHH44knnsApp5yCc845BxMTE43HX3XVVfjKV76CL3zhC3j66adx991348ADD+x5jiRJ8KMf/Qg33XQTAOCKK67Ad7/7Xdx+++144okncNhhh+HUU0/F1q1bg+MWLFiAxx57DNdeey3+5E/+BPfff39w7jVr1uAnP/kJpqenB3vzGIaZNdh2edh2MczcgO2Wh+3WCGKYkeXaa681v/7rv+4e33777WbFihXmnXfeadz/jDPOMJ/4xCd6+j/0oQ+ZE044wT3O89wsWLDAnHPOOa7v1VdfNQDMo48+6o757Gc/a4wx5u233zadTsfcfPPNrWP90Ic+ZI455pigb/v27SaOY3PXXXe5vjRNzUEHHWSuvfbaxrEZY8wHPvAB8/nPfz7o+9nPfmYAmBdeeKF1DAzDjAZsuzxsuxhmbsB2y8N2a/RghW2EOe6447Bp0yZs374dO3bswB/8wR/gz/7sz7Bw4cLG/ScnJ9Htdhu3/eZv/qZrK6XwK7/yKzjqqKNcn525ef3113uO3bRpE6anp7F+/fq+463PND333HPIsgwf/OAHXV8cx1izZg02bdrUODYAeNe73tUzjrGxMQBonY1iGGZ0YNvlYdvFMHMDtlsetlujRzTbA2DaWb16NaSUeOKJJ/Dv//7vWL58Oc4///zW/ffff3+8+eabjdviOA4eCyGCPiEEgDJuuo69cGdiwYIFA+03yNjq47By/vLly3fqORiG2Xuw7fKw7WKYuQHbLQ/brdGDFbYRZnx8HEcddRS++93v4rrrrsP1118PKds/smOOOQZPP/30bh/Hr/7qr2JsbAwPPPDAUMe9733vc/HVlizL8NOf/hRHHnnkUOd66qmncPDBB2P//fcf6jiGYfY+bLs8bLsYZm7AdsvDdmv0YIVtxDnuuONwww034IwzzsCJJ57Yd99TTz0VV111Fd58803st99+u20M3W4Xn//853HFFVcgSRJ88IMfxBtvvIGf//znfdPZLliwABdffDE+97nPYdmyZVi1ahWuvfZaTExMDJ0G94c//CFOOeWUXX0pDMPsJdh2lbDtYpi5A9utErZbowc7bCPO0UcfjTiO8ed//ucz7nvUUUfh/e9/P/72b/8Wn/rUp3brOL7whS8giiJ88YtfxCuvvIJ3vetd+PSnPz3jcV/5ylegtcY555yDd955B8ceeyz+9V//dSjjNjU1he9973u47777duUlMAyzF2HbxbaLYeYabLfYbo0qwhhjZnsQTDsf/vCH8f73vx9f+9rXBtr/Bz/4AT73uc/hqaee6ivlzyW+/e1v495778W//du/zfZQGIYZELZdbLsYZq7Bdovt1qjCCtsIorXGG2+8gVtuuQW/+MUv8I//+I8DH/s7v/M7+MUvfoGXX34ZK1eu3IOj3HvEcYwbbrhhtofBMMwMsO0KYdvFMKMP260QtlujCStsI8jDDz+Mk046CYcffjhuvfVWrF27draHxDAMMyNsuxiGmWuw3WLmAuywMQzDMAzDMAzDjCj7RsAtwzAMwzAMwzDMPgg7bAzDMAzDMAzDMCMKO2wMwzAMwzAMwzAjCjtsDMMwDMMwDMMwIwo7bAzDMAzDMAzDMCMKO2wMwzAMwzAMwzAjCjtsDMMwDMMwDMMwIwo7bAzDMAzDMAzDMCMKO2wMwzAMwzAMwzAjCjtsDMMwDMMwDMMwIwo7bAzDMAzDMAzDMCPK/wM+W58dxsUhdgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2wAAAErCAYAAACirgCsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeZgkRZn/vxGRmVXdPQdyMzACCwhyCMol4wGuuMilrALCo1wKHoiCKHLIjTDigYOCjLgiroociqirojILKwr7E/ACOcSDY8Hhhpnp6eqsjIjfH5kR8UZWZndVd81M90x8nqdnsqOysrKyK9+KN973/b5Ma60RCAQCgUAgEAgEAoEpB1/VJxAIBAKBQCAQCAQCgWqCwxYIBAKBQCAQCAQCU5TgsAUCgUAgEAgEAoHAFCU4bIFAIBAIBAKBQCAwRQkOWyAQCAQCgUAgEAhMUYLDFggEAoFAIBAIBAJTlOCwBQKBQCAQCAQCgcAUJThsgUAgEAgEAoFAIDBFCQ5bIBAIBAKBQCAQCExRgsMWCASmLJttthmOPvroVX0aPXPbbbeBMYbbbrttpb3m1VdfDcYYHnnkka73vfvuuyf8ejfffDN22mknNJtNMMbw4osvTvhY3XDXXXdh3rx5GBoaAmMMf/jDH3DuueeCMTah4x199NHYbLPNxt3vkUceAWMMV1999YReZ3Viql6Lbv+WgUAgMF0JDlsgEOgJM9k3P81mE694xStwwgkn4KmnnlrVp9cTF110EW666aZVfRorjK985SsrZHL93HPP4dBDD8XAwAAuv/xyfOtb38LQ0FDfX8fQbrdxyCGH4Pnnn8cXv/hFfOtb38Kmm266wl4vMPV48sknce655+IPf/jDqj6VQCAQWOlEq/oEAoHA9OT888/H5ptvjlarhV//+te44oor8NOf/hT33XcfBgcH+/IaDz30EDhfcetKF110EQ4++GAcdNBBK+w1VhZHHHEEDjvsMDQaDTv2la98Beuuu27fo5R33XUXli5digsuuAB77713X49dxd/+9jc8+uij+NrXvoZjjz3Wjp955pk47bTTVvjrB3I23XRTjIyMII7jlf7aTz75JM477zxsttlm2GmnnbzHvva1r0EptdLPKRAIBFYWwWELBAITYt9998Uuu+wCADj22GOxzjrr4JJLLsEPf/hDHH744ZXPGR4e7ikSQ52PwNgIISCEWCmv9fTTTwMA1lprrb4dc6zPRt3rRVGEKApfY1W0Wi0kSdLXBQ8TUZ9qrAoHMhAIBFYmISUyEAj0hX/9138FAPzjH/8AkNeVzJgxA3/729+w3377YebMmXj3u98NIJ+cf/zjH8fcuXPRaDSw9dZb4/Of/zy01t4xq2rYXnzxRZx00kn2uVtuuSUuvvjijhV2pRQuvfRS7LDDDmg2m1hvvfXw1re+1dZtMcYwPDyMb37zmza9k77WE088gfe+973YYIMN0Gg0sN122+Gqq67qeN//93//h4MOOghDQ0NYf/318bGPfQyjo6MTvo6vec1r8I53vMMb22GHHcAYw5/+9Cc7dt1114ExhgceeABAZw3bZptthj//+c/4n//5H/v+9tprL++4o6OjOPnkk7HeeuthaGgI//7v/45nnnlmzPPba6+9cNRRRwEAdt11V++63X777TjkkEPw8pe/HI1GA3PnzsXHPvYxjIyMeMcY67NR5uijj8aee+4JADjkkEO891FXw/btb38bO++8MwYGBrD22mvjsMMOw+OPPz7m+wLyz9bRRx+N2bNnY6211sJRRx3VdW3e888/j0984hPYYYcdMGPGDMyaNQv77rsv/vjHP3r7mfrG6667DmeccQY23HBDDA0N4W1ve1vHOe61117Yfvvtcc8992DevHkYGBjA5ptvjoULF1Ye89prr8WZZ56JjTfeGIODg1iyZAkA4IYbbrDXY91118V73vMePPHEE/b555xzDjjnWLRokXfc97///UiSxL6Hqho287d87LHHcMABB2DGjBnYeOONcfnllwMA7r33Xvzrv/4rhoaGsOmmm+Kaa67p+brddttt2HXXXQEAxxxzjP08m/OoqmHr1sYwxnDCCSfgpptuwvbbb2/v9Ztvvtnbb+nSpTjppJOw2WabodFoYP3118db3vIW/O53v0MgEAisaMLSZCAQ6At/+9vfAADrrLOOHcuyDPvssw9e//rX4/Of/zwGBwehtcbb3vY23HrrrXjf+96HnXbaCT//+c9xyimn4IknnsAXv/jF2tdYvnw59txzTzzxxBP4wAc+gJe//OW44447cPrpp+Of//wnFixYYPd93/veh6uvvhr77rsvjj32WGRZhttvvx3/+7//i1122QXf+ta3cOyxx2K33XbD+9//fgDAFltsAQB46qmn8NrXvtZO5tZbbz387Gc/w/ve9z4sWbIEJ510EgBgZGQEb37zm/HYY4/hox/9KObMmYNvfetb+O///u8JX8c3vOEN+O53v2t/f/755/HnP/8ZnHPcfvvteNWrXgUgd47WW289vPKVr6w8zoIFC/CRj3wEM2bMwKc+9SkAwAYbbODt85GPfAQve9nLcM455+CRRx7BggULcMIJJ+C6666rPb9PfepT2HrrrXHllVfatFhz3W644QYsX74cH/rQh7DOOuvgt7/9Lb785S/j//7v/3DDDTd4x6n6bFTxgQ98ABtvvDEuuugifPSjH8Wuu+7a8T4oF154Ic466ywceuihOPbYY/HMM8/gy1/+Mt74xjfi97//fW1UUGuNt7/97fj1r3+ND37wg3jlK1+JH/zgB9Y5HY+///3vuOmmm3DIIYdg8803x1NPPYWvfvWr2HPPPXH//fdjzpw5HefJGMOpp56Kp59+GgsWLMDee++NP/zhDxgYGLD7vfDCC9hvv/1w6KGH4vDDD8f111+PD33oQ0iSBO9973u9Y15wwQVIkgSf+MQnMDo6iiRJcPXVV+OYY47Brrvuivnz5+Opp57CpZdeit/85jf2epx55pn48Y9/jPe973249957MXPmTPz85z/H1772NVxwwQXYcccdx3zvUkrsu+++eOMb34jPfvaz+M53voMTTjgBQ0ND+NSnPoV3v/vdeMc73oGFCxfiyCOPxB577IHNN9+86+v2yle+Eueffz7OPvtsvP/978cb3vAGAMC8efNq/5a92Jhf//rXuPHGG3H88cdj5syZ+NKXvoR3vvOdeOyxx6w9++AHP4jvfe97OOGEE7Dtttviueeew69//Ws88MADeM1rXtPFJyQQCAQmgQ4EAoEe+MY3vqEB6FtuuUU/88wz+vHHH9fXXnutXmeddfTAwID+v//7P6211kcddZQGoE877TTv+TfddJMGoD/96U974wcffLBmjOm//vWvdmzTTTfVRx11lP39ggsu0ENDQ/ovf/mL99zTTjtNCyH0Y489prXW+r//+781AP3Rj3604/yVUnZ7aGjIO77hfe97n95oo430s88+640fdthhevbs2Xr58uVaa60XLFigAejrr7/e7jM8PKy33HJLDUDfeuutHccejxtuuEED0Pfff7/WWusf/ehHutFo6Le97W36Xe96l93vVa96lf73f/93+7v5u/zjH/+wY9ttt53ec889O17D7Lv33nt71+NjH/uYFkLoF198ccxzNM+/6667vHFzXSjz58/XjDH96KOP2rG6z0Ydt956qwagb7jhBm/8nHPO0fRr7JFHHtFCCH3hhRd6+9177706iiJv/KijjtKbbrqp/d18Lj/72c/asSzL9Bve8AYNQH/jG98Y8xxbrZaWUnpj//jHP3Sj0dDnn39+x3vZeOON9ZIlS+z49ddfrwHoSy+91I7tueeeGoD+whe+YMdGR0f1TjvtpNdff32dpql3zH/5l3/x/gZpmur1119fb7/99npkZMSO/9d//ZcGoM8++2zvGiVJoo899lj9wgsv6I033ljvsssuut1ue++nfC3M3/Kiiy6yYy+88IIeGBjQjDF97bXX2vEHH3xQA9DnnHNOz9ftrrvuqv071P0tu7ExAHSSJN7YH//4Rw1Af/nLX7Zjs2fP1h/+8Ic7XjsQCARWBiElMhAITIi9994b6623HubOnYvDDjsMM2bMwA9+8ANsvPHG3n4f+tCHvN9/+tOfQgiBj370o974xz/+cWit8bOf/az2NW+44Qa84Q1vwMte9jI8++yz9mfvvfeGlBK/+tWvAADf//73wRjDOeec03GM8WTgtdb4/ve/jwMPPBBaa+919tlnH7z00ks2DeqnP/0pNtpoIxx88MH2+YODgzZiNxFM9MC8l9tvvx277ror3vKWt+D2228HkKfu3XfffXbfifL+97/fux5veMMbIKXEo48+OqHj0cjQ8PAwnn32WcybNw9aa/z+97/v2L/82ZgsN954I5RSOPTQQ72/24YbboitttoKt956a+1zf/rTnyKKIu+chBD4yEc+0tVrNxoNWy8mpcRzzz2HGTNmYOutt65MmzvyyCMxc+ZM+/vBBx+MjTbaCD/96U+9/aIowgc+8AH7e5Ik+MAHPoCnn34a99xzj7fvUUcd5f0N7r77bjz99NM4/vjjvdqz/fffH9tssw1+8pOf2LHtt98e5513Hv7jP/4D++yzD5599ll885vf7LpGkIrBrLXWWth6660xNDSEQw891I5vvfXWWGuttfD3v//djvV63bqhVxuz99572ygxALzqVa/CrFmzvPNca6218P/+3//Dk08+OaFzCgQCgckQUiIDgcCEuPzyy/GKV7wCURRhgw02wNZbb90hcBBFETbZZBNv7NFHH8WcOXO8ySoAm9o3lrPw8MMP409/+hPWW2+9yseNOMXf/vY3zJkzB2uvvXbP7+uZZ57Biy++iCuvvBJXXnnlmK/z6KOPYsstt+xwArfeeuueX9ewwQYbYKuttsLtt9+OD3zgA7j99tvxpje9CW984xvxkY98BH//+9/xwAMPQCk1aYft5S9/uff7y172MgB5Gt5EeOyxx3D22WfjRz/6UccxXnrpJe/3qs/GZHn44YehtcZWW21V+fhY4hSPPvooNtpoI8yYMcMb7/ZvaWomv/KVr+Af//gHpJT2MZombCifI2MMW265ZUcfvTlz5nSIsbziFa8AkNeUvfa1r7XjJs2Qvqe697DNNtvg17/+tTd2yimn4Nprr8Vvf/tbXHTRRdh2223r3q6HqRGlzJ49G5tssknHvTF79mzvs9HrdeuGXm1M+T4A8nuBnudnP/tZHHXUUZg7dy523nln7LfffjjyyCPxL//yLxM6x0AgEOiF4LAFAoEJsdtuu1mVyDro6nk/UErhLW95Cz75yU9WPm4mspN9DQB4z3veU1u/ZOrIVhSvf/3rsWjRIoyMjOCee+7B2Wefje233x5rrbUWbr/9djzwwAOYMWMGXv3qV0/qdepUJXVJmKEbpJR4y1vegueffx6nnnoqttlmGwwNDeGJJ57A0Ucf3SEK0+/PBpD/7Rhj+NnPflb53srOWD+56KKLcNZZZ+G9730vLrjgAqy99trgnOOkk05aaZLzNLo2Ef7+97/j4YcfBpCLhXRL3eeom8/XVLhu3ZznoYceije84Q34wQ9+gF/84hf43Oc+h4svvhg33ngj9t1335VynoFAYM0lOGyBQGClsummm+KWW27B0qVLvRXwBx980D5exxZbbIFly5aN2/triy22wM9//nM8//zzY0bZqtIj11tvPcycORNSynFfZ9NNN8V9990HrbV3rIceemjM543HG97wBnzjG9/AtddeCykl5s2bB845Xv/611uHbd68eePK+I+X/tlP7r33XvzlL3/BN7/5TRx55JF2/Je//OVKO4ctttgCWmtsvvnmPTvvm266KRYtWoRly5Z5jl23f8vvfe97eNOb3oSvf/3r3viLL76Iddddt2N/4xgZtNb461//2rEY8OSTT3a0PPjLX/4CAB3KiFXvybwHo+JqeOihh7x7TSmFo48+GrNmzcJJJ51kexSWFUv7TbfXrZfP8mRszFhstNFGOP7443H88cfj6aefxmte8xpceOGFwWELBAIrnFDDFggEVir77bcfpJS47LLLvPEvfvGLYIyNOfk59NBDceedd+LnP/95x2MvvvgisiwDALzzne+E1hrnnXdex3501XxoaKhDtl0IgXe+8534/ve/j/vuu6/j+VT2fr/99sOTTz6J733ve3Zs+fLltamU3WJSHS+++GK86lWvwuzZs+34okWLcPfdd3eVDln1/lYUxnmk11drjUsvvXSlvD4AvOMd74AQAuedd15HlFBrjeeee672ufvttx+yLMMVV1xhx6SU+PKXv9zVawshOl7zhhtu8OTzKf/5n/+JpUuX2t+/973v4Z///GfH5z/LMnz1q1+1v6dpiq9+9atYb731sPPOO495TrvssgvWX399LFy40Gs18bOf/QwPPPAA9t9/fzt2ySWX4I477sCVV16JCy64APPmzcOHPvQhPPvss+O/+UnQ7XUzDms3n+fJ2JgqpJQdKb3rr78+5syZM6kWHoFAINAtIcIWCARWKgceeCDe9KY34VOf+hQeeeQR7LjjjvjFL36BH/7whzjppJO84v8yp5xyCn70ox/hgAMOwNFHH42dd94Zw8PDuPfee/G9730PjzzyCNZdd1286U1vwhFHHIEvfelLePjhh/HWt74VSilbD3bCCScAAHbeeWfccsstuOSSSzBnzhxsvvnm2H333fGZz3wGt956K3bffXccd9xx2HbbbfH888/jd7/7HW655RY8//zzAIDjjjsOl112GY488kjcc8892GijjfCtb32rUqL+tttuw5ve9Cacc845OPfcc8e8RltuuSU23HBDPPTQQ57oxRvf+EaceuqpANCVw7bzzjvjiiuuwKc//WlsueWWWH/99TsiLf1im222wRZbbIFPfOITeOKJJzBr1ix8//vfn3A93ETYYost8OlPfxqnn346HnnkERx00EGYOXMm/vGPf+AHP/gB3v/+9+MTn/hE5XMPPPBAvO51r8Npp52GRx55BNtuuy1uvPHGjol6HQcccADOP/98HHPMMZg3bx7uvfdefOc736mtcVp77bXx+te/HscccwyeeuopLFiwAFtuuSWOO+44b785c+bg4osvxiOPPIJXvOIVuO666/CHP/wBV1555bgNo+M4xsUXX4xjjjkGe+65Jw4//HAr67/ZZpvhYx/7GADggQcewFlnnYWjjz4aBx54IIC8r99OO+2E448/Htdff31X12AidHvdtthiC6y11lpYuHAhZs6ciaGhIey+++4ddXvA5GxMFUuXLsUmm2yCgw8+GDvuuCNmzJiBW265BXfddRe+8IUvTOr9BwKBQFesXFHKQCAw3amTdC9z1FFH6aGhocrHli5dqj/2sY/pOXPm6DiO9VZbbaU/97nPeRLzWnfK+pvnnn766XrLLbfUSZLoddddV8+bN09//vOftzLnWueS7J/73Of0Nttso5Mk0eutt57ed9999T333GP3efDBB/Ub3/hGPTAwoAF4r/XUU0/pD3/4w3ru3Lk6jmO94YYb6je/+c36yiuv9M7n0Ucf1W9729v04OCgXnfddfWJJ56ob7755g5Z/x//+McagF64cOGY181wyCGHaAD6uuuus2NpmurBwUGdJIkn0651taz/4sWL9f77769nzpypAViJ/7q/oZGHH68dQd3z77//fr333nvrGTNm6HXXXVcfd9xxViK9LAVf99mooltZf8P3v/99/frXv14PDQ3poaEhvc022+gPf/jD+qGHHvLOgUrBa631c889p4844gg9a9YsPXv2bH3EEUfo3//+913L+n/84x/XG220kR4YGNCve93r9J133qn33HNPr7WCeS/f/e539emnn67XX399PTAwoPfff3+v9YHWuaz/dtttp++++269xx576GazqTfddFN92WWXdXV9DNddd51+9atfrRuNhl577bX1u9/9btt+I8syveuuu+pNNtmko53DpZde6n0G62T9q/6W5tzLbLrppnr//ffv+bpprfUPf/hDve222+ooirzzqPpbdmtjAFTK9VPbMzo6qk855RS944476pkzZ+qhoSG944476q985SsdzwsEAoEVAdN6AtXlgUAgsBKYO3cu9tlnH/zHf/zHqj6VSfPJT34S3/3ud/HXv/4VjUZjVZ9OYBVhIq033HCD1w6iir322gvPPvtsZWpuIBAIBNYcQg1bIBCYkrTbbTz33HOVgg3TkVtvvRVnnXVWcNYCgUAgEAj0RKhhCwQCU46f//znuPbaazEyMoI3v/nNq/p0+sJdd921qk8hEAgEAoHANCQ4bIFAYMrxmc98Bn/9619x4YUX4i1vecuqPp1AIBAIBAKBVUaoYQsEAoFAIBAIBAKBKUqoYQsEAoFAIBAIBAKBKUpw2AKBQCAQCAQCgUBgihIctkAgEAgEAoFAIBCYogSHLRAIBAKBQCAQCASmKMFhCwQCgUAgEAgEAoEpSnDYAoFAIBAIBAKBQGCKEhy2QCAQCAQCgUAgEJiiBIctEAgEAoFAIBAIBKYowWELBAKBQCAQCAQCgSlKcNgCgUAgEAgEAoFAYIoSHLZAIBAIBAKBQCAQmKIEhy0QCAQCgUAgEAgEpijBYQsEAoFAIBAIBAKBKUpw2AKBQCAQCAQCgUBgihIctkAgEAgEAoFAIBCYogSHLRAIBAKBQCAQCASmKMFhCwQCgUAgEAgEAoEpSnDYAoFAIBAIBAKBQGCKEhy2QCAQCAQCgUAgEJiiBIctEAgEAoFAIBAIBKYowWELBAKBQCAQCAQCgSlKcNgCgUAgEAgEAoFAYIoSHLZAIBAIBAKBQCAQmKIEhy0QCAQCgUAgEAgEpijBYQvg6quvBmOs9ud///d/V/UpBgKBgEewW4FAYDoSbFdgIkSr+gQCU4fzzz8fm2++ecf4lltuuQrOJhAIBMYn2K1AIDAdCbYr0AvBYQtY9t13X+yyyy6r+jQCgUCga4LdCgQC05FguwK9EFIiA11xzjnngHOORYsWeePvf//7kSQJ/vjHP66iMwsEAoFOtNbYbLPN8Pa3v73jsVarhdmzZ+MDH/jAKjizQCAQGJu99tqrNmXy6quvXtWnF1gFhAhbwPLSSy/h2Wef9cYYY1hnnXVw5pln4sc//jHe97734d5778XMmTPx85//HF/72tdwwQUXYMcdd1xFZx0IBNZkxrJb73nPe/DZz34Wzz//PNZee237+I9//GMsWbIE73nPe1b26QYCgQCAsW3Xpz71KRx77LHeY9/+9rfx85//HOuvv/7KPM3AFIFprfWqPonAquXqq6/GMcccU/lYo9FAq9UCANx3333YeeedceSRR+Jzn/sctt9+e2y00Ua48847EUXB9w8EAiuPbuzWX/7yF2y99da44oor8MEPftA+/va3vx1/+tOf8Pe//x2MsZV1yoFAIND1nItyxx13YK+99sIRRxyBr3/96yv6FANTkDDLDlguv/xyvOIVr/DGhBB2e/vtt8d5552H008/HX/605/w7LPP4he/+EVw1gKBwCpjLLv1ile8Arvvvju+853vWIft+eefx89+9jN88pOfDM5aIBBYZYw35zIsXrwYBx98MHbaaSd85StfWVmnF5hihJl2wLLbbruNWwB7yimn4Nprr8Vvf/tbXHTRRdh2221X0tkFAoFAJ+PZrSOPPBInnHACHn30UWy66aa44YYb0G63ccQRR6zEswwEAgGfbuZcWZbh0EMPhZQSN954IxqNxko6u8BUI4iOBHri73//Ox5++GEAwL333ruKzyYQCATG5rDDDkMcx/jOd74DIK8D2WWXXbD11luv4jMLBAKBsTnllFNw55134vrrr8cmm2yyqk8nsAoJDluga5RSOProozFr1iycccYZ+O53v4sbb7xxVZ9WIBAI1LL22mtj//33x3e+8x08+uij+M1vfhOia4FAYMpz7bXXYsGCBfj85z+PPffcc1WfTmAVExy2QNdccskluOOOO3DllVfiggsuwLx58/ChD32oQ+UoEAgEphJHHHEE7r//fpxyyikQQuCwww5b1acUCAQCtdx333049thj8Z73vAcnnnjiqj6dwBQg1LAFLD/72c/w4IMPdozPmzcPo6OjOOuss3D00UfjwAMPBJArHe200044/vjjcf3116/s0w0EAoEx7da//Mu/AAD2339/rLPOOrjhhhuw7777BlnsQCCwyhnLdhkVyTe+8Y349re/3fG4sW2BNYfgsAUsZ599duX4f/zHf+CrX/0q1l13XSxYsMCOb7XVVpg/fz5OPPFEXH/99Tj00ENX0pkGAoFATp3d+sY3vmEnNUmS4F3vehe+8pWvhHTIQCAwJRjLdj3zzDMYHh7G+9///srHg8O25hH6sAUCgUBgtedjH/sYvv71r2Px4sUYHBxc1acTCAQCgUDXhBq2QCAQCKzWtFotfPvb38Y73/nO4KwFAoFAYNoRUiIDgUAgsFry9NNP45ZbbsH3vvc9PPfcc6F4PxAIBALTkuCwBQKBQGC15P7778e73/1urL/++vjSl76EnXbaaVWfUiAQCAQCPRNq2AKBQCAQCAQCgUBgihJq2AKBQCAQCAQCgUBgihIctkAgEAgEAoFAIBCYoqyRNWxKKTz55JOYOXMmGGOr+nQCqxFaayxduhRz5swB52Ovh7RaLaRpWvt4kiRoNpv9PsXANCXYrcCKpFvbNZ7dAoLtCjiC3QqsSNakOdca6bA9+eSTmDt37qo+jcBqzOOPP45NNtmk9vFWq4WBmWsD2UjtPhtuuCH+8Y9/TGkDElh5BLsVWBmMZbu6sVtAsF0BR7BbgZXBmjDnWiMdtpkzZwIAfnH3nzE0Y6b3GF0A4mDV4z0sEiki6ULlXRS0/V2RB6Ryv9Nx1YU0DGcAL06UMwbB4baLccFht81ihGAMUTEWc0Bwsy9DXGxzLcFkGwDy/1VWbKdgMitOMgMrxiGl21YS0DK/BkrlvxfjWspx3xcTgrxJ4f3P6IoKE+4Pxdy4ZnSfLrOAtXJPIdvwtjv/KEuWLsGme77DfsbqSNMUyEYQb384IOLOHWQbi+/7LtI0nbLGI7ByMZ+pvz30QL5d9VnUCoxs233INvPGNRnX9furMT739DzGwrsPi/uUl+5Tsw/Z1ty/rzWPqvcxtoHsoxmDLIynBuy2srY3X6EFAKnduNYaxjIpraHh9kfJjuf7k7EuZbzo90jl9w5z+zA4287sfrARC87IJS2N09erGjebS5cuxTav2GpM2zWu3QKC7Qp4mM/TLQe9CUNxBF1xgygyDdBSke3ifpXae9zOjaSGKvbX3j5kXGv7fC21d0xd2LV82xxTlV7PzccksRWGqjFvTld6r7JPOn+iIlpJZkrWXuT7du5PxzhjYMI9zs224GBmDiiYnW9x4fZngtn9GWPgxcSTHi/fx044nS0Tzv7TY5Yfyx/336s5r+F2hr1vunWNmHOtkQ6b+dKaMXMmZsycBcB9SZYdszoHrlt8x8yNa+1/2ZsbnDpsUusOZ24sBHc3qWDuphDUCSOOnLBOGkPE3b7GSYtqHbYUyPKwMlMNOw7PeSMOm2xbwwglrXXWUvoTwSrIhI4JUe2wkYmancCVnbSKCWJXlCeqVY5cxYS129QP3hgCE0nHuJZjpxwF1jzMZ2rmzJmYNXNGyUnrdLRAHK3c6ZLV+5vFF+qYeY5cacGiykFTNQsv9Fu2YuHEd9KYvT+9cR65+5kL91wRAcR5s44cF5UOm9TwnDcg/10S+2wmU5ps505dsU/JntNxe4lqJm7eZSnZB+ds+YuE1mFjnd9RgizQ5Y8X45zVOm/W2WPV40B3tqvObgHBdgV8zOdpKI4wJCLfq0DhjBUfXi0VtHafP2XvRwVl710OVdip3BzlT1ZKWaeLrBFDS2r6xnDepLvfjU2gizhKM7ttztB/3L0nSd4DddDy41Y/1g3U6ZJ2jOxA793SghCzc0N3vozaD+2OJwoTzzMNRqZcTOQ7MQXwYh8mmZuCCYAVx+HaOVWccfJaxKkDAy/2YZzb7fz3aqeujjVhzrVGOmyBwFSBMQFWXjoCAFUxFggEAlOAWrsFBNsVCASmLNN5zrVGO2wcDBxs3JVMoDqFpAxdK1F2lYFBFUsOHKhMl1Fa2+gZDbuXxw3lVRmz6qKkO0/FNVnF5XZcg6wA25UWTVaFe4wilqJO5kA07UorZSNyXlSNrMrr0gq9vaGUtKv0uuLsvLFSCH3clXu6T8f7MktMQGVUTSloze2+drzHomoRx2BRxWoP623lLbAGoVVnBIxGzGTWOa4k+exm/nNlTeSNPFdX3LO1UbUquJ/WbFJrGImYgXG7Ws64cPcsAGYiZgoulKRUvtRbPLcX7Ko42ZbEDkpqe+G2u8mMMM/vFrpqXk5lp5E3Zr5HjC1n/pj9HlDabmsGMDiDb78fNMCLcVWM92Jx6uxW/prBdgU60Up70TUX6fJTIOm4IhMmEwGTqSSRMRpV0/ZY9Diy7fbXJN1RS+1lM0l674+73TlmfqeP07HyOKUbe5Hf05370aATtSXlNEhR3JeCRNroWO128ecRGQMv7K2XBim4TWUUsQAvonBaMBsd00qDSZNayaGLfUQiYP/6SkJLd0xn0RXZcimZhqoU27GYznOuNdphi0T+Y5w2oJw2wnynreIYNDmI3nPmS1Iid9oA5I6brt6/Kg2yLbV3I7sUa/+DpciJcWacPYa4MI5t5WY5LAJYcT42o4q596FJiL+WmoldeeKosyJVMktdrVrWds4ZSTcsO2w23s65nRgyLsjUg+7rHKe6OhlN0qt6qm8rOWvaOnL++zYTWpuW1SWM16z21K1eBwIFlc6VzIhjRtKSy6mP1Enz9iG1pplLEbH3L00R7sZhs5/jtr1PmRB5zRkAcOXqULnwHTPzPpG5+55HdqHEux8928PcYhGczdCkFs3UrWntb0vqgMFtU0duvPR1mrpelxLpXSI6qeIAV+73uLg2gizAmd0VWWgUzC0MCpZfArNt0uElWd7izNn5MbKMaqm1W0CwXYExURVei5+aWNSVKe07ZtTRMo6Z0pCpJOPFPkpBpsZ58520dmHDpPYdrPptFNu+81a1r0Fq7c0NqxyyOuetHveE8j3rHDPtUqOJg0edN98xA3kc9nG6b+W2AmJp7Lm2DpSWGiIpxiX3nDeR5HZBQcG4YzKV1tnjgttrxou98m0Ur0NSZaUeMz1yLKbznGuNdtgCgVUNj2KwqLMA1jf3gUAgMHWos1tAsF2BQGDqMp3nXGu0w2bUE8vF236KCux4FVXqYFJrUjzu1Mbqck6kcisw7VKYvk0Uiuz+peO0lVtFMe+DRt1i4afumMJO85pMsyrBw2LlmbzxKnENb3WfpF3Jti8uUkTbtBdhqxcd0Zys3puVjwhgNhhQRLdiQCsjQFK9QqIZ98UJKgQM7H4VmPektR9d8MbNidVMYuqYzqs9gVVERxpyKQ3SRKRVZqNq0MoXBCLpkTYSXhYEMuNAd1HxCuxnm4r9EEVHFsd+tM3eppFvbkzqYzmSZs6nVy0h87+m25qkSvppkN3Y526yIaoQJN+eK//7RxUr1Fw5pV9j42NB0iCZJhnhDJrmIpjvB86KKFs+bhaotdZQYONnVhBChC0wWarSF2kapBdJI6Igsi29/avHS5G34t5Mla6MjqXKT3fsJvKW/18dSes2JXIyoiNuDHCRND8F0vze1i4FetzomRdtcxG5hPsROVnY4UQzksro3g8TGrrIFhAQ9u/BBLdpjILkyNLIW54TVkRavUibsseYKNN5zjXxdx0IBCYNFzF4lHT+1ElmBwKBwCqm1m4F2xUIBKYw/ZpzSSlx1llnYfPNN8fAwAC22GILXHDBBTbFfkWwRkfYEs6QCAYOt8pZG2Ejz6N/DtrHxz5N+Suc2hapuxVOBbfqo7S/bSJmUrntXIBk7A+C4rSoXMP3x112sKlzo7Vs7vUZ+cDVhRX9WrUqiXCdtaHbRQ1M1rar+DpL7ap4LkAyzio9F2DC1KPA1raZlXgtOZiJxqlSHydOtm2/psj+oTSPKvexv5u3WyXfL51wQy6MUtTeiNbY76cEixPwuLMAVk2D8HxgFVN1Dyrpjds6S5n5kbeiFYcnCNQmUXES/dYk8lYVEae9FL2eiSCRcrKqSeP2ug2g2IfFiZcaYOvZNPei2XabKhh02QuuyoTaWl66ravr1nL7XNTAdNSwFfsrGoUrv74bMJGyNjkpmiUhOLMr8LRNS2xrNzgUd9EzmNo37q4wg3Zy10rb7zkNDd2jQBKlzm4BwXYF6qmqXytTV7cm29Iew0TnZOrqx5XUUKnbR2amVs1Fz+ojbN3Ws5n5GzqObX43+5bHyuPlx7qhqmzLFx3xt6sec+dejqTVbbtssap98t8LO0TaGXDBgMTYaAlW1LyJxEXNANkRZQOQR9rGaXjczWepin7NuS6++GJcccUV+OY3v4ntttsOd999N4455hjMnj0bH/3oRyd0buOxZjtsotNhEwwYq7kokH+x0warSpsUw2IHriEV+cIcIxUyf55Lv2krjbYxRhp2W2naL8g/IP3iN33TFGegTprb100mTL8TRaZQHWmQdXi5oER0hKY70jTIqkkhSbnqcNxsnzXpUh5RSpVEkXJlJ5nC9gwp7eTSHRlzwiCkj1NHPyjqvFU1KBbOOYXK3OS2x1WauvB8bbpRIDAWVEREZfV9Ec292SYLKHQxpeSkOdGRigUWquRKH+fCipswoTznzXzzsNJxxktv9t+rbwcrHTl6+Nq07/GpstU0DdJPlSylsFc1CtYa5V5sQOeiG01x5/aLpEgO0hKxpqmm5iDMNVUiKZHgrObK9M5YKZHBdgXGgqZCAp1CI24/X3SEpkFaQRHlxlXqUiJlpmrSHTVS2pexdrzaSeu2cXadI0eZiL/hFnD84xinSmpNHmOl/VnHMbpx3goNEaSKqkfScbd/wgFkZN5ZONBIhE1xlGnutAG548Y4cdIMwn0WaGokVY6caFpkv+Zcd9xxB97+9rdj//33BwBsttlm+O53v4vf/va3EzqvbggpkYHAKkREMUSUVPyEtKJAIDA1qbdbwXYFAoGpy3hzriVLlng/o6OjlceZN28eFi1ahL/85S8AgD/+8Y/49a9/jX333XeFnfsaHWGLOcsLKUkxJWfMFmcCqE61YRzapJZot4rBzYqAdnKqWsKKjtB+b3R1xU+zcSszbam8lEilOldyipMEUKyYFFGzWDOQJVe7zaV2qyTcRdq8NE97Xm6lWHhpVyXBA5tHpMjKvZ8GqdtE4p+IHOga0RGT5qi5cBL/KNKmQFbys9TJhUfeASol+zWPgKIHR54SKdy22YdVi7DQBXGmJKBj+z5M9EJHjcr3U0eIsAV6hrFSjzXl2ymvzYZ225JEvE26slIu+p256HdHVM3rmVhxz5IxxjvXAb24PRcukofSZ92+Pol4a0XS/Tpfup8YKf9cjKQzZZ1C0yDz32H3p1G1uvRIuupu05UkjapVR9v8zImKLArO/DRPYrfMaTEGm/nBAMTjZyB5hAhbYEVAhUYAePL9NDJXlwZpBUj0WCIi4437Ebm69MeqsfFSIsuPTRQaEaOvIRgjx9ck8pb/bvYpj4ExkrHg5q95lM4dj+ZEVI3TY3JJBFlSadMjOZQVKQEUtDCZXgqiSKlXksTTejFMXTDenGvu3Lne+DnnnINzzz23Y//TTjsNS5YswTbbbAMhBKSUuPDCC/Hud7+7r+dLWaMdtkBgVWMKXjvQPTQlDgQCgZVIrd0Cgu0KBAJTlvHmXI8//jhmzZplhxuN6kX466+/Ht/5zndwzTXXYLvttsMf/vAHnHTSSZgzZw6OOuqoFXLua7TDZmrYBGd5xARFcT6JGDGycq2JoAUjwhXGM7frAEpD2cf9lRt7LBK9yovX83Faw9ZWGhmpZ6MF7lUoxlzpQj5S/O+ERhR3dRfmMHkkzX/GuFQ2rPVr2EwUTLfbTtiACJCUV+69w3uNdYvjkMerVus9wQUK406yVUSkhi2224rkeyulbW0LXUHnXn0jhyiOyXkEFLU3PUfYWM1qT2UxXiCQoxn3679oJK0q8qYyFxmjgiKkbs0bl9JvnN1tw2wuXMuN4vcOSM1b11RE7VYE5qpKVNvYOuoaZKvSCnx9I+1OWSslNWJbp+FWvU0WRZ6VUWROMG0bbnOmraAUI9taw5f7L5jIAnad3TKPBQK9oCrqPDW5cVTNti5tKy9iVhVtq9/uJ7nsvdlmqIqmTybSVt84u1qYZDLI2shb53j+ngo9CK1hJQcEc38rwezfUNBt7vbxmmSbFgB9MivjzblmzZrlOWx1nHLKKTjttNNw2GGHAQB22GEHPProo5g/f35w2FYEERQiKLB22yvUR1XqH8hXnHDpc+ASzAhNFP9rEOeKFHDKmhuJptDQ9JtMKpceqdQYKZHFcZj7glcKkMa5UNqqiZUVz8w7m6i9YiWFOpNG5YsWyNJk0Thyacc1thjlOCGgi9UQRtIfaboWq5tAkjRI13vNT4PMivedKXetla434CZdljFSgMsZYl787Xt02HgcV6ut6ayn4wQCADoEcjz1SNpjjaY+jiMuopXCmE5ar5Avy44vTrtQQ3ok1vRHLDfHrOujaA/NOm0n81KB/H2NKJP2UtnpxItZG8pLk7Je8R05J4BlUyu5G+dERESRhSW6rYmTZr64lNao6uM0EWrtFhBsV6AntFSl34kTVhIhMXh928j4WIqMdWPdkt87/hyMjuV0Lry4/fzXr3OsyjZm/POqOs/Ox8rH8hUge4f4X96YILbSpndL7cRDJLM9I7XUVihOKw2jiqSl2zZoqfritfVrzrV8+XLw0kKiEAKqbk7bB9Zohy0QWNWEGrZAIDDdCDVsgUBgOtKvOdeBBx6ICy+8EC9/+cux3Xbb4fe//z0uueQSvPe97+3XqXawRjtsLBvNf2SaR28AL62OldLr7AqubLuV4Cix6yjG145EbFPphHaRtbwnTrFdt7qi/GJZI0aiSE+2/DG/gNS8Ard5jgDnbsWVRo/caxXviyrYd7kCVb42QDltSpVSrYiUP+3p5K3kF1E1KtUPgKFIp4wSe8zadaEqaX7G8qgoimhboSmbaSArLkhbuW2pXLFs+XqYy83hehpF2smDZz2qIogoAo86b0Om1uhbMzAW40SSWIUAiUd5BZBGz6qi4t3gRc24GzPp4kI4cSDutlHaZqQvoteKg1WMU8a5JvY0K9KRrE3WZBv+tlkRVprZbAUo5qT2SbQLYL7eE1mVtyvOXRhaTxRAFX2NyHMFFQBQuXCIwQimCJo9McZiOhv74Q7q7BYQbFegGtZF7m2V4AjgR+Hq7JLXSqPm/qKpinX4UbNSBN70SCRRJBo9K0ebynQX4est6jVWhK1qH6/PcMXzuo28jRchpBkIovSe7N9QCPe3FcL+zUVpeyy6+Vx5592nOdeXv/xlnHXWWTj++OPx9NNPY86cOfjABz6As88+u6fj9EKwrIHAKoRxVmlwejVCgUAgsLKos1vmsUAgEJiK9GvONXPmTCxYsAALFizo05mNzxrtsOURthZYloJJI4SRuXo2wK1Gc9pYmdsojSdKYo7LOAQzxeBuVZd35DuTlyGrOLTGjNatefnZXm1D5+kKwVwhb+mDaBerahYuxlv8rYqudZxAxziJpEm6ij+2XDhTwl1X7tfFlY/b+WRSA8PcKr4qVnsypdAuXjKVTowlU06uW2u3Wk1lHgTPo6eAqRmBfW4vcMEhqhpATrApZGD1xzZ57zKqZKmIZtfC3ZqoVmpckRBPyp/UoTGzOhrFLuWEczCj0sW5bdXBotg917tnefW9zPiExUjMszRZQNeMWVEOrRk0o9v5PrGgz3aiH22lbP0wV9raFU95v7bWpRrBUNlcm2JbypAaurjLFXrztcAYy9vZ9FDPUmu3gGC7ArVwwSD7WA5bR1now3/MbPmRNBo18+pIaVZS6ZD0kx6zsmhb9f3UL4GTbqJgVXdiNzVurnG2PyZKEcaJnlc/4PYP1uvzpu+cKzhs7SRPiZRFSqR0PbW8dKLSpN8+JpLO4nglIArxCaG0l/7oJv31N22VYpKqctaKbdHvPhXjHK5Doa4PUGdNK+UmgEr6k7JuxQ/IczTjVg1S88jrlWIcrIyknEqtXboocdgAbf9+gqQ/KK1tkX+7x6pmxmpWe1aS0QusmRjnqWORxDhMRMlx3E8iSX0E4Jw07tRZmeewCbA4dtsREW2i/RIF6ZFo7l/GrYHSZeetYtvrN8YYmFHTLI6Rp6m7beumcg3X+81t+7elU98FOBEgcXuomjRIrqp7u3lHp5OlGhu/siZHZerslnksEFjZlIV/6hyzOjGQ6l5m5jnVjpbUvX3WqTPYL3q1AVXOVpUgSfkxf6w6hbJ87F4WgVYW03nONfVdykBgNUYUqz1VPxPh8ssvx2abbYZms4ndd98dv/3tb8fc/4YbbsA222yDZrOJHXbYAT/96U/tY+12G6eeeip22GEHDA0NYc6cOTjyyCPx5JNPTujcAoHA6sFYdmuitisQCARWNNPZbq3ZETbZttE11h7NB1Xm+oQBLqJDV4J1ZPNoNOOALP7QhbAFVOSt5Dop+PHPqZti9MliPpdVn89uFxlM4b8necI59Erql9RNpE1XpFRpxiBNb7tSVM2JjrjVtDbp7UJTWmPBKlfwepUN7mcN23XXXYeTTz4ZCxcuxO67744FCxZgn332wUMPPYT111+/Y/877rgDhx9+OObPn48DDjgA11xzDQ466CD87ne/w/bbb4/ly5fjd7/7Hc466yzsuOOOeOGFF3DiiSfibW97G+6+++6ezy/QJ0yUiX6+TTSIiHIwSD9t0ka4SGoxiYLlz8nxPsZ1aoC0GNwTDiGpj+NF1bjwo2cm8ue1TqFtOYTro+jd172JjtiYuQbJcGS2/5oAg2lqyTQDY8Y2MPDiIJw52yCY9myGafmRt1FB8dyyLSletgubz5mzN+a51EQIXhYTcNuMPM/2kYT7W+f9Jbu3/UCoYQv0jpFAZ8JvzcMEt/aICw7ZQ84kE9zKxUtJ21bQSFZ1iqOf6uj2qf8OL0fepj/j9WwbK2WyLoWyKp2SC2b/7t3CS/vT59PtsrT+eExn3YCp71IGAqsxIuK1P71yySWX4LjjjsMxxxyDbbfdFgsXLsTg4CCuuuqqyv0vvfRSvPWtb8Upp5yCV77ylbjgggvwmte8BpdddhkAYPbs2fjlL3+JQw89FFtvvTVe+9rX4rLLLsM999yDxx57bFLvOxAITF/GslsTsV2BQCCwMpjOdmtaRth+9atf4XOf+xzuuece/POf/8QPfvADHHTQQb0fSGX5T9bO/weg01be0BnwBTS4WwViUQxmrlxGVrplUfsmFHRR48YZJ6uamsjC98ebF5zZlQzO6Oqvv+1WZzvzintdXaXQOhIGt+quOREEoDUuXLl9lPKuQk8y4nXQFXevpqWoe9GutYHUrh6wrVzdWlspW4vWVgq0r6eT9+ZoREZwwOU/yx5FR+q0I8zYkiVLvPFGo4FGo7M5d5qmuOeee3D66afbMc459t57b9x5552Vr33nnXfi5JNP9sb22Wcf3HTTTbXn+9JLL4ExhrXWWqt2n0A1/bJbuoiu2UhaN42luQB40RJDCHuvMcCOgwvSWmOML69SxI3K9DPvXudEdCQpyf13RtXAXa0pmL9tI2+Mu0yGmnu89rQZrOCQyYAQnMGVoWlw7e5jek9zEpkyNa1MMVu7SqNtMSftWEg9rOIuCqc0tRWsq3q2ch2bIEIhvLRtqLskudCIefX8erAesjvG0rzpVQsnMLXp23wLRRSj+G5lTuWjcl8uOKRyUTgbkeMuqqYA6CIgxwQDJ8E5evg64RC3XX2jlOvWJlIzOl4Uq5/0GgGsqssb6z32IlLCGXN/Y7i/NxfM+37xomXjROG849keLWM+pfMY48y5pjLT0mEbHh7GjjvuiPe+9714xzveMeHjMJnlPyqDTlsAkDtrRUokVVJjXPgaX3aSETkBEvK/UVKsnUxNAOG8PW/MfEGXiz/j4gMdC24VzGLO3T7WoXPpNZwcnjp3GsQxq1NtEzHA82vHSM80r9+aktA0NaugbCL63ny1OEeltf07Ku2nRtGUplZGJlyegqc5UwUU/jmLuUuz6PG0hGA1ikX568ydO9cbPuecc3Duued27P7ss89CSokNNtjAG99ggw3w4IMPVr724sWLK/dfvHhx5f6tVgunnnoqDj/8cMyaNavuLQVq6Jfd0roQ/qG2hSxU2HHOoZVz6syXpOYCzGR3t2EXn7SSROyndP/RL9jyvUkdNiGAQgGS0XTLsgMmiANWlfpYdtI4HY86n0tSRMvpkVT0w/o83CzgaJo8aFUimXD9y3InLYemVAnmFCaldrZBco1YC/uadCHIOGZSwfVzA0o2Bh3wiokSZwyxYHZM0EtBFgadGqR/HEYdPO36j3ZDrd3KT6br4xguv/xyfO5zn8PixYux44474stf/jJ22223yn2vvvpqHHPMMd5Yo9FAq9Xq+XUD49O3+dYYnwuzuCyltvtpqcmk3I3n9yMvthWQFMJGUtueXvm2Sz8WnmNiUh/H925EzfytTkyj6j3ymvfda4oghfalo6iSx6bH8ODqFom6uy7+e/IWiahjJrgdM9eBce62qxyw0jgfJ1VxrM9V5bmPM+eaykxLh23ffffFvvvuu6pPIxCYNFxw8IpQvM7ysccff9xzjqqiayuDdruNQw89FFprXHHFFavkHKY7wW4FVhfq7BbgbFe39Fp7CwCzZs3CQw89ZH+fDgpv05VgtwKrE+PNuaYy09Jh6xu6aKClSQQoa1vREa9XESfpe0K4/bUikbXOlQk6osguCi5yI7UeN5TNadf4UtjZLAzEgtuoWkSiaoKsrMbCrcpaiXrG7Hvr+ovP7EdWy6G4ExNQEjorUks5t6vuKKdBmvRT1CQljBdpU8qlcSm3Ssy0S0vNX0h1vIgmggBKuxWnXCiApkqS1W+q4WD7NI3fu66Ouv5HuhibNWtWV9GsddddF0IIPPXUU974U089hQ033LDyORtuuGFX+xtn7dFHH8V///d/h+jaKkZq7acAltMjq6JtJGLFIkDb6DCgpUlpjqv7KHrpK1RohAiKmH2oNL8XfRdEOCSq3oeLSqEglN6TF1WzJ8bHFR6hNpQ7g2dTIrnWNkqm4SJdgrkIm9auj6Vnz0naldaMpD4y6OK0EjBrS6Ty7Y3Bb9/in395UTi3/SaLgqRElqJqNqgIEnkj3wmMwWaadMtYfdt0j84Trb0FgIULF+InP/kJrrrqKpx22mmVz2GM1dq1wNTGRFekdL9LktaIim0umI2qobRF0yONfWJkQqWlqmw5G49xjr7ABZlvlaIwNLWPPlaO+lRF0+oib93QGUnrtNs0ukb3p6Un3njpmk2Esa6buVZ55I3Z/euuW/ka8jH+Dr0w3pxrKjP1Xco+MDo6iiVLlng/gcBUgEX5ak/5h/VYAJskCXbeeWcsWrTIjimlsGjRIuyxxx6Vz9ljjz28/QHgl7/8pbe/cdYefvhh3HLLLVhnnXV6Oq/AxAl2KzBVqbNbvdouU3u7995727Hxam8BYNmyZdh0000xd+5cvP3tb8ef//znSb2fQP8IdiswlenXnGtVsEZE2ObPn4/zzjuvfgclbUGrVtKPrFWgpfSjQRUrvnS1V2sXiTEF6zQi061OhddI1ayUEtGRmDNEtlaN2WhbI+JoRqSGjZsaNnfatJ7NNpItrzhUrXjzyAq2gEdgoliZiRRYUnEdlfRaWHrjpj1Cr+IjqiKSVjUGcw1JywXWefHHEgAwK+Scuf3UJJphcs4qc7THy9uu4uSTT8ZRRx2FXXbZBbvtthsWLFiA4eFhu3J95JFHYuONN8b8+fMBACeeeCL23HNPfOELX8D++++Pa6+9FnfffTeuvPJKALmzdvDBB+N3v/sd/uu//gtSSlvftvbaayNJkgm950B31NktpfPVQD96Zu4d5t+nplYM/ifU1a0JJ6BUtntU7p8KhtjHXS2ZJjZQV4iCaBJV8+rNqHx/XSTNPMfsU9ARUauJsHnaKxX3KTMWiTGvvtW+DhEq0gAUqX8zi9JKM2vnFVx0jEbqpAY0N/V0tP7Nj7DZxW1RbYv8htpuzNUm0zo3t3/eYsa8Z/d5YDbTpPs0gTq7ZR4DuhNMmkjt7dZbb42rrroKr3rVq/DSSy/h85//PObNm4c///nP2GSTTbp+D4EVw1jzrbKQCFDMp6yal7TCE1K6bdURXytE3QBr4xipCdWCziHqJ+LdRMjMuXmPm/mS4DXCGjWRJt553IlAI2CKGCs/qqZKUTNtxwFA08whUv/XeZzq6Nx4jHVt6TWl19LtT69f9bbdp8doYD/nXCubNcJhO/300z01vCVLluRiDqY6mwuX6kPU1OocNyaIElpZqQz+5ERK+qWuSQqNtkqEtD9PWdHIfohKXp0ZF4z5aZDFdjPyhUbi4ubJ+4e55+b/O5NWLkyvvgClFCwjJiAUtM63WUSFRlSlE0YnkToj2+WXI2lYWpUcMul6Sul22zmJWrsUH5m5tMmIOLs0XYhMbKhTV6as1Gb2t/PJymfVw0kxbnm8V971rnfhmWeewdlnn43Fixdjp512ws0332wnQ4899pjXs2TevHm45pprcOaZZ+KMM87AVltthZtuugnbb789AOCJJ57Aj370IwDATjvt5L3Wrbfeir322qvncwx0T53d0oUdoQId1Hkz4h5MK3KfKk/0gxnFyKq04WIfuu2Jgdi8uipnjIqLsMqeaZ2OnJ/aCJScsZIj1kvqSln5sOqZtjdb6bjuqS6V0ktx1y7FUcOJjmitoUzal3ILdlL7x6lOrXQplIpYSPo2qhxQarep6AhDyd5VOHJWcKQH0ZE6u2UeA7oXTOqVPfbYw8sCmDdvHl75ylfiq1/9Ki644IJJHz8wOerslhWgIEIigEl9LBZCObPpx56jAw5V4aRRR0N4n8cxnDRv0s/8c4LvhOViGdxtc+Ydo5zeR49b5YhUOYL29xpl3ionqd65UtYRU6UUR+ewaTtmnD0ttXPkiGCLoq+jdMcxe6HO8aXX17vupblWvUBJb45vP+dcK5s1wmGrk0IPBFY1/V7tOeGEE3DCCSdUPnbbbbd1jB1yyCE45JBDKvffbLPN7GQzsPIJdiswVekmwtaNYNJEam/LxHGMV7/61fjrX//a7ekHViDBbgWmMiHCtpJZtmyZZ5z/8Y9/4A9/+APWXnttvPzlL+/+QKZXGO0FZMZRWo3lHDCCGlHiVn2FsKvINhWIC2QkDcaswmYqF7EAcul406unrTTa0snIG6TWXrjbnUp9GqRNfRQcjWK8GbmeYVT+2f3vevxw8r47Pr80LcmsBmlho2rQyq7cQ0dgSbPj3MvQ9EgrhADYFFWQbQa4v5MViUld2leWWsEYJlJAFuMisdE2LtsQxd9LMO3SQxXAivTImHMoQQQB6OpbsUnbKTDmVrp7TXLgglf2HhmvH0lg+tEvu2UEcjgR64A2Nsi1FNE88qLWNpqmGLQe5/PlhXF4vWCIef2qFMexZPrtMVgpPbxCuKk0VNUvrJveYzSCxCqiSR1jJLJnvh28yB/n0CatyxMtIumRPP8930fbbaVz+f98nHkZFk6Yipz6OOsm1AYxRvoicWajaqJjvHiuyj8zvfRhq7Nb5jGgO8EkWntrenuZ2tu6hacyUkrce++92G+//bo+/0D39G2+BRNNy7ep+IjZVuD2u50LF1UD8igbgDxV2ETVOIOuk80vRc28c8DY0TMqO08jQyIWpWO4dil5ZI53jDMh3DFq+o9V/W6oFhShKZHK/q6ltBG5PKpWzCul8sbz/zVkWxaPa2+8lyicOb49t5oan17+HvR61ImNuD5+lS9Xy3Sec01Lh+3uu+/Gm970Jvu7Cb8fddRRuPrqq1fRWQUCvTOdV3sCvRHsVmB1oZsIW7f0Wnt7/vnn47WvfS223HJLvPjii/jc5z6HRx99FMcee+zk3lSgkmC3AqsT03nONS0dtr322qsvqVqaR/kqNI2wRTGYUTemUbcoBouLhrBRDC3ybS2SXMoagI6adiwrVh9SqZGaqJrSSIvQWytTGC2aM7elqoy8laNrtG7N1lsRcRHaILshuJXvp3VrkXANtWktm1ltFZyNW8OmGQczUUWlXCNdHZmF/vw6mf+juFPQIH+D7phK2tpB+txypI0hbwPgXRkrL86hTfsALmxtHeMtt7rPI0RJ/vdKBHMNr7lGbFbCBaBMBCKCrTWkxILZukAOF7XUPd70keCIqtSJpsFqT6A3+mW3gPzzr22E168ptTVsKEWwTQSJo75eaTwBECq9T8RFXK0aibbxyJ6jH4FyJ6a18gU+qk6p9Lur1XKPaLgG2BzMj7KRVh+VLVjo4+h8nncuJdET+rsobExEMhA0o3VuRNZfk0bbWkObbaVJCwG/5m0scSqvITZcra3fUJvI/YNEKs116aGGrdZuAT3brl5rb1944QUcd9xxWLx4MV72spdh5513xh133IFtt922p9cNdEe/7BaNRAEoiY+YmnRt5zkKLqqmoLyG2oK2F6l7vRoBkKpIGk+EV88mTDNuwSHiyO1vt6sft+8xiVz0jvuRt/L1yM9x/Pej6FyIzp1IJE0rZaNdKs28qJpsZ3Y7/19CkTH6uEyNCJ+LtqlU1kbe3Dn6Qifj4Uv/u9pBX5ylqkaw+jp2w3Sec01Lh61v8ChP2xExWEy+rEyKnZRO8CJKbI8xHTWh40ax3YCOm3YbAEZV7qgBhcNmtxWWFyHo5W2JVuGwjUrfeav7vNOPk+29RtIZY895Y54yZCTM84jzRtQizRiDmwjl2+TV7WROk5TQyJtkWUdL+M6XN+lSTpHTNGChTp0n9lIquNVUbIQcy+5eTJo4SPoBEUZhIrKpZEnUhNQmFZVDe0lIheGVDJy5dFXjKMecI4mcE2x74/XosHHy9/Pfx9Rf7QmsGlSRZm0+c57jwCM78dYgKZGM1zomlQIfdYIhxSJXvu1SHHWxLZW29kBKXRLZcCqK9rVLts44JeWPv729QIUznJMGstCktLs23vvVyr6gFSTynDgnjlTrvJFrxdCZIpnv4qeNciJQZdLmFZiXQmkdOV5Wm3TplGV3qiNVtOIaCe6+NwSj144BmtjQXkVHauwWMDHb1Uvt7Re/+EV88Ytf7Pk1AqseJrgrcSBlGLQnm9GDpAmRQgjnCIzh21RP+CfumPEkrhwXiVkM5uDFtohjzzHjFY4c40SwLj9Rcp7Vb4wuWnvzITJfoo4ZdcKMcybbbai0GC/2lWlW6bCptD0pR86dqu7KeatS0Sz3ZwN8IRezDwAg6y0ncjrPudZshy0QWMUkEUdcsdozHXqCBAKBNZM6uwUE2xUIBKYu03nOtUY7bFrk0TVEiVt5BXzREZtu51aWddyAjgfy7WTQbreLlaHRTGGkSH0cyZSNpC0dlVhWrHIsb0sbVWtJZdPu2jV9LgRjdnFFkLA+Z35UzaZBlvqtUZESV3jujk2ln8eX9WcuBYu7j5AGvOto11a09vqz2aiakn5Uza48td2q0nh98RRtH+COp8hz6G1Iki8gGENDJKVHARoDEIzZVEkqiCBoNJMzG62saQVVi5jGqz2BVYPW2gqPAMgjxibapRW5JzNoOIl/szStaSSl3NesrocaSSlWcKl8QBHxaxerttqNa+1H1WhLE/uaNe+Rfvpp2wxBeifSiBGUEweqVWemrT5IhI1JEm0zaVrliFNN9IlVRCdpCikrpZAym6YdkUyHCDp2EUpJ0iOtxL9m3nU10DRJLy2SRNtoj01zbRgDGI0m9hhhq7NbQLBdgWqowAfg0h2lIn3YSv3WTNBJS1U7MamU6a/p9SUS4aJnwkXHeOwiaTyJvEia3T+OIIpyCl6VJhklYHFsTsRmZIFE1Rgn5Te0nRTgRds8vPTHzrmOLs2BjPAalIRu59s6S72oGQCodgaZtu22eZxG3lSaucgbidIpEsmTMfdaCVSJl9DXraOjLcIYqZDlVMpemM5zrqnvUgYCqzGNiKFRqHj6P1PfeAQCgTWTersVbFcgEJi69HPO9cQTT+A973kP1llnHQwMDGCHHXbA3XffvQLOOmfNjrBFzbz+rNyVlESNPPn+yNWq2bq1eAApy/cfKVaZRzKNkSJ6NpwqG1VbmkpbwzZCathamXQ1DErbbboSkEQcvFh5jWveT95Eu6hbKzXItlE15hekmzErV88ZkfX3P8A2qgZYV18rP8rm6mdIHUhdQ+2sXbvCblaVtPILY03+tZPMzcDSYiWt3QYzsv60WbeSYEPKnjuNo8UmwEYibZxxCOZqEF3jc3c9aNQy4gxJcYHbfaphk9NgtSewalAoREeK3zVjfkSnGGcAwNz9OFZjbAB+A2xO2pUQ4YxMahvpoQIaNJJGx51EvSYRNvfStQ2hWTlKlG9LuFYcijEI7t4tNxEo0iqAddSoFdG0IqrGVOaiaipzdX4qc/ZDa+/a0fq2qvo/xhgRHSECTeT6Mi5sPRsj2RtcxIhsmxheeS1l5XV0v1AxFhpVywWlilVr+p5M7V6fatiC7QrUwTjviLQwzuDH1wrJfsFI3Vp1fVe5EfV49Wk8iYgwSIyomX/v59EzF0kzUbNooOFF2FghasYa+fyPRUWGVrFthOnAuds3ij1hNBtVK9WzddU4m0bSbLTNzal01obOUjuu26kdF5nbBgA92rL70ghbNjLqImztDDJ121mr2D9t2/OiUbi6Orf8b17YxDHq2qoai1c1N89/N18K/alh69VuvfDCC3jd616HN73pTfjZz36G9dZbDw8//DBe9rKX9XScXlijHbZAYFWTCIEkqvgy6kI1KhAIBFYFtXYLCLYrEAhMWfo157r44osxd+5cfOMb37Bjm2+++WRPb0zWaIdNi0KeX2RukKip2d8BaJHk9W4o6taMIqTmLrJGImzDxSrDS6MZlo7mx19GImytTGKk2CfNlBdhc7VnpZWA4q8Va+Yk/4WLhPFSM2faINs7ZknQkJOoG0NnZK3jujFO1NmIgBpRQWNAdUNt5edwe4pJXh62W/mRxaqOlspK29JIm5HE5UkK0Wzl26Mt6DTf1u0UvFhV4kraFXKuFVRxnLgxA7yIoAqmSM0M0DYL0eQaMLj2CJFgiE3EsUPLbWzq8qnrVq8DgVwi30VYpNK5lDxQKKIW+5HnjBkVMmqTPPLUHs1CuFROuVZqbVuW0DG7L9lW0MSu+bVrktaDehEhom5IGz5rt6/RocwD3kYVztV+MV2qY6PKkDSCBoDJto26MZWR+trMReOIChuUdNeV1tZ6ym+CZADEfgRTuFpAL/JWfLfQOjfNI6swGfHIVvfQ2kEXWWO19WzUtttm2TJzITttGmf3p4Yt2K5AJR3S9sX3MNGDzONrNNJU0VqjXOtkajSpLHzsZPXzmrT8/hJx5FQdm4mNvIlmYuvTRDNxdWlJ07VzSpq2Lo01ct0CRLEbo/t6UbXI2VwuvOh7Rw1xFRW1tEwrW4MKMqcByRjQWdtF2NKWq22zEbYRO8bTlt03Gmy5+rRWauvcZCuFKCKSspXaejYZZ+BFrZxKM/DY1ciZaFreuNvVudm3U462VtUjVvx9vSbjfaph69Vu/ehHP8I+++yDQw45BP/zP/+DjTfeGMcffzyOO+64no7TC2u2wxY1oKMGmFbQnNxQdHJj0v2ixDppKmpYwZCRTNn0x5F2/kF8abSNl1ouDXJJK/8wD7cllhXjI6nE8sJho2mQgPvgNCKOpEK5JubcOgh0EkThYDBuFZXy91Mi830Zq06D7PDbjEHRyk+PLNIHNScy4iCTRB0BPPOPUYZK07bbnsHIWqP5LqXQuz0tGzrn1qBEzRYi47ARw6SzFLwwTHymSwPSWgGNfLsZD9hrlHKNiEw6DTTVKE+JzM+hnY1Wv78aEsHtcz2mQU+QwKrBmApNUgCVdVwiJ6xBPkKaamGTvm1g3D5XaQ1ZfJlmxCZJDdsnUiqNjDhnQP6Y2Zf2kaROmiyEUswxKL4ohlt8ogJKZlsw8qXFrekB18xu59eFGC+S+mcFRuziUAZWLA5R501nbcCkELXbvjgSSdemMJr25C1KFbYydq1hmHC9PJkQrq9nyXmz6fkisX3euF1EFLZ/m9J6XAEXwVku9GSuSXki2IPDVmu38hfq+jiBNQsuOGSNsBrgp0cCqIx6MM488Qkrpc+5k9sX3HPSzLyAJ5GXBhkN5HM60UzArTPWBEuKlMek6Tln3IwXKZGIEjDT4olHQHEMxd29q6koFI+cuEjJYaudG1WJH9EWJDStm6R9M5XZEhGuMuh2MTcxdm20BVXMkZC1oUdH8vG0BV6Mi0YLKnMOWzZSzMWaiU2PFKlbVJdxBmWETpLIplNypUpiJMV2rUJUZwpkGSs20mNK5HhzriVLlnjDjUYDjUajY/e///3vuOKKK3DyySfjjDPOwF133YWPfvSjSJIERx11VE/n1C1rtMMWCKxq4hqnXE8DidlAILBmUme3gGC7AoHA1GW8OdfcuXO98XPOOQfnnntux/5KKeyyyy646KKLAACvfvWrcd9992HhwoXBYVsRZODIwBHFA06eWZCVRsZd4b2IkRnZ/raqFBgxUbUXWi7CtizN8PxwvvqwrJVhqYmwtSXSzEXYKCa/Nok4BmK3wuQESBSUNukxZbn54tRJ0T4joiI0msZI1G3MyFoZkjaaF9UX4wpulYjKgtOVJOaaSGqgUpqWStBmrVG0h/PVHi8M3yZprOa0SHGxaCaIh/JVsHiohcRE2NKWlbqFUuAzTTNJkkqgMiRFqwYRxSTCpj1BB3NNE8EhVCF2ItvjXDyfiLQEoITC/cBY5NL+LgWQFZ9MxkuiSVXp3USUI09hJJL8JlKmXAQtU9pG2DLpxk2WQVvRtiQabansthUj0U68p4xL0XapKjFniAtjFnOFRvFl2ow4XOjQNc7m5DhedM27aES236xCZ6m7Z7NRl0Y92vKi8s5mlOS0K+iQ7i5W+lnkImwgAgUsaYLxfOVaixi6ECuASNxxosz9XW1rACcMwxnPxWdQL+TCtCZZD9pvKN4jdXYLCLYrMDad4hrKSvznv3V+Hql0ezmq1mvqY2VUbWCoFFUj2zaqNuCiaSYiHsVedFxXRMe9tiiM27RzXZq7ddviBCjmd15UrSKVW2bWtuXp3kUmgYm6DaRgRdRNj44425e2oEfdNivGeTTspUSatFHZSl17hFYKlRbj7cz+nVSaQXETVVNgsrBV5EtBldIjy3L95b/7RBlvzvX4449j1qxZdrwqugYAG220Ebbddltv7JWvfCW+//3vT/jcxmONdtgCgVVNEiJsgUBgmlFnt4BguwKBwNRlvDnXrFmzPIetjte97nV46KGHvLG//OUv2HTTTftzohWs0Q5bKjVSqQGRR9kAuNUJwGsSm0qFVLqoWqvYXjaq8NJovmLxwkj+/0ujGV4stp9fluLF5e1i3wxLi3q2NFNIM1Pr4devmQ/TYCIgm50i/oIzNIuVhkbEicyzK/hHKfXbSmSTaFvVQmh5RdZeCxqB09qrZ6NPtrVtpE6m/DK0gJ9K75uiV9lK0R7O86nbwy1kRYStPTzicqVratmofG82XDQ0H2rZOrjGWqOIjOxtllpxEz7zZeC2NiWDKj4HImqCF7WLOhaVtYZctsGK2jWWtdALgtUUwI4b5gysqWitrbS/+d3cn1JpXzSIOUNgVnO11pWS/LRWrRxVM3VprcxF00YlHXNRtUwqcryiAF3VrR/nMstAXqtm60IFRzPSxTgjQhsag4VJZIxDGnEgOHkC2lRcUDENKl1PBEVQ3LtqZNhfZW67qLyt+1DKbY9RO2Glu6PErQaTCBuLE39FPybCBdKs4qcu2qakX9sG5Cv4vDgHLmyWiCdeQKNt5RYH3nUhfQO6oM5umccCgTJjRUWMmISWuiOa5raro2pUpt8XESFRtaaLqokiYtJRqzYwZLc52Yb9/m9AmWia/d/J+msSEVcirrWxWuf3rAK8Vie65v5jtq4XXqsTlyElIIponhANb15i6myZTK3dslE3mYIlxfwnGbB2UKctqJFhu63NdhSTaFvLRdiS2M6vuOCQcZG90Eoh6d+MtAGg0TYzhxNCVEr+szHq3Myxe6Ffc66PfexjmDdvHi666CIceuih+O1vf4srr7wSV155ZU/H6YU12mFrK420uJFM8SNjkf2OUwrIig9ZKrXtm0ZVIJ8faeOFwgkzaZDPLhvFc8vyG+H54RQvLncpkVmhEpmlqvIG5YIhLdIg00whq3AQkohjoOgx0pDaK+yvovxxNjc6FRqx6ZNdfGl7zht4qe9TxfNrimk16SWis7adLMlWah2zbLiFdGluMNrDLWSFI5wV11qmfhhdJLz4XyBqLgcAxENN6/TJVopGceyk3SZpT20Im1YgwU3KZ5zl6ZLIDbKdDDMOo77AZBtot4rtzlTNsajLp1ZhlTpQg/miN6aBgYhvsGo7QCcESjuFRyou0iaCIvm2S300tm95W1pHzThpo5myzl0rU9YepdJXv62CKnYJ7vpINiPn+DVK9wJVxbV15wrQxXE6XslTVjPqkOb/1HfSzDZ13rK2SxHKUieOJFWHypnBTi4Ft2lX4MLr32Qmi4gSO86bQ2CNYkKVNF2qU5RBK+O8mV5PmZ0sQkfeYlltXrtRzCQOm93uITVyrBq2YLsCdTDBvT6onXSKiQG+k8YEd0Jjcewt0pqUPSo0Eg00iOhIvWPGmoP5PgNDnpNm+++K2PXfNX1bRQxVLKRkStvFrCyTTkVX6UpF3brelHX4DpuzfV6fXaICHnGBuFjcieImeOGoaeqwmXlL1LSLzSxqQBS2SY0M20Uj6sghSiB4vk3/HoxzMJ66cdO3jXOvjIVJZ0Ot86aUXV+sEpUzxweMYmQxnvUmOtKvOdeuu+6KH/zgBzj99NNx/vnnY/PNN8eCBQvw7ne/u6fj9MIa7bAFAquaIOsfCASmG0HWPxAITEf6Oec64IADcMABB/TjtLpiUg5bu93G4sWLsXz5cqy33npYe+21+3VeK4VMdvYU4oz0N9JFyiTyCNtolm8vTTOb/vjCSBvPFxG2Z5bkYeHnlqV4Zmm+WvHi8jZaxb7pqCQRNulF2IRZMYo4oqKPRdaWtXL/podbU3C0ZVHYqQVJe3Lvs/eS8j5DVm6ZVk4Om6YXjbp0Ryo0ki4dRrokj5SNLhlFNpKv0rSLCJtKFWTbrbAYKdhoIELczD/e8Yy2laDNWqNWalambTRNeiQRExAkwqZUBhhRgqjh0pFovz5S3GsKe7sliVjNak+Y9KwoprvdMlBZf62dHWMkulIVVSv3TctIhM3au0xjtIh+L2+7CNtoJrG87bbN80barqckTfU22+Z3Q1WvSVpb0E6ETfsuZ8mY1JWYc1s8LlkXq9RE8trrVUQK7E36j2ot92SujW1S7cz2JdKeVHX1inDeD8r0iYzA49yWiUbDSoCzxgB4lq/uq6wNlhZRuOaglRRnqgFEvkiIFolN99Q8AiOpkrRtg/f+6fYExEYMdXYLCLZrRbK62C4K49z1Va2IpgB+RIXHEXhCxEVIhC2ybX1cVE00XfoxHxgCaxZRtUYT3GwPDIE18ntQRw0XSaPbwrV2MgJ0mdJopy4Lq0qoSRIBJ0micHmrE7dPbYumyt6Uru1JHlVz+9j+sJxBZIVtFQyx6ekYFVG3qAFmWovIFKxtWo4kdpuLGLoQR9Ijw66HXBSTVlhOSI72xWUt1+KIcff3k4JDFTZU2Ss5/jx1MkIjlOk85+r5CixduhRXXHEF9txzT8yaNQubbbYZXvnKV2K99dbDpptuiuOOOw533XXXijjXQGC1w0xYq34mwuWXX47NNtsMzWYTu+++O37729+Ouf8NN9yAbbbZBs1mEzvssAN++tOfeo/feOON+Ld/+zess846YIzhD3/4w4TOa1UT7FYg0D/GslshwtZfgu0KBPrHdLZbPUXYLrnkElx44YXYYostcOCBB+KMM87AnDlzMDAwgOeffx733Xcfbr/9dvzbv/0bdt99d3z5y1/GVltttaLOfdK0tVsF0cR1rarpaEmFpaP56uxLLRdhe2Z5aiNrTy8t/l/SwktFDVtreRspibAps/pMOr8DeWQNyCNtcaOQ9W+4P88yzmwtRyJcDduMRuTktaVyRf7gtqnqVIBKSBtxEZ25+hFkbbuK3R5u2Qhbe7iF0eL6ji5JkS4z+xTNHNvSq2MzBaoiFraeLRlK0C6e13yZa8qt2pld2Wsq5d0MvIgu8Blr5U21kYuR2Nx1TlRdlMyLejGBGraaJo6yYmw8rrvuOpx88slYuHAhdt99dyxYsAD77LMPHnroIay//vod+99xxx04/PDDMX/+fBxwwAG45pprcNBBB+F3v/sdtt9+ewDA8PAwXv/61+PQQw/Fcccd1/M5TQVWN7tVhkaWGOCF182WV0dBtmmtWp5F4GrVaN2aiaC1pMLyYttE+dNMedvmGLSGzbwu4KeeCNJ0vkFqc9NMQRYRcql96X8j9z8qJZLISNlTYZKS3bPiGtLaIVPLpkZHXB3rqF/DZprKZsMtG1WTrdTWYqjU2Q/ARdk6am+M+AGRGo+aThZbNJ2oCUtbLgKgJHhxbhgY8iT57fsy9khrEnlTYJxkAlRdi0lE14B6uwVMzHYFqlndbZehKnpCo2pM8EpxEe7dU764SDRYRKcbTXdPNYdcvejgTFvDpuMBKCPZHzVtJA2x25Y8tsJz7n83h0yVtuVUtNVJK3PzsjbZX+mJtz3hjNlIWixo7S+3kbeYcxQdopBIt38i3P9JnEcVhYi9NgTGfjDhtnkUk8bgS+0ciHMBbaJqvLPROQCMNSvSwmgBuIyFFZkV1s8518qmJ4ftrrvuwq9+9Stst912lY/vtttueO9734uFCxfiG9/4Bm6//fYpbTykMroR2lNaNPeNVZFE3k/N9lkrpUEaR+2fL+YpNEuWjqJVOBSt5W2khaPXHs2QmVBw5qfO8aKwM0piSFncOGTixTnD0sJhG0giO0EaaUsMFiIlbRpuVxpKmPRIVq1GtCLUvMiEgNGidjOxkW3ATJCI6IccHbVKQ7KVIitUIkeXjGJ0SUq2833SZYUT3JZWOIaScIakuC5ZK7MplLKtINudaUwAMFATcudDxX6RBIp0VdpnDloRh623PmycMV/Vj4z3yiWXXILjjjsOxxxzDABg4cKF+MlPfoKrrroKp512Wsf+l156Kd761rfilFNOAQBccMEF+OUvf4nLLrsMCxcuBAAcccQRAIBHHnmk5/OZKqxudgvI72PzERFwThtdJKT3ut9jrVpcZHlbWmdseds5ZqOZ2x5OM2t7lhX31GimSimRbjuryVM0qYy5Kq7rO2mcvcGEfPE3yaSFM8TFPjFnbsIjtF2g0lq7Dm1lcQ1qhwCAiB3RonqV+uq0JqW63AvSiiaN0ZOtKn1LDjiHLR4agCicQDHQBjPpYVkbGCDOmxEgKbRKvLRGkUCjSG8CEV6hdso8x6Am7rzV2S3zWKA/rI62y0DVIE0PLl8h0hez6CUNMhoccAI/TZcGmadEOnERnRiHrQFdKIXruGmFRlTcdGnibUVKZAqHrZRGbm2mdMq5LSLKlEm33ZbKm3caqGgUVS7kRFwkFtylPpLt3GErFsAEt3PDJGLWUWsr8z+3jmQiIiSNIg2SR0SJVjj7wbiXkmf6yZWtR51TUee0mfRICn2dqs/GZOjnnGtl05PD9t3vfrer/RqNBj74wQ9O6IQCgTWJvEFwp6HIegzPp2mKe+65B6effrod45xj7733xp133ln5nDvvvBMnn3yyN7bPPvvgpptu6um1pzrBbgUC/aXObgG9265APcF2BQL9pV9zrlXBGq0SKXVRJKoYGHNiHWaFI5Uay1KXBvmSSYkczbw0yKeX5CuxS4pI2/JlqYuwDadIR/JokRwdgUyLQnYloYoVU86FjbDJZABazew4Vx5xLC/6WyxL2phRpEuOpBKthKZEkkJXkwnEdWeaECrkrydLeaWWpt8otxJtomrIUlvwL1upXcVuD4+gPZxfy/aylKREjmL0pXyfJSYtSyqYjEiptSu+ZcBAsRI/kEoMjbi+bWocydgBLvyUxwI+RH4RwsloawWYnkw9rlbnkrz1PUGWLFnijTcaDTSKPjKUZ599FlJKbLDBBt74BhtsgAcffLDytRcvXly5/+LFi3t6D4FVi9baCo148v1w2XOS9lVTfr81F1VzgiI0DXJ5W2JZYfuWtTIsLSJrIyQ1ciR10TYjNJJmfto3xYgD5UIj+XEGE1HbBsCkAsWZQlz0HmtG3GYUJCK3c8XRay4UsUOknQcVF9EkDZL2gnSCSCmkyQRIM5teXdU/CMhTtG3qY0IibC0XDVDtDNFgvqIfS4XIijJJu3rNAW8byCNtVe9YI7G/a8atUEBtpG0C1Nkt81ggUIf5zqUZLuXImvmfpkFysz1GGqS5p8ppkFa+vzkIPjQrf/2oCZ0UUbWoAZ0UoiPxACTPo02ttrIZPKOZL0IH5NEzaj9pb8pRItRk0yalbx+pvRur9Yn5v0qgKSERtkYkbOlMM+L23AZjYaNtzcgIpihkRbRNagapTJSuCWHmP9RmkG3ORaVt8s7b2LESNNKmpQKKyGk50qbHiKyxSUTbxptzTWUm5bAtWrQIixYtwtNPPw1VSgm56qqrJnVigcCaQMRdbjmlXYzNnTvXGz/nnHNw7rnnroxTW20JdisQmBx1dgtwtivQf4LtCgQmx3hzrqnMhB228847D+effz522WUXbLTRRp6U9HRB2eaz2i5VKo1STYdbcTarzHkz7KJZ9vLUCYzYqFobreGi7mp4GdrDLwEAsnQEctRF2AyMC/BCOjX2ViVm2rzaKM6QxvmqwvI08la3TR7yaObypttKoamdLLaVANeuKN8022VwkSnNWFfNs+k+tBieiou4wrnMyU9nKbSR8k9bdjtrjdpVbNlKkRbXLx1u23q10ZdSG1lbVqxSLcvcChhd5BYMGChWYQaErmwmzAWHiN2qnZUBTmIkRnI7il3jSCFs/YjWSd6g1lAWBOgSzhl4haEwY48//jhmzZplx6uiawCw7rrrQgiBp556yht/6qmnsOGGG1Y+Z8MNN+xp/9WB1cFuGeztxQBOPneKPE7r1qqERurq1palmdtuZXipsHfLUxptc2Omrk1mLoKtlK4N5JhbJ4s4Rov7lAqWyGZs983r3PJ9Ys7tCjIVWdJa2GhTx0uSWi1jhxQVPiKiI1WtRbLhFtrLc7udjaSQLSp4VETsxoiwMZHvL2IOUdTmyWZKImwD7poRIaSI1K0poEP+msPVs2lyUfMatiLSQLqP+IUh7lpMhDq7ZR4L9J/VyXaVYVURNs7BTEsMIt7DBK8UHeFJZOX7WdJ02w2/KbZthJ0M+HVrxXabOSG3VqZtvdqo1J4QU/5/KcJmn6cwXGQd1IoyZcqT+zdUtT8x22aelkTODiZErCmJOIaK69Ek+4xKZaN/g8WcZzAWkNq0hGJWdENDoVHUsMXFNSn+IKDwAWebGMkKMFkMTEpwY5+VskJugoiL8CQCiutkhEvqKGsOTJTx5lxTmQk7bAsXLsTVV19tRQmmI1oXDgxI6pDWJJStvBtzmE5gCuXHF5e3kZri++KLPB1p2zTI9vBLSAuHTaYjkEXKjSKOGefCdpan8DhBZoQz2hJZ4TzSFKQ0i22I3ZuUkZ4gWjP7Ja9QnQpJdUg0Mw5dzSSEjtelQapysX9xU7bbdgKlM6LYmGakV1pq+61lrQxZcX1bUnmOmvm/ZR02v1jXOHKpcoZGjGRgIn8dkQhEhRJdNLDcplZEzQTRUN4viTUGgMJhY1FsUyVZAqeqxDhxVKvTAOqIa1Z7zNisWbM8h62OJEmw8847Y9GiRTjooIMAAEopLFq0CCeccELlc/bYYw8sWrQIJ510kh375S9/iT322KOn9zCdWB3sVhX0LqRpkK73mluIKts4qgxJ0yCNk0bTIJeNZljacuMAkKauv6SSGjIzX9Kuz5BW2qZBAq7vpJIaUjgHr2qykqQu/WcgETYNsq1cPzkFjdpUSAq1T/CFj3SWeotGVrV2+Yhz3kba1h5J0gPSOG5A7rwZtdpc6a5TuVamEpFJp6zp56algnFbvRQk0wuJpG6zBgcy0yMJdjFJw9NG6ht1dss8Fug/q5vtqkpro2mQTIjK9EiROCdNJDERIGm6voVJ06lBNofsuI4HoK0aJOmxFg+gzfLj5I5ZkQYpld0eaStbIlOXRm6ctJFU9iTK1G1KpBFrylMinZM2UMwTGxHHSDM//kAirPPWltot5kthx2TxuIo5dEfSNQAR+U6btyBfzO+Uso6Zog4bGddSQRgbpxQEGbd/Y9X5eTD7AJNLg6SMN+eaykzYYUvTFPPmzevnuQQCaxz9VCw6+eSTcdRRR2GXXXbBbrvthgULFmB4eNiqRh555JHYeOONMX/+fADAiSeeiD333BNf+MIXsP/+++Paa6/F3XffjSuvvNIe8/nnn8djjz2GJ598EgDw0EMPAcijc9MxEhfsViAweYJK5Mon2K5AYPKsMSqRlGOPPRbXXHMNzjrrrH6ez0pFQUNBg2tWrNCaPhkurN0ihaNmxWRpy60yj45mTra/VaycjGbIRpYVY8us0Ei7NexScUiETRGBC8aF7WUhRkeQJflqUJYq18ONFPbTIn+p3SqK0m51W8GtRGvOrAS4TZNkzO7LwaxcuCYf4I5oG42eVa26aGV7HUG5Yn8oafuwQUkbYZPtzBadylRa6f1sJLPRthGpMFKsrpv/W0pjRJr3705PMA1JhFaMKFDCGZIichAtixAP5eeSDMdoD+V/p2i4ibhYUefNEegi+qnSVt6LBAC4AItdCtJEl69j4WR4y+O98q53vQvPPPMMzj77bCxevBg77bQTbr75Ziss8thjj9nVeQCYN28errnmGpx55pk444wzsNVWW+Gmm26yPdgA4Ec/+pF1+ADgsMMOAzB9a+lWB7tVpnxrWql7uKiz1M4GpJlL7aFF8zSjYFkr8+zdSyOp3Tbj7cLuZW2FzKRESmUjbIrckEppm3LCOJAZcaCIIypWh+ktNMIZGlF+/CTiaKT553YkJW1MSEqkVJrYNf96eGna0kXT8pNPbQ+0XPgoFxTJRpwIUjaSIisyKtrDbdsiJBvJXEqk0vb90lVjADbtWiTCpUSmfnsR23+oVJdkjhOTaJou7mHFBbj57uDCpWhLZgWRwLgNv5Zbsk2GOrtlHgv0n9XRdo0FE9x+XzHhUiJ5HEHEsd02ETYWx3kWDPLMGC8lshAXUXHDpUSSHmttFmHUColomz440naiTEvTzEbTaKRtKRFkMqmPS1sZKVvJsDylEbZibpMpKNMHWOtxBZoYc6l8ERUdibhtgzKQRPa1ZjYjjCT59oxmhLYqom2khMT1roygtZmH0gRsWIn/OGr4pR/FNidiTixLbfYCy9qA+TtlkbVxXkqkVDYFnEvu0vllb5lKvdDPOdfKZsIOW6vVwpVXXolbbrkFr3rVqxDHsff4JZdcMumTCwRWd+oKYKMJhudPOOGE2hTI2267rWPskEMOwSGHHFJ7vKOPPhpHH330hM5lKhLsViAwecYSHZmo7QqMTbBdgcDk6feca2UyYYftT3/6E3baaScAwH333ec9Nt2KYRU0aSytvRqJzMi0UjlWsp2l/uoykDfFNlE11U5d3Vo7tQ2zaYSNRwlkEXXiUWIfU1nqVmBoPYjWlbnPben2ofUdUgHaLL4qbaNNVHykpqVOdxSv6UXblPS2Nalbs9La7bZXu2H3UdoV4ZP3lCpXl9f2xmC3DfT9CKaRKBeZM/s12tLVyo1ktiGuameQRbRPpy27Ao/MNf1GnPSlKIRK9ZbHA/1ndbJbVSjt6tlo1Ekqt5raVi4yNSr9GrYq+f6XRlK7vXR522YUmJra9mhma9hkpm0mgKpZNWaceTVsmtg4A+cMy+0KsrQ1GmmmrH2WVjSqsHHj6P0w7WwMSDG8buf3tGo7mX5J5ftbbbQLQal0uG1tRruVQRnb35ZeRNG+D8GQ2dobIjqSSt/21YqWOAGGqBRhQ5RAm4hCFgMm+k+URpjKoItaW2jWtzBbnd0yjwX6z+psu6qERug4jyMr704batcJjSCKvXEtintDJKSGrQkp8u00c02xad3a8rbE0mJesIwILpmo25JRl3GwrJWRaFvbRrpGUonRmgwEWu9roE20aZoe4wyisIlcMIwW20JwjNgIm7TRtlQqzMyKNiJknqjI/0p3ugCMCZhvEc64rQzmUQPCnBvJoNIic9e67UScWNKsFCBR7cz9/QSHLiKkWioXnasQIOmX6Mh0nnNN2GG79dZb+3keqxxFU4dsmJgU7SvtUg/JttbapRbaiQcpQC9t64reFFVjVdCJje3fof1iVfq97xw8N7EBiIqc+V9rm/6otIa5RWu/A4jaGsopkTSlh6RH+tfBL6w3/2vipNVNYKqoUoDMw/3+7+X9NZksKqkhbU8l5forKeJISvf3Y6S4FjSUzsZWOioTs5oC2Gn+BTxVWZ3slrmnOYOX5my/U0E+6xpuIUpqT82sZXsHObVHqgZJ0yDT0Qzt0Xyf8VMiq79gGWdQxT0jJYdSwnsMAETEMFKkQQ4m0utdZJzNTLo+Rkprm9auqL0jqTs0NdvaI6JaK9M2ZOpStG1fyFbmpUEaBduslUEWTSBzB6xGNMAIjbQFRNpp4xQxzoysNHHOIYo0MBnH4Em+8MdMZCVKoIttHSVAVEyUeATIwn4RQSStScckTz6yd+rslnks0H9WJ9tFKYtJ2Mk855WiI4xzlwZJHbwoASvUtqkAiRaJU3qOGoBw27Y/mnJp4qnUGCFCIjYNcjTD0sLOLSHCS0YxfNlo5innLjc2gwjGyUyRhX2XEllOHzdQ5UIuXEokj7hd9BIRtwtmo6lAWgippaXSmXKPS2quOGMQTNptbhVnlU21FkqDFymkTGXQkSl5yZxj1hgALxw2lTlBJyZarqdeHIGlxlb5f2Mui4U8dKZFMsH74rRN5znXpPqwvfjii/j617+OBx54AACw3Xbb4b3vfS9mz57dl5MLBFZ3pnMB7HQl2K1AYHIE0ZFVQ7BdgcDkmM5zrgk7bHfffTf22WcfDAwMYLfddgOQ51BfeOGF+MUvfoHXvOY1fTvJFQUHA4cTHOmWsvzqWOkIVESEF6s8QGdKpFklYpzb/RkX3goLGydkS4VGpKruPaYAkv6Z/z+pdEhKOfLmvTBZ2aY9O2rwVpqNQAHpUG/W5ATLhUSAckoks+OC1b/Hqms6oVUcW+Tf28WMBRBXnFzcW6Au0CWrg90qU46eW7EhDa9diYlM5SmR+QMZSYkcIf3Ulo1mtnXISCptNK096rbTItKWtaWNsGVtF4U26d9lGBeQhS2MSHSNcwbGi149EUcqXLRvRtNF2JzIkp8+1BPWHrloup8SOWqFRqjwUZu0GclGXLQxrbG3AJAU112MSsQNI7CiKu2Ml+4VR+DDFf2moiLSljRtOqfO0jwtEshTI20aZCkDwmQATDKdu85umccC/Wd1tF1lyumQNipD7guRxC4qEyV+253I3QNGgERHMbSNqiU2PTLTsGmQqdTIjCiT1J5sPxUYMbL9JuPgxeVt2+JpaavtpPxHM2RFND2PsLk+lSbappW20TatuhAdIankjDNEsYuwyaxItc7cMdMs8kpnyuR93fJtTrcZs/e2YMxeI8Fcv95YxPa6Q7bBimgbk7FN0/b/BgmYyQAQGUSSj6t2Bq6MiJL7G0Mp+1nQavJRNcp0nnNN2GH72Mc+hre97W342te+hijKD5NlGY499licdNJJ+NWvftW3kwwEVlc4cULL44H+E+xWIDB56uyWeSzQf4LtCgQmz3Sec00qwkYNBwBEUYRPfvKT2GWXXfpycisaxvIfrhmMAnzdlxDgNzBMSPEnzSsGAJEMQBQysiJLvWiaNKsGJD9XxImNvolkAJF5bmPAFtpGibCrK1y4DvaCuQLKulBvLqqSj1ctAiudC4/kx6t9+9Vo7aJqBDZWtI1KUdP85SIvXcSuOD8aiCCGi6a5GUOqTDTN5ToL5laADDTy1uQcA8XrDAhmt0XC7fUVCYcwefFkNa8WIrMNxq2Mti3w75JYsJrVnqlvPKYjq4Pdqvpk6oobW2u4xtJUTIk0UW1JhVS6CJsrlHdS1HnrEhdBSztq2CSy1NQtpF7rEmr7aOaAG3dNWTljNlAtBLcryF5UjRbP0xpjUrtXi9Ykuk8EkUgdrREekmnmWouUomo22jYqbUsRKn5EI22CMRv5TziDbBXbUnt1K7bRNmfgttF2hKxYiRat1NnHZhFRSFu22F9nbRttY4l0LVW08PNHzLmVvycY70mQpM5umccC/Wd1sF11MNJuhkr50+9hTr6fq6T8wYWT9Y8TF1XjEWBER3hkxzPpxNsypW0kKa9bkx3bw23pRdaAoq6N1LONkkwEK86Uuho2lSkbbVNUXE3pWi0Dm6HFmZ2vcM6gMpO5xW3dsJQKukJIBOgU1aDiG5woJ5YjbOZPkCkXhYxEAla0SIGIoWXxmsLVEbIohjY2P4o9iX+TycBjt80Et82zueQ2Umg+G/2KtE3nOdeEHbZZs2bhsccewzbbbOONP/7445g5c+akT2xlwFlRsA84JRzGEJswPFOuf5fw+16Y7SgWto9Q0ihWvVIJNTADADomLEI1O8Z5lIAXH/K4OQNRc0axPWiPGcWuX1GSCO9cREXqXx7uNumD3X8QNVyaEe3JVpx0/j5omk03MG6dmzxFtLAAnKY5RODF5CQaiBE3c2MQNyNkQ/m1GUoVynX9grlUyHJKpLkWA4JjRpT/MiPiNi0pHkoQDRTXtxlV93mJYlfsLESeggHk78c4aXSy06MK23TOp56OrA52ayy0dmJCps8k0Kkga1Ii21J7gh6md9Bykh6ZpW6S0R516T12rNWyTppMR2wqpKqZgAiihJuTO22cM7volYuXaHteaeZ6xTlVXEXSP9293+G80seKhTL7fzu1EwHZzqzwkGoTBchU2n5rWculQdK+kKnSnv0hL27tcMK1XSySWlpXlQtGFq6YXazKmqm1SbKVQBWOmnEqeUKK+qn6btYGMxNUpQBOxJ/6pBIZathWPqu77RoL6tDRshG6cJo7b53OQu6kFUqEIkZhVtBWridZbhOdQIfpw7a87VLGaW/KEduv0k+DHB1xi1h2QYvYz6wtnSgTWcw39hPonDMaeJx45TXGoYliAV2kllPbp0r2KCIBB/N+zHYiOJYXdiIW7j03I4WocKIipREVC+YRL9IiAUBEudAR4DvNUWIFknQqqueAAJlfcaCNFc50nnNN2Hq/613vwvve9z5cd911ePzxx/H444/j2muvxbHHHovDDz+8n+cYCKy2mLq8qp9A/wl2KxCYPGPZrWC7VgzBdgUCk2c6260JR9g+//nPgzGGI488ElmWryTEcYwPfehD+MxnPtO3E1yRmD8SYxpQZvVB2xBwzJlNPYzbDAPFyufMRoSRZr5yMJK6FWe72qu0TZNkXNj0SLr6TKH7iMYA4mYehWs0YyRFBCgZiG1kaEYzwkCx8jqYCHteseB2laCspWE+iyvrM0mjTt5LchJtixOb3iOaCaJiOx5q2oL/Rio9eXC2JO+NlBQr3gOC2VXucvStUNPGgOAYKMJtA0MJGrPy12nMctvxUAPx4IB9fXNetJ9LXszvpIU1WVUy46joHzIWJi23ajzQf1YHuzUeTuK/LDriIlOu16SykbRRknqYktQdKZ1sf5YSgZEiDVKOjti+kzIjvSY7ZJlNEbmEqFhFlhG3Pdyo/LXM3Iqv115FE4lq5YuvVELbjpDUSBOxytt5FO+JRNXybSffbyJpI1J7ETaTCtmZBWDGGWSRmTAgGESxmsxHmF1lFjGHLGS5s1aGqFlE/FK/RxwAiKbreaRp/yPaA5O2NegjdXbLPBboP9PdduWR7LG/H2kKZIfkuxFmE24OURfRgYhdVI1HVoRH88hLXbYpkRJW1r+VKbs9mrn2JiOp9PqsAXnLE5oG6TIRMrRbRJTJRNjSURtN8yJsZF5IMxM4jbBlfoRNFVlZWjVIyyf/+lLRuqWlCBst7VkWZTYlspVxNET+/huZshlnGac2jiHiprVC5OZCIrLR/fqIpyuF4ULYFi9olyKpxXj5e6RMr6mSK2LO9ZnPfAann346TjzxRCxYsGDiBxqHCTtsSZLg0ksvxfz58/G3v/0NALDFFltgcHCwbycXCKzuCO63caPjgf4T7FYgMHnq7JZ5LNB/gu0KBCZPv+dcd911F7761a/iVa961eROrAsm5LC122289a1vxcKFC7HVVlthhx126Pd5rRR48YdjmkEb4QruatiakcZo0chvMBa2weyMZmRXfNNMdkimcsYgipqpKBbI2nmzwaw90+YV0zxlEUWeuIipVWsMRGgM5KsVSTPC7Bn5asVagwnWKsZnNCM0o2L/iKNpIoKcu8JR3hlxWykQIQ5vFayRR6xY2gQvolfxUOqtdFPJa1fnJmwT2qTIGx8acc1r22SlRZA85WggQlSsWiczYjRm5X+PxqwEzZflUbVk1hDiWYPFuQzYCBsfGLLytTxp2oJaiNi9PxF577UXTGuJqvFAf1ld7FZVGxHzyae1XIrI3ivti3WYe4WKeNBasTRzDbCztrQCGVKSyNtoHlVTWQppmk+PuiyCchF9VXsTxoWrfyN1GUpqG23T5NzTcrPsScr6Q0koaepIMidAorQVHZFtBUlkuWnNbNV2Wd7fpNrQyJtgsNE5MSrBE2lfyzTpjgYiW1Mn25lt6m3OVysFmJV5IvCipcyjbPlO7kVp7TErRTrGCplVUGe3zGOB/rK62C5KnbCXJzRCG2eTbZrp4qJtbltz950MLuz3subCiQlJbUWZJBFlGiWtTlrSZSDQul4ryJRKJ99P25+0XFQtHc1sBoJqp3ZbK2ntplayMpIk4TITWJZCFLZTZSmEGrDPVWqg47mAq8tijGHUtEmx+gcSy2NZbHObqdXIFEajYk4lSVRNMWTme4Br6Nhda1trx2oyj0jdmi43RCdiesZaMcFdNgTBRd0mnjXQzznXsmXL8O53vxtf+9rX8OlPf3rC59QtE3LY4jjGn/70p36fy0rHpkRCex6NNoXvWmOwCDFLpTHTfCEPlr6Qi+e+aMLLcRtxIRbSbmZeapH5vvTTJuEUICMiLtIQaBaO2VqDMWYPFg7bQIy1C+dt9kCMmcWNNhgLm8LZJGIkjBFRFazYlBVT1M48IQ5mVZpYowlWGCnWHAIvJhZxeXJHehFFA8sB5BOYZCg/jpnUqNRNppTU9kbOUyiM2pqw4iLJUIy4OEZj1gDiWUP59loz0FwrL9yOZw2CD81y5zgw5M7dqLKJxPUb8b4cenTYalZ7ePV3WWASrC52C/AXYMqpgFU+TJ4y6FL2lOekFYtPZKKSZco6aYo4bzJTTlSk+D9LRzznTZk0vQ6HTXWMSy7AyfFMPyGlSE9JIjRCHUzzXvJrML5KJNPKOTVkMmC26UKRJKnYuXqk67dW5aSNSGUnG2WHTXVs5JhUyVRpxMXxVSqhbPqle13Vbnv94vJ9M/Cmez+srIBJ3jeAzm6jVICkx7TJOrtlHgv0l9XJdlXBuigl8NIlBU2vc2IWVLnZpkGKyI5LT83V3attqa3QSFsqu6BF7eNIW9oFLSvI1PZFmCp7r5XsY0YctjpFXe99V6jrUjES+ryMD5LnMQgh3XYRRBhJiyBEIq14ymAm7Ptsx8qqCI+S9PlEaEjtFp+MHeZc2PRTVnKU7bkL4RQjS732xqPf/dj6Oef68Ic/jP333x977733SnHYJmxa3/Oe9+DrX/96P88lEFjjYGP8BPpPsFuBwOQZy24F27ViCLYrEJg849mtJUuWeD+jo6OVx7n22mvxu9/9DvPnz18Zpw1gEjVsWZbhqquuwi233IKdd94ZQ0ND3uOXXHLJpE9uRSOQp6YwxtwyNWd2czAWJOXGXSrOGBLhZPUHEyMGUvTjGGxjacsVqqbFaozW2q5UU2h/DUFC04OJwIxC3GRGI8Jagy4NclYxPjMRmFFE8wZjgcHYpUfGVu6fkWgbs166WaWfbLqkF1UzyxSKeYWoZvmbJcpG1aDcqjQHENuVJO6JkcRDRdrizBFbcJ+1jIy4tCkO5TC5kcdmnCEqIpVRM0FUHC8ebCIp0iCTWUOIZxSRtKFZ4IN5tI0PzQJr5vuw5pDr7RLFXiGzlx7ZA/RvUx4P9J/VwW51S7kPG41G2VXmjpRI18+H9vZxqYrKK5o3/7vtdq2sP6cF8ybKLoTbv51CF4JLKlOkkB6VEbZyJMvQYWHHiB7pch82u62hTfpP6qKNdRE2BYyREmkugDu5cjuSpomqtaVLvyTbKs28lPH83EsiKrS3nCJS/rXvfuLU2S3zWKD/rEm2C+gUIKnark27Y8y1sCDZPhru/szTxPNd2oq0C1EuPdLLQMiUTYXMbMaBtrYxaxOhJKmQpflEX7VTLxuB2k+ajdBLhI1HCYpOi4jIPhkXYDy3oVwq2/+NR65Nijn35anEQNIZSWxLJ1AlFU2f5yRLQ0MbF4deX8Ztyn4uzNaZrmoeq9wmAiQrivHmXHPnzvXGzznnHJx77rne2OOPP44TTzwRv/zlL9EsvrNWBhN22O677z685jWvAQD85S9/8R6rqrEIBAKdcFSHuUNW0Yoh2K1AYPLU2S2MMR6YHMF2BQKTZ7w51+OPP45Zs2bZ8Uaj0bHvPffcg6efftrejwAgpcSvfvUrXHbZZRgdHYXoUTG8GybssN166639PI9Vgun0zjRZpCHLkZwBM0wzZSZtJCoWTtCjEXHMKAQtZrec1D8tTk2lW8WQFXm4grt6syTiNnpHJftnNCMMJTSSxsl2Zw1bIphtlBiTJtqCO+NOTbx5bwzjNxDUjJZnKlccQVdaeOT2EYm3ysuKBQlOJHlV7OTz2cAQohnD+fuYtRzZcAsAkLVGbWTNrDZToQBVurbcNEBPIvDYNMh2rQSigQaiwWI1amAIrJmvWNKoGh3XUdPVrYnERRAZm7DoiPkMVo0H+s/qYLfGg8ZUfBES13bErpQqTSTzSa0YkdXXCkRuP7OrxZJExsxKscpSyHa16IiuWGHVkohlKNJUlmQjUNERiqTvo0vxEU3ERvLfVelxJ3piZP21ItFGXV0DM7boCPnFdP9QfoTNrGJHJJpHWwsoqax9M0IkWipPPMUTLaDX3rzHPs4f6uyWeSzQf9YE2wWMH1mjtWp1oiPgtIae22ibVJq0OnG2kkaVFLkfU9JShArM0Uia8up7yXab1uZSW1mdjVAnX29quKjEP0XSWjEuIAthEiEUZCHPrzI/+meuhanJoy1d2krZGmcabVRwNWya1LBpzvPsquJa04hntegIPd8xIm0rKMo23pxr1qxZnsNWxZvf/Gbce++93tgxxxyDbbbZBqeeeuoKcdaASThsqwMRz50arTVU4V4w5UQ5OBHOEiyyCozNSFqHaTRTWF6krYwWaYqtUp8jm2akqice9AMkuEu3zPvAdSpANgTZLilDFrsj5s5hy0PAcNulVMi61bmOYXNTllOMSLoBIw6Lrtgnd+pMyJyoRzaa0IVjxNIW9GjupPG0hSjNt/XoCGAnhkUqAREKKE++rIEX3DpstFcLS5qek2i3k6YVGkHUgC4EU3SU2JRIqjzlfTnw6nznOgQrTejIeCDQK/Seo44bdSKoo+GlGJLtXFDQOW9U3ZY6WOUxVfF4GaUkWHH/8iixqZP+sX076c5RVdrQ8vutpCY1ki74VKmPKen3WJPESWyT7bo+bOavkj+3eD+aef2gzDYVOKFpmZqcG/2fiqgYk6GVdItlZZXIPlFnt8xjgUC30Ik6n4jyg38wAKYPbGfKXq4smw/TPpVUcbZdYxNpD0hjn5S3sOXSI8s91vz08erFrdqUSGXUGKudACYEVEW6uYw4IuJgqtK5pzViTnkapEsbNdfFv15E7KokMOeVyEwC81kw15Rx3hfhkX7MuWbOnIntt9/eGxsaGsI666zTMd5PJnxF58+fj6uuuqpj/KqrrsLFF188qZMKBNYUGGO1P4H+E+xWIDB5xrJbwXatGILtCgQmz3S2WxOOsH31q1/FNddc0zG+3Xbb4bDDDsOpp546qRNbGXDjaTNm12Y5NARcZCoqciQzrpEUKx3NiHtFmS1SrAnkUTUbRtZutcLsX4WJsHHGnFgId9uxcP3h6Lbgrlgy4qSLPYmqcXJ85r2We31bF9/lh9auouTvsjiIgNZk3Kx2Ke7ScriwUSqmMjBZ5AcnQ+CDeaoPz0ahTQStndqoms7abhXKRtikn/5DoSlYcWzHvJ5wJNpmWg9okUAbKVke1UfVbEqkW/cw0bhu4TWrPSGraMWwutitiSAr7FB5zEbYtCaiHxrarLKOE2ErpzhWoaWE5lVRtVIKJUnhXNnk0auKNMyOlMiq7fLzWOU+LiLHnBCC1DYlUnvbqiNlSknprzjX2cFuoKvkXVBnt8xjgf6zOtiuicLLKWY29dGXjq/6DGvGoe28xtkyBT+lmooZeZGnqmyEzM3vbKsmz2bKynTHsbIR6uwlxWQjMCXzeRVye6pINI8XvWI1SRnXtK1LVvF+xnrPRKTFZDHk17BIj6RRNXqyjHstFzT5m1HM33YS1qsnVtSc67bbbpvcAbpgwhG2xYsXY6ONNuoYX2+99fDPf/5zUifVDZdffjk222wzNJtN7L777vjtb3+7wl8zEOg3nNX/TIRe74sbbrgB22yzDZrNJnbYYQf89Kc/9R7XWuPss8/GRhtthIGBAey99954+OGHJ3ZyU4BVbbeAYLsC05+x7NZEbFe/7dbqyKq2XcFuBVYH+j3nWplMOMI2d+5c/OY3v8Hmm2/ujf/mN7/BnDlzJn1iY3Hdddfh5JNPxsKFC7H77rtjwYIF2GefffDQQw9h/fXX7/o4sWCIBfMazwqi8K85oGyjQFKsqrRrkqo0ZjVMU8Z8TEF7ub5V9fC03oJKeDDywWHMPUbHBWOuzg4kesacBy44I1EzV6fWTVRt3CAb47YeQpOV2bxBazEuYvfGeeSat+YKBvm2UmB6oLgg0h6TkX2glX0uU8odk+5roNullTZdUUMHzm3ETDNORERc8bJmPG9LYJ9Lc+TJa9hj9lZs2k/RkV7vizvuuAOHH3445s+fjwMOOADXXHMNDjroIPzud7+zedif/exn8aUvfQnf/OY3sfnmm+Oss87CPvvsg/vvv3+lytn2i1Vpt4D+2a7JoEoGiUaEqqJKdNyLoElXP1Vdh1YTYSPj5ZXluho2XRMRnHD0zb4H0kBbKlsz5r221F5dGq1ho2O91LApsMroXNXrl8er6uwmFV2bAP0UHVkRdmt1ZHWYc/WFbr5jayLG5buL3krULlbVdmVKV9olV99LtmV19EwrhbpshG4ibNbmcgltatvKkTppInjufFXNuWc1NWzV16R0LlUn2G2kvsd5Uj+ZzkJvE3bYjjvuOJx00klot9v413/9VwDAokWL8MlPfhIf//jH+3aCVVxyySU47rjjcMwxxwAAFi5ciJ/85Ce46qqrcNppp3V9nFyAg5XCo8z7kGoybqCfe6119XjNa1bNL+o+J+Vhz9kiXlXV8z1hsm5FRXqhJvWgtrC9xrGyl4NOIsnjrHy8sQrna8RQOqApjJ7TVeGAdfM8ego9qkQydP6dUTM2Hr3eF5deeine+ta34pRTTgEAXHDBBfjlL3+Jyy67DAsXLoTWGgsWLMCZZ56Jt7/97QCA//zP/8QGG2yAm266CYcddtgEznLVsirtFtA/29UtLp1l/H2z0k5m8lF28FYW5nYuTzTK5zn516kQGlEuHXFl45QqqxUsx0WpFe7A1dktjDFeR7/t1urK6jDnmgxUPbJXqAmruouoSelmEUhX2MS6xa6O1xpnQWvM1yXplN1cjapzqjr3MkpVz2vtmHe8Lk6khsn8TSf8mujfnGtlM2GH7ZRTTsFzzz2H448/Hmma5+o2m02ceuqpOP300/t2gmXSNMU999zjvQbnHHvvvTfuvPPOyueMjo563cqXLFmyws4vEOiF8VZ7yp/VRqNR2RdkIvfFnXfeiZNPPtkb22effXDTTTcBAP7xj39g8eLF2Hvvve3js2fPxu67744777xzWjpsq8puAb3/jYLdCkxVuomwdWO7VoTdWl2ZLnOuYLcCU5k1MsLGGMPFF1+Ms846Cw888AAGBgaw1VZbVU4m+8mzzz4LKSU22GADb3yDDTbAgw8+WPmc+fPn47zzzusY51qC685VDjGeFHI30aBuIk32ieNHgoBJRIP60OJUdytGUtPsR4FGpyoe7yJqmR+/nvK+3UQu+x21VKy3UD/TGqxiicqMzZ071xs/55xzcO6553bsP5H7YvHixZX7L1682D5uxur2mW6sKrsF9P43qrNbgcCqps5umceA7mzXirBbqyvTZc4V7FZgKjPenGsqM+k+bDNmzMCuu+7aj3NZYZx++uneitySJUs6vkwCgVUBUxmYqdcrjQPA448/7jVxXBmOxZpAsFuBwMSps1vmMSDYrhXFVLddwW4FpjLjzbmmMj05bCeffDIuuOACDA0NdaQklLnkkksmdWJ1rLvuuhBC4KmnnvLGn3rqKWy44YaVz6lLI7N/uFLEjLniCRcRk5kbpwIZKvO3gbyGgIhjdNRhmWPbEynVRpEmhKZTvDfOI19EgwpkcLeP36yaHLP0uh31WF0UjVYKqWjtN+41l4A2q4QralXkOFTIRWu/9sYKuJTEXMrnUSfkAhBNEEa24VofeO0O4Au5CCLY4oRadGVErlPSexzoZ6w8DmDWrFnepKeOidwXG2644Zj7m/+feuopT53sqaeewk477TTuOU0VpoLdAnr/G9XZrV4QFWJDdUSlnThpNbIqcObLf/3yeU7+dTrtHecMfBV1gDbnw0v1HVXnWQl33wkrjDq7ZR5Dd7ZrRdit1YmpYLtWhd2qolJsp0uoCau6i6hJ4V3Yl6qeXWU7VQfnrhF2r3VspoUB7/L+rjqnbvqN0WtQ9bboNZzM18Nk/qYTf9Gx51xTmZ4ctt///vdot9t2u44V2YAuSRLsvPPOWLRoEQ466CAAgFIKixYtwgknnNDTsZjMwGT+flwzjcz2DGMqs8XbTKbOIZMSTKbFdhs6beWHaJt+YantIwYl7bj5vRLaS8T0CSM9wxDFYEV/DRbFQJQbRM0jwPQMEwnpE+Z6hrFSzzAnjEGUFqnzZq5FnbAGdZJqnDSp3Livqgmvx0dm/GGtrQoR7WPnbzslozYRRBivtx0A28+Os1wZNB/jdrsZcbt/zJmd6AruJoidve2KywTXQ6TuXGpRNX3kejTkE7kv9thjDyxatAgnnXSSHfvlL3+JPfbYAwCw+eabY8MNN8SiRYusg7ZkyRL8v//3//ChD32op/NblUwFuwX013ZNhrIDJsjvdZMOM85Eqe8RcvtCJyGsZjJhn0f7I5b2d/uUFlxIb0p73px1NbmqxL4HZ+OY4GAVThoTvjCVtQ2MwSRp++JVvg2g+1sHGq4XkGBuu+r1y+OVhforW3Wtzm6Zx7pkRdit1YmpYLumit2ydPP5qpmUl68SvZWoXRTE3pjtiLNKu2RskLdN7STtFce5Zz+ZGv++9Y4j6DF5xfHdPpycL68596jifQrPWaPXpHReVSc71kIOZSWr2na8dh/mXKuCnhy2W2+9tXJ7ZXPyySfjqKOOwi677ILddtsNCxYswPDwsFUwCgSmC3k+dcUXywTyqce7L4488khsvPHGmD9/PgDgxBNPxJ577okvfOEL2H///XHttdfi7rvvxpVXXpmfA2M46aST8OlPfxpbbbWVlfWfM2eO/eKeDkwVuwUE2xVYPaizW+axXui33VqdmCq2K9itwOpCP+dcK5tJ1bC1Wi386U9/wtNPPw1FJIcZYzjwwAMnfXJ1vOtd78IzzzyDs88+G4sXL8ZOO+2Em2++uaModlxUlv9oVR9VK7rVM9kGslz5SI0MQ5moWtqCHhm223aMRNtUu+g7JlWlNDPj3K6aMsHBaVStkfcpY0kTLMn7XrFGE5xs2/Gokfc/A6CjBBB5RC6PthWvKyK7MuKlVZpoGx0f69IVH26N6tRHqWkkzW1nStvoWCbzCBoAtDKF0Yxsy87x0Uza56bF43X9QwB/lSyJ8vfkRdUER6MYH4yF3W5GHIOxsPtHQhfbDJF2q+UmBZPDrXBmvUbVzWewarxHxrsvHnvsMXCSVjVv3jxcc801OPPMM3HGGWdgq622wk033eT1MvrkJz+J4eFhvP/978eLL76I17/+9bj55punZQ82w6qyW0B/bNdEVe3L0amqMZcK7FZkGWf2811eze0YG2PV2NuncvXZf57tHbkK1LuY4JXRxjxKZqJq1VGy8tpz1T402iZo2rVwqZjM2+Z25dzAhVtlLwYm8lZzul0ZN9TZLfNYD6wIu7W6Mu3nXBNESenLmZloiPL7QlZPxJU3Gbd2BcxGkPLsmYptL9uGjEcuY8dWqng2U4BH+fyLZymUFxnLz5FzAd3FPUvtI6+xuWacR4mXpcCt3XbRMnPu3vsZ6z0z915dX2AS8a9bvNGK9OqU3t+MouRKjmz1cc61spmww3bzzTfjiCOOwHPPPdfxGGMMcgX/EU444YRVE44PBPpJn/Opx7ovbrvtto6xQw45BIccckjt8RhjOP/883H++edP6HymGqvabgHBdgVWA7qoYeuFftut1ZFVbbuC3QqsFqwpNWyUj3zkIzj00ENx9tlnr7RVln5jI2jaiYQwlQFFfRrL2mBZETVrDUOZSFprOdTwko7xbHm+bzYyCtnKj5G1XIRNpZm3KmbgJMLG4wg8yf8sUTNB1Mxr1aKhJsTAYH5eA0PQTbfNm0N220TboLX7AJpIG/zqClbUsmkAqJKjJ7Vt5pBVaCIQIm2EzdWkeVE1pZEWO41mCsvb+ZfM8rYk2258OM2wrJVfv5FUYnmaj5sIW5opEmHzr60oVmWTiCMpru9gIjCQ5O91IBGY0cyvwWAsbFRtRhKhVYTK6LgWLroRc3c9GGPgxap7r6IjTGVgcnoqFk1HVge7NRY0tkOFd2idGo3olGsXbISNk7qxiJM6jbEjbGOtGtN9OKnTrVw1LkW33DlyLypIKQsNVZxA9bCxvcQOe8cV1dEwwRjiYlt6Ebbxa9g6o23uXHhiVs6ZrV0rZ2GY/2ltjHub5PrXtYKZJHV2yzwW6D+rq+3SStnosVKqh2ZDlQcDkEfVbHsgMkHnjFkRDcZAxMhcNCqusYk0U2fU1IZFHKK4HzOu7LaMEqh2WuyTgJMoYBVKydrHXE0aidpFMdlO7DaN7AmSJSAEB49MzVs+lpC6/fL7pDX/NkrnXS8iRkIdIBptm6QDVJ4rV2WnTYTpPOeasMP21FNP4eSTT57ehsOEabUiCo8ZWDtPfWQyJY6Zc9LU8qXQxXZ72TDSJbnDli5Zno8tbyEbHgGQO2zZSJEeqTRk2nlTMsEh4vxmEolA1CxuuGaCeChPiYyGmkhm5k5aPLQM0YwZAABO0i951gYfmpkfk2Ss5Q5ZcbMC0ObLnYqLWEdDdaZMli8bERrx+qfBOW80DbKtNDKbyqitM7YsdU7astEMS4trs6TVtk7ai8vbWDaaby9rta3DNlL8LzMFVThvqpwSaQwUY0iIkzazcNJmNGOsNZBPHGcPxphdbLelRlsK+/5M+ueMJPLerzITLnL5ehY9msarPdOR1cJujYNzXLRXNG62OUmVEZzZVGDqDAkyEWEc9steRBGkmRAU/6s4qVQ7U6WxyrSdUnqkuWc5Y979W9folKY0dYN1ZiocHfo7FwwicfuYcxGZKqVEFpMfchhZWrNx+zgHL+EMCSfj3Nh/btMgRSLsOXDBbVqgiAsxKUHUIInYAH1/+Xb/HDVLnyNsgfFZE2wXQJQDY3+Sbra1kmDGAVLKbkMpknZHnQin1C14BEbuX2MrY0GcFHI/JpErm0giAcHzuYixjdQREhGHlMW25FCFSJxWEkKR1MAKmJLQvOYxmhJZLHTxKAGPnR22zlucOBsacX+bnHN+LRiSKD92I+Je2YhZoIu5E2njIAtLjChpa+lda1NelM+v3bb2tt3fz+Btr0j1yGk855qwJT/44IMrUxUCgUAPmEWDqp9A3wl2KxDoA2PZrWC7VgjBdgUCfWAa260JR9guu+wyHHLIIbj99tuxww47II5j7/GPfvSjkz65FQ1T0vVRKyJsLGtbyX7dGoZu5VEzNbwEatmLAAC59EW0i2ha68WlGH1xGQCgXUTaRpeMoD2cR73S4TaykfzYsi2hiuVXLZVLxREMoki74wlHXESA4hkJGrPy10lmDto0S9lK0ShWI2IlrdetALuayrkA8/q5FcInjLtVD0bSByaRLmOiTkqD9FIjYiDapUSW0yBN9Oyl0QwvFZHI55eleLHYfml5iheX59utkTbS0fy5WXEMlSlIaVbeXJQtl7HNz0UIjqi4vsONCC81itTHwRjLBvPP7fK0gbRIg0wHFZSmn+f878GZtOmRnJl/8jeujehIzymRsqaJ49Q3HtOR1cFudUu+Cppvc5J2R7dpKkxCVlmFIFEl4VZnueB2ZZdnLiWnKp2n/Bmm6XtV6Tw8TpwgQOTSeRivltmui6p1WLIxbFsug00En+y2S0ekUa9yZMymgEttx+sibDHzn0u3RWKiZ8J+F9BtnrhUeXu+nPbdFN62iRROxq6PRZ3dMo8F+s+aZLsAP8pSF4mpjeKQ1DxNIip+X1UGwY2gmN/Wx0SVqE1MIo7BIuJtMnyyiFnbGMUcMsu3leDQSdF6iUSUIgDmrqHZBXSfMl6ELXapj1GSZ1/RaFuUNLxIWhRTe56/p8gIrSXCe282wkaijYJG/6lwCWMuAZ1eX1JepMsRT/L+VklkrWA6z7km7LB997vfxS9+8Qs0m03cdtttvmoMY6ud8QgEVgjTODw/HQl2KxDoAyElcqUTbFcg0Aem8Zxrwg7bpz71KZx33nk47bTTPMndaQWR9WdFo2smUyfPP9oiQiPDtoatvWQ5Wi8uBQC0nluCUbP9Ql63NrokxeiSvA4uXdZGVtRjZSOZrYei4hQx53aFNRqIEBURtsasho3OZSNtrz0AJaYF/7GT9bdNt0VSmc+9IrpOmLelyPG1dpL7VKZ/eVvaurWXRtp4flkeQXxuOMVzy/Lr99KyFGlx/UZH2hg116OIsGWptDVsMnOrJrmYQbGiFAsbYYubAo1mbI9homp1LQFoATJtqM3oyjVnMFV9ExIdqVztmfoFsNOR1cJuYWxp/6rAk7866qTyvRVk0uYiilxUidZCiMiPjgGwK71ltCrXh7katsr6i4jUX9D6tJriePNegEJSe5wyNs1czZcv0kFEPMzqdCJItM0JgSSjsjLCBnCkJrpfel1awzZQnPCA8CNs5vg8EeAm2pa41+VxDF7Urtn/k8hrXu7q2fwzqI2yTWKCUme3zGOB/rO62K4qTIS+sim83YdGYor9iVgHrW3zsqZkZqNXIiq35XA1bA1hIkzcq2Ez9nEgFhiJXC08AGSZgsxMREmTbB9XQ6qUs49UEEgrCUkjbOOIjuQ1vi7CJkyELU7sNp3rRInLLKLj5tyTSGAgNtu81Poo324I1waJiiMJUsOGTDoRD5OxBnS0XADdNtegi4ha3XWZKNN5zjVhhy1NU7zrXe+a1obD/uFogapsQxfqPiptAUUfNjUybFMS28MjNiUyXTJsHbWRF3JHr/VCC6NL8n1HhlOMFN/qI1Ihrfh8CiYxkBZf5COZvaFkqqxICf1g04kFTyKIQqSEpS3o0cLZTJrQxgmNMmjtp0+sDBQR4mhLI0CirALjaKbQygrRkVZm0yBfXJ7ipcJ5ay1vozWcb6cjGUZb+T7tVv4+5egIZJpf/3JKgVVLSgYgin52jXbDGlhFnKtyAa75Gywnk9hWpqzxipVz3qTW0EV/tp6FjJSqflKfFJECPquD3dIViwLm3WjG7KJBruRF03/ctktzKadEui/wUeO8xQJZYYdoerEuJiK0qB5wE4zyF23VxMN33mjqJXOqZuTcE8G998HH89LqIGId3KiwxRFJN2ROCCrmLk0x4kgKw+Y7bM55lLqkcFn8Wk6DNM5b3KBpkC4lXiTCCoyIOIIoUiI5ddIi12uTCrnY91dWiax13nS9DHAVdXbLPBboO6uD7aKYOU3ZSaOiI2Yxlktlx7V0n7060RGmsjwVEgBIChxT0qpHR4JBKOO8uTTIBvnOb2ZuLpBmCiNts+3GrJOmhTenoGR8sPjf3acqS+0cRRXzzPxtOLvJiYNHxZrKaZDUMYubxeJ0I0KUOOetUWwPEgE2ut00TlrEifNKe7Ll1yzfZva6097FVMBP14qO+H9Ls608h7zahvQlZXIaz7kmfOcfddRRuO666/p5LoHAmsc0LoCdjgS7FQj0gSA6stIJtisQ6APT2G5NOMImpcRnP/tZ/PznP8erXvWqjgLYSy65ZNInt8KRMv/xVgWI9521bXoksjaJsLXQXj5SbI/aaJr5v/VCC8NF6t5LbYllmYuw0T5lBrryOiPSmFGs+swiy7dccCvxHA20IIr+bLKV2vPizdQv8iTQ3hgrIhWyTN2CLZXJb0tli3eXpxIjqZHvz9AuxEXSkTbS4lq2lqdIh/P006xVCL20ltl+J3SVivZ0Eo0BxM28DYJWs22KAk27GokFliZ59G4gEZiRFtL/jcimcDYi11tOKkByk//JoCfah42kqJbHA/1ntbBb41DVZ0gwV0geC45YFKJF3K0gj6TSK0I3q7ZZquxKrZLa3r8maq/VgIvupCNQZgW55guQpkGKxoDXN4hKZNvieSKtTXsh0bScPOVznAvDSiIdAMC5J+bBi88DldTPt12qZFLYAxMhM+dSlT2RP+ak/weK95RwhsSsig9EiAYiu23tfNMJjfAksqmQNqOCpL2zmKTAc+EiaYz1tf+aoc5umccC/We6265yC40qtFT2HtWlSIwyqY+SillIm0mks9S2OGJJ26XpiQzaRtgyCF7YG8YQmbIJodE0PdYijlFptgVmNIqWRJnCzCy/B13vV+2VU5RbC+XvmxEBJWbboqgstVlBZg6Tv2+SrUAjbLEfYRMkA4KmQcaNyI7HhcBaoxF57YwAYGYjsrZ/RiNCo8iuaEbcXotmxFEMI+J+H0mvFRZJP4Us/h7tNnQxJ9NZ2/+b2aiarBeX6TKa1s3nytt/Gs+5Juyw3XvvvXj1q18NALjvvvu8x9hE01QCgTUNJW2ufcd4oO8EuxUI9IE6u2UeC/SdYLsCgT7QpznX/PnzceONN+LBBx/EwMAA5s2bh4svvhhbb711n060kwk7bLfeems/z2PVUKjFMKoao6RbFZAu71Zlbchi9Ua1M6giGpS1MisM0i5qrdqjEsuKVdhlmbbbLaVsYTqtfaARtnJNhCiOGQ1EaBfiG/FIGyrNz0WmmVuJUMprLknziruGcVekXlqZtV3uwWpztatQ0DbyJJUmUUa3UpVmysnqp9KJirQV0kL6v91abiNr6fBL+eOtYRtZk2SViglXJ1NesTIr+uloZmVvqQCJdy4kKqq0Rtt8HjS3dWsarp3BWGIQleiaULwOk54VwWpht8aAMaAI9oKD2Zz3WDDwjMhW22gb86Jqpgh9MBH2HsjaElKaujVtV5G1/bA3kZH6KbNaXJaqrpKnFsmAV39hpKepDDWtrWsQAZJYcK9Gz12D0uSVPiaE/3+c2BVaEUe2ZozHkRX8oNG2qBk5ezsKmDtfMBAbTmpjSaG+V8MWCxdVa0ZIhvJV77hJom3NxGZSiGbiiY3k5x67qFoUO0GVKHa2m7u6tb5K/NfZLfNYoO+s7rZrLMoy8MauMDLP6YjoxCaik7lom2wjErntiTmQFfdjxhkyTmq4Cnn+wZijXYgnzWhGdr5ism5kM0ZW8aXPObVH0kbYhOCuJVEsbN2WSgbGlfXnnFkhJM6ZtZs8cvL9USKQFBG2uCHQaJioWmQja8bG52ORfc+DsRMaaVABEtruoDAhEQOYNEJ9mXOAaiKeNOVQ03o2uL/typD0L16oL3Ou//mf/8GHP/xh7LrrrsiyDGeccQb+7d/+Dffffz+Ghob6dLI+E3bYVgcYddZIuLYOGp6XhWKjTJVTKSxyYkak8oRGWsqMa+KwuZtcamYL1TlACtM1hopjZiOZFSCRbeUpRjqHreaDSJywqi9tzXi1tFwXcAaYGnvqbNJ0LA7/2MbZU6VebcYIKukKeT0VyNERZIXAiBEaydKR2pRIKnpgjJ6MEvtc1Yjs5FNJ7SlGllUjy0jtUsMYA7junKx1g87a1sCVxwOBKqq+1qyTQj5/tA+b1MwTzDEqYE3BMVpsDxAnbaQdkQWMyDpnWmniqBWvw5l9/YwsiND70d/f7RPFghTG09Qep9Lo9YfjvniKUy0bXyUyv1FLSorlPmyJEfyIrOhI1Iys7VVS+32gRs3ra3Lv+ydi7LlgzKYoUTXgZCixTlo8I0E8VDizzQRRkf4YNRNEA7nzxk0aZNK0oiMsisFilxKpeX68Dntfd5HGkumv2r3GbpnHAoFeMPcUEwLKbEsFzd1n0s55kthus6gNRIXjQJ2FdgqeFPZHxdDSOA6Z7bMb8QSRcUA4Q2GGMBgLK5KmSA9ZpTRk0y08G+rmCsYm5otPxdwtUzbt21eV1NCqejpO0ykFEUWyPdaikhpkkb7daDiHbGYzxozCeVur6D07oxlhyCzQxcL2mKXbiSBpo9xtM5k6J022SUpk6hbsSBqkztrWeVNtF2Qwf0egJEBS13evD/RrznXzzTd7v1999dVYf/31cc899+CNb3zjpM6xjp6W3B577LGeDv7EE0/0tH8gsMYxjQtgpwvBbgUCfSaIjqwUgu0KBPrMOHZryZIl3s/o6GhXh33ppTzra+21115hp96Tw7brrrviAx/4AO66667afV566SV87Wtfw/bbb4/vf//7kz7BFUqPq4qGDhnailVng9T0J4+wpUVaoPmhvyvk+5kfRSI5WmpoOUYEhwv7w8i2f/J5tE0biec+pslw5iJrVb2IRCHPbeS4x5LkptdUFWlYJsXKhNTzomQJlaW2gNf8lH8vp2fZ19G6Qyad9nnqFgUNBd2TMjZQpHHU/AT6w2pnt0rQjysHyP3l7kdRSPm7nzwtMirSX0wrC/MzoxFhIDE/AnEjKn7cdtIQxU9kfxoDMeJGkv80B2t+mnZ/E1XLf7i3nSQCSSE9nQie/0TuR7BJSPtbO8nz9MfSj2g2EA3ExU9kf+JmHhmLitTFZDBGMhhjIBEYiqp/ms0IzWaExsw8emZ+kuInnhEjGXI/URFZi5oNxENNxENNRM0GRDOBaCZgjSZYI4+usTguUiOTPNoWJQCP3B+e2vmyxP8kGMtuBdvVP1Z321Wm3KPLfM+rIvqipYJM23ZbZ2neeilL8wgJ+bGRlKwNJtP8J0vBZBtMthGxPIJkfiIORDwfM1GmwVhgRhJhRhJhMBYYSiIMJZFNJ1xrMMbsgfxnrcEEaw3GWGswxsyhBI2BiPzE9qc5lP80BiI0B2M0B814guZQgmQgtj/NocQ9bzC2x8ufT3/ca80cSjBzyJxLgrUGk+L88h9z7kPFezLvkb5nek28a8RcOiTLzPVMvWte/TdI8xTJLLV/Q/N3VMWPEZlxmWz1vekm9Rkbx27NnTsXs2fPtj/z588f95hKKZx00kl43eteh+23377v52zoKSXy/vvvx4UXXoi3vOUtaDab2HnnnTFnzhw0m0288MILuP/++/HnP/8Zr3nNa/DZz34W++2334o670Bg9YD0jukYD/SFYLcCgT5TZ7fMY4G+EGxXINBnxplzPf7445g1a5YdbjQa4x7ywx/+MO677z78+te/7ttpVtGTw7bOOuvgkksuwYUXXoif/OQn+PWvf41HH30UIyMjWHfddfHud78b++yzzwr1MFcYpJEqbUBqCtLNSmw+zl1xuiCSraQjvEGUFn9dc1U61t0KsTk+F8yru6ARP0/itHgfury6avah4iK0xm2c1dc8glY0itba5mozrb3IGpUX5zXXRJD6DkFytVkPUS7z96qTwy3/7sQPXO0NY8yrk/FqZkwtHqOyttUr+72IsQCAljX51DKsUveL1dVueZG1YluBgRWNO5h2tkUy7dWwmaLyttLICgnrdiSQJlR4x0hY03oCUiNn79fMaVxkHEIYYZ7qzANaiyFowTyVp46FlZxOIuEJo8S28W2piTbMNrk2VNaecyfMYexBlOTRKQAiiW1zahFHtn5MpRIqNZLi5P0LDlEIG8iEQ1VkP+TfD6YlAPfES4zQSDQQISnq1uKhJqKhvO1INNS0Ev6imYAnzfx1yf92mwiQaMahRWQuNhGRKkn8m+0JZJnU2S3zWKA/rK62i6Kl8uYwto4JeR2bGdPCNcs2tU88iWwUhmUpdDu/B1TasrWePIqBzMzvIntvsCxCHOX3j+QM2tSWQUEVNklpYWtTlXbTZVs7S2pqG6TWNmm17fZIKjFq9AekgrS1+tpuUztJ5xCemBJnVsqfC7cthGuKTZthz2jGmOmJjuTbs4qxwVjYurbBmNu6tYGYIyneYDPitgY35gwsK9pcyRQsG7XX3dQFqtERqKIVlm4X0U+UBPzaGRHHK7VuGEOApF+iJOPNuWbNmuU5bONxwgkn4L/+67/wq1/9CptssklfzrGOCYmODAwM4OCDD8bBBx/c7/NZNbCSk0OVt0xRd9KESJbnu8SuPw7toSNMoSZntkfPiGRoWvUwd/OV1SDtTUGcgoT0CePCKQTlDk2nw8ZiXynM7KNpXx6y7X2RTwIzOdKMFNpygBVGSHAnfhCT9xQLRvookYJW4gwxzqziEo9oH5KiX1KcWEfNCBnkz6NKdE1PlY72fXKCB8TYCrfdFByRMIpJTriBE5EDDoaJdrerTdUMdSB9Z7WzWxVwRnRHOLMTAcFhVU3zlMh8vCE02sVnXZIeiWMJ7ywz9yMvJk3EAStPSAxKaXsf5xpHxX1fKpi3fYPIxGMgEdbBTCJu70FBHDPRhW6SZhzcio24hTgj1mHSIYHcQRLFpFCkGWIyWTALZ0wwSONsqsi+3/IE1IiXlNUmzfdGMhQjHsonjtHQAJKZgwBQpEMWztvgANhArjxmnbRG0zqbNhUS8G08j/yFuT5RZ7fMY4H+srrbrqrJOBPcE6cw9xSn4hRpBsYLB0G4EhAWJ7aHro4TMCPCI1OwtlvMsHMtkdhvcKU5jLST1v7Cr52Pcfc/ncPQOcRAkt8HI2mG5YXDRhWos0w5xd2axa38NMm8yAiAUOcw4sRWRlYFcmaT9FlrRtZ5M45ZngaZH2NmkRIJAM2IoWEEn4pUSAAQctQ6bKw9ChROGpOuX7FOW3k6ZLFNx42yuicuIn0BPQN18PqtHtmvOZfWGh/5yEfwgx/8ALfddhs233zzfp1iLWu0SmQgsMox+d5V44FAIDAVqbNb5rFAIBCYivRpzvXhD38Y11xzDX74wx9i5syZWLx4MQBg9uzZGBj4/+2dfbAkVXn/v+ec7p65+wrrLrugvARJCUQ0uLgLSBSBCNFYRilKKmrBakCtWhSWUiFRwST8VIKvBCUhiFhAYYzRlCEhQcSXwAoUFFrIsiWWiIUsoCtvu3vv9PQ5vz/6vDynp/vOzH3ZO/fe51O10PdMT09Pz/Qz5zwv32dsJs60h8W9YLPpf0YE4XmRpD6/VWZtGO/NHENivaDp0ja6u8bs9jiypeUHnS8r/98d72KZ6y9G+o4Bpfwz0Nurx0XhxlSIzo0pGXryjCWRp1ZmLsIUvMKQCsJGkiLBESljmeeqx7Wh95qh4XhyvqYaXfLy9gJSBKl7n66kiWdKBElxRdIQaTqBSqSXvk2y4IHvtsaQdMrr7rwh1CuiybaUCsp+diobQ9peZq/jstCnpB16lrRaCZbbPiXLo/4kCm0XbSPpWKkKKVhU1n9YmgprZ6PY1rFz506cd955+M53vgMpJU4//XR84QtfwLJlyxqfMz4+jgsvvBA333wzJiYmcOqpp+JLX/oS1q5d6/f5wAc+gDvvvBMPPvggjjjiCDzwwAOz9h6YQDWy5EVztPEeZC0AY6NqWSKsFxlW1Mi2vDAg2/URNiVDGqKLtHVUAWltVjXNxwsmaROlOdOUSPfcJC1FRgBY8ZPyHhwj6ZFjmSL3YLgfSzGj+uvhbJsQElBWEp9GphIqo1/WK+i86z2/Os8jaWmf+p4qFLankpP9B8q0yZC+LqP9VRZaBSRjtvfa0jbSJSENMvW/M2NIltjfn7GlIbJmI20ys+IjAETaCjZeJSHaJkIaaFXiX0whFTK8x2ZBgNm0XcziwRTatzARhfYRGq0kipqSECrxbyb2+Ci6SbIQeYvmPyFFOE0loOh02N0rGkLYrB4hoISNulsbU4o3ufmBwi57jmOZwgu2b+5EK8GenEbYwrbr4TZZRkNdFhLtTUn7Z7YS6ecuY1kpkgI4qX7pt93/l3kbK9G2fS9bim4LpMZK9ncnIHIbYeuOl1E2AKazB2YiRNLMRNk2qSrl7+xpkefBtpI+wpqkR84mMzXn+vKXvwwAOPHEE6Px6667DmefffZUT29SFveCjWHmGqugVDs+S7zjHe/AE088gdtuuw15nmPTpk0499xzcdNNNzU+54ILLsAtt9yCb3zjG1i5ciU2b96Mt73tbbjzzjuj/d797nfj7rvvxk9/+tNZO3+GYeaYJrvlHmMYhhlFZmjOVVUX3xtMecH2/PPPY/ny5TN5LnsdKm9PI0zClULpArJrO5Z3O95zkC4dR3dF+YFn4xPo7gmRNaD0tjpPAY2kZVIg8+PhPGgN27JEYhmtn7LeElrzkJCGqjILETaRpKE2I029lzWKqskGUZGGyFodwhi/jxAALd9yz5QIPionKw7YujXinaJ52N6jnilM1AkRZC3odm8UyNWkVUVHVMt6rbMxpEtXlq8zNobMerZb7RRZOzSTXDlW11AyFOM6+XOgbCJJRR+cX2hYifFS9rb3Npyt5rPbtm3DrbfeinvvvRfHHHMMAODKK6/EG9/4RlxxxRU44IADep7z7LPP4tprr8VNN92Ek046CUDpRTriiCPw4x//GMceeywA4Itf/CIA4Omnnx7ZBdtCsFt10Dtak4J4uNYYAr7gSxv477FrH1Juh2MUxgBLyHEQtt3fztu7O5HY07HH62rf6L5sxVF/vs7cqET6aFsrC5G05e3Ue42XkPFUhhq2VApfGysx4H1H7SBisQ6RZEHkI8+hrLc8ql+T0tcSF1mBwr5v025oeksEolRKRUfCa6VLQ/ZG0s6QrSh/c5IlbUhXt9ZeGrZpDZvdNjKBcbXXMvHRNkgVftuoINU0lRyb7JZ7jJl5FprtMlFdqOwZi/aVQXSk6HR9fX4hSYRNjfsaVUMEhrRUflzS+U9FYC1NbRpbJdIm7K+7FBLK3lfeBimJVBV+zGXjjGfa26xOV2MPqWGb6AZhp4LUDDvodo/tFSHC1ormTiHa5qJqbbJP3Bg7jLnzbSmBTLlIoUDLvT/ThcjLea/Ix4PQSD7hx/XEHujxXeV1nyB1a0SAROddFB0bbet0Ubh6toroiItymZpoW933ZSrs7TnXTDLlBduf/Mmf4NZbb8W6detm8nz2Lu6GVeFHTRgdttuAIApE0n6gWTf3X75ivENCvaGQkqL2lI/vKTT2FE6AJCzmlBCwmTIYUxIr3AJhZYZsWfkjXPboCak77sc+abd8eo/I4iL08EOdhDyhqmoY4lSZfos1f+lcqhMRCDEwcJmBgqRNKmH8djnhCmmQLp1gLFPRBG23TVXs5hpdm06gTQog/sESUkFbb4nWBSRRgVNZaYBVawyZzSkue52kdjvFymXl9Vppe6gAwKqlGVFPilMJfAEueX/lpQipoENhGhrNmtDEkdJqtQaSmW1i69at2GefffxiDQBOOeUUSClx9913461vfWvPc+677z7keY5TTjnFjx1++OE46KCDsHXrVr9gmw8sCLtlCWnJQcQDAKQJi7Sop6CdCKRkzP2I10EVUd1xsvFu2LY/9mOdAnvsD/AEKarvdHXfQvqMpEIvqaRBLiepPW5CUqYlk8mSW3iJ2FkUQVRxvW23qeMiycKCrdWGsrYkybu1EwSZpiiyctJSdLqkYL7hfSoRhEyIc831VQOAZCzzqY9lGmRpq8TYUoi2TX8cWwrRXuK3gXIRZ5Sz98RBp0IKmBGyVxXYXiS3mJ5SamST3XKPMTPOQrJdVfqlwmklAWtjhJQo7H0nlIRWyo/XCZBAqlJ4DaVjVcoam0fugTQd86JmAhrKLfZESDF3dqeltBfoaCmJCfs+xrva29aJboF8zJbIFLF9LIZMiVQ1djNTwSa2kiDQ1E6kPze6YGv75wVBkVYifNCgnUgoXc5vRb4HolOK7YnuBETHLt6649B77CJtfHecElkjNKI7NCWSpEF2ukQZMhYambX0yD5zrlFmysvUo48+Ghs3bsTDDz8cjT/wwAPcC4RhBsR0u765ZPyvNG5TaeI4GTt27MB+++0XjSVJglWrVvmi2brnZFmGffbZJxpfu3Zt43NGFbZbDDN9mu1WsF3MzMK2i2GmT7851ygz5Qjbddddh0suuQQnnHACvv3tb2O//fbDRz/6UXzzm9+cP8ZDqTK6prIgg2x0qZJhkUtrnqcLtHUI3TqoR0CSothkV+m1HXshR8cVn1a8Kc67kaXKR9VaK1porSijKemyDOlSu710zKdEqnbmC89BvcVSeq9SNfTvmUGZZwA9SUnOkS+FgJJBXpx6yJ23p9o/xMngdvMCupvWnHrZJ6PbGfMRtui1kwyJFWZJW4kXF2kvSX2EbcXyFvZbUV67/Za3sMZe65WtBCvt/ivbiS/MpR4pgZD+qI3xeWgDp2Y5dIO3x44N2sTxoosuwqc//elJX2rbtm3DndsCZEHYrQpRdE3Ah96EKaPe4QGHAb1bJ4uylU8NUXQqXe2K6sdShT0k/aeuqL5KIunxeovnl2TKF88vaydok6h8K3HpkaHNhpIDpCMTAY6QBplC2NRp0c0hchthWxp7d2nfS9eDs/QU9/4OxC8pawWikrHMb6dLx0Iq5tiSSL4/RNOWRJE1wEbSXO81lYVom1RRH7bIzvuwmkRI5J4CTXbLPcbMOAvFdtVFTlxWkiRS/tHjnRyw95HIw8S6aYpd7cPqSxbo9hj5ntIos9FQtj/bWNqGKlwmlEFi5zGJnSMmSiKzAh1LUoXddn43UWjkPtqmkFs72C20384L7dPQae+1qiCdoxQ9KbdTElVLyHY7IRlMKpRzZEmYu/i5pgr91ujcRubjRL5/nKRETkB0yqia3rMLZnw32XbRtl0+2laMd1CMl/a0Oz6Brt2m0TatdfnZojc90kG/G45q65Sh6DPnGmWmJTryiU98Aq1WC3/6p3+Koihw8sknY+vWrdiwYcNMnR/DLGhMnsPkvRNmp640aBPHCy+8sK8y0aGHHop169bhqaeeisa73S527tzZmGqzbt06dDodPPPMM1GU7cknn5yX6TlstxhmejTZLfcYMzuw7WKY6dFvzjXKTHnB9uSTT+L//b//h2uuuQZHHnkkHn74YZx99tnzynA4ryTN+QcQVtq2vg0oC07raNd4VksvbCg0n3jO1S100OrYwtm8iOoenNyzShVSGwHKlmVorSi9pq0VLSS2iSqVn1atVvAWp2lo+q2CAIkRFdn+GY6sUZy3X5K6NSFC5EkRr3gpiWtbGFDpblK/0iHNJenxfaPeVgLdDVEnVxujVGgNkLWUFxppLwl1a/utaGO/5eVz16xoYZWV9d93LMVK+/rLW8G7n5DoIK0NKh1A1vM2ebCilxny9qxZswZr1qzpu99xxx2HZ555Bvfddx/Wr18PAPje974HrTU2btxY+5z169cjTVPcfvvtOP300wEA27dvx2OPPYbjjjtuqPOcaxaC3QLKgJms/A3EUW4lSE2qNlGUjUrgh2FF6tYK/13fLQvi2Y2FgoBJiuoLXVtMXy2kz0j0jBbPuwhbOwn1Fy0SlU9VqOmQEMTeiHAdiL0zQnqxAifvjyQNIh55B9Ldd1pHP44uGlakia+fUZ1ubYYF9fyWETZbw5Ymfjtpt6Im3VRQxEXQxNhSSCLl7wVGEvf/FLBRNSOTULdWlfWvw+hQ22YkgCG9yxxh2+ssFNvlqNb6V8eq31wXianSFGWrm9xqAIK2/3EbRocomy6Awt7juot2YjOb0hSpjaz51iKFQWajbh1lvG3KtUZu53fjXY3c2om8MD7CpknrFG3i9k8UZ3slqSWWQpBMJdpagIoyST8fychcK46q2XmnziEmytpcUHERIt8v8j2+bk3vfj7UrY2TCNvEOLq7y4hcMd5Bd7x8bne8E+rZ8q63obqT19at9f1uTEN0ZFFG2P7gD/4AL3vZy/CNb3wDb3rTm3Drrbfi7W9/Ox577DF86EMfmslzZJgFi+7m0N3eVZ6eJcWiI444AqeddhrOOeccXH311cjzHJs3b8aZZ57pFSIff/xxnHzyyfja176GDRs2YOXKlXjPe96DLVu2YNWqVVixYgXOO+88HHfccZHgyCOPPIIXXngBO3bswJ49e3wftiOPPBJZltWdzl6H7RbDTJ8mu+UeY2Yetl0MM3329pxrJpnygu0rX/kKzjzzTP/3aaedhjvuuAN//ud/jkcffRRXXXXVjJzgbGJUaiNsaZByFUE+yxQphJX/FEL6KJtQ4cNOAIw5pTKnJhTVKqRIl5VehvyFDnJb99Hd040U1JT1IMtMInVS/mNJqGGLGqq2fc1D5CFOstA4m0bVRgDaaJs2vnWKRmkuiKR3go71pkx0Yy99aKhtlSO7GgVVc7MvlGShHUDWUmjbCNs+S1KsWV5erxcty3zd2qp2in3HQoRteeYaZ4vII6V8BNGL7kXKkEPL+mtTm7PfpK43E9x4443YvHkzTj75ZN8420nyA0Ce59i+fTt2797txz73uc/5fWnjbMpf/dVf4Qc/+IH/++ijjwYA/PKXv8Qhhxwya+9nGBaC3aoiRfDCAnFNm+sVI6SAIN9XocM2jbYJ4RTRhJerLqPiNgrWLYI3VzlvssGejDaGtVkE2vht97ejn/LZWKZI3VqsfOYV0VSICNLWIbJ6C3q1XBUr5wJl/Zr9oRattveyCq29FHgqJaStv1BZ6hWCm2ouaIRNpgmky9IgKpGq1fLZEKI1BmkVIEVrLNjz9pJQX5e2YKyn37g2JlQNUibhN0wmcUaFw2j/t9BdNPZcGIAmu+UeY2aehWi7HHU1oBpw6Su2Af3k85mmSJvShVf7liS6onUR7v2xHFKX96ApujDayc53AbutVOajbYl0SosGVhwcncKgSGytmhY+krZUq0i+30XeCmN87Vqh4zo2SqgfJtuC1u+GeQnVCEhoGwAlYJO+fP1wAg2RWwXIokOaYk9E22Yi1KpF8v3jpJ6tM3jdWpF3fbRUU8VIYk/qvg8+O2KazMWca6aY8oKNGg7Hq171Ktx11134sz/7s2md1N6iXLClQNou/w9ECzYkBnAy+XkKLcPiTRHJWPejOWb3VVkKRVJfknb5xc6Xjke92opO75dGZaT32ljqF2nZ8qV+m0pCi9ZYOEfSeyRarM3xwo2+ejlBDBOrlEzKxrLyeoxlCsvsQplO8l6QAh0vRlI+T1fyCKQzYon0C7Zl7QT7LCmv0aqlGV5kUyJXL2v51Md92ylW2QXb0kxhLAlFvG7BRnuvCYT2czmJpKc9s8XJ0XkXuiaPUuezp1i0atWqSZtkH3LIIT1NIdvtNq666qpJJwXf//73Z+oUZ42FYLccbmEmyHbvYiUIkDi5f2UEbHcRdDXplwiSuiwMSa3RaNkeSLulQKpcek/5zAkiYT3e1X7iQVMiJ5Ospou3KLXHS1XX90IsUyLtcUTNe++5YDKkCkorC56kgBVtqqZKGZdSnmYQiU3/6XaQDCA9TUVKpO+PprxAlCCONiRBOEq2l4Z9srYXEjFJGrapuIi3/ZVFWp3jSCjXg2TaqfFNdss9xsw8C8l2UZqE2ygawU5pdKM0OuWcJpXjaCIIpNxjWkPYbdHNfT9CKjgkx5ZCFNYpk3Zg3LZKYVLrNLf3YKpStKwYSpcsxro6pDgWdNsYtwaFhvG34yBrBSlix3ewfUGMpFy8ldsJKT9JpIC078MvUukirciJ0MgEYFMiqbiI6RAp/844jEuP7IyHRdqeCb9d5F2/rTskDTLPI0eXbvj8HL5Hn9YzsmibiznXTDEt0ZE6DjnkENx1110zfViGWZA0TfpmrQcJUwvbLYYZnMkWq2y79i5suxhmcObznGvGF2wAsO+++87GYWeepF1G15IWtI2wFdr4yn0lBYRyMvkJhE05kUJ62VglVSQRDQCtNA0yze0MiY2MdXeNI7cFmdTjUPUmKFKMnlqhkYSkQap2RtIgU5+iWZWy9VRTX9zfJnjonYNHkHhYUxNtE6VchVC+AXoiM0CzeLQicuGpEj4FaixTUVqVI5ECu73Qgep5nEqOZ4nEcisisqyVhKbYyzLsYyNpK1uJT4Nc2UqxrBVSvVyEjRbmSpgylci9dxdxJfloyZApkbqTo6hJ9WgqsGZmj/lityTiVEZJ0xpRn5arSAqvASDtH1KEaJuSIY1HafhUHyVUiLYp4b3ItEmsk7AeSw26drsw8MX2ehIXsnTF81IG7zAVF5EiSol040mUCkRER6ovQERHfITNpQ/qDMKmc7q0KY+LXnXGvW03WgO2jYip7k9f0qXNJ1nwCtO2Kymx4Vm7FIyy23CpjyqN0x+Vk/AnqY8+Yqji91l3TkbDWWMjpE9/9dtDRNya7JZ7jNm7zBfbVRdRofMfKsRmisL/tppCw2gbtS5kReLdpTuSFOV2Fo5PxlWhoVwkvdvxLYFE1oZw93VnPBYBSspok0lbMDbyFKLdKZS9R6XKkLkG3WkasgsMom03R9JAFGGrmzsBcfZEiLARATZBUszJtixywF4b0el4u+Wih6LoQBR2jETVmiJpUVPsiXEUVqSEiosU4x0UVlykGO/UiovoTjf6DjR9/oH6dNmpxtrm85xrVhZsDMMMhjG6Nl/bTKO+hGEYZjZpslvuMYZhmFFkPs+5FvWCzSQZTNJCIVMf0dGGRJsKA+UKz9MlUNbDqWUCYT2bUkooH2FzQiAZElfP1mohaT8PAMh37UGyq/SqUu9DNRTrImwyS3xUrRQdCbL+XlxEqiDPLJX35lb9FMIJqRhNtl3NA70opDCdeHyq0bY6Z5A2wYtfeox69wHgc69pI8hS5CBE2OpqXpQUvs7NNeetPu6a8NLWAMvaCVYtLa/XsiyJ6tbc9lgSompjqUTL5X5Dh9xuWqgvJCBKj0yStPybytSwEbYudE1k1EngMkwVIco4uCB/u20lRXTf0ui69BGVEJkqjPERtsIE8ZJcCN8ktisNEh0EOFwBvZPvX5IGCetcGx9ty/XUZatTInRSjbC5OjclyXMRPK6S1MkahMiRkCSKRGvZbERLjgFGOREPBZO4OpbU9+gRRLRgsmbZIDXOPnpGImxIUm/DRdb259MTVXM1yUkW9iFRNUPk+52Nph9/ZLaNDBkCwpBrIQEtUFv31kCT3XKPMUwVo7Vvk9TzGDEOkaS7/ZkvG2rbaJEK0TZdaB9tq4oA6Tzx+7jvpOrkSMbsdjeHtNL0YmxpWdMGWztqI0kia4dIeGsMMnXR71BbSltrOC0EpRIoer8SbQHjtkl2EtA7Z3PQu9LZtVI4yl4Po4lYUhBJQdEN0TTdBVw0jdSwGSvZryf2hOhZZzxI9tOo2p5dXkmxGO+gu4dE1fIQVXPXusi70NZuNkXVGj93BOl+t49omFs12eEm5vOca1Ev2AqZopApxrsaXRKypmsF5SctAplNRUlby/2CrVwkucWbG5P+R1pnbWT2RzpZuhvprvLL3x0PxZm6klPriiyb+vaIJPyQR5MDhC+voH1FjA7eg8p4eQLht9tQ0ZWGFBk6IaATMWOMNzrGmJCCRRZvxnjhp/JSkbC+T4+UsVqco5VIP0ksdPjqUtGCJa6XW6Z8H6elqcIKmx65PFN+kbaylWIstYs0smBrJRLS9yGZCKkEJB2y7NFnPw+jkaQ2dXXIOL3Rpt7bMw8Ui5i5QwhRSYl04iIkbbfBYyiIgqwU0vc01MagcPeSDsXxhRRInH2UBl0d0oUBINfSL8zKPkPuHg0TkoLYg6ozJvQWokqPIuon5BXRhPC9hdKKYInot+AQRJTJWPvhnGyw4i2SpDK6FKk8J4u0wgsVmErfHv9cKcl2cKiJlCzYFBURUWFbJnHqo1/IZagKShmpSEqVqU+pChn+5bVyi1eh/XHEFMRHmuyWe4xhmqimQprCVBQCe78/BbnXRCEglZvEx4s3J0Ci8xwyt3OwThfaOr7LRURpH+WeCSRjtp9tN/fiQKLVjtOVrVIrkjT0RfTiQRmEW8TJxCu/los0e+9SuyOT4GCvpiFP1jOxum10EEzR3bBgM9ov2ITuBoER3fWLMzef0RPj0HYxhm4OM1GW61RTH+sWaTrvRgqQVGjELdJMoX16ZHWRFhZvzbZCV1IhJSSi9Mgp9mKbz3OuRb1gY5i5puh0UdQoHxXzwNvDMMzipMluuccYhmFGkfk851rUC7ZOoct/2qBLUnroOlu4+lQpkFvPclsJZOkSu0Mo3gbxWCqX7kILzXc/D5mVBZwJkUItw8Uhzcb3c1MqRNvaWYiwpWkoZJ9MaMRL2XbDuRVdIjBid5UJIgESH27TkdenGlkDEAmNVItrC+pdhyu0be414iLeqQriIZQskRiryIRX+zi5iFw7UV4KfFmmsLzlomoJlrooXCIwZpuTjCUSLducSnR2Q3Rcf5LcF+ZGni4hAW294lr770A2pNdnPisWMXND6JsW7llp76sobZd6pcl31wgZ0myEDFEtmUDZlCUl4KNthTa+d09hgq0srM3IiFR1kRgU2hbewxBZ/zj9pyDbikTGmnoORRLWkZw1jdDH1yW8+WCfDYmKlxcjgQu2QUqgsI8Tb7nIipC5QKNqdJvaYZKaDpUGMRCZkJRL4oEnqVRQ8Tj1zGuEz6B8+TiqRh3EtMWBIp+ja0cjjIZvzOeu0RCRNlaJZKZCNe2titEmatVT910SSqKwikhSCQgXoVcyRM/SBNJOwHWW+JQ9lSZ+3qXaWbStrDy/ak9ApuU8rRQECqnLhvROBFCmNidpz74ySUlaNGm5QSLuZhoRNhHN74pgz0i0zXRzmNzNMcdhurGsv5nY48dMZ9zvazrjoWfaeMf3nRw29bHsseZslfYRrMk+36iHpb8s9ZkT/b5LTcznOdeiXrAxzFyju13ovEaxqDv63h6GYRYnTXbLPcYwDDOKzOc516JesHWtdHW3MOjoEGGLa6zCvhmtw7IejZZqIW2XO2kXGSNRN0ll/9MM2uVAj++CzMo8Yd0Zj4plvTdXSu9xkGkSRE1Is+7yAEX4v9uuFqJSCWf7NF/DYHRw4kj0PF5Fk1q1QptIaCRqFkm86+6a0kJbbUzkdZe+fiY00KXfUHpMWrvittuJ8pLfY2mIsC3PFJbZWsClmcSY24dE2DLTheiUOdwiHy9r14BScKQg19SfrArFvabt69mUbpb6rqPIG8Lz86CJIzM3OEl/Z5uUFM33fZ13Fqj37MoisluJr58KNWpdHUfegDLS5sVFIKJxX2PV0CS2SSCjqUmsALn3SbRNRAJGNRcMZZTKCy5JYlhohoR0nmoF6DScJLmO1Whl73FEaLpNWgkYmZBrrerl+VXqt40QkQ11dchF7XUMfwgh/D5ShB2VDJ8HvRawNY1N9r6OJrvlHmOYHopSdKQqOFGNvvSTeaftNAwRohBKQtq/RaeAspk0Iu9CpSHaJsatjRvvILG1bXK8A2XnCDJNfDZTMjbut+kcLNSwpb4OVhAhIUgZ9o2ibTJuw0TmcU1NoaN6KzLX89dBa19Pa7o5jK1Rg9YhatbNQzsSH2Eb9/tqUtvX3TPht3Xe9amCcd1aLNNPBfSKjssWC9HS/tL9/g2SLfs5+b+1rWMr//LXa8jI2Hyecy3qBVunMOU/Xf4fiJXNgFgUI6T4CWhDPnDX9d7eq7RHhECpJFkejITDpQzhdaJC5m+2CoKqQTZgdAHYGxRShT47hQSELUQVMiQlFuEL6oRTDDn5KD0ScRpkUH8jizRjKimRZNzUiBI0yUgiqL9pUZ8e6aCCBG0lvZrckjQs0pa3yEKuogaZGXtd8j0hDTLfU/YlQUV1iS7GVBpmm0ICuTW8w63X5nV4npkbnEKkV4k0hqTEFEF0RHdDYXpd4TrQu3Bziwjap0smkHZikaia1LyGVGhDxjVEJJDhT6XhPVaV0dziTRGxFSUQ9SKiKaJh8UfSjoQJ6pDu9aWEsHbQSBXucZnUF/tXz7lmwRalOkkVbGg13ZEsJJ1yXEHFXnRIINeV6woyHq6TO0Hj378x5AFtyNpUxKn8VEFzADglkpkKTWIPdGIfFnKTp0Y6QhqdDgs2JaK0ya4s51cqU2EBNt5BYfuHyTSN1LndPt3d8YLNpU368hQlIzE4JzYH4qinDvYeBVmqmtk0v9N0sdPrnDc6OOmgi5D6qItoXqkrquTlYiz32z4NshO26WJM57lPg9SFJvsXtQvuUlxksM8QsJ+j3b/8HO150oUbuVzDqkPS85ivc66pyawwDDMjaJv/3ftv9L09DMMsTprtFtsuhmFGl5mec1111VU45JBD0G63sXHjRtxzzz0zfMaBRR1h6xqDrjZl7yDrIeh0QwRIGxNJzadRHwiSQ+i2bD8flZqaR+NtTcPhUgHSyqtKGXlUKJE3hnpUrBelLHa3+ygiJy0kXLMlA+K9FmHMD8mkvj8bPXfS+iASF9EhqpZrE4/7lFPSs6kI110bA00jm66Q2IQoJyUIlISoWktJnwa5JFVY3nICJHEapNs/hYbIbRpkZ3fYzid877UolaAowmeQ6Pg6Ws+5GDbCphu8PVP0HjELHyfp7+8LE7ytVNYZWhOJ/5DWF0XbQFKjAcD27SnT+pwAR4i+CNKD0glYGCFh0hAhMi4Cpw20CTaGRtv8a1dCbM4EVNMaQ3pkiKRJgUiyvqE2PTqIf0/+BHQssuTuu2pLhIZWJ1Eaoc+kCKmPVNIbQvrX1xCk5QF8NKAwIb1Rg6aSG1QtQvXa1V2jUgnbCtJIkippyLm7aOowEbYGu+UeY5gqutBAoqJUSEddVMYUOpoTNKbS5SRdWTkBpfpUySLXkMpm1UgR0iaV9BE2GjWTWVo77tInhZS+9ZJKUx/tiyJvSvr0vWoaJI2qicYedVToqDc90uggimRI5ItGkgoSHXP70kiaKXSIpHXy2vGmdEfdKWpTH7U2fdIf3ft2GQCF/9xo8qOfayvlvzMSEkK5pw1nb2ZyzvX1r38dW7ZswdVXX42NGzfi85//PE499VRs374d++2339DH6wdH2BhmDtGdMke8+m8+NHFkGGZx0mS32HYxDDPKzOSc67Of/SzOOeccbNq0CUceeSSuvvpqLFmyBF/5yldm4cwXeYTN1VZ1izKyBgATReEjQCXWi6AMqVsjXhFoSOuZVFYWvpW2IV1xe0FqoIyGGNP+CLpOoEKqKKLThPcGdPMQVevmvhYiKmZFHCyLPOrRu0TpZfWS18JvG6ioKbYXHSGS3l0aVbPXFSijauO24TWNqtF6wTIi1/s+q83tnQfGiZKkSqBlvVrtJI6wOYn9TAnf5DdTAi3nWM4nIPIykia6E6FurUsaR+YdL4MLhIJdkM9GCAnjmlVOxdtTm9fPXmqmHilco+jyb6F1uGdp3RptqNogQAJUAulR1MXWP1RqskBrsmC//zZyJMnjRiUwLopPxIbofW5IQ22gvqatGjirk++n0bZqRD62dzWiIzTyqMh51DUep21OqlEp2tjaR9iCcIgBUBTBPoYshSDIUugQSaPXzCCuV6siBfzFK4VZ7ANa+J+rwgCS1B1K+pnqKUTYGhtns+1i6onEJ2pk3mkNFI3QxNG4/lEbgETbiFS8GO/6OQSNvMlMQapy3jVI5M0Lh1Qe9y2ZssS/LhWPo7L1VGRENkTXKJqKrUR1baQptdZBVr/TjSJvRaWGzRTFtCJpLvppos9PD/z5APYzcmXDSpLMNO1r15T9jHRhwsxbTb3mbKbmXJ1OB/fddx8uvvhiPyalxCmnnIKtW7dO6dz6sagXbNqqF2oEtcK8MFExvaMwxl8tWcRF8G4BouwXT0mDzPbVMWk7mjQJ3bIvXkAQNR8qaOFeVqATKyLZ7Wg6omVYRAD1haskVTJapLlPnwoM6G7YRr0RoSIDhqZEmrAY6xaIhUYKtyDWyAu3eNMhJVIbMqGL0yPDWxPRQg0AUimQWiPYSqQXF8kSgdT1Z5NhwZZI4fuqlQqQ5bUTRceP0/4lpjMepyG41IYugsqMIalnk82qatCdwhum6jjDNCFQio0AKL9/3slCv4uxAEkQJtG9+XQ9L0BSiiRREJRJsA/dMOEXZJFG0ydp2p1LoUyiBY2s7e9IqY7UZT7SRVpPBrW3Z2E7Tgu1C63qAq1mAVNVhWxakPrJqAmOKEO2qyIi0XPdPuSdD/JxOf1fQZQhS8+gSxOLU1Tduft0yCEWbE12yz02W+zcuRPnnXcevvOd70BKidNPPx1f+MIXsGzZssbnnHjiifjBD34Qjb33ve/F1VdfPWvnyfRitI7S2vx4ZZJPFwLaLy5Mz8IgHLf+5qD9u6JFGxEm8YuqhoWcUCIodSsBlarKMcgiTcULM58GSfrpyigFMr5/qn/799dHIEOTFD9TxOmRfvFL1Mdp+mmRF/bxerGQ6sJspj8PUxh/LakKpEZZ1eP2gRu1g7rQvmfosAutfnOu5557LhpvtVpotVo9+//2t79FURRYu3ZtNL527Vo8/PDDQ53ToMy7lMjLLrsMxx9/PJYsWYJ99tlnrk+HYaaFth6xnn/spV5QsN1iFhKNdmuWbdc73vEO/OxnP8Ntt92G//zP/8QPf/hDnHvuuX2fd8455+CJJ57w/y6//PJZO8eFBtsuZiHRb8514IEHYuXKlf7fJz/5yTk+48C8i7B1Oh2cccYZOO6443DttddO61gaxvcHohLzPlWlopnsokRSaKTGFtmTlEDan0hbSVdZhJRFozIfhhNJ7vt0mCQPKXZaAyAiIvblq5E2P94NHudBYjsiawcvs/O+0x48tBdRxa3rLodBkFxp6rdWGIMJmwY53tWYIFE1nx6pDbpF2PaRzYqHxvdni1KgbIRNSR9Jo8IwqRRw3QCUDD2aEoEQ8Sy64RoURUiB6pI0SNLjBKhcaxuFE1mbiBUMF2ErcoOiR06gHGcWDjNpt7zgiKESzy4lt+u/g7QlBR2vRuQ8k8n9e/uQ+xCW8C1KSFStG9IjqRgPlY2nAhdU3h4AFBXrqDsXhMjQ0FTTGStUj1sX+aN3ZZmhof24t49EIKTsnxaiZ3FrFHucSo+6fhG2qF8diaoZYT938l9o45MuCiMgXOBNG29PXQrnMNe1yW65x2aDbdu24dZbb8W9996LY445BgBw5ZVX4o1vfCOuuOIKHHDAAY3PXbJkCdatWzcr57XQmUnbZSrpj9XtKHJEIm9RdEfHzxs2NY5GsnwkrRL9qY3CKRFF4dzzabSNHtcdsy66V92/PIeGCFtd+l5Dimi1px3dv9ouYZDoWTVyNoxMfxV6zQo3B5OiIi9SHlORfn00NdK9vpJiqNRLSr85169//WusWLHCj9dF1wBg9erVUErhySefjMaffPLJWbM18y7C9olPfAIXXHABjjrqqLk+FYaZNi5toe4fs3Bgu8UsJCazW852Pffcc9G/iYmJab3m1q1bsc8++/jFGgCccsopkFLi7rvvnvS5N954I1avXo2Xv/zluPjii7F79+5pnctigm0Xs5DoZ7dWrFgR/WtasGVZhvXr1+P222/3Y1pr3H777TjuuONm5dznXYRtKkxMTEQ/Fi5H1ZhQP0Drp4o+dUh0f21E1Ny0PAbxiEpV1nWg9D4H7WXlmyyKjgoJu1KG5tqVbvaUUOdWRtn8dt0Jk2P2NNQuTyzI0hvdW8vR8/6pF7h/g+xSyj9E20KdW9imdWs9jhNXI6hCpMz9XwoB5SJsSvjImyCy58qKNJRvmkqdE7EGE+oIJxd7cZ4h4uvQRYhqDBth62gUNde7yGdvwTaVOpDx8XFceOGFuPnmmzExMYFTTz0VX/rSl3z+9k9+8hN86lOfwv/93//ht7/9LQ455BC8733vwwc/+MFZex8LnSa7JWwjaUGbYtfVsEWRNFNpqE2arjqqIkhUuIjYj/C4i6TlJAInGptvR/tQ4RIa3a/bds9xx7RDPVGyIaNmDl83R8SUIiEUIhBSjaTRmrRYjt/07E/FRagNjbM7QsZGdG4EWq+npPFjLmKmZPgdMCLYU0HP0YS2AnIKNWxNdgsItuvAAw+Mxi+55BJceumlA79GlR07dvRIZSdJglWrVmHHjh2Nz/vLv/xLHHzwwTjggAPw05/+FB/5yEewfft2/Pu///uUz4VppnG+VWhAyZ4ap2r9Go2q0UhPU3Nm/1wa/RkwLTcW/qDRr95IWPQ4iZ6Jmuc1RdWq7QamSlU+P4xXom1F72ODRCqne12B3mvr5lWG1gUiRNVopM0UIUuB1rI5KX+jTRCIGtK5PZNzri1btuCss87CMcccgw0bNuDzn/88du3ahU2bNg19rEFYFAu2T37yk/jEJz7R+LgUgkzuBbRLIWlYuFVVyOgPeEn4MVRAVGDvv8R1/Xv6QSdUdMIlG1L2ZK9oiKj2ZwMAo3zqlJEqXsQQ3PujE5hCU4WzuN+aS32cIIu0ahqkW8jRdCFKXQ+23n3I+/Pth4iKHhUkiFLATM97BMprFAm50MeceItUoW9KzXUeFFNoGNl7DrMZYXvHO96BJ554ArfddhvyPMemTZtw7rnn4qabbmp8zgUXXIBbbrkF3/jGN7By5Ups3rwZb3vb23DnnXcCAO677z7st99+uOGGG3DggQfirrvuwrnnngulFDZv3jxr72Uh02S3pLCOgcjZQFJy6bgTKiLpkdBF+H5TpxDQ4xgqX1AGBxFVMyOKtN6uqRSi6FWXFEpFwiXe/hVksSfDPrT3G11MRMcUcQpnZD1o+mO/1EaaytiwMHOvZAztJ0ccV5G4SFiEVVMcafo4dRJWz8/tQ6nO76QQXkQkpSZIi7LRGgBhBJxL0Rj4HniGXAMjRGkjh0iJbLJb7jFg8NSiiy66CJ/+9Kcnfb1t27YNfG5VaI3bUUcdhf333x8nn3wyfvGLX+ClL33plI/L1DPZfKuu91p1W9ds03S8anqfW0TomsVJ9diDIpoWXBXZ6kEWfNXjNR1rGHTFq10vTNJ/0TWT1wyoXjf6miKIs5SvbP8blmkaQUgkEhVx50LSJOvEawZlJudcb3/72/H000/j4x//OHbs2IE//uM/xq233tojRDJTjERK5EUXXWS9xs3/pqO6cvHFF+PZZ5/1/37961/P4NkzzNTRXY0i7/2nu7OzYHN1IP/yL/+CjRs34oQTTsCVV16Jm2++Gb/5zW9qn/Pss8/i2muvxWc/+1mcdNJJWL9+Pa677jrcdddd+PGPfwwAePe7340vfOELeN3rXodDDz0U73znO7Fp06YF7cVmu8UsVprsFrVdg6YWXXjhhdi2bduk/w499FCsW7cOTz31VPTcbreLnTt3DlUzsnHjRgDAI488MsV3P/+ZTdvFdosZZWZ6zrV582b86le/wsTEBO6++25vX2aDkYiwXXjhhTj77LMn3efQQw+d8vGbZDmdU1GIIGiRUm8KcYAoIfxjikTkSgEAd7waj0mPDDSJbpFojekXZaOy/zUiGAC8FL0f915v5T3nJs/D69rWAyiKRqGRJgzxVHtvMoJ8f16YKEXURdJoGmReaJJSZCJPs/s8tDGR2EgVRT47JURUhE+vaO0RaGoW+TwgVbhGCeBDrggRNiRp2F+QVNeBpF8CutDQotdQTNV71I9+dSBvfetbe55z3333Ic9znHLKKX7s8MMPx0EHHYStW7fi2GOPrX2tZ599FqtWrZr5NzEizJXdUkLYdF4X0qmIiNC+YnUpv908bOdkW08SaXNp2iD3gH8s2C+hFGDFlIQk91Qh4xRKRe+dmsgbuR+NCCndpd1MwrgI/tnGVEm3R03KY5QtUElrbOqNVhc9a+qrRlMcc61DVI1E2Nxzwnn2nrsUgMvYUeS3x3deKUKUTYgysubO1zj9EfKetKHXoExZjXrT9aHJbrnHhmHNmjVYs2ZN3/2OO+44PPPMM7jvvvuwfv16AMD3vvc9aK2HmiQ98MADAID9999/qPNcSMym7WqyW45qdKg5ylOfshfJzmtNIm+kh1tVdr5mXlMMMNdpmns0Zf5UI2tAcyRtplIiKb2Rt+b3WHdNgKldl3A9NEkLDamPGmVvtXK7KjNiRUWIkIhQRFTETrB1YaKebEo2zwsnY2/PuWaSkViwDWqwGWahoTv1MtjO2zNoT5BBmUodyI4dO5BlWY+k89q1axufc9ddd+HrX/86brnllimf66jDdotZrDTZLQCzlh1wxBFH4LTTTsM555yDq6++GnmeY/PmzTjzzDO9QuTjjz+Ok08+GV/72tewYcMG/OIXv8BNN92EN77xjXjRi16En/70p7jgggvw2te+Fq94xStm5TznA2y7mMVKvznXKDMSC7ZheOyxx7Bz50489thjKIrCe8sOO+ywSUUT6nCF2kqUTZcBAF3A5ddKTYu7ETVtdh4GIUL0xkfaQDwOM9iTxtQJBaASPfL7qCBNL0PdGqT0YieuaTRkUlsPQz30GtJ7ZDXgPc7UU1sQaX4qNEIbZBfEQ03r1nrEXlxwcKoS3hVCvUYQQohFDoIEubAtGYAyaik0rduxnv40K+X8Yb3TVmjByGbBkjr6eXsGLdyf7TqQYXjwwQfxlre8BZdccgne8IY37JXXHHVm0m6VERQSPQPqo2o6jrx5u6GLMrLmtkm9po+yVQVICKYSYRORfVGAPbaRMtS8JRmEJPZIB2GSENnukiichDH2fhSyrLNFHD3raQ9grZKo7Efr1qotW6IxY2qjaoUOkblCw8vtFyTIWVDhKg0vuEQjbDSLQJNaOHqOTVBxJbdvKoHcfUwq/F5JEeydhomibVUxFXcuMopW9mcmI2zDcOONN2Lz5s04+eSTvWDSF7/4Rf94nufYvn27V4HMsgzf/e53vRjAgQceiNNPPx0f/ehHZ+0cFxozZbtMYUJEuEKTcIapGa/WrbmGxzSqVo1e00BTET02+TlXxSn6zkdqSt+nUao2NMMq3ddF0/plNJXEmU/K9gtRQgBdF/EUvo5NKgFk5YcvSVRNAg1CImHbfTdUw3dnWHl/jrDtRT7+8Y/j+uuv938fffTRAIA77rgDJ5544lDHKtPpyp5d7nvbSiRk4aQIw40vKymRLpqdyvBDGpQLaYaciRZDtf2PpgFdvAnAKz8KWYRUPl2EhaPWXmTAnSKd5A15v3ulTYemExKSFuRuuuq2X7z1UeYcFO0L7AVJYzK+OB+S9JxTCVDYWyDJ/BsRCUn7kipMXqlqXpKGySXdHjLLoeg2KBYNWbg/aIrLVOpA1q1bh06ng2eeeSaKstX1G3nooYdw8skn49xzz+VJEWEm7ZYTHOlrS6IbswjOnIJs6yJepLnU6UmUUt2sxC3GDPKQMikVuXfIYizPAecokso7RYRUgF2YGS0hbGq2UUl4fzLxyrVCqmCjJEmzNGXSTblT/VlTJcewAIt7pjl7VE19LMhirG6RlhexQi51RNFFYhin59Xf9kkR/xa5MfreqO31PdZM/fWgNtGgFB4Zqg9bg90Cgu2aDVatWjWpONIhhxxCxL9Kh9cPfvCDWTufxcBM2q66BVgTjQIllTRIerzIAUzu07oF21QWcYOkC84n6heTpvbxeIFWfax+3PuvSYojTY9sEhJRDauzkDIZf5eGod+ca5SZdwu2r371q/jqV78616fBMDOC7mho1Ts5dobLFez3YzbrQNavX480TXH77bfj9NNPBwBs374djz32WNRv5Gc/+xlOOukknHXWWbjsssv6nstigu0Ws5BoslvA/PBUM4PDtotZSPSbc40y827BNpOkQiCVAraUHkDpXfGCF2ScysQrGQtdpC7CRv7v+3FVUwz7MQ2J+IFxXnR3XuQhYfRAUbY6R1Mp6z/90xuEQeT+g5w28awLSSIACeCEV4yGSezJF0GMRNB00XKg3F0mPkZvVAajMrs9XIhNFwZ1V7xaPDxTTKUOZOXKlXjPe96DLVu2YNWqVVixYgXOO+88HHfccV5w5MEHH8RJJ52EU089FVu2bPG1bUoprpWYaZzgCEl9rBUgcfs6fCSNjuloPPR97G0h0nMatksAFekBiKCIlD59UiRpHKkm2z7aplKSjWDC/QV7H9q3E+R9EkAE29okNkLxad3ENjibFaVEklRGuk2l+SeLquUkNYtmGjhotK2JyMZJoNK0BdqEvpSFBqRNS0ohvE1REJEASrCJcf/QaqZEP5rslnuMYaporcs+bJVJQpOk/yCYQkffNxo9G2Q7PK9/lK0uujYTKYjTZdiykbqoWvUYdZE1l/boHo974lLbFLadDdOF8VE10ZTbWKEabSv7+PVuN9XSNh937865ZpJFvWBjmLmmyIvaRW4xaUra9Bi2DgQAPve5z/l9aeNsx7/927/h6aefxg033IAbbrjBjx988MF49NFHZ+29MAyz92myW8Ds2i6GYZjpMBdzrpliUS/YMiWQqbLniPNOFqYMsJQET2UUYRMkmiYEkkoNmxICQts6D92NPd6DeAOot5qOWa+0kDJExwZtuj0Eok8922ykcSspvOeayrVWI2lyQClXGh01pJ6u0MZ76yELL0Feuu5dDUynVoSFNjg3Mgny4iqFsccx+XDeLqMNTM2Vnmp+9iAMWwcCAO12G1dddRWuuuqq2udceumltWIozGhimkRFaiJrVZGj3ufosmbWH5s01FbElrjWIVSYh2wL+xy3bci435YJjLHRb6N9bRttZwAjSE1uqHkzRNbfR9xNvE1r1eq2NYme5VpXJPth9zdeZEkTMSXdx4PfS/BQF9rUyoO78xok42AmabJb7jGG2dtUI9Z1NWzxdnM926D1bdWI2SCxnpmKsoWoWPPx6maH1Vo0d4y6cSWEP1/aQil+3dhaUzPlPhPVVFg8B8zFnGumWNQLttQv2EIBd6GDVkf5XQtfNPddlQiLikQKpHZ/t3CTMGHiU+2F1ARNhZR0wkPTgnpDyaLyvCjc3JRe2WeR1y+1aLK5gc8IrMwH/UJLG78tq/dHjTKkEuG5kvS/80+Z5GRCEb6Iei25ELtQaXTbim7Zx84I2fiZmbo+UUlIiYQa7qbXnQJFzeXWk6j0MYsbLxI0rHARcQQ5u9G4GNNF/Fif72N0H9WMC8ArqIokg7H3mkiyuH+k+0Wi96AWPvWxZ2HmnSmTnl4P7p1pQ7cNSZWsbofUR6cAGatBhl6TkfrtFIRG/CLNAO4KNtm52FYONymq9qIbRPzEP7fBbgFsu5hm9lba2WSLon4LOfr8aqpk1VoOs5ir22d6hIUUpc4ORIuohvOpS3EsjCHPbV6YUcICb3YXaVP9Ls3nOdeiXrAxzFxjCtMTzQLmh7eHYZjFSZPdAth2MQwzusznOdeiXrBlSiJTEkIEL0IhRehP0/A8JYSPyCkRImuJHRNFB0LbivyiGwkCRNt1SBXSi6T0qXYCneDF1ro22kZltEvZeSJNT/qwOVw6JY2oDVK4D9RH2ZSEj6xJUpQqyfVKpfAXVgtaoBp7kf1zpfD976JC14bUSH95DaL0p5ASCXTtUxOVesd8GUx1oVVdfm5Ab+Bc0gib672WwFjxkkJ2q8+YlFxr5DXpAvmQhbTMIqJPZM3dwwJFfW8tKeOImbMTWsetK/zLDfBdJCIidWJGUSm6LsJjlRRMl04pZBBPMUaSbTJOmzoNGG2s+032NgMV+0G2awVIKpL9VFyEpkEOK+HvUCLYxMnSxMvH479lTWbIZBhMlljVS5Pdco8xTBWjTd9IuFTS1xJJJVG4MhAlQzsiKYGaeiMZpe+JKUe4qpE3XXmsepymKNt0Xt8xSJSqN8LWu03F9GiKY2Qc/OuGSNpkr+/ey2QRvqbMAFrKI4jxkg3bkzHsQms+z7kW9YKNYeaaMuWifpxhGGYUabJb7jGGYZhRZD7PuRb1gk3pHErnkDKBtiv+gjYUJR5UINS5iSjCJsqaNSBE1XQB2G1hdBifNKpmvcVKhaL9JAt1VUkWIm9NubZUXluq4MUg44LWuRFv+qCRtSpCkNo+UmOm6LYUoZ5MCl+7lioJ2eBxdl4aKUKudKIkaRobjt3kxYnq1si2tA8IwMv6CyEBd92NAVRvKwYjJBEmEaXwCAAjlfeod4aUJe5og6TGt92ZB+F5ZgSh97EQIdomlRf9ECpEwSBDtMvQbSAWOaKvMd1cf12E+k9dxNkCvsWAjCPeqMkoqNiO2sgbfdna6Fr9fVbWtoUoWV1kLKptmaaQQF12ARAia9QOhjFE9pBuC/9bVf8a06XJbrnHGGZQhIoj/sJ+0U1hILy4gPHjKIIAj1HSy8UXhYmiSDS65FBi6hPzap1b3dhsRtso1EbQ6FkJfU7veLhGvWPDUN8egG6TSJsSPpJGxZME3Zb142FsZgT25vOca1Ev2ES3A9GdAGQBZScNUkgYL9whqnOCclSA9Fkr4oUa7MKtIGN1CzUiWlGmMjrlkrS+aF8XXg3FL+h6DllJiXTplGlKeo+RRR0V0KDbA+D2kkSwRYjKQss+kBpBnkF6rmhAmqZient8siBLpUBqb9qUTFrcfUwnKhRN0piEIK+pg1aQEgoisdeO9LiKPn5ybTTCIrQo4t5Mw1CmTPU+Z7oTQGZh09PT0X7xjZCl8wEobYr7HsnEO3yMVF6dkQqAVNMhDayQDk1hRP/UuchRVMdUek1OUVxk6JcZKjEwQNOxquPuihVmMvGQ6nNiZxRNjwzp5dLbPiVEtO32kRCRfRY1r69N7XJ4UprslnuMYYbBCYsV5PdTKBFKLJTwWZBSifB7rgRMEbadT1uRcovy3qJiGb2pf0D9/TtVJluszUQkp1yk9b5GmQoKuz3913HHdMfrvx0cS1KIeEFGtmXDdt1CbVBl8EGZz3OuRb1gY5i5pmMMVI1npzMPjAfDMIuTJrvlHmMYhhlF5vOca3Ev2LrjQJ7ayJTrzZUEDzX1RtLIU0U8xHu7idBIXRqkaJDiFkqFfmBaB/nrNAs7aRkK8qspSdQznqR+TKQ23S/J/LhI07APfZ/0/RExEpdSJUmvOurkpnWrEgKpcuF24VNLy2dov+2Okwvjv4BV70adZzlVsictKJWy1mutiWgARHj10jNnU50EiZIJ473PUgCCvEtDNoIUto56u7njd4Z0nxWmpwOCH2eYWoypiaSRfhoi3L/CyuEbISFc+i89VN6BSKidoamK0o+5gn9UUxjtWG3UjNolRYSP3DmjplUJzQSIWmjMcmjNvbzr3SgMjEuNJ1kEvYIA1n6AerRFbCRdcJBceG1Mrd1qiqqV4+U+XoRJhu1UhYwGmqYuRPx5h8gb2RY2BXQIm9Nkt9xjDDMVhBKQ9uYpisILT2hokhKnIawuu4QGMmszOoX/HVYm3JtUpr7sNxa9Ys14HHnzE4lKtLw8djxGe6PRfWK7gegYU2EyoQ/aQ42OVdMe6ZjEZNGzcDwq/d88bu2QEj56JjPlt4WUPpImlPSpkFXBkbpo20wwn+dci3vBxjBzTEcbkqJBxueBt4dhmMVJk90C2HYxDDO6zOc516JesInuBEQ3sx5cGxETElDkstTVdtEoGY2aOTlrHaT8m6Jq5SGtJzyqKUnJoYkIQFGQyFqKWiJBEek952U9W4i8+YJ/6qH3JzWYV0MQT5LzSgthQEVH0shDErxjwWscar/QIBGtKjVsIbLmjkG8QQ1OeAMq3W1QaOdaNsR5FiKI1bNxo9QDXZjwXBphy4e86XWDt2ce1L8yo4iQXgyn4ieOtv33WyqgGxpXR6IfDdG2KqagggHViFmoZxOkZjeuqaX7DBFJq9iqfsJJUvR6UYUgHvRJcLZFGwHtVJM0eX0Fn1EgtYkEj2iNhovoK9SLJTVF1aiIk7OrUQ2bFJEdjDzkzoPd910OTpPdco8xTBM0Uga4/JsQMXN1bFHNE6SXb9eQUDYpoOjAi44gU0Cn8M9AtxzPZLjvO7r8G4ibYne0qIzXb7szD1GyuFauIGk9dJ9Y6AM1+w9Gv6bYk0XVqpG3yaNqvdtZ1a74cREdWyVBXETa6KdUwtt2lclIgMRF1oSKa95c7Rrdl0bmpsp8nnPxgq2blumQmizMNOmlRdKLao9RXbwBZdqQ265Z0Pnj+kmL9hMdozWEzxMM6mzllz3tPQ6Fio5IFRZ/SerTK8v+bEnve6sTIGmALm5KoQ+3HW7iclLRKzQCSK/SqIcswk9VmJQ0qaPR/kNOQEAYAUGmq35bC/isTWMa16rOpjYt2GivpSFFItHRJloo+vF54O1h5hhyzwY1SITbjdzLRiWRAqRLpxS6S2yMCgu2ogC6eTmOFMYv5Ihqqu51MvWeIhFWomPOTqXVfpFuOwk2l6hd0vdaey36QETnwlNd+qAh22RcRb0iQxqiFAZ59Mtv7aAS0eKtcqI95xT3WIsnWW5xVqpExraP2kMhUC86IkJyt5JUPVI0uMgGo8luAWy7mGakEtB9cs/cpLzUfwz2RnlpnMIv8FQGmEL4cZceKchryMJA1ag3xvLuBoURPeOTbZfn2KvYSP8/2Xbd3/2YzoJNVvYZTEQkHD+jTqHKgs3ZJKEElPsMSEqkSlW02Kofjxdv/fCOsEU051rUCzaGmWvKfOpeQzEf8qkZhlmcNNkt9xjDMMwoMp/nXIt6wSaKLkTRBYwOHmoho2ibH7d/91AVFamO626vBHf1PKQs0yIBiBQwtqBWdEE+odR7t01FdCQq3KfF/E5oRBHPtUqDh9qlLw3otaZpkGEMUdqOtp4LJYP0rhQCKT1F5xgxwid3FhVPNO015MdImiVNvewXHTdRCDykcHYrUbW6w9BPzpiQ0mRABUhCNC8fMq4+n709zBzhRIKcXSFp3KbohvZlIPEco6NovU9jpOIlRpOUSB3sAwCvqU0ibD3iR3XU2SZqj3r6Rdr3UW170tSCZIpiJO5ZhmREGiHgGn0YI+AaRhaaRNlUuO+lDhLhBenVRqPsPn1ysnOhXnEZ/00FRiSJpgFxJE2RliZRWiVJiRTEK07tqusrOox6NkfYmOlCUyPplktx1IAXIKlG2oTtKWmUQGHTIMtxe/8qkglQaB9xaxcGubVhNGJGhUF6o2ou8mai7fL/8fNSER4nlnKSPmxTi3NPJjpSjaS5/Wl0zD3eTzhksu3U2/MQSRNKQmVuDirJOIm8yfo0SCo0ImVv3zZBerlNh70953r00Ufxd3/3d/je976HHTt24IADDsA73/lO/M3f/A2yLOt/AMKiXrAxzFzTNQZ5jbeny5MehmFGlCa75R5jGIYZRfb2nOvhhx+G1hr/9E//hMMOOwwPPvggzjnnHOzatQtXXHHFUMda1As2UeQQRQ6jiZdZCFBZe++joNGmpnqJmgibMDp4patfCH+cWBY7qjVxRf5UOlvHrx9H2Ehhv/OQE1n/qK6lxmsd1bM1IEXw8kpyvjTaZgyNqknv1UpV6ZkGYin/qnc38hiRYnoaWaOPuden+BozYXyz7AKAoRFCml9On0u2adDMHxMmqm3zAiRD3vTzWWKWmVui6L9DJTBFWYMrZBk1AlDW1bp7XHf9PS6M9hF9GO0918LoIFSki2DDaFRtkAibo2KjoqhaXX0aESMxMokjb/Y9Ndbekm0hwj0uhIBwYlAuWgUTbftImjRBVEQaHzVTCJEsJ4cPlDbN2bNUxuID/ajaOudEliRqJiuv655Hx6J6NhJJq4vICfTa3GFgWX9mqriICa1lC3VrsQCJl+lXCsbuX3SKKPLmIje6MBD2RjVFELko8sJH2Mpom7UfBYmKV6Jn8TbsNo289e7r/qaPhzHhj1HHIPOGuvq1crx+n36iI83S/M3btFaNRtXc56dSVRsRK0VHeiNpKlNoEhqhx6kia8YGZW/PuU477TScdtpp/u9DDz0U27dvx5e//GVesA2FFQQRRscLFldMTyYHAKaWfqPjnm21SBUt0hyC/i1lUKGs63lk9wkqkaSwn6QUmep7KnfoHRsQQSYBBUkxFCJMVcp71hpYE8LR2iBKm6yDRsDrCu+rKUQUP5kCfKqmNGKoG1OTT6RMiUT0d90+w9DRxou2ROPspWaa8PervafRu2gDyl6B3mYIGVKphfRp2sZom3ttF2/UueScTlJHqZW1dqxp8UZtVY3TK150xc4yP04FSOgCj6ZKDklwLCEID0H42gYF4VMihRHe9JeOGudwgt9WMnwK9Nat9pcMrx/bLLowo2OS2NOgxluO0dTH8nE7LkXsUKOLN/L+q+PD/AI02S2AbRdTj6h4CPzCrdK00P+lVLTQ8ou3TEHbiYMohF/ICalhyGLQLd6o0InROmwXBsbuowrjj1OKiNWlPPamNlZTIusWZvQ5vaIjgzt2gOFFR+h2NSWS7t+U+igFTVkMC7BowVZJfey3SKuKi9Qt0txjbtxRt1Crfq/6MQpzrmeffRarVq0a+nmLe8HGMHNMYUxDASxPehiGGU2a7JZ7jGEYZhTpN+d67rnnovFWq4VWqzVjr//II4/gyiuvHDq6Biz2BRvxIntvckPqI428DeXVnUyUxNSkGVXwcv9F0TfCN2kxf12hft37GDCKSJI5w5gIHmcjDNmG91ZHvYtAxid7rT7RP+fFlhBRJM0/DvhQpWnwCvceM2xHHvM+0bQmj3oTeYO3Z9h+bswig+r3CwVjSFojtWmCRtJIGqQhkTTX5oPapOo2bSVS/W4aDTQE/XvP2W27EFDFxtalacsk7C8kjIrbkoTnTm4npAjRNOfpFkJA9eQ1uLRp6+GF8c8TJjQIUSLYA0PtTXR5ms8pFv4g4ySSFqcwxhG2nujZkFG1/mfYTJPdAth2Mc0IKXw/NQeNgJXRlGBrqBiJSx4yUvvoiylMFG1z0HGjDYmq6RBJK4zPKNAkwmYKDUVCYfWRt3D+k42V2/EdFjs0pp7aNx2J/+oYjaQBqE13pL3Uqj3RQrStXpp/sqgafc34OfFctBpd85G1ITLzgf5zrgMPPDAav+SSS3DppZf27H/RRRfh05/+9KSvtW3bNhx++OH+78cffxynnXYazjjjDJxzzjnDnTgW6YLNuJX0C7t6H6Rf6uqEoGa8/4tNtmBzqwiiYaipUhsZL/p/KxsXbII0y5aJV39zDXYhEz8JMioL9SIqhVFlHYsWyisgFjo0vM51KNYsjPHzusKEuo+qgprb1sYM1KyQTi5ozzWgN2WyKbWo7liTMdUF264XnrePDTZp2QNdm6LZGba5CLPgcd+p559/3g7ULKKM9nVaTQswEY2T1MeqA6uuDpe+lv97wO/qlBdsKl6w0T6SdB9n+8g+RghvqwyCGq27v8u0xjDhCsqvxs8DtAlVr9ogylsPCzYyNuB6pd+CDU0LNr/fYAs2+nqTLdjc92oQ29VktwC2XUyM+z7tysvU6+qCDYh91obIrNLFFX3cO0bpwqyyyPLjxlTSIBsWbN4oaGhyjr5h9xALNuq4rc7cZioCrWoWe4ocWg67YKvRDYAwcB0bJUINsITw4wI6OJm0gDTOMUjmYCaMw5BaOKLHILWAIA59UdFqkBWz4hZs/ns1Q3OuX//611ixYoUfb4quXXjhhTj77LMnfa1DDz3Ub//mN7/B61//ehx//PH453/+54HOtcqiXLC5H6aDX/uWOT4TZqHyu9/9DitXrmx8PMsyrFu3DjfueLxxn3Xr1g0t+8osXJzdeunLjpjjM2EWMs8//3yj7RrEbgFsu5iAs1unfPuOOT4TZiEzmd0CBp9zrV69Gu12u+/rrVmzBmvWrBno3B5//HG8/vWvx/r163HddddBTrEdjTCDLksXEFprbN++HUceeWTPaprp5bnnnsOBBx7I12oAnn32WRx00EH4/e9/j3322WfSfcfHx9HpdBofz7JsIMPBLA7Ybg0H263BcdfqoYcewste9rJJJxT97BbAtosJsN0aDrZbgzOM3QLmZs71+OOP48QTT8TBBx+M66+/Hor0N123bt1Qx1qUETYpJV784hcDAFasWME3xYDwtRqcQTwo7XabJzXMwLDdmhp8rQbnxS9+cV/bxXaLGQa2W1ODr9XgDGK3gLmxXbfddhseeeQRPPLII3jJS14SPTZsvGxqcTmGYRiGYRiGYRimlrPPPhvGmNp/w8ILNoZhGIZhGIZhmBFl0S7YWq0WLrnkkhntr7BQ4Ws1OHytmNmEv1+Dw9dqcPhaMbMJf78Gh6/V4Cy2a7UoRUcYhmEYhmEYhmHmA4s2wsYwDMMwDMMwDDPq8IKNYRiGYRiGYRhmROEFG8MwDMMwDMMwzIjCCzYAl112GY4//ngsWbKkb7PjxcZVV12FQw45BO12Gxs3bsQ999wz16c0kvzwhz/Em9/8ZhxwwAEQQuDb3/72XJ8Ss8Bhu9UM263BYLvF7G3Ybk0O267+LFa7xQs2AJ1OB2eccQbe//73z/WpjBRf//rXsWXLFlxyySW4//778cpXvhKnnnoqnnrqqbk+tZFj165deOUrX4mrrrpqrk+FWSSw3aqH7dbgsN1i9jZst5ph2zUYi9VusUok4atf/SrOP/98PPPMM3N9KiPBxo0b8epXvxr/+I//CADQWuPAAw/Eeeedh4suumiOz250EULgW9/6Fv7iL/5irk+FWQSw3YphuzU12G4xexO2W72w7RqexWS3OMLG1NLpdHDffffhlFNO8WNSSpxyyinYunXrHJ4ZwzBMPWy3GIaZj7DtYvrBCzamlt/+9rcoigJr166NxteuXYsdO3bM0VkxDMM0w3aLYZj5CNsuph8LdsF20UUXQQgx6b+HH354rk+TYRjGw3aLYZj5Btsthpl9krk+gdniwgsvxNlnnz3pPoceeujeOZl5yOrVq6GUwpNPPhmNP/nkk1i3bt0cnRXDLGzYbk0PtlsMs/dhuzV92HYxABXWBQAACIFJREFU/ViwC7Y1a9ZgzZo1c30a85Ysy7B+/XrcfvvtvphTa43bb78dmzdvntuTY5gFCtut6cF2i2H2Pmy3pg/bLqYfC3bBNgyPPfYYdu7cicceewxFUeCBBx4AABx22GFYtmzZ3J7cHLJlyxacddZZOOaYY7BhwwZ8/vOfx65du7Bp06a5PrWR44UXXsAjjzzi//7lL3+JBx54AKtWrcJBBx00h2fGLFTYbtXDdmtw2G4xexu2W82w7RqMRWu3DGPOOussA6Dn3x133DHXpzbnXHnlleaggw4yWZaZDRs2mB//+MdzfUojyR133FH7HTrrrLPm+tSYBQrbrWbYbg0G2y1mb8N2a3LYdvVnsdot7sPGMAzDMAzDMAwzoixYlUiGYRiGYRiGYZj5Di/YGIZhGIZhGIZhRhResDEMwzAMwzAMw4wovGBjGIZhGIZhGIYZUXjBxjAMwzAMwzAMM6Lwgo1hGIZhGIZhGGZE4QUbwzAMwzAMwzDMiMILNoZhGIZhGIZhmBGFF2wMwzAMwzAMwzAjCi/YGIZhGIZhGIZhRhResC0wfve732G//fbDo48+Oq3jnHjiiTj//PNn5Jymy5lnnonPfOYzc30aDMPMImy7GIaZb7DdYvYWwhhj5vokmJljy5YteP7553HNNddM6zg7d+5EmqZYvnz5DJ3Z1HnwwQfx2te+Fr/85S+xcuXKuT4dhmFmAbZdDMPMN9huMXsLjrAtIHbv3o1rr70W73nPe6Z9rFWrVk3LcHQ6nWmfg+PlL385XvrSl+KGG26YsWMyDDM6sO1iGGa+wXaL2Zvwgm2EeclLXoIvfelL0dhdd92FJUuW4Fe/+lXP/v/1X/+FVquFY489Nho/8cQTcd555+H888/Hvvvui7Vr1+Kaa67Brl27sGnTJixfvhyHHXYY/vu//zt6Dg3Pa61x+eWX47DDDkOr1cJBBx2Eyy67LNp/8+bNOP/887F69WqceuqpAICJiQl84AMfwH777Yd2u40TTjgB9957b/S8D3zgA/jwhz+MVatWYd26dbj00kt73tub3/xm3HzzzUNdP4Zh5ga2XQG2XQwzP2C7FWC7NXrwgm2E2bhxY3SjGWNw/vnn44ILLsDBBx/cs/+PfvQjrF+/vvZY119/PVavXo177rkH5513Ht7//vfjjDPOwPHHH4/7778fb3jDG/Cud70Lu3fvrn3+xRdfjE996lP42Mc+hoceegg33XQT1q5d2/MaWZbhzjvvxNVXXw0A+PCHP4xvfvObuP7663H//ffjsMMOw6mnnoqdO3dGz1u6dCnuvvtuXH755fjbv/1b3HbbbdGxN2zYgHvuuQcTExODXTyGYeYMtl0Btl0MMz9guxVguzWCGGZkufzyy80f/dEf+b+vv/56s27dOvP888/X7v+Wt7zFvPvd7+4Zf93rXmdOOOEE/3e32zVLly4173rXu/zYE088YQCYrVu3+ud88IMfNMYY89xzz5lWq2WuueaaxnN93eteZ44++uho7IUXXjBpmpobb7zRj3U6HXPAAQeYyy+/vPbcjDHm1a9+tfnIRz4Sjf3kJz8xAMyjjz7aeA4Mw4wGbLsCbLsYZn7AdivAdmv04AjbCHPsscdi27ZteOGFF7Br1y789V//Nf7+7/8ey5Ytq91/z549aLfbtY+94hWv8NtKKbzoRS/CUUcd5cec5+app57qee62bdswMTGBk08+edLzrXqafvGLXyDPc7zmNa/xY2maYsOGDdi2bVvtuQHA/vvv33MeY2NjANDojWIYZnRg2xVg28Uw8wO2WwG2W6NHMtcnwDSzfv16SClx//3347vf/S7WrFmDTZs2Ne6/evVq/P73v699LE3T6G8hRDQmhABQ5k1XcTduP5YuXTrQfoOcW/U8XDh/zZo1U3oNhmH2Hmy7Amy7GGZ+wHYrwHZr9OAI2wizZMkSHHXUUfjmN7+JK664Ap/73OcgZfNHdvTRR+Ohhx6a8fP4wz/8Q4yNjeH2228f6nkvfelLfX61I89z3HvvvTjyyCOHOtaDDz6Il7zkJVi9evVQz2MYZu/DtivAtoth5gdstwJst0YPjrCNOMceeyyuvPJKvOUtb8GJJ5446b6nnnoqLr74Yvz+97/HvvvuO2Pn0G638ZGPfAQf/vCHkWUZXvOa1+Dpp5/Gz372s0nlbJcuXYr3v//9+NCHPoRVq1bhoIMOwuWXX47du3cPLYP7ox/9CG94wxum+1YYhtlLsO0qYdvFMPMHtlslbLdGD16wjTivfOUrkaYp/uEf/qHvvkcddRRe9apX4V//9V/x3ve+d0bP42Mf+xiSJMHHP/5x/OY3v8H++++P973vfX2f96lPfQpaa7zrXe/C888/j2OOOQb/8z//M5RxGx8fx7e//W3ceuut03kLDMPsRdh2se1imPkG2y22W6OKMMaYuT4JppnXv/71eNWrXoXPfOYzA+1/yy234EMf+hAefPDBSUP584kvf/nL+Na3voX//d//netTYRhmQNh2se1imPkG2y22W6MKR9hGEK01nn76aVx77bX4+c9/jv/4j/8Y+LlvetOb8POf/xyPP/44DjzwwFk8y71Hmqa48sor5/o0GIbpA9uuGLZdDDP6sN2KYbs1mnCEbQT5/ve/j5NOOgmHH344rrvuOmzcuHGuT4lhGKYvbLsYhplvsN1i5gO8YGMYhmEYhmEYhhlRFkbCLcMwDMMwDMMwzAKEF2wMwzAMwzAMwzAjCi/YGIZhGIZhGIZhRhResDEMwzAMwzAMw4wovGBjGIZhGIZhGIYZUXjBxjAMwzAMwzAMM6Lwgo1hGIZhGIZhGGZE4QUbwzAMwzAMwzDMiMILNoZhGIZhGIZhmBGFF2wMwzAMwzAMwzAjCi/YGIZhGIZhGIZhRpT/DwQvw/mr9B9XAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plot the actual measured fields\n", "fields_meas = sim_data3[monitor_intermediate.name].colocate(x=xs, z=ys)\n", "make_cart_plot(\n", " ys,\n", " xs,\n", " fields_meas.Ex.isel(f=0, y=0),\n", " fields_meas.Ey.isel(f=0, y=0),\n", " fields_meas.Ez.isel(f=0, y=0),\n", ")\n", "plt.suptitle(\"Measured fields\")\n", "\n", "# projected field without approximations - get them in Cartesian coords\n", "fields_proj_noapprox = projected_field_data_noapprox.fields_cartesian\n", "make_cart_plot(\n", " ys,\n", " xs,\n", " fields_proj_noapprox.Ex.isel(f=0, y=0),\n", " fields_proj_noapprox.Ey.isel(f=0, y=0),\n", " fields_proj_noapprox.Ez.isel(f=0, y=0),\n", ")\n", "plt.suptitle(\"Projected, no approximations\")\n", "\n", "# projected field with approximations - get them in Cartesian coords\n", "fields_proj_approx = projected_field_data_approx.fields_cartesian\n", "make_cart_plot(\n", " ys,\n", " xs,\n", " fields_proj_approx.Ex.isel(f=0, y=0),\n", " fields_proj_approx.Ey.isel(f=0, y=0),\n", " fields_proj_approx.Ez.isel(f=0, y=0),\n", ")\n", "_ = plt.suptitle(\"Projected, with far field approximations\")\n", "\n", "# RMSE\n", "Emag_meas = np.sqrt(\n", " np.abs(fields_meas.Ex) ** 2\n", " + np.abs(fields_meas.Ey) ** 2\n", " + np.abs(fields_meas.Ez) ** 2\n", ")\n", "Emag_proj_noapprox = np.sqrt(\n", " np.abs(fields_proj_noapprox.Ex) ** 2\n", " + np.abs(fields_proj_noapprox.Ey) ** 2\n", " + np.abs(fields_proj_noapprox.Ez) ** 2\n", ")\n", "Emag_proj_approx = np.sqrt(\n", " np.abs(fields_proj_approx.Ex) ** 2\n", " + np.abs(fields_proj_approx.Ey) ** 2\n", " + np.abs(fields_proj_approx.Ez) ** 2\n", ")\n", "print(\n", " f\"Normalized RMSE for |E|, no far field approximation: {rmse(Emag_meas.values, Emag_proj_noapprox.values) * 100:.2f} %\"\n", ")\n", "print(\n", " f\"Normalized RMSE for |E|, with far field approximation: {rmse(Emag_meas.values, Emag_proj_approx.values) * 100:.2f} %\"\n", ")\n", "\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Without approximations, the projected fields match the measured ones extremely well! Instead, when approximations are used, the match is very poor. Thus, the accurate field projections can be extremely useful when the projection distance is not large compared to the structure size, but one still wants to avoid simulating all the empty space around the structure.\n", "\n", "We should also note that this more accurate version of field projections can be run on the server in exactly the same way as before: just supply the projection monitor with its `far_field_approx` field set to `False` into the simulation's list of `monitors` as before. Everything else remains exactly the same, as shown below." ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:51:25.757107Z", "iopub.status.busy": "2023-03-27T23:51:25.756935Z", "iopub.status.idle": "2023-03-27T23:51:26.003738Z", "shell.execute_reply": "2023-03-27T23:51:26.003284Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAE8CAYAAAAVAG93AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABRxUlEQVR4nO3deZhjVZ0+8Pfe3CVVWSrpSvVGN0uDAjYKDTSMKLK1gKDSCj0wM7LpoLL5Q9QRHhkQFHtUhB6hAWFEBpQZBh8FFUZZbEARlXUGUERGkG6gl1QnlaUqudv5/VHcdFKVvZLcLO/neerprtRNcpJbde6bc8/9HkkIIUBEREREbSN73QAiIiKifsfARURERNRmDFxEREREbcbARURERNRmDFxEREREbcbARURERNRmDFxEREREbcbARURERNRmDFxEREREbcbA1aUefvhhSJKEhx9+2OumEBFRm7HP738MXB67/vrrceutt3rdjKbccccdWLdundfNKPHd734Xe++9N/x+P972trfh2muvrfu++XweX/ziF7F48WIMDQ3h4IMPxgMPPFB229/85jd473vfi+HhYSxcuBCf+cxnkMlkWvUyiKhPsc9vrZ7q8wV5avny5eKwww6bdbtt22JqakrYtt35RtXp+OOPF7vssovXzSi48cYbBQBx4okniptuukmceuqpAoD4l3/5l7ruf8oppwhFUcTnP/958Z3vfEe8+93vFoqiiF/96lcl2z3zzDPC7/eLFStWiBtuuEF86UtfErqui2OPPbYdL4uI+gj7/NbptT6/KwJXJpPxugmeqfTH1wu66Y9vcnJSjI6OiuOPP77k9n/4h38QgUBAbN++ver9f/e73wkA4pvf/GbhtqmpKbH77ruLd7/73SXbfuADHxCLFi0SExMThdtuvvlmAUD84he/aMGrIepv7PMP87oZTWGfP7c+v+WBa9OmTeLjH/+4WLRokdA0Tey6667i05/+tMjn80IIIb73ve8JAOLhhx8WZ599thgbGxORSKRw//Xr14t3vOMdQtM0sWjRInHOOeeIRCJR8hwvvfSS+OhHPyoWLFggdF0XO+20kzj55JNFMpksbHP//feL97znPWJkZEQEAgHx9re/XVx88cU121/P/XK5nLj00kvF7rvvLjRNE0uWLBFf+MIXRC6Xm/V4t99+u1i5cqUYGhoSkUhEHHrooYUdtMsuuwgAJV/uH+KGDRsEALFhw4aSx/uv//ovsf/++wu/3y9GR0fFP/zDP4hNmzaVbHP66aeLQCAgNm3aJE444QQRCARELBYTn/vc54RlWTXfg7vvvlscd9xxhX24bNkyccUVV5Tc97DDDpvV9mp/iLfccosAIL773e+W3H7llVcKAOLee++t2a5q7r333rKP85vf/EYAELfffnvV+3/hC18QPp+v5A9KCCG+9rWvCQDitddeE0IIMTExIRRFEV/4whdKtsvn8yIYDIpPfOITc3odRL2GfX4p9vnT3ve+94l3vetdZX/29re/XRx99NE121VNL/b5SmMnIKt74403cNBBByGZTOKTn/wk9tprL7z++uv44Q9/iMnJSWiaVtj2nHPOwdjYGC699FJks1kAwJe//GVcfvnlWLVqFc4++2z86U9/wg033IAnnngCjz32GFRVhWEYOOaYY5DP53H++edj4cKFeP311/Gzn/0MyWQSIyMjeOGFF/DBD34Q73rXu3DFFVdA13W8/PLLeOyxx6q2v577OY6DD3/4w/j1r3+NT37yk9h7773x3HPP4ZprrsFLL72Eu+++u7Dt5Zdfji9/+cs45JBDcMUVV0DTNPzud7/DL3/5Sxx99NFYt24dzj//fASDQXzpS18CACxYsKBi+2699VaceeaZWLlyJdauXYstW7bgX//1X/HYY4/hmWeeQSQSKWxr2zaOOeYYHHzwwbjqqqvw4IMP4lvf+hZ23313nH322VXfh1tvvRXBYBAXXnghgsEgfvnLX+LSSy9FKpXCN7/5TQDAl770JUxMTGDTpk245pprAADBYLDiY5555pn40Y9+hAsvvBDvf//7sXTpUjz33HO4/PLL8YlPfALHHXdcYdtEIgHbtqu2EQCGh4cxPDwMAHjmmWcAAAceeGDJNgcccABkWcYzzzyDj33sYxUf65lnnsHb3/52hMPhktsPOuggAMCzzz5baLNlWbOeR9M07LfffoV2EA0C9vns8ys59dRTcdZZZ+H555/HPvvsU7j9iSeewEsvvYRLLrmkcNvA9Pl1R7M6nHbaaUKWZfHEE0/M+pnjOEKIHZ923vve95ak561btwpN08TRRx9dcg77uuuuEwDELbfcIoSYPpcKQNx1110V23HNNdcIAGLbtm0Ntb+e+91+++1CluVZ53jdc8mPPfaYEEKIP//5z0KWZfGRj3xk1jl5970QovLw8sxPO4ZhiPnz54t99tlHTE1NFbb72c9+JgCISy+9tHDb6aefLgCIK664ouQxV6xYIQ444IDqb4KYHqqd6VOf+pQYHh4u+UTX6PDym2++KebNmyfe//73i3w+L1asWCF23nnnWZ8wyn0KLPd12WWXFe5z7rnnCp/PV/Z5x8bGxCmnnFK1bcuXLxdHHnnkrNtfeOEFAUDceOONQggh7rrrLgFAPProo7O2XbNmjVi4cGGtt4Gob7DPZ59fSTKZFH6/X3zxi18suf0zn/mMCAQCJaeVB6XPb9lVio7j4O6778aHPvShWUkQACRJKvn+rLPOgs/nK3z/4IMPwjAMXHDBBZBluWS7cDiMe++9FwAwMjICAPjFL36BycnJsm1xU/8999wDx3Hqfg313O+uu+7C3nvvjb322gvxeLzwdeSRRwIANmzYAAC4++674TgOLr300pLXA8x+L+rx5JNPYuvWrTjnnHPg9/sLtx9//PHYa6+9Cu9PsU9/+tMl3x966KH4y1/+UvO5hoaGCv9Pp9OIx+M49NBDMTk5iRdffLHhtrsWLlyI9evX44EHHsChhx6KZ599FrfccsusTxg/+MEP8MADD9T8Ou200wr3mZqaKvk0Xczv92Nqaqpq26ampqDretn7uj8v/rfStrWeh6hfsM9nn1/NyMgITjjhBPzHf/wHhBAApkfh7rzzTqxevRqBQKCw7aD0+S07pbht2zakUqmSocNqdtttt5Lv//rXvwIA9txzz5LbNU3DsmXLCj/fbbfdcOGFF+Lqq6/GD37wAxx66KH48Ic/jI997GOFP8yTTz4Z//Zv/4Z//Md/xEUXXYSjjjoKH/3oR3HSSSfN+kMoVs/9/vznP+OPf/wjxsbGyj7G1q1bAQD/93//B1mW8Y53vKOu96OWSu8PAOy111749a9/XXKb3++f1cZoNIpEIlHzuV544QVccskl+OUvf4lUKlXys4mJiUabXuKUU07B97//fdx777345Cc/iaOOOmrWNu95z3saftyhoSEYhlH2Z7lcrqRDqXT/fD5f9r7uz4v/rbRtrech6hfs86exz6/stNNOw5133olf/epXeN/73ocHH3wQW7Zswamnnlqy3aD0+S2dw9WIuRyYvvWtb+GMM87APffcg/vvvx+f+cxnsHbtWvz2t7/FkiVLMDQ0hEcffRQbNmzAvffei5///Oe48847ceSRR+L+++8v+ZQ1s0217uc4Dt75znfi6quvLvsYS5cubfp1tVKl11hLMpnEYYcdhnA4jCuuuAK77747/H4/nn76aXzxi19s6NNjOePj43jyyScBAH/4wx/gOM6sDnHbtm11nc8PBoOFOQSLFi2CbdvYunUr5s+fX9jGMAyMj49j8eLFVR9r0aJFeP3112fd/uabbwJA4f6LFi0quX3mtrWeh2hQsc9vr27s84855hgsWLAA3//+9/G+970P3//+97Fw4UKsWrWqZLuB6fPrPvlYg23bIhwOixNOOKHqdu75/Jnn/O+44w4BQNx3330lt+fzeTEyMiJOPPHEio/52GOPCQDiS1/6UsVt3KvhHnjggdovpsr9jjvuOLHTTjuVnJMv55vf/KYAIJ555pmq2+2zzz51nc93r7y4/vrrZ2279957l5ynd69Ymemyyy4TtXb5j3/8YwFAPPLIIyW333TTTbOuoPngBz/Y8CXCJ598shgeHhZr164VAMS3vvWtWds0cz7fndcw84oV93fjtttuq9quz3/+82WvWHH3v3vFSjKZrHrFysc//vFG3g6insU+vxT7/PI++9nPimg0KrZv3y6CwaD47Gc/O2ubQenzWzaHS5ZlrF69Gj/96U8LIxjFxFvncCtZtWoVNE3Dt7/97ZJtv/vd72JiYgLHH388ACCVSsGyrJL7vvOd74Qsy4Uhv+3bt896/P322w9A+WFBVz33+9u//Vu8/vrruPnmm2dtOzU1Vbj6ZvXq1ZBlGVdcccWsTwjFry8QCCCZTFZsk+vAAw/E/PnzceONN5a8hv/+7//GH//4x8L7M1fup6TiNhqGgeuvv37WtoFAoKHh5h/+8Ie488478S//8i+46KKLcMopp+CSSy7BSy+9VLJdM+fzjzzySMybNw833HBDyWPdcMMNGB4eLnl/4vE4XnzxxZL5ICeddBJs28ZNN91UuC2fz+N73/seDj744MKn2JGREaxatQrf//73kU6nC9vefvvtyGQyWLNmTd3vB1EvY5/PPr8ep556KhKJBD71qU8hk8mUvXJwYPr8uqNZHTZt2iQWLlwohoeHxQUXXCC+853viC9/+cti+fLlhboqlT7tCLEjjR999NHiuuuuE+eff77w+Xxi5cqVwjAMIcR0Gt9pp53EBRdcIK6//nrx7W9/W6xcuVKoqioef/xxIYQQ/+///T+xYsUKcckll4ibb75ZXHnllWKnnXYSS5YsKanbMlM997NtWxx33HFCkiRxyimniGuvvVasW7dOfPrTnxbz5s0reV3//M//LACIQw45RFx11VXi2muvFaeddpq46KKLCtucc845QpIk8ZWvfEX8x3/8h3jooYeEEOVrsrjv3cEHHyzWrVsnLr74YjE8PCx23XXXkro1c/m0E4/HRTQaFbvssov41re+Ja6++mqxYsUKse+++85qzze+8Q0BQHz2s58Vd9xxh/jJT35S8XG3bNkiYrGYOOKIIwqfFOPxuFiwYIF497vf3ZLqyuvXrxcAxEknnSRuvvlmcdpppwkA4sorryzZzn0fZta7WbNmTeGTzHe+8x1xyCGHCEVRZn3ye+qpp4Su6yVVh/1+/5zryhD1Gvb57PPrsc8++wgAYu+9965r+3r1Wp/f8sKnf/3rX8Vpp50mxsbGhK7rYtmyZeLcc8+dVQSv3B+fENOXBO+1115CVVWxYMECcfbZZ5f8Yv3lL38RH//4x8Xuu+8u/H6/mDdvnjjiiCPEgw8+WNjmoYceEieccIJYvHix0DRNLF68WPzd3/2deOmll6q2vd77GYYhvv71r4vly5cLXddFNBoVBxxwgLj88stnDU/ecsstYsWKFYXtDjvssJIh7s2bN4vjjz9ehEIhAdQugnfnnXcWHm/evHlVi+DNVM8fnxDTQ7J/8zd/I4aGhsTixYvFP/3TP4lf/OIXs9qTyWTE3//934tIJCJQowjeRz/6UREKhcSrr75acvs999wjAIivf/3rNdtVj5tuuknsueeeQtM0sfvuu4trrrlm1qmASn98U1NT4vOf/7xYuHCh0HVdrFy5Uvz85z8v+zy/+tWvxCGHHCL8fr8YGxsT5557rkilUi15DUS9hH0++/xa3KD2ta99ra7tG9FLfb4kRI1xXyIiIqIm/eu//is++9nP4tVXX8XOO+/sdXM8w8BFREREbSGEwL777ovR0dFCzbJB5VlZCCIiIupP2WwWP/nJT7BhwwY899xzuOeee7xukuc4wkVEREQt9eqrr2K33XZDJBLBOeecgyuvvNLrJnmOgYuIiIiozVpWh4uIiIiIymPgIiIiImqzgZo07zgO3njjDYRCoaZWbyfvCSGQTqexePHiqovSElFvYf9M7eb18WOgAtcbb7zRNQuN0txs3LgRS5Ys8boZRNQi7J+pU7w6fgxU4AqFQgCAf/qnfypZud4wjMI6UpqmVf105W4Xi8WgqmrL2mYYRmF9rUgkAlmVkbSSJdtElAgUaccuS6fTePrpp7H/ciA0PPsx05PA0y8A+++/f+G1T78IE8jFSzf2xyCgYNu2bQAAXdcxMjLSipdWYJom4vHp5632HlfbH1NTU/jGN75R+nqIqOcV+ufPn4uhodqHJiEkGJYOAJDgQFONt26XASEhFt4KVbGqPURLTEyOIG9Ot2MsvA2S1Pnr0AxLQzIbAQBEAkloitHxNgghYVtqDACgq3mMDDe25mItpqUgnpoPSAKS5FTczjA1iLdmS2lKvmR/TE1Z+MZV6z07fgxU4HIP3ENDQwgGgwCmF6uUJAmyLEMIAUmSoOt6xeFGx3HgOA7C4TA0TWtJuwzDQDabLQQc0zQRCUVgyKV/NGElDFUuDXmSJCE0DIxU+P2RpOmOrCQ8OQagZku2c/QgxhNpBAIB6LqOXC4HWZZb+ovpvk5Zliu+v/XuD55yIOovO/pnBcHh6h9mHQHkzSH4FAmS5MARMhSfCl0x4AgJjuNDOCRDU9rbT6SnQvApIcwbnkLe1GGKMYyG4pA7GLoMS0U2FcNIyAYAmHYMI0NxaIrZsTY4QsJ4KobAsAJdzSNnhCArAqGhdO0718mwZGRNDbJsV3x/85YGyadAlhwIIUOSNOjqFOQZvwZeHT8GehJMPp+HZVlQFAVDQ0PQNA1CCOTz+VmrvbeLYRiIx+NQVRWxWKwwcpbYnoBjdqYNjhAY356EaZqIxWIYHR1FOBxGKpUqWR293bphfxBRd3PDlhASNDWHIS0HxWfBshXkrdZ8CK5HeiqE1GQY4eEURkPbEQvHYdoKxlMxOKIzB3TDUhFPxaD6LMTC2xALb4PqsxBPxWBYrTsDU40btkxbQSwcx2hoO8LDKaQmw0hPdW4kKW9psGwFis/CkJaDpuYghIS8OQSnS4pfDWzgKj646/r0cLCiKB09yBeHrdHR0cLIz+joKBRFQT6Rb3vocoTAeMqGaVmIxWKFUbtQKNTR0NUN+4OIutvMsKXI032CrhiF0GV0IHQVhy13FEdTzI6GruKwNRqeHlWTJYHRcLxjoWtm2HJH1UJD6Y6GruKwpb91OlWRna4LXQMZuEzTnHVwd3XqIF8ubLlkWUZkXgSSIrU1dBXCli0QmxeddYq0U6GrXNhyzdwfrNNLNJgqhS2XG7psxwfL9rWtHeXClqtToatc2HJ1KnRVCluuToWucmHLNTN0iQ6NPFYykIHLcZyyB3dXu0NXtbDlkmUZekRvW+gqCVshHzSt/B9lu0NXtbDlKt4fhtH5yaBE5K1aYculKwZ8sg1H+JDNBVrejmphy9Xu0FUtbLnaHbpqhS1Xu0NXtbDlKg5dnRj9rGYgA5csyxUP7q52ha56wpZLkqWS0GUarZkE6ThOadhSq/8atCt01RO2XO7+IKLBUm/YcmmKAVmykckFW3qQryds7WhDe0JXPWHL1a7QVW/YcrUrdNUTtlxu6AI4wtVx9ZZzaHXoaiRsuYpDV2J7Ys4jPI7jTE+QrzNsuVoduhoJWy5FUVpaioOIulujYcul+GwE/ZmWHeQbCVuuVoeuRsKWq9Whq9Gw5Wp16GokbLkU2YHq69yVm+UMZOBqRKvmEDUTtlxu6FIUBfF4vOnQ5TgOxsfHpyfINxC2XK0KXYZhNBy2XKwuTzQYmg1broA/25KDfDNhy9Wq0NVM2HK1KnQ1G7ZcrQpdRhNhyyXLdtPP2wo8etVhriNdcwlbLkmWEJkXgaqqTYWuQtgyzekJ8g2GLddcQ5dlWbBtu6mwRUSDYa5hyzXXg/xcwpZrrqFrLmHLNdfQNdew5Zrr/rBsH2zH11TY6gYMXHUqDl22bdcduloRtlxuyQg3dFlWfVWUhRA7wlYsVnGCfL2aDV3ZbBaO48Dn8zFsEVFZxVeUzSVsuZo9yLcibLmaDV2tCFuuZkNXq8KWq9n9kc0F4AgffLLdk2ELYOBqSHHoSiaTNUNXK8OWqzh0ZTKZmnOaJElCJpMpClutmXjeaOhKp9PIZDKQZZmT34moIsPSWha2XI0e5FsZtlyNhq5Whi1Xo6Gr1WHL1cz+yOSCkCXbk2WLWoWBq0E+nw+KosCyLIyPj1cMXe0IWy43dPl8PsRiMVhO+T8aISTEYjHYtt3SsOWqN3Sl02mkUikEg0EoykCtJkVEDWtt2HLVe5BvR9hy1Ru62hG2XPWGrnaFLVej+yPoz0DxeTsHa64YuJogyzKi0ShM0ywbutoZtorbEAwGYVkWMvnZfzSOkJDJx6AoCoLBYNtGlWqFLjdshcNhBAKtr4tDRP1F9ZktD1uuWgf5doYtV63Q1c6w5aoVutodtlyN7I+AP1vmEXoLA1eT3LUPZ4auToQtlyRJiMfj8EmlfzTuH4stpq9qbPeoUqXQVRy2vFqdnYh6S7uvJKt0kO9E2HJVCl2dCFuuSqGrU2HL1Q37o1MG8vyOEKLpmlqO40AIAdM0oaoqRkZGkEgksHXrVgSDQSSTSSiKgnA4XPek9nIsYcGxSttoChOi6A/QLa3gVydgiSi2JscQCU4gMxWEZfswpCYK25Vc1ShMwJrxh2yac6oJp+s6hoeHkUwmC687k8kgGAxC13UYhgHTNOf03gPg0j5EfU4IaU41qxwhQQgJplX58KarOQzrPiSzI4VlgDK5IIL+DHQ117GFn0eGk0hkotianI/gUAbJzAgUn43w8AQsuzOH5/DwxFttKD1+RIPTx49OvBf17A/TUub8uyGEt2NMDFwNcgNXPp+HbU9/EgsGg8jn88hms9B1HZqmIZ/Pz6mNtrALj+/KW3lY0o4QZ5omhoaGYDnAkH8KhqkjmwtAkgSCQ1nk8iqGhlSYpolcLrfjgYQNGDNfvwFIc/tk6fP5EAgECuEuEAjA5/MVntuyLDiOA0mayx8MAxdRPxOQ4TjNr4XoYDpw5S0/bKdyn+aTHQT0ycJyLwF9Ej7ZQc4Yavq5mxEcyiL/Vt+tqyY0NY+86e9oG4b02ccP21FhG50rNF1rf1iOD46QIAkf0ORxQMDbOWADGbjGxsYQDoebuq9pmsjn8zjuuOMwMjLS4pbtkLEzeCz1WMlt7wm/B0FfsPD9Cy+8gK985Su45zpg+dtnP8YLLwFf+Tpwzz33YPny5Tt+YE4Ab/x36caLPwCo7Xs9ADAxMYH77rsPuq43XTE+lUq1uFVE1E3GQlsRDjU/EmFaCvKmH8ftfx9GAhMtbBl5aSI7gvueOg66moOqNHf2KJVuz9zAeg1k4FJVdU6TyG3bxsjICObNm9fCVpVSLAW6VFqrKhKJIKzsCIqBQACJRAIBHZgXnPkIQEAHEonp7UraakhAesauj0YALdrCV1CeuzxPs+8/l/Yh6m+qYkFT5rYMju3YGAlMYN5bp8WoPyg++63fj+bmlamKt2dIOGmeiIiIqM0YuIiIqGtUm+xO1MsYuJowl6vsiIiosmQ20rGrBIk6iYGrQaZpNrxwNO0wl1IZRNT/FJ/d1ALL1P86VSqjXRi4GmAYBhKJxJzKGgw60zSRzfZ+xWAiao9IINnwAss0GExbQTbXuyuWMHDVya0g7y5gTc1xF92uZ8FrIho8UoMLLNPgUH0WMrlgXQtedyMGrjoUL9cTjUY5wjUH7tqOtRa8JqLBVe8CyzRYFJ+FoD9Tc8HrbsXAVcPMtREZtuYuEAhUXfC6GtNs77peRNQdGLqonIA/W3XB62q8vgJ2IANXvXOIOrkQ9aCptOB1NYZhIJlMtrdhRNQ1mg1dvT65mqqrtOB1NYalIpmNtLdhNQxkgshmszUP8gxb7ddI6CqeQ0dEg6PR0JXNBWAycPW9RkKXYamIp2JQfN6upTiQKSIQCFQ9yDNsdU49oat4f0Qikc42kIg8V2/oSk+FkMkFofpYfmYQ1BO63LCl+ixEAsnONnCGgUwS1eYQMWx1XrXQxTl0RATUDl3pqRBSk2EE/RkoDFwDo1roKg5bo+E4JMnbtRQHdtw1FJreMalUqvA9w5Z3uD+IqBY3dI2nYoinYoiF49AUsxC2wsMp6GoOOWPI66ZSB4WGpj+opybDhe9nhi3Z47AF9NAI19q1a7Fy5UqEQiHMnz8fq1evxp/+9Kc5PWbxyMr4+DgP7h7j/iDqXe3oo8uZOdI1np5XCFvugZcGT/FI13h6XteFLaCHAtcjjzyCc889F7/97W/xwAMPwDRNHH300XOuWh4KheD3+5HL5SCE4MHdY9wfRL2pXX10OW7oEkJGzhiCX5ti2CKEhtLwa1PIGUMQQu6qsAX00CnFn//85yXf33rrrZg/fz6eeuopvO9972v6cQ3DQD6fL3yfzWYLp7eo87g/iHpTu/roSrK5YOH/eVOHYanQFNbpG2SGpSJv6oXvs7lgVwXxnglcM01MTAAA5s2bV3GbfD5fcvB25we5Zs4RymazJXOIqLO4P4j6R60+ulb/XE3xnK2AP1Myp4sG08w5W9lcsGROVzfoyXM1juPgggsuwHve8x7ss88+Fbdbu3YtRkZGCl9Lly4t/KzchOxminFSa3B/EPWPevroav1zNcVhKzSUnjWny+tq4tR55SbIN1Mctd16MnCde+65eP755/Gf//mfVbe7+OKLMTExUfjauHEjgOnlYSpNyOZBvvOqXY3I/UHUe+rpoyv1z9XMDFuu4tCVyEThCJaPGRTVrkbsttDVcx8FzjvvPPzsZz/Do48+iiVLllTdVtd16Lo+6/ZkMomRkZGKE7LLlSig9qin9EPx/mAdLqLuVm8fXal/rqRS2HK5oWtrcj4Mq/7Hpd5VT+mH4pIRkvC20nzPBC4hBM4//3z8+Mc/xsMPP4zddtut6cdSFKXm1W8MXe3XSJ0t9/3fvHlzp5pHRA1oZR89U62w5ZIlgWgwUZi7Q/2rkTpb7u/M5vFAp5pXVs8ErnPPPRd33HEH7rnnHoRCocKBd2RkBENDjRW5i0QidZUaYOhqn2aKmoZCIZ5WJOpSreyji9UbtlySJKCpRtPPR92vmaKmoaE00n6upViXG264ARMTEzj88MOxaNGiwtedd97Z8GM1clqKc4har9oculoCAW8/oRBRea3so12Nhi0XJx70L9NSmi5qGtBbXxOuET0zwiWEd8XLike6hoeH4fP5PGtLr3McB6lUCrqus6gpUR9pdR/dbNii/uUICalMFLpqdl1R03r0TODymhu6kskkR1nmwDCMuubQEdHgYtiicgxLh+KzezJsAQxcDQmFQrAsC4bB+QHNkiQJ0WiUYYuIysrmAxAGwxbNJsFBNJjqybAF9NAcrm4RCASgqqrXzehZmqaxtAMRVZTNBRi2qCxNNSD1aNgCOMLVFEXh29Yshi0iqibgzyI0NOl1M6gL9frRgyNcRETUNby+koyoXRi4iIiIiNqMgYuIiIiozRi4iIiIiNqMgYuIiIiozRi4iIiIiNqMgYuIiLqGEL1+8T9ReQxcTfByXUcion6WzEbgMHRRH2LgapAQgkv7zIHjOF43gYi6mGX7MJ6KMXTRLL3+O8HA1QDHcZBIJDjCNQeGYcA0Ta+bQURdKhJIwrQVhi6axbB0mFbvrvTCwFUnx3EwPj4Oy7KgaZrXzelZkiQhkUhwlJCIylIVC7FwnKGLZpHgIJGJwrB6cz1jBq46uGHLNE1Eo1HIMt+2ZmmaBkVREI/HGbqIqCxNMRm6aBZNNaD4bMRTsZ4MXUwONRSHrVgsBlXtvZ3cTSRJQjQahaqqTYUuns4lGgwMXTSTBCAaTED1WU2FLq+vgB3IwFXvHKKZYYunEltDkiSMjo42HLocx0EymWxv44ioazQbuhjO+pckCYyG4w2HLkdISGYj7W1cDQMZuJLJZM2DPMNWe8my3FDoKp5DR0SDo9HQZVoKDEvvUOvIC3KDocsREsZTMVi2r0MtLG8gA1etOUQMW51Rb+gq3h+RSKSzjSQiz9UbugxLRSIThQSWn+l39YYuN2yZtoJIINnZRs4wkIErEolUPMgzbHVWrdDFOXREBNQOXYalIp6KQfHZ0FRekDMIaoWu4rAVC8ehKt6eIRnIwFVpDhHDljcqhS7uDyIqVil0uWFL9VmIBhPgDK7BUSl0zQxbmuJ9/cferSA2R+5Bfnx8HPF4HKOjo0ilUj11cN9///2rXrW3/15Ar1zU1w/7g4jazw1d8VQM46kYwsMpjKfnQfVZGA3HYdkeHdb26pHOthVe7K5I64au8VQM8VQMo6HtSE2GuypsAQM6wuVyD/LFc7p4cPcO9wcR1cMNXYalFU4jjobjkKUBCj1Uwg1dO+p0aV0VtoABD1xEREREnTDQgau41IA7ksIK6N7h/iCierhztjTFQCwc54LXVFL6YXpky+i6ivQDG7hmTsjWdb2pYpzUGtwfRFSP4gnyo+E4dDVfMpHe62ri1HkzJ8jrar6p4qjtNpCBSwhR9uq3RotxUmtUuhqR+4OIis0MW+6creKrFxOZKDiTa3BUuhqx0eKondBTgevRRx/Fhz70ISxevBiSJOHuu+9u6nGSyWTFq994kO+sWqUfZu6PepdlIqLOalX/XEmlsOVyQ5dl+2CYvNBmENQq/TAzdJmWt4UZeipwZbNZ7Lvvvli/fv2cHqd4jlA5DF2dUW+dreL9wbUUibpTq/rncmqFLZemmIgGExC9dWijJtRbZ6s4dHm9lmJP1eH6wAc+gA984ANzfpxIJFKz1MDMulAsT9BajRY1dfdHNpvtUAuJqBGt6p9nqjdsuVTFgmbnW94O6h6NFjV1Q1d2cqRDLSyvpwJXo/L5PPL5HX94qVQKAOpeHqZc6KK5qzSHrhZZlrmWIlGfqNQ/F2s0bLlYj6t/iSYryMuS4FqK7bR27VqMjIwUvpYuXdrwY3AOUWsJIZBIJJquIC9JvAKJqB/U6p+bDVvUvwSARCbadAV5yePfob4OXBdffDEmJiYKXxs3bmzqcYpDVyKRgONwJfpmGYZRcw4dEfW/av0zwxaVY5haUZ2t3hv86OtTirquQ9f1ljyWG7q2bt3KSfRzIIRANBpl2CIacJX6Z9NSkGXYojIEZESDiZ4MW0Cfj3C1mizLiEajPK01B5qm1T2HjogGTzIbYdiisjQlD1WxvG5G03pqhCuTyeDll18ufP/KK6/g2Wefxbx587Dzzjt3pA2SJHF0Zg5kmRmfqB+1qn+eXoh6O8MWzdLrvxM9FbiefPJJHHHEEYXvL7zwQgDA6aefjltvvbVj7eAIFxFRqVb1z5FAEjK7WOpDPRW4Dj/8cAjR2wmXiKgftap/nr6SjImL+g/P7xARERG1GQMXERERUZsxcBERERG1GQMXERERUZsxcBERERG1GQMXERF1jWw+4HUTiNqCgasJltW7lW69xrIeRFRNNhdAeirkdTOoC/X60YOBq0HZbBam2ZvrOHUDwzAYuoioooA/i9RkmKGLZjFMDUL0bo02Bq4GpNNpZDIZrgU4B0IIJBIJOI7jdVOIqAsF9CzCwymGLppFQEYiE4XTo6GLgatO6XQaqVQKwWAQitJTBfq7iqZpsCwL4+PjDF1EVFZoKM3QRbNoSh6W7cN4KtaToYuBqw5u2AqHwwgEOKFzLmRZRjQahWmaDF1EVBFDF80kSwLRYAKmrfRk6BrIwNXIHKLisBUK8Y++FVRVRSwWayp0ZbPZNraMiLpJs6GLs0T7l6pYiIXjTYUur6+AHcjAlUwm6zrIM2y1j6ZpDYeudDrNwEU0YBoNXUJIMEytAy0jr2iK2XDoSk+FkM0xcHVcPXOIGLbar5HQ5e4PntIlGjz1hi5HSEhkohCDeWgbKI2ErvRUCKnJMAJ+bz+wD+RvZSQSqXqQZ9jqnHpCF+fQEVGt0OUICeOpGCzbB03Je9BC6rR6QpcbtsLDKQR0Bq6OqzaHiGGr86qFLu4PInJVCl1u2DJtBdFgArLEWVyDolroKg5boaG0h62cNpCBCyh/kOfB3TvcH0RUj5mhqzhsxcJxqApXAhk05UJXt4UtABjoglLuQT4ej+PNN98EAB7cPcT9QUT1cA+gqckwUpNhSJKDWDgOTTFhWCxMPYjc0BVPxfDm9sUA0FVhCxjgES6XpmnQdb3wPecIeYv7g4jqEfBnCv/X1Tw0hUuuDTpNMaGrO+bvFf+OdIOBD1zpdBq5XA5+vx+SJLEYp8e4P4ioFvc0oiQ58GtTyBlDLI5KSE+FkDOG4NemIElO1xVHHejAVTxHaHR0tOlinNQa3B9EVMvMOVujoe2sSE8lc7ZGQ9ubLo7aTgMbuMpNyG6mGCe1BvcHEdUyM2y5pxGLJ9J7XdySOq/cBPlmiqO220AGrmw2W/HqNx7kO6/a1Ygz90cjyzIRUf+oFLZcbujK5IKw7IG+HmygVLsacWboEh6HroENXNWufmPo6px6Sj8U749kMtnZBhKR52qFLVdoKI2gPwOTgWsg1FP6oTh0JbORzjZwhoEMXIFAoGapAYau9mukzpa7PyyLNXaIBkm9YcsV8Geh+thP9LtG6my5ocuyfR1qXXkDG7jq0Uuh63+3/C+ueOQKPL7xcTiie9vpaqaoqaZpiEQi7W0YEXWNRsOWS2Hg6mvNFDXVFBORQLK9DathIANXI3plDtGvX/s1rvv9dTj5hyfjyH8/Etf9/jq8mnzV62aVVW0OXS2qyqKGRIOg2bBF/S2bCzRdQd7rVQgYuOpQHLoSiUTXhi5FVhDSQnh5+8v46qNfxVG3HYWP/ehj+NEff4R0vjuq7VqWhUwmwwryRFQRwxaVY9kKMrlg11WQr1fPBa7169dj1113hd/vx8EHH4zf//73HXne4jlEhmF05DmLOcLBC1tfwFNvPFX2a3NmMyRIGFKHsDC4EItDi+GTfHjolYdw3n3n4ZBbDsHFD17s+SlH0zQRDAYZtoj61Fz7aMGwRRWYtoKgP9OTYQvosbUU77zzTlx44YW48cYbcfDBB2PdunU45phj8Kc//Qnz589v+/NrmoZoNIpsNtv255rpL1v/got+eRHyVr7iNrawC/+XJRlhPYywHoblWJjITeB7z34PP3juB1g2shQnLdgZH9zpndg1GOtE8wtUVeVyPUR9qhV9dDIbgaYzbNFsqs9CwN/542+r9NQI19VXX42zzjoLZ555Jt7xjnfgxhtvxPDwMG655ZaOtUFVVWia1rHncxm2gUljEiEthKg/WvZrcWhx2fsqsoLR4VHsFNpp+pRj4hVc+fx9OOqha/Cxx76LH732dMdOOSpKT2V8ImpAK/poy/YxbFFZvX4xRFOB68gjj8Tll18+6/ZEIoEjjzxyzo0qxzAMPPXUU1i1alXhNlmWsWrVKjz++ONl75PP55FKpUq+WkGWvcupmk+r+CVL1dslSe4pxwVYNDQCnyTjoc0v4rwn/xOH3H4sLn7wYmxKberQKyGidvCifwYa76Mr9c+RQJJhi/pSU8nh4YcfxnXXXYfVq1eXnF4zDAOPPPJIyxpXLB6Pw7ZtLFiwoOT2BQsWYPPmzWXvs3btWoyMjBS+li5d2pa29SJZkhBSdES0IViOjS3ZbfjJSz/B81uf97ppRDQHXvTPQON9dKX+2esryYjapemhmgcffBCbN2/G3/zN3+DVV19tYZNa5+KLL8bExETha+PGjV43qSsYtoGtuTRen5rAlG3hoNHd8M0jLseG0zfg2D2O9bp5RDRH7J+Juk/TE2oWLVqERx55BGeeeSZWrlyJu+66C3vvvXcr21YiFovB5/Nhy5YtJbdv2bIFCxcuLHsfXdeh63rb2tQur/z0p9j8/LMw868VbpuXHcdRm/24/51vAHL59aCGlCHEhstPgrcdGykjhayRhU+SsdgfxkeWrsCHl7wLy0cWQ9rlbwEt2pbXQ0Sd1en+GWi8j+7V/pmoWU0FLkmaPuDruo477rgDX/3qV3Hsscfii1/8YksbV0zTNBxwwAF46KGHsHr1agCA4zh46KGHcN5557Xteb3wyk9/ivj//g9sZUe9rxHLxhHaPCz8yHGwA7Mn7b+SfAW/31R6+bUQApPmJCbyExBCIOwP48S9T8QJux+Jw6Ut0HycwE7Ub7zon4HB6qOJmtHUEXdm4c9LLrkEe++9N04//fSWNKqSCy+8EKeffjoOPPBAHHTQQVi3bh2y2SzOPPPMtj6vF5ThYdiRot0zmcc84cdXj/wq9DLL21z/xPWFwGXYBpK5JAzbgF/xY/9F+2PNO9bgA2/7AOYH5gNGAnjtrg69EiLqJK/6Z2Cw+miiRjUVuF555RWMjY2V3HbiiSdir732wpNPPtmShpVz8sknY9u2bbj00kuxefNm7Lfffvj5z38+a5LmoDIdE5tSm+CTfVgcXIyP7P0RfHjPD2P52PLCp14i6m9e9c8A+2iiapoKXLvsskvZ25cvX47ly5fPqUG1nHfeeRyeLmNEH8FYYAyH7XIYVu+1Gofvejg0X+frhRGRt7zsn4G599GmpQCwa25H1Gs4iacJjuPd0jiVnLLPKfjwnh9GSOeSOUTUu5LZCMKhFGtxUd/pqUrz3cA0TU/WUqzFJ/t6ImxZFmvsEFFlis9GPBWDYaleN4W6jGX39hgRA1cDDMNAIpHgfKg5ME3Tk7Uoiag3RAJJqD6LoYtmMW0F2VzvrsXb23GxgwzDQDweh6IoLV9LMbNpE3532WWwpqamn2tiAigT6hzLwsOf+hTg80GSZezz6U9j8Xvf29K2tJuqqshkMlAUBaFQ94/IEVFnSZLAaCiO8VQM8VSM6ypSgeqzkMkFofhshIY6s/5vKzFw1cENW6qqIhwOI5/Pt/TxfX4/Jt98E0Y6DcXvBwCooSDymNqxkV+D5AC57dvhvHVarhdH2hRFQTAYLKybxtBFRDPJksBomKGLSik+C0F/BqnJMAD0XOjiKcUaisPW6OhoW0LOUCyG+StXQpJl6NEo9GgUslo6lC7JErSREejRKCSfD0NjY5i/cmXL29IJgUAA4XAYqVQK6XRjfzCmyU6XaBC4oYunF6lYwJ9FeDiF1GQY6anGPrBPXwHrnYEMXPXOIZoZtmS5fW/X0lWrIEkSnBqBQggBxzCwZNUq+Fp8arOTQqFQw6HLMAwkk8n2NoyIukazoavXJ1dTdaGhdMOhy7BUJLOR9jashoENXLUO8p0MWwCw4KCD4I/FYNRolz01BZ+uY8kRR7S1PZ3QSOgqnkNHRIOj0dCVzQVgMnD1vUZCl2GpiKdiUHze1ncbyMAVCASqHuQ7HbYATIeoVavgGMaspTlK2pZOY+Rtb8PIHnu0vU2dUE/oKt4fkTLLGhFRf6s3dKWnQsjkglB9LD8zCOoJXW7YUn0WIoFkZxs4w8AGrkoHeS/ClmvJ4YfDp+uwc7myPxdvFVzd+eije3LCfCXVQlcn5tARUferFbrSUyGkJsMI+jNQGLgGRrXQVRy2RsNxSFLlwYxOGMjABZQ/yHsZtgAgsueeCC9bVvG0opXJQg0GsfjQQzvark7oxv1BRN2lUuhyw1Z4OIWAn3X+Bk250DUzbMkehy1gwMtCuCUJUqkUDMNAPp/39OAuSRJ2PuYYJF58sTCaVcyamsJO7z8U/tHRjretE7ptfxBR95lZMkJX88gZQwgPpxAaSvNqxgHllohITYZhWCrypt5VYQsY4BEuVygUgt/vRy6XgxDC84P74kMPhRoIwJpxJaUwLUiyjCVHHulRyzqj2/YHEXUfN3QJISNnDMGvTfVcTSZqvdBQGn5tCjljCELIXRW2AAauwkiKy+tlZ9z6WvbkjHlcmTz8Y7Gerb1Vr27bH0TUnbK5YOH/eVPnyBYVRrZcxb8j3WCgA1fxHKFFixY1XYyz1ZauWgXIEoQ5fQmrEAIwLSw86vCerr1VS7fuDyLqLsVzthbNe4PFUalkztaieW80XRy1nQZ2Dle5CdnFc4gA75adWXDQQdBH5yGf2AJEAkDOBHQVCw7rrXUTG9HN+4OIukdx2HJPIxbP6RoZTnrbQOq4chPki+d0Ad2xDNBAjnCZplnx6rdmKqC3mk/XsfCowwDDmh7dyuQh7zYfoT2WedKedqt2NWI37A8i6g7lwhZQevViIhOFI1g+ZlBUuxqxmYr07TSQgSuZTFa9+q0bDvILDzsU0BRgygAg4Dt8n76sQVVP6Yfi/cE5XUSDqVLYcrmhS/HZMCy9zCNQv6mn9ENx6MrmAx60coeBDFyKotS8+s3r0BV6+x6Qd5kPjKchBXTIB7+t421ot0bqbLn7g4GLaPDUClsuWRKIBhOQMLusDvWXRupsuaErm2Pg6rhIJFJXqQEvQ5ckSZAPXw7oKuT9d4cU7a6rLeaqmaKmoVAIgYC3fzBE1Fn1hi2XJAloqtGBlpFXmilqGhpKe14UdyADVyOn5rwMXb537wlpQWQ6ePWRanPoamHgIhocjYYtV/9NviCXaSlNV5AP6N4GroG9SrERxVfLDQ8Pw+fzdeR5pXlBaOs+Dmmof0pBOI6DVCoFXddZ1JSIKmo2bFH/coSEVCYKXTW7rqhpPRi46uSGrmQy2dFRln4KW8D0qcR65tAR0eBi2KJyDEuH4rN7MmwBDFwNCYVCsCwLhsH5Ac2SJAnRaJRhi4jKyuYDEAbDFs0mwUE0mOrJsAUM6ByuuQgEAlBVVjNulqZpfVnegohaI5sLMGxRWZpqQOrRsAVwhKspisK3rVkMW0RUTcCfRWho0utmUBfq9aMHR7iIiKhreH0lGVG7MHARERERtRkDFxEREVGb9UzguvLKK3HIIYdgeHgYkUjE6+YQEVER9tFE1fVM4DIMA2vWrMHZZ5/tdVOIiGgG9tFE1fXM5XaXX345AODWW2+t+z75fB75fL7wfSqVanWziIgIjffR7J9p0PTMCFcz1q5di5GRkcLX0qVLvW4SERGhcv8sRK9f/E9UXl8HrosvvhgTExOFr40bN7bkcYXo3cJrRETdoFL/nMxG4DB0UR/yNHBddNFFkCSp6teLL77Y9OPruo5wOFzyNVdCCC7tMweO43jdBCKqUzv76Er9s2X7MJ6KMXTRLL3+O+HpHK7Pfe5zOOOMM6pus2zZss40pg6O4yCRSHAdwDkwDAOqqkLT+mtRbqJ+5EUfHQkkYdjzMZ6K9ewixdQehqVD9RnQFNPrpjTF08A1NjaGsbExL5tQN8dxMD4+DsuyEAwGvW5Oz5IkCYlEgqGLqAd40UerioXwUBzxVIyhi0pIcJDIRKEqVk+Grp65SvG1117D9u3b8dprr8G2bTz77LMAgD322KPtAcgNW6ZpIhqNwrbttj5fP9M0DbZtIx6PIxaLMXQR9YlW9tGaYiIWZuiiUppqwHZ8iKdiiIXjPRe6eiZwXXrppfj3f//3wvcrVqwAAGzYsAGHH3542563OGzFYjEAYOCaA0mSEI1GkUqlmgpdvGCBqDu1uo9m6KKZJADRYAKpyZGmQpfXV8D2zGSkW2+9FUKIWV/N/CGbZn07aGbY4mhMa0iShNHRUaiqing8XvdFCI7jIJlMtrdxRNSUVvbRLjd0mbbS0ET6Xp9cTZVJksBoOA7VZyGeisGw1Lru5wgJyWykvY2roWcCVyslk8maB3mGrfaSZbmh0FU8h46IBkejocu0FBiW3qHWkRfkBkOXIySMp2KwbF+HWljeQAYuRVGqHuQZtjqj3tBVvD+4RhvR4Kk3dBmWikQmCgksP9Pv6g1dbtgybQWRQLKzjZyhZ+ZwtVIkEoFpmmXnEPVS2Hr66adxwAEH4KkfAvsvL/PzF4ADTgKeeuop7L///p1vYB3c0DU+Pl7X/piamvKwtUTklVpzugxLRTwVg+Kzoake1Ep8kacxO80NXeOpWNk5XcVhKxaOY2rK2zMkAznCVWkOUS+FrX5SaaSL+4OIilUa6XLDluqzEA0mwOgzOCqNdM0MW91wReNABi5g9kE+n8/z4O4h7g8iqsfM0JU39ULYGg3HIfFKxoEzM3TlTb3rwhYwwIEL2HGQL57TxYO7d7g/iKgebugyLK1wGpFlIwabG7oUn/3WSJfWVWELGPDARURERNQJAx24iksNuCMpjdSFotbi/iCierhztjTFQCwc54LXVFL6YXpky2ioTlcnDGzgmjkhW9f1popxUmtwfxBRPYonyI+G49DVfMmcLq+riVPnzZwgr6v5poqjtttABi4hRNkJ2Y0W46TWqHQ1IvcHERWbGbbcOVvFE+kTmSg4k2twVLoasdHiqJ0wkIErmUxWvPqNB/nOqlX6Yeb+qHdZJiLqL5XClssNXZbtg2HyQptBUKv0w8zQZVrelh4dyMBVPEeoHIauzqi3zlbx/uBaikSDp1bYcmmKiWgwATGYh7aBUm+dreLQxbUUPRCJRGqWGmDoaq9Gi5oWl4wgosFRb9hyqYoFTcl3qHXkhUaLmhaXjPDSQAYuVa3vXC5DV3tUmkNXiyzLXEuRaIA0GrZcrMfVv0STFeRlSXi+luJABq5GcA5RawkhkEgkmq4gL0m8AoloEDQbtqh/CQCJTLTpCvJer0LAwFWH4tCVSCTgOFyJvlmGYdScQ0dEg41hi8oxTK2ozlbvDX4wcNWpeA4RTy02TwiBaDTKsEVEZZmWwrBFZQnIiAYTPRm2AAauhsiyjGg0ytNac6BpWt1z6Iho8CSzEYYtKktT8lAVy+tmNI2XfDVIkiSOzsyBLDPjE1Fl0wtRb2fYoll6/XeCgasJHOEiImqPSCAJmV0s9SEONxARUdfw+koyonZh4CIiIiJqMwYuIiIiojZj4CIiIiJqMwYuIiIiojZj4CIiIiJqMwYuIiLqGtl8wOsmELUFA1cTLKt3K916TQhe8k1ElWVzAaSnQl43g7pQrx89eiJwvfrqq/jEJz6B3XbbDUNDQ9h9991x2WWXebKmYTabhWn25jpO3cAwDIYuoj7Tyj464M8iNRlm6KJZDFODEL1bFbcnKs2/+OKLcBwH3/nOd7DHHnvg+eefx1lnnYVsNourrrqqY+1Ip9PIZDIIBDjk3SwhBBKJBObPn89lfoj6RCv76ICehaz4kJoMAwBCQ+l2NJl6kICMRCaK+ZGtPbnMT08ErmOPPRbHHnts4ftly5bhT3/6E2644YaOBa50Oo1UKoVgMAifz9eR5+xHmqYhk8lgfHwco6OjDF1EfaDVfbQbshi6qJim5JGZCmA8FevJxc17InCVMzExgXnz5lXdJp/PI5/PF75PpVJNPZcbtsLhMHRdRy6Xa+pxaHrx6mg0iomJCYYuoj5Wq4+u1T8zdNFMsiQQDSYwMRnpydDVk0e6l19+Gddeey0+9alPVd1u7dq1GBkZKXwtXboUQGMTt4vDVijEOQWtoKoqYrEYTNPE+Pg4HMep+77ZbLaNLSOiVqinj67UPxcLDaURHk41PKerdw7B1ChVsRALx2HaCsZTMTgNzOny+gpYTwPXRRddBEmSqn69+OKLJfd5/fXXceyxx2LNmjU466yzqj7+xRdfjImJicLXxo0bAQDJZLKugzzDVvtomtZw6Eqn0wxcRB3Uzj66Uv88U6OhSwgJhqk19kKpp2iK2XDoSk+FkM15G7g8PaX4uc99DmeccUbVbZYtW1b4/xtvvIEjjjgChxxyCG666aaaj6/rOnRdn3W7ZVk1T2cxbLWfG7ri8Xjd+4MXLBB1Tjv76Er9czn1nl50hIREJgpZ5hhXv3NDVzwVq3l6MT0VQmoyjIA/0eFWlvI0cI2NjWFsbKyubV9//XUcccQROOCAA/C9731vTvN+IpEIDMOoeJBn2OqcekJX8f5o5PQjEc2NV310ObVClyMkjKdisGwfghpHwgdBPaHLDVvh4RQcy9vfi56Yw/X666/j8MMPx84774yrrroK27Ztw+bNm7F58+amHq/aHCKGrc6rdnqR+4Oo+7W6j66k0ulFN2yZtoJoMNFTE6lpbqqdXiwOW91w0UVPXKX4wAMP4OWXX8bLL7+MJUuWlPys2SKa5UZWstksD+4e4f4g6l3t6KMrmTnSFfBnCmErFo4DAGxDbelzUncrN9KVzQW7KmwBPTLCdcYZZ0AIUfZrLopHVt58800e3D3G/UHUm9rVR1dSPNL15vbFhbClKVwFZFAVj3S9uX1x14UtoEcCVztpmlYycZOTsr3F/UFE9Qj4M4X/62qeYYugKSZ0dUdtt+LfkW4w8IErnU4jl8vB7/dDkqSG60JRa3F/EFEt7pwtSXLg16aQM4a49iIhPRVCzhiCX5uCJDkN1+lqt4EOXMUTskdHR5suxkmtwf1BRLUUT5CPheMYDW1vqjgq9ZfiCfKjoe1NF0dtp4ENXOWufmumGCe1BvcHEdUyM2y5pxGL53R5XdySOq/c1YjNFEdtt4EMXNWufuNBvvOqlX6YuT/aNQmXiLpbpbDlckNXJheEZffEBfjUAtVKP8wMXcLj0DWwgava1W8MXZ1TT52t4v2RTCY720Ai8lytsOUKDaUR9GdgMnANhHrqbBWHrmQ20tkGzjCQgSsQCNQsNcDQ1X6NFDV194dlWR1qHRF1g3rDlivgz0L1sZ/od40UNXVDl2X7OtS68gY2cNWDoat9mqkgr2kaIpFIextGRF2j0bDlUhi4+lozFeQ1xUQkkGxvw2oYyMDVCM4har25VJBXVVaQJhoEzYYt6m/ZXKDpoqaq4m0QZ+CqQ3HoSiQSDF1zYFkWMpkMK8gTUUUMW1SOZSvI5IJdV0G+XgxcdSqeQ2QYhtfN6VmmaSIYDDJsEVFZgmGLKjBtBUF/pifDFtAji1e3mmmaTYemUCiEyclJTExMtLhVpTJ2BvlUvuS2pEjCKpqbkM1mEY1Gkc0D28usYJDNA9Ho9Hbbt2/f8QNzAkjPGFpNJAG1vSN3ExMTkGUZmqY1/f6bJjtfon62PT0Pmq4iGkwAAAyrsWkEpqXAsn2YyI60o3nkkYnsCGTJgabkG/6dcJmWt/OwBzJwbdu2Ddlstqn7Oo4Dx3Hw4x//GIqiQNM0SNLs2h6O48AwDEiSVHGbamxhI22XpviELwGfNH2VhRAC6XQap512Gp54LY8/bJsdliZzwMc+puHxxx/H888/D1l+a0BT2ICRKN1Y+29AavwKDsuyYJomVFWFopT/dXK3kWUZ6XQamUxmR1saNDk52dT9iKg3ZPMBSIoP8dT8pu7vQIJwJNz39HFQZLvkZ5atwLQVqD6r4sT6eraZC0dIMCwdEhxoqoFyR4Z6tpkLAcAwNQjI0JQ8ZGn28aOebeaqkf0hSwLpqSAy+SBkNNeWyZy3Z6cGMnBJktT0Ad+9//DwMNLpNGzbRjQaLQlUpmkilUpBUZRZP6uXJSxMWqXhQld0KNKOXWaaJiRJQt4KICwnSiYECiEhmYlC03zQdR3Dw8M7HkiYmHU22a8BUnOfGrLZLDKZDILB4KwrQLPZLLLZLILBIDRNQzabndP738x7SUS9wyfbUHxzOLgLCULyQVdyZSdJZ3MBZHJBBP0ZBPzZWT/L5ofL/qyVVJ+BRCYK2/EhGkxAKgozpqUglYlC8dmIBlMlP2slv5pDIhNFZiqAaHD28SORicKyfbN+1mr17g9NySObC0CS7KbDnwSOcHXcXAOX4zgYGhrC0NAQ4vE4UqkURkdHIcsyDMPAxMQEdF0v3NZUGx0JslR6X1VRoco7QpGqqti6dSsWj8UwMRkpzHdwJ5wKyNi2bRv22GMPaJpW9AIAWDOCi6oCsoZmaJoGRVEKIdOdn5VOpzE5OYlIJIJQKFQY8ZNlmYGLiMry+SzITX74czmSgKpYZed/acEkFJ+N1GQYis8uzAdKT4UwmQ8gEpho+xwhTTGhKhbiqRhSkyMYDcchSwKGpWJiMgJdNQu3tdP8yFaMp8ofPxwhY35kW9vn0NW7PwxLhSQJyG99NaNd4bVeAxm4WsWdSB+PxzE+Po5wOIzx8XGoqjqnsNUIIQSCehymiCGeimE0tB2pyfD05EI93rE5T27ISqVShduaLf1ARNRO7kE9NRku3NZsqYFmucU446kYxlMxhIdTGE/Pg+qzOhK2AECWBEbDcYynZh8/OnnBQjfsj05g4JojN3Rt27YN8Xi8o2HLJUkCo6E44qkxxFMxAMDYyFZMTXV2gvnM0MWwRUTdauZB3ouDuxu6tk3MRzwVg6p0ZmSrmBu6Zh4/On11aDfsj3ZjWQgiIiKiNmPgmiPDMBCPx0vqdHV6GSC3bo1l+94aBjYQT8VgOZ2tyl68XE84HEYqlUI63V+fUIioPxQvDxMeTiE1GUZ6qrMj8oalIp6KQVOMwlp/0/OnOjdX1alw/Gi29EKzumF/tBsD1xy4Ycs9jajresfXXpQkCZn8jiKBuprHaDgO1Wchk491bCmcmWsjhkIhhi4i6koz1+ILDaU7fpB3w5Y7Z0tX84iF4zBtpWOha2ZF/+LjRydDVzfsj05g4GqSaZpl52x1csFrIQRisRhsUTrB0T0n75OswqhbO1VaiJqhi4ga5TiN1wNsRKWFjzt5kJ8Zttw5W+6crk6ErkrLJ7nHj06Frm7YH53CwNUEx3GQSCQqTpDvROhyHAeZTAaKMn014swJjrI0ffWiu3Zhu5YjqhS2XMWhq9lis0Q0OExbheW059BU6eDu6sRBvlLYcnUidNVaq7JToauR/ZHNBco8Qm9h4GqQbduwLAuKolS9GrGdoctxHIyPj8O2bcTjcShy+atJJEkgHo/D5/MhHo+3PHTVClsuN3RlMpm2j7YRUa8TMEx/y0NXrYO7q52hq1bYcrUzdNW7MHi7Q1ej+yOTC8Ky2zv62W4MXA1wF66WJAmRSKRm6Yd2hC43bLmLQNeqsyWEQDAYhKqqLQ1d9YYtVygUQjAYLCx5RERUjqYYkKTWhq56D+6udoSuesOWqx2hq96w5WpX6GpmfwT9GTjCB8NqrkB3N2DgqlNx2PL5fHXX2Wpl6CoOW7FYrOLahTNJkoTR0dGi0DW3+iqNhi1XIBCALMuwbRv5fL72HYho4EiSgK5OtSx0NXpwd7UydDUatlytDF2Nhi1Xq0NXs/sj4M9ClmzYjg/5Hg1dDFx1KA5buq43XNS0FaFLOALJ7clC2CpZqqcOsizvCF3bEzDM5oJfs2HLpSgKfD4fLMti6CKismQJLQldzR7cXa0IXc2GLVcrQlezYcvVqtA11/2h+Gz4ZBuWrfRk6GLgqmFm2Gp2Lb+5hC7hCOSTeViW1VTYchVCl6IgnrYbDl1zDVsud+3FZkJXJ+ubEZF35hq6srlAS5aHmUvommvYcs0ldM01bLnmGrrmGrZcmmJA8VlNha52XwFby0AGrnrXF5zryNZMzYQuN2wJSyA6L9p02HLJsozReRGoPqmh0NWqsOXSdb3h0GVZVsfWhiQi7zUbuizbh0wu2LLlYZoJXa0KW65mQlerwpar2dDVqrDl0psIXZYjw7Q7W8x1poEMXI7j1DzItzpsuRoJXcVhS4/qULXW/LLIsozRsK/u0NXqsOVqJHS5+4OIBkujocuwNDjCh6A/09K1+BoJXa0OW65GQlerw5ar0dDV6rDlaiR0WY4Mw/QD6NwaleUM1OLVQky/2aZpIpPJYHJysmwldsdxCiMpmqbBtu1Zj5FKpeZUxV3TNCSTSWSzWUQikVmnKg3bQDKZhLAEtLCG3FQOKTMFRdqxy9LpNIQQSE+Wf470JCAEZhcdFSaQy0GVBLJ5G69NCkSM7VD1oVmPkc1mkc1mEQgE4DgOJiYmmn7NpmliamoKAEper2mayOVyde0Pd1+4+4GI+oP7Nz01Vb50jBAWDEvDVE6C6nMgy/asbUxLhSNsyMjDHkpjIt3qfiIFSdjYPB5A2m8joM+uLWhaCpLZMBTfFIYDSaQzrW6DAU3aimQ6guzkCCKBJKQZgU4ICcnsCCzbQSSwFVNTFqZa2gYBVdqGbD6C1zaHEQkkoSqz91s2H0A250fAn4BjZTExh7xlWg6mpgxAEpAkd5DAhGmpyAkfJiVALRMqHccH0/YByME2p/eXV8cPSQzQkWvTpk1YunSp182gFti4cSOWLFnidTOIqEXYP1OneHX8GKjA5TgO3njjDYRCoaYnv6dSKSxduhQbN25EOBxucQvnppvbBrSmfUIIpNNpLF68uGWneYnIe63on9uhm/tVtq0xXh8/BuqUoizLLUu14XC4a36JZurmtgFzb9/IyEgLW0NE3aCV/XM7dHO/yrbVz8vjB4cIiIiIiNqMgYuIiIiozRi4GqTrOi677DLouu51U2bp5rYB3d8+IqKZurnfYtt6y0BNmiciIiLyAke4iIiIiNqMgYuIiIiozRi4iIiIiNqMgYuIiIiozRi45uDKK6/EIYccguHhYUQiEa+bg/Xr12PXXXeF3+/HwQcfjN///vdeNwkA8Oijj+JDH/oQFi9eDEmScPfdd3vdJCKihnVTn8/+vvcwcM2BYRhYs2YNzj77bK+bgjvvvBMXXnghLrvsMjz99NPYd999ccwxx2Dr1q1eNw3ZbBb77rsv1q9f73VTiIia1i19Pvv73sSyEC1w66234oILLkAymfSsDQcffDBWrlyJ6667DsD0umRLly7F+eefj4suusizds0kSRJ+/OMfY/Xq1V43hYioKV73+ezvexNHuPqAYRh46qmnsGrVqsJtsixj1apVePzxxz1sGRERtRL7+97FwNUH4vE4bNvGggULSm5fsGABNm/e7FGriIio1djf9y4GrhkuuugiSJJU9evFF1/0uplERNQC7POpUxSvG9BtPve5z+GMM86ous2yZcs605g6xWIx+Hw+bNmypeT2LVu2YOHChR61ioio+/Van8/+vncxcM0wNjaGsbExr5vREE3TcMABB+Chhx4qTE50HAcPPfQQzjvvPG8bR0TUxXqtz2d/37sYuObgtddew/bt2/Haa6/Btm08++yzAIA99tgDwWCwo2258MILcfrpp+PAAw/EQQcdhHXr1iGbzeLMM8/saDvKyWQyePnllwvfv/LKK3j22Wcxb9487Lzzzh62jIioft3S57O/71GCmnb66acLALO+NmzY4El7rr32WrHzzjsLTdPEQQcdJH7729960o6ZNmzYUPZ9Ov30071uGhFR3bqpz2d/33tYh4uIiIiozXiVIhEREVGbMXARERERtRkDFxEREVGbMXARERERtRkDFxEREVGbMXARERERtRkDFxEREVGbMXARERERtRkDFxEREVGbMXARERERtRkDFxEREVGbMXD1gdtuuw2jo6PI5/Mlt69evRqnnnqqR60iIqJW27ZtGxYuXIivfe1rhdt+85vfQNM0PPTQQx62jGrh4tV9YGpqCosWLcLNN9+MNWvWAAC2bt2KnXbaCffffz+OOOIIj1tIREStct9992H16tX4zW9+gz333BP77bcfTjjhBFx99dVeN42qYODqE+eccw5effVV3HfffQCAq6++GuvXr8fLL78MSZI8bh0REbXSueeeiwcffBAHHnggnnvuOTzxxBPQdd3rZlEVDFx94plnnsHKlSvx17/+FTvttBPe9a53Yc2aNfjnf/5nr5tGREQtNjU1hX322QcbN27EU089hXe+851eN4lq4ByuPrFixQrsu+++uO222/DUU0/hhRdewBlnnOF1s4iIqA3+7//+D2+88QYcx8Grr77qdXOoDhzh6iM33HAD1q1bh/e///3485//jF/84hdeN4mIiFrMMAwcdNBB2G+//bDnnnti3bp1eO655zB//nyvm0ZVMHD1kYmJCSxevBiWZeG2227DySef7HWTiIioxb7whS/ghz/8If7nf/4HwWAQhx12GEZGRvCzn/3M66ZRFTyl2EdGRkZw4oknIhgMYvXq1V43h4iIWuzhhx/GunXrcPvttyMcDkOWZdx+++341a9+hRtuuMHr5lEVHOHqM0cddRSWL1+Ob3/72143hYiIiN7CwNUnEokEHn74YZx00kn4wx/+gD333NPrJhEREdFbFK8bQK2xYsUKJBIJfP3rX2fYIiIi6jIc4SIiIiJqM06aJyIiImozBi4iIiKiNmPgIiIiImozBi4iIiKiNmPgIiIiImozBi4iIiKiNmPgIiIiImozBi4iIiKiNvv/DBPrLimN/QMAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim4 = td.Simulation(\n", " size=sim_size,\n", " center=[0, 0, 0],\n", " grid_spec=td.GridSpec.uniform(dl=wavelength / min_cells_per_wvl),\n", " structures=geometry,\n", " sources=[source],\n", " monitors=[monitor_intermediate_proj], # only need to supply the projection monitor\n", " run_time=run_time,\n", " boundary_spec=boundary_spec,\n", ")\n", "\n", "fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(9, 3))\n", "sim4.plot(x=0, ax=ax1)\n", "sim4.plot(y=0, ax=ax2)\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:51:26.005550Z", "iopub.status.busy": "2023-03-27T23:51:26.005404Z", "iopub.status.idle": "2023-03-27T23:51:46.984299Z", "shell.execute_reply": "2023-03-27T23:51:46.983688Z" } }, "outputs": [ { "data": { "text/html": [ "
[15:05:02] Created task 'aperture_4' with task_id                               webapi.py:139\n",
       "           'fdve-44b5399a-68ee-4fc4-9a36-1dab643c8e91v1'.                                    \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:05:02]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'aperture_4'\u001b[0m with task_id \u001b]8;id=20462;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=41208;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-44b5399a-68ee-4fc4-9a36-1dab643c8e91v1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:05:03] status = queued                                                      webapi.py:269\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:05:03]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=697719;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=565498;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:05:05] status = preprocess                                                  webapi.py:263\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:05:05]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=675933;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=619369;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
[15:05:10] Maximum FlexCredit cost: 0.025. Use 'web.real_cost(task_id)' to get    webapi.py:286\n",
       "           the billed FlexCredit cost after a simulation run.                                  \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:05:10]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.025\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get \u001b]8;id=50305;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=660115;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mthe billed FlexCredit cost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           starting up solver                                                   webapi.py:290\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=258055;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=993526;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           running solver                                                       webapi.py:300\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=343638;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=308559;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:05:20] early shutoff detected, exiting.                                     webapi.py:313\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:05:20]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=584057;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=868082;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#313\u001b\\\u001b[2m313\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           status = postprocess                                                 webapi.py:330\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=334519;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=930425;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#330\u001b\\\u001b[2m330\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:05:23] status = success                                                     webapi.py:337\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:05:23]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=829433;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=279398;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#337\u001b\\\u001b[2m337\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:05:24] loading SimulationData from data/aperture_4.hdf5                     webapi.py:512\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:05:24]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/aperture_4.hdf5 \u001b]8;id=809061;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=188743;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# run the simulation\n", "sim_data4 = web.run(\n", " sim4, task_name=\"aperture_4\", path=\"data/aperture_4.hdf5\", verbose=True\n", ")\n" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:51:47.319477Z", "iopub.status.busy": "2023-03-27T23:51:47.319215Z", "iopub.status.idle": "2023-03-27T23:51:48.432556Z", "shell.execute_reply": "2023-03-27T23:51:48.431991Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalized RMSE for |E|, no far field approximation, computed on the server: 0.62 %\n", "\n", "Client-side field projection *without approximations* took 17.34 s\n", "Server-side field projection *without approximations* took 0.90 s\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2wAAAErCAYAAACirgCsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADyhUlEQVR4nOy9e7wkRXk+/lRVd8+cvaEosKJECMELl0AEQVADUXRBRIlyjQgoNzUoiEHFcBVxRZSAeFkxXEwEUaISLwFFBDGCUUC+iigxEYSfZrkKu3vOmenuqvr90V1Vb/V0z5k55+yeM2fr+Xx2T53qmp6aOdPv9Ps+7/u8TGutERAQEBAQEBAQEBAQEDDvwOd6AwEBAQEBAQEBAQEBAQH1CA5bQEBAQEBAQEBAQEDAPEVw2AICAgICAgICAgICAuYpgsMWEBAQEBAQEBAQEBAwTxEctoCAgICAgICAgICAgHmK4LAFBAQEBAQEBAQEBATMUwSHLSAgICAgICAgICAgYJ4iOGwBAQEBAQEBAQEBAQHzFMFhCwgICAgICAgICAgImKcIDltAQEBAwEaBffbZB/vss8+U6/I8x/vf/35stdVW4JzjoIMOAgAwxnDOOecM/bwPPvggGGO46qqrplx7zDHHYOuttx76OQICAgICFi6CwxYQEBAwgrjqqqvAGANjDP/5n//Zc1xrja222gqMMbz+9a+fgx2OLq644gpceOGFOPjgg/HFL34R733ve+d6SwEBAQEBGzGiud5AQEBAQMD00W63cc011+AVr3iFN//DH/4Q/9//9/+h1WrN0c5GFz/4wQ/w3Oc+F//0T//kzU9OTiKKwtdmQEBAQMCGRWDYAgICAkYYr3vd63Ddddchz3Nv/pprrsGuu+6K5cuXz9HOZg/j4+Mb9PkeffRRPOMZz+iZb7fbwWELCAgICNjgCA5bQEBAwAjjiCOOwBNPPIGbbrrJzqVpin/7t3/D3/3d39U+RimFiy++GDvssAPa7Ta22GILnHjiifjTn/7krfv3f/93HHDAAdhyyy3RarWw7bbb4rzzzoOU0lv329/+Fm9+85uxfPlytNttPO95z8Phhx+Op59+GkD/Gq5qXdg555wDxhjuu+8+/N3f/R2e+cxneuzhl770Jey6664YGxvDpptuisMPPxwPP/xwz3kvu+wybLvtthgbG8Puu++OH/3oR1O+l2aft9xyC371q1/ZlNNbb721dq8A8Ic//AFvf/vbscUWW6DVamGHHXbAFVdcMeVzAcD111+PHXfcEe12GzvuuCO+8Y1v1K679tprseuuu2Lp0qVYtmwZdtppJ1xyySUDPUdAQEBAwOgjhAoDAgICRhhbb7019txzT3z5y1/G/vvvDwC44YYb8PTTT+Pwww/Hpz71qZ7HnHjiibjqqqvwtre9De95z3vwwAMP4NOf/jR+/vOf48c//jHiOAZQ1MktWbIEp556KpYsWYIf/OAHOOuss7BmzRpceOGFAArncMWKFeh2u3j3u9+N5cuX4w9/+AO+/e1v46mnnsImm2wyrdd1yCGHYLvttsNHP/pRaK0BAOeffz7OPPNMHHrooTjuuOPw2GOP4dJLL8Vf//Vf4+c//7llxS6//HKceOKJ2GuvvXDKKafgd7/7Hd7whjdg0003xVZbbdX4nJttthn+9V//Feeffz7WrVuHlStXAgBe/OIX165/5JFH8LKXvQyMMZx00knYbLPNcMMNN+DYY4/FmjVrcMoppzQ+1/e+9z28+c1vxvbbb4+VK1fiiSeewNve9jY873nP89bddNNNOOKII/DqV78aF1xwAQDg17/+NX784x/j5JNPHvTtDAgICAgYZeiAgICAgJHDlVdeqQHon/3sZ/rTn/60Xrp0qZ6YmNBaa33IIYfov/mbv9Faa/385z9fH3DAAfZxP/rRjzQAffXVV3vnu/HGG3vmzfkoTjzxRL1o0SLd6XS01lr//Oc/1wD0dddd17jXBx54QAPQV155Zc8xAPrss8+2v5999tkagD7iiCO8dQ8++KAWQujzzz/fm//lL3+poyiy82ma6s0331zvsssuutvt2nWXXXaZBqD33nvvxn0a7L333nqHHXaYcq/HHnusfs5znqMff/xxb93hhx+uN9lkE/v+1b3+XXbZRT/nOc/RTz31lJ373ve+pwHo5z//+Xbu5JNP1suWLdN5nk+574CAgICAhYmQEhkQEBAw4jj00EMxOTmJb3/721i7di2+/e1vN6ZDXnfdddhkk03wmte8Bo8//rj9t+uuu2LJkiW45ZZb7NqxsTE7Xrt2LR5//HG88pWvxMTEBH7zm98AgGXQvvvd72JiYmLWXtM73vEO7/evf/3rUErh0EMP9fa9fPlybLfddnbfd955Jx599FG84x3vQJIk9vHHHHPMtNm+Omit8bWvfQ0HHnggtNbenlasWIGnn34ad999d+1j/+///g/33HMPjj76aG9Pr3nNa7D99tt7a5/xjGdgfHzcS3kNCAgICNi4EFIiAwICAkYcm222Gfbdd19cc801mJiYgJQSBx98cO3a3/72t3j66aex+eab1x5/9NFH7fhXv/oVzjjjDPzgBz/AmjVrvHWmPm2bbbbBqaeeiosuughXX301XvnKV+INb3gDjjzyyBk5SNtss03PvrXW2G677WrXmzTO3//+9wDQsy6OY/z5n//5tPdTxWOPPYannnoKl112GS677LLaNfS9pGjaIwC88IUv9By9d73rXfjqV7+K/fffH8997nPx2te+Foceeij222+/WXgVAQEBAQGjgOCwBQQEBCwA/N3f/R2OP/54rF69Gvvvv3+tyiFQCI5svvnmuPrqq2uPb7bZZgCAp556CnvvvTeWLVuGD3/4w9h2223Rbrdx99134wMf+ACUUvYxn/zkJ3HMMcfg3//93/G9730P73nPe7By5Ur85Cc/wfOe9zwwxmqfqypeQkHZPbNvxhhuuOEGCCF61i9ZsqTxXOsD5vUfeeSROProo2vX/OVf/uWMn2fzzTfHPffcg+9+97u44YYbcMMNN+DKK6/EUUcdhS9+8YszPn9AQEBAwPxHcNgCAgICFgD+9m//FieeeCJ+8pOf4Ctf+Urjum233Rbf//738fKXv7zHKaK49dZb8cQTT+DrX/86/vqv/9rOP/DAA7Xrd9ppJ+y0004444wzcPvtt+PlL385Vq1ahY985CN45jOfCaBwAikM0zQItt12W2itsc022+AFL3hB47rnP//5AApG7lWvepWdz7IMDzzwAHbeeeeBn7MfNttsMyxduhRSSuy7775DPZbusYr777+/Zy5JEhx44IE48MADoZTCu971Lnz+85/HmWeeib/4i7+Y3gsICAgICBgZhBq2gICAgAWAJUuW4HOf+xzOOeccHHjggY3rDj30UEgpcd555/Ucy/PcOlWGxdKlQiNQKEJ+9rOf9R6zZs2anh5wO+20Ezjn6Ha7AIBly5bh2c9+Nm677TZvXfVc/fCmN70JQgice+653p7MHp944gkAwG677YbNNtsMq1atQpqmds1VV13V4zDOBEIIvPnNb8bXvvY13HvvvT3HH3vsscbHPuc5z8Euu+yCL37xiza1FCgUIe+77z5vrXldBpxzy9yZ9zcgICAgYGEjMGwBAQEBCwRNqXkUe++9N0488USsXLkS99xzD1772tcijmP89re/xXXXXYdLLrkEBx98MPbaay8885nPxNFHH433vOc9YIzhX//1X3ucpR/84Ac46aSTcMghh+AFL3gB8jzHv/7rv1qHxuC4447Dxz72MRx33HHYbbfdcNttt+G///u/B35t2267LT7ykY/g9NNPx4MPPoiDDjoIS5cuxQMPPIBvfOMbOOGEE/AP//APiOMYH/nIR3DiiSfiVa96FQ477DA88MADuPLKK2e1hg0APvaxj+GWW27BHnvsgeOPPx7bb789nnzySdx99934/ve/jyeffLLxsStXrsQBBxyAV7ziFXj729+OJ598Epdeeil22GEHrFu3zq477rjj8OSTT+JVr3oVnve85+H3v/89Lr30Uuyyyy6N7QYCAgICAhYWgsMWEBAQsJFh1apV2HXXXfH5z38eH/rQhxBFEbbeemsceeSRePnLXw4AeNaznoVvf/vbeN/73oczzjgDz3zmM3HkkUfi1a9+NVasWGHPtfPOO2PFihX41re+hT/84Q9YtGgRdt55Z9xwww142cteZtedddZZeOyxx/Bv//ZvVkTjhhtuaBQ/qcMHP/hBvOAFL8A//dM/4dxzzwUAbLXVVnjta1+LN7zhDXbdCSecACklLrzwQpx22mnYaaed8M1vfhNnnnnmTN86D1tssQV++tOf4sMf/jC+/vWv47Of/Sye9axnYYcddrA905qw33774brrrsMZZ5yB008/Hdtuuy2uvPJK/Pu//7tt1A0UNXKXXXYZPvvZz+Kpp57C8uXLcdhhh+Gcc84B5yFJJiAgIGBjANPVcGlAQEBAQEBAQEBAQEDAvEAIzwUEBAQEBAQEBAQEBMxTBIctICAgICAgICAgICBgniI4bAEBAQEBAQEBAQEBAfMUwWELCAgICAgICAgICAiYpwgOW0BAQEBAQEBAQEBAwDxFcNgCAgICAgICAgICAgLmKYLDFhAQEBAQEBAQEBAQME8RHLaAgICAgICAgICAgIB5iuCwBQQEBAQEBAQEBAQEzFMEhy0gICAgICAgICAgIGCeIjhsAQEBAQEBAQEBAQEB8xTBYQsICAgICAgICAgICJinCA5bQEBAQEBAQEBAQEDAPEVw2AICAgICAgICAgICAuYpgsMWEBAQEBAQEBAQEBAwTxEctoCAgICAgICAgICAgHmK4LAFBAQEBAQEBAQEBATMUwSHLSAgICAgICAgICAgYJ4iOGwBAQEBAQEBAQEBAQHzFMFhCwgICAgICAgICAgImKcIDltAQEBAQEBAQEBAQMA8RXDYAgICAgICAgICAgIC5imCwxYQEBAQEBAQEBAQEDBPERy2gICAgICAgICAgICAeYrgsAUEBAQEBAQEBAQEBMxTBIctICAgICAgICAgICBgniI4bAEBAQEBAQEBAQEBAfMUwWELCAgICAgICAgICAiYpwgOWwCuuuoqMMYa//3kJz+Z6y0GBAQEeAh2KyAgYBQRbFfAdBDN9QYC5g8+/OEPY5tttumZ/4u/+Is52E1AQEDA1Ah2KyAgYBQRbFfAMAgOW4DF/vvvj912222utxEQEBAwMILdCggIGEUE2xUwDEJKZMBAOPvss8E5x8033+zNn3DCCUiSBP/v//2/OdpZQEBAQC+01th6663xxje+sedYp9PBJptsghNPPHEOdhYQEBDQH/vss09jyuRVV10119sLmAMEhi3A4umnn8bjjz/uzTHG8KxnPQtnnHEGvvWtb+HYY4/FL3/5SyxduhTf/e538YUvfAHnnXcedt555znadUBAwMaMfnbryCOPxMc//nE8+eST2HTTTe3xb33rW1izZg2OPPLIDb3dgICAAAD9bdc//uM/4rjjjvOOfelLX8J3v/tdbL755htymwHzBExrred6EwFzi6uuugpve9vbao+1Wi10Oh0AwL333otdd90VRx11FC688ELsuOOOeM5znoM77rgDURR8/4CAgA2HQezWf//3f+OFL3whPve5z+Ed73iHPf7GN74Rv/jFL/C73/0OjLENteWAgICAge+5KG6//Xbss88+eOtb34rLL798fW8xYB4i3GUHWHzmM5/BC17wAm9OCGHHO+64I84991ycfvrp+MUvfoHHH38c3/ve94KzFhAQMGfoZ7de8IIXYI899sDVV19tHbYnn3wSN9xwA97//vcHZy0gIGDOMNU9l8Hq1atx8MEHY5dddsFnP/vZDbW9gHmGcKcdYLH77rtPWQB72mmn4dprr8VPf/pTfPSjH8X222+/gXYXEBAQ0Iup7NZRRx2Fk046Cb///e/x/Oc/H9dddx2yLMNb3/rWDbjLgICAAB+D3HPleY5DDz0UUkp8/etfR6vV2kC7C5hvCKIjAUPhd7/7HX77298CAH75y1/O8W4CAgIC+uPwww9HHMe4+uqrARR1ILvtthte+MIXzvHOAgICAvrjtNNOwx133IGvfvWreN7znjfX2wmYQwSHLWBgKKVwzDHHYNmyZfjQhz6EL3/5y/j6178+19sKCAgIaMSmm26KAw44AFdffTV+//vf48c//nFg1wICAuY9rr32Wlx88cX4xCc+gb333nuutxMwxwgOW8DAuOiii3D77bfjsssuw3nnnYe99toL73znO3tUjgICAgLmE9761rfivvvuw2mnnQYhBA4//PC53lJAQEBAI+69914cd9xxOPLII3HyySfP9XYC5gFCDVuAxQ033IDf/OY3PfN77bUXut0uzjzzTBxzzDE48MADARRKR7vssgve9a534atf/eqG3m5AQEBAX7v153/+5wCAAw44AM961rNw3XXXYf/99w+y2AEBAXOOfrbLqEj+9V//Nb70pS/1HDe2LWDjQXDYAizOOuus2vl//ud/xuc//3k8+9nPxsUXX2znt9tuO6xcuRInn3wyvvrVr+LQQw/dQDsNCAgIKNBkt6688kp7U5MkCQ477DB89rOfDemQAQEB8wL9bNdjjz2G8fFxnHDCCbXHg8O28SH0YQsICAgIWPB473vfi8svvxyrV6/GokWL5no7AQEBAQEBAyPUsAUEBAQELGh0Oh186Utfwpvf/ObgrAUEBAQEjBxCSmRAQEBAwILEo48+iu9///v4t3/7NzzxxBOheD8gICAgYCQRHLaAgICAgAWJ++67D295y1uw+eab41Of+hR22WWXud5SQEBAQEDA0Ag1bAEBAQEBAQEBAQEBAfMUoYYtICAgICAgICAgICBgniI4bAEBAQEBAQEBAQEBAfMUG2UNm1IKf/zjH7F06VIwxuZ6OwELCFprrF27FltuuSU47x8P6XQ6SNO08XiSJGi327O9xYARRbBbAesTg9quqewWEGxXgEOwWwHrExuT3dooHbY//vGP2GqrreZ6GwELGA8//DCe97znNR7vdDoYW7opkE82rlm+fDkeeOCBeW1AAjYcgt0K2BDoZ7sGsVtAsF0BDsFuBWwIbAx2a6N02JYuXQoAOOKzNyIZW4zxboa1HQkAmOzmyLNiLHNtx0oqGH0WrTSU6j2vce4ZZzaSxBkDi4oDQnCIqJiPYoFIFPPtRGBRUoxjITCWiGI+FlhUjhe3IoyVa1qRQLt8bBJxtMx5Io6kHMeco1U+VyviiHgxFhxuzBgi5ubtnBlzBmFeh5ZgKkf5ZoDJrBzndp7JHDDjPAWULOcz6KxTvHfdDnRePFZnHehutxinHeisa9eotFgvuxnyieIik50M+WRazqeQWW7HxfEUKi2eM+tKO5aphMpVuXUFLcu/o9RQsvcPyQUHE8XrZoKBl3+DuBWRsUC8uFW8T4vaiBcXF3g3Evir86+0n7EmpGkK5JOIdzwCEHHvAplh9b1fRpqm89Z4BGxYmM/UT3/xGyxauhTS2CPA2iMFDSMjpTTcGE5baliZKRoU52D2d878NRzlBDlulnDG3Bgg9rF6DjNm3jH7/KzhseVzVPfMtAa0u8aZGZM5kDWMvjl0LRkz77Gq/hw1j2VauT9U5Xka9zUM6B+KFe+kZtyOize4nOeRW8MFwDjWrl2HbV7y8r62a0q7BQTbFeDBfJ5+/6NvYtmSxf5B7zqQbli9wVLS3k8US8uxcteUVtJeP5quV6qyXrrnMGOZESMqG9ZLuy+tNLRU9jx2LMlz2ZfoXouW9eNhwQSvHzM6L+wxJjgYp+Py/oZzMF7c04ALax+YqJuLi9/Lx8E+jpP1nKwR1sYwch5vvXkO+tOc370QMu79UlizbhzPf+UbNgq7tVE6bOYLP+MJwFvoMIFclM5FLO2XJ2MKgpUXlVTQyhkXQc9nP/zOSeOl18M5AxfOSRPl/FjinLGxJLJO2lhM54U33yof2xbcjluRQNuMBUdcPlc74hDlfmLieFUdNuqoFT9hH0fHTGvfYbPjHJClk6Zy4qSlbo2UYLKkomUGXTpjOiPjtAPdnXTj1Dl4snTqZCdF3iHjSeeoAUDe6ZJxClk6bHknh0ydQZVZvfNWB8YYRGkwhGYQuvxbMo6o/DxEuUSUm88Mt48bBLy1GEwkPfNa9qfuAzY+mM/UkqVLsXjZMkjlHDbz3V912AzofRF13ppgnS+U9/kVx8qsoc5b9RPPGTlO9l84Xb3z5hhgHDD6nPVOGn2u6v6ABgcMqHe6APdGVdfWOlTuZtFfQ5031fuY8qfdg1I9DlzfPTaB3KxpxnvnGx22yHvsILaryW4BwXYF+DCfp6XtGEuTSsqa54SZOeVusIyzxCSZU9DcXA8SQPndrqU9iVYZcdikc5q0hM5T9zzEGVNlAFhL5RwzqSDTMsBcdcwUvY/onXevS3nOmaqJ9g/ivFHHDICX/kcdMzvHuTfPzbgyb5wjkcRunjh3PC7cBKYz30mLy+tfCzBlnlfA/KEYj62zxTgAXto4TmwM5yj+hqXdtk6bIo6i96L9N4UL6DwuH7/w7dZG6bAFBMwXMCZchItC1cwFBAQEzAM02i0g2K6AgIB5iVG3Wxu1wzaRKsRCIs0VSYNUkJbq1lBl5JPV5eeU8ya6OwirlpTjRYnAWFK8/Uta0YxYNTOOBUNsoiUcHqvWxKAxMg8UEeyGl0peNLMRXMbdR0hzXqRFoozwGoaN54ChwGUCFhWphCzvQrcK6ll3O9BJOaZsW9IBaxVsm2h1INpFdER2Uoi2Y9sAgI9HyJMi2sKTCCotnl8kPtvGRH+2rQqTNskEA8rzmJTJYszBDPNXlyvbByKOwaIaho2F9ogB9aDp1gAgtXaMlWZQ5WeHxiLpp1L0cGEOdUxacS5m53wWjMzX7NOu7ZPu6NIm69k2usbfqz87ZYCVcZcyRRklb035U7tZrckrq6YvcrOGMGnKrSnm69kzG/Xn1bTJ4rk1RO1jB4LHsLlodi3zZtYMIQjRZLeAYLsC6qEnx6EFfFaNpC16c8pPK/TTGiW8tMaSMaMpjlASOsvcuJxXWe6lMpp7BCXrGTaZ5rWpj5KeR0qPkauyZarCuvlpkcNdK9X7Djsu7/t4JVWSeayasPPCsGaVVElR3pPWMWxcCHBy3Jybx5GXVsni4h5Mc+GnUJb2gnFeHDPry31pyp5x51hpwLFt1NkyxyfHp3rbLEbdbm3UDluaK+hcIc9dumP1O9G7KaAXC0mDFOUH19SnccGHSn1c0nbzbeKMjcX1jlkr4tYxSyKX7hhzP8VR2JslN89B0hxBbr5oulLda4e7yWHmRChvZsy8VkV6DQCoHFqVVLXKbf0fUzm0qXOLW0BZz8Zbi2wNG/IUuls4aSrt2LFOO2Cd4uIU3Q4iU+dWOmyinbiUyMnUzZNUSeq8yUxB0Do31T890nsvpIYq16lUQvLiNeVqSAPMGyI+TVGggAAUl5+5paHXsULhtJkDJv1RDHAv3jcN0qwZMM0RGN4xa0pxpJixyBx1Ukp4Toz5Aqisc+mJgqRXNdShcZJ0OogjpyvzXHnndc8v7HkGBrkJ8uvZGhy3AdFot4BguwJqoboTUBF8Z0w5p8fNVRyyujkzzlKv9kyZ+njiOFEnTWaZN2+CsSrNXYpjmtu0RZVmlfTI3O7BOWyuFl4rd1/gHyc1xF565HD3C5wYVOqwcVJzbx0pwVyZjleXT9MgI8+p4ybgbRzAJHLOYBJZh5DH7nEijn3njaZhRtR5K+fjxHPkPOfN1rkJNw80OnVA8bkaFKNutzZqhy0gYK7Boxgs6i2C1RjipiwgICBgA6LJbgHBdgUEBMxPjLrd2qgdNqU0pNI9UQ4TxVDwUyHNPGPMBiVFxC3DFjWxanExXpQILGlHdo1h1RbFTvXRY9UiwqoJgSRyYiExUX0cJN2RMmlNkXM71xTFpspjNQX8VA0JOvEL9UtWTWvl0iaVBIvMOAdLxor1eQY+VrJwWbciRlIoAeluB9ywbSXTFi0at0ya7KTIxovH5Z3UFyMp0xdzoiopM2mZNxoRq6Y3VAt/gSLlgZuIXB4YtoD1C8NQCcvjMJu6LZjL5lO6f/qjOZdBleEaRjDEZ+bL81VYtKlsjScQUhVGsbaEzA3ADOkBKDnvaU2RfOVhmshMNQmZ+MqQU6RBVpi32sdWmTeDGgauLxpYNZsNwVhxbAimbdQj1QEbHrrbgebkuiCqiz7rVjM/gxTHfkyatGmQfkqkmVep9NizunsEmUmblVMnZEaVqCkD57030xEdMYwZvUetKlxbtotBlPehXDC7RiTCY+GMCjZNmbSiI0LY+X7M2zAplJqkUFJWzVOhLNfVzYMLm4E1CEbdbm3UDltAwFyDi4YatmHqVQICAgI2IJrsFhBsV0BAwPzEqNut4LChYM50GZYWkUuJ5qTwg3OXDyxIH4uqkEgx18yqLS4jDouIoMgiwqotijlaZb5uEjkmLeKuJq2oVevPqvX0QGqMZBvo2qGdqoacidaqRm9kgj6HrhTqaxpBJu0BDPNW9HkrJVZbOVi7rHOTKenVNgndKXKXTQsANjkObti2yXFEi4vjg7BtKs2Rl/Naakjbf0/XRr8KmVwXmZouWJyAx70GRI0APR8wNzCMuSqvcAFtr3t6adO6NaV1bV2YLywyPJPWr/a1x+YQlmxoyXpv06aAlkSuB6jJ8lobVGxgj8kbgCgvX3nxP2MeOzd1Pzdf+n9Y5s3uoe6906r5PaBsm21Wx6FF5Bi3AdBkt4BguwLqoTsT0EL31qcBfo2alK62jQiKUOl8nw3LeuapWIjKKJOmoMr1PsOmvNp2W/OWKnsvQGvVVKrsmK73snOs7D+tX/PvJ+rYtn7gNaIjVIikqFsjNWykbk3ETpiEJ25s2bZYQCR+ewARc4ikV6yEJxF4yYx587S2LYkIO8chyHo6z1IijFI6U9rr7ebES3S5zs4D0J3+zbApRt1uBYcNBaXMFKWR3TGbBsmZdcySyCk2VoVEAGApERFZ0o6wKHapj6bJ9aJY2Pl2xNEuL6aYMyRGYZJTQRHSP404b4Izd3OgFZgmqkuDNF7tccQaitThTkdvdugzNNfPctgbG17vSDb2eZNp0YTbzJeOHGt3wZeUxrwsOuXdDlSZJqmp89YZR1wqCeUTHeSTXTJ2KZTCOG9ZbouLi5SL3tQGCjaIokMDmij6Rto+YKMHKwWFzLWjNYMVuGJwARECwVizAuOQjpkgDhmrSd+zRmEYJ2MK+A4ZeX1mL3RNxWGpc9Q0qn3q/PdsSC0AALqxbxyDc5JcWr177zQNXA3oyNlUSXPM20rD5iuNte37xfmspkQG2xVQB511oVNW65jRNMeqcwYMLhxSm9aYZTZVkqo7ylQ6lejUlUQokvpYdcxMCYWSmihJEoETqd39QnkdSq1h/DJJrs2qryYbrltRE2ijtxxUYE4wp1pe3MsShy1xjpENNiei1pEzThrnzI0TARFn9rhz6iLIxDhssXXeZIcoTCYRpCjVvPsKluR2v4wqQ5L+b6COHODE6gbAqNut4LAFBMwhRBSD11D01vEOCAgImGdosltAsF0BAQHzE6NutzZqhy2OOOKII82VjSJQCMKqtSJOGDbRyKYBpWR/LHrGi2LusW2GSUsEs+xZIurTICOGegbKS7NRU0s+U1nUGplnzaP6qDXqo9NSaRtQV9qPVE8VR++N6JcFrzyCEEWvNtFaAi5dsbFNlcxTsLyIrLB2IUTCsi6ivGwB0BmHKlk13ZkAK8d8sWPbZLeLfLxYn3e6yMZdmwBXdJz5aRYN76+JKkEOd9EHhi1gWHBmmPXidw1t7UTJzfQ+hoy9/mg15zXzvIlJk/VsUC/TU5mbphw9GGk4QGxWYZvMOkVaqNUzRUrX2yql4c3b7Q9hy7ytF48uttsj8lT2yPNYS27tXQ/z5tn2sgekbmgbMMh7XbX/5ifjwDApkSMeqQ7Y8NBZCt0FSYms71/m9TtLMzuniKS+nwFjGLAcqlxPs2SKx/aKi9F0R5lKqNSwZMpn3kh5BGXYZF4+L2HQUqUtU0ZZNcqm+eNeVo0erybvULbNZ9nccTpOaOnMhCn78Rk2TlIinehIPetmhEtE4lIlVSzBy3skxlPby43HkW0TILLIY9LMGpXmTpgkzSASlzZJe8HR1gOObStaBegs7XkPmzDqdmv6xTcBAQEzBo+Sxn8BAQEB8xH97FawXQEBAfMRs2m3Vq5ciZe+9KVYunQpNt98cxx00EG4//7719POC2zUDFtSMmyChEAFZ16tWBIZIRGBpPTyq6zaYsKaAVVWjbJt3GPVzLhat2YZJZk5RknmPsNWV9vQhGpU2kZWmSs0F2WUgza/5rDn1kREXCoXMVLaRYmkIlFr+DVvU5WEVCP6tlUBB0RZzB9zgSgpItFRC66eLXcNtynrxheX891x8JJVU51xaMO2dcYhFhfjuDOBuIZtU2nuWgVkuW3wSaOAgCvS5dlw9WyMNTBsbHrRns985jO48MILsXr1auy888649NJLsfvuuzeuv+6663DmmWfiwQcfxHbbbYcLLrgAr3vd6wAAWZbhjDPOwH/8x3/gd7/7HTbZZBPsu++++NjHPoYtt9xyWvsLmDlMDatjnZi9vqqfmiqDViz3GbY6Jo2p3LE0lElTeS2j7zFsTbL3Zk9NYiGAs00SvihGtd4KAKN2jUeg/OJ0MwPMzrR2a/sxbfSl1nUQ4MTyee87c8eKedeWgTJvrHwdQrBm5q1SJ8i0ch+Epu+GmlplPUSEuclumWMBAVXotAPF/e/Nuho1JR3ztqFYtaY1hax/eX+TK6TK1aW5MTxWjc6btQZ0LV0zKKq1a3Vz5veEs1rmLZHKPjbpSojIsGk5YdgIk5aVTFqqIJPifRGZgCjfO5FIu0bEwv7tWJpDmEwlyrYRcRgeRxBmPefusZyDCyd2QkVKAL/OzYjODYLZtFs//OEP8fd///d46UtfijzP8aEPfQivfe1rcd9992Hx4sVDnWtQbNQOWytiNQ4bSX0UnCg/Cs9JM33TlrR8UREAWJI4J60VOVo6ERztiKQ+mi9vmYKlxOkoHTYmU9u/jMncS4mpTYOhoF/IPHI3OUKQm58IEP6XvRaRvUmoU38ESieNGqtynBFHThPDpCpGaqqaeA4nRlLtM2fTRQVDzAsDkCRFZCRqM3DjsOVdsLQQI2GtxWBjpQBJNgldCpOo8bUuVbIzDt5eAwCI0w7ixaXzNtn1VCVtb5c0h1K9Xzx1Snz9wOO4XrVI50OdBwC+8pWv4NRTT8WqVauwxx574OKLL8aKFStw//33Y/PNN+9Zf/vtt+OII47AypUr8frXvx7XXHMNDjroINx9993YcccdMTExgbvvvhtnnnkmdt55Z/zpT3/CySefjDe84Q248847h95fwOzAKMOaq7MqkNGvtxowYIojdcxk3ugg1AaOhhAYqTpXPWl65XFjk6BIkIm7ND6mctJXrP65qGOm4eyWQhFsKt6C/gEnP2Wy70srtkL2wpmuFVziROWzSJU0zptz8ITSfgql6UtU+Vt6P3vGlQ1XREiG6UPUaLeAadmugIUPlUuvDxpNg6w6aU5hcThBkfXppNF0x1RV0yCLcdWRM3P2PcDsO2wc/pzvsJl7J23vQ1NFxwxJud+EMwgjmGLfx3rHbFjnTUjl/d1NCQn9DPAk8hw2bVIlJbdrvPRIWYxVPngZymzarRtvvNH7/aqrrsLmm2+Ou+66C3/913891LkGRUiJDAiYQ5ic6rp/w+Kiiy7C8ccfj7e97W3YfvvtsWrVKixatAhXXHFF7fpLLrkE++23H0477TS8+MUvxnnnnYeXvOQl+PSnPw0A2GSTTXDTTTfh0EMPxQtf+EK87GUvw6c//WncddddeOihh2b0ugMCAkYX/ezWKNSCBAQEbHxYn3br6aefBgBsuumms7HVWmzUDNviVoykHZcpRiXz5Un2O1ZtLKlPc6Rs2uJybVtwtAiT1rZpkBxClgxQ2gXLSipXZmClWAbLaRpkBp2XRbdZatOPVE6KLGlxOefuQ1cWZAIAixMbPWVxyxWXRy4qrkURdfAi3pUidJtOpF1kKFMauYkoqeL3Yo1Gmjt528xI4Cpf7pZGrCkzEJd7F9yNY+H6z8XcF2oxc4lwrFucLC7fU8K25V3wVjEvxpaCT64t9jg5DtYu5nVnHHysYN6iyXGXEtlJkddI/2sSPYq6gxfAAoCIIvCo9zJkqphbs2aNN99qtdBqtXrWp2mKu+66C6effrqd45xj3333xR133FH73HfccQdOPfVUb27FihW4/vrrG/f79NNPgzGGZzzjGY1rAtYvTNq2CdTSqGtjv8V+YiFEwMit8UUuvDVen7AGtq0OZr7CqHliISRd2wpkkAwBzSNHoGmScMgjwjCx2lRuTeW1G9O6KQNXHocmbJtPVBH5DzvfRLLTzAHOdCWjwImRuLYJ2kXRWRElL+aZHVfFSwBAcNH3c9ADL610MDTZLcDZroAACpXl0JHwJPtpDzUqOkLTH91aJwRG2Tg3Lz0mTdYwaflkXisoIlPSh60h9bHKqtWlRKZK27RpmiZZx6pVBUea2La6rkGC2ADze/HT2QzKpAnG7H4TzuxzCaYhyx7EUjMIsgYABGlToBUnLY40hJw+32NKS0yaZHF+BV0ybyKJLHPKhEuVFIj98yiXXjkIBrFbg95zUSilcMopp+DlL385dtxxx4H3MywCwxYQMIdgZUP2un8AsNVWW2GTTTax/1auXFl7nscffxxSSmyxxRbe/BZbbIHVq1fXPmb16tVDre90OvjABz6AI444AsuWLRv2pQYEBCwQ9LNbjDd4rAEBAQFziEHs1qD3XBR///d/j3vvvRfXXnvtet3/Rh0KW9yK0GpFiCpNsW2tWiuybFuVVVta5tdSeX7DqrUFs49rcYBlRSd21plwohh5B6xs+MeySVs4qbsdSFNEmWdOspRI4JrIdw+4cF3go8R2imdJGywqIxOtNljSLsZaAcKPemvGG+vjbP2H1q6GTWnLquUSlknr5ArdUvY2Uxqdcqy0RmYKhrXfhNt7KaRuzYxjwW0NW5swoW1Sc1gn6tIWbbSWLCrOm3Wgs7HiJceT4EkxFou64IvXFXscXwM1XjBvrD0OXta8Rd0OxETxtyyk/8tiZ5JzPyypzgWHEDVxk3Lu4Ycf9pyjqSI96wtZluHQQw+F1hqf+9zn5mQPAQW4zMCU9Eq1WF3dUpPsvlZAyaQxyqTRujVF6takrK9tq9gkXbFLuqHFhbFLxYtxTVE9yWbGLePDuIKmokgoaxA4XIYBm0J4qYRh9BUZS+2yBOicYdik1l49m2XetPbrU6awZQCpO2HMXOJePZvwBEgYqWejNlG79gvMReCdkIxuFJgxMdpqra3SGvkQ9TSNdguwtisggELLQppf1Qh30SwVmebePOA3vKYS/8PXrVXFSJRdY2T6ffaMMmyYUnQkq2mSvX4YtiZZf39s6L7qevNcBZNGmTr/eZJ8arvKxWC213tM4mrYZCkiIhBBc/cZMNL/FBIZmDQiKUXzbipiM/Vep7Zbw95znXTSSfj2t7+N2267Dc973vMG3st0sFE7bEtbEVrtyHPSxmLR6KTR1EcjOtKKGMas41A6FlDgWXGTz9IJ57Clkzb1sdonTHeLNTrt+GmQZkxvjirwOsKXjhmLE+uksaQN1iqdlDwDKx0NNqbATP2lcfQYh1bl48hNngL3bnbMBZ+rwlEDCidtojSSXamsk9bNpee8GYctoz1LqsoJJWi6aswZ4vJ9jzlxiqP+fe5agqEd6XKcoD1WOKwi6UKbv013HDw2vd8WgY8V6ZFqctw6b7ozjrjlnDfZLRxu2Ultv5h4Sj1MH4zVR6RNmtOyZcsGYrOe/exnQwiBRx55xJt/5JFHsHz58trHLF++fKD1xln7/e9/jx/84AeBXZtrKGmFiSyaHDOSvuh6N2qiOOscME/YiMzrPLPziqRme06aUj0OWxO8WgGSxq2j2DlzUQIWmdcRuXxD4uxpJC6dknPrYGrtfyFbu0VER6RyN0y58p2z6vFMupTuIuBUn9LdZMMojKNFUx+p8xZzTgJUviMnOBEjUW5MUyWL53CpM4zBc9ioSmUVwwggNNktuo+AgKngOWE1zpvn0BlHT/prrTAJTd+Tioy1dd6K9ZqsV24NKdWoExeh87QsRGqaBuk7au5x7jUPKzpS15etOAe9zswi5o2tA0bWF+ejr4OmUPrPKTXAyXuqZBko4hrMOtMSrHwiLbV1urRk9r1mXIGVj1Vc2cdq7r4zNFfQxPkzf1evh+gMg0GD2K1B77m01nj3u9+Nb3zjG7j11luxzTbbzGhvgyCEwgIC5hCijPjU/RsGSZJg1113xc0332znlFK4+eabseeee9Y+Zs899/TWA8BNN93krTfO2m9/+1t8//vfx7Oe9ayh9hUQELDw0M9uDWu7AgICAjYEZtNu/f3f/z2+9KUv4ZprrsHSpUuxevVqrF69GpOTk+tp9xs5w7ZsUYT2othj1dqCY6xkaZa2IiwqO74vSSKb8jgWcSsk0oo4WmU6Ds9KYYvuOo9VQ7dk0sbXQJbpdXpyHKoz4cap6/tliihlmnlFt3WgMqciji3VLNoJuGHYWm2w3LQKkGBlJJxz103eCoxw1+9NV1Miy580+iyJoEhXSo9hM+OJzDFsqVSYLFMS0lwhzY0Yie7LsgFFuipNXU0ss0nFYOrY0QhjsS7XMrTK3J+xKEa7XbJqUdtPlYzK+fZim0KqO4uhxteU43GwVvE3Ey3Htg17QTXVfEynDuTUU0/F0Ucfjd122w277747Lr74YoyPj+Ntb3sbAOCoo47Cc5/7XJuTffLJJ2PvvffGJz/5SRxwwAG49tprceedd+Kyyy4DUDhrBx98MO6++258+9vfhpTS1rdtuummtp1CwIYFo/0ZAZ9JA3zhEK+vWo24iJKObSMiR5RJ03nDWEqXnk3YtakyAWi/LxYn0CZDIKLjDIhJhoAw7FkEFtkTOoEkpQDePzVGg/ZZo2ndvlhSMefSuH2GDV5Kd0bssqpE1qug6UYFq0YYtvJYLLhlwWLOPeYtFoZBI3LdnAqTlKybcuejDFtVnKZqYgZhCO3j+9SqTcd2Dds/0uDaa6/FEUccgTe+8Y19xZIC5h7Ve5hhUtmAZrtSB6U0YeGGy3pZH3DM2Po791zCiZEoy7YNUh6ilfJT5Kd8HuXuWeGL1QyC2bRbpjRkn3328eavvPJKHHPMMUOda1Bs1A5bQMBcQ0TcNq70MA0FpsMOOwyPPfYYzjrrLKxevRq77LILbrzxRiss8tBDD4ETY7fXXnvhmmuuwRlnnIEPfehD2G677XD99ddblaM//OEP+OY3vwkA2GWXXbznuuWWW3oMVUBAwMaBRrsFDG27hu0fafDggw/iH/7hH/DKV75yqOcLCAjYODGbdkvrDR8IGEmH7bbbbsOFF16Iu+66C//3f/+Hb3zjGzjooIOGPs/SJMJY2fi6vm4twljJ2IxFzIpbjEVOqp9lk+DdQqyCpaZubRKYLJgYKmChJ9bYujXVmUA+XjZn7rjmzJIwbLQ5M40i0DxeEUf2dx5HiNoF6yHaCaKxkiXKM3Ajo0oj4VEMbbvJx3aOSnVTmACsJrUbVFCkkyt0y32u6+aWYRvPpGXVJlM3nkglUukYtpQ0QKTRXhOJrjY1N2Pa3HxJu/hIL6Z/x1aEJeWapUlk2y90JcOYNGxbgtaigknj0QRQvh8sa4OZlgetcVsXqFptaFODmHSAqBjHQ4bQqJJ5dX46OOmkk3DSSSfVHrv11lt75g455BAccsghteu33nrrOTFKCxWzZbegcoC09vDr1kh9GpHj76lPK2vgdJ4VbBpQiByRmlmQWlozD+VYNa1UPcNWIzbChHDMGhFH0mnHXlOad4oWJACQuHNrKV0Nbgxo88XKctdQmwuXEdAglkQl+as1KLZmpWTfu1LaWrXMY9uUZdIypaGI8IDXrqSGreIkgluIixBhJcK2GWElKrIkuCLzrLbVSR3rJpj2nocRNs5r6o1hGbZmGzWs7aL9IwFg1apV+M53voMrrrgCH/zgB2sfI6XEW97yFpx77rn40Y9+hKeeemq4Jw0YGLNlt6r1R/T3QdgzazMGYFQ4Z9Dl+bXQQDbFAwho82nBHOtO5wFNxswalmLOFo654wCZq6s9G3xvblw/J6hdaXhNbo1vk+rmB4Fh1bjgnp2b8nF8MGNhm2XXfIaGqWubTbs1FxhJh218fBw777wz3v72t+NNb3rTtM+ztB1jUTvuSaWj/dTGIpf6aMaxSsHKm3XeHQcrUx7RKXt6rf2T76SV43zdOmTjRapkPtFBZh22FNL09yJ9RWjhLAUTzH2AOUc0Vtzk8DiGJA6bcfxiqewfmgmnyqbjGDoqnZHEpEzm0FF/g1iIjhCVyHKPXSI60pEK4+V4XSfHuk6xl7WdHJOZcd5ymyo5mUpPeVLX3DwwzmrTI53DFmFJq3ilS9uRdd6WtWMsLdesa0nrvG3SipEm5Y2a5M55i8dsPzeWJtZh41FshUnYZBvKpkpOAOZ9HEx3wUII1qASOQ/yHAJmFbNlt5hMwSRJR9XKc9KcoIivAKlLVVqdp9Cm/1FOnDGiSqvzzDqF2lOrJY4UEUKa6iaKfqnyKCbOG7dOGoviipPWLvcuXdoM585Jk8z1DlOyx1GrgqZBUoVHqZyzQlVurV2TyqY+dnNl0yczqUgvN22DT8U5+9+ICe47WtSposJKERnH3liVY5cqaZy4JCI3Z0SARPBCQdI8v1fMzxiyITLUGu2WeREYrJ/RdPpHAsCHP/xhbL755jj22GPxox/9aPCNBwyNWbNb5c21+dQoOLvBuJvX5HNl73MUmVMK3DhjioOLUhRDaWgTSBccrLwGmWAQ8QBpdyYGppTn3JieZLSvWargCXSk5Nqppj/6giPVsRECGUCwqMZZq5u3KdLkWMKZ5+C5/mzwxp7CJMq07PKF8kTY91EkHKK8jxKxsA6bd28qGDhx5CyxQMasVHosxq5Ehwlu/8bUqWOcg1uSgQ/tsA1it+YzRtJh23///bH//vvP9TYCAmYMLjh4DUWv8xEI9wQMhWC3AhYKmuwW4GzXVltt5c2fffbZOOecc7y5fv0jf/Ob39Se/z//8z9x+eWX45577pne5gOGQrBbAQsFg9it+YyRdNhmC8taERaXKZEmfW4s5laef4ywam3BwE3KY3cdeLfs09Udh1r7FABArSt/EoYtX7cO6dricekalwaZTUwinyzTIDsZso5Jg5RWClVL5aXWeCk1ZXSDJwJivBS8GHMMW7R4rKeXCVBGKAzD1u1AG5ZIkZQqK4/tUq00A+nDRlKLVH3vtYlMWlbt6YkMa7vFeF0nw9pyfjKVSMv0SCUVZJmOJMl+KdPGOLPvAWMMovzbROXfrpUI255haTu2bNszFsXYZFHBmFG2bSJT2KRcs0k7QlqmWmUKGCuFTMbGngEuTN8nAWZ7Q0XgJaumo8S2U+Dl6xwUnETXKXSQxg5oAJN5ITpCUgBpzzQq2W9THCmrlnYK8RAAOstsD0gQto22FFF5ZvseVXsn0Z5KtXsl0VETGeVJZOd5EoGb54xisPI8jKREYmwxdLdDzmnYtsgJqfDIiqH0a0dC5bddeqQmLUic0IjJFsiUtvPdXFqGLZW+aBIdG/RtV2LTHf0xTfuuS4+MBLfp+TFXlnlrCcMSVlImTdRcu4i71LpH7j8fIv25yW4Bznatjx6Sa9euxVvf+lZ84QtfwLOf/ewZny9gw4Fxnw2ht8dauN5qIokgyzEnt6imXxeTRGhtfdzCprCtMgRz/dYEAxkzTw7fsWqMCLK568PMKfTOFWBD9mFzkxz17JufBslqmbSECBgl3K2xjH/CwQmTZtg2Qdg2XmHb6tcIiLi8d6owaWaek/IeUfmOsOMaRm7QtErzuqayW/MZG4XD1u120S1V/IDeVI2AgLkCi+ojPqqpMDZgo0GwWwHzFU12C3C2a5B+RsP2j/zf//1fPPjggzjwwAPd85WOehRFuP/++7HtttsO9VoCZhfBbgXMVwxit+YzNgqHbeXKlTj33HN75pcmAotbwpPsp3VrYzFHosuoTmccvONYNUw8BQCQa5+CWvsnAI5hy9c8je5Txdp0zQTStYV8fz4+iXRNUcOWdXLkk8W5804OWTJNMpWWVVKVkIvJB2acuYhGIhCVtVoyU1CpaxBpwAS3cv88jsCSMrpOmnSbehWmcle8X4mam9+Udo1mM1Vf61EVF1nXKZ7nqYkMEyXDlmcSeVk4kafSMmsyV47NqwTuTflKwbCV0Zgy4tJJBMbLWsSn4hRLS1bt6ckIm0wUbNgzFsXYdEkx7kiFbu7aEBi2TWqBvMyZlxoYiwrBg5gLMFG+jzyykX4exbbxOF/svqgGASesYXU+YONGk91CKdHv5Pt1LauGJlat6657nXZcrVq3A2VYtT7tRQybpiqSytU6NhpNpzUJPI7Ay6iqyGLwuIyst6XXlBsl+w8urO3hXABRWW/LI0CXbJtWA5XvWz0lDWfDpKvDtUybdAJK3Vw50RFV35YkJdkF1RYlNJLuRcIJqxbVMWzVNiaGSYs4urkbx2U7g8ywboJbti1uYts4vKbcGnqgOhqDJrtljg0K2j/SCFmY/pF14kkvetGL8Mtf/tKbO+OMM7B27VpccsklPWmYARseTXaLxwI8jlxjZaHAZK+QCB2rmtpYzjlkydarbAg1kRKM3EeZdiFcMEhTb5Voex/FU4WkbFhf1LDRhtNm3rFpdN6gOtfURHsQTFXHVp2rq8VrYt44Y169GlC8Lz5L5tgzK9/fp7bNsXMRuQeNPbbNfBfwJPK+I2i7qqY6NyY4eD54VtNs2a25wkbhsJ1++uk49dRT7e9r1qzBVltthSUtgSWtCG3BvR5rVlxEdsFKBUjeXQteiouotU+69Menn7ApkenThZPWfWotun8qHpeuHbdOWjqeIh0vDEy2zk+DlJlx2Jr7Sji6mHsXUbK4cExkJmvVJDn3e7WJdpFepFtjRAmuvAmq9HSqQ9HPyBTea1KEr9EhDptJfVzXze14opMjLdMGs65EbtKOuhLS3PBIBVWO69TWitfEbKTEOGwi4ohKgxK3Ivs8a1sR1i4ye0kwYRQrl0h0FxfOWzd3zmamImzSKt9TrSF1cc6xKEG7VYwVc+IHnHNwM550qVuDgJPC3Op8wMaNJrvF8hQsj301SEkcMyooUqY70tTHqpNmegiqLLdpSXmnSxy23NoVlZGxanbWgP5qtmYctRP7ha2VgmiXN1D0RFxY0RFdvvbiwTGgYvseeKncNdBEyVERByVTyqZ1G1tG07s7uUIn71W5TXNlbYlUeiDFW/t+0PR2zj0xJZuiFHGrXjyWCM95M71CM8WtQ2b23o60tWWFQ+ecN5NKqcDAy/QszQvFyHwIlcgmu2WODYNh+ke2223bdsTgGc94BgD0zAfMDZrsViHaFUGbnopS+c5baRNkmrkbdJMaKThkOaey3K2t3MBLXgbYiaMhEwmZlutjYe+1mGAQpeiYjDl4Juy+ZPnYaExBlooisVQ2iC5zRVIfUTs26Oew9ZuronpZDeewVcaRSTFk3n2leS+N41akLA7npFnFyDiCIEQBT+Jyjf9dYNYw7ogFxjlEub7OSTNrGBfg0eBKb7Npt+YCG4XDVqdOFRAwHxAYtoAmBLsVMF8xm5HqYftHBsxvBLsVMF8RGLY5wLp16/A///M/9vcHHngA99xzDzbddFP82Z/92cDnaUccYxFHWzDSb41D5EUkmnfWgJXiIrw7DrXmSQCAfPoJqDVPFOO1T6H7J8OsrbM/TUpkd00X3TVFBDtblyEdLyLbOUmJlKmL8KbKj8TURUjiSSe1Go1FRASACHQIDl6mPvI4gijFSGTm0pu4kkSuu4xSDMCw0X5GSrtortLaSxFKLduW26h0nklkXcOq5Ui7bj73BEiMyIEsekKhlPo28t6AFf0QURnFERxRGemJuhJJq4xCtxyTN5lKG/32UpqWJI4pVC7l8xmISP85ACUb0GottawaZdvYWP+ajSo4SRWrzgcsLMyW3YKShegI6aWmSS81ZUVEMuhuwe7rtOMYNpL6KDsp8knHsOVlP0gvJTLLoVLTn60qOtJsK6h8M42E88SlxGipbIS1KlxibtJZFENnjlWz2QCJhNczsolZM2+bdmPKttGUSGPLcpLe3ckdq7auk1tWLc2VbVGS5tLakpykRFbTIynqREciLyXSsWoTqbTtS5KII02K5xpLhE2VzMo07lw6Zk5qWIatrbl9zbQdgEIhPDBAeyuLJrtljg2LYftHUlx11VVDP1/A4Jgtu8VabbDECQuBfrcTu8IEdzYmNtlDmevDRkRJmODQsSkJycHjMqU7y51wSSIg4pIJJ2ybbke2FEWNubGW2o2V9uatIJxSRBxOu6wDqXtaMdEWIhRNrFpTCjVFL9vmi4UAvqx+wUwZiX1GRDyYx5ox7sbmHFbgjpTi0Hma+lgwY9Nj1aqpj7xOpIS7tlTgvGgLMEQrpdm2WxsaI+mw3Xnnnfibv/kb+7uh348++uhgvANGCoFh23gQ7FbAQsGoR6oDBkewWwELBaNut0bSYdtnn32sKMVM0ObMsmtjph4q74B3ClUj1l1rhUbU009APl2wamrdU8ifKti2zhNPE2atZNX+NG5Ztc6aLrpriqh1Np4iXVdEgNJMYlK6YlY/B9rtsa47fcI1xsooVVJh1Wy0JHYFolHbRctp5FxnqdcEt1jgwhWsUshP33Jl96tJpNovwk+JVHZqGTZl2S46zro58jKKL7uTUKbGxovCkb1xYUU/nPhHAtEqBEKiJEaeFR/vJFNE0EQjp/uSbr9yWa8ct9IazxyL0YOYo5UsLp6XTKtkrHdtH0SCI6pTJxqBaE/AcJgtu8VkBp0xV4eWZU5QJO1YCXydk7q17qQdy04K2TFMf9eyarKT2ho2meWQnbLRtlSQRHTERJwBv+1Gzz45c81PBSNCIzkUYdg0bQLuPb6MhAsXVWVx4mxWnoFF5b50zTVaA7NdqWBZNaVdHa4RGulI5dXjmhYlE6m0rFpRz1bMdysCJFY4SunGvzmjAgLm+4cwbILnhFUT9nnHYuE9l2llIksBFqW017TXtANQWqNV1uNK7oQSCrZtuBq2RrtVbHzg8wTMf8ya3UpaYDRVUkkwcy1nmb2ueRw5YSPLkkVQpTiRktIKFakstyw/T327YmyWyjLosjZW0vsfqW09m5JOaEQRxkxmLotAE/ZMSeWJw/miKb2icTR7oComN13Qmiu/fYph1Sjbxj3ROmqXHfPm6tVck2tWK0Di2fOEsmeDCYrYeSG8ujU6du1bBFjJtIIybGZdvvHYrZF02GYLYzG3zpqXBln2W+Okx5pc+5RTgXzqSXSeeBoA0HlijXXUOn8aL392rJPWXdO1QiPpRIZ15RftpFQoa1mRKl1JhXS9PgyKHhn0uPlwSfBJcyG6C05mEjJzRsrecJHUAyin+EYVIW3xfsP75jtu8G4OjKOTk8L7NHdGT+bKiovkqUuDzNMMskzfkqlz2GSeQpl0LzinjZGLlscmNTKBTMtzJGOQ+ZJij+Q5Ve6cN1VJXaqD4K5vB2MRvCBM+V63ksX2r6Hj4Rw2TtKhKNQIRHsC5gZaZkCOZgVIIi5inDc5OeE5aXY86TtvVGhElsquMnO9IWmfyGIvU4iNeMXr5Q1RliMqU7S1Up54iT0HJykxUWaVIXXmesUxJf00SJoeSeBSmt2+fdERl9btUiNdevdkKp1QUeYUbydS6a2xNob0z6TvVVVAiUZ0jfMmIoauSUsS3J4/iaRNc0yTyAaaqo5icVxgMUlZr5OrVgJw3yEKALevfRA02S0g2K6AerDWYvB2Qu45pAsQRy4Qw5SELvs7cnPdK2kdNi2Vp1orjR1su3klFUTqnDrngOX23J6AkndO7Zw0RdIgpfKcMU3uIwzoY+lc3ZiiX2q5QVPKnu+Ykf5sJIAPOHvjOW9EdKRIlXTOmznunCsOXzjKKUDSeasGWUlrFLETEeE1Th3jwvazZYKmPgrnkBKHjXFeHJODO1qjbrc2aoctIGCukUQccc0NFRuBniABAQEbJ5rsFhBsV0BAwPzEqNutjdphSwRDSzAIIt/Pskkn37/uKZcGueaJxjRIyqwBwCRh2LLxFOOluMi6XNk0yIJhcymRJr5SLTg1H6FUuX4ZY4LBdUXjiEuqjieUVXMS/5RVoxLdXoSrRLXwvwk0IGSlsrVjrNJceeyViUJJKo1LRAtkd9KyY3k6adk2lad+YXIlLRIAmGHVosSybVGeWpZO5Uug1Fh5Dt3YKqAp8uKOAxxlBAjK9jHiMUdSMmvDMmwiMGwBwyJPoTP4TFpGUiI7hT2ikv35eAd5meKYeymRqU19LNg2x6oZUSRFUoe86HOlwJ5Gc83vvGPaiXCoMrVGK/c4QQwJbT/C49zukccRmCp6suk880WISjaNadUo52+g4Pdhs2ndyqVE2vTuhn5rHtuWSnSNrL9UyNOatiRae2mjdGyi2Yyw+HnmJLdz5rIBuoIjLd+/QtTEtRCoZgnQbAGlxQCCBxyAQj6g7Qea7RYQbFdAPVirBTa2yIqOGKYLKNlymupMvvPNcWYF0pTLKFAKUU3LEZlmXlqlGdP7H+++iDxWS2nXa9JrUpEelNUUSMqQ1aWJ16VBNrVvGgSswrbVSdIz3sy2UWl8x6b5kvnFnCAtoSLvuGsHEBFBKTcWSVxh5MhjS8E4cF6kuReb9Jg0FjWkQQonOgIALN947NZG7bAFBMw1WhGrjfjwaP4bj4CAgI0TTXYLCLYrICBgfmLU7dZG7bBFUIigClYtK1ga1h2Hnijq09S6p6AnCgESNb4G6Zoicp2umbB1a+maScusubq11IqOTKYST5sidak9hi0jQiNpTVRGME2ERmBJtaoAiWkJICirRqLfRZRoCO3TWQKN+JrgN2W4ino2J9/vGDHKjmVuTHLbKUQZoVF5Bm4ib1JC1YiVaN22Y1pDQnObaeF/EnFbtB/31LOZWkNt87N1NFz/maacajkC0Z6AuYHOMmhGoswZaZDdGXd1a90u8vFinHe6yMad6Eg2PmnHuWXbcisokk/mHltPZa5pTUcdaE2EKVJXknt1XdFYr72rRm1lKUIkstxG11nSBsoaNijlMgQGZIeMjFKRDVDMZcoXTgJ6RZOc0IhrUdJNpSegZGrYKMMmpbK2r4nZ55yh7AoCRpraCsEhy/qMKOaWbUsrdWuyXUqfDyEaAlSlwTmyYeSx+0Sqg+0KqAMfWwredt+/Wkl73WrCsDHl7leYvb6lrV0t2gGUF1We2rWCMG8RYc+Ux54pKOnYOyNqUsj097Jq5ljdvKpl23ovoqaspdlk2Ox8pV8hbYNk7TJZU8eq0bWMyOBXRUG4ED3n6Mukmb1EyZRMWlHDRtZQKX/CtoELcEV+nwKjbrc2aoctIGCukQiBJKoxOGJwIxQQEBCwIdFot4BguwICAuYlRt1ubdQOG8864FkMlk6CpRPFZHccaryU8h9fa8fZ2gmka4s16doJpGuKMVWBtA2yx1PXaJXUra3LFTqkbs2walLr2iaKBZNG9lsGHFJVMGvFY5n3WMeq0Uh4pZHjemTb6qK8mkhba1Wt6XAsmGHEVObq1lSeQma9Ev/++Z1ypJii3g1wimyMO1WkruB4uhy3Im6b0RYMWxnlFhxxOR9zblVg6d9JxS6COAiacqqnqqcL2Hih8wyaSyffT5tiZ1lt3Vo23vHYNlMflo13kZWS9flkjrxjVCIdqyYz5Utem9qQil2p1lGIWNhziExAlTVeusKumdoKlTk123wytephKsshaHRduqi7e1O0U7clTbQ1c+qQWte3JlHasf6mls2rW8ukVbylqox5JpFnRPE2c/VsMnf2Tk5R30Jr2BhnrsZXKIiSYVM5R0RrAGvOMxXDxhlDl9VH9TmDzdQYBP1qQYLtCqgDG1sMtnixY9IAV7cmHdtGG2pTBo6ROW3r2QjbVqmDm+rctIZNV+rTPCaNMHIGPqtWUYWsuY4GUYGcCeoUJHvZtl4Gja7jNWyc17S6wsZR2X2QmjfLkkVxo9Kjq1vjRPWRnKemQbZ9Lveii7VD3M6Out3aqB025B0gi8HyDlhe3NioyXGoybJovzOOfF0hLpKuGUdWOmn5+KST6h/P7Njc+GRdiUnTw4ekQVInrZ/D5u57GIy4vtSAQk3q3DT6o/D1GEmY7oe+6ojZm8JKH7amnmz0p5svWxx0J8HJmjwybQA4sq5JP8ohyhzmtR2BpJQTbkXcpke2I46JctwSHElkUiU1InPDN2SPlUQ459DDCPQECZgbaJlBZ9ymCOk8s86bSjueTD9Ng6TOmxEXScdTKy6SdXI7pk6azCRk6m5mmgJBrp9P8VOmysr60wASBRcMuXlcnIPHxb5UHHm9IzW5EWOePZjejZBUznZS0REzl+YK3ZqekmnuekfKXLu2JMR5k7R1SO4k/rWud7QYZzaIxDmzaZBCcM95sw6mEl56ZdVRq9pgmuptwBlzKd1Kg0v3HgyCRrtVPNHA5wnYiJAsAqN9SolIENMuvVkrcqdDUyJNoIYID4EGZmmKpZT+Y+ucOppSTZ7LS2usrrFbp70o+9ugmaQ+DoumVEmgkvLIa+4BicPkzifqnSTiaDXK7g+S1hjFvjNW6bFm5xnZFxlrxoF047FbG7fDFhAwx4iJQ0ihR0BiNiAgYONEk90Cgu0KCAiYnxh1u7VRO2ws74LlCVjWhe4W7JnqjDtZ7MlxT/7aRai7NhKdT+beGCgERerk+zPtM2ySiI5QuN+11zy7Dk3HmWC1He/nAjSCzBoYuNqITwVTpUQCsAIl9JyMC+Sl9D/jwkr/5xGHKKMqecyRZ8X6iU6ORWX60UQa2fTWicw1r20JjnZk0iMZIm6i38MxbBFniILoSMAwULLoBm0+63lqi+0pk9Yr32/WZEjHTePsvDYlshAgIaIjRkSjIX0bAIQRRcpLtogpaJPSJ3XZEAOQglmblJGxynKvIa5JI1JS2nlOW5HQ6PcUkv72raMNpcmYMmtAr1w+ZdskSYk0TFqRBknma5poN9kvwLdVNg3SEx1pso+5HdUxaTQFiI4zxSDKrUjOoLj2GotPhSa7Zc4XEFCFTsagEr/tDXOKPGShttczc2plbgzUs2ReujRl7CriJvQcXppjL9vWMzZrh2H2G6759YIB7qOA3nTJnsfWyegDHmPmzjVgKmMdO1dM2J/aG/fWA2lW2Tfj0Mng7++o263571IGBCxgJGXEp+5fQEBAwHxEP7sVbFdAQMB8xGzardtuuw0HHnggttxySzDGcP3116+fTRNs3AybzMBkCiZTKFPA33UF/LLbtdFqSSPUmXTF+Zm0TWVNVLVgz4rnkBoek0Zrzhoj1cz8ZJZBo020/Xm3npHmiIxErov5XgnWas4wUEQ/Bomz0nRfUzDPWX00V1DZaiL0UchZu8gyrTOzhbBcQNfUqDUxbWZNtd5NSzdWZcGyzMe8CLmpR5Et4ZrjZtIybJOZxKIy0t2VCp3y792OOfKaprWDQLAG0ZEpmNWAjRc6y6DBXZF8lnn1XkaqWqVOxEN2ula+n9aqZZ0cWVmDS9k2lbq6tUwpUm/bXDfrbJK2vyfdYhwDyMha2zRaMMjympKpBI+NXc0hiOR2bVNbyrYVE33fN+XZXsKgaceMU1YttTL60jFvuavh81i1lNa2ubHKnYBSsfcpGDYhoFWRAaCjCNyycxq6lK+uMmGcl/apxvamEffq78w45hxxaZMzpSHUcDVsTXbLHAsIqELHbeh4kT9XrWOzB5R/vKfezcz7bByjj7fsXUO9WQOL1iPNP8062ZFDDevms2sNDBx9HK03q9aaMcOSsXrGjKzpeSxd422QQcc5BsVs2q3x8XHsvPPOePvb3443velNQz12uti4HbY8BctT6KzrVNbSjutj5PUoSt3NTyptuo5MpS2+b3LMmi5342hVBUfqnLHmeWZVDEXCIcpUPl5R9BGl4hr3HDanAEQv1h7auQKPqa7u0etlJuzY9DzjjFlxDx5xiKjYlyRFqUwIz5Gzzmal30b15qcprZIa6V4Rk/L5c9eLSVKFuDTHRBqVY4lOUsx3coWuvaHTSITrMTUMmnKq1TSj1J/5zGdw4YUXYvXq1dh5551x6aWXYvfdd29cf9111+HMM8/Egw8+iO222w4XXHABXve619njX//617Fq1SrcddddePLJJ/Hzn/8cu+yyy7T2FjBLUMpLidR5ah02mWXESUshSXpkTlIfvTTIOtGRXFnhJNonsm9KJHHUgLJ3pEFXeimRvEw/Fom2zpjMFCJV45gRBbcmEQCm1UCBpjpfU5HXRB22urGf4qjrnbeM9JTMXE/JQVMizQ2jygVEmUJWddIYkUYztpURx83ZYaJ4S+xaEilkqhRN0sx7jYOgXy3IdG1XwMKGjhdBtxaTCd9Bs58+NZUTp3sdOPjOX/XcrC6YU3XEymtsvYYb1kcwYxrCc0Ohbs/0fhHwUhnd4/xxrePFWLNzxpvPRaHjwVMiZ9Nu7b///th///2HesxMESxrQMAcwkTD6/4Ni6985Ss49dRTcfbZZ+Puu+/GzjvvjBUrVuDRRx+tXX/77bfjiCOOwLHHHouf//znOOigg3DQQQfh3nvvtWvGx8fxile8AhdccMG0X2NAQMDCQj+7NQry2AEBARsfRt1uzYhhy7IMq1evxsTEBDbbbDNsuumms7WvDYIiJTKDJkX7XgF/mtn0Ii2lk7lOlespJEmEuCHQQb1iR7tqmFhOVRPE/J5whqT8EMXMjccEt+OEMyudLWIBUaYXiZhDxIZ5c93neRyRvhq0ELS3z0WVafOZNZKqSSSpzYe+FXE7TiKOSfP8ROhDCG77h/A4Ac+LVKAoGfNSGClMOqO3Z7rHmvTJ2gLb8txetNwKBWjkRHzApUYp26solwqZdCljeSkOMGybhSRiDQzb8MbjoosuwvHHH4+3ve1tAIBVq1bhO9/5Dq644gp88IMf7Fl/ySWXYL/99sNpp50GADjvvPNw00034dOf/jRWrVoFAHjrW98KAHjwwQeH3s98xajbLSgJnWvorJTAzyppkDZ1283nk5kTRyJMWt7x2ba0TOXrbUFSPHVTSrefAVB/DfDyJEwoiDIqKmMOWWYFRKT/UbVHEn3ttWPv/fEj500ZDjRFUlWuW8o45ZRhI3ZCEgESlRORlDy1dkrlPsOmVK9do7aKc2GP8bL9SLHejYvH+BL9AOkvySTS0qakucRkVgolVdIjTWZGxjVirnveg35oslvA9GxXwGAYZdtVpESOVSZrrk7yOZwqZdJj5jxREv+8tQzbgEJFjZgiE2mqTKW6FMSB0SdNs/a1Usz0dQO9LFfda+3HkA2S8ljH7NU8j46z3nUNGMRurVmzxptvtVpotVoDP8f6xNCfmLVr1+Jzn/sc9t57byxbtgxbb701XvziF2OzzTbD85//fBx//PH42c9+tj72GhCw4DBVtGfNmjXev27ZFLmKNE1x1113Yd9997VznHPsu+++uOOOO2ofc8cdd3jrAWDFihWN60cZwW4FBMweRj1SPUoItisgYHYwiN3aaqutsMkmm9h/K1eunONdOwzFsF100UU4//zzse222+LAAw/Ehz70IWy55ZYYGxvDk08+iXvvvRc/+tGP8NrXvhZ77LEHLr30Umy33Xbra+8zh5KAyosi/sw1obXS0srVTgwi41pfb6ZrazqKOrf6c7j1DDEZjwl3HjNuC45orKxPSwR4+STRWOTq2eIIvKxhY4KDJ+Wf3ZNgLX9Woh914MwFPzyhEeaiF0UNm4vsisjIU3PkZcRXRBxRuUclW15tmWi5SBxlzVQ5VlTCl8DUu3EubISa1sFxLmpZuCbklVoWE6HOSJF+JptbNEyFuKGRoyznttpqK2/+7LPPxjnnnNOz/vHHH4eUEltssYU3v8UWW+A3v/lN7XOvXr26dv3q1auHeQnzHgvNbmmlAEZkq6WCLO2XzHLLSClaz5YpSJshICHLJs95J3eZA7kTF5mU1RYkxXM31bBV623rjht2WkhlhZoiFVlmSktt96gb2LbihfUKBLBiYb+3zatx89i1mibU1eveMGlaucdqrV2DbKUhc/O9QWrY8hSypoataruMfdJcWBZOVGrepLFbjNl6taLRdrEHLs37y6yd6uYKY+Xr6OYKCckcsI24y7/pMLaryW4BznYNg2Fqb7/whS/gX/7lX2zq9q677oqPfvSjfWt1RxULyXZlLELGKrecNVk73mEyxeoY4CYGrnJsVqq8BmGVGu6d9BS1a4OQ2/1OUfveALU2sd/7NCuoY8H61aCRF9ZUY9wPPZ+pPhjEbj388MNYtmyZnZ8v7BowpMP2s5/9DLfddht22GGH2uO777473v72t2PVqlW48sor8aMf/WjeGg8AgJZlelFa6eVRk4pTga/GWDogJE0w4eYGnrkvQuVYYgVWmz5H1SBpSiR12JZEHGPCOWZRu/gzxu0IcTkWiUDULhwWnsTWSRNx7FIivS7zNUWjfcBNOid3hjYmUYokIsXuEcdY6ZjlmbQ9hVSuoBQdV9IlSljREaoeqVRtAb9zxrgd8yixzhuPkooypesP19QjzsATIiAqc5lS3s3PMOAkpbQ6D8xv4zEqWHB2S0mAKRLgcA4NVYYsFCNLAQvipMnUT+82apC0Z2Q1JXI2HDZjH5UkYh2ptPaLCvZoqaCU62XmnDeaEjmzGw36OmzAxRMaUd4cUDhp2qzJ3biYL99rIjQiaUqk9AWPKIygEg0uece9tMlFUGWvOymU7bcpykZ4UnCb0l0oQ5ZprhH3X592tkzp4VIim+yWOTYMTO3tqlWrsMcee+Diiy/GihUrcP/992PzzTfvWX/rrbfiiCOOwF577YV2u40LLrgAr33ta/GrX/0Kz33uc4d67vmOhWS7UqnR7RsV6D1W90nyv6bdL6yPMzgMqgI/9vLX9Y4f1eqhKZx11mmQS4yebxCyunq5ce8YTZ02I1IuQn6vey425LXcBE1fFHkXi2ldc2RwpENEmgaxW8uWLfPuueYThnLYvvzlLw+0rtVq4R3veMe0NhQQsDEh5gxxzR1uzoczHs9+9rMhhMAjjzzizT/yyCNYvnx57WOWL18+1PpRRbBbAQGziya7BTjbNSiGrb29+uqrvd//+Z//GV/72tdw880346ijjhrquec7gu0KCJg9zKbdWrduHf7nf/7H/v7AAw/gnnvuwaabboo/+7M/m9E+m7BRy/rrPIPOM08qui7Nrgpe6XFmRT/SklFSGlKXEdBKYb6bd2vMseInqxUdoQzbmOBIFhUi2cni2Eaoo7HIpkdG7QiiZNiidkLYtgjMFLNHCRDF5esoU3JoSmSlKNb8xuCnRMblHiPBbSF7EnEsKlm1ySwiMvmCFOoLIvrhPoop/HRIG62Opo5W17UD4FECQRg2HhdjEXHwyPR7cwzbIFEl5aUUFWmRANCgt9AI2lOvOj8MkiTBrrvuiptvvhkHHXRQuUeFm2++GSeddFLtY/bcc0/cfPPNOOWUU+zcTTfdhD333HOo5w7Y8KCy9yrNvfRBlZZiJCT1UKbSpURm/rxJVewVGqln2Ooix1L7YklmrrYfZa4gygOFaJMZKxuJVX2yG2rT0wdM66kT/58qQCuVtlF3pQirpijbpuC3C+ntAen1ZKuKIpQpjoyLnvYlZt7uJ0pcL0upIIzgEUmNtP0lSRo3zRBIc+UJqQyLJrtljgGDFe+b2tvTTz/dzk1Ve1vFxMQEsiwbKQGOjRGdXCPKBrtOB2V2/HvsqT/HTR/1HlbNO0Yfr3ueyWfY6Dl07fxUexkEVd/CE4TzWMf6xzA717C25jmb/ibDlqwO8rqrf48mMMbQyQd/IwexW4PizjvvxN/8zd/Y30899VQAwNFHH42rrrpqqHMNihk5bDfffDNuvvlmPProozZ9xeCKK66Y0cYCAjYGRNw5vBTZNAr3Tz31VBx99NHYbbfdsPvuu+Piiy/G+Pi4jVwfddRReO5zn2uLaE8++WTsvffe+OQnP4kDDjgA1157Le68805cdtll9pxPPvkkHnroIfzxj38EANx///0ACnZuVJm4YLcCAmaGJrsFONs1SP3tdGpvq/jABz6ALbfcskdAaSEi2K6AgOljELs1KPbZZ5+BHcvZwrQdtnPPPRcf/vCHsdtuu+E5z3nOrOW6zhWmEhVhnHt1a0aOXsQcykjpl02V217IVnmR59SGF1gP+1b8bGbY2qRuLVlcMGPx4hjJkoIxShbHSBYn5XwbUbuIZop2YkVHRDsBa7XdazKRW8O6DSQ6wsBLKinmnIiOAO2SsRpLBCbLiP5YLJCWNXRL2opEqJufI+eLyu0IK5HNh5TIFkR0xNSwidYYoqR8X4RrMcCFy20u3oKSNexzEddF5oeNmnHSVLw6PywOO+wwPPbYYzjrrLOwevVq7LLLLrjxxhvtzdBDDz0ETljTvfbaC9dccw3OOOMMfOhDH8J2222H66+/HjvuuKNd881vftM6fABw+OGHA2gWP5nvWBB2S0uAuRpb1dBkWmW5ZdWUcoIeKpW2bo0KjRQNsounqDJs5lJtbFvBmA0jp+S6NrasYNhcdgGtD1ZEuKNax2Z+qqbMh2nWsTUReHXNsgF4rBplpFyGgGPSqG3qbZxdU4tHfmdcWbaNQhGxJJWnVoBECAVZ1q6ZWrYodiIpaa6Qk9eUN7w+VXldU6HJbpljwIapv/3Yxz6Ga6+9Frfeeiva7fasn38+YdRtV1cpRAPXG83ejXCTyWpiwJSuZ8qqTJung0TqQatzAGrXVtFkW5uYH8qOUR0Nb960XKqsrWPW6pg5j5VrYPEoNvRHkjON7hDfAYPYrfmMaTtsq1atwlVXXWX7NI0kVCk6Ui0AF9z+pD3LrNOT5KRQnqbxuAuuXfY5EgzeDdFUaoKCuZQiwZyTJhLupTua50+WJJ7zJtrFWLRbfkrkWPFlyaMYrEyDRJTYsXmdmjG/a305LtIgTcqgthem4LARi1hwxLy4eBLhhEbSXJFeZsKm6DTdIDDOXKqi4FClg5WnXa+wv050xJ2DqEEK4rBFkRU9iWKByKhqJsIqVoqIe2qX1iFtkKymBfzDpkTGDRGfpijQVDjppJMaUyBvvfXWnrlDDjkEhxxySOP5jjnmGBxzzDHT2st8xIKwWwCgfBVFRZwb5+i4dEOZSs9Oud6R9WmQNJ1RASTQ5N9YmBsCqbW1W9D0HDQ90gWr7MtoMIRNATQ6P0j6ej/4N1TNF27TMV2Zb0yJJGmQxnkDYJ06oFCvNeuNraJOoMxTXyypXKOU8IRPgCI1MlLmfLrRCZWq/3dRPzTZLXMMGKz+djq1twaf+MQn8LGPfQzf//738Zd/+ZdD7H40Meq2q5trRH3S1+rSlYfFVCqDTY6TEd6prisUVKsiGb7KKr1+lNY99sKosNY9r7euwc40OhieY1Yzx1njGnMfQ09Ne+rWOYDUcRzEWQRmx4Frcg7N+btDpEQOYrfmM6bduS9NU+y1116zuZeAgI0ORrWo7l/A7CPYrYCAmaOf3RrGdtHaWwNTe9uvlvbjH/84zjvvPNx4443YbbfdZvRaRgXBdgUEzAyzZbfmCtNm2I477jhcc801OPPMM2dzP3MCKhfPhHAMG+dEDj+CSBzDpWihfCVEyQWzQiRRqpDY3kLaFvhXQalrk3opEuEETWLhM2xjRMrfMmwtxIvb5biNaMwwbI5tY622TX8sxrHZdPlzOFl/zpzqTktwdITrvUYZtq4pfG/HjRFrk4YoIglRdp0XgtsC+igWdqzVIi8dqQ4iiux5bepj5NIgo4T7bFvM7dgwbEkkbHsCyrBx7lJXZ9IoNhYccU1fkLq5gJljIdgtrVSRFknnbFohkfiXitgpIqWfuZRIX1DEsWCp0shImo/0otHeM/fOky8+l1HAvOex+1IkRVr6qZLzCc7WEAES7cZNrFrxu0uDpKwaZQjpq2YmiyAnc0J457d93qLI2UfCqlGRFMewKY9ts89dMgDDpHM32S1zbBgMW3t7wQUX4KyzzsI111yDrbfe2vaNXLJkCZYsWTLUc48SRt12TWYKIle1DFNjqjXBVG0n+rFnbp6un5olo+yY0i5tuLheatIglb++eryO4Z4O6D2HN6YsGfPZOXqPadk2XllvGbaaVMqa48Uasq8BWLgqBnGU6tJCzeMmBxSyAWbXbs0Fpu2wdTodXHbZZTYdIY5j7/hFF100480FBCx0NBXB9qudC5g+gt0KCJg5+hXvD2u7hq29/dznPoc0TXHwwQd75xnVutpBEWxXQMDMMJt2ay4wbYftF7/4BXbZZRcAwL333usdG5liWC4Is+TENwzbJpIYoqxbU+0EomxIW8eqAa6ZtogFsk5ZwxZLqLLeTCuFmES8q48rtsEgYmHnhamr6suwFTVe0eIxn2Fb1C7n2+BJKTSStMHMOIrBSol78HKPVHSkIj5iPs8cLoguGLNS/rFQVnQklxxZVOxdtnvzugGfsZrgzLFqhAUTQjqJatKoVpLaQSAu31/ynhKZfs4YYe+4ZdJ45Bi2pCXseCwRtiXBWCLQsmybE1iJOa8t7h2WH2iqi5sJaxfQjAVht0p4QiOeQIdhdHSlns2NaWRZekwayLi3nq03Eu6is2aNLzRCHzfc+2tFPOaAdZM1tSiDQlUESAx0hV2rO8a4gOZ0ntv1hp3jtFUAaS1AWUA71pUaNtIgfKYR/iYbNR3bNUzt7YMPPjj0+RcCRt12TWYKSB1tXLUldR/Hps9oPUtXf7wfk9bEmDXN19WD9htXXwMd50OybfS6ipoYtoaa+77jBuYNaGbsBmPeeuvn6o41vUa3trKmwuINw7DNtt3a0Ji2w3bLLbfM5j7mFpxbh41xbvuUiXYOUfY0KlJ3ej8YhWKkS2EEigJ/npgvWqfOpisqaPbpyaeZcadAyRNe67CJmCMaK5yUqJ0gWjxmx8Zhixa1EZfzotVyypBJG6yMzDEiOqJLh60QGun/wWVEJVJw2JTImDvRkVbEkdm0AgHZrjdI1HBMln3sUiGtU5Vnrm+blAqKCJZUJVWrqpPW72QMIjJprsw6ZkJwJzoSC5vCubQdYUkp3jJG5scSYZ1TwWjaQN+3qy9i1iA6MgJfwKOIBWW3CJzzRvqzSXfjoUiQSUvV4KS5mygF1DpvgH/T41IimR2b406uyJ3H/KwLeI0inHpkr3hVdb7qyNWp29K0SQ5AK9GzvjpWJBWyeB6/V1yT6MhM0GS3zLGA2ceo267xLIfO5JQCHNV03Z7jDY+noh3U0Sp+JynCJGWxLoDR1K+wuoYqrhpRtVpRH6UhVfNxg7zh2qxjfnqdtN6yDbouES7YHPVx3qjYWt3xJueuLhWSOml8Go5cvfPW+9iJLO9Z14RRt1sz6sP21FNP4fLLL8evf/1rAMAOO+yAt7/97dhkk01mZXMBAQsdTcWuo1AAO6oIdisgYGboV6QfbNf6Q7BdAQHTx6jbrWk7bHfeeSdWrFiBsbEx7L777gCKHOrzzz8f3/ve9/CSl7xk1ja53lCmRLIosayTjlyfMp6nVg6fSmdTMMHBRFEAblIZZSYtGyZTIgJA+/o0pURylwZZTYnk5ThqJxBlj7Vi7OT7LavWThAtKsZsbDFYe3Exbo25lMg4BkSZB28bb0SNKZFml5w5Wpox7dIEBbPpgzQdqgoa6TGCHkkkMFmmS0yk0vZwy2NFUiKVZdH8lMjyPa2kRNKxpfKFY9uE4IhI3ziTBrmkHWOs/FsuShzDlkTcpnxGgrt2BiQ9Ug95zcfCMZTV+YDZx4KwW0pBa+mlQVLQecuqEXZfySqrZsbNKZEG1Wva/a4b+wVN+XJqDMV8Eh+pRsL79Y+cCpQZq5tnXLh0RzgBkn4MmxM+cWmQlG2rY9U8tqCUNJ9K1IGiyW6ZYwGzj1G3XZ1cAX0YtipDRtEoItLAqlWFPqZKX6wyaTmdr2Hh0lw2sm11KZFmTO9RvPvBAa49mvbKK/c3U6U+Vlm1pCxX8dYzx7BFNeegJSH9UiwNqumUdXtvFCkZkJ3jjBWfqwEx6nZr2g7be9/7XrzhDW/AF77wBUSlGl+e5zjuuONwyimn4Lbbbpu1TQYELFQUqQWBYdtQCHYrIGDmaLJb5ljA7CPYroCAmWHU7daMGDZqOAAgiiK8//3vH5m+KEwUTaQ1qVtjSbtoqI2iuLvuDeKkobaMI8t2yU4XQFkjUubVqlR6zFyVFbJ7sQwQt4wbjyNSzxaBx65uzTTxjsYow+bk+0WrBTZWsmrtxY5Vo6IjSdvWrmnhREd0hVnr2SvzRUdMwKIdcRvhUro+/xxAbc50krpm1WOJsmxbN1e20bZU2o6rhfX1++yNSEWVptiLLHtGatViyrZFWFKKxiyKnQBJO3LysLSOb3iGjTUwbPPfeIwiFoLdqgNtot24hhyTNRFrv7k1vONNoiP0y4+ydgAQM7p+6s9zXQbDfMOgLFSdoEi10XdTOxIDJlzIV3tCIxKCzA+6t3w2a9ga7JY5FjD7GHXbNZlJqExNyZY1iofUyONXa8KGEQXJyf0EFRQp2DZ3z9El9x91jJxWmrQbIvclpTnTRMTErKE/614rRZ0jQUXVAHd/wxiziVGcrBGCu3GlVs3cj7U8Bq1XaK3KwA0rbmLQU2c3BcvWj5ETrPhcDYpRt1vTdtiWLVuGhx56CC960Yu8+YcffhhLly6d8cY2CBgDGC+UEvNCXITFMaAKhwZKgpVfkhFAnLTYOkxqLEE+WfbEKZ0l6rBREYB+aT6095v5omaCW5VKJrhzxuKI9IeL3Xw7cc4YTX1M2uDGeUvaYK0iVRIiJiqZRHSkfJ3UeeNEaITDdVwvxDfKsWZolXtveqmcFH0mxHlKIo5FOenb1ir2M5nJgdIQ+kFw5lH8NB3AOonEGRtLfKGRdvkC24KjVY5jzryUSGNHhg3ShBq2DYsFYbcqqDppTlxEWyeIph3SdOwmZ6ya0jxIn6Qq6K4WiMbIQKjrwTbMY60AiZREMTLu0+etN2XT3PxpVR8kbBI4GBSjXgsyihh12zWZScjMDzBM1aNskLlBREFo+m+dY5bmyhcRIU5aToTOlKRjl3bsifwQ580eJ6/TOHJ1Tlw/VB00Glc3wekmJ61aFtIhBAENZtP0R8C/dyqct3pHjjpmdemUAztvDWvsuGJ3hnXYRt1uTbtT3GGHHYZjjz0WX/nKV/Dwww/j4YcfxrXXXovjjjsORxxxxGzuMSBgwUKUFH3dv4DZR7BbAQEzRz+7FWzX+kGwXQEBM8Oo261pM2yf+MQnwBjDUUcdhTwv2KQ4jvHOd74TH/vYx2Ztg+sTmkfQPPLTIOFHhrmJdsYJWNQp5pKOZbVkJ7VjKy6S5a4XEu2R1Cfaati7QsSkZLVI6iVPIogyJbJIjyz+dDyOiIhI4qc+xi7N0zFvbbC4FFIRiU2FdDy66BEb6dkrY5ZVk9pR1zGH/UQpXe3hZtgoR0nHubLs1VgibFQrJWmQdJxXo2m6N+JWBypH25QCkES8Ii5SjNsRt8xbSzjREZoe2Yq4J3c7DGh6aXU+YPaxEOxWP/Rj8ZX0GTT6066peVyT0IiopDzONKPEpH8DLuNgPqCpt9B0UCc6Qlk1esyfq7CoNWmWU0XpZysdEmi2W+ZYwOxj1G1XRykokiUDTM2a1c1V1w7DpNE1XZLW6ImO5MoyYjJXHpNm2wppXdtiiPaKtQyb9uemEhtpEk8D6ss8mnrOMu562zJGGLbIiaTxiNcKsk2a+6XKPVJ9+iQbmnkzmCnzJjhDZ4gshlG3W9N22JIkwSWXXIKVK1fif//3fwEA2267LRYtWjRrmwsIWOgQ3KWUVucDZh/BbgUEzBxNdsscC5h9BNsVEDAzjLrdmpbDlmUZ9ttvP6xatQrbbbcddtppp9ne14ZBKesP7VgqwOWJKnO8XGuaTLNWG7xbsG2inbpGtaVQhlbKjgFA2Wap9ZEAw6IVTyNcPVuFYbMsHGlDANL8mkWxq0+LYnDzmsg8i1uuSbYQtnbNio8w3izrb1kkTURHAFWONWN23I5dFEdw2HqvTs6sWEfMJTJVslRSI4uL9yeTGhmJiKU1Rb9NUbg6VKM1ND+bjk1T7HbkJPsjwqpRhq1FJP4FYRyHZRk4GHiNIEPdXMDMsGDs1oBQUnvNsu18Qz1atWatXoDEH2+IOu25YNs2RHpMnTBJlWnzm2jX12qoit3zamqmUXs4CJrsljkWMLtYCLark0pI0cyw9WPe8sqxOibNvz9QtUxaz/2EYcmksteRko4FU7nyatJciyF3jdEWQ401bE31p3Lw+ivAFyIytoJxYcf9atiE1UlwzJsnRiI4eHlPQ1k3M04FdwzcgMIltTVsrJ5VqwqZGEzFwnXSIWrYRtxuTcthi+MYv/jFL2Z7LxscOkqgjTpkOccA66RxLqBLZ0jHMXRWCpPkKXTihEl0KVgiaJqKcc56CsTdjRN11NwcdRKdAAl1GL0xcd4Ycd4QxS4lMoqBqEyD5FHhqKFMiTTOG3lO57D5H2BzrTAQ0RHOSBqVNu8guAa4MQocyHhhvGLBkJV3fe2IIyuNW6a0NzYGMyOpj0o5gYRqwbIBNfpNSkTGGeMkVTImRblF2qYTFzGpjzF3TlosnIMXCXfObMgbPd4Q8an5aATMEAvFbhlQJ8xzyBrSInWD8kedYuR8AL05mQtQ+zHXKL5DYjKuW1P/t1M1N8LV8bBoslvmWMDsYiHYrjTX0BXnqS7NsVr6YFDXD60Y9093rKpLew5Y3ut0Sam8dEeTEimrzps5pyZjJaHyQoROy14nrVcwqPdaVmSOc98G0oBOncPGuLB2k0eJnRcRR07SHPPMOWnGCZNCgWcuVdIcdw6dE13JOUOeOwfQOG9prqZMm+wRIyn3lcJPfYwqzlntYzlDmg9ux0bdbk17i0ceeSQuv/zy2dxLQMBGB9bnX8DsI9itgICZo5/dCrZr/SDYroCAmWHU7da0a9jyPMcVV1yB73//+9h1112xePFi7/hFF100482td/AI4BE0fRcYBxMuxVCnReqjTtpW+l/nGXQZRYFSjtZW7qcmDJtFU98dGkXxIijcT8k0EecodhGVyEnzszgGDGPIeSHbj5JVM+IpIvLTIM0aIz7Coyn7sHFGos9KO+qtOFPx/JqBlW0AGOMQhmFTDLJ8GZlSyCQvT6ORkYiYGSuS8qCIBLn5naKaGmT3WxENsP09CDVP52PhUiJj4WRg2z0FteV6KmpSu4Nm0PSA6nzA7GNB2K1ZwLBM2vqU5efTzKucKQM3XQGRKczjjFAVIBlk/VygyW6ZYwGzj1G3XVmuehi2JsEQg6nSHZvO0U9ExMjqN7FqxTzsesOq9aRH5qYERkJlqRvnbmznahg2XzBo6uvYY9eEz6rxuvRIwrCpmIxlZFkzJTikdGyaYduYec0kTbJgJx0zJ3mxRkTcMoxUpEQqXWHMlB03pk2aRrYStUJxdf3fsnxw0ZFRt1vTdtjuvfdevOQlLwEA/Pd//7d3jI3ACw8ImA+gPe2q8wGzj2C3AgJmjia7hT7zATNDsF0BATPDqNutaTtst9xyy2zuY06gRQQt4iJkasKmKoelgHgEVtZ+MZXbWjWmpGXLqvVqQBktIbVqw0ZPaDItIwwbrPS/q3OjDBsY98VDTK0a4z6rRiT8e2T9q6Ij5ZgxoCTMwBgD09qORcmqgTNX2wbXPFsyQJeRE8k1DBGWaAYTTFNa29o2qbVlzyRpAksjb5RMG6QWw5fmLudIE0XBXcSdzsfCsWeMkSbhhJGjedjRkGxBVRClbr8Bs4eFYLdmimqD7GHWB6x/1AmQNK3xx9P+Oh8aTXbLHAuYfYy67UpLFmsqGf568ZFmVq1OlKypVo3Wm3kMG5Hvb6pVU1JZVk3lqWXIVJ7aa1DlqWXTaC1bcw3b1PeJrJp1VZn3atiEAC+zrHie2rHyxm6NjiJw855F7j0zAiU6gnfcMHNaacvGaaWsiInWGrp8bJVhq2vGLbiuZdvMOgAQmkEoc//Yy7alfVrZVDHqdmvDWfh5CNuHjXGXBsgjgJcKj1pBl9w4kzkQte08M/Naudb1Bg0X5CDwhEjoFzZxnqiSowZ8x6zG2SocNuLUmTUi8tfDOHT9P7icwXk9SkMbh0a7h2rtKGapNXHMTNIkoIjDJrVGOyJrzHq4xxbHqDHvu81a0IJTmhLFmFMJYowIrDCQHmsuz1lQ55Qzopo5pMPG6pX2NoT6XsDCh1OJDE7XxgJNVCLXF5rsljkWEFBFN1eFMzSAk0aFRMzPWkePjPPcKT36QiDw0hrNPQRNcZR5fY81KZVz2PK0NvWx6qRRR86sNfeB1GGj4iKDqEXSFHBeFRoxwXwu3PMLAW5UZrmwz8ujhAiiJM5509o6anZfSruUyMpxY2OK4+b53d+RKQZtbqQibh1rwRlkjbhI1Xkz8By/GuetO1RK5Ozarc985jO48MILsXr1auy888649NJLsfvuuw9/ogExbRZw5cqVuOKKK3rmr7jiClxwwQUz2lRAwMYCxljjv4DZR7BbAQEzRz+7FWzX+kGwXQEBM8Ns2q2vfOUrOPXUU3H22Wfj7rvvxs4774wVK1bg0UcfXU+7nwHD9vnPfx7XXHNNz/wOO+yAww8/HB/4wAdmtLENApEAUVKwaIYlUwrQpTS+Vpbq0ZFj1QBY5s1j18iYVVm3AaGBetEPyp6Z381jPFaN1R/nvcybx7ZRKX/KzBEYRkpp7XRGOLMFvcxb43oACTDCkjGbzqi1ti0BTMqkOb97PxjqgsUzydKi1yVlwd1LqjJvZsw85q1uflhWnTdEfEaAnR9JLAi71Qd6OrRziWqq5Hwk5epaocwG5mM6jFbSRd6jmQuMzETGv4omu2WOBcw+Rt12SaXBSJuefvL89DFAr9Q/TYOk/c6M7DyV41eqH3vm2LZ65k05Ji1LPVbNXI+ygXlrYtWo3L/BQGUzivRopPL9Htum6pm0ssWTeS7DqvmomYs4YBksDpAmTiiZNxCGi2tm1xRib8WaPFceq2bSI5sglaxl2+w24LYyjF2bTbt10UUX4fjjj8fb3vY2AMCqVavwne98B1dccQU++MEPDneyATHtb7/Vq1fjOc95Ts/8Zptthv/7v/+b0aYGwWc+8xlsvfXWaLfb2GOPPfDTn/50vT9nQMBsg7Pmf9PBsNfFddddhxe96EVot9vYaaed8B//8R/eca01zjrrLDznOc/B2NgY9t13X/z2t7+d3ubmAYLdCgiYOfrZrenYrtm2WwsRwXYFBMwMs2W30jTFXXfdhX333dedm3Psu+++uOOOO9bDzgtMm2Hbaqut8OMf/xjbbLONN//jH/8YW2655Yw31g+Gily1ahX22GMPXHzxxVixYgXuv/9+bL755gOfR4sYWiQ9zJj11yv1aZqyZjW1aR4D1/ik5ZoBtaFr2bZqxKGBeWtk4exxNvhaspyD2WiUYLA1bAK+GAitW7Nz5HyKsGrao8xoM+7e8w2Cnm4DDahjwbl33Bcrocs9do6IlAyD2RQdGfa6uP3223HEEUdg5cqVeP3rX49rrrkGBx10EO6++27suOOOAICPf/zj+NSnPoUvfvGL2GabbXDmmWdixYoVuO+++9But4fe41xjIditQTEo27YhmLSNqa5pGFn+6WCQeheDplYnM8VsFu+vD7u1EDHqtkuV7FqTVD8FZdZ615IMHKW9ujU7ViBjJ2LmrVeuDqvKvGm7pl4wRCsJ6dWo0TWOWQMKBq6uiTZdUx1TGHtCW35oJS3jRtk2EflMGh2b/YooaXxN2tSH1TBpTGl7XLGCLQUAxeHGcPdCCtrWtClF7qs4m5IVozak+GzU3QcXTziMjRvEbq1Zs8abb7VaaLVa3tzjjz8OKSW22GILb36LLbbAb37zm4H3Myym7bAdf/zxOOWUU5BlGV71qlcBAG6++Wa8//3vx/ve975Z22AdZouKLBy2uDLZ5yZnijTHgT42xuuYzTz/AZy/qXqrDdNciApxAL4j5d+YuRTKKfc3y20LB3XYpkK/U9T1cRpWdIQ1PMd0tj7sdXHJJZdgv/32w2mnnQYAOO+883DTTTfh05/+NFatWgWtNS6++GKcccYZeOMb3wgA+Jd/+RdsscUWuP7663H44YdPY5dzi4Vgt6aLmaRLzltMM0VSTDu3ZP5ifTlndWiyW+gz34TZtlsLFQvddjUJjJifdWMKKrRDA8C64uCZY/2uF0UdthpnqyoY0uQA9UPVeeu3roqmoJDvpJEgvHTOnlKyUDpH5fVxCVU6gU1OjXlfGHfvK+PMH9sSGTIvqAM2nJ2azXT1QezWVltt5c2fffbZOOecc2ZtDzPBtB220047DU888QTe9a53IU0Lz73dbuMDH/gATj/99FnbYBWGiqTPMRUV2e120e127e9VDzogYK4wFcM2SLQHmN51cccdd+DUU0/15lasWIHrr78eAPDAAw9g9erVHu2/ySabYI899sAdd9wxkg5bsFsBATPHbEWq14fdWqgYFdsV7FbAfMUgduvhhx/GsmXL7Hzd/dazn/1sCCHwyCOPePOPPPIIli9fPos79jFth40xhgsuuABnnnkmfv3rX2NsbAzbbbdd7YubTUyHily5ciXOPffcnnnFBBTzIxWqT1mfngVHnwYXZitwMMhp6tgg7xxTnIT1YcmmElgRgwiwTFOkpfc8ZJ+zwWL2YR51zWeF6+GEAZjWte+tmRs02jOd62L16tW161evXm2Pm7mmNaOGhWC3AgLmGk12yxwDBrNd68NuLVSMiu0KditgvmIQu7Vs2TLPYatDkiTYddddcfPNN+Oggw4CACilcPPNN+Okk06a1T1TzLgP25IlS/DSl750Nvay3nD66ad7Ebk1a9b0fJkEBMwFmMrBVF47DwwW7QkYHsFuBQRMH012yxwDgu1aX5jvtivYrYD5ikHs1qA49dRTcfTRR2O33XbD7rvvjosvvhjj4+M2bXh9YCiH7dRTT8V5552HxYsX96QkVHHRRRfNaGNNmA4V2ZRGlimNjOQ0A70CGb6IBllX8zyDiGKY8w3Krk0lilGs8YUx7Dx9DNP913rMH2t8bgBe43DzuxvrnvnmtQ1jYEpRlymh1fRr+2hdTFXEZQqBl2Ev+qqwjTePwaI9wPSui+XLl/ddb34+8sgjnjrZI488gl122WXKPc0XLDS7NV2whVm4Na2HLcxyvg2o7NJkt8wxDGa71ofdWkgYRds1Xbs1nVqlnNygMc7sDVZxn+PqqoyyEuMMrBTO4Ly5nspcS1TQgyknn8+5gCzrwJgQnuQ+49V7mf5iIgZTiY7UPaZurd9QW9g9utdWWSPceCobYo4zxor31T4vGbP6eQOallgdRzXzs4oB7NagOOyww/DYY4/hrLPOwurVq7HLLrvgxhtv7GGiZxNDOWw///nPkWWZHTdhfTbOnE0q0hS30p5hCr66Yd18cawsSgWdc+PZ6hNm0KtQSC+QsuM83HvvKxjSnmHuGCPr6OPMa+Ng/l6oA2b70OmGeb+3Xa3TVn1s9Xj1PATT7XMH+E4aq3PAqoqZDT3qWE1vOyaHdNiUrDfoQ/Zcms51seeee+Lmm2/GKaecYuduuukm7LnnngCAbbbZBsuXL8fNN99sHbQ1a9bgv/7rv/DOd75zqP3NJRaa3RoUgzpoG0LBcT72dFtfmGm/tKlAb76mwnpz4prsljk2INaH3VpIWEi2i3NWiHLVmiXuKUVOdbMuiciFbcul3OddQZc9wYp7N27UDTlxxrS2DgVXzPUVg1NJbHSAuLCKjDJPK06V//kXUQLN6/uw1SlANqHquNX3YRP2vqRpv/1ek3k/RPndwSPuAvic2Vshzp3DxonzxqtrGOtZD6DWYYsa6/l5vYPHivFQNm6W7JbBSSedtF5TIKsYymG75ZZbascbGnNBRQYErA8UOdV1Dunwd7hTXRdHHXUUnvvc52LlypUAgJNPPhl77703PvnJT+KAAw7AtddeizvvvBOXXXZZsQfGcMopp+AjH/kItttuOyvrv+WWW9ov7lFAsFsBAbOLJrtljg2D2bZbCwnBdgUEzB5m027NBWZUw9bpdPCLX/wCjz76KBSJjjDGcOCBB854c02YLSrSpUS6iI2CG9OUSKl1hXkrx9A9bBqVsR829YYGxX0WrWC87JjkMArWO8/I46kMP2fasmaCMcsQ2g8rZ5Z1U1p7MvXMY8/K51G5z6qVDJPHtilZeawb23naW4jOVxk2T7Z2eJaNce6YShrRIiwZZdUYY9Ai6lkDHpGxcKzdsCmRKq9/zLDnwdTXxUMPPQRO0j332msvXHPNNTjjjDPwoQ99CNtttx2uv/56r5fR+9//foyPj+OEE07AU089hVe84hW48cYbR7IHm8Go261+mEnao2AMGemvaJi3+cSOTeeaHwTDSk1vCNAouvl9JpjVFKMmu2WODYH1YbcWKkbZdll2xGybV48Xn+9Ctr//dZ6UbBiV+M9z16+r6P9VsmSUfcyVx6R5myn7sPnHASBBFYwLqLKvmfkdABRh25Tt08ahlUmrlB7bZjBIb8W+aY2EVeOGSRNuzMk8jxKX2hkndl5E3GPWgOIe0oxFxGqZN04ex3hxHqB43w37FUUNLFlDGiRl1cwxu4b564eya7Not+YC03bYbrzxRrz1rW/FE0880XOMMQY5RHPP6WBDU5EBAesFU9SwDYt+18Wtt97aM3fIIYfgkEMOaTwfYwwf/vCH8eEPf3ha+5lvCHYrIGAWMIu1IMDs262FiGC7AgJmiFm2Wxsa03bY3v3ud+PQQw/FWWedtV6L7NYnpCr/adKUURe/m+OaMGxZGWpWWts1SmvLohlmTWrt1bMNEr2lUQIaMHDMGLPsG2cuyhAL1sCkuQh5Ma/t85j4keZ0jaXV7AYaa1u0duIahGFjMncMmFbeGo9JM+spO6ckdJ7ZsTJfPkrZc3q1ISQCN0jNiBedJtEoy7Jx7iJYZJ5FMZgsLhPNuFsvooJlA6B15M4/ZJSGqby27m1o8ZKAgbAQ7NYwMA1L2YYoVAuYF2CVepH18hwNdsscC5h9jLrtakUcUcS9ptiyvC+R3G+GTdm24qeCaGisnRJmzGZHVZplG+aNcwaZE2bSimgoqHJcPW7ujRRvQdYwaYwLcNNQmwvLnJn7iabG2gJ+xsBgoiO8Z74qLlLHqjUxbyKKwIVh0HhPDZuIOHj53VE9Tpk0Ebk6N8e2+UyaYUVng1UDSM1bDyPajFG3W9N22B555BGceuqpI2k4DHJdXPhSF6mRgHPgirFGp7x4FXHYMqWRlV6a1MRRU9Shgx0bqAbHjXvOGvnAMve74M4xi8mHNqbzgiHm5qIgH3ji7AntHDFVPGExXyZHauY61RfjYm2joIhW7gKQme+kmXkl3bzMrJHSeQqdOSfNOGxaScCMJSkSVdJPiaoauCbHzXPWXPqA55gJ4Ry5KAGL4uL5o9ipKCVtQMTuuXj5mqIE0MWlxGRWv4cmzDLDFtAfC8FuzRSiYmMGWS9HIL9/oWCQ1MdhlOPWC0Y8Uj2KGHXblYjCYWtyvKjzZuAcNtbovJn7HJoemebKOhcyV2WKZDlmxtFh1rFjnEHlRmgEEIqTx5YOW+4CITqKIPPi+5/HCVRWpD/yKHGpkKVTpJW0Thx12Gga5LBBZyb8lEhe47xVUx/NWESR53jZlEfqhJn7xcpx+ji7JuLWqRUk9TGppEFO5aRV0xv7OmlkXg9TBjDidmvaBQ8HH3xwbapCQEDAEDCqRXX/AmYdwW4FBMwC+tmtYLvWC4LtCgiYIUbcbk2bYfv0pz+NQw45BD/60Y+w0047IY5j7/h73vOeGW9ufUNqx67l5d8qU8oyaZ1cISsZnW6uLAuXSTdWirBzuneOzgOo0P41EqbMMWaCOfZNMIaYSKeacSx4ZazKsWPbYsEQ61JQg2toG2H3mq8VP5WTum2K2zKtbOofkzlQskoF3VwW4krCquVdx55lqWPP8gzaRKOyDDDjPHNpkHQspUuFJJEqCsrA1aUPAABK9qxg1Vzqozc26QNxXDBrAFiWgbXaZI3rNaONLsmQFz2j7GNlPmD2sRDs1mxA1NmAvuuLn+tDgERN86SDFOr3fd5psobrMxA7LFs2J+wamu2WORYw+xh12xVHHDFJW5RKe0yZQU6YMsO6QdDMJ/8cRqCEMmyCE0Yu4jZtUggOWWZHCcUgc8ewGaaGS2XZNi4YhCzZNqHAy8dqpW0qodYakrJp5j6GyPfXpUSa36ugYiS8cn3XMes90vyil2GrsmB1qY1cOJGQJlatKfWRpjua+9pWj9BI7xqa7mh+Nz8jXj9fHauhUiJH225N22H78pe/jO9973tot9u49dZb/WZ5jM174xEQMC8QUiI3KILdCgiYBYx4atEoItiugIAZYsTt1rQdtn/8x3/Eueeeiw9+8IOe5O4oIVeOXTNMWidX6OZkLN04L8cZqW3LlPLypoFKISzgRYPqUC20rIsm0HzgmHPEom7M0IqEHbej4vlixdAqAzNJxKDs0zGYCLttrC2c1L8i9W4AnAKLVh7TxSzb5tgzpnLorFss707aeZV2HMPWnXTMW04Ytowwb0pBpbkdaxPhksoJk5jtNUgBM87BqSRuErl5MmaGVWu1SQ1bAlbW2bFW2xYXo9W27QE8nnTIi56pvIFhm/8FsKOIhWC3DKiEPx3zhpz+JuERyrYNy7ytT8yUQZsp5pPU/yA1a01CI7wmUl0dD72fBrtljgXMPkbddiUR8xg2ABWmrBgn6L1nyiuPcSJxGtLUm9FzRO6+rJsrrw0AvU/jomTbJLMaA0JyqLjMlsqVZeSi2LFzMteIyjVSKjvWKoKU5b0DycJqZNiGtHF1bT68ujUiOETZsR4xkKh3Da1Xs0wbZd0IG1cVEaln1fo3vDbzBtX6NIPqPXF1XkWD27FRt1vTdtjSNMVhhx02kobDgKpEGgesmytMZMVFRB22bq7smk4u7UU/mUrPAJi1niHS/R02oCoQ0ksLJxG3F0h13BYm9ZHbVMwWGbcjTpQsOdpxeVFqgGlmx0AhSmK2WYiPkIuhpn8ao30tSBqk7k5AdzvFOO1Ap+U4S9047RQpkuVYZcVjVZZbJ01mmeewKeKwWedtip4tjHN7Q8sEtze0PI7svIhjiHaprpR2wE0aZKvtiZ6YdAXunV+4Kt2h+7AR57c6HzDrWAh2a1BwwYhKJHHoWJPjBmTGDjBG0iC1t0ZqN94Q0MM2s5wFbAiRFXOTpZWsdcKomABdXwWvOF70po01/K1njCa7ZY4FzDpG3Xa1E4EkEY0OG52r3it5TlplbV7j9FHl7yRXtWmT9D4tpfdsubLCazJXNmVbKW1TJZUmY6XJem0dNeuwaX+Ois/pGjtDFS6rQRh6PXPijJl1nDHfSYucHaDpjrSHGnXOqPIj0Cwi0pTu6AmNNNzLDuOM0d8b12RDpIWPuN2a9pV/9NFH4ytf+cps7iUgYOPDCBfAjiKC3QoImAWMePH+KCLYroCAGWLE7da0GTYpJT7+8Y/ju9/9Lv7yL/+ypwD2oosumvHm1jeM6EiXpEFOZNIyaZOZdGybVJhMi/FkKu24mytMlmv8lEhpx3lNZKiKJtnSpExxFJxhLC7GrQrDNpYU82OJQFYWyGaRQCtyER4KG2GPih5tQMGsFXukkfOG6Kx2vdGorD+TKUmDdKyamhz3WbXupB3LTsGwyU4KmZm0yRyyZNtkJ7URdpnlJCXSSfxPFYFnglsBEiYERBzZeV6Oo7EEvFPsPWq3INrF84s8BTOSveSCViDRDi7AWuX5G3p8NO6NsJXV+YDZx0KwW/3A+kgcc0KJmWGVJat7NGXVqo8RRCBpplDkOp4LVq0J1G5PV6jEgLJkJjWqypzVs228do2fItX/jzCTFMie/TTYLXMsYPYx6rarzbm9nwH8frZAL3M26FxdWqV33xXXM28pYd7SXNX2dpNKIydMmrFRxZimPDoGTRJhEnucvE7beranV1x/0Ou7YNHJMcOY9UmJbEpzNOOowqYBvVlewzJpTWIhBoMyaXZMRPmK3wE9BOM86nZr2g7bL3/5S/zVX/0VAODee+/1jq23NIyAgIUGJevTKEcg2jOKCHYrIGAW0GS3zLGAWUewXQEBM8SI261pO2y33HLLbO5jTqB18S9TRLJfaSc0IhU65XhdJ8e6TvGHnkilZdWKGjZp5wE/QpPnasqcZaA+QpJUIh6tMuoxlkQ2AjIWC/tcaa6QGrZNaShdn9trm2hzAVk+rzQRd5QNtVHUspmIsqCRCUWUdlTuPugy89gzNTlux7pTjifHIbsFkyU7KfIOGU8WTJbKcuQdM3Y1bEoqW+empYt2NUWnvIiUqVtLfIZNtFv2+U0Nm8pyiJLti5WyF4kmbQDABXRUNsnOUiv9j2Ej8LqBitfz33iMIhaC3aqih32xdWvMfe4JBcYEA8rvrKJWTduxERsRzJfyN0zaMLVddFcbqt5tPsAXCBmu6qCpOS49RkUGit8rdS7cZVEwXs+8RTVzQ6HJbpljAbOOUbddY7FAKxYeS03tibIsmHtM09ph2ba6cU6ZtAbmTSpts6+qjbllA6um7HyxL611LZtWvW9pYu/rao5p3RpA6tmYY96a2LZBBUOAXibNPK6ugfVUY4OmBtnV12q+M3iftYIBiIeoYRtxuzVth20hIJMamdSQquitBvgqkROZtE7auk6OteV4MpNY1ylu1idIeqShzqVUkIZGl/QCrqfA6YVH1Xy6HE6VR3BE1mGTWFQ6ZmkSeQ7bVIqUnDHbco0TKtsYSa3ZlD4HpZWZdKo7nrgIHXfGoUvnLZ+YtGmQ2fikdcwK582Mu85hSyVk6RzLVEKXG5Wp9IwgAHsM8BXxOGdOXCThEOV7J2IBXj5P1E4gsl5xE4oIpC8KF9BlSgpTbat2OazDVvSiy2rnAwIGhRXV6eMg0GN1ypCCuXHmCY04R64xTRr1aZZiiMh/k7rlfEKTYEsVtY6WEJ5CXJPQSOO86a/UIEQy1d6iyo3STNBkt8yxgIAqxmKBdswbHTL6fV5tzTiVk2ceY9ZVnbupnLfqvVNO53XdelmfflkjjkLn6H3fIIF8ijrBEaC8Z5zCYepXatPkkFWPJz1CI1M4ZpWewnV7n8pZq66vruGMQQ/hsI263RrqG/Khhx4a6uR/+MMfhlofELDRYYQLYEcFwW4FBMwyRrx4f1QQbFdAwCxixO3WUAzbS1/6Uhx00EE47rjj8NKXvrR2zdNPP42vfvWruOSSS3DCCSfM62aOSmsorb2UyFw6+f40d0IjNA1yXSdzbFsqkZfzeeoYNjOnlbZsm9a6tk1XtXiUyq8atk1EHFEpx5+mEpNWaERiabv4M6YymlLghKY6xdz1RNGWadNQpdR/zxmIrL/NA9YakGUvtSxzrFp30kuDzCeKVMlsfBL5RKccdyyTlhO2LZ/MILMypXQy9xg2lRrmUvWmFFTCciYNjHFmWTUmGOLy/RKJQDRWjGmbAP8cTrCExxFY2aqARTF0ZnrIpWCqbAMwbEZkltnzVOcDZgcLzW6BczAtvFYVFHSekWvAXA9cMI8Nc2M/PdJFObUn5V8nQDIMk9bzcmryJfuJp2xoVFkpNoOt1YmOVOcpk1aXBtkzZu5vDJi0KJdiX8eqVSPrvFLMPxWa7JY5FjA7WEi2qx1xLIpFI8NmMJXIz6AMXR0rp5SzZVT0ZFDmrYlVS6VLm6y+juJxzccN8oZ7trr05d4Uw94UR7ouEbyRbfOZN+49rodJM6U75PuBk3lzDBicJaPwjtW87rrHqmhwgzzqdmsoh+2+++7D+eefj9e85jVot9vYddddseWWW6LdbuNPf/oT7rvvPvzqV7/CS17yEnz84x/H6173uvW174CAhQGl6iM7I9ATZFQQ7FZAwCyjyW6ZYwGzgmC7AgJmESNut4Zy2J71rGfhoosuwvnnn4/vfOc7+M///E/8/ve/x+TkJJ797GfjLW95C1asWIEdd9xxfe13vUBpEg0pRUgAX76f1q2t7eSYKBm2PJNIu9KOAUDlCnnJEMlcNTZQNGiqYat2pI/KXN0oEbbGKh+gbk1wFz2NOUNcnj9TyrYBiE3fZ07zqRsirlpbto2p3Ob+6jx1rFPasY2zZbeLbLxg2PKJDrJxwrCNG+ati8y8p5M5cjKurWHLZA+jVq1hcwwbd+xCIixLxxOOuPz7Kqm9x9vzcMewySS2bQC0UmC2ofb0L3QtG2rY5PyP9owKFqrdoqBtKywjXJFvpk20Xd0aZdUcU8ahvfYetIl2k6w/PSf92buWeTWmowwnm92n9oyX9oYLTGUpaLPs4rGcjOsZNtpAt3ieSvPcmmj5TNFkt8yxgNnBQrJdi+PItiYCegWM6m5fmu5phmHepNKkts1fQ4VOaP1b0/wwoib9WhMAPqPWr+WTAb12oxoWzYyHFQNpYs2A3jo0+31SU0tW3cugTFrTa3RrK2sqbB6LB3djRt1uTUt0ZGxsDAcffDAOPvjg2d7PBgWlxM1FmSnl0eFGgGQylVYFkqZBpl2JrOucN6BIjTSqQSpXnoKQzOslRc0XcFXZhxPREXOeQtSkWC9zYlyIsaCgF2gsGKLyNbUEt86p1MXzaM08lUgPJCWSEZVIXfYp03nmiY6ocpyPd7w0yHTNuB1n491ynA3gsCnI8m+gpa4tMKaI7U2sS4kUmYQqzxGNRfVOmnAiJTKOwJOofP4MkXHO8tSP1NjxEIpFKNKidE3Ep24uYGZYKHbLwDlp3EuD5CTg4+b9Ma91tOClRJKuaF7qY3NPNn9/1XTLoV+fMGnMGz49kvYWGhacCyizdyUAFDcCjAtrJ2j/tOrvtY6ZqDhyovf7gjpuVDWu7uZsps5bk90yxwJmFwvBdo3FHEuSqMHZmtphmaoHIq1oaBQp0XR9syMnSZCdplA2OXL2sZWUy+rxfimRw2CQPmXUwTLHgF7HzFtfcbwGc8zIvppERPqY8EFSseu+P8zjVDxESuSI262NWiUyIGDOkWfFv7r5gICAgPmIJrtljgUEBATMN4y43QoOG0pmykRFKpS2KSZNc+l6q2XSpjwW48IzzzqyZ07mOVReMlDSefdN3jzjAjxO7DhKij5hXHBI6Vg1K2TSJw3S9tdIuS0mTQRHWxSP7UqFdpkSaaJBChr9pLstDNOkpP2g626nYJ7KsZHvzztd22OtYNUM29ZFNl48Nh3PkK4z6ysMW+r64ploVUr+ZrWvn7IFOZCUf494kluhEVVJoTSRfC4YeFw8v8xyiNTJ/RthkuJvaf4G04/MaCmhZQ3DVjMXEACUzJquMjTlZ5dz8jl2qcA0RVjEAiopPl+JUkhVb0pkwgGav+ezZ5rM10RwyUqfvXPnounKNn2PXIPzDZS9YiRS7QQ/6lMWi985OY+bp+mRdVL9PIrBI/dd4KVBlvNccJJCbx7PvL6etLdSnfy2ibgPQ7g12S1zbH3hySefxLvf/W5861vfAuccb37zm3HJJZdgyZIljevPPvtsfO9738NDDz2EzTbbDAcddBDOO+88bLLJJuttnwG9GIs52n0EIlSvzNnQqCPh/PTIhnmta9fRLKzid3N8anbOm5tCaAVAT5siA95wYdb2LKuIdjStcQwayHHCtpE/k2PgpmbPqmzZbPRz533uRxkD5DAM2xzZLZPSfM899yBJEjz11FPTOs/8/HYMCNhYkGeFk9vzb/5HewICAjZSNNqt9Wu73vKWt+BXv/oVbrrpJnz729/GbbfdhhNOOKFx/R//+Ef88Y9/xCc+8Qnce++9uOqqq3DjjTfi2GOPXW97DAgImKeYI7uVpikOOeQQvPOd75zReabNsK1duxZLly6d0ZPPNYrIYm8uf1MBqWHYZK6Qm2bZqbRy/raGLZPI06I2S3YnHcOmJGQ5Nr8buBo2AZaaCGsCVdaH8TiBkgXbpnIFrer/dCYaMxFxJFEZRReOYRtLhG1hkEnXzsBElLR2USqtNbSJbmjlhEa0sou0Uq6IM0/tWOUZ8sniPcg7qWXbZKcLWYq3ZOMZUsOwrUs9ti2fLFitjnQMQKq0HUvtcsObamoSWzjrxmMCaE+6OkIq/W9qf0TCoUwTbcqkNUj/My6A8u+n1XAxkKKRY+/fchSaOI4iFoLdAlBI+5Nm2VzU1bM5cQ+RCHtNccJkCcbstVFcUyjHrm5NapA1uraeQDBmo3++oImZa6hDaBAfaWoATuerdWDDYioJ6amOscr8VBL8ACwzppWEaBQpIUIj5WsUUeJYtTiprXk2rJoQ3GPbmkRHBLGPw6LJbplj6wO//vWvceONN+JnP/sZdtttNwDApZdeite97nX4xCc+gS233LLnMTvuuCO+9rWv2d+33XZbnH/++TjyyCOR5zmiaHSSjEbddrUihlbU78M2C3RMDZpK3yijpz0GrPJ7uU73MGn+70C1Xm5qZo+iqY6vqf53EJaL1q3RtfR3M6RMlp0jT0230cR6zQajNgw4A7K+nykfc2G3AODcc88FAFx11VUzOs+0rdUrX/lK3HjjjVi+fPmMNjBfMNWXVq6owiNJIZTaEwMBgDztQnYL9UOZTlonTeWppV2rxY+srqA8SiDMl3Se2PVKjTXu03xRr+MMLZMGGXEsKkVKJlOJdtnlfiwW1iE14iNKc2JQGt4U4rwhT0map3LKkJ3UOj2ykyLvGHGRDtLx4v2gaZCe8zaRYbJ8LyelnpbDJhizaxNOhRKc5RxLJWRSpo9lTnlTE8VI3UcBsvamctgmTbqhYaOeP2lFANDpdPC+970P1157LbrdLlasWIHPfvaz2GKLLeya97znPfjxj3+Me++9Fy9+8Ytxzz33rLfXMF0sCLvFBABFUh/JTX6lb6BISidtMrfCOzJTEGVwSaQcCUkzLi8HSF0JYpXXTyVT0oKDplO6n/XOm5/6yG06J/McOF9IpcE5a3DspkJT5mWTc0NVF72eQlQlUpCURRPAKdPbAdjAXR3q1CB5TJy0iDhpUQJR2nYecTs2Pwt1YWf7I/KaoobXxyuva0o02S1zDMCaNWu86VarhVarNfhzVHDHHXfgGc94hnXWAGDfffcF5xz/9V//hb/9278d6DxPP/00li1bNlLOGjD6tqvFOdoDRgfYgHf+w+rmNOl86IqzpLxj9PHlfUHDOescver8VHsZBNXX3eRMefPU+bJzDWtrnrPpbzJbfwOK6t+jCYwxpMN8Bwxgt+Yzpp0S+Vd/9VfYY4898Jvf/Mabv+eee0IvkICAAaHzvIz6VP/Vq4nOBoZNKwKA9773vfjWt76F6667Dj/84Q/xxz/+EW9605t61r397W/HYYcdtr62PmMEuxUQMHM02y1nu7baaitssskm9t/KlStn9JyrV6/G5ptv7s1FUYRNN90Uq1evHugcjz/+OM4777wp7d18RLBdAQEzwyB2a82aNd6/brc7x7t2mHaI6corr8TZZ5+NV7ziFbj++uux+eab44wzzsDXvva1kTEesWCIBQMncqWDRBk16aemlIYiqZIAoLLURlNlnlq2TVXZqBpPn6bE8CiBil2Ela5PMUYeY/YuXRuAyLUhSKIcE2X/kyIlsmQCSUqkjRxpFz3qiaQbtonI+ivpREeKlMiSTUxz5FZ0JCUCJLlNzaLy/el4hnSiOM+kVFiX92fYFOpTCPw+Ui7Vyx13YiRJrqygSdRWllWr9nerAxMuDRKcg0Ux7MaGgWqI+KwnidnppBU9/fTTuPzyy3HNNdfgVa96FYDi+n/xi1+Mn/zkJ3jZy14GAPjUpz4FAHjsscfwi1/8Yr3sf6ZYCHYLqPRbSyKwDkmPTIrPIu+kEOV1LxIBUQoliVRC2XmFWBommhbh+8/nUiV7jwG97QHcXM3xiPaEY6D94awt6yM+MhNmuy6VZ6qgv6iIeFC2zbZgiThU3pASaTImkDSKTk2ZYRElVoxKRJEVGhFEWIbO2TFnNh2esmpJ5ARIhmLWDJrsljkG4OGHH8ayZcvsdBO79sEPfhAXXHBB36f79a9/PfweK1izZg0OOOAAbL/99jjnnHNmfL4NjVG3Xe2IYWwIgQigPsen6eM6KCs3FXrYNsqg1az3GTaSEll77qmfn55vkEuz+rK5d4wKhdQ8lj6u7vh6ek8NqmwbkYEb+NzDpEQOYre22morb/rss8+utReD2q0XvehFg+9vCswoJ+Dcc89Fq9XCa17zGkgp8epXvxp33HEHdt9999naX0DAgobOMuisN93LNCCfbUwnreiuu+5ClmXYd9997dyLXvQi/Nmf/RnuuOMO67CNCoLdCgiYGZrsljkGAMuWLfMctia8733vwzHHHNN3zZ//+Z9j+fLlePTRR735PM/x5JNPTpkmuHbtWuy3335YunQpvvGNbyCO4yn3NR8RbFdAwPQxiN0aNNA0qN2aTUzbYXvkkUfw0Y9+FF/4whew/fbb4ze/+Q2OOeaYkTIcvJQxjanccaXRaBNcPZtrpkijp4rUrblx5saqXl6UNkilLFyT5GjOF1lWjXMGXgqNRDHHZMmwLUoEaU+gSN0akaY1MraDyvrbxtnK1eXlma35klkGVcrhqzSzbJtMpW2QnVXk+03d2rpcYbIM41OGLdO0hq1e1p82/jX1OFB+bZthEqTWRKZf1zbRpqCCDiBCIyxKnOjIsBX8UzBss10HMp20otWrVyNJEjzjGc/w5rfYYouBU5HmCxaC3So+e4ywMkTKP4kgsrLRexKBl3WkPBEQpT0QiYA0bFsmocvWHmNaw8SFZ4NhSzir1LOZ7ZMWA4mwDFu1fo0bBpEKqVChjmnWr9E9u7Fv8ws2intzQBFxdqwaQ54xMu9qz+qyJzSXjfac1r+Z81SFRkRSZFVwwUkmBffq2cy+IlLDlpQ1y4nwZf1pfaH5LhwYA0SqB8Vmm22GzTbbbMp1e+65J5566incdddd2HXXXQEAP/jBD6CUwh577NH4uDVr1mDFihVotVr45je/iXa7PdT+5gtG3XYlgqHV5/ux7vNHp1gdS6MVOS4bj80IZg8VFl/XsfoNTL+e4toahHnrd4ra9waofQ9Yda7f+zSdOrua90BTW93zProXNlVbhjp0h7nnGsBuDRpoGtRuzSam/Y23zTbb4LbbbsN1112Hu+66C1/72tdwwgkn4MILL5zN/QUELGgUTnz9P2DwOpAPfvCDxU1jn3/V2oeNEcFuBQTMHP3slrFds40Xv/jF2G+//XD88cfjpz/9KX784x/jpJNOwuGHH25Tuf/whz/gRS96EX76058CKJy11772tRgfH8fll1+ONWvWYPXq1Vi9ejXkiPW6DLYrIGBmmAu7BQAPPfQQ7rnnHjz00EOQUuKee+7BPffcg3Xr1g11nmkzbFdccQUOP/xw+/t+++2HW265Ba9//evx4IMP4jOf+cx0T73BIEpZ/1gwxGXkMW7I+Y8GSCb2GDYSSbXqjnkKmTmJ/9qGyzmgTKRWSYiamgfOha2LY1w4OXrBbT1dnilEcdkgO1euJQFtT0CaPNIatilVfKhKJI1YKGlZNS2VVYlUWQ5p2iBM5lBl3ZhKpSffb1i1VIEwbAoZUbGjKpF1oDUz7v1yqncFM9db29aEorEvqQ+Ki0uGRTFYmVbD4hjg5aU0ZD2IVrq2VYBhcGebnp9OWtHy5cuRpimeeuopj2V75JFHRk6xbCHYLcZ58TkzDJvgEOVnUcU5pGHb4hiibAAv4gyqVIkUmbJsm25HtmZTSG0VIwH/WiovWe+a6a0NbWbYRJnJ4PZrGCVGWhIwq2TptScgDGLxwkiTaaoeOUUdm1+v0av0CMCz9x4bVX4n5Jm0j2WM2VoxxRVEqTqolbTMGIX3vcB7FYKLvQhPGZKTGmaqBhmV7x8XzKtdK+ZcG5cWqVVrRdz7brN126WC5zCB6ia7ZY6tL1x99dU46aST8OpXv9oq3JraWQDIsgz3338/JiYmAAB33303/uu//gsA8Bd/8RfeuR544AFsvfXW622vs41Rt12xzhHriphWHbtDGRWPQVO983VzgKu3r3tsv+ceBlPYm1oGjmImGQL91Kunel2zwTwOwjbSFiyswrCR33X1mHsQAMBLYKx5np7PVB/Mld0666yz8MUvftH+/ld/9VcAgFtuuQX77LPPwOeZtsNGDYfBS17yEtx+++3Yf//9p3vaDYpIFP9izhGXX3aR4PbGIok4ElK8bdJMuGA2/YTKPHvpOgRUGp46dXUF6PQcpgdb9VieTtqxylKopLiJl1LZ1gIqV1amnqZBdslY0ZRI7TtuQC897RkCunfPOTXCK7m9MGSa2xQsmSnIUlJcZtKKflBnbJL0XqNpkKnSJDWrNyWyuOEwdx0utbPJPAlGpcMZeOL6sHF74yjAk6icj4v0RwCIEm+sRVy+H8M5bCrLoaLez41xdmebnp9OWtGuu+6KOI5x8803481vfjMA4P7778dDDz2EPffcc8rnnE9YCHYLXIBFDCidNJ5H9jPKswiiXXwuVZpDlfPRWOyEkqS2tgFAbSqwyBXMlVMEtmg7jfpt0bRjoCYlsub6EomAiGt6yNE+cw3OGhrsbfVGqOm2yHPaKvlG1WAdFeiwqYeSW2dXSg5evr91zhpQ2ErWkI5DRUfM45kQNg2SOmlRLBCV71mUCETlexmV72+SCOuYJZHAWPm4hDhsScQRl3+wQnhruJTIJrtljq0vbLrpprjmmmsaj2+99daewME+++wzsET4fMeo2y6WdcAyUjs4gLNV76Tpekeu6XxEJM1D1enZEJ+T9dGobH3vu27PvMFha3S+eL1jxpjnzHlrmtIoK04byzp9t08xV3brqquumnEPNmCGoiN12HrrrXH77bfP9mkDAhYkmppxN0WBZgqaVrRq1SpkWVabVvTqV78a//Iv/4Ldd98dm2yyCY499liceuqp2HTTTbFs2TK8+93vxp577ukJjvzP//wP1q1bh9WrV2NyctL2Ydt+++2RJPU3sfMFwW4FBAyOJrtljgVsOATbFRAwGEbdbq2XzpHPfOYz18dpZx0RZ2UKJEOrjOK2I452GYUcSwQWJUYOP0ISFR54N+I2GikiKvPc2zhVokGGGr3SznVzVtCjUrBO2TlZ9o9QuYDMHVNmxFCKNEhpx1L1Rsubmj/WgVWiYZZBVO5iUFJBlhELXZ0v07FkqmyLAcqYVZtiN81XIXV9Wg9993sb+DrxA5tamgiIMvUxaieISsZCtBOwVlGwzpI2WFKO4xZUGRUfNttApZlNYavOry8Mm1YEAP/0T/9k19LG2RTHHXccfvjDH9rfDe0/KqlHo2K3wHnxzzAxUQZuUx9jqHKs2gmUMqI69Br000LqUkF4KsHT4trIlLLXjNSstp0GUCfr7xi2uCUcqxZTVs010RYxST9uaAZevPYaVdUBZf1rg8XUJtQ0lqZjLjg4L947Rhp9C8GhI/e+5HABCpO2Se12z744YfQjJ99vbRJl2BLuWDXKtpHWLe57S6DlCZAU45i7TBJeCm31E9mqoslumWMBGxajYLtYNgHWrXxmBk15rK5TvWxbz+Np2Yad7s0S6llTrW3sk364oFBzn+qlnDdkNzBOmqVwQdgznzljhFUzz1Vl3VjDY+kaf4MMLJvAoBh1u7VeHLaAgIDBoLXyv0TI/PrCsGlFANBut/GZz3ymb53ErbfeOltbDAgImMdoslvmWEBAQMB8w6jbrY3aYYsYsyybYdVagtuI5FgsMGYilbGLWk50XIQzz6Qr+i4fJ+MELHURU68pqpXsl96YQnsRoVKwRElwEy2nxeukFk4p19BbK20DTB6rpnyhkapk6qCscG2kSkkik0/k/qVrSk3l87VUDeyZtnVnBfPWX8rfoCrTTSP9VEDBCiFETvxAxAJRO7JjQVi1qF3UCIpWy7FqrbZl27RIoEUZUW8oq2mCSnMrMlOdDwioA4tjsIgDZYsQxDF4XtawJRF4RurZyrGKI8sUa1lfeM24Y5xzwcBEGblOZVnT5ov2VFGtYePM1a3xRCBum3q6yIqLiESQ2jYBYepFY1eX59ezEeaNtNYoJ/q+b0VWhGv74Vq5OOERyqqZ+uUkEkjKdilpxGtZtcbGsLzltX2ZkmHjwomLEPn+nro1W8/GPWYNKNq4UCn/pI5hE84mxuV3YDwUw1Zvt8yxgIAqihq2Sv0RaQ9kUceaUcYMIDX0yqunt+xYZR7k3sk7B9UXkPWMW50MfNNNfy2GbHMxIzTV9VZQm/XVxKB5LBvvPc6FnfdsMufusbQNEsmSKGQHHKvm1cIZcSfyvD2ZFIwPV8M24nZro3bYEsGQCIZcMbTLL8NFuUBXOnVF+iU4Vt5ALGpL5JnpdyYQJeXNjBHZSMasYAg1IpqoPgKwPdnMMQP65T0Vmm4AtNL2JmJ9qt8MAi21Lc5v6nXWlGZFIcgNV1WhzhynIgcxET8YK2++xoQbR2MRorGoZxwvblknLWon1nljY4vB2osBALy9GKy1CACg4hZ01Cpf33BRmsKxblaJDAjogfmCNOIWSoFFRTqHaKtK0KT3s6WkwlQVhYWSY5m6nHArDqSlaryWq/3UmODOGYsrKZHlOG47543HkVNhFdymA3Ih7DwqNwR2PGBKpPFJCpENN7ZCKTUKwYIzG8RLI468HBf3kCRARr5NTZq8yplz2DSHVr1fuYwXbTeKl0RETQTpsSZYbRpk0orQIt9RQJG+b4RGiu8t59CZNMiYc0REUIszt4dB0GS3zLGAgCpYOmnTrAH0ioRQJ8xO02BwOc4zMq+8NdYxk756tSvbkLXOnj2GquOmGhy2hjTLGmzI2ijWkO4H+E5a7b0lcbzc+UStI0edLnAXRPMcMyE8B49RR86Mo7jWqfP2S9IsPQcPZaplOtn4mqsYdbu1UTtsAQFzDZnmkDXRLjkC0Z6AgICNE012yxwLCAgImG8Ydbu1UTtscSk7nXOGrIwKL4odw9bJFZa1CxnaNFfo5kYmX2LSCGfk2jFrufupWoUcc2/6Yh2bUp8qQ1MoOY1iVNYMC7keIwlqms1IKXsGOKEQms5Ipfr99Ee3ljJsZlywambMEbdcdD9ZXPx9k8WxHUeLxxAvK9izZNliREuWAABYezH4WMGwsbHFjlWL2kBcpkcO+fo3tEpkwOiDiRgs5l4EGWV6LgcgCMNGQX/nJBJL5fPNvEwlZMni8ExYtk1JF6FUFYaNVxR/RCw8UR+TfhyNRTb9mCckFTmJwJOyVQFh23gSuayDKCZRXmcTh7VoghORFJIOSJm2OrGOJOJIY5PKrqF1r/1lHGB5cR4tuP1+MI/pXe8k9Rnp+cYF89IjHcPm0iAXtSOPWQOK9P2l5Xs6Rhi2diRs6n+19yj9fRCMutpawBwgnYBOWTOrRVgwyqABJq2RsGqm5VETe5ZnU56biqFp6Wqbqp9tJQkjV8ITbara2Zp7PLWerwlew6xV7xdZjc2n6zhJfaTfCZ74E227wikz5lLWUWOrqywcK/tL0iyJamqlbkqtdC+6+JkOLjoy6nZro3bYAgLmGirPobJeY6vy+R/tCQgI2DjRZLfMsYCAgID5hlG3Wxu1w2Yk/D3p+BjIVOG5Z1IhL73ubFGM1DBs0rFtWjmGzatn0G37PHX1aTJ1EQqtJGSlSTZQSjwbhi1KHNsWJ3aesnDF7y5Sy0jUlmIY+eZhQaM0dk/CyV8XMt7u+akYCG24a/4eCbm2mpr2WhERBlu3NiY4YdUYlpBWDfHiIrrTWtayrFprWQuJYdWWLkKytBjHSxeBL15avLbFS+0YrcXQSbFGJ2NQccGodifWTfkeUcisISVyPTZxDBhtsCgGa2j+CSUhVKv/40U18upqz0zNWT6ZQybGVjm2TStaj1ofkWSCMEQlE8QT7oRGYuHqRduESYsj105jLPHmEZUNd7moj7YyVilYdzUP1g4y7cn6cyKOwgnbBPis2lgsrO1vRQqprWHz/wbGznKpIISraxaqWK8aMhs4Z6SPLGsQHXH1bBERw1qUCCwps0BM3drSdmSPL2m7erZYuFq8luCEbeOezP8gaLJb5lhAQBV6chyaVQTVmhg0SbIHyp86z9zYsFh56gmN6NxoB5A2JlnuMWmUMTNCE1opy4JVWZhG5o3M27U1GTaNNVMzYHSaatV6WbVe1ozTWrYKa1ZdS7MuGOeeEJS516Pn4HHks3CRY9LsXqLEZ9tK266HrX8rj+nJ8dr3og6jbrc2aodNqAxCZWhHkVU+U5pBl9XjSmtk5ZdspjTSRSYlUnmqi9UvYvo7LeSm/dmYEFaYROWp7b1Tde6oIppZw6PEjgtVsTKlKOL2xoORm4Bhe+zMFph3QVOHjSjHlWIGgmkk3AiKOIcNyl23Cn4PKKtGV/7up0E6h21JxLHYCookaC0zDluC9jP///bOPkiWqrz/33NOd8/s7r17L5e3C8LFIKmAkVAI8qaJvJWQpPyRhKLKxFiIBAwVMIAlQhJFk1AagqUJQU0sSkmhFZMYTapITAxqxVIUA8Eq5KXEkkChvETe7t3dme4+5/z+6D7nPKene3fmvu3s7vOp2tqzp3tmenqnn+nnfJ+XyrHO5mfQ27q5Hs8im6+Li8zNQ8zOV+NNWyFmt1TH0pvzTppNZ1DWR1EsV8ayBQ6JZCZFpCkEbUTecUPQFSxNv2DLLPVfwjLNoQd18ZJMoVxy/dwS6MKFF1lyYxMqvlbPG9uYaqHGFR0JDlsyk4TqrP0UyUz1XpJ+zxf4kWkCRcIjQwiNIs4bTXwfs+gISAXL+iEpCUlMfWXI4LD1EumdHm0syo6wRrpAZpxtSmQUBknHdHGtLSRSCIHEFW1R0hcXafYHpQVG3PZN/RAe6Zy02VT5fqOpkv699pSsQiIniK5f66FFzP7HLO2EkY3CIH5jRzgjDWX0YZArO2Y6L0Lodl76sc6J80YeqyOnTrc6aaYRNumgNrF63lH70Awfbz7HpDQdtmY4OhAv1EtyD0YfXzle7SGP1ZwifTIbzpjvW5uEsEoyVlkKoaoKjss6csS2+xB34siBhkeCOKH1vmaJQyIZhtkPmKKEaXGmzRpY7WEYZmPSZbfcNoZhmGljrdutDe2wVX1BUqTZHGZcmIsFXBcwg2TFvmRdBTyo0uXGeZKhXKpC5mSS+bL+usy92gYElY1KvzLNoIjCprJK3VG9mbCKreIeQbS3kCKhPm5clbZuhksu/34dkfROE0vpqkvraoyCSkOpb5NV73XGGAStzHj1LDcWOTnHTmFT5LjjQiPV3IySPgwym02j0EensPUP6KN/QKWk9bZuRm9rVVykf+AWJFu3VW9p/kCoLQdW401bYXrV/jadge1V+2vV8yGy7ve40FW+5jzDtJJkEGkaz3X01VFyNCRmJMxFhrHrg6bzEiqt1DZdaBhdRx3kOlotbu3nRoyIC7Gs2gQEG+B6wsksgXJ9DvuZf32ZJqGdRpJFieyChs3UYQSWhEF2IQEfEilECImkRUeGTmmT0ocV5qUJ4ZFWQZNr09nSpVx7hU1pAVO/V3qumpEYktw4+Mcmwq+MU1WNFkGZyZLW/qC0fP9cfR775HHNMMigtomqzP8EIZFddsttY5gmdjiElRYrlthvlPCvtmt/Q221ica6KEbmjQ7hjpHyVpT+uem8iZ6TRBE0QsBdRIEhvSzpdd1U29xc25gyTlGStsIiABrKWbeq5u9JyX1iFPGkgu0JqpsIoekjoY8uxD2J5n3EhpJRmxZVf2cJJSHTnIxdmKWCTdw+tOhIXLDEzbvWAnY4XPHcOda63drQDhvDrDYmL6HRorCtgRKzDMNsTLrsltvGMAwzbax1u7WhHTaRL0AMJSSAXlYpJ0jDKoaxgO2HfLYuNY02WAWAF6WAcisOCWl+mkgUSZUPVeYz0MOq4Z8qc1JqVo/ksbnfvuhIkkHVbQOSLA3lnjMVEtaTsIpe5WPU+9CGsCIU/aAq8Ur9U62Q4SMvJVn9iGOgXQEBlSWRqkZzWdyqRqYtAPe+JZSoznUm4fMLm82yaTn/at9Qvj9LFbJN1WoNzVvrz/fQm69W9HsHzPm8td7WTegfWOWnJVu3QW7aWj335q2Qm6ux6c3B1p8T05+HTqr8t6XSYKmoW0FM2DLBGtO6srMWVnuY1UGotFLZ6GSHwuaUKSUlZBryCXQa8sNKtyKaJf5LSxcldFatXFar2GRFO6eFA7o/70KK1pValYVCIzRvLZnJyLgXVl7T1OcziDSLchsiVc3LZ438Dq+qhdYhEqFZdlXW3qlN1XWXGhFUtUy12n4lJZbq86WkCEWpSuPPizEW1rafI5rf7O22FFHz7lmvsKmoCApV1WYaCltfSfRqe99LpFcPqdqWyipvjY7TljyYLrrsltvGME3scAFGkJtiqrAVNG9NR/ln1RxRzHRQ20xRenXK5GVDeXP7FCS3rYyUNJeba7SFyUnrEq/Imdac3SqfbVRtc/u5eT9Hrom2fLbdgeat0Ygnqp757VRVa9jlUHQqREFQ1U3WdoUWkWra86Cwpf6+j6pnMkugVV7vQwpNKRUXMskKP47aBqTE5rtiffV+djhJ4+y1bbc2tsNWLEEU9Yexnutlc5HT5vcVaRRC46BfsJlL4k4kfppUH06VBOctSUMPn7JIUPaqmxOjDXRdUtSFSQJV8qsv3EEcNpUk/oJLMuV78tD+PEkqkWXhS5v2EcpIWIx/T6RiWnjP8TmwtNt81DujHqdZdIHSKm/JTHXB6cJEBQyi3lBL9Q1EblDUF08cDhn3X3OhkKlPcpW++lzST5DV1SDTTWlw0uZ7kZPmwiB7B2yGqh2zKAxyflsIg+xthulXDrdO+liqb9CWCoNBbYTzcjJjbHINg9HPm8lHq00xDABYlUKkvaiKFu1fY9z1WBawPolbwhJbIrPR69T0M5SD2m7lJUztPOmihMpdaFLcu2i5UB4aQkP7+cgsfKnTMEjVz5DOzfixyKoFEZH1/Ri0D1uSwsr6K2yFcEh/TG6RR8I7KLIMIZEuTNCQYlKuWmYTJUioeam9w1YaGxWlGmehz40T+n1CnLRMSeK8ychJo987gHPY3JyKHLamk+ZfXwgkExSm6rJbbhvDNLH5EFaYFXuiNas6AoAuish50x3hjqa2U6Yo/T6Vs1f3zS20X3Cy2vqxMbZ13jbmfXikMSRUkoRHNgoxAfVif8uiTZff1lZYrUlzbaX1/i2qzi1BqwGH3mvBYVOZCuHYWXDM3FhK0ZivF6tS5Z06IfMorN311VRFHDapqJNW1PY/Tb0zLRrhlKK+L6b3m5ASUAo2Hz8kcq3brfGD1qeEm266CWeccQZmZ2exdevW1T4chtkjTF1OeORnDaz2MOPDdotZT3TaLbZd6w62Xcx6Ya3brTWnsOV5josuuginn346br/99j16LjlcgMwErDUwtvpnSWvQ9+GRiVeZpAAk6tUCGfr1pFL4Fc5YxapWAV7MFHbWyfv5UCEdVl58MSxR1mF0ujTQunpuU/aW7dcD1GGWrohHIpH2nKqmonFYhU2iY3THKUUIBfJlpUUcHtkKTfCPutarIJOnoVx40u+FEIZcR6qaICtATm7XhUZSl/vvL9PryRU0CL2eFNI6hDXdFAqNZHMZsvlq5T7bPIfeAbWqtnUzsi11j7XNWyFJcRG5uSo6YnpzML1qH9vbhEJVSt1SYbzCNiwtBvVx7powDloXFhqj71EXeydsgpkO9qbdglSwKoNwircKIYM2H/jWIbbMgwqXZNVPPVb1iqVMBkFhK0okdQGQcjD01ywthR0l6hsaBrRC8ZFGYrobJ/2gyiczpKx/1g92Jcn8WCRpKLgiVRwG2aGyOXMmRRjToiOpEkhNPa57phXGIq3tcL9xKTo1LC+NH+tUIXcr/cYiL8NqbXs4JY3SkHFRKBHGPRKWSb9fXCn/KuSxobCRMEi6PVXCFx1RUvgWB0pW52PcglNAt91y25j1w96yXXY4gBXtJfOjEvuNkvxu+ySqWrVPrXITVU3nIcJH5zrsk2voIhyXzg15XRpRUO9fGq+EVf1hR8eO5lybsjZOlOSoqkbHonWOpo1E44QqbCFCSZBoJWC0WJQYlH6sXEumTEMVocem+96QaQLl7vuo2kYKvMg0gSL/axoeqer/MY3OGGk9IBXscLDyyatZ63ZrzSlsH/zgB3HNNdfg+OOPX+1DYZg9xn1ptf0w6we2W8x6Yjm7tS9t1/PPP4+3vvWtmJ+fx9atW3HppZdi165d4x2ztfjlX/5lCCHwpS99aZ8d43qDbRezXlgtu7W3WHMK2+4wHA4xJKU/X375ZQCAWXgJRpSQcwbSrfoQta2fzUHVK7vVCkW9oiBTsmpJ8wXCaqjLN9jUS/BSv1rN3jkosXOxWg0qi8QrbGWuoXVQ21ySum18ftwCsiArJErJUHSE5LDN9hNsrtWmTb0wnskU+lE557DKDFTJ+CtmMpDVbJGmvpGtSFKfa6L6OdK5amyJ3Byra0FVU5kiq2A6Suil0MRZF0/ti5j0E5/DlvYTr6olczPINs8CqJpiuxy2ZH6LLy4iNx/gi4tgNpTvN/3NvtBILhJfXGSJqGrD0nplbVcx2UWvcwPd/EcDfrWP2bh02S2bZFX5Y11fqdYGtU0qIKkTt8sUtlbVbD6ArZUpm6RVc1oASDIkvboJ7XAAU8+rfkYUtiJK5ver340vueYXHlXYaCsBmnSusjSM+5lvqCp6/SiHLdgYohTKJCiIQvoc206ljahqEmE1OpUSqbT1uFbVEgnTkndC881ouf+8NL6lhzYWmnSh7spJoTlsCRm35RtniYxy1aiqRnPUgPaS/W7sV+JlECeVEJACE+WwddktYN/arre+9a34yU9+gq985SsoigKXXHIJLr/8cnzuc59b8bEf+9jHokIvzL6h836rLGAK0aqqLVeeH1i+oAgtlNSWqzaOqmZy3VqAROfG24Hc2FYlrZrHyLxjOYWtLbdtOSL7MZHCFnL+lRBevVJC+Hm5JLyypl1tByVgfOST8WobzfNTRUNtc/dlOrRwUI2m4y6HmTpKMgtF6GQaxipNg6pmJISmapvx31njsFp2a2+xIRy2D33oQ/jgBz84Mm+WdsHIKglWzNQ3OUZDGmcYSqR1ry2VzfoPfyLDF18vCV+OrjJXX0nfB2fLbIGXFqubjRcXC+yarZ5756DAUv2BH+YapTMoZagqZoyNqrDRzvUhJDJU/MlIxbDN/QSb+tXrzjYqibkwyJ6Kk9CB6ouc3tRE0Jsjl+yfhKptIutD5JU8rfoZEh8GWY44agAgs9wbgGQmIUYyhBPR8FAp454hLtHVhUGqfopkpi40MjuDpHYYs/lZZJsrpyvZtAlyzoVBHkActq2wzknrbfY91kw25wuK0DDIQWm987ZYaCzW/79dw8lCIq02sLKlSuQaWO1h9i1ddqtyVJLgoFgD2NpB0AmEvzbT4LylaVWJDbXDV4dE2qwPW1+zIutD1F9+ssh9DyRTxgn/cdER0kephbh6mQtdTkgBkgTSVX1MUoi6+q3I+sGu9PqQznkjFSMtOQd2zKIjtA+b8ydpSGTfhudxoYy0X+WwBFSvdtgS4wuNVGGQJnpcc0yhjl9zTAuNhAW1ME5oPzVS4XIcJ82Naei7qN9jV4GDNrrsltu2L3j44Yfx5S9/Gd/97ndx8sknAwBuvfVW/Mqv/ApuueUWHH744Z2PfeCBB/CRj3wE//3f/43DDjtsnxwfU9F5v1VoGFl22o+28Ecaiu2dtMYCkibpFtQxc6GM1HkzDeeN7tPlpLnCZ9rScXC8uhy5NseMXhltjl0bbcVb6bUq0e7INcMgXY9aJayfz6RAbkKV7WxY2zzvgEm/aK60ha2dJWusX2yflMpJq861C5P02+ginx4dS6VGnDdTjF8sZDXs1t5kKkIir7/+egghlv155JFHdvv5b7jhBrz00kv+58knn9yLR88wu48pTV05M/4xEzbgZvY/bLeYjUqX3dqXtuuee+7B1q1bvbMGAOeeey6klPjOd77T+bjFxUX81m/9Fm677TZs3759nxzbWmNf2i62W8y0shp2a28yFQrbu9/9brz97W9fdp+jjz56t5+/1+uh1+uNzJudL8GYaiXZlQ2VZR4UNlP63iBC55irQ+PSXuIr/2dKIKuXK2ZdOGIqsalerdmcKczXSteW2QK7Bk5hK70as5SXWKz3z8t41batz5ForMjOkPL9M7WyN5OqEBLZT7CpHs+mqpGcHpQ1oFp5DavQJDyShEFaIX1oiZAyDmPKq5VwaTQSM6qqVWGQtSI2yJHO1SGiS3kjGbnlfdME2TTxCaqqLpSQ9DMfhpnM9n2JcKqqidn5SGFDvxpXxUXq8v3ZHApZvaelwvpQJxoGuZAHVW2xMH68MGFpWKMNjBg1FMuVS2emg9WyW1YlsCojEwaobRakAUy98mlSoN5PpD0gGdZjoraVOWyvLplfFrBFrbyVBeBKKZdFpbgBVUnuln5JK61O0vBISUrzQ8q4oIgv359B1MclkjSMs36lMAK1TETK+stgn5ziVqljrvdaWKFUIkSUKhGKcTi0tZhFdYxDbaLQosK48EmBfh1VYaz1RUeAbmXNEalqRMFTAqEnnBRI1KiSVo1Hy/M7W54lsaoWFRchr0/fsRACyQQKW5fdctuAEArn6Po8j8vTTz+NQw45JJpLkgTbtm3D008/3fm4a665BmeccQYuuOCC3X7t9ca+tF2ddsvEuUK0nxoNtW4WOQKqcMfWAiVjhkGaFrWN7mOI2lYY45U0Gu44Og5KGlXh3FWxnNK23HwXsYrWDLOuVTBBSvzDkh614TVoGKS21itv2lrf89ZtR+gytddQSGAVCYVFiEqStUui89KX/jd5GX9/NJ5vkv5p49itvc3jjz+OP/mTP8FXv/pVPP300zj88MPx27/92/jDP/xDZFm28hMQpsJhO/jgg3HwwQev9mEwzH7H5O3lZNfCas9Gh+0Ws1HpsltAsF1HHnlkNH/jjTfiAx/4wMj+119/Pf7sz/5s2dd7+OGHd+s4/+Vf/gVf/epX8T//8z+79fj1CtsuZiMyjt3a2zzyyCMwxuCv//qvccwxx+DBBx/EZZddhoWFBdxyyy0TPddUOGyT8MQTT+D555/HE088Aa01HnjgAQDAMcccg02bNk30XGbXizBmAJQ5RN0t3eYDyLpMqJibhyxdImzu8z6y3iYkvbqIhTJeYXO/Z1LplZadmYrUtsWZWokptFfblnIdK2y1p5+XBtqtOpEVW1oSOktUKAlNmqvONPLW5tKQXzdLS0KT5qlAvdq70okTEla5poahzLbI+hD9uiWC0ZB1nHICRCW9tWvOO8j9Clq2OcSiV+e7JedNytDwlzRfdKXAk37P563J/izkTHUskao2Nw/MzFevkc34giKmtwk2rRS5gbZYyl2umsFSGXLYXHERmrc2LIPCtquYLIeNFbaNwd60W1ZlsCrE/gtrYJ1iZW1Q26jyppVXo0Tag8icwhZUNZSFL0ZijfY5bLbIQ5ESo4nCFtQ2/xvw+QkUoWjDUxVy26TyOWm0RQjNYaty8eqVSBWaZVuVRO1FVmqeLYTwkQTahlwPKy0MYpWqn1i/iq2kwIA0pu3VK9WFkaG5toXPe9HWtrZmkTQHuaGq+ZYtQrTmrSkZF4iKctSI7a72jYsQ0NcR/n2ESAqgWrVOVzT8gXFWqp988knMz8/7+S51bVy1Z/v27Xj22Wej+bIs8fzzz3eGOn71q1/FD3/4w5H+YRdeeCF+8Rd/EV//+teXfV1m79kup6615b3auj+W36+h3NO8J6vjfX1hEtK0mkbpWG3Hylsr3L0WyU+L1TMsk89W2wRLC5C0K2y7X3TEduSqIZprm88NSN5a9Xc1Fv59ZFJE7xtAFVExhsrm2jNZbX2OmNXC578JaSDqkAYjDYT7/0nyvSGNV96AYEckwj2gNcYrmM5cTZJ7thoK2/nnn4/zzz/f/3300Ufj0UcfxSc+8Yn177C9//3vxx133OH/PvHEEwEAX/va13DmmWdO9Fx6cQHallVIpAu5yQe+r4MsC4h+5cjJuRw2rfs96AKirMYz6Syy+rG9+kO7pCz6STWey5QvTrGrV5IwOo3FmVC0YlCOhkQ2wyPboKE1tKrYTKaiqmIhXFP55PR+EievA+6LPIwjQpnKEB6pslDNTWtftACA7wcllIJMQjES57CleRlVhuq68Kizp+okVUlCIn1Bgpk5yP4sGdcO29w84MMdZ7xjZnubYOrx0EoMnZOmbdRjLThpBjtdGGuhSZVIg6X6//ry0oR92MqOKpHssK0r9qbdgkyCA4Oqsm1UUlY7580A1jk6pXferDUQuv6cphqy55w64rAVefVljbqfW9tY63aHbaUCJDIkq4s086GMIonHdCEIKhQagXKOXxKcN9qHreG4BXtmSWVEwDiHTQg/rk0KlFQY1F/sUltvC00iUehwY1eQ69S03KBR6A2UFMFuS1IcIFXSv1YqZSiMIuPFtTbnTPr3Fp5P1BUgm69P5/3xTVIlssNuAcF2zc/PRw5bF+OqPaeffjpefPFF3HfffTjppJMAVA6ZMQannnpq62Ouv/56/M7v/E40d/zxx+OjH/0o3vzmN6/4mszes13N7/dJS6lPFPpmLHHqJqvEWDlVwTFrn0fkmIUwyFFHrRkGuVJPtuWhDxAdc9aP/TVvrd+/es1wjM5+aGtHHLZxCxG5c2y08c7bOCVJrDHVYt6Kz08W8Ekhq0k/Q+PYrf3BSy+9hG3btk38uKkoOjIJn/nMZ2CtHfmZ+KaHYaYAkxuYXLf87DvjsTu9jAaDAX7v934PBx54IDZt2oQLL7wQzzzzjN/+ve99D7/5m7+JI488EjMzMzjuuOPwF3/xF/vsPaw12G4x64luu7XvbNdxxx2H888/H5dddhnuvfdefPOb38SVV16Jt7zlLb5C5FNPPYVjjz0W9957LwBg+/bteM1rXhP9AMCOHTvwMz/zM/vkONcbbLuY9cI4duvll1+OfmiLir3BY489hltvvRXvfOc7J37smlPY9ibFywvIixIqy6H61T9F9Qa+NL3NBz7Ez+YDH2KnyiFsUSkzJl2CqNWbuVqt6fd7GJTVKsMwsZjxaptEXq9E0JC6xcJgWIbwOpfUXugw1tYuq7IB1WpIWzhNL5Gh5QBtQ6BUKDoiwnP4AiTNF3KqmiSlw1UJJFWoi+iRfnZSwdYrJzZJYbM6zLQsIPskBMuMhkfELymr3lJAVfa7pUCBLwVOwyD7c7BJ3QeOqmrZrFfVCkgMXLhjqTGsxwNtfEjrYqGxi4xpGKRT1ZZy7ZXQxQnL+httYTD6f232n9ub7E4vo2uuuQZ33XUX/uEf/gFbtmzBlVdeid/4jd/AN7/5TQDAfffdh0MOOQR33nknjjzySHzrW9/C5ZdfDqUUrrzyyn32XjYiVqVx0RHAK2xVeGQS5qxL1E8hfKikra5bADBlpdABleqW1uWWe2V4bFmEMEiivMFof/3CGD9eaU1WEIUNzevbrbaSdiFUSYNSQVWTSYjrk3JEWRt5XYQVShoeaRFWn+s2bJAQkGk1V0iLopbgjLUoSMK+IcVKVio0AoCoalQZE5GS5kIYUyWiXmluHxWpZrGaVr1G/D7j8v3xvm3HNg5ddstt21d89rOfxZVXXolzzjkHUkpceOGF+Mu//Eu/vSgKPProo1hcXNxnx8DsHrRwhPt7EnXEKSvjPEZK4UvEW2WB8Vt17RP24SURhXevFk5Vk0pGod8rPk5Ophm1fYaac8sxjt3a27m3xx57rP/7qaeewvnnn4+LLroIl1122djH7djQDhvDrDa60Gj7/tEteUB7g93pZfTSSy/h9ttvx+c+9zmcffbZAIBPf/rTOO644/Dtb38bp512Gt7xjndEjzn66KNxzz334J/+6Z/YYWOYdUaX3QL2ne0CgG3bti27sPTKV77S9zHtYqXtDMOsT8axW3s799bx4x//GGeddRbOOOMM/M3f/M1kB16zoR22cmmI0lroQQ45qBW2dABV560lswOIwQIAwA4WYGq1Tc4tVMUrAKj+ELaoVvNMWudPZTOYq8cz/T6Gtdo20NYrbLOpRK6r059rg4HPmQrjwlifI2FIfLHp+MIZzYWo/qjK9we1LeStSSRuQduv3obVWUkS1i3CCraQpHG2yvyKu8jIKliawroGt6Q5r9XalwuPihaMvBnlX8uP06wqQIAqby0q9Q3ApjOwaXVxmaQPWyt/Npv1CtvQAMPC5aoFVS3X1qtnO/OyU1ULrRh0lGtY1qvri4MJG2cbW6/wj87vC1bqZfTrv/7rI4+57777UBQFzj33XD937LHHYseOHbjnnntw2mmntb7W7sZpMysgVVR0BKiUNaDOTHAx+tbGypufN7B1Dpuw5BpURFUzpX9OJNrPU+UNpKw/LUbiaCs+AiDOWZCq9VqHIDZGKl/kqCp4lIV5Utbf0hxberp8rhpVoWxIYpP+zEHUZa2FsBDGjYHUhvL9LkXQkJwW93cbkhxPm6omRaykUfWM5tzR4iFODRORUle/fcRKGp1vOyZ37JOs0nfZLbeNYcahrVx71DyZNEn2c8ZA+iIUElLVxUWMha0/xEJJiPpzKJTwTZ6NtmT/oMIJZaEsub6iAh2hHH64Ruj1IuocMfe4Zm4ZzSsL23Xjmpu0cXZcbIQeexjLlv3jfQR5ryKad78FOafSK2m0xZIi+4R5oQTZPyhhdCxoI2wl/f1j9VrhfnMSFW05xrFbezv3FqiUtbPOOgsnnXQSPv3pT0NOqCw6NrTDViwOUGhTfSAG9YcvS7zzpge5d95Uf8GH29nBAszCTgCAnNscQiVnqkqEtpiBSavHiaSHmaxy3vppD0VtOHLivBUmhEqWxoYwSGNR+H2MXxkoSPgg/W4cJ8yG9uhJJQmzIdXIfI+1ZtgMTeqvb6ysJQUQSFiSUKGymzA6VKJr9HECDYUkH2JBnpOGQfriAyrzDqGpQx+hUti0dt6SHrTq1efaYFDHJ+faThT6uFhoLOUh9NGNh7QgDAlXzYsJ+7DlGrrl2jX1OZqGXkZPP/00siwbqbR26KGHdj7mW9/6Fj7/+c/jrrvu2u1jZdoxKq1CjqN7gNrpoYUlyA7WmkZIZHDeWouRWBLimDT28Q6b8TcqoPPOSWweuNtOQxfJOC4cIkJfNRmqQVqZRE6dtxkrhEM6vPNmKwcO7khd9cj6OpakWq5CeJvGCljyUjS8xu3TlacvERwwWqWxOa+8/Y2dMRr6qKLniR026ugB8ecgOPPkwERV6CSZwGHrsltAsF0MQxGqqvIsdAht1C2xiipLoOtCX85RU0h8vy6hQ7XoSVFdH1pCRsq7x05UqNJI0zRpARKQaoy0gEdcGbLtufe+wyYR+qk1HbMwH/ahDpvfnkioutq4yqR3fGWmoOqysjIj+6QKKnP30qqxvysSl0SOmZun4Y2qsU9wDtPIwaO/x2E17NZTTz2FM888E0cddRRuueUWPPfcc35bV3XbLtZc0RGGWU/YuhRx2w9QxVNv2bLF/3zoQx9qfZ7rr7++anS+zM8jjzyyX97Tgw8+iAsuuAA33ngj3vSmN+2X12QYZv+xnN2atCofwzDM/mA17NZXvvIVPPbYY7j77rtxxBFH4LDDDvM/k7KxFbaFAYrSxLI86fVVpAMkdY8v1c+QzFRhfcnsQgjDo6GSM0F1U65YSToDm9dhlUkPslbbsqQH06+UktJQtc2iJGNaGlaTSCe3stsVji8aqy9dYTa0z4+bo6u3rU8qQ6d6AYRQJJ2HlW6bVuGSAGBNKB1e/91+0GG13JL+Si4cysrEh0NZouD50EeVoajPR64tBoO6VYI2PqxhWIbQx115rKS5cMeBNlGPPKeqLea6tUceEFbm9YR92ApjULSUaXAq6jT0Mtq+fTvyPMeLL74YqWzPPPPMyGMeeughnHPOObj88svxR3/0R8seD7N7aGN9CC4Qq+xAfN2GoYSsFWchgurSVN5sUl/XhoRH6jJSz2yHqmYbChsQQjWXw7YpbkRtaypvIVRS+t5yaJb1d0q/AIRXvgSUk5ak8CdOCPjwSCfYGQQ7aGwQpOi5rk7D8rJU1OtMhL1pGKRErJK1h0fG+1AVTpD/B1CFjIWDpOPGByWS4WT4HIxBl91y2ximiUyDauJQqKNkpPb3FCYvfY9Vd29m8vDZlFJO/D0bHUf9OlqRcD8ZytHLXEPVN166NKEfowgh0FSZyo2Ftk6Zov3ZQuiju/KN/xsAxMTFSNpUNYl4rj3EEa2qmhIiVtgSF7ZYPzdRyVRDSZMtStroPm5M2jClaaSqSaK80TBIt7+QElIpv79ohErKcnxlbDXs1tvf/vYV783GZUM7bAyz2jTDJeg8MB29jE466SSkaYq7774bF154IQDg0UcfxRNPPIHTTz/d7/f9738fZ599Ni6++GLcdNNNKx4LwzBrky675bYxDMNMG2vdbm1oh80UJYwUsAOyIqxCPptQCmXt/at+5j3+dK6PpFbHksGib9Zs61w2s/AyRD2W/Tk/Fr05orb1IWplSCUZMl8gI0OdYlXns1VjqrBpa0lORVcKZUAgJJkLkohKS1vTXImVqrJaIX1Zfysk4PJehIBr1GutqXJfgHj1vfMgGyvqLkdOJoBT2FTmc9iMSr3K4NXJ3PgxzRFcKkzcsNyV4yfjhUJHqtrOepxr4xW2vNReSStN3GbBKZS2nGyVJjcWSct/MN9Hifu0l9EnP/lJFEXR2svonHPOwd/+7d/ilFNOwZYtW3DppZfi2muvxbZt2zA/P4+rrroKp59+ui848uCDD+Lss8/Geeedh2uvvdbntimlxk7MZcZD20pli9Sejn3ppSyFU5RoIYp25Q1EYUNiQ+l/Om+NLzoiaPPuRu7cyDGROdvMPYvUNuHnguLerqRFJf47kAIw9RkR1obCHRaQdT1/t93aoKZRYar5bui2tpen7y467w073KWkuadUUkRKmlfRbJxHWL2fDoWNMpI7aLsLQLXQZbfcNoZpIhMFmSWhLH8aSvSLogxjKYNdqZU1qSS0U9uK0qssulGoQst6/0xB1S1KdKah83r/VEFndeuSPORkjexTuH2C2paVIVKHKmmZFKRZtiAKG+rf4XrY08bZXXlrdC5W2Lrm21U1SdQxYM9UNSGlV0plmkBmab1PEgqQpElQU5dR1WQaK65uLKSEnEBtXet2a0M7bLYoYYTolNejD9xg6D9w5cIAqg6VrJy3qkpkMlc1H1a9nnfSTH+O9AYLfcIk7ROW9kKoX9JDVof6pSrDTP2hNSoNYXc2hOBZ0BsLO3JD0aTzBqKeUzKeCzch5EZJhhstYcpw02ST6Aahq7daOJhlbr6Iw1Z6wwfvpBWljgq1ALGT1uxz1+akLXU4aUuFRl46J81gSKpBdvVaymqjZ8rJLvpmpTk6v6/YnV5GH/3oR/2+w+EQ5513Hj7+8Y/77f/4j/+I5557DnfeeSfuvPNOP3/UUUfh8ccf32fvZSOi61Bpet07uq64+LpH47p3hTZo9cHE99NZLoSSOm8jzkFzzvVoHOdN0tCpZshkR6hkNE+fqjZixtqwGCWFP29VWHdw3tykJaFLkyzDdNlY91r1y48V4uidrzIUaxpxyFpCUdFle1vOq6jPo5jAYeuyW24bwzQRWR8yy6KiYz61gvRkk8b4sXaFh4wJFahpURIlYeubeV2UkGlVxMQU5W47b6ZvoAsXnqm982a0RZqHsaZFx1wqhrHEecPIdjrvtjWh25sFRxRZFYodtbCdjmkYpHfwEhmFPLpxHMIYKjruTydN1fs3K0ZGYZCu6JRUVVG6CaJj17rd2tAOG8OsNrm1UC1OYL4Pjcfu9DLq9/u47bbbcNttt7U+5gMf+EBrc0mGYdYfXXbLbWMYhpk21rrd2tAOmy5KaCGq8rJ5++qiHlQrNkIJL8uqLPFjqrYlM/Xv2T6SmQU/tl5hm4Opi5WImTnIvguV7EP26rBKlfleYlZloUdRkkE5Fa6hQLnV4SqMZ1R5W45m+GMcQhVv9Koa2dHSfcb5wDdXwv1YtCqIZWmisFCqprn2BwPXV62MQx+H9SodVdt2DUof4rhzUGLJqW25xlK9akdL9uel8f05TMcJVYn0+096QWkLtH3y1kI8NbM6GBcSWf9Nw/eqv9s/PKFNh41VH1r8on7SKhwvKG9BDZJQXcVLWhW2OFwPwFiFSJq0FiahB0/DJjuQQnj7SMMjFVHTaKGRlUIsR5+fHtZoWKM7BnfYkZKmR1VL0VTPSDuFZcMel6tE5XZtCzOdoOhIl91y2ximiUizqneqU3K1DqG9Rvs2IpYobO4+yxQlbFqpL7ooonnj9s1LmHreauMjp0xRwKS12laUSPq1MpbrWElz6pmxYZwb//y6MDBEYXMRRDoPxztDqg0ar7TZzvBISpfyo1rsUFcYZFWoqLYxpA+aUNKX26/CDWlRkXY1DQCkFGFM9lWZIqX2JysoIonaRsv00/lIYSO9OiFl6OPp+/OO/32y1u3WhnbYGGa1yY31Vaii+TWw2sMwzMaky24BbLsYhplO1rrdYocNdW8Gp6JoG5JiCVXn9WqVhnZ21/3cry4oV4iEqm79DOncYr39JaiZSkkTM0FtkzNzvk2A6M9C9Gaq+Si3LfUlrKnyZlUS5mUC1ZXTESWZT7ZyHE5Ce45IG/Q1upQ/S+O9jQmrULR5OM1bMxZ5nSM21BqLRFkDalWNjBfykJ/mctUWc01UtRKLechVc8qbNRa6/gxYY1uVNSkFhCs0YuzKlVo6MB0rPmsg/5VZJawdzWGjalsbUf4WISo7T/6OGzs35juUN1HbBaoi+dchypHFmIUxumixP50KHDkOa+N8NrpK3bSJapzDIGMajRCpZ0CsmPliIRMqaZOolda0niOAnCdhIZycamX1PTLB/6HLbrltDNNEpL3qPscpbDTP0mifQ2m1DvmuZQ4AUbESpTOYWj2rlLQqCsr2jZ/XeQlV72+K0qttiTYw9f4mD/M0ykoXJIcuNz6HzWrr1bam8ub2r/ap73Xq92CIdGMb95dmQllHEqMV1CgRbXfKlKRtC5RsVdKkkn4f2vQ6KGAhV402uZZZApmmo/NUPSORaNU+YX/Z0ixbSAlR128YUdJksMi+NYRT2Irxz+Fat1vssAEw2vgLx+Q6XHANx81Lt6r0H/JyUJJu7nWftn4WnLd+hmIhzKdz1Vj1d3mnzkYO21wVNoAqSdfP92YgXKikTIAkDWPisEWOnAthlAn5opYkNArtTljrDVEjPJJ8uKkz5ueM9WFGxga52dLwgI4+cwVx5PLSYqirS2xACoAMSuMdrwEJfXRO1zhO2lKuUbrEYW18EnF1b9QeBim9k+aLV8J0rNiMQ26sr94Xza+B1R5mdXDOmvUhN3HCtBs1v4DaQm5GC2I4Z6zZJyzs3+3IuXFdzIPYjGo7cehE/WXbdOq6aHMmxlg4inZvqbAGtDu5y61ptTljsGh3rsg+u+OYRfPN12yOOw+Y2H63v5Chnx2qkMxJ+rB12S2AbRfTjujPQmShj6gwOhQmIwVv6Lwwfb/d1o4WDZ80RQml6/soY3y/NqO1d95o2KTJy+BIRQ6bbjiB9WNz7R9rSagkdcx0oUMYpDZ+TOcc1thWJ61NJBg5fyq2dz7cUVKHTRInTYS+ZkqE+1TiyKlM+cdXjlzom+ZeMzhXKnLYvGPYCHf0YZBKRQVFotBHUjhE1I4cdcyElJGTtty80OMvlq91u8UOG8OsIlVM9aihWAvx1AzDbEy67JbbxjAMM22sdbu1oR22qkSorHp8FGQVxK3GmJBACgAg+7gVCrlURkmZAFAuFVCR2ubCI3tBbZvJSGuAEEIps51BYesT5a3XhyRj1NKxTHt+pVQkaRjLJKygCuFVOEgZxiTxXIwTSlmfCtr7ja70GxtW92lRBG1iNSCEQYKEPoZwx8LESporHhKpaqXBoAxKGVAVFPHqWaS2xaqaU9KMNtD1a2odiovYDm1cyFDeW9EwBCl8OfTehOGmrLAxk+KuOd15PZJ9VyiiT82bJEF+QjQKk0yovKHe1l7S3o6ob3S7e52IFkVuHJZV7RrHBSBSzOLnaVG1Gipapxo2qZLW8lrR66/ULoUiZQhFbdhzp6hV3xON112Btb5Szex/RK8PMTPbUNNcKCEJVKPhkUSBE1mYc9tFkYfrwWiYsg6P1CFM0ZAeb7ooovku5c34ceHnq7DJ0h9DHAZJUigaEVpUjaPzQHchsy4kMahUcZNEVQuRYCJSz2h4pFPHVJZEIYmuDL8k6lmXkjZO4RCZUPWsnk+zdsVMqjjckYZBqlB0hLzpatsEvW/Xut3a0A4bw6w2pbUoWm6qyzVgPBiG2Zh02S23jWEYZtpY63ZrQztsMqsa+FljIF1iaaNTYRR/3KKZCiW8OqdqFackJVR1rqEGVeJss0BJUqtqepATFS6obaq3EOWzWZrPlpE8N7dPkkIkIc/NrUpYmUBEeW71KpFKgrLmtgvpl8iF+9udC5Kr5sruT5qfFueqGRT1Tk0lbVirZ8PS+By1IVHYqjL8dQl/p7ANS1+afzHXvtQ+VdXKIuQoGmNhnNpmbauyRuPDFVUgZNiWJNI3zu5PeElxWX9md6Briha0AElQ1eI805WfU9Ny/7ZZkMQVErGRIubHAlHDaD/Xsr1qJh0OKChvIe9N26bCR96s3z+21WOpby0qUmfhDj/eS0oaeUxXPltUmKTltcfG2W2t/YkRsiEcun2s8QrmuKz18tjM/kf2ZqtWRkRhc7lognzmrdGhSbybNMarcIJst8YAdWESawyUL2jSnfPmla+OnDerDSnZH+8flDoyr3WkwjXz0Qx5PrdPGE92sYiWoiNAKMQh6VyzoIcaLR7SbFBNG1q7ub2Wk1ZHhY2oah3qmYhy1UiJf7IP4G9nx2Kt260N7bCpXgbVy6qLrN9yEeUaVgXHq+3istrCqji5VCoJq93jTOy81WGTSV7C5KFakXPS9Ax13nKo/rA+1kFwzPJBXIwkJ85bOvBjqPrCURlQV7iETHzlSWENSTyvEDKBtcRja8HYcAPYDHF049LETpoPfTTWV3UstN0jJ43OV7/bQx/HcdK6wiABQHmjJ/xYJRJJncSbJRKz9f91Zqz6coHcWAgOiWQmIIQgkzAbFx4JS0KXMbLd7dOFM3FxeCRg3WeUOHISwn92m/3G/FwUPukqStrWeW1JwRIAljpspK+Zfx/kTUkh/HvsdNy6qiu2OWfNfbucNFccIdrHtjtm9PHU8TPLOHVtx9gFDV+PNkj/Ot5HEyFUsvLkGrG0K9BltwC2XUw7YiYUVPNz1HnTo85bcMx07LwZ6ryRsEq3f1mE5yZFTKTRsEXun4c+f5vDVoVB1mGWURhk2Mfo9vnwvkwjDHL0Wt6toiNSjmxrOnFReGLkvI32O1NZGjl4/nHOuWv2Q0tdRcf2UEaRpGGsQkhk5IzR99AIg/ROmhp10ujfossDa2Gt260N7bAxzGqjre0oOjL9xoNhmI1Jl91y2xiGYaaNtW63NrTDls71kfayaK6ZIOqSQqkUTZNMAXiN1a1gWGVb1TarrQ+frMah7Kxy/UNIeCRV29K5EqpOqJVFAVGPRVlUibcARJkH5a0oSDilgbVOjqartuHf3x4qI0LCOpTfJwp9JCGOJSnHX5h4nhYRKUxQz5zaNtRxoRFaUKS9PL9GXsYhkbRMf1noqKBIl6q2Uo81QcZKSagkjGdqVW1zP8GmfqVmzkzYU6roWPEp1oDxYKYfqrw155aDfqkJxMqb72smrDccVchj3H/NwsILc0L4wiXWBsXMinBAQoCoZMIfgSAHbaPeb+F4qz5zgjw/PQktylpTVVtO1eoKd4z26VDVusIdxw2z3E18ZOuErQ/GpctuAWy7mHZEkkH0ZuNJem1GoZLxZ5+GQQJBjWuqZF5to/uTcEo0wymJIiepItfx/G2hj03lzehY8ukOh9yD61uNqmtAUMaAKoSxTUkbCZUk4YkjqlaXYrZcWKPfhzxfU51rU83aeq015ttauYikGJnrYq3brQ3psLmQol3DytEphrmXvYu8QFG4eGeNoqydqjKERI44bDWyDiUUVkDU8TzSSsg6JEWJUKEmlRayzkRRUvi+QMoYH1SXCHg3KZESysn6JbwMLArrGweK0kDk9c1BUkDU70OkGlbVYQBSwfrmhEnVrw0IoZEygVUhBtnNG6FI6KOFK8wTOWzWtoZEUodtWFrvsOU6dthcztlAh/DIQW4wHFb/g2GukdfvKc81itowFvV7LnONUrc7bJY6bO7mz9jWgmuW5KcJIXxYLLSCrR02aIWidngLq5CburqSrePpx7z4l2BaY6dz7L4xZ9Yn3m7t3AmDsCJoQQqlNUIid9dhozRz2WhlSLqPD6Ns7c0mwhjtTtdontvoscgOh00gzmlzQ9qwu/p7JYetJWes4YCt7LDZ1sdO7rDtwT+qrdKvEP4GysrQp9NKBQiJnTt31S+78ut22S2AbRcT4z5PL+9aaNtIxt0OG5Z12IiTZsm41WEz7Q6bLqJqkys6bMZ2Omy26bCRa3qfO2y0CuxyDptfkB7HYXNzZYfDJrsdNkEdNjm6v3sN+ts9f3gjZDz6peA+VxvBbm1Ih23nzp0AgFM+9nerfCTMeuWnP/0ptmzZ0rk9yzJs374dn336qc59tm/fjizLOrczGwtvt37h2FU+EmY9s3Pnzk7bNY7dAth2MQFnt476xf+3ykfCrGc2gt0SdlwpYB1hjMGjjz6KV7/61XjyyScxPz+/2oc01bz88ss48sgj+VyNwUsvvYQdO3bghRdewNatW5fddzAYIM/zzu1ZlqHf73duZzYWbLcmg+3W+Lhz9dBDD+Hnfu7nooIGTVayWwDbLibAdmsy2G6Nz0azWxtSYZNS4hWveAUAYH5+ni+KMeFzNT7LGQ5Hv9+fauPATBdst3YPPlfj84pXvGJF28V2i5kEtlu7B5+r8dkodmvfZCQzDMMwDMMwDMMweww7bAzDMAzDMAzDMFPKhnXYer0ebrzxRvR6vdU+lKmHz9X48Lli9iX8+RofPlfjw+eK2Zfw52t8+FyNz0Y7Vxuy6AjDMAzDMAzDMMxaYMMqbAzDMAzDMAzDMNMOO2wMwzAMwzAMwzBTCjtsDMMwDMMwDMMwUwo7bABuuukmnHHGGZidnV2x2fFG47bbbsMrX/lK9Pt9nHrqqbj33ntX+5Cmkv/6r//Cm9/8Zhx++OEQQuBLX/rSah8Ss85hu9UN263xYLvF7G/Ybi0P266V2ah2ix02AHme46KLLsIVV1yx2ocyVXz+85/HtddeixtvvBH3338/TjjhBJx33nl49tlnV/vQpo6FhQWccMIJuO2221b7UJgNAtutdthujQ/bLWZ/w3arG7Zd47FR7RZXiSR85jOfwdVXX40XX3xxtQ9lKjj11FPxute9Dn/1V38FADDG4Mgjj8RVV12F66+/fpWPbnoRQuCLX/wifu3Xfm21D4XZALDdimG7tXuw3WL2J2y3RmHbNTkbyW6xwsa0kuc57rvvPpx77rl+TkqJc889F/fcc88qHhnDMEw7bLcYhlmLsO1iVoIdNqaV//u//4PWGoceemg0f+ihh+Lpp59epaNiGIbphu0WwzBrEbZdzEqsW4ft+uuvhxBi2Z9HHnlktQ+TYRjGw3aLYZi1Btsthtn3JKt9APuKd7/73Xj729++7D5HH330/jmYNchBBx0EpRSeeeaZaP6ZZ57B9u3bV+moGGZ9w3Zrz2C7xTD7H7Zbew7bLmYl1q3DdvDBB+Pggw9e7cNYs2RZhpNOOgl33323T+Y0xuDuu+/GlVdeuboHxzDrFLZbewbbLYbZ/7Dd2nPYdjErsW4dtkl44okn8Pzzz+OJJ56A1hoPPPAAAOCYY47Bpk2bVvfgVpFrr70WF198MU4++WSccsop+NjHPoaFhQVccsklq31oU8euXbvw2GOP+b9/9KMf4YEHHsC2bduwY8eOVTwyZr3Cdqsdtlvjw3aL2d+w3eqGbdd4bFi7ZRl78cUXWwAjP1/72tdW+9BWnVtvvdXu2LHDZllmTznlFPvtb397tQ9pKvna177W+hm6+OKLV/vQmHUK261u2G6NB9stZn/Ddmt52HatzEa1W9yHjWEYhmEYhmEYZkpZt1UiGYZhGIZhGIZh1jrssDEMwzAMwzAMw0wp7LAxDMMwDMMwDMNMKeywMQzDMAzDMAzDTCnssDEMwzAMwzAMw0wp7LAxDMMwDMMwDMNMKeywMQzDMAzDMAzDTCnssDEMwzAMwzAMw0wp7LAxDMMwDMMwDMNMKeywMQzDMAzDMAzDTCnssK0zfvrTn+KQQw7B448/vkfPc+aZZ+Lqq6/eK8e0p7zlLW/BRz7ykdU+DIZh9iFsuxiGWWuw3WL2F8Jaa1f7IJi9x7XXXoudO3fiU5/61B49z/PPP480TbF58+a9dGS7z4MPPohf+qVfwo9+9CNs2bJltQ+HYZh9ANsuhmHWGmy3mP0FK2zriMXFRdx+++249NJL9/i5tm3btkeGI8/zPT4Gx2te8xq86lWvwp133rnXnpNhmOmBbRfDMGsNtlvM/oQdtinmiCOOwMc//vFo7lvf+hZmZ2fxv//7vyP7/+u//it6vR5OO+20aP7MM8/EVVddhauvvhoHHHAADj30UHzqU5/CwsICLrnkEmzevBnHHHMM/u3f/i16DJXnjTG4+eabccwxx6DX62HHjh246aabov2vvPJKXH311TjooINw3nnnAQCGwyHe9a534ZBDDkG/38cb3vAGfPe7340e9653vQvXXXcdtm3bhu3bt+MDH/jAyHt785vfjL/7u7+b6PwxDLM6sO0KsO1imLUB260A263pgx22KebUU0+NLjRrLa6++mpcc801OOqoo0b2/8Y3voGTTjqp9bnuuOMOHHTQQbj33ntx1VVX4YorrsBFF12EM844A/fffz/e9KY34W1vexsWFxdbH3/DDTfgwx/+MN73vvfhoYcewuc+9zkceuihI6+RZRm++c1v4pOf/CQA4LrrrsMXvvAF3HHHHbj//vtxzDHH4LzzzsPzzz8fPW5ubg7f+c53cPPNN+OP//iP8ZWvfCV67lNOOQX33nsvhsPheCePYZhVg21XgG0Xw6wN2G4F2G5NIZaZWm6++Wb78z//8/7vO+64w27fvt3u3Lmzdf8LLrjAvuMd7xiZf+Mb32jf8IY3+L/LsrRzc3P2bW97m5/7yU9+YgHYe+65xz/m93//96211r788su21+vZT33qU53H+sY3vtGeeOKJ0dyuXbtsmqb2s5/9rJ/L89wefvjh9uabb249Nmutfd3rXmff+973RnPf+973LAD7+OOPdx4DwzDTAduuANsuhlkbsN0KsN2aPlhhm2JOO+00PPzww9i1axcWFhbwB3/wB/jTP/1TbNq0qXX/paUl9Pv91m2/8Au/4MdKKRx44IE4/vjj/ZxbuXn22WdHHvvwww9jOBzinHPOWfZ4mytNP/zhD1EUBV7/+tf7uTRNccopp+Dhhx9uPTYAOOyww0aOY2ZmBgA6V6MYhpke2HYF2HYxzNqA7VaA7db0kaz2ATDdnHTSSZBS4v7778d//ud/4uCDD8Yll1zSuf9BBx2EF154oXVbmqbR30KIaE4IAaCKm27iLtyVmJubG2u/cY6teRxOzj/44IN36zUYhtl/sO0KsO1imLUB260A263pgxW2KWZ2dhbHH388vvCFL+CWW27BRz/6UUjZ/S878cQT8dBDD+314/jZn/1ZzMzM4O67757oca961at8fLWjKAp897vfxatf/eqJnuvBBx/EEUccgYMOOmiixzEMs/9h2xVg28UwawO2WwG2W9MHK2xTzmmnnYZbb70VF1xwAc4888xl9z3vvPNwww034IUXXsABBxyw146h3+/jve99L6677jpkWYbXv/71eO655/D9739/2XK2c3NzuOKKK/Ce97wH27Ztw44dO3DzzTdjcXFx4jK43/jGN/CmN71pT98KwzD7CbZdFWy7GGbtwHargu3W9MEO25RzwgknIE1T/Pmf//mK+x5//PF47Wtfi7//+7/HO9/5zr16HO973/uQJAne//7348c//jEOO+ww/O7v/u6Kj/vwhz8MYwze9ra3YefOnTj55JPx7//+7xMZt8FggC996Uv48pe/vCdvgWGY/QjbLrZdDLPWYLvFdmtaEdZau9oHwXRz1lln4bWvfS0+8pGPjLX/XXfdhfe85z148MEHl5Xy1xKf+MQn8MUvfhH/8R//sdqHwjDMmLDtYtvFMGsNtltst6YVVtimEGMMnnvuOdx+++34wQ9+gH/+538e+7G/+qu/ih/84Ad46qmncOSRR+7Do9x/pGmKW2+9dbUPg2GYFWDbFcO2i2GmH7ZbMWy3phNW2KaQr3/96zj77LNx7LHH4tOf/jROPfXU1T4khmGYFWHbxTDMWoPtFrMWYIeNYRiGYRiGYRhmSlkfAbcMwzAMwzAMwzDrEHbYGIZhGIZhGIZhphR22BiGYRiGYRiGYaYUdtgYhmEYhmEYhmGmFHbYGIZhGIZhGIZhphR22BiGYRiGYRiGYaYUdtgYhmEYhmEYhmGmFHbYGIZhGIZhGIZhphR22BiGYRiGYRiGYaYUdtgYhmEYhmEYhmGmFHbYGIZhGIZhGIZhppT/D+X/iTkJn1xfAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2wAAAErCAYAAACirgCsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9eZgdRdX+W1Xdd2ayG8hCIBII+w5BIigCioZVouyyhF35iLIJArIFhLAbZMsPlUUB2VT8FGSHD5R8yCIiIojI9glhFbLNzO3uqt8f3VV1qm/3nXtnbjIzSb3Pc5+pW13dXX3n9rl96j3nPUwppeDh4eHh4eHh4eHh4eEx4MD7ewIeHh4eHh4eHh4eHh4exfAOm4eHh4eHh4eHh4eHxwCFd9g8PDw8PDw8PDw8PDwGKLzD5uHh4eHh4eHh4eHhMUDhHTYPDw8PDw8PDw8PD48BCu+weXh4eHh4eHh4eHh4DFB4h83Dw8PDw8PDw8PDw2OAwjtsHh4eHh4eHh4eHh4eAxTeYfPw8PDw8PDw8PDw8Big8A6bh8cAx6RJk3DIIYf09zSaxqOPPgrGGB599NH+nsoKD8YYzj777P6ehoOzzz4bjLH+nobHMsL222+P7bffvr+n0SMOOeQQDBs2rL+n4eHh4eHAO2weHr3ADTfcAMaYebW3t2OdddbBzJkz8e677/b39JrC+eefj7vuuqu/p+GxHGLJkiU4++yzvdM+SPDEE0/g7LPPxscff9zfU1mq8N9LDw+PwYagvyfg4TGYcc4552CNNdZAV1cX/vCHP+Caa67BPffcgxdeeAFDhgxpyTlefvllcL701lbOP/987LXXXpg+ffpSO4dH/6KzsxNBsOzN/ZIlSzBr1iwAqGFXTj/9dJxyyinLfE4e5XjiiScwa9YsHHLIIRg1alR/T2epod730sPDw2MgwjtsHh59wM4774wtt9wSAHDEEUdgpZVWwmWXXYbf/OY32H///Qv3Wbx4MYYOHdrwOdra2loyV4+BjziOIaVEpVJp6XHb29tberxWIAiCfnEiPTxWBDT7OzNYzuXhsaLCh0R6eLQQX/ziFwEAr732GgCbD/Hqq69il112wfDhw3HAAQcASH/kTjzxREycOBFtbW1Yd911cckll0Ap5RyzKIft448/xnHHHWf2XWuttXDhhRdCSumMk1Li8ssvx8Ybb4z29naMGTMGO+20E55++mkAaW7T4sWLceONN5rwTnquf//73zjssMMwbtw4tLW1YcMNN8R1111Xc93/93//h+nTp2Po0KEYO3Ysjj/+eHR3d/f6c3z99dfBGMMll1yCa6+9FpMnT0ZbWxs+85nP4KmnnqoZ//DDD2PbbbfF0KFDMWrUKOyxxx74+9//3uN5qtUqzjzzTEyZMgUjR47E0KFDse222+KRRx4pnc8Pf/hDrL766ujo6MB2222HF154wRmr/+f/+te/MG3aNAwdOhQTJkzAOeec4/xv6THnzJljrvHFF19s6Jquv/56MMZq/h/nn38+GGO45557TF8+h03nj/3jH//AgQceiJEjR2LMmDE444wzoJTCW2+9hT322AMjRozA+PHjcemllzb9ub3++usYM2YMAGDWrFnm+6XnUZTDFscxzj33XPNZTJo0CaeddlrNd2nSpEnYbbfd8Ic//AFbbbUV2tvbseaaa+JnP/uZMy6KIsyaNQtrr7022tvbsdJKK+Hzn/88HnjgAfQWN910E7baaisMGTIEn/rUp/CFL3wB999/vzPm6quvxoYbboi2tjZMmDABxxxzTE2Y4fbbb4+NNtoIzz//PLbbbjsMGTIEa621Fu68804AwP/8z/9g6tSp6OjowLrrrosHH3zQ2V9/fi+99BL22WcfjBgxAiuttBKOPfZYdHV1mXH6e3bDDTfUXEv+/3HSSScBANZYYw3z/3r99deda58yZQo6OjowevRo7Lfffnjrrbdqjqvv2Y6ODmy11VZ4/PHHG/14W/4dyKOn76XGv//9b0yfPh3Dhg3DmDFj8N3vfhdJkjhjpJSYM2cONtxwQ7S3t2PcuHH45je/if/85z89Xuf8+fNx6KGHYrXVVkNbWxtWWWUV7LHHHs7nDQC///3vjR0YPnw4dt11V/ztb39zxpT9zsycORPDhg3DkiVLas6///77Y/z48c419eVcHh4eSxnKw8OjaVx//fUKgHrqqaec/ssvv1wBUHPnzlVKKTVjxgzV1tamJk+erGbMmKHmzp2rfvaznykppfriF7+oGGPqiCOOUFdeeaXafffdFQB13HHHOcdcffXV1YwZM8z7xYsXq0022USttNJK6rTTTlNz585VBx98sGKMqWOPPdbZ95BDDlEA1M4776zmzJmjLrnkErXHHnuoK664Qiml1M9//nPV1tamtt12W/Xzn/9c/fznP1dPPPGEUkqp+fPnq9VWW01NnDhRnXPOOeqaa65RX/3qVxUA9cMf/tCcY8mSJWqdddZR7e3t6uSTT1Zz5sxRU6ZMUZtssokCoB555JGmP9/XXntNAVCbb765WmuttdSFF16oLrroIrXyyiur1VZbTVWrVTP2gQceUEEQqHXWWUdddNFFatasWWrllVdWn/rUp9Rrr71W9zzvv/++WmWVVdQJJ5ygrrnmGnXRRRepddddV4VhqP785z/XzGfjjTdWkyZNUhdeeKGaNWuWGj16tBozZoyaP3++GTtjxgzV3t6u1l57bXXQQQepK6+8Uu22224KgDrjjDNqjrnBBhuoNddcU11wwQXqhz/8oXrjjTcavqbddttNjRw5Ur355ptKKaWef/55ValU1OGHH+5cJwB11llnmfdnnXWWAqA222wztf/++6urr75a7brrrgqAuuyyy9S6666rjj76aHX11Verz33ucwqA+p//+Z+mPrdFixapa665RgFQX/va18z36y9/+YszB4oZM2YoAGqvvfZSV111lTr44IMVADV9+nRn3Oqrr67WXXddNW7cOHXaaaepK6+8Um2xxRaKMaZeeOEFM+60005TjDF15JFHqh//+Mfq0ksvVfvvv7+64IIL6n4vynD22WcrAGqbbbZRF198sbr88svVN77xDfW9732v5rPdcccd1RVXXKFmzpyphBDqM5/5jPO93W677dSECRPUxIkT1UknnaSuuOIKtcEGGyghhLr11lvV+PHj1dlnn63mzJmjVl11VTVy5Ei1YMGCmvNsvPHGavfdd1dXXnmlOvDAAxUAddBBB5lx+nt2/fXX11wP/V785S9/Ufvvv7+5v/X/a9GiRUoppX7wgx8oxpjad9991dVXX22+k5MmTVL/+c9/zDF/8pOfmM/oRz/6kTruuOPUqFGj1Jprrqm22267Hj/jVn8H8ujpe6nv3w033FAddthh6pprrlF77rmnAqCuvvpq51hHHHGECoJAHXnkkWru3Lnqe9/7nho6dGjN/7oI22yzjRo5cqQ6/fTT1U9+8hN1/vnnqx122MG5z372s58pxpjaaaed1BVXXKEuvPBCNWnSJDVq1CjHDpT9zjz22GMKgLr99tudcy9evFgNHTpUHXPMMS07l4eHx9KFd9g8PHoB7bA9+OCD6v3331dvvfWWuvXWW9VKK62kOjo61P/93/8ppezDxymnnOLsf9dddykA6gc/+IHTv9deeynGmPrnP/9p+vIO27nnnquGDh2q/vGPfzj7nnLKKUoIYR7eH374YQVAfec736mZv5TStIcOHeocX+Pwww9Xq6yyivrggw+c/v3220+NHDlSLVmyRCml1Jw5c2oeChYvXqzWWmutPjtsK620kvroo49M/29+8xsFQP32t781fZtttpkaO3as+vDDD03fX/7yF8U5VwcffHDd88RxrLq7u52+//znP2rcuHHqsMMOq5kP/d8qpdSTTz6pAKjjjz/e9On/+be//W3TJ6VUu+66q6pUKur99993jjlixAj13nvvOXNo9JreeecdNXr0aPXlL39ZdXd3q80331x9+tOfVp988olzvDKH7aijjnI+i9VWW00xxhyH5j//+Y/q6OhwviONfm7vv/9+zbnzc9B47rnnFAB1xBFHOOO++93vKgDq4YcfNn2rr766AqAee+wx0/fee++ptrY2deKJJ5q+TTfdVO2666415+4NXnnlFcU5V1/72tdUkiTONn0/vffee6pSqaivfOUrzpgrr7xSAVDXXXed6dtuu+0UAHXLLbeYvpdeekkBUJxz9b//+7+m/7777qtxuvTn99WvftWZy3/9138pAMYBadRhU0qpiy++WAGoWeh4/fXXlRBCnXfeeU7/X//6VxUEgemvVqtq7NixarPNNnO+H9dee60C0KPDtjS+A0Wo973U9+8555zj9G+++eZqypQp5v3jjz+uAKibb77ZGXfvvfcW9lP85z//UQDUxRdfXDpm4cKFatSoUerII490+ufPn69Gjhzp9Jf9zkgp1aqrrqr23HNPp//22293PrtWnMvDw2PpwodEenj0ATvuuCPGjBmDiRMnYr/99sOwYcPw61//Gquuuqoz7uijj3be33PPPRBC4Dvf+Y7Tf+KJJ0Iphd///vel57zjjjuw7bbb4lOf+hQ++OAD89pxxx2RJAkee+wxAMAvf/lLMMZw1lln1RyjJzl1pRR++ctfYvfdd4dSyjnPtGnT8Mknn+DZZ58117LKKqtgr732MvsPGTIERx11VN1zNIJ9990Xn/rUp8z7bbfdFgDwr3/9CwDwzjvv4LnnnsMhhxyC0aNHm3GbbLIJvvzlLzthgUUQQph8MSklPvroI8RxjC233NJcH8X06dOd/+1WW22FqVOnFp5n5syZps0Yw8yZM1GtVmtC2/bcc08TotXsNY0fPx5XXXUVHnjgAWy77bZ47rnncN1112HEiBF1r1vjiCOOcD6LLbfcEkopHH744aZ/1KhRWHfddc1nrsc287k1An1dJ5xwgtN/4oknAgDuvvtup3+DDTYw3wcAGDNmTM08R40ahb/97W945ZVXejUnirvuugtSSpx55pk1IkD6fnrwwQdRrVZx3HHHOWOOPPJIjBgxouYahg0bhv3228+8X3fddTFq1Cisv/76mDp1qunXbXptGsccc4zz/tvf/jYA9Pjdbwa/+tWvIKXEPvvs49iC8ePHY+211zahsE8//TTee+89fOtb33LyMA855BCMHDmyx/Msje9Ab/Gtb33Leb/ttts6x73jjjswcuRIfPnLX3Y+kylTpmDYsGE1YdUUHR0dqFQqePTRR0vDJx944AF8/PHH2H///Z3jCyEwderUwuPnf2cYY9h7771xzz33YNGiRab/tttuw6qrrorPf/7zLTuXh4fH0oXP+Pbw6AOuuuoqrLPOOgiCAOPGjcO6665b8zAXBAFWW201p++NN97AhAkTMHz4cKd//fXXN9vL8Morr+D55593HvIp3nvvPQDAq6++igkTJjgP/Y3i/fffx8cff4xrr70W1157bd3zvPHGG1hrrbVqnMB111236fPm8elPf9p5r503/ZCjP6eic62//vq47777ekyIv/HGG3HppZfipZdeQhRFpn+NNdaoGbv22mvX9K2zzjq4/fbbnT7OOdZcc82acQBqclTy52n2mvbbbz/cdNNNuPvuu3HUUUfhS1/6Utml1iD/+Y4cORLt7e1YeeWVa/o//PBDp6+Zz60RvPHGG+CcY6211nL6x48fj1GjRtXcE/m5A+n3gz4An3POOdhjjz2wzjrrYKONNsJOO+2Egw46CJtssknT83v11VfBOccGG2xQ9xqA2v9dpVLBmmuuWXMNq622Ws19M3LkSEycOLGmD0Dhw33+Ozl58mRwzmu+Z33BK6+8AqVU4fcfAMIwBGCvPz8uDMOa+6EIS+M70BvofN96x33llVfwySefYOzYsYXH0PaxCG1tbbjwwgtx4oknYty4cfjsZz+L3XbbDQcffDDGjx9vjg/YvOg88osyRb8zQLroNWfOHPz3f/83vvGNb2DRokW455578M1vftN891p1Lg8Pj6UH77B5ePQBW221lVGJLENbW1tLZfmllPjyl7+Mk08+uXC7dgz6eg4AOPDAAzFjxozCMb156G0WQojCfpUTZuktbrrpJhxyyCGYPn06TjrpJIwdOxZCCMyePRuvvvpqS87REzo6Ovq0/4cffmhEZF588UVIKRv+vhV9vo185kvzc2u0mHYj8/zCF76AV199Fb/5zW9w//334yc/+Ql++MMfYu7cuQ672F8ou4a+fO/zn1/Z55kX0KgHKSUYY/j9739fOLdWF5pu5XegNyg7LoWUEmPHjsXNN99cuL1sQU3juOOOw+6774677roL9913H8444wzMnj0bDz/8MDbffHNjg3/+858bJ44ir7Ba9jvz2c9+FpMmTcLtt9+Ob3zjG/jtb3+Lzs5O7Lvvvs61tOJcHh4eSw/eYfPw6AesvvrqePDBB7Fw4UKHZXvppZfM9jJMnjwZixYtwo477lj3HJMnT8Z9992Hjz76qC7LVvRwNGbMGAwfPhxJkvR4ntVXXx0vvPAClFLOsV5++eW6+7UC+nMqOtdLL72ElVdeuS67duedd2LNNdfEr371K2fuRWGkAApD6/7xj39g0qRJTp+UEv/6178c5/kf//gHANSMzaPZazrmmGOwcOFCzJ49G6eeeirmzJlTE1LWajT6uTX64A2k1y2lxCuvvGKYZgB499138fHHH9e9J+ph9OjROPTQQ3HooYdi0aJF+MIXvoCzzz67aYdt8uTJkFLixRdfxGabbVZ6DUD6v6OMUrVaxWuvvdbjvdQbvPLKKw6r+c9//hNSSvM906x0XqWyiMUv+39NnjwZSimsscYadReE9PW/8sorDlsTRRFee+01bLrppnWvZWl9B/Jo5ntZhsmTJ+PBBx/E5z73uV4vukyePBknnngiTjzxRLzyyivYbLPNcOmll+Kmm27C5MmTAQBjx47t8/dmn332weWXX44FCxbgtttuw6RJk/DZz37WmUerzuXh4bF04JdIPDz6AbvssguSJMGVV17p9P/whz8EYww777xz6b777LMP5s2bh/vuu69m28cff4w4jgGkuVFKKVMgloKuQA8dOrTmYU4IgT333BO//OUva2TrgTRkkl7L22+/beTIgbQwbVkoZSuxyiqrYLPNNsONN97oXMMLL7yA+++/H7vsskvd/fVKOv08nnzyScybN69w/F133YV///vf5v2f/vQnPPnkk4X/L/q/VUrhyiuvRBiGPYYsNnNNd955J2677TZccMEFOOWUU7Dffvvh9NNPN87h0kKjn5suHp//fhVBX9ecOXOc/ssuuwwAsOuuuzY9z3wY57Bhw7DWWmv1quTE9OnTwTnHOeecU1M+Q38OO+64IyqVCn70ox85n81Pf/pTfPLJJ726hp5w1VVXOe+vuOIKADDfyREjRmDllVc2ua0aV199dc2x9EJA/v/19a9/HUIIzJo1q4a9UkqZz3nLLbfEmDFjMHfuXFSrVTPmhhtu6LfvQBGa+V6WYZ999kGSJDj33HNrtsVxXPfYS5YscUovAKnTNHz4cPPdnDZtGkaMGIHzzz/fCTnWoDa4J+y7777o7u7GjTfeiHvvvRf77LOPs72V5/Lw8Fg68Aybh0c/YPfdd8cOO+yA73//+3j99dex6aab4v7778dvfvMbHHfccWbFswgnnXQS/vu//xu77bYbDjnkEEyZMgWLFy/GX//6V9x55514/fXXsfLKK2OHHXbAQQcdhB/96Ed45ZVXsNNOO0FKiccffxw77LCDEcWYMmUKHnzwQVx22WWYMGEC1lhjDUydOhUXXHABHnnkEUydOhVHHnkkNthgA3z00Ud49tln8eCDD+Kjjz4CkAoqXHnllTj44IPxzDPPYJVVVsHPf/5z81BE8eijj2KHHXbAWWedVVP3qLe4+OKLsfPOO2PrrbfG4Ycfjs7OTlxxxRUYOXJkj+fYbbfd8Ktf/Qpf+9rXsOuuu+K1117D3LlzscEGGzhJ+hprrbUWPv/5z+Poo49Gd3c35syZg5VWWqkmPLW9vR333nsvZsyYgalTp+L3v/897r77bpx22mk9hko1ek3vvfcejj76aOd/eeWVV+KRRx7BIYccgj/84Q9LLWyp0c+to6MDG2ywAW677Tass846GD16NDbaaCNstNFGNcfcdNNNMWPGDFx77bX4+OOPsd122+FPf/oTbrzxRkyfPh077LBD0/PcYIMNsP3222PKlCkYPXo0nn76adx5552OIMzrr7+ONdZYAzNmzCisVaax1lpr4fvf/z7OPfdcbLvttvj617+OtrY2PPXUU5gwYQJmz56NMWPG4NRTT8WsWbOw00474atf/SpefvllXH311fjMZz6DAw88sOlr6AmvvfYavvrVr2KnnXbCvHnzcNNNN+Eb3/iGw2YdccQRuOCCC3DEEUdgyy23xGOPPVbo1E+ZMgUA8P3vfx/77bcfwjDE7rvvjsmTJ+MHP/gBTj31VLz++uuYPn06hg8fjtdeew2//vWvcdRRR+G73/0uwjDED37wA3zzm9/EF7/4Rey777547bXXcP311zeUw7Y0vgNFaOZ7WYbtttsO3/zmNzF79mw899xz+MpXvoIwDPHKK6/gjjvuwOWXX+4IMVH84x//wJe+9CXss88+2GCDDRAEAX7961/j3XffNSI0I0aMwDXXXIODDjoIW2yxBfbbbz+MGTMGb775Ju6++2587nOfq1nwK8MWW2xhvr/d3d1OOGSrz+Xh4bGUsEw1KT08lhOU1WHLY8aMGWro0KGF2xYuXKiOP/54NWHCBBWGoVp77bXVxRdf7EjuK1Ur66/3PfXUU9Vaa62lKpWKWnnlldU222yjLrnkEqf+TxzH6uKLL1brrbeeqlQqasyYMWrnnXdWzzzzjBnz0ksvqS984Quqo6NDAXDO9e6776pjjjlGTZw4UYVhqMaPH6++9KUvqWuvvdaZzxtvvKG++tWvqiFDhqiVV15ZHXvssUbemsr6//a3v3Xq1JVBS5EXyV6jQI77wQcfVJ/73OdUR0eHGjFihNp9993Viy++WPccSqWy1+eff75affXVVVtbm9p8883V7373OzVjxgy1+uqrF87n0ksvVRMnTjT167R8uob+n7/66qvqK1/5ihoyZIgaN26cOuussxyp93rX2Mg1ff3rX1fDhw9Xr7/+urOfLn1w4YUXln5mWhJelxjIzz2P7bbbTm244YZNf25KKfXEE0+oKVOmqEql4syjqA5bFEVq1qxZao011lBhGKqJEyeqU089VXV1dTnjVl999UK5/u22286Rjv/BD36gttpqKzVq1CjV0dGh1ltvPXXeeec598hf//rXpmTKr7vuOrX55purtrY29alPfUptt9126oEHHnDGXHnllWq99dZTYRiqcePGqaOPPtqpVabnSj/Tnq4NgFM3S39+L774otprr73U8OHD1ac+9Sk1c+ZM1dnZ6ey7ZMkSdfjhh6uRI0eq4cOHq3322Ue99957hffSueeeq1ZddVXFOa+R+P/lL3+pPv/5z6uhQ4eqoUOHqvXWW08dc8wx6uWXX3aOcfXVV6s11lhDtbW1qS233FI99thjNf+bMrT6O1CGsu9l2T1Q9H1VKi1ZMGXKFNXR0aGGDx+uNt54Y3XyySert99+u/TcH3zwgTrmmGPUeuutp4YOHapGjhyppk6dWlMvTSmlHnnkETVt2jQ1cuRI1d7eriZPnqwOOeQQ9fTTT5sx9X5nNL7//e8rAGqttdYqHdOqc3l4eLQeTKkWZe97eHgsFUycOBHTpk3DT37yk/6eSp9x8skn4xe/+AX++c9/oq2trb+n0zA0C3PxxRfju9/9bt2xhxxyCO68885Chs5j4OHqq6/GySefjFdffRXjxo3r7+k0jLPPPhuzZs3C+++/X6Pq6eHh4eGxfMHnsHl4DGBEUYQPP/xwuXkge+SRR3DGGWcMKmfNY/nGI488gu985zuDylnz8PDw8Fix4HPYPDwGKO677z7ceuut6OzsbKq21kDGU0891d9T8PBwcMcdd/T3FDw8PDw8POrCO2weHgMUF1xwAf75z3/ivPPOw5e//OX+no6Hh4eHh4eHh0c/wOeweXh4eHh4eHh4eHh4DFD4HDYPDw8PDw8PDw8PD48BCu+weXh4eHh4eHh4eHh4DFB4h83Dw8PDw8PDw8PDw2OAwjtsHh4eHh4eHh4eHh4eAxTeYfPw8PDw8PDw8PDw8Big8A6bh4eHh4eHh4eHh4fHAIV32Dw8PDw8PDw8PDw8PAYovMPm4eHh4eHh4eHh4eExQOEdNg8PDw8PDw8PDw8PjwEK77B5eHh4eHh4eHh4eHgMUHiHzcPDw8PDw8PDw8PDY4DCO2weHh4eHh4eHh4eHh4DFN5h8/Dw8PDw8PDw8PDwGKDwDpuHh4eHh4eHh4eHh8cAhXfYPDw8PDw8PDw8PDw8Bii8w+bh4eHh4eHh4eHh4TFA4R02Dw8PDw8PDw8PDw+PAQrvsHl4eHh4eHh4eHh4eAxQeIfNw8PDw8PDw8PDw8NjgMI7bB4eHh4eHh4eHh4eHgMU3mHz8PDw8PDw8PDw8PAYoPAOm4eHh4eHh4eHh4eHxwCFd9g8PDw8PDw8PDw8PDwGKLzD5uHh4eHh4eHh4eHhMUDhHTYP3HDDDWCMlb7+93//t7+n6OHh4eHA2y0PD4/BCG+7PHqDoL8n4DFwcM4552CNNdao6V9rrbX6YTYeHh4ePcPbLQ8Pj8EIb7s8moF32DwMdt55Z2y55Zb9PQ0PDw+PhuHtloeHx2CEt10ezcCHRHo0hLPOOgucczz00ENO/1FHHYVKpYK//OUv/TQzDw8Pj1oopTBp0iTsscceNdu6urowcuRIfPOb3+yHmXl4eHjUx/bbb18aMnnDDTf09/Q8+gGeYfMw+OSTT/DBBx84fYwxrLTSSjj99NPx29/+Focffjj++te/Yvjw4bjvvvvw4x//GOeeey423XTTfpq1h4fHiox6duvAAw/ERRddhI8++gijR48223/7299iwYIFOPDAA5f1dD08PDwA1Ldd3//+93HEEUc422666Sbcd999GDt27LKcpscAAVNKqf6ehEf/4oYbbsChhx5auK2trQ1dXV0AgBdeeAFTpkzBwQcfjIsvvhgbbbQRVlllFcybNw9B4H1/Dw+PZYdG7NY//vEPrLvuurjmmmvwrW99y2zfY4898Pzzz+Nf//oXGGPLasoeHh4eDT9zUTzxxBPYfvvtcdBBB+GnP/3p0p6ixwCEf8r2MLjqqquwzjrrOH1CCNPeaKONMGvWLJx66ql4/vnn8cEHH+D+++/3zpqHh0e/oZ7dWmeddTB16lTcfPPNxmH76KOP8Pvf/x4nn3yyd9Y8PDz6DT09c2nMnz8fe+21FzbbbDNcffXVy2p6HgMM/knbw2CrrbbqMQH2pJNOwq233oo//elPOP/887HBBhsso9l5eHh41KInu3XwwQdj5syZeOONN7D66qvjjjvuQBRFOOigg5bhLD08PDxcNPLMFccx9tlnHyRJgl/96ldoa2tbRrPzGGjwoiMeTeFf//oXXnnlFQDAX//6136ejYeHh0d97LfffgjDEDfffDOANA9kyy23xLrrrtvPM/Pw8PCoj5NOOgnz5s3D7bffjtVWW62/p+PRj/AOm0fDkFLikEMOwYgRI3DaaafhF7/4BX71q1/197Q8PDw8SjF69GjsuuuuuPnmm/HGG2/gj3/8o2fXPDw8BjxuvfVWzJkzB5dccgm22267/p6ORz/DO2weDeOyyy7DE088gWuvvRbnnnsuttlmGxx99NE1KkceHh4eAwkHHXQQXnzxRZx00kkQQmC//fbr7yl5eHh4lOKFF17AEUccgQMPPBDHHntsf0/HYwDA57B5GPz+97/HSy+9VNO/zTbboLu7G2eccQYOOeQQ7L777gBSpaPNNtsM//Vf/4Xbb799WU/Xw8PDo67dWnPNNQEAu+66K1ZaaSXccccd2Hnnnb0stoeHR7+jnu3SKpJf+MIXcNNNN9Vs17bNY8WBd9g8DM4888zC/p/85Cf4f//v/2HllVfGnDlzTP/aa6+N2bNn49hjj8Xtt9+OffbZZxnN1MPDwyNFmd26/vrrzUNNpVLBvvvui6uvvtqHQ3p4eAwI1LNd77//PhYvXoyjjjqqcLt32FY8+DpsHh4eHh7LPY4//nj89Kc/xfz58zFkyJD+no6Hh4eHh0fD8DlsHh4eHh7LNbq6unDTTTdhzz339M6ah4eHh8eggw+J9PDw8PBYLvHee+/hwQcfxJ133okPP/zQJ+97eHh4eAxKeIfNw8PDw2O5xIsvvogDDjgAY8eOxY9+9CNsttlm/T0lDw8PDw+PpuFz2Dw8PDw8PDw8PDw8PAYofA6bh4eHh4eHh4eHh4fHAIV32Dw8PDw8PDw8PDw8PAYoVsgcNikl3n77bQwfPhyMsf6ejsdyBKUUFi5ciAkTJoDz+ushXV1dqFarpdsrlQra29tbPUWPQQpvtzyWJhq1XT3ZLcDbLg8Lb7c8liZWJLu1Qjpsb7/9NiZOnNjf0/BYjvHWW29htdVWK93e1dWFjuGjgbizdMz48ePx2muvDWgD4rHs4O2Wx7JAPdvViN0CvO3ysPB2y2NZYEWwWyukwzZ8+HAAwKN/fhHDhg9HIgEtvZIoBZm9SSRMG3DbGpysGOm24LbNGMBh2yJbAOBg0IsBDIDQ+zIGnh1SMJgVKc5g+hkZw+Cei+k5KmnmxUi7t1CsZOWirN/Z2T2/mQ/tV8q8Z6QNJW2/jEm/ApOJexwZ22MnCTmeBMzYBErq8YntB6CSrC3rfF7ZP40JAXCR9QmwrH/Bkm6svu1XzXesDNVqFYg7EW60PyDC2gFJhPkv/ALVanXAGg+PZQv9nfrz317G0MxuAekKo/7GJkpBWympAP1GwtouasZkk5JTnCyQU9uWdhSMMfsx2ybHc2wZs9uYY1fLzs9Kz0XnyOgFU5tA+wrtJunLj8/+Oras8DyqdF97HrK9nu0pQ25VWTFu7TJpK8ZIP4PigR3DAyxcuBBrbrR5XdvVo90CvO3ycKC/T/+66/9heEeleFDue29+i4u2S/Ibnr3PdiK/7fY3XyWJ3V8mULpfSqjMAKpEmn1VIqESafZVqqBfKsikth+AM95ej23Lgnucbi8DE+59Ttkkuk23GeO2TbZzwcEyw8kEz40X7jEEN882jO7HORh5/il+LrL7ggkycfu8ZPa3F0Wug/QXbNdYuLgTa379v1YIu7VCOmz6YWDY8OEYNnwElLIPLkrZh5sy/UzK6nMw854+eAjiaAniUAnq1GXHEJxBEGdMmOMxcNiHhsKHA9qvt6VHJTMu+OIDAOO1jhjj9gLJNpX74Xcf+rLPC7Sv+JR5lD7c6Sk4jhx1vGTqwGVtAEBCHDaZuNuzNlMydeb0MYizB2LI7YXkfjicydvP1Rig7CGo0dAP3jYUTNT+iKmkPnXvseJBf6eGDx+OoSNGOA5boh2znMPm3KclTlvP57Vt6qCxnCOVd5jc/dzFp/w2fX3F9oDOpdiRo3db3mEz7QKHKu3POWRAjfNVvMhE9pMlx8s5bD0eh45pEo4tL3TYqCNHHDbOjd1KN/Vsu8rsFuBtl4cL87zFFYYH5DtKf1s5c393kTNQzDpUEOl7fQwFsnCrst9wRRwtRZwxaZ2rpBoVO2lSIqnGtr9gjJQ5p65gjL1M6VwbL3HOVFJslJmovR8dB43nnLECJ41x1xnj1AnLxvEwABOJOY7dz44VYZi1rc1lUGCZXWFKgmX/A6YEoLJnJCatA8YZoJcYuQDj5PNwVufs52GvkXxG2fOXCrTDufzbrRXSYfPwGChgTNiVKgpZ4mR7eHh49DNK7RbgbZeHh8eAxGC3Wyu0w8bBwMEgmbJhOgxgysYb5kOA9H6UVdNDRDaYk7ZgxW1GxjDKBiWJy/qQFdyewm9KQVkz/R7pimueGXJYN27Hpv3pMRLpruIn0jJslqm0YVrp+/pTBOqtuuvPTEBk88wzl0Duc3TaMViSrZgRlo7JGKon5i2/+l7EuJUZgAYgwhAsKGDYmC+P6NE4qG3SjDdnZh0TSrnsmOzh+1WPSTP9yId+5+dUHO6otxUfr3ZM0bia+TawuqoYsywbjR4g7819z2DveyagFJl9UVglt3ZCOfbCtSU9HkdJd//c2LooYtiWEsrsFuBtl0cxVLULKmRuGkJZNEvud7ZuWCMNTSxiw5IEMqplzJJq7LBqhnmL4kL2TFZjGwbpnJeER0oFmdgwSzt/lc3FvTcaCYWkcEMbiY0WrHC7DmFMmTcSBpk994lKYBk0wsKJMLBjyXZeCezxCEvHQ90vysMp6XlIOKX5RMj53TBJO4blQyK5gKp21fvIHAx2u7VCO2zIQnMEmEPAC/qQwWh/7cMJDWcsdtJsWCOTMRBHtq2dhYQ6ZrlQPv2jnjkcab8q/wF3frT1UxxxwhgJf+EBINMxStPSIgDLtivFnacjE4UJ66Qlym1rhy1RyoyvF6ZVhiKHmIZKCsZIPmDWxxkEC7PLqNiwVFXsyCnqyOUcPEU/dxp+yt2HKzth7v5tEIyXrPj0wQn0WL6Rd3ZKImlcB4i5Ycqi0O3pOcyw0TDHwu0F52nUKWvEITP71hmqijYyYRy5wlzdmnDFLBSnNAfXdeQUXfzJh07q4zSSZ9cM8uHsuq8g3L03zl2p3QK87fIohIq6obqoE0MdtHyOWm16Qk+OWRJFhWPyjpnMwh2llJDVyPTbUMmYOGlJoTOW9lvHTJpcOJrbRkLQjcNGrqckb4Q6dbwgHBKAccTSMdQZK+7nnBmHSVRIGCRx6kRFOE5V2hfkHLYwO5513mjYpKgEpU4aJyGZrCTk0uybc9h07poCanLbVHfjDttgt1srtsPm4dHP4EEIFtQmwbr8pIeHh8fAQZndArzt8vDwGJgY7HZrhXbYBLNsGl3SLQrzYYTREcxl1fIMG08iE17Hkqpl0uKqE47nMGy0P7GrPiY0QCa1ykkFoJSy+WJyYVkzHgAiY5J44CSbA254EOhqMmOWSZMKkdb5UApxQtg2orBJ21TIhapwalAFTrqaXqa4KchisVXYdJnNUP+/OEPAUxpcBEBgQihjs5LHkqoNjyT/Dwj7f6oRGShQlitV0yyBZ9g8egMOQ46noYfZd1GSUOG8MFDJYm0he1UvhNGGX7rbqXKtHVvLoBUxd/qcPYEpVcySlaBRcRVVwjimJxVmbooIOJWJmDh2oo54icO8aZAQyhoGr+hcPSEfcUEFSHiOZWvCdg32lWqPZQ/VuRiKWfU9lVN7pOyYHdN4iKNMLHtWFuIoCQtXxqQlEWXbqNCIQlLVypPKYc2SiM7TNToyUWSOtaxbM3AZNGI7OWHMSOijHsM4s0IigkFUhGlzh2FzQytFyM1+vCIKmTcehmR8npErDqFshnmj82Gck/DI7NnUM2weHh7LAlyU5LC1oBSDh4eHx9JAmd0CvO3y8PAYmBjsdmuFdtjSPKhs5Zj2azEQVsbe5Ng0mpcGAHEVLCF9mVwoiyMyphsq209FVXMMGUeG9UEc5eK8Sxg2rlcobKwvZdhYUAHTcqyVdluHQlSggixfghxOyZwQiT69yU+z7FmcKETZhljCtBOlDCPXFUvDoEWJMvtGZIWpqMYdkGfbGEL9uTOGMFsNCrNrDgVzyiYEXG+3LGgg7DECHkCI9BqDoC1lQ5Hls+l2Ejv5b4ZtIyIDjOamNLlKw8IKeFhrQOQgoOc9+geaudKsGjigMqEkpgBlhDWs6IjIsVJFXEqNrD5h0opy0cpqohXlnKZzK2CJSBdroAaZYhyFueFOzlYxW5a3MfXWt8vKkvDcocl6t7VVhJGrueaeSrNwUnyhXtkAOqYnFOWzcSrxn+Y4N8NcltktwNsuj2LIOELSbb9jlB3T7/Vfmbg5bI3I7stqbGqcqURCRpHtNwxbbJitJEqcnDTNnuWZNNPO9ZscNimRVOncbT6buXZln4s0KMGWNBAKQG04jZYQVJhNMMuq0Rw2wRwWjmcMW20Om20DgAiFOR6v2LYI7VgeBoaFS0gOG6+E4F26XZzbJsIAsiCHjZM8tTzzRvsBIKk2Lsc/2O2Wd9jIAz5QT+GRgSsbtsgyY4CkmoY6AsZJS/syhy2pQkXdAADV3QmZKdqoOLJUbly1zlscFYdBlj3M5JR1TBhkULEOW1hJHTUALIrA2rJ2pSCUj3FzLqbsw4MiD4KJVCacMZIKVe2wJUCU7dsVS3TH0ozp0u1EGqdOKmWSdRPVs9MmGAx9H3JrpMLsnxdyhvbAOm9t2edSCYiTllCHzYZNBpwhzOpzBAEDT7LPMYmskyZjIPtfQ1o1TyVj6LowSjR3S5VR9KW0vYcHtAJk9oOplAmPFMw6b0BpBcZSRVZ6/KLQxjIRoJoC0cgcsBaH9TEkhcIZrtKjGzZJ7QoVP7LTog9Wtaev9yjlujhWnbM4FJSD68U1Rpy50sLcOSGTwlDJgs+R/lbkVdXq1WdrUUikt10eRUi6I8dJoY4ZUO6cAX0Pd0yizBlLFGTmdCXVxD5/VBPIqj0XDXHUzlgSJcYJo/1S2UVoJy2ECLDRtvk8coalLEKyKJRdsGIHzknXybcDGjZJBEg4aZNQyLTPdeJEqB29mDh9se2PYnu8KLZhk1Fx2KSs2jFpCGd9MZIiR06HxzaCwW63VmiHzcOjvyGCELyAotfFJz08PDwGGsrsFuBtl4eHx8DEYLdbK7TDJngmaoEGWLU4MmFyTshjUgWLurJ2xpJVO6G6OwEAstpl6kSobtKudqWhkFmbJtHStobMCY4UJWryMDD1MFhQIUxaO1ikwzKr4CS0kpkVV7JqrVJ2KR/Tq1efJYCYhEHG2eG6YonubJ5LImlYte44cdi2KLHtql4RkzaEUr8H7P9Ct83/hjMnFBJIQyPbNMNG2La2gNu2EKYdCKBCGLsgoykqnCHUoZKVMA17BVK2TYeJxlZMBoyTkCbPsHksXWihI31npPXFyIAeItsaqX2WZ9JMqjcN3ysR3imtYajRl5pitE4kU8ZuMRAmrIQpUsjViVS1/WasKtYMK4tcqi1pkJVyqWEta1k4zrixw6WsZV7IpOjzNieq8/nWk/tvJiRykK9Ueyx7JJ3dSIDSMEjKpuUFSBqV47fPTsqwaknVMmNJNTHsmdMf2ZDIpEpLAkgnDFJHEFEmrSpVCZtW1FePYSs2Lvlw9rSvEYbNjqlwBpF9ToIx89zDOxlEJbUDcRc3bZkxZnFXbMIjZVUizgTrREVAZJ+LqAjzGYnIsnAyim19tmpsBEhkNXLKA1AmTZH6bzxLzWGJtVmShkdm/Ulnd+HnVoTBbrdWaIfNw6O/wYNK8YrPIFjt8fDwWDFRarcAb7s8PDwGJAa73VqhHTadw0ZZtZCTQtdJt5uXluWiOaxa3A3VvQQAILOcNNm1GKpzMYCMSdOsWudiJN3pMWQUI+60bb0ylC/yqKES6cqckgROoaVTCcMWdLRBtKfn5e1DTE4dl4lZOeZcWJEMzQyVrIrT4teOZL+yq07dSYIl2erVkijBkigxbc2wdUYJqlm7GkunHRcwbBSpPL9l2CoZU0b/dmSrQSG3rFpHKAjDlmBItgLUHnC0Z7HaFcFQyRi2mNt2wBkqmm0LAysgwziUbie2PIBqVnSElTBsbOCv9nj0DzQ7o1dSFZHsz982RewZ7U8ZtoylyuVVOUyaLn9RI5xhx9QwPfmC0I3AUSkpkKAnbJTDtnHCOAIAuX9o3poi+SUO26bHqtqxABy2radLcvMDFeknwizMZeHs/0M5RcV5dn2Ci/J8waLyAM1MUouONBEdUGa39DYPjzxkHENGovD5Js+q5aOMJGHSGslV6w2rpvelQiNJLE2OfqIUaVOGDb3KYaM2pVnREZ7rL89hU6ZdIWWpKiSirCIt8yaqOncty50VDCLL1ROVxLBt6WeUHSOSJueNfnaiIiC0qItg4Nn/jAtu/2e0GHfCzf+VCQ5ZIFLCJTfMmsmDi5vIYRvkdmuFdtgCDoTcdQSYTMBi4phpQZG4GyzOnLSoG6qahTx2Lobsypwz7aR1LYbM2rJrCZKu9BhxZzfiJekxkmps+pMoNhS/JEm0AIy6EQUXbpV5/YUP2ivGYUu6qgiHdqT9iYTQNwhgEt8VVY8M27ITxvZBpSQkUilXdESHPi6JpHHSFnXHpr04StCZ3cSdVdteUk1MSGQ1lkh0uEEuPFLDDYnkpl0hjpkOieyoCOO8dVSEddIEx5KsPSQUGBLbtnbqKsIa24qwD3wJZ6gE6efEaZI+qwKJVo9s7qbnYVisWqQaN0IeKxbojzIAR2CDfvtoIE2+3pnjmOkHJ5kUilxAxo4QUU+iGIXORD0UhT8SZ4wxTorOcSvsw7itL6k4zCNQWUgkeXCS5MFKKbtARB03LVbihlK6x5QlkiQc7ucNAJzErbqOsjIPY26dO2UVi0scOQY4QiYAitU46yFTiGxmsanUbgHednkUQjti9JmmKCRSJRJJzmFTudprdLtxrnL106jzViQo4jp40nHSaLgjddKK29aupOGRri3Jh0HWC4usB0HshxsOSewHbJv2C6aQKOuk6blXODNzEEyhks0tzDqZYFZoRXJSe045TprMnCgplQmJpEqaeqw+jgYjzpsKQ7BsG09I6CNx0lTeeePceV7uCYPdbq3QDpuHR3/D57B5eHgMNgz2XBAPD48VD4Pdbq3QDptmbALOHGEJyqQVtVXXYsjFCwGkDJtassC0gZRVixenY6PFnYg1w7a4y7STrm5TSyTpisyqE10lUrnll6IK9iIUEO0pSxZXAgQZqyYjEiqQJNBrCgKAyqhmFVagAlKfDQBkW+GqrIINEZKwK8uJVKaeWlcsnTDIxZpt64qxqCu91oVdMTojzbbFJlSShkcmUkHpFW/CtHFOaoYQtq1CxEU6MuaxoyLQoZm0isCw9rR/WHuAIYkO4ZToJu0h2SrQsEpgVqMSxZBkq/ttATefQUWEZpUbsOItzYQVAYAIAvCgdh8mV+hb06MOOBQChh7rZrmiFTkxkKIQxzyTpsWJnPDI2GXVNDtXJOvfoHR/jfgF4NYJ44ENj+QBEVuhcv/23kvLkWSJ70RcRJIwyIRECaiCkKU8A1fEsFF2rTaiSYc72h4ORti2lFmz/VaMRBjmDeB6hZqzEubNMndFgjFOfbg6kCVRDWUos1uAt10exVBS1YQ+Fkn50/BHXdaIRh5RKX8a7piX4Dd11XJsm6mZRuqnJdUEiX4WcVg126ahj3mhkSph6OuFRKJgex6UgcsLjtjICsqepe/1eBoGGRIBEhM1xN1SAfp8FRI/n2S2u6LKbYf+H+gwyVoIoFqbF8YFiTRIbEqPRASOMGsX1wqlkACQ2P9tIxjsdmvgz9DDYzkGI05ovt/Dw8NjIKLMbultHh4eHgMNg91urdAOW0DZNS3TH3dZcZG4CyzLVWNRp2XVliww+WpyyULIxSnDpvPTosWdqC5IhUhSVq076+9C0pWeJ+qKEXdmDFvkJsjmmTUNy7AxpxJ90JEeJ2wPDGsnh7Y7sb1OGYAsb011d0JlzJou3I2QFIQuWSF3CmcnyrJURL6/K5GGVftkSYSF3Wl7UVeEJVXLvMXZ+DiyRSxlYgtqq9yqr76pOGeGZdTFtINQIAjS6+ioCAzJPqNh7SEWZnMZ3h4Ytm1kR2jnG0tEiciuDybnTYYc0iwgSSizNCVRyT5THrQBOvy5SYaNCw4hCtaSivo8PAAwGaevsgE0x4zsUyQWwhLST4rBO0xaEptj1RxHi+0QYRI7jZKVTxp6woURUAIXTg6buZeEtPlsSkIpLf0cWhtVw+7V2lAaJaCoOICsZdjSvDbbJ81Ym9vmCAjUEQ3gTr4JM336FqdS/hwMglt2zoyXymHehNT72tVyh70DaRd8UeiziWUdSy+hdv8yuwV42+VRCJlIKC5Lc46kw7YRu5L1ScLMGal9qQrz1lSiSL6VNLlUKlGFkv00by0hhbDLmLR8DhvNV8vbkiIhEro930/hsm12nGDMbHMl/hVy8kvm+Fp0pCotm1aVymlr6LGJQlq7qQBCRzEkCozr3wpmPlM9Ku2XoL0ssQaIfh8Ut6N0bz1rwpq0NYPdbq3QDhuTCZhMysMgq51Ad+aYLV4AuWShbWdOmuxagihzzqoL07HVBUsQLU4dvWhxF6LFqcMWd8WoLk4dirgzdpJlpabviUHJQydzUoctaA8Qd2knLURYYAydSvGVALyS1TCJI6hMVIWGSDmOmm4zkpAP+ywYSenUVdMCJJ3VxIZBdsdYlDmqC0l4ZNQdI9bqTbFEokMiYmkdtpIHIcaYcdR4FhIpBEeQfUbdFY5FWXthV4zhmZPWGYXGYazG0jhvI9oC8iBGH8CCTNCgCFnYgBAQInOCs7+NgrEShq2JmkgUV111FS6++GLMnz8fm266Ka644gpstdVWpePvuOMOnHHGGXj99dex9tpr48ILL8Quu+xith9yyCG48cYbnX2mTZuGe++917z/6KOP8O1vfxu//e1vwTnHnnvuicsvvxzDhg3r1TV49IAkcp2jsppcStpagVTFkYqLyNiMYUoC2YOS45glkX1wiqvmYYqqRyqZ2PBIAu201eQHaAUwLqzYBedgOiGcC7AsXBsyMM6bCuCERDrhkcZ5c+8dE8qtiBAACQGkD1S6pmSibKi3JEq4iYRp07WkRKpSp81x2LTNYsXOW8htCGMobKikYMyEPgpGnDp6TB0W5YRPuo6cRpF1aSYkssxu6W0eHj1Bydp6a3Rbvr/ouUgSx8ztl0Qswzp1kghh5M9J66e5jpX7N2275+xJJbJobP6YPSFRdnEmUaomXNIez9qJ2m3a8bNj3H53LD0nAPI5MjBtgxK7kK0SZYgFOl4ljAr3mv8NE1ZYTxABknRbzw4UDaVtBIPdbg18l9LDYzmGyFZ8il7N4rbbbsMJJ5yAs846C88++yw23XRTTJs2De+9917h+CeeeAL7778/Dj/8cPz5z3/G9OnTMX36dLzwwgvOuJ122gnvvPOOef3iF79wth9wwAH429/+hgceeAC/+93v8Nhjj+Goo45qev4eHh6DA/XsVm9sl4eHh8fSxmC3Wys2w5ZE2YvK99swSHQvhtJMGgl9lIsXIFm8KB3y8UIn/BFImbbqgvQY1cVVh1XTbVlNEGlmrJqYVZ+E0M90FYUzZlYuREWYivRJNUGQsUSU+gdS+hcA4kpo5P5FZ7epz8biCCrK2LbsrytCYOeS1iWybRtOlDJrQBoeqVefO6uJYbI6q4kJSVzUFSPKwiOr3QniLIQhzn0Gmm3Lh0RqMM7MSrRh2AJmbrogFAgyFjJuE0bQpDsnbkLbRvK7ZrU8C8FivLCuFWMKTDNrzdZha2EO22WXXYYjjzwShx56KABg7ty5uPvuu3HdddfhlFNOqRl/+eWXY6eddsJJJ50EADj33HPxwAMP4Morr8TcuXPNuLa2NowfP77wnH//+99x77334qmnnsKWW24JALjiiiuwyy674JJLLsGECROavg6P+mAyActqAAJwwwGJEEiNcIhh22LLtiWJ069Do5VMoKLsHHFk6wzGhN2TkrBtSU1IJIVzF5P6j0wIy7YFFUCHZgehZf2DEEz/UsUpywak96MRXiHCKArF9yAtR5IoO6dEKYdZA1I7oW1Zate0jZOkNIBl6WROWEDbj7zghzBsFyNsmy3TEAprY0LOHeYt1PafM/BEt214pB7LpCKsWy5UkjBveTTFsLU4F6TZyACNW2+9Ffvvvz/22GMP3HXXXU2f12NgQkcENcOeNH0OwU1EQR6WyXL7ikIS9fsURSGJxWMTUj+TIn9Od16sdJvuK2LeysY3O6bZEMTegomlo9g42HPYBr5L6eGxHEMEvPQFAAsWLHBe3Vnh9Tyq1SqeeeYZ7LjjjqaPc44dd9wR8+bNK9xn3rx5znggDXfMj3/00UcxduxYrLvuujj66KPx4YcfOscYNWqUcdYAYMcddwTnHE8++WRzH4aHh8egQD27pW1Xo2g2MkDj9ddfx3e/+11su+22fbkUDw+PFQSttFv9gUHJsD322GO4+OKL8cwzz+Cdd97Br3/9a0yfPr3p46Q5bDFYXAUzoiNVs3pNi2LTvLV4wQInX626MGXYogVpX/eCTnQvSI9RXVxFlLFq1UWRyTeLO2OzgptPbC2KaxbMJopWogRhp2bY3FhtzapxkufGKwFke5obIqMYMhMmEXGVrJbblfhGoFeQIynNymwkLXvVSYpid1ZjUyw76o5R7bZty7BJ005im2AspXLEC2gujMlhE5phs7R2UJEIzPECw1zGDsMmS1eVOVn91hA8cArWCqlX0e3KVLOy/rT+dr4fACZOnOj0n3XWWTj77LNrxn/wwQdIkgTjxo1z+seNG4eXXnqp8Nzz588vHD9//nzzfqeddsLXv/51rLHGGnj11Vdx2mmnYeedd8a8efMghMD8+fMxduxY5xhBEGD06NHOcTxaZ7cgYyC2DFtpMWsqHCLj8vw0zapFVcNw0fxWFVlWzWXYEptz0APDBsCyz0RoRJFcNRVERhDJYdva2s2aNQsAZOySIjcPS2J77+VyRugtbvPZLNsWJ3DYNCAVIdJiSlEiHYZNt6W0zJsjQFKHqdJ2Jc1Js7Lc1N6EXOewcYd5s/0MYfb5hcIydUJa1o0T1o2R3DZtami+hl5Ybiafpsxu6W3NoNnIAABIkgQHHHAAZs2ahccffxwff/xxcyf1aBgts1uoz9DoLRJWzl+PV4l0WDf9m6+kskJgiTL3kRIcSugcK2aLLQsFld0nSaKMcJlKqBw+oFmylLGyTBmV1dfPY1SAJKWw7Xh9jOI8uOJ2LatW+1nlmTYq8W+LaBf302dJwZgRGElLAtgx+q+JZBI2yosLK/qWaiToNjP/G73N9jPSn43n3IynWgsUjBTLZpw73yG6rRG00m71Bwalw7Z48WJsuummOOyww/D1r3+99wdKqulLJulfACzuhtJOWtdiowapuhabMEiqAtn98SJUM0etujANNez+pNuEPnYv6HZDInUNsoTW93DVhyjsjcNQyZI8K9y2h3bmxodaPZIb5zBot04arc+mEvuQpUpEDCgKaxEpNySShh5qJ607lkYNMomVddKiBFGXbVuHLYbUD4tJUqo2p503XbmeBxWzSpIkEkksbDvRYaOq7gOVBjWS9qHJPmSlSm3WwMfGYWuOyheCFcdOZyd96623MGLECNPd1tbW1PH7iv3228+0N954Y2yyySaYPHkyHn30UXzpS19apnMZ7GiV3WJJFUy22RuR1kkjQiM16o5Zv6p2ueGOxkmrmtBoxFXSHxkHMbUZRICEhE3XC1+iP8ZUaISFoW0HIaBVa4MIrC1t07uDgQhmcKskqajTSkDvdAkiOuKIA7i1JIG0LqNpx0lh2HeU2NDpauIu/pQtBAkSdmPqSAruOG9hZg9CzhCYtnT6wywOkoZKOk6c/t1QNgxSKOucMSjHlgHWjjeCUrulL6JB6MiAU0891fT1FBkAAOeccw7Gjh2Lww8/HI8//njD5/NoHq2yWyIU4IKj3Eqk4ABQyepxVVMbxCsBUNVSzAEktI2zzpiomMc4MKmIc1H+JK7HiwoAswYmCx2oKlFqTWuyZcdQbpijreGaLeygzDljpK+RZ5Li8GraX89J0+0KZ45D5jpvrsMWcm7Sb/L1f3nFPmty4pgxMobua2roVgRxoPPOmFUzF2FA9iXHIfvSv42gVXYLAGbPno1f/epXeOmll9DR0YFtttkGF154IdZdd92mjtMMBqXDtvPOO2PnnXfu72l4ePQZXHCTg0eh4rRvxIgRjsNWhpVXXhlCCLz77rtO/7vvvluafzZ+/PimxgPAmmuuiZVXXhn//Oc/8aUvfQnjx4+vCV2K4xgfffRR3eOsiPB2y2N5QZndAqztWrBggdPf1tZWs+DUm8iAP/zhD/jpT3+K5557rpez92gG3m55LC9oxG41iv/5n//BMcccg8985jOI4xinnXYavvKVr+DFF1/E0KFDWzHdGgxKh61VYDIGS+JMdESHBXVDalatuwuyK2XSZOdiIipiwyDjxZ0OswYA3QuqqC6u2vaS9NidiURntrySZ9iK6nQAeYZNr5AAHUL3S7Rn9dxEhRshE17hCDrSf28SxUiijGGjMqhSkpAmEtrUAyRI8j4R6JAqJ+KhQz5j6bBqUocnVq24SBwliKvp5yejqmHYZFztkWFjVV0PrYIkY9uSSocJg1QyKCQNF5Vcn+AMleym5twNUQqzWCPBBOKM5YyILHcziftAGm6QFyYAYMUUGkSlUsGUKVPw0EMPmXAVKSUeeughzJw5s3CfrbfeGg899BCOO+440/fAAw9g6623Lj3P//3f/+HDDz/EKqusYo7x8ccf45lnnsGUKVMAAA8//DCklJg6dWpT1+DRIGSShnATVo0R+X4j1iFj6PqSKo4Mq6aqXbbuYhxBdXfaMTFh2CLLvMnMfqhEum2StF8ku01DXHQtSF4J3DIjJiQyBNOCKYENvZQgLBsXNiw6CQCeXTcPnM+DQt+Riggn0TprUaIcZg3IQiJjGyHQZWpNShPqXY0tq0bb9Zi2IoaN2hvarjhhkLYdkHZ7wAnzlrFugqEt+6zT0gDZ+ZgVJuGwJQN03bZGVvk1yuwWYG1Xo+HczWDhwoU46KCD8OMf/xgrr7xyn47lsWyhmRKhQxuFW1tNZd9fJaRl0wjTxivZ42o1RtGjqyphSLjgudpgej7M1A9LosQyPdXEPDsIlrJpaduKh1Q4I1FRjDy/uW2Nsuc7e8819ntfJjpSxKTRMbWhj7SfsPvcMmWAZsOKGTMRcjNGp98wwWyUV4Xbfk5SdMLAsmPOb0EIXsSkhUENq5YeMx3DS4RjitCI3WoUtLQRANxwww0YO3YsnnnmGXzhC19o6liNYoVw2Lq7ux2xhvzKn4dHf4EFxSs+shcJsCeccAJmzJiBLbfcEltttRXmzJmDxYsXm9yQgw8+GKuuuipmz54NADj22GOx3Xbb4dJLL8Wuu+6KW2+9FU8//TSuvfZaAMCiRYswa9Ys7Lnnnhg/fjxeffVVnHzyyVhrrbUwbdo0AMD666+PnXbaCUceeSTmzp2LKIowc+ZM7Lfffl4hso/wdstjoKLMbgHWdjUSzt1sZMCrr76K119/Hbvvvrs9X+bkB0GAl19+GZMnT27+gjxaBm+3PAYqGrFbvcUnn3wCABg9enSfjlMPK4TDNnv2bMyaNat2g06Ul7EVGunuhKqmjJkiOWzxki5TDDte3IXYFMbuRnVRJiqixUUWV63oyJIIi7QQRwnDFqlihs1NIFVkxcYmo3cm0rSDqoQIs5y0RCHJloZkNTFJvE6hwRKhAJ0Pw5RE2ZqrLEiyT4jMdV4y3xTClsqwakki3by1jAFIqp2GYUtyDJtNRibiI0GWwxZXIWSHGaeydn6+5joZwxKyyq1X/ioBd1a5u7N8kSVR4iT+BzJbYWKuXHgz4NwWAM/3N4t9990X77//Ps4880zMnz8fm222Ge69914TbvTmm2+aFSwA2GabbXDLLbfg9NNPx2mnnYa1114bd911FzbaaKP0uoTA888/jxtvvBEff/wxJkyYgK985Ss499xznYevm2++GTNnzsSXvvQlUzj7Rz/6UdPz93BRZrdYEgFJlRTCbo5VU91dNieN9kdVY/tkFBsmTVZjJJptIwybw9ajNoctnxzOC1ZMRRhCZIJIvBKBa5Yuy19LNwiT98JpSQAeQKmsnAYpZ5CHJrmksnYgITY3klbCn+atLYlsWzNsndXE2LUqETDqzjFsTnFcneuau6fNqjhnaCti2KgdCjgq2WfWFnCzEh5JZZi19mxsKLnJyXPZNrd4Lier7Iw1Z7vK7JbeBjQWzt1sZMB6662Hv/71r07f6aefjoULF+Lyyy+vYfU8lj3K7BYPAoj2ilMUmxFWjbJtJmcpszWccxMlxDi3/YKDCVseyYpfSJNvJUkxZyYYRCW7T6sJWPbbLircPC/RtkokQv0clXtOq9LnnjpsWlnB7WafFSiK2DXdT9mzRtomf7ZiWS3DpOVy2Cir5pSZylg1LlhhbhuvWKEpUQlMmSkmhJurVsKqFeWw6fnxuAmGrQG71Ugodx5SShx33HH43Oc+Z56flgZWCIft1FNPxQknnGDeL1iwABMnTrQqkYl9yElDhDKHrdoFmT3AxJ3diLvSh5xocadpp3XWdNs6bnEWprgolujMDNGiWJl2VSpEOmFdFitDAlahqMKZyZgXTJEbjhiGagKZ1WRTiXIfpoiR1GFMRaGGRWFN9VDkCAGoeWCxZZ8kiVxSps6ajN0wyES3I+uwOfONbUikduKkEJDZmKBinbUU2UMhY0YNiLYXkYemRQE37UrghiK1ZQa+LZbmoSnhJNG42ZDInHoS7e8NZs6cWRoC+eijj9b07b333th7770Lx3d0dOC+++7r8ZyjR4/GLbfc0tQ8PXpGud3KbJZ20ojQiCIhjogjY79qQh/1olR3l1GDTLps6GPc1W2EihKiLKuktAJGDQiOmB9d7v4Y6/AmGVpnMGhvg8iO40j3cGEWaFRcBYszJy1sSz8HABC5xSUTFml/3BVR4JXKKkJGiSJt64DpkMiuRGJRFmpeJWJKS4gSrrtAVRweSZEuEGmHjbvhkcLaHm2HOirCcd46sgekSLrOG5CGRlLnTf9rQknVJe2DnmQKnDVnu8rslt7WDJqJDGhvb695IBo1ahQALNUHJY/GUWa3REcbRCW0tiIEeRaR4MRhM84ZVYkk7UTY337TH9r9uEggM+ciiaStWxsKJNkisagIEyqpEoWkkj1HJMosfMtEIeiQpq0VuZNqgvbEpoJoUJXvMuesKPS4Eeet0ZpshYqRzFV4LFJvzDtneqx2xhhRHqehj8vSSUtVJa0wCQDzvWkEjdit3oRyH3PMMXjhhRfwhz/8oeG59AYrhMPWiIfs4dEfaCXD5rF8wdstj4GKRlaqG0WzkQEeAxvebnkMVDRit5pV5p45cyZ+97vf4bHHHsNqq63WuskWYFA6bIsWLcI///lP8/61117Dc889h9GjR+PTn/504wfKpK5ZYlecZS50KOmyq89adCTpqiLKWLW4MzZsGv1rQmicMEhpaPQuR8q/nGHTCaFVqSCEbdMaIHrFRiXKMGSSrDrIBlYgyoQ9mkEqNGIvJCZhkKoghFLRUEki3y9l4rBqRuI/x/4xnjEMOkRK2nX5GMiNzVaDSKV7IRITzyyCBEuy1bZKEGNJtnrUUU3Qka0eDXHqMZHwCMnMdTdJsKWqRQUys81I1XoMDrTMbiU50RFiv1RE6qdVu5xoAWvXbNh30lW1Ni6KbLsak/7YrIrLKDLtlK2vZfFdoZGiJPLQrLDK9gp4FJjjUQh7ECh9zCA0YiisEmV63KgpbUBvQ1N7DVZ0JFHKqSWpxUaM6EhihUYWddk6kp1Vayc6owTVjIWrxhLdjuBSsQBJmeiIbrc5YZCWVVtSTTAks0OVgKNaSc/VURGGkYuyEO12wc21hWQuoWRoD7SdsuUAeFZ/qYmF6lK7pbc1i2YjAyhuuOGGps/n0ThaZbdEWwjRVnHuc04if4yNSRLLwFNmn/Tp7ZSNU4kEz2yDDGNjm0QUW2askkDqEj9ORJJEEtlnJ8qkmSggErWkEgVp6t/SZy3LwqnE7c9D9SEmkhGWyK1vxp0xlD2j422IqCvVT0NH07E2DJKO5RVRuF8jgiI1olMFNdbS41gmLR8GSa9VNCOW1IDdalSZWymFb3/72/j1r3+NRx99FGussUbD8+gtBqXD9vTTT2OHHXYw7zX9PmPGDG+8PQYVPMO24sDbLY/lBa1k2DwGNrzd8lhe0Eq7dcwxx+CWW27Bb37zGwwfPhzz588HAIwcORIdHfmUnNZgUDps22+/vcPY9Bq62KqSpGAsKRIbV80KT9xVNSs5SRSb2OeoKzYrM7pQdULy1qoShmHL562VMWw0xNYmiVu52JC0Adan5NVWIp9U3ywoq6ZInp3Jv8uxgPq9TlzWjJuGNOIEwoqYBNzEPMeRBA+ynLeQm1X0IRXhSHfr3JSuRKItW1GPQpvYXxE2h63Z72UgOIIidSLPsC13aJXd0kWwHQl+zaQ5+WlEQImwbUl3t2HP4i7S7qQ5bFVIvVpdjZ1VbJP3QdijohVkLiybzQUneQ6xXS2XEoGsFF8nESZRWd4ai63cv5LSlfIvqN2RZ7w196YUnALYOndN39PdJFets5qY9sJuyrbFhlWjdiKJpfk/O58RaVOmnzH7ELEoJzpic9gCdGa5Nx2hcIRPdARAooQ5j/53tCnL8rUra1MSbmXHQ84B0Zysf6ndArztWs7QKrvFK+0QbaF57/y258SLTOmQMJP1T+xYGcZOJBF38ms1cy8LowKSauyck9oySZgxKjpio4CUG1GQlPQTRi6PfBRBsywbK8i/ouyTw7ZxysJxhz2jha410sLmLsNGWTUqzU+LWYtK4OaYZaUYOOeGCaXsmSAMGxPc5LZxYQtqlxXLZpzbsi7pThCqcXvTSrt1zTXXAEjvD4rrr78ehxxySFPHahSD0mFrFdIabJngiH4IyCmlxV3dpm0fYBKiwCghs5te3/zUGaM11iTyykJltTnSv46gSIP3NetlrL9zEzSBfE0L6rQFpM2arHFRhp5CN43TlyRGgITLxCpQBhUIoQ2/MjXhZKJM7RX6sLYkTDAsJg92JCRSP/Alkpf+L3sCJ+FQFNKvUnuUIalCVWEUIKm4iOruyjlpnaZNw7uN4i0JiaROGnXekmpiw4WqifNgIwtigOlKJVUdE1HmUIQJOHEAiwRLnB/yoAvIlGBVVDWOKourYJm4kKLOWlHRRcCpwyaVVXaNJLmvde3IxDpgThhkNUFn9oC4hDhyCak1qSSMEi512GibPkwxziDMAwkQZw8U3YKjU7djaZy3aiUwC0rdxFE0DmN7QMRVlCNXrfvbA0BqZbsAAOwCVCMos1uAt10exWBt7WAdVv2VkYVZR+GVpETQmo/G0SLOWBJFUO21YiVOiCUN6ZbFjhwN71ZkDHXGqFOn99Fj7NRrt6fnLb63WuGwAcU2F8iHS9Y6YQCcRTU6Jt3GS8PaywSlqNNVJC6SipuEtr8nx4wLwIxxnTUAYE1k87TSbrWENGoSK7TD5uHR36gEHGHBig/rY00QDw8Pj6WFMrsFeNvl4eExMDHY7daK7bBlS64qjmxCfhxZmXi6MlONicx1YqRhaVsllFVLT1Em89ooqHy/20+lW9M+NxGVrHqQVYz0vQ0VzINxDsma++IWxf5Sydn8arIe77SFsOIhvWT7gFxYZUlbZuIkMpZW+je2K2zVWCIx7JmV646ktPLf0kqBpwIGmUR2k/9i4Rk2jyahpEzZtVgz/jlxERISKbuWAMhEkzrTaIF4SRfiTiKmlEURpG3Nttmw76Qqrb2rJk4okIZMZE0yNyPJ7SISEKbOUYIgqf3poSvDIgwM88crAYQJUyeiKkni1owssa96nduR35aWTZPKih/pe5rK93fH0oQjdlZjLMxC37urCakjqQjDphyGrWx1ndpNLX7EGbNCSIIjDtIxcSxRzcKRYqkc+1QocFLR4iKi/HdHP6DEEgiAuImSLmV2C/C2y6MYrG0IWDvJ7ZEJGK2xqr9/pJ9VCAPn/J5ntiQX4kiFS4rYOVo70mHt6L4Ow2bPpcfRv/qYNdeQG2P7WsfKlLFtRQIdgCsGRFkwOpblJfMJe1bGhpVJ8AvCwuX3NRL/pK4myPlB++l18CKGrfHn1cFut1Zsh83Do5/RFrDCFR8eDHzj4eHhsWKizG4B3nZ5eHgMTAx2u7VCO2xMxmAydhgYyMSsXNOYaCktA0OlWyWRdy0rIk3RTIFEkckt17aLx9CigCzXzq+cZDs4qxt5qDpMWz53zcylQKpa8OJi1Ywm3nPLsHEuIPV8pagRE6mHInauhm1T9v9FxQEkWak2eSEklyWRRAo8kaYtnXzE5lbQymKqk0Gw2uPRT4irABNEdIQIJZG8Ndm1xLBU0eJO0u6yTNriTtvujKxwUlWSduIk5+s2ULxiXJQrIavSFKYVkbAsHc3rEtxIP8ddVZOwLqoxeMXmrZl8Fyo60iD06aRSph3Rch06h43khnVGbt5ad3b9cZQg1oJT1cSwailbn9kGqcw1qhzTxmikQXYcLhh4lNnzgCPIyosksWXtHIGTOiUE8hD5fGPzloMnClGLckG87fIoAh86DJzksJn8NSBl1UjblAghz2VOn85Pb0+IPaC/89IpCeDmqhHRIjMXMkbmypUUsGr1mLQiZo1CNsFk10NZbUImavvLWDdWwLoBpBxLjmGjxyiS3c+PN6xaUHHz0Eh+msOelbFqtF+4z3hcNm5vBrvdWqEdNg+P/kZFCFSCghBQ0fuwUA8PD4+liVK7BXjb5eHhMSAx2O3Wiu2waUn/xLJqzipNnXjnesWo6xXC1quaiaIrnio3pohJS+X8gbSYti6cTdu8Iox0Ns0fceKKiQQruJvblvb1/KXldi0MgjPDtvEcw6ZvjErA0a1zNAJuFCOF4IiZZdi4VoKTCXiBGqSW5i+Ds3LkrNSI0rw4vUAvlbJ1iKUyRb/pCnY1llbxU1lluURa9blmI9TLYqr7WiLBY/mFiiIoJovl+3NFsbUaZNpO+6PFXUiyvLWUbcuk/DtjRKRtctgiooQbUZXI4m+7LbrKiPRzYlQi8/tZpsnaI14JzAq5jGKbtyYlUZazK+0O21amEgk4hbMNM6VgZP2p4iKV7KcqkTpXLY4k4gK2LYmlk8NmZL5zrBfN5TVKbTSHLZFGxTYIBVQm20+PCRSzaRrUjpQr+kpwZtnFRlAvF8TbLo8i8Lah4EOGmPeO4rOUzntG72tk+arSZeTSY0hiA0i+mUwgiGJ0EQtn9ketWm0Zg1bEnsmkmJpWLWLSmkE9lXBe4JCUMWz54tS6XfiMlVdxpP30eD2waum+uQgwuM9yKDg/l407WoPdbq3gDptKf9zJQ4CSNEE1cZNPC2Rci27gNExRlbT1GEA/3teGqliHTTtjISt20iqcQegf+FCYqvSiIkzNDBEGhj5nnCR8kpvLuSlKQiHp99n4fDmnUtcQCnIhkVq2mpP5ykSZtlKhE7YoChw2vS3fzjtn+tp6K16SfxiiIUeSPOTpfhpe1UhYLEVFcFSK6n/4WkYeZZAyXWvSNouIJiGOSF217sIwyKSr2zhv1cUR4k5dey027agrdpw0XcaEio6Ufde1Y8CErdujJC908DgnwiQVYYQCaO23pBohIA9cJvyTPqDVue/oJl2HLb1naUhzup06bLYWY+LUWEvidHBc4rwliTQlQpSy5UL0nDVsCLhbk01kSfQy5kgC6+yZ+UpRKmSiQW0v7dO2mjOGKKtfyZmAVFacpRGU2q30RE0cyWNFARs6HGzoUONgOU899HedOlhkuyJOnKLHoP10McfZV9bvL9iWhypxzPS5ByR6KPOUDy8sXLBvQPyDFTha4IKIiPDceCI0UiAk4jhmBVL+zrFU4895g91urdgOm4dHPyMMuHFyKdQgkJj18PBYMVFmtwBvuzw8PAYmBrvd8g4bULqy0gil7SRqloQyasYsZADId6I8bNKyZ3p4h+CGVesQOYZNM2kVTlg1AZElrPNKYBL4uRMSWUBf59m1AraNMXqtNiQyFNys6FbIjdEW2AKwQciRxDqRXpqkeiUVEhISWVQgm3FhCmDrcfntjJQs4IQ9pCUDaBHvMl2VsjAjpyAtERrpbUhkwJlTYNycZxDQ8x79A5VEQMwt0xRHRtY/6e52CmRr+f64q4o4C4/Mh0FWF1dN2/R3xQ6rplmiRClUKQNNvvBUCAkAhARCEz7JnaKymlGKBDP2KO6KwUNdOiWGIKIBOjySR1WyWi4de60l/svuQXpLJ5Lcy4S90vc9LUhN2zKx4Y5JIh3RESPxTxg2GVdJiH3xCn2+pInMSh4kgiOgYZCFLGJc05MXfNLtaizN6jKXElGWrM8TCcGAuAexBIoyuwV42+VRgsoQU+i+BiSMmali1quUJeuh+HZ+m+qBSStjy+oybIMYNSwbRZ2UmZ5CFZHbXsiUlYVNph0Fky14Hg0b/78MdrvlHTYPj35ExTNsHh4egwxldgvwtsvDw2NgYrDbrRXbYVOJXYlxYqjrrzTmCxZS+XwAEAnL5aGl41LBCp1EANOmUvCCWVZNkLy1PKvWkZ0rbBMI2tN/Y9AeIOjI2h2BESDhYUgKFdoctsIYY8btKkZudUUTU5zRNkOoV20ZMzdDJbCxwvQmqQpu8taCiiCy+jQvw67CUXZMxlXTLmLg9Ph06lbEhAcV8LBitutkf5qEX1SmIA8q608hlSK5MT0exgEthZDv9/AogpJpHpnNW6saUQ4ZxUiitD+JYpMTlnR1O0Wxq4si03Zy2KgASXd6j1WlLVuRttPT5ktYWJtnc3OTbLW80q0QZuMSwcC6tDAJN3L/MglsDlsU2VxiUhy3dKW8QXl/J5/NMOT2Wmi+KhUb0nmtSayMEEiaz2bZNs28xdXICCSpJLHtOjaLMmxKWrtl7GNIV8FdVo1nZU86S0qqBCTqoRrovDWGiKfHDrnKPoPyzy2PMrult3l45KHCNsgyhg15Zi13P9MbN8fGsYJ+9MTSFWxbZuhlbn0pluU1FMy9rnAdZcRIWzFe0EfsRu6Y9UpMyUrj1z/Y7dYK7bBRgRGDOl/+ojoVVAlNO25ULMRx0sBNOJEgP5Ah+aLQEEp6HOqwDQs4KtkPeNDhOmk6DFKEHEF7JWsHELqmUSW0DwdB6Kr71EH+O66VIgW3oVChYAi5ddLaMsesoxI4yfymnp0UpEZRXsQgNez5hxmtHtmTw+bUdQsrxnkTAbeKbAE3YiiMu/XhelIMkvTBtQ/5xmUx1XIQrPZ49BNkAsSxVUpLEse5MeqK1dg4aWl/JpDR6TpmNAzSiI50J+jUohvShkHSB/tah839W8n/jmchlkxIsEzwIqkk4NVMZKOaQGWLTyoprqPkKkMmvX5YobZGqtpaZmktxsS0aRikbstEObXXaBikDt12QiJlAlkwX17jsJGakZnzlgdjCdlfq01mDnbAXbVLkdWTqyZ2QU1wW1NSKoSqeDGqDPVyQbzt8iiCCjugwiHl202j9geVlThjKj++p33LUJb+0oNoB1DfmUgn0OD90NO4RmtOloxr6HPQaOLzoFaj5rPoKayxyImrt28BVBMhkYPdbq3QDpuHR3/Dy/p7eHgMNgx2eWwPD48VD4PdbvXJYYuiCPPnz8eSJUswZswYjB49ulXzWvboYaWWMlBpXbOMYQoFREXLX6djwqo0oUBp7KNuW1nlRLGaUEjbTv/m5ft1GGQlFJZVaw8QZqvSoRMSacMgRXsFImPbeBgAQRacxEVagT5rA9kqRw8rGww2JDLk3IqOcIZQzzHg6MhCMpeQld2OikCsV6KlgpI2qV5/HTljZtU4CThiwpTVEx0BimX9eVCxpQ8Ed0oM2BpQ9pw0jCgvi10G869sMiSyErAShm3gG4/BikFvt6SEgnKk/DUblUSRlcPvqkKS8EhdYy2pJqbGWlQSBtmZSMOqdSZE9p6ER+aRZ9hoqCHAIVjGsFUTYz+TKjch3Uk1QRLZGpjSlFdxayQV2WqmJBSpw2YESBQzYcpKucyarcNWwLDl+mwkgJXpT2JbJ00m0oQ+yqhq23EVSUFIJBUwkDnREUEZtgKhA8YZWJRFCXCGJGPQdIRHdzVxxJ+qmX1JWcOMeQskQm7tNg0BbQRldgvwtmtpYjDbLhV2QLUNrTOgnAFS+W0lDFARi9SsEJizb9mzUJ5palAgo2G2rRmUfW75/qJxuc+xKRauCfTpc+zp2GGt8FIZBrvdavrTWbhwIa655hpst912GDFiBCZNmoT1118fY8aMweqrr44jjzwSTz311NKYq4fHcge94lP06g2uuuoqTJo0Ce3t7Zg6dSr+9Kc/1R1/xx13YL311kN7ezs23nhj3HPPPWZbFEX43ve+h4033hhDhw7FhAkTcPDBB+Ptt992jjFp0iQwxpzXBRdc0Kv5Ly14u+Xh0TrUs1uDYaV6MMHbLg+P1mCw262mGLbLLrsM5513HiZPnozdd98dp512GiZMmICOjg589NFHeOGFF/D444/jK1/5CqZOnYorrrgCa6+99tKae+tQtlrDuclbY4JDaMYqjEyuWFJJIDJmTWQ5GqpDob1Te/0S2i+ucIVsSLZiXSQ24cr6U4YtbCN5a9mqdGVoBeGw0PRXhmbt9gqC9rasvwIRpv28EoBpAQ6Sw1Yo659b7dDvOGPgmbBAKjpiRTxoDpteyRhSEahqqWqyypsybPQMdqXEMF9RYmT4lXKl/zWKitFScRFGCncHoQAnJQZ0vxDc5CWWyWLra2wlwpJCjkkvijjedtttOOGEEzB37lxMnToVc+bMwbRp0/Dyyy9j7NixNeOfeOIJ7L///pg9ezZ222033HLLLZg+fTqeffZZbLTRRliyZAmeffZZnHHGGdh0003xn//8B8ceeyy++tWv4umnn3aOdc455+DII48074cPH970/JcWlje7lbIuyuawycSIddDcL0nk8OPOiBTCloZVk1VbFJvmrXUmNm+tNofNtjXypUzsXytEYvpjCWHk/pVh+2RHYKT/KatG2bW8VLdmoJq9K5NczlZRDltMBUhiy7BZoSRlhJKSOHby1jTDlpB8ttJyJVI4kQF6DP1xZkIg0WNYYuxQzBl4JiSiC24niXRy2Gipgg56TSYX0S1T0gjK7BbQO9t11VVX4eKLL8b8+fOx6aab4oorrsBWW21VOPbHP/4xfvazn+GFF14AAEyZMgXnn39+6fjBjOXJdqmwHSosFx0p3qkBxod8b5ti08p+yxvMq6IiGUViRs4UC07TrEAZRd63KLoS+qxCL5WVCLik2xpg5QD3gptFI89QjTJtSkKFUcOnbrXdWtZoymF76qmn8Nhjj2HDDTcs3L7VVlvhsMMOw9y5c3H99dfj8ccfH7DGA4CbtO5UZ9ciIqRNnDcuOESWUS8iAZk98AQdtV/ijmqCiv7xlAoVXvuwQ5F32EwoX4WoQXaQMMhhoWkH7YEVGmlvc8IgbR229tRRA8DCCnFw0vMoxnpMomVEJVJwGCctFBxhFp7TLjiqWUhkNZbo1mFEDYTeMJ5Y5U3OIIRN+NcOlpSC1CUKa49Bwip5YMM2g4owx+YBN86bCOxnXQlsPTmqKuQ4biWrMbLJAAxO6tjl+5vFZZddhiOPPBKHHnooAGDu3Lm4++67cd111+GUU06pGX/55Zdjp512wkknnQQAOPfcc/HAAw/gyiuvxNy5czFy5Eg88MADzj5XXnklttpqK7z55pv49Kc/bfqHDx+O8ePHNz3nZYHlzm5l0M4KFeWQkVVUlFUSHhlJ4xjlQyJ1mzpmZW3qsNGf8kQVi47YUErar+x8ExJumNj+vBiUpNfaQH3MZiCJPSpSiVRku1R2kSlJrIASdcaUTEwYJA2PTMcUiCJwIiASWJscI+e0abVc3mbETljMEGf/P0GEsJKwtp5cEtrFsjLF20ZRZrf0tmbQ7ELTo48+iv333x/bbLMN2tvbceGFF+IrX/kK/va3v2HVVVft1fUMVCxPtisRbYhYk1k4LVgfbaQuIwD7PKHcbcoZr9yxSO2g67CVHJeMr5ljA7di2W3FnTF0cbl4X+6MY+44iNy+bt1ac4y8H1tv4ksRaUh4W+PjW2i3+gNN3T2/+MUvGhrX1taGb33rW72akIfHigSa90cRN0nPV6tVPPPMMzj11FNNH+ccO+64I+bNm1e4z7x583DCCSc4fdOmTcNdd91Vep5PPvkEjDGMGjXK6b/gggtw7rnn4tOf/jS+8Y1v4Pjjj0cQDAxNI2+3PDxaizK7BTRvu5pdaLr55pud9z/5yU/wy1/+Eg899BAOPvjgps490OFtl4dH69BKu9UfGBhPVP2NfL0xI3Vvw+SYsPXLeEU4YZCqw4bxpLAfKxMMXK+AJgpKh/zkllSod6/ZO0aZvJzQiG6H7QHCLAwyHGpZtXBoO4KOSjbe9rMwBLTQSBA6AiTmsyiqJg+6KqOIrD+DZpJDzmwiu+CO0Ei1gGGLc0tRjqy+TqTnCZIsGTSQwiT8qx5WiDlzBUVEdgwhOAmJFAhCy5rq+bYFHJVAkOsj10ru6ZL7vikIxgrrf+i+BQsWOP1tbW1oa6tdUfrggw+QJAnGjRvn9I8bNw4vvfRS4bnnz59fOH7+/PmF47u6uvC9730P+++/P0aMGGH6v/Od72CLLbbA6NGj8cQTT+DUU0/FO++8g8suu6zwOB59hJQAkyaUWyXSMFCShkRGsRNWmETZPUjCIGU1MfdUIwybRK2cPwAksCvHRdEDaU02u12HPiopnTBIDZXYcEeVtJ5Vy6Me6y9LwiDdduKEQbrS/JQdrC1LUlZrEoANg+TChFYmXNjwbcHN3DTrJhJuhVGkQpJ9dtVEugyisr9FvarDVrIi3Yzt6s1CUx5LlixBFEWDSoBjRURXLBGWfMn6Eh6okWeyzLGdMcXnrc+YZfd4bj89hkbVKFXEsNG5qNJtzcBlzIpDH2m9XDqOsRz7ZsbXHifP3pWxdvYc+Xn2/SGpnh/FoNAVN/7b0IjdGsjok8P20EMP4aGHHsJ7771nFL00rrvuuj5NzMNjRUBAnFyKKOubOHGi03/WWWfh7LPPXhZTc+cTRdhnn32glMI111zjbKMs3SabbIJKpYJvfvObmD17dqFz2d/wdsvDo28os1tAc7arNwtNeXzve9/DhAkTsOOOOzY4+8ELb7s8PHqPRuzWQEavHbZZs2bhnHPOwZZbbolVVlmlJZ50v4LmsJkEcMKqhQF4xQp60ByMPOLO2ORJJVWOJNTS9XY1WeX20zLXtBC3qHCIii6ELcAzts2R728PEA5NH4rDoe0Ih6ZJvVTKX7RXwCvt6YmCis1h48IIkIBnBWvriY6QVRe7AsNIDptEKDRLpRDpJPiKqEnq1wjITdKtmaxAIs4YAB5wI52dJNIwYu6qN2rAuF3dofL9LsPGEWT/m0pF2KKygcu2UYbN5MW16PvOyTHz/QDw1ltvOWxWmQO08sorQwiBd9991+l/9913S3PLxo8f39B47ay98cYbePjhh535FGHq1KmI4xivv/461l133bpjlzWWF7tFGSfKQFE5fJXQvDWbb5VEdrysERdJj5koOP0RERopYtjS1cmsP/tM80W2adtEGuTsYN4uFoIUDC8t8NrTIXo4TT7XlrJqqmDntHh5rRx/WjibFNQuKh8jE3AqlpT9KlPWTnJXmERm4cZJIsFjzbZl5wmtbaQiT/Sa6LWVlWmohzK7pbcBjduuvuCCCy7ArbfeikcffRTt7e0tP/5AwmC3XdVEoZooNz+sh+9eT3d32e40+ibPjNF9pclJc8dQ9sy0HZEi+54KGDnVR8j2ovM3U0YjD1cIjfTncrR09BMnzBJnNipKvwcy5o2wcPljF22vGQPaT34TUMzIUdRTTijMo8u6qk2EBjRitxrFY489hosvvhjPPPMM3nnnHfz617/G9OnTmzpGs+i1wzZ37lzccMMNOOigg1o5n2ULLhwHDUjDIRUR4rBhkAFElLZlGJj+sL32y8IEA+vMHvJDgaSiw5WUW0/I2ccmjGvnggtunDRREVZcpCMwKpVuGGSHaQftFcd5Y5lKJKu0g7WlP2ypSiSpv5ZedI93FiMqkYLDxASHnKNNpP1RItGWhRUmCkgqxQ4bhXaSOqsJGNNhpMyo9wRKNRwSCRBDlHPYdHgkFxyVzCHuqAgMydqVQBglIeq8VQQ3Rk8we/y+iAuFJSs+um/EiBE9OkgAUKlUMGXKFDz00EPGaEgp8dBDD2HmzJmF+2y99dZ46KGHcNxxx5m+Bx54AFtvvbV5r521V155BY888ghWWmmlHufy3HPPgXNeKBjQ31gu7JaGrBUdUURdUSaSCHpII46UOnK2lpgVFLFhclWiIpiGQYKMKZqMgv25TgdwZ79cSKRebKFCI+TAKlHWCc05p4VosH4Q3Z3ORyMfpg3UCbWSqjDEMa8GqduypK4aYB9MOQBJygrp36aEhEryoIIkTgdxwRFkAiPUqUyISiRVu3SUL3NiKk2pRNZZqW7GdvVmoUnjkksuwQUXXIAHH3wQm2yyScNzH6wY7LarK5EI42JZrnphhGZMwZ5lIY50W23IYrFz5YQIy6J++/wiiR2UpGajLLCPUilX2Kgg3LJROM4YdZoKlKzdZxRWp18fj9U80+QdPXNuXuzo6fcpVAMhlMU2JD9WP286Y7K/XWW/CQVoxG41isWLF2PTTTfFYYcdhq9//etN7dtb9Nphq1ar2GabbVo5Fw+PFQ6tVIk84YQTMGPGDGy55ZbYaqutMGfOHCxevNgk8x988MFYddVVMXv2bADAsccei+222w6XXnopdt11V9x66614+umnce211wJInbW99toLzz77LH73u98hSRKT3zZ69GhUKhXMmzcPTz75JHbYYQcMHz4c8+bNw/HHH48DDzwQn/rUp3r7sSw1eLvl4dF3tEptrTcLTQBw0UUX4bzzzsN9992HLbfcsqm5D1Z42+Xh0Te0UiVy5513xs4779yKaTWMXjtsRxxxBG655RacccYZrZxPv4GJjGniwrBRKatWGwZZlgRPwyBNnbYoQZDVIEtrCxWvqNiQSG7bnJmQSF4REFk4YNAROvL9uh0MbTdtyraxSjtYxbJqjIiO6PBIl2ErpoxscqpN0GRMGXo+FAyhTNttgXBWoKTKPg+y0kQFPSoBR2cmliA4QzVjtaqxRFwWEpkvGUJWqyiFzrhdgeKCO/L9tFZcR1b6oCMUaCsYk9aZo2EFfQ+PTEsh1H7eRX09Yd9998X777+PM888E/Pnz8dmm22Ge++91+SHvPnmm+BEYGebbbbBLbfcgtNPPx2nnXYa1l57bdx1113YaKONAAD//ve/8d///d8AgM0228w51yOPPILtt98ebW1tuPXWW3H22Weju7sba6yxBo4//vga9cmBguXCbskEEMWbFKlN5gh6SGUl6AmrRVm1fAhj5LBt9UMiU+ugSLtclKdeCF5RiPlAgGYqZS4kskhcxO0nQiNJcR02Oh5hxYQGKSlMSCStz+YImShlxEYCxc1ctW1UDZRRkT1sL0KZ3dLbmkGzC00XXnghzjzzTNxyyy2YNGmSWUQaNmwYhg0b1vS1DBYMdtsVSYVucn8XsWFmWw/iHPnwxHy/G4bYGsZMKoUoUbXHkbl9STiynWN5X9l7jaKCzrQvXyuWliRyWLWC/lCUM2+AZthg26YfhSGWLgNYHJ7pjlMNMW+lIZgs/V41ikbsVqNCb/2BXjtsXV1duPbaa004Qhi6tbC8QpyHR88oS4INmqTnNWbOnFm6Mv3oo4/W9O29997Ye++9C8dPmjSpxxyDLbbYAv/7v//b9Dz7C95ueXj0HfWS95u1Xc0uNF1zzTWoVqvYa6+9nOP0lyDTsoK3XR4efUMjdmugCL0VodcO2/PPP29W3V944QVn22BJhmWc25w1LeUfhCaHjQcheJjlCoQBRMbAqKTiHENLLPOsSK0IE5O3llR5aYI9hSkULZiTz6aZupRhS8+fiohY5q8sb00LjbC2DsuwtbmFsw2bljGMKBEdoQmkTuFsxsyKcMg5wqwweMgV2jNmiq46AYErk1/QrgQC1Tgr5kuKbldjV5aarnoXfqbkxgx0gWzODGMmOHPy1jqyzzpl22xumx4fCpuwGgpeGJ9dFpNdhvzqGO33aD2WB7sFAKAsC8lbA2zOF+1XpEC1TJSxRS6rhsIC2XnBkJ5y2Ciz5u7HSL+brzYYUVMQl4qh6DEyKRQayTNtOj9NJYnJZ2MygZLc9utcuLgKnolFUREURViEIuRFR/oqelBmo3pju5pZaHr99debPv7ygMFuu6qJQpioHtkxoJaFr7dPkahHvjB8EXsWkTF5liwyEQgua1cm4FPW1n/jHhi2RoR/hMNWue2gh2eq8mct7jJl2WE12+QwbCQPLuSslIWj86L5cRpluXBl11qPpWOsOdGRRuzWshBL6i167bA98sgjrZxH/4CJTHiEmzBBFUQ2TDAIIdppaEttGCQT3IRT8igCAMgwNs5b0C6Jw1aeHGnrvVmHjXFunESqUinCwHHSeEUrRrYhGJo6ZpyKi1TawdpSR44FFVN7LXVOXXVIxbirFEnnaJwSq+jDmb2JQsHQrqyTpuGEQTqJra4R0WGIS6qJExLZodXq4sSp4VamPJkHPU9AHLZKIBxBkTZSN67DOHIc7dkFpg6pfSgVxnjxph01jZCViI4Mgh/gwYjlwm7VgeO40bqPiXRqn6nEPoRQx0wj75g1ExJJHcCevsf5+S4vKAp9dGuyFYdGOuN5AiW1wnAu5FKrUJYpWdIHUWMnW1fLrsxu6W0ercdgt11dkQSLkrqKikCxqmJeIMeOpSIi5U5aT6GMkXQXg4scM7pg3B0X1zR097XHMHMizlt+WyOgzgZ10uh2wW06Bw2PLHrWyi9gU0cu3xdy7jhvgjhvvCHnrXZBj4ZZpu/JtRY4bXmHTTCGrqgJ0ZEG7FajQm/9gT7VYfv444/x05/+FH//+98BABtuuCEOO+wwjBw5siWT8/BY3tFK0RGPxuDtlodH39DK5H2PxuFtl4dH7zHY7VavHbann34a06ZNQ0dHB7baaisAaQz1eeedh/vvvx9bbLFFyya51MAYwFKGTOmQSCEAHT4opanzI9qtF69DKQEgiWLDiMlqJi7SLiGqKduWl9wunAZZNmDCHptXQhO7zyu2lICoWIZNhKFTb00zhaxjqA2DrLRbVq3SbmuvCSvrDyo6wosZNvuxMRISaVdMBLMS/22Km1UnzbrlIRicFZ3OrGZUJeBmlYquZFUTURh6oFG2giy4W0vNnJOwalRchIZBtgeC1JazCatp8qpd9TH3epP3fCjsZ5bv92g9lgu7VYCGpO8zSBKWlA+JNKvPZHxejKQZWGZu4P8YLg2oOlL++XEatMyMc5wSdk4RZk3/NWybytvI1rCYZXZLb/NoPQa77eqMJFSUFNYiK2PN6Lgy9kx/1/Phi0X91aT3TBrdl0b71LBtBSGRjmgRDQcvuB8pa56vDcbI+8I6s3XCIF1WTdi24IVjgBxLl2PjTLsBcRPaT1k4/Z6es/Ex6Tk6m2HYWmi3Fi1ahH/+85/m/WuvvYbnnnsOo0ePxqc//enmDtYgeu2wHX/88fjqV7+KH//4xwiyIp5xHOOII47Acccdh8cee6xlk/TwWF5B65zk+z1aD2+3PDz6jjK7pbd5tB7ednl49A2ttFtPP/00dthhB/NeK2PPmDEDN9xwQ6/nWA99Ytio4QCAIAhw8sknD566KFrCPqiABRkjFkRAtiLKggjI8sC4sxsHJ3lrWgwkyfLWZDWGylivvCCAJCvhVPnK5K0Rhi3Nj8tWMcLA5KqJMLTt9gq4Zs/a2oGgQMq/rd0KkISh6Vc8sGxalstG9VPzuWxmRYfZgoiM5LAFACRsvHN7QFaKCgo40tjnkFuGqxpLs/JFV7toOy5k2Nz3RVK3QW7VqVLAsDl5a4SFCzlDm7DtULOfzCbXNptvHwpWwrD5h56lgeXCbuXg5oERW0Pz1koKVFOU563l7jPyVn9NE6XMD+FylIrWcpSxZJRVo4W2mRkXOtvpcaSsvzRcxKr1lWkrs1t6m0frMdhtV2ecQBI2JC+fr0EZsaKC041K6jfLpFUTWTDePovEpJ/uq6QtrUHZbVpSxS0FUnvNRUxbHizHQDlsm2avODMCdpR5Y4yZckb5557AYdNsP5BGIennpTbCttVj3hyGjzzrmbmT/ryoCb2+MoYtXzy8M+45gkGjlXZr++2371FFu9XotcM2YsQIvPnmm1hvvfWc/rfeegvDhw/v88SWBbTABgtCQNdek+1W1Uu228Fc2PDEILJKjlEAmSlJCp0IHsX24Ui6D1BF4DQkknPHeRPZvJjgJiSSVwLjpCEITYgjqxAFyLYOEwaZFyAxzhkXNaIjZXXYGLPOCIOrEqmjnSQDQr1rAOhiUZwxdLMstJTccBFnCLJrjROJKFNEi4REFBaHMNQLPaiHRtSStAMWCuuMtQVWaKQ9sGGQ9MYXJES02UcVn8O2bLE82C1wAai4T4coUoAs2l723vanf1vxjM76cpASoaSBhHpCIw2FRObUJ2vHFD8garQqHBIY/LkggxGD3XZ1xRKIE8fB0ihzvHraXvZMkFeULnK68qqPWpm6O7dIbMbE0jygJ7E0qqxJIs39RttFYZBKuuJAGs06bIwsdjNeHB7JOIMwAna0DXRnDhZ15OiiNXXSnPDJHhy5us5bgSOXd9gKhUZIOCWSXD9j6feqQQx2u9XrX7l9990Xhx9+OG677Ta89dZbeOutt3DrrbfiiCOOwP7779/KOXp4LLcQGUVf9PJoPbzd8vDoO+rZLW+7lg687fLw6BsGu93qNcN2ySWXgDGGgw8+GHGcrvaGYYijjz4aF1xwQcsmuFSh2aQsLBIAkCQmZBCAFeWodplQRRVHEBl7JeIIMs7CKYm4SFEtpLpT6SEkkpHSAywMbehjEBpWDUEl3YZUvp8VhEFCECl/EbhiI8iYtlxfEfSXWzHlCJAo/YbDfLuEJPXcEhtOGXFmqtRHnCHI2m0Bd2R4y2qi9BQSaeaal70tWN1J66oR9kyHagpuwyAFM7Xl2oQgK0ZwjtkMGHOiUJ1+j9ZjubBbPaAoRJJK/JfZo7xkfzHzVn7eVrJtZaACTa3CQIvgU6Sem+K1IZFSJhBkbL2wnEZW7nuDMrult3m0HoPddnUnEiyWpUxamXgI0HjdM8qMxZRtU6RNhEO649owyGoskWRtmUgnxFH3O6yaw7ypGoaNjqUhnkoVM+H1QEMcNRzREcFdhi0oCIkkY0TATQhlHHB0MtsPaNYttUFUlKQSCCc6iQqXuCGW9SObGmXekJnBIiGT7gaer83nN8jtVq8dtkqlgssvvxyzZ8/Gq6++CgCYPHkyhgwZ0rLJeXgs7xDcrS1C+z1aD2+3PDz6jjK7pbd5tB7ednl49A2D3W71ymGLogg77bQT5s6di7XXXhsbb7xxq+e1bCAEIASUCsCCgqLYXEDyrrQtBFSUrXLGpLi2lBBxNW3rHAMpgSYKpOpzGeg2t0W5EVQM81bTpqxaUW5bEAJBWq1d8SC9bgDggWHb6DlL56inx3SJ3Ex0hLJqeotkJuCWg4GHOm9NIZK0na1kBdwwaZFUSARh2DKGjsax621AY1LjPcVGc2ZZNcFdhk2323J5bsIchzn5fc2AgxUW3e5tIW6Pciw3dqsAZfmxvYUrPtLSQztIowjqf9dZvTIjPZQgyWMw/Ci3Gk7h3hYlyZfZLb3No7VYHmxXNZYAYazyv+VlbFpRX1l+WrEEvzQlf6qxLGTV4lga4ZB8fpokrJpl3oi4CNk3L0AC6JxS+zxIGXSNRp4T6TMiE8K8Z9y2U9ERbtqUeeMBJ2Msk6Zz2zhpx1E6nzjg6M76goCjahg26TBpRWUCumNZmufWVFsS3QMoN+dNMvM/bASD3W71ymELwxDPP/98q+eyzKEyh4VxCYXMuaEDhADPbgQVV20tM5lARZFtx7YNwDhrgCs6kt8GegPSBw/jPAnbz4XpZ6Gtn8aC0N7IeSdNhPrg1jETAkpUzPXr4/QkOkLBGAPLjKtgDOC1ThqgwJSm4xWYtM5NqKzDJrMabZGUSIRt62cMWn/FCZUgDyH5mi16bNFzoKMwxFlNAivgOmNUgCQUxIg4Dh4c560Z8JIVnyafQz0awPJitxpFvXCbotprAwG8kfhEbftEuTqisWcll5bW8Knt1w8hebCS/oGI3iiX1UvGLxxfZ6Xa267WY3mwXVEiwZwakI2FOdbbnhcR6YuTplUdE9LvOmNwQiJlYXhkbFVeo2whP6fqWqQUKxtw2LjzvFjssDEuwPUzIBcQuvwDER2hjplMFBKRXgePmHHqirYnCUccZ0reRKCkO5ZoywiPSsBRJUqT+nkpkapUqbvZttRhkwqQzKbMNILBbrd6PcUDDzwQP/3pT1s5Fw+PFQ6szsuj9fB2y8Oj76hnt7ztWjrwtsvDo28Y7Har1zlscRzjuuuuw4MPPogpU6Zg6NChzvbLLrusz5Nb6uBBGhYYAEyHNaICpldngxDI6rOxOLQUdhxBVWz4o8oza4RVo7S3MyYn3eysFlNWTW/nwoY7cmHGMCGsAAnn5ayavqZ8GKTptwybZdvsV5gpZVZgFZSR8k/XlTRHrVKWLTucJt44YbsSpSCUZaNkdoQ2RYVGuK2zohT0Aopbq0WhiEAoEh4RudVx+tZJcs0uO+RWgCSNea4NfRRkvKAJsk3e9elxancaDIpFgxHLhd0CauzHQEdvhD3qhkIOALBleI8q+juD4npuzdZ16gvK7Jbe5tF6DHbbFSkFJhsr01OPYaOy+/VYNSo6Qlk1KyIikcRWGKQs9LGMVTNj4qrDqpl2bBk2WRISWVyeo7zEByPRBQ6rRtuxZdgkYduS7DlRJBwye3hJEsu2iYCDa8GUwAqnaNZNSdsvpUKcXX8QcIfxDLhmM21dtyRQznOUZudawbZFTUQUDHa71WuH7YUXXsAWW2wBAPjHP/7hbFuWP2QeHoMZHMU098B+VB288HbLw6PvKLNbqNPv0Td42+Xh0TcMdrvVa4ftkUceaeU8+gUqKxzNAKjsk2AyhpLZqoZMwDQbFbaBJZl8v5ROvpojNqLRoNiIAS9g2ECYN5rDxrkdT3LOFCP9nDusWuEYxlNpf32c3PHM+BwY7A+EcJJEGDjXK18MLNvEFKAXQYSyaSUJA/QnppTNH1EKhnmjiyeUbdPv8yjLxylaPaGsmn4PpMSiTkAV3BKNHHY8QxnzVnj6UtAVo3y/R+uxPNit3kIuTfUQFH/3e7tq2aci2i0Avf/KJLRXZJTZLb3No/UY7LYrSiQQ945hKxMUoQWvE6lKZfqpxH5j7FmtoEia56bbsWHQZFR12LSEtPX24hw2EonVrOgI58WiI2HFRIuJoGLmxYMKOW8FKstt41IVs2mK9JG2yjQHuFRG+p8ikcqwZwAguCJt5vwFgITYkd6ybc3ksA12u9Vrh225QOYEKYCEBgaATGucpBywjseTQCbWASXBdL+SNvZVtchh0yhxntJaaUYqp1gwhOX7WW0/5+n16jEodtDMdIjjot2uBMw4bQy2DlvqpGXCJGDG8ZKKmX7JAZWFR0qljCMnle0HrPMGchw9Lo8ydrzouZHen3Q7B7PXyqg6pu13lCEZER1p8qYXJeIHA602lMfgRqtVJOuhke9us45cf4RHNnsv67CkJi3/oESZ3dLbPDzySKQCr1M3jfbHOYctka6KpBEaISGW3ST00Rnj1EkrFxeJI1nY7zhsBU4aDYlM4qojNqL/mlq90g2DlCQ8sicwIoIHwA2JNKrlielXMoHIwiBrQzHTfh5USpyzzN5WymbDYZfbbX25vBOXr4Gb/iUOnUqVHgHXeWsrcAbLUFZ/twiD3W71+ldw9uzZuO6662r6r7vuOlx44YV9mpSHx4oCxljpy6P18HbLw6PvqGe3vO1aOvC2y8OjbxjsdqvXDtv/+3//D+utt15N/4Ybboi5c+f2aVLLCooHUCKAEpkEvgihRAgVtNe+wnaoSod5Sf1qG2r724aS17AmX0NrXrJtaPF5Kh1QlSHpKz9PUcle+WuqmBdEkL50qGTGuinN0Oly8Dm2jSmVvpiVgRbM0sxppXq7ihFkVe/D7G/aBiqCFbw42rJXu2DoCNJXW8DQEXB0BBztgpt2GxlDX0PC9NWRfxWMTY9RcOyAoV2krzbBUTEvO9+Qu9enr7lZVp2Tz4u+BgE7PyixPNit5RX9HQbZG9BwpLLtRe3BjjK71VvbddVVV2HSpElob2/H1KlT8ac//anu+DvuuAPrrbce2tvbsfHGG+Oee+7p5ZUMHgx226UZNf3SYiCaXdOvODdOs2t0v5RZkyYMsjt3DB0GmYbxpaGPml3TbR0GqVk0KVVWM005/WbfjD3T7Jp+JeSV3ybjKpJqlzs2Sl9xd2fh8Upf2T5xd2d6DH3O7Bz0PHq8M7fcNn1e+nmYzyx7JXFaV05/VrqtP0v9eSqVfs6q5P/q/n9y25X7/9XjqwWvmu8FYWkbQavt1rJGrx22+fPnY5VVVqnpHzNmDN55550+TaoRNGvgPTwGIjgrf3m0Ht5ueXj0HfXsVrO267bbbsMJJ5yAs846C88++yw23XRTTJs2De+9917h+CeeeAL7778/Dj/8cPz5z3/G9OnTMX36dLzwwgstuLKBC2+7PDz6hlbarf5Arx22iRMn4o9//GNN/x//+EdMmDChT5PqCc0a+FJksv4g7JMKKlBhW/oK2iDDDsiwAyr/qgw1L1kZVvtqH2FfbcNqX3R7+4jCY9BzOOfM5mTmFqRzNfMO21JGUDNqQSXNvxOVVNZfs3CZxL8iTJth1vK5bMrNgdEkXMqy6RdhnYR9aWZNs2t6TIWnLFebYGgP7Kst4OaVsl/MYd06AoaOkNd9Dcm9ysa1GRbPsmrtws6hQuZWEemcK9y9Jp0sWy+htQwit29vj6PR6pVqpRTOPPNMrLLKKujo6MCOO+6IV155xRnz0Ucf4YADDsCIESMwatQoHH744Vi0aFGv5r+0sXzYrcGgZ1WLevkD/Y2+3HPLGo0IFDQD3ovrrme3mv0cL7vsMhx55JE49NBDscEGG2Du3LkYMmRIYfgfAFx++eXYaaedcNJJJ2H99dfHueeeiy222AJXXnll09cxmDDYbVci0RArUsOsqTyjUs606JfK2DLNmGk5Avs+PwaWVcqxbTr/q96LMlamL44g48jI+stMoM7ZL7b7lDFrdKxz3iR9Sed4kXvsbF6NXEPKqFm2zTJujX92dEy9/0/p/7qZ74Z5NfwVbKnd6g/0WnTkyCOPxHHHHYcoivDFL34RAPDQQw/h5JNPxoknntiyCRaBGngAmDt3Lu6++25cd911OOWUUxo+jhIhlKjUOCMajPQ7X6GS8S1HHQEQjVKRkNL+ki9lwfiaY2fXzYifT4+WV08zypDMHVmk7ujsVzs5sm/dXVuGsnu37JY2dduaFVMoOWZvTIf+UZ07dy6mTp2KOXPmYNq0aXj55ZcxduzYmvF6pXr27NnYbbfdcMstt2D69Ol49tlnsdFGGwEALrroIvzoRz/CjTfeiDXWWANnnHEGpk2bhhdffBHt7e0AgAMOOADvvPMOHnjgAURRhEMPPRRHHXUUbrnlll5cxdLF8mC3PAYelmW440AIrSyzWyD9CxYscPrb2trQ1tbm9FWrVTzzzDM49dRTTR/nHDvuuCPmzZtXePx58+bhhBNOcPqmTZuGu+66q4krGHxYXmxXmRpk3MOPe9GDfJx7+Kcw4mZZWCSQOhbSUT0kYwqOLzOHDXDrppXVVkvfy9wxrJK4qxJZXIctj0bG6DMKLsz5GReF82V5ARKuj1/rDmgnLD2ere8ouTJPgUopI5DOuAK1DPp/Ijgz/yvBmamXB/BCR6mRMMfeOFiN2K2BjF47bCeddBI+/PBD/Nd//Req1VQVp729Hd/73vcc49tq9MbAd3d3o7u727zP/5B4ePQXWinr3+yPKl2pBoBzzz0XDzzwAK688krMnTsXSinMmTMHp59+OvbYYw8AwM9+9jOMGzcOd911F/bbbz/8/e9/x7333ounnnoKW265JQDgiiuuwC677IJLLrlkqa/8Ngtvtzw8+o5G5LEnTpzo9J911lk4++yznb4PPvgASZJg3LhxTv+4cePw0ksvFR5//vz5hePnz5/fzCUMOgwW2+XtlsdAxQor688Yw4UXXogzzjgDf//739HR0YG11167ZgWt1eiNgZ89ezZmzZpVu8HUNitesVSoL3O/TEDPv6yYvZ5Qykjm3pfs3qdPtD/uqYa+A+nF8wJ+sO6hMyGXon6gsVVqYOmsVL/22muYP38+dtxxR7N95MiRmDp1KubNm4f99tsP8+bNw6hRo4yzBgA77rgjOOd48skn8bWvfa2HT2DZYrmwWwXgYvCESfa2NpvHwEGZ3dLbAOCtt97CiBEjTP/SvseWdwwW29WM3fLwWJZoxG4NZPT5V37YsGH4zGc+g4022mjAGuRTTz0Vn3zyiXm99dZb/T0lDw8AaaH2sheQrlKPHDnSvGbPnl14nHo/qmUrzz2tVOu/PY3Jh1sGQYDRo0cP6BVvb7c8PHqPenZL264RI0Y4r6L7bOWVV4YQAu+++67T/+6772L8+PGF5x4/fnxT45c3DHTb5e2Wx0BFI3ZrIKMphu2EE07Aueeei6FDh9aszOdx2WWX9WliZeiNgS9jJYzoBlnxdQsz52KiC47dU6it6oPXzhjLndT6183kWPHcinbRAnfh6kJeaKSIWcv3NXCcuserM75H0P2aZUZLxtcwrPR9wQfZ9E1Pi7Pn++FXqVuB5c1uDXYkg2Al06MHlNktva1BVCoVTJkyBQ899BCmT58OAJBS4qGHHsLMmTML99l6663x0EMP4bjjjjN9DzzwALbeeuuGzztYMBhtV092q6fQs7L8Jb0fFZkIOHPypOi+uq4W58x8JRln4FmhZsUZmNRj0vfpCezxOWdQukC1EGCSFKvWBapJaY+0cDU37fQYAo3cEWW5akWlQWg5kdqC2rxwPC/Zt35ZEmZEiRhjRqeAPlMy5o6hoP/rwCmizWu25/fT42kYY5/FQVpktzSuuuoqXHzxxZg/fz423XRTXHHFFdhqq616P78e0JTD9uc//xlRFJl2GZZmAbreGPgyxCp9UadKkvfUbqj8e7pP7riteh5huRjDIpeCftacuQ6b/V4ra7wYjBPIYG88BX3DEectzTJNm/TLrKR7kWVjytqy9sYo3Rco/0B749jVOGBF3it325zXbsuNMY5dswpuMineJ+vTq9M9YWmsVOu/7777riMn/e6772KzzTYzY/JKYXEc46OPPhowK97Lm93qDQZCyGSyHPtprVZuXFpoWThqmd3S25rACSecgBkzZmDLLbfEVltthTlz5mDx4sUmF/fggw/GqquuaqILjj32WGy33Xa49NJLseuuu+LWW2/F008/jWuvvbZPlzQQsTzZLsHdB/SeHLP0RNlfTrdz0Kcu4TgCmVPHGRHFYJkYBsAVM44ZU9bRUEoZZ0QIbsQ10n0LHJ18W4hsmhXIOM0v5NnTtYzt9PNPLK6jV19MKO+4mXOSufAgJO0KeFjpee6mzSACbj4D3acfbTi3DpvjyHErOEfHlDla+f+X6Wc9O2NFx2zqp62FdqtZkbdWoCmH7ZFHHilsL2v0ZOA9PAYL0pjqIge2uafbpbFSvcYaa2D8+PF46KGHjIO2YMECPPnkkzj66KPNMT7++GM888wzmDJlCgDg4YcfhpQSU6dObeoalha83fLwaC3K7Jbe1gz23XdfvP/++zjzzDMxf/58bLbZZrj33ntNKPabb74JThbNttlmG9xyyy04/fTTcdppp2HttdfGXXfdZZRtlyd42+Xh0Tq00m71h+pzr0VHAKCrqwvPP/883nvvPUjCmjDGsPvuu/d5cmXoycA3ikSlL6WUWf11GDZYciffr6FUz6GTjUjRFy0suGwZpaBJf549I2O4aTPwjK1jZBxjDAq2Pz0eMyeo+QLrL7pSLqtm+nN0sywao5wxjO6bP0+uzQqO3SuQH3+VZ9PoXwCMsme6Tl3WVnbpCSxrs6YZtjh9FfU3iVavVDPGcNxxx+EHP/gB1l57bSPrP2HCBOMUrr/++thpp51w5JFHYu7cuYiiCDNnzsR+++034BQiNQa73eot+EAtgpZB9SMF14iMtAdBmd3S25rEzJkzSxeWHn300Zq+vffeG3vvvXfT5xnsGMy2Kx/OVgm4ue+qcQ+/5xLmgaYScFRju6EtY4W6Y2mOn47Jnj+kZY6cA+Wg5fAVZ+BB0ZhK6fR0uGGSsWvp8TIZfS4g4yibC5XRhy0NkPT83FAb+kjCHYPQtA3DFlYgggoZk7Yp88aDisOqUQYNAETADNvGA27aIuDm90QE3DyDMs5QyY5XCaxkfxtpC87NGMGZYf3p98MdX87UNR0i2YDdWlrlSFqBXjts9957Lw466CB8+OGHNdsYY0ga+AL2BfUMvIfHoEEPOWzNYGmsVJ988slYvHgxjjrqKHz88cf4/Oc/j3vvvdfUYAOAm2++GTNnzsSXvvQlcM6x55574kc/+lHT818W8HbLw6MFaHEuiEfP8LbLw6OPaMBuLa1yJK1Arx22b3/729hnn31w5plnLrMV4lbDVli3ifBK2dVWyrAlShmmTClAwo7PL846wiVNyrxzlDBpTOWYNZtz5rJntl8Y5s3uy2FjiJlSUFm/7pNK2TkwViPVn16gdJkxvWIhc/3ZB8FkXMjCMZrPlsuJ65F5K2GyaNFKmnzrgK5SFbBqKg3K1gMAEdgxWb/igd1XCZLD1tzqMpMxWFK7T28Vi1q9Us0YwznnnINzzjmndMzo0aMHZJHsIiwPdgtSFqsL5ZAvZD+YkS9GuyzQCOu2rHLX8raMrq5rOFEYTfzvZS/YxTK7pbd5tB6D3XbVY0Mo25ZIBUHaQFog27BxkIahSSRDNU7vwTbCitF7twpb8DlFQWIc7MMw4wCLs+chIrTBGIPkKdOSkByylEGrmnZC8tIAQEZVJ1fNFrOWNs+uATvi5rDxwjw0HlZMWwS2XcuqpVfLBXcYNs0sioDV9pGxXLj5bgFhzPT/hrJklUA4zFhFEIYt6w96YNLK2s0wbI3YrYEs9NZrh+3dd9/FCSecMCgNh0YiVWoIiJOWkBDHWkcu3U9CkVBJZfvNfsoJk0waeNagiZP6h5cmiHNmkys5Y0aQhMP20zBIwYEEVj3J9jPzAy0Ys+4kUVrSc69JUNcOGF2lkLENfZSxcaTyY4wDliTl4ZTEkBkDJhMbLiDrO2z1jJ6T0Ou0s1BGIWw/F2BZiAEYB0vScAbFA+tFi8BkFSsV2OO3WCXSo7VYHuxWK0CjI+19vuzCAge6UmQ9Z02VbJM92KS+Onc9iRKYccuizp1n2JY5BrvtCgWvccwaaQOAIH0AkGTPPwlX5oG9SkIiaVtw5oRc6vtDcumE8knSZkxmY5hx3hhnkKSd0JDEzBmSUdWEHmonTgUVG/pIHbYkKbQJtC9/zxepO+YVIDkNgwxrQyIFCW2sF+YIFDlsGQkguBEdCQLuhEEGxknjRg2ShkcKZp263jppps0YkmZURxqwW40IvfVG5K0V6LV02F577VW4Yu/h4dEEtGpR0cuj5fB2y8OjBahnt7ztWirwtsvDo49okd2iIm/m0JnI29IsL9Jrhu3KK6/E3nvvjccffxwbb7wxwjB0tn/nO9/p8+SWNrToSCIVIlnLqiWSthWixDJoui2VMmP0AlAicwxbA4vJdMWbkyRM2weEpnaFy8KFgpn99HGEsivniVKmX4KsqHMFHVulz8SUOxeDGjaMhEGadkLahHpWyvYrCWjGSkpAr0IliWHQVFy17fyNpPtpvH4jNxoNJxCaSeOmn3Fh2TYuoHQSrxCAXrEKQqvVqxQgaJhn2t9sOBCjn1mu36P1WB7sVitRpkPSF30Sau8sk9bcAVWi+iUMsghOCZdBKE7Sp7pFJSizW3qbR+sx2G1XyBhCziEIO9Yow0b7aL21WCrDnqX9+hlJIsnsB2VxEiJGEscMjGfRPnHKpqVtGwYpY2myI4TkSLLffJ5IiKydBLYMQBJUnFBIIB8G6bY1itj5PPKCI2Uy/ZRV06GPjPcsHsKJ2EoZ66b7KasmODPhqGWsWkXYditYNcA+78ZNRBS00m71h3Jqrx22X/ziF7j//vvR3t6ORx991AnDYIwNeOPh4TEg4EMilym83fLwaAF8SOQyh7ddHh59RAvtVn+oPvfaYfv+97+PWbNm4ZRTTnGU5wYT9KpNJK2sf5rcmrYjKQ2T5rYVomxQomDaNPdNt+mKbBnT5rBrnBH2zGXbeBZXLVgaDw4AIWfgWVx1KJhh4UJB2DYOKFMgW5Eqjixj2QC9As6VsmNVnXXxorw1IpnK4shh21QmawuZQGUrT4gj069kAuh2Qlg1mdiVdsK2qR7y2WqQS9g1fWZlilsmTQhAM2xBCBZkcw9DOyZsg9KsWkCyf5pcpWEyLmHYfOL+0sDyYLfyYLkYfvo+v62sD6jPti0rxX3ZohPZEiDFeV+tIMrUUsrDazRXzYxfFjlr+XOW2C29zaP1GOy2KxQcoWAmFZ0rhlBrdZFIpZ4Ytnxb50zFNSycZdsqQXpSmtvmsG1CIsme47hgCGQm059IyGxMkkjLNiUcMsye8WK7bxAK01aVVKxCSlXMsJEooaZFR0Qxw+YUriYy/TQXjXNWyJpR5s2wiiWsWj5XrRII87kXCYo0I9Nf02bMEVTSv1M8Y9viJnLYWm23lrVyaq8dtmq1in333XdQGg6NBDYsMpbWGavGabs7SYyT1hVLEzYZJbYdJ9I8zESZJZKS1nWjDlv5D3ye5gXsFzLfHwiOMKPyQ8ERZl/sUDKEmQOWtvXNxSDN953BuBcc0Bs412GdVhky/wBHlRtNm1DMLKmmoiLIvvxxdzo8joqdtLgKFWXOUFx1nTrapqIjjuFrfEWEqqwZw8cFWBZWoojQiAoqVnQkrEBlDhuLQ7AKSQjOfgQUUqctve5m67ARpcx8v0fLsTzYrd6ACQbWQJyjtjcRCaNOSHg1oHp03opO0xc/rOY+pw88Td4nVACqaE5xiSdXJjTSDBgXpQ9mRU4afSij4E04dEtNKbTMbultHi3HYLddlYCjXXAkBU4aYMXQEu4KuAH1HTarGEmUJGNp7uWqkOY41Viiw4xJ0K2dMRJaWY0lEh1mmTDIzKuUiTL9SSJtGGQszeJNEivTb7YnEkqmDwh0AV8p1bRdoYqVGmVOGuPMiIQwZlUdaXhkWT01QRyz4tBHq/pYCbjjpLmiI30Ld9TXp0GdN8HSbUlhzbwSDHK71es7f8aMGbjttttaORcPjxUPPnF/mcLbLQ+PFsCLjixzeNvl4dFHDHK71WuGLUkSXHTRRbjvvvuwySab1CTAXnbZZX2e3NJGkq3wJMqKjlRjhe6M0emKpVmBoQxbdywNmxYlyrTp6k6e0s+386CrDBr5FQob7ihzbR0SydEmLMPWHmjWjDs1SqzQiNI6G0iygmxMpWGR6X4AZwU+fU0ttYxKTpKUZQOAJIKqdqXDI9KOq1Dduh1Z0RHKwkmZCo8gXV2X1di0lQ43SCRkQaHQsjpsXNdMEdyEhDFu2zwMwEy4Ywil25V2y7a12WLRFIxxKL1s2GQcNKNsZa7fo/VYHuxWPdBwR14nVESYVUpmRAB6AxN23YewPLWs4i1L0B+nL2PbysIhGan7RMe5tZmseEARs0Z/W/JCJDJXiqbH+ZfYLb3No/UY7LarTaTPIUXRR1KqEuaNbFe128uYt/wzmAl9DG07qQjblsrUc+sm+1Zjacc4TJo0P/UO20ba+q+UyuyXlp51t+fbZaD3NOPMME+MW8aN3vuUSXPblkGjzFueTQPSUEYn3FGPJSIi+XBHeoxmmbR8KSvAMmmF/U3K+g92u9Vrh+2vf/0rNt98cwDACy+84Gzrj5h6D49BCZkU124bBKs9gxHebnl4tABldktv82g5vO3y8OgjBrnd6rXD9sgjj7RyHv0CqdJXIi371Z0k6MpWVLpjiSWRXXXRDFtXLNGVrcbQFRi6WpMQNk6jEYYNQGEMcH71oyNMVz1CzowASVtgxVDaAmES69voom2OadOn1Yvs6UpQgfFXihTCtrlkVL6fydhK9le7DJMmSRtxlbBtllVT1S7IKD2OjGLDpCXVyLBmshrbdmLZNmeaWV+ZEAMX3DBvvBKYtqiE4GE6F9FesUIjMgEqxcyaOTbnRu6/6cRVVULFq4FvPAYjlge71Qx4QUJZWS4bZdsELRHC3PzbZiT/BVkNbQWK7vnBBM2INVIct2hbUR8vYNMoloasf6nd0ts8Wo7BbrvaA462wH53pbLPSZJb+1Io2iZQyLA1yrwVPZtRFq47lqgmomC8fb7LM2/m+IR5U1KZOWsBpVR0pJZVowxjswwbFeFghFWjgiIO20aYNIcpq1PoGihn0vLRX6WsWjbPkM69gVw12k+vV/BaARLZTA7bILdbvXbYlgdIGhKpFSAT5YRBmnZi251Rgs5q+s/trCbODQ0A1UQW0vRJnaRGwet/4SsBd2pddAbp+TsqwjhvUSKNQaRGLw+WJdFyZY2g0EYPrFxBjYRBUgES6rwZZ6y7C5K0TX+1C6q707SpkxZ3dpu26U/ckEjdluSz7OkhjgluErVpSCQPA9MWYQDRXjHnF+3peQSNbaY3OlFmUnEEJrLwlCYTVxURYcn3e3g0CkdUp1AZkrnhksSRasSZsmNYXfGkfsMADWehoYz5EMgix4z2ldVdKhtPQ6E4eVCjaJXzVma39DYPjzw6AoH2kDvPF8ZhU8UOGx1XVNtWKusg0f2Skv78s1kjjpzpT6jDlhSOKVO4LAqPBHIOXMmDF3VknLDIgjDIemGIbY7DVqzq2JYLiaznmJl2gRBIvf56zhjta6Q2sWAMKmhchGmw262mREfefPPNpg7+73//u6nxHh4rHAZxAuxggbdbHh4txiBP3h8s8LbLw6OFGOR2qymG7TOf+QymT5+OI444Ap/5zGcKx3zyySe4/fbbcfnll+Ooo44a0MUclUpfaS22TEREWgGS7kSiK2NvluRYNd1eUk3QGdnwyPRv+epLGYpWRQKHuhYOTa1XQqqxRLWSnrejIgoTet3zwNRt4wFDoqW7dfiTsjXFSmdLRUcSW9dCVbuMTD8Ng1RdiwuZt6Sr6rBqcVc129cybEkUQ1Z1rba86Ig0/UVwRUcsw8bD9GvPKyFE1pZhYMMtSUgmQCo5cQFkcwcXUHp1O6qC6bDJJtkHFUW2tEGu36M1WN7slkaxFDxl2qyUPxdWvplTif+Yhi0qG6oClQuJtOcoEhgRrPfCI42UG1jeQEVHakIihWXPtA2jDBtl7ejqellopP1taZ0cfJnd0ts8WoPlyXZ1hBwdobAsmIT5cS0rf6QfmeizUxkbV4+F0xFUZeGUkew985ZIe0xX7MQVo9PtOPc+D9qXZ8SLUmfyYkI0WouyYOVsW210V1FfyHmhQEhIGH0nxJG58+IF4fGczCt9T661SICEmLD0XLbsQiMY7HarKYftxRdfxHnnnYcvf/nLaG9vx5QpUzBhwgS0t7fjP//5D1588UX87W9/wxZbbIGLLroIu+yyy9Kat4fH8gGaD5jv92gJvN3y8GgxyuyW3ubREnjb5eHRQgxyu9WUw7bSSivhsssuw3nnnYe7774bf/jDH/DGG2+gs7MTK6+8Mg444ABMmzYNG2200dKab0uRio2kL5vDJh3REZO3Vk2wqCs27SWabYsSdGZ5VbqPrrLEsbQyrnUKJdLkUL1aEeSSPPWqSEclMCsg3VR2ViokFb2SlEtMN0meth0qRlah9N+ec9hcAZLECo1EVYdJc/LWOhenc+zuRpIxaXEXaXdWTTuJYkjD1MVIMrZNJRJJVRfOViap15ligegIFyTGuyKcvLWkkt4Cor3NMGw6ly0PwUXKsgFgcRVKpqwao0agyVwalZTksCUDf7VnsGB5s1t51AjskHxNt5+Z7aZYao3QiG3rb7Kb59ZI4Wzm/LX9jV7R4EA+P0znnEmn4HVk+hVh0pRMSnPS8rlr+eO7bFuthD/jzMlvKQJdOe9JtKQIZXZLb/NoDZYn29UecgwhDBvgFrIvY9lqtuX2KWPkbD6bO14Ls+XFTVxGrnZMooqZt3pt/TfO9dW0G4jMETnGirYp29ZMsepKwAsFQLSQXV4UhBNWTTTEqtXO3R3jvi+61vx42s8YEDfDsA1yu9Ur0ZGOjg7stdde2GuvvVo9n34BvekjqRAnVnREhzvSMMiF3bFtd0XmJtZ9SWzD9ZLYJplStaAy0HoZVVIvo1twdBInbUjFKhoVGQuAOmmu4puu4RZxZW50bayoSqS0TdcRUdKEQTIl7Q0QR6Z+mqMG2d2FpDsNfYwXdyHuStvR4i7ivFWNkxZ3Vm1IZDVBEmmVyMQ4aSohjnDJE6QJB+NWcEFUOET22ckwASfOIA23dI9jH4BFVvtGxSFYbJUktbPXbC0PJZPCekxFfR59w/Jmtyjc2oKitl8wExbMiQAJDWWkIZGC2QcY12FjKAqWzqtKAmmCdFGdNsFYjTM30FFU1yztrxX/yG83oY+iPDneHEfkQh+zNg8rhf2MJPbrkpmcMdNmJQ9qeXDGCh+cylBmt/S2pYWPPvoI3/72t/Hb3/4WnHPsueeeuPzyyzFs2LDS8WeddRbuv/9+vPnmmxgzZgymT5+Oc889FyNHjlxq82w1lgfbVREMFcHgPF9kt0TeX5E5G1OzvQenz3XilBnjhEQqV/TEUZss6e8ptDKvVGnn2IPD1oBKZFkdxfx9be73BsRAQpEbkxP3yDtjth+uo0dsj5lHzqbknS2NIrPDc0rldAw1YYwh+041hv6yW63CCq0S6eHR74ij9FXU7+Hh4TEQUWa39LalhAMOOADvvPMOHnjgAURRhEMPPRRHHXUUbrnllsLxb7/9Nt5++21ccskl2GCDDfDGG2/gW9/6Ft5++23ceeedS22eHh4eAxD9ZLdahRXaYZNQkEgFR2hIpBYdiUgNDicMsppgYVdk2t1ZfxzpvxKJps4T6dTgoOGRGjS0xpFoFRxcJ38KjjhI++PYrQ1S1WybCkuvlVLd3dlyUygYKopl88lWvZy55VYuKIuk431lbMIBVRxZoREaBtm5BPHitD9a3GnERSjblnRVbX9XbEIfk6pEEul2Ytg0lSgiOlK7OuXULBEcvJKxC10cIqPQg44AIsrClXJ13WjdtiQTPeFhAF5J26ySQCU6PDMB6+XqjErscfL9Hh51YRgX7rDAGjT0MWWZMyaGiI6EnKOafXcpk0YZMwk3JLKoTmOZ6IjLrNVeQl5wpLBuXA8lC7JBxf0NoJlQTWqfa6dQFLJoQx85gDL+3YqIEFYtCEuOScbkfi/S7TasPh8uVRQ61RuU2S29bWng73//O+6991489dRT2HLLLQEAV1xxBXbZZRdccsklmDBhQs0+G220EX75y1+a95MnT8Z5552HAw88EHEcIwhW6EegZYqQM7QJVihmlv8J188jzhhnT/3cUn4cvY3upxyRErofZd5ax8iZ4zvhj+55m0Fx+GBtDTPTX1C/rLZfH4eMIYwZZdLMOUkoI2MuI1aPDau5nqKavwVji0yV7gqbsGP9YbdaidbJRnl4eDSPOALiasFr4K/2eHh4rKAotVtLz3bNmzcPo0aNMs4aAOy4447gnOPJJ59s+DiffPIJRowY4Z01D48VDf1gt1qJXlushQsXYvjw4a2cyzKHlvUH4CSoUolWnZfW7eSz2Ry2zq7YYdbSvwkkYdiS2DJsiqzEUNg8BLJiGth8Nh5w005ihSSpTX7Ng+YuhNkychBLsyIRJdzGVnPN/FmxAZrPBsAtlm0+uMTIoaq4avLZVDUn358xaXFX1bJtSzoRd6asWrS4G3Em6hJ3xiZvLakmlm2LLAuWVEnh7AJ1H8ouMMHAurTQCMlhkwphQf4bLa7NuC0DIKPY5OipOLKsmqM81HgRR30cFdfehkuziGOzeSAA0NXVhRNPPBG33noruru7MW3aNFx99dUYN24cAOAvf/kLLrjgAvzhD3/ABx98gEmTJuFb3/oWjj32WHOMRx99FDvssEPNsd955x2MHz++9RdagOXBbgHp97Lork/zLDMhnUoAEWYFUisCLLu/REWAZ20mGERW06PCrQgRtYOJSrfZfj2GyE87OWysoA9kbC6HgeTZ2T7mMGsOSvLFGoFdOS5m1gJOV5H1CnJJ3hdnPTJgadvaJ31F0jkOERYJKq6UfxHzFlZsYWzye8EK+srEBpzPpBf5hGV2S28DgAULFjj9bW1taGtra/pcGvPnz8fYsWOdviAIMHr0aMyfP7+hY3zwwQc499xzcdRRR/V6Hv2FwW672gU3RZo1VA8MUy6bvGZ72e70+UqR/fIMnGbflMN6uexc/hkRSNk5p0h3CWuntxedv5G8tTLUk8IvyhtrlinTQ/IMWX57zRjQ/vI8tCLUY4+KbLA+b1QWdVGARuzWQEavHbZtt90W99577zJ70FqaSGRxzY58DY5qbGuv0TBI7ahF3bHp006ajKV1rmJZWOU+X73e1LQgTpoIOIIslC9JJJQKzDGKbvx83Q1tKEMu0Z6FWaa1RzLnhVx/UTiCA1KHTRGhERVFuXpr2efR1Y0oc9LixV2IlnSm51/chWixVomMERGHTTtvqcOWfX4RDYmUNSqRKlHOQ58JB6sI05ahsCGqiSoULGGiap20MDACKCqR1jkkhRadZNUmRUegSgo2qqVHzzebBwIAxx9/PO6++27ccccdGDlyJGbOnImvf/3r+OMf/wgAeOaZZzB27FjcdNNNmDhxIp544gkcddRREEJg5syZzrFefvlljBgxwrzPP4QtTSwXdotnwXVEDVI/5HPhhkfSMEi9UBF3xsSRk6joxSXFUM3ujdR5s/eS7k9/ddN2rQpkFmZJQm9c5822bX04RurD8ZoQSY0i540JYT6DViPv2JQ5SKZf0DBFAalrqUkBxmvvZZGvvUbCW3mQqtTysGLbgW0zLoyAjBAcInAdNiHI7wZ12HK/CX0SfimzW3obgIkTJzrdZ511Fs4+++ya4aeccgouvPDCuqf7+9//3qtpUixYsAC77rorNthgg8J5DHQMdttVEQztQf47l/0u9953MXCdP+KkOWPcffR56b4SeQcue17I7VcecpmfF9kvN7a3cBymOuGIReNqxph27XGodU0FjornYM+Rn2cfbAyZYxkYgO5mYtobsFsDGb122DbffHNMnToV9913H9Zbbz3T/9xzz+G0007DPffc05IJengsz1BxXCzrH8dL5Xy9yQP55JNP8NOf/hS33HILvvjFLwIArr/+eqy//vr43//9X3z2s5/FYYcd5uyz5pprYt68efjVr35V47CNHTsWo0aNWirX1xO83fLw6DvK7JbeBgBvvfWWszBTxq6deOKJOOSQQ+qeb80118T48ePx3nvvOf1xHOOjjz7q0YlZuHAhdtppJwwfPhy//vWvEYbl+d4DFd52eXj0DY3YrYGMXjts119/Pc466yx8/vOfx1133YWxY8fi9NNPxy9/+ctBXbxRkvodVSLuUU1Im7BmcSRJSGT2t2r7XIn/2LAxZRKiNJxGBIFdSQ04kjjtDyrchlZK+y9cBBoGGTu1NnTdtraAmzpzbYIjyhijdpVuL1v0YYRVg5ImPFLJhMj6Z7HAAGQc2bpqXVWn9lpkBEiqqC7KpPy7YlQX6TpsEnFnbPpN7bVEmfnSkC0H2T1Hw7HCqoTIREdkYuu3BR2WkYuIEIMIE1tWIIqRZEyhTBJHmMRI+Zd8Zg1Blqz4ZH2tDivqKQ/ka1/7Ws0+zzzzDKIowo477mj61ltvPXz605/GvHnz8NnPfrbwXJ988glGjx5d07/ZZpuhu7sbG220Ec4++2x87nOf6/X1NIvlxm6RcDkmOEQlfQBNuqqF4byiEoN32pBIHXIsogSimo6vKGVCH9N6a7Xf7ESVh64IwqwBKUtn2zasUjDLfjPO3QgDhx0UTp8evzRAmad8Hyd1zRxWzWHbykMiNTMm46qZPw3jTj8DMj60rJqgDFvWL4LAlHtxojDMb4WdVyXgELyAbSMiBFq6u6k6eWV2S28DMGLECMdhK8OYMWMwZsyYHsdtvfXW+Pjjj/HMM89gypQpAICHH34YUkpMnTq1dL8F/7+9sw+SrCrv//ecc+/tnpllgQ3IgoCAm0I0aPHiwqKJKxCWaCxMKCpUEgtQMZiA4SUiJr77Qw1CUHGVBIlgwPgSS6OFISJgRQVfIm6qkJcSC7IWykpEYN9m+t5zzu+Pe885z7l9b0/37MxOz87zqYK9c/t29+2e6afvc77P832efRYbNmxAp9PBV7/6VXS73VmfaxxZ6rGrm0h0FnQYY/Njt13T9Cth/aWLdVWt8Vj0l1S2Pm7LuQyjtrWJVXUVzO9vUcPkoOMa79tejli/3+5GCoFeMsJ3whBxa5zZpa7b9773veh0Ovj93/99aK1xyimn4N5778XatWvn6/wYZo/G5jls3t+T4/oChy0rGpa59IE88cQTyLKsTxU74IADWu9zzz334POf/zxuu+02v+/AAw/E9ddfj+OPPx4zMzP41Kc+hfXr1+P73/8+jj322Dm/plHhuMUwu0Zb3HK3LQRHHXUUTj/9dJx//vm4/vrrkec5LrzwQpx99tm+MuDxxx/HKaecgs985jNYu3Ytnn32WZx22mnYsWMHbrnlFjz77LN+EWz//feHGjAbbxzh2MUwc2cx4tZ8MueEbcuWLfjABz6AG264AS984Qvx0EMP4dxzz12SgcPQplHabE8m1PcKg5lKmSoKg6LqqzKFQdELyhrg+trcvhzGqU55bySFzZAeBqMTMh5AtbZKbauWPhIpgqrWk5io+ldmCoOuqnruDOnX89a1gvSzDXrTqr6uPMy1sEXu/+gjo5GdwbI/3z6NYmd5TG9bjh7tYdte7s+nC5jqPc1ntO+f6RkbGSE0KWyhLyOoBT2jkVUr2hnpW5NKoCA9Prrq69GZ9qqa6pKB2oYO19bNq0qj2ovPorANW1a0u/pAhuH+++/HGWecgXe/+9047bTT/P4jjzwSRx55pP/5pJNOws9+9jNce+21+Jd/+Zfdcm57Qtwqe7dsq62/U9VklkJWnzuVKt/DpnIDVX2+TKqgsmrMh7aY8N9lBg3tnZHpSJ0mhS2oarEpSRibEQZ6R6Yj5DWVx6notvnAK0xNRhxU9ZNhEDUdSi0FVd5iVc0pY0AZ9wH4WA7E8T+6rwqKnCJ9a1E/G+1RS0QY/ZIEW38X++n3QJ8Bif99jD44e7FWqm+99VZceOGFOOWUU7xh0sc+9jF/e57nePjhh7Fjxw4AwH333ecdJNesWRM91qOPPorDDjtswc51vlnqsUvpGaR2YrQ7DdMTPmoz2Gx/50J6ycjWv8/9zwKWPE5Tz1t0ig1Psyt9e219XW2mH/Qli/r5kfdY1N9va+b/5IeJM8NeRxkDpWeGf+5FiltXXnklbrvtNmzatAlZluHpp5+e0+PMOWE7/PDDceSRR+KLX/wiXv3qV+P222/Hn/zJn2Dz5s1461vfOteHZZhlhSlymKJ/xcdUSfCwZUUL2QeyevVq9Ho9PP3005HKtmXLlr77PPDAAzjllFPwpje9Ce94xztmPe+1a9fiO9/5zqzHzRcctxhm12mLW+62hWLVqlUDzZEOO+ywqARt/fr1szoRLhU4djHMrrFYcavX6+Gss87CunXrcOONN875ceacsP3zP/8zzj77bP/z6aefjrvvvht/+Id/iMceewwbN26c80mNE9723piwrYPboyZuhaGvTaOohi3rmZ1BYSuCwmaMblTZhFTe5lkWRGFLMxgzUd3XNq7iSCnQU5WTZSKRJaVKNJEqP4ZgIlNhMLg2/nG8E5IdMDi72l8OznaW9mSANHGMNL3Cq2plD5sbkJ17Ja2YLnyvWr499y6R+bbc96rt1LamsJVPq8mASooSwcEudrxzR2i4de64b01BZ9XvRie+x8RqTbZHdIAcAmts4+M2DQMfxEL2gRx33HFI0xR33nknzjzzTACl0+PmzZuxbt06f9xPfvITnHzyyTjnnHNw5ZVXDnXemzZtwoEHHjjUsfPBnhK3hJSwTpVJMghZqThp4pUplSbQWaW25QWkU9h62qttOjdIiPNqNuMUbNLLRdwey89d2KYMUtgitS2RvqdUZir6DLqh9pL2rUU9bOTLVoY+t2EJw2NrDpe1Hrb6kOmob62hn00lCawpI0tb9QTdb7WOzj30LWdkcHYG1Znw20nqephVUNWI2ub6ApUKPctZEqzUO4mM+pq9G/EcBmi3xS13GzP/LPXYJfJpiHxn+wGD1LT6bQ2jfIAGhWgX6VPYHHWVv+m4YfftKm2vuUktq1N7H+f7/fNPvSvv4yyIfHr481ikuPXe974XAHDTTTft0uPMOWGjgcNx7LHH4p577sEf/MEf7NJJ7W7aSkGorT/dtsZCOyvswvhtQ/bRJE33dlb7ScJWlcmUj6ejCxE6b8c3nRdZSIzMBFClHbRER6kwe2xnL3xpT2Qak9WqQq8wyKs/WGOtT97c33BpOzvLF7gJ9vbWaG80gqJHzDryyNbfl0ROx/b9tAwyrwxIprXBzuqEesZipy/bDPbijYYjoBeNNpodFW4HVPV7kj0dlUEmuhqVoOMyyFFoDUwtmLyASRoUtnxhHIvm0gey99574w1veAMuvfRSrFq1CitXrsRFF12EdevWecOR+++/HyeffDI2bNiASy+91Pe2KaV8IvmRj3wEhx9+OF70ohdhenoan/rUp3DXXXfhG9/4xoK81ib2iLglZZmsOAMLKSGrxEzlqZ/DZtIEsnLDU2mBtOvMewxMNNrC/a2Tr4OZsPgBGJ+E9Qz9PAn/OaQJUFvCljrzi0yRMQR1i/9Q2uleBx1VUO3oe0uskOHLXkj/ORQQkNXrqIf5Nrv7pn3Uyt+VHhptoXX1Ooz1i2v1hM3Fc2s0jLuNvNWyxaREphlUViZsKpH+eZNU+REv5bby2wDQyRQ6PmFTcfLmEr3aXKa2GW1ttMUtdxsz/yz12CXynRAzQ1xyNiQNUSIxKBGZ7b5ttH3PD1F+Pet3/jDXBMMcM2wy1XLcSMnYHN+PthJS0bCvb7t+/yGvpQYuAtQYJm7Nt9HbfLJLpiNNHHbYYbjnnnvm+2EZZo+EJof1/QvFqH0gAHDttdf6Y+ngbMe//du/4cknn8Qtt9yCW265xe9/3vOeh8ceewxAWRZw2WWX4fHHH8fk5CRe/OIX45vf/GbjMO3dDccthhmetrjlbmN2Hxy7GGY4holb8230Np/Me8IGAPvuu+9CPOy8I8hgwWEarp3CZowNBiDWhsHYTrkqel5BM0UPmpiOOOXNGh2rVO6cZFh9tqRsUras2kqy+quUJg3oGj2iqs3QkQTVCnlOVENaEun+nC0QGmsjW38bhkYXeXgdee5XKUyvCNt54Y1Gip2kDJKobfm2HNPalUEar6r1l0RW54tmJBnq615nJhE12PuySW39uZd2/670sXmgdhtCqrDqP+K1iunl0Kp/Jcn0xqcPBAC63S42btzYWnbznve8Z9agdvnll+Pyyy8f+Xx3F0slbkFWA6OdKpNmkFX9vVA9r7bJPEHSrVQfrf3fd6INGUAf/u77nqYyUVIiKNtKxIp1rF7HJZFKxAqbK4NUWSiJpGYotDySlnZGBiT0s0a3R4TGe9mksEmBrFqJVbKIrPNNta2V8fttYv1nxpVGlueuopjftGbcNwaA2Po71UwlkmwLJFkoj3SDs1WDkjaRUrUt7E+Jrf9cTEfa4pa7jdm9LIXYJfKdEC0OfUBNAaorPPT7qM0ko22bliLXH3cejCZGLiieY8xqZXfa0TecOzWBEvVjWhQzS6ohwu0ivJdygPJWf/5RFLYh4tZ8G73RmYm7yoIkbAzDDIe1prHs0i5QLTnDMMyu0ha33G0MwzDjxjBxa76N3uYTTtgA0IR71LmOpfAUetvKf7VfVdU1tc050ZiiF/oZakjf82DCGABdU9iqhvVCTgaFLZGQSXlckkpvNLKzV6DXKX/VvcJ4Qw9qXhJs/Yd84cR0xPewGe371nReQLt+tl7hB/XqXPtB2MVOYt9vQt/aTm2Jwmb86r5BWOmn5+yg1uHG/8/dFv7NJFUXguHCSKqaUtHKkl9VGsUaG5US2bBq5d5HhqkjpCoVp6TsT7NF7rdVNyOjJ0L5h84LqOrzWMaV6jPV8jdfqlrl8aKnfd9nJmPjn6b1Zaq0hb41iWSi6rNLFZKuGz0goZxylIaRBPTzJbMkfNboam7bSu4AogGy5Dz9OVextG7QsdPHWOH71pSWIX6QqgtkKTTpW3Oxuh7D/TmpoLDJJPMmIEkazEWivrWM9q0F5c2NbpnMFCYqlZWqatSAREqB1KmZcxic3Ra33G0MU0f2dkL2WtSlUdQxYs1uQT5XJr5f1EtKbov3N43UaSuZG//BynNhoHFTvWetwWuhfpygFRDk9uh5Go4RpGqk2hE2G/b5h+qNorDNX9wa1uhtPlnWCZuEKP8jF/pA/5d3E00ujaGRPwQLWtZYWopWiRyZyVbHub8Zo6Fa5rZFJTSuRKcw3vikyA2StNyeKQx67sLNWPScOQqZqURfz6wuyLXSBV9WWOQwVVAzvcJLzCYPiVmxs0Ax7ZI6jXymSiqjJM1GpiO5bXaJrEMvOjIJX35Uvk5BtsNrHi1JazE/IAYQo9ZHlBd6u+4SySwfhEqBRALVZ00kub/wkEUOmZafL5kmUNWFezrZjR6jrY7fxZJcFd7ASGcSuiqP1D3tPzNNMRAIiZBQIsx+I4lZMpH4/Wk3CYlcpvz5qjTxpZ2CmKqINIOoklPUvuBna/6n4VyRMmlJywOjksjgrui2dSGhVPX6lYRN+98D6iRprYRNKhMYY30cpxc7tKxdiGBqopT0pY9SkTLIVCHrhO3JKvmdzFzilmAipclbuZ0lEmn1PKkk20oiVRJJS6lQE21xy93GMHVsPg3bUwPnjgJVYtRQuuivgchCdnRfY0jypmv3NYP3N9zWd/6DErYRzcl2Oy1mIX3JWlMyU0+q6sfJlsVrqcLj124X0bVTtaAV3Ze6BDckeuRnO6pL5CLErc2bN+Opp57C5s2bobXGpk2bAJSzIVesWDH04yzrhI1hFhvdK6AbgqnmVWqGYcaUtrjlbmMYhhk3Fituvetd78LNN9/sfz7mmGMAAHfffTfWr18/9OMs64TNmY4o0nBdX22lK65UcRu2QZsqbNTWub4/Oi+nnhnVvF+FRnaT92CysilSa+ONT6wJZgJUVesVYZ5cbsIcNrfgPkhdow2+fsSAJuUJ2kRGI97ivxfKIK22frW+2FlEhiJN27ltnsPWTCjR0jasoJeqWvNsOUGk1aZtQdUzoNH8IDIdkaOt0iyGSySzxHGrkpVlP4o0rAh3ukSVj/+GmucJhtVJarEvlIB2M9FyBZWWj6kzUgbYVk5JbPoFKYl0qlpSV9Xc86SJL4mUWeJt/VWWxiu75HPnDZoGxOOoDBKhDNDHfFJh0VQ+mCUKE1mIn96cyDaX1ogiKGa0VLKswIiVtfJ1hOOlEMQ4SgSjEaK20TLIyW7ilbUV3fLvYSJVRG0Ltv7dRCElM9ncdmk6gkZDlDbYJZIZFbt9K6ygJY5xyWKbagbE1xl9ZZJ0JmxT2SRV7GqlkjQm0r9bGjuj/Q1/26ZFeRt1JNB8IFqSEQCQDaWP0YzLaN5l/36hatdCkfmTO6ZmCkUfjypvTfFchceh95+t9NJuD27Ws7FYceumm27a5RlswDJP2BhmsTFFAZM3uEQWvErNMMx40ha33G0MwzDjxlKPW8s6YVOy/I/aOqcyrLbGCltoQpdEaSvntfbvb4PWQbcpbE3HW0kUOa39qABlNHT1h2YKBV1UihkZjluqapWqRa38yTbFzGJAIupOO0RhazI8sMb6c9E5GWfQZ9kPv+0enaptVCmrD8OuzgxVJXTUq5YOoYYKJcnQXkFWlZTfVmlY6RdJGmqrk9Q3w9oRhs8ClTlLU0kkD59lWhBpCkGHf3bilWGRlZ9HZZpXjIH6ymoZS4QMCptKVeg17WmvtiUm8Wo50KyyBZVO+j44lSpIb+uvkFZ9V8lEgmQirbYzJN2yWkCSHjaZJhDVMGlBm9cjZVtGg7ObEAhqWzQYW8CrTVRh6zRsT2SqtdfBfw8oAVUZk0QjYGr3o8O4Jbmv36ZW/koiyYIBietL26ubeIMR17dW7gsKm9vfJa8jlSLuYZPSG8QMQ1vccrcxTB0zsx1G1nrV/I26Xzlz+6t/R1HPTF6Q64/4usQpYnUVjR5vGlS1YRS4pp+j92AeVTfZ2pfWv7++z1/HtChs/lqIjFSpK3BOsaO9/fXjw/VSFqlwtkFts7UxLa37nYlT9bPZObzCttTj1rJO2JzpiJLwX15ShC9M+kVNkzeppC9bEQ3za2iTpKg1Sfo/tkFJmulP6ozRkGRuWzAy6ZFj4osDV8GoSWKma0laSM6cE2Oz81srtSDrDUhI0KMlkYY4MxprowQsJGbxfmo0MoJHSORWF2+Xt0sh/AUlLQdTWQgiihg3CCX9hSOk8s58ZQCqPkqCSyKZBab623OfUmt0MCDJwt9N/WspLmdxboHBmVGlPaisTN6K6cLPStM9A51XJZE97R0eabJGL3DihY/wmfJukJn0j5FMpH5WnExTn6Ql3QyqKvmUWQLhyj/JF3+UpA2JpJ/9artMWMrzd0lLfZZZW/x0CCEgqvdIKRmXprckeHSBz32fRCWRSvoZa0mq0CFJWJvBCACsoAkbmcPWl6Qpsl8JpCOMh+KSSGZUzPZtMBgySau7Y5PSRzrD1vSKxrJGo7VvybCaXJfUF5Wb7hsleBpNpeR02+iW0TyN3+vzZ2xBWzji/c2ljbIhOasfK0gSBpTfD40JGEnSZMt+labkvtPN901SkrzFi3G2IXmDVD5Rc0mc2Tm8S+RSj1vLOmFjmMXG5AVMgypnlsBqD8Mwy5O2uOVuYxiGGTeWetxa3gmbMx0hRiOuPASIrZ2p2iZJCYtKJCmFcbKwgnQlPEUvsuDfFdpKKP1+W1PYiIMIXSH2++ZpsafN7rZt1cmtMlFr/rpN/1zPLShpwisMdD5bue1W/ekMqKAACCm8qiYzYoSQhpV+kaTBXjzJSDnWiAqbaVHYxt0mmFk0RJJCpJlfaZSIRg5GuM9An3lOw2qnUIqUIfZi06DcrWjraHZhm3oEVHb1brWVmI6U5ZHOgCSDqsog06kulFPbsiRsJ2n5GXOv3W0rFUqRhUTbDET3qssYX55vWVXhVC3j47mbTZYl0qtUvcKgp11JZPjKVFL4+WxCah8CrAEkUdgcdFuQiwYhBZT/7kBs609KMUNZZqygUYMR9+9UdZ60DLJDVLUusfjvJDIy3hqGtrjlbmOYOnZmB6wysarWoKAB8PNqZ1PDdJ5Hx2iqqjnFjJRHUvXM1O7rzYQihc2S/fHc1vAawv76bf71NMTJuahtbapa1KYTlTY2GKnVbqfXr/VjytLHBmWMqGdUhZNpEilysmm/lFCZq07qNX8XEbv/Um0jpibh5AEAdmYUW/+lHbeWd8LGMIuM6RXQDSWoPHyWYZhxpS1uudsYhmHGjaUet5Z1wub6mZQQfmXV1fMDpQ2yV9hU6GnoZApF1a9Q9GRYEXUKXJJ5hU1KBZmW26boQVX7rdb+GGfRD5Rq2XwpcuExa+rVXAcEuqY4G6+GUQxZsfJ30+0DqodZZKL2/E0LTE39afW+tcz1JUrht2UWVvplJn3PTjKR+lV/ajWuuplf6UeShZX+JIV1vYmj2vqblvr3JbDawywSMoHIumGFEUFFslKRv0XpVyatCsNKhZLQWegP08Tcw6lqMk1h8mrwfa/wK9elwta/4tx4mrXVW+kVtmAoorod38OmupnfTrodfwyImh0Nzk6yMCyb9rK1mY6IIMKVRlPldtTbJfvjvVOumnB9zb1E+tEpujBIbPW+t/SwyVaFrbmqYyJLop46qqpN1BS2LlHSOolEh6pqbr+S5DtPlopjy+p9E21xy93GMHXszHSfrX+TalY3CQHKnrSmvjWjjb/QtiZsG2Ngennf4+laz5sfN1RTz9zoIVpFEKltkaIWq3CO2VS3+VLY6oYiTlWjKn6snjXvr1dEuMemj+eqJGg/m8pi9Uy67xYpfQynZiQqS6Cne+HxXQUTMXhr65frGysg1egK2xKOW8s8YROVmYj1X9SpEv4LLlXCfwlOZgo78/LtypICO6tjkkwhcQ35har+NTBFdRGSTfjZayqbCM9tNHRe/tHKJPNljSJqtAwXWZJs9xmZRPdp+EDX9qmGYxYSaj5Qh5YqBt+fOPFyJiiZbHOHRHV7SMZSIRqTtEwKpB1aBln9rrsJKdmiM6ASJBNl8iaScLEoOt1ghCCTYDoiR/vQm56GaZiAZHrtpjTM8sbKpEzaaPSmzomO2uwbt62SFDItv+RkmkA7c48oYQvbOi+gGi5+6mVEdQaV0yiyCEKNRtKpCbK/W963M0GStJTM55FxwtaQqNVDnZvDJgSN+SYYcFQXXJ1EQldz1uoLXH4hSApkRfk57RUGMy5hG2DyRGNv04zPThLciMv5b+U5ZCp2qvT7E+lNR9ztXXJsqmT0feZec5m80Tl0YiSXyLa45W5jmDp6eie0aJ53VjcMocmZO87Fmihh6xXeedH08nh/VBIZXKq96Rkp79a59scY2rbR02GOora1UknXfmJqyVl/2WTT7btC/XpK1koZ3TFRSaQrAY/mbbYlZGGhzV0j0WNlpiIHYH98mkBWyZjMEojp6jmz1LtamjyJkjHVkNQJJb3pVN3Jsu5wqadnhn7flnrcGs1iawy48sorcdJJJ2FychL77LPPYp8Ow+wSzk2z778lsNrDDA/HLWZPojVuceza4+DYxewpLPW4teQUtl6vh7POOgvr1q3DjTfeuEuP5QwolBDIKvvkrpbYocJKJS2LmeiFOTeu/MVo42flOCtnrRWMLlUZasFfxyljuug1GncIpSCJqiaduiOVL62kKpwQdDVFRD/T1dw5Q1ezW8o16Yp640MQCT4yABHWq2DaCj9aJZPB7h8QkaoWq3PVPKVqe0JJTCi3Lfx2V0kkE2EGVLYi89vpVCjNcoYHyWQwQhCdblmKhrIM0pVHOsWj3B7tQ69zC91gGaHz+bP/ZRaf+YxbSNLyb676PAohidW9CvNuihTGxYY0g63ih+1Nw6aunHcaMivVNtXNfKmK6mZ+dVvnRWvZ0WxWyG2N6b4kkmwn3Y7/rKlOB6JTfdayLkRnojrfNCjbKg01jiKobbamtLk4KGGjOWzeaEpKdFRsymRoKWM3/pqksbRXfT/0CoMJr6qZRpOnpsdw21k1V09JgYzMhKOz4JpUtVQKdJJYYUulQJcobNRchFaSxO8F0BKyG2mLW+62heKpp57CRRddhK997WuQUuLMM8/ERz/6UaxYsWLW+1pr8apXvQq33347vvzlL+O1r33tgp3nnsR8xS6TF9BC1JSnMBOtzTzE/Utt+sPtunE/Ld3WufHqidHWjyix2oaSSLLfaBsdH8ova/sbxhMB8RiiQfvo/mGoVxQpen0n+vfTthBqKKQyqmQJorDFChpQzZRMg+rmFbjpwu+XqiDl7joYjeRFKJvMixD/82BYompVHXRUgPueqZdEytroAfedNQyLFbfmiyWXsL33ve8FANx0002LeyIMMw9YbRqTvKUwE4QZHo5bzJ5EW9xyty0Uf/Znf4Zf/vKXuOOOO5DnOc477zy86U1vwmc/+9lZ7/uRj3wkWsRkhoNjF7OnsFhxa75YcgnbXJiZmcHMTKhzffbZZwGUK4pKxisRqZR+dXImkZisVhF2kmGlO/MEE1m50jLTU0g78fBpa2jz6WTrefn+tCT1NraDjvFGJmlG9odtlQQDFCGFF8RojwRlhB7zgURWqxVSxrXGftWFrOhIYrefSeGVtIyca88ASjnlrbmXxC0M13vVnKq2IpGYqlah0xWpH9qbTdHtYHiQTk0gnSpX95OJTuilybrxqn9aqqjGKR4AIEZzGtI9A22bFLbxDx7MwtIWt6xMYJMUwrrVZ+kVXqGCQYctcq/Q26LnB70jySAqoyObpP5vWs5MQ3XL/SYv/MpnaToSDEiahtCW5xH/zdZ7DyRdJfUKW0oMSGjfGlGzs24YUp8Q4x8hYVWlbA8xQFsIAVWN3ZAimGykRiA1brvqs7A2Xv2u4oSSwldXZMRoZKaIVTUXq/r636iyRnrhnDpWHyUTbZNB105Vi3uuSX8aGVNAVTWvDpLB4UKUvX1qhGSmLW4BCxe7HnzwQdx+++344Q9/iOOPPx4AcN111+FVr3oVrr76ahx00EGt9920aROuueYa/Pd//zcOPPDABTk/pqQtbumdMyhMHC+o0YhpUdPcv3NV1XRPe7Vc9zRML8SvpnEltJ9N93SjktYzNlLNBqtqzfvr1K9vHE2fyyZFze2vVx65/e7aSGkTHePUN6q8qdx5Kkio6lpXKAlVvadSSejMeTMoSKc8UiO3XHsVzhoT1DZt/PNYsk33G/IdIY2E0OFa0v3uXT+bM5cZhsWIW/PJskjYPvjBD/pVIooviZQCVV9l6apVOIcthW71hbyik0Rfzj3SYO5dhHzCVncGC0kbNRHRhbs46vlkjJZPUjMRmQbnSZVk3sBEplk0t8c3gioZZsVJASWDa5j70pZk/twoM3giatPom5I0lYbGVTrvTGUSWRXAtYVPsChKiHDxY2vmKSTZc8e6x6AJ21SikK4oL/iyqRSdlR2/nVX706kOksrwIJnqevODZLILMTFVvqaMXER2JmBVdeEoE2LuMNS75mGFjWmjLW5BJoDKYN0XjzQQxpUsqtbkzblp2SSFdQtENHnLun6/LHqwVZJmizCTjc40Kk1HQknTIOqlLN4ZLEt8qTeSNC59JMlblMi510TKQkHLQt3PAGCD8YgUIc7RC5tUSqSVuyutfnQXVkoEV0clBHpJ+Vp75HtgYoDRSBN0EY1u0ySt/F7qT8ISRROysMA4SpKmhCCOmaWt0yglkcOsVLsLdUen00Gn0xn+SWrce++92GeffXyyBgCnnnoqpJT4/ve/jz/6oz9qvN+OHTvwp3/6p9i4cSNWr1495+dnhqMtbpmigCHXGfUkrW1uGjDYUIQ6PWqfpJnG0se2mZI613HZpLu+s9YvJNPEK07YQK5R4m3HoH2j0Ja8NZVH9s+fDQvidL+/fpo2YRGp5xwdFXQezEVML5RMKu2SLuvbXIyxUNWLVJn076/SxpdTWmO86RQAn4xZHfYLJcPvu2ZG4hf+dLnfFMMvki91hW0sTEeuuOIKCCEG/vfQQw/N+fHf/va345lnnvH//fznP5/Hs2eYuWOKcpWv/p8pxj94LHc4bjHLlba4RWPXIYccgr333tv/98EPfnCXnvOJJ57Ac57znGhfkiRYtWoVnnjiidb7XXLJJTjppJNwxhln7NLz70ksZOziuMWMK8PErXFmLBS2yy67DOeee+7AY4444og5P37byp6sVllTKaCrFdZECl8GmRuDXLtti161/BrbNodSmG0Nzy1lmEUk5BQKV9aYZFBOYSt6XlkzLQYlipY+ZhN+tlva7XrTE5nEM+Hc/vqqrd8W/aWSEmJWtc2S1WyhlC9RklkwEBCKSNpK+tUVmYV5TMlEgswvOWm49QMlwqpWuZI1eFWJKm1utWhCCWTu9a9IvaFINpUimypX6Dt7d5DtVZU+Tk0g26tUQtOpLpKqJFJOTIWV/okpSKe2pR0Yt9KvMlhvQDJ8AyxQzZER/YHCLOBqz1wa96enp3HZZZfhc5/7HGZmZrBhwwZ84hOfwAEHHOCPaeoP+dd//VecffbZ/udvfetbuPTSS/GTn/wEhxxyCN7xjnfM+tkfVxYrbllFxkgAZQ22+9kUYV6iHqC2VSNFQFQ1W/SCClfkEFUsskUO6VQ4rQF3fG2O0iCi8kgp/QxDSAmRhnmGLpbQ8mNJS5GTNLxWFV5fOWSNqG1N5yCIRwkx2UiVQNe2r13OEIUtlRJ59ZrzxPrtupX/bNQVNqeIKRFKG2XffFDZt12fp+Zej4uN9HVGZZAIaiM1HxmWtrjlbgOAn//851i5cqXf36auXXHFFfj7v//7gc/34IMPDn1ulK9+9au466678OMf/3hO999TWcjY1Ra3TK5hlWpU1dpNR4KCT02Qwly1oJjR+Wk6115VM0Rto8Yh5THhcVzpY25MpKqFbYueC622vSSyXh5pgNaSyFFVttmMRiTodZFt3O4ZS6qSwvVVqbZVj1e9X6m2fiabJdsUa6yvmqojVcMMyto+bzSC8ioQAISRUC3piY862kAaCZMPb8c/TNwaZ8YiYdt///2x//77L/ZpMMxux/Sa7WQXcrVnLo37l1xyCW677TZ88YtfxN57740LL7wQf/zHf4zvfve70XGf/vSncfrpp/ufqQ30o48+ile/+tW44IILcOutt+LOO+/EG9/4Rhx44IHYsGHDvL/OhYbjFrNcaYtbQIhdK1eujBK2NoZNHlavXo1f/epX0f6iKPDUU0+1ljredddd+NnPftZnR3/mmWfid3/3d/Gtb31r1vPbE+HYxSxHholb48xYJGyjsHnzZjz11FPYvHkztNbYtGkTAGDNmjVDWftS3CqnMtbX/2sVeqUmjULeZt06YBV1G4LaIGQezD+URFGtRBRZiqJqljTE1n/QCACnqskk9K0lqULaqYwzOsqrakkqkVTHTGYqsor2PWy04dQtTpNVm7pPiWvsFyBGI7RvTYZhhzJNIKtt1U39cPGUNP3SVXm5U0DNVENojY1WtdqadMMqUfg58/1xyitppWW/62HL0FnpzEU6yFaWilm21ySylZPV9hTUVPm3JLpTkFN7lefYDWqbTTpA1cNmFVn1l6MNX9zdCttcGvefeeYZ3HjjjfjsZz+Lk08+GUCZmB111FH43ve+hxNPPNEfu88++7RePF1//fU4/PDDcc011wAAjjrqKHznO9/BtddeuyQTtlGYz7hlZQKrgukIoEg/WxIUNknUNlMA2ilZBURWrWAXeehhy3NY9/dd5IBT2PIccMcYE2/TeNUSuzxkiLeLGZAqDMWWiihptSH11XlBpeXnzb0PswzOFtV/QLmC645QArB0HIiiR8UoUVZYAEAuDfLKoMQoi7wyKdG23reMan+zuZOUQQWjSpoUwn8Xlcpb6FUbpketfAxqaEJeP+1bQ6yISxF64IZhPleqh00e1q1bh6effho/+tGPcNxxxwEoEzJjDE444YTG+1xxxRV44xvfGO07+uijce211+I1r3nNSOe5XJmv2OXmXVElrWlwdqmgxb2xtG+tVNJC31pQ24KSFpmF6DDY2vQ0OcZEtv5OLY+vP9Cqtrnrkh4xGaJqWpsRSZOqNoy9fxkiqp6wFqOR8udwjERT31p4vkwGjwAqnoXHM0BVjKEyQDcVEGUKouoLE1r497S6V7XfgO4VurreRuGVNIMiir4ald2/DtVaQLhuFErCYLR4wwrbbuZd73oXbr75Zv/zMcccAwC4++67sX79+pEey/2hJ1J4mTW1gK7+Wm2qvPNj3TWsKWFzxh5KCmxLyj82lQj0XInlTIEiL48pegq6SrSKXjbAsKREShGcFqUIiVmmkFSGHmknQdpxCZvyc3smsqTZbUyRCwLpynDipK0ROodNKr8tkozMVMqgK9dFk+fetIA6NgGI5msIVb1nPY1uS6LsqLsbAVUjbBrKLdOqhDVdEcogs6kM6VRZrpGunPJlkNnKSWR7lclbsmKFL32UUyshu1UZ5MQUbFqaItgk8xeOUAm5iBwtYdNFi0vkAgWPuTTu/+hHP0Ke5zj11FP9vhe84AU49NBDce+990YJ21/91V/hjW98I4444ghccMEFOO+88/yF4b333hs9BgBs2LABF1988Ty/yvFjPuMWVOmUaOnfjU/MTHCPlApwnx1TAMqVHxUQumrUTrresESYIpiR0NmQRR7KJo0OiZkx4Ri6fzZozFBkbhxJ0pCkcamkIuXHyi2OBLMfq6gBSa3Mm/woSFIjqgub0nDRXSq491T6RaxcCpKwCf89kGuDToOZgKnFK9lSxuTnwCnp99PkTUUlkTJK6mhCRssf3XNQc5X4NZPnR8worsFtcQtYuNh11FFH4fTTT8f555+P66+/Hnme48ILL8TZZ5/tF5oef/xxnHLKKfjMZz6DtWvXYvXq1Y0LSIceeigOP/zwBTnPPY35jF2DyiCp8tFUah32hc8XnYdWL8v2+0lSZ7T1yVt5Lv3Xd2VS5babE7O6S6R7ZmpSAtDHG2w6Mihhc59Lekx9Hi1NxsISjfUf+J6xNZM2ej6i77WGfYCqzlNoCwn3PgoI6fYbWHfNTAxIrLbe4MNqAVFdMpa/j+q+KiRKihiNlLeFCEV/t0LG+0cxC1mMuDWfLLmE7aabbuJ5IMweg+kZGNV/oeuC2Hw7rc2lcf+JJ55AlmV9ZUUHHHBAdJ/3ve99OPnkkzE5OYlvfOMb+Mu//Ets27YNb3nLW/zj0J439xjPPvssdu7ciYmJiTm/rnGH4xazJ9EWt4CFXam+9dZbceGFF+KUU07x/bcf+9jH/O15nuPhhx/Gjh07Fuwclhscu5g9hcWKW/PFkkvY5pNElP9ZJeCtLySQVSWRVsEbkLT9LuvN40CpYnWSUjvemkjISjlKUomiapAtco3CNcV2Eq860TpaulIrRTAvUUmw7y8VtlAGmVWq3WQ3wV6VwjSRhhlyE5nyM39Scu60Ab2x/Z6WHAlBVLVgZiDS1Nt1q24GVSlsKi+Q9FwTMXlNUkBmwfo/maikcVK2YFqWnqQSXk1zKzoqU36uWqSwTaVIJpx9fzcoaVNdorCFMkg5tRJyquy9kJN7QVTbIpuAqWav2aQbjEZU5k0gDEZYpq5en0H/a3Sv+5BDDon2v/vd78Z73vOevuMXsnF/WN75znf67WOOOQbbt2/Hhz/8YZ+wMfODlSo2HSEIa4LyVg6ErDZTr6TBZoAq/DHWKWy6AJKqJNEUoeRSB4UNRhNVLZRElspbbYW7prjRMSVeVSNqGzUgiUslg8mKJaYjdVv/2WaxCSGgpBvBAhj/URWAb4R3lQYWUjt1i5iLqGA6YhIZVVrUlbU6smby5DZTGdS8siTSVWqE7xQJEZmHtKlp7nVKcnu99JG8ao8F+gyoBtEWt9xtC8WqVasG9toedthhvlqljdluZxYGqw2Qzu2+C30x3Wb+McyfclMZJN2ut3U0HTv43MJ2UNuCiUh5uztING5Tlb9+X6rW0VEmdWxbffcC4ZUz2RzX6Qy3YVmMuPXYY4/h/e9/P+666y488cQTOOigg/Dnf/7n+Lu/+ztkWTbSYy3rhI1hFhud68bFAF1dFA/rtLaQjfurV69Gr9fD008/HalsW7ZsGTjX6IQTTsD73/9+zMzMoNPpYPXq1diyZUt0zJYtW7By5co9Wl1jmD2NtrgFhNjFMAwzTixG3HrooYdgjME//uM/Ys2aNbj//vtx/vnnY/v27bj66qtHeqxlnbAJU0CYAolK4RZKs75+hpDB01XQaPAgMfQAgMlphYnUKVo5dnbLFeyt0wVmKlWtyDV0Ua206DADwlgL6wZx014vMh5ACgFJhmUnWTAgWVGpSnt1E6zopmQ7qG2hYT1uZC9feVhB6VtL8R3rMqhqSRZZcatOaQueTBS+by2qP1YyUsSc3X+eqagBmDYMNyGV9Oqc6+1LuonvZ0u6iVfVkm7mh2Knk12klWV/tnLK2/erqb0guqRvbbI0GhFTKyGqIeUmm4CtFAirUm86ApWW/UII5gTDYo2FbVjxcb/7YZ3WFrJx/7jjjkOaprjzzjtx5plnAgAefvhhbN68GevWrWt9rk2bNmHffff1Sea6devw9a9/PTrmjjvuGPgYTANS+Z6uOnFfm/UKW115s1UPm7BEJUvIAG4btmE6QKr98YIqeF5hqxmQAIN72mgPbIVI0lgxI5b9tG+tcT9V12pKW+jhsr6lT5G+5TL4u4BeNexbQVahLdKq6kIbwFhiNDKCWkN7z0q1LewPZiAiMoBy8ZiahygpgnmKjI1E/L7oeeP3oY1RFLa2uOVuY5g6o6ghrk/JXTtIJaGNM5sQ3v9dKuH7p4SSjTFHSBGs45WFNa6CSkKQzztV2ZoMOuLtcLwE/LVRm1LX1oc2iqjTJm7VRxw1bcfHi9p9+5+j6bmEou+j8FVebb9XerwgD1j+Pojq33B/odSsfy+jqmvA4sSt008/PXLOPuKII/Dwww/jk5/8JCdsI1E1ygshkdJyHY+Ea0IXQnpZmZa2pEpGJYZAWXboDD8mM4Wt0+WFz4quxs6qNHBHT6NXJWkzxIjDaNNoOgKEWUBCCv/lqxIZPddEZfoxkSnsVZVHrugm/phOEs6XzvCh84lm+2K3QkI4x8g09c5utjftt1WRIyUNxRT/oU97SKpkNpkuIienQaWQ5WOEYKAq05WyJDLMhEsny0RLdTOfpJXb5f5kcsKXO8ruJNmegqhMR9CZqpVBVgpXGraNSlGMMIOJYnoauiHutM3j21Xm0ri/99574w1veAMuvfRSrFq1CitXrsRFF12EdevWecORr33ta9iyZQtOPPFEdLtd3HHHHfjABz6Av/mbv/HPfcEFF+DjH/84Lr/8crz+9a/HXXfdhS984Qu47bbbFuS17qlYGc9hs7XPq6AXDQ3lkbDWG5BE+03hm76FKULpmI0TOZoE+jLIWnLYf9JkXy2hcqWMVshoUciXOJLSR0uNRqIy7dgl0r8n5L0QIO69CGVBUgJVpaT/19hgSqKsgHFl8hJRSc1s+Vps8iGi/ZLEXOrw2JSYCZrgkdehRH9CVi97nG2upks6R6l2aotbwMLFLmbpM+giu277AwCClFk7N0GNws/yMjBxMqadswa5nuuFi3GrBIR2SYT11xOAREbaUdy8NSWATDqjkTCnjM4y6xn4QJARU6ImExOguRxx0Dy25qSrP/Fyx9Jt955mxJW2fE2i7/j4GBH2JeH6yiVapUlcFW9Ie4rMyMxdGSd10h8va2Zz0h/jHceVhCTbTcfXbxuGYeLWfPsGNPHMM89g1apVI99veSdsDLPIWG0beyoWcpV6Lo371157rT+WDs52pGmKjRs34pJLLoG1FmvWrME//MM/4Pzzz/fHHH744bjttttwySWX4KMf/SgOPvhgfOpTn9rjLf0ZZk+jLW4BrLAxDDOeDBO3hvUNmCuPPPIIrrvuupHVNWCZJ2zCaL9y7AQ2qrRJAchq1VZq62daKNIY3lESHRW2AWAy15iqVhxWdBPsXZX6bZsusKPa3pkHha1XhO3CWL8NBMWGlqtQo5NOIpElwVDElWfuRVS1Fd3En89kqryRSjeR6FTz1FTDiq0UYbWeqmpRWVKSQbrZTVnXlyRIraM/Lr8KliXQ05UZSbcHU82iS/MC2hmTUHvfWjmlfw/ShCh1SfXYaVDY0sRvp1MT3gAlmZzw6pnoTnn7ftGdJNtTofQx7UTbfvZa0oGpytIKY0dW1hy5McgbjEryluGO88FcGve73S42btyIjRs3Nt6nLvu3sX79evz4xz8e7YSZCCsVDEQoxyO/K1LcV+FGgahI7fGfa1r6aLNYkTPUmISoZ97IRMdqmttPH2MUaopZPGNNhP20DDIyIKlUMKK0SSF8CYwVINqY8HKatQKuJt6pVNYGHxILf3P1VpfHtDWvA/1qWjgf/+yNRk9tSpokpUvUVKT+OP45iTraepruu02UiuQoJZFtccvdxjB1VKoglYwVNOWUcwPrVP9eQYZrhHE5pprLpciVhZvnVUcMUWsolfAjnHQvnBVV2pQIahtg/YxeIC6VdMdoS0qTSRkktctvtvMf7rMXly+Kxn1tqlqkmkWqWtimyhtQVnA5xUxlMjJ68/tTFczjyGglqQSkP0aGsVRZmMOpMnodl4btAcpbUFTjf4dhmLg1rG/AsEZvL3jBC/zPjz/+OE4//XScddZZ0WL2sCzrhI1hFps4mMf7GYZhxpG2uOVuYxiGGTeGiVvD+gYMa/Tm+MUvfoFXvvKVOOmkk/BP//RPw55yxPJO2EwBUPtqAEoaiEo5of0EgqxwKgkk3mhEoFvV+Lp/dyTSm45M5hrTnfLx955IsbOyq9/ZowqbwQzZ9ravLaqNoisnUvietIz0s2WJxIqqh62TSK+qTabKn2cnCT1sTQ3wddzKtSCDs0WSllbbAOTElK8DlqSPIZXSq2DJdA/F9Ey5n6hqJi9ah2g66qsu7jHdvqSbheeZ6HhVTWZd31snulMQlSIoJ6YguqWtv+hMeHORSFVTKWzqtjNv9lDvW/P16iMqbT1jkTQsgdeHbzKMQ1cDXIPqM8zfim20dxeQkKpcQRRUUafmIka39MIRIxNTMyPxT9twbgP62WKZiPS2OWvnVhVO9D9WDSEEVPRZq9Q0kGGvpIfNb9NTj15O+6p404DqSBkTLfsR96S1KWki6i8coGjW3/+m4F69p2KE3rO2uOVuY5g67jtbuGHKyjSaisksgXDXAtWxhg5RVuE+RoZtqSRRzHTomZICWgXDEmfepnNDerLCtuxpqOoLXRcGSrj+tDAUO5PCb2srSJ9bUOGCfT9V5Ww0+mdQ71od2rMma/vbetgiczzZv7+uqtF+Nfd+OcVMkf40IYnClinvIyCU9MZvKlNhFFWmQiWUkpCV10LZk+ZUuGQoVY0OzhZKQo7g7jifcWtYozegVNZe+cpX4rjjjsOnP/1p3583Kpyw6aJ0Pax2WZtAVl98qcrCH7CxKKoPpdIWSfXLTaX1ZiPd1JVEKkw7QxFtwnahfWI2rQ3yKijkxkTJm24wsKDbtHQlS2Q0/82VRKZSoJMEoxFaBjmZhgQzqUvgtQsJD7loskICrizJZBCdypLdmPClLxWkMwdIM4ikdI9U3R5UVRJJkzSd51H5o9vuazCV7oOrGkoiE1+eKdLUJ2Yi6/pzFFm3OUlTKQxJzKxz4Uu7ftuqzAfbXIcyyHLVJmyPgrG2MWiP4j7HLC+0LeOBT9jIbYO/cypXsz5TilAOGCVyblFGpc2JnDUhIaCJnH+62r5RSiTbXB8HlUrS/fShqn+lCHMSFWyI+UJA2PhgW7uw8i+h5f2t50Eyui2UNdJzad4fFsxE3ciFGrz4EzKzm7z4E6GmLPQ9tRCClMYOQVvccrcxTB2ZJJBp4hMuqw1k9TVrdSi7NtpEi7cAIPLCX+QaY8J1gDE+mTOaJmDC9ySVBmXl46hUQleJhu5p70ytMgvdKx9Hp8rPgVXaQhH36szNY7QgCVucpPWbjtho29E0m20QTSYjbn9zkhZf1zUZjaSy7todzD3KfeOVpNVNRoSUkMXwCdtixK3HH38c69evx/Oe9zxcffXVePLJJ/1tg8YiNbG8EzaGWWR61kI1XGX3+KKHYZgxpS1uudsYhmHGjcWIW3fccQceeeQRPPLIIzj44IOj24arjgks64TNzWGDlaGpXha+kR1GQ7nySJn41YpECl8Olxvr5XA3gytTApPazeUKStp0YTBTrRjlRHnLjUWhw8qNa36k9v515YausKRuJUIIX+KYSuH3d5SMyiC7fgwBmcPmVkWIoUlfD7o3HVHhPZKFV6nK96lS4ZIUNq2UqZlp2KxU2GyRQ070ym2tgaI0HbGkHMfWyiEjCdyZwiSpX6Xxc+ASoqqlWdhOwugBkXWByo7fph0YZyJCVbUkK8sfUZVEVs9ZmouE35NT2AzghzGOWg2krR8p07efYZqw1YptU0kkcZgeSHPJHtknAEEUuaAGBfMhKWM1yFI1yJ9ssyo0Em1lk3XFaLaSSISYZhBWma21ftt/foUYYCkSP2Yd+n65n8Pzh/2NSpqpjV+g72mbWjns+0neH0Her+q3PNwfTkVb3HK3MUwdNdGBysL8SKsNTFXORsscJVXY3PetkmEmmzGwlXKj8wKyus4weQ5bqTgyDSNKVKqhs/J5DFHMdCphJqrH6Wlf+me6BjqvrsF6GqbrnksjcaWSPY2uG0NEVJueaVLTxBAK2xDvn2jbHq4k0sUelQWVSmUyUtPqo5LovFuVKT9aSmXKG4pQW3+hhFfVBhmKxGobaXOZxe5fums+hOor2TYJu4HFiFvnnnvurL1uw7KsEzaGWWx6xvoa+Wg/r1IzDDOmtMUtgGMXwzDjyVKPW8s7YasGZ0NYCJd3G+EbXYUsgrW1TLzlfyITpFV/WGYt8kphc6pbZgCduH3CK29TRgVlTluvpNW3XS1tuYo+uwGJQwoRKWVePVPC2/enSvi+tVQKJL4RNfzb2EpPmvrL4bXV+1WpWwAgsqCGWaVgq9ts1oWtlDQUOWxeKmwwOqhpgxreyagFURmcQCqINI1uF0kK4dS2Tjccm3T8GAKTpMGaX6X+HCGTdlWtGKyq2WjVbLQPvWlZ8eG+faYNY50pRvhbjM0yGnoiyXZdhwpqkI3720Q43m9H/VZ1IxNiSoR+A6PGgd5Acw9WC7ZNRWsamu3Pq/zZ2NC3pgTp/aO9IdW/bZ+/etWBiG5rUc/8idUMQqhxSKMqSVQ10/J+zfbetfWtyaCwCSHL+DjC76EtbrnbGKaOTBOobhZ61dNSLQPQ17/ulbfqdpkmpN899L7LNAm9b73Em5XJNA/70wKqOt7kBSxRzFwPm+0mftsYG7Z7wRjFkv1WW9/nZrSFreSZrjYw1bYlCpyD9rO5n4elPkC7ST0DEA20blLSyv1BKaM9Z3Q/UFZRRAYkxMrfP0+aEMv+JDxPlkbDr6lJXFN/mlPdgKo3Tam+491tbj8AqBHew6Uet5Z1wias7S81AULyICQgi7CtnIybQFQJgJIKaVIlA9WlUE7mchU1B0GXvJVGFVWTqwkfXGvhSyip1D5MQ6QUwT1Sknk+satk+OCnZAZH4pp1a85k8RvmSiKld0uMzkpKXyopVAqRuXJHAxT9ZZDlbS5RbrlYkDKUQUrljU+EUqEU0pVMqjTMh5MKhiZjbl6TSv3v0arMJ3vUUETb5iStXobmzji6Jmt+Fa30jPWmD9H+JbDawywOLilzf3/a9JdFAvHfZXTRUHu8pvFb1MXQ/eyObUrk6OO0J3T09pDUQajoOZoQDZ+HemLWeD8R3gc5xPEO1XLowATUuv21skZyjGhKxuj3zzBumyOZt4T7CWHCoptB9AsW1jS+x220xS2AYxfTjMoyqE6ntf2BGo00JXK6mtkqsyQ61idmXQPjZrl2M79tuqHE0hBzM90rSLKnfWKmc0OOIds5Sd40Sd6MJUmaCYkaycyCoQrZV6vBsy2lfTRZCftIXFWiMRkDEBmG+HLDWsLmyhypeQgtjRx1flpTuaMiiRxNwNoSM3pfej5N7TFqhFrGpR63lnXCxjCLTVlT3R8ouA+EYZhxpS1uudsYhmHGjaUet5Z3wuZWOWsrln59QkjAEKtoXSlDQhDTDenVNqq6WafipKpVbXPbxhJbeGP9n1M8C8hGZU9txHN+RNgm8rkg216FI/avwXREICwbB9tsIcMkCwFSamOKoEgqBZhqQry13jJ6pHKe6nmjeUxk7pJ/j73yl0QKm7u9f381VgAivO+aqpmx4knLIMPvoPmXMKo1LCtszFyom4u0qWr0r6gtbtCyHK+22Xq5X/lv3aykSXlrvX22x6PqVe0cG9WxltdTP3QYYW2gukTLN01L/KobhNBjqGLWVNpIyyPJ444cKykuJlpDSiEl3F+KoA+pZOP34CCW+ko1s/sRnXIeqg8xWofPOf1cGe1VOEuUNjdXNVLVekVUPmm74XidF+F4WhLpto2B6YUqIK/IRY+vW0siqarmDOLK/UGFo/+Gx24oWR+QLcgGuV/QVhglI1UtlESG/VIKUoYoIsMQ91ilwYhT5PqVNCElZOZM+EhZY82aXzWUPg6jpEW2/qQNBtE2Vd2qxxve1X/Jx63lnbAxzCJTWIu84cqzWALBg2GY5Ulb3HK3MQzDjBtLPW4t74SNKGyzNr7XhrcKasDhm7eF3yecuiMkZKXupDXlzf19aBt63kp1pzq9Wp9Um413E3H/iagpb/37lQj7WhekXb8XQIbOynL4uLvdpuEcyUqxberLGAQZgts6KJe8x+XzJ0RtU6FvTQaV06JU04Da+47YRCR+38N9HXSRrKkHaFjY1p8ZFUuUYPqzg/69hmPixzCzlIVIEgWECCpc/9DtcIwjji+28fYwJoD0WNUfn9yJaoVNHzeqwFnbrqo1KmltBiiz9JANVNIc9Z60UR6n5RxbaTFkIaIpwm8n9LPBmtb7tsG2/syoiM4kREZMyhD3sFHjMeEUNk3+yohBmVfguqaxn42qapr0rdFjdC+obZHCZuhjahii1BlyvCVKGlXhqPLmbg8vkfawjaiao7mfrd63RpU0qp75oeKRTX7zQOvQw5Y0qmFtPWmK9LO1DcIWdV8C/0LC8/ffRoznZPweiGL4gLPU4xYnbC5Z8+5dzc3d0fd/NM9GeJnWlwyKYL5hBfnjrCcZroRSyPAHKWVINISMSvDiUsn4og1orRDqO39JkrO+fQgXP7Qi0gpyCSdJGaI1vhTUtswKskC7qYh/zDghjrZpSSR9L33SXCWSpJTR2JCYWW1GTszaLnSbMJh70tYzFoJLIpldpD1OhGNckjbMn5ZuSZCsbU/kwiKO8CcVG5RUC1oinER9AcknjCIkV1KEL9OmmOVed9gv/GscZBIysOSQLDiV920yAiHxrl7q2DBLbajHoceMSOOvdcREbFja4hbAsYtpRmRdiG6Y2Qqj49jSkLyJJoMSej+jQ1JnjL+fJQ7USW2uWyh91I0JnjUGukfKKRuOqSd1TceEUzRoMleh1A1ImhC10sgmIw5Zd1SMkq2QjMk2AxA3x26IeWhts9SiskZyXduYjEkVJ2BDJmn0dqGHj3FLPW4t74SNYRYZbW2L6cj4Bw+GYZYnbXHL3cYwDDNuLPW4xQmbo2kmzrCN2E5ZIz9HaptbWVaJL6WECEpadIwMUjNqSh013Agz0WS0imprpUHD0lRCVC8fsvR1+uNVKHeMDh7WEYCeOy2DFP5hmpUvG0RRV/pgYsWszSykSYGgpi6UQaWPXj2worU0dTbylhWffAkED2Z8IKPUGqmXQI40c4YKU7USRr/fBjOjqHzRK/QCokHhE0LAiXYC1qtt2hJFjjyXJI9tEEq66TF1mua/9Zch2uj26JiWyoGhyx3bZqzVn6d6zEYG1Xm6FW1X0bBAqhqlLW4BHLuYZsTEJESn03yjMXE80bXCtbqq1qa2VfuFm7HrHqupnNLMXk45SIUzunl/eA0m+rd8mfHne9SySKqeSdmvpNHtNmt8OaBUUdZKIocua6TjlprUs5pyNpSqRhW58KL7doli+PdwqcetZZmwuXLCZ7dtB1B90bkA0ZewDfFLbEhCmvqurAr9bmXCpvqPkfExIWETaEzYxG5K2AaV7CxWwlZ7ioEJW7W/nrC5H3YpYUOoB9u5bas/v2HYCdNYO92bcwrI7Km4v6mtW7e2lvbqAX/f4XHmPiS0abA2EH8GmtweJemNHaa/1t1Wf7x6j1vbc9FznHvCRva1JF2zJ2y29b7heeYnYfOHRot7tKQ8/g7xzrnV98zWrcPHrra4BXDsYmJ83Nq+M+pTi+hLZOoJW1wuSRM2ciey3wyXsHl3x+aEzWrtF6TjxMw2J2zks7zoCZsYlLCRfrbo+FkSNne/oRK2cF83a9Md356w9btARjQkbFu37wSwPOLWskzY3BfT4WtPWeQzYfZUfv3rX2PvvfduvT3LMqxevRq3PvF46zGrV69GRpq0meWNi1vHvOjIRT4TZk9m69atrbFrmLgFcOxiAi5uHfHav1jkM2H2ZJZD3BJ2WClgD8IYg4cffhgvfOEL8fOf/xwrV65c7FMaa5599lkccsgh/F4NwTPPPINDDz0Uv/nNb7DPPvsMPHZ6ehq9Xq/19izL0O125/kMmaUKx63R4Lg1PO69euCBB3DkkUdGq/d1ZotbAMcuJsBxazQ4bg3Pcotby1Jhk1Liuc99LgBg5cqV/KEYEn6vhmdQ4HB0u92xDg7MeMFxa27wezU8z33uc2eNXRy3mFHguDU3+L0anuUStxa+O5lhGIZhGIZhGIaZE5ywMQzDMAzDMAzDjCnLNmHrdDp497vfjU6bzSzj4fdqePi9YhYS/vsaHn6vhoffK2Yh4b+v4eH3aniW23u1LE1HGIZhGIZhGIZhlgLLVmFjGIZhGIZhGIYZdzhhYxiGYRiGYRiGGVM4YWMYhmEYhmEYhhlTOGEDcOWVV+Kkk07C5OTkrMOOlxsbN27EYYcdhm63ixNOOAE/+MEPFvuUxpL/+q//wmte8xocdNBBEELgK1/5ymKfErOHw3GrHY5bw8Fxi9ndcNwaDMeu2VmucYsTNgC9Xg9nnXUW3vzmNy/2qYwVn//853HppZfi3e9+N+677z685CUvwYYNG/CrX/1qsU9t7Ni+fTte8pKXYOPGjYt9KswygeNWMxy3hofjFrO74bjVDseu4ViucYtdIgk33XQTLr74Yjz99NOLfSpjwQknnICXvvSl+PjHPw4AMMbgkEMOwUUXXYQrrrhikc9ufBFC4Mtf/jJe+9rXLvapMMsAjlsxHLfmBsctZnfCcasfjl2js5ziFitsTCO9Xg8/+tGPcOqpp/p9UkqceuqpuPfeexfxzBiGYZrhuMUwzFKEYxczG5ywMY383//9H7TWOOCAA6L9BxxwAJ544olFOiuGYZh2OG4xDLMU4djFzMYem7BdccUVEEIM/O+hhx5a7NNkGIbxcNxiGGapwXGLYRaeZLFPYKG47LLLcO655w485ogjjtg9J7ME2W+//aCUwpYtW6L9W7ZswerVqxfprBhmz4bj1q7BcYthdj8ct3Ydjl3MbOyxCdv++++P/ffff7FPY8mSZRmOO+443Hnnnb6Z0xiDO++8ExdeeOHinhzD7KFw3No1OG4xzO6H49auw7GLmY09NmEbhc2bN+Opp57C5s2bobXGpk2bAABr1qzBihUrFvfkFpFLL70U55xzDo4//nisXbsWH/nIR7B9+3acd955i31qY8e2bdvwyCOP+J8fffRRbNq0CatWrcKhhx66iGfG7Klw3GqG49bwcNxidjcct9rh2DUcyzZuWcaec845FkDff3ffffdin9qic91119lDDz3UZllm165da7/3ve8t9imNJXfffXfj39A555yz2KfG7KFw3GqH49ZwcNxidjcctwbDsWt2lmvc4jlsDMMwDMMwDMMwY8oe6xLJMAzDMAzDMAyz1OGEjWEYhmEYhmEYZkzhhI1hGIZhGIZhGGZM4YSNYRiGYRiGYRhmTOGEjWEYhmEYhmEYZkzhhI1hGIZhGIZhGGZM4YSNYRiGYRiGYRhmTOGEjWEYhmEYhmEYZkzhhI1hGIZhGIZhGGZM4YSNYRiGYRiGYRhmTOGEbQ/j17/+NZ7znOfgscce26XHWb9+PS6++OJ5Oadd5eyzz8Y111yz2KfBMMwCwrGLYZilBsctZnchrLV2sU+CmT8uvfRSbN26FTfccMMuPc5TTz2FNE2x1157zdOZzZ37778fv/d7v4dHH30Ue++992KfDsMwCwDHLoZhlhoct5jdBStsexA7duzAjTfeiDe84Q27/FirVq3apcDR6/V2+Rwcv/M7v4PnP//5uOWWW+btMRmGGR84djEMs9TguMXsTjhhG2MOPvhgfOITn4j23XPPPZicnMT//u//9h3/9a9/HZ1OByeeeGK0f/369bjoootw8cUXY99998UBBxyAG264Adu3b8d5552HvfbaC2vWrMF//Md/RPeh8rwxBldddRXWrFmDTqeDQw89FFdeeWV0/IUXXoiLL74Y++23HzZs2AAAmJmZwVve8hY85znPQbfbxctf/nL88Ic/jO73lre8BZdffjlWrVqF1atX4z3veU/fa3vNa16Dz33ucyO9fwzDLA4cuwIcuxhmacBxK8Bxa/zghG2MOeGEE6IPmrUWF198MS655BI873nP6zv+29/+No477rjGx7r55pux33774Qc/+AEuuugivPnNb8ZZZ52Fk046Cffddx9OO+00vO51r8OOHTsa7//2t78dH/rQh/DOd74TDzzwAD772c/igAMO6HuOLMvw3e9+F9dffz0A4PLLL8eXvvQl3HzzzbjvvvuwZs0abNiwAU899VR0v6mpKXz/+9/HVVddhfe973244447osdeu3YtfvCDH2BmZma4N49hmEWDY1eAYxfDLA04bgU4bo0hlhlbrrrqKvuiF73I/3zzzTfb1atX261btzYef8YZZ9jXv/71fftf8YpX2Je//OX+56Io7NTUlH3d617n9/3yl7+0AOy9997r7/PXf/3X1lprn332WdvpdOwNN9zQeq6veMUr7DHHHBPt27Ztm03T1N56661+X6/XswcddJC96qqrGs/NWmtf+tKX2re97W3Rvv/5n/+xAOxjjz3Weg4Mw4wHHLsCHLsYZmnAcSvAcWv8YIVtjDnxxBPx4IMPYtu2bdi+fTv+9m//Fv/v//0/rFixovH4nTt3otvtNt724he/2G8rpfBbv/VbOProo/0+t3Lzq1/9qu++Dz74IGZmZnDKKacMPN/6StPPfvYz5HmOl73sZX5fmqZYu3YtHnzwwcZzA4ADDzyw7zwmJiYAoHU1imGY8YFjV4BjF8MsDThuBThujR/JYp8A085xxx0HKSXuu+8+fPOb38T++++P8847r/X4/fbbD7/5zW8ab0vTNPpZCBHtE0IAKOum67gP7mxMTU0Nddww51Y/Dyfn77///nN6DoZhdh8cuwIcuxhmacBxK8Bxa/xghW2MmZycxNFHH40vfelLuPrqq3HttddCyvZf2THHHIMHHnhg3s/jt3/7tzExMYE777xzpPs9//nP9/XVjjzP8cMf/hAvfOELR3qs+++/HwcffDD222+/ke7HMMzuh2NXgGMXwywNOG4FOG6NH6ywjTknnngirrvuOpxxxhlYv379wGM3bNiAt7/97fjNb36Dfffdd97Oodvt4m1vexsuv/xyZFmGl73sZXjyySfxk5/8ZKCd7dTUFN785jfjrW99K1atWoVDDz0UV111FXbs2DGyDe63v/1tnHbaabv6UhiG2U1w7Crh2MUwSweOWyUct8YPTtjGnJe85CVI0xQf/vCHZz326KOPxrHHHosvfOEL+Iu/+It5PY93vvOdSJIE73rXu/CLX/wCBx54IC644IJZ7/ehD30Ixhi87nWvw9atW3H88cfjP//zP0cKbtPT0/jKV76C22+/fVdeAsMwuxGOXRy7GGapwXGL49a4Iqy1drFPgmnnla98JY499lhcc801Qx1/22234a1vfSvuv//+gVL+UuKTn/wkvvzlL+Mb3/jGYp8KwzBDwrGLYxfDLDU4bnHcGldYYRtDjDF48sknceONN+KnP/0p/v3f/33o+7761a/GT3/6Uzz++OM45JBDFvAsdx9pmuK6665b7NNgGGYWOHbFcOximPGH41YMx63xhBW2MeRb3/oWTj75ZLzgrAHwogAAAMFJREFUBS/Apz/9aZxwwgmLfUoMwzCzwrGLYZilBsctZinACRvDMAzDMAzDMMyYsmcU3DIMwzAMwzAMw+yBcMLGMAzDMAzDMAwzpnDCxjAMwzAMwzAMM6ZwwsYwDMMwDMMwDDOmcMLGMAzDMAzDMAwzpnDCxjAMwzAMwzAMM6ZwwsYwDMMwDMMwDDOmcMLGMAzDMAzDMAwzpnDCxjAMwzAMwzAMM6ZwwsYwDMMwDMMwDDOmcMLGMAzDMAzDMAwzpvx/ZgiSc3JwUbAAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# extract the projected fields as before and plot them\n", "projected_field_data_server = sim_data4[monitor_intermediate_proj.name]\n", "\n", "# plot the actual measured fields from the previous simulation\n", "fields_meas = sim_data3[monitor_intermediate.name].colocate(x=xs, z=ys)\n", "make_cart_plot(\n", " ys,\n", " xs,\n", " fields_meas.Ex.isel(f=0, y=0),\n", " fields_meas.Ey.isel(f=0, y=0),\n", " fields_meas.Ez.isel(f=0, y=0),\n", ")\n", "plt.suptitle(\"Measured fields\")\n", "\n", "# projected field without approximations computed on the server\n", "fields_proj_noapprox = projected_field_data_server.fields_cartesian\n", "make_cart_plot(\n", " ys,\n", " xs,\n", " fields_proj_noapprox.Ex.isel(f=0, y=0),\n", " fields_proj_noapprox.Ey.isel(f=0, y=0),\n", " fields_proj_noapprox.Ez.isel(f=0, y=0),\n", ")\n", "plt.suptitle(\"Projected, no approximations, computed on the server\")\n", "\n", "# RMSE\n", "Emag_proj_server = np.sqrt(\n", " np.abs(fields_proj_noapprox.Ex) ** 2\n", " + np.abs(fields_proj_noapprox.Ey) ** 2\n", " + np.abs(fields_proj_noapprox.Ez) ** 2\n", ")\n", "print(\n", " f\"Normalized RMSE for |E|, no far field approximation, computed on the server: {rmse(Emag_meas.values, Emag_proj_server.values) * 100:.2f} %\\n\"\n", ")\n", "\n", "# use the simulation log to find the time taken for server-side computations\n", "server_time = float(\n", " sim_data4.log.split(\"Field projection time (s): \", 1)[1].split(\"\\n\", 1)[0]\n", ")\n", "print(\n", " f\"Client-side field projection *without approximations* took {proj_time_new:.2f} s\"\n", ")\n", "print(f\"Server-side field projection *without approximations* took {server_time:.2f} s\")\n", "\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Again we get an excellent match, an even smaller error than the client-side computations, and over an order of magnitude speed-up!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Reciprocal space monitor \n", "\n", "In addition to [FieldProjectionAngleMonitor](../_autosummary/tidy3d.FieldProjectionAngleMonitor.html) and [FieldProjectionCartesianMonitor](../_autosummary/tidy3d.FieldProjectionCartesianMonitor.html), one can also define the far field observation grid in reciprocal space using [FieldProjectionKSpaceMonitor](../_autosummary/tidy3d.FieldProjectionKSpaceMonitor.html).\n", "\n", "To demonstrate, we'll compute the far field associated with a Gaussian beam propagating at an angle." ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:51:48.435208Z", "iopub.status.busy": "2023-03-27T23:51:48.435010Z", "iopub.status.idle": "2023-03-27T23:51:48.457913Z", "shell.execute_reply": "2023-03-27T23:51:48.457199Z" } }, "outputs": [], "source": [ "# create the Gaussian beam source positioned the same as the plane wave source above\n", "gaussian_beam = td.GaussianBeam(\n", " center=(0, 0, -0.1 * wavelength),\n", " size=(td.inf, td.inf, 0),\n", " source_time=gaussian,\n", " direction=\"+\",\n", " pol_angle=0,\n", " angle_theta=np.pi / 6, # angles are with respect to the source plane's normal axis\n", " angle_phi=np.pi / 4, # angles are with respect to the source plane's normal axis\n", " waist_radius=2 * wavelength,\n", " waist_distance=-wavelength * 4,\n", ")\n" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:51:48.460125Z", "iopub.status.busy": "2023-03-27T23:51:48.459952Z", "iopub.status.idle": "2023-03-27T23:51:48.652116Z", "shell.execute_reply": "2023-03-27T23:51:48.651608Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAE8CAYAAAAmDQ2PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5NUlEQVR4nO3deXhU1cE/8O/sSWaSTMgCQfaogKBA2QQXFimgtEpbqVorixYV44JQlbwqKO+j6auIWKqAvir+UCvV9xXcqgKyWLciQl9AQVFRCAJJmCUZktnu+f2R3kkmy8ydfSb3+3meeTSTe+ee3HM437nbORohhAAREamSNtUFICKi1GEIEBGpGEOAiEjFGAJERCrGECAiUjGGABGRijEEiIhUjCFARKRiDAEiIhVjCBBFYNu2bdBoNNi2bVuqi0IUFwwBonY89dRTWLt2baqLEZWXX34ZK1asSHUxgjz77LMYOHAgsrKycNZZZ2HlypWK13W73bjnnnvQvXt3ZGdnY/To0di0aVO7y3788ce48MILkZOTg27duuH2229HfX19vP6MzkkQURuDBg0S48aNa/O+3+8XDQ0Nwu/3J79QCk2bNk307t071cUIWL16tQAgfvOb34inn35aXHfddQKA+NOf/qRo/auvvlro9Xrxxz/+UaxZs0aMGTNG6PV68eGHHwYtt3v3bpGVlSWGDRsmVq1aJe69915hMpnE1KlTE/FndRoMAepQfX19qouQMh2FQCZIpxA4ffq0KCwsFNOmTQt6/9prrxVms1mcOnUq5PqfffaZACAeffTRwHsNDQ2irKxMjBkzJmjZSy+9VJSWlgqHwxF475lnnhEAxHvvvReHv6ZzYgioxNGjR8X1118vSktLhdFoFH369BE333yzcLvdQgghnn/+eQFAbNu2TcybN08UFxcLq9UaWP/JJ58U55xzjjAajaK0tFTccsstwmazBW3j66+/Fr/+9a9F165dhclkEmeccYa46qqrhN1uDyzz/vvviwsuuEDk5+cLs9kszj77bFFRURG2/ErWa2xsFIsXLxZlZWXCaDSKHj16iLvuuks0Nja2+bx169aJkSNHiuzsbGG1WsVFF10U6Ch69+4tAAS95EDYunWrACC2bt0a9Hl/+9vfxM9+9jORlZUlCgsLxbXXXiuOHj0atMysWbOE2WwWR48eFVdccYUwm82iqKhILFy4UPh8vrD7YMOGDeKyyy4L1GG/fv3E0qVLg9YdN25cm7KHCoSLL75YnHfeee3+7uyzzxaTJ08OW65Q3n77bQFAvP3220Hvf/zxxwKAWLduXcj177rrLqHT6YI6diGEePjhhwUA8eOPPwohhHA4HEKv14u77roraDm32y0sFou44YYbYvo7OjN90s8/UdIdO3YMo0aNgt1ux4033ogBAwagqqoKr732Gk6fPg2j0RhY9pZbbkFxcTEWL14Ml8sFAHjggQfw4IMPYtKkSZg3bx4OHjyIVatWYefOnfjoo49gMBjg8XgwZcoUuN1u3HbbbejWrRuqqqrw1ltvwW63Iz8/H/v378cvfvELnHfeeVi6dClMJhMOHTqEjz76KGT5lawnSRIuv/xy/OMf/8CNN96IgQMHYu/evXj88cfx9ddfY8OGDYFlH3zwQTzwwAMYO3Ysli5dCqPRiM8++wwffPABJk+ejBUrVuC2226DxWLBvffeCwDo2rVrh+Vbu3Yt5syZg5EjR6KyshInTpzAE088gY8++gi7d++G1WoNLOv3+zFlyhSMHj0ay5Ytw+bNm/HYY4+hrKwM8+bNC7kf1q5dC4vFggULFsBiseCDDz7A4sWL4XQ68eijjwIA7r33XjgcDhw9ehSPP/44AMBisXT4mddddx3mzp2Lffv2YfDgwYH3d+7cia+//hr33Xdf4D2bzQa/3x+yjACQk5ODnJwcAMDu3bsBACNGjAhaZvjw4dBqtdi9ezd+//vfd/hZu3fvxtlnn428vLyg90eNGgUA2LNnD3r27Im9e/fC5/O12Y7RaMTQoUMD5aB2pDqFKPFmzpwptFqt2LlzZ5vfSZIkhGg+ErjwwguDvlmePHlSGI1GMXny5KDz4H/5y18EAPHcc88JIZrOxwIQr776aoflePzxxwUAUV1dHVH5lay3bt06odVq25wnls9Hf/TRR0IIIb755huh1WrFr371qzbn9eV9IUTHp4NaHwl4PB5RUlIiBg8eLBoaGgLLvfXWWwKAWLx4ceC9WbNmCQBi6dKlQZ85bNgwMXz48NA7QTSdWmntpptuEjk5OUFHO5GcDrLb7SIrK0vcc889Qe/ffvvtwmw2B50SbO8Iqb3XkiVLAuuUl5cLnU7X7raLi4vF1VdfHbJ8gwYNEhMnTmzz/v79+wUAsXr1aiGEEK+++qoAIHbs2NFm2RkzZohu3bqF3I6a8e6gTk6SJGzYsAG//OUv23xLAgCNRhP089y5c6HT6QI/b968GR6PB/Pnz4dWqw1aLi8vD2+//TYAID8/HwDw3nvv4fTp0+2WRf5GvHHjRkiSpPhvULLeq6++ioEDB2LAgAGoqakJvCZOnAgA2Lp1KwBgw4YNkCQJixcvDvp7gLb7QonPP/8cJ0+exC233IKsrKzA+9OmTcOAAQMC+6elm2++Oejniy66CN99913YbWVnZwf+v66uDjU1Nbjoootw+vRpHDhwIOKyA031dsUVV+Cvf/0rxL/nl/L7/Vi/fj2mT58Os9kcWPall17Cpk2bwr5mzpwZWKehoSHoSLOlrKwsNDQ0hCxfQ0MDTCZTu+vKv2/5346WDbcdNePpoE6uuroaTqcz6FA/lL59+wb9/MMPPwAA+vfvH/S+0WhEv379Ar/v27cvFixYgOXLl+Oll17CRRddhMsvvxy///3vAwFx1VVX4b//+7/xhz/8AYsWLcIll1yCX//617jyyivbdMgtKVnvm2++wVdffYXi4uJ2P+PkyZMAgG+//RZarRbnnHOOov0RTkf7BwAGDBiAf/zjH0HvZWVltSljQUEBbDZb2G3t378f9913Hz744AM4nc6g3zkcjkiLHjBz5kysX78eH374IS6++GJs3rwZJ06cwHXXXRe03AUXXBDxZ2dnZ8Pj8bT7u8bGxqBg62h9t9vd7rry71v+t6Nlw21HzRgCFCSWfyyPPfYYZs+ejY0bN+L999/H7bffjsrKSnz66afo0aMHsrOzsWPHDmzduhVvv/023n33Xaxfvx4TJ07E+++/H3QE0rpM4daTJAnnnnsuli9f3u5n9OzZM+q/K546+hvDsdvtGDduHPLy8rB06VKUlZUhKysLX3zxBe65556IjqxamzJlCrp27YoXX3wRF198MV588UV069YNkyZNClquurpa0TUBi8USuA5RWloKv9+PkydPoqSkJLCMx+NBbW0tunfvHvKzSktLUVVV1eb9n376CQAC65eWlga933rZcNtRM54O6uSKi4uRl5eHffv2RbV+7969AQAHDx4Met/j8eD7778P/F527rnn4r777sOOHTvw4YcfoqqqCqtXrw78XqvV4pJLLsHy5cvx5Zdf4qGHHsIHH3wQOF3TkXDrlZWV4dSpU7jkkkswadKkNi/5m3pZWRkkScKXX34ZcntKTw11tH/k91rvn2ht27YNtbW1WLt2Le644w784he/wKRJk1BQUNBm2UhPa+l0Ovzud7/Da6+9BpvNhg0bNuCaa65pE1gjR45EaWlp2NeyZcsC6wwdOhRA02mzlj7//HNIkhT4fUeGDh2Kr7/+us2Rz2effRb0+YMHD4Zer2+zHY/Hgz179oTdjpoxBDo5rVaL6dOn480332zzDwRA4DxwRyZNmgSj0Yg///nPQcs+++yzcDgcmDZtGgDA6XTC5/MFrXvuuedCq9UGDtFPnTrV5vPlf5ztHcbLlKz329/+FlVVVXjmmWfaLNvQ0BC402n69OnQarVYunRpm2/PLf8+s9kMu93eYZlkI0aMQElJCVavXh30N/z973/HV199Fdg/sZI75JZl9Hg8eOqpp9osazabIz49dN1118Fms+Gmm25CfX19u3fsRHNNYOLEiejSpQtWrVoV9FmrVq1CTk5O0P6pqanBgQMHgq4pXXnllfD7/Xj66acD77ndbjz//PMYPXp04AgvPz8fkyZNwosvvoi6urrAsuvWrUN9fT1mzJgR0f5QlZRelqakOHr0qOjWrZvIyckR8+fPF2vWrBEPPPCAGDRoUOBef/nuoPbuIFqyZIkAICZPniz+8pe/iNtuu03odDoxcuRI4fF4hBBCvP766+KMM84Q8+fPF0899ZT485//LEaOHCkMBoP45JNPhBBC3HHHHWLYsGHivvvuE88884x46KGHxBlnnCF69OgR9CxBa0rW8/v94rLLLhMajUZcffXVYuXKlWLFihXi5ptvFl26dAn6u+6//34BQIwdO1YsW7ZMrFy5UsycOVMsWrQosMwtt9wiNBqN+M///E/x17/+VWzZskUI0f5zAvK+Gz16tFixYoWoqKgQOTk5ok+fPkHPUsjPCXS0f0OpqakRBQUFonfv3uKxxx4Ty5cvF8OGDRNDhgxpU55HHnlEABB33nmnePnll8Ubb7wR8rNlgwcPFgDEwIEDFS2v1JNPPikAiCuvvFI888wzYubMmQKAeOihh4KWk/dD62cwZsyYEXgGYM2aNWLs2LFCr9eL7du3By23a9cuYTKZgp4YzsrKivlZh86OIaASP/zwg5g5c6YoLi4WJpNJ9OvXT5SXl7d5WKy9EBCi6ZbQAQMGCIPBILp27SrmzZsX1MF999134vrrrxdlZWUiKytLdOnSRUyYMEFs3rw5sMyWLVvEFVdcIbp37y6MRqPo3r27uOaaa8TXX38dsuxK1/N4POK//uu/xKBBg4TJZBIFBQVi+PDh4sEHH2zzsNFzzz0nhg0bFlhu3LhxYtOmTYHfHz9+XEybNk3k5uYqelhs/fr1gc/r0qVLyIfFWlMSAkII8dFHH4nzzz9fZGdni+7du4u7775bvPfee23KU19fL373u98Jq9Ua9mGxluTwePjhhxUtH4mnn35a9O/fXxiNRlFWViYef/zxoFtyheg4BBoaGsQf//hH0a1bN2EymcTIkSPFu+++2+52PvzwQzF27FiRlZUliouLRXl5uXA6nXH/ezoTjRBhzgcQkSo88cQTuPPOO3H48GH06tUr1cWhJGEIEBGEEBgyZAgKCwvDXqSnzoW3iBKpmMvlwhtvvIGtW7di79692LhxY6qLREnGIwEiFTt8+DD69u0Lq9WKW265BQ899FCqi0RJxhAgIlIxPidARKRiDAEiIhXLmAvDq1atwqpVq3D48GEAwKBBg7B48WJceumlij9DkiQcO3YMubm5UY0YSUSUCYQQqKurQ/fu3UMOzghk0DWBN998EzqdDmeddRaEEHjhhRfw6KOPYvfu3Rg0aJCizzh69GjaDCRGRJRoR44cQY8ePUIukzEh0J4uXbrg0UcfxQ033KBoeYfDAavVirvvvjtotEyPxxMYk8VoNIY8SpCXKyoqgsFgiKH0wTweT2CsGqvV2uEY7IkkhEB1dTWApnHZ5SGgk83hcATG4SkuLk7JURvroxnro0my6sPr9aKmpgZA+4MBKumvGhoa8MgjjwRm9QslY04HteT3+/Hqq6/C5XJhzJgxHS7ndruDBvWSB5bKzs4ODHXrdruh0Wig1WohhIBGo4HJZOrwEEqSJEiShLy8vLg1RI/HA5fLFagsr9eL/Pz8pDZ0SZJQW1sLs9kMk8mExsZGaLVa5ObmJq0MQFMd6XQ6dOnSBW63G16vF4WFhWEPaeOJ9dGM9dEkmfUh/71arbbNfo60v1IS2Bl1YXjv3r2wWCwwmUy4+eab8frrr4ecHKSyshL5+fmBV+tTQW63Gz6fD3q9HtnZ2TAajRBCwO12xzQ+eyQ8Hg9qampgMBhQVFQUOMKoqanpcDKOeJMbuNfrRVFREQoLC5GXlwen0xk0ImOi1dXVwel0Ii8vD4WFhSgqKoLX60VtbS3rg/Wh+vpIVH+VUSHQv39/7NmzB5999hnmzZuHWbNmhRwXvqKiAg6HI/A6cuRI4Hctd6g8JZ1er09qELRs4PK3K61Wi8LCwqQ19NYNXP52lZubm9SG3rLDkb9dGY3GpHY8rI9mrI8m6VIfieyvMioEjEYjzjzzTAwfPhyVlZUYMmQInnjiiQ6XN5lMyMvLC3oBTYeTrXeoLFlB0F4DlyWroXfUwGXJaujtdTiyZHU8rI9mrI8m6VIf7QWALB79VUaFQGuSJIWcjCTUeu3tUFmigyBUA5cluqGHa+CyRDf0UB2OLNEdD+ujGeujSbrUR6gAkMXaX2VMCFRUVGDHjh04fPgw9u7di4qKCmzbtg3XXnttxJ+l1Wo73KGyRAWBkgbespyJaOhKG7gsUQ1dSYcjS1THw/poxvpoki714fF4wgaArHV/FclNnxkTAidPnsTMmTPRv39/XHLJJdi5cyfee+89/PznP4/4s5Te2hnvIIikgcvi3dAjbeCyeDf0SDocWbw7HtZHM9ZHk3SpD5/PB7/frygAZC37q0j2Q8bcIvrss8+mZLt6fdMu8ng8cLvdUd+WFk0Dl8kNvba2FjU1NRE1zpaibeAyuXOQJ/2O9va4aDocmdzx1NTUoLa2NurbFVkfzVgfTdKlPlwuFyRJgk6nUxwAMrm/amhoULxOxhwJpFKsRwSxNHBZrN94Ym3gsli/8cTS4chi/QbK+mjG+miSTvVRX18PrVYbdRn0en1ED7IyBBRqGQR+v19xQ49HA5dF29Dj1cBl0Tb0eHQ4smg7HtZHM9ZHk3SrD4vFEvhGH62IjqRi2pLKtAwCu90etqHHs4HLIm3o8W7gskgbejw7HFmkHQ/roxnro0k61ofZbI5LGZRiCERIp9NBr9fD5/OFbOiJaOAypQ09UQ1cprShJ6LDkSnteFgfzVgfTdRQH0owBKKg1WpRUFDQYUNPZANvWYZQDT3RDVwWrqEno4GH63hYH81YH03UVB/hMASiJI9l0rqhJ6OByzpq6Mlq4LKOGnoyG3hHHQ/rg/XB+ggtY24RjSchRNT3NEuSBCEEvF4vDAYD8vPzYbPZcPLkSVgsFtjtduj1euTl5cHn88W55O3Ly8sLlMFqtaK+vh4+nw8FBQUAkJSBtkwmE3JycmC32wN/d319fWDAv2QN9sX6aML6aJZp9eH1emPqowBE9LAYQyBCcgi43W74/X4AgMVigdvthsvlgslkgtFojGo4i1hkZ2cHhqDVaDSwWCzw+/2BMiaDTqeD2WwONGiz2QydTofGxsaklQFgfchYH80yqT58Ph8kSYpp3gaGQBjFxcWBweQi5fV64Xa7cdlll6Vskg8i6rwcDgfeeecdmEymqCeukh9YU0KVIWAwGGI6D+j3+5Gfn48uXbrEsVRERE3kB76i7af4sBgRESnCECAiUjGGQBSSNbUeEVGiMQQi5PV6k3Z7HRFRojEEIuDxeGCz2WK6dYuIKJ0wBBSSn3SUB5EjIkqUWB+k83q9ipdlCCjQ8lH3goICHgkQUUJ5vV64XK6o1vV4PLDb7YqXZwiE0XqsEwYAESWawWBAfX19xBPTtDxjoZQqQ0BpwiZzsCsiIpler4fFYoloYpqW/ZXValW8LVX2ai6XK+yOZQAQUSqZzWbFE9PEcsZClcNGmM3mkJNBMwCIKB0ombw+1v5KtSGg1Wrb3bEMACJKJ6GCIB79lSpDAGh/xzIAiCgdJbK/Um0IAME71uPxwO12MwCIKC0lqr9SdQgAzYkqT+zAACCidJWI/kr1vZ2cqLJoH9AgIkq0RPRXGRMClZWVGDlyJHJzc1FSUoLp06fj4MGDMX1my3NqpaWlim/HIiJKtkT1VxkTAtu3b0d5eTk+/fRTbNq0CV6vF5MnT47p0erWF1Vyc3MZBESUdhLZX2XMNYF333036Oe1a9eipKQEu3btwsUXXxzRZ8njcrR3UUXJfblERMkS6i6gePRXGRMCrTkcDgAIOc+v2+0OOn8m7yi73Y78/PwOL6owCIgoHSi5DTTW/ipjTge1JEkS5s+fjwsuuACDBw/ucLnKykrk5+cHXj179gTQNC5HuKvqPDVERKnk9XoVPwcQS3+VkSFQXl6Offv24ZVXXgm5XEVFBRwOR+B15MgRAIDValV0WxWDgIhSQZIk2Gy2iJ4DaNlfRXKtNONOB91666146623sGPHDvTo0SPksiaTCSaTqc37kQyu1PpQq73PIyKKJ4/Ho+iMRWtyf3X8+HHF62RMCAghcNttt+H111/Htm3b0Ldv36Rtu2UQ5OTkQKfTJW3bRKQ+Go0GBQUFUT0IlpubG9GZi4wJgfLycrz88svYuHEjcnNzA0mXn5+P7OzshG9fDgK73Q6z2Zzw7RGRehmNxpgmsIqkj8qYawKrVq2Cw+HA+PHjUVpaGnitX78+aWXIzc2FxWKJaP5OIqJIJXMGw4w5EhBCpLoIAJoSNl3KQkQUq4w5EkgnkczfSUSUzhgCREQqxhAgIlIxhgARkYoxBIiIVIwhQESkYgwBIiIVYwgQEakYQyAKfFiMiDoLhkCEhBDweDypLgYRUVwwBCIgj/HNIwEi6iwYAgpJkoTa2lr4fD4YjcZUF4eIOjFJkmJaP5IvqgwBBeQA8Hq9UY/xTUSklMfjiXq0YkmSYLfbFS/P3iyMlgFQVFQEg8GQ6iIRUSen0Whgs9kivv7Y8oyFUqoMAaUJ2zoAeBqIiJLBaDRCr9ejpqZGcRC07K+sVqvibakyBOx2e9gdywAgolSRp5c0GAyKgiCWMxaqDIFwCcsAIKJU02g0KCwsDBsEsfZXqgwBq9Xa4Y5lABBRutBqtSGDIB79lSpDoKOEZQAQUbrpKAji1V+pMgSAtjvW7XYzAIgoLSWyv1JtCADNO7blNQIGABGlo0T1V6oOASIitVN1CLR8sEJO1EjuyyUiSpZE9VeqDYHWF1VMJpOi27GIiJItkf2VKkNACNHuRZVwt2MRESVbR3cBxau/UmUI2O32Dq+qMwiIKF2Euw00Hv2VKkOg5Tm19jAIiCjVOjpj0Vqs/VVGhcCOHTvwy1/+Et27d4dGo8GGDRui+hyr1Rr2tioGARGlihACNptN8XMArfurSIahzqgQcLlcGDJkCJ588smYPkfp4EoMAiJKBY/HE/aMRWst+6tI5hPQR1nGlLj00ktx6aWXJnWb8o6tra1FTU0N8vPzk7p9IlIfIQQKCgoiHwzu3/2Vy+VSvE5GhUCk3G433G534Gen0xnV57QMApvNBovFEq8iEhG1YTQao57ASqvVcj4BWWVlJfLz8wOvnj17Rv1ZLR/Z5mkhIkqkWKew1Wg0yrcV05bSXEVFBRwOR+B15MiRmD5Pq9WioKAgoh1MRJTOOvXpIJPJBJPJFNfP1Gg0HGCOiDqNTn0kkCg8EiCiziKjjgTq6+tx6NChwM/ff/899uzZgy5duqBXr14pLBkRUWbKqBD4/PPPMWHChMDPCxYsAADMmjULa9euTVGpiIgyV0aFwPjx4yGESHUxiIg6DV4TICJSMYYAEZGKMQSIiFSMIUBEpGIMgSj4fL5UF4GIKC4YAhFyuVwRjdVNRJTOGAIRqKurQ319fdSj+xERKZHMW+EZAgrV1dXB6XTCYrFAr8+oxyuIKMN4PJ6YgiCS+QQYAgrIAZCXlwez2Zzq4lAnJISAJKRUF4PShDy9pCRF3ibq6uoYAuFEkrAtAyA3NzeBpSK18vq9uO3vt2Hh+wtTXRRKE0ajET6fD7W1tREFgdxfRfJlVZUhYLfbFe1YBgAlmiQk3L/1frz65as4dfpUqotDaUKeu8Tr9SoOgmjPWKgyBJQkLAOAEk0IgT/9409Y9691aPQ1IkufleoiURoxGAwoKipSFASx9FeqDAGr1RpyxzIAKBme2vkUntr5FLIN2cjSZyHLwBCgYEajMWwQxNpfqTIEQiUsA4CS4eW9L+PRjx+FQWuANcsKADDp4jsLHnUOoYIgHv2VKkMAaH/HMgAoGd76+i3cv/V+SEJCYU4hAECr0cKo47Sl1L5E9leqDQEgeMf+9NNPDABKuO2Ht2Ph+wvR6G1EcU5x0O8YAhRKovorVYcA0LRjW05Gz+cAKFF2HduFW9+5FU63E90s3YLmqtZAA4OWT6JTaInor1QfAnV1dWhsbERWVhY0Gk3E9+USKfFV9VeY++ZcVJ+uRqmlNCgAAECj0cCk5zUBCi0R/ZWqQ6DlObXCwkLFt2MRReIH+w+44Y0bcKzuGLrndodW0/afnRCCRwIUUqL6K9WGQHsXVZTcjkXq4jh0CB/eeScOvvgiHN9+G/F4LifqT+D6N67Hd7bvUGopbTcAZLwmQB1JZH+lypHQXC4XhBDtXlSRd2xNTQ1qa2tRWFgIrVa1Wal6RqsVzu+/x4nPPsOBF15Abt++6DF+PLqNHYvc3r3bnNZpyd5oxx/e+AP2n9yPruau0Gl1obfFEKB2hLoLKB79lSp7N5fLFfKqOo8ISJZdVIT+v/sdtHo9NDodHN98g31r1mDrjTdi27x5+Gb9etT9+GOb9U57T2PeW/Ow89hOlJhLYNCFPtUjIBgC1IaS20Bj7a9UeSRgNpvD3lbFIwKS9b3iCvzw97/D8d13yOnaFUII+BoaYD9wALYvv8SXzz4L69ln44yLL0a3Cy6A5YwzsObzNdj2wzboNDroNKGPAICmawIMAWrJ5XLh9OnTim4Dbd1fRTLniSp7NaW3VfGIgABAZzLhnLlzodXr4T19GhqNBoacHGSXlCC7pARagwG1+/bh//7yF2y5/nrsuP12XPCdBTf2ugrWbCuOu46j+nR1h58vhOCRAAXx+Xyor6+P6DmAlv2V3W5XvC1VhkAkWgdBMmf8ofTRbcwYdBszBl6nM6gNaLRaGMxm5MiBoNej5l//wtE16zD8v7/Cnw+Mx5Unz4KxvuMpSQUEtNCGPWVE6uH1emGxWCJ+EEzuryKZB50hoEDLILDZbAwCFdJoNDhn7lwYLBZ4HI72l5EDoWtXZJeUQKPT4dTuf+HczTW4/Iu8oGV9kg/Vrmo0+hohhGh6ToBjB9G/GQyGqB8EMxqNsFqtipfPuBB48skn0adPH2RlZWH06NH45z//mZTttkxYj8eTlG1Sesnr3Rv9pk+Hv7ERUphvWhqtFgaLBY3Cg9NGCV8NCR4htLahFia9CfZGO6rqqppOMfFIgP4t1ilsO+01gfXr12PBggVYsmQJvvjiCwwZMgRTpkzByZMnk7J9o9GIgoICHgmo2FnXXANz9+5w22xhl3XXOXHaexpbfubGydLmf9SSkOD1e3HT8Jvw/371/zB9wHR0ye6CruauiSw6UbsyKgSWL1+OuXPnYs6cOTjnnHOwevVq5OTk4LnnnktaGQwGA4xGXsBTK2NuLgbMng0A8LvdIZc9fboObo0P2abgw/o6dx0sRgtmDJqBiX0n4ulfPo1dN+5C/6L+iSo2UYeiCoGJEyfiwQcfbPO+zWbDxIkTYy5UezweD3bt2oVJkyYF3tNqtZg0aRI++eSTdtdxu91wOp1Br3jgraLq1vPnP0fh4MFwh7k+5DYB2R4Nco+54HQ3X1Cu99RjYt+J6JXfK7As7wyiVInqxNO2bduwd+9e7N69Gy+99FLgAobH48H27dvjWkBZTU0N/H4/unYNPmTu2rUrDhw40O46lZWV7YaVT2qE1x/d+Vef5INf8qC+oQr603VRfQZlvj4zL0dtxX6462wwWNpewBOSBEuDgHdgGRqnauGp3YOjTht0Wj20GuCXZ06A8/QPKSg5pbv6Bif8kgc+CdD4ld/l05JPalS8bNRXHzZv3oybbroJ559/Pt5880306dMn2o9KmIqKCixYsCDws9PpRM+ePdHgOgK9NrpvXj6fBl6fBj8cXo2aan+8ikqZxgBkDdPD+Y+T8Gud0Gibho8QfgFoAZ/NA32BEX1nFWFhSRaurM/BlmPfYfOx75BnMKFrw1Yc+joxX5gos7lcOrjdVkh+Aa8+uuuPDS7lN69EHQKlpaXYvn075syZg5EjR+LVV1/FwIEDo/24sIqKiqDT6XDixImg90+cOIFu3bq1u47JZAoae5sonrpcdgZc/2eDv94HfZ4B/novpEY/JLcEfYERXa8rg7Gk6a6g3hYrrj/7Z7im37nwShL0PKVIaSKqligPmmUymfDyyy/jjjvuwNSpU/HUU0/FtXAtGY1GDB8+HFu2bAm8J0kStmzZgjFjxiRsu0QdMRSYUPDzUgi/BL/LB8krYOyeA2PXLBRN74WcAflt1snWG5Bn5BcTSh9RHQm0vhh23333YeDAgZg1a1ZcCtWRBQsWYNasWRgxYgRGjRqFFStWwOVyYc6cOQndLlFH8i/uirpPa+A+4kLu+cXoOqsMwidBaww/XhBROogqBL7//nsUFwfPj/qb3/wGAwYMwOeffx6XgrXnqquuQnV1NRYvXozjx49j6NChePfdd9tcLA4n29wTOZbo5uX0en3QNnrQu8/VsBbkhV+BOr2ihftR9d52DCyfDb05J9XFoQxntzmx9/+2wZRlhMEQ3Rl7n6T8ppWottC7d+923x80aBAGDRoUzUcqduutt+LWW2+N6TP02iwYdNH9YxV+D3xawJJ9BvJyusRUDuoc8sb0Rp8xl6W6GNRJ+BpPQac1/rufiu4GFr2247GqWuPVqShwNFEi6iwYAhHyer0cO4iIOg2GQAQ8Hg9sNlvIKQWJiDIJQ0Ahj8eDmpoa6PV6jh1ERAkVyXwA7fF6eU0gruQAMBgMKCgo4JEAESWU1+uFy+WKal2Px8OZxeKpZQAUFhYyAIgo4QwGA+rr61FXF9n4ZC3PWCilyhBQmrCtA4CjhxJRMuj1elgsFjidTsVB0LK/6tQzi8WDy+UKu2MZAESUSmazGXl5eYqCIJYzFrHNYZahzGZzYG6B9iZyZgAQUTqQ+6dE9leqDQGtVtvujmUAEFE6CRUE8eivVBkCQPs7lgFAROkokf2VakMACN6xHo8HbrebAUBEaSlR/ZWqQwBoTtTGxqbp2BgARJSuEtFfqb63kxNVFu0DGkREiZaI/krVRwKtz6m5XK6QV+GJiFIlUf2VakOgvYsqSm7HIiJKtkT2V6oMAXlcjvYuqjAIiCidhLoLKB79lSpDwG63Iz8/v8OLKgwCIkoHSm4DjbW/UmUI6PX6sFfVGQRElEperxcOh0PRbaCt+6tIqDIErFarotuqGARElAqSJMHpdMJkMim+DbRlf8Wxg8KIZAe1DgKTyZSQMhERyTwej6IzFq3J/dXx48cVr6PKEIhUyyDIycmBTqdLcYmIqDPTaDQoKCiI6kGw3NzciOYhYAgoJAeB3W6H2WxOcWmIqDMzGo0xTWAVSR/FEIhAbm4ufD4fPB5PqotCRJ1YMmcwZAhEyGw2QwiR6mIQEcWF6scOikYk83cSEaUzhgARkYplTAg89NBDGDt2LHJyciKaRJmIiDqWMSHg8XgwY8YMzJs3L9VFISLqNDLm5PaDDz4IAFi7dm1qC0JE1IlkTAhEw+12B03AEM24GkREnVnGnA6KRmVlJfLz8wOvnj17prpIRERpJaUhsGjRImg0mpCvAwcORP35FRUVcDgcgdeRI0fiWHoiosyX0tNBCxcuxOzZs0Mu069fv6g/32QyJWTANz4sRkSdRUpDoLi4GMXFxaksQsSEEBw2gog6jYy5MPzjjz/i1KlT+PHHH+H3+7Fnzx4AwJlnngmLxZKUMkiSBJvNFtXIfkRE6ShjQmDx4sV44YUXAj8PGzYMALB161aMHz8+4duXJAm1tbXw+XxJCx0iUidJkmJaP5JT1hnzlXbt2rUQQrR5JTMAvF5v1GN8ExEp5fF44PV6o1pXkiTY7XbFy7M3C6NlABQVFcFgMKS6SETUyWk0GthstoivP7Y8Y6GUKkNAacK2DgCj0ZjgkhERNU0qo9frUVNTozgIWvZXkYyvpsoQsNvtYXcsA4CIUkWeXtJgMCgKgljOWKgyBMIlLAOAiFJNo9GgsLAwbBDE2l+pMgSsVmuHO5YBQETpQqvVhgyCePRXqgyBjhKWAUBE6aajIIhXf6XKEADa7li3280AIKK0lMj+SrUhADTv2JbXCBgARJSOEtVfqToEiIjUTtUh0PLBCjlRI7kvl4goWRLVX6k2BFpfVDGZTIpuxyIiSrZE9leqDAEhRLsXVcLdjkVElGwd3QUUr/5KlSFgt9s7vKrOICCidBHuNtB49FeqDIGW59TawyAgolTr6IxFa7H2V6oMAavVGva2KgYBEaWKEAI2m03xcwCt+6tIhqFWZQgoHVyJQUBEqeDxeMKesWitZX/F+QTiKJaEJSKKhhACBQUFkQ8G1+KBMsXrRFo4NWoZBDabLeap34iIQjEajVFPYKXVajmfQCK0TFieFiKiRIp1CluNRqN8WzFtSWW0Wi0KCgoi2sFEROmMIRAhjUbDAeaIqNNgCESBRwJE1FkwBIiIVIwhQESkYgwBIiIVYwgQEalYRoTA4cOHccMNN6Bv377Izs5GWVkZlixZwvv1iYhipPzZ4hQ6cOAAJEnCmjVrcOaZZ2Lfvn2YO3cuXC4Xli1bluriERFlrIwIgalTp2Lq1KmBn/v164eDBw9i1apVDAEiohhkRAi0x+FwoEuXLiGXcbvdcLvdgZ+dTmdctu3z+eLyOUREqZYR1wRaO3ToEFauXImbbrop5HKVlZXIz88PvHr27Bnztl0uF0cSJaJOI6UhsGjRImg0mpCvAwcOBK1TVVWFqVOnYsaMGZg7d27Iz6+oqIDD4Qi8jhw5ElN56+rqUF9fH/XofkRESgghkratlJ4OWrhwIWbPnh1ymX79+gX+/9ixY5gwYQLGjh2Lp59+Ouznm0wmmEymWIsJoCkAnE4nLBYLdDpdXD6TiKg9Ho8HWVlZUa/vcrkUL5vSECguLkZxcbGiZauqqjBhwgQMHz4czz//fMxDrUZCDoC8vDyYTCY0NjYmbdtEpD7y9JIlJSUR93V1dXURhUBGXBOoqqrC+PHj0atXLyxbtgzV1dU4fvw4jh8/HtXnRXKo1TIAcnNzo9oeEVEkjEYjfD4famtrI5rESu6vzGaz4nUy4u6gTZs24dChQzh06BB69OgR9Ltozp3Z7Xbk5eWFTVgGABGlgjx3icPhQG1tLQoLCyPqryIJjow4Epg9ezaEEO2+oqEkYRkARJRKBoMBRUVF8Hq9Ce2vMiIE4s1qtYbcsQwAIkoHRqMxbBDE2l+pMgRCJSwDgIjSSaggiEd/pcoQANrfsQwAIkpHieyvVBsCQPCO/emnnxgARJS2EtVfqToEgKYd2/KBskhurSIiSqZE9FeqD4G6ujo0NjYiKysLGo0m4vtyiYiSJRH9lapDoOU5tcLCQsW3YxERJVui+ivVhkB7F1WU3I5FRJRsieyvVBkCLperw4sqDAIiSieh7gKKR3+l2hAIdVWdQUBE6UDJbaCx9leqDAGz2Rz2tioGARGlUqgzFq217q8iGVJHtSGgBIOAiFLB5/Ohvr4+oucAWvZXdrtd8bZUGQKRiCVhiYii4fV6YbFYIn4QTO6vIpkHnSGgQMsgsNlsDAIiSiiDwRD1g2BGoxFWq1Xx8gwBhVomrMfjSXVxiKgT0+tjm+olknnQGQIRMBqNKCgo4JEAEXUaGTGzWLx5vd6Yvs1rtVo4HI44loiIqInD4YDP54PX6436MyJZV5UhUF1dHdFEzC1JkgQhBN5++234/X5oNBoYjUZoNJqgZTweT7u/iychBDweD4QQMBqNQdPPhfpdvMkN1mAwtDmMDfW7eAq1z1kfyn4XT6yPZpHWh8/ng91uh0ajibpcp0+fVrysKkMglp0LNDWgrKwsAIDNZoPf70dBQQE0Gg28Xi+cTif0en3gvUTKysqCzWZDfX09CgoKYDAYIISAzWaDz+cLvJdoLpcL9fX1sFgsgQtaLpcLLpcr6L1EMhgMrI9/Y300ycT68Hq90Gq1MfVTkexXhkAUJEmCwWCA0WiEwWBATU1N4KEOh8MBk8mkaGLoeCkpKUFtbS0cDgcKCwvhdDohSRJKSkpgNBqTUgaj0Qi9Xh/4Bw40fRuxWq1Jm5+B9dGM9dEsE+tD7qMYAhlAvmuouroaNTU1MBgMSW3gQNM1isLCQtTU1KCmpgYAUFxcnLQGLpMbs9PpBICUTNDD+mjG+mjC+giNdwcREakYQyBGHo8HNTU1Qc8RJHuICUmSUFtbC5/Ph6KiIhiNRtTU1CT9eYaWg13l5eXB6XSirq4uqWVgfTRjfTRhfYTGEIiB3MDlQ1yTyZT0sYbkBu71elFUVBQ43yqfi01WQ2892mFubm7SGzrroxnrownrIzyGQJS8Xm+75ziTOehc6wYun+OUz4Emq6F3NNxtMht66w6H9cH6YH0owxCIgiRJsNlsHV7kSkZD76iBy5LV0MONd56Mht5RhyNjfTRjfTRRU32EwxCIkN/vh8/ng16vD3mXQyIbergGLkt0Q1cy4QWQ2IYersORsT6asT6aqKE+lMiYELj88svRq1cvZGVlobS0FNdddx2OHTuW1DLIg8dpNBpYrdawt7kloqErbeCyRDV0pQ1cloiGrrTDkbE+mrE+mqRjfUQ7mkG0MiYEJkyYgL/97W84ePAg/ud//gfffvstrrzyyqRtv2UA6HQ6xfc5x7OhR9rAZfFu6JE2cFk8O55IOxwZ66MZ66NJutVHfX19RPMBtCeS/ZgxIXDnnXfi/PPPR+/evTF27FgsWrQIn376aUyDLCnVMgBMJlPED7rEo6FH28Bl8Wro0TZwWTw6nmg7HBnroxnro0k61YfFYgmMrxSNSAefy5gQaOnUqVN46aWXMHbs2JDjfrjdbjidzqBXpFoHQLRjncTS0GNt4LJYG3qsDVwWS8cTa4cjY300Y300SZf6MJvN0Gq18Pv9cLvdEa0bzXwnGRUC99xzD8xmMwoLC/Hjjz9i48aNIZevrKxEfn5+4NWzZ08AyodZjfUIoLVoGnq8Grgs2oYerwYui6bjiVeHI2N9NGN9NEmX+tDr9dDpdPD5fIqDoGV/Fcl+SGkILFq0CBqNJuTrwIEDgeXvuusu7N69G++//z50Oh1mzpwZcoKXiooKOByOwOvIkSMAmhpOuB0b7wCQRdLQ493AZZE29Hg3cFkkHU+8OxwZ66MZ66NJutSHPOickiCI5YyFRqRwmqzq6mrU1taGXKZfv37tVu7Ro0fRs2dPfPzxxxgzZoyi7TkcDlitVixcuBAGgwFarbbd00mSJAWOFlqPdy7vrqKiopiGoPV6vbDb7dDr9bBarW0qTQgBu90On88Hq9WakOFulWxDHu7WbDYnbPjhcNsIt6/igfWhfBusj2aJqA/5QVQAgeG3JUmKqL9qaGjAI488Arvdjvz8/JDbS+koosXFxSguLo5qXfkbQiTnzORvN4899lhU2yQiyiR1dXVhQyClRwJKffbZZ9i5cycuvPBCFBQU4Ntvv8X999+PEydOYP/+/TCZTIo+R5IkHDt2DLm5uW2+WTidTvTs2RNHjhxBXl5eIv6MToP7KjLcX8pxXykXal8JIVBXV4fu3buHPVWXEfMJ5OTk4H//93+xZMkSuFwulJaWYurUqbjvvvsUBwDQdK6vR48eIZeRR/ij8LivIsP9pRz3lXId7atwRwCyjAiBc889Fx988EGqi0FE1Olk1C2iREQUXwyBfzOZTFiyZElEp5fUivsqMtxfynFfKRevfZURF4aJiCgxeCRARKRiDAEiIhVjCBARqRhDgIhIxRgCYbjdbgwdOhQajQZ79uxJdXHSzuHDh3HDDTegb9++yM7ORllZGZYsWZLwybszxZNPPok+ffogKysLo0ePxj//+c9UFyntVFZWYuTIkcjNzUVJSQmmT5+OgwcPprpYGeFPf/oTNBoN5s+fH/VnMATCuPvuu9G9e/dUFyNtHThwAJIkYc2aNdi/fz8ef/xxrF69Gv/xH/+R6qKl3Pr167FgwQIsWbIEX3zxBYYMGYIpU6bg5MmTqS5aWtm+fTvKy8vx6aefYtOmTfB6vZg8eXLSp1nMNDt37sSaNWtw3nnnxfZBgjr0zjvviAEDBoj9+/cLAGL37t2pLlJGeOSRR0Tfvn1TXYyUGzVqlCgvLw/87Pf7Rffu3UVlZWUKS5X+Tp48KQCI7du3p7ooaauurk6cddZZYtOmTWLcuHHijjvuiPqzeCTQgRMnTmDu3LlYt24dcnJyUl2cjOJwONClS5dUFyOlPB4Pdu3ahUmTJgXe02q1mDRpEj755JMUliz9ORwOAFB9GwqlvLwc06ZNC2pf0cqIsYOSTQiB2bNn4+abb8aIESNw+PDhVBcpYxw6dAgrV67EsmXLUl2UlKqpqYHf70fXrl2D3u/atWvQREkUTJIkzJ8/HxdccAEGDx6c6uKkpVdeeQVffPEFdu7cGZfPU9WRgNKZzFauXIm6ujpUVFSkusgpE+msbwBQVVWFqVOnYsaMGZg7d26KSk6ZrLy8HPv27cMrr7yS6qKkpSNHjuCOO+7ASy+9hKysrLh8pqqGjVA6k9lvf/tbvPnmm0FzDvj9fuh0Olx77bV44YUXEl3UlIt01rdjx45h/PjxOP/887F27dq4TTeYqTweD3JycvDaa69h+vTpgfdnzZoFu90edn5sNbr11luxceNG7NixA3379k11cdLShg0b8Ktf/Qo6nS7wnt/vh0ajgVarhdvtDvqdEqoKAaV+/PFHOJ3OwM/Hjh3DlClT8Nprr2H06NFh5yRQm6qqKkyYMAHDhw/Hiy++GHEj7KxGjx6NUaNGYeXKlQCaTnX06tULt956KxYtWpTi0qUPIQRuu+02vP7669i2bRvOOuusVBcpbdXV1eGHH34Iem/OnDkYMGAA7rnnnqhOofGaQDt69eoV9LPFYgEAlJWVMQBaqaqqwvjx49G7d28sW7YM1dXVgd9169YthSVLvQULFmDWrFkYMWIERo0ahRUrVsDlcmHOnDmpLlpaKS8vx8svv4yNGzciNzcXx48fB9A0KUp2dnaKS5decnNz23T0ZrMZhYWFUV9DYQhQTDZt2oRDhw7h0KFDbQJS7QeZV111Faqrq7F48WIcP34cQ4cOxbvvvtvmYrHarVq1CgAwfvz4oPeff/55zJ49O/kFUhmeDiIiUjF1X70jIlI5hgARkYoxBIiIVIwhQESkYgwBIiIVYwgQEakYQ4CISMUYAkREKsYQICJSMYYAEZGKMQSIiFSMIUCUANXV1ejWrRsefvjhwHsff/wxjEYjtmzZksKSEQXjAHJECfLOO+9g+vTp+Pjjj9G/f38MHToUV1xxBZYvX57qohEFMASIEqi8vBybN2/GiBEjsHfvXuzcuRMmkynVxSIKYAgQJVBDQwMGDx6MI0eOYNeuXTj33HNTXSSiILwmQJRA3377LY4dOwZJknD48OFUF4eoDR4JECWIx+PBqFGjMHToUPTv3x8rVqzA3r17UVJSkuqiEQUwBIgS5K677sJrr72Gf/3rX7BYLBg3bhzy8/Px1ltvpbpoRAE8HUSUANu2bcOKFSuwbt065OXlQavVYt26dfjwww8Dc+oSpQMeCRARqRiPBIiIVIwhQESkYgwBIiIVYwgQEakYQ4CISMUYAkREKsYQICJSMYYAEZGKMQSIiFSMIUBEpGIMASIiFfv/7lrBWTwp70AAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# create the k-space far field projection monitor\n", "monitor_far = td.FieldProjectionKSpaceMonitor(\n", " center=[0, 0, -0.1 * wavelength],\n", " size=[td.inf, td.inf, 0],\n", " freqs=[f0],\n", " name=\"far_field\",\n", " ux=list(np.linspace(-0.7, 0.7, 100)),\n", " uy=list(np.linspace(-0.7, 0.7, 100)),\n", " proj_distance=50 * wavelength,\n", " proj_axis=2, # projecting in the +y direction\n", " far_field_approx=True, # use far field approximations\n", ")\n", "\n", "# create a simulation with the new source and monitor, and no PEC sheet\n", "sim5 = td.Simulation(\n", " size=[10 * wavelength, 10 * wavelength, 7 * wavelength],\n", " center=[0, 0, 0],\n", " grid_spec=td.GridSpec.uniform(dl=wavelength / min_cells_per_wvl),\n", " structures=[], # no PEC plate\n", " sources=[gaussian_beam],\n", " monitors=[monitor_far],\n", " run_time=run_time,\n", " boundary_spec=boundary_spec,\n", ")\n", "\n", "fig, (ax) = plt.subplots(1, 1, figsize=(7, 3))\n", "sim5.plot(y=0, ax=ax)\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Run simulation" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:51:48.653956Z", "iopub.status.busy": "2023-03-27T23:51:48.653801Z", "iopub.status.idle": "2023-03-27T23:52:08.321417Z", "shell.execute_reply": "2023-03-27T23:52:08.320805Z" } }, "outputs": [ { "data": { "text/html": [ "
[15:05:25] Created task 'kspace_monitor' with task_id                           webapi.py:139\n",
       "           'fdve-efa1582c-dd2d-4ff2-992d-f4de1070233dv1'.                                    \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:05:25]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'kspace_monitor'\u001b[0m with task_id \u001b]8;id=606665;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=691208;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-efa1582c-dd2d-4ff2-992d-f4de1070233dv1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:05:26] status = queued                                                      webapi.py:269\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:05:26]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=288273;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=720528;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:05:28] status = preprocess                                                  webapi.py:263\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:05:28]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=151588;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=509530;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
[15:05:33] Maximum FlexCredit cost: 0.045. Use 'web.real_cost(task_id)' to get    webapi.py:286\n",
       "           the billed FlexCredit cost after a simulation run.                                  \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:05:33]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.045\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get \u001b]8;id=900004;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=522371;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mthe billed FlexCredit cost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           starting up solver                                                   webapi.py:290\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=435805;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=442485;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           running solver                                                       webapi.py:300\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=699248;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=635076;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:05:41] early shutoff detected, exiting.                                     webapi.py:313\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:05:41]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=288579;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=503382;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#313\u001b\\\u001b[2m313\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           status = postprocess                                                 webapi.py:330\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=30776;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=808392;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#330\u001b\\\u001b[2m330\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:05:44] status = success                                                     webapi.py:337\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:05:44]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=515231;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=196238;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#337\u001b\\\u001b[2m337\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:05:45] loading SimulationData from data/kspace_monitor.hdf5                 webapi.py:512\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[15:05:45]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/kspace_monitor.hdf5 \u001b]8;id=133203;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=251961;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim_data5 = web.run(\n", " sim5, task_name=\"kspace_monitor\", path=\"data/kspace_monitor.hdf5\", verbose=True\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plot and compare\n", "Extract and plot the fields. We use a polar plot, and observe that the far field spot is located along the `phi=45 deg` line, as expected. The angle `theta` is expected to be near `30 deg`, which is nearly what is observed in the plot. The small deviation is due to the way the fields are plotted - a better way would be to project the fields orthographically on the surface of a sphere prior to plotting." ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:52:08.675015Z", "iopub.status.busy": "2023-03-27T23:52:08.674856Z", "iopub.status.idle": "2023-03-27T23:52:09.019754Z", "shell.execute_reply": "2023-03-27T23:52:09.019233Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_6807/2062883249.py:16: UserWarning: The input coordinates to pcolormesh are interpreted as cell centers, but are not monotonically increasing or decreasing. This may lead to incorrectly calculated cell edges, in which case, please supply explicit cell edges to pcolormesh.\n", " im = ax.pcolormesh(\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAHqCAYAAABY/wcsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACX70lEQVR4nOzdd1wT9xsH8M9lsZdsBMSFAweKSnGiomgVtLXWrXUv2irVVvy5Wmux1lqrVXFr68CtqFWrKE5cUKzVKu6F4GZDILnfHxkShjIOLuN5v173glySuydKck+e72JYlmVBCCGEEMIBAd8BEEIIIUR/UGJBCCGEEM5QYkEIIYQQzlBiQQghhBDOUGJBCCGEEM5QYkEIIYQQzlBiQQghhBDOUGJBCCGEEM5QYkEIIYQQzlBiQQghhBDOUGJBiJZLT0/HpEmTUKNGDZiYmKB169a4dOmS+n6WZTFr1iw4OzvDxMQEAQEBuHXrlsYxYmNj4e3tDQ8PD6xdu7aqXwIhxIBQYkGIlhs1ahSOHj2KP/74A1evXkXXrl0REBCAJ0+eAAAWLFiAJUuWICIiAhcuXICZmRkCAwORk5OjPsbIkSMxc+ZMbNmyBeHh4Xj06BFfL4cQoucYWoSMEO2VnZ0NCwsL7Nu3Dz169FDv9/HxQffu3TF37ly4uLjgq6++wpQpUwAAqampcHR0xIYNG9C/f38AQI0aNRATEwMHBwf4+/tj48aNaNiwIS+viRCi36hiQYgWy8/Ph0wmg7GxscZ+ExMTnDlzBvfu3UNycjICAgLU91lZWcHX1xexsbHqfbNmzUKDBg1gZWWFDz74gJIKQkilocSCEC1mYWEBPz8/zJ07F0lJSZDJZNi0aRNiY2Px9OlTJCcnAwAcHR01nufo6Ki+D1A0hbx8+RLPnz/H0qVLq/Q1EEIMCyUWhGi5P/74AyzLonr16jAyMsKSJUswYMAACARle/uamZnBxsamkqIkhBAFSiwI0XK1a9fGyZMnkZGRgUePHuHixYvIy8tDrVq14OTkBABISUnReE5KSor6PkIIqUqUWBCiI8zMzODs7IzXr1/jyJEj6NWrF2rWrAknJydER0erH5eWloYLFy7Az8+Px2gJIYaKRoUQouWOHDkClmVRr1493L59G1OnToWxsTFOnz4NsViMH3/8EfPnz8fGjRtRs2ZNzJw5E//88w+uX79epNMnIYRUNhHfARBC3i01NRVhYWF4/PgxqlWrhj59+mDevHkQi8UAgK+//hqZmZkYM2YM3rx5g7Zt2+Lw4cOUVBBCeEEVC0IIIYRwhvpYEEIIIYQzlFgQQgghhDOUWBBCCCGEM5RYEEIIIYQzlFgQQgghhDOUWBBCCCGEM5RYEEIIIYQzlFgQQgghhDOUWBBCCCGEM5RYEEIIIYQzlFgQQgghhDOUWBBCCCGEM5RYEEIIIYQztGw6ITqEZVlkZWUhJycHcrlcvclkMjAMA4FAoLGZmJjAxMQEDMPwHTohBiknJwdSqZSz40kkEhgbG3N2vMpAiQUhPMjLy0NycjKePn2qsSUnJyM9PR3p6enIyMgo8ntGRgZYli3TuQQCAczNzWFubg4LCwtYWFiofzc3N4eVlRUcHR3h7OwMZ2dnuLi4wNnZGY6OjhCJ6COCkPLKycmBiUU1ID+bs2M6OTnh3r17Wp1cMGxZP6UIIe8llUpx9+5dJCYmqreHDx+qE4jnz5+DYRjY29sXuZhbWVkVmwQU/N3Y2BhCoVCjOgGgSBUjOzu72ASl4O+pqalFkpyC8alic3d3h6enp3qrWbMmxGIxz//ShGivtLQ0WFlZQdTwU0DIwXtFlof869uRmpoKS0vLih+vktDXEUIq4Pnz57hy5YpGApGYmIh79+7ByMgIdevWhaenJ+rWrQsfHx/1RdrZ2RkODg6cX5iFQiGEQqH6tqmpKWxtbct8HKlUipSUFI1k4/79+zh79izWr1+PW7duIT8/H7Vq1dJINjw9PeHt7Y1q1apx+bII0WmM2BiMUFLh47AC4fsfpAUosSCklFJSUhAfH4+4uDj19ujRI9SqVQv169eHp6cngoKC1BfY6tWrqysJukYikcDNzQ1ubm7F3i+Xy/Ho0SONZGrfvn3477//8ODBA3h4eMDHx0djK0+CQwjRPdQUQkgxMjIycPbsWVy4cEGdRDx58gSenp4aF8tmzZrBysqK73C1yuvXr4skYHfu3IG7u7v63+2DDz6An58fTE1N+Q6XkEqjagqRNBvOTcVCJoX07/Va3xRCiQUheJtIxMTEICYmBpcuXYK7uzv8/Pw0kghtfjNrszdv3mgkG+fOnUNycjJ8fX3h7+8Pf39/SjSI3lElFkY+ozhLLHLj1lBiQYg2KpxIXL58GW5ubuqLXIcOHVCjRg2+w9RbLMvi/v376n//EydOUKJB9A4lFoTouXv37mH//v3Yv38/YmJiKJHQIizL4t69exqJxrNnz9CpUycEBwcjKCgIrq6ufIdJSJmoEgvjFmPBiDhILPKlyLm8khILQvgil8tx8eJF7N+/H1FRUbhx4wY6dOiA4OBg9OzZE7Vq1eI7RFIClmVx69YtHDhwAFFRUThz5gyaNGmCoKAgBAcHo3nz5jTpF9F6qsTCxHc8GJFRhY/H5uci+8IKSiwIqUo5OTn466+/EBUVhQMHDiA3NxcffvghgoOD0a1bN+poqaNevnyJQ4cOYf/+/Th06BAsLS3Rs2dPBAcHIyAgABJJxb8NEsI1SiwI0VEymQwnT57E5s2bsXPnTtjZ2aFXr14IDg5GmzZtaBInPSOVSnHy5Ens378f+/btQ3p6Oj799FMMHjwYrVu31tkhvkT/qBILM78QzhKLzNjfKLEgpDKwLIt//vkHmzZtwtatWyGVStG/f38MHjwYLVu2pDK5gZDL5Th37hw2b96Mbdu2wdLSEoMGDcKgQYPQsGFDvsMjBk6VWJi3+ZKzxCLj7K9an1hQak90ysOHDzF//nw0adIErVu3xtOnT7F69Wo8efIES5YsQatWrSipMCACgQBt27bFihUrkJycjCVLluDWrVvw8fFB8+bNsWjRIiQlJfEdJiEGhRILovXy8vKwa9cudOnSBbVr18bJkycxbdo0pKSkYNOmTejevTs1dxBIJBIEBwdj+/btSE5Oxueff44///wTNWrUQI8ePbB//37IZDK+wyQGiBEIOdt0ATWFEK314MEDrF69GmvXroWxsTHGjh2Lzz77DE5OTnyHRnTI48ePsW7dOqxevRoAMHr0aIwcORLVq1fnOTKi71RNIZYdpnDWFJJ2ciE1hRBSFizL4tixY+jduzfq1q2Lf//9F+vXr8edO3cwbdo0SipImbm6umLWrFm4d+8eli1bhgsXLqBWrVr49NNPcfr06TIvQ08IeTdKLIhWyMjIwLJly9CwYUMMGDAAXl5euH37Nvbu3Ytu3bpRT39SYSKRCMHBwTh48CD+++8/uLu7Izg4GN7e3li9ejWys7P5DpHoKWoKIaQKvXz5EkuXLsXSpUtRs2ZNfPHFF/j0009hbGzMd2jEAGRlZWHLli1YsmQJUlJSMHnyZIwfP57mOyGcUDWFWHcOAyOq+Gcam5+DN9Hh1BRCSHGePHmCr776CjVq1MCZM2ewfft2XLp0CUOHDqWkglQZU1NTjBo1CleuXMH69etx8OBBuLu7Y/r06Xj27Bnf4RGikyixIFXq1q1bGD16NGrXro27d+/i+PHjOHbsGDp37kzDRAlvGIbBhx9+iNOnT+PAgQNISEiAh4cHQkJC8ODBA77DIzqOYThqCmF0oymEEgtSJRISEtC/f380btwYUqkU8fHx2LNnD1q1asV3aIRoaNeuHf7880+cO3cOL168QL169TBs2DBcv36d79CIrhIKwXCwQUiJBSFITExE37590bp1a9jb2+PmzZvYuHEjzYpItJ63tzciIyPx77//wsjICD4+PhgyZAju3bvHd2iEaDVKLEilSEpKwtixY9G0aVPY2tri9u3bWLp0KS1NTnROnTp1sGrVKty4cQNCoRANGzbEl19+iefPn/MdGtERhjYqhBILwqk3b94gLCwMdevWxevXr3HlyhVERETAxcWF79AIqZAaNWpgw4YNuHTpEu7du4fatWvj22+/RXp6Ot+hEaJVKLEgnMjOzsZPP/2EWrVq4dKlSzh58iS2b98OT09PvkMjhFONGjVCVFQU/vzzTxw9ehS1a9fG0qVLkZuby3doREtRxYKQMpDL5diwYQPq1q2Lbdu2Yfv27Th27BhatGjBd2iEVKq2bdvi9OnTWLduHVatWoX69etj27ZtNJMnKUIgEHK26QJKLEi5/f3332jbti1mz56Nn3/+GRcvXkRAQADfYRFSZRiGQc+ePZGQkIA5c+Zg0qRJ6Ny5M40gIQaNEgtSZq9fv0ZISAjatGmDTp064b///kO/fv1o2m1isIRCIYYNG4abN2+iWbNm8PHxwdSpU6n/BQEAMAIBR00huvEZqxtREq0gl8uxfv161KtXD7dv38aVK1fw/fffw9TUlO/QCNEKlpaW+Pnnn3Hp0iVcunQJ9evXR2RkJDWPGDjqY0FIMeLj49GmTRvMmTMHK1euxKFDh1C3bl2+wyJEKzVq1AgnTpzATz/9hNDQUHTu3BnXrl3jOyxCqgQlFuSd0tPT8fnnn6Nt27bo3Lkz/vvvP3z00Uc0/TYh78EwDAYOHIgbN26gWbNmaNmyJb7++mtaRdUAUcWCEKXjx4+jcePG+Pfff6nZg5ByUjWPXLx4EadPn4a3tzfOnTvHd1ikClFiQQxeeno6xo8fj169euHrr79GdHQ0NXsQUkGNGjXCmTNnMHr0aHTp0gVTpkyh6gXRS5RYEA3Hjx9HkyZNcOPGDVy5cgUTJkyg0R6EcEQoFGLKlCmIi4vDmTNn0KxZM8TGxvIdFqlktLopMUgZGRmYOHEigoOD8dVXXyE6Ohq1atXiOyxC9FL9+vVx9uxZjBgxAgEBAZg6dSpVL/QYFyubqlc41QGUWBCcOHFCoy9FSEgIVSkIqWRCoRBff/01Ll++jFOnTqFZs2Y4f/4832ERUmF09TBg+fn5+N///oegoCCEhobixIkTqF27Nt9hEWJQGjRogLNnz2L48OHo3LkzwsPDIZfL+Q6LcMjQJsgS8R0A4cejR48wcOBAvHr1ChcuXICXlxffIRFisEQiEb755hsEBASgX79+iImJwe+//w5HR0e+QyMc4GpEB40K0UOnTp1CUFAQXFxcwDAM9u7dq3H/nDlzUL9+fZiZmcHGxgYBAQG4cOGCxmM8PDzAMIzGNn/+fI3HrF69GjVq1ECzZs2KPJ8LBw4cgLe3N+rVq4dLly5RUkGIlvDx8UF8fDxsbGzg7e2N48ePV+n558+fD4ZhMGnSJPU+f3//Ip9Z48aN03heVFQUPD09Ua9ePRw4cKBKYybahyoWZZCZmYmmTZtixIgR+Pjjj4vc7+npid9++w21atVCdnY2fvnlF3Tt2hW3b9+Gvb29+nHfffcdRo8erb5tYWGh/v3hw4dYsGABIiMj8eTJEwwfPpyzBY2kUinCwsKwevVqrFixAoMGDeLkuIQQ7lhaWmLr1q1Ys2aNujP1rFmzIKzkjnuXLl3CypUr0aRJkyL3jR49Gt999536dsH5bHJzczFx4kSsX78eLMtixIgR6Nq1KyQSSaXGq0sMrWJBiUUZdO/eHd27dy/x/oEDB2rcXrRoEdauXYt//vkHnTt3Vu+3sLCAk5NTscdIS0uDtbU1mjRpAicnJ856it+7dw/9+vVDXl4eLl++DE9PT06OSwjhHsMwGD16ND744AN8+umnOHnyJDZv3ozq1atXyvkyMjIwaNAgrF69Gt9//32R+01NTUv8zMrNzYVQKIS3tzcARbNObm4uJRYFCAQMBAIOZivm4hhVgJpCKolUKsWqVatgZWWFpk2batw3f/582NraolmzZvjpp5+Qn5+vvq9Ro0Zo0qQJrKys4OXlVeybvKz27t2LZs2aoVWrVoiNjaWkghAd0bhxY1y+fBk1a9aEt7c3jhw5UinnmThxInr06IGAgIBi79+8eTPs7OzQqFEjhIWFISsrS32fpaUlhg8fDmdnZ7i4uGD8+PEaVVhieKhiwbEDBw6gf//+yMrKgrOzM44ePQo7Ozv1/V988QWaN2+OatWq4dy5cwgLC8PTp0+xaNEi9WPWrl2LBQsWwNTUFCYmJuWORS6XY+7cufj555+xbt06fPLJJxV6bYSQqmdmZob169fj999/R58+ffDtt98iNDSUs/V6IiMjER8fj0uXLhV7/8CBA1GjRg24uLjgn3/+wTfffIObN29i9+7d6sfMnj0bkyZNgkAgoKSiGIyAAcNBtYGLY1QFSiw41rFjRyQkJODFixdYvXo1Pv30U1y4cAEODg4AgNDQUPVjmzRpAolEgrFjxyI8PBxGRkbq+2xtbSsUR2ZmJoYNG4b4+HicO3cOjRo1qtDxCCH8Gjp0KBo0aIDevXvj6tWriIiIgLGxcYWO+ejRI3z55Zc4evRoiccaM2aM+vfGjRvD2dkZnTt3xp07dzSGp1tZWVUoFn2m6vTKxXF0ATWFcMzMzAx16tTBBx98gLVr10IkEmHt2rUlPt7X1xf5+fm4f/8+ZzE8ePAAbdq0watXr3Dp0iVKKgjREy1btsTly5dx48YNdOzYEU+fPq3Q8eLi4vDs2TM0b94cIpEIIpEIJ0+exJIlSyASiSCTyYo8x9fXFwBw+/btCp2b6C9KLCqZXC5Hbm5uifcnJCRAIBCoKxoVdfr0abRs2RJt27bFkSNHKlz5IIRoF2dnZ8TExKBu3brqRKO8OnfujKtXryIhIUG9tWjRAoMGDUJCQkKxI1ESEhLUcZDSYZSdNyu66UpTCCUWZZCRkaF+8wGKkRYJCQl4+PAhMjMzMX36dJw/fx4PHjxAXFwcRowYgSdPnqBv374AgNjYWCxevBhXrlzB3bt3sXnzZkyePBmDBw+GjY1NheNbvXo1unXrhrlz5+K3336DWCyu8DEJIdrH2NgYGzduxOTJk+Hv74+tW7eW6zgWFhZo1KiRxmZmZgZbW1s0atQId+7cwdy5cxEXF4f79+8jKioKQ4cORfv27Ysdlkq0y/vmXips9+7d6NKlC+zt7WFpaQk/P79ydRimPhZlcPnyZXTs2FF9W9VfYtiwYYiIiMCNGzewceNGvHjxAra2tmjZsiVOnz6tnoDKyMgIkZGRmDNnDnJzc1GzZk1MnjxZo99FeeTn52Py5MmIjIzEoUOH0L59+wodjxCi/RiGwVdffYWGDRtiwIAB+OeffzBv3jxO1/mRSCQ4duwYFi9ejMzMTLi5uaFPnz6YMWMGZ+cwBAzDUefNMvaxeN/cS4WdOnUKXbp0wQ8//ABra2usX78eQUFBuHDhApo1a1b6OFmWZcsUKdEq2dnZ6N+/P+7cuYMDBw7Aw8OD75AIIVXsxo0b6NmzJ3x9fbF+/XqaQ0JLpKWlwcrKCnXHb4XQyPT9T3gPWW4Wbq0YgNTUVFhaWpbpuQzDYM+ePejdu3eZnufl5YV+/fph1qxZpX4ONYXosNevX6Nr16549eoVTp8+TUkFIQZKtQz7jRs3EBQUhPT0dL5DInpALpcjPT0d1apVK9PzKLHQUU+ePEG7du1ga2uLv/76i5M+GoQQ3eXo6IiYmBjIZDJ06tQJz58/5zskoiRgGM42QFEJKbi9a4BARSxcuBAZGRn49NNPy/Q8Six00I0bN9C6dWv4+flh586dFZpEixCiPywsLHDw4EHUrl0bbdq0wb179/gOieDtBFlcbADg5uYGKysr9RYeHs55zFu2bMG3336L7du3l3nUIiUWOub8+fNo06YNhg4dilWrVkEkov63hJC3jIyMsGXLFnTr1g2tW7fGlStX+A6JcOzRo0dITU1Vb2FhYZwePzIyEqNGjcL27dtLnOb9XeiqpEP+/PNP9OvXD+Hh4QgJCeE7HEKIlhIIBPj111/h7OyMDh06YN++fejQoQPfYRksrqf0trS0LHPnzdLaunUrRowYgcjISPTo0aNcx6DEQkdERkZi5MiRWL9+fZnbuwghhodhGISFhcHR0RE9evRAZGQkevbsyXdYBomr1U3ZMh4jIyNDY4ZU1dxL1apVg7u7O8LCwvDkyRP8/vvvABTNH8OGDcOvv/4KX19fJCcnAwBMTEzKNGU7NYXogE2bNmHUqFHYtWsXJRWEkDIZMWIEfv/9d/Tr1++9EyQR/XL58mU0a9ZMPQdFaGgomjVrph46+vTpUzx8+FD9+FWrViE/Px8TJ06Es7Ozevvyyy/LdF6qWGi5jRs3YuLEidi7d2+52roIIeTjjz+GUCjEwIED1aukkqrDCBQbF8cpC39/f7xrqqoNGzZo3I6JiSl7UMWgxEKLrVu3Dl9++SX279+vMeMnIYSUVa9evbBt2zb069cPMpmMqp9ViFY3JVphw4YN+PLLL9ExwwzbOg3nOxxCiB44EBSCDlnmGDFiBHbt2sV3OERPUWKhhTZt2oTPP/8c+/fvhwuMAQDjGA9+gyKE6DTVZ4g7TBAZGYmhQ4di3759/AZlIAQCcLK6KYfLwFQqagrRMlu3bsW4ceOwb98++Pv7w5+9r/5AUP2MYO/zFh8hRLcU/lKi+vzYsmULBg4ciG3bttFokUrG9XBTbacj+Y9hiIqKwujRo7Fr1y507ty5xMdR9YIQUhrv+qzo1asX/vjjD/Tv3x/Hjx+vuqCI3qPEQkucOXMGAwcOxB9//IHAwECN+4qrUFByQQh5l+I+Iwp/lnz88cdYvnw5PvroI/z9999VE5gBUi2bXuFNRzpvUlOIFvj3338RFBSERYsW4aOPPir2MREFmkRUqGmEEFJYSV86SvqcGDp0KFJSUtC9e3ecPXsWtWvXrrzgDFTBBcQqgqXEgpTGgwcPEBgYiNDQUIwZM6Zcx6AEgxBSkSrmlClTkJycjMDAQJw9exaOjo7cBUYMDjWF8OjFixcIDAxE7969MWPGjPc+/n2JwzjGg5pICDEwpXnfv++zg2EY/PTTT/jggw/QvXt3pKWlcRcgAbha2ZQ6b5J3yczMRM+ePdG4cWMsWbKk1G1npalKUHJBiGEozXu9tJVMgUCAdevWwcHBAR9//DFyc3MrFhwxWJRY8CAvLw99+/aFqakpNm3aBKFQyPk5qHpBiP6qrPe3RCLBzp07kZaWhqFDh0Imk3F+DkPEScdNjoasVgVKLKoYy7IYN24cnj59ij179sDIyKjMxyhLXwpKMAjRH2V9P5en35W5uTkOHjyIhIQETJkypczPJ0VxMzkWNyukVgVKLKrYr7/+ikOHDuHgwYNlWoa2sLJ+YFByQYhuK+t7uCKdue3t7XHo0CH8/vvvWLduXbmPQwwTjQqpQn/99RdmzJiB48ePw8XFpcrPX/CDiUaQEKL9+PxCUKtWLezYsQNBQUGoV68e2rRpw1ssuo4WISOVIjExEf369UNERARatWrFyTErkhxQEwkh2qui70+uvjh06tQJCxYswMcff4yHDx9yckxDpFo2nYtNF+hImLotNTUVwcHBGDNmDAYPHszpsSv6AUIJBiHag4v3I9fVyAkTJqB3797o3bs3srKyOD020U+UWFQymUyGAQMGoHbt2vjhhx/4DqdElGAQwh9tfv8xDIOlS5fCwsICw4cPB8uyfIekc6jzJuFUWFgY7t27hy1btlTKsFKuafMHHCH6huv3W2X1nVINQ71w4YJWf0HSVoY23JQ6b1aiP/74A2vWrMGFCxcqNALkfYpbR6SiaJpwQiqPLibv9vb2iIqKQps2beDl5YXevXvzHRLRUpRYVJJ///0X48ePx65du1C3bl2+wym3wh+AlGgQUnZVkUhUxXuzSZMm2LBhAz777DPEx8ejVq1alX5OfWBoo0IosagEmZmZ6NevHyZPnlxkCfTKUhlVi+LQkFVCSqcqqxJV+V7s06cPTp48if79++PMmTOQSCRVdm5dxVX/COpjYcC++OIL2NraYvbs2XyHUqlU7cO6WNYlpDIYynvip59+Qn5+PsLCwvgOhWghqlhwbNOmTdi3bx8SEhIgElXtP29VVS2KQ30yiCHT90SiMCMjI2zbtg0+Pj7w9/dHUFAQ3yFpNYbhpuMlNYUYoMTEREyYMAFbt26Fq6sr3+HwghIMYki0IaHg671Wt25drFy5Ep999hkSEhLg5ubGSxy6QChgIOQgsWB1pCmEEguO5OTkoF+/fhgzZgx69OjBWxx8Vi0KKikGSjiILtKG95Q2GjBgAI4fP44BAwYgJiamyqu0RDtRHwuOTJkyBRKJRCvGeGvzxdtQ2qCJ7tOFv1VteK//+uuvePPmjd73KasIgbJiUdFNVzpvUnrJgd27d2PTpk34+++/qYd0GVCzCdFG2pxIaCNTU1Ns374drVq1QseOHREQEMB3SFqHq6YQOSUWhuHZs2cYO3YsVqxYgZo1a/Idjpq2NImUBg1hJXzTlfdKQdr0XmnYsCF+/vlnjBgxAlevXq3UCQGJ9mNYmvi9Qvr27Qu5XI6dO3dqXY9dXfywLIk2fYgS3UXvicrDsiy6du0KDw8PrF69mu9wtEJaWhqsrKzw4ZJjEJuYVfh4edmZ+POLAKSmpsLS0pKDCCsHVSwqYMeOHThx4gSuXbumdUkFoFtVi/cp7nVo2wcr0S768rdfHG3822cYBmvWrEHjxo3xySefVNnkgET7UGJRTs+ePcOECROwbNkyODo68h2OQaJkg6jocxKhS2rUqIGFCxdi1KhR+Pfff6lJRIn6WJBSmThxIjp06IBPP/2U71BIAbS2if6jJEK7jR49Gjt37sRXX32FNWvW8B2OVhAJABEn81hwEEwVoMSiHLZv346YmBitbQIhb1FVQ/dRIqFbCjeJdOvWje+QSBWjxKKMnj17hokTJ2L58uVwcHDgO5z30qd+Flx5178HJR38oL/R0tOFv1F3d3csXLgQo0ePpiYRUFMIeY+JEyeiY8eO6Nu3L9+hkEpQmgucLnywaxNKGgzTqFGjqElEScBRYiGjxEL/HD58GMeOHcPNmzf5DqVMqGrBrbL8W+prEkJ/T/zQpb8nhmGwatUqNGzYECNGjEDr1q35DolUEUosSik3Nxeff/455s2bpxNNIEQ7VMYFuKwXF0oCCF9q1KiB//3vf5g4cSIuXbpksGuJCBkBhIKK97wUMrrRe9Mw/5fLYeHChbCwsMDYsWP5DqVcqGqhP+j/0TDpUrWioK+++gobNmxAREQEQkJC+A6HF1z1seDiGFVBN9Ifnj148ADh4eFYtmwZhEIh3+EQQojOMDIywpIlSzBjxgw8e/aM73BIFaDEohQmT56MTz/9FH5+fnyHQojeEDIlb0S/dOvWDZ07d8Y333zDdyi84GJlU66qHlWBmkLe48iRIzhx4oTOddgsDjWHkMpW2UmB6vgyA1vhSFebQQr65Zdf0LBhQ4wZM8bgvqRRUwhRU3XY/P7776nDJiFViCoZ+sfd3R3Tp0/HhAkTIJPJ+A6HVCJKLN7h559/hpmZGcaNG8d3KISQYlDyoVu++uorZGZmIiIigu9QqpSQYTjbdAE1hZQgJSUF4eHhOHz4MHXYJKSQqr6Aqz5QZSzLy/kJN4yMjLB48WIMGTIEgwcPNpgZObmaIEtATSG67fvvv0fnzp3Rpk0bvkPhlD601RL9IhEwkAi4+5amb1UMfXvPdu/eHU2aNMFPP/3EdyikklDFohh3797FmjVrEBcXx3cohOiUkpIAri/uhc+jqmQQ7ccwDObPn4/OnTtj4sSJcHZ25jukSkedNwlmzpyJAQMGoGHDhnyHQghvSjMctDLaf99WMIqeV3VfeV8L0Q6+vr4IDAzE3Llz+Q6lSogEDGdbWZw6dQpBQUFwcXEBwzDYu3fve58TExOD5s2bw8jICHXq1MGGDRvK/HopsSgkISEBe/bswZw5c/gOpdLoW2mVaL/SdEorb9JQ0vH1gT6/V+fNm4f169fj9u3bfIeitzIzM9G0aVMsW7asVI+/d+8eevTogY4dOyIhIQGTJk3CqFGjcOTIkTKdl5pCCgkLC8P48ePh7u7OdyiEaCXVRftdFQAuL+yqZKPg3BVv57Ngi9z3LoVjNrT5MLRJ/fr1MWjQIMyYMQORkZF8h1Op+GoK6d69O7p3717qx0dERKBmzZr4+eefAQANGjTAmTNn8MsvvyAwMLDUx6HEooCYmBicO3cOmzZt4jsUQnhTUsJQGVUAk2JO9vZirzkSpDQKTqBF/TC035w5c+Dp6Yn4+Hg0b96c73AMXmxsLAICAjT2BQYGYtKkSWU6DjWFKLEsi2nTpuHrr7+Gra0t3+FUOn0usRJ+qJoyittMhMVvFTlPwT4X+tj3whDeo66urggJCUFYWBjfoVQqrqf0TktL09hyc3M5iTM5ORmOjo4a+xwdHZGWlobs7OxSH4cSC6WoqCjcv3+/zJkZIbqutB0zi3amrHjfiMKMBQKYCRWbsYCBsYCBiVCg3MqejBQXL9Eu06ZNw8WLFxETE8N3KJVGyHCUWCj/ft3c3GBlZaXewsPDeX6FmqgpBIpqxbx58/D111/DzMyM73AI0TvGAsV3mJLygor0dSiY1EjlmscrbfOHoa5Bog2qVauGL774AvPmzYO/vz/f4eiER48ewdLSUn3byMiIk+M6OTkhJSVFY19KSgosLS1hYmJS6uNQxQLA8ePHcefOHYwZM4bvUKqUIZRaScWVVKEo2tyhqCwUrDaoqg/lZS4SwFK5qY6l2lTnK/vr0f4RJIb23vziiy8QGxuLy5cv8x1KpRBwUa0QMOqZNy0tLTU2rhILPz8/REdHa+w7evRomReNo8QCQHh4OL744guYm5vzHQohVaak/gWFmz4qg5VYWGgTaGzmIgGsxOWfSl/VbFJcAkS0j62tLcaMGaN1JX2u8LVsekZGBhISEpCQkABAMZw0ISEBDx8+BKAYBTl06FD148eNG4e7d+/i66+/xo0bN7B8+XJs374dkydPLtN5Db4p5OLFizh//jy2b9/OdyiE6BRjgWrYqebwU0kJ+7liJVZ8H8pWtltI5YqfeSyr7oNRmiaQ4keQlG34KuFOaGgo6tSpgxs3bqB+/fp8h6MXLl++jI4dO6pvh4aGAgCGDRuGDRs24OnTp+okAwBq1qyJgwcPYvLkyfj111/h6uqKNWvWlGmoKQAwLGvYY7A++ugj1KpVSz1u1xCNYzz4DoFUocIX+sJNAar7CycGhW+LmfInFoXPWU2iSBYK941QJQ0FL/SqfcUlFipvFytjNB6jecyixy7rvBiVwdCaQQoaNWoUZDIZ1q9fz3conEhLS4OVlRVm74+HsVnFK+I5mRn4Nqg5UlNTNfpYaBuDbgq5fv06Dh06pM7iCCEVV7hZo5pEiGoSIeyN3m7VJAJUkwjUt7k4n6rvhZhhYCwQqDuMvk9xI0f0ZQEzbSWTyTBz5kzUrFkTJiYmqF27NubOnYupU6di69atePjwIViWxaxZs+Ds7AwTExMEBATg1q1bfIdeLkIBV80hfL+S0jHoppAff/wRQ4YMQfXq1fkOhZAqV9pKReEKhKpSodpf+CcX7MwlAACZcphHnlzxM7tAKSFbVnRfaajifDuCxKCLtrz48ccfsWLFCmzcuBFeXl64fPkyhg8fDisrKwQHB+Pnn3+Gi4sLlixZgo0bN6JmzZqYOXMmAgMDcf36dRgbG/P9Esg7GGxicf/+fWzbtg1Xr17lOxTeRbD3qTnEAPD97dvaWnExELwjELkySZBLZWU+vqo5JSO/aPKhUrBJ5F1USZSMZat0KKqhNIOcO3cOvXr1Qo8ePQAAHh4e2Lp1Ky5evIiwsDC0bdsW5ubmmDFjBnr16gUA+P333+Ho6Ii9e/eif//+fIZfZrS6qYFYvHgxgoODUbduXb5DIUQrqUZRiBlG2byg2MxFAo2tpKYPOyMR7IxEsDETw8ZMXKFYrBzMYOVghmqWRqhmaQRzkQD2RiLlVr7mlLczeDIaVRq+EzBD0Lp1a0RHRyMxMREAcOXKFZw5cwbdu3dHs2bN4OPjg2fPnmlML21lZQVfX1/ExsbyFXa58TUqhC8GWbHIyMjA+vXrcejQIb5DIaTSve9CWbgJpKqGZFrVsCqyj1WWBWTKikV+Tr7iZ3Z+mY+vSBwUCYcwX1G5EEDxM0fLKxf6btq0aUhLS0P9+vUhFAohk8kwb948DBo0CADQq1cvnD59GjY2NhrPc3R0RHJyMh8hkzIwyMTijz/+QJ06dco86Qch5C3VsE/VEE9jY8XHichE8VNspugnIVQ+TrVfwEEPNMvqFgCA3LRcqKYGMkmXAgAkAkVSUrBJ5F2K63NBSUTl2r59OzZv3owtW7bAy8tLvUS3i4sLhg0bBl9fXwDAwYMHMWHCBJ6jrTgBR9UGAVUstBPLsvjtt98wZcoUMFo44x4hle19w0gLDydVzW6pSiDKu3jY+9jUrAYAyM+RqvepKhbSjDzFz0zFfblpUpSWkHmbBKlDzy9b5aLw8QBKOipi6tSpmDZtmrqvROPGjfHgwQOEh4dj2LBhcHFxAQCsXLlSI7FISUmBt7c3HyFXCFczvGrjLLHFMbjEIiYmBikpKTrX+aeyUQdOUlFmjop1dsTK/hTGlopagqpSIVJVNIwVlQymUOWCLdTRsjQsnBVzA+S8zoFYeXzh6xwAgCRXkZSk5pXtuMXNfVEVDKXjJgBkZWVBUGg4sFAohFw5+qdmzZpwcHDAjRs3EBcXBx8fH6SlpeHChQsYP348HyGTMjC4xGLFihUYMWJEmRZUIUQXlTQR1vuGlb6vUmEuUuw3N1J8fEjMK9YxszBbr5oAgLzMHPU+aXoWACD3TToAIOe1YgnnrBelX8oZeBu7Wn7RpKOqEwpDFBQUhHnz5sHd3R1eXl74+++/sWjRIowYMQIAwDAMQkNDMWvWLISFheHnn3/GzJkz4eLigt69e/MbfDkIGAYCDqoNXByjKhhUYpGcnIx9+/bh2rVrfIdCiN6zrKFo2pBYKCoZIjPFcFNVxUIg1vz4YZXfVuXSsnfUVBGZiGBhoqhiCFVJR3ougLJXLopfNdXwkg4PDw88ePCgyP4JEyZg2bJlyMnJwVdffYXIyEjk5uYiMDAQy5cvh6OjY4nHXLp0KWbOnIkJEybg2bNncHFxwdixYzFr1iz1Y77++mvcvn0ba9euRYsWLdCuXTscPnxYJ+ewEIKb0UYVm0qu6hjUlN7h4eE4ceIE/vrrL75D0VrUHKI/3lexKDzxlWrtD9V+1bd7VaVCtSiYmbJpw0jZ1GFso/igN1H+VO03slEkFOVNLFQVCwv3txeonJepAICs528AANnPXgMAMlMyFftfvq1gqKoZqcUkFhnKSoWqn0RmgWYYVcXiXdOAF3wuF7S5GeT58+eQyd7OK/Lvv/+iS5cuOHHiBPz9/TF+/HgcPHgQGzZsgJWVFUJCQiAQCHD27FlOzu/r64thw4bpZCdO1ZTeS6KvwsTcosLHy85IxxedG2v9lN4GU7GQyWRYtWqVQa8JQgifrDwVTRwCE0WiwUiU3zyVQ0IhV1y8WKkioZBnK5KF/LS0Mp+LETAwczDV3FkgwVAlTaWpYhQcJQIY3vBTe3t7jdvz589H7dq10aFDB6SmpmLt2rXYsmULOnXqBABYv349GjRogPPnz+ODDz6o8PnHjRuHX375BePHj9fZDveCAkueV/Q4usBgEovjx48jOzsbQUFBfIdCiFYr3LdCdRFWVSpUFQrVT1M7xQXczEHxjczY1kr5U/GNysi64t/UAEDi6AyJo7MithcpAIAMa0Wzh9jsOQBAZKKoaKQnZZTp2KpqTY6cVVdstGFBMm0jlUqxadMmhIaGgmEYxMXFIS8vT2Miq/r168Pd3R2xsbGcJBb9+vXDpEmTcOnSJbRq1arCxyOVz2ASi02bNmHgwIEQi7ntaEaItil9p03Npo+qHsomqtNM8Uuh8zIyxdBSNkeRHIhSXwIA5K+fles8JVUugLdJQ2pe2acQVzGUygUA7N27F2/evMFnn30GQNFvTSKRwNraWuNxXE5kZWpqik8++QSbN2/W2cSChpvqoaysLOzevRsnT57kOxRCdJK9k6IyYGKnGE1lrhxaauqgqEqYOtkCAMyUPwFAbK/oGyG0UuwTWCo6cwrMFM/h4jqsal4RK/tvqPptFBzKmvao9E0pqhExOXJ5gcrF2/sNsfNmQWvXrkX37t3V80xUlcGDB6N///74+eefIRLp3mWLRoXooaioKLi6uqJZs2Z8h6L1aD4L/Vd4IizVJbjwKqWqJhEzUeX2RZc61tO4LVBWLBipoo+FwEYxxFRkr6hc5D9/AiMbB8XvSfdKfR5TZVKkmi78VXYezEWqOStUC5iVbuRIwam+K0qbO24W9ODBAxw7dgy7d+9W73NycoJUKsWbN280qhYpKSlwcnLi7NwdOnSAWCzGsWPH0K1bN86OSyqHQSQWmzdvxuDBg3W24w8h2kZVqTCvrujYZ6b8KXZ0AwAI7asDABhrRdVCbmKlrlDkGSsrFiLVZNwVZ1arluJ8hSZdSnv4EhYuimpL2uP0Uh+vYMlZyLwdJWJIzR6FrV+/Hg4ODuoVSQHAx8cHYrEY0dHR6NOnDwDg5s2bePjwIadLJggEAgwcOBCbN2/WycRCwNHidjrSd1P/Vzd9/vw5jhw5goEDB/IdCiGVqvDKnKp2XdX+wu28b+9XbKrVPk2EDJyMhTARMrC1MYbYXAwjSyMYWRrBxMZYPay0sjzMVGzPWHM8Y82RYVEdGRbVkefgiTwHTwjcGyo2UwtI6jSBpE6TMh1f9RqsxEJYiYWQylmYixiYi97+G5SHtqyM+uTJEwwePBi2trYwMTFB48aNcfnyZfX9LMti1qxZcHZ2homJCQICAnDr1q13HlMul2P9+vUYNmyYRlOElZUVRo4cidDQUJw4cQJxcXEYPnw4/Pz8OOm4WdCgQYOwe/duZGSUrWOuNlCNCuFi0wV6X7HYvn07WrVqhZo1a/IdCiF6S1WpELnWAQCwVooyeL65opKRzSjmrsiQyoF8IDufBZQrjebJNTtOiivw4Wnq4aE4v2pOjDzFnBhv7r6Eqa2iKaQslQsZyxbpa6HNM3O+fv0abdq0QceOHXHo0CHY29vj1q1bGquELliwAEuWLMHGjRtRs2ZNzJw5E4GBgbh+/XqJk08dO3YMDx8+VM+MWdAvv/wCgUCAPn36aEyQxbUmTZqgVq1a2Ldvn3oVVKKd9D6x2Lx5M4YMGcJ3GIRoDVXVori+FarFuiTKybDUk11ZKhIDE1tFp00Te8WFyrRAZ02uXXuumMbb0Vxx7momip921ZQdNkXKDpvP70LiUR8AIL1/o8znKTjNd7ZM1ezBXR+KqvTjjz/Czc0N69evV+8r+KWKZVksXrwYM2bMQK9evQAAv//+OxwdHbF3794S11Dq2rUrSppL0djYGMuWLcOyZcs4fCVFMQyDQYMGYfPmzTqXWFDnTT1y584dXL58Gfv37+c7FJ1CHThJeakrFVaKUQOvlYuQvspWVA5SMhVDPV9nKzpoZhUzQZWR8kJvZVT+jyfT6or5LlSzd6p+vr77Rj3/Rp5y5dTsNznFHKGowp1eFSqWgHDdcTMqKgqBgYHo27cvTp48ierVq2PChAkYPXo0AODevXtITk7WmHfCysoKvr6+iI2N1frFGQcOHIhZs2bh2bNncHBw4DucUuOqmUwbmtpKQ68Ti23btiEwMBC2tpX3rYoQXVH4wlhwfgt1pUJZvVCtSKpaMdTISjVNt2KyKxPlJFhiO0XnTJGTOwBuhpAWdvmJYtIrDxvFfBS5VorEwMlCkcSoivdM8i2I3eoCAKS3/ynzeTLy5epJwbJlip95bMFPcu2vXty9excrVqxAaGgopk+fjkuXLuGLL76ARCLBsGHD1HNLFF7Hg8t5JyqTu7s7/Pz8sGPHDkycOJHvcEgJ9Dqx2LdvH8aOHct3GIQYrJRMRWXizitFs8bjNEV1IFlZJXijrFzIlP0WJAXmn7BVNoG42ZR/JWLVqJXcN4oOf7lpbyfHkipjM0lXlFXKOtRUG/tayOVytGjRAj/88AMAoFmzZvj3338RERGBYcOG8RwdN3r37o2oqCidSiyoKURPJCcnIy4uTmNoFCGG6F2z9an6FxSehVNVqRArl0SXWCgXGFNOoW1UTVGxENoqmhxgpShLyywUP1VNIFz6O0lRuchRJwCKCkZ1S0UMknzlGiMPr0PkouhXILt1tcznyZax6sqFqq9FpkzO6dwVlcXZ2RkNGzbU2NegQQPs2rULANRzS6SkpMDZ2Vn9mJSUFHh7e1dZnBURHByMb775BmlpaVq9EFdBQgEDIQcjOrg4RlXQ28TiwIEDaNWq1TuX7iWEVI1bLxSTXd14qhiR8Uh5OydLWbFQJgtCZaJjbKpIaNzszPDgpaLa4VW9/BcRU3trxfmUq6O+vvta3SFV8lpxLhNlDNmy0k3vXbC9u+C8FnzOddGmTRvcvHlTY19iYiJq1KgBQNGR08nJCdHR0epEIi0tDRcuXMD48eOrOtxyqV27NurWrYu//voLn3zyCd/hkGLobWIRFRWF4OBgvsPQWdSBU3cVXhuk6P639xdZQl15YRdIFKNCVJULkXJEhnrqbAtrxU/ldN0yE8UokUxWcZFWdda89/rtMuZc+e+ZIjkxVsZqpJw909FC8SVCbJ+qfqxqfRHV8uplVXyHTW5UxoybkydPRuvWrfHDDz/g008/xcWLF7Fq1SqsWrUKgGJkxaRJk/D999+jbt266uGmLi4u6N27N+fxVJagoCBERUXpTGJBTSF6ICsrC8eOHUN4eDjfoRBCCrij7IiZrkw4MlMVfR7ylYuAva1YKBKZrAxFm4q7iwUu33sFAGhRs1q5z69aaVVipqiYpD5IhcRMWbHIVJyrrBNkydiyT/F9GW+KzARcr1493LihGC6bk5ODr776CpGRkRpzQ7yvAtuyZUvs2bMHYWFh+O6771CzZk0sXrxYY3jm119/jczMTIwZMwZv3rxB27Ztcfjw4RLnsNBGwcHBCAoKQn5+vk6sHUKjQvRAdHR0sW2NhJC3iltxUaD85BKKNSsXQmPFqBCxmaIjJWOqbJYwUsxrwRop+l5kKIePqoaVPklX9HtQNYFw6f5rRROJnbLZxFI5WkRopqiiyO//A4FyTRFj26cAgMzkV+U6l+rfKVsm56ypw8vLC8eOHVPfLniBnDx5Mg4ePIgdO3bAysoKISEh+Pjjj3H27Nn3Hrdnz57o2bNnifczDIPvvvsO3333XcVeAI98fX0hEAgQGxuLdu3a8R0OKUQvE4v9+/cjODiY1gYhREu9UTZn5LxWDHHMy1aM2mCEyom5zBVVibxczbkK6nnY4NoTxWqlbeuUfxi5RNkpVTWsFgDEAlVHVkX1JDXv7QqnOWUcAVKapEMkEhW7UFdqairWrl2LLVu2oFOnTgAU63Q0aNAA58+f53yqbF0kFArRs2dPREVF6URiwXDUFKIr1zS9WytELpdj//79CAoK4jsUQrSSAICZUPOtryrVMkIBGKEAAuUmFKs2kWIzlkBoLAFjZAzGyBis2Ais2AhysTHkYmNk58uRnS9Hak4+UnPykfwmB8lvcvD4VRYev8pC+utsdTMIV1IypEjJkCJDKkeGVA65sQXkxhYQWtlCaGWL/KR7EFlaQmRpCYmFKSQWpmU+h0C5FVxbpaJu3boFFxcX1KpVC4MGDcLDhw8BAHFxccjLy9OYxKp+/fpwd3dHbGxshc+rL1T9LHSBalQIF5su0LuKRVxcHLKzs3UiiyXE0GW/TgHwtmKhkl/otlg5C+cj5dwWbevZ45EyQXGzKv88FyJl59TUB6kQSpSThEk1O7lWBgcY4ZsNq1GvXj08ffoU3377Ldq1a4d///0XycnJkEgkGsuQA7oziRXLsli7di1kMhmGDBkCU9OyJ3Kl0bVrVwwcOBCJiYnw9PSslHOQ8tG7xOL48ePo1KkTxGIx36EQovUKdwZjlDuYQncwygqHallyRqBosoBA8RGSr2wqyFeO1MxWdsZ8oxxOmqucCCtHOSlVbupzrl6CmmJhM4A1U/T7YIwV/T4EJorbaddvqEe1qBKK8lIsoa7ZYbMs81u4wwR9+/YFoFhcy9fXFzVq1MD27dthYlL+RIlvLMuCYRjY2Nhg6dKluHjxIhYvXgwLCwv1fVwxNzdH69atcfz4ca1PLATgZslzXWli0JU4Sy0mJgb+/v58h6EXKmM4HCEF5UuzFVtOhsYmzUyDNDMNuRmvkJvxCjlZUuWWh5ysPLzMkOJlhhRezpZIzc1Ham5+heIQSITqrfBy8xn5cs6aP1QKv7esra3h6emJ27dvw8nJCVKpFG/evNF4TEpKSrF9MrSJaqGyPn36YPny5bh+/TrCwsIgl8srpX+Av78/YmJiOD8u1wo2oVV00wV6lVjk5eXhzJkzlFgQUkoytoKjGxiBYivhuDKWhYxlIZcpNlm+HLJ8uTqhqAxyoRhyoRiscmMkxmAkxhBIROpNZCyByFgCoUQIoXLkC5fKOrwwIyMDd+7cgbOzM3x8fCAWixEdHa2+/+bNm3j48CH8/Pw4j7Wi5HK5OqEQCN7+LTRs2BBTp05FdHS0euXTklZILS9VYsH1cUnF6FViER8fD4lEgkaNGvEdCiGkDBiB8G3zSgGsTAZWJlMnJKpNKlNsufmKrZGDOfLkLPLKuX6HQMhAIGTw5k3OO5MCruYjmDJlCk6ePIn79+/j3Llz+OijjyAUCjFgwABYWVlh5MiRCA0NxYkTJxAXF4fhw4fDz89Pq0aEqBIKgUAAhmEglUoRFRWFa9euqR/Ts2dP9OvXD/PmzUNGRgbnVQtfX1+kpqYWmW1U26gmyOJi0wV61cciJiYGHTp00MiaCSGa3rXUFqssX6h/ylW3Fc+S5+Ur9yv6UDByxW31bJ7Kt55YefVVLSqmnh9DtTaJSNEJU1BMMsE55TlU/UNe33jwts9IObKEs/lvcEL2Cs0ZS7QXVIOQAfJZOU6xr3ALWZCBhTtM0B7VYITiX9/jx48xYMAAvHz5Evb29mjbti3Onz8Pe3vFomm//PILBAIB+vTpozFBljZRfc6ePXsWly5dQmpqKlavXo3JkyfDy8sLACCRSDBu3Dj8+uuviIyMxKhRoziNwcjICK1bt0ZMTAzq16/P6bFJ+enVFZj6VxCimyRmVpCYWUGs2kzMNTaRWAiRWAihSKDYKmnoXfHt2ooqRY5cjiR5DuJlabCHRON5J9nXuI9sBMIOveGITOTjMEruoBoZGYmkpCTk5ubi8ePHiIyMRO3atdX3GxsbY9myZXj16hUyMzOxe/duXvtXyIpZPyU/Px8hISEIDAzE9evXkZCQgNTUVJw7dw7PnimmUpfL5XByckLv3r3x+++/q/dxSRf6WQgF3G26QEfCfD/qX0HI+6kmfFL1fXi7KfpEsDI5WJkcsjwZZHmyt30j8vIhy8uHXLmxuTlgc3PA5OWCycuFUJ4HoTwPEiEDiZCBuUQEc4kItuYS2JpLYGqm2IzNxDA2E0NiUU2xmdtAYm5TOS+WZRWbXKbYKkjKyrE3/zl6iO1gVOCjM5eV4xqbjjawgStjAgfGCJ1gh2TkIgW57zii9lH1VVD9VCUBQuXEZQX7Mjx48AAHDhzA8uXLsWrVKuzZswdTpkxBfHw8zpw5A+DthE7dunXDrVu3kJGRwXlFWRf6WQgYrppD+H4lpaM3iQX1ryBE95naumhsxjZOMLZxgpmVEcysjGBsKoaxqRjWJorNVCyAqVgAsYCBWMCglqUQjFwGpoKJxPPcos8/lP8CdQQmqCXQnJfhGXIhB+CKt8NEbRgxzCHUmcTi+fPnCAsLw/bt2zX2q5KAHTt2oHfv3pg1axb++usvAIo5g2QyGdq3b69+/Pjx42FnZ4eTJ09CKpWqEwsrKyvUr19fo/8FV1q1aqUT/SwMid70saD+FZWDVjnVPW/nU9Bc5VSxv/ivPOq5GKRy5U/FhTVfuUqpLEdxgczLVIzkMMpSTKvNSDM1fpqKFYt8qdbvcLRUzBtRw04xl0SWcqGvvBxrjfOLTRRzTsjypaV+ne8iSbqq/p2VKtYrUfcPUfYXeXX7ZZHnlTQXxZX8dCSzuRgpql7kvkxWBiEAo0KjY0whRBaKJijaOIybYRhERUUhPT0dvXr1Ui9I9uLFC0yYMAEXLlxA3759cffuXezatQuTJ09Gp06d8OTJE3VVIz8/Hw4ODmjcuDGOHj2KK1euoGXLlgAABwcH3Lt3D7Vq1eI8dlU/ixMnTmhtPwsBR0NFdaXzpt5chc+dO4e2bdvyHQYhpJwsnNxh7VoH1q51YOXiBisXN1g7WMDawQIWNiawsDGBm50Z3OzM4GRtDCdrY9iYiGFjIoaJiIGJiAGTnwsmn9sqwRt5Hg5IX6C3yAEiRoDsYsbnam8R/t3kcjlyc3NhZ2eHTz75BFevXsWlS5fU9587dw7Xrl1DXFwcFi5ciM2bN6Nhw4aYPn063rx5g0aNGmHdunUA3jaXODk54cmTJzhx4oT6ODVq1IBYLEZqaioqQ9u2bbV6unNDGxWiN4lFXFwcfHx8+A6DEK2j6kdR8Pe380woNqmchVTOQs4qNplUDplUjvycfOTn5CMvMwd5mTmQpmVBmpYFeWY65JnpkKW+hCz1JQTZqRBkp8JSIoSlRAhbEzFeZOWhuqUx0nLyUNfRHBk5eXBzVFQmqjmbQ2wsRDUXW5haWcLa1aPSXr88OxPy7Ezk50g1NrlMXmBT9CUp/G8mY1k8keciAzKsyXuCebl3sSj/Hh4jB/FsGn6V3YcpI4Qcir4WBWVBBtMSRoXw4eXLohUagUAAIyPFyrXt27eHTCbDyZMn1ffv27cPo0aNgkQiQVhYGGrUqIFLly5hypQpqFevHkaPHo1ff/0Ve/fuhUwmw+PHj5GYmIj69evjypUrePz4MQDFuiiDBg2CnZ1dpbw2Hx8fxMXFVcqxSdnpRVNISkoKkpKS0KxZM75DIYSUk4ObFYC3Q1MBwMhE0aTiWk3Rr6G+s6KpxVXZxOJoprgomivX+RAom2jkmWmcxJSaJ0dNgSk+N3JDrnLoba6cxWHZc1RjxPBhrGABEQQAHiMbtaFo8nnN5iEDMjjCiJM4Kmr06NEQCARYuXIl5HK5usk4OTkZX3/9NaKjo9GtWzfcv38fsbGxuH37NurUqQOZTIZvvvkG33//PRo2bIgff/wRwcHB6vU/Pv/8c1y8eBETJkxAeHg4rl27htmzZ8Pf3x+LFy9W97Fo3LgxLCwsiqx/whUfHx/cuHEDmZmZMFNO6a5NuBrRoSujQvQisYiLi0PdunVhaWnJdyiEaK2Cs2wWXt9CxiouAFLlxVOSo+iPoOpjkafsGyFNz1L8fP0GACC0UXwLFtu8Rn41d4iyXyFdbI1qJkLUsFZc/PNkmt/kzY0VycIDM8WQTVW/C3mFpgAtXvaVc+rf8zMVfS3yC722jKdvFzwrLgQjRgBHxgg5yhlAslkWYghgAiHsGMVraABznMVrGLNCiMHgNF7DEUZakVjI5XKYm5ujRo0aADRnx1y0aBH++ecf7N27F69fv0Z2djb27duHc+fOoU6dOujbty/++OMP/PHHH/jwww/Vz3v8+DEOHjyIbt26YePGjTh79izOnj2LhQsXol27dli9ejUeP36svsibmZmp57aoDC4uLrC3t0dCQgLatGlTaecpL66aMXSlKURvEgtqBiFEtzWpYwvg7WRb1soOoE7KBAUAqlsofq9poxiBUc1E0dRgwiqSk1WrVmPl5h24/1BRgq/vbItverVH16Z1AQA5+fmYd/kaDj98Cmm+DC2trTHW1BE2wvcvWlhc0qHa1wbVwOAVDuM5ZGDhBmO0hW2ZXn9lEQgEOHv2rHqhLlXFIikpCdHR0ejVq5e6k2WXLl3QokULnDx5Eh999BE6duyImjVrYuPGjbCxsUGLFi3w+PFj/Pjjj3j58iU6deoEgUCAdu3aqVeUjo+PR0REBP73v/9VWoWiMIZh1M0h2phYGBq9SSxomXRi6FQXudJMJqmqIagqFKqf2crqgolyVIhUWU3ITVV0iJS8Tlc87qWiE57ESrGMN2NmCaFYcbE3t1E2U5iqvq0ryuZiZR3XUlmxcFUmBy8zlNUQWcUnTqru7Ih533yBWpI8sAA2Ru7GgF8jsa9/V3jaWmHOics4+eQZfmzRBHiViyWP7uP79AdYYFdL49/hfcWTfiJnjceLGAbtYYv2BZKJSijAFOvy5cu4du0aevXqVeRCLpPJIBQKUa9ePZw5cwbjx49Xz/dgZWWFGzduYN68eQAUozpEIhGCgoKwY8cOXLx4EZ07d8a6deswY8YMfPLJJ6hbty7Onz+PDh064Ntvv0XduoqE7dmzZ9i5cydWrlyJu3fvok+fPhg5cmTV/AMoaXM/C4ZRbFwcRxfoRWIRHx+PSZMm8R0GIaQCWtdSVSwUt03EimqElXKJc1V/CuBtpcJGOQGmULkMe88WiuGGeY9uAQC+CWiFNdGXkJD8Es7mJthx7R7m+TRCK/tqSM1NxzcetTHs2hXckGahvkRzfor3kZZzXRKuPHv2DOPHj8exY8dgbW2NlStXYvr06ejZs6c6oRAKhcjPz4eHhwcuXryo7oMgk8lgZmaGJk2aYM+ePejWrZu6P0SfPn3w/fff4/Tp0+jcuTPat2+PAwcOID4+Hnfu3MHvv/8Od3d3jVjs7OzQtGlTjB8/HgMHDuSlWdrHxwd79uyp8vOWhgAMBCUM9S7rcXSBjnQFKdnz58/x6NEj6rhZibRx3D15v8IjQDT3vXt0iDRPptgy8yDNzENumhS5aVJI03MgTc9Bzss05LxMQ/bzV2BMzCB7/gTsi8dgXzyGMO0phGlPYcXkworJhYu5GC7mYtSzNUU9W1M0dbJAUycLNHe1RnNXa/jVqga/WtW4f/0yOfbE30BWbj68TE0Rf+cp8uRyNDUyR05aLvIypXCWCWEnEON6biZScvKK+fdRbJkcVFMAbt5LqnkjDh48iDdv3uDJkyeIioqCs7MzZs6cCUBzpkyRSAR7e3tkZWXh4sWLAN72sxg5ciT++OMP3LlzR/2co0ePwszMDIcPH0Z8fDwAwNLSEv7+/hg5ciTc3d0hl8s1pvkWCARo06YNxo0bB0tLS8hkMs6n7n4fHx8fXL9+HVlZWVV6Xl2wbNkyeHh4wNjYGL6+vuq/g5IsXrwY9erVg4mJCdzc3DB58mTk5OSU+nw6X7FQddy0srLiOxRCSAU0d9b8litSjtQ0US5cZi5W/DRj8gAoFz9LVaxJwaQqmmTynz/Bv/ceo8Pnc5GTlw8zsRirPw1AHZEYN16nQSwQwEKs+bFnLRDitXIxtdIoaRKtqiIQCJCVlYWNGzciKCgI5ubmaNq0KUaOHInhw4dj//79CAoKgkwmA8MwYBgG/v7+2LJlC06ePImOHTuqqxOjRo3CihUr0LdvX/Vw0NjYWISGhsLc3Bw1a9bUOHdxy6MXd78qSalK1atXh52dHa5cuaJ1y8vz2RSybds2hIaGIiIiAr6+vli8eDECAwNx8+ZNODg4FHn8li1bMG3aNKxbtw6tW7dGYmIiPvvsMzAMg0WLFpXqnDqfWPz9999o3rw532EQovUKzrxZeHTI274WivtVk0BJlCMnVH0tsl8rvrWIjFNhXt0eWcmvIJQoOz4qVxFVdYMUyRTPtbBQrNhpYqGoSlgYKS5KDmaKR0qV5+KoKABPVyecnjMGadm52BF9CZP3ncT6zr6KO1kWeZl5AN6OCpEDyGcBaYHzq/49VLv4TiYKYxgGV69exYQJE9T7unTpglatWiEqKgpBQUHq5cwBoEmTJmjVqhVOnjyJixcvolWrVsjNzYWRkRE2bdqETZs2Yd26dUhLS8O0adMwfvz4YpOH9y17zvWy6GXBMAyaN2+O+Ph4rUssFGuFcHOcslq0aBFGjx6N4cOHAwAiIiJw8OBBrFu3DtOmTSvy+HPnzqFNmzYYOHAgAMDDwwMDBgzAhQsXSh9n2cPULjdv3kSDBg34DoMQUk7ulhLFZiXW3JT7HcX5cBTnwzz3FcxzX0H0+qF6Y14qtvzHt5H/+DbyUh6BefUUTiwLT2MJJnl7on41S2z85zas5ALksSzS8zWrE6nyfFhztHx7wWalynTnzh24urqqK7WXLl1C//79cezYMSQnJyMtLU19kVc1SQwfPhw2NjaYNWsWAMWS5gDQoEEDzJs3D8eOHcOjR48wceJECAQCsCyr1Qt7FadBgwZITEzkO4xKl5aWprHl5hY/26xUKkVcXBwCAgLU+wQCAQICAkqcqbR169aIi4tTN5fcvXsXf/75p8Zw4/fR+YrFzZs3ERgYyHcYhGiN0owOUX0Dl0Nz/orCo0MkytEhwjRFxUIoUVyAhWIhBOLXAACm8Kw9ygXAhMo1OkT2ivVFBKaKESXVTBQXQxsTxRwHFV939N3kLIs8uRwNrC0gAoMLyS/QztIGOTn5eJKfi5fyfHgITdSvPSP/belC2yoVKnXq1MG9e/fw22+/ITQ0FMnJyRg4cCD69euHR48eaVQOVJWHZs2aYe7cuWjTpg1WrlyJvn37olq1apDL5WAYBs7OipEuqtEhfFYfysvT0xN79+7lO4wiuG4KcXNz09g/e/ZszJkzp8jjX7x4AZlMBkdHR439jo6OuHHjRrHnGDhwIF68eIG2bduCZVnk5+dj3LhxmD59eqnj1PnEIjExUT0+mxCieySv7il+ESg/jlRTYyv7PTB5ym9juYqFzuSpikm5ZC+fqo+R9yIFAPC/9fvRqV4N2OTmIVOah13xibjw5DkWNW4EUYYM3axtsfLZE1gIRWDy8rEmPRm1RSaoLTJBal752mKqOvmQy+UwNjZG+/btERMTg+XLl6N9+/aoUaMGjh8/jj59+sDCwqLY53l5eWHVqlXYuHEj/v77b0RERBRp8hCJdPey4OnpqZUVC65HhTx69Ehj5I1qWnYuxMTE4IcffsDy5cvh6+uL27dv48svv8TcuXPVnYPfR3f/gqCY+/7Vq1fqsdSEkKI0VztVdq5jNCsVqmvL24oFlI9TVi6yFP0SmNcMTG1NkPUiS2PqbeDtqqEyqeKxJtmKRIBVTq8tsFIMJxUpf4avicTeI8dx4859mBgbw69FM/zwv6moV9tDfcycnFx8/e18bDvwF3KlUnRt0xJLJg2Ho611sa/1RUY2Pt9+DCmpmbAwEqOuhTmWt2+BJsolzUeYOYLNk+O7x3eRx8rRWGKOPsYOyJaxBeawKLhmSOGf/FcwBAIBcnNz4e3tjRs3bmDIkCHq+5KTk+Hr64v09PQiyYWqAvHpp5+idevW2L59O54+faquVOgDT09P3L9/X91/RF9ZWlqWakivnZ0dhEIhUlJSNPanpKTAycmp2OfMnDkTQ4YMwahRowAopmPPzMzEmDFj8L///a9UK4jrdGKRmJgIJycnmsqbEB10MuYkxnRvi5aNRyNfJsOslVvx4adDcGXrEpiZGIOVyxD60yocOhuHzTMnwFLIYnLENvSdPBvR341D7ivFJF2qyboAYG7rJkDrJsh6pkhmMlIUyU32C0VzjIQRYLxNdYy3qY5U5dTe5a1U8MnIyAgtW7bEH3/8gRMnTqBjx44AgD179sDBwaHYioUqsWBZFq6urpg0aVKpLhK6xMXFBSYmJrhz5w4aNmzIdzhvcdQUUtaih0QigY+PD6Kjo9G7d28AispVdHQ0QkJCin1OVlZWkb+LgsOXS0PnEwtqBiHk/YSFPtXedi5U/JKn6pchV1U0FLdVo0PU/Q7SpUUqFao1PuR5yjU4cjTXFTFJVfStkNgoJrGSmSkuevsXfAMAYIwUM3Wumfk5qnf/DPE37qBdMy+kZmRiw/7j2DhjAjo29wKblYZVk4bAe9x3uHjrIZraln2IeUZuvubrQdH+JXkaFYvCa6qgyH18admyJdq0aYMRI0Zgy5YtePDgAdLS0hAeHv7O56kSDH1LKgDFa6pbty4SExO1K7HgUWhoKIYNG4YWLVqgVatWWLx4MTIzM9WjRIYOHYrq1aur/26CgoKwaNEiNGvWTN0UMnPmTAQFBZV6GLHOJxb16tXjOwxCSCm8uanoSyGxVE7xbaZonhAo55V4oaw8mKclQ3qXxcWrt5GXn4/W1cTIufMf8jKzUR1AdWtznIy9Co9GtQEAucppxgEg+6WyQqEcFpuj/JmbVnyveV3m4uKCJUuWYMiQIRg8eDDS0tIwe/Zs1K5dGyzL6mTnSy5oYz8LPoeb9uvXD8+fP8esWbOQnJwMb29vHD58WN2h8+HDhxpJ5owZM8AwDGbMmIEnT57A3t4eQUFB6qnfS0PnEwtfX1++wyBEKxUcHaLZzwJQVSoKz2uh/rauHqohVx9D7Y3iIq2qVLCqvgl5iiepVg+Vpiku8rlvFKuHSixKnjJbLmfxzR9/ws/THV5uig+8lNQMSERCWJsaazzW3twUzzLKN7uiqlKRXaD0oBoBk1eoKlHaKburak2QwliWhZ2dHXbt2oWkpCTUqVOHn0C0jDYmFgzK3IpR4nHKIyQkpMSmj5iYGI3bIpEIs2fPxuzZs8t5Nj1ILAp2XCKEaI/0x4oKhDRdUTUQK5dJF5spEgWhsaJznVAswvRD5/Dv3STsHh6E1zceAAAyn7wAWBavEx8BAGQ5ioRGlpsH6ZsMpD9UNK2oFkjLVQ6JVfyeq/EzM7v0M2tWFq6nxldVJExNTdVJhWqoqCHz9PTEqVOn+A7DoOn0X+D9+/eLTDlLCHm/wn0s3n5LV+5WVkaFyttvv+EX6OiYrriQs6qZM5VzXuRlKEaFGFlKShXLzMOxiL71CDs/6wlnSzP1fntzE0hlcqTlSGFp/PZYL7NzYFeoilFaqtdRsGJReDRI4Z+K31FknzYy9KQCAGrWrIl79+7xHYYGAcNAwEHTFBfHqAo6+1eYmZmJtLQ0vRoqpc0i2PsYx3jwHQbRYlnKkRdS5ZTZ6iXXlZUEkYni40ZkrGgiERoLMf/v/3AiKQVrO/nC8mU63rx821+ihlQGkYDB0Us3EODqBLlUhvvpmUjKyEYdVoy0R4rH5imbXgr2o1AlN5n5imSnYGdNot+cnZ2RnJwMuVyuNR1UGXA0QVbFD1EldDaxePr0KcRiMWxtbfkOhRCtJmPf9pFQfeN+3yiRwhWMe7JMnMl/g8fyHKSxMowxdYGfsWKYt7lcMfXz7pyXOJL5CpmsDA2NzRDqUQuuRiVXFn74+zoOPXyKJe2aw0wkwotsRWJgLhbBWCSEhUSMj2u54ecrN2AlEcMEAiz45wYaW1uisbWVOnkoi7cVC81+FYrXWnTkB9E9zs7OyM/Px8uXL2Fvb893OAZJpxMLZ2dng+35TEhVypDLYM9I4C22wBZpMqRyVl0FkLEsDuW8xKGcVxhr7gI3sQRbM59hauJ/WOHkCRNVxcJY8XEjlCi+Re64o+g7MeK45hLO0z090cPJEayMxVh7V0jTpQg98zfyWDlaWlrhC6cayEjKUFcqVIuJSZWdR4vrmJlN2YLBMDMzg6WlJZ4+fao1iYUA3CzMpR31l/fT+cSCEPJ+hdcPed8oEfWICOUnWV2hGRoy5sUem2VZHMt5jd4mdmhhZAETIYMvLKtjxPNExGanoZNR8VXFk60UK1AKxYqx8Uwxi5sYCQQIrVkLoTVrQaacyEouLf/qIiWNACn4e2nmrKA8Rbs5Ozvj6dOnaNKkCd+hAIB6+XoujqMLKLEghBRpCimcYAgZaHxdkspZdRUgRZaHVFaGGgLFehuq6cBriYxxJSsDrUSKCbFU04KrOqCpKheqRcwKJxaqTqGqqcJVw1tlykpJ4Ymt3k5HXrR5I5urNdmJTlAlFoQfOptYJCUlUWJBiBZIZxWZhCWj+XFiJRDhjZz/YZ4FqSoVxfWnKFypKG4ECFUqdIOLiwuSkpL4DkONzwmy+KCzicXTp09p8TFCyqikJhFVZ86SKhcA+3YoKoA8Ofu2/4Jc8TMzXw6hQA6J8tMvT3nxfqVael15KNX9wjxGY//7YlYpPDxUFVfhykVxjyWGQdsqFlwvm67tdKUvSBHUFEKIdjBXVioyWM2+D+msDJYC7fruIpUrVjGVsVBubIGNKhL6QtsSC0OjXe/6MqDEgpDyK2vlouCQVQDIZ1nkKKsB5owQ5hDien4mbCCGVM4gh5XjviwHLYSW6tEjqmMLGc2rd+Ghr29jKhxz8U0VhafgVu0v2KuitNNzE/2gbYkFjQrREampqbCxseE7DEIMgpSVIx1v+0u8YfORIs+FMSOEvUAMX5EVTuW/hi0jhq1AjOi8V7BghGgoNHvHUavO+5KS4h779nalhkYqgY2NDVJTU/kOQ41GheiI9PR0mJsXP/yNEFI6JQ9DVVHc8ZTNxR55inrvCfkrnJADjRhzfAh7NIclcgRyROU9Rw7kcGOMMUjsDBnLFFOx0DxD4YpFybEWnwwUrlC8K2kghsHc3Bzp6envfyCpFDqZWLAsi4yMDFhYWPAdCiEGwZUxwSSBB4DiEwSGYdBeVA3tUU29v7QJQ2Up2PxRUhXiXZ06KTHRXRYWFsjIyOA7DDUaFaIDcnJyIJPJKLEghCOFKxdv97/te1HStN9v+2UUmPOimGOp+lYUTTgU+0tqPy48A0V5kgRiWCwsLLSuYqEjOQEndDKxUP3BUFMIIUSlLPNPUKVCv5mbmyMvLw+5ubkwMjLiOxyDo5OJRUZGBkQiEf3BEMKxwhfV4vteFF9xKHx/4Yv32wpGSZWL0sZInSvJu6mq2RkZGVpxnaCmEB2Qnp4OCwsLnekhSwjhXklDSEsz0qM0zyG6y8TEBAKBAOnp6bQCNg90MrHIyMigZhBCqkBxfS9KGjlS+P6i/TVUxyq+okEIVxiGgbm5udZ04DS04aZlnm/j1KlTCAoKgouLCxiGwd69ezXuz8jIQEhICFxdXWFiYoKGDRsiIiJC4zE5OTmYOHEibG1tYW5ujj59+iAlJUXjMVFRUfD09ES9evVw4MABjftUFQtCiP7QnAWz5K3o7JmFt6LPKXouzY3on4p04Fy2bBk8PDxgbGwMX19fXLx4UX3fzZs30aZNG7i6uuL7778v1fFUTSFcbLqgzIlFZmYmmjZtimXLlhV7f2hoKA4fPoxNmzbhv//+w6RJkxASEoKoqCj1YyZPnoz9+/djx44dOHnyJJKSkvDxxx+r78/NzcXEiROxfPly/Pbbbxg/fjykUqn6/qysLJiampY1dEJIOb3rIlxyElD8hf9tYvDuiz8hFWFmZobMzMwyP2/btm0IDQ3F7NmzER8fj6ZNmyIwMBDPnj0DAISEhGDw4MHYt28f9u3bh3PnznEdus4rc1NI9+7d0b179xLvP3fuHIYNGwZ/f38AwJgxY7By5UpcvHgRwcHBSE1Nxdq1a7FlyxZ06tQJALB+/Xo0aNAA58+fxwcffIDc3FwIhUJ4e3srghSJkJubC4lEAgCQyWQQiXSyFYcQnVfSN/yShqqWjJvOm+9/fLlOQ3ScUCiEXF54sPL7LVq0CKNHj8bw4cMBABERETh48CDWrVuHadOm4fXr1/Dx8UGTJk3g4uKCN2/evPeYDLgZbqojBQvupx5v3bo1oqKi8OTJE7AsixMnTiAxMRFdu3YFAMTFxSEvLw8BAQHq59SvXx/u7u6IjY0FAFhaWmL48OFwdnaGi4sLxo8fr9H0IZfLIRDoyqzphBBCqppAIChzYiGVShEXF6dxfRIIBAgICFBfn7777jsEBATA1NQUAoEAgYGB74+FYTjbdAHnX/uXLl2KMWPGwNXVFSKRCAKBAKtXr0b79u0BAMnJyZBIJLC2ttZ4nqOjI5KTk9W3Z8+ejUmTJkEgEBTpT0GJBSHap7SVjLePr5xSAlUoCFC+xOLFixeQyWRwdHTU2O/o6IgbN24AAD788EM8f/4caWlpsLe35yxefVIpicX58+cRFRWFGjVq4NSpU5g4cSJcXFw0ssDSsLKyKnY/JRb8iGDv8x0CKcE4xoPvEAjRKlevXsXjx48r5dhGRkZlSioYRrFVlI4ULLhNLLKzszF9+nTs2bMHPXr0AAA0adIECQkJWLhwIQICAuDk5ASpVIo3b95oVC1SUlLg5ORUqvOw1NGLEJ1BFQTCl9u3b5fp8XZ2dhAKhUVGKZbl+lQchmXBcHDd4uIYVYHTxCIvLw95eXlFqgkFO9H4+PhALBYjOjoaffr0AaAYvvPw4UP4+fmV6jwCgYCSCx7Qt2JCiK5o0qQJOnToUKbnSCQS+Pj4IDo6Gr179wagqJBHR0cjJCSkEqLUT2VOLDIyMjSywHv37iEhIQHVqlWDu7s7OnTogKlTp8LExAQ1atTAyZMn8fvvv2PRokUAFM0bI0eORGhoKKpVqwZLS0t8/vnn8PPzwwcffFCqGMrTdkYIIcRwlLfJPDQ0FMOGDUOLFi3QqlUrLF68GJmZmepRIuXCyhVbRXFxjCpQ5sTi8uXL6Nixo/p2aGgoAGDYsGHYsGEDIiMjERYWhkGDBuHVq1eoUaMG5s2bh3Hjxqmf88svv0AgEKBPnz7Izc1FYGAgli9fXuoYKLEghBDyLuVNLPr164fnz59j1qxZSE5Ohre3Nw4fPlykQ2dZMKwcDAdJARfHqAplTiz8/f3f2Qzh5OSE9evXv/MYxsbGWLZsWYmTbL0PJRaEEELepSKd/ENCQqjpowJ0cpYpIyMj5OTk8B0GIYQQLZWTk6OeVJF31BSi/bRpcRlCCCHaJyMjQ3vWlGJZxcbFcXSATk4GUZHFZQghhOg/WqySPzpbsaDEghBCSHHy8vKQm5sLc3NzvkNRoKYQ7WdhYYHs7GzIZDIIhUK+wyGEEKJFVE3l2lKxUEyQxcWoEGoKqTSqLJT6WRBCCClMVdE2NTXlORLDpJMVC1VikZ6eXuJ6IoQQQgxTeno6zM3NtWdNKQNrCtGSf/WyEQqFMDU1pYoFIYSQIrRqRIgB0smKBUAdOAkhhBRPVbHQGgZWsdDZxMLCwgJpaWl8h0EIIUTLaN1QUwNLLHSyKQQAHBwc8Pz5c77DIIQQomWePXsGBwcHvsMwWDpbsXB2dkZSUhLfYRBCCNEySUlJcHZ25juMt1g5wMX6VjpSsdDpxOLp06d8h0EIIUTLPH36VKsSC0Nb3VRnm0IosSCEEFIcbUssDI3OJhYuLi6UWBBCCCkiKSkJLi4ufIfxlqrzJhebDqCmEEIIIXpF6yoWtLqpbqDEghBCSGEymQwpKSnalVjwbNmyZfDw8ICxsTF8fX1x8eLFdz7+zZs3mDhxIpydnWFkZARPT0/8+eefpT6fTlcs3rx5g+zsbJiYmPAdDiGEEC3w/PlzyOVyODk58R3KWzzOY7Ft2zaEhoYiIiICvr6+WLx4MQIDA3Hz5s1ih+RKpVJ06dIFDg4O2LlzJ6pXr44HDx7A2tq61OfU2cTCzs4OIpEIT58+Ra1atfgOR++NYzz4DoEQQt4rKSkJNjY2MDY25jsUNT5XN120aBFGjx6N4cOHAwAiIiJw8OBBrFu3DtOmTSvy+HXr1uHVq1c4d+4cxGIxAMDDw6NM59TZphCBQAAXFxc8fvyY71AIIYRoicePH6N69ep8h1Gp0tLSNLbc3NxiHyeVShEXF4eAgAD1PoFAgICAAMTGxhb7nKioKPj5+WHixIlwdHREo0aN8MMPP0Amk5U6Pp1NLACgbt26uHXrFt9hEELIe1HVr2rcunULnp6efIehieNRIW5ubrCyslJv4eHhxZ72xYsXkMlkcHR01Njv6OiI5OTkYp9z9+5d7Ny5EzKZDH/++SdmzpyJn3/+Gd9//32pX67ONoUAgKenJ27evMl3GIQQQrREYmKi9iYWXBwHwKNHj2BpaanebWRkVPFjK8nlcjg4OGDVqlUQCoXw8fHBkydP8NNPP2H27NmlOoZOVyw8PT2RmJjIdxiEEEK0hFYmFhyztLTU2EpKLOzs7CAUCpGSkqKxPyUlpcTOrc7OzvD09IRQKFTva9CgAZKTkyGVSksVHyUWhBBC9IZWJhY8TZAlkUjg4+OD6Oho9T65XI7o6Gj4+fkV+5w2bdrg9u3bkBdY2yQxMRHOzs6QSCSlOq9OJxb16tXD7du3y9SphBBCiH7KyMhAUlIS6tWrx3coGlRrhXCxlVVoaChWr16NjRs34r///sP48eORmZmpHiUydOhQhIWFqR8/fvx4vHr1Cl9++SUSExNx8OBB/PDDD5g4cWKpz6nTfSxq1KgBAHjw4AENOSWEEAN369Yt2NjYwNbWlu9QtEa/fv3w/PlzzJo1C8nJyfD29sbhw4fVHTofPnwIgeBtjcHNzQ1HjhzB5MmT0aRJE1SvXh1ffvklvvnmm1KfU6cTC5FIhNq1ayMxMZESC0IIMXCqZhCGYfgORZOco2XTy3mMkJAQhISEFHtfTExMkX1+fn44f/58uc4F6HhTCED9LAghhChoZf8KA6TTFQuAhpwSQghR0NrEghYh0y2NGjXClStX+A6DEEIIzxISEtC4cWO+wyjKwJZN1/nEwsfHBwkJCTQyhBBCDFhWVhauX78OHx8fvkMxeDqfWNSvXx9yuZz6WVQimoqYEG7Qe6ny/PPPP7C1tYWrqyvfoRTB53BTPuh8YiESieDt7Y24uDi+QyGEEMKTuLg4+Pj4aN+IEICaQnSRj48PJRaEEGLAVIkF4R8lFoQQQnSeVicWLMtRxYJGhVQZHx8f/P333xpzmxNCCDEM2dnZuHbtmhYnFjJAzsHG6sYgBb1ILBo0aID8/HzqwEkIIQbon3/+gY2NDdzc3PgOhUBPEguRSISmTZtScwghhBiguLg4NG/eXDs7bgJg5XLONl2gF4kFALRq1QoXLlzgOwxCCCFV7MKFC2jZsiXfYZSMi2YQ1aYD9Cax6NChA06ePMl3GIQQQqrYyZMn4e/vz3cYRElvEov27dvj33//xcuXL/kORa/QhD6EcIveU9y6d+8ekpKS4Ofnx3coJaOKhW6yt7dHw4YNcerUKb5DIYQQUkViYmLQqlUrmJmZ8R1KiViZjLNNF+hNYgEA/v7+xa4tTwghRD/FxMRQM4iWocSCEEKITmJZVjcSC7mcu00HiPgOgEuqfhYvXryAnZ0d3+EQQgipRPfv38fTp0+1u38FoEwKOGjG0JHEQq8qFtTPghBCDIcu9K8wRHqVWADUHEIIIYbixIkT2t8MAoCVyzjbdIFeJhbHjx/nOwy9QMPiCKkc9N6qOJZlceLECXTo0IHvUN6P5ah/BS2bzo/OnTvj5s2buH//Pt+hEEIIqST//PMPXr9+jXbt2vEdCilE7xILa2trtG/fHvv37+c7FEIIIZUkKioKXbt2hbGxMd+hvBc1heiB4OBgSiwIIUSP7d+/H8HBwXyHQYqhl4lFUFAQYmJikJqayncohBBCOJaUlIT4+Hj06NGD71BKh6b01n21atWCp6cnjhw5wncohBBCOHbw4EH4+vrC3t6e71BKx8AmyNLLxAJQNIdERUXxHQYhhBCORUVFUTOIFtPbxCIoKAh//vkn8vPz+Q5FJ9FwOEIqF73HyicrKwvHjh3TqcSCFiHTE61atYJYLMbZs2f5DoUQQghHjh07BldXV9SvX5/vUEpPNaV3hTdqCuGVUChEjx49sG/fPr5DIYQQwpGoqCgEBQWBYRi+QyEl0NvEAgD69OmDHTt2QK4jWR4hhJCSSaVS7N69G3369OE7lLKhUSH6o2vXrsjJyaFFyQghRA8cOnQIVlZWaN26Nd+hlAkrl3O26QK9TizEYjH69++PTZs28R2KTqFOZYRUDXqvlc2mTZswePBgagbRcnqdWADAoEGDsHPnTuTk5PAdCiGEkHJKTU3F/v37MWjQIL5DKTtqCtEvvr6+sLOzw8GDB/kOhRBCSDnt2rULjRo10q3RICosR0kFS4mFVmAYBoMGDcLmzZv5DoUQQkg5bd68WTerFQZIxHcAVWHQoEFo3LgxXr9+DRsbG77DIYQQUgZPnjzBqVOndLa/HFcdL6nzphbx9PRE06ZNsXPnTr5D0XrUmYyQqkXvuffbunUrOnbsCGdnZ75DKR+aIEs/DR48WGezXUIIMWSq0SBENxhMYjFgwACcP38eiYmJfIdCCCGklC5fvow7d+7go48+4juU8qNRIfrJ3t4eH3/8MVatWsV3KIQQQkpp5cqVGDRoECwsLPgOpdxoETI9NnbsWKxfv57mtCCEEB2QmpqKLVu2YOzYsXyHQsrAoBKLDh06wN7eHrt27eI7FK1EncgI4Qe994q3efNmNGrUCM2aNeM7lIqRy7nbdIBBJRYMw2DcuHFYvnw536EQQgh5B5ZlsWLFCqpW6CCDSiwAYNiwYUhISMDff//Ndyhahb4xEcIveg9qOnXqFJKSkjBgwAC+Q6k46ryp32xsbDB48GD89ttvfIdCCCGkBEuXLsWoUaNgYmLCdygVxsplnG26wOASCwAICQnBli1b8PLlS75DIYQQUsijR4+wf/9+jB8/nu9Q9MKyZcvg4eEBY2Nj+Pr64uLFi6V6XmRkJBiGQe/evct0PoNMLBo3bgxfX1+sWbOG71AIIYQUEhERge7du8PDw4PvUDihmtKbi62stm3bhtDQUMyePRvx8fFo2rQpAgMD8ezZs3c+7/79+5gyZQratWtX5nMaZGIBAJMnT8aSJUuQm5vLdyiEEEKU0tPTsXz5ckyaNInvUDjDylmwMnnFNzlb5nMvWrQIo0ePxvDhw9GwYUNERETA1NQU69atK/E5MpkMgwYNwrfffotatWqV+ZwGm1gEBQXB2toav//+O9+hEEIIUVq5ciXq16+PDh068B2KzpNKpYiLi0NAQIB6n0AgQEBAAGJjY0t83nfffQcHBweMHDmyXOc12MRCIBDgm2++wYIFCyDTkdnMKgv1RidEOxj6ezE3NxeLFi1CWFgYGIbhOxzOcFKtUG4AkJaWprGVVHl/8eIFZDIZHB0dNfY7OjoiOTm52OecOXMGa9euxerVq8v9eg02sQAU64fk5eXRqqeEEKIFNm7ciGrVqqFnz558h8IprvtYuLm5wcrKSr2Fh4dzEmd6ejqGDBmC1atXw87OrtzHEXESjY4Si8WYOnUqwsPD8emnn+pVhkwIIbokPz8fCxYswJw5cyAQGPR33vd69OgRLC0t1beNjIyKfZydnR2EQiFSUlI09qekpMDJyanI4+/cuYP79+8jKChIvU+uTGZEIhFu3ryJ2rVrvzc+g//fGzFiBJ4+fYrDhw/zHQovDL30Soi2MdT35M6dOyGTydC/f3++Q+Ec100hlpaWGltJiYVEIoGPjw+io6PV++RyOaKjo+Hn51fk8fXr18fVq1eRkJCg3oKDg9GxY0ckJCTAzc2tVK/XoCsWAGBiYoJJkybhhx9+QPfu3fkOhxBCDA7LsggPD8fUqVMhEunfZalgUlDR45RVaGgohg0bhhYtWqBVq1ZYvHgxMjMzMXz4cADA0KFDUb16dYSHh8PY2BiNGjXSeL61tTUAFNn/Lvr3P1gOEyZMwPz583HmzBm0bduW73AIIcSg/Pnnn0hOTlZf7Ah3+vXrh+fPn2PWrFlITk6Gt7c3Dh8+rO7Q+fDhQ86bnhiWZcs+MFYPhYWFISEhAYcOHeI7lCpjqCVXQnRBBHuf7xCqBMuyaNOmDYKDgzFt2jS+w+FUWloarKyscG/B57AwKb65oizSs3NR8+ulSE1N1ehjoW0Mvo+FyldffYVz587h1KlTfIdCCCEG48CBA7h9+zYmTpzIdyiVhmU5GhXC0rLpOsXOzg5Tp07FN998A0Mo4lC1ghDtZgjvUZlMhrCwMMycORMWFhZ8h0M4QolFAZMmTcK9e/ewb98+vkMhhBC9t2nTJmRmZmLs2LF8h1KpuB4Vou0osSjA3NwcM2fOxPTp0w1+Nk5CCKlMubm5mDVrFubOnQuJRMJ3OJWKEgsDN3r0aOTm5tIaIoQQUolWrFgBa2trDBw4kO9QCMcosShEIpHg+++/x+zZs5GTk8N3OJXCENpuCdEH+vpeTUtLw7x58xAeHm4Qs2yycpajKb11o/+f/v+PlkO/fv1gZ2eHZcuW8R0KIYTonYULF6Jhw4Y0KaGeogmyiiEQCBAeHo6BAwdi5MiR6pnHCCGEVExKSgoWLVqEY8eOGcz6THKZHHIO+kdwcYyqQBWLEnTt2hXNmjXD3Llz+Q6FU/paWiVEX+nbe/Z///sfAgMD8cEHH/AdSpUxtM6bVLEoAcMwWLJkCXx8fDB8+PAyzZNOCCGkqPPnz2Pr1q24du0a36GQSkQVi3do2LAhQkJCEBISYhCTZhFCSGWRyWSYOHEiwsLC4OHhwXc4VcrQKhaUWLzHrFmzcOvWLWzdupXvUCpM30qqhBgKfXjvrlq1CqmpqZgyZQrfoVQ5mtKbaLCwsMDPP/+MKVOmIC0tje9wCCFE5zx//hzTp0/H0qVLYWxszHc4pJJRYlEK/fr1Q/369fHtt9/yHQohhOicsLAwdOjQwWCHlxpaUwh13iwFhmGwdOlStGjRAiNGjICXlxffIRFCiE6gDpvgLCmgxELPeHl5YeLEiQgJCcHx48d1bvy1PrTR6pMI9j7fIZQK/d1oj3GMh8783aioOmxOmzbN4DpsGjJKLMpg9uzZqF+/Pn7//XcMGzaM73BKjS4OlUvXPuzLojyvjf7eKo+uJRfLli1Damoqpk6dyncovJLL5ZDLOZggi4NjVAVKLMrAwsICERERGDp0KLp06QIXFxe+QyJVQJc+yLXB+/69KPEwDLdv38b06dNx4MABg++waWhNIQxLEzSU2dChQ/Hq1Svs379f65tE6EO8dCh50A7091o62v73KpfL4e/vj6ZNm2Lp0qV8h8ObtLQ0WFlZ4UrIp7AwqvjS8Om5UjT9bTtSU1NhaWnJQYSVgyoW5fDrr7/Cy8tL55pEDJ22fxiTd/8fUdKhO5YuXYonT57g0KFDfIeiFRQVCxknx9EFlFiUg42NDVatWoUhQ4YgICAA1atX5zskokTJg/6ipEM33Lp1C//73/9w8OBBmJmZ8R2OVlBNcMXFcXQBJRbl1LNnTwQHB2PMmDE4cOCA1jeJ6CNKIohKcX8LlGxUPblcjhEjRmDEiBHo0KED3+EQnlBiUQGLFy9Go0aNsGHDBgwfPpzvcIrQxw9WSiZIaRX8W9G394K2jg5ZsmQJnj59isOHD/MdilZh5Rx13qSKhf5TNYkMGjQIXbp0gaurK98h6RVt/OAkuokqGpXv1q1bmDFjBg4dOkRNIIVxNWumjvSxoFEhHPjss8/w5MkTHDlyBAKBdsySrqsfmpRMED7Q+6Vi8vLy0L59e/j6+mLx4sV8h6M1VKNC4kcEw1wirvDxMqR5aL4uikaFGIIlS5bAx8cH8+fPx/Tp0/kOR2doy4ciIVTRqJgZM2YgKysL8+fP5zsUrSSXySHnoNrAxTGqAiUWHLC0tMS2bdvQrl07tG/fHm3btuU1Hm3+QKRkgugKXeijoQ19LQ4fPozly5fj0qVLBj8RFlGgxIIjzZs3x/z58zFgwAAkJCTA1taWlzi08QOQ7w8+QipKF5IMPiQlJWHIkCFYvnw56tevz3c4WsvQhptSHwsOsSyLjz/+GPn5+YiKiuJlCKq2fOhRMkEMgSG/32QyGTp37oyaNWti/fr1VX5+XaDqY3FxYDfO+li02nKY+lgYEoZhsG7dOjRr1gyLFy/G5MmTq/T8fH7IUSJBDFHhv3ttSTSqwty5c5GSkoKDBw/yHQrRMpRYcMzGxgaRkZHo3Lkz2rRpg1atWvEdUqWhZIIQTYbSZHL8+HEsXLgQ586do6GlpcDKWLCyijcOcHGMqkCJRSX44IMPMGfOHPTv3x/x8fGwtrau9HNW1YcYJROElE5VJhlV2Ynz2bNnGDRoEBYtWoQmTZpUyTl1nVzO0agQHeljoR2TLuihr776Cg0aNMDgwYMh42DxGb5FsPcpqSCknKri/VMVXy6kUin69u0Lf39/jB49utLPR3QTJRaVRCAQYPPmzeoFeSpTZX6gUEJBCHd0/f305ZdfIi0tDWvWrKH1kcqAlbOcbbqAmkIqkbW1NaKiovDBBx+gcePGGDRoEN8hlZouf/gRou1U7y+uvxRUZpPIihUrsGvXLly+fJn6VZSRXAbIBRVPCuQ6UvymxKKS1atXD5GRkejTpw88PT3RsmVLvkN6J0ooCKk6lZVgcO3EiROYMmUKjhw5And3d77DIVqOEosqEBgYiO+++w69e/fGpUuX4OLiwtmxK/qBRIkEIfzjctgq11WLu3fv4pNPPsGSJUt4n1VYV7EyOVgBBxNk6ciU3tTHoopMnjwZXbp0wUcffYScnBxOjklJBSH6qaLvTa4qIOnp6QgODsbgwYMxcuRITo5piFTDTbnYdAElFlWEYRhERERAIBBgzJgx4HPCU13vQEaIIeD7fSqXyzF48GA4Ozvj559/5i0OonsosahCxsbG2L17N44fP17hVQDL842E7w8qQkjZlfd9W9GqRVhYGK5fv45t27ZBJKJW84qQy1jONl1Afy1VzNnZGQcOHECHDh3g5OSE4cOHV8l5KaEgRLdFsPerrJPnr7/+irVr1+Ls2bOoVq1alZxTnxlaHwtKLHjg7e2NvXv3omfPnrC3t0fPnj3L9PyyfLhQQkGI/ijrKJLydOSMjIzEjBkzEB0djXr16pUtQEJAiQVvOnbsiI0bN6J///44evQo/Pz8OD0+JRSE6K/KGqZ69OhRjBw5Ert27dLrdY6qmpxlIedgciu5jixGTn0sePTJJ5/gp59+Qs+ePXH9+vVSPac0HySUVBBiGErzXi9t8nH58mX06dMHK1euRLdu3SoWGNHE1YgQ6mNBSmP8+PFITk5GYGAgzp07Bzc3txIf+74PCEooCDE8palevK9J5NatW/jwww8xZ84cDB48mNsAicGhxEILzJkzB8nJyejWrRtOnz5dbGepd31oUEJBCHlfglFScqH6YvPZZ58hNDS08gI0YHKZHHKGg9VNdaTzJjWFaAGGYbB8+XLUq1cPPXv2REZGRqmeR8NHCSGFleVz4fXr1+jevTvatWtX4SHwRHstW7YMHh4eMDY2hq+vLy5evFjiY1evXo127drBxsYGNjY2CAgIeOfji0OJhZYQCoXYsmULTExM0KNHD2RmZqrvK+4bCCUUhJB3Ke4zouBnyZs3b9C1a1e4u7tjzZo1EAjoclBZ+Jx5c9u2bQgNDcXs2bMRHx+Ppk2bIjAwEM+ePSv28TExMRgwYABOnDiB2NhYuLm5oWvXrnjy5Empz8mwfE4BSYrIyspCjx49IBAIsH//foSaNdS4nxIKQkhZFf5ysiD1H3Tt2hV2dnbYtWsXjIyM+AlMz6WlpcHKygpHfD+AGQeTjGXm5yPwwnmkpqbC0tKyVM/x9fVFy5Yt8dtvvwFQzKjq5uaGzz//HNOmTXvv82UyGWxsbPDbb79h6NChpTonpahaxtTUFPv370deXh569+6NfCja1KjZgxBSXgU/P6SQo3v37rCxscHOnTspqdBjUqkUcXFxCAgIUO8TCAQICAhAbGxsqY6RlZWFvLy8Mk2URomFFjI3N8fBgweRmZmJh13q45es//gOiRCiBxak/oPENu4wMzPD7t27YWxszHdIBkEuk3O2AYpKSMEtNze32PO+ePECMpkMjo6OGvsdHR2RnJxcqti/+eYbuLi4aCQn70OJhZaysLDA4cOHkZ2djZ49eyIrK4vvkAghOiw1NRWBgYEwNzfHvn37YGJiwndIBoNlWbByDjZlzwU3NzdYWVmpt/Dw8EqJe/78+YiMjMSePXvKlIRSYqHFLCwscOjQIchkMvTo0aPUo0UIIaSgN2/eoEuXLqhWrRr27t1LSYWOe/ToEVJTU9VbWFhYsY+zs7ODUChESkqKxv6UlBQ4OTm98xwLFy7E/Pnz8ddff6FJkyZlio8SCy2nahYRCATo1q0bXr9+zXdIhBAd8uzZM3Tu3BnOzs7U/METrlc3tbS01NhK6icjkUjg4+OD6Ojot7HI5YiOjn7nMhILFizA3LlzcfjwYbRo0aLMr5cSCx1gZmaGAwcOwNbWFu3bt0dSUhLfIRFCdMC9e/fQpk0b1KtXDzt27KCOmjxRDBWVc7CVfRBnaGgoVq9ejY0bN+K///7D+PHjkZmZqV5Ze+jQoRoVjx9//BEzZ87EunXr4OHhgeTkZCQnJ5epYk6JhY4wMTFRLwzUunVr3Lx5k++QCCFaLCEhAa1bt0aPHj2wadMmSCQSvkMiPOjXrx8WLlyIWbNmwdvbGwkJCTh8+LC6Q+fDhw/x9OlT9eNXrFgBqVSKTz75BM7Ozupt4cKFpT4nzWOhY1iWxYwZM7By5Ur8+eeftAIhIaSImJgY9O7dG9OmTcM333wDhmH4DskgqeaxiGrYHGZCYYWPlymTIfh6fJnmseADrRWiYxiGwbx58+Do6IjOnTtjx44dtBIhIURt586dGDZsGH777Td1uZvwSy5jIQcHy6bryOqm1BRSSuHh4WjZsiUsLCzg4OCA3r17azRHvHr1Cp9//jnq1asHExMTuLu744svvkBqaqrGcRiGKbJFRkZqPObbb7+Fq6sr2rZti8TExGLj+eKLL7B69Wr06dMHmzZt4v4FE0J0zooVK/DZZ59h27ZtxSYVK1asQJMmTdSd/vz8/HDo0CH1/atWrYK/vz8sLS3BMAzevHlT5BgeHh5FPsMKrzOyevVq1KhRA82aNcOFCxc4f51Eu1HFopROnjyJiRMnomXLlsjPz8f06dPRtWtXXL9+HWZmZkhKSkJSUhIWLlyIhg0b4sGDBxg3bhySkpKwc+dOjWOtX79eo8pgbW2t/v3s2bM4ePAg9u3bhwsXLiAkJAR//fVXsTH1798fdnZ2+Pjjj5GSkoLQ0FAqeRJigFiWxZw5c7B06VL89ddfaN26dbGPc3V1xfz581G3bl2wLIuNGzeiV69e+Pvvv+Hl5YWsrCx069YN3bp1K3EIIwB89913GD16tPq2hYWF+veHDx9iwYIFiIyMxJMnTzB8+HBcv36duxerg1i5HCwHn82sXDdWN6XEopQOHz6scXvDhg1wcHBAXFwc2rdvj0aNGmHXrl3q+2vXro158+Zh8ODByM/Ph6jAPPHW1tYljiF+/fo1XFxc0KRJE+Tn52PDhg3vjCsgIAAnTpxAjx49cPPmTfz222/USYsQA5KVlYWRI0fi7NmzOH36NLy8vEp8bFBQkMbtefPmYcWKFTh//jy8vLwwadIkAIo+Gu9iYWFR4mdYWloarK2t0aRJEzg5OSE7O7tMr0cfUVMIKRVVE8e75k9XdbARFVp8ZuLEibCzs0OrVq2wbt06FOw/GxgYiJycHJiamqJbt26lmlHNx8cHly5dQlxcHDp37lziqnWEEP3y+PFjtG/fHo8ePcKlS5femVQUJpPJEBkZiczMzHfOaVCc+fPnw9bWFs2aNcNPP/2E/Px89X2NGjVCkyZNYGVlBS8vL3z//fdlOjbRfVSxKAe5XI5JkyahTZs2aNSoUbGPefHiBebOnYsxY8Zo7P/uu+/QqVMnmJqa4q+//sKECROQkZGBL774AgAgFotx+PBhPHv2DNbW1qWuPri5ueH06dMYMWIEWrZsiX379sHb27tCr5MQor3Onz+P3r17o2fPnli2bFmp56i4evUq/Pz8kJOTA3Nzc+zZswcNGzZ8/xOVvvjiCzRv3hzVqlXDuXPnEBYWhqdPn2LRokXqx6xduxYLFiyAqakpzfIJKKbj5qBiwcp1o2JBw03LYfz48Th06BDOnDkDV1fXIvenpaWpp8+NioqCWCwu8VizZs3C+vXr8ejRI05iY1kW4eHhCA8Px4YNG9CnTx9OjksI0R4bN27EhAkTMH/+fISEhJSpb5VUKsXDhw+RmpqKnTt3Ys2aNTh58qRGchETE4OOHTvi9evXGn3AirNu3TqMHTsWGRkZNAFXIarhpjvdvGAqqPhw0yy5DJ88uqb1w02pKaSMQkJCcODAAZw4caLYpCI9PR3dunWDhYUF9uzZ886kAgB8fX3x+PHjElenKyuGYTB9+nRs2rQJw4cPx5w5cyDXkQ4/hJB3k8lkmDJlCiZPnox9+/bh888/L3OHbYlEgjp16sDHxwfh4eFo2rQpfv3113LH5Ovri/z8fNy/f7/cxyD6hZpCSollWXz++efYs2cPYmJiULNmzSKPSUtLQ2BgIIyMjBAVFVWqOfkTEhJgY2PDeabfq1cvnDt3DsHBwbh69So2btwIc3NzTs9BCKk6b968wYABA/DgwQNcuHABdevW5eS4crm8Ql9sEhISIBAI4ODgwEk8+kguYyHnoHFAriNNIZRYlNLEiROxZcsW7Nu3DxYWFuq17K2srGBiYoK0tDR07doVWVlZ2LRpE9LS0pCWlgYAsLe3h1AoxP79+5GSkoIPPvgAxsbGOHr0KH744QdMmTKlUmJu1KgRLl26hL59+6JVq1bYtm0bGjduXCnnIoRUnkuXLqF///5o0KABYmNjYWVlVa7jhIWFoXv37nB3d0d6ejq2bNmCmJgYHDlyBADU60Lcvn0bgKI/hoWFBdzd3VGtWjXExsbiwoUL6NixIywsLBAbG4vJkydj8ODBsLGx4ez16htWxoKLXge60seCmkJKacWKFUhNTYW/v7/G/Onbtm0DAMTHx+PChQu4evUq6tSpo/EYVf8JsViMZcuWwc/PD97e3li5ciUWLVqE2bNnV1rctra2+Ouvv9C3b1/4+flh9erVnPyBE0IqH8uyWLx4Mfz9/TF27FhERUWVO6kAFCudDh06FPXq1UPnzp1x6dIlHDlyBF26dAEAREREoFmzZuo5Ktq3b49mzZohKioKAGBkZITIyEh06NABXl5emDdvHiZPnoxVq1ZV/MUSvUGdNw1IdHQ0Bg8eDH9/f6xcuVKrO/8QYuhevXqF4cOHIyEhAVu3bi1x0iuivVSdN7c61Oes8+aAZzeo8ybRHp07d0ZCQgJevnyJ5s2bIz4+nu+QCCHFOHv2LLy9vSEQCPD3339TUkF0CiUWBsbR0RGHDx/GqFGj0K5dOyxZsoSaRgjREnK5HOHh4ejatSumTp2K3bt3v3MSPqIbZCzL2aYLqPOmARIIBJg2bRratWuH/v3748SJE1izZg1sbW35Do0Qg5WcnIxhw4bhzp07OHXqFHx8fPgOiXBExio2Lo6jC6hiYcDatGmDhIQEAEDDhg2xZ88efgMixACxLIvNmzfDy8sL9vb2iI+Pp6SC6DSqWBg4W1tb7N69G1u2bMHIkSOxY8cOLF26lKoXhFSB5ORkjBs3DrGxsVi7di169+7Nd0ikEnDVjKErTSFUsSBgGAaDBg3CtWvXkJmZCS8vL+zdu5fvsAjRWyzLYsuWLfDy8oKpqSmuX79OSYUeUzWFcLHpAkosiJqzszP27t2LhQsXYsSIERg0aBBevnzJd1iE6JXk5GR8/PHHmDx5MlavXo0tW7ZQhZDoFUosiAaGYTB48GBcu3YN6enp8PLywr59+/gOixCdx7Istm7dCi8vLxgZGeHatWv4+OOP+Q6LVAE5RyNCuJgWvCpQYkGK5ezsjH379uGnn37CZ599hj59+uDhw4d8h0WITrp9+zZ69OiBL7/8EqtWrUJkZCTs7Oz4DotUERk4agrh+4WUEiUWpEQMw2DIkCG4ceMGLC0t0bBhQ/zwww+crcRKiL7LysrCzJkz0aRJE3h4eODGjRvo06cP32ERUqkosSDv5ejoiPXr1+Ovv/7Cjh070LhxY/WiRYSQoliWxd69e9GwYUMcPXoUp0+fxvLly2myKwNlaBNkUWJBSq1169a4dOkSvvjiC/Tr14+aRwgphqrZY/To0Zg5cybOnTtH81IYOBoVQsg7iEQihISEIDExkZpHCCmgcLPHzZs3MXLkSAgE9DFLDAv9xZNycXBw0GgeqV+/PjZt2gS5XM53aIRUqfz8fKxZswaenp7U7EGKRRULQsqgdevWuHz5Mr777jvMmDEDzZo1w8GDB2lhM6L3WJbFrl270KhRIyxYsAC//PILNXuQYlEfC0LKSCgUYsiQIbh58yZGjBiBzz77DB06dEBsbCzfoRFSKU6cOIEPPvgAn3/+OSZPnoxr166hb9++1OxBCCixIBwyMjLCl19+iTt37qBjx47o2rUrevfujevXr/MdGiGc+Pvvv9GtWzd89NFH6N27N27duoWxY8dCLBbzHRrRYnKOmkHkulGwoMSCcM/S0hLffvstbt++DTc3N/j4+GD48OG4desW36ERUi7Xrl3DgAED0KZNGzRu3Bh37txBWFgYzMzM+A6N6ABqCiGEI46Ojli6dCmuXbsGlmXRuHFj9OvXT71UOyHa7sKFC+jduzdatGgBS0tL3Lx5Ez/99BOt7UHIO1BiQSpdrVq1sGHDBty8eROOjo5o3bo1unfvjtOnT/MdGiFFsCyLo0ePolOnTggICEDdunVx584drFy5Em5ubnyHR3QQjQohpJLUqFEDS5Yswf379+Hj44OgoCC0bduWRpEQrSCXy7F79260atUKAwYMQMeOHfHgwQP89NNPcHFx4Ts8QnQGJRakyjk4OOD777/Hw4cPERQUhJEjR8Lb2xubN2+GVCrlOzxiYHJycrBu3Tp4eXnhyy+/xODBg/HgwQPMnDmT5qIgnFBUG7joY8H3KykdhqWvioRn2dnZ2LBhA3755RekpaVh7NixGDt2LH1LJJXqwYMHiIiIwOrVq+Ho6IgpU6Zg0KBBkEgkfIdG9ERaWhqsrKwww7gWjJmKf4/PYeX4PucuUlNTYWlpyUGElYMqFoR3JiYmGD9+PG7cuIENGzbg8uXLqFmzJvr3749Tp05RMwnhjFwux7Fjx/Dxxx/D09MTN2/exI4dO/Dvv/9i+PDhlFQQwgFKLIjWEAgE6NatGw4ePIhr166hevXq+Oijj+Dl5YVff/0Vr1+/5jtEoqOeP3+On376CZ6enhg4cCDq1auHxMRE7N69Gx07dgTDMHyHSPSYoQ03paYQotVycnKwc+dOREREID4+Hp988gkGDx6MTp06QSQS8R0e0WJ5eXn466+/8Mcff2Dv3r1o3bo1xo0bh969e1NlglQJVVPINKOaMOKgKSSXlWN+7j1qCiGkIoyNjTF48GCcOXMGFy9ehIODAz777DO4ublh8uTJiIuLo6YSosayLGJjYxESEgIXFxeMHz8eHh4euHLlCo4fP45PP/2UkgpCKhlVLIjOkclkiImJwaZNm7Br1y64uLhg8ODBGDhwIGrVqsV3eIQHN2/exObNm7F582a8evUKffv2xeDBg9G2bVtav4PwRlWxmCrx4Kxi8ZP0vtZXLCixIDotOzsb+/fvx6ZNm3D48GG0bNkSAwYMQHBwMNzd3fkOj1Siu3fvYt++fdiyZQuuXr2Knj17YtCgQfjwww9hZGTEd3iEqBOLUDF3icWiPEosCKkyL168wI4dO7B9+3acOXMGXl5eCA4ORnBwMJo3b07fXHWcTCbDxYsXsX//fkRFRSExMREdOnRAv3798Mknn8Da2prvEAnRQIkFIXrk9evXOHToEKKionDo0CGYmZkhKCgIQUFB6Ny5M0xMTPgOkZRCZmYmjh49iqioKBw8eBB5eXno0aMHgoKCEBgYCCsrK75DJKREqsTiS1ENzhKLX/MfUGJBCN+kUilOnz6NqKgoREVFISUlBV26dEHnzp3h7++PRo0aUTVDS8hkMly5cgUxMTGIjo5GdHQ03Nzc0KtXLwQFBaFNmzY0GojoDFViESLkLrH4TUaJBSFahWVZXLt2DQcOHEBMTAzOnDkDIyMjdOjQAR07doS/vz+8vLwo0agiMpkM//zzD2JiYhATE4NTp05BJpOhffv28Pf3R8+ePVGvXj2aZ4LoJEosCDFAeXl5iIuLU1/Yzpw5A2NjY3To0AH+/v7w8/ND48aNqTMgR7Kzs3H16lWcO3cOJ06cKJJI+Pv7w9vbm6oSRC+oEovxAnfOEosV8oeUWBCiSwonGhcuXEBmZiYaNWoEHx8f9da4cWMYGxvzHa5Wy87OxpUrVxAXF6ferl27Bmtra/j6+qorRJRIEH2lSizGMu6QcJBYSFk5VrKUWBCi01iWxb179xAXF4f4+Hj1BTItLU2dbHh7e6N+/frw9PSEq6urwTWjyGQyPHz4ELdu3cKNGzfw999/Iy4uDtevX0e1atXUyVjz5s3h4+MDd3d3atogBoESC0JIqbAsiwcPHqiTjCtXriAxMRH37t2DWCxG3bp1UbduXXh6empsdnZ2OntBZVkWz549Q2JiYpHt9u3bkMvlqFWrFjw9PeHt7a1OJlxdXXX2NRNSUarEYhTcOEss1uARJRaEGAqpVIp79+4Ve/FNSkqCiYkJnJ2d1ZuLi0uR205OTrC0tKyyaadzc3ORmpqK5ORkPH36FE+fPkVSUpL694K3c3Nz4erqWiRh8vT0hIeHB8RicZXETIiuUCUWw+EGCQcraEghx3pKLAghAJCeno7Hjx8Xe8EuuKWnpwMAxGIxLCwsYGFhAXNz8yK/m5iYQCAQaGyAYlnwgltWVhYyMjKQnp6O9PT0Ir/n5eUBACwtLd+Z8Dg7O8PV1RVmZma8/RsSomtUicUgVOcssdiMJ5RYEEJKLysrq8QkoODP7OxssCyrTiBkMhkYhtFINBiGgampqToZKS5BMTc3h6WlJU0YRkglyMnJQc2aNZGcnMzZMZ2cnHDv3j2t7jxOiQUhhBBSSXJyciCVSjk7nkQi0eqkAqDEghBCCCEcMqxxcYQQQgipVJRYEEIIIYQzlFgQQgghhDOUWBBCCCGEM5RYEEIIIYQzlFgQQgghhDOUWBBCCCGEM5RYEEIIIYQzlFgQQgghhDOUWBBCCCGEM5RYEKIlwsPD0bJlS1hYWMDBwQG9e/fGzZs31fffv38fDMMUu+3YsUP9uIcPH6JHjx4wNTWFg4MDpk6divz8fI1zffvtt3B1dUXbtm2RmJhYZa+REKL/KLEgREucPHkSEydOxPnz53H06FHk5eWha9euyMzMBAC4ubkVWWb922+/hbm5Obp37w4AkMlk6NGjB6RSKc6dO4eNGzdiw4YNmDVrlvo8Z8+excGDB7Fv3z4MHDgQISEhvLxeQoh+okXICNFSz58/h4ODA06ePIn27dsX+5hmzZqhefPmWLt2LQDg0KFD6NmzJ5KSkuDo6AgAiIiIwDfffIPnz59DIpHgwIEDWLNmDXbs2IH4+Hh8/vnnuHjxYpW9LkKIfqOKBSFaKjU1FQBQrVq1Yu+Pi4tDQkICRo4cqd4XGxuLxo0bq5MKAAgMDERaWhquXbumvp2TkwNTU1N069YN4eHhlfgqCCGGRsR3AISQouRyOSZNmoQ2bdqgUaNGxT5m7dq1aNCgAVq3bq3el5ycrJFUAFDfTk5OBgCIxWIcPnwYz549g7W1NSQSSSW9CkKIIaLEghAtNHHiRPz77784c+ZMsfdnZ2djy5YtmDlzZrnP4eDgUO7nEkJISagphBAtExISggMHDuDEiRNwdXUt9jE7d+5EVlYWhg4dqrHfyckJKSkpGvtUt52cnConYEIIKYASC0K0BMuyCAkJwZ49e3D8+HHUrFmzxMeuXbsWwcHBsLe319jv5+eHq1ev4tmzZ+p9R48ehaWlJRo2bFhpsRNCiAqNCiFES0yYMAFbtmzBvn37UK9ePfV+KysrmJiYqG/fvn0bnp6e+PPPP9GtWzeNY8hkMnh7e8PFxQULFixAcnIyhgwZglGjRuGHH36ostdCCDFclFgQoiUYhil2//r16/HZZ5+pb0+fPh2bNm3C/fv3IRAULTo+ePAA48ePR0xMDMzMzDBs2DDMnz8fIhF1qSKEVD5KLAghhBDCGepjQQghhBDOUGJBCCGEEM5QYkEIIYQQzlBiQQghhBDOUGJBCCGEEM5QYkEIIYQQzlBiQQghhBDOUGJBCCGEEM5QYkEIIYQQzlBiQQghhBDOUGJBCE8aNGiANWvW/L+dewtpso/jAP517dDMrVo6ELODBkFMPME6IBTS4aJ0EASGkdGCuqtlKzpAYMguYhYZ5E0R0UVY0AEsMYhsKJXQjFZkpowO1I09rc1tLdy/i/fteXte52u9PU3S7we8+P+f3/+w5+rrs/+eceuGhoZgtVoRDAbHrFm1ahX27Nmj3ub+VlNTA6/Xq/q8RDR5MVgQTYBYLIb+/n4UFxePW9vY2AiHw4EFCxb8/o39y5EjR9DY2IhQKJT2tYnoz8RgQTQBAoEAhBCw2Wz/WReNRnH27Fk4nc407UzJZrOhsLAQFy9enJD1iejPw2BBlEa9vb2orKxERUUFkskk5s2bh5MnT45Zf/PmTRgMBixbtkzuGx4extatW5GVlYXc3NyUX1Ukk0l4PB4sXLgQRqMRxcXFuHLliqImHA6jtrYWM2bMQG5uLk6cOJHyK5WqqipcunTplz43EU0dDBZEaTIwMICVK1eisrIS1dXV2LhxI+rr6+FyudDb25tyjM/nQ3l5uaLP7Xajs7MT169fR0dHB+7evYtHjx4pajweDy5cuICWlhY8ffoULpcLW7ZsQWdnp1yzd+9edHV14caNG7h9+zZ8Pt+oeQDAbrfj4cOH+Pz586/fBCKa/AQRpcXq1avFtm3bhBBC2O124fV6xcjIiDCbzeLUqVMpxzgcDrF9+3a5HQ6HhV6vF62trXLf0NCQMBqNYvfu3UIIIeLxuMjMzBTd3d2KuZxOp9i8ebMQQohPnz4JnU4nLl++LF//+PGjyMzMlOf55vHjxwKACAaD//uzE9HUoZ3oYEM0Fbx//x537txBd3c3RkZG8OTJE3g8Hmg0GkybNg16vT7luFgshunTp8vtgYEBJBIJLF26VO6zWCxYvHix3H758iWi0SjWrFmjmCuRSKC0tBQAMDg4iC9fvsBut8vXZ86cqZjnG6PRCOCv8x5ERONhsCBKg/v37yOZTKKkpAR9fX2IxWIoKSlBMBiEJElYsWJFynHZ2dmQJOmn1opEIgCAtrY25OXlKa4ZDIaf3vuHDx8AADk5OT89loimHp6xIEqDRCIBAIjH4/D7/Zg/fz4sFgtaWlpgs9lQVFSUclxpaSmePXsmtwsLC6HT6fDgwQO5T5IkvHjxQm4vWbIEBoMBr169wqJFixR/+fn5AICCggLodDr09PTI40KhkGKebwKBAObOnYvs7OxfuwlENCXwiQVRGixfvhxarRYNDQ2IRCIoKCjA6dOn0dzcjHv37o05bt26dTh48CAkScLs2bORlZUFp9MJt9uNOXPmwGq14vDhw9Bo/vkfwWQyYd++fXC5XEgmk6ioqEAoFEJXVxfMZjPq6upgMplQV1cHt9sNi8UCq9WKo0ePQqPRICMjQ7EHn8+HtWvX/rZ7Q0STC4MFURrk5+fj3LlzOHDgAN69ewetVotoNIr29vZRv/r4XlFREcrKytDa2oqdO3cCAI4fP45IJIKqqiqYTCbU19ePeoHVsWPHkJOTA4/Hg8HBQcyaNQtlZWU4dOiQXNPU1IRdu3Zhw4YNMJvN2L9/P16/fq040xGPx3Ht2jW0t7erfEeIaLLKEEKIid4E0VRisVhw/vx5VFdX/1B9W1sb3G43AoGA4smE2oaHh5GXlwev1yu/kOvMmTO4evUqOjo6ftu6RDS58IkFURq9efMGkiSN+8bN761fvx79/f14+/atfEZCDX6/H8+fP4fdbkcoFEJDQwMAwOFwyDU6nQ7Nzc2qrUlEkx+fWBCl0a1bt7Bp0yaEw+FRZxnSze/3Y8eOHejr64Ner0d5eTmamprGPEhKRPQjGCyIiIhINfy5KREREamGwYKIiIhUw2BBREREqmGwICIiItUwWBAREZFqGCyIiIhINQwWREREpBoGCyIiIlINgwURERGphsGCiIiIVMNgQURERKr5CqTfLFiPp2dIAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# extract the computed projected fields\n", "far_data = sim_data5[monitor_far.name]\n", "\n", "# We can compute the theta and phi angles associated with the given reciprocal coordinates\n", "coords = far_data.coords_spherical\n", "theta = coords[\"theta\"]\n", "phi = coords[\"phi\"]\n", "\n", "# plot\n", "Etheta = far_data.Etheta.isel(f=0, r=0)\n", "fig, ax = plt.subplots(\n", " 1, 1, tight_layout=True, figsize=(7, 5), subplot_kw={\"projection\": \"polar\"}\n", ")\n", "ax.grid(False)\n", "# im = ax.pcolormesh(np.squeeze(phi), np.squeeze(theta) * 180 / np.pi, np.abs(Etheta), cmap='RdBu', shading='auto')\n", "im = ax.pcolormesh(\n", " np.squeeze(phi),\n", " np.squeeze(theta) * 180 / np.pi,\n", " np.abs(Etheta),\n", " cmap=\"RdBu\",\n", " shading=\"auto\",\n", ")\n", "fig.colorbar(im, ax=ax)\n", "_ = ax.set_xlabel(\"$\\phi$ (deg)\")\n", "\n", "label_position = ax.get_rlabel_position()\n", "_ = ax.text(\n", " np.radians(label_position - 8),\n", " ax.get_rmax() / 1.3,\n", " \"$\\\\theta$ (deg)\",\n", " rotation=label_position,\n", " ha=\"center\",\n", " va=\"center\",\n", ")\n", "\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Far Field for a Finite-Sized Structure\n", "The above examples are very useful when simulating thin structure with a large extent in the lateral direction, such as a metasurface or metalens. If the structure is small enough, we may instead want to enclose it in a closed surface, which now serves as an equivalent surface in the spirit of the equivalence principle, without having to worry about whether the fields decay at the monitor's edges or not. To learn more, see the [sphere radar cross section](../notebooks/Near2FarSphereRCS.html) and [plasmonic nanoparticle](../notebooks/PlasmonicNanoparticle.html) case studies." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Notes \n", "* Since field projections rely on the surface equivalence principle, we have assumed that the tangential near fields recorded on the near field monitor serve as equivalent sources which generate the correct far fields. However, this requires that the field strength decays nearly to zero near the edges of the near-field monitor, which may not always be the case. For example, if we had used a larger aperture compared to the full simulation size in the transverse direction, we may expect a degradation in accuracy of the field projections.\n", "Despite this limitation, the field projections are still remarkably accurate in realistic scenarios. For realistic case studies further demonstrating the accuracy of the field projections, see our [metalens](../notebooks/Metalens.html) and [zone plate](../notebooks/ZonePlateFieldProjection.html) case studies.\n", "* The field projections make use of the analytical homogeneous medium Green's function, which assumes that the fields are propagating in a homogeneous medium. Therefore, one should use PMLs / absorbers as boundary conditions in the part of the domain where fields are projected. For far field projections in the context of perdiodic boundary conditions, see the [diffraction efficiency example](../notebooks/GratingEfficiency.html) which demonstrates the use of a [DiffractionMonitor](../_autosummary/tidy3d.DiffractionMonitor.html).\n", "* Server-side field projections will add to the monetary cost of the simulation. However, typically the far field projections have a very small computation cost compared to the FDTD simulation itself, so the increase in monetary cost should be negligibly small in most cases." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "000025ebf9f1460b9c4f7d3fbf3c7f9a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "07d77c7005ce477f8f54bb8e438e6818": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0eca4191705e4e0191b04ae6513afd9c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "11f8fc03aabb48e68c29a98d10a1f3bf": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_2c21f45cde2446c0bbe4dd6eadb1bda3", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 538.8/538.8 kB \u2022 38.3 MB/s \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m538.8/538.8 kB\u001b[0m \u2022 \u001b[31m38.3 MB/s\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "202a2a71da9542038c4db82fd7d0c398": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_d8480942d3494093a210b27b685481d0", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 6.22e-08) \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n
\n", "text/plain": "% done (field decay = 6.22e-08) \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "21991feb1021497886af6ef00f724fd5": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_bea2ee594e684323b9620fb8d4c09051", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 537.6/537.6 kB \u2022 45.7 MB/s \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m537.6/537.6 kB\u001b[0m \u2022 \u001b[31m45.7 MB/s\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "28a40a0df3a34855affc760d6980389b": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_7d74d4337474428586021821eba888a8", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 7.5/7.5 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m7.5/7.5 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "29bf6128f6984b06b4cd47d569030835": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_dce6d28bb6804b1a8b4eb46c0b328c39", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 3.4/3.4 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m3.4/3.4 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "2c21f45cde2446c0bbe4dd6eadb1bda3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2f092d83367b49d3aac48c5a325ccd2e": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_bd67331c8a5543019c57925554b037b6", "msg_id": "", "outputs": [ { "data": { "text/html": "
Computing projected fields \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n
\n", "text/plain": "Computing projected fields \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "3e3b845357f84ff9850b22956b95312f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3f7516a855904496b92b402ab0016518": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_a3c297659baf4ad2ba2614db576a466c", "msg_id": "", "outputs": [ { "data": { "text/html": "
Processing surface monitor 'near_field'... \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n
\n", "text/plain": "Processing surface monitor 'near_field'... \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "496d27f53d66449dbfe66132a190e494": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "53e86978e17443dea9360faa140dbe90": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "54d76bb458404dba821f8e8a95800431": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_496d27f53d66449dbfe66132a190e494", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 7.4/7.4 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m7.4/7.4 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "56fd7626d03145afb4d817b35fb28b5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "597bba80998647458de735c40c3ba03e": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_6ed1ddd214d84cb4a0c5133cbae7a676", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 868.4/868.4 kB \u2022 17.0 MB/s \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m868.4/868.4 kB\u001b[0m \u2022 \u001b[31m17.0 MB/s\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "6415496e533547b9b5e67e68aed0a806": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6670547da2f549b8a255c7b3ffd0b455": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_fd725c2fc0e64f4c92d47bee2be63517", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83c\udfc3  Starting 'aperture_4'...\n
\n", "text/plain": "\u001b[32m\ud83c\udfc3 \u001b[0m \u001b[1;32mStarting 'aperture_4'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "6c5b896351d74d2bad6ddcc853b772cc": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_07d77c7005ce477f8f54bb8e438e6818", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 538.0/538.0 kB \u2022 9.3 MB/s \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m538.0/538.0 kB\u001b[0m \u2022 \u001b[31m9.3 MB/s\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "6d2576f899b14a23897aeaddeba98708": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6ddba32f597749b3b77de0c4f204c4a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6ed1ddd214d84cb4a0c5133cbae7a676": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6f1ac3283e1f43ef87a69953d7f1638b": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_56fd7626d03145afb4d817b35fb28b5f", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83d\udeb6  Starting 'aperture_2'...\n
\n", "text/plain": "\u001b[32m\ud83d\udeb6 \u001b[0m \u001b[1;32mStarting 'aperture_2'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "7225ecf5e0024949aaf8ee3b2e5e38b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7274f38e16864001a95caa5aeca5b9cf": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_f734877e3e0743eb9a6d4d89dbd91b4b", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83c\udfc3  Starting 'kspace_monitor'...\n
\n", "text/plain": "\u001b[32m\ud83c\udfc3 \u001b[0m \u001b[1;32mStarting 'kspace_monitor'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "7565cbc4756a4a9083d7472fbbfedbc9": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_3e3b845357f84ff9850b22956b95312f", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 7.2/7.2 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m7.2/7.2 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "76c1e0d4a8714f8fa3c9e8855545ba8c": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_7225ecf5e0024949aaf8ee3b2e5e38b2", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83d\udeb6  Finishing 'aperture_3'...\n
\n", "text/plain": "\u001b[32m\ud83d\udeb6 \u001b[0m \u001b[1;32mFinishing 'aperture_3'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "773dcbb7f6bc4839933c384df9235b51": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_a3f24e10850043eb9787f44b204962c9", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83d\udeb6  Starting 'aperture_1'...\n
\n", "text/plain": "\u001b[32m\ud83d\udeb6 \u001b[0m \u001b[1;32mStarting 'aperture_1'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "7d74d4337474428586021821eba888a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "83621abff29a45a79961c5cf547f3648": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8b902925c8d8463fb107d7a7361cd221": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_cc23616371f04c28be966ce014211f31", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 1.7/1.7 MB \u2022 23.3 MB/s \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m1.7/1.7 MB\u001b[0m \u2022 \u001b[31m23.3 MB/s\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "8effb48835484fd2ae6c08ae965a1e40": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_6415496e533547b9b5e67e68aed0a806", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83d\udeb6  Finishing 'aperture_2'...\n
\n", "text/plain": "\u001b[32m\ud83d\udeb6 \u001b[0m \u001b[1;32mFinishing 'aperture_2'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "9e787e9592ce43828fdc698f7fb81284": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_0eca4191705e4e0191b04ae6513afd9c", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 6.22e-08) \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n
\n", "text/plain": "% done (field decay = 6.22e-08) \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "a3c297659baf4ad2ba2614db576a466c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a3f24e10850043eb9787f44b204962c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a4cca6c15deb4290987b32e144212ff0": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_6d2576f899b14a23897aeaddeba98708", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 0.00e+00) \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n
\n", "text/plain": "% done (field decay = 0.00e+00) \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "aa7be23bca0845b683c2931ccd16f0e9": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_d72b698344294b9594534877e3379aeb", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 3.7/3.7 kB \u2022 ? \u2022 0:00:00\n
\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m3.7/3.7 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "aaeb6411f5d544c0b2de7c3ab04ceee2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ac3b9816d9e64ae2902cc0676bfc15cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b1dc154904054d7fad0925c94e5c9e79": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_d888f7dc662541058a7d2aea63c59e0d", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83d\udeb6  Finishing 'kspace_monitor'...\n
\n", "text/plain": "\u001b[32m\ud83d\udeb6 \u001b[0m \u001b[1;32mFinishing 'kspace_monitor'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "b282e954a25c4028b1a84edb9cea719c": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_aaeb6411f5d544c0b2de7c3ab04ceee2", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83d\udeb6  Starting 'aperture_3'...\n
\n", "text/plain": "\u001b[32m\ud83d\udeb6 \u001b[0m \u001b[1;32mStarting 'aperture_3'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "bd67331c8a5543019c57925554b037b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bea2ee594e684323b9620fb8d4c09051": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c4a572ca9f8147ac9d53fbce74263f57": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_6ddba32f597749b3b77de0c4f204c4a0", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 2.97e-08) \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n
\n", "text/plain": "% done (field decay = 2.97e-08) \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "cc23616371f04c28be966ce014211f31": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "cf1e0fb3d24642bba097958c0b64db0e": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_53e86978e17443dea9360faa140dbe90", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83c\udfc3  Finishing 'aperture_4'...\n
\n", "text/plain": "\u001b[32m\ud83c\udfc3 \u001b[0m \u001b[1;32mFinishing 'aperture_4'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "d72b698344294b9594534877e3379aeb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d8480942d3494093a210b27b685481d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d888f7dc662541058a7d2aea63c59e0d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d8de6da843d24856bcabfbeab4739d3f": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_ac3b9816d9e64ae2902cc0676bfc15cd", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83d\udeb6  Finishing 'aperture_1'...\n
\n", "text/plain": "\u001b[32m\ud83d\udeb6 \u001b[0m \u001b[1;32mFinishing 'aperture_1'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "dce6d28bb6804b1a8b4eb46c0b328c39": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f57b696a4e43481f8a47a2e4a255fe2a": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_000025ebf9f1460b9c4f7d3fbf3c7f9a", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 0.00e+00) \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n
\n", "text/plain": "% done (field decay = 0.00e+00) \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "f734877e3e0743eb9a6d4d89dbd91b4b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "fa801c38971c43eaa8ce274e44e452da": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_83621abff29a45a79961c5cf547f3648", "msg_id": "", "outputs": [ { "data": { "text/html": "
Computing projected fields \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n
\n", "text/plain": "Computing projected fields \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "fd725c2fc0e64f4c92d47bee2be63517": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 4 }