tidy3d.ModeMonitor
tidy3d.ModeMonitor#
- class tidy3d.ModeMonitor#
- Bases: - tidy3d.components.monitor.AbstractModeMonitor- Monitorthat records amplitudes from modal decomposition of fields on plane.- Parameters
- center (Tuple[float, float, float] = (0.0, 0.0, 0.0)) – [units = um]. Center of object in x, y, and z. 
- size (Tuple[NonNegativeFloat, NonNegativeFloat, NonNegativeFloat]) – [units = um]. Size in x, y, and z directions. 
- name (ConstrainedStrValue) – Unique name for monitor. 
- freqs (Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]) – [units = Hz]. Array or list of frequencies stored by the field monitor. 
- apodization (ApodizationSpec = ApodizationSpec(start=None, end=None, width=None, type='ApodizationSpec')) – Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields. 
- mode_spec (ModeSpec) – Parameters to feed to mode solver which determine modes measured by monitor. 
 
 - Example - >>> mode_spec = ModeSpec(num_modes=3) >>> monitor = ModeMonitor( ... center=(1,2,3), ... size=(2,2,0), ... freqs=[200e12, 210e12], ... mode_spec=mode_spec, ... name='mode_monitor') - Show JSON schema- { "title": "ModeMonitor", "description": ":class:`Monitor` that records amplitudes from modal decomposition of fields on plane.\n\nParameters\n----------\ncenter : Tuple[float, float, float] = (0.0, 0.0, 0.0)\n [units = um]. Center of object in x, y, and z.\nsize : Tuple[NonNegativeFloat, NonNegativeFloat, NonNegativeFloat]\n [units = um]. Size in x, y, and z directions.\nname : ConstrainedStrValue\n Unique name for monitor.\nfreqs : Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]\n [units = Hz]. Array or list of frequencies stored by the field monitor.\napodization : ApodizationSpec = ApodizationSpec(start=None, end=None, width=None, type='ApodizationSpec')\n Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.\nmode_spec : ModeSpec\n Parameters to feed to mode solver which determine modes measured by monitor.\n\nExample\n-------\n>>> mode_spec = ModeSpec(num_modes=3)\n>>> monitor = ModeMonitor(\n... center=(1,2,3),\n... size=(2,2,0),\n... freqs=[200e12, 210e12],\n... mode_spec=mode_spec,\n... name='mode_monitor')", "type": "object", "properties": { "type": { "title": "Type", "default": "ModeMonitor", "enum": [ "ModeMonitor" ], "type": "string" }, "center": { "title": "Center", "description": "Center of object in x, y, and z.", "default": [ 0.0, 0.0, 0.0 ], "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number" }, { "type": "number" }, { "type": "number" } ] }, "size": { "title": "Size", "description": "Size in x, y, and z directions.", "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 } ] }, "name": { "title": "Name", "description": "Unique name for monitor.", "minLength": 1, "type": "string" }, "freqs": { "title": "Frequencies", "description": "Array or list of frequencies stored by the field monitor.", "units": "Hz", "anyOf": [ { "type": "array", "items": { "type": "number" } }, { "title": "ArrayLike", "type": "ArrayLike" } ] }, "apodization": { "title": "Apodization Specification", "description": "Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.", "default": { "start": null, "end": null, "width": null, "type": "ApodizationSpec" }, "allOf": [ { "$ref": "#/definitions/ApodizationSpec" } ] }, "mode_spec": { "title": "Mode Specification", "description": "Parameters to feed to mode solver which determine modes measured by monitor.", "allOf": [ { "$ref": "#/definitions/ModeSpec" } ] } }, "required": [ "size", "name", "freqs", "mode_spec" ], "additionalProperties": false, "definitions": { "ApodizationSpec": { "title": "ApodizationSpec", "description": "Stores specifications for the apodizaton of frequency-domain monitors.\n\nParameters\n----------\nstart : Optional[NonNegativeFloat] = None\n [units = sec]. Defines the time at which the start apodization ends.\nend : Optional[NonNegativeFloat] = None\n [units = sec]. Defines the time at which the end apodization begins.\nwidth : Optional[PositiveFloat] = None\n [units = sec]. Characteristic decay length of the apodization function.\n\nExample\n-------\n>>> apod_spec = ApodizationSpec(start=1, end=2, width=0.5)", "type": "object", "properties": { "start": { "title": "Start Interval", "description": "Defines the time at which the start apodization ends.", "units": "sec", "minimum": 0, "type": "number" }, "end": { "title": "End Interval", "description": "Defines the time at which the end apodization begins.", "units": "sec", "minimum": 0, "type": "number" }, "width": { "title": "Apodization Width", "description": "Characteristic decay length of the apodization function.", "units": "sec", "exclusiveMinimum": 0, "type": "number" }, "type": { "title": "Type", "default": "ApodizationSpec", "enum": [ "ApodizationSpec" ], "type": "string" } }, "additionalProperties": false }, "ModeSpec": { "title": "ModeSpec", "description": "Stores specifications for the mode solver to find an electromagntic mode.\nNote, the planar axes are found by popping the injection axis from {x,y,z}.\nFor example, if injection axis is y, the planar axes are ordered {x,z}.\n\nParameters\n----------\nnum_modes : PositiveInt = 1\n Number of modes returned by mode solver.\ntarget_neff : Optional[PositiveFloat] = None\n Guess for effective index of the mode.\nnum_pml : Tuple[NonNegativeInt, NonNegativeInt] = (0, 0)\n Number of standard pml layers to add in the two tangential axes.\nfilter_pol : Optional[Literal['te', 'tm']] = None\n The solver always computes the ``num_modes`` modes closest to the given ``target_neff``. If ``filter_pol==None``, they are simply sorted in order of decresing effective index. If a polarization filter is selected, the modes are rearranged such that the first ``n_pol`` modes in the list are the ones with the selected polarization fraction larger than or equal to 0.5, while the next ``num_modes - n_pol`` modes are the ones where it is smaller than 0.5 (i.e. the opposite polarization fraction is larger than 0.5). Within each polarization subset, the modes are still ordered by decreasing effective index. ``te``-fraction is defined as the integrated intensity of the E-field component parallel to the first plane axis, normalized to the total in-plane E-field intensity. Conversely, ``tm``-fraction uses the E field component parallel to the second plane axis.\nangle_theta : float = 0.0\n [units = rad]. Polar angle of the propagation axis from the injection axis.\nangle_phi : float = 0.0\n [units = rad]. Azimuth angle of the propagation axis in the plane orthogonal to the injection axis.\nprecision : Literal['single', 'double'] = single\n The solver will be faster and using less memory under single precision, but more accurate under double precision.\nbend_radius : Optional[float] = None\n [units = um]. A curvature radius for simulation of waveguide bends. Can be negative, in which case the mode plane center has a smaller value than the curvature center along the tangential axis perpendicular to the bend axis.\nbend_axis : Optional[Literal[0, 1]] = None\n Index into the two tangential axes defining the normal to the plane in which the bend lies. This must be provided if ``bend_radius`` is not ``None``. For example, for a ring in the global xy-plane, and a mode plane in either the xz or the yz plane, the ``bend_axis`` is always 1 (the global z axis).\ntrack_freq : Optional[Literal['central', 'lowest', 'highest']] = central\n Parameter that turns on/off mode tracking based on their similarity. Can take values ``'lowest'``, ``'central'``, or ``'highest'``, which correspond to mode tracking based on the lowest, central, or highest frequency. If ``None`` no mode tracking is performed.\n\nExample\n-------\n>>> mode_spec = ModeSpec(num_modes=3, target_neff=1.5)", "type": "object", "properties": { "num_modes": { "title": "Number of modes", "description": "Number of modes returned by mode solver.", "default": 1, "exclusiveMinimum": 0, "type": "integer" }, "target_neff": { "title": "Target effective index", "description": "Guess for effective index of the mode.", "exclusiveMinimum": 0, "type": "number" }, "num_pml": { "title": "Number of PML layers", "description": "Number of standard pml layers to add in the two tangential axes.", "default": [ 0, 0 ], "type": "array", "minItems": 2, "maxItems": 2, "items": [ { "type": "integer", "minimum": 0 }, { "type": "integer", "minimum": 0 } ] }, "filter_pol": { "title": "Polarization filtering", "description": "The solver always computes the ``num_modes`` modes closest to the given ``target_neff``. If ``filter_pol==None``, they are simply sorted in order of decresing effective index. If a polarization filter is selected, the modes are rearranged such that the first ``n_pol`` modes in the list are the ones with the selected polarization fraction larger than or equal to 0.5, while the next ``num_modes - n_pol`` modes are the ones where it is smaller than 0.5 (i.e. the opposite polarization fraction is larger than 0.5). Within each polarization subset, the modes are still ordered by decreasing effective index. ``te``-fraction is defined as the integrated intensity of the E-field component parallel to the first plane axis, normalized to the total in-plane E-field intensity. Conversely, ``tm``-fraction uses the E field component parallel to the second plane axis.", "enum": [ "te", "tm" ], "type": "string" }, "angle_theta": { "title": "Polar Angle", "description": "Polar angle of the propagation axis from the injection axis.", "default": 0.0, "units": "rad", "type": "number" }, "angle_phi": { "title": "Azimuth Angle", "description": "Azimuth angle of the propagation axis in the plane orthogonal to the injection axis.", "default": 0.0, "units": "rad", "type": "number" }, "precision": { "title": "single or double precision in mode solver", "description": "The solver will be faster and using less memory under single precision, but more accurate under double precision.", "default": "single", "enum": [ "single", "double" ], "type": "string" }, "bend_radius": { "title": "Bend radius", "description": "A curvature radius for simulation of waveguide bends. Can be negative, in which case the mode plane center has a smaller value than the curvature center along the tangential axis perpendicular to the bend axis.", "units": "um", "type": "number" }, "bend_axis": { "title": "Bend axis", "description": "Index into the two tangential axes defining the normal to the plane in which the bend lies. This must be provided if ``bend_radius`` is not ``None``. For example, for a ring in the global xy-plane, and a mode plane in either the xz or the yz plane, the ``bend_axis`` is always 1 (the global z axis).", "enum": [ 0, 1 ], "type": "integer" }, "track_freq": { "title": "Mode Tracking Frequency", "description": "Parameter that turns on/off mode tracking based on their similarity. Can take values ``'lowest'``, ``'central'``, or ``'highest'``, which correspond to mode tracking based on the lowest, central, or highest frequency. If ``None`` no mode tracking is performed.", "default": "central", "enum": [ "central", "lowest", "highest" ], "type": "string" }, "type": { "title": "Type", "default": "ModeSpec", "enum": [ "ModeSpec" ], "type": "string" } }, "additionalProperties": false } } } - attribute apodization: ApodizationSpec = ApodizationSpec(start=None, end=None, width=None, type='ApodizationSpec')#
- Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields. 
 - attribute center: Coordinate = (0.0, 0.0, 0.0)#
- Center of object in x, y, and z. - Validated by
- _center_not_inf
 
 
 - attribute freqs: FreqArray [Required]#
- Array or list of frequencies stored by the field monitor. - Validated by
- _freqs_non_empty
 
 
 - attribute mode_spec: ModeSpec [Required]#
- Parameters to feed to mode solver which determine modes measured by monitor. 
 - attribute name: str [Required]#
- Unique name for monitor. - Constraints
- minLength = 1 
 
 
 - attribute size: Size [Required]#
- Size in x, y, and z directions. - Validated by
- is_plane
 
 
 - add_ax_labels_lims(axis: Literal[0, 1, 2], ax: matplotlib.axes._axes.Axes, buffer: float = 0.3) matplotlib.axes._axes.Axes#
- Sets the x,y labels based on - axisand the extends based on- self.bounds.- Parameters
- axis (int) – Integer index into ‘xyz’ (0,1,2). 
- ax (matplotlib.axes._subplots.Axes) – Matplotlib axes to add labels and limits on. 
- buffer (float = 0.3) – Amount of space to place around the limits on the + and - sides. 
 
- Returns
- The supplied or created matplotlib axes. 
- Return type
- matplotlib.axes._subplots.Axes 
 
 - classmethod add_type_field() None#
- Automatically place “type” field with model name in the model field dictionary. 
 - static bounds_intersection(bounds1: Tuple[Tuple[float, float, float], Tuple[float, float, float]], bounds2: Tuple[Tuple[float, float, float], Tuple[float, float, float]]) Tuple[Tuple[float, float, float], Tuple[float, float, float]]#
- Return the bounds that are the intersection of two bounds. 
 - static car_2_sph(x: float, y: float, z: float) Tuple[float, float, float]#
- Convert Cartesian to spherical coordinates. - Parameters
- x (float) – x coordinate relative to - local_origin.
- y (float) – y coordinate relative to - local_origin.
- z (float) – z coordinate relative to - local_origin.
 
- Returns
- r, theta, and phi coordinates relative to - local_origin.
- Return type
- Tuple[float, float, float] 
 
 - static car_2_sph_field(f_x: float, f_y: float, f_z: float, theta: float, phi: float) Tuple[complex, complex, complex]#
- Convert vector field components in cartesian coordinates to spherical. - Parameters
- f_x (float) – x component of the vector field. 
- f_y (float) – y component of the vector fielf. 
- f_z (float) – z component of the vector field. 
- theta (float) – polar angle (rad) of location of the vector field. 
- phi (float) – azimuthal angle (rad) of location of the vector field. 
 
- Returns
- radial (s), elevation (theta), and azimuthal (phi) components of the vector field in spherical coordinates. 
- Return type
- Tuple[float, float, float] 
 
 - classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model#
- Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values 
 - copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel#
- Copy a Tidy3dBaseModel. With - deep=Trueas default.
 - dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny#
- Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. 
 - classmethod dict_from_file(fname: str, group_path: Optional[str] = None) dict#
- Loads a dictionary containing the model from a .yaml, .json, or .hdf5 file. - Parameters
- fname (str) – Full path to the .yaml or .json file to load the - Tidy3dBaseModelfrom.
- group_path (str, optional) – Path to a group inside the file to use as the base level. 
 
- Returns
- A dictionary containing the model. 
- Return type
- dict 
 - Example - >>> simulation = Simulation.from_file(fname='folder/sim.json') 
 - classmethod dict_from_hdf5(fname: str, group_path: str = '') dict#
- Loads a dictionary containing the model contents from a .hdf5 file. - Parameters
- fname (str) – Full path to the .hdf5 file to load the - Tidy3dBaseModelfrom.
- group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. 
 
- Returns
- Dictionary containing the model. 
- Return type
- dict 
 - Example - >>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5') 
 - classmethod dict_from_json(fname: str) dict#
- Load dictionary of the model from a .json file. - Parameters
- fname (str) – Full path to the .json file to load the - Tidy3dBaseModelfrom.
- Returns
- A dictionary containing the model. 
- Return type
- dict 
 - Example - >>> sim_dict = Simulation.dict_from_json(fname='folder/sim.json') 
 - classmethod dict_from_yaml(fname: str) dict#
- Load dictionary of the model from a .yaml file. - Parameters
- fname (str) – Full path to the .yaml file to load the - Tidy3dBaseModelfrom.
- Returns
- A dictionary containing the model. 
- Return type
- dict 
 - Example - >>> sim_dict = Simulation.dict_from_yaml(fname='folder/sim.yaml') 
 - classmethod evaluate_inf_shape(shape: shapely.geometry.base.BaseGeometry) shapely.geometry.base.BaseGeometry#
- Returns a copy of shape with inf vertices replaced by large numbers if polygon. 
 - classmethod from_bounds(rmin: Tuple[float, float, float], rmax: Tuple[float, float, float], **kwargs)#
- Constructs a - Boxfrom minimum and maximum coordinate bounds- Parameters
- rmin (Tuple[float, float, float]) – (x, y, z) coordinate of the minimum values. 
- rmax (Tuple[float, float, float]) – (x, y, z) coordinate of the maximum values. 
 
 - Example - >>> b = Box.from_bounds(rmin=(-1, -2, -3), rmax=(3, 2, 1)) 
 - classmethod from_file(fname: str, group_path: Optional[str] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
- Loads a - Tidy3dBaseModelfrom .yaml, .json, or .hdf5 file.- Parameters
- fname (str) – Full path to the .yaml or .json file to load the - Tidy3dBaseModelfrom.
- group_path (str, optional) – Path to a group inside the file to use as the base level. Only for - .hdf5files. Starting / is optional.
- **parse_obj_kwargs – Keyword arguments passed to either pydantic’s - parse_objfunction when loading model.
 
- Returns
- An instance of the component class calling load. 
- Return type
- Tidy3dBaseModel
 - Example - >>> simulation = Simulation.from_file(fname='folder/sim.json') 
 - classmethod from_hdf5(fname: str, group_path: str = '', **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
- Loads - Tidy3dBaseModelinstance to .hdf5 file.- Parameters
- fname (str) – Full path to the .hdf5 file to load the - Tidy3dBaseModelfrom.
- group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional. 
- **parse_obj_kwargs – Keyword arguments passed to pydantic’s - parse_objmethod.
 
 - Example - >>> simulation.to_hdf5(fname='folder/sim.hdf5') 
 - classmethod from_json(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
- Load a - Tidy3dBaseModelfrom .json file.- Parameters
- fname (str) – Full path to the .json file to load the - Tidy3dBaseModelfrom.
- Returns
- Tidy3dBaseModel– An instance of the component class calling load.
- **parse_obj_kwargs – Keyword arguments passed to pydantic’s - parse_objmethod.
 
 - Example - >>> simulation = Simulation.from_json(fname='folder/sim.json') 
 - classmethod from_orm(obj: Any) Model#
 - classmethod from_yaml(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
- Loads - Tidy3dBaseModelfrom .yaml file.- Parameters
- fname (str) – Full path to the .yaml file to load the - Tidy3dBaseModelfrom.
- **parse_obj_kwargs – Keyword arguments passed to pydantic’s - parse_objmethod.
 
- Returns
- An instance of the component class calling from_yaml. 
- Return type
- Tidy3dBaseModel
 - Example - >>> simulation = Simulation.from_yaml(fname='folder/sim.yaml') 
 - classmethod generate_docstring() str#
- Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class. 
 - classmethod get_sub_model(group_path: str, model_dict: dict | list) dict#
- Get the sub model for a given group path. 
 - static get_tuple_group_name(index: int) str#
- Get the group name of a tuple element. 
 - static get_tuple_index(key_name: str) int#
- Get the index into the tuple based on its group name. 
 - help(methods: bool = False) None#
- Prints message describing the fields and methods of a - Tidy3dBaseModel.- Parameters
- methods (bool = False) – Whether to also print out information about object’s methods. 
 - Example - >>> simulation.help(methods=True) 
 - inside(x: numpy.ndarray[float], y: numpy.ndarray[float], z: numpy.ndarray[float]) numpy.ndarray[bool]#
- For input arrays - x,- y,- zof arbitrary but identical shape, return an array with the same shape which is- Truefor every point in zip(x, y, z) that is inside the volume of the- Geometry, and- Falseotherwise.- Parameters
- x (np.ndarray[float]) – Array of point positions in x direction. 
- y (np.ndarray[float]) – Array of point positions in y direction. 
- z (np.ndarray[float]) – Array of point positions in z direction. 
 
- Returns
- Truefor every point that is inside the geometry.
- Return type
- np.ndarray[bool] 
 
 - inside_meshgrid(x: numpy.ndarray[float], y: numpy.ndarray[float], z: numpy.ndarray[float]) numpy.ndarray[bool]#
- Perform - self.insideon a set of sorted 1D coordinates. Applies meshgrid to the supplied coordinates before checking inside.- Parameters
- x (np.ndarray[float]) – 1D array of point positions in x direction. 
- y (np.ndarray[float]) – 1D array of point positions in y direction. 
- z (np.ndarray[float]) – 1D array of point positions in z direction. 
 
- Returns
- Array with shape - (x.size, y.size, z.size), which is- Truefor every point that is inside the geometry.
- Return type
- np.ndarray[bool] 
 
 - intersections_2dbox(plane: tidy3d.components.geometry.Box) List[shapely.geometry.base.BaseGeometry]#
- Returns list of shapely geoemtries representing the intersections of the geometry with a 2D box. - Returns
- List of 2D shapes that intersect plane. For more details refer to Shapely’s Documentaton. 
- Return type
- List[shapely.geometry.base.BaseGeometry] 
 
 - intersections_plane(x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None)#
- Returns shapely geometry at plane specified by one non None value of x,y,z. - Parameters
- x (float = None) – Position of plane in x direction, only one of x,y,z can be specified to define plane. 
- y (float = None) – Position of plane in y direction, only one of x,y,z can be specified to define plane. 
- z (float = None) – Position of plane in z direction, only one of x,y,z can be specified to define plane. 
 
- Returns
- List of 2D shapes that intersect plane. For more details refer to Shapely’s Documentaton. 
- Return type
- List[shapely.geometry.base.BaseGeometry] 
 
 - intersects(other) bool#
- Returns - Trueif two- Geometryhave intersecting .bounds.- Parameters
- other ( - Geometry) – Geometry to check intersection with.
- Returns
- Whether the rectangular bounding boxes of the two geometries intersect. 
- Return type
- bool 
 
 - intersects_axis_position(axis: int, position: float) bool#
- Whether self intersects plane specified by a given position along a normal axis. - Parameters
- axis (int = None) – Axis nomral to the plane. 
- position (float = None) – Position of plane along the normal axis. 
 
- Returns
- Whether this geometry intersects the plane. 
- Return type
- bool 
 
 - intersects_plane(x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None) bool#
- Whether self intersects plane specified by one non-None value of x,y,z. - Parameters
- x (float = None) – Position of plane in x direction, only one of x,y,z can be specified to define plane. 
- y (float = None) – Position of plane in y direction, only one of x,y,z can be specified to define plane. 
- z (float = None) – Position of plane in z direction, only one of x,y,z can be specified to define plane. 
 
- Returns
- Whether this geometry intersects the plane. 
- Return type
- bool 
 
 - json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode#
- Generate a JSON representation of the model, include and exclude arguments as per dict(). - encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). 
 - static kspace_2_sph(ux: float, uy: float, axis: Literal[0, 1, 2]) Tuple[float, float]#
- Convert normalized k-space coordinates to angles. - Parameters
- ux (float) – normalized kx coordinate. 
- uy (float) – normalized ky coordinate. 
- axis (int) – axis along which the observation plane is oriented. 
 
- Returns
- theta and phi coordinates relative to - local_origin.
- Return type
- Tuple[float, float] 
 
 - classmethod map_to_coords(func: Callable[[float], float], shape: shapely.geometry.base.BaseGeometry) shapely.geometry.base.BaseGeometry#
- Maps a function to each coordinate in shape. - Parameters
- func (Callable[[float], float]) – Takes old coordinate and returns new coordinate. 
- shape (shapely.geometry.base.BaseGeometry) – The shape to map this function to. 
 
- Returns
- A new copy of the input shape with the mapping applied to the coordinates. 
- Return type
- shapely.geometry.base.BaseGeometry 
 
 - classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model#
 - classmethod parse_obj(obj: Any) Model#
 - classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model#
 - static parse_xyz_kwargs(**xyz) Tuple[Literal[0, 1, 2], float]#
- Turns x,y,z kwargs into index of the normal axis and position along that axis. - Parameters
- x (float = None) – Position of plane in x direction, only one of x,y,z can be specified to define plane. 
- y (float = None) – Position of plane in y direction, only one of x,y,z can be specified to define plane. 
- z (float = None) – Position of plane in z direction, only one of x,y,z can be specified to define plane. 
 
- Returns
- Index into xyz axis (0,1,2) and position along that axis. 
- Return type
- int, float 
 
 - plot(x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None, ax: Optional[matplotlib.axes._axes.Axes] = None, **patch_kwargs) matplotlib.axes._axes.Axes#
- Plot geometry cross section at single (x,y,z) coordinate. - Parameters
- x (float = None) – Position of plane in x direction, only one of x,y,z can be specified to define plane. 
- y (float = None) – Position of plane in y direction, only one of x,y,z can be specified to define plane. 
- z (float = None) – Position of plane in z direction, only one of x,y,z can be specified to define plane. 
- ax (matplotlib.axes._subplots.Axes = None) – Matplotlib axes to plot on, if not specified, one is created. 
- **patch_kwargs – Optional keyword arguments passed to the matplotlib patch plotting of structure. For details on accepted values, refer to Matplotlib’s documentation. 
 
- Returns
- The supplied or created matplotlib axes. 
- Return type
- matplotlib.axes._subplots.Axes 
 
 - plot_shape(shape: shapely.geometry.base.BaseGeometry, plot_params: tidy3d.components.viz.PlotParams, ax: matplotlib.axes._axes.Axes) matplotlib.axes._axes.Axes#
- Defines how a shape is plotted on a matplotlib axes. 
 - static pop_axis(coord: Tuple[Any, Any, Any], axis: int) Tuple[Any, Tuple[Any, Any]]#
- Separates coordinate at - axisindex from coordinates on the plane tangent to- axis.- Parameters
- coord (Tuple[Any, Any, Any]) – Tuple of three values in original coordinate system. 
- axis (int) – Integer index into ‘xyz’ (0,1,2). 
 
- Returns
- The input coordinates are separated into the one along the axis provided and the two on the planar coordinates, like - axis_coord, (planar_coord1, planar_coord2).
- Return type
- Any, Tuple[Any, Any] 
 
 - reflect_points(points: tidy3d.components.types.ArrayLike_dtype=<class 'float'>_ndim=3, polar_axis: typing.Literal[0, 1, 2], angle_theta: float, angle_phi: float) tidy3d.components.types.ArrayLike_dtype=<class 'float'>_ndim=3#
- Reflect a set of points in 3D at a plane passing through the coordinate origin defined and normal to a given axis defined in polar coordinates (theta, phi) w.r.t. the - polar_axiswhich can be 0, 1, or 2.- Parameters
- points (ArrayLike[float]) – Array of shape - (3, ...).
- polar_axis (Axis) – Cartesian axis w.r.t. which the normal axis angles are defined. 
- angle_theta (float) – Polar angle w.r.t. the polar axis. 
- angle_phi (float) – Azimuth angle around the polar axis. 
 
 
 - static rotate_points(points: tidy3d.components.types.ArrayLike_dtype=<class 'float'>_ndim=3, axis: typing.Tuple[float, float, float], angle: float) tidy3d.components.types.ArrayLike_dtype=<class 'float'>_ndim=3#
- Rotate a set of points in 3D. - Parameters
- points (ArrayLike[float]) – Array of shape - (3, ...).
- axis (Coordinate) – Axis of rotation 
- angle (float) – Angle of rotation counter-clockwise around the axis (rad). 
 
 
 - classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny#
 - classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode#
 - static sph_2_car(r: float, theta: float, phi: float) Tuple[float, float, float]#
- Convert spherical to Cartesian coordinates. - Parameters
- r (float) – radius. 
- theta (float) – polar angle (rad) downward from x=y=0 line. 
- phi (float) – azimuthal (rad) angle from y=z=0 line. 
 
- Returns
- x, y, and z coordinates relative to - local_origin.
- Return type
- Tuple[float, float, float] 
 
 - static sph_2_car_field(f_r: float, f_theta: float, f_phi: float, theta: float, phi: float) Tuple[complex, complex, complex]#
- Convert vector field components in spherical coordinates to cartesian. - Parameters
- f_r (float) – radial component of the vector field. 
- f_theta (float) – polar angle component of the vector fielf. 
- f_phi (float) – azimuthal angle component of the vector field. 
- theta (float) – polar angle (rad) of location of the vector field. 
- phi (float) – azimuthal angle (rad) of location of the vector field. 
 
- Returns
- x, y, and z components of the vector field in cartesian coordinates. 
- Return type
- Tuple[float, float, float] 
 
 - storage_size(num_cells: int, tmesh: int) int#
- Size of monitor storage given the number of points after discretization. 
 - classmethod strip_coords(shape: shapely.geometry.base.BaseGeometry) Tuple[List[float], List[float], Tuple[List[float], List[float]]]#
- Get the exterior and list of interior xy coords for a shape. - Parameters
- shape (shapely.geometry.base.BaseGeometry) – The shape that you want to strip coordinates from. 
- Returns
- List of exterior xy coordinates and a list of lists of the interior xy coordinates of the “holes” in the shape. 
- Return type
- Tuple[List[float], List[float], Tuple[List[float], List[float]]] 
 
 - surface_area(bounds: Optional[Tuple[Tuple[float, float, float], Tuple[float, float, float]]] = None)#
- Returns object’s surface area with optional bounds. - Parameters
- bounds (Tuple[Tuple[float, float, float], Tuple[float, float, float]] = None) – Min and max bounds packaged as - (minx, miny, minz), (maxx, maxy, maxz).
- Returns
- Surface area in um^2. 
- Return type
- float 
 
 - classmethod surfaces(size: Tuple[pydantic.types.NonNegativeFloat, pydantic.types.NonNegativeFloat, pydantic.types.NonNegativeFloat], center: Tuple[float, float, float], **kwargs)#
- Returns a list of 6 - Boxinstances corresponding to each surface of a 3D volume. The output surfaces are stored in the order [x-, x+, y-, y+, z-, z+], where x, y, and z denote which axis is perpendicular to that surface, while “-” and “+” denote the direction of the normal vector of that surface. If a name is provided, each output surface’s name will be that of the provided name appended with the above symbols. E.g., if the provided name is “box”, the x+ surfaces’s name will be “box_x+”.- Parameters
- size (Tuple[float, float, float]) – Size of object in x, y, and z directions. 
- center (Tuple[float, float, float]) – Center of object in x, y, and z. 
 
 - Example - >>> b = Box.surfaces(size=(1, 2, 3), center=(3, 2, 1)) 
 - classmethod surfaces_with_exclusion(size: Tuple[pydantic.types.NonNegativeFloat, pydantic.types.NonNegativeFloat, pydantic.types.NonNegativeFloat], center: Tuple[float, float, float], **kwargs)#
- Returns a list of 6 - Boxinstances corresponding to each surface of a 3D volume. The output surfaces are stored in the order [x-, x+, y-, y+, z-, z+], where x, y, and z denote which axis is perpendicular to that surface, while “-” and “+” denote the direction of the normal vector of that surface. If a name is provided, each output surface’s name will be that of the provided name appended with the above symbols. E.g., if the provided name is “box”, the x+ surfaces’s name will be “box_x+”. If kwargs contains an exclude_surfaces parameter, the returned list of surfaces will not include the excluded surfaces. Otherwise, the behavior is identical to that of surfaces().- Parameters
- size (Tuple[float, float, float]) – Size of object in x, y, and z directions. 
- center (Tuple[float, float, float]) – Center of object in x, y, and z. 
 
 - Example - >>> b = Box.surfaces_with_exclusion( ... size=(1, 2, 3), center=(3, 2, 1), exclude_surfaces=["x-"] ... ) 
 - to_file(fname: str) None#
- Exports - Tidy3dBaseModelinstance to .yaml, .json, or .hdf5 file- Parameters
- fname (str) – Full path to the .yaml or .json file to save the - Tidy3dBaseModelto.
 - Example - >>> simulation.to_file(fname='folder/sim.json') 
 - to_hdf5(fname: str) None#
- Exports - Tidy3dBaseModelinstance to .hdf5 file.- Parameters
- fname (str) – Full path to the .hdf5 file to save the - Tidy3dBaseModelto.
 - Example - >>> simulation.to_hdf5(fname='folder/sim.hdf5') 
 - to_json(fname: str) None#
- Exports - Tidy3dBaseModelinstance to .json file- Parameters
- fname (str) – Full path to the .json file to save the - Tidy3dBaseModelto.
 - Example - >>> simulation.to_json(fname='folder/sim.json') 
 - to_yaml(fname: str) None#
- Exports - Tidy3dBaseModelinstance to .yaml file.- Parameters
- fname (str) – Full path to the .yaml file to save the - Tidy3dBaseModelto.
 - Example - >>> simulation.to_yaml(fname='folder/sim.yaml') 
 - classmethod tuple_to_dict(tuple_values: tuple) dict#
- How we generate a dictionary mapping new keys to tuple values for hdf5. 
 - static unpop_axis(ax_coord: Any, plane_coords: Tuple[Any, Any], axis: int) Tuple[Any, Any, Any]#
- Combine coordinate along axis with coordinates on the plane tangent to the axis. - Parameters
- ax_coord (Any) – Value along axis direction. 
- plane_coords (Tuple[Any, Any]) – Values along ordered planar directions. 
- axis (int) – Integer index into ‘xyz’ (0,1,2). 
 
- Returns
- The three values in the xyz coordinate system. 
- Return type
- Tuple[Any, Any, Any] 
 
 - classmethod update_forward_refs(**localns: Any) None#
- Try to update ForwardRefs on fields based on this Model, globalns and localns. 
 - updated_copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel#
- Make copy of a component instance with - **kwargsindicating updated field values.
 - classmethod validate(value: Any) Model#
 - volume(bounds: Optional[Tuple[Tuple[float, float, float], Tuple[float, float, float]]] = None)#
- Returns object’s volume with optional bounds. - Parameters
- bounds (Tuple[Tuple[float, float, float], Tuple[float, float, float]] = None) – Min and max bounds packaged as - (minx, miny, minz), (maxx, maxy, maxz).
- Returns
- Volume in um^3. 
- Return type
- float 
 
 - property bounding_box#
- Returns - Boxrepresentation of the bounding box of a- Geometry.- Returns
- Geometric object representing bounding box. 
- Return type
 
 - property bounds: Tuple[Tuple[float, float, float], Tuple[float, float, float]]#
- Returns bounding box min and max coordinates. - Returns
- Min and max bounds packaged as - (minx, miny, minz), (maxx, maxy, maxz).
- Return type
- Tuple[float, float, float], Tuple[float, float float] 
 
 - property geometry: tidy3d.components.geometry.Box#
- Boxrepresentation of monitor.
 - property normal_axis: Literal[0, 1, 2]#
- Axis normal to the monitor’s plane. 
 - property plot_params: tidy3d.components.viz.PlotParams#
- Default parameters for plotting a Monitor object.