{ "cells": [ { "cell_type": "markdown", "id": "a65a6737", "metadata": {}, "source": [ "# Distributed Bragg reflector and cavity" ] }, { "cell_type": "markdown", "id": "47e433db", "metadata": {}, "source": [ "A [distributed Bragg reflector](https://en.wikipedia.org/wiki/Distributed_Bragg_reflector) (DBR) is a multilayer structure consisting of alternating layers of high refractive index and low refractive index. When the thickness of each layer is close to a quarter of the medium wavelength, nearly perfect reflection occurs due to constructive interference of the reflected waves at each layer. DBR is commonly used at optical and UV wavelengths due to the fact that metallic reflectors have a high loss at high frequencies. Besides free space optics, similar concepts have also been applied to integrated photonics and fiber optics. Furthermore, high-Q cavities based on DBR structures are widely popular in lasers, filters, and sensors.\n", "\n", "Although Tidy3D uses highly optimized algorithms and hardware designed to perform large 3D simulations at ease, the computational efficiency can be improved exponentially if we can reduce the dimension of the model. The DBR structure has translational symmetry along the two in-plane directions. Thus, simulating a DBR is effectively a 1D problem. \n", "\n", "" ] }, { "cell_type": "code", "execution_count": 1, "id": "67c41dde", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:58:21.080158Z", "iopub.status.busy": "2023-03-27T23:58:21.079762Z", "iopub.status.idle": "2023-03-27T23:58:22.520800Z", "shell.execute_reply": "2023-03-27T23:58:22.520114Z" } }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "import tidy3d as td\n", "import tidy3d.web as web\n" ] }, { "cell_type": "markdown", "id": "a0c8e122", "metadata": {}, "source": [ "## Simulating the Stopband of a DBR" ] }, { "cell_type": "markdown", "id": "f150734b", "metadata": {}, "source": [ "### Simulation Setup " ] }, { "cell_type": "markdown", "id": "86d2bbb5", "metadata": {}, "source": [ "The most common DBR is made of alternating layers of titanium dioxide ($TiO_2$) and silica ($SiO_2$). The target stopband of the DBR is around 630 nm. " ] }, { "cell_type": "code", "execution_count": 2, "id": "3c528785", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:58:22.524277Z", "iopub.status.busy": "2023-03-27T23:58:22.523663Z", "iopub.status.idle": "2023-03-27T23:58:22.553812Z", "shell.execute_reply": "2023-03-27T23:58:22.553198Z" } }, "outputs": [], "source": [ "lda0 = 0.63 # central wavelength\n", "freq0 = td.C_0 / lda0 # central frequency\n", "freqs = freq0 * np.linspace(0.5, 1.5, 1001) # frequency range of interest\n" ] }, { "cell_type": "code", "execution_count": 3, "id": "a80a24bf", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:58:22.556427Z", "iopub.status.busy": "2023-03-27T23:58:22.556167Z", "iopub.status.idle": "2023-03-27T23:58:22.584708Z", "shell.execute_reply": "2023-03-27T23:58:22.584096Z" } }, "outputs": [], "source": [ "n_tio2 = 2.5 # refractive index of TiO2\n", "n_sio2 = 1.5 # refractive index of SiO2\n", "n_s = 1.5 # refractive index of the substrate material. It's set to SiO2 in this case\n", "inf_eff = 10 # effective infinity in this model\n" ] }, { "cell_type": "markdown", "id": "8c710663", "metadata": {}, "source": [ "The bandwidth of the stopband is given by \n", "\n", "$$\n", "\\frac{\\Delta f}{f_0} = \\frac{4}{\\pi} arcsin(\\frac{n_1-n_2}{n_1+n_2}),\n", "$$\n", "\n", "where $f_0$ is the central frequency, $n_1$ is the refractive index of the high index material, and $n_2$ is the refractive index of the low index material. We use the above equation to estimate the bandwidth of the DBR." ] }, { "cell_type": "code", "execution_count": 4, "id": "2a4913bb", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:58:22.587490Z", "iopub.status.busy": "2023-03-27T23:58:22.587234Z", "iopub.status.idle": "2023-03-27T23:58:22.612575Z", "shell.execute_reply": "2023-03-27T23:58:22.612030Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The normalized bandwidth of the reflection band is 0.32\n" ] } ], "source": [ "df = 4 * np.arcsin((n_tio2 - n_sio2) / (n_tio2 + n_sio2)) / np.pi\n", "print(f\"The normalized bandwidth of the reflection band is {df:1.2f}\")\n" ] }, { "cell_type": "markdown", "id": "7be52b05", "metadata": {}, "source": [ "Next, we construct a function that builds the DBR layers given four parameters: the refractive indices of the materials, the number of layer pairs, and the starting position of the lowest layer. This function will be handy for constructing the DBR as well as the cavity device in the next section. " ] }, { "cell_type": "code", "execution_count": 5, "id": "8c34ee9c", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:58:22.615099Z", "iopub.status.busy": "2023-03-27T23:58:22.614929Z", "iopub.status.idle": "2023-03-27T23:58:22.636552Z", "shell.execute_reply": "2023-03-27T23:58:22.636000Z" } }, "outputs": [], "source": [ "def build_layers(n_1, n_2, N, z_0):\n", " # n_1 and n_2 are the refractive indices of the two materials\n", " # N is the number of repeated pairs of low/high refractive index material\n", " # z_0 is the z coordinate of the lowest layer\n", "\n", " material_1 = td.Medium(permittivity=n_1**2) # define the first material\n", " material_2 = td.Medium(permittivity=n_2**2) # define the second material\n", " t_1 = lda0 / (4 * n_1) # thickness of the first material\n", " t_2 = lda0 / (4 * n_2) # thicness of the second material\n", " layers = [] # holder for all the layers\n", "\n", " # building layers alternatively\n", " for i in range(2 * N):\n", " if i % 2 == 0:\n", " layers.append(\n", " td.Structure(\n", " geometry=td.Box.from_bounds(\n", " rmin=(-inf_eff, -inf_eff, z_0),\n", " rmax=(inf_eff, inf_eff, z_0 + t_1),\n", " ),\n", " medium=material_1,\n", " )\n", " )\n", " z_0 = z_0 + t_1\n", " else:\n", " layers.append(\n", " td.Structure(\n", " geometry=td.Box.from_bounds(\n", " rmin=(-inf_eff, -inf_eff, z_0),\n", " rmax=(inf_eff, inf_eff, z_0 + t_2),\n", " ),\n", " medium=material_2,\n", " )\n", " )\n", " z_0 = z_0 + t_2\n", "\n", " return layers\n" ] }, { "cell_type": "markdown", "id": "00772287", "metadata": {}, "source": [ "We plan to perform a parameter sweep of $N$, the number of layer pairs. In order to do so, we define another function that takes $N$ as an argument and builds the simulation including structures, source, monitor, and so on." ] }, { "cell_type": "code", "execution_count": 6, "id": "426ca532", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:58:22.639269Z", "iopub.status.busy": "2023-03-27T23:58:22.639107Z", "iopub.status.idle": "2023-03-27T23:58:22.660929Z", "shell.execute_reply": "2023-03-27T23:58:22.660365Z" } }, "outputs": [], "source": [ "def make_DBR(N):\n", "\n", " # build the DBR layers using the previously defined function\n", " DBR = build_layers(n_tio2, n_sio2, N, 0)\n", "\n", " thickness = N * (\n", " lda0 / (4 * n_tio2) + lda0 / (4 * n_sio2)\n", " ) # total thickness of the DBR layers\n", "\n", " # build the substrate structure\n", " sub = td.Structure(\n", " geometry=td.Box.from_bounds(\n", " rmin=(-inf_eff, -inf_eff, -inf_eff), rmax=(inf_eff, inf_eff, 0)\n", " ),\n", " medium=td.Medium(permittivity=n_s**2),\n", " )\n", "\n", " # the entire DBR structure includes the layers and the substrate\n", " DBR.append(sub)\n", "\n", " # create a plane wave excitation source\n", " fwidth = 0.5 * freq0 # width of the frequency distribution\n", " plane_wave = td.PlaneWave(\n", " source_time=td.GaussianPulse(freq0=freq0, fwidth=fwidth),\n", " size=(td.inf, td.inf, 0),\n", " center=(0, 0, thickness + lda0 / 4),\n", " direction=\"-\",\n", " pol_angle=0,\n", " )\n", "\n", " # create a flux monitor to measure the reflectance\n", " flux_monitor = td.FluxMonitor(\n", " center=(0, 0, thickness + lda0 / 2),\n", " size=(td.inf, td.inf, 0),\n", " freqs=freqs,\n", " name=\"R\",\n", " )\n", "\n", " Lz = thickness + 2 * lda0 # simulation domain size in z direction\n", " run_time = 100 / fwidth # simulation run time\n", "\n", " sim = td.Simulation(\n", " size=(0, 0, Lz), # simulation domain sizes in x and y directions are set to 0\n", " center=(0, 0, thickness / 2),\n", " grid_spec=td.GridSpec.auto(min_steps_per_wvl=60, wavelength=lda0),\n", " structures=DBR,\n", " sources=[plane_wave],\n", " monitors=[flux_monitor],\n", " run_time=run_time,\n", " boundary_spec=td.BoundarySpec(\n", " x=td.Boundary.periodic(), y=td.Boundary.periodic(), z=td.Boundary.pml()\n", " ), # pml is applied in the z direction\n", " shutoff=1e-7,\n", " ) # early shutoff level is decreased to 1e-7 to increase the simulation accuracy\n", " return sim\n" ] }, { "cell_type": "markdown", "id": "318abb79", "metadata": {}, "source": [ "To visualize the relationship between reflectance and the number of repeated pairs, we perform a parameter sweep. N is swept from 2 to 10 in a total of 5 simulations." ] }, { "cell_type": "code", "execution_count": 7, "id": "c42cfd32", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:58:22.663620Z", "iopub.status.busy": "2023-03-27T23:58:22.663458Z", "iopub.status.idle": "2023-03-27T23:58:22.729026Z", "shell.execute_reply": "2023-03-27T23:58:22.728386Z" }, "tags": [] }, "outputs": [], "source": [ "Ns = np.array([2, 3, 4, 5, 10]) # collection of N for the parameter sweep\n", "sims = {\n", " f\"N={N:.2f}\": make_DBR(N) for N in Ns\n", "} # construct simulations for each N from Ns\n" ] }, { "cell_type": "markdown", "id": "6568d3d7", "metadata": {}, "source": [ "Submit the batch to the server. " ] }, { "cell_type": "code", "execution_count": 8, "id": "20157b64", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:58:22.731348Z", "iopub.status.busy": "2023-03-27T23:58:22.731179Z", "iopub.status.idle": "2023-03-27T23:58:45.423438Z", "shell.execute_reply": "2023-03-27T23:58:45.422881Z" } }, "outputs": [ { "data": { "text/html": [ "
[16:31:34] Created task 'N=2.00' with task_id 'fdve-0820b9a6-dee0-4bb1-8b92-1445b4206f21v1'. webapi.py:139\n", "\n" ], "text/plain": [ "\u001b[2;36m[16:31:34]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'\u001b[0m\u001b[32mN\u001b[0m\u001b[32m=\u001b[0m\u001b[32m2\u001b[0m\u001b[32m.00'\u001b[0m with task_id \u001b[32m'fdve-0820b9a6-dee0-4bb1-8b92-1445b4206f21v1'\u001b[0m. \u001b]8;id=718842;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=941504;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c7f88b4ad64747b881a7899c9d304eb2", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[16:31:35] Created task 'N=3.00' with task_id 'fdve-4149b8e0-19f9-486b-8579-cf1557b7f4a9v1'. webapi.py:139\n", "\n" ], "text/plain": [ "\u001b[2;36m[16:31:35]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'\u001b[0m\u001b[32mN\u001b[0m\u001b[32m=\u001b[0m\u001b[32m3\u001b[0m\u001b[32m.00'\u001b[0m with task_id \u001b[32m'fdve-4149b8e0-19f9-486b-8579-cf1557b7f4a9v1'\u001b[0m. \u001b]8;id=213534;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=165717;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "895e6603111947f2b753fe9184975ad4", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[16:31:36] Created task 'N=4.00' with task_id 'fdve-d9b9a816-bda6-41f0-94ea-d354018300ecv1'. webapi.py:139\n", "\n" ], "text/plain": [ "\u001b[2;36m[16:31:36]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'\u001b[0m\u001b[32mN\u001b[0m\u001b[32m=\u001b[0m\u001b[32m4\u001b[0m\u001b[32m.00'\u001b[0m with task_id \u001b[32m'fdve-d9b9a816-bda6-41f0-94ea-d354018300ecv1'\u001b[0m. \u001b]8;id=242111;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=48038;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "51fb7bdf0c5146e19720423263f36dd6", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[16:31:37] Created task 'N=5.00' with task_id 'fdve-5635bc8c-d197-47dc-9723-8887a486d43av1'. webapi.py:139\n", "\n" ], "text/plain": [ "\u001b[2;36m[16:31:37]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'\u001b[0m\u001b[32mN\u001b[0m\u001b[32m=\u001b[0m\u001b[32m5\u001b[0m\u001b[32m.00'\u001b[0m with task_id \u001b[32m'fdve-5635bc8c-d197-47dc-9723-8887a486d43av1'\u001b[0m. \u001b]8;id=245591;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=343791;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3c889aab861e4f438deffb14e67e7e9c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[16:31:38] Created task 'N=10.00' with task_id 'fdve-b958881d-3c6b-44ba-9526-7640cbc4a19cv1'. webapi.py:139\n", "\n" ], "text/plain": [ "\u001b[2;36m[16:31:38]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'\u001b[0m\u001b[32mN\u001b[0m\u001b[32m=\u001b[0m\u001b[32m10\u001b[0m\u001b[32m.00'\u001b[0m with task_id \u001b[32m'fdve-b958881d-3c6b-44ba-9526-7640cbc4a19cv1'\u001b[0m. \u001b]8;id=754977;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=578814;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "10357fca210643f48c78c5801afc052b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[16:31:41] Started working on Batch. container.py:402\n", "\n" ], "text/plain": [ "\u001b[2;36m[16:31:41]\u001b[0m\u001b[2;36m \u001b[0mStarted working on Batch. \u001b]8;id=526187;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\container.py\u001b\\\u001b[2mcontainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=984824;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\container.py#402\u001b\\\u001b[2m402\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f01f339b273d4dc1ad686864436b7ce2", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[16:32:06] Batch complete. container.py:436\n", "\n" ], "text/plain": [ "\u001b[2;36m[16:32:06]\u001b[0m\u001b[2;36m \u001b[0mBatch complete. \u001b]8;id=927609;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\container.py\u001b\\\u001b[2mcontainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=18677;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\container.py#436\u001b\\\u001b[2m436\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "batch = web.Batch(simulations=sims, verbose=True)\n", "batch_results = batch.run(path_dir=\"data\")\n" ] }, { "cell_type": "markdown", "id": "a5fb6368", "metadata": {}, "source": [ "### Result Visualization " ] }, { "cell_type": "markdown", "id": "e5624996", "metadata": {}, "source": [ "Once the batch of simulations is complete, we can plot the reflectance spectra.\n", "\n", "Analytically, the reflectance at the central frequency is given by\n", "\n", "$$\n", "R = [\\frac{n_0(n_1)^{2N}-n_s(n_2)^{2N}}{n_0(n_1)^{2N}+n_s(n_2)^{2N}}]^2,\n", "$$\n", "\n", "where $n_0=1$ is the refractive index of the superstrate, $n_s=n_{SiO_2}$ is the refractive index of the substrate. We will use this analytical solution to validate the accuracy of our simulations." ] }, { "cell_type": "code", "execution_count": 9, "id": "75083244", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:58:45.727344Z", "iopub.status.busy": "2023-03-27T23:58:45.727049Z", "iopub.status.idle": "2023-03-27T23:58:48.547023Z", "shell.execute_reply": "2023-03-27T23:58:48.546610Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6de35ad2267044a3a62fb499c5b172a2", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[16:32:07] loading SimulationData from data\\fdve-0820b9a6-dee0-4bb1-8b92-1445b4206f21v1.hdf5 webapi.py:512\n", "\n" ], "text/plain": [ "\u001b[2;36m[16:32:07]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data\\fdve-\u001b[93m0820b9a6-dee0-4bb1-8b92-1445b4206f21\u001b[0mv1.hdf5 \u001b]8;id=332533;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=720304;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3af6d437541843749c829b48eca38169", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[16:32:08] loading SimulationData from data\\fdve-4149b8e0-19f9-486b-8579-cf1557b7f4a9v1.hdf5 webapi.py:512\n", "\n" ], "text/plain": [ "\u001b[2;36m[16:32:08]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data\\fdve-\u001b[93m4149b8e0-19f9-486b-8579-cf1557b7f4a9\u001b[0mv1.hdf5 \u001b]8;id=118867;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=110799;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d4ea54bfc76648729d4a487813b81581", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[16:32:09] loading SimulationData from data\\fdve-d9b9a816-bda6-41f0-94ea-d354018300ecv1.hdf5 webapi.py:512\n", "\n" ], "text/plain": [ "\u001b[2;36m[16:32:09]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data\\fdve-\u001b[93md9b9a816-bda6-41f0-94ea-d354018300ec\u001b[0mv1.hdf5 \u001b]8;id=206140;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=934635;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1cb09b877b2b4525a4d7157dfcd67da4", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[16:32:10] loading SimulationData from data\\fdve-5635bc8c-d197-47dc-9723-8887a486d43av1.hdf5 webapi.py:512\n", "\n" ], "text/plain": [ "\u001b[2;36m[16:32:10]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data\\fdve-\u001b[93m5635bc8c-d197-47dc-9723-8887a486d43a\u001b[0mv1.hdf5 \u001b]8;id=927163;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=403388;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "03e71fdfe35b4f1b8c57e09f50b7b2c7", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[16:32:11] loading SimulationData from data\\fdve-b958881d-3c6b-44ba-9526-7640cbc4a19cv1.hdf5 webapi.py:512\n", "\n" ], "text/plain": [ "\u001b[2;36m[16:32:11]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data\\fdve-\u001b[93mb958881d-3c6b-44ba-9526-7640cbc4a19c\u001b[0mv1.hdf5 \u001b]8;id=741776;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=227610;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gU1frHP7M9m94LhCT0FkB6BwFFVFSsFAUsiBWVy/UKFqwU78+GDUERRb2KqIhSbIB0pPdOICQhjfS2dX5/THZhSU82Dc7nefbZ3TNnzryzO+U773nPeyRZlmUEAoFAIBAIrhBU9W2AQCAQCAQCgTsR4kYgEAgEAsEVhRA3AoFAIBAIriiEuBEIBAKBQHBFIcSNQCAQCASCKwohbgQCgUAgEFxRCHEjEAgEAoHgikKIG4FAIBAIBFcUQtwIBAKBQCC4ohDi5irkxIkTXH/99fj6+iJJEsuXL2fx4sVIksSZM2fq27wrjjVr1tClSxcMBgOSJJGVlVXfJtUJKSkp3HnnnQQGBiJJEu+++26V1j9z5gySJLF48WJn2csvv4wkSS71rFYrzz77LJGRkahUKm677TYA8vLyeOihhwgLC0OSJJ5++uma7ZCgXAYPHkzHjh3r24xKs2TJEtq2bYtWq8XPz6++zXESHR3NxIkT3dbe+vXrkSSJ9evXu63NxoAQNw0Yh+BwvDQaDU2aNGHixIkkJiZWu90JEyZw4MAB3njjDZYsWUL37t3daHXpbNmyhZdffvmqubE7uHDhAnfffTceHh58+OGHLFmyBE9Pz1LrXv5/GwwGIiIiGD58OPPmzSM3N7fEOo6bveOlUqkIDw/n5ptvZtu2bS51HWLh0roBAQGMGDGCrVu3un3fn3nmGX777TemT5/OkiVLuOGGG9y+DYBFixbx3//+lzvvvJMvvviCZ555BoBZs2axePFiHn30UZYsWcJ9991XK9t3B998802VxZ+g+hw9epSJEyfSokULFi5cyIIFC+rbJIGb0dS3AYKKefXVV4mJiaGoqIht27axePFiNm3axMGDBzEYDFVqq7CwkK1bt/L888/zxBNP1JLFJdmyZQuvvPIKEydObFBPSbXNjh07yM3N5bXXXmPYsGGVWsfxf1ssFpKTk1m/fj1PP/00b7/9NitWrKBTp04l1vn444/x8vLCbrdz7tw5Fi5cyMCBA/nnn3/o0qWLS90xY8Zw4403YrPZOH78OB999BHXXnstO3bsIDY21h27DcDatWu59dZbmTZtmtvafOGFF3juuedKbKdJkya88847Jcp79+7NzJkz3bb92uKbb77h4MGDwrtUR6xfvx673c57771Hy5Yt69scF44dO4ZKJfwONUWIm0bAiBEjnN6Vhx56iKCgIObOncuKFSu4++67q9RWWloawFUlMOqT1NRUoGq/96X/N8D06dNZu3YtN998M7fccgtHjhzBw8PDZZ0777yToKAg5/fbbruNjh078v3335cQN127duXee+91fh8wYAAjRozg448/5qOPPqrC3pVPamqq248zjUaDRuN62SprO6mpqbRv395t27bb7ZjN5io/UAjch7v+g+qcl7WJLMsUFRXh4eGBXq+vb3OuCIQ8bIQMGDAAgFOnTrmUHz16lDvvvJOAgAAMBgPdu3dnxYoVzuUvv/wyUVFRAPz73/9GkiSio6PL3dbq1asZMGAAnp6eeHt7c9NNN3Ho0KES9Y4ePcrdd99NcHAwHh4etGnThueff9653X//+98AxMTEOLtFHPE9n3/+OUOGDCEkJAS9Xk/79u35+OOPS2wjOjqam2++mU2bNtGzZ08MBgPNmzfnyy+/LFE3KyuLZ555hujoaPR6PU2bNmX8+PGkp6c765hMJmbOnEnLli3R6/VERkby7LPPYjKZyv1NHHz//fd069YNDw8PgoKCuPfee126CwcPHsyECRMA6NGjB5IkVbsvfciQIbz44oucPXuWr776qsL6YWFhACWEQGmUdTyVxenTp7nrrrsICAjAaDTSu3dvVq5c6Vzu6F6TZZkPP/zQ+X+XR1ZWFhMnTsTX1xc/Pz8mTJhQahfmpTE3jm62devWcejQIed2HDEGcXFxrFy5ssTxVtn/XZIknnjiCb7++ms6dOiAXq9nzZo1ACQmJvLAAw8QGhqKXq+nQ4cOLFq0yGV9hx1Lly7ljTfeoGnTphgMBoYOHcrJkyed9QYPHszKlSs5e/as09aKzkuHbcuXL6djx45OGxz2OZg4cWKpbZUWu+Ro8/vvv6d9+/Z4eHjQp08fDhw4AMAnn3xCy5YtMRgMDB48uMz4vF27dtG3b188PDyIiYlh/vz5Jeq44z8oi48++shZNyIigscff9zlWIqOjnZ684KDg5EkiZdffrnM9iZOnIiXlxenT59m+PDheHp6EhERwauvvoosyy517XY77777Lh06dMBgMBAaGsrkyZPJzMx0qee4lv322290794dDw8PPvnkE+eyy68TFZ1zDhISErjtttvw9PQkJCSEZ555ptTr2YkTJ7jjjjsICwvDYDDQtGlTRo8eTXZ2dnk/baNCeG4aIY6Lir+/v7Ps0KFD9OvXjyZNmvDcc8/h6enJ0qVLue222/jhhx8YNWoUt99+O35+fjzzzDPOrgkvL68yt7NkyRImTJjA8OHDmTt3LgUFBXz88cf079+fPXv2OC+a+/fvZ8CAAWi1Wh5++GGio6M5deoUv/zyC2+88Qa33347x48f53//+x/vvPOO08MQHBwMKF0qHTp04JZbbkGj0fDLL7/w2GOPYbfbefzxx11sOnnyJHfeeScPPvggEyZMYNGiRUycOJFu3brRoUMHQAkkHTBgAEeOHOGBBx6ga9eupKens2LFChISEggKCsJut3PLLbewadMmHn74Ydq1a8eBAwd45513OH78OMuXLy/3P1i8eDH3338/PXr0YPbs2aSkpPDee++xefNm9uzZg5+fH88//zxt2rRhwYIFzq6mFi1aVOWvduG+++5jxowZ/P7770yaNMllWUZGBqBcXBMTE3nttdcwGAyV8uyVdjyVRUpKCn379qWgoIApU6YQGBjIF198wS233MKyZcsYNWoUAwcOdMa4XHfddYwfP77cNmVZ5tZbb2XTpk088sgjtGvXjp9++skpDMsiODiYJUuW8MYbb5CXl8fs2bMBaNeuHUuWLOGZZ56hadOm/Otf/3LWr+r/vnbtWpYuXcoTTzxBUFAQ0dHRpKSk0Lt3b+eNNzg4mNWrV/Pggw+Sk5NTomtpzpw5qFQqpk2bRnZ2Nm+++Sbjxo1j+/btADz//PNkZ2eTkJDg7For77x0sGnTJn788Ucee+wxvL29mTdvHnfccQfx8fEEBgZWuH5pbNy4kRUrVjjPu9mzZ3PzzTfz7LPP8tFHH/HYY4+RmZnJm2++yQMPPMDatWtd1s/MzOTGG2/k7rvvZsyYMSxdupRHH30UnU7HAw88AOCW/6AsXn75ZV555RWGDRvGo48+yrFjx/j444/ZsWMHmzdvRqvV8u677/Lll1/y008/ObtzS+vqvRSbzcYNN9xA7969efPNN1mzZg0zZ87EarXy6quvOutNnjzZeW2YMmUKcXFxfPDBB+zZs8e5fQfHjh1jzJgxTJ48mUmTJtGmTZtSt12Zcw6UkIOhQ4cSHx/PlClTiIiIYMmSJSX+I7PZzPDhwzGZTDz55JOEhYWRmJjIr7/+SlZWFr6+vuX+Fo0GWdBg+fzzz2VA/vPPP+W0tDT53Llz8rJly+Tg4GBZr9fL586dc9YdOnSoHBsbKxcVFTnL7Ha73LdvX7lVq1bOsri4OBmQ//vf/5a6rbi4OFmWZTk3N1f28/OTJ02a5FIvOTlZ9vX1dSkfOHCg7O3tLZ89e9alrt1ud37+73//69L+pRQUFJQoGz58uNy8eXOXsqioKBmQN2zY4CxLTU2V9Xq9/K9//ctZ9tJLL8mA/OOPP5Zo12HTkiVLZJVKJW/cuNFl+fz582VA3rx5c4l1HZjNZjkkJETu2LGjXFhY6Cz/9ddfZUB+6aWXnGWO33XHjh1ltleVur6+vvI111zj/D5z5kwZKPHy8/OT16xZ47Ku479/5ZVX5LS0NDk5OVneuHGj3KNHDxmQv//++wptfPrpp2XA5XfLzc2VY2Ji5OjoaNlmsznLAfnxxx+vsM3ly5fLgPzmm286y6xWqzxgwAAZkD///PMS+3spgwYNkjt06FCi3aioKPmmm25yKavK/w7IKpVKPnTokEvdBx98UA4PD5fT09NdykePHi37+vo6j+d169bJgNyuXTvZZDI567333nsyIB84cMBZdtNNN8lRUVGl/TylAsg6nU4+efKks2zfvn0yIL///vvOsgkTJpTabmm/IyDr9XqXc/STTz6RATksLEzOyclxlk+fPr3E+Txo0CAZkN966y1nmclkkrt06SKHhITIZrNZlmX3/AelkZqaKut0Ovn66693OQ4/+OADGZAXLVpUYv/T0tIqbHfChAkyID/55JPOMrvdLt90002yTqdztrFx40YZkL/++muX9desWVOi3HEtu/wcdSybMGGC83tlz7l3331XBuSlS5c66+Xn58stW7aUAXndunWyLMvynj17Kn2+N2ZEt1QjYNiwYQQHBxMZGcmdd96Jp6cnK1asoGnTpoDy1L527VruvvtucnNzSU9PJz09nQsXLjB8+HBOnDhR5dFVf/zxB1lZWYwZM8bZXnp6Omq1ml69erFu3TpAieHZsGEDDzzwAM2aNXNpo6KuCAeXxo9kZ2eTnp7OoEGDOH36dAk3afv27Z3dKKA8jbdp04bTp087y3744Qc6d+7sfKIpzabvv/+edu3a0bZtW5f9GzJkCIBz/0pj586dpKam8thjj7n0/d900020bdu2VHexu/Dy8ip11NQPP/zAH3/8we+//87nn39O69atueOOO9iyZUuJujNnziQ4OJiwsDCnh+utt97izjvvrHD7q1atomfPnvTv39/FpocffpgzZ85w+PDhKu/TqlWr0Gg0PProo84ytVrNk08+WeW2KqKq//ugQYNc4nZkWeaHH35g5MiRyLLs0sbw4cPJzs5m9+7dLm3cf//96HQ653fH8XvpMVsdhg0b5uIJ7NSpEz4+PjVqd+jQoS6ekV69egFwxx134O3tXaL88m1pNBomT57s/K7T6Zg8eTKpqans2rULqPl/UBZ//vknZrOZp59+2iUgd9KkSfj4+NT4vLx0AIbDa2c2m/nzzz+d++Xr68t1113nsl/dunXDy8urxH7FxMQwfPjwCrdb2XNu1apVhIeHu5zHRqORhx9+2KU9h2fmt99+o6CgoIq/QuNBdEs1Aj788ENat25NdnY2ixYtYsOGDS5BZydPnkSWZV588UVefPHFUttITU2lSZMmld7miRMnAJwXnMvx8fEBLl7capLfYvPmzcycOZOtW7eWONmys7Nd3KSXCyhQulMu7dM+deoUd9xxR7nbPHHiBEeOHHF2jV2OI+CwNM6ePQtQqhu5bdu2bNq0qdxt14S8vDxCQkJKlA8cONAloPjOO++kVatWPPnkk86bioOHH36Yu+66i6KiItauXcu8efOw2WyV2v7Zs2edN7ZLadeunXN5VY+Fs2fPEh4eXqIrpiw3fU2o6v8eExPj8j0tLY2srCwWLFhQ5vDhy9u4/Jh1dP9dHodRVSpzLtS0Tce5FxkZWWr55duKiIgokeqgdevWgNL92bt37xr/B2VR1nmp0+lo3ry5c3l1UKlUNG/e3KXs0v0C5djKzs4u9fyEmu1XZc65s2fP0rJlyxIPlZf/HjExMUydOpW3336br7/+mgEDBnDLLbdw7733XjldUghx0yjo2bOnc/TMbbfdRv/+/Rk7dizHjh1zDv8FmDZtWplPAlUd7uhoc8mSJc7g1EupTKBqZTh16hRDhw6lbdu2vP3220RGRqLT6Vi1ahXvvPOO0w4HarW61HbkywL7KsJutxMbG8vbb79d6vLLL+YNgYSEBLKzsyv1X3p5edGrVy9+/vln8vPzXW44rVq1cg5Lv/nmm1Gr1Tz33HNce+21dZLzqD6p6v9++ag0x/F47733lhkTdHn8hruO2cupTLtleU/LErNltenOfajpf9BQsdvthISE8PXXX5e6/HIxV5/79dZbbzFx4kR+/vlnfv/9d6ZMmcLs2bPZtm2bs0egsSPETSNDrVYze/Zsrr32Wj744AOee+455xOFVqutdC6VinC4u0NCQspt07HtgwcPltteWRfZX375BZPJxIoVK1yeGsvrFqqIFi1aVGhPixYt2LdvH0OHDq1095kDx4izY8eOlfBsHTt2zLnc3SxZsgSgUq5sUDL3guLtKStxICgBrQsXLuSFF16ocCRKVFQUx44dK1F+9OhR5/KqEhUVxV9//UVeXp6L96a07dSUmvzvoNygvL29sdlsbjvXoPJduFXF39+/1FFnNfFilEdSUlIJMX38+HEAZ3dXTf+Dsrj0vLzUy2I2m4mLi6vR/2W32zl9+rTTWwOl79eff/5Jv3793CpcKnvORUVFcfDgQWRZdvldyzqPYmNjiY2N5YUXXmDLli3069eP+fPn8/rrr7vN9vpExNw0QgYPHkzPnj159913KSoqIiQkhMGDB/PJJ59w/vz5EvUduW2qwvDhw/Hx8WHWrFlYLJYy2wwODmbgwIEsWrSI+Ph4lzqXPtU5LnaXX2gdT4SX1s3Ozubzzz+vss0O7rjjDvbt28dPP/1UYpljO3fffTeJiYksXLiwRJ3CwkLy8/PLbL979+6EhIQwf/58l2GWq1ev5siRI9x0003Vtr0s1q5dy2uvvUZMTAzjxo2rsH5GRgZbtmwhLCysTDe5Az8/PyZPnsxvv/3G3r17y61744038s8//7hkNM7Pz2fBggVER0dXK6/MjTfeiNVqdRn+b7PZeP/996vcVkXU5H8H5Xi94447+OGHH0oV0NU510A5P2pjGG6LFi3Izs5m//79zrLz58+Xem64A6vV6hzSDIqw+OSTTwgODqZbt25Azf+Dshg2bBg6nY558+a5XE8+++wzsrOza3xefvDBB87PsizzwQcfoNVqGTp0KKDsl81m47XXXiuxrtVqrXZ29sqeczfeeCNJSUksW7bMWa+goKBE92lOTo7zwcdBbGwsKpWq0mkwGgPCc9NI+fe//81dd93F4sWLeeSRR/jwww/p378/sbGxTJo0iebNm5OSksLWrVtJSEhg3759VWrfx8eHjz/+mPvuu4+uXbsyevRogoODiY+PZ+XKlfTr1895ss+bN4/+/fvTtWtXHn74YWJiYjhz5gwrV6503iwdF7bnn3+e0aNHo9VqGTlyJNdffz06nY6RI0cyefJk8vLyWLhwISEhIaUKtcr+NsuWLeOuu+7igQceoFu3bmRkZLBixQrmz59P586due+++1i6dCmPPPII69ato1+/fthsNo4ePcrSpUud+SdKQ6vVMnfuXO6//34GDRrEmDFjnEPBo6Ojnen/q8vq1as5evQoVquVlJQU1q5dyx9//EFUVBQrVqwoNYHZsmXL8PLyQpZlkpKS+Oyzz8jMzGT+/PmVejp+6qmnePfdd5kzZw7ffvttmfWee+45/ve//zFixAimTJlCQEAAX3zxBXFxcfzwww/Vyqw6cuRI+vXrx3PPPceZM2do3749P/74Y63c7GvyvzuYM2cO69ato1evXkyaNIn27duTkZHB7t27+fPPP53D8qtCt27d+O6775g6dSo9evTAy8uLkSNHVnc3nYwePZr//Oc/jBo1iilTpjjTObRu3bpE4LM7iIiIYO7cuZw5c4bWrVvz3XffsXfvXhYsWOAcBu2O/6A0goODmT59Oq+88go33HADt9xyC8eOHeOjjz6iR48eLokrq4rBYGDNmjVMmDCBXr16sXr1alauXMmMGTOc3U2DBg1i8uTJzJ49m71793L99dej1Wo5ceIE33//Pe+9916lgvYvp7Ln3KRJk/jggw8YP348u3btIjw8nCVLlmA0Gl3aW7t2LU888QR33XUXrVu3xmq1smTJEqdwv2KojyFagspR3tBgm80mt2jRQm7RooVstVplWZblU6dOyePHj5fDwsJkrVYrN2nSRL755pvlZcuWOder7FBwB+vWrZOHDx8u+/r6ygaDQW7RooU8ceJEeefOnS71Dh48KI8aNUr28/OTDQaD3KZNG/nFF190qfPaa6/JTZo0kVUqlcu2VqxYIXfq1Ek2GAxydHS0PHfuXHnRokUl7CltaK8sK0NQBw0a5FJ24cIF+YknnpCbNGki63Q6uWnTpvKECRNchu+azWZ57ty5cocOHWS9Xi/7+/vL3bp1k1955RU5Ozu7xHYu57vvvpOvueYaWa/XywEBAfK4cePkhISEUn/XqgwFd7x0Op0cFhYmX3fddfJ7773nMhTXQWlDwT09PeU+ffq4DAmV5bL/ewcTJ06U1Wq1y/Di0jh16pR85513Ov/rnj17yr/++muJelRyKLgsK//XfffdJ/v4+Mi+vr7yfffd5xyy6s6h4LJc+f+9PPtTUlLkxx9/XI6MjJS1Wq0cFhYmDx06VF6wYIGzjmMo+OVDbh3/w6X7lZeXJ48dO1b28/OTgQqHhZdl2+XDiGVZln///Xe5Y8eOsk6nk9u0aSN/9dVXZQ4Fv7zNso6Z0vbN8T/s3LlT7tOnj2wwGOSoqCj5gw8+KGGnO/6Dsvjggw/ktm3bylqtVg4NDZUfffRROTMz06VOVYeCe3p6yqdOnZKvv/562Wg0yqGhofLMmTNdhpw7WLBggdytWzfZw8ND9vb2lmNjY+Vnn31WTkpKctYp69h0LLv8P6zsOXf27Fn5lltukY1GoxwUFCQ/9dRTzqHojqHgp0+flh944AG5RYsWssFgkAMCAuRrr71W/vPPPyv8LRoTkizXMKpNIBAIBIIrlIkTJ7Js2TLy8vLq2xRBFRAxNwKBQCAQCK4ohLgRCAQCgUBwRSHEjUAgEAgEgisKEXMjEAgEAoHgikJ4bgQCgUAgEFxRCHEjEAgEAoHgiuKqS+Jnt9tJSkrC29u71lKeCwQCgUAgcC+yLJObm0tERESFCUOvOnGTlJTUICdFFAgEAoFAUDHnzp2rcILPq07ceHt7A8qP4+PjU8/WCAQCgUAgqAw5OTlERkY67+PlcdWJG0dXlI+PjxA3AoFAIBA0MioTUiICigUCgUAgEFxRCHEjEAgEAoHgikKIG4FAIBAIBFcUV13MjUAgEAgENcFut2M2m+vbjCsSnU5X4TDvyiDEjUAgEAgElcRsNhMXF4fdbq9vU65IVCoVMTEx6HS6GrUjxI1AIBAIBJVAlmXOnz+PWq0mMjLSLR4GwUUcSXbPnz9Ps2bNapRoV4gbgUAgEAgqgdVqpaCggIiICIxGY32bc0USHBxMUlISVqsVrVZb7XaE7BQIBAKBoBLYbDaAGneZCMrG8ds6fuvqIsSNQCC4orBZRCyEoHYR8xLWHu76bYW4EQgEVwzpCXksnLqB9IS8+jZFIBDUI/UqbjZs2MDIkSOJiIhAkiSWL19e4Trr16+na9eu6PV6WrZsyeLFi2vdToFA0Dg4sSMFm8XOiZ0p9W2KQCCoR+pV3OTn59O5c2c+/PDDStWPi4vjpptu4tprr2Xv3r08/fTTPPTQQ/z222+1bKlAIGjoyLLsFDUnd6Ygy3I9WyQQNBwmTpyIJEnMmTPHpXz58uXV7gqaPXs2PXr0wNvbm5CQEG677TaOHTvmDnNrTL2OlhoxYgQjRoyodP358+cTExPDW2+9BUC7du3YtGkT77zzDsOHD68tMwUCQQNDlmXsVplda85w/mQ2IGOzyeReKAIgJ72In/5vNyq1hCRBaAtfugxphkojoVarlHKViJsQXF0YDAbmzp3L5MmT8ff3r3F7f//9N48//jg9evTAarUyY8YMrr/+eg4fPoynp6cbLK4+jWoo+NatWxk2bJhL2fDhw3n66afLXMdkMmEymZzfc3Jyass8gUBQjN1mx2qxYzXbKcwzYy6wYrPaMRfZKMqzYDHbsFtlTAUWigqs2Cw2bBY7FrMdi0n5bLXYsJqVd7tNVsrMdmS7jF2WoQLHzPlT2c7PCcey2LXqrMtySSWh1kioNSpUGhUarQqNTo1aI6HRqtEa1Gj1atQaFVq9Gr2HBq1B+a43atAbtWh0KnQGNQYvHXqjBo1WhdagQSWEk6ABMmzYME6ePMns2bN58803a9zemjVrXL4vXryYkJAQdu3axcCBA2vcfk1oVOImOTmZ0NBQl7LQ0FBycnIoLCzEw8OjxDqzZ8/mlVdeqSsTBYIrAqvFRn6WCavZjt0mk59loiDXrIgNs42CHDPmQitWiyJGCnPNmIts2Cw2ivKtmAut9b0LFSLbZaxmGavZvaOrJJWEh5cWjV6NVqfC6KPDw1uHRqtC56HBy9+AzkMRQkYfHV4BejQ6RUjpDI3qknzVI8syhZaaDVmuLh5adZW7k9RqNbNmzWLs2LFMmTKFpk2buiyPj4+nffv25bYxY8YMZsyYUeqy7GzlgSIgIKBKdtUGV/yZNH36dKZOner8npOTQ2RkZD1aJBDUPTabndwLRWQmF1CYa6Yo30JhjlkRMBbFo5KbUYQp34LdJmMxue+CrfdUvBwOD4iHtxatTo1KI6E3ajEYNcUeE2W5Rq9Co1Gj1qrQ6lWotWpUagmNVoVaq0KtVoGE8l2jQgaSjmfy6wf7S2z7lqe6EN7S1+lJsdtkbFZFsNltMlaLHbvNjs160dNksygvs8mKpciGzaoIOFOBFatZ8SaZCq2Y8i0u4s5UaAVZEU0FORfnHbqQmF/p38rgqcXoq0OtUYSPX6hR8Qjp1PgEGfALNWL00aE3aoV3qAFQaLHR/qX6ifk8/OpwjLqq38JHjRpFly5dmDlzJp999pnLsoiICPbu3Vvu+mUJF7vdztNPP02/fv3o2LFjle1yN41K3ISFhZGS4joKIiUlBR8fn1K9NgB6vR69Xl8X5gkEDQKL2UbqmRzOn8om6XgmmckF5GeZqGp8rdLFokZSSRh9dHj6Kh4GjU6F0VuH3lODRqt89/DSofNQo9Gp0Xlo8PDSOrt06iK2JS1eGfotSSDLF99TzuQQ2e7ixVilBo1OXSs2yLIimIryLRTkKF4uS5GVghwzhXkWbBY7RQUW8jJMWExWrGY7+dkm8jNN2Kx2ZBmK8i0U5VucbZ49eKHUbam1KoIjvQiO9MYrwEBotA9hLXxRa0R2D0HFzJ07lyFDhjBt2jSXco1GQ8uWLavV5uOPP87BgwfZtGmTO0ysMY1K3PTp04dVq1a5lP3xxx/06dOnniwSCBoO6Ql57FwZR9y+dOz2kkpGrVHhH27E6KPH4KXBw1uHl59e8Zbo1HgH6PHw1qFSS+g9tOg9NY0mWdnJXcpDj8FbR48bo9mx6gyFOWZO7kyh+4joOrFBkpQYHk9fPZ6+VX+gMhdZyUkvdAqhvEwT2akFWEw2zEU2slMLyEopKO7+s5N8Oofk0xdjCLUGNU3b+NOsfQBteoej1deOiBNcxEOr5vCr9TOYxUNb/f934MCBDB8+nOnTpzNx4kRneXW7pZ544gl+/fVXNmzYUKKrq76oV3GTl5fHyZMnnd/j4uLYu3cvAQEBNGvWjOnTp5OYmMiXX34JwCOPPMIHH3zAs88+ywMPPMDatWtZunQpK1eurK9dEAjqnXNHMtj75zniD118yjf66ghv4UdEKz9CorzxDjRg9NZdkSOE7DY7mckFRHcKZOj49hi8tLTqHspfXx4m/lAGdpsdlbrhezR0Bg1BTb0rrGez2clJKyT1bC4ZSfnkXCgk8VgmhbkW4valE7cvnX9WnqH7iGg6DIgQ3pxaRJKkanUNNQTmzJlDly5daNOmjbOsqt1Ssizz5JNP8tNPP7F+/XpiYmJqy9wqU6//ys6dO7n22mud3x2xMRMmTGDx4sWcP3+e+Ph45/KYmBhWrlzJM888w3vvvUfTpk359NNPxTBwwVWJ3S6z/qujHNlyXimQoGXXELqNiCawiWej8brUFJVaxf1v9kdvvOhpMnhpufHRTpgKrI1C2FQFtVqFf5gn/mEXh9rKdpn0hDziD1/g8KYkctKL2Pjdcfb+GU+/O1rSomtIPVosaIjExsYybtw45s2b5yyrarfU448/zjfffMPPP/+Mt7c3ycnJAPj6+pYZKlJXSPJVlukqJycHX19fsrOz8fHxqW9zBIJqIdtl1n19lCObzyOpJDoObELnoU3xDRYzFdvNZlRX8cSGNqudI1vOs2NlHAXZSmDz4HFt6DCgST1b1vgpKioiLi6OmJgYDAZDfZtTJSZOnEhWVpbLTABnzpyhTZs2mM3maiW9LOsB6vPPP3fp7qoK5f3GVbl/N05/mkBwFSPLMpu+P6EIGwmuf7ADLbuJJ3OAomPHOHP3PUQv/Q7DJe72qwm1RkXHgU1o0zuMrT+e4sD6BP7+5hjeAQaadQisb/ME9URpUxVFR0e75IGrKg3ZN3Jl+WsFgquAvX+eY/+6BACGjG8nhM0l5Py6EtlkImflqoorX+FodWoG3NOKtn3CkGX47dNDZCZXfli6QNCYEeJGIGhEXEjMY9vyUwD0v6sVbfuE17NFDQdZlskpHk2Zs2pVg36qrCskSWLw2LaEt/TFXGjl1w/3U5RnqXhFgaCRI7qlBIJGxI6VcdhtMtGdgug0pGEMuaxP0hcspGDHP8iyjGy2YElMBMCSkMDZCRORdFoAPHv2IujhSfVpar2h1qq44eFYls3ZSU5aIVuXn+Lae9vWt1kCQa0ixI1A0EjITivg9J40AHrf2vyKHA0l22xY09OxJidjSU7BmnxeeU9NxZaTgy0nG3tOLracHOTCQuwmE9hKz6Zc+M8/zs8FmzaT/v77qLy9UXl7ofbyRuXjjSYwCE1oCNqQEDQhIWhCQ9GEKN+lKygo2eijY9j97fnprd0c3XaenjfH4OknkpsKrlyEuBEIGgmHN59HlqFZ+wACm3jVtznVxm42Y447g/nsGcxnz2I+exbL2XjMCQlYU1PLFCs1RbZYsGVkYMvIoMKOGUlCEx6Grmkk2sim6CKboWsWib5tW3RRUUjqxpcgL6KVH+EtfDl/KpuDGxPpNbJ5fZskENQaQtwIBI0A2S5z/B8lh0S7fhH1bE3lkc1mig4fpvDgIYqOHKbo8BFMJ0+CpRx5oVYr3pPQUDRhYWjDwtCEhKD280Pt64PK2xu1ry8qgwFJowGNlsJ9e0mc8lSJppp88AHGrteA3Y5sMmHLy8Oem4stNxd7bi7WtHSsqalY01KxpKZiTUnFmpqKbDJhTTqPNek8XOIBApAMBvRtWmNo2w6Pa7pg7NYNbdOmjcKT1nFQE86fyub49mR63hzTKGwWCKqDEDcCQSMg6UQWeRkmdB4aojs13OG89sJCCvftp2DnTgp27qRw717koqIS9VQ+Puiio9E1a4YuKgpddBS6yEg04eFogoKq7BnJPn26uGEV2O3Od/PJk/gMG+qsp61EW7IsY8vIwBwfjyUhQXk/l4Ap7jSm4yeQCwsp2refon37yfruOwA0wcF4dOuGsWtXjL16oW/dqkEKh5guwWj1anLSizh/KpuIln71bZJAUCsIcSMQNAKOFXttWnYNRlODOWXcjWy3U3ToMPmbNpK3aTOF+/eX8Mqo/fzw6NwZfft2GNq3x6N9ezQREW69+eesWq1sK8CfoEcfJf2jj7FduEDO6tUEPTK5Sm1JkoQmMBBNYCBcc43LMtlmwxwfj+noUQoPHKRw924KDx3CmpZG7po15K5Zo9gRHIRX33549uuLZ9++aIKC3LOjNUSrU9OiazBHtyZzbOt5IW4EVyxC3AgEDRzZLnNmfzoALXuE1rM1incm7+8N5P75J/mbN2PLzHRZrgkNxdi9O8Ye3TF2746ueXMkVe1lnZCtVkynT+N17bWEz3oDjb8/PjfeyPkZz5O/aROy1ap0X7kBSa1GHxODPiYGnxEjALAXFVF04AAFu3YrHqtdu7ClpZP9889k//wzAIbYWHxuGI738OHo6nliwda9wji6NZnTe9MZNE5GdQXONyYQCHEjEDRwUuNzKcy1oDWo6+1JW7ZayduwkZyVK8ldtw65oMC5TOXpiWffPnj2H4Bn3z51Hn8iaTS03rQRla+vc7saf3+afvQh9uxstwmbslAZDBh79MDYowcwGbvZTOHuPeRv3kz+5s0UHT5M0YEDFB04QOp//w9Dx4743XE7PjffjNq74oky3U1EKz/0Rg1F+RZS4nIIb+Fb5zYIBLWNSOInEDRwzh5UZvtu1i6gzmd4tiQnk/b+B5wcMpSExx4jZ+VK5IICtBERBDz4AFFLvqT1tq00ff99/O+5G11kZL3Emqj9/EpsV5Ik1H5+dW6LSqfDs3cvQv41lZgff6DVpo2EvTwTY69eoFJRdPAgya+8yomBg0h6/nkKDxyoU/vUapVzGgaHR1Bw5TNx4kQkSWLOnDku5cuXL6/2Ofvxxx/TqVMnfHx88PHxoU+fPqxevdod5tYY4bkRCBo4yaeyAGjaLqDOtlmwew8XFn1G3tp1SoAuoA4IwHfkzfjceCOGTp0aZMBsQ0QTFIT/6NH4jx6NNT2dnJUryVz6PeZTp8j+4Ueyf/gRY/fuBDz0IF4DB9ZqF56DqI6BnNiRQsKxzIorC64YDAYDc+fOZfLkyfj7+9e4vaZNmzJnzhxatWqFLMt88cUX3HrrrezZs4cOHTq4weLqI8SNQNCAkWWZ1PhcAEKiarcLQ5Zl8jdsIH3hQgp37nKWG3v0wG/0PXhfd91VPdu2O9AEBREwYQL+48dTuHs3md9+R87q1c7RZbqWLQh86CF8b765VrvTwporMyqnJ+Ris9rr3CMoqB+GDRvGyZMnmT17Nm+++WaN2xs5cqTL9zfeeIOPP/6Ybdu2CXEjEAjKJvdCEaZ8KyqNRGBE7STuk2WZvHXrSJv3PqajR5VCrRa/224lYMIE9C1b1sp2r2YkScLYrRvGbt0ImfoMGV8uIWvpUswnT3H+uelcWLCQ4ClP4n399bXiyfEJ8kDvqcGUb+VCYh4hUT5u38ZVgSyDpaDierWB1ghV9J6q1WpmzZrF2LFjmTJlCk0vC26Pj4+nffv25bYxY8YMZsyYUaLcZrPx/fffk5+fT58+fapkV20gxI1A0IBJPat4bQIjvFBr3X+TK9i9m9T/e4vC3bsBUBmN+N1zDwETJ6ANrf+RWVcD2vBwQv/zLEGPPUrm/74l47PPMJ8+TeLTz6Bv347Qf/8bTzffLCRJIjTKh/jDGaSeyRHiprpYCmBWPSXVnJEEOs8qrzZq1Ci6dOnCzJkz+eyzz1yWRUREsHfv3nLXDwhw7R4/cOAAffr0oaioCC8vL3766acKBVJdIMSNQNCAST+niJtgN3dJWdPSSJkzl5yVKwGQ9HoCxo8n8MEH6iUIVwBqb2+CHp6E/9gxZHy+mIzFizEdPkL8/Q/gPeIGQp97zq2CMyS6WNwUd3sKrh7mzp3LkCFDmDZtmku5RqOhZRU9tW3atGHv3r1kZ2ezbNkyJkyYwN9//13vAkeIG4GgAZOVqri8A8Kq/oRWGrIsk/Xdd6S+9Tb23FxQqfC74w6CnnhceGoaCGovL4KffAL/e8eR/sGHZP7vf+SuXkP+3xsI+c9/8Lv7LrcEcweEK8dUVko9datcCWiNigelvrZdTQYOHMjw4cOZPn06EydOdJZXp1tKp9M5BVG3bt3YsWMH7733Hp988km17XMHQtwIBA2YrNRCAHxDPGrcljU9naQZM8jfsBEAQ8eOhL38Mh4d6zfwT1A6Gn9/wl58Ab877yD5lVcp3LuX5JkzyVu/nvDXX1MyKNcAv1Dl5ijETQ2QpGp1DTUE5syZQ5cuXWjTpo2zrDrdUpdjt9sxmUzuMLFGCHEjEDRQZFkmu9hz4xdS/ac0gLxNm0l67jls6elIej0h/5qK/7hxjXJ264ow28zo1FfOqC5Du3ZEffM1GYu/IO2dd8hbt47Tt95G0/fexditW7XbdQjmwlwLpgILemNlZt4SXCnExsYybtw45s2b5yyrarfU9OnTGTFiBM2aNSM3N5dvvvmG9evX89tvv9WGyVVCjP8TCBoo+VlmrGY7kkrCO8hQrTZkWebCos85N2kStvR09K1aEf39UgLGj78ihc2xjGP0+V8fjmUcq29T3IqkUhH4wP1EL/sefatW2NLTOTvxfjK//a7abeoMGoy+igjMSil0l6mCRsSrr76KvTiPVXVITU1l/PjxtGnThqFDh7Jjxw5+++03rrvuOjdaWT2E50YgaKA4vDbegQbU6qo/h9jNZpJffoXsH38EwPfOOwh74QVUhuoJpcbA6rjVmG1m1pxZQ5uANhWv0MgwtGlD9HffkvT88+SuXkPyyy9jOn6M0Oefr5ZY9QsxUpBtJiu1gNAYMWLqSmbx4sUlyqKjo2vUhXT5aKuGhPDcCAQNlOw05WnarxrxNvb8fM5NnqwIG5WK0BnTCX/ttSta2MiyzJozyqzca+LWIMtyPVtUO6iMRpq8/TbBU6eCJJH5zf9InDYN2Wyuclsi7kZwpSI8NwJBAyU3owgAn8CqiRtbTg7nHp5M4d69yo3wvXfxGjCgNkysdz498Ck7k3cCYLVbScxLBCAhL4FJv09Co1Iucd3DuvNQ7EP1Zqe7kSSJoIcnoYtsSuKz/yF39RrOZefQ9P15qDwrH+DqU9zdmVd8rAkEVwpC3AgEDRTHDccrQF/pdayZmcQ/8CCmI0dQ+frSbMEneHTuXFsm1gmyLJNjziG9MJ30wnQuFF4g25xNgaWAv8/9zd60vaWutz15u/NzviUfCQmj1oivzpcgjyCCPIII9AjER+fTaOfJ8hkxApW3DwlPPkn+li2ce/QxIhd8UmkPnZe/Ui83U4gbwZWFEDcCQQPFccNx3IAqwpaXx7lJD2M6cgR1UBDNPvsUQ5vGEXdisVs4m32W09mnSchL4FzuORJylfeUghSsdmuN2t+btrdMEaRVaQnzDKOZdzOaejelmXczIr0jae7XnEjvSFRSw+699+rfj6jPFxH/4EMU/PMPCU9OoemHH1RqHjDvYuGcm1H/Q3cFAncixI1A0EDJK77hePlX7LmxFxWR8OhjFB08iNrfn6gvFqNv0aK2TawWZpuZQxcOcTD9IMcyjnE88zinsk5htpcfM+Kj8yHQI5BAQyB+ej+MWiNGjRGj1khGUQbLTy4vsc6olqMIMARQYC2gwFJAgbWALFOW0wuUa87FYrdwLvcc53LPlVjfqDHSyr8VbQPa0iagDV2Cu9DCr0WDEzweXboQueAT4h+aRP7GjSROnUrTd9+tcPJNh3DOzzQh22UkVeP0YAkElyPEjUDQAJFlmbwsh7gp33Mj2+0k/ec5CnbsQOXpSeTChQ1K2ORb8tmZvJPdqbvZk7qHQ+mHShUyRo2Rln4taerdlEjvSCK9I2nq3ZQIzwgCPQLLzV2zYP8CAFSosGN3vkd6RzKp06Qy1zPZTKQXppOUl+QUOOdyzxGfE8/p7NMUWAvYl7aPfWn7nOt467y5JuQargm5hp5hPekQ2AG1qv6H1Ru7dSPyww8498ij5P35Fymz5xD24gvlruPprwcJbFY7hXkWjD5XTn4gwdWNEDcCQQOkKM+CzaLkn/DyK99zk/7hR+T+9htotTT9+KN6zzgsyzLHM4+zOWkzmxM3szt1d4lupQBDAJ2DOyseEf82tA5oTROvJtX2iKyJU0ZJ+Rv8mdx5Mp/s+4QLRRdYc2ZNueJGr9bTxKsJTbya0COsh8syq91KfE48RzOOcizzGIfSD7E/fT+55lw2JGxgQ8IGAPz0fvRr0o8BTQbQL6Iffga/au2DO/Ds25eIt/6PxCenkPn11+hiYgi4d1yZ9dVqFZ6+evKzTORmFAlxI7hiEOJGIGiA5GUqXhsPH125s4HnrF5N+ocfAhD+yit49uxZJ/ZdjizL7E/fz+9nfuePs39wPv+8y/KmXk3pFd6LLiFd6BrSlUjvSLcF8VrtVuJy4hjcdDCv9XsNP4MfI6JH8OLmF9mctBmr3eocNVUVNCoNzf2a09yvOTdyI6DEBh3POM7u1N3sStnF9vPbyTJlsfL0SlaeXolKUtEjrAcjokcwLGoYvnpft+xjVfC57jrM/5pK2ltvkzJrFrqYaLz69Suzvpe/Im7yMosIjRa5bgRXBkLcCAQNkLziYGLvcuJtzGfOkPS80u0QcP/9+N0+qk5su5Tjmcf5+eTP/H72d5Lzk53lBrWBnuE96RfRj/5N+tPMp1mt2aBRaVh/93qXUU9+Bj/mDZlHjjmnWsKmLLQqLR2COtAhqAP3tb8Pi93CvtR9bEzcyKbETRzPPM7289vZfn47r297nT4Rfbip+U0MixqGXl35UW81JfChhzCfjiP7p59IevY/NF/+E5rg4FLrevkbSInLccZ4CQRXAkLcCAQNkIIcJSbF6Fv6DVE2m0n81zTkggKMPXsSMu1fdWZbjjmHNXFr+PHEjxy6cMhZ7qHxYHDkYIZHDadfk34YNHWXMLA0D4kkSbXuOdGqtHQP6073sO480+0ZzuWe47czv7Embg3HMo+xMXEjGxM34vuPLyObj+TO1nfSwq/246EkSSJs5ksUHT6M6dgxEp99lmafflpqFmPHFAyFuVVPAigQNFQaVsi/QCAAlMkMATy8Sp/MMPXd9yg6dAi1ry8R/32zTuaJOp11mle2vsLQpUN5bdtrHLpwCI2kYVizYbw7+F023LOBNwe+ydCooXUqbBoSkd6RPBT7EMtuWcaK21bwaOdHCfcMJ9uUzVdHvuK2n29j4pqJrItfh12u/pw+lUFlMNDknbeRPDwo2LqNCws/LbWe0Vs5xgqEuLmimThxIpIkMWfOHJfy5cuXu6WLeM6cOUiSxNNPP13jttyB8NwIBA0Qx1O0h3fJAM+C3XvIWLQIgPBZb6ANDa01O2RZZuv5rSw5vIRNiZuc5S39WjKq5ShubnEzAYaAWtt+YybGN4bHujzG5E6T2ZK0hWXHl/F3wt/sStnFrpRdxPjGMKH9BG5ucXOtdVnpmzcn7MUXOT9jBmkffoj30CHoW7VyqeM4xgpzhLi50jEYDMydO5fJkyfj7+/vtnZ37NjBJ598QqdOndzWZk0RnhuBoAFyUdy4em5ki4XkmTMB8L39dryHDq2V7cuyzMaEjYxdOZbJf0xmU+ImJCSGRA7h8+Gf8+MtPzK+w3ghbCqBWqVmQNMBvDfkPX674zfu73g/Xlov4rLjeHnry4z4YQTfHf0Oi81SK9v3HXUbXtdeCxYLSS+8gGyzuSx3jJAqyK2d7QsaDsOGDSMsLIzZs2e7rc28vDzGjRvHwoUL3SqYaooQNwJBA6Qwr7hb6jLPzYVFn2M6cQK1vz8h/55WK9vemrSVe1ffy2N/PcbBCwfx0Hgwrt04Vo5ayXtD3qN7WPdGO11BfRPqGcrUblP5484/mNZ9GqHGUNIK03h9++uMXD6SFadWYLPbKm6oCjjib1ReXhTt20/m19+4LBeem+ojy7KSHLIeXtWZGFatVjNr1izef/99EhISSiyPj4/Hy8ur3NesWbNc1nn88ce56aabGDZsWLV/x9pAdEsJBA0Qh+fGeIm4MZ87R/pHHwEQ+tx/0Lj5KSkuO47/2/l/zvwtBrWBe9rcw/0d7yfQI9Ct27ra8dJ5MaHDBMa0HcOy48tYsH8BiXmJPL/peZYcXsLzvZ6nS0gXt21PGxZGyLR/kfzyK6S9/z4+N9+EJkDxul303JiRZVkI1ypQaC2k1ze96mXb28dux6g1Vnm9UaNG0aVLF2bOnMlnn33msiwiIoK9e/eWu35AwEVv7bfffsvu3bvZsWNHle2obYS4EQgaII4uAsMl3VJp77yLbDJh7N0bn1tucdu2cs25fLzvY/535H9YZSsaScM9be/hodiHCPIIctt2BCXRqXWMbTeW21rexv+O/o/PDn7G0Yyj3Lf6Pm5pcQvPdHvGbf+B3113kfndUkxHjpA2bx7hL78MXPTc2Cx2LCYbOoO4LVzpzJ07lyFDhjBtmqv3V6PR0LJly0q1ce7cOZ566in++OMPDJWcqLUuEUexQNDAkO0yRZd5bgoPHCRn1SqQJEKf+4/bnq7Xxq/l9W2vk1aYBsDApgOZ1n0aMb4xbmlfUDmMWiMPxj7IqFajmLd7Hj+e+JEVp1awNn4t/+7xb0a1HFXj/1xSqwmbMZ2z940na+n3+I8Zg6FNG7R6NRq9GqvJRkGOWYibKuCh8WD72O0VV6ylbVeXgQMHMnz4cKZPn87EiROd5fHx8bRv377cdWfMmMGMGTPYtWsXqampdO3a1bnMZrOxYcMGPvjgA0wmE+o6GMVZFuIoFggaGEUFFhzd6QYvLbIsk/rWWwD4jLwZQ9u2Nd7GhcILzPlnDmvOKNMWRPtE81zP5+jXpOxMtoLaJ8AQwMt9X+aOVncwa/ssDl44yMwtM/n97O+83OdlwjzDatS+sUcPvG+4gdw1a0ib9z6RH36glHtryTHZKMy14Bfijj25OpAkqVpdQw2BOXPm0KVLF9q0aeMsq0q31NChQzlw4IDLsvvvv5+2bdvyn//8p16FDQhxIxA0OBw5bvRGDWqNirxNmynYtg1JqyV4ylM1bn9d/Dpe2vISWaYs1JKaiR0m8kjnR67a3DQNkdjgWL668SuWHF7C+3veZ3PiZkb9PIqX+rzEiJgRNWo7eMoUcn//nby//qLwwAE8YmPx8NaRk14kgoqvImJjYxk3bhzz5s1zllWlW8rb25uOHTu6lHl6ehIYGFiivD4Qo6UEggZGUfFIKYfXJu195eLjP3YMuqZNqt2uyWZi9vbZTFk3hSxTFm382/D1TV/zdLenhbBpgKhVaiZ2nMj3t3xPp6BO5FnyeHbDs7yy9RWKrEXVblffPAbf4pittPeUY8vgqcR2mQrFcPCriVdffRW7vXaTSdYXwnMjEDQwTIXKDNp6Dw0F2/+haN9+JJ2OwIceqnab8Tnx/Ovvf3E04ygAE9pP4KmuT6FVl54BWdBwaO7bnC9GfMHH+z5m4f6FLDu+jP1p+3l78NtE+URVq82gxx8j+9dfyd+0icK9e9F5FIubAmsFawoaK4sXLy5RFh0djcnkvjnF1q9f77a2aorw3AgEDQxzsbjReWi4sGABAH533lHmxIcVsTVpK2NWjuFoxlECDAF8NPQjpvWYJoRNI0Kj0vDkNU8y/7r5BBgCOJ55nDErx7Dt/LZqtaeLjHR6by58tgi9h/Kc6xDWAkFjR4gbgaCB4RA3GksB+Vu2gFpNwAMPVrkdWZb56vBXPPLnI+SYc+gU3InvR37PgKYD3G2yoI7oG9GXZSOX0Tm4M7nmXB754xG+PfpttdoKfOB+AHL//BO1OQ+4eOwJBI0dIW4EggaG4+nZHn8KAJ8bb6xyrI3NbuP1ba8zd8dc7LKdW1vcyqLhiwgxiqEwjZ1gYzCfDf+Mm5vfjE228cb2N5j7z9wqT8Spb9kSr8GDQZaxHdgDgFl0SwmuEIS4EQgaGI6nZ/nMSQACxo+v2vo2M//e8G+WHl+KhMS07tN4rd9rtTY5o6Du0av1zOo/i6e6KqPnvjryFS9segGLvWoBwYEPKR5B6/6dgOiWElw5CHEjEDQwnN1S5jwMnTvhEVv5YZX5lnwe++sx/jj7B1qVlv8b9H9M6DBBpNS/ApEkiYdiH2JW/1moJTW/nP6FqeunYrJVPkDUo1s39O3boS7KBURAseDKQYgbgaCBYcpXco1orIUE3HtvpdfLM+fx8B8Ps/38dowaIx8N+4jro6+vLTMFDYSRLUby7rXvolPpWH9uPY//+Xilh4pLkoT/6NForIWAGAouuHIQ4kYgaGAUJCpTIegMaryHD6/cOpYCHv/rcfan7cdX78ui4YvoHd67Ns0UNCAGRw5m/nXzMWqMbE/eztPrn8Zsq1xCPt+bb0ZXPD+rKTO/Fq0UCOoOIW4EggZGYUoGAD7dO6PS6SqorcxM/MTaJ9iduhtvnTcLrltAh6AOtW2moIHRI6wHHw37CA+NB5sTNzPt72mVisFRGY34D1am3XB4DQWCxo4QNwJBA8Kano65+AbjP7hvxfXtVp79+1l2JO/AU+vJJ8M+oX1g+RPfCa5cuoV2Y96QeehUOtadW8fMzTORHROVlUPQqJsAsMgaLBcyattMgaDWEeJGIGhAZP/yK9biqRC8WjQrt64sy8z5Zw7rE9ajU+n4cOiHxAbH1oWZggZM7/DevHPtO84g44/3fVzhOt4dWikfJBUXfllTyxYKBLWPEDcCQQNBlmWyf/oJq0aZZVjnUf6sup8f+pzvjn2HhMScgXPoFtqtLswUNAIGNh3IC71fAODjfR/z88mfy62v0apRSYqHJ2P1n7Vun6DumThxIpIkMWfOHJfy5cuXV3s05csvv4wkSS6vtm3busPcGiPEjUDQQDCdOEHhiZPYivPR6DzKnvptXfw63tn1DgD/7vFvrou6rk5sFDQe7mx9Jw/FKvORvbzlZXal7Cq3vr548sz8k2cxnTpV6/YJ6h6DwcDcuXPJzMx0W5sdOnTg/PnzztemTZvc1nZNEOJGIGgg5K5Zg019cXbussTNmewzzNg0A4DRbUZzX/v76sQ+QePjyWue5IboG7DKVqb9PY20grQy6+o9leB1q8aD7BW/1JWJgjpk2LBhhIWFMXv2bLe1qdFoCAsLc76CgoLc1nZNqHdx8+GHHxIdHY3BYKBXr178888/5dZ/9913adOmDR4eHkRGRvLMM89QVFS5nA4CQUNFlmVyVq9xxttotCrU6pKnZ4GlgKfXPU2eJY+uIV15tsezdW2qoBGhklS80vcVWvq1JL0wvdwRVBqdcrzZ1Hpy16ypVCDy1Y4sy9gLCurlVZ3/R61WM2vWLN5//30SEhJKLI+Pj8fLy6vc16xZs1zWOXHiBBERETRv3pxx48YRHx9f7d/TnZTt964DvvvuO6ZOncr8+fPp1asX7777LsOHD+fYsWOEhJScA+ebb77hueeeY9GiRfTt25fjx487+xHffvvtetgDgcA9mI4fxxwXh91XCSLWGkrG28iyzMtbXuZU9imCPIL4v0H/J2b2FlSIUWvkncHvMGblGHan7ubtnW/zn57/KVFPq1eOObvOiPnsYUzHT2Bo07quzW1UyIWFHOtaP7FubXbvQjIaq7zeqFGj6NKlCzNnzuSzzz5zWRYREcHevXvLXT8gIMD5uVevXixevJg2bdpw/vx5XnnlFQYMGMDBgwfx9vausm3upF7Fzdtvv82kSZO4/35ldtr58+ezcuVKFi1axHPPPVei/pYtW+jXrx9jx44FIDo6mjFjxrB9+/Y6tVsgcDc5q1cDoOveE2xKgOflrDi1gtVnVqORNLw9+G2CjcF1baagkRLtG83r/V/n6XVP89WRr+gT0YeBTQe61NHqlGNO064jJO8k9/ffhbi5Qpk7dy5Dhgxh2rRpLuUajYaWLVtWup0RI0Y4P3fq1IlevXoRFRXF0qVLefDBB91mb3WoN3FjNpvZtWsX06dPd5apVCqGDRvG1q1bS12nb9++fPXVV/zzzz/07NmT06dPs2rVKu67T8QcCBo3ub/9DoC+ex/YDhq9q7g5l3uOWdsVd/BjXR7jmpBr6txGQeNmaLOhjGs3jq+PfM1Lm1/ix1t/JMBw8Sncccxp28XCOsj9/TeCn3yivsxtFEgeHrTZXX6gdm1uu7oMHDiQ4cOHM336dCZOnOgsj4+Pp3378vNkzZgxgxkzZpS6zM/Pj9atW3Py5Mlq2+Yu6k3cpKenY7PZCA0NdSkPDQ3l6NGjpa4zduxY0tPT6d+/P7IsY7VaeeSRR8r8oQFMJhMm08WJ5HJyctyzAwKBmzCfPYs5Lg40GrTtY2H7CbS6i/E2VruVGRtnUGAtoGtIVx7o+EA9WitozDzd9Wm2JW3jVPYpXtnyCu9e+65zGLDDc6OKaQlaLaYTJzGdPo2+efP6NLlBI0lStbqGGgJz5syhS5cutGnTxllW1W6py8nLy+PUqVMNwuFQ7wHFVWH9+vXMmjWLjz76iN27d/Pjjz+ycuVKXnvttTLXmT17Nr6+vs5XZGRkHVosEFRM3t9/A2Ds3h2bWhmxotFd9NwsPrSYvWl78dJ6MWvALNSq8vPfCARlYdAYmDNwDhqVhrXn1rL85HLnMofnxoYGz97KvGS5f/5VH2YK6oDY2FjGjRvHvHnznGWObqnyXpeKm2nTpvH3339z5swZtmzZwqhRo1Cr1YwZM6Y+dsmFehM3QUFBqNVqUlJSXMpTUlIICwsrdZ0XX3yR++67j4ceeojY2FhGjRrFrFmzmD17Nna7vdR1pk+fTnZ2tvN17tw5t++LQFAT8tavB8Br8CCsZhtwMbjzTPYZPt6rZJid3ms6Tbya1IuNgiuHtgFteaKL0t30353/Jb0wHcDpLbSY7XhdOxiA/A0b6sNEQR3x6quvlnnvrAwJCQmMGTOGNm3acPfddxMYGMi2bdsIDq7/eMB665bS6XR069aNv/76i9tuuw0Au93OX3/9xRNPlN7PW1BQgErlqsfUauUmUNawOL1ej16vd5/hAoEbseXlkb9jJwDegweTGKdcaDQ6NbIs89q21zDbzfSN6MvI5iPr01TBFcTEDhP5/ezvHL5wmDd3vMmbA990em6sJhteAweSAhTs2YMtJwe1j0/9GiyoMYsXLy5RFh0d7RK2UVW+/fbbGlhUu9Rrt9TUqVNZuHAhX3zxBUeOHOHRRx8lPz/fOXpq/PjxLgHHI0eO5OOPP+bbb78lLi6OP/74gxdffJGRI0c6RY5A0JjI37wFLBZ00dHooqMvem50KlacWsE/yf9gUBt4ofcL1U6RLhBcjlql5qU+L6GSVKyOW83mxM3OmBuL2YauaVN0zZuDzUb+ltIHeAgEDZl6HQp+zz33kJaWxksvvURycjJdunRhzZo1ziDj+Ph4F0/NCy8oF/gXXniBxMREgoODGTlyJG+88UZ97YJAUCMc8TZegwYByo0FwKax8n87/w+ARzo/QqS3iBUTuJcOgR0Y23YsXx35ite2vcYsf6X702pSjkGvgQPJOH2avA0b8LlheH2aKhBUmXoVNwBPPPFEmd1Q64tjERxoNBpmzpzJzJkz68AygaB2kWWZ/OK0B579+wMXbywHsvaR5Z1FK/9WjO8wvt5sFFzZPHHNE/xx9g8S8xLZat0MRDgFtteggWQsXkzexg3IdjuSqlGNPxFc5YijVSCoJyzx8VjPnwetFmO3rkqZWYm5OZR1EIDpPaejVYksxILawVPr6ZzCY935tQBYigW2R7duqIxGbGnpmMpIzyEQNFSEuBEI6on8rdsAMHbujKo4V4Yj5sasKmJI5BB6hPWoN/sEVwfXRV1H15CuFJAHgLVYYKt0Ojx6dAcgf3v5c/4JBA0NIW4Egnoif1uxuOnT21mWnJUKgF1jZWr3qfVil+DqQpIknu3xLFa1GYC8ggLnMs+evQAoEFPcCBoZQtwIBPWAbLdTUCxuPPv0AcBmt3EqPQ6A7k27EuUTVW/2NWqs1R/aerXSIagDfZspIjs7/2IWd2OvYnGzcyey1VovtgkE1UGIG4GgHjAdO4YtKwuV0YhHbCwAa86swWyyADCs+dD6NK/xknwQ5kQq74IqMTZWySormyW2n1c8NYZ2bVH5+GDPy6PoyJH6NE8gqBJC3AgE9UB+sZvfo3s3JK0Wq93K/H3z0diV6Rd8PL3q07zGy8Fliufm4A/1bUmjI9xPScGhset4f8/7yLKMpFZj7K7E3YiuKUFjQogbgaAeKNy9BwBjdyVgeFXcKs7knEEvKzP9avUiKWWVkWU4+KPy+dCPyndBpXEcc2pZw4GUA2xM3AiAZ6+egAgqFjQuhLgRCOoYWZYp2LMbAGPXa7DYLczfNx8AP5U/4DpxpuASZBnMBZBzHjLiYM10+Ow6+HQYfDIIss4q9TLPwILBSvmnw2DVs5BxGvLSwFIohE8paC855jR2PR/s+QBZli/G3ezaJeJuGjETJ05EkiTmzJnjUr58+fJqZz/fsGEDI0eOJCIiAkmSWL58eYk6sizz0ksvER4ejoeHB8OGDePEiRPV2l5VqPckfgLB1YYlIQFbWjpotRg6dmRl3BrO5Z4jwBCATjZgwupyo7kqMOVBTmLx6zzkJEFukvK5MAMKs6AwE4qywGauXJvn9178nLAD/vnk4ndJDXovMPiBVwh4hoBXcPF7CPg1A/9o5V3r4bbdbMioNBKSSkK2y3hLPhzJOMKWpC30bd0Hlbc39txcTMePY2jfvr5NFVQTg8HA3LlzmTx5Mv7+/jVuLz8/n86dO/PAAw9w++23l1rnzTffZN68eXzxxRfExMTw4osvMnz4cA4fPozBYKixDWUhxI1AUMcU7la8Nh7t2yPp9Sw6uAiA+9rfh3VT8cSZ+ivQqSrLimcl5TBcOFn8OqW85yVXrS1JBRoP0OiUdouygdK8MRIYA0ClUQSUJb/YFpuyTlH2RW9PWXiFgX8UBLaEkHbFrw7gHQZX0HxfkiSh0amwFNm4qdlIvkz8lM8Ofka/Jv3w6NSJ/M2bKdi7V4ibRsywYcM4efIks2fP5s0336xxeyNGjGDEiBFlLpdlmXfffZcXXniBW2+9FYAvv/yS0NBQli9fzujRo2tsQ1kIcSMQ1DEFxfE2Htdcw6bETZzMOolRY+SuVnfxlWUXQOP33NjtkHYUkvZA8gFI3q+8m3LKXkfvCz4Rxa9w8GkC3uFgDAQPP8XL4uGvfNZ5uQqL03/Dl7eUbHPCCogZeIldNjDngzlPETuFmZCfCnnFr/xUyE2GrHjIPAvmXEV45SXDucsCag1+ENoBmnSFpj2gSXfwbVL936wBoNEq4uaW6Fv55vxidiTvYF/aPiK6dCF/82YK9+6FsWPr28wGgyzLzqSHdY1Gp6pyd5JarWbWrFmMHTuWKVOm0LRpU5fl8fHxtK9AvM6YMYMZM2ZUantxcXEkJyczbNgwZ5mvry+9evVi69atQtwIBFcShXuKxU3Xa5xem7ta34VRujhCSq1tZJ4bSxEk7Yb4rRC/TRECRdkl66l1ENwGglornpDAlhDYAgJaKKKluiQUB7tKKpDtF9/P/eMqblRqMPgor4qQZUX8ZMYpMTzpJyD1MKQeUbxNRVlwdrPycuAdAZE9IHoANB+s7F8j8u44jjs/TQA3N7+Z5SeXs+jAIt7ochcAhXv31ad5DQ6r2c6Cp/6ul20//N6gag08GDVqFF26dGHmzJl89tlnLssiIiLYu3dvuesHBARUelvJyYpH1jEZtoPQ0FDnstpCiBuBoA6x5eRgKg6mO9PMwM7tO9FIGu5tfy82y8UnQE1DFzeyDCmH4OSfcOovRdBcHguj9YSIayC8E4TFQlgnRdRodO635+BPyrsxCAY9C3+/qXhhDv0EA6dVr02puEvLGABNurkusxRB+nHFI5WwExJ3Kr9HbhIc/ll5gSJ2mg+C5tdCq+uUthowGq1ys7RZ7Nzf4X5+Pvkza8+tJWXog0DxfGgXLqAJDKxPMwU1ZO7cuQwZMoRp01zPDY1GQ8uWLevJKvcixI1AUIcU7j8Asow2MpLPU34F4MbmNxLmGUZeppJZV6WSUKkboLixFMGptXD0Vzj5V8k4Ga9QaNYbmvVR3kNjQV0HlxibVREarUfAbR8pAqLjHbD8MTj1p7Lc3XZoDYpoC+8E19yrlJnzIWkvxG9RusnObVfEzr7/KS9JDVF9oe1N0OZGJY6ngaHWKMedzWKnuV9zBkUOYv259Xyb8AujW7bAfPIUhfv24T1kSP0a2kDQ6FQ8/N6gett2dRk4cCDDhw9n+vTpTJw40Vnu7m6psLAwAFJSUggPD3eWp6Sk0KVLlyrbXRWEuBEI6pCig0rmXFX71vwR/wcA97ZTbo42qzJpZoPqkjIXKN6Zwz/D8TVKrIoDjQfEDIAWQ6Hl0PrrglFrYNpxJR7HsX1jAIz5n9KtVBcCC0DnCdH9lNfAfyu/3bltitA5+SekHIQzG5XXmucUb1bs3RB7lxJj1ABwHHtWq+JFHNt2LOvPrWfFqRXcF3utIm727BHiphhJkhptTqo5c+bQpUsX2rRp4yxzd7dUTEwMYWFh/PXXX04xk5OTw/bt23n00UerY3alEeJGIKhDig4dAuBwsAmr3UqX4C60C2wHgM2ijPapd3Fjtyvehz1fK6LGMcIIlCDfdiOh9Q2Kh0Zbe0M5q0Rp3T2ObqX6QmeEFkOU13WvKHl5jq2Co6uU3zf5gPL64yWl66rTaGh/iyKS6glHd6iji7R3eG+a+zbndPZpDkdYiULE3VwpxMbGMm7cOObNm+csq2q3VF5eHidPnnR+j4uLY+/evQQEBNCsWTMkSeLpp5/m9ddfp1WrVs6h4BEREdx2223u3J0SCHEjENQhhYcUz82vWmWentFtL44WsBU/LddbvE12giJo9n2jBNA68GsG7W+FdrcqsSeqBuRZakwExECfx5VX/gU48jPs+67Yu7Neea1+FjqPgR4PQXDrOjfxorhRvIiSJDG27Vhe3/46yzT7+BdQdPgwst2OJI6DRs+rr77Kd999V+31d+7cybXXXuv8PnXqVAAmTJjA4sWLAXj22WfJz8/n4YcfJisri/79+7NmzZpazXEDQtwIBHWGNSMDa9J5AHb7ZxFgCOS6qOsuLi9+WnbEPdQJsqwEA2//GI78quR/AdB5Q8fbocs4iOzZqEb8NAo8A6H7A8orIw4OfA97v1FGZv3zifKKHgA9J0Hbm5VRXnWAs1vqkuD2kS1G8t7u99hhOI+s02LPz8cSH48uOrpObBK4B4fYuJTo6GhMJlO12xw8eDByBdm+JUni1Vdf5dVXX632dqqDEDcCQR3h6JLKCDFQqLdyX+s70akvjhxyPC3XSbeUzQIHlimi5vwl3QzRA+Ca+5SuJ52x9u0QKB6dQc/CgGlweh3s+AyOr74YnxPQHPo9pXh0NPpaNaU0cWPUGrm15a18deQrUiOMhJ7JpvDQISFuBA0a4VcUCOoIRzDxoSATEhJ3trrTZXmdeG6sJti5COZ1heWPKMJGY4Cu4+HRLTDxV+h8jxA29YFKpQRmj/kGntoPA/6lBElnnIZfnoJ3O8Hm95RRWbWERuMac+Pg9lZKav39AUpAedHhw7Vmg0DgDoTnRiCoIwqLPTenwyV6h/cm3Mt1hEytxtxYTbD7S9j0jjJ/EyjzKPWaDN3uV7pJBA0Hv0gY+hL0n6r8b1s/UP63P16CrR8qo7G6TnB7ziCH58ZxLDpo5d+K2KBYTobt4zqEuBE0fITnRiCoI4oOFoubMInbWt5WYrnjadmt3VKyDAd/hA96wKppyg3SOxxumAtP71cS3Alh03DRe0Gfx2DKXrjlA/CLgrwU5b/8sAfsX6qMbnMTpXVLORjVahRxoUrsVdHhwxXGWggE9YkQNwJBHWDNyMCanIwdSI/0ZkizknlCrO4WN2e3wqfDYNn9yuSQXmFw4/8pN8rej1w1s11fEWh00PU+eGKn8h96higj2n6cBIuuV+bwcsdmtKV3SwGMiB5BergHFjXYs3OwJCa6ZZuNESHsag93/bZC3AgEdYDp+HEAUv1gSNubMGhKDoN03FA0NY25yUuFHx6Cz29QpgXQesLgGTBltzL6pqHkphFUHY1O+Q+f2gtDXlAmEE3YAQuuhV+ehoKMGjWvvmT6hcvx0nkxtPlw4oOV70WHrr6uKbVa+X3MZnMFNQXVxfHbOn7r6iJibgSCOiDn0H4AzoaU3iUFF+Mcqu25sdth92L442UwZSuTR15zH1z7PHiHVrS2oDGh81TibrqMU+JwDnwPuz6Hw8th+GzoPLpaw/c1l2UovpzbWt7G1rAfaZEsk39wHz7Dr6/JXjQ6NBoNRqORtLQ0tFotKpHrx63Y7XbS0tIwGo1oNDWTJ0LcCAR1QPzeTfgAOU396BDYodQ6NRI3qUdhxZMXZ8cO7ww3vwtNulbPYEHjwCcC7vgUuk2EVc9C6iFlFNzh5cr/X8VpHZxzS5ltpS7vGtqVlU19YG82yfu20zAmjag7JEkiPDycuLg4zp49W9/mXJGoVCpnduOaIMSNQFAHFB47ig8Q0al3mSettTrdUnY7bJ8Pf74MNpPSTTHkBegxqe7mVBLUP9H9YfIG2PIerJ+jzAP2US8lcLwKXpzyAooBVJKKZl0GwK+/Yjl52m3mNyZ0Oh2tWrUSXVO1hE6nc4tHTFz9BIJaJjP/An5JuQB06TeqzHpVHi2VdQ5+fgziNijfW14HI98D3yY1slfQSFFrlNw4rUcox0XSHsWLc+ovuPkd0HtX2ISmjKHgl9K7/93Ar3hnFJKTkYxPQJi79qDRoFKpan36AEHNEB2GAkEts3HHMvRWMGslWrTvW2Y9W1WS+B1dCR/3U4SN1gg3vQ3jvhfCRgCh7eHBPxUPnqRW4nE+GVipEVXqckZLOWgb1Z1sHyXYc+vmpe6xWSBwM0LcCAS1zJHtqwEwNwtBKmcEgLUyMTc2qxJA+u1YJWi4STd4ZBP0eFDM/yS4iFqjBBzfvwp8mipZjj+9Dv5ZqOQ+KgNNBd1SoMSd2GKaAnB815/utVsgcBNC3AgEtUh6YTrmEycA8G/fpdy6FXZL5abAl7cqKfgBej8GD/wGgS3cZa7gSqNZb3hkozL5pt2iJP/75Smwlh4vUlaG4ssJ6dgdAOvJ02QVZbnVZIHAHQhxIxDUIn+d/YvIVOVJOaDjNeXWdea5KU3cnN8PCwbD2U1K0PBdi+GG2aDWutliwRWHMQDu+QquexWQYPcX8MVIJR/SZZSXxO9Sgjt0A6Bpmp31CevdbbFAUGOEuBEIapG159YSmaaIG33r1uXWLXPizOO/waIbIDcJAlvBw+uhQ9mByQJBCSRJmVl83Peg94Vz2xSxnHLIpZpao3SbWs3lixt9q1YARKbJ/BX/V62YLBDUBCFuBIJaIsecw+5z2wnLUr7rWpTffVRi4kxZhm3z4X+jwZIPMQPhoT8gqFUtWi24oml1HUz6SxHJOYmwaASc2excrK4giZ8DfcsWIEn4FsDBY5spsBTUqtkCQVUR4kYgqCU2JWwiKMOKSgaVlxea4OBy61+MuVErwuaPl2DNf0C2K5mG7/0RPPzrwnTBlUxQK3jwd4jsrQSlLxkFR34BKt8tpfLwQBsZCUBYqolNiZtq12aBoIoIcSMQ1BLrzq2jyQWlS0rXvHmFGTedGYrVMvz6DGyZpywY9jLc8r6IrxG4D2MAjF8ObW5Ukj8uHQ87F1VqKLgDfWtH1xT8GS9GTQkaFkLcCAS1gNlmZmPiRppcUL7rmzevcB1nhuJ/3lfmCUJSkvL1f0YM8xa4H60H3L0Euk5QvIO/PoPmwNeAIrQrmp1ZH6Mc0xEXZDYmbMRsExl7BQ0HIW4Eglrgn+R/yLfk0yJLByiem4qwWZT5fNRn/gSV5uKcQQJBbaHWKAK67xTl61/POxdV5L3RxcQAEJ2lJc+Sx87knbVnp0BQRYS4EQhqgfXn1gPQItsDAH3zmPJXsFmxZacBoFYD93wNsXfWnoECgQNJUoaJ93satWRxFtttFXhuio/pyExlhNXGxI21Z6NAUEWEuBEI3Iwsy2xK3IQky/in5AOga17OSCm7HX5+DKtZubGoR7wObW6oC1MFAgVJgmEvo+r/pLPItnNJuas4PDfGrEIMJlmIG0GDQogbgcDNnMk5Q2JeIqF5GqQiM2g06CKbll5ZluHXp2H/d9hlJWBY3bxP3RkrEDiQJKRhM1FJSneU/fdX4dBPZVZX+/qiDgwEFO/N2ZyznM05WyemCgQVIcSNQOBmNicqeUMG2hRvja5ZMyRtGSOd1r2hZIyVVNjUnkAlJ84UCGoDSUKl1QBgk9XwwyQ4ta7M6rqYaAD6WqMAxJBwQYNBXEUFAjfjuMB3LwoHQN+ijGDinZ/Dhv8qn29+F7tdOR2FuBHUJ47jz9ZihDIf1bfjIHF3qXX1xV1TnQuVHE4bE0TXlKBhIK6iAoEbKbIWsTNFGTXS3DFSKqYUcXP8N1j5L+XzoP8gXzMeu10J4FRpxLBvQf2hUivHn33IKxAzSMmO/b/RkJ1Qoq7j2G5WHFS8I3mHyFYsaBAIcSMQuJGdKTsx2UyEGkMxnM8EQBcd7Vrp/D74fiLINugyDgZPdxmZolKL01JQfzg9N2hg9NcQ0h7yUhSBY8pzqevoltImpBLhGYHZbuaf5H/q2mSBoATiKioQuBFHl1T/Jv2xxMcDoIuOulghP11x81sKoPm1So4RScJmu5hTRK0WnhtB/eH03Nhk0HvDmG/BGATJB+CnycrovmIc3VLms2fpH94PgK1JW+veaIHgMoS4EQjcyJakLQD0C+6J5fx5QAkoBsBmUTw22ecgoDnc9blzSgW79RLPjYi5EdQjTs+NY/JM/ygY/Q2odXD0V1j7mrOutmlT0GqRi4rop1Fmvd92flud2ywQXI64igoEbiK1IJW47DgkJK6xNQFZRmU0OofL8vsLcGYj6Lxg9P9cJsF0eG4kCVQq4bkR1B8OcX2p4KZZL7j1Q+Xzprfh6EoAJI0GXfEEmh0KA5CQOJ19mtSC1Dq1WSC4HCFuBAI34Yg1aBfYDv35DAC0UVHKhJn7voPt85WKty+AkLYu6zpiboTXRlDfOLpFL+0qBaDT3dD7MeXzT49CxmkAp7jRJWfQNkA5rref3143xgoEZSCupAKBm9iRvAOAnmE9L8bbNGsG6SeUWb4BBv0H2t5UYt2LM4ILr42gflGX5rlxMOwVaNoTTNnw3XiwFKKNUrpdzfHn6B3eGxDiRlD/CHEjELgJxwW9Z1hPzGeLxU2TcPj+fmU4bcxARdyUguNGIjw3gvrGkYqghOcGQKODuxaDMRBSDsCqf6OLVMSN5Vz8RXGTvL3CWcUFgtpEXEkFAjeQmJdIYl4iGklD19CumM+dA0Cbu0u5CRiD4PaFoFKXur7jRiI8N4L6Rq12eG7KmBXctwncuQgkFexZgk5W8t+Y489xTeg1aFVakvOTic+NryuTBYISCHEjELiBf84r8TYdgjrgqfXEHK/MsaNLL05dP+oT8A4rc33huRE0FBzHoK28WcGbD4b+Sler9ogSS2Y+dw6D2kDn4M6A6JoS1C/iSioQuAFHMHHPsJ7IFguWhEQAdN5W6DsFWg0rd32n50aIG0E94/Aelum5cTB4OkRcg1ajJKuUCwqwXbhAr/BegBgSLqhfxJVUIKghsiw7PTe9wnthSUoCmw1JLaOJbgdDXqywDceNRCW6pQT1jNNzU1pA8aWotXD7QlQGI1qjFVC6pnqG9QRgV8ouEXcjqDeEuBEIasiJhDhaHOnLNeeHERsQi/nvrwHQedmQRs1XgjArwNEFIMSNoL5xDgWvyHMDENQKhr+B1ssGgPngNjoGdUSn0pFRlMHZnLO1aapAUCZC3AgENcBms7Nu/ik6n7+WXmdG8s83RzH/9RkA2ugYCO9UqXYcnhvRLSWob5xJ/EobLVUa3e5H10SJJ7Os+xy5UOb2k1MYv/N1Nq4+VFtmCgTlUu0r6caNG7n33nvp06cPiYlKfMGSJUvYtGlTldr58MMPiY6OxmAw0KtXL/75p/xJ17Kysnj88ccJDw9Hr9fTunVrVq1aVd3dEAhqxPHtKVgvXBwBdWh7Ful5IQDoOg+udDuOLgDhuRHUNxc9N5XsUpIktH1vB8CclMKGj1fjlxKJ0eJNznoPzp/Kri1TBYIyqZa4+eGHHxg+fDgeHh7s2bMHk8kEQHZ2NrNmzap0O9999x1Tp05l5syZ7N69m86dOzN8+HBSU0tP3W02m7nuuus4c+YMy5Yt49ixYyxcuJAmTZpUZzcEghpzdKsyf9T2Zr/g00wJrDyhGwqAtmlkpdux24XnRtAwqLLnBtC1VjyUmeYmHD/lA0C2IQ2AA+vOudlCgaBiqnUlff3115k/fz4LFy5Eq9U6y/v168fu3bsr3c7bb7/NpEmTuP/++2nfvj3z58/HaDSyaNGiUusvWrSIjIwMli9fTr9+/YiOjmbQoEF07ty5OrshENSIonwL509mAXAiaBfd7UqsTZJnT2QktE0rL7qdQ8HVQtwI6he1poqeG0DXTBHyCZ5KEr8mfmf4q/USAE7vS8NcZHWzlQJB+VTrSnrs2DEGDhxYotzX15esrKxKtWE2m9m1axfDhl0cIqtSqRg2bBhbt24tdZ0VK1bQp08fHn/8cUJDQ+nYsSOzZs3CZrNVZzcEghpx7kgGsgwZHucJ87TS2rIenaoQs8aLXO9ItE2aVrot5/QLGtEtJahfLk6cWXnPjbZ4fqkUX+VBs439F4KCzGQb0rBZZM4cSHe/oQJBOVRL3ISFhXHy5MkS5Zs2baJ58+aVaiM9PR2bzUZoaKhLeWhoKMnJyaWuc/r0aZYtW4bNZmPVqlW8+OKLvPXWW7z++utlbsdkMpGTk+PyEgjcQfxhZXLMeL8jXJOZjFqyEdFM8WRm+bZA2ySi0m05J84UnhtBPePIUFxuEr/L1/HywhzUjDzvSCRkog076JqRQFzAfgASjmbWiq0CQVlU60o6adIknnrqKbZv344kSSQlJfH1118zbdo0Hn30UXfb6MRutxMSEsKCBQvo1q0b99xzD88//zzz588vc53Zs2fj6+vrfEVGVj4OQiAoj6QTWQAk+h7jmsJC6DCKoCYBAOQGtkHt5VXptoTnRtBQcMwtVRXPDUB+pBJ34+8HHoGBdMvJIMlHeQhOPJ7lThMFggrRVGel5557DrvdztChQykoKGDgwIHo9XqmTZvGk08+Wak2goKCUKvVpKSkuJSnpKQQFlZ6mvrw8HC0Wi1q9cXRKe3atSM5ORmz2YxOVzKfyPTp05k6darze05OjhA4ghpTmGcmJ60QgBTvs3RN18Dw2fj9egSAfO+qBbk7PTcioFhQz1THcwOQ5xcDMvjpC+GGuVzz3RjOB57Cjp2ctEJyM4rwDjDUhskCQQmqdSWVJInnn3+ejIwMDh48yLZt20hLS+O1116rdBs6nY5u3brx119/Ocvsdjt//fUXffr0KXWdfv36cfLkSefIEoDjx48THh5eqrAB0Ov1+Pj4uLwEgpqSeiYXgCxDCn7kEtHnKfAJx1igiPV8jV/psyqXgU1kKBY0ENTV9NzkGpQQAx9bOrS5gcAW1xEm55HuqUysmSyGhAvqkGqJm+zsbDIyMtDpdLRv356ePXvi5eVFRkZGlWJapk6dysKFC/niiy84cuQIjz76KPn5+dx///0AjB8/nunTpzvrP/roo2RkZPDUU09x/PhxVq5cyaxZs3j88cersxsCQbVJOaMc56le8XS2a5D6PAGANi0etc2EjMrp2akMDs+NWsTcCOqZSk2cWQrZVm8AvHOKZwO/YTadzFbSvJTvaedy3WekQFAB1bqSjh49mm+//bZE+dKlSxk9enSl27nnnnv4v//7P1566SW6dOnC3r17WbNmjTPIOD4+nvPnzzvrR0ZG8ttvv7Fjxw46derElClTeOqpp3juueeqsxsCQbVJO6Xk8Ej1iqdTzPWgVdzt1qQEjAVKQHxmckGl23N6bkTMjaCeqfTEmZdQlGeh0KJEOXgkH1MKA1vQKaIP6Z5Kktd0IW4EdUi1Ym62b9/O22+/XaJ88ODBPP/881Vq64knnuCJJ54oddn69etLlPXp04dt28Rss4L6JeNMMuBFhjGJ2I4Xj3lzYiJGuQm53lFkJucDwZVqz5HnRnhuBPXNxYkzKy9ustMVL6XOlIWceHE+qc49n+CzhFcBSI9LR5ZlJEkIeEHtU60rqclkwmotmZTJYrFQWFh5V7xA0BixnttPTqERgGyPVNoFtncusyQmOeNusqrguXFkgxWeG0F94wworkISv9wLRQB4FF3AduEC9uL7QOvQruR5pmLHTmGRmoI0MSRcUDdUS9z07NmTBQsWlCifP38+3bp1q7FRAkFDJmv1fEBFkTqfJiFhGLWK0LHl5mLPzsaj6AIAuZlFlW7TJmJuBA0E51DwKgTE5xR7bjysStCwpTicQKvW0ia0DdkeypQ6F/76zp2mCgRlUq1uqddff51hw4axb98+hg5V5tH566+/2LFjB7///rtbDRQIGhTndpBxSnG7ZxpTiA2OdS6yJCUB4KFVvJp5maZKN2sXMTeCBkJ1PDc5xZ4bT50FAEtiIvrihK6dgruQbEjFvzCM7H1bYeQd4BXiZqsFAleq9ZjYr18/tm7dSmRkJEuXLuWXX36hZcuW7N+/nwEDBrjbRoGg4bD2VTKtSp6kLI9kYoMuETeJirjx9leCi/MyTchy5W4QwnMjaChUx3OTW+y58fZWcpA5zgWATsGdnJNoZpmDYMN/3WWqQFAm1fLcAHTp0oWvv/7anbYIBA2b0+shbgNZ9n8BkGVIIzb4budiS7LiivcM8QIb2Cx2TPlWDF7a0lpzwS4yFAsaCOpqBBQ7PDfeQYqwtyQmOpd1Cu7Epx7LALhgC4ddb0K/p8G3aokuBYKqUG1xY7fbOXnyJKmpqS5J9YBSJ9UUCBo1sgx/KUkq0/VtoRBMxlxa+LZwVrGeV4aAG8JD8cjWUphrITezqFLixiYyFAsaCA5xY69knhtZlp0Bxb4R/hTgKm7CPMOQfJWu2nRiwGaGTe/ATf/nXsMFgkuolrjZtm0bY8eO5ezZsyXc7pIkiVm6BVceJ/6AxJ2gNZKT4w9ASJg/atXFqUAsKYq40YaF4qUyUJhrIS/TRHCkd4XN20WGYkEDwXEMVtZzYyqwOuv6RIWUEDcATZoEwR4wmf2xyWrUu7+A/s8I742g1qjWY+IjjzxC9+7dOXjwIBkZGWRmZjpfGRkZ7rZRIKhfZBk2Kk+Z1q6TsBcogqZF02Yu1RyeG01YOF7+egDyKzliyjFVg4i5EdQ3DnFTWc9NQbYZAL1RgyEyHABLcrJLndZNW2BRmUGWyA0bcdF7IxDUEtW6kp44cYJZs2bRrl07/Pz8XGbd9vX1dbeNAkH9cmYTnNsOaj25rR8EwKwuokOTdi7VHBd0bXgYXpcEFVcGRxI/MVpKUN+oqjhxZn6OcowbffVoiic9tqalIV+SC61DUHvy9MqDb167h5XC3V9AdoK7zBYIXKiWuOnVqxcnT550ty0CQcNk41vKe9f7uJCveGRy9Rl0umQYuGy3Yy0WN5rQMIw+ykSuBbnmSm3C4dYXnhtBfXPRc1O5bimH58boo0MTGAgaDdjtWNPSnHXaB7YnT6ck8EtXN4Oo/sJ7I6hVqhVz8+STT/Kvf/2L5ORkYmNj0WpdAyY7derkFuMEgnoncRecXgeSGvpO4fQWZRLAImMOYZ5hzmq2zExkiwUkCW1oCB7eStKywlxLpTZjtwvPjaBh4BA3chW7pTx9dUhqNdqQECxJSViSk9GGK91UgR6B2DxNkA1nEhPpMvg/8MUm2PMVDHoOvCo3TYlAUFmqJW7uuOMOAB544AFnmSRJznlDRECx4IphY/Ecap3uAf8oElMOAEb0vmqXOXIsjniboCAkrRYP72LPTU5lPTfF4kZ4bgT1jFPcyCDbZSRV+YL70m4pAE1YGJakJKcn04F3gAGSICU1A6JHQpNuysPDP5/AkBdqYU8EVzPVEjdxcXHutkMgaHikHoGjvwKSMrIDyLiQiwEjfgFeLlWtxTluHDEHjm6pwkp2SznnlhKjpQT1zKUC226TUVcgbi7tlgLQhoVRCFiSU1zqhYT4YwNyM4pAkpRcN0vvg38WKp/1rueUQFATqiVuoqKi3G2HQNDw2PK+8t5uJAS3BqAo24oBiAhxdaM7LuTaYnHj8NxUVtzIjm6pCm4kAkFtc6nAtttl1OXUBSgo9tx4+irHvDOouFjwO4hu0pRTWLDnFIuntjdBQAvIOAW7v4Q+j7lnBwQCapDED+Dw4cPEx8djNrtewG+55ZYaGSUQ1Du5KXDge+Vz3ykAWO1W5OJh4DERkS7VnZ6bcIe4UeLQrGY7FpMNrb78W4Rj2K3w3Ajqm0sFtuJRLP/YdXpuirulHAL/cs9N+6hWnOIw+kIvckw5+Oh9oN8U+OUp2Poh9JwE6ooTXgoElaFa4ub06dOMGjWKAwcOOGNtAGcMgoi5ETR6dn6mjOZo2hMiewAQlx2H0eQDQEx4U5fqjpgbbahyYdfq1Wi0KqwWOwU5ZnyDPcrdnBA3goaCi+emEkHFjqB5j+JM3JqwUODidCQOmoSGAIfRyDoOJh6lb/Oe0Gk0rH0DchLg4A/QebSb9kJwtVOt6MWnnnqKmJgYUlNTMRqNHDp0iA0bNtC9e3fWr1/vZhMFgjrGUgg7PlU+X+IqP5xyFL3NCICXv6tYuTTHDShCvypdU47RUhUFbwoEtY0kSc7jsCJxI9tlTAWKuHFMM+IYIeVIaulArVVh0ynnwtFzJ5RCrQF6P6p83jxPiWIWCNxAtcTN1q1befXVVwkKCkKlUqFSqejfvz+zZ89mypQp7rZRIKhb9i+Fggvg2wzajnQWH088DYCssaEzuLrqnTluwsKdZR5VCCp2xNyIPDeChoCja8ohusvCVGh16hGDZ7HnJlTx3FjT0pT0CJeg9lQqx6dcnDWc7g+A1hNSD8GZje4wXyConrix2Wx4eyvz5QQFBZGUpByoUVFRHDt2zH3WCQR1jSzDto+Uz70eBvXFntv488pxrvHGZRi4bLdjSVXy2miLXfIAxuK4m8oMB3dkgxWeG0FDoLKJ/IryFPGiNaidE25qgoKURH6y7JLID8CzOC4nNf2SaXo8/C52R23/xA3WCwTVFDcdO3Zk3759gJKt+M0332Tz5s28+uqrNG/e3K0GCgR1yqm/IO0o6Lyg63hnsSzLpKdnA+Dt59olZU1PB4sFVCo0ISHOcoebvii/4kR+soi5ETQgKju/lOPYdsTbAEgqFdri8+DyoOKAACVmLT/LhNl2iejvWTwlw7FVkBVfI9sFAqimuHnhhRew2xVF/+qrrxIXF8eAAQNYtWoV7733nlsNFAjqlO0LlPdr7gXDxXnSEvISUBUq3UxBQa7zp1lTlAu4JjgYSXPR06M3Khd8U4GVinBmKBbiRtAAqLS4KfbcOLqkHGgccTeXBRUHBirnjsHixamsUxcXhLSF5oNBtl+MdxMIakC1RksNHz7c+blly5YcPXqUjIwM/P39Xdz1AkGjIvMsnPhd+dxjksuioxlH8TQrF2avyzw3lvOOBH6hLuV6o3J6VSRuZFkWeW4EDQpVJQOKC8sQN9rQ0FIT+Tm6pYxmH45lHqNd4CWTz/Z6BE6vh11fKFMy6Iw12wnBVU21PDcPPPAAubm5LmUBAQEUFBS4TMkgEDQqdn8ByBAzCIJauiw6cuGIU9w4kpU5cAQTay8JJoZLPDcVdEtdGrQpYm4EDQFHluLKdkvpS3huHLluXD03LuIm47L4zFbXg18UFGVdzDElEFSTaombL774gsLCwhLlhYWFfPnllzU2SiCoc6xmJUsqQI8HSyw+mnEUo1mJF/D007sss6Q4shOX7rkpqshzc8kNRHRLCRoCkrpyo6VKi7mBi/merCmpLuXG4gcDo0Xx3LigUl+Mvdn+iRgWLqgRVRI3OTk5ZGdnI8syubm55OTkOF+ZmZmsWrWKkEsCKgWCRsPRXyA/DbzCoM2NJRYfzzyOp6UMz02qMiJEc9mx73DVO/KAlIVdiBtBA0Nd2dFS+a45bhw4zoWyRks5PDfy5QLmmntBa1SGhZ/7p9r2CwRVirnx8/NTEjxJEq1bty6xXJIkXnnlFbcZJxDUGTs/V967TSiRAj7blE1KQQoGiydwcd4oB9biYeCXi5vKxtxc+nQsYm4EDYEaBxQXz73mODccOCbX1NkNFBQWkVKQQphn2MUKHn7Q4XbY+xXsWgzNetVgLwRXM1USN+vWrUOWZYYMGcIPP/xAQECAc5lOpyMqKoqIiAi3GykQ1Cppx5TkYZLKZfi3g5NZJ1HZ1c7sxCXETfHTqSa4muLGJmJuBA0LZ8xNRd1SZYqbYs9NaiqyLDsHmmgNajQ6FVazHU+zL8cyjrmKG1AeMPZ+BYd+ghtmK4JHIKgiVRI3gwYNAiAuLo5mzZqJkVGCKwOH16b1CPBtWmLxicwTeFi8AEV86D1cT5uLnhvXmcIdAcXmQit2u1ymV+bSkVLinBI0BCo7/YKpUBHuDiHvQBOsnAuy2Yw9Oxu1n5/SriRh9NWTk1bojLsZFDnItdGmPSCkPaQeVgKLe7qOXBQIKkO1AorXrl3LsmXLSpR///33fPHFFzU2SiCoM6wm2P+t8rl76SP9TmSewGBVxI3BS+viXbEXFGDPywNK6ZbyvHjBNxeW7b2xFcc1SCLeRtBAqGzMjeO41l0m+FV6PWpfJUbNclnXlCNmzWj24WjG0ZKNShJ0naB83rVYBBYLqkW1xM3s2bMJCgoqUR4SEsKsWbNqbJRAUGccWwWFmeDTBFpcW2qVE1kXPTeXjwpxdElJRiMqT0+XZWq1Co1emYOqvCzFskjgJ2hgVDbmxlxUuriBsoOKjcXdugaLF8czj5fecKe7QWOAlIOQuLtKtgsEUE1xEx8fT0xMTInyqKgo4uNF6mxBI2LPV8p75zHKUNTLkGXZpVuqzGDi4KBSu5QMlYi7cdxARDCxoKFQmW4pWZYxF9oA0BnKETepruLGUHwOeVg9ic+Jp8BSULJxYwC0v1X5vOvzKtsvEFRL3ISEhLB///4S5fv27SMwMLDGRgkEdUJ2Ipxaq3zuMrbUKufzz5NnycNoVXLceHi7em6cE2YGl54C4eIUDGV7buxiXilBA6MySfysFrvT66jzKPlg4Ii7uXzElMP76ScHISNzIutE6RvoNlF5P/gjFOVUxXyBoHriZsyYMUyZMoV169Zhs9mw2WysXbuWp556itGjR7vbRoGgdtj3P2Uum6h+ENii1ConMpULb5i6CQAeXmWMlCojv1NlRkzZxdQLggZGZWYFd8TbSBJo9aWIm0tGTF2KY2RVIMpylzmmLqVZHwhsBZZ8OPxz1XZAcNVTLXHz2muv0atXL4YOHYqHhwceHh5cf/31DBkyRMTcCBoHsgx7v1Y+dxlXZjXHU2UQynDVyz03zgR+wa4jpRzoDMpF32KylW1KsbgRAcWChoJD3MjlDAW/NJi4tC7ZMsVNsefG2+4PKKkWSkWSLnpU9/2v8sYLBFRz4kydTsd3333Ha6+9xr59+/Dw8CA2NpaoqCh32ycQ1A7xWyHjNGg9L/btl4Ij4NHXHoCdyifwc6AtjkWwFJUtbkTMjaCh4RA3tnK6pRzxNlpDSa8NlJ3Iz9EtZbAoeaPK9NwAdLoH/noVzm6GzDPgH10Z8wWC6okbB9HR0ciyTIsWLdBoatSUQFC37Cn22nQcBXqvMqs5uqUMFk8KKHu0VNniRrnwO0aVlMbFmJtqOVIFArdTmdFSDs/N5XmfHGjLGC3l8NyoTMr7ycwyPDcAvk2g+SBltvB938Hg/1TKfoGgWlfTgoICHnzwQYxGIx06dHCOkHryySeZM2eOWw0UCNyOuQAOL1c+d7m3zGoWm4Uz2WcAkIqUC3FVPTe64liEcj03Yii4oIHh8CKW2y3lGAZeykgpuHhOWNLSXOaQcogbawEgQ2phKtmm7LKN6XxJ15TIeSOoJNVyt0yfPp19+/axfv16brjhBmf5sGHDePnll3nuuefcZqBA4HaOrwZzHvg1g2a9y6wWlxOHVbbipfXCkq9cVEvG3DiGgpcec+PoljKXE3PjCNq8NDmg1WYnt8hKbpGVQosNi82OxWbHapeVd5uMJIFaklCrJDRqCbVKhVqS0GokPHUaPHRqPHUaDFrVVZX52GS1odeU3lVypSLLMhabjMlqw2y1Yyn2uEhS8QsJlQQqSUKrUeGhVaMupxv04mipsgOKTWUk8HOgceRCs1iwZWWh8VdibBxB+XabTFNDMxJM8ZzKOkXX0K6lb6jdzbDSCzLjIH4bRPUp+4cQCIqplrhZvnw53333Hb1793a5aHbo0IFTp8rpPxUIGgL7v1feY+9Srvxl4OiSauXT2umCv3S0lD0/H3t+PlCO58YRUFz8lJtvsnLmQj5nLxSQnF1ESm4R+XG5hAMn0/Lo+cafTkHjLiQJp9jx0mvw8dDib9Ti56HFz6jD7/LPRh3+Ri3+njq89aUHizZUjpzP4bYPN7P88X60C/epb3OqhNlqJ6vATGaBhcwCs8vnzHzl86VlOYUWTBY7Jpsds7X8TMKlYdCqMOo0eGjVeOrV+HpoCfTUE+ilIzSpADVwLCkXfUI2kQEe+HpoXY4FhzdSV0bMjaTTofb3x5aZiTU11SlutHo1Gq0Kq8VOK4+2JJjiOZl1smxxoyuOi9v7teK9EeJGUAmqJW7S0tIIKeVinp+f36guhIKrkIIMOPmH8jn27nKrOgIdWxnaAsXzSl0yh44jlkBlNKL2cs1OnG+ycuR8DnsTsgDYcjSNGW/8SVquqcR2WlhU3I6eQqud1MuWe2jVGHVqNGoJjUqFTqNCo5LQFD9Z2+x2bHYZm13GWvxuttopMNucAkmWIc9kJc9kLXX75aFRSfh76gj01OFv1BHgqcPfU0uAUYe/Z/F3Z7mOAKMOD139eU1W7EvCZLXzy76kehM3siyTZ7KS5RAmDlFyiUDJcAoVM5n5yud8s/sErUYlIUlglxV7SutdKrLYKbKYS13/2gIt3dGw+sB5nj95DgBvvYamAUaiAoy0DvMmNL5I2VYZ4gYU0e8QN7Rp4yw3eGnJyzQRrWsJ/F72iCkHncco4ubQTzBiLmg9yq8vuOqplrjp3r07K1eu5MknnwRwCppPP/2UPn2EqhY0YA7/DHYrhMZCSNtyq57OPg1AM20MeYDBU+PSdeRI4KcODuZkai7/xGWy40wGe89lceZCPrIMbc1qRqIjv8BCmkq5kQR46ogONBLu50Got4HgbCv2Tem0CvPi1wd64GPQ4m3Q4GXQoK1BkLHdLlNosZFvtlJgUt7zTTayCsxkFVrIdngILv1cfNPNKrRQYLZhtcuk5ZqqJIoMWpWL+ClNAPl7apVlRh1+Rh06Tc2DqWVZ5pd9SQD8sj+Jfw9vU6OHLVmWyTcX/14FFnIKLcpvVWghq8DxbnYRMBn5FrILzc5uoaqiknB60PyLPWiXetIuLfP10GLQqtFpVOjUivDVF38ubeSdQ+RYbIr4zTcpHkLH56wCCxfyTaTnmbHsugBnCgn3MRCkt5CeZyK3WLAfOZ/DmkPJDC7U0AMtS3ad4+3MdK6J9KdrlB9dm/nTLMCIJEloQkIwHTtWMktxsbiJUEcCFYyYAiUXlW8zyI5XpkzpeEe1fl/B1UO1xM2sWbMYMWIEhw8fxmq18t5773H48GG2bNnC33//7W4bBQL3ccDRJXVnhVUd4iZM04STWJzJxwCSs4vYu+0oUcD+Qi1T395QYv1QHz3tPDzhWCEt/T1ZMbkHUYGe+Hq4xu2c2JnC75vS8fPS0bGJb/X37TJUKglPvQZPvQa8q75+odlGZoGZjHzzxfd8xeugvBd/v2S5xSZTZLGTlF1EUnZRpbflrdcU37y1eOqVrhKDTo2HtvilU2Mo/qzTqFBLoFZJbDyRzpn0fJCU4NeEzEIAzmUUMuztv1FJErIMkQEe9GoeiNVmx2yTKTRbFe+WuVj8mW3OV6FZiXXKLrRgLSegtiL0GpUiRor3y/8S0eIUL56KUAkwKsLF26CptZQAkiQV/27KbxngqSuz7ta8U+w+c5ZbYyP4792tKDTbSMwq4FxGIafT8zmenItqVwaY7BTKMgcTcziYmMOSbWcBCPTU0at5AGMlI4GANa304eDBkpI/qkLPjUoFne6CjW/BgR+EuBFUSLXETf/+/dm7dy9z5swhNjaW33//na5du7J161ZiY2PdbaNA4B6yE5R8GVChuLHYLMTnKKMAg1ShnCQBq0biv78dZe3RNI6cz2HUyYM8DCTrvNFrVHSJ9KNnTADdovzp2MSXIC89icczWX5sD54qFZ2a+pW6rYaa58ZDp8ZD50GEX+W6AByeDofgKSl+LGTkm8jMtziXZRaYscuQa7KSa7ISn+E++0+l5Ts/n0zLY92xtHJql41Oo8LPQ4uvhxY/o/Lu66Fzfi9NvPjXc/dcTXEOBS8Wdx46NS1DvGkZ4o1jetk1GQc5lZnKI8Nacl8zI7vjM9kdn8mhxBwu5JtZdSCZwGQbY4Hvf9tDUthBhncIo1fzAAzFsWs+dn8kJDKKMsgoyiDAEFC2UR3vUMTNyT+gMAs8/Gpt/wWNn2onp2nRogULFy50py0CQe1y8AflPaof+DYtt2p8bjw22YaH2sjf+3LRA3uTc/hxXTqgBOm20ypdNf17tuHBl68vdYSOzpnEr+I8N5Kqcee5kSQJL70GL72GyABjpdax22VyiiwuAqjQYqPIbKPAbKXQYle+WxQvS6HFhslqx26XsctKjNH57CIOJWWXGleiVkHnpn5EBhjRqBzxSpLTO+SpV+Oh0+CpU2KbjDoNRp0aL4MGPw9FrBi0jVekVJfKTL9gMSnHdGiAkXadwrmpUzigjFY7mJjNphMXMGXvheOgy8pgybazLNl2Fj+jlntUXvgApnyZJl5NSMhL4FTWKQLCyhE3oR0guB2kHYGjv8I1ZadxEAgqLW5ycio/cZmPT+MapSC4Srh0lFQ5ZBdYWLhtKwB5eYFsPZrOYLRY1HBTp3CGtQthUOsQCmeuJ2cPNGnZrMyhx445d8obCi5fxXluVCqpOMak7C6SyrDlZDpjP91eonzJg73o2yKoRm1fjVQmiZ9jSpHL55XSa9R0iwqgW1QAufQiYd1XdPeyMbpHJL8fTiEj38z+olz6o+XbTWewdQ8FEjiReYIeYT3KNyz2Dlj7uvKgIsSNoBwqLW78/PwqDM6TZRlJkrDZ3Bf1LxC4hdQjkHIAVNpSp1uQZZnd8Vl8vf0sK/efR/bbjT4YMIfQLtATEs2M6h3JkDEXg5DPVpDjBi5mKLaYbM7z43JEEr+aszs+E1ACcu3yxfc98VlC3FQDlaoSs4KbFa+ORle2x9GRIsGYm8mcOzrx+m12dpzJ5O+Vp+BwHmqLzJnz3uiDYN7GTZgy+nBnt6Z4G7SlN9jhdkXcnP4b8tLAq+xzT3B1U2lxs27dutq0QyCoXRxdUi2HgfGi69tml/n9UDKfbDjN3nNZzvIQ3wwKgScG9KP94SAOJSbh5a13adKarnRRaYLLvnk6s7fKisApLZurw/Xf0GJuGhO/7D8PKCPRpgxtxby/TpCeZ+aXfUk8fm3Lerau8XF5zE1plOW5uRRHIj/bhQvIsoxGraJPi0CC+lr5/fAhuoR4kxjShmP29WTbzvHKL4d56/fj3NmtKRP7RhMd5JpigcAWENEVknYrWcZ7TqrZjgquWCotbt577z0WL16Mj48PX375Jffccw96vb7iFQWC+kaW4dBy5XPxKAuT1cb3OxP4dONpzlwoAJTA0Vs6RzC2VzNm7f2cY5nQPqgVpoLiOXSMrqeL9cIFADSBgWVuWqNTIUmKCWWLG+G5qQlWm51TqXkMbRfC/93ZGX9PHSM7RTBt2T42HE/DarM78wIJKkflYm4qFjfq4nNDtliw5+Sg9lVGAzrOJQ9UvH7TMO765RO8vNKJCPHkVGo+i7ec4YutZxjaNpTHr23BNc38LzYae6cibg7+IMSNoEwqLW5+/fVX8vPz8fHx4f777+eGG24oNZGfQNDgSD0CF06AWoel5XX88E888/464Ryq7OuhZXyfKMb3iSbYW4/NbiPu7zgAWvi2YHe+4qExXCJuZLMZe7YyH446qGzPjSRJaPVqzEU2JaNrKSO9nd1SwnNTLTRqFTtfGOaSQdffU8en47uTXWgRwqYaVCbmxmquWNyo9HpUPj7Yc3KwpqdfIm6UbidTgYVon2gkJIrseax5NJZD5+ws2hzH+mNp/HkkhT+PpDCwdTBPDW1Jt6gA6DAKfnse4rdC1jnwi3TXbguuICotbtq2bcv06dO59tprkWWZpUuXlhk4PH78eLcZKBDUmMM/A3A+uB9jPtzj9NSE+RiYPKg59/SIxKi7eCok5SVhtpvRqXREeEWwtSAZAP0leW6smUqMB2q184JdFlqDBnORrcyZwZ2jpYTnptqUFpAsSVKNA5WvVhzJKivTLaWpYMi7JjAQc04O1vQL6Fu0AC56bkwFVgwaAxFeESTmJRKXHcfA1t0Z2DqYk6l5fPL3KX7ck8iG42lsOJ5Gv5aBPDu8LZ2j+sHZTUrG4n5T3LHLgiuMSoub+fPnM3XqVFauXIkkSbzwwgulBkdKkiTEjaBBUbjvRzyA/8a34Yy9gEBPHY9d25JxvZqVOszXkbwvxjcGtUqNqcACXHzahEvibQICKhzC7XiytZQxYuriaCnhYRA0DNQVeG5sNrtzWXmeG1DibsxxcVjTL+YZcogbi8mGzWYnxjdGETc5cXQP6w5AyxAv/ntXZ54c0oqP1p9k2a4ENp+8wK0nNzO3WQ/uYZPy4CLEjaAUKi1u+vbty7Zt2wAlkv748eOiW0rQoEnOLuLz5WuYnnUcs6xmm7YX/x7chol9o5WsvWVwKltJBd/ctzmAM+bG4HlxHVtxvE15XVIOHBd/x+iSy2moSfwEVy8VzQpuvUSoayvw3KiDlLgbW/EDAYD+kpnEzYVWYnxj2JS4ibjsuBLrNws0MueOTjwxpCVv/3Gcn/Yk8n/xrbhLL6FK3Elu6lm8Q6Iqv3OCq4JqPSrGxf0/e+cd31Z5/f/31ZblvVdsZ+9FNjshBMouo5RdWvi1tNBBB6Wl0E0ptLTfQksLpdCWFsqmjDACgSwSkhCydxw7w3tI1h7398ejeyVZw7ItJw6979crrzjSlXTl6D46zzmf8zkHKEnR/qqhcTwJBEM8+sF+Fv1mOcbdrwKwL2cOL3/nfL62cEzKwAZgf5fI3IzKH0UoJON1K4Li6MxN32JiBaVVNpBkMKIW3GgMN9SyVJLMjZKF1OkkdIbUn1tDsfiuUK4ZEMGTYpPgdQbUjYSSNU1EdUEWv/3cDP5766mMGzOa9fI4AP78yO94edNhZHngozI0Pn0MKLipra1l5cqVXHvttSxYsIDDhw8D8I9//IOVK1dm9AQ1NPrDjqN2Lv3Tan7x+g5cviCXWTcAMPGs6yjJSa+7T1lgR+WNwucOQHjNjJkI3h4uS6UV3CiZmyTBjeZzozHM6EtQrOptzPo+/c+UdvBAVOYGItkbr0tkbgDqu+v7PLcpVXn880vzKJglOh9PC6zmG09v4rq/rmN/a0+fj9f432BAwc3zzz/POeecg9Vq5eOPP8brFTb03d3d/PKXv8zoCWpopIM3EOS3b+3iwj+sZPOhbnIsBh4+N5eRgf2gM8D489J6HlmWY4IbRW9jMOvRR02uDoZ3ofp0ghujeJw/SVlK1gTFGsOMvoIbpcRqTGHgp2AIl6WUDYGC2jHl9qvBzZGeI7gD7j6fU5Ikxp5xNQBzdbuoMNhZubeNc3+3gj8u30sgRQu7xv8GAwpufv7zn/PII4/w6KOPYjRGUvWnnHIKGzduzNjJaWikw55mBxc/tIr/e3cvgZDMuZPLWXb7GZyvXycOGHl6jHFfKppdzTj9TvSSntrc2ojeZgAeNwoRzU2yspRm4qcxvNArmpsk3VLRmZu+SJq5ieqYKrQUkm/OR0bmoP1geieZPwIqT0JC5tWzuzljXAm+YIhfL93F5Y+sYZ+WxfmfZkCDM3ft2sXpp58ed3teXh5dXV2DPScNjZTs29jC+jfqMVkNdI+3ce+a/XgDIYpsJn5+yRQ+M1UM8FNawBONW0iGkrUZkTMCo96IxylmqkXrbSCqLFWslaU0Pn1IfZWl0vC4UdAXhV2KozQ3EBvcgOhO/LjlYw50H2BC4QTSYtJFcGQjRQeX8sSNX+b5jYf5ySvb2NTYxXm/X8Ed507gCyfXaRuH/0EGlLkpLy9n7969cbevXLmSUaNG9fv5Hn74Yerq6rBYLMybN49169al9binn34aSZK45JJL+v2aGicmzfV23nx0K22NPRzZ3UXrq4cw+kKcMa6EN755WiSw6TwIRz8BSQcTLkj7+RUx8eh84ceRzJ042N4BRBbuVCiC4mRlKS240RhuKJ9FOUnmJpCGO7GCMp4k0N6OHIpcA5HgRpR+ldJUoo6ppEy8SPxdvwLJ3cnls6p581unc+qYYryBED99dTtfefhDnvrpWv789eWsfHZP0vek8eliQMHNzTffzDe+8Q3Wrl2LJEkcOXKEp556im9/+9vccsst/XquZ555httvv5177rmHjRs3Mn36dM455xxawkMJk1FfX893vvMdTjvttIG8BY0TEFmWWf7UTmQZjlhkmvUhsmSJW4tL+NsX5lCaY4kcvOt18XfNyWBLf3BitN4GotvAe2duwmWpTGRuFM2NtrvUGCbo1G6pxAG5OnqhjzZwEF5QAASDBMOu3hDtUiyusXQ6puIoGg1lUyAUgF1vAFCZb+UfX5rLzy6ZQo5BR+0OJ11HnAR8IT5Z1sjHbzek//waJywDCm6+//3vc/XVV3PWWWfR09PD6aefzk033cQtt9zCTTfd1K/n+u1vf8vNN9/MjTfeyKRJk3jkkUfIysri8ccfT/qYYDDINddcw09+8pMBZYo0TkwO7+6krbEHHzIvmDxsqxQLq3zQiafHH3vwztfE3xPSExIrKPX+urw6ADxOxcAvavRCMEgw7FCcluZGbQVP7XOj10z8NIYJ/emW6gvJaESfnw9AoDXeyC+6LAX9zNxAJHujlKERguPr5tdy7/ha8kM6uqUQqyziWt6w9KB6XWt8ehnQaipJEj/84Q/p6Ohg69atfPjhh7S2tpKXl8fIkSPTfh6fz8eGDRtYvHhx5IR0OhYvXsyaNWuSPu6nP/0ppaWlfOlLX+rzNbxeL3a7PeaPxomHxx/kqX9tB2CHKcgZU8t54tunUlqbQygos3PN0cjBrg44uFr8nGaXlIIS3NTmClMwX4KyVLCzE0IhkCT0BQXxT9ILJXPTl0OxlrnRGC70NRVc1dykkbmBSGkqxsivd1kqV3x3HLQfJBhKfK0kZFI4uNn/Hngi63vAH6Rpk3g9z9Q8VpsDtOpC+NwBNizTsjefdvoV3Hi9Xu68805mz57NKaecwuuvv86kSZPYtm0b48eP5/e//z3f+ta30n6+trY2gsEgZWVlMbeXlZXR1NSU8DErV67kr3/9K48++mhar3HvvfeSl5en/hkxQhuydqLR4vBw1SNrMDULy4EZZ1bzp2tPIsdiZNKplQDs+ziyI2TvOyAHoXQSFKYfbLv8LppdzQDU5dYBqPOgTNZoj5twG3hBAZKhb01+umUpTXOjMVzoy8Qv0I/MDUS0acq1A/FlqcrsSkw6E96glyPOI+mfbMkEKBwNQR/sW6bevP/jVrzOANkFZn78ldn85nPT2WQT5/3B2wfZ1+JI/zU0Tjj6Fdzcfffd/OlPf6Kuro4DBw5wxRVX8P/+3//jwQcf5De/+Q0HDhzgjjvuGKpzxeFwcN111/Hoo49SnIbtPcCdd95Jd3e3+qexsXHIzk8j8+xqcvDZh1fTVe/AhIQxx8gtn52oGofVThFloZaD9khpSilJjf9Mv16r0SE+G/nmfPLMYhimzyMWQ5MlKrhpS9/AD6LKUv4+BMVa5kZjmKCUSJOJbxVxfDqCYohqB2+NH8GgBDd6nZ7aPJEx7VdpSpIi5eew7gZEcAMwYUEFOp3EZbOq+fEtcwgik+uHm36/muW7Ums7NU5c+hXcPPvss/z973/nueee46233iIYDBIIBPjkk0/4/Oc/j16f3gddobi4GL1eT3Nzc8ztzc3NlJeXxx2/b98+6uvrufDCCzEYDBgMBv7+97/zyiuvYDAY2LdvX9xjzGYzubm5MX80Tgw+2N3K5X9azeEuNzP1wl14/MzSGEfU7AILhZU2kKFxZwcEvCJzAzD+/H69Xr29HoiUpCA6cxP5bKtzpdIMbrTMjcaJRtqZmzRM/CCyEYg28utdloJIaarfuhul/Lz7TQj6CQVDHNoldHG1UyPX6YxRhdRMEYFWRQ988YmP+OvKfr6WxglBv4KbQ4cOMWvWLACmTJmC2WzmW9/6Vp/228kwmUzMmjWLZcsiqcRQKMSyZctYsGBB3PETJkxgy5YtbNq0Sf1z0UUXsXDhQjZt2qSVnD5FPL2ugRuf+AiHN8DckYXMMFuBSKYmmhETRTfG4V2dUL8CfD2QXQ6VM/v1mr31NiCG+kHvzE36Bn4QHdwkExSL2zXNjcZwoW+H4kxobmLLUiDmucEAgpsR88BaCJ4uaPiQloMOvK4A5iwDpbWxG9qx08W5zLZaCcnws1e387NXtyfVF2mcmPQruAkGg5hMJvXfBoOB7OzsQZ3A7bffzqOPPsqTTz7Jjh07uOWWW3A6ndx4440AXH/99dx5550AWCwWpkyZEvMnPz+fnJwcpkyZEnNuGicuf1y+l++/sIVgSObSmVX85XMzcLQKS/by0Xlxx1eEb2uut8POcAv4+HNB1z+9fOLgJkFZqh8GftD34ExZ87nRGGb0JShWSqx6Y3rXmKq5aYvW3IhryucOqNfAgDM3Oj2MO1f8vOsNNWtTPb4grtyrbIYs9iB3LBbDN/+68gC3Pf0xHn8/hMwaw5p+ORTLsswXvvAFzGZRIvB4PHzlK1/BZrPFHPfCCy+k/ZxXXnklra2t3H333TQ1NTFjxgyWLl2qiowbGhrQ9fNLSuPERJZlfrV0J39+X/hcfPXM0Xz3nPEcCHc8FFba4vxmAErrxM6s/bCTgOkd8aHuZ0kKUpeljDFlqfQN/CCiS0jWLaWZ+GkMN5SAQA7JyLIcl51XghtDmsFNohEMSnAjy+DzBjFbDQNvBwehsfvkX7DrdVpMnwcSb4Zyi63kllixt7o5r6yAys/P4DvPfsJrm4/S6vDy6HWzycuKX2c0Tiz6FdzccMMNMf++9tprM3ISt956K7feemvC+5YvX57ysU888URGzkHj+BIMyfzwxS08/ZEQ9f7wvIncfLpIUR/d1wVEMjS9yS4wk5VrwmX30dppocJmE/Ok+kmDXbSHKp1SEKW5scR3S6VdljL2VZbSBMUaw4voEmkoJKPvFXgrWUhDP8tS0d1SBpMenUEiFJDxuQOYrQbVX6rT20mnp5MCS99WCyqjF4HeDJ0HaHGKDYiy8elN5eg87K1umuvtXHzhKIqzzXzlHxtYd6CDK/+yhn/eNI/ibHP6r60x7OhXcPO3v/1tqM5D43+YQDDEN5/ZxKubj6KT4FeXTuNzcyL6qZaDomWzbGTi4EaSJErrcqnf3EaLfywVY8aD0ZLw2GR0ebro8nYBYq4UiEyS/xiUpTSHYo3hRnQWUQ7K0CuGCfY3cxPeCAQ7OpCDQaRw84nJYsDT41e1bVaDlXJbOU3OJg7aD/YvuDFnw6gz6Nm5HqcjhCRByYichIeW1uWy88MmWg4IX5xTxhTzn68s4PrH17GzycGVf17DUzfNpzyvf+uIxvBBq/doHFcCwRDfeFoENka9xMNXnxQT2MiyTFujCG5KahIvVADFI4T2qz1Q02/jPoCDDqG3KcsqI8uYBYgFXCkZxXRLtSndUumVpVRBsT+UsLVWeQ3NoVhjuBAd3CQSFfdbc1NYKDRwoRDBjg71dsU/SgluIFIWTns6eDTjP0OLfwwgytjJWtXLRoqMTnO9HVkW729iRS7/+fICKvMs7Gt18rk/r6Gxw9X/c9AYFmirqcZxIxAM8Y1nNvHaFhHYPHLtrMjgyzD2Ng8+TxCdQaKgIivpcxXleQDoCNTCuHP6fS7q2IWYklQ40yJFukLkUIhAeHHub+YGIBCIL02pmRtNc6MxTND1Kkv1pr9lKUmvV928o0tTJot4vDcquFGuwQEFN+POpSNQA0BxWfLCRFFVNnqDDq8rQHe4WQFgZLGNZ768gJrCLBo6XFz55zUcaHP2/zw0jjtacKNxXFBKUa+FMzZ/umYWZ00sizuu7ZDI2hRVZqfMbBR61wPQEaxD7k8qO0x9dz0ANbk16m1qG7hZr5aMgt3dEBC3qwMB+yC6XTaQQFQsayZ+GsOMGM1NisxNumUpSG3k5/dErouaHHENKgL/fpFbSYdxGgAFhuQjFvQGnfDHAjoOxwYvIwqz+M+XFzCqxMaRbg9X/eVDGtq1DM6JhhbcaBxzgiGZbz/7iVqK+uM1s1g8KT6wAWhr7AGgqDq15UBe61vo8OMPmXB0ePp9TgnbwBOMXlAM/HS5uUhpWg9IOklN3yfqmFJ8brRuKY3hgiRJUZPBUwQ3aZr4QWIjP+XaisnchEXFisC/v3TKowEodH6Y8jgluGk/0hN3X3mehWf+3wLGlmbTZPdw1aMfcrjLHXecxvBFC240jimyLHP3y1t5edMRDDqhsTk7SWAD0HlU7KqKKm1JjyHoR1+/nALDIQDaj/Q/jdzgSNQpFTYqG4SBn4Kyww2mKEtpwY3GcEJSvW7iP7NBpSxlTN+VPpGRnyLUVzYSENlgNDgaCMmJOwyTEQrJdPaI8nVB+5vCsTwJaubmaOL1oiTHzFM3z2NksY3DXW6ufvRDmu393zhpHB+04EbjmPKbt3bz1NoGJAkevHIGSybHj9mIprNZpIMLylMEN43rwOegwCxmyXQ19S+FLMtyH+7EUWUlpVOqn8GNkrlJNF8qpE0F1xiGKMF2IhH8QDI3qpFfa3zmJlpQXJldiUEy4A64aXH1b/aTo91DMAB6yU+ufBAOrkp6bGFFOLhJsRkqzbHwr5vnMaLQysF2F1c/+iFtPckDJo3hgxbcaBwzHluxn4fe2wvAzy+ZwoXTK1MeHwqG6GpRgpvkYmJlllR+qTimq7V/wU2LqwV3wI1e0lOVU6Xe7k9Ylgob+KU5uFVBzdwkCG40h2KN4UiyslQoJKu39Stzo5al4gXFvijNjVFnpDqnGui/qFjJ9OZnO9FJIdjzdtJji6pEqburyZUwo6pQkWflXzfNV7uorvvrOuwef9LjNYYHWnCjMaTIwSDO1at578e/YfeDDzG3aTvfWzSKa+bV9vlYe7uHUEBGb9SRXZjCbyIc3OSNFELE7pb+BTfKAlqdU41RF3EmjUwEj87cDKwspTdG2sF7o5n4aQxHks2XivZr0vdHc1OcXHMTnbmBgbeDKyUmJSvDnreSHptdYMZo0RMKyeomKhkjCrP4183zKc42s+Oonf/39/XaqIZhTr9M/DQ0+kPPipU0/eQn+A8dohy4MXy7fs/LdDluJ+/Sz6YcuqqUl/JLs5J/8fe0QNNmcdykGfDufrpb+if8U7oylC4NhcTuxP0z8FNQMjeJjPw0zY3GcETN3PQqS0VnHw2G/pelglHzpfoKbvrbMaVkbgpG18InRmjfC+37oGh03LGSJFFYYaP5gJ2OI06KKlM3LdQV23jimmk88Iu/M2LHQZ798EUuuOgUchctRJ+b2AlZ4/ihBTcaGUeWZVp/93va//xnAOwmGxtLxlJVlM3E5j0Emps5+sMf4lq/noqf/RTJkPhj2BkOblL527DvXfF3xXTy6iqB/fR0evH7gmlPLE6kt4HEQzMjBn4ZFBSrZSktkaoxfJCSZW4UAz+Drl86sUjmJjq4UcpSmcncKJ41+VUF0LUADnwgSlMJghsQjQpKcNMX9qVLMf/yXu5oieiAmlb/lxabjaKvfJmiL35RdV7WOP5oq6lGxmn59f1qYPP2xDO5fskPWP65r3POvx5hzDtvU/Lt20Gvp/vFFzl6zz2qQ2hvOpvDu7CyVHqbZeLv0WdhsRnVYXz21vSzN4kM/CDx0Ey1LNVPzY0+heZGK0tpDEeih2dGEzHw69/XhzqCobMTORCbFVU2EgoDNfKzt4nrPrfYCmOXiBtTlKbyy0T5KlUpW5Zlmu/7NYe/+S0CLS0Yysqwn3U+r4w6hYacUkJOJ62/+S2Nt9xCyK21iw8XtOBGI6N0PvssHeEZZM+ffjW/HX8B1RWF/OW62ZgNeiSjkeKbb6bqdw+CTkf38y/Q/ue/JHwupSyVtFMqFIJ94eBmzGIkSRKLGsS4jvaFmrnJ65W5SVWWGmDmprfmRpZl9ctD65bSGE4omcR4zU3/Ri8o6AsKQJJAlgl2dgJ9l6UOOQ7hD6Un3g36Qzi7fQDkFlkiwU39SvAlzszklfa9XrT+5jfqmlZ0802Mfvst5j38AOV33cVXFn2H38y8kpDJjPODFTR++SuEfL60zldjaNGCG42M4dmxg+af/gyAFadfzmOFJ1FkM/G3L8wlL8sYc2zu2WdTfs89ALQ+9BDuLVvink8R+eUny9wc3QSudjDlwIi5AOQUCeFxT2d67ZqBUIBDDuGPE5e5cccKimVZHnBZKlnmJnpXrGluNIYTEUFx7Gd2IO7EAJLBEDeCIZHPDUBpVilWg5WgHOSw43Baz6+YdxpMOizZRigeB/k1EPTCgRUJH5NXkjq46Xr+edof+ysAFT//GaXf/ja6sHnnDSfXcfMZY3indg4/OPlm5CwbrnXraPrpT5NmozWOHVpwo5ERZL+fIz/4IbLfz+HJc/hlwTzMBh2P3TCbmqLEwUn+564g5zPnQiDAkTu+j+yP7NB8ngBuh/h3bngBikPJ2ow6A/QieMopCAc3aboUH+k5QkAOYNFbKM0qjbmvdyt4qKcHObwr63/mJtwt5Yv9oojeFWvBjcZwQkoiKA74+zdXKhq1HTy8SVA1N73KUpIk9Vt3Y2+PlKQkSRJZoj5KU8ra4nUF8DhjM0S++nqafv4LAIpvu5X8yy+Pe/wd505g8cQyPsmv4/7514ts9HPP0/3iS2mds8bQoQU3Ghmh/Ykn8O7YQSA7h++MOA8kiQevnMHMmuRzniRJouLHP0ZfVIRv/346//1v9T57mwhOzDaDOn8mDkVvM+Ys9absQjNA2iMY1E6p3Bp0UuzlEGkFF6+vjl7IykJnTRJwJUHN3ARiF/HoLw5Nc6MxnNAnERQHfQPL3ADow6LiYLi8q15bgVBcVrO/M6Yc7eKaV7K3QFRw8zYkyKYYTXps+WLNiO6ylGWZI3fdhex2kzV3LsVf+Uri96OT+P3nZzCxIpf3ckfz2qwLAWj+1a/wN/fPgFAjs2jBjcagCbS30/6IEBA/NOECuiw5fH3RGM7rNeE7Efq8PEq+8XUAWh96mGBXFxARBuYVJwkiPN3CmRhgdCS4yQn74aQb3CTrlIJ4h2Illd5fAz+IbgXXMjcaJwZSEhM/tVtqAMGNQXEpVjM3kY3LYDum7OHgJjfaE6vuNNCbobsBWnclfFykNBURFTuWLsW9fgOS1Urlr+5N2QVlMxv46w2zKc0x88eKkzlSMZKQ3U7zz3+e1nlrDA1acKMxaNoefpiQ08mBohreqprJ4omlfHPxuLQfn3/ZZZjHjSNkt9Px938AkeAmpyhJcLP/fZCDUDQWCiKBiWL2l25ZKmVw06ssNdC5UhA1fiGQPLjRBMUaw4lk4xcyUpZSsqA6CYM5cTu4MkAz3eDGoawZ0RsiUxaMPE38nKQ01VtUHPJ6abn/AQCKbvoSxsrUTuoAlflWHrthNiazkZ9NuJSQTofj7bdxffRRWueukXm04EZjUPgPH6bzP88C8KeJ5zOqNIcHr5zRrxKLpNdT/NVbAOj45z8J9jjVXVheSRJn4rArMWMWx9ysZG6cdl9KS3UFJeWdOLhRBmcqmZuBGfhB34JiSSelNDTU0DjWJHcozlxZCsBsSay76a+Rn5q5Keq1ZvShu+ktKu5+8SX8R45gKCuj6ItfTOu1AaZV5/PAFdOpz6vgjZp5ADT/6j7kBINHNYYeLbjRGBTtj/8NAgE+LhlLffV4Hr1+NjkWY98P7EXO2WdjGinSuV3PPJ06cyPLEfO+KL0NgDXHiN6gAxmcXX13TDXY46eBQ6wGQNUFDLBTCpK3goe0uVIaw5S+HIoHEtz0LktB8nZw5ZpscbXg8vc9UsWeSHMDkQ1Qwxrw2OMel1ciGh66W9zIgQDtjz0GQNFNN/VbW3fBtEq+fMYo/jFxCW6DGc+2bfQsX96v59DIDFpwo5EQZ7cXlz21X0OgvZ32cNbmP+MW8X+fn8moktQW5smQ9HqKviR2SZ3/fjq15qZtN3Q3ilp67SmxzyNJaYuKPQEPR51HgfjMjT9qkF9vzY2yQPcHpVuqd+ZGabPVxMQaww1Jl8TnJlyW0g+kLJXQpVgEN95ewU2eOY98cz4AjY7GlM8b8AVx2xWPm15rRtFoKBoDoQAceD/usdGaG/sbS/EfOoS+sJD8yy9L/41F8d0l45k6eST/HXkyAM1//JPWGn4c0IIbjRhCIZl3/7GDJ+5Yxd++t5L3ntoZt3NT2Punx9D5fezKH8GZn/8MCyeUJjwuXXLPPx9dbi6+Q4ewhz1uchOVpZSSVO3Joqbei5w0dTcNDpG1yTXlqouoglL/N5h0qplZJspSvWdLaXOlNIYrffrc9GOulIJe1dxEDc8Mbx78vTQ3kH5pytktsrQGkw6zLUF3pdJ0oHRYRqFketwOP21PPQ1A4XXX9jtro2DQ6/jDVTP58KQleHUG/Fu30rN6TcrHdBxx0rS/O+laq9F/tOBGI4b1rx1gx6qj6r+3rzjCR68diDuux+6k51mRtdl6xsXcdlb6AuJk6KxW8i65GJ8pl2BQ2FQknAautoAvjr+PyGP6ytxEi4l7610SuROrZanCgZeleuuAtLKUxnAlmaA4FBhEt1S40zDY0alqUSKZm/ihsul2TCklaFueObF2TSlf71sW1xJuzjJgDIuau3Y1gMGQ0NOmPxTYTNz//xbyzsj5AGy673cJj5NDMu//exf//ulanv/1Bp6/b32c347GwNCCGw2VrmYX61+vB2DxFyay+AsTAVj/ej2dTRH7clmWeeLev2LzOmmzFfCVH9yIPkNllYLPfx6PRQQPtlwj+t7DJP1uOLhK/JwkuMkpUMpSqTU3abWBW6NHLyhzpQaTuUncLaV1SmkMN9TMTVy31CCCm8JC8UMwSLC7G0juUgzpz5hydomSlOJZE/9Ep4LeBF0NYkp4FKKULTZEHkshOWcvxlBSktb7ScWUqjzGff0rBJEo3r2FVe/Ed06tf6Oere8LB2aDUUfLQQfLntiulbEygBbcaKisf6MeWYa6qUWMn1/B+PkV1E0rBhk2vBFZXP69rpGK918HIOfyKyjOSzHYsp+YR40iOG4GAFa5J/6Ag6sg4IHcKigZn/A5lAXO1Z06uKnvrgeSBTexoxcgYuI3kFbwZJkbZVesaW40hhu6JD43wYD4t34AZSnJaESflyeepy1s5JdEUAz9L0slDW5MNqgRWRTV2TyK7HwxUsFjLqTgyitTv4l+cNE5szg8aTYAH/3hMZrtkWyyvc2trqsLr5vApd+bhd6go35LOwc+aUv4fBrpowU3GgC47D72rGsGYPb5I9Xb55xfB8Cej5px9/jYeribJ/7xFpM6DhLS6Zly07WZP5nJcwAwtDbE3xftSpykdTorTyxwyhC9ZCSbBg5RE8HDu8qQ203IJXRAAzHx0yfrltI0NxrDlOTBTThzYxjYZ1a5fiLzpRSfm4GXpXrUspQp+UEpdDdWb4c4h+IasubOTfla/WXON24C4NR96/jOk2sIhDVMm95pJBgIUTU+n4knV1AyIofpi0cA8NFrB7TszSDRghsNAPasbyYUkimtzaGsLle9vbQ2l5KaHEIhmW1rm/javzZy1j4hjsvLUPq2N8Gq0QAYmw/gq6+PvTOJv000ygLXV+ZGERSn8rjp3Sklmc3obEmmlKcgebeUEtxol6LG8CJZWSrSCt7/bilINF8qeeamJleMYOj2dtPp6Uz6nK6uPjI3ENHd1K+AQOzaoG/YCUCwbpLaJZYpCk47Fal6BLaAB9uqd/m/ZXvweQLs+lBoG086J6L5m7F4BAaTjrbGHpoPxLeta6SPtqJ+ipFlmS2tW/jL5r/w3fe/y1ff+Srfff+7PLzpYTa1bCIkR75od69tAmD8/PiRCWPnlAGw/K16DrfaWXTkEwDyr7hiSM7b5RYXutnbheOddyJ3dDWINnBJDyPPSPr4rNxwWcrhT9p90O3tpsMjdmvpaG6UFLqhqGhAZnuRzE3i2VKa5kZjuCHpE7eCDzZzY+g9X8qaXHNjNVgpyxLrT6rsjZKlTRnclE2B7DLwu6DhQ/XmYI8T3Y6N4hzy+h4Z018knY6Sq68C4Nz6tfzhvb28+eYBfJ4guSVWRkwoVI+1ZpsYfZLoOt35YVPGz+V/iSQTCTVOZEJyiLfq3+KRTx5hX/e+hMc88skjjMwbyc1Tb2Zh0dm0HHQAMGZWfDv3mFmlrH5+L+ZuPwvce8j2OtGXFGNbMH9Izl9JMVu8XTiWvUvRTSKtq6aTq+eANT/p47NyjSAJPYunx09WbnyqWjHvK7GWkGWM1wz17pYazFwpiNLc9HYo1spSGsMUpSzVu1tKCW50A9DcAOh7z5eyJM/cgCgbN7uaOWg/yIzSGQmP6YnqlkqKJMHoRfDJv4XuZpTYIPW8uwxzjyjJO31D85WYd/FFtPzmN4zvaqTS3sIHyy3UITFuTlncxmb8/HJ2fdjE3vXNnHblWPR6Hf6gnxWHV7Di8Ap2d+zG4Xdg0Vuoya1hXsU8FtcspsCSfEjx/yJacPMp42jPUX60+kesPboWEDuf06pOY0rxFPLN+dh9dra1bWPF4RUc6D7AD1b+gHO9m6ljAaW1OQkDgW4pRIdepjAocVlIiHzzzr8g5TC5wdDTKRYqs7cT96ZGAm1tooVULUmdleLRosRjzTbidvhxdnsTvqdUYxcgqixlDZelBjFXClJobjRBscYwJdn4hcE4FEP8fCnlGksW3NTm1rK2aW3SzI0sy1FlqRSaGxC6m0/+DXvfhbN/CoD9zbcwh0tePZ0e5JCc8UyqoaiI7FNPpef99/lc5zZC4XJb7dT49aRqXAGWbCOeHj+H93awRl7Gnzf/mVZ3a9yxOzp28Gb9m9y37j4+O+azfG3G18i35Gf03E9UtODmU8Smlk18/d2v0+ntxKK38MWpX+S6ideRbYp3DXb6nfx757/58yd/Jlgv2iBNI+P9FYIhmW89s4lsQ5DCoAHZIUYr5F180ZC8h1AwpGpl8mpLkbc20LN8OfmfvRgOfCAO6iO4ASEqdjv8uLp9MCL+/lRt4AB+d+/MzcAN/CBKcxPXCh7eBWuZG41hRkRQHPuZjZSlBhjcqC7FsWWp3g7FCn11TPncAXXTkDJzAzB6ISBB8xZwNBMy5eNcvRqzz4skQSgg43L4+n6eAZB38UX0vP8+s7s62JQr4ZBkXm5o5csj82KO0+kkaiYXsnttM3/+71O8UiLGQZRYSzin7hyml06nyFKEy+9iR8cOljUsY2fHTp7e9TRv1r/Jj0/+MYtqFmX8/E80tODmU8KyhmV87/3v4Qv5mFg4kfvPuD/pFzeAzWjjpqk3saRmCc+v2wzAnzt+S9lRHfMrIuWmh9/by0f1nUyyGsELnbmjMI8di3nChCF5H85uH7IsLvDChQto37oex7J3yZ9TCV47ZBVBxcw+n8eWZ6L9UKRFtDepOqUgOnPTa67UAAz8ILLLDYVkQsGQKiDWTPw0hitSH4LigQY3iktxsFdZyp+gWwoi08GVUnJvlJKUOcvQ96RyWzFUTIejm2Dfu7gc1chuN6ayMmz5Zno6vTjaPUMS3GQvWoQuO5tOWZTlDhqC/PWt3Zw6toTJlb0CnBoXrAXz4SKyK7O5beZtXDHuCoz62Ll9Z4w4gy9P+zJrm9Zy37r72Nu1l2+89w1unnozt8287X96GK8mKP4UsOrwKr7z/nfwhXwsHLGQJ859ImVgE02upxiTL4uQLshh615uXXYrW1q3ALDhYCe/X7YHgC9eLDxl3FllmJdcMGQXjTOq6yF3scjQOFevJrT9TXHAqIWQRjeD0g7uStIO3lfmJqK56T1XaoBlKVPknKNLU2q3lFaW0hhmJC1LDcKhGCIuxZFWcEVQHEzY/qxcow2OhpgmCAVXXwZ+vYlyK+557z0Ass88k+yw+Wc6A3cHgs5iIeecJXTmCzf33Jps/EGZbzy9CU9Uo8GHRz/kJw3fA6DIXcm/F/+HqydeHRfYKEiSxPyK+fznwv9w3aTrAHh0y6P8Yu0vEv6+/lfQgpsTnM2tm/nme98kEApwTt05PHjmgwkFssk4uq8LgIqRBZw8YgHeoJfb3r2NPe0NfPOZjwmGZC6eUcklk/LJcgnRnWv8gqF4K0BkZEJ2oRnzuHEYKiqQvV5cH4SDmxQt4NHYcpO3g8uyHAlu8pIEN73KUsFBuBND7C43FIgs4JpDscZwJelU8EGY+EFkgxBsb0eWZVVzI4fkOME9QGV2JQbJgDvgpsXVEnd/nwZ+vQn73ch738Xx3nIAss88Q318zxAFNwDWxefiyBFrzlevmEhJjpm9LT3c+/oOAHa07+Ab736DTl0b3uxwK3hTejOujDoj35vzPe5ZcA8SEs/seoaff/jz/1m/HC24OYFpc7fxrfe+hSfo4dSqU7n31HvR6/on8j26T1igV43J54EzHmBcwTjaPe3c8PotNHY6qC6w8rNLpuD84APyuvcD0O7OnCNxb5RdU3a+mBFjO1kEUs7twqKc0enVklUjvwSTzdvcbbgCLnSSjhHZCQQ5JBAUK91SA5gIDuKLQvmyiM7cqA7Fms+NxjBDnS2VbCr4IMtSst9PyG7HaNJDOLZPZORn1BmpyqkCEreDu8LXeKLGgYRUzwFTNt6j3QSOHkUym7HNn68GN0OVuQFwlU1A1ukxezspbtnDA1dMB+DJNQd5fvMWbnnnFlwBF/PK5zF16lggsgFNl8vHXc69p92LhMSzu5/lr1v/mum3cUKgragnKP6Qn28v/zYt7hZG543mgTMeSJq2TMXRvSK4qRidj81o4+GzHibbkI8j1IC5dCm/uWI6uRYjjrfeItcuBmg27R86cymlU8pWIETOtgUnA+BsNkP5VMgpS+t5Uhn5KcLESltl0t9Zb4fiwcyVUtCrIxgiC7imudEYruh0yXxuwpmbAZaldGYzupwcQFxXkk5SB1em6piCPoKbnDSDG4MJRp5Oz1GxxmTNn4fOalV1Nsl0epmg5bAbgFz7QRxvvc0Z40q48ZQ6IMhPPvwB7Z52xhaM5cGFD1I9VrR2KxvQ/nD+qPO5Y+4dAPx+4+955+A7fTzi04cW3JygPPLJI2xs2Ui2MZvfLfwdNmP/XXM9PX66msVIgfLRQtBmkQrxNYmJuKbClYQsuwm5XPSsWEleOLhpqbcnNccbLD2d4bJUeBeleOl4u4wESk9N+3lSjWDoqyQF0Q7FBkI+HyG7COgGqrmBxO3gmuZGY7iSzKE4NEgTP4h2KQ53TKUYngmpO6aU4MaabuYGYPQiXE3i+OxTxLpyLDI3LQfFOpLjaMDx9tvIoRB3nDuBirr3kc316LHy+zN/T44ph4rR+QA019vjzD/T4ZqJ13DtRDEe50erfkSjozFj7+NEQAtujjGdTU42v3eIxh0dA66FftL6CY9tEe2B95x8j9pN0F9aGsSFlldqxWITGYx7XtlGe+sYrG5xwf9kzU/oeP9dZI+H/AI9RrMevzcYMyU8kyiZm+xCsdAYCgowF4rF1NmVfklIzdzYfXG/5746pUIhmYA3UpZS9DYYjejy8hI+Jh3UjqkEmhstc6Mx3JCSzJYazFRwBX1xRHcDqedLQerp4G6HkrlJP3MdqjkdV5tYI7JOmgJENlTKhPGhoKU+vOb6mgg0N+PZvJntHZ/QY30LgJ5Dl7Jqp/h955VaseYYCQVk2hoTDBFOg9tn386Mkhn0+HtE00lw6N7bcEMLbo4h61+v518/WcuKZ3bzyu838eaj2/qdAfEEPNy18i5CcojzRp7HuXXnDvh8lAumZIRIEb++5SgvbzqCXifxf+feTYWtgsM9h9n83F8AyF1yNkVVIkPUcXhogpuI5kakjGnajK1UZJecu+NNrJJhDaeog/4Qfm/sgtmXgZ8/avdoMhsiBn6FhYPqElM0Cok0N5qgWGO4EemWivq8yvKgfW4ADL1diq1KO3jqzE2idnAluOlP5sbd0I0c1KG3BDHrhZ5vqDM3Hqcfe5vITFfMFO+n882l/GTNTwCYlH0WAcdUfv7aDg51upAkidJaMeevtcExoNc06ozcf8b95Jnz2N6+nUe3PDqwc+/xs+I/u3nptxtZ8+LepJ5EwwktuDlG7PrwKGtf2Q8yVIzJQ2eQ2LexhQ1v1PfreR7f+jj19npKraX8YN4PBnVOrY3igikekU2rw8tdL20F4JYzRjO/roI75tyBFJLJ3ijawXMWLaSoShgCth0e2E4iFaFgKBLchNsy2fsOtjJxm/PDdWlnu4xmPYZw+7Wy+Cn03QYeEUzqjbqIgd8gSlIQpbmJSjEHNRM/jWGKKiiO2oCFQjKE/zm44KaXkV8fmRvlWj3kOIQ/FGs22m9BMeD6UDi420q9SPveFT+Hgxu/N5hU+zMYlJJUbomVonNEY8TRN15if/d+Ci2F/Om8HzO7toAeb4A7nt9MKCRTUiM2nspaPRDKbeX8aP6PAHhs82Ps7NjZr8d7evy8+NuNbH73EId3d7HxzQZe+u3GpCXE4YIW3BwDvC4/q57fC8Ds8+q49DuzWHStMMFb/1o93a3utJ6nwd7AX7cI5fv35n6PPPPASyQQydwUj8jmhy9uocPpY0J5Dl8/S6j0F9Us4nL/dHLc4LUasM6YoQY3HUMQ3LgdfmRZjIBRd2H73iWrxAd6HYGmJvyHj6T9fEr2xu2ILIbBUFCtPSc18FOHZoZdhdVOqUEGNykyN1pwozHcSNQKHt2qPdDxCxBfljL2MV+qNKsUq8FKQA5wpCeyBoTC8+Mgcr2ng/NDMTgzq8wn5kwhNkRKBmko2sGV7EtpbQ62U08Fg4Gspm4q2mXumHMHhdZ87r9iOhajjlV723lq7UGKR2THPHagLKldwuKaxQTkAHevuptAKP3A5IOnd9FxxElWnokzrhqHNcdIW2MPH/x796DOaajRgptjwCfvHsLt8FNQnsXs8+sAMX27ZlIhoZDM+jSyN7Is88t1v8QX8rGgYgFLapcM6px8ngBdLaLc81F3D29tb8aol/jt52ZgCn8JS5LE5ztFoLO+LsgnHVuHNHOjdClYc01iYfV0Q+NadAYZy/gxALg3bkj7+SLBTSRzc8R5hEAogElnotxWnvBxyu5R7ZQa5FwpBXV4ZkATFGsMfxKZ+EV/djNallIzN4m/dHWSjpocMY8pWnfj6REbIiSwZqenuQk5nbg3C1d2W0UAOuuhXQwYVktTQ9Ax1R4u5RdXZ6PPtnE03A11cUs1nxn5GQBGFtv4/rli4/vL13fizxZrUMcRZ8zvvr9IksQP5/+QXFMuOzp28Nzu59J63JE9nexZ34IkwflfncaUM6r5zJenArBrbRPNB4auc3awaMHNEBMMhNj2gajpzjl/JPooP5M5F4wEYPfaprjSSW+WNy5n1eFVGHVGfjDvB4N2CG4/1AMyWPNM/OStXQB8c/E4JlXmxhxnWCsWgY2jJR7c8CCFlcLjpqfDi9cVP4tqMChuwqr1+YEPIBSAojFkzTtFHLO+P8GNWOyiMzfKwliTW4NOSvzx7+1OHOwYfBs4RJeltOBGY/iTSFAc9Ec+r4PRiUXmS8W7FCejJjxssr67Xr1NWTctNmPaXlGujR9DIICxqgrTxLnixnBpKjs8eHModDcdR0VwU1hhY0f7Dt6qFO99YWNuzHp+/YI65o8qxO0PcveynZisBkJBWX38QCm2FvO1GV8D4KFND9Ht7bvFfOObQuM08dRKVf9TMSaf8fPFxjCdjfnxQgtuhpgDn7Thsvuw5ZkYdVJJzH3lo/Iorc0hFJTZtbYp6XMEQgF+v/H3AFw/6foBd0dF0xouSTXpQjg8AaZX5/Hl00fFHONvbsG7fQdIEtvHmNnYspENXR+pnUztGRYVK7ulrHCnE3tFupjRZ5E1exYArg39z9y4ogLHvvQ2EO9OrOwuB2rgp5CwFVwz8dMYpiTS3CgeTYPplIIol2KlFdyaer4UJO6YUtvA+1GScn+8EUCsKWPCpqDhtUb1uslwcBMKyXQ1iUx5YaWN32/8PRtHi9+vtHknwZ7IWqrTSdx/+XSyTHrW1XcSyBW/m8GWpgA+N/5zjMkfQ7e3m4c+fijlsZ1NTg5ubQcJZp5dE3PfrHPDrflb2rC3pSerONZoK+oQs3e9GFkwfn5FTNZGYdKplQDsWH006XP8d99/2de9jzxzHl+c+sWMnFfHERHc7HC5Meol7r9iOoZe5+dcIaZwW6ZN5bxZnwfEzBKlNNWe4dJUjDBQliPBzZjFWE86CQDfvn0EOjvTer4sNXMTCW6UXV+q4Mbfa2im4sWhzMQZKAaD0goepblRxi9omhuNYYYScAcTZG4GU5IC0EfNl5JlGWMfZSlIbOSntoHnpt8G7tr4MQDWmSdFxrnUr4CAL6pjKrMt0/ZWN8FACINRx8HQXlYdWUVLsQFpRCX4/ThXr4o5fkRhFj84byIA67vFOjvQdvBoDDoD35/7fQD+s/s/7Onck/TYnR+KDXfdlCLyS2Nd6QvKbYyYWABy6u+u44kW3AwhPk9ARL7AmFmlCY8ZM6sUnU6i44hTNdSLxhPw8NAmEWHfPPVmck25cccMhJZwYNKml7l14VjGleXEHdPz/vsAZJ9+OjdMugGDzsCG5g3488RjO5viz3cwxJSl2vdCdwPoTVB3CoaCAkxjRgPgTjN7k0hQnFbmJm5ophLcZKYspZn4aZwIKJ/J2MzN4A38IJK5kb1eQk5npCyVoktJDW4c8ZmbdN2J5UBA1dtYZ86EsqlgKwFfDzSuHbJ28I4jIjNTUGHj0W2iHfv8UeeTv1DMuVLW2miumVfDqWOKaZLE77zjaGY2k/Mq5nFWzVmE5FDS7I0sy+xZJzbm4+Yl1iZOOLkCgD0fNQ/L+VVacDOEHNzaTsAfIrfEqqree2POMlI1Ph+A/ZvifVz+vfPftLhaqLBV8PkJn8/IecmyTFM4xZldYuWWM0fHHxMI4Fy9Rhxz+hmU2cq4ePTFAKz3iF1GV/MQlaVyTbA3bBdeezKYhLdO1qzZQPq6G0Vg6E5QlkrWKQUJhma2ZbZbKkZQrHVLaQxTdIk0N4OcCK4+t9WKLktkA4JtbX22gkPkmm1yNuEOiFKI6nGTZnDj2bUL2eVCl5ODeewY0OnUQZrsfWfIhmcqgYm+KMDyxuVISNw09SayTz9DvN4HH8QFCJIkcd/l03Bbxe/68MHBl6UUbpt5GzpJx7uN77KldUvc/S31DhwdHoxmPXXTEmes66YWYzDq6G51Z6Rklmm04GYI2bdRBCtjTipNKQAeNUNoceq3tMXc7g64eWLbEwB8dcZXMevTnHrbB29/fAR9QEZG5s4rp6rdUdF4tm0j5HSiy8vDMnkSADdOuRGdpGOdWwluMltrVXZhtjxzJLiJmgKeNUuUptwff5zW8/XO3HgCHo46RQo1lW4pemim7PcT7OoCwFBSkvQx6ZBac6MFNxrDi0QmfooYfrBlKYgtTSkbiWQmfgD5lnzV/kIx8+vv6AW3UpKaMQMpPDuLMeHgZt+yIc/cbA9tAmBJ3RJG5o0ka+4cJKuVYGsb3t3xrdVV+Va+dN448Q9PkD2N/Z8zlYjR+aO5YNQFAPzh4z/E3d+wXWzoRkwqFINNE2CyGKidKjZ8Bza3JTzmeKIFN0NEKCRzaFcHQNLIV2HEJPEBaT5gj3HTfX7383R4OqjKruL8Uedn5LwcHj8PvyRMnEJZBk4aVZjwOOfadQDY5s5RF4Ha3FoWjVhEl1WkKx2dHgK+/s88SYZSlsqyyVAfrkEruyrAOl1M0PXs2IHs67sm3rsVvMHRgIxMjimHAnNB0sdFD80MdIj/Q/R69IMYvQDJuqXEz5pDscZwQ0owWyqQocwNRM+Xalc9pVJlbiBed6NsXNI18FPFxCfNjNw4aqH4u2kL2QbR2uyy+zI6P6/jqCjhr/MKHePNU28GQGcykTVbZKSdq1YnfOzVp9TiMYn/iwee3ZqxEtAt02/BoDOw5uga1h1dF3NfwzYR3NRMSvz9oFA7pSh8fEdGzimTaMFNpggF4bkvwvZXAGhrdOB1BjBa9JTVxetZoskttpBdaCYUlNXx9t6gl79t/RsAX5r6JYy6/k/8TsS9b+xECi8IdaPykx7nUkyu5s6Luf2qCVfhMTjxGlwgk7YBYV/IsozTHi5LObZAwA05lVA6UT3GWFODPi8P2efDs6tvAyk1uOnxI4dkVUw8MndkykxadFkq0BpxJ1Z3egNEERRHBzeyNltKY5iSsCyVwcxNpB28LWLi14frbe+OKbUslabHTURMHBXcZJdAxQxxe8sKJEnojPqy50gXWZbpDnuKdVqaWVCxgPGF49X7bSefDIBzdeLgRpIkRoTbsI82Onj6o8wMwKzOqeaysZcB8OfNf1Zv9zj9qn9NzeTUpfia8Ma85aAdd0/U72vjP6DjQEbOc6BowU2m2PgkbH0e/nM9fPgIh3aKjp6qsfl9tvlKkkT1OJFJOLyrC4CX975Mi7uFsqyI1mWwrNnXzr/WNlAUFOdTUpV4krjs8+HaKHY4tvmxwc2c8jmMKRhDl6UFyJyo2OsKqAMls5reEzeOOUvYFYeRJAnLtGkAuDd/0udzKgueHJLxugNpiYkhtiwVDIuJ9YMUE0NU5iZKcxPUBMUaw5TEreAZLEup7eDtaWluANXIT5kP5+6HO7H/yBECTU2g12MNryMq4dKU7sAytcSlZJIHi7PLR8AfIkQQh7mdqydeHXO/Ety41q8nlCQjXRUOboqCOn752g6OdmdmU/mlKV/CIBlY17SOT1rFmnpoZyeyLMTPOYWWlI+35ZvFvEEZDu3ohGAAXvs2vHIrPH0N+DLbdNIftOAmU8y8HmZ/EZBh6R0cWiXSfNUTUqf1FKomiODm0K5O/CG/Ombhxik3YtKn7+GQDLcvyPdfEF0Ck7OtgPjwJjx282Zkjwd9URGmMWNi7pMkiasmXEWXNRzcZEhUrIiJzVkGDPVvixvHnBV3nLIoeTbHi+B6ozfq1HZut8OnLoh9+QTFZG5Ud+LBtYEr5wNJTPw0nxuNYUYqh+KMlKUKI0Z+qqeUN5iyHFSbF1uW8jhFcGOx9Z25UbI2lgkTVDGziqLt2/cutnBwkymX4u5W8QXvMHdQkVvBaVWnxdxvHjcWfUkxssejaoJ6o6zVI01GHN4Ad72YmfJURXaFKnl4bMtjABzaKUpMNRPT++5SsjcNW5rhmWvho8cACaZcCkbroM9xoGgraqbQG+D838JZ9xCUDRxtEd1R1eFOqL6oCmduWg/aeX3nUo44j1BoKVTThoPlwXd2c7DdRUWehfygWLTyy7ISHutcGx4qN29uwvLNBaMuwG0TwrY9B+ozcn6q3iZbB607QdLBqDPjjrNOE9bfSjtnX1ijvG76mgauoGZuLPqMedxAZPxCINrnRhMUawxTEjsUZ1JQHClLKcENpBYVK2WpBnsDQX9I9aSypFGWcn8iMhPWGTPi76yeA6YccLWTZRGTuzOVuVEsPrqtrVw14Sr0uliBriRJ2BYsAJKXpgrDwU2lZMCol1i2s4VXPkl/zl4qvjj1i0hILG9czp7OPTTtF2t75dj8tB5fPVF8dx3ZtAd2vwF6M3zuSTj9OzGZ92ONFtxkEkmC026nbcHDBDBjkewUbv65MKTrg5xCCzmFFmQZXlsrzOuumXgNFkPqtGA6fNLYxWMr9gPwswsm4Q5ftL2NmRSUibm99TYKWcYsxo8UoyOOHsmMkEz1qwgL+qiaDdZ40a9SlvIdOECwu+/OAWu2SX1+RXOTqg0cIouryWrImMcNRLWCJxAUa8GNxnBDMR2NGZwZyIyJH0SyocG2dvRGHbqwd07KEQzhslSnt5OWTpFVlXQSZqsh6WMUPFu3ApENUgx6I4wSbdm2kOiozFTmZnd9vXg+axeXjLkk4TF96W4KysVa7XX4+dppwkn+J//dTnvP4M9xVN4oFteKzNXfNv6d9nBnV/no9BooyislJELYfQU4jXVwwyswKTNSisGgBTdDQJNRzEEqM+1GWvcIvPfLtB5XNlLUVT1HJcx6M1eMu2LQ5+ILhLjj+c2EZLhkRiUzC4W42ZxlSJjKDXk8uDdtAuL1NtEsnCouRrnbSKcnPcfgVCgLiS0o5nBFt4BHYygowFgjFjh3eLFKhZK56eiyY/eJwKnPzE1UWSqYwcxN6rKUFtxoDC+kFFPBBzMRXCH5fKnkmZssYxalWcIQtb5ZCGstNkOf3YZyIIBnxw5x/NQEwQ2oZfAst2hWcGYoc7OvQZxndXWp2sreG9sCsZ56tm1L6MBuzjKqa9nnxlcwoTyHDqePn/x3e0bO8UtTvwTA5q27QYbcEmt6HWheB6bnPkehQZQJj87/K9TMz8g5DRYtuBkCmg+IjEL55LA53ge/hg1P9vm40joR3JQ6arlw9IUUWJK3K6fLI+/vY2eTg0KbibsvnKx2N+WVJK6Fuj/+GNnvx1BejrE2eRAwdaSYXGsNZPPqjtcHfZ5qWSq8sCQLbgCs4cXJk0ZpShEVN7ULz6EKW0XKbJgckvF5lang+ozNlYLIbjfa5yaoBTcaw5SEPjcZciiGqFZwNbgR5ZpU86Ugknk91CoyLOnobbx79yJ7POiyszHV1SU+KGw7YevZBoArA5kbl9+Fu128n7njZyQ9zlhWKkwFZRlXWBbQm7wSkb1xtnu477Jp6CR45ZMjvLO9edDnObloMvMr5lPiEGt+xag0sjbBADz7BTj0ERVW0Rl1tF18h/mPHv+RDFpwkyECnZ20/t8faH/8bzSF2+jKTlsIp39XHPDqt2DP2ymfQyoVtd7SnlqunXDtoM9pb4uDh97dC8A9F06i0GaiuyV1cNOX3kbBZDUgWcVC9/a25YMWtykLiU1uEuWoyhlJj7VOD3dMfdJ3cGMJl6U6OkXA2WdJyheE8FsxWQ1RmpvBl6UMCbqlVM3NINvMNTQyjdotlUhQnEETP9nlIuRyRdrBU4xggEjmtalDXJvp6G2UkpRl8uTklg4FtVA0liydCLYyYeS39MCb5HjE2jFz7OSUx2Ypupskfjf5ZWLN7m5xMX1EPjeFy1N3vbQVu8ef8DH94bpJ11HuEHKDwro+hMCyDK99S5itGqxUnCVEyU37uvHuP8DesxbT+LVbkf2DP6+BMixW1Icffpi6ujosFgvz5s1j3bp1SY999NFHOe200ygoKKCgoIDFixenPP5Y4Vq7jrY//pHDf30KR7sHJCiry4WFP4QZ14AchOe+BO37kj7HUudLhAhi8+dRKlcN6nxCIZnvP78FXzDEogmlXDRdDOhUlPt5felt5vWdWiwsFaLpzlYn2zsGlx5VNTe6TmGq1Ut0F43SMeXesqXPoEpZ+Ox28b77LkmJXZakkzAYdequMqNlqYCmudEY/qizpeRIEK4KijNQltLZbEhm4QgsOqb6Z+TX0SU2LIquLhXuLeHgZkrqAIMxZ2HTCx2hsiYNhte3voUxZAJJJrc4dcCgiorXJcnchNdsxRn+W4vHUVeURZPdw72v7xj0uZ5ScQplzjoAthnWpz54xW9g499F48flj1M+ZwYArY09NP/lrxAKgSwjGTPjzzYQjntw88wzz3D77bdzzz33sHHjRqZPn84555xDS0tLwuOXL1/OVVddxXvvvceaNWsYMWIES5Ys4fDhw8f4zGPJOXsxpro6uiQRpRdW2EQbsiTBBb+DEfPA2y1a5Xzx7dMOn4MXDzxPR5ZI5ykmSgPlqXUNrD/Yic2k52eXTFGzMKnKUsEeJ+4tosXaNm9un69RWCKCm1xPES/ueXFQ56vUt7N0nTD27JTHmidMAL2eYHs7gSSfEwWlTu0J+2H02QYeNTRT9vsJhUXLg50rBVGZG01zo3ECEP2ZVHQ3mczcSJIU5VLcpto29GXkpwQ3jvCGJa3MTXhdsybT2yiMPgubTmheXN2+GI+f/lLfXU/DIbGe2wrNqkA7GVmzZ4NOh/9gA/6mprj7lQaQrrAhoNWk51eXiY3ev9c1snrf4EYgONq9GANmApKfZ1v+SUgOJT5w11J492fi58/8GiacR06hhaxcE3JI5shy0ZVW/JUvD+p8BstxD25++9vfcvPNN3PjjTcyadIkHnnkEbKysnj88ccTHv/UU0/x1a9+lRkzZjBhwgQee+wxQqEQy5YtO8ZnHouk11N005ewh9X8pTVRgzINJrjiScgug5bt8PKtcR1UL+19CVfAhaeoC4DWxoEPImvq9nDfG2LEwnfPGU9VfiSQSRXcuDdugGAQ44gRGKv6zhwpO5FcTxFv1b+FPzTwFKSrW5TkbPrOlHobAJ3Fgnm00DN5tqXOGCn1+GDY86qvslQkuDEQDGdtMBoHPXoBQG8ITxnXNDcaJwDRIt244CYDmRuIlKaCMfOl0svcKAZ+fQU3Ia8Xz5494tgpfQQ3dadgNbqBEKGQrProDISX971MnkfMoysqSzw4ORp9Tg6WySKzlEh3o1h3KMENwPxRRVw9T3zn3PnCFtyDGIfT1iiGe3bbmjnQs59Vh1fFH9SxH178f+LnOTfBXDFGQpIkSmpFs4rdVoXt5AXxRonHmOMa3Ph8PjZs2MDixZEvM51Ox+LFi1mzZk1az+FyufD7/RQWJjYc8nq92O32mD9DRe5FF+EsFF+62R29yk+5FSLA0Rlg2wthoyOBLMs8t/s5AMaPEReu8kHrL7Isc9dLW+nxBphZk891C+rU+4L+ED0dIojITRDcONWSVN9Zm+jnKPJX0OntZO3RxOnUvvD7gvg8YtHMqqyC7NI+H2OZKMYyeHakDm4U51KdR/zdV+bG7464E6sGfoWFgx69AKA3ii+LmPELquZGC240hhfRAbeiu8mkzw30mi+llqVSZ26qs6vRS3qMPlHS6mv0gnfXLvD70RcUYKyqTH1CJhv6urlYdeJ7YqDt4MFQkFf2vaIGN8lkAL1RMubKbL9o8krFeut1BtRMNMD3PzOB8lwLB9tdPPhO32NpkqFsqHMrxVr51M6nYg/wueCZ68HTLXyBzrk35u6iQvGZcOTUUPSVrwz4PDLFcQ1u2traCAaDlJWVxdxeVlZGU4K0XCLuuOMOKisrYwKkaO69917y8vLUPyNGjBj0eSdDZzLREw5uDKtejdeD1C6AJT8XP791F7SIOumm1k3s796P1WDl9Bniw912aGCZmze2NvHOjmaMeon7LpuGPupL097uRpbBYNYnbPNzqWLi9Fr5lMxNaUBked448MaAzlnplDLgxTTu9LQeo0wq92xPXWtWFj6LPwuTZKLCVpHy+OjMTaBNdFgZMlCSgiifm0CistRxT6JqaMQQ/ZlUPqeZLEtBkvlSfQiKjXojVdlVWPzC2K6vzI1SardMnZKySUJlzGJRHmfg7eAbWzbS4mqh0FcOJG/g6E3WPGG/4UqgIzWa9GQXiIAuOnuTazHyy0unAPDYiv180tg1oHNuaxDfObOmTEZCYtXhVezv3h854I3vQfMWsJWIjboh9jvEulvMI3SWjCNrzpwBnUMmOaFX1F/96lc8/fTTvPjii1gsidt777zzTrq7u9U/jY2ZGTqWCGe3F49fD3II8461uNZ9FH/QvK+IskvAIwTGfo+atTm37lyqa0tAEl/4/RW0dbv83P2yaGO85cwxjCuLHdgZXZLqfZEHu7vxbBdZkLQzN8Xid25wZoEssaxhGZ6Ap1/nDODqEueVpe9EGpdab6OgZm6291GWCi98BtnESNtodFLqj3z0RHClLKUvGbyYGCKp/IBm4qdxAhC9RChlqUAGBcUQNV8qWlDs7bu0UptbiyUgSj19tYJ7too10TplSnonFa276RhYBl3Z6FXKomSUU5SeGat15kmg1+M/dAh/Ah2pkr2JDm4AFk0o4+IZlYRkuOP5zfgCSfQySZBlWc3cjB1bwxkjhKHhf3b9Rxyw/RX4+B+ABJf9FfJiZQshtxvp7WcB6DEUxqxxx4vjGtwUFxej1+tpbo7t029ubqa8vDzlYx944AF+9atf8dZbbzEtRW3PbDaTm5sb82eoaA1HvjkGD/qQj86nnoo/SJLgkj9BVjG0bKP7rR/yZv2bAFw+7nJMFoMqHOtv9uaXr++grcfL6BIbX1s4Ou5+JbjJT7CLcK1fD7KMadQojKV9l4UAsgss6HQSchBGGsbi9Dv54NAH/TpnAOcBoQ/KMjiEM3EamMPBTeDo0YSmVwpGsx70YmEeZR7b5/P6EpWlMuBxA2AwisU7GAipWT1NUKwxXJEkKW4yeCYdiiFybYmyVFhz00fmBsLBTThz01e3lGebCG4s6QY3pROxhUcwOA8m725Nhj/k5+2DwvbD6hbfN8pGsC/02TY1CEtUmlJFxc3xAynvvkDYfexscvDI+/07b1e3D7fDjyRBUVU2nx//eQBe2fsK7o4D8N+viwNP+Ybq5ByN/bXXMLY1Ygr0IMvQfmhgQWEmOa7BjclkYtasWTFiYEUcvCDcFpeIX//61/zsZz9j6dKlzJ6d3pfhsUDRyZSOFbsRx7Jlic2Mskvhkj8C8NrOp/EGvYwtGMvUYiF2K6rKjnm+dFi9t41n1ous1H2XTcNsiG+lVoKbTOhtQOhElB3JwvwlwMBKU64DorRkyzWJGV1poM/OxhQ2GUyVvZEkiZBZZMCqjKnbwCGqLBXtcZOpspSy25Wjviy0spTGMKa3kV9EUJyZYDzapdhkTa8VHGBU/igsAaUslXzNCPl8ePeL0oqS7e0TSSKrRBiouo70P9P/4ZEP6fJ2UWosJxCOQfqarh2NWppKJSpujp8KXpRt5p4LRbn+D+/uYU9z+ptjJWtTUGHDaNKzoHIBVdlVOPwO3nz1ZnB3QvlUYW3SC1mW6fjnU0hAUZFYx1oODrwhJlMc9xX19ttv59FHH+XJJ59kx44d3HLLLTidTm688UYArr/+eu688071+Pvuu48f/ehHPP7449TV1dHU1ERTUxM9Pcc/UmwLf0DKJlWRNXcuBIN0PvNM4oPHnYN80g08lysCmctHXayWiopHhIObNKNfjz/InS+KuvK182uYXZdYXJ3KwK+/ehsFJVCabhY11g8OfYDD178PtvOISL9mlfYvQ2KelF5pymMUrfdlUh9iQqKHZkbNlcpQWcoQtdtVhJmKUFMTFGsMRyQluOntc5OhzI1almprS2v8gkKtdSTGkNCfWFJkbnx790IggD4vD0Mf1YBobFViI+Rs63t+XW+UDd7ZRecBYqNkzkrf7yVrblhU/NG6ON2mIkxW/Mp6c9H0Ss6aUIo/KPO95zcTTLOVXak6KN89OknH5eMuB+BZdwMYLHDpY3E6GwD3xo14d+5EslionDUq/HxD17iTLsc9uLnyyit54IEHuPvuu5kxYwabNm1i6dKlqsi4oaGBo1HZjz/96U/4fD4uv/xyKioq1D8PPPDA8XoLKkr0W1yTTcE11wDQ9exzSV0aN590JXtMJsyhEBc0blNvL64WH7D2w+kFN797Zw8H212U51r43rkTkh6XzMAv0NGBd7dQ2fcncwMRUbHNncfIvJH4Qj7ea3wv/SfoacVlFx0JWSNG9uu1LZPELsW7I7WouEcvFqhCSvp8zmifm2CrCG4y4XEDqIMBIaJd0DQ3GsOZ+LJUpgXF4bJUeztGRXPj7jtzU2kQjSFBKUhAn7yjybNDlLzNEyemJyYOkzVKrC1OtxG60/dQ8wQ8vNv4LgBzbWLGYLp6G/W1T5oJRiOBI0fxHzoUc5+yMe1ucSc0MJUkiZ9/dgrZZgMfN3Tx5Or6tF5T2UiXjIjoNC8pPgmDLLPZYmbXaV+H0sTfLYr8Iu/CCygdJ9ZYJVg6nhz34Abg1ltv5eDBg3i9XtauXcu8eZGBjcuXL+eJJ55Q/11fX48sy3F/fvzjHx/7E4/C6/JjbxN12pIROeSctQh9cTHB9nZ6PkisQ3n+oNDanON0kbvuUTgkXCELK0W6tavZRTCYWpi19XA3jyoTvy+ZQq4l8Q4hFAwJ52TiMzeKMt88fjyGgv7Ns8oNX7j2Ng/n1J0DwDsH30n/CfYtwxUUr5lVkjjjlAzLxHDHVAqvmx5fD92ScBzNDfX93vxRQzMj7sR9B0XpIElSXMeUprnRGM6oIxiGyOdGKfmGenowhLVxfm/fmRuzX2zQPIYe6h31SY/z7BTBjWVC8k1fImyl4rxcwQLYm3psTjQrDq/A6XdSYaugOCA6M3P7GdzosrJUs8Hepam8YitI4PcGcTsSb5or8qzceZ54v/e/uYvGjsRZnmg6wpPAFUkEskzx2z9lkVM89llT4u+hQGcn9rfFel9w1VWU1IjgqPOoK6Yr9HgwLIKbTwOKPian0ILFZkQyGMi76CIAul6Id+91+BwsrV8KwOWl80EOwctfg4CXnAILBrOeUFBWS0mJCARD3PnCFoIhmfOnVnD2pLKkx/Z0egkFZfQGHdn55pj7nB+KFr7+Zm0gkrlxtHtYXCPa8VcfWY3L3/cFBcCet3GGgw5bnrmPg2OxhMtSvoMHCSYpSx7oPoDHKO6TPclHOiioZSmrnkBruBU8A3OlFHpPBtdawTWGM3GZG2UqeIYyN7rcXNWi3+AWpYx0MjeKuZ7H4GR/1/6kxylZXcvE/gU3WXmi/OIMFSDvejPtxy09INb0c0eeS0+HyCj1R2+jvn4Svxu9UUdOgXi+3h1T0Vw1p4Z5Iwtx+4Pc+ULqMTVBf0jVYxZWiI01nzwN+9/jCpfQK7564LWEa7r9v6+C349l0iQskyaRXWDGnGUgFJLpbIp34j+WaCtqhsgptnDyZWOYtqhavS3/0s8C0LN8uSpOVXh9/+u4A25G541mxvkPCe+A1p2w5mEknURhudiZdB5N/gH526p6thzuJtdi4J6LJqU8PyVIyi22xDiPgpiLBWCb3/9R9UrK1d7uYVzBOKqzq/EGvaw8vLLvB4eCInMTDm6UBSVdDIWFGCrE7sgb3qH1Zl/3Ptzh4Cba+CoZSlnKIAUJhQMmQ1nyoLG/RM+XkmVZ1TJomRuN4YiqueldlspQ5kaSJLXsq3OJ8rHPE+hzZpxyLXuMTg50H0h4jCzLaubG3N/MTa7YaIUw4t27HvzJN5kK0evektolaqa8v2UpAFtYd+Nal0h3EylNJUOnk/jVZdMwG3Ss3NvGsxsOJT22q8WFHJIxWfRiDe5phTeFznXu/Nupza3F6XfGNYvIskzX88+Lc7rsUkD8fyrZn+PdMaUFNxkit8jKzLNrmLG4Rr3NPGYMlunTIBik+5X/qrfLssxze4S3zeXjLkeyFcE5vxR3fnA/dDWqEXRHkuCmod3Fb97eBcBd50+iNCf1BZRMb+NvbsF34ADodGK2ST9RWhyd3V5CAZnFtSJ7805DGqWpwxsJubpxh0S7ZH8zN9C3383+rv14DOJ36Hb07Ruk7Br1HlEzlrKy0Nls/T6vZCg73oA/FDO3RgtuNIYjSkZxKGZLKSilKckhLB1CQbnPkoYyesFj6Ik1movCf/gwoZ4eJKMR88j+6fn0Rp3qn+P0WqC+783a2qNrcQVclGaVMrloMvZwcJNblJ6BXzTWmTORjEYCzc34Dx6Mua8vUbHCyGIbt589DoCfv7qdFntiDzLlO6agwiZ0SUvvULujdCffxuVjw8Li3c/GPM6zfTveXbuQTCbyzj9fvb0orBltO6xlbj7V5H9WRLRdLzyvRuDb27ezs2MnJp2JC0dfKA6cegXUngJ+F7x5JwWVyYMbWZb5wYtb8PhDnDy6iCtmV8cd05tkM6Vc4Qm0lkmT0A/AA8hiM2Iw60EGR4dHDW4+OPQBvmAfwcTet3GH8gAdkpTeALy415+UWnezv3u/WpZKZ06MkrnROcUu0lha2i8hYl9El6WU3TBowY3G8ESdDB4Kt4JnuFsKQB8u+0rd7eptfZWmPD1ibfEYnezrSuzp4gmXpExjxyCZ+pcVhkgm2RUqgN1L+zz+3QYhJF40YhGSJOHoGHjmRmexYJ0+HYgvTeWnkblR+NKpI5lalYfdE1ANXnujVAcKK2ywfzlsfV5M+77oD6A3cvGYizHqjGxr38a29shzdIflFjmLz0Kfn6/eXqxmbo6vqFgLboaY3PPPQzKb8e3dp06mVSLgs+vOJs8cHsgoSXDeAyDpYcd/KZTFoDdF6BXNs+sPsXJvG2aDjl9+dmpaX77JgpvB6G3EaUuqYM7R7mFq8VRKraU4/U4+PPph6gfvekPV21hzTQNqh1Z0N55kZamufVGZm34EN+FdpCFNQ8N00YIbjRMJ5XMZ7G3il6GyFEQ6poJtrcJ0k75FxWpZyuCk0dGIPxh/bXt3KGLiNP1temFTdTeFsPvNuGHH0QRDQbVLdFHNIgK+IO6ww/xAghuItITHiYqVjqnWvoMbg17HfZdNw6CTWLqtiTe2xPuudRwVGaCCMgu8/j1x45yboXKmuN1SoG5an90lvrtCXi/dr74qzufSy2Ker6g6G5NFj8HUt8ZxKNGCmyFGn5NDzhJhcNf14os4/U5eP/A6gJruUymbBPNvAaBwiyhTdTW71HZhgKPdbn72qshS3H72OOqK0yuZJM3cDEJvoxDR3bjRSToW1SwC+uia6j4ETZtxBUWH1EBKUhDpgvDu20fIF5sp8gQ8HO45jDvsc9OX5kaWZXVwptQd9rjJdHCjlKUCITXVD5rPjcbwRO2WCoqu1KEoSxnDmrZAc0tkBEMfmRt3OAsbsvgJykEaHA1xxwy0U0pBWZOccgl0N0JL8q7MLW1b6PB0kGPMYXb5bDVrY7ToMWelZ0zaG8XMr7ffjVKW6mpx9alNAphUmcstZwrH+h+9vI0uV+w6qQh/C+3vQ9suyCqChXfGHHPFuCsA4eHj9DvpWbaMUHc3hooKbAtivztKa3K46cHTOe+W/+Gp4P8r5F18MQCON5byxp5XcQfc1OXWMatsVvzBZ9wB2eXkODZi0AdFx1Q4MJFlmR+8sAWHN8CMEfncdNqotF5fDkWeQxGjAfgOHRY+CgYDWSedNOD3p9SUlRqzEuW/1/gegVCSHdguIU5z5ovX7a+YWMFQUYEuLw8CAWHYFUW9vR4ZGZNNfMw9Ln9MQNGbgD8ScEgdYiRIpoMbQ5LMTW+Rt4bGcEDtlgrJhAKRz2tGMzel4eCmpQWTNT0jP2Wjkhc2QU1UmvLsHFinlEJWOLhxZYfHNqQoTSklqdNHnI5RZ4zS21gGXNa2zpiOZDIRbG0TusgwucUW0Q7uSd4O3ptbF41hTGk2bT1efv5axBcsGAypoxwKdjwoblz8Y7DG2mbMLptNXW4droCLNw68oWpI8y6+CEkfm6GRdFJGS/kDRQtujgG2+fPQFxUR7Opi02tPAmEhcaIPgCUXzvkFkiRTqKsHIrqbFzYe5r1drZj0Ou6/PHbidyqc3T6C/pAYlxDVlqikO61Tpw5KNJsTVZYCmFU2i3xzPl3eLjY0b0j8oPBC4coVqU9bginl6SBJUkRU3MvMT1nwqovCzqQyeFPobpRpxJIEtIqp9IbSzHjcKETKUsEYA7/hsBhoaPRGimoFjxb56g2Z+7waysQGItDcHJkM3scIBkVQXFQgyvq9RcXBri4CR0QJpr+dUgpqO7g5vIncnbglXJZlljWIEUILRywEiOqU6r+YWEFnNmOdKdZHRT4AYkad0g7enaIdPBqzQc99l01DkuC5DYf4YLewubC3ugkFZQx6PznBg1B5Esy4Nu7xkiSpjsWvbnqanlWrAMi78MIBv7+hRgtujgGSwUDuuecCMOLDeow6IxeNvij5A6ZcBiPmU6gXKvnOo06a7R5+8l8h5vrG4rGM7TXxOxWKqj67yBLjp+JcOzi9jUJEcyOyQwadQb3IE5amvA44IIwNnWaRLs0aYFkKImlnxY1UQQluRhaOVFPD7hSlKSW4MVkNBFtbANIeIpouERM/WTPw0xj26PRJgpsM+jIpZSl/S3RZKr3MTUWRuD57BzeenaKT1FhdjT4n/bUyGqUs5ZLD41ca14GzLe64/d37aXA0YNQZObXqVCAquBmAx03MOcwPz5n6sJfupjR93Y3CrNoCvnByHQB3vrAFpzegbpwLpXokSRa6T13i/9uLRl+EUWckf80O8PsxT5iAeXT8gObhghbcHCNyLxCtcnP2yCwpP5MCSwq3XEmCc35JgUEMbWvfd4gfvrgVuyfA1Ko8vnx6euUohUTTwGVZzojeBmK9bhQU3c17je/F14X3vQdBHxSMxOULj28YYFkKImlnJQ2toPhfjMobpXZiKV0WifC6Iu7E/nBwM1RlqUBUWUoz8NMYrkQ7FCsjQ3QGKaNlVMVHKtjejtEkrgW/N3nmRpZltfOxtlR0ivY28vPuUvxtxg/4vFRBcY8M5dMAGfbEuxUrJan5FfOxGUUGXNnoDVRMrJAVXptda9eqHWsQ0U6mMvJLxHeWjKe6wMrhLjf3v7mLziOik7TAcAhmXgfVCaQSYQosBSyuWczJ28W6lXveef167WONtqoeI+TJ42jNl7D64IrWNDwXqmdROKYOgNa9h3hnRxNGvcT9V0zD0M8vw0QDM3319QSam5GMRqwzZvTr+XqjuBS7un0EfGJRml8xH6vBSrOrme0dvYR4Yb0N48/D2S2CjcFkbszhbgjvjp0xC8C+bpG5GZ03Gmt4uF56mRs9gZawO/Ex6JbSxMQaw5WIQ3FoSMTEAPqCAjAaQZYxSuL6TJW5CfhCakv6mDKxltbb6wmGIgGRZ5CdUhCluen2IY8VmfdEuhu1BTy8oQNiNDeDwTplCrqsLILd3Xh37VJvj3jdpJ+5AbCZDdx7qRjt8MTqeg5u2gxAoaUVzrqnz8dfUbSYyQfFumVasrBfr32s0YKbY8RbB99iZfg6K12VuG25N4VLbgDA4S3kHOkjbls0lgnl/feiiYiJIwZ+qt5m5kx0lsFdgOYsgzr0TukSsBgsaopWufgB4Uq8J1y7Hv8ZXN3Conyg3VIA5lEjkUwmQk6nOmjOH/TTaBeZr1H5kcxNKgGeVwluzDpkd7jEVjJEmptAkFBIG5qpMbyJNvEbCo8bAEmnwxi+zvRBsR6kEhQrZpx6g46aompMOhPeoJcjPUfUY9ROqQGKiSGSuQn4Q/hqxdw89i6DQGRQZ5Ozia3tW5GQOHPEmertg/G4iUYyGrHOEeaqzqjSVPQAzf5y2tgSrp5XgwUvnqNdABTMmAvZfa91ozY0oQN2VcE7/s39fu1jiRbcHCOe2/0cKyeJX7fzgxUEu7v7fEx2bR2SFCCEkduN73HLqX2b9SVC0dzkRmVunOHgZrB6G4j3ulFQdDcxwc2hj8DVDpY85Op5uNTMzcDLUpLRiHnsWCCyY6u31xOQA9iMNsqyyrCqZam+MzdGKex1k5uLzjpwQWAi9IZEZSktuNEYniQSFBsy2CmloJSm9D6xVqUSFCslKUu2EYPewMg8kb3Z2yW6JWWfD+8+kbUdaBs4gMEUaeN2WsdDTgX4HLD/ffWY5Y3LAZheMp1ia3jCuT+ormuDDW4AbPPCpakoUXG+krlJsx28Nz88byK3Z7+DIyB+74WnX5rW4+yvvwbAqkk6ntv9XL9f91iiBTfHgF0du9jctpmjZUb0Y0Yh+/043u570uzLm4/QHP4fMvrMGDc81u/XlmU5zuNGDoUiepuoCeyDIadXOzjA6dWno5f07O3ay0F72EJ8l/D4YewSPJ6IrXvWALulFMy9dDd7OoUJ4tj8sUiShDUnnLlJpbkJBzcGWRyT6U4piIxfCGrBjcYJQKygOPx5zXDmBqKCG69wtfWnKEsppWXlmh5XIEYM7OoUZRvvvn3g96PLzcVQWTmo81LWJZfDDxMuEDfueEW9P1FJShmYaTDr1REOg0EVFX/0EbJfvPfcEtEO7vME05qZF/ec/g4uD6wmiJkQQdZ2JB7NEI2vsRHPJ5tBp+OjSUa2tG1hZ0d6VYjjgRbcHAOe3yOGiy2sWUjhhcLzpvu111I+5nCXm7tf2kZr+H+oM1AN798Pro5+vbbb4cfvCYIUmQPl3bOHYEcHktWKdVpmjJZyenVMAeSZ85hdLlKq7zW8Jxw+d4RnbI3/jKq3sWQbB53qtkTpbgB2d+4GIgufxSYWqbQyN0HxHjLdKQXRZSlZExRrDHvU4CYkE/SLbMpQZG6M4XZwZeyJL4WgWLmGlcBBucaVaz6it5kwaIsFRXfj7PbBxHDb867XIRjA7rPzUdNHQGxw48iAx0005gkT0OXlEXK58GwTHbMGo57sAnFuXQMoTbH8V3R7xNiLVj384KUttPd4Uz7E/rrQSmbNm8vsScLLbDhnb7RVdYhxB9y8uk/YVF8+9nJyzxcKc9fadQRaWxM+JhSS+fZ/NuHwBjAXiQ9wh3EqeLvh/V/36/XtbeKDn11gxmAUuhjnmjUAZM2ePaCZK4nITdAxBXBWzVkAvNv4LjRvg479oDfD2CVRepvBn0OkYypxcKPs8lIHN+GhmV7RHmkoGcLgppfPjYbGcESni8/cZFpzAxHhvs7RBaQWFCvXsFJqHlcornElWztY875obPnhjqlur5j9Zy0QZfWGNaw4tIKAHGB03mhqc2vVx9gz1CmlIOl06pTwWN1NegM042jdDRueoDMwAgB/loG2Hh8/fHFryhKXPbwhzzv/fNXz5rX9r+Hy9/P1jxFacDPELD2wFIffQXV2NfMr52OqrhaTwkMh7EsTm0I9vuoAH+7vwGrUc+VZou270zRD3PnRo9CeeFBcIhSTp+hOKSW4sS1YMIB3lBjFpdjRK7hRdDebWjbRtuUZcePYs8Gck5FOKQXzeLGQBZqaCHR2RoKb8MKnCorTyNzo3HYg851SENUKHtDKUhrDn8jgzKETFEPEpVjXLTZ8qTQ3SmnZEu6AVDYwB+0HcfldavbWPIhOKQVbbqRjCr0BxoenX+/4b8KSFGTO4yaarHBpSvEmg/4N0IzhnXtADtJhE1qe02ZXYNSL2VMvbTqc8CHePXvw7t4NRiM5Z5/N3PK5jMgZQY+/hzfrE3+PHW+04GaIUdJ2l427DJ0kft3KeHh7gtLUriYHv14qasc/umASE8aJ1GFnhw559GIIBeCdH6f9+l2q3kZE+bLfj/uj9QBxM0EGQyKvG4ByWzmTiyYjI/P+/vD7nSRKcy57OHMzSL0NgD7bhrG2BoCOzetpdonxCWPyxwBEtYL3rbnR9wzN0EyIMvHTWsE1TgCiNTeBQDizOSSC4vC11in8pfypuqV6IoJigGJrMYWWQmRk9nXujZopNXCPGwXVpTicZVZKU94d/2Xl4ZVAfHBjV92JMxfcKF5k7o0fE/KKc1EzN/3xujmwQpTVJD2dhskATBhXxDfOEg0Zd7+8jcNd8cGSIqPIPvVU9Hl56CQdl40VAzOf2zM8S1NacDOE7OzYyea2zRh0Bi4Zc4l6e84554Ik4d60Cd+hSKTsDQT55jOb8AVDnDWhlKvmjiC32ILOIBHwh3DMuUeMot/xCjT0MXE7TG+PG/eWLYRcLvQFBZjHD/7iV99T+EJ22334fbG7LuXiXxayg94E40RbZSYzNxDR3Rz5eDUAVdlV5JiEO6lq4peiFVzN3IR3j8aK8oycVzQxPjchLXOjMbyRlFbwYIigX3xeh0ZzIzI3UpsYe9KfshTA+AKxlu3ftZaQwwFGY0bcc235UZkbgFFngimbtYEOXAEXpVmlTCqaFPOYno7MZ25Mo0ahLylG9npxb/oEiLgUp625CYXgrbsAkGfdSEebyMQVVGTxlTNGM7MmH4cnwDef/phA1LBmWZaxvyYaQXLDG3OAi8dcjEEysLl1M7s6djHc0IKbIUQZD39WzVlqmyAI8Zwyzt7+xuvq7Q+8uYsdR+0U2kz86rJpSJKETq+joExE6B3+SpgZnvvx5g+FQLcPendKqXqbefOQkthsDwSLzagOvetdmlo0QgQ3H1otOEedARYxD0bR3AymDTzmHMI1duf2rYDolFJQFsKAPxQXfCkomRvaxEwaQ0VFRs4rmsSt4NplqDE8iR6cqZr4DWEruM4lSsJpCYqjghulNNWxRcyyM48alRE9oa135sZogbFLeDdLrMkLRyxUM/IKis5RMTfNBJIkRVrCw6Wp6BEMabWDb30ejm4CUw6OabcT8AbR6SXySqwY9Dp+f+VMss0GPqrv5P/ejQwh9mzdir+xEclqJWdRxLiv2FrMwhrxb6VpZjihrapDhMvv4rUDIpWnjIuPRrGuVhTo7+5s5tEVYlzAry6dSklOJJtRUCEsvTuPumDhD8GYBYfXw7YXU56DLMtqyjI/HCANhd5GofcATYXR+aOpDUn4JYmVVZE6uLIbGoyBXzTKAE393gYAxhZEghujRY8uPOxPMQHrjZq5CU8ENw6yjTQR6lTwQEgTFGsMe6LHLwyl5kZnsaDLy8MQEIGB3xNEDiX+wnYnytwUisxNYJf4UlbWgsGSlRvVLRUmOPFC3rOJwGJRdaxLb9AfUo8drDtxb5SWcEVUnBcOnnzugOr9kxS/B5b9RPx82rfotItzyy/LUjdXNUVZ/OKzYgL6Q+/u4cP97QDYXxXfYzkLF6LLyop5WnWY5r5XcQcG0LU1hGjBzRDx+oHXcfqd1OXWMbc83igvZ8nZYDDg3bGDQ59s59v/EanGL5xcx5LJseWQwnBw09HkhJxyOOUb4o53fhzjltkbj9OvzkvKLbEScrlwfyJcJTOpt1HoPUBTQWrbwyK7aPF8V+5Rb3dmsFsKIgLCnKN2jH5ZFROD2PlYbak7ppTgxhBwI1ks6PPzM3Je0SQcv6AFNxrDFCVzEwzKBIawFRxEaUofjGyMkmVvPL0ExRDJ3NjqhWbHMilDwY3iUuwNqq7JWwqr6NDryQmGmOMPxRyvOBMbzPqYzFJGzmW+2JC6N28m5HRiMEXawfsUFa99BLobIbcK5n81MjAz/N2icPGMKq6YVU1Ihm8+vYkOuxv7G2IDrsxHjGZ+xXyqsqtw+B28Vf/WYN9iRtGCmyHiP7v+A4jINpHXgaGgANspJwPwym+fpNPlZ0pVLneeF9++WFCuZG7EB5KTb4Pscug6COseTXoOygc+u8CM0aTHtWED+P0YKysxjhgxqPeXCFVU3NbLEGrbiyxyiQzSiqNr8Qf9YnBnhjU3htIS9IWF6GSoaY0seAqWnOReN7IsxwQ3xoqKjHhU9EYfnbkJaYJijeGNpGRuglGZm6EKbior0YcC6HXiuvAmyEbIIRmPU1yn0ZmbkXkjMUgGqprEY8yDcCaOxmSJjJZR1qt3j6wC4DS3G+P2l2KOV9rAM+VxE3Mu1VUYq6shEMD5kfDXUUtTqUTFznZY8Vvx86K7wGhVv0sKyrPiDv/JxZMZVWKjye7h/373HIGWFnS5udhOPTXuWJ2kU7M3w83zRgtuhoBtbdvY0bEDo87IRaMvSnqc0jU1dtsask16HrrqJMwGfdxxaubmqFPUVk02WPRDcecHv05q7NfV3LskJWq1WQvmD8kXd24Cl2JkGTY/w1SvjyKDDYffwUfNH+F1BdQpw5nK3EiSRGiM6Jga12akNqc25n5rinZwvzeoSpiU4GYoMGiaG40TiBgTvyHU3AAYq6rE3+HxJ0rWORqvO6CWq6IzIya9iYmmGkrDU20GM3ahN0rZ3NnlRZZlljUsA2CR0yWkAcHIeuIYgk6pmHM5WWyInStFgKXMC0wpKv7g18IjrXwqTPs8gJq5KeiVuQHIMhn4w1UzMel15KwW7e45Zy9Gl0TDdMmYSzBIBja1blK9hoYD2qo6BPx7578BOLv2bAosBUmP21I7A6/OQHVPK785yUpdcfwHDUR0Lukk/J4gzq5wGWrGNVA6CTzd8MEDCR+nBDfKBeBc8QEQuUAyTSKXYg5vhI596I1ZnFkjXC3fbXiXnk7xPizZRgym+IBuoLSPEGLl6d256HWxz5tqvpSStZGQ0YX8GCqHJriJLUtpmhuN4U20iZ+yGTEMgeYGIho3Y0gECF5X/HWqXLsmiz5O+zPXIZo23CW56HP7P2A4GcoIBqfdy/7u/TQ4GjDqjJyqyxaGfvuXq8cqWWtlo5dpsk8/DYCe8FquDtBMNh28fR98FB7bs+TnoNMhy3KkLFWZ+DtncmUePzp3DKcdFnKJI7NOT3pOxdZidWjos7uf7df7GUq04CbDtLvbef2A6IC6euLVSY871Onitpd3sq5ctBHO2LMu6bF6g041bFI+lOj0sORn4ud1fxHOv71Qovn8Uiv+I0fw7tkLOh3ZCdKLmUAZ7+CInlOy+Wnx94TzWTRyCSBGMTg6IyWzTLKvRNTp65rixYhKjT6RoFjZJRolPxIMWeZG9bnRTPw0TgBixy8MdeZGBDcGv1jjEmVuenvcRDOpQ2zijlZmdk2JbgdXsjbzK+ZjmxQeNrkl8oXuyLA7cW+y5i8AgwH/wQZ8Bw/GDNBMyLKfCG+0MWeLNnagp9OL3xNEp5PUxyfiYn8jOX43HeYcbtkq0WxPPn/qc+M/B8BLe1/C7rMP7M1lGC24yTD/2f0f/CE/04qnMb1kesJj3L4gX/7HBjpdfg5ME1kU+xtvIIdCCY+HXh1TCmMWw+izIOSHZT+Ne0xXVKdUzwcrALDOnIk+L29A760vFF8Ht8MvxHdBv2g/BJj2eeZXzCfLkEWLu4XdjaIzLLsgs4vAhjxRoss/1I0cjBUkqi7FCWr5qt4mJDJKxorMd0pB5ItBmwqucSKg00X73BybspQ+7BCeKLhJJCZWqDwirt1thWm2RqdJxMjPxzsH3wHCY2Wmhrtgd7wK4WnmSkle2ehlGn22jayTTgKg54MVauamqyXBe25YC9tfFt5oZ0e+HzqOiOAxrywrZeebI+xts2XcXFpdfr761EZ8gcTfUfMr5jMmfwzugJsX96Tu4j1WaMFNBvEFfTyzU4wYuGbiNQmPkWWZO1/YzLYjdopsJr72/evR2WwEjhzFvWlT0ueO6ZiKZsnPxId324vQGMn+xLSBl2bR84FIY2afdtpA316fmLOMmLPCXjcdHtj3rkjb2kpg1JmY9CZOqxavv7tRZJoymbkJhAKs1tfjNYDO48PX0BBzvzWFkZ86Edwnfr9D0QYOvVvBNUGxxvBGsU8QDsVD1woOkWtO7+oCwJOgLJWoDVzBckAYAG4vcqkO5ZlAGcHQ1tbFjo4d6CSdKMNUz4b8WvA7Yadol1aDmyEqS0FUaWplJLiJaweXZdWwjxnXQFnEaFAJboqSlKQAQk4njneF3mbJ168nx2Jgw8FOfvHa9oTHS5LEdZOuA+CpHU8RCCU3YTxWaMFNBnmz/k3aPe2UWks5u+7shMc8vqqelzYdQa+TeOjqk6guLyBnsRguqbhAJqKgQqQP1Y4phbLJ4sML4sMcjt6dXT4CvhCSTsKWq1P9bbLPSF47zQQxXjefCO0RUy4Xc1mIGPodbW4T55PB4GZf1z48so9DpUJr4w3bsCtE5kvFl6WUNk+9xwGAcYg1N6FARKCpCYo1hivR40KUzM1QtYLrCwuRLBaM4UGMiTM3ictSIZ8P/36RDa4vldjatjVj56UMzzwaHnQ8s3QmRdYikCSYEZYebHySgC+I2y7WlqEqSwHYThNruGvtOnRyIHE7+I5X4NA64Ym28Icxj+84Kuw4kultABzvvofsdmOsrWHkqXP47edmAPDkmoP888ODCR9z3sjzKDAXcNR5VJ27dTzRVtUMIcsy/9j+DwCumngVRl38zmL5rhZ++bqYWHvX+RNZMFrMjVIsre1LlyIHEke8Sjt4xxFnfPpRMfZrXCs+1ERKUrnFFrwbNyC73RhKSjLWIpkMdYDmkTaRrgWYcZV6/2nVp2HQGZB7RLCTybLU9naxq3DUCWGhZ/uOmPutKVrBvc6ozI0kYSjP/OgFiN31+sM+HlpZSmO4og9nboKBodfcSJKEsbISQ0CsXb4UmpvemRvf3r0QCOC1mWjPJaPBjWJV0ROeubQ43BgBhDeWEtSvwLFfdAqZLHo1gz0UmMeNxVBWhuzx4Fr3UYxTMQABH7x9j/j55NsgN3ajpmRuenvcRGN/VazdeedfgCRJnD2pjG+fLaw17nllGx/sbo17jMVgUbU3ynfh8UQLbjLExy0fs6NjB2a9mcvHXh53/7Yj3XztqY0EQzKXz6rmCyfXqffZFixAn59PsL0d17rEwuKCsiyQxG7G3busklsBJ39d/Pz2PRDwxZSknOGSlO2M04ekBTwa1etm5ydCC1R5ElREtEc5phzmls8l25cPZDZzs619GwCG8WJYpqdX5iZVK7iS0jX4nRgqypO2PQ6W6F2vMhxQ0oIbjWGKLmq2VGAIHYoVjFVVGANK5iZRt5SiuYkNbjw7xEbGP7oaJImt7RnM3IQ1Nzq3WKtiBmXmj4Ax4cz7R8LELqfIOqTrrCRJ2E4TTSE977+vDtBUNrSsfxw6D4CtNPK9EEYO9d0pFejspGeVaDWPNu67ddEYLp1ZRTAk87WnNrK72RH32CvHX4lBJ9rCN7duHtwbHSRacJMhsk3ZLK5ZzMWjLybfkh9z35EuN1984iOcviAnjy7il5+dGvPhl4xGcs4RwyS7E0wKBzCY9Oqsko7epSkIG/uViQ/1+r9GtYFb6Vn+vjjH04e2JAVRZalDR8QNs2+MO2bRiLOwDUFws6VtCwBFU2cD4NkZm7lRFkSv068a6CkowY0x4MRUE+uPk0l0eh1SWGPjdYenLA/hl4WGxmCI7u5TyqhDVZYCobsxpFGWsvYSFHt2iI1M9iQxPmBb2zZCcvIGjf6g+NyYg1am5k2nMruXHu+kGwBw7BZf5kMlJo4mZ5EIsBzLlpFXIl6vu8UtPM+W3ysOWngnmLNjHufo8BDwhdAZJFWv0xvHm29CIIBl0iTMo0apt0uSxL2XTWVuXSEOb4AvPvERbT2xDvklWSWcN1KMFvrb1r9l5L0OFG1VzRDjCsbx4MIHuWv+XTG32z1+vvjERzTbvYwry+ZP187ClODLTJk15XjrbUK+xLOPCtWOqQTBjTk7Ult9/z46Dgs3qxypB9/Bg0gmE7aTTxno20sbJQCzu21gyoHJl8Ydc3LRqRhD4bZsc3z0PxBcfpc6mXbi3HNAkgi2thFojaRPleBGluN3hWpw43diqqnJyDklQ0n1qzofLbjRGKZEHLUjPjdDVZYCMFZXqWUpTz9awZWNTOmMeVj0Fnr8PRy0J9aG9BeT1UDAKNbkM/IWxx8w7lywlWB3ibVvKPU2CraTT0bKyiJw9ChWj5gB1d3ignd/Dp4uKJ0MM6+Pe5xSkiqIminVm64XRbdT7oUXxt1nNuh55LpZ1BZlcajTzRf+tg67J3YtvXGy2NA6/U78oT5mXg0h2qqaYaIzMk5vgBv/9hE7mxyU5Jh5/AtzyLMmnjeSNXsWhvJyQg4HPe+8k/CYwrCoOGHmBsTE8NJJ4O6kIzxjxbz/YwBsp56KPjt5jTVTKPOlf64+EgAALr5JREFU7MEymPa5uJ0DgNWbA4DL6OCDo+9n5HW3tG0hKAcpt5VTUTwS08iRAHh27lKP0et16uTy3robT0/Y58bvxFQ7xMFN+MtBbT8fwi8LDY3BoNcrmpuhFxQDmGprU5alFI+qaM2NHArhDWdubBOnMKlIdAZ90vpJRs7J4XPQZRLr6TTz7PgDDCaYfhXdAaHTy+Q08GToLBa189WwXUgZupt7YEM4W/KZ+9QmjmiSzZRS8O7Zg+eTzWAwkHdRfHADUGgz8bcvzKHIZmLrYTs3PbEety9iuzGmYAyvfvZV/rLkLwm1p8cKbVUdIjz+IDf/fT0bDnaSazHwxI1zqC5Ibpgk6fXkX/pZALqeSzyjQ/lAth/uSXg/Oj2c/TO8oSx63CLI0K0SHVi55ywZ6FvpFzkG4TPjlXPwTYnfOQD0dIhUptPUxbuNmVHVb2zZCIhOBojYryu1eAVVd+NInrkZirlb0SgOr0pwo2VuNIYrymczFBXc6BOMiMkUpro6NXPTuywlyzIuuzKPLlKW8tXXE3I6kSwWzKNHcVKZ8IHZ0LwhI+e04tAKus2iuzPLncQjbM5NdAVFuSrfFC+2HQpyzhYdufLKpQB4PTKeoA0mXQIjE1t+tB0Kd0pVxW86Abqef0E898IzMRQVJX3tUSXZPPnFueSYDayr7+CrT22I8cCpzR260n66aKvqEOALhLjlnxtYva8dm0nPk1+cy+TKvo3z8i69DCQJ5+o1+A4diru/uEZkPFobe9T5KnGMOYuO0ksAsBl7CO3eDkYj2QsXDvj99AfTJ49ilkSpyWEck/AYxcG4x9TJ2qNr6fElCdb6waaWTUAkuDFPFMGNN4nuJi5zE625qR3aC7N35kYpU2loDDeiB70Ghni2FPTK3Dj9Meuc3xsk4BPnoHQ+gpiSDWCZPBnJYOCk0swGN2/Wv4nDLEo/jvbELr1yXg3dIWFCmN/wdEZety+yzzgdjEaC+3aTbRXrV4c8OuJcn4DWBrE2l4S/S6KRfT66X34ZgLxL4+UEvZlSlcfjN87BYtTx3q5Wvv7vj5Oa/B0PtOAmw3j8Qb7yzw28t6sVi1HH41+Yw8ya5POlojFVV2FbIMbadz3/fNz9BWVZGIw6At5gRBnfG0mivU7UPHOd+wCwzZ+f0VkrSfHYYcMT5OqFgZY9yULQ3SZaFqU8P4FQgBWHVwzqZYOhoJqCjmRuJopT2tGrYyq8KPb2uvGE091Gfw+mIc7c6I1hHx5PuBVcy9xoDFN0+vhW8KEsS+nMZrKKxVoly7FGfkrWxmDWY7JESi6eLaIzyjpFiIlnlM5AJ+lodDTS4moZ1Pl0e7tZcXgFDovISNuj5+ZF0dPlJRgyoMNPzt4nwZE5E8Fk6HNysJ0svi9y7WIT1zriC5CfuKzu8wTU742SEfHBjWP5coKdnRhKStI2e51TV8gj187CpNexdFsTX/7Hejz+YN8PPAZoq2oGcXj8XP/4Ot7d2YLFqOMv181m3qjkqb1E5H9OWHp3v/BinOeNTq+jqFqkE1sbkwtxO3ryAbB0CsfO3MXHJmvDx/8Ar53crLAVeVvihcAe9mMYUSVq1IM1fNrRsQOn30m2MZux+WMBsIQzN776ekKuSCBoSdAOHgqG8IUDDWuuBV1W8vJhJlC+HAJerVtKY3ijlqWOwfgFBUtdjTpfym2PD26UQZYK7i2iS9IybSog7CbGF4wHYGPzxkGdy7KGZfhDfrILRceUMhizN0p3aq7Fji7kiQyrHGLyLrwIAGuLcGNvMyXQBIVpO9QDspiV1ft3CBE5RN4llyAZ0vfpOXN8KY/dMFvN4Nz4t49wejWH4k8NHU4fVz+6lnUHOsgxG/j7F+dx+riSfj9P9qJF6AsKCDQ3qyMTolHSia0NyUs5iibH0tGEpJfJyd6R9NiM4XfD6j8AkBMu6ziSLARK0DNttMiufHDoA9yBJFNt02DNEeG+PLd8rjoJ3FBcjKGkBGQZz66IqDjRZPDo2r61uv//Z/2ldzCjBTcawxXlsxnwR1rBh/rzaqqrw+QXa1h0htXVLX62RX0xh3w+vGFdnXXaNPX2WWWzAPio6aNBnYsyBHnuOJERtrcnnlulBDf5FeEM+bq/gKd7UK+dDjkT8tEZQmR1CuuNtsPJ19FUJSlffT3O8PzB/Mv6Lkn15vRxJfz9i/PINhtYs7+dqx9bS3uvNvFjjbaqZogVe1rZcribQpuJf/+/+cwdWTig59GZTOqHq+OJJ+PujwQ3iTM3sizTfkQsDNnOo+RUudFv+CO0DHGAs/5v4DgKudXkTRILQaLSmSzLdIeDnmmjJ1CVXYUr4BpU9mbNURHczK+cH3O7orvxbI/MQ0k0giFi4OfCUjf0Qji9Uer1b+0y1BieKLOl/J5IqWGou/tMdXUYfWJ9ixb+J8rceHftQvb70efnY6yuVm+fWz4XgNVHVg94iGarq5V1R0Un0jlTRfbb7wmqbubRKKMP8keNhOJxoh37wz8N6HXTJuhH99Z3yRnhJrunERDdUMEkuhc1uBkRLybu+Mc/Acg+4wxMdXUDOp25Iwv5503zyLMa+aSxi8v+tBqX7/hlcLRVNUNcPKOKn10yhf98eQFTqgY3dbvg2mvBYMC1bh3urdti7lNqpW2NjoSiYnubB68zgBQKYHMeJe+0KcIp+OWvQXCIPmg+J6z8rfj5jO9SWC3ef6KWdbfDL8oxEuQVZXHhaNFu+N99/x3QS7v8LlVMvKBiQcx91mnCGdn98abIbdnxIxiUn40BJ5Zx4wZ0Hv2hd7eJJijWGK4kytIMdTAek7lxRDYhaht4VHCjlqSmxhqjzquYh0Fn4FDPIRocsQN002Vp/VJkZKaXTKe2sEYNqhLpbpSNXF6ZDc68U9y45mFhqjdUrPwdtGwjb4IRi6cDQ8BNKCDT2ZRYj6kGN7Wx+sug3a562xTekLjDNV1mjMjn+VtOprrAymUnVZNlGroxFH2hBTcZ5Lr5tYwpTdxi1x+M5eXkfuYzAHT8LdblsbDSht6ow+sK0Nkc/yFurg+b9/UcwlRegu1rfwJzHhzeACseGPS5JeTDP4GzFQrqYMY1FIRb1h0dHnV+koIy/yS7wIzeoOOiUaJmvObomgGJ/za2bMQf8lNhq4hrP8w6SWSQ3BsjdfdEreCK/sbod2IeO7bf59Bfeu98tbKUxnAl7rMpDf0sNNPIkRj94cxNd6S07eoWZY7ozI1nswhurFOnxjxHljGLWaWiNLXy8MoBnYey4frMSLEWK87DiXQ3almqLEu0YpdNAa8dVv1+QK/dJ4c3wvu/AiDrhl9gqq5Wszdth+Kz+l53QN1slvYqS3U99zyyy4V57BiyFiyIe2x/GVOazWtfP41bFyXulj1WaKvqMKXoxi8AYphmdFu43qCjrE5E3kf3dsU9rvmAHYBcez2F11yNVFgDF4SzKu//Gg6tz+yJdjXCit+Inxf+EPRGrNkmUf6RIxe9QmeTuMDyS4Vod0TuCE4qPYmQHOLV/a/2++WXNy4H4OTKk+PmuVimTQedDv+RI/ibRfeC4o/h7I7Ug3vaxC7R5O06JsFN752vFtxoDFd6fzYNBt2Qz6czVlViRlyfPUfa1dsTlaXcHwuTUkVMHM0pVcKRfdXhVf0+h23t29jRsQOjzqiOE8gLr1nKGqYQ8AXVztCCsizQ6WBR2Kn+wz9C+75+v35KfE54/iYIBWDyZ5GmX0nBNdeQ4xDfE8377XEPadrfDbII0Gz5kZE3IY+H9r89Ls79+usz9n+bZzUO+eekL7RVdZhimTQJ2ymnQDBI2x8eirmvcmw+AEf3xQvWjm4RwrJcz2HyLw8P8Jx6OUy9AuSguCjcnZk70bfuAr8LahaI1wijGA72Lk0p9t9FlZEMl1KaenHPi/2aBxOSQ6pWJ2aYXRh9tg3zBNE1oWRvlCnkLrtPrU3bw27OVsmDPoVxVabQghuNE4XeJdNjoQ+TJAlroVg/nM1d6u2OThHwKF/O/uYWfAcPgk5H1kknxT2PEtysa1qHy5/EOiMJz+56FoCza8+mwCKsPJKuaUedyCEZi80YMRccdy6MWQxBH7zxPdHXnimWfh869kFuFVzwIEgS+ZddSr5HZG4Obz4S95Cje7oAqByTH3N71zPPEGxtw1hZSf7FF2fuHIcB2qo6jCn55jcB6H7lFbx79qi3V4wWmpYju7tixHJel5+2FqGrGbFgLPr8/MiTnfcA5NWIwZrP3wShDHgR7Hkbtr8Ekg7Oux+iIvWCJG7KHWGxc/RE2vNGnke2MZt6ez2rj6xO++U3t26m1d1KtjGb+RXzEx6TNVMseq6NYodnzTGKYEIGZ5dYLB1HRF08K890THYbBq1bSuMEQdJJ0Zf1MfusZleIhgxXV6QE1BM2/1RmN7k+Ep1QlgkTEvp4jc0fS01ODd6gV83wpkOPr0ftkrp83OXq7cqapWzQFBTX36Lq7Mj6IUnwmV+D3gR73xHrZCbY8ARs/DsgwWcfAasIvPS5udScJsZOdHbJcT5eR8JZ/oqo4CbocND2l0fFuX/ly0im+PbwExltVR3GWKdOIWfJEpBlmn72czWQKR+dh96gw9HhofNoZEey78VVyJIOq7uV2lt7TeO25sPnnwKDVVxsy346uJNztguRMsDcL0N5bFpYqeu2HIyt/yoLQ3Rwk2XM4pIxlwDw1I6n0j6Ftw++DcDp1adj0ie+MLNmhYOb8EIoSZLqWaE6JbeFPSqqBtbh1l/iWsG1bimNYYokSRjMEQG80axPcXTmyK4THlget8iu+twB1bIhpzA2uMmaMyfhc0iSxLkjzwXgjfo30n7t1w+8jjvgZmTeSGaXRXxjlDWrq9lFMBjJMLeHg5vi6l56y6LRcMo3xc///SZ0x7vO94vGdfDad8TPi+6CkafH3F11yxfIcony+/6XIqU4j9NPU7hUVTU+Yijb9tDDBNvbMdXVkX/JJYM7t2GItqoOc0q/910kqxXXunV0h12LTRaD+iGt3yJmnoR8Pva9LkovlWUyxrKy+CermAYXh0tcq343cKOpUBBe+gr0NEPxeFh8T9whJbXhlvWDdrWry+P04wx7VfQe3HbVhKuQkFh5eCX13fV9nkIgFGBpvZipcnbt2UmPy5o/HyQJ786d+FtE+UkpTSk7QZdLLFS5Y4fWmVhBK0tpnEgYTVHBjeXYBDcFk0cB4ApZCQWD6kbEnGVQ3YnV4Gbe3KTPc26dCG5WHV6F3RevRelNMBTk79v/DsAV466IyeTmFFowmvWEgjLdzZGOqbZkwQ3AGd+DypNEa/gLXx54xrxlJ/zrc6LzdeJFcNq34w4xlpVRUSHOd+/SzYQ84nfWsL0dOSRTUGEjr0QM9fRs307HP0X7d9ldd33qsjagBTfDHlN1NSW33QZA0y/vVQ3pRk4T2pB9G8UXdvODv6fJJCZhj70kcYkGEPqb078nfn7t2/Bx+pkSQNSO374b9rwFBgtc9igY46fgKl1dPk9Q7ZBqDWdxcoos6nRuhZrcGk6vFjuRJ7fH+/v0ZvWR1bS4Wsg356uPS4ShsBDL5MkAOFeJkleOmrnxEvJ48Mji/AunHRt1f+/gxmjWLkON4cvxyNwUz5oIcoiQ3kT3lt1qcJMdztr4W1rw7d8PkkTWrFlJn2dswVjG5I/BH/Lz+v7X+3zdZQ3LOGg/SK4pl8vGXhZznyRJFFWJTVlLgwiUgsEQLSnM8dAb4bLHwGiDgyvhjTv6r7/p2A//uERoJatmwSV/ipEARDPpc0Jn1GweSfODolNr/8diA6x8ZwR7ejj0rW9BMEjOkiVkn3pK/87nBEFbVU8ACq+/jqwF85FdLg7d8lV8hw4xamYpOoNEy0EHe//6InteWY/PnIfFLFM3N/FsEZWFP4B5XxE/v/xV0e2UzgUny/DeL2BNOPtzyR+hYnrCQ/V6nWoW1XRACJ+Vum9vUZvCjVNEKe2lPS/RaG9MeSpP7xTD6S4cfWHSkpSC7bRTAXCuEA6cygLp6PTQ8/FmAkbRBZE7pirl82SK3q3gx+oLQ0NjIBhNkc+r0XxsfEsMVhMWxKaobd12dWClUpLqef99QPjb6PNS+4opupmndjyVsmEhJId4bIvIZl898WqyjPFjWMpH5wMRgW7rQQcBbxCzzRCXjVYpGg2f/RMgwUePwnu/TD/AObwB/rpEGKSWTIRrngNzcruR6hlVmE3gN2az77/rOPrcaxzYJKaUj5lVRsjr5fA3v4X/YAOGygoqfvqT9M7jBEQLbk4AJIOB6gcfxFRbi//IEeovvwLPi/9mVK2I3te+3UJ9OP064fTavssckgTn/grmf1X8e9lP4bkbwdmW/DE+J7x0C3xwv/j3kl/AlMuSHw9UjhOls4atop3ziKLYD3d79WZW2SxOqTqFgBzgoU0PJTwGYFfHLlYcXoFO0nHl+CtTngOgDoFzrlqFHAxGFsh2D20rRGu8ngDmLGOfz5UJov9/9EYdOr12GWoMXwymY5+5AcgOxxYd2w/S0xkrJu55b7n498Iz+3yeS8ZcQo4xh3p7PSsOJR/S+8q+V9jRsQOb0cbVE65OeEzlmHAzx97whi2qC0nSpWhGmHQxnHuv+PmDX8N/vw6+FB1csizEw09cIDzEyqfC9S9BVmpdoE6vY/ypwqm5vvZc1j25llBIpqzaQtaRbRy85lqcK1ciWSxUP/hgbNPJpwxtVT1B0OfnU/P3JzFPmkiwq4vme39F0b9/jC7kpyt/LI6cWoxmPdMXpakbkSRxsZ3/G5D0sO1FeGg2LL9PpEEVXB1itMJDc+GTf4vOqM/cDyff2udL1E0tBuDgtg587oDqwZMsuAH4+syvA0LUt/pw4s6phz4Wgc/ZtWfHGfclwjptGrq8PILd3bg++kitO3c2u2jbtBcAm006Zr4M0WUp0zHSMGhoDJTogOZYaW4AcsNzmroOtKjjDXIKLYScTpyrxdqQfeaZfT6PzWjjsnFiI/bIJ48kzN70+Hr4/UZRxvnytC+r7d+9UbqNuppdOLu9HNopOi2rxiU+Pob5t4iuVSTR8fTn02HrCxCMGIoSDMDeZfC38+C/3xA2G2MWw41vQE55368BzFhcg8GkoztvNIeqzgSg7PXf0vCFG/Fs3Yo+L48Rf/4z1umJs+6fFrTg5gTCWFbGyGeeoexHd5E1ezYFFdnMMn2M1So6gM798hSyC8x9P1E0c26Cm96B0smiprv8l/B/M+HeGrh/DPx6JLz6TbAfgtxquOG/MO//pfXUZSNzsWQb8bkDrHhmN8FAiJxCC3ml8RodhUlFk9Rd092r76bbG+vls6xhGcsPLccgGfjq9K+mdR6SwUDuOecA0P3SyxSURxyUO9pEB0bhiPy0nisTRJeltJKUxnDneGVuCsdVAuCSrbQfENnfwgob9jffQvZ4MNXWYp4wIa3numHyDdiMNra2b+WFPS/E3CfLMr9Y+wva3G3U5NRwzcRrkj6PxWakNNwssfX9wxza1QVA7ZQ0/bHm3gzXPgfZ5dC+R2TM76uDR8+CxxbD/aPhn5dCw2qhaVzyc7j6WTAn0PMkIafQwlk3TMJg0gEyY9wbKHbsRl9URP4VVzDypRexpRBhf1o4foMfNAaEZDRSeM01FF4jLsDRwKA/plUnwZc/gB0vw0ePQ+OH4O0GxcS3bApMv0oEQkZL2k+r00mMm1PG5vcOsfPDJgDGLyjvM0PyjZO+wYrDK2h0NPLVZV/lD4v+QKGlkG3t27hrpXD+vG7ydYzKH5X2ueRdfBFd//kP9rfeovSO72GxGfE4/bQWzwCgsDaNnVeG0BuPvYZBQ2OgGI+DoBggp0RsQlxZZXR3BQAdhZU22n8lukbzPvvZtLOtxdZibpl+Cw+sf4D71t3HuIJxTCuZhizLPPLJI7y6/1V0ko6fnfKzPjV84+aW03LQwfrX6wEoH5Urxi6ky5jF8LUPYe2fRceqsxUORznHWwuEIeqp34LcyvSfN/olZpVSM7mQUFDGYjsLWf7OcXcMPtZoK6uGQG8QGpopl4G3B+xHIOAW2RrbwF17Tzq3lr0bWnDZfeQUWpixuA+xM8L35v8W/h83LL2Bza2bufDFCxlfOJ6PWz4mEApwUulJ3Dbjtn6dh/WkkzCPH4931y46/vYEpbVn0rC9E3tuHQBFVYOfCZYuymRy0MpSGsOfaEHxsfy8Kq3VXflimK05S4+0axPu9RvAYCDvkv456l478Vo+PPohKw+v5MalN/KZkZ+h0dHIxhZhofHd2d/lpLJ4p+PeTDqtkk/ebcTR7kGSYN7Fo/v5zhABzJnfF52rLdugq0GMU8ivhbLJostqkCgt88D/XGADWnCjkQhzNpRkZjq2Lc/MlXfN5ei+LqrGFmC2pveRG1MwhifOfYLvvP8d9nfv56Mm4WlxZvWZ/PK0X2Ls58UvSRIlt93KoVtvo+OJJ8g61QBMVu+vSNLBNRRk5UR2hsdSw6ChMRCiW8GPlegehOOvwagj4BcamQLvYVp++W/x85VXYixPT4OioNfpeeCMB/jeB9/jg0Mf8PK+lwEw6ox8Z/Z3uHpiYhFxb4wmPZd+Zxa71zVRPiqXyrGDyPrqdEIsXB4/G0tjcGjBjcaQk5VrYvTM0n4/bmzBWF646AXWNq2l2dnMuMJxTC6a3PcDk5B91llkL1pEz7vvkr/mWZgnnqu0NkftoDoWRA/+0wz8NIY70YMWj+V1otfrqJlSxP6PRStz/ra38TbtRV9cTPFXbxnQc9qMNh5a9BBrjqxhffN6bEYb59SdQ3VOdb+eJ7vAzEnn9N3MoHH80IIbjWGNXqfn5MqTM/JckiRR9eBvaf/zn/Hs2MmCaT4O+cpY8NljY96nYLFFdr9m27HbCWtoDIT80oieRBldcqyYe8FIuppdWPzd1B7txjhyPuU/+AGGQQy4lSSJk6tO5uSqzKwrGsOTYRHcPPzww9x///00NTUxffp0/vCHPzB3bnKZ7LPPPsuPfvQj6uvrGTt2LPfddx/nnXfeMTxjjRMVndlMyddFu/kIoO8Ke+aJ9sOoS7fLQkPjOBGdrTmWmRsQWrir7p4X/teSY/raGic2xz0n/swzz3D77bdzzz33sHHjRqZPn84555xDS3gOUG9Wr17NVVddxZe+9CU+/vhjLrnkEi655BK2bt16jM9cQ2PgXPytmZxx9XhGzSw53qeioZGSoiobVePzGTOrNEakqqExnJFkub+DLjLLvHnzmDNnDg89JIzZQqEQI0aM4LbbbuP73/9+3PFXXnklTqeTV199Vb1t/vz5zJgxg0ceeaTP17Pb7eTl5dHd3U1ubm7m3oiGhoaGhobGkNGf7+/jmrnx+Xxs2LCBxYsXq7fpdDoWL17MmjVrEj5mzZo1MccDnHPOOUmP93q92O32mD8aGhoaGhoan16Oa3DT1tZGMBikrKws5vaysjKampoSPqapqalfx997773k5eWpf0aMSHM8gYaGhoaGhsYJyXHX3Aw1d955J93d3eqfxsbU06Y1NDQ0NDQ0TmyOqzqsuLgYvV5Pc3NzzO3Nzc2UJzFoKi8v79fxZrMZs/nYti9qaGhoaGhoHD+Oa+bGZDIxa9Ysli1bpt4WCoVYtmwZCxYsSPiYBQsWxBwP8Pbbbyc9XkNDQ0NDQ+N/i+Pe13f77bdzww03MHv2bObOncvvfvc7nE4nN954IwDXX389VVVV3HvvvQB84xvf4IwzzuA3v/kN559/Pk8//TTr16/nL3/5y/F8GxoaGhoaGhrDhOMe3Fx55ZW0trZy991309TUxIwZM1i6dKkqGm5oaECniySYTj75ZP71r39x11138YMf/ICxY8fy0ksvMWXKlOP1FjQ0NDQ0NDSGEcfd5+ZYo/ncaGhoaGhonHicMD43GhoaGhoaGhqZRgtuNDQ0NDQ0ND5VaMGNhoaGhoaGxqcKLbjR0NDQ0NDQ+FShBTcaGhoaGhoanyq04EZDQ0NDQ0PjU8Vx97k51iid79p0cA0NDQ0NjRMH5Xs7HQeb/7ngxuFwAGjTwTU0NDQ0NE5AHA4HeXl5KY/5nzPxC4VCHDlyhJycHCRJOt6nc9yx2+2MGDGCxsZGzdRwCNF+z8cG7fd8bNB+z8cO7XcdQZZlHA4HlZWVMZMLEvE/l7nR6XRUV1cf79MYduTm5v7PXzjHAu33fGzQfs/HBu33fOzQfteCvjI2CpqgWENDQ0NDQ+NThRbcaGhoaGhoaHyq0IKb/3HMZjP33HMPZrP5eJ/Kpxrt93xs0H7Pxwbt93zs0H7XA+N/TlCsoaGhoaGh8elGy9xoaGhoaGhofKrQghsNDQ0NDQ2NTxVacKOhoaGhofH/27vzoCiOtw/g33VxF5AlaORUEUVB8ODwwAV/oiC1RotCLAIKATwIGkFFVIIHQcEIRrASDcZoDKhR8IQiQqkJETWIirh4BQ8kiqZANBEDIgJLv3+kmJcJYIRwZNfnU7V/TE/3zNM96DxMNztEpVByQwghhBCVQsnNWyAhIQEmJiZQV1eHnZ0dLl269Nr6FRUVCAoKgqGhIcRiMczMzJCZmdlF0Sqvto7z559/DnNzc2hoaGDAgAFYtmwZampquiha5XT27Fm4urrCyMgIAoEAaWlp/9gmOzsbtra2EIvFGDJkCJKSkjo9TmXX1nE+duwYXFxcoKurC21tbUilUpw8ebJrglVi7fl5bpSTkwM1NTVYW1t3WnzKjJIbFXfw4EGEhoYiMjISV65cgZWVFWQyGcrLy1usX1tbCxcXF9y/fx9HjhzB7du3sWvXLvTr16+LI1cubR3nAwcOIDw8HJGRkSgsLMTu3btx8OBBrF69uosjVy4vXryAlZUVEhIS3qj+r7/+iunTp2Py5MkoKChASEgIAgIC6Mb7D9o6zmfPnoWLiwsyMzORn5+PyZMnw9XVFXK5vJMjVW5tHedGFRUV8PPzg7OzcydFpgIYUWnjxo1jQUFB3LZCoWBGRkYsJiamxfpfffUVGzx4MKutre2qEFVCW8c5KCiIOTk58cpCQ0OZg4NDp8apSgCw1NTU19YJCwtjw4cP55V5eXkxmUzWiZGpljcZ55ZYWlqy9evXd3xAKqot4+zl5cXWrl3LIiMjmZWVVafGpazoyY0Kq62tRX5+PqZMmcKV9ejRA1OmTEFubm6LbdLT0yGVShEUFAR9fX2MGDECGzduhEKh6KqwlU57xtne3h75+fnc1FVxcTEyMzMxbdq0Lon5bZGbm8u7LgAgk8lavS6kYzQ0NKCyshJ9+vTp7lBUTmJiIoqLixEZGdndofynvXUvznybPH36FAqFAvr6+rxyfX193Lp1q8U2xcXF+Omnn+Dj44PMzEwUFRVh0aJFqKuro39MrWjPOHt7e+Pp06eYMGECGGOor6/HwoULaVqqg5WVlbV4Xf7880+8fPkSGhoa3RSZaouLi0NVVRU8PT27OxSVcvfuXYSHh+PcuXNQU6Pb9+vQkxvC09DQAD09PezcuROjR4+Gl5cX1qxZgx07dnR3aColOzsbGzduxPbt23HlyhUcO3YMGRkZiI6O7u7QCPlXDhw4gPXr1+PQoUPQ09Pr7nBUhkKhgLe3N9avXw8zM7PuDuc/j1I/Fda3b18IhUI8fvyYV/748WMYGBi02MbQ0BA9e/aEUCjkyiwsLFBWVoba2lqIRKJOjVkZtWecIyIi4Ovri4CAAADAyJEj8eLFCwQGBmLNmjXo0YN+7+gIBgYGLV4XbW1temrTCVJSUhAQEIDDhw83mw4k/05lZSUuX74MuVyO4OBgAH/9MsoYg5qaGk6dOgUnJ6dujvK/g/4HVWEikQijR49GVlYWV9bQ0ICsrCxIpdIW2zg4OKCoqAgNDQ1c2Z07d2BoaEiJTSvaM87V1dXNEpjGhJLR6946jFQq5V0XAPjhhx9avS6k/ZKTkzF37lwkJydj+vTp3R2OytHW1sb169dRUFDAfRYuXAhzc3MUFBTAzs6uu0P8b+nmBc2kk6WkpDCxWMySkpLYL7/8wgIDA5mOjg4rKytjjDHm6+vLwsPDufolJSVMIpGw4OBgdvv2bXb8+HGmp6fHNmzY0F1dUAptHefIyEgmkUhYcnIyKy4uZqdOnWKmpqbM09Ozu7qgFCorK5lcLmdyuZwBYFu2bGFyuZw9ePCAMcZYeHg48/X15eoXFxczTU1NtnLlSlZYWMgSEhKYUChkJ06c6K4uKIW2jvP+/fuZmpoaS0hIYKWlpdynoqKiu7qgFNo6zn9Hfy3VOkpu3gLbtm1jxsbGTCQSsXHjxrELFy5w+xwdHZm/vz+v/vnz55mdnR0Ti8Vs8ODB7NNPP2X19fVdHLXyacs419XVsXXr1jFTU1Omrq7OBgwYwBYtWsSePXvW9YErkdOnTzMAzT6NY+vv788cHR2btbG2tmYikYgNHjyYJSYmdnncyqat4+zo6Pja+qRl7fl5boqSm9YJGKNn4IQQQghRHbTmhhBCCCEqhZIbQgghhKgUSm4IIYQQolIouSGEEEKISqHkhhBCCCEqhZIbQgghhKgUSm4IIYQQolIouSGEdJrs7GwIBAJUVFQAAJKSkqCjo9Op55wzZw5mzJjx2jppaWkYMmQIhEIhQkJCOjUeQkjXo+SGECUwZ84cCAQCxMbG8srT0tIgEAi6Kaq28/Lywp07d7o7DCxYsAAeHh54+PAhvYmdEBVEyQ0hSkJdXR2bNm3Cs2fPOvS4tbW1HXq819HQ0ICenl6Xna8lVVVVKC8vh0wmg5GRESQSSbM6CoWC9/JYQohyoeSGECUxZcoUGBgYICYm5rX1jh49iuHDh0MsFsPExATx8fG8/SYmJoiOjoafnx+0tbURGBjITRcdP34c5ubm0NTUhIeHB6qrq7Fnzx6YmJigd+/eWLJkCRQKBXesffv2YcyYMZBIJDAwMIC3tzfKy8tbje3v01ImJiYQCATNPo0ePnwIT09P6OjooE+fPnBzc8P9+/e5/QqFAqGhodDR0cG7776LsLCw175VPTs7m0tmnJycIBAIkJ2dzcWVnp4OS0tLiMVilJSU4NWrV1ixYgX69euHXr16wc7ODtnZ2c36ZGxsDE1NTbi7uyM+Pp7Xx5amyUJCQjBp0iRuu6GhATExMRg0aBA0NDRgZWWFI0eO8OIWCATIysrCmDFjoKmpCXt7e9y+fZt33O+//x5jx46Furo6+vbtC3d3dwBAVFQURowY0Ww8rK2tERER0ep4EaKsKLkhREkIhUJs3LgR27Ztw6NHj1qsk5+fD09PT8yaNQvXr1/HunXrEBERgaSkJF69uLg4WFlZQS6Xcze36upqbN26FSkpKThx4gSys7Ph7u6OzMxMZGZmYt++ffj66695N926ujpER0fj6tWrSEtLw/379zFnzpw37lNeXh5KS0tRWlqKR48eYfz48fjf//7HHVsmk0EikeDcuXPIycmBlpYWpk6dyj1tio+PR1JSEr799lv8/PPP+OOPP5Camtrq+ZomBEePHkVpaSns7e25/m/atAnffPMNbt68CT09PQQHByM3NxcpKSm4du0a3n//fUydOhV3794FAFy8eBHz589HcHAwCgoKMHnyZGzYsOGN+98oJiYGe/fuxY4dO3Dz5k0sW7YMH3zwAc6cOcOrt2bNGsTHx+Py5ctQU1PDvHnzuH0ZGRlwd3fHtGnTIJfLkZWVhXHjxgEA5s2bh8LCQuTl5XH15XI5rl27hrlz57Y5XkL+87r5xZ2EkDfg7+/P3NzcGGOMjR8/ns2bN48xxlhqaipr+s/Y29ububi48NquXLmSWVpactsDBw5kM2bM4NVJTExkAFhRURFXtmDBAqapqckqKyu5MplMxhYsWNBqnHl5eQwA16bxrceNbztPTExk77zzTottlyxZwgYOHMjKy8sZY4zt27ePmZubs4aGBq7Oq1evmIaGBjt58iRjjDFDQ0P22Wefcfvr6upY//79ubFqybNnzxgAdvr06Wb9Lygo4MoePHjAhEIh++2333jtnZ2d2apVqxhjjM2ePZtNmzaNt9/Ly4vXx6bXrtHSpUu5tz3X1NQwTU1Ndv78eV6d+fPns9mzZzPG/n8cf/zxR25/RkYGA8BevnzJGGNMKpUyHx+fVvv93nvvsY8++ojbXrx4MZs0aVKr9QlRZvTkhhAls2nTJuzZsweFhYXN9hUWFsLBwYFX5uDggLt37/Kmk8aMGdOsraamJkxNTbltfX19mJiYQEtLi1fWdNopPz8frq6uMDY2hkQigaOjIwCgpKSkTX3auXMndu/ejfT0dOjq6gIArl69iqKiIkgkEmhpaUFLSwt9+vRBTU0N7t27h+fPn6O0tBR2dnbccdTU1Frs25sQiUQYNWoUt339+nUoFAqYmZlx59fS0sKZM2dw7949AH+Nd9PzA4BUKm3TeYuKilBdXQ0XFxfeefbu3cudp1HT+AwNDQGAux4FBQVwdnZu9TwffvghkpOTUVNTg9raWhw4cID35IcQVaLW3QEQQtpm4sSJkMlkWLVqVZumgJrq1atXs7KePXvytgUCQYtljQttX7x4AZlMBplMhv3790NXVxclJSWQyWRtWqR8+vRpLF68GMnJybybd1VVFUaPHo39+/c3a9OYAHUkDQ0N3nqfqqoqCIVC5OfnQygU8uo2Tfj+SY8ePZqtA6qrq+OdB/hrWqlfv368emKxmLfd9Ho0xtp4PTQ0NF4bh6urK8RiMVJTUyESiVBXVwcPD4837gchyoSSG0KUUGxsLKytrWFubs4rt7CwQE5ODq8sJycHZmZmzW7Q/9atW7fw+++/IzY2FgMGDAAAXL58uU3HKCoqgoeHB1avXo2ZM2fy9tna2uLgwYPQ09ODtrZ2i+0NDQ1x8eJFTJw4EQBQX1+P/Px82NratqNHfDY2NlAoFCgvL+fWAf2dhYUFLl68yCu7cOECb1tXVxc3btzglRUUFHCJStMFzI1Pvtpj1KhRyMrKanUNjZqaGvz9/ZGYmAiRSIRZs2b9Y0JEiLKi5IYQJTRy5Ej4+Phg69atvPLly5dj7NixiI6OhpeXF3Jzc/Hll19i+/btHR6DsbExRCIRtm3bhoULF+LGjRtt+s6Yly9fwtXVFTY2NggMDERZWRm3z8DAAD4+Pti8eTPc3NwQFRWF/v3748GDBzh27BjCwsLQv39/LF26FLGxsRg6dCiGDRuGLVu2cF8Y+G+ZmZnBx8cHfn5+iI+Ph42NDZ48eYKsrCyMGjUK06dPx5IlS+Dg4IC4uDi4ubnh5MmTOHHiBO84Tk5O2Lx5M/bu3QupVIrvvvsON27cgI2NDQBAIpFgxYoVWLZsGRoaGjBhwgQ8f/4cOTk50NbWhr+//xvFGxkZCWdnZ5iammLWrFmor69HZmYmPv74Y65OQEAALCwsAKBZEkyIKqE1N4QoqaioqGbfxWJra4tDhw4hJSUFI0aMwCeffIKoqKh2T1+9jq6uLpKSknD48GFYWloiNjYWcXFxb9z+8ePHuHXrFrKysmBkZARDQ0PuA/y1Bujs2bMwNjbGzJkzYWFhgfnz56OmpoZ7krN8+XL4+vrC398fUqkUEomE+/PnjpCYmAg/Pz8sX74c5ubmmDFjBvLy8mBsbAwAGD9+PHbt2oUvvvgCVlZWOHXqFNauXcs7hkwmQ0REBMLCwjB27FhUVlbCz8+PVyc6OhoRERGIiYmBhYUFpk6dioyMDAwaNOiNY500aRIOHz6M9PR0WFtbw8nJCZcuXeLVGTp0KOzt7TFs2LBma4UIUSUC9vfJYEIIIe2WlJSEkJCQDnuC1JEYYxg6dCgWLVqE0NDQ7g6HkE5D01KEEPIWePLkCVJSUlBWVkbfbUNUHiU3hBDyFtDT00Pfvn2xc+dO9O7du7vDIaRT0bQUIYQQQlQKLSgmhBBCiEqh5IYQQgghKoWSG0IIIYSoFEpuCCGEEKJSKLkhhBBCiEqh5IYQQgghKoWSG0IIIYSoFEpuCCGEEKJSKLkhhBBCiEr5PzVkQt3TSNGlAAAAAElFTkSuQmCC\n", "text/plain": [ "