[15:03:16] Created task 'aperture_1' with task_id webapi.py:139\n", " 'fdve-45857997-b896-4cd1-bcaa-ffcaf59b77f2v1'. \n", "\n" ], "text/plain": [ "\u001b[2;36m[15:03:16]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'aperture_1'\u001b[0m with task_id \u001b]8;id=466232;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=327415;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-45857997-b896-4cd1-bcaa-ffcaf59b77f2v1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:03:17] status = queued webapi.py:269\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:03:17]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=312039;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=648987;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:03:22] status = preprocess webapi.py:263\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:03:22]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=253582;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=650209;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:03:28] Maximum FlexCredit cost: 0.025. Use 'web.real_cost(task_id)' to get webapi.py:286\n", " the billed FlexCredit cost after a simulation run. \n", "\n" ], "text/plain": [ "\u001b[2;36m[15:03:28]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.025\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get \u001b]8;id=977574;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=564589;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mthe billed FlexCredit cost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
starting up solver webapi.py:290\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=290359;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=777776;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
running solver webapi.py:300\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=710829;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=322399;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:03:34] early shutoff detected, exiting. webapi.py:313\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:03:34]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=723749;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=642274;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#313\u001b\\\u001b[2m313\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
status = postprocess webapi.py:330\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=252086;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=143470;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#330\u001b\\\u001b[2m330\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:03:38] status = success webapi.py:337\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:03:38]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=669062;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=965578;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#337\u001b\\\u001b[2m337\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:03:39] loading SimulationData from data/aperture_1.hdf5 webapi.py:512\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:03:39]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/aperture_1.hdf5 \u001b]8;id=262185;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=987119;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim_data = web.run(\n", " sim, task_name=\"aperture_1\", path=\"data/aperture_1.hdf5\", verbose=True\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Far field points \n", "Now, we'll define the set of observation angles far away from the source at which we'd like to measure the far fields." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:50:13.511955Z", "iopub.status.busy": "2023-03-27T23:50:13.511818Z", "iopub.status.idle": "2023-03-27T23:50:13.531018Z", "shell.execute_reply": "2023-03-27T23:50:13.530455Z" } }, "outputs": [], "source": [ "# radial distance away from the origin at which to project fields\n", "r_proj = 50 * wavelength\n", "\n", "# theta and phi angles at which to observe fields - part of the half-space to the right\n", "theta_proj = np.linspace(np.pi / 10, np.pi - np.pi / 10, 100)\n", "phi_proj = np.linspace(np.pi / 10, np.pi - np.pi / 10, 100)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, we define a far-field monitor, [FieldProjectionAngleMonitor](../_autosummary/tidy3d.FieldProjectionAngleMonitor), which stores the information regarding the far field projection grid, and then we define the object that does the actual projections, [FieldProjector](../_autosummary/tidy3d.FieldProjector)." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:50:13.532933Z", "iopub.status.busy": "2023-03-27T23:50:13.532785Z", "iopub.status.idle": "2023-03-27T23:50:16.532498Z", "shell.execute_reply": "2023-03-27T23:50:16.531912Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# far field projection monitor\n", "monitor_far = td.FieldProjectionAngleMonitor(\n", " center=[\n", " 0,\n", " offset_mon,\n", " 0,\n", " ], # the monitor's center defined the local origin - the projection distance\n", " # and angles will all be measured with respect to this local origin\n", " size=[td.inf, 0, td.inf],\n", " # the size and center of any far field monitor should indicate where the *near* fields are recorded\n", " freqs=[f0],\n", " name=\"far_field\",\n", " phi=list(phi_proj),\n", " theta=list(theta_proj),\n", " proj_distance=r_proj,\n", " far_field_approx=True, # we leave this to its default value of 'True' because we are interested in fields sufficiently\n", " # far away that geometric far field approximations can be invoked to speed up the calculation\n", ")\n", "\n", "# helper functin to call the projector\n", "def get_proj_fields(sim_data, monitor_near, monitor_far, pts_per_wavelength=10):\n", " # object that does projections is constructed using the near-field monitor, because those are the fields to be projected\n", " projector = td.FieldProjector.from_near_field_monitors(\n", " sim_data=sim_data,\n", " near_monitors=[monitor_near],\n", " normal_dirs=[\"+\"], # we are projecting along the + direction\n", " pts_per_wavelength=pts_per_wavelength, # to speed up calculations, the fields on the near-field monitor can be downsampled to these\n", " # many points per wavelength (default is already 10)\n", " )\n", " return projector.project_fields(monitor_far)\n", "\n", "\n", "# execute the projector, with the far field monitor as input, to do the projection\n", "# let's also time this, for later use\n", "import time\n", "\n", "t0 = time.perf_counter()\n", "projected_field_data = get_proj_fields(sim_data, monitor_near, monitor_far)\n", "t1 = time.perf_counter()\n", "proj_time = t1 - t0\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Analytical solution\n", "Before we plot and analyze the results, we need reference data with which to perform comparisons. In our simple aperture example, an analytical expression for the far fields is already available, so we'll simply implement the analytic formula here at the observation points of interest." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:50:16.586780Z", "iopub.status.busy": "2023-03-27T23:50:16.586612Z", "iopub.status.idle": "2023-03-27T23:50:16.613342Z", "shell.execute_reply": "2023-03-27T23:50:16.612740Z" } }, "outputs": [], "source": [ "def analytic_fields_aperture(\n", " proj_monitor, sim_size, aperture_height, aperture_width, r_proj\n", "):\n", " \"\"\"Compute the far fields analytically.\"\"\"\n", " # in Tidy3D, the plane wave source is normalized so that a total flux of 1 is injected into the simulation domain,\n", " # which corresponds to an electric field strength that is inversely proportional to the square root of the in-plane domain area\n", " thetas_ext = np.array(proj_monitor.theta)[None, :, None, None]\n", " phis_ext = np.array(proj_monitor.phi)[None, None, :, None]\n", " f = np.array(proj_monitor.freqs)[None, None, None, :]\n", " E0 = np.sqrt(2.0 * td.ETA_0 / sim_size[0] / sim_size[2])\n", " k = 2.0 * np.pi * f / td.C_0\n", " ux = k * np.sin(thetas_ext) * np.cos(phis_ext) * aperture_width / 2.0\n", " uz = k * np.cos(thetas_ext) * aperture_height / 2.0\n", " Etheta = (\n", " -k\n", " / 2.0\n", " / np.pi\n", " / r_proj\n", " * E0\n", " * np.sin(thetas_ext)\n", " * np.exp(1j * k * r_proj)\n", " * aperture_height\n", " * aperture_width\n", " * np.sinc(ux / np.pi)\n", " * np.sinc(uz / np.pi)\n", " )\n", " Hphi = Etheta / td.ETA_0\n", "\n", " # for convenience, let's encapsulate the data into one of Tidy3D's native data structures designed for\n", " # storing far fields - this is the same format in which data will be returned when using Tidy3D's\n", " # 'FieldProjector', so comparisons will be easier to make\n", " coords = dict(\n", " r=np.array([r_proj]),\n", " theta=np.array(proj_monitor.theta),\n", " phi=np.array(proj_monitor.phi),\n", " f=np.array(proj_monitor.freqs),\n", " )\n", " Etheta_data = td.FieldProjectionAngleDataArray(Etheta, coords=coords)\n", " Hphi_data = td.FieldProjectionAngleDataArray(Hphi, coords=coords)\n", " Er_data = td.FieldProjectionAngleDataArray(np.zeros_like(Etheta), coords=coords)\n", " Ephi_data = td.FieldProjectionAngleDataArray(np.zeros_like(Etheta), coords=coords)\n", " Hr_data = td.FieldProjectionAngleDataArray(np.zeros_like(Etheta), coords=coords)\n", " Htheta_data = td.FieldProjectionAngleDataArray(np.zeros_like(Etheta), coords=coords)\n", " return td.FieldProjectionAngleData(\n", " monitor=proj_monitor,\n", " Er=Er_data,\n", " Etheta=Etheta_data,\n", " Ephi=Ephi_data,\n", " Hr=Hr_data,\n", " Htheta=Htheta_data,\n", " Hphi=Hphi_data,\n", " projection_surfaces=proj_monitor.projection_surfaces,\n", " )\n", "\n", "\n", "analytic_field_data = analytic_fields_aperture(\n", " monitor_far, sim_size, height, width, r_proj\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plot and compare\n", "Now we can compare the analytic fields to those computed via `Tidy3D`'s [FieldProjector](../_autosummary/tidy3d.FieldProjector.html), and also compute the root mean squared error between the two." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:50:16.615406Z", "iopub.status.busy": "2023-03-27T23:50:16.615257Z", "iopub.status.idle": "2023-03-27T23:50:17.124180Z", "shell.execute_reply": "2023-03-27T23:50:17.123665Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalized root mean squared error: 4.46 %\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAFyCAYAAABhr+y4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyiklEQVR4nO2de3wU1fn/PzO7ySZckhAIhNggFy3gDShIRPEK5WYtNy/YqIAUtBWVi1ZoVZBqKYpKwQtf/bVeKpbWqtRLS0tBwEsKCGKrIgqiIBBQQxJyT3bm98fMmT2ze3Z2Znc2e8nzfr32ld0zZ86cnZ05T848n/M8kqqqKgiCIAiCIAiCIBwgJ7oDBEEQBEEQBEGkHjSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRINoczz77LCRJwpdffpnUbRIEQSQ7X375JSRJwrPPPut4382bN0OSJGzevDli3UsuuQSXXHKJ42PEk0T1ycl5I4h4QxMJIuE88cQTkCQJJSUlie5KRH7zm99g3bp1ie4GQRBEq8AekoheCxYsSHT30ponnngiqgkaQbQm3kR3gCDWrFmDnj17Yvv27di3bx9OO+20RHcpLL/5zW9w5ZVXYsKECaby66+/HlOmTIHP50tMxwiCIOLIkiVL0KtXL1PZWWedhVNPPRX19fXIyMhIUM8Sx7/+9a+4tv/EE0+gS5cumDZtmqn8oosuQn19PTIzM+N6fIKwA00kiIRy4MABvPfee3jllVdw0003Yc2aNVi0aFGiu+UYj8cDj8eT6G4QBEHEhbFjx2LIkCHCbVlZWa3cm/hQW1uL9u3b266fqH/kZVlOm3NOpD4kbSISypo1a9CpUydcfvnluPLKK7FmzRrTdqa/Xb58OZ566in06dMHPp8P5557Lnbs2GGq+9///hfTpk1D7969kZWVhcLCQtx444347rvvLPswdepUdOnSBc3NzSHbRo0ahb59+wIAJElCbW0tnnvuOcO1z54UhVsj8Y9//AMXX3wxOnbsiJycHJx77rl48cUXHZ4lgiCI5CTcGolPP/0UV155JfLz85GVlYUhQ4bgtddes9UmG+uzs7MxdOhQvP3227b7I0kSZs+ejTVr1qBv377IysrC4MGDsXXrVlO9xYsXQ5IkfPLJJ/jJT36CTp06Yfjw4QCAlpYW/PrXvzbsTc+ePfHLX/4SjY2NpjZEayQaGxuxaNEinHbaafD5fCguLsYvfvGLkH0B4IUXXsDQoUPRrl07dOrUCRdddJHh5ejZsyc+/vhjbNmyxbA37Fjh1ki89NJLGDx4MLKzs9GlSxdcd911OHz4sKnOtGnT0KFDBxw+fBgTJkxAhw4dUFBQgDvuuAN+v9/2eSYIBk0kiISyZs0aTJo0CZmZmbj22mvx+eefh0wQAODFF1/EQw89hJtuugn3338/vvzyS0yaNMn0z/+GDRvwxRdfYPr06Vi1ahWmTJmCtWvXYty4cVBVNWwfrr/+enz33Xf45z//aSovLy/Hpk2bcN111wEA/vjHP8Ln8+HCCy/EH//4R/zxj3/ETTfdFLbdZ599FpdffjkqKiqwcOFC/Pa3v8XAgQOxfv16p6eJIAgioVRVVeHbb781vcLx8ccf47zzzsOePXuwYMECPPzww2jfvj0mTJiAV1991fI4v//973HTTTehsLAQDz74IC644AL8+Mc/xqFDh2z3dcuWLZgzZw6uu+46LFmyBN999x3GjBmDjz76KKTuVVddhbq6OvzmN7/BzJkzAQA//elPce+99+IHP/gBHn30UVx88cVYunQppkyZYnlcRVHw4x//GMuXL8cVV1yBVatWYcKECXj00UdxzTXXmOred999uP7665GRkYElS5bgvvvuQ3FxMTZt2gQAWLFiBb73ve+hX79+hr351a9+FfbYzz77LK6++mp4PB4sXboUM2fOxCuvvILhw4ejsrLSVNfv92P06NHo3Lkzli9fjosvvhgPP/wwnnrqKTunlyDMqASRIN5//30VgLphwwZVVVVVURT1e9/7nnr77bcbdQ4cOKACUDt37qxWVFQY5X/7299UAOrrr79ulNXV1YUc409/+pMKQN26datR9swzz6gA1AMHDqiqqqp+v1/93ve+p15zzTWmfR955BFVkiT1iy++MMrat2+vTp06NeQ4wW1WVlaqHTt2VEtKStT6+npTXUVRrE8MQRBEksDGNtFLVQNj9DPPPGPsM2LECPXss89WGxoajDJFUdTzzz9fPf30042yt956SwWgvvXWW6qqqmpTU5PatWtXdeDAgWpjY6NR76mnnlIBqBdffHHE/rK+vf/++0bZV199pWZlZakTJ040yhYtWqQCUK+99lrT/rt371YBqD/96U9N5XfccYcKQN20aZNRdvHFF5v69Mc//lGVZVl9++23TfuuXr1aBaC+++67qqqq6ueff67KsqxOnDhR9fv9prq8fTjzzDOF3znceTvrrLNM9uaNN95QAaj33nuvUTZ16lQVgLpkyRJTm4MGDVIHDx4cciyCiAR5JIiEsWbNGnTr1g2XXnopAM0lfc0112Dt2rUhLtZrrrkGnTp1Mj5feOGFAIAvvvjCKMvOzjbeNzQ04Ntvv8V5550HANi1a1fYfsiyjNLSUrz22ms4efKkqX/nn39+yAJDO2zYsAEnT57EggULQrSskiQ5bo8gCCKRPP7449iwYYPpJaKiogKbNm3C1VdfjZMnTxrei++++w6jR4/G559/HiK3Ybz//vs4fvw4br75ZtP6g2nTpiE3N9d2X4cNG4bBgwcbn3v06IHx48fjn//8Z4htufnmm02f//73vwMA5s2bZyqfP38+AODNN98Me9yXXnoJ/fv3R79+/Uyem8suuwwA8NZbbwEA1q1bB0VRcO+990KWzf+GRWMf2Hn7+c9/brI3l19+Ofr16yfsc/D3vvDCC032lCDsQhMJIiH4/X6sXbsWl156KQ4cOIB9+/Zh3759KCkpwbFjx7Bx40ZT/R49epg+s0nFiRMnjLKKigrcfvvt6NatG7Kzs1FQUGBMAqqqqiz7c8MNN6C+vt5wu+/duxc7d+7E9ddfH9X3279/PwAtqglBEESqM3ToUIwcOdL0ErFv3z6oqop77rkHBQUFphcLpHH8+HHhvl999RUA4PTTTzeVZ2RkoHfv3rb7Grw/AHz/+99HXV0dvvnmG1N58IOir776CrIsh0QPLCwsRF5entFHEZ9//jk+/vjjkO/9/e9/H0Dge+/fvx+yLOOMM86w/Z2sYH1i6/l4+vXrF9LnrKwsFBQUmMo6depksqcEYReK2kQkhE2bNuHo0aNYu3Yt1q5dG7J9zZo1GDVqlPE5XEQklVv7cPXVV+O9997DnXfeiYEDB6JDhw5QFAVjxoyBoiiW/TnjjDMwePBgvPDCC7jhhhvwwgsvIDMzE1dffXWU35AgCKLtwcbaO+64A6NHjxbWSaYQ37wnmycaz4CiKDj77LPxyCOPCLcXFxc7bjMeUIRBwk1oIkEkhDVr1qBr1654/PHHQ7a98sorePXVV7F69Wrb7Z04cQIbN27Efffdh3vvvdco//zzz223ccMNN2DevHk4evQoXnzxRVx++eUmORVg37j06dMHAPDRRx8lldEkCIKIJ8xzkJGREdZrEY5TTz0VgDZuMzkQADQ3N+PAgQMYMGCArXZE4/5nn32Gdu3ahTyJF/VBURR8/vnn6N+/v1F+7NgxVFZWGn0U0adPH3z44YcYMWKEpa3o06cPFEXBJ598goEDB4atZ9fesD7t3bvXdN5YmVWfCSJWSNpEtDr19fV45ZVX8KMf/QhXXnllyGv27Nk4efKk7VCBQOAJixoUnWnFihW227j22mshSRJuv/12fPHFF0a0Jp727duHRMAQMWrUKHTs2BFLly5FQ0ODaVtwHwmCINKFrl274pJLLsH//d//4ejRoyHbg6VFPEOGDEFBQQFWr16NpqYmo/zZZ5+1Ne4yysrKTOviDh06hL/97W8YNWpUxKfx48aNAxBqO5iX4fLLLw+779VXX43Dhw/j6aefDtlWX1+P2tpaAMCECRMgyzKWLFkS4i3n7YNdezNkyBB07doVq1evNoWZ/cc//oE9e/ZY9pkgYoU8EkSrwxY1//jHPxZuP++881BQUIA1a9agpKTEVps5OTm46KKL8OCDD6K5uRmnnHIK/vWvf+HAgQO2+1VQUIAxY8bgpZdeQl5ennDwHTx4MP7973/jkUceQVFREXr16iXsY05ODh599FH89Kc/xbnnnmvEKf/www9RV1eH5557zna/CIIgUonHH38cw4cPx9lnn42ZM2eid+/eOHbsGMrKyvD111/jww8/FO6XkZGB+++/HzfddBMuu+wyXHPNNThw4ACeeeYZR2skzjrrLIwePRq33XYbfD4fnnjiCQBayNVIDBgwAFOnTsVTTz2FyspKXHzxxdi+fTuee+45TJgwwQgOIuL666/HX/7yF9x888146623cMEFF8Dv9+PTTz/FX/7yF/zzn//EkCFDcNppp+FXv/oVfv3rX+PCCy/EpEmT4PP5sGPHDhQVFWHp0qUANHvz5JNP4v7778dpp52Grl27hngc2HlbtmwZpk+fjosvvhjXXnstjh07ht/97nfo2bMn5s6da/vcEYRjEhozimiTXHHFFWpWVpZaW1sbts60adPUjIwMI0TsQw89FFIHgLpo0SLj89dff61OnDhRzcvLU3Nzc9WrrrpKPXLkSEi94FCtPH/5y19UAOqsWbOE/fr000/Viy66SM3OzlYBGKFgw7X52muvqeeff76anZ2t5uTkqEOHDlX/9Kc/hf3eBEEQyQQb23bs2CHcLgr/qqqqun//fvWGG25QCwsL1YyMDPWUU05Rf/SjH6l//etfjTrBYUwZTzzxhNqrVy/V5/OpQ4YMUbdu3RoSajUcANRbbrlFfeGFF9TTTz9d9fl86qBBg0KOwcK/fvPNNyFtNDc3q/fdd5/aq1cvNSMjQy0uLlYXLlxoCmerqqHhX1VVC8W6bNky9cwzz1R9Pp/aqVMndfDgwep9992nVlVVmer+4Q9/UAcNGmTUu/jii41w6KqqquXl5erll1+uduzY0RT+Ntx5+/Of/2y0l5+fr5aWlqpff/21qc7UqVPV9u3bh3xndj4IwimSqpLOgiAYf/vb3zBhwgRs3brVCDFLEARBpAaSJOGWW27BY489FvdjXXjhhfD5fPj3v/8d92MRRLJCayQIguPpp59G7969MXz48ER3hSAIgkhijh49ii5duiS6GwSRUGiNBEEAWLt2Lf773//izTffxO9+9ztKGkcQBEEIee+99/DKK69g//79uOuuuxLdHYJIKDSRIAhoEZs6dOiAGTNm4Oc//3miu0MQBEEkKU8//TT+8Y9/YM6cOZg+fXqiu0MQCYXWSBAEQRAEQRAE4RhaI0EQBJFAHn/8cfTs2RNZWVkoKSnB9u3bw9Z9+umnceGFF6JTp07o1KkTRo4caVmfIAiCIOIJTSQIgiASxJ///GfMmzcPixYtwq5duzBgwACMHj0ax48fF9bfvHkzrr32Wrz11lsoKytDcXExRo0ahcOHD7dyzwmCIAiCpE1CFEXBkSNH0LFjR1p0SxApiKqqOHnyJIqKiiDLzp+XNDQ0mDLrOiEzMxNZWVm26paUlODcc881QlUqioLi4mLceuutWLBgQcT9/X4/OnXqhMceeww33HBDVP0lnEH2gSBSn0TZCCf2IVWgxdYCjhw5guLi4kR3gyCIGDl06BC+973vOdqnoaEB2R3zgZb6qI5ZWFiIDz/80GQsfD4ffD6fqV5TUxN27tyJhQsXGmWyLGPkyJEoKyuzday6ujo0NzcjPz8/qr4SziH7QBDpQ2vbiMLCQhw4cCCtJhNJNZHYunUrHnroIezcuRNHjx7Fq6++igkTJpjq7NmzB3fddRe2bNmClpYWnHHGGXj55ZfRo0cPANoPPH/+fKxduxaNjY0YPXo0nnjiCXTr1s12Pzp27AgAGPSLP8Hja+fa90s1VIWcVamKJLftJ6X+xjp88OC1xr3shKamJqClHhlnXQt4MhweuBnlH/0pZLxZtGgRFi9ebCr79ttv4ff7Q+p269YNn376qa3D3XXXXSgqKsLIkSOd9TNFSQYbwa6pc+a+ENY+ROvotzvmKoqNtmz2QbXRlnbMyO3Z7X8stkWJs4hC1Ld4j6dylJ4tu/2yU0+23Zatara8dXYdAbGc/3D98DfW4b+PXte6NkK3D01NTTSRiBe1tbUYMGAAbrzxRkyaNClk+/79+zF8+HDMmDED9913H3JycvDxxx+bfpC5c+fizTffxEsvvYTc3FzMnj0bkyZNwrvvvmu7H+zC8/jawZvVPvYvlqLQRCJ1aesTCUZM0hNPBiRPpqNd2B1z6NAh5OTkGOXB3gg3+O1vf4u1a9di8+bNaWWUrEgGG8HbB08Y+xDt2Gl3P8nOP/UuTyRsHbMVJhISTSQMUn8i4V7/o923NW1Euv5HlVQTibFjx2Ls2LFht//qV7/CuHHj8OCDDxplffr0Md5XVVXh97//PV588UVcdtllAIBnnnkG/fv3x3/+8x+cd955jvojy5LtCz1a7DzlSRSx3Lw0CXGHdJwQxPuecusYkuyBJHuc7aRq9XNyckwTCRFdunSBx+PBsWPHTOXHjh1DYWGh5b7Lly/Hb3/7W/z73//GOeec46yPKUyy2YhwsPvW6Thodz92fVvZD9E/SKLJhegfQ9HkQnRPBR9fNF7Z/cfc7rkK/qfbbQ9FW5g0APbGSDcnDU6PrR0/vucqVhzbCNWhPUkRUiZqk6IoePPNN/H9738fo0ePRteuXVFSUoJ169YZdXbu3Inm5maTm79fv37o0aOHbc0xQRAEEDASTl92yczMxODBg7Fx40ajTFEUbNy4EcOGDQu734MPPohf//rXWL9+PYYMGRLTd0wnyEYQBNGaxNM+pBIpM5E4fvw4ampq8Nvf/hZjxozBv/71L0ycOBGTJk3Cli1bAADl5eXIzMxEXl6ead9u3bqhvLw8bNuNjY2orq42vQiCaNtIUhQTCcmZoZg3bx6efvppPPfcc9izZw9+9rOfoba21siWe8MNN5gWYy9btgz33HMP/vCHP6Bnz54oLy9HeXk5ampqXP3uqUi8bATZB4IgRDi2EQ7tQ6qQVNImKxR9ddn48eMxd+5cAMDAgQPx3nvvYfXq1bj44oujbnvp0qW47777XOmnU+Il80i0ZCodJTltjdaQICUzkkeG5HEqbXL2bOaaa67BN998g3vvvRfl5eUYOHAg1q9fbyz8PXjwoCk04ZNPPommpiZceeWVpnZEi7nbGvGyEbHYh2glPHb3syM3MrXLSVCs1lAwSUuk9RPBxxcdOxa5k1V9ow9pFILXqd10U8ZkbtdmvSRYB5HI/zUc2wiH9iFVSJmJRJcuXeD1enHGGWeYyvv374933nkHgBZWq6mpCZWVlaYnTpE0xwsXLsS8efOMz9XV1RTejyDaOHIUrmg1Ctf17NmzMXv2bOG2zZs3mz5/+eWXjttvK8TLRpB9IAhChFMbEY19SAVSZnqUmZmJc889F3v37jWVf/bZZzj11FMBAIMHD0ZGRoZJc7x3714cPHjQUnPs8/mMxZF2FkkSBJH+xHuNBOEu8bIRZB8IghBB9kEjqTwSNTU12Ldvn/H5wIED2L17N/Lz89GjRw/ceeeduOaaa3DRRRfh0ksvxfr16/H6668bT+1yc3MxY8YMzJs3D/n5+cjJycGtt96KYcOGRRWNI5WzlramLCXRMqq2RFuXG9lBkiRX7t2oBv40NRTJQjLZCFmSTLIau9GDopXwxCJ3YvBjtdU9wmRPkSQuwdKnSOMTOz5JX8XEcl7iIV+yO446P3Z864sIlsCpibARUdqHxx9/HA899BDKy8sxYMAArFq1CkOHDhXW/fjjj3Hvvfdi586d+Oqrr/Doo49izpw5UR3XLkk1kXj//fdx6aWXGp+ZO3nq1Kl49tlnMXHiRKxevRpLly7Fbbfdhr59++Lll1/G8OHDjX0effRRyLKMyZMnm5INEQRBOEGSZUh2MyYxnNYnHEE2giCIZMGxjYjCPvz5z3/GvHnzsHr1apSUlGDFihUYPXo09u7di65du4bUr6urQ+/evXHVVVcZa8XijaRGm4IzjamurkZubi5KFr/epjNb24U8Eq0HeSQiI0kSWhpqsW3xFaiqqnIsRWH3f+6ld0HyOkskp7Y0ouqtZVEdl0gN2PUxeOGrpoR0buQzcJp3wml9u2O128nsnB4/9Dhtw8aQR8Kd+iKCPRL+hlrsXDqxVW1ENPahpKQE5557Lh577DEAWlCJ4uJi3HrrrViwYIHlvj179sScOXPalkciGUkFeVOi54L0z23bIRXuB7fQnjY5lTaRR6KtYhU9KF6yJ6f13ZQ9accPW02IjCjHD67f6fjgyp0EmlHul8aThXjj2Ebo9iE4hLTP54PPFzohaWpqws6dO00hwGVZxsiRI5Mq7w1ZPYIgCAGtkUeCIAiCSE2izSNRXFyseTT019KlS4Xtf/vtt/D7/UY4cEak3GitDXkk0oC29JSYIAgi1bD7pNTKc2H3ia3qcEEzq2//iXP03gE2z47Fi+4hD7hBLLY/Wi9IW/A0xJtDhw6ZpE0ib0QqQRMJgiAIER6P44R0qkIeCYIgiDaBQxvB7IPdMNJdunSBx+PBsWPHTOWRcqO1NiRtIgiCEEB5JAiCIIhwxNs+ZGZmYvDgwaa8N4qiYOPGjZa50Vob8kikCNEupCKI1sJpBJdkJ5qBnyYSbQhZciwfitxk9BIORW39HA3BMiP70ZXSS6qS7Lh5TcQUWSrOEiVHfXNlgbszGxGNfZg3bx6mTp2KIUOGYOjQoVixYgVqa2sxffp0AMANN9yAU045xVhn0dTUhE8++cR4f/jwYezevRsdOnTAaaed5vj4dqCJBEEQhABZ9kCmhHQEQRCEAMc2Igr7cM011+Cbb77Bvffei/LycgwcOBDr1683FmAfPHgQMhct8MiRIxg0aJDxefny5Vi+fDkuvvhiIzGn29BEgiAIQkA04V8dJ7AjCIIgUhKnNiJa+zB79mzMnj1buC14ctCzZ89WTwlAE4koaCsyI8oPkbokItZ6Iu6LeMqpSNpEuIXbciNhjohoZSOe0P2iTa7XmrKqaHFbXuNGIsJkJamkSElIa0ibUgGaSBAEQQigiQRBEAQRDppIaNBEgiAIQgBNJAiCIIhw0ERCgyYSDkhWSVNrSpBayxWZDkn2WkunKJQ5xOl3SoRkygr+nnRb5sSyljrdhyDiTbzHYU+SRFWKx/d0e2yMx5hoP/oVkUic2oh0tQ80kSAIghAgRZGQzml9giAIIjVxaiPS1T4k6TN2giAIgiAIgiCSGfJIOCBYOtGaUic33bGxuIvdkBzFW4rlpjs8Nhdz5H644haP4Tp0+v2sfrvWlD21RvI7Cv9KWCE5SEiXrsQ6lkdjT5za3UREH3Q6FoaMZxGGHTdks8kmU21t3Lh3Wyv8a7JDEwmCIAgBtNiaIAiCCActttagiUQMiJ6Kuu2liPZpitPZtt0nQ07747QfnmR7wudCf/wWT35E39epl0Cx+XRe9BTL6veJxVvh5tOu1vA+iKCJBJFMxN2TG4O32a7ds/oOdm2FVT/jbS+j9VBHGg/teBjMxxbk/rDRN34s9Qjyh1juG+fgIanoIaGJhAZNJAiCIATIsuT8H5NkmwgTBEEQccGxjUhT+0ATCYIgCAHRaODbumaeIAiireDURqSrfaCJhMtEkmE4lT4xd5/dWa+dCzWSC9vOsSIdx45Eya6MKenkThaIZEyi/lvJnfinFlb1VJvXBruGRL+7lbua/cZ23fmxuKYTJV+yQpIkx3KPdMh/QrQ+rgbTcHrNxlmW5FSKJGrLygZEsg+JsB9W47bTbcb4y6liRGMtU81YjelWY3mk8VsCsweW1UKPaVMSZfceSCYJlFMbka72gSYSBEEQAqQopE1qCk16CYIgiOhxaiPS1T7QRIIgCEKAJEUhbUrTJ04EQRCEGac2Il3tA00kLFBV1Vr6EcVFkchcFNFGu3Dqao60PR7bEg1zSduVMbF6lhKnSMcUlIlc1+y3FbmE2TUR74gcPG7ImCL1143vQ2skiHjihpzJrg2yY2fsyoysjh+LVImVWW0TIdrmjbNs1u643SKo51TaxMqstvGIbIAhb+UiNQWPkfy5sGzD4loSRrJ0KKmNhJU9a21ojYQGTSQIgiAEyJIE2eHDAjVNnzgRBEEQZpzaiHS1DzSRIAiCEEAeCYIgCCIc5JHQoIlEDNh1z1m5n3lXoJXL0Gn0Jrs4dWfbdTsHlzl1V0dyTSeDzIl3K4v622JD7sRvs+Mu5+uI5FGi3y44upPbLmGniZAs67WixIogUhU7kqZIcqbgsV80doiOY2UzIo3zVnbBrkTJnm0J/+Xdth3WUqXQgc+ORCmSJCpaCZQoqZ1w/BacPtEZDd6Xv+asxvxESGqJ+EETCYIgCAHkkSAIgiDCQR4JDZpIEARBCIgms3W6hvcjCIIgzDi1EelqH1oxZlBktm7diiuuuAJFRUWQJAnr1q0LW/fmm2+GJElYsWKFqbyiogKlpaXIyclBXl4eZsyYgZqamqj6oyiq7ZcVLPoT/xLWU0JfVn0St6HaTiBmF48sGS9RWbQvr+Dl88rweWVh/UyvbLzE2z1xfTntD/suou/pxvmz+n3cwOpainwdWl/HgP37QnTMWO9JO0hydC8ifiSbjYgFN69VHqvrkP3jw//zI3qqKkq0xfaTuJfXK8NrY7wOHifZZ1+EF6uXnek1Xmw85suCX5mmfT2ml2lbhieql1X7/DGs++gJ+S5Oz4vV+RbaXP338npl4zcU/TMs+v1F14nVP9LxGg/jcc9EC9kHjaT6WrW1tRgwYAAef/xxy3qvvvoq/vOf/6CoqChkW2lpKT7++GNs2LABb7zxBrZu3YpZs2bFq8sEQaQpzJg6fRHxg2wEQRDJAtkHjaSSNo0dOxZjx461rHP48GHceuut+Oc//4nLL7/ctG3Pnj1Yv349duzYgSFDhgAAVq1ahXHjxmH58uVCo2KFkyf7VjNk0Yxd9PRVGG/ZIu9EvBZgW+E0njcrs7NoLnxZ6HzXztP3WJ7Qi3M/eMLW8cisLPYkCZEWVNvZFi9E17mdhdR2F9W58aTJLa+cLDu/t9SkejSTfiSbjXALp2M5u5+sbIbTp5+RFlbbWVAtWjzNl3lttSELymzaCsF3iEduokhjrl8yb/er9sZ0vxK6TWRTRG2IFmiHti/oh/6Zv1yMnBHc+XS6MNrKLjhtK1k8EME4tRHpah9S6mspioLrr78ed955J84888yQ7WVlZcjLyzMMBACMHDkSsixj27ZtYdttbGxEdXW16UUQRNuGl3A4eRGJIx42guwDQRAiWss+PP744+jZsyeysrJQUlKC7du3W9Z/6aWX0K9fP2RlZeHss8/G3//+96iOa5eUmkgsW7YMXq8Xt912m3B7eXk5unbtairzer3Iz89HeXl52HaXLl2K3Nxc41VcXOxqvwmCSD0kKYqJRJq6rlOFeNgIsg8EQYhwbCOisA9//vOfMW/ePCxatAi7du3CgAEDMHr0aBw/flxY/7333sO1116LGTNm4IMPPsCECRMwYcIEfPTRR7F+3bAklbTJip07d+J3v/sddu3a5bqxXrhwIebNm2d8rq6uNoyFXYmE1UzTruzJjtxJlHeCb5+1x/eb9U3kDo9WHhXJJRytBMqujCke7mpRG85lQ8Jo28a74PwRVpIl0XaneSdMvRDJkgTXXPA1H42cycp1Ha2b2u0gApGgzNapRbxshJV9cBvRvdGa0lWnBEuPIuWFCLe/9l4O24aVjMmpfYiUo8gOfBsiSVHw+O6BYNy2/RiXVQy1IyLs2r/WlMQ6IVllTCJaI7P1I488gpkzZ2L69OkAgNWrV+PNN9/EH/7wByxYsCCk/u9+9zuMGTMGd955JwDg17/+NTZs2IDHHnsMq1evdnx8O6SMR+Ltt9/G8ePH0aNHD3i9Xni9Xnz11VeYP38+evbsCQAoLCwMmaW1tLSgoqIChYWFYdv2+XzIyckxvQiCaONE47aO4p+UZHdbpwrxshFkHwiCEBKlfQiWSjY2Ngqbb2pqws6dOzFy5MjAIWUZI0eORFlZmXCfsrIyU30AGD16dNj6bpAyE4nrr78e//3vf7F7927jVVRUhDvvvBP//Oc/AQDDhg1DZWUldu7caey3adMmKIqCkpKSRHWdIIgUpDXWSKSC2zpVIBtBEERrEq19KC4uNsklly5dKmz/22+/hd/vR7du3Uzl3bp1CyvFLC8vd1TfDZJK2lRTU4N9+/YZnw8cOIDdu3cjPz8fPXr0QOfOnU31MzIyUFhYiL59+wIA+vfvjzFjxmDmzJlYvXo1mpubMXv2bEyZMiXu0TisZBd2ZU92ojuZoigIonOIpEqsb8ESp+D2wtUXIYr+4JRo5U922zDVs+FS9AvkOKL2g+VJkcpE7UXrVra7n9X1aEfOBNiXNNmJwGHXXd3a8qVEkwpu62QimWyEnehgbiy+t5KfWo3ldmWwdtqKBV4G5Haum7aO6Hzaid5kFzu5fUz1EyB5FR7HRluJtDWHDh0yeTZ9Pl/C+uIGSeWReP/99zFo0CAMGjQIADBv3jwMGjQI9957r+021qxZg379+mHEiBEYN24chg8fjqeeeipeXSYIIk3hk3c5eQH2XNep4rZOJshGEASRLERrH4KlkuEmEl26dIHH48GxY8dM5ceOHQsrxSwsLHRU3w2SyiNxySWXOIov/OWXX4aU5efn48UXX3SxVwRBtEWiSSDE6gcvxl20aBEWL15sKrNyW3/66afC9hPhtk4myEYQBJEsOLURTu1JZmYmBg8ejI0bN2LChAkAtBDXGzduxOzZs4X7DBs2DBs3bsScOXOMsg0bNmDYsGGOju2EpJpIJB1Bruto3dQiF5qoLTsRO0TuZ6eRnCIdO/iYkSILiRBJfcLVEdVzQzqVCCImKnKYNMhOvUj1rVzGdiRN0ciZ7Lip3XYtm9pzoW1JjiKpl14/3VzXRHS4EfWPEck+OJXBBvcxol3Q//pDajnHrl2w2teQojrMARqNPbPbNzv1RRLa4LHcqQ0AApImURtWZez3jzRmW8plHdqIWGRMySR/dWojnNoTQPO6Tp06FUOGDMHQoUOxYsUK1NbWGnLYG264AaeccoqxzuL222/HxRdfjIcffhiXX3451q5di/fffz+uXleaSBAEQQjgXdFO9gFgK7pPqritCYIgiFCc2ohoQjlfc801+Oabb3DvvfeivLwcAwcOxPr16w3P9MGDByFzYfPPP/98vPjii7j77rvxy1/+EqeffjrWrVuHs846y/Gx7ZJUayQIgiCShXhHbeLd1gzmtg7nhmZua554u60JgiCIUFors/Xs2bPx1VdfobGxEdu2bTNFmNu8eTOeffZZU/2rrroKe/fuRWNjIz766COMGzculq8ZEfJIJAg7kZEAexE7nEZyMrkG9XrCJHVgbTlPgmYnOpE4wpGib5MF2+whjLTkQFdt2k/kmrZdpkSs3yJwNYvqWbmmeazc1Ox6iVeEpnSLzBTLGgm7pILbmog/8Yj6F0kGqyA2uwBEL3Ni4545opMo8h3bJnP1zN9TKEvyR9huUd8NrGyW9TgfOuiKxn5RZCY7toIvc8NWBNuIZJS8xpN4r5FIFWgiQRAEISAWaZNdUsFtTRAEQYTSGtKmVIAmElbE4IpyG6exxK0WYItyTPCPmVgboidQkg1Pg134pyreoO/lVwKPiALeDXBlckg/Ys3REIngdq2eHoUrC36SFMnDYGcRHv8EJx6eCDeeMrUGpnvVhftWkpzf/9E8cZo9e3bYCBybN28OKbvqqqtw1VVXOT4OkZpEG6xDtBBb5L1mngnTviFv+OOE1mOjtWg89pi8DkHjfIQcEwG7oFjWs7PNCt7jYYVozLe3n7MgHFYeh3DtRWsrrPIKxeKpTjfvgwinNoI8EgRBEG0Ijyw5/sdETZIHDwRBEER8cWoj0tU+0ESCIAhCgBzFREJJU0NBEARBmHFqI9LVPtBEopVJhFQqeAG2VY4JrdC8v8mbK5BH2XFrR3J5W+WdCJY9afXsLeKOFaeL5iK5pIPLIkmhgrfblTGF2yfsftF57KNCdA8ko4s7Go9EuhoKQoCiun7d2rUPduROwnHeQgYrDNAhOjhX6PfrkilFMh0H4PIaCMdve2V2trlRP164kXfCalsk+RLDjoxJVN9cL7RPwe3FkosiHvtZ4kKbTm1EutoHCv9KEARBEARBEIRjyCNBEAQhgDwSBEEQRDjII6FBEwkLYkkg4hZuhguzcmGbjhmxILLcKd5u7Xi4ut1wQzuNzuHUNW2qF4ObOlA/7CbbiK5Rp5Gc3L7P3GiPJhJEa2M3QpPVvlYRnUSRnAKVBPsJIjpBJJkCk85Y53QwitI0ek1rEyminlHPBbsQbQ4hp7KkZJS5hoMmEho0kSAIghDglcXrc6xQSSxKEATRJnBqI9LVPtBEgiAIQgB5JAiCIIhwkEdCgyYSFkST2TYROE1yIkpWxxOS2EjUhsDlbeXW5vso8HQHjmXzfCdacgbYd8HalflYuY7dPJZTOZMpiZVNV3qi7xs3jh9N+FeRlI8gYsFKsuS0viiSk7Gf6N4WyJ14QqWZ8Zel2B2Dgol34sxYxpxkS1Rm9xy3VUkTw6mNSFf7QBMJgiAIAR5Jtp3xlt+HIAiCSH+c2oh0tQ80kSAIghAQjbQpWeLXEwRBEPHFqY1IV/tAEwkLJElKOpej29iRuUSKRGRMslPQNZlqtGbiOBGpcj+40U+aSBDpTIiEVZQo0qGMKJaEZMLIQjYi00WSxMRb0iTCSuYkkpwFl8mC8SuStM1quxtSz0Scx2SHJhIaNJEgCIIQQBMJgiAIIhw0kdCgiYQFkixejJyqRPs0O9JTKVVfPW17UbGtBcHOn36Inl65iegpkRV2FkfaXUBpexF6lE/i0+k6B9z5Ph5Jgsfh+XRanyB43AgiEW0b0TxxtuMd4Mdlq/rs+OL8OKH9FB3LrlfDqr4dIp3jYFsRyQvBxnfRuMXGdN4GWLUnslOqDS+I27D27Z5jq/4k60JspzYiXe1Dmv37QBAEQRAEQRBEa0AeCYIgCAHRhH9NdNhbgiAIonVwaiPS1T7QRMICWZbg8SaH08apa0/kpha5TUVyp2DXsqgtp25l2/VturdFJDJOuF2XdKB+fFzTokh0wXInu7Ifp4NeMuT2ALTryo0Bm9ZIEJbIUqte84m+v6zGcKtF0VbyJX9LqOzJVF9gP4xjCmyFlU0J1LHKZOQcSfaElAWPP/xvZyVVEtmA4G0A4PFKprb49lRBffjVkHZDv0d8ri+n+U9iacMRCbAR6WofaCJBEAQhwCtL8FJCOoIgCEKAUxuRrvaBJhIEQRACyCNBEARBhIM8Eho0kbBA9shJEzdf8jiL8W2lXrErAbKSNMXmfg5tP7jdSPHDbbmwY4jiJPrdLd3VIpmRFOpiNlzXgigdli5vNbzsiW+fnQO70h6n8c6D+5qMSB4Jsid2SSJNJAi3iJdsJN75ASJJUoPH/khRmJiUidXz+wN6VVEbbLuprKVFL/Ob/gKA6g8tC7QfflssMGmTSOJkbPN4LOt7vF69TPs9Pdz4JZI2qYocUmbInZTwdkThhkVZMW/jz3EiclK4cY+0dnQnmkhoJMcCAIIgiCTDI0mGobD9SuIJFkEQBOEejm1EHO1DRUUFSktLkZOTg7y8PMyYMQM1NTWW+zz11FO45JJLkJOTA0mSUFlZGdWxk2oisXXrVlxxxRUoKiqCJElYt26dsa25uRl33XUXzj77bLRv3x5FRUW44YYbcOTIEVMb0ZxMgiCIYGSnkwhZStuoHMkC2QiCIJIFpzYinvahtLQUH3/8MTZs2IA33ngDW7duxaxZsyz3qaurw5gxY/DLX/4ypmMnlbSptrYWAwYMwI033ohJkyaZttXV1WHXrl245557MGDAAJw4cQK33347fvzjH+P999836pWWluLo0aPYsGEDmpubMX36dMyaNQsvvvii4/7ILv3wsbjsrF11urtS5CbkpFBqkPuZ/04K2DZ7fRBJjww3dQvnplbN7Zq2Wbi1xe5w5t7mXNhWrmt/eNe1aD+RS9rYJnBJiz6z93yULyupEnNdm13TWhn/3Zmbmm0TuabNfYocWSpSFCkr2ZLtxHhRXvNuuaYpalN6kkw2QooyapOb/0w4lRiK5J6sP5Ekr1Zjf/D4DQCKX1Cmj+VCyZJeZrYVfn2/pkCZ31zGj+msTLGwFULbYWEzeHh7YJRZSJpk9tebGbqNK1NazGV+k+xJG7h5uRM7bx6ThFPWjxnab9ETY2ZLgiVO4bCUwTq8DkV9jBbFpiQrGDekVMkibdqzZw/Wr1+PHTt2YMiQIQCAVatWYdy4cVi+fDmKioqE+82ZMwcAsHnz5piOn1QTibFjx2Ls2LHCbbm5udiwYYOp7LHHHsPQoUNx8OBB9OjRI+qTSRAEEQxNJJIPshEEQSQL0U4kqqurTeU+nw8+ny/qfpSVlSEvL88Y0wBg5MiRkGUZ27Ztw8SJE6Nu2w5JJW1ySlVVFSRJQl5eHoDIJ5MgCMIuHhmO3NbaK9G9JnjIRhAEES+c2whtv+LiYuTm5hqvpUuXxtSP8vJydO3a1VTm9XqRn5+P8vLymNq2Q1J5JJzQ0NCAu+66C9deey1ycnIARH8yGxsb0djYaHxms0VJcu66dv2JZFB7foH7mT+mOJoRa0vQPKsDzl1t4eUVRWgypEeC6BzMlc27w4Pd26Y2bLiy+XoiuZNiIXuyQpxYKHy0Db6+4ZL2hJZJAje1ITPzhrqr+TKPfoey88NLp5hr2gPray5Y0iRMhidIbBTY37p9V695QVuiaz4SbkSVIo9EauOWjQhnH2KVvsZyjdpJKimSq4qOycZtk+Q1ygSovA1gZQonVQq2HyIbwI/zSnNTaFmQpMkvsAtsP74s8Df0xNiN5CSWMckh2wz5UoZuA7g+enS7wH8nZiuYrWP7afDv9TbApK7c78TOs5f1J7CJfWWn45NQBmvzurW6RiWwSFGOumNCdN06IRHyV1b30KFDxpgEIKw3YsGCBVi2bJllm3v27LF9/HiRkhOJ5uZmXH311VBVFU8++WTM7S1duhT33XefCz0jCIIgEo2bNoLsA0EQbpKTk2OaSIRj/vz5mDZtmmWd3r17o7CwEMePHzeVt7S0oKKiAoWFhbF01RYpN5FgBuKrr77Cpk2bTD9GtCdz4cKFmDdvnvG5uroaxcXFIfWS4ekk36boSa3ouYrhddBn/5HyKwSeODiNLx66nT2B4p9KiRbVGYvkLJ5AiZ48mRbacU+hgrc59UgIvRMZZg+D2dOgbeMX0Nl9umTAniSZFrfrXgQP+2xvYZntp0YWC8IZous43k/e+Wvb7rGi8VxYQR6J1MRtG2HXPjj1MNjxKoTDztNUxWL8BgLjNet3NHl3gu2AlQ0AQr3RVjbAVMaN/f6gMlF93usQbCsUQd4J83eIHJCDX3QtC+wBe8/6Y7ILevt8mT0i1A+yH8x2aP1lx45uYTIgvr6trmE3rlHrnWMPNBAr8V5sXVBQgIKCgoj1hg0bhsrKSuzcuRODBw8GAGzatAmKoqCkpMTRMaMhpRS9zEB8/vnn+Pe//43OnTubtvMnk2HnZPp8PmOGaHemSBBEekPhX1OPeNgIsg8EQYhIlvCv/fv3x5gxYzBz5kxs374d7777LmbPno0pU6YYASQOHz6Mfv36Yfv27cZ+5eXl2L17N/bt2wcA+N///ofdu3ejoqLC0fGTyiNRU1NjfCEAOHDgAHbv3o38/Hx0794dV155JXbt2oU33ngDfr/f0LTm5+cjMzPTdDJXr16N5ubmkJNJEARhB4/kPIEQJaSLL2QjCIJIFpzaiHjahzVr1mD27NkYMWIEZFnG5MmTsXLlSmN7c3Mz9u7di7q6OqNs9erVJtnmRRddBAB45plnIkqqeJJqIvH+++/j0ksvNT4zd/LUqVOxePFivPbaawCAgQMHmvZ76623cMkllwCIfDKdYtcV1VoSiKgkH/rfYIkTX8i7ptgx2Ow5kmSEuQwVkyQnukV1/qb6kG1+UbxwgQSKubNFsieniORLwW5qXrLEjuWxLacKdVMzV7MqhS5YDLiQncf6Dl5kLVpYbcpnYUPa5GR7OKyuK1Gbka5Dj83r1S6yJEF2Gh+dJhJxJZlshCRJEeVMduVL8XhSKWrTHHNf+xvLgleGU9lIwD6EjpeiMr9A6mplA0y2JWgBtlUOokgY9qAlUKYELawGQvNH8P2x037k86L/tuFTIJkI/D5u5MUKLWvNBc+hNjEUO4EG3AjI4dRGxNM+5OfnW+bC6dmzZ8h9unjxYixevDjmYyfVROKSSy6xHJDsDFaRTiZBEIQdPAA8Dsd9m3adiBKyEQRBJAtObUS62oekmkgQBEEkC9GE96Q1EgRBEG0DpzYiXe0DTSQiEI2UyIpY24gk+RDJO4wy/TPvETQiOUHg8hZ4e5lrTuX7EaWCyCqqkiLYJo4NHn10jmBMkThs9JvvD3Nr88eUg+oHv48GXoJk5SYVuX2tIjTZjczkZlSiSBHInOJ61CZaI0E4wE0Zk9OIOpFQg+SqgEAiwkXB0VMjuH5POc1P4XS8tBr7rSSvsY7L/HEAgFklSW+X5ZqI2IbDfvDn083IOYbkVeJtRfh6gTrxuW6tjim6pkR9dUPCF0wyrZFIJDSRIAiCEEBrJAiCIIhwJNMaiURCEwmCIAgBsuR8jUSaeq4JgiCIIJzaiHS1DzSRcABz89qNKGNVL9kSV5lckszlLYVG9BG5GgOSmUCZIX3ym+uYjxk+AZzMfVYFEZRUgcvYyi3My5aiJdg9Leq/LEhkZ/U9xedFEFXJUsbEuZ8jtJdMWMkm7Eoq3JZe8NAaCcIOdiRNdq+LZLtXI439Rj0meY2QYIydB1VltsU6CahoXA22B+Y2lJD6TNEi65HyYpGaio+pl1kkqRPWl8PXj3zMUJmqZb9tPAlPtmsP4CIZWlx7IrmeuC3obbnTN3ZsWiORYgnpCIIgCIIgCIJIDmgiQRAEIYDpX52+4kVFRQVKS0uRk5ODvLw8zJgxAzU1NZb1b731VvTt2xfZ2dno0aMHbrvtNlRVVcWtjwRBEG2FZLIPiYSkTRaoqip0qVk5Q92OROMGTvsRnIiOd8cxyZKkhspv+BjuRjQgT+hcNVAvNClbYP9QV7CfL9PdyHykDJb8R5zAJ7I/k5cu2XFhs+MBgIclqePKRInrWJnHK5v+AoFzZZIqsYSBgsRxVu5tpy5Uu9HJ3Lym3ZAvhXN5O02QJcITxRoJp/WdUFpaiqNHj2LDhg1obm7G9OnTMWvWrLA5EY4cOYIjR45g+fLlOOOMM/DVV1/h5ptvxpEjR/DXv/41fh1tYzCphJXEyRRdx+L+Uo1ISrFfSFZyEHM9/a/gnonUhtFPYeQcfXxSBPZDCR27mGTJ48vm2gg/DvsFkiJDCuXN4L6DHsmppdn0mUexKXGykq7yxwzut9gGCGyFwGYE5F2hElZRFD+ra8dqm+m3Fth0FtXLOhFc6P8AsWDnGrYbCSw+UZsc5pFIz3kETSQIgiBEJFPUpj179mD9+vXYsWMHhgwZAgBYtWoVxo0bh+XLl6OoqChkn7POOgsvv/yy8blPnz544IEHcN1116GlpQVeLw3/BEEQ0UJRmzTIkligKKpwtmulB2uxOSO3uzjbKXae3jqN5c0jesoEr+iMmBe9SS2C3AWewCMCv96G3xu6IE5p0fI1eIR5JEIXzoliiTtFtPgt+CmTabFcRqhHgm0XeR1k5pHgPDasHv/EJ7g+PxBF+8RHFHtcEnjS3AwM4NSTYfdparhrOZZrnOGRJcffndWvrq42lft8Pvh8vqj7UlZWhry8PGMSAQAjR46ELMvYtm0bJk6caKudqqoq5OTk0CQiDvBPPO16JxjBXgq7178Vke4Bqye0Tu8fkVdahv6dBPaBjTcKZxdkfaxT/IGOKfp4ymwAEMjf4xHYAFbPVKaEzyNhJ7+QCJEXxGrxtMguWNkP/npg58VUJrAHRpkc6jlw6qFmv79oP/66USwW18dLN+88F0mcOgLnNiLZguy4Ba2RIAiCEBDLGoni4mLk5uYar6VLl8bUl/LycnTt2tVU5vV6kZ+fj/LyclttfPvtt/j1r3+NWbNmxdQXgiAIgtZIMOixFEEQhIBY1kgcOnQIOTk5Rnk4b8SCBQuwbNkyyzb37NnjrBMCqqurcfnll+OMM87A4sWLY26PIAiirUNrJDRoImGB4leEC9D8/sjxtLUGHLrgXHB72XH7RVpUpxgL/lgBv7Baf8O5qyXmBhXIbli7MncHeVVdxtQSOCarZ8ivVH5bll4/1EepqqFtWJ0D0UI7UexuhmmBm0VOh4AsyXrxmyHr8oa2JVpQHbwAO1KOCfabieRLIv+jsQbd6py10nUZ9vgOF06rimqSR0SLFMUTJPZb5OTkmCYS4Zg/fz6mTZtmWad3794oLCzE8ePHTeUtLS2oqKhAYWGh5f4nT57EmDFj0LFjR7z66qvIyMiwrE/EjlM5hZVExM1jiu4l0b0ZrbSKl2oqUpAdQUDyw46pcvXFYz+zC4F/VRRFW4xtZcf47xQ85otsgN18ElZ5HkRlojHdqGMx9tu1I2b7ZG43lpwFxnk0l4a0q1rkiRLJWe3kXInct9jbcAunNsJOPo9UhCYSBEEQAmJZI2GXgoICFBQURKw3bNgwVFZWYufOnRg8eDAAYNOmTVAUBSUlJWH3q66uxujRo+Hz+fDaa68hKyvLUf8IgiAIMbRGQoPWSBAEQQiQoUVBdPSKU1/69++PMWPGYObMmdi+fTveffddzJ49G1OmTDEiNh0+fBj9+vXD9u3bAWiTiFGjRqG2tha///3vUV1djfLycpSXl8Mf5SJTgiAIQsOxjUh0h+MEeSQsUBRVKKdxil0XYwxBhhwRS9zlgNuUKxTlMVDMt4zIVS4qUxzGMncjuolTnMbpFrk+ha5uh/kgRG5SUUx74/e2ES1GRGtdl4A70ZbcascjSfA4dEU7re+ENWvWYPbs2RgxYgRkWcbkyZOxcuVKY3tzczP27t2Luro6AMCuXbuwbds2AMBpp51mauvAgQPo2bNn3PraFlBV1ZV8JUBAIuIU5xFsoh9LRWOz1Vho9fTVzXHbjXvd7u/ohjQlFslRME4j94nqs99VFth7UV4IsWTJZj/069zNcxAt7uQacmYj4mkfEglNJAiCIAQkUx4JAMjPzw+bfA4AevbsaTKOl1xyiWv/6BIEQRBmKI+ERrp6WgiCIAiCIAiCiCPkkbBA8atQLCI0OWnHUX0XXLWxuA6t3LdGZAjYk+FYRauwW9/KRR7ttkhYJVBzuk0o4WLRSGxKuawjUVmXWT2Vtro2E30dxoIb961H1l5O9yHaBuESltrFqbzHdpJGm16oaOVFVrLMSAkzg6MNiSLO8YiiHgXbD1OUOxv2w+0Fr6IxP7iM/yyMLKWqYbcF9kNIfUXQruiz1TXB6vkjRQ4TyO+Mc28hzRM9hRcJxt2QaTnBnaSlzsb8dLUPNJEgCIIQoC2QcyptilNnCIIgiKTCqY1IV/tAEwmCIAgBchSLrdNVA0sQBEGYcWoj0tU+0ETCgmDXtR1XcDK7nxmxuJ8ZHj4hnb6dL2Pu40y9LJPb5g3apr33mMr4m5OVeQUu7EzBMe24t0VEclGz9016JC9+W0vQNgDwq6FlTS1+U1kL1wYrM7XB3M56GS9TskrQ56bLOxrsuJ3tDqp2Xdh8PVdkWUm22JpILlRFDXuP2Ll3Yrn3nMofjf0sjika5yNJE4MlTTI3HrN9+WSkzEawxHVekw0ItRU+/X12pje0nt6Gz8LuiMqitQ+AtY0QjdsiW9HIxnk/bxe09/VNLaY6/Da+/RbWLtcGswdM1mm6Htg2YbI/m0kKHV47IoKvJ9PYbiWdErWlxGY/3IgcRoutNdJUsUUQBBEbTP/q9EUQBEGkP8lkHyoqKlBaWoqcnBzk5eVhxowZqKmpsax/6623om/fvsjOzkaPHj1w2223oaqqyvGxySNhgdqiQOGeAjh9gmRnpi9ebOukl5EJXsTGPz0wnhrxT5LYTN94ehRan28jM9PsTQCAdnoZe5KUrX8GgOwM7X3HrMDll23U1/5meQP1M/TjZ3F3oVd/n8X3W+9ThsAzYeeBE//TsCdIzYKn9w3Mm8A9DWrQ3zdzi3wbdO9DfVPgUQt7f7JBe/JU3xy6jT2VAoA6vaxJ/wJNXFvst+CfdrHrS3TdsjLRIj8eN68/0QJKO08+RU+qInkm+CdUqhv5X8gjQVig+BXTE2ERdu2C0aZlEIbw9e22b0WkPDbMs8Df0mwf9tfDjdEer1bmzQiM5b5M89jPexo6+LT37Thb0SEr1H6weswTwdsFVubj7YfeN2ZHMrgkSGxX/r4VSVWYd5mNpfzP3qyEjv3MbjTqNoD3MDBbwZfVNOr2QB/faxpCbQCro9XT3p/k6jXq9Vp0m+JvEXil/aFlhs3wh9oRnnhdV4F6gn0tArOwsxcxJ1OYwBtKhHvXDsnkkSgtLcXRo0exYcMGNDc3Y/r06Zg1a1bYkOFHjhzBkSNHsHz5cpxxxhn46quvcPPNN+PIkSP461//6ujYNJEgCIIQIEnay+k+BEEQRPrj1EbEyz7s2bMH69evx44dOzBkyBAAwKpVqzBu3DgsX74cRUVFIfucddZZePnll43Pffr0wQMPPIDrrrsOLS0t8HrtTw/IEU8QBCFAhhTViyAIgkh/orUP1dXVpldjY2NM/SgrK0NeXp4xiQCAkSNHQpZlbNu2zXY7VVVVyMnJcTSJAMgjYYmiqmYfpo5lrGfTYiaE1HO68NWNBUHBC+JMcbd1V7DMHYdfNA0EuxVDF1YzSRMvVcptl6mV6W7oDqZtGaZtANBOd3930F3d7TLkkG3tOBd5pu6m5hdgG5ImvYiX0NjRJvI/Nfsdea8oc1cbC6u5jXW6O7mOkyrVNWsN1vBSJX37Sd1NXVXXbGxj7uyTjYHv6alr0sr0bSYZkz90AbZiYxEev0jbuJYFi/BiIdjd7HiBP/d7WUmh+LZYHHRJlmwHM7CCPBKEFapqXmztdNGqlVQpYrtqaD2r+nYw5WoQSJVEzx3l4PreQBtM0tRRH++BgI3Izc40fQaA/A5aWU4WV1+XNHXgbEWHTLM9aJ8Zahcyue/CFmWzr5LB2z+BrRApKNkptbILvP1gC6mbBLaitinUVtQEyZdOchLW6gbNRlTUNBllzB5kekPLTtaxkkAbfr8UXBQiaeLtArMfka5DO9jNOyKqH2wXzPX0v4JF13ZyVFktHrdLtB6J4uJiU/miRYuwePHiqPtRXl6Orl27msq8Xi/y8/NRXl5uq41vv/0Wv/71rzFr1izHx6eJBEEQhAAtRrjzfQiCIIj0x6mNYHUPHTqEnJwco9zn8wnrL1iwAMuWLbNsc8+ePfY7EIbq6mpcfvnlOOOMM6Ka0MQkbWpubsahQ4ewd+9eVFRUxNIUAGDr1q244oorUFRUBEmSsG7dOtN2VVVx7733onv37sjOzsbIkSPx+eefm+o4XblOEARBuI/b9gEgG0EQROqTk5NjeoWbSMyfPx979uyxfPXu3RuFhYU4fvy4ad+WlhZUVFSgsLDQsi8nT57EmDFj0LFjR7z66qvIyMiwrC/CsUfi5MmTeOGFF7B27Vps374dTU1NUFUVkiThe9/7HkaNGoVZs2bh3HPPddyZ2tpaDBgwADfeeCMmTZoUsv3BBx/EypUr8dxzz6FXr1645557MHr0aHzyySfIysoC4HzluhXBruvgiBq8a9rKJW0Vu1kUQce2i1wJDbwsyZ6QsmAZCO+u9vv1eN6cbIj1g9Xnj220wU3DWZSNDpxLOi9be8/c1Z2yA9uY6zqXc1fn6i7ujizKU0ag/WwWiYOLHsWiNXmUgDQIfs3NK7G/LQG3r/FjidyZzN/I6WlUb6bpr3Ywrd9+WStr4FzBjX6t3/VcWX2zdqyTnLSpSnc/V2Vqf9tz5/1EpvZdPDWcXMdwm4fGKm8R/D7sWmvh3OYsegcrUyK4sEMiizm8zsz1QqN8iWRJVvI7kXvbuEaV0Hb57bFA0ibnxNM+AMllI/wtKuDhZIIWkZYi5SMKthVCOxLBVti5b3mC72FRbiDVG9pXSRZInAT3dHCEJgDIb6/9w9RZtwvMPgBAvm4XeGlTfrZuFzhb0V6XvTK7kM3JqVjUJrnJ0PdAamnQ/jZoOnRmHwAASoteFhijrWyE6tH7IQf6o3p0W5ER+GdQzdSuNSWzHQBzhKb6llBbUavLYJnktaI+0J+OQRENgYDMSZT/okkgbxWNzYZMi0UhNNkMm3mLLK4xO/+LOLULwduDP7M2RPdisASKj2oVLfFebF1QUICCgoKI9YYNG4bKykrs3LkTgwcPBgBs2rQJiqKgpKQk7H7V1dUYPXo0fD4fXnvtNWOMdIqjicQjjzyCBx54AH369MEVV1yBX/7ylygqKkJ2djYqKirw0Ucf4e2338aoUaNQUlKCVatW4fTTT7fd/tixYzF27FjhNlVVsWLFCtx9990YP348AOD5559Ht27dsG7dOkyZMiWqlesEQRAiolk83ZYXW8fbPgBkIwiCSB6c2oh42Yf+/ftjzJgxmDlzJlavXo3m5mbMnj0bU6ZMMca0w4cPY8SIEXj++ecxdOhQVFdXY9SoUairq8MLL7xgLPwGtAmMxxM6EQyHo4nEjh07sHXrVpx55pnC7UOHDsWNN96I1atX45lnnsHbb7/t2FCE48CBAygvL8fIkSONstzcXJSUlKCsrAxTpkyJuHJ94sSJwrYbGxtNq+bZySQIog0ThUeiDc8jEmofgPjZCLIPBEEIcWoj4mgf1qxZg9mzZ2PEiBGQZRmTJ0/GypUrje3Nzc3Yu3cv6uo0b92uXbuMiE6nnXaaqa0DBw6gZ8+eto/taCLxpz/9yVY9n8+Hm2++2UnTEWErz7t162Yq79atm7Et2pXrS5cuxX333RdSriqqWTYSlHo+kozJKgGY4TrkXIPsvanMH1oWXJ9H5E5kZXKG5oL1c3Idjy5tMrvbtcvCo7vtVUHII96lyqI28ZE1WGQmJmnq3I5zYTPZExfNo4PurmZu6w6cG9fTrF34ckNAxyw11WpljbVGmdpUr/2tr9U/NwS2MZmTIgiVorvqJe68yLprWspuHzhmZrbWH59WlpEZ2Nbe1wEA4G/fzihjkTjacTItFmEkq047ZobA5cxHZmIucZaASOTKNskbmFubc9s26+7yQKIiLlmdfl6U5oC7P/i6cnqdAYCkP81gZaZt+nuRlMIqQaIqlDuFdAMy3Ik8RYutnZFI+wDEz0aEtQ+qqstftc9WSbxE0flE9sNKauiGrbC6b5UMbvxj0k7OnhmyVoWTgAZ9Z142my2SvLYzS167cHaBve/C2wXWRmagXWYrMlq08V6uC0zs5MaTWl85u6CcrNT+NmhlSj1vMzQbobZwElmRXIeNY16tb1JmQALCbIScFbAHcsc8rV3dVnh9HY1t2VnaItvmdtlGWY0ubWJyLT5C4bdMrhXBVrBIUSyBXSMX+akZ7NoIjSrJrjmRtEnh5MHMRkR7fQH27IIsGOf56yo4CaIpEalAHsVgtoIpmN2Qv0a72Doe5OfnW8oze/bsafrOl1xyiSvnAKA8EgCAhQsXoqqqyngdOnQo0V0iCCLBSFG+iPSC7ANBECLIPmhEHf513rx5wnJJkpCVlYXTTjsN48ePR35+ftSd42Erz48dO4bu3bsb5ceOHcPAgQONOtGsXPf5fGFXzRME0TaRJUkY5zzSPkTr2wcgfjaC7ANBECKc2oh0tQ9RTyQ++OAD7Nq1C36/H3379gUAfPbZZ/B4POjXrx+eeOIJzJ8/H++88w7OOOOMmDvaq1cvFBYWYuPGjYZRqK6uxrZt2/Czn/0MQPQr18OhKIDkF7mYzW5oU1lLaBQPkZSEuQJFkhLedWhIT2KQNnl0N7XUpEtKMgMu1YA7m3PVBiUX8gpc8GZpk54giJMj5WabI3Dkc1GbmAs71xdwiHX06ZIfRdMiy9UBYy/XV2lvar4zyvxV2vuWqkCZUqu5tVv0UI7+hsC59TdrrmuFi6BktK9HivJwYc88WVofvR06BOq119zTcm5nrY7+FwDkDtp7OTvXKMtt1wkA4MsO/BOSIWu/mWjRFUts1Myd7xoj8ZD+2/GRiQSyCZGbmr1vbtDc+Pw152dyMIV3a3NRTWD/OpO5MiaNELmwmcROaQmtz+ROvEyElUlq4Lt7dGeqQKim7x9mgwMkRBG1KfbDpgWtbR+A1rcRWtQmVSijC5a68pHSgqP/8fX9LS36Z84GCCQlhv1oCbUfIlshQg66N+UWgbTJF7AVTH7Iy0y8GWZRgylqE4uqxMl0WGLSXJ8ufeVkT13b60nqOBlTrm4X2suB7yTXfKP9ravUCni7cELb5uftwskTAICmSs0uNJ0MSJta6pm0M2AXVEESWkn/znKG1n9vduBcZXbU5EuZeZyt6KiN/cxGeDoFIu8YtqJdnlGW0V4ry2SyT24gYf988jKmZv3/kvqswHlhCenYeRfJe0y2gkVr0iVQLU0BeZe/UbMLJmlTS+h1aOdak0XypSD7YNrGSexYmcplWg6O+MRLoWQjwW6oPIqdP+OzG1Gb4DBqU8xHTE6iljaNHz8eI0eOxJEjR7Bz507s3LkTX3/9NX74wx/i2muvxeHDh3HRRRdh7ty5ttusqanB7t27sXv3bgDago/du3fj4MGDkCQJc+bMwf3334/XXnsN//vf/3DDDTegqKgIEyZMAGBeub59+3a8++67ISvXCYIg7CBH+SLiYx8AshEEQSQPZB80ovZIPPTQQ9iwYYMpO19ubi4WL16MUaNG4fbbb8e9996LUaNG2W7z/fffx6WXXmp8Zu7xqVOn4tlnn8UvfvEL1NbWYtasWaisrMTw4cOxfv16U+zbSCvXCYIg7CBJkinOud19iPjYB4BsBEEQyYNTG5Gu9iHqiURVVRWOHz8e4pb+5ptvjPB4eXl5aGpqEu0uJNIqckmSsGTJEixZsiRsnUgr150QnJDOKrKGEeWAc4syN7XJ/ew3u6T5bX6R6zDIrR0pyRCDdxn6g1yGfBseJTukPnNdM9efIvhNRFGb+IQ5LOoESzrHJ6TrqEuamJwJALJb9ChMtZpLWq751tjW8s1hrT/fBaKqNH+nba//5oRR1njC7Lpurg1EbWrR3b6KP/S7yLof2cslTspor/3jwdzWAODrpLmusws0t3VG5y7GNk9nTV/tLTjFKGOJj7LbByRQ0KN4sKvErwbOC0twV8/Jktg5ZedYFLVJMSUNCpVSMJc1c1czOZO2TXdhR5DYWWElXwpEaAq4q1m7sqBMVZjEKXRo4qM8+fUz6OGe8bBvLMmJicjB9iHiYx+A5LIRqqIaL8A68ahYBsvJaYKkrkLJEi8zEUmboozaxO5V/n706vJXiYslr+j3JP9dgiNVRZK8GslI9bGWl7yyyEw5nF1oL2ljl3wyYA88uo3wf3sEQMA+AEDzN8cAmO1C/Xfa9dZ4QpO+Np0M2IWmGq19Zh8Asw1nyLpNZDYis0Og35kdNVvh68RFZuqsTaANW1EQiCTGbISnC+cB03+f9h00m6L6Au2zM8yfq0YWoak5UFalJzQVyWCNwwhksOz7mv4X0e1CC2crRBH+jD46jNrErjWRHJbvhyGxU0LlTsxGqKpAwsVHflJDk9ppbaZX1KZEEpO06cYbb8Srr76Kr7/+Gl9//TVeffVVzJgxw3Ajb9++Hd///vfd6itBEESrwbKWOn0RZB8Igkh/yD5oRO2R+L//+z/MnTsXU6ZMQYv+ZMXr9WLq1Kl45JFHAAD9+vXD//t//8+dniYAVQEkD/856CmTcGE192RDMIMP9kT4I8RpDixwCp93QoRwEZPA4yGq36LP9L26VyHSzD3TE+qR8AXFw87mniazXBFZKvfkoU57giTpi6ybyw8a2/zHtPe1RwILsGvLKwAA9ccDT55qj2meiMbqJv1vIIlUs/7ESRV4JCTdI5HBeSR8OT79b+BJSPtumjchW3/C1b7wZGAby13RHFiw5i3UfjNZCnz3rI7aE6QWfWF3I7fgi50rH3euDI+EIJcHQ5RHwhQTPMgT0czl4wgsqgv0245HQnR9SVxSh+AnVGYvWGj7/NPQ0GNp54q/35h3QpVC49yrSiBGOpEY2oZ90LwRdhZUm2yFyMMQ5IkQBT+IFNOf3cN2PRJG/gi9XT4IR3AdgH86HBgnrbxDzIuayY1nWUF2gc+XwGxEey+3eLZGC7ThqQuM84YnQrcLDYePGNtqyzVvRe3RwGLruuPaeFf3rTbW8XaBvW9u5M63yAOv/weYoXtLmH3g37frEhhXG7tqtoF5xdtzgT+yBL+Ph9kIjzbWte8QWJzd5A/NLcHeZ3HnVnS+g7Fa4M9sARDwRPBlgcAcodeyXY+ErOfhYNcvv7Ba1tsQea9NtiLDbCuEx+QWWxuLsY2F2Kxtd3IoEDFMJDp06ICnn34ajz76KL744gsAQO/evdGBi3LDImcQBEGkGtEsjkvXxXROIftAEES649RGpKt9iOl7vf3227j55ptx8803o3PnzujQoQP++Mc/4p133nGrfwRBEAmBLaRz+iI0yD4QBJHOkH3QiNoj8fLLL+P6669HaWkpdu3ahcZGzUVYVVWF3/zmN/j73//uWicTiUk2YuHGZa5rk/RIsPgtWNIklj01h5YxF58/CmmTvsDJK9jWImvuSl5aogQtHhS5APmFXOw971L1eczu2EwuMLZPfy/VBaRBLFdEywlNvuT/7qixjUmaTh48ZpSdPKy5umuOBNzJNcc1eVGd7q6uag64YOt1SVOT4Ltk6v3P5vqYq7fVjnNhM8lUh1qWkyLwOzHaewOL3ySftgjPa8rbob33tdPjhnPHNKRNnlB3NTvHogV0omtUMcmdtH6LFlaza41fVGe1aNP4bqIFdFwZc3/L3PmwwpBAsWPLvLRDv34zQl3Y/D0pse/s0oo2WmwdPW3BPiiqCokLyMHfc8GSJmFuIIeSV3NM/1AZkxGsw8b9C3CLVjPCywp5mUmgbxb1I9iFDL2MjXFCu9AcGIukRs1GKCcrjDK/biOavtH+MjkTANQc1vJIVH9dbZQxySuTNlVxC6uZjajng6QIzDzrZna91u/c2sDYn3tCky811QZ+H0NKK0how/IWSZlc7qasdnqZvsjdF/Dc+Tx64A/TudL6kSEIemJlK3iMADGiwC+CwBz+Ju17+gWBOUQYklduwb7HQvIqum49FpJXBv+/i7+F7ccF4dB/AmYfFH2T1f9zdqHF1hpReyTuv/9+rF69Gk8//TQyuEReF1xwAXbt2uVK5wiCIBKJ5PBFaJB9IAiiLUD2IQaPxN69e3HRRReFlOfm5qKysjKWPhEEQSQc8khED9kHgiDSHfJIaEQ9kSgsLMS+ffvQs2dPU/k777yD3r17x9qvpEYNishh3hYqPRKllBdG7tDd1SYXo0UeCdvSE0WPziGIrsMiIJj7wY5pT5biZa5UTv+XwVyvLEcDdwd59Yj/UksgeoaqRxJSTlYCAJq5fzYa9ChJdcerjDLmrmZyJgD4TncxVzRp54WXNtXqrmuriBztOUlRTYv2Pt8iypMng3PZt9dc0pk5gbwTckftO6i5gTwSUjvtO7NzwJ8Xdq4yuH6wvnltjkCGzEL4e4quuVCZheOoTfr1pQqiZwj31V3dCh+JI+iYwsgzgogjUhxHZkpIFz1twT4E55EI3mb+bC3hMO5Nkc2wkLyKZCZ288AER7sRRWjiJVZe1m/TfWh5CABmiY03xC4E6rEyqSGQ50Fq1sZLPyeDVWo1e9BUrUfpqwxsq/+2DgDQcCLQBpM0fVOnnT9mHwCgusWhtEnvf70/0HEmly34lquvR9tjkQAz2gf66MvTZEsZeQH5laJ/P0+O9n2llkD/M7I02yI6V17eVtgYC/nfi/2O7Hrkf+uArQhcc36LHCciDGmTwkle9WNZyelMuUuYFEr0f5VABhuQTHGSV48UUib6HA2UkE4jamnTzJkzcfvtt2Pbtm2QJAlHjhzBmjVrcMcdd+BnP/uZm30kCIJoddjTJqcvguwDQRDpD9kHjag9EgsWLICiKBgxYgTq6upw0UUXwefz4Y477sCtt97qZh8JgiBanWh0rWlqJxxD9oEgiHTHqY1IV/sQ9URCkiT86le/wp133ol9+/ahpqYGZ5xxhilOeFvCKgmQcJs/fH3FQh5lV9okgrkm+SgHon5YoVi4A/kU9MwVzKQ5fD41SdFCK0h+zkXKJFx6ZIiWei6ZXK2eSI2LlNGkv288GWijRndTM0lTdYs/ZJuV21oke8rkHiF00I/ly2kO6Q/rI9/vTP27qJz8gH1ndg48cuAWNM4VN9rIFq5Qq99CREBSwbnxBYmt7EojrAh1SQdkcsY1x40+lveKUda6UbhlSbI8/+H2IdqmfbCSuka6v0LGeUF0PiuJLP+el57Y6rfDPooQjUWBsT+8XeDvF/ZO8geiKrFxEnzCTGYj9CRvLfWh0ZKaagL163UpE4vcV8MlB6xxKG1i2/iRyJA7cZIpn3581h++j6zf7Hvw3y9gG7lzoP8129dQW2FEaxKMQVa2ItprNPh9uHZFyUbFkiU9ySh/7cs27hVRf2RR0kT3x2anNiJd7UPUEwlGZmYmzjjjDDf6QhAEkTRIkvZyug8RgOwDQRDpilMbka72wdFEYt68ebbrPvLII447QxAEQaQmZB8IgiDaHo4mEh988IHp865du9DS0oK+ffsCAD777DN4PB4MHjzYvR4SBEEkAElPOOZ0n7YK2QeCINoSTm1EutoHRxOJt956y3j/yCOPoGPHjnjuuefQqVMnAMCJEycwffp0XHjhhe72kiAIorVRFXvxLYP3aaOQfSAIok3h1EakqX2Ieo3Eww8/jH/961+GkQCATp064f7778eoUaMwf/58VzqYKgTH5ObLhNtYrOSW0PoyV99ubH6r/rD3LHYzn0eCj9lsB9kifhmfcp4tSmMLmP18/OoM7bJTPYFFWCyfhZSZBQDwZvuMbSxHQ0b7wILdTP29r2OgjQ76wrkmi4V/dvNI5Oo5IjpwwbvZsdix+f6wPvL9Zt9F4mJmK/p3VvXFYP7AmsDAueK6qFg8wbD6LUSw35r//dk14XRhtej6MsWht3PtC9qzuo9aG0lVIDkc+J3WT1faon3gY8SrYHlOQq9rO2X8PRLYFri22P0lsg9scavdPBJO+yhCNBYFxv7wdoEf39g71cMtlGWLZr2BsdawEVna9/RmB8ZXlrchs0Ogfna11u9s3T7wYzo7o/yiZTt5JPg2svWN2ZmB88OOz/rD95H1m30P/vux72s6B6yvJvsaaivYeRbZOCtbEe01GgmrNkT2wfrat7hXIlyj8czd4NRGpKt9iDoMSnV1Nb755puQ8m+++QYnT54U7EEQBJFCsKdNTl9xoqKiAqWlpcjJyUFeXh5mzJiBmpoae19FVTF27FhIkoR169bFrY8Msg8EQaQ9SWQfEknUE4mJEydi+vTpeOWVV/D111/j66+/xssvv4wZM2Zg0qRJbvaRIAii9VHV6F5xorS0FB9//DE2bNiAN954A1u3bsWsWbNs7btixYpWzapK9oEgiLQniexDNA+abrrpJvTp0wfZ2dkoKCjA+PHj8emnnzo+dtTSptWrV+OOO+7AT37yEzQ3a/oMr9eLGTNm4KGHHoq22ZRA0t2EkhJqmO1KPphLWhRjWYRiEV9c3EeuHx7zsfhjSoJ+sPeSTelMi8Cl2qxrmZp132sL595uATsmJwPK0uLLyx3zAAAZeXnGtqzOtVpbeq4GAPDruSJUgR86u1rL5dDBG5j9sxjiItkTyxWRzfm3mbSpXU6gjx26tgcAtO+m/W3XNZfrY05Iv9l3Yd8NAFT9O7foc/gW7jdk56rZFNM89PxZwX4z8e8Z+luznBIyH4vbHxqfO/Q4guuLv86Nay0j5JgiCZ+Vu9qow8ecb40UoUm0RmLPnj1Yv349duzYgSFDhgAAVq1ahXHjxmH58uUoKioKu+/u3bvx8MMP4/3330f37t3j0r9g2oJ9kGTJfB1y96hRrpglTgAnMVTCSz5Uwb0k7kOgnl/PH2Hn/uX3ZfJGmZcPsW38fcv6bboPLQ+h9Ysf+0PsQqAeK8v0BiQ/aoY2XsrtOhplcnttrM3MqQQA+PIC27JrtdwMLH8DAPj1/A4F32qf+dxA2c3O8kgwaROzDwCQq8uX2nXJNsqyOmnfIbtLu5A+Zua0N30P/vux76ty58DqXLXw/bZhI/jfi/2O7Hflf2u/YSsC14THMseP6FihUiVPiC0KtB9spwB7EiixHFb0v5kk/BsTSbRGorS0FEePHsWGDRvQ3NyM6dOnY9asWXjxxRfD7jN48GCUlpaiR48eqKiowOLFizFq1CgcOHAAHgey96gnEu3atcMTTzyBhx56CPv37wcA9OnTB+3bt4+2SYIgiKRBi8jhdI2EZsyrq6tN5T6fDz6fT7SLLcrKypCXl2dMIgBg5MiRkGUZ27Ztw8SJE4X71dXV4Sc/+Qkef/xxFBYWRn18p5B9IAgi3XFqI+IVtSnaB028R7tnz564//77MWDAAHz55Zfo06eP7ePHnCq2ffv2OOecc3DOOeeQkSAIIn2IYY1EcXExcnNzjdfSpUtj6kp5eTm6du1qKvN6vcjPz0d5eXnY/ebOnYvzzz8f48ePj+n40UL2gSCItCVK+1BdXW16NTY2xtSNSA+a7FBbW4tnnnkGvXr1QnFxsaPjO/JIHDx4ED169LBd//DhwzjllFMcdSjZ4N1fsi5l8iN0VunRozioirUL246UyezGk/Vj61Iem+nphZESmMyEiyLkzcwO6ReL8MDSuYtcgKZIHPr7Js732qi7XOuatT42+T3cNq1+RlbA3as0a7IlTyftnyW1scHY1r6FC23E+pipfZdMLnKSL0f7Dh2qNRd/bnXg5mSubpEUStL91izChtaWz9QmEJA0ZXfVItG0L8wPbCvS+u3pHJCOsO+iZAckUKr+ndk5aOL6w85VI+euZufUiMghcF+brlH9N+OjdLDflv3WomuIHwhYmdPri48GFSKn4q45j4XETuSu9njDP++Q4yl3ikHadOjQIeTkBKQL4bwRCxYswLJlyyyb3LNnj7M+6Lz22mvYtGlTSH6HeNHW7IMsSZAlCYp+efL3nD5cG9eun4vO59QG+AUSEbadv0dFZQxWZnXfejID0hyPT2AX9PdW92Mku9Csl7Exjh//2JjYzhfoh+rTxktPx8BY62moAwBkNmk2on0Td3KN7xbooxHJqb3W/2zOLnTS3zc3Bs6ZVWS/DJ92znyc5JW956VN7bpqctb23Ttrfws7G9syC3Rb0SnwYEDWv5/fxyROgbYaG0XnSpeIcefbjq0wfSf9dxRJnj3cbxCMWRprthWRou6x/0FEdiFwfUWQXmeY+yuyFbz8Tg6SMjGbobqxZixKaVPwP+qLFi3C4sWLo+5GtA+aAOCJJ57AL37xC9TW1qJv377YsGEDMjPtSe4ZjjwS5557Lm666Sbs2LEjbJ2qqio8/fTTOOuss/Dyyy876gxBEETSEINHIicnx/QKN5GYP38+9uzZY/nq3bs3CgsLcfz4cdO+LS0tqKioCCtZ2rRpE/bv34+8vDx4vV54vdo/VJMnT8Yll1zi3nnSIftAEESbIkr7cOjQIVRVVRmvhQsXCptfsGABJEmyfEWzOJqntLQUH3zwAbZs2YLvf//7uPrqq9HQ0BB5Rw5HHolPPvkEDzzwAH74wx8iKysLgwcPRlFREbKysnDixAl88skn+Pjjj/GDH/wADz74IMaNG+eoMwRBEEmDqgQeLTvZxwEFBQUoKCiIWG/YsGGorKzEzp07jczQmzZtgqIoKCkpEe6zYMEC/PSnPzWVnX322Xj00UdxxRVXOOqnHcg+EATRpnBqI4IeNEVi/vz5mDZtmmWdaB80MZj89vTTT8d5552HTp064dVXX8W1114bsX8MRxOJzp0745FHHsEDDzyAN998E++88w6++uor1NfXo0uXLigtLcXo0aNx1llnOWk2aQmOSGGs9le1v7yL16+7FT1e61NqFZ3Gb8NdbTdxmFDalGGWuAABdzbvyvRmMHei7iaMIBlp0t2s9U2BvjW2mKVN9Zx7u7ZZa8/rC7jPsttpciFZv9Ey+KR5GZo7tEN2QGPNomDUdw7cjO0LtVBnTSdZlKfArLpFlzYpAmmTrEubvJy0KaO9FjUjsyN3zE6auzq7QOtrRucuxjZPZ+1m9RYEpBpKB2270i6QlKtB0r5zbVPoeTGkTVwZO6dN/vCDlUnapP9m7DcEAL8vVNIU2FerpzQ3GWXRXmsmF3aG2e3sEUgkZEFEmIB7O/BbMDc1f79ZRd6QZHvRZFKJ/v37Y8yYMZg5cyZWr16N5uZmzJ49G1OmTDEW0h0+fBgjRozA888/j6FDh6KwsFBoRHr06IFevXq53se2Zx+0qE1Gnjj++tRlJapAXqJaRPsz7seWppBtCnd/Kfp9wtezSkRnJT0JlooAARvB2wV2T/L3nFVIYSa14aVNDUF2gf0FgOwMra1MLnpeByYL5TJ3erqYx8IsXtqiJ3tj4zcA+DppgQ/addXylzSdDNiFphqt3RYuypMiGGtlPVqTV5DwLrNjln4cLnqUbpcMW1HQzdjGbISnS2ABrF+3EUwGW9sSuG7qg84Z/76BO7ei8x2MKPId+10VXlImshWeUFsRXD+StCkkgqQgOpkkKOMlUAGbEno9ejyh/7MES5pcjdoUZ+L5oEmEqqpQVdXxmo2oojZlZ2fjyiuvxJVXXhnN7gRBEElPsmW2XrNmDWbPno0RI0ZAlmVMnjwZK1euNLY3Nzdj7969qKuri1sf7ED2gSCItkCyZLaO5kHTF198gT//+c8YNWoUCgoK8PXXX+O3v/0tsrOzHXuLow7/ShAEkdYkUR4JAMjPz7eMCd6zZ0+oEcILRtpOEARB2CSJ8kg4fdCUlZWFt99+GytWrMCJEyfQrVs3XHTRRXjvvfdCFm5HIqUmEn6/H4sXL8YLL7yA8vJyFBUVYdq0abj77rsNl52qqli0aBGefvppVFZW4oILLsCTTz6J008/3fHxJMmccIhdAh59jbofgYtCFMlCkjX3p593SeuuaFF0GpFrWvFq9RWbyWBErsXgJDB8dI6A3IlPDKNH8fCaXYI8fkG0CF7axFyvVY2ayziLOz8sAobpjPk0CVFWR+2SVD1cBIlMbZsnNxD5wtP5OwBAZrfvjDKlVnNdt+jZHP0NAResX0+KpQgifMiZ2jE9GVzyHd1F7u0QSCYnt9dc17LeD74/6KC993MRmpikqUEOLLQ9qUcHOalH4jhRH3DZs3PFu7ANaVNQRA5T/7nfx/jNuPPNfltV0X53kexNzeSilrSYXdd2rzMrN7WV7ImvL4q64RFI7EQubCM6h74ILWaiyURK/6gnlNa0EcEJ6TwIvFcl7TpQ5NDrQZFYkrrAeKMq2hjkD5KhAgEpiShaDi9tMspsShKDk32JIjSZyvR7jt17Whvm+8xsF3T5EmcXqhu08a6dLr30cW352H3OtSf5tHPUviP3jw3rr24jMtsHJEVsTM4oCNiFDidPaP2pNEtfAaClXrevzQG7oAqkTZLeTzlD+5282YHzwuSvmXmcrejYydQfTydOnsJsRbs8o0hpr5XV6hEeq7koUjVNWn8qeFuhS7HY+QQC55mdd6GtEIyh7Hc1RW3KDLUV7FrjbYWda02UeFQkYxJFcgqWMWllgXE++Dsxu2cVzc/dhHQObUQc7YPTB01FRUX4+9//7sqxU0pJvGzZMjz55JN47LHHsGfPHixbtgwPPvggVq1aZdR58MEHsXLlSqxevRrbtm1D+/btMXr0aMer0AmCaOPEELWJSAxkIwiCaDXIPgBIMY/Ee++9h/Hjx+Pyyy8HoM2w/vSnP2H79u0AtCdNK1aswN13320kYHr++efRrVs3rFu3DlOmTHF0PFkO5BjgCfZMAIEnUCYPhv4UmX86qnq1hVlscbZVTGYAUP3hF77afVIcPNM3PXkQLM5l760WLkV68lSlPz3J0OtnCGb/CgJP5Fg87PZsYXUOl49Bf8ovtw/EEpc7abo/b2Pg6ZLapOWiyKyv1T8H/jFQ2ZM7UYQFfWG3xC/+zdR+J4lb4C3pT2kU3XuiZAa2KT7taZQ/o51RVqOfj9rGwNOummb96VKddn74p0zs6VJVvb2nTKInK+w343/PwIJP/doTxOTmF9B5gq4rp9cZEOpxEz15Mi2eDnq6xHtURPlMjAV0/NMoT6BMdeERSSyZrYnE0Jo2wuOV4PFKxuJpRXRv6mX8E1JFDV2Izd6z/ZiHAggsrBblf3FqK+zYB0CcM8KbKbhvg8Z1/juxoBH1nIe1Rn+SXpWp2wfOvnr0thQ1YBdYbIymzMAxO3TQFi5nZGkLmmXuyb4nV/Nc8HZBOVmp1W/QytrV8zZDsxEqn6tI9JSdjWMsD0JmYDE3sxFyVsAeyB21PqnMVvi4nEl6v5u9AWUAswvMZtRwtvRb3VacaOC919r7Gm6ReH1QsA7RQn+TrWC2X/9dVe68ixb9MxsR7fUF2LMLsmCc571gwXZP5H0QeRsC+ST0An/sHolkyWydaByZ25MnT2L+/Pno378/CgoKcNppp2HcuHF44IEHYo5la4fzzz8fGzduxGeffQYA+PDDD/HOO+9g7NixAIADBw6gvLwcI0eONPbJzc1FSUkJysrK4t4/giDSCPJIOCLR9gEgG0EQRCtC9gGAQ4/EDTfcgJ07d2LmzJno1q0b6uvrcdddd+GLL77Avffeix/96Ed48sknjVXibrNgwQJUV1ejX79+8Hg88Pv9eOCBB1BaWgoARga/bt26mfbr1q2bZXa/xsZGU7ir6urqOPSeIIiUIskWWyc7ibYPQHxsBNkHgiCEJNFi60TiaCLxr3/9C++88w4GDRpklN199934+9//Do/HgwceeADnnnsu3nnnnbjEKf/LX/6CNWvW4MUXX8SZZ56J3bt3Y86cOSgqKsLUqVOjbnfp0qW47777QsolWQpZTKaVa3/5eODMrS1x7kTmclPUUBc2c9UpCidBEbi8g9vnsb8I1uzuMy2WE0ibghfsityEosXWNZyEx1enL8wT7MtkTHwM7Fw9PndHfeEzc/UCQLZXW6zsywq4k7M6aC5sj8K5pPVY45JfX9DOx2JnN7DItchco1zyAUNOwC36hoctns8I6X+j7oOvrw30p75ZKzvJLfBmi+TYwmp+sRxbeF1VFyhj59RqsbUoj4THtGDQHG/b4wls8+v11czAgvDga83pdSbqGy/vC74e+fd2ZUzspwrXrjsL6Wgi4YRE2wcgPjYirH1g2WX1W0GUu0Qoe2LvPXw9XQLF7keB7CmSrbBz35r6H3QPi6SGfFlA6sq3EbTYmht3WKCIGm6My/SEtwuKwC7kZ2tjV31L4F+VugytDWYXstsFFmL7crS8KXJTIASylK/Jl6RmbTIo+7lgEoo2vkp+LgiHhY1QPXo/5EB/mI1QMgJjqF+XMCuZmtTVlBtIzxFRXxc4Zq1u707q431FfWAbsxEV3HmsqNG+QyVvK/Tt7Lz7RYvGBWMo+11V7n8AIzCBN2BzeUksw+oas/O/iFO7ELw9+HOIfImvFxSAw52AHDSRABxKm7p16xY2Rvmpp56Kp556Cj/72c9w++23u9K5YO68804sWLAAU6ZMwdlnn43rr78ec+fOxdKlSwHASL507Ngx037Hjh2zzO63cOFCU7ryQ4cOxaX/BEGkDixGuNNXWyXR9gGIj40g+0AQhAiyDxqOJhKzZ8/GjTfeiA8//DBsneuuuw6bNm2KuWMi6urqIMvmLns8Hij6AtpevXqhsLAQGzduNLZXV1dj27ZtGDZsWNh2fT6fkbLcbupygiDSHEWJ7tVGSbR9AOJjI8g+EAQhhOwDAIfSpnnz5uHIkSP4wQ9+gB/+8IeYMGECFEUxuYjWrl2LLl26uN5RALjiiivwwAMPoEePHjjzzDPxwQcf4JFHHsGNN94IQHNVzZkzB/fffz9OP/109OrVC/fccw+KioowYcIEx8cLziPB3LGGq1niZEyeQIxyBpt8KgI3teizInCpimROATIstgWwko0w17XsEZQJ4jSz/vASGxZZyCMH3KzsXLF6fI6J2mYWmSJw+Z1o0NygHXRpU7uMwD8DLOZ4O871mqn318v1LUPWI41IeoxqL//bISK8J5j9jn5OOdXcqJW1KJpbucnPnQP9O/E5IOqMSBwtIfWYC9skY9JlTyf5KE+6u5qdY7/gWjJFLtJ/M6/JTa2Y6vk5aZOXXcsC+V0Ae9cZT7D72co1zZeJXNMiF7TIDc635YrbmnBEou0D0Lo2QovaxEXuE0lSdRvBj68BWVJom8xWiKRNpnoWMthAmbOgjCJJCS+DFeV4sep3oz5mnWwIzd0jsgv1HfT6prwTul3wBb5Lh0yzPWifGWoXMrkcHZkeTXLk0VU6fARB9rOYJDaCoYN9LcMucKe92bCJgbImPfdDU0OorahtCrUVRrQmfew/Kci9weRMQOCcVtWHlrHzbiV7A8TyNWNb0P86gPlaCBD5GrMc7wXXUiRZa2Cb/tfCPlj2w4WoTYSG4/Cvy5cvx1VXXYXly5dj/vz5qK+vx4ABA9ClSxdUVVWhoaEBzz77bBy6CqxatQr33HMPfv7zn+P48eMoKirCTTfdhHvvvdeo84tf/AK1tbWYNWsWKisrMXz4cKxfvx5ZnL6eIAgiIpSQzjGJtA8A2QiCIFqRJEpIl0iiyiNRUlKCl156CU1NTdi1axc+++wzVFdXo0uXLrjsssscp9e2S8eOHbFixQqsWLEibB1JkrBkyRIsWbIkLn0gCKKNQIutoyJR9gEgG0EQRCtCi60BxJiQLjMzE+eddx7OO+88t/qTVMiSZHLnMXey4W7j6lq7mAOERNYQypmi6W14giMYiCIliBKAyRaubD8XhaJJb4N3YQe7rnm5Dos00TErcPll6+5p9jfLG3BXs6RFWdxv4dXfZwn6zVzXHtnaXR0M/9Ow/jcLpGcsqkgL58tu0N83cy7sBj2JnMl9H+Tu55M1sW31vBTKSEinR21qCb04TL+nhZuaJUgUySx43Lz+7ETPAEJd0Vbu8HDwbnLVBWlTNIvj0nUxXTSku30Ilr4Kr1kruxAa1CYgEbJ5X4qj+UX31NMqiRdgTvgY7pj+Fv7Y+ljHrb9n41gg0l/ABrAxsR0nVeqg24hsvkyXOfn0sY63C6zMx9sPlhTVw+wDJ9fS3/Jjh0dk71SzBJSXMTUroWM/sxuNLeYkcUDAVvBlTNIUiHQVagP4qIjMRvA2l0maWnSbwv8Womsi9HcMn2gwXBt2iHRdBeoJ9hXIq+20bydqnxvyV6c2Il3tQ0pltiYIgmg1yCNBEARBhIM8EgBoIkEQBCFGVaOYSKSnBpYgCIIIwqmNSFP7QBMJCySvbJKKiNzUBron1eT+E7iuGaIITSLcdCcynEbQ4TES78lcQjpBRCHmumZu2UzuPLJIS3xZpu6KZmW8e5mV8RGaPII2PAJJU/A2K0TJ3vgy9l6UHK4laBsQcIfzZU0tZqlSi+CcmdowJANaGS95EMkajN9McN0aiYciRApjRHvtAfZcy6KIHdG2FVxPEUi8HKP6gQhJvYT7EG0C2SOHiWTDy5cE165uF0T3Hmst0r1nN2lpyH4W93vU0W+4/vBJ0FRVCukX285kOF4vl6xOv2f5MZ1JlbIzvaH1PLKpDmBtFwzbEqV9AKxthGjcFtkKJmlq8vN2QXvPJEuNLaHb+PZbWLtcG8xGKH6WwNBa2hQs0eZ/a6FkzuG1I8KOhNXu9ljth2onlGMknNqINLUPNJEgCIIQoCoKVIdxv53WJwiCIFITpzYiXe0DTSQskGXJPIO2+dQiVuw8WYqE1eKkSNh5uiBa9KtwT0fYc6ZG0RMtiwVUoqcHVk+Lot0WCdGTp2i3WT09FC+qjO5pI8DFBucXVMvRXU+Jvg4TflwlCo+E0/pEyiLJUtinnbYWe9rwcPMks7fbOCZnF1SWt4ZLI9HSbM5pw9uaOsEDYlG+mGD7Icr1xBNcFotdEBHJkx382chDxZcF5QURL6JHSP1YclRZXaN2z1EiPM/R1nd7fwDObUSa2geaSBAEQYigiQRBEAQRDppIAKCJBEEQhBDV74fqdzbwO61PEARBpCZObUS62geaSFggeyRTzP2o20mQvCMcdiUromAErEwkyVG4ONoh+TLsSn5sSn3sbIsXVi5RYcxsgWvXbuxry/jZFi5jPia3BIsFayl6bUbCjfsWiqK9nO5DtAlCpK+OG4j9GhUGXLCobyWPijSW2gnM4AefjMdmP2LEjTHDaiExjxu5B9wcc92QAxmLriN8N6d2z4pksDvuyF8d2og0tQ8uLFsnCIIgCIIgCKKtQR4JgiAIEYoSxRqJ9HziRBAEQQTh1EakqX2giYQFsizB4zAefSyuTzdcbXbcvJIgio8pwoORK4Jt4+pZRIvg22Dxra0iVPhbwrfBu9ENt7kgUpQqqGd1DlTBTS/J4UOg8L8Jc9+KfmN2nfAuXuYqlgRteLyhbQmjkHjM7Zra138fyZQXJPx3ELq1bVyvrXVdAoDop7ArOzDqK6orfVYVv/B6ibQP0TaQJMkVqQsgvm/twEv47OTFEkVwC4z3fFsCyZTevmhsthuZjvVREexnNfaL7JNVxDuzffIH1Qm9R+3etyJbYVVmd+wNrmfXjpjtk7ndSGNgsKQpFrmt3fsg2uucx63k0G7cu05tRLraB5pIEARBiFCjWCPhlpUjCIIgkhunNiJN7QOtkSAIghDAnjY5fREEQRDpTzLZh4qKCpSWliInJwd5eXmYMWMGampq7H0PVcXYsWMhSRLWrVvn+NjkkbBA9shC95dd2YTTSAZuJMqxSpYWcPsKNsqhb5n0iHchM5exwsmMmCuaLwtIm1hbodtE9Vk9/oZTWpq0v81N3Hfxh9QLLlNiuGll3TXNu62loDJ+m5yRqf31ZobU5+VxTKok62XsM1+Pd/+y34zVlxXuGmFl/OMAxSyd0toLL8mycr0b/YrzdSnCLJUIf3yRZErySJA9LjwjoTwSRJQ4lXC4EkEm6JjCe4O7l9jYzJJXmsZ5o46z+9bPJSUNljEBgTFfZDMM2+IXlLUExn5mB0Q2gNUzlQXVM9mMKMNxSp7wdgEItR8iu2BlP/jrgY1lpjI29kuCMiZJ5n5Pj8PxUCidEkYfDN9GvCIzKXBqS+LSDY0kyiNRWlqKo0ePYsOGDWhubsb06dMxa9YsvPjiixH3XbFiRUxSL5pIEARBiKDwrwRBEEQ4kiT86549e7B+/Xrs2LEDQ4YMAQCsWrUK48aNw/Lly1FUVBR23927d+Phhx/G+++/j+7du0d1fJpIEARBCKCEdARBEEQ4ok1IV11dbSr3+Xzw+XxR96OsrAx5eXnGJAIARo4cCVmWsW3bNkycOFG4X11dHX7yk5/g8ccfR2FhYdTHp4mEBeESDrkhA3FDLmLVLi8l8QdF5TApYaKUnPCRNZh7mndrM1mUaFtLs1+vw7mwg+RLJle2/t4vKONv4mDXtVn2FPlJgMRphETuZ6PME+qu9nhDpU3svZIRKPPrZR6/diw1I9B+sIxJI6jf3DaJ/XYxJAMSXcvsGnLzGhW1ZSl34upb1QvnWXcv2RCFfyXsYVfOZOfadCqLFR4nwnYmERFJP2SBHbFsSwltSySDDZawKiab0aK3wcmSbNgDK9kT/15paQ7ZFuirvftctorQ5M0IKTO2ZYTaBQ9vK1qCpE0ZIols4N81WT+3wqiSTOLEydgUSa9v87qyTIQq263nRlQkQfSwoHYj/Q8jij7pGlGGfy0uLjYVL1q0CIsXL466G+Xl5ejataupzOv1Ij8/H+Xl5WH3mzt3Ls4//3yMHz8+6mMDNJEgCIIQQ2skCIIgiHBEuUbi0KFDyMnJMYrDeSMWLFiAZcuWWTa5Z88e+8fneO2117Bp0yZ88MEHUe3PQxMJCyRJsnxiGwmrem4+7Y301EjkpbAieIYfKWeE6GmUkfsh6AkU/170JMnfVB+yzS9YbC1cVBf0xMntxdbsiRMrE3lDPIInYWK0J07iBWz8gkjtPXuiJPG/hRQaM50tnDSV2bjWEu1JC8Zvs//hzrA7McIVW56s4H2ItoUdT0S8AnTYbctq0bTRfy6QA1uoG6kNq3Yt80II8xHpnurGeqNMEXgdgu2B2VvRHFrGPNT+yAE6ImHpqeaOKQctshYt8ObLPBbedI8vW/8e/DEFdlgOshGCa4mvH3ytRcp1Yec6d/P65duzus74e8vKOxEPz4RTG8Hq5uTkmCYS4Zg/fz6mTZtmWad3794oLCzE8ePHTeUtLS2oqKgIK1natGkT9u/fj7y8PFP55MmTceGFF2Lz5s0R+8egiQRBEARBEARBJBEFBQUoKCiIWG/YsGGorKzEzp07MXjwYADaREFRFJSUlAj3WbBgAX7605+ays4++2w8+uijuOKKKxz1kyYSBEEQIkjaRBAEQYQjScK/9u/fH2PGjMHMmTOxevVqNDc3Y/bs2ZgyZYoRsenw4cMYMWIEnn/+eQwdOhSFhYVCb0WPHj3Qq1cvR8eniYQD3JAqtZY0xClCt7Ua6j4V7it0U6vCOuZjhpcBKTbdz3bdinYiK/CxwYVt6McypE2iBX1cmRy0Lfg9EO68hMrGrNzKfH2VubcRKkmQPMl17fH3QrDszu7ibKs2YkaNYiKh0kSircGkElb3KD82WsmcjHs1SeyE3TwSonFMREAGy/5aS0FF46p1UA1BfT9bbB0qh7U6thV8fWNBNQILpJlVkow+yiH7inJdSBZ9M39Ps+RVO75Ff43fJ/K1pzWWOtef3YAxcVls7dRGxNE+rFmzBrNnz8aIESMgyzImT56MlStXGtubm5uxd+9e1NXVuX5smkgQBEEIoDUSBEEQRDiiXSMRD/Lz8y2Tz/Xs2TPihN/uA4FgaCJBEAQhgsK/EgRBEOGIMvxrukETiQi4LUVi8oto240k3xBt9we5k00SJKG0Jnz7ik25kx1EkS8YfLxuVRCLm0XskOTwN7HJ1SuI/22nb+Y+yqYyUaxvqzjjwe+jQRSlwyNwV5t+QxatwpCghWwyRT8KjvIVST4Ur2vZKU6jk0WE1kgQDhCNmyK5k0iKESx3cmN8FSE6Nus3bwuc5heyC/uedm8Tp+OlaBwOyIxiG3vD9Sc4vxB//Gj7bxdX8uUIYL+/bEpppB2Lv6YD9SJHV3K7b1bERcYkIknWSCQamkgQBEEIoMzWBEEQRDiizWydbtjMxUkQBNHGUJToXnGioqICpaWlyMnJQV5eHmbMmIGampqI+5WVleGyyy5D+/btkZOTg4suugj19fUR9yMIgiAsSCL7kEhSziNx+PBh3HXXXfjHP/6Buro6nHbaaXjmmWcwZMgQAJp7dtGiRXj66adRWVmJCy64AE8++SROP/30qI5nOzGWQ8mHG/ILKxkTT7CkSRUkCBK5C+26t1nSGt4NqurfXVK1vx6PaM6aKSjT2xTIgfxcwh+RvIhPWAdEjghi55g87Fgi2ZNHTzzEEhDx7/k+sjKPVzsf/HlhkVr4iC3MZWw3wRr7zTxchCbD/Ww0ytcPKQqb5I0nrtGSomzT9X4kmbSptLQUR48exYYNG9Dc3Izp06dj1qxZlgvsysrKMGbMGCxcuBCrVq2C1+vFhx9+CFlO32dIrWUjVFU1jaWie9RKYiGSiNjFjqQlUptuyj/Yd1dh02YYY50gsZugzOMNbyt4WGQmfhxmkZCY3EgU0YlHZCuC7UEkGVPgu8gh/WH2gC9j388y4Z2pzJmkyY0EnQz+umHXsB25nohYJHROr99gGXe0C4tNkLQJQIpNJE6cOIELLrgAl156Kf7xj3+goKAAn3/+OTp16mTUefDBB7Fy5Uo899xz6NWrF+655x6MHj0an3zyCbKyshLYe4IgUglV8ccUFtJN9uzZg/Xr12PHjh3GP8SrVq3CuHHjsHz5ciNWeDBz587FbbfdhgULFhhlffv2jUsfkwGyEQRBtBZObUS87EOiSamJxLJly1BcXIxnnnnGKOMTZ6iqihUrVuDuu+/G+PHjAQDPP/88unXrhnXr1mHKlCmt3meCIFKTWMK/VldXm8p9Ph98Pl/UfSkrK0NeXp4xiQCAkSNHQpZlbNu2DRMnTgzZ5/jx49i2bRtKS0tx/vnnY//+/ejXrx8eeOABDB8+POq+JDNkIwiCaC2SKfxrIkmpicRrr72G0aNH46qrrsKWLVtwyimn4Oc//zlmzpwJADhw4ADKy8sxcuRIY5/c3FyUlJSgrKwsrJFobGxEY2Oj8Tn4nwCGHelEoiUfoqgJIkmTZRs26plcq4KkaWy7rEd6gDeSlCLItcu7jplEiJM2CZP0ZIYmIwqub4VQzmThYubrsz6K+m2WQJklTTJ3XmQpVNoUHPXFrkvbJLmwSkJkEcmJITpzdiV/bhCP+8gOqqJC9TudSGh9LS4uNpUvWrQIixcvjrov5eXl6Nq1q6nM6/UiPz8f5eXlwn2++OILAMDixYuxfPlyDBw4EM8//zxGjBiBjz76KGq5ZzITDxth1z44lkoo0d83ig0JkV3pRywSD2M8smMDgAh2wJ58icHGZj8/DuuyIV7mGmwrZME/c3afFIujNskh24KltyIZrMh+2JHDAvbshyhiWCyJDtl1wsukLCM8uniNWvUnkTi1Ea0R1SoRpJRQ9osvvjC0rP/85z/xs5/9DLfddhuee+45ADAMardu3Uz7devWLayxBYClS5ciNzfXeAX/E0AQBOGEQ4cOoaqqyngtXLhQWG/BggWQJMny9emnn0bVB0X/h+mmm27C9OnTMWjQIDz66KPo27cv/vCHP0T93ZKZeNgIsg8EQRDhSSmPhKIoGDJkCH7zm98AAAYNGoSPPvoIq1evxtSpU6Nud+HChZg3b57xubq6GsXFxdpiOoczyBZB/ZieAriQIl61yP1geCtsTqrZUw+Fm4KyJyX+FoUr0+sbC6UD20RP3tkTFkWP9a1mZhjb2L6RFk8bT54sQqzZWUhn2uYJfcok+hxYFMgtnjYWofMeBvPic9M58LIy7hh6G4Ft3EJsmwvo2G/LnhAJnx4IFmAHCgLXjWgBnZvXvFtPbNx4WqX6FeceCb1+Tk4OcnJyItafP38+pk2bZlmnd+/eKCwsxPHjx03lLS0tqKioQGFhoXC/7t27AwDOOOMMU3n//v1x8ODBiH1LReJhI8LZB0VRo1osasTcj+EaVfVhzOkiWqtjxrLw1cgPwXs22ZjCeyHYWM7GQeFoFJqfR+TpFS2sZmUKVxY85gtth82wnHw/gvsoKmP2z7T4W1TmMZdZebG17bpt4X5/5p0QBeiINt+EIhj7RdeQ00ADbnoTor1u3ciV4tRGOLUnqUJKTSS6d+8uNIovv/wyABgG9dixY4YRZZ8HDhwYtt1Y9csEQaQfsayRsEtBQQEKCgoi1hs2bBgqKyuxc+dODB48GACwadMmKIqCkpIS4T49e/ZEUVER9u7dayr/7LPPMHbsWEf9TBXiYSPIPhAEIYLWSGiklLTpggsuEBrFU089FYC2qK6wsBAbN240tldXV2Pbtm0YNmxYq/aVIIjUhj1tcvqKB/3798eYMWMwc+ZMbN++He+++y5mz56NKVOmGBGbDh8+jH79+mH79u0AtKeEd955J1auXIm//vWv2LdvH+655x58+umnmDFjRlz6mWjIRhAE0Voki31INCnlkZg7dy7OP/98/OY3v8HVV1+N7du346mnnsJTTz0FQDOcc+bMwf3334/TTz/dCO1XVFSECRMmOD5etK7r0Ibis8DGyj1oJRHhv5MdSZNIpiJz+zGZEy/rMfJTSGwRHr+NtRFa39iP+24ZPnOd4PdGP4LKYlpEKHDVBruHJYFkyVRfuHjaLHcSyZhEUiiRK1uUd8KKYIkTfyzTuQX7zULb9ftDF9wJSfCiskS4rdk+8WLNmjWYPXs2RowYAVmWMXnyZKxcudLY3tzcjL1796Kurs4omzNnDhoaGjB37lxUVFRgwIAB2LBhA/r06RO3fiaS1rQRqmJf+srfS67YFB030oHYzhdkLJ7m9g06vqg75kW/Zommn7tfgmWf2nbtveoN/Kvib2nRWtIXJKuCvBCW0leXQ3CKgm+EbBNIZM3yJa9eFnoOROO8WBprljRZ2RFAbJ+sMPIRCeo7tbVu3gOmfjho1w0ZLUmbNFJqInHuuefi1VdfxcKFC7FkyRL06tULK1asQGlpqVHnF7/4BWprazFr1ixUVlZi+PDhWL9+PcUHJwjCEarfD8WmdprfJ17k5+dbJp/r2bOn0KAvWLDAlEcinSEbQRBEa+HURsTTPiSSlJpIAMCPfvQj/OhHPwq7XZIkLFmyBEuWLGnFXhEEkW6oahRrJNxMF0xEBdkIgiBaA6c2Il3tQ8pNJFoTxa8kRaxiwLkbzg3XYSASB5eTQODW9Oh5ClRJ5Qu1fS0iRjnNeRHpHoyXu5RhFflCGLNb4GIO1A9fJorGZFXfbh9FWJ0zK9WEKogRHkt0MjdRFRWKCy7kZJM2EamLGzIK0f0V7zGPPyb7DiZ5DJNLyqH1JSV07Jck8/gutYS2z9dnkYj4Mm+GZlxEtsKW5DVO0iYeSxmsCxLWYBkT356V5FXUbrjP4UgGWVKyQNImDZpIEARBCKCJBEEQBBEOmkho0ESCIAhCgLaYNrrM1gRBEER649RGpKt9oImEBYqimhKppTp25XnBEXmEkUFsutlFu9q5maK54ZQ4y9DsJoBj2HEV23Un25Us2UlQJboORNIsxy7sJBok3XC/K37FsUTKDUkVkSI4iNpkF6vxIJoIUW5i1a4hb+X76GHJSzlpU9B38HgCn+3KWhWBBCpQTyBtijK6oRWRznGwrYgkTRVF8TPqWUihRO3FIo2NB65ER4qHbUmAjUhX+5BSeSQIgiAIgiAIgkgOyCNBEAQhgNZIEARBEOGgNRIaNJGwQFXsy4HSmUhyGeaOlT3JEbUnnYnX9Zhu17kb34cmEkRrYyXhsJ94MnxCSSucRnzTdjLvE0neavX97MqSgutFkr3EO7KVCOsIf5FlRnblSXa3R/XbBuH0PDqVI6Xi+gGaSGjQRIIgCEIA5ZEgCIIgwkF5JDRoImGBqqpJk0fCCjsLbMPua2OVjO2FvlZPYWz20Y1jtRZ2n6DYfZJjda0Zx4rwe9k5VixjWSrcD4A7/SSPBJHO2BlrndoWTySvdGjKBcdEe28nMs9QJGKx4fFAdI5F3y8R3p5kIpk8EhUVFbj11lvx+uuvQ5ZlTJ48Gb/73e/QoUOHsPtccskl2LJli6nspptuwurVqx0dmyYSBEEQAmgiQRAEQYQjmSYSpaWlOHr0KDZs2IDm5mZMnz4ds2bNwosvvmi538yZM7FkyRLjc7t27RwfmyYSBEEQAhRFgeJQ2uS0PkEQBJGaOLUR8bIPe/bswfr167Fjxw4MGTIEALBq1SqMGzcOy5cvR1FRUdh927Vrh8LCwpiOTxMJCxRFTbjrzo67lHdD2nGRRpIzBR9TuDhMcBxRX0X7emyWRVvfbhvB+B3+1qL6kdoI3i6qL1x0KAnqidzPgmMGX8P8729H5hSNlCDR940bxyePBJEMOJVxRrvoVjSmu2Er7B6LcI7dsVloU6zGSCX097GSO4naYteC0/wnqbToOlqPRHV1tanc5/PB5/NF3Y+ysjLk5eUZkwgAGDlyJGRZxrZt2zBx4sSw+65ZswYvvPACCgsLccUVV+Cee+5x7JWgiQRBEIQAzUj4He9DEARBpD9ObQSzD8XFxabyRYsWYfHixVH3o7y8HF27djWVeb1e5Ofno7y8POx+P/nJT3DqqaeiqKgI//3vf3HXXXdh7969eOWVVxwdnyYSBEEQAlQliqhNJG0iCIJoEzi1EazuoUOHkJOTY5SH80YsWLAAy5Yts2xzz549to8fzKxZs4z3Z599Nrp3744RI0Zg//796NOnj+12aCJhgaqorrvZnLqpg12GMUWGELip7ciRIsmYrORLVrIku5IlrwtSqGixkiqJtrXYlDuxskjyKPbeI3D7Cscv0W8c9Jm/ptg1EUskJ1dkRC7fZ260pypRSJtoIkHEQCzR6JxKmoLH9WjtA99Wa8pbrXDTBsSCG3JZq21OpbG8PElkU4z6EPTDQu5kR+IU7lhW9Z3slwic2ghmH3JyckwTiXDMnz8f06ZNs6zTu3dvFBYW4vjx46bylpYWVFRUOFr/UFJSAgDYt28fTSQIgiBiJoo1EiBpE0EQRNvAqY1waB8KCgpQUFAQsd6wYcNQWVmJnTt3YvDgwQCATZs2QVEUY3Jgh927dwMAunfv7qifNrIIEARBEARBEASRbPTv3x9jxozBzJkzsX37drz77ruYPXs2pkyZYkRsOnz4MPr164ft27cDAPbv349f//rX2LlzJ7788ku89tpruOGGG3DRRRfhnHPOcXR88ki0MsEuutZIrBbsso7kfg52eUcjYwp2LVttAwLyJbsub48cOgeOtzs7NOJS6NMFTwT3c0uQVMlKxsSXGX/5YzmUO7F6/O/JXNFOIznFQrK6qYNR/AoUh0+QnNYnUhhZSlhiTDvHtSNn0toKv2+kiH1W9dy0C+H2cbLNCpE9ESEa8+3t5yyaXySJrB25LF9HbCvCJzmVg+tALINl10KwxCl430Ab5t/HaUQnV3GhTac2Ip72Yc2aNZg9ezZGjBhhJKRbuXKlsb25uRl79+5FXV0dACAzMxP//ve/sWLFCtTW1qK4uBiTJ0/G3Xff7fjYNJEgCIIQQIutCYIgiHBEu9g6HuTn51smn+vZs6dpjUxxcXFIVutooYkEQRCEAMojQRAEQYQjmTJbJxKaSFgRFLUpUW5swJ1EQlaSJqvITJGibjh1YduRMdmVLrmRrM4KkXs4IEHyhNTzyPy+AumTQNIUa9/430fokma/bZDECRBH2wh2YfPXhtOkRK2JyU3uSkI6FarfWTtO6xNEJOzanWhtRLR2ga9nZQOs7II3Qv3ANjmkXrjPofu6abc9kasg+uhLzGZkCreFSmTFbYTWF0ljA7ZC0EnZXIeHj+gUbCN4+yC6rkKTo6ZOhCYRTm1EutoHmkgQBEEIUJQo1kiQtIkgCKJN4NRGpKt9oIlEgoj3UyarNqwWVvP1nS6gs/IOiJ48idsN74mIxfvgEXzPYPyCp+1On2aZPRjGM5+Q7Vbtirwgdo/JfjP+LBoLqoM8E4C9BdhWi+t4Ii20C+5jsj95iiaPTLJ/JyI5idbbHYt9cMMuBI/NkexCsDfaXN/e2B/ikRD0NV55J2x7kj3h6/tlK29CqMeaebl5D7dH4HVwCvNO2PFiA2Fshe6dcNN7HeleSKYx1qmNSKa+uwlNJAiCIAQofkARGP1I+xAEQRDpj1Mbka72gSYSBEEQAlS/AlWmxdYEQRBEKE5tRLraB5pIWOFSnHA3ZExGWy4srHZ67EixviPtE02deOeEiBeiHBCi7VYu6UhtiOpZ1bdyJ4tkRsH1RTkm7LqwGXZiigf3wymm9ly4flS/CtWhRyJdF9MR0eFmgI5I9kFkGwL9sNjPpl0IXljNv7eSIEWStQZjWzYrRSd5FeWmsItoX9HCZ0v0MZSX0tqVugbjhp0MljgB9m1FYBv0bVyZ4HoU5ZuwOqYIO/dUa0mInNqIdLUPNJEgCIIQoPjVKKRN6WkoCIIgCDNObUS62gd76RyTlN/+9reQJAlz5swxyhoaGnDLLbegc+fO6NChAyZPnoxjx44lrpMEQRBEQiAbQRAEEV9SdiKxY8cO/N///R/OOeccU/ncuXPx+uuv46WXXsKWLVtw5MgRTJo0Ke79kXQZlOhlhSxLxkvYriSZXuZjhrqsRW0F9yNce+Hqi/DIkvGKFr+iGi872yKVhWsL0NzIkV6R+ui0P1btRYvd8251/Yl+f1F98bUUes0FX6PhIr5YXeeifji5j+IBSzbk9EUkB/G2EVbXqpvXrF37ENq/0PvV6j6MZBeipUVRjVes4x9hhrc37By7SaRrIvhaEl1zovbstBULdu5NN+5Psg8aKTmRqKmpQWlpKZ5++ml06tTJKK+qqsLvf/97PPLII7jsssswePBgPPPMM3jvvffwn//8J4E9Jggi1VBUFYri8BVmQkq0LmQjCIKIN45tRJrah5ScSNxyyy24/PLLMXLkSFP5zp070dzcbCrv168fevTogbKystbuJkEQqYyetdTJC2mqgU01yEYQBBF3yD4ASMHF1mvXrsWuXbuwY8eOkG3l5eXIzMxEXl6eqbxbt24oLy8P22ZjYyMaGxuNz9XV1cZ7N9xfdt11dlzKsURoskoy5JRISdOsEq+JtgXaE7n+nM137SR9s9uG0zp+QebKcNKtaI4diyxAFL1JlGAuODqHVbI6rV7osYKvNb59q2sulkRFgf64M1grfgWK5DCzdZq6rlMJt22ElX1wG7ekHa2FnfHIfkQidu/YHO9ZojbunzMWycnKPjlN+Cki0vcO3i6SzlrZBbNcVrF1TOs2Yk9g11rEEtGptXFqI9LVPqSUR+LQoUO4/fbbsWbNGmRlZbnW7tKlS5Gbm2u8iouLXWubIIjUxKk3wnjqRCSMeNgIsg8EQYgg+6CRUhOJnTt34vjx4/jBD34Ar9cLr9eLLVu2YOXKlfB6vejWrRuamppQWVlp2u/YsWMoLCwM2+7ChQtRVVVlvA4dOhTnb0IQRLJDE4nUIx42guwDQRAiyD5opJS0acSIEfjf//5nKps+fTr69euHu+66C8XFxcjIyMDGjRsxefJkAMDevXtx8OBBDBs2LGy7Pp8PPp8vpNyJrMmpS9puZAyrREKJcIPbkSzx291wpfr1vPJmKVRoPY9sPlluu3FFsiU7xxJtE0XXcFMCFS+E8ijBNRosd7JKTiRqX4SThEVuSBJJ2pR6xMNGhLMPbuKm/bCyGVaY5I1S6H3OmvVz+zgd54PthyjBGxvv+XrBY7t5G2cXIEgCqlokPlWilDZFWDRrZ9y2ksZGsgUtlm2ElzaJ6jEpqGh8FY3RdhElqTO2CSS1VojktckASZs0Umoi0bFjR5x11lmmsvbt26Nz585G+YwZMzBv3jzk5+cjJycHt956K4YNG4bzzjsvEV0mCCJFUVXV8XqLWAwvETtkIwiCaC2c2oh0tQ8pNZGww6OPPgpZljF58mQ0NjZi9OjReOKJJ6Jqy624xm54Hxh24vC7Tbw8DSLYkxbxk6pIC7z9IWXxJNI5sIrpbdf7ELJoz6HXIhaCF13zRHpCFHwt21mQDVgPtE7uRTfuW8WvQhE84Yy0D5HcuGkjYiFeHmV2r4nsicnDEHR/87aD3Yf8Pcr25ZttEezLEHmvg+2HX7CNJ2AHlLD1RPuJPBhW9WPB2vsQXfCNSB5ru56I4G2isdyuJ8LuvoH6YTfFhMgrniic2oh0tQ8ptUZCxObNm7FixQrjc1ZWFh5//HFUVFSgtrYWr7zyiuX6CIIgCBGaptVpwqH4GYqKigqUlpYiJycHeXl5mDFjBmpqaiz3KS8vx/XXX4/CwkK0b98eP/jBD/Dyyy/HrY/JCNkIgiDigXMbQRMJgiCINkOyLbYuLS3Fxx9/jA0bNuCNN97A1q1bMWvWLMt9brjhBuzduxevvfYa/ve//2HSpEm4+uqr8cEHH8StnwRBEG2BZLIPiSTtpE2tiV3JkmUbdkNmx8kNbrirebd2kMuQd1tb54AIj115lJ1tgLVsKBHEKy+E032t9JrxcgXbcTVHyjth1LN5T6Wr1jQce/bswfr167Fjxw4MGTIEALBq1SqMGzcOy5cvR1FRkXC/9957D08++SSGDh0KALj77rvx6KOPYufOnRg0aFCr9Z9wF5H0KKQOd59FkjkBYZ4qCgr5vA3G8Zl0RiRxEkqPwpfx25os6lu15ZXt6WrilUeCYTeohtU2O5IlnljkS07bCN0vYpWIxyZSD/JIEARBCFD8alQvQEtaxr/4hGbRUFZWhry8PGMSAQAjR46ELMvYtm1b2P3OP/98/PnPf0ZFRQUURcHatWvR0NCASy65JKb+EARBtHWitQ/pBk0kCIIgBKiKEtULAIqLi01JzJYuXRpTX8rLy9G1a1dTmdfrRX5+ftiMzADwl7/8Bc3NzejcuTN8Ph9uuukmvPrqqzjttNNi6g9BEERbJ1r7kG6QtMkCSZJckS+Z2kzg1M3KHS6K5mHsJ3KpxtAPu7koGPGOFOUmTuOpx1LPbtg5y8gaCXAx28k7EbGNCPelG/dtLFGbDh06hJycHKM8XB6CBQsWYNmyZZZt7tmzx1EfeO655x5UVlbi3//+N7p06YJ169bh6quvxttvv42zzz476naJ2LEac+0iun+F0dCs5IRyaH8MIvRRhTlqk1/wxFUS5Gpg9oNvs8Xojz0plJ1tdrbHAzelro6jJTmULNlp09yGrWq2+hMNyRCtiZFMUZsqKipw66234vXXXzei0v3ud79Dhw4dLPcrKyvDr371K2zbtg0ejwcDBw7EP//5T2RnZ9s+Nk0kCIIgBKiKavyj5GQfAMjJyTFNJMIxf/58TJs2zbJO7969UVhYiOPHj5vKW1paUFFRETbi0P79+/HYY4/ho48+wplnngkAGDBgAN5++208/vjjWL16tY1vRBAEQYhwaiOc5iVyQmlpKY4ePYoNGzagubkZ06dPx6xZs/Diiy+G3aesrAxjxozBwoULsWrVKni9Xnz44YeQLcIni6CJBEEQhAi/AtUiK64Qh67rgoICFBQURKw3bNgwVFZWYufOnRg8eDAAYNOmTVAUBSUlJcJ96urqACDEKHg8Hihp6mInCIJoNZzaiDiNu9EG45g7dy5uu+02LFiwwCjr27ev4+PTRMJl3JYuOXV5i5ILhdSJ4A63ch0GJzEKh1WiIkakyExW9VIJp/13+tTCtkvaoYvZaT8iJamzwuq+iVdio0gofhWKw3MWL7d7//79MWbMGMycOROrV69Gc3MzZs+ejSlTphhG4vDhwxgxYgSef/55DB06FP369cNpp52Gm266CcuXL0fnzp2xbt06I3wskTzYuW7s2gLH97muM4okB7QaxyTZ3jGDvwOfQ9SwFQLdbAv33qqf0UrE7CZyjfaJcqTf185vFunYbkZVEu4bZxlsMkmW7OLURrDvWF1dbSr3+Xxh5a92iBSMY+LEiSH7HD9+HNu2bUNpaSnOP/987N+/H/369cMDDzyA4cOHOzo+LbYmCIIQkGx5JNasWYN+/fphxIgRGDduHIYPH46nnnrK2N7c3Iy9e/canoiMjAz8/e9/R0FBAa644gqcc845eP755/Hcc89h3LhxcesnQRBEWyBa+5AMwTi++OILAMDixYsxc+ZMrF+/Hj/4wQ8wYsQIfP75546OTx4JgiAIAYoahUcijk/t8vPzLfWuPXv2DHlqePrpp7e5TNYEQRCtgVMbweomQzAOJm+96aabMH36dADAoEGDsHHjRvzhD39wNLmhiUQMtEYEJlHCODtYuUFFbly7bkvHEj9BP6y+ixuJ5uy6qe0Qz8VRgDvu3Fhczm5+v3i5pt2I8hQNflWF3+G5dVqfIOwSf+mH8/YNqavNMH7BUWvMMiV7x3dqd+OVzNUKp79VIiIhpaKUKNlwaiNY3WQIxtG9e3cAwBlnnGEq79+/Pw4ePBixbzw0kSAIghDgV7WX030IgiCI9MepjXBqH+IZjKNnz54oKirC3r17TeWfffYZxo4d66ifNJFwQCJzQNhZAG2XmJ5Cu3AORLHGg4kpD0CSPGlprRwN8faa8CTLU6xEeSkIgqEqaqvee8lIvANhCL3LsSQxgvseiniMiW39umoN0ukcRxOMQ5Ik3HnnnVi0aBEGDBiAgQMH4rnnnsOnn36Kv/71r46OTxMJgiAIASRtIgiCIMIRrbQpHqxZswazZ8/GiBEjjIR0K1euNLYHB+MAgDlz5qChoQFz585FRUUFBgwYgA0bNqBPnz6Ojk0TCYIgCAEkbSIIgiDCEW9pkxOiCcYBaAu6+TwS0UATCQcw6UQiJU4i4iU3EbmAW8sd6DSjMGEmWSRI8SaeciYlCo9EPKM2EQQj7kEgkuU6jlHGJEKORTYrIGnOVRxw+1wF42ZglETg1Eak67VCEwmCIAgBfkThkYhLTwiCIIhkw6mNSFf7QBMJgiAIAX5Vhd+hZ4zWSBAEQbQNnNqIdLUPNJGIgkREh0mEnKqtyGMId0i3qEl+1fkTJFojQYhoDUlotLIJN/uWCpFw0myYskW0EiLRP8mxyJGCpVJuXy+tLZVyaiPS1T7QRIIgCEIATSQIgiCIcNBEQoMmEgRBEAJI2kQQBEGEg6RNGjSRSBHSTTZCEMmOEoVHIgWUHYRbxCEhnRtRXZz2KZbvEK38tbWSdaY7thO3Cn4ntxPzhYOXG0V7fduNHuXoWnbh3nVqI9LVPtBEgiAIQgB5JAiCIIhwkEdCgyYSBEEQAmiNBEEQBBEOWiOhQROJNIDcxERrYduVThCEQSpIluzKlGKxN25IdNMxmmC0MiM+cavTyI5+/b9au2M666Pd60qKsr4Iu/dPvBPoEWJoIkEQBCFAe9rkVNoUp84QBEEQSYVTG5Gu9oEmEgRBEAJI2kQQBEGEg6RNGjSRiADJhiKTjq7mZKW1Im2EIxXuB7fkV7TYmnBCW5QvOZUqRR3lKc1tjF//fjEle4OzfZkUyuq35sdSq99OZJesfjPR93RaX4TVPRgP2RMtttZIQL7k2Fi6dCnOPfdcdOzYEV27dsWECROwd+9eU52Ghgbccsst6Ny5Mzp06IDJkyfj2LFjCeoxQRCpiAotC66TV3qaidSB7ANBEK2FUxuRrvYh5SYSW7ZswS233IL//Oc/2LBhA5qbmzFq1CjU1tYadebOnYvXX38dL730ErZs2YIjR45g0qRJjo+VCk9fw6Eoaqu9iNaDftfIqKrqyr3rV9WoXkTiaE37oKiq6WUXVc8/IXo53U/YL5v3NLtPRK/AMa1fTo7NH9/qHNDL/iua393Ob2vnGuGvE+fHjv3at7Of6fwE3a9ueBDJPmiknLRp/fr1ps/PPvssunbtip07d+Kiiy5CVVUVfv/73+PFF1/EZZddBgB45pln0L9/f/znP//Beeedl4huEwSRYtAaidSD7ANBEK0FrZHQSDmPRDBVVVUAgPz8fADAzp070dzcjJEjRxp1+vXrhx49eqCsrEzYRmNjI6qrq00vgiDaNuSRSH3IPhAEES/IPmiknEeCR1EUzJkzBxdccAHOOussAEB5eTkyMzORl5dnqtutWzeUl5cL21m6dCnuu+++eHdXSCpLSKxI98VxrUUsi+9iJV7XZqIXjNuFPBKpTTLYh2jHQbv7Ob1H3V5Ebef4dr9LtOfKDYlKa2K16NeNBcqieqLfyWocZr9/pNwU7HqyCnBh99h2v4tb+7kBeSQ0Utojccstt+Cjjz7C2rVrY2pn4cKFqKqqMl6HDh1yqYcEQaQq5JFIbcg+EAQRT8g+aKSsR2L27Nl44403sHXrVnzve98zygsLC9HU1ITKykrTU6djx46hsLBQ2JbP54PP54t3lwmCSCGUKDwS5IhLDsg+EAQRb5zaiHS1Dyk3kVBVFbfeeiteffVVbN68Gb169TJtHzx4MDIyMrBx40ZMnjwZALB3714cPHgQw4YNc3SsVI9eEyskT0o80f4GiZRERaI17qm2fN+2ZVrTPlj2IwkkTekoYwLiL2WKt1RG1H87OQ7s9itauZNYbhTaD5HcSXSt2ZE7RZK5su/i9Pzz5yCZbWG6kHITiVtuuQUvvvgi/va3v6Fjx46GrjU3NxfZ2dnIzc3FjBkzMG/ePOTn5yMnJwe33norhg0bRhE5CIKwDSWkSz3IPhAE0VpQQjqNlJtIPPnkkwCASy65xFT+zDPPYNq0aQCARx99FLIsY/LkyWhsbMTo0aPxxBNP2D4Gm137G+tc6XOqQh6J1KWtP4Vh924s+STqoTheHNcEh6l+CVdJFvsQ7XVn3yNhoy3ySERFIhbvqlFmXbbbL1uLlm23ZauapUcicEybbcVw/sP1IxE2Il3tg6Smcta1OPH111+juLg40d0gCCJGDh06ZNLI26GhoQG9evUKG8UnEoWFhThw4ACysrKi2p9Ibsg+EET60No2Ih3tA00kBCiKgiNHjqBjx462ZtWpQnV1NYqLi3Ho0CHk5OQkujspDZ1L94jHuVRVFSdPnkRRURFk2XlwuoaGBjQ1NUV17MzMzLQyEoSZdLUPAI1rbkLn0j3SyUako31IOWlTayDLsuMZaiqRk5NDA5tL0Ll0D7fPZW5ubtT7ZmVlpd1gT7hDutsHgMY1N6Fz6R5kI5KTlM4jQRAEQRAEQRBEYqCJBEEQBEEQBEEQjqGJRBvC5/Nh0aJFlFzJBehcugedS4JIDuhedA86l+5B5zK5ocXWBEEQBEEQBEE4hjwSBEEQBEEQBEE4hiYSBEEQBEEQBEE4hiYSBEEQBEEQBEE4hiYSacbixYshSZLp1a9fP2N7Q0MDbrnlFnTu3BkdOnTA5MmTcezYsQT2OLnYunUrrrjiChQVFUGSJKxbt860XVVV3HvvvejevTuys7MxcuRIfP7556Y6FRUVKC0tRU5ODvLy8jBjxgzU1NS04rdIDiKdy2nTpoVcq2PGjDHVoXNJEO5CNiJ6yD64B9mH9IEmEmnImWeeiaNHjxqvd955x9g2d+5cvP7663jppZewZcsWHDlyBJMmTUpgb5OL2tpaDBgwAI8//rhw+4MPPoiVK1di9erV2LZtG9q3b4/Ro0ejoaHBqFNaWoqPP/4YGzZswBtvvIGtW7di1qxZrfUVkoZI5xIAxowZY7pW//SnP5m207kkCPchGxEdZB/cg+xDGqESacWiRYvUAQMGCLdVVlaqGRkZ6ksvvWSU7dmzRwWglpWVtVIPUwcA6quvvmp8VhRFLSwsVB966CGjrLKyUvX5fOqf/vQnVVVV9ZNPPlEBqDt27DDq/OMf/1AlSVIPHz7can1PNoLPpaqq6tSpU9Xx48eH3YfOJUG4D9kIdyD74B5kH1Ib8kikIZ9//jmKiorQu3dvlJaW4uDBgwCAnTt3orm5GSNHjjTq9uvXDz169EBZWVmiupsyHDhwAOXl5abzl5ubi5KSEuP8lZWVIS8vD0OGDDHqjBw5ErIsY9u2ba3e52Rn8+bN6Nq1K/r27Yuf/exn+O6774xtdC4JIj6QjXAfsg/uQ/YhNfAmugOEu5SUlODZZ59F3759cfToUdx333248MIL8dFHH6G8vByZmZnIy8sz7dOtWzeUl5cnpsMpBDtH3bp1M5Xz56+8vBxdu3Y1bfd6vcjPz6dzHMSYMWMwadIk9OrVC/v378cvf/lLjB07FmVlZfB4PHQuCSIOkI2ID2Qf3IXsQ+pAE4k0Y+zYscb7c845ByUlJTj11FPxl7/8BdnZ2QnsGUGYmTJlivH+7LPPxjnnnIM+ffpg8+bNGDFiRAJ7RhDpC9kIIhUg+5A6kLQpzcnLy8P3v/997Nu3D4WFhWhqakJlZaWpzrFjx1BYWJiYDqYQ7BwFRzDhz19hYSGOHz9u2t7S0oKKigo6xxHo3bs3unTpgn379gGgc0kQrQHZCHcg+xBfyD4kLzSRSHNqamqwf/9+dO/eHYMHD0ZGRgY2btxobN+7dy8OHjyIYcOGJbCXqUGvXr1QWFhoOn/V1dXYtm2bcf6GDRuGyspK7Ny506izadMmKIqCkpKSVu9zKvH111/ju+++Q/fu3QHQuSSI1oBshDuQfYgvZB+SmESv9ibcZf78+ermzZvVAwcOqO+++646cuRItUuXLurx48dVVVXVm2++We3Ro4e6adMm9f3331eHDRumDhs2LMG9Th5OnjypfvDBB+oHH3ygAlAfeeQR9YMPPlC/+uorVVVV9be//a2al5en/u1vf1P/+9//quPHj1d79eql1tfXG22MGTNGHTRokLpt2zb1nXfeUU8//XT12muvTdRXShhW5/LkyZPqHXfcoZaVlakHDhxQ//3vf6s/+MEP1NNPP11taGgw2qBzSRDuQjYiesg+uAfZh/SBJhJpxjXXXKN2795dzczMVE855RT1mmuuUfft22dsr6+vV3/+85+rnTp1Utu1a6dOnDhRPXr0aAJ7nFy89dZbKoCQ19SpU1VV1UL83XPPPWq3bt1Un8+njhgxQt27d6+pje+++0699tpr1Q4dOqg5OTnq9OnT1ZMnTybg2yQWq3NZV1enjho1Si0oKFAzMjLUU089VZ05c6ZaXl5uaoPOJUG4C9mI6CH74B5kH9IHSVVVtfX8HwRBEARBEARBpAO0RoIgCIIgCIIgCMfQRIIgCIIgCIIgCMfQRIIgCIIgCIIgCMfQRIIgCIIgCIIgCMfQRIIgCIIgCIIgCMfQRIIgCIIgCIIgCMfQRIIgCIIgCIIgCMfQRIIgCIIgCIIgCMfQRIIgCIIgCIIgCMfQRIIgCIIgCIIgCMfQRIJIGfr374//9//+X8R63333Hbp27Yovv/wybJ1LLrkEc+bMca9zOlOmTMHDDz/sersEQRBEeMg+EERioIkEkRLU19fj888/x4ABAyLWfeCBBzB+/Hj07Nkz/h0L4u6778YDDzyAqqqqVj82QRBEW4TsA0EkDppIECnBRx99BFVVcdZZZ1nWq6urw+9//3vMmDGjlXpm5qyzzkKfPn3wwgsvJOT4BEEQbQ2yDwSROGgiQSQ1u3fvxmWXXYbhw4dDURT06NEDK1asCFv/73//O3w+H8477zyjrLa2FjfccAM6dOiA7t27C13LiqJg6dKl6NWrF7KzszFgwAD89a9/NdU5efIkSktL0b59e3Tv3h2PPvqo0AV+xRVXYO3atTF9b4IgCMIasg8EkXhoIkEkLfv378fFF1+Myy67DD/+8Y8xadIkzJ8/H3PnzsXu3buF+7z99tsYPHiwqezOO+/Eli1b8Le//Q3/+te/sHnzZuzatctUZ+nSpXj++eexevVqfPzxx5g7dy6uu+46bNmyxagzb948vPvuu3jttdewYcMGvP322yHtAMDQoUOxfft2NDY2xn4SCIIgiBDIPhBEkqASRJIycuRIddq0aaqqqurQoUPVhx9+WPX7/WpOTo66cuVK4T7jx49Xb7zxRuPzyZMn1czMTPUvf/mLUfbdd9+p2dnZ6u23366qqqo2NDSo7dq1U9977z1TWzNmzFCvvfZaVVVVtbq6Ws3IyFBfeuklY3tlZaXarl07ox3Ghx9+qAJQv/zyy6i/O0EQBBEesg8EkRx4Ez2RIQgR5eXl2LRpE9577z34/X7873//w9KlSyHLMjweDzIzM4X71dfXIysry/i8f/9+NDU1oaSkxCjLz89H3759jc/79u1DXV0dfvjDH5raampqwqBBgwAAX3zxBZqbmzF06FBje25urqkdRnZ2NgBNj0sQBEG4C9kHgkgeaCJBJCX/+c9/oCgKBg4ciL1796K+vh4DBw7El19+iRMnTuD8888X7telSxecOHHC0bFqamoAAG+++SZOOeUU0zafz+e47xUVFQCAgoICx/sSBEEQ1pB9IIjkgdZIEElJU1MTAKChoQEffPABTj31VOTn52P16tU466yzcPbZZwv3GzRoED755BPjc58+fZCRkYFt27YZZSdOnMBnn31mfD7jjDPg8/lw8OBBnHbaaaZXcXExAKB3797IyMjAjh07jP2qqqpM7TA++ugjfO9730OXLl1iOwkEQRBECGQfCCJ5II8EkZQMGzYMXq8XS5YsQU1NDXr37o3HHnsMq1atwtatW8PuN3r0aCxcuBAnTpxAp06d0KFDB8yYMQN33nknOnfujK5du+JXv/oVZDkwh+7YsSPuuOMOzJ07F4qiYPjw4aiqqsK7776LnJwcTJ06FR07dsTUqVNx5513Ij8/H127dsWiRYsgyzIkSTL14e2338aoUaPidm4IgiDaMmQfCCKJSPQiDYIIx/PPP692795dBaB6vV61pKRE3bp1a8T9hg4dqq5evdr4fPLkSfW6665T27Vrp3br1k198MEH1Ysvvti0CE5RFHXFihVq37591YyMDLWgoEAdPXq0umXLFqNOdXW1+pOf/ERt166dWlhYqD7yyCPq0KFD1QULFhh16uvr1dzcXLWsrMydk0AQBEGEQPaBIJIDSVVVNdGTGYKwIj8/H88++yx+/OMf26r/5ptv4s4778RHH31kerLkNrW1tTjllFPw8MMPGwmOnnzySbz66qv417/+FbfjEgRBEBpkHwgisZC0iUhqvv76a5w4cSJixlKeyy+/HJ9//jkOHz5saFjd4IMPPsCnn36KoUOHoqqqCkuWLAEAjB8/3qiTkZGBVatWuXZMgiAIQgzZB4JIPOSRIJKaf/zjH7jqqqtw8uTJEK1pa/PBBx/gpz/9Kfbu3YvMzEwMHjwYjzzySNiFfQRBEET8IPtAEImHJhIEQRAEQRAEQTiGwr8SBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOGY/w9YMbBMIrOopQAAAABJRU5ErkJggg==", "text/plain": [ "
[15:03:43] Created task 'aperture_2' with task_id webapi.py:139\n", " 'fdve-da8e7fcd-ebde-4437-a5f4-a07fafe4ff3ev1'. \n", "\n" ], "text/plain": [ "\u001b[2;36m[15:03:43]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'aperture_2'\u001b[0m with task_id \u001b]8;id=810971;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=134249;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-da8e7fcd-ebde-4437-a5f4-a07fafe4ff3ev1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:03:47] status = queued webapi.py:269\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:03:47]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=549111;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=717470;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:03:52] status = preprocess webapi.py:263\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:03:52]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=957153;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=505366;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:03:56] Maximum FlexCredit cost: 0.025. Use 'web.real_cost(task_id)' to get webapi.py:286\n", " the billed FlexCredit cost after a simulation run. \n", "\n" ], "text/plain": [ "\u001b[2;36m[15:03:56]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.025\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get \u001b]8;id=679653;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=487716;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mthe billed FlexCredit cost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
starting up solver webapi.py:290\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=655571;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=747498;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
running solver webapi.py:300\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=61582;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=490330;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:04:04] early shutoff detected, exiting. webapi.py:313\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:04:04]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=476617;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=863130;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#313\u001b\\\u001b[2m313\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
status = postprocess webapi.py:330\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=393732;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=933216;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#330\u001b\\\u001b[2m330\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:04:07] status = success webapi.py:337\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:04:07]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=715000;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=651686;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#337\u001b\\\u001b[2m337\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:04:08] loading SimulationData from data/aperture_2.hdf5 webapi.py:512\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:04:08]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/aperture_2.hdf5 \u001b]8;id=713151;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=370906;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim_data2 = web.run(\n", " sim2, task_name=\"aperture_2\", path=\"data/aperture_2.hdf5\", verbose=True\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now the projected fields are already contained in the returned `sim_data2` object - all we have to do is access it as follows, and then plot and compare to analytical results as before." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:50:36.199985Z", "iopub.status.busy": "2023-03-27T23:50:36.199749Z", "iopub.status.idle": "2023-03-27T23:50:36.649478Z", "shell.execute_reply": "2023-03-27T23:50:36.648989Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalized root mean squared error: 4.45 %\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAFyCAYAAABhr+y4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC0LUlEQVR4nO2de3wU1fn/PzO7ySZckhAICVGQi5aLWkAQxCsVys1aEKxioyJS0NZ4AbRCq4K34gWRghe++qu3iqX1WluVSkHFSwqIYqsiCqIiEFBDEnLf7Mzvj5kze2b37OzMZDZ74Xm/XvvK5syZM2dnZ86zZ57PeR5JVVUVBEEQBEEQBEEQDpCT3QGCIAiCIAiCINIPmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQBEEQBEEQBOEYmkgQRxxPPPEEJEnCV199ldJtEgRBpDpfffUVJEnCE0884XjfN998E5Ik4c0334xbd/To0Rg9erTjYySSZPXJyXkjiERDEwki6Tz00EOQJAkjR45Mdlfi8oc//AEvvfRSsrtBEATRLrCHJKLXggULkt29jOahhx5yNUEjiPbEn+wOEMTq1avRu3dvbN68GTt37sSxxx6b7C7F5A9/+APOP/98TJkyxVR+ySWXYPr06QgEAsnpGEEQRAK57bbb0KdPH1PZCSecgGOOOQaNjY3IyspKUs+Sx+uvv57Q9h966CF069YNl112man8zDPPRGNjI7KzsxN6fIKwA00kiKSye/duvPfee3jhhRdwxRVXYPXq1Vi0aFGyu+UYn88Hn8+X7G4QBEEkhIkTJ2L48OHCbTk5Oe3cm8RQX1+Pjh072q6frB/ysixnzDkn0h+SNhFJZfXq1ejSpQvOOeccnH/++Vi9erVpO9PfLl26FI888gj69euHQCCAk08+GVu2bDHV/e9//4vLLrsMffv2RU5ODkpKSnD55Zfjhx9+sOzDjBkz0K1bNwSDwaht48aNQ//+/QEAkiShvr4eTz75pOHaZ0+KYq2ReO2113DWWWehc+fOyMvLw8knn4xnnnnG4VkiCIJITWKtkfjss89w/vnno7CwEDk5ORg+fDhefvllW22ysT43NxcjRozA22+/bbs/kiShvLwcq1evRv/+/ZGTk4Nhw4Zh48aNpnqLFy+GJEn49NNP8ctf/hJdunTB6aefDgBobW3F7bffbtib3r1743e/+x2am5tNbYjWSDQ3N2PRokU49thjEQgE0LNnT/z2t7+N2hcAnn76aYwYMQIdOnRAly5dcOaZZxpejt69e+OTTz7BW2+9ZdgbdqxYaySeffZZDBs2DLm5uejWrRsuvvhi7N2711TnsssuQ6dOnbB3715MmTIFnTp1QlFREa6//nqEQiHb55kgGDSRIJLK6tWrMXXqVGRnZ+Oiiy7CF198ETVBAIBnnnkG9957L6644grccccd+OqrrzB16lTTj/9169bhyy+/xMyZM7Fy5UpMnz4da9aswaRJk6Cqasw+XHLJJfjhhx/wr3/9y1ReWVmJDRs24OKLLwYA/PnPf0YgEMAZZ5yBP//5z/jzn/+MK664Ima7TzzxBM455xxUVVVh4cKFuOuuuzBkyBCsXbvW6WkiCIJIKjU1Nfj+++9Nr1h88sknOOWUU7B9+3YsWLAA9913Hzp27IgpU6bgxRdftDzOn/70J1xxxRUoKSnBPffcg9NOOw0///nPsWfPHtt9feutt3Ddddfh4osvxm233YYffvgBEyZMwMcffxxV9xe/+AUaGhrwhz/8AbNnzwYA/OpXv8Itt9yCk046Cffffz/OOussLFmyBNOnT7c8rqIo+PnPf46lS5fi3HPPxcqVKzFlyhTcf//9uPDCC011b731VlxyySXIysrCbbfdhltvvRU9e/bEhg0bAADLly/H0UcfjQEDBhj25ve//33MYz/xxBO44IIL4PP5sGTJEsyePRsvvPACTj/9dFRXV5vqhkIhjB8/Hl27dsXSpUtx1lln4b777sMjjzxi5/QShBmVIJLE+++/rwJQ161bp6qqqiqKoh599NHqtddea9TZvXu3CkDt2rWrWlVVZZT//e9/VwGo//jHP4yyhoaGqGP85S9/UQGoGzduNMoef/xxFYC6e/duVVVVNRQKqUcffbR64YUXmvZdtmyZKkmS+uWXXxplHTt2VGfMmBF1nMg2q6ur1c6dO6sjR45UGxsbTXUVRbE+MQRBECkCG9tEL1UNj9GPP/64sc+YMWPUE088UW1qajLKFEVRTz31VPW4444zyt544w0VgPrGG2+oqqqqLS0tavfu3dUhQ4aozc3NRr1HHnlEBaCeddZZcfvL+vb+++8bZV9//bWak5OjnnfeeUbZokWLVADqRRddZNp/27ZtKgD1V7/6lan8+uuvVwGoGzZsMMrOOussU5/+/Oc/q7Isq2+//bZp31WrVqkA1HfffVdVVVX94osvVFmW1fPOO08NhUKmurx9OP7444WfOdZ5O+GEE0z25p///KcKQL3llluMshkzZqgA1Ntuu83U5tChQ9Vhw4ZFHYsg4kEeCSJprF69GsXFxfjJT34CQHNJX3jhhVizZk2Ui/XCCy9Ely5djP/POOMMAMCXX35plOXm5hrvm5qa8P333+OUU04BAHzwwQcx+yHLMsrKyvDyyy/j8OHDpv6deuqpUQsM7bBu3TocPnwYCxYsiNKySpLkuD2CIIhk8uCDD2LdunWml4iqqips2LABF1xwAQ4fPmx4L3744QeMHz8eX3zxRZTchvH+++/j4MGDuPLKK03rDy677DLk5+fb7uuoUaMwbNgw4/9evXph8uTJ+Ne//hVlW6688krT/6+++ioAYN68eaby+fPnAwBeeeWVmMd99tlnMXDgQAwYMMDkuTn77LMBAG+88QYA4KWXXoKiKLjlllsgy+afYW7sAztvv/nNb0z25pxzzsGAAQOEfY783GeccYbJnhKEXWgiQSSFUCiENWvW4Cc/+Ql2796NnTt3YufOnRg5ciQOHDiA9evXm+r36tXL9D+bVBw6dMgoq6qqwrXXXovi4mLk5uaiqKjImATU1NRY9ufSSy9FY2Oj4XbfsWMHtm7diksuucTV59u1axcALaoJQRBEujNixAiMHTvW9BKxc+dOqKqKm2++GUVFRaYXC6Rx8OBB4b5ff/01AOC4444zlWdlZaFv3762+xq5PwD86Ec/QkNDA7777jtTeeSDoq+//hqyLEdFDywpKUFBQYHRRxFffPEFPvnkk6jP/aMf/QhA+HPv2rULsixj0KBBtj+TFaxPbD0fz4ABA6L6nJOTg6KiIlNZly5dTPaUIOxCUZuIpLBhwwbs378fa9aswZo1a6K2r169GuPGjTP+jxURSeXWPlxwwQV47733cMMNN2DIkCHo1KkTFEXBhAkToCiKZX8GDRqEYcOG4emnn8all16Kp59+GtnZ2bjgggtcfkKCIIgjDzbWXn/99Rg/frywTiqF+OY92TxuPAOKouDEE0/EsmXLhNt79uzpuM1EQBEGCS+hiQSRFFavXo3u3bvjwQcfjNr2wgsv4MUXX8SqVatst3fo0CGsX78et956K2655Raj/IsvvrDdxqWXXop58+Zh//79eOaZZ3DOOeeY5FSAfePSr18/AMDHH3+cUkaTIAgikTDPQVZWVkyvRSyOOeYYANq4zeRAABAMBrF7924MHjzYVjuicf/zzz9Hhw4dop7Ei/qgKAq++OILDBw40Cg/cOAAqqurjT6K6NevHz766COMGTPG0lb069cPiqLg008/xZAhQ2LWs2tvWJ927NhhOm+szKrPBNFWSNpEtDuNjY144YUX8LOf/Qznn39+1Ku8vByHDx+2HSoQCD9hUSOiMy1fvtx2GxdddBEkScK1116LL7/80ojWxNOxY8eoCBgixo0bh86dO2PJkiVoamoybYvsI0EQRKbQvXt3jB49Gv/3f/+H/fv3R22PlBbxDB8+HEVFRVi1ahVaWlqM8ieeeMLWuMuoqKgwrYvbs2cP/v73v2PcuHFxn8ZPmjQJQLTtYF6Gc845J+a+F1xwAfbu3YtHH300altjYyPq6+sBAFOmTIEsy7jtttuivOW8fbBrb4YPH47u3btj1apVpjCzr732GrZv327ZZ4JoK+SRINodtqj55z//uXD7KaecgqKiIqxevRojR4601WZeXh7OPPNM3HPPPQgGgzjqqKPw+uuvY/fu3bb7VVRUhAkTJuDZZ59FQUGBcPAdNmwY/v3vf2PZsmUoLS1Fnz59hH3My8vD/fffj1/96lc4+eSTjTjlH330ERoaGvDkk0/a7hdBEEQ68eCDD+L000/HiSeeiNmzZ6Nv3744cOAAKioq8O233+Kjjz4S7peVlYU77rgDV1xxBc4++2xceOGF2L17Nx5//HFHayROOOEEjB8/Htdccw0CgQAeeughAFrI1XgMHjwYM2bMwCOPPILq6mqcddZZ2Lx5M5588klMmTLFCA4i4pJLLsHf/vY3XHnllXjjjTdw2mmnIRQK4bPPPsPf/vY3/Otf/8Lw4cNx7LHH4ve//z1uv/12nHHGGZg6dSoCgQC2bNmC0tJSLFmyBIBmbx5++GHccccdOPbYY9G9e/cojwM7b3fffTdmzpyJs846CxdddBEOHDiAP/7xj+jduzfmzp1r+9wRhGOSGjOKOCI599xz1ZycHLW+vj5mncsuu0zNysoyQsTee++9UXUAqIsWLTL+//bbb9XzzjtPLSgoUPPz89Vf/OIX6r59+6LqRYZq5fnb3/6mAlDnzJkj7Ndnn32mnnnmmWpubq4KwAgFG6vNl19+WT311FPV3NxcNS8vTx0xYoT6l7/8JebnJgiCSCXY2LZlyxbhdlH4V1VV1V27dqmXXnqpWlJSomZlZalHHXWU+rOf/Ux97rnnjDqRYUwZDz30kNqnTx81EAiow4cPVzdu3BgVajUWANSrrrpKffrpp9XjjjtODQQC6tChQ6OOwcK/fvfdd1FtBINB9dZbb1X79OmjZmVlqT179lQXLlxoCmerqtHhX1VVC8V69913q8cff7waCATULl26qMOGDVNvvfVWtaamxlT3scceU4cOHWrUO+uss4xw6KqqqpWVleo555yjdu7c2RT+NtZ5++tf/2q0V1hYqJaVlanffvutqc6MGTPUjh07Rn1mdj4IwimSqpLOgiAYf//73zFlyhRs3LjRCDFLEARBpAeSJOGqq67CAw88kPBjnXHGGQgEAvj3v/+d8GMRRKpCayQIguPRRx9F3759cfrppye7KwRBEEQKs3//fnTr1i3Z3SCIpEJrJAgCwJo1a/Df//4Xr7zyCv74xz9S0jiCIAhCyHvvvYcXXngBu3btwo033pjs7hBEUqGJBEFAi9jUqVMnzJo1C7/5zW+S3R2CIAgiRXn00Ufx2muv4brrrsPMmTOT3R2CSCq0RoIgCIIgCIIgCMfQGgmCIIgk8uCDD6J3797IycnByJEjsXnz5ph1H330UZxxxhno0qULunTpgrFjx1rWJwiCIIhEQhMJgiCIJPHXv/4V8+bNw6JFi/DBBx9g8ODBGD9+PA4ePCis/+abb+Kiiy7CG2+8gYqKCvTs2RPjxo3D3r1727nnBEEQBEHSJiGKomDfvn3o3LkzLboliDREVVUcPnwYpaWlkGXnz0uamppMmXWdkJ2djZycHFt1R44ciZNPPtkIVakoCnr27Imrr74aCxYsiLt/KBRCly5d8MADD+DSSy911V/CGWQfCCL9SZaNcGIf0gVabC1g37596NmzZ7K7QRBEG9mzZw+OPvpoR/s0NTUht3Mh0Nro6pglJSX46KOPTMYiEAggEAiY6rW0tGDr1q1YuHChUSbLMsaOHYuKigpbx2poaEAwGERhYaGrvhLOIftAEJlDe9uIkpIS7N69O6MmEyk1kdi4cSPuvfdebN26Ffv378eLL76IKVOmmOps374dN954I9566y20trZi0KBBeP7559GrVy8A2hc8f/58rFmzBs3NzRg/fjweeughFBcX2+5H586dAQBDf/sX+AIdPPt86YaqkLMqXZHkI/tJaai5AR/ec5FxLzuhpaUFaG1E1gkXAb4shwcOovLjv0SNN4sWLcLixYtNZd9//z1CoVBU3eLiYnz22We2DnfjjTeitLQUY8eOddbPNCUVbAS7poZc/0x8++BwDFVsCgTsCAnijd+K4s1xtGPZqgbFpU05UmxRW8Zt2ca+ks0H73Y9bVYP8u18FtvHcer5s3HsUHMDti39ZfvaCN0+tLS00EQiUdTX12Pw4MG4/PLLMXXq1Kjtu3btwumnn45Zs2bh1ltvRV5eHj755BPTFzJ37ly88sorePbZZ5Gfn4/y8nJMnToV7777ru1+sIvbF+gAf07Htn+wNOVIGbwzkSN9IsFok/TElwXJl+1oF3bH7NmzB3l5eUZ5pDfCC+666y6sWbMGb775ZkYZJStSwUY4sQ9Ox1DJ9g/3tk8kJDtteDyRsHNMcftHhi1Kv4lE7Hq2JhI2P6/TiYST89ieNiJTr+KUmkhMnDgREydOjLn997//PSZNmoR77rnHKOvXr5/xvqamBn/605/wzDPP4OyzzwYAPP744xg4cCD+85//4JRTTnHUH1mWbN2cbcHtE5r2oC2D2pEy8CeaTJwQJPqe8uoYkuyDJPuc7aRq9fPy8kwTCRHdunWDz+fDgQMHTOUHDhxASUmJ5b5Lly7FXXfdhX//+9/48Y9/7KyPaUwq2QhJliDJkuVYJ7p/reqLfjCJvBR22uXriI4ZeY+IbJHoR5ZociH6gSqaXFjdl1a20Ok4mCr2x8vx2+mY1p6ThvAxrevYOR+JnDR4jWMboTq0J2lC2kRtUhQFr7zyCn70ox9h/Pjx6N69O0aOHImXXnrJqLN161YEg0GTm3/AgAHo1auXbc0xQRAEEDYSTl92yc7OxrBhw7B+/XqjTFEUrF+/HqNGjYq53z333IPbb78da9euxfDhw9v0GTMJshEEQbQnibQP6UTaTCQOHjyIuro63HXXXZgwYQJef/11nHfeeZg6dSreeustAEBlZSWys7NRUFBg2re4uBiVlZUx225ubkZtba3pRRDEkY0kuZhISM4Mxbx58/Doo4/iySefxPbt2/HrX/8a9fX1RrbcSy+91LQY++6778bNN9+Mxx57DL1790ZlZSUqKytRV1fn6WdPRxJlI8g+EAQhwrGNcGgf0oWUkjZZoegrwyZPnoy5c+cCAIYMGYL33nsPq1atwllnneW67SVLluDWW2/1pJ9OSZTMI9mSqUyU5BxptIcEKZWRfDIkn1Npk7NnMxdeeCG+++473HLLLaisrMSQIUOwdu1aY+HvN998YwpN+PDDD6OlpQXnn3++qR3RYu4jjUTZiHj2wal8qb3kTnybVuMxqye6372WO4WPGV3mdrwR9jHFxi6vx1K7siWjvkO5UFvXPtit53gRtYPjx6vvxTXi2EY4tA/pQtpMJLp16wa/349BgwaZygcOHIh33nkHgBZWq6WlBdXV1aYnTvE0xwsXLsS8efOM/2traym8H0Ec4cguXNGqC9d1eXk5ysvLhdvefPNN0/9fffWV4/aPFBJlI8g+EAQhwqmNcGMf0oG0mR5lZ2fj5JNPxo4dO0zln3/+OY455hgAwLBhw5CVlWXSHO/YsQPffPONpeY4EAgYiyPtLJIkCCLzSfQaCcJbEmUjyD4QBCGC7INGSnkk6urqsHPnTuP/3bt3Y9u2bSgsLESvXr1www034MILL8SZZ56Jn/zkJ1i7di3+8Y9/GE/t8vPzMWvWLMybNw+FhYXIy8vD1VdfjVGjRjmO2AS0MSxYkmlPWUqyZVRHEke63MgOkiR5cu+6Gvgz1FCkCqlmI2JhJTOyUz/evlaSECZ7iifdYO1a1bP7pNFOTgpzw97ZDF/cz+nZoYQ4lRl5emwPJUumdj2uZxzfRn/bIjlqb0mbYxuRofYhpSYS77//Pn7yk58Y/zN38owZM/DEE0/gvPPOw6pVq7BkyRJcc8016N+/P55//nmcfvrpxj73338/ZFnGtGnTTMmGCIIgnCDJMiSrjEsinNYnHEE2giCIVMGxjchQ+yCpdjPOHEHU1tYiPz8fIxf/44jObG0X8ki0H+SRiI8kSWhtqsemxeeipqbGsRSF3f/5P7kRkt9ZIjm1tRk1b9zt6rhEesCuj+E3/912wtK25DVwuq/t7NgeJLUzjumwj+35s4M8EmHIIxGmtake798+uV1tRKbah5TySKQi6SBvSvZckH7cHjmkw/3gFdrTJqfSpsx84kS0Dbs/cEQ/3BMhe3LSJzs4v+rtRYjygnSPuOmlffUq4lEkiU4il2pRuBiObYRL+/Dggw/i3nvvRWVlJQYPHoyVK1dixIgRwrqffPIJbrnlFmzduhVff/017r//flx33XWujmsXsnoEQRAC2iOPBEEQBJGetEceib/+9a+YN28eFi1ahA8++ACDBw/G+PHjcfDgQWH9hoYG9O3bF3fddZdltFIvIY9EBnAkPSUmCIJIBWRZivu02OlTdqeeC8fSEocyH8Xmo0anXhMR8RZNE/bw4um9m/wObo6dKE+DHS9Ouigpli1bhtmzZxtJSletWoVXXnkFjz32GBYsWBBV/+STT8bJJ58MAMLtiYAmEgRBECJ8PscJ6VSFPBIEQRBHBA5tBLMPtbW1pvJAIIBAIHqtRUtLC7Zu3YqFCxcaZbIsY+zYsaioqHDZae8haRNBEIQAyiNBEARBxMKtfejZs6e2WFt/LVmyRNj+999/j1AohOLiYlN5cXExKisrE/757EIeiTQhmZEhCMIOiY6O0t64mRjQRILgcSqfsCuFcioJcSuF8gkWRTuOQOVLLQlJouQ0bYnMlUy8PB/JlColA6c2gtXds2ePKWqTyBuRTtBEgiAIQoAs+yBTQjqCIAhCgGMbodfNy8uzFf61W7du8Pl8OHDggKn8wIED7baQ2g70nJsgCEIAC+3n7EVDKkEQxJGAcxvhzD5kZ2dj2LBhWL9+vVGmKArWr1+PUaNGef1xXEMeCRccKTKjVHUnEvFJRpLAZNwXiZRTkbSJaG+8HHP5MSAd5CtWHCm2KJOSux4J35lbaZMT5s2bhxkzZmD48OEYMWIEli9fjvr6eiOK06WXXoqjjjrKWGfR0tKCTz/91Hi/d+9ebNu2DZ06dcKxxx7r+Ph2oIkEQRCEAJpIEARBELFoj4nEhRdeiO+++w633HILKisrMWTIEKxdu9ZYgP3NN99A5jwd+/btw9ChQ43/ly5diqVLl+Kss87Cm2++6fj4dqCJBEEQhACaSBAEQRCxaI+JBACUl5ejvLxcuC1yctC7d2+oavt6tmgi4YBUlTS1pwuxvdzamZBkr71uZlG0kERdE6nmeufvSa9lTixrqdN9CCIV8HoMSPSY7NS+JmqME9m4RERkEo2lskWEq0TJONv7R2cm4dRGZKp9oIkEQRCEAMlFQjqn9QmCIIj0xKmNyFT7kKLP2AmCIAiCIAiCSGXII+GASNdie0qdvHTjtkWe5IV7O9FSLC/lV21zacfvhydSoTZch04/n9V3156yp/ZIfsdC+zndhzgykCQpIySYXtgxp2O63THa6vy6tSNey3Pd2gir8dKu3MjpsUXHlGzYKe1Yjg6V8nhx7zq1EZlqH2giQRAEIYAWWxMEQRCxaK/F1qkOTSTagGiG7rWXor2eutidnSfqyRPDl2qxpz3oT8jiqZHo8zp/ymSvnugpl9X30xZvhZfeiWQ9CaOJBJHqpJo3IZ4dsTqWqF0re2DXViTDpliN+XbqiLYJx2NuuLHj4WiTvZHjH8cp6e7loImEBk0kCIIgBMiy5Hwin2oTYYIgCCIhOLYRGWofaCJBEAQhQJIl5569DDUUBEEQhBmnNiJT7QNNJDwmnqvOqSuauRHtznrtXKhtcT/bPY4dd3Iqu6bdInJJi/pv6frm6lvVU21eG+waEn3vVov62Hds1/XdFpd3Krq43SymzYTFt0TyaU/JUlsWPkcew6ldEI2NbSkT4U+C/Wh1KW3yuowhGsMNu6DnrrC7wNvupWnHHsS7zlPRLvA4tRGZah9oIkEQBCFAciFtUtNo0ksQBEG4x6mNyFT7QBMJgiAIAZLkQtqUoU+cCIIgCDNObUSm2geaSFigqqq19MPFRZHMXBRuY3I7jaYRb3sitiUb5la2K2Ni9exE94h5TEGZyIXNvlthDHHJmVvbC7xwV8frrxefh9ZIEO1Fe0mZnEZcErVp1x5YldmtL5Il2ZFHmbe3f+z+kEUoPTuyJJE0Kt5+kdtN/wvsDTtvYZthHXWPjami79/K7vA4lb+K7otUkjvRGgkNmkgQBEEIkCUJssOHBWqGPnEiCIIgzDi1EZlqH2giQRAEIYA8EgRBEEQsyCOhQROJNmBXPmElKeLddFbubafRm+xi13XNcBtRw2nUjXiRNlJB5sS7iUX9bbUhd+K3OU1iJJJHWbmdrSRObcFOe3bd0e0psSKIdMepJNW03YbU1amMKd44H7ndb7HN3G60cUwViax43JYttsXej0mifHFkTCLbwrY7tS0iiSw72/zYbhX1z26Ev0TZICK50ESCIAhCAHkkCIIgiFiQR0KDJhIEQRAC3GS2ztTwfgRBEIQZpzYiU+1D+4czsGDjxo0499xzUVpaCkmS8NJLL8Wse+WVV0KSJCxfvtxUXlVVhbKyMuTl5aGgoACzZs1CXV2dq/4oimr7ZQWL/sS/hPWU6JdVn8RtqLYTiNnFJ0vGS1Tm9uUXvAJ+GQG/LKyf7ZeNl3i7L6Evp/1hn0X0Ob04f1bfjxdYXUvxr0Pr6xiwf1+IjtnWe9IOkuzuRSSOVLMRycLNJBcIJ9DiZSqsLf4letLq5ZjPxkbRGBpv7I2uL0e/fCnyEvTNyn5YfXa+vsi2xDo/Tu0JEH7SLro2RNdT5H7xnry7vX5TDbIPGin1serr6zF48GA8+OCDlvVefPFF/Oc//0FpaWnUtrKyMnzyySdYt24d/vnPf2Ljxo2YM2dOorpMEESGwv/ocvIiEgfZCIIgUgWyDxopJW2aOHEiJk6caFln7969uPrqq/Gvf/0L55xzjmnb9u3bsXbtWmzZsgXDhw8HAKxcuRKTJk3C0qVLhUbFCidP9q2egIpm3qKnr8LFTBZ5JxK1ANsKp4vYWJmdeOCxy5wttHNSJxbi3A++mHV8Mitre5DreAuq7WxLFML44jY+st1F1F54Erzyysmy83tLTalHM5lHqtkIr2D3kN0nlu019scbQ+0sshYtqLa7iNpyAbbAXrbnIuvIdoVjNAT5G3x6me3AEqKLIvagK8pBIfrskf21uzjbC5yO86mUO4LHqY3IVPuQVh9LURRccskluOGGG3D88cdHba+oqEBBQYFhIABg7NixkGUZmzZtitluc3MzamtrTS+CII5seDe9kxeRPBJhI8g+EAQhguyDRlpNJO6++274/X5cc801wu2VlZXo3r27qczv96OwsBCVlZUx212yZAny8/ONV8+ePT3tN0EQ6YckuZhIZKjrOl1IhI0g+0AQhAjHNiJD7UPaTCS2bt2KP/7xj3jiiSc8/zIWLlyImpoa47Vnzx5jG5NJxHtZYXdBqJ3Fp6IFrKL2RH0Ttel2YWq8Bb5Ot4XbkwUvZ4vG3C4286YN6/47OT+x3PpuF1ZbXXOmsojrRnx9OVtILeqH46AFHtyLTmBZS52+iOSQKBsRyz6IxmsnwQNE2Am4kSjiPTW1M+6IFlbbxe2Y2JZ2RYiCYzg5jtd9dNt/u/1x2+dE4fU94OX9GUl72YcHH3wQvXv3Rk5ODkaOHInNmzdb1n/22WcxYMAA5OTk4MQTT8Srr77q6rh2SZuJxNtvv42DBw+iV69e8Pv98Pv9+PrrrzF//nz07t0bAFBSUoKDBw+a9mttbUVVVRVKSkpith0IBJCXl2d6EQRxhOPUGyFLgAuDnOpGIl1IlI0g+0AQhJB2sA9//etfMW/ePCxatAgffPABBg8ejPHjx0eNY4z33nsPF110EWbNmoUPP/wQU6ZMwZQpU/Dxxx+39dPGJG0mEpdccgn++9//Ytu2bcartLQUN9xwA/71r38BAEaNGoXq6mps3brV2G/Dhg1QFAUjR45MVtcJgkhD2mONRDoYiXSBbARBEO1Je6yRWLZsGWbPno2ZM2di0KBBWLVqFTp06IDHHntMWP+Pf/wjJkyYgBtuuAEDBw7E7bffjpNOOgkPPPBAWz9uTFIqalNdXR127txp/L97925s27YNhYWF6NWrF7p27Wqqn5WVhZKSEvTv3x8AMHDgQEyYMAGzZ8/GqlWrEAwGUV5ejunTpyc8GoeVpMLq4uHlHHaiO/Eue1GkD1E0D9Y3I40916Y4UpS5vghRZCGnuI0AZbcNUz0bLkVRFA2raBeiKBfxIl+0NdKS3f2srkexZC66zG6EJjsuYrvyOa9zoKQ6vJEAgFWrVuGVV17BY489hgULFkTV540EANx+++1Yt24dHnjgAaxatapd+54M0s1GWN0bduVXVhGdrOwHfy/Z+QHjtL7XiMbQyG38djZe82O7nXE4ns0QRT2ywmpMtjtee9FGMhDJYq2wsgNOJUxeSJOSRWTAhkAggEAgEFWvpaUFW7duxcKFC40yWZYxduxYVFRUCNuuqKjAvHnzTGXjx4+3zLnTVlLKI/H+++9j6NChGDp0KABg3rx5GDp0KG655RbbbaxevRoDBgzAmDFjMGnSJJx++ul45JFHEtVlgiAyFFEyJjsvAFFRfpqbm6PaZ0Zi7Nix3DHjGwm+PqAZiVj1Mw2yEQRBpApu7UPPnj1NARyWLFkibP/7779HKBRCcXGxqby4uDhmcIjKykpH9b0gpTwSo0ePdjTL/Oqrr6LKCgsL8cwzz3jYK4IgjkTcJBBi9SMj+yxatAiLFy82lVkZic8++0zYfjKMRCpBNoIgiFTBqY1gdffs2WNaayXyRqQTKTWRSDkiosC4dfeK3H2itkRuvyh3tUCWxLsEmftb5PK2kixZucitJDqxsHJTi9qNrOeFdCoZxHND23FTO3WHx6tv7U6OL2lyI2eyI2XyWsZkas+DtiXZfoIwfh8g8wwF4T1OZU+i+9BpglKR/bDaz+7YbzUG8VGPouuJ9CwObzpn+do8sS22x2jBdyzaN7KM/1+U5NRq7G8VbLMjnWqLHXG6n10ZU6rLl5zaCFbXbtCGbt26wefz4cCBA6byAwcOxAwOUVJS4qi+F6SUtIkgCCJVaIu0KTLKj2gikS5GgiAIgojGrX2wS3Z2NoYNG4b169cbZYqiYP369Rg1apRwn1GjRpnqA8C6deti1vcCmkgQBEEISHTUpnQxEgRBEEQ07RG1ad68eXj00Ufx5JNPYvv27fj1r3+N+vp6I0DHpZdealqMfe2112Lt2rW477778Nlnn2Hx4sV4//33UV5e7tnnjoSkTUnCTmQkwNrtzNx+TiM5mSQgej2+DaM+WFvWkYhE2IlOJI6soejbZME2ewhd7y5dpHbc0LHLlLj1W+O4nyPdzvHc1ey7FbqT9XOQqAhNmRaZqS1rJOwyb948zJgxA8OHD8eIESOwfPnyKCNx1FFHGYvxrr32Wpx11lm47777cM4552DNmjV4//33abFwEnCbzNPOU0nRfRZP7hQpa7WK3Mcfw2nkPi+j0QmjMSmhqDLzseSI/+MnXIvdAXttGNUTFIUpUr5k18ZY2Y94bVhJmuzYEVF9HqeSJi9kTE7uR7dSLR63aySccOGFF+K7777DLbfcgsrKSgwZMgRr16411sp98803kLl74tRTT8UzzzyDm266Cb/73e9w3HHH4aWXXsIJJ5zg+Nh2oYkEQRCEADeuaKf108FIEARBENE4tRFO7QOjvLw8pkfhzTffjCr7xS9+gV/84heujuUGmkhY4dIVlQjseCYAewuwRU+qeJFb1CI87liSyydPIvinKf6IzyV6KhXiPhN7KiV+opWYJ97RT3xiL4KLVRYZozyeh8HKI8HgnwYlwhPhxcLq9sB0r3pw30qS8/vfzROnVDcShLfYuV/s5BQCrL3RwuAd/L7MQ62yp8+CfnDvQ9Gbw9ts5oAwyoSehtj3jtk+MK+1szxEVkR6OeIhGvvF9Zx5JqxyWLTNOx6/zK4dibVPzP1c5h6K124q4NRGuLEP6QBNJAiCIAT4ZMnxDxI1RR48EARBEInFqY3IVPtAEwmCIAgBsouJhJKhhoIgCIIw49RGZKp9oIlEO5MMqZSVy9tqATbD5MUVyKOYy1skMxLJjSK38dtFN2Wk7EmrZ28Rd1vxwjVtR7IUq34y3c+JQnQPpOICbDceiUw1FET7YpXXhyeerNXYJhr7IytZyFuF9REtd7Kbo8HufcXqtdioY7ctMVbCLXt4sRDby7bitWHLLsSxJ9Y5igRlNiRNqSpjEuHURmSqfaDwrwRBEARBEARBOIY8EgRBEALII0EQBEHEgjwSGjSRsMBtAhEvcRsuTIRVjgnTMeMWxJc7MYmP3egcTt3gzqNyxK/flhjodtuwE+vbdnSlNsTzDtePuck2omvUqXva6/vMi/ZoIkGkAlYR+3is80Jof53mF+IJhQTtR9znIhsgojXmFuc4vde9lL4C7qMEtqec09IGWMiNvLAndiM0pZOkiUETCQ2aSBAEQQjwy+L1OVaoJBYlCII4InBqIzLVPtBEgiAIQgB5JAiCIIhYkEdCgyYSFrjJbJsMnCY5ESWr44l0MYom0SpEUhtBP/RgGHwfreJj2D3fyZacAfZd03Zdtk5dzG6P5VTOZEp6ZdNNnez7xovjuwn/KpLyEYQXOI3kZCVxAuwnrotqgxv7I8dhJn+Kua9L+UpbZC+R5yrouiXnOO23F+OWXdvo9LtItEQ2HXFqIzLVPtBEgiAIQoBPkh1nvPWJZuYEQRBExuHURmSqfaCJBEEQhAA30iavF3ISBEEQqYlTG5Gp9oEmEhZIkuRYNpRu2HFJxotKYUyy0zDqQrqRbBdyutwPXvSTJhJEKuBU7mL32hdFcmLYluS4lLuIJJLW0pkjw7ZYyZJE14H4u9albe3w8NtLe8Q+XzpFb6KJhAZNJAiCIATQRIIgCIKIBU0kNGgiYYEkt8+svr1w+/Qg3gJbVV89bXtRsa0Fwc6fSig2FwK7RXb4lNvOoje7C+NsL0J3+SQ+k65zwJvP45Mk+ByeT6f1iSMXrwMSuL332/JU2co2CHPf6GXC/ARq7G2O8xkk2BbYxeo7EXoYLMpE9seyviD4STI8yk6DdcS7L1LJY+HURmSqfciwnw8EQRAEQRAEQbQH5JEgCIIQ4Cb8a7LD3hIEQRDtg1Mbkan2gSYSFsiyBJ8/NZw2XsR8Fsk97KS0t3JRxytz664WuUDjueAT7fK0GgRE55a5dL1wYas22xBFoot0Z9uV/The5Jkig6SqqJ4M2LRGgrCivfIMpUqAA6sF0lbjOy85jZQ2CW2LqT6i6tmRR4n6IcLtIu54Y13k9niyJGPs1//yY7To+w/XE7ShaH/j2YzIa9fNdcb6aVceZ+cY8eRPXt1zybARmWofaCJBEAQhwC9L8FNCOoIgCEKAUxuRqfaBJhIEQRACyCNBEARBxII8Eho0kbBA9skp41aWfAK5i4UL0Eq9YlcCZDfqhki+FOm6duqujueithPFoy2RO6zcyUYdgVvZVF+ycD9buLBlQX1JtRe5g50Du25ba7mWxbYUuS9ESD4Jsq/tkkSaSBCJINUiq7Ul34PVuC20FRH2INQap75j2xItmVKVkPkzRfwfiWi7JPti1hdtY2VCCZLVOC+Qt0ZuAwCfXy9ToqVKaoTNiGyPwb52Yz/uPFpdo0IZr8trU3TtOb0/khmhiyYSGjSRIAiCEOCTXEwkUniCRRAEQXiHUxuRqfYhNVYS62zcuBHnnnsuSktLIUkSXnrpJWNbMBjEjTfeiBNPPBEdO3ZEaWkpLr30Uuzbt8/URlVVFcrKypCXl4eCggLMmjULdXV17fxJCIJId1hEDievTI3KkSqQjSAIIlVwaiMSaR/cjGuPPPIIRo8ejby8PEiShOrqalfHTimPRH19PQYPHozLL78cU6dONW1raGjABx98gJtvvhmDBw/GoUOHcO211+LnP/853n//faNeWVkZ9u/fj3Xr1iEYDGLmzJmYM2cOnnnmGcf98SoqR1ui2VhHldDaFUZo4qRQaoR7mP9MCtg2e32wcmGHWsONhI+J6G2sfii6TOSuZvvyLmeR+5mVqaHYrmvHbmufL2Y9/n/2no/yZeXC9unSG7O7WiszuZh11zXbpnBTf1nkFrYRWSpeFCmnSZTEx3KbHMsbNzVFbcpMUslGSJLUJolfW6RKbq9vq2h+dqPiWdkDfpsxbgtkreExnasfslnW2qqXhUx/gfDYr7S2cMeMLW2KJ3OKhWjsF22X/dna/wI7wu/n8/v1MrN9iFWmRtgFIHyeI20GELYbIpsRKXGKhdX16vp6hPvxnl1LrqWCHngHUkna5GZca2howIQJEzBhwgQsXLjQ9bFTaiIxceJETJw4UbgtPz8f69atM5U98MADGDFiBL755hv06tUL27dvx9q1a7FlyxYMHz4cALBy5UpMmjQJS5cuRWlpacI/A0EQmQFNJFIPshEEQaQKqTKRcDuuXXfddQCAN998s03HTylpk1NqamogSRIKCgoAABUVFSgoKDBOJACMHTsWsixj06ZNSeolQRDpiE+GI7e19kp2rwkeshEEQSQK5zZC26+2ttb0am5ublM/kj2upZRHwglNTU248cYbcdFFFyEvLw8AUFlZie7du5vq+f1+FBYWorKyMmZbzc3Npi+ytrYWgO66TvYTyYj2QgLXNH9McTQj1pageVaHczGqFt5euy5sFo1D0bfxUihWxkubIuVLJte0hbta5KZWLGRPVohc1LLAhS1yTTMXdsgXXWZ2YevyJSYz413TgjKffoey8yNyV/tgzyUtiiBi1OHcvFbRqUR4es0L2hJd8/FIhtua7UOkBl7ZiFj2IZJkSJXs2ieRrJXBJEt8/+0mGIu0BybZk0VkJjb2K5zklfVDMdmFVr1ebHsgsgshka0IxbYZIvhtdmStIvmST2ADmF1gf7XPYJZCqf7wTzMWgY4/t7IgUa4hgfIjqr5xHG63eHYjFm4j/QnbcnF80fVqB7vXtBPceiR69uxpKl+0aBEWL17suh9uf/t6RVo+PwsGg7jgggugqioefvjhNre3ZMkS5OfnG6/IL5kgCIJIH7y0EWQfCILwkj179qCmpsZ4xVqfsGDBAmMtVqzXZ5991s69jybtPBLMQHz99dfYsGGD8aQJAEpKSnDw4EFT/dbWVlRVVaGkpCRmmwsXLsS8efOM/2tra4XGIhWeTvJtip7Uip6vGF4HfUYeL+5y+Glu7Hqipx38jD9yER7/5Ik9jeIXYBtPl4LRT5nYe+FTJu6pEds3sk7k+1jEW0AnZ5mfLpk9DdFPmdgTMLafBv8+Av0pk2RazKh7EXzsf24htgd5HqwWhDNE13Gin7zz17bdY7nxXFhBHon0xGsbEcs+SHL8p6JOPQ1tCczhtN1IL4Xd/EJWmPM3mI8DRHsiRF5p09hvwx7Y9V4rrUHT/1p/Bd5rQbAO3tsAWHuqAUD2Z2ntCxZbMxvh42yF4Ykwjp3LHY39TOMWYDPPDsLnzwfmudC/T4nzYBh9jVYv2AnQAcQP0hGzDYEtMhaGO/SoxepHJFZBBWL97wa3Hom8vDzTuBSL+fPn47LLLrOs07dvX9e/fb0irSYSzEB88cUXeOONN9C1a1fT9lGjRqG6uhpbt27FsGHDAAAbNmyAoigYOXJkzHYDgQACgUBC+04QRHohu5hIUPjX5JIIG0H2gSAIEU5thFP7UFRUhKKiorj13P729YqUmkjU1dVh586dxv+7d+/Gtm3bUFhYiB49euD888/HBx98gH/+858IhUKG9quwsBDZ2dkYOHAgJkyYgNmzZ2PVqlUIBoMoLy/H9OnTKRoHQRCO8EmS4wRCmZpwKFUgG0EQRKrg1EYkyj7YGdf27t2LMWPG4KmnnsKIESMAaGsrKisrjTH1f//7Hzp37oxevXqhsLDQ9vFTaiLx/vvv4yc/+YnxP3Mnz5gxA4sXL8bLL78MABgyZIhpvzfeeAOjR48GAKxevRrl5eUYM2YMZFnGtGnTsGLFCtd9sjvbbC8JhCvJh/43UuLEF/JevlCEyzueZIS5Kc1ubfPiO7su7FBLY9Q25sIWyZjMLmzzgm23McIBsbuaHctYLMdJltixfLblVNESJ+bmVTmXdPTCMuvvXPTEI3KRtWhhtSmfhQ1pk5PtsbC6rkRtxrsOfTavV7vIkgTZ4cDvtD7hjFSyEW7zDLmVg3iBKUcNG28c3i9iWauzNsQ5KSwCaAjsQaQc1lSmy5j4+laLre3aCmYPlDiLrX0R7fKSV1vtt7YItnILsC0CZzDMEmbvrqd4wTpstWGzvlsJlNV96YWEj+HURiTSPsQb14LBIHbs2IGGhgajbNWqVbj11luN/88880wAwOOPPx5XUsWTUhOJ0aNHW+r342n7Ae3Jk5vkcwRBEDw+AD6H437s1IaEF5CNIAgiVXBqIxJpH+KNa717944aHxcvXtymaFGMlJpIEARBpApunjjTGgmCIIgjA6c2IlPtA00k4uBGSmRFW9uIJ/kQyTuMMv1/XsZkRHIC7/LWywTeXuaaU/l+uFQQWUVVUkTu7aAoapMiKIvOJyGKxBGJKbKGjX7z/WEyJ/6YckT9yPdu4F28Vm5SUUQKqwhNdiMzeRmVKF4EMqd4HrWJ1kgQLkmEfMnpjxBh5BrumHa8NyJMny3UdllUVJ2Q9XhpnRdCiS6LqNcWaROrJ8oLYaons3Z9sfsjx/9sAIS/0gzJK38+HT7u9iJCmNU17PX1Gono+rWKThbZLy9+1KfKGolkQxMJgiAIAbRGgiAIgohFKq2RSCY0kSAIghAgS87XSGSo55ogCIKIwKmNyFT7QBMJBzDphN2IMlb1Ui1xlcklyNymUnRkCJFrOiyZCZcZ0qeQuY75mLETwPEJf1RBBKWwi1mOKhMRmVDIDfyxIvvD3suCRHZWn1N8XgRRlSxlTJxUKU57qYSVFMmuTMlrORMPrZEgnGD3Pku0pMkt/HEUXeoqkreKMD57nPtRipCVqKpgvOLGakmJHvsjoySxOtq2aOmRT5edhoKiSEjmNgGxHYkatwX98XFR/MJR/+To+j6LzySIABWuYx1tL6o+d505tQFMGtue45nTxIjs88VNsOsyOpkdaI2Ehge5/QiCIAiCIAiCONKgiQRBEIQApn91+koUVVVVKCsrQ15eHgoKCjBr1izU1dVZ1r/66qvRv39/5ObmolevXrjmmmtQU1OTsD4SBEEcKaSSfUgmJG2yQFVVoTvMytvrdSQaL3Daj8hEdLw7jkmWJDXazSpKduTzRc9Vw/ViJ+kRuX1DAvcwH92CRc8QR+fgs/DFOqbMvY/vUuejdfhYkjquTJS4jpX5/LLpLxA+VyapUoSL2bwtdvQJpy5Uu9HJvLymvZAvxXJXu41Iw+NzsUbCaX0nlJWVYf/+/Vi3bh2CwSBmzpyJOXPmxIwdvm/fPuzbtw9Lly7FoEGD8PXXX+PKK6/Evn378NxzzyWuo4QlRpItmz8qRFIP0f1tRxJidV+YE4ra6prxwygEga0QJBOTFXPUP0kJb/P57f0cYbVYUjiFG3NFSeqMZKHZOfr/0ZH+eJxLmwTyJSZ1zRLYBTnafkTaCrNt0T6xSKokC8qsZEl2f8iy71/hojmK2rO6lhXB7wcrnCaK82KMbytObUQi7UMyoYkEQRCEgFSK2rR9+3asXbsWW7ZswfDhwwEAK1euxKRJk7B06VKUlpZG7XPCCSfg+eefN/7v168f7rzzTlx88cVobW2F3+YPN4IgCCIaitqkQZbEAkVRxU+DLPZpVaKfyouwuzjbKXae3rYlRbzxJIR7kgS/6IxojzTY0xepVZC7wBd+MhTS2whFeBWA8FMmnzCPROyY4EobcjbIVh4JwTbRkyRjEZ7A6yAzjwTnsWH1+BwQkfVFT6Ccwn//7FCSwJPmZWAAp54MuwvjYl3LbbnGGT5ZcvzZWf3a2lpTeSAQQCAQcN2XiooKFBQUGJMIABg7dixkWcamTZtw3nnn2WqnpqYGeXl5NIlIAMJAFBbXj9UT1XjeCqvr2+6TWi8Xn4o+J/M2+EyXmtnrag7koY9x3JioZmcBAEKtuUYZsweinAvG2N8abStE/7u1EbLALvBIEV4H0WJrK1vBf/9hu8CVCbzXPr85MIfIe+0FquA3jrWnqw3Hcul1SMTCahFObUSqBdnxClojQRAEIaAtayR69uyJ/Px847VkyZI29aWyshLdu3c3lfn9fhQWFqKystJWG99//z1uv/12zJkzp019IQiCIGiNBIMeSxEEQQhoyxqJPXv2IC8vzyiP5Y1YsGAB7r77bss2t2/f7qwTAmpra3HOOedg0KBBWLx4cZvbIwiCONKhNRIaNJGwQAkpQtdaKGTTJe1UzuGB28vtgjveFcjaMCQ2nIzJWI/MyXUktqhKILth7crcHeRXdRlTK7+4TzX9VVR+W45eP9pHqqrRbVi6/W0spOORBe5hkexA5H6WLVzMkW5o/lhWLux4OSbYdyaSL4n8j4bb2eqctdN1GfP4Dt3bqqJCCbXBn64juXiCxL6LvLw800QiFvPnz8dll11mWadv374oKSnBwYMHTeWtra2oqqpCSUmJ5f6HDx/GhAkT0LlzZ7z44ovIysqK2y8iPkz6arWY1K3EQkVipBmi+1C0sNruPReWuurt87JMfUw0SWEk1dS+j9uB9S2Lm3NH2gUAUNTsmNsi2xLh9SJdKxmaVb6HeLYisp7ZFkUfO/JYdtsXYZwjzvaHIn8XAIbdsLwHEnQtOyXymvBC/urURjjNIZMu0ESCIAhCQFvWSNilqKgIRUVFceuNGjUK1dXV2Lp1K4YNGwYA2LBhAxRFwciRI2PuV1tbi/HjxyMQCODll19GTk6Oo/4RBEEQYmiNhAatkSAIghAgA5Alh68E9WXgwIGYMGECZs+ejc2bN+Pdd99FeXk5pk+fbkRs2rt3LwYMGIDNmzcD0CYR48aNQ319Pf70pz+htrYWlZWVqKysRCjkPhABQRAE4cJGJLvDCYI8EhYoiiqU0zjFdhzldrLtdl16Ipc3c83J/B0hiletmG8ZkftZ6JKOI7tysi1RWLmHRdtErs94rm5jX6tjCdpl3xnvfja+b5vx6CNpr+sS8Mbd7FU7PkmCz6Er2ml9J6xevRrl5eUYM2YMZFnGtGnTsGLFCmN7MBjEjh070NDQAAD44IMPsGnTJgDAsccea2pr9+7d6N27d8L6eiTh1TXrBrv5Hoz6NmU9Tj+TIdkEF4VJlzEhtnJUfOw4fXS7YNXLyEUinNqieJ+T0V6fV5yvJLqeKrAHTq9DhpTmv6yd2ohE2odkQhMJgiAIAamURwIACgsLYyafA4DevXubfiiOHj06JZI2EQRBZCKUR0IjzeeDBEEQBEEQBEEkA/JIWKCEVCgWEZqctOOovgeucrtyKhFWkQWMaBGwJ8MRSngMeZS9+lYLlNxui4dVAjWn26yiisSLoBVZX4Qw6gpXZpksyOLaTPZ12Ba8uG99svZyug9xZKAq9iUdXniG7EtSU0PuKUquFq6v/Y0XFU8YyY7JqCL+xirzW9QP72fvxg0JsqtFJvAEwolpRdusykSRB9m1I4qsaBVxK971YhX1KrJfbcFSYsXJpLywFU6iIrmVY/E4tRGZah9oIkEQBCFAWyDnVNqUoM4QBEEQKYVTG5Gp9oEmEgRBEAJkF4utM1UDSxAEQZhxaiMy1T7QRMIClnCIYcdlbNetbDdig1s3tZU7UZQ4TrSvKOEZw8cnpNO382XMfZytl2Vz2/wR27T3PlMZf3OyMr/AhZ0tOKbYdR3/Bha5cUXu5xY9kpfIld3CRfkKqdFlLa0hU1kr1wYrM7XB3OB6GS+RsErQZ3XdmpM7JSYilp2IIXYHVbvRR/h6nsiyUmyxNZFaqKpquh+dXnNtiUbnNLqdW+wm2BTZCiPppiDBpl9gF9j7AFeWm+2Prucz1xO1ISozbAanLxHdr6Lsw5FKSf78i8d5RfiXf9/Ml4XM9RpbWo1tzRZttPK2Qm9DNWxGtDxKnJBQlAQ2MfK4yLGcP/8ipZHTCIkQJL+LJZnyQm5Ii601MlSxRRAE0TaY/tXpiyAIgsh8Usk+VFVVoaysDHl5eSgoKMCsWbNQV1dnWf/qq69G//79kZubi169euGaa65BTU2N42OTR8ICtVWBws34nT69tbNoVrzY1kkv4xMZq1m0mE3mnuDIir6dPcnxRdfn28jONnsTAKCDXsaeKOVmh4OJ52Zp7zvnhC+/XKO+9jfHH66fpR8/h7sL/fr7HL7fep+yBJ4JOw+1+a+GeQKCgqf3TexpUCj8RTXp74Pco6sm3fvQ2BJeUcbeH27Snjg1BqO38U+jGvSyFv0DtHBtse+C94yw60t03bIy0UI+Hi+vP1GccJGHK/KpkelpU0hQJsC4bqHdu22FPBKEFcxj7dazYNerIFqAa2zz8P7l71VRQAzVyBXBeaMj7AHzQgCAXx/n/SYPg3nsZ/YBsLYLnbgyZhvY2M/248sCnK1g9iNLX1CdxdkzVmb3Bx4b8oPcoms25ovKmvUdmrjxiI35fBmzFXXMLnDjvNhWtJq28fuEvRTh+iGjWrTXIdKTAYiDgXiZK8LKBtgd+/nxPnys6LJIpQGrkwyvdSLtQ1lZGfbv349169YhGAxi5syZmDNnTsyQ4fv27cO+ffuwdOlSDBo0CF9//TWuvPJK7Nu3D88995yjY9NEgiAIQoAkaS+n+xAEQRCZj1MbkSj7sH37dqxduxZbtmzB8OHDAQArV67EpEmTsHTpUpSWlkbtc8IJJ+D55583/u/Xrx/uvPNOXHzxxWhtbYXfb396QI54giAIATIkVy+CIAgi83FrH2pra02v5ubmNvWjoqICBQUFxiQCAMaOHQtZlrFp0ybb7dTU1CAvL8/RJAIgj4QliqqGfZkcdl3NzBXYloWvXix6MhbECRbLsQXSMnccftE0ECk7iV5YzSRNvEs6v0O2VhbQyjqZtmWZtgFAB9093Ul3dXfIkqO2deBc2Nm6e5pfgG1ImvQi08I/G1Nm/qtm3yO/yI7JnIyF1dzGBt3t3MC5nxuCWoN1vFRJ3364WSuraQga25hb+3Bz+HP6Glq0Mn2bScbEXNL8gk+2EJz7MGxRNsutwC/STtRCO6tFdbYW+AtkFqb2BG7wkO62l2TJdjADK8gjQVgRKX3libz+4klfrfPKmOvw+wrlsw6vfZHcgkld+bFf9gkWW7Pj+1id8I0byI6WKnXK0cb+TvrYX6DbAiBsF/JEdoEr65Rttgcds6PtQrbALvh9zD5wdkF/azfnkJHvgSsz7AJnD1hZi8BW1LdE24o6vaxOtwuHOWlTfUu0rajW32dzEuC6Jq2M2Qr+egnp0inR741I+8Dva1fabYXo+pIE47do7DfqC+TYqsiOqIJrOeL4xr3jgfzVrUeiZ8+epvJFixZh8eLFrvtRWVmJ7t27m8r8fj8KCwtRWVlpq43vv/8et99+O+bMmeP4+DSRIAiCEKDFCHe+D0EQBJH5OLURrO6ePXuQl5dnlAcCAWH9BQsW4O6777Zsc/v27fY7EIPa2lqcc845GDRokKsJTZukTcFgEHv27MGOHTtQVVXVlqYAABs3bsS5556L0tJSSJKEl156ybRdVVXccsst6NGjB3JzczF27Fh88cUXpjpOV64TBEEQ3uO1fQDIRhAEkf7k5eWZXrEmEvPnz8f27dstX3379kVJSQkOHjxo2re1tRVVVVUoKSmx7Mvhw4cxYcIEdO7cGS+++CKysrIs64tw7JE4fPgwnn76aaxZswabN29GS0sLVFWFJEk4+uijMW7cOMyZMwcnn3yy487U19dj8ODBuPzyyzF16tSo7ffccw9WrFiBJ598En369MHNN9+M8ePH49NPP0VOTg4A5yvXrVBV1dL9zEcxUASuZivZiEgeFW43frQnrV4oqkySfVFlkTIQH+d+DoX0uN6cbIj1QxTdwGiDm4Z3MCJrhC/AglztfWEnTeLUJTe8LU+vl8+5q/N193dnFuUpK9x+rhGJI1zGonP4lLC7FyFNBiSxv60t4W3syxK5Z5m/kfOpqv5s01/tYFq/Q7JWxkfdaA5p/W40RefQjnWYkzbV6G7nmmztb0fuvB/K1j6Lr46T67DIGoI8Fa2C74dda61BPmKHuUyxiD0e2Z62zdl1Zq4XHeVLJEuykt9Fyp4A7hpVotvlt7cFkjY5J5H2AUgtG6GoKqQYksDIMVw8zkdvF0mWFIFdsCOvjSdRjJQY8nZB0scFvsyvj/P8+MG2s6GTvweZ5JW3C/m6Heiq24XCjuHxldmDPK5+Ya5uFzhbwexBjm4PcjkZLLMRWWp4zJVam7Q3wSb9s4VthqTo9ZRwfWF4IuMDav1Q5XB/VN0uICsnXKb/MAxK2rZmTjbUGNTOYxNfpp/T6kbdPjSH+1OrS5b46FRGboy66AGH5Z1oNo2h0R9JiZA0tXJyKpFdCFnIvEUIJawR0cCsbABfZiWBEtkWUx9F0aDgXqrFk+jF1kVFRSgqKopbb9SoUaiursbWrVsxbNgwAMCGDRugKApGjhwZc7/a2lqMHz8egUAAL7/8sjFGOsXRRGLZsmW488470a9fP5x77rn43e9+h9LSUuTm5qKqqgoff/wx3n77bYwbNw4jR47EypUrcdxxx9luf+LEiZg4caJwm6qqWL58OW666SZMnjwZAPDUU0+huLgYL730EqZPn+5q5TpBEIQIN4unj+TF1om2DwDZCIIgUgenNiJR9mHgwIGYMGECZs+ejVWrViEYDKK8vBzTp083xrS9e/dizJgxeOqppzBixAjU1tZi3LhxaGhowNNPP20s/Aa0CYzPF/2wMBaOJhJbtmzBxo0bcfzxxwu3jxgxApdffjlWrVqFxx9/HG+//bZjQxGL3bt3o7KyEmPHjjXK8vPzMXLkSFRUVGD69OlxV66fd955wrabm5tNq+bZySQI4gjGhUfiCJ5HJNU+AImzEWQfCIIQ4tRGJNA+rF69GuXl5RgzZgxkWca0adOwYsUKY3swGMSOHTvQ0NAAAPjggw+MiE7HHnusqa3du3ejd+/eto/taCLxl7/8xVa9QCCAK6+80knTcWErz4uLi03lxcXFxja3K9eXLFmCW2+9Napc1RMOMZgL0K6MySoBGIuUwMtG2HtTWSi6LLI+j0hywsrkLM2NHOLkOj5d2mR2UWqXhc+n91EQ8sgncmEHoiMzMUlT1w7hYxYy2RMXsaOT7p7uqP/txEXi8AW1C19uCuuYpZZ6ray53ihTWxq1v431+v9N4W1M5qQI3NZ6UiKJOy9ytubik3I7ho+Znav1J6CVZWWHt3UMdAIAhDp2MMpYJI4OnEyLRRjJadCTI8VJoMPc1CwBkSi6iEkGwaI2tXIRRHQ3OZM28VGbFP28KMGwDCzyunJ6nQGApD/NYGWmbfp7PvJXpMtblCBRFcqdoroBGd5EnqLF1s5Ipn0AEmcjYtoHXfpqT2YULrOyH1ZSQ4WTloTbsLYfxjbdjkiCp4zsfjTZBX+0XTDuOU5iGnmf+UVJSTlJDovSxCRNIrvQjbMLHY1ofnwUP13aBG1ck5qrjW1yXb1eFrYLzFYo9Ye1PnN2QdHfq9z4B8H5AxvHdBsqZYclIMxWyB07G2WqbhuYrcgOhG1Fp4BWr4n7+cUi/LGkq50D4XP2vX5O/QI7zNsKJntl551Pateiz4NF11VIEOnPylaIfp8wrK4v/r3xm8QUFSw6UphIjh0pVeJtgCF55X/d658zUk7lhfzV7WLrRFBYWGgpz+zdu7fpM48ePdqTcwBQHgkAwMKFC1FTU2O89uzZk+wuEQSRZCSXLyKzIPtAEIQIsg8arsO/zps3T1guSRJycnJw7LHHYvLkySgsLHTdOR628vzAgQPo0aOHUX7gwAEMGTLEqONm5XogEIi5ap4giCMTWZKEMdDj7UO0v30AEmcjyD4QBCHCqY3IVPvgeiLx4Ycf4oMPPkAoFEL//v0BAJ9//jl8Ph8GDBiAhx56CPPnz8c777yDQYMGtbmjffr0QUlJCdavX28YhdraWmzatAm//vWvAbhfuR4LRQEkQZKWSDe0qYxP9qVGl0W6B0WSEt51aEhP2iBt8ukua6lFl5ToEh0AULKYaznsqjXciX7tr1/ggjdLm/QEQZwciUXnYBE4CrmoTd10d3Z+IOwQY67cHEXzwcq1YWMvN9Zob+p+MMpCNdr71ppwGXNdt+qhHENN4XMbCmqRLxQugpLRvh4pyseFPfPlaH30d+oUrqe7ruX8rlod/S8AyJ2093JuvlGW36ELACCQG/4RkiVr35lo0RVLYhTkzjdLUsfOMX/eRRFe2DXJR21i74NNmhufv+ZCTA7GXUshPtoV7F9nMlcms2tOIG1iEjulNbo+k1TwMhFWxicb8unO1FgphUQKNqdIcBG1qe2HzQja2z4A7W8jQq0q4Ise74HoJHKie9SutCnU2qqXcXYhKJCZRNgP0X3LEyUz4aRNhl3gorhI+jjCSxIjI9+I7EJnQTJSFqGJtwvddbkTL2PqzJLacfJQufGQ/rfG9BcAFJFdqKvW/tZra1uChxuMba1Nmr3h7UIoGG0jfFlaf5mt8OeEx3R/R+0c+ToXhPvYSXvPbISfsxWKbiNyOVsRyNVsBUuwGi+Baqt+nbRwv0EaI5La+QSRjniMBKUCmyGyFUJpk8U1ZiVrjZRb82U+LquyIUMSSOxEsieR3IlFdzJsgvFbzYOoTXAYtanNR0xNXEubJk+ejLFjx2Lfvn3YunUrtm7dim+//RY//elPcdFFF2Hv3r0488wzMXfuXNtt1tXVYdu2bdi2bRsAbcHHtm3b8M0330CSJFx33XW444478PLLL+N///sfLr30UpSWlmLKlCkAzCvXN2/ejHfffTdq5TpBEIQdZJcvIjH2ASAbQRBE6kD2QcO1R+Lee+/FunXrTNn58vPzsXjxYowbNw7XXnstbrnlFowbN852m++//z5+8pOfGP8z9/iMGTPwxBNP4Le//S3q6+sxZ84cVFdX4/TTT8fatWtNsW/jrVwnCIKwgyRJ5kV7NvchEmMfALIRBEGkDk5tRKbaB9cTiZqaGhw8eDDKLf3dd98Z4fEKCgrQ0tIi2l1IvFXkkiThtttuw2233RazTryV606ITEhn7X5myV24ZF+6S1rhpCIsyoEhWeK2hQSuw0gXdjx3NYN3J4Yi3Ih8Gz4lN6o+cxUy158ocYsoalMuJ23qoEfbYC5sPiFd50B0ZIrcVj0KU73mkpbrvje2tX63V+vPD+GoKsEftO2N3x0yypoPaZKmlsNaW8H6cHSOVl0ipISiPwuLQuLnXPBZurs6u3M42kagiyZzyi3S3NBZXbsZ23xdNX21v+goo4wlxsvtGHZrQ4/ewa6SkBo+LyzBXSPnYmbn1EhAJHJRq/x1qH9nfOK6Fk3WFWrWZExMzqRt097Hk9hZYSVfCrurwy5s1q4sKFMVJnGKHpp4SUVIP4M+7hkP+8SSnJyIHGwfIjH2AUgtG6Gqqm4jtP8Vga2wksGaIwKyaGvxbQb/XiRJtBu1KfK+5e9RkV1gP4JE0alkQ5JjbReMKEy6XeCTkrJoTJ25+p39upSWswdyvZYlXa3R5K9Bzi4wG9FyqNooa/xBkz41V2v2IVgbjugUrNekTcGmsJxJFSRek3Sb6NP7mNUxLG3KztPG9EBBWAab21WTLQW6aWuAmH3g3/vywyGFpZB2/M6GrQifA3a6g5ztatBtREMbbIURDUy3FcxOAGJbIbq+jHHbRlQwgJNZs98krVykRH9syavK2QNRdCdjm40If0zqlGlRm5JJm6RNl19+OV588UV8++23+Pbbb/Hiiy9i1qxZhht58+bN+NGPfuRVXwmCINoNlrXU6Ysg+0AQROZD9kHDtUfi//7v/zB37lxMnz4drfpTFL/fjxkzZmDZsmUAgAEDBuD//b//501Pk4CqAJKP/z/iKZNwYXX4yYYoRn+kJ4Jf2CpaQBd+8hQ774QI0QIn2eKJFV+/VZ/9+/WnR/Fi8mf7op88BfSnIswzkcs9TWa5InLU8GeXGzTPgqQvsg5WfmNsCx3Q3tfvCy/Arq/Unko1Hgx7JOoPaE+ammtb9L/hJz7siZMq8EhIukcii/NIBPIC+t/wE5OOxdqTp9wftCeqHUsOh7ex3BXB8FMdf4n2nclS+LPndNY8EK36wu5mbsEXO1cB7lwZT5ksVt+J8kjwC+ciny4FuXwcbJvSGu63HY+EeAEdF+tb35dtM3vBotvnvRPRx9LOFX+/GXHupehFeKpijttPtD9Hin1QFXsLqkXbrPK5mDwSSrRHImSR/8XpYmvjqa+gPr8YVs3O0vsR7V1hmDwS+piVzY1nAT/LC6EH6OByTDAbwewDAMiN2jjP7AMAqIc0r0OrbheCB/cZ2xoqNY92/f7wYuumH7RxuuF7bZF146GwpzpYr417vEdCaRGcB72/zEZkdQx7knO7aN7rnC5h+VyH7ppHoqPuHe/QGF7gnaXnrvBzESFYNB/Vp7XfMTcczaxFt1nN3LkK24pwGTvP7LzHyzkU6S0TebxaOY+E1bVphWkRv96G4bHm2mLeCpOnOmT2VPPbeQ+1UZ8txLYIzMECnZCN8A7XE4lOnTrh0Ucfxf33348vv/wSANC3b1904qLcsMgZBEEQ6YabxXGZupjOKWQfCILIdJzaiEy1D236XG+//TauvPJKXHnllejatSs6deqEP//5z3jnnXe86h9BEERSYAvpnL4IDbIPBEFkMmQfNFx7JJ5//nlccsklKCsrwwcffIDmZk1GUlNTgz/84Q949dVXPetkMjHJRiwW5zA3tSh9vEiqJHJNh2VPweiyiEVNke1GYpKe6Aug/IJtrbLmujS5H9kiLDXaLc/g3absvcmF7TNLm7J9ErdNdz82hKVBLBZ46yFNvhT6Yb+xjUmaDn9zwCg7vFdzddftC8t06g5qbuQGXdJUE+RibOvu4RbBZ8nW+5/L9TFfb6tDXnhRHZNMdapnOSnC3xOjoz/s8pYCmqvbb8rbob0PdNAW1fHnxXBXczKmyIVz8dzV7DszLeSMcFObr7mgaRsgvm4jEV1ffB4JJsWTufNhhSGBYseW+UWk+vXLufaN/nP3pMQ+s0cr2mixtXuOBPugKCokRY2SiADWi62NwBwCWatVEA6r+tqxotu1QiQ7NI7JFmDzOWdatbHLyg7yCO2C/j7HkOGEb5gcPW+RrzUsPZKbdBtRH5Y2hXQb0aovrGZyJiBsI+r2h3NL1B/QZEWR9gEI24hGTvJqx0bkc/KrDj9oNqJD1/A4bwT3EOSk6KiP71J2WArlz9Vks3KWnpMiq4OxLUe3zWZbobXBy2Dt2AqeSIk2bxdEtoJJY0UyWPb7hLcBDL4+swdGwI2s2JLW+ETv6xM8G+flr0BY4iQKGuAUWmyt4dojcccdd2DVqlV49NFHkcUl8jrttNPwwQcfeNI5giCIZCI5fBEaZB8IgjgSIPvQBo/Ejh07cOaZZ0aV5+fno7q6ui19IgiCSDrkkXAP2QeCIDId8khouJ5IlJSUYOfOnejdu7ep/J133kHfvn3b2q+UxnBbC1y8whjLvLQposwcKSEYVRayyCNhW3qiaO8VQXQd5loUxyi3J0vxM1cqp//L0t23WSxHA3cH+XXnotQadjGreiQh5XA1ACDI/dho0qMkNRzk3dWam5q5qwHgBz0aR5UedYOXNtWzSCminBh6vztykqK6Vu19oUWUJx/n3s7qqLm1WUxxAJA7a59BzQ/nkZA6aJ+ZnQP+vLBzlcX1g/XNb3MEMmLUW8ScF21zmkdCdH2pAre2cF9dCqXwUZtsRJzh7zf2OaUEjsyUkM49R4J9UHVZk0j6GZkrwhwtJ/ZYzv6G4tyjIhmsEec/JLh3IqKoAdEx/0V5YOJF6LGK2iSS2DB1TpZug/jAO2yMk1rC0iYpqL1X6muNMqWuGgDQfEiTPTX+EN7W+INmR5icCQAO79fKqnRJUxUXlYnZiHpeesYiMHIfjUmbmI2oCYY7XqRX5CMCslwHPj3ak79jWPbk76DLl3T7AACq/vmkXC2BI8tBBAD+LE06xZ8rdv44tZNtSRMjLF2OfT2Kfp/w12akDJYPhGRE8xPklnCKZJLNRtqK8OdVdBkTL7VRZL0sIkpTvGiUtvpFCekAtEHaNHv2bFx77bXYtGkTJEnCvn37sHr1alx//fX49a9/7WUfCYIg2h32tMnpiyD7QBBE5kP2QcO1R2LBggVQFAVjxoxBQ0MDzjzzTAQCAVx//fW4+uqrvewjQRBEu+NG15qhdsIxZB8Igsh0nNqITLUPricSkiTh97//PW644Qbs3LkTdXV1GDRokClO+JGE2O1rIdOwcD8rFi5vu9ImEUwmJUr4YherSAcy57ZjLlcmzeHzqUmKFsmCd9+qTMKlu7VbG7lkcvV6IrX6sBu/RX/ffDjcRp0efYK5q2tbQ1HbBEolo68i2VM29wihk36sQF4wqj+sj3y/s/XPonKSBPaZ2TnwyeFb0DhX3GgjW7hCnUadCLuhOTe+IAmi3YRWVrBrWDLaCMvkjGuOG30s7xWjrH2jcMuSZHn+Y+1DHFn2wSq6nSqIomZc64IIfMJxXhBFTZigNBS7DStYhDS7tsWpJISX2rD7QzbsQrTNQCgc6UgKaWOsykcKatbG1VCTHo2uPhxxrqVOq9dSHx5zWxq0skj7AIRtRF0rL20SfAYbNiKXO2ZAf8/6w/eR9Zt9DgBQdFvBknVCCZ8Ddmx+bIk8j4A9SZPVdxfPBti5buMe37jWoiOGiSL2CfsWUU9R+OSo7PNJ3L56mc/7sdmpjchU++B6IsHIzs7GoEGDvOgLQRBEyiBJ2svpPkQYsg8EQWQqTm1EptoHRxOJefPm2a67bNkyx50hCIIg0hOyDwRBEEcejiYSH374oen/Dz74AK2trejfvz8A4PPPP4fP58OwYcO86yFBEEQSkFQVks3kW/w+RypkH4gjGZ+Xj5sVJX4dIuk4tRGZah8cTSTeeOMN4/2yZcvQuXNnPPnkk+jSpQsA4NChQ5g5cybOOOMMb3tJEATR3qiK9nK6zxEK2QeCII4onNqIDLUPrtdI3HfffXj99dcNIwEAXbp0wR133IFx48Zh/vz5nnQwXZAEMfSNOMqibSy2cmt0fT7NvN3Y/Fb9Ye99emxwPo+E0xjPssWCLoWbbbMFa0ZMbu7+UbO0y071hRd9s7jlUrYWY9ufGzC2sRwNWR3DC3az9feBzuE2OukL5loEC8rY0yK7eSTy9RwRnbjg3exY7Nh8f1gf+X6zzyJlhfuo6J9Z1RdZh8JrCIXxyxWLJxhW34UI9l3z3z+7JpwurBZdX6Y49HaufUF7VvdReyOpCiSHA7/T+pnKkWQf2AJKhYsFYOQ5YYtiuXtVFcTXZ7lYRPeBcd+aFpVG54Vg9zILoCCKvS9sV3RMi3vOae6WkGA8Vgy7EG0z4Av/LFF92hgr+cNjrRTQ8zDkaJ+Xz9GQ3UnLGZHdMTzmZnfQzoeVfeCDaljZD2Yj8rOibUV2B94+6baiU1ZUH1m/2ecwfT523rlzwM4LbwvYe5PNbWNehHhjutO8EKL64Xbl6PZ9Fse0qMffW6I8DQnNNeTQRmSqfXAdBqW2thbfffddVPl3332Hw4cPt6lTBEEQSYc9bXL6ShBVVVUoKytDXl4eCgoKMGvWLNTV1dn7KKqKiRMnQpIkvPTSSwnrI4PsA0EQGU+a24crrrgC/fr1Q25uLoqKijB58mR89tlnjo/teiJx3nnnYebMmXjhhRfw7bff4ttvv8Xzzz+PWbNmYerUqW6bJQiCSA1U1d0rQZSVleGTTz7BunXr8M9//hMbN27EnDlzbO27fPnyds2qSvaBIIiMJ83tw7Bhw/D4449j+/bt+Ne//gVVVTFu3DiEHKYFcC1tWrVqFa6//nr88pe/RDCo6TP8fj9mzZqFe++9122zaQFzlUmKyI1mT/LB3Nt8TgcrFIsYzuI+RrsC2bH4Y0qCfrD3dl2CrQqT5IRvkqCuZQrqftlWzu3aCnZMTgaUo8WXlzsXAACyCgqMbTld67W2+FjceixwVRD0O7dWy+XQyR+e/Tfq9azc2rlcnGnmru6QF+5jp+4dAQAdi7W/Hbrnc33Mi+o3+yzsswGAqn/mVn0O38p9h+xcBTkdGDunrTbd1uw7E3+f0d81i0cvx4lbH30cwfXFX+fGtZYVdUyRhC/yXhFKnLgfwol0Vxuk0BqJ7du3Y+3atdiyZQuGDx8OAFi5ciUmTZqEpUuXorS0NOa+27Ztw3333Yf3338fPXr0SEj/IjkS7IMkS+brkBuLjPtQ/19V+Ws3voTDZ9Mu8KgR8qh4csXweGBxjwrKzG2Y70OTVInZBa4sqL8P6uMOl77BGONUf1jyo2Zp7+WOeUaZ3KkAABDoUq3t1xDOx8DyNYRaoj+7pI/vzD4AQH6W1oG6Vl5iFVvaxGwEL21iNqJD17B8qWNxB61+107633D/A106mz4H//nY5+XPATsv/Lli5483f6LzHYkkyOlhdT2abYUgv4ORy0H7KwuuEfM1JJvK5KxoO+UTXHNW94rpM7HfZsLPKf7bJlJkjYRb+8BPNHr37o077rgDgwcPxldffYV+/frZPr7riUSHDh3w0EMP4d5778WuXbsAAP369UPHjh3dNkkQBJEyaBE5nK6R0Ix4bW2tqTwQCCAQCIh2sUVFRQUKCgoMIwEAY8eOhSzL2LRpE8477zzhfg0NDfjlL3+JBx98ECUlJa6P7xSyDwRBZDpObUSq2Qee+vp6PP744+jTpw969uzp6PhtThXbsWNH/PjHP8aPf/xjMhIEQWQObVgj0bNnT+Tn5xuvJUuWtKkrlZWV6N69u6nM7/ejsLAQlZWVMfebO3cuTj31VEyePLlNx3cL2QeCIDKWNLcPAPDQQw+hU6dO6NSpE1577TWsW7cO2dnOPKKOPBLffPMNevXqZbv+3r17cdRRRznqUKphcpHpUqYQBK5PPbqPqkRLPvhoG3akTGY3nu4K1F2ZopT18duIcGFz7kR/dm5Uv5h7MNIlyCNyYbdwvtdmXZ7TENT62BLycdu0+lk5nY0yJai5pH1dtJtBbQ67qzu2cqGNWB+ztc+SzUVOCuRpn6FTrRalI59zYQebtPBYIikUc3ln5YRvh4DurmZtAmFJU253LRJNx5LC8LZSrd++rmHpCPssSm5YAqXqn5mdgxauP+xcNXPSJnZOrdzWIjcuH8mCfbfsuxZdQ/xAwMqcXl98NKgoORV3zfksJHaiyB0+f+znHXIi5U5tkDbt2bMHeXmcnCHG06YFCxbg7rvvtmxy+/btzvqg8/LLL2PDhg1R+R0SxZFmH2RZgixLYFeIj3suF4L5uvEJn9lF2wKryDUKVxYSSD4i71v70qZomYlPWKbbIptrbYR2QX/fxCIoceNfky4vys3hohnp46WvY9ge+Lpo79UW7W+HUPQ9KmeFRzQWQYmN5R0OhdvKr9dsC7MPgD0bwUfsy+2i9TenS7jfTPbasUdX7f+SrsY2f9cS/XNwP/w6ajZF0T9viJM2NTUxG8qfK+0zN7c6sxWmz6SPl+x7DQm+f9E1JLrmrOI4CSVzWdEyJkvptVACpfXbx0VbND6ToMyQG+p/1SRKm1LBPjDKysrw05/+FPv378fSpUtxwQUX4N1330UOdx/Gw5FH4uSTT8YVV1yBLVu2xKxTU1ODRx99FCeccAKef/55J80TBEGkDm3wSOTl5ZlesQzF/PnzsX37dstX3759UVJSgoMHD5r2bW1tRVVVVUzJ0oYNG7Br1y4UFBTA7/fD79d+BE2bNg2jR4/27jzpkH0gCOKIIo3tAyM/Px/HHXcczjzzTDz33HP47LPP8OKLLzo6DY48Ep9++inuvPNO/PSnP0VOTg6GDRuG0tJS5OTk4NChQ/j000/xySef4KSTTsI999yDSZMmOeoMQRBEyqAqzjPMOvRgFBUVoaioKG69UaNGobq6Glu3bjUyQ2/YsAGKomDkyJHCfRYsWIBf/epXprITTzwR999/P84991xH/bQD2QeCII4onNqIFLIPwu6pKlRVRXNzc/zKHI4mEl27dsWyZctw55134pVXXsE777yDr7/+Go2NjejWrRvKysowfvx4nHDCCY46kapIcuT/uotMNbsEASCkuxV9futTahWdJiSIthEZgcNu4jChtCnLLHEBAJ/+3hcIl/mzmMubJY2xdgG26K7lRi5SBnO5MrlOI+eCrQ9q7fkDYXdlbgfNtSvrN1oWnzQvS3Mjd8oNa6wDBZoLuJGLhtGxRIuZ3HKYRXnionnormtF4LaWdbe1n5M2ZXXU3HrZnbljdtEjcBRpfc3q2s3Y5tPd1f6isFRD6aRtVzqEk3I1Sdpnrm+JPi+GtIkrY+e0ReC+Z5ikTfp3xr5DAAgFoiVN4X112YSexIqv5/RaM0UnyzJLm+K6sCMii/H3EYvWxN9vVpE3JDn63k13Bg4ciAkTJmD27NlYtWoVgsEgysvLMX36dCMix969ezFmzBg89dRTGDFiBEpKSoRPo3r16oU+ffp43scj0T5IMiBDT0jHbWNSJlXSE4fJArkMJxFSZO2JZKi1NbqeReQalbuHQq3aPSyMrqNHYhMnB4u+R30CyauRXE9wHxp94OQ0bMwyS5u0ftTp41rn7HBfA36trexguM3OOZpESAqFz4usL1j1s6Rm2WEJhi9Xi5bE7AMANP5QAwDoUK3Zh2BtvbEtWK/9YDJLm6LHWkmXyjBpky+HSz6Xp9mIHM4W5ejHD3TT5K/MPvDvpfywtInZCEX/vPVBzgZE2FIgfP7Y+QTC55md93gy2EgZkCz4/nlCApmRGhFN0irZKBC+xiyjRXJtiOyBzPorR1+PIjl2pKSJ2YZMshFu7MOXX36Jv/71rxg3bhyKiorw7bff4q677kJubq7jhzyuojbl5ubi/PPPx/nnn+9md4IgiJQn1TJbr169GuXl5RgzZgxkWca0adOwYsUKY3swGMSOHTvQ0NCQsD7YgewDQRBHAqmU2dqpfcjJycHbb7+N5cuX49ChQyguLsaZZ56J9957L2rhdjxch38lCILIaFIojwQAFBYW4plnnom5vXfv3lDjJDyKt50gCIKwSYrkkQCc24fS0lK8+uqrnhw7rSYSoVAIixcvxtNPP43KykqUlpbisssuw0033WS4XVVVxaJFi/Doo4+iuroap512Gh5++GEcd9xxjo8nSeaEQ5HROfjIHKLIMpKsuT9DnGtP0d3PougcsiBSguLX6isid3WciArhvkXITDi3ZVjuFHbVMlehz2+O3sRjcmG3RkubmBu2pllzGedw54cl9zGdsYDuHu6sXZKqj3ezatt8+eHIF76uPwAAsot/MMqU+sMAgFY9LXyoKSzXCelJsZSWaOmAnK27q7PC58CXo5+XTuFkcnJHPZGQ3g++P+ikvQ9xEZqYu7pJDi+kOtwc0v9q5+xQYzgiFTtXvAvbkDa1xnZX89+P8Z1x55t9t6qife9CiQQnMWASCYbd60yUkM6O7Imvz+4jyfSZoiV2zB0vTEYkSd5kcXaTiZR+qCeV9rQR7DqT9MuYl0qoeoQ/Rb9fJZHMhCuLTKSlclIOJnfiJSVMisjfmz6XUZuEMhOBXTCiNgnkhIogUpDILtTrY1udPtbVcBLMgBEVim9Z2965U1gnrvr8eh+1cTWLS1bHxmRfTdguBEqqtT7Wa7H7g4fDHrvWJk3axNuFUFBgI/TxxrALOeEx3a/LYH16AlIgnGyO9UfmbAWL4meyFbmarTgc1M7f4ZZoGROzD0D4/NW3wVZESoP471pkK2SBdM5OZD+rZHL8NR2W2HGyVhtRmETbZJO0Sf8bYROSYiMy1D6klUrs7rvvxsMPP4wHHngA27dvx91334177rkHK1euNOrcc889WLFiBVatWoVNmzahY8eOGD9+PJqamixaJgiCiKANUZuI5EA2giCIdoPsA4A080i89957mDx5Ms455xwAmqvmL3/5CzZv3gxAe9K0fPly3HTTTUYCpqeeegrFxcV46aWXMH36dEfHk+Vw/GgeUdxwtqjO5MHQnwzwM19Vjw/NFmeLUtCbZvyh2E+X7D4pjpz9mxZVCRbnsveip77svfnJk9aPBu4pSo3+pD1Lr58leoqF8BOQoN5eR7awOo/Lx6A/uZE7hvM2yF20BUT+5vDCObVFy0WR3Viv/x/+YaCyp+yiCAts0R6/sFBfwCdxC7wl3ZOj6N4TJTu8TQlonotQVgejjD1JquefJOmL6KoatPNTxXkkapu09zVcWYPxlEn7y5930YJj9p3x36dq7KNfe4Inj/xia1/EdeX0OgOiPW6ip1KmxdMR+S+cLqADwovmZVmC6sEjkrZktiaSQ3vaCJ9fgs8vG/cXP7REeimYh0Ir070O3L3M3ou2safhCrcIWBF4r608EXYWw4rsAv+01wjCwdnESG+1yC4c5hYy5+rjXjYbp3zRN6qihu0C+8itSrheh4D29D4noHmI+Tw9ckftyb+/a9guSC3ae+axzmoKb4Oeo0jlxj+InrKzcYw9QfdzHvycjvqxwwu8Vd02qLqtaA2EbYWq97uJ+/nVoHuo61q0v7yn4XuBrWDeiZqGcBk7zyJboYi8Ez7zE301i782om2FIvJIhMznKt5i6yiPhGn8jvZ4OckLoZXpfwXehkivH0Jt90i4zWydaTgyt4cPH8b8+fMxcOBAFBUV4dhjj8WkSZNw55134rPPPktUHw1OPfVUrF+/Hp9//jkA4KOPPsI777yDiRMnAgB2796NyspKjB071tgnPz8fI0eOREVFRcL7RxBEBkEeCUck2z4AZCMIgmhHyD4AcOiRuPTSS7F161bMnj0bxcXFaGxsxI033ogvv/wSt9xyC372s5/h4YcfNsJNec2CBQtQW1uLAQMGwOfzIRQK4c4770RZWRkAGKnAi4uLTfsVFxdbpglvbm42xc2tra1NQO8JgkgrUmyxdaqTbPsAJMZGkH0gCEJICi22TiaOJhKvv/463nnnHQwdOtQou+mmm/Dqq6/C5/PhzjvvxMknn4x33nknIXHK//a3v2H16tV45plncPzxx2Pbtm247rrrUFpaihkzZrhud8mSJbj11lujyiVZEi4sE7mrRYvqmNtXUaNd2MxVpyicBEWvpwrckCLXpP1FsLEXJ4nyDkQu2BXF6hctqqvjJDyBBt01LtiXyZiauPji+Xp87s76wuc6Lo52rl9b2BbgUrbndNLCk/mUsGsXIe29FNIXtHOLhg33o8i1yNyg3GpJQzrALfqGjy2ez4rqf7Oen6KxPtyfRmPhXPi81OjuZ+aaZnImILzwmndXs3NqtYBOlEfCZ4qF7jfV8/nC20J6fTU7vHgw8lpzep2J+iYJFvkJpUo2ZUwiFzbfbrzcJ7agiYQjkm0fgMTYiJj2QQ/GYVzjAqkSWI4JiZcksjoC+yGQNimGXeCktIacKtp+RPdBTOQ9IpKP8GWixdaRbbTyeXF0WWa2Pzz+ZVvYhVZ9zDLZhYA2dhXkhn+q5Aa1NnL1/uRkFRjbAjl6jh81fEypVZ8EBjWpqxQKj6/MVpjuW9E9HJF8gLcLim4XFF6mnKXJYIOS1u9mLn9Roy5jauJyY7BcEdWNZvsAcJJXrqyqXut3dQNvb8wSY/67CH+M6PGSfa+i64X//kOCgDJW15gwx0+EhNXKBvBlwqAaFjZA1I/I/niz2JomEoBDaVNxcXHMGOXHHHMMHnnkEfz617/Gtdde60nnIrnhhhuwYMECTJ8+HSeeeCIuueQSzJ07F0uWLAEAI/nSgQMHTPsdOHDAMk34woULUVNTY7z27NmTkP4TBJE+sBjhTl9HKsm2D0BibATZB4IgRJB90HA0kSgvL8fll1+Ojz76KGadiy++GBs2bGhzx0Q0NDRAls1d9vl8UPRVbn369EFJSQnWr19vbK+trcWmTZswatSomO0GAgHk5eWZXgRBHOEoirvXEUqy7QOQGBtB9oEgCCFkHwA4lDbNmzcP+/btw0knnYSf/vSnmDJlChRFMbmI1qxZg27dunneUQA499xzceedd6JXr144/vjj8eGHH2LZsmW4/PLLAWiuquuuuw533HEHjjvuOPTp0wc333wzSktLMWXKFMfHi8wj4YtwO/PuahYBQTXJmLS/itDlHf2/IpDdWLunsyy2hbGSjRjuap+gLMINyfeHl9gwV6pPDrtZ2bli9YSxxFvCl9+hJs1F30mXNnXI4qJ06LKrDpz8Klvvr5/rW5as5yKQ9DwFfv67Q1x4NRD7HjkvOILNWlmrormVWzh3Ncv9wOeAaAiySBytUfUOC6Ju1Omyp8N8lCfdrc3OcUhwLZkiX+jfGS9VkyTFVC/ESZv87FoWyO/C2LvOeCLdyCJ3tah+pNsasBmBI6ItT9zWhCOSbR+A9rURsiSZoxZxY6gim+8hoeyJUwcyGxGWt0YfT2RHhDJYh5FhRHmCZIGMyYiKJpS4RPex0YZdaOHkN40dtHGGz6FQm62dpENNYVvRKdtsDzpmR9uFbJNd0CSxfl1ulBXg7AJTtfLyGMHQwT6WYRe4U8ykuq1cYbBR/3y69Ja3FfUt0baCRfhjUlbTOdBtQB0X/YpJmuoEtoKdU/P1Ev2ZjO9Yr+fnzqOsy+gU7vthNsWL68tKsmSup/+1kC+J5FHxjg8AKtkIz3Ac/nXp0qX4xS9+gaVLl2L+/PlobGzE4MGD0a1bN9TU1KCpqQlPPPFEAroKrFy5EjfffDN+85vf4ODBgygtLcUVV1yBW265xajz29/+FvX19ZgzZw6qq6tx+umnY+3atcjh9PUEQRBxoYR0jkmmfQDIRhAE0Y5QQjoALvNIjBw5Es8++yxaWlrwwQcf4PPPP0dtbS26deuGs88+G927d/e6nwCAzp07Y/ny5Vi+fHnMOpIk4bbbbsNtt92WkD4QBHGEQIutXZEs+wCQjSAIoh2hxdYA2piQLjs7G6eccgpOOeUUr/qTUsiSZIpawFx6hgyDqytyMduJvhQZaUPbz01vYyNFeKJFbkJRAjAjapPABRjiXJ4teht84qFISRMv12Fu2c45XCQO3a3K/ub4w27WLN3/nMMnR9Lf5wj6zZLf+WRrd3Uk/FfD+h8USM9YVJFWTgvVpL8Pci7sJj0xEC/rMs6Hfq4ag9HbGnkplJGQTo/aJIrEwX+fAtkBu16Zm5qXsSX6+ou89gBrqVJ4v9ju8FjwLmwv3NZuFsdl6mI6N2S6fZD8MmQuIR2PDxHRl/jEpvrQxktE2G1iZUeEkfs8vH9FckJRhCYrmSKfNK+1VdtWJ7ALLGkaP/5Z2YVOXBmzDWzsz+VknKwswNkKZj+y9LUzWdx3wcrsSF+1/mt/g5zWPdIuAGE70CyIRMU+M1/GbAU7V7zNENmKSMkrvw+L1qSEBLaCt4mKOWqTzMnxDKkdJw/24royymzYAL6/TiRLsepHblMEttIpTm1EptqHtMpsTRAE0W6QR4IgCIKIBXkkANBEgiAIQoyquphIZKYGliAIgojAqY3IUPtAEwkLmOva+N8qgpLuXTW5pqNzdhnYjXwQL6lQLKxce04j6PCEEydxCekEEYWYFCeclIiTJent8mXZurualfm4PrIyPkKTT9CGTyBpitxmhSjZG18WGWmE39YqiEISUqPLmEuflbUKzpmpDRYlSy/jpQwiqYPxnQmuWybTixcpjOH22gPiy5AAa9e007Yi63nhtoYaAgTJ+OLuQxwRyCxhKZNKxEkWGbVNdH/ZtCPOI/y5wySFEUT9M47Nohm18qW6XTDJnbT3jYZdCEd0YmN5gLt3c/UofiZb4TPXM9uR2GWGzfBFy2F5fIKvLBRxavnzLx7nFeFf/n0zXxYynxdmJ/h6ojb4pHPsPBuRFVu5qE2C68VIOqgL6/hIY5a/ddqA3d8lduo7TToa+XtG9PvGMU5tRIbaB5pIEARBCFAVBarDuN9O6xMEQRDpiVMbkan2gSYSFhhPnIyC9ok7LHqy5ZS2zLbtxOAXLfrlF3ex50zNIo+HYCGfsc2hN8HttniIvBNut1ktuhcvloy/SD8W7Nz6+AXVsrvrKdnXYdKPq7jwSDitT6QtkmTOV+ITPcoWYNzzDq9R/n608rclwjMR71jhkZ9/Cq57MLhz1KrXbNE/QJNgMbcoGIgon5PIAy0q81vUD+9nz4MZEvwQNLzGAg+1aJtVmWhhfTi3iGAxtOB3Katv22YYnonogABeYNdz4HbMdpszyJNcQ05tRIbaB5pIEARBiKCJBEEQBBELmkgAoIkEQRCEEDUUghpyNvA7rU8QBEGkJ05tRKbaB5pIWCD7JFPMfdftJEneEQu7Lk+h21QvE0lylFC06zW8n00Jj8NFhO3pxmc4XQBmdxGZcF+rY1nG0ebeI3a9dL024+HFfQtF0V5O9yGOCCRZHCM/7n4W96MVomtaGDDGQpYiGrcZ9u2CvTG6VSB/dYsp54YXkhQdpwt2Rbi1QVaBLrz4jG6CVET1w24bDvvr5r7xGk/64NRGZKh9SIGvkyAIgiAIgiCIdIMmEgRBECIUJayBtf3KzCdOBEEQRASObUTi7ENVVRXKysqQl5eHgoICzJo1C3V1dbb2VVUVEydOhCRJeOmllxwfm6RNFsiyZKSPt0tbIgF4ITOx456WBFF8RBEhmOuPd5+LIkKoSnRUiciY1qIoFKY415FRK9TobaJIUaqgntU5UAWLnSQ5thZAjhNVhMGuk3hx140IGX6bEUp85nZN7evfj2TKCxL7MwjlVDau1/a6LgFA9FVYyTFEqIrqSZ9VJSS8XuLtQxxZJEIeGE+WYoy1Dh8Fin7HsPHdFOlNJF21ITEVjdvCaENCCWv0cYRtREQxshvlzuk44hTRWGoVmdDKVpjHeVEb0ceMHOcl1V4OEMvjCGW59vZ1CutbouXKXslnAec2IpH2oaysDPv378e6desQDAYxc+ZMzJkzB88880zcfZcvX96m3640kSAIghChulgj4TQTNkEQBJGeOLURCbIP27dvx9q1a7FlyxYMHz4cALBy5UpMmjQJS5cuRWlpacx9t23bhvvuuw/vv/8+evTo4er4JG0iCIIQwJ42OX0RBEEQmU+q2IeKigoUFBQYkwgAGDt2LGRZxqZNm2Lu19DQgF/+8pd48MEHUVJS4vr45JGwQPbJtt2VIpxGhGhLAjWGVbK0sPRHsFGOfsukR7xLmLkFFU5mxFzNfFlY2sTait4mqs/q8Tec0tqi/Q22cJ8lFFUvskxpw00r6xobXvYkRZTx2+SsbO2vPzuqPi+PY1IlWS9j//P1eNcx+85YfVnhrhFWxj8OUMzSKa292JIsK9mT0a8EX5cizO7t2McXuaklnwTZ58EzEsojQVgQlbCUw200ILvyAskiKpmVhIe/l8PJ5AT19XEknhwoUtJkkreysdwkdzJvC3FJTEUS1rAMlq+nj++6XeBDahplFnbB9DFd3q+yQINpZStMdsEnKIuwFaZEhwLZbKTkVaunj+WGDQiPgYr+VuZsv2X0QUMKFS6zm0A2sg2niK5tN/LWWLDPkZSkpXrd2tpaU3EgEEAgEHDdjcrKSnTv3t1U5vf7UVhYiMrKypj7zZ07F6eeeiomT57s+tgAeSQIgiDEsNB+Tl8EQRBE5uPSPvTs2RP5+fnGa8mSJcLmFyxYAEmSLF+fffaZq66//PLL2LBhA5YvX+720xuQR4IgCEIAJaQjCIIgYuE2Id2ePXuQl5dnlMfyRsyfPx+XXXaZZZt9+/ZFSUkJDh48aCpvbW1FVVVVTMnShg0bsGvXLhQUFJjKp02bhjPOOANvvvmm9YfhoImEBbFc117IQLyQi1i1y0tJ2HvWb5MSxqXkhI/OoQjc1EwWJdrWGgzpdTh5VIR8if3Pvw8JyvibONKFbXZvx39SLHEaIZF8ySgTuKZ9/mhpE3uvZIXLQnqZL6QdS80Ktx8pY9KI6De3TTIitzi7lkSRqHjYNeTlNSpqy1LuxNW3qhfLpeqN21pxIW0ij8SRiu0EYB4kGxNd30a0PYv2eYlIpD1oSzQbUQQlUXS+SHtgsgFGWStXP1rWapSxvw5lsLwtsJI9iRDbBVlQptsIgeRVFsid2PuQoL4S0n6m8XJN1a+dU59JwqnLZf3sswm+Tw8SdTqN/md3LLa6/kTtW8mdRH1MSDQopzZCv/by8vJME4lYFBUVoaioKG69UaNGobq6Glu3bsWwYcMAaBMFRVEwcuRI4T4LFizAr371K1PZiSeeiPvvvx/nnntu3GPy0ESCIAhCBK2RIAiCIGLhco2E1wwcOBATJkzA7NmzsWrVKgSDQZSXl2P69OlGxKa9e/dizJgxeOqppzBixAiUlJQIvRW9evVCnz59HB2fJhIWSJJk+cQ2Hlb1vHzaG28hq8hLYUXkk4G4cb2NMkTVEz15Yu9NXgf9CVKopTFqW8jiqZR5UXbQVOb1YmvZn2UqE3lDfIJFfmK0J07iON38gkjtvSLpTxv570KKzpvBYsGbymxca8n2pEUSstn/WGfYi6e+qqLY8mRF7kMQXmL3iW5kPWEgAu6+iHyiy+/PFmCrcYZQRbWyFeyvRQ4Ibn/miRDZBb6sNcJGiL0VQa4fugc8GHshNo+dXEMi74MvK3rxtKz3x+R9YF4H7jhWP8TCXhBBziSuTDLssNlmAOExlP++fBZBLES5IoT1PPBERNa36xljx050fhArnNqIRNqH1atXo7y8HGPGjIEsy5g2bRpWrFhhbA8Gg9ixYwcaGho8PzZNJAiCIAiCIAgiTSksLLRMPte7d+/4UdhcTspoIkEQBCGCpE0EQRBELFJE2pRsaCLhAC+kSu0lDXGKaCGSKogNLtxXjZbYRO4jmulauZgVwTaxG9qeq9BOZAW2iDpmG/qxDGmToI98v+WIbZHvgVjnJVo2ZuVqNi1w1F3dEqSo7Vax55OBz2JBtd3F2VZttBnVxUQinhaEyFj4+9Bq4bXonreSiIikHlayEbeLpkWyJLvYXcgazmUU27ZYBdAwlYViB9XgyyIlTXZzTJj7rW2PlDjxhDiJFZM5qYrAVrB+yxaBQoTngJOeCaSuiOiaOX+HOeBKPNj3b1fi5AWOA7/YfHqekEXWRuMObUSG2geaSBAEQQigNRIEQRBELFJpjUQyoYkEQRCECAr/ShAEQcTCZfjXTIMmEnHwWorE5Bdu240n3xBtD0W4kU0ubKG0Jnb7kVE32oIo8gVD5v5XI2JyA+FIHZIc+yY2eWUtXNJWfbOKFy6LonQIjmP1OZ1ikj3pMiZR9A3Td6ifiLAELWqTKfpRZJSvePKhRF3LTnEanSwutEaCsEBRVCiKKpQZWY2Pwhj3EeNwvKhjbuVLXkS4sfps8dq3I63hJaaSEns8ZfX4Oswe8OMskxnx0iO3WOUXEkVtEuaY8EW3EbVfHJltuL773ydO5U7CNtTYuUvakpcksn3LOg6Powh+B7mG1kgAoIkEQRCEEMpsTRAEQcTCbWbrTKMdl9IQBEGkEYri7pUgqqqqUFZWhry8PBQUFGDWrFmoq6uLu19FRQXOPvtsdOzYEXl5eTjzzDPR2NiYsH4SBEEcEaSQfUgmaeeR2Lt3L2688Ua89tpraGhowLHHHovHH38cw4cPB6C5whYtWoRHH30U1dXVOO200/Dwww/juOOOc3U824mxHEo+vJBfWMmYeKIiZQiiOYjcfE4Tw8jctFTVP7ukan99PtGcNVtQprcpcB2HuKREInmREuG6jpd4yM4xedixRO5tn55wyJR4iJVlRZf5/Nr54M8LczHzrmYmm7CbYI19Zz4uQhMrM44k8/WjimImeeNJaLQkl2163o8UkzaVlZVh//79WLduHYLBIGbOnIk5c+ZYxg6vqKjAhAkTsHDhQqxcuRJ+vx8fffQRZDlznyG1t42wGifdyp7aI8lWIqLZmBLeIf55UdVwfSvZED+uRh1TUJ8vi4y4JLIFTpOXysI+ZsXst0gG6xPYCqtzILILVniRlFOEKDqZ1fVqlQTRzTHt4IlsydaBSNoEpNlE4tChQzjttNPwk5/8BK+99hqKiorwxRdfoEuXLkade+65BytWrMCTTz6JPn364Oabb8b48ePx6aefIicnJ4m9JwginVCVkK0JaOQ+iWD79u1Yu3YttmzZYvwgXrlyJSZNmoSlS5eitLRUuN/cuXNxzTXXYMGCBUZZ//79E9LHVIBsBEEQ7YVTG5Eo+5Bs0moicffdd6Nnz554/PHHjbI+ffoY71VVxfLly3HTTTdh8uTJAICnnnoKxcXFeOmllzB9+vR27zNBEOlJW8K/1tbWmsoDgQACgYDrvlRUVKCgoMCYRADA2LFjIcsyNm3ahPPOOy9qn4MHD2LTpk0oKyvDqaeeil27dmHAgAG48847cfrpp7vuSypDNoIgiPaCwr9qpNVE4uWXX8b48ePxi1/8Am+99RaOOuoo/OY3v8Hs2bMBALt370ZlZSXGjh1r7JOfn4+RI0eioqIippFobm5Gc3Oz8X/kjwCGHelEsiUfIhegSNJk2YaNeqZID4KkaWy7zJLo+ONJKSJcu1zUCsM9zEmbhMmFsqOTwkXWt0IoZ7Jwm/P1Dde0oN9mCZRZ0iRz50WWoqVNkQmBbCcU4r5DSRDVKbKeKJITQ3Tm7Er+vCAR95EdVEWFGnI6kdD62rNnT1P5okWLsHjxYtd9qaysRPfu3U1lfr8fhYWFqKysFO7z5ZdfAgAWL16MpUuXYsiQIXjqqacwZswYfPzxx66lPKlMImxELPugKrEj3LH71q7EwpD6OLzW7ScYi92uUxmI6Zghc+QffuwwIvpw9X02lmXKcnjCHbJhDxTeLujbQiJbIUhgF1nHLkLpkS+6zCewAbJABsv2DUtfwz/NZGYreGmTpTQWUfVF14nTaE2GRJbbL/K6shORzLTNxdjuOHFdjHvUadJFcRvObERCk+MlkbQSyn755ZeGlvVf//oXfv3rX+Oaa67Bk08+CQCGQS0uLjbtV1xcHNPYAsCSJUuQn59vvCJ/BBAEQThhz549qKmpMV4LFy4U1luwYAEkSbJ8ffbZZ676oOizwyuuuAIzZ87E0KFDcf/996N///547LHHXH+2VCYRNoLsA0EQRGzSyiOhKAqGDx+OP/zhDwCAoUOH4uOPP8aqVaswY8YM1+0uXLgQ8+bNM/6vra1Fz549oaqq4xlkq6C+F7GerYg3Q1ctcj8Y3gqbk2r21FzhpqDsKXuoVeHK9PrGQunwNtGTd/ZkRdFjgqvZ4YVrbN94i6cjnzyJEO1nldtB9JRJ9H/4CRT3hMhYhB79ZIh9XtM58LMy7hh6G+Ft3FMpm4vp2HerIGLRNY9gAXa4IHzdiBb5eXnNe/XExpN4+SHFuUdCr5+Xl4e8vLy49efPn4/LLrvMsk7fvn1RUlKCgwcPmspbW1tRVVWFkpIS4X49evQAAAwaNMhUPnDgQHzzzTdx+5aOJMJGxLIPVjh92qlYLEwW4daDYWUr3DyhFdkDhqSwsYs/hnlc4McwSfCZjDLuCX2otVXbV1/AbLIL+tjvF9gKkRc7so5d4i3wjvJeC+yI2VPt18uig5NYlvH2Rn8rCT3bui1yuACbvyasvGyJuB7t9CnZOLURTu1JupBWE4kePXoIjeLzzz8PAIZBPXDggGFE2f9DhgyJ2W5b9csEQWQebVkjYZeioiIUFRXFrTdq1ChUV1dj69atGDZsGABgw4YNUBQFI0eOFO7Tu3dvlJaWYseOHabyzz//HBMnTnTUz3QhETaC7ANBECJojYRGWkmbTjvtNKFRPOaYYwBoi+pKSkqwfv16Y3ttbS02bdqEUaNGtWtfCYJIb9jTJqevRDBw4EBMmDABs2fPxubNm/Huu++ivLwc06dPNyI27d27FwMGDMDmzZsBaE8mb7jhBqxYsQLPPfccdu7ciZtvvhmfffYZZs2alZB+JhuyEQRBtBepYh+STVp5JObOnYtTTz0Vf/jDH3DBBRdg8+bNeOSRR/DII48A0AznddddhzvuuAPHHXecEdqvtLQUU6ZMcXw8RVE9SqOemAU2bhcx8Z/JjptQJFORuf2YW5t3sxr5KSS24I7fxtqIrm/sx322rIC5TuR7ox8RZW2Rt4hicEfKekSuY1N9KxdzxMI4/pgiKZTINS3KO2FFpMSJP5bp3CJ6kSQjxBZXxnORJ3lRmRf3bVukTYlg9erVKC8vx5gxYyDLMqZNm4YVK1YY24PBIHbs2IGGhgaj7LrrrkNTUxPmzp2LqqoqDB48GOvWrUO/fv0S1s9k0p42QlVVV2OM6N6xNw6H37dbnHwONlaIusrsgUjyyo8tkfYg1CqQMfFSSkEb/ixNEmQ3L1KkbMnrEJwiaayRR0IwRnsxzvv80fmFIo8lksFa2aK24Ml463LodJ2bIgnyV5pIpAAnn3wyXnzxRSxcuBC33XYb+vTpg+XLl6OsrMyo89vf/hb19fWYM2cOqqurcfrpp2Pt2rUUH5wgCEeooRAUi/U2sfZJFIWFhZbJ53r37i00jgsWLDDlkchkyEYQBNFeOLURibQPySStJhIA8LOf/Qw/+9nPYm6XJAm33XYbbrvttnbsFUEQmYaqulgjkUorAY9QyEYQBNEeOLURmWof0m4i0Z4oIcUT95cXJCNFvOHKFkTR4PHpeQpUSeULtX0tIkY5zXkR7x5MtLvfygUcme8BELuww/Vjl4kia9iNA+7UTW11zqwWUKmCKDNtiU7mJaqiQvHAhZxq0iYiM3BqU9g4kozfILx0hvWbH2Miu+TjctYwe6DInP2IkLBKkmCcN0mV9OMIZK1C+yG0G6rl/26IN9ZFbo83pltJXo06FjImUxsWMiZTnyKlunHkqqLrL7KfnuRmSJHfXHYgaZMGTSQIgiAE0ESCIAiCiAVNJDRoIkEQBCFAVVQX4V/T52kaQRAE4R6nNiJT7QNNJCxQFNWUSC3dset2jHRxyiKNi8BVKkxUI+xH/JvJzQ0ncmt7idNkPnakPnblQHYlS3GjKcGeixpwIRVLoUHSC5mbElIcS6S8kFQR6YHbqH5O5Yd2pR527v22IGrf59NlV3JsmSo/tNiRJTmVwZrqObQBTqU4onHS1n42ogBq7buXvEbJqURteXyNOD1/XsiWvJIwJ8NGZKp9SKs8EgRBEARBEARBhKmqqkJZWRny8vJQUFCAWbNmoa6uznKf0aNHQ5Ik0+vKK690fGzySBAEQQigNRIEQRBELFJpjURZWRn279+PdevWIRgMYubMmZgzZ45lyHAAmD17timCXYcOHRwfmyYSFqhKciJlpBrx3KHM3Sv7UiNqTyaTqOsx065zT6KH0ESCSABOJRV2pVBMNuJUvuJWrmNqAzZlNHo0PyuJi1CyZPOcpZoG3WkkO6v6TqVKXnyv8bAzzjqVMyUj2aJbUmUisX37dqxduxZbtmzB8OHDAQArV67EpEmTsHTpUpSWlsbct0OHDigpKWnT8UnaRBAEIYDFCHf0yrQZGUEQBCHEsY1IkH2oqKhAQUGBMYkAgLFjx0KWZWzatMly39WrV6Nbt2444YQTsHDhQjQ0NDg+PnkkLFBVNS1iGrdlAZWdpxa2F/pa5Vmw2UcvjtVe2H36ZfcJi9W1Zhwrzvdl51htGcvS4X4AvOkneSSIVEAYxMJi/LPrmbAa+xM1DofHTO/y3TjF6WJ3u3iZu6kt2P1OvMhNxa4htzYlnbwPItx6JGpra03lgUAAgUDAdT8qKyvRvXt3U5nf70dhYSEqKytj7vfLX/4SxxxzDEpLS/Hf//4XN954I3bs2IEXXnjB0fFpIkEQBCGAJhIEQRBELNxOJHr27GkqX7RoERYvXhxVf8GCBbj77rst29y+fbvt40cyZ84c4/2JJ56IHj16YMyYMdi1axf69etnux2aSBAEQQhQFAWKwzwSTusTBEEQ6YlTG8Hq7tmzB3l5eUZ5LG/E/Pnzcdlll1m22bdvX5SUlODgwYOm8tbWVlRVVTla/zBy5EgAwM6dO2ki4RVu44R7iR1XJy/jsCMhiidnijymMLZ1G+Ji+2yWua1vt41IQg6/a1H9eG1EbhfVF8ZMl+zFTBd9tZHXMP/9J2KxnOiY7Y0XxyePBJGOOF2Aa3fcttN+XHvls97sBi9krk7tiVNbwZOMBeFCWVJEcBTROM/3lX23iZKZJdtmuMGtRyIvL880kYhFUVERioqK4tYbNWoUqqursXXrVgwbNgwAsGHDBiiKYkwO7LBt2zYAQI8ePWzvA9Bia4IgCCGakQg5fNFEgiAI4kjAuY1IjH0YOHAgJkyYgNmzZ2Pz5s149913UV5ejunTpxsRm/bu3YsBAwZg8+bNAIBdu3bh9ttvx9atW/HVV1/h5ZdfxqWXXoozzzwTP/7xjx0dnzwSBEEQAlikDaf7EARBEJmPUxuRSPuwevVqlJeXY8yYMZBlGdOmTcOKFSuM7cFgEDt27DCiMmVnZ+Pf//43li9fjvr6evTs2RPTpk3DTTfd5PjYNJGwQFVUz92QTt2wke6+tkR1cOvWjidjspIvWcmS7EqW/B5Iodxi5cIWbWu1KXdiZfHkUew9+0z89Sgck0TfccT//DXV1qgbke25xev7zIv2VMWFtIkmEkSCiDf2t1XSxI/jbZGuMrwYoxMhYfXSPvDYlTvZqedFW/w20WeOHCPd2BM29ouuL2ZT+GvJSiabCOlUonFqIxJpHwoLCy2Tz/Xu3dt0/nv27Im33nrLk2PTRIIgCEKEizUSIGkTQRDEkYFTG5Gh9oHWSBAEQRAEQRAE4RjySLQzke7E9kisFul2jOeijnRru5ExRbpSrbYBYfmSXbmTT46eAyfKZc2IjrgU/XTBF0eq1BohVbKSMfFlxl/+WA7lTqyeKFKG00hObSEZUUvcoIQUKA6fIDmtTxAibCeEa4OcyUsJq+h/L6LziWStbtsS13P3LFU09ovrOZPGMpxKZEVlIjtiqhfxv1CyJJAl8deBU9ksa8+OxClWu6mEUxuRqfaBJhIEQRACaLE1QRAEEYtUWmydTGgiQRAEIYDySBAEQRCxcJtHItOgiYQVEVGb2kOGFAsrV7fIJe00QpOVWzueS9uptMmOjMmudMmLZHVWiCJfhF3Hvqh6PpnfVyB9Ekia2to3kavZ5GJm322ExAkQR8qIdEnHi7qRKtE2TJIpTxLSqVBDztpxWp84cnEagS9eslGnElardkVjv9sIfG2JxGdH1hpvvE9EhL+QYk8SZV+OZLYV8SSyDCsJlJXtEtW3a0dMCXAj5LV2ZbOia86p3CnyOMnAqY3IVPtAEwmCIAgBiuJijUSGuq4JgiAIM05tRKbaB5pIJAm73o1EeCLsxgt3urDa6omS3/aTrdieiLZ4H3xxnuYBQEjwRMTpEyvzUyDjuU7Udqt248X/tqrPvjPLhXOmJ0TxnyTZXSwnakNE5FOsVMVNHplU/0yEd8iy1Ka8PlbE8z4Y9VzmBhIdI97CaobToBpW3od4Hgc7Y76wjsX588RjHXZGWy+olu16JKSYdZi3It7iaSuc2h1bdgTRC7Cdert5nHopIo/jFC/uXac2IlPtA00kCIIgBCghQBH8EIi3D0EQBJH5OLURmWofaCJBEAQhQA0pUGVabE0QBEFE49RGZKp9oImEFbLkyQJrL2RMRlseLKx2eux4scHj7eOmTqJzQiSKeO5nO4ut7bqwRedIVN9qMbQdl3S8xXLxZE7xjs3TFtevqT0v3NYhFapDj0SmLqYjvMeufMmoH2d9r1v74cXYbyVVsqoXL6iGpQxW8FmSYVOsxnQforf5fHqZDdmOhuiLj/5BGnl8u/ZBVN+pHbEi3gJshl25k1Hf9vlLHE5tRKbaB5pIEARBCFBCqgtpU2YaCoIgCMKMUxuRqfbBXVrHFOGuu+6CJEm47rrrjLKmpiZcddVV6Nq1Kzp16oRp06bhwIEDyeskQRAEkRTIRhAEQSSWtPVIbNmyBf/3f/+HH//4x6byuXPn4pVXXsGzzz6L/Px8lJeXY+rUqXj33XcT2h+3Eqh47mgr155bSVP8eORtkyXZxSo6UbwY2JbuZJFL16Ub1DIih81Y3062x8Ou7In/DiPlQlZRN/j6dqNu2Im24TSik4j2jnhBayTSm1SwEU7lS8I2LB73WUb1S7I8VBStyQq3sqS2RPNz2keGKH+DlZRING6bpFmyeZuoXbu2g30mUR9FtCW3UWQUPyu7A8ST2bL9nB07HomUQNEaCY209EjU1dWhrKwMjz76KLp06WKU19TU4E9/+hOWLVuGs88+G8OGDcPjjz+O9957D//5z3+S2GOCININRVWhKA5fKaDbJchGEASReBzbiAy1D2k5kbjqqqtwzjnnYOzYsabyrVu3IhgMmsoHDBiAXr16oaKior27SRBEOqNnLXXyQoZqYNMNshEEQSQcsg8A0lDatGbNGnzwwQfYsmVL1LbKykpkZ2ejoKDAVF5cXIzKysqYbTY3N6O5udn4v7a21njvhXvYbuITO646LxMQOelbJPGSplklwLFy94qiUTid79pJvmO3Dad1QoLMlU4lUG63xUMoVRIkmIuM5BQv6oadaBt8+1bXnFvZk+lYHkmglJACRXKY2TpDXdfphNc2IpZ9kCTJE+kST7zITMnEaVIzhl35kB2bIdreFsmrXfmPHRzLYLkx0csxn30mu/u1VW7rNXYjOtluL8Y96sW969RGZKp9SOFhK5o9e/bg2muvxerVq5GTk+NZu0uWLEF+fr7x6tmzp2dtEwSRnjj1RhhPnYikkQgbQfaBIAgRZB800moisXXrVhw8eBAnnXQS/H4//H4/3nrrLaxYsQJ+vx/FxcVoaWlBdXW1ab8DBw6gpKQkZrsLFy5ETU2N8dqzZ0+CPwlBEKkOTSTSj0TYCLIPBEGIIPugkVbSpjFjxuB///ufqWzmzJkYMGAAbrzxRvTs2RNZWVlYv349pk2bBgDYsWMHvvnmG4waNSpmu4FAAIFAIKrciazJqUTIrlvNbcSOROHU/eyF2zSk55U3S6Gi60UmN/LaZSuSLdk5lmibyKXupQQqUVhFcuKJdEXbiezEty/CbiIkyaNEkiRtSj8SYSNi2QcvcSpp8nLsVwQSRobTMd1uVDnu6IIymydDUC0UEkREaifiyZes6kfua94WWy7L17OSNInqWx1ThNNEdFY4TW4XT0qbLEjapJFWE4nOnTvjhBNOMJV17NgRXbt2NcpnzZqFefPmobCwEHl5ebj66qsxatQonHLKKcnoMkEQaYqqqo7XW6RCttUjGbIRBEG0F05tRKbah7SaSNjh/vvvhyzLmDZtGpqbmzF+/Hg89NBDrtqSZcmTJz9eeB8YcfNOJMBLkShPgwj2VEW0QC/+Au9QQvoUi3jnwGohn13vg52nRon6LiIXXfPEywsReS3bWZANWA+0Tu5FL+5bJaRCAWW2zjS8tBFtoS0Lq628CAz+vjXuZT6oQsT9x9/Hoq6x0dW51yEa0Tgfti2hqDLe22zlFTfaENy3PjWxXgovcg4x70O8+lYebbseichtonE+nscgcry2+6O6Ld4Np/kmEolTG5Gp9iGt1kiIePPNN7F8+XLj/5ycHDz44IOoqqpCfX09XnjhBcv1EQRBECI0Tavi8JU4Q1FVVYWysjLk5eWhoKAAs2bNQl1dneU+lZWVuOSSS1BSUoKOHTvipJNOwvPPP5+wPqYiZCMIgkgEzm1EatkHAKioqMDZZ5+Njh07Ii8vD2eeeSYaGxsdHTvtJxIEQRCJINUWW5eVleGTTz7BunXr8M9//hMbN27EnDlzLPe59NJLsWPHDrz88sv43//+h6lTp+KCCy7Ahx9+mLB+EgRBHAmku32oqKjAhAkTMG7cOGzevBlbtmxBeXk5ZNnZ1CDjpE3tiRdxiO26txO1sFrkIo90T0oCV7ZT97bTWN/x4oB7Gf/bCxKVF8LpvlauZS8Xy/HYWThnd7Gc3XsqU7Wmsdi+fTvWrl2LLVu2YPjw4QCAlStXYtKkSVi6dClKS0uF+7333nt4+OGHMWLECADATTfdhPvvvx9bt27F0KFD263/RDT8feBW5mSSI9mQOfFjeeQ9xN97VnbBSkAab5wPS5Vib+MJS5+UmPXi5QuKDMLRHjgNzBFZ5iYYh1sZrF1Jk9WY2x6SpvCx2txExuHWPsydOxfXXHMNFixYYJT179/f8fHJI0EQBCFACamuXoCWtIx/8QnN3FBRUYGCggLDSADA2LFjIcsyNm3aFHO/U089FX/9619RVVUFRVGwZs0aNDU1YfTo0W3qD0EQxJGOW/vgNW7sw8GDB7Fp0yZ0794dp556KoqLi3HWWWfhnXfecXx8mkgQBEEIUBXF1QsAevbsaUpitmTJkjb1pbKyEt27dzeV+f1+FBYWxszIDAB/+9vfEAwG0bVrVwQCAVxxxRV48cUXceyxx7apPwRBEEc6bu2D1w+a3NiHL7/8EgCwePFizJ49G2vXrsVJJ52EMWPG4IsvvnB0fJI2WSBJkifyJVObSZy6Mdek6DNZuchFbsu2xEeym4uCkehIUV5it49e1PPCnZwMiZCdvBNx24hzX3px37YlatOePXuQl5dnlMfKQ7BgwQLcfffdlm1u377dUR94br75ZlRXV+Pf//43unXrhpdeegkXXHAB3n77bZx44omu2yW8JSrvigs7EXmfi6ROojFDFNGJEeKeoBr3lMBWCKU4FlGVYv0fWdZiUc+qDR6/3P5aGKcR+6y2uS2LZx8irxe7toBkTGHcRm3q2bOnqXzRokVYvHhxVP1E2gdFn9RcccUVmDlzJgBg6NChWL9+PR577DFHD79oIkEQBCFAVVSoDicSzMjm5eWZJhKxmD9/Pi677DLLOn379kVJSQkOHjxoKm9tbUVVVVXMiEO7du3CAw88gI8//hjHH388AGDw4MF4++238eCDD2LVqlU2PhFBEAQhwqmNYPbB7oOmRNqHHj16AAAGDRpkKh84cCC++eYby2NGQhMJgiAIESEFqtPY8xaLLEUUFRWhqKgobr1Ro0ahuroaW7duxbBhwwAAGzZsgKIoGDlypHCfhoYGAIiKwOHz+YynUQRBEIRLnNoIfdy1+6Apkfahd+/eKC0txY4dO0zln3/+OSZOnBj3mDw0kfAYr6VLTqM1iaJzRNURuDBFETus+hPPvdlqox/xIjNZ1UsnnPbfaTZluy5kpzImp/2Il6TOCqv7JlnubSWkQnF4zhIVGWvgwIGYMGECZs+ejVWrViEYDKK8vBzTp083InLs3bsXY8aMwVNPPYURI0ZgwIABOPbYY3HFFVdg6dKl6Nq1K1566SUjPCCRusS75u3YGbvXol2TxZ68mqL4RSweNUkKRZF/Isb3Vn5fl/KleNImp/Xc4oVctS1SVrcS1kTZGzukunQpHk5tRCrZB0mScMMNN2DRokUYPHgwhgwZgieffBKfffYZnnvuOUfHp4kEQRCEADWkJnzy5YTVq1ejvLwcY8aMMTIzr1ixwtgeDAaxY8cOwxORlZWFV199FQsWLMC5556Luro6HHvssXjyyScxadKkhPWTIAjiSMCpjUgl+wAA1113HZqamjB37lxUVVVh8ODBWLduHfr16+fo2DSRIAiCEKCoLjwSCVy8XlhYiGeeeSbm9t69e0cZteOOO+6Iy2RNEATRHji1EalmHwBtQTefR8INNJFoA+0RgUmUGMgOVjNfkQvZ7qzasbRa0A+rz+JFojkrF7lTEvkEAfAoskUbBicvP1+i3LZeRHlyQ0hVEXJ4bp3WJwg3eHn9O41MZjWmx1t4qujh/oRjtCAUIJNKWUUJbEuyVre2oi3jpp1xMhUjKIWP6VlTaY9TG5Gp9oEmEgRBEAJCqvZyug9BEASR+Ti1EZlqH2gi4YBk5oCwswDaLm16Cu3BOYhcoCeiTXkAUmRxdnvlaEi014QnUV4HpyTLS0EQDFV1voYmFVEdJgUSjc3OA2KI8lk4bEKnLR6JZOB2DE3U+JbK17CXebwiP2cqf+50gyYSBEEQAkjaRBAEQcSCpE0aNJEgCIIQQNImgiAIIhYkbdKgiYQDmGsxmRInEYmSm4hcxu0lo3GaUZgwkyoSpESTSDmT4sIjkcioHAThFm/HgwRd4w4lVsw+KWn66ywTx2ivZWapLj9yaiMy1T7QRIIgCEJACC48EgnpCUEQBJFqOLURmWofaCJBEAQhIKSqCDl8+pqpGliCIAjCjFMbkan2gSYSLkhGdJhkyKky0fVKJI5Mi5oUUp0/QUpTlQWRYng99nopSW3PKHFWZNhwkzS8zLvk9XeS6hG5nNqITLUPNJEgCIIQQBMJgiAIIhY0kdCgiQRBEIQAkjYRBEEQsSBpkwZNJNKETJONEESqo7jwSKSI6oNIMVJFquR0v7ZEmUkVCdSRim3JkuAxuexhIjgr4vXR6X3T3lIopzYiU28JmkgQBEEIII8EQRAEEQvySGjQRIIgCEIArZEgCIIgYkFrJDRoIpEBpHrSFiJzkNrJ5U0Q6YKXsiWncqBESZUS3Q8GRQZ0hx0Jj+g7sSt3Yk/Z7dZnUii71wFr12n9eNi5nlI9ElQ6QhMJgiAIAdrTJqfSpgR1hiAIgkgpnNqITLUPNJEgCIIQQNImgiAIIhYkbdKgiUQcSDYUH3JPtx/Jdsumw/3glfyKFlsTViiK6mrsSyf5kt1jOz0PXo4j6RDR0OuEsiH9F6nTsS5ReW0Vmw3bkUCJZExeSqDYterF7xZabK2RhHzJbWPJkiU4+eST0blzZ3Tv3h1TpkzBjh07THWamppw1VVXoWvXrujUqROmTZuGAwcOJKnHBEGkIyq0TK1OXplpJtIHsg8EQbQXTm1EptqHtJtIvPXWW7jqqqvwn//8B+vWrUMwGMS4ceNQX19v1Jk7dy7+8Y9/4Nlnn8Vbb72Fffv2YerUqY6PlQ5PX2PBnpa1x4toP+h7jY+qqp7cuyFVdfUikkd72gcrVEWN+fKivqKqMV922uTbtapjd6xg95ztl4I2v0KtKkKt7TcetuXF+sq/vDgHTs+707G/LdeQnevW6b0QzzPhtH5bIfugkXbSprVr15r+f+KJJ9C9e3ds3boVZ555JmpqavCnP/0JzzzzDM4++2wAwOOPP46BAwfiP//5D0455ZRkdJsgiDSD1kikH2QfCIJoL2iNhEbaeSQiqampAQAUFhYCALZu3YpgMIixY8cadQYMGIBevXqhoqJC2EZzczNqa2tNL4IgjmzII5H+kH0gCCJRkH3QSOuJhKIouO6663DaaafhhBNOAABUVlYiOzsbBQUFprrFxcWorKwUtrNkyRLk5+cbr549eya66waZKkuJ556kl71XMsnUa9MuIdXdi0gN2ss+JFp+YSVfsmo33jEj69m9V0WSGXF/Yr+sjtmWcSTZ47WTcdybzxv/HLv57tyeb7vfhXEcC4mem+vcTn0v7Wsq2YeqqiqUlZUhLy8PBQUFmDVrFurq6mLW/+qrryBJkvD17LPPOjp2Wk8krrrqKnz88cdYs2ZNm9pZuHAhampqjNeePXs86iFBEOkKeSTSG7IPBEEkklSyD2VlZfjkk0+wbt06/POf/8TGjRsxZ86cmPV79uyJ/fv3m1633norOnXqhIkTJzo6dtqtkWCUl5cbJ+voo482yktKStDS0oLq6mrTU6cDBw6gpKRE2FYgEEAgEEh0lwmCSCMUF2sk0sjhktGQfSAIItE4tRGJsg/bt2/H2rVrsWXLFgwfPhwAsHLlSkyaNAlLly5FaWlp1D4+ny9qzHvxxRdxwQUXoFOnTo6On3YeCVVVUV5ejhdffBEbNmxAnz59TNuHDRuGrKwsrF+/3ijbsWMHvvnmG4waNcrRsdojmkMqk66SnEwiE89/e9xXqX5vEYmhPe1DKsmYRO06ldYIj9MGGZPbY8b7nOk47nnRf6fjXTLkTnY/i93vy+oeEB0z1a+DRFFRUYGCggJjEgEAY8eOhSzL2LRpk602tm7dim3btmHWrFmOj592HomrrroKzzzzDP7+97+jc+fOhq41Pz8fubm5yM/Px6xZszBv3jwUFhYiLy8PV199NUaNGkUROQiCsA0lpEs/yD4QBNFeuE1IFxmwoa1ez8rKSnTv3t1U5vf7UVhYGHPtVyR/+tOfMHDgQJx66qmOj592E4mHH34YADB69GhT+eOPP47LLrsMAHD//fdDlmVMmzYNzc3NGD9+PB566CHbx2Az8lBzgyd9TleOxJl9pmAnw2cmw+7dtuSTaITieHFcC9IgzW4Gk3L2weEYajsrtY168Z9we3Mc7Vi2qjn2FB5pNqgt47ZqY1+7GbbtZsxWLdqz81lsH8dhBm/YOHYybASzD5EBGxYtWoTFixdH1V+wYAHuvvtuyza3b99uvwMxaGxsxDPPPIObb77Z1f6Sms5Z1xLEt99+266RmwiCSAx79uwxaeTt0NTUhD59+th+khNJSUkJdu/ejZycHFf7E6kN2QeCyBza20aUlJTgo48+MtmHWB6J7777Dj/88INle3379sXTTz+N+fPn49ChQ0Z5a2srcnJy8Oyzz+K8886zbOPPf/4zZs2ahb1796KoqMjhJ6KJhBBFUbBv3z507tzZ9ow5HaitrUXPnj2xZ88e5OXlJbs7aQ2dS+9IxLlUVRWHDx9GaWkpZNn5UrCmpia0tLS4OnZ2djZNIjKYTLUPAI1rXkLn0jsyyUYkwj5s374dgwYNwvvvv49hw4YBAF5//XVMmDAB3377rXCxNc/o0aPRrVs3PPfcc66On3bSpvZAlmXHM9R0Ii8vjwY2j6Bz6R1en8v8/HzX++bk5NBkgBCS6fYBoHHNS+hcegfZCDEDBw7EhAkTMHv2bKxatQrBYBDl5eWYPn26MYnYu3cvxowZg6eeegojRoww9t25cyc2btyIV1991fXx0y5qE0EQBEEQBEEQGqtXr8aAAQMwZswYTJo0CaeffjoeeeQRY3swGMSOHTvQ0GBe2/XYY4/h6KOPxrhx41wfm6RNRxC1tbXIz89HTU0NPSFpI3QuvYPOJUGkBnQvegedS++gc5nakEfiCCIQCGDRokWUXMkD6Fx6B51LgkgN6F70DjqX3kHnMrUhjwRBEARBEARBEI4hjwRBEARBEARBEI6hiQRBEARBEARBEI6hiQRBEARBEARBEI6hiUSGsXjxYkiSZHoNGDDA2N7U1ISrrroKXbt2RadOnTBt2jQcOHAgiT1OLTZu3Ihzzz0XpaWlkCQJL730kmm7qqq45ZZb0KNHD+Tm5mLs2LH44osvTHWqqqpQVlaGvLw8FBQUYNasWairq2vHT5EaxDuXl112WdS1OmHCBFMdOpcE4S1kI9xD9sE7yD5kDjSRyECOP/547N+/33i98847xra5c+fiH//4B5599lm89dZb2LdvH6ZOnZrE3qYW9fX1GDx4MB588EHh9nvuuQcrVqzAqlWrsGnTJnTs2BHjx49HU1OTUaesrAyffPIJ1q1bh3/+85/YuHEj5syZ014fIWWIdy4BYMKECaZr9S9/+YtpO51LgvAeshHuIPvgHWQfMgiVyCgWLVqkDh48WLiturpazcrKUp999lmjbPv27SoAtaKiop16mD4AUF988UXjf0VR1JKSEvXee+81yqqrq9VAIKD+5S9/UVVVVT/99FMVgLplyxajzmuvvaZKkqTu3bu33fqeakSeS1VV1RkzZqiTJ0+OuQ+dS4LwHrIR3kD2wTvIPqQ35JHIQL744guUlpaib9++KCsrwzfffAMA2Lp1K4LBIMaOHWvUHTBgAHr16oWKiopkdTdt2L17NyorK03nLz8/HyNHjjTOX0VFBQoKCjB8+HCjztixYyHLMjZt2tTufU513nzzTXTv3h39+/fHr3/9a/zwww/GNjqXBJEYyEZ4D9kH7yH7kB74k90BwltGjhyJJ554Av3798f+/ftx66234owzzsDHH3+MyspKZGdno6CgwLRPcXExKisrk9PhNIKdo+LiYlM5f/4qKyvRvXt303a/34/CwkI6xxFMmDABU6dORZ8+fbBr1y787ne/w8SJE1FRUQGfz0fnkiASANmIxED2wVvIPqQPNJHIMCZOnGi8//GPf4yRI0fimGOOwd/+9jfk5uYmsWcEYWb69OnG+xNPPBE//vGP0a9fP7z55psYM2ZMEntGEJkL2QgiHSD7kD6QtCnDKSgowI9+9CPs3LkTJSUlaGlpQXV1tanOgQMHUFJSkpwOphHsHEVGMOHPX0lJCQ4ePGja3traiqqqKjrHcejbty+6deuGnTt3AqBzSRDtAdkIbyD7kFjIPqQuNJHIcOrq6rBr1y706NEDw4YNQ1ZWFtavX29s37FjB7755huMGjUqib1MD/r06YOSkhLT+autrcWmTZuM8zdq1ChUV1dj69atRp0NGzZAURSMHDmy3fucTnz77bf44Ycf0KNHDwB0LgmiPSAb4Q1kHxIL2YcUJtmrvQlvmT9/vvrmm2+qu3fvVt9991117Nixardu3dSDBw+qqqqqV155pdqrVy91w4YN6vvvv6+OGjVKHTVqVJJ7nTocPnxY/fDDD9UPP/xQBaAuW7ZM/fDDD9Wvv/5aVVVVveuuu9SCggL173//u/rf//5XnTx5stqnTx+1sbHRaGPChAnq0KFD1U2bNqnvvPOOetxxx6kXXXRRsj5S0rA6l4cPH1avv/56taKiQt29e7f673//Wz3ppJPU4447Tm1qajLaoHNJEN5CNsI9ZB+8g+xD5kATiQzjwgsvVHv06KFmZ2erRx11lHrhhReqO3fuNLY3Njaqv/nNb9QuXbqoHTp0UM877zx1//79SexxavHGG2+oAKJeM2bMUFVVC/F38803q8XFxWogEFDHjBmj7tixw9TGDz/8oF500UVqp06d1Ly8PHXmzJnq4cOHk/BpkovVuWxoaFDHjRunFhUVqVlZWeoxxxyjzp49W62srDS1QeeSILyFbIR7yD54B9mHzEFSVVVtP/8HQRAEQRAEQRCZAK2RIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRIAiCIAiCIAjCMTSRINKGgQMH4v/9v/8Xt94PP/yA7t2746uvvopZZ/To0bjuuuu865zO9OnTcd9993neLkEQBBEbsg8EkRxoIkGkBY2Njfjiiy8wePDguHXvvPNOTJ48Gb179058xyK46aabcOedd6Kmpqbdj00QBHEkQvaBIJIHTSSItODjjz+Gqqo44YQTLOs1NDTgT3/6E2bNmtVOPTNzwgknoF+/fnj66aeTcnyCIIgjDbIPBJE8aCJBpDTbtm3D2WefjdNPPx2KoqBXr15Yvnx5zPqvvvoqAoEATjnlFKOsvr4el156KTp16oQePXoIXcuKomDJkiXo06cPcnNzMXjwYDz33HOmOocPH0ZZWRk6duyIHj164P777xe6wM8991ysWbOmTZ+bIAiCsIbsA0EkH5pIECnLrl27cNZZZ+Hss8/Gz3/+c0ydOhXz58/H3LlzsW3bNuE+b7/9NoYNG2Yqu+GGG/DWW2/h73//O15//XW8+eab+OCDD0x1lixZgqeeegqrVq3CJ598grlz5+Liiy/GW2+9ZdSZN28e3n33Xbz88stYt24d3n777ah2AGDEiBHYvHkzmpub234SCIIgiCjIPhBEiqASRIoyduxY9bLLLlNVVVVHjBih3nfffWooFFLz8vLUFStWCPeZPHmyevnllxv/Hz58WM3Ozlb/9re/GWU//PCDmpubq1577bWqqqpqU1OT2qFDB/W9994ztTVr1iz1oosuUlVVVWtra9WsrCz12WefNbZXV1erHTp0MNphfPTRRyoA9auvvnL92QmCIIjYkH0giNTAn+yJDEGIqKysxIYNG/Dee+8hFArhf//7H5YsWQJZluHz+ZCdnS3cr7GxETk5Ocb/u3btQktLC0aOHGmUFRYWon///sb/O3fuRENDA37605+a2mppacHQoUMBAF9++SWCwSBGjBhhbM/Pzze1w8jNzQWg6XEJgiAIbyH7QBCpA00kiJTkP//5DxRFwZAhQ7Bjxw40NjZiyJAh+Oqrr3Do0CGceuqpwv26deuGQ4cOOTpWXV0dAOCVV17BUUcdZdoWCAQc972qqgoAUFRU5HhfgiAIwhqyDwSROtAaCSIlaWlpAQA0NTXhww8/xDHHHIPCwkKsWrUKJ5xwAk488UThfkOHDsWnn35q/N+vXz9kZWVh06ZNRtmhQ4fw+eefG/8PGjQIgUAA33zzDY499ljTq2fPngCAvn37IisrC1u2bDH2q6mpMbXD+Pjjj3H00UejW7dubTsJBEEQRBRkHwgidSCPBJGSjBo1Cn6/H7fddhvq6urQt29fPPDAA1i5ciU2btwYc7/x48dj4cKFOHToELp06YJOnTph1qxZuOGGG9C1a1d0794dv//97yHL4Tl0586dcf3112Pu3LlQFAWnn346ampq8O677yIvLw8zZsxA586dMWPGDNxwww0oLCxE9+7dsWjRIsiyDEmSTH14++23MW7cuISdG4IgiCMZsg8EkUIke5EGQcTiqaeeUnv06KECUP1+vzpy5Eh148aNcfcbMWKEumrVKuP/w4cPqxdffLHaoUMHtbi4WL3nnnvUs846y7QITlEUdfny5Wr//v3VrKwstaioSB0/frz61ltvGXVqa2vVX/7yl2qHDh3UkpISddmyZeqIESPUBQsWGHUaGxvV/Px8taKiwpuTQBAEQURB9oEgUgNJVVU12ZMZgrCisLAQTzzxBH7+85/bqv/KK6/ghhtuwMcff2x6suQ19fX1OOqoo3DfffcZCY4efvhhvPjii3j99dcTdlyCIAhCg+wDQSQXkjYRKc23336LQ4cOxc1YynPOOefgiy++wN69ew0Nqxd8+OGH+OyzzzBixAjU1NTgtttuAwBMnjzZqJOVlYWVK1d6dkyCIAhCDNkHgkg+5JEgUprXXnsNv/jFL3D48OEorWl78+GHH+JXv/oVduzYgezsbAwbNgzLli2LubCPIAiCSBxkHwgi+dBEgiAIgiAIgiAIx1D4V4IgCIIgCIIgHEMTCYIgCIIgCIIgHEMTCYIgCIIgCIIgHEMTCYIgCIIgCIIgHEMTCYIgCIIgCIIgHEMTCYIgCIIgCIIgHEMTCYIgCIIgCIIgHEMTCYIgCIIgCIIgHEMTCYIgCIIgCIIgHEMTCYIgCIIgCIIgHEMTCYIgCIIgCIIgHPP/AacFd3BU4XV1AAAAAElFTkSuQmCC", "text/plain": [ "
[15:04:10] Created task 'aperture_3' with task_id webapi.py:139\n", " 'fdve-b53a1dbf-4a22-4015-ba30-1d38d65a7664v1'. \n", "\n" ], "text/plain": [ "\u001b[2;36m[15:04:10]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'aperture_3'\u001b[0m with task_id \u001b]8;id=802322;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=517211;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-b53a1dbf-4a22-4015-ba30-1d38d65a7664v1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:04:11] status = queued webapi.py:269\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:04:11]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=964046;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=214674;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:04:16] status = preprocess webapi.py:263\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:04:16]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=231780;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=139124;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:04:20] Maximum FlexCredit cost: 0.025. Use 'web.real_cost(task_id)' to get webapi.py:286\n", " the billed FlexCredit cost after a simulation run. \n", "\n" ], "text/plain": [ "\u001b[2;36m[15:04:20]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.025\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get \u001b]8;id=758565;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=900962;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mthe billed FlexCredit cost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
starting up solver webapi.py:290\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=513866;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=360813;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
running solver webapi.py:300\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=245876;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=916604;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:04:31] early shutoff detected, exiting. webapi.py:313\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:04:31]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=962261;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=90719;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#313\u001b\\\u001b[2m313\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
status = postprocess webapi.py:330\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=34952;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=122509;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#330\u001b\\\u001b[2m330\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:04:34] status = success webapi.py:337\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:04:34]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=119713;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=133052;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#337\u001b\\\u001b[2m337\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:04:35] loading SimulationData from data/aperture_3.hdf5 webapi.py:512\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:04:35]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/aperture_3.hdf5 \u001b]8;id=916832;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=477444;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim_data3 = web.run(\n", " sim3, task_name=\"aperture_3\", path=\"data/aperture_3.hdf5\", verbose=True\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's create the [FieldProjectionCartesianMonitor](../_autosummary/tidy3d.FieldProjectionCartesianMonitor.html), this time turning off the far field approximations, and then run the [FieldProjector](../_autosummary/tidy3d.FieldProjector.html) again.\n", "\n", "The [FieldProjectionCartesianMonitor](../_autosummary/tidy3d.FieldProjectionCartesianMonitor.html)'s xy observation grid is defined in a local coordinate system whose z axis points in the direction along which we want to project fields, in this case the +y axis. The mapping between local and global coordinates is as follows:\n", "* `proj_axis=0`: local x = global y, local y = global z\n", "* `proj_axis=1`: local x = global x, local y = global z\n", "* `proj_axis=2`: local x = global x, local y = global y" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:51:00.961957Z", "iopub.status.busy": "2023-03-27T23:51:00.961698Z", "iopub.status.idle": "2023-03-27T23:51:17.060420Z", "shell.execute_reply": "2023-03-27T23:51:17.059831Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# make the projection monitor which projects fields without approximations\n", "xs = np.linspace(-sim_size[0] / 2, sim_size[0] / 2, 100)\n", "ys = np.linspace(-sim_size[1] / 2, sim_size[1] / 2, 100)\n", "monitor_intermediate_proj = td.FieldProjectionCartesianMonitor(\n", " center=[\n", " 0,\n", " offset_mon,\n", " 0,\n", " ], # the monitor's center defined the local origin - the projection distance\n", " # and angles will all be measured with respect to this local origin\n", " size=[td.inf, 0, td.inf],\n", " freqs=[f0],\n", " name=\"inter_field_proj\",\n", " proj_axis=1, # because we're projecting along the +y axis\n", " x=list(xs), # local x coordinates - corresponds to global x in this case\n", " y=list(ys), # local y coordinates - corresponds to global z in this case\n", " proj_distance=r_proj_intermediate,\n", " far_field_approx=False, # turn off the far-field approximation (is 'True' by default)\n", ")\n", "\n", "# execute the projector, with the projection field monitor as input, to do the projection\n", "# let's also time this, for later use\n", "import time\n", "\n", "t0 = time.perf_counter()\n", "projected_field_data_noapprox = get_proj_fields(\n", " sim_data3, monitor_near, monitor_intermediate_proj\n", ")\n", "t1 = time.perf_counter()\n", "proj_time_new = t1 - t0\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's compare the following three results:\n", "* Directly-measured fields at the projection distance\n", "* Projected fields with approximations turned off\n", "* Projected fields with approximations turned on (just to compare the accuracy)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:51:17.311981Z", "iopub.status.busy": "2023-03-27T23:51:17.311700Z", "iopub.status.idle": "2023-03-27T23:51:24.021158Z", "shell.execute_reply": "2023-03-27T23:51:24.020670Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Compute projected fields *with* far field approximations, to facilitate an accuracy comparison\n", "monitor_intermediate_proj_approx = td.FieldProjectionCartesianMonitor(\n", " center=[\n", " 0,\n", " offset_mon,\n", " 0,\n", " ], # the monitor's center defined the local origin - the projection distance\n", " # and angles will all be measured with respect to this local origin\n", " size=[td.inf, 0, td.inf],\n", " freqs=[f0],\n", " name=\"inter_field_proj_approx\",\n", " proj_axis=1, # because we're projecting along the +y axis\n", " x=list(xs), # local x coordinates - corresponds to global x in this case\n", " y=list(ys), # local y coordinates - corresponds to global z in this case\n", " proj_distance=r_proj_intermediate,\n", " far_field_approx=True, # turn on the far-field approximation\n", ")\n", "\n", "# execute the projector, with the projection field monitor as input, to do the projection\n", "# let's also time this, for later use\n", "import time\n", "\n", "t0 = time.perf_counter()\n", "projected_field_data_approx = get_proj_fields(\n", " sim_data3, monitor_near, monitor_intermediate_proj_approx\n", ")\n", "t1 = time.perf_counter()\n", "proj_time_new_approx = t1 - t0\n" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:51:24.129639Z", "iopub.status.busy": "2023-03-27T23:51:24.129507Z", "iopub.status.idle": "2023-03-27T23:51:24.148064Z", "shell.execute_reply": "2023-03-27T23:51:24.147560Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Client-side field projection *with approximations on* took 7.34 s\n", "Client-side field projection *with approximations off* took 17.34 s\n" ] } ], "source": [ "# let's see how long this took compared to the previous case when the approximations were turned on\n", "print(\n", " f\"Client-side field projection *with approximations on* took {proj_time_new_approx:.2f} s\"\n", ")\n", "print(\n", " f\"Client-side field projection *with approximations off* took {proj_time_new:.2f} s\"\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As expected, when the approximations are turned off, the projections take longer. Now let's see if it was worth it!" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:51:24.149869Z", "iopub.status.busy": "2023-03-27T23:51:24.149727Z", "iopub.status.idle": "2023-03-27T23:51:24.169431Z", "shell.execute_reply": "2023-03-27T23:51:24.168873Z" } }, "outputs": [], "source": [ "# Helper function to plot fields\n", "def make_cart_plot(phi, theta, vals1, vals2, vals3):\n", " n_plots = 3\n", " fig, ax = plt.subplots(1, n_plots, tight_layout=True, figsize=(9, 3))\n", " im1 = ax[0].pcolormesh(ys, xs, np.real(vals1), cmap=\"RdBu\", shading=\"auto\")\n", " im2 = ax[1].pcolormesh(ys, xs, np.real(vals2), cmap=\"RdBu\", shading=\"auto\")\n", " im3 = ax[2].pcolormesh(ys, xs, np.real(vals3), cmap=\"RdBu\", shading=\"auto\")\n", " fig.colorbar(im1, ax=ax[0])\n", " fig.colorbar(im2, ax=ax[1])\n", " fig.colorbar(im3, ax=ax[2])\n", " ax[0].set_title(\"Ex\")\n", " ax[1].set_title(\"Ey\")\n", " ax[2].set_title(\"Ez\")\n", " for _ax in ax:\n", " _ax.set_xlabel(\"$y$ (micron)\")\n", " _ax.set_ylabel(\"$x$ (micron)\")\n" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:51:24.171191Z", "iopub.status.busy": "2023-03-27T23:51:24.171054Z", "iopub.status.idle": "2023-03-27T23:51:25.755142Z", "shell.execute_reply": "2023-03-27T23:51:25.754545Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalized RMSE for |E|, no far field approximation: 0.59 %\n", "Normalized RMSE for |E|, with far field approximation: 22.31 %\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2wAAAErCAYAAACirgCsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADyhUlEQVR4nOy9e7wkRXk+/lRVd8+cvaEosKJECMELl0AEQVADUXRBRIlyjQgoNzUoiEHFcBVxRZSAeFkxXEwEUaISLwFFBDGCUUC+iigxEYSfZrkKu3vOmenuqvr90V1Vb/V0z5k55+yeM2fr+Xx2T53qmp6aOdPv9Ps+7/u8TGutERAQEBAQEBAQEBAQEDDvwOd6AwEBAQEBAQEBAQEBAQH1CA5bQEBAQEBAQEBAQEDAPEVw2AICAgICAgICAgICAuYpgsMWEBAQEBAQEBAQEBAwTxEctoCAgICAgICAgICAgHmK4LAFBAQEBAQEBAQEBATMUwSHLSAgICAgICAgICAgYJ4iOGwBAQEBAQEBAQEBAQHzFMFhCwgICAgICAgICAgImKcIDltAQEBAwEaBffbZB/vss8+U6/I8x/vf/35stdVW4JzjoIMOAgAwxnDOOecM/bwPPvggGGO46qqrplx7zDHHYOuttx76OQICAgICFi6CwxYQEBAwgrjqqqvAGANjDP/5n//Zc1xrja222gqMMbz+9a+fgx2OLq644gpceOGFOPjgg/HFL34R733ve+d6SwEBAQEBGzGiud5AQEBAQMD00W63cc011+AVr3iFN//DH/4Q/9//9/+h1WrN0c5GFz/4wQ/w3Oc+F//0T//kzU9OTiKKwtdmQEBAQMCGRWDYAgICAkYYr3vd63Ddddchz3Nv/pprrsGuu+6K5cuXz9HOZg/j4+Mb9PkeffRRPOMZz+iZb7fbwWELCAgICNjgCA5bQEBAwAjjiCOOwBNPPIGbbrrJzqVpin/7t3/D3/3d39U+RimFiy++GDvssAPa7Ta22GILnHjiifjTn/7krfv3f/93HHDAAdhyyy3RarWw7bbb4rzzzoOU0lv329/+Fm9+85uxfPlytNttPO95z8Phhx+Op59+GkD/Gq5qXdg555wDxhjuu+8+/N3f/R2e+cxneuzhl770Jey6664YGxvDpptuisMPPxwPP/xwz3kvu+wybLvtthgbG8Puu++OH/3oR1O+l2aft9xyC371q1/ZlNNbb721dq8A8Ic//AFvf/vbscUWW6DVamGHHXbAFVdcMeVzAcD111+PHXfcEe12GzvuuCO+8Y1v1K679tprseuuu2Lp0qVYtmwZdtppJ1xyySUDPUdAQEBAwOgjhAoDAgICRhhbb7019txzT3z5y1/G/vvvDwC44YYb8PTTT+Pwww/Hpz71qZ7HnHjiibjqqqvwtre9De95z3vwwAMP4NOf/jR+/vOf48c//jHiOAZQ1MktWbIEp556KpYsWYIf/OAHOOuss7BmzRpceOGFAArncMWKFeh2u3j3u9+N5cuX4w9/+AO+/e1v46mnnsImm2wyrdd1yCGHYLvttsNHP/pRaK0BAOeffz7OPPNMHHrooTjuuOPw2GOP4dJLL8Vf//Vf4+c//7llxS6//HKceOKJ2GuvvXDKKafgd7/7Hd7whjdg0003xVZbbdX4nJttthn+9V//Feeffz7WrVuHlStXAgBe/OIX165/5JFH8LKXvQyMMZx00knYbLPNcMMNN+DYY4/FmjVrcMoppzQ+1/e+9z28+c1vxvbbb4+VK1fiiSeewNve9jY873nP89bddNNNOOKII/DqV78aF1xwAQDg17/+NX784x/j5JNPHvTtDAgICAgYZeiAgICAgJHDlVdeqQHon/3sZ/rTn/60Xrp0qZ6YmNBaa33IIYfov/mbv9Faa/385z9fH3DAAfZxP/rRjzQAffXVV3vnu/HGG3vmzfkoTjzxRL1o0SLd6XS01lr//Oc/1wD0dddd17jXBx54QAPQV155Zc8xAPrss8+2v5999tkagD7iiCO8dQ8++KAWQujzzz/fm//lL3+poyiy82ma6s0331zvsssuutvt2nWXXXaZBqD33nvvxn0a7L333nqHHXaYcq/HHnusfs5znqMff/xxb93hhx+uN9lkE/v+1b3+XXbZRT/nOc/RTz31lJ373ve+pwHo5z//+Xbu5JNP1suWLdN5nk+574CAgICAhYmQEhkQEBAw4jj00EMxOTmJb3/721i7di2+/e1vN6ZDXnfdddhkk03wmte8Bo8//rj9t+uuu2LJkiW45ZZb7NqxsTE7Xrt2LR5//HG88pWvxMTEBH7zm98AgGXQvvvd72JiYmLWXtM73vEO7/evf/3rUErh0EMP9fa9fPlybLfddnbfd955Jx599FG84x3vQJIk9vHHHHPMtNm+Omit8bWvfQ0HHnggtNbenlasWIGnn34ad999d+1j/+///g/33HMPjj76aG9Pr3nNa7D99tt7a5/xjGdgfHzcS3kNCAgICNi4EFIiAwICAkYcm222Gfbdd19cc801mJiYgJQSBx98cO3a3/72t3j66aex+eab1x5/9NFH7fhXv/oVzjjjDPzgBz/AmjVrvHWmPm2bbbbBqaeeiosuughXX301XvnKV+INb3gDjjzyyBk5SNtss03PvrXW2G677WrXmzTO3//+9wDQsy6OY/z5n//5tPdTxWOPPYannnoKl112GS677LLaNfS9pGjaIwC88IUv9By9d73rXfjqV7+K/fffH8997nPx2te+Foceeij222+/WXgVAQEBAQGjgOCwBQQEBCwA/N3f/R2OP/54rF69Gvvvv3+tyiFQCI5svvnmuPrqq2uPb7bZZgCAp556CnvvvTeWLVuGD3/4w9h2223Rbrdx99134wMf+ACUUvYxn/zkJ3HMMcfg3//93/G9730P73nPe7By5Ur85Cc/wfOe9zwwxmqfqypeQkHZPbNvxhhuuOEGCCF61i9ZsqTxXOsD5vUfeeSROProo2vX/OVf/uWMn2fzzTfHPffcg+9+97u44YYbcMMNN+DKK6/EUUcdhS9+8YszPn9AQEBAwPxHcNgCAgICFgD+9m//FieeeCJ+8pOf4Ctf+Urjum233Rbf//738fKXv7zHKaK49dZb8cQTT+DrX/86/vqv/9rOP/DAA7Xrd9ppJ+y0004444wzcPvtt+PlL385Vq1ahY985CN45jOfCaBwAikM0zQItt12W2itsc022+AFL3hB47rnP//5AApG7lWvepWdz7IMDzzwAHbeeeeBn7MfNttsMyxduhRSSuy7775DPZbusYr777+/Zy5JEhx44IE48MADoZTCu971Lnz+85/HmWeeib/4i7+Y3gsICAgICBgZhBq2gICAgAWAJUuW4HOf+xzOOeccHHjggY3rDj30UEgpcd555/Ucy/PcOlWGxdKlQiNQKEJ+9rOf9R6zZs2anh5wO+20Ezjn6Ha7AIBly5bh2c9+Nm677TZvXfVc/fCmN70JQgice+653p7MHp944gkAwG677YbNNtsMq1atQpqmds1VV13V4zDOBEIIvPnNb8bXvvY13HvvvT3HH3vsscbHPuc5z8Euu+yCL37xiza1FCgUIe+77z5vrXldBpxzy9yZ9zcgICAgYGEjMGwBAQEBCwRNqXkUe++9N0488USsXLkS99xzD1772tcijmP89re/xXXXXYdLLrkEBx98MPbaay8885nPxNFHH433vOc9YIzhX//1X3ucpR/84Ac46aSTcMghh+AFL3gB8jzHv/7rv1qHxuC4447Dxz72MRx33HHYbbfdcNttt+G///u/B35t2267LT7ykY/g9NNPx4MPPoiDDjoIS5cuxQMPPIBvfOMbOOGEE/AP//APiOMYH/nIR3DiiSfiVa96FQ477DA88MADuPLKK2e1hg0APvaxj+GWW27BHnvsgeOPPx7bb789nnzySdx99934/ve/jyeffLLxsStXrsQBBxyAV7ziFXj729+OJ598Epdeeil22GEHrFu3zq477rjj8OSTT+JVr3oVnve85+H3v/89Lr30Uuyyyy6N7QYCAgICAhYWgsMWEBAQsJFh1apV2HXXXfH5z38eH/rQhxBFEbbeemsceeSRePnLXw4AeNaznoVvf/vbeN/73oczzjgDz3zmM3HkkUfi1a9+NVasWGHPtfPOO2PFihX41re+hT/84Q9YtGgRdt55Z9xwww142cteZtedddZZeOyxx/Bv//ZvVkTjhhtuaBQ/qcMHP/hBvOAFL8A//dM/4dxzzwUAbLXVVnjta1+LN7zhDXbdCSecACklLrzwQpx22mnYaaed8M1vfhNnnnnmTN86D1tssQV++tOf4sMf/jC+/vWv47Of/Sye9axnYYcddrA905qw33774brrrsMZZ5yB008/Hdtuuy2uvPJK/Pu//7tt1A0UNXKXXXYZPvvZz+Kpp57C8uXLcdhhh+Gcc84B5yFJJiAgIGBjANPVcGlAQEBAQEBAQEBAQEDAvEAIzwUEBAQEBAQEBAQEBMxTBIctICAgICAgICAgICBgniI4bAEBAQEBAQEBAQEBAfMUwWELCAgICAgICAgICAiYpwgOW0BAQEBAQEBAQEBAwDxFcNgCAgICAgICAgICAgLmKYLDFhAQEBAQEBAQEBAQME8RHLaAgICAgICAgICAgIB5iuCwBQQEBAQEBAQEBAQEzFMEhy0gICAgICAgICAgIGCeIjhsAQEBAQEBAQEBAQEB8xTBYQsICAgICAgICAgICJinCA5bQEBAQEBAQEBAQEDAPEVw2AICAgICAgICAgICAuYpgsMWEBAQEBAQEBAQEBAwTxEctoCAgICAgICAgICAgHmK4LAFBAQEBAQEBAQEBATMUwSHLSAgICAgICAgICAgYJ4iOGwBAQEBAQEBAQEBAQHzFMFhCwgICAgICAgICAgImKcIDltAQEBAQEBAQEBAQMA8RXDYAgICAgICAgICAgIC5imCwxYQEBAQEBAQEBAQEDBPERy2gICAgICAgICAgICAeYrgsAUEBAQEBAQEBAQEBMxTBIctICAgICAgICAgICBgniI4bAEBAQEBAQEBAQEBAfMUwWELCAgICAgICAgICAiYpwgOWwCuuuoqMMYa//3kJz+Z6y0GBAQEeAh2KyAgYBQRbFfAdBDN9QYC5g8+/OEPY5tttumZ/4u/+Is52E1AQEDA1Ah2KyAgYBQRbFfAMAgOW4DF/vvvj912222utxEQEBAwMILdCggIGEUE2xUwDEJKZMBAOPvss8E5x8033+zNn3DCCUiSBP/v//2/OdpZQEBAQC+01th6663xxje+sedYp9PBJptsghNPPHEOdhYQEBDQH/vss09jyuRVV10119sLmAMEhi3A4umnn8bjjz/uzTHG8KxnPQtnnHEGvvWtb+HYY4/FL3/5SyxduhTf/e538YUvfAHnnXcedt555znadUBAwMaMfnbryCOPxMc//nE8+eST2HTTTe3xb33rW1izZg2OPPLIDb3dgICAAAD9bdc//uM/4rjjjvOOfelLX8J3v/tdbL755htymwHzBExrred6EwFzi6uuugpve9vbao+1Wi10Oh0AwL333otdd90VRx11FC688ELsuOOOeM5znoM77rgDURR8/4CAgA2HQezWf//3f+OFL3whPve5z+Ed73iHPf7GN74Rv/jFL/C73/0OjLENteWAgICAge+5KG6//Xbss88+eOtb34rLL798fW8xYB4i3GUHWHzmM5/BC17wAm9OCGHHO+64I84991ycfvrp+MUvfoHHH38c3/ve94KzFhAQMGfoZ7de8IIXYI899sDVV19tHbYnn3wSN9xwA97//vcHZy0gIGDOMNU9l8Hq1atx8MEHY5dddsFnP/vZDbW9gHmGcKcdYLH77rtPWQB72mmn4dprr8VPf/pTfPSjH8X222+/gXYXEBAQ0Iup7NZRRx2Fk046Cb///e/x/Oc/H9dddx2yLMNb3/rWDbjLgICAAB+D3HPleY5DDz0UUkp8/etfR6vV2kC7C5hvCKIjAUPhd7/7HX77298CAH75y1/O8W4CAgIC+uPwww9HHMe4+uqrARR1ILvtthte+MIXzvHOAgICAvrjtNNOwx133IGvfvWreN7znjfX2wmYQwSHLWBgKKVwzDHHYNmyZfjQhz6EL3/5y/j6178+19sKCAgIaMSmm26KAw44AFdffTV+//vf48c//nFg1wICAuY9rr32Wlx88cX4xCc+gb333nuutxMwxwgOW8DAuOiii3D77bfjsssuw3nnnYe99toL73znO3tUjgICAgLmE9761rfivvvuw2mnnQYhBA4//PC53lJAQEBAI+69914cd9xxOPLII3HyySfP9XYC5gFCDVuAxQ033IDf/OY3PfN77bUXut0uzjzzTBxzzDE48MADARRKR7vssgve9a534atf/eqG3m5AQEBAX7v153/+5wCAAw44AM961rNw3XXXYf/99w+y2AEBAXOOfrbLqEj+9V//Nb70pS/1HDe2LWDjQXDYAizOOuus2vl//ud/xuc//3k8+9nPxsUXX2znt9tuO6xcuRInn3wyvvrVr+LQQw/dQDsNCAgIKNBkt6688kp7U5MkCQ477DB89rOfDemQAQEB8wL9bNdjjz2G8fFxnHDCCbXHg8O28SH0YQsICAgIWPB473vfi8svvxyrV6/GokWL5no7AQEBAQEBAyPUsAUEBAQELGh0Oh186Utfwpvf/ObgrAUEBAQEjBxCSmRAQEBAwILEo48+iu9///v4t3/7NzzxxBOheD8gICAgYCQRHLaAgICAgAWJ++67D295y1uw+eab41Of+hR22WWXud5SQEBAQEDA0Ag1bAEBAQEBAQEBAQEBAfMUoYYtICAgICAgICAgICBgniI4bAEBAQEBAQEBAQEBAfMUG2UNm1IKf/zjH7F06VIwxuZ6OwELCFprrF27FltuuSU47x8P6XQ6SNO08XiSJGi327O9xYARRbBbAesTg9quqewWEGxXgEOwWwHrExuT3dooHbY//vGP2GqrreZ6GwELGA8//DCe97znNR7vdDoYW7opkE82rlm+fDkeeOCBeW1AAjYcgt0K2BDoZ7sGsVtAsF0BDsFuBWwIbAx2a6N02JYuXQoAOOKzNyIZW4zxboa1HQkAmOzmyLNiLHNtx0oqGH0WrTSU6j2vce4ZZzaSxBkDi4oDQnCIqJiPYoFIFPPtRGBRUoxjITCWiGI+FlhUjhe3IoyVa1qRQLt8bBJxtMx5Io6kHMeco1U+VyviiHgxFhxuzBgi5ubtnBlzBmFeh5ZgKkf5ZoDJrBzndp7JHDDjPAWULOcz6KxTvHfdDnRePFZnHehutxinHeisa9eotFgvuxnyieIik50M+WRazqeQWW7HxfEUKi2eM+tKO5aphMpVuXUFLcu/o9RQsvcPyQUHE8XrZoKBl3+DuBWRsUC8uFW8T4vaiBcXF3g3Evir86+0n7EmpGkK5JOIdzwCEHHvAplh9b1fRpqm89Z4BGxYmM/UT3/xGyxauhTS2CPA2iMFDSMjpTTcGE5baliZKRoU52D2d878NRzlBDlulnDG3Bgg9rF6DjNm3jH7/KzhseVzVPfMtAa0u8aZGZM5kDWMvjl0LRkz77Gq/hw1j2VauT9U5Xka9zUM6B+KFe+kZtyOize4nOeRW8MFwDjWrl2HbV7y8r62a0q7BQTbFeDBfJ5+/6NvYtmSxf5B7zqQbli9wVLS3k8US8uxcteUVtJeP5quV6qyXrrnMGOZESMqG9ZLuy+tNLRU9jx2LMlz2ZfoXouW9eNhwQSvHzM6L+wxJjgYp+Py/oZzMF7c04ALax+YqJuLi9/Lx8E+jpP1nKwR1sYwch5vvXkO+tOc370QMu79UlizbhzPf+UbNgq7tVE6bOYLP+MJwFvoMIFclM5FLO2XJ2MKgpUXlVTQyhkXQc9nP/zOSeOl18M5AxfOSRPl/FjinLGxJLJO2lhM54U33yof2xbcjluRQNuMBUdcPlc74hDlfmLieFUdNuqoFT9hH0fHTGvfYbPjHJClk6Zy4qSlbo2UYLKkomUGXTpjOiPjtAPdnXTj1Dl4snTqZCdF3iHjSeeoAUDe6ZJxClk6bHknh0ydQZVZvfNWB8YYRGkwhGYQuvxbMo6o/DxEuUSUm88Mt48bBLy1GEwkPfNa9qfuAzY+mM/UkqVLsXjZMkjlHDbz3V912AzofRF13ppgnS+U9/kVx8qsoc5b9RPPGTlO9l84Xb3z5hhgHDD6nPVOGn2u6v6ABgcMqHe6APdGVdfWOlTuZtFfQ5031fuY8qfdg1I9DlzfPTaB3KxpxnvnGx22yHvsILaryW4BwXYF+DCfp6XtGEuTSsqa54SZOeVusIyzxCSZU9DcXA8SQPndrqU9iVYZcdikc5q0hM5T9zzEGVNlAFhL5RwzqSDTMsBcdcwUvY/onXevS3nOmaqJ9g/ivFHHDICX/kcdMzvHuTfPzbgyb5wjkcRunjh3PC7cBKYz30mLy+tfCzBlnlfA/KEYj62zxTgAXto4TmwM5yj+hqXdtk6bIo6i96L9N4UL6DwuH7/w7dZG6bAFBMwXMCZchItC1cwFBAQEzAM02i0g2K6AgIB5iVG3Wxu1wzaRKsRCIs0VSYNUkJbq1lBl5JPV5eeU8ya6OwirlpTjRYnAWFK8/Uta0YxYNTOOBUNsoiUcHqvWxKAxMg8UEeyGl0peNLMRXMbdR0hzXqRFoozwGoaN54ChwGUCFhWphCzvQrcK6ll3O9BJOaZsW9IBaxVsm2h1INpFdER2Uoi2Y9sAgI9HyJMi2sKTCCotnl8kPtvGRH+2rQqTNskEA8rzmJTJYszBDPNXlyvbByKOwaIaho2F9ogB9aDp1gAgtXaMlWZQ5WeHxiLpp1L0cGEOdUxacS5m53wWjMzX7NOu7ZPu6NIm69k2usbfqz87ZYCVcZcyRRklb035U7tZrckrq6YvcrOGMGnKrSnm69kzG/Xn1bTJ4rk1RO1jB4LHsLlodi3zZtYMIQjRZLeAYLsC6qEnx6EFfFaNpC16c8pPK/TTGiW8tMaSMaMpjlASOsvcuJxXWe6lMpp7BCXrGTaZ5rWpj5KeR0qPkauyZarCuvlpkcNdK9X7Djsu7/t4JVWSeayasPPCsGaVVElR3pPWMWxcCHBy3Jybx5GXVsni4h5Mc+GnUJb2gnFeHDPry31pyp5x51hpwLFt1NkyxyfHp3rbLEbdbm3UDluaK+hcIc9dumP1O9G7KaAXC0mDFOUH19SnccGHSn1c0nbzbeKMjcX1jlkr4tYxSyKX7hhzP8VR2JslN89B0hxBbr5oulLda4e7yWHmRChvZsy8VkV6DQCoHFqVVLXKbf0fUzm0qXOLW0BZz8Zbi2wNG/IUuls4aSrt2LFOO2Cd4uIU3Q4iU+dWOmyinbiUyMnUzZNUSeq8yUxB0Do31T890nsvpIYq16lUQvLiNeVqSAPMGyI+TVGggAAUl5+5paHXsULhtJkDJv1RDHAv3jcN0qwZMM0RGN4xa0pxpJixyBx1Ukp4Toz5Aqisc+mJgqRXNdShcZJ0OogjpyvzXHnndc8v7HkGBrkJ8uvZGhy3AdFot4BguwJqoboTUBF8Z0w5p8fNVRyyujkzzlKv9kyZ+njiOFEnTWaZN2+CsSrNXYpjmtu0RZVmlfTI3O7BOWyuFl4rd1/gHyc1xF565HD3C5wYVOqwcVJzbx0pwVyZjleXT9MgI8+p4ybgbRzAJHLOYBJZh5DH7nEijn3njaZhRtR5K+fjxHPkPOfN1rkJNw80OnVA8bkaFKNutzZqhy0gYK7Boxgs6i2C1RjipiwgICBgA6LJbgHBdgUEBMxPjLrd2qgdNqU0pNI9UQ4TxVDwUyHNPGPMBiVFxC3DFjWxanExXpQILGlHdo1h1RbFTvXRY9UiwqoJgSRyYiExUX0cJN2RMmlNkXM71xTFpspjNQX8VA0JOvEL9UtWTWvl0iaVBIvMOAdLxor1eQY+VrJwWbciRlIoAeluB9ywbSXTFi0at0ya7KTIxovH5Z3UFyMp0xdzoiopM2mZNxoRq6Y3VAt/gSLlgZuIXB4YtoD1C8NQCcvjMJu6LZjL5lO6f/qjOZdBleEaRjDEZ+bL81VYtKlsjScQUhVGsbaEzA3ADOkBKDnvaU2RfOVhmshMNQmZ+MqQU6RBVpi32sdWmTeDGgauLxpYNZsNwVhxbAimbdQj1QEbHrrbgebkuiCqiz7rVjM/gxTHfkyatGmQfkqkmVep9NizunsEmUmblVMnZEaVqCkD57030xEdMYwZvUetKlxbtotBlPehXDC7RiTCY+GMCjZNmbSiI0LY+X7M2zAplJqkUFJWzVOhLNfVzYMLm4E1CEbdbm3UDltAwFyDi4YatmHqVQICAgI2IJrsFhBsV0BAwPzEqNut4LChYM50GZYWkUuJ5qTwg3OXDyxIH4uqkEgx18yqLS4jDouIoMgiwqotijlaZb5uEjkmLeKuJq2oVevPqvX0QGqMZBvo2qGdqoacidaqRm9kgj6HrhTqaxpBJu0BDPNW9HkrJVZbOVi7rHOTKenVNgndKXKXTQsANjkObti2yXFEi4vjg7BtKs2Rl/Naakjbf0/XRr8KmVwXmZouWJyAx70GRI0APR8wNzCMuSqvcAFtr3t6adO6NaV1bV2YLywyPJPWr/a1x+YQlmxoyXpv06aAlkSuB6jJ8lobVGxgj8kbgCgvX3nxP2MeOzd1Pzdf+n9Y5s3uoe6906r5PaBsm21Wx6FF5Bi3AdBkt4BguwLqoTsT0EL31qcBfo2alK62jQiKUOl8nw3LeuapWIjKKJOmoMr1PsOmvNp2W/OWKnsvQGvVVKrsmK73snOs7D+tX/PvJ+rYtn7gNaIjVIikqFsjNWykbk3ETpiEJ25s2bZYQCR+ewARc4ikV6yEJxF4yYx587S2LYkIO8chyHo6z1IijFI6U9rr7ebES3S5zs4D0J3+zbApRt1uBYcNBaXMFKWR3TGbBsmZdcySyCk2VoVEAGApERFZ0o6wKHapj6bJ9aJY2Pl2xNEuL6aYMyRGYZJTQRHSP404b4Izd3OgFZgmqkuDNF7tccQaitThTkdvdugzNNfPctgbG17vSDb2eZNp0YTbzJeOHGt3wZeUxrwsOuXdDlSZJqmp89YZR1wqCeUTHeSTXTJ2KZTCOG9ZbouLi5SL3tQGCjaIokMDmij6Rto+YKMHKwWFzLWjNYMVuGJwARECwVizAuOQjpkgDhmrSd+zRmEYJ2MK+A4ZeX1mL3RNxWGpc9Q0qn3q/PdsSC0AALqxbxyDc5JcWr177zQNXA3oyNlUSXPM20rD5iuNte37xfmspkQG2xVQB511oVNW65jRNMeqcwYMLhxSm9aYZTZVkqo7ylQ6lejUlUQokvpYdcxMCYWSmihJEoETqd39QnkdSq1h/DJJrs2qryYbrltRE2ijtxxUYE4wp1pe3MsShy1xjpENNiei1pEzThrnzI0TARFn9rhz6iLIxDhssXXeZIcoTCYRpCjVvPsKluR2v4wqQ5L+b6COHODE6gbAqNut4LAFBMwhRBSD11D01vEOCAgImGdosltAsF0BAQHzE6NutzZqhy2OOOKII82VjSJQCMKqtSJOGDbRyKYBpWR/LHrGi2LusW2GSUsEs+xZIurTICOGegbKS7NRU0s+U1nUGplnzaP6qDXqo9NSaRtQV9qPVE8VR++N6JcFrzyCEEWvNtFaAi5dsbFNlcxTsLyIrLB2IUTCsi6ivGwB0BmHKlk13ZkAK8d8sWPbZLeLfLxYn3e6yMZdmwBXdJz5aRYN76+JKkEOd9EHhi1gWHBmmPXidw1t7UTJzfQ+hoy9/mg15zXzvIlJk/VsUC/TU5mbphw9GGk4QGxWYZvMOkVaqNUzRUrX2yql4c3b7Q9hy7ytF48uttsj8lT2yPNYS27tXQ/z5tn2sgekbmgbMMh7XbX/5ifjwDApkSMeqQ7Y8NBZCt0FSYms71/m9TtLMzuniKS+nwFjGLAcqlxPs2SKx/aKi9F0R5lKqNSwZMpn3kh5BGXYZF4+L2HQUqUtU0ZZNcqm+eNeVo0erybvULbNZ9nccTpOaOnMhCn78Rk2TlIinehIPetmhEtE4lIlVSzBy3skxlPby43HkW0TILLIY9LMGpXmTpgkzSASlzZJe8HR1gOObStaBegs7XkPmzDqdmv6xTcBAQEzBo+Sxn8BAQEB8xH97FawXQEBAfMRs2m3Vq5ciZe+9KVYunQpNt98cxx00EG4//7719POC2zUDFtSMmyChEAFZ16tWBIZIRGBpPTyq6zaYsKaAVVWjbJt3GPVzLhat2YZJZk5RknmPsNWV9vQhGpU2kZWmSs0F2WUgza/5rDn1kREXCoXMVLaRYmkIlFr+DVvU5WEVCP6tlUBB0RZzB9zgSgpItFRC66eLXcNtynrxheX891x8JJVU51xaMO2dcYhFhfjuDOBuIZtU2nuWgVkuW3wSaOAgCvS5dlw9WyMNTBsbHrRns985jO48MILsXr1auy888649NJLsfvuuzeuv+6663DmmWfiwQcfxHbbbYcLLrgAr3vd6wAAWZbhjDPOwH/8x3/gd7/7HTbZZBPsu++++NjHPoYtt9xyWvsLmDlMDatjnZi9vqqfmiqDViz3GbY6Jo2p3LE0lElTeS2j7zFsTbL3Zk9NYiGAs00SvihGtd4KAKN2jUeg/OJ0MwPMzrR2a/sxbfSl1nUQ4MTyee87c8eKedeWgTJvrHwdQrBm5q1SJ8i0ch+Epu+GmlplPUSEuclumWMBAVXotAPF/e/Nuho1JR3ztqFYtaY1hax/eX+TK6TK1aW5MTxWjc6btQZ0LV0zKKq1a3Vz5veEs1rmLZHKPjbpSojIsGk5YdgIk5aVTFqqIJPifRGZgCjfO5FIu0bEwv7tWJpDmEwlyrYRcRgeRxBmPefusZyDCyd2QkVKAL/OzYjODYLZtFs//OEP8fd///d46UtfijzP8aEPfQivfe1rcd9992Hx4sVDnWtQbNQOWytiNQ4bSX0UnCg/Cs9JM33TlrR8UREAWJI4J60VOVo6ERztiKQ+mi9vmYKlxOkoHTYmU9u/jMncS4mpTYOhoF/IPHI3OUKQm58IEP6XvRaRvUmoU38ESieNGqtynBFHThPDpCpGaqqaeA4nRlLtM2fTRQVDzAsDkCRFZCRqM3DjsOVdsLQQI2GtxWBjpQBJNgldCpOo8bUuVbIzDt5eAwCI0w7ixaXzNtn1VCVtb5c0h1K9Xzx1Snz9wOO4XrVI50OdBwC+8pWv4NRTT8WqVauwxx574OKLL8aKFStw//33Y/PNN+9Zf/vtt+OII47AypUr8frXvx7XXHMNDjroINx9993YcccdMTExgbvvvhtnnnkmdt55Z/zpT3/CySefjDe84Q248847h95fwOzAKMOaq7MqkNGvtxowYIojdcxk3ugg1AaOhhAYqTpXPWl65XFjk6BIkIm7ND6mctJXrP65qGOm4eyWQhFsKt6C/gEnP2Wy70srtkL2wpmuFVziROWzSJU0zptz8ITSfgql6UtU+Vt6P3vGlQ1XREiG6UPUaLeAadmugIUPlUuvDxpNg6w6aU5hcThBkfXppNF0x1RV0yCLcdWRM3P2PcDsO2wc/pzvsJl7J23vQ1NFxwxJud+EMwgjmGLfx3rHbFjnTUjl/d1NCQn9DPAk8hw2bVIlJbdrvPRIWYxVPngZymzarRtvvNH7/aqrrsLmm2+Ou+66C3/913891LkGRUiJDAiYQ5ic6rp/w+Kiiy7C8ccfj7e97W3YfvvtsWrVKixatAhXXHFF7fpLLrkE++23H0477TS8+MUvxnnnnYeXvOQl+PSnPw0A2GSTTXDTTTfh0EMPxQtf+EK87GUvw6c//WncddddeOihh2b0ugMCAkYX/ezWKNSCBAQEbHxYn3br6aefBgBsuumms7HVWmzUDNviVoykHZcpRiXz5Un2O1ZtLKlPc6Rs2uJybVtwtAiT1rZpkBxClgxQ2gXLSipXZmClWAbLaRpkBp2XRbdZatOPVE6KLGlxOefuQ1cWZAIAixMbPWVxyxWXRy4qrkURdfAi3pUidJtOpF1kKFMauYkoqeL3Yo1Gmjt528xI4Cpf7pZGrCkzEJd7F9yNY+H6z8XcF2oxc4lwrFucLC7fU8K25V3wVjEvxpaCT64t9jg5DtYu5nVnHHysYN6iyXGXEtlJkddI/2sSPYq6gxfAAoCIIvCo9zJkqphbs2aNN99qtdBqtXrWp2mKu+66C6effrqd45xj3333xR133FH73HfccQdOPfVUb27FihW4/vrrG/f79NNPgzGGZzzjGY1rAtYvTNq2CdTSqGtjv8V+YiFEwMit8UUuvDVen7AGtq0OZr7CqHliISRd2wpkkAwBzSNHoGmScMgjwjCx2lRuTeW1G9O6KQNXHocmbJtPVBH5DzvfRLLTzAHOdCWjwImRuLYJ2kXRWRElL+aZHVfFSwBAcNH3c9ADL610MDTZLcDZroAACpXl0JHwJPtpDzUqOkLTH91aJwRG2Tg3Lz0mTdYwaflkXisoIlPSh60h9bHKqtWlRKZK27RpmiZZx6pVBUea2La6rkGC2ADze/HT2QzKpAnG7H4TzuxzCaYhyx7EUjMIsgYABGlToBUnLY40hJw+32NKS0yaZHF+BV0ybyKJLHPKhEuVFIj98yiXXjkIBrFbg95zUSilcMopp+DlL385dtxxx4H3MywCwxYQMIdgZUP2un8AsNVWW2GTTTax/1auXFl7nscffxxSSmyxxRbe/BZbbIHVq1fXPmb16tVDre90OvjABz6AI444AsuWLRv2pQYEBCwQ9LNbjDd4rAEBAQFziEHs1qD3XBR///d/j3vvvRfXXnvtet3/Rh0KW9yK0GpFiCpNsW2tWiuybFuVVVta5tdSeX7DqrUFs49rcYBlRSd21plwohh5B6xs+MeySVs4qbsdSFNEmWdOspRI4JrIdw+4cF3go8R2imdJGywqIxOtNljSLsZaAcKPemvGG+vjbP2H1q6GTWnLquUSlknr5ArdUvY2Uxqdcqy0RmYKhrXfhNt7KaRuzYxjwW0NW5swoW1Sc1gn6tIWbbSWLCrOm3Wgs7HiJceT4EkxFou64IvXFXscXwM1XjBvrD0OXta8Rd0OxETxtyyk/8tiZ5JzPyypzgWHEDVxk3Lu4Ycf9pyjqSI96wtZluHQQw+F1hqf+9zn5mQPAQW4zMCU9Eq1WF3dUpPsvlZAyaQxyqTRujVF6takrK9tq9gkXbFLuqHFhbFLxYtxTVE9yWbGLePDuIKmokgoaxA4XIYBm0J4qYRh9BUZS+2yBOicYdik1l49m2XetPbrU6awZQCpO2HMXOJePZvwBEgYqWejNlG79gvMReCdkIxuFJgxMdpqra3SGvkQ9TSNdguwtisggELLQppf1Qh30SwVmebePOA3vKYS/8PXrVXFSJRdY2T6ffaMMmyYUnQkq2mSvX4YtiZZf39s6L7qevNcBZNGmTr/eZJ8arvKxWC213tM4mrYZCkiIhBBc/cZMNL/FBIZmDQiKUXzbipiM/Vep7Zbw95znXTSSfj2t7+N2267Dc973vMG3st0sFE7bEtbEVrtyHPSxmLR6KTR1EcjOtKKGMas41A6FlDgWXGTz9IJ57Clkzb1sdonTHeLNTrt+GmQZkxvjirwOsKXjhmLE+uksaQN1iqdlDwDKx0NNqbATP2lcfQYh1bl48hNngL3bnbMBZ+rwlEDCidtojSSXamsk9bNpee8GYctoz1LqsoJJWi6aswZ4vJ9jzlxiqP+fe5agqEd6XKcoD1WOKwi6UKbv013HDw2vd8WgY8V6ZFqctw6b7ozjrjlnDfZLRxu2Ultv5h4Sj1MH4zVR6RNmtOyZcsGYrOe/exnQwiBRx55xJt/5JFHsHz58trHLF++fKD1xln7/e9/jx/84AeBXZtrKGmFiSyaHDOSvuh6N2qiOOscME/YiMzrPLPziqRme06aUj0OWxO8WgGSxq2j2DlzUQIWmdcRuXxD4uxpJC6dknPrYGrtfyFbu0VER6RyN0y58p2z6vFMupTuIuBUn9LdZMMojKNFUx+p8xZzTgJUviMnOBEjUW5MUyWL53CpM4zBc9ioSmUVwwggNNktuo+AgKngOWE1zpvn0BlHT/prrTAJTd+Tioy1dd6K9ZqsV24NKdWoExeh87QsRGqaBuk7au5x7jUPKzpS15etOAe9zswi5o2tA0bWF+ejr4OmUPrPKTXAyXuqZBko4hrMOtMSrHwiLbV1urRk9r1mXIGVj1Vc2cdq7r4zNFfQxPkzf1evh+gMg0GD2K1B77m01nj3u9+Nb3zjG7j11luxzTbbzGhvgyCEwgIC5hCijPjU/RsGSZJg1113xc0332znlFK4+eabseeee9Y+Zs899/TWA8BNN93krTfO2m9/+1t8//vfx7Oe9ayh9hUQELDw0M9uDWu7AgICAjYEZtNu/f3f/z2+9KUv4ZprrsHSpUuxevVqrF69GpOTk+tp9xs5w7ZsUYT2othj1dqCY6xkaZa2IiwqO74vSSKb8jgWcSsk0oo4WmU6Ds9KYYvuOo9VQ7dk0sbXQJbpdXpyHKoz4cap6/tliihlmnlFt3WgMqciji3VLNoJuGHYWm2w3LQKkGBlJJxz103eCoxw1+9NV1Miy580+iyJoEhXSo9hM+OJzDFsqVSYLFMS0lwhzY0Yie7LsgFFuipNXU0ss0nFYOrY0QhjsS7XMrTK3J+xKEa7XbJqUdtPlYzK+fZim0KqO4uhxteU43GwVvE3Ey3Htg17QTXVfEynDuTUU0/F0Ucfjd122w277747Lr74YoyPj+Ntb3sbAOCoo47Cc5/7XJuTffLJJ2PvvffGJz/5SRxwwAG49tprceedd+Kyyy4DUDhrBx98MO6++258+9vfhpTS1rdtuummtp1CwIYFo/0ZAZ9JA3zhEK+vWo24iJKObSMiR5RJ03nDWEqXnk3YtakyAWi/LxYn0CZDIKLjDIhJhoAw7FkEFtkTOoEkpQDePzVGg/ZZo2ndvlhSMefSuH2GDV5Kd0bssqpE1qug6UYFq0YYtvJYLLhlwWLOPeYtFoZBI3LdnAqTlKybcuejDFtVnKZqYgZhCO3j+9SqTcd2Dds/0uDaa6/FEUccgTe+8Y19xZIC5h7Ve5hhUtmAZrtSB6U0YeGGy3pZH3DM2Po791zCiZEoy7YNUh6ilfJT5Kd8HuXuWeGL1QyC2bRbpjRkn3328eavvPJKHHPMMUOda1Bs1A5bQMBcQ0TcNq70MA0FpsMOOwyPPfYYzjrrLKxevRq77LILbrzxRiss8tBDD4ETY7fXXnvhmmuuwRlnnIEPfehD2G677XD99ddblaM//OEP+OY3vwkA2GWXXbznuuWWW3oMVUBAwMaBRrsFDG27hu0fafDggw/iH/7hH/DKV75yqOcLCAjYODGbdkvrDR8IGEmH7bbbbsOFF16Iu+66C//3f/+Hb3zjGzjooIOGPs/SJMJY2fi6vm4twljJ2IxFzIpbjEVOqp9lk+DdQqyCpaZubRKYLJgYKmChJ9bYujXVmUA+XjZn7rjmzJIwbLQ5M40i0DxeEUf2dx5HiNoF6yHaCaKxkiXKM3Ajo0oj4VEMbbvJx3aOSnVTmACsJrUbVFCkkyt0y32u6+aWYRvPpGXVJlM3nkglUukYtpQ0QKTRXhOJrjY1N2Pa3HxJu/hIL6Z/x1aEJeWapUlk2y90JcOYNGxbgtaigknj0QRQvh8sa4OZlgetcVsXqFptaFODmHSAqBjHQ4bQqJJ5dX46OOmkk3DSSSfVHrv11lt75g455BAccsghteu33nrrOTFKCxWzZbegcoC09vDr1kh9GpHj76lPK2vgdJ4VbBpQiByRmlmQWlozD+VYNa1UPcNWIzbChHDMGhFH0mnHXlOad4oWJACQuHNrKV0Nbgxo88XKctdQmwuXEdAglkQl+as1KLZmpWTfu1LaWrXMY9uUZdIypaGI8IDXrqSGreIkgluIixBhJcK2GWElKrIkuCLzrLbVSR3rJpj2nocRNs5r6o1hGbZmGzWs7aL9IwFg1apV+M53voMrrrgCH/zgB2sfI6XEW97yFpx77rn40Y9+hKeeemq4Jw0YGLNlt6r1R/T3QdgzazMGYFQ4Z9Dl+bXQQDbFAwho82nBHOtO5wFNxswalmLOFo654wCZq6s9G3xvblw/J6hdaXhNbo1vk+rmB4Fh1bjgnp2b8nF8MGNhm2XXfIaGqWubTbs1FxhJh218fBw777wz3v72t+NNb3rTtM+ztB1jUTvuSaWj/dTGIpf6aMaxSsHKm3XeHQcrUx7RKXt6rf2T76SV43zdOmTjRapkPtFBZh22FNL09yJ9RWjhLAUTzH2AOUc0Vtzk8DiGJA6bcfxiqewfmgmnyqbjGDoqnZHEpEzm0FF/g1iIjhCVyHKPXSI60pEK4+V4XSfHuk6xl7WdHJOZcd5ymyo5mUpPeVLX3DwwzmrTI53DFmFJq3ilS9uRdd6WtWMsLdesa0nrvG3SipEm5Y2a5M55i8dsPzeWJtZh41FshUnYZBvKpkpOAOZ9HEx3wUII1qASOQ/yHAJmFbNlt5hMwSRJR9XKc9KcoIivAKlLVVqdp9Cm/1FOnDGiSqvzzDqF2lOrJY4UEUKa6iaKfqnyKCbOG7dOGoviipPWLvcuXdoM585Jk8z1DlOyx1GrgqZBUoVHqZyzQlVurV2TyqY+dnNl0yczqUgvN22DT8U5+9+ICe47WtSposJKERnH3liVY5cqaZy4JCI3Z0SARPBCQdI8v1fMzxiyITLUGu2WeREYrJ/RdPpHAsCHP/xhbL755jj22GPxox/9aPCNBwyNWbNb5c21+dQoOLvBuJvX5HNl73MUmVMK3DhjioOLUhRDaWgTSBccrLwGmWAQ8QBpdyYGppTn3JieZLSvWargCXSk5Nqppj/6giPVsRECGUCwqMZZq5u3KdLkWMKZ5+C5/mzwxp7CJMq07PKF8kTY91EkHKK8jxKxsA6bd28qGDhx5CyxQMasVHosxq5Ehwlu/8bUqWOcg1uSgQ/tsA1it+YzRtJh23///bH//vvP9TYCAmYMLjh4DUWv8xEI9wQMhWC3AhYKmuwW4GzXVltt5c2fffbZOOecc7y5fv0jf/Ob39Se/z//8z9x+eWX45577pne5gOGQrBbAQsFg9it+YyRdNhmC8taERaXKZEmfW4s5laef4ywam3BwE3KY3cdeLfs09Udh1r7FABArSt/EoYtX7cO6dricekalwaZTUwinyzTIDsZso5Jg5RWClVL5aXWeCk1ZXSDJwJivBS8GHMMW7R4rKeXCVBGKAzD1u1AG5ZIkZQqK4/tUq00A+nDRlKLVH3vtYlMWlbt6YkMa7vFeF0nw9pyfjKVSMv0SCUVZJmOJMl+KdPGOLPvAWMMovzbROXfrpUI255haTu2bNszFsXYZFHBmFG2bSJT2KRcs0k7QlqmWmUKGCuFTMbGngEuTN8nAWZ7Q0XgJaumo8S2U+Dl6xwUnETXKXSQxg5oAJN5ITpCUgBpzzQq2W9THCmrlnYK8RAAOstsD0gQto22FFF5ZvseVXsn0Z5KtXsl0VETGeVJZOd5EoGb54xisPI8jKREYmwxdLdDzmnYtsgJqfDIiqH0a0dC5bddeqQmLUic0IjJFsiUtvPdXFqGLZW+aBIdG/RtV2LTHf0xTfuuS4+MBLfp+TFXlnlrCcMSVlImTdRcu4i71LpH7j8fIv25yW4Bznatjx6Sa9euxVvf+lZ84QtfwLOf/ewZny9gw4Fxnw2ht8dauN5qIokgyzEnt6imXxeTRGhtfdzCprCtMgRz/dYEAxkzTw7fsWqMCLK568PMKfTOFWBD9mFzkxz17JufBslqmbSECBgl3K2xjH/CwQmTZtg2Qdg2XmHb6tcIiLi8d6owaWaek/IeUfmOsOMaRm7QtErzuqayW/MZG4XD1u120S1V/IDeVI2AgLkCi+ojPqqpMDZgo0GwWwHzFU12C3C2a5B+RsP2j/zf//1fPPjggzjwwAPd85WOehRFuP/++7HtttsO9VoCZhfBbgXMVwxit+YzNgqHbeXKlTj33HN75pcmAotbwpPsp3VrYzFHosuoTmccvONYNUw8BQCQa5+CWvsnAI5hy9c8je5Txdp0zQTStYV8fz4+iXRNUcOWdXLkk8W5804OWTJNMpWWVVKVkIvJB2acuYhGIhCVtVoyU1CpaxBpwAS3cv88jsCSMrpOmnSbehWmcle8X4mam9+Udo1mM1Vf61EVF1nXKZ7nqYkMEyXDlmcSeVk4kafSMmsyV47NqwTuTflKwbCV0Zgy4tJJBMbLWsSn4hRLS1bt6ckIm0wUbNgzFsXYdEkx7kiFbu7aEBi2TWqBvMyZlxoYiwrBg5gLMFG+jzyykX4exbbxOF/svqgGASesYXU+YONGk91CKdHv5Pt1LauGJlat6657nXZcrVq3A2VYtT7tRQybpiqSytU6NhpNpzUJPI7Ay6iqyGLwuIyst6XXlBsl+w8urO3hXABRWW/LI0CXbJtWA5XvWz0lDWfDpKvDtUybdAJK3Vw50RFV35YkJdkF1RYlNJLuRcIJqxbVMWzVNiaGSYs4urkbx2U7g8ywboJbti1uYts4vKbcGnqgOhqDJrtljg0K2j/SCFmY/pF14kkvetGL8Mtf/tKbO+OMM7B27VpccsklPWmYARseTXaLxwI8jlxjZaHAZK+QCB2rmtpYzjlkydarbAg1kRKM3EeZdiFcMEhTb5Voex/FU4WkbFhf1LDRhtNm3rFpdN6gOtfURHsQTFXHVp2rq8VrYt44Y169GlC8Lz5L5tgzK9/fp7bNsXMRuQeNPbbNfBfwJPK+I2i7qqY6NyY4eD54VtNs2a25wkbhsJ1++uk49dRT7e9r1qzBVltthSUtgSWtCG3BvR5rVlxEdsFKBUjeXQteiouotU+69Menn7ApkenThZPWfWotun8qHpeuHbdOWjqeIh0vDEy2zk+DlJlx2Jr7Sji6mHsXUbK4cExkJmvVJDn3e7WJdpFepFtjRAmuvAmq9HSqQ9HPyBTea1KEr9EhDptJfVzXze14opMjLdMGs65EbtKOuhLS3PBIBVWO69TWitfEbKTEOGwi4ohKgxK3Ivs8a1sR1i4ye0kwYRQrl0h0FxfOWzd3zmamImzSKt9TrSF1cc6xKEG7VYwVc+IHnHNwM550qVuDgJPC3Op8wMaNJrvF8hQsj301SEkcMyooUqY70tTHqpNmegiqLLdpSXmnSxy23NoVlZGxanbWgP5qtmYctRP7ha2VgmiXN1D0RFxY0RFdvvbiwTGgYvseeKncNdBEyVERByVTyqZ1G1tG07s7uUIn71W5TXNlbYlUeiDFW/t+0PR2zj0xJZuiFHGrXjyWCM95M71CM8WtQ2b23o60tWWFQ+ecN5NKqcDAy/QszQvFyHwIlcgmu2WODYNh+ke2223bdsTgGc94BgD0zAfMDZrsViHaFUGbnopS+c5baRNkmrkbdJMaKThkOaey3K2t3MBLXgbYiaMhEwmZlutjYe+1mGAQpeiYjDl4Juy+ZPnYaExBlooisVQ2iC5zRVIfUTs26Oew9ZuronpZDeewVcaRSTFk3n2leS+N41akLA7npFnFyDiCIEQBT+Jyjf9dYNYw7ogFxjlEub7OSTNrGBfg0eBKb7Npt+YCG4XDVqdOFRAwHxAYtoAmBLsVMF8xm5HqYftHBsxvBLsVMF8RGLY5wLp16/A///M/9vcHHngA99xzDzbddFP82Z/92cDnaUccYxFHWzDSb41D5EUkmnfWgJXiIrw7DrXmSQCAfPoJqDVPFOO1T6H7J8OsrbM/TUpkd00X3TVFBDtblyEdLyLbOUmJlKmL8KbKj8TURUjiSSe1Go1FRASACHQIDl6mPvI4gijFSGTm0pu4kkSuu4xSDMCw0X5GSrtortLaSxFKLduW26h0nklkXcOq5Ui7bj73BEiMyIEsekKhlPo28t6AFf0QURnFERxRGemJuhJJq4xCtxyTN5lKG/32UpqWJI4pVC7l8xmISP85ACUb0GottawaZdvYWP+ajSo4SRWrzgcsLMyW3YKShegI6aWmSS81ZUVEMuhuwe7rtOMYNpL6KDsp8knHsOVlP0gvJTLLoVLTn60qOtJsK6h8M42E88SlxGipbIS1KlxibtJZFENnjlWz2QCJhNczsolZM2+bdmPKttGUSGPLcpLe3ckdq7auk1tWLc2VbVGS5tLakpykRFbTIynqREciLyXSsWoTqbTtS5KII02K5xpLhE2VzMo07lw6Zk5qWIatrbl9zbQdgEIhPDBAeyuLJrtljg2LYftHUlx11VVDP1/A4Jgtu8VabbDECQuBfrcTu8IEdzYmNtlDmevDRkRJmODQsSkJycHjMqU7y51wSSIg4pIJJ2ybbke2FEWNubGW2o2V9uatIJxSRBxOu6wDqXtaMdEWIhRNrFpTCjVFL9vmi4UAvqx+wUwZiX1GRDyYx5ox7sbmHFbgjpTi0Hma+lgwY9Nj1aqpj7xOpIS7tlTgvGgLMEQrpdm2WxsaI+mw3Xnnnfibv/kb+7uh348++uhgvANGCoFh23gQ7FbAQsGoR6oDBkewWwELBaNut0bSYdtnn32sKMVM0ObMsmtjph4q74B3ClUj1l1rhUbU009APl2wamrdU8ifKti2zhNPE2atZNX+NG5Ztc6aLrpriqh1Np4iXVdEgNJMYlK6YlY/B9rtsa47fcI1xsooVVJh1Wy0JHYFolHbRctp5FxnqdcEt1jgwhWsUshP33Jl96tJpNovwk+JVHZqGTZl2S46zro58jKKL7uTUKbGxovCkb1xYUU/nPhHAtEqBEKiJEaeFR/vJFNE0EQjp/uSbr9yWa8ct9IazxyL0YOYo5UsLp6XTKtkrHdtH0SCI6pTJxqBaE/AcJgtu8VkBp0xV4eWZU5QJO1YCXydk7q17qQdy04K2TFMf9eyarKT2ho2meWQnbLRtlSQRHTERJwBv+1Gzz45c81PBSNCIzkUYdg0bQLuPb6MhAsXVWVx4mxWnoFF5b50zTVaA7NdqWBZNaVdHa4RGulI5dXjmhYlE6m0rFpRz1bMdysCJFY4SunGvzmjAgLm+4cwbILnhFUT9nnHYuE9l2llIksBFqW017TXtANQWqNV1uNK7oQSCrZtuBq2RrtVbHzg8wTMf8ya3UpaYDRVUkkwcy1nmb2ueRw5YSPLkkVQpTiRktIKFakstyw/T327YmyWyjLosjZW0vsfqW09m5JOaEQRxkxmLotAE/ZMSeWJw/miKb2icTR7oComN13Qmiu/fYph1Sjbxj3ROmqXHfPm6tVck2tWK0Di2fOEsmeDCYrYeSG8ujU6du1bBFjJtIIybGZdvvHYrZF02GYLYzG3zpqXBln2W+Okx5pc+5RTgXzqSXSeeBoA0HlijXXUOn8aL392rJPWXdO1QiPpRIZ15RftpFQoa1mRKl1JhXS9PgyKHhn0uPlwSfBJcyG6C05mEjJzRsrecJHUAyin+EYVIW3xfsP75jtu8G4OjKOTk8L7NHdGT+bKiovkqUuDzNMMskzfkqlz2GSeQpl0LzinjZGLlscmNTKBTMtzJGOQ+ZJij+Q5Ve6cN1VJXaqD4K5vB2MRvCBM+V63ksX2r6Hj4Rw2TtKhKNQIRHsC5gZaZkCOZgVIIi5inDc5OeE5aXY86TtvVGhElsquMnO9IWmfyGIvU4iNeMXr5Q1RliMqU7S1Up54iT0HJykxUWaVIXXmesUxJf00SJoeSeBSmt2+fdERl9btUiNdevdkKp1QUeYUbydS6a2xNob0z6TvVVVAiUZ0jfMmIoauSUsS3J4/iaRNc0yTyAaaqo5icVxgMUlZr5OrVgJw3yEKALevfRA02S0g2K6AerDWYvB2Qu45pAsQRy4Qw5SELvs7cnPdK2kdNi2Vp1orjR1su3klFUTqnDrngOX23J6AkndO7Zw0RdIgpfKcMU3uIwzoY+lc3ZiiX2q5QVPKnu+Ykf5sJIAPOHvjOW9EdKRIlXTOmznunCsOXzjKKUDSeasGWUlrFLETEeE1Th3jwvazZYKmPgrnkBKHjXFeHJODO1qjbrc2aoctIGCukUQccc0NFRuBniABAQEbJ5rsFhBsV0BAwPzEqNutjdphSwRDSzAIIt/Pskkn37/uKZcGueaJxjRIyqwBwCRh2LLxFOOluMi6XNk0yIJhcymRJr5SLTg1H6FUuX4ZY4LBdUXjiEuqjieUVXMS/5RVoxLdXoSrRLXwvwk0IGSlsrVjrNJceeyViUJJKo1LRAtkd9KyY3k6adk2lad+YXIlLRIAmGHVosSybVGeWpZO5Uug1Fh5Dt3YKqAp8uKOAxxlBAjK9jHiMUdSMmvDMmwiMGwBwyJPoTP4TFpGUiI7hT2ikv35eAd5meKYeymRqU19LNg2x6oZUSRFUoe86HOlwJ5Gc83vvGPaiXCoMrVGK/c4QQwJbT/C49zukccRmCp6suk880WISjaNadUo52+g4Pdhs2ndyqVE2vTuhn5rHtuWSnSNrL9UyNOatiRae2mjdGyi2Yyw+HnmJLdz5rIBuoIjLd+/QtTEtRCoZgnQbAGlxQCCBxyAQj6g7Qea7RYQbFdAPVirBTa2yIqOGKYLKNlymupMvvPNcWYF0pTLKFAKUU3LEZlmXlqlGdP7H+++iDxWS2nXa9JrUpEelNUUSMqQ1aWJ16VBNrVvGgSswrbVSdIz3sy2UWl8x6b5kvnFnCAtoSLvuGsHEBFBKTcWSVxh5MhjS8E4cF6kuReb9Jg0FjWkQQonOgIALN947NZG7bAFBMw1WhGrjfjwaP4bj4CAgI0TTXYLCLYrICBgfmLU7dZG7bBFUIigClYtK1ga1h2Hnijq09S6p6AnCgESNb4G6Zoicp2umbB1a+maScusubq11IqOTKYST5sidak9hi0jQiNpTVRGME2ERmBJtaoAiWkJICirRqLfRZRoCO3TWQKN+JrgN2W4ino2J9/vGDHKjmVuTHLbKUQZoVF5Bm4ib1JC1YiVaN22Y1pDQnObaeF/EnFbtB/31LOZWkNt87N1NFz/maacajkC0Z6AuYHOMmhGoswZaZDdGXd1a90u8vFinHe6yMad6Eg2PmnHuWXbcisokk/mHltPZa5pTUcdaE2EKVJXknt1XdFYr72rRm1lKUIkstxG11nSBsoaNijlMgQGZIeMjFKRDVDMZcoXTgJ6RZOc0IhrUdJNpSegZGrYKMMmpbK2r4nZ55yh7AoCRpraCsEhy/qMKOaWbUsrdWuyXUqfDyEaAlSlwTmyYeSx+0Sqg+0KqAMfWwredt+/Wkl73WrCsDHl7leYvb6lrV0t2gGUF1We2rWCMG8RYc+Ux54pKOnYOyNqUsj097Jq5ljdvKpl23ovoqaspdlk2Ox8pV8hbYNk7TJZU8eq0bWMyOBXRUG4ED3n6Mukmb1EyZRMWlHDRtZQKX/CtoELcEV+nwKjbrc2aoctIGCukQiBJKoxOGJwIxQQEBCwIdFot4BguwICAuYlRt1ubdQOG8864FkMlk6CpRPFZHccaryU8h9fa8fZ2gmka4s16doJpGuKMVWBtA2yx1PXaJXUra3LFTqkbs2walLr2iaKBZNG9lsGHFJVMGvFY5n3WMeq0Uh4pZHjemTb6qK8mkhba1Wt6XAsmGHEVObq1lSeQma9Ev/++Z1ypJii3g1wimyMO1WkruB4uhy3Im6b0RYMWxnlFhxxOR9zblVg6d9JxS6COAiacqqnqqcL2Hih8wyaSyffT5tiZ1lt3Vo23vHYNlMflo13kZWS9flkjrxjVCIdqyYz5Utem9qQil2p1lGIWNhziExAlTVeusKumdoKlTk123wytephKsshaHRduqi7e1O0U7clTbQ1c+qQWte3JlHasf6mls2rW8ukVbylqox5JpFnRPE2c/VsMnf2Tk5R30Jr2BhnrsZXKIiSYVM5R0RrAGvOMxXDxhlDl9VH9TmDzdQYBP1qQYLtCqgDG1sMtnixY9IAV7cmHdtGG2pTBo6ROW3r2QjbVqmDm+rctIZNV+rTPCaNMHIGPqtWUYWsuY4GUYGcCeoUJHvZtl4Gja7jNWyc17S6wsZR2X2QmjfLkkVxo9Kjq1vjRPWRnKemQbZ9Lveii7VD3M6Out3aqB025B0gi8HyDlhe3NioyXGoybJovzOOfF0hLpKuGUdWOmn5+KST6h/P7Njc+GRdiUnTw4ekQVInrZ/D5u57GIy4vtSAQk3q3DT6o/D1GEmY7oe+6ojZm8JKH7amnmz0p5svWxx0J8HJmjwybQA4sq5JP8ohyhzmtR2BpJQTbkXcpke2I46JctwSHElkUiU1InPDN2SPlUQ459DDCPQECZgbaJlBZ9ymCOk8s86bSjueTD9Ng6TOmxEXScdTKy6SdXI7pk6azCRk6m5mmgJBrp9P8VOmysr60wASBRcMuXlcnIPHxb5UHHm9IzW5EWOePZjejZBUznZS0REzl+YK3ZqekmnuekfKXLu2JMR5k7R1SO4k/rWud7QYZzaIxDmzaZBCcM95sw6mEl56ZdVRq9pgmuptwBlzKd1Kg0v3HgyCRrtVPNHA5wnYiJAsAqN9SolIENMuvVkrcqdDUyJNoIYID4EGZmmKpZT+Y+ucOppSTZ7LS2usrrFbp70o+9ugmaQ+DoumVEmgkvLIa+4BicPkzifqnSTiaDXK7g+S1hjFvjNW6bFm5xnZFxlrxoF047FbG7fDFhAwx4iJQ0ihR0BiNiAgYONEk90Cgu0KCAiYnxh1u7VRO2ws74LlCVjWhe4W7JnqjDtZ7MlxT/7aRai7NhKdT+beGCgERerk+zPtM2ySiI5QuN+11zy7Dk3HmWC1He/nAjSCzBoYuNqITwVTpUQCsAIl9JyMC+Sl9D/jwkr/5xGHKKMqecyRZ8X6iU6ORWX60UQa2fTWicw1r20JjnZk0iMZIm6i38MxbBFniILoSMAwULLoBm0+63lqi+0pk9Yr32/WZEjHTePsvDYlshAgIaIjRkSjIX0bAIQRRcpLtogpaJPSJ3XZEAOQglmblJGxynKvIa5JI1JS2nlOW5HQ6PcUkv72raMNpcmYMmtAr1w+ZdskSYk0TFqRBknma5poN9kvwLdVNg3SEx1pso+5HdUxaTQFiI4zxSDKrUjOoLj2GotPhSa7Zc4XEFCFTsagEr/tDXOKPGShttczc2plbgzUs2ReujRl7CriJvQcXppjL9vWMzZrh2H2G6759YIB7qOA3nTJnsfWyegDHmPmzjVgKmMdO1dM2J/aG/fWA2lW2Tfj0Mng7++o263571IGBCxgJGXEp+5fQEBAwHxEP7sVbFdAQMB8xGzardtuuw0HHnggttxySzDGcP3116+fTRNs3AybzMBkCiZTKFPA33UF/LLbtdFqSSPUmXTF+Zm0TWVNVLVgz4rnkBoek0Zrzhoj1cz8ZJZBo020/Xm3npHmiIxErov5XgnWas4wUEQ/Bomz0nRfUzDPWX00V1DZaiL0UchZu8gyrTOzhbBcQNfUqDUxbWZNtd5NSzdWZcGyzMe8CLmpR5Et4ZrjZtIybJOZxKIy0t2VCp3y792OOfKaprWDQLAG0ZEpmNWAjRc6y6DBXZF8lnn1XkaqWqVOxEN2ula+n9aqZZ0cWVmDS9k2lbq6tUwpUm/bXDfrbJK2vyfdYhwDyMha2zRaMMjympKpBI+NXc0hiOR2bVNbyrYVE33fN+XZXsKgaceMU1YttTL60jFvuavh81i1lNa2ubHKnYBSsfcpGDYhoFWRAaCjCNyycxq6lK+uMmGcl/apxvamEffq78w45hxxaZMzpSHUcDVsTXbLHAsIqELHbeh4kT9XrWOzB5R/vKfezcz7bByjj7fsXUO9WQOL1iPNP8062ZFDDevms2sNDBx9HK03q9aaMcOSsXrGjKzpeSxd422QQcc5BsVs2q3x8XHsvPPOePvb3443velNQz12uti4HbY8BctT6KzrVNbSjutj5PUoSt3NTyptuo5MpS2+b3LMmi5342hVBUfqnLHmeWZVDEXCIcpUPl5R9BGl4hr3HDanAEQv1h7auQKPqa7u0etlJuzY9DzjjFlxDx5xiKjYlyRFqUwIz5Gzzmal30b15qcprZIa6V4Rk/L5c9eLSVKFuDTHRBqVY4lOUsx3coWuvaHTSITrMTUMmnKq1TSj1J/5zGdw4YUXYvXq1dh5551x6aWXYvfdd29cf9111+HMM8/Egw8+iO222w4XXHABXve619njX//617Fq1SrcddddePLJJ/Hzn/8cu+yyy7T2FjBLUMpLidR5ah02mWXESUshSXpkTlIfvTTIOtGRXFnhJNonsm9KJHHUgLJ3pEFXeimRvEw/Fom2zpjMFCJV45gRBbcmEQCm1UCBpjpfU5HXRB22urGf4qjrnbeM9JTMXE/JQVMizQ2jygVEmUJWddIYkUYztpURx83ZYaJ4S+xaEilkqhRN0sx7jYOgXy3IdG1XwMKGjhdBtxaTCd9Bs58+NZUTp3sdOPjOX/XcrC6YU3XEymtsvYYb1kcwYxrCc0Ohbs/0fhHwUhnd4/xxrePFWLNzxpvPRaHjwVMiZ9Nu7b///th///2HesxMESxrQMAcwkTD6/4Ni6985Ss49dRTcfbZZ+Puu+/GzjvvjBUrVuDRRx+tXX/77bfjiCOOwLHHHouf//znOOigg3DQQQfh3nvvtWvGx8fxile8AhdccMG0X2NAQMDCQj+7NQry2AEBARsfRt1uzYhhy7IMq1evxsTEBDbbbDNsuumms7WvDYIiJTKDJkX7XgF/mtn0Ii2lk7lOlespJEmEuCHQQb1iR7tqmFhOVRPE/J5whqT8EMXMjccEt+OEMyudLWIBUaYXiZhDxIZ5c93neRyRvhq0ELS3z0WVafOZNZKqSSSpzYe+FXE7TiKOSfP8ROhDCG77h/A4Ac+LVKAoGfNSGClMOqO3Z7rHmvTJ2gLb8txetNwKBWjkRHzApUYp26solwqZdCljeSkOMGybhSRiDQzb8MbjoosuwvHHH4+3ve1tAIBVq1bhO9/5Dq644gp88IMf7Fl/ySWXYL/99sNpp50GADjvvPNw00034dOf/jRWrVoFAHjrW98KAHjwwQeH3s98xajbLSgJnWvorJTAzyppkDZ1283nk5kTRyJMWt7x2ba0TOXrbUFSPHVTSrefAVB/DfDyJEwoiDIqKmMOWWYFRKT/UbVHEn3ttWPv/fEj500ZDjRFUlWuW8o45ZRhI3ZCEgESlRORlDy1dkrlPsOmVK9do7aKc2GP8bL9SLHejYvH+BL9AOkvySTS0qakucRkVgolVdIjTWZGxjVirnveg35oslvA9GxXwGAYZdtVpESOVSZrrk7yOZwqZdJj5jxREv+8tQzbgEJFjZgiE2mqTKW6FMSB0SdNs/a1Usz0dQO9LFfda+3HkA2S8ljH7NU8j46z3nUNGMRurVmzxptvtVpotVoDP8f6xNCfmLVr1+Jzn/sc9t57byxbtgxbb701XvziF2OzzTbD85//fBx//PH42c9+tj72GhCw4DBVtGfNmjXev27ZFLmKNE1x1113Yd9997VznHPsu+++uOOOO2ofc8cdd3jrAWDFihWN60cZwW4FBMweRj1SPUoItisgYHYwiN3aaqutsMkmm9h/K1eunONdOwzFsF100UU4//zzse222+LAAw/Ehz70IWy55ZYYGxvDk08+iXvvvRc/+tGP8NrXvhZ77LEHLr30Umy33Xbra+8zh5KAyosi/sw1obXS0srVTgwi41pfb6ZrazqKOrf6c7j1DDEZjwl3HjNuC45orKxPSwR4+STRWOTq2eIIvKxhY4KDJ+Wf3ZNgLX9Woh914MwFPzyhEeaiF0UNm4vsisjIU3PkZcRXRBxRuUclW15tmWi5SBxlzVQ5VlTCl8DUu3EubISa1sFxLmpZuCbklVoWE6HOSJF+JptbNEyFuKGRoyznttpqK2/+7LPPxjnnnNOz/vHHH4eUEltssYU3v8UWW+A3v/lN7XOvXr26dv3q1auHeQnzHgvNbmmlAEZkq6WCLO2XzHLLSClaz5YpSJshICHLJs95J3eZA7kTF5mU1RYkxXM31bBV623rjht2WkhlhZoiFVlmSktt96gb2LbihfUKBLBiYb+3zatx89i1mibU1eveMGlaucdqrV2DbKUhc/O9QWrY8hSypoataruMfdJcWBZOVGrepLFbjNl6taLRdrEHLs37y6yd6uYKY+Xr6OYKCckcsI24y7/pMLaryW4BznYNg2Fqb7/whS/gX/7lX2zq9q677oqPfvSjfWt1RxULyXZlLELGKrecNVk73mEyxeoY4CYGrnJsVqq8BmGVGu6d9BS1a4OQ2/1OUfveALU2sd/7NCuoY8H61aCRF9ZUY9wPPZ+pPhjEbj388MNYtmyZnZ8v7BowpMP2s5/9DLfddht22GGH2uO777473v72t2PVqlW48sor8aMf/WjeGg8AgJZlelFa6eVRk4pTga/GWDogJE0w4eYGnrkvQuVYYgVWmz5H1SBpSiR12JZEHGPCOWZRu/gzxu0IcTkWiUDULhwWnsTWSRNx7FIivS7zNUWjfcBNOid3hjYmUYokIsXuEcdY6ZjlmbQ9hVSuoBQdV9IlSljREaoeqVRtAb9zxrgd8yixzhuPkooypesP19QjzsATIiAqc5lS3s3PMOAkpbQ6D8xv4zEqWHB2S0mAKRLgcA4NVYYsFCNLAQvipMnUT+82apC0Z2Q1JXI2HDZjH5UkYh2ptPaLCvZoqaCU62XmnDeaEjmzGw36OmzAxRMaUd4cUDhp2qzJ3biYL99rIjQiaUqk9AWPKIygEg0uece9tMlFUGWvOymU7bcpykZ4UnCb0l0oQ5ZprhH3X592tkzp4VIim+yWOTYMTO3tqlWrsMcee+Diiy/GihUrcP/992PzzTfvWX/rrbfiiCOOwF577YV2u40LLrgAr33ta/GrX/0Kz33uc4d67vmOhWS7UqnR7RsV6D1W90nyv6bdL6yPMzgMqgI/9vLX9Y4f1eqhKZx11mmQS4yebxCyunq5ce8YTZ02I1IuQn6vey425LXcBE1fFHkXi2ldc2RwpENEmgaxW8uWLfPuueYThnLYvvzlLw+0rtVq4R3veMe0NhQQsDEh5gxxzR1uzoczHs9+9rMhhMAjjzzizT/yyCNYvnx57WOWL18+1PpRRbBbAQGziya7BTjbNSiGrb29+uqrvd//+Z//GV/72tdw880346ijjhrquec7gu0KCJg9zKbdWrduHf7nf/7H/v7AAw/gnnvuwaabboo/+7M/m9E+m7BRy/rrPIPOM08qui7Nrgpe6XFmRT/SklFSGlKXEdBKYb6bd2vMseInqxUdoQzbmOBIFhUi2cni2Eaoo7HIpkdG7QiiZNiidkLYtgjMFLNHCRDF5esoU3JoSmSlKNb8xuCnRMblHiPBbSF7EnEsKlm1ySwiMvmCFOoLIvrhPoop/HRIG62Opo5W17UD4FECQRg2HhdjEXHwyPR7cwzbIFEl5aUUFWmRANCgt9AI2lOvOj8MkiTBrrvuiptvvhkHHXRQuUeFm2++GSeddFLtY/bcc0/cfPPNOOWUU+zcTTfdhD333HOo5w7Y8KCy9yrNvfRBlZZiJCT1UKbSpURm/rxJVewVGqln2Ooix1L7YklmrrYfZa4gygOFaJMZKxuJVX2yG2rT0wdM66kT/58qQCuVtlF3pQirpijbpuC3C+ntAen1ZKuKIpQpjoyLnvYlZt7uJ0pcL0upIIzgEUmNtP0lSRo3zRBIc+UJqQyLJrtljgGDFe+b2tvTTz/dzk1Ve1vFxMQEsiwbKQGOjRGdXCPKBrtOB2V2/HvsqT/HTR/1HlbNO0Yfr3ueyWfY6Dl07fxUexkEVd/CE4TzWMf6xzA717C25jmb/ibDlqwO8rqrf48mMMbQyQd/IwexW4PizjvvxN/8zd/Y30899VQAwNFHH42rrrpqqHMNihk5bDfffDNuvvlmPProozZ9xeCKK66Y0cYCAjYGRNw5vBTZNAr3Tz31VBx99NHYbbfdsPvuu+Piiy/G+Pi4jVwfddRReO5zn2uLaE8++WTsvffe+OQnP4kDDjgA1157Le68805cdtll9pxPPvkkHnroIfzxj38EANx///0ACnZuVJm4YLcCAmaGJrsFONs1SP3tdGpvq/jABz6ALbfcskdAaSEi2K6AgOljELs1KPbZZ5+BHcvZwrQdtnPPPRcf/vCHsdtuu+E5z3nOrOW6zhWmEhVhnHt1a0aOXsQcykjpl02V217IVnmR59SGF1gP+1b8bGbY2qRuLVlcMGPx4hjJkoIxShbHSBYn5XwbUbuIZop2YkVHRDsBa7XdazKRW8O6DSQ6wsBLKinmnIiOAO2SsRpLBCbLiP5YLJCWNXRL2opEqJufI+eLyu0IK5HNh5TIFkR0xNSwidYYoqR8X4RrMcCFy20u3oKSNexzEddF5oeNmnHSVLw6PywOO+wwPPbYYzjrrLOwevVq7LLLLrjxxhvtzdBDDz0ETljTvfbaC9dccw3OOOMMfOhDH8J2222H66+/HjvuuKNd881vftM6fABw+OGHA2gWP5nvWBB2S0uAuRpb1dBkWmW5ZdWUcoIeKpW2bo0KjRQNsounqDJs5lJtbFvBmA0jp+S6NrasYNhcdgGtD1ZEuKNax2Z+qqbMh2nWsTUReHXNsgF4rBplpFyGgGPSqG3qbZxdU4tHfmdcWbaNQhGxJJWnVoBECAVZ1q6ZWrYodiIpaa6Qk9eUN7w+VXldU6HJbpljwIapv/3Yxz6Ga6+9Frfeeiva7fasn38+YdRtV1cpRAPXG83ejXCTyWpiwJSuZ8qqTJung0TqQatzAGrXVtFkW5uYH8qOUR0Nb960XKqsrWPW6pg5j5VrYPEoNvRHkjON7hDfAYPYrfmMaTtsq1atwlVXXWX7NI0kVCk6Ui0AF9z+pD3LrNOT5KRQnqbxuAuuXfY5EgzeDdFUaoKCuZQiwZyTJhLupTua50+WJJ7zJtrFWLRbfkrkWPFlyaMYrEyDRJTYsXmdmjG/a305LtIgTcqgthem4LARi1hwxLy4eBLhhEbSXJFeZsKm6DTdIDDOXKqi4FClg5WnXa+wv050xJ2DqEEK4rBFkRU9iWKByKhqJsIqVoqIe2qX1iFtkKymBfzDpkTGDRGfpijQVDjppJMaUyBvvfXWnrlDDjkEhxxySOP5jjnmGBxzzDHT2st8xIKwWwCgfBVFRZwb5+i4dEOZSs9Oud6R9WmQNJ1RASTQ5N9YmBsCqbW1W9D0HDQ90gWr7MtoMIRNATQ6P0j6ej/4N1TNF27TMV2Zb0yJJGmQxnkDYJ06oFCvNeuNraJOoMxTXyypXKOU8IRPgCI1MlLmfLrRCZWq/3dRPzTZLXMMGKz+djq1twaf+MQn8LGPfQzf//738Zd/+ZdD7H40Meq2q5trRH3S1+rSlYfFVCqDTY6TEd6prisUVKsiGb7KKr1+lNY99sKosNY9r7euwc40OhieY1Yzx1njGnMfQ09Ne+rWOYDUcRzEWQRmx4Frcg7N+btDpEQOYrfmM6bduS9NU+y1116zuZeAgI0ORrWo7l/A7CPYrYCAmaOf3RrGdtHaWwNTe9uvlvbjH/84zjvvPNx4443YbbfdZvRaRgXBdgUEzAyzZbfmCtNm2I477jhcc801OPPMM2dzP3MCKhfPhHAMG+dEDj+CSBzDpWihfCVEyQWzQiRRqpDY3kLaFvhXQalrk3opEuEETWLhM2xjRMrfMmwtxIvb5biNaMwwbI5tY622TX8sxrHZdPlzOFl/zpzqTktwdITrvUYZtq4pfG/HjRFrk4YoIglRdp0XgtsC+igWdqzVIi8dqQ4iiux5bepj5NIgo4T7bFvM7dgwbEkkbHsCyrBx7lJXZ9IoNhYccU1fkLq5gJljIdgtrVSRFknnbFohkfiXitgpIqWfuZRIX1DEsWCp0shImo/0otHeM/fOky8+l1HAvOex+1IkRVr6qZLzCc7WEAES7cZNrFrxu0uDpKwaZQjpq2YmiyAnc0J457d93qLI2UfCqlGRFMewKY9ts89dMgDDpHM32S1zbBgMW3t7wQUX4KyzzsI111yDrbfe2vaNXLJkCZYsWTLUc48SRt12TWYKIle1DFNjqjXBVG0n+rFnbp6un5olo+yY0i5tuLheatIglb++eryO4Z4O6D2HN6YsGfPZOXqPadk2XllvGbaaVMqa48Uasq8BWLgqBnGU6tJCzeMmBxSyAWbXbs0Fpu2wdTodXHbZZTYdIY5j7/hFF100480FBCx0NBXB9qudC5g+gt0KCJg5+hXvD2u7hq29/dznPoc0TXHwwQd75xnVutpBEWxXQMDMMJt2ay4wbYftF7/4BXbZZRcAwL333usdG5liWC4Is+TENwzbJpIYoqxbU+0EomxIW8eqAa6ZtogFsk5ZwxZLqLLeTCuFmES8q48rtsEgYmHnhamr6suwFTVe0eIxn2Fb1C7n2+BJKTSStMHMOIrBSol78HKPVHSkIj5iPs8cLoguGLNS/rFQVnQklxxZVOxdtnvzugGfsZrgzLFqhAUTQjqJatKoVpLaQSAu31/ynhKZfs4YYe+4ZdJ45Bi2pCXseCwRtiXBWCLQsmybE1iJOa8t7h2WH2iqi5sJaxfQjAVht0p4QiOeQIdhdHSlns2NaWRZekwayLi3nq03Eu6is2aNLzRCHzfc+2tFPOaAdZM1tSiDQlUESAx0hV2rO8a4gOZ0ntv1hp3jtFUAaS1AWUA71pUaNtIgfKYR/iYbNR3bNUzt7YMPPjj0+RcCRt12TWYKSB1tXLUldR/Hps9oPUtXf7wfk9bEmDXN19WD9htXXwMd50OybfS6ipoYtoaa+77jBuYNaGbsBmPeeuvn6o41vUa3trKmwuINw7DNtt3a0Ji2w3bLLbfM5j7mFpxbh41xbvuUiXYOUfY0KlJ3ej8YhWKkS2EEigJ/npgvWqfOpisqaPbpyaeZcadAyRNe67CJmCMaK5yUqJ0gWjxmx8Zhixa1EZfzotVyypBJG6yMzDEiOqJLh60QGun/wWVEJVJw2JTImDvRkVbEkdm0AgHZrjdI1HBMln3sUiGtU5Vnrm+blAqKCJZUJVWrqpPW72QMIjJprsw6ZkJwJzoSC5vCubQdYUkp3jJG5scSYZ1TwWjaQN+3qy9i1iA6MgJfwKOIBWW3CJzzRvqzSXfjoUiQSUvV4KS5mygF1DpvgH/T41IimR2b406uyJ3H/KwLeI0inHpkr3hVdb7qyNWp29K0SQ5AK9GzvjpWJBWyeB6/V1yT6MhM0GS3zLGA2ceo267xLIfO5JQCHNV03Z7jDY+noh3U0Sp+JynCJGWxLoDR1K+wuoYqrhpRtVpRH6UhVfNxg7zh2qxjfnqdtN6yDbouES7YHPVx3qjYWt3xJueuLhWSOml8Go5cvfPW+9iJLO9Z14RRt1sz6sP21FNP4fLLL8evf/1rAMAOO+yAt7/97dhkk01mZXMBAQsdTcWuo1AAO6oIdisgYGboV6QfbNf6Q7BdAQHTx6jbrWk7bHfeeSdWrFiBsbEx7L777gCKHOrzzz8f3/ve9/CSl7xk1ja53lCmRLIosayTjlyfMp6nVg6fSmdTMMHBRFEAblIZZSYtGyZTIgJA+/o0pURylwZZTYnk5ThqJxBlj7Vi7OT7LavWThAtKsZsbDFYe3Exbo25lMg4BkSZB28bb0SNKZFml5w5Wpox7dIEBbPpgzQdqgoa6TGCHkkkMFmmS0yk0vZwy2NFUiKVZdH8lMjyPa2kRNKxpfKFY9uE4IhI3ziTBrmkHWOs/FsuShzDlkTcpnxGgrt2BiQ9Ug95zcfCMZTV+YDZx4KwW0pBa+mlQVLQecuqEXZfySqrZsbNKZEG1Wva/a4b+wVN+XJqDMV8Eh+pRsL79Y+cCpQZq5tnXLh0RzgBkn4MmxM+cWmQlG2rY9U8tqCUNJ9K1IGiyW6ZYwGzj1G3XZ1cAX0YtipDRtEoItLAqlWFPqZKX6wyaTmdr2Hh0lw2sm11KZFmTO9RvPvBAa49mvbKK/c3U6U+Vlm1pCxX8dYzx7BFNeegJSH9UiwNqumUdXtvFCkZkJ3jjBWfqwEx6nZr2g7be9/7XrzhDW/AF77wBUSlGl+e5zjuuONwyimn4Lbbbpu1TQYELFQUqQWBYdtQCHYrIGDmaLJb5ljA7CPYroCAmWHU7daMGDZqOAAgiiK8//3vH5m+KEwUTaQ1qVtjSbtoqI2iuLvuDeKkobaMI8t2yU4XQFkjUubVqlR6zFyVFbJ7sQwQt4wbjyNSzxaBx65uzTTxjsYow+bk+0WrBTZWsmrtxY5Vo6IjSdvWrmnhREd0hVnr2SvzRUdMwKIdcRvhUro+/xxAbc50krpm1WOJsmxbN1e20bZU2o6rhfX1++yNSEWVptiLLHtGatViyrZFWFKKxiyKnQBJO3LysLSOb3iGjTUwbPPfeIwiFoLdqgNtot24hhyTNRFrv7k1vONNoiP0y4+ydgAQM7p+6s9zXQbDfMOgLFSdoEi10XdTOxIDJlzIV3tCIxKCzA+6t3w2a9ga7JY5FjD7GHXbNZlJqExNyZY1iofUyONXa8KGEQXJyf0EFRQp2DZ3z9El9x91jJxWmrQbIvclpTnTRMTErKE/614rRZ0jQUXVAHd/wxiziVGcrBGCu3GlVs3cj7U8Bq1XaK3KwA0rbmLQU2c3BcvWj5ETrPhcDYpRt1vTdtiWLVuGhx56CC960Yu8+YcffhhLly6d8cY2CBgDGC+UEvNCXITFMaAKhwZKgpVfkhFAnLTYOkxqLEE+WfbEKZ0l6rBREYB+aT6095v5omaCW5VKJrhzxuKI9IeL3Xw7cc4YTX1M2uDGeUvaYK0iVRIiJiqZRHSkfJ3UeeNEaITDdVwvxDfKsWZolXtveqmcFH0mxHlKIo5FOenb1ir2M5nJgdIQ+kFw5lH8NB3AOonEGRtLfKGRdvkC24KjVY5jzryUSGNHhg3ShBq2DYsFYbcqqDppTlxEWyeIph3SdOwmZ6ya0jxIn6Qq6K4WiMbIQKjrwTbMY60AiZREMTLu0+etN2XT3PxpVR8kbBI4GBSjXgsyihh12zWZScjMDzBM1aNskLlBREFo+m+dY5bmyhcRIU5aToTOlKRjl3bsifwQ580eJ6/TOHJ1Tlw/VB00Glc3wekmJ61aFtIhBAENZtP0R8C/dyqct3pHjjpmdemUAztvDWvsuGJ3hnXYRt1uTbtT3GGHHYZjjz0WX/nKV/Dwww/j4YcfxrXXXovjjjsORxxxxGzuMSBgwUKUFH3dv4DZR7BbAQEzRz+7FWzX+kGwXQEBM8Oo261pM2yf+MQnwBjDUUcdhTwv2KQ4jvHOd74TH/vYx2Ztg+sTmkfQPPLTIOFHhrmJdsYJWNQp5pKOZbVkJ7VjKy6S5a4XEu2R1Cfaati7QsSkZLVI6iVPIogyJbJIjyz+dDyOiIhI4qc+xi7N0zFvbbC4FFIRiU2FdDy66BEb6dkrY5ZVk9pR1zGH/UQpXe3hZtgoR0nHubLs1VgibFQrJWmQdJxXo2m6N+JWBypH25QCkES8Ii5SjNsRt8xbSzjREZoe2Yq4J3c7DGh6aXU+YPaxEOxWP/Rj8ZX0GTT6066peVyT0IiopDzONKPEpH8DLuNgPqCpt9B0UCc6Qlk1esyfq7CoNWmWU0XpZysdEmi2W+ZYwOxj1G1XRykokiUDTM2a1c1V1w7DpNE1XZLW6ImO5MoyYjJXHpNm2wppXdtiiPaKtQyb9uemEhtpEk8D6ss8mnrOMu562zJGGLbIiaTxiNcKsk2a+6XKPVJ9+iQbmnkzmCnzJjhDZ4gshlG3W9N22JIkwSWXXIKVK1fif//3fwEA2267LRYtWjRrmwsIWOgQ3KWUVucDZh/BbgUEzBxNdsscC5h9BNsVEDAzjLrdmpbDlmUZ9ttvP6xatQrbbbcddtppp9ne14ZBKesP7VgqwOWJKnO8XGuaTLNWG7xbsG2inbpGtaVQhlbKjgFA2Wap9ZEAw6IVTyNcPVuFYbMsHGlDANL8mkWxq0+LYnDzmsg8i1uuSbYQtnbNio8w3izrb1kkTURHAFWONWN23I5dFEdw2HqvTs6sWEfMJTJVslRSI4uL9yeTGhmJiKU1Rb9NUbg6VKM1ND+bjk1T7HbkJPsjwqpRhq1FJP4FYRyHZRk4GHiNIEPdXMDMsGDs1oBQUnvNsu18Qz1atWatXoDEH2+IOu25YNs2RHpMnTBJlWnzm2jX12qoit3zamqmUXs4CJrsljkWMLtYCLark0pI0cyw9WPe8sqxOibNvz9QtUxaz/2EYcmksteRko4FU7nyatJciyF3jdEWQ401bE31p3Lw+ivAFyIytoJxYcf9atiE1UlwzJsnRiI4eHlPQ1k3M04FdwzcgMIltTVsrJ5VqwqZGEzFwnXSIWrYRtxuTcthi+MYv/jFL2Z7LxscOkqgjTpkOccA66RxLqBLZ0jHMXRWCpPkKXTihEl0KVgiaJqKcc56CsTdjRN11NwcdRKdAAl1GL0xcd4Ycd4QxS4lMoqBqEyD5FHhqKFMiTTOG3lO57D5H2BzrTAQ0RHOSBqVNu8guAa4MQocyHhhvGLBkJV3fe2IIyuNW6a0NzYGMyOpj0o5gYRqwbIBNfpNSkTGGeMkVTImRblF2qYTFzGpjzF3TlosnIMXCXfObMgbPd4Q8an5aATMEAvFbhlQJ8xzyBrSInWD8kedYuR8AL05mQtQ+zHXKL5DYjKuW1P/t1M1N8LV8bBoslvmWMDsYiHYrjTX0BXnqS7NsVr6YFDXD60Y9093rKpLew5Y3ut0Sam8dEeTEimrzps5pyZjJaHyQoROy14nrVcwqPdaVmSOc98G0oBOncPGuLB2k0eJnRcRR07SHPPMOWnGCZNCgWcuVdIcdw6dE13JOUOeOwfQOG9prqZMm+wRIyn3lcJPfYwqzlntYzlDmg9ux0bdbk17i0ceeSQuv/zy2dxLQMBGB9bnX8DsI9itgICZo5/dCrZr/SDYroCAmWHU7da0a9jyPMcVV1yB73//+9h1112xePFi7/hFF100482td/AI4BE0fRcYBxMuxVCnReqjTtpW+l/nGXQZRYFSjtZW7qcmDJtFU98dGkXxIijcT8k0EecodhGVyEnzszgGDGPIeSHbj5JVM+IpIvLTIM0aIz7Coyn7sHFGos9KO+qtOFPx/JqBlW0AGOMQhmFTDLJ8GZlSyCQvT6ORkYiYGSuS8qCIBLn5naKaGmT3WxENsP09CDVP52PhUiJj4WRg2z0FteV6KmpSu4Nm0PSA6nzA7GNB2K1ZwLBM2vqU5efTzKucKQM3XQGRKczjjFAVIBlk/VygyW6ZYwGzj1G3XVmuehi2JsEQg6nSHZvO0U9ExMjqN7FqxTzsesOq9aRH5qYERkJlqRvnbmznahg2XzBo6uvYY9eEz6rxuvRIwrCpmIxlZFkzJTikdGyaYduYec0kTbJgJx0zJ3mxRkTcMoxUpEQqXWHMlB03pk2aRrYStUJxdf3fsnxw0ZFRt1vTdtjuvfdevOQlLwEA/Pd//7d3jI3ACw8ImA+gPe2q8wGzj2C3AgJmjia7hT7zATNDsF0BATPDqNutaTtst9xyy2zuY06gRQQt4iJkasKmKoelgHgEVtZ+MZXbWjWmpGXLqvVqQBktIbVqw0ZPaDItIwwbrPS/q3OjDBsY98VDTK0a4z6rRiT8e2T9q6Ij5ZgxoCTMwBgD09qORcmqgTNX2wbXPFsyQJeRE8k1DBGWaAYTTFNa29o2qbVlzyRpAksjb5RMG6QWw5fmLudIE0XBXcSdzsfCsWeMkSbhhJGjedjRkGxBVRClbr8Bs4eFYLdmimqD7GHWB6x/1AmQNK3xx9P+Oh8aTXbLHAuYfYy67UpLFmsqGf568ZFmVq1OlKypVo3Wm3kMG5Hvb6pVU1JZVk3lqWXIVJ7aa1DlqWXTaC1bcw3b1PeJrJp1VZn3atiEAC+zrHie2rHyxm6NjiJw855F7j0zAiU6gnfcMHNaacvGaaWsiInWGrp8bJVhq2vGLbiuZdvMOgAQmkEoc//Yy7alfVrZVDHqdmvDWfh5CNuHjXGXBsgjgJcKj1pBl9w4kzkQte08M/Naudb1Bg0X5CDwhEjoFzZxnqiSowZ8x6zG2SocNuLUmTUi8tfDOHT9P7icwXk9SkMbh0a7h2rtKGapNXHMTNIkoIjDJrVGOyJrzHq4xxbHqDHvu81a0IJTmhLFmFMJYowIrDCQHmsuz1lQ55Qzopo5pMPG6pX2NoT6XsDCh1OJDE7XxgJNVCLXF5rsljkWEFBFN1eFMzSAk0aFRMzPWkePjPPcKT36QiDw0hrNPQRNcZR5fY81KZVz2PK0NvWx6qRRR86sNfeB1GGj4iKDqEXSFHBeFRoxwXwu3PMLAW5UZrmwz8ujhAiiJM5509o6anZfSruUyMpxY2OK4+b53d+RKQZtbqQibh1rwRlkjbhI1Xkz8By/GuetO1RK5Ozarc985jO48MILsXr1auy888649NJLsfvuuw9/ogExbRZw5cqVuOKKK3rmr7jiClxwwQUz2lRAwMYCxljjv4DZR7BbAQEzRz+7FWzX+kGwXQEBM8Ns2q2vfOUrOPXUU3H22Wfj7rvvxs4774wVK1bg0UcfXU+7nwHD9vnPfx7XXHNNz/wOO+yAww8/HB/4wAdmtLENApEAUVKwaIYlUwrQpTS+Vpbq0ZFj1QBY5s1j18iYVVm3AaGBetEPyp6Z381jPFaN1R/nvcybx7ZRKX/KzBEYRkpp7XRGOLMFvcxb43oACTDCkjGbzqi1ti0BTMqkOb97PxjqgsUzydKi1yVlwd1LqjJvZsw85q1uflhWnTdEfEaAnR9JLAi71Qd6OrRziWqq5Hwk5epaocwG5mM6jFbSRd6jmQuMzETGv4omu2WOBcw+Rt12SaXBSJuefvL89DFAr9Q/TYOk/c6M7DyV41eqH3vm2LZ65k05Ji1LPVbNXI+ygXlrYtWo3L/BQGUzivRopPL9Htum6pm0ssWTeS7DqvmomYs4YBksDpAmTiiZNxCGi2tm1xRib8WaPFceq2bSI5sglaxl2+w24LYyjF2bTbt10UUX4fjjj8fb3vY2AMCqVavwne98B1dccQU++MEPDneyATHtb7/Vq1fjOc95Ts/8Zptthv/7v/+b0aYGwWc+8xlsvfXWaLfb2GOPPfDTn/50vT9nQMBsg7Pmf9PBsNfFddddhxe96EVot9vYaaed8B//8R/eca01zjrrLDznOc/B2NgY9t13X/z2t7+d3ubmAYLdCgiYOfrZrenYrtm2WwsRwXYFBMwMs2W30jTFXXfdhX333dedm3Psu+++uOOOO9bDzgtMm2Hbaqut8OMf/xjbbLONN//jH/8YW2655Yw31g+Gily1ahX22GMPXHzxxVixYgXuv/9+bL755gOfR4sYWiQ9zJj11yv1aZqyZjW1aR4D1/ik5ZoBtaFr2bZqxKGBeWtk4exxNvhaspyD2WiUYLA1bAK+GAitW7Nz5HyKsGrao8xoM+7e8w2Cnm4DDahjwbl33Bcrocs9do6IlAyD2RQdGfa6uP3223HEEUdg5cqVeP3rX49rrrkGBx10EO6++27suOOOAICPf/zj+NSnPoUvfvGL2GabbXDmmWdixYoVuO+++9But4fe41xjIditQTEo27YhmLSNqa5pGFn+6WCQeheDplYnM8VsFu+vD7u1EDHqtkuV7FqTVD8FZdZ615IMHKW9ujU7ViBjJ2LmrVeuDqvKvGm7pl4wRCsJ6dWo0TWOWQMKBq6uiTZdUx1TGHtCW35oJS3jRtk2EflMGh2b/YooaXxN2tSH1TBpTGl7XLGCLQUAxeHGcPdCCtrWtClF7qs4m5IVozak+GzU3QcXTziMjRvEbq1Zs8abb7VaaLVa3tzjjz8OKSW22GILb36LLbbAb37zm4H3Myym7bAdf/zxOOWUU5BlGV71qlcBAG6++Wa8//3vx/ve975Z22AdZouKLBy2uDLZ5yZnijTHgT42xuuYzTz/AZy/qXqrDdNciApxAL4j5d+YuRTKKfc3y20LB3XYpkK/U9T1cRpWdIQ1PMd0tj7sdXHJJZdgv/32w2mnnQYAOO+883DTTTfh05/+NFatWgWtNS6++GKcccYZeOMb3wgA+Jd/+RdsscUWuP7663H44YdPY5dzi4Vgt6aLmaRLzltMM0VSTDu3ZP5ifTlndWiyW+gz34TZtlsLFQvddjUJjJifdWMKKrRDA8C64uCZY/2uF0UdthpnqyoY0uQA9UPVeeu3roqmoJDvpJEgvHTOnlKyUDpH5fVxCVU6gU1OjXlfGHfvK+PMH9sSGTIvqAM2nJ2azXT1QezWVltt5c2fffbZOOecc2ZtDzPBtB220047DU888QTe9a53IU0Lz73dbuMDH/gATj/99FnbYBWGiqTPMRUV2e120e127e9VDzogYK4wFcM2SLQHmN51cccdd+DUU0/15lasWIHrr78eAPDAAw9g9erVHu2/ySabYI899sAdd9wxkg5bsFsBATPHbEWq14fdWqgYFdsV7FbAfMUgduvhhx/GsmXL7Hzd/dazn/1sCCHwyCOPePOPPPIIli9fPos79jFth40xhgsuuABnnnkmfv3rX2NsbAzbbbdd7YubTUyHily5ciXOPffcnnnFBBTzIxWqT1mfngVHnwYXZitwMMhp6tgg7xxTnIT1YcmmElgRgwiwTFOkpfc8ZJ+zwWL2YR51zWeF6+GEAZjWte+tmRs02jOd62L16tW161evXm2Pm7mmNaOGhWC3AgLmGk12yxwDBrNd68NuLVSMiu0KditgvmIQu7Vs2TLPYatDkiTYddddcfPNN+Oggw4CACilcPPNN+Okk06a1T1TzLgP25IlS/DSl750Nvay3nD66ad7Ebk1a9b0fJkEBMwFmMrBVF47DwwW7QkYHsFuBQRMH012yxwDgu1aX5jvtivYrYD5ikHs1qA49dRTcfTRR2O33XbD7rvvjosvvhjj4+M2bXh9YCiH7dRTT8V5552HxYsX96QkVHHRRRfNaGNNmA4V2ZRGlimNjOQ0A70CGb6IBllX8zyDiGKY8w3Krk0lilGs8YUx7Dx9DNP913rMH2t8bgBe43DzuxvrnvnmtQ1jYEpRlymh1fRr+2hdTFXEZQqBl2Ev+qqwjTePwaI9wPSui+XLl/ddb34+8sgjnjrZI488gl122WXKPc0XLDS7NV2whVm4Na2HLcxyvg2o7NJkt8wxDGa71ofdWkgYRds1Xbs1nVqlnNygMc7sDVZxn+PqqoyyEuMMrBTO4Ly5nspcS1TQgyknn8+5gCzrwJgQnuQ+49V7mf5iIgZTiY7UPaZurd9QW9g9utdWWSPceCobYo4zxor31T4vGbP6eQOallgdRzXzs4oB7NagOOyww/DYY4/hrLPOwurVq7HLLrvgxhtv7GGiZxNDOWw///nPkWWZHTdhfTbOnE0q0hS30p5hCr66Yd18cawsSgWdc+PZ6hNm0KtQSC+QsuM83HvvKxjSnmHuGCPr6OPMa+Ng/l6oA2b70OmGeb+3Xa3TVn1s9Xj1PATT7XMH+E4aq3PAqoqZDT3qWE1vOyaHdNiUrDfoQ/Zcms51seeee+Lmm2/GKaecYuduuukm7LnnngCAbbbZBsuXL8fNN99sHbQ1a9bgv/7rv/DOd75zqP3NJRaa3RoUgzpoG0LBcT72dFtfmGm/tKlAb76mwnpz4prsljk2INaH3VpIWEi2i3NWiHLVmiXuKUVOdbMuiciFbcul3OddQZc9wYp7N27UDTlxxrS2DgVXzPUVg1NJbHSAuLCKjDJPK06V//kXUQLN6/uw1SlANqHquNX3YRP2vqRpv/1ek3k/RPndwSPuAvic2Vshzp3DxonzxqtrGOtZD6DWYYsa6/l5vYPHivFQNm6W7JbBSSedtF5TIKsYymG75ZZbascbGnNBRQYErA8UOdV1Dunwd7hTXRdHHXUUnvvc52LlypUAgJNPPhl77703PvnJT+KAAw7AtddeizvvvBOXXXZZsQfGcMopp+AjH/kItttuOyvrv+WWW9ov7lFAsFsBAbOLJrtljg2D2bZbCwnBdgUEzB5m027NBWZUw9bpdPCLX/wCjz76KBSJjjDGcOCBB854c02YLSrSpUS6iI2CG9OUSKl1hXkrx9A9bBqVsR829YYGxX0WrWC87JjkMArWO8/I46kMP2fasmaCMcsQ2g8rZ5Z1U1p7MvXMY8/K51G5z6qVDJPHtilZeawb23naW4jOVxk2T7Z2eJaNce6YShrRIiwZZdUYY9Ai6lkDHpGxcKzdsCmRKq9/zLDnwdTXxUMPPQRO0j332msvXHPNNTjjjDPwoQ99CNtttx2uv/56r5fR+9//foyPj+OEE07AU089hVe84hW48cYbR7IHm8Go261+mEnao2AMGemvaJi3+cSOTeeaHwTDSk1vCNAouvl9JpjVFKMmu2WODYH1YbcWKkbZdll2xGybV48Xn+9Ctr//dZ6UbBiV+M9z16+r6P9VsmSUfcyVx6R5myn7sPnHASBBFYwLqLKvmfkdABRh25Tt08ahlUmrlB7bZjBIb8W+aY2EVeOGSRNuzMk8jxKX2hkndl5E3GPWgOIe0oxFxGqZN04ex3hxHqB43w37FUUNLFlDGiRl1cwxu4b564eya7Not+YC03bYbrzxRrz1rW/FE0880XOMMQY5RHPP6WBDU5EBAesFU9SwDYt+18Wtt97aM3fIIYfgkEMOaTwfYwwf/vCH8eEPf3ha+5lvCHYrIGAWMIu1IMDs262FiGC7AgJmiFm2Wxsa03bY3v3ud+PQQw/FWWedtV6L7NYnpCr/adKUURe/m+OaMGxZGWpWWts1SmvLohlmTWrt1bMNEr2lUQIaMHDMGLPsG2cuyhAL1sCkuQh5Ma/t85j4keZ0jaXV7AYaa1u0duIahGFjMncMmFbeGo9JM+spO6ckdJ7ZsTJfPkrZc3q1ISQCN0jNiBedJtEoy7Jx7iJYZJ5FMZgsLhPNuFsvooJlA6B15M4/ZJSGqby27m1o8ZKAgbAQ7NYwMA1L2YYoVAuYF2CVepH18hwNdsscC5h9jLrtakUcUcS9ptiyvC+R3G+GTdm24qeCaGisnRJmzGZHVZplG+aNcwaZE2bSimgoqHJcPW7ujRRvQdYwaYwLcNNQmwvLnJn7iabG2gJ+xsBgoiO8Z74qLlLHqjUxbyKKwIVh0HhPDZuIOHj53VE9Tpk0Ebk6N8e2+UyaYUVng1UDSM1bDyPajFG3W9N22B555BGceuqpI2k4DHJdXPhSF6mRgHPgirFGp7x4FXHYMqWRlV6a1MRRU9Shgx0bqAbHjXvOGvnAMve74M4xi8mHNqbzgiHm5qIgH3ji7AntHDFVPGExXyZHauY61RfjYm2joIhW7gKQme+kmXkl3bzMrJHSeQqdOSfNOGxaScCMJSkSVdJPiaoauCbHzXPWXPqA55gJ4Ry5KAGL4uL5o9ipKCVtQMTuuXj5mqIE0MWlxGRWv4cmzDLDFtAfC8FuzRSiYmMGWS9HIL9/oWCQ1MdhlOPWC0Y8Uj2KGHXblYjCYWtyvKjzZuAcNtbovJn7HJoemebKOhcyV2WKZDlmxtFh1rFjnEHlRmgEEIqTx5YOW+4CITqKIPPi+5/HCVRWpD/yKHGpkKVTpJW0Thx12Gga5LBBZyb8lEhe47xVUx/NWESR53jZlEfqhJn7xcpx+ji7JuLWqRUk9TGppEFO5aRV0xv7OmlkXg9TBjDidmvaBQ8HH3xwbapCQEDAEDCqRXX/AmYdwW4FBMwC+tmtYLvWC4LtCgiYIUbcbk2bYfv0pz+NQw45BD/60Y+w0047IY5j7/h73vOeGW9ufUNqx67l5d8qU8oyaZ1cISsZnW6uLAuXSTdWirBzuneOzgOo0P41EqbMMWaCOfZNMIaYSKeacSx4ZazKsWPbYsEQ61JQg2toG2H3mq8VP5WTum2K2zKtbOofkzlQskoF3VwW4krCquVdx55lqWPP8gzaRKOyDDDjPHNpkHQspUuFJJEqCsrA1aUPAABK9qxg1Vzqozc26QNxXDBrAFiWgbXaZI3rNaONLsmQFz2j7GNlPmD2sRDs1mxA1NmAvuuLn+tDgERN86SDFOr3fd5psobrMxA7LFs2J+wamu2WORYw+xh12xVHHDFJW5RKe0yZQU6YMsO6QdDMJ/8cRqCEMmyCE0Yu4jZtUggOWWZHCcUgc8ewGaaGS2XZNi4YhCzZNqHAy8dqpW0qodYakrJp5j6GyPfXpUSa36ugYiS8cn3XMes90vyil2GrsmB1qY1cOJGQJlatKfWRpjua+9pWj9BI7xqa7mh+Nz8jXj9fHauhUiJH225N22H78pe/jO9973tot9u49dZb/WZ5jM174xEQMC8QUiI3KILdCgiYBYx4atEoItiugIAZYsTt1rQdtn/8x3/Eueeeiw9+8IOe5O4oIVeOXTNMWidX6OZkLN04L8cZqW3LlPLypoFKISzgRYPqUC20rIsm0HzgmHPEom7M0IqEHbej4vlixdAqAzNJxKDs0zGYCLttrC2c1L8i9W4AnAKLVh7TxSzb5tgzpnLorFss707aeZV2HMPWnXTMW04Ytowwb0pBpbkdaxPhksoJk5jtNUgBM87BqSRuErl5MmaGVWu1SQ1bAlbW2bFW2xYXo9W27QE8nnTIi56pvIFhm/8FsKOIhWC3DKiEPx3zhpz+JuERyrYNy7ytT8yUQZsp5pPU/yA1a01CI7wmUl0dD72fBrtljgXMPkbddiUR8xg2ABWmrBgn6L1nyiuPcSJxGtLUm9FzRO6+rJsrrw0AvU/jomTbJLMaA0JyqLjMlsqVZeSi2LFzMteIyjVSKjvWKoKU5b0DycJqZNiGtHF1bT68ujUiOETZsR4xkKh3Da1Xs0wbZd0IG1cVEaln1fo3vDbzBtX6NIPqPXF1XkWD27FRt1vTdtjSNMVhhx02kobDgKpEGgesmytMZMVFRB22bq7smk4u7UU/mUrPAJi1niHS/R02oCoQ0ksLJxG3F0h13BYm9ZHbVMwWGbcjTpQsOdpxeVFqgGlmx0AhSmK2WYiPkIuhpn8ao30tSBqk7k5AdzvFOO1Ap+U4S9047RQpkuVYZcVjVZZbJ01mmeewKeKwWedtip4tjHN7Q8sEtze0PI7svIhjiHaprpR2wE0aZKvtiZ6YdAXunV+4Kt2h+7AR57c6HzDrWAh2a1BwwYhKJHHoWJPjBmTGDjBG0iC1t0ZqN94Q0MM2s5wFbAiRFXOTpZWsdcKomABdXwWvOF70po01/K1njCa7ZY4FzDpG3Xa1E4EkEY0OG52r3it5TlplbV7j9FHl7yRXtWmT9D4tpfdsubLCazJXNmVbKW1TJZUmY6XJem0dNeuwaX+Ois/pGjtDFS6rQRh6PXPijJl1nDHfSYucHaDpjrSHGnXOqPIj0Cwi0pTu6AmNNNzLDuOM0d8b12RDpIWPuN2a9pV/9NFH4ytf+cps7iUgYOPDCBfAjiKC3QoImAWMePH+KCLYroCAGWLE7da0GTYpJT7+8Y/ju9/9Lv7yL/+ypwD2oosumvHm1jeM6EiXpEFOZNIyaZOZdGybVJhMi/FkKu24mytMlmv8lEhpx3lNZKiKJtnSpExxFJxhLC7GrQrDNpYU82OJQFYWyGaRQCtyER4KG2GPih5tQMGsFXukkfOG6Kx2vdGorD+TKUmDdKyamhz3WbXupB3LTsGwyU4KmZm0yRyyZNtkJ7URdpnlJCXSSfxPFYFnglsBEiYERBzZeV6Oo7EEvFPsPWq3INrF84s8BTOSveSCViDRDi7AWuX5G3p8NO6NsJXV+YDZx0KwW/3A+kgcc0KJmWGVJat7NGXVqo8RRCBpplDkOp4LVq0J1G5PV6jEgLJkJjWqypzVs228do2fItX/jzCTFMie/TTYLXMsYPYx6rarzbm9nwH8frZAL3M26FxdWqV33xXXM28pYd7SXNX2dpNKIydMmrFRxZimPDoGTRJhEnucvE7beranV1x/0Ou7YNHJMcOY9UmJbEpzNOOowqYBvVlewzJpTWIhBoMyaXZMRPmK3wE9BOM86nZr2g7bL3/5S/zVX/0VAODee+/1jq23NIyAgIUGJevTKEcg2jOKCHYrIGAW0GS3zLGAWUewXQEBM8SI261pO2y33HLLbO5jTqB18S9TRLJfaSc0IhU65XhdJ8e6TvGHnkilZdWKGjZp5wE/QpPnasqcZaA+QpJUIh6tMuoxlkQ2AjIWC/tcaa6QGrZNaShdn9trm2hzAVk+rzQRd5QNtVHUspmIsqCRCUWUdlTuPugy89gzNTlux7pTjifHIbsFkyU7KfIOGU8WTJbKcuQdM3Y1bEoqW+empYt2NUWnvIiUqVtLfIZNtFv2+U0Nm8pyiJLti5WyF4kmbQDABXRUNsnOUiv9j2Ej8LqBitfz33iMIhaC3aqih32xdWvMfe4JBcYEA8rvrKJWTduxERsRzJfyN0zaMLVddFcbqt5tPsAXCBmu6qCpOS49RkUGit8rdS7cZVEwXs+8RTVzQ6HJbpljAbOOUbddY7FAKxYeS03tibIsmHtM09ph2ba6cU6ZtAbmTSpts6+qjbllA6um7HyxL611LZtWvW9pYu/rao5p3RpA6tmYY96a2LZBBUOAXibNPK6ugfVUY4OmBtnV12q+M3iftYIBiIeoYRtxuzVth20hIJMamdSQquitBvgqkROZtE7auk6OteV4MpNY1ylu1idIeqShzqVUkIZGl/QCrqfA6YVH1Xy6HE6VR3BE1mGTWFQ6ZmkSeQ7bVIqUnDHbco0TKtsYSa3ZlD4HpZWZdKo7nrgIHXfGoUvnLZ+YtGmQ2fikdcwK582Mu85hSyVk6RzLVEKXG5Wp9IwgAHsM8BXxOGdOXCThEOV7J2IBXj5P1E4gsl5xE4oIpC8KF9BlSgpTbat2OazDVvSiy2rnAwIGhRXV6eMg0GN1ypCCuXHmCY04R64xTRr1aZZiiMh/k7rlfEKTYEsVtY6WEJ5CXJPQSOO86a/UIEQy1d6iyo3STNBkt8yxgIAqxmKBdswbHTL6fV5tzTiVk2ceY9ZVnbupnLfqvVNO53XdelmfflkjjkLn6H3fIIF8ijrBEaC8Z5zCYepXatPkkFWPJz1CI1M4ZpWewnV7n8pZq66vruGMQQ/hsI263RrqG/Khhx4a6uR/+MMfhlofELDRYYQLYEcFwW4FBMwyRrx4f1QQbFdAwCxixO3WUAzbS1/6Uhx00EE47rjj8NKXvrR2zdNPP42vfvWruOSSS3DCCSfM62aOSmsorb2UyFw6+f40d0IjNA1yXSdzbFsqkZfzeeoYNjOnlbZsm9a6tk1XtXiUyq8atk1EHFEpx5+mEpNWaERiabv4M6YymlLghKY6xdz1RNGWadNQpdR/zxmIrL/NA9YakGUvtSxzrFp30kuDzCeKVMlsfBL5RKccdyyTlhO2LZ/MILMypXQy9xg2lRrmUvWmFFTCciYNjHFmWTUmGOLy/RKJQDRWjGmbAP8cTrCExxFY2aqARTF0ZnrIpWCqbAMwbEZkltnzVOcDZgcLzW6BczAtvFYVFHSekWvAXA9cMI8Nc2M/PdJFObUn5V8nQDIMk9bzcmryJfuJp2xoVFkpNoOt1YmOVOcpk1aXBtkzZu5vDJi0KJdiX8eqVSPrvFLMPxWa7JY5FjA7WEi2qx1xLIpFI8NmMJXIz6AMXR0rp5SzZVT0ZFDmrYlVS6VLm6y+juJxzccN8oZ7trr05d4Uw94UR7ouEbyRbfOZN+49rodJM6U75PuBk3lzDBicJaPwjtW87rrHqmhwgzzqdmsoh+2+++7D+eefj9e85jVot9vYddddseWWW6LdbuNPf/oT7rvvPvzqV7/CS17yEnz84x/H6173uvW174CAhQGl6iM7I9ATZFQQ7FZAwCyjyW6ZYwGzgmC7AgJmESNut4Zy2J71rGfhoosuwvnnn4/vfOc7+M///E/8/ve/x+TkJJ797GfjLW95C1asWIEdd9xxfe13vUBpEg0pRUgAX76f1q2t7eSYKBm2PJNIu9KOAUDlCnnJEMlcNTZQNGiqYat2pI/KXN0oEbbGKh+gbk1wFz2NOUNcnj9TyrYBiE3fZ07zqRsirlpbto2p3Ob+6jx1rFPasY2zZbeLbLxg2PKJDrJxwrCNG+ati8y8p5M5cjKurWHLZA+jVq1hcwwbd+xCIixLxxOOuPz7Kqm9x9vzcMewySS2bQC0UmC2ofb0L3QtG2rY5PyP9owKFqrdoqBtKywjXJFvpk20Xd0aZdUcU8ahvfYetIl2k6w/PSf92buWeTWmowwnm92n9oyX9oYLTGUpaLPs4rGcjOsZNtpAt3ieSvPcmmj5TNFkt8yxgNnBQrJdi+PItiYCegWM6m5fmu5phmHepNKkts1fQ4VOaP1b0/wwoib9WhMAPqPWr+WTAb12oxoWzYyHFQNpYs2A3jo0+31SU0tW3cugTFrTa3RrK2sqbB6LB3djRt1uTUt0ZGxsDAcffDAOPvjg2d7PBgWlxM1FmSnl0eFGgGQylVYFkqZBpl2JrOucN6BIjTSqQSpXnoKQzOslRc0XcFXZhxPREXOeQtSkWC9zYlyIsaCgF2gsGKLyNbUEt86p1MXzaM08lUgPJCWSEZVIXfYp03nmiY6ocpyPd7w0yHTNuB1n491ynA3gsCnI8m+gpa4tMKaI7U2sS4kUmYQqzxGNRfVOmnAiJTKOwJOofP4MkXHO8tSP1NjxEIpFKNKidE3Ep24uYGZYKHbLwDlp3EuD5CTg4+b9Ma91tOClRJKuaF7qY3NPNn9/1XTLoV+fMGnMGz49kvYWGhacCyizdyUAFDcCjAtrJ2j/tOrvtY6ZqDhyovf7gjpuVDWu7uZsps5bk90yxwJmFwvBdo3FHEuSqMHZmtphmaoHIq1oaBQp0XR9syMnSZCdplA2OXL2sZWUy+rxfimRw2CQPmXUwTLHgF7HzFtfcbwGc8zIvppERPqY8EFSseu+P8zjVDxESuSI262NWiUyIGDOkWfFv7r5gICAgPmIJrtljgUEBATMN4y43QoOG0pmykRFKpS2KSZNc+l6q2XSpjwW48IzzzqyZ07mOVReMlDSefdN3jzjAjxO7DhKij5hXHBI6Vg1K2TSJw3S9tdIuS0mTQRHWxSP7UqFdpkSaaJBChr9pLstDNOkpP2g626nYJ7KsZHvzztd22OtYNUM29ZFNl48Nh3PkK4z6ysMW+r64ploVUr+ZrWvn7IFOZCUf494kluhEVVJoTSRfC4YeFw8v8xyiNTJ/RthkuJvaf4G04/MaCmhZQ3DVjMXEACUzJquMjTlZ5dz8jl2qcA0RVjEAiopPl+JUkhVb0pkwgGav+ezZ5rM10RwyUqfvXPnounKNn2PXIPzDZS9YiRS7QQ/6lMWi985OY+bp+mRdVL9PIrBI/dd4KVBlvNccJJCbx7PvL6etLdSnfy2ibgPQ7g12S1zbH3hySefxLvf/W5861vfAuccb37zm3HJJZdgyZIljevPPvtsfO9738NDDz2EzTbbDAcddBDOO+88bLLJJuttnwG9GIs52n0EIlSvzNnQqCPh/PTIhnmta9fRLKzid3N8anbOm5tCaAVAT5siA95wYdb2LKuIdjStcQwayHHCtpE/k2PgpmbPqmzZbPRz533uRxkD5DAM2xzZLZPSfM899yBJEjz11FPTOs/8/HYMCNhYkGeFk9vzb/5HewICAjZSNNqt9Wu73vKWt+BXv/oVbrrpJnz729/GbbfdhhNOOKFx/R//+Ef88Y9/xCc+8Qnce++9uOqqq3DjjTfi2GOPXW97DAgImKeYI7uVpikOOeQQvPOd75zReabNsK1duxZLly6d0ZPPNYrIYm8uf1MBqWHYZK6Qm2bZqbRy/raGLZPI06I2S3YnHcOmJGQ5Nr8buBo2AZaaCGsCVdaH8TiBkgXbpnIFrer/dCYaMxFxJFEZRReOYRtLhG1hkEnXzsBElLR2USqtNbSJbmjlhEa0sou0Uq6IM0/tWOUZ8sniPcg7qWXbZKcLWYq3ZOMZUsOwrUs9ti2fLFitjnQMQKq0HUvtcsObamoSWzjrxmMCaE+6OkIq/W9qf0TCoUwTbcqkNUj/My6A8u+n1XAxkKKRY+/fchSaOI4iFoLdAlBI+5Nm2VzU1bM5cQ+RCHtNccJkCcbstVFcUyjHrm5NapA1uraeQDBmo3++oImZa6hDaBAfaWoATuerdWDDYioJ6amOscr8VBL8ACwzppWEaBQpIUIj5WsUUeJYtTiprXk2rJoQ3GPbmkRHBLGPw6LJbplj6wO//vWvceONN+JnP/sZdtttNwDApZdeite97nX4xCc+gS233LLnMTvuuCO+9rWv2d+33XZbnH/++TjyyCOR5zmiaHSSjEbddrUihlbU78M2C3RMDZpK3yijpz0GrPJ7uU73MGn+70C1Xm5qZo+iqY6vqf53EJaL1q3RtfR3M6RMlp0jT0230cR6zQajNgw4A7K+nykfc2G3AODcc88FAFx11VUzOs+0rdUrX/lK3HjjjVi+fPmMNjBfMNWXVq6owiNJIZTaEwMBgDztQnYL9UOZTlonTeWppV2rxY+srqA8SiDMl3Se2PVKjTXu03xRr+MMLZMGGXEsKkVKJlOJdtnlfiwW1iE14iNKc2JQGt4U4rwhT0map3LKkJ3UOj2ykyLvGHGRDtLx4v2gaZCe8zaRYbJ8LyelnpbDJhizaxNOhRKc5RxLJWRSpo9lTnlTE8VI3UcBsvamctgmTbqhYaOeP2lFANDpdPC+970P1157LbrdLlasWIHPfvaz2GKLLeya97znPfjxj3+Me++9Fy9+8Ytxzz33rLfXMF0sCLvFBABFUh/JTX6lb6BISidtMrfCOzJTEGVwSaQcCUkzLi8HSF0JYpXXTyVT0oKDplO6n/XOm5/6yG06J/McOF9IpcE5a3DspkJT5mWTc0NVF72eQlQlUpCURRPAKdPbAdjAXR3q1CB5TJy0iDhpUQJR2nYecTs2Pwt1YWf7I/KaoobXxyuva0o02S1zDMCaNWu86VarhVarNfhzVHDHHXfgGc94hnXWAGDfffcF5xz/9V//hb/9278d6DxPP/00li1bNlLOGjD6tqvFOdoDRgfYgHf+w+rmNOl86IqzpLxj9PHlfUHDOescver8VHsZBNXX3eRMefPU+bJzDWtrnrPpbzJbfwOK6t+jCYwxpMN8Bwxgt+Yzpp0S+Vd/9VfYY4898Jvf/Mabv+eee0IvkICAAaHzvIz6VP/Vq4nOBoZNKwKA9773vfjWt76F6667Dj/84Q/xxz/+EW9605t61r397W/HYYcdtr62PmMEuxUQMHM02y1nu7baaitssskm9t/KlStn9JyrV6/G5ptv7s1FUYRNN90Uq1evHugcjz/+OM4777wp7d18RLBdAQEzwyB2a82aNd6/brc7x7t2mHaI6corr8TZZ5+NV7ziFbj++uux+eab44wzzsDXvva1kTEesWCIBQMncqWDRBk16aemlIYiqZIAoLLURlNlnlq2TVXZqBpPn6bE8CiBil2Ela5PMUYeY/YuXRuAyLUhSKIcE2X/kyIlsmQCSUqkjRxpFz3qiaQbtonI+ivpREeKlMiSTUxz5FZ0JCUCJLlNzaLy/el4hnSiOM+kVFiX92fYFOpTCPw+Ui7Vyx13YiRJrqygSdRWllWr9nerAxMuDRKcg0Ux7MaGgWqI+KwnidnppBU9/fTTuPzyy3HNNdfgVa96FYDi+n/xi1+Mn/zkJ3jZy14GAPjUpz4FAHjsscfwi1/8Yr3sf6ZYCHYLqPRbSyKwDkmPTIrPIu+kEOV1LxIBUQoliVRC2XmFWBommhbh+8/nUiV7jwG97QHcXM3xiPaEY6D94awt6yM+MhNmuy6VZ6qgv6iIeFC2zbZgiThU3pASaTImkDSKTk2ZYRElVoxKRJEVGhFEWIbO2TFnNh2esmpJ5ARIhmLWDJrsljkG4OGHH8ayZcvsdBO79sEPfhAXXHBB36f79a9/PfweK1izZg0OOOAAbL/99jjnnHNmfL4NjVG3Xe2IYWwIgQigPsen6eM6KCs3FXrYNsqg1az3GTaSEll77qmfn55vkEuz+rK5d4wKhdQ8lj6u7vh6ek8NqmwbkYEb+NzDpEQOYre22morb/rss8+utReD2q0XvehFg+9vCswoJ+Dcc89Fq9XCa17zGkgp8epXvxp33HEHdt9999naX0DAgobOMuisN93LNCCfbUwnreiuu+5ClmXYd9997dyLXvQi/Nmf/RnuuOMO67CNCoLdCgiYGZrsljkGAMuWLfMctia8733vwzHHHNN3zZ//+Z9j+fLlePTRR735PM/x5JNPTpkmuHbtWuy3335YunQpvvGNbyCO4yn3NR8RbFdAwPQxiN0aNNA0qN2aTUzbYXvkkUfw0Y9+FF/4whew/fbb4ze/+Q2OOeaYkTIcvJQxjanccaXRaBNcPZtrpkijp4rUrblx5saqXl6UNkilLFyT5GjOF1lWjXMGXgqNRDHHZMmwLUoEaU+gSN0akaY1MraDyvrbxtnK1eXlma35klkGVcrhqzSzbJtMpW2QnVXk+03d2rpcYbIM41OGLdO0hq1e1p82/jX1OFB+bZthEqTWRKZf1zbRpqCCDiBCIyxKnOjIsBX8UzBss10HMp20otWrVyNJEjzjGc/w5rfYYouBU5HmCxaC3So+e4ywMkTKP4kgsrLRexKBl3WkPBEQpT0QiYA0bFsmocvWHmNaw8SFZ4NhSzir1LOZ7ZMWA4mwDFu1fo0bBpEKqVChjmnWr9E9u7Fv8ws2intzQBFxdqwaQ54xMu9qz+qyJzSXjfac1r+Z81SFRkRSZFVwwUkmBffq2cy+IlLDlpQ1y4nwZf1pfaH5LhwYA0SqB8Vmm22GzTbbbMp1e+65J5566incdddd2HXXXQEAP/jBD6CUwh577NH4uDVr1mDFihVotVr45je/iXa7PdT+5gtG3XYlgqHV5/ux7vNHp1gdS6MVOS4bj80IZg8VFl/XsfoNTL+e4toahHnrd4ra9waofQ9Yda7f+zSdOrua90BTW93zProXNlVbhjp0h7nnGsBuDRpoGtRuzSam/Y23zTbb4LbbbsN1112Hu+66C1/72tdwwgkn4MILL5zN/QUELGgUTnz9P2DwOpAPfvCDxU1jn3/V2oeNEcFuBQTMHP3slrFds40Xv/jF2G+//XD88cfjpz/9KX784x/jpJNOwuGHH25Tuf/whz/gRS96EX76058CKJy11772tRgfH8fll1+ONWvWYPXq1Vi9ejXkiPW6DLYrIGBmmAu7BQAPPfQQ7rnnHjz00EOQUuKee+7BPffcg3Xr1g11nmkzbFdccQUOP/xw+/t+++2HW265Ba9//evx4IMP4jOf+cx0T73BIEpZ/1gwxGXkMW7I+Y8GSCb2GDYSSbXqjnkKmTmJ/9qGyzmgTKRWSYiamgfOha2LY1w4OXrBbT1dnilEcdkgO1euJQFtT0CaPNIatilVfKhKJI1YKGlZNS2VVYlUWQ5p2iBM5lBl3ZhKpSffb1i1VIEwbAoZUbGjKpF1oDUz7v1yqncFM9db29aEorEvqQ+Ki0uGRTFYmVbD4hjg5aU0ZD2IVrq2VYBhcGebnp9OWtHy5cuRpimeeuopj2V75JFHRk6xbCHYLcZ58TkzDJvgEOVnUcU5pGHb4hiibAAv4gyqVIkUmbJsm25HtmZTSG0VIwH/WiovWe+a6a0NbWbYRJnJ4PZrGCVGWhIwq2TptScgDGLxwkiTaaoeOUUdm1+v0av0CMCz9x4bVX4n5Jm0j2WM2VoxxRVEqTqolbTMGIX3vcB7FYKLvQhPGZKTGmaqBhmV7x8XzKtdK+ZcG5cWqVVrRdz7brN126WC5zCB6ia7ZY6tL1x99dU46aST8OpXv9oq3JraWQDIsgz3338/JiYmAAB33303/uu//gsA8Bd/8RfeuR544AFsvfXW622vs41Rt12xzhHriphWHbtDGRWPQVO983VzgKu3r3tsv+ceBlPYm1oGjmImGQL91Kunel2zwTwOwjbSFiyswrCR33X1mHsQAMBLYKx5np7PVB/Mld0666yz8MUvftH+/ld/9VcAgFtuuQX77LPPwOeZtsNGDYfBS17yEtx+++3Yf//9p3vaDYpIFP9izhGXX3aR4PbGIok4ElK8bdJMuGA2/YTKPHvpOgRUGp46dXUF6PQcpgdb9VieTtqxylKopLiJl1LZ1gIqV1amnqZBdslY0ZRI7TtuQC897RkCunfPOTXCK7m9MGSa2xQsmSnIUlJcZtKKflBnbJL0XqNpkKnSJDWrNyWyuOEwdx0utbPJPAlGpcMZeOL6sHF74yjAk6icj4v0RwCIEm+sRVy+H8M5bCrLoaLez41xdmebnp9OWtGuu+6KOI5x8803481vfjMA4P7778dDDz2EPffcc8rnnE9YCHYLXIBFDCidNJ5H9jPKswiiXXwuVZpDlfPRWOyEkqS2tgFAbSqwyBXMlVMEtmg7jfpt0bRjoCYlsub6EomAiGt6yNE+cw3OGhrsbfVGqOm2yHPaKvlG1WAdFeiwqYeSW2dXSg5evr91zhpQ2ErWkI5DRUfM45kQNg2SOmlRLBCV71mUCETlexmV72+SCOuYJZHAWPm4hDhsScQRl3+wQnhruJTIJrtljq0vbLrpprjmmmsaj2+99daewME+++wzsET4fMeo2y6WdcAyUjs4gLNV76Tpekeu6XxEJM1D1enZEJ+T9dGobH3vu27PvMFha3S+eL1jxpjnzHlrmtIoK04byzp9t08xV3brqquumnEPNmCGoiN12HrrrXH77bfP9mkDAhYkmppxN0WBZgqaVrRq1SpkWVabVvTqV78a//Iv/4Ldd98dm2yyCY499liceuqp2HTTTbFs2TK8+93vxp577ukJjvzP//wP1q1bh9WrV2NyctL2Ydt+++2RJPU3sfMFwW4FBAyOJrtljgVsOATbFRAwGEbdbq2XzpHPfOYz18dpZx0RZ2UKJEOrjOK2I452GYUcSwQWJUYOP0ISFR54N+I2GikiKvPc2zhVokGGGr3SznVzVtCjUrBO2TlZ9o9QuYDMHVNmxFCKNEhpx1L1Rsubmj/WgVWiYZZBVO5iUFJBlhELXZ0v07FkqmyLAcqYVZtiN81XIXV9Wg9993sb+DrxA5tamgiIMvUxaieISsZCtBOwVlGwzpI2WFKO4xZUGRUfNttApZlNYavOry8Mm1YEAP/0T/9k19LG2RTHHXccfvjDH9rfDe0/KqlHo2K3wHnxzzAxUQZuUx9jqHKs2gmUMqI69Br000LqUkF4KsHT4trIlLLXjNSstp0GUCfr7xi2uCUcqxZTVs010RYxST9uaAZevPYaVdUBZf1rg8XUJtQ0lqZjLjg4L947Rhp9C8GhI/e+5HABCpO2Se12z744YfQjJ99vbRJl2BLuWDXKtpHWLe57S6DlCZAU45i7TBJeCm31E9mqoslumWMBGxajYLtYNgHWrXxmBk15rK5TvWxbz+Np2Yad7s0S6llTrW3sk364oFBzn+qlnDdkNzBOmqVwQdgznzljhFUzz1Vl3VjDY+kaf4MMLJvAoBh1u7VeHLaAgIDBoLXyv0TI/PrCsGlFANBut/GZz3ymb53ErbfeOltbDAgImMdoslvmWEBAQMB8w6jbrY3aYYsYsyybYdVagtuI5FgsMGYilbGLWk50XIQzz6Qr+i4fJ+MELHURU68pqpXsl96YQnsRoVKwRElwEy2nxeukFk4p19BbK20DTB6rpnyhkapk6qCscG2kSkkik0/k/qVrSk3l87VUDeyZtnVnBfPWX8rfoCrTTSP9VEDBCiFETvxAxAJRO7JjQVi1qF3UCIpWy7FqrbZl27RIoEUZUW8oq2mCSnMrMlOdDwioA4tjsIgDZYsQxDF4XtawJRF4RurZyrGKI8sUa1lfeM24Y5xzwcBEGblOZVnT5ov2VFGtYePM1a3xRCBum3q6yIqLiESQ2jYBYepFY1eX59ezEeaNtNYoJ/q+b0VWhGv74Vq5OOERyqqZ+uUkEkjKdilpxGtZtcbGsLzltX2ZkmHjwomLEPn+nro1W8/GPWYNKNq4UCn/pI5hE84mxuV3YDwUw1Zvt8yxgIAqihq2Sv0RaQ9kUceaUcYMIDX0yqunt+xYZR7k3sk7B9UXkPWMW50MfNNNfy2GbHMxIzTV9VZQm/XVxKB5LBvvPc6FnfdsMufusbQNEsmSKGQHHKvm1cIZcSfyvD2ZFIwPV8M24nZro3bYEsGQCIZcMbTLL8NFuUBXOnVF+iU4Vt5ALGpL5JnpdyYQJeXNjBHZSMasYAg1IpqoPgKwPdnMMQP65T0Vmm4AtNL2JmJ9qt8MAi21Lc5v6nXWlGZFIcgNV1WhzhynIgcxET8YK2++xoQbR2MRorGoZxwvblknLWon1nljY4vB2osBALy9GKy1CACg4hZ01Cpf33BRmsKxblaJDAjogfmCNOIWSoFFRTqHaKtK0KT3s6WkwlQVhYWSY5m6nHArDqSlaryWq/3UmODOGYsrKZHlOG47543HkVNhFdymA3Ih7DwqNwR2PGBKpPFJCpENN7ZCKTUKwYIzG8RLI468HBf3kCRARr5NTZq8yplz2DSHVr1fuYwXbTeKl0RETQTpsSZYbRpk0orQIt9RQJG+b4RGiu8t59CZNMiYc0REUIszt4dB0GS3zLGAgCpYOmnTrAH0ioRQJ8xO02BwOc4zMq+8NdYxk756tSvbkLXOnj2GquOmGhy2hjTLGmzI2ijWkO4H+E5a7b0lcbzc+UStI0edLnAXRPMcMyE8B49RR86Mo7jWqfP2S9IsPQcPZaplOtn4mqsYdbu1UTtsAQFzDZnmkDXRLjkC0Z6AgICNE012yxwLCAgImG8Ydbu1UTtscSk7nXOGrIwKL4odw9bJFZa1CxnaNFfo5kYmX2LSCGfk2jFrufupWoUcc2/6Yh2bUp8qQ1MoOY1iVNYMC7keIwlqms1IKXsGOKEQms5Ipfr99Ee3ljJsZlywambMEbdcdD9ZXPx9k8WxHUeLxxAvK9izZNliREuWAABYezH4WMGwsbHFjlWL2kBcpkcO+fo3tEpkwOiDiRgs5l4EGWV6LgcgCMNGQX/nJBJL5fPNvEwlZMni8ExYtk1JF6FUFYaNVxR/RCw8UR+TfhyNRTb9mCckFTmJwJOyVQFh23gSuayDKCZRXmcTh7VoghORFJIOSJm2OrGOJOJIY5PKrqF1r/1lHGB5cR4tuP1+MI/pXe8k9Rnp+cYF89IjHcPm0iAXtSOPWQOK9P2l5Xs6Rhi2diRs6n+19yj9fRCMutpawBwgnYBOWTOrRVgwyqABJq2RsGqm5VETe5ZnU56biqFp6Wqbqp9tJQkjV8ITbara2Zp7PLWerwlew6xV7xdZjc2n6zhJfaTfCZ74E227wikz5lLWUWOrqywcK/tL0iyJamqlbkqtdC+6+JkOLjoy6nZro3bYAgLmGirPobJeY6vy+R/tCQgI2DjRZLfMsYCAgID5hlG3Wxu1w2Yk/D3p+BjIVOG5Z1IhL73ubFGM1DBs0rFtWjmGzatn0G37PHX1aTJ1EQqtJGSlSTZQSjwbhi1KHNsWJ3aesnDF7y5Sy0jUlmIY+eZhQaM0dk/CyV8XMt7u+akYCG24a/4eCbm2mpr2WhERBlu3NiY4YdUYlpBWDfHiIrrTWtayrFprWQuJYdWWLkKytBjHSxeBL15avLbFS+0YrcXQSbFGJ2NQccGodifWTfkeUcisISVyPTZxDBhtsCgGa2j+CSUhVKv/40U18upqz0zNWT6ZQybGVjm2TStaj1ofkWSCMEQlE8QT7oRGYuHqRduESYsj105jLPHmEZUNd7moj7YyVilYdzUP1g4y7cn6cyKOwgnbBPis2lgsrO1vRQqprWHz/wbGznKpIISraxaqWK8aMhs4Z6SPLGsQHXH1bBERw1qUCCwps0BM3drSdmSPL2m7erZYuFq8luCEbeOezP8gaLJb5lhAQBV6chyaVQTVmhg0SbIHyp86z9zYsFh56gmN6NxoB5A2JlnuMWmUMTNCE1opy4JVWZhG5o3M27U1GTaNNVMzYHSaatV6WbVe1ozTWrYKa1ZdS7MuGOeeEJS516Pn4HHks3CRY9LsXqLEZ9tK266HrX8rj+nJ8dr3og6jbrc2aodNqAxCZWhHkVU+U5pBl9XjSmtk5ZdspjTSRSYlUnmqi9UvYvo7LeSm/dmYEFaYROWp7b1Tde6oIppZw6PEjgtVsTKlKOL2xoORm4Bhe+zMFph3QVOHjSjHlWIGgmkk3AiKOIcNyl23Cn4PKKtGV/7up0E6h21JxLHYCookaC0zDluC9jP///bOPkiWqrz/33NOd8/s7r17L5e3C8LFIKmAkVAI8qaJvJWQpPyRhKLKxFiIBAwVMIAlQhJFk1AagqUJQU0sSkmhFZMYTapITAxqxVIUA8Eq5KXEkkChvETe7t3dme4+5/z+6D7nPKene3fmvu3s7vOp2tqzp3tmenqnn+nnfJ+XyrHO5mfQ27q5Hs8im6+Li8zNQ8zOV+NNWyFmt1TH0pvzTppNZ1DWR1EsV8ayBQ6JZCZFpCkEbUTecUPQFSxNv2DLLPVfwjLNoQd18ZJMoVxy/dwS6MKFF1lyYxMqvlbPG9uYaqHGFR0JDlsyk4TqrP0UyUz1XpJ+zxf4kWkCRcIjQwiNIs4bTXwfs+gISAXL+iEpCUlMfWXI4LD1EumdHm0syo6wRrpAZpxtSmQUBknHdHGtLSRSCIHEFW1R0hcXafYHpQVG3PZN/RAe6Zy02VT5fqOpkv699pSsQiIniK5f66FFzP7HLO2EkY3CIH5jRzgjDWX0YZArO2Y6L0Lodl76sc6J80YeqyOnTrc6aaYRNumgNrF63lH70Awfbz7HpDQdtmY4OhAv1EtyD0YfXzle7SGP1ZwifTIbzpjvW5uEsEoyVlkKoaoKjss6csS2+xB34siBhkeCOKH1vmaJQyIZhtkPmKKEaXGmzRpY7WEYZmPSZbfcNoZhmGljrdutDe2wVX1BUqTZHGZcmIsFXBcwg2TFvmRdBTyo0uXGeZKhXKpC5mSS+bL+usy92gYElY1KvzLNoIjCprJK3VG9mbCKreIeQbS3kCKhPm5clbZuhksu/34dkfROE0vpqkvraoyCSkOpb5NV73XGGAStzHj1LDcWOTnHTmFT5LjjQiPV3IySPgwym02j0EensPUP6KN/QKWk9bZuRm9rVVykf+AWJFu3VW9p/kCoLQdW401bYXrV/jadge1V+2vV8yGy7ve40FW+5jzDtJJkEGkaz3X01VFyNCRmJMxFhrHrg6bzEiqt1DZdaBhdRx3kOlotbu3nRoyIC7Gs2gQEG+B6wsksgXJ9DvuZf32ZJqGdRpJFieyChs3UYQSWhEF2IQEfEilECImkRUeGTmmT0ocV5qUJ4ZFWQZNr09nSpVx7hU1pAVO/V3qumpEYktw4+Mcmwq+MU1WNFkGZyZLW/qC0fP9cfR775HHNMMigtomqzP8EIZFddsttY5gmdjiElRYrlthvlPCvtmt/Q221ica6KEbmjQ7hjpHyVpT+uem8iZ6TRBE0QsBdRIEhvSzpdd1U29xc25gyTlGStsIiABrKWbeq5u9JyX1iFPGkgu0JqpsIoekjoY8uxD2J5n3EhpJRmxZVf2cJJSHTnIxdmKWCTdw+tOhIXLDEzbvWAnY4XPHcOda63drQDhvDrDYmL6HRorCtgRKzDMNsTLrsltvGMAwzbax1u7WhHTaRL0AMJSSAXlYpJ0jDKoaxgO2HfLYuNY02WAWAF6WAcisOCWl+mkgUSZUPVeYz0MOq4Z8qc1JqVo/ksbnfvuhIkkHVbQOSLA3lnjMVEtaTsIpe5WPU+9CGsCIU/aAq8Ur9U62Q4SMvJVn9iGOgXQEBlSWRqkZzWdyqRqYtAPe+JZSoznUm4fMLm82yaTn/at9Qvj9LFbJN1WoNzVvrz/fQm69W9HsHzPm8td7WTegfWOWnJVu3QW7aWj335q2Qm6ux6c3B1p8T05+HTqr8t6XSYKmoW0FM2DLBGtO6srMWVnuY1UGotFLZ6GSHwuaUKSUlZBryCXQa8sNKtyKaJf5LSxcldFatXFar2GRFO6eFA7o/70KK1pValYVCIzRvLZnJyLgXVl7T1OcziDSLchsiVc3LZ438Dq+qhdYhEqFZdlXW3qlN1XWXGhFUtUy12n4lJZbq86WkCEWpSuPPizEW1rafI5rf7O22FFHz7lmvsKmoCApV1WYaCltfSfRqe99LpFcPqdqWyipvjY7TljyYLrrsltvGME3scAFGkJtiqrAVNG9NR/ln1RxRzHRQ20xRenXK5GVDeXP7FCS3rYyUNJeba7SFyUnrEq/Imdac3SqfbVRtc/u5eT9Hrom2fLbdgeat0Ygnqp757VRVa9jlUHQqREFQ1U3WdoUWkWra86Cwpf6+j6pnMkugVV7vQwpNKRUXMskKP47aBqTE5rtiffV+djhJ4+y1bbc2tsNWLEEU9Yexnutlc5HT5vcVaRRC46BfsJlL4k4kfppUH06VBOctSUMPn7JIUPaqmxOjDXRdUtSFSQJV8qsv3EEcNpUk/oJLMuV78tD+PEkqkWXhS5v2EcpIWIx/T6RiWnjP8TmwtNt81DujHqdZdIHSKm/JTHXB6cJEBQyi3lBL9Q1EblDUF08cDhn3X3OhkKlPcpW++lzST5DV1SDTTWlw0uZ7kZPmwiB7B2yGqh2zKAxyflsIg+xthulXDrdO+liqb9CWCoNBbYTzcjJjbHINg9HPm8lHq00xDABYlUKkvaiKFu1fY9z1WBawPolbwhJbIrPR69T0M5SD2m7lJUztPOmihMpdaFLcu2i5UB4aQkP7+cgsfKnTMEjVz5DOzfixyKoFEZH1/Ri0D1uSwsr6K2yFcEh/TG6RR8I7KLIMIZEuTNCQYlKuWmYTJUioeam9w1YaGxWlGmehz40T+n1CnLRMSeK8ychJo987gHPY3JyKHLamk+ZfXwgkExSm6rJbbhvDNLH5EFaYFXuiNas6AoAuish50x3hjqa2U6Yo/T6Vs1f3zS20X3Cy2vqxMbZ13jbmfXikMSRUkoRHNgoxAfVif8uiTZff1lZYrUlzbaX1/i2qzi1BqwGH3mvBYVOZCuHYWXDM3FhK0ZivF6tS5Z06IfMorN311VRFHDapqJNW1PY/Tb0zLRrhlKK+L6b3m5ASUAo2Hz8kcq3brfGD1qeEm266CWeccQZmZ2exdevW1T4chtkjTF1OeORnDaz2MOPDdotZT3TaLbZd6w62Xcx6Ya3brTWnsOV5josuuginn346br/99j16LjlcgMwErDUwtvpnSWvQ9+GRiVeZpAAk6tUCGfr1pFL4Fc5YxapWAV7MFHbWyfv5UCEdVl58MSxR1mF0ujTQunpuU/aW7dcD1GGWrohHIpH2nKqmonFYhU2iY3THKUUIBfJlpUUcHtkKTfCPutarIJOnoVx40u+FEIZcR6qaICtATm7XhUZSl/vvL9PryRU0CL2eFNI6hDXdFAqNZHMZsvlq5T7bPIfeAbWqtnUzsi11j7XNWyFJcRG5uSo6YnpzML1qH9vbhEJVSt1SYbzCNiwtBvVx7powDloXFhqj71EXeydsgpkO9qbdglSwKoNwircKIYM2H/jWIbbMgwqXZNVPPVb1iqVMBkFhK0okdQGQcjD01ywthR0l6hsaBrRC8ZFGYrobJ/2gyiczpKx/1g92Jcn8WCRpKLgiVRwG2aGyOXMmRRjToiOpEkhNPa57phXGIq3tcL9xKTo1LC+NH+tUIXcr/cYiL8NqbXs4JY3SkHFRKBHGPRKWSb9fXCn/KuSxobCRMEi6PVXCFx1RUvgWB0pW52PcglNAt91y25j1w96yXXY4gBXtJfOjEvuNkvxu+ySqWrVPrXITVU3nIcJH5zrsk2voIhyXzg15XRpRUO9fGq+EVf1hR8eO5lybsjZOlOSoqkbHonWOpo1E44QqbCFCSZBoJWC0WJQYlH6sXEumTEMVocem+96QaQLl7vuo2kYKvMg0gSL/axoeqer/MY3OGGk9IBXscLDyyatZ63ZrzSlsH/zgB3HNNdfg+OOPX+1DYZg9xn1ptf0w6we2W8x6Yjm7tS9t1/PPP4+3vvWtmJ+fx9atW3HppZdi165d4x2ztfjlX/5lCCHwpS99aZ8d43qDbRezXlgtu7W3WHMK2+4wHA4xJKU/X375ZQCAWXgJRpSQcwbSrfoQta2fzUHVK7vVCkW9oiBTsmpJ8wXCaqjLN9jUS/BSv1rN3jkosXOxWg0qi8QrbGWuoXVQ21ySum18ftwCsiArJErJUHSE5LDN9hNsrtWmTb0wnskU+lE557DKDFTJ+CtmMpDVbJGmvpGtSFKfa6L6OdK5amyJ3Byra0FVU5kiq2A6Suil0MRZF0/ti5j0E5/DlvYTr6olczPINs8CqJpiuxy2ZH6LLy4iNx/gi4tgNpTvN/3NvtBILhJfXGSJqGrD0nplbVcx2UWvcwPd/EcDfrWP2bh02S2bZFX5Y11fqdYGtU0qIKkTt8sUtlbVbD6ArZUpm6RVc1oASDIkvboJ7XAAU8+rfkYUtiJK5ver340vueYXHlXYaCsBmnSusjSM+5lvqCp6/SiHLdgYohTKJCiIQvoc206ljahqEmE1OpUSqbT1uFbVEgnTkndC881ouf+8NL6lhzYWmnSh7spJoTlsCRm35RtniYxy1aiqRnPUgPaS/W7sV+JlECeVEJACE+WwddktYN/arre+9a34yU9+gq985SsoigKXXHIJLr/8cnzuc59b8bEf+9jHokIvzL6h836rLGAK0aqqLVeeH1i+oAgtlNSWqzaOqmZy3VqAROfG24Hc2FYlrZrHyLxjOYWtLbdtOSL7MZHCFnL+lRBevVJC+Hm5JLyypl1tByVgfOST8WobzfNTRUNtc/dlOrRwUI2m4y6HmTpKMgtF6GQaxipNg6pmJISmapvx31njsFp2a2+xIRy2D33oQ/jgBz84Mm+WdsHIKglWzNQ3OUZDGmcYSqR1ry2VzfoPfyLDF18vCV+OrjJXX0nfB2fLbIGXFqubjRcXC+yarZ5756DAUv2BH+YapTMoZagqZoyNqrDRzvUhJDJU/MlIxbDN/QSb+tXrzjYqibkwyJ6Kk9CB6ouc3tRE0Jsjl+yfhKptIutD5JU8rfoZEh8GWY44agAgs9wbgGQmIUYyhBPR8FAp454hLtHVhUGqfopkpi40MjuDpHYYs/lZZJsrpyvZtAlyzoVBHkActq2wzknrbfY91kw25wuK0DDIQWm987ZYaCzW/79dw8lCIq02sLKlSuQaWO1h9i1ddqtyVJLgoFgD2NpB0AmEvzbT4LylaVWJDbXDV4dE2qwPW1+zIutD1F9+ssh9DyRTxgn/cdER0kephbh6mQtdTkgBkgTSVX1MUoi6+q3I+sGu9PqQznkjFSMtOQd2zKIjtA+b8ydpSGTfhudxoYy0X+WwBFSvdtgS4wuNVGGQJnpcc0yhjl9zTAuNhAW1ME5oPzVS4XIcJ82Naei7qN9jV4GDNrrsltu2L3j44Yfx5S9/Gd/97ndx8sknAwBuvfVW/Mqv/ApuueUWHH744Z2PfeCBB/CRj3wE//3f/43DDjtsnxwfU9F5v1VoGFl22o+28Ecaiu2dtMYCkibpFtQxc6GM1HkzDeeN7tPlpLnCZ9rScXC8uhy5NseMXhltjl0bbcVb6bUq0e7INcMgXY9aJayfz6RAbkKV7WxY2zzvgEm/aK60ha2dJWusX2yflMpJq861C5P02+ginx4dS6VGnDdTjF8sZDXs1t5kKkIir7/+egghlv155JFHdvv5b7jhBrz00kv+58knn9yLR88wu48pTV05M/4xEzbgZvY/bLeYjUqX3dqXtuuee+7B1q1bvbMGAOeeey6klPjOd77T+bjFxUX81m/9Fm677TZs3759nxzbWmNf2i62W8y0shp2a28yFQrbu9/9brz97W9fdp+jjz56t5+/1+uh1+uNzJudL8GYaiXZlQ2VZR4UNlP63iBC55irQ+PSXuIr/2dKIKuXK2ZdOGIqsalerdmcKczXSteW2QK7Bk5hK70as5SXWKz3z8t41batz5ForMjOkPL9M7WyN5OqEBLZT7CpHs+mqpGcHpQ1oFp5DavQJDyShEFaIX1oiZAyDmPKq5VwaTQSM6qqVWGQtSI2yJHO1SGiS3kjGbnlfdME2TTxCaqqLpSQ9DMfhpnM9n2JcKqqidn5SGFDvxpXxUXq8v3ZHApZvaelwvpQJxoGuZAHVW2xMH68MGFpWKMNjBg1FMuVS2emg9WyW1YlsCojEwaobRakAUy98mlSoN5PpD0gGdZjoraVOWyvLplfFrBFrbyVBeBKKZdFpbgBVUnuln5JK61O0vBISUrzQ8q4oIgv359B1MclkjSMs36lMAK1TETK+stgn5ziVqljrvdaWKFUIkSUKhGKcTi0tZhFdYxDbaLQosK48EmBfh1VYaz1RUeAbmXNEalqRMFTAqEnnBRI1KiSVo1Hy/M7W54lsaoWFRchr0/fsRACyQQKW5fdctuAEArn6Po8j8vTTz+NQw45JJpLkgTbtm3D008/3fm4a665BmeccQYuuOCC3X7t9ca+tF2ddsvEuUK0nxoNtW4WOQKqcMfWAiVjhkGaFrWN7mOI2lYY45U0Gu44Og5KGlXh3FWxnNK23HwXsYrWDLOuVTBBSvzDkh614TVoGKS21itv2lrf89ZtR+gytddQSGAVCYVFiEqStUui89KX/jd5GX9/NJ5vkv5p49itvc3jjz+OP/mTP8FXv/pVPP300zj88MPx27/92/jDP/xDZFm28hMQpsJhO/jgg3HwwQev9mEwzH7H5O3lZNfCas9Gh+0Ws1HpsltAsF1HHnlkNH/jjTfiAx/4wMj+119/Pf7sz/5s2dd7+OGHd+s4/+Vf/gVf/epX8T//8z+79fj1CtsuZiMyjt3a2zzyyCMwxuCv//qvccwxx+DBBx/EZZddhoWFBdxyyy0TPddUOGyT8MQTT+D555/HE088Aa01HnjgAQDAMcccg02bNk30XGbXizBmAJQ5RN0t3eYDyLpMqJibhyxdImzu8z6y3iYkvbqIhTJeYXO/Z1LplZadmYrUtsWZWokptFfblnIdK2y1p5+XBtqtOpEVW1oSOktUKAlNmqvONPLW5tKQXzdLS0KT5qlAvdq70okTEla5poahzLbI+hD9uiWC0ZB1nHICRCW9tWvOO8j9Clq2OcSiV+e7JedNytDwlzRfdKXAk37P563J/izkTHUskao2Nw/MzFevkc34giKmtwk2rRS5gbZYyl2umsFSGXLYXHERmrc2LIPCtquYLIeNFbaNwd60W1ZlsCrE/gtrYJ1iZW1Q26jyppVXo0Tag8icwhZUNZSFL0ZijfY5bLbIQ5ESo4nCFtQ2/xvw+QkUoWjDUxVy26TyOWm0RQjNYaty8eqVSBWaZVuVRO1FVmqeLYTwkQTahlwPKy0MYpWqn1i/iq2kwIA0pu3VK9WFkaG5toXPe9HWtrZmkTQHuaGq+ZYtQrTmrSkZF4iKctSI7a72jYsQ0NcR/n2ESAqgWrVOVzT8gXFWqp988knMz8/7+S51bVy1Z/v27Xj22Wej+bIs8fzzz3eGOn71q1/FD3/4w5H+YRdeeCF+8Rd/EV//+teXfV1m79kup6615b3auj+W36+h3NO8J6vjfX1hEtK0mkbpWG3Hylsr3L0WyU+L1TMsk89W2wRLC5C0K2y7X3TEduSqIZprm88NSN5a9Xc1Fv59ZFJE7xtAFVExhsrm2jNZbX2OmNXC578JaSDqkAYjDYT7/0nyvSGNV96AYEckwj2gNcYrmM5cTZJ7thoK2/nnn4/zzz/f/3300Ufj0UcfxSc+8Yn177C9//3vxx133OH/PvHEEwEAX/va13DmmWdO9Fx6cQHallVIpAu5yQe+r4MsC4h+5cjJuRw2rfs96AKirMYz6Syy+rG9+kO7pCz6STWey5QvTrGrV5IwOo3FmVC0YlCOhkQ2wyPboKE1tKrYTKaiqmIhXFP55PR+EievA+6LPIwjQpnKEB6pslDNTWtftACA7wcllIJMQjES57CleRlVhuq68Kizp+okVUlCIn1Bgpk5yP4sGdcO29w84MMdZ7xjZnubYOrx0EoMnZOmbdRjLThpBjtdGGuhSZVIg6X6//ry0oR92MqOKpHssK0r9qbdgkyCA4Oqsm1UUlY7580A1jk6pXferDUQuv6cphqy55w64rAVefVljbqfW9tY63aHbaUCJDIkq4s086GMIonHdCEIKhQagXKOXxKcN9qHreG4BXtmSWVEwDiHTQg/rk0KlFQY1F/sUltvC00iUehwY1eQ69S03KBR6A2UFMFuS1IcIFXSv1YqZSiMIuPFtTbnTPr3Fp5P1BUgm69P5/3xTVIlssNuAcF2zc/PRw5bF+OqPaeffjpefPFF3HfffTjppJMAVA6ZMQannnpq62Ouv/56/M7v/E40d/zxx+OjH/0o3vzmN6/4mszes13N7/dJS6lPFPpmLHHqJqvEWDlVwTFrn0fkmIUwyFFHrRkGuVJPtuWhDxAdc9aP/TVvrd+/es1wjM5+aGtHHLZxCxG5c2y08c7bOCVJrDHVYt6Kz08W8Ekhq0k/Q+PYrf3BSy+9hG3btk38uKkoOjIJn/nMZ2CtHfmZ+KaHYaYAkxuYXLf87DvjsTu9jAaDAX7v934PBx54IDZt2oQLL7wQzzzzjN/+ve99D7/5m7+JI488EjMzMzjuuOPwF3/xF/vsPaw12G4x64luu7XvbNdxxx2H888/H5dddhnuvfdefPOb38SVV16Jt7zlLb5C5FNPPYVjjz0W9957LwBg+/bteM1rXhP9AMCOHTvwMz/zM/vkONcbbLuY9cI4duvll1+OfmiLir3BY489hltvvRXvfOc7J37smlPY9ibFywvIixIqy6H61T9F9Qa+NL3NBz7Ez+YDH2KnyiFsUSkzJl2CqNWbuVqt6fd7GJTVKsMwsZjxaptEXq9E0JC6xcJgWIbwOpfUXugw1tYuq7IB1WpIWzhNL5Gh5QBtQ6BUKDoiwnP4AiTNF3KqmiSlw1UJJFWoi+iRfnZSwdYrJzZJYbM6zLQsIPskBMuMhkfELymr3lJAVfa7pUCBLwVOwyD7c7BJ3QeOqmrZrFfVCkgMXLhjqTGsxwNtfEjrYqGxi4xpGKRT1ZZy7ZXQxQnL+httYTD6f232n9ub7E4vo2uuuQZ33XUX/uEf/gFbtmzBlVdeid/4jd/AN7/5TQDAfffdh0MOOQR33nknjjzySHzrW9/C5ZdfDqUUrrzyyn32XjYiVqVx0RHAK2xVeGQS5qxL1E8hfKikra5bADBlpdABleqW1uWWe2V4bFmEMEiivMFof/3CGD9eaU1WEIUNzevbrbaSdiFUSYNSQVWTSYjrk3JEWRt5XYQVShoeaRFWn+s2bJAQkGk1V0iLopbgjLUoSMK+IcVKVio0AoCoalQZE5GS5kIYUyWiXmluHxWpZrGaVr1G/D7j8v3xvm3HNg5ddstt21d89rOfxZVXXolzzjkHUkpceOGF+Mu//Eu/vSgKPProo1hcXNxnx8DsHrRwhPt7EnXEKSvjPEZK4UvEW2WB8Vt17RP24SURhXevFk5Vk0pGod8rPk5Ophm1fYaac8sxjt3a27m3xx57rP/7qaeewvnnn4+LLroIl1122djH7djQDhvDrDa60Gj7/tEteUB7g93pZfTSSy/h9ttvx+c+9zmcffbZAIBPf/rTOO644/Dtb38bp512Gt7xjndEjzn66KNxzz334J/+6Z/YYWOYdUaX3QL2ne0CgG3bti27sPTKV77S9zHtYqXtDMOsT8axW3s799bx4x//GGeddRbOOOMM/M3f/M1kB16zoR22cmmI0lroQQ45qBW2dABV560lswOIwQIAwA4WYGq1Tc4tVMUrAKj+ELaoVvNMWudPZTOYq8cz/T6Gtdo20NYrbLOpRK6r059rg4HPmQrjwlifI2FIfLHp+MIZzYWo/qjK9we1LeStSSRuQduv3obVWUkS1i3CCraQpHG2yvyKu8jIKliawroGt6Q5r9XalwuPihaMvBnlX8uP06wqQIAqby0q9Q3ApjOwaXVxmaQPWyt/Npv1CtvQAMPC5aoFVS3X1qtnO/OyU1ULrRh0lGtY1qvri4MJG2cbW6/wj87vC1bqZfTrv/7rI4+57777UBQFzj33XD937LHHYseOHbjnnntw2mmntb7W7sZpMysgVVR0BKiUNaDOTHAx+tbGypufN7B1Dpuw5BpURFUzpX9OJNrPU+UNpKw/LUbiaCs+AiDOWZCq9VqHIDZGKl/kqCp4lIV5Utbf0hxberp8rhpVoWxIYpP+zEHUZa2FsBDGjYHUhvL9LkXQkJwW93cbkhxPm6omRaykUfWM5tzR4iFODRORUle/fcRKGp1vOyZ37JOs0nfZLbeNYcahrVx71DyZNEn2c8ZA+iIUElLVxUWMha0/xEJJiPpzKJTwTZ6NtmT/oMIJZaEsub6iAh2hHH64Ruj1IuocMfe4Zm4ZzSsL23Xjmpu0cXZcbIQeexjLlv3jfQR5ryKad78FOafSK2m0xZIi+4R5oQTZPyhhdCxoI2wl/f1j9VrhfnMSFW05xrFbezv3FqiUtbPOOgsnnXQSPv3pT0NOqCw6NrTDViwOUGhTfSAG9YcvS7zzpge5d95Uf8GH29nBAszCTgCAnNscQiVnqkqEtpiBSavHiaSHmaxy3vppD0VtOHLivBUmhEqWxoYwSGNR+H2MXxkoSPgg/W4cJ8yG9uhJJQmzIdXIfI+1ZtgMTeqvb6ysJQUQSFiSUKGymzA6VKJr9HECDYUkH2JBnpOGQfriAyrzDqGpQx+hUti0dt6SHrTq1efaYFDHJ+faThT6uFhoLOUh9NGNh7QgDAlXzYsJ+7DlGrrl2jX1OZqGXkZPP/00siwbqbR26KGHdj7mW9/6Fj7/+c/jrrvu2u1jZdoxKq1CjqN7gNrpoYUlyA7WmkZIZHDeWouRWBLimDT28Q6b8TcqoPPOSWweuNtOQxfJOC4cIkJfNRmqQVqZRE6dtxkrhEM6vPNmKwcO7khd9cj6OpakWq5CeJvGCljyUjS8xu3TlacvERwwWqWxOa+8/Y2dMRr6qKLniR026ugB8ecgOPPkwERV6CSZwGHrsltAsF0MQxGqqvIsdAht1C2xiipLoOtCX85RU0h8vy6hQ7XoSVFdH1pCRsq7x05UqNJI0zRpARKQaoy0gEdcGbLtufe+wyYR+qk1HbMwH/ahDpvfnkioutq4yqR3fGWmoOqysjIj+6QKKnP30qqxvysSl0SOmZun4Y2qsU9wDtPIwaO/x2E17NZTTz2FM888E0cddRRuueUWPPfcc35bV3XbLtZc0RGGWU/YuhRx2w9QxVNv2bLF/3zoQx9qfZ7rr7++anS+zM8jjzyyX97Tgw8+iAsuuAA33ngj3vSmN+2X12QYZv+xnN2atCofwzDM/mA17NZXvvIVPPbYY7j77rtxxBFH4LDDDvM/k7KxFbaFAYrSxLI86fVVpAMkdY8v1c+QzFRhfcnsQgjDo6GSM0F1U65YSToDm9dhlUkPslbbsqQH06+UktJQtc2iJGNaGlaTSCe3stsVji8aqy9dYTa0z4+bo6u3rU8qQ6d6AYRQJJ2HlW6bVuGSAGBNKB1e/91+0GG13JL+Si4cysrEh0NZouD50EeVoajPR64tBoO6VYI2PqxhWIbQx115rKS5cMeBNlGPPKeqLea6tUceEFbm9YR92ApjULSUaXAq6jT0Mtq+fTvyPMeLL74YqWzPPPPMyGMeeughnHPOObj88svxR3/0R8seD7N7aGN9CC4Qq+xAfN2GoYSsFWchgurSVN5sUl/XhoRH6jJSz2yHqmYbChsQQjWXw7YpbkRtaypvIVRS+t5yaJb1d0q/AIRXvgSUk5ak8CdOCPjwSCfYGQQ7aGwQpOi5rk7D8rJU1OtMhL1pGKRErJK1h0fG+1AVTpD/B1CFjIWDpOPGByWS4WT4HIxBl91y2ximiUyDauJQqKNkpPb3FCYvfY9Vd29m8vDZlFJO/D0bHUf9OlqRcD8ZytHLXEPVN166NKEfowgh0FSZyo2Ftk6Zov3ZQuiju/KN/xsAxMTFSNpUNYl4rj3EEa2qmhIiVtgSF7ZYPzdRyVRDSZMtStroPm5M2jClaaSqSaK80TBIt7+QElIpv79ohErKcnxlbDXs1tvf/vYV783GZUM7bAyz2jTDJeg8MB29jE466SSkaYq7774bF154IQDg0UcfxRNPPIHTTz/d7/f9738fZ599Ni6++GLcdNNNKx4LwzBrky675bYxDMNMG2vdbm1oh80UJYwUsAOyIqxCPptQCmXt/at+5j3+dK6PpFbHksGib9Zs61w2s/AyRD2W/Tk/Fr05orb1IWplSCUZMl8gI0OdYlXns1VjqrBpa0lORVcKZUAgJJkLkohKS1vTXImVqrJaIX1Zfysk4PJehIBr1GutqXJfgHj1vfMgGyvqLkdOJoBT2FTmc9iMSr3K4NXJ3PgxzRFcKkzcsNyV4yfjhUJHqtrOepxr4xW2vNReSStN3GbBKZS2nGyVJjcWSct/MN9Hifu0l9EnP/lJFEXR2svonHPOwd/+7d/ilFNOwZYtW3DppZfi2muvxbZt2zA/P4+rrroKp59+ui848uCDD+Lss8/Geeedh2uvvdbntimlxk7MZcZD20pli9Sejn3ppSyFU5RoIYp25Q1EYUNiQ+l/Om+NLzoiaPPuRu7cyDGROdvMPYvUNuHnguLerqRFJf47kAIw9RkR1obCHRaQdT1/t93aoKZRYar5bui2tpen7y467w073KWkuadUUkRKmlfRbJxHWL2fDoWNMpI7aLsLQLXQZbfcNoZpIhMFmSWhLH8aSvSLogxjKYNdqZU1qSS0U9uK0qssulGoQst6/0xB1S1KdKah83r/VEFndeuSPORkjexTuH2C2paVIVKHKmmZFKRZtiAKG+rf4XrY08bZXXlrdC5W2Lrm21U1SdQxYM9UNSGlV0plmkBmab1PEgqQpElQU5dR1WQaK65uLKSEnEBtXet2a0M7bLYoYYTolNejD9xg6D9w5cIAqg6VrJy3qkpkMlc1H1a9nnfSTH+O9AYLfcIk7ROW9kKoX9JDVof6pSrDTP2hNSoNYXc2hOBZ0BsLO3JD0aTzBqKeUzKeCzch5EZJhhstYcpw02ST6Aahq7daOJhlbr6Iw1Z6wwfvpBWljgq1ALGT1uxz1+akLXU4aUuFRl46J81gSKpBdvVaymqjZ8rJLvpmpTk6v6/YnV5GH/3oR/2+w+EQ5513Hj7+8Y/77f/4j/+I5557DnfeeSfuvPNOP3/UUUfh8ccf32fvZSOi61Bpet07uq64+LpH47p3hTZo9cHE99NZLoSSOm8jzkFzzvVoHOdN0tCpZshkR6hkNE+fqjZixtqwGCWFP29VWHdw3tykJaFLkyzDdNlY91r1y48V4uidrzIUaxpxyFpCUdFle1vOq6jPo5jAYeuyW24bwzQRWR8yy6KiYz61gvRkk8b4sXaFh4wJFahpURIlYeubeV2UkGlVxMQU5W47b6ZvoAsXnqm982a0RZqHsaZFx1wqhrHEecPIdjrvtjWh25sFRxRZFYodtbCdjmkYpHfwEhmFPLpxHMIYKjruTydN1fs3K0ZGYZCu6JRUVVG6CaJj17rd2tAOG8OsNrm1UC1OYL4Pjcfu9DLq9/u47bbbcNttt7U+5gMf+EBrc0mGYdYfXXbLbWMYhpk21rrd2tAOmy5KaCGq8rJ5++qiHlQrNkIJL8uqLPFjqrYlM/Xv2T6SmQU/tl5hm4Opi5WImTnIvguV7EP26rBKlfleYlZloUdRkkE5Fa6hQLnV4SqMZ1R5W45m+GMcQhVv9Koa2dHSfcb5wDdXwv1YtCqIZWmisFCqprn2BwPXV62MQx+H9SodVdt2DUof4rhzUGLJqW25xlK9akdL9uel8f05TMcJVYn0+096QWkLtH3y1kI8NbM6GBcSWf9Nw/eqv9s/PKFNh41VH1r8on7SKhwvKG9BDZJQXcVLWhW2OFwPwFiFSJq0FiahB0/DJjuQQnj7SMMjFVHTaKGRlUIsR5+fHtZoWKM7BnfYkZKmR1VL0VTPSDuFZcMel6tE5XZtCzOdoOhIl91y2ximiUizqneqU3K1DqG9Rvs2IpYobO4+yxQlbFqpL7ooonnj9s1LmHreauMjp0xRwKS12laUSPq1MpbrWElz6pmxYZwb//y6MDBEYXMRRDoPxztDqg0ar7TZzvBISpfyo1rsUFcYZFWoqLYxpA+aUNKX26/CDWlRkXY1DQCkFGFM9lWZIqX2JysoIonaRsv00/lIYSO9OiFl6OPp+/OO/32y1u3WhnbYGGa1yY31Vaii+TWw2sMwzMaky24BbLsYhplO1rrdYocNdW8Gp6JoG5JiCVXn9WqVhnZ21/3cry4oV4iEqm79DOncYr39JaiZSkkTM0FtkzNzvk2A6M9C9Gaq+Si3LfUlrKnyZlUS5mUC1ZXTESWZT7ZyHE5Ce45IG/Q1upQ/S+O9jQmrULR5OM1bMxZ5nSM21BqLRFkDalWNjBfykJ/mctUWc01UtRKLechVc8qbNRa6/gxYY1uVNSkFhCs0YuzKlVo6MB0rPmsg/5VZJawdzWGjalsbUf4WISo7T/6OGzs35juUN1HbBaoi+dchypHFmIUxumixP50KHDkOa+N8NrpK3bSJapzDIGMajRCpZ0CsmPliIRMqaZOolda0niOAnCdhIZycamX1PTLB/6HLbrltDNNEpL3qPscpbDTP0mifQ2m1DvmuZQ4AUbESpTOYWj2rlLQqCsr2jZ/XeQlV72+K0qttiTYw9f4mD/M0ykoXJIcuNz6HzWrr1bam8ub2r/ap73Xq92CIdGMb95dmQllHEqMV1CgRbXfKlKRtC5RsVdKkkn4f2vQ6KGAhV402uZZZApmmo/NUPSORaNU+YX/Z0ixbSAlR128YUdJksMi+NYRT2Irxz+Fat1vssAEw2vgLx+Q6XHANx81Lt6r0H/JyUJJu7nWftn4WnLd+hmIhzKdz1Vj1d3mnzkYO21wVNoAqSdfP92YgXKikTIAkDWPisEWOnAthlAn5opYkNArtTljrDVEjPJJ8uKkz5ueM9WFGxga52dLwgI4+cwVx5PLSYqirS2xACoAMSuMdrwEJfXRO1zhO2lKuUbrEYW18EnF1b9QeBim9k+aLV8J0rNiMQ26sr94Xza+B1R5mdXDOmvUhN3HCtBs1v4DaQm5GC2I4Z6zZJyzs3+3IuXFdzIPYjGo7cehE/WXbdOq6aHMmxlg4inZvqbAGtDu5y61ptTljsGh3rsg+u+OYRfPN12yOOw+Y2H63v5Chnx2qkMxJ+rB12S2AbRfTjujPQmShj6gwOhQmIwVv6Lwwfb/d1o4WDZ80RQml6/soY3y/NqO1d95o2KTJy+BIRQ6bbjiB9WNz7R9rSagkdcx0oUMYpDZ+TOcc1thWJ61NJBg5fyq2dz7cUVKHTRInTYS+ZkqE+1TiyKlM+cdXjlzom+ZeMzhXKnLYvGPYCHf0YZBKRQVFotBHUjhE1I4cdcyElJGTtty80OMvlq91u8UOG8OsIlVM9aihWAvx1AzDbEy67JbbxjAMM22sdbu1oR22qkSorHp8FGQVxK3GmJBACgAg+7gVCrlURkmZAFAuFVCR2ubCI3tBbZvJSGuAEEIps51BYesT5a3XhyRj1NKxTHt+pVQkaRjLJKygCuFVOEgZxiTxXIwTSlmfCtr7ja70GxtW92lRBG1iNSCEQYKEPoZwx8LESporHhKpaqXBoAxKGVAVFPHqWaS2xaqaU9KMNtD1a2odiovYDm1cyFDeW9EwBCl8OfTehOGmrLAxk+KuOd15PZJ9VyiiT82bJEF+QjQKk0yovKHe1l7S3o6ob3S7e52IFkVuHJZV7RrHBSBSzOLnaVG1Gipapxo2qZLW8lrR66/ULoUiZQhFbdhzp6hV3xON112Btb5Szex/RK8PMTPbUNNcKCEJVKPhkUSBE1mYc9tFkYfrwWiYsg6P1CFM0ZAeb7ooovku5c34ceHnq7DJ0h9DHAZJUigaEVpUjaPzQHchsy4kMahUcZNEVQuRYCJSz2h4pFPHVJZEIYmuDL8k6lmXkjZO4RCZUPWsnk+zdsVMqjjckYZBqlB0hLzpatsEvW/Xut3a0A4bw6w2pbUoWm6qyzVgPBiG2Zh02S23jWEYZtpY63ZrQztsMqsa+FljIF1iaaNTYRR/3KKZCiW8OqdqFackJVR1rqEGVeJss0BJUqtqepATFS6obaq3EOWzWZrPlpE8N7dPkkIkIc/NrUpYmUBEeW71KpFKgrLmtgvpl8iF+9udC5Kr5sruT5qfFueqGRT1Tk0lbVirZ8PS+By1IVHYqjL8dQl/p7ANS1+afzHXvtQ+VdXKIuQoGmNhnNpmbauyRuPDFVUgZNiWJNI3zu5PeElxWX9md6Briha0AElQ1eI805WfU9Ny/7ZZkMQVErGRIubHAlHDaD/Xsr1qJh0OKChvIe9N26bCR96s3z+21WOpby0qUmfhDj/eS0oaeUxXPltUmKTltcfG2W2t/YkRsiEcun2s8QrmuKz18tjM/kf2ZqtWRkRhc7lognzmrdGhSbybNMarcIJst8YAdWESawyUL2jSnfPmla+OnDerDSnZH+8flDoyr3WkwjXz0Qx5PrdPGE92sYiWoiNAKMQh6VyzoIcaLR7SbFBNG1q7ub2Wk1ZHhY2oah3qmYhy1UiJf7IP4G9nx2Kt260N7bCpXgbVy6qLrN9yEeUaVgXHq+3istrCqji5VCoJq93jTOy81WGTSV7C5KFakXPS9Ax13nKo/rA+1kFwzPJBXIwkJ85bOvBjqPrCURlQV7iETHzlSWENSTyvEDKBtcRja8HYcAPYDHF049LETpoPfTTWV3UstN0jJ43OV7/bQx/HcdK6wiABQHmjJ/xYJRJJncSbJRKz9f91Zqz6coHcWAgOiWQmIIQgkzAbFx4JS0KXMbLd7dOFM3FxeCRg3WeUOHISwn92m/3G/FwUPukqStrWeW1JwRIAljpspK+Zfx/kTUkh/HvsdNy6qiu2OWfNfbucNFccIdrHtjtm9PHU8TPLOHVtx9gFDV+PNkj/Ot5HEyFUsvLkGrG0K9BltwC2XUw7YiYUVPNz1HnTo85bcMx07LwZ6ryRsEq3f1mE5yZFTKTRsEXun4c+f5vDVoVB1mGWURhk2Mfo9vnwvkwjDHL0Wt6toiNSjmxrOnFReGLkvI32O1NZGjl4/nHOuWv2Q0tdRcf2UEaRpGGsQkhk5IzR99AIg/ROmhp10ujfossDa2Gt260N7bAxzGqjre0oOjL9xoNhmI1Jl91y2xiGYaaNtW63NrTDls71kfayaK6ZIOqSQqkUTZNMAXiN1a1gWGVb1TarrQ+frMah7Kxy/UNIeCRV29K5EqpOqJVFAVGPRVlUibcARJkH5a0oSDilgbVOjqartuHf3x4qI0LCOpTfJwp9JCGOJSnHX5h4nhYRKUxQz5zaNtRxoRFaUKS9PL9GXsYhkbRMf1noqKBIl6q2Uo81QcZKSagkjGdqVW1zP8GmfqVmzkzYU6roWPEp1oDxYKYfqrw155aDfqkJxMqb72smrDccVchj3H/NwsILc0L4wiXWBsXMinBAQoCoZMIfgSAHbaPeb+F4qz5zgjw/PQktylpTVVtO1eoKd4z26VDVusIdxw2z3E18ZOuErQ/GpctuAWy7mHZEkkH0ZuNJem1GoZLxZ5+GQQJBjWuqZF5to/uTcEo0wymJIiepItfx/G2hj03lzehY8ukOh9yD61uNqmtAUMaAKoSxTUkbCZUk4YkjqlaXYrZcWKPfhzxfU51rU83aeq015ttauYikGJnrYq3brQ3psLmQol3DytEphrmXvYu8QFG4eGeNoqydqjKERI44bDWyDiUUVkDU8TzSSsg6JEWJUKEmlRayzkRRUvi+QMoYH1SXCHg3KZESysn6JbwMLArrGweK0kDk9c1BUkDU70OkGlbVYQBSwfrmhEnVrw0IoZEygVUhBtnNG6FI6KOFK8wTOWzWtoZEUodtWFrvsOU6dthcztlAh/DIQW4wHFb/g2GukdfvKc81itowFvV7LnONUrc7bJY6bO7mz9jWgmuW5KcJIXxYLLSCrR02aIWidngLq5CburqSrePpx7z4l2BaY6dz7L4xZ9Yn3m7t3AmDsCJoQQqlNUIid9dhozRz2WhlSLqPD6Ns7c0mwhjtTtdontvoscgOh00gzmlzQ9qwu/p7JYetJWes4YCt7LDZ1sdO7rDtwT+qrdKvEP4GysrQp9NKBQiJnTt31S+78ut22S2AbRcT4z5PL+9aaNtIxt0OG5Z12IiTZsm41WEz7Q6bLqJqkys6bMZ2Omy26bCRa3qfO2y0CuxyDptfkB7HYXNzZYfDJrsdNkEdNjm6v3sN+ts9f3gjZDz6peA+VxvBbm1Ih23nzp0AgFM+9nerfCTMeuWnP/0ptmzZ0rk9yzJs374dn336qc59tm/fjizLOrczGwtvt37h2FU+EmY9s3Pnzk7bNY7dAth2MQFnt476xf+3ykfCrGc2gt0SdlwpYB1hjMGjjz6KV7/61XjyyScxPz+/2oc01bz88ss48sgj+VyNwUsvvYQdO3bghRdewNatW5fddzAYIM/zzu1ZlqHf73duZzYWbLcmg+3W+Lhz9dBDD+Hnfu7nooIGTVayWwDbLibAdmsy2G6Nz0azWxtSYZNS4hWveAUAYH5+ni+KMeFzNT7LGQ5Hv9+fauPATBdst3YPPlfj84pXvGJF28V2i5kEtlu7B5+r8dkodmvfZCQzDMMwDMMwDMMweww7bAzDMAzDMAzDMFPKhnXYer0ebrzxRvR6vdU+lKmHz9X48Lli9iX8+RofPlfjw+eK2Zfw52t8+FyNz0Y7Vxuy6AjDMAzDMAzDMMxaYMMqbAzDMAzDMAzDMNMOO2wMwzAMwzAMwzBTCjtsDMMwDMMwDMMwUwo7bABuuukmnHHGGZidnV2x2fFG47bbbsMrX/lK9Pt9nHrqqbj33ntX+5Cmkv/6r//Cm9/8Zhx++OEQQuBLX/rSah8Ss85hu9UN263xYLvF7G/Ybi0P266V2ah2ix02AHme46KLLsIVV1yx2ocyVXz+85/HtddeixtvvBH3338/TjjhBJx33nl49tlnV/vQpo6FhQWccMIJuO2221b7UJgNAtutdthujQ/bLWZ/w3arG7Zd47FR7RZXiSR85jOfwdVXX40XX3xxtQ9lKjj11FPxute9Dn/1V38FADDG4Mgjj8RVV12F66+/fpWPbnoRQuCLX/wifu3Xfm21D4XZALDdimG7tXuw3WL2J2y3RmHbNTkbyW6xwsa0kuc57rvvPpx77rl+TkqJc889F/fcc88qHhnDMEw7bLcYhlmLsO1iVoIdNqaV//u//4PWGoceemg0f+ihh+Lpp59epaNiGIbphu0WwzBrEbZdzEqsW4ft+uuvhxBi2Z9HHnlktQ+TYRjGw3aLYZi1Btsthtn3JKt9APuKd7/73Xj729++7D5HH330/jmYNchBBx0EpRSeeeaZaP6ZZ57B9u3bV+moGGZ9w3Zrz2C7xTD7H7Zbew7bLmYl1q3DdvDBB+Pggw9e7cNYs2RZhpNOOgl33323T+Y0xuDuu+/GlVdeuboHxzDrFLZbewbbLYbZ/7Dd2nPYdjErsW4dtkl44okn8Pzzz+OJJ56A1hoPPPAAAOCYY47Bpk2bVvfgVpFrr70WF198MU4++WSccsop+NjHPoaFhQVccsklq31oU8euXbvw2GOP+b9/9KMf4YEHHsC2bduwY8eOVTwyZr3Cdqsdtlvjw3aL2d+w3eqGbdd4bFi7ZRl78cUXWwAjP1/72tdW+9BWnVtvvdXu2LHDZllmTznlFPvtb397tQ9pKvna177W+hm6+OKLV/vQmHUK261u2G6NB9stZn/Ddmt52HatzEa1W9yHjWEYhmEYhmEYZkpZt1UiGYZhGIZhGIZh1jrssDEMwzAMwzAMw0wp7LAxDMMwDMMwDMNMKeywMQzDMAzDMAzDTCnssDEMwzAMwzAMw0wp7LAxDMMwDMMwDMNMKeywMQzDMAzDMAzDTCnssDEMwzAMwzAMw0wp7LAxDMMwDMMwDMNMKeywMQzDMAzDMAzDTCnssK0zfvrTn+KQQw7B448/vkfPc+aZZ+Lqq6/eK8e0p7zlLW/BRz7ykdU+DIZh9iFsuxiGWWuw3WL2F8Jaa1f7IJi9x7XXXoudO3fiU5/61B49z/PPP480TbF58+a9dGS7z4MPPohf+qVfwo9+9CNs2bJltQ+HYZh9ANsuhmHWGmy3mP0FK2zriMXFRdx+++249NJL9/i5tm3btkeGI8/zPT4Gx2te8xq86lWvwp133rnXnpNhmOmBbRfDMGsNtlvM/oQdtinmiCOOwMc//vFo7lvf+hZmZ2fxv//7vyP7/+u//it6vR5OO+20aP7MM8/EVVddhauvvhoHHHAADj30UHzqU5/CwsICLrnkEmzevBnHHHMM/u3f/i16DJXnjTG4+eabccwxx6DX62HHjh246aabov2vvPJKXH311TjooINw3nnnAQCGwyHe9a534ZBDDkG/38cb3vAGfPe7340e9653vQvXXXcdtm3bhu3bt+MDH/jAyHt785vfjL/7u7+b6PwxDLM6sO0KsO1imLUB260A263pgx22KebUU0+NLjRrLa6++mpcc801OOqoo0b2/8Y3voGTTjqp9bnuuOMOHHTQQbj33ntx1VVX4YorrsBFF12EM844A/fffz/e9KY34W1vexsWFxdbH3/DDTfgwx/+MN73vvfhoYcewuc+9zkceuihI6+RZRm++c1v4pOf/CQA4LrrrsMXvvAF3HHHHbj//vtxzDHH4LzzzsPzzz8fPW5ubg7f+c53cPPNN+OP//iP8ZWvfCV67lNOOQX33nsvhsPheCePYZhVg21XgG0Xw6wN2G4F2G5NIZaZWm6++Wb78z//8/7vO+64w27fvt3u3Lmzdf8LLrjAvuMd7xiZf+Mb32jf8IY3+L/LsrRzc3P2bW97m5/7yU9+YgHYe+65xz/m93//96211r788su21+vZT33qU53H+sY3vtGeeOKJ0dyuXbtsmqb2s5/9rJ/L89wefvjh9uabb249Nmutfd3rXmff+973RnPf+973LAD7+OOPdx4DwzDTAduuANsuhlkbsN0KsN2aPlhhm2JOO+00PPzww9i1axcWFhbwB3/wB/jTP/1TbNq0qXX/paUl9Pv91m2/8Au/4MdKKRx44IE4/vjj/ZxbuXn22WdHHvvwww9jOBzinHPOWfZ4mytNP/zhD1EUBV7/+tf7uTRNccopp+Dhhx9uPTYAOOyww0aOY2ZmBgA6V6MYhpke2HYF2HYxzNqA7VaA7db0kaz2ATDdnHTSSZBS4v7778d//ud/4uCDD8Yll1zSuf9BBx2EF154oXVbmqbR30KIaE4IAaCKm27iLtyVmJubG2u/cY6teRxOzj/44IN36zUYhtl/sO0KsO1imLUB260A263pgxW2KWZ2dhbHH388vvCFL+CWW27BRz/6UUjZ/S878cQT8dBDD+314/jZn/1ZzMzM4O67757oca961at8fLWjKAp897vfxatf/eqJnuvBBx/EEUccgYMOOmiixzEMs/9h2xVg28UwawO2WwG2W9MHK2xTzmmnnYZbb70VF1xwAc4888xl9z3vvPNwww034IUXXsABBxyw146h3+/jve99L6677jpkWYbXv/71eO655/D9739/2XK2c3NzuOKKK/Ce97wH27Ztw44dO3DzzTdjcXFx4jK43/jGN/CmN71pT98KwzD7CbZdFWy7GGbtwHargu3W9MEO25RzwgknIE1T/Pmf//mK+x5//PF47Wtfi7//+7/HO9/5zr16HO973/uQJAne//7348c//jEOO+ww/O7v/u6Kj/vwhz8MYwze9ra3YefOnTj55JPx7//+7xMZt8FggC996Uv48pe/vCdvgWGY/QjbLrZdDLPWYLvFdmtaEdZau9oHwXRz1lln4bWvfS0+8pGPjLX/XXfdhfe85z148MEHl5Xy1xKf+MQn8MUvfhH/8R//sdqHwjDMmLDtYtvFMGsNtltst6YVVtimEGMMnnvuOdx+++34wQ9+gH/+538e+7G/+qu/ih/84Ad46qmncOSRR+7Do9x/pGmKW2+9dbUPg2GYFWDbFcO2i2GmH7ZbMWy3phNW2KaQr3/96zj77LNx7LHH4tOf/jROPfXU1T4khmGYFWHbxTDMWoPtFrMWYIeNYRiGYRiGYRhmSlkfAbcMwzAMwzAMwzDrEHbYGIZhGIZhGIZhphR22BiGYRiGYRiGYaYUdtgYhmEYhmEYhmGmFHbYGIZhGIZhGIZhphR22BiGYRiGYRiGYaYUdtgYhmEYhmEYhmGmFHbYGIZhGIZhGIZhphR22BiGYRiGYRiGYaYUdtgYhmEYhmEYhmGmFHbYGIZhGIZhGIZhppT/D+X/iTkJn1xfAAAAAElFTkSuQmCC", "text/plain": [ "
[15:05:02] Created task 'aperture_4' with task_id webapi.py:139\n", " 'fdve-44b5399a-68ee-4fc4-9a36-1dab643c8e91v1'. \n", "\n" ], "text/plain": [ "\u001b[2;36m[15:05:02]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'aperture_4'\u001b[0m with task_id \u001b]8;id=20462;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=41208;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-44b5399a-68ee-4fc4-9a36-1dab643c8e91v1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:05:03] status = queued webapi.py:269\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:05:03]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=697719;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=565498;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:05:05] status = preprocess webapi.py:263\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:05:05]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=675933;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=619369;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:05:10] Maximum FlexCredit cost: 0.025. Use 'web.real_cost(task_id)' to get webapi.py:286\n", " the billed FlexCredit cost after a simulation run. \n", "\n" ], "text/plain": [ "\u001b[2;36m[15:05:10]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.025\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get \u001b]8;id=50305;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=660115;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mthe billed FlexCredit cost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
starting up solver webapi.py:290\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=258055;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=993526;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
running solver webapi.py:300\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=343638;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=308559;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:05:20] early shutoff detected, exiting. webapi.py:313\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:05:20]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=584057;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=868082;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#313\u001b\\\u001b[2m313\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
status = postprocess webapi.py:330\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=334519;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=930425;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#330\u001b\\\u001b[2m330\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:05:23] status = success webapi.py:337\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:05:23]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=829433;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=279398;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#337\u001b\\\u001b[2m337\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:05:24] loading SimulationData from data/aperture_4.hdf5 webapi.py:512\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:05:24]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/aperture_4.hdf5 \u001b]8;id=809061;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=188743;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# run the simulation\n", "sim_data4 = web.run(\n", " sim4, task_name=\"aperture_4\", path=\"data/aperture_4.hdf5\", verbose=True\n", ")\n" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:51:47.319477Z", "iopub.status.busy": "2023-03-27T23:51:47.319215Z", "iopub.status.idle": "2023-03-27T23:51:48.432556Z", "shell.execute_reply": "2023-03-27T23:51:48.431991Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalized RMSE for |E|, no far field approximation, computed on the server: 0.62 %\n", "\n", "Client-side field projection *without approximations* took 17.34 s\n", "Server-side field projection *without approximations* took 0.90 s\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2wAAAErCAYAAACirgCsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADyhUlEQVR4nOy9e7wkRXk+/lRVd8+cvaEosKJECMELl0AEQVADUXRBRIlyjQgoNzUoiEHFcBVxRZSAeFkxXEwEUaISLwFFBDGCUUC+iigxEYSfZrkKu3vOmenuqvr90V1Vb/V0z5k55+yeM2fr+Xx2T53qmp6aOdPv9Ps+7/u8TGutERAQEBAQEBAQEBAQEDDvwOd6AwEBAQEBAQEBAQEBAQH1CA5bQEBAQEBAQEBAQEDAPEVw2AICAgICAgICAgICAuYpgsMWEBAQEBAQEBAQEBAwTxEctoCAgICAgICAgICAgHmK4LAFBAQEBAQEBAQEBATMUwSHLSAgICAgICAgICAgYJ4iOGwBAQEBAQEBAQEBAQHzFMFhCwgICAgICAgICAgImKcIDltAQEBAwEaBffbZB/vss8+U6/I8x/vf/35stdVW4JzjoIMOAgAwxnDOOecM/bwPPvggGGO46qqrplx7zDHHYOuttx76OQICAgICFi6CwxYQEBAwgrjqqqvAGANjDP/5n//Zc1xrja222gqMMbz+9a+fgx2OLq644gpceOGFOPjgg/HFL34R733ve+d6SwEBAQEBGzGiud5AQEBAQMD00W63cc011+AVr3iFN//DH/4Q/9//9/+h1WrN0c5GFz/4wQ/w3Oc+F//0T//kzU9OTiKKwtdmQEBAQMCGRWDYAgICAkYYr3vd63Ddddchz3Nv/pprrsGuu+6K5cuXz9HOZg/j4+Mb9PkeffRRPOMZz+iZb7fbwWELCAgICNjgCA5bQEBAwAjjiCOOwBNPPIGbbrrJzqVpin/7t3/D3/3d39U+RimFiy++GDvssAPa7Ta22GILnHjiifjTn/7krfv3f/93HHDAAdhyyy3RarWw7bbb4rzzzoOU0lv329/+Fm9+85uxfPlytNttPO95z8Phhx+Op59+GkD/Gq5qXdg555wDxhjuu+8+/N3f/R2e+cxneuzhl770Jey6664YGxvDpptuisMPPxwPP/xwz3kvu+wybLvtthgbG8Puu++OH/3oR1O+l2aft9xyC371q1/ZlNNbb721dq8A8Ic//AFvf/vbscUWW6DVamGHHXbAFVdcMeVzAcD111+PHXfcEe12GzvuuCO+8Y1v1K679tprseuuu2Lp0qVYtmwZdtppJ1xyySUDPUdAQEBAwOgjhAoDAgICRhhbb7019txzT3z5y1/G/vvvDwC44YYb8PTTT+Pwww/Hpz71qZ7HnHjiibjqqqvwtre9De95z3vwwAMP4NOf/jR+/vOf48c//jHiOAZQ1MktWbIEp556KpYsWYIf/OAHOOuss7BmzRpceOGFAArncMWKFeh2u3j3u9+N5cuX4w9/+AO+/e1v46mnnsImm2wyrdd1yCGHYLvttsNHP/pRaK0BAOeffz7OPPNMHHrooTjuuOPw2GOP4dJLL8Vf//Vf4+c//7llxS6//HKceOKJ2GuvvXDKKafgd7/7Hd7whjdg0003xVZbbdX4nJttthn+9V//Feeffz7WrVuHlStXAgBe/OIX165/5JFH8LKXvQyMMZx00knYbLPNcMMNN+DYY4/FmjVrcMoppzQ+1/e+9z28+c1vxvbbb4+VK1fiiSeewNve9jY873nP89bddNNNOOKII/DqV78aF1xwAQDg17/+NX784x/j5JNPHvTtDAgICAgYZeiAgICAgJHDlVdeqQHon/3sZ/rTn/60Xrp0qZ6YmNBaa33IIYfov/mbv9Faa/385z9fH3DAAfZxP/rRjzQAffXVV3vnu/HGG3vmzfkoTjzxRL1o0SLd6XS01lr//Oc/1wD0dddd17jXBx54QAPQV155Zc8xAPrss8+2v5999tkagD7iiCO8dQ8++KAWQujzzz/fm//lL3+poyiy82ma6s0331zvsssuutvt2nWXXXaZBqD33nvvxn0a7L333nqHHXaYcq/HHnusfs5znqMff/xxb93hhx+uN9lkE/v+1b3+XXbZRT/nOc/RTz31lJ373ve+pwHo5z//+Xbu5JNP1suWLdN5nk+574CAgICAhYmQEhkQEBAw4jj00EMxOTmJb3/721i7di2+/e1vN6ZDXnfdddhkk03wmte8Bo8//rj9t+uuu2LJkiW45ZZb7NqxsTE7Xrt2LR5//HG88pWvxMTEBH7zm98AgGXQvvvd72JiYmLWXtM73vEO7/evf/3rUErh0EMP9fa9fPlybLfddnbfd955Jx599FG84x3vQJIk9vHHHHPMtNm+Omit8bWvfQ0HHnggtNbenlasWIGnn34ad999d+1j/+///g/33HMPjj76aG9Pr3nNa7D99tt7a5/xjGdgfHzcS3kNCAgICNi4EFIiAwICAkYcm222Gfbdd19cc801mJiYgJQSBx98cO3a3/72t3j66aex+eab1x5/9NFH7fhXv/oVzjjjDPzgBz/AmjVrvHWmPm2bbbbBqaeeiosuughXX301XvnKV+INb3gDjjzyyBk5SNtss03PvrXW2G677WrXmzTO3//+9wDQsy6OY/z5n//5tPdTxWOPPYannnoKl112GS677LLaNfS9pGjaIwC88IUv9By9d73rXfjqV7+K/fffH8997nPx2te+Foceeij222+/WXgVAQEBAQGjgOCwBQQEBCwA/N3f/R2OP/54rF69Gvvvv3+tyiFQCI5svvnmuPrqq2uPb7bZZgCAp556CnvvvTeWLVuGD3/4w9h2223Rbrdx99134wMf+ACUUvYxn/zkJ3HMMcfg3//93/G9730P73nPe7By5Ur85Cc/wfOe9zwwxmqfqypeQkHZPbNvxhhuuOEGCCF61i9ZsqTxXOsD5vUfeeSROProo2vX/OVf/uWMn2fzzTfHPffcg+9+97u44YYbcMMNN+DKK6/EUUcdhS9+8YszPn9AQEBAwPxHcNgCAgICFgD+9m//FieeeCJ+8pOf4Ctf+Urjum233Rbf//738fKXv7zHKaK49dZb8cQTT+DrX/86/vqv/9rOP/DAA7Xrd9ppJ+y0004444wzcPvtt+PlL385Vq1ahY985CN45jOfCaBwAikM0zQItt12W2itsc022+AFL3hB47rnP//5AApG7lWvepWdz7IMDzzwAHbeeeeBn7MfNttsMyxduhRSSuy7775DPZbusYr777+/Zy5JEhx44IE48MADoZTCu971Lnz+85/HmWeeib/4i7+Y3gsICAgICBgZhBq2gICAgAWAJUuW4HOf+xzOOeccHHjggY3rDj30UEgpcd555/Ucy/PcOlWGxdKlQiNQKEJ+9rOf9R6zZs2anh5wO+20Ezjn6Ha7AIBly5bh2c9+Nm677TZvXfVc/fCmN70JQgice+653p7MHp944gkAwG677YbNNtsMq1atQpqmds1VV13V4zDOBEIIvPnNb8bXvvY13HvvvT3HH3vsscbHPuc5z8Euu+yCL37xiza1FCgUIe+77z5vrXldBpxzy9yZ9zcgICAgYGEjMGwBAQEBCwRNqXkUe++9N0488USsXLkS99xzD1772tcijmP89re/xXXXXYdLLrkEBx98MPbaay8885nPxNFHH433vOc9YIzhX//1X3ucpR/84Ac46aSTcMghh+AFL3gB8jzHv/7rv1qHxuC4447Dxz72MRx33HHYbbfdcNttt+G///u/B35t2267LT7ykY/g9NNPx4MPPoiDDjoIS5cuxQMPPIBvfOMbOOGEE/AP//APiOMYH/nIR3DiiSfiVa96FQ477DA88MADuPLKK2e1hg0APvaxj+GWW27BHnvsgeOPPx7bb789nnzySdx99934/ve/jyeffLLxsStXrsQBBxyAV7ziFXj729+OJ598Epdeeil22GEHrFu3zq477rjj8OSTT+JVr3oVnve85+H3v/89Lr30Uuyyyy6N7QYCAgICAhYWgsMWEBAQsJFh1apV2HXXXfH5z38eH/rQhxBFEbbeemsceeSRePnLXw4AeNaznoVvf/vbeN/73oczzjgDz3zmM3HkkUfi1a9+NVasWGHPtfPOO2PFihX41re+hT/84Q9YtGgRdt55Z9xwww142cteZtedddZZeOyxx/Bv//ZvVkTjhhtuaBQ/qcMHP/hBvOAFL8A//dM/4dxzzwUAbLXVVnjta1+LN7zhDXbdCSecACklLrzwQpx22mnYaaed8M1vfhNnnnnmTN86D1tssQV++tOf4sMf/jC+/vWv47Of/Sye9axnYYcddrA905qw33774brrrsMZZ5yB008/Hdtuuy2uvPJK/Pu//7tt1A0UNXKXXXYZPvvZz+Kpp57C8uXLcdhhh+Gcc84B5yFJJiAgIGBjANPVcGlAQEBAQEBAQEBAQEDAvEAIzwUEBAQEBAQEBAQEBMxTBIctICAgICAgICAgICBgniI4bAEBAQEBAQEBAQEBAfMUwWELCAgICAgICAgICAiYpwgOW0BAQEBAQEBAQEBAwDxFcNgCAgICAgICAgICAgLmKYLDFhAQEBAQEBAQEBAQME8RHLaAgICAgICAgICAgIB5iuCwBQQEBAQEBAQEBAQEzFMEhy0gICAgICAgICAgIGCeIjhsAQEBAQEBAQEBAQEB8xTBYQsICAgICAgICAgICJinCA5bQEBAQEBAQEBAQEDAPEVw2AICAgICAgICAgICAuYpgsMWEBAQEBAQEBAQEBAwTxEctoCAgICAgICAgICAgHmK4LAFBAQEBAQEBAQEBATMUwSHLSAgICAgICAgICAgYJ4iOGwBAQEBAQEBAQEBAQHzFMFhCwgICAgICAgICAgImKcIDltAQEBAQEBAQEBAQMA8RXDYAgICAgICAgICAgIC5imCwxYQEBAQEBAQEBAQEDBPERy2gICAgICAgICAgICAeYrgsAUEBAQEBAQEBAQEBMxTBIctICAgICAgICAgICBgniI4bAEBAQEBAQEBAQEBAfMUwWELCAgICAgICAgICAiYpwgOWwCuuuoqMMYa//3kJz+Z6y0GBAQEeAh2KyAgYBQRbFfAdBDN9QYC5g8+/OEPY5tttumZ/4u/+Is52E1AQEDA1Ah2KyAgYBQRbFfAMAgOW4DF/vvvj912222utxEQEBAwMILdCggIGEUE2xUwDEJKZMBAOPvss8E5x8033+zNn3DCCUiSBP/v//2/OdpZQEBAQC+01th6663xxje+sedYp9PBJptsghNPPHEOdhYQEBDQH/vss09jyuRVV10119sLmAMEhi3A4umnn8bjjz/uzTHG8KxnPQtnnHEGvvWtb+HYY4/FL3/5SyxduhTf/e538YUvfAHnnXcedt555znadUBAwMaMfnbryCOPxMc//nE8+eST2HTTTe3xb33rW1izZg2OPPLIDb3dgICAAAD9bdc//uM/4rjjjvOOfelLX8J3v/tdbL755htymwHzBExrred6EwFzi6uuugpve9vbao+1Wi10Oh0AwL333otdd90VRx11FC688ELsuOOOeM5znoM77rgDURR8/4CAgA2HQezWf//3f+OFL3whPve5z+Ed73iHPf7GN74Rv/jFL/C73/0OjLENteWAgICAge+5KG6//Xbss88+eOtb34rLL798fW8xYB4i3GUHWHzmM5/BC17wAm9OCGHHO+64I84991ycfvrp+MUvfoHHH38c3/ve94KzFhAQMGfoZ7de8IIXYI899sDVV19tHbYnn3wSN9xwA97//vcHZy0gIGDOMNU9l8Hq1atx8MEHY5dddsFnP/vZDbW9gHmGcKcdYLH77rtPWQB72mmn4dprr8VPf/pTfPSjH8X222+/gXYXEBAQ0Iup7NZRRx2Fk046Cb///e/x/Oc/H9dddx2yLMNb3/rWDbjLgICAAB+D3HPleY5DDz0UUkp8/etfR6vV2kC7C5hvCKIjAUPhd7/7HX77298CAH75y1/O8W4CAgIC+uPwww9HHMe4+uqrARR1ILvtthte+MIXzvHOAgICAvrjtNNOwx133IGvfvWreN7znjfX2wmYQwSHLWBgKKVwzDHHYNmyZfjQhz6EL3/5y/j6178+19sKCAgIaMSmm26KAw44AFdffTV+//vf48c//nFg1wICAuY9rr32Wlx88cX4xCc+gb333nuutxMwxwgOW8DAuOiii3D77bfjsssuw3nnnYe99toL73znO3tUjgICAgLmE9761rfivvvuw2mnnQYhBA4//PC53lJAQEBAI+69914cd9xxOPLII3HyySfP9XYC5gFCDVuAxQ033IDf/OY3PfN77bUXut0uzjzzTBxzzDE48MADARRKR7vssgve9a534atf/eqG3m5AQEBAX7v153/+5wCAAw44AM961rNw3XXXYf/99w+y2AEBAXOOfrbLqEj+9V//Nb70pS/1HDe2LWDjQXDYAizOOuus2vl//ud/xuc//3k8+9nPxsUXX2znt9tuO6xcuRInn3wyvvrVr+LQQw/dQDsNCAgIKNBkt6688kp7U5MkCQ477DB89rOfDemQAQEB8wL9bNdjjz2G8fFxnHDCCbXHg8O28SH0YQsICAgIWPB473vfi8svvxyrV6/GokWL5no7AQEBAQEBAyPUsAUEBAQELGh0Oh186Utfwpvf/ObgrAUEBAQEjBxCSmRAQEBAwILEo48+iu9///v4t3/7NzzxxBOheD8gICAgYCQRHLaAgICAgAWJ++67D295y1uw+eab41Of+hR22WWXud5SQEBAQEDA0Ag1bAEBAQEBAQEBAQEBAfMUoYYtICAgICAgICAgICBgniI4bAEBAQEBAQEBAQEBAfMUG2UNm1IKf/zjH7F06VIwxuZ6OwELCFprrF27FltuuSU47x8P6XQ6SNO08XiSJGi327O9xYARRbBbAesTg9quqewWEGxXgEOwWwHrExuT3dooHbY//vGP2GqrreZ6GwELGA8//DCe97znNR7vdDoYW7opkE82rlm+fDkeeOCBeW1AAjYcgt0K2BDoZ7sGsVtAsF0BDsFuBWwIbAx2a6N02JYuXQoAOOKzNyIZW4zxboa1HQkAmOzmyLNiLHNtx0oqGH0WrTSU6j2vce4ZZzaSxBkDi4oDQnCIqJiPYoFIFPPtRGBRUoxjITCWiGI+FlhUjhe3IoyVa1qRQLt8bBJxtMx5Io6kHMeco1U+VyviiHgxFhxuzBgi5ubtnBlzBmFeh5ZgKkf5ZoDJrBzndp7JHDDjPAWULOcz6KxTvHfdDnRePFZnHehutxinHeisa9eotFgvuxnyieIik50M+WRazqeQWW7HxfEUKi2eM+tKO5aphMpVuXUFLcu/o9RQsvcPyQUHE8XrZoKBl3+DuBWRsUC8uFW8T4vaiBcXF3g3Evir86+0n7EmpGkK5JOIdzwCEHHvAplh9b1fRpqm89Z4BGxYmM/UT3/xGyxauhTS2CPA2iMFDSMjpTTcGE5baliZKRoU52D2d878NRzlBDlulnDG3Bgg9rF6DjNm3jH7/KzhseVzVPfMtAa0u8aZGZM5kDWMvjl0LRkz77Gq/hw1j2VauT9U5Xka9zUM6B+KFe+kZtyOize4nOeRW8MFwDjWrl2HbV7y8r62a0q7BQTbFeDBfJ5+/6NvYtmSxf5B7zqQbli9wVLS3k8US8uxcteUVtJeP5quV6qyXrrnMGOZESMqG9ZLuy+tNLRU9jx2LMlz2ZfoXouW9eNhwQSvHzM6L+wxJjgYp+Py/oZzMF7c04ALax+YqJuLi9/Lx8E+jpP1nKwR1sYwch5vvXkO+tOc370QMu79UlizbhzPf+UbNgq7tVE6bOYLP+MJwFvoMIFclM5FLO2XJ2MKgpUXlVTQyhkXQc9nP/zOSeOl18M5AxfOSRPl/FjinLGxJLJO2lhM54U33yof2xbcjluRQNuMBUdcPlc74hDlfmLieFUdNuqoFT9hH0fHTGvfYbPjHJClk6Zy4qSlbo2UYLKkomUGXTpjOiPjtAPdnXTj1Dl4snTqZCdF3iHjSeeoAUDe6ZJxClk6bHknh0ydQZVZvfNWB8YYRGkwhGYQuvxbMo6o/DxEuUSUm88Mt48bBLy1GEwkPfNa9qfuAzY+mM/UkqVLsXjZMkjlHDbz3V912AzofRF13ppgnS+U9/kVx8qsoc5b9RPPGTlO9l84Xb3z5hhgHDD6nPVOGn2u6v6ABgcMqHe6APdGVdfWOlTuZtFfQ5031fuY8qfdg1I9DlzfPTaB3KxpxnvnGx22yHvsILaryW4BwXYF+DCfp6XtGEuTSsqa54SZOeVusIyzxCSZU9DcXA8SQPndrqU9iVYZcdikc5q0hM5T9zzEGVNlAFhL5RwzqSDTMsBcdcwUvY/onXevS3nOmaqJ9g/ivFHHDICX/kcdMzvHuTfPzbgyb5wjkcRunjh3PC7cBKYz30mLy+tfCzBlnlfA/KEYj62zxTgAXto4TmwM5yj+hqXdtk6bIo6i96L9N4UL6DwuH7/w7dZG6bAFBMwXMCZchItC1cwFBAQEzAM02i0g2K6AgIB5iVG3Wxu1wzaRKsRCIs0VSYNUkJbq1lBl5JPV5eeU8ya6OwirlpTjRYnAWFK8/Uta0YxYNTOOBUNsoiUcHqvWxKAxMg8UEeyGl0peNLMRXMbdR0hzXqRFoozwGoaN54ChwGUCFhWphCzvQrcK6ll3O9BJOaZsW9IBaxVsm2h1INpFdER2Uoi2Y9sAgI9HyJMi2sKTCCotnl8kPtvGRH+2rQqTNskEA8rzmJTJYszBDPNXlyvbByKOwaIaho2F9ogB9aDp1gAgtXaMlWZQ5WeHxiLpp1L0cGEOdUxacS5m53wWjMzX7NOu7ZPu6NIm69k2usbfqz87ZYCVcZcyRRklb035U7tZrckrq6YvcrOGMGnKrSnm69kzG/Xn1bTJ4rk1RO1jB4LHsLlodi3zZtYMIQjRZLeAYLsC6qEnx6EFfFaNpC16c8pPK/TTGiW8tMaSMaMpjlASOsvcuJxXWe6lMpp7BCXrGTaZ5rWpj5KeR0qPkauyZarCuvlpkcNdK9X7Djsu7/t4JVWSeayasPPCsGaVVElR3pPWMWxcCHBy3Jybx5GXVsni4h5Mc+GnUJb2gnFeHDPry31pyp5x51hpwLFt1NkyxyfHp3rbLEbdbm3UDluaK+hcIc9dumP1O9G7KaAXC0mDFOUH19SnccGHSn1c0nbzbeKMjcX1jlkr4tYxSyKX7hhzP8VR2JslN89B0hxBbr5oulLda4e7yWHmRChvZsy8VkV6DQCoHFqVVLXKbf0fUzm0qXOLW0BZz8Zbi2wNG/IUuls4aSrt2LFOO2Cd4uIU3Q4iU+dWOmyinbiUyMnUzZNUSeq8yUxB0Do31T890nsvpIYq16lUQvLiNeVqSAPMGyI+TVGggAAUl5+5paHXsULhtJkDJv1RDHAv3jcN0qwZMM0RGN4xa0pxpJixyBx1Ukp4Toz5Aqisc+mJgqRXNdShcZJ0OogjpyvzXHnndc8v7HkGBrkJ8uvZGhy3AdFot4BguwJqoboTUBF8Z0w5p8fNVRyyujkzzlKv9kyZ+njiOFEnTWaZN2+CsSrNXYpjmtu0RZVmlfTI3O7BOWyuFl4rd1/gHyc1xF565HD3C5wYVOqwcVJzbx0pwVyZjleXT9MgI8+p4ybgbRzAJHLOYBJZh5DH7nEijn3njaZhRtR5K+fjxHPkPOfN1rkJNw80OnVA8bkaFKNutzZqhy0gYK7Boxgs6i2C1RjipiwgICBgA6LJbgHBdgUEBMxPjLrd2qgdNqU0pNI9UQ4TxVDwUyHNPGPMBiVFxC3DFjWxanExXpQILGlHdo1h1RbFTvXRY9UiwqoJgSRyYiExUX0cJN2RMmlNkXM71xTFpspjNQX8VA0JOvEL9UtWTWvl0iaVBIvMOAdLxor1eQY+VrJwWbciRlIoAeluB9ywbSXTFi0at0ya7KTIxovH5Z3UFyMp0xdzoiopM2mZNxoRq6Y3VAt/gSLlgZuIXB4YtoD1C8NQCcvjMJu6LZjL5lO6f/qjOZdBleEaRjDEZ+bL81VYtKlsjScQUhVGsbaEzA3ADOkBKDnvaU2RfOVhmshMNQmZ+MqQU6RBVpi32sdWmTeDGgauLxpYNZsNwVhxbAimbdQj1QEbHrrbgebkuiCqiz7rVjM/gxTHfkyatGmQfkqkmVep9NizunsEmUmblVMnZEaVqCkD57030xEdMYwZvUetKlxbtotBlPehXDC7RiTCY+GMCjZNmbSiI0LY+X7M2zAplJqkUFJWzVOhLNfVzYMLm4E1CEbdbm3UDltAwFyDi4YatmHqVQICAgI2IJrsFhBsV0BAwPzEqNut4LChYM50GZYWkUuJ5qTwg3OXDyxIH4uqkEgx18yqLS4jDouIoMgiwqotijlaZb5uEjkmLeKuJq2oVevPqvX0QGqMZBvo2qGdqoacidaqRm9kgj6HrhTqaxpBJu0BDPNW9HkrJVZbOVi7rHOTKenVNgndKXKXTQsANjkObti2yXFEi4vjg7BtKs2Rl/Naakjbf0/XRr8KmVwXmZouWJyAx70GRI0APR8wNzCMuSqvcAFtr3t6adO6NaV1bV2YLywyPJPWr/a1x+YQlmxoyXpv06aAlkSuB6jJ8lobVGxgj8kbgCgvX3nxP2MeOzd1Pzdf+n9Y5s3uoe6906r5PaBsm21Wx6FF5Bi3AdBkt4BguwLqoTsT0EL31qcBfo2alK62jQiKUOl8nw3LeuapWIjKKJOmoMr1PsOmvNp2W/OWKnsvQGvVVKrsmK73snOs7D+tX/PvJ+rYtn7gNaIjVIikqFsjNWykbk3ETpiEJ25s2bZYQCR+ewARc4ikV6yEJxF4yYx587S2LYkIO8chyHo6z1IijFI6U9rr7ebES3S5zs4D0J3+zbApRt1uBYcNBaXMFKWR3TGbBsmZdcySyCk2VoVEAGApERFZ0o6wKHapj6bJ9aJY2Pl2xNEuL6aYMyRGYZJTQRHSP404b4Izd3OgFZgmqkuDNF7tccQaitThTkdvdugzNNfPctgbG17vSDb2eZNp0YTbzJeOHGt3wZeUxrwsOuXdDlSZJqmp89YZR1wqCeUTHeSTXTJ2KZTCOG9ZbouLi5SL3tQGCjaIokMDmij6Rto+YKMHKwWFzLWjNYMVuGJwARECwVizAuOQjpkgDhmrSd+zRmEYJ2MK+A4ZeX1mL3RNxWGpc9Q0qn3q/PdsSC0AALqxbxyDc5JcWr177zQNXA3oyNlUSXPM20rD5iuNte37xfmspkQG2xVQB511oVNW65jRNMeqcwYMLhxSm9aYZTZVkqo7ylQ6lejUlUQokvpYdcxMCYWSmihJEoETqd39QnkdSq1h/DJJrs2qryYbrltRE2ijtxxUYE4wp1pe3MsShy1xjpENNiei1pEzThrnzI0TARFn9rhz6iLIxDhssXXeZIcoTCYRpCjVvPsKluR2v4wqQ5L+b6COHODE6gbAqNut4LAFBMwhRBSD11D01vEOCAgImGdosltAsF0BAQHzE6NutzZqhy2OOOKII82VjSJQCMKqtSJOGDbRyKYBpWR/LHrGi2LusW2GSUsEs+xZIurTICOGegbKS7NRU0s+U1nUGplnzaP6qDXqo9NSaRtQV9qPVE8VR++N6JcFrzyCEEWvNtFaAi5dsbFNlcxTsLyIrLB2IUTCsi6ivGwB0BmHKlk13ZkAK8d8sWPbZLeLfLxYn3e6yMZdmwBXdJz5aRYN76+JKkEOd9EHhi1gWHBmmPXidw1t7UTJzfQ+hoy9/mg15zXzvIlJk/VsUC/TU5mbphw9GGk4QGxWYZvMOkVaqNUzRUrX2yql4c3b7Q9hy7ytF48uttsj8lT2yPNYS27tXQ/z5tn2sgekbmgbMMh7XbX/5ifjwDApkSMeqQ7Y8NBZCt0FSYms71/m9TtLMzuniKS+nwFjGLAcqlxPs2SKx/aKi9F0R5lKqNSwZMpn3kh5BGXYZF4+L2HQUqUtU0ZZNcqm+eNeVo0erybvULbNZ9nccTpOaOnMhCn78Rk2TlIinehIPetmhEtE4lIlVSzBy3skxlPby43HkW0TILLIY9LMGpXmTpgkzSASlzZJe8HR1gOObStaBegs7XkPmzDqdmv6xTcBAQEzBo+Sxn8BAQEB8xH97FawXQEBAfMRs2m3Vq5ciZe+9KVYunQpNt98cxx00EG4//7719POC2zUDFtSMmyChEAFZ16tWBIZIRGBpPTyq6zaYsKaAVVWjbJt3GPVzLhat2YZJZk5RknmPsNWV9vQhGpU2kZWmSs0F2WUgza/5rDn1kREXCoXMVLaRYmkIlFr+DVvU5WEVCP6tlUBB0RZzB9zgSgpItFRC66eLXcNtynrxheX891x8JJVU51xaMO2dcYhFhfjuDOBuIZtU2nuWgVkuW3wSaOAgCvS5dlw9WyMNTBsbHrRns985jO48MILsXr1auy888649NJLsfvuuzeuv+6663DmmWfiwQcfxHbbbYcLLrgAr3vd6wAAWZbhjDPOwH/8x3/gd7/7HTbZZBPsu++++NjHPoYtt9xyWvsLmDlMDatjnZi9vqqfmiqDViz3GbY6Jo2p3LE0lElTeS2j7zFsTbL3Zk9NYiGAs00SvihGtd4KAKN2jUeg/OJ0MwPMzrR2a/sxbfSl1nUQ4MTyee87c8eKedeWgTJvrHwdQrBm5q1SJ8i0ch+Epu+GmlplPUSEuclumWMBAVXotAPF/e/Nuho1JR3ztqFYtaY1hax/eX+TK6TK1aW5MTxWjc6btQZ0LV0zKKq1a3Vz5veEs1rmLZHKPjbpSojIsGk5YdgIk5aVTFqqIJPifRGZgCjfO5FIu0bEwv7tWJpDmEwlyrYRcRgeRxBmPefusZyDCyd2QkVKAL/OzYjODYLZtFs//OEP8fd///d46UtfijzP8aEPfQivfe1rcd9992Hx4sVDnWtQbNQOWytiNQ4bSX0UnCg/Cs9JM33TlrR8UREAWJI4J60VOVo6ERztiKQ+mi9vmYKlxOkoHTYmU9u/jMncS4mpTYOhoF/IPHI3OUKQm58IEP6XvRaRvUmoU38ESieNGqtynBFHThPDpCpGaqqaeA4nRlLtM2fTRQVDzAsDkCRFZCRqM3DjsOVdsLQQI2GtxWBjpQBJNgldCpOo8bUuVbIzDt5eAwCI0w7ixaXzNtn1VCVtb5c0h1K9Xzx1Snz9wOO4XrVI50OdBwC+8pWv4NRTT8WqVauwxx574OKLL8aKFStw//33Y/PNN+9Zf/vtt+OII47AypUr8frXvx7XXHMNDjroINx9993YcccdMTExgbvvvhtnnnkmdt55Z/zpT3/CySefjDe84Q248847h95fwOzAKMOaq7MqkNGvtxowYIojdcxk3ugg1AaOhhAYqTpXPWl65XFjk6BIkIm7ND6mctJXrP65qGOm4eyWQhFsKt6C/gEnP2Wy70srtkL2wpmuFVziROWzSJU0zptz8ITSfgql6UtU+Vt6P3vGlQ1XREiG6UPUaLeAadmugIUPlUuvDxpNg6w6aU5hcThBkfXppNF0x1RV0yCLcdWRM3P2PcDsO2wc/pzvsJl7J23vQ1NFxwxJud+EMwgjmGLfx3rHbFjnTUjl/d1NCQn9DPAk8hw2bVIlJbdrvPRIWYxVPngZymzarRtvvNH7/aqrrsLmm2+Ou+66C3/913891LkGRUiJDAiYQ5ic6rp/w+Kiiy7C8ccfj7e97W3YfvvtsWrVKixatAhXXHFF7fpLLrkE++23H0477TS8+MUvxnnnnYeXvOQl+PSnPw0A2GSTTXDTTTfh0EMPxQtf+EK87GUvw6c//WncddddeOihh2b0ugMCAkYX/ezWKNSCBAQEbHxYn3br6aefBgBsuumms7HVWmzUDNviVoykHZcpRiXz5Un2O1ZtLKlPc6Rs2uJybVtwtAiT1rZpkBxClgxQ2gXLSipXZmClWAbLaRpkBp2XRbdZatOPVE6KLGlxOefuQ1cWZAIAixMbPWVxyxWXRy4qrkURdfAi3pUidJtOpF1kKFMauYkoqeL3Yo1Gmjt528xI4Cpf7pZGrCkzEJd7F9yNY+H6z8XcF2oxc4lwrFucLC7fU8K25V3wVjEvxpaCT64t9jg5DtYu5nVnHHysYN6iyXGXEtlJkddI/2sSPYq6gxfAAoCIIvCo9zJkqphbs2aNN99qtdBqtXrWp2mKu+66C6effrqd45xj3333xR133FH73HfccQdOPfVUb27FihW4/vrrG/f79NNPgzGGZzzjGY1rAtYvTNq2CdTSqGtjv8V+YiFEwMit8UUuvDVen7AGtq0OZr7CqHliISRd2wpkkAwBzSNHoGmScMgjwjCx2lRuTeW1G9O6KQNXHocmbJtPVBH5DzvfRLLTzAHOdCWjwImRuLYJ2kXRWRElL+aZHVfFSwBAcNH3c9ADL610MDTZLcDZroAACpXl0JHwJPtpDzUqOkLTH91aJwRG2Tg3Lz0mTdYwaflkXisoIlPSh60h9bHKqtWlRKZK27RpmiZZx6pVBUea2La6rkGC2ADze/HT2QzKpAnG7H4TzuxzCaYhyx7EUjMIsgYABGlToBUnLY40hJw+32NKS0yaZHF+BV0ybyKJLHPKhEuVFIj98yiXXjkIBrFbg95zUSilcMopp+DlL385dtxxx4H3MywCwxYQMIdgZUP2un8AsNVWW2GTTTax/1auXFl7nscffxxSSmyxxRbe/BZbbIHVq1fXPmb16tVDre90OvjABz6AI444AsuWLRv2pQYEBCwQ9LNbjDd4rAEBAQFziEHs1qD3XBR///d/j3vvvRfXXnvtet3/Rh0KW9yK0GpFiCpNsW2tWiuybFuVVVta5tdSeX7DqrUFs49rcYBlRSd21plwohh5B6xs+MeySVs4qbsdSFNEmWdOspRI4JrIdw+4cF3go8R2imdJGywqIxOtNljSLsZaAcKPemvGG+vjbP2H1q6GTWnLquUSlknr5ArdUvY2Uxqdcqy0RmYKhrXfhNt7KaRuzYxjwW0NW5swoW1Sc1gn6tIWbbSWLCrOm3Wgs7HiJceT4EkxFou64IvXFXscXwM1XjBvrD0OXta8Rd0OxETxtyyk/8tiZ5JzPyypzgWHEDVxk3Lu4Ycf9pyjqSI96wtZluHQQw+F1hqf+9zn5mQPAQW4zMCU9Eq1WF3dUpPsvlZAyaQxyqTRujVF6takrK9tq9gkXbFLuqHFhbFLxYtxTVE9yWbGLePDuIKmokgoaxA4XIYBm0J4qYRh9BUZS+2yBOicYdik1l49m2XetPbrU6awZQCpO2HMXOJePZvwBEgYqWejNlG79gvMReCdkIxuFJgxMdpqra3SGvkQ9TSNdguwtisggELLQppf1Qh30SwVmebePOA3vKYS/8PXrVXFSJRdY2T6ffaMMmyYUnQkq2mSvX4YtiZZf39s6L7qevNcBZNGmTr/eZJ8arvKxWC213tM4mrYZCkiIhBBc/cZMNL/FBIZmDQiKUXzbipiM/Vep7Zbw95znXTSSfj2t7+N2267Dc973vMG3st0sFE7bEtbEVrtyHPSxmLR6KTR1EcjOtKKGMas41A6FlDgWXGTz9IJ57Clkzb1sdonTHeLNTrt+GmQZkxvjirwOsKXjhmLE+uksaQN1iqdlDwDKx0NNqbATP2lcfQYh1bl48hNngL3bnbMBZ+rwlEDCidtojSSXamsk9bNpee8GYctoz1LqsoJJWi6aswZ4vJ9jzlxiqP+fe5agqEd6XKcoD1WOKwi6UKbv013HDw2vd8WgY8V6ZFqctw6b7ozjrjlnDfZLRxu2Ultv5h4Sj1MH4zVR6RNmtOyZcsGYrOe/exnQwiBRx55xJt/5JFHsHz58trHLF++fKD1xln7/e9/jx/84AeBXZtrKGmFiSyaHDOSvuh6N2qiOOscME/YiMzrPLPziqRme06aUj0OWxO8WgGSxq2j2DlzUQIWmdcRuXxD4uxpJC6dknPrYGrtfyFbu0VER6RyN0y58p2z6vFMupTuIuBUn9LdZMMojKNFUx+p8xZzTgJUviMnOBEjUW5MUyWL53CpM4zBc9ioSmUVwwggNNktuo+AgKngOWE1zpvn0BlHT/prrTAJTd+Tioy1dd6K9ZqsV24NKdWoExeh87QsRGqaBuk7au5x7jUPKzpS15etOAe9zswi5o2tA0bWF+ejr4OmUPrPKTXAyXuqZBko4hrMOtMSrHwiLbV1urRk9r1mXIGVj1Vc2cdq7r4zNFfQxPkzf1evh+gMg0GD2K1B77m01nj3u9+Nb3zjG7j11luxzTbbzGhvgyCEwgIC5hCijPjU/RsGSZJg1113xc0332znlFK4+eabseeee9Y+Zs899/TWA8BNN93krTfO2m9/+1t8//vfx7Oe9ayh9hUQELDw0M9uDWu7AgICAjYEZtNu/f3f/z2+9KUv4ZprrsHSpUuxevVqrF69GpOTk+tp9xs5w7ZsUYT2othj1dqCY6xkaZa2IiwqO74vSSKb8jgWcSsk0oo4WmU6Ds9KYYvuOo9VQ7dk0sbXQJbpdXpyHKoz4cap6/tliihlmnlFt3WgMqciji3VLNoJuGHYWm2w3LQKkGBlJJxz103eCoxw1+9NV1Miy580+iyJoEhXSo9hM+OJzDFsqVSYLFMS0lwhzY0Yie7LsgFFuipNXU0ss0nFYOrY0QhjsS7XMrTK3J+xKEa7XbJqUdtPlYzK+fZim0KqO4uhxteU43GwVvE3Ey3Htg17QTXVfEynDuTUU0/F0Ucfjd122w277747Lr74YoyPj+Ntb3sbAOCoo47Cc5/7XJuTffLJJ2PvvffGJz/5SRxwwAG49tprceedd+Kyyy4DUDhrBx98MO6++258+9vfhpTS1rdtuummtp1CwIYFo/0ZAZ9JA3zhEK+vWo24iJKObSMiR5RJ03nDWEqXnk3YtakyAWi/LxYn0CZDIKLjDIhJhoAw7FkEFtkTOoEkpQDePzVGg/ZZo2ndvlhSMefSuH2GDV5Kd0bssqpE1qug6UYFq0YYtvJYLLhlwWLOPeYtFoZBI3LdnAqTlKybcuejDFtVnKZqYgZhCO3j+9SqTcd2Dds/0uDaa6/FEUccgTe+8Y19xZIC5h7Ve5hhUtmAZrtSB6U0YeGGy3pZH3DM2Po791zCiZEoy7YNUh6ilfJT5Kd8HuXuWeGL1QyC2bRbpjRkn3328eavvPJKHHPMMUOda1Bs1A5bQMBcQ0TcNq70MA0FpsMOOwyPPfYYzjrrLKxevRq77LILbrzxRiss8tBDD4ETY7fXXnvhmmuuwRlnnIEPfehD2G677XD99ddblaM//OEP+OY3vwkA2GWXXbznuuWWW3oMVUBAwMaBRrsFDG27hu0fafDggw/iH/7hH/DKV75yqOcLCAjYODGbdkvrDR8IGEmH7bbbbsOFF16Iu+66C//3f/+Hb3zjGzjooIOGPs/SJMJY2fi6vm4twljJ2IxFzIpbjEVOqp9lk+DdQqyCpaZubRKYLJgYKmChJ9bYujXVmUA+XjZn7rjmzJIwbLQ5M40i0DxeEUf2dx5HiNoF6yHaCaKxkiXKM3Ajo0oj4VEMbbvJx3aOSnVTmACsJrUbVFCkkyt0y32u6+aWYRvPpGXVJlM3nkglUukYtpQ0QKTRXhOJrjY1N2Pa3HxJu/hIL6Z/x1aEJeWapUlk2y90JcOYNGxbgtaigknj0QRQvh8sa4OZlgetcVsXqFptaFODmHSAqBjHQ4bQqJJ5dX46OOmkk3DSSSfVHrv11lt75g455BAccsghteu33nrrOTFKCxWzZbegcoC09vDr1kh9GpHj76lPK2vgdJ4VbBpQiByRmlmQWlozD+VYNa1UPcNWIzbChHDMGhFH0mnHXlOad4oWJACQuHNrKV0Nbgxo88XKctdQmwuXEdAglkQl+as1KLZmpWTfu1LaWrXMY9uUZdIypaGI8IDXrqSGreIkgluIixBhJcK2GWElKrIkuCLzrLbVSR3rJpj2nocRNs5r6o1hGbZmGzWs7aL9IwFg1apV+M53voMrrrgCH/zgB2sfI6XEW97yFpx77rn40Y9+hKeeemq4Jw0YGLNlt6r1R/T3QdgzazMGYFQ4Z9Dl+bXQQDbFAwho82nBHOtO5wFNxswalmLOFo654wCZq6s9G3xvblw/J6hdaXhNbo1vk+rmB4Fh1bjgnp2b8nF8MGNhm2XXfIaGqWubTbs1FxhJh218fBw777wz3v72t+NNb3rTtM+ztB1jUTvuSaWj/dTGIpf6aMaxSsHKm3XeHQcrUx7RKXt6rf2T76SV43zdOmTjRapkPtFBZh22FNL09yJ9RWjhLAUTzH2AOUc0Vtzk8DiGJA6bcfxiqewfmgmnyqbjGDoqnZHEpEzm0FF/g1iIjhCVyHKPXSI60pEK4+V4XSfHuk6xl7WdHJOZcd5ymyo5mUpPeVLX3DwwzmrTI53DFmFJq3ilS9uRdd6WtWMsLdesa0nrvG3SipEm5Y2a5M55i8dsPzeWJtZh41FshUnYZBvKpkpOAOZ9HEx3wUII1qASOQ/yHAJmFbNlt5hMwSRJR9XKc9KcoIivAKlLVVqdp9Cm/1FOnDGiSqvzzDqF2lOrJY4UEUKa6iaKfqnyKCbOG7dOGoviipPWLvcuXdoM585Jk8z1DlOyx1GrgqZBUoVHqZyzQlVurV2TyqY+dnNl0yczqUgvN22DT8U5+9+ICe47WtSposJKERnH3liVY5cqaZy4JCI3Z0SARPBCQdI8v1fMzxiyITLUGu2WeREYrJ/RdPpHAsCHP/xhbL755jj22GPxox/9aPCNBwyNWbNb5c21+dQoOLvBuJvX5HNl73MUmVMK3DhjioOLUhRDaWgTSBccrLwGmWAQ8QBpdyYGppTn3JieZLSvWargCXSk5Nqppj/6giPVsRECGUCwqMZZq5u3KdLkWMKZ5+C5/mzwxp7CJMq07PKF8kTY91EkHKK8jxKxsA6bd28qGDhx5CyxQMasVHosxq5Ehwlu/8bUqWOcg1uSgQ/tsA1it+YzRtJh23///bH//vvP9TYCAmYMLjh4DUWv8xEI9wQMhWC3AhYKmuwW4GzXVltt5c2fffbZOOecc7y5fv0jf/Ob39Se/z//8z9x+eWX45577pne5gOGQrBbAQsFg9it+YyRdNhmC8taERaXKZEmfW4s5laef4ywam3BwE3KY3cdeLfs09Udh1r7FABArSt/EoYtX7cO6dricekalwaZTUwinyzTIDsZso5Jg5RWClVL5aXWeCk1ZXSDJwJivBS8GHMMW7R4rKeXCVBGKAzD1u1AG5ZIkZQqK4/tUq00A+nDRlKLVH3vtYlMWlbt6YkMa7vFeF0nw9pyfjKVSMv0SCUVZJmOJMl+KdPGOLPvAWMMovzbROXfrpUI255haTu2bNszFsXYZFHBmFG2bSJT2KRcs0k7QlqmWmUKGCuFTMbGngEuTN8nAWZ7Q0XgJaumo8S2U+Dl6xwUnETXKXSQxg5oAJN5ITpCUgBpzzQq2W9THCmrlnYK8RAAOstsD0gQto22FFF5ZvseVXsn0Z5KtXsl0VETGeVJZOd5EoGb54xisPI8jKREYmwxdLdDzmnYtsgJqfDIiqH0a0dC5bddeqQmLUic0IjJFsiUtvPdXFqGLZW+aBIdG/RtV2LTHf0xTfuuS4+MBLfp+TFXlnlrCcMSVlImTdRcu4i71LpH7j8fIv25yW4Bznatjx6Sa9euxVvf+lZ84QtfwLOf/ewZny9gw4Fxnw2ht8dauN5qIokgyzEnt6imXxeTRGhtfdzCprCtMgRz/dYEAxkzTw7fsWqMCLK568PMKfTOFWBD9mFzkxz17JufBslqmbSECBgl3K2xjH/CwQmTZtg2Qdg2XmHb6tcIiLi8d6owaWaek/IeUfmOsOMaRm7QtErzuqayW/MZG4XD1u120S1V/IDeVI2AgLkCi+ojPqqpMDZgo0GwWwHzFU12C3C2a5B+RsP2j/zf//1fPPjggzjwwAPd85WOehRFuP/++7HtttsO9VoCZhfBbgXMVwxit+YzNgqHbeXKlTj33HN75pcmAotbwpPsp3VrYzFHosuoTmccvONYNUw8BQCQa5+CWvsnAI5hy9c8je5Txdp0zQTStYV8fz4+iXRNUcOWdXLkk8W5804OWTJNMpWWVVKVkIvJB2acuYhGIhCVtVoyU1CpaxBpwAS3cv88jsCSMrpOmnSbehWmcle8X4mam9+Udo1mM1Vf61EVF1nXKZ7nqYkMEyXDlmcSeVk4kafSMmsyV47NqwTuTflKwbCV0Zgy4tJJBMbLWsSn4hRLS1bt6ckIm0wUbNgzFsXYdEkx7kiFbu7aEBi2TWqBvMyZlxoYiwrBg5gLMFG+jzyykX4exbbxOF/svqgGASesYXU+YONGk91CKdHv5Pt1LauGJlat6657nXZcrVq3A2VYtT7tRQybpiqSytU6NhpNpzUJPI7Ay6iqyGLwuIyst6XXlBsl+w8urO3hXABRWW/LI0CXbJtWA5XvWz0lDWfDpKvDtUybdAJK3Vw50RFV35YkJdkF1RYlNJLuRcIJqxbVMWzVNiaGSYs4urkbx2U7g8ywboJbti1uYts4vKbcGnqgOhqDJrtljg0K2j/SCFmY/pF14kkvetGL8Mtf/tKbO+OMM7B27VpccsklPWmYARseTXaLxwI8jlxjZaHAZK+QCB2rmtpYzjlkydarbAg1kRKM3EeZdiFcMEhTb5Voex/FU4WkbFhf1LDRhtNm3rFpdN6gOtfURHsQTFXHVp2rq8VrYt44Y169GlC8Lz5L5tgzK9/fp7bNsXMRuQeNPbbNfBfwJPK+I2i7qqY6NyY4eD54VtNs2a25wkbhsJ1++uk49dRT7e9r1qzBVltthSUtgSWtCG3BvR5rVlxEdsFKBUjeXQteiouotU+69Menn7ApkenThZPWfWotun8qHpeuHbdOWjqeIh0vDEy2zk+DlJlx2Jr7Sji6mHsXUbK4cExkJmvVJDn3e7WJdpFepFtjRAmuvAmq9HSqQ9HPyBTea1KEr9EhDptJfVzXze14opMjLdMGs65EbtKOuhLS3PBIBVWO69TWitfEbKTEOGwi4ohKgxK3Ivs8a1sR1i4ye0kwYRQrl0h0FxfOWzd3zmamImzSKt9TrSF1cc6xKEG7VYwVc+IHnHNwM550qVuDgJPC3Op8wMaNJrvF8hQsj301SEkcMyooUqY70tTHqpNmegiqLLdpSXmnSxy23NoVlZGxanbWgP5qtmYctRP7ha2VgmiXN1D0RFxY0RFdvvbiwTGgYvseeKncNdBEyVERByVTyqZ1G1tG07s7uUIn71W5TXNlbYlUeiDFW/t+0PR2zj0xJZuiFHGrXjyWCM95M71CM8WtQ2b23o60tWWFQ+ecN5NKqcDAy/QszQvFyHwIlcgmu2WODYNh+ke2223bdsTgGc94BgD0zAfMDZrsViHaFUGbnopS+c5baRNkmrkbdJMaKThkOaey3K2t3MBLXgbYiaMhEwmZlutjYe+1mGAQpeiYjDl4Juy+ZPnYaExBlooisVQ2iC5zRVIfUTs26Oew9ZuronpZDeewVcaRSTFk3n2leS+N41akLA7npFnFyDiCIEQBT+Jyjf9dYNYw7ogFxjlEub7OSTNrGBfg0eBKb7Npt+YCG4XDVqdOFRAwHxAYtoAmBLsVMF8xm5HqYftHBsxvBLsVMF8RGLY5wLp16/A///M/9vcHHngA99xzDzbddFP82Z/92cDnaUccYxFHWzDSb41D5EUkmnfWgJXiIrw7DrXmSQCAfPoJqDVPFOO1T6H7J8OsrbM/TUpkd00X3TVFBDtblyEdLyLbOUmJlKmL8KbKj8TURUjiSSe1Go1FRASACHQIDl6mPvI4gijFSGTm0pu4kkSuu4xSDMCw0X5GSrtortLaSxFKLduW26h0nklkXcOq5Ui7bj73BEiMyIEsekKhlPo28t6AFf0QURnFERxRGemJuhJJq4xCtxyTN5lKG/32UpqWJI4pVC7l8xmISP85ACUb0GottawaZdvYWP+ajSo4SRWrzgcsLMyW3YKShegI6aWmSS81ZUVEMuhuwe7rtOMYNpL6KDsp8knHsOVlP0gvJTLLoVLTn60qOtJsK6h8M42E88SlxGipbIS1KlxibtJZFENnjlWz2QCJhNczsolZM2+bdmPKttGUSGPLcpLe3ckdq7auk1tWLc2VbVGS5tLakpykRFbTIynqREciLyXSsWoTqbTtS5KII02K5xpLhE2VzMo07lw6Zk5qWIatrbl9zbQdgEIhPDBAeyuLJrtljg2LYftHUlx11VVDP1/A4Jgtu8VabbDECQuBfrcTu8IEdzYmNtlDmevDRkRJmODQsSkJycHjMqU7y51wSSIg4pIJJ2ybbke2FEWNubGW2o2V9uatIJxSRBxOu6wDqXtaMdEWIhRNrFpTCjVFL9vmi4UAvqx+wUwZiX1GRDyYx5ox7sbmHFbgjpTi0Hma+lgwY9Nj1aqpj7xOpIS7tlTgvGgLMEQrpdm2WxsaI+mw3Xnnnfibv/kb+7uh348++uhgvANGCoFh23gQ7FbAQsGoR6oDBkewWwELBaNut0bSYdtnn32sKMVM0ObMsmtjph4q74B3ClUj1l1rhUbU009APl2wamrdU8ifKti2zhNPE2atZNX+NG5Ztc6aLrpriqh1Np4iXVdEgNJMYlK6YlY/B9rtsa47fcI1xsooVVJh1Wy0JHYFolHbRctp5FxnqdcEt1jgwhWsUshP33Jl96tJpNovwk+JVHZqGTZl2S46zro58jKKL7uTUKbGxovCkb1xYUU/nPhHAtEqBEKiJEaeFR/vJFNE0EQjp/uSbr9yWa8ct9IazxyL0YOYo5UsLp6XTKtkrHdtH0SCI6pTJxqBaE/AcJgtu8VkBp0xV4eWZU5QJO1YCXydk7q17qQdy04K2TFMf9eyarKT2ho2meWQnbLRtlSQRHTERJwBv+1Gzz45c81PBSNCIzkUYdg0bQLuPb6MhAsXVWVx4mxWnoFF5b50zTVaA7NdqWBZNaVdHa4RGulI5dXjmhYlE6m0rFpRz1bMdysCJFY4SunGvzmjAgLm+4cwbILnhFUT9nnHYuE9l2llIksBFqW017TXtANQWqNV1uNK7oQSCrZtuBq2RrtVbHzg8wTMf8ya3UpaYDRVUkkwcy1nmb2ueRw5YSPLkkVQpTiRktIKFakstyw/T327YmyWyjLosjZW0vsfqW09m5JOaEQRxkxmLotAE/ZMSeWJw/miKb2icTR7oComN13Qmiu/fYph1Sjbxj3ROmqXHfPm6tVck2tWK0Di2fOEsmeDCYrYeSG8ujU6du1bBFjJtIIybGZdvvHYrZF02GYLYzG3zpqXBln2W+Okx5pc+5RTgXzqSXSeeBoA0HlijXXUOn8aL392rJPWXdO1QiPpRIZ15RftpFQoa1mRKl1JhXS9PgyKHhn0uPlwSfBJcyG6C05mEjJzRsrecJHUAyin+EYVIW3xfsP75jtu8G4OjKOTk8L7NHdGT+bKiovkqUuDzNMMskzfkqlz2GSeQpl0LzinjZGLlscmNTKBTMtzJGOQ+ZJij+Q5Ve6cN1VJXaqD4K5vB2MRvCBM+V63ksX2r6Hj4Rw2TtKhKNQIRHsC5gZaZkCOZgVIIi5inDc5OeE5aXY86TtvVGhElsquMnO9IWmfyGIvU4iNeMXr5Q1RliMqU7S1Up54iT0HJykxUWaVIXXmesUxJf00SJoeSeBSmt2+fdERl9btUiNdevdkKp1QUeYUbydS6a2xNob0z6TvVVVAiUZ0jfMmIoauSUsS3J4/iaRNc0yTyAaaqo5icVxgMUlZr5OrVgJw3yEKALevfRA02S0g2K6AerDWYvB2Qu45pAsQRy4Qw5SELvs7cnPdK2kdNi2Vp1orjR1su3klFUTqnDrngOX23J6AkndO7Zw0RdIgpfKcMU3uIwzoY+lc3ZiiX2q5QVPKnu+Ykf5sJIAPOHvjOW9EdKRIlXTOmznunCsOXzjKKUDSeasGWUlrFLETEeE1Th3jwvazZYKmPgrnkBKHjXFeHJODO1qjbrc2aoctIGCukUQccc0NFRuBniABAQEbJ5rsFhBsV0BAwPzEqNutjdphSwRDSzAIIt/Pskkn37/uKZcGueaJxjRIyqwBwCRh2LLxFOOluMi6XNk0yIJhcymRJr5SLTg1H6FUuX4ZY4LBdUXjiEuqjieUVXMS/5RVoxLdXoSrRLXwvwk0IGSlsrVjrNJceeyViUJJKo1LRAtkd9KyY3k6adk2lad+YXIlLRIAmGHVosSybVGeWpZO5Uug1Fh5Dt3YKqAp8uKOAxxlBAjK9jHiMUdSMmvDMmwiMGwBwyJPoTP4TFpGUiI7hT2ikv35eAd5meKYeymRqU19LNg2x6oZUSRFUoe86HOlwJ5Gc83vvGPaiXCoMrVGK/c4QQwJbT/C49zukccRmCp6suk880WISjaNadUo52+g4Pdhs2ndyqVE2vTuhn5rHtuWSnSNrL9UyNOatiRae2mjdGyi2Yyw+HnmJLdz5rIBuoIjLd+/QtTEtRCoZgnQbAGlxQCCBxyAQj6g7Qea7RYQbFdAPVirBTa2yIqOGKYLKNlymupMvvPNcWYF0pTLKFAKUU3LEZlmXlqlGdP7H+++iDxWS2nXa9JrUpEelNUUSMqQ1aWJ16VBNrVvGgSswrbVSdIz3sy2UWl8x6b5kvnFnCAtoSLvuGsHEBFBKTcWSVxh5MhjS8E4cF6kuReb9Jg0FjWkQQonOgIALN947NZG7bAFBMw1WhGrjfjwaP4bj4CAgI0TTXYLCLYrICBgfmLU7dZG7bBFUIigClYtK1ga1h2Hnijq09S6p6AnCgESNb4G6Zoicp2umbB1a+maScusubq11IqOTKYST5sidak9hi0jQiNpTVRGME2ERmBJtaoAiWkJICirRqLfRZRoCO3TWQKN+JrgN2W4ino2J9/vGDHKjmVuTHLbKUQZoVF5Bm4ib1JC1YiVaN22Y1pDQnObaeF/EnFbtB/31LOZWkNt87N1NFz/maacajkC0Z6AuYHOMmhGoswZaZDdGXd1a90u8vFinHe6yMad6Eg2PmnHuWXbcisokk/mHltPZa5pTUcdaE2EKVJXknt1XdFYr72rRm1lKUIkstxG11nSBsoaNijlMgQGZIeMjFKRDVDMZcoXTgJ6RZOc0IhrUdJNpSegZGrYKMMmpbK2r4nZ55yh7AoCRpraCsEhy/qMKOaWbUsrdWuyXUqfDyEaAlSlwTmyYeSx+0Sqg+0KqAMfWwredt+/Wkl73WrCsDHl7leYvb6lrV0t2gGUF1We2rWCMG8RYc+Ux54pKOnYOyNqUsj097Jq5ljdvKpl23ovoqaspdlk2Ox8pV8hbYNk7TJZU8eq0bWMyOBXRUG4ED3n6Mukmb1EyZRMWlHDRtZQKX/CtoELcEV+nwKjbrc2aoctIGCukQiBJKoxOGJwIxQQEBCwIdFot4BguwICAuYlRt1ubdQOG8864FkMlk6CpRPFZHccaryU8h9fa8fZ2gmka4s16doJpGuKMVWBtA2yx1PXaJXUra3LFTqkbs2walLr2iaKBZNG9lsGHFJVMGvFY5n3WMeq0Uh4pZHjemTb6qK8mkhba1Wt6XAsmGHEVObq1lSeQma9Ev/++Z1ypJii3g1wimyMO1WkruB4uhy3Im6b0RYMWxnlFhxxOR9zblVg6d9JxS6COAiacqqnqqcL2Hih8wyaSyffT5tiZ1lt3Vo23vHYNlMflo13kZWS9flkjrxjVCIdqyYz5Utem9qQil2p1lGIWNhziExAlTVeusKumdoKlTk123wytephKsshaHRduqi7e1O0U7clTbQ1c+qQWte3JlHasf6mls2rW8ukVbylqox5JpFnRPE2c/VsMnf2Tk5R30Jr2BhnrsZXKIiSYVM5R0RrAGvOMxXDxhlDl9VH9TmDzdQYBP1qQYLtCqgDG1sMtnixY9IAV7cmHdtGG2pTBo6ROW3r2QjbVqmDm+rctIZNV+rTPCaNMHIGPqtWUYWsuY4GUYGcCeoUJHvZtl4Gja7jNWyc17S6wsZR2X2QmjfLkkVxo9Kjq1vjRPWRnKemQbZ9Lveii7VD3M6Out3aqB025B0gi8HyDlhe3NioyXGoybJovzOOfF0hLpKuGUdWOmn5+KST6h/P7Njc+GRdiUnTw4ekQVInrZ/D5u57GIy4vtSAQk3q3DT6o/D1GEmY7oe+6ojZm8JKH7amnmz0p5svWxx0J8HJmjwybQA4sq5JP8ohyhzmtR2BpJQTbkXcpke2I46JctwSHElkUiU1InPDN2SPlUQ459DDCPQECZgbaJlBZ9ymCOk8s86bSjueTD9Ng6TOmxEXScdTKy6SdXI7pk6azCRk6m5mmgJBrp9P8VOmysr60wASBRcMuXlcnIPHxb5UHHm9IzW5EWOePZjejZBUznZS0REzl+YK3ZqekmnuekfKXLu2JMR5k7R1SO4k/rWud7QYZzaIxDmzaZBCcM95sw6mEl56ZdVRq9pgmuptwBlzKd1Kg0v3HgyCRrtVPNHA5wnYiJAsAqN9SolIENMuvVkrcqdDUyJNoIYID4EGZmmKpZT+Y+ucOppSTZ7LS2usrrFbp70o+9ugmaQ+DoumVEmgkvLIa+4BicPkzifqnSTiaDXK7g+S1hjFvjNW6bFm5xnZFxlrxoF047FbG7fDFhAwx4iJQ0ihR0BiNiAgYONEk90Cgu0KCAiYnxh1u7VRO2ws74LlCVjWhe4W7JnqjDtZ7MlxT/7aRai7NhKdT+beGCgERerk+zPtM2ySiI5QuN+11zy7Dk3HmWC1He/nAjSCzBoYuNqITwVTpUQCsAIl9JyMC+Sl9D/jwkr/5xGHKKMqecyRZ8X6iU6ORWX60UQa2fTWicw1r20JjnZk0iMZIm6i38MxbBFniILoSMAwULLoBm0+63lqi+0pk9Yr32/WZEjHTePsvDYlshAgIaIjRkSjIX0bAIQRRcpLtogpaJPSJ3XZEAOQglmblJGxynKvIa5JI1JS2nlOW5HQ6PcUkv72raMNpcmYMmtAr1w+ZdskSYk0TFqRBknma5poN9kvwLdVNg3SEx1pso+5HdUxaTQFiI4zxSDKrUjOoLj2GotPhSa7Zc4XEFCFTsagEr/tDXOKPGShttczc2plbgzUs2ReujRl7CriJvQcXppjL9vWMzZrh2H2G6759YIB7qOA3nTJnsfWyegDHmPmzjVgKmMdO1dM2J/aG/fWA2lW2Tfj0Mng7++o263571IGBCxgJGXEp+5fQEBAwHxEP7sVbFdAQMB8xGzardtuuw0HHnggttxySzDGcP3116+fTRNs3AybzMBkCiZTKFPA33UF/LLbtdFqSSPUmXTF+Zm0TWVNVLVgz4rnkBoek0Zrzhoj1cz8ZJZBo020/Xm3npHmiIxErov5XgnWas4wUEQ/Bomz0nRfUzDPWX00V1DZaiL0UchZu8gyrTOzhbBcQNfUqDUxbWZNtd5NSzdWZcGyzMe8CLmpR5Et4ZrjZtIybJOZxKIy0t2VCp3y792OOfKaprWDQLAG0ZEpmNWAjRc6y6DBXZF8lnn1XkaqWqVOxEN2ula+n9aqZZ0cWVmDS9k2lbq6tUwpUm/bXDfrbJK2vyfdYhwDyMha2zRaMMjympKpBI+NXc0hiOR2bVNbyrYVE33fN+XZXsKgaceMU1YttTL60jFvuavh81i1lNa2ubHKnYBSsfcpGDYhoFWRAaCjCNyycxq6lK+uMmGcl/apxvamEffq78w45hxxaZMzpSHUcDVsTXbLHAsIqELHbeh4kT9XrWOzB5R/vKfezcz7bByjj7fsXUO9WQOL1iPNP8062ZFDDevms2sNDBx9HK03q9aaMcOSsXrGjKzpeSxd422QQcc5BsVs2q3x8XHsvPPOePvb3443velNQz12uti4HbY8BctT6KzrVNbSjutj5PUoSt3NTyptuo5MpS2+b3LMmi5342hVBUfqnLHmeWZVDEXCIcpUPl5R9BGl4hr3HDanAEQv1h7auQKPqa7u0etlJuzY9DzjjFlxDx5xiKjYlyRFqUwIz5Gzzmal30b15qcprZIa6V4Rk/L5c9eLSVKFuDTHRBqVY4lOUsx3coWuvaHTSITrMTUMmnKq1TSj1J/5zGdw4YUXYvXq1dh5551x6aWXYvfdd29cf9111+HMM8/Egw8+iO222w4XXHABXve619njX//617Fq1SrcddddePLJJ/Hzn/8cu+yyy7T2FjBLUMpLidR5ah02mWXESUshSXpkTlIfvTTIOtGRXFnhJNonsm9KJHHUgLJ3pEFXeimRvEw/Fom2zpjMFCJV45gRBbcmEQCm1UCBpjpfU5HXRB22urGf4qjrnbeM9JTMXE/JQVMizQ2jygVEmUJWddIYkUYztpURx83ZYaJ4S+xaEilkqhRN0sx7jYOgXy3IdG1XwMKGjhdBtxaTCd9Bs58+NZUTp3sdOPjOX/XcrC6YU3XEymtsvYYb1kcwYxrCc0Ohbs/0fhHwUhnd4/xxrePFWLNzxpvPRaHjwVMiZ9Nu7b///th///2HesxMESxrQMAcwkTD6/4Ni6985Ss49dRTcfbZZ+Puu+/GzjvvjBUrVuDRRx+tXX/77bfjiCOOwLHHHouf//znOOigg3DQQQfh3nvvtWvGx8fxile8AhdccMG0X2NAQMDCQj+7NQry2AEBARsfRt1uzYhhy7IMq1evxsTEBDbbbDNsuumms7WvDYIiJTKDJkX7XgF/mtn0Ii2lk7lOlespJEmEuCHQQb1iR7tqmFhOVRPE/J5whqT8EMXMjccEt+OEMyudLWIBUaYXiZhDxIZ5c93neRyRvhq0ELS3z0WVafOZNZKqSSSpzYe+FXE7TiKOSfP8ROhDCG77h/A4Ac+LVKAoGfNSGClMOqO3Z7rHmvTJ2gLb8txetNwKBWjkRHzApUYp26solwqZdCljeSkOMGybhSRiDQzb8MbjoosuwvHHH4+3ve1tAIBVq1bhO9/5Dq644gp88IMf7Fl/ySWXYL/99sNpp50GADjvvPNw00034dOf/jRWrVoFAHjrW98KAHjwwQeH3s98xajbLSgJnWvorJTAzyppkDZ1283nk5kTRyJMWt7x2ba0TOXrbUFSPHVTSrefAVB/DfDyJEwoiDIqKmMOWWYFRKT/UbVHEn3ttWPv/fEj500ZDjRFUlWuW8o45ZRhI3ZCEgESlRORlDy1dkrlPsOmVK9do7aKc2GP8bL9SLHejYvH+BL9AOkvySTS0qakucRkVgolVdIjTWZGxjVirnveg35oslvA9GxXwGAYZdtVpESOVSZrrk7yOZwqZdJj5jxREv+8tQzbgEJFjZgiE2mqTKW6FMSB0SdNs/a1Usz0dQO9LFfda+3HkA2S8ljH7NU8j46z3nUNGMRurVmzxptvtVpotVoDP8f6xNCfmLVr1+Jzn/sc9t57byxbtgxbb701XvziF2OzzTbD85//fBx//PH42c9+tj72GhCw4DBVtGfNmjXev27ZFLmKNE1x1113Yd9997VznHPsu+++uOOOO2ofc8cdd3jrAWDFihWN60cZwW4FBMweRj1SPUoItisgYHYwiN3aaqutsMkmm9h/K1eunONdOwzFsF100UU4//zzse222+LAAw/Ehz70IWy55ZYYGxvDk08+iXvvvRc/+tGP8NrXvhZ77LEHLr30Umy33Xbra+8zh5KAyosi/sw1obXS0srVTgwi41pfb6ZrazqKOrf6c7j1DDEZjwl3HjNuC45orKxPSwR4+STRWOTq2eIIvKxhY4KDJ+Wf3ZNgLX9Woh914MwFPzyhEeaiF0UNm4vsisjIU3PkZcRXRBxRuUclW15tmWi5SBxlzVQ5VlTCl8DUu3EubISa1sFxLmpZuCbklVoWE6HOSJF+JptbNEyFuKGRoyznttpqK2/+7LPPxjnnnNOz/vHHH4eUEltssYU3v8UWW+A3v/lN7XOvXr26dv3q1auHeQnzHgvNbmmlAEZkq6WCLO2XzHLLSClaz5YpSJshICHLJs95J3eZA7kTF5mU1RYkxXM31bBV623rjht2WkhlhZoiFVlmSktt96gb2LbihfUKBLBiYb+3zatx89i1mibU1eveMGlaucdqrV2DbKUhc/O9QWrY8hSypoataruMfdJcWBZOVGrepLFbjNl6taLRdrEHLs37y6yd6uYKY+Xr6OYKCckcsI24y7/pMLaryW4BznYNg2Fqb7/whS/gX/7lX2zq9q677oqPfvSjfWt1RxULyXZlLELGKrecNVk73mEyxeoY4CYGrnJsVqq8BmGVGu6d9BS1a4OQ2/1OUfveALU2sd/7NCuoY8H61aCRF9ZUY9wPPZ+pPhjEbj388MNYtmyZnZ8v7BowpMP2s5/9DLfddht22GGH2uO777473v72t2PVqlW48sor8aMf/WjeGg8AgJZlelFa6eVRk4pTga/GWDogJE0w4eYGnrkvQuVYYgVWmz5H1SBpSiR12JZEHGPCOWZRu/gzxu0IcTkWiUDULhwWnsTWSRNx7FIivS7zNUWjfcBNOid3hjYmUYokIsXuEcdY6ZjlmbQ9hVSuoBQdV9IlSljREaoeqVRtAb9zxrgd8yixzhuPkooypesP19QjzsATIiAqc5lS3s3PMOAkpbQ6D8xv4zEqWHB2S0mAKRLgcA4NVYYsFCNLAQvipMnUT+82apC0Z2Q1JXI2HDZjH5UkYh2ptPaLCvZoqaCU62XmnDeaEjmzGw36OmzAxRMaUd4cUDhp2qzJ3biYL99rIjQiaUqk9AWPKIygEg0uece9tMlFUGWvOymU7bcpykZ4UnCb0l0oQ5ZprhH3X592tkzp4VIim+yWOTYMTO3tqlWrsMcee+Diiy/GihUrcP/992PzzTfvWX/rrbfiiCOOwF577YV2u40LLrgAr33ta/GrX/0Kz33uc4d67vmOhWS7UqnR7RsV6D1W90nyv6bdL6yPMzgMqgI/9vLX9Y4f1eqhKZx11mmQS4yebxCyunq5ce8YTZ02I1IuQn6vey425LXcBE1fFHkXi2ldc2RwpENEmgaxW8uWLfPuueYThnLYvvzlLw+0rtVq4R3veMe0NhQQsDEh5gxxzR1uzoczHs9+9rMhhMAjjzzizT/yyCNYvnx57WOWL18+1PpRRbBbAQGziya7BTjbNSiGrb29+uqrvd//+Z//GV/72tdw880346ijjhrquec7gu0KCJg9zKbdWrduHf7nf/7H/v7AAw/gnnvuwaabboo/+7M/m9E+m7BRy/rrPIPOM08qui7Nrgpe6XFmRT/SklFSGlKXEdBKYb6bd2vMseInqxUdoQzbmOBIFhUi2cni2Eaoo7HIpkdG7QiiZNiidkLYtgjMFLNHCRDF5esoU3JoSmSlKNb8xuCnRMblHiPBbSF7EnEsKlm1ySwiMvmCFOoLIvrhPoop/HRIG62Opo5W17UD4FECQRg2HhdjEXHwyPR7cwzbIFEl5aUUFWmRANCgt9AI2lOvOj8MkiTBrrvuiptvvhkHHXRQuUeFm2++GSeddFLtY/bcc0/cfPPNOOWUU+zcTTfdhD333HOo5w7Y8KCy9yrNvfRBlZZiJCT1UKbSpURm/rxJVewVGqln2Ooix1L7YklmrrYfZa4gygOFaJMZKxuJVX2yG2rT0wdM66kT/58qQCuVtlF3pQirpijbpuC3C+ntAen1ZKuKIpQpjoyLnvYlZt7uJ0pcL0upIIzgEUmNtP0lSRo3zRBIc+UJqQyLJrtljgGDFe+b2tvTTz/dzk1Ve1vFxMQEsiwbKQGOjRGdXCPKBrtOB2V2/HvsqT/HTR/1HlbNO0Yfr3ueyWfY6Dl07fxUexkEVd/CE4TzWMf6xzA717C25jmb/ibDlqwO8rqrf48mMMbQyQd/IwexW4PizjvvxN/8zd/Y30899VQAwNFHH42rrrpqqHMNihk5bDfffDNuvvlmPProozZ9xeCKK66Y0cYCAjYGRNw5vBTZNAr3Tz31VBx99NHYbbfdsPvuu+Piiy/G+Pi4jVwfddRReO5zn2uLaE8++WTsvffe+OQnP4kDDjgA1157Le68805cdtll9pxPPvkkHnroIfzxj38EANx///0ACnZuVJm4YLcCAmaGJrsFONs1SP3tdGpvq/jABz6ALbfcskdAaSEi2K6AgOljELs1KPbZZ5+BHcvZwrQdtnPPPRcf/vCHsdtuu+E5z3nOrOW6zhWmEhVhnHt1a0aOXsQcykjpl02V217IVnmR59SGF1gP+1b8bGbY2qRuLVlcMGPx4hjJkoIxShbHSBYn5XwbUbuIZop2YkVHRDsBa7XdazKRW8O6DSQ6wsBLKinmnIiOAO2SsRpLBCbLiP5YLJCWNXRL2opEqJufI+eLyu0IK5HNh5TIFkR0xNSwidYYoqR8X4RrMcCFy20u3oKSNexzEddF5oeNmnHSVLw6PywOO+wwPPbYYzjrrLOwevVq7LLLLrjxxhvtzdBDDz0ETljTvfbaC9dccw3OOOMMfOhDH8J2222H66+/HjvuuKNd881vftM6fABw+OGHA2gWP5nvWBB2S0uAuRpb1dBkWmW5ZdWUcoIeKpW2bo0KjRQNsounqDJs5lJtbFvBmA0jp+S6NrasYNhcdgGtD1ZEuKNax2Z+qqbMh2nWsTUReHXNsgF4rBplpFyGgGPSqG3qbZxdU4tHfmdcWbaNQhGxJJWnVoBECAVZ1q6ZWrYodiIpaa6Qk9eUN7w+VXldU6HJbpljwIapv/3Yxz6Ga6+9Frfeeiva7fasn38+YdRtV1cpRAPXG83ejXCTyWpiwJSuZ8qqTJung0TqQatzAGrXVtFkW5uYH8qOUR0Nb960XKqsrWPW6pg5j5VrYPEoNvRHkjON7hDfAYPYrfmMaTtsq1atwlVXXWX7NI0kVCk6Ui0AF9z+pD3LrNOT5KRQnqbxuAuuXfY5EgzeDdFUaoKCuZQiwZyTJhLupTua50+WJJ7zJtrFWLRbfkrkWPFlyaMYrEyDRJTYsXmdmjG/a305LtIgTcqgthem4LARi1hwxLy4eBLhhEbSXJFeZsKm6DTdIDDOXKqi4FClg5WnXa+wv050xJ2DqEEK4rBFkRU9iWKByKhqJsIqVoqIe2qX1iFtkKymBfzDpkTGDRGfpijQVDjppJMaUyBvvfXWnrlDDjkEhxxySOP5jjnmGBxzzDHT2st8xIKwWwCgfBVFRZwb5+i4dEOZSs9Oud6R9WmQNJ1RASTQ5N9YmBsCqbW1W9D0HDQ90gWr7MtoMIRNATQ6P0j6ej/4N1TNF27TMV2Zb0yJJGmQxnkDYJ06oFCvNeuNraJOoMxTXyypXKOU8IRPgCI1MlLmfLrRCZWq/3dRPzTZLXMMGKz+djq1twaf+MQn8LGPfQzf//738Zd/+ZdD7H40Meq2q5trRH3S1+rSlYfFVCqDTY6TEd6prisUVKsiGb7KKr1+lNY99sKosNY9r7euwc40OhieY1Yzx1njGnMfQ09Ne+rWOYDUcRzEWQRmx4Frcg7N+btDpEQOYrfmM6bduS9NU+y1116zuZeAgI0ORrWo7l/A7CPYrYCAmaOf3RrGdtHaWwNTe9uvlvbjH/84zjvvPNx4443YbbfdZvRaRgXBdgUEzAyzZbfmCtNm2I477jhcc801OPPMM2dzP3MCKhfPhHAMG+dEDj+CSBzDpWihfCVEyQWzQiRRqpDY3kLaFvhXQalrk3opEuEETWLhM2xjRMrfMmwtxIvb5biNaMwwbI5tY622TX8sxrHZdPlzOFl/zpzqTktwdITrvUYZtq4pfG/HjRFrk4YoIglRdp0XgtsC+igWdqzVIi8dqQ4iiux5bepj5NIgo4T7bFvM7dgwbEkkbHsCyrBx7lJXZ9IoNhYccU1fkLq5gJljIdgtrVSRFknnbFohkfiXitgpIqWfuZRIX1DEsWCp0shImo/0otHeM/fOky8+l1HAvOex+1IkRVr6qZLzCc7WEAES7cZNrFrxu0uDpKwaZQjpq2YmiyAnc0J457d93qLI2UfCqlGRFMewKY9ts89dMgDDpHM32S1zbBgMW3t7wQUX4KyzzsI111yDrbfe2vaNXLJkCZYsWTLUc48SRt12TWYKIle1DFNjqjXBVG0n+rFnbp6un5olo+yY0i5tuLheatIglb++eryO4Z4O6D2HN6YsGfPZOXqPadk2XllvGbaaVMqa48Uasq8BWLgqBnGU6tJCzeMmBxSyAWbXbs0Fpu2wdTodXHbZZTYdIY5j7/hFF100480FBCx0NBXB9qudC5g+gt0KCJg5+hXvD2u7hq29/dznPoc0TXHwwQd75xnVutpBEWxXQMDMMJt2ay4wbYftF7/4BXbZZRcAwL333usdG5liWC4Is+TENwzbJpIYoqxbU+0EomxIW8eqAa6ZtogFsk5ZwxZLqLLeTCuFmES8q48rtsEgYmHnhamr6suwFTVe0eIxn2Fb1C7n2+BJKTSStMHMOIrBSol78HKPVHSkIj5iPs8cLoguGLNS/rFQVnQklxxZVOxdtnvzugGfsZrgzLFqhAUTQjqJatKoVpLaQSAu31/ynhKZfs4YYe+4ZdJ45Bi2pCXseCwRtiXBWCLQsmybE1iJOa8t7h2WH2iqi5sJaxfQjAVht0p4QiOeQIdhdHSlns2NaWRZekwayLi3nq03Eu6is2aNLzRCHzfc+2tFPOaAdZM1tSiDQlUESAx0hV2rO8a4gOZ0ntv1hp3jtFUAaS1AWUA71pUaNtIgfKYR/iYbNR3bNUzt7YMPPjj0+RcCRt12TWYKSB1tXLUldR/Hps9oPUtXf7wfk9bEmDXN19WD9htXXwMd50OybfS6ipoYtoaa+77jBuYNaGbsBmPeeuvn6o41vUa3trKmwuINw7DNtt3a0Ji2w3bLLbfM5j7mFpxbh41xbvuUiXYOUfY0KlJ3ej8YhWKkS2EEigJ/npgvWqfOpisqaPbpyaeZcadAyRNe67CJmCMaK5yUqJ0gWjxmx8Zhixa1EZfzotVyypBJG6yMzDEiOqJLh60QGun/wWVEJVJw2JTImDvRkVbEkdm0AgHZrjdI1HBMln3sUiGtU5Vnrm+blAqKCJZUJVWrqpPW72QMIjJprsw6ZkJwJzoSC5vCubQdYUkp3jJG5scSYZ1TwWjaQN+3qy9i1iA6MgJfwKOIBWW3CJzzRvqzSXfjoUiQSUvV4KS5mygF1DpvgH/T41IimR2b406uyJ3H/KwLeI0inHpkr3hVdb7qyNWp29K0SQ5AK9GzvjpWJBWyeB6/V1yT6MhM0GS3zLGA2ceo267xLIfO5JQCHNV03Z7jDY+noh3U0Sp+JynCJGWxLoDR1K+wuoYqrhpRtVpRH6UhVfNxg7zh2qxjfnqdtN6yDbouES7YHPVx3qjYWt3xJueuLhWSOml8Go5cvfPW+9iJLO9Z14RRt1sz6sP21FNP4fLLL8evf/1rAMAOO+yAt7/97dhkk01mZXMBAQsdTcWuo1AAO6oIdisgYGboV6QfbNf6Q7BdAQHTx6jbrWk7bHfeeSdWrFiBsbEx7L777gCKHOrzzz8f3/ve9/CSl7xk1ja53lCmRLIosayTjlyfMp6nVg6fSmdTMMHBRFEAblIZZSYtGyZTIgJA+/o0pURylwZZTYnk5ThqJxBlj7Vi7OT7LavWThAtKsZsbDFYe3Exbo25lMg4BkSZB28bb0SNKZFml5w5Wpox7dIEBbPpgzQdqgoa6TGCHkkkMFmmS0yk0vZwy2NFUiKVZdH8lMjyPa2kRNKxpfKFY9uE4IhI3ziTBrmkHWOs/FsuShzDlkTcpnxGgrt2BiQ9Ug95zcfCMZTV+YDZx4KwW0pBa+mlQVLQecuqEXZfySqrZsbNKZEG1Wva/a4b+wVN+XJqDMV8Eh+pRsL79Y+cCpQZq5tnXLh0RzgBkn4MmxM+cWmQlG2rY9U8tqCUNJ9K1IGiyW6ZYwGzj1G3XZ1cAX0YtipDRtEoItLAqlWFPqZKX6wyaTmdr2Hh0lw2sm11KZFmTO9RvPvBAa49mvbKK/c3U6U+Vlm1pCxX8dYzx7BFNeegJSH9UiwNqumUdXtvFCkZkJ3jjBWfqwEx6nZr2g7be9/7XrzhDW/AF77wBUSlGl+e5zjuuONwyimn4Lbbbpu1TQYELFQUqQWBYdtQCHYrIGDmaLJb5ljA7CPYroCAmWHU7daMGDZqOAAgiiK8//3vH5m+KEwUTaQ1qVtjSbtoqI2iuLvuDeKkobaMI8t2yU4XQFkjUubVqlR6zFyVFbJ7sQwQt4wbjyNSzxaBx65uzTTxjsYow+bk+0WrBTZWsmrtxY5Vo6IjSdvWrmnhREd0hVnr2SvzRUdMwKIdcRvhUro+/xxAbc50krpm1WOJsmxbN1e20bZU2o6rhfX1++yNSEWVptiLLHtGatViyrZFWFKKxiyKnQBJO3LysLSOb3iGjTUwbPPfeIwiFoLdqgNtot24hhyTNRFrv7k1vONNoiP0y4+ydgAQM7p+6s9zXQbDfMOgLFSdoEi10XdTOxIDJlzIV3tCIxKCzA+6t3w2a9ga7JY5FjD7GHXbNZlJqExNyZY1iofUyONXa8KGEQXJyf0EFRQp2DZ3z9El9x91jJxWmrQbIvclpTnTRMTErKE/614rRZ0jQUXVAHd/wxiziVGcrBGCu3GlVs3cj7U8Bq1XaK3KwA0rbmLQU2c3BcvWj5ETrPhcDYpRt1vTdtiWLVuGhx56CC960Yu8+YcffhhLly6d8cY2CBgDGC+UEvNCXITFMaAKhwZKgpVfkhFAnLTYOkxqLEE+WfbEKZ0l6rBREYB+aT6095v5omaCW5VKJrhzxuKI9IeL3Xw7cc4YTX1M2uDGeUvaYK0iVRIiJiqZRHSkfJ3UeeNEaITDdVwvxDfKsWZolXtveqmcFH0mxHlKIo5FOenb1ir2M5nJgdIQ+kFw5lH8NB3AOonEGRtLfKGRdvkC24KjVY5jzryUSGNHhg3ShBq2DYsFYbcqqDppTlxEWyeIph3SdOwmZ6ya0jxIn6Qq6K4WiMbIQKjrwTbMY60AiZREMTLu0+etN2XT3PxpVR8kbBI4GBSjXgsyihh12zWZScjMDzBM1aNskLlBREFo+m+dY5bmyhcRIU5aToTOlKRjl3bsifwQ580eJ6/TOHJ1Tlw/VB00Glc3wekmJ61aFtIhBAENZtP0R8C/dyqct3pHjjpmdemUAztvDWvsuGJ3hnXYRt1uTbtT3GGHHYZjjz0WX/nKV/Dwww/j4YcfxrXXXovjjjsORxxxxGzuMSBgwUKUFH3dv4DZR7BbAQEzRz+7FWzX+kGwXQEBM8Oo261pM2yf+MQnwBjDUUcdhTwv2KQ4jvHOd74TH/vYx2Ztg+sTmkfQPPLTIOFHhrmJdsYJWNQp5pKOZbVkJ7VjKy6S5a4XEu2R1Cfaati7QsSkZLVI6iVPIogyJbJIjyz+dDyOiIhI4qc+xi7N0zFvbbC4FFIRiU2FdDy66BEb6dkrY5ZVk9pR1zGH/UQpXe3hZtgoR0nHubLs1VgibFQrJWmQdJxXo2m6N+JWBypH25QCkES8Ii5SjNsRt8xbSzjREZoe2Yq4J3c7DGh6aXU+YPaxEOxWP/Rj8ZX0GTT6066peVyT0IiopDzONKPEpH8DLuNgPqCpt9B0UCc6Qlk1esyfq7CoNWmWU0XpZysdEmi2W+ZYwOxj1G1XRykokiUDTM2a1c1V1w7DpNE1XZLW6ImO5MoyYjJXHpNm2wppXdtiiPaKtQyb9uemEhtpEk8D6ss8mnrOMu562zJGGLbIiaTxiNcKsk2a+6XKPVJ9+iQbmnkzmCnzJjhDZ4gshlG3W9N22JIkwSWXXIKVK1fif//3fwEA2267LRYtWjRrmwsIWOgQ3KWUVucDZh/BbgUEzBxNdsscC5h9BNsVEDAzjLrdmpbDlmUZ9ttvP6xatQrbbbcddtppp9ne14ZBKesP7VgqwOWJKnO8XGuaTLNWG7xbsG2inbpGtaVQhlbKjgFA2Wap9ZEAw6IVTyNcPVuFYbMsHGlDANL8mkWxq0+LYnDzmsg8i1uuSbYQtnbNio8w3izrb1kkTURHAFWONWN23I5dFEdw2HqvTs6sWEfMJTJVslRSI4uL9yeTGhmJiKU1Rb9NUbg6VKM1ND+bjk1T7HbkJPsjwqpRhq1FJP4FYRyHZRk4GHiNIEPdXMDMsGDs1oBQUnvNsu18Qz1atWatXoDEH2+IOu25YNs2RHpMnTBJlWnzm2jX12qoit3zamqmUXs4CJrsljkWMLtYCLark0pI0cyw9WPe8sqxOibNvz9QtUxaz/2EYcmksteRko4FU7nyatJciyF3jdEWQ401bE31p3Lw+ivAFyIytoJxYcf9atiE1UlwzJsnRiI4eHlPQ1k3M04FdwzcgMIltTVsrJ5VqwqZGEzFwnXSIWrYRtxuTcthi+MYv/jFL2Z7LxscOkqgjTpkOccA66RxLqBLZ0jHMXRWCpPkKXTihEl0KVgiaJqKcc56CsTdjRN11NwcdRKdAAl1GL0xcd4Ycd4QxS4lMoqBqEyD5FHhqKFMiTTOG3lO57D5H2BzrTAQ0RHOSBqVNu8guAa4MQocyHhhvGLBkJV3fe2IIyuNW6a0NzYGMyOpj0o5gYRqwbIBNfpNSkTGGeMkVTImRblF2qYTFzGpjzF3TlosnIMXCXfObMgbPd4Q8an5aATMEAvFbhlQJ8xzyBrSInWD8kedYuR8AL05mQtQ+zHXKL5DYjKuW1P/t1M1N8LV8bBoslvmWMDsYiHYrjTX0BXnqS7NsVr6YFDXD60Y9093rKpLew5Y3ut0Sam8dEeTEimrzps5pyZjJaHyQoROy14nrVcwqPdaVmSOc98G0oBOncPGuLB2k0eJnRcRR07SHPPMOWnGCZNCgWcuVdIcdw6dE13JOUOeOwfQOG9prqZMm+wRIyn3lcJPfYwqzlntYzlDmg9ux0bdbk17i0ceeSQuv/zy2dxLQMBGB9bnX8DsI9itgICZo5/dCrZr/SDYroCAmWHU7da0a9jyPMcVV1yB73//+9h1112xePFi7/hFF100482td/AI4BE0fRcYBxMuxVCnReqjTtpW+l/nGXQZRYFSjtZW7qcmDJtFU98dGkXxIijcT8k0EecodhGVyEnzszgGDGPIeSHbj5JVM+IpIvLTIM0aIz7Coyn7sHFGos9KO+qtOFPx/JqBlW0AGOMQhmFTDLJ8GZlSyCQvT6ORkYiYGSuS8qCIBLn5naKaGmT3WxENsP09CDVP52PhUiJj4WRg2z0FteV6KmpSu4Nm0PSA6nzA7GNB2K1ZwLBM2vqU5efTzKucKQM3XQGRKczjjFAVIBlk/VygyW6ZYwGzj1G3XVmuehi2JsEQg6nSHZvO0U9ExMjqN7FqxTzsesOq9aRH5qYERkJlqRvnbmznahg2XzBo6uvYY9eEz6rxuvRIwrCpmIxlZFkzJTikdGyaYduYec0kTbJgJx0zJ3mxRkTcMoxUpEQqXWHMlB03pk2aRrYStUJxdf3fsnxw0ZFRt1vTdtjuvfdevOQlLwEA/Pd//7d3jI3ACw8ImA+gPe2q8wGzj2C3AgJmjia7hT7zATNDsF0BATPDqNutaTtst9xyy2zuY06gRQQt4iJkasKmKoelgHgEVtZ+MZXbWjWmpGXLqvVqQBktIbVqw0ZPaDItIwwbrPS/q3OjDBsY98VDTK0a4z6rRiT8e2T9q6Ij5ZgxoCTMwBgD09qORcmqgTNX2wbXPFsyQJeRE8k1DBGWaAYTTFNa29o2qbVlzyRpAksjb5RMG6QWw5fmLudIE0XBXcSdzsfCsWeMkSbhhJGjedjRkGxBVRClbr8Bs4eFYLdmimqD7GHWB6x/1AmQNK3xx9P+Oh8aTXbLHAuYfYy67UpLFmsqGf568ZFmVq1OlKypVo3Wm3kMG5Hvb6pVU1JZVk3lqWXIVJ7aa1DlqWXTaC1bcw3b1PeJrJp1VZn3atiEAC+zrHie2rHyxm6NjiJw855F7j0zAiU6gnfcMHNaacvGaaWsiInWGrp8bJVhq2vGLbiuZdvMOgAQmkEoc//Yy7alfVrZVDHqdmvDWfh5CNuHjXGXBsgjgJcKj1pBl9w4kzkQte08M/Naudb1Bg0X5CDwhEjoFzZxnqiSowZ8x6zG2SocNuLUmTUi8tfDOHT9P7icwXk9SkMbh0a7h2rtKGapNXHMTNIkoIjDJrVGOyJrzHq4xxbHqDHvu81a0IJTmhLFmFMJYowIrDCQHmsuz1lQ55Qzopo5pMPG6pX2NoT6XsDCh1OJDE7XxgJNVCLXF5rsljkWEFBFN1eFMzSAk0aFRMzPWkePjPPcKT36QiDw0hrNPQRNcZR5fY81KZVz2PK0NvWx6qRRR86sNfeB1GGj4iKDqEXSFHBeFRoxwXwu3PMLAW5UZrmwz8ujhAiiJM5509o6anZfSruUyMpxY2OK4+b53d+RKQZtbqQibh1rwRlkjbhI1Xkz8By/GuetO1RK5Ozarc985jO48MILsXr1auy888649NJLsfvuuw9/ogExbRZw5cqVuOKKK3rmr7jiClxwwQUz2lRAwMYCxljjv4DZR7BbAQEzRz+7FWzX+kGwXQEBM8Ns2q2vfOUrOPXUU3H22Wfj7rvvxs4774wVK1bg0UcfXU+7nwHD9vnPfx7XXHNNz/wOO+yAww8/HB/4wAdmtLENApEAUVKwaIYlUwrQpTS+Vpbq0ZFj1QBY5s1j18iYVVm3AaGBetEPyp6Z381jPFaN1R/nvcybx7ZRKX/KzBEYRkpp7XRGOLMFvcxb43oACTDCkjGbzqi1ti0BTMqkOb97PxjqgsUzydKi1yVlwd1LqjJvZsw85q1uflhWnTdEfEaAnR9JLAi71Qd6OrRziWqq5Hwk5epaocwG5mM6jFbSRd6jmQuMzETGv4omu2WOBcw+Rt12SaXBSJuefvL89DFAr9Q/TYOk/c6M7DyV41eqH3vm2LZ65k05Ji1LPVbNXI+ygXlrYtWo3L/BQGUzivRopPL9Htum6pm0ssWTeS7DqvmomYs4YBksDpAmTiiZNxCGi2tm1xRib8WaPFceq2bSI5sglaxl2+w24LYyjF2bTbt10UUX4fjjj8fb3vY2AMCqVavwne98B1dccQU++MEPDneyATHtb7/Vq1fjOc95Ts/8Zptthv/7v/+b0aYGwWc+8xlsvfXWaLfb2GOPPfDTn/50vT9nQMBsg7Pmf9PBsNfFddddhxe96EVot9vYaaed8B//8R/eca01zjrrLDznOc/B2NgY9t13X/z2t7+d3ubmAYLdCgiYOfrZrenYrtm2WwsRwXYFBMwMs2W30jTFXXfdhX333dedm3Psu+++uOOOO9bDzgtMm2Hbaqut8OMf/xjbbLONN//jH/8YW2655Yw31g+Gily1ahX22GMPXHzxxVixYgXuv/9+bL755gOfR4sYWiQ9zJj11yv1aZqyZjW1aR4D1/ik5ZoBtaFr2bZqxKGBeWtk4exxNvhaspyD2WiUYLA1bAK+GAitW7Nz5HyKsGrao8xoM+7e8w2Cnm4DDahjwbl33Bcrocs9do6IlAyD2RQdGfa6uP3223HEEUdg5cqVeP3rX49rrrkGBx10EO6++27suOOOAICPf/zj+NSnPoUvfvGL2GabbXDmmWdixYoVuO+++9But4fe41xjIditQTEo27YhmLSNqa5pGFn+6WCQeheDplYnM8VsFu+vD7u1EDHqtkuV7FqTVD8FZdZ615IMHKW9ujU7ViBjJ2LmrVeuDqvKvGm7pl4wRCsJ6dWo0TWOWQMKBq6uiTZdUx1TGHtCW35oJS3jRtk2EflMGh2b/YooaXxN2tSH1TBpTGl7XLGCLQUAxeHGcPdCCtrWtClF7qs4m5IVozak+GzU3QcXTziMjRvEbq1Zs8abb7VaaLVa3tzjjz8OKSW22GILb36LLbbAb37zm4H3Myym7bAdf/zxOOWUU5BlGV71qlcBAG6++Wa8//3vx/ve975Z22AdZouKLBy2uDLZ5yZnijTHgT42xuuYzTz/AZy/qXqrDdNciApxAL4j5d+YuRTKKfc3y20LB3XYpkK/U9T1cRpWdIQ1PMd0tj7sdXHJJZdgv/32w2mnnQYAOO+883DTTTfh05/+NFatWgWtNS6++GKcccYZeOMb3wgA+Jd/+RdsscUWuP7663H44YdPY5dzi4Vgt6aLmaRLzltMM0VSTDu3ZP5ifTlndWiyW+gz34TZtlsLFQvddjUJjJifdWMKKrRDA8C64uCZY/2uF0UdthpnqyoY0uQA9UPVeeu3roqmoJDvpJEgvHTOnlKyUDpH5fVxCVU6gU1OjXlfGHfvK+PMH9sSGTIvqAM2nJ2azXT1QezWVltt5c2fffbZOOecc2ZtDzPBtB220047DU888QTe9a53IU0Lz73dbuMDH/gATj/99FnbYBWGiqTPMRUV2e120e127e9VDzogYK4wFcM2SLQHmN51cccdd+DUU0/15lasWIHrr78eAPDAAw9g9erVHu2/ySabYI899sAdd9wxkg5bsFsBATPHbEWq14fdWqgYFdsV7FbAfMUgduvhhx/GsmXL7Hzd/dazn/1sCCHwyCOPePOPPPIIli9fPos79jFth40xhgsuuABnnnkmfv3rX2NsbAzbbbdd7YubTUyHily5ciXOPffcnnnFBBTzIxWqT1mfngVHnwYXZitwMMhp6tgg7xxTnIT1YcmmElgRgwiwTFOkpfc8ZJ+zwWL2YR51zWeF6+GEAZjWte+tmRs02jOd62L16tW161evXm2Pm7mmNaOGhWC3AgLmGk12yxwDBrNd68NuLVSMiu0KditgvmIQu7Vs2TLPYatDkiTYddddcfPNN+Oggw4CACilcPPNN+Okk06a1T1TzLgP25IlS/DSl750Nvay3nD66ad7Ebk1a9b0fJkEBMwFmMrBVF47DwwW7QkYHsFuBQRMH012yxwDgu1aX5jvtivYrYD5ikHs1qA49dRTcfTRR2O33XbD7rvvjosvvhjj4+M2bXh9YCiH7dRTT8V5552HxYsX96QkVHHRRRfNaGNNmA4V2ZRGlimNjOQ0A70CGb6IBllX8zyDiGKY8w3Krk0lilGs8YUx7Dx9DNP913rMH2t8bgBe43DzuxvrnvnmtQ1jYEpRlymh1fRr+2hdTFXEZQqBl2Ev+qqwjTePwaI9wPSui+XLl/ddb34+8sgjnjrZI488gl122WXKPc0XLDS7NV2whVm4Na2HLcxyvg2o7NJkt8wxDGa71ofdWkgYRds1Xbs1nVqlnNygMc7sDVZxn+PqqoyyEuMMrBTO4Ly5nspcS1TQgyknn8+5gCzrwJgQnuQ+49V7mf5iIgZTiY7UPaZurd9QW9g9utdWWSPceCobYo4zxor31T4vGbP6eQOallgdRzXzs4oB7NagOOyww/DYY4/hrLPOwurVq7HLLrvgxhtv7GGiZxNDOWw///nPkWWZHTdhfTbOnE0q0hS30p5hCr66Yd18cawsSgWdc+PZ6hNm0KtQSC+QsuM83HvvKxjSnmHuGCPr6OPMa+Ng/l6oA2b70OmGeb+3Xa3TVn1s9Xj1PATT7XMH+E4aq3PAqoqZDT3qWE1vOyaHdNiUrDfoQ/Zcms51seeee+Lmm2/GKaecYuduuukm7LnnngCAbbbZBsuXL8fNN99sHbQ1a9bgv/7rv/DOd75zqP3NJRaa3RoUgzpoG0LBcT72dFtfmGm/tKlAb76mwnpz4prsljk2INaH3VpIWEi2i3NWiHLVmiXuKUVOdbMuiciFbcul3OddQZc9wYp7N27UDTlxxrS2DgVXzPUVg1NJbHSAuLCKjDJPK06V//kXUQLN6/uw1SlANqHquNX3YRP2vqRpv/1ek3k/RPndwSPuAvic2Vshzp3DxonzxqtrGOtZD6DWYYsa6/l5vYPHivFQNm6W7JbBSSedtF5TIKsYymG75ZZbascbGnNBRQYErA8UOdV1Dunwd7hTXRdHHXUUnvvc52LlypUAgJNPPhl77703PvnJT+KAAw7AtddeizvvvBOXXXZZsQfGcMopp+AjH/kItttuOyvrv+WWW9ov7lFAsFsBAbOLJrtljg2D2bZbCwnBdgUEzB5m027NBWZUw9bpdPCLX/wCjz76KBSJjjDGcOCBB854c02YLSrSpUS6iI2CG9OUSKl1hXkrx9A9bBqVsR829YYGxX0WrWC87JjkMArWO8/I46kMP2fasmaCMcsQ2g8rZ5Z1U1p7MvXMY8/K51G5z6qVDJPHtilZeawb23naW4jOVxk2T7Z2eJaNce6YShrRIiwZZdUYY9Ai6lkDHpGxcKzdsCmRKq9/zLDnwdTXxUMPPQRO0j332msvXHPNNTjjjDPwoQ99CNtttx2uv/56r5fR+9//foyPj+OEE07AU089hVe84hW48cYbR7IHm8Go261+mEnao2AMGemvaJi3+cSOTeeaHwTDSk1vCNAouvl9JpjVFKMmu2WODYH1YbcWKkbZdll2xGybV48Xn+9Ctr//dZ6UbBiV+M9z16+r6P9VsmSUfcyVx6R5myn7sPnHASBBFYwLqLKvmfkdABRh25Tt08ahlUmrlB7bZjBIb8W+aY2EVeOGSRNuzMk8jxKX2hkndl5E3GPWgOIe0oxFxGqZN04ex3hxHqB43w37FUUNLFlDGiRl1cwxu4b564eya7Not+YC03bYbrzxRrz1rW/FE0880XOMMQY5RHPP6WBDU5EBAesFU9SwDYt+18Wtt97aM3fIIYfgkEMOaTwfYwwf/vCH8eEPf3ha+5lvCHYrIGAWMIu1IMDs262FiGC7AgJmiFm2Wxsa03bY3v3ud+PQQw/FWWedtV6L7NYnpCr/adKUURe/m+OaMGxZGWpWWts1SmvLohlmTWrt1bMNEr2lUQIaMHDMGLPsG2cuyhAL1sCkuQh5Ma/t85j4keZ0jaXV7AYaa1u0duIahGFjMncMmFbeGo9JM+spO6ckdJ7ZsTJfPkrZc3q1ISQCN0jNiBedJtEoy7Jx7iJYZJ5FMZgsLhPNuFsvooJlA6B15M4/ZJSGqby27m1o8ZKAgbAQ7NYwMA1L2YYoVAuYF2CVepH18hwNdsscC5h9jLrtakUcUcS9ptiyvC+R3G+GTdm24qeCaGisnRJmzGZHVZplG+aNcwaZE2bSimgoqHJcPW7ujRRvQdYwaYwLcNNQmwvLnJn7iabG2gJ+xsBgoiO8Z74qLlLHqjUxbyKKwIVh0HhPDZuIOHj53VE9Tpk0Ebk6N8e2+UyaYUVng1UDSM1bDyPajFG3W9N22B555BGceuqpI2k4DHJdXPhSF6mRgHPgirFGp7x4FXHYMqWRlV6a1MRRU9Shgx0bqAbHjXvOGvnAMve74M4xi8mHNqbzgiHm5qIgH3ji7AntHDFVPGExXyZHauY61RfjYm2joIhW7gKQme+kmXkl3bzMrJHSeQqdOSfNOGxaScCMJSkSVdJPiaoauCbHzXPWXPqA55gJ4Ry5KAGL4uL5o9ipKCVtQMTuuXj5mqIE0MWlxGRWv4cmzDLDFtAfC8FuzRSiYmMGWS9HIL9/oWCQ1MdhlOPWC0Y8Uj2KGHXblYjCYWtyvKjzZuAcNtbovJn7HJoemebKOhcyV2WKZDlmxtFh1rFjnEHlRmgEEIqTx5YOW+4CITqKIPPi+5/HCVRWpD/yKHGpkKVTpJW0Thx12Gga5LBBZyb8lEhe47xVUx/NWESR53jZlEfqhJn7xcpx+ji7JuLWqRUk9TGppEFO5aRV0xv7OmlkXg9TBjDidmvaBQ8HH3xwbapCQEDAEDCqRXX/AmYdwW4FBMwC+tmtYLvWC4LtCgiYIUbcbk2bYfv0pz+NQw45BD/60Y+w0047IY5j7/h73vOeGW9ufUNqx67l5d8qU8oyaZ1cISsZnW6uLAuXSTdWirBzuneOzgOo0P41EqbMMWaCOfZNMIaYSKeacSx4ZazKsWPbYsEQ61JQg2toG2H3mq8VP5WTum2K2zKtbOofkzlQskoF3VwW4krCquVdx55lqWPP8gzaRKOyDDDjPHNpkHQspUuFJJEqCsrA1aUPAABK9qxg1Vzqozc26QNxXDBrAFiWgbXaZI3rNaONLsmQFz2j7GNlPmD2sRDs1mxA1NmAvuuLn+tDgERN86SDFOr3fd5psobrMxA7LFs2J+wamu2WORYw+xh12xVHHDFJW5RKe0yZQU6YMsO6QdDMJ/8cRqCEMmyCE0Yu4jZtUggOWWZHCcUgc8ewGaaGS2XZNi4YhCzZNqHAy8dqpW0qodYakrJp5j6GyPfXpUSa36ugYiS8cn3XMes90vyil2GrsmB1qY1cOJGQJlatKfWRpjua+9pWj9BI7xqa7mh+Nz8jXj9fHauhUiJH225N22H78pe/jO9973tot9u49dZb/WZ5jM174xEQMC8QUiI3KILdCgiYBYx4atEoItiugIAZYsTt1rQdtn/8x3/Eueeeiw9+8IOe5O4oIVeOXTNMWidX6OZkLN04L8cZqW3LlPLypoFKISzgRYPqUC20rIsm0HzgmHPEom7M0IqEHbej4vlixdAqAzNJxKDs0zGYCLttrC2c1L8i9W4AnAKLVh7TxSzb5tgzpnLorFss707aeZV2HMPWnXTMW04Ytowwb0pBpbkdaxPhksoJk5jtNUgBM87BqSRuErl5MmaGVWu1SQ1bAlbW2bFW2xYXo9W27QE8nnTIi56pvIFhm/8FsKOIhWC3DKiEPx3zhpz+JuERyrYNy7ytT8yUQZsp5pPU/yA1a01CI7wmUl0dD72fBrtljgXMPkbddiUR8xg2ABWmrBgn6L1nyiuPcSJxGtLUm9FzRO6+rJsrrw0AvU/jomTbJLMaA0JyqLjMlsqVZeSi2LFzMteIyjVSKjvWKoKU5b0DycJqZNiGtHF1bT68ujUiOETZsR4xkKh3Da1Xs0wbZd0IG1cVEaln1fo3vDbzBtX6NIPqPXF1XkWD27FRt1vTdtjSNMVhhx02kobDgKpEGgesmytMZMVFRB22bq7smk4u7UU/mUrPAJi1niHS/R02oCoQ0ksLJxG3F0h13BYm9ZHbVMwWGbcjTpQsOdpxeVFqgGlmx0AhSmK2WYiPkIuhpn8ao30tSBqk7k5AdzvFOO1Ap+U4S9047RQpkuVYZcVjVZZbJ01mmeewKeKwWedtip4tjHN7Q8sEtze0PI7svIhjiHaprpR2wE0aZKvtiZ6YdAXunV+4Kt2h+7AR57c6HzDrWAh2a1BwwYhKJHHoWJPjBmTGDjBG0iC1t0ZqN94Q0MM2s5wFbAiRFXOTpZWsdcKomABdXwWvOF70po01/K1njCa7ZY4FzDpG3Xa1E4EkEY0OG52r3it5TlplbV7j9FHl7yRXtWmT9D4tpfdsubLCazJXNmVbKW1TJZUmY6XJem0dNeuwaX+Ois/pGjtDFS6rQRh6PXPijJl1nDHfSYucHaDpjrSHGnXOqPIj0Cwi0pTu6AmNNNzLDuOM0d8b12RDpIWPuN2a9pV/9NFH4ytf+cps7iUgYOPDCBfAjiKC3QoImAWMePH+KCLYroCAGWLE7da0GTYpJT7+8Y/ju9/9Lv7yL/+ypwD2oosumvHm1jeM6EiXpEFOZNIyaZOZdGybVJhMi/FkKu24mytMlmv8lEhpx3lNZKiKJtnSpExxFJxhLC7GrQrDNpYU82OJQFYWyGaRQCtyER4KG2GPih5tQMGsFXukkfOG6Kx2vdGorD+TKUmDdKyamhz3WbXupB3LTsGwyU4KmZm0yRyyZNtkJ7URdpnlJCXSSfxPFYFnglsBEiYERBzZeV6Oo7EEvFPsPWq3INrF84s8BTOSveSCViDRDi7AWuX5G3p8NO6NsJXV+YDZx0KwW/3A+kgcc0KJmWGVJat7NGXVqo8RRCBpplDkOp4LVq0J1G5PV6jEgLJkJjWqypzVs228do2fItX/jzCTFMie/TTYLXMsYPYx6rarzbm9nwH8frZAL3M26FxdWqV33xXXM28pYd7SXNX2dpNKIydMmrFRxZimPDoGTRJhEnucvE7beranV1x/0Ou7YNHJMcOY9UmJbEpzNOOowqYBvVlewzJpTWIhBoMyaXZMRPmK3wE9BOM86nZr2g7bL3/5S/zVX/0VAODee+/1jq23NIyAgIUGJevTKEcg2jOKCHYrIGAW0GS3zLGAWUewXQEBM8SI261pO2y33HLLbO5jTqB18S9TRLJfaSc0IhU65XhdJ8e6TvGHnkilZdWKGjZp5wE/QpPnasqcZaA+QpJUIh6tMuoxlkQ2AjIWC/tcaa6QGrZNaShdn9trm2hzAVk+rzQRd5QNtVHUspmIsqCRCUWUdlTuPugy89gzNTlux7pTjifHIbsFkyU7KfIOGU8WTJbKcuQdM3Y1bEoqW+empYt2NUWnvIiUqVtLfIZNtFv2+U0Nm8pyiJLti5WyF4kmbQDABXRUNsnOUiv9j2Ej8LqBitfz33iMIhaC3aqih32xdWvMfe4JBcYEA8rvrKJWTduxERsRzJfyN0zaMLVddFcbqt5tPsAXCBmu6qCpOS49RkUGit8rdS7cZVEwXs+8RTVzQ6HJbpljAbOOUbddY7FAKxYeS03tibIsmHtM09ph2ba6cU6ZtAbmTSpts6+qjbllA6um7HyxL611LZtWvW9pYu/rao5p3RpA6tmYY96a2LZBBUOAXibNPK6ugfVUY4OmBtnV12q+M3iftYIBiIeoYRtxuzVth20hIJMamdSQquitBvgqkROZtE7auk6OteV4MpNY1ylu1idIeqShzqVUkIZGl/QCrqfA6YVH1Xy6HE6VR3BE1mGTWFQ6ZmkSeQ7bVIqUnDHbco0TKtsYSa3ZlD4HpZWZdKo7nrgIHXfGoUvnLZ+YtGmQ2fikdcwK582Mu85hSyVk6RzLVEKXG5Wp9IwgAHsM8BXxOGdOXCThEOV7J2IBXj5P1E4gsl5xE4oIpC8KF9BlSgpTbat2OazDVvSiy2rnAwIGhRXV6eMg0GN1ypCCuXHmCY04R64xTRr1aZZiiMh/k7rlfEKTYEsVtY6WEJ5CXJPQSOO86a/UIEQy1d6iyo3STNBkt8yxgIAqxmKBdswbHTL6fV5tzTiVk2ceY9ZVnbupnLfqvVNO53XdelmfflkjjkLn6H3fIIF8ijrBEaC8Z5zCYepXatPkkFWPJz1CI1M4ZpWewnV7n8pZq66vruGMQQ/hsI263RrqG/Khhx4a6uR/+MMfhlofELDRYYQLYEcFwW4FBMwyRrx4f1QQbFdAwCxixO3WUAzbS1/6Uhx00EE47rjj8NKXvrR2zdNPP42vfvWruOSSS3DCCSfM62aOSmsorb2UyFw6+f40d0IjNA1yXSdzbFsqkZfzeeoYNjOnlbZsm9a6tk1XtXiUyq8atk1EHFEpx5+mEpNWaERiabv4M6YymlLghKY6xdz1RNGWadNQpdR/zxmIrL/NA9YakGUvtSxzrFp30kuDzCeKVMlsfBL5RKccdyyTlhO2LZ/MILMypXQy9xg2lRrmUvWmFFTCciYNjHFmWTUmGOLy/RKJQDRWjGmbAP8cTrCExxFY2aqARTF0ZnrIpWCqbAMwbEZkltnzVOcDZgcLzW6BczAtvFYVFHSekWvAXA9cMI8Nc2M/PdJFObUn5V8nQDIMk9bzcmryJfuJp2xoVFkpNoOt1YmOVOcpk1aXBtkzZu5vDJi0KJdiX8eqVSPrvFLMPxWa7JY5FjA7WEi2qx1xLIpFI8NmMJXIz6AMXR0rp5SzZVT0ZFDmrYlVS6VLm6y+juJxzccN8oZ7trr05d4Uw94UR7ouEbyRbfOZN+49rodJM6U75PuBk3lzDBicJaPwjtW87rrHqmhwgzzqdmsoh+2+++7D+eefj9e85jVot9vYddddseWWW6LdbuNPf/oT7rvvPvzqV7/CS17yEnz84x/H6173uvW174CAhQGl6iM7I9ATZFQQ7FZAwCyjyW6ZYwGzgmC7AgJmESNut4Zy2J71rGfhoosuwvnnn4/vfOc7+M///E/8/ve/x+TkJJ797GfjLW95C1asWIEdd9xxfe13vUBpEg0pRUgAX76f1q2t7eSYKBm2PJNIu9KOAUDlCnnJEMlcNTZQNGiqYat2pI/KXN0oEbbGKh+gbk1wFz2NOUNcnj9TyrYBiE3fZ07zqRsirlpbto2p3Ob+6jx1rFPasY2zZbeLbLxg2PKJDrJxwrCNG+ati8y8p5M5cjKurWHLZA+jVq1hcwwbd+xCIixLxxOOuPz7Kqm9x9vzcMewySS2bQC0UmC2ofb0L3QtG2rY5PyP9owKFqrdoqBtKywjXJFvpk20Xd0aZdUcU8ahvfYetIl2k6w/PSf92buWeTWmowwnm92n9oyX9oYLTGUpaLPs4rGcjOsZNtpAt3ieSvPcmmj5TNFkt8yxgNnBQrJdi+PItiYCegWM6m5fmu5phmHepNKkts1fQ4VOaP1b0/wwoib9WhMAPqPWr+WTAb12oxoWzYyHFQNpYs2A3jo0+31SU0tW3cugTFrTa3RrK2sqbB6LB3djRt1uTUt0ZGxsDAcffDAOPvjg2d7PBgWlxM1FmSnl0eFGgGQylVYFkqZBpl2JrOucN6BIjTSqQSpXnoKQzOslRc0XcFXZhxPREXOeQtSkWC9zYlyIsaCgF2gsGKLyNbUEt86p1MXzaM08lUgPJCWSEZVIXfYp03nmiY6ocpyPd7w0yHTNuB1n491ynA3gsCnI8m+gpa4tMKaI7U2sS4kUmYQqzxGNRfVOmnAiJTKOwJOofP4MkXHO8tSP1NjxEIpFKNKidE3Ep24uYGZYKHbLwDlp3EuD5CTg4+b9Ma91tOClRJKuaF7qY3NPNn9/1XTLoV+fMGnMGz49kvYWGhacCyizdyUAFDcCjAtrJ2j/tOrvtY6ZqDhyovf7gjpuVDWu7uZsps5bk90yxwJmFwvBdo3FHEuSqMHZmtphmaoHIq1oaBQp0XR9syMnSZCdplA2OXL2sZWUy+rxfimRw2CQPmXUwTLHgF7HzFtfcbwGc8zIvppERPqY8EFSseu+P8zjVDxESuSI262NWiUyIGDOkWfFv7r5gICAgPmIJrtljgUEBATMN4y43QoOG0pmykRFKpS2KSZNc+l6q2XSpjwW48IzzzqyZ07mOVReMlDSefdN3jzjAjxO7DhKij5hXHBI6Vg1K2TSJw3S9tdIuS0mTQRHWxSP7UqFdpkSaaJBChr9pLstDNOkpP2g626nYJ7KsZHvzztd22OtYNUM29ZFNl48Nh3PkK4z6ysMW+r64ploVUr+ZrWvn7IFOZCUf494kluhEVVJoTSRfC4YeFw8v8xyiNTJ/RthkuJvaf4G04/MaCmhZQ3DVjMXEACUzJquMjTlZ5dz8jl2qcA0RVjEAiopPl+JUkhVb0pkwgGav+ezZ5rM10RwyUqfvXPnounKNn2PXIPzDZS9YiRS7QQ/6lMWi985OY+bp+mRdVL9PIrBI/dd4KVBlvNccJJCbx7PvL6etLdSnfy2ibgPQ7g12S1zbH3hySefxLvf/W5861vfAuccb37zm3HJJZdgyZIljevPPvtsfO9738NDDz2EzTbbDAcddBDOO+88bLLJJuttnwG9GIs52n0EIlSvzNnQqCPh/PTIhnmta9fRLKzid3N8anbOm5tCaAVAT5siA95wYdb2LKuIdjStcQwayHHCtpE/k2PgpmbPqmzZbPRz533uRxkD5DAM2xzZLZPSfM899yBJEjz11FPTOs/8/HYMCNhYkGeFk9vzb/5HewICAjZSNNqt9Wu73vKWt+BXv/oVbrrpJnz729/GbbfdhhNOOKFx/R//+Ef88Y9/xCc+8Qnce++9uOqqq3DjjTfi2GOPXW97DAgImKeYI7uVpikOOeQQvPOd75zReabNsK1duxZLly6d0ZPPNYrIYm8uf1MBqWHYZK6Qm2bZqbRy/raGLZPI06I2S3YnHcOmJGQ5Nr8buBo2AZaaCGsCVdaH8TiBkgXbpnIFrer/dCYaMxFxJFEZRReOYRtLhG1hkEnXzsBElLR2USqtNbSJbmjlhEa0sou0Uq6IM0/tWOUZ8sniPcg7qWXbZKcLWYq3ZOMZUsOwrUs9ti2fLFitjnQMQKq0HUvtcsObamoSWzjrxmMCaE+6OkIq/W9qf0TCoUwTbcqkNUj/My6A8u+n1XAxkKKRY+/fchSaOI4iFoLdAlBI+5Nm2VzU1bM5cQ+RCHtNccJkCcbstVFcUyjHrm5NapA1uraeQDBmo3++oImZa6hDaBAfaWoATuerdWDDYioJ6amOscr8VBL8ACwzppWEaBQpIUIj5WsUUeJYtTiprXk2rJoQ3GPbmkRHBLGPw6LJbplj6wO//vWvceONN+JnP/sZdtttNwDApZdeite97nX4xCc+gS233LLnMTvuuCO+9rWv2d+33XZbnH/++TjyyCOR5zmiaHSSjEbddrUihlbU78M2C3RMDZpK3yijpz0GrPJ7uU73MGn+70C1Xm5qZo+iqY6vqf53EJaL1q3RtfR3M6RMlp0jT0230cR6zQajNgw4A7K+nykfc2G3AODcc88FAFx11VUzOs+0rdUrX/lK3HjjjVi+fPmMNjBfMNWXVq6owiNJIZTaEwMBgDztQnYL9UOZTlonTeWppV2rxY+srqA8SiDMl3Se2PVKjTXu03xRr+MMLZMGGXEsKkVKJlOJdtnlfiwW1iE14iNKc2JQGt4U4rwhT0map3LKkJ3UOj2ykyLvGHGRDtLx4v2gaZCe8zaRYbJ8LyelnpbDJhizaxNOhRKc5RxLJWRSpo9lTnlTE8VI3UcBsvamctgmTbqhYaOeP2lFANDpdPC+970P1157LbrdLlasWIHPfvaz2GKLLeya97znPfjxj3+Me++9Fy9+8Ytxzz33rLfXMF0sCLvFBABFUh/JTX6lb6BISidtMrfCOzJTEGVwSaQcCUkzLi8HSF0JYpXXTyVT0oKDplO6n/XOm5/6yG06J/McOF9IpcE5a3DspkJT5mWTc0NVF72eQlQlUpCURRPAKdPbAdjAXR3q1CB5TJy0iDhpUQJR2nYecTs2Pwt1YWf7I/KaoobXxyuva0o02S1zDMCaNWu86VarhVarNfhzVHDHHXfgGc94hnXWAGDfffcF5xz/9V//hb/9278d6DxPP/00li1bNlLOGjD6tqvFOdoDRgfYgHf+w+rmNOl86IqzpLxj9PHlfUHDOescver8VHsZBNXX3eRMefPU+bJzDWtrnrPpbzJbfwOK6t+jCYwxpMN8Bwxgt+Yzpp0S+Vd/9VfYY4898Jvf/Mabv+eee0IvkICAAaHzvIz6VP/Vq4nOBoZNKwKA9773vfjWt76F6667Dj/84Q/xxz/+EW9605t61r397W/HYYcdtr62PmMEuxUQMHM02y1nu7baaitssskm9t/KlStn9JyrV6/G5ptv7s1FUYRNN90Uq1evHugcjz/+OM4777wp7d18RLBdAQEzwyB2a82aNd6/brc7x7t2mHaI6corr8TZZ5+NV7ziFbj++uux+eab44wzzsDXvva1kTEesWCIBQMncqWDRBk16aemlIYiqZIAoLLURlNlnlq2TVXZqBpPn6bE8CiBil2Ela5PMUYeY/YuXRuAyLUhSKIcE2X/kyIlsmQCSUqkjRxpFz3qiaQbtonI+ivpREeKlMiSTUxz5FZ0JCUCJLlNzaLy/el4hnSiOM+kVFiX92fYFOpTCPw+Ui7Vyx13YiRJrqygSdRWllWr9nerAxMuDRKcg0Ux7MaGgWqI+KwnidnppBU9/fTTuPzyy3HNNdfgVa96FYDi+n/xi1+Mn/zkJ3jZy14GAPjUpz4FAHjsscfwi1/8Yr3sf6ZYCHYLqPRbSyKwDkmPTIrPIu+kEOV1LxIBUQoliVRC2XmFWBommhbh+8/nUiV7jwG97QHcXM3xiPaEY6D94awt6yM+MhNmuy6VZ6qgv6iIeFC2zbZgiThU3pASaTImkDSKTk2ZYRElVoxKRJEVGhFEWIbO2TFnNh2esmpJ5ARIhmLWDJrsljkG4OGHH8ayZcvsdBO79sEPfhAXXHBB36f79a9/PfweK1izZg0OOOAAbL/99jjnnHNmfL4NjVG3Xe2IYWwIgQigPsen6eM6KCs3FXrYNsqg1az3GTaSEll77qmfn55vkEuz+rK5d4wKhdQ8lj6u7vh6ek8NqmwbkYEb+NzDpEQOYre22morb/rss8+utReD2q0XvehFg+9vCswoJ+Dcc89Fq9XCa17zGkgp8epXvxp33HEHdt9999naX0DAgobOMuisN93LNCCfbUwnreiuu+5ClmXYd9997dyLXvQi/Nmf/RnuuOMO67CNCoLdCgiYGZrsljkGAMuWLfMctia8733vwzHHHNN3zZ//+Z9j+fLlePTRR735PM/x5JNPTpkmuHbtWuy3335YunQpvvGNbyCO4yn3NR8RbFdAwPQxiN0aNNA0qN2aTUzbYXvkkUfw0Y9+FF/4whew/fbb4ze/+Q2OOeaYkTIcvJQxjanccaXRaBNcPZtrpkijp4rUrblx5saqXl6UNkilLFyT5GjOF1lWjXMGXgqNRDHHZMmwLUoEaU+gSN0akaY1MraDyvrbxtnK1eXlma35klkGVcrhqzSzbJtMpW2QnVXk+03d2rpcYbIM41OGLdO0hq1e1p82/jX1OFB+bZthEqTWRKZf1zbRpqCCDiBCIyxKnOjIsBX8UzBss10HMp20otWrVyNJEjzjGc/w5rfYYouBU5HmCxaC3So+e4ywMkTKP4kgsrLRexKBl3WkPBEQpT0QiYA0bFsmocvWHmNaw8SFZ4NhSzir1LOZ7ZMWA4mwDFu1fo0bBpEKqVChjmnWr9E9u7Fv8ws2intzQBFxdqwaQ54xMu9qz+qyJzSXjfac1r+Z81SFRkRSZFVwwUkmBffq2cy+IlLDlpQ1y4nwZf1pfaH5LhwYA0SqB8Vmm22GzTbbbMp1e+65J5566incdddd2HXXXQEAP/jBD6CUwh577NH4uDVr1mDFihVotVr45je/iXa7PdT+5gtG3XYlgqHV5/ux7vNHp1gdS6MVOS4bj80IZg8VFl/XsfoNTL+e4toahHnrd4ra9waofQ9Yda7f+zSdOrua90BTW93zProXNlVbhjp0h7nnGsBuDRpoGtRuzSam/Y23zTbb4LbbbsN1112Hu+66C1/72tdwwgkn4MILL5zN/QUELGgUTnz9P2DwOpAPfvCDxU1jn3/V2oeNEcFuBQTMHP3slrFds40Xv/jF2G+//XD88cfjpz/9KX784x/jpJNOwuGHH25Tuf/whz/gRS96EX76058CKJy11772tRgfH8fll1+ONWvWYPXq1Vi9ejXkiPW6DLYrIGBmmAu7BQAPPfQQ7rnnHjz00EOQUuKee+7BPffcg3Xr1g11nmkzbFdccQUOP/xw+/t+++2HW265Ba9//evx4IMP4jOf+cx0T73BIEpZ/1gwxGXkMW7I+Y8GSCb2GDYSSbXqjnkKmTmJ/9qGyzmgTKRWSYiamgfOha2LY1w4OXrBbT1dnilEcdkgO1euJQFtT0CaPNIatilVfKhKJI1YKGlZNS2VVYlUWQ5p2iBM5lBl3ZhKpSffb1i1VIEwbAoZUbGjKpF1oDUz7v1yqncFM9db29aEorEvqQ+Ki0uGRTFYmVbD4hjg5aU0ZD2IVrq2VYBhcGebnp9OWtHy5cuRpimeeuopj2V75JFHRk6xbCHYLcZ58TkzDJvgEOVnUcU5pGHb4hiibAAv4gyqVIkUmbJsm25HtmZTSG0VIwH/WiovWe+a6a0NbWbYRJnJ4PZrGCVGWhIwq2TptScgDGLxwkiTaaoeOUUdm1+v0av0CMCz9x4bVX4n5Jm0j2WM2VoxxRVEqTqolbTMGIX3vcB7FYKLvQhPGZKTGmaqBhmV7x8XzKtdK+ZcG5cWqVVrRdz7brN126WC5zCB6ia7ZY6tL1x99dU46aST8OpXv9oq3JraWQDIsgz3338/JiYmAAB33303/uu//gsA8Bd/8RfeuR544AFsvfXW622vs41Rt12xzhHriphWHbtDGRWPQVO983VzgKu3r3tsv+ceBlPYm1oGjmImGQL91Kunel2zwTwOwjbSFiyswrCR33X1mHsQAMBLYKx5np7PVB/Mld0666yz8MUvftH+/ld/9VcAgFtuuQX77LPPwOeZtsNGDYfBS17yEtx+++3Yf//9p3vaDYpIFP9izhGXX3aR4PbGIok4ElK8bdJMuGA2/YTKPHvpOgRUGp46dXUF6PQcpgdb9VieTtqxylKopLiJl1LZ1gIqV1amnqZBdslY0ZRI7TtuQC897RkCunfPOTXCK7m9MGSa2xQsmSnIUlJcZtKKflBnbJL0XqNpkKnSJDWrNyWyuOEwdx0utbPJPAlGpcMZeOL6sHF74yjAk6icj4v0RwCIEm+sRVy+H8M5bCrLoaLez41xdmebnp9OWtGuu+6KOI5x8803481vfjMA4P7778dDDz2EPffcc8rnnE9YCHYLXIBFDCidNJ5H9jPKswiiXXwuVZpDlfPRWOyEkqS2tgFAbSqwyBXMlVMEtmg7jfpt0bRjoCYlsub6EomAiGt6yNE+cw3OGhrsbfVGqOm2yHPaKvlG1WAdFeiwqYeSW2dXSg5evr91zhpQ2ErWkI5DRUfM45kQNg2SOmlRLBCV71mUCETlexmV72+SCOuYJZHAWPm4hDhsScQRl3+wQnhruJTIJrtljq0vbLrpprjmmmsaj2+99daewME+++wzsET4fMeo2y6WdcAyUjs4gLNV76Tpekeu6XxEJM1D1enZEJ+T9dGobH3vu27PvMFha3S+eL1jxpjnzHlrmtIoK04byzp9t08xV3brqquumnEPNmCGoiN12HrrrXH77bfP9mkDAhYkmppxN0WBZgqaVrRq1SpkWVabVvTqV78a//Iv/4Ldd98dm2yyCY499liceuqp2HTTTbFs2TK8+93vxp577ukJjvzP//wP1q1bh9WrV2NyctL2Ydt+++2RJPU3sfMFwW4FBAyOJrtljgVsOATbFRAwGEbdbq2XzpHPfOYz18dpZx0RZ2UKJEOrjOK2I452GYUcSwQWJUYOP0ISFR54N+I2GikiKvPc2zhVokGGGr3SznVzVtCjUrBO2TlZ9o9QuYDMHVNmxFCKNEhpx1L1Rsubmj/WgVWiYZZBVO5iUFJBlhELXZ0v07FkqmyLAcqYVZtiN81XIXV9Wg9993sb+DrxA5tamgiIMvUxaieISsZCtBOwVlGwzpI2WFKO4xZUGRUfNttApZlNYavOry8Mm1YEAP/0T/9k19LG2RTHHXccfvjDH9rfDe0/KqlHo2K3wHnxzzAxUQZuUx9jqHKs2gmUMqI69Br000LqUkF4KsHT4trIlLLXjNSstp0GUCfr7xi2uCUcqxZTVs010RYxST9uaAZevPYaVdUBZf1rg8XUJtQ0lqZjLjg4L947Rhp9C8GhI/e+5HABCpO2Se12z744YfQjJ99vbRJl2BLuWDXKtpHWLe57S6DlCZAU45i7TBJeCm31E9mqoslumWMBGxajYLtYNgHWrXxmBk15rK5TvWxbz+Np2Yad7s0S6llTrW3sk364oFBzn+qlnDdkNzBOmqVwQdgznzljhFUzz1Vl3VjDY+kaf4MMLJvAoBh1u7VeHLaAgIDBoLXyv0TI/PrCsGlFANBut/GZz3ymb53ErbfeOltbDAgImMdoslvmWEBAQMB8w6jbrY3aYYsYsyybYdVagtuI5FgsMGYilbGLWk50XIQzz6Qr+i4fJ+MELHURU68pqpXsl96YQnsRoVKwRElwEy2nxeukFk4p19BbK20DTB6rpnyhkapk6qCscG2kSkkik0/k/qVrSk3l87VUDeyZtnVnBfPWX8rfoCrTTSP9VEDBCiFETvxAxAJRO7JjQVi1qF3UCIpWy7FqrbZl27RIoEUZUW8oq2mCSnMrMlOdDwioA4tjsIgDZYsQxDF4XtawJRF4RurZyrGKI8sUa1lfeM24Y5xzwcBEGblOZVnT5ov2VFGtYePM1a3xRCBum3q6yIqLiESQ2jYBYepFY1eX59ezEeaNtNYoJ/q+b0VWhGv74Vq5OOERyqqZ+uUkEkjKdilpxGtZtcbGsLzltX2ZkmHjwomLEPn+nro1W8/GPWYNKNq4UCn/pI5hE84mxuV3YDwUw1Zvt8yxgIAqihq2Sv0RaQ9kUceaUcYMIDX0yqunt+xYZR7k3sk7B9UXkPWMW50MfNNNfy2GbHMxIzTV9VZQm/XVxKB5LBvvPc6FnfdsMufusbQNEsmSKGQHHKvm1cIZcSfyvD2ZFIwPV8M24nZro3bYEsGQCIZcMbTLL8NFuUBXOnVF+iU4Vt5ALGpL5JnpdyYQJeXNjBHZSMasYAg1IpqoPgKwPdnMMQP65T0Vmm4AtNL2JmJ9qt8MAi21Lc5v6nXWlGZFIcgNV1WhzhynIgcxET8YK2++xoQbR2MRorGoZxwvblknLWon1nljY4vB2osBALy9GKy1CACg4hZ01Cpf33BRmsKxblaJDAjogfmCNOIWSoFFRTqHaKtK0KT3s6WkwlQVhYWSY5m6nHArDqSlaryWq/3UmODOGYsrKZHlOG47543HkVNhFdymA3Ih7DwqNwR2PGBKpPFJCpENN7ZCKTUKwYIzG8RLI468HBf3kCRARr5NTZq8yplz2DSHVr1fuYwXbTeKl0RETQTpsSZYbRpk0orQIt9RQJG+b4RGiu8t59CZNMiYc0REUIszt4dB0GS3zLGAgCpYOmnTrAH0ioRQJ8xO02BwOc4zMq+8NdYxk756tSvbkLXOnj2GquOmGhy2hjTLGmzI2ijWkO4H+E5a7b0lcbzc+UStI0edLnAXRPMcMyE8B49RR86Mo7jWqfP2S9IsPQcPZaplOtn4mqsYdbu1UTtsAQFzDZnmkDXRLjkC0Z6AgICNE012yxwLCAgImG8Ydbu1UTtscSk7nXOGrIwKL4odw9bJFZa1CxnaNFfo5kYmX2LSCGfk2jFrufupWoUcc2/6Yh2bUp8qQ1MoOY1iVNYMC7keIwlqms1IKXsGOKEQms5Ipfr99Ee3ljJsZlywambMEbdcdD9ZXPx9k8WxHUeLxxAvK9izZNliREuWAABYezH4WMGwsbHFjlWL2kBcpkcO+fo3tEpkwOiDiRgs5l4EGWV6LgcgCMNGQX/nJBJL5fPNvEwlZMni8ExYtk1JF6FUFYaNVxR/RCw8UR+TfhyNRTb9mCckFTmJwJOyVQFh23gSuayDKCZRXmcTh7VoghORFJIOSJm2OrGOJOJIY5PKrqF1r/1lHGB5cR4tuP1+MI/pXe8k9Rnp+cYF89IjHcPm0iAXtSOPWQOK9P2l5Xs6Rhi2diRs6n+19yj9fRCMutpawBwgnYBOWTOrRVgwyqABJq2RsGqm5VETe5ZnU56biqFp6Wqbqp9tJQkjV8ITbara2Zp7PLWerwlew6xV7xdZjc2n6zhJfaTfCZ74E227wikz5lLWUWOrqywcK/tL0iyJamqlbkqtdC+6+JkOLjoy6nZro3bYAgLmGirPobJeY6vy+R/tCQgI2DjRZLfMsYCAgID5hlG3Wxu1w2Yk/D3p+BjIVOG5Z1IhL73ubFGM1DBs0rFtWjmGzatn0G37PHX1aTJ1EQqtJGSlSTZQSjwbhi1KHNsWJ3aesnDF7y5Sy0jUlmIY+eZhQaM0dk/CyV8XMt7u+akYCG24a/4eCbm2mpr2WhERBlu3NiY4YdUYlpBWDfHiIrrTWtayrFprWQuJYdWWLkKytBjHSxeBL15avLbFS+0YrcXQSbFGJ2NQccGodifWTfkeUcisISVyPTZxDBhtsCgGa2j+CSUhVKv/40U18upqz0zNWT6ZQybGVjm2TStaj1ofkWSCMEQlE8QT7oRGYuHqRduESYsj105jLPHmEZUNd7moj7YyVilYdzUP1g4y7cn6cyKOwgnbBPis2lgsrO1vRQqprWHz/wbGznKpIISraxaqWK8aMhs4Z6SPLGsQHXH1bBERw1qUCCwps0BM3drSdmSPL2m7erZYuFq8luCEbeOezP8gaLJb5lhAQBV6chyaVQTVmhg0SbIHyp86z9zYsFh56gmN6NxoB5A2JlnuMWmUMTNCE1opy4JVWZhG5o3M27U1GTaNNVMzYHSaatV6WbVe1ozTWrYKa1ZdS7MuGOeeEJS516Pn4HHks3CRY9LsXqLEZ9tK266HrX8rj+nJ8dr3og6jbrc2aodNqAxCZWhHkVU+U5pBl9XjSmtk5ZdspjTSRSYlUnmqi9UvYvo7LeSm/dmYEFaYROWp7b1Tde6oIppZw6PEjgtVsTKlKOL2xoORm4Bhe+zMFph3QVOHjSjHlWIGgmkk3AiKOIcNyl23Cn4PKKtGV/7up0E6h21JxLHYCookaC0zDluC9jP///bOPkiWqrz/33NOd8/s7r17L5e3C8LFIKmAkVAI8qaJvJWQpPyRhKLKxFiIBAwVMIAlQhJFk1AagqUJQU0sSkmhFZMYTapITAxqxVIUA8Eq5KXEkkChvETe7t3dme4+5/z+6D7nPKene3fmvu3s7vOp2tqzp3tmenqnn+nnfJ+XyrHO5mfQ27q5Hs8im6+Li8zNQ8zOV+NNWyFmt1TH0pvzTppNZ1DWR1EsV8ayBQ6JZCZFpCkEbUTecUPQFSxNv2DLLPVfwjLNoQd18ZJMoVxy/dwS6MKFF1lyYxMqvlbPG9uYaqHGFR0JDlsyk4TqrP0UyUz1XpJ+zxf4kWkCRcIjQwiNIs4bTXwfs+gISAXL+iEpCUlMfWXI4LD1EumdHm0syo6wRrpAZpxtSmQUBknHdHGtLSRSCIHEFW1R0hcXafYHpQVG3PZN/RAe6Zy02VT5fqOpkv699pSsQiIniK5f66FFzP7HLO2EkY3CIH5jRzgjDWX0YZArO2Y6L0Lodl76sc6J80YeqyOnTrc6aaYRNumgNrF63lH70Awfbz7HpDQdtmY4OhAv1EtyD0YfXzle7SGP1ZwifTIbzpjvW5uEsEoyVlkKoaoKjss6csS2+xB34siBhkeCOKH1vmaJQyIZhtkPmKKEaXGmzRpY7WEYZmPSZbfcNoZhmGljrdutDe2wVX1BUqTZHGZcmIsFXBcwg2TFvmRdBTyo0uXGeZKhXKpC5mSS+bL+usy92gYElY1KvzLNoIjCprJK3VG9mbCKreIeQbS3kCKhPm5clbZuhksu/34dkfROE0vpqkvraoyCSkOpb5NV73XGGAStzHj1LDcWOTnHTmFT5LjjQiPV3IySPgwym02j0EensPUP6KN/QKWk9bZuRm9rVVykf+AWJFu3VW9p/kCoLQdW401bYXrV/jadge1V+2vV8yGy7ve40FW+5jzDtJJkEGkaz3X01VFyNCRmJMxFhrHrg6bzEiqt1DZdaBhdRx3kOlotbu3nRoyIC7Gs2gQEG+B6wsksgXJ9DvuZf32ZJqGdRpJFieyChs3UYQSWhEF2IQEfEilECImkRUeGTmmT0ocV5qUJ4ZFWQZNr09nSpVx7hU1pAVO/V3qumpEYktw4+Mcmwq+MU1WNFkGZyZLW/qC0fP9cfR775HHNMMigtomqzP8EIZFddsttY5gmdjiElRYrlthvlPCvtmt/Q221ica6KEbmjQ7hjpHyVpT+uem8iZ6TRBE0QsBdRIEhvSzpdd1U29xc25gyTlGStsIiABrKWbeq5u9JyX1iFPGkgu0JqpsIoekjoY8uxD2J5n3EhpJRmxZVf2cJJSHTnIxdmKWCTdw+tOhIXLDEzbvWAnY4XPHcOda63drQDhvDrDYmL6HRorCtgRKzDMNsTLrsltvGMAwzbax1u7WhHTaRL0AMJSSAXlYpJ0jDKoaxgO2HfLYuNY02WAWAF6WAcisOCWl+mkgUSZUPVeYz0MOq4Z8qc1JqVo/ksbnfvuhIkkHVbQOSLA3lnjMVEtaTsIpe5WPU+9CGsCIU/aAq8Ur9U62Q4SMvJVn9iGOgXQEBlSWRqkZzWdyqRqYtAPe+JZSoznUm4fMLm82yaTn/at9Qvj9LFbJN1WoNzVvrz/fQm69W9HsHzPm8td7WTegfWOWnJVu3QW7aWj335q2Qm6ux6c3B1p8T05+HTqr8t6XSYKmoW0FM2DLBGtO6srMWVnuY1UGotFLZ6GSHwuaUKSUlZBryCXQa8sNKtyKaJf5LSxcldFatXFar2GRFO6eFA7o/70KK1pValYVCIzRvLZnJyLgXVl7T1OcziDSLchsiVc3LZ438Dq+qhdYhEqFZdlXW3qlN1XWXGhFUtUy12n4lJZbq86WkCEWpSuPPizEW1rafI5rf7O22FFHz7lmvsKmoCApV1WYaCltfSfRqe99LpFcPqdqWyipvjY7TljyYLrrsltvGME3scAFGkJtiqrAVNG9NR/ln1RxRzHRQ20xRenXK5GVDeXP7FCS3rYyUNJeba7SFyUnrEq/Imdac3SqfbVRtc/u5eT9Hrom2fLbdgeat0Ygnqp757VRVa9jlUHQqREFQ1U3WdoUWkWra86Cwpf6+j6pnMkugVV7vQwpNKRUXMskKP47aBqTE5rtiffV+djhJ4+y1bbc2tsNWLEEU9Yexnutlc5HT5vcVaRRC46BfsJlL4k4kfppUH06VBOctSUMPn7JIUPaqmxOjDXRdUtSFSQJV8qsv3EEcNpUk/oJLMuV78tD+PEkqkWXhS5v2EcpIWIx/T6RiWnjP8TmwtNt81DujHqdZdIHSKm/JTHXB6cJEBQyi3lBL9Q1EblDUF08cDhn3X3OhkKlPcpW++lzST5DV1SDTTWlw0uZ7kZPmwiB7B2yGqh2zKAxyflsIg+xthulXDrdO+liqb9CWCoNBbYTzcjJjbHINg9HPm8lHq00xDABYlUKkvaiKFu1fY9z1WBawPolbwhJbIrPR69T0M5SD2m7lJUztPOmihMpdaFLcu2i5UB4aQkP7+cgsfKnTMEjVz5DOzfixyKoFEZH1/Ri0D1uSwsr6K2yFcEh/TG6RR8I7KLIMIZEuTNCQYlKuWmYTJUioeam9w1YaGxWlGmehz40T+n1CnLRMSeK8ychJo987gHPY3JyKHLamk+ZfXwgkExSm6rJbbhvDNLH5EFaYFXuiNas6AoAuish50x3hjqa2U6Yo/T6Vs1f3zS20X3Cy2vqxMbZ13jbmfXikMSRUkoRHNgoxAfVif8uiTZff1lZYrUlzbaX1/i2qzi1BqwGH3mvBYVOZCuHYWXDM3FhK0ZivF6tS5Z06IfMorN311VRFHDapqJNW1PY/Tb0zLRrhlKK+L6b3m5ASUAo2Hz8kcq3brfGD1qeEm266CWeccQZmZ2exdevW1T4chtkjTF1OeORnDaz2MOPDdotZT3TaLbZd6w62Xcx6Ya3brTWnsOV5josuuginn346br/99j16LjlcgMwErDUwtvpnSWvQ9+GRiVeZpAAk6tUCGfr1pFL4Fc5YxapWAV7MFHbWyfv5UCEdVl58MSxR1mF0ujTQunpuU/aW7dcD1GGWrohHIpH2nKqmonFYhU2iY3THKUUIBfJlpUUcHtkKTfCPutarIJOnoVx40u+FEIZcR6qaICtATm7XhUZSl/vvL9PryRU0CL2eFNI6hDXdFAqNZHMZsvlq5T7bPIfeAbWqtnUzsi11j7XNWyFJcRG5uSo6YnpzML1qH9vbhEJVSt1SYbzCNiwtBvVx7powDloXFhqj71EXeydsgpkO9qbdglSwKoNwircKIYM2H/jWIbbMgwqXZNVPPVb1iqVMBkFhK0okdQGQcjD01ywthR0l6hsaBrRC8ZFGYrobJ/2gyiczpKx/1g92Jcn8WCRpKLgiVRwG2aGyOXMmRRjToiOpEkhNPa57phXGIq3tcL9xKTo1LC+NH+tUIXcr/cYiL8NqbXs4JY3SkHFRKBHGPRKWSb9fXCn/KuSxobCRMEi6PVXCFx1RUvgWB0pW52PcglNAt91y25j1w96yXXY4gBXtJfOjEvuNkvxu+ySqWrVPrXITVU3nIcJH5zrsk2voIhyXzg15XRpRUO9fGq+EVf1hR8eO5lybsjZOlOSoqkbHonWOpo1E44QqbCFCSZBoJWC0WJQYlH6sXEumTEMVocem+96QaQLl7vuo2kYKvMg0gSL/axoeqer/MY3OGGk9IBXscLDyyatZ63ZrzSlsH/zgB3HNNdfg+OOPX+1DYZg9xn1ptf0w6we2W8x6Yjm7tS9t1/PPP4+3vvWtmJ+fx9atW3HppZdi165d4x2ztfjlX/5lCCHwpS99aZ8d43qDbRezXlgtu7W3WHMK2+4wHA4xJKU/X375ZQCAWXgJRpSQcwbSrfoQta2fzUHVK7vVCkW9oiBTsmpJ8wXCaqjLN9jUS/BSv1rN3jkosXOxWg0qi8QrbGWuoXVQ21ySum18ftwCsiArJErJUHSE5LDN9hNsrtWmTb0wnskU+lE557DKDFTJ+CtmMpDVbJGmvpGtSFKfa6L6OdK5amyJ3Byra0FVU5kiq2A6Suil0MRZF0/ti5j0E5/DlvYTr6olczPINs8CqJpiuxy2ZH6LLy4iNx/gi4tgNpTvN/3NvtBILhJfXGSJqGrD0nplbVcx2UWvcwPd/EcDfrWP2bh02S2bZFX5Y11fqdYGtU0qIKkTt8sUtlbVbD6ArZUpm6RVc1oASDIkvboJ7XAAU8+rfkYUtiJK5ver340vueYXHlXYaCsBmnSusjSM+5lvqCp6/SiHLdgYohTKJCiIQvoc206ljahqEmE1OpUSqbT1uFbVEgnTkndC881ouf+8NL6lhzYWmnSh7spJoTlsCRm35RtniYxy1aiqRnPUgPaS/W7sV+JlECeVEJACE+WwddktYN/arre+9a34yU9+gq985SsoigKXXHIJLr/8cnzuc59b8bEf+9jHokIvzL6h836rLGAK0aqqLVeeH1i+oAgtlNSWqzaOqmZy3VqAROfG24Hc2FYlrZrHyLxjOYWtLbdtOSL7MZHCFnL+lRBevVJC+Hm5JLyypl1tByVgfOST8WobzfNTRUNtc/dlOrRwUI2m4y6HmTpKMgtF6GQaxipNg6pmJISmapvx31njsFp2a2+xIRy2D33oQ/jgBz84Mm+WdsHIKglWzNQ3OUZDGmcYSqR1ry2VzfoPfyLDF18vCV+OrjJXX0nfB2fLbIGXFqubjRcXC+yarZ5756DAUv2BH+YapTMoZagqZoyNqrDRzvUhJDJU/MlIxbDN/QSb+tXrzjYqibkwyJ6Kk9CB6ouc3tRE0Jsjl+yfhKptIutD5JU8rfoZEh8GWY44agAgs9wbgGQmIUYyhBPR8FAp454hLtHVhUGqfopkpi40MjuDpHYYs/lZZJsrpyvZtAlyzoVBHkActq2wzknrbfY91kw25wuK0DDIQWm987ZYaCzW/79dw8lCIq02sLKlSuQaWO1h9i1ddqtyVJLgoFgD2NpB0AmEvzbT4LylaVWJDbXDV4dE2qwPW1+zIutD1F9+ssh9DyRTxgn/cdER0kephbh6mQtdTkgBkgTSVX1MUoi6+q3I+sGu9PqQznkjFSMtOQd2zKIjtA+b8ydpSGTfhudxoYy0X+WwBFSvdtgS4wuNVGGQJnpcc0yhjl9zTAuNhAW1ME5oPzVS4XIcJ82Naei7qN9jV4GDNrrsltu2L3j44Yfx5S9/Gd/97ndx8sknAwBuvfVW/Mqv/ApuueUWHH744Z2PfeCBB/CRj3wE//3f/43DDjtsnxwfU9F5v1VoGFl22o+28Ecaiu2dtMYCkibpFtQxc6GM1HkzDeeN7tPlpLnCZ9rScXC8uhy5NseMXhltjl0bbcVb6bUq0e7INcMgXY9aJayfz6RAbkKV7WxY2zzvgEm/aK60ha2dJWusX2yflMpJq861C5P02+ginx4dS6VGnDdTjF8sZDXs1t5kKkIir7/+egghlv155JFHdvv5b7jhBrz00kv+58knn9yLR88wu48pTV05M/4xEzbgZvY/bLeYjUqX3dqXtuuee+7B1q1bvbMGAOeeey6klPjOd77T+bjFxUX81m/9Fm677TZs3759nxzbWmNf2i62W8y0shp2a28yFQrbu9/9brz97W9fdp+jjz56t5+/1+uh1+uNzJudL8GYaiXZlQ2VZR4UNlP63iBC55irQ+PSXuIr/2dKIKuXK2ZdOGIqsalerdmcKczXSteW2QK7Bk5hK70as5SXWKz3z8t41batz5ForMjOkPL9M7WyN5OqEBLZT7CpHs+mqpGcHpQ1oFp5DavQJDyShEFaIX1oiZAyDmPKq5VwaTQSM6qqVWGQtSI2yJHO1SGiS3kjGbnlfdME2TTxCaqqLpSQ9DMfhpnM9n2JcKqqidn5SGFDvxpXxUXq8v3ZHApZvaelwvpQJxoGuZAHVW2xMH68MGFpWKMNjBg1FMuVS2emg9WyW1YlsCojEwaobRakAUy98mlSoN5PpD0gGdZjoraVOWyvLplfFrBFrbyVBeBKKZdFpbgBVUnuln5JK61O0vBISUrzQ8q4oIgv359B1MclkjSMs36lMAK1TETK+stgn5ziVqljrvdaWKFUIkSUKhGKcTi0tZhFdYxDbaLQosK48EmBfh1VYaz1RUeAbmXNEalqRMFTAqEnnBRI1KiSVo1Hy/M7W54lsaoWFRchr0/fsRACyQQKW5fdctuAEArn6Po8j8vTTz+NQw45JJpLkgTbtm3D008/3fm4a665BmeccQYuuOCC3X7t9ca+tF2ddsvEuUK0nxoNtW4WOQKqcMfWAiVjhkGaFrWN7mOI2lYY45U0Gu44Og5KGlXh3FWxnNK23HwXsYrWDLOuVTBBSvzDkh614TVoGKS21itv2lrf89ZtR+gytddQSGAVCYVFiEqStUui89KX/jd5GX9/NJ5vkv5p49itvc3jjz+OP/mTP8FXv/pVPP300zj88MPx27/92/jDP/xDZFm28hMQpsJhO/jgg3HwwQev9mEwzH7H5O3lZNfCas9Gh+0Ws1HpsltAsF1HHnlkNH/jjTfiAx/4wMj+119/Pf7sz/5s2dd7+OGHd+s4/+Vf/gVf/epX8T//8z+79fj1CtsuZiMyjt3a2zzyyCMwxuCv//qvccwxx+DBBx/EZZddhoWFBdxyyy0TPddUOGyT8MQTT+D555/HE088Aa01HnjgAQDAMcccg02bNk30XGbXizBmAJQ5RN0t3eYDyLpMqJibhyxdImzu8z6y3iYkvbqIhTJeYXO/Z1LplZadmYrUtsWZWokptFfblnIdK2y1p5+XBtqtOpEVW1oSOktUKAlNmqvONPLW5tKQXzdLS0KT5qlAvdq70okTEla5poahzLbI+hD9uiWC0ZB1nHICRCW9tWvOO8j9Clq2OcSiV+e7JedNytDwlzRfdKXAk37P563J/izkTHUskao2Nw/MzFevkc34giKmtwk2rRS5gbZYyl2umsFSGXLYXHERmrc2LIPCtquYLIeNFbaNwd60W1ZlsCrE/gtrYJ1iZW1Q26jyppVXo0Tag8icwhZUNZSFL0ZijfY5bLbIQ5ESo4nCFtQ2/xvw+QkUoWjDUxVy26TyOWm0RQjNYaty8eqVSBWaZVuVRO1FVmqeLYTwkQTahlwPKy0MYpWqn1i/iq2kwIA0pu3VK9WFkaG5toXPe9HWtrZmkTQHuaGq+ZYtQrTmrSkZF4iKctSI7a72jYsQ0NcR/n2ESAqgWrVOVzT8gXFWqp988knMz8/7+S51bVy1Z/v27Xj22Wej+bIs8fzzz3eGOn71q1/FD3/4w5H+YRdeeCF+8Rd/EV//+teXfV1m79kup6615b3auj+W36+h3NO8J6vjfX1hEtK0mkbpWG3Hylsr3L0WyU+L1TMsk89W2wRLC5C0K2y7X3TEduSqIZprm88NSN5a9Xc1Fv59ZFJE7xtAFVExhsrm2jNZbX2OmNXC578JaSDqkAYjDYT7/0nyvSGNV96AYEckwj2gNcYrmM5cTZJ7thoK2/nnn4/zzz/f/3300Ufj0UcfxSc+8Yn177C9//3vxx133OH/PvHEEwEAX/va13DmmWdO9Fx6cQHallVIpAu5yQe+r4MsC4h+5cjJuRw2rfs96AKirMYz6Syy+rG9+kO7pCz6STWey5QvTrGrV5IwOo3FmVC0YlCOhkQ2wyPboKE1tKrYTKaiqmIhXFP55PR+EievA+6LPIwjQpnKEB6pslDNTWtftACA7wcllIJMQjES57CleRlVhuq68Kizp+okVUlCIn1Bgpk5yP4sGdcO29w84MMdZ7xjZnubYOrx0EoMnZOmbdRjLThpBjtdGGuhSZVIg6X6//ry0oR92MqOKpHssK0r9qbdgkyCA4Oqsm1UUlY7580A1jk6pXferDUQuv6cphqy55w64rAVefVljbqfW9tY63aHbaUCJDIkq4s086GMIonHdCEIKhQagXKOXxKcN9qHreG4BXtmSWVEwDiHTQg/rk0KlFQY1F/sUltvC00iUehwY1eQ69S03KBR6A2UFMFuS1IcIFXSv1YqZSiMIuPFtTbnTPr3Fp5P1BUgm69P5/3xTVIlssNuAcF2zc/PRw5bF+OqPaeffjpefPFF3HfffTjppJMAVA6ZMQannnpq62Ouv/56/M7v/E40d/zxx+OjH/0o3vzmN6/4mszes13N7/dJS6lPFPpmLHHqJqvEWDlVwTFrn0fkmIUwyFFHrRkGuVJPtuWhDxAdc9aP/TVvrd+/es1wjM5+aGtHHLZxCxG5c2y08c7bOCVJrDHVYt6Kz08W8Ekhq0k/Q+PYrf3BSy+9hG3btk38uKkoOjIJn/nMZ2CtHfmZ+KaHYaYAkxuYXLf87DvjsTu9jAaDAX7v934PBx54IDZt2oQLL7wQzzzzjN/+ve99D7/5m7+JI488EjMzMzjuuOPwF3/xF/vsPaw12G4x64luu7XvbNdxxx2H888/H5dddhnuvfdefPOb38SVV16Jt7zlLb5C5FNPPYVjjz0W9957LwBg+/bteM1rXhP9AMCOHTvwMz/zM/vkONcbbLuY9cI4duvll1+OfmiLir3BY489hltvvRXvfOc7J37smlPY9ibFywvIixIqy6H61T9F9Qa+NL3NBz7Ez+YDH2KnyiFsUSkzJl2CqNWbuVqt6fd7GJTVKsMwsZjxaptEXq9E0JC6xcJgWIbwOpfUXugw1tYuq7IB1WpIWzhNL5Gh5QBtQ6BUKDoiwnP4AiTNF3KqmiSlw1UJJFWoi+iRfnZSwdYrJzZJYbM6zLQsIPskBMuMhkfELymr3lJAVfa7pUCBLwVOwyD7c7BJ3QeOqmrZrFfVCkgMXLhjqTGsxwNtfEjrYqGxi4xpGKRT1ZZy7ZXQxQnL+httYTD6f232n9ub7E4vo2uuuQZ33XUX/uEf/gFbtmzBlVdeid/4jd/AN7/5TQDAfffdh0MOOQR33nknjjzySHzrW9/C5ZdfDqUUrrzyyn32XjYiVqVx0RHAK2xVeGQS5qxL1E8hfKikra5bADBlpdABleqW1uWWe2V4bFmEMEiivMFof/3CGD9eaU1WEIUNzevbrbaSdiFUSYNSQVWTSYjrk3JEWRt5XYQVShoeaRFWn+s2bJAQkGk1V0iLopbgjLUoSMK+IcVKVio0AoCoalQZE5GS5kIYUyWiXmluHxWpZrGaVr1G/D7j8v3xvm3HNg5ddstt21d89rOfxZVXXolzzjkHUkpceOGF+Mu//Eu/vSgKPProo1hcXNxnx8DsHrRwhPt7EnXEKSvjPEZK4UvEW2WB8Vt17RP24SURhXevFk5Vk0pGod8rPk5Ophm1fYaac8sxjt3a27m3xx57rP/7qaeewvnnn4+LLroIl1122djH7djQDhvDrDa60Gj7/tEteUB7g93pZfTSSy/h9ttvx+c+9zmcffbZAIBPf/rTOO644/Dtb38bp512Gt7xjndEjzn66KNxzz334J/+6Z/YYWOYdUaX3QL2ne0CgG3bti27sPTKV77S9zHtYqXtDMOsT8axW3s799bx4x//GGeddRbOOOMM/M3f/M1kB16zoR22cmmI0lroQQ45qBW2dABV560lswOIwQIAwA4WYGq1Tc4tVMUrAKj+ELaoVvNMWudPZTOYq8cz/T6Gtdo20NYrbLOpRK6r059rg4HPmQrjwlifI2FIfLHp+MIZzYWo/qjK9we1LeStSSRuQduv3obVWUkS1i3CCraQpHG2yvyKu8jIKliawroGt6Q5r9XalwuPihaMvBnlX8uP06wqQIAqby0q9Q3ApjOwaXVxmaQPWyt/Npv1CtvQAMPC5aoFVS3X1qtnO/OyU1ULrRh0lGtY1qvri4MJG2cbW6/wj87vC1bqZfTrv/7rI4+57777UBQFzj33XD937LHHYseOHbjnnntw2mmntb7W7sZpMysgVVR0BKiUNaDOTHAx+tbGypufN7B1Dpuw5BpURFUzpX9OJNrPU+UNpKw/LUbiaCs+AiDOWZCq9VqHIDZGKl/kqCp4lIV5Utbf0hxberp8rhpVoWxIYpP+zEHUZa2FsBDGjYHUhvL9LkXQkJwW93cbkhxPm6omRaykUfWM5tzR4iFODRORUle/fcRKGp1vOyZ37JOs0nfZLbeNYcahrVx71DyZNEn2c8ZA+iIUElLVxUWMha0/xEJJiPpzKJTwTZ6NtmT/oMIJZaEsub6iAh2hHH64Ruj1IuocMfe4Zm4ZzSsL23Xjmpu0cXZcbIQeexjLlv3jfQR5ryKad78FOafSK2m0xZIi+4R5oQTZPyhhdCxoI2wl/f1j9VrhfnMSFW05xrFbezv3FqiUtbPOOgsnnXQSPv3pT0NOqCw6NrTDViwOUGhTfSAG9YcvS7zzpge5d95Uf8GH29nBAszCTgCAnNscQiVnqkqEtpiBSavHiaSHmaxy3vppD0VtOHLivBUmhEqWxoYwSGNR+H2MXxkoSPgg/W4cJ8yG9uhJJQmzIdXIfI+1ZtgMTeqvb6ysJQUQSFiSUKGymzA6VKJr9HECDYUkH2JBnpOGQfriAyrzDqGpQx+hUti0dt6SHrTq1efaYFDHJ+faThT6uFhoLOUh9NGNh7QgDAlXzYsJ+7DlGrrl2jX1OZqGXkZPP/00siwbqbR26KGHdj7mW9/6Fj7/+c/jrrvu2u1jZdoxKq1CjqN7gNrpoYUlyA7WmkZIZHDeWouRWBLimDT28Q6b8TcqoPPOSWweuNtOQxfJOC4cIkJfNRmqQVqZRE6dtxkrhEM6vPNmKwcO7khd9cj6OpakWq5CeJvGCljyUjS8xu3TlacvERwwWqWxOa+8/Y2dMRr6qKLniR026ugB8ecgOPPkwERV6CSZwGHrsltAsF0MQxGqqvIsdAht1C2xiipLoOtCX85RU0h8vy6hQ7XoSVFdH1pCRsq7x05UqNJI0zRpARKQaoy0gEdcGbLtufe+wyYR+qk1HbMwH/ahDpvfnkioutq4yqR3fGWmoOqysjIj+6QKKnP30qqxvysSl0SOmZun4Y2qsU9wDtPIwaO/x2E17NZTTz2FM888E0cddRRuueUWPPfcc35bV3XbLtZc0RGGWU/YuhRx2w9QxVNv2bLF/3zoQx9qfZ7rr7++anS+zM8jjzyyX97Tgw8+iAsuuAA33ngj3vSmN+2X12QYZv+xnN2atCofwzDM/mA17NZXvvIVPPbYY7j77rtxxBFH4LDDDvM/k7KxFbaFAYrSxLI86fVVpAMkdY8v1c+QzFRhfcnsQgjDo6GSM0F1U65YSToDm9dhlUkPslbbsqQH06+UktJQtc2iJGNaGlaTSCe3stsVji8aqy9dYTa0z4+bo6u3rU8qQ6d6AYRQJJ2HlW6bVuGSAGBNKB1e/91+0GG13JL+Si4cysrEh0NZouD50EeVoajPR64tBoO6VYI2PqxhWIbQx115rKS5cMeBNlGPPKeqLea6tUceEFbm9YR92ApjULSUaXAq6jT0Mtq+fTvyPMeLL74YqWzPPPPMyGMeeughnHPOObj88svxR3/0R8seD7N7aGN9CC4Qq+xAfN2GoYSsFWchgurSVN5sUl/XhoRH6jJSz2yHqmYbChsQQjWXw7YpbkRtaypvIVRS+t5yaJb1d0q/AIRXvgSUk5ak8CdOCPjwSCfYGQQ7aGwQpOi5rk7D8rJU1OtMhL1pGKRErJK1h0fG+1AVTpD/B1CFjIWDpOPGByWS4WT4HIxBl91y2ximiUyDauJQqKNkpPb3FCYvfY9Vd29m8vDZlFJO/D0bHUf9OlqRcD8ZytHLXEPVN166NKEfowgh0FSZyo2Ftk6Zov3ZQuiju/KN/xsAxMTFSNpUNYl4rj3EEa2qmhIiVtgSF7ZYPzdRyVRDSZMtStroPm5M2jClaaSqSaK80TBIt7+QElIpv79ohErKcnxlbDXs1tvf/vYV783GZUM7bAyz2jTDJeg8MB29jE466SSkaYq7774bF154IQDg0UcfxRNPPIHTTz/d7/f9738fZ599Ni6++GLcdNNNKx4LwzBrky675bYxDMNMG2vdbm1oh80UJYwUsAOyIqxCPptQCmXt/at+5j3+dK6PpFbHksGib9Zs61w2s/AyRD2W/Tk/Fr05orb1IWplSCUZMl8gI0OdYlXns1VjqrBpa0lORVcKZUAgJJkLkohKS1vTXImVqrJaIX1Zfysk4PJehIBr1GutqXJfgHj1vfMgGyvqLkdOJoBT2FTmc9iMSr3K4NXJ3PgxzRFcKkzcsNyV4yfjhUJHqtrOepxr4xW2vNReSStN3GbBKZS2nGyVJjcWSct/MN9Hifu0l9EnP/lJFEXR2svonHPOwd/+7d/ilFNOwZYtW3DppZfi2muvxbZt2zA/P4+rrroKp59+ui848uCDD+Lss8/Geeedh2uvvdbntimlxk7MZcZD20pli9Sejn3ppSyFU5RoIYp25Q1EYUNiQ+l/Om+NLzoiaPPuRu7cyDGROdvMPYvUNuHnguLerqRFJf47kAIw9RkR1obCHRaQdT1/t93aoKZRYar5bui2tpen7y467w073KWkuadUUkRKmlfRbJxHWL2fDoWNMpI7aLsLQLXQZbfcNoZpIhMFmSWhLH8aSvSLogxjKYNdqZU1qSS0U9uK0qssulGoQst6/0xB1S1KdKah83r/VEFndeuSPORkjexTuH2C2paVIVKHKmmZFKRZtiAKG+rf4XrY08bZXXlrdC5W2Lrm21U1SdQxYM9UNSGlV0plmkBmab1PEgqQpElQU5dR1WQaK65uLKSEnEBtXet2a0M7bLYoYYTolNejD9xg6D9w5cIAqg6VrJy3qkpkMlc1H1a9nnfSTH+O9AYLfcIk7ROW9kKoX9JDVof6pSrDTP2hNSoNYXc2hOBZ0BsLO3JD0aTzBqKeUzKeCzch5EZJhhstYcpw02ST6Aahq7daOJhlbr6Iw1Z6wwfvpBWljgq1ALGT1uxz1+akLXU4aUuFRl46J81gSKpBdvVaymqjZ8rJLvpmpTk6v6/YnV5GH/3oR/2+w+EQ5513Hj7+8Y/77f/4j/+I5557DnfeeSfuvPNOP3/UUUfh8ccf32fvZSOi61Bpet07uq64+LpH47p3hTZo9cHE99NZLoSSOm8jzkFzzvVoHOdN0tCpZshkR6hkNE+fqjZixtqwGCWFP29VWHdw3tykJaFLkyzDdNlY91r1y48V4uidrzIUaxpxyFpCUdFle1vOq6jPo5jAYeuyW24bwzQRWR8yy6KiYz61gvRkk8b4sXaFh4wJFahpURIlYeubeV2UkGlVxMQU5W47b6ZvoAsXnqm982a0RZqHsaZFx1wqhrHEecPIdjrvtjWh25sFRxRZFYodtbCdjmkYpHfwEhmFPLpxHMIYKjruTydN1fs3K0ZGYZCu6JRUVVG6CaJj17rd2tAOG8OsNrm1UC1OYL4Pjcfu9DLq9/u47bbbcNttt7U+5gMf+EBrc0mGYdYfXXbLbWMYhpk21rrd2tAOmy5KaCGq8rJ5++qiHlQrNkIJL8uqLPFjqrYlM/Xv2T6SmQU/tl5hm4Opi5WImTnIvguV7EP26rBKlfleYlZloUdRkkE5Fa6hQLnV4SqMZ1R5W45m+GMcQhVv9Koa2dHSfcb5wDdXwv1YtCqIZWmisFCqprn2BwPXV62MQx+H9SodVdt2DUof4rhzUGLJqW25xlK9akdL9uel8f05TMcJVYn0+096QWkLtH3y1kI8NbM6GBcSWf9Nw/eqv9s/PKFNh41VH1r8on7SKhwvKG9BDZJQXcVLWhW2OFwPwFiFSJq0FiahB0/DJjuQQnj7SMMjFVHTaKGRlUIsR5+fHtZoWKM7BnfYkZKmR1VL0VTPSDuFZcMel6tE5XZtCzOdoOhIl91y2ximiUizqneqU3K1DqG9Rvs2IpYobO4+yxQlbFqpL7ooonnj9s1LmHreauMjp0xRwKS12laUSPq1MpbrWElz6pmxYZwb//y6MDBEYXMRRDoPxztDqg0ar7TZzvBISpfyo1rsUFcYZFWoqLYxpA+aUNKX26/CDWlRkXY1DQCkFGFM9lWZIqX2JysoIonaRsv00/lIYSO9OiFl6OPp+/OO/32y1u3WhnbYGGa1yY31Vaii+TWw2sMwzMaky24BbLsYhplO1rrdYocNdW8Gp6JoG5JiCVXn9WqVhnZ21/3cry4oV4iEqm79DOncYr39JaiZSkkTM0FtkzNzvk2A6M9C9Gaq+Si3LfUlrKnyZlUS5mUC1ZXTESWZT7ZyHE5Ce45IG/Q1upQ/S+O9jQmrULR5OM1bMxZ5nSM21BqLRFkDalWNjBfykJ/mctUWc01UtRKLechVc8qbNRa6/gxYY1uVNSkFhCs0YuzKlVo6MB0rPmsg/5VZJawdzWGjalsbUf4WISo7T/6OGzs35juUN1HbBaoi+dchypHFmIUxumixP50KHDkOa+N8NrpK3bSJapzDIGMajRCpZ0CsmPliIRMqaZOolda0niOAnCdhIZycamX1PTLB/6HLbrltDNNEpL3qPscpbDTP0mifQ2m1DvmuZQ4AUbESpTOYWj2rlLQqCsr2jZ/XeQlV72+K0qttiTYw9f4mD/M0ykoXJIcuNz6HzWrr1bam8ub2r/ap73Xq92CIdGMb95dmQllHEqMV1CgRbXfKlKRtC5RsVdKkkn4f2vQ6KGAhV402uZZZApmmo/NUPSORaNU+YX/Z0ixbSAlR128YUdJksMi+NYRT2Irxz+Fat1vssAEw2vgLx+Q6XHANx81Lt6r0H/JyUJJu7nWftn4WnLd+hmIhzKdz1Vj1d3mnzkYO21wVNoAqSdfP92YgXKikTIAkDWPisEWOnAthlAn5opYkNArtTljrDVEjPJJ8uKkz5ueM9WFGxga52dLwgI4+cwVx5PLSYqirS2xACoAMSuMdrwEJfXRO1zhO2lKuUbrEYW18EnF1b9QeBim9k+aLV8J0rNiMQ26sr94Xza+B1R5mdXDOmvUhN3HCtBs1v4DaQm5GC2I4Z6zZJyzs3+3IuXFdzIPYjGo7cehE/WXbdOq6aHMmxlg4inZvqbAGtDu5y61ptTljsGh3rsg+u+OYRfPN12yOOw+Y2H63v5Chnx2qkMxJ+rB12S2AbRfTjujPQmShj6gwOhQmIwVv6Lwwfb/d1o4WDZ80RQml6/soY3y/NqO1d95o2KTJy+BIRQ6bbjiB9WNz7R9rSagkdcx0oUMYpDZ+TOcc1thWJ61NJBg5fyq2dz7cUVKHTRInTYS+ZkqE+1TiyKlM+cdXjlzom+ZeMzhXKnLYvGPYCHf0YZBKRQVFotBHUjhE1I4cdcyElJGTtty80OMvlq91u8UOG8OsIlVM9aihWAvx1AzDbEy67JbbxjAMM22sdbu1oR22qkSorHp8FGQVxK3GmJBACgAg+7gVCrlURkmZAFAuFVCR2ubCI3tBbZvJSGuAEEIps51BYesT5a3XhyRj1NKxTHt+pVQkaRjLJKygCuFVOEgZxiTxXIwTSlmfCtr7ja70GxtW92lRBG1iNSCEQYKEPoZwx8LESporHhKpaqXBoAxKGVAVFPHqWaS2xaqaU9KMNtD1a2odiovYDm1cyFDeW9EwBCl8OfTehOGmrLAxk+KuOd15PZJ9VyiiT82bJEF+QjQKk0yovKHe1l7S3o6ob3S7e52IFkVuHJZV7RrHBSBSzOLnaVG1Gipapxo2qZLW8lrR66/ULoUiZQhFbdhzp6hV3xON112Btb5Szex/RK8PMTPbUNNcKCEJVKPhkUSBE1mYc9tFkYfrwWiYsg6P1CFM0ZAeb7ooovku5c34ceHnq7DJ0h9DHAZJUigaEVpUjaPzQHchsy4kMahUcZNEVQuRYCJSz2h4pFPHVJZEIYmuDL8k6lmXkjZO4RCZUPWsnk+zdsVMqjjckYZBqlB0hLzpatsEvW/Xut3a0A4bw6w2pbUoWm6qyzVgPBiG2Zh02S23jWEYZtpY63ZrQztsMqsa+FljIF1iaaNTYRR/3KKZCiW8OqdqFackJVR1rqEGVeJss0BJUqtqepATFS6obaq3EOWzWZrPlpE8N7dPkkIkIc/NrUpYmUBEeW71KpFKgrLmtgvpl8iF+9udC5Kr5sruT5qfFueqGRT1Tk0lbVirZ8PS+By1IVHYqjL8dQl/p7ANS1+afzHXvtQ+VdXKIuQoGmNhnNpmbauyRuPDFVUgZNiWJNI3zu5PeElxWX9md6Briha0AElQ1eI805WfU9Ny/7ZZkMQVErGRIubHAlHDaD/Xsr1qJh0OKChvIe9N26bCR96s3z+21WOpby0qUmfhDj/eS0oaeUxXPltUmKTltcfG2W2t/YkRsiEcun2s8QrmuKz18tjM/kf2ZqtWRkRhc7lognzmrdGhSbybNMarcIJst8YAdWESawyUL2jSnfPmla+OnDerDSnZH+8flDoyr3WkwjXz0Qx5PrdPGE92sYiWoiNAKMQh6VyzoIcaLR7SbFBNG1q7ub2Wk1ZHhY2oah3qmYhy1UiJf7IP4G9nx2Kt260N7bCpXgbVy6qLrN9yEeUaVgXHq+3istrCqji5VCoJq93jTOy81WGTSV7C5KFakXPS9Ax13nKo/rA+1kFwzPJBXIwkJ85bOvBjqPrCURlQV7iETHzlSWENSTyvEDKBtcRja8HYcAPYDHF049LETpoPfTTWV3UstN0jJ43OV7/bQx/HcdK6wiABQHmjJ/xYJRJJncSbJRKz9f91Zqz6coHcWAgOiWQmIIQgkzAbFx4JS0KXMbLd7dOFM3FxeCRg3WeUOHISwn92m/3G/FwUPukqStrWeW1JwRIAljpspK+Zfx/kTUkh/HvsdNy6qiu2OWfNfbucNFccIdrHtjtm9PHU8TPLOHVtx9gFDV+PNkj/Ot5HEyFUsvLkGrG0K9BltwC2XUw7YiYUVPNz1HnTo85bcMx07LwZ6ryRsEq3f1mE5yZFTKTRsEXun4c+f5vDVoVB1mGWURhk2Mfo9vnwvkwjDHL0Wt6toiNSjmxrOnFReGLkvI32O1NZGjl4/nHOuWv2Q0tdRcf2UEaRpGGsQkhk5IzR99AIg/ROmhp10ujfossDa2Gt260N7bAxzGqjre0oOjL9xoNhmI1Jl91y2xiGYaaNtW63NrTDls71kfayaK6ZIOqSQqkUTZNMAXiN1a1gWGVb1TarrQ+frMah7Kxy/UNIeCRV29K5EqpOqJVFAVGPRVlUibcARJkH5a0oSDilgbVOjqartuHf3x4qI0LCOpTfJwp9JCGOJSnHX5h4nhYRKUxQz5zaNtRxoRFaUKS9PL9GXsYhkbRMf1noqKBIl6q2Uo81QcZKSagkjGdqVW1zP8GmfqVmzkzYU6roWPEp1oDxYKYfqrw155aDfqkJxMqb72smrDccVchj3H/NwsILc0L4wiXWBsXMinBAQoCoZMIfgSAHbaPeb+F4qz5zgjw/PQktylpTVVtO1eoKd4z26VDVusIdxw2z3E18ZOuErQ/GpctuAWy7mHZEkkH0ZuNJem1GoZLxZ5+GQQJBjWuqZF5to/uTcEo0wymJIiepItfx/G2hj03lzehY8ukOh9yD61uNqmtAUMaAKoSxTUkbCZUk4YkjqlaXYrZcWKPfhzxfU51rU83aeq015ttauYikGJnrYq3brQ3psLmQol3DytEphrmXvYu8QFG4eGeNoqydqjKERI44bDWyDiUUVkDU8TzSSsg6JEWJUKEmlRayzkRRUvi+QMoYH1SXCHg3KZESysn6JbwMLArrGweK0kDk9c1BUkDU70OkGlbVYQBSwfrmhEnVrw0IoZEygVUhBtnNG6FI6KOFK8wTOWzWtoZEUodtWFrvsOU6dthcztlAh/DIQW4wHFb/g2GukdfvKc81itowFvV7LnONUrc7bJY6bO7mz9jWgmuW5KcJIXxYLLSCrR02aIWidngLq5CburqSrePpx7z4l2BaY6dz7L4xZ9Yn3m7t3AmDsCJoQQqlNUIid9dhozRz2WhlSLqPD6Ns7c0mwhjtTtdontvoscgOh00gzmlzQ9qwu/p7JYetJWes4YCt7LDZ1sdO7rDtwT+qrdKvEP4GysrQp9NKBQiJnTt31S+78ut22S2AbRcT4z5PL+9aaNtIxt0OG5Z12IiTZsm41WEz7Q6bLqJqkys6bMZ2Omy26bCRa3qfO2y0CuxyDptfkB7HYXNzZYfDJrsdNkEdNjm6v3sN+ts9f3gjZDz6peA+VxvBbm1Ih23nzp0AgFM+9nerfCTMeuWnP/0ptmzZ0rk9yzJs374dn336qc59tm/fjizLOrczGwtvt37h2FU+EmY9s3Pnzk7bNY7dAth2MQFnt476xf+3ykfCrGc2gt0SdlwpYB1hjMGjjz6KV7/61XjyyScxPz+/2oc01bz88ss48sgj+VyNwUsvvYQdO3bghRdewNatW5fddzAYIM/zzu1ZlqHf73duZzYWbLcmg+3W+Lhz9dBDD+Hnfu7nooIGTVayWwDbLibAdmsy2G6Nz0azWxtSYZNS4hWveAUAYH5+ni+KMeFzNT7LGQ5Hv9+fauPATBdst3YPPlfj84pXvGJF28V2i5kEtlu7B5+r8dkodmvfZCQzDMMwDMMwDMMweww7bAzDMAzDMAzDMFPKhnXYer0ebrzxRvR6vdU+lKmHz9X48Lli9iX8+RofPlfjw+eK2Zfw52t8+FyNz0Y7Vxuy6AjDMAzDMAzDMMxaYMMqbAzDMAzDMAzDMNMOO2wMwzAMwzAMwzBTCjtsDMMwDMMwDMMwUwo7bABuuukmnHHGGZidnV2x2fFG47bbbsMrX/lK9Pt9nHrqqbj33ntX+5Cmkv/6r//Cm9/8Zhx++OEQQuBLX/rSah8Ss85hu9UN263xYLvF7G/Ybi0P266V2ah2ix02AHme46KLLsIVV1yx2ocyVXz+85/HtddeixtvvBH3338/TjjhBJx33nl49tlnV/vQpo6FhQWccMIJuO2221b7UJgNAtutdthujQ/bLWZ/w3arG7Zd47FR7RZXiSR85jOfwdVXX40XX3xxtQ9lKjj11FPxute9Dn/1V38FADDG4Mgjj8RVV12F66+/fpWPbnoRQuCLX/wifu3Xfm21D4XZALDdimG7tXuw3WL2J2y3RmHbNTkbyW6xwsa0kuc57rvvPpx77rl+TkqJc889F/fcc88qHhnDMEw7bLcYhlmLsO1iVoIdNqaV//u//4PWGoceemg0f+ihh+Lpp59epaNiGIbphu0WwzBrEbZdzEqsW4ft+uuvhxBi2Z9HHnlktQ+TYRjGw3aLYZi1Btsthtn3JKt9APuKd7/73Xj729++7D5HH330/jmYNchBBx0EpRSeeeaZaP6ZZ57B9u3bV+moGGZ9w3Zrz2C7xTD7H7Zbew7bLmYl1q3DdvDBB+Pggw9e7cNYs2RZhpNOOgl33323T+Y0xuDuu+/GlVdeuboHxzDrFLZbewbbLYbZ/7Dd2nPYdjErsW4dtkl44okn8Pzzz+OJJ56A1hoPPPAAAOCYY47Bpk2bVvfgVpFrr70WF198MU4++WSccsop+NjHPoaFhQVccsklq31oU8euXbvw2GOP+b9/9KMf4YEHHsC2bduwY8eOVTwyZr3Cdqsdtlvjw3aL2d+w3eqGbdd4bFi7ZRl78cUXWwAjP1/72tdW+9BWnVtvvdXu2LHDZllmTznlFPvtb397tQ9pKvna177W+hm6+OKLV/vQmHUK261u2G6NB9stZn/Ddmt52HatzEa1W9yHjWEYhmEYhmEYZkpZt1UiGYZhGIZhGIZh1jrssDEMwzAMwzAMw0wp7LAxDMMwDMMwDMNMKeywMQzDMAzDMAzDTCnssDEMwzAMwzAMw0wp7LAxDMMwDMMwDMNMKeywMQzDMAzDMAzDTCnssDEMwzAMwzAMw0wp7LAxDMMwDMMwDMNMKeywMQzDMAzDMAzDTCnssK0zfvrTn+KQQw7B448/vkfPc+aZZ+Lqq6/eK8e0p7zlLW/BRz7ykdU+DIZh9iFsuxiGWWuw3WL2F8Jaa1f7IJi9x7XXXoudO3fiU5/61B49z/PPP480TbF58+a9dGS7z4MPPohf+qVfwo9+9CNs2bJltQ+HYZh9ANsuhmHWGmy3mP0FK2zriMXFRdx+++249NJL9/i5tm3btkeGI8/zPT4Gx2te8xq86lWvwp133rnXnpNhmOmBbRfDMGsNtlvM/oQdtinmiCOOwMc//vFo7lvf+hZmZ2fxv//7vyP7/+u//it6vR5OO+20aP7MM8/EVVddhauvvhoHHHAADj30UHzqU5/CwsICLrnkEmzevBnHHHMM/u3f/i16DJXnjTG4+eabccwxx6DX62HHjh246aabov2vvPJKXH311TjooINw3nnnAQCGwyHe9a534ZBDDkG/38cb3vAGfPe7340e9653vQvXXXcdtm3bhu3bt+MDH/jAyHt785vfjL/7u7+b6PwxDLM6sO0KsO1imLUB260A263pgx22KebUU0+NLjRrLa6++mpcc801OOqoo0b2/8Y3voGTTjqp9bnuuOMOHHTQQbj33ntx1VVX4YorrsBFF12EM844A/fffz/e9KY34W1vexsWFxdbH3/DDTfgwx/+MN73vvfhoYcewuc+9zkceuihI6+RZRm++c1v4pOf/CQA4LrrrsMXvvAF3HHHHbj//vtxzDHH4LzzzsPzzz8fPW5ubg7f+c53cPPNN+OP//iP8ZWvfCV67lNOOQX33nsvhsPheCePYZhVg21XgG0Xw6wN2G4F2G5NIZaZWm6++Wb78z//8/7vO+64w27fvt3u3Lmzdf8LLrjAvuMd7xiZf+Mb32jf8IY3+L/LsrRzc3P2bW97m5/7yU9+YgHYe+65xz/m93//96211r788su21+vZT33qU53H+sY3vtGeeOKJ0dyuXbtsmqb2s5/9rJ/L89wefvjh9uabb249Nmutfd3rXmff+973RnPf+973LAD7+OOPdx4DwzDTAduuANsuhlkbsN0KsN2aPlhhm2JOO+00PPzww9i1axcWFhbwB3/wB/jTP/1TbNq0qXX/paUl9Pv91m2/8Au/4MdKKRx44IE4/vjj/ZxbuXn22WdHHvvwww9jOBzinHPOWfZ4mytNP/zhD1EUBV7/+tf7uTRNccopp+Dhhx9uPTYAOOyww0aOY2ZmBgA6V6MYhpke2HYF2HYxzNqA7VaA7db0kaz2ATDdnHTSSZBS4v7778d//ud/4uCDD8Yll1zSuf9BBx2EF154oXVbmqbR30KIaE4IAaCKm27iLtyVmJubG2u/cY6teRxOzj/44IN36zUYhtl/sO0KsO1imLUB260A263pgxW2KWZ2dhbHH388vvCFL+CWW27BRz/6UUjZ/S878cQT8dBDD+314/jZn/1ZzMzM4O67757oca961at8fLWjKAp897vfxatf/eqJnuvBBx/EEUccgYMOOmiixzEMs/9h2xVg28UwawO2WwG2W9MHK2xTzmmnnYZbb70VF1xwAc4888xl9z3vvPNwww034IUXXsABBxyw146h3+/jve99L6677jpkWYbXv/71eO655/D9739/2XK2c3NzuOKKK/Ce97wH27Ztw44dO3DzzTdjcXFx4jK43/jGN/CmN71pT98KwzD7CbZdFWy7GGbtwHargu3W9MEO25RzwgknIE1T/Pmf//mK+x5//PF47Wtfi7//+7/HO9/5zr16HO973/uQJAne//7348c//jEOO+ww/O7v/u6Kj/vwhz8MYwze9ra3YefOnTj55JPx7//+7xMZt8FggC996Uv48pe/vCdvgWGY/QjbLrZdDLPWYLvFdmtaEdZau9oHwXRz1lln4bWvfS0+8pGPjLX/XXfdhfe85z148MEHl5Xy1xKf+MQn8MUvfhH/8R//sdqHwjDMmLDtYtvFMGsNtltst6YVVtimEGMMnnvuOdx+++34wQ9+gH/+538e+7G/+qu/ih/84Ad46qmncOSRR+7Do9x/pGmKW2+9dbUPg2GYFWDbFcO2i2GmH7ZbMWy3phNW2KaQr3/96zj77LNx7LHH4tOf/jROPfXU1T4khmGYFWHbxTDMWoPtFrMWYIeNYRiGYRiGYRhmSlkfAbcMwzAMwzAMwzDrEHbYGIZhGIZhGIZhphR22BiGYRiGYRiGYaYUdtgYhmEYhmEYhmGmFHbYGIZhGIZhGIZhphR22BiGYRiGYRiGYaYUdtgYhmEYhmEYhmGmFHbYGIZhGIZhGIZhphR22BiGYRiGYRiGYaYUdtgYhmEYhmEYhmGmFHbYGIZhGIZhGIZhppT/D+X/iTkJn1xfAAAAAElFTkSuQmCC", "text/plain": [ "
[15:05:25] Created task 'kspace_monitor' with task_id webapi.py:139\n", " 'fdve-efa1582c-dd2d-4ff2-992d-f4de1070233dv1'. \n", "\n" ], "text/plain": [ "\u001b[2;36m[15:05:25]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'kspace_monitor'\u001b[0m with task_id \u001b]8;id=606665;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=691208;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-efa1582c-dd2d-4ff2-992d-f4de1070233dv1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:05:26] status = queued webapi.py:269\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:05:26]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=288273;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=720528;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:05:28] status = preprocess webapi.py:263\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:05:28]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=151588;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=509530;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:05:33] Maximum FlexCredit cost: 0.045. Use 'web.real_cost(task_id)' to get webapi.py:286\n", " the billed FlexCredit cost after a simulation run. \n", "\n" ], "text/plain": [ "\u001b[2;36m[15:05:33]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.045\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get \u001b]8;id=900004;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=522371;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mthe billed FlexCredit cost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
starting up solver webapi.py:290\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=435805;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=442485;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
running solver webapi.py:300\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=699248;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=635076;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:05:41] early shutoff detected, exiting. webapi.py:313\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:05:41]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=288579;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=503382;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#313\u001b\\\u001b[2m313\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
status = postprocess webapi.py:330\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=30776;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=808392;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#330\u001b\\\u001b[2m330\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:05:44] status = success webapi.py:337\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:05:44]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=515231;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=196238;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#337\u001b\\\u001b[2m337\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[15:05:45] loading SimulationData from data/kspace_monitor.hdf5 webapi.py:512\n", "\n" ], "text/plain": [ "\u001b[2;36m[15:05:45]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/kspace_monitor.hdf5 \u001b]8;id=133203;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=251961;file:///home/momchil/Drive/flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim_data5 = web.run(\n", " sim5, task_name=\"kspace_monitor\", path=\"data/kspace_monitor.hdf5\", verbose=True\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plot and compare\n", "Extract and plot the fields. We use a polar plot, and observe that the far field spot is located along the `phi=45 deg` line, as expected. The angle `theta` is expected to be near `30 deg`, which is nearly what is observed in the plot. The small deviation is due to the way the fields are plotted - a better way would be to project the fields orthographically on the surface of a sphere prior to plotting." ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "execution": { "iopub.execute_input": "2023-03-27T23:52:08.675015Z", "iopub.status.busy": "2023-03-27T23:52:08.674856Z", "iopub.status.idle": "2023-03-27T23:52:09.019754Z", "shell.execute_reply": "2023-03-27T23:52:09.019233Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_6807/2062883249.py:16: UserWarning: The input coordinates to pcolormesh are interpreted as cell centers, but are not monotonically increasing or decreasing. This may lead to incorrectly calculated cell edges, in which case, please supply explicit cell edges to pcolormesh.\n", " im = ax.pcolormesh(\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAHqCAYAAABY/wcsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACX70lEQVR4nOzdd1wT9xsH8M9lsZdsBMSFAweKSnGiomgVtLXWrXUv2irVVvy5Wmux1lqrVXFr68CtqFWrKE5cUKzVKu6F4GZDILnfHxkShjIOLuN5v173glySuydKck+e72JYlmVBCCGEEMIBAd8BEEIIIUR/UGJBCCGEEM5QYkEIIYQQzlBiQQghhBDOUGJBCCGEEM5QYkEIIYQQzlBiQQghhBDOUGJBCCGEEM5QYkEIIYQQzlBiQQghhBDOUGJBiJZLT0/HpEmTUKNGDZiYmKB169a4dOmS+n6WZTFr1iw4OzvDxMQEAQEBuHXrlsYxYmNj4e3tDQ8PD6xdu7aqXwIhxIBQYkGIlhs1ahSOHj2KP/74A1evXkXXrl0REBCAJ0+eAAAWLFiAJUuWICIiAhcuXICZmRkCAwORk5OjPsbIkSMxc+ZMbNmyBeHh4Xj06BFfL4cQoucYWoSMEO2VnZ0NCwsL7Nu3Dz169FDv9/HxQffu3TF37ly4uLjgq6++wpQpUwAAqampcHR0xIYNG9C/f38AQI0aNRATEwMHBwf4+/tj48aNaNiwIS+viRCi36hiQYgWy8/Ph0wmg7GxscZ+ExMTnDlzBvfu3UNycjICAgLU91lZWcHX1xexsbHqfbNmzUKDBg1gZWWFDz74gJIKQkilocSCEC1mYWEBPz8/zJ07F0lJSZDJZNi0aRNiY2Px9OlTJCcnAwAcHR01nufo6Ki+D1A0hbx8+RLPnz/H0qVLq/Q1EEIMCyUWhGi5P/74AyzLonr16jAyMsKSJUswYMAACARle/uamZnBxsamkqIkhBAFSiwI0XK1a9fGyZMnkZGRgUePHuHixYvIy8tDrVq14OTkBABISUnReE5KSor6PkIIqUqUWBCiI8zMzODs7IzXr1/jyJEj6NWrF2rWrAknJydER0erH5eWloYLFy7Az8+Px2gJIYaKRoUQouWOHDkClmVRr1493L59G1OnToWxsTFOnz4NsViMH3/8EfPnz8fGjRtRs2ZNzJw5E//88w+uX79epNMnIYRUNhHfARBC3i01NRVhYWF4/PgxqlWrhj59+mDevHkQi8UAgK+//hqZmZkYM2YM3rx5g7Zt2+Lw4cOUVBBCeEEVC0IIIYRwhvpYEEIIIYQzlFgQQgghhDOUWBBCCCGEM5RYEEIIIYQzlFgQQgghhDOUWBBCCCGEM5RYEEIIIYQzlFgQQgghhDOUWBBCCCGEM5RYEEIIIYQzlFgQQgghhDOUWBBCCCGEM5RYEEIIIYQztGw6ITqEZVlkZWUhJycHcrlcvclkMjAMA4FAoLGZmJjAxMQEDMPwHTohBiknJwdSqZSz40kkEhgbG3N2vMpAiQUhPMjLy0NycjKePn2qsSUnJyM9PR3p6enIyMgo8ntGRgZYli3TuQQCAczNzWFubg4LCwtYWFiofzc3N4eVlRUcHR3h7OwMZ2dnuLi4wNnZGY6OjhCJ6COCkPLKycmBiUU1ID+bs2M6OTnh3r17Wp1cMGxZP6UIIe8llUpx9+5dJCYmqreHDx+qE4jnz5+DYRjY29sXuZhbWVkVmwQU/N3Y2BhCoVCjOgGgSBUjOzu72ASl4O+pqalFkpyC8alic3d3h6enp3qrWbMmxGIxz//ShGivtLQ0WFlZQdTwU0DIwXtFlof869uRmpoKS0vLih+vktDXEUIq4Pnz57hy5YpGApGYmIh79+7ByMgIdevWhaenJ+rWrQsfHx/1RdrZ2RkODg6cX5iFQiGEQqH6tqmpKWxtbct8HKlUipSUFI1k4/79+zh79izWr1+PW7duIT8/H7Vq1dJINjw9PeHt7Y1q1apx+bII0WmM2BiMUFLh47AC4fsfpAUosSCklFJSUhAfH4+4uDj19ujRI9SqVQv169eHp6cngoKC1BfY6tWrqysJukYikcDNzQ1ubm7F3i+Xy/Ho0SONZGrfvn3477//8ODBA3h4eMDHx0djK0+CQwjRPdQUQkgxMjIycPbsWVy4cEGdRDx58gSenp4aF8tmzZrBysqK73C1yuvXr4skYHfu3IG7u7v63+2DDz6An58fTE1N+Q6XkEqjagqRNBvOTcVCJoX07/Va3xRCiQUheJtIxMTEICYmBpcuXYK7uzv8/Pw0kghtfjNrszdv3mgkG+fOnUNycjJ8fX3h7+8Pf39/SjSI3lElFkY+ozhLLHLj1lBiQYg2KpxIXL58GW5ubuqLXIcOHVCjRg2+w9RbLMvi/v376n//EydOUKJB9A4lFoTouXv37mH//v3Yv38/YmJiKJHQIizL4t69exqJxrNnz9CpUycEBwcjKCgIrq6ufIdJSJmoEgvjFmPBiDhILPKlyLm8khILQvgil8tx8eJF7N+/H1FRUbhx4wY6dOiA4OBg9OzZE7Vq1eI7RFIClmVx69YtHDhwAFFRUThz5gyaNGmCoKAgBAcHo3nz5jTpF9F6qsTCxHc8GJFRhY/H5uci+8IKSiwIqUo5OTn466+/EBUVhQMHDiA3NxcffvghgoOD0a1bN+poqaNevnyJQ4cOYf/+/Th06BAsLS3Rs2dPBAcHIyAgABJJxb8NEsI1SiwI0VEymQwnT57E5s2bsXPnTtjZ2aFXr14IDg5GmzZtaBInPSOVSnHy5Ens378f+/btQ3p6Oj799FMMHjwYrVu31tkhvkT/qBILM78QzhKLzNjfKLEgpDKwLIt//vkHmzZtwtatWyGVStG/f38MHjwYLVu2pDK5gZDL5Th37hw2b96Mbdu2wdLSEoMGDcKgQYPQsGFDvsMjBk6VWJi3+ZKzxCLj7K9an1hQak90ysOHDzF//nw0adIErVu3xtOnT7F69Wo8efIES5YsQatWrSipMCACgQBt27bFihUrkJycjCVLluDWrVvw8fFB8+bNsWjRIiQlJfEdJiEGhRILovXy8vKwa9cudOnSBbVr18bJkycxbdo0pKSkYNOmTejevTs1dxBIJBIEBwdj+/btSE5Oxueff44///wTNWrUQI8ePbB//37IZDK+wyQGiBEIOdt0ATWFEK314MEDrF69GmvXroWxsTHGjh2Lzz77DE5OTnyHRnTI48ePsW7dOqxevRoAMHr0aIwcORLVq1fnOTKi71RNIZYdpnDWFJJ2ciE1hRBSFizL4tixY+jduzfq1q2Lf//9F+vXr8edO3cwbdo0SipImbm6umLWrFm4d+8eli1bhgsXLqBWrVr49NNPcfr06TIvQ08IeTdKLIhWyMjIwLJly9CwYUMMGDAAXl5euH37Nvbu3Ytu3bpRT39SYSKRCMHBwTh48CD+++8/uLu7Izg4GN7e3li9ejWys7P5DpHoKWoKIaQKvXz5EkuXLsXSpUtRs2ZNfPHFF/j0009hbGzMd2jEAGRlZWHLli1YsmQJUlJSMHnyZIwfP57mOyGcUDWFWHcOAyOq+Gcam5+DN9Hh1BRCSHGePHmCr776CjVq1MCZM2ewfft2XLp0CUOHDqWkglQZU1NTjBo1CleuXMH69etx8OBBuLu7Y/r06Xj27Bnf4RGikyixIFXq1q1bGD16NGrXro27d+/i+PHjOHbsGDp37kzDRAlvGIbBhx9+iNOnT+PAgQNISEiAh4cHQkJC8ODBA77DIzqOYThqCmF0oymEEgtSJRISEtC/f380btwYUqkU8fHx2LNnD1q1asV3aIRoaNeuHf7880+cO3cOL168QL169TBs2DBcv36d79CIrhIKwXCwQUiJBSFITExE37590bp1a9jb2+PmzZvYuHEjzYpItJ63tzciIyPx77//wsjICD4+PhgyZAju3bvHd2iEaDVKLEilSEpKwtixY9G0aVPY2tri9u3bWLp0KS1NTnROnTp1sGrVKty4cQNCoRANGzbEl19+iefPn/MdGtERhjYqhBILwqk3b94gLCwMdevWxevXr3HlyhVERETAxcWF79AIqZAaNWpgw4YNuHTpEu7du4fatWvj22+/RXp6Ot+hEaJVKLEgnMjOzsZPP/2EWrVq4dKlSzh58iS2b98OT09PvkMjhFONGjVCVFQU/vzzTxw9ehS1a9fG0qVLkZuby3doREtRxYKQMpDL5diwYQPq1q2Lbdu2Yfv27Th27BhatGjBd2iEVKq2bdvi9OnTWLduHVatWoX69etj27ZtNJMnKUIgEHK26QJKLEi5/f3332jbti1mz56Nn3/+GRcvXkRAQADfYRFSZRiGQc+ePZGQkIA5c+Zg0qRJ6Ny5M40gIQaNEgtSZq9fv0ZISAjatGmDTp064b///kO/fv1o2m1isIRCIYYNG4abN2+iWbNm8PHxwdSpU6n/BQEAMAIBR00huvEZqxtREq0gl8uxfv161KtXD7dv38aVK1fw/fffw9TUlO/QCNEKlpaW+Pnnn3Hp0iVcunQJ9evXR2RkJDWPGDjqY0FIMeLj49GmTRvMmTMHK1euxKFDh1C3bl2+wyJEKzVq1AgnTpzATz/9hNDQUHTu3BnXrl3jOyxCqgQlFuSd0tPT8fnnn6Nt27bo3Lkz/vvvP3z00Uc0/TYh78EwDAYOHIgbN26gWbNmaNmyJb7++mtaRdUAUcWCEKXjx4+jcePG+Pfff6nZg5ByUjWPXLx4EadPn4a3tzfOnTvHd1ikClFiQQxeeno6xo8fj169euHrr79GdHQ0NXsQUkGNGjXCmTNnMHr0aHTp0gVTpkyh6gXRS5RYEA3Hjx9HkyZNcOPGDVy5cgUTJkyg0R6EcEQoFGLKlCmIi4vDmTNn0KxZM8TGxvIdFqlktLopMUgZGRmYOHEigoOD8dVXXyE6Ohq1atXiOyxC9FL9+vVx9uxZjBgxAgEBAZg6dSpVL/QYFyubqlc41QGUWBCcOHFCoy9FSEgIVSkIqWRCoRBff/01Ll++jFOnTqFZs2Y4f/4832ERUmF09TBg+fn5+N///oegoCCEhobixIkTqF27Nt9hEWJQGjRogLNnz2L48OHo3LkzwsPDIZfL+Q6LcMjQJsgS8R0A4cejR48wcOBAvHr1ChcuXICXlxffIRFisEQiEb755hsEBASgX79+iImJwe+//w5HR0e+QyMc4GpEB40K0UOnTp1CUFAQXFxcwDAM9u7dq3H/nDlzUL9+fZiZmcHGxgYBAQG4cOGCxmM8PDzAMIzGNn/+fI3HrF69GjVq1ECzZs2KPJ8LBw4cgLe3N+rVq4dLly5RUkGIlvDx8UF8fDxsbGzg7e2N48ePV+n558+fD4ZhMGnSJPU+f3//Ip9Z48aN03heVFQUPD09Ua9ePRw4cKBKYybahyoWZZCZmYmmTZtixIgR+Pjjj4vc7+npid9++w21atVCdnY2fvnlF3Tt2hW3b9+Gvb29+nHfffcdRo8erb5tYWGh/v3hw4dYsGABIiMj8eTJEwwfPpyzBY2kUinCwsKwevVqrFixAoMGDeLkuIQQ7lhaWmLr1q1Ys2aNujP1rFmzIKzkjnuXLl3CypUr0aRJkyL3jR49Gt999536dsH5bHJzczFx4kSsX78eLMtixIgR6Nq1KyQSSaXGq0sMrWJBiUUZdO/eHd27dy/x/oEDB2rcXrRoEdauXYt//vkHnTt3Vu+3sLCAk5NTscdIS0uDtbU1mjRpAicnJ856it+7dw/9+vVDXl4eLl++DE9PT06OSwjhHsMwGD16ND744AN8+umnOHnyJDZv3ozq1atXyvkyMjIwaNAgrF69Gt9//32R+01NTUv8zMrNzYVQKIS3tzcARbNObm4uJRYFCAQMBAIOZivm4hhVgJpCKolUKsWqVatgZWWFpk2batw3f/582NraolmzZvjpp5+Qn5+vvq9Ro0Zo0qQJrKys4OXlVeybvKz27t2LZs2aoVWrVoiNjaWkghAd0bhxY1y+fBk1a9aEt7c3jhw5UinnmThxInr06IGAgIBi79+8eTPs7OzQqFEjhIWFISsrS32fpaUlhg8fDmdnZ7i4uGD8+PEaVVhieKhiwbEDBw6gf//+yMrKgrOzM44ePQo7Ozv1/V988QWaN2+OatWq4dy5cwgLC8PTp0+xaNEi9WPWrl2LBQsWwNTUFCYmJuWORS6XY+7cufj555+xbt06fPLJJxV6bYSQqmdmZob169fj999/R58+ffDtt98iNDSUs/V6IiMjER8fj0uXLhV7/8CBA1GjRg24uLjgn3/+wTfffIObN29i9+7d6sfMnj0bkyZNgkAgoKSiGIyAAcNBtYGLY1QFSiw41rFjRyQkJODFixdYvXo1Pv30U1y4cAEODg4AgNDQUPVjmzRpAolEgrFjxyI8PBxGRkbq+2xtbSsUR2ZmJoYNG4b4+HicO3cOjRo1qtDxCCH8Gjp0KBo0aIDevXvj6tWriIiIgLGxcYWO+ejRI3z55Zc4evRoiccaM2aM+vfGjRvD2dkZnTt3xp07dzSGp1tZWVUoFn2m6vTKxXF0ATWFcMzMzAx16tTBBx98gLVr10IkEmHt2rUlPt7X1xf5+fm4f/8+ZzE8ePAAbdq0watXr3Dp0iVKKgjREy1btsTly5dx48YNdOzYEU+fPq3Q8eLi4vDs2TM0b94cIpEIIpEIJ0+exJIlSyASiSCTyYo8x9fXFwBw+/btCp2b6C9KLCqZXC5Hbm5uifcnJCRAIBCoKxoVdfr0abRs2RJt27bFkSNHKlz5IIRoF2dnZ8TExKBu3brqRKO8OnfujKtXryIhIUG9tWjRAoMGDUJCQkKxI1ESEhLUcZDSYZSdNyu66UpTCCUWZZCRkaF+8wGKkRYJCQl4+PAhMjMzMX36dJw/fx4PHjxAXFwcRowYgSdPnqBv374AgNjYWCxevBhXrlzB3bt3sXnzZkyePBmDBw+GjY1NheNbvXo1unXrhrlz5+K3336DWCyu8DEJIdrH2NgYGzduxOTJk+Hv74+tW7eW6zgWFhZo1KiRxmZmZgZbW1s0atQId+7cwdy5cxEXF4f79+8jKioKQ4cORfv27Ysdlkq0y/vmXips9+7d6NKlC+zt7WFpaQk/P79ydRimPhZlcPnyZXTs2FF9W9VfYtiwYYiIiMCNGzewceNGvHjxAra2tmjZsiVOnz6tnoDKyMgIkZGRmDNnDnJzc1GzZk1MnjxZo99FeeTn52Py5MmIjIzEoUOH0L59+wodjxCi/RiGwVdffYWGDRtiwIAB+OeffzBv3jxO1/mRSCQ4duwYFi9ejMzMTLi5uaFPnz6YMWMGZ+cwBAzDUefNMvaxeN/cS4WdOnUKXbp0wQ8//ABra2usX78eQUFBuHDhApo1a1b6OFmWZcsUKdEq2dnZ6N+/P+7cuYMDBw7Aw8OD75AIIVXsxo0b6NmzJ3x9fbF+/XqaQ0JLpKWlwcrKCnXHb4XQyPT9T3gPWW4Wbq0YgNTUVFhaWpbpuQzDYM+ePejdu3eZnufl5YV+/fph1qxZpX4ONYXosNevX6Nr16549eoVTp8+TUkFIQZKtQz7jRs3EBQUhPT0dL5DInpALpcjPT0d1apVK9PzKLHQUU+ePEG7du1ga2uLv/76i5M+GoQQ3eXo6IiYmBjIZDJ06tQJz58/5zskoiRgGM42QFEJKbi9a4BARSxcuBAZGRn49NNPy/Q8Six00I0bN9C6dWv4+flh586dFZpEixCiPywsLHDw4EHUrl0bbdq0wb179/gOieDtBFlcbADg5uYGKysr9RYeHs55zFu2bMG3336L7du3l3nUIiUWOub8+fNo06YNhg4dilWrVkEkov63hJC3jIyMsGXLFnTr1g2tW7fGlStX+A6JcOzRo0dITU1Vb2FhYZwePzIyEqNGjcL27dtLnOb9XeiqpEP+/PNP9OvXD+Hh4QgJCeE7HEKIlhIIBPj111/h7OyMDh06YN++fejQoQPfYRksrqf0trS0LHPnzdLaunUrRowYgcjISPTo0aNcx6DEQkdERkZi5MiRWL9+fZnbuwghhodhGISFhcHR0RE9evRAZGQkevbsyXdYBomr1U3ZMh4jIyNDY4ZU1dxL1apVg7u7O8LCwvDkyRP8/vvvABTNH8OGDcOvv/4KX19fJCcnAwBMTEzKNGU7NYXogE2bNmHUqFHYtWsXJRWEkDIZMWIEfv/9d/Tr1++9EyQR/XL58mU0a9ZMPQdFaGgomjVrph46+vTpUzx8+FD9+FWrViE/Px8TJ06Es7Ozevvyyy/LdF6qWGi5jRs3YuLEidi7d2+52roIIeTjjz+GUCjEwIED1aukkqrDCBQbF8cpC39/f7xrqqoNGzZo3I6JiSl7UMWgxEKLrVu3Dl9++SX279+vMeMnIYSUVa9evbBt2zb069cPMpmMqp9ViFY3JVphw4YN+PLLL9ExwwzbOg3nOxxCiB44EBSCDlnmGDFiBHbt2sV3OERPUWKhhTZt2oTPP/8c+/fvhwuMAQDjGA9+gyKE6DTVZ4g7TBAZGYmhQ4di3759/AZlIAQCcLK6KYfLwFQqagrRMlu3bsW4ceOwb98++Pv7w5+9r/5AUP2MYO/zFh8hRLcU/lKi+vzYsmULBg4ciG3bttFokUrG9XBTbacj+Y9hiIqKwujRo7Fr1y507ty5xMdR9YIQUhrv+qzo1asX/vjjD/Tv3x/Hjx+vuqCI3qPEQkucOXMGAwcOxB9//IHAwECN+4qrUFByQQh5l+I+Iwp/lnz88cdYvnw5PvroI/z9999VE5gBUi2bXuFNRzpvUlOIFvj3338RFBSERYsW4aOPPir2MREFmkRUqGmEEFJYSV86SvqcGDp0KFJSUtC9e3ecPXsWtWvXrrzgDFTBBcQqgqXEgpTGgwcPEBgYiNDQUIwZM6Zcx6AEgxBSkSrmlClTkJycjMDAQJw9exaOjo7cBUYMDjWF8OjFixcIDAxE7969MWPGjPc+/n2JwzjGg5pICDEwpXnfv++zg2EY/PTTT/jggw/QvXt3pKWlcRcgAbha2ZQ6b5J3yczMRM+ePdG4cWMsWbKk1G1npalKUHJBiGEozXu9tJVMgUCAdevWwcHBAR9//DFyc3MrFhwxWJRY8CAvLw99+/aFqakpNm3aBKFQyPk5qHpBiP6qrPe3RCLBzp07kZaWhqFDh0Imk3F+DkPEScdNjoasVgVKLKoYy7IYN24cnj59ij179sDIyKjMxyhLXwpKMAjRH2V9P5en35W5uTkOHjyIhIQETJkypczPJ0VxMzkWNyukVgVKLKrYr7/+ikOHDuHgwYNlWoa2sLJ+YFByQYhuK+t7uCKdue3t7XHo0CH8/vvvWLduXbmPQwwTjQqpQn/99RdmzJiB48ePw8XFpcrPX/CDiUaQEKL9+PxCUKtWLezYsQNBQUGoV68e2rRpw1ssuo4WISOVIjExEf369UNERARatWrFyTErkhxQEwkh2qui70+uvjh06tQJCxYswMcff4yHDx9yckxDpFo2nYtNF+hImLotNTUVwcHBGDNmDAYPHszpsSv6AUIJBiHag4v3I9fVyAkTJqB3797o3bs3srKyOD020U+UWFQymUyGAQMGoHbt2vjhhx/4DqdElGAQwh9tfv8xDIOlS5fCwsICw4cPB8uyfIekc6jzJuFUWFgY7t27hy1btlTKsFKuafMHHCH6huv3W2X1nVINQ71w4YJWf0HSVoY23JQ6b1aiP/74A2vWrMGFCxcqNALkfYpbR6SiaJpwQiqPLibv9vb2iIqKQps2beDl5YXevXvzHRLRUpRYVJJ///0X48ePx65du1C3bl2+wym3wh+AlGgQUnZVkUhUxXuzSZMm2LBhAz777DPEx8ejVq1alX5OfWBoo0IosagEmZmZ6NevHyZPnlxkCfTKUhlVi+LQkFVCSqcqqxJV+V7s06cPTp48if79++PMmTOQSCRVdm5dxVX/COpjYcC++OIL2NraYvbs2XyHUqlU7cO6WNYlpDIYynvip59+Qn5+PsLCwvgOhWghqlhwbNOmTdi3bx8SEhIgElXtP29VVS2KQ30yiCHT90SiMCMjI2zbtg0+Pj7w9/dHUFAQ3yFpNYbhpuMlNYUYoMTEREyYMAFbt26Fq6sr3+HwghIMYki0IaHg671Wt25drFy5Ep999hkSEhLg5ubGSxy6QChgIOQgsWB1pCmEEguO5OTkoF+/fhgzZgx69OjBWxx8Vi0KKikGSjiILtKG95Q2GjBgAI4fP44BAwYgJiamyqu0RDtRHwuOTJkyBRKJRCvGeGvzxdtQ2qCJ7tOFv1VteK//+uuvePPmjd73KasIgbJiUdFNVzpvUnrJgd27d2PTpk34+++/qYd0GVCzCdFG2pxIaCNTU1Ns374drVq1QseOHREQEMB3SFqHq6YQOSUWhuHZs2cYO3YsVqxYgZo1a/Idjpq2NImUBg1hJXzTlfdKQdr0XmnYsCF+/vlnjBgxAlevXq3UCQGJ9mNYmvi9Qvr27Qu5XI6dO3dqXY9dXfywLIk2fYgS3UXvicrDsiy6du0KDw8PrF69mu9wtEJaWhqsrKzw4ZJjEJuYVfh4edmZ+POLAKSmpsLS0pKDCCsHVSwqYMeOHThx4gSuXbumdUkFoFtVi/cp7nVo2wcr0S768rdfHG3822cYBmvWrEHjxo3xySefVNnkgET7UGJRTs+ePcOECROwbNkyODo68h2OQaJkg6jocxKhS2rUqIGFCxdi1KhR+Pfff6lJRIn6WJBSmThxIjp06IBPP/2U71BIAbS2if6jJEK7jR49Gjt37sRXX32FNWvW8B2OVhAJABEn81hwEEwVoMSiHLZv346YmBitbQIhb1FVQ/dRIqFbCjeJdOvWje+QSBWjxKKMnj17hokTJ2L58uVwcHDgO5z30qd+Flx5178HJR38oL/R0tOFv1F3d3csXLgQo0ePpiYRUFMIeY+JEyeiY8eO6Nu3L9+hkEpQmgucLnywaxNKGgzTqFGjqElEScBRYiGjxEL/HD58GMeOHcPNmzf5DqVMqGrBrbL8W+prEkJ/T/zQpb8nhmGwatUqNGzYECNGjEDr1q35DolUEUosSik3Nxeff/455s2bpxNNIEQ7VMYFuKwXF0oCCF9q1KiB//3vf5g4cSIuXbpksGuJCBkBhIKK97wUMrrRe9Mw/5fLYeHChbCwsMDYsWP5DqVcqGqhP+j/0TDpUrWioK+++gobNmxAREQEQkJC+A6HF1z1seDiGFVBN9Ifnj148ADh4eFYtmwZhEIh3+EQQojOMDIywpIlSzBjxgw8e/aM73BIFaDEohQmT56MTz/9FH5+fnyHQojeEDIlb0S/dOvWDZ07d8Y333zDdyi84GJlU66qHlWBmkLe48iRIzhx4oTOddgsDjWHkMpW2UmB6vgyA1vhSFebQQr65Zdf0LBhQ4wZM8bgvqRRUwhRU3XY/P7776nDJiFViCoZ+sfd3R3Tp0/HhAkTIJPJ+A6HVCJKLN7h559/hpmZGcaNG8d3KISQYlDyoVu++uorZGZmIiIigu9QqpSQYTjbdAE1hZQgJSUF4eHhOHz4MHXYJKSQqr6Aqz5QZSzLy/kJN4yMjLB48WIMGTIEgwcPNpgZObmaIEtATSG67fvvv0fnzp3Rpk0bvkPhlD601RL9IhEwkAi4+5amb1UMfXvPdu/eHU2aNMFPP/3EdyikklDFohh3797FmjVrEBcXx3cohOiUkpIAri/uhc+jqmQQ7ccwDObPn4/OnTtj4sSJcHZ25jukSkedNwlmzpyJAQMGoGHDhnyHQghvSjMctDLaf99WMIqeV3VfeV8L0Q6+vr4IDAzE3Llz+Q6lSogEDGdbWZw6dQpBQUFwcXEBwzDYu3fve58TExOD5s2bw8jICHXq1MGGDRvK/HopsSgkISEBe/bswZw5c/gOpdLoW2mVaL/SdEorb9JQ0vH1gT6/V+fNm4f169fj9u3bfIeitzIzM9G0aVMsW7asVI+/d+8eevTogY4dOyIhIQGTJk3CqFGjcOTIkTKdl5pCCgkLC8P48ePh7u7OdyiEaCXVRftdFQAuL+yqZKPg3BVv57Ngi9z3LoVjNrT5MLRJ/fr1MWjQIMyYMQORkZF8h1Op+GoK6d69O7p3717qx0dERKBmzZr4+eefAQANGjTAmTNn8MsvvyAwMLDUx6HEooCYmBicO3cOmzZt4jsUQnhTUsJQGVUAk2JO9vZirzkSpDQKTqBF/TC035w5c+Dp6Yn4+Hg0b96c73AMXmxsLAICAjT2BQYGYtKkSWU6DjWFKLEsi2nTpuHrr7+Gra0t3+FUOn0usRJ+qJoyittMhMVvFTlPwT4X+tj3whDeo66urggJCUFYWBjfoVQqrqf0TktL09hyc3M5iTM5ORmOjo4a+xwdHZGWlobs7OxSH4cSC6WoqCjcv3+/zJkZIbqutB0zi3amrHjfiMKMBQKYCRWbsYCBsYCBiVCg3MqejBQXL9Eu06ZNw8WLFxETE8N3KJVGyHCUWCj/ft3c3GBlZaXewsPDeX6FmqgpBIpqxbx58/D111/DzMyM73AI0TvGAsV3mJLygor0dSiY1EjlmscrbfOHoa5Bog2qVauGL774AvPmzYO/vz/f4eiER48ewdLSUn3byMiIk+M6OTkhJSVFY19KSgosLS1hYmJS6uNQxQLA8ePHcefOHYwZM4bvUKqUIZRaScWVVKEo2tyhqCwUrDaoqg/lZS4SwFK5qY6l2lTnK/vr0f4RJIb23vziiy8QGxuLy5cv8x1KpRBwUa0QMOqZNy0tLTU2rhILPz8/REdHa+w7evRomReNo8QCQHh4OL744guYm5vzHQohVaak/gWFmz4qg5VYWGgTaGzmIgGsxOWfSl/VbFJcAkS0j62tLcaMGaN1JX2u8LVsekZGBhISEpCQkABAMZw0ISEBDx8+BKAYBTl06FD148eNG4e7d+/i66+/xo0bN7B8+XJs374dkydPLtN5Db4p5OLFizh//jy2b9/OdyiE6BRjgWrYqebwU0kJ+7liJVZ8H8pWtltI5YqfeSyr7oNRmiaQ4keQlG34KuFOaGgo6tSpgxs3bqB+/fp8h6MXLl++jI4dO6pvh4aGAgCGDRuGDRs24OnTp+okAwBq1qyJgwcPYvLkyfj111/h6uqKNWvWlGmoKQAwLGvYY7A++ugj1KpVSz1u1xCNYzz4DoFUocIX+sJNAar7CycGhW+LmfInFoXPWU2iSBYK941QJQ0FL/SqfcUlFipvFytjNB6jecyixy7rvBiVwdCaQQoaNWoUZDIZ1q9fz3conEhLS4OVlRVm74+HsVnFK+I5mRn4Nqg5UlNTNfpYaBuDbgq5fv06Dh06pM7iCCEVV7hZo5pEiGoSIeyN3m7VJAJUkwjUt7k4n6rvhZhhYCwQqDuMvk9xI0f0ZQEzbSWTyTBz5kzUrFkTJiYmqF27NubOnYupU6di69atePjwIViWxaxZs+Ds7AwTExMEBATg1q1bfIdeLkIBV80hfL+S0jHoppAff/wRQ4YMQfXq1fkOhZAqV9pKReEKhKpSodpf+CcX7MwlAACZcphHnlzxM7tAKSFbVnRfaajifDuCxKCLtrz48ccfsWLFCmzcuBFeXl64fPkyhg8fDisrKwQHB+Pnn3+Gi4sLlixZgo0bN6JmzZqYOXMmAgMDcf36dRgbG/P9Esg7GGxicf/+fWzbtg1Xr17lOxTeRbD3qTnEAPD97dvaWnExELwjELkySZBLZWU+vqo5JSO/aPKhUrBJ5F1USZSMZat0KKqhNIOcO3cOvXr1Qo8ePQAAHh4e2Lp1Ky5evIiwsDC0bdsW5ubmmDFjBnr16gUA+P333+Ho6Ii9e/eif//+fIZfZrS6qYFYvHgxgoODUbduXb5DIUQrqUZRiBlG2byg2MxFAo2tpKYPOyMR7IxEsDETw8ZMXKFYrBzMYOVghmqWRqhmaQRzkQD2RiLlVr7mlLczeDIaVRq+EzBD0Lp1a0RHRyMxMREAcOXKFZw5cwbdu3dHs2bN4OPjg2fPnmlML21lZQVfX1/ExsbyFXa58TUqhC8GWbHIyMjA+vXrcejQIb5DIaTSve9CWbgJpKqGZFrVsCqyj1WWBWTKikV+Tr7iZ3Z+mY+vSBwUCYcwX1G5EEDxM0fLKxf6btq0aUhLS0P9+vUhFAohk8kwb948DBo0CADQq1cvnD59GjY2NhrPc3R0RHJyMh8hkzIwyMTijz/+QJ06dco86Qch5C3VsE/VEE9jY8XHichE8VNspugnIVQ+TrVfwEEPNMvqFgCA3LRcqKYGMkmXAgAkAkVSUrBJ5F2K63NBSUTl2r59OzZv3owtW7bAy8tLvUS3i4sLhg0bBl9fXwDAwYMHMWHCBJ6jrTgBR9UGAVUstBPLsvjtt98wZcoUMFo44x4hle19w0gLDydVzW6pSiDKu3jY+9jUrAYAyM+RqvepKhbSjDzFz0zFfblpUpSWkHmbBKlDzy9b5aLw8QBKOipi6tSpmDZtmrqvROPGjfHgwQOEh4dj2LBhcHFxAQCsXLlSI7FISUmBt7c3HyFXCFczvGrjLLHFMbjEIiYmBikpKTrX+aeyUQdOUlFmjop1dsTK/hTGlopagqpSIVJVNIwVlQymUOWCLdTRsjQsnBVzA+S8zoFYeXzh6xwAgCRXkZSk5pXtuMXNfVEVDKXjJgBkZWVBUGg4sFAohFw5+qdmzZpwcHDAjRs3EBcXBx8fH6SlpeHChQsYP348HyGTMjC4xGLFihUYMWJEmRZUIUQXlTQR1vuGlb6vUmEuUuw3N1J8fEjMK9YxszBbr5oAgLzMHPU+aXoWACD3TToAIOe1YgnnrBelX8oZeBu7Wn7RpKOqEwpDFBQUhHnz5sHd3R1eXl74+++/sWjRIowYMQIAwDAMQkNDMWvWLISFheHnn3/GzJkz4eLigt69e/MbfDkIGAYCDqoNXByjKhhUYpGcnIx9+/bh2rVrfIdCiN6zrKFo2pBYKCoZIjPFcFNVxUIg1vz4YZXfVuXSsnfUVBGZiGBhoqhiCFVJR3ougLJXLopfNdXwkg4PDw88ePCgyP4JEyZg2bJlyMnJwVdffYXIyEjk5uYiMDAQy5cvh6OjY4nHXLp0KWbOnIkJEybg2bNncHFxwdixYzFr1iz1Y77++mvcvn0ba9euRYsWLdCuXTscPnxYJ+ewEIKb0UYVm0qu6hjUlN7h4eE4ceIE/vrrL75D0VrUHKI/3lexKDzxlWrtD9V+1bd7VaVCtSiYmbJpw0jZ1GFso/igN1H+VO03slEkFOVNLFQVCwv3txeonJepAICs528AANnPXgMAMlMyFftfvq1gqKoZqcUkFhnKSoWqn0RmgWYYVcXiXdOAF3wuF7S5GeT58+eQyd7OK/Lvv/+iS5cuOHHiBPz9/TF+/HgcPHgQGzZsgJWVFUJCQiAQCHD27FlOzu/r64thw4bpZCdO1ZTeS6KvwsTcosLHy85IxxedG2v9lN4GU7GQyWRYtWqVQa8JQgifrDwVTRwCE0WiwUiU3zyVQ0IhV1y8WKkioZBnK5KF/LS0Mp+LETAwczDV3FkgwVAlTaWpYhQcJQIY3vBTe3t7jdvz589H7dq10aFDB6SmpmLt2rXYsmULOnXqBABYv349GjRogPPnz+ODDz6o8PnHjRuHX375BePHj9fZDveCAkueV/Q4usBgEovjx48jOzsbQUFBfIdCiFYr3LdCdRFWVSpUFQrVT1M7xQXczEHxjczY1kr5U/GNysi64t/UAEDi6AyJo7MithcpAIAMa0Wzh9jsOQBAZKKoaKQnZZTp2KpqTY6cVVdstGFBMm0jlUqxadMmhIaGgmEYxMXFIS8vT2Miq/r168Pd3R2xsbGcJBb9+vXDpEmTcOnSJbRq1arCxyOVz2ASi02bNmHgwIEQi7ntaEaItil9p03Npo+qHsomqtNM8Uuh8zIyxdBSNkeRHIhSXwIA5K+fles8JVUugLdJQ2pe2acQVzGUygUA7N27F2/evMFnn30GQNFvTSKRwNraWuNxXE5kZWpqik8++QSbN2/W2cSChpvqoaysLOzevRsnT57kOxRCdJK9k6IyYGKnGE1lrhxaauqgqEqYOtkCAMyUPwFAbK/oGyG0UuwTWCo6cwrMFM/h4jqsal4RK/tvqPptFBzKmvao9E0pqhExOXJ5gcrF2/sNsfNmQWvXrkX37t3V80xUlcGDB6N///74+eefIRLp3mWLRoXooaioKLi6uqJZs2Z8h6L1aD4L/Vd4IizVJbjwKqWqJhEzUeX2RZc61tO4LVBWLBipoo+FwEYxxFRkr6hc5D9/AiMbB8XvSfdKfR5TZVKkmi78VXYezEWqOStUC5iVbuRIwam+K0qbO24W9ODBAxw7dgy7d+9W73NycoJUKsWbN280qhYpKSlwcnLi7NwdOnSAWCzGsWPH0K1bN86OSyqHQSQWmzdvxuDBg3W24w8h2kZVqTCvrujYZ6b8KXZ0AwAI7asDABhrRdVCbmKlrlDkGSsrFiLVZNwVZ1arluJ8hSZdSnv4EhYuimpL2uP0Uh+vYMlZyLwdJWJIzR6FrV+/Hg4ODuoVSQHAx8cHYrEY0dHR6NOnDwDg5s2bePjwIadLJggEAgwcOBCbN2/WycRCwNHidjrSd1P/Vzd9/vw5jhw5goEDB/IdCiGVqvDKnKp2XdX+wu28b+9XbKrVPk2EDJyMhTARMrC1MYbYXAwjSyMYWRrBxMZYPay0sjzMVGzPWHM8Y82RYVEdGRbVkefgiTwHTwjcGyo2UwtI6jSBpE6TMh1f9RqsxEJYiYWQylmYixiYi97+G5SHtqyM+uTJEwwePBi2trYwMTFB48aNcfnyZfX9LMti1qxZcHZ2homJCQICAnDr1q13HlMul2P9+vUYNmyYRlOElZUVRo4cidDQUJw4cQJxcXEYPnw4/Pz8OOm4WdCgQYOwe/duZGSUrWOuNlCNCuFi0wV6X7HYvn07WrVqhZo1a/IdCiF6S1WpELnWAQCwVooyeL65opKRzSjmrsiQyoF8IDufBZQrjebJNTtOiivw4Wnq4aE4v2pOjDzFnBhv7r6Eqa2iKaQslQsZyxbpa6HNM3O+fv0abdq0QceOHXHo0CHY29vj1q1bGquELliwAEuWLMHGjRtRs2ZNzJw5E4GBgbh+/XqJk08dO3YMDx8+VM+MWdAvv/wCgUCAPn36aEyQxbUmTZqgVq1a2Ldvn3oVVKKd9D6x2Lx5M4YMGcJ3GIRoDVXVori+FarFuiTKybDUk11ZKhIDE1tFp00Te8WFyrRAZ02uXXuumMbb0Vxx7momip921ZQdNkXKDpvP70LiUR8AIL1/o8znKTjNd7ZM1ezBXR+KqvTjjz/Czc0N69evV+8r+KWKZVksXrwYM2bMQK9evQAAv//+OxwdHbF3794S11Dq2rUrSppL0djYGMuWLcOyZcs4fCVFMQyDQYMGYfPmzTqXWFDnTT1y584dXL58Gfv37+c7FJ1CHThJeakrFVaKUQOvlYuQvspWVA5SMhVDPV9nKzpoZhUzQZWR8kJvZVT+jyfT6or5LlSzd6p+vr77Rj3/Rp5y5dTsNznFHKGowp1eFSqWgHDdcTMqKgqBgYHo27cvTp48ierVq2PChAkYPXo0AODevXtITk7WmHfCysoKvr6+iI2N1frFGQcOHIhZs2bh2bNncHBw4DucUuOqmUwbmtpKQ68Ti23btiEwMBC2tpX3rYoQXVH4wlhwfgt1pUJZvVCtSKpaMdTISjVNt2KyKxPlJFhiO0XnTJGTOwBuhpAWdvmJYtIrDxvFfBS5VorEwMlCkcSoivdM8i2I3eoCAKS3/ynzeTLy5epJwbJlip95bMFPcu2vXty9excrVqxAaGgopk+fjkuXLuGLL76ARCLBsGHD1HNLFF7Hg8t5JyqTu7s7/Pz8sGPHDkycOJHvcEgJ9Dqx2LdvH8aOHct3GIQYrJRMRWXizitFs8bjNEV1IFlZJXijrFzIlP0WJAXmn7BVNoG42ZR/JWLVqJXcN4oOf7lpbyfHkipjM0lXlFXKOtRUG/tayOVytGjRAj/88AMAoFmzZvj3338RERGBYcOG8RwdN3r37o2oqCidSiyoKURPJCcnIy4uTmNoFCGG6F2z9an6FxSehVNVqRArl0SXWCgXGFNOoW1UTVGxENoqmhxgpShLyywUP1VNIFz6O0lRuchRJwCKCkZ1S0UMknzlGiMPr0PkouhXILt1tcznyZax6sqFqq9FpkzO6dwVlcXZ2RkNGzbU2NegQQPs2rULANRzS6SkpMDZ2Vn9mJSUFHh7e1dZnBURHByMb775BmlpaVq9EFdBQgEDIQcjOrg4RlXQ28TiwIEDaNWq1TuX7iWEVI1bLxSTXd14qhiR8Uh5OydLWbFQJgtCZaJjbKpIaNzszPDgpaLa4VW9/BcRU3trxfmUq6O+vvta3SFV8lpxLhNlDNmy0k3vXbC9u+C8FnzOddGmTRvcvHlTY19iYiJq1KgBQNGR08nJCdHR0epEIi0tDRcuXMD48eOrOtxyqV27NurWrYu//voLn3zyCd/hkGLobWIRFRWF4OBgvsPQWdSBU3cVXhuk6P639xdZQl15YRdIFKNCVJULkXJEhnrqbAtrxU/ldN0yE8UokUxWcZFWdda89/rtMuZc+e+ZIjkxVsZqpJw909FC8SVCbJ+qfqxqfRHV8uplVXyHTW5UxoybkydPRuvWrfHDDz/g008/xcWLF7Fq1SqsWrUKgGJkxaRJk/D999+jbt266uGmLi4u6N27N+fxVJagoCBERUXpTGJBTSF6ICsrC8eOHUN4eDjfoRBCCrij7IiZrkw4MlMVfR7ylYuAva1YKBKZrAxFm4q7iwUu33sFAGhRs1q5z69aaVVipqiYpD5IhcRMWbHIVJyrrBNkydiyT/F9GW+KzARcr1493LihGC6bk5ODr776CpGRkRpzQ7yvAtuyZUvs2bMHYWFh+O6771CzZk0sXrxYY3jm119/jczMTIwZMwZv3rxB27Ztcfjw4RLnsNBGwcHBCAoKQn5+vk6sHUKjQvRAdHR0sW2NhJC3iltxUaD85BKKNSsXQmPFqBCxmaIjJWOqbJYwUsxrwRop+l5kKIePqoaVPklX9HtQNYFw6f5rRROJnbLZxFI5WkRopqiiyO//A4FyTRFj26cAgMzkV+U6l+rfKVsm56ypw8vLC8eOHVPfLniBnDx5Mg4ePIgdO3bAysoKISEh+Pjjj3H27Nn3Hrdnz57o2bNnifczDIPvvvsO3333XcVeAI98fX0hEAgQGxuLdu3a8R0OKUQvE4v9+/cjODiY1gYhREu9UTZn5LxWDHHMy1aM2mCEyom5zBVVibxczbkK6nnY4NoTxWqlbeuUfxi5RNkpVTWsFgDEAlVHVkX1JDXv7QqnOWUcAVKapEMkEhW7UFdqairWrl2LLVu2oFOnTgAU63Q0aNAA58+f53yqbF0kFArRs2dPREVF6URiwXDUFKIr1zS9WytELpdj//79CAoK4jsUQrSSAICZUPOtryrVMkIBGKEAAuUmFKs2kWIzlkBoLAFjZAzGyBis2Ais2AhysTHkYmNk58uRnS9Hak4+UnPykfwmB8lvcvD4VRYev8pC+utsdTMIV1IypEjJkCJDKkeGVA65sQXkxhYQWtlCaGWL/KR7EFlaQmRpCYmFKSQWpmU+h0C5FVxbpaJu3boFFxcX1KpVC4MGDcLDhw8BAHFxccjLy9OYxKp+/fpwd3dHbGxshc+rL1T9LHSBalQIF5su0LuKRVxcHLKzs3UiiyXE0GW/TgHwtmKhkl/otlg5C+cj5dwWbevZ45EyQXGzKv88FyJl59TUB6kQSpSThEk1O7lWBgcY4ZsNq1GvXj08ffoU3377Ldq1a4d///0XycnJkEgkGsuQA7oziRXLsli7di1kMhmGDBkCU9OyJ3Kl0bVrVwwcOBCJiYnw9PSslHOQ8tG7xOL48ePo1KkTxGIx36EQovUKdwZjlDuYQncwygqHallyRqBosoBA8RGSr2wqyFeO1MxWdsZ8oxxOmqucCCtHOSlVbupzrl6CmmJhM4A1U/T7YIwV/T4EJorbaddvqEe1qBKK8lIsoa7ZYbMs81u4wwR9+/YFoFhcy9fXFzVq1MD27dthYlL+RIlvLMuCYRjY2Nhg6dKluHjxIhYvXgwLCwv1fVwxNzdH69atcfz4ca1PLATgZslzXWli0JU4Sy0mJgb+/v58h6EXKmM4HCEF5UuzFVtOhsYmzUyDNDMNuRmvkJvxCjlZUuWWh5ysPLzMkOJlhhRezpZIzc1Ham5+heIQSITqrfBy8xn5cs6aP1QKv7esra3h6emJ27dvw8nJCVKpFG/evNF4TEpKSrF9MrSJaqGyPn36YPny5bh+/TrCwsIgl8srpX+Av78/YmJiOD8u1wo2oVV00wV6lVjk5eXhzJkzlFgQUkoytoKjGxiBYivhuDKWhYxlIZcpNlm+HLJ8uTqhqAxyoRhyoRiscmMkxmAkxhBIROpNZCyByFgCoUQIoXLkC5fKOrwwIyMDd+7cgbOzM3x8fCAWixEdHa2+/+bNm3j48CH8/Pw4j7Wi5HK5OqEQCN7+LTRs2BBTp05FdHS0euXTklZILS9VYsH1cUnF6FViER8fD4lEgkaNGvEdCiGkDBiB8G3zSgGsTAZWJlMnJKpNKlNsufmKrZGDOfLkLPLKuX6HQMhAIGTw5k3OO5MCruYjmDJlCk6ePIn79+/j3Llz+OijjyAUCjFgwABYWVlh5MiRCA0NxYkTJxAXF4fhw4fDz89Pq0aEqBIKgUAAhmEglUoRFRWFa9euqR/Ts2dP9OvXD/PmzUNGRgbnVQtfX1+kpqYWmW1U26gmyOJi0wV61cciJiYGHTp00MiaCSGa3rXUFqssX6h/ylW3Fc+S5+Ur9yv6UDByxW31bJ7Kt55YefVVLSqmnh9DtTaJSNEJU1BMMsE55TlU/UNe33jwts9IObKEs/lvcEL2Cs0ZS7QXVIOQAfJZOU6xr3ALWZCBhTtM0B7VYITiX9/jx48xYMAAvHz5Evb29mjbti3Onz8Pe3vFomm//PILBAIB+vTpozFBljZRfc6ePXsWly5dQmpqKlavXo3JkyfDy8sLACCRSDBu3Dj8+uuviIyMxKhRoziNwcjICK1bt0ZMTAzq16/P6bFJ+enVFZj6VxCimyRmVpCYWUGs2kzMNTaRWAiRWAihSKDYKmnoXfHt2ooqRY5cjiR5DuJlabCHRON5J9nXuI9sBMIOveGITOTjMEruoBoZGYmkpCTk5ubi8ePHiIyMRO3atdX3GxsbY9myZXj16hUyMzOxe/duXvtXyIpZPyU/Px8hISEIDAzE9evXkZCQgNTUVJw7dw7PnimmUpfL5XByckLv3r3x+++/q/dxSRf6WQgF3G26QEfCfD/qX0HI+6kmfFL1fXi7KfpEsDI5WJkcsjwZZHmyt30j8vIhy8uHXLmxuTlgc3PA5OWCycuFUJ4HoTwPEiEDiZCBuUQEc4kItuYS2JpLYGqm2IzNxDA2E0NiUU2xmdtAYm5TOS+WZRWbXKbYKkjKyrE3/zl6iO1gVOCjM5eV4xqbjjawgStjAgfGCJ1gh2TkIgW57zii9lH1VVD9VCUBQuXEZQX7Mjx48AAHDhzA8uXLsWrVKuzZswdTpkxBfHw8zpw5A+DthE7dunXDrVu3kJGRwXlFWRf6WQgYrppD+H4lpaM3iQX1ryBE95naumhsxjZOMLZxgpmVEcysjGBsKoaxqRjWJorNVCyAqVgAsYCBWMCglqUQjFwGpoKJxPPcos8/lP8CdQQmqCXQnJfhGXIhB+CKt8NEbRgxzCHUmcTi+fPnCAsLw/bt2zX2q5KAHTt2oHfv3pg1axb++usvAIo5g2QyGdq3b69+/Pjx42FnZ4eTJ09CKpWqEwsrKyvUr19fo/8FV1q1aqUT/SwMid70saD+FZWDVjnVPW/nU9Bc5VSxv/ivPOq5GKRy5U/FhTVfuUqpLEdxgczLVIzkMMpSTKvNSDM1fpqKFYt8qdbvcLRUzBtRw04xl0SWcqGvvBxrjfOLTRRzTsjypaV+ne8iSbqq/p2VKtYrUfcPUfYXeXX7ZZHnlTQXxZX8dCSzuRgpql7kvkxWBiEAo0KjY0whRBaKJijaOIybYRhERUUhPT0dvXr1Ui9I9uLFC0yYMAEXLlxA3759cffuXezatQuTJ09Gp06d8OTJE3VVIz8/Hw4ODmjcuDGOHj2KK1euoGXLlgAABwcH3Lt3D7Vq1eI8dlU/ixMnTmhtPwsBR0NFdaXzpt5chc+dO4e2bdvyHQYhpJwsnNxh7VoH1q51YOXiBisXN1g7WMDawQIWNiawsDGBm50Z3OzM4GRtDCdrY9iYiGFjIoaJiIGJiAGTnwsmn9sqwRt5Hg5IX6C3yAEiRoDsYsbnam8R/t3kcjlyc3NhZ2eHTz75BFevXsWlS5fU9587dw7Xrl1DXFwcFi5ciM2bN6Nhw4aYPn063rx5g0aNGmHdunUA3jaXODk54cmTJzhx4oT6ODVq1IBYLEZqaioqQ9u2bbV6unNDGxWiN4lFXFwcfHx8+A6DEK2j6kdR8Pe380woNqmchVTOQs4qNplUDplUjvycfOTn5CMvMwd5mTmQpmVBmpYFeWY65JnpkKW+hCz1JQTZqRBkp8JSIoSlRAhbEzFeZOWhuqUx0nLyUNfRHBk5eXBzVFQmqjmbQ2wsRDUXW5haWcLa1aPSXr88OxPy7Ezk50g1NrlMXmBT9CUp/G8mY1k8keciAzKsyXuCebl3sSj/Hh4jB/FsGn6V3YcpI4Qcir4WBWVBBtMSRoXw4eXLohUagUAAIyPFyrXt27eHTCbDyZMn1ffv27cPo0aNgkQiQVhYGGrUqIFLly5hypQpqFevHkaPHo1ff/0Ve/fuhUwmw+PHj5GYmIj69evjypUrePz4MQDFuiiDBg2CnZ1dpbw2Hx8fxMXFVcqxSdnpRVNISkoKkpKS0KxZM75DIYSUk4ObFYC3Q1MBwMhE0aTiWk3Rr6G+s6KpxVXZxOJoprgomivX+RAom2jkmWmcxJSaJ0dNgSk+N3JDrnLoba6cxWHZc1RjxPBhrGABEQQAHiMbtaFo8nnN5iEDMjjCiJM4Kmr06NEQCARYuXIl5HK5usk4OTkZX3/9NaKjo9GtWzfcv38fsbGxuH37NurUqQOZTIZvvvkG33//PRo2bIgff/wRwcHB6vU/Pv/8c1y8eBETJkxAeHg4rl27htmzZ8Pf3x+LFy9W97Fo3LgxLCwsiqx/whUfHx/cuHEDmZmZMFNO6a5NuBrRoSujQvQisYiLi0PdunVhaWnJdyiEaK2Cs2wWXt9CxiouAFLlxVOSo+iPoOpjkafsGyFNz1L8fP0GACC0UXwLFtu8Rn41d4iyXyFdbI1qJkLUsFZc/PNkmt/kzY0VycIDM8WQTVW/C3mFpgAtXvaVc+rf8zMVfS3yC722jKdvFzwrLgQjRgBHxgg5yhlAslkWYghgAiHsGMVraABznMVrGLNCiMHgNF7DEUZakVjI5XKYm5ujRo0aADRnx1y0aBH++ecf7N27F69fv0Z2djb27duHc+fOoU6dOujbty/++OMP/PHHH/jwww/Vz3v8+DEOHjyIbt26YePGjTh79izOnj2LhQsXol27dli9ejUeP36svsibmZmp57aoDC4uLrC3t0dCQgLatGlTaecpL66aMXSlKURvEgtqBiFEtzWpYwvg7WRb1soOoE7KBAUAqlsofq9poxiBUc1E0dRgwiqSk1WrVmPl5h24/1BRgq/vbItverVH16Z1AQA5+fmYd/kaDj98Cmm+DC2trTHW1BE2wvcvWlhc0qHa1wbVwOAVDuM5ZGDhBmO0hW2ZXn9lEQgEOHv2rHqhLlXFIikpCdHR0ejVq5e6k2WXLl3QokULnDx5Eh999BE6duyImjVrYuPGjbCxsUGLFi3w+PFj/Pjjj3j58iU6deoEgUCAdu3aqVeUjo+PR0REBP73v/9VWoWiMIZh1M0h2phYGBq9SSxomXRi6FQXudJMJqmqIagqFKqf2crqgolyVIhUWU3ITVV0iJS8Tlc87qWiE57ESrGMN2NmCaFYcbE3t1E2U5iqvq0ryuZiZR3XUlmxcFUmBy8zlNUQWcUnTqru7Ih533yBWpI8sAA2Ru7GgF8jsa9/V3jaWmHOics4+eQZfmzRBHiViyWP7uP79AdYYFdL49/hfcWTfiJnjceLGAbtYYv2BZKJSijAFOvy5cu4du0aevXqVeRCLpPJIBQKUa9ePZw5cwbjx49Xz/dgZWWFGzduYN68eQAUozpEIhGCgoKwY8cOXLx4EZ07d8a6deswY8YMfPLJJ6hbty7Onz+PDh064Ntvv0XduoqE7dmzZ9i5cydWrlyJu3fvok+fPhg5cmTV/AMoaXM/C4ZRbFwcRxfoRWIRHx+PSZMm8R0GIaQCWtdSVSwUt03EimqElXKJc1V/CuBtpcJGOQGmULkMe88WiuGGeY9uAQC+CWiFNdGXkJD8Es7mJthx7R7m+TRCK/tqSM1NxzcetTHs2hXckGahvkRzfor3kZZzXRKuPHv2DOPHj8exY8dgbW2NlStXYvr06ejZs6c6oRAKhcjPz4eHhwcuXryo7oMgk8lgZmaGJk2aYM+ePejWrZu6P0SfPn3w/fff4/Tp0+jcuTPat2+PAwcOID4+Hnfu3MHvv/8Od3d3jVjs7OzQtGlTjB8/HgMHDuSlWdrHxwd79uyp8vOWhgAMBCUM9S7rcXSBjnQFKdnz58/x6NEj6rhZibRx3D15v8IjQDT3vXt0iDRPptgy8yDNzENumhS5aVJI03MgTc9Bzss05LxMQ/bzV2BMzCB7/gTsi8dgXzyGMO0phGlPYcXkworJhYu5GC7mYtSzNUU9W1M0dbJAUycLNHe1RnNXa/jVqga/WtW4f/0yOfbE30BWbj68TE0Rf+cp8uRyNDUyR05aLvIypXCWCWEnEON6biZScvKK+fdRbJkcVFMAbt5LqnkjDh48iDdv3uDJkyeIioqCs7MzZs6cCUBzpkyRSAR7e3tkZWXh4sWLAN72sxg5ciT++OMP3LlzR/2co0ePwszMDIcPH0Z8fDwAwNLSEv7+/hg5ciTc3d0hl8s1pvkWCARo06YNxo0bB0tLS8hkMs6n7n4fHx8fXL9+HVlZWVV6Xl2wbNkyeHh4wNjYGL6+vuq/g5IsXrwY9erVg4mJCdzc3DB58mTk5OSU+nw6X7FQddy0srLiOxRCSAU0d9b8litSjtQ0US5cZi5W/DRj8gAoFz9LVaxJwaQqmmTynz/Bv/ceo8Pnc5GTlw8zsRirPw1AHZEYN16nQSwQwEKs+bFnLRDitXIxtdIoaRKtqiIQCJCVlYWNGzciKCgI5ubmaNq0KUaOHInhw4dj//79CAoKgkwmA8MwYBgG/v7+2LJlC06ePImOHTuqqxOjRo3CihUr0LdvX/Vw0NjYWISGhsLc3Bw1a9bUOHdxy6MXd78qSalK1atXh52dHa5cuaJ1y8vz2RSybds2hIaGIiIiAr6+vli8eDECAwNx8+ZNODg4FHn8li1bMG3aNKxbtw6tW7dGYmIiPvvsMzAMg0WLFpXqnDqfWPz9999o3rw532EQovUKzrxZeHTI274WivtVk0BJlCMnVH0tsl8rvrWIjFNhXt0eWcmvIJQoOz4qVxFVdYMUyRTPtbBQrNhpYqGoSlgYKS5KDmaKR0qV5+KoKABPVyecnjMGadm52BF9CZP3ncT6zr6KO1kWeZl5AN6OCpEDyGcBaYHzq/49VLv4TiYKYxgGV69exYQJE9T7unTpglatWiEqKgpBQUHq5cwBoEmTJmjVqhVOnjyJixcvolWrVsjNzYWRkRE2bdqETZs2Yd26dUhLS8O0adMwfvz4YpOH9y17zvWy6GXBMAyaN2+O+Ph4rUssFGuFcHOcslq0aBFGjx6N4cOHAwAiIiJw8OBBrFu3DtOmTSvy+HPnzqFNmzYYOHAgAMDDwwMDBgzAhQsXSh9n2cPULjdv3kSDBg34DoMQUk7ulhLFZiXW3JT7HcX5cBTnwzz3FcxzX0H0+qF6Y14qtvzHt5H/+DbyUh6BefUUTiwLT2MJJnl7on41S2z85zas5ALksSzS8zWrE6nyfFhztHx7wWalynTnzh24urqqK7WXLl1C//79cezYMSQnJyMtLU19kVc1SQwfPhw2NjaYNWsWAMWS5gDQoEEDzJs3D8eOHcOjR48wceJECAQCsCyr1Qt7FadBgwZITEzkO4xKl5aWprHl5hY/26xUKkVcXBwCAgLU+wQCAQICAkqcqbR169aIi4tTN5fcvXsXf/75p8Zw4/fR+YrFzZs3ERgYyHcYhGiN0owOUX0Dl0Nz/orCo0MkytEhwjRFxUIoUVyAhWIhBOLXAACm8Kw9ygXAhMo1OkT2ivVFBKaKESXVTBQXQxsTxRwHFV939N3kLIs8uRwNrC0gAoMLyS/QztIGOTn5eJKfi5fyfHgITdSvPSP/belC2yoVKnXq1MG9e/fw22+/ITQ0FMnJyRg4cCD69euHR48eaVQOVJWHZs2aYe7cuWjTpg1WrlyJvn37olq1apDL5WAYBs7OipEuqtEhfFYfysvT0xN79+7lO4wiuG4KcXNz09g/e/ZszJkzp8jjX7x4AZlMBkdHR439jo6OuHHjRrHnGDhwIF68eIG2bduCZVnk5+dj3LhxmD59eqnj1PnEIjExUT0+mxCieySv7il+ESg/jlRTYyv7PTB5ym9juYqFzuSpikm5ZC+fqo+R9yIFAPC/9fvRqV4N2OTmIVOah13xibjw5DkWNW4EUYYM3axtsfLZE1gIRWDy8rEmPRm1RSaoLTJBal752mKqOvmQy+UwNjZG+/btERMTg+XLl6N9+/aoUaMGjh8/jj59+sDCwqLY53l5eWHVqlXYuHEj/v77b0RERBRp8hCJdPey4OnpqZUVC65HhTx69Ehj5I1qWnYuxMTE4IcffsDy5cvh6+uL27dv48svv8TcuXPVnYPfR3f/gqCY+/7Vq1fqsdSEkKI0VztVdq5jNCsVqmvL24oFlI9TVi6yFP0SmNcMTG1NkPUiS2PqbeDtqqEyqeKxJtmKRIBVTq8tsFIMJxUpf4avicTeI8dx4859mBgbw69FM/zwv6moV9tDfcycnFx8/e18bDvwF3KlUnRt0xJLJg2Ho611sa/1RUY2Pt9+DCmpmbAwEqOuhTmWt2+BJsolzUeYOYLNk+O7x3eRx8rRWGKOPsYOyJaxBeawKLhmSOGf/FcwBAIBcnNz4e3tjRs3bmDIkCHq+5KTk+Hr64v09PQiyYWqAvHpp5+idevW2L59O54+faquVOgDT09P3L9/X91/RF9ZWlqWakivnZ0dhEIhUlJSNPanpKTAycmp2OfMnDkTQ4YMwahRowAopmPPzMzEmDFj8L///a9UK4jrdGKRmJgIJycnmsqbEB10MuYkxnRvi5aNRyNfJsOslVvx4adDcGXrEpiZGIOVyxD60yocOhuHzTMnwFLIYnLENvSdPBvR341D7ivFJF2qyboAYG7rJkDrJsh6pkhmMlIUyU32C0VzjIQRYLxNdYy3qY5U5dTe5a1U8MnIyAgtW7bEH3/8gRMnTqBjx44AgD179sDBwaHYioUqsWBZFq6urpg0aVKpLhK6xMXFBSYmJrhz5w4aNmzIdzhvcdQUUtaih0QigY+PD6Kjo9G7d28AispVdHQ0QkJCin1OVlZWkb+LgsOXS0PnEwtqBiHk/YSFPtXedi5U/JKn6pchV1U0FLdVo0PU/Q7SpUUqFao1PuR5yjU4cjTXFTFJVfStkNgoJrGSmSkuevsXfAMAYIwUM3Wumfk5qnf/DPE37qBdMy+kZmRiw/7j2DhjAjo29wKblYZVk4bAe9x3uHjrIZraln2IeUZuvubrQdH+JXkaFYvCa6qgyH18admyJdq0aYMRI0Zgy5YtePDgAdLS0hAeHv7O56kSDH1LKgDFa6pbty4SExO1K7HgUWhoKIYNG4YWLVqgVatWWLx4MTIzM9WjRIYOHYrq1aur/26CgoKwaNEiNGvWTN0UMnPmTAQFBZV6GLHOJxb16tXjOwxCSCm8uanoSyGxVE7xbaZonhAo55V4oaw8mKclQ3qXxcWrt5GXn4/W1cTIufMf8jKzUR1AdWtznIy9Co9GtQEAucppxgEg+6WyQqEcFpuj/JmbVnyveV3m4uKCJUuWYMiQIRg8eDDS0tIwe/Zs1K5dGyzL6mTnSy5oYz8LPoeb9uvXD8+fP8esWbOQnJwMb29vHD58WN2h8+HDhxpJ5owZM8AwDGbMmIEnT57A3t4eQUFB6qnfS0PnEwtfX1++wyBEKxUcHaLZzwJQVSoKz2uh/rauHqohVx9D7Y3iIq2qVLCqvgl5iiepVg+Vpiku8rlvFKuHSixKnjJbLmfxzR9/ws/THV5uig+8lNQMSERCWJsaazzW3twUzzLKN7uiqlKRXaD0oBoBk1eoKlHaKburak2QwliWhZ2dHXbt2oWkpCTUqVOHn0C0jDYmFgzK3IpR4nHKIyQkpMSmj5iYGI3bIpEIs2fPxuzZs8t5Nj1ILAp2XCKEaI/0x4oKhDRdUTUQK5dJF5spEgWhsaJznVAswvRD5/Dv3STsHh6E1zceAAAyn7wAWBavEx8BAGQ5ioRGlpsH6ZsMpD9UNK2oFkjLVQ6JVfyeq/EzM7v0M2tWFq6nxldVJExNTdVJhWqoqCHz9PTEqVOn+A7DoOn0X+D9+/eLTDlLCHm/wn0s3n5LV+5WVkaFyttvv+EX6OiYrriQs6qZM5VzXuRlKEaFGFlKShXLzMOxiL71CDs/6wlnSzP1fntzE0hlcqTlSGFp/PZYL7NzYFeoilFaqtdRsGJReDRI4Z+K31FknzYy9KQCAGrWrIl79+7xHYYGAcNAwEHTFBfHqAo6+1eYmZmJtLQ0vRoqpc0i2PsYx3jwHQbRYlnKkRdS5ZTZ6iXXlZUEkYni40ZkrGgiERoLMf/v/3AiKQVrO/nC8mU63rx821+ihlQGkYDB0Us3EODqBLlUhvvpmUjKyEYdVoy0R4rH5imbXgr2o1AlN5n5imSnYGdNot+cnZ2RnJwMuVyuNR1UGXA0QVbFD1EldDaxePr0KcRiMWxtbfkOhRCtJmPf9pFQfeN+3yiRwhWMe7JMnMl/g8fyHKSxMowxdYGfsWKYt7lcMfXz7pyXOJL5CpmsDA2NzRDqUQuuRiVXFn74+zoOPXyKJe2aw0wkwotsRWJgLhbBWCSEhUSMj2u54ecrN2AlEcMEAiz45wYaW1uisbWVOnkoi7cVC81+FYrXWnTkB9E9zs7OyM/Px8uXL2Fvb893OAZJpxMLZ2dng+35TEhVypDLYM9I4C22wBZpMqRyVl0FkLEsDuW8xKGcVxhr7gI3sQRbM59hauJ/WOHkCRNVxcJY8XEjlCi+Re64o+g7MeK45hLO0z090cPJEayMxVh7V0jTpQg98zfyWDlaWlrhC6cayEjKUFcqVIuJSZWdR4vrmJlN2YLBMDMzg6WlJZ4+fao1iYUA3CzMpR31l/fT+cSCEPJ+hdcPed8oEfWICOUnWV2hGRoy5sUem2VZHMt5jd4mdmhhZAETIYMvLKtjxPNExGanoZNR8VXFk60UK1AKxYqx8Uwxi5sYCQQIrVkLoTVrQaacyEouLf/qIiWNACn4e2nmrKA8Rbs5Ozvj6dOnaNKkCd+hAIB6+XoujqMLKLEghBRpCimcYAgZaHxdkspZdRUgRZaHVFaGGgLFehuq6cBriYxxJSsDrUSKCbFU04KrOqCpKheqRcwKJxaqTqGqqcJVw1tlykpJ4Ymt3k5HXrR5I5urNdmJTlAlFoQfOptYJCUlUWJBiBZIZxWZhCWj+XFiJRDhjZz/YZ4FqSoVxfWnKFypKG4ECFUqdIOLiwuSkpL4DkONzwmy+KCzicXTp09p8TFCyqikJhFVZ86SKhcA+3YoKoA8Ofu2/4Jc8TMzXw6hQA6J8tMvT3nxfqVael15KNX9wjxGY//7YlYpPDxUFVfhykVxjyWGQdsqFlwvm67tdKUvSBHUFEKIdjBXVioyWM2+D+msDJYC7fruIpUrVjGVsVBubIGNKhL6QtsSC0OjXe/6MqDEgpDyK2vlouCQVQDIZ1nkKKsB5owQ5hDien4mbCCGVM4gh5XjviwHLYSW6tEjqmMLGc2rd+Ghr29jKhxz8U0VhafgVu0v2KuitNNzE/2gbYkFjQrREampqbCxseE7DEIMgpSVIx1v+0u8YfORIs+FMSOEvUAMX5EVTuW/hi0jhq1AjOi8V7BghGgoNHvHUavO+5KS4h779nalhkYqgY2NDVJTU/kOQ41GheiI9PR0mJsXP/yNEFI6JQ9DVVHc8ZTNxR55inrvCfkrnJADjRhzfAh7NIclcgRyROU9Rw7kcGOMMUjsDBnLFFOx0DxD4YpFybEWnwwUrlC8K2kghsHc3Bzp6envfyCpFDqZWLAsi4yMDFhYWPAdCiEGwZUxwSSBB4DiEwSGYdBeVA3tUU29v7QJQ2Up2PxRUhXiXZ06KTHRXRYWFsjIyOA7DDUaFaIDcnJyIJPJKLEghCOFKxdv97/te1HStN9v+2UUmPOimGOp+lYUTTgU+0tqPy48A0V5kgRiWCwsLLSuYqEjOQEndDKxUP3BUFMIIUSlLPNPUKVCv5mbmyMvLw+5ubkwMjLiOxyDo5OJRUZGBkQiEf3BEMKxwhfV4vteFF9xKHx/4Yv32wpGSZWL0sZInSvJu6mq2RkZGVpxnaCmEB2Qnp4OCwsLnekhSwjhXklDSEsz0qM0zyG6y8TEBAKBAOnp6bQCNg90MrHIyMigZhBCqkBxfS9KGjlS+P6i/TVUxyq+okEIVxiGgbm5udZ04DS04aZlnm/j1KlTCAoKgouLCxiGwd69ezXuz8jIQEhICFxdXWFiYoKGDRsiIiJC4zE5OTmYOHEibG1tYW5ujj59+iAlJUXjMVFRUfD09ES9evVw4MABjftUFQtCiP7QnAWz5K3o7JmFt6LPKXouzY3on4p04Fy2bBk8PDxgbGwMX19fXLx4UX3fzZs30aZNG7i6uuL7778v1fFUTSFcbLqgzIlFZmYmmjZtimXLlhV7f2hoKA4fPoxNmzbhv//+w6RJkxASEoKoqCj1YyZPnoz9+/djx44dOHnyJJKSkvDxxx+r78/NzcXEiROxfPly/Pbbbxg/fjykUqn6/qysLJiampY1dEJIOb3rIlxyElD8hf9tYvDuiz8hFWFmZobMzMwyP2/btm0IDQ3F7NmzER8fj6ZNmyIwMBDPnj0DAISEhGDw4MHYt28f9u3bh3PnznEdus4rc1NI9+7d0b179xLvP3fuHIYNGwZ/f38AwJgxY7By5UpcvHgRwcHBSE1Nxdq1a7FlyxZ06tQJALB+/Xo0aNAA58+fxwcffIDc3FwIhUJ4e3srghSJkJubC4lEAgCQyWQQiXSyFYcQnVfSN/yShqqWjJvOm+9/fLlOQ3ScUCiEXF54sPL7LVq0CKNHj8bw4cMBABERETh48CDWrVuHadOm4fXr1/Dx8UGTJk3g4uKCN2/evPeYDLgZbqojBQvupx5v3bo1oqKi8OTJE7AsixMnTiAxMRFdu3YFAMTFxSEvLw8BAQHq59SvXx/u7u6IjY0FAFhaWmL48OFwdnaGi4sLxo8fr9H0IZfLIRDoyqzphBBCqppAIChzYiGVShEXF6dxfRIIBAgICFBfn7777jsEBATA1NQUAoEAgYGB74+FYTjbdAHnX/uXLl2KMWPGwNXVFSKRCAKBAKtXr0b79u0BAMnJyZBIJLC2ttZ4nqOjI5KTk9W3Z8+ejUmTJkEgEBTpT0GJBSHap7SVjLePr5xSAlUoCFC+xOLFixeQyWRwdHTU2O/o6IgbN24AAD788EM8f/4caWlpsLe35yxefVIpicX58+cRFRWFGjVq4NSpU5g4cSJcXFw0ssDSsLKyKnY/JRb8iGDv8x0CKcE4xoPvEAjRKlevXsXjx48r5dhGRkZlSioYRrFVlI4ULLhNLLKzszF9+nTs2bMHPXr0AAA0adIECQkJWLhwIQICAuDk5ASpVIo3b95oVC1SUlLg5ORUqvOw1NGLEJ1BFQTCl9u3b5fp8XZ2dhAKhUVGKZbl+lQchmXBcHDd4uIYVYHTxCIvLw95eXlFqgkFO9H4+PhALBYjOjoaffr0AaAYvvPw4UP4+fmV6jwCgYCSCx7Qt2JCiK5o0qQJOnToUKbnSCQS+Pj4IDo6Gr179wagqJBHR0cjJCSkEqLUT2VOLDIyMjSywHv37iEhIQHVqlWDu7s7OnTogKlTp8LExAQ1atTAyZMn8fvvv2PRokUAFM0bI0eORGhoKKpVqwZLS0t8/vnn8PPzwwcffFCqGMrTdkYIIcRwlLfJPDQ0FMOGDUOLFi3QqlUrLF68GJmZmepRIuXCyhVbRXFxjCpQ5sTi8uXL6Nixo/p2aGgoAGDYsGHYsGEDIiMjERYWhkGDBuHVq1eoUaMG5s2bh3Hjxqmf88svv0AgEKBPnz7Izc1FYGAgli9fXuoYKLEghBDyLuVNLPr164fnz59j1qxZSE5Ohre3Nw4fPlykQ2dZMKwcDAdJARfHqAplTiz8/f3f2Qzh5OSE9evXv/MYxsbGWLZsWYmTbL0PJRaEEELepSKd/ENCQqjpowJ0cpYpIyMj5OTk8B0GIYQQLZWTk6OeVJF31BSi/bRpcRlCCCHaJyMjQ3vWlGJZxcbFcXSATk4GUZHFZQghhOg/WqySPzpbsaDEghBCSHHy8vKQm5sLc3NzvkNRoKYQ7WdhYYHs7GzIZDIIhUK+wyGEEKJFVE3l2lKxUEyQxcWoEGoKqTSqLJT6WRBCCClMVdE2NTXlORLDpJMVC1VikZ6eXuJ6IoQQQgxTeno6zM3NtWdNKQNrCtGSf/WyEQqFMDU1pYoFIYSQIrRqRIgB0smKBUAdOAkhhBRPVbHQGgZWsdDZxMLCwgJpaWl8h0EIIUTLaN1QUwNLLHSyKQQAHBwc8Pz5c77DIIQQomWePXsGBwcHvsMwWDpbsXB2dkZSUhLfYRBCCNEySUlJcHZ25juMt1g5wMX6VjpSsdDpxOLp06d8h0EIIUTLPH36VKsSC0Nb3VRnm0IosSCEEFIcbUssDI3OJhYuLi6UWBBCCCkiKSkJLi4ufIfxlqrzJhebDqCmEEIIIXpF6yoWtLqpbqDEghBCSGEymQwpKSnalVjwbNmyZfDw8ICxsTF8fX1x8eLFdz7+zZs3mDhxIpydnWFkZARPT0/8+eefpT6fTlcs3rx5g+zsbJiYmPAdDiGEEC3w/PlzyOVyODk58R3KWzzOY7Ft2zaEhoYiIiICvr6+WLx4MQIDA3Hz5s1ih+RKpVJ06dIFDg4O2LlzJ6pXr44HDx7A2tq61OfU2cTCzs4OIpEIT58+Ra1atfgOR++NYzz4DoEQQt4rKSkJNjY2MDY25jsUNT5XN120aBFGjx6N4cOHAwAiIiJw8OBBrFu3DtOmTSvy+HXr1uHVq1c4d+4cxGIxAMDDw6NM59TZphCBQAAXFxc8fvyY71AIIYRoicePH6N69ep8h1Gp0tLSNLbc3NxiHyeVShEXF4eAgAD1PoFAgICAAMTGxhb7nKioKPj5+WHixIlwdHREo0aN8MMPP0Amk5U6Pp1NLACgbt26uHXrFt9hEELIe1HVr2rcunULnp6efIehieNRIW5ubrCyslJv4eHhxZ72xYsXkMlkcHR01Njv6OiI5OTkYp9z9+5d7Ny5EzKZDH/++SdmzpyJn3/+Gd9//32pX67ONoUAgKenJ27evMl3GIQQQrREYmKi9iYWXBwHwKNHj2BpaanebWRkVPFjK8nlcjg4OGDVqlUQCoXw8fHBkydP8NNPP2H27NmlOoZOVyw8PT2RmJjIdxiEEEK0hFYmFhyztLTU2EpKLOzs7CAUCpGSkqKxPyUlpcTOrc7OzvD09IRQKFTva9CgAZKTkyGVSksVHyUWhBBC9IZWJhY8TZAlkUjg4+OD6Oho9T65XI7o6Gj4+fkV+5w2bdrg9u3bkBdY2yQxMRHOzs6QSCSlOq9OJxb16tXD7du3y9SphBBCiH7KyMhAUlIS6tWrx3coGlRrhXCxlVVoaChWr16NjRs34r///sP48eORmZmpHiUydOhQhIWFqR8/fvx4vHr1Cl9++SUSExNx8OBB/PDDD5g4cWKpz6nTfSxq1KgBAHjw4AENOSWEEAN369Yt2NjYwNbWlu9QtEa/fv3w/PlzzJo1C8nJyfD29sbhw4fVHTofPnwIgeBtjcHNzQ1HjhzB5MmT0aRJE1SvXh1ffvklvvnmm1KfU6cTC5FIhNq1ayMxMZESC0IIMXCqZhCGYfgORZOco2XTy3mMkJAQhISEFHtfTExMkX1+fn44f/58uc4F6HhTCED9LAghhChoZf8KA6TTFQuAhpwSQghR0NrEghYh0y2NGjXClStX+A6DEEIIzxISEtC4cWO+wyjKwJZN1/nEwsfHBwkJCTQyhBBCDFhWVhauX78OHx8fvkMxeDqfWNSvXx9yuZz6WVQimoqYEG7Qe6ny/PPPP7C1tYWrqyvfoRTB53BTPuh8YiESieDt7Y24uDi+QyGEEMKTuLg4+Pj4aN+IEICaQnSRj48PJRaEEGLAVIkF4R8lFoQQQnSeVicWLMtRxYJGhVQZHx8f/P333xpzmxNCCDEM2dnZuHbtmhYnFjJAzsHG6sYgBb1ILBo0aID8/HzqwEkIIQbon3/+gY2NDdzc3PgOhUBPEguRSISmTZtScwghhBiguLg4NG/eXDs7bgJg5XLONl2gF4kFALRq1QoXLlzgOwxCCCFV7MKFC2jZsiXfYZSMi2YQ1aYD9Cax6NChA06ePMl3GIQQQqrYyZMn4e/vz3cYRElvEov27dvj33//xcuXL/kORa/QhD6EcIveU9y6d+8ekpKS4Ofnx3coJaOKhW6yt7dHw4YNcerUKb5DIYQQUkViYmLQqlUrmJmZ8R1KiViZjLNNF+hNYgEA/v7+xa4tTwghRD/FxMRQM4iWocSCEEKITmJZVjcSC7mcu00HiPgOgEuqfhYvXryAnZ0d3+EQQgipRPfv38fTp0+1u38FoEwKOGjG0JHEQq8qFtTPghBCDIcu9K8wRHqVWADUHEIIIYbixIkT2t8MAoCVyzjbdIFeJhbHjx/nOwy9QMPiCKkc9N6qOJZlceLECXTo0IHvUN6P5ah/BS2bzo/OnTvj5s2buH//Pt+hEEIIqST//PMPXr9+jXbt2vEdCilE7xILa2trtG/fHvv37+c7FEIIIZUkKioKXbt2hbGxMd+hvBc1heiB4OBgSiwIIUSP7d+/H8HBwXyHQYqhl4lFUFAQYmJikJqayncohBBCOJaUlIT4+Hj06NGD71BKh6b01n21atWCp6cnjhw5wncohBBCOHbw4EH4+vrC3t6e71BKx8AmyNLLxAJQNIdERUXxHQYhhBCORUVFUTOIFtPbxCIoKAh//vkn8vPz+Q5FJ9FwOEIqF73HyicrKwvHjh3TqcSCFiHTE61atYJYLMbZs2f5DoUQQghHjh07BldXV9SvX5/vUEpPNaV3hTdqCuGVUChEjx49sG/fPr5DIYQQwpGoqCgEBQWBYRi+QyEl0NvEAgD69OmDHTt2QK4jWR4hhJCSSaVS7N69G3369OE7lLKhUSH6o2vXrsjJyaFFyQghRA8cOnQIVlZWaN26Nd+hlAkrl3O26QK9TizEYjH69++PTZs28R2KTqFOZYRUDXqvlc2mTZswePBgagbRcnqdWADAoEGDsHPnTuTk5PAdCiGEkHJKTU3F/v37MWjQIL5DKTtqCtEvvr6+sLOzw8GDB/kOhRBCSDnt2rULjRo10q3RICosR0kFS4mFVmAYBoMGDcLmzZv5DoUQQkg5bd68WTerFQZIxHcAVWHQoEFo3LgxXr9+DRsbG77DIYQQUgZPnjzBqVOndLa/HFcdL6nzphbx9PRE06ZNsXPnTr5D0XrUmYyQqkXvuffbunUrOnbsCGdnZ75DKR+aIEs/DR48WGezXUIIMWSq0SBENxhMYjFgwACcP38eiYmJfIdCCCGklC5fvow7d+7go48+4juU8qNRIfrJ3t4eH3/8MVatWsV3KIQQQkpp5cqVGDRoECwsLPgOpdxoETI9NnbsWKxfv57mtCCEEB2QmpqKLVu2YOzYsXyHQsrAoBKLDh06wN7eHrt27eI7FK1EncgI4Qe994q3efNmNGrUCM2aNeM7lIqRy7nbdIBBJRYMw2DcuHFYvnw536EQQgh5B5ZlsWLFCqpW6CCDSiwAYNiwYUhISMDff//Ndyhahb4xEcIveg9qOnXqFJKSkjBgwAC+Q6k46ryp32xsbDB48GD89ttvfIdCCCGkBEuXLsWoUaNgYmLCdygVxsplnG26wOASCwAICQnBli1b8PLlS75DIYQQUsijR4+wf/9+jB8/nu9Q9MKyZcvg4eEBY2Nj+Pr64uLFi6V6XmRkJBiGQe/evct0PoNMLBo3bgxfX1+sWbOG71AIIYQUEhERge7du8PDw4PvUDihmtKbi62stm3bhtDQUMyePRvx8fFo2rQpAgMD8ezZs3c+7/79+5gyZQratWtX5nMaZGIBAJMnT8aSJUuQm5vLdyiEEEKU0tPTsXz5ckyaNInvUDjDylmwMnnFNzlb5nMvWrQIo0ePxvDhw9GwYUNERETA1NQU69atK/E5MpkMgwYNwrfffotatWqV+ZwGm1gEBQXB2toav//+O9+hEEIIUVq5ciXq16+PDh068B2KzpNKpYiLi0NAQIB6n0AgQEBAAGJjY0t83nfffQcHBweMHDmyXOc12MRCIBDgm2++wYIFCyDTkdnMKgv1RidEOxj6ezE3NxeLFi1CWFgYGIbhOxzOcFKtUG4AkJaWprGVVHl/8eIFZDIZHB0dNfY7OjoiOTm52OecOXMGa9euxerVq8v9eg02sQAU64fk5eXRqqeEEKIFNm7ciGrVqqFnz558h8IprvtYuLm5wcrKSr2Fh4dzEmd6ejqGDBmC1atXw87OrtzHEXESjY4Si8WYOnUqwsPD8emnn+pVhkwIIbokPz8fCxYswJw5cyAQGPR33vd69OgRLC0t1beNjIyKfZydnR2EQiFSUlI09qekpMDJyanI4+/cuYP79+8jKChIvU+uTGZEIhFu3ryJ2rVrvzc+g//fGzFiBJ4+fYrDhw/zHQovDL30Soi2MdT35M6dOyGTydC/f3++Q+Ec100hlpaWGltJiYVEIoGPjw+io6PV++RyOaKjo+Hn51fk8fXr18fVq1eRkJCg3oKDg9GxY0ckJCTAzc2tVK/XoCsWAGBiYoJJkybhhx9+QPfu3fkOhxBCDA7LsggPD8fUqVMhEunfZalgUlDR45RVaGgohg0bhhYtWqBVq1ZYvHgxMjMzMXz4cADA0KFDUb16dYSHh8PY2BiNGjXSeL61tTUAFNn/Lvr3P1gOEyZMwPz583HmzBm0bduW73AIIcSg/Pnnn0hOTlZf7Ah3+vXrh+fPn2PWrFlITk6Gt7c3Dh8+rO7Q+fDhQ86bnhiWZcs+MFYPhYWFISEhAYcOHeI7lCpjqCVXQnRBBHuf7xCqBMuyaNOmDYKDgzFt2jS+w+FUWloarKyscG/B57AwKb65oizSs3NR8+ulSE1N1ehjoW0Mvo+FyldffYVz587h1KlTfIdCCCEG48CBA7h9+zYmTpzIdyiVhmU5GhXC0rLpOsXOzg5Tp07FN998A0Mo4lC1ghDtZgjvUZlMhrCwMMycORMWFhZ8h0M4QolFAZMmTcK9e/ewb98+vkMhhBC9t2nTJmRmZmLs2LF8h1KpuB4Vou0osSjA3NwcM2fOxPTp0w1+Nk5CCKlMubm5mDVrFubOnQuJRMJ3OJWKEgsDN3r0aOTm5tIaIoQQUolWrFgBa2trDBw4kO9QCMcosShEIpHg+++/x+zZs5GTk8N3OJXCENpuCdEH+vpeTUtLw7x58xAeHm4Qs2yycpajKb11o/+f/v+PlkO/fv1gZ2eHZcuW8R0KIYTonYULF6Jhw4Y0KaGeogmyiiEQCBAeHo6BAwdi5MiR6pnHCCGEVExKSgoWLVqEY8eOGcz6THKZHHIO+kdwcYyqQBWLEnTt2hXNmjXD3Llz+Q6FU/paWiVEX+nbe/Z///sfAgMD8cEHH/AdSpUxtM6bVLEoAcMwWLJkCXx8fDB8+PAyzZNOCCGkqPPnz2Pr1q24du0a36GQSkQVi3do2LAhQkJCEBISYhCTZhFCSGWRyWSYOHEiwsLC4OHhwXc4VcrQKhaUWLzHrFmzcOvWLWzdupXvUCpM30qqhBgKfXjvrlq1CqmpqZgyZQrfoVQ5mtKbaLCwsMDPP/+MKVOmIC0tje9wCCFE5zx//hzTp0/H0qVLYWxszHc4pJJRYlEK/fr1Q/369fHtt9/yHQohhOicsLAwdOjQwWCHlxpaUwh13iwFhmGwdOlStGjRAiNGjICXlxffIRFCiE6gDpvgLCmgxELPeHl5YeLEiQgJCcHx48d1bvy1PrTR6pMI9j7fIZQK/d1oj3GMh8783aioOmxOmzbN4DpsGjJKLMpg9uzZqF+/Pn7//XcMGzaM73BKjS4OlUvXPuzLojyvjf7eKo+uJRfLli1Damoqpk6dyncovJLL5ZDLOZggi4NjVAVKLMrAwsICERERGDp0KLp06QIXFxe+QyJVQJc+yLXB+/69KPEwDLdv38b06dNx4MABg++waWhNIQxLEzSU2dChQ/Hq1Svs379f65tE6EO8dCh50A7091o62v73KpfL4e/vj6ZNm2Lp0qV8h8ObtLQ0WFlZ4UrIp7AwqvjS8Om5UjT9bTtSU1NhaWnJQYSVgyoW5fDrr7/Cy8tL55pEDJ22fxiTd/8fUdKhO5YuXYonT57g0KFDfIeiFRQVCxknx9EFlFiUg42NDVatWoUhQ4YgICAA1atX5zskokTJg/6ipEM33Lp1C//73/9w8OBBmJmZ8R2OVlBNcMXFcXQBJRbl1LNnTwQHB2PMmDE4cOCA1jeJ6CNKIohKcX8LlGxUPblcjhEjRmDEiBHo0KED3+EQnlBiUQGLFy9Go0aNsGHDBgwfPpzvcIrQxw9WSiZIaRX8W9G394K2jg5ZsmQJnj59isOHD/MdilZh5Rx13qSKhf5TNYkMGjQIXbp0gaurK98h6RVt/OAkuokqGpXv1q1bmDFjBg4dOkRNIIVxNWumjvSxoFEhHPjss8/w5MkTHDlyBAKBdsySrqsfmpRMED7Q+6Vi8vLy0L59e/j6+mLx4sV8h6M1VKNC4kcEw1wirvDxMqR5aL4uikaFGIIlS5bAx8cH8+fPx/Tp0/kOR2doy4ciIVTRqJgZM2YgKysL8+fP5zsUrSSXySHnoNrAxTGqAiUWHLC0tMS2bdvQrl07tG/fHm3btuU1Hm3+QKRkgugKXeijoQ19LQ4fPozly5fj0qVLBj8RFlGgxIIjzZs3x/z58zFgwAAkJCTA1taWlzi08QOQ7w8+QipKF5IMPiQlJWHIkCFYvnw56tevz3c4WsvQhptSHwsOsSyLjz/+GPn5+YiKiuJlCKq2fOhRMkEMgSG/32QyGTp37oyaNWti/fr1VX5+XaDqY3FxYDfO+li02nKY+lgYEoZhsG7dOjRr1gyLFy/G5MmTq/T8fH7IUSJBDFHhv3ttSTSqwty5c5GSkoKDBw/yHQrRMpRYcMzGxgaRkZHo3Lkz2rRpg1atWvEdUqWhZIIQTYbSZHL8+HEsXLgQ586do6GlpcDKWLCyijcOcHGMqkCJRSX44IMPMGfOHPTv3x/x8fGwtrau9HNW1YcYJROElE5VJhlV2Ynz2bNnGDRoEBYtWoQmTZpUyTl1nVzO0agQHeljoR2TLuihr776Cg0aNMDgwYMh42DxGb5FsPcpqSCknKri/VMVXy6kUin69u0Lf39/jB49utLPR3QTJRaVRCAQYPPmzeoFeSpTZX6gUEJBCHd0/f305ZdfIi0tDWvWrKH1kcqAlbOcbbqAmkIqkbW1NaKiovDBBx+gcePGGDRoEN8hlZouf/gRou1U7y+uvxRUZpPIihUrsGvXLly+fJn6VZSRXAbIBRVPCuQ6UvymxKKS1atXD5GRkejTpw88PT3RsmVLvkN6J0ooCKk6lZVgcO3EiROYMmUKjhw5And3d77DIVqOEosqEBgYiO+++w69e/fGpUuX4OLiwtmxK/qBRIkEIfzjctgq11WLu3fv4pNPPsGSJUt4n1VYV7EyOVgBBxNk6ciU3tTHoopMnjwZXbp0wUcffYScnBxOjklJBSH6qaLvTa4qIOnp6QgODsbgwYMxcuRITo5piFTDTbnYdAElFlWEYRhERERAIBBgzJgx4HPCU13vQEaIIeD7fSqXyzF48GA4Ozvj559/5i0OonsosahCxsbG2L17N44fP17hVQDL842E7w8qQkjZlfd9W9GqRVhYGK5fv45t27ZBJKJW84qQy1jONl1Afy1VzNnZGQcOHECHDh3g5OSE4cOHV8l5KaEgRLdFsPerrJPnr7/+irVr1+Ls2bOoVq1alZxTnxlaHwtKLHjg7e2NvXv3omfPnrC3t0fPnj3L9PyyfLhQQkGI/ijrKJLydOSMjIzEjBkzEB0djXr16pUtQEJAiQVvOnbsiI0bN6J///44evQo/Pz8OD0+JRSE6K/KGqZ69OhRjBw5Ert27dLrdY6qmpxlIedgciu5jixGTn0sePTJJ5/gp59+Qs+ePXH9+vVSPac0HySUVBBiGErzXi9t8nH58mX06dMHK1euRLdu3SoWGNHE1YgQ6mNBSmP8+PFITk5GYGAgzp07Bzc3txIf+74PCEooCDE8palevK9J5NatW/jwww8xZ84cDB48mNsAicGhxEILzJkzB8nJyejWrRtOnz5dbGepd31oUEJBCHlfglFScqH6YvPZZ58hNDS08gI0YHKZHHKGg9VNdaTzJjWFaAGGYbB8+XLUq1cPPXv2REZGRqmeR8NHCSGFleVz4fXr1+jevTvatWtX4SHwRHstW7YMHh4eMDY2hq+vLy5evFjiY1evXo127drBxsYGNjY2CAgIeOfji0OJhZYQCoXYsmULTExM0KNHD2RmZqrvK+4bCCUUhJB3Ke4zouBnyZs3b9C1a1e4u7tjzZo1EAjoclBZ+Jx5c9u2bQgNDcXs2bMRHx+Ppk2bIjAwEM+ePSv28TExMRgwYABOnDiB2NhYuLm5oWvXrnjy5Empz8mwfE4BSYrIyspCjx49IBAIsH//foSaNdS4nxIKQkhZFf5ysiD1H3Tt2hV2dnbYtWsXjIyM+AlMz6WlpcHKygpHfD+AGQeTjGXm5yPwwnmkpqbC0tKyVM/x9fVFy5Yt8dtvvwFQzKjq5uaGzz//HNOmTXvv82UyGWxsbPDbb79h6NChpTonpahaxtTUFPv370deXh569+6NfCja1KjZgxBSXgU/P6SQo3v37rCxscHOnTspqdBjUqkUcXFxCAgIUO8TCAQICAhAbGxsqY6RlZWFvLy8Mk2URomFFjI3N8fBgweRmZmJh13q45es//gOiRCiBxak/oPENu4wMzPD7t27YWxszHdIBkEuk3O2AYpKSMEtNze32PO+ePECMpkMjo6OGvsdHR2RnJxcqti/+eYbuLi4aCQn70OJhZaysLDA4cOHkZ2djZ49eyIrK4vvkAghOiw1NRWBgYEwNzfHvn37YGJiwndIBoNlWbByDjZlzwU3NzdYWVmpt/Dw8EqJe/78+YiMjMSePXvKlIRSYqHFLCwscOjQIchkMvTo0aPUo0UIIaSgN2/eoEuXLqhWrRr27t1LSYWOe/ToEVJTU9VbWFhYsY+zs7ODUChESkqKxv6UlBQ4OTm98xwLFy7E/Pnz8ddff6FJkyZlio8SCy2nahYRCATo1q0bXr9+zXdIhBAd8uzZM3Tu3BnOzs7U/METrlc3tbS01NhK6icjkUjg4+OD6Ojot7HI5YiOjn7nMhILFizA3LlzcfjwYbRo0aLMr5cSCx1gZmaGAwcOwNbWFu3bt0dSUhLfIRFCdMC9e/fQpk0b1KtXDzt27KCOmjxRDBWVc7CVfRBnaGgoVq9ejY0bN+K///7D+PHjkZmZqV5Ze+jQoRoVjx9//BEzZ87EunXr4OHhgeTkZCQnJ5epYk6JhY4wMTFRLwzUunVr3Lx5k++QCCFaLCEhAa1bt0aPHj2wadMmSCQSvkMiPOjXrx8WLlyIWbNmwdvbGwkJCTh8+LC6Q+fDhw/x9OlT9eNXrFgBqVSKTz75BM7Ozupt4cKFpT4nzWOhY1iWxYwZM7By5Ur8+eeftAIhIaSImJgY9O7dG9OmTcM333wDhmH4DskgqeaxiGrYHGZCYYWPlymTIfh6fJnmseADrRWiYxiGwbx58+Do6IjOnTtjx44dtBIhIURt586dGDZsGH777Td1uZvwSy5jIQcHy6bryOqm1BRSSuHh4WjZsiUsLCzg4OCA3r17azRHvHr1Cp9//jnq1asHExMTuLu744svvkBqaqrGcRiGKbJFRkZqPObbb7+Fq6sr2rZti8TExGLj+eKLL7B69Wr06dMHmzZt4v4FE0J0zooVK/DZZ59h27ZtxSYVK1asQJMmTdSd/vz8/HDo0CH1/atWrYK/vz8sLS3BMAzevHlT5BgeHh5FPsMKrzOyevVq1KhRA82aNcOFCxc4f51Eu1HFopROnjyJiRMnomXLlsjPz8f06dPRtWtXXL9+HWZmZkhKSkJSUhIWLlyIhg0b4sGDBxg3bhySkpKwc+dOjWOtX79eo8pgbW2t/v3s2bM4ePAg9u3bhwsXLiAkJAR//fVXsTH1798fdnZ2+Pjjj5GSkoLQ0FAqeRJigFiWxZw5c7B06VL89ddfaN26dbGPc3V1xfz581G3bl2wLIuNGzeiV69e+Pvvv+Hl5YWsrCx069YN3bp1K3EIIwB89913GD16tPq2hYWF+veHDx9iwYIFiIyMxJMnTzB8+HBcv36duxerg1i5HCwHn82sXDdWN6XEopQOHz6scXvDhg1wcHBAXFwc2rdvj0aNGmHXrl3q+2vXro158+Zh8ODByM/Ph6jAPPHW1tYljiF+/fo1XFxc0KRJE+Tn52PDhg3vjCsgIAAnTpxAjx49cPPmTfz222/USYsQA5KVlYWRI0fi7NmzOH36NLy8vEp8bFBQkMbtefPmYcWKFTh//jy8vLwwadIkAIo+Gu9iYWFR4mdYWloarK2t0aRJEzg5OSE7O7tMr0cfUVMIKRVVE8e75k9XdbARFVp8ZuLEibCzs0OrVq2wbt06FOw/GxgYiJycHJiamqJbt26lmlHNx8cHly5dQlxcHDp37lziqnWEEP3y+PFjtG/fHo8ePcKlS5femVQUJpPJEBkZiczMzHfOaVCc+fPnw9bWFs2aNcNPP/2E/Px89X2NGjVCkyZNYGVlBS8vL3z//fdlOjbRfVSxKAe5XI5JkyahTZs2aNSoUbGPefHiBebOnYsxY8Zo7P/uu+/QqVMnmJqa4q+//sKECROQkZGBL774AgAgFotx+PBhPHv2DNbW1qWuPri5ueH06dMYMWIEWrZsiX379sHb27tCr5MQor3Onz+P3r17o2fPnli2bFmp56i4evUq/Pz8kJOTA3Nzc+zZswcNGzZ8/xOVvvjiCzRv3hzVqlXDuXPnEBYWhqdPn2LRokXqx6xduxYLFiyAqakpzfIJKKbj5qBiwcp1o2JBw03LYfz48Th06BDOnDkDV1fXIvenpaWpp8+NioqCWCwu8VizZs3C+vXr8ejRI05iY1kW4eHhCA8Px4YNG9CnTx9OjksI0R4bN27EhAkTMH/+fISEhJSpb5VUKsXDhw+RmpqKnTt3Ys2aNTh58qRGchETE4OOHTvi9evXGn3AirNu3TqMHTsWGRkZNAFXIarhpjvdvGAqqPhw0yy5DJ88uqb1w02pKaSMQkJCcODAAZw4caLYpCI9PR3dunWDhYUF9uzZ886kAgB8fX3x+PHjElenKyuGYTB9+nRs2rQJw4cPx5w5cyDXkQ4/hJB3k8lkmDJlCiZPnox9+/bh888/L3OHbYlEgjp16sDHxwfh4eFo2rQpfv3113LH5Ovri/z8fNy/f7/cxyD6hZpCSollWXz++efYs2cPYmJiULNmzSKPSUtLQ2BgIIyMjBAVFVWqOfkTEhJgY2PDeabfq1cvnDt3DsHBwbh69So2btwIc3NzTs9BCKk6b968wYABA/DgwQNcuHABdevW5eS4crm8Ql9sEhISIBAI4ODgwEk8+kguYyHnoHFAriNNIZRYlNLEiROxZcsW7Nu3DxYWFuq17K2srGBiYoK0tDR07doVWVlZ2LRpE9LS0pCWlgYAsLe3h1AoxP79+5GSkoIPPvgAxsbGOHr0KH744QdMmTKlUmJu1KgRLl26hL59+6JVq1bYtm0bGjduXCnnIoRUnkuXLqF///5o0KABYmNjYWVlVa7jhIWFoXv37nB3d0d6ejq2bNmCmJgYHDlyBADU60Lcvn0bgKI/hoWFBdzd3VGtWjXExsbiwoUL6NixIywsLBAbG4vJkydj8ODBsLGx4ez16htWxoKLXge60seCmkJKacWKFUhNTYW/v7/G/Onbtm0DAMTHx+PChQu4evUq6tSpo/EYVf8JsViMZcuWwc/PD97e3li5ciUWLVqE2bNnV1rctra2+Ouvv9C3b1/4+flh9erVnPyBE0IqH8uyWLx4Mfz9/TF27FhERUWVO6kAFCudDh06FPXq1UPnzp1x6dIlHDlyBF26dAEAREREoFmzZuo5Ktq3b49mzZohKioKAGBkZITIyEh06NABXl5emDdvHiZPnoxVq1ZV/MUSvUGdNw1IdHQ0Bg8eDH9/f6xcuVKrO/8QYuhevXqF4cOHIyEhAVu3bi1x0iuivVSdN7c61Oes8+aAZzeo8ybRHp07d0ZCQgJevnyJ5s2bIz4+nu+QCCHFOHv2LLy9vSEQCPD3339TUkF0CiUWBsbR0RGHDx/GqFGj0K5dOyxZsoSaRgjREnK5HOHh4ejatSumTp2K3bt3v3MSPqIbZCzL2aYLqPOmARIIBJg2bRratWuH/v3748SJE1izZg1sbW35Do0Qg5WcnIxhw4bhzp07OHXqFHx8fPgOiXBExio2Lo6jC6hiYcDatGmDhIQEAEDDhg2xZ88efgMixACxLIvNmzfDy8sL9vb2iI+Pp6SC6DSqWBg4W1tb7N69G1u2bMHIkSOxY8cOLF26lKoXhFSB5ORkjBs3DrGxsVi7di169+7Nd0ikEnDVjKErTSFUsSBgGAaDBg3CtWvXkJmZCS8vL+zdu5fvsAjRWyzLYsuWLfDy8oKpqSmuX79OSYUeUzWFcLHpAkosiJqzszP27t2LhQsXYsSIERg0aBBevnzJd1iE6JXk5GR8/PHHmDx5MlavXo0tW7ZQhZDoFUosiAaGYTB48GBcu3YN6enp8PLywr59+/gOixCdx7Istm7dCi8vLxgZGeHatWv4+OOP+Q6LVAE5RyNCuJgWvCpQYkGK5ezsjH379uGnn37CZ599hj59+uDhw4d8h0WITrp9+zZ69OiBL7/8EqtWrUJkZCTs7Oz4DotUERk4agrh+4WUEiUWpEQMw2DIkCG4ceMGLC0t0bBhQ/zwww+crcRKiL7LysrCzJkz0aRJE3h4eODGjRvo06cP32ERUqkosSDv5ejoiPXr1+Ovv/7Cjh070LhxY/WiRYSQoliWxd69e9GwYUMcPXoUp0+fxvLly2myKwNlaBNkUWJBSq1169a4dOkSvvjiC/Tr14+aRwgphqrZY/To0Zg5cybOnTtH81IYOBoVQsg7iEQihISEIDExkZpHCCmgcLPHzZs3MXLkSAgE9DFLDAv9xZNycXBw0GgeqV+/PjZt2gS5XM53aIRUqfz8fKxZswaenp7U7EGKRRULQsqgdevWuHz5Mr777jvMmDEDzZo1w8GDB2lhM6L3WJbFrl270KhRIyxYsAC//PILNXuQYlEfC0LKSCgUYsiQIbh58yZGjBiBzz77DB06dEBsbCzfoRFSKU6cOIEPPvgAn3/+OSZPnoxr166hb9++1OxBCCixIBwyMjLCl19+iTt37qBjx47o2rUrevfujevXr/MdGiGc+Pvvv9GtWzd89NFH6N27N27duoWxY8dCLBbzHRrRYnKOmkHkulGwoMSCcM/S0hLffvstbt++DTc3N/j4+GD48OG4desW36ERUi7Xrl3DgAED0KZNGzRu3Bh37txBWFgYzMzM+A6N6ABqCiGEI46Ojli6dCmuXbsGlmXRuHFj9OvXT71UOyHa7sKFC+jduzdatGgBS0tL3Lx5Ez/99BOt7UHIO1BiQSpdrVq1sGHDBty8eROOjo5o3bo1unfvjtOnT/MdGiFFsCyLo0ePolOnTggICEDdunVx584drFy5Em5ubnyHR3QQjQohpJLUqFEDS5Yswf379+Hj44OgoCC0bduWRpEQrSCXy7F79260atUKAwYMQMeOHfHgwQP89NNPcHFx4Ts8QnQGJRakyjk4OOD777/Hw4cPERQUhJEjR8Lb2xubN2+GVCrlOzxiYHJycrBu3Tp4eXnhyy+/xODBg/HgwQPMnDmT5qIgnFBUG7joY8H3KykdhqWvioRn2dnZ2LBhA3755RekpaVh7NixGDt2LH1LJJXqwYMHiIiIwOrVq+Ho6IgpU6Zg0KBBkEgkfIdG9ERaWhqsrKwww7gWjJmKf4/PYeX4PucuUlNTYWlpyUGElYMqFoR3JiYmGD9+PG7cuIENGzbg8uXLqFmzJvr3749Tp05RMwnhjFwux7Fjx/Dxxx/D09MTN2/exI4dO/Dvv/9i+PDhlFQQwgFKLIjWEAgE6NatGw4ePIhr166hevXq+Oijj+Dl5YVff/0Vr1+/5jtEoqOeP3+On376CZ6enhg4cCDq1auHxMRE7N69Gx07dgTDMHyHSPSYoQ03paYQotVycnKwc+dOREREID4+Hp988gkGDx6MTp06QSQS8R0e0WJ5eXn466+/8Mcff2Dv3r1o3bo1xo0bh969e1NlglQJVVPINKOaMOKgKSSXlWN+7j1qCiGkIoyNjTF48GCcOXMGFy9ehIODAz777DO4ublh8uTJiIuLo6YSosayLGJjYxESEgIXFxeMHz8eHh4euHLlCo4fP45PP/2UkgpCKhlVLIjOkclkiImJwaZNm7Br1y64uLhg8ODBGDhwIGrVqsV3eIQHN2/exObNm7F582a8evUKffv2xeDBg9G2bVtav4PwRlWxmCrx4Kxi8ZP0vtZXLCixIDotOzsb+/fvx6ZNm3D48GG0bNkSAwYMQHBwMNzd3fkOj1Siu3fvYt++fdiyZQuuXr2Knj17YtCgQfjwww9hZGTEd3iEqBOLUDF3icWiPEosCKkyL168wI4dO7B9+3acOXMGXl5eCA4ORnBwMJo3b07fXHWcTCbDxYsXsX//fkRFRSExMREdOnRAv3798Mknn8Da2prvEAnRQIkFIXrk9evXOHToEKKionDo0CGYmZkhKCgIQUFB6Ny5M0xMTPgOkZRCZmYmjh49iqioKBw8eBB5eXno0aMHgoKCEBgYCCsrK75DJKREqsTiS1ENzhKLX/MfUGJBCN+kUilOnz6NqKgoREVFISUlBV26dEHnzp3h7++PRo0aUTVDS8hkMly5cgUxMTGIjo5GdHQ03Nzc0KtXLwQFBaFNmzY0GojoDFViESLkLrH4TUaJBSFahWVZXLt2DQcOHEBMTAzOnDkDIyMjdOjQAR07doS/vz+8vLwo0agiMpkM//zzD2JiYhATE4NTp05BJpOhffv28Pf3R8+ePVGvXj2aZ4LoJEosCDFAeXl5iIuLU1/Yzpw5A2NjY3To0AH+/v7w8/ND48aNqTMgR7Kzs3H16lWcO3cOJ06cKJJI+Pv7w9vbm6oSRC+oEovxAnfOEosV8oeUWBCiSwonGhcuXEBmZiYaNWoEHx8f9da4cWMYGxvzHa5Wy87OxpUrVxAXF6ferl27Bmtra/j6+qorRJRIEH2lSizGMu6QcJBYSFk5VrKUWBCi01iWxb179xAXF4f4+Hj1BTItLU2dbHh7e6N+/frw9PSEq6urwTWjyGQyPHz4ELdu3cKNGzfw999/Iy4uDtevX0e1atXUyVjz5s3h4+MDd3d3atogBoESC0JIqbAsiwcPHqiTjCtXriAxMRH37t2DWCxG3bp1UbduXXh6empsdnZ2OntBZVkWz549Q2JiYpHt9u3bkMvlqFWrFjw9PeHt7a1OJlxdXXX2NRNSUarEYhTcOEss1uARJRaEGAqpVIp79+4Ve/FNSkqCiYkJnJ2d1ZuLi0uR205OTrC0tKyyaadzc3ORmpqK5ORkPH36FE+fPkVSUpL694K3c3Nz4erqWiRh8vT0hIeHB8RicZXETIiuUCUWw+EGCQcraEghx3pKLAghAJCeno7Hjx8Xe8EuuKWnpwMAxGIxLCwsYGFhAXNz8yK/m5iYQCAQaGyAYlnwgltWVhYyMjKQnp6O9PT0Ir/n5eUBACwtLd+Z8Dg7O8PV1RVmZma8/RsSomtUicUgVOcssdiMJ5RYEEJKLysrq8QkoODP7OxssCyrTiBkMhkYhtFINBiGgampqToZKS5BMTc3h6WlJU0YRkglyMnJQc2aNZGcnMzZMZ2cnHDv3j2t7jxOiQUhhBBSSXJyciCVSjk7nkQi0eqkAqDEghBCCCEcMqxxcYQQQgipVJRYEEIIIYQzlFgQQgghhDOUWBBCCCGEM5RYEEIIIYQzlFgQQgghhDOUWBBCCCGEM5RYEEIIIYQzlFgQQgghhDOUWBBCCCGEM5RYEKIlwsPD0bJlS1hYWMDBwQG9e/fGzZs31fffv38fDMMUu+3YsUP9uIcPH6JHjx4wNTWFg4MDpk6divz8fI1zffvtt3B1dUXbtm2RmJhYZa+REKL/KLEgREucPHkSEydOxPnz53H06FHk5eWha9euyMzMBAC4ubkVWWb922+/hbm5Obp37w4AkMlk6NGjB6RSKc6dO4eNGzdiw4YNmDVrlvo8Z8+excGDB7Fv3z4MHDgQISEhvLxeQoh+okXICNFSz58/h4ODA06ePIn27dsX+5hmzZqhefPmWLt2LQDg0KFD6NmzJ5KSkuDo6AgAiIiIwDfffIPnz59DIpHgwIEDWLNmDXbs2IH4+Hh8/vnnuHjxYpW9LkKIfqOKBSFaKjU1FQBQrVq1Yu+Pi4tDQkICRo4cqd4XGxuLxo0bq5MKAAgMDERaWhquXbumvp2TkwNTU1N069YN4eHhlfgqCCGGRsR3AISQouRyOSZNmoQ2bdqgUaNGxT5m7dq1aNCgAVq3bq3el5ycrJFUAFDfTk5OBgCIxWIcPnwYz549g7W1NSQSSSW9CkKIIaLEghAtNHHiRPz77784c+ZMsfdnZ2djy5YtmDlzZrnP4eDgUO7nEkJISagphBAtExISggMHDuDEiRNwdXUt9jE7d+5EVlYWhg4dqrHfyckJKSkpGvtUt52cnConYEIIKYASC0K0BMuyCAkJwZ49e3D8+HHUrFmzxMeuXbsWwcHBsLe319jv5+eHq1ev4tmzZ+p9R48ehaWlJRo2bFhpsRNCiAqNCiFES0yYMAFbtmzBvn37UK9ePfV+KysrmJiYqG/fvn0bnp6e+PPPP9GtWzeNY8hkMnh7e8PFxQULFixAcnIyhgwZglGjRuGHH36ostdCCDFclFgQoiUYhil2//r16/HZZ5+pb0+fPh2bNm3C/fv3IRAULTo+ePAA48ePR0xMDMzMzDBs2DDMnz8fIhF1qSKEVD5KLAghhBDCGepjQQghhBDOUGJBCCGEEM5QYkEIIYQQzlBiQQghhBDOUGJBCCGEEM5QYkEIIYQQzlBiQQghhBDOUGJBCCGEEM5QYkEIIYQQzlBiQQghhBDOUGJBCE8aNGiANWvW/L+dewtpso/jAP517dDMrVo6ELODBkFMPME6IBTS4aJ0EASGkdGCuqtlKzpAYMguYhYZ5E0R0UVY0AEsMYhsKJXQjFZkpowO1I09rc1tLdy/i/fteXte52u9PU3S7we8+P+f3/+w5+rrs/+eceuGhoZgtVoRDAbHrFm1ahX27Nmj3ub+VlNTA6/Xq/q8RDR5MVgQTYBYLIb+/n4UFxePW9vY2AiHw4EFCxb8/o39y5EjR9DY2IhQKJT2tYnoz8RgQTQBAoEAhBCw2Wz/WReNRnH27Fk4nc407UzJZrOhsLAQFy9enJD1iejPw2BBlEa9vb2orKxERUUFkskk5s2bh5MnT45Zf/PmTRgMBixbtkzuGx4extatW5GVlYXc3NyUX1Ukk0l4PB4sXLgQRqMRxcXFuHLliqImHA6jtrYWM2bMQG5uLk6cOJHyK5WqqipcunTplz43EU0dDBZEaTIwMICVK1eisrIS1dXV2LhxI+rr6+FyudDb25tyjM/nQ3l5uaLP7Xajs7MT169fR0dHB+7evYtHjx4pajweDy5cuICWlhY8ffoULpcLW7ZsQWdnp1yzd+9edHV14caNG7h9+zZ8Pt+oeQDAbrfj4cOH+Pz586/fBCKa/AQRpcXq1avFtm3bhBBC2O124fV6xcjIiDCbzeLUqVMpxzgcDrF9+3a5HQ6HhV6vF62trXLf0NCQMBqNYvfu3UIIIeLxuMjMzBTd3d2KuZxOp9i8ebMQQohPnz4JnU4nLl++LF//+PGjyMzMlOf55vHjxwKACAaD//uzE9HUoZ3oYEM0Fbx//x537txBd3c3RkZG8OTJE3g8Hmg0GkybNg16vT7luFgshunTp8vtgYEBJBIJLF26VO6zWCxYvHix3H758iWi0SjWrFmjmCuRSKC0tBQAMDg4iC9fvsBut8vXZ86cqZjnG6PRCOCv8x5ERONhsCBKg/v37yOZTKKkpAR9fX2IxWIoKSlBMBiEJElYsWJFynHZ2dmQJOmn1opEIgCAtrY25OXlKa4ZDIaf3vuHDx8AADk5OT89loimHp6xIEqDRCIBAIjH4/D7/Zg/fz4sFgtaWlpgs9lQVFSUclxpaSmePXsmtwsLC6HT6fDgwQO5T5IkvHjxQm4vWbIEBoMBr169wqJFixR/+fn5AICCggLodDr09PTI40KhkGKebwKBAObOnYvs7OxfuwlENCXwiQVRGixfvhxarRYNDQ2IRCIoKCjA6dOn0dzcjHv37o05bt26dTh48CAkScLs2bORlZUFp9MJt9uNOXPmwGq14vDhw9Bo/vkfwWQyYd++fXC5XEgmk6ioqEAoFEJXVxfMZjPq6upgMplQV1cHt9sNi8UCq9WKo0ePQqPRICMjQ7EHn8+HtWvX/rZ7Q0STC4MFURrk5+fj3LlzOHDgAN69ewetVotoNIr29vZRv/r4XlFREcrKytDa2oqdO3cCAI4fP45IJIKqqiqYTCbU19ePeoHVsWPHkJOTA4/Hg8HBQcyaNQtlZWU4dOiQXNPU1IRdu3Zhw4YNMJvN2L9/P16/fq040xGPx3Ht2jW0t7erfEeIaLLKEEKIid4E0VRisVhw/vx5VFdX/1B9W1sb3G43AoGA4smE2oaHh5GXlwev1yu/kOvMmTO4evUqOjo6ftu6RDS58IkFURq9efMGkiSN+8bN761fvx79/f14+/atfEZCDX6/H8+fP4fdbkcoFEJDQwMAwOFwyDU6nQ7Nzc2qrUlEkx+fWBCl0a1bt7Bp0yaEw+FRZxnSze/3Y8eOHejr64Ner0d5eTmamprGPEhKRPQjGCyIiIhINfy5KREREamGwYKIiIhUw2BBREREqmGwICIiItUwWBAREZFqGCyIiIhINQwWREREpBoGCyIiIlINgwURERGphsGCiIiIVMNgQURERKr5CqTfLFiPp2dIAAAAAElFTkSuQmCC", "text/plain": [ "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 538.8/538.8 kB \u2022 38.3 MB/s \u2022 0:00:00\n\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m538.8/538.8 kB\u001b[0m \u2022 \u001b[31m38.3 MB/s\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "202a2a71da9542038c4db82fd7d0c398": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_d8480942d3494093a210b27b685481d0", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 6.22e-08) \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n\n", "text/plain": "% done (field decay = 6.22e-08) \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "21991feb1021497886af6ef00f724fd5": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_bea2ee594e684323b9620fb8d4c09051", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 537.6/537.6 kB \u2022 45.7 MB/s \u2022 0:00:00\n\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m537.6/537.6 kB\u001b[0m \u2022 \u001b[31m45.7 MB/s\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "28a40a0df3a34855affc760d6980389b": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_7d74d4337474428586021821eba888a8", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 7.5/7.5 kB \u2022 ? \u2022 0:00:00\n\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m7.5/7.5 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "29bf6128f6984b06b4cd47d569030835": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_dce6d28bb6804b1a8b4eb46c0b328c39", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 3.4/3.4 kB \u2022 ? \u2022 0:00:00\n\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m3.4/3.4 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "2c21f45cde2446c0bbe4dd6eadb1bda3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2f092d83367b49d3aac48c5a325ccd2e": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_bd67331c8a5543019c57925554b037b6", "msg_id": "", "outputs": [ { "data": { "text/html": "
Computing projected fields \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n\n", "text/plain": "Computing projected fields \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "3e3b845357f84ff9850b22956b95312f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3f7516a855904496b92b402ab0016518": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_a3c297659baf4ad2ba2614db576a466c", "msg_id": "", "outputs": [ { "data": { "text/html": "
Processing surface monitor 'near_field'... \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n\n", "text/plain": "Processing surface monitor 'near_field'... \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "496d27f53d66449dbfe66132a190e494": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "53e86978e17443dea9360faa140dbe90": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "54d76bb458404dba821f8e8a95800431": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_496d27f53d66449dbfe66132a190e494", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 7.4/7.4 kB \u2022 ? \u2022 0:00:00\n\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m7.4/7.4 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "56fd7626d03145afb4d817b35fb28b5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "597bba80998647458de735c40c3ba03e": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_6ed1ddd214d84cb4a0c5133cbae7a676", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 868.4/868.4 kB \u2022 17.0 MB/s \u2022 0:00:00\n\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m868.4/868.4 kB\u001b[0m \u2022 \u001b[31m17.0 MB/s\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "6415496e533547b9b5e67e68aed0a806": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6670547da2f549b8a255c7b3ffd0b455": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_fd725c2fc0e64f4c92d47bee2be63517", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83c\udfc3 Starting 'aperture_4'...\n\n", "text/plain": "\u001b[32m\ud83c\udfc3 \u001b[0m \u001b[1;32mStarting 'aperture_4'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "6c5b896351d74d2bad6ddcc853b772cc": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_07d77c7005ce477f8f54bb8e438e6818", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 538.0/538.0 kB \u2022 9.3 MB/s \u2022 0:00:00\n\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m538.0/538.0 kB\u001b[0m \u2022 \u001b[31m9.3 MB/s\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "6d2576f899b14a23897aeaddeba98708": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6ddba32f597749b3b77de0c4f204c4a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6ed1ddd214d84cb4a0c5133cbae7a676": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6f1ac3283e1f43ef87a69953d7f1638b": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_56fd7626d03145afb4d817b35fb28b5f", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83d\udeb6 Starting 'aperture_2'...\n\n", "text/plain": "\u001b[32m\ud83d\udeb6 \u001b[0m \u001b[1;32mStarting 'aperture_2'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "7225ecf5e0024949aaf8ee3b2e5e38b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7274f38e16864001a95caa5aeca5b9cf": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_f734877e3e0743eb9a6d4d89dbd91b4b", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83c\udfc3 Starting 'kspace_monitor'...\n\n", "text/plain": "\u001b[32m\ud83c\udfc3 \u001b[0m \u001b[1;32mStarting 'kspace_monitor'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "7565cbc4756a4a9083d7472fbbfedbc9": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_3e3b845357f84ff9850b22956b95312f", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 7.2/7.2 kB \u2022 ? \u2022 0:00:00\n\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m7.2/7.2 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "76c1e0d4a8714f8fa3c9e8855545ba8c": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_7225ecf5e0024949aaf8ee3b2e5e38b2", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83d\udeb6 Finishing 'aperture_3'...\n\n", "text/plain": "\u001b[32m\ud83d\udeb6 \u001b[0m \u001b[1;32mFinishing 'aperture_3'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "773dcbb7f6bc4839933c384df9235b51": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_a3f24e10850043eb9787f44b204962c9", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83d\udeb6 Starting 'aperture_1'...\n\n", "text/plain": "\u001b[32m\ud83d\udeb6 \u001b[0m \u001b[1;32mStarting 'aperture_1'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "7d74d4337474428586021821eba888a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "83621abff29a45a79961c5cf547f3648": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8b902925c8d8463fb107d7a7361cd221": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_cc23616371f04c28be966ce014211f31", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 1.7/1.7 MB \u2022 23.3 MB/s \u2022 0:00:00\n\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m1.7/1.7 MB\u001b[0m \u2022 \u001b[31m23.3 MB/s\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "8effb48835484fd2ae6c08ae965a1e40": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_6415496e533547b9b5e67e68aed0a806", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83d\udeb6 Finishing 'aperture_2'...\n\n", "text/plain": "\u001b[32m\ud83d\udeb6 \u001b[0m \u001b[1;32mFinishing 'aperture_2'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "9e787e9592ce43828fdc698f7fb81284": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_0eca4191705e4e0191b04ae6513afd9c", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 6.22e-08) \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n\n", "text/plain": "% done (field decay = 6.22e-08) \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "a3c297659baf4ad2ba2614db576a466c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a3f24e10850043eb9787f44b204962c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a4cca6c15deb4290987b32e144212ff0": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_6d2576f899b14a23897aeaddeba98708", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 0.00e+00) \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n\n", "text/plain": "% done (field decay = 0.00e+00) \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "aa7be23bca0845b683c2931ccd16f0e9": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_d72b698344294b9594534877e3379aeb", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 3.7/3.7 kB \u2022 ? \u2022 0:00:00\n\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m3.7/3.7 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "aaeb6411f5d544c0b2de7c3ab04ceee2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ac3b9816d9e64ae2902cc0676bfc15cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b1dc154904054d7fad0925c94e5c9e79": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_d888f7dc662541058a7d2aea63c59e0d", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83d\udeb6 Finishing 'kspace_monitor'...\n\n", "text/plain": "\u001b[32m\ud83d\udeb6 \u001b[0m \u001b[1;32mFinishing 'kspace_monitor'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "b282e954a25c4028b1a84edb9cea719c": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_aaeb6411f5d544c0b2de7c3ab04ceee2", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83d\udeb6 Starting 'aperture_3'...\n\n", "text/plain": "\u001b[32m\ud83d\udeb6 \u001b[0m \u001b[1;32mStarting 'aperture_3'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "bd67331c8a5543019c57925554b037b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bea2ee594e684323b9620fb8d4c09051": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c4a572ca9f8147ac9d53fbce74263f57": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_6ddba32f597749b3b77de0c4f204c4a0", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 2.97e-08) \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n\n", "text/plain": "% done (field decay = 2.97e-08) \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "cc23616371f04c28be966ce014211f31": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "cf1e0fb3d24642bba097958c0b64db0e": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_53e86978e17443dea9360faa140dbe90", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83c\udfc3 Finishing 'aperture_4'...\n\n", "text/plain": "\u001b[32m\ud83c\udfc3 \u001b[0m \u001b[1;32mFinishing 'aperture_4'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "d72b698344294b9594534877e3379aeb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d8480942d3494093a210b27b685481d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d888f7dc662541058a7d2aea63c59e0d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d8de6da843d24856bcabfbeab4739d3f": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_ac3b9816d9e64ae2902cc0676bfc15cd", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83d\udeb6 Finishing 'aperture_1'...\n\n", "text/plain": "\u001b[32m\ud83d\udeb6 \u001b[0m \u001b[1;32mFinishing 'aperture_1'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "dce6d28bb6804b1a8b4eb46c0b328c39": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f57b696a4e43481f8a47a2e4a255fe2a": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_000025ebf9f1460b9c4f7d3fbf3c7f9a", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 0.00e+00) \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n\n", "text/plain": "% done (field decay = 0.00e+00) \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "f734877e3e0743eb9a6d4d89dbd91b4b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "fa801c38971c43eaa8ce274e44e452da": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_83621abff29a45a79961c5cf547f3648", "msg_id": "", "outputs": [ { "data": { "text/html": "
Computing projected fields \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n\n", "text/plain": "Computing projected fields \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "fd725c2fc0e64f4c92d47bee2be63517": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 4 }